












Preface

In 1924, the Swedish chemist The(odor) Svedberg invented the analytical ultracen-
trifuge (AUC) to characterize nanoparticles. He used it, for instance, to measure
the particle size distribution of very small (d = 2nm) gold colloid particles. Al-
ready in 1926, the Nobel Prize in Chemistry was awarded to Svedberg for his
work. Later, he expanded his investigations to biochemistry, and determined the
first molar masses of biopolymers, especially proteins, via AUC. In the following
years, the AUC became the most important instrument for the characterization of
biopolymers, culminating in the famous density gradient experiment of Meselson
and Stahl in 1957, which proved that the DNA replication mechanism, proposed by
the Nobel Prize winners Watson and Crick, was correct. Later, with the appearance
of other new methods, the AUC lost this prominent position, also because there
was no further instrumental development. Around 1980, only a few laboratories
were still dealing with AUC. This changed with (1) the launch of a redesigned,
fully computerized AUC, the Optima XL-A in 1991, and especially with the XL-A/I
in 1997 by Beckman Instruments, Inc., Palo Alto, USA, and (2) some important
instrumental developments in specialized AUC laboratories, in particular in the
new field of synthetic polymers and colloids. A renaissance of AUC was starting.

In general, analytical ultracentrifugation is a powerful method for the charac-
terization of polymers, biopolymers, polyelectrolytes, nanoparticles, dispersions,
emulsions, and other colloid systems. The method is suited to determine the molar
mass, particle size, particle density, and interaction parameters such as virial co-
efficients and association constants. Because AUC is also a fractionation method,
the determination of the molar mass distribution, particle size distribution, and
particle density distribution is possible as well. A special AUC technique, the den-
sity gradient method, allows us to fractionate heterogeneous samples according to
their chemical nature, which means that the chemical heterogeneity of a sample
can be detected.

The latest textbooks on AUC were published in 1992 and 1994. They deal mainly
with biopolymers, theoretical considerations, and do not describe the new possi-
bilities of the Optima XL-A/I. It is the intention of our book to fill this gap, and to
demonstrate by means of carefully selected application examples that, especially
in the field of synthetic polymers and organic and inorganic nanoparticles, the
AUC is an excellent characterization tool for such species. Our book is written for
beginners as well as for experienced chemists, physicists and material scientists.
It allows the reader to become familiar with the actual status of instrumentation,
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which means the latest state of the art and the different AUC techniques. All these
techniques are described in a simple manner and by means of examples. Detailed
instructions for conducting experiments and for their evaluation are given, in-
cluding explanations of the theoretical background. In this laboratory manual,
emphasis is laid more on practical aspects, rather than on details of centrifugation
theory. The book is subdivided into seven chapters, concerning the history and
basic theory, instrumentation, sedimentation velocity experiments, density gradi-
ent experiments, sedimentation equilibrium experiments, application examples,
and possible future developments. In particular, the detailed application chapter
demonstrates the versatility and power of AUC by means of many interesting and
important practical industrial examples. Most of these examples stem from an
industrial AUC research laboratory of a leading chemical company, where both
authors have gained many years of experience in AUC instrumentation, and AUC
characterization of complex polymer and nanoparticle systems.

The authors wish to express their gratitude and appreciation to all colleagues
who provided experimental details and data, in particular M.D. Lechner (Os-
nabrück), T.M. Laue (Durham, NH, USA) and H. Cölfen (Potsdam). The support
of many colleagues from the Polymer Research Laboratory of BASF Aktienge-
sellschaft, Ludwigshafen, Germany, in providing devices, samples and advice, is
gratefully acknowledged, above all U. Klodwig. We also would like to thank our
coworkers M. Page, U. Gonnermann and M. Stadler for their great commitment
in preparing the manuscript and the figures, and H. Roth, M. Kaiser, K. Vilsmeier
and K.H. Zimmermann, too, who carried out nearly all measurements presented
in this book in an accurate manner.

Carefully reviewing a book means lots of work but not much appreciation
for the reviewers. Therefore, the authors wish to express their deep gratitude to
Helmut Cölfen (Potsdam) and Karl-Clemens Peters (Bad Dürkheim) for taking on
this difficult job.

Furthermore, the authors would like to thank the management of BASF Ak-
tiengesellschaft for supporting the publication of this book.

Last but not least, we thank our families, in particular our spouses, for their
indulgence and understanding during the long time of preparing the manuscript
of this book, when we often did not adequately take part in family life.

Ludwigshafen, November 2005 Walter Mächtle
Lars Börger
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ε Specific decadic absorption coefficient
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ω Angular velocity
a Optical path length
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A Absorption
A2 Second virial coefficient
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D Diffusion coefficient
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Ff Frictional force
Fs Gravitational force
FFF Field flow fractionation
g Acceleration due to gravity
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G(s) Integral sedimentation coefficient distribution
I Intensity of light
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ks Concentration dependence coefficient
K Kelvin
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1 Introduction

Various questions have to be answered before writing a book about analytical
ultracentrifugation, a topic that is nowadays not of wide interest, but more a spe-
cialized recess. These questions may be summarized as follows: is it worth putting
a lot of work into a book on just one, not widely spread technique, and will there
be any readers?

To answer the latter question first: as you, the reader, hold this book in your
hands, there is obviously at least one interested reader. It is more difficult to answer
the first question. If we had not answered this question with a clear yes, you would
not be reading this introduction now. The motivation to invest this huge amount
of time in our book arises mainly from three aspects:

Firstly, the authors simply do not understand why the powerful technique we
are talking about, the analytical ultracentrifuge (AUC), is widely used in the field of
biology and adjacent areas, but to our knowledge is not, or almost never applied to
colloid and synthetic polymers (especially not in the measurement of particle size
distribution in the range 1–5000nm). One reason might be that simply nobody
knows about AUC? Here, our book may be helpful.

Secondly, also the authors believe that there is a need for a book that takes into
account the latest developments of the last decade, since the most recent books on
AUC were published in 1992 [1] and 1994 [2]. There are some other well-known,
older books dealing with analytical ultracentrifugation [3–10], starting with the
first in 1940 by Svedberg and Pedersen. However, the focus of nearly all of these
books lies on biological systems. In contrast, we would like to remind scientists of
a technique they may know but may have forgotten, and put the focus of this book
on how powerful the AUC can be, applied on synthetic polymers and colloids.

Thirdly, we would like to emphasize that in times where mega-trends such
as nanotechnology, soft materials and biotechnology are en vogue, the need for
accompanying analytical methods is increasing. By the end of this book, the reader
should be convinced, if necessary, that AUC can be a helpful tool in these modern
scientific fields.

The power of AUC is often underestimated. The reasons for this are not easy to
address. Looking back to the very beginning of this technique, one is automatically
confronted with the work of the Nobel Prize winner The(odor) Svedberg [11, 12].
He invented the first practical, usable analytical ultracentrifuge (that is, an ultra-
centrifuge with an optical detecting system) in 1924, together with his coworker
Rinde, with the motivation to learn about colloidal systems, and especially about
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the size and size distribution of colloidal systems [13]; the first centrifuge that was
equipped with an optical detecting system was built by Svedberg and Nichols in
1923 [14]. Hence, writing a book focusing more on the use of AUC in colloidal
science takes us back to the origin of ultracentrifugation. In the years following
his invention, Svedberg turned his attention more from colloidal toward biologi-
cal questions, such as the determination of the molar mass of proteins [15]. The
focus of the analytical ultracentrifugation community stayed on these biological
and biochemical questions during the next decades. Still today, most publications
containing AUC investigations deal with this field of science.

The AUC was the first instrument delivering reliable values for molar masses of
biopolymers, and therefore had its outstanding place in biochemistry. To a certain
degree, AUC lost this place with the upcoming of new methods such as the laser
technique (allowing light scattering measurements), the development of electron
microscopes (EM), the polyacrylamide gel electrophoresis (PAGE), and the size
exclusion chromatography (SEC). SEC is today the dominating method to mea-
sure average molar masses M and molar mass distributions (MMD) of synthetic
polymers. All this went along with a lack of improved instrumentation after the
most successful AUC apparatus, the Model E by Beckman, became obsolete. Also
several other companies that built ultracentrifuges turned their interest away from
the AUC (see Chap. 2). The field of analytical ultracentrifugation was “starving”
around 1980, with just a very few laboratories still dealing with the technique. This
changed with the launch of a redesigned AUC, the Optima XL-A by Beckman in
1991, and nowadays there is a trend reversal.

Certainly, at present there is a demand for a fractionating measurement tool
such as the AUC, which provides physicochemical information on a wide choice
of topics. And this demand may increase due to the recent scientific mega-trends
described above: nanotechnology and biotechnology.

1.1 Historic Examples of Ultracentrifugation

With respect to these mega-trends, two highlights from scientific history may be
given in this introduction to illustrate the importance of AUC (and to serve as an
appetizer to read the rest of the book that contains a lot of modern examples):

(i) Investigations on gold colloids in 1924, and
(ii) Investigations on the structure of DNA in 1957.

These two historical examples have also been selected because they illustrate two
major principles of centrifugation: sedimentation velocity runs, and (density)
equilibrium runs. Both examples reflect the variety of fields covered by analytical
ultracentrifugation: while sedimentation velocity runs on colloids, first done by
Svedberg, are representative for the field of inorganic nanoparticles and colloids
in general (investigations on synthetic polymers may be implied here as well),
the Meselson–Stahl density gradient experiment stands for biochemical or pure
biological questions.
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1.1.1 Investigations on Gold Colloids in 1924

In 1926, Svedberg won the Nobel Prize in chemistry for “his work on disperse
systems”, just one year after the German chemist Zsigmondy received the prize
“for his demonstration of the heterogeneous nature of colloid solutions and for
the methods he used, which have since become fundamental in modern col-
loid chemistry”. Zsigmondy invented the ultramicroscope, and used it to prove
the particle nature of colloids with particle diameters in the nanometer range.
Later in his Nobel Prize lecture [16], Svedberg pointed out that in his opin-
ion the ultramicroscope of Zsigmondy had a big disadvantage: “The distribu-
tion of the particle size cannot be determined”. And, in fact, Svedberg invented
the analytical ultracentrifuge with the intention to determine particle size dis-
tributions of colloids by fractionation. Later, its value for the analysis of poly-
meric systems, both biopolymers and synthetic polymers, was discovered. In
fact, Svedberg chose the name ultracentrifuge in analogy to Zsigmondy’s ul-
tramicroscope.

The heart of any AUC is a rotor that contains parts called analytical cells (see
Chap. 2). These cells house the samples to be investigated. By centrifuging the
rotor at high speed, a centrifugal field is generated, and the reaction of the sample
on the field can be studied with analytical detectors. As we will see below, one of
the possible reactions of the sample to the centrifugal field is the sedimentation
of the dispersed or dissolved particles with a characteristic velocity. The under-
lying principle that allows us to learn about particle size distributions from the
ultracentrifuge is that the sedimentation velocity is in general well correlated to
particle size, in that the larger a particle, the faster it sediments. This is a major
subject of this book, and it will be discussed in detail below. Figure 1.1 shows the
original data of the sedimentation experiment that Rinde and Svedberg performed

Fig. 1.1. Radial concentration distribu-
tion of a highly disperse gold colloid
in an AUC cell, recorded 5, 10, 15, and
20 minafterbeginningofcentrifugation
(centrifugal field 28 800 times gravity;
original work of The Svedberg in 1924;
reprinted with permission from [13])
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on a gold colloid sample in 1924. The presented radial concentration profile of
the sedimenting colloidal gold particles inside the measuring cell, recorded every
5min, was measured in the first AUC apparatus by Rinde and Svedberg (the details
of these results will be the subject of Chaps. 2 and 3).

Each of these radial concentration profiles of gold colloids in the cell is a mea-
sure for the sedimentation velocity, or more precisely, for the sedimentation veloc-
ity distribution of the differently sized gold particles. In contrast to microscopic
methods, not only a few but all particles of the sample contribute to the measur-
ing signal in the example shown. Thus, a high statistical relevance is guaranteed.
Each of the different radial concentration profiles in Fig. 1.1, recorded at different,
well-defined times, can be converted by means of Stokes’ law into a particle size
distribution , abbreviated PSD (for details, see Chap. 3). The resulting (differen-
tial) PSD is given in Fig. 1.2. Within the errors of measurement, all these radial
concentration profiles yield the same PSD.

The historical unit μμ on the axis of abscissas in Fig. 1.2 stands for mil-
limicron (also mμ), and that is what we call today a nanometer (nm). Hence,
the maximum of the PSD given in Fig. 1.2 is close to 1.5nm, and the whole di-
ameter range lies between 0.7 and 2.2nm. By means of these, and comparable
AUC measurements, Rinde and Svedberg were able to demonstrate that the gold
colloids observed by Zsigmondy in his “classic” work were in fact not as nar-
rowly distributed as thought before. Obviously, Svedberg and coworkers were
able to characterize colloids that would be named nanoparticles in today’s ter-
minology. In Chap. 3, we will demonstrate that the advantages of a nanoparti-
cle analysis done by applying AUC, first performed by Svedberg, are still true
today.

Fig. 1.2. Differential particle size distribu-
tion of a highly disperse gold colloid, calcu-
lated from Fig. 1.1, taken from the original
Svedberg paper (reprinted with permission
from [13])
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1.1.2 Investigations on the Structure of DNA in 1957

In 1953, the Noble Prize winners James D. Watson and Francis H.C. Crick published
their famous paper [17] on the structural model of deoxyribonucleic acid (DNA).
The importance of this paper for biology, and for science in general, can surely not
be overestimated, and has been described in innumerable publications.

Watson and Crick suggested the DNA to be shaped like a double helix. Their
model opened the possibility to answer one of the most important questions in
biology in general, namely, how the genetic information contained in an organism
is replicated. According to the double helix model, two different possibilities for
the replication mechanism can be considered, these being the semi-conservative
and the conservative (see Fig. 1.3; for comprehensibility’s sake, here we leave out
the third possible mechanism, i.e., random disperse; for details, the reader can
consult the references cited).

Each of these possibilities predicts different DNA molecules in the descended
generation. In the semi-conservative case, the double-strand DNA of the progeny
in the first generation after replication consists of one strand from the parent and
one new strand. In the conservative case, the parent DNA will be still intact, and
the progeny DNA will consist of two new strands.

At this point, two other scientists came into play: Matthew Meselson and Frank
Stahl [18, 19]. Stimulated by the question indicated above, they thought of ex-
periments to rule out possibilities and/or to prove one of the mechanisms to be
true. The details of the history that led to the “most beautiful experiment in biol-
ogy” are excellently described in a book on AUC technique recently published by
F.L. Holmes [20]: the equilibrium density gradient. The principle of this new kind of
experiment invented by Meselson and Stahl will be pointed out in detail in Chap. 4.
Therefore, here we concentrate on the essential aspects needed to understand the
brilliance of Meselson and Stahl’s experimental design. The experiment makes use
of the fact that an aqueous CsCl solution forms a density gradient when exposed to
a high gravitational field in an AUC measuring cell. These heavy cesium chloride
molecules (density in the solid state ρ = 4.1g/cm3) are subject to sedimentation
as well as diffusion. Due to the first dominating sedimentation, the concentra-
tion of the salt is increased at the bottom of the cell. The resulting radial CsCl
concentration gradient creates a back-transport of salt under diffusion, according

Fig. 1.3. Possible mecha-
nisms of the double-strand
DNA replication
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to Fick’s first law. After appreciable time, this leads to equilibrium between sedi-
mentation and back-diffusion, resulting in a time-independent radial exponential
concentration gradient, c(r), of CsCl in the centrifuge cell. The different radial CsCl
concentrations are correlated to different corresponding local densities. Therefore,
not only a concentration, but also a radial exponential density gradient, ρ(r), is
created when an aqueous CsCl solution is centrifuged.

Particles or macromolecules of a sample (e.g., DNA) added to such an equi-
librium density gradient will sediment or float toward the isopycnic point in the
density gradient, where the sample particle density is matched by the local gradient
density. At this radial point, the sample particle will rest because no net force acts.
If the sample consists of components exhibiting different particle densities, then
these particular components will be found at different radial positions in the cell.
Effectively, the sample has then been fractionated according to the density of its
components.

Meselson and Stahl made use of this new type of experiment in order to
differentiate between the different replication mechanisms. The design of their
experiment, which became famous as the Meselson–Stahl experiment, may be
described as follows.

The basic idea they had (stimulated by the work of renowned scientists such as
LinusPauling,HowardSchachmanundMaxDellbrück)was todistinguishbetween
the parent and daughter DNA generations by marking the parent generation with
heavy isotopes. They choose the 15N isotope, and incorporated it into the DNA of
Escherichia coli by letting E. coli grow in a “heavy” medium that contained solely
15N-marked nutrients for many generations. Eventually, the E. coli bacterium was
likely to contain almost only the heavy isotope. Therefore, the density of the DNA
of this E. coli modification would have been shifted to higher density values, as 15N
is, of course, heavier than 14N.

As proof of the concept, Meselson and Stahl tested if they were able to distin-
guish between pure 15N DNA and pure 14N DNA. Figure 1.4 shows their results
from an AUC CsCl/water–density gradient experiment in which, as sample, a mix-
ture of 15N DNA and 14N DNA was added. Two signals at different radial positions

Fig. 1.4a,b. The proof of fractionation of 14N- and 15N-DNA in a CsCl/water–AUC density gradient,
taken from the original paper [19]. a Photograph taken after 24 h of centrifugation at 44 700 rpm. b Mi-
crodensitometer trace of that photograph showing the DNA distribution (reprinted with permission
from [19])
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Fig. 1.5. Schematic results from the
Meselson–Stahl AUC density gradient exper-
iment

are recorded, one resulting from the 15N DNA, the other from the 14N DNA. These
different radial band positions represent a density difference between marked and
unmarked DNA of merely Δρ = 0.014g/cm3 (a modern example concerning non-
deuterated and deuterated samples, so-called nanogels, is presented in Sect. 6.2
and Fig. 6.13).

The actual replication experiment [20] was the following: Meselson and Stahl
took the 15N E. coli DNA they grew as described above and placed it into a normal
14N nutrient medium. The E. coli DNA was then allowed to reproduce. At different
times, samples from this “growing” solution were taken and were examined in
an AUC density gradient experiment. According to Fig. 1.3, in the conservative
case two signals are expected for the first generation of DNA, whereas the semi-
conservative mechanism predicts only one signal of a DNA species with a density
between the those of pure 14N DNA and pure 15N DNA.

The results of Meselson and Stahl were clear (see Fig. 1.5): they found only one
signal in the AUC density gradient. This means the conservative mechanism could
be ruled out. Furthermore, the observed species exhibited a density slightly lower
than the parent density, and between the 15N DNA and the 14N DNA densities.
This second finding strongly suggested the replication mechanism to be semi-
conservative.

All in all, this AUC experiment proved the proposal made already by Crick and
Watson that the replication of DNA follows the semi-conservative mechanism. This
is briefly the story of the Meselson–Stahl experiment, which was not arbitrarily
named the “most beautiful experiment” in biology.

1.2 Basic Theory of Ultracentrifugation

In analytical ultracentrifugation experiments, dissolved or dispersed samples in-
side AUC measuring cells are exposed to high gravitational fields induced by the
spinning of the centrifuge rotor (see Chap. 2). The reaction of the sample to the
gravitational field is followed by optical detection systems that basically measure
(in the general case of sedimentation velocity runs) the concentration change of
the sample with time and radius, c(r, t). In the case of equilibrium runs, only c(r)
is measured.
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In this Sect. 1.2, we will give a short introduction into the theory of AUC. In
this overview, we will concentrate on the basic equations to give a general insight
into how physicochemical parameters such as the molar mass M, the particle
density ρp, the particle diameter dp, the diffusion coefficient D, the sedimentation
coefficient s, and the frictional coefficient f are connected by AUC theory, and thus
are measurable by means of AUC. It must be emphasized that, inside a rotating
AUC cell, fractionation of the dissolved particles takes place according to their
size and density. Thus, not only the average of physicochemical parameters can be
measured, but also their distributions, such as the molar mass distribution MMD,
and the PSD.

The introduction of the AUC theory will be given in two steps. First, a simplified
theory based on mechanics according to Svedberg is given. In the second step, the
famous general Lamm equation based on first principles from thermodynamics
will be derived.

1.2.1 Svedberg’s Simplified Theory

For the first step, we consider a particle (or macromolecule) of mass mp and
density ρp, suspended (or dissolved) in a solvent with density ρs and viscosity ηs.
When this particle is exposed to a gravitational field ω2r at a radial distance r from
the center of rotation, there are basically three forces acting upon it (see Fig. 1.6):

(i) The gravitational force Fs, induced by the centrifugal acceleration ω2r inside
the spinning AUC rotor:

Fs = mpω2r =
M

N
ω2r , (1.1)

where M is the molar mass of the solute, and N the Avogadro’s number.

Fig. 1.6. Schematic dia-
gram of the forces acting on
a suspended particle sedi-
menting in a gravitational
field in an AUC
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(ii) The buoyant force Fb, which is – according to the principle of Archimedes –
proportional to the mass of the displaced solvent ms and ω2r (in opposite
direction to Fs):

Fb = −ms · ω2r = −mp · υ · ρs · ω2r = −
M

N
· υ · ρs · ω2r , (1.2)

with the partial specific volume of the solute υ =
(
ρp

)−1
, which is the recip-

rocal of the particle density ρp.
(iii) The frictional force Ff (also in opposite direction to Fs), induced by the

movement of the particle through the solvent:

Ff = −f · u , (1.3)

with the frictional coefficient f and the sedimentation velocity u of the solute.

The three forces shown above come into balance immediately, causing the particle
to move with a constant sedimentation velocity u. Therefore, the forces can be
summed up to give (1.4):

Fs + Fb + Ff = 0 =
M

N
· ω2r −

M

N
· υ · ρs · ω2r − f · u . (1.4)

Rearrangement of (1.4) leads to (1.5):

M
(
1 − υ · ρs

)
N · f

=
u

ω2r
≡ s . (1.5)

Equation (1.5) contains thedefinitionof the sedimentationcoefficient s ≡ u
/(

ω2r
)
.

The frictional coefficient f is well known from hydrodynamic theory. It depends on
the shape and size of the moving particle. For the simplest case of a sedimenting (or
floating) spherical particle, the Stokes–Einstein Eq. (1.6) and the Stokes Eq. (1.7)
can be assumed to hold:

f =
kT

D
=

RT

ND
, (1.6)

with the Boltzmann number k, and the gas constant R, and

f = 3π · ηs · dp , (1.7)

with the particle diameter dp of the spherical particle.
Insertion of (1.6) into (1.5) leads directly to the famous Svedberg equation

(1.8), which allows us to determine M by measuring s, D and υ (see Sect. 5.5):

M =
s · RT

D · (1 − υ · ρs
) . (1.8)
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Insertion of (1.6) and (1.7) into (1.5) leads to (1.9). This equation is the basis
for measuring particle sizes dp (or, more precisely, Stokes-equivalent (sphere)
diameters) by AUC via measurement of s and u, respectively:

dp =

√
18 · ηs · s(
ρp − ρs

) =

√
18 · ηs(
ρp − ρs

) · u

ω2r
. (1.9)

This section demonstrated Svedberg’s derivation of the basic AUC equations, by
applying simply a mechanical force consideration.

1.2.2 Derivation of Lamm’s Equation

As a second step to introduce AUC theory, in this section a more accurate thermo-
dynamic approach is presented that will lead us to the general Lamm equation.
As mentioned above, the basic information obtained in an AUC experiment is
the change of sample concentration as a function of radius and time, c(r, t). This
change of sample concentration, as described below, basically holds for all different
types of AUC experiments.

The change of the sample concentration with radius and time during an ultra-
centrifugation experiment is given by the so-called Lamm equation [6, 21]:

∂c

∂t
= D

(
∂2c

∂r2
+

1
r

∂c

∂r

)
− ω2s

(
r
∂c

∂r
+ 2c

)
, (1.10)

diffusion term sedimentation term

with the sample concentration c(r, t), the radial distance from axis of rotation r, the
diffusion coefficient D, the angular velocity ω, and the sedimentation coefficient s.

Obviously, this equation consists of two terms: The first one describes the
diffusion, and the second term the sedimentation of the sample particles. This
easily leads to the distinction of different basic types of AUC experiments according
to the dominating term, as we will see below (see Sect. 1.3 and Table 1.1).

Equation (1.10) can be derived as follows (for details, see [6]). If the experi-
ment is well performed (no convection, etc.), only two different mass transport
mechanisms for the sample particles occur in an ultracentrifuge cell: transport via
sedimentation, and transport via diffusion.

For a start, the mass transport due to sedimentation is addressed. Consider
a volume element dV in a sector-shaped ultracentrifugation cell (see Fig. 1.7)
rotating at given angular velocity ω (in rad/s). The volume element may reach
from r to r + dr.

The mass of solute transported via sedimentation across a given surface per
unit time (dms/dt) is given by the product of the concentration c of the solute at
the surface, the surface area, and the sedimentation velocity u. The magnitude of
the gravitational field at given radial distance from the axis of rotation r is ω2r.
The area of the sector-shaped cell is φ · a · r, with the angle of the sector φ (in rad)
and the thickness of the cell along the optical path a. The sedimentation velocity
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Fig. 1.7. Schematic dia-
gram of a sector-shaped
ultracentrifuge cell

u = s · ω2r follows from the definition of the sedimentation coefficient s in (1.5).
Thus, the final equation for dms/dt is:

dms

dt
= c · φ a r · u = c · φ a r · s · ω2r . (1.11)

Now, the second mechanism of mass transport due to diffusion (in the opposite
direction of sedimentation) is addressed. The transported mass across the given
surface per unit time (dmD/dt) is given by Fick’s first law, in (1.12):

dmD

dt
= −D · φ a r · ∂c

∂r
, (1.12)

with the diffusion coefficient D, and the concentration gradient along the radius
∂c/∂r. The combination of (1.11) and (1.12) leads to the following expression for
the net mass transport across the surface at the given radial distance r per unit
time:

dm

dt
= φ a r

[
csω2r − D

∂c

∂r

]
. (1.13)

A similar equation can be written for the net transport across the surface at the
radial distance r +dr. Subtractionof these twoequationsgives thenet accumulation
of mass in the volume element per unit time. The quotient of the change of mass
per unit time dm/dt and volume element dV gives the concentration change in
the volume element per unit time, in (1.14):

∂c

∂t
=

dm/dV

dt
=

dm

dt
· 1

φ a r∂r
. (1.14)

This leads to the following expression for the concentration change per unit time
at the radial position r:

∂c

∂t
=

1
r

∂
∂r

[(
D

∂c

∂r
− ω2sr

)
r

]
. (1.15)

If it is assumed that s and D do not depend on the concentration, this equation
can be transformed into (1.10). This general differential Lamm equation can in
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principle describe any experiment performed in an analytical ultracentrifuge. In
practice, it is often difficult to make use of this equation, and therefore very often
the simpler equations derived in the first part of the basic theory paragraph are
used instead.

1.3 Basic Experiment Types of Ultracentrifugation

There are five basic types of experiments that can be performed with an analytical
ultracentrifuge (see Table 1.1). Each of these can deliver its own range of physico-
chemical information on samples. In this chapter, a simple overview of the different
experimental procedures is given. The most relevant types of experiments will be
described in detail in following chapters.

A short summary of each of these five different experimental approaches will
be given in the following five sections.

1.3.1 Sedimentation Velocity Experiment

The sedimentation velocity experiment carried out at high centrifugal fields is
the most important AUC technique for macromolecule and nanoparticle char-
acterization, especially for the measurement of particle size distributions. An

Table 1.1. The five basic experiment types of analytical ultracentrifugation

Experiment Operative term in the

Lamm equation (1.10)

Characteristics of

experiment

Main accessible

physicochemical

parameter

(1) Sedimentation

velocity

Sedimentation term

dominates diffusion term

High rotational speed s, s distribution, M,

MMD, dp, PSD

(2) Synthetic

boundary

Both terms operative,

diffusion dominates

Low and high rotational

speed, special synthetic

boundary cells required

D, c, small s values, dn/dc

(3) Sedimentation

equilibrium

Both terms operative,

equilibrium between

sedimentation and

diffusion

Low to moderate

rotational speed, time

consuming

M, MMD, equilibrium

constants and

stoichiometrics of

interacting systems, A2

(4) Density

gradient

Both terms operative,

equilibrium between

sedimentation and

diffusion

High rotational speed,

either light/heavy solvent

mixture or heavy additive

as support agent

Density ρp, relative Δρ,

chemical heterogeneity

(5) Approach to

equilibrium

(Archibald

method)

Both terms operative,

sedimentation dominates

Low to moderate

rotational speed

M
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example of this type of experiment has already been presented in this chapter.
Here, the molecules/particles sediment according to their mass/size, density, and
shape, without significant back-diffusion according to the simultaneously gener-
ated concentration gradient. Under such conditions, a fractionation of mixture
components, mainly according to size, takes place, and one can detect this frac-
tionation as a step-like or broadly distributed radial concentration profile c(r, t)
in the ultracentrifuge cell. These profiles usually exhibit an upper and a lower
plateau, as shown in Fig. 1.1. In most cases, these measured sedimentation profiles
can be transferred into average values of s, M or dp, or into their corresponding
distributions, such as MMD and PSD. The sedimentation velocity experiment will
be discussed exhaustively in Chap. 3.

1.3.2 Synthetic Boundary Experiment

In a synthetic boundary experiment, time-dependant radial concentration changes
within a boundary between solution and solvent are observed. At low centrifugal
fields, where no, or nearly no sedimentation of the sample occurs, diffusion dom-
inates, and thus it is possible to precisely measure the diffusion coefficient D. At
high centrifugal speeds, it is possible to measure the sedimentation coefficient s
of samples sedimenting very slowly (0.3 < s < 2S), which cannot be measured in
a standard sedimentation run because the sample moves away too slowly from the
meniscus.

Such experiments require special cells where it is possible to layer the solvent
upon the solution column, under the action of a certain centrifugal field during the
run. This is achieved either by capillaries that connect the solvent compartment
with the solution compartment in a double-sector cell, or in an overlaying cell of
the valve type (see Chap. 2 and Fig. 2.7). Both types of synthetic boundary cells (see
Sect. 2.3) allow solvent superimposition to occur at a certain hydrostatic pressure.
At the beginning of the solvent superimposition, t = 0, a sharp boundary between
pure solvent and pure solution is obtained, comparable to the meniscus. Within
minutes, this boundary spreads by diffusion of the sample particles according to
Fick’s first law (1.12), due to the high sample concentration gradient (dc/dr) within
the boundary. The spreading of the boundary with radius and time is monitored.

The following information is available by this method: the plateau concentra-
tion of the upper plateau can be determined, which is a measure for the loading
concentration c0 and the specific refractive index increment (dn/dc). Furthermore,
the radial refractive index increment (dn/dr) at the boundary can be measured.
This allows the determination of the diffusion coefficient D. A possible radial
movement of the boundary allows us to determine (very small) sedimentation
coefficients s. The synthetic boundary experiment will be discussed in Chap. 3.

1.3.3 Sedimentation Equilibrium

In contrast to the sedimentation velocity run, a sedimentation equilibrium exper-
iment is carried out at moderate centrifugal fields. Here, the sedimentation of the
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dissolved sample is balanced by back-diffusion, according to Fick’s first law, caused
by the established concentration gradient. This means that in Lamm’s Eq. (1.10),
∂c/∂t = 0 is valid. After the equilibrium between these two transport processes
is achieved, a radial exponential concentration gradient c(r) has formed in the
ultracentrifuge cell. Therefore, the sedimentation equilibrium analysis is based on
thermodynamics. The time of equilibrium attainment depends considerably on
the column height of the solution [22], so that short-column techniques with solu-
tion columns of about (rb − rm) = 1mm are common practice nowadays wherever
a rapid equilibrium within 1–2h or less is desired [23].

The radial concentration gradient c(r) contains information about the absolute
molar mass M and the MMD of the dissolved sample, the second osmotic virial
coefficient A2 or interaction constants in case of interacting systems, independently
of the shape of the dissolved macromolecules. An advantage is that the detection of
the concentration gradient is possible without disturbing the chemical equilibrium
even of weak interactions. This experiment type will be described more closely in
Chap. 5.

1.3.4 Density Gradient

In the introduction of this chapter, we have described the very first density gradient
experiment performed in an AUC. A density gradient experiment is the second
principal possibility of separation/fractionation in an analytical ultracentrifuge.
It is the separation due to the chemical structure expressed in different solute
densities ρp in a density gradient. In order to generate a continuous radial density
gradient ρ(r) in the ultracentrifuge cell, either a high-density salt (CsCl, etc.) or
organic substances such as sucrose are dissolved in water, or a mixture of two
organic solvents with very different density is applied. Under the action of the cen-
trifugal field, the “heavy” salt, or the solvent component showing a higher density
will sediment toward the cell bottom, and thus change the radial density distribu-
tion of the two-component density gradient solution continuously toward the cell
bottom. If sample particles are placed into this density gradient solution, they will
sediment/float to the isopycnic radial position where their density matches that of
the gradient medium. In the case of a chemically heterogeneous sample, this leads
to a banding of the different components due to their chemical structure/density at
different radial positions. The range of densities that can be covered using density
gradients is wide (0.8–2.0g/cm3; [24]), sufficient for the separation of nearly all
polymeric substances. However, inorganic or organic–inorganic hybrid colloids
have a density range that is in most cases too high for the successful application
of a density gradient. Furthermore, these so-called static equilibrium density gra-
dient experiments take a long time, usually in the order of 1–5 days, due to the
slow formation of the density gradient ρ(r). This disadvantage can be overcome to
a certain degree by applying a technique called dynamic density gradients.

In this very fast type of experiment, a time-dependent radial density gradient
ρ(r, t) is created by overlaying H2O on a D2O solution of the sample to be examined.
The H2O and the D2O diffuse into each other. Therefore, the density in the cell
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is inhomogeneous: At the beginning of the experiment, the bottom region of the
cell is enriched with D2O, whereas the meniscus region is enriched with H2O.
All possible densities, from 1.0g/cm3 (H2O) to 1.1g/cm3 (D2O) can be found in
between, depending on the radial position in the cell. At the end of the experiment,
there is a homogenous medium density all over the cell. The sample’s density
can be measured within minutes (if the sample moves fast enough) by recording
the radial position of the sample in the dynamic density gradient. The main
drawback of this dynamic density gradient method is the limited density range
covered. Nevertheless, density gradients of both types, static ones and dynamic
ones, are an excellent tool for the investigation of structural differences or chemical
heterogeneities in sample mixtures. The density gradient experiments will be
presented exhaustively in Chap. 4.

1.3.5 Approach-to-Equilibrium (or Archibald) Method

This procedure is often referred to as the Archibald method [25], in honor of the
man who first described it. In principle, the approach-to-equilibrium method is
a method to measure molar masses M. It depends on the fact that the conditions
for sedimentation equilibrium are fulfilled at both ends of the solution column
at all times during every kind of centrifugation experiment. This means that no
solute can pass through the air–solution meniscus or out through the bottom of
the cell. The net flow of the solute is zero at rm and rb at all times. Thus, the
Archibald equation is similar to the equilibrium equation for this transient state.
From a measurement of both the concentration c and the concentration gradient
dc/dr, at either rm or rb, the molar mass M of the solute can be calculated. The
Archibald method is described in Sect. 5.5.

1.4 Closing Remarks

The authors of this book are working in the world’s leading chemical company
producing polymer materials and colloids. Within our company, the AUC is in-
tensively used in research, development and production. Thus, it is not surprising
that most of the measuring examples presented in this book to illustrate the five
basic types of AUC experiments stem from these areas and are, as goes without
saying, of major industrial importance.

As mentioned at the beginning of this chapter, the most recent book summa-
rizing the latest advances in AUC instrumentation was published in 1992 [1]. Thus,
Chap. 2 of this AUC book deals with new instrumentation developed to date (e.g.,
the new Optima XL-A/I, Schlieren optics, detectors, multiplexer).

While the instrumentation and the most important types of AUC experiments
(and what can be learned from them) will be introduced in Chaps. 2–5, Chap. 6 will
give interesting examples of application to display the full power of the AUC as an
analytical tool, especially for complex mixtures. Samples from both industrial and
scientific fields tend to become more complicated and complex at the nano-scale.
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In many cases, one analytical technique applied solely cannot reveal sufficient
information. Therefore, we will also show in Chap. 6 how different AUC methods
combined with each other, or with other analytical techniques such as field flow
fractionation (FFF), dynamic light scattering (DLS) or electron microscopy (EM),
will yield information that goes well beyond that provided by a single method.

In the final Chap. 7, we dare to give an outlook on what might be the future
of analytical ultracentrifugation. One of these future trends (also discussed in
Chap. 6) is the so-called global analysis, i.e., the analysis of very complex samples
via combination of different physical methods and powerful, fast data analysis.

As textbooks for a deeper study of analytical ultracentrifugation, we recom-
mend the references [1–10]. Furthermore, we recommend becoming part of the
various internet AUC user groups [26–28]. These are offering a permanent and
actual discussion platform for all questions concerning AUC. In particular, they
are a source for a lot of interesting, free evaluation AUC software.

References

1. Harding SE, Rowe AJ, Horton JC (1992) (eds) Analytical ultracentrifugation in biochemistry and polymer
science. The Royal Society of Chemistry, Cambridge

2. Schuster TM, Laue TM (1994) (eds) Modern analytical ultracentrifugation. Birkhäuser, Boston
3. Svedberg T, Pedersen KO (1940) Die Ultrazentrifuge. Steinkopff, Dresden
4. Schachman HK (1959) Ultracentrifugation in biochemistry. Academic Press, New York
5. Fujita H (1962) Mathematical theory of sedimentation analysis. Academic Press, New York
6. Fujita H (1975) Foundations of ultracentrifugal analysis. Wiley, London
7. Williams JW (1963) (ed) Ultracentrifugal analysis. Academic Press, New York
8. Bowen TJ, Rowe AJ (1970) An introduction to ultracentrifugation. Wiley, London
9. Williams JW (1972) Ultracentrifugation of macromolecules. Academic Press, New York

10. Rickwood D (1984) (ed) Centrifugation. IRL Press, Oxford
11. Svedberg T, Rinde H (1923) J Am Chem Soc 45:943
12. Svedberg T (1925) Kolloid-Z Zsigmondy Festschr Erg-Bd Zu 36:53
13. Svedberg T, Rinde H (1924) J Am Chem Soc 46:2677
14. Svedberg T, Nichols JB (1923) J Am Chem Soc 45:2910
15. Svedberg T, Fahraeus R (1926) J Am Chem Soc 48:430, and Svedberg T, Nichols JB (1926) J Am Chem Soc

48:3081
16. Svedberg T (1927) Nobel lecture
17. Watson JD, Crick FHC (1953) Nature 171:737
18. Meselson M, Stahl FW, Vinograd J (1957) Proc Natl Acad Sci 43:581
19. Meselson M, Stahl FW (1958) Proc Natl Acad Sci 44:671
20. Holmes FL (2001) Meselson, Stahl, and the replication of DNA. Yale University Press, New Haven
21. Lamm O (1929) Z Phys Chem A143:177
22. van Holde KE, Baldwin RL (1958) J Phys Chem 62:734
23. Yphantis DA (1960) Ann N Y Acad Sci 88:586
24. Mächtle W (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry

and polymer science. The Royal Society of Chemistry, Cambridge, p. 147
25. Archibald WJ (1947) J Phys Colloid Chem 51:1204
26. http://www.bbri.org/RASMB/rasmb.html
27. http://www.cauma.uthsca.edu/
28. http://www.nanolytics.de/e/auz/auz.htm



2 Analytical Ultracentrifugation, Instrumentation

Centrifugation is a common technical process for the separation of materials
consisting of two (or more) compounds having different sizes and/or showing
different densities, such as dissolved macromolecules in a solvent or dispersed
particles in a liquid. A centrifuge is basically an apparatus to create centrifugal
fields by fast rotation of a rotor. The special design of centrifuges allows us letting
these fields act on samples inside the rotor, which leads to a sedimentation (or
flotation) of the dissolved/dispersed macromolecules/particles and also to their
fractionation, if the macromolecules/particles are different in size and/or density.
There is no clear definition from which magnitude of the centrifugal field on
a centrifuge is called an ultracentrifuge. Usually, centrifuges that create fields
higher than 5000 times the acceleration due to the Earth’s gravitational field (g)
are called ultracentrifuges [1].

An analytical ultracentrifuge, in turn, is an ultracentrifuge with one or several
optical detection systems, which allow the observation of the fractionation process
while the sample is centrifuged.

An analytical ultracentrifuge consists of different main components, namely,
the centrifuge housing (see Sect. 2.1 and part 2.1 in Fig. 2.1) itself (including motor
bearing, rotor axle/drive, safety vacuum chamber, temperature control, velocity
control), the analytical rotor (see 2.2), one or several sample cells (including hous-
ing) inside the rotor (see 2.3), the optical detector unit (see 2.4), and a multiplexer
unit if several measuring cells have to be detected simultaneously in the same ex-
perimental run (see 2.5). Figure 2.1 serves as guide to the structure of this Chap. 2.

While writing about instrumentation, it must be emphasized that the AUC
bears considerable danger. The involved powers are enormous (for illustrative
pictures of an accident with a preparative ultracentrifuge in 1998, see [2]). A lot of
engineering has therefore been put into the development of proper safety elements.
For example, the centrifuges are equipped with a system to prevent the rotor from

(i) oscillations created by imbalance at the start of the run or during the run, e.g.,
if a window breaks, and

(ii) being run with overspeed.

This overspeed control is particularly important, as the typical rotor would explode
if speeded up to about 120 000rpm, or more. For the case of explosion, the rotor
itself is surrounded by a safety chamber of heavy steel.

In this chapter, the most important components of analytical ultracentrifuges
are described. We will concentrate on state-of-the-art instrumentation, and we
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Fig. 2.1. Schematic picture of an analytical ultracentrifuge and its most important components

will therefore leave out most of the historically relevant aspects. For the latter, the
reader is referred to [3] or [4].

2.1 Ultracentrifuges

It has been a long way from the room-filling, user-made, really efficient first
analytical ultracentrifuge in Uppsala developed by Svedberg and coworkers in the
1930s, to the desk-sized compact, ready-to-use machines of the early 1990s, such
as the Beckman Optima XL-A.

Starting with mainly homemade individual items in the early days of analyti-
cal ultracentrifugation, the development has subsequently been driven by different
companies including Beckman, Phywe, Christ (Heraeus), Metrimpex (MOM), Hi-
tachi, MSE, and Sorvall. Still, all these companies, with the exception of Beckman-
Coulter, gave up the production of AUCs and are producing only preparative
ultracentrifuges today.

So, nowadays, basically two types of analytical ultracentrifuges are playing
a role in the scientific community:

(i) the commercially available Beckman-Coulter AUC (Optima XL-A/I), and
(ii) user-made analytical ultracentrifuges, created mostly as modifications of the

commercially available preparative ultracentrifuges.
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The present instrument of Beckman-Coulter is the Optima XL-A/I. This is the
follow-up model of the perhaps most successful AUC apparatus (in terms of num-
bers of distributed machines), the famous Model E, which was already equipped
with a UV scanner, six-cell multiplexer, interference and Schlieren optics with pho-
tographic detection. The modern Optima XL-A/I series was released in 1990/1997,
inducing a renaissance of the analytical ultracentrifugation technique in gen-
eral. The integration of modern computer technology, the more compact design,
a higher safety standard, a better electrical drive, a better temperature control of
the apparatus, the introduction of a CCD camera, and the online digitization of
the measuring data transformed the whole measurement procedure into a more
user-friendly and easy-forward process, allowing even non-specialists to perform
experiments to a certain degree. However, analytical ultracentrifugation is still not
a black-box method, and will probably never become one.

2.1.1 The Beckman-Coulter Optima XL-A/I

The Optima XL-A/I series (see Fig. 2.2) offers two modern, independent optical
systems – the UV/Vis absorption optics (since 1990), and the Rayleigh interference
optics (since1997). Incontrast to theprecursorModelE,unfortunatelynoSchlieren
optical system is integrated. The different optical systems will be described below.

Depending on the rotor, speeds up to 60 000rpm can be obtained. This corre-
sponds to gravitational fields of over 290 000 times the Earth’s gravitational field g
(to give an idea of the huge forces the AUC deals with: a mass weighing one gram
in real would weigh 290kg inside the centrifuge or, in other words, a person of
70kg would weigh 20 000 t inside such a centrifugal field). The relative gravitational
field or, as it is often referred to, the relative centrifugal field (RCF), can easily be
calculated according to the following simple equation (2.1):

RCF =
r · ω2

g
(2.1)

with the angular velocity ω (in rad/s), the radius r (that is, the distance from the
axis of rotation, 5.7–7.2cm in the XL-A/I), and the Earth’s gravitational field g
(1g ≈ 9.81m/s2).

Additionally, on the top of the Optima XL-A/I, Fig. 2.2 shows an analytical
eight-cell rotor and some measuring cells.

Temperature Control of the Optima XL-A/I
Exact control of the temperature is essential to any thermodynamic measurement,
and control within 0.5K, or better, has to be guaranteed. Svedberg’s first AUC
contained a safety chamber that was continuously flooded with gaseous hydrogen
to create small drag, and to allow control of the temperature within the chamber.
In later developments, the rotor-containing safety chamber was evacuated to guar-
antee the smallest possible air-friction resistance to the rotor’s movement, thus
eliminating rotor heating by air friction.
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Fig. 2.2. Modern analytical ultracentrifuge Optima XL-A/I produced by Beckman-Coulter

In the former Beckman Model E, cooling of the chamber was achieved by
water cooling of a cladding surrounding the rotor inside the chamber. The heating
elements were different from these, and were located at the chamber bottom. This
led to temperature gradients within the chamber, and therefore within the rotor
itself. The temperature was measured in a very specific way: a needle was fixed to
the bottom of the hanging analytical rotor, and a temperature-dependent electrical
resistance was installed inside the rotor. This needle dipped into a mercury bath,
thus closing an electrical circuit. By measuring the heat resistance in this electrical
circuit, the rotor temperature was estimated.

In the modern XL-A/I, the vacuum chamber is heated and cooled via Peltier
elements located in the aluminum heat sink at the bottom of the chamber, which
leads to a homogeneous temperature throughout the vacuum chamber via heat
exchange by radiation. The temperature is measured contact-free at the bottom
of the rotor via an IR detector, which, of course, requires the rotors to be black-
colored. The temperature range covered by the instrument is 0–40◦C, according
to biochemical needs. Next to the technical problems, physics also complicates
the exact control of temperature. Due to adiabatic cooling occurring when the
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rotor is speeded up to high angular velocities, the temperature in the rotor may
vary by 0.1–0.3K. Hence, in high-speed runs, first data collections should not be
performed before 10–15min after reaching a constant final speed. This guarantees
that heat exchange has reached equilibrium.

Drive and Velocity Control of the Optima XL-A/I (Compared with the Model E)
As well as the exact knowledge of temperature, the exact angular speed ω = 2πN or
the running time integral ∫ ω2 dt, in the case of applying sweeping ω(t) techniques
(see Chap. 3), of the rotor must be determined. It was shown [5] that, in the case
of polymeric particles analyzed by applying turbidity optics, the results of the
sedimentation analysis were independent of the velocity profile ω(t). That was due
to the exact knowledge and continuous recording of ∫ ω2 dt. It has to be kept in
mind that the angular velocity ω is squared in (1.5) for the determination of the
sedimentation coefficients.

In the former Beckman Model E, the electrical drive motor was coupled for
safety reasons to the rotor drive shaft via a 1:7 mechanical speed transformation
unit. The rotor was linked to the drive shaft by hanging on a steel filament (i.e., the
rotor axle) that was only 2mm in diameter. Sometimes, this 2-mm axle broke, and
the rotor fell down within the safety chamber. This Model E configuration allowed
the operation of the centrifuge at certain fixed rotor speeds only. The speed was
measured indirectly in the drive.

Today, in a safer manner, the rotor of the XL-A/I is put directly onto the drive
shaft, which in turn is directly run by an electrical induction motor. The motor
operates under computer control, and offers the user an infinitely variable regula-
tion of the speed. The actual velocity ω is measured optically via a stroboscopic
ring fixed onto the rotor bottom, which is read out by a photoelectric relay. This
ensures that the rotors are not overspeeded, which could lead to rotor explosion,
as pointed out above. Another special unit integrated into the drive dampens the
rotor oscillations at some critical rotor speeds around 1000rpm, as well as rotor
oscillations created by imbalance. It will stop the rotor if the imbalance is too high.
In contrast to the former Model E, the rotor in the XL-A/I is standing on the drive
shaft. The driving axle is flexible in such a way that the angle between the rotor axis
and motor axis (which is fixed to the vacuum chamber and laboratory floor) can
change with rotor velocity. The system is self-stabilizing, like a gyroscope (indeed,
it is a gyroscope!), and very safe.

2.1.2 User-Made Centrifuges

Considering that Beckman-Coulter is a more biochemically oriented company,
and because most applications of AUC originate from biochemical questions, the
design of their last analytical ultracentrifuges, the Optima XL-A/I, is driven by the
corresponding requirements. As mentioned above, this book mainly concentrates
on the application of the AUC in the research on synthetic polymers and colloids.
In this field, we encounter special requirements that are not fulfilled by the XL-A/I.
To give only three examples:
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(i) Far more than in biochemical applications, the sedimentation velocity ex-
periment is the central experiment type. The colloidal particles or polymers
examined are often “large” compared to typical biochemical samples, and
therefore sediment much faster. Thus, the need to create fast detectors and
variability of rotor speed arises, because a precise and permanent measure-
ment of the running time integral ∫ ω2 dt has to be ensured.

(ii) In contrast to biological samples, synthetic polymers and colloids frequently
exhibit turbid samples, sometimes in the visible range. Hence, a fast turbidity
(= light scattering) detector is important to measure particle size distribu-
tions.

(iii) Biological samples are usually measured at the smallest possible concentra-
tion in order to obtain physical information on single molecules, or aggre-
gates consisting of a relatively low number of molecules. In contrast hereto,
in colloidal systems the intermolecular or, more often, the inter-particle in-
teractions at higher concentrations are of great importance. Very high con-
centration differences are also created in two-component density gradients,
where often one component is not transparent for UV light. Hence, there is
a demand for the universal Schlieren optics, which allows measuring high
concentrations (up to 100g/l) and steep refractive index gradients inside
the cell.

In order to fulfill these specific and industrially important requirements for the
fast detectors (and ∫ ω2 dt estimation), turbidity detectors and Schlieren optics,
some laboratories have made their own developments of AUC instrumentation.
Using the preparative Beckman XL series as a basis for development, extensive
modifications have been added (see [5–8] and [12]).

As example, in this section we first describe the modifications (see Fig. 2.3)
added to the original Optima XL for the introduction of a new user-made digital
Schlieren optical setup [7, 8]. Later, in Sect. 2.4.4, we describe two other modifica-
tions: Laue’s fluorescence detector [12], and a BASF-made turbidity detector [5] to
measure precise particle size distributions (see also Sect. 3.5.1).

Figure 2.3 shows the most important modifications for introduction of
Schlieren optics into an Optima XL:

– An optical bench containing the light source (1) and Schlieren slit assembly (2)
has been mounted to the left side of the XL housing. The flash lamp is adjustable
by an x–y–z stage.

– A horizontal hole is drilled into the heat sink (6), which is fixed with the
motor (5) and an optical tube containing the collimating lens (3) and the
90◦-deflection prism (4) is added.

– For completion of the optical path through the rotor (8), the vacuum cham-
ber (10) has been modified by drilling in two vertical holes, one into the heat
sink and the other into the moveable cover plate, that allow the mounting of
vacuum-sealed windows (7). For adding a rack that carries the condensing
lens (9), existing thread holes in the heat sink are used.
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Fig. 2.3. Modifications of an Optima XL with Schlieren optics (and a multiplexer; reprinted with
permission from [8])

– A charge-coupled device (CCD) camera (14) was applied as detecting unit. The
CCD camera, and the remaining optical elements of the Schlieren optics, i.e.,
the phase plate (11), camera lens (12), and cylindrical lens (13), are mounted
to a scaffold above the vacuum chamber, as indicated in Fig. 2.3.

– Independent from the Optima XL velocity control, a user-made velocity control
system to trigger the flash lamp has been implemented (thus, the safety system
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of the original XL, especially over speed and imbalance control, is not changed).
By polishing a narrow strip of the rotor bottom, a reflecting mirror was created,
and a light barrier has been added to the heat sink under the rotor. This allows
us to generate one, single narrow light pulse per revolution that is converted
to an electrical signal that, in turn, is applied to measure the exact velocity of
the rotor and to trigger the light source of
the Schlieren optics. The trigger device is able to trigger not only one measuring
cell. In the multiplexer state, it is possible to trigger each single cell of the eight
cells measured simultaneously, thus allowing Schlieren optical superimposition
of one cell with any other cell. The superimposition of the measuring cell with
the reference cell is chosen as the standard.

Figure 2.4 shows a picture of the physical Schlieren optics multiplexer setup as
realized in the AUC laboratory of BASF.

Fig. 2.4. Photograph of
the physical Schlieren
optics multiplexer setup
of a modified Optima
XL realized in the AUC
laboratory at BASF
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2.2 Rotors

In theearlydaysof centrifugation, a lotofworkwas spenton thedesignof analytical
rotors. Whereas in earlier days steel and later aluminum were the predominately
used material, nowadays almost exclusively titanium rotors are applied.

The analytical rotors are built from one piece of titanium. Depending on the
rotor type, four or eight holes are drilled into the titanium, leading to four- or
eight-hole rotors (see Fig. 2.5). The distances between the midpoints of the holes
and the axis of rotation are r = 6.50cm. Usually, one of the holes is loaded with
a reference cell (also called counterbalance), which contains two radius reference
marks at the positions of r = 5.70 and 7.20cm. The reference cell is used to
perform the radial calibration at given centrifugal speed. The remaining holes
carry up to seven different measurement cells, which in turn can contain up to
eight different samples each if multi-channel cells are used. For safety reasons,
it is important to know the allowed maximum speed for the different types of
rotors. The most frequently used, commercially available analytical rotors have
maximum speeds of 50 000 and 60 000rpm. The lifetime of rotors depends on
the time period they have been rotated at maximum speed. If the revolution
speed during the experiment is restricted to 95% of the allowed maximum rotor
speed, then the lifetime of rotors is nearly unlimited. Compared to the former
Model E, the new Beckman Optima XL-A/I is run only with redesigned titanium
rotors. The stress levels throughout the rotors are more uniform, and the rotors
are lighter. This leads to a more uniform adiabatic temperature change (cooling)
while the rotor is accelerated. For every rotor and every run, a continuous running
lifetime check protocol has to be written, recording actual running speed and total
running time. This is done inside the PC of the XL-A/I automatically for safety
reasons.

Fig. 2.5. Eight-hole analytical rotor
made of titanium by Beckman-Coulter
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2.3 Measuring Cells

The part of an analytical ultracentrifugation system that is in direct contact to the
sample is the measuring cell. The cell consists of many pieces. Figure 2.6 shows
the cell assembly of a typical analytical ultracentrifugation cell. Characteristically,
all these pieces must work under extremely high mechanical stress at maximum
rotor speed.

AUC cells must fulfill at least two criteria:

– They should not leak or distort even at high centrifugal fields, which create
very high hydrostatic pressures of up to 250bar [9] at the bottom of the solution
column.

– They should allow passage of light through the cell via stable quartz or sapphire
windows while the rotor is spinning.

There is a big variety of ultracentrifugation cells available, depending on the kind
of experiment they are used for. The differences occur mainly in the choice of the
centerpiece, and that of the windows. Because of the high mechanical strength, the
most common window materials are optically polished plan-parallel sapphire and
quartz glass. The plates exhibit a thickness of 5mm. It will be pointed out in the
corresponding chapters which type of glass is preferably applied in the particular
type of experiment. Generally, sapphire is the material of choice, if available. One
advantage of quartz glasses is their lower price. Another advantage is the broader
spectrum of light that can pass through quartz when UV detectors are applied.

Whereas it is very uncommon to create user-made rotors and other parts of
the cell, the centerpieces of AUC cells are frequently built or modified by users
in order to adapt them for their special needs. The centerpiece is the heart of an
AUC measuring cell (see Fig. 2.7). It is made of aluminum, titanium, Kel-F, Teflon
or charcoal/aluminum-filled Epon. In principle, there are four types of analytical
ultracentrifugation centerpieces:

(i) The mono-sector centerpiece only contains the sample solution. It is mainly
used with Schlieren optics and the turbidity detector.

(ii) The double-sector centerpiece has two separate chambers, one for the sam-
ple solution, the other for the solvent. It is used with all detecting systems
(interference optics, UV/Vis absorption, and Schlieren optics).

(iii) Multi-channel centerpieces for 3–5 different samples can exhibit very differ-
ent architectures (see Fig. 2.7c,f). In principle, they are double-sector center-
pieces. They are applied exclusively in equilibrium runs (see Chap. 5).

(iv) Synthetic boundary centerpieces exist in two different types, the capillary
type and the valve type (see Fig. 2.7d,e). They are designed to allow the
layering of solvent (or solution) onto a sample solution (or solvent) while the
rotor is spinning (see Chap. 3).

In most cases, the channels of the centerpieces are sector-shaped to prevent convec-
tion during sedimentation due to the radially sedimenting sample. The standard
thickness of centerpieces is a = 12mm. For special experimental designs, 1-, 2-, 3-
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Fig. 2.6. Cell assembly with an (elastic)
Kevlar double-sector centerpiece, which
needs no gaskets between windows and
centerpiece. In the case of (hard) metal
centerpieces, two additional gaskets are
required (reprinted with permission from
[30])
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Fig. 2.7A–F. Some examples of different AUC centerpieces: A two mono-sector centerpieces (12
and 3 mm) made from aluminum, used for velocity runs applying Schlieren or turbidity optics; B two
double-sector centerpieces (12 and 3 mm) made from aluminum, used for velocity and equilibrium
runs applying interference, absorption or Schlieren optics; C three 12-mm multi-channel double-
sector centerpieces (made from different materials) for sedimentation equilibrium experiments;
in equilibrium experiments, the sector shape of the centerpiece holes/chambers can be omitted;
D synthetic boundary 12-mm double-sector centerpiece of the capillary type; E synthetic boundary
12-mm single-sector centerpiece of the valve type with storage bin, rubber valve, and gasket;
F multi-channel 12-mm double-sector centerpiece for the study of four solvent–solution pairs in
sedimentation equilibriums runs

and 25-mm centerpieces have been developed and used. By varying the thickness
of centerpieces, the layer thickness a of the sample in the optical path is varied as
well. Depending on the applied detecting system, the concentration of the sample
and the sample’s optical properties, the optimum thickness may be different. Thus,
the proper choice of the centerpiece is important when the experiment is designed.
In Fig. 2.7, a selected assortment of different centerpieces for various purposes is
given.

The design of the modern Beckman Optima XL-A/I series accommodates the
continuous use of the existing cells of the preliminary Model E centrifuge (with
exception of the 30-mm cell). Only small modifications have been added to XL-A/I
cells, such as smaller window holders, different window material (quartz of higher
purity), or anodized screw rings. Some of the most important parts of AUC cells
in the case of metal centerpieces, such as aluminum or titanium, are flat elastic
gaskets between the centerpieces and the two glass windows (mostly cut out of
thin polyethylene foil). They have to tighten the cell, and to prevent leakage of
the solutions. Furthermore, they have to diminish the mechanical stress onto the
(brittle) windows (see Fig. 2.6). For elastic centerpieces, such as Kel-F, charcoal-
filled Epon or Teflon, gaskets are not needed (that is the reason why they are not
shown in Fig. 2.6; rather, only the similar gaskets between window and window
holder are shown). To close the cell safely, the assembled cell has to be tightened
with a torque wrench at defined torque.
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The cells have to be inserted into the rotor in a correct manner to avoid
convection. Adjusting the horizontal axis of the centerpieces is done by turning
the cell inside the rotor hole until this axis is in exact alignment with the rotor
axis, indicated by meeting of two marks. Furthermore, to avoid imbalance during
the run, cells inserted in opposite holes of the rotor are adjusted to have the same
weight (within a maximum difference of 0.5g).

2.4 Detectors

The essential data collected from an AUC experiment are the radial concentra-
tion profile c(r) of the examined sample in the cell at a given time t. The most
common detectors make use of three properties of the dissolved or dispersed
sample: specific light absorption, light scattering (turbidity), and light refraction.
Therefore, different types of detection systems have been integrated into analytical
ultracentrifuges. Roughly, they can be divided into three classes:

(i) Detector systems that allow one to obtain specific information on the chemical
composition of the sample. The most important example from this class
of detectors is the UV/Vis absorption optics integrated in modern XL-A/I
analytical ultracentrifuges. Another detector of this type, the fluorescence
detector, is recently commercially available. This class of detectors makes use
of the sample’s specific light absorption/fluorescence.

(ii) The light scattering or turbidity detector is also an absorption detector, but
it is not dependent on the specific interaction of light with chemical groups
of molecules at characteristic light wavelengths λ. Rather, it is a universal
detector dependent on the size of the light scattering particle with respect to
Mie’s light scattering theory.

(iii) Detector systems that record the overall change of the concentration in the
cell during centrifugation. Detectors of this type are interference optics (in-
tegrated in XL-A/I machines) and Schlieren optics. Both detectors can be
applied whenever the examined dissolved solute particles exhibit different
refractive indices compared to the solvent. Thus, this (universal) detector
class makes use of the difference in light refraction Δn between the solution
and solvent.

Detectors can also be classified as follows (see Figs. 2.8 – 2.13):

– Detectors that scan the cell radially (see Fig. 2.8d). The optical unit is moved
stepwise along the radial axis of the cell, i.e., along the cell sectors. The step
width is adjustable, and usually lies in the range 10–100μm. At each radial
position r, the optical information is recorded. The single measurements are
then added to result in a radial concentration profile c(r) of the cell at given
time t. The most important example for a scanning type of detector is the
UV/Vis absorption detector, as it is realized in the Optima XL-A, and the
known fluorescence detectors. The scanning time has to be fast, compared
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Fig. 2.8a–d. Typical optical patterns as derived by a Schlieren optics, b interference optics, c UV
optics via photo-plates, and d UV optics via radial scanner (see also Fig. 5.1; reprinted with permission
from [30])

to the sedimentation process observed by it. Otherwise, the assumption that
the whole concentration profile was measured at once would lead to serious
errors. In the case of the UV/Vis absorption optics, especially at low rotor
speeds (approximately below 10 000rpm), this is a real drawback of the XL-A.
Scanning detectors are working well in equilibrium runs.

– Another detector type records the optical information at a given fixed radial
position r as function of time t. The most important example of this type is
the turbidity (= light scattering) detector, where the optical unit is located
at the midpoint of the radial axis of the cell (see Fig. 2.13). Here, the change
of intensity of the light I passing through the cell is recorded over the whole
duration of the experiment, i.e., I(t). The result is a single curve containing the
whole experimental information.

– A third class of detectors records the whole concentration profile c(r) at once
at a given time t, without applying a scanning unit (see Fig. 2.8a–c). Repre-
sentatives of this class are the interference and the Schlieren optical system,
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where a light flash illuminates the whole cell at once. The result is a picture of
the whole cell containing the concentration profile c(r) at a given time t. The
picture is recorded on a photo-plate or onto the chip of a CCD camera.

In the following sections (Sects. 2.4.1, 2.4.2 and 2.4.3), the three most important
detecting systems – the absorption, the interference, and the Schlieren optical
detectors – will be explained in detail.

Typical optical patterns obtained by the three main optical detecting systems
are shown in Figs. 2.8 and 2.13 (see also Fig. 5.1). For an extensive description of
these optical systems, see [10].

As mentioned above, only the Rayleigh interferometer as an online detector
and the absorption optics are still available on modern ultracentrifuges (i.e., the
XL-A/I). Few users adapted the Schlieren optics for use in the Beckman Optima XL.
As a further detection system, a fluorescence detector was reported. This system
is extremely sensitive, and allows the selective investigation of compounds with
concentrations as low as 10ng/ml, even in mixtures with a much larger amount
of other components [11]. A prototype fluorescence detector for the Optima XL-
A/I ultracentrifuges has recently been constructed, so that now a third detector
is commercially available that can be simultaneously used in a modern analytical
ultracentrifuge [12].

Amazingly, one of the most important detectors for use especially in industrial
R&D is commercially not available: turbidity optics [13, 14]. A turbidity optical
system is realized only in very few laboratories throughout the world. It is mainly
used to determine particle size distributions. This detector is described at the end
of this section. It will also be addressed in Chap. 3 due to its high relevance for
particle sizing.

Generally, it is advantageous to combine several optical systems (= multiple
detection). Especially the combination of the Rayleigh interference optics and the
UV/Vis absorption optics can yield important information about complex systems,
for example, when an absorbing component is selectively detected with the ab-
sorption optics, whereas the Rayleigh interferometer would detect all components
together simultaneously [15, 16]. An example is given in Sect. 7.2 and Fig. 7.4.

2.4.1 Absorption Optics

The basis for applying absorption optics is well known from spectroscopy. Light
passing through a solution containing light-absorbing molecules loses intensity in
a specific way. The Lambert–Beer law (2.2) describes the interaction quantitatively:

A = lg
I0

I
= ε · c · a (2.2)

with absorption A, intensity of light after passing the sample I, intensity of light
passing the solvent-filled cell I0, specific decadic absorption coefficient ε, the con-
centration of the sample c, and the thickness of the measuring cell along the optical
path a.
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Figure 2.9 shows the principal setup of the UV absorption optics as realized in
the Beckman Optima XL-A/I. A xenon flash lamp with a nearly continuous light
spectrum 190 < λ < 800nm is used as a light source. While the rotor (containing
up to eight AUC cells) spins, the lamp is triggered to flash when the cell of interest
passes the optical path. Therefore, this XL-A/I UV/Vis scanner is a multiplexer
unit, too.

The triggering of the flash lamp is based on the exact measurement of the actual
rotor speed. This is realized by a Hall-effect sensing device based on a magnet
placed on the bottom of the rotor. Whenever the magnet passes the sensing device
placed at the bottom of the vacuum chamber, the magnet induces an electrical
signal. The position of the cell, and the sector of the cell of interest with respect to
the position of the magnet on the rotor is known, and therefore the time delay from
the magnet passing the sensing device until the lamp has to flash can be calculated
within the XL-A/I computer, using the known rotor speed.

The duration of a single flash is about 2–3μs, which is sufficient to create
data from only one sector of the double-sector cell at once. With a maximum shot
frequency of 100Hz, the lamp can flash every ten revolutions at the maximum
centrifugation speed of 60 000rpm.

Light from the flash lamp passes an aperture (1mm in diameter) to hit the
diffraction grating of the monochromator at the top of the optical arm. Absorbing
reflectors that hold back all disturbing light from other, unwanted wavelengths
surround the grating. The grating itself is adjustable by high-precision electrical
motor gears that allow the adjustment of the desired wavelength. The grating
obeys a nominal band pass of 2nm, and covers the wavelength range 200–800nm.
Because the flash intensity is not constant from flash to flash, for standardization
the monochromatic light from the grating hits an 8% reflector. That means that
92% of the light passes the reflector while 8% is reflected onto the incident (= stan-
dardization) detector. The intensity value measured by this detector is needed
to normalize these pulse-to-pulse variations in the light intensity of the xenon
flash lamp. This procedure is necessary because one flash illuminates just one
sector of a double-sector measuring cell. Below the 8% reflector, a second aperture
prevents the illumination of any other, undesired sector of the measuring cell. The
monochromatic light then leaves the optical arm, and passes through one of the
sectors of the measuring cell containing either the sample or the corresponding
solvent. By this optical setup, it is assured that the monochromatic light is parallel
with respect to the normal projected onto the window surface of the measuring
cell. While passing the measuring cell, the intensity of light is decreased by the
interaction with the sample or solvent, according to (2.2), i.e., Lambert–Beer’s law.
Below the rotor, the remaining light passes to a moveable lens-slit assembly (see
insert in Fig. 2.9) that fulfills certain functions:

– The aperture of the lens-slit assembly determines the radial resolution. The
width of the slit is 25μm. The lens-slit assembly moves stepwise as a unit driven
by an electrical motor, and allows one to scan the sector of the measuring cell
radially. The step width Δr can be adjusted with a smallest step width of 5 μm
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Fig. 2.9. Setup of the UV absorption optics of the Optima XL-A/I (reprinted with permission from [30])
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steps. The lens focuses the light onto the photomultiplier (PM) tube, which
measures the intensity I of light passing through the measuring cell.

– The camera lens of the lens-slit assembly creates an image of a slice at constant
radius within the sector of interest of the measuring cell on the PM tube. A slice
of constant radius contains redundant information, and can therefore be used
to improve signal quality.

– Another aperture at the bottom of the lens-slit assembly reduces the stray light
intensity once more.

The light leaving the lens-slit assembly hits the PM tube, which comprises a large
active area that is sufficient to record the complete scanned picture of the cell.
Therefore, the PM tube can be kept stationary.

The intensity of the solvent sector I0, and the intensity of the sample sector I,
both recorded on the PM tube, normalized with the intensity from the stationary
incident detector, are combined to reveal the desired absorption signal A(r) =
lg I0/I of the sample, at the radius position r.

The main drawback of the XL-A/I UV/Vis optical system is the long duration
of a measurement. Especially at low rotor speeds, such a stepwise radial scan
along a single cell at one wavelength, but with, for example, ten replicates at each
radial position in order to improve the signal-to-noise ratio, can last up to about
15min. Nevertheless, for the monitoring of equilibrium runs, where enough time
for recording is given, the UV/Vis absorption optics of the XL-A/I is appropriate.
For the rapid recording of sedimentation runs, faster detectors like interference
or turbidity detectors are mandatory. It is an advantage of the XL-A/I UV/Vis
detector that, during an AUC run, complete UV/Vis spectra can be obtained at
a constant radial position – although with a poor quality – yielding information
on the chemical nature of the solute.

In applying the UV scanning device, it is recommended (i) to choose as wave-
length λ the maximum of the absorption peak, and (ii) to select a sample concentra-
tion c forwhich A < 1.5 is valid, i.e., a concentrationwhereLambert–Beer’s law(2.2)
is fully valid and in the linear range. If one uses a λ outside of the maximum,
within the flank of the peak, it might occur that small errors in the XL-A mono-
chromator wavelength are increased, and that A is measured incorrectly.

Another problem caused by excessively high concentrations is the so-called
Wiener skewing, arising from steep radial refractive index gradients within the
cell. Light passing such gradients can be deviated so strongly that it does not reach
the target of the PM tube (“black band”). However, if this Wiener skewing is not
obviously manifested as a partial black band within the XL-A-UV scan, its effect
on the interpretation of absorption gradients may be safely ignored (see [31]).

2.4.2 Interference Optics

The interference optics as realized in the Optima XL-A/I series of Beckman (see
Fig. 2.10) is based on the principle of a Rayleigh interferometer [10, 17, 18]. This,
in turn, makes use of the fact that the velocity of light depends on the refractive
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index of the medium it passes through, i.e., the higher the refractive index of
the medium, the lower the velocity of the light. That means that the (small)
refractive index difference Δn(r) = (nsolution − nsolvent), which is proportional to the
corresponding concentration c(r) at this radius position, can be monitored very
rapidly by interference optics. This is made visible in form of a vertical deviation of
the originally parallel interference fringes behind a double (also called Rayleigh)
slit (see insert in Fig. 2.10).

The (folded) interference optics as realized in the Optima XL-A/I applies a trig-
gerable laser diode (λ = 675nm) above the rotor as light source. The monochro-
matic parallel light from the light source passes through two parallel Rayleigh slits
(= double slit) above the measuring cell that allow the simultaneous illumination
of the reference (= solvent) and the sample sector of the measuring cell. Light
from the two Rayleigh slits creates an interference pattern of parallel light and
dark fringes (see Fig. 2.8b and insert in Fig. 2.10) behind the cell in the plane of
the condensing lens (= CCD camera sensor plane). The “disturbance” of the light
by a medium of higher refractive index causes the position of the fringes to shift
vertically proportional to the refractive index difference Δn, and thus proportional
to c at the radial point of interest. This vertical shift of the interference fringes is
counted in numbers J(r) of fringes. Because J · λ = Δn · a and Δn = (dn/dc) · c,
equation (2.3) is valid (with the thickness of the centerpiece a and the known
specific refractive index increment dn/dc).

J(r) =
a · (dn/dc)

λ
· c(r) (2.3)

where J(r) is an absolute measure of the radial concentration distribution c(r)
within the AUC cell. This is valid only in the case of sedimentation runs, and
synthetic boundary runs where left of the sedimenting boundary the concentration
is zero, and so we know the zero fringe. That is not given in the case of equilibrium
runs, where no boundary exists and the sample concentration c(rm) at the meniscus
position rm is finite and unknown, like the absolute fringe number Jm at this
position. Hence, only a relative fringe shift ΔJ(r) with respect to the meniscus is
measurable. Thus, only a relative concentration Δc(r) can be determined, too. In
Sect. 5.2 (equations (5.7) and (5.8)), it will be shown for the case of equilibrium
runs how the mass conservation law can be utilized to calculate J(rm) and c(rm).

Again, the detecting system of the older Model E by Beckman served as basis
for the development of the new XL-A/I interference optics [18,19]. In comparison,
major changes have been made to the light source and the detecting unit. The
constantly burning mercury lamp as light source was replaced by a pulsed laser
diode. A CCD camera replaced the photographic plate as detecting unit. Neverthe-
less, the major improvement was the implementation of a computer routine that
allows the fast digitalization and a fast Fourier transform analysis of the fringes
(first described by T.M. Laue in [11], page 63). These data are collected online.
More recently, significant improvements have been realized by changing the CCD
camera system to the next camera generation, especially with increased resolution.
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Fig. 2.10. Interference optics detector inside the Beckman Optima XL-A/I. The insert shows the
principle of a Rayleigh interferometer with the interference fringes behind the double slit (reprinted
with permission from [30])

Figures 3.1 and 3.2 show such a series of fast Fourier transform analysis fringes
of the XL-A/I. All fringes are standardized on the (left) meniscus side to the
same plateau position, J = 0. If one starts the fringe scan left of the meniscus,
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sometimes one or more of the scans are shifted vertically by one or two integer
numbers, for example, ΔJ = ±1, ±2, etc. However, this shifting can be corrected
easily. Furthermore, if a sample shows too much turbidity, the fringes on the CCD
camera monitor appear faintly, and it could be possible that the Fourier transform
analysis fails.

2.4.3 Schlieren Optics

The Schlieren optics setup (as described above in Sect. 2.1.2 and Fig. 2.3) is similar
to the setup of the Rayleigh interferometer but has a phase plate (or knife-edge) in
the focus of the condenser lens as an additional element. As there is no commer-
cially available system anymore, users are obliged to construct their own Schlieren
optics, or transfer the Schlieren optics of an older Model E onto the Optima XL
platform [7]. As mentioned above, the driving force to do this comes from some
unique advantages of Schlieren optics, of which two are given here:

– It allows the use of simple mono-sector cells that are easy to handle, to tighten,
and that assure highest reproducibility.

– Even steepest refractive index gradients (resulting often from steep density
gradients) can be followed because these gradients can be compensated via
wedge windows (as will be shown in Chap. 4, density gradients are among the
most important experiments in AUC).

The modification of the preparative Optima XL centrifuge itself, especially the
addition of a Schlieren optical system, has been outlined in Sect. 2.1.2. In this
paragraph, only the necessary optical components will therefore be described.

The arrangement of the optical elements is basically as follows (see Fig. 2.3):
the white light flash lamp (1) illuminates the Schlieren slit (2). Usually, a green filter
(wavelength λ = 546nm) between positions (7) and (11) is applied to create the
light of a well-defined wavelength. The light then passes on through the collimating
lens (3), a 90◦ glass prism (4), and then enters the vacuum chamber through
a vacuum-sealed window (7). After passing the sample-containing cell inside the
rotor (8), the light is focused by the condensing lens (9) through the second
vacuum-sealed window (7) onto the plane of the phase plate (11). The new optical
arm above the XL housing (see also Fig. 2.4) contains the camera lens (12) and
the cylindrical lens (13). The light then falls onto the CCD camera (14) where
the Schlieren picture is visible in form of a Schlieren peak or a Schlieren line on
a TV monitor (see Fig. 2.8a). The CCD camera is connected to a computer for
further image processing. In this arrangement, the light source is triggered mainly
because of the high reliability of the stroboscopic light source, and the possibility to
control the light source by newly developed multiplexer software. The ease to create
superimposed pictures of more than one cell is another reason for triggering the
light source. In each centrifugation run, there is one reference cell per rotor (also
called counterbalance cell). This cell is used to perform radial calibration during
centrifugation by superimposing the Schlieren picture of the reference cell and the
Schlieren picture of the cell containing the samples examined. Figure 2.8a shows
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such a superimposition. Furthermore, superimposition allows the measurement
of up to seven different samples in one centrifugation run.

As one possible light source, a Cathodeon C 82007 xenon flash lamp (LOT/oriel,
Darmstadt, Germany) can be used (flash frequency 0–100Hz, flash energy 1 J).
A CCD camera (for example, a digital black&white camera CCD 1300 from
Vosskühler, Osnabrück, Germany, with a resolution of 1280 × 1024 pixels) serves
as a detector unit.

Via a digital RS-644 interface, the camera is controllable by a computer.
A Schlieren picture showing a typical Schlieren peak of a sedimentation velocity
run is given in Fig. 2.8, in comparison with the results of interference and absorp-
tion optics delivered from the same sedimentation experiment (using a double-
sector cell). In contrast to the interference optics, where the vertical fringe shift J is
proportional to Δn and thus to the concentration c, in Schlieren optics the vertical
shift of the Schlieren line is proportional to the radial refractive index gradient
(dn/dr), and thus to the radial concentration gradient (dc/dr). In other words, inte-
gration of the Schlieren line (dn/dr) reveals redundant information with respect to
one interference fringe n(r), and vice versa (see also Fig. 5.1). Thus, the Schlieren
peak area Aschl is proportional to the sample loading concentration c0, and can
be used to measure c0 via (3.23). Continuous integration of the Schlieren peak, in
combination with the law of conservation of mass, delivers the radial course of
concentration c(r) within the cell.

2.4.4 Other Detectors

Fluorescence Detectors
To our knowledge, two types of AUC fluorescence detectors are existing ([11]
and[12]).Bothareuser-made.The latterone [12] is recently commercially available
(albeit for a very high price). The manufacturer is Aviv Biochemical, Lakewood, NJ
08701. Thus, we give only a short description here. For more details, the literature
or the manufacturers themselves should be consulted.

Especially for biochemical questions, a fluorescence detector is of high interest,
mainly because of two inherent advantages:

– A fluorescence detector shows a sensitivity that has exceeded UV optics for
decades. For example, Laue [12] performed equilibrium runs (see Fig. 5.12)
and sedimentation velocity runs on the green fluorescent protein (GFP) with
concentrations as low as c = 0.012 and 0.0024g/l.

– A fluorescence detector can detect single components of a sample selectively,
even if the component’s concentration is very low compared to those of the
other components of the sample.

The principle (see Fig. 2.11) is known from conventional fluorescence detectors:
A laser is applied as a light source for the excitation of the fluorescence sys-
tem. The light from the laser on a scanning stage passes optical elements that
illuminate a very small Δr area of the sample sector (spatial resolution 60μm,
according to [11]). The response of the fluorescence system is detected either in
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Fig. 2.11. Schematic setup of a user-made fluorescence detector realized by Riesner et al. [11] inside
a Model E (reprinted with permission from [11])
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reflectance [12] or in transmission mode [11] by a PM tube. A filter is used in front
of the photomultiplier to ensure that only fluorescence light passes and excitation
light is omitted.

Riesner et al. described the first fluorescence detector adapted to an AUC [11].
They used the geometry of the Schlieren optics channel of a Model E (see Fig. 2.11),
and replaced the Model E components of the Schlieren optics by the components
of the fluorescence detector. This allowed them to keep the instrumental changes
of the Model E minimized, and to run the Model E–UV absorption detector simul-
taneously. A continuously running argon ion laser served as the light source, while
a PM tube was applied to detect the florescence response of the system. Figure 2.11
shows a scheme of Riesner’s setup with the filter (6) and the PM tube (4) above the
rotor. In contrast, Laue [12] put his fluorescence detector into an Optima XL-A/I in
a similar manner as described above for the case of Schlieren optics (Fig. 2.3). The
small and compact detector (see Fig. 2.12) is directly installed within the XL-A/I
rotor chamber completely above the rotor. There are two new features in this setup:
first, the laser excitation light comes from outside via a glass fiber into the vacuum
rotor chamber and, second, the light does not penetrate the complete measuring
cell. Rather, only the back-scattered fluorescence light is measured by step-wise
radial scanning of the whole surface of the cell along a sector. This is reached by
a confocal setup of the detector geometry [12]. Figure 5.12 shows a measurement
with Laue’s fluorescence detector.

Fig. 2.12. Photograph of a user-made fluorescence detector realized by Laue [12] inside a XL-A/I
vacuum chamber (reprinted with permission from [12])
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Turbidity Detectors
Similarly to the case of the fluorescence detector, to our knowledge there are just
two types of turbidity (= light scattering) detectors [13, 14]. Both are user-made,
and therefore not commercially available. However, it is not very difficult to build
such a turbidity detector. Again, only a short description is given here.

Theprincipleof a turbiditymeasurement is comparable to that of anabsorption
detector, but it is much simpler, because the absorption A = lg(I0/I) is measured
at only one fixed radial position rslit. Figure 2.13 shows a schematic diagram of the
turbidity detector developed at BASF, which is part of a particle sizer.

The turbid dispersion to be analyzed is diluted to about c = 1g/l, and placed
into the centerpiece of the 3-mm mono-sector cell. In the first version of the
BASF turbidity detector [13], the lower quartz window of the cell is covered by an
aperturedstop, in thecenterofwhich is a0.2mmwideslit arrangedperpendicularly
to the radius of the rotor. The slit picks out a beam from the entering parallel
monochromatic light. This is simply created by using a stabilized incandescent
lamp as a light source, and a monochromatic light filter (λ = 546nm) after the
condensing lens.

The intensity I of the beam, which is reduced by light scattering of the latex
particles inside the measurement cell, according to Mie’s light scattering theory,
is registered by the photomultiplier and recorded as a function of the running
time t. The concentration c of the dispersions is selected so as to yield an initial
light intensity It=0 = I0 of approximately 10% of It=∞ = IDM, the intensity of the
pure dispersant, reached at the end of the run.

Fig. 2.13. Schematic setup of a user-made particle sizer with a turbidity detector to measure particle
size distributions; realized in the AUC laboratory at BASF
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A second (newer) version of the turbidity detector in use today [5] applies
anarrowcontinuous lightbeamofa laserdiode (λ = 670nm)with0.2mm diameter,
no apertured stop, and a fast photodiode as light detector (see Fig. 2.13).

In the case of a monodisperse latex, all of the particles sediment with exactly
the same velocity. This causes a sharp one-step I(t) curve to be obtained (shown
in Fig. 2.13), because the intensity jumps from It=0 to IDM at the moment when
the sharply defined, sedimenting latex front passes the measuring slit (or the laser
beam). The diameter dp of the monodisperse particles can be calculated from the
measured jump time t by means of Stokes’ law (1.9). In the case of a broadly dis-
tributed latex, fractionation by particle size results in a broad I(t) curve (shown
in Fig. 2.13) because of large particles running ahead and small particles lagging
behind. Details of this particle size distribution measuring procedure, in particular
forverybroadlydistributedparticles, aregiven inSect. 3.6.Althoughamono-sector
cell is used, I(t) and IDM can be measured in the same run, and thus the time-
dependent absorption A(t) = lg(IDM/I(t)) at the radius position rslit can be calcu-
lated. Figure 2.14 shows a picture of the newest turbidity detector with a thin green
laser beam as realized recently at BASF. This green laser light (λ = 546nm) enters
from the outside via a glass fiber into the vacuum rotor chamber of the Optima XL.

Fig. 2.14. Photograph of the turbidity detector system with a thin green laser beam realized in the
AUC laboratory at BASF, inside the vacuum chamber of an Optima XL for measuring of particle size
distributions; the glass fiber guiding the laser light from outside is visible
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2.5 Multiplexer

A pronounced improvement of all kinds of AUC measurements was reached when
a multiplexer unit was added to analytical ultracentrifuges. This allowed the mea-
surement of not just one but up to seven samples in an eight-hole rotor in one
and the same experimental run. Thus, the effectiveness of the AUC is increased by
a factor of 7. In this section, we describe the homemade multiplexer as realized in
the Schlieren optical system described in Sect. 2.4.3.

In contrast to earlier multiplexer developments [20, 21], the system is now
completely automated. The software-based multiplexer is realized via a Lab-view-
based software tool applyingaNIDAQ-Board (National Instruments,Austin,USA).

The triggering signal is created by the following homemade system. A photo-
electric reflection light gate is fixed to the bottom of the vacuum chamber. This
reflection gate consists of a continuously light-emitting LED and a fast photodiode.
A “mirror” (= a polished small strip at the rotor bottom) fitted on the base of the
analytical rotor reflects the light of the LED. By this alignment, each revolution of
the rotor generates one sharp electrical pulse. This signal is imported by the data
acquisition software, and used for the calculation of the actual rotor speed and
for the calculation of the actual cell positions. The pulse-times of the flash lamp
to ensure illumination of the desired superimposed cells are calculated from these
data.

2.6 Auxiliary Measurements

Asmentioned inpreceding sections, a fewauxiliaryparametershave tobeknown to
interpret sedimentation velocity data (and equilibrium run data, too; see Sect. 5.2).
These are the density of the solvent ρs, the viscosity of the solvent ηs, and the par-
ticle density ρp or its reciprocal, the partial specific volume of the solute υ = 1/ρp.
Furthermore, for detection of the solute/particle concentration c in sedimenta-
tion experiments by Schlieren, turbidity, UV absorption or interference optics,
the following optical parameters are required: refractive indices of the solvent and
the solute/particle, ns and np, respectively, the specific refractive index increment
of the solute (dn/dc)p or the specific decadic absorption coefficient ε according to
Lambert–Beer’s law. Most of these parameters can be found in table-works [22,23],
or need only simple measurements, such as for ηs with capillary viscometers, or
ε with UV spectrometers (the XL-A/I itself is a UV spectrometer!). The measure-
ments of the two most important AUC parameters, υ = 1/ρp and (dn/dc)p, are
presented in the two following sections.

2.6.1 Measurement of the Solvent Density and the Partial Specific Volume

As mentioned above, the partial specific volume ν̄ is the inverse of the solute/par-
ticle density ρp. The partial specific volume ν̄ is defined as the volume increase
obtained if 1g of solute is added to an infinite amount of solvent. Precise knowledge
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of this parameter is crucial for the interpretation of sedimentation data. This is
because of the small differences in the buoyancy term (1 − ν̄ · ρs). In fact, it
is the most common hindrance for the even more universal use of analytical
ultracentrifugation in physicochemical science. Therefore, a lot of work has been
spent on this topic, which led to extensive tabulated data of synthetic polymers
and biopolymers. For proteins – as mentioned above, they are still the most
common materials analyzed in analytical ultracentrifuges today – it is possible
to estimate the value of υ = 1/ρp because this often does not deviate too much
from approximately 0.73cm3/g.

The best way to measure ρp = 1/υ is by using the well-known Kratky density
balance. Figure 2.15 shows a measuring example. For the pure solvent and for
ca. three solutions with different concentrations c of the solute, the (absolute)
densitiesρ aremeasured (these solutions canalsobeused todetermine the (dn/dc)p

of the solute as well; see following section). Then, the reciprocal of ρ, the specific
volume v = 1/ρ, is plotted as function of c. The slope of a regression line yields
the wanted value of ν̄ = (ρp)−1 of the solute. The example presented in Fig. 2.15 is
a polybutyl acrylate latex dispersed in water at 25◦C. The results of this plot are
ρp = 1.048g/cm3 and υ = 0.954cm3/g.

Another important possibility to determine the solute density ρp will be subject
of Chap. 4: the determination of particle densities in AUC density gradients.

The use of a pycnometer is also possible, but tedious. Furthermore, a classical
method to determine solution densities is the use of calibrated sinkers/floaters that
make use of the Archimedes principle. Edelstein and Schachman [24] determined
for special cases the partial specific volume by variation of solvents. They measured
the product M(1 − ν̄ · ρs), called the effective molar mass, in different solvents
with varying known densities, such as H2O and D2O, using equilibrium runs
(see Chap. 5). The partial specific volume υ can then be computed from these
data. In a similar manner, Lustig et al. [25] and Schubert et al. [26] worked with
Nycodenz/water solutionsofdifferent compositions, respectively,with twosolvents

Fig. 2.15. 1/ρ − c plot
to determine the partial
specific volume ν̄ = 1/ρp

from measurements with
a Kratky density balance
(polybutyl acrylate latex,
water, 25 °C)
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of very different densities and some mixtures thereof (see Sect. 5.4.2). A known
table-work for υ values of biopolymers is [27].

2.6.2 Measurement of the Refractive Index
and the Specific Refractive Index Increment

In order to measure ns, np and the specific refractive index increment (dn/dc)p

of dissolved macromolecules and dispersed particles, often a Bellingham-refrac-
tometer is applied. It allows the measurement at just one wavelength λ. Usually,
solutions of the solute of ca. three different concentrations are prepared. It is
favorable to use the same solutions that have been prepared to determine the
solute density (see Sect. 2.6.1). The (absolute) values of the measured refractive
indices n of the pure solvent and the solutions are then plotted as function of c
(see Fig. 2.16). The intercept yield ns and the slope of the resulting line gives the
specific refractive index increment (dn/dc)p, that is, the change of the refractive
index of the solution per unit mass solute that has been added. The result of this
plot is (dn/dc)p = 0.130cm3/g (for the same polybutyl acrylate latex as in Fig. 2.15,
25◦C, 589nm). Well-known (dn/dc)p table-works are [23] for synthetic polymers,
and [28] for biopolymers.

Ifmoredetailed informationatdifferentwavelengthsλ is required, adifferential
refractometer should be applied. It should be mentioned that the refractive index n,
and thus (dn/dc)p, varies with the wavelength λ and with the temperature T.

For PSD measurements, using a turbidity detector and Mie’s theory, instead of
(dn/dc)p, the (absolute) refractive index np of the dispersed particles is required.
Equation (2.4) gives a formula that allows the roughly approximated calculation
of np using the measured (dn/dc)p, and vice versa.

np = (dn/dc)p · ρp + ns (2.4)

This equation was derived making use of the additivity of molar refractions [29].

Fig. 2.16. n−c plot to deter-
mine the specific refractive
index increment (dn/dc)p

from measurements with
a Bellingham refractometer
(polybutyl acrylate latex,
water, 25 °C, 589 nm)



46 2 Analytical Ultracentrifugation, Instrumentation

References

1. Svedberg T, Pedersen KO (1940) Die Ultrazentrifuge. Steinkopff, Dresden
2. http://www.ehs.cornell.edu
3. Bowen TJ, Rowe AJ (1970) An introduction to ultracentrifugation. Wiley, London
4. Lewis MS, Weiss GH (1976) Proc Conf Fifty Years of the Ultracentrifuge, 24–26 February 1975, Bethesda,

ML, Biophys Chem 5:1–286
5. Mächtle W (1999) Biophys J 76:1080
6. Müller HG (1999) Bayer AG, Leverkusen, Germany, personal communication
7. Mächtle W (1999) Prog Colloid Polym Sci 113:1
8. Börger L, Lechner MD, Stadler M (2004) Prog Colloid Polym Sci 127:19
9. Schachman HK (1959) Ultracentrifugation in biochemistry. Academic Press, New York

10. Lloyd PH (1974) Optical methods in ultracentrifugation, electrophoresis and diffusion. University Press,
Oxford

11. Schmidt B, Riesner D (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in
biochemistry and polymer science. The Royal Society of Chemistry, Cambridge, p. 176

12. MacGregor IK, Anderson AL, Laue TM (2004) Biophys Chem 108:165
13. Mächtle W (1984) Makromol Chem 185:1025
14. Scholtan W, Lange H (1972) Kolloid Z Z Polym 250:782
15. Mächtle W (1991) Prog Colloid Polym Sci 86:111
16. Böhm A, Kielhorn-Bayer S, Rossmanith P (1999) Prog Colloid Polym Sci 113:121
17. Billick IH, Bowen RJ (1965) J Phys Chem 69:4024
18. Furst A (1997) Eur Biophys J 25:307
19. Rossmanith P, Mächtle W (1997) Prog Colloid Polym Sci 107:159
20. Mächtle W, Klodwig U (1976) Makromol Chem 177:1607
21. Mächtle W, Klodwig U (1979) Makromol Chem 180:2507
22. Lide DR (ed) (2002) CRC handbook of chemistry and physics, 83rd edn. CRC Press, Boca Raton
23. Brandrup J, Immergut EH (eds) (1989) Polymer handbook, 3rd edn. Wiley, New York
24. Edelstein SJ, Schachman HK (1967) J Biol Chem 242:306
25. Lustig A, Engel A, Tsiotis G, Landau EM, Baschong W (2000) Biochim Biophys Acta 1464:199
26. Tziatzios C, Precup AA, Lohmeijer BGG, Börger L, Schubert US, Schubert D (2004) Prog Colloid Polym

Sci 127:54
27. Durchschlag H (1986) In: Hinz HJ (ed) Thermodynamic data for biochemistry and biotechnology.

Springer, Berlin, Heidelberg, New York, pp. 45–128
28. Theisen A, Johann C, Deacon MP, Harding SE (2000) Refractive increment data book for polymer and

biomolecular scientists. Nottingham University Press, Nottingham
29. Mächtle W, Fischer H (1969) Angew Makromol Chem 7:147
30. Ralston G (1993) Introduction to analytical ultracentrifugation. Beckman Instruments, Fullerton, CA
31. Gonzales JM, Rivas G, Minton AP (2003) Anal Biochem 313:133



3 Sedimentation Velocity

3.1 Introduction

The basic information obtained by performing an AUC sedimentation velocity
experiment is the sedimentation coefficient s (see (1.5)) and the s distribution
G(s) or g(s) = dG(s)/ds if the sample is heterogeneous. The gravitational field
acentr increases linearly along the radius (acentr = ω2r). This means that also the
sedimentation velocity u of the particle increases linearly toward the bottom of
the cell.

In general, the sedimentation coefficient s of a sample does not change within
the experiment. The exceptions will be considered below in this chapter. In the
absence of effects such as concentration dependence of the sedimentation velocity,
the sedimentation coefficient can be determined by measuring the radial concen-
tration distribution c(r) of the sample at the given time t within the cell. Both the s
measurement (and the corresponding measurement of the s distribution, G(s))
and the measurement of the radial concentration distribution c(r) are the basis for
the very important measurement of the molar mass distribution (MMD), and the
determination of particle size distributions (PSD).

In this Chap. 3, we will start (in Sect. 3.2) with a simple example of a sedimen-
tation velocity experiment. This example will be our guide through the theory of
sedimentation velocity experiments. Subsequently (in Sect. 3.3), we will discuss
some more complicated examples exhibiting some new phenomena not repre-
sented in the first example. We will then turn your interest to the two most relevant
types of sedimentation velocity runs, as far as our industrial work is concerned:
(i) in Sect. 3.4, to the s run on dissolved macromolecules, leading to the molar mass
distribution, and (ii) in Sect. 3.5, to the s run on dispersed particles, leading to the
particle size distribution. Finally, in Sect. 3.6, the technique of synthetic boundary
experiments, a special sedimentation velocity run, will be discussed.

3.2 Basic Example of Sedimentation Velocity

Figure 3.1 shows a single interference optics CCD picture and the resulting typical
radial XL-A/I interference scan of a sedimentation velocity experiment, J = f (r),
performed on a solution of nearly monodisperse calibration polystyrene having
amolarmassof Mw = 106 000g/mol (Mw/Mn ∼ 1.10).The solventusedwasmethyl
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Fig. 3.1. Single XL-A/I CCD interference “photograph” and corresponding radial scan of a sedi-
mentation velocity experiment performed on a nearly monodisperse polystyrene polymer (Mw =
106 000 g/mol) dissolved in MEK (c0 = 4 g/l). Scan recorded after 46 min at 40 000 rpm. T = 25 °C,
12-mm double-sector cell, sapphire windows

ethyl ketone (MEK). The initial concentration (or loading concentration) of the
styrene polymer was c0 = 4g/l, ω = 40 000rpm, and the running time was 46min
at 25◦C. As the density of the solute is higher (ρPS,MEK = 1/υ = 1.1016g/cm3) than
the solvent density (ρMEK = 0.7995g/cm3), sedimentation occurs. In the opposite
case, flotation would be detected. The J(r) scan is the result of a Fourier analysis
of the above interference “photograph”. It presents the radial course of a single
interference fringe. Its vertical deviation J is counted in fringe numbers. ΔJ = 1 is
identical to the vertical spacing between two neighboring parallel fringes in the
interference photograph. The radial course of J(r) is proportional to the radial
concentration distribution c(r) of the sedimenting macromolecules within the
AUC cell.

Basically, three regions can be distinguished in such a typical, experimental
J(r) XL-A/I raw curve (see Fig. 3.1, from left to right):

(i) the solvent region a,
(ii) the boundary region b, and
(iii) the plateau region c.

Furthermore, two special radial positions, the solvent–air meniscus rm and the
bottom of the cell rb, can be identified. In the solvent region, the concentration
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of the solute equals zero (J = 0 and c = 0), whereas in the boundary region the
concentration of the solute rises from zero to the value in the plateau region cp. In
the plateau region, cp is constant (the corresponding J value is Jp). An important
point for the determination of the sedimentation coefficient is the inflexion point
of the J(r) curve in the middle of the boundary region. The corresponding radius
is named rmidpoint or rboundary. The mathematical derivation of the interference
curve according to r exhibits a maximum at this point. If the data are collected
via Schlieren optics, then the maximum of the peak, and thus rmid = rbnd, is
obtained directly (compare, for example, Fig. 2.8a and b). Because the specific
refractive index increment of polystyrene in MEK (at λ = 675nm and 25◦C) is
known, dn/dc = 0.214cm3/g, the counted fringe numbers J(r) can be transferred
directly with (2.3) into the (absolute) radial concentration distribution c(r) within
the measuring cell (see c axis on the right side in Fig. 3.1).

Figure 3.2 additionally contains other scans, collected at other times t from
the same experiment. It shows representative raw data curves of J(r) or c(r) col-
lected every 10min by the digital XL-A/I interference optics. The total experiment
duration was about 176min.

At time zero, the concentration c0 of the (polystyrene) solute is uniform
throughout the measuring cell. With increasing experimental time, the solute
sediments toward the cell bottom due to the gravitational field created by the spin-
ning of the rotor inside the ultracentrifuge. The direction of the gravitational force
is away from the center of rotation, and therefore leads to a directed movement

Fig. 3.2. Raw data curves of 15 representative XL-A/I interference optical radial scans collected in
a sedimentation velocity experiment performed on a polystyrene polymer (Mw = 106 000 g/mol)
dissolved in MEK (c0 = 4 g/l) at 40 000 rpm. Scans were collected every 2 min. The total experiment
duration was about 180 min. Shown is every fifth scan starting with the curve after 26 min until the
curve after 176 min. T = 25 °C, 12-mm double-sector cell
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of the solute. The first experimental curve in Fig. 3.2 at 26min already shows the
formation of a sedimentation boundary between the left plateau of the pure solvent
near the meniscus region and the right plateau of uniform solute concentration cp

near the bottom region.
The analysis of the radial movement of the midpoint of the boundary, rbnd,

across the cell allows us to determine the sedimentation velocity u, and thus
the sedimentation coefficient s, too (see (1.5)). This will be shown below. The
sedimentation coefficient s is connected to the effective size of the solute, and to
thedensitydifferencebetween solute andsolvent (ρp−ρs), allowingus todetermine
the molar masses M and particle sizes dp (see (1.8) and (1.9)). This will be subject
of two following sections of this chapter.

A closer look at Fig. 3.2 reveals a spreading/broadening of the boundary itself
during the sedimentation experiment, although the sedimenting polystyrene is
(nearly) monodisperse. This boundary spreading is due to the undirected move-
ment of the solute molecules caused by diffusion. Therefore, the diffusion coeffi-
cient D (of monodisperse samples only!) can be calculated from the measurement
of boundary spreading over time.

The ratio of the sedimentation coefficient s and diffusion coefficient D, i.e.,
the quotient s/D, is a measure of the molar mass M of the solute (see (1.8)). It
has to be kept in mind that an additional boundary spreading arises from the
sample’s heterogeneity if the polymer exhibits a broad molar mass or particle
size distribution. Thus, assuming a “monodisperse” sample is analyzed, the “D
value” of a broadly distributed sample is falsified: D is too high, and so “M” too
small. Again, we emphasize: in a sedimentation velocity run (or short s run),
beside the sedimentation coefficient s (and its distribution G(s)), the (absolute)
concentration distribution c(r) within the measuring cell (see right-hand c axis in
Fig. 3.2) is measured.

3.2.1 Determination of s

As mentioned above, the gravitational force ω2r is not constant within the AUC cell.
The force increases with r, and therefore the velocity u of the boundary increases
as well. Thus, mathematically the sedimentation velocity u has to be expressed
as a differential, and the definition of the sedimentation coefficient s, (1.5), leads
to (3.1):

s ≡ u

ω2r
=

drbnd/dt

ω2r
(3.1)

Integration of (3.1) gives (3.2) with the radial position of the meniscus rm:

ln(rbnd/rm) = sω2t = s

t∫
0

ω2 dt (3.2)

If ω is not constant during a run, then one replaces ω2t by the so-called running
time integral ∫ ω2 dt.
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Fig. 3.3. Plot of ln (rbnd/rm) versus time t
to determine the sedimentation coefficient s
from a sedimentation velocity run. The slope
of the straight line reveals a value of s =
6.9 S (Svedberg) for the polystyrene exam-
ined (Mw = 106 000 g/mol), dissolved in MEK
at c0 = 4 g/l

Equation (3.2) leads the way to the simplest determination of s by plotting
ln(rbnd/rm) versus time t. The slope of the resulting straight line is sω2. Figure 3.3
shows the plot corresponding to the experimental data given in Fig. 3.2. The
result in this case was s = 6.9 × 10−13 s = 6.9S. The unit 10−13 s, abbreviated as 1S
(= 1Svedberg or 1Sved or 1sved), is the standard unit of sedimentation coefficients,
which are laid down in tables. It is named after The(odor) Svedberg, the Nobel
prize winner and inventor of the AUC. The error of measurement of s is about
1–3%.

In many cases, samples show either multiple components or even a continuous,
broad distribution of particles sizes or molar masses. In these cases, where only
rbnd values were used, the s value determined above is a weight average value s̄w.
Thus, in cases of broad distributions, it is of interest to determine the complete
differential sedimentation coefficient distribution g(s) or the integral form thereof
G(s) = c(s)/c0. This sedimentation coefficient distribution is defined as follows [1]:

g(s) =
d

(
c(s)/c0

)
ds

(
r

rm

)2

=
∂G(s)

∂s
(3.3)

The function g(s) gives the mass fraction (i.e., the concentration) dm = dc/c0 of
the sample sedimenting with a sedimentation coefficient between s and s + ds.

The determination of g(s) then allows us to determine (i) molar mass distribu-
tions [2], (ii) particle size distributions, and (iii) interaction constants in the case
of interacting systems [3].

3.2.2 Standard Conditions for s Estimation

If the sedimentation velocity experiment is not run at standard conditions (for
biopolymers, these are aqueous solutions and at 20◦C), then the collected data can
easily be converted to these standard conditions by means of (3.4):

s20,w = sobs

(
ηT,w

η20,w

)
·
(

ηs

ηw

)
·
(

1 − ν̄ρ20,w

1 − ν̄ρT,w

)
(3.4)
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Thus, the standard sedimentation coefficient at 20◦C in water s20,w (usually used
in biopolymer tables) can be calculated from the observed sedimentation coeffi-
cient sobs, provided that the following data are known: the viscosity ηT,w of water
at the experimental temperature T, the viscosity η20,w of water at 20◦C, the viscos-
ity ηs of the solvent at any given temperature, the viscosity ηw of water at the same
chosen temperature, the density ρ20,w of water at 20◦C, and the density ρT,s of the
solvent at experimental temperature.

3.2.3 Radial Dilution and Thickening

A careful look at Fig. 3.2 shows that the level of the J(r) plateau near the bottom
region in the interference optical data decreases with increasing experimental
time. This means that the concentration of the solute in the plateau region cp also
decreases continuously with time t. As mentioned in Sect. 2.3 for sedimentation
velocity runs, sector-shaped measuring cells are applied to prevent convection.
This causes an increasing volume per radius unit toward the cell bottom of the
measuring compartment (see Fig. 3.4). In other words, the sedimenting sample
becomes increasingly diluted as it moves downward. This phenomenon is called
radial dilution. In the case of a floating sample, the phenomenon exists vice versa,
and is called radial thickening.

This phenomenon can be taken into account by application of (3.5):

cp = c0 ·
(

rm

rbnd

)2

(3.5)

with the concentration of the solute in the plateau region cp, the initial concentra-
tion c0, the radius of the meniscus rm (corresponding to the bottom rb in the case
of flotation), and the radius of the sedimenting (or floating) boundary rbnd.

Equation (3.5) represents the very basic correction for the important radial
dilution, which generally has to be performed in every evaluation. This correction
for the radial dilution is valid as long as the sample does not show a pronounced
concentrationdependence. In the latter case, adeviation fromidealbehavioroccurs
when s is determined. According to [4], special care has to be taken if a significant
pressure dependence of s occurs (see Sect. 3.3.3).

Fig. 3.4. Top view onto a sector-shaped compartment
of an analytical ultracentrifugation measuring cell. This
scheme illustrates the radialdilutionandthecorrespond-
ing thickeningeffect.Due to thesector shape, thesample
undergoes a dilution while moving toward the bottom,
and a thickening while moving toward the meniscus of
the cell
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3.2.4 Concentration Dependence

In general, sedimentation coefficients are concentration dependent valid to
a smaller extent for compact, spherically shaped particles, but distinctly so for
longer, coil-like macromolecules. Standard systems of non-associating solutes dis-
play a decrease in the observed sedimentation coefficient with increasing concen-
tration. The sedimentation coefficient s(c) at a given concentration c is linked to
the limiting (ideal) sedimentation coefficient s0 (at zero concentration, or more
correctly at infinite dilution) via (3.6):

s(c) =
s0

1 + ks · c
or

1
s(c)

=
1
s0

(1 − ks · c) (3.6)

where ks is the concentration dependence coefficient. The values of s0 and ks are
measured on a series of three–five different concentrations. Slope and intercept of
a straight line through the data points of a 1/s(c) versus c plot yield s0 and ks (see,
for example, Fig. 3.8).

Equation (3.6) is validonlyover a limited,moderate rangeof concentrations [5].
There are mainly three physical reasons for the concentration dependence of the
sedimentation coefficient, but only the first listed below is considered to be of
significance:

(i) Most importantly, the viscosity of the solution ηs increases with increasing
concentration c. Thus, according to (1.5) and (1.7), the sedimentation coeffi-
cient decreases.

(ii) The density of the solution is a function of the concentration. A clear proof
can be found in the literature (see [6–8]). Gofman showed that lipoprotein
molecules, which sediment in one region of a centrifuge cell that is free of
other proteins, will actually float in the same run in another part of the
cell that contains a high concentration of smaller protein molecules, and so
a higher solution density.

(iii) As the particles are sedimenting, the space they leave must be filled with sol-
vent. This introduces a backward flow of liquid, decreasing the sedimentation
velocity.

It is obvious that the concentrationdependenceof the sedimentationcoefficient s(c)
depends on the shape of the sedimenting species. In general, it can be noted: the
higher the aspect ratio of the particle, the more pronounced the concentration
dependence, i.e., the less spherical the shape of the solute, the higher the value
of ks. For a deeper study, see [9] and [43].

These considerations are valid for neutral macromolecules or particles. How-
ever, the picture gets much more complicated for polyelectrolytes, i.e., if charge
effects have to be taken into account (see Sect. 3.3.5). It has to be noted that charge
does not influence only the sedimentation coefficients s itself, but also the concen-
tration dependence coefficient ks. For a more detailed discussion on this topic, the
reader should consult [5].
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3.3 Advanced Theory of Sedimentation Velocity Runs

Section 3.2 contained the basic theory of sedimentation velocity experiments as
well as the most important and common influences and effects that have to be
taken into account. Beside these effects, there are some other phenomena, which –
to the authors’ knowledge – do not occur frequently. Therefore, readers could
leave out Sect. 3.3 if they are not interested in details of sedimentation theory.
Nevertheless, the authors believe that some readers may want to have a closer
look to theoretical details in order to make sure not to misinterpret experimental
data. Some of the readers may draw the line between common and uncommon
phenomena differently. In fact, this distinction is rather arbitrary.

The effects described in the following sections influence either the value of
the sedimentation coefficient itself or the shape of the sedimentation boundary.
Special care has to be taken for the broadening of boundaries. Basically, there are
two mechanisms resulting in boundary spreading: diffusion, and heterogeneity of
the sample. The separation of these two effects is subject of Sect. 3.3.6.

3.3.1 Johnston–Ogston Effect

A special concentration effect is observed particularly in coil-like solutes (= ex-
panded linear macromolecules) containing mixtures of at least two components,
one sedimenting fast, the other slowly (mostly characterized by very different
molar masses MA and MB). The effect was named after Johnston and Ogston who
first explained this phenomenon in 1946 [10]. When a mixture of two solutes A and
B, sedimenting at different velocities, is exposed to an s run, two regions of interest
in the radial concentration profile can be distinguished (see Fig. 3.5).

In region I, only the slowly sedimenting component A is present. The sedimen-
tation coefficient, which can be measured, is sA(cI). The total solute concentration
cA + cB increases in the boundary region II. Therefore, due to the concentration
dependence of sA(c), the sedimentation velocity of component A in region II drops
to a lower value sA(cII). The faster sedimenting component B always moves through
a solution of solvent and the slow component A, and therefore exhibits the same
sedimentation coefficient sB(cII) throughout the cell. Thus, three sedimentation

Fig. 3.5. Schematic example of an interfer-
ence optical radial scan from a sedimenta-
tionvelocity run.TheJohnston–Ogstoneffect
may occur in multi-component systems (a bi-
modalone,A+B, in this figure)whenthecom-
ponents’ sedimentation coefficients exhibit
pronounced concentration dependence
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coefficients have to be taken into account in the system described. Effectively,
the slow sedimenting component accumulates at the boundary I. The fringe dis-
placement ΔJA (i.e., the concentration cA), and the corresponding peak area in
Schlieren optics Aschl,A of the slower component, is larger than the signal created
by the faster component (if both initially had a 1:1 concentration relation). The
relative concentrations of both components cA and cB, determined from the fringe
plateaus (or the Schlieren peak area), are incorrect, in that the detected relative
concentration of the slower component is too high. The Johnston–Ogston effect
vanishes with smaller total concentration c0, smaller ω, and smaller concentration
dependence of the concerned sedimentation coefficients (ks → 0). To recognize
whether the Johnston–Ogston effect is present in a system, the total solute concen-
tration c0 and/or the rotor speed ω should be varied. To obtain highest accuracy,
extrapolation to infinite dilution c0 → 0 is necessary.

3.3.2 Self-Sharpening of Boundaries

When the concentration dependence of sedimentation coefficients is pronounced
(i.e., when ks is very high), the effect of self-sharpening of the boundary may be
observed. As example, the sedimentation boundary of a pure monodisperse solute
(see Fig. 3.1) will be considered. The concentration of the solute varies through
the region of the boundary from the lowest value on the left, normally c = 0, to the
highest value on the right, that is, cp ∼ c0. Therefore, not only the concentration of
the solute varies inside the boundary region but also the sedimentation coefficient
itself, if the solute shows a (pronounced) concentration dependence s(c) of the
sedimentation coefficient. The sedimentation coefficient inside the boundary is
smaller near the bottom region than near the meniscus region. Thus, the boundary
region tends to stay narrower. This effect is called self-sharpening. It is often found
in polyelectrolyte solutions.

One example of a multi-boundary sedimentation experiment that is believed
to show self-sharpening is given in Sect. 3.5.4 and Fig. 3.22. The most prominent
example of a self-sharpening phenomenon is the sedimentation of the rod-like
tobacco mosaic virus (see [11]). It is not easy to judge whether a self-sharpening
effect is present in the experimental data, or not. The reader should simply keep this
paragraph in mind in the case of data difficult to interpret. One indication of self-
sharpening is the absence of diffusion broadening of the sedimenting boundary.

3.3.3 Pressure Dependence

Inside the measuring cell of an analytical ultracentrifuge, not only is a radial
gravitational field ω2r created, but also a radial pressure p(r) gradient due to the
fact that the liquid column exhibits different weights at different radial positions.
Centrifuges operating at highest rates of angular rotation ω may induce radial
pressure gradients p(r, ω) within the solution column, varying from 1bar (0.1MPa)
at the meniscus up to 250bar (25MPa) at the cell bottom. Depending on the applied
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solvent, this may have strong influence, and can lead to deviations of up to 30% in
values for sedimentation coefficients in some systems (see [5]). The pressure can
influence the solvent’s density ρs and viscosity ηs (especially of highly compressible
organic solvents) as well as the partial specific volume υ = 1/ρp of the solute. The
latter does not need to be taken into account usually, because the common increase
in density and viscosity of the solvent with increasing pressure often leads to slower
sedimentation. In general, these effects can be neglected in aqueous solutions
because the compressibility of water is very low. In highly compressible solvents,
the radial pressure gradient p(r, ω) and its influence on s (see [44]) is usually
described by (3.7),

s(p) = s(r, ω) = s0[1 − μp(r, ω)] (3.7a)

with

p(r, ω) = (1/2)ω2r2
mρ0

s

[
(r/rm)2 − 1

]
(3.7b)

where s0 is the sedimentation coefficient at zero pressure, μ is a constant dependent
on the polymer/solvent system, and ρ0

s is the density of the solvent at p = 1bar
(0.1MPa).

Indirectly, radial pressure gradients may influence sedimentation rates in two
main ways:

(i) Associating systems may vary their relative composition following the Le
Chatelier principle according to the pressure they are exposed to (see, for
example, [12, 13]). The pressure dependence of associating equilibrium sys-
tems may therefore be one reason for speed dependence s(ω) of sedimentation
coefficients (see Sect. 3.3.4).

(ii) Some synthetic or biopolymers may undergo structural changes depending on
pressure. Thus, their geometry and frictional coefficient may vary with pres-
sure, i.e. during their sedimentation within the radially increasing pressure
gradient p(r) in the AUC cell.

For a more detailed discussion of pressure effects, see [2, 5, 14] and [44].

3.3.4 Speed Dependence

Occasionally, it is found that the measured sedimentation coefficient depends on
the angular velocity ω of the experiment, for example, as a result of the pressure
effect (see Sect. 3.3.3). Sometimes, also in the absence of pressure effects, the
observedsedimentationcoefficient is found to increasewith increasing rotor speed.
This is believed to occur through aggregation of the (macromolecular) solute. This
aggregationoccursbecause sedimenting solute takesbuffer ionswith it.The solvent
left behind may then be enriched in macromolecular solute, but may contain less
buffer ions.

It is also reported (see [11]) that highly asymmetric molecules, such as the to-
bacco mosaic virus, are oriented by centrifugation (see also concentration depen-
dence, Sect. 3.2.4), resulting in a speed dependence of s(ω). This can be overcome
by working at the lowest possible angular velocity ω.
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3.3.5 Charge Effects

Most biological macromolecules are electrostatically charged, and to maintain
electrical neutrality of the solution, each macromolecule (= macro-ion) is asso-
ciated with a number of counter-ions (of lower molar mass). These counter-ions
often have sedimentation coefficients s that are orders of magnitude smaller than
those of macromolecules. Thus, when macromolecules sediment, the counter-ions
lag behind, creating an electrical field. This field induces an electrical force act-
ing opposite to the sedimentation direction. Therefore, the sedimentation of the
macro-ions is slowed down, resulting in a smaller sedimentation coefficient.

Charge effects can be overcome by the addition of (low molar mass) salts, such
as NaCl or KCl, to the (mostly) aqueous polyelectrolyte solutions (see Fig. 3.6).
A second charge effect has to be mentioned. When polyelectrolytes sediment, their
concentration near the cell bottom is increased in relation to the concentration
at the meniscus. As they take their counter-ions with them (cf. above), the salt
concentration at the bottom is increased as well. Thereby, an osmotic pressure is
built up, resulting in a Donnan equilibrium.

A good example of the influence of electrical charge is given in Fig. 3.6, by the
investigation of the sedimentation behavior of aqueous solutions of the polyelec-
trolyte sodium polystyrene sulfonate (NaPSS = negatively charged macro-ions) in
the presence of different amounts of salt. The dialyzed sample examined exhibited
a molar mass of about Mw = 200 000g/mol (Mw/Mn ≈ 1.10). The concentration of
the lowmolarmass salt added(NaCl)wasvaried from cNaCl = 0up to cNaCl = 1mol/l.
The concentration of NaPSS itself was held constant at cNaPSS = 2.5g/l. Figure 3.6
shows the measured dependence of the sedimentation coefficient sc as a function
of the NaCl concentration cNaCl.

As a result of the abovementioned charge effects, at zero salt concentration
even highest centrifugal forces do not induce significant sedimentation of NaPSS.

Fig. 3.6. Plot of the sedimentation coefficient sc of the polyelectrolyte NaPSS (Mw = 200 000 g/mol,
cNaPSS = 2.5 g/l = constant) versus aqueous NaCl salt concentration cNaCl. At cNaCl < 0.3 mol/l, the
measured apparent sedimentation coefficient of the polymer depends strongly on the salt concen-
tration
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At higher salt concentration, sedimentation of NaPSS occurs. The minimal salt
concentration necessary to allow undisturbed sedimentation of the polyelectrolyte
NaPSS can be obtained from Fig. 3.6. Approximately 0.3mol/l sodium chloride is
sufficient to eliminate all influences of charge effects. Further addition of NaCl will
not change sc, which is now constant at sc = 5.5S.

For further investigations on the sedimentation behavior of NaPSS, described
in Sect. 3.4.1, cNaCl = 0.5mol/l was chosen as standard salt concentration. In this
aqueous salt solution, the sedimentation behavior of the polyelectrolyte NaPSS is
similar to that of uncharged neutral macromolecules.

Some aqueous particle dispersions are electrostatically stabilized, i.e., they
contain slightly charged polyelectrolyte particles (see also Sect. 6.1.3). Therefore,
if low molar mass salts are added to such dispersions, the stabilization will be
destroyed, and the particles will agglomerate partly or completely. This special
“salt effect” of aqueous dispersions is the reason why it is not possible to use the
versatile water/CsCl density gradient for AUC analysis of such systems. In this case,
the electrically neutral water/metrizamide or water/Nycodenz density gradients
(see Sect. 4.2.1) have to be used instead.

3.3.6 Separation of Sedimentation and Diffusion

If nanoparticles smaller than 30nm in diameter or macromolecules exhibiting
molar masses well below approximately 100 000g/mol are investigated by AUC,
diffusion broadening of the sedimenting boundaries will occur at a considerable
extent due to the high diffusion coefficient D of the smaller species. The smaller
the species, the higher is D, and thus the diffusion spreading of the boundary. As
a relation between D and size (dp or M), the following two equations are valid.
First, for compact spherical particles with diameter dp, the famous Stokes–Einstein
equation (3.8) is valid:

D =
kT

3πηsdp
(3.8)

with k = R/N being the Boltzmann constant, and M = mN = (π/6)ρpd3
pN, i.e.,

D ∼ M−(1/3).
Second, for non-spherical particles, especially for macromolecules of all shapes

(coils, rods, spheres), the following empirical scaling law (similar to that for s0, see
(3.11)) is valid:

D0 = KD · M−b (3.9)

with the two (constant) parameters KD and b, where b is about 0.5 < b < 0.6 (in
the case of spherical particles, b = 1/3 is valid).

There are different approaches to remove or to separate the effects of bound-
ary spreading by diffusion, from spreading by a broad PSD or MMD: (i) the van
Holde-Weischet method, (ii) the time derivative method, (iii) the Lamm equation
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modeling, and others (see [2] and [15]). Some approaches make use of the find-
ing that broad distributions lead to a boundary spreading proportional to time,
whereas diffusion spreading correlates only with the square root of time. In the
following, we discuss the first three approaches.

Van Holde-Weischet Method
The procedure of van Holde-Weischet [16], using D ≈ √

t, is as follows: a fixed
number of data points from one experimental scan at a defined running time
t (such as in Fig. 3.1), which are evenly spaced between the baseline and
the plateau, are selected (for example, in 5% steps: 0, 5, 10, ...95, 100% in the
c axis direction) and plotted in a so-called van Holde-Weischet plot, such as
in Fig. 3.7 (a vertical line in this plot corresponds to one scan at time t).
This is repeated for all scans in this series (such as that in Fig. 3.2) at differ-
ent running times t. Then, an apparent sedimentation coefficient s∗ is calcu-
lated for each of the data points at the different percentages, and plotted ver-
sus the inverse root of the run time t, yielding the typical van Holde-Weischet
plot (see Fig. 3.7): straight lines through the different s∗ values have the same
percentage.

Now, a linear extrapolation of corresponding s∗ values, with the same per-
centage at different experimental times (= one slice in Fig. 3.7) to infinite time t
(i.e., 1/t → 0), is performed. The intersection points of the different extrapolation
lines (= slices) with the ordinate axis yield the diffusion-corrected sedimentation
coefficients s% for the different percentages, and thus the complete integral distri-
bution G(s) of the sedimentation coefficients. In the case of a single monodisperse
component (such as in Fig. 3.7), the lines intersect in one point, and thus only one
s value is obtained. If multiple components or a broad MMD are present in the
sample, a corresponding number or a continuous sequence of different intersec-
tion points are obtained, i.e., different values of s (for example, s0%, s5%, ...s100%).
In the case of non-ideality (i.e., A2 > 0), the intersection point of a monodisperse

Fig. 3.7. Typical van
Holde-Weischet plot for
the elimination of dif-
fusion broadening in
a sedimentation velocity
experiment with dis-
solved monodisperse
macromolecules at one
concentration (reprinted
withpermissionfrom[45])
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component is shifted to times less than infinity, i.e., to negative values of t−0.5.
Therefore, the van Holde-Weischet analysis is also a test for sample homogeneity
and/or non-ideality.

The interpretation of van Holde-Weischet diagrams becomes complicated in
the case of a broad continuous distribution of components, for non-ideality, and
for very small particles. In Sect. 3.4.2 and Fig. 3.11, a modified van Holde-Weischet
procedure [2] is described for the separation of diffusion and polydispersity broad-
ening.

Time Derivative Method
In many cases, samples show either multiple components or even a continuous
distribution of particle sizes or molar masses. In such cases, it is of interest to deter-
mine the diffusion-corrected sedimentation coefficient distribution as mentioned
above in the form of G(s), or in the differential form thereof, g(s). Although this is
in principle possible by the van Holde-Weischet method, a more suitable method
for the determination of g(s) is the time derivative method ([17]; see also [1]).
It determines the time derivative of neighboring radial scans – J(r, t), A(r, t) or
c(r, t) – acquired at different times t according to (3.10), which is a combination of
(3.2) and (3.3):

g∗(s)t =
(

∂ {c(r, t)/c0}
∂t

) (
ω2t2

ln(rm/r)

) (
r

rm

)2

=
∂G∗(s)t

∂s
(3.10)

with g∗(s) being the apparent s distribution. The star indicates that this distribution
is not diffusion-corrected.

The apparent g∗(s) distribution equals the true distribution g(s) in cases where
diffusion can be ignored. To eliminate the influence of a significant diffusion
broadening, an extrapolation of the different g(s∗, t) curves, calculated for different
times t to infinite time t = ∞, yields the true distribution g(s).

An important advantage of the time derivative procedure is a significant im-
provement of the quality of the calculated distribution g∗(s)t, because two neigh-
boring scans are subtracted from each other, so that systematic errors in the
optical patterns (baseline, window distortion, etc.) are removed and the random
noise decreases.

As a drawback, it has to be noted that only scans from a relatively narrow
time interval can be used for a single g∗(s) evaluation, because the time derivative
method fails for very broadly distributed samples. It works, however, very well for
moderately distributed samples exhibiting two plateaus in every scan, one on the
left and one on the right of the sedimentation boundary. Figure 7.6 in Sect. 7.3 is
an illustration of the above. It shows diffusion-broadened UV optics scans A(r, t)
of a sedimentation velocity run of small, moderately distributed gold (colloid)
particles, which are evaluated with three different methods: (i) with the simple
procedure of (3.2), (ii) with the time derivative methods of (3.10), yielding the
non-diffusion-corrected g∗(s) distribution, and (iii) with a diffusion correction
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to transform g∗(s) into g(s), using the method of Schuck [18] described in the
following section.

Lamm Equation Modeling
Very recently, Schuck [18] published a new approach for the analysis of AUC
sedimentation data. By modeling of the Lamm equation (1.10), now even sedi-
mentation coefficients and molar mass distributions of polydisperse samples can
be investigated. The principle of this approach is based on an educated initial guess
of the sedimentation coefficients, the frictional coefficients, and the partial specific
volume of the sample. This guess is utilized to calculate finite element solutions
for a large number of discrete virtual species with different s values. The calcu-
lated data are adjusted to the experimental data by means of maximum entropy
regularization, yielding a continuous sedimentation coefficient distribution g(s).
This approach offers an easy access to diffusion-corrected sedimentation coeffi-
cient distributions g(s) [19]. A drawback of Schuck’s method are the essentially
non-existing “ghost peaks” in very broad distributions (for practical examples, see
Fig. 7.6 and [20]).

3.3.7 Test of Homogeneity

Often, the question arises whether an examined sample is really homogenous.
Attention has to be paid if data from AUC sedimentation velocity runs are applied
to answer this question. There are several criteria allowing statements on homo-
geneity of a sample preparation. It must be kept in mind that homogeneity can
only be presumed through the absence of detectable heterogeneity. Two important
criteria are the following.

Criteria of boundary shape and broadening
There must be a single symmetrical boundary throughout the duration of the
sedimentation velocity experiment, such as, for example, in Figs. 3.1 and 3.2. As
mentioned in Sect. 3.3.6, it is possible to separate the influence of diffusion on the
broadening of a boundary from the influence of heterogeneity.

Criteria of Mass Conservation
The measurable boundary, a step-like A(r) or J(r) scan or a Schlieren peak area,
must account for all the material put into the cell, after corrections for radial
dilution, throughout the duration of the sedimentation velocity experiment. De-
pending on the applied detecting system, either the specific decadic extinction
coefficient ε or the specific refractive index increment (dn/dc)p has to be known
to allow the exact evaluation of mass conversation. If the plateau concentration cp

near the cell bottom does not reflect the initial concentration c0 (after correction
for the abovementioned effects), heavy and/or large particles may have already
settled very fast (in a non-detectable manner) at the bottom of the cell. This is
definitely an indication of heterogeneity.
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3.4 Sedimentation Velocity Runs of Macromolecules
to Measure Average M and MMD

In the first sections of this Chap. 3, we introduced the technique of sedimentation
velocity runs, the basic ideas, but also some limitations and pitfalls. Now, we
will use this technique to measure average molar masses M and molar mass
distributions (MMD) of dissolved macromolecules. Besides measurements of PSD
(see Sect. 3.5), measurements of MMD are the second most important industrial
task of the AUC. To carry out MMD measurements, we need a relation between
the desired M and the measured sedimentation coefficient s, in analogy to that of
(1.9) for the determination of particle diameters dp via s measurements.

Equation (1.8) is a relation between M and s, but we cannot use it to determine
M via s runs because it requires additionally the knowledge of the (normally)
unknown diffusion coefficient D of the solute. Thus, we have to look for another
M(s) relation. This is an empirical scaling law in the form:

s0 = K · Ma (3.11)

where s0 is the sedimentation coefficient at infinite dilution c → 0, and K and a are
the (constant) scaling parameters, valid for the respective homologs of a (special)
polymer, in a (special) solvent at a defined temperature T. If one changes the
polymer, the solvent or the temperature, also the scaling parameters K and a will
be changed. In analogy to the parameter b in (3.9), the parameter a depends on the
shape of the dissolved macromolecules and the solvent/solute interactions, too.
Typical numerical values of a are 0.2 < a ≤ 0.5 (according to Svedbergs’ Eq. (1.8),
a + b = 1 should be valid).

In Sect. 3.4.1, we will show how it is possible to derive such a scaling law,
using a series of (nearly) monodisperse samples (or fractions) of a polymer. In
Sect. 3.4.2, we will then use such a scaling law to measure a complete MMD of
a broadly distributed polymer via s runs, and practice at the same time the radial
dilution correction discussed above in Sect. 3.2.3, the concentration dependence
correction in Sect. 3.2.4, and the diffusion correction in Sect. 3.3.6.

3.4.1 Evaluation of the Average Molar Mass M
by Sedimentation Velocity Runs via Scaling Laws

Sedimentation velocity runs can be used to measure the molar mass M of (syn-
thetic) polymers directly via s measurements, if a scaling law such as (3.11) exists.
Thus, before such an M determination via s runs is possible, we have to create the
corresponding scaling law. This is tedious work, because we need a lot of (homol-
ogous) fractions of the corresponding polymer with different, but known M.

In the following, we present the procedure leading to such a scaling law. It will
be demonstrated by using the NaPSS example of Sect. 3.3.5, i.e., by using polyelec-
trolyte samples dissolved in aqueous 0.5M NaCl, where they behave like neutral
uncharged macromolecules (see Fig. 3.6). Figure 3.8 shows the summary of several
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Fig. 3.8. Plots of reciprocal sedimenta-
tion coefficients sc versus polymer con-
centration c for a series of narrowly dis-
tributed sodium polystyrene sulfonate
(NaPSS) polyelectrolytes of different mo-
lar masses M dissolved in aqueous 0.5 M
NaCl

sedimentation velocity runs performed on seven different, nearly monodisperse
(dialized) calibration NaPSS samples exhibiting different known molar masses
(M = 18, 35, 100, 200, 400, 780, and 1200kg/mol, and Mw/Mn ≈ 1.10 for all
samples).

On each NaPSS sample in Fig. 3.8, a series of sedimentation velocity runs with
varying polymer concentrations was performed (c = 0.5−6g/l). The resulting
sedimentation coefficients sc, measured at the different polymer concentrations c,
are extrapolated to zero polymer concentration c → 0 according to (3.6) to obtain
the s0 value, also indicated in Fig. 3.8. A logarithmic plot of these s0 values versus
the corresponding molar masses M (see Fig. 3.9) reveals a straight (regression)
line, allowing to determine the scaling parameter a from the slope of the line, and
the scaling parameter K from its intercept. The dimensionless scaling parameters
obtained from this linear regression are a = 0.46 and K = 0.024[S] for NaPSS in
an aqueous 0.5mol/l NaCl solution at 25◦C. Thus, the resulting scaling law of this
system is:

s0 = K · Ma = 0.024[S] · M0.46 (3.12)

For the NaPSS 200 000 sample, discussed in Fig. 3.6, having an average s0 value
of 6.0S, an average molar mass of Ms = (s0/0.024S)1/0.46 = 163 000g/mol can be
calculated from (3.12). This Ms value is 18% lower than the nominal M value of
200 000g/mol. (This relatively high deviation is due to a slightly falsified nominal
M value of NaPSS, which is not a truly measured one. Rather, it was calculated by
using the light scattering Mw value of the precursor polystyrene of NaPSS.)
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Fig. 3.9. Logarithmic plot of the s0 val-
ues versus the molar mass M of the dif-
ferent NaPSS samples of Fig. 3.8, to yield
the scaling parameters K and a of (3.11)

The advantage of such scaling laws is obvious. They allow fast and relatively
precise measurements of (average) molar masses Ms of common polymers via s0

measurements, once a scaling law is set up. For simple routine Ms determinations,
s0 measurements are not always required. It is also possible to work with only
one finite fixed concentration c, and create for this c a corresponding scaling law
sc = Kc·Mac .Themainadvantageof thecombinationof scaling lawsand s runs isnot
the determination of average Ms values; but rather the measurement of complete
molar mass distributions. This will be demonstrated in the following section.

3.4.2 Evaluation of Molar Mass Distributions (MMD)
by Sedimentation Velocity Runs via Scaling Laws

Instead of the NaPSS/0.5M NaCl example described in the preceding section, for
the determination of an MMD via s runs and a scaling law, we now will use the
well-known system polystyrene/cyclohexane at 25◦C, where also a scaling law
exists:

s0 = 0.01343[S] · M0.50 (3.13)

For details of this measurement and the corresponding computer program, the
reader is referred to [2]. The same polystyrene (as in Figs. 3.1 and 3.2), exhibiting
a molar mass of Mw = 106 000g/mol, is used, but here the solvent MEK is replaced
by cyclohexane, because the measurements are performed with the digital XL-
A/I UV optics. In contrast to MEK, cyclohexane is UV-transparent at the chosen
polystyrene absorption wavelength of λ = 257nm. We use the four-hole Ti rotor at
40 000rpm, and three very low concentrations, c0 = 0.2, 0.4, and 0.6g/l, as the UV
optics is very sensitive. All steps of this MMD/s run measurement are presented in
Figs. 3.10 and 3.11.

Figure 3.10a shows the XL-A/I absorption scans A(r) at 257nm as a function of
the radial distance r at one concentration, c0 = 0.2g/l, and at four different, selected
scanning times t = 133, 153, 173, and 193min (for the sake of clarity, not all scans
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Fig. 3.10a–d. MMD determination via s runs and a scaling law of a narrowly distributed polystyrene
(Mw = 106 000 g/mol) in cyclohexane. c0 = 0.2, 0.4, and 0.6 g/l, ω = 40 000 rpm, UV optics (257 nm).
Plots of a A–r, b G′′(s, c, D) and G′(s, c), c G′(s, c), G(s) and g(s), and d w(M) = f(M) (reprinted with
permission from [2])

at all times t are shown). The small points are the experimental values, and the
dashed lines represent the smoothest curves obtained by a special spline-fitting
procedure. Now, to obtain Fig. 3.10b, all r values in Fig. 3.10a are transformed
into s values with (3.2), and all A values are initially transformed into c values via
Lambert-Beer’s law (2.2). These c values are then transformed by means of (3.14)
into radial dilution-corrected (see Sect. 3.2.3) apparent integral sedimentation
distribution G′′ values:

G′′(s, c, D) =
c

c0
·
( rm

r

)2
(3.14)

The two prime symbols ′′ indicate that these G′′ values are not corrected for
diffusion and for concentration. The solid lines of Fig. 3.10b show some plots of
G′′ as a function of s for different scanning times t. To accomplish the diffusion
correction t → ∞ according to Sect. 3.3.6 and (3.15),

lim
t→∞ G′′(s, c, D) = G′(s, c) (3.15)

(to obtain G′(s, c)), we do not use one of the three diffusion correction methods,
described in Sect. 3.3.6 (i.e., van Holde-Weischet method, time derivative method,
and Lamm equation modeling). Rather, we use (see [2]) a modification of van



66 3 Sedimentation Velocity

Fig. 3.11. Diffusion correction within Fig. 3.10b to obtain G′(s, c) via an extrapolation of G′′(s, c, D)
to t → ∞. This is done by plotting G′′(s, c, D) values at different constant s values versus 1/t2 and
extrapolating straight regression lines to 1/t2 = 0. Polystyrene (Mw = 106 000 g/mol) in cyclohexane,
c0 = 0.2 g/l (reprinted with permission from [2])

Holde-Weischet, which works as follows: we create 100 vertical lines in the G′′–s
plot of Fig. 3.10b, at constant s values between smin (∼ 1.8S) and smax (∼ 7.9S) in
equal Δs sub-steps. These 100 sets of G′′ values at the different constant s values
(these are the cross points of the vertical lines in Fig. 3.10b with the solid G′′–s
curves at the different scan times) are plotted in Fig. 3.11 as a function of 1/t2. For
the sake of clarity, we show in Fig. 3.11 only four of the total 100 G′′–1/t2 curves,
which all are nearly straight lines. We selected the four curves for s = 3.8, 4.6,
5.3, and 6.0S (their four representative vertical lines are indicated in Fig. 3.10b).
Now, we calculate through all 100G′′–1/t2 curves in Fig. 3.11 the corresponding
straight regression lines, and extrapolate these to 1/t2 = 0. Their 100 intercepts
with the ordinate are the G′(s, c) values, i.e., the diffusion-corrected G′′ values (this
is equivalent to the van Holde-Weischet procedure in Fig. 3.7). All 100 G′/s points
are then plotted again into Fig. 3.10b, where they yield the dashed curve. The same
diffusion correction procedure is done for the other two concentrations c0 = 0.4
and 0.6g/l. The resulting G′(s, c) curves of all three concentrations are collected in
the plot of Fig. 3.10c as three solid lines.

In the next step, the concentration correction is carried out (see (3.16)):

lim
c→0

G′(s, c) = G(s) (3.16)



3.4 Sedimentation Velocity Runs of Macromolecules to Measure Average M and MMD 67

This means extrapolating the three G′(s, c) curves in Fig. 3.10c to infinite dilution
c0 → 0 in order to obtain the (diffusion- and concentration-corrected) real integral
sedimentation coefficient distribution G(s) and its derivative g(s) = dG(s)/ds (see
(3.3)). Normally, this is done in the same manner as for the above diffusion
correction, i.e., creating 100 vertical lines in Fig. 3.10c between smin and smax,
plotting the three G′(s, c) cross points of each line with the three G′(s, c) curves
c0 = 0.2, 0.4, and 0.6g/l as function of c0, and extrapolating these to c0 → 0.
The 100 intersection points with the ordinate represent the desired G(s) function.
This normal extrapolation procedure does not make very much sense for the
three G′(s, c) curves in Fig. 3.10c, because they are nearly identical. The reason for
that are the very low concentrations chosen because of the sensitive UV detector:
they are close to c0 = 0. Thus, for the concentration correction, the following
simple procedure was used: the three G′(s, c) curves were averaged to obtain G(s).
The resulting G(s) curve and its derivative, g(s), are plotted in Fig. 3.10c (dashed
lines).

Finally, this g(s) curve was transferred by the scaling law (3.13) into the differ-
ential MMD function w(M), which is presented in Fig. 3.10d. The differential molar
mass distribution w(M) is connected with g(s) via w(M)dM = g(s)ds. Integration
leads to

W(M) = G(s) (3.17)

with w(M) = dW(M)/dM, g(s) = dG(s)/ds and the different averages of the molar
masses Mβ (i.e., Mn, Mw, Mz, ...):

Mβ =

∞∫
0

w(M) · Mβ dM

∞∫
0

w(M) · Mβ−1 dM

, (3.18)

with the indices β = 0, 1, 2, ... (n, w, z, ...). Mn, Mw and Mz are the three well-known
average molar masses – the number-, the weight-, and the z-average molar masses
(“z” is the abbreviation for the German word Zentrifuge = centrifuge. See also
Sect. 5.1 and (5.1) for an analogous definition of Mn, Mw and Mz).

The MMD in Fig. 3.10d is, as expected, unimodal and relatively narrow. The
calculated M averages according to (3.18), Mn = 97 000g/mol, Mw = 112 000g/mol,
Mz = 130 000g/mol, and their relation Mz:Mw:Mn = 1.34:1.17:1, indicate the same
narrow molar mass distribution, and are in reasonable agreement with the values
given by the supplier of PS 106 000, Polymer Standard Service, Mainz.

The polystyrene sample PS 106 000 discussed above was a relatively nar-
rowly distributed one. Now, in Fig. 3.12, the same MMD/scaling law procedure
is shown for a broadly distributed unimodal sample, namely, the well-known cali-
bration polystyrene NBS 706 of National Bureau of Standards (Washington, DC),
also in cyclohexane solution and also measured with the XL-A/I UV optics at
260nm, 40 000rpm and 25◦C. The given NBS 706 values are Mn = 136 000g/mol,
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Fig. 3.12a–d. MMD determination via s runs and a scaling law of the broadly distributed polystyrene
NBS 706 in cyclohexane. c0 = 0.19, 0.4, and 0.6 g/l, ω = 40 000 rpm, UV optics (260 nm). Plots of a
A–r, b G′′(s, c, D) and G′(s, c), c G′(s, c), G(s) and g(s), and d w(M) = f(M) (reprinted with permission
from [2])

Mw = 257 800/288 100, Mz = 355 000/400 000g/mol, and Mz:Mw:Mn = 2.9:2.1:1
(for details, see Sect. 5.3.3). NBS 706 is also intensively characterized in Sect. 5.3.3
via sedimentation equilibrium runs (molar mass distribution and the different M
averages).

In spite of measuring with 12-mm double-sector cells, Fig. 3.12a exhibits an
excess absorption Aexcess (i.e., A is not 0 near the meniscus). This is not caused by
low molar mass impurities of the solvent cyclohexane. It is rather an artifact of the
XL-A/I, which sometimes is present. For further evaluation of the measuring data
in Fig. 3.12b–d, this excess absorption (Aexcess ∼ 0.13) was subtracted. Figure 3.12b
shows that the diffusion correction G′′(s, c, D) → G′(s, c) is minimal, in contrast
to Fig. 3.10b. The reason is the higher molar mass of NBS 706 in comparison to
PS 106 000. Furthermore, as in Fig. 3.10c, the difference between the three G′(s, c)
curves for the three different concentrations is minimal, too (it demonstrates
the high precision of the XL-A data!). Thus, again the three G′(s, c) curves were
averaged to obtain G(s) and g(s), and to calculate with the scaling law (3.13) the
(broad) differential MMD w(M) of NBS 706 (Fig. 3.12d), and also the average values
Mn = 124 000g/mol, Mw = 265 000g/mol, Mz = 445 000g/mol, and Mz:Mw:Mn =
3.6:2.1:1. These M averages agree reasonably with the given NBS values.
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It is interesting to note that we measured the same average M values (and
the MMD) by another, completely independent AUC method (see Sect. 5.3.3),
namely, by sedimentation equilibrium runs, which resulted in nearly the same
average M values and the same MMD (within the errors of measurement). That is
really a demonstration of the power and the versatility of the AUC! The difference
between the two AUC methods is basically as follows: for the s run method, we
need a precise knowledge of a scaling law (3.11), whereas for the equilibrium run
method we need a precise v̄ value. The MMD/s run/scaling law procedure described
above was demonstrated with UV optics. Of course, this method is applicable also
for every other optics system, such as interference, Schlieren or fluorescence optics.

3.5 Sedimentation Velocity Runs on Particles
to Measure Average dp and PSD

As mentioned in the introductory Sect. 3.1, the analytical ultracentrifuge is a help-
ful, but often underestimated instrument for the analysis of nanoparticles and
all colloidal systems. Especially spherical colloidal systems can be analyzed in
a unique manner by AUC. In this section, we will give some examples to prove
this statement. In fact, the topic of this section represent approximately 80% of
our daily work in the AUC laboratory of BASF, where several thousand samples,
consisting mainly of polymeric latices, are analyzed per year, in most cases with
the turbidity detector (plus Mie’s light scattering theory) and within the diameter
range 30–5000nm. For smaller particles showing nearly no turbidity, interfer-
ence, Schlieren or UV optics are used, similarly to dissolved macromolecules. In
more recent years, the importance of AUC for the examination of such very small
nanoparticulate systems is becoming ever more evident [15, 42]. The diameter of
such very small nanoparticles may well be below 1nm, thus consisting of just a few
atoms (see, for example, Fig. 3.23).

In principle, the PSD determination via s runs is identical to the MMD determi-
nation of macromolecules via s runs, as described in Sect. 3.4. It is in both cases the
determination of G(s) or g(s). However, the PSD determination is much simpler,
because compact (spherical) particles almost do not show any concentration and
diffusion dependence, so that we can neglect the corresponding corrections and
measure usually only at one, very low concentration (0.3 < c < 3g/l). Only for par-
ticles with dp < 20nm are these corrections required (see [15] and Fig. 7.6). There
are three differences between a PSD determination and an MMD determination
(of which reasons nos. (ii) and (iii) are valid only for the turbidity detector): (i)
for the MMD, we transform the s values into M values by means of the scaling law
(3.11), but for PSD we transform the s values into dp values with the Stokes equation
(1.9); (ii) the calculation of the concentration c (for the different fractions) from
the measured light intensity values I(t) via the Mie theory is much more complex;
and (iii) in contrast to MMD determinations, which are measured at constant rotor
speed ω, for PSD determinations we measure always at variable, exponentially
increasing rotor speed ω(t) (0 < ω < 40 000rpm within 1.5h; see also Fig. 3.13).
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3.5.1 Particle Size Distribution via AUC Turbidity Detector and Mie Theory

The basis of the measurement of particle size distributions (PSD) is the exact de-
termination of the sedimentation coefficient distribution G(s) or g(s) of mono- and
polydisperse samples. This includes the measurement of the relative mass portion
mi = ci/c0 of the different components (= fractions i). The obtained sedimenta-
tion coefficients si can then be converted into sphere-equivalent particle diameters
dp,i by the Stokes Eq. (1.9). The determination of mass portions mi depends on
the applied optical system. Despite the fact that particle size distributions can be
obtained using any optical system of the AUC, they are most favorably measured
with turbidity optics. This is due to the fact that Mie’s light scattering theory [21]
allows an exact determination of the component’s mass portions mi by analysis
of the reduction of the light intensity I, caused by the particle components in the
AUC cell. The procedure will be described in the following.

The turbiditydetector itself (seeFig. 2.13)hasalreadybeensubjectof Sect. 2.4.4.
As mentioned, in a sedimentation velocity run applying the turbidity detection, the
intensity I of the incident parallel light is reduced while traveling through the cell.
This is due to Mie’s light scattering of the sedimenting particles. The light beam
and the detector are located at rslit in the middle of the cell between rm and rb (see
Fig. 2.13), because one does not know before the experiment whether an unknown
sample will sediment or float. Thus, in both cases, the sedimentation/flotation
distance is nearly the same. The reduced intensity I(t) is recorded at this position
as a function of time t (see Fig. 3.13). Here, the I(t) curve from a sedimentation
velocity run performed on an acrylic latex (dp ≈ 100nm, c0 = 0.49g/l, BASF-made
sample) is shown. Also shown in Fig. 3.13 is the rotor speed N(t) = ω(t)/2π as
a function of running time t. This N(t) profile, an exponential increase from 0 up
to 40 000rpm within 1.5h, is always the same in the BASF particle sizer. It allows
one in every run to measure very small (down to 20nm) as well as very big particles
(up to 5000nm).

Such I(t) curves are the basis for the calculation of the particle size distribution,
i.e., for the relation between the mass portion mi and the particle diameter dp,i of
the corresponding different fractions i. In Fig. 3.13 (and Fig. 3.14), the I(t) curve
starts at the low initial intensity I0 given by the initial concentration c0 of the
turbid sample. This initial concentration c0 (= 0.49g/l) is chosen to result in initial
intensities I0 of about 10% in relation to the maximum light intensity IDM given
by the intensity of the pure solvent (= dispersion medium). Usually, c0 is in the
range of 0.3 < c0 < 3g/l. The intensity IDM is reached at the end of the experiment
when all particles of the sample have passed the radial position of the slit, or of the
detector. In the following, the single steps of the evaluation of an I(t) curve like the
one shown in Fig. 3.13 will be described. This procedure to obtain the desired PSD
(see [22]) will be done by means of the scheme in Fig. 3.14.

As shown in Fig. 3.14, a measured broad I(t) curve is formally considered
as a superposition of z theoretical I(t) one-step curves (i = 1, 2, 3, ..., z with Iz =
IDM = Is and 30 < z < 800). Each of these is assigned to an ideally monodisperse
particle fraction having a diameter dp,i and a concentration c0,i (or a relative
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Fig. 3.13. I(t) curve obtained with a homemade particle sizer (equipped with turbidity optics) on
a BASF-made sample (dp ≈ 100 nm) of an acrylic polymer dispersion. Measured in water, 3-mm
single-sector cell, c0 = 0.49 g/l. Also shown is the variation of the rotor speed N = ω/2π as a function
of running time t

Fig. 3.14. Scheme illustrating the evaluation procedure to convert an I(t) curve into a particle size
distribution W(dp,i) with a recurrence calculation (reprinted with permission from [22])

mass percentage mi = c0,i/c0 within the sample). In order to describe the type of
superposition mathematically, the following two physical assumptions are made:

(i) the individual particle fractions sediment completely, independently of each
other, without any mutual interference (for small total concentrations c < 5g/l,
this first assumption is virtually always met); and
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(ii) the measured I(t) curve can be transformed into a time-dependent turbidity
curve τ(t) using Lambert-Beer’s law, (2.2), in the form

I(t) = Is · e(−τ(t)·a) (3.19)

and we assume second that this total turbidity is made up additively by the
time-dependent turbidities τi(t) of the individual fractions according to

τ(t) =
i=z∑
i=1

τi(t) (3.20)

(for lowconcentrations c < 5g/l, this secondassumptionvirtuallyholdsalways,
too).

The turbidity τi(t) of any monodisperse fraction now may be split up, accord-
ing to

τ(t) = (τ/c)i · ci(t) (3.21)

into a product of (i) the time-independent criterion of matter (τ/c)i to be calculated
by means of dp,i, λ, np and ρp in accordance with Mie, and (ii) the time-dependent
concentration ci(t) of the ith fraction in situ of the slit. On the basis of assumption
(i) above, the time dependence of ci(t) can be calculated by means of Stokes’ law,
(1.9), taking into account the thinning effect (Sect. 3.2.3, (3.5)) in the sector-shaped
measuring cells. As a result, we find that ci(t) is a step function of the following kind:

ci(t) = c0i · exp(−2kit) for t < ti (3.22)

ci(t) = 0 for t ≥ ti

with

ki =
1
ti

ln
rslit

rm
(3.23)

where ki is the constant of the thinning effect of the ith fraction, and ti is its “step”
time, i.e., the travel time for the distance (rslit − rm) between the meniscus and
slit. By means of a modified Stokes’ equation, ti yields (the rotor speed ω being
constant) the requested particle diameter dp,i as

dp,i =

√
18 · ηs · ln rslit

rm

(ρp − ρs)ω2ti
=

√
18ηssi

(ρp − ρs)
(3.24)

ηs being the viscosity of the dispersing medium, and si =
[
ω2ti

]−1 · ln(rslit/rm) being
the sedimentation coefficient of the ith fraction. In the case of a non-constant
but time-dependent rotor speed ω(t), in (3.24) the expression ω2 · ti has to be
replaced by the running time integral

∫ ti
0 ω2 dt. This integral is calculated from

the N(t) = ω(t)/2π curve (see Fig. 3.13) digitally registered by the computer. In
the case of flotation (ρp < ρs), rm has to be replaced by rb in (3.23) and (3.24),
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and instead of a thinning effect, we now have a thickening effect (see, for example,
Fig. 3.20).

These theoretical considerations result in a procedure of analyzing a measured
broadly distributed I(t) curve as outlined on the right-hand side of Fig. 3.14. This
continuous I(t) curve is “digitized” by splitting up into z small steps (30 < z < 800).
Each step is characterized by a time ti, its corresponding running time integral, and
by a light intensity step ΔIi = Ii − Ii−1. At tz, the longest travel time of the smallest
particles, I(t) becomes time independent, and thus is Iz = Is = IDM. This division
into steps means that we consider the turbidity front of the ith monodisperse
fraction to pass by the slit at the time ti, and then to disappear from our view
(ci(t) = 0 for t ≥ ti). From the different travel times ti of all fractions, for a start
theirdiameters dp,i and their thinning (thickening) effect constants ki are calculated
by means of (3.24) and (3.23). From these dp,i values and the known refractive index
np and (dn/dc)p of the dispersed particles (see (2.4)), the computer calculates all the
assigned specific turbidities (τ/c)i, using Mie’s light scattering theory as described
in [22], and illustrated in Fig. 3.15. From the totality of all values ti, Ii, ki, and (τ/c)i,
the requested c0,i values can then be calculated by recurrence according to

c0,i =

ln
Ii

Ii−1
− 2a(ti − ti−1) ·

n=z∑
n=i+1

(τ/c)n · c0,n · kn

a · (τ/c)i · exp(−2 · ki · ti−1)
(3.25)

Fig. 3.15. Scheme illustrating the evaluation of the specific turbidity (τ/c)i using the known diameter
dp,i and the refractive index np of the particles according to Mie’s light scattering theory [21] and
Lambert-Beer’s law (reprinted with permission from [26])
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The recurrence formula, (3.25), is obtained by inserting (3.20), (3.21) and (3.22)
into (3.19), and solving these with respect to c0,i. It follows from the indexing of
(3.25) that one has initially to calculate c0,z, from which c0,z−1 is then obtained. Both
c0,z and c0,z−1 in turn render c0,z−2, and so on. In this manner, all c0,i values down to
c0,1 are calculated successively. The c0,i values then yield the relative mass portions
mi, according to (3.26).

mi =
c0,i

i=z∑
i=1

c0,i

=
c0,i

c0
(3.26)

Finally, the cumulative distribution curve
∑i=i

i=1 mi = W(dp,i), the ultimate aim of
theanalysis, is plotted in the formof the integral (and thedifferential)PSDdiagram,
as shown in Fig. 3.16 for the starting I(t) curve in Fig. 3.13.

Before we discuss this PSD in Fig. 3.16, we will outline by means of Fig. 3.15
how it is possible to determine the (τ/c)i values needed in (3.25) to calculate c0,i, in
a purely theoretical manner, using Mie’s light scattering theory (for details, see [22]
and [23]).

Fig.3.16. IntegralanddifferentialparticlesizedistributionofaBASF-madeacrylicpolymerdispersion,
and the characteristic three diameters, d10%/d50%/d90%, defining the polydispersity parameter (d90% −
d10%)/d50%
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For this determination, we have to know the diameter dp, the density ρp = 1/ῡ,
and the refractive index np of the particle, the refractive index of the dispersion
medium ns, and the wavelength of light λ. The measurements of the auxiliary
parameters ρp and np (via (dn/dc)p measurement) are explained in Sect. 2.6.
Commercially available computer programs allow one now to calculate (τ/c) =
f(dp, ρp, np, ns, λ) in the form of well-known Mie diagrams, as presented in Fig. 3.15:
(τ/c) as function of the reduced particle diameter (πdp/λ), and the refractive index
quotient np/ns = np/nDM.

For every kind of particles with a defined np, one of the different curves in
Fig. 3.15 (or an interpolated one) is valid. For example, the thick line in Fig. 3.15
is valid for dispersed polystyrene particles in H2O (nPS/ns = 1.59/1.334 = 1.20
at λ = 546nm), and as can be seen from the dashed lines in Fig. 3.15: if we
enter the Mie diagram with a given dp,i, the corresponding (τ/c)i value is found
in a simple manner for the corresponding PS particles. The Mie theory computer
program inside our particle sizer will do this for us. Modern Mie programs work
not only for real refractive indices np, but also for complex refractive indices,
ncomplex = nreal − i ·k, needed, for example, for metal sols and colored particles (see,
for example, Figs. 6.33 and 6.35).

Figure 3.16 shows the particle size distribution (in integral and differential
form) obtained from the I(t) curve of Fig. 3.13 in the manner described above.
Also indicated in Fig. 3.16 are the usual three characteristic diameter values,
d10% = 89nm, d50% = 103nm, and d90% = 116nm, which define the polydis-
persity parameter (d90% − d10%)/d50% = 0.26, a measure for the broadness of a PSD.
The percentage index xy% means that within the integral (mass) PSD, xy wt% of
the particle fractions have diameters below dxy%, and the remainder above dxy%.
For a more detailed discussion of this procedure, see [22] and [24].

Beyond the basic theory of particle size analysis in the AUC described above,
some experimental details from practice should be addressed here. Firstly, and
most obviously, it is possible to measure up to seven different samples in one ex-
periment if an eight-hole rotor is used, as outlined in Figs. 2.14 and 3.17. Secondly,
it has proved to be advantageous to vary the angular velocity ω of the ultracen-
trifugation rotor with time t, rather than running the experiment at a constant
speed, outlined in Fig. 3.17 as well. In this case, in all equations given above, the
term ω2t has to be replaced by the running time integral ∫ ω2(t)dt. It has been
shown (see [25] and [26]) that the variation of the rotor speed effectively does not
influence the resulting particle size distributions. The benefit of this procedure is
that the centrifugal field range present in the single experiment is broader, and
thus a wider range of particle diameters is covered in a sedimentation run. Thirdly,
very small particles, with diameters dp < 30nm, show according to Mie very weak
turbidity signals (τ/c)p, which are near the lower limits of the turbidity detector.
This can be compensated by a higher concentration c0, which, on the other hand,
can be too high for a reliable PSD determination because of particle interaction.
Thus, the dp values of very small particles measured via turbidity detectors are not
very precise. For this reason, it is recommended, if possible, to use interference,
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Fig. 3.17. Schematic diagram of the AUC method for the determination of particle size distributions,
with an eight-cell rotor, a turbidity detector, and a multiplexer setup (reprinted with permission
from [25])
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Schlieren or UV optics for that diameter range. These detectors do not require Mie
correction to measure correct mi = c0,i/c0 values, which is often an advantage.

The possibility to measure up to seven samples simultaneously under the same
rotor speed conditions ω(t) with the setup of Fig. 3.17 is very important for the so-
called coupling technique (to measure extremely broad PSD), and the H2O/D2O
density variation method (to measure ρp via AUC), which are described in the
following two Sects. 3.5.2 and 3.5.3.

3.5.2 Coupling Technique to Measure very Broad PSD

There are, of course, many analytical methods capable of yielding information
on particle sizes in the range between 1nm and a few micrometers. Nevertheless,
all of these face problems whenever very broad particle size distributions are
present. The special problem with AUC turbidity optics is that, according to Mie
(see Fig. 3.15), small particles (dp < 30nm) show very small, and big particles very
high turbidities. For example, 20-nm PS particles exhibit a specific turbidity of
(τ/c)20 nm = 17cm2/g, and 2000-nm PS particles (τ/c)2000 nm = 17 000cm2/g, which
is not within the linear range of turbidity detectors. To overcome this problem,
the so-called coupling PSD technique was developed by one of the authors [22], in
addition to the standard procedure described above.

In such a coupling PSD experiment, two different concentrations, cI = cstandard

(well suited for big particles), and a higher concentration cII of the same disper-
sion (used to detect particularly small particles) are measured simultaneously in
a single ultracentrifugation s run with the multiplexer setup of Fig. 3.17. While
one concentration, cI, is chosen as mentioned above to result in an I0 value of
approximately 10% of Is = IDM, the other concentration, cII, is selected 5–30 times
higher. The two simultaneously measured I(t) curves resulting from such a sedi-
mentation velocity run are recorded separately (see Figs. 3.18 and 3.19). They are
then coupled mathematically, leading to one I(t) curve that can be transformed
into a particle size distribution in the way described in Fig. 3.14. Figure 3.18 shows
schematically two such I(t) curves of the same sample, but with the two different
concentrations cI = cstandard and cII (= chigh). For details of this calculation, see [22].

As coupling point i = k assigned to the travel time tc = tk, we define that
(I/Is)k/tk is the point where, on the I(t) curve for the higher concentration,
(I/Is) > 0.5 is valid for the first time. The coupled I(t) curve is now constructed in
the following way: from the standard I(t) curve, only those points (I/Is)i/ti holding
0 < i < k are taken without any change. To these, those points from the I(t) curve
of increased concentration cII holding k < i ≤ z are added in a modified form.
This is purely a mathematical modification, which transforms the measured light
intensities (I/Is)h,I to the standard concentration cI according to

(I/Is)I,i =
(
I/Is

) cI
cII

II,i
(3.27)

(Equation (3.27) results from a combination of Lambert-Beer’s law, (3.19), and
(3.21).) The assigned travel times ti, however, are taken without modification. The
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Fig. 3.18. Scheme of two simultaneously measured I(t) curves of an extremely broadly distributed
dispersion to illustrate the particle size distribution coupling technique, measured at two different
concentrations: cI = cstandard and cII = chigh (reprinted with permission from [22])

coupled I(t) curve constructed in this manner is then transformed into a PSD curve
in the same way as a standard I(t) curve, as described in Fig. 3.14. We call this
transformed PSD curve the coupling PSD. The coupling procedure ensures that
both coarse and fine particles are detected appropriately by the turbidity detector.
By this procedure, it is possible to measure even 20-nm particles (which show, as
mentioned above, extremely low specific turbidity) besides 2000-nm particles by
applying turbidity optics. Nevertheless, very small particles should be detected
with other detectors, if possible (cf. above).

Figure 3.19 shows a well-known measuring example of a very broad particle
size distribution obtained by the coupling PSD technique. This is the measurement
of a defined mixture of ten different aqueous polystyrene latices exhibiting particle
sizes between 67 and 1220nm. The ten, narrowly distributed standard latices were
mixed at 10wt% each [27]. The upper part of Fig. 3.19 shows the two primary
measured I(t) curves at cI = 0.35 and cII = 3.5g/l, the N(t) function, and the
coupling point 0.5/tc. As expected, at the beginning of the run, 0 < t < 2500s,
the high concentration signal I(t) is zero. By contrast, at the end of the run in the
higher concentration I(t) curve, the I(t) step of the smallest particles, 67nm, which
are not visible in the standard concentration I(t) curve, is now clearly seen.

The lower part of Fig. 3.19, the final coupling PSD, shows that both the particle
diameters dp and the mass portions mi (the original concentration of all ten
components was 10wt%) are reproduced within an error of 5%. The peaks in the
differential PSD are obtained with baseline resolution for all ten components, also
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Fig.3.19. Coupling PSD analysis of a mixture of ten narrowly distributed polystyrene dispersions with
67 < dp < 1220 nm. Upper part two simultaneously measured I(t) curves at different concentrations,
cI = 0.35 and cII = 3.5 g/l in 3-mm single-sector cells. Lower part the resulting integral and differential
coupling PSDs (reprinted with permission from [27])

for the two neighboring ones at 318 and 356nm, which are very close to each
other. This result was obtained in a standard coupling experiment without further
optimization. The example presented clearly shows the high potential of AUC as
an apparatus for the measurement of high-resolution particle size distributions,
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also in the case of very broad distributions (see also the repetition of this PSD
experiment with sedimentation field flow fractionation described in Sect. 6.2.1).

3.5.3 H2O–D2O Density Variation Method to Measure Particle Densities
via Sedimentation Velocity Runs

In order to overcome one disadvantage of the AUC determination of particle size
distributions via turbidity detector, namely, that the particle density ρp and the
refractive index of the polymer np have to be known, an offshoot of the AUC PSD
measurement via a multiplexer described above has been developed by several
authors ([26, 28]): the density variation method, or H2O/D2O analysis (HDA).
The approach (details can be found in [26]) is to perform sedimentation velocity
experiments on the same sample simultaneously at least in two, or better, in
three (or even more) solvents (= dispersion media) having different densities ρs

in a setup such as that in Fig. 3.17. Generally, the solvents used are D2O (ρs =
1.1004g/cm3), a 1:1 mixture of D2O and H2O (ρs = 1.050g/cm3), and H2O (ρs =
0.99804g/cm3 at 25.0◦C). The basis for this analysis is the assumption that the
particle size dp as well as particle density ρp are identical in all three media. This is
surely true for compact particles of hydrophobic polymers such as polymer latices.
Figure 3.20 shows three I(t) curves of such an H2O/D2O analysis experiment,

Fig. 3.20. Three simultaneously measured I(t) curves, in H2O, in an H2O/D2O 1:1 mixture, and in D2O,
of an H2O/D2O analysis experiment (HDA) on the BASF-made acrylic polymer dispersion of Fig. 3.13,
in 3-mm single-sector cells at c0 = 0.49 g/l. Analysis of the running times in the three different media
reveals the PSD as well as the particle density distribution, given in this figure in the form of a table
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measured simultaneously and performed on the same sample as that subjected
to a standard PSD experiment in Sect. 3.5.1 (see Figs. 3.13 and 3.16). Again, the
sample concentration in all three media is c0 = 0.49g/l.

The three I(t) curves reveal some useful information at first sight without any
calculation, only via a simple logical consideration. The three I50% running times
t50% of the particles (i.e., the time the particles need to move from either the
meniscus (for sedimenting particles) or from the bottom (for floating particles)
to the measuring slit in the middle of the cell) differ, depending on the media. In
the 1:1 mixture of H2O/D2O, in which particles are floating (as can be recognized
due to the thickening effect at the beginning of the I(t) curve), the particles move
at lowest velocity (t50% = 4500s). This is followed by the particles in H2O, which
sediment with a medium velocity (t50% = 3800s), as can be recognized by the
thinning effect at the beginning of the I(t) curve. In D2O (where the particles
float again), the fastest movement is observed (t50% = 1900s). These findings yield
information on the particle density ρp upon rearrangement of (1.9) to (3.28):

s =
d2

p · (ρp − ρs
)

18 · ηs
=

(
ln rslit/rm,b

)
ω2t (3.28)

Beside the parameter ηs and the particle diameter dp (which does not differ in
the different media), the sedimentation velocity (i.e., s as well) depends solely on
the density difference between particle and solvent (ρp − ρs), according to (3.28).
The running times t50% of the particles in the different media, which are inversely
proportional to the different s values, are therefore a direct measure of this density
difference. Thus, the analysis of the three different running times in Fig. 3.20
yields the following results: (i) the density difference between the particles and
the 1:1 H2O/D2O mixture is the lowest, because it shows the longest running time
(4500s, which means the lowest velocity); (ii) the density difference between the
particles and H2O is medium; and (iii) the largest density difference is found
in the experiment performed in D2O (1900s, which means the highest velocity).
This shows, without further calculation, that the density ρp of the particles must be
found between the density of H2O, 1.00g/cm3, and that of the 1:1 H2O/D2O mixture,
1.05g/cm3.Moreover, particledensity is closer to thevalueof theH2O/D2Omixture.
Thus, this simple, rough estimation shows that the HDA particle density value is
1.025 < ρp < 1.035g/cm3.

Of course, it is helpful to recognize whether the sample has sedimented or
floated in the three media. Usually, this can be judged by the shape of the I(t) curve
at the beginning, showing a thinning or a thickening effect.

Additionally, like in all AUC experiments, it is recommended to thoroughly
check the samples after the run (cf. are the particles gathered at the cell bottom
or at the meniscus?). This helps to identify problems that may have occurred, but
also allows one to decide whether sedimentation or flotation (or both, in the case
of a heterogeneous sample!) has occurred during the run in general.

Certainly, an HDA experiment is certainly not analyzed in the simple manner
described above. This consideration was presented only in order to show how much
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information even the untreated raw data reveals. For a quantitative mathematical
analysis of the three I(t) curves of Fig. 3.20, several horizontal lines are drawn
into the I(t) plots (in practice, every 2% with respect to the intensity signal),
which correspond to a particle species of defined diameter dp and defined particle
density ρp. In Fig. 3.20, for the sake of clarity, only eight exemplary horizontal lines
are shown. By means of these lines, each diameter fraction is correlated to one
running time per “solvent”. In total, for each horizontal line three running times
are collected: tH2O, tD2O and t1:1.

Equation (3.28) contains two unknown parameters, dp and ρp. In standard
sedimentation experiments, the solvent and its parameters (ρs, ηs and ns) are well
known.The“trick”of thedensity variationmethod is toperformthe sedimentation
velocity experiment in more than one solvent in order to transform the mathemat-
ical system of one equation with two unknown parameters into a system of at least
two equations with two unknown parameters (see (3.29)). The third dispersion
medium and the third equation are needed only to decide automatically, during
the computer evaluation, whether the sample is sedimenting or floating in the two
other media [26]. The density ρp,i of the particle fraction belonging to a horizontal
cross section i can be calculated from the viscosities of solvent 1, ηs1, and of solvent
2, ηs2, the corresponding densities ρs1 and ρs2, and the corresponding runtimes of
the particles in both solvents, t1,i and t2,i.

ρp,i =
ηs1 · ρs1 · t1,i − ηs2 · ρs2 · t2,i

ηs1 · t1,i − ηs2 · t2,i
(3.29)

The corresponding diameter dp,i is calculated by applying either (3.24) or a mod-
ification of this, (3.30), with the measured two sedimentation coefficients of the
species i in solvent 1, s1,i, and solvent 2, s2,i.

dp,i =

√
18 · (ηs2 · s1,i − ηs2 · s2,i)

ρs1 − ρs2
(3.30)

Figure 3.20 shows the densities and diameters obtained by this procedure for the
species indicated (= eight representative horizontal lines) in form of a table. These
data clearly indicate that the analyzed acrylic polymer dispersion has a constant
particle density of ρp = 1.029 ± 0.003g/cm3 but a moderately broad PSD with
70 < dp < 130nm. By means of HDA, it is thus possible not only to estimate
an average ρp but also to measure the complete particle density distribution. Ad-
ditionally, according to the Mie theory (see Fig. 3.15) with the result of a HDA,
the four known (average) values, (i.e. diameter dp, density ρp, wavelength λ, spe-
cific turbidity (τ/c)p) additionally also the refractive index of the HDA-analyzed
polymeric particles, np, can be derived as well (not presented here; for details,
see [26]).

Each of the three HDA I(t) curves in Fig. 3.20 can be transformed into a PSD.
The resulting three particle size distributions of this HDA experiment on the BASF-
made 100-nm acrylic latex particles, using the HDA average value ρp = 1029g/cm3,
are plotted in Fig. 3.21. The conformity of the three independent particle size
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distribution measurements is good. The average values of the three characteristic
diameters, d10% = 90nm, d50% = 108nm, d90% = 124nm, and the broadness
parameter (d90% − d10%)/d50% = 0.31 agree well with the corresponding values
in Fig. 3.16. This agreement indicates that the HDA particle density used for the
evaluation of the PSD can be considered to be the correct one – in other words, the
HDA is a reliable fast method to measure particle densities ρp with high precision.

In practice, the authors start the analysis of every unknown sample always by
an HDA experiment, because this reveals much basic information helping to design
the ongoing experiments in a more sophisticated way. The most important basic
information is the following: (i) the unknown sample is either homogeneous, or
heterogeneous in terms of ρp, and (ii) its PSD is either narrow, or broad (perhaps
multi-modal).

For the demonstration of the basic features of HDA in Figs. 3.20 and 3.21, a sim-
ple, nearly monodisperse latex, also having a homogeneous, uniform density ρp,
was examined. However, also inhomogeneous samples showing a particle density
distribution can be measured. In these cases, the table contained in Fig. 3.20 rep-
resents a particle diameter as well as a particle density distribution. For advanced
examples (also for complex samples where the HDA fails), the reader is referred

Fig. 3.21. Three independently obtained PSDs of the same polymeric dispersion sample measured
in the HDA experiment of Fig. 3.20 in three different dispersion media (H2O, H2O/D2O 1:1 mixture,
and D2O)
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to [26]. This paper presents HDA samples in the density range 0.85 < ρp < 6g/cm3,
including inorganic particles with a high density and small diameters of only
15nm. Thus, HDA should be applicable to organic/inorganic hybrid particles with
high densities. In principle, according to (3.29), the accessible HDA density range
is unlimited, but in practice the errors of measurement of the three run times
tH2O, t1:1 and tD2O, and of the three run distances (rslit − rm,b) restrict this range
considerably.

3.5.4 PSD Measurement of very Small Platinum Clusters Using UV Optics

The measurement of particle size distributions is, of course, not only possible by
applying turbidity optics, as described in Sect. 3.5.1. In principle, particle size
distributions are available from any sedimentation velocity run, irrespective of
which detector has been applied. The diameters are always calculated from Stokes
law, (3.24), which requires the knowledge of ρp. Depending on the detector type,
the mass portion mi = ci/c0 is determined differently, either by the measurement
of the refractive index or its gradient (interference or Schlieren optics), or by
Lambert-Beer’s law with the knowledge of the decadic extinction coefficient ε (UV

Fig. 3.22. Radial XL-A/I UV absorption scans measured at different running times (scan interval 2 min,
ω = 60 000 rpm, λ = 380 nm, 12-mm double-sector cell) of a sedimentation velocity experiment on
Pt colloids (reprinted with permission from [29])
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absorption optics). In contrast to the turbidity detector, these detector signals do
not need any Mie correction. One example for a PSD obtained from a sedimenta-
tion run applying UV absorption optics is presented in the following [29]. As an
example, very small platinum clusters with diameters of only 0.5 < dp < 2.0nm
are chosen (see also our introduction sample on gold colloids in Fig. 1.2). This
example (presented in Figs. 3.22 and 3.23) demonstrates also the capability of AUC
to investigate even smallest nanoparticles.

A platinum cluster system was synthesized by reduction of platinum tetrachlo-
ride in water with formic acid in the presence of the stabilizer alkaloid dihydrocin
quinoline, as described in [30]. The colloid was dispersed in a mixture of acetic
acid and methanol (5:1 by volume), using ultrasonic stirring for 5–10min. The
density of the solvent at 25◦C was determined as ρs = 1.0182g/ml, and its viscosity
as ηs = 0.01167 Poise. The density of the stabilized platinum particles ρp was found
to be close to that of bulk platinum, ρPt,25 ◦C = 21.5g/cm3 [31]. The concentration
c0 was not known precisely, but it was so low that one worked within the linear
range of the UV detector (λ = 380nm), which means A < 1.5 was always valid.

From the different XL-A/I UV scans of Fig. 3.22 at different running times, it
becomes clear that one must carefully select the radial scan that is used for the
evaluation of the particle size distribution. In the early stages of the experiment, the
complete fractionation of the different species in the mixture is not yet achieved,
whereas in the late stage, bigger particles may already have reached the cell bottom,

Fig. 3.23. Integral and differential particle size distribution of the Pt colloid in Fig. 3.22. The thickly
marked scan in Fig. 3.22 (at running time 18 min) was used for the PSD evaluation (reprinted with
permission from [29])
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and would therefore not be detected. As a suitable radial scan, we chose a scan at
18min from the middle of the run, indicated in Fig. 3.22 by means of a thick line.
The corresponding particle size distribution, both in integral and in differential
form, is presented in Fig. 3.23.

This multi-modal (!) particle size distribution is characterized by a distinct
number of monodisperse species. The evaluation and comparison of the particle
size distributions for further radial scans of Fig. 3.22, taken of the same Pt colloid
at different running times t, yielded (within the errors of measurement) the same
particle sizedistribution.Thismeans that there is only aweakdiffusionbroadening
of most of the components within this particle size distribution (or perhaps a self-
sharpening of the different boundaries; see Sect. 3.3.2).

Uponanalysisof the samePtcolloidbyelectronmicroscopy (EM), acontinuous,
only bimodal (apparent) particle size distribution is detected, with average particle
sizes of 1.0 and 2.2nm for the two main components. Nevertheless, this rough
agreement is a proof that the absolute AUC dp values in Fig. 3.23 are in the
correct order. The striking feature in Fig. 3.23 is the presence of seven different,
resolved monodisperse species that differ only by 0.1nm in their particle diameter.
As such Pt clusters are very small, the broad peak around 0.83nm (component
number 8) must be considered with some caution, because it does not reflect the
true particle size distribution, due to the expected high diffusion effect for such
small clusters.

3.6 Synthetic Boundary Experiments

Synthetic boundary experiments in the AUC have been performed since the 1950s.
They are a special form of sedimentation velocity experiments. Earlier work on
this topic has been published by Kegeles [32] and Pickels [33].

The measuring cells applied in synthetic boundary cells have already been
described in Sect. 2.3 and Fig. 2.7. Whereas most AUC laboratories use synthetic
double-sector boundary cells of the capillary type (available for the XL-A/I), in
the authors’ laboratory synthetic boundary cells of the valve type are applied
predominantly: mono-sector valve-type cells (older Model E cells) are used for
Schlieren optics (see Fig. 2.7e), whereas double-sector valve-type cells (homemade
at BASF) are preferred for interference and UV optics. The essential part of each
kind of synthetic boundary cell is the corresponding centerpiece.

Since this versatile and useful double-sector valve-type centerpiece is at present
not available from the manufacturer (Beckman-Coulter), our own homemade
centerpiece is published as a sketch in Fig. 3.24.

This sketch may be used by those interested to have produced a replica in a good
mechanical workshop. Figure 3.24 shows a workshop drawing and a photograph.
In principle, our centerpiece is only a modification of the mono-sector valve-type
centerpiece shown in Fig. 2.7e, as used in the older Beckman Model E. Nevertheless,
there are three differences between the BASF-made and the older Beckman valve-
type centerpieces: (i) our centerpieces, in particular the double-sector centerpiece,
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Fig. 3.24. Workshop drawing and photograph of a homemade (BASF) 12-mm double-sector valve-
type titanium centerpiece for synthetic boundary runs, required for interference and UV optics. The
photograph shows also the storage bin (reservoir) with the thin ventilation pipe, the filling hole screw,
the cylinder-shaped rubber valve, and two gaskets
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the storage bin with its small ventilation pipe, and the tightening screw, are all
made of titanium. It is therefore possible to use these for all kinds of solvents,
also aggressive ones; (ii) the filling hole, and the tightening screw of the solvent
sector are not on the meniscus side, as usual, but rather on the bottom side; and
(iii) as rubber valve, we use a cylinder-shaped piece (diameter 1.2mm), cut out
from chemical-resistant Kalrez O-rings for organic solvents, and from Viton for
aqueous systems. By varying the length of this rubber cylinder, it is possible to
vary the rotor speed ωoverlay, at which overlaying starts.

In the following, only experiments performed in cells of the valve type or
equivalent cells are described. These valve-type cells (like the capillary-type cells)
regulate the overlaying of a liquid from a reservoir (storage bin) onto the liq-
uid column in the sector-shaped chamber of the measuring cell. This results
in a sharp boundary between the two liquids, which is additionally stabilized
by the centrifugal field. It has been shown that is advantageous if the liquid
to be overlaid by the liquid from the reservoir exhibits a slightly higher den-
sity (in the magnitude of Δρ = 10−4 g/cm3, [34]), in order to avoid turbulences.
The sedimentation experiment itself is usually performed in an angular velocity
range of 10 000 < ω < 40 000rpm, depending on the actual analytical prob-
lem. The design of the capillaries, as well as the rubber functioning as a valve,
allow the user to vary the rotor speed ωoverlay at which overlaying occurs. Typ-
ical rotor speeds to start overlaying are in the range 5000–10 000rpm for the
valve-type cells. The valve-type cell facilitates a more defined overlaying than
the capillary-type cell, by varying the hardness (crosslinking) or the cylinder
length of the rubber valve, especially for organic solvents with their low interfacial
tensions (these interfacial tensions create serious problems with capillary-type
cells).

There are four main applications of synthetic boundary experiments, described
in the following four subsections, these being (i) dynamical density gradients, (ii)
determination of very small s values, (iii) determination of D values, and (iv)
determination of loading concentrations c0 and (dn/dc)p.

Dynamical Density Gradients
Fast dynamical density gradients are the most prominent application in the au-
thors’ laboratory. This is another kind of fast (completed within 10min!) H2O/D2O
analysis (see Sect. 3.5.3) to measure particle densities ρp, and their possible distri-
bution. The dynamical density gradient is described in this subsection (rather than
the density gradient; cf. Chap. 4) because it vividly illustrates how the valve-type
cell works to create a synthetic boundary. Figure 3.25 shows that Schlieren optics
and simple mono-sector valve-type cells have been used in most cases. Figure 2.7e
shows a photograph of the centerpiece of such a cell, with the storage bin, rubber
valve and ring-like gasket outside of the centerpiece.

A gravity valve (a compressed rubber cylinder) under the small hole of a pot-
like storage bin (reservoir), filled with water (or other media), opens at a rotor
speed of about 10 000rpm, and subsequently all light H2O inside this storage
bin will be overlaid onto the heavier D2O inside the cell sector. Because of the
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Fig. 3.25. Schematic illustration of a synthetic boundary experiment, using a 12-mm mono-sector
valve-type cell/centerpiece (left). As an example, real Schlieren photographs of a dynamic H2O/D2O
density gradient run of polystyrene latex particles, c = 0.4 g/l, are shown (right)
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H2O/D2Ointer-diffusion (visible asanegativeGaussianSchlierenpeak inFig. 3.25),
within these 10min a radial dynamic density gradient ρs(r), from ρs = 1.00 up to
1.10g/cm3, is built up within the cell (visualized as a ρ axis in the lowest Schlieren
photograph). Polystyrene latex particles (which show turbidity) dispersed in this
D2O (c0 = 0.4g/l, dp ≈ 100nm) gather within this 10-min period in a narrow
turbidity band at that radius position where the densities of the particles ρp and the
density gradient are identical. The experiment in Fig. 3.25 yields ρp = 1.055g/cm3,
the well-known value of polystyrene particles. For details of the evaluation to
obtain these ρp values, see Sect. 4.3.

For a standard synthetic boundary run with a valve-type cell (for example, to
detect low molar mass solute in a solution or in a dispersion), H2O in the storage
bin is replaced by the pure solvent, and D2O in the cell sector by the solution.
Usually, the solute concentrations are in the range 0.3–10g/l, but also much higher
concentrations reaching 100g/l are possible (see Fig. 3.26).

Determination of very Small s Values
In many cases, only synthetic boundary runs allow us to determine s values of very
small particles/molecules by creation of an artificial boundary over the air/liquid
meniscus. This facilitates avoiding the problem that especially small particles or
polymers tend to stick to the air/liquid meniscus due to interfacial tension. Thus,
in many sedimentation velocity experiments performed on slowly sedimenting
samples (mostly because of low molar mass), the meniscus is not cleared even
at highest centrifugal rates. In such cases, the overlaying technique allows us to
clear the meniscus, and to measure sedimentation coefficients as low as s = 0.2S
(e.g., for saccharose having a molar mass of M = 300g/mol; [5, 34]). Conventional
sedimentation velocity experiments usually have a lower limit of approximately 1S.

Determination of D Values
Determination of diffusion coefficients D of dissolved samples (M range 100 <
M < 100 000g/mol) can be done by synthetic boundary runs. The overlaying of
(slowly) sedimenting molecules/macromolecules in solutions (or in dispersions)
with a pure solvent (or a dispersion medium) results in a steep, step-like radial
change of the sample concentration c(r) within the cell around the radial position
of the synthetic boundary roverlay (see Fig. 3.26). The steep step function, directly
visible via interference optics (see Fig. 3.26a), broadens with increasing experi-
mental time due to diffusion of the sample molecules into the pure solvent. Via
Schlieren optics, a narrow (Gaussian) Schlieren peak is visible at this boundary
(see Fig. 3.26b). Measurement of the broadening of the interference fringes or of
the Schlieren peak as a function of running time t can directly be correlated to
the diffusion coefficient D of the sample (see, for example, [35]). The results are of
high accuracy if the sample is monodisperse. In fact, this type of measurement has
been state of the art in diffusion coefficient determination until laser technology
and dynamic light scattering (DLS) were introduced. Still today, this is a method
that can be applied favorably for complex systems, or if only a very low amount of
sample is available.
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Fig. 3.26. a Radial XL-A/I interference optics scans, and b Schlieren optical photographs of two
synthetic boundary experiments, taken at different experimental running times. In both cases, (turbid)
latices (c0 = 100 g/l) with additional low molar mass solute (about 3 g/l) in the aqueous serum were
measured. The diffusion broadening of the boundary due to the (non-sedimenting) low molar mass
solute can be well recognized at the radial overlay position roverlay
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Determination of Loading Concentrations c0 and (dn/dc)p

Synthetic boundary runs are also used to measure loading concentrations c0 and
(dn/dc)p. At the radial overlaying position roverlay (see Fig. 3.26), the function of
the refractive index over the radius in the cell n(r) shows a steep step due to the
corresponding increase of the solute concentration c(r). This measurable change
of refractive index Δn = (nsolution − nsolvent) is detected either as a step ΔJ (inter-
ference optics, Fig. 3.26a) or as a peak area Aschl (Schlieren optics, Fig. 3.26b).
The detected signal Δn can either be utilized for high-accuracy measurement of
the solute concentration cp if the specific refractive index increment (dn/dc)p is
known, or vice versa, the signal can be used to measure the specific refractive index
increment if the loadingconcentration isknown.For the caseof interferenceoptical
detection of the synthetic boundary experiment (see (3.31)), a modification of (2.3)
gives the correlation between the fringe displacement ΔJ, the light wavelength λ
used, the specific refractive index increment (dn/dc)p, the length of the optical
path through the cell a, and the concentration difference of the solute before and
after the concentration step Δcp (usually Δcp = c0):

Δcp =
ΔJ · λ

a ·
(

dn

dc

)
p

(3.31)

For the case of Schlieren optical detection (see Fig. 3.26b), the corresponding
relation between Δcp and the Schlieren peak area Aschl is given as

Δcp =
Aschl · tan Θ

L · a · mx · my

(
dn

dc

)
p
· E2

(3.32)

In (3.32), Θ is the Philpot angle of the Schlieren optics, E the magnification factor
from cell to plate, L the enlargement factor due to the cylindrical lens, mx the path
length of the solution in the cell, and my the distance from the center of the cell to
the plane of the phase plate.

Such synthetics boundary runs to determine cp (especially with interference
optics) are also important for sedimentation equilibrium runs to measure M (see
Sect. 5.2). They allow one to check whether the law of conservation of mass is
fulfilled.

Beside the above mentioned four main applications there are other applications
of the synthetic boundary technique, such as the measurement of differential sed-
imentation coefficients [36], and the determination of extinction coefficients [37]
should simply be noted here.

Figure 3.26 shows two typical synthetic boundary experiments to detect small
amounts of low molar mass solutes in the serum of aqueous particle dispersions,
(i) with a double-sector valve-type cell, using the XL-A/I interference optics, and
(ii) with a mono-sector valve-type cell, using the XL-SO Schlieren optics. In both
examples, much higher total concentrations of c0 = 100g/l are chosen to detect,
beside the major component of the (fast) turbid particles, with diameters of about
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dp = 250 and 400nm, respectively, also any minor components of (slow) low molar
mass solutes. In both cases, pure water was overlaid onto the aqueous polymer
dispersions.

In the interference optics scans of Fig. 3.26a, we see the large ΔJ step of the very
fast, 250-nm particles only in the first two scans. Later, we see only the smaller
step (ΔJ = 8.7), and the diffusion broadening of the slow (s = 0−0.2S) low molar
mass solute (abbreviated “lmms”) at the overlay position roverlay. If we assume
(dn/dc)lmms = 0.15cm3/g, a concentration of clmms = 3.3g/l follows with (3.31).
This is about 3.3wt% of the total solid content of the analyzed dispersion.

In the four Schlieren optical photographs of Fig. 3.26b at different running
times, the fast turbidity front of the 400-nm particles is visible only in the first
Schlieren photograph (taken after 1min). Surprisingly, however, we see (for the
first time in the second photograph, taken after 8min) a second, more slowly sed-
imenting, weak turbidity front (correlated with a small Schlieren peak). This was
an unexpected 2-wt% component of small, 25-nm latex particles. Additionally, we
found in all Schlieren photographs, permanently at the roverlay position, the small
Schlieren peak of the low molar mass solute (s = 0−0.2S). From its Schlieren peak
area Aschl,lmms follows, with (3.32), a concentration of clmms = 3.0g/l. This corre-
sponds to about 3wt% of the total solids content of this dispersion. The diffusion
broadening of this low molar mass solute Schlieren peak is clearly seen, too.

In the following Sect. 3.6.1, we would like to present one unusual application
of a synthetic boundary experiment, namely, synthetic boundary crystallization.
Despite the fact that this experiment isnotof commonuseandpronounced interest,
it should inspire creativity and show that new types of AUC experiments are still
conceivable.

3.6.1 Synthetic Boundary Crystallization Ultracentrifugation

The basic idea of this method is to make use of synthetic boundary cells to perform
chemical surface reactions inside the AUC while the centrifugal field acts. From
the field of biological systems, two interesting approaches of (chemical) reactions
within a synthetic boundary cell should be mentioned:

Fig. 3.27. Schematic rep-
resentation of the synthetic
boundary crystallization
process inside the cell of an
analytical ultracentrifuge
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(i) the active enzyme centrifugation, where the chemical reaction between an
enzyme and its substrate is investigated [38], and

(ii) the investigation of the formation of a polyelectrolyte membrane [39].

The synthetic boundary crystallization method was developed to investigate the
early stages of crystallization. So far, it has been applied only to a system of low
solubility, such as cadmium sulfide [40]. In this example, a 10mM sodium sulfide
solution was overlaid onto a 5mM cadmium chloride solution, which additionally
contained 0.5mM stabilizing thiols. At the sharp (synthetic) boundary between the
two solutions, the nucleation of the hardly soluble cadmium sulfide particles takes
place (see scheme in Fig. 3.27). For detection, the XL-A/I UV scanner (λ = 370nm)
was used. The experiments were performed in 12-mm synthetic boundary double-
sector cells of the Vinograd type, which is a capillary type with a small reservoir
for the liquid used for overlaying (similar to the mono-sector capillary-type cell in
Fig. 2.7d).

Upon their formation, the very small CdS particles either continue to grow in
the boundary region, or sediment toward the bottom of the cell into the cadmium
chloride solution. This movement quenches any further growth, and allows us
therefore to investigate the particles formed early in the process, as well as their
particle size distribution.

Fig. 3.28. Comparison of (apparent) particle size distributions obtained from synthetic boundary
crystallization experiments from three differently stabilized CdS nanoparticle systems via XL-A/I UV
scans at λ = 370 nm (reprinted with permission from [40])
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The efficiency of the stabilizers in such experiments has been successfully
studied by Börger and Cölfen [41]. The particle sizes obtained in these experiments
are in the magnitude of 1–3nm (see Fig. 3.28), using ρp = 3.2g/cm3 for the density
of theCdSparticles. Figure 3.28 showsalso that, of the three investigated stabilizers,
thioglycerine is the most effective because it yields the smallest CdS particles,
having an (average) diameter of only 0.9nm.

References

1. Stafford WF (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochem-
istry and polymer science. The Royal Society of Chemistry, Cambridge, p. 358

2. Kehrhahn JH, Lechner MD, Mächtle W (1993) Polymer 34:2447
3. Stafford WF (1994) In: Schuster TM, Laue TM (eds) Modern analytical ultracentrifugation. Birkhäuser,

Berlin, p. 119
4. Fujita H (1975) Foundations of ultracentrifugal analysis. Wiley, London
5. Schachman HK (1959) Ultracentrifugation in biochemistry. Academic Press, New York
6. Gofman JW, Lindgren FT, Elliott H (1949) J Biol Chem 179:973
7. Mächtle W (1984) Colloid Polym Sci 262:270
8. Börger L, Kühnle A (2003) Unpublished data
9. Creeth JM, Knight CG (1965) Biochim Biophys Acta 102:549

10. Johnston JP, Ogston AG (1946) Trans Faraday Soc 42:789
11. Schachman HK (1951) J Am Chem Soc 73:4453
12. Gilbert GA (1960) Nature 186:882
13. Bowen TJ, Rowe AJ (1970) An introduction to ultracentrifugation. Wiley, London, p. 107
14. Lechner MD, Mächtle W (1995) Prog Colloid Polym Sci 99:120
15. Lechner MD, Mächtle W (1999) Prog Colloid Polym Sci 113:37
16. van Holde KE, Weischet WO (1978) Biopolymers 17:1387
17. Yphantis DA (1984) Biophys J 45:324
18. Schuck P (2000) Biophys J 78:1606
19. Schuck P, Rossmanith P (2000) Biopolymers 54:328
20. Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D (2002) Biophys J 82:1096
21. Mie G (1908) Ann Phys 25:377
22. Mächtle W (1988) Angew Makromol Chem 162:35
23. Heller W (1957) J Phys Chem 26:498
24. Scholtan W, Lange H (1972) Kolloid Z Z Polym 250:782
25. Mächtle W (1999) Biophys J 76:1080
26. Mächtle W (1984) Makromol Chem 185:1025
27. Mächtle W (1992) Makromol Chem Macromol Symp 61:131
28. Müller HG, Herrmann F (1995) Prog Colloid Polym Sci 99:114
29. Cölfen H, Pauck T (1997) Colloid Polym Sci 275:175
30. Bönnemann H, Braun GA (1996) Angew Chem Int Ed 35:1992
31. Lide DR (ed) (2002) CRC Handbook of chemistry and physics, 83rd edn. CRC Press, Boca Raton
32. Kegeles G (1952) J Am Chem Soc 74:5532
33. Pickels EG (1952) Methods Med Res 5:107
34. Schachman HK, Harrington WF (1954) J Polym Sci 12:379
35. Aminabhavi TM, Munk P (1979) Macromolecules 12:1194
36. Hersh R, Schachman HK (1955) J Am Chem Soc 77:5228
37. Voelker P (1995) Prog Colloid Polym Sci 99:162
38. Kemper DL, Everse J (1973) In: Hirs CHW, Timasheff SN (eds) Active Enzyme Centrifugation and Methods

in Enzymology, vol XXVII. Enzyme structure, part D. Academic Press, New York, p. 67
39. Wandrey C, Bartowiak A (2001) Colloid Surf A Physico Chem Eng Asp 180:141
40. Börger L, Cölfen H, Antonietti M (2000) Colloids Surf A 163:29



96 3 Sedimentation Velocity

41. Börger L, Cölfen H (1999) Prog Colloid Polym Sci 113:23
42. Cölfen H (2004) ACS Symp Series 881:119
43. Harding SE (1995) Carbohydrate Polym 28:227
44. Oth J, Desreux V (1954) Bull Chim Belges 63:133
45. Schilling K (1999) PhD Thesis, Potsdam University, Potsdam



4 Density Gradients

The two major types of basic AUC experiments are the sedimentation velocity
experiment (subject of Chap. 3), and the sedimentation equilibrium experiment
(subject of Chap. 5). The density gradient experiment, topic of this Chap. 4, can
be understood as a special kind of the sedimentation equilibrium experiment.
Figure 4.1 illustrates the transition from Chap. 3 to Chap. 4, which means from
the time-dependent sedimentation velocity runs to the time-independent static
(equilibrium) density gradient runs.

In Fig. 4.1a, this transition is experimentally done for dissolved macro-
molecules by simply adding 25wt% of a heavy co-solvent, such as di-iodomethane
(with a density of ρDIM = 3.2g/cm3), to the light solvent of the s run, tetrahy-
drofuran (with a density of ρTHF = 0.8811g/cm3 at 25◦C). The density gradient
experiment then takes considerable time, about 17h in this example, until a ra-
dial exponential density gradient ρ(r) is built up within the cell. The density range
covered in this case reaches from 1.0 to 1.2g/cm3. The gradient is built up due to en-
richment of the heavy co-solvent near the cell bottom. Simultaneously within this
17h, the polystyrene molecules (M = 1 800 000g/mol, c = 1g/l) sediment (positive
Schlieren peak in Fig. 4.1a) or float (negative Schlieren peak in Fig. 4.1a) to that ra-
dius position where the densities of the gradient and the particles/macromolecules
are identical. This radial position is called the isopycnic position riso.

The higher the molar mass M of the sample examined, the narrower becomes
the detected final (constant) double Schlieren peak. The reason is diffusion broad-
ening around this isopycnic position.

In Fig. 4.1b, this transition from sedimentation run to equilibrium run is
done for dispersed nanoparticles by simply adding 11wt% of a heavy iodinated
sugar, metrizamide (ρ = 2.155g/cm3 at 25◦C), to the (light) water. Again, within
16h a radial exponential density gradient, 1.03 < ρ(r) < 1.10g/cm3, is built up
within the cell, and the starting broad turbidity band of the dispersed polystyrene
particles (dp = 160nm, c = 1g/l) is compressed to a narrow turbidity band at
a radius position riso with ρ = 1.053g/cm3, the known density value of polystyrene
particles.

The evaluation of density gradients such as the one in Fig. 4.1, the calculation
of the shape and broadness of the double Schlieren peak and of the relation ρ(r),
as well as the introduction of other types of density gradients (such as dynamic
density gradients) is the topic of this Chap. 4.
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Fig. 4.1. a Sedimentation velocity experiment (s run) in THF and organic static 75 THF/25 DIM
density gradient experiment (DG run) of narrowly distributed dissolved polystyrene molecules (Mw =
1 800 000 g/mol).b s run inH2Oandaqueous static89H2O/11metrizamideDGrunofpolystyrene latex
particles (dp = 160 nm). For all runs: N = 40 000 rpm, 12-mm mono-sector cells, c = 1 g/l, Schlieren
optics, Philpot angle = 70° (reprinted with permission from [19])

The chapter is structured as follows: Sect. 4.1 explains the basic principle of
density gradients. In Sect. 4.2, the static (or sedimentation equilibrium) density
gradient, the most frequently applied type of density gradient experiments, will be
described, including the theory, data evaluation, experimental procedure, gradient
materials, and examples. Section 4.3 deals with the fast dynamic density gradient,
not commonly used by the AUC community, but of outstanding importance in
the AUC laboratory at BASF. The experimental details as well as details of data
evaluation are given. In Sect. 4.4 one exotic dynamic, but mandatory type of density
gradient experiment, the aqueous dynamic Percoll density gradient, is presented.

4.1 Introduction

In density gradient centrifugation experiments, a radial density gradient ρ(r)
is induced in the measuring cell either by a heavy auxiliary additive added to
a light solvent or by a mixture of two solvents exhibiting very different densities
(see Figs. 4.1 and 4.2). The binary mixture has to consist of agents of different
densities that are separated or accumulated differently within the measuring cell.
The component with the higher density accumulates more in direction of the cell
bottom. The relative composition of the solvent is different at each radial position r
of the measuring cell. Thus, the density of the binary mixture varies throughout
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Fig. 4.2. Schematic presentation of a static AUC density gradient. The chemical composition, and
therefore the density ρs(r) of the binary solvent DG mixtures varies with the radius r in the measuring
cell. Depending on its density in comparison to the surrounding solvent density, the sample sediments
or floats. At one radial position in the cell, the solvent density matches the sample’s density ρp. The
sample accumulates at this position

the cell, exhibiting higher densities at the bottom of the cell and lower densities
at the meniscus. In the following section, we will refer to the binary mixture as
solvent, meaning that we will use the parameter ρs(r) = ρDG(r), having in mind
that this is arguable.

The sedimentation behavior of a sample (containing macromolecules or
nanoparticles) added to such a (binary) density gradient is determined partly
by the buoyant term (1 − υ · ρs), according to (1.5), or by the density difference
between particle density and density of the density gradient (ρp − ρs), according
to (1.9), where ρp = 1 / υ. If the sample component occupies a radial position in the
density gradient exhibiting a solvent density that is lower than its own density, then
the particle or polymer will sediment toward the cell bottom. In the opposite case,
thecomponentwillfloat toward themeniscus. Ifparticle/macromoleculedensityρp

and solvent density ρs are equal, no movement will occur (see Figs. 4.1 and 4.2).
The sample component has then reached its isopycnic position riso within the cell.

Together with the choice of an appropriate gradient material and proper exper-
imental conditions, the main challenge in isopycnic centrifugation is to build up
the relation between the radial position r and the (binary) density gradient mixture
density, i.e., ρs(r). Several approaches for this (see [3]) are established. Some of
these will be described in Sects. 4.2.1 and 4.3. Appropriate optical detectors locate
the radial position riso of the sample (Schlieren optics is most important, as in
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Fig. 4.1, but also all other detectors are possible, if the density gradient medium is
transparent).

Cheng and Schachman were the first to perform a kind of density gradient
experiment in 1955 [1], where they made use of the high compressibility of flu-
orotoluene. The high compression at high rotor speed induces a radial density
gradient throughout the AUC cell. In a double-sector cell, two droplets were added
to this fluorotoluene system: first, one droplet of an aqueous buffer solution, and
second, a droplet of the same buffer solution containing additionally a dissolved
polymer (having a slightly increased density). As water and the organic solvent are
not miscible, the droplets as a whole moved within the gradient to a radial position
where their known densities were matched. This allowed an accurate evaluation of
the relative density difference between the buffer solution and polymer-containing
buffer solution, as well as the determination of the absolute density values. These
droplets of known density are called density markers.

The first equilibrium density gradient experiments that were performed in the
manner sketchedabove [2] were already subject of discussion in the introduction to
this book (Chap. 1, Figs. 1.4 and 1.5). The impact of the H2O/CsCl density gradient
experiment of Meselson and Stahl on double-stranded DNA in scientific history is
beyond controversy. Also nowadays, however, density gradients are of great help in
analyzing manifold (macromolecular/nanoparticulate) systems. Thus, it is not as-
tonishing that isopycnic centrifugation is well established in biochemical research,
with H2O/CsCl as the standard density gradient. Again, to the authors’ surprise,
the use of density gradient methods in the field of synthetic polymers and colloids
is not common, despite the fact that density gradient experiments are excellent
tools for the characterization of dispersed nanoparticles in the diameter range
10nm–10μm (see examples in Chap. 6). Also, dissolved synthetic macromolecules
can be well subjected to density gradients, taking advantage of the high fraction-
ation resolution of analytical ultracentrifuges. As the densities of particles and
macromolecules depend on their chemical composition, the AUC density gradient
experiments are beneficial for highly sophisticated analysis of complex polymeric
or colloidal systems. Due to this ability, density gradients have also been called
“density spectroscopy” [3].

This “density spectroscopy” is visualized in Fig. 4.3 (see also Figs. 4.5 and 4.12).
The upper part of Fig. 4.3 shows schematically the particle densities of the most
frequently used aqueous homopolymer dispersions (latices) arranged as turbidity
bands in a density gradient along a ρ axis according to their particle densities ρp.
Via copolymerization (and reactions on the surfaces of all kinds of particles),
thousands of other particles with nearly all densities between them can be cre-
ated. AUC density gradients allow one to measure these particle densities (and
their distribution, too!) very precisely, and with an extremely high resolution of
Δρp = 0.0003g/cm3 (in special cases). Thus, such reactions can be analyzed via
density gradients, and the expression “density spectroscopy” is indeed justified.
Chapter 6 presents real application examples.

The lowerpart of Fig. 4.3 shows the accessibledensity ranges of somedifferently
composed water/metrizamide density gradients.
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Fig. 4.3. Particle densities of the most common homopolymer latices, arranged along a density ρ
axis (upperpart), and accessible density ranges of nine differently composed static water/metrizamide
AUC density gradients (lower part). This figure illustrates what is called “AUC density spectroscopy”
(reprinted with permission from [3])

Preferential solvation of one of the two density gradient components does not
play any role in the analysis of bigger (compact) nanoparticles, i.e., if dp > 30nm
is valid. For this reason, absolute particle densities can be measured with an ac-
curacy of Δρp = ±0.002g/cm3. For very small particles, however, and especially
for dissolved macromolecules, preferential solvation can play a role and falsify
the measured density values. Thus, for example, in Fig. 4.1a, because of prefer-
ential solvation of the light THF, the polystyrene density value of the dissolved
macromolecules is shifted slightly to an apparently lower value ρ = 1.04g/cm3, if
one compares this with the “true” value ρ = 1.055g/cm3 of compact polystyrene
particles in Fig. 4.1b. Nevertheless, also in the presence of preferential solvation,
density gradients are a valuable analytical tool because of their high fractionation
power according to chemical composition. Again, this is demonstrated in Chap. 6.

4.2 Static Density Gradients

Static equilibrium density gradients are the most frequently used density gradient
experiments. In the authors’ industrial R&D laboratory, they are tools of daily use
as they allow easy and unambiguous analysis of known and unknown complex
colloidal and/or polymeric systems.
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4.2.1 Theory of Static Density Gradients

The theoretical description of density gradients has to cover the following aspects:

(i) Formation and evaluation of the radial static density gradient ρs(r).
(ii) Radial distribution of the examined sample within the density gradient.

From the literature, several approaches for the determination of particle and/or
polymer densities from experimental data obtained in static equilibrium density
gradient experiments are known (see [3]). The aim of all of these approaches
is to build up a solvent density over radius function ρs(r). Once this relation is
known, only the radial (isopycnic) positions riso of the sample’s fractions have to
be known to determine their densities. There are two ways to obtain ρs(r): (i) via
theoretical calculation, and (ii) via calibration with different markers of known
particle density ρp. Both ways are described in the next two sections.

Formation and Calculation of the Radial Static Density Gradient ρs(r)
The correct treatment of the formation of the density gradient ρs(r) can be car-
ried out similarly to that of sedimentation equilibrium experiments (see Chap. 5)
applying thermodynamic laws, but with the difference that in the case of den-
sity gradients the (heavy) equilibrium-forming component is usually present in
a very high concentration. Therefore, activities ac, rather than concentrations c,
have to be considered (this is the weak point of all density gradient theories!). For
the following derivation, we continue to use concentrations, rather than activi-
ties, bearing this restriction in mind. The gradient has formed when equilibrium
between sedimentation and diffusion of the binary mixture, forming the density
gradient, is reached. Therefore, the net mass flow at each radial position dm/dt
within the cell is zero. Starting from (1.13), the mass transport equation, this leads
to (4.1):

dm

dt
= φar

[
csω2r − D

∂c

∂r

]
= 0 ⇒ csω2r = D

∂c

∂r
. (4.1)

In (4.1), the parameters s, D and c, as well as the parameters υ and M in the
following part of this section, refer to the heavy component (for example, CsCl,
di-iodomethane (DIM), metrizamide, or Nycodenz) of the binary density gradient
mixture. Besides this, (4.2) holds:

∂c

∂r
=

∂c

∂ρs
· ∂ρs

∂r
(4.2)

Replacing the quotient s/D of the sedimentation coefficient s and the diffusion
coefficient D in (4.1) by the expression from the Svedberg equation (1.8), and
inserting (4.2), the following (4.3) is obtained:

∂ρs

∂r
=

∂ρs

∂ ln c

(
1 − υ · ρs

) Mω2r

RT
(4.3)



4.2 Static Density Gradients 103

This can be rearranged to give (4.4):

∂ρs

∂r
=

ω2r

β(ρs)
(4.4)

where β(ρs) is given by (4.5):

β(ρs) =
∂ ln c

∂ρs

RT

(1 − υ · ρs)M
(4.5)

As the concentration c of the heavy gradient component determines the solvent
density, the function β(ρs) varies only with the density ρs.

In flat density gradients (i.e., at low c and low rotor speed ω), which ex-
hibit no intense variation of the solvent density, β(ρs) can be assumed to be
constant over radius. Thus, an empirically evaluated value can replace it (for
aqueous CsCl gradients, the value was found to vary between ca. 1.13 × 109 and
1.21 × 109 cm5 g−1s−2; [4]). The density at any given radial point in the cell can
then be calculated by (4.6), which is obtained by integration of (4.4) under the
assumption that β is constant:

ρs(r) = ρs,0 +
1
2β

ω2(r − r0)2 (4.6)

For the calculation, a reference point at a radial position r0 with known den-
sity ρs,0 has to be given. This problem is often overcome by addition of marker
particles with known densities to the density gradient. The detection of the radial
position of these makers delivers r0, and allows us to calculate the density at any
other radial position within the measuring cell.

Ifft et al. [5] calculated β values for five aqueous gradient-forming substances
(CsCl, KBr, RbBr, RbCl, and sucrose) from listed values for density and activity over
the full density gradient range covered by the materials (roughly 1.0–2.0g/cm3).
The resulting plots of β(ρs) versus density were then fitted by polynomial functions
such as (4.7):

β(ρs) = β0 + β1 · ρs + β2 · ρ2
s + β3 · ρ3

s + ... + βk · ρk
s (4.7)

The determined constants, βi, are listed for the five systems in [5], leading to
reliable results when used in the evaluation of the five aqueous density gradient
systems mentioned above.

In the same paper, the concept of the isoconcentration point is introduced. The
basic idea is as follows: if a measuring cell, filled with a density gradient solution
of concentration ci of the heavy gradient-forming compound, is centrifuged until
equilibrium is reached, a position ri in the gradient must exist that exhibits exactly
the initial concentration ci of the solution, and thus the initial (constant) average
density ρs,i (see Fig. 4.4). This point is called the isoconcentration point, ri.

Again taking β as being constant, (4.6) becomes (4.8) in this special case:

ρs(r) = ρs,i +
1
2β

ω2(r − ri)2 (4.8)
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The advantage of this isoconcentration approach is that ri can be calculated via
geometrical considerations (see Fig. 4.4). As approximation to ri, the arithmetical
mean between rm, the radius of meniscus and rb, the radius of bottom, was pro-
posed. A better approach for sector-shaped cells is the geometrical mean given in
(4.9) [5]:

ri =

√
r2
m + r2

b

2
(4.9)

It has to be kept in mind that this ρs(r) evaluation does not take into account
pressure effects (see Sect. 3.3.3), and therefore it is applicable only in restricted
cases, or not applicable at all in (often strongly compressible) organic density
gradients. Still, it works well in aqueous systems.

Hermans and Ende first addressed organic density gradients in 1963 [6]. These
authors introduced a new approach for the evaluation of density gradients: the
so-called Hermans–Ende theory. This theory describes density gradients under
the assumption that the organic binary density gradient system behaves like an
ideal mixture. The derivation of this theory will be described in the following.

Given is an ideal binary mixture of two components (light/heavy) with indices
0 and 1, and volume fraction ϕ0 of components 0 and volume fraction ϕ1 of
component 1, defined by (4.10):

ϕk =
nkV0

k∑
k

nkV0
k

=
mkv0

k∑
k

mkv0
k

k = 0, 1 , (4.10)

Fig. 4.4. Definition of the isoconcentration point in a static density gradient. At the beginning of
the experiment, a uniform concentration ci of the gradient-forming material is given in the whole
measuring cell. After the equilibrium is reached, one point in the cell at radial position ri exhibits the
initial concentration, and therefore the initial known solvent density ρs,i
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with the molar amount of substance nk, the mass mk, the molar volume V0
k , and

the specific volume v0
k of the component k.

Equation (4.10) leads to (4.11) in the case of binary density gradient mixtures:

ϕ0 + ϕ1 = 1 (4.11)

According to Hermans and Ende [6], the ratio of the volume fractions as a function
of the radius is given by (4.12), a kind of barometrical equilibrium equation:

ϕ0

ϕ1
= α · e β·r2

(4.12)

Equation (4.13) gives the expression for the integration constant α in (4.12) for
sector-shaped cells:

α =
exp

(
β · ϕin

1 · (r2
b − r2

m

))
− 1

exp
(
β · r2

b

)
− exp

(
β · ϕin

1 r2
b + β · ϕin

0 r2
m

) (4.13)

with the initial volume fraction of component k, ϕin
k . The constant β is given by

(4.14):

β =
ω2 ·

(
M1

ρ1

) (
ρ1 − ρ0

)
2RT

, (4.14)

with the molar mass of the heavy component 1, M1, and the densities of the
components 0 and 1, ρ0 and ρ1.

The density of an ideal solution is given by (4.15):

ρs = ϕ0 · ρ0 + ϕ1 · ρ1 (4.15)

The combination of (4.11), (4.12) and (4.15) results in the so-called Hermans–Ende
equation, (4.16):

ρs(r) =
ρ0 + ρ1 · α · exp

(
β · r2

)
1 + α · exp

(
β · r2

) (4.16)

This Hermans–Ende equation is applicable for all kinds of static equilibrium
density gradients, for organic ones and for aqueous ones.

Under the assumption that α · exp(β · r2) << 1, the simplified Hermans–Ende
equation (4.17) holds:

ρs(r) = ρ0 + ρ1 · α · exp
(
β · r2) (4.17)

The assumption that α ·exp(β · r2) << 1 is very often valid (see [3]). As stated above,
the Hermans–Ende theory is valid only for ideal mixtures. In real mixtures, the
parameters α, β, ρ0 and ρ1 have to be corrected. Therefore, (4.17) can be put into
the following form:

ρs(r) = ac + bc · exp
(
cc · r2) , (4.18)
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with the three adjustable parameters ac, bc and cc. Use is made of (4.18) in a re-
cent approach [3] of data evaluation of density gradient experiments, applying
a calibration approach with density marker particles.

All numerical values (rm, rb, ϕin, M1, ρ1, ω, etc.) in (4.13) and (4.14) are known
(see, for example, the water/metrizamide system in [3]), and so ρs(r) can be calcu-
lated using the Hermans–Ende equations (4.16) or (4.17). This calculation yields
satisfactory results if ϕin

1 < 0.10 is valid, not only for organic but for water/sugar
density gradients, too, and it is thus the standard procedure for static density
gradient evaluation.

For higher ϕin
1 contents, the calculated ρs(r) value becomes increasingly fal-

sified (see [3] and Fig. 4.6), especially near the cell bottom where the ϕ1 content
reaches a maximum. Nevertheless, also at high ϕin

1 values, the radial ρ resolu-
tion of such density gradients continues to be very high, and additionally the
falsifying is systematic. That means that, although the absolute particle density
values of two neighboring sample fractions are falsified if one uses Hermans–Ende,
their calculated relative density difference Δρ is nevertheless very precise within
±0.0005g/cm3.

The reason for the failing of the Hermans–Ende theory at high ϕin
1 values is that

theassumptionofan idealmixture isnot fulfilled.Thereweresomeattempts [21,22]
to improve the Hermans–Ende theory, but the results are not very satisfactory
and nearly impracticable. Thus, at present, the only practicable solution to this
problem of high ϕin

1 is the marker calibration of density gradients [3], described
in the following section. This marker calibration allows further proving of every
new density gradient theory very precisely.

Evaluation of the Radial Density Gradient ρs(r) by Calibration with Markers
In the AUC laboratory at BASF, mainly synthetic polymers and colloidal particles
are investigated. Many of these (mostly aqueous) colloidal systems are synthetic
rubber particles that are stabilized by an electrostatic mechanism. Consequently,
these systems are in general not of high electrolyte stability, and tend to ag-
glomerate if salts (e.g., CsCl) are added. Therefore, H2O/CsCl density gradients
cannot be applied with these systems. The iodinated electrically neutral heavy
sugars, metrizamide (ρ1 = 2.155g/cm3 at 25◦C, M1 = 789.1g/mol) or Nycodenz
(ρ1 = 2.060g/cm3, M1 = 821g/mol), do not create agglomeration in aqueous col-
loidal systems. Thus, they are proved to be the most convenient density gradient
compounds (see Sect. 4.2.2) for synthetic polymers and colloidal systems. In the
following, we discuss the marker calibration of such water/sugar density gradi-
ents.

As indicated above, the Hermans–Ende theory fails if

(i) the equilibrium is not reached completely,
(ii) a density gradient mixture of three components is used to build up the density

gradient (metrizamide, water and methanol is the most common case – see
middle part of Fig. 4.3), and

(iii) the mass percentage of metrizamide is very high (ϕin
1 > 10wt%).
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The latter point is perhaps the most important in practice. To overcome these
restrictions, a marker calibration method was established [3]. Vice versa, this
method allows proving the Hermans–Ende theory (and all other density gradient
theories).

Incommonemulsionpolymerizationreactions, 11markerparticleswithdiffer-
ent chemical compositions resulting from different monomer ratios of ethylhexyl
acrylate (EHA) and methyl acrylate (MA) were synthesized by co-polymerization.
The sizes of all of the marker particles were in the range of 200nm in diameter.
The chemical EHA/MA compositions of the 11 markers and the particle densities,
ρp = ρKr, obtained with the Kratky density balance (see Sect. 2.6.1), are given in
Table 4.1.

A mixture of this 11 marker particles with equal mass percentages was subject
to seven different, composed static (water/methanol)/metrizamide density gradi-
ents (see Fig. 4.5, and the lower part of Fig. 4.3). The running conditions for all
seven gradients in the BASF Optima XL apparatus equipped with Schlieren optics
(XL-SO) were identical: 30 000rpm, 3-mm mono-sector cells, −2◦ wedge windows,
and running times of 22h, or 44h. The initial concentration of the total calibration
mixture was c = 2g/l in all cases, i.e., about 0.18g/l for each marker component.
Schlieren optical pictures of these seven density gradients (measured simultane-
ously in an eight-hole rotor) are given in Fig. 4.5. Horizontal 2◦ wedge windows,
and the corresponding window holders (see Fig. 2.6) are obligatory for all static
density gradient runs to compensate the steep radial refractive index gradient ns(r)
connected with the density gradient ρs(r), and thus to prevent optical blackouts
(see [18]).

Figure 4.5 (and Fig. 4.6) demonstrates the power of static density gradient
experiments. By variation of the gradient composition, it is possible to cover a very
broad range of sample densities. In the case of metrizamide (MA), this range can be

Table 4.1. Chemical composition and corresponding particle density ρp = ρKratky of 11 acrylic
copolymer latices (with dp values of about 200 nm) for AUC density gradient calibration (= marker
particles)

Comp. No. wEHA [wt%] wMA [wt%] ρKr [g/cm3]

1 100 0 0.980

2 90 10 1.000

3 80 20 1.021

4 70 30 1.043

5 60 40 1.066

6 50 50 1.089

7 40 60 1.114

8 30 70 1.140

9 20 80 1.167

10 10 90 1.196

11 0 100 1.225
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Fig. 4.5. Schlieren optical pictures (taken at 22- and 44-h running time) of seven static wa-
ter/metrizamide density gradients with different compositions. Depending on the density range
covered by the corresponding density gradient, different density marker particles, of the 11 marker
component-containing mixture, appear at corresponding radial positions (simultaneously measured
with an eight-cell multiplexer) (reprinted with permission from [3])
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extended to lower values by adding light methanol, and to higher values by shifting
from H2O to heavy water D2O (see lower part of Fig. 4.3). The density range covered
is approximately from 0.85g/cm3 up to 1.35g/cm3. All 11 latices are fractionated
according to their densities ρp, and thus appear in Fig. 4.5 as separated, narrow
turbidity bands in the corresponding density gradients. This is an impressive
demonstration of “density spectroscopy”, and illustrates that the density gradient
centrifugation proves to be very sensitive to the chemical composition of samples,
which allows us to gain information about this composition.

However, theexperiments inFigs. 4.5 and4.6wereperformedwith the intention
of density gradient calibration (and, incidentally, to prove the theoretical equations

Fig. 4.6. Schlieren optical (SO) pictures (taken at 22- and 44-h running time) of the static 88 water/12
metrizamide density gradient containing the 11 latices calibration mixture. Below the pictures, the
ρs(r)–r diagrams derived from the SO pictures are given. The ρs(r) curve calculated from the Hermans–
Ende theory (4.16) is also given for comparison (reprinted with permission from [3])
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(4.8) and (4.16 – 4.18), especially the Herman-Ende equations). Therefore, in
Fig. 4.6 the 88 H2O/12 metrizamide density gradient Schlieren photographs, taken
after 22h and 44h, are given again for studying the time dependence of ρs(r). In
total, six signals of six different calibration particles can be recognized after 44h,
whereasafter 22honlyfivemarker componentsaredetected in thedensitygradient.

This exemplifies that equilibrium was not yet reached completely after 22h
(after 44h, equilibrium was indeed reached). The corresponding particle numbers
at 44h are nos. 4–9. The three ρs(r) diagrams in Fig. 4.6 show the difference
between the density values determined with the calibration particles (at 22 and
at 44h) and the theoretical values obtained by the Hermans–Ende theory (4.16).
Whereas the agreement between the experimental findings and Hermans–Ende
theory is satisfactory in the meniscus region, the discrepancy is tremendous in the
bottomregionof thecellwhere themetrizamideconcentration isveryhigh. Inorder
to make practical use of these experiments, empirical ρs(r) diagrams of all seven
density gradients investigated, and using all 11 markers, were generated in the
same manner. The experimental points then were fitted, applying (4.18), resulting
in a set of ac, bc and cc parameters and seven corresponding ρs(r) calibration
curves (see Fig. 4.7).

The parameter sets recorded for the seven differently composed water/metriz-
amide density gradients were assessed by means of a software program that
allowed us to determine particle or polymer densities from the corresponding
density gradient experiments with high accuracy (see [3]). Unfortunately, this
11-marker set is not available commercially, but it is easy to create in any chem-
ical laboratory. Available are single markers such as PS or PMMA latices or glass
beads. Even if no markers are available, however, the Hermans–Ende ρs(r) calcu-
lation is, as mentioned above, sufficient for most cases, and the high-resolution
power exists in all density gradients. Often, the isoconcentration point proce-
dure ((4.8) and (4.9)), or the calibration with only one marker (4.6) yield a good
approximation for ρs(r), especially in the radius range around the marker posi-
tion r0.

Time to Reach ρs(r) Equilibrium

Theoretically, equilibrium is not reachable within finite time but, of course, from
the practical point of view, the time can be estimated after which effectively no
changes in the detected density profile ρs(r) of the gradient-building material will
occur within the errors of measurement. In practice, this is 15–70h if the cell is
completely filled.

In the authors’ experience, no theoretical approach to this problem has to
date given very satisfying results (see, for example, [7–10]). Nevertheless, there
are some approaches to be mentioned, e.g., [11]. Among other fruitful debates,
a detailed discussion on this topic can be found in the internet ([12]). Therefore,
we only give rules of thumb here. If a density gradient consisting of water and
up to 15wt% metrizamide or Nycodenz (see Sect. 4.2.2) is centrifuged in usual
analytical ultracentrifugation measuring cells with column heights of about 12 mm
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Fig.4.7. Calculated exponential three-parameter ρs(r) calibration curves based on the 22-h Schlieren
optical pictures given in Fig. 4.5. The curves are obtained by fitting of the experimental data to (4.18)
(reprinted with permission from [3])

(i.e., completely filled cells) at 30 000rpm, then equilibrium is reached after 40h.
Aqueous CsCl density gradients may build up in time periods of 8–16h (at speeds
above 50 000rpm), and within days at lower speed.
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For standard sedimentation equilibrium runs to measure M (see Chap. 5),
van Holde and Baldwin [8] found that the time to reach (near) equilibrium is
proportional to the square of the column height (rb − rm)2. In our experience,
this is valid for equilibrium density gradient runs, too. This means that a consid-
erable reduction of the long density gradient measuring time is possible by the
reduction of the column height. Unfortunately, the price for this time reduction
is a considerable reduction in the accessible density range ρs(r), as follows from
the Hermans–Ende equations (4.13) and (4.16). Indeed, in practice a ρs(r) range
as broad as possible is very important. Thus, a compromise for most experiments
is to restrict the running time to 22h (overnight), and not to attempt to really
reach full equilibrium. Perhaps the resulting particle densities are somewhat fal-
sified, and not really absolute ones in this case, but nevertheless a high-resolution
fractionation has taken place also during these 22h, yielding valuable analytical
information. This is illustrated in Figs. 4.5 and 4.6, when one compares the 22-
and the 44-h measurements. Figure 4.5 illustrates additionally that the use of the
eight-cell multiplexer reduces the problem of long running times.

A very substantial reduction of running times, from hours to minutes, is pos-
sible with the technique of dynamic density gradients (see Sect. 4.3). However, this
is possible only for rapidly sedimenting particles (dp > 20nm), and not for slowly
sedimenting dissolved macromolecules (discussed in the following section). The
marker calibration technique ([3]; Figs. 4.5–4.7) can also be regarded as a kind of
“dynamic” density gradient method (during the time to reach equilibrium), be-
cause no equilibrium is really needed to measure absolute sample particle densities
in this way.

Distribution of the Sample Within the Static Density Gradient
Whereas in the above section the formation of the density gradient and the eval-
uation of the resulting solution densities ρs(r) were described, the distribution
of sample material to be analyzed within the gradient will be the subject of the
following section.

In this section, an equation will be derived showing that, at the stage of equi-
librium, (monodisperse) sample particles are distributed around their radial equi-
librium position r0 in the density gradient following a Gaussian-like curve (see
Figs. 4.9 and 4.10a). The radial derivation of such a Gaussian Schlieren curve is
a double Schlieren peak, such as those shown in Figs. 4.1a and 4.8.

The equilibrium condition for the pure gradient solution given in (4.1) is
assumed to be valid also in the presence of small amounts of dissolved macro-
molecules and dispersed particles. This is fulfilled because csample << cs. Taking
this requirement into account, (4.19) can be set up:

cpspω2r = Dp
∂cp

∂r
. (4.19)

For the sake of convenience, in the following we refer solely to polymers by means
of the subscript “p”. In (4.19), cp is the sample concentration, and Dp the sample’s
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Fig. 4.8. Static 65 toluene/35 bromoform density gradients of six polystyrenes with different molar
masses M, and of a mixture of these measured in a one-night run, using an eight-cell AUC Schlieren
optics multiplexer (reprinted with permission from [20])
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diffusion coefficient. Rearrangement of (4.19) gives (4.20), with the radial posi-
tion r0 at which the density of the polymer sample ρp is exactly matched by the
gradient solution density ρs. The maximum polymer concentration is therefore
given at position r0.

sp

Dp
=

1
ω2r

· ∂ ln cp

∂(r − r0)
(4.20)

In analogy to (4.3), sp/Dp can be substituted by the Svedberg equation (1.8) to
obtain (4.21):

∂ ln cp

∂(r − r0)
=

Mω2r(1 − υρs)
RT

, (4.21)

where M and υ are the molar mass and the partial specific volume, respectively, of
the sample to be analyzed in the density gradient. The radial dependent density
of the density gradient ρs(r) in (4.21) may be approximated by (4.6) that may be
rearranged to give (4.22):

ρs(r) = ρs,0 +
ω2

β

(
r2 − r2

0

2

)
= ρs,0 +

ω2

β
(r − r0)(r + r0)

2
(4.22)

With (4.4), and under the assumption that r is close to r0, and thus r + r0 ≈ 2r0 is
valid, (4.23) is obtained:

ρs(r) = ρs,0 +
∂ρs

∂r
(r − r0) (4.23)

Substitution of (4.23) into (4.21), and rearrangement leads to (4.24):

∂ ln cp

∂(r − r0)
=

Mω2r0

(
∂ρs

∂r

)
r0

(r − r0)2

ρs,0RT
(4.24)

Integration finally leads to (4.25):

cp(r) = cp,0 · exp

(
−

(
r − r0

)2

2σ2

)
(4.25)

with σ2 given by (4.26):

σ2 =
ρs,0RT

Mω2r0

(
∂ρs

∂r

)
r0

(4.26)

Equation (4.25) is a typical Gaussian function created by diffusion broadening
of a monodisperse sample with the maximum polymer concentration cp,0 at the
radial position r0. The standard deviation σ in principle allows us to calculate the
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molar mass M (or the particle diameter dp) of the polymer, once the equilibrium is
reached. Also the broadness of every double Schlieren peak yields experimentally
a value of σ, and thus a rough estimation of M (or dp) by applying (4.26).

Schlieren optics detects the radial changes of the refractive index gradient
dn(r)/dr within the measuring cell. This corresponds to the derivation of the con-
centration over the radius dc(r)/dr. Therefore, when density gradient experiments
are monitored by Schlieren optics (such as in Figs. 4.1a and 4.8), rather than
a Gaussian-type signal (such as in Figs. 4.9 and 4.10a), the derivation of the same is
obtained. This is a typical so-called double Schlieren peak. Figure 4.8 proves exper-
imentally the expected dependency on the molar mass M, according to (4.25) and
(4.26), i.e., the M dependency of the broadness of the detected double Schlieren
peaks: The higher the value of M is, the narrower is the diffusion broadening. In
this eight-cell multiplexer density gradient experiment, six (nearly monodisperse)
differently sized polystyrene molecules and a mixture of three of these are mea-
sured (conditions: 12-mm single-sector cells, 60 000rpm, 18h, Philpot angle 85◦, 3◦
horizontal wedge windows). The pure 65 toluene/35 bromoform density gradient
is also shown at the top of Fig. 4.8.

Deviations of concentration distribution curves from the shape of a pure Gaus-
sian curve (or a symmetrical double Schlieren peak) can serve as an indication
of heterogeneity in the sample (see, for example, cell 8 in Fig. 4.8). Although the
deviations can be very small, and the method is not of high sensitivity, it can also
be concluded from (4.25) and (4.26) that for latex particles, which have extremely
high M values (in other words, extremely low diffusion coefficients Dp), the double
Schlieren peak will “degenerate” into a narrow turbidity band. In Fig. 4.8, this is il-
lustrated by the signal caused by the polystyrene with Mw = 150 × 106 g/mol. This
polystyrene sample is simply a strongly crosslinked, 80-nm PS latex (i.e., compact
particles), which generates the narrow turbidity band detected. It is also important
that from the measured double Schlieren peak area Aschl, a rough estimation of the
concentration cp of the corresponding macromolecules (or of very small particles,
dp < 30nm) is possible, using (3.32).

4.2.2 Gradient Materials

For isopycnic separations, themost important featureof adensitygradientmedium
is that the maximum density of its solutions ρs,max exceed that of the sample
particles ρp to be analyzed. In fact, the limited range of attainable densities ρs(r)
is the most confining restriction of density gradient materials.

Generally, gradient materials should exhibit certain properties that may be
summarized as follows:

(i) The compound should be inert (if possible, no preferential solvation).
(ii) The physicochemical properties of the material and its solutions (see (4.12)–

(4.16)) should be known and applicable to determine the radial concentration
distributionof theheavy compound, andsoρs(r) bymeansofoptical detectors
(this is not necessary if marker calibration methods are used for the ρs(r)
evaluation).
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(iii) The gradient material solutions should not constrain the optical detection of
the radial fractions of the sample in the density gradient.

(iv) Depending on whether a preparative or an analytical density gradient exper-
iment is planned, the price of the material plays an important role.

There are several materials that meet the described criteria for density gradient
media. The materials can be classified in five types. The most important represen-
tatives, and the accessible density ranges ρs(r) are given in brackets below:

(i) nonionic iodinated compounds (water/metrizamide, 0.85–1.35g/cm3, see
Fig. 4.3),

(ii) organic solvent mixtures (THF/DIM, 0.9–1.4g/cm3, Fig. 4.1a),
(iii) sugars and polysaccharides (water/sucrose, 1.0–1.15g/cm3),
(iv) colloidal silica (water/Percoll, 0.85–1.15g/cm3, see [16]), and
(v) alkali metal salts (water/cesium chloride, 1.0–1.9g/cm3).

The order given above reflects the importance in practical work from the authors’
point of view. This is definitely different if biochemical questions are concerned.
Because it is very difficult and very expensive to obtain the multipurpose metriza-
mide on the market at present, we replaced it by the cheaper Nycodenz, and found
nearly no difference in the resulting aqueous static density gradients.

Not only binary density gradients are possible but also ternary ones. For exam-
ple, the ρs(r) range can be increased (see Figs. 4.3, 4.5 and 4.7) by replacing parts
of water by the lighter methanol (ρ = 0.793g/cm3 at 25◦C) or the heavier D2O
(ρ = 1.104g/cm3). The Hermans–Ende evaluation fails (partly) in this case, but
a marker evaluation is always possible. Beside the two mentioned organic solvent
mixtures, THF/DIM and toluene/bromoform (Fig. 4.8), also other organic solvent
mixtures are used in the authors’ laboratory, for example, n-hexane/chloroform
(see Figs. 6.39 and 6.40), DMF/bromoform, DMF/DIM, and cyclohexane/CCl4.

Corrosion problems with centerpieces, for example, of CsCl or bromoform with
aluminum centerpieces, are avoidable by using titanium centerpieces. Unfortu-
nately, as stated above, the density range ρs(r) of the high-resolution/fractionation
density gradient technique of the AUC is restricted to 0.85–1.9g/cm3. Thus, or-
ganic/inorganic hybrid particles with densities up to 20g/cm3, intensively dis-
cussed at present, can not be assessed by this technique. Perhaps H2O/D2O analysis
(see Sect. 3.5.3) will allow us to determine these density distributions in the near fu-
ture, if the accuracy of measurement of this method can be improved considerably.

It is important to have in mind that possibly problems will arise if the sample
incorporates or shows marked interaction with the gradient material. A depen-
dence of the (apparent) sample’s density on the experimental conditions would be
the consequence, which could lead to wrong conclusions from the experiment.

In biological systems, in fact, the hydration of the sample plays an important
role. It canvary according to themedium, resulting indifferent (apparent) densities
of the same sample depending on the chosen gradient material. In organic polymer
systems, often a preferential solvation of one of the two organic density gradient
solvents is observed (see, for example, the different density values of dissolved
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polystyrene molecules, 1.04g/cm3 (preferential solvation of the light THF) and
1.12g/cm3 (preferential solvation of the heavy bromoform) in two different organic
density gradient mixtures in Figs. 4.1a and 4.8). Nevertheless, also in the case of
preferential solvationorother interactions, thedensity gradient is always avaluable
analytical tool because of its high resolution power.

Interference optics is not well suited for organic density gradient detection, be-
cause it is too sensitive (steep optical gradients, optical blackouts, wedge windows
to compensate, etc.). UV and Schlieren optics are a better option in this respect,
but unfortunately most organic solvents for polymers, as well as metrizamide (the
preferred density gradient material for polymeric latex particles), are not trans-
parent to UV light. Thus, Schlieren optics is the most suitable, and therefore the
most important density gradient detection method for polymers and polymeric
latex particles. Therefore, an appeal is made to Beckman-Coulter to supply a com-
mercially available Schlieren optics detector for the XL-A/I, and special density
gradient accessories, including wedge windows, and centerpieces.

4.2.3 Experimental Procedure

There is no single, non-ambiguous procedure to perform equilibrium density gra-
dients. Therefore, we only give a recommendation for the experimental procedure
here, which was proved to be appropriate in laboratory practice: primarily, equilib-
rium density gradients are performed in an AUC equipped with Schlieren optics.
If possible, pictures (or radial scans) should be taken every 1h. On one hand,
this allows one to identify the point in time (tequil) when equilibrium is reached.
On the other hand, one can obtain, via these 1-h pictures/scans, an indication of
whether, for example, components of the sample are moving out of the density
gradient, or whether agglomeration or related phenomena occur. Even a rough
estimation of the particle size or molar mass can be gained from the velocity that
the components need in order to reach their radial riso point of equal density in
the gradient. In Schlieren optical experiments, mono-sector cells are used, which
conveniently contain −2◦ horizontal wedge windows to compensate the steep radial
optical refractive index gradient.

Thestandardrotor speedmaybechosen tobe30 000rpm forwater/metrizamide
(see Fig. 4.3), and 40 000rpm for THF/DIM density gradients. The cells should be
filled nearly completely in order to cover a maximum density range ρs(rb)–ρs(rm).

The choice of sample concentration depends, of course, on the purpose of
the experiment. If an unknown sample has to be analyzed, it is often helpful to
investigate the sample at two different concentrations, one at standard, the other at
increased concentration, in one run. The standard concentration may be around
0.05g/l, whereas the higher concentration may be chosen to be around 0.5g/l.
This allows monitoring the main components of the sample, as well as possible
secondary components.

Typical running times are 22 and 44h. To be definitely in the quasi-equilibrium
state, 72h are recommended (weekend runs). The time to reach equilibrium can
be shortened by applying the procedure of overspeeding (see, for example, [13]
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and Sect. 5.2), linked with the loss of experimental information obtained during
the time to reach equilibrium. The possibility to measure several samples simulta-
neously (up to seven in an eight-cell rotor multiplexer) results in a high efficiency
of the experiment (see Fig. 4.8).

4.2.4 Examples

Figure 4.5 illustrates the high-resolution fractionating power of equilibrium
(= static) density gradients. Additional examples for the application of equilib-
rium density gradients are described in Chap. 6. Thus, we give only one further
example here. In contrast to all other density gradient examples given in this
book, where Schlieren optics is used, the following equilibrium density gradient
experiment was performed in an Optima XL-A/I [14], i.e., with interference optics.
Figure 4.9 shows the XL-A/I interference patterns of five differently composed
static water/metrizamide density gradient experiments performed on the same
sample. The sample consists of 30-nm polystyrene latex particles with a known
density (Kratky balance) of ρp = 1.055g/cm3 (= marker particles). The metriza-
mide content in the gradient-forming medium consisting of water/metrizamide
varied in the range 6–15wt%. The radial position riso of the sample particles can
be clearly identified in all patterns.

Fig. 4.9. XL-A/I interference optical pattern of 30-nm polystyrene latex particles (c = 0.25 g/l) in static
water/metrizamide equilibrium density gradients with different compositions. The radial position of
the sample in the different gradients can clearly be seen. The corresponding densities, calculated
from the radial course of the interference fringes (see Fig. 4.10), are given (reprinted with permission
from [14])
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The inference optical signal is a superposition of the Gaussian peak caused by
the sample particles, and the underlying exponential density gradient formed
by inter-diffusion of water and metrizamide. As an example, Fig. 4.10a gives
the measured fringe shift ΔJ over the radius r obtained from the inference op-
tical pattern (such as in Fig. 4.9) of the 8-wt% metrizamide gradient after 92h
(a weekend run at 40 000rpm). The big advantage of monitoring equilibrium
density gradients by interference optics is the possibility to directly measure
the radial density distribution ρs(r) via the (measurable!) absolute refractive in-
dex ns(r), which means without the need of a Hermans–Ende calculation. In-
terference optics allows one to determine the absolute refractive index of the
water/metrizamide solution at any radial position ns(r) ([14]; cf. this is in ac-
cordance with the law of conservation of mass). From this ns(r) function, the
radial concentration distribution of metrizamide cs(r), and thus the radial den-
sity distribution of the gradient solution ρs(r) can be calculated. The calculated
ρs(r) function is given in Fig. 4.10b for the 92 water/8 metrizamide density gra-
dient discussed above. This function, and the known riso position yield the ρp

value of the corresponding polystyrene particles. All five different polystyrene ρp

Fig. 4.10. a Interference
fringe shift over radial
distance from the axis of ro-
tation. The static 92 water/8
metrizamide density gradi-
ent was formed after 92 h
at 40 000 rpm. The applied
sample consists of 30-nm
polystyrene latex particles
(c = 0.25 g/l). b The ra-
dial density distribution
ρs(r) in the measuring cell,
calculated from the radial
distribution of the abso-
lute refractive index ns(r),
is measured by interfer-
ence optics (reprinted with
permission from [14])
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values calculated in this manner for the five differently composed density gra-
dients are given in Fig. 4.9. They agree well with the Kratky balance value
of 1.055g/cm3.

However, the big drawback of performing static density gradients via inter-
ference optics in an XL-A/I is the uncertainty of detecting really all components
of an investigated sample if it shows a complex composition. Especially minor
secondary components and strongly diffusion-broadened components can easily
be overlooked in interference “photos”/scans. The resolution power is also lim-
ited, making it impossible to identify two components of very similar density.
Interference optical detection of density gradients is restricted to flat gradients
(i.e., metrizamide contents < 15wt%, see Fig. 4.9). In steep gradients, the (basic)
interference fringes of the gradient itself are no more resolvable, especially in the
bottom area. In practice, only Schlieren optics is suitable for density gradients
of complex samples. For further details on the calculation of ρs(r) from the in-
terference optical XL-A/I signal and on the experiment itself, the reader should
consult [14].

4.3 Dynamic Density Gradients

The main drawback of static (= equilibrium) density gradients is that the exper-
iments are very time-consuming. Especially in an industrial laboratory, this is of
very high relevance. A second major disadvantage of the static density gradient
experiment, described in Sect. 4.2, is the need to apply gradient material in rela-
tively high amounts. This runs the danger of interactions of the analyzed sample
with the gradient material. As mentioned above, preferential solvation can result
in misleading information if absolute particle densities ρp are desired.

For certain systems, these problems are overcome by a technique developed in
the 1980s by Lange [15]. This technique, called dynamic density gradient, was then
further modified by one of the authors [16]. As we will see in the next paragraph,
this allows one to avoid the time-consuming formation of the density gradient
equilibrium in the cell, and makes use of gradient materials that are chemically as
similar as possible. The basis of dynamic density gradients is mainly the use of the
synthetic boundary technique (see Sect. 3.6).

Theory of Dynamic Density Gradients
In dynamic density gradients, a pair of solvents that are chemically nearly iden-
tical, but exhibit a sufficient density difference, are overlaid (superimposed) in
a synthetic boundary cell. Effectively, dynamic density gradients are performed
only with the solvent pair H2O (ρH2O = 1.0g/cm3) and D2O (ρD2O = 1.1g/cm3),
and therefore the maximum density range covered in this standard experiment is
1.0–1.1g/cm3. In the following, using again Fig. 3.25, for a start we describe the
dynamic density gradient experiment without the presence of a sample, and subse-
quently explain the actual dynamic density gradient experiment as a fractionation
tool of samples.
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In a synthetic boundary cell of the valve type (see Sect. 2.3 and Figs. 2.7e, 3.24
and 4.11), pure D2O is placed into the chamber of the measuring cell, whereas
pure H2O is put into the reservoir (= storage bin, see Fig. 3.25). Depending
on the valve rubber used, the H2O is forced through the small hole in the bot-
tom of the storage bin into the chamber on top of the D2O at a certain cen-
trifugal field force (usually about 10 000rpm). Around the well-defined radial
overlaying position roverlay in the cell (called ru in Fig. 4.11), the gradient den-
sity changes from 1.0 to 1.1g/cm3, following a steep step-like radial function
ρs(r) in the first seconds (see Fig. 4.11). This function becomes broader with
time. The standard final rotor speed of dynamic H2O/D2O density gradients
is 40 000rpm. Inter-diffusion of heavy water and (light) water molecules starts
immediately after overlaying to equalize the radial density distribution of the
solvent mixture. At the (late) end of the experiment, a homogeneous mixture
of H2O and D2O, and therefore a unique radial density has become established
throughout the measuring cell. In the meantime, a time-variable density gradi-
ent ρs(r, t), often referred to as a dynamic density gradient, is built up due to
the inter-diffusion of heavy water and (light) water molecules. Different volume
fractions of heavy water and (light) water at different radial positions in the gra-
dient zone of the cell result in different radial densities ρs(r). Here, it has to

Fig. 4.11. Upper part Three Schlieren optical pictures of a dynamic H2O/D2O density gradient run,
using a 12-mm mono-sector valve-type synthetic boundary cell at 40 000 rpm. Lower part ρs(r) evalu-
ation of the picture taken at 9-min running time (ru = roverlay)
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be noted that the centrifugal forces applied are not sufficient to separate H2O
from D2O.

Measurement of the Dynamic Density Gradient Course ρs(r)
For the determination of particle densities, exact knowledge of the density gra-
dient course with radius ρs(r) is needed (at a defined running time t). This can
be measured by Schlieren optics by following the change of the experimentally
registered refractive index (dn/dr)(r) curve with the radius r (see Fig. 4.11, upper
part). Via integration over r, the radial course of the refractive index is obtained
(for the chosen running time; see (4.27)):

n(r) = nrm +
(
nrb − nrm

) ·

r∫
rm

dn

dr
dr

rb∫
rm

dn

dr
dr

(4.27)

Under the assumption of ideal mixing behavior (given in the case of H2O and
D2O), and with the Gladstone–Dale rule [17], (4.28) is obtained:

ρs(r) − ρs,rm

ρs,rb − ρs,rm
=

n(r) − nrm

nrb − nrm

(4.28)

Combined with (4.27), we obtain (4.29), which gives the radial course of density
ρs(r) from the radial change of the refractive index ns(r), if the densities of the
solution at the bottom and at the meniscus are known. This is the case as long as
no mixture of H2O and D2O has been formed at the corresponding radial positions
rm and rb.

ρs(r) = ρs,rm +
(
ρs,rb − ρs,rm

) ·

r∫
rm

dn

dr
dr

rb∫
rm

dn

dr
dr

(4.29)

Therefore, the radial density gradient ρs(r) can be determined very simply (see
lower part of Fig. 4.11, for the running time 9min) from the area ratio between the
Schlieren peak area at radial position r, Aschl(r), and the total peak area Aschl,total

(see (4.30)) and the (known) densities at the bottom and at the meniscus (ρD2O

and ρH2O).

Aschl(r)
Aschl,total

=

r∫
rm

dn

dr
dr

rb∫
rm

dn

dr
dr

(4.30)
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For the reasons given above, the dynamic density gradient centrifugation can not
be evaluated properly as soon as the densities at the bottom and at the meniscus are
no longer known, i.e., as soon as the diffusion has spread the H2O/D2O boundary
(visible as a negative Gaussian Schlieren curve in Figs. 4.11 and 4.12) so strongly
that D2O molecules reach the meniscus, and H2O reaches the bottom (which is the
case in the Schlieren photograph of Fig. 4.11, taken at 45-min running time).

The considerations described above hold only if the sample fractions to be
analyzed migrate fast toward the point where their densities are matched, so
that no significant change of the density gradient occurs during this movement.
This constraint is normally fulfilled for polymeric dispersions, i.e., for compact
particles with dp > 30nm. Dissolved macromolecules are not analyzable with
dynamic density gradients because they do not move fast enough.

The density range of dynamic H2O/D2O density gradient experiments can be
shifted [15] to either side by adding a third component to the H2O/D2O mixture
(as for static density gradients, see Sect. 4.2.2 and Fig. 4.3). Most commonly used
as shift agents are methanol (ρmethanol = 0.793g/cm3 at 25◦C) to extend the range
to lower values, and ethylene glycol or glycerin (ρethylene glycol = 1.114g/cm3 and
ρglycerin = 1.261g/cm3) for shifting to higher values. From this third component,
significant additional complications arise, as mixing enthalpies, etc., have to be
taken into account. Thus, the overall conclusion is that dynamic H2O/D2O density
gradients are suited for the density range 0.85 < ρs(r) < 1.25g/cm3.

To demonstrate the fractionating power of the dynamic density gradient per-
formed in the AUC, we give one example here (another example was presented in
Fig. 3.25 above). The same mixture of 11 polymeric latex particles (see Table 4.1)
used to set up the marker calibration evaluation of static equilibrium density gra-
dients (see Sect. 4.2.1 and Fig. 4.5) is investigated in a dynamic H2O/D2O density
gradient experiment. According to Table 4.1, five components of the mixture are
expected to exhibit densities in the range covered by this dynamic density gradient
between 1.0 and 1.1g/cm3. Figure 4.12 shows four Schlieren optical pictures of the
corresponding experiment, taken at 0.5-, 4-, 6- and 10-min experimental running
time at the standard rotor speed 40 000rpm.

The Schlieren photograph taken after 0.5min (in the startup phase of the
rotor at about 5000rpm) shows the measuring cell before overlaying has occurred.
The cell is half filled with D2O, which contains the dispersed (turbid) sample
(ctotal = 3g/l, i.e., about 0.19g/l of each component). In the next Schlieren picture
(taken after 4min), the meniscus moves to the top of the cell during the overlaying
of H2O onto the D2O phase, because the valve opens at about 10 000rpm. The
dynamic density gradient has already formed at the H2O/D2O interface. In the
course of the experiment, the components of the sample having densities below
1.0g/cm3 or above 1.1g/cm3 will float or sediment out of the region of the gradient.
The expected five components are fractionated within the region of the density
gradient, and form narrow turbidity bands. The particle densities determined,
using (4.29), the 10min photograph and the procedure described in Fig. 4.11,
are 1.004, 1.021, 1.043, 1.067 and 1.089g/cm3. These values correspond very well



124 4 Density Gradients

Fig. 4.12. Four Schlieren optical pictures of a dynamic H2O/D2O density gradient experiment per-
formed on a mixture composed of 11 polymeric latex components with different particle densities.
The pictures are taken after 0.5, 4, 6, and 10 min. Five of the 11 density fractions are recorded within
this density gradient range. A 12-mm mono-sector valve-type synthetic boundary cell was applied.
The ρs(r)-axis below the 10 min photograph was calculated as described in Fig. 4.11 (reprinted with
permission from [18])

with the independently measured “true” values (Kratky balance) 1.000, 1.021,
1.043, 1.066 and 1.089g/cm3, given in Table 4.1. This experiment is an impressive
demonstration of (i) the fractionating power, and (ii) the high (absolute!) precision
of the dynamic density gradient as well as (iii) the short duration of the analysis:
Within only 10min, much information on sample composition is gained. Again,
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Fig. 4.12 is a good example for what we call “density spectroscopy” via AUC
density gradients. It is interesting to note that this experiment in Fig. 4.12, done in
an analytical ultracentrifuge, was repeated in a preparative ultracentrifuge, using
38-ml tubes (see Sect. 7.2 and Fig. 7.5).

4.4 Other Types of Density Gradients

Beside the two main types of density gradients (the static equilibrium, and the dy-
namic density gradients) described in this Chap. 4, there are other types of density
gradients. Examples are the preparative dynamic density gradient (see Sect. 7.2),
density gradient-related techniques such as the pH gradient (see Sect. 7.2), and
the dynamic Percoll density gradient (see Sect. 4.4.1). These have in common that
they are not (yet) applied broadly, and thus are not so much of practical interest.
Nevertheless, as new approaches are also envisaged, it is worth considering at least
the principles of alternative types of (density) gradient experiments. One example
of such an exotic density gradient, the aqueous Percoll density gradient, will be
discussed in more detail in the following section.

4.4.1 Percoll Density Gradient

A special type of fast dynamic AUC density gradient experiment, the (analytical)
dynamicPercoll density gradient,was introducedbyoneof theauthors in1984 [16].
It allows one to analyze particle densities in the range 0.85–1.15g/cm3 within the
timescale of a sedimentation velocity experiment, i.e., within 30min. For this
dynamic Percoll density gradient, simple standard cells, mono- or double-sector
cells, are used, rather than synthetic boundary cells such as those used in the
dynamic H2O/D2O density gradient described above in Sect. 4.3. The principle of
this type of experiment is described in the following.

Figure 4.13 shows a TEM micrograph and the particle size distribution of
Percoll. This is a dispersion of very small Percoll nanoparticles in water, supplied
by Pharmacia Fine Chemicals, Uppsala, Sweden. Percoll consists of inert SiO2

particles coated with polyvinyl pyrrolidone (PVP). The density of the Percoll
particles is ρPercoll = 1.992g/cm3 (at 25◦C), particle sizes varying in the range
5–35nm (see Fig. 4.13). The original aqueous Percoll dispersion, as supplied by
Pharmacia, has a particle concentration of cPercoll = 24wt%, and a total density of
ρ = 1.135g/cm3.

This aqueous Percoll dispersion, diluted to 12wt% with water, is subjected
to a sedimentation velocity run (see Fig. 4.14). Usually, the standard conditions
are: 20 000rpm, 3-mm mono-sector cells, and Schlieren optics. Three Schlieren
pictures, after 20-, 30- and 40-min running time, are shown in Fig. 4.14. They yield
an average sedimentation velocity coefficient s = 180S for these Percoll particles
(but there is a considerable s distribution of 40 < s < 600S).

Because of the relatively broad particle size distribution of the Percoll parti-
cles, the Schlieren peak representing the sedimentation boundary of these Percoll
particles is broadened with increasing experimental time, as the boundary moves
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Fig. 4.13. Transmission
electron microscopy (TEM)
picture and particle size
distribution of Percoll
particles. Artificial black
spots representing 100- and
800-nm particles are added
to the TEM micrograph in
order to illustrate the size
ratios between the density
gradient-forming Percoll
particles and the analyzed
polystyrene latex sample
(reprinted with permission
from [16])

toward thebottomof theAUC measuring cell.Within this sedimentationboundary,
i.e., within the radial range of the corresponding Schlieren peak, the Percoll con-
centration c(r) changes from zero at the upper end of the sedimentation boundary
(near the meniscus) to 12wt% at the lower end of the boundary (near the bottom)
where the boundary passes into the plateau region with constant Percoll concen-
tration. The radial concentration change c(r) is associated with a radial density
change ρs(r) varying from 1.0g/cm3 in the pure solvent region (= pure water) to
the density of the starting, 12-wt% Percoll dispersion, 1.06g/cm3 in the region of
constant Percoll concentration. Therefore, the integration of the Schlieren optical
signal in Fig. 4.14 (at a defined running time) yields directly the radial density
gradient course ρs(r) (in analogy to the dynamic H2O/D2O density gradient, (4.29)
and (4.30) in Fig. 4.11). In the upper 20-min Schlieren photograph of Fig. 4.14, the
result of this integration is visualized as a ρ axis (parallel to the r axis). This ρ axis
varies with the running time t, i.e., it shifts increasingly in the direction of the
cell bottom. It can be summarized that by performing a standard sedimentation



4.4 Other Types of Density Gradients 127

Fig. 4.14. Schlieren optical
pictures of a sedimentation
velocity run of a dispersion
of 12-wt% Percoll particles
dispersed in H2O. Pictures
taken after 20, 30, and
40 min. Due to the different
sedimentation velocities of
the differently sized PVP-
coated SiO2 particles (5 <
dp < 35 nm), the Schlieren
peak is broadened in the
course of the experiment.
This creates a radial dynamic
density gradient ρs(r, t) in
the region of the Percoll peak
(1.00 < ρs(r) < 1.06 g/cm3),
shown as a ρ axis below
the 20-min photograph
(reprinted with permission
from [16])



128 4 Density Gradients

Fig. 4.15. Schlieren opti-
cal pictures of a dynamic
88 H2O/12 Percoll density
gradient experiment of
a polystyrene latex sam-
ple consisting of 800-nm
particles (cPS = 0.01 g/l).
The turbidity band caused
by the rapidly sediment-
ing/floating polystyrene
particles stays at its rel-
ative position of equal
density throughout the
experiment, and sediments
together with the Percoll
Schlieren peak toward the
cell bottom (reprinted with
permission from [16])
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velocity run with Percoll particles, a relatively fast dynamic density gradient ρs(r, t)
is established within 20–40min in an AUC. This can be advantageous, as will be
shown in the following.

In Fig. 4.15, Schlieren optical pictures of another experiment performed simi-
larly to that described above are shown. In this case, a small amount of an aqueous
polystyrene dispersion (cPS = 0.01g/l, consisting of big latex particles 800nm in
diameter) is added to the Percoll dispersion. In addition to the broadened Schlieren
peak of Percoll, a narrow turbidity band can now be observed. This turbidity band
is formed by the polystyrene particles, which move very fast, within minutes, by
simultaneous sedimentation and flotation, to their isopycnic radial position riso in
this dynamic Percoll density gradient.

The turbidity band remains in the region of the Percoll peak, and does not
show further relative sedimentation or flotation, compared to the Percoll peak.
Together with the Percoll Schlieren peak, the turbidity band sediments completely
to the cell bottom. The radial position of the turbidity band within the Percoll
density gradient can easily be analyzed at any given running time, and thus ρp

calculated. From all photographs in Fig. 4.15, the obtained density of the turbidity
band is the same, i.e., ρp = 1.052g/cm3. This value corresponds very well with the
known density of polystyrene latex particles (ρPS = 1.055g/cm3), a fact that can
be taken as a proof of concept. The relatively limited density range of dynamic
water/Percoll density gradients can be shifted to 0.85–1.15g/cm3 by substitution
of the H2O by either methanol (for lower densities) or heavy water D2O (for higher
densities). For details of experiments performed on samples containing different
density fractions, unknown samples, and even on living biological cells, the reader
is referred to [16]. The dynamic aqueous Percoll density gradient is restricted
to large particles (dp > 100nm), which sediment much faster than the Percoll
particles.
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5 Sedimentation Equilibrium

5.1 Introduction

Sedimentation equilibrium runs in an AUC – in short, “equilibrium runs” – are
long-duration runs of 10–200h. The essential is that during this long time, equi-
librium is reached between sedimentation to the cell bottom and (back-) diffusion
of the dissolved (macro) molecules inside the solution column. This means that
the radial concentration distribution c(r) of the solute inside the measuring cell
is independent of time or, in other words, the left-hand term in Lamm’s equation
((1.10) or (1.15)) is zero, which means that dc/dt = 0 is valid all times.

There are two kinds of equilibrium runs in an AUC – first, the static density
gradient run to measure densities ρp of dissolved macromolecules and particles,
and second, the sedimentation equilibrium run to measure molar masses M of
dissolved macromolecules. In the case of polydisperse solutes, the sedimentation
equilibrium run allows us to measure the different average molar masses, Mn, Mw,
Mz (see also Sect. 3.4.2 and (3.18)), and the complete molar mass distribution
W(M), where

Mn =
∑

ci∑
ci · M−1

i
is the number average molar mass, (5.1a)

Mw =
∑

ciMi∑
ci

is the weight average molar mass, (5.1b)

Mz =
∑

ciM2
i∑

ci · Mi
is the z-average molar mass (5.1c)

and ci is the mass percentage of the component i with molar mass Mi within the
whole polydisperse polymer. Density gradient runs are already broadly treated
in Chap. 4, and thus this Chap. 5 deals only with the sedimentation equilibrium
run to measure molar masses M and molar mass distributions W(M). In addition
to the sedimentation equilibrium method, there are some other AUC methods to
measure M (see Sect. 5.5), but the sedimentation equilibrium method is the most
important one.

Beside the AUC, there are other methods to measure molar masses and molar
mass distributions, such as the scattering methods (static light scattering (SLS),
small angle neutron scattering (SANS), small angle X-ray scattering (SAXS)), os-
mometry, viscosimetry, size exclusion chromatography (SEC), gel electrophoresis,
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and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF-MS). However, the AUC is one of the most powerful and versatile
tools, especially to determine molar mass distributions (see example in Sect. 3.4.2),
because a fractionation according to Mi takes place within the AUC measuring cell.
In contrast to SEC and gel electrophoresis, which are relative methods, the AUC
is an absolute method, which means that no calibration standards are necessary
to measure molar masses. Additionally, the AUC covers the broadest range of mo-
lar masses, from about 300 up to several million Dalton (g/mol). This is possible
because the rotor speed ω can be varied easily between 500 (for high M) and
60 000rpm (for small M).

The basic equation of sedimentation equilibrium runs used to calculate M from
the measured concentration distribution c(r) (for monodisperse solutes in an ideal
non-interacting solution, where A2 = 0 is valid, and at infinite dilution c → 0)
follows from Lamm’s equation (1.15) for dc/dt = 0, or more simply, from the net
mass transport equation (1.13) for dm/dt = 0 to

s

D
=

(
dc/dr

)
ω2rc

(5.2)

and further, by substituting s/D by means of the Svedberg equation (1.8), to

M =
RT(

1 − ν · ρ
)

ω2
· (dc/dr)

rc
(5.3)

or, with dc/c = d ln c and 2r dr = d(r2), to

M =
2RT(

1 − ν · ρ
)

ω2
· d ln c

dr2
(5.4)

This final basic equation (5.4) says that a plot of the logarithm of concentration
c(r) versus the square of the radial distance r2 should give a straight line (see, for
example, Fig. 5.3b), with the slope being directly related to the molar mass M of the
(monodisperse!) solute. In the case of a polydisperse solute in a non-ideal solution
(A2 > 0), this straight line will be transformed into a curvilinear line (upward-
bending in the case of polydispersity/association, and downward-bending in the
case of non-ideality). A careful analysis of this curvature will yield the molar mass
distribution of the solute, as well as information on possible interactions, such as
self-association, or on the thermodynamic quality of the analyzed solution, i.e.,
about the association constants Ka or the second virial coefficients A2. This analysis
is the main topic of Chap. 5.

The sedimentation equilibrium method was used extensively in the years 1950–
1970 for molar mass measurements of biopolymers, especially for proteins. Nowa-
days for proteins, amino acid sequencing and gel electrophoresis is much faster
and more precise. Nevertheless, still today only the equilibrium method allows us
to study reversible associations of proteins in solution (see Sect. 5.4.2). In the years
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1950–1980, molar mass determinations via the equilibrium method, using the old
analytical ultracentrifuge of Beckman, the famous “Model E”, was a tedious, long
procedure, because of working with photo-plates, special calibrations, a complex
digitization of the photo-plates in a comparator by hand, and manual graphical
extrapolations. Nowadays, all these problems are eliminated with the new Beck-
man Optima XL-A/I machine, which is fully computerized and digitized via a CCD
camera and an image processing system, delivering 100-fold more measuring data
than before, and having an eight-cell rotor multiplexer. For synthetic polymers
and especially synthetic polyelectrolytes, which are mostly broadly distributed,
molar mass determinations via the equilibrium method have now become easier,
faster, and more precise. We will demonstrate that in this Chap. 5 by presenting
only measurements on synthetic polymers (with one exception in Sect. 5.4.3).

There are many publications about the sedimentation equilibrium method
in the literature. For a deeper study and for further details, we recommend

the following review articles: Creeth and Pain [1], van Holde and Baldwin [2],
Chervenka [3], Yphantis [4], and Harding et al. [5].

5.2 Experimental Procedure

Equilibriumruns inanAUCtomeasuremolarmassesM canbedonewithalloptical
systems: Schlieren optics, interference optics, or the UV/VIS scanner. The latter is
appropriate only if the solute shows absorption, and if the solvent is transparent for
the corresponding wavelength λ. This is always valid for aqueous solvents (i.e., for
biopolymers and polyelectrolytes), but it is not valid for the most common solvents
of synthetic polymers, such as toluene, THF and DMF. These solvents show strong
UV absorption, so that the dissolved polymer is “invisible”. Thus, interference
optics is the universal detector, and mostly used for synthetic polymers. Figure 5.1
shows the primary results (before data evaluation) of a standard equilibrium run
recorded with the three different optical systems mostly used: a UV scan (done
with an Optima XL-A/I), and a combined interference and Schlieren photograph
(both done with an old Model E during the same run). In the new Optima XL-A/I,
these “photos” are done with a digital CCD camera (see the interference “photos”
made by an Optima XL-A/I in Fig. 5.2). All three scans/photographs in Fig. 5.1
show the typical result of an equilibrium run: an exponential radial course of the
concentration distribution c(r) within the measuring cell.

The standard measuring cell is a double-sector cell with a thickness of
a = 12mm, and with the corresponding window holder (UV, interference or
Schlieren). Also 3- or 25-mm centerpieces (aluminum, Epon or titanium, the lat-
ter is recommended for organic and aggressive solvents) are possible. The initial
concentration c0 of the solute should be as low as possible to be near the ideal
state c → 0. On the other hand, c0 depends on the sensitivity of the optical sys-
tem chosen: 0.05–1.00g/l for the most sensitive UV scanner, 0.5–10.0g/l for the
interference optics, and 2–40g/l for the Schlieren optics. For non-ideal solutions,
a series of concentrations c1, c2, c3, ... is recommended (three for the four-cell rotor,
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Fig. 5.1a,b. Typical pri-
mary results of standard
equilibrium runs to mea-
sure molar masses. a A ra-
dial UV scan, and b a com-
bined Schlieren and inter-
ference photograph, using
12-mm double-sector cells,
2.5-mm filling heights, and
an artificial FC-43 oil bot-
tom (reprinted from [3]
and [6] with permission)

and seven for the eight-cell rotor). This allows us to carry out the necessary extrap-
olation c → 0. Sapphire windows are here preferred for optical reasons, compared
to quartz windows in the case of interference optics.

The total measuring time tequil needed to reach equilibrium is proportional to
the square of the cell filling height, (rb − rm)2, according to [2]. Thus, measuring
times of hours up to weeks are possible. In practice, one chooses a 2–3mm length
of the solution column (as in Fig. 5.1), in order to be close to the equilibrium state
within about 24h. Also short column equilibrium runs with filling heights of 0.5–
1.0mm and shorter running times of only 3–10h are possible. Although these M
determinations by short column runs are not very precise, especially in the case of
polydisperse samples, they may be used for analyzing (mostly monodisperse) pro-
teins. In contrast to former days, with the tedious, manual comparator evaluation
of photo-plates, it is today much easier to check whether the equilibrium state is
really reached. This is done by continuous automatic scans during the whole equi-
librium run, until comparisons between following scans do not show any difference
within the detector sensitivity. Only the last scan and its digital data are used for
the evaluation of the molar mass M and the molar mass distribution W(M).

Because the measuring data at both ends of the solution column are very
important, it is common practice to use a small artificial bottom (about 0.5mm in
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Fig. 5.2. Example of a typical standard sedimentation equilibrium run with seven different con-
centrations of the NBS 706 polystyrene in toluene. The upper part shows the seven primarily taken
interference “photos” of an Optima XL-A/I, and the lower part the resulting (classical) evaluation,
delivering Mw and A2
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height) of heavy FC-43 oil (3M Company) to better visualize the bottom area. Thus,
not only the upper meniscus rm of the column is clearly visible and measurable, but
the lower meniscus at the bottom, rb, too. The heavy FC-43 oil is not miscible with
most common solvents, so that it forms a transparent cushion under the solution
column during the run. As a result, the standard filling procedure of a standard
12-mm double-sector cell for an equilibrium run (see Fig. 5.1) is the following: to
start with, fill the solution compartment with 0.03ml FC-43 oil, and add 0.12ml
of solution. Then, fill the solvent compartment with 0.17ml solvent (essentially,
the dialyzate of the sample solution has to be used in the case of biopolymers and
polyelectrolytes). This results in a standard length of the solution column of about
rb − rm = 2.5mm.

The absolute temperature T during an equilibrium run is not so important
but not so its constancy, because temperature gradients within the cell give rise to
remixing of the radial exponential equilibrium concentration profile c(r), which
leads to falsifying this profile. Usually T is 20 or 25◦C. The choice of the optimal
rotor speed ω depends on the molar mass M of the analyzed sample. It is reason-
able to start with 10 000rpm, and adjust during the run to the optimal speed. This
optimal speed is reached if at the equilibrium state the relation of sample concen-
tration at the bottom cb to the concentration at the meniscus cm is between 3:1 and
10:1. A modern way to find the optimal ω and an estimation of tequil are the simula-
tion routines using the program “Ultrascan” ([33]), and a rough estimation of the
expected M value. A special case, where cm = 0 is valid, we call meniscus depletion
run (for details and the evaluation procedure, see Yphantis [4]), but this method
is not very precise. It especially fails for broadly distributed polymers (to prove
cm = 0, one needs longer solution columns, rb − rm). In order to reach the equilib-
rium state faster, often overspeeding is used, which means choosing for the initial
3h of an equilibrium run a rotor speed that is 1.5 times higher than the final speed.

The basic equilibrium run equations (5.3) and (5.4) at the beginning of this
Chap. 5 show that for the calculation of M, beside T, ω and the measured concen-
tration profiles, c(r) or dc/dr(r), a precise knowledge of the important buoyancy
term

(
1 − ν · ρ

)
is needed. Often the partial specific volume ν of the solute, and

the solution density ρ (which is approximately the density of the pure solvent) are
known from the literature or tables. If not, we have to measure it (as described in
Sect. 2.6.1) with a high-precision Kratky density balance on a concentration series
(5, 10, 20g/l) of the solute in the solvent used.

To transfer the primary measured radial profiles of the absorption A(r), the
refractive index n(r), or refractive index gradient dn/dr(r) (see Fig. 5.1) into the
secondary concentration profile c(r) used for calculating M, specific optical so-
lute/solvent constants are needed. For the absorption optics, this is the specific
decadic absorption coefficient ε, and for the interference and Schlieren optics this
is the specific refractive index increment dn/dc (usually, as described in Sect. 2.6.2,
dn/dc is measured by means of a high-sensitivity or a differential refractometer,
using the same concentration series as that used for the ν determination).
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For the absorption optics, this transfer relationship (see [6]) between the ab-
sorbance A = lg(I0/I) and the concentration c is given by Lambert-Beer’s law (2.2),
A(r) = lg(I0/I(r)) = εc(r)a, if ε is known from the literature or tables. If ε is not
known, any equilibrium run can deliver ε with the help of the law of conservation
of mass,

1∫
0

c(X)dX = c0 (5.5)

where c0 is the initial concentration, and X = (r2 − r2
m)/(r2

b − r2
m) is the normalized

squared radius r. Combination of (2.2) and (5.5) gives the wanted

ε =
1

c0a

1∫
0

A(X)dX (5.6)

As c0,aand∫ A(X)dX areobtainedexperimentally, εmaybeeasilydetermined from
equilibrium runs with absorption optics. The parameter ε depends considerably on
the selected UV wavelength λ. A presupposition for the validity of this procedure
is that the total amount of solute is recorded within the A(X) signal, and no (high
molar mass) parts of the solute have completely sedimented to the cell bottom.

For the interference optics (and the Schlieren optics – not presented here), this
transfer relationship can be derived in a similar way. Because the vertical shift of
the interference fringes J is proportional to the concentration c (see Sect. 2.4.2 and
(2.3)), in analogy to the absorption optics and the Lambert-Beer equation (2.2),
the following relation is valid:

c(X) =

(
ΔJ(X) + Jm

)
λ

a(dn/dc)
(5.7)

where ΔJ(X) = (J(X) − Jm) is the number of fringes shifted in relation to the
meniscus position of the chosen fringe at the (radial) distance X, and Jm is the
unknown (absolute) number of fringes at the meniscus. Again, Jm can be calculated
with the help of the equation for the conservation of mass, (5.5), via the following
relation:

Jm = J0 −

1∫
0

ΔJ(X)dX =
c0a(dn/dc)

λ
−

1∫
0

ΔJ(X)dX (5.8)

where J0 = (c0a(dn/dc))/λ, calculated with (2.3), is the total number of fringes of
the initial concentration c0. Again, as c0, a, dn/dc, λ, and ∫ ΔJ(X)dX are obtained
experimentally, Jm and also c(X) may be determined from equilibrium runs with
interference optics. If c0 of the initial concentration is not known, it is possible to
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determine J0 with a synthetic boundary run of that solution (see Sect. 3.6). The
accuracy of AUC M measurements via interference optics depends essentially on
the accuracy of the Jm determination (see also [20]).

For nearly all measuring methods of molar masses M, also for the equilibrium
run, we need to know the initial concentration c0 of the starting solution. An M
value is alwaysonly asprecise as this value c0.Usually, c0 is determined ina relatively
precise manner by weighing in the solid solute into the solvent. However, there are
cases where this is not possible, for example, if there is a ready solution with an
unknown concentration c0. In this case, one can solve the problem by a synthetic
boundary run of this solution within the AUC, and determine c0 as described in
Sect. 3.6.

We would like to conclude the description of the experimental procedure with
a typical example of a standard equilibrium run, shown in Fig. 5.2: the primary in-
terference “photos”, taken first by means of an Optima XL-A/I CCD camera within
the same run, where seven different concentrations of a polystyrene sample, dis-
solved in toluene, were measured simultaneously. Also shown are the resulting
molar mass Mw and the second virial coefficient A2, delivered by a complex evalu-
ation. How this data analysis is handled will be described in the following Sect. 5.3.

5.3 Data Analysis

This Sect. 5.3 is divided into four parts. In Sect. 5.3.1, we present the well-known
classical evaluation of sedimentation equilibrium runs, and the corresponding
equations to calculate M of monodisperse samples, and Mw and Mz of polydis-
perse samples. In Sect. 5.3.2, we describe a powerful nonlinear regression eval-
uation method, created by Lechner in 1991, to determine the complete molar
mass distribution W(M), using (i) a versatile three-parameter model molar mass
distribution W(M, P, B, K), and (ii) also the Mw and Mz values of the classical eval-
uation, in Sect. 5.3.1, as starting parameters for the nonlinear regression. Lechner’s
method is particularly well suited for polydisperse samples. Section 5.3.3 shows
practical applications of the classical and of the nonlinear regression evaluation
methods. In Sect. 5.3.4, we outline the M-STAR evaluation method (M∗), which
delivers, as does the classical evaluation, an Mw value without the need of a model.
The M-STAR program can be used as a pre-evaluation program preceding any
model-dependent evaluation.

5.3.1 Basic Equations for Molar Mass Averages –
Classical Evaluation of AUC Equilibrium Runs

The full theoretical thermodynamic foundation of the sedimentation equilibrium
is given in the famous books of Fujita [7,8]. The basic equation for the radial con-
centration c(r), or c(X) with X = (r2−r2

m)/(r2
b−r2

m) at the sedimentation equilibrium
state can be described for non-ideal solutions (A2, A3, ... > 0) of monodisperse poly-
mers by the following relation [8]:



5.3 Data Analysis 139

r dr

(
1 − v2ρ1

)
ω2

RT
= d(ln c)

{
1
M

+ 2Ase
2 c + 3Ase

3 c2 + ...
}

(5.9)

where Ase
2 , Ase

3 , ... are the virial coefficients of sedimentation equilibrium. This
(5.9) is essentially identical with the basic (5.3) and (5.4) for Ase

2 = Ase
3 = ... = 0.

For non-ideal solutions of polydisperse polymers, the following relation holds
for the ith (monodisperse) component within that polydisperse sample with in all
i = 1, 2, ..., q components [8]:

r dr

(
1 − v2ρ1

)
ω2

RT
=

d
(
ln ci

)
Mi

+ 2
q∑

k=1

A2ik dck + ... (5.10)

Summation over all solute components i, and division by
∑

ci ≡ c(r) at distance r
yields the “point” weight-average molar mass Mw(r) (see (5.1b) at a radial dis-
placement r (or X):

∑
ciMi∑

ci
= Mw,app(r) =

(
r2
b − r2

m

)
Λ

d(ln c)
d(r2)

=

(
r2
b − r2

m

)
2Λ

(dc/dr)
c · r

=
d ln c

ΛdX
(5.11)

with the constant

Λ =

(
1 − ν2ρ1

)
ω2

(
r2
b − r2

m

)
2RT

(5.12)

The suffix “app” in Mw,app(r) includes correction terms for non-ideality (i.e., for
A2, A3 > 0). The correct Mw(r) is obtained by extrapolating the Mw,app(r) values
to zero concentration c → 0. As Schlieren optics measures dn/dr (which is pro-
portional to dc/dr), rather than c(r), one has to rearrange (5.10) with respect to
dn/dr ∼ dc/dr. This gives the “point” z-average molar mass Mz(r) (see (5.1c) at
a radial displacement r (or X):

∑
ciM2

i∑
ciMi

= Mz,app(r) =

(
r2
b − r2

m

)
Λ

d

dr2

[
ln

{
1
r

dc

dr

}]
=

2
Λ

d[ln(dc/dX2)]
dX

(5.13)

Theoperational “point” averagemolarmasses Mw,app(r) and Mz,app(r) are functions
of the radial distance r (or X) at a point in the ultracentrifuge cell or, in other words,
the local molar masses defined by the local slopes of the c(r) curve or the dc(r)/dr
curve. To obtain the real, r-independent average molar masses Mw,app and Mz,app

of the whole polydisperse polymer, one has to carry out an integration of (5.11)
and (5.13), from the meniscus to the bottom of the cell (with the use of the relation
for the conservation of mass, (5.5)). The results of that integration are the two
following, well-known equations:



140 5 Sedimentation Equilibrium

Mw,app =

(
cb − cm

)
Λ · c0

(5.14)

Mz,app =

(
r2
b − r2

m

)
2Λ

1(
cb − cm

) [
1
rb

(
dc

dr

)
b

−
1

rm

(
dc

dr

)
m

]
(5.15)

Equation (5.14) is called the Lansing–Kraemer equation [9], and (5.15) the
Richards–Schachman equation [10], after the scientists who first derived these
in 1935 and 1959.

According to (5.14), we need only the difference cb − cm to calculate Mw,app,
becauseallothervalues in this equationareknown.Thisdifference inconcentration
between the bottom of the cell and the meniscus can easily be determined directly
by the UV scanner, using (2.2), or with interference optics by the (relative) number
of shifted fringes at the cell bottom, ΔJ(rb) = (Jb − Jm), using (2.3):

cb − cm = Δc
(
rb

)
=

rm∫
rb

dc =

rm∫
rb

(
dc

dr

)
dr =

A
(
rb

)
− A

(
rm

)
aε

=

(
Jb − Jm

)
Λ

a(dn/dc)
(5.16)

For Schlieren optics, integration is necessary (not presented here). To calculate
Mz,app according to (5.15) is more complex, because we need, in addition to cb − cm,
the local slopes dc/dr at the radial positions rb and rm. These slopes are con-

nected according to (5.11), as
dc

dr
=

2 · Λ · c · r(
r2
b − r2

m

) · Mw,app(r), with the two point

weight-average molar masses Mw,app(rb) and Mw,app(rm) at these radial positions.
Introduction of these two relations into (5.15) yields

Mz,app =
cbMw,app

(
rb

)
− cmMw,app

(
rm

)
(
cb − cm

) (5.17)

Equation (5.17) is identical with (5.15), and is also called the Richards–Schachman
equation. In contrast to the calculation of Mw,app (see (5.14)), where we need only
the difference of the concentration at the bottom and at the meniscus, cb − cm), we
now need for the calculation of Mz,app (see (5.17)) the absolute values of cb and cm,
too. These values are delivered according to the procedure described in Sect. 5.2,
using (2.2), (5.5) and (5.6) for absorption optics, as well as (2.3), (5.7) and (5.8) for
interference optics.

Ashasbeenpointedout above, all Mapp values include correction terms for non-
ideality.Correctmolarmasses M areobtainedbyanextrapolation Mapp → M. This
is an extrapolation to infinite dilution c → 0. The exact necessary mathematical
extrapolation relation is, according to [8],

1
Mapp

=
1
M

+ 2Ase
2

{ cb + cm

2

}
+ 3Ase

3

{ cb + cm

2

}2
+ ... (5.18)
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However, if c is relatively low, a good approximation is

1
Mapp

=
1
M

+ 2Ase
2 c0 + 3Ase

3 c2
0 + ... (5.19)

In the following, we use only (5.19).
The (classical) determination of number-average Mn (see (5.1a)) or (z + 1)-

average Mz+1 molarmasseswill inprinciplebepossiblewith equations that are sim-
ilar to (5.14) or (5.15). Nevertheless, the applicability is very restricted, due to larger
experimental errors on determining intercepts, slopes and further derivatives of
the primary experimental curves, i.e., of A(r), ΔJ(r), and dn(r)/dr ∼ dc(r)/dr,
especially at the bottom of the cell and at the meniscus. It will be pointed out
in the following Sect. 5.3.2 that the direct transformation (nonlinear regres-
sion) or the indirect (inverse Laplace) transformation of the reduced concen-
tration profile Uw(X) = c(X)/c0 or the reduced concentration gradient profile
Vw(X) = (dc(X)/dX)/c0 is more suitable for the determination of the molar mass
averages Mn, Mw and Mz via an approximated three-parameter model W(M) than
is the case with the classical evaluation method. If the determined approximated
W(M) is of high quality, it allows us to calculate all needed average molar masses
with (5.1), or with the integral form of this equation (see (3.18)).

5.3.2 Basic Equations for Molar Mass Distributions –
Nonlinear Regression Evaluation (Lechner Method)

The determination of the molar mass distribution W(M) of a polydisperse polymer
via AUC equilibrium runs requires the connection of the experimentally measured,
reduced concentration profile c(X)/c0 = Uw(X) (for absorption and interference
optics), or the reduced concentration gradient profile (dc(X)/dX)/c0 = Vw(X) (for
Schlieren optics) with (i) the molar mass distribution function W(M), and (ii)
the reduced concentration profile U(X, M) or the reduced concentration gradient
profile V(X, M) of a monodisperse sample [8, 11–13]:

Uw(X) =
(

c(X)
c0

)
c0→0

=

∞∫
0

W(M)U(X, M)dM (5.20)

U(X, M) = ΛM
e ΛMX

e ΛM − 1
0 < X < 1 (5.21)

Vw(X) =
(

1
c0

dc(X)
dX

)
c0→0

=

∞∫
0

W(M)V(X, M)dM (5.22)

V(X, M) = Λ2M2 e ΛMX

e ΛM − 1
0 < X < 1 (5.23)

Equations (5.20) to (5.23) are valid only for ideal or pseudo-ideal solutions (where
A2, A3, ... = 0 is valid). For non-ideal solutions, one has to perform a very pre-
cise extrapolation to infinite dilution c → 0, or to introduce correction terms.



142 5 Sedimentation Equilibrium

The problem of non-ideal solutions may be avoided by measuring pseudo-ideal
solutions, i.e., using theta solvents at theta temperatures, where A2 = 0 is valid.
However, pseudo-ideal solutions are not available in all cases, which would restrict
the application of this method, if needed.

In principle, (5.20) to (5.23) allow the direct estimation of the desired (ap-
proximated) molar mass distribution W(M), and the corresponding molar mass
averages Mn, Mw and Mz from the experimentally measured Uw(X) or Vw(X), if
there are enough (and very accurate) measuring data. As mentioned above, this
calculation is feasible only if a precise extrapolation toward zero concentration
c → 0 is possible, and has been made. The new Optima XL-A/I with its digitized
absorption and interference optics allows us to carry out such a precise extrapo-
lation to zero concentration by using a sufficient number of concentrations. Up to
seven concentrations, simultaneously measured, each with about 300 measuring
points, A(ri) or J(ri), deliver enough data for a reliable mathematical treatment.

There are two possible ways to obtain the desired molar mass distribution
W(M) from the experimentally measured concentration profiles, an “inverse”
approach, and nonlinear regression. For a long time, the former option was per-
formed by carrying out inverse Laplace transformations of the two Fredholm
integral (5.20) and (5.21), and (5.22) and (5.23) [8, 11–14]. However, the disad-
vantage of this mathematically rigorous inverse Laplace transformation is that the
operators are poorly conditioned, i.e., small changes of the experimental values
Uw(X) or Vw(X) exhibit large changes of the distribution function W(M), and, as
a result, physically meaningless negative values of W(M) may occur [8, 11–14].
Even the introduction of regularizing parameters basically does not solve the diffi-
culties of the inverse Laplace transformation [13,14]. An advantage of the Laplace
transformation is that one does not need any model MMD.

The second way, the nonlinear regression evaluation, was first proposed by
Lechner [15, 16], so we call it the Lechner method. The basic idea behind this
approachwas thatnowadays fast computers areavailable inevery laboratory, andso
the direct estimation of W(M) via nonlinear regression, and a reasonably assumed
model W(M) for the start of the regression are a good alternative to the inverse
Laplace transformation. For this nonlinear regression, one supposes that Uw(X)
and Vw(X) in (5.20) and (5.22) are functions of X and k where k = (k1, k2, ..., kn)
determines the model molar mass distribution function:

Uw(X) = f
(
X, k1, k2, ..., kn

)
Vw(X) = g

(
X, k1, k2, ..., kn

)
S =

∑(
f
(
Xi, k1, k2, ..., kn

)
− Uw

(
Xi

))2 = minimum!

S =
∑(

g
(
Xi, k1, k2, ..., kn

)
− Vw

(
Xi

))2 = minimum!

dS/dk1 = dS/dk2 = ... = dS/dkn = 0

with k1, k2, ..., kn ≡ k = constants of the model molar mass distribution function
W(M).
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The nonlinear regression problem is then defined by minimizing S, which is the
squared sum of the differences between the experimental points Uw(Xi) and the
calculated points f(Xi, k) or g(Xi, k). The problem is solved in the usual way by cal-
culating n partial derivatives of S with respect to k, and setting these equal to zero.
The constants may be Mn, Mw, Mz, ..., or constants of a model molar mass distribu-
tion function, e.g., P, B, K, ... (see (5.24)). Unlike the inverse Laplace transformation
problem, the nonlinear regression method of calculating W(M) is well conditioned
and very stable. The calculation can be performed mathematically by the multidi-
mensional Newton method, or by the multidimensional Simplex method: the Sim-
plex method is preferred because it needs no derivatives of the integral equation.
The Newton method normally converges faster but it sometimes causes problems,
especially if the experimental values are noisy. The calculation needs a model molar
mass distribution W(M). Lechner [17] proposed the following versatile exponen-
tial unimodal three-parameter model distribution function W(M, P, B, K):

W(M) = cMKe−BMP
(5.24)

with

c =
PBK/P+1/P

Γ(K/P + 1/P)
= f(P, B, K)

Mn =
Γ(K/P + 1/P)
B1/PΓ(K/P)

= f(P, B, K)

Mw =
Γ(K/P + 2/P)

B1/PΓ(K/P + 1/P)
= f(P, B, K)

Mz =
Γ(K/P + 3/P)

B1/PΓ(K/P + 2/P)
= f(P, B, K)

Mz+1 = ... = f(P, B, K)

where P, B, K are parameters of the model molar mass distribution W(M, P, B, K),
Γ the Gamma function, P = 0.2−0.5 is valid for the Wesslau distribution or the
log-normal distribution, P = 1 for the Schulz–Flory distribution, and P = 2 for the
Maxwell distribution or the Poisson distribution.

Equation (5.24) covers nearly all types of unimodal molar mass distribution
functions (Poisson, Schulz–Flory, Wesslau, log-normal, etc.) with different broad-
nesses and skewnesses, i.e., for most polymers created by radical or ionic poly-
merization. The constant P can also be considered as skewness parameter. In
the following Sect. 5.3.3, we will demonstrate, by means of practical application
examples, that Lechner’s nonlinear regression method works very well. We will
also compare average values of Mw and Mz from the same equilibrium run, but
calculated with the two different evaluation methods, these being the classical
one and the nonlinear regression method. Lechner’s method is also applicable for
multi-modal distribution functions W(M), by modeling W(M) by an addition of
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several model functions such as (5.24), with different P, B, K parameter sets for
each component (see [16]).

5.3.3 Application of the Basic Equations –
Classical and Nonlinear Regression Evaluation

To analyze an equilibrium run such as the one shown in Fig. 5.2, Lechner [15, 16]
proposed the following five-step procedure, which combines the classical evalua-
tion (steps 1 and 2, see theoretical consideration in Sect. 5.3.1) and the nonlinear
regression evaluation (steps 3–5, see Sect. 5.3.2) in one computer program (this
program is available on request from the author). Steps 1 + 2 deliver classically
Mw, Mz and A2 (which are used as starting parameters for the nonlinear regres-
sion), and steps 3–5 deliver the approximated three-parameter model molar mass
distribution W(M, P, B, K), and the resulting M0

n, M0
w, M0

z and P.

Step 1
Calculation of the reduced concentration profile c(X)/c0 and the relative squared
distance X = (r2 − r2

m)/(r2
b − r2

m) from the primary experimental values A(r), or
ΔJ(r) or (dn/dr)(r). There are only small differences in this calculation between
absorption, interference, and Schlieren optics.

Step 2
Smoothing the experimental c(X)/c0 measuring points (about 300 in the XL-A/I)
by a continuous line using a special regression spline procedure [18]: for classical
evaluation from these smoothed data, we (i) determine at meniscus and bottom
cm, cb and the slopes (dc/dr)m, (dc/dr)b, and (ii) calculate, with (5.14) and (5.15),
Mw,app and Mz,app for every concentration c0; (iii) these M values are extrapolated
according to (5.19) to infinite dilution c0 → 0. The extrapolated values are Mw

and Mz. A2 follows from the (beginning) slope of the 1/Mapp versus c0 extrapolation
line. Subsequently, in step 5, these values are used as starting values in the nonlinear
regression.

Step 3
Here, the nonlinear regression starts with the calculation of interpolated values
of c(X)/c0 for a dataset of 41 equal values of pre-selected equidistant X values
(0, 0.025, 0.050, 0.075, ..., 0.975, 1) from 0 to 1 with a Lagrange or spline interpola-
tion procedure (we prefer the latter). This interpolation is absolutely necessary, as
values of c(X) are not measured for the same X values at different concentrations.

Step 4
Extrapolation of c(X)/c0 to zero concentration c0 → 0 for constant X values by
linear regression for lower-quality solvents or by quadratic regression for higher-
quality solvents: the precision of this extrapolation is very important.

Step 5
Calculation of the approximated three-parameter model molar mass distribu-
tion W(M, P, B, K) and the resulting parameters M0

n, M0
w, M0

z and P by the non-
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linear regression evaluation according to the Simplex method (by minimizing
S =

∑
[f(Xi, k1, k2, ..., kn) − Uw(Xi)]2.

By means of the measuring example in Fig. 5.2, an interference optics equilibrium
run of the calibration polystyrene NBS 706 (already used for MMD measure-
ment via sedimentation velocity runs in Sect. 3.4.2, Fig. 3.12), in the following
we demonstrate this five-step evaluation in detail. This polystyrene NBS 706 is
well characterized and distributed worldwide by the National Bureau of Stan-
dards (NBS), Washington, DC. The given NBS data are: unimodal middle-broad
molar mass distribution, Mn = 136 000g/mol (osmometry), Mw = 257 800g/mol
(light scattering), Mw = 288 100g/mol (sedimentation equilibrium), and via SEC,
Mz:Mw:Mn = 2.9:2.1:1 (i.e., Mz = 355 000−400 000g/mol, according to NBS).

The solvent, toluene, was appropriate and a thermodynamically good one
(i.e. A2 is high). Seven different concentrations were measured simultaneously
at 25◦C. Rotor speed was 7500rpm, and total running time 72h (this was a long-
weekend run; 20h wouldbe enough to reach equilibrium).TheAUC wasaBeckman
Optima XL-A/I with an eight-cell rotor, and an interference optics multiplexer with
modulable laser, λ = 675nm; 12-mm double-sector cells were used. The filling
height was about 3mm (an artificial FC-43 oil bottom was used). As values for ν,
ρ solution and dn/dc, we used ν = 0.917cm3/g, ρsolution = ρsolvent = 0.8622g/cm3,
and dn/dc (675nm, 25◦C) = 0.107cm3/g.

The evaluation of the interference “photos” of Fig. 5.2, i.e., the radial fringe shift
ΔJ(r) relative to the meniscus, was done inside the Optima XL-A/I by an imaging
processing system. These data are accessible as ACSII files. The original Beckman
programs are not usable for the five-step evaluation, so we used Lechner’s program.
Figure 5.3a shows the relative radial fringe shifts ΔJ(r) of all seven concentrations
extracted from Fig. 5.2 using the Lechner algorithm.

Fig. 5.3. a Relative shift ΔJ(r) of interference fringes as a function of the rotor radius r for seven
concentrations of polystyrene NBS 706 in toluene. A continuous line (by spline regression) is drawn
through the individual measuring points, and extrapolated to the meniscus and to the cell bottom.
b Classical plot of ln c(r) as a function of r2 to obtain M from the slope. The vertical lines in a and b are
the positions of rm and rb in the different cells
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Fig. 5.4. a Reduced concentration profiles c(X)/c0 as a function of X , for polystyrene NBS 706 in
toluene. b 1/Mapp − c0 extrapolation plots to obtain Mw, Mz and A2 for c0 → 0 (classical evaluation)

In step 1, we will now transfer these relative fringe shifts ΔJ(r) via (5.7) and
(5.8) into the required radial (absolute) concentration profiles c(r) or c(X); then,
ln c(r) is plotted (for visualization of linearity) as a function of r2 (see Fig. 5.3b),
and the quotient c(X)/c0 is also plotted as a function of X (Fig. 5.4a).

Now in step 2, by a spline regression smoothing, we calculate the continuous
lines through these measuring points, also presented in Fig. 5.4a (and Fig. 5.3a).
The extrapolated values of these lines, both the c(X)/c0 values and their slopes
(dc(X)/dr)/c0, at the meniscus rm and at the bottom position rb, are introduced
into (5.14) and (5.15) to calculate Mw,app and Mz,app. In Table 5.1, the individual
numerical values of all seven concentrations measured are listed, together with the
extracted ΔJ(rm) = (Jb − Jm) values and the calculated Jm values. All Mw,app values
are of high quality.

This is not valid in the case of the Mz,app values at higher concentrations (cf.
Mz,app values in Table 5.1 in brackets), because the estimation of the slopes is not
precise enough (there is some compensation in bending between polydispersity
and non-ideality in the ln c(r) versus r2 curves of Fig. 5.3b). Also listed in Table 5.1
are the (falsified!) Mideal,app values, which represent the straight optimal lines in
Fig. 5.3b, i.e., the M values of polystyrene NBS 706 according to the basic (5.4), if we
assume NBS 706 would be monodisperse and A2 = 0. The bending of the measured
curves in Fig. 5.3b proves that these assumptions are incorrect. The reciprocals
of Mw,app and Mz,app are plotted in Fig. 5.4b, according to (5.19), as function of
c0, and then extrapolated via a regression line to infinite dilution c0 → 0. Inter-
cepts and beginning slopes yield Mw = 260 000g/mol, Mz = 400 000g/mol, and
A2 = 5.4 × 10−4 cm3 mol/g2. These three values are the final result of the classical
evaluation within step 2, also listed in Table 5.1. They will be used below as starting
parameters for the nonlinear regression in step 5. The errors of measurement in
these M values are about ±8%.

In step 3, we start with the nonlinear regression by a spline interpolation of the
c(X)/c0 values at the 41 pre-selected fixed radial X positions. These pre-selected
fixed X positions are shown above the X axis of Fig. 5.4a as small vertical lines.
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In step 4, the interpolated c(X)/c0 values at these fixed X positions are plotted as
a function of c0 (see Fig. 5.5), and then extrapolated to zero concentration c0 → 0
by quadratic regression to determine c(X)/c0,0. For the sake of clarity, we show only
ten of the total 41 regression lines in Fig. 5.5.

In step 5, these extrapolated c(X)/c0,0 values at the 41 pre-selected X positions
areplottedas a functionof X (seeFig. 5.6a), andvisualizedas “experimental”points
(open circles in the figure). They represent the reduced concentration profile at
infinite dilution. Now, as shown also in Fig. 5.6a, through these “experimental”
points a continuous, optimally fitted curve, based on the W(M, P, B, K) function,
is calculated by the nonlinear regression evaluation with the Simplex method,

Table5.1. Mideal,Mw,Mz andM∗
w valuesofpolystyreneNBS706determinedviaanAUCsedimentation

equilibrium run in toluene

C0 Ib − Im Im Mapp,ideal Mw,app Mz,app M∗
w,app

g/l – – g/mol g/mol g/mol g/mol

0.27 1.61 0.18 204 000 249 000 353 000 228 000

0.51 2.72 0.29 188 000 219 000 270 000 222 000

1.03 4.36 0.60 191 000 204 000 205 000 207 000

2.07 7.18 1.49 160 000 160 000 167 000 160 000

3.10 8.20 2.64 150 000 142 000 (127 000) 142 000

4.07 9.84 3.7 129 000 122 000 (102 000) 124 000

6.19 12.20 6.27 100 000 94 000 – 94 000

Mapp,ideal Mw,app Mz,app M∗
w,app

g/mol g/mol g/mol g/mol

Extrapolation to c0 → 0 yields: 220 000 260 000 400 000 246 000

Fig. 5.5. c(X)/c0 as a func-
tion of c0 for different
pre-selected X values. The
lines indicate the quadratic
extrapolation to c0 → 0;
polystyrene NBS 706 in
toluene
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Fig. 5.6. a The reduced concentration profile c(X)/c0,0 as a function of X , for polystyrene NBS 706
in toluene. An optimally fitted line, by nonlinear regression through the 41 “experimental” points,
is shown. b Best-fit three-parameter model molar mass distribution W(M, P, B, K), representing the
optimally fitted line in a

using Mw and Mz of the classical evaluation as starting parameters. This yields
the fitting parameters M0

n, M0
w, M0

z and P (chosen from some reasonably pre-
selected P values), and the fitted three-parameter model molar mass distribution
W(M, P, B, K) itself. The latter is shown in Fig. 5.6b.

The resulting parameters of this nonlinear regression evaluation are M0
n =

197 000g/mol, M0
w = 296 000g/mol, M0

z = 395 000g/mol, and P = 1. There is
a reasonable agreement if we compare these nonlinear regression values and also
our classical evaluation values, Mw = 260 000g/mol and Mz = 400 000g/mol,
with the NBS data (Mn = 136 000g/mol, Mw = 257 800/288 100g/mol, and
Mz = 355 000/400 000g/mol). Several other, analogous comparisons in the litera-
ture [6, 15, 16, 18], based on absorption, interference, and Schlieren optics, prove
that Lechner’s nonlinear regression method is a reliable tool to estimate approx-
imated molar mass distributions W(M, P, B, K) and the corresponding M0

n, M0
w,

and M0
z values via sedimentation equilibrium runs. The M values given above, de-

termined by a sedimentation equilibrium run, agree well with the corresponding
M values calculated in Sect. 3.4.2 (see Fig. 3.12) from a sedimentation velocity run
via a scaling law.

During theMMDdeterminationvia the s run inFig. 3.12a, a strong fractionation
of NBS 707 took place. Thus, this MMD is more precise than the one obtained via
the equilibrium run shown in Fig. 5.6b, where only a weak fractionation took
place. Especially high molar mass components are better detected in s runs than in
equilibrium runs. This becomes evident if one compares the two MMDs: the high
molar mass tail in Fig. 3.12d is longer (up to 1300kg/mol) than the one shown in
Fig. 5.6b (up to800kg/mol).Nevertheless, the lowmolarmass tail, themaximum M,
and the averages, Mn, Mw, Mz, are very similar. This result demonstrates that MMD
determinations via equilibrium runs are a valuable analytical tool. However, the
precision can be improved in the future by more precise measuring data and an
improved data analysis.
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5.3.4 M-STAR, a Special Data Analysis to obtain Mw

The first two steps (= classical evaluation) in Lechner’s computer program to
obtain Mw and Mz for polydisperse samples are model-free, i.e., they do not require
any prior assumption of the nature of the system – monodisperse, polydisperse,
ideal, non-ideal, non-interacting, interacting (e.g., self-associating, preferential
solvation). A similarly powerful and interactive computer program to obtain Mw

in another way is M-STAR (M∗), first proposed by Creeth and Harding [19] and
modernized in 1997 by Cölfen and Harding [20]. In the following outline, we refer
to the latter form. For further interesting details, we recommend to consult the
original paper [20] (the M∗ program includes the classical evaluation, too).

The M-STAR program exists in two forms, as M-STARA for absorption optics,
and as M-STARI for interference optics. It takes into consideration the whole solute
distribution c(r) or c(X), i.e., from the meniscus to the bottom, rather than only
a selected dataset (such as in some commercial computer programs, [21]). M-
STARA and M-STARI are therefore recommended, such as are Lechner’s steps 1
and 2, as a first analysis program of equilibrium data. These programs are therefore
particularly well suited if heterogeneity (polydispersity or interaction phenomena)
or non-ideality are suspected. All these phenomena are indicated by a strong
curvature (= bending) in the ln c(r) versus r2 plots (see Fig. 5.3b). This curvature
often makes it difficult to determine the whole cell weight-average molar mass Mw,
particularly if the regionsnear thecell bottomarenotwelldefined(noisydata).This
is often the case with absorption optical records, and especially with extremely
broadly distributed polymers, such as polysaccharides, which show very steep,
scarcely resolvable concentration gradients dc(r)/dr in the bottom region.

To solve these problems was the intention of Creeth and Harding [19] when they
developed their M∗ procedure. M∗(r) or M∗(X) is an operational “point” average
molar mass, similarly to Mw,app(r) and Mz,app(r) in (5.11) and (5.13), defined in
analogy to the classical Lansing–Kraemer relation (5.14) by

M∗(r) =
r2
b − r2

m

Λ
· c(r) − cm

cm [r2 − r2
m] + 2

r∫
rm

r [c(r) − cm] dr

(5.25)

The only parameter in (5.25) that requires extrapolation is cm (in contrast to Lechn-
er’s method, which additionally requires extrapolation of cb). This cm extrapolation
can be achieved without difficulty with absorption optics, by simple linear extrap-
olation of A(r) to the meniscus, because usually the radial concentration gradient
is flat in the meniscus region. By contrast, interference optics requires a more
subtle extraction for cm, i.e., for Jm, because interference optics directly gives only
the solute concentration relative to the meniscus. There are some possible ways
to obtain Jm [1, 20]. One of these, and perhaps the most reliable, is described in
Sect. 5.2 by using (5.8), i.e., via the equation for the conservation of mass and an
integration of ΔJ(r).
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It is a special advantage of the M∗ method that, in (5.25), no differentiation
process is necessary that is sensitive to noisy data. The M∗ function itself has some
useful identities (see [20]), the most important of which is that at the cell bottom rb

M∗ (
rb

)
= Mw,app (5.26)

is valid, i.e., M∗(rb) is identical with the apparent weight-average molar mass over
the whole distribution of the solute in the cell, from rm to rb. The function M∗(r) is
calculated using (5.25). It becomes increasingly stable with progressive integration
(done with the usual trapezoid rule) from rm to rb.

The identical (5.26) provides a basis for obtaining Mw,app without involving
a concentration extrapolation to the cell bottom (but rather a less severe extrapo-
lation of M∗(r) → M∗(rb) to the cell bottom, which is less sensitive to errors). The
extrapolation of M∗(r) or M∗(X) to the cell bottom is usually simple, and can be
done by applying a straight extrapolation line in most cases. This extrapolation,
done in a plot M∗(r) versus r2, or better, versus X = (r2 − r2

m)/(r2
b − r2

m), is possible
even if the raw dataset is of poor quality, a feature often present with absorption
optics. It should be noted here that one characteristic feature of the M∗(r) function
is that it starts off very noisy near the meniscus (because of small concentration
increments), but then becomes more precise toward the cell bottom, thereby re-
sulting in a good determination of Mw,app via extrapolation (see Fig. 5.7). The use
of M∗(r) in this way can be thought of as an accumulator, starting (noisy) at the
cell meniscus, and steadily homing in on the true Mw,app, as all information about
the solute distribution is gathered by the time the cell bottom is reached. A further
advantage of the M∗ program is that one needs no absolute units of the concentra-
tion c in (5.25), because c stands both in the numerator and in the denominator.
Relative units, such as fringe numbers J or absorption units A, are sufficient. This
is ideal for samples with unknown concentration.

We will finish this M∗ Sect. 5.3.4 with an application example, presented in
Fig. 5.7 and in Table 5.1. For this application example, we use the measuring data
of the sedimentation equilibrium measurement we evaluated in Sect. 5.3.3 with the
Lechner method (by classical and nonlinear regression evaluation), namely, for
polystyrene NBS 706 with seven concentrations in toluene (shown in Figs. 5.2–5.6,
and Table 5.1). This allows us to make an interesting comparison between the two
evaluation methods, i.e., the M∗ method and Lechner’s method.

Figure 5.7 presents the plot M∗ versus X (see [22]) of polystyrene NBS 706. As
expected, it is clearly visible that the noise within the seven different curves de-
creases with increasing concentration c0 and with increasing X. The extrapolation
M∗(X → 1), or M∗(r → rb), to yield Mw,app, was done with straight lines through
the seven curves in the bottom region 0.8 < X < 1. The resulting numerical values
are listed in Table 5.1. The comparison of the Mw,app values yielded by the Lechner
method and the M∗ method show an excellent agreement, within only 2% (with
exception of the lowest concentration c1 = 0.27g/l, which was a little too low,
indicated by noisy measuring data).
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This good agreement was also expected because (i) the molar mass distribution
of polystyrene NBS 706, with Mw:Mn = 2.1:1, is not very broad, (ii) the measure-
ment itself was a good one, i.e., the measuring data are not very noisy (see Figs. 5.3
and 5.4), and (iii) the Lechner method facilitates a good extrapolation of cb. The
full power of the M∗ method will be visible only if the c(r) curves are much steeper
near the bottom region, as in Fig. 5.3a, and/or if the curvature of the ln c(r) versus
r2 plot is much stronger, as in Fig. 5.3b.

5.4 Examples

In this Sect. 5.4, we will present further application examples of sedimentation
equilibrium runs to measure M. In Sect. 5.4.1, two absorption optics examples,
a nearly monodisperse polyelectrolyte (NaPSS 35 000) and again polystyrene NBS
706, are shown. In Sect. 5.4.2, the association of monofunctionalized poly(ethylene
oxide) is studied, and a new AUC buoyant density method to determine ν is
presented, all done using the UV scanner and the original Beckman evaluation
program. InSect. 5.4.3, anexamplewith thenewfluorescencedetectorofLaue ([28];
see Sect. 2.4.4) is shown.

Fig. 5.7. M∗ plotted as a function of X (see [22]), for polystyrene NBS 706 in toluene at seven different
concentrations. The same measuring data are used as in Figs. 5.2 and 5.3a



152 5 Sedimentation Equilibrium

5.4.1 Absorption Optics Examples of a Polyelectrolyte
and Calibration Polystyrene NBS 706

Absorption optics is preferably used for aqueous systems (biopolymers and poly-
electrolytes), and for organic solvents that are UV-transparent, because it is possi-
ble tomeasureat very lowconcentrations (0.03–0.50g/l).Thus,wearenear the ideal
state of infinite dilution c0 → 0, and therefore it is often enough to conveniently
measure only one concentration (see example in Sect. 5.4.2) to yield reasonably
precise molar masses M, rather than measuring a series of concentrations and
carrying out the tedious extrapolation to zero concentration.

The first example we discuss now in Fig. 5.8 is a nearly monodisperse poly-
electrolyte, sodium polystyrene sulfonate NaPSS 35 000, supplied and well char-
acterized by Polymer Standard Service, Mainz, Germany: molar mass of the peak
maximum measured by SEC is Mp = 35 000g/mol and Mw/Mn = 1.10. The sol-
vent used was aqueous 0.1M NaCl, and the three concentrations c0 = 0.05, 0.10,
0.15g/l are very low. For dialyzed solutions, we measured ν = 0.626cm3/g and
ρs = 1.001g/cm3 at 25◦C. The equilibrium run was done with a Beckman Optima
XL-A/I using the four-hole rotor and the UV scanner at λ = 260nm. The filling
height of the 12-mm double-sector cell was 2.0mm, the rotor speed 6000rpm, and
the running time 140h (this was a long-weekend run, 24h would be enough to
reach the equilibrium state). Sedimentation velocity runs of polyelectrolyte NaPSS
35 000 and other NaPSS samples were already the subject of Sects. 3.3.5 and 3.4.1.

The original XL-A/I UV scan of the lowest concentration c0 = 0.05g/l is shown
in Fig. 5.1a above. There are four vertical lines in this scan. They indicate the four
radius positions of the meniscus, bottom, first and last experimental values used
for evaluation (note that the XL-A/I absorption values A(r) very near the meniscus
or the bottom region scatter too much, so they were eliminated). The vertical
lines of the meniscus and bottom, and the accepted A values are plotted again in
Fig. 5.8a, together with the values of the other two concentrations 0.10 and 0.15g/l.

Now, again we carry out the five-step evaluation proposed by Lechner (classical
and nonlinear regression evaluation), of all three concentrations together and
summarized in Fig. 5.8, although we do not present all details (as in Figs. 5.3–5.6)
for polystyrene NBS 706 in toluene.

In step 1, we transfer the absorption values A(r) via Lambert–Beer’s law, (2.2),
into the required radial (absolute) concentration profile c(X). Because the specific
decadic absorption coefficient ε was not known, it was calculated with (5.5) and
(5.6) using the procedure described in Sect. 5.2, and the law of the conservation
of mass. The resulting numerical value (average over all three concentrations) was
ε (25◦C, 260nm) = 182m2/kg. If c(X) is determined, then we can calculate the
“experimental” points of the reduced concentration profile c(X)/c0.

In step 2, again by a special spline regression smoothing, the optimally fitted
lines through the “experimental” points are calculated. Figure 5.8a shows these
lines in A(r) form (note that the c(X)/c0 plots and the corresponding lines, as in
Fig. 5.4a, are not shown in Fig. 5.8). For classical evaluation, we determine the
values and slopes of these lines at the meniscus and bottom, calculate Mw,app and
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Mz,app with (5.14) and (5.15), and extrapolate the 1/M values in Fig. 5.8c with (5.19)
to c0 → 0.The result of this classical step1+step2 evaluation is Mw = 36 200g/mol,
Mz = (roughly) 43 000g/mol, and A2 = (roughly) 0.2 × 10−4 cm3 mol/g2.

In step 3, a spline interpolation, to obtain c(X)/c0 values at 41 pre-selected
X values, is done, and in step 4 these values (see Fig. 5.8b) are extrapolated to
c0 → 0. The 41 extrapolated values c(X)/c0,0 are plotted in Fig. 5.8d as a func-
tion of X. In step 5, through these “experimental” points, representing the reduced
concentration profile at infinite dilution, a continuous optimally fitted line is calcu-
lated (shown in Fig. 5.8d) by the nonlinear regression evaluation with the Simplex
method. This nonlinear regression evaluation yields the three-parameter model
molar mass distribution W(M, P, B, K), presented in Fig. 5.8e, and the resulting
fitting parameters M0

n = 32 800g/mol, M0
w = 35 200g/mol, M0

z = 37 600g/mol, and
P = 1.34. So, the broadness distribution coefficient is M0

w/M0
n = 1.07. All these

AUC values, the classical and the nonlinear regression ones, agree well with the
values given by Polymer Standard Service. The errors of measurement are about

Fig. 5.8a–e. Five-step evaluation (classical and nonlinear regression) to measure the MMD of the
polyelectrolyteNaPSS35 000 inaqueous0.1 MNaCl, donewithXL-A/I absorptionoptics atλ = 260 nm,
analogous to Figs. 5.3–5.6 (reprinted from [6] with permission)
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Fig. 5.9. Radial XL-A/I absorption profiles
A(r) at λ = 260 nm of three concentrations
of polystyrene NBS 706 in the (pseudo-ideal)
theta solvent cyclohexane at 35 °C (reprinted
from [6] with permission)

±5% in M, and ±10% in A2 (the latter is higher because the concentrations used
for absorption optics are very small).

The second absorption example we discuss here in this Sect. 5.4.1 is again
polystyrene NBS 706, already discussed in Sect. 5.3.3, where we used interfer-
ence optics and the non-UV-transparent solvent toluene. For this polystyrene, we
now use the organic solvent cyclohexane with an UV-transparent window around
λ = 260nm, where polystyrene shows strong absorption. Cyclohexane is a theta
solvent for polystyrene at 35◦C, i.e., at this temperature polystyrene/cyclohexane
solutions are pseudo-ideal and A2 = 0 should be valid. We measured this second
sample at this theta temperature with the same equipment (an Optima XL-A/I)
and nearly the same conditions as those for the NaPSS 35 000 sample discussed
above. Concentrations c0 were 0.10, 0.20, and 0.30g/l, filling height 2.0mm, rotor
speed 6000rpm, running time 22h, ν = 0.931cm3/g, and ρ = 0.7647g/cm3. The
result of this measurement is shown in Fig. 5.9.

Figure 5.9 shows, similarly to Fig. 5.8a, the primary measured absorption
profiles A(r) of the three polystyrene/cyclohexane solutions, and the optimally
fitted lines through the measuring points. The classical step 1 + step 2 evaluation
gives Mw = 246 000g/mol, Mz = 360 000g/mol, A2 ≈ 0.5 × 10−4 cm3 mol/g2, and
ε (260nm, 35◦C) = 213m2/kg. The nonlinear regression step 3–step 5 evaluation
yields the three-parameter model molar mass distribution W(M, P, B, K), which
is very similar to that in Fig. 5.6b. The resulting fitting parameters are M0

n =
113 000g/mol, M0

w = 241 000g/mol, and M0
z = 373 000g/mol. The comparison

with (i) the NBS values, (ii) the values measured via s run-MMD in Sect. 3.4.2
(Fig. 3.12d), and (iii) the values measured via equilibrium run with interference
optics in toluene (see Sect. 5.3.3, Table 5.1, and Fig. 5.6b) is satisfactory, with
exception of Mn. The reason for this discrepancy may be some UV-absorbing
impurities in the solvent cyclohexane that were not correctly compensated for. The
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second virial coefficient A2 is not zero, as expected in a theta solution, but not far
removed from this value.

5.4.2 Association Equilibrium Example
and AUC Buoyant Density Method to Determine ν

In this section, first, we outline the “buoyant density method” of Schubert et al. [23]
to determine ν via sedimentation equilibrium runs in solvent mixtures (based
on [27]; similar ν measurements in Nycodenz/water mixtures were already done
in [34]), and second, we study a monomer/dimer association equilibrium of mono-
functionalized poly(ethylene oxide), abbreviated PEO. Both the ν determination
and the association study will be explained by means of a recent paper of Schubert
et al. [24].

Supramolecular chemistry utilizes non-covalent bonds to build up large, or-
dered structures. Among the interactions used, hydrogen bonds (beside metal–
ligand interactions) play an important role. The first step of such association
processes is the building up of dimers. Schubert et al. [24] studied such first
steps by using hydrogen bond interactions. They quantified the dimer formation
between suitable hydrogen bond-forming blocks by sedimentation equilibrium
runs. As blocks, they used PEO chains with a polymerization degree of 70 (M ≈
4000g/mol). At one end of the chain, a dye-labeled group, which does not form hy-
drogen bonds, is linked covalently, which means that no dimerization is possible.
This first compound was called the precursor. In a second step, a hydrogen bond-
forming group was linked, also covalently, to the other end of the PEO chain to
obtain the final compound, which is able to form dimers (for details, see [24]). The
dye labeling allows UV scanner detection, and dimer monitoring via sedimentation
equilibrium analysis in the AUC.

All equilibrium runs were performed using a Beckman Optima XL-A/I, an An-
50-Ti rotor, 12-mm titanium double-sector centerpieces, and polyethylene gaskets.
The rotor speed was always near 40 000rpm, temperature 20 ◦C, filling height 4mm,
with concentrations of 0.1–0.3g/l. The absorption profiles were recorded at 330nm
using the original Beckman XL-A/I software. The evaluation of these profiles for
the existence of single monomers, or dimers, or both, was performed with the
computer program DISCREEQ by Schuck [25, 26].

ν Determination with the Buoyant Density Method
For every determination of M with equilibrium runs, we need, according to the
basic equation (5.4) or (5.9), the partial specific volume ν of the solute within the
buoyancy term (1 − νρ). The measurement of ν of an unknown solute is usually
done with the Kratky density balance, using a concentration series as described in
Sect. 2.6.1. For such concentration series, however, a large amount of solute sub-
stance, approximately 200mg, is needed. Commonly, such high amounts of solute
are not available, only nanograms. In such cases, it is often possible to estimate ν

by means of the so-called buoyant density method, via equilibrium runs within the
AUC. Schachman and Edelstein [27] were the first to propose this method, and they
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employed it for the ν determination of proteins using the “aqueous” solvent pair
H2O/D2O. The idea behind this approach was to measure, without prior knowledge
of ν, the relative Meff = M(1 − νρ) = 2RT[d ln c(r)]/(ω2 dr2) of the same solute
with a defined M in two solvents of different densities, ρ1 and ρ2, and assuming the
same ν of the solute in these two solvents (there are several restrictions, which will
not be discussed here). Applying two times the basic equation (5.4) with its two un-
knowns, M and ν, on two equilibrium measurements in two solvents with different
but known densities will yield the two unknowns. The same idea forms the basis
of our H2O/D2O particle density analysis described in Sect. 3.5.3, but in that case
we used sedimentation velocity runs, rather than sedimentation equilibrium runs.

Schubert et al. [23] transferred this Schachman–Edelstein idea from biopoly-
mers in “aqueous” solvent pairs to synthetic polymers in organic solvent pairs, and
used for their PEOderivatives the solvent pair THF/propylene carbonate (ρ = 0.899
and 1.204g/cm3, respectively, at 20◦C). Both are good solvents for PEO. Schubert
et al. further extended the Schachman–Edelstein idea by using not only two sol-
vents and two equilibrium runs to measure Meff. Rather, they used, in addition to
the two pure solvents, several different mixtures of these, i.e., additional solvents
with different densities ρ. This procedure delivers more precise values of the two
unknowns ν and M. Similar measurements to determine ν of detergent micelles
were done by Lustig [34].

Fig. 5.10. Determination of ν with the AUC buoyant density method, i.e., Meff = M(1 − ν · ρ)
measurements of the same solute via equilibrium runs in a solvent pair and its different mixtures: PEO
derivative precursor in THF/propylene carbonate (reprinted from [24] with permission)
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A plot of Meff as a function of ρ, such as that in Fig. 5.10, will yield ν at that
ρ position where Meff = 0 is valid, i.e., (1 − νρ) = 0 or ν = 1/ρ. This ρ position is
found by interpolation via a regression line in the Meff versus ρ plot (see Fig. 5.10,
where this regression line is a straight line). In this manner, Fig. 5.10 delivers
for the PEO derivative precursor ν = 0.884cm3/g and M = 4035g/mol. This is in
agreement with a Kratky density balance measurement on a similar compound
(where a bigger amount of substance was available), and with Mtheor, following
from the known chemical structure of the precursor (see [24]). The straight line in
the Meff versus ρ plot in Fig. 5.10 suggests independence of both M and ν vis-à-vis
the solvents used. Thus, the ν value of the precursor, measured with the buoyant
density method, is presumably of high reliability in the present example. Still, this
is not always valid. Preferential solvation of one of the solvent components may
falsify the determined ν value.

M Measurements to Study the Self-Association
To study the self-association of the final PEO compound bearing a hydrogen-
bonding group, via M measurements by sedimentation equilibrium runs in pure
THF, the ν value of the precursor in THF, 0.884cm3/g, was used. The result of such
a measurement is shown in Fig. 5.11, for a concentration c0 = 0.32g/l.

Fig. 5.11. a Equilibrium run of a PEO derivative (final compound) bearing a hydrogen-bounding
group: absorption A(r) as a function of radius r (THF, 0.32 g/l, 40 000 rpm, λ = 330 nm), A(r) measuring
points, fitted with a curve (continuous line) where the presence of 55% monomers and 45% dimers is
assumed. The dotted line is the calculated contribution to A(r) of the monomers, and the hatched line
that of the dimers. b Residuals ΔA(r) of the fit (reprinted from [24] with permission)
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In contrast to the analogous measurement of the precursor, the measured
A(r) profile of the final PEO compound is not very well fitted by a single ex-
ponential, but it is well fitted by a superimposition of two single exponentials,
consisting of 55-wt% monomer and 45-wt% dimer. This 55/45 composition yields
the smallest residuals ΔA(r) of the fit obtained by using Schuck’s program DIS-
REEQ [25, 26]. The resulting residuals are shown in Fig. 5.11b. Schubert et al. [24]
attached also a metal–ligand interaction group to the PEO chain. For that PEO
derivative they obtained, in contrast to the hydrogen-bonding group, a complete
dimerization.

The above PEO example demonstrates that (i) the sedimentation equilibrium
analysis is a powerful method to detect and quantify the formation of macromolec-
ular association complexes via supramolecular building blocks by non-covalent
bonds, and that (ii) the buoyant density method is a valuable auxiliary tool for
determining ν at very low compound concentrations c0, so that only nanograms of
substance are necessary.

5.4.3 The New Fluorescence Detector of Laue
Used for Green Fluorescent Protein

The characteristics of the new fluorescence detector of Laue [28], described in
Sect. 2.4.4, are that (i) it is a specific detector for macromolecules with inherent
or chemically attached specific fluorescent groups, and that (ii) it allows one to
measure extremely low solute concentrations, up to 100-fold lower than is the case
with absorption optics. The latter was demonstrated by Laue [28] by means of
a comparison experiment based on absorption optics versus fluorescence optics,
which is presented in Fig. 5.12. Both detectors were incorporated into a Beckman
Optima XL-A/I, and for both the same macromolecule was chosen: the well-known
(monodisperse!) green fluorescent protein (GFP).

The experimental conditions are presented in the legend of Fig. 5.12 (for details,
see the original paper, [28]). The most important difference between the two
experiments was the GFP concentration c0 = 11.4 × 10−6 mol/l = 0.307g/l for the
absorption optics, and 0.435 × 10−6 mol/l = 0.0117g/l for the fluorescence optics.
The resulting molar masses, resulting from nonlinear least-square fitting, are
M = 27 000±1200g/mol (absorption), andM = 27 700±2200g/mol (fluorescence).
These agree excellently, within 1% (absorption) and 3% (fluorescence), with the
known sequence molar mass of GFP, M = 26 900g/mol. These M values, and the
residuals in the upper part of Fig. 5.12 (signal-to-noise ratio of 223 for absorption,
and 64 for fluorescence) show that the precision of parameters obtained with
the fluorescence detector will be somewhat less than those obtained with the
absorption detector.

The new fluorescence detector of Laue is likely to become a powerful tool in
every kind of AUC analysis. It is now commercially available (see Sect. 2.4.4).
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Fig. 5.12a,b. Comparison of sedimentation equilibrium data, for green fluorescent protein (GFP) in
20 mM Tris-HCl, pH 8.1, 150 mM NaCl, 2.5 mM CaCl2 at 20 °C and 30 000 rpm. a Absorption optics
data A(r) vs. r2/2 for c0 = 11.4 × 10−6 M = 0.307 g/l. Nonlinear least-square fitting yields M =
27 000 ± 1200 g/mol. b Fluorescence optics data lg I0/I vs. r2/2 for c0 = 0.435 × 10−6 M = 0.0117 g/l.
Nonlinear least-square fitting yields M = 27 700 ± 2200 g/mol (reprinted from [28] with permission)

5.5 Further AUC Methods to Measure Molar Masses

Beside the dominating sedimentation equilibrium method described above, there
are four other AUC methods to measure molar masses M: (i) the Svedberg method,
(ii) the sedimentation velocity method, (iii) the density gradient method, and (iv)
the approach-to-equilibrium (or Archibald) method. In the following, these four
methods are outlined.

Svedberg Method
The Svedberg, or sedimentation-diffusion method is already described in Sect. 1.1.
It is the oldest AUC method to measure absolute (average) molar masses, and it
is not an equilibrium method, but rather a velocity method. In separate measure-
ments, the sedimentation coefficient s and the diffusion coefficient D of the solute
are determined, and subsequently M is calculated using the Svedberg equation
(1.8), M = RT/(1 − νρ) × (s/D). To yield the correct weight-average molar mass
Mw, one has to combine the weight average of s, sw, and the z average of D, Dz (at
infinite dilution c → 0). Dz is delivered by DLS measurements.
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Sedimentation Velocity Method
This is only a relative method but nevertheless also a velocity method, and it
has been described in Sects. 3.4.1 and 3.4.2 above. It is a powerful method to
measure, beside average molar masses, complete molar mass distributions W(M),
if a scaling relation s = KMa, as in (3.11), is known. This is not the case for
most polymers, but does apply for some industrially important polymers such
as polystyrene, polymethyl methacrylate, etc. It is tedious work to create such
a scaling relation by preparative fractionation of the (polydisperse) polymer, and
separate measurements of M and s of the single fractions.

Density Gradient Method
This is an absolute, and an equilibrium method (see Sect. 4.2.1 and (4.26)), but very
inaccurate and seldom used for the measurement of M. Nevertheless, the density
gradient method delivers M as valuable “byproduct” information of every density
gradient run of macromolecules, because the broadness σ of every density gradient
double Schlieren peak (see Fig. 4.8) yields a rough estimation of M. Especially for
macromolecules with extremely high M > 107 g/mol, and minimal amounts of
substance, the density gradient method is often the only allowing one to roughly
estimate M.

Approach-to-Equilibrium (or Archibald) Method
This procedure is often referred to as the Archibald method, in honor of the man
who first described it [29]. In principle, it depends upon the fact that the conditions
for sedimentation equilibrium are fulfilled at both ends of the solution column at
all times – that is, no solute can pass through the air–solution meniscus, or out
through the bottom of the cell. This is valid during every kind of AUC run, for
equilibrium runs, and for sedimentation runs, too. The net flow of the solute is
zero at rm and rb. Thus, the Archibald equation [29] to measure M,

M = RT(1 − νρ)ω2 · (dc/dr)m

cmrm
= RT(1 − νρ)ω2 · (dc/dr)b

cbrb
(5.27)

is similar to the basic equilibrium equation (5.3) for this transient state (this “tran-
sient” state between sedimentation (run) at the beginning, and equilibrium (run)
reached only much later is responsible for the name “approach-to-equilibrium”
method). From a measurement of both the concentration c and the concentration
gradient dc/dr, at either rm or rb, the molar mass M of the solute can be calculated.
This is possible with interference optics and Schlieren optics. In practice, one uses
only the meniscus data, because the bottom data are not very precise, and often
falsified by fast-sedimenting impurities.

The advantage of the Archibald method is that only very short measuring
times of 2h, or less, are required. The disadvantages are (i) that it depends directly
upon a single measurement at one of the ends of the solution column, where the
uncertainty of the data is highest, and (ii) that in particular for broadly distributed
synthetic polymers during the Archibald run, a fast fractionation takes place, so
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that M measured at the meniscus is smaller than M measured at the bottom. This
difference will increase with running time, because Archibald runs are usually
done at high rotor speeds. Via a tedious extrapolation t → 0 of the measuring
data, these disadvantages can be compensated for.

Nowadays, the Archibald method is seldom used, and the sedimentation equi-
librium method, especially in combination with an eight-cell-multiplexer, is pre-
ferred. Still, perhaps a renaissance of the Archibald method will occur in the
near future, if someone writes a new, intelligent evaluation program (see Sect. 7.3,
“improvement of data analysis”) such as was the case for equilibrium runs, de-
scribed in Sect. 5.3. An initial step was done in this direction in [35]. In combi-
nation with the new computerized analytical ultracentrifuges, with their power-
ful data acquisition, fast Archibald determination of M during every sedimenta-
tion/equilibrium run should be possible, producing M as “byproduct” information
(if ν is known). Good general references for the approach-to-equilibrium method
are [1, 29–32].

Closing Remarks Concerning M Measurement via AUC
For the M and MMD measurements of an unknown sample via AUC, the fol-
lowing three-step strategy in planning the corresponding experiments is recom-
mended:

(i) An s run of the unknown sample, proceeding the final equilibrium run, is
alwayshelpful. It delivers basic informationonwhether the sample is narrowly
or broadly distributed, and whether M is low or high. This allows one to plan
the subsequent equilibrium run.

(ii) If an s0 = KMa scaling law is known (this is seldom the case!), the above s run
yields the complete and most precise MMD. Furthermore, if this is a high-
precision s run (and an excellent data evaluation program exists for this), it
can deliver an M value via the Archibald procedure. If also D of the sample
is known (via a synthetic boundary run, or more precisely, via DLS), then M
follows from the Svedberg equation (1.8).

(iii) The equilibrium run itself should be done with UV optics if possible, because
only one (very low) concentration is necessary. If one has to use interference
optics, a series of 3–7 (mostly higher) concentrations is required to allow
one to carry out the extrapolation c → 0 (and if A2 is desired). Schlieren
optics is not recommended here, because it is not sensitive enough. If the
sample is narrowly distributed (as for proteins), 0.5–1.5mm short column
equilibrium runs of 1–5h (or meniscus depletion runs lasting 10–40h) are
recommended. If the sample is broadly distributed (and if a precise MMD and
A2 are desired), 2–4mm long column equilibrium runs of 10–50h and a c
series are necessary. To find the optimal rotor speed ω, and for an estimation
of the run time tequil, the use of a simulation routine, such as [33], is helpful.
ν of the sample (and dn/dc, in the case of interference optics) has to be known
for calculating M and MMD.
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6 Practical Examples of Combination of Methods

As mentioned at the end of the introductory Chap. 1, colloidal and synthetic
polymer samples from both industrial and scientific fields are becoming increas-
ingly complicated and complex on the nanometer scale. To solve such analytical
problems, the AUC is a powerful tool (i) with its different measuring methods,
(ii) with its different fractionation principles based on size considerations and
chemical heterogeneity, and (iii) with its possibility to transfer a sample from the
aqueous into an organic medium. In this Chap. 6, we will demonstrate by means
of practical application examples that in many cases the key to the solution of
such complex analytical problems is the combination of different measuring tech-
niques. In Sect. 6.1, we will combine different AUC measuring techniques to study
the grafting reaction on the surface of core/shell latices (Sect. 6.1.1), the system-
atic buildup of crosslinking inside of polymer latices (= microgels; Sect. 6.1.2),
and ion exchange within and between carboxylated latices (= model polyelec-
trolytes; Sect. 6.1.3). In Sect. 6.2, we will combine AUC measuring techniques with
other analytical techniques, such as sedimentation field flow fractionation (SFFF;
Sect. 6.2.1), and electron microscopy (EM; Sect. 6.2.2). This application of different
analytical techniques (e.g., AUC, DLS, FFF, and EM) on the same sample having
a complex composition and different distribution characteristics is called global
analysis. In our opinion, this global analysis will become ever more important in
the future. In the following Sects. 6.1 and 6.2, examples of the authors’ works are
presented, whereas the shorter Sect. 6.3 is a compilation of literature examples
concerning AUC and nanoparticles.

6.1 Combination of Different AUC Methods

6.1.1 Core/Shell Particles

In order to obtain specific properties of a polymer, a simple polymer dispersion
(= latex) consisting, for instance, of polybutylacrylate (PBA), can be modified by
another polymer, e.g., by grafting the styrene/acrylonitrile-copolymer (SAN) onto
the surface of the PBA particles in the form of a grafting shell. This is often done
in the development of rubber-modified high-impact materials. Thus, the SAN-
grafted soft PBA particles are introduced into a hard continuous matrix of SAN.
The grafting of the SAN macromolecules onto the PBA-core particles causes a very
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good bonding between the rubber particles and the matrix. In the following, we
will study this grafting reaction systematically by combining the AUC methods for
aqueous and organic density gradients, particle size distribution measurements,
and sedimentation runs. For details of this study, see [1] (as another example of
core/shell particles, we will present high-impact polystyrene in Sect. 6.2.2).

Figure 6.1 shows the particle size distribution and the aqueous static density
gradient of our starting PBA-core dispersion. The particle size distribution in the
upper part of the figure shows that this dispersion is nearly monodisperse, with an
(average) diameter of 241nm. In the lower part of the figure, the 92 H2O/8 metriza-
mide density gradient of these particles shows a narrow turbidity band with a uni-
form particle density of 1.038g/cm3. In our first example, a styrene/acrylonitrile
copolymer, SAN, has been grafted as a shell onto the surface of these PBA parti-
cles. The core-to-shell relation was intended to be 1:1 by weight. Because SAN has
a higher density of 1.08g/cm3, we expect an increase of the total particle density
by this grafting to approx. 1.06g/cm3.

Figure6.2 shows theresultof this experiment. In thisdensitygradient,wesimul-
taneously measured both the ungrafted and the grafted dispersion. The grafting

Fig. 6.1. AUC particle size
distribution and aqueous
static 92 H2O/8 metriza-
mide density gradient of
a nearly monodisperse
PBA dispersion (reprinted
from [1] with permission)
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Fig. 6.2. AUC particle size distributions and aqueous 92 H2O/8 metrizamide density gradient of the
ungrafted, and the 1:1 SAN grafted, nearly monodisperse PBA dispersion (reprinted from [1] with
permission)

band is also very narrow, and shows the expected particle density of 1.059g/cm3.
Also the particle size distribution of the grafted dispersion is narrow again. The
diameter rose to 300nm, an increase of 25% that was expected theoretically.
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In the case above, we grafted a nearly monodisperse starting latex. So, it is no
surprise that this grafting was a uniform one. Now, an interesting question arises:
do we obtain a uniform grafting, too, if we carry out the experiment with a PBA
starting latex having a broad particle size distribution?

Figure 6.3 shows the experiment that gives the answer. By mixing four (nearly)
monodisperse polybutylacrylate latices with diameters of about 100, 200, 300, and
400nm, in a mixing ratio 40:30:20:10wt%, we obtained a starting latex with the very
broad, four-modal particle size distribution indicated by a dotted line in Fig. 6.3.
This mixture was again grafted with SAN, 1:1. The result was the solid-line particle
size distribution in Fig. 6.3. It is again distinctly four-modal, but the diameters and
the weight ratios have changed. One sees immediately that the diameter increase of
the 100-nm particles exceeds 25%, whereas the increase of the 400-nm particles is
much smaller. Additionally, the mass percentage of the smallest particles increased
from 40 to 50%. This means that smaller particles are grafted to a higher extent
than bigger ones!

This result is confirmed by the density gradient shown in Fig. 6.3, where again
both dispersions, the ungrafted and the grafted one, are measured simultaneously.
The ungrafted starting particles, 100, 200, 300 and 400nm, are all superimposed in
one single band, und show exactly the same, known PBA density of 1.038g/cm3. By
contrast, the four grafted latex components exhibit four discrete, different bands
with higher particle densities. Their different radial positions – from the left to
the right, the grafted 400-, 300-, 200- and 100-nm particles – show again that
the smaller the particles, the more they are grafted! The evaluation of all these
measurements indicates that the degree of grafting is proportional to the particle
surface area.

As a result of the measurements presented in Fig. 6.2 (and Fig. 6.3), we con-
cluded that the grafting of the SAN shell onto the PBA core was complete and
homogeneous. Is this really true? Are all these SAN macromolecules really bound
covalently onto the PBA-core surface, or are they all (or partly) merely adsorbed or
precipitated onto the core surface, because SAN macromolecules are not soluble in
water? The AUC allows us to answer such questions, because it is the sole instru-
ment able to investigate systems where simultaneously dispersed microparticles
exist beside dissolved macromolecules. In order to obtain this answer, we have to
transfer thePBA/SANcore/shell particles fromtheoriginally aqueousmediuminto
an organic medium, in which PBA and SAN are soluble if they are not crosslinked.
Thus, crosslinked particles would swell in that medium, depending on the degree
of crosslinking.

In a first experiment, presented in Fig. 6.4, this transfer is simply realized by
a 1:300 dilution of the highly concentrated aqueous dispersion with the organic (80
tetrahydrofuran/20 di-iodomethane) density gradient medium, which is a good
solvent for uncrosslinked PBA and SAN.

For comparison, we present in Fig. 6.4 both the aqueous and the organic den-
sity gradient of the PBA/SAN core/shell dispersion with the 241-nm core. Since
prior to the SAN grafting the starting PBA particles were completely and densely
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Fig. 6.3. AUC particle size distributions and aqueous 92 H2O/8 metrizamide density gradient of
the ungrafted, and the 1:1 SAN grafted, broadly distributed 40:30:20:10 wt% PBA dispersion mixture
(reprinted from [1] with permission)

crosslinked, we do not expect the double Schlieren peak of dissolved PBA macro-
molecules at their known density position of 1.015g/cm3 in this organic density
gradient. As expected, we see the turbidity band of (weakly swollen) crosslinked
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Fig. 6.4. Aqueous and
organic AUC density gradi-
ents of the 1:1 SAN grafted
PBA dispersion 241 nm
(reprinted from [1] with
permission)

particles at a density position suggesting that the particles cannot consist of pure
crosslinked polybutylacrylate, but rather of polybutylacrylate covalently grafted
with 40–50wt% SAN. On the other hand, we see at a higher-density position of
1.050g/cm3 (known for SAN) a small, separate double Schlieren peak of pure dis-
solved SAN macromolecules: these have evidently separated from the core/shell
particle surfaces by diffusion, because they were not covalently bound onto these
surfaces.

In a second experiment, for the quantitative estimation of the mass percentage
and the molar mass of the ungrafted SAN macromolecules, we transfer, again by
dilution, the original aqueous dispersion into the pure organic solvent tetrahydro-
furan (which is completely miscible with water), and carry out a sedimentation
run, shown in Fig. 6.5. We use an unusually high concentration of 80g/l to detect
also very small amounts of free, ungrafted SAN macromolecules. Figure 6.5 shows
that during the first minutes of this sedimentation run, the very fast turbidity front
of the crosslinked PBA/SAN microgel particles sediment completely to the cell
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Fig. 6.5. Sedimentation run of the 1:1 SAN
grafted PBA dispersion 241 nm in the organic
solvent tetrahydrofuran at a high concentra-
tion of 80 g/l (reprinted from [1] with permis-
sion)

bottom (where they remain visible as a thin layer). Later, the slowly sedimenting
Schlieren peak of the free, ungrafted SAN macromolecules becomes evident. The
sedimentation coefficient of this Schlieren peak, s0 = 5.2S, yields a molar mass of
about 170 000g/mol and its area a concentration of ∼8g/l for these free, ungrafted
SAN macromolecules. Since we know the overall concentration of the whole dis-
persion, namely, 80g/l, this means that ∼10wt% of the planned 50wt% SAN is not
covalently grafted onto the surfaces of the PBA-core particles. If the real degree
of grafting were much lower, these rubber particles would yield a poor rubber-
modified high-impact material (see also Sect. 6.2.2, high-impact polystyrene).

The sedimentation run experiment of Fig. 6.5 demonstrates an advantageous
feature of the AUC, which is unique: the possibility to measure at super-elevated
sample concentrations! Because of the fractionation capability inside the AUC
measuring cell, it is possible to detect and analyze a minor component, beside
a dominating major component, if there is a strong difference in the sedimentation
velocities. In the first minutes of the experiment, the fast major component has
sedimented completely to the cell bottom, and subsequently we can look into the
“clear serum” to detect the slow minor component at an optimal concentration.
If the sedimentation run is done with the synthetic boundary technique (see
Sect. 3.6), we can detect very small amounts of low molar mass components,
beside dominating big particles (see, for example, Fig. 3.26).
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If the reader is interested in a more sophisticated core/shell particle analysis, we
recommend the original paper ([2]), where 300-nm polystyrene/poly(tert.-butyl
acrylate) particles and the polymer with the inverse structure (PTBA core/PS shell)
are also extensively characterized by AUC. Since transmission electron microscopy,
solid state NMR, and static and dynamic light scattering are used as well, [2] is
a good example for a global analysis.

6.1.2 Characterization of Microgels and Nanogels

In the foregoing Sect. 6.1.1, we already became familiar with microgels, which are
internally crosslinked polymer latex particles. In the first part of Sect. 6.1.2, we
will demonstrate that the AUC is an excellent tool to study this inner crosslinking
systematically. Microgel dispersions are important raw materials for the manu-
facturing of a wide range of industrial products, such as high-impact modifiers,
filling material of chromatographic columns, adhesives, lacquers, ion exchangers,
and super-absorbents. In the second part of this Sect. 6.1.2, we will present a spe-
cial form of microgels, which we call nanogels, because their diameters are below
50nm. These nanogels belong to the nowadays so intensely studied nanoparticles.
We will demonstrate that the AUC allows an interesting look into the inner struc-
ture of these extremely small particles. Again, we will combine in this Sect. 6.1.2
the different AUC methods for aqueous and organic static density gradient runs,
particle size distribution measurements, and sedimentation runs in aqueous and
organic media.

Fig. 6.6. AUC particle size distributions of 14 PBMA dispersions with different contents of the
crosslinker MAMA, measured with the turbidity detector in H2O at 15 g/l (reprinted from [3] with
permission)
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Microgels
Figure 6.6 shows the AUC particle size distributions of 14 polybutyl methacrylate
(PBMA) dispersions. All these 14 particle size distributions have nearly the same
shape, and nearly the same average diameters in the range 50–60nm. However, in-
sideof theseparticles there are significant differences: becauseofdifferent amounts
p of the crosslinker, methallyl methacrylate (MAMA), from p = 0 to 10wt%, in
addition to the main monomer BMA, these 14 dispersions vary internally between
uncrosslinked, partly crosslinked, and completely crosslinked. In the following,
we will study these inner differences by means of the AUC. For details of these
studies, and additional light scattering measurements, the reader is referred to [3].
Examples for AUC analysis of microgels can also be found in [2] and [4].

To start our analysis of these 14 latices, we will discuss the aqueous density
gradients shown in Fig. 6.7. For the sake of clarity, we present only five of the total 14
samples (the same is valid for Figs. 6.8 and 6.9). These aqueous density gradients
show the expected result: only narrow turbidity bands of chemically uniform
particles, with nearly the same known particle density of PBMA, 1.050g/cm3. Only
the two dispersions with the highest crosslinker content, 5 and 10wt% MAMA,
show a higher particle density, because the density of MAMA is higher than that
of PBMA.

Fig. 6.7. Aqueous 90 H2O/10 metrizamide
density gradients of five PBMA dispersions
with different contents of the crosslinker
MAMA (reprinted from [3] with permission)
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Fig. 6.8. Organic static (80 tetrahydrofu-
ran/20 di-iodomethane) density gradients of
five PBMA dispersions with different contents
of the crosslinker MAMA (reprinted from [3]
with permission)

Now, we again transfer the 14 dispersions from their originally aqueous
medium by dilution into the organic (80 tetrahydrofuran/20 di-iodomethane) den-
sity gradient medium, which is a good solvent for PBMA, too. All uncrosslinked
particles would be completely dissolved into single macromolecules, and all
crosslinked particles would only swell, depending on their crosslinking degree.
Figure 6.8 shows the result of this transfer experiment for five of the 14 organic
density gradients.

The sample with 0wt% MAMA (upper part of figure) shows only the dou-
ble Schlieren peak of completely dissolved macromolecules (with M about
800 000g/mol). The sample with 10wt% MAMA (lower part of figure) shows
only the narrow turbidity band of highly and completely crosslinked microgel
particles (with M about 80 × 106 g/mol), which must be only weakly swollen. Be-
tween these two extremes, we find an interesting continuous transition: in sample
0.1wt% we see, beside the dominating macromolecules, the first 5wt% of microgel
(= crosslinked part of the original particles) as a small deviation within the double
Schlieren peak. In sample 0.2wt%, the situation is already roughly 50:50, i.e., we
see a 50-wt% double Schlieren peak and, superimposed on this, a broad transpar-
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Fig. 6.9. Sedimentation
runs of five PBMA dispersions
with different contents of
the crosslinker MAMA in the
organic medium tetrahydro-
furan at a concentration of
6 g/l (reprinted from [3] with
permission)

ent 50-wt% band of highly swollen microgel, which shows no turbidity. In sample
0.5wt%, we see a smaller transparent microgel band with a weak turbidity.

We will now quantify these initial results by means of sedimentation runs
in the organic medium pure tetrahydrofurane (THF). Figure 6.9 presents these
sedimentation runs (only one typical photograph per run, taken at different times).
In the samples 0wt% and 0.1wt%, we see only the slow Schlieren peak of dissolved
macromolecules with s = 4.3 and 4.8S. In sample 0.2wt%, we see two peaks: first,
a slow peak of macromolecules with 5.0S and a mass percentage of p = 55wt%.
Second, we see a fast peak of highly swollen microgel with 26S and p = 45wt%.
Furthermore, in sample 0.5wt%, we see 5wt% of slow macromolecules and 95wt%
of fast, swollen microgel particles with 116S, together with a weak turbidity. In
sample 10wt%, we see only very slightly swollen, fast microgel with 520S, together
with a higher turbidity.

Figure 6.10 is a summary of all these measurements on 14 microgel dispersions
in the organic medium pure tetrahydrofuran. The upper diagram shows the mass
percentage of microgel pgel evaluated from the different Schlieren peak areas,
and plotted as a function of the crosslinker content pMAMA in wt%. The lower



174 6 Practical Examples of Combination of Methods

Fig. 6.10. Gel content pgel and sedimentation coefficients s0 of macromolecules and microgel parts
of 14 PBMA dispersions dissolved in tetrahydrofuran as a function of the MAMA crosslinker percentage
pMAMA (reprinted from [3] with permission)

diagram presents the different sedimentation coefficients s0 of the microgels, as
well as of the dissolved macromolecules, also as a function of pMAMA. All these
measurements together show an interesting transitional region, ranging from pure
macromolecules to pure, completely crosslinked microgels, with a crosslinker
content between 0.1 and 0.5wt% MAMA. Within this region, we find both microgel
and macromolecules. Again, this composition range is a very interesting one for
some applications, e.g., for pressure-sensitive adhesives.

In Fig. 6.10, the s0 values of the microgels are plotted only in the low percentage
range of crosslinker, pMAMA = 0−1wt%. In order to discuss the swelling ratio q
of the microgels in tetrahydrofuran, we use in Fig. 6.11 the full range, pMAMA =
0−10wt%.

In Fig. 6.11a, one sees not only the s0 values of the swollen microgel particles
in THF, but also the s0 values for non-swollen particles in H2O. From the ratio
s0,THF/s0,H2O, we calculate the swelling ratio by volume q of these particles in THF,
using (6.1) derived in [3], where d is the particle diameter, ρp(q = 0) the density of
the non-swollen particle, and ρ and η the density and viscosity of H2O and THF:

q =
Vswollen

Vnon-swollen
=

d3
THF

d3
H2O

=

[(
ρp(q = 0) − ρH2O

) · ηTHF · s0,THF
]−3[(

ρp(q = 0) − ρTHF
) · ηH2O · s0,H2O

]−3 (6.1)
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Fig. 6.11a–c. Plots of different measuring parameters of the microgel parts of 14 PBMA dispersions,
in H2O and dissolved in tetrahydrofuran, as a function of the crosslinker percentage pMAMA. The
parameters are a sedimentation coefficients s0 in THF and in H2O, b dynamical light scattering
diameters dp(DLS) in THF and in H2O, c swelling ratios q calculated from the above AUC and DLS data
(reprinted from [3] with permission)
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The q ratios calculated in this manner from the AUC data are indicated as triangular
points in Fig. 6.11c.

Additionally, q was measured independently with dynamic light scattering
(DLS). This was performed, as indicated in Fig. 6.11b, by measuring the hydrody-
namic (z-average) diameters dDLS of the two microgel particle types separately, i.e.,
those swollen in THF and non-swollen in H2O. The resulting DLS swelling ratios q
calculated with the first part of (6.1) are indicated in Fig. 6.11c as circular points
(similar AUC q determinations on microgels via s runs are described in [11]).

The agreement between both methods, AUC and DLS, is good. There is a large
variation of the swelling ratio q, between q = 35 for the most weakly crosslinked mi-
crogel particles with 0.2wt% MAMA, and q = 1.5 for the most strongly crosslinked
particles with 10wt% MAMA. This means that even the 10wt% MAMA particles
are weakly swollen, proving that THF is a good solvent for PBMA.

Nanogels
Nanogels are a new class of substances. They are also microgels, but their particle
diameter is so small (dp < 50nm) that they nearly do not show any turbidity, and
so the AUC turbidity detector is not sensitive enough to detect these nanogels.
This is why Schlieren, interference, or UV optics detectors have to be used instead.
Nanogels can also be considered as compact, globular, intramolecular crosslinked
macromolecules (M range 1 to 20 × 106 g/mol), and therefore can be detected in
the AUC like dissolved macromolecules.

Figure 6.12 shows the nearly identical particle size distributions of four
aqueous nanogel dispersions measured with Schlieren optics (c = 2g/l). These
nanogels are very small, crosslinked polystyrene latices containing one crosslinker
monomer per 80, or per 20 styrene monomers, corresponding to weakly or strongly
crosslinked particles (and to a mass percentage of crosslinker of 1.3 or 5.0wt%,
respectively). Additionally, the two D8 samples are completely deuterated, the two
H8 samples not deuterated. All four nanogel dispersions show nearly the same
broad, unimodal particle size distribution. The 50% diameter is always about
25nm (confirmed by DLS measurements, which yield constant z-average diam-
eters around 33nm). This means that, seen outwardly, these four latices are not
distinguishable! This was intended, because small percentages of deuterated parti-
cles within “identical”, non-deuterated particles should be used as tracer particles
for neutron scattering experiments. This leads to the interesting question: is the
AUC able to show the differences in the inner structure of these very small, 25-nm
nanogels, which must exist? Are they weakly or strongly crosslinked, deuterated,
or not deuterated?

Figure 6.13 will give a first answer to this question: we see an analysis of all four
nanogel dispersions in aqueous static H2O/metrizamide density gradients with dif-
ferent amounts of metrizamide, between 8 and 15wt%, respectively. The two non-
deuterated H8 nanogels show the expected, known polystyrene particle density
ρp = 1.053g/cm3, but the two deuterated D8 nanogels show an increased and – this
is important – uniform particle density around 1.109g/cm3. This uniformity, and
the fact that the measured density increase due to deuteration, Δρ = 0.056g/cm3,
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Fig. 6.12. AUC particle size distributions of four polystyrene nanogel dispersions, deuterated and
non-deuterated, weakly and strongly crosslinked, measured with Schlieren optics in H2O at 2 g/l

is the theoretically expected one, are the proof that the deuteration was successful,
complete and homogeneous (compare also with the famous experiment on non-
deuterated and deuterated DNA by Meselson and Stahl, described in Sect. 1.1.2,
and Figs. 1.4 and 1.5).

In the following experiment, these four nanogels will be transferred again
from their originally aqueous medium into the organic medium, pure tetrahy-
drofuran, where they will undergo swelling. Figure 6.14 shows the result of this
transfer experiment, obtained by sedimentation runs at 3g/l of all four nanogels
in tetrahydrofuran.

The Schlieren photographs presented (now horizontally arranged) show, as for
theaqueousmedium, fast Schlierenpeaks inevery sample,withhighsedimentation
coefficients s = 39, 63, 69, and 101S. From the peak areas follows a reproduction
rate pgel of nearly 100wt% of the weighed-in material. These values of 100wt%,
and additionally the high s values, prove that these peaks belong to compact
nanogel particles or, more precisely, to globular, internally crosslinked and swollen
macromolecules (with M of about 6 × 106 g/mol). These peaks do not belong
to linear dissolved polystyrene macromolecules! We also calculated the volume
swelling degree q of the four nanogels, using (6.1), and the measured s values in
THF, sTHF, and in water, sH2O (and checked these q values by DLS). As a result
of the calculation, we get q = 7.7, 6.0, 3.8, and 4.0. This gives a clear answer
to our introductory questions – the AUC allows us to detect differences in the
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Fig.6.13. AqueousstaticH2O/metrizamidedensitygradientsof fourpolystyrenenanogeldispersions
at 1 g/l
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Fig. 6.14. Sedimentation runs of four polystyrene nanogel dispersions in the organic medium pure
tetrahydrofuran at 3 g/l

inner structure of the four species discussed above: we differentiate (i) between
deuterated and non-deuterated nanogels via ρ measurements, and (ii) between
weakly (1:80) crosslinked structures of the first two nanogels, having high degrees
of swelling of q = 7.7 and 6.0, and strongly (1:20) crosslinked structures of the last
two nanogels, having lower degrees of swelling of q = 3.8 and 4.0.

6.1.3 Ion Exchange in Carboxylated Latices

Crosslinking polymer latices by formation of metal salts during drying and film
formation is widely used to produce durable coatings, strong adhesives, binders
for heat-resistant materials and preservatives for floor covering. However, this ion
exchange in carboxylated latices, which we now will discuss in Sect. 6.1.3, is also
interesting in fundamental research, because such latex particles actually represent
submicron ion exchanger beads, which are excellent models for studying analo-
gous processes in regular (linear) polyelectrolytes. The polyelectrolyte character of
carboxylated latices comes from the incorporation of electrical charges via copoly-
merization of COO− H+ group-bearing monomers into the macromolecule chains.
All latex particles studied in this section are microgel particles, too, because they
all were completely crosslinked with 2wt% methallyl methacrylate (MAMA). This
was done to preserve their identity during the different ion exchange processes.
In this section, we are presenting measurements in aqueous media carried out
by applying two AUC techniques, these being particle size distribution measure-
ments, and aqueous static density gradients. In the following, it will demonstrated
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that especially density gradients are a unique analytical tool to study ion exchange
(for details of these studies, see [4]). The present section is subdivided according
to three aspects: (i) “softer” latices, (ii) “harder” latices, and (iii) kinetics of 2
H+ ↔ Zn2+ ion exchange.

“Softer” Latices
Figure 6.15 shows the integral and the differential particle size distributions of the
“soft”, “mother” latex (78 n-BA/20 MAA/2 MAMA). This is an acrylate copolymer
latex with the two main components n-butyl acrylate (n-BA) and methacrylic acid
(MAA), where MAA is bearing the dissociating COO−H+ groups. We call this a
“soft” latex because its glass transition temperature Tg = 11◦C is below room
temperature. The particle size distribution, shown in Fig. 6.15, is unimodal and
narrow, with particle diameters ranging between 200 and 300nm. The inserted
density gradient Schlieren photograph shows a single narrow turbidity band. This
means that all latex particles have exactly the same density, ρ = 1.108g/cm3, and
therefore, the same copolymer composition and the same equivalent percentage
of H+ ions. With respect to these H+ ions, and the corresponding MAA groups,
now samples of the mother latex were treated with stoichiometric amounts of MgO,
CaO, ZnO, or PbO (in powder form), by stirring the respective mixtures at 85◦C for
3h. The metal oxides are listed on the right-hand side of Fig. 6.15. By this treatment,
the methacrylic acid will be transformed into the corresponding metal salts. The
resulting metallized latices are hereinafter referred to as “daughter” latices.

Our aim was to replace all light H+ ions by the heavier metal ions (Me++)
having increasing atomic masses AMe (see Fig. 6.15). The question was whether it

Fig. 6.15. Integral and differential AUC particle size distribution of the “soft” (Tg = 11 °C) mother
latex (78 n-BA/20 MAA/2 MAMA). Inserts: density gradient Schlieren photograph (left); table of metal
oxides with which the latex was treated, and atomic masses AMe of metal ions (right; reprinted from [4]
with permission)
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would be possible to achieve a complete exchange, i.e., not only would the H+ ions
at the particle surface be replaced, but also those located deep inside the particle.
A sketch of this complex situation is given in Fig. 6.16.

Two neighboring H+ ions are to be replaced by one bivalent metal ion Me++,
which in turn forms an ionic crosslink. We expected that, by this ion exchange, (i)
the particle volume and the particle size distribution would not change, and (ii)
the particle density would increase proportionally to the atomic masses AMe of the
heavier metal ions.

Figure 6.17 shows the particle size distributions of the four “soft” daughter
latices and, for comparison, again that of their mother latex. Within experimental
error limits, the distributions are all the same. Of course, these errors are larger
than usual, because the errors in the ρp determination are greater. The relative
shape of the five different PSDs, characterized by (d90 − d10)/d50, is exactly the
same. Evidently, neither was the colloidal state disturbed by this metallization,
nor did any agglomeration take place. The corresponding results of our density
gradient measurements on these latices are summarized in the schematic diagram
of Fig. 6.18.

All daughter latices show narrow turbidity bands in these density gradients, as
does the mother latex, but the daughter particles show increased particle densities.
This is a very important experimental result, because it means that all particles of
each kind have exactly the same metal content. From the insert on the left-hand
side of Fig. 6.18, it can be seen that Δρ is indeed a linear function of AMe. As
a surprising result, we found that within each daughter latex particle, all particles
are completely loaded with the respective metal ions. This means that a complete

Fig. 6.16. Schematic diagram of the molecular situation within a latex particle during metal salt
crosslinking by 2 H+ ↔ Me2+ ion exchange (reprinted from [4] with permission)



182 6 Practical Examples of Combination of Methods

Fig. 6.17. Integral AUC particle size distributions of the “soft” mother latex 78 n-BA/20 MAA/2 MAMA,
and its four metallized daughter latices (reprinted from [4] with permission)

Fig. 6.18. Schematic diagram of the density gradient results on the “soft” mother latex 78 n-BA/20
MAA/2 MAMA, and its four metallized daughter latices. Inserts: density increase Δρ by metallization
versus atomic mass AMe of metal ions (left); degree of density increase Δρ by metallization (right;
reprinted from [4] with permission)

hydrogen–metal ion exchange must have taken place, not only at the particle
surfaces but also inside the particles.

“Harder” Latices
The complete 2 H+ ↔ Me2+ ion exchange in the “soft” mother latex documented
above was perhaps not really very surprising, because we treated the mother latex
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withmetal oxides above its glass transition temperatureof Tg = 11◦C. Tonowstudy
“harder” latices with systematically increasing Tg, we synthesized such “harder”
latices by replacing, in our starting mother latex, parts p of the “soft” monomer
n-BA by the “hard” monomer methyl methacrylate (MMA). Thus, the seven new
mother latices have the copolymer composition (78–p) n-BA/20 MAA/2 MAMA/p
MMA, with p = 0, 10, 20, 30, 40, 50, and 60wt%.

Figure 6.19 shows the particle size distribution curves of these seven “hard-
er” mother latices. All seven latices have narrow, unimodal, and nearly identical
particle size distributions. The corresponding results of the density gradient mea-
surements on these latices are summarized in the schematic diagram in the center
of Fig. 6.20. The monomer composition of the corresponding latices is listed on
the left-hand side; the corresponding Tg is specified on the right-hand side. All
latices in Fig. 6.20 show narrow turbidity bands, implying they all are chemically
homogeneous. The particle densities show a linear increase with the MMA content.
The latter in turn results in a stepwise increasing “hardness”, as indicated by the
measured Tg values.

By treating these seven “harder” mother latices again with ZnO under the
conditions described above, seven daughter latices were obtained. As the distance
between the treatment temperature (85◦C) and the corresponding Tg was different
for each latex (the two latices containing 50 and 60wt% MMA were treated even
below the Tg of the dry polymer!), we expected that only partial 2 H+ ↔ Zn2+ ion
exchange would have taken place in the five latices having Tg values below 85◦C.

What really happened? Figure 6.21 shows the particle size distributions of
the seven daughter latices. As in the case of the “soft” latices, the daugh-
ter latices have (within the experimental error limits) the same narrow, uni-
modal particle size distribution, essentially identical to that of the mother lat-
ices in Fig. 6.19. In Fig. 6.22, the corresponding results of the density gradi-

Fig. 6.19. Integral AUC particle size distributions of the seven “harder” mother latices (78–p) n-BA/20
MAA/2 MAMA/p MMA; 0 ≤ p ≤ 60 wt% (reprinted from [4] with permission)
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Fig. 6.20. Schematic diagram of the density gradient results on the seven “harder” mother latices
(78–p) n-BA/20 MAA/2 MAMA/p MMA; 0 ≤ p ≤ 60 wt%. Inserts: corresponding molecular composition
(left); measured glass transition temperature Tg (right; reprinted from [4] with permission)

Fig. 6.21. Integral AUC particle size distributions of the seven (78–p) n-BA/20 MAA/2 MAMA/p MMA
Zn-metallized daughter latices; 0 ≤ p ≤ 60 wt% (reprinted from [4] with permission)

ent measurements on the daughter latices (closed bars), together with those
of the mother latices (open bars), are plotted in a diagram similar to that in
Fig. 6.20.

As in the case of the “soft” latices, all daughter latices show narrow turbidity
bands (as did the mother latices), and particle densities increased by Δρ compared
to the mother latices. The Δρ values, listed on the right-hand side of Fig. 6.22, are
approximately identical for all pairs of mother–daughter latices, the mean value
being Δρ = 0.077g/cm3. This means that all daughter latices are completely loaded
with Zn2+ ions, even the two “hardest” ones. Thus, contrary to our expectation, in
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Fig. 6.22. Summarizing schematic diagram of the density gradient results on the seven (78–p) n-
BA/20 MAA/2 MAMA/p MMA mother latices (open bars) and their Zn-metallized daughter latices
(closed bars). Inserts: corresponding molecular composition (left); degree of density increase Δρ by
metallization (right; reprinted from [4] with permission)

all cases a complete hydrogen–metal ion exchange took place, as was the case for
the “softer” latices.

Kinetics of 2 H+ ↔ Zn2+ Ion Exchange
In order to now study 2 H+ ↔ Zn2+ ion exchange in mixtures, each daughter latex
was mixed with its corresponding mother latex at a 1:1 mass ratio, whereas the
original (high) latex concentration of 10wt% was maintained. These mixtures were

Fig. 6.23. Schematic diagram of latex particles before (left) and after (right) a complete 2 H+ ↔ Zn2+

ion exchange between a mother and a daughter latex (reprinted from [4] with permission)
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Fig. 6.24. Density gradient Schlieren photographs of the seven (78–p) n-BA/20 MAA/2 MAMA/p
MMA mother/daughter latex (1:1) mixtures after 1 h exchange time. These measurements are done
simultaneously in one single run, using an eight-cell rotor and a multiplexer (reprinted from [4] with
permission)
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prepared at room temperature, i.e., below the Tg of all latex pairs, with exception
of the first one.

In Fig. 6.23, a sketch of the inferred ion exchange process can be seen. The
plot on the left-hand side shows the situation before the exchange, the plot on the
right-hand side that at the end of a complete exchange. By this process, both kinds
of particles, having two different densities, are transformed into one, single kind of
particles having a uniform particle density at the mean value of the initial particle
densities.

In order to study the kinetics of this process in detail, samples were drawn
from the mixing vessel after different exchange times. The samples were diluted
to a ratio of 1:100 (by this dilution, further ion exchange is stopped), and then
analyzed in a density gradient measurement.

Figure 6.24 shows the original density gradient Schlieren optical photographs
obtained after an exchange time of 1h. In the photograph of the “softest” pair,
containing 0wt% MMA, only a single turbidity band is to be seen, whereas the
photographs of all other mixtures exhibit two distinct, very narrow bands, indicat-
ing two kinds of particles of different densities, i.e., different Zn contents. For the
four samples containing between 30 and 60wt% MMA, these densities correspond
approximately to those of the initial components of the respective mixture.

The situation after an exchange time of 3 days is schematically plotted in
Fig. 6.25. Now also for the mixtures containing 10 and 20wt% MMA, the initial
bands of the mother latex (open bars) and the daughter latex (shaded bars) have
merged into one, single respective band (closed bars), in the mean position. This
means that in these samples, 2 H+ ↔ Zn2+ ion exchange is fully completed after

Fig.6.25. Summarizingschematicdiagramof thedensitygradient resultsof theseven (78–p)n-BA/20
MAA/2 MAMA/p MMA mother latices (open bars), their daughter latices (shaded bars), and respective
(1:1) mixtures (closed bars) after 3 days exchange time (reprinted from [4] with permission)
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3 days. For the four remaining “harder” samples, the distance between the mixture
bands has decreased, compared to the 1-h situation of Fig. 6.24, and it will continue
to decrease progressively with increasing exchange time.

Fig. 6.26. Summarizing schematic diagram of the density gradient results of the seven (78–p) n-
BA/20 MAA/2 MAMA/p MMA (1:1) mother/daughter latex mixtures after different exchange times (for
details, see text) (reprinted from [4] with permission)
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In Fig. 6.26, all our density gradient measurement results on these seven mix-
tures after exchange times of 1h, and 3, 9, 30, and 85 days are summarized. For each
mixture, the obtained density position of the turbidity bands within the density
gradient is plotted along the ρ axis as a function of the exchange time indicated. It
is clearly shown that in all seven mixtures, complete 2 H+ ↔ Zn2+ ion exchange
takes place even at room temperature, if the exchange process is maintained for
a sufficiently long time. The rate of this process depends on the MMA content, i.e.,
on the “hardness” of the latices, and this is how it can be controlled: the higher the
MMA content, the lower is the exchange rate.

This ion exchange is a strongly cooperative, quantized process. We do not
understand it completely, but it is fascinating! During the whole exchange process,
we always see two distinct, well-defined particle populations with different Zn
contents. Within each of these two single populations, however, the corresponding
Zn content is exactly uniform. Our expectation was that this exchange would be
a statistical process, and we would obtain broader density gradient bands with
increasing exchange time, which means a broad Zn distribution within every
population. For which reason does this 2 H+ ↔ Zn2+ ion exchange occur in
small, quantum-like portions? Why are all particles “watching” each other inside
a population, controlling that each particle has exactly the same Zn content? Why is
the process a cooperative one, and not a statistical one? With these open questions,
we will close Sect. 6.1, dealing with the combination of different AUC methods,
and open Sect. 6.2, in which other analytical techniques are combined with the
AUC techniques.

6.2 Combination of AUC with Other Techniques

The application examples in Sects. 6.1.1 to 6.1.3 above are an impressive demon-
stration of the versatility and power of the different AUC methods, and their
combination for the analysis of complex systems of synthetic polymers and col-
loids. However, sometimes the AUC alone cannot solve all analytical problems.
In this case, we have to use additionally other analytical techniques, especially on
samples having a particle density distribution (or other distributions) beside a size
distribution. As mentioned in the introduction of this Chap. 6, the solution of such
problems is a “global analysis” [12–15]. At present, we still are at the beginning
of this approach, the rational being to use as many (fractionation) methods as
possible for the same sample in order to gather information about the sample
distributions in both size and density (and other parameters, too). Such methods
are the AUC (s run, equilibrium run, DG run), EM, DLS, and FFF. The latter two
methods also yield distributions of the diffusion coefficient. Recent examples of
global analysis are (i) the combination of AUC (s runs) and flow-FFF (D distri-
bution) for the analysis of the organic–inorganic hybrid colloid ferritin [12], and
(ii) the combination of AUC and DLS in size and shape distribution analysis of
macromolecules [13]. The author, P. Schuck, also presented a corresponding data
evaluation program, called SEDPHAT (see [14, 15]).
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In this Sect. 6.2, we will present some application examples of method com-
binations, in Sect. 6.2.1 the combination of AUC and sedimentation field flow
fractionation (SFFF), and in Sect. 6.2.2 the combination of AUC and electron mi-
croscopy (EM). Simultaneously using different analytical techniques for the same
sample is often a good method to disclose the special power, but also the typical
limits of these different techniques. The following examples are not real global
analysis examples, such as the one described in [12]. For a better understanding,
we have chosen simple examples that have unambiguous results, and point out the
advantageous AUC features.

6.2.1 AUC and SFFF

Sedimentation field flow fractionation (SFFF) is also a centrifugation technique
(that is the reason why we present this example here in our AUC book), suitable
for particle size distribution measurements in the nm range and, in contrast to
the AUC, also for the preparative fractionation of such samples (albeit only in
μg amounts, and in combination with a fraction sampler). In the following, we
will analyze a ten-component mixture of nearly monodisperse polystyrene latex
particles (the diameter dp,i varies in the range 67–1220nm, the mass percentage mi

of every component is 10wt%, and i = 1, 2, ..., 9, 10, the running number of the
ten different components). Both techniques, the AUC and SFFF, will be applied,
and some measurements using scanning electron microscopy (SEM) and DLS are
included. All details of this analysis, especially literature concerning SFFF, can be
found in [5]. A quite recent FFF review, especially for flow-FFF, is [16]. Note that
the ten-component sample was already described in Sect. 3.5.2 of this book.

Figure 6.27 outlines the principles of SFFF. The general field flow fractionation
(FFF), developed in 1965 by Giddings [6], is a chromatographic method. The
“fractionation column” is a long and very thin channel, shaped like a belt (see
Fig. 6.27a). Typical dimensions are 94 × 2.0 × 0.0254cm, resulting in a channel or
void volume of V0 = 4.8cm3. A carrier medium (e.g., a solvent or water with 0.1%
surfactant) is pumped continuously through the channel in the form of a laminar
parabolic stream with typical flow rates of 1–3cm3/min. At the inlet of the channel,
there is an injection port for the sample to be analyzed (the typical injected sample
volume is 0.005cm3 for a sample concentration c = 1wt%). A force F perpendicular
to the belt-like channel (see Fig. 6.27a) interacts with the flowing sample particles,
and pushes them toward the outer channel wall, i.e., away from the center of the
parabolic carrier stream. The lateral movement of the sample particles depends on
their size, density, electrical charge, etc., resulting in a fractionation of the sample
into its different components, which can be monitored in a detector located behind
the channel outlet. The various FFF methods are distinguished by the different
forces F used, e.g., electrical, flow or centrifugal forces. If we use the latter, we
speak of sedimentation field flow fractionation (SFFF). In this case (see Fig. 6.27a),
the flat channel is bent in a circular way, like a real belt, and introduced into an
(ultra)centrifuge. Also during rotation of this belt-like channel inside the SFFF
rotor, a continuous parabolic laminar carrier flow through it is made possible by
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means of a rotating face seal. Generally, all FFF apparatus are fractionation devices
according to their different parameters, and thus well suited for global analysis.

Figure 6.27b schematically shows the fractionation of a bimodal mixture of
small and large particles inside the belt-like SFFF channel, in four steps. The
resulting analytical curve (called the retention curve, or fractogram or elugram)
of a UV detector (254nm) is presented at the bottom of Fig. 6.27b. In the first
step, shortly after the injection of the sample into the running rotor, the carrier
flow is interrupted by stopping the pump for 10min. Within this “relaxation” time,
all particles sediment radially (i.e., perpendicularly to the two channel walls with
their very small distance w = 0.0254cm) toward the outer wall. Also within this
time period, back-diffusion takes place, and sedimentation–diffusion equilibrium
with an exponential radial concentration profile c(r) is reached (as in an AUC
equilibrium run). Small and large particles assemble superimposed in thin layers
near the outer wall at the entrance of the channel.

In the second step, the pump is started, again creating the continuous laminar
parabolic carrier flow through the channel. This flow transports the superimposed
layers along the channel, thereby creating a fractionation of the two layers, because
the small particles form a thicker layer moving faster in the faster stream lines of
the parabolic profile, whereas the larger particles have a thinner, more compressed
and slower moving layer, closer to the outer wall. Low molar mass material, such as
UV-absorbing impurities, are not retained, moving through the channel with the
highest possible velocity and reaching first the outlet of the channel and then the
detector, thereby creating the first peak in the fractogram. This peak of unretained
material marks the zero retention time t0, or the void volume V0 of the channel. At
the beginning of the third step, the small, but fastest particles will pass the channel
outlet and the detector, creating the second peak in the fractogram at the retention
time te, or the corresponding retention (= elution) volume Ve. Similarly, the fourth
step begins when the large, but slowest particles pass the channel outlet and the
detector, creating the third peak of the fractogram. In contrast to size exclusion
chromatography, in SFFF analysis the smaller particles exit the “column” before
the larger particles.

The SFFF theory of Giddings (see [5]) relates the measured retention times, t0,
te, or retention volumes, V0, Ve, to the desired particle diameter dp:

V0

Ve
= R = 6λF

[
coth

1
2λF

− 2λF

]
= f(dp) (6.2)
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Fig. 6.27a,b. Outline of the chromatographic sedimentation field flow fractionation (SFFF) method.
a General view of the SFFF arrangement, with its different elements. b Details and time sequence of
the four-step fractionation process according to particle size inside the rotating belt-like channel, and
the resulting analytical curve (= fractogram or elugram) of the UV detector (reprinted from [7] with
permission)
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where ω is the SFFF rotor speed, r the radial distance of the SFFF channel from
the rotor axis (15.5cm in the University of Utah SFFF apparatus), ρp the particle
density (1.055g/cm3 for polystyrene particles), ρs the density of the carrier fluid,
and NA Avogadro’s number.

After these introductory remarks concerning SFFF, we now start with com-
parative AUC and SFFF measurements for the determination of the particle size
distribution of the ten-component mixture of nearly monodisperse polystyrene
latex particles described above. The aim of these measurements is to reproduce
not only the known diameter dp,i of the ten components but also their known
percentages mi. Beside AUC and SFFF, SEM and DLS will be used as well.

Figure 6.28 shows the AUC measurements for (Fig. 6.28a) each of the ten
single components, and (Fig. 6.28b) the mixture of these ten components. The
numerical dp,i and mi values extracted from these AUC measurements, all done
“field-programmed”, i.e., with our usual, continuously increasing rotor speed ω
from 0 to 40 000rpm within 1.5h, are summarized in Table 6.1 and in the insert of
Fig. 6.28b. The comparison of these data shows that the AUC is able to reproduce all
diameterswithinameasuringerrorof±5%,andallmasspercentageswithin±15%.

Figure 6.29 shows the corresponding SFFF measurements: in Fig. 6.29a, a field-
programmed ω(t) run, with an initial high field of 2000rpm (692 g), followed by
an exponentially decreasing ω(t) field with a time constant of 20min (the flow
rate in this case is 1.0cm3/min, the total running time 4h), and in Fig. 6.29b, three
measurements with ω = constant but different fields of 500, 111, and 28 g (in all
three cases, the flow rate is 2.8cm3/min and the total running time 1.5h). We start
by discussing the field-programmed fractogram in Fig. 6.29a. Field-programmed
ω(t) runs are the universal standard technique of SFFF (in contrast to PSD runs

Table 6.1. Particle diameters dp,i and mass percentages mi for the ten-component mixture of nearly
monodisperse polystyrene latex particles determined with different techniques (AUC, SFFF, SEM, and
DLS)

Component

no.

AUC single

comp.

AUC ten-

comp. mixt.

SFFF,

DuPont

SFFF,

Utah

DLS SEM

D (nm) % D (nm) % D (nm) % D (nm) % D (nm) D (nm)

1 67 10 72 14 70 26 96 – – –

2 113 10 121 9 119 16 113 8 – –

3 166 10 172 11 175 15 162 9 – –

4 246 10 259 8 261 13 259 16 252 –

5 318 10 320 10 319 11 320 18 307 –

6 356 10 379 8 374 9 376 17 381 –

7 486 10 515 9 479 7 524 10 – 530

8 680 10 665 8 588 3 716 9 – 680

9 840 10 870 10 695 0.5 917 7 – 896

10 1220 10 1180 13 805 0.5 1221 6 – 1216
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Fig. 6.28a,b. AUC particle size distributions, a of the ten separate, single polystyrene latex com-
ponents, and b of the ten-component mixture with an equal mass percentage of 10 wt% of each
component (reprinted from [5] with permission)

in the AUC, where ω(t) increases exponentially with time, in this SFFF mode ω(t)
decreases exponentially with time). Unfortunately, this fractogram shows only
eight resolved peaks, which belong to the eight largest particles (166–1220nm).
The two smallest components, numbers 1 and 2 (67 and 113nm respectively), are
not resolved, and close to the narrow impurity (or void volume) peak at low elution
volumes. One reason is that the maximum field, 2000rpm, of the University of Utah
SFFF apparatus that was used for these measurements is not high enough. There-
fore, the ten-component sample was sent to the DuPont laboratory for a routine
analysis (analytical conditions not optimized) with the best SF3 Particle Fractiona-
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Fig. 6.29a,b. SFFF fractograms of the ten-component polystyrene latex mixture, using the University
of Utah SFFF apparatus, a working with a programmed field ω(t), i.e., starting with the maximum
field 2000 rpm (692 g) and then decreasing this exponentially within 4 h to zero, b working with three
constant, but different fields of 500, 111, and 28 g, i.e., with ω = constant (reprinted from [5] with
permission)

tor available at present, having a maximum field of 18 000rpm (35 000 g). With this
instrument, it was indeed possible to resolve all ten components. The resulting dp,i

and mi values are listed in Table 6.1. Although the diameter assignments made at
DuPont for the smaller particles (dp,i < 500nm) were in good agreement with the
AUC data, the table shows a systematically increasing deviation from the known
diameters, with an increase in size. From Table 6.1, it is also clear that the quan-
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tification of the amount of the larger components is less accurate (and too low), as
recoveries appear to decrease with increasing particle size. Systematic studies of
this effect (see Fig. 6.30) show that excessive compression of the equilibrium layers
of the largest particles at the beginning of the experiment with its high field will
result in partial adsorption of the particles at the outer wall of the channel.

An analogous evaluation of the field-programmed fractogram of the University
of Utah SFFF apparatus (Fig. 6.29a), i.e., calculating dp,i with (6.2) from the Ve-
maximum position of the eluted peak, and mi from the area of the peak (corrected
for Mie scattering), yields a result analogous to the DuPont fractionator: (i) all
SFFF diameters for particles larger than 500nm are too low, (ii) also the SFFF mi

values for these particles are too low, and (iii) this deviation toward smaller SFFF
mi values increases systematically at higher dp,i values.

This effect of excessively low recoveries for large particles was systematically
studied in Fig. 6.30 with the University of Utah SFFF apparatus as a function
of (i) field strength (that means, also of retention time), and (ii) particle size,
using three monodisperse polystyrene standard particles (Seragen) with known
diameters of 394, 597, and 895nm. Every measuring point in Fig. 6.30 is the result
of a separate 1.5-h SFFF run at constant field. The recovery rates were calculated
from the corresponding peak areas, corrected for Mie scattering. All calculated
recovery rates at higher fields in Fig. 6.30 are normalized to zero field. Figure 6.30
shows a clear trend: the higher the diameter, and the higher the field strength, the
lower is the recovery rate. Correct recovery rates of large particles are obtained
only by an extrapolation procedure to zero field. This is a major disadvantage of
the SFFF method, if one has to analyze broadly distributed particle mixtures with
diameters larger than 400nm.

An alternative way to the field-programmed SFFF technique of Fig. 6.29a,
yielding perhaps more accurate dp,i and mi values of larger particles, is to make
several consecutive runs at constant but different fields, and to determine dp,i and
mi values only for particles of moderate layer compression, i.e., in the analytically
useful retention range of 5–30 column volumes V0. Such measurements of the
ten-component sample are presented in Fig. 6.29b. Here, three fractograms were
collected at constant fields in the “weak”, “intermediate” and “strong” field range

Fig. 6.30. Sample recov-
ery measurements with the
University of Utah SFFF ap-
paratus as a function of field
strength and particle size,
using three monodisperse
polystyrene standard parti-
cles (Seragen) of 394, 597 and
895 nm (reprinted from [5]
with permission)
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(28, 111, and 500 g) of the University of Utah SFFF apparatus. Each component
peak in Fig. 6.29b is numbered from 1 to 10, corresponding to those in Table 6.1.
The weak field (28 g) permitted detection and quantification of component 10
(1220nm), which was otherwise undetectable, whereas it was clearly inadequate
for resolution of the finer particles, which are resolved by the stronger fields of 111
and 500 g. Nevertheless, also at the high field of 500 g, the two smallest components
1 and 2 (67 and 113nm respectively) are not resolved.

If we evaluate the fractograms of Fig. 6.29b by calculating dp,i for the different
components at different field strength, using (6.2) and the measured V0/Ve values,
we obtain different and again excessively low numbers for the dp,i value for the
same component. These systematic deviations from the known dp,i values increase
with particle diameter and field strength, illustrated in Fig. 6.31. This figure shows
not only the three fractograms of Fig. 6.29b, but also several other fractograms of
the ten-component sample at additional constant field strengths.

These data demonstrate that there are no deviations for the 356- and 318-nm
particles, neither for smaller ones. The reasons for the failure of (6.2) for particles
larger than 356nm are (i) steric exclusion of large particles from the outer wall
(the theory of (6.2) uses point-like particles), and (ii) possible interactions of the
particles and the outer wall in the form of velocity- and size-dependent lift forces
directed toward the center of the channel. The present ten-component mixture
of monodisperse particles proved to be an ideal sample for demonstrating the
existence of such wall effects in SFFF.

The dataset in Fig. 6.31 reflects the ten-component sample SFFF behavior under
a large number of different field strengths. These fields were chosen such that they
allowedus toextrapolate thediameterdata for eachparticle component toavalueat
zero field, presumably free from wall effects. For the four largest particles, a fourth-
degree polynomial fit was shown to represent the data with a 99% confidence level,
whereas sizes of smaller particles were determined by linear extrapolation to zero
field. Extrapolated diameters obtained in this way are listed in Table 6.1, and are
seen to compare well with those from AUC over the entire size range. The smallest
particles (67nm) were barely retained even at the maximum field strength of the

Fig. 6.31. Effect of field
strength on particles’ di-
ameter dp determined
by SFFF using (6.2). Sum-
mary of constant field
measurements, using the
ten-component sample
and the University of Utah
SFFF apparatus (reprinted
from [5] with permission)
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University of Utah SFFF apparatus (2000rpm, 692 g), and were therefore excluded
from this extrapolation procedure.

Also listed in Table 6.1 are the mass percentages mi of nine of the sample’s
ten components, calculated from the areas of the peaks (Mie scattering-corrected)
in the different fractograms (the smallest particles, 67nm, were not resolved).
Although these constant-field mi values are closer to the known values of 10wt%
than the field-programmed values, these SFFF values are not good enough. The
comparison of all datasets in Table 6.1 shows clearly that the AUC is superior to
SFFF in particle size distribution measurements of broadly distributed particle
samples, especially if they contain components with diameters larger than 400nm.

In the final part of this Sect. 6.2.1, we will describe a major advantage of the
SFFF method, namely, the ability to separate a sample preparatively into fractions
of uniform size (as mentioned above, only in μg amounts), which can be subjected
to one or several secondary analysis steps. That is not possible with AUC. We will
demonstrate this ability of SFFF with our ten-component sample, and the two sec-
ondary analysis methods SEM and DLS. During the constant-field measurements,
presented in Fig. 6.29b, single-component peaks were “cut out” of the fractogram
(via a fraction sampler positioned after the UV detector) for further analysis by
SEM and DLS. The concentrations reached were above the detection limit of the
DLS instrument used (Brookhaven BI-90, fixed angle 90◦) for only three “cut”
fractions (246, 318, and 356nm). However, these three DLS diameters (252, 307,
and 381nm, see Table 6.1) are in good agreement with the AUC values.

For SEM measurements, it was possible to prepare nine “cuts” (again, the
smallest component, 67nm, could not be resolved and prepared). Prior to SEM
analysis, the collected fractions were concentrated on Nucleopore filters with pore
sizes of 100 or 200nm. The filtered samples were mounted on copper stubs and
gold-coated prior to imaging. The resulting SEM electron micrographs of the nine
“cuts”, and additionally that of the starting ten-component sample are compiled
in Fig. 6.32.

These SEM micrographs give a clear indication that the SFFF fractionation is
efficient, and produces highly monodisperse “cuts” without evidence of contam-
ination by other components of the sample. The magnification is insufficient to
permit accurate sizing of the smaller components, and Table 6.1 therefore contains
only SEM-size assignments for the four largest SFFF fractions. These SEM sizes
(530, 680, 896, and 1216nm) are in good agreement with the AUC values.

In summary, the above Sect. 6.2.1 is an excellent demonstration of the synergy
effects in combining different measuring techniques such as AUC, SFFF, SEM and
DLS inanalyzing complex colloidal systems.Using the samesample for comparison
measurements manifests the strong points as well as the limits of each technique.

6.2.2 AUC and EM

AUC and electron microscope (EM) are two analytical techniques that complement
each another in an excellent manner. AUC allows us to analyze very broadly
distributed particulate systems, because millions of particles are “counted”, and
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Fig. 6.32. SEM records of the starting ten-component sample (top), as well as of the single resolved
SFFF fractions numbers 2 through 10. Sizes measured for the four largest particle fractions from these
micrographs are included in Table 6.1 (reprinted from [5] with permission)

it is possible to measure at low concentration in a “safe” manner, i.e., without
appreciably disturbing the original system by a destructive preparation. However,
the AUC always measures “Stokes-equivalent spheres”, and does not deliver any
information about the shape of the particles (spheres, rods, ellipsoids or coils)
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and their inner structure. That is possible with EM. Still, EM requires a complex
preparation of the samples, and often only ten up to a few hundred particles can
be counted on an EM micrograph. That is not enough for the determination of
a very broad particle size distribution. In this case, several electron micrographs
with different magnifications are necessary to obtain a representative picture of the
whole sample. In the following, we present four combined AUC/EM examples: (i)
copperphtalocyaninepigments, (ii)Mn/Zn ferriteparticles inamagneticfluid, (iii)
colloidgoldnanoparticles embedded ina transparentfilmofpolyvinylpyrrolidone,
and (iv) the very complex example of high-impact polystyrene (HIPS).

Copper Phtalocyanine Pigments
Figure 6.33 shows an electron micrograph of needle-shaped crystals of a copper
phtalocyaninedye,used inprinting inks, togetherwith theparticle sizedistribution
curve that we obtained by AUC measurement, yielding Stokes-equivalent sphere
diameters of 20–150nm.

We also analyzed the electron micrograph of the needle-shaped crystals in
Fig. 6.33 by means of an optical image processing computer program to mea-
sure the electron microscope (EM) particle size distribution of the needle lengths,
which is also shown in Fig. 6.33. The EM particle size distribution is not very
accurate, because we counted only 991 particles and it was very difficult to distin-
guish between neighboring particles. Thus, the AUC particle “size” distribution of
Stokes-equivalent spheres is more representative for the PSD shape and broadness

Fig. 6.33. Electron micrograph, AUC particle size distribution, and EM particle size distribution of
a copper phtalocyanine pigment (reprinted from [8] with permission)
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of the whole sample. Nevertheless, the (restricted) EM particle size distribution
agreed reasonably well with the AUC particle size distribution. The EM particle
sizes would be expected to be higher, because the needle length (EM) is being
compared with the equivalent sphere diameter (AUC). In contrast to the AUC, only
the EM is able to reveal that the copper phtalocyanine pigments are needle-shaped.

Mn/Zn Ferrite Particles of a Magnetic Fluid
Figure 6.34 shows another example with non-spherical particles. Rather than
being dispersed in water, the heavy (ρp = 4.2g/cm3) Mn/Zn ferrite nanoparticles
were dispersed in the organic solvent triethylene glycol (TEG). This demonstrates
a great advantage of the AUC particle sizing method, namely, that it is possible to
measure in every solvent or dispersion medium, not only in water, as is necessary
for many other methods. The Mn/Zn ferrite dispersion is a magnetic fluid that can
be switched in a magnetic field, and it may perhaps be used in the near future in
coupling devices, seals, and dampers. Our task was to study the agglomeration of
the primary 20-nm particles under different conditions. That is only possible with
AUC, because every EM preparation will disturb the original agglomeration status
considerably. Under the special conditions shown in Fig. 6.34, it was found that the
Mn/Zn ferrite dispersion consisted of 20wt% of non-agglomerated primary 20-nm
particles, and 80wt% of highly agglomerated particles with (sphere-equivalent)
diameters of 40–400nm. The micrograph in Fig. 6.34 shows, in agreement with
AUC, correctly measured single 20-nm Mn/Zn ferrite particles, but the bigger
agglomerates are not present in the original sample – rather, they are arbitrary,
and created during the EM preparation.

Fig. 6.34. Electron micrograph and AUC particle size distribution of Mn/Zn-ferrite particles in a mag-
netic fluid, dispersed in triethylene glycol, concentration 1 g/l (reprinted from [9] with permission)
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Colloid Gold Nanoparticles Embedded in a Film of Polyvinyl Pyrrolidone
Figure 6.35 shows AUC-PSD measurements of gold colloids such as in the historical
example of Rinde and Svedberg [10] in 1924. Colloidal gold nanoparticles have
a very high density of ρp = 19.3g/cm3 (and a complex refractive index n(Au) =
0.706 + i · 2.42 at λ = 546nm and T = 25◦C, which one has to know for the Mie
theory).

In the introductory Chap. 1 of this book (see Figs. 1.1 and 1.2), we already
described this historical example. Rinde and Svedberg created their colloid gold
particles inpurewater.Bycontrast, our samplewasprepared inanaqueous solution
of polyvinyl pyrrolidone, which was dried in order to obtain a transparent polymer
film. The film itself has been tested as a fast nonlinear optical switch for optical
computers.

The electron micrograph of a very thin 200-nm slice of this film in Fig. 6.35
(cut with a microtome) shows that single, non-agglomerated gold particles, with
diameters of roughly 10–60nm, are homogeneously distributed within this film.
This information about the homogeneous distribution cannot be obtained by
AUC. However, the AUC delivers a precise particle size distribution of these gold
particles, also shown in Fig. 6.35, by again dissolving this film in water and carrying
out a sedimentation run with the turbidity detector at λ = 546nm. The result is
a unimodal, nearly Gaussian particle size distribution with diameters of 5–50nm.

Fig. 6.35. Electron micrograph and AUC particle size distribution of colloid gold nanoparticles em-
bedded in a film of polyvinyl pyrrolidone; dispersed in H2O at a concentration of 0.1 g/l (reprinted
from [9] with permission)
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In contrast to the AUC particle size distribution in Fig. 6.35, the one in Fig. 1.2
is not entirely correct, because Rinde and Svedberg were not yet able to carry
out a Mie correction. EM and AUC diameters in the example of Fig. 6.35 agree
well. These gold particles have extremely small diameters. Therefore, we call them
nanoparticles, and the particle size distribution of Fig. 6.35 demonstrates the lower
measuring limit of the AUC particle sizing method with a light scattering/turbidity
detector (with interference, Schlieren optics, or UV detectors, this lower limit is
decreased to about 1nm; see, for example, Figs. 1.2, 3.23 and 3.28).

High-Impact Polystyrene (HIPS)
In the following HIPS example, we combine only AUC and EM. Nevertheless, this
is also a global analysis example. Indeed, only by a combination of s runs, DG
runs, and PSD measurements with AUC and EM can we demonstrate the complex
structure of this sample with its broad distributions in particle size and in particle
density.

Figure 6.36 shows the transmission electron micrograph (TEM) of a very thin,
250-nm microtome slice (= cut) of high-impact polystyrene. This plastic engineer-
ing material is used worldwide for household appliances, automotive parts, toys,
housings of telephones, radios, etc. Its special advantage is that nearly every shape
of a part can easily be produced by injection molding, and that these parts show
brightness, are rigid, but not as brittle as pure polystyrene, rather having a high-
impact strength. The latter property is created by a special chemical synthesis:
8wt% of (soft) polybutadiene is dissolved in styrene monomer, and the mixture is
polymerized under intense stirring. By varying the stirring speed, the broadness
of the particle size distribution of the resulting (soft) polybutadiene/polystyrene
“rubber” particles contained in the (hard and brittle) polystyrene matrix can be

Fig. 6.36. TEM electron micrograph of a microtome-cut thin slice of high-impact polystyrene (HIPS),
consistingof 92 wt%polystyrene (white) and8 wt%polybutadiene (stainedblack byosmiumtetraoxid)
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controlled, and so the high-impact strength of this material, too. A similar material,
soft PBA particles inside of a hard PSAN matrix, has been discussed in Sect. 6.1.1.

Only electron micrographs, such as shown in Fig. 6.36, and not the AUC (!), can
reveal the complex inner structure of this high-impact polystyrene: The white areas
in Fig. 6.36 consist of polystyrene, whereas the black areas consist of polybutadiene
stained by osmium tetroxide. Bizarrely formed (nevertheless, nearly sphere-like)
embedded polybutadiene rubber particles with diameters of 1000–5000nm can
be seen within the continuous (is it really continuous?) white polystyrene matrix,
which again in its inside shows included white polystyrene sub-particles.

The following questions arising from Fig. 6.36 can be answered only by AUC,
but not by EM. (i) Are the rubber particles inside the polystyrene matrix isolated
particles, or are they connected by a polybutadiene network, not visible in Fig. 6.36,
i.e., is this matrix really a continuous one? (ii) If there are single, isolated rubber
particles, what is their S/Bu composition (is it constant, or variable?), and what
is their particle size distribution? (iii) What is the molar mass of the matrix
polystyrene, and of the included polystyrene? (iv) Is polystyrene grafted onto the
(crosslinked) polybutadiene rubber particles, inside and outside, and what is the
grafting degree? This questionnaire is typical for a global analysis. In the following,
we will answer these questions by a combination of different AUC techniques:
sedimentation runs, particle size distribution runs, density gradient runs, and
preparative ultracentrifugation.

Figure 6.37 shows a sedimentation run of HIPS, dissolved in methylethyl ke-
tone at a concentration of c = 10g/l. Starting with a very low rotor speed of
1000rpm, we see a continuous sedimentation of the (crosslinked!) rubber parti-
cles, as a fast turbidity front to the cell bottom within 15min at a resulting velocity
of s = 20 000S. This allows us to roughly estimate the lowest diameter (to approxi-
mately 1000nm) by means of (1.9). This is a first hint for the existence of isolated
particles, and the absence of a continuous polybutadiene network, as well as for
the presence of a continuous polystyrene matrix. Subsequently, we raise the rotor
speed to the maximum speed of 60 000rpm, in order to for the 3000-times slower
polystyrene macromolecules of the matrix to sediment, too. The Schlieren peak
of this polystyrene, seen in the lower part of Fig. 6.37, yields two pieces of infor-
mation: first, the complete molar mass distribution W(M), using the technique
described in Sect. 3.4.2 and a scaling relation s = KMa (we do not present this here),
with a weight-average molar mass of Mw = 240 000g/mol, corresponding to the
(average) sedimentation velocity of the peak maximum s0 = 12S; second, following
from the Schlieren peak area, we calculate that 84wt% of the whole polystyrene
molecules is in the matrix. The remainder, 16wt%, must be grafted or included in
the rubber particles, and must have sedimented with them very rapidly.

Figure 6.38 presents the (rough) particle size distribution of the (crosslinked)
rubber particles, estimated independently by AUC and EM, using electron micro-
graphs such as shown in Fig. 6.36. Only a few hundred particles are counted to
obtain this EM particle size distribution, and thus it is not a very precise one. This
is also due to the fact that we are not sure whether we have properly corrected
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Fig. 6.37. Sedimen-
tation run of high-
impact polystyrene in
methylethylketone at
c = 10 g/l. In the first
part of the run at 1000 rpm
(top), we see the fast rubber
particles sedimenting as
a turbidity band, and in the
second part at 60 000 rpm
(bottom), we see the slow
polystyrene matrix macro-
molecules sedimenting as
a Schlieren peak

the so-called “tomato salad effect”, resulting from cutting thin slices with the mi-
crotome. The AUC particle size distribution was measured with our particle sizer,
described in Sect. 3.5.1, using turbidity optics and a very low HIPS concentration
of 0.4g/l, again in methylethyl ketone. This is also not very precise, because the
particle density ρp and refractive index np are not exactly known. Further ρp and
np are not really uniform, because of possible variations in the S/Bu composition
(see the following density gradient in Fig. 6.39), and in the degree of crosslink-
ing/swelling. Therefore, we assumed reasonable, average values to calculate the
PSD. Indeed, we found that the two particle size distributions in Fig. 6.38 corre-
spond reasonably well. Both are very broad, and the average diameter of 2500nm
is very high, which, it should be noted, is significant for the excellent high-impact
strength of this material. It is also easy to explain why the EM distribution of
1000–6000nm is somewhat smaller than the AUC distribution of 500–8000nm:
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Fig. 6.38. Particle size distribution of the rubber particles inside a high-impact polystyrene sample,
measured independently with AUC and with electron microscopy (TEM)

Fig. 6.39. Schlieren photograph of a static 22 n-hexane/78 chloroform AUC density gradient of
a high-impact polystyrene sample, showing the very broad turbidity band of the dispersed rubber
particles, and the double Schlieren peak of the dissolved polystyrene matrix macromolecules. A S/Bu
composition axis is drawn into the photograph

the AUC recognizes all particles, and counts millions of them, whereas the EM, at
only one magnification, does not detect either the smallest, or the biggest particles
in this very broad distribution.

Figure 6.39 shows the static 22 n-hexane/78 chloroform density gradient run of
theHIPSsample. Since theexact radialdensitypositionsofpurepolybutadiene,ρ =
1.08g/cm3, and of pure polystyrene, ρ = 1.19g/cm3, are well-known in this density
gradient, we can draw a S/Bu composition axis into the corresponding Schlieren
photograph, as shown in Fig. 6.39 (although the absolute particle density values
of PS and PBu, 1.055 and 0.899g/cm3, are falsified due to preferential solvation
of chloroform, this composition axis remains valid). The large density difference
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between polybutadiene and polystyrene allows us to estimate rather precisely the
S/Bu composition of S/Bu particles or macromolecules within this gradient. In this
Schlieren photograph, we see on the right-hand side the double Schlieren peak of
the (pure) polystyrene matrix macromolecules, whereas on the left-hand side, at
the position of pure polybutadiene, we do not see anything, which proves that no
free pure polybutadiene macromolecules are present in this sample. Therefore, the
whole amount of the starting polybutadiene macromolecules (8wt%) must have
been incorporated completely and covalently into the crosslinked S/Bu rubber
particles. InFig. 6.39, theseparticles showabroad turbidityband, i.e., a highdegree
of chemical heterogeneity in the form of a strong, continuous S/Bu composition
variation between 60/40 and 80/20wt%. The average S/Bu composition of the
rubber particles is 70/30wt%.

Now, we come to the decisive and most difficult question (cf. above): which
part of the 70wt% polystyrene is covalently grafted onto the rubber particles,
and which part is only included (cf. not able to permeate through the crosslinked
polybutadiene membranes surrounding the included polystyrene)? An answer to
this question will be given by a sophisticated experiment using EM techniques and
AUC density gradients.

Figure 6.40 explains this experiment. The electron micrograph on the left-
hand side of this figure, and the density gradient below have already been shown
in Figs. 6.36 and 6.39. From the original HIPS material, we extracted the continu-
ous polystyrene matrix completely with metylethyl ketone in a Soxhlett extractor.
As a result, we obtained a gel consisting exclusively of rubber particles. The evi-
dence is given by the density gradient of this gel, as can be seen in the middle of
Fig. 6.40 (on the right-hand side). The density gradient shows the turbidity band
of rubber particles, but no double Schlieren peak of polystyrene macromolecules
from the matrix. Above this density gradient, in the upper right-hand corner of
Fig. 6.40, again a transmission electron micrograph of a thin slice of this gel, cut
with a microtome, is shown. One can see that the rubber particles are fully packed
and deformed within this gel. Every complete particle is surrounded by thin black,
parallel double lines. These lines represent the two closed polybutadiene mem-
branes surrounding the neighboring rubber particles.

We now cut the original material (shown on the left in Fig. 6.40), as well as
the rubber particle gel (shown on the right), into very thin, successive 250-nm
slices by means of a microtome. Parallel lines in both micrographs of Fig. 6.40
visualize the thickness of these slices. Both assemblages of successive slices were
analyzed again in two density gradients. The result is presented in the lower two
Schlieren photographs of Fig. 6.40. All polystyrene macromolecules within these
slices, which are covalently grafted onto the crosslinked polybutadiene, cannot
diffuse away from the rubber particles, whereas all polystyrene macromolecules,
which are only included, will do exactly this. In fact, in the sliced gel density
gradient we now see a double Schlieren peak of the formerly included polystyrene
macromolecules. We determined its molar mass to be M = 170 000g/mol. From
the area of this double Schlieren peak, and the finding that, due to the loss of the
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Fig. 6.40. TEM electron micrographs (above) and static AUC density gradients (middle) of original
high-impact polystyrene (left), and of a gel of the extracted isolated rubber particles (right). Addition-
ally, two density gradients (below) of very thin, 250-nm slices (microtome cuts) of both materials are
shown
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included heavy polystyrene, the radial position of the middle of the gel turbidity
band has shifted by only 10wt% to the left on the composition axis (from 70/30
to 60/40 S/Bu), it follows that the dominating part of the polystyrene within the
rubber particles is covalently grafted onto the polybutadiene membranes, inside
and outside. This is, beside the broad rubber particle size distribution, another
reason for the good high-impact strength of HIPS.

Figure 6.41 is another electron micrograph of the isolated rubber particles,
done with a special EM technique, namely, the scanning electron microscope
(SEM). The preparation of these particles was not done in a Soxhlett extractor,
but rather in a preparative ultracentrifuge (PUC). Original HIPS was dissolved in
toluene and centrifuged in a PUC beaker, and all fast-sedimenting rubber particles
were assembled in a thin layer at the bottom. The supernatant solution of matrix
polystyrene was decanted, the beaker filled again with pure toluene, and the rubber
particles redispersed. Then, the PUC run was repeated, and the resulting second
thin rubber particle layer air-dried. This dried layer was used for the SEM electron
micrograph in Fig. 6.41. The electron micrograph shows impressive isolated, single
rubber particles of a bizarre, moon-like shape, with numerous deep craters or
“footballs” turned upside down. Nevertheless, the three-dimensional SEM images
show that most of the rubber particles are sphere-like, with SEM diameters of
1000–7000nm, which is in good agreement with the AUC results.

We consider that this series of experiments with high-impact polystyrene is
a good example for a global analysis. It demonstrates the strong power and the
synergy effects of the combination of different analytical techniques. It also illus-
trates the outstanding and unique ability of the AUC to analyze systems in which
both species are simultaneously present, i.e., macromolecules and microparticles.

Fig. 6.41. Scanning electron micrograph (SEM) of isolated rubber particle from high-impact
polystyrene
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6.3 Literature Examples: AUC and Nanoparticles

The AUC application examples of the above Sects. 6.1 and 6.2 are all extracted from
the authors’ works. However, there are many other examples in the literature. In
an article recently published by Cölfen [17], such papers were summarized in the
form of a table, and grouped according to the nanoparticle systems investigated.
This table is reproduced in Table 6.2. This compilation is certainly not exhaustive
or representative. It is only meant to guide the reader to the original literature,
should solutions for the analysis of a particular nanoparticulate system be sought.
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7 Recent Developments and Future Outlook

In 1991, one of the authors of this book wrote a paper about the future requirements
for modern analytical ultracentrifuges [1]. The four most important requirements
proposed in this paper were:

(i) multi-hole rotors,
(ii) multiple detecting systems,
(iii) automatic online data analysis, and
(iv) a new running technique with a variable rotor speed ω(t) during a run.

In a recent feature article about analytical ultracentrifugation of nanoparticles,
Cölfen [2] wrote “it is amazing that small parts of these requirements were un-
derstood in only a few specialized laboratories, although their potential benefit is
obvious”. Nevertheless, some of these proposed requirements are realized: eight-
hole rotors are standard, the Optima XL-A/I now has two simultaneous online
detectors (absorption and interference), Laue [3] recently presented a powerful
new fluorescence detector inside an XL-A/I, and the authors of this book together
with coworkers presented a Schlieren optics detector (needed for density gradi-
ents; [4]). Additionally, there has been a dramatic improvement of data analysis due
to new, fast and powerful computer programs described by Philo [5], Demeler [6],
Schuck [7, 8], Stafford [9], Lechner [10], and Behlke [25], which are partly men-
tioned in the foregoing chapters. To date, however, no 50-hole rotors, nor any triple
or quadruple detectors have been developed. Nearly all detectors are still not fast
enough, and the quality of their primary measuring data should be higher. Thus,
the full power of the new data analysis cannot be used fully today. Furthermore,
the benefits of the variable rotor speed ω(t) technique are used only rarely, al-
though recent efforts are dedicated to using variable rotor speeds on the Optima
XL-A/I [26, 27].

The authors of this book are optimistic that in the next two decades, the re-
quirements proposed in 1991, but not yet developed, will be realized. Especially, we
appeal to themanufacturersof analytical ultracentrifuges toattend to thisbusiness.
Each laboratory working with GPC, liquid and size exclusion chromatography or
field flow fractionation, i.e., each laboratory analyzing polymers, polyelectrolytes,
colloids, emulsions or nanoparticles (and there are a lot of them!) is a potential
user of AUC technology. It has to be stressed here that a more user-friendly de-
sign of the AUC, especially of the measuring cells, is believed to directly increase
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the number of potential users. It is one major drawback of AUC technology that
a relatively high expertise is needed to run an apparatus.

In the following three sections, some details of the requirements remaining
to be realized are repeated briefly. Additionally, some new ideas and possible im-
provements of the AUC technique are proposed. In Sect. 7.1, new instrumentation
and detectors will be discussed, whereas Sect. 7.2 will deal with new AUC methods,
and Sect. 7.3 with new data analysis.

7.1 New AUC Instrumentation and Detectors

The present standard AUC, the Optima XL-A/I of Beckman-Coulter, is a good basis
for further improvements of the AUC technique. We hope Beckman-Coulter, or
other manufacturers will carry this out, but it could also be a task for specialized
scientific laboratories, because the XL-A/I is a compact modular instrument that
has enough space inside the rotor chamber to introduce new detectors and other
modifications.

However, it is not easy to make use of this type of modularity, as well as of
the space inside and below the rotor chamber, because of the associated safety
and warranty loss aspects. Therefore, a wish to be addressed to the manufacturing
company arises from the work as developer of new AUC techniques: the modularity
should be increased, e.g., by combining the XL-A/I with detectors from other man-
ufacturers, thus turning the XL-A/I more into a development platform, rather than
leaving it as a closed system. The advantage for the manufacturing company is ob-
vious: the development work would be distributed onto more shoulders (consider
the LINUX example from the world of computer software), and the attractiveness
of the AUC technology would be increased and remain at a high level.

We will discuss in this Sect. 7.1 four possible and hypothetical improvements,
concerning (i) rotors, (ii) variable speed technique ω(t), (iii) measuring cells, and
(iv) detectors. Although this is yet “science fiction”, we hereby intend to catalyze
further methodological and hardware development.

Rotors
Four-hole rotors with a maximum speed of 60 000rpm, and eight-hole rotors with
50 000rpm are the standard at present. However, in order to measure simulta-
neously as many samples as possible, 16-, 50-, or 100-hole rotors are desirable,
and would substantially increase the AUC efficiency. Naturally, that is not possi-
ble for a maximum speed of 60 000rpm, but this maximum speed is needed only
rarely. In most cases, 30 000 or 40 000rpm are enough. For the industrially impor-
tant particle size distribution measurement of colloids and polymer dispersions,
a maximum rotor speed of 20 000rpm, or lower is sufficient, and for equilibrium
runs to measure molar masses, 10 000rpm is often enough. A slower rotor speed
strongly reduces the cell tightening and leakage problems, as, of course, will do
short running times. Figure 7.1 shows how such a 16- (or 50- or 100-) hole rotor
could look like (with nine different circularly arranged detectors).
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Fig. 7.1. Sketch of an AUC device with a 16-hole rotor and nine circularly arranged detectors for
simultaneous multi-detection (Schlieren+interference, turbidity, classical light scattering, UV/Vis, laser
Doppler anemometer+DLS, and Raman+fluorescence)

The sector-shaped holes are cut directly into the rotor core. One of these holes
can serve as a reference cell (= counterbalance), which (i) bears defined radius
reference marks for the radial calibration, and (ii) serves also as cell number 0 in
the multiplexer mode. Rectangular “holes” with sector-shaped inserts of metal or
Epon are hypothetical. Two circular glass plates (not shown), with a hole in the
center for the rotor axle, have tobe clampedonto theupper and the lower sideof this
rotor to tighten the “cells” and to serve as cell windows. Such a device could be part
of an efficient particle sizer. For some detection techniques (fluorescence, Raman,
and laser Doppler anemometry), where it is possible to work with back-scattered
measuring light, one needs only one circular glass plate, and the sector-shaped
holes are cut only into the upper side of the rotor core.
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Variable Rotor Speed (or Sweeping) Technique ω(t)
Nearly all AUC runs are done with a constant rotor speed ω during the run. The
reason is that the standard XL-A/I instrument requires this constant rotor speed.
However, the XL-A/I vacuum-included, electrically controllable induction motor
allows also a rotor speed variation during a run, for example, an exponentially
increasing one up to the chosen maximum speed. Still, to do this one needs
a special electronic chip. It is then possible to choose different ω(t) speed profiles
via an additional computer. Such an exponential speed profile is presented in
Sect. 3.5.1 and Figs. 3.17 and 3.19a for particle size distribution measurements. All
AUC runs in which we find the term ω2t in the evaluation equations (these are all
kinds of sedimentation velocity runs, see (1.5), (1.9), (3.2), (3.10), and (3.24)) are
practicable with a variable rotor speed, rather than a constant one. In this case,
however, we have to replace ω2t in these equations by the running time integral
∫ ω2 dt. This running time integral has to be measured continuously and very
precisely during the run. Usually, this is done with the same computer, i.e., the one
that controls the rotor drive and the speed profile ω(t).

The variable rotor speed technique ω(t) offers some interesting advantages.
Often, it shortens the total running time of a run. Some measurements are possible
only with this technique, such as the measurement of extremely broad particle size
distributions, and the H2O/D2O analysis (see Sect. 3.5.3). Already in 1984, we
demonstrated this [11], and proved experimentally that the two different running
techniques, ωconstant and ωvariable, are completely equivalent (see also [12]). Since
that time, we perform all particle size distribution measurements with the same
speed profile: ω(t) is always increased exponentially from 0 to a maximum speed
of 40 000rpm within 1h. Thus, we never have to ask, before a run, what the
most suitable constant rotor speed is (difficult to answer for unknown samples!).
Rather, in every run, we measure the correct particle size distribution with this
exponential or sweeping technique ω(t), for very small particles of only 30nm, as
well as for very large particles of 3000nm, showing a sedimentation velocity that
is 10 000 times higher. Simultaneous measurement of seven different unknown
samples, such as in Fig. 3.17 (or of 15 samples, as in Fig. 7.1), is possible only
with the variable rotor speed technique. A sweeping technique ω(t) is also used
in sedimentation field flow fractionation (SFFF) in order to measure very broad
particle size distributions. However, in this case, one starts with a high rotor speed,
and decrease it exponentially to zero (see Fig. 6.29 and Sect. 6.2.1).

A method suitable for broadly distributed particles should also be applicable to
broadly distributed, dissolved macromolecules. However, to date the variable rotor
speed technique has not been put into practice for measurements of molar mass
distributions. Thus, we propose to do this in the future. If this can be realized, it
could result in a renaissance of molar mass distribution measurements via AUC,
and become a hard competitor to size exclusion chromatography (SEC), the leading
method at present in this field. At the beginning of such an “exponential” sedimen-
tation velocity run for the measurement of very broad molar mass distributions,
i.e., at low rotor speeds, we “see” and detect only the fast, large macromolecules.
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Later, at high rotor speeds (when the large molecules have sedimented completely
to the cell bottom), we detect only the slower, smaller macromolecules. During the
run, we will never see all macromolecules simultaneously. However, if we record
during the run, at many different experimental times t1, t2, t3, ..., many momentary
partial (!) radial concentration distributions, c(r, t1), c(r, t2), c(r, t3), ..., it should be
possible to subsequently transform and combine these, by means of a powerful
data analysis, into a “master curve” representing the time-independent sedimen-
tation coefficient distribution g(s) = dG(s)/ds of the total sample, and resulting
in the desired molar mass distribution (see Sect. 3.4.2). As mentioned in the in-
troduction, there are recent, first attempts to use the sweeping technique ω(t) for
MMD measurements [27].

Especially in combination with synthetic boundary techniques (see Sect. 3.6)
and very fast measuring data detection, we see interesting new analytical possi-
bilities by using the proposed variable rotor speed technique ω(t). One field is
the (fast) measurement of average molar masses M and molar mass distributions
(MMD) via sedimentation velocity runs, using Svedberg’s equation (1.8), and scal-
ing laws such as (3.11) (see Sect. 3.4). The idea behind this is that at the beginning
of such an “exponential” synthetic boundary run, at low rotor speeds and shortly
after the superimposition of the solvent on top of the solution, the spreading of
the Gaussian radial concentration distribution around the superimposition ra-
dius inside the measuring cell, c(r, t), is controlled mainly by diffusion spreading,
and thus the average diffusion coefficient D can be measured. Perhaps even the
complete diffusion coefficient distribution g(D) = dG(D)/dD could be reasonably
well approximated, too. In the course of the experiment, at high rotor speeds, the
spreading and especially the migration of the concentration boundary is controlled
mainly by sedimentation, and thus the average sedimentation coefficient s as well
as the complete sedimentation coefficient distribution g(s) = dG(s)/ds can also be
measured. Determining g(s) is certainly much easier than determining g(D). Nev-
ertheless, the combination of variable rotor speed technique, synthetic boundary
runs, and fast online data analysis (including fast detectors) has the potential to
solve the old problem of separation between diffusion and sedimentation spread-
ing within a sedimenting concentration boundary of broadly distributed samples,
implemented into the two terms of Lamm’s differential equation ((1.10); see also
Sect. 3.3.6).

Measuring Cells
All cells, and the variety of different 3-, 12-, and 30-mm centerpieces of the older
Model E centrifuges can be used in the newly designed rotors of the XL-A/I, with
one exception – the 30-mm cells/centerpieces, which cannot be used due to the
slightly reduced height of the new rotors. For the 12-mm standard cell available at
present, this requires a 30/12 = 2.5-fold higher concentration in order to obtain
a detector signal comparable to the one obtained with a 30-mm cell. Since it
is possible to shorten the 30-mm cells and centerpieces to 25mm, the required
concentration increase is very low. AUC manufacturers should offer such 25-mm
cells for runs with very low concentrations, where one is near the ideal case c → 0.
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Rather than increasing the number of rotor holes, as shown in Fig. 7.1, in order
to measure as many samples as possible simultaneously, it is a simpler alternative
to increase the number of holes, or the number of sector-shaped compartments
in the centerpieces. Already at present, it is possible to measure simultaneously
the particle size distributions of 16 different samples with the existing fast tur-
bidity detectors, if one uses an eight-hole rotor and standard 12-mm, double 2◦
sector centerpieces. It is conceivable to cut four parallel (long), 1◦ sector-shaped
compartments into such a centerpiece, or four or six shorter 2◦ sectors (then in
a parallel and radial arrangement). In this case, a reduction of the maximum rotor
speed, and more sensitive and faster detectors are required.

We expect a great future potential and new analytical possibilities for newly
designed synthetic boundary cells, or centerpieces, in the field of fast dynamic
density gradients (see Sect. 4.3). The same applies to the study of surface reactions
inside an AUC cell, e.g., the formation of polyelectrolyte complexes and mem-
branes, or studies of the first steps in crystal growth and metal cluster formation
(see also [2]). For this purpose, we need synthetic boundary centerpieces (see
Sect. 2.3) with valves or capillaries, where the momentum of superimposition is
better defined and controllable. This momentum is mostly correlated with a spe-
cial rotor speed. In the case of the capillary-type cell, it depends additionally on
the capillary diameter, and the surface tension between the solvent, cell window
and centerpiece material, and in the case of the valve-type cell, on the elasticity
of a rubber or mechanical spring. Often, this momentum is arbitrary and changes
with time. In particular, we consider that the valve-type cell offers the possibility of
better-defined momentums by construction of more sophisticated springs/valves
with well-defined and controllable superimposition rotor speeds, for example,
5000, 10 000 or 20 000rpm. It would be desirable to have a two-step synthetic
boundary cell with two storage bins and two valves, which open at different rotor
speeds, for example, at 5000 and 30 000rpm. This cell could be used for studies
of chemical two-step surface reactions inside the AUC cell. An urgent appeal is
made to the AUC manufacturers to develop and to supply such synthetic boundary
centerpieces!

Detectors
The lack of appropriate detectors is surely the most important disadvantage of
present analytical ultracentrifugation. The existing detecting systems are not very
precise, not fast enough, and the data acquisition often happens to be not really
“online”. Only a precise and fast online data acquisition with large datasets would
allow us the entire use of the already existing, powerful data analysis software.
Thus, detector improvements, and the development of new detectors are the most
important tasks for the future of AUC.

At present, beside the turbidity detector, the Optima XL-A/I interference optics
detector is the best one, because it is fast, online, and does not need a (slow!)
mechanical radial scanning device. On the other hand, it lacks in data precision,
because of sapphire windowdistortions. Perhaps this can be eliminated by software
improvement and additional blind measurements.
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The present XL-A/I UV/Vis detector, which is very important for chemical
differentiation, lacks also precision and, above all, its mechanical radial scanning
device is too slow. This important online detector cannot be used for fast sedi-
mentation velocity runs. In particular, it is not suited for synthetic boundary runs
and sedimentation runs with eight-cell rotors. A German group led by H. Cölfen
at the Max-Planck Institute of Colloids and Interfaces in Potsdam (Germany), and
a group of specialists working at BASF (represented by the authors) are currently
trying to replace the slow scanning device by a fast diode array.

Unfortunately, no fast commercial online Schlieren optics detector for the XL-
A/I is available on the market at present, only a homemade detector [4]. This
versatile Schlieren optics detector is required for the chemical analysis in AUC
density gradients, with their steep radial refractive index gradients inside the
measuring cells (partly compensated by wedge windows; see Sect. 4.2.3).

The improvement of the existing detectors is possible by (i) faster and more
extensive data acquisition, (ii) replacement of slow mechanical scanning devices
by faster ones, or better, by linear diode arrays, (iii) increasing of data precision
by more sensitive and higher-resolution photomultipliers, avalanche photodiodes,
and higher-resolution CCD cameras, and (iv) reduction of data noise by additional
automatic blind measurements and mathematical subtraction.

Beside the existing detectors, there is a demand for new detecting systems,
particularly for more real multi-detecting facilities suitable for the analysis of
complex samples. The standard online multi-detector should be a combination of
at least four detectors: interference, Schlieren, UV/Vis, and turbidity. It is desirable
to add even more detectors, as proposed in Fig. 7.1, such as fluorescence, infrared,
Raman, laser Doppler anemometry (LDA), static, and dynamic light scattering
detectors. Some of these proposed new detectors could be realized in the near
future; for some others, we will have to wait until faster and more sensitive diodes,
more powerful light sources, faster flashlights, and a better optical glass fiber
technique have been developed. A prototype of the fluorescence detector exists
already [3]. An AUC-Raman detector (see Fig. 7.2), having a similar setup and also
using confocal optical technique and back-scattering of the measuring light, was
proposed by Schrof [13], but it is not yet realized.

Details of this micro-focus Raman detector are described in [13]. Similarly to
the UV/Vis, and especially the fluorescence detector, a Raman detector would be
a specific detector, able to “see” and to identify special Raman-active components
in a complex sample mixture. This facilitates chemical analyses. Because a Raman
and a fluorescence detector have a similar optical arrangement, it will perhaps
be possible to combine these into one optical and mechanical unit, as shown in
Fig. 7.1. Also the very similar interference and Schlieren optics detectors are united
into one optical path in Fig. 7.1.

A completely new detector would be a micro-focus LDA detector (= laser
Doppler anemometer), mounted on a radial scanning device and working with
back-scattered measuring light [14]. The advantage of such an LDA detector would
be the possibility to measure radial local sedimentation coefficients online within
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Fig. 7.2. Sketch of a Raman
detector inside an analytical
ultracentrifuge (1 rotor, 2 rotor
axle, 3 + 4 measuring cells,
5 + 9 laser light sources, 6 + 11
detection systems, 7 + 12 radial
and axial scanning devices,
8 evaluation unit, 10 notch
filter) (reprinted from [13] with
permission)

an AUC cell, and thus particle sizes, without any knowledge of the radius positions
of the meniscus and bottom. Further advantages of the LDA are that (i) it is a single-
particle detector requiring only low concentrations near the ideal case c → 0, and
(ii) it offers the possibility to analyze the scattered light in a dynamic way (DSL),
thereby allowing us to measure D. The simultaneous measurement of D and s on
single particles could yield M via the Svedberg equation (1.8).

7.2 New AUC Methods

A variety of existing AUC methods has been described in the foregoing Chaps. 1–6
of this book: sedimentation runs, equilibrium runs, M* runs, synthetic bound-
ary runs, static and dynamic density gradient runs, Archibald runs, meniscus
depletion runs, and others. Nevertheless, the improvement of the existing, and
the development of completely new methods are desirable and possible. Thinking
about new methods often creates new instrumentation and new data analysis – and
vice versa. In the following, we will discuss some new ideas and developments: (i)
radial pH gradients within an AUC cell, (ii) a preparative dynamic density gradient
method, and (iii) a few other new AUC methods.

Radial pH Gradient Within an AUC Cell
If a binary mixture, e.g., a light and a heavy component, a light and a heavy
solvent, or a light solvent and a heavy solute, is centrifuged up to equilibrium,
a radial density gradient (see Chap. 4), and simultaneously a radial concentration
gradient (see Chap. 5) will be established within the AUC cell. Additionally, other
radial gradients are established simultaneously, such as pH gradients or solubility
gradients, depending on the nature of the two components. This was the idea of
Lucas and Cölfen [15], and of one of the authors. Other radial gradients should
be possible if physicochemical parameters other than pH or solubility are applied.
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Introducing a small amount of a third component into such a two-component
gradient mixture offers new analytical possibilities for this third component, for
example, the preparative isolation of critical crystal nuclei in solutions.

To create a radial pH gradient means to create a radial H+ ion gradient inside
the AUC cell. This is not trivial, because these H+ ions are the most rapidly diffusing
species existing. Drastic conditions have to be applied in order to induce a radial
accumulation of H+ ions. The authors of [15] found two ways to do this. The first
option was to add a substance of very high density, I− ions (in the form of iodine
acid, H+I−) to water. The second way was to dissolve heavy (poly)anions of high
molar mass, such as poly(sodium 4-styrene sulfonate), NaPSS (see also Sects. 3.3.5
and 3.4.1), or poly(acrylic acid) in water, so that H+ ions would accumulate by
electrostatic interaction toward thebottomof theultracentrifugecell. Indeed,when
they used a maximum rotor speed of 60 000rpm and waited 2–3 days, this led to the
formation of a radial pH gradient, as shown in Fig. 7.3 (left-hand side) for the case
of NaPSS/water, visualized by the indicator Bromocresol purple, which changes its
color from purple (at the top) to yellow (at the bottom) between pH 6.8 and 5.2.
The same color change can be observed for HI/water (see Fig. 7.3, right-hand side),
where the colored iodine (at the bottom) is indicative for the position of I−, and
thus for the accumulation of H+. The pH varies between 1.0 and 0.6 in this case.

In the experiment shown in Fig. 7.3, the authors [15] used, only for demon-
stration purpose, a preparative ultracentrifuge. Furthermore, they performed this
experiment also in an analytical ultracentrifuge using the same pH gradient (and
others, too), and used the simultaneous detector (interference and UV/Vis) of
the XL-A/I to measure the radial concentration of the different components and
(indirectly) the radial pH gradient. Figure 7.4 shows such an example. The heavy-
density gradient component, NaPSS in this case, is measured via the shift of the
interference fringes, and the third component to be analyzed, BaCrO4, is measured
via its UV absorption at 375nm.

Fig. 7.3. Demonstration of
PUC pH gradient formation
by bromocresol purple as
pH indicator, (left) in a wa-
ter/NaPSS (140 000 g/mol)
gradient, centrifuged for 2
days at 60 000 rpm at 25 °C,
and (right) in a water/HI
gradient centrifuged at
60 000 rpm and 25 °C for 3
days (reprinted from [15]
with permission)
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The dissolution of small inorganic BaCrO4 crystals in this pH gradient was
assessed as follows (this pH gradient is simultaneously a solubility gradient).
BaCrO4 (Kp = 1.17 × 10−10 at 25◦C) is reversibly transformed into the more

Fig. 7.4. a Different regions in an AUC pH gradient as monitored by UV absorption at 370 nm to
follow the BaCrO4 concentration, and by interference optics to determine the NaPSS (140 000 g/mol)
concentration. b Local radial pH within the AUC cell, and the response from the BaCrO4 monitored by
UV absorption at 370 nm (reprinted from [15] with permission)
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soluble BaCr2O7 upon a decrease in pH, according to (7.1):

2CrO2−
4 + 2H3O+ ←→ Cr2O2−

7 + 3H2O (7.1)

This transformation is also discernible as a color change from yellow to orange,
and can thus be followed via the XL-A/I UV/Vis detector (see Fig. 7.4). For details
of this interesting AUC experiment in a radial pH/solubility gradient, the reader
is referred to [15]. Indeed, it was possible to monitor the transition of BaCrO4 to
the more soluble BaCr2O7 with decreasing pH. This demonstrates the possibility
to perform chemical reactions within a pH gradient, which was also shown to be
in thermodynamic equilibrium by the path independence proof (Fig. 7.4).

Lucas, Cölfen and one of the authors [15] studied another radial solubility
gradient, which was not connected with a pH gradient: a 30:70 vol% mixture
of tetrahydrofuran (THF) and water, which are fully miscible. They analyzed
the resulting radial gradient (60 000rpm, 14h) via the XL-A/I UV/Vis detector
at 275nm, and found that the THF:water relation was 36:64 vol% at the meniscus,
and 23:77 vol% at the bottom. The idea behind this approach was to introduce
small sedimenting inorganic particle crystals into such solubility gradients, which
are insoluble/soluble (e.g., copper sulfate pentahydrate) or slightly/readily solu-
ble in the two different gradient solvents. These (heavy) crystals should sediment
within this radial gradient with increasing solubility up to that radial position
where they would be dissolved completely into small ions, which are no longer
able to sediment. This radial point is their dissolution point. Shortly before their
complete dissolution, critical crystal nuclei should exist, which would perhaps be
isolable on a preparative scale.

Absorption scans monitoring the copper sulfate pentahydrate showed [15] that,
in fact, the concentration increased toward the bottom of the cell, where the water
fraction was higher. To date, however, no evidence of critical crystal nuclei of
copper sulfate has been observed in the AUC. Their formation at a critical THF
fraction would have become apparent in a discontinuous slope of the concentration
gradient. Perhaps the radial THF/water solubility gradient was not steep enough
in this experiment.

The Preparative Dynamic Density Gradient Method (PDDG)
In the foregoing pH gradient section, we demonstrated (compare Figs. 7.3 and 7.4)
that an experiment done in an analytical ultracentrifuge (using only 0.5ml so-
lution) can be repeated in a preparative ultracentrifuge (using about 50-ml
beakers/tubes). This is often done for the isolation/preparation of a component
in a mixture. In the following, we present a recent example, namely, the transfor-
mation of the analytical (fast!) dynamic H2O/D2O density gradient (described in
Sect. 4.3) into a preparative one, realized by one of the authors and Lechner [16].
This new type of dynamic density gradient has been named “preparative dynamic
density gradient method”, abbreviated PDDG.

Rather than synthetic boundary cells in an AUC, standard preparative cen-
trifugation tubes of 38ml in a PUC are used, as shown in Fig. 7.5. Unfortunately,
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Fig. 7.5. Preparative dynamic H2O/D2O density gradient (PDDG) experiment at different times (at
90 000 g). An 11-component latex mixture with 11 different particle densities was analyzed. As indi-
cated, five of these components are separated after 2 h in this gradient. The others are on the meniscus,
or on the bottom of the tube (reprinted from [16] with permission)

these tubes have no gravity valve, and no separate storage bin, unlike the synthetic
boundary cells. Thus, the superimposition of light H2O (ρ = 0.997g/cm3) onto
heavy D2O (1.105g/cm3) can not be done during the PUC run. Therefore, this has
to be carried out before the run, in the following manner.

For a start, the (upright-standing) tube is half filled with water, which contains
the sample to be analyzed or fractionated. Then, the pure D2O is layered smoothly
under the H2O by means of a syringe connected with a thin hose. The free end
of the hose is introduced through the H2O down to the bottom of the tube, and
the D2O is pressed in softly until the tube is filled completely. Subsequently, the
tube is introduced into the swing-out rotor, and the centrifugation is started.
Now, as in the analytical dynamic H2O/D2O density gradient (see Sect. 4.3), H2O
and D2O molecules undergo an inter-diffusion process that eventually leads to
a homogeneous H2O/D2O mixture (after a long time of some days). While this
equilibrium is being reached, the H2O/D2O concentration varies over the cell
radius, resulting in a radial density gradient varying from 0.997g/cm3 near the
meniscus to 1.105g/cm3 near the bottom. This density gradient changes with
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time – at the beginning it is very steep, and later it becomes increasingly flat.
A theory based on both Fick’s laws was developed by Börger et al. [16] to calculate
this radial density gradient in a PDDG tube, and its time dependence, i.e., ρ(r, t).

During the experiment, fractions of the (fast) sample, dispersed in the H2O
section of the tube, will sediment to that radius position in the tube where par-
ticle density and gradient density are matching, as can be seen in Fig. 7.5. The
11-component latex mixture (see Table 4.1) with 11 different particle densities is
used as a sample in the same way as in the analytical H2O/D2O density gradient of
Fig. 4.12. The result is, of course, the same. We see five of these components gath-
ered in small turbidity bands inside this tube, component numbers 2, 3, 4, 5, and
6, because they match the PDDG density range of 0.997–1.105g/cm3. The lighter
component 1 has floated to the meniscus, whereas the heavier components 7, 8, 9,
10, and 11 have sedimented completely to the bottom of the tube. However, there
is a very important difference between the preparative and the analytical dynamic
density gradient (nomen est omen!). In contrast to the analytical gradient, the
PDDG delivers preparative sample fractions, yielding enough substance to be used
for further analytical purposes. For the isolation of these fractions, the ultracen-
trifuge is stopped, and (i) the preparative tube is transferred into a fractionation
device where it is cut into slices containing the different fractions, or (ii) the content
of the tube is pumped through a fraction sampler. Figure 7.5 demonstrates that the
PDDG is a new, fast preparative fractionation method. In most cases, the fraction-
ation is completed within 1 or 2h. Similarly to the analytical dynamic (H2O/D2O)
density gradient, also the preparative dynamic density gradient is restricted to
fast-moving particles with diameters dp > 20nm.

Some Other New AUC Methods
A drawback of static density gradients (see Chap. 4) are the long measuring times
of 1–5 days necessary to reach equilibrium. However, during this process, every
static density gradient is in principle also a dynamic one, ρ(r, t), i.e., it changes
with time: the change is fast at the beginning of the experiment, and becomes
progressively slower at the end. Basically, there are two possibilities to use these
faster “pseudo-static” density gradients for analytical purposes. The first one is to
calculate ρ(r, t) theoretically, as described above for the PDDG, but this can only
be done when a new theory describing the attainment of static density gradient
equilibrium will have been developed. The second option is to measure ρ(r, t) as
a function of time: (i) by recording continuously the concentration c(r, t) of one
of the two main density gradient components, which has already been realized
by using metrizamide (or Nycodenz) in static H2O/metrizamide density gradients
(see [17]), or (ii) byadding setsof calibrateddensitymarkers to thedensity gradient
(as for the 11-component latex particle mixture mentioned above), also recently
realized in [18] (also see Sect. 4.2.1).

As mentioned in Sect. 7.1 on the topic of “measuring cells”, new synthetic
boundary cells offer the possibility of new analytical methods in the fields of
studying surface reactions inside theAUCcell, e.g., the formationofpolyelectrolyte
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complexes and thin membranes, or studies of the first steps in crystal growth and
metal cluster formation (see also [2] and [17] in Chap. 6).

Above, we discussed different radial gradients within an AUC cell, in particular
density, concentration, pH, and solubility gradients. However, we did not discuss
the radial pressure gradient. Such a radial pressure gradient (see Sect. 3.3.3) is
established within every AUC cell in every kind of AUC run, also in a pure solvent.
It is independent of time, and the function p(r) can be calculated if rotor speed,
filling height, solvent density, and solvent compressibility coefficient κ are known.
At maximum rotor speed (60 000rpm), the radial pressure gradient varies from
1bar at the meniscus to 250bar at the bottom. It is conceivable to use this pressure
gradient for some analytical purposes. For example, one could measure compress-
ibility coefficients κ of solvents and solutions, or of single macroscopic particles
introduced into such pressure gradients. It should also be possible to study the
compression of gels as a function of pressure (see [29] and [30]).

In 95% of all AUC experiments performed worldwide, the sedimentation veloc-
ity method or the sedimentation equilibrium method are used, where fractionation
is achieved according to size/molar mass. Only in 5% of the cases is the density gra-
dient method used, mainly because of its high potential to fractionate according to
particle density – in other words, according to chemical composition. Even today,
the density gradient method is a nearly unknown continent in the AUC world. We
recommend that the scientific community should explore it more intensively in
the near future.

The AUC particle sizing method, using a turbidity detector (see Sect. 3.5.1),
is the most powerful and most perfect AUC method at present, especially in
combination with the H2O/D2O analysis method (see Sect. 3.5.3). Nevertheless, it
can still be improved. One improvement was proposed by us already [12], namely,
the introduction of a second, parallel measuring laser beam into the PSD device
(see Fig. 3.13). We also presented [12] initial successful measurements with a device
having the first laser beam in the first third, and the second laser beam in the last
third of the cell sector length (rb − rm). However, the full potential of this new two-
beam PSD method (or three, or even more beams!) has not been explored until
now. We are confident that this modification will lead to improvements in PSD data
quality and, in particular, allow us to carry out more precise H2O/D2O analyses. If
the precision of measurement is high enough, then it will be possible to obtain the
complete particle density distribution (in addition to the PSD), i.e., the chemical
heterogeneity of an unknown latex sample. A higher precision could also lead to
a higher density range of the H2O/D2O analysis, perhaps up to about 0.5–20g/cm3,
which is substantially wider than the range accessible by static density gradients
(0.85–1.9g/cm3).

7.3 New AUC Data Analysis

High-precision multi-detection and powerful, fast online data analysis are the keys
for a more frequent use of the AUC in the future, in particular for the investigation
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of complex inhomogeneous mixtures showing distributions in size, molar mass,
density/chemical composition, electrical charge, shape, degree of crosslinking, etc.
The aim is a global AUC analysis (perhaps in combination with other methods),
and the simultaneous determination of all these different distributions. There is
interdependence between multi-detection and data analysis, but at present data
analysis is more developed as multi-detection. Nevertheless, also the data analysis
should be improved. In the following, we will discuss three ways to improve the
existing, and to develop new data analyses: (i) online controlling of the AUC
instrument, (ii) improvement of measuring data quality via data analysis, and (iii)
improvement of data evaluation of data analysis.

Online Controlling of the AUC Instrument
The registration of measuring data during AUC runs is not always really online
(as in the case of turbidity, interference, and UV/Vis detectors). For example, data
registration by Schlieren optics (mostly used for density gradients and some fast
synthetic boundary runs) is still done via photographs on photo-plates, or by
means of digital CCD cameras. When the AUC run is finished, these “photos” are
evaluated offline. At present, no sophisticated PC programs are available to do
this offline photograph evaluation fully automatically. Usually, manual help with
a cursor on a PC TV screen is required, for example, to define rm and rb, or to follow
the Schlieren curve. So far, there exists only one attempt in the literature [19] to
replace this manual help by an automatic image-processing program. Thus, for the
future of Schlieren optics, it is desirable to combine CCD photograph registration
and image processing to obtain a real online data registration during the AUC run.
Furthermore, it is desirable to have this automatic detection (and also controlling!)
of rm and rb within the existing XL-A/I online data registration programs of the
interference and the UV/Vis detector.

Internally, the Optima XL-A/I is equipped with a computer that controls the
machine and all relevant parameters, i.e., rotor speed, temperature, flash light,
laser diodes, detectors, repetition rates of the scanning devices, etc. For safety
reasons, this internal computer is not accessible for the operator of the XL-A/I,
or only in a very restricted manner. However, it would be advantageous to have
an additional external computer for the control of the XL-A/I by the operator in
special cases. One option was already mentioned above, namely, selecting and con-
trolling different rotor speed profiles ω(t). Another idea is to check the meniscus
position rm continuously via continuous radial scans, and to detect in this way,
for instance, any slow disturbing leakage of the cell. Continuous scans (together
with continuous data analysis) can also be used to check reaching the equilibrium
state in equilibrium and density gradient runs, and to stop the run automatically
when there is no difference anymore (within the errors of measurement) between
the last two successive scans, or when a 99% equilibrium is reached. In this way,
it should also be possible to check the solvent plateau and the solution plateau
continuously during sedimentation velocity runs, in order to make sure that the
law of conservation of mass and the radial dilution rule (3.5) are fulfilled at all
times. We hope somebody will develop such intelligent data analysis programs
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in the near future to improve the control of the machine itself, and of the whole
AUC run.

Improvement of Measuring Data Quality via Data Analysis
The best way to obtain high-quality measurement data is to use very sensitive
detectors, with a signal-to-noise ratio as high as possible. However, physics deter-
mines the limits here. Also the data of the best detector can be improved by data
analysis. A striking example is the time derivative method to evaluate sedimenta-
tion velocity runs (see Sect. 3.3.6 and [9]), a data analysis in which a significant
improvement of the signal-to-noise ratio of the experimental data is reached by
subtracting successive scans from each other, resulting in the elimination of sys-
tematic errors in the optical patterns, and a decrease of random noise.

Imperfections and distortions of sapphire windows are a major problem for
interference optics detection. They create time-independent distortion of the de-
tector signal. Often these distortions increase with rotor speed. We propose to
develop a data analysis that eliminates these distortions in the following manner.
One uses always the same cells with the same windows, placed always in the same
position within the cells, measuring these cells, filled only with solvent, at the usual
standard rotor speeds and storing the resulting “blind” signal data in the evaluation
computer. If real samples are measured, these stored blind signals are subtracted
from the sample signal. Another possible way to eliminate window distortions is
to record at the beginning of every run, immediately after the final rotor speed
is reached, a first scan and to subtract this from all following measuring scans.
The blank correction routine of the XL-A/I, and the two programs SEDFIT [7] and
dc/dt [9] solve parts of this window problem for constant rotor speed, but not for
the variable rotor speed technique ω(t).

One way to reduce statistical noise is to use as many scans as possible, followed
by averaging. This is valid for each kind of evaluation. This is a need especially for
the present XL-A/I UV/Vis detector. To realize this, we need, as mentioned above,
a radial scanning device much faster than the existing one. This would allow us to
multiply the number of scans per run. Another disturbing problem is the presence
of UV-active impurities in solvents and samples. It is conceivable to eliminate this
problem by improving the measuring signal, as proposed above, via “blind” scans,
or scans at the beginning or at the end of a run, which are subtracted subsequently
from the measuring scans. Scans at the end of the run are preferred, but only if
the sample has sedimented completely to the cell bottom. Beside a faster scanning
device, new data analysis programs that subtract this impurity noise, if possible
automatically and online, are required to carry out such corrections. There are
first programs [28] that are indeed able to do this, but they should be improved
and work really online.

Schlieren optics data can be improved in two ways via data analysis. The
first, also by additional “blind” photographs, is to correct for (i) inhomogeneous
illumination of the cells, and (ii) pixel heterogeneities, and possible dark currents
of the CCD camera (see [19]). The second way is by developing a powerful image
processing program to analyze such corrected CCD Schlieren photographs (see,
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for example, Figs. 3.24, 4.1, 4.7, and 4.13), involving (i) the radial calibration and
automatic detection of radial positions of the meniscus, bottom and turbidity
bands in density gradients, (ii) determining the coordinates of Schlieren curves
and the areas of Schlieren peaks, and (iii) extracting from a series of Schlieren
photographs, taken during a sedimentation velocity run, the complete distribution
of the sedimentation coefficient g(s) = dG(s)/ds. Indeed, A. Rowe and coworkers,
University Nottingham, England, are developing a Schlieren online evaluation.

The extraction/construction of g(s) “master curves”, as mentioned in Sect. 7.1,
is important for very broadly distributed samples, and is a difficult task for all
optical detection systems. Unfortunately, the time derivative method [9] fails for
such broadly distributed samples, where all components of the sample can not be
seen simultaneously on single or two successive scans/photographs. In the first
scans of such a sedimentation velocity run, we see only the fast, large components,
and in the last scans we see only the slow, small components. However, if it would
be possible to combine all these different time-dependent scans into a single time-
independent g(s) “master curve” by means of a new data analysis program, then
this would be the key to a renaissance of molar mass distribution measurements
via AUC. As mentioned above, there are first attempts to realize this [26, 27].

Improvement of Data Evaluation
Once we have the best possible primary measuring data, these data have to be
transformed subsequently via evaluation programs into sedimentation and diffu-
sion coefficients, sizes, molar masses, particle densities, or into the corresponding
distributions. For this transformation, we need physical theories and a good data
evaluation/analysis.

At present, there are physical theories for most of the evaluation problems, but
some of these should be improved. One missing theory is, as mentioned above, the
time dependence of cs(r, t) during sedimentation equilibrium and static density
gradient runs to reach final equilibrium. There is also a need for a theory to
calculate more precisely the radial density function, ρ(r), within static density
gradients (see Chap. 4 and [20–22]).

Good evaluation theories are already existing, too. Nevertheless, improvements
and new developments are desirable. A first step to make the fast Archibald runs
(see Sect. 5.5) attractive again for molar mass measurements is the recent evalua-
tion program of Schuck and Millar [23]. For calibration of static density gradients
with marker particles of known densities [18], one needs better interpolation pro-
grams to calculate ρ(r) for every rotor speed, filling height, and mixing ratio of
the two gradient components. Some evaluation programs do not offer possibilities
to correct for effects of, for example, pressure, concentration and speed depen-
dence, or Johnston–Ogston and non-ideality (see Sects. 3.2 and 3.3). However,
these correction possibilities should be part of every program. Also, the correc-
tion of diffusion broadening during sedimentation velocity runs of very broadly
distributed samples should be improved.

A global AUC data analysis of the future could be a combination of all single
dataanalysisprograms:Archibald, timederivative, approximate, andfinite element
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solutions of Lamm’s equation and equilibrium programs. In every AUC run, one
should use Archibald programs at the beginning, sedimentation velocity programs
in the middle part, and equilibrium programs at the end of the run.

In the introduction of this Chap. 7, we mentioned that the most powerful and
most sophisticated data analysis programs at present are those extracting g(s) =
dG(s)/ds from sedimentation velocity runs [5–9], using the time derivative method
or, more recently, fits of a series of concentration profiles c(r, t) to approximate or
finite element solutions of the Lamm differential equation (1.10). The finite element
program SEDFIT of Schuck [7] is able to determine correct molar mass distribu-
tionsofpolydisperse samples. SEDFIT is alsoable toevaluate theparticle sizedistri-
bution of very small polydisperse nanoparticles with dp < 10nm, where the diffu-
sion correction is of great importance. We demonstrate this in Fig. 7.6 with a recent
example, given by Cölfen [2], relating to AUC particle sizing of gold colloids.

Figure 7.6 is the last figure of this book. However, also the first two figures of this
book, Figs. 1.1 and 1.2, are concerned with gold colloids and with an AUC particle

Fig. 7.6a–d. Sedimentation velocity experiment on gold colloids in water at 5000 rpm and 25 °C,
illustrating three different evaluation methods. a Experimental XL-A/I raw data acquired with an
UV/Vis detector at 575 nm. The interval between two radial scans is 2 min. b (Average) sedimentation
coefficient calculated with (3.2). c Apparent sedimentation coefficient distribution g∗(s) from the time
derivative method ((3.10) and [9]), as well as diffusion-corrected sedimentation coefficient distribution
c(s) = g(s) according to Schuck [7]. d Final resulting diffusion-corrected particle size distribution
calculated with Stokes’ equation (1.9) (reprinted from [2] with permission)



7.3 New AUC Data Analysis 233

size distribution measurement. They show the very first AUC experiment done by
the great The(odor) Svedberg [24] in 1924. It is intriguing to compare Svedberg’s
measurements on gold colloids with those done 80 years later, and to look for
similarities and differences. The most important difference is that Svedberg did
not carry out any diffusion correction, and therefore his particle size distribution
is falsified, i.e., it is too broad.

Figure 7.6a shows the (very noisy!) raw data of the sedimentation velocity ex-
periment on gold colloids, done with the modern XL-A/I UV/Vis scanner. In the
following, three different evaluation methods of these data are demonstrated by
Cölfen. Figure 7.6b presents the simplest evaluation of these scans, according to
(3.2), yielding an average sedimentation coefficient of 480S. Figure 7.6c shows two,
more complex evaluations, first, an evaluation using the time derivative method
((3.10), and [9]), yielding the apparent sedimentation coefficient distribution g∗(s)
(∗ signifies without diffusion correction), and second, an evaluation using a fi-
nite element solution of the Lamm equation according to Schuck [7], yielding the
diffusion-corrected (real!) sedimentation coefficient distribution g(s) = c(s). The
comparison of g∗(s) and g(s) = c(s) in Fig. 7.6c demonstrates impressively how
important this correction of the diffusion broadening is. Figure 7.6d shows the
transformation of g(s) = c(s) into the final diffusion-corrected particle size distri-
bution of the gold colloid particles. Their average diameter, 6.5nm, is bigger than
that of Svedberg’s gold particles, 1.5nm (Fig. 1.2).

With these two gold colloid examples, a historical one and a recent one, we close
our book and Chap. 7 dealing with recent developments and future outlook. Both
authors are looking with interest and expectation into the future of the AUC. Will
the optimistic expectations of an AUC renaissance be fulfilled? Will the proposed
improvements and requirements in AUC instrumentation and data analysis be
realized? The future will give us the answer.
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