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La nature de notre esprit nous porte a chercher
l'essence ou le 'pourquois' des choses.
L'experience nous apprend bientot que nous
ne devons pas aller au dela du 'comment'.

Claude Bernard





PREFACE

This book presents an account of the course "Frontiers of Optical Spectroscopy," held in
Erice, Sicily, Italy, from May 16 to June 1, 2003. This meeting was organized by the
International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana"
Centre for Scientific Culture.

Advanced spectroscopic techniques allow the probing of very small systems and very fast
phenomena, conditions that can be considered "extreme" at the present status of our
experimentation and knowledge. Quantum dots, nanocrystals, and single molecules are
examples of the former and events on the femtosecond scale examples of the latter. The
purpose of this institute was to examine the realm of phenomena of such extreme type and
the techniques that permit their investigations.

The technical advances have enabled the observation of new phenomena such as high-
harmonic generation in atoms, metrology using femtosecond lasers, observation of
entangled states in semiconductor quantum dots (a prerequisite for quantum computing),
Bose-Einstein condensation, light as slow as a bicyclist, and many more. The fruitful cross-
fertilization of optical techniques and phenomena in physical and chemical systems was the
motivation of this Institute.

Each lecturer aimed at developing a coherent section of the program starting at a somewhat
fundamental level and ultimately reaching the frontier of knowledge in the field in a
systematic and didactic fashion. The formal lectures were complemented and illustrated by
additional seminars and discussions. The course was addressed to workers in
spectroscopy-related fields from universities, laboratories, and industries. Senior scientists
were encouraged to participate.

The Institute provided the participants with an opportunity to present their research work in
the form of short seminars or posters.

The participants came from 15 different countries: Belarus, Bulgaria, Denmark, France,
Germany, Israel, Italy, The Netherlands, Romania, Russia, Spain, Sweden, Switzerland,
Turkey, and United States.

There were 18 formal lectures, one interdisciplinary lecture, and 5 long seminars. In
addition, 11 short seminars and 16 posters were presented. Two round-table discussions
were held. The first round-table discussion took place during the first week of the school in
order to evaluate the work done and consider suggestions and proposals regarding the
organization, format and presentation of the lectures. The second round-table discussion
was held at the conclusion of the course, so that the participants could comment on the

xix



xx

work done during the entire meeting and discuss various proposals for the next course of
the International School of Atomic and Molecular Spectroscopy.

The full-text lectures/long seminars and the abstracts of short seminars and posters are
reported in this book.

The secretary of the course was Ottavio Forte.

I wish to acknowledge the sponsorship of the meeting by NATO, NASA, the ENEA
Organization, Boston College, the Italian Ministry of University and Scientific Research
and Technology, the USA National Science Foundation, and the Sicilian Regional
Government.

I would like to thank the Co-Director of the Course, Academian Alexander Voitovich, the
members of the organizing committee (Prof. Martin Wegener, Dr. Giuseppe Baldacchini,
Prof. Claus Klingshirn, Dr. Cees Ronda, Prof. Eric Mazur, Dr. James Barnes, Dr. Norman
Barnes, Prof. Ralph von Baltz, and Prof. Steve Arnold), the secretary of the course (Mr.
Ottavio Forte) and Prof. Xuesheng Chen for their help in organizing and running the
course.

A special thank you goes to my brother Francesco who received all the participants in his
house for a social gathering.

I am looking forward to our activities at the Majorana Centre in years to come, including
the next 2005 meeting of the International School of Atomic and Molecular Spectroscopy.

Baldassare (Rino) Di Bartolo
Director of the International School of
Atomic and Molecular Spectroscopy of
the "Ettore Majorana" Center

NOTE: During the preparation of this volume we received the sad news of the
untimely death of Dr. James Barnes. The paper whose abstract appears on page 687
will be his last contribution to our schools. We shall always remember his
enthusiastic participation in our meetings, his gentlemanly courtesy and his warm
friendship.
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1. INVESTIGATING PHYSICAL SYSTEMS WITH OPTICAL
SPECTROSCOPY

B. DI BARTOLO
Department of Physics, Boston College
Chestnut Hill, MA 02467, USA

Abstract

The article is based on the lectures that I delivered at the beginning of the course "Frontiers of
Optical Spectroscopy," a NATO Advanced Study Institute that took place at the Ettore Majorana
Center in Erice, Italy, May 16 - June 1, 2003.

The purpose of this contribution is to present some background material useful to deal
with the application of optical spectroscopy to the study of physical systems.

In the introductory lecture we differentiate between two cases of "extreme physical
conditions":

i) extreme conditions that predate experimentation, having been produced artificially and
objectively different from more common ones, and

ii) extreme conditions created by an experimenter who employs some technical procedure to
vary or modify the status of some systems and bring them into conditions different from
their natural ones.

In the second lecture we treat the interaction of radiation with atoms and molecules. We
introduce the concept of transition rate. In addition, we deal with the optical Bloch equations, the
Rabi oscillations, and the mechanisms responsible for the broadening of spectral lines.

1. Introduction

At the beginning of the NATO Advanced Study Institute on "Frontiers of Optical
Spectroscopy - Investigating Extreme Physical Conditions with Advanced Optical Techniques," I
thought it was appropriate to present to the participants some considerations regarding the nature
and purpose of such conditions. I want to report in this introduction these considerations,
incorporating in them some of the input from the audience.

As suggested by a participant, "extreme" is a relative term, and conditions that may seem
extreme today may, at a later time, be considered normal. We shall then at this point appraise the
situation in terms of today's experimental reality.

Extreme physical conditions are sought or prepared for in several human endeavors. An
engineer, when building a bridge, will make himself sure that it will withstand much stronger
pressure that it is ever likely to experience. For a scientist extreme physical conditions of a
system under study provide an appropriate situation in which the relevance of a certain parameter
is enhanced and therefore made more amenable to be studied and understood. Examples that
come to mind are the medical observation of patients walking on a treadmill and the study of
orthophrenic children.

Claude Bernard (1813-1878) in his treatise on experimental medicine [1] makes a
distinction between the observer and the experimenter:

B. Di Bartolo and O. Forte (eds.), Frontiers of Optical Spectroscopy, 1-28.
© 2005 Springer. Printed in the Netherlands.



"We give the name of the observer to somebody who applies the procedures of investigation, that
may be simple or complex, to the study of phenomena that he does not influence and who collects
the data as nature provides them.

We give the name of the experimenter to somebody who employs the procedures of investigation
in order to vary or modify in some way the natural phenomena and make them appear in
circumstances or conditions that are different from those in which nature will ever present them."

In this scheme of things astronomy is a science of observation, because an astronomer
cannot act on the celestial bodies and chemistry is a science of experimentation, because chemists
act on nature and modify it. What about physics and what about the subjects of our course? We
can make the following observations:

1. For certain systems the extreme physical condition precedes the measurement. The act of
measurement may interfere with them, but has no influence on their "extreme" condition.
We may assign to this category nanostructures, atoms in microcavities, and media that
slow down light propagation.

2. For other systems the act of measurement brings about the "extreme" condition. We may
assign to this category spectroscopy of solids at high temperature, and spectroscopy of
atoms under intense radiation.

3. Other systems may present a more complex behavior. In femtospectroscopy short light
pulses may be used to measure events on a femtosecond scale or may be used light to
create the extreme condition of very intense radiation that may produce a light emission
with a very wide light spectrum.

Having made this attempt at creating a framework for the various topics of our course, I
moved to the consideration of a subject of fundamental importance to spectroscopy, the
interaction of radiation with atoms and molecules.

2. Interaction of Radiation with Atoms and Molecules

2.1. TWO-LEVEL SYSTEM

Let us consider a system with a time-independent Hamiltonian HQ. The time-dependent

Schroedinger equation gives

¥ (l)Hoi// ih
dt

If the system is in a stationary state labeled i

where the energy values are given by

H^XJJj ( 0 ) = Eii//i (0 ) (3)

We shall assume that the wavefunctions l//j (t) are orthonormal.

Let us now suppose that the system is subjected to a time-dependent perturbation

represented by H (t). The system will be represented by a wavefunction l//\t) such that



We can expand y/\t) in terms of the complete set lf/t (t)

(4)

(5)

If H = 0 , the coefficients C,-' S are time-independent. Replacing eq. (5) in eq. (4),

Then

(6)

(7)

where we have taken advantage of eqs. (2) and (3). Multiplying by y/k \t) and integrating over

all space we obtain

(8)

where

G>ki=-

E,-
(9)

We shall now make the following simplifying assumptions:

(a) The system has only two energy levels, say 1 and 2, and

(b) the diagonal matrixO elements of H are zero.

The coupled equations (8) become

[if. (A- r V P'®0'

\ic2\t)-clv2le

where

CO0 =
E2 - E x

*

(10)

(11)

2.2. THE HAMILTONIAN OF THE INTERACTION WITH RADIATION

Let a polarized electromagnetic wave interact with an atom. Let the nucleus of the atom be at the

origin of a system of coordinates as in Fig. 1 and let the electrons have coordinates ri; let also be



X the direction of polarization of the E field. The size of an atom is of the order of the Bohr
radius

f

E0cos{la-mt)

Bgcos(Ja-(0t)

Figure 1: An Atom Interacting with Radiation.

Then

r̂— = 5x10 cm « X radiation
me

(12)

(13)

(14)

(15)

where Z = number of electrons in the atom. The interaction Hamiltonian can be written as
follows

and the field acting on the atom is given by

E = Eo COS COt

with no variation of E across the atom. The total electric dipole moment is given by
Z

H' = —ep • Eo cos cot

p , and therefore H', are odd operators: then

(16)



But
vn=v22=o

i (0)) = I (n (0)|- ep • Eo cos cot\Wl (o)}

eif,o
h

V cos 6rt

cosG)t(u/x(OJp'

where

and

V = -
eE

n h
z

Example: Atom of Hydrogen [1]
Let

We can write:

| \f/x) = Is state

1 .,-'/>

(17)

(18)

(19)

(20)

I25m5
o

The energies of the various levels are given by

me

Then

But

PF

me
0=E2-El=-

In order to make V « G>0 we need a field strength of ~ 3 X 10 1 V/m . For light beams

produced by conventional (non-laser) sources



a>0
The upper limit for conventional spectroscopic sources is represented by the field

EQ = 1 0 V[Wl produced by a mercury lamp with its emission line at 2537 A .

2.3. TRANSITION RATES

Using the expression (18) for the matrix element V\2 > we can rewrite the eqs. (10) as follows:

(21)
W cos cote ~i0°'c2=icx

\v*cos(otei0o'cl=ic2

C2 \t J| represents the probability of finding the system in its upper state l//2 at time / , and

C2 (?J| jt the rate at which this probability increases.

We set the initial conditions:

= 1

= 0
(22)

(23)

(24)

We use an additional approximation by neglecting the first term in the square brackets in

(24). When CO « G)Q the second term in [ ] is much larger than the first and this is the reason

for such an approximation. Then

V* \-e'(
mo-a>)t

and use the

We obtain

approximation

cJt)C2\l)

v*

2 + 0)

l_e'(
a>o-a>)'

G)0-CO

C2\t) =

\r
4(co0-cof

O)Q - C O

• ( : - ,

(25)

1 -

(26)

-n sin

(co0 -co)2

When CO =



(27)

namely the probability of excitation is proportional to t . For CO ^ COQ such probability has an

oscillatory behavior. Fig. 2 shows the dependence of the probability of excitation at a certain
time t on the angular frequency CO .

Integrating over a range Affl we obtain

2e' Pn W(co0) n+^
(28)

r
J —r- {COQ -CO)

dco

where we have made use of the relations

V =
h

=W(a>)dco

(29)

(30)— S

W\C0)dC0 being the energy density of the wave for frequencies in [CO, CO + dco).

t2 1
The value of the integral is — A c o for t Ao) « 1 and — M for t AcO » 1. The

latter condition, which we shall hold true, leads to a transition probability C^ \t\ proportional

t o ? :

Pn

' 2 W | s0h
2 2" £oh

2

Pn W(co0)t
(31)

The linear approximation expressed above breaks down for t long enough to make

C2 v J| ) 1' c o n t r a r v t 0 t n e normalization condition. However, as long as t ) ) T R = radiative

lifetime, the linear dependence of the transition probability on time is valid.



Figure 2: The Probability of Finding the System in State \f/2 at Time / .

2.4. OPTICAL BLOCH EQUATIONS

In the presence of a perturbation H' (t) the wavefiinction of a two-level system is expressed by

y/(r, t) = cx {t)m/x (r, t)+ c2 (t V2 (̂ > 0 (32)
where Cj [t) and C2 (t) are such that

are solutions of

' ^ 'c , = ic 2

We now look for more general solutions of these equations, by doing the following:
1) We use the same approximation that reduced eq. (24) to the eq. (25) form*,

2) we retain terms in all orders in V , and
3) we assume the electromagnetic radiation interacting with the two-level system

monochromatic.

We define an atomic density matrix as follows:

(33)

(34)

* In what follows we shall call this approximation the usual approximation.



D22 = c2c\ =

N

N
(35)

Dn=clc*2

D2l = c2c\

where iV1( iV2 and iV are the populations in level 1, level 2 and total, respectively. Note that

Then

* F
£)22 =c 2 c 2 +c2c2 =c2 —^)22 2c2

cx +c.c.

(36)

(37)

and

= -icoscot[v* eie>0'Dn -Fe"'f l) 'D21]=-£)11

(38)
Dx2 = cxc*2+c2cx =cx\~ cos co teia)°'cx +c*2(-cos cote'"00'c2)

= iV cos cot e~ie0°' (Dx X-D22)= D*2X

We now use the usual approximation; accordingly, we consider the terms oscillating with

frequency COQ+CO negligible with respect to the terms oscillating at frequency CO0 —CO . We

write

h -~n - l FVu22--un-- — v e
22 n

(39)

These equations are called the optical Block equations [3].

2.5. RABI OSCILLATIONS
The optical Bloch equations can be written as follows:
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£>„ = -V*>„
11

I)22 =-- n +-Vet{mQ-'o)'D2l

Dl2 =-Ve-i{m°-m)lDn -J-Ve-^-^D
21

"2 " 2
We shall introduce the following trial solutions

/22

(40)

(41)

n _ r>0 atu22 - u22e

D T\ 0 —Mfi?n —Q) )t CC t
11\ ^^ / Jt f\Q Q
\l • t-^izw w

with the quantities Dy and a independent of time. Using the relations (41) in the eq. (40) we

obtain a system of homogeneous equations in the unknown quantities /),-.•:

-a

0

--V
2

-a

-V --V i((o0-co)-a 0
2 2 V ° '

0 -i(o)0-co)-a

\\

D22

n°

D\

= 0

2 2
These equations admit solutions if the determinant of the coefficients is equal to zero:

The possible values of a are

\ax =0

! a2 = iQ.

\a3 =- /Q

(42)

(43)

(44)

where
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Q = (45)

We note here that the dependence of Q on V indicates a change in the frequency of

oscillations of the "coupled" system which consist of atom and light beam: this effect is called the
dynamic Stark effect.

The most general solution is then

Dv=D®+Dfe'D'+D®e-JO' (46)
Additional oscillatory exponentials are present in the off-diagonal elements. By using the initial
conditions and the optical Bloch equations we can obtain the constant coefficients.

Example

c,(0) = l >D22{o)=O
(47)

The density matrix elements are

2 1
• s m —!

2

J-) _ 1 _ n _ 1 _ J ^ B i n ^ — O f
i / i 1 —1 i-'-lT —1 - b i l l _ &£(

>!, '22
Q'

Dn = e-'fo"")' JL. sin - Qt
Q2 2

Q 2

- (co0 - co)sml -Qt\ + iQ cos - Qt

(H

(48)

- (a>0 - co)sm\ - Qt - z'Q cos

For zero detuning \p) =O)Q): Q= V and

• 2 1D22=sm2±-Vt
22

i(sin -\V\t, , ,cos —

The behavior of the quantity D22 fordifferent values of detuning

O)0-O)

(49)

(50)

is represented in Fig. 3. We shall make the following observations:
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1) For zero detuning [0) = O)Q j the atom oscillates between ground and excited states:

2)

3)

4)

these oscillations are called Rabi oscillations and their frequency is called Rabi

frequency. Solutions for the similar problem of a spin system in an oscillatory magnetic
field were obtained by Rabi [4]. When

eE Pn
t-n (51)

2 2h
D22 — 1» all the atoms are in the upper state, i.e. the population is completely

inverted. When

eE(
J # _
2

Pn

2h
= 2n: (52)

the original situation, with all the atoms in the ground state, is restored.
Since the usual approximation was originally used in deriving the optical Bloch

equations the solutions (48) are valid only if (<0O - G>)(( \O)0 + (O).

The solutions for Z ^ and D^ refer to monochromatic radiation. In effect the
oscillations can be seen experimentally when the frequency spread of the
electromagnetic radiation is much smaller than the linewidth of the transition.
We have to dedicate some attention to the fact that the processes that broaden the
linewidth of the transition introduce modifications in the optical Bloch equations. We
shall return on this point.

1.0

0.5

0.0

(

' A

hx
) n

fviw
2%

f\
1 \n \

3K

, <B, - 0 )

J " IV1

fKw
4jt 5K

Figure 3: Probability of Excitation as Function of Time.

2.6. BROADENING OF SPECTRAL LINES

2.6.1. Definition of Susceptibility
Consider a gas of atoms and apply it to an electric field
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E(t)= f°E{a))e-imtda) (53)
where

J()(y'dt (54)

Since E[t) is real

E(-CO)=E*(O)) (55)

Let J P ( ? ) = atomic polarization:

p(t)= rp{a))eiO)td(a (56)
where

P(co) = s0z(co)E(co) (57)

and XV®) = e I e c t r ' c susceptibility. Then

P{t) = s0 j^x(<a)E{G)yi<0'da> (58)

A "real" stimulus E(t) must produce a "real" response P\t): then

Therefore, if we write in general

eq. (59) gives

The above relations are called crossing relations for the real and imaginary parts of the
susceptibility.

2.6.2. Electric Dipole Moment
Consider a gas of Z -electron, 2-level atoms, and apply to it an electric field along the X
direction:

()^0{ ) (62)

A polarization will set in:

The electric dipole moment of one atom in the X direction will be

d{t) = -(y(t]epx\y{tj) (64)

where
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ep' =
z

/=1
But

Then

(65)

(66)

(67)

(68)

where Cj and C2 are solutions of the equations

[V cos cot e~i0)°'c2=icl

\v* cos cot ei<D*'cx=ic2

In the absence of electromagnetic field V = 0 and Cl = C2 = 0 : the probabilities of

occupancy of the two levels are constant and no "spontaneous" emission is possible. To remedy
the situation we introduce an additional damping term in the second equation (68) and write

ic2 = V* cos cot e'a>0'cl —iyc2

c2 = -yc2

In absence of a perturbing field

and

For a gas of atoms with a population N2 (0 ) at time t = 0 in the upper level:

N2(t)=N2{0)e-2»
We identify the quantity 2/ with the Einstein's A coefficient:

2y = A2l

We now take eq. (69) and set in it Cj = 1: we then have

it2 =V* cos cot e""0' -iyc2

(69)

(70)

(71)

and

ti(a)0+a>)t i(a>0-o))t

• + -

co0+co-iy co0-co-iy

(72)

(73)

(74)

(75)
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C2 (^ J is of the order \V\ ; this makes C\\tJ differing from 1 by a term of the order

: then

Pn

2h

Jcot e-icot e-icot eicot
1- 1

(76)

We average over the random orientations of the atoms by introducing a factor of 1/3 and writing

4)=- Pn
6h

.icot -icot , -ico t

o)0 + co -iy coQ - co - iy co0

where Pyi = magnitude of j 9 j 2 . Then the polarization is given by

Ne' Pn
6hV

Jcot -icot

• + -

a>Q+o)-iy 6)0-a>-iy

Jcot

<v0 - co + iy

(77)

Jcot

Then

and

We note that

yico

A-.

3sohV yco0

\ Ne2pn
2(

"' 3eohV [a

1

-co -iy

1

co-x

, 1 }1
co0 +co + iy )

, ' )
y co0-co + iy)

(78)

(79)

(80)

(81)
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2.6.3. Radiative Broadening
We shall first seek a relation between the atomic absorption coefficient and the imaginary part of
the susceptibility.

A gas of atoms can be considered as a dielectric medium in which the polarization is
related to the electric field through the electric susceptibility % :

P = SOZE (82)

The susceptibility is frequency-dependent. The dielectric constant K is related to the
susceptibility as follows:

K = I — I =l + x = n2 (83)

. In
where K = = magnitude of the wave vector and n = index of refraction. If we let

X
r (84)

we obtain

, CO .CO
k = — nr+i — nt (85)

c c
We can also write

(nr + int f =n2
r-nj+ 2inr « / = ( — ) = 1 + X'+ix'' (86)

and

\n2-nf =l+Y\
\ (87)

Wn^X"
A traveling wave moving in, say, the Z -direction would have time and space dependences given
by

.fa a \ (nr \ m
e,(kz-at)=e{c c ) =g U ) e c ' (88)

The intensity of the wave will go down as

where
e az =e c (89)

2cont coy"
absorption coefficient = = —^— (90)

C flrC
We now do the following:

a) we consider the gas dilute and set Ylr = 1, and
b) we use the usual approximation:
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Ne' Pn\
3sohV co0-co-iy

Ne2 pn
 2

3sohV {coQ-o))2+r2
.

(co0-co)2+y2

Then

and

where

3sohV

a(o)) =
nNe' Pn (On

3s0chV

fl (®) = Lorentzian lineshape =
yjn

The function fL {(O) is represented in Fig. 4.

(co0-ca) +r

2.6.4. Power Broadening

We have obtained the following result for the susceptibility correct to second order in

r(a>) =
Ne' Pn 1 1

a>0

(91)

(92)

(93)

(94)

(95)
3sohV {(O0-co-i/ WQ

This result is consistent with a linear response of the atoms to the electric field of the light beam.

If we want to include higher terms in %\G)) we have to use the optical Bloch equations:

D22 A i 2
V 6 ° Dl2+

2
Ve ° °21

Dn =£)*! =-Ve~i{a>°-0>)'(Dn -D22)

but we have to include spontaneous emission. We do so by considering the two equations

c2 =-iV* cos cot el0)Qtcx -yc2

cx =-iV cos cot e'i0°'c2

(96)

(97)
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0.3

m 0.2
•p

0.1

4 - 3 - 2 - 1 0 1 2 3 . 4

Then

D22=c2
* dc2

Figure 4: Shape of a Lorentzian Line

del
dt

= - / F *

fflTe'^'c, -}v2)+c2(iVcoscote-"00'^ -yc2)

eia)°'D22 -yD22 + »r cose* e~it0otD2l -yD22

dt dt
^- = iVcoscote-^l{Du-D22)-rDn
dt

where we have used the usual approximation. In summary

A>2 = " A i --V*ei{m°-a))'Dl2 +-Ve-i(m°-(o)'D2l -2yD

-D22)-yDn

22
(98)

The solutions of these equations are no longer purely oscillatory; after a certain time we have a
steady state situation
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^ 2 2 = "
1174

(o>0-o}-iy)

The atomic dipole moment is given, according to eq. (67), by

= e
i(a0-co)t 2

(a>0-a,f+r2+\V\2/2

2

Then

0 - o) + iy

V 2h

+ e t o ^ -
Pn •'0 a>0-G)-iy

V 2% (a>0-a)2
+y2

+\v\2/2

Then

{a0-o)2+y2+\v\2/2

(99)

(100)

(101)

(102)

This expression is not "complete" because we have used the usual approximation; the complete
expression can be written as follows:
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oc
co0 -eo + iy G>Q+a>- iy

(a>0 -co)2 +y2 +\v\2/2 (a>0 -co)2 +y2 +\v\
If we use the complete expression we obtain

{~ a>)= X*
a condition that is not verified for the simpler expression (102).

Now we can write

X"W= Ned
Pn r

3e0hV

(103)

(104)

(105)

Because of the presence of the term | F | / 2 in the denominator the susceptibility is dependent

on the field strength, the rate of absorption of incident light is reduced and the linewidth of the
atomic transition is given by

(106)

The additional contribution to the linewidth is called power broadening or saturation broadening.

2.6.5. Damped Rabi Oscillations
The diagonal elements of the atomic density matrix give us, when multiplied by the total atomic
population N the populations of atoms in states \f/\ and Iff^

N\V\z/4

(107)

=NDU=N-N2
These expressions apply in the steady state. In the limit of weak intensity of incident light the

value of A^2 is proportional to the intensity of light. We note also that the steady state value

above is independent of the initial conditions.
For studying the transients we need, however, the initial conditions. The equations to

consider are eqs. (98); let us deal with the simple case in which Q)o = 0) (zero detuning) and

fCn(0)=0 (C,-O)

R. A. Smith [5] has given and C. Yang [6] has worked out in great detail the solutions for D22 in

three different situations for this case of zero detuning:

\v\)\r



D22 =
V\2I2

where

2 , IT / I 2

2y2+\V
f- |

2a

v'/2

21

(109)

(110)

22
22
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_ nl* [ 1 "̂  1 ^ ^ ^

cosh-a7 + —sinh-a7 exp —
2 ' 2 j 1 2

a'
where

For ^ = 0 , Of = |F] = Q , and we recover the expression (49)

( i l l )

(112)

(113)

2 , • - , , - , 2 , • < i i 4 >

In Fig. 5 we represent the variations of Z)22 as given by (109) for the case of zero detuning. We

note the following:

y 1
1) The greater is y the more damped are the oscillations. For TJ = -j—r = — a single

maximum remains.
2) The incident light must be of large enough intensity in order to make

1 .

3)

in order to generate significant oscillations in the populations of atoms in the two states.

The steady state value of Z>22

F2/2 1

2y2+\V\2 2 + 4T?2
(115)
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Y
Figure 5: D22 for Zero Detuning and Various Values of Tj =

decreases with increasing TJ.

4) The oscillatory behavior of the populations is called optical nutation. The nutation

frequency depends on V , detuning, and radiation damping.

5) The effect of a beam of light on atomic excitation can be summarized as follows:
a) The atoms are initially in the ground state. The beam is attenuated as energy is

transferred from the beam to the atoms.
b) If the intensity of the beam is large enough so that

\V\){co,-co)md\V\))r
the excited state component of the wavefunction will exceed the ground state
component and energy is transferred back from the atom into the beam, increasing
its initial intensity.

c) This "cycle" repeats itself producing optical nutation. The oscillations in the
atomic populations are accompanied by oscillations in the intensity of the
transmitted light. Experimental observations of this type were made by
MacGillivray and co-workers [18] who observed the effects of optical nutation in

the D2 transition of sodium atoms. A detailed theory of experiments of this type

is given in [8].

2.6.6. Collision Broadening

Consider a gas of molecules and single out a molecule with velocity V . We call p\t) the

probability that such a molecule does not collide in a time t. We call also wdt the probability

that the molecule collides in a time in the interval (/, t + dt): we shall assume W = W\V)

independent of past collisions, and then independent of time. We can write



23

p(t + dt)= p(t)(l - wdt) (116)
or

p(t)+^-dt = p{t)-p{t)wdt
at

1 dp
f = -w (117)

p dt
Since V does not change in a time W between collisions we can integrate and obtain

e-wt (118)

The probability that a molecule, not having collided in time t, collides in (t, t + dt) is

P (t)dt = p(t)wdt = e ~wt wdt (119)
We verify that

| ° P (t)dt = jj° e~wt wdt = 1 (120)

The mean time between collisions is

T = t = J°° p{t)tdt = r e~w'wtdt = — (121)

Then we can write

p(t)dt = dt (122)
r

Since W = w ( v ) , X = T\V). We can then characterize a gas of atoms by the average collision

time of the atoms traveling with the mean speed V :

T = r ( v ) (123)

For a gas of TV atoms of mass Ttl and radius — in a volume V we find [9]
2

r ' = — —
V { m )

i/2

In a gas of N2 molecules at room temperature and atmospheric pressure, T = 6 X 10~ Sec.
Collisions among atoms or molecules can be elastic or inelastic. An elastic collision

leaves the atom in the same quantum state, but changes the phase of the atomic wavefunction. An
inelastic collision produces a change in the state of the colliding atom: inelastic collisions are
taken into account in the Bloch equations by suitably increasing the rate of decay y .

We shall consider only the elastic collisions because it is found experimentally that they
represent the dominant line-broadening mechanism in a very large number of cases and

conditions. The presence of collisions of this type changes the off-diagonal terms Z),2 and

D2l, but does not change Z)j j and D22 '•
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D22 =--V*ei{o)°-'a)'Dl2 +- -2yD 22

' ( A 1 -D22)-y'Dl2

The steady state solutions of these equations are

D22=-
\)r'/r

DX2=e-i{a}°'a>)'-

The susceptibility can be rederived as follows:

-co + if

The linewidth is now given by

where

1/2

(125)

(126)

(127)

(128)

(129)

The linewidth (128) contains the effects of radiative broadening {/), power broadening

and collision broadening \T).

2.6.7. Doppler Broadening
A photon of energy flCO carries a momentum

(130)

An atom residing originally in the ground level absorbs this photon and moves to an excited level.

Let E\ and E2 be the energies of the ground and excited level of the
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atom, respectively. Let also V, and V2 be the velocities of the atom before and after the
absorption ofthe photon.

Conservation of momentum and conservation of energy are expressed by the relations

I mv = hk = mv2

zr 1 2 fc r 1 2 ( 1 3 1 )

We shall call

0>o=
E2-El

and we shall take the direction in which the proton travels as the X -direction. The above
relations give us

COV. ho)2

CO0=O) 1*. (133)
c 2mc

Typical values of some ofthe above quantities are

c
2

2mc2

Then the third term in (133) is negligible with respect to the second term and we can write,
dropping the subscript 1,

CO = —»f i ) 0 1 + — (134)

C

A photon can be absorbed by an atom which has an X -component of the velocity V^ if its

frequency CO is related with the frequency O)0 ofthe atom by the relation (134).

The probability that an atom in a gas at temperature T has the X -component of its

velocity in (v^ , Vx + dvx ) is proportional to

exp kfr =exd ^—-—-J—\dvx (135)

{ 2kT) x \ ' '•"" ' *
Let g\O)) be the profile ofthe spectral line. We can write

2o)2
0kT

{) ( ) x (136)
and, ifweuse(134),

— 037)
co0

Then
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mv'A c ( mc2(o)-co0)\dvr = — exp , .
I . c I me \(v — vjn) i .

(138)

The profile represented by (138) is called a Gaussian lineshape. The FWHM (full width at half
maximum height) of this line is

f 2kT\r\2V2

(139)
\ me2 )

The mean square spread is

<r = | U » - f l > o r i =fi>n|—T = - -rr (140)17 vY* ( ^ Y2

L -I \mc J

We can then write for a normalized Gaussian line:

(141)
2a1

2.6.*. Composite Lineshape

y ~y
Both the collision broadening and the Doppler broadening are proportional to T and Ttt
and may be changed by changing the temperature of the gas. But the collision broadening is also
proportional to the density Ar and, for this reason, is also called pressure broadening.

A composite lineshape may arise when two different mechanisms contribute to the

broadening of a spectral line. If these two mechanisms produce, say, the profiles F^yCO) and

F2 \O)), then the profile of the composite line is the convolution of the two spectral functions:

f((0) = fV, (s)F2 {G)-0)Q- s)ds (142)
J-00

where O)0 = common central frequency.

We can now make the following statements:
1) Any number of line-broadening mechanisms can be combined by repeated convolutions.

The resultant lineshape is independent of the order in which the convolutions are
performed.

2) For two Lorentzian broadening mechanisms giving width 2yx and 2y2 >

2y = 2yx + 2y2 (143)

3) For two Gaussian broadening mechanisms giving widths 2A , and 2 A 2 ,

A 2 = A ' + A 2
2 (144)

4) The convolution of a Lorentzian and a Gaussian profiles is a Voigt Profile [10]. If AvL

and AvG are the widths given by the Lorentzian and Gaussian mechanisms, respectively,

the Voigt profile is given by



27

where

T 1V) =
_ 2 1 n 2 AvL (*«> e

AvG
Z

-y

Q =
2vVln2

-dy (145)

(146)

(147)

Note that

Av

Av

-> Gaussian lineshape

-» Lorentzian lineshape
The Voigt profile is important because it occurs in the case when collision broadening and
Doppler broadening are both significant and are affecting the spectral line independently. In Fig.
6 we report the three shapes of a Gaussian, a Lorentzian and a Voigt profiles with the same half
width.

1.0

0.5

o Voigt profile

-—-Gaussian line

— — lorentzian line

I
1

i i i r

a
i

\

I v

\x.
J L 1

-2.0 - 1.5 -1.0 -0.7 -0.3 | 0 | 04 | 0.7 1.0
-0.5 -0.1 0.1 0.5

_L
1.5 2.0

Figure 6: Lorentzian, Gaussian and Voigt Line Shapes

The mechanisms which broaden spectral atomic lines fall into two broad categories and
situations:
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1) Different atoms absorb or emit radiation at somewhat different CD 's. The profile is in this
case Gaussian and the broadening is called inhomogeneous. Examples: Doppler
broadening in gases and broadening of lines of laser ions in solids at very low
temperatures.

2) Each atom absorbs or emits in the same way, with no particular frequency associated to a

particular atom. The width is related to the time interval A^ in which the atom is left
undisturbed:

ACD At > 1
The profile in this case is Lorentzian, and the broadening is called homogeneous.
Examples: radiative broadening, collision broadening, broadening of lines of laser ions in

solids at T > 7 7 K .

We shall report now the example of Neon atoms at p = 0 .5 tOIT and room

temperature. The two pressure independent mechanisms give the following contributions to the
linewidth:

Doppler broadening: 1.7 GHz
Radiative broadening: 20 MHz

The pressure-dependent mechanism gives:
Collision broadening: 0.64 MHz

At sufficiently high pressures, the collision broadening predominates over the Doppler
broadening.
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2. LIGHT-MATTER INTERACTIONS ON THE
FEMTOSECOND TIME SCALE

C. A. D. Roeser and E. Mazur
Department of Physics and Division of Engineering and Applied Sciences
Harvard University

9 Oxford St.
Cambridge, MA 02138 USA

Abstract The subject of electromagnetism in the presence of matter is both exten-
sively studied and rich in diverse phenomena. It spans such topics as the
quantization of the electromagnetic field to the semiclassical treatment
of light-matter interactions to the derivation of the Presnel reflectivity
formulas. Interest in femtosecond optics is rooted in nonlinear optical
phenomena and in the complex electron and lattice dynamics that occur
in a material following intense ultrashort-pulse irradiation. The experi-
ments we discuss in this paper are concerned mainly with the latter and
lie at the intersection between femtosecond optics and materials science.

1. Light—matter interactions
Fundamental to any description of light-matter interactions are Maxwell's

equations [1],

VxE = - f (1)

V x H = - ^ + J (2)

V D = p (3)

V - B = 0 (4)

where, along with the usual field terms, E ,D,B, andH, are the source
terms of charge p and current J. The influence of matter is cast in terms
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of constitutive relations among the fields,

B = ^OMH (5)
D = eoeE (6)
J = crE (7)

for which the vacuum (matter-less) conditions are /J, —> 1, e —> 1, and
a —» 0. As written, the equations are essentially linear, in that an applied
E field of frequency ui generates a D field in the bulk of a material at
UJ and no other frequency. To isolate the response of the material, we
introduce the polarization P,

D = eoE + P (8)

P = €OX(1)E (9)

where the (linear) susceptibility x ^ is related to the dielectric constant
by e = (l + x^)- Linear optical properties are fully described by either
e or x^ > which are complex, or by the complex index of refraction 1

1.1 Relationship between linear optical
properties and band structure

For a detailed description of light-matter interactions we refer the
reader to Refs. [2] and [3]. Here we only highlight the aspects of the
semiclassical desciption of light-matter interactions that are of particular
relevance for this article.

While the electromagnetic field is treated classically, the electrons are
governed by the Hamiltonian [2]

where the first term is a kinetic energy term involving the momentum
operator p, the second term is the electron-ion Coulomb interaction,
and the third term encompasses the coupling between the applied field
(represented by the vector potential A) and the electrons.2 The eigen-
states of the above system in the absence of the perturbing field A are
the Bloch wavefunctions \n, k), which in the position representation take
the form [4]

(r |n,k)=un,k(r)e i(k r) . (11)

Here, un^(r) is a function with the periodicity of the lattice potential
V(r), and n and k correspond to the band index and crystal momentum,
respectively, in the reduced-zone scheme [4]. The energy eigenvalues
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En(k) constitute the band structure of the crystal.3 The difference be-
tween the band structures of different materials arises from differences in
their lattice potentials, due to variations in composition, lattice config-
uration, or both. Of particular interest to the experiments described in
Section 4 is the fact that a lattice potential that is changing in time gives
rise to a time-varying band structure. Ultrashort laser pulses allow one
to track the major features of the band structure via their manifestation
in the linear optical properties of the material.

To investigate the interaction of light with the system described by
Eq. (10), we consider the situation where the applied field excites elec-
trons from an occupied (valence band) state to an unoccupied (conduc-
tion band) state. The number and energy distribution of such transitions
give rise to the optical properties of a solid. Specifically, the imaginary
part of the dielectric tensor can be written as [2, 3]

nc,nv,k
(12)

The momentum matrix element quantifies the strength of the coupling
for vertical transitions between various conduction and valence band
states.4 The dependence of the momentum matrix element on the direc-
tion of the applied field, denoted by the subscript i = x,y,z, allows for
an anisotropic optical response (e.g., birefringence). The term common
to all elements of the dielectic tensor is the joint density of states (JDOS)

JDOS= ]T 6(Enc(k)-Env(k)-hiu), (13)
nc,nv,k

which depends solely on the shape of the band structure. The JDOS
peaks at photon energies equal to the most common transition energy
between different states in k space. The fact that parallel conduction and
valence bands produce a large peak in Im[e(o;)] is a direct consequence
of the form of the JDOS in Eq. (13). In fact, the linear optical response
of many solids is dominated by only a few peaks in their JDOS — that
is, by resonances at a small number of photon energies produced by only
a few regions of parallel bands.

It is important to note that the correspondence between band struc-
ture and dielectric function is not one-to-one. Many band structures can
produce the same dielectric function,5 which means that the interpreta-
tion of optical properties must be done cautiously. Changes in the linear
optical properties can be used to make general statements about the
changes in band structure, but additional information is often required
to localize the dynamics in k space.
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Figure 1. (a) Band structure [3] and (b) dielectric function [5] of GaAs.

As an example of the direct relationship between band structure and
dielectric function, Figure 1 shows the band structure and the dielectric
function of GaAs. The characteristic absorption peaks in Im[e(u;)] at 3.1
eV (£i) and 4.7 eV (E2) are due in part to a large joint densities of states
around the L and X valleys, as indicated by the shaded regions in Figure
l(a). The real part shows the characteristic dispersive structure for each
absorption peak, in agreement with the Kramers-Kronig relations.

1.2 The Drude—Lorentz model

The Drude-Lorentz model, also known as the Lorentz oscillator model
when applied to semiconductors and as the Drude model when applied
to metals, attempts to describe the optical response of a material as that
of a damped classical harmonic oscillator. While simple, involving only
a few free parameters, the Drude-Lorentz model is surprisingly good at
describing the optical properties of many semiconductors and metals.

The Lorentz model describes, in a phenomenological way, the polar-
ization induced in a material by the applied E field. The situation we
consider is that of an electron in a solid that is described by its displace-
ment x from its equilibrium position.6 The equation of motion for the
displacement x is taken to be that of a harmonic oscillator,

where F is a phenomenological damping coefficient, u>o is the resonance
frequency of the oscillator (a real resonance in the material), and the
driving force is due to the applied field,

F(t) = £-
m

E*ei"t] .J (15)

Without loss of generality, the equation of motion for x(t) can be solved
by neglecting the second driving term above and considering a trial so-
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lution of the form x{t) = Ce'^K ..

C[-UJ2 - iFu> + u$e~iuJt = — Ee'^ (16)

=*C = - E - \—— (17)

x(t) = - £ - 2 — — . (18)

While x(t) describes the motion of a single electron, it is often the case
that many electrons in a solid respond in the same fashion. Thus, if N
electrons respond as x(t), then the total polarization is given by

P(t) = Nex(t) = e0X
{1)E(t), (19)

where Eq. (9) is used to relate the applied field E(t) to the polarization
P(t) and to introduce the linear susceptibility. Hence,

= =
X e0 E(t) eom wg - J1

For our purposes, the dielectric function is more useful than the suscep-
tibility, and takes the form,

-
 ( 2 2 )

There are two methods by which the Lorentz model is applied to real
absorbing materials. First, because the Lorentzian shape of Im[eLOrentz(< )̂]
is similar to a <5-function, materials can be modeled by a distribution of
Lorentz oscillators, analogous to the distribution of 6-function contri-
butions to the JDOS in Eq. (13). The sum of many oscillators would
produce a "single resonance" in the material (e.g., the Ei peak in GaAs).
However, for modeling changes in the dielectric function on a femtosec-
ond time scale, this technique is numerically challenging to implement
(due to noise in the data) as well as physically unsatisfying in the inter-
pretation of its results.

A second method of applying the Lorentz model to real materials is
to describe an entire resonance by the three free parameters of a single
oscillator; the resonant frequency u>o, the linewidth F, and the oscillator
strength / = Ne^/eom. Each parameter is connected to features of the



34

energy (eV)

O 20 -

i 10

A

\

\

(b)

2 3 4 5
energy (eV)

Figure 2. Lorentz oscillator model fits to (a) Te and (b) GaAs. Black lines represent
literature values of Re[e] (solid) and Im[e] (dashed) [5], while gray lines represent the
best-fit values of Re[eLorentz] (solid) and Im[ei,orentz] (dash-dotted).

band structure. The resonant frequency UIQ corresponds to the position
of the peak in the JDOS. The linewidth F is related to the distribution
of energy levels around the resonant frequency — sharper absorption
lines correspond to smaller values of F, arising from regions of parallel
bands. Lastly, the oscillator strength / carries information about the
number of states contributing to the resonance at u)$.

As an example of the success of the Lorentz model in describing real
materials, Figure 2 shows fits to Te and to GaAs. In each case, the fit
is the sum of two Lorentz oscillators with different values of LOQ, T, and
/ for each term. This two-oscillator model follows the major features
of the literature optical properties in each case, but fails to capture
smaller features. For example, Im[eLorentz(w)] does not vanish for photon
energies below the band gap, nor is it sensitive to sharp features near
other critical points. Nevertheless, the Lorentz model is sensitive to large
resonances in a material — the parameters of the fit to GaAs in Figure
2(b) indicate resonances at 3.18 eV (JE?i peak) and 4.67 eV (E2 peak).7

The form of the Drude model for metals is

= 1 +
Ne2

IT

ui(l — itur)
(23)

which is equivalent to Eqs. (21) and (22) with T —» 1/T and cun —»• 0. By
convention, a plasma frequency u>p — Ne2/eom is defined to play the role
of the oscillator strength above. The classical derivation of eDrude(̂ ) is
analogous to the above derivation for eLorentz (<*>) > except that an induced
current J rather than an induced polarization P results in a differential
equation that lacks a harmonic potential term [4]. The optical properties
of many metals consist of a Drude (intraband) contribution from "free"
electrons in half-filled bands in addition to Lorentz oscillator (interband)
contributions from available vertical transitions. That is, even good
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energy (eV)

Figure 3. Drude model fit to Ag. Black lines represent literature values of Re[e]
(solid) and Im[e] (dashed) [5], while gray lines represent the best-fit values of Re[eDrude]
(solid) and ImfeDrude] (dash-dotted).

metals are rarely described by the Drude model alone. To illustrate this
fact, Figure 3 shows a Drude model fit to Ag, with cop = 8.3 eV and
r = 50 fs. While the fit describes low-photon-energy behavior well, it is
not accurate near 4 eV due to resonant contributions to e(a>).

1.3 The Kramers—Kronig relations
Thus far we have discussed both the real and the imaginary part of the

dielectric function as if the two quantities were independent. In reality,
Re[e(u>)] and Im[e(w)] are linked through the Kramers-Kronig relations
[6]

= 1 + -1

Im[e(w)] = — 'i

vlm[e(v)]
1 -

v4- — i

(24)

(25)

where V represents the principal value of the integral. It is worth noting
that the Kramers-Kronig relations follow from the fact that the electric
field E drives the material polarization P, as in Eq. (9) [6]. Interestingly,
the availability of transitions at a single photon energy contributes lo-
cally to Im[e(u;)] (see Eq. (12)) but affects Re[e(u;)] globally according
to the Kramers-Kronig relations. For fitting dielectric function data to
the Lorentz model when some of the material resonances lie outside the
measured spectal range, the expression for the imaginary part will fit
the data correctly due to the local contribution of transitions, but the
real part will have unaccounted-for global contributions. It is often the
case that an additive constant to the real part can dramatically improve
the fit by playing the role of these Kramers-Kronig-type contributions
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from resonances outside the detected spectral range. Because the real
part of the Lorentz model is mostly constant far from a resonance,8 a
single additive-constant free parameter is often sufficient to capture all
the resonance contributions to Re[e(u;)] from outside the spectral range
of the data.

2. Ultrafast dynamics of solids under intense
photoexcitation

Despite the broad array of topics that fall under the title "ultrafast
dynamics of solids," the discussion below is of limited range. For in-
stance, we do not discuss the myriad of electronic phenomena that have
been observed at low excitation densities of 1014 to 1018 cm"3, a review
of which can be found in Ref. [7]. The reason for this omission is that
such phenomena are rarely observed in experiments where the excited
carrier density is on the order of 1022 cm"3 as in the experiments de-
scribed here. Although excited carrier effects are present and are more
pronounced than at lower densities, the material dynamics are often
dominated by the ionic motion that results from excitation of a signifi-
cant fraction of the valence electrons. The text that follows is an attempt
to present the framework in which these dynamics are understood.

2.1 Molecular dynamics and coherent control
The idea that solid dynamics are determined by ionic motion is rooted

in the microscopic picture of molecular electronic transitions and molec-
ular dynamics. In fact, the molecular case is even more extreme than
the solid one — photoexcitation in molecules often results in dissocia-
tion, whereas the sharing of electrons in a solid leads to only a partial
weakening of bonds under photoexcitation.9 Consider a diatomic sodium
molecule, where the energy of the system as a function of nuclear dis-
placement is as shown in Figure 4. The curves in this figure show the
energy of the system in different electronic configurations as a function
of ionic separation. Often, the excited state potentials have a shape
that results in dissociation (no minimum at finite separations) or bond
stretching (a minimum at a different separation than the ground state).
When this is the case, electronic transitions are coupled to molecular
vibrational transitions [8], where our intuition predicts that the ensuing
nuclear motion is determined by the new potential in a classical way —
an excitation from the ground X*S+ state to the 21IIg state of Figure
4 would leave the nuclei displaced from equilibrium and they thus begin
to oscillate. The idea that the nuclei remain fixed during the electronic
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Figure 4- Potential energy curves for a diatomic sodium molecule, showing bond
stretching or dissociation for different excited state potentials. Numbers 1, 2 and 3,
indicate the possible transitions to products in a two-pulse excitation scheme after
the first pulse excites the electronic system to 21n9 . After Ref. [9].

transition10 is equivalent to the approximation of vertical transitions in
crystals and is known as the Franck-Condon principle [8].

The quantum mechanical derivation of molecular excited state dy-
namics was first provided by Heller [10, 11]. To summarize, immedi-
ately after photoexcitation, the ground nuclear eigenstate evolves on the
excited state potential surface following the classical trajectory. The an-
harmonicity of the excited state potential determines the rate at which
the nuclear wavepacket spreads and leads to deviations from the classical
trajectory. Of primary interest in our case is understanding the way in
which the resulting nuclear dynamics can affect properties such as the
dielectric function. Heller points out the lack of such a description at
the time, stating [11]

After the electrons have made a transition, the nuclei experience new
forces; they find themselves displaced relative to the equilibrium geome-
try of the new potential surface, and interesting dynamics should ensue.
Unfortunately, most discussions of electronic transitions cut short any
allusions to dynamics and explain the absorption spectrum in terms of
Franck-Condon overlaps of the initial nuclear wavefunction with a time-
independent vibrational tigenfunction of the upper electronic potential
surface. We (and the nuclear wave function) are left hanging; we are
given no explanation of the time evolution of the hapless nuclei which,
once the photon is absorbed, are ready to move in ways that determine
the spectra.
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Before making the connection between molecular and crystal dynam-
ics, we discuss an important application of Heller's work — the coher-
ent control of molecular dissociation. Tannor, Kosloff, and Rice de-
vised a scheme under which the dissociation dynamics of a hypothetical
molecule can be controlled simply by varying the time delay between two
femtosecond pulses [12, 13]. They considered a ground state potential
energy surface with one bound state (ABC) and two dissociated states
(AB + C, A + BC), along with different excited state potential surfaces.
They demonstrated that by allowing the nuclear wave function to prop-
agate on the excited state potential for specific lengths of time before
the second pulse arrives, the "final product" of the two-pulse excitation
can be controlled.11 Experimental realizations of end-product control in
molecular dissociation (in systems such as that of Figure 4) have been
achieved with multiple-pulse and shaped-pulse excitations [9, 14].

2.2 The molecular picture of crystal dynamics
Many of the features of the dynamics of solids can be understood

within the framework described above, albeit with some extensions.
Photoexcitation of a large density of electrons establishes a new poten-
tial energy surface on which the ions move. The new potential may have
no minimum near the initial lattice configuration, resulting in large nu-
clear displacements, disordering, and often "damage." If a new potential
minimum is established, then the ions can respond to the new poten-
tial in a more controlled fashion. Nuclear motion on the new potential
energy surface leads to commensurate changes in the band structure,
and, in turn, in the optical properties of the solid. That is, the available
transitions for the electrons are determined by the lattice configuration,
the dynamics of which are determined by the excited electrons.

Additional considerations when discussing solids concern the treat-
ment of the "excited electronic state." First, the manifold of excited
energy states is virtually a continuous function of the excited electron
density. In general, the excited electron density cannot specify a unique
potential because of the possible permutations of transitions among the
1023 cm"3 valence electrons. The idea that material dynamics depend
on the excited electron density alone is an approximation that holds
when the carriers can thermalize before any significant nuclear motion
occurs. Excited electrons (holes) thermalize within 10 fs at densities of
1021 cm"3 or more,12 leading to a Fermi-Dirac distribution within the
conduction (valence) band and a loss of memory of the initial excited
carrier configuration. Because the ions spend most of their time (all but
10 fs) evolving on a potential determined by a Fermi-Dirac distribution
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of carriers, the excited electron density is often sufficient to specify the
"excited electronic state." A second concern is that the electronic state
and the nuclear state do not evolve independently. A particular excited
electron distribution establishes a potential surface to which the lattice
responds by deformation. This deformation results in a new band struc-
ture, resulting in a redistribution of electrons and, in general, a modified
potential. In essence, the excited electron potential becomes a dynamic
quantity which depends on the nuclear coordinates. These many-body
interactions are more pronounced in solids than in molecules and can dy-
namically modify the potential energy surface and further perturb the
semiclassical trajectories of the ions. Electron-electron interactions of
exchange and correlation, electron-phonon interactions, and other many-
body interactions offer avenues by which the electron distribution within
a band can exert a force on the ions.

Even with the further complications of dealing with solids, nuclear
dynamics can still be treated with excited state potential surfaces. The
accuracy of "exact" calculated results for solids is less than for molecules,
simply due to the increased complexity of a condensed system. Usually,
approximations to reduce the complexity of the system make the problem
tractable and model a specific experimental situation. We present an
example of such a treatment in the following section.

2.3 Ultrafast disordering of zincblende
semiconductors

The observation of laser-induced disordering on a time scale shorter
than the thermalization time between excited carriers and the lattice
was observed by a number of groups working with semiconductors [15,
16, 17, 18, 19]. Although the disordering of solids via thermal processes
(i.e., melting) has been known for a long time, a theoretical description
of lattice instability as a result of photoexcitation was first provided by
Stampfli and Bennemann [20, 21]. Apparently derived independently
from the work described above, their treatment of zincblende semicon-
ductors shares many features with the molecular description of nuclear
motion on an excited state potential.

Stampfli and Bennemann consider a tight-binding Hamiltonian that
includes nearest-neighbor interactions only. A calculation of the poten-
tial surface for the lattice in the ground electronic state configuration is
shown for silicon in Figure 5(a). A clear minimum exists as a function of
transverse acoustic (<5f) and longitudinal optical (<5/) lattice distortions,
indicating a stable lattice. The band structure and optical properties
of the calculated ground state configuration agree well with the known
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(a) (b)

Figure 5. Potential energy surface as a function of transverse acoustic (5t) and lon-
gitudinal optical (5i) lattice displacements for silicon (a) in the ground state electronic
configuration and (b) when 15% of valence electrons are excited to the conduction
band. The stable minimum at 5t = 5i = 0 becomes unstable for sufficient excitation
densities, as shown here. After Ref. [21].

properties of Si. After photoexcitation, the excited electrons rapidly take
on a Fermi-Dirac distribution13 and the lattice potential is recalculated
with the different band-filling. As shown in Figure 5(b), when 15% of
valence electrons are excited to the conduction band,14 the lattice po-
tential no longer displays a stable minimum at the ground state lattice
configuration. The calculated trajectory of the ions is shown in Figure 6,
displaying oscillations and translation in one direction and pure trans-
lation in another, following the shape of the potential in Figure 5(b).
The significant motion of ions on a time scale of 100 fs agrees with the
experimental results of many groups [15, 16, 17, 18, 19], and the onset
of metallic behavior on this time scale has also been observed [22, 23].

Figure 6. Trajectory of ionic motion on the potential shown in Figure 5(b). Signif-
icant nuclear displacements are predicted to occur within 100 fs. After Ref. [21].
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The main difference between the response of silicon and that of Na2
molecules to photoexcitation is that an ensemble of ions, rather than
two, are set in motion on a new potential surface. As shown in Figure
6, the ionic motion is confined to a certain path for all initial condi-
tions (within a certain range). As discussed in Section 4, the physical
mechanisms underlying the response of tellurium to intense photoexci-
tation are similar to those that govern the response of silicon. Whereas
nuclear motion in silicon develops along two directions, the photoiniti-
ated nuclear motion in tellurium affects only a single lattice parameter.
Moreover, the excited state potential in tellurium has a minimum near
the initial lattice configuration, which leads to lattice vibrations that are
analogous to the vibrations observed in Na2.

3. Nonlinear optical properties
Although the majority of this article concerns linear optics in solids,

nonlinear optical processes are encountered as well. A nonlinear optical
response occurs when fields of frequency different than that of the applied
field are generated. The nonlinear response is usually isolated from the
linear one, and Eq. (9) becomes

P = eox
wE + PNL (26)

^ {2) (3) " E - E - E + --- . (27)

Essentially, the material response is expanded in powers of the applied
E field. Note that the total field is involved in driving the polariza-
tion and this total field may involve contributions from laser pulses of
different frequency travelling in different directions with different field
polarizations. The total polarization then acts as a driving term, as in
Eq. (8), to radiate fields at the fundamental frequency15 as well as at
the frequency of the nonlinear polarization.

Broadly speaking, there are two criteria which must be satisfied in
order to generate nonlinear radiation. For a nonlinear process involving
n fields of the form16

Ej{t) = ^ lEjeW*-"**' + £*e-^- r-^J , (28)

for j = 1 . . . n, these criteria are

n
~ (29)

(30)
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where the choice of sign indicates whether the "u>" or the "—a;" term
of a particular field contributes, as determined by the particular non-
linear process considered and the experimental arrangement. Equation
(29) is always satisfied in a nonlinear process and specifies the nonlinear
frequency generated. Equation (30) is the "phase-matching" condition
and determines the direction of the radiated nonlinear field.17 In the
remainder of this section, we present an overview of second- and third-
order nonlinearities and refer the interested reader to Ref. [24] for further
details on optical nonlinearities.

3.1 Second-order nonlinearities
The type of second-order nonlinear process most often encountered

in the lab is second harmonic generation (SHG), which involves two
degenerate driving fields (UJI = u?) of the form in Eq. (28). The nonlinear
polarization generated by SHG is

P<2>(2wi) = eox(2)(2u;1 : uu^E^^2"^'2^) (31)

where the criteria of Eqs. (29) and (30) involve only positive terms
(e.g., OJNL = U>I + OJI). We have allowed for less-than-perfect phase
matching because the dispersion of the material determines whether
£(2u>i) = 2fc(ui). When the phase matching is not perfect, the nonlin-
ear field generated at different positions in the crystal intefere somewhat
destructively, reducing the total radiated nonlinear field.

The most common application of SHG is in measuring the duration
of a femtosecond pulse via autocorrelation. In practice, two copies of
the same pulse are overlapped in a nonlinear crystal with a controllable
delay r between the two pulses. Because the nonlinear field depends on
the total intensity, the SHG signal S varies with the temporal overlap of
the pulses. One can extract the pulse duration from the shape of S(T).18

3.2 Third-order nonlinearities
In general, third-order nonlinearities require three driving fields. In

practice, two or even all three fields are degenerate. One situation of
particular interest is the following interaction between two fields of fre-
quency u>\ and u>2

P{3)(OJNL) = ^eoX{3)(uNL:ui,-ui,U2)EiElE2e<'*-r-wat') (32)

<*>NL = wi — OJI + 0J2 (33)

£ = k\ — k\ + fo (34)
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This particular nonlinear mixing can result in intensity-dependent ef-
fects. For x ^ real, an intensity-dependent index of refraction leads to
self-focussing of a gaussian beam.19 An imaginary x ^ produces intensity-
dependent absorption (i.e. two-photon absorption). Both phenomena
are widely applied in the field of optics. Self-focussing, or Kerr lensing, is
used to mode-lock oscillators and contributes to the generation of white-
light femtosecond pulses. Two-photon absorption (TPA) is commonly
used for cross-correlation of ultrashort pulses because it is automatically
phase-matched and produces a field at the fundamental.

Of particular interest to researchers is how nonlinear susceptibilities
are related to (and can reveal) material properties. For instance, the
process of two-photon absorption described in Eq. (32) does not occur
unless a photon of energy h(uJi + 0J2) is absorbed linearly. This is not
to say that Im[x^] depends on Im[x^]- Rather, both depend on the
availability and distribution of, in this case, vertical electronic transi-
tions.

In addition to electronic transitions, the existence of lattice vibrations
(phonons) serves to enhance nonlinear susceptibilities, in particular x ,
via the change in linear optical properties with lattice distortion. When
the interaction in Eq. (32) is used to probe (or excite) a phonon uiy of a
solid where u>\ —101 = u>v, it is called a Raman interaction. The form of
the phonon contribution to the nonlinear susceptibility is given by [24]

d a \ 2 1
)

(35)
where q is a displacement of the lattice associated with the phonon and
7 is the associated damping constant. By convention, u>2 is referred to
as the Stokes frequency when ui^ < u>i and as the anti-Stokes frequency
otherwise. The quantity a is the polarizability of the material, which
changes as the lattice is distorted. Note that XRaman contains a reso-
nance denominator of similar form to the linear susceptibility in Eq. (20),
however the "strength" of the Raman process depends on the sensitivity
of the polarizability to lattice displacement. Analogous to the electronic
case, where an applied field induces an oscillating electronic polarization
that leads to excitation of an electron, Raman interactions lead to the
excitation of phonons.

4. Ultrafast Materials Science
Early investigations into ultrafast materials science relied on intense

femtosecond laser pulses to initiate and probe dynamics that follow from
photoinduced lattice instabilities [15, 25]. Recently, the focus has shifted
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from photoinduced instabilities that lead to a disordered state [18, 17, 19]
to those that result in an altered lattice configuration [26, 27, 28] and to
the methods by which lattice dynamics can be controlled [29, 30, 31, 32].
As discussed in Section 2, the nuclear motion is believed to follow a
trajectory dictated by the potential surface of the electronic excited state
[21], much like the semiclassical picture of nuclear dynamics in molecules
[10, 12, 9, 14].

In this section, we discuss the electron and lattice dynamics of a va-
riety of semiconductors following excitation by an intense femtosecond
laser pulse. We observe these dynamics by measuring the dielectric ten-
sor of the material with femtosecond time resolution. The linear optical
properties of a material provide a view of the underlying band structure
and lattice configuration that the reflectivity of a sample alone cannot.
Consequently, measurements of the femtosecond time-resolved dielectric
tensor provide a greater amount of information about electron and lat-
tice dynamics and about the nature of ultrafast phase transitions than
other optical probes.

We performed pump-probe experiments on commercially available
GaAs, on a-GeSb thin films, and on single-crystal tellurium using 800-
nm pulses from a multipass amplified Ti:sapphire laser, producing 0.5-
mJ, 35-fs pulses at a repetition rate of 1 kHz [33]. In each case, s
polarized pump pulses excite the sample while the p polarized transient
reflectivity is measured using a white-light pulse (1.65 - 3.2 eV). Two-
photon absorption measurements [34] indicate that the time-resolution
of the pump-probe setup is better than 50 fs, while calculations based
on measurements of the spectrum and chirp of the white-light probe
indicate that the time resolution of the probe varies from 20 fs near
1.7 eV to 60 fs near 3.2 eV [35]. The entire system is calibrated to
obtain absolute reflectivity. Measurements of the absolute reflectivity
at two angles of incidence allow for determination of the linear optical
properties by numerical inversion of the Fresnel formulas. Further details
of this experimental technique can be found in Ref. [36].

4.1 Ultrafast carrier and lattice dynamics in
GaAs

Shortly after the introduction of femtosecond laser sources, numerous
experiments were conducted on semiconductors where a transition to
a metallic state is observed upon laser irradiation. Experimental tech-
niques included pump-probe reflectivity measurements [15], both reflec-
tivity and second harmonic measurements [25, 18, 16, 17], and pump-
probe microscopy [37, 38]. While each experiment reveals a laser-induced
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phase transition with high precision, the nature of the resulting phase
and the changes in the band structure are difficult to determine. This
difficulty is due to the fact that many different values of e(w), and hence
many different band structures and material phases, can yield the same
reflectivity at a particular angle of incidence.

We performed single-shot femtosecond time-resolved dielectric func-
tion measurements of GaAs to investigate carrier and lattice dynamics
associated with its ultrafast semiconductor-to-metal transition under in-
tense photoexcitation [22, 39]. Figure 7 shows dielectric function mea-
surements of GaAs. Without excitation of the sample, e(u>) matches lit-
erature values of the dielectric function [5], confirming that our technique
measures the dielectric function correctly. Figure 7(b) shows e(u>) 500 fs
after excitation below the threshold for permanent damage (F^ = 1.0
kJ/m2). Shortly after excitation, before the ions of the lattice can move,
changes in e(u>) are due to the presence of excited carriers in the con-
duction band. The decrease of Im[e(w)] around the E\ critical point
(near 3 eV) is likely due to Pauli blocking of the transition by electrons
in the conduction band. At higher excitation fluences, a transition to a
metallic state is observed, an example of which is shown in Figure 7(c).
This data is well fit by the Drude model, which describes free-electron
(metallic) behavior. The parameters of the fit (a plasma frequency of 13
eV and a relaxation time of 0.18 fs) reveal that virtually all of the valence
electrons are free and that the band gap has completely collapsed. The-
oretical calculations of the evolution of the dielectric function of GaAs
after femtosecond-pulse excitation agree with our experimental results
[40, 41, 42].

4.2 Ultrafast phase changes in a-GeSb
The speed of ultrafast phase transitions and the large reflectivity vari-

ations associated with them make materials that display such transitions
good candidates for optical switches and high speed optical data stor-
age. Thin films of a-GeSb allow optically induced, optically reversible
amorphous-to-crystalline transitions. In 1998, Sokolowski-Tinten and
co-workers presented normal-incidence reflectivity measurements which
suggested that femtosecond pulses above the threshold for permanent
crystallization can induce an ultrafast disorder-to-order transition in
amorphous Geo.o6Sbo.94 films within 200 fs [43]. The suggestion of a
subpicosecond amorphous-to-crystalline phase transition raises an im-
portant question: how can lattice ordering occur in less time than it
takes to establish thermal equilibrium between the laser-excited elec-
trons and the lattice?
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Figure 7. Dielectric function data for GaAs — • = Re[e], o = Im[e). (a) Under
no excitation, e(w) matches literature values of the dielectric function, represented
by the solid and dashed curves [5]. An example of changes in e(w) due to the pres-
ence of excited carriers is shown in (b). (c) At sufficiently high pump fluences, a
semiconductor-to-metal transition is observed, as evidenced by the fit to the Drude
model (wp = 13.0 eV and T = 0.18 fs).

We performed single-shot dielectric function measurements of a 50-nm
thin film of a-Geo.o6Sbo.94 to determine the nature of the phase during its
ultrafast phase transition [44]. Figure 8(a) shows the agreement between
e(u>) obtained at a time delay of —1 ps and literature values of the
dielectric function [5]. As a reference, the dielectric function of the
crystalline phase is also shown.20 Because the film is optically thin and
covered by a 1.25-nm SbC>2 oxide layer [45], this sample is considered
a four-medium system: air, oxide, a-GeSb thin film, and fused silica
substrate.

Figure 8(b) shows the response of the dielectric function 200 fs after
arrival of a pump pulse of fluence F = 320 J/m2, which is 60% above the
threshold for permanent crystallization (Fcv). At this excitation fluence,
the dielectric function remains unchanged from 200 fs to 475 ps. The
same dielectric function is observed on subpicosecond time scales for all
fluences above Fcr, indicating the existence of a nonthermal phase after
femtosecond-pulse excitation. The existence of a new phase at ultrashort
time delays for all fluences above Fcr was correctly identified by the au-
thors of Ref. [43], however, the material is not crystalline, as evidenced
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Figure 8. (a),(b) Dielectric function data for a-GeSb thin films — • = Re[e(w)],
o = Im[e(w)]: (a) e(w) under no excitation (—1 ps time delay), and (b) e(w) 200 fs
after excitation of 320 J/m2. In both plots, the solid and dashed curves show the real
and imaginary parts of e(w) for the amorphous phase from previous measurements,
[46] and the dotted and dash-dotted curves show the real and imaginary parts of e(u>)
of the crystalline phase, (c) Normal-incidence reflectivity calculated from the time-
resolved e(w) data. The reflectivity of the amorphous, crystalline, and liquid phases
are shown for reference.

by the discrepancy between the measured dielectric function and that of
the crystalline phase (see Figure 8(b)). This discrepancy is brought out
by Figure 8(c), which shows the normal-incidence reflectivity as calcu-
lated from our time-resolved dielectric function measurements. Only at
the 2.01-eV photon energy of the experiments in Ref. [43] does the reflec-
tivity at 200 fs after excitation above Fcr match that of the crystalline
phase. Furthermore, even at 2.01 eV, we find that for angles of incidence
near or above the pseudo-Brewster, the reflectivity does not go to the
crystalline level for pump fluences above Fcr. Our measurements thus
show that broadband measurements of e(a>) enable one to distinguish
phases that may appear the same based on reflectivity or transmission
for a single photon energy at a single angle of incidence.
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4.3 Investigation of a displaced lattice:
Coherent phonons in Te

Ultrashort-pulse excitation of Te instantaneously weakens lattice bond-
ing, establishing new equilibrium lattice positions around which the lat-
tice ions vibrate [47, 48, 49]. Because the phase of the generated lattice
oscillations is the same in the entire pumped volume, probe pulses of
shorter duration than the phonon period can be used to observe changes
in the optical properties of Te (typically, AR/R ~ 10%) at different
degrees of lattice distortion [47, 50]. Experimental work by Bardeen
[51] and others [52] found a pressure-induced semiconductor-to-metal
transition in Te. These results coupled with investigations of coherent
phonons in other materials [53] suggest that modification or even control
of the phase (semiconducting vs. semimetallic) of Te is possible at a rate
equal to the phonon frequency (« 3 THz) for pump fluences below the
threshold for permanent damage.

Because Te is uniaxial, two independent elements of the dielectric
tensor must be measured to fully characterize the ultrafast material re-
sponse, as described in Ref. [36]. Figure 9 shows the excellent agreement
between measured and literature values [5] of both the ordinary and ex-
traordinary dielectric functions. This agreement not only validates the
technique for uniaxial materials, it also shows that no cumulative irra-
diation effects arise from operating in a configuration where the sample
is not translated between laser pulses.

The dynamics of eorcj(u;) are shown in Figure 10. Within the error of
the measurement, dielectric function values remain constant at all times
before the pump arrives. After excitation, the oscillatory behavior of the

Figure 9. Dielectric tensor data for Te — • = Re[e], o = Im[e]. At —500 fs time
delay, both the (a) ordinary and (b) extraordinary dielectric function agree with
literature values for the dielectric tensor, represented by the solid and dashed curves.
[5]
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Figure 10. Dynamics of the ordinary dielectric function of Te for excitation with
a fiuence of 120 J/m2. Both (a) the real part and (b) the imaginary part show
oscillatory behavior due the excitation of coherent phonons.

optical properties indicate the presense of coherent phonons. A decaying
offset from the initial values, separate from the oscillation, represents
the relaxation of the equilibrium lattice spacing as electrons diffuse from
the probed region. In contrast to reflectivity-only studies of coherent
phonons in materials, the dielectric function data clearly indicate a shift
of absorption resonances to lower photon energies. The broad resonance
near 2 eV has moved to lower energies, as indicated by the shift in
the peak of Im[eord(w)] and the zero of Re[eord(w)]- The magnitude and
direction of the shift suggest that the lattice may be sufficiently displaced
at the peak of the phonon oscillation to cross the conduction and valence
bands, but that the short duration of the crossing could prohibit any
metallic character from emerging [54]. In addition, we observe larger
changes in eorci(w) than in eext(w)> which may be attributed to the fact
that the motion of the coherent phonons is confined to the ab plane.

5. Summary
The availability of electronic transitions, the existence of vibrational

modes, and the dynamics of nuclei all influence the optical properties of
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solids. The time-resolved dielectric function measured with a reflectom-
etry technique provides the most information of any linear optical probe,
revealing changes in the lattice bonding, carrier distribution, and phase
of a material. We avoid the necessity of assuming a particular model of
the material dynamics as well as the potential pitfalls of other methods
that measure changes in reflectivity at a single photon energy.

Notes
1. Although it seems obvious that transmission and absorption are determined by the

"bulk" properties of a solid, this is also true of reflection. While surface quality affects the
amount of scattered light, bulk properties determine the amount reflected. This is emphasized
in Eq. (8), where a driving term for the generated D field is the material polarization created
by the applied E field.

2. It is apparent from the form of Eq. (10) that electron-electron, electron-phonon,
electron-hole, and other multibody interactions are not considered here.

3. The Hamiltonian of Eq. (10), while ignoring important contributions from multibody
interactions, captures many of the essential characteristics of semiconductor band structures.

4. Although the coupling term of the Hamiltonian in Eq. (10) is proportional to the field
A, the material properties experienced by the applied field depend on its direction rather than
its magnitude. Any field-strength dependence of the susceptibility results in a fundamentally
nonlinear system.

5. The dependence of the dielectric function on the JDOS (Eq. (12)) illustrates how the
essential distinction among band structures — their k-dependence — is lost in the summation.

6. We take the ions to be fixed in this derivation.

7. For completeness, the parameters of the fit to Te are w\ = 2.37 eV, V\ = 1.28 eV,
/ i = 105 eV2, w2 = 9.39 eV, V2 = 4.43 eV, f2 = 170 eV2, and an additive constant to
the real part of 3.66. The parameters of the fit to GaAs are wi = 3.18 eV, Fi = 0.75 eV,
/ i = 38.7 eV2, u>2 = 4.67 eV, F2 = 1.14 eV, f2 = 125 eV2, and an additive constant to the
real part of 1.85. The real additive constant arises from Kramers—Kronig-type contributions
from resonances outside the spectral range of the fit, as discussed in Section 1.3.

8. The real part varies significantly within a linewidth F of the resonance frequency LOO-

9. It is rarely the case that a pump pulse is intense enough to provide one photon for
every valence electron in the pumped volume of the solid.

10. This is also representative of the Born-Oppenheimer approximation, where the elec-
tronic quantum numbers are the so-called "fast variables" and the nuclear positions are the
"slow variables."

11. For an anharmonic excited state potential, the ability to control the end products is
reduced, essentially because the projection of a spread nuclear wave function onto the ground
state potential can "split" the wave function between the two end products.

12. At densities of 1018 cm"3, carrier thermalization occurs within hundreds of femtosec-
onds [55]. Extrapolation of the results of Becker et al. [55] to 1021 cm"3 gives a thermalization
time on the order of 10 fs.

13. Immediately after photoexcitation, the excited electrons are distributed in the conduc-
tion band according to the pump spectrum.

14. In practice, the excitation of 15% of valence electrons to the conduction band is rarely
achieved in pump-probe experiments. Excitation of a few percent of valence electrons is both
more common and often sufficient to initiate phase transitions.

15. The "fundamental" frequency refers to the center or carrier frequency of the applied
E field.

16. Here and for the remainder of the discussion we ignore the polarization of the applied
E field.
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17. Many details of phase-matching are omitted here because they are beyond the scope
of this article. See Refs. [24] and [56].

18. The ease of such a measurement makes it attractive, but it does not fully characterize
the temporal profile of the laser pulse [57].

19. For self-focussing, and any other self-action effects, wi = ui2-

20. Literature values of e(u>) for c-Geo.o6Sbo.94 are not available. The data presented
are measurements taken in our apparatus of a region of the sample that was permanently
crystallized by laser irradiation.
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1. Introduction

The majority of experiments in optics can be understood on the basis of
Classical Electrodynamics. Maxwell's theory is perfectly adequate for un-
derstanding diffraction, interference, image formation, and even nonlinear
phenomena such as frequency doubling or mixing. However, many fasci-
nating quantum effects like correlations between photons are not captured,
e.g., the photons in a single mode laser well above the threshold photons are
completely uncorrelated, whereas photons in thermal light have a tendency
to "arrive" in pairs.

This contribution addresses the following questions:
— What is a photon?
— Description and examples of relevant photon states.
— Discussion of basic optical devices and measurements.

2. Nature of light

2.1. HISTORICAL MILESTONES

Isaac Newton (1643 - 1727): Founder of the corpuscular theory.
Christian Huyghens (1629 - 1695): Founder of the wave theory of light.

Thomas Young (1773 - 1829): Independent pioneering work about
Augustin Fresnel (1788 - 1827): waves fe interference.

James C. Maxwell (1831 - 1879): Theory of the Electromagnetic Field.
Heinrich Hertz 1888: Discovery of electromagnetic waves.

* http://www-tkm.uni-karlsruhe.de (e.g, for previous Erice contributions).
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Figure 1. A perfect Planckian: The T = 2.7K cosmic background radiation. Prom[14].

Maxwell's theory of the Electromagnetic Field (EMF) did not only give
a beautiful unification of electric and magnetic phenomena but it also pre-
dicted the existence of electromagnetic waves as undulations of electric and
magnetic fields propagating through space. Wave theory had won a glorious
victory! But then the incomprehensible happened:

Max Planck 1900:
Phillip Lenard 1902:
Albert Einstein 1905:
G. I. Taylor 1909:
A. H. Compton 1923:
E.O.Lawrence, J.W.Beams 1927:
P. A. M. Dirac 1927

Quantization of mode-oscillators.
Difficulties with photoelectric effect.
Postulate of light quanta of energy fko.
Interference with "single photons".
Photons have E{p) = c|p|.
No photoelectron delay time.
Quantum Theory of the EMF.

The era of quantum physics started with Planck's[l] derivation of the
black body spectrum in terms of quantized mode oscillators which is de-
picted in Fig. 1. The spectral energy density (energy per volume, energy
hu, polarization degree, and solid angle dQ.) reads

e(hu,T)d(hu) dfl = (M2 Hu>
d(fiw) (1)

Lenard's[2] observations on the photoelectric effect were incompatible
with the predictions of the Maxwell-Theory where energy is distributed
continuously in space. The photocurrent was found to be proportional to
the intenstity I of the light, however the energy of individual electrons did
not depend on / , yet it increased with light frequency. Nevertheless, Lenard
thought that the light does not supply the energy which is necessary to
release an electron but merely triggers the photoelectric emission.
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Figure 2. (1) Triggered photon cascade experiment to produce single photon states. (2)
Mach-Zehnder Interferometer. (3) Number counts in the outputs of the photodetector
MZ1 and MZ2 as a function of the path difference between the arms of the interferometer.
(One channel corresponds to a variation of S = A/50). According to Grangier et al.[ll].

In 1905 Einstein published three seminal contributions: About Brow-
nian motion, special relativity, and the photoelectric effect. For the latter
contribution entitled Uber einen die Erzeugung und Verwandlung des Lichts
betreffenden heuristischen Gesichtspunkt[3] he was awarded the Nobel prize
in 1921. Guided by an ingenious thermodynamic approach of the black
body radiation he got the inspiration that the energy transported by light
is distributed in a granular rather than in a continuous fashion in space
("darts of energy"[4]). The most direct evidence of the particle nature of
light quanta is provided by the Compton-effect[5].

The existence of light quanta is in apparent contradiction with typical
wave properties like interference fringes. It was expected that such fringes
fade out if the intensity of the incident light becomes smaller and smaller
so that the probability of having more than a single photon in the spec-
trometer becomes negligible. Interference experiments at very low intensity
were carried out in 1909 by Taylor[6] and later, by Dempster and Batho[7],
and by Janossy et al.[9]. With great disappointment all these investigators
reported a null result. This discovery lead Dirac to the famous statement
"a photon interferes (only) with itself. Since 1985, coherence experiments
with genuine single photon states of light are possible, see Fig. 2.

With a simple but ingenious method Lawrence and Beams[8] studied in
1927 the time variation of the photoelectric emission from a metal surface
illuminated by light flashes of 10~8s duration. It was found that photolectric
emission starts in less than 3 x 10~9s after the beginning of the illumination
of a potassium surface. From another experiment which was designed to
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Figure 3. Photoelectric detection. The "comb" refers to a the response of a photode-
tector with hight time resolution rather than to the incoming photons. According to
Bachor[38].

investigate beats between two incoherent(l) light sources by photoelectric
mixing Forrester et al.[10] deduced that tdei < 10~10s.

Further milestones are:

R. Hanbury Brown 1954 Discovery of photon bunching.
Kimble, Dagenais, Mandel 1977 Generation of nonclassical light.
R. E. Slusher, B. Yurke 1985 Generation of squeezed states

2.2. WHAT IS A PHOTON?

The photon hypothesis relies on four basic facts:

— Point-like localization of energy.
— Transport of energy and momentum through space with E(p) = c|p|.
— Absence of a delay time for the emission of photoelectrons.
— A photon interferes with itself.

Evidences for the particle nature of the excitations of the EMF are the
photoelectric effect [2] and the Compton effect [5], respectively. The non-
existence of a delay time[8, 10] is less frequently mentioned although it is
equally important as the other properties.

Today our interpretation of photons differs substantially from the orig-
inal idea of small energy "bullets" or "darts" [4]

— Photons are just the energy eigenstates of the EMF.
— The localization arises as the outcome of a measurement which causes

the state of the EMF to "collapse" into an eigenstate of the device as
a result of a position measurement, e.g., the absorption of a photon by
an atom or in a pixel of a C CD-camera.

Although photons (in free space) have a definite energy-momentum re-
lation, photons are not "objects" in the sense of individual, localizable
classical particles. By contrast, they are indistinguishable, nonlocalizable
and obey Bose statistics. A figure like Fig. 3 is dangerous as it pretends
that photons in a light beam have well defined positions. The notion of
classical and quantum particles is intrinsically very different. In particular
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the collapse of the quantum state is foreign to all classical (wave-) theories,
in particular, a localization smaller than the wavelength is not possible.
The nonexistence of a waiting time for the photoelectrons is simply the
consequence of statistics, some come promptly, others come later. This will
be discussed in Section 5.3.

It was left to Dirac[12] to combine the wave- and particle like aspects
of light so that this description is capable of explaining all interference and
particle phenomena of the EMF. We shall follow his traces in Section 4.

For an excellent survey on photons see Paul's book[32]. Alternative
theories are, e.g., discussed in the Rochester Proceedings from 1972[47].

3. Classical Description of the EMF: Waves

3.1. MAXWELL-EQUATIONS

For our purposes a detailed knowledge how to calculate field configurations
for specific systems in not required. However, we have to know the relevant
dynamical variables of the EMF.

The state of the EMF is described by two (mathematical) vector fields
£, B which are coupled to the charge and current density of matter p, j by
the Maxwell-Equations 1

^ - c2curl B = - - j ( r , t ) , div S = -p ( r , t ) , (2)

^ + curl S = 0, div B = 0. (3)
at

Analogous to the interpretation of Classical Mechanics one may view the
two differential equations (lhs) with respect to time as equations of motion
of the Maxwell field, whereas the rhs-set represents "constraints". Hence,
from the 6 components of E, B at most 6-2=4 components are independent
dynamical variables at each space point. Therefore, potentials $,.4. are
more appropriate than S, B

S = -A( r , i ) -g rad$( r , i ) , (4)

B = cui\A(r,t). (5)

In contrast to S, B the potentials A, $ are not uniquely determined, rather
A -» Af = A + grad A(r, t), $ -* $' = $ - A(r, t) lead to the same S, B-
fields and, hence, contain the "same physics". A(r,£) is an arbitrary gauge
function. This property is called gauge invariance or gauge symmetry and
it is considered as a fundamental principle of nature.

Vectors are set in boldface, electromagnetic fields in caligraphic style.
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In Quantum Optics (and in solid state physics as well), the Coulomb
gauge, div A = 0, is particularity convenient, as the equations for $ and A
decouple

<) = - - p ( r , « ) , (6)

A,4(r,t) - J r ^ M ) = -^oj t r( r ,t), (7)

where

j t r(r , i) = j(r,t) - e o g r a d ^ | ^ (8)

denotes the socalled transverse component of the current, divjtr = 0. Some
advantages of the Coulomb gauge are:

— $ is not a dynamical system, i.e. there is no differential equation with
respect to time, hence, $(r, t) follows p(r,t) without retardation!

— As divjtr = 0 only 2 of the 3 components of A are independent
variables of the EMF.

3.2. MODES AND DYNAMICAL VARIABLES

In order to extract the dynamical variables of the EMF from Eq. (7) we
decompose the vector potential in terms of modes u^ (r)

A(v,t) = J2Mt)Mr), (9)
t

Aut(v) + (^)2u*(r)=0, divu£(r) = 0, (10)

(11)

In addition, there will be boundary conditions for E, B which fix the eigen-
frequencies u>(, of the modes labelled by t. (To lighten the notation we omit
the index "tr" from now on). The set of Ae(t) represents the generalized
coordinates or dynamical variables of the EMF which obeys the equation
of motion

-jt(t). (12)

je(t) is defined in the same way as in Eq. (9) and it can be obtained by
using the orthogonality relations Eq. (11). Note, each mode is equivalent to
a driven harmonic oscillator. A state of the EMF is, thus, specified by the
set of mode amplitudes Ai(to) and their velocities ^( io) at a given instant
of time to-
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«4(r, t) is a real field so that u^(r) as well as A^(t) ought to be real.
Nevertheless, the choice of complex modes may be convenient. In particular,
in free space we will use "running plane waves".

^ k , f f e l k r , (13)

(14)

6k,<r denotes the polarization vector which, by div u = ?k • ek;C7 = 0, is
orthogonal to the wave vector k. (Here the notation "transversal" becomes
manifest). The two independent polarization vectors will be labelled by a =
1,2. V denotes the normalization volume and, as usual, periodic boundary
conditions implied. As a result, we obtain

A(r,t) = $>k,CT(i) eki<r e
lkr = £ ' (AKa(t) ekjtr elkr + cc) . (15)

k,<r k,a

As A.(r,t) is a real field we must have A~kt(T = .Aki<r, i-e. the amplitudes
for k and —k are not independent, only those amplitudes with kz > 0 are
independent dynamical variables. (This is the meaning of the prime in £)'•
kz = 0 requires additional investigation). Fortunately, this problem can be
circumvented by a redefinition of the A^a and as a result we have[39, 48]

k,<7

£(r,t) = -

,V

B(T, t) = curl.4.(r,£)

V^ / ft ( n. \ u\ l k r ^ \
— X . / I it lc V tfi I / l i I T 1 p -4- /*/* I
•• • F \ \ I ^ \ *^" *** ^ K (T } ^* IC fT V *̂  / ^ | v^v* I •

r ^ V 2enwk V ^ ' ' '
In order to make the ok)(T dimensionless and in anticipation of the quantum
treatment h has been "smuggelt in". In contrast to Eq. (12) ok)a(t) obeys
the first order differential equation

which has been already used performing the time-derivative of .A(r, t) in
Eq. (17). (The contribution from j<r drops out in the final result).
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Prom the fields we obtain the energy (Hamiltonian) of the radiation
field (including the interaction with the current) and the momentum

(j* (t) oki<7 + cc) , (20)

^ a - (21)

(In contrast to most treatments of the subject no efforts have been made
to preserve the "natural sequence" of the amplitudes ak,<T,ak(r Potential
energy /momentum contributions from the scalar potential to Eqs. (20-21)
have been omitted, see Kroll's article[48].)

The complex amplitudes a^t(7 represent the dynamical variables of the
EMF. Its real and imaginary parts are called quadrature amplitudes

«k* = *£! + • * & (22)
which (apart from numerical factors) are the analogues of position and
momentum of a mechanical oscillator.

Example:
In free space (without current source) the complex amplitudes of a single
mode with the initial condition a(t = 0) = ao reads

a(t) = ao
Xi{t) = +9
X2{t) = -9

too cos(wt) + Qf̂

too sin(wi) + 9(
ao sin(a;t),

2o cos(wt).

(23)
(24)

(25)

Together with Eqs. (17,18) and k = (A, 0,0), ek,<r = (0,1,0) this field
describes a linearly polarized plane wave propagating along the x-direction.

3.3. SPECIAL STATES OF THE EMF

There are two classes of states of the classical EMF:

— Deterministic states: au,a(t) are specified for all modes at time to-
— Random (stochastic) states with a probability distribution P({a^a}, t).

In radio physics these states are termed signals and noise. Prior to the
advent of the laser, the only possibility to produce radiation which is corre-
lated over some space-time domain was to filter black body radiation with
respect to frequency and spatial directions.
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Im a

a(t) = * * , (26)

o(*)). (27)

- |ao|2)- (28)

P ( a ) =

lav = < \a\2 > .

(29)

(30)

P{a) a (31)

(32)

a)

Figure 4- Model probability distributions for the complex field amplitude o of a
single mode. Ideal Laser (a), amplidute stabilized laser with phase fluctuations (b),
Gaussian (=thermal) noise (c). (d) Laser model which includes both amplitude and
phase fluctuations according to a "phase transition" far from equilibrium. F(a,r) is a
"Ginzburg-Landau free energy" and r is the pump parameter[33].



64

4. Quantum Theory of Light: Photons

4.1. CANONICAL QUANTIZATION

There are two ways to construct a quantum version of classical theory (if at
all possible !). The first one is based on the Lagrangian formulation of the
classical theory and it uses the Feyman path integral. We shall follow, how-
ever, the second, conventional "trail" called canonical quantization which is
based on a Hamiltonian form, state vectors, and the Schrodinger equation.
Here we have to perform the following steps:

— Classical theory in Hamiltonian form, i.e. identify (real) canonical vari-
ables pj,qk with Poisson-brackets {pj,qk} — Sj,k- (All other brackets
being zero, regardless of components j , k). Rewrite all physicall quan-
tities (=observables) in terms of canonical variables.
To bring a classical theory in Hamiltonian form (if possible) one has to
begin with a Lagrangian formulation. Canonical momenta are identical
with "generalized momenta" defined as derivative of the Lagrangian
with respect to the generalized coordinates.

— States (more precise pure states) are described by (normalized) state
vectors \ip) which are elements of a Hilbert space % with a scalar
product.

Milk) = <«i)*- (33)

— "Quantization" is obtained by the translation rule

{A, B}^%- [A, B] , [A, B]=AB- M. (34)

In particular we have for canonical variables

\Pj,Qk] = -th6jtk. (35)

Commutators between the p's or between the g's themselves vanish.
— The translation rule for the operators which correspond to classical

observables G(p, q, t) are

G = Gd(p = p,q = q,t). (36)

(However, there may be ambiguities with noncommutating operators.
G has to be hermitian.)

— Values of observables are defined as expectation values of the corre-
sponding operators:

(G) = <V|GW = <V#'>, (37)

where |V>') = G\i/>).
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Dynamics: Initially, the system is supposed to be in state |î o) =

|^(to))- Then, sequence of states \i>{t)) which the system runs through
as a function of time is governed by the Schrodinger equation

(38)

where H denotes the Hamiltonian (=energy) of the system. Note,
Eq. (38) holds not only for non-relativistic particles but also for pho-
tons!
States vectors \tp) describe pure states with zero entropy. They are the
analoga of the ideal mechanical states with fixed q, p or the ideal states
of the classical EMF with fixed Ok)Cr ("signals").
The counterparts of the classical statistical states, e.g., thermal radia-
tion Eq (29), are called mixed states. They have nonzero entropy and
are described by a density operator p

{G) = trace (pG). (39)

4.2. QUANTUM OPTICS

The quantum version of the EMF together with a (nonrelativistic) theory
of matter is called Quantum Optics. To follow the scheme outlined in the
previous section we have to bring the Maxwell-Theory into a Hamiltonian
form. This is, however, almost trivial because the EMF is dynamically
equivalent to a system of uncoupled harmonic oscillators with generalized
"coordinates" At, see Eq. (12). We guess the Lagrangian

(40)

The canonical variables are Qt = At, Pi = At and the Hamiltonian is
obtained from H = PQ — L.

For complex modes, as used in Eqs. (16-18), each amplitude contains
two real variables X\,X2 which (apart from numerical factors) correspond
to canonical momentum and position, (p = y/2mtkoX2,x = \j2K/mu}X\,
{p, x} = 1). The complex amplitudes obey the Poisson bracket relations

n

(42)
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Quantization is obtained by replacing the classical amplitudes Ok,<r, o^ a

by "ladder operators" dk,CT, dk a with commutation relations

[ak,<7,ak',<r'] = <5k)k' 8^. (43)

Field operators, Hamiltonian, and the momentum operator are (in the
Schrodinger picture)

c c ) ' ( 4 5 )

k,<T

P =
k,<T

The (infinite) zero point energy which arises from the noncommutativity of
the ak,<n djc a operators has been omitted in the Hamiltonian as this has no
influence on the dynamics of the EMF. The zero point fluctuations of the
EMF, however, are still present in the fields, as we shall see later.

As it is well known, the stationary states of a (free) harmonic oscillator,
\n), n = 0,1,2..., are the eigenstates of the number operator N = d^d.
In addition, they are are nondegenerate, orthogonal, and normalizable,
(m|n) = <5m,n- The action of the d, d^-operators on these states is

dfd|n) = n|n), (49)
a\n) = y/n\n - 1), (50)

at\n) = Vn + l\n + l). (51)

These operators are also called "ladder operators" because repeated op-
eration on a particular energy eigenstate creates the "ladder" of all other
states, with d̂  we climb up, whereas with d we climb down the ladder.

The states of the infinite set of mode oscillators of the EMF is, thus,
labelled by the (infinite set of) quantum numbers {n^} which individu-
ally can take on different nonnegative integers. These states describe the
stationary states of the free EMF |{nk,<r}) a nd their time dependence is,
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Figure 5. Equivalence of a system of N (noninteracting) bosons with single-particle
energies e* and occupation numbers m and an infinite (uncoupled) set of harmonic oscil-
lators with frequencies u>( = ei/h. Note that the zero-point energies of the oscillators are
omitted. Dots symbolize particles, crosses excited states, respectively. N = 6. According
to Ref.[49]

as usual, obtained by an exponential factor exp(—mut) for each mode.
All other states can be represented as a superposition of these number
states, which, therefore, represent a natural basis for the description of the
quantum states of the EMF.

For a wide-range introduction see Scully and Zubairy's book on Quan-
tum Optics[35].

4.3. OSCILLATORS AND PHOTONS

Dirac[12] has made the important observation that

. . . a system of noninteracting bosons with single particle energies eg
is dynamically equivalent to a system of uncoupled oscillators and vice
versa. The two systems are just the same looked at from two different
points of view.

Here, dynamic equivalence implies that all states of an JV-boson system
which are conventionally described by a symmetric wave function are equally
well described in the "oscillator picture", where each single particle state
with energy Q correponds to an oscillator with frequency UJI = tifh. Re-
markably, the commutation relations [o<,aj/] = S^c between the ladder
operators are fully equivalent to the permutation symmetry of the boson
wavefunction, and, fortunately, a great deal of notational redundancy in the
description of a many-body system is removed. In addition, all operators in
the particle picture (lhs of Fig. 5) can be translated into operators acting on
the oscillator states. These operators are conveniently expressed in terms



of ladder operators and contain products with an equal number of a^a and
i

°k' a' operators.
The union of all sets of N = 1,2... particle subspaces plus the N = 0

"no particle" vacuum state is called Fock space. The number states \{ni})
are the eigenstates of the particle number operator

\ae. (52)

Now, the particle number itself becomes a dynamical variable and we can
even describe states which are not particle number eigenstates of the sys-
tem. a\, ai are called particle creation and destruction operators because
they change the number of particles by one. The Fock representation is
also called occupation number representation or "second quantization". It
is much more flexible than the original formulation with a fixed particle
number.

The bosons corresponding to the quantized oscillators with £ = (k, a)
are called photons. Photons behave very different from massive particles
like electrons. They can be created and annihilated arbitrarily and they
are not localizable. This will become obvious by the discussion of various
examples in the next sections.

Example:
The momentum operator (in one dimension) is translated according to

N

5>j->EW>4a«- (53)

i labels any set of single particle states. Evaluate the expectation value of a
single particle operator for both the wave-function and occupation number
representation for N = 3 particles! (The full advantage of the occupation
number representation will really show up if interaction of particles are
included.)

4.4. SPECIAL PHOTON STATES

In the following we shall discuss some selected states of the EMF with
respect to the expectation values of the fields, energy, and momentum.
The physically relevant states cannot be eigenstates of the electrical field
operator 5 as these have infinite energy. (S corresponds to the position (or
momentum) of a mechanical oscillator).

The "quantum unit" of the electrical field is So — y/hu/2eoV. For green
light, A = 500nm, and a quantization volume of V — lcm3, £Q fa 0.075V/m,
whereas, in a microresonator of linear dimension 1/im, SQ ~ 7.5 x 104V/m!



4.4.1. n-photons in a single mode
We consider n photons in a single mode with k = (A:, 0,0) and linear
polarization along y-direction e^c = (0,1,0). \n) is, of course, an eigenstate
of the photon number operator Eq. (52). (Mode indices k, a are omitted,
for brevity).

Without a driving current source this state is an eigenstate of the
Hamiltonian with energy Hum and it evolves in time according to

\n,t) = \n)e-tunt. (54)

In addition, this state is also a momentum eigenstate with eigenvalue nftk,
Eq. (48). However, \n) is not an eigenstate of the electrical field operator,
Eq. (45), because 0,^,0,^ changes the number of photons by ±1. The
expectation value of the electrical field operator reads

(n,t\£{r)\n,t) = 0, (55)

(n,t\£2{r)\n,t) = 50
2(2n + l). (56)

Certainly, such a state does not correspond to a classical sinusoidal wave,
instead it is pure "quantum noise". Note, even in the vacuum state, |0),
zero point fluctuations are present.

4.4.2. Single photon wave packet
We consider a superposition of single photon states refering to different
modes (but with the same polarization).

>= £ ^(k) e-**' |lk)Cr), (57)

where ^a(k) is an arbitrary normalizable function which, with some care,
may be interpreted as a wave function of a photon (-wave packet) in
momentum space. However, there is no reasonable photon position rep-
resentation^]. The question of localization of photons is discussed,e.g., by
Clauser[50].

A special case is the superposition of just two modes. Such a "two
colour state" can be created by a simultaneous excitation of two almost
degenerate (atomic) states by a short laser pulse. If the bandwidth of the
laser pulse embraces both components a coherent superposition of the two
atomic states is created, which decays spontaneously in a single photon
"wave packet" state. Experimentally, this phenomenon shows up in the
form of "quantum beats", see Fig. 6.
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Figure 6. Quantum beats between a coherently prepared population of excitons and
biexcitons in AlGaAs quantum well. According to Pandtke et al.[43].

4.4.3. Coherent states (ideal single mode laser)
We are searching for a state, in which the fields vary sinusoidally in space
and time with f-uncertaincy as small as possible, i.e., have time indepen-
dent uncertaincies in the quadrature amplitudes with AX\ — AJC2 = 1/2
and AX1AX2 = 1/4- These states were already known by Schrodinger[13]
and they correspond to a displaced Gaussian ground state wavefunction
whose time evolution is depicted in Fig 7. In dimensionless quantities, we
have

Lexp L ( 5 8 )

xc(t) and pc(t) are the solutions of the classical equations of motion of the
oscillator and <p(t) is a time dependent phase.

In number representation, these states are given by (without the <p{t)-
term)

\a) — e~
OO

a" \n), a — xc ipc. (59)

Nowadays, these states are called coherent states, Glauber states, or just
a-states. Glauber[15] was the first who recognized their fundamental role
for the description of laser radiation and coherence phenomena.

The a- states have a number of interesting properties:

— I a) is an eigenstate of the destruction operator

a\a) = a\a),

where a is an arbitrary complex number.

(60)
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Figure 7. Time development of the coherent state wave function.

— a-states can be generated by the unitary "displacement" operator D

\a) = D(a)\0), (61)
D(a) = e°at-a'a=:e-i|a2|eaate-aa) (62)

D^aD = a + a. (63)

— The time dependence (even with a classical external current source) is
obtained just by replacing a -> a(t), where

I «, +\ _ f,vp(t) I nffW (({A)

Real and imaginary parts of a{t) = xc(t) + ipc(t) correspond to the
position and momentum of a classical oscillator. For a free oscillator
a(t) = ae~Vjjt. (Phase <p(t) has no influence on the "physics").

— Although the a-eigenvalues form a continuous spectrum, the \a) states
are normalizable but they are not orthogonal. Moreover, the set of \ct)
states is complete (overcomplete) and forms a convenient basis for an
"almost classical description" of laser physics.

For further properties see e.g., Scully and Zubairy[35] or Louissell[36].
Expectation values and uncertaincies of the electrical field and pho-

ton number and the probability to measure n photons are (omitting the
polarization index)

S(T,t)

(ASf
(N)

Pn =

(a(t)\£(T)\a(t)) = -2S0\a\ sin(kr
F2

I a | 2 = n, (AN)2 = (N),

|(n|a)|2=e-"^.

+ (65)

(66)

(67)

(68)
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a = \a\exp(i(j)). Note, the relative amount of fluctuations in the electrical
field decreases with increasing amplitude, see Fig. 9. pn denotes a Pois-
sonian distribution with mean photon number n = |a|2 and uncertainty
(An)2 = n. Thus, in a coherent state photons behave like they were uncor-
related classical objects! In contrast to naive expectations, the photons in
a (single mode) laser (and well above the threshold) "arrive" in a random
fashion, in particular they do not "ride" on the electrical field maxima.

How to generate a-states? As a-states are eigenstates of the (nonher-
mitian) destruction operator a, there is no corresponding observable and
"measuring apparatus"! However, a-states can be simply generated from
a classical current source

H = hwtfa - [f(t)tf + f*{t)a] , (69)

where f(t) oc j(t). Nevertheless, it was a great surprise that the light-
matter interaction in a laser (well above the threshold) could be modelled
in such a simple way.

The amplitude of the electrical field of a laser may be well stabilized
by saturation effects, but there is no possibility to control the phase, i.e., a
more realistic laser state would be described by the density operator

(70)

This state is made up of an (incoherent) superposition of n-photon states
with a Poissonian distribution. A model of laser light with a finite linewidth
which is caused by phase diffusion has been given by Jacobs[16].

Problem:
PI: Verify that Eqs. (58,64) are solutions of the time-dependent Schrodinger

equation of the (driven) harmonic oscillator.

4.4.4. Squeezed states
Squeezed states correspond to wave functions which have an uncertainty
in one of the quadrature amplitudes smaller than for the groundstate. A
harmonic oscillator has the pecularity that any wave function will repro-
duce itself after the classical oscillation time T = 2TT/U;, moreover, there
is an exact mirror image at t — T/2, see Fig. 8. In particular, we will
study Gaussian wave packets which initially are minimum uncertainty wave
packets with AXiAX2 = 1/4, but A.Xi < 1/2, AX2 > 1/2 (or vice versa).

(71)
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Figure 8. Time development of a squeezed state wave function.

u(t), v(t), and w(t) can be complex. These parameters follow from an
insertion in the time dependent Schrodinger equation. We leave that as
an exercise.

Squeezed states are characterized by two complex variables, usually
termed a and £ and they can be constructed by first operating with the
unitary squeezing operator S(£) on the vacuum and then by shifting with
D(a).

\a,t) = D(a)S(O\0), (72)

^ i >, (73)

a — e sinn(rja', (74)

where £ = r exp(i$). (Some authors prefer a reversed sequence of D(a) and
5(£)). Squeezed states are also the eigenstates of a transformed destruction
operator S[18]

b = fia + va\ /j, = cosh(r), v — e~2^ sinh(r,) (75)

(76)

a e smn(rj, [ ' ' )

(N) = |a|2 + sinh2(r), (78)

(AN)2 = | acosh(r) - a*el9smh(r) |2 +-sinh2(2r). (79)

For moderate squeezing the photon distribution function is similar to a
Poissonian, but with a narrower width, see e.g., Bachor[38] (p. 234).

Squeezed states can be generated by various nonlinear processes, e.g.
degenerate parametric amplification of an initial coherent (=laser) state.

= hutf& - k a2 + he (80)
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Figure 9. Contours and time dependence of the electrical field for (a coherent state),
squeezed state with reduced quantum noise in Xi, and (c) a sqeezed state with reduced
noise in Xi. According to Caves[19].

In this model, the pump at OJP = 2u> is treated as a classical source; the
coupling constant k is proportional to the second order susceptibility X2 of
the nonlinear crystal. An initial a-state evolves with a(t) = aexp(—tut)
and £(t) — gexp[—i(u>t + <f>p — TT/2)]. Note, squeezing is sensitive on the
phase of the pump.

A nice review of squeezed states with applications has been given by
Walls[21], for details see the articles by Stoler[17], Yuen[18], and Caves[19].
Communication by squeezed light has been discussed by Giacobino et al.[22j.

Problems:
P2: Calculate the functions w(t),v(t),u(t) in Eq. (71).
P3: Show that b, ¥ are Bose operators, i.e., [S, &t] = 1.
P4: Which property must the energy spectrum of a system have that its

state reproduces after a finite time? (See also Chergui's contribution
in this book and Ref.[44]).

P5: Are there photons in a static magnetic field? (Groundstate of Eq. (47)).
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Figure 10. Photon count distribution for a single mode laser (L), thermal light (G),
and a superposition of both (S). According to Arecchi[51].

4.4.5. Thermal (chaotic) photon states
A single mode of thermal (black body) radiation is described by a statistical
operator

n=0

(n -

(N) = ti(pN) =

(AN)2 = n(n + l).

n){n |,

1 +n V nj

(81)

(82)

(83)

(84)

/? = 1/(A;BT), Z = 1/(1 — exp(—/3hui)) is the partition function, bn the
Bose-Einstein photon distribution (geometric sequence), and n is the mean
photon number in the mode. In contrast to a coherent state AN/n —> 1 for
n —»• oo, see Fig. 10.

5. Optical devices and measurements

5.1. PHOTODETECTORS

In a classical description the electrical current of a photoelectric device like
a photocell, a photomultiplier, or a photodiode is proportional to the light
intensity (energy density) averaged over a cycle of oscillation

JPD = CI(t), (85)

I(t) = <£(t)2>cyd=£(-Ht)£{+)(t). (86)

(A factor 1/2 has been included in the definition of < . . . >cyci)- S^ de-
note the positive(negative) frequency parts of the electric field (polarization
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properties and space variables omitted for simplicity)

£(t) = l°° (£«(u;)e-twt + £(-)(w)e+«wt) ^ . (87)

For a free field €^ are identical with the first(second) terms of Eq. (17).
(Note also the sign convention.) For a stochastic field, the product £(-)£(+)
has to be additionally averaged on the different realizations of the ensemble.
In praxis £ includes the (quantum) efficiency of the photodetector, too.

In a quantum treatment, the response of the detector arises from the
ground state of the atoms in the photocathode to highly excited quasi-
free states by absorption of photons. Initially, we have for the combined
system "atom plus EMF" \i >= |a, {n} >. The electrical dipole interaction
Hdip = —e£r induces transitions to final states | / >= |fe, {n'} >. With the
golden rule and summing over all possible final states, we have for the total
transition rate

p(t) = C0(-}(r,t)^+)(r,t)), (88)

where £^ denote the creation/destruction parts of the electrical field oper-
ator (in the Heisenberg picture) and £ includes the atomic dipole transition
matrix element. Implicitly, we shall assume a perfect photocathode with
unit quantum efficiency so that each absorbed photon causes an atom in
the phototube to emit an electron and register a single count during times
t,t + dt.

A good presentation of the quantum theory of a photodetector has been
given by Glauber in the Proceedings of the Les Houches[45] and Fermi
summerschools [46].

5.2. INTERFEROMETERS

Interferometers are devices to measure the correlation of the EMF between
different space-time points. The prototype is the Young double slit inter-
ference experiment which is depicted in Fig. 11. Thermal light from a point
source is rendered parallel by a lens, passes through a wavelength filter, and
then falls on a screen which contains two slits or pinholes (as we assume for
simplicity). Interference fringes show up on a second screen placed on the
right of the first screen, many wavelengths apart. In the following discussion
we shall ignore complications arising from the finite source diameter and
consequent lack of perfect parallelism in the illuminating beam, diffraction
effects at the pinholes (or slits), etc., in order that attention be focused on
the properties of the incident EMF rather than on details of the measuring
device.
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Figure 11. Arrangement of components for an idealized Young's interference experi-
ment. Interferogram shown in the limit of infinitely small slits and A -C d <S. L. Gaussian
spectral filter F.

Let S(r,t) be the electrical field of the radiation at point r on the
observation screen at time t. This field is a superposition of the incident
field at points r i , r2 at earlier times <i,t2,

h), (89)
(90)

£(r,t) =
t\ = t — t<2 = t —

Coefficients u\, «2 depend on the geometry and they are purely imaginary
since the secondary waves radiated by the pinholes (or slits) are TT/2 out of
phase with the primary beam. For simplicity, we consider identical pinholes
and approximate u\ = u2 = uo =const.

The (cycle averaged) intensity of light at position r can be expressed in
terms of the (first order) correlation function Gi(r2,i2;ri,<i)

ex C?i(l, 1) + Gi(2,2) + 2dtG\\2,1), (91)

= \S (r2,i2)£ (ri,ii)), (92)

where Gi(2,1) is short for Gi(r2,i2;ri>*i) etc. It is seen from Eq. (91) that
the intensity on the second screen consists of three contributions: First two
terms represent the intensities caused by each of the pinholes in the absence
of the other, whereas the third term gives rise to interference effects.

For a symmetric configuration (equal slit width, homogeneous illumi-
nation, <?i(l,l) = Gi(2,2))) the visibility of the fringes is given by the
magnitude of the normalized correlation function <7i(l, 2)

Imax~Imin- = \g(2,l)\2, (93)V =
i

(94)

Coherence (i.e. the possibility of interference) of light as measured with the
double slit experiment is therefore a measure of correlation in the EMF.
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/

Figure 12. Sketch of the Michelson interferometer (left) and Michelson stellar interfer-
ometer (right). With these instruments the temporal and spatial correlation of the EMF
can be measured independently. According to Bachor[38].

The Michelson interferometers - as depicted in Figs. 12 - are even better
suited to investigate coherence properties as these instruments separately
measure the temporal and spatial dependencies of Gi(2,1).

Prior to the invention of the laser, coherent light was made out of
"chaotic" radiation by (wave length) filters and apertures. Here, the visi-
bility in the Michelson interferometers vanishes (and remains zero!) if the
distance between the arms becomes larger than the (longitudinal) coherence
length l^ = cico/i (point like source of spectral width AA) or larger than
the (transversal) coherence diameter dcoh (monochromatic source of angular
diameter AO)

Coherence time:

Coherence diameter:

tcoh = |*j =

dcoh = J^ = 1.22̂

The numerical factor of 1.22 holds for a circular light source. Note, the
vanishing of the interference pattern is not the result of interference but of
the shift of individual patterns which are produced independently by each
frequency component or each volume element of an extended source[41].

The first star which was measured by Michelson and Pease with the
20ft (=6m armlength) stellar interferometer at Mt. Wilson observatory was
the supergigant Betelgeuze in the stellar configuration of Orion (A# =
43 x 10~3 seconds of an arc). Turbulence in the atmosphere severely affected
these measurements and all efforts to increase the armlength proved to be
unsuccessful. Hence, in total only 6 stars could be studied.

Examples:

red Cd-line: Ao = 643.8nm,
sun: Ao = 2.4m,

AA = 0.0013nm,
A0 = 32',

lcoh = 32cm.
dcoh= 316m.
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Figure 13. First order coherence functions as a function of time. (Left:) Two modes with
Uj = (1 ± 0.05)u>o (left) and (right:) many uncorrelated modes with a "box" spectrum
centered at w0 and full width Aw = O.lwo-

5.2.1. Examples for G\
We study two examples for the (first order) classical coherence functions.

a) Single mode (deterministic/stochastic) field.

Gi(r2,i2;ri,£i) =< |ok,<r|2 > exp(—«[k(r2 — ri) — wk(fc ~*i)]) (95)

Obviously, this correlation function is (apart from the numerical value of
< |ok,a|2 >) the same for a deterministic and a stochastic single mode field
and displays maximum contrast.

b) Many statistically independent modes (of equal polarization) and inten-
sity profile: J(wk) = |£(w)|2, < a k > , ak)ff >= J(wk)<Jk,k'<W'-

k

Gi fro +o-ri t-,\ — \ ^ T(t h ^ p—*Pc(r2~rl)~a)k(*2~"*l)] /•Q7")

k

In particular, we have at the same space point, r=2 = ri = r, (as measured
by a Michelson interferometer)

G\{t2 — t\) = Gi(r, <2;r, ti) =

For a Gaussian line centered at wo > 0

I(u) = Ioe~J?^T

Gi(t) =

J f w j e ^ * 2 " * 1 ^ (98)

(99)

^ ew{t\ (100)

Some examples are depicted in Figs. 11 and 13.
Concerning their coherence properties, the filtered many mode field is

virtually indistinguishable from the single mode field provided t < tcoh-
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(This follows also from the Wiener-Khinchine theorem.) The same rea-
soning holds for filtering within various directions in k-space by apertures
(spatial coherence).

NB: A convenient model to describe wide-band stochastic processes is
"white noise", I(u) =const. This leads to completely uncorrelated fields
with no interference fringes.

Problem:
P6: Study the case of two statistically independent modes of equal intensity

and discuss the interference pattern for the Na-D doublett Ao = 589nm,
A A = 0.6nm (Fizeau 1862).

5.3. INTENSITY CORRELATIONS: HANBURY-BROWN & TWISS EFFECT

In the previous section we considered first order field correlation. For fields
with identical spectral properties the classical and quantum treatments
leads to the same result. This can be different when studying intensity
(=photon) correlations.

A bit of history: The intrinsic problems of the Michelson stellar interfero-
meter - mechanical instability at armlength longer than 6m, and the effect
of atmospheric turbulence, were overcome by the invention of the intensity
interferometer. The idea dates back to 1949 where R. Hanbury Brown, a
radio astronomer at Jodrell Bank, was trying to design a radio interfer-
ometer which would solve the intriguing problem of measuring the angular
size of the most prominent radio sources: Cygnus A and Cassiopeia A. If,
as some people thought at that time their angular size is as small as the
largest visible stars, then global base lines would be needed and a coherent
superposition of the signals would be impossible in praxis (around 1950!).

The new and unconventional idea was to correlate (low frequency)
intensities instead of superimposing (high frequency) amplitudes. First,
a pilot model was built in 1950 and was tested by measuring the angu-
lar diameter of the sun at 2.4m wavelength, and, subsequently, the radio
sources Cygnus A and Cassiopeia A. The intermediate-frequency outputs
of the completely independent superheterodyne receivers were rectified in
square law detectors and bandpass filtered ( 1 . . . 2.5KHz). Then, the LF
outputs were brought together by radio links (or telefone!). After analogue
multiplication of the LF signals and integration, the correlator output

G#(r2,*2;ri,ti) - ( / ( r z ^ / f a , * ! ) ) , (101)

displayed the expected correlations, see Fig. 14. (A constant term has
been subtracted by LF bandpass filtering so that £2(2,1) —>• 0 for large
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Figure 14- (a) Sketch of the RF interferometer at A = 2.4m wavelength, (b) Output
of the individual receivers A,B and correlation C showing the transit of a radio source
through the arial beam, (c) Normalized correlation function for the radio source Cygnus
A which consists of two almost equal components with an angular diameter of 45" and
a separation of 1'25". According to Hanbury Brown[42].

separation of r2 and ri)). However, to the great disappointment of the
investigators, the adventure was over at a separation of less than 5km.
This experiment could have been done by conventional technique!

For many independent modes, Eq. (101) can be evaluated in the same
way as for G\,

= £(<|ak|4)-2<|ak|2)2)

(102)

Moreover, for Gaussian thermal light (|ak|4) = 2(|ak|2)2, so that the first
term of Eq. (102) drops out. In all other cases this contribution is negative so
that the "contrast" in ^(2 ,1) for adjacent (r2, fe), (*"i, *i) and distant argu-
ments is smaller than for thermal radiation. For thermal radiation, intensity
correlation measurements yield the same information as conventional first
order coherence experiments, e.g. using the Michelson interferometers.
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Figure 15. Optical intensity interferometer proposed and developed by Hanbury Brown
and Twiss to measure the angular diameter of stars. According to Hanbury Brown[42].

The optical analogue of the intensity interferometer seemed to be straight-
forward: Antennas and receivers will respectively be replaced by mirrors
and photodetectors, as sketched in Fig. 15. In principle, the theory is the
same for all wavelengths but the trouble of course was worrying about
photons. In the RF spectrum the energy flows rather smoothly whereas in
the optical region energy comes in "photon-bursts", see Fig. 3. A correlator
(or coincidence counter) measures the combined absorption of photons at
different space time points (^,£2) and (ri,<i). As a result, we have

. (103)

Note, the sequence of operators matters, creation and destruction operators
are in "normal order" (creation operators left to the destruction operators).
Nevertheless, for thermal radiation, the classical result given by Eq. (102)
remains valid.

If one thinks in terms of photons one must accept that thermal photons
at two well separated detectors are correlated - they tend to to "arrive"
in pairs ("photon bunching")! But how, if the photons are emitted at ran-
dom in a thermal source, can they appear in pairs at two well separated
detectors? What about the sacred number-phase uncertainty relation?

>. 1. (104)
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Figure 16. Photon coincidences for single mode chaotic light and laser light. Coherence
time of the chaotic light depends on the speed v of the rotating ground glass disk.
According to Arecchi et al.[20].

Wouldn't a photon number measurement destroy phase relations and, hence,
all interference phenomena? However, for an (intensity) interferometer the
absolute phase is not relevant, only the phase difference matters and this
difference is not touched by Eq. (104).

Eventually, this problem was settled by experiment which clearly shows
that photon bunching exists in thermal radiation [23, 24]. Later on, a well
functioning stellar interferometer was built in Australia. More on the ex-
citing scientific story about this instrument and its history can be found in
Hanbury Brown's book[42].

Today, the photon bunching effect can be simply demonstrated with an
artificial "chaotic" source which synthesizes pseudothermal light by passing
laser radiation through a rotating ground glass disk with long adjustable
coherence times ("Martienssen lamp")[25], see Fig. 16.

It is instructive to define a coincidence ratio

R =
(An)2- < n >

Crand
(105)

where Coc(?2(l,l) —< N(N - 1) >. The number of random coincidences
is proportional to Crand = Gi(2,1) =< N >2 when the separation of T2, *2,
ri,<i is much larger than the coherence area/time.

Coherent states:
thermal states:
number states:

{AN)2 = n
(AN)2 = n(n + 1)
{AN)2 = 0

Classical states have photon number distributions which are always broader
than a Poissonian, i.e., (AN)2 > n, hence, the correlation ratio is positive:
Classical states always show "photon bunching". The a states as generated
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B Exciton transition (1X)

Time t (ns)
Figure 17. Single photon turnstile device. (A) Unnormalized second order correlation
function of a mode locked Ti:sapphire laser (FWHM=250 fs) and (B) a single quantum
dot excitonic ground state (IX) emission under pulsed excitation conditions (82MHz).
According to Michler et al.[30].

by an amplitude stabilized laser, represent the optimum classical state with
respect to photon fluctuations.

On the other hand, states which have less photon number fluctuations
than a Poissonian, e.g., the number states, show "antibunching", i.e., the
photons prefer to "come" not too close, see Fig. 22. In particular, the single
photon state \n = 1 > is the most nonclassical state one can think of!
Obviously, photon bunching is not a "typical Bose property".

The generation of nonclassical light (which still showed "photon bunch-
ing") was first demonstrated in 1977 by Kimble, Dagenais, and Mandel[27];
the first clear evidence for antibunching, R w 0, was presented by Diedrich
and Walther[28] in 1987, using a single Mg-Ion in a Paul-trap.

For a review about photon antibunching, see the article by Paul[29].
Presently, nonclassical photon states became attractive in semiconductor
optics in connection with quantum communication. For instance Michler et
al.[30] have developed a "Quantum dot single photon turnstile device", see
Fig. 17.



85

0 t t+dt T
I I I |
i m i 0 i

i m - 1 I 1 i

Figure 18. Time intervals used for the derivation of Pm(T).

5.4. PHOTON COUNTING

The number of photons which a counter records in any interval of time
fluctuates randomly. In a simple counting experiment we may imagine that
the counter is exposed to the radiation field for a fixed time interval T.
After a time delay T ^ , which is long compared to the coherence time of
the light, the original experiment is repeated, and a second number of
counted photons is recorded and so on. The results can be expressed by
a probability distribution Pm(T) for the counting of m photons during an
observation time T.

We consider a particular period of counting [t, t+T] as shown in Fig. 18.
There are two ways in which m photons can be counted in the periods
between times t and t + dt. The probability that more than one photon
being counted during the time interval dt is proportional to (dt)2 and,
thus, neglegible.

Pm(t + dt) = Pm(t) [1 -p(t) dt] + Pm-i(t)p(t) dt (106)

Rearranging terms and using Pm(t + dt) — Pm(t) — Pm(t)dt + O(dt)2 we
obtain a chain of coupled differential equations

= CW[Pm-l(t)-Pm(t)], (107)

"p_i = 0, P0(0) = 1, Pm(0) =0 (m> 1), (108)

which can be solved by recursion.
The probability that no photon to be recorded during time t becomes

J&t) = -(I(t)P0(t), (109)

Po(T) = e~<7(T)T, (110)

I(T) = \ \ I(t')dt'. (Ill)
T JQ

I(T) is the mean intensity during the observation time T. The remaining
counting functions Pm(T) can be obtained from Eq. (107), beginning with
m = 1 and proceeding to higher values. As a result, we obtain

(112)
m!
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Equation (112) gives the count distribution obtained in a series of mea-
surements all beginning at the same time (t = 0), where the same time
duration T, and the same I(t) is implied. This is impossible in practice:
Counting periods run consecutively rather than simultaneously. Photon
measurements imply the absorption of photons so that a single photon can
be counted only once! The intensity I(T) in general fluctuates for different
members of the ensemble and the measured photon count distribution is
an average of Pm{T) over a large number of different starting times (which
are separated in time by a period much larger than the coherence time).

Pm(T) = (Pm(T)). (113)

A nice introduction to photon counting is still Loudon's book[34].

5.4.1. Examples

a) Constant intensity (amplitude stabilized single mode laser).
I(t) = IQ is constant so that the quantity to be averaged is time-idependent.

mm

P T n ( D = e x p ( - m ) — , m = (IQT. (114)

This is a Poissonian distribution with a mean photon count number m, see
Fig. 19. This distribution has been already discussed in Section 4.4.3.

The fluctuations which occur for a beam of constant intensity are called
particle fluctuations. They are due to the discrete nature of the photoelec-
tric process in which energy can be removed from the light beam only in
whole quanta tkj.

b) Chaotic (thermal) light, long time limit (T 3
Another important case for which the Poisson-distribution Eq. (114) holds,
follows from the fact that I(T) can be constant even if I(t) is a fluctuating
quantity. This case holds for chaotic light (of arbitrary type) if the time of
measurement is much larger than the coherence time of the light, so that
all fluctuations are averaged out during a long time period.

c) Chaotic (thermal) light, short time limit (T <C WO-
The probability distribution for the instantaneous intensity of thermal light
is given by Eq. (29). With the usual ergodic hypothesis the time average in
Eq. (113) is converted to an ensemble average over the distribution p(I) =
exp(-l/lav)/(nlav), Eq. (29), leading to

r°° rhm

Pm(T) = / P(I) Pm(T) dl = , = bm- (H5)
Jo [m + 1\

bm is the Bose-Einstein distribution function, see Fig. 20, which we have
already met in Section 4.4.5.
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Figure 19. Poisson form of the photon count distribution for light beams of constant
intensity (Single mode laser well above threshhold). According to Loudon[34].
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Figure 20. Photon count distribution for chaotic (thermal) single mode light for rh — 4
and different counting times T. According to Loudon[34].



Figure 21. Sketch of a beam slitter. Modes 1 and 2 are transformed into 3,4.

The photon count distributions derived above are based on a semiclas-
sical approach where the intensity I(T) is treated as a classical quantity.
The quantum mechanical formulation (in the Heisenberg picture) has to
take into account that the operators £(~)(r, t), £(+\r,t) do not commute.
Formally, the result is similar to Eq. (112), but the evaluation is much more
laborious than in the semiclassical case. For coherent and thermal states
the count distributions have the same form, however, this is not true in
general. For details we refer to the book by Klauder and Sudarshan[37].

5.5. BEAMSPLITTERS

Optical components like lenses, mirrors, polarizers etc., are used in quantum
optics to transform one mode in another. For example, let us consider a
beam splitter which transforms an incoming wave beam with field £\ into a
transmitted and a reflected beam with fields £Z,£A, respectively. However,
there is also a second possible input axis defined, such that £2 would produce
the output waves in the same place and propagating in the same direction
as £3 and £4 (e.g. as used in a Mach-Zehnder interferometer). The complex
amplitudes of the EMF transform according to

(116)

R is the (intensity) reflection coefficent. (Note, there is a phase jump of it
of the reflected beams). In a quantum treatment the complex amplitudes
will be replaced by destruction operators. In quantum optics, the case of
"no incident wave" refers to the vacuum state of that mode rather than to
"zero field".

In quantum optics amplitudes a,j become operators &j and Eq. (116)
represents a unitary basis transformation. A beam splitter does not "split"
photons, rather it acts as a random selector which divides the incident flow
of photons in a reflected and a transmitted one. As a consequence, the
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Figure 22. Change of photon statistics of an n photon state after passing a beam
splitter, (a) Coherent state, (b) n-photon state. According to Bachor[38].

photon statistics of the reflected/transmitted beams correspond to that of
the input beam after a random selection process has taken place. For a
coherent state with a Poissonian distribution, a random selection yields
again a Poissonian, hence a coherent state remains a coherent state after
reflection or transmission through a mirror, yet with a reduced value of a.

The situation may be different for states with a non-Poissonian photon
distribution. For an incident \n >-photon state the probability that k(< n)
photons are reflected (n — k being transmitted) becomes

Rk (1 - (117)

The binominal coefficient arises from the indistinguishability of the photons.
Hence, an incident photon state with distribution pn transforms according
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to

In addition to coherent states, thermal states likewise have the remarkable
property that the photon statistics remains unchanged when passing the
splitter (yet with a reduced mean photon number k = (1—R)n, see Fig. 22).
For details see, e.g., Paul[32] or Bachor[38].

6. Outlook

Die ganzen Jahre bewusster Grubelei haben mich der Antwort der Frage
"Was sind Lichtquanten" nicht ndher gebracht. Heute glaubt zwar jeder
Lump, er wisse es, aber er tduscht sich...

Literal translation:

All the years of willful pondering have not brought me any closer to the
answer to the question "what are light quanta". Today every good-for-
nothing believes he should know it, but he is mistaken...

ALBERT EINSTEIN2

But, in contrast to Einstein, most of us have given up any hope for
objective realism...

For a discussion on conceptual difficulties and different interpretations
of Quantum Mechanics see Costa's interdisciplinary article in this book.
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Solutions of the Problems
PI: Time dependent Schrodinger equation: xc = pc, p'c = — U)QXX + f(t).
P2: w(t) = [1 - Kexp(-2it)] / [1 + nex.p(-2it)], u(t) from normalization.

v(t) = vf [exp(«i) + «exp(—it)], K, V are constants.
P3: Use b = fj,a + va}, Eq. (43), and cosh2 x - sinh2x = 1.
P4: Energies can be non-equidistant but must be multiples of a unit.
P5: Yes! Eq. (47) is a displaced oscillator. {N) - £ k o . | j k ] < 7 | 2 / (2e0^) .
P6: See Born and Wolf[41], p. 320.



4. CARRIER-WAVE NONLINEAR OPTICS

MARTIN WEGENER
Institutfur Angewandte Physik, Universitdt Karlsruhe (TH),
Wolfgang-Gaede-Strafie 1, 76131 Karlsruhe, Germany

"The dream of intensifying light is as old as civilization. Legend has it that Archimedes
focused the sun's rays1 with a giant mirror to set the Roman fleet afire at Syracuse in 218
B.C. Although that story is a myth, it is true that around 200 B.C. another Greek, Diodes,
had invented the first ideal focusing optic, a parabolic mirror. Two millenia later mirrors
and quantum mechanics were put together to make the most versatile of high-intensity
light sources: the laser."2

1. Introduction

Today, laser pulses directly out of a mode-locked oscillator as short as five femtoseconds
(1 fs = 10~15 s) - equivalent to merely two cycles of light - are available with focused
intensities around 1013 W/cm2. This enormous progress in the generation of short and
intense femtosecond laser pulses has given access to a completely new regime of light-
matter interaction and to a previously unexplored branch of nonlinear optics. In this series
of lectures we want to give some general background in the spirit of a tutorial before we
review some of our recent corresponding work on semiconductors.

This series of lectures is organized as follows: Section two is concerned with the
properties of short - i.e., few optical cycles long - laser pulses derived directly from a
mode-locked laser. In particular, we want to introduce the carrier wave and the pulse
envelope and explain the meaning of the so called carrier-envelope offset (CEO) phase
which turns out to be important for nonlinear optics as well as for frequency metrology.
Indeed, we will see that the knowledge from the "ultrafast frontier" of spectroscopy
can also be used at the "ultraslow frontier", i.e., for ultraprecise frequency domain
spectroscopy. In the third section, we will define what we actually mean by intense.
Quoting the intensity in units of W/cm 2 is precise, however, not really helpful for actual
problems. One rather would like to compare for example an energy corresponding to
the laser intensity with some other characteristic energy of the system. In this section

'The sun's light intensity on the earth's surface on a sunny day near the equator is ss 10 1 W / c m 2 .
2Taken from: Extreme Light, G. Mourou and D. Umstadter, Scientific American, May 2002.
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we introduce the Rabi energy, the ponderomotive energy, and the Bloch energy (h
times the Bloch frequency3) - which all have to be compared with the carrier photon
energy of the laser pulses for the case of solids. For atoms, the ponderomotive energy,
the Rydberg energy and the rest energy of the electron are the relevant scales. In
section four, we summarize our recent work on resonant excitation of optical transitions
in semiconductors in the regime where the Rabi energy becomes comparable to the
photon energy, which leads to carrier-wave Rabi flopping and to a dependence on
the CEO phase. In section five we address third-harmonic generation in disguise of
second-harmonic generation: In contrast to traditional nonlinear optics, an inversion
symmetric material excited by intense few-cycle pulses can show a peak at the spectral
position of the second harmonic of the laser photon energy. In section six we briefly
discuss corresponding effects in atoms at amplified laser intensities around 1015 W/cm2

where attosecond x-ray pulses can be generated. Finally, we sketch out the physics at
colossal laser intensities up to 1028 W/cm2 . We will see that an electron in vacuum
can lead to (true) second-harmonic generation, that even the vacuum itself gives rise to
optical nonlmearities and that the electron acceleration can approach values comparable
to those at the edge of a black hole ...

Exercise 1.1.: What is the light intensity in a "dark" room held at room temperature?

Figure 1: Photograph of the 5 fs mode-locked laser oscillator used for the carrier-wave nonlinear optics experi-

ments in solids discussed in this article. Note the simplicity of the setup which is optimized for flexibility rather

than for compactness. The depth of the optical table is 1.2 m. The pump beam (light grey lines) enters the pic-

ture on the lower RHS, the dispersion compensated output of the laser (dark grey lines) leaves the photograph

on the upper RHS. The Ti:sapphire gain crystal is in the middle of the "z" on the lower LHS.

3ft = 0.658 eV fs, equivalent to ft = 1.054 x 10~ 3 4 Js, will be useful throughout this article.
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2. Some Aspects of Few-Cycle Laser Pulses From Mode-Locked Oscillators

The basic principle of a laser is simple: It consists of a resonator (see Figs. 1 and 2)
and a light amplifier - the gain medium. For the purpose of these lectures, the quantum
optical aspects of the light field are not important, hence, it is sufficient to consider the
well-known Maxwell equations of electrodynamics [1].

2.1. MAXWELL EQUATIONS

In S.I. units the Maxwell equations are given by

W-D = p (1)

~ ~~dt
V - S = 0 (3)

VxJ7 = +^+J. (4)
at

p is the electric charge density and j the electric current density. In media, the relation
between the JS-field and the .D-field is given by4

E=-(D-P), (5)

with the macroscopic polarization P, and, similarly, for the S-field and the .ff-field the
relation

B = fiQ ( i? + M) , (6)

with the magnetization M. For the materials relevant in the context of this article, M = 0
holds, and Eq. (6) simplifies to

B = n0H. (7)

In linear optics, one has
P (8)

with the linear optical susceptibility x- In this case, Eq. (5) simplifies to

D = eoeE, (9)

with the relative dielectric function e = 1 + x- The Maxwell equations can be rewritten
into the known wave equation5 for the S-field

4 e 0 = 8.8542 x l O " 1 2 A s V - i m - 1 and/u0 = 4TT x 10~7

5Coming from Karlsruhe, we just have to remind you that it was Karlsruhe where Heinrich Hertz found the
first experimental evidence for electromagnetic waves in the year 1887.
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or, using Eq. (8), into

2 *+2 ^ ° > (")
c2 dt2

with the medium velocity of light c = co/n, which is slower than the vacuum velocity of
light Co = l / ^ e o /io = 2.998 x 108 m/s by a factor identical to the (generally complex)
refractive index n with

n = y/i. (12)

2.2. THE LIGHT INTENSITY

Our eyes and most detectors are not sensitive to the electric field itself but to the number
of photons which hit the detector per unit time. In other words, classically speaking: They
are sensitive to the cycle-average of the modulus of the Poynting vector S = E x H. For

plane waves in vacuum one has \B\ = \E\/CQ or equivalently \E\ = \H\ J^-, with the
vacuum impedance

If^. = 376.7301 ft, (13)

(14)

•</>), (15)

the light intensity / , which is defined as the cycle-average6 of the modulus of the Poyn-
ting vector, becomes7

(16)

leading to

which generally varies with time. For an electric field according to, e.g.,

\E(t)\2 = E2 cos2

Note that the intensity I does not depend on <j).

Example 2.1.: An electric field of Eo = 4 x 109 V / m in vacuum corresponds to an
intensity of I = 2.1 x 101 2W/cm2. For comparison: This intensity corresponds to
concentrating the power of thousand power plants with a power of 2 GW each to an area
comparable to your finger tip - for a very short time. For the same electric field, the peak

of the B-field envelope is BQ = /J,0 . / — Eo =
V M

= 13.3 T.

6Remember that (cos2(u;ot + <f>)) = 1/2.
'Within a dielectric, eo has to be replaced by eo e in this relation.
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2.3. ELECTRIC FIELD IN A LASER RESONATOR

Solutions of the wave equation (11) are, e.g., plane waves with

E(f, t) = Eo cos (Kr — wt- <pj = -£• exp (i (KT — u>t

which have to obey the dispersion relation of light

for the frequency u and the wave vector of light K.

r\/\A

+ c.c, (17)

(18)

Figure 2: Scheme of a laser resonator, consisting of two mirrors separated by length L. A snapshot of a single

mode (N = 4) of the electric field at wavelength A is shown.

For the resonator shown in Fig. 2, we have the superposition of left-going and right-
going waves, i.e., a standing wave, such that the electric field has nodes at the two mirrors,
E(z = 0, t) = E(z = L,t) — 0. Thus, the length L of the resonator has to be an integer
multiple, let us say N, of half the wavelength of light A:

(19)

With the dispersion relation of light Eq. (18) and with \K\ = 2TT/A, this can be rewritten
into

(20)

with the mode spacing

A "

AiJ = Cy.
J

(21)

Example 2.2.: For a resonator with length L — 1.5 m and with c = CQ we obtain
Aw = 2?r x 100 MHz, which is within the radio frequency (RF) regime.



2 EQ sin(KNz) sin(uNt + (pN)

The superposition principle tells us that any linear combination of these eigensolu-
tions is also a solution of the resonator problem and we can write the general solution of
standing waves in the resonator as

(22)

Details depend on the amplitudes EQ, the phases tptf of the modes with N = I...00
and also on the dispersion relation Eq. (18) which connects the Kfj and the U>M- Let us
consider three cases, (a) - (c) in Fig. 3, in which we study one component of the electric
field vector, E(t) = Ex<y(r = const.,*), at a fixed point in space within the cavity.
For the sake of simplicity we assume that the mode amplitudes are either constant or
zero (which mimics the finite bandwidth of the gain medium), i.e., EQ = EQ for all
frequencies in the interval [wo — 6u>/2,u)o + 5LJ/2] and E^ = 0 elsewise. We choose
Sw/u>o — 0.6.

In (a) we consider many modes N with random phases <pn, c = const. This leads
to an electric field which looks like noise with some average intensity (Fig. 3(a)). This
situation corresponds to a multimode continuous-wave (cw) laser - a bad cw laser. We
conclude that a good cw laser must only work on a single mode.

In (b) all the phases ipN are equal - they are locked —, in which case we can set them
to zero, c = const. A periodic train of identical pulses results (Fig. 3(b)). The duration
of the individual pulses is inversely proportional to the width of the frequency interval
5ui. How can one realize this locking of the modes experimentally? By active or passive
modulation of the resonator properties with frequency Au, which is called mode-locking!
Such modulation of the mode with frequency UN leads to sidebands at U>N+ALJ = UJN+I

and U>M — Au; = OJN-I for all N. This couples all the modes, hence it locks their phases
ifiN, and it leads to a perfectly equidistant spacing of the modes in frequency space.

In (c) we give up the unrealistic assumption of a constant velocity of light c in the
resonator, but the modes shall still be equidistant in frequency. The corresponding time-
domain behavior of Eq. (22) is schematically shown in Figs. 3(c) and 4. The pulses are
not identical under these conditions. In one round trip, a shift of the phase between the
envelope and the carrier wave results from the fact that the group velocity %rOuP at
frequency UJQ (the velocity of the envelope)

Wgroup = -jj£ (23)

with K = \K\ and the phase velocity vph&se (the velocity of the carrier wave at frequency

w
Vphase = c = "jp

are no longer identical. We can define a corresponding carrier-envelope offset frequency
/^ which is generally different from the repetition frequency / r = l/tT = ALJ/(2TV).



(a)

I'M" //

(b)

(c)

Figure 3: Electric field versus time t in the middle of the laser cavity according to Eq. (22). (a) Random phases

(fitr, c = const., (b)tptj = 0 for all AT, c = const., (c) fN = 0 for all N,c = c(u>jv) ^ const. Note that

(b) and (c) have been demagnilied with respect to (a) in the vertical direction by a factor of about 106.

From Fig. 3(c) it becomes clear that the electric field according to Eq. (22) can alterna-
tively be expressed8 as

(25)

The cosine-term is the carrier-wave oscillation with carrier frequency OJO, the prefactor
E is called the envelope of the pulse (grey areas in Fig. 3). tr is the round-trip time,
A<j> the pulse-to-pulse phase slip, and <f> an overall phase. (NA<f> + <j>) is understood mod
27r, i.e. for all integers TV, the term is element of the interval [0, 2TT]. Later, we will only
consider one pulse out of the pulse train according to Eq. (25), e.g., the one with N = 0,
which leads to an electric field of

E(t) = E(t) cos(u)Qt (26)

8Note that the choice of the carrier frequency uo is somewhat arbitrary, especially if the pulses are chirped.
Often, one chooses UJQ as the center of mass of the frequency spectrum of the laser pulses.
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Figure 4: Magnification of the electric field versus time from the RHS of Fig. 3(c). The grey area corresponds to

the electric field envelope. In this example, the CEO phase is <j> = +n/2, which corresponds to a pulse-to-pulse

phase shift of A<p = +n/2 in Fig. 3(c).

with the so called carrier-envelope offset (CEO) phase9 <j>. The CEO phase of a single
pulse has to be distinguished from the well known relative optical phase between two
beams or pulses, e.g., in a Michelson interferometer.

What is the frequency-domain analogue of this behavior ? We compute the Fourier
transform of the electric field, E(UJ), via

E{u>) = dt (27)

i r+o°
V2n i-oooo ^ o

The cosine-term can be written according to

(28)

9The CEO phase is sometimes also called absolute optical phase.
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The exponential with the "minus" sign leads to a peak in E{u>) at positive frequencies u>,
the term with the "plus" sign to a peak at negative LJ. The latter is omitted and we get

From the second to the third line we have substituted t' = (t — Ntr). EUO{IJJ — UIQ) is the
envelope of the optical spectrum10. With an optical spectrometer11 one usually measures
the intensity spectrum <x \EUo(u — wo)|2 (which neither depends on <j> nor on A<p). The
spectrum is modulated by the sum over the exponentials in the last line of Eq. (29). The
significant values of w in this sum are the ones for which the terms for, e.g., N and (N+1)
add constructively, i.e. for which we have (wtT — A</>) = M 2 T T with integer M. This
yields an equidistant ladder of angular frequencies u>M with

o,M = M x ^ + ^ . (30)

Finally, we can convert from angular frequencies to frequencies via % = 2n /M and
obtain

/ M = M x / r (31)

10In order to distinguish this envelope at carrier frequency o»o from other envelopes that will occur in this
article, we have introduced the index u>o.

"The full width at half maximum (FWHM), Su>, of the intensity spectrum multiplied with the FWHM of the
temporal intensity profile, 6t, is the duration-bandwidth product 5u St. One obtains <5u> St > 2TT X 0.4413 for
a Gaussian, i.e., for a exp(—t2) pulse, 6u>6t > 2TT x 0.8859 for a sinc2(i) = (sin(t) / t ) 2 pulse, SujSt >
2n x 0.3148 for a sech2(t) = l /cosh2(t) pulse, and StvSt > 2TT x 0.1103 for a one-sided exponential, i.e.,
for a &(t) exp ( - t ) pulse [2], The latter is the absolute minimum of the product (5o> 5t for any pulse shape. For
all these cases, the equality applies for zero chirp.
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E(f)f

Figure 5: Scheme of the frequency domain analogue, E(f), of the temporal behavior, E(t), shown in Fig. 3(c).

The spectrum exhibits peaks at the frequencies / M = M x fT + f$ with integer M, i.e., the equidistant

frequency comb is up-shifted by the carrier-envelope offset frequency f$. The actual E(f) corresponding to

Fig. 3(c) contains more than 106 densely spaced peaks within the optical spectrum (indicated by the grey area).

with the repetition frequency / r = l / i r = Aui/(2n) (see Eq. (21))

(32)

and the carrier-envelope offset frequency

(33)

If fy ^ 0, this frequency comb has a certain offset frequency [3, 4]. If one can arrange
for /^ = 0, on the other hand, the eigenfrequencies form a ladder of equidistant fre-
quencies starting at zero frequency with M = 0. These findings are summarized in Fig. 5.

Example 2.3.: Let us compute the carrier-envelope offset frequency /^ for the following
parameters: L — 1.5 m, fgrouP = 99.9999% CQ, uPhase = co> ^wo = 1-5 eV <£• 2TT/LJO —
2.8 fs. The difference, At, between the round-trip group delay time and the phase delay
time is At = 2L/vsroup — 2L/vpiiase. With 1/(1 — x) « (1 + x) for x <§; 1 we
get A* « 2L/co x ((1 + 10~6) - 1) = 10 ns x 10~6 = 10 fs. This leads to A(j> =
(10fs/(2.8fs) x 27r)mod27r = (3.57 x 27r)mod27r = 0.57 x 2vr. With Eq.(33) and
with ft = 100 MHz from example 2.2. =̂> / 0 = 57 MHz.

The time standard for one second within the S.I. system is related to a frequency of
9 192 631770 Hz « 9 GHz. This frequency can rather easily be locked to the repetition
frequency fr of the oscillator, which is typically around 100 MHz (see example 2.2.). If
the pulse-to-pulse phase shift A<j) can be stabilized to A(f> = 0 (section 2.4.), the fre-
quency comb starts at zero frequency and looks much like a ruler for frequencies where
one simply counts the number of millimeter tics to measure a length. This allows to
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connect the time standard for one second in the GHz regime to optical frequencies at hun-
dreds of THz. Previously, this required a very (!) complicated procedure (see references
given in Ref. [4]). The corresponding important implications for metrology (i.e., for using
femtosecond lasers as frequency standards) are nicely discussed in a rather recent review
article [4]. Some authors even speculate that this increased precision in measuring time
might lead to experiments in which one could possibly observe the temporal variation
of fundamental "constants" versus time on laboratory timescales [5, 6, 7]. If one could,
e.g., measure the atomic Rydberg with increased frequency precision (relative precision
of 10~15 or better), this value could be related to the fine structure constant. Performing
such experiment today and comparing it to the result one year or several years later might
reveal a difference. Strange but true: The ultrafast becomes useful for the ultraslow or
ultraprecise, respectively...

Let us finally note that one must be cautious with the choice of the electric field en-
velope E(t) according to Eq. (26). In actual experiments, the optical spectrum does not
contain zero-frequency (dc) components. According to the Maxwell equations, zero-
frequency components are not radiated at all, low-frequency components are not effi-
ciently radiated. Furthermore, they correspond to very large wavelengths, which do not
propagate into the optical far-field because of diffraction. Zero dc component is equiva-
lent to a vanishing time-average of the electric field, i.e., to the condition

/ :
E(t) di = 0 (34)

for any value of the CEO phase (p. The E(t) oc sinc(i) pulses (see, e.g., Fig. 5) we have
discussed above and which we will frequently use below, do fulfill this condition for
arbitrary values of 4>. Generally, in the theory, however, one can get significant tails in the
optical spectrum towards zero frequency for certain envelopes (which are well localized
in time) and values of <j>. In this case, the electric field envelope must not be assumed to
be independent of <p. If one assumes a fixed envelope anyway, the light-matter interaction
looses its gauge-invariance [8] and unphysical results are expected.

Exercise 2.1.: A light field with Eo = Ax 109 V/m propagates from air into a dielectric
with e = 10.9. Reflections are completely suppressed via an ideal anti-reflection (AR)
coating. What is Eo inside the dielectric?

Exercise 2.2.: What - in principle - are the shortest optical pulses achievable?
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2.4. PRINCIPLE OF MEASURING THE
CARRIER-ENVELOPE OFFSET FREQUENCY

If one wants to stabilize or control fa, one obviously first needs to be able to measure /<£,
equivalent to determining the time derivative of the CEO phase <p. How can one measure
<p of a laser pulse E(t) according to Eq. (26)? It drops out when measuring the intensity
(see subsection 2.1), it does not affect the optical spectrum, it does not show up in usual
intensity autocorrelations or field autocorrelations. Generally, in order to observe a phase,
one needs to compare the unknown field with a "reference".

The idea: If one had another field which would contain a phase 2<f> rather than l<j>
of the electric field itself, the interference of the two contributions (the beating) would
oscillate with the difference, i.e. with (2 — 1) x <f> — <f>.

Such "reference" can be generated by sending the electric field E(t) onto a suitable
nonlinear optical material, the optical polarization P(t) of which can be expressed via

(35)

which is the generalization12 of the linear optical polarization, Eq. (8), for large electric
fields [1, 9]. Here the coefficients x ^ ^ 1 ) are the nonlinear optical susceptibilities of
order N, x^ = X is the linear optical susceptibility. All even orders are only non-
vanishing for lacking inversion symmetry of the medium13. The second derivative of the
polarization (35) is the source term on the RHS of the wave equation (10). Consider the
second-order contribution which - via the wave equation - gives rise to an electric field
at carrier frequency 2u>o, the so called second harmonic, which is given by

E2uo(t) oc E2(t) (36)

= E2(t) cos2'{

= E2(t) i

The " 1 " in the last line reflects so called optical rectification and can (often but not always)
be omitted because dc-components do not lead to propagating electromagnetic waves. Let
us consider the resulting interference in frequency space. The Fourier transform of the
cosine-terms have maxima at positive and at negative frequencies. As in section 2.3., we
focus on the measurable positive frequency components (corresponding to the minus sign
in the exponent). The resulting intensity from the interference can be written as

oc le-^EUM + e-i2^2wo(a;)|2 (37)

12Vectors are omitted for simplicity. The range of validity of Eq. (35) is limited. It obviously assumes an
instantaneous response of P(t) with respect to E(t), equivalent to no or negligible frequency dependence of
the x( J V'- This is only justified "far away" from a resonance of the material. Also, Eq. (35) is only meaningful
if the terms become rapidly smaller with increasing order N, i.e., if the electric field is not too large - if it is
within the perturbative regime. In section 3.1. we evaluate the optical polarization microscopically for the case
of semiconductors.

"Consider space inversion, i.e., f -» -f. Thus, E(t) -» -E(t) and P{i) -* -P(t). As (-E(t))2 =
E2(t), (-E(t))4 = E4(t),... it follows that x ( 2 ) = X( 4 ) = - = 0, while x ( 1 ) . X( 3 ) . - can be nonzero.
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+ 2 \EU0(w) E2wo (w) | x cos(0).

The underlined cos(</>)-term delivers the anticipated dependence on <j>. In order to actually
observe this contribution in an experiment, at least the following two conditions have to
be fulfilled.

• The amplitudes Euo (u>) and E^o (w) m u s t be comparable in absolute value, other-
wise the two constant, i.e. (^-independent, terms in Eq. (37) completely dominate
the measured intensity IUo,2wo- This condition can generally be fulfilled at some
frequency u> in the optical frequency interval [wo, 2o>o].

• The product term must exhibit appreciable absolute strength in order not to be
covered by noise in the experiment.

It turns out that the second condition is more difficult to fulfill than the first (see Fig. 6).
From section 2.3. it is clear that a modulation according to

—COs(<f>) (38)

leads to a peak at frequency /^ in the RF spectrum [4, 10, 11, 12]. Similarly, an
interference of a third-order contribution from Eq. (35), i.e.

cc E3(t)

= E3(t) cos3 (ujot

= E3(t) -

(39)

with a contribution at frequency 3a;o with the fundamental at frequency U)Q leads to a
modulation with

(40)

equivalent to a peak at frequency 2/^ in the RF spectrum, which is most prominent
around the middle of the optical frequency interval [UJQ, 3WO]. We will come back to both
types of interferences in sections 4.3. and 5.1.

When performing corresponding experiments, one often measures the RF power spec-
trum (as, e.g., in section 5.1.). Let us have a quick look at the details14. The beat signal
I{<t>), i.e., I{f) = /wo,2u,0(4>) from Eq. (38) or I(</>) = IUo^o{4>) from Eq. (40) or some
more complicated general form, can be detected by a photomultiplier tube, which deliv-
ers a voltage signal U(t). Assuming an integer ratio of repetition frequency and CEO

14For a first reading, the reader may want to continue with Chap. 3.
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OJ/CO0

Figure 6: Scheme of the laser spectrum (grey area) of a sinc2(t) pulse covering slightly more than one octave

in width (<=> Su/wo = 2 /3 , see Exercise 2.2.) and its second harmonic (not to scale). In the region of overlap

(see arrow) the two contributions interfere and a dependence on the CEO phase <j> results.

frequency for simplicity at this point, i.e., fr/f^> = r with integer r, the signal voltage
(which is illustrated in Fig. 7) can be written as

+oo r - 1

U{t) = U0 J2 E IN*
 6 (* ~

N<t,=-oo Nr=0

with the integers iV^ and NT, the abbreviation

27T

Vr = / ( ^ = ivr — ) ,

(41)

(42)

the carrier-envelope offset period tj, = Iffy, and the (unimportant) prefactor UQ. Here we
have approximated the actual temporal response of the photomultiplier by a 5-function.
If this voltage signal is fed into an RF spectrum analyzer, the RF power spectrum
SRF( / ) versus RF frequency / is measured. It is defined by

5 R P ( / ) = Qi27r/t (43)

Inserting Eq. (41) into Eq. (43), the 5-functions in Eq. (41) select only contributions with
t = [N^t,), + Nrtr] from the integral and we obtain

27T

+00 r - 1

r4,=-oo NT=0

(44)

r - 1

Nr=0

+oo

The nonvanishing values of the last sum correspond to those frequencies / , for which the
terms for, e.g., N$ and (JV^ + 1) add constructively, i.e., for which we have 2TrfN^t(j> =
M 2n, thus

/ = M/t^ = M x /^ , (45)
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(a) (b)

U(t)f iog(SRF)f

o f0 (fr-f•) fr f

Figure 7: (a) Scheme of the output voltage U(t) (linear scale) of a photomultiplier detecting an optical beat

signal I{4>) = /uio,2wo(^) = ••• + •••cos(</>) according to Eq. (38). The ratio of repetition frequency to

carrier-envelope offset frequency is ft/U = r = 4 (<=> A 0 = TT/2, see Fig. 4). (b) Corresponding RF power

spectrum S R F (/) on a logarithmic scale. The 50% modulation of U(t) due to <j> in (a) corresponds to peaks in

the RF power spectrum at frequencies f$ and ( / r - / ^ ) which are 2 x 3 dB = 6 dB smaller than the fT peak

and the / = 0 peak.

with integer M. This means that the RF power spectrum consists of a series of <5-peaks
at integer multiples of the CEO frequency /^. The height of these peaks is given by the
value of the first term in the second line of Eq. (44), i.e., by

JVr=0 Nt=0

r - 1

• (46)

In general, some of the peaks with label M may not occur because they have zero height.
It is obvious that replacing M by (M + r) on the RHS of Eq. (46) delivers the same value,
i.e., the height of the peak at, e.g., frequency f$ is exactly the same as the height of the
peak at frequency (/r + f$). In other words: All relevant information of the RF power
spectrum is contained in the frequency interval [0, / r ] . Along the same lines, the peaks
at /^ and (/r — /#), respectively, have the same height as well (replace M by (r — M)
on the RHS of Eq.(46)). The mixing products (/r - /^) , (/r - 2/*) or (/r + f^)
... essentially originate from the fact that the light intensity - and not the electric
field itself - is subject to a Fourier transformation in an RF spectrum analyzer. The
Fourier transform of the laser electric field itself has been discussed in Eq. (29).

Eqs. (45) and (46) allow to compute the RF power spectrum from a known beat signal
/(</>). An example is given in Fig. 7. In a real experiment, the photomultiplier does not ex-
hibit a ^-response. In this case, the actual voltage signal can be written as the convolution
of Eq. (41) with the response function of the photomultiplier. In the frequency domain,
this convolution translates into the product of the "ideal" result with the power spectrum
of the photomultiplier response function, i.e., there is an overall decay towards large RF
frequencies / . Finally, real laser systems have noise, which shows up as a pedestal in the
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RF power spectrum. Typically, this noise is not white-noise (which would be a constant in
frequency space) but is rather roughly proportional to 1 / / . This sometimes makes, e.g.,
the frequency interval [2/r, 3/r] advantageous as compared to [0, / r] in the experiment -
although the intervals are equivalent in theory.
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3. How Intense is the Light Field?
Rabi Energy, Ponderomotive Energy and Bloch Energy

We now introduce three quantities: The Rabi energy, the ponderomotive energy and the
Bloch energy. The ponderomotive energy is proportional to the intensity of light I oc E$
(see Eq. (16)), the Rabi energy as well as the Bloch energy (h times the Bloch frequency)
are proportional to the associated strength of the electric field EQ- Interesting new physics
will occur (sections 4 and 5) if these quantities become comparable to or even larger than
the carrier photon energy fwjo. The Rabi energy is related to interband optical transitions,
the ponderomotive energy as well as the Bloch energy relate to intraband processes.

3.2. RABI ENERGY

If a two-level system is excited by a resonant light field, electrons absorb photons which
pumps them from the ground state into the excited state (see Fig. 8). It is sometimes stated
that one cannot reach inversion by optical pumping in a two-level system. This statement
is, however, only true in the incoherent case, where one can only reach transparency
indeed, i.e. 50% of the electrons are in the ground state, 50% are in the excited state. In
contrast to this, if the system remains fully coherent in the quantum mechanical sense,
complete inversion can be reached. If the light field remains switched on, stimulated
emission brings the electrons back into the ground state. This oscillation of the inversion
is known as Rabi oscillation or Rabi flopping [13, 1, 14].

nRt =0 nRt =7i nRt =

Figure 8: Scheme of a Rabi oscillation in a two-level system versus time t. The lower horizontal line represents

the ground state, the upper line the excited state. The dots symbolize the electron occupation numbers.

To couple to the Maxwell equations, we have to compute the polarization P micro-
scopically from a Hamiltonian H of the semiconductor. Neglecting the Coulomb inter-
action of carriers, any type of intraband optical processes at this point, phonons and their
coupling to the carriers, suppressing spin indices and using the dipole approximation for
the optical transitions from the valence (v) to the conduction (c) band at electron wave
vector k we have [1]

H =
fc k

(47)
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Here Ec>v(k) are the single particle energies of electrons in the conduction and valence
band, respectively (the band structure), which are schematically shown in Fig. 9. dcv(k)
is the (real) dipole matrix element for an optical transition at electron wave vector k.
The creation c* and annihilation c operators create and annihilate crystal electrons in the
indicated band (c,v) at the indicated momentum (k). The optical polarization is given by

c.c.) + Pb(f, t), (48)

k

where the optical transition amplitudes

Pvc(fc) - <c^ccE) (49)

depend on time t as well as parametrically on the spatial coordinate r. As usual, the sum
in Eq. (48) can be expressed via the combined density of states DCV(E) as ]Cfc-- ~*
f Dcv(E)...dE —> ^2nZ)cv(£ ;

n)...A£', which neglects all anisotropies. Sometimes,
the background polarization Pb{r, t) — eoXb(z)E(f, t) — £§{eh{z) — l)E(f,t) is em-
ployed15, which approximately accounts for all "very" high-energy optical transitions not
explicitly accounted for in Eq. (47). It can be expressed in terms of the background di-
electric constant eb(f).

The dipole matrix element dcv is approximately fc-independent and can be estimated
on the basis of known material parameters by the following "rule of thumb" from k • p
perturbation theory [1]:

with band gap energy Eg, the effective electron mass me (see Fig. 9), the free electron
mass mo = 9.1091 x 10~31 kg, and the elementary charge e = 1.6021 x 10~19 As.

The dynamics of pvc(k), as well as those of the occupation numbers in the conduction
band

fc(k) = <c^ccjg> (51)

and in the valence band

/v(*) = (clfrz) (52)
are easily calculated from the Heisenberg equation of motion for any operator O accord-
ing to

-ift£o = [«,O]. (53)

Employing the usual anticommutation rules, i.e.

K* 4l+ = *»' KP 41+ = %'. <54)
I5We will employ this approximation in section 4.2., but we will not use this approximation in section 4.3.,

i.e., we will explicitly account for all relevant optical transitions via the Bloch equations.
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and that all other anticommutators are zero, this leads us to the known Bloch equations
for the transition amplitude

d_

dt +
rel (55)

= iJT1 dcv(k)E{f, t) (fv(k) - fc(kf) ,

with the optical transition energy

HQ(k) = Ec(k) - Ev(k),

and for the occupation in the conduction band

(56)

= 2h-1dcv(k)E(r,t)Im(pvc(k)) . (57)

Here we have assumed a real dipole matrix element. (1 — fv{k)) can be interpreted as
the occupation of holes and obeys an equation similar to fc(k). The terms with sub-
script "rel" have been added phenomenologically and describe dephasing and relaxation,
respectively16. For very short time scales, they are not too important. Note that the tran-
sition amplitude pvc(k) and the occupation factors fc(k) and fv(k) are easily connected
to the components of the Bloch vector (u, v, w)T via

u \ / 2Re(pvc(k))
v := 2Im(pvc(*))

fc(k) - fv(k)
(58)

with equation of motion (relaxation omitted)

(59)

Here we have introduced the Rabi frequency flR(t) with

(60)

and have suppressed the wave vector dependences for clarity. The Rabi frequency is
proportional to the electric field and proportional to the dipole matrix element dcv. Note
that the Rabi frequency itself oscillates with the frequency of light UJ0, i.e.,
periodically changes sign.

16For a state-of-the-art description of scattering processes see Refs.[l, 15, 16, 17, 18,19,20,21].



112

conduction band

valence band

Figure 9: Scheme of the valence and the conduction band of a direct gap semiconductor in the first Brillouin

zone, i.e. for wave numbers, k, in the interval [—7r/a, +n/a], a is the lattice constant. At each k, the optical

interband transition resembles that of a two-level system with transition energy ftf2 = Ec(k)-Ev(k). Close to

the center of the Brillouin zone, the bands are nearly parabolic and the effective mass approximation is justified.

Eg is the band gap energy.

What is the meaning of the three components of the Bloch vector? With the above
(and generally false) statement that it is not possible to invert a two-level system by reso-
nant excitation one implies that electrons are either in the ground state or in the excited
state. In quantum mechanics, however, they can be both in the ground state and in the
excited state - i.e., they can be in a superposition state. The complex amplitude of this
superposition state is encoded in the real and the imaginary part of the transition ampli-
tude, i.e., it is encoded in the components u and v of the Bloch vector. The component
w is simply the inversion of the two-level system, i.e., it is equal to -1 if all electrons are
in the ground state, and it is +1 for complete inversion. It is easy to show that [1], for
vanishing relaxation, the length of the Bloch vector is constant (the matrix in Eq. (59) is
unitary) and equal to one, i.e.

V"2 + v2 + w2 = 1. (61)

Hence, all the physics can be represented as rotations of the Bloch vector on a sphere
with radius unity, the Bloch sphere. For vanishing electric field, the Bloch vector rotates
in the uu-plane with a frequency given by the optical transition frequency Q, for very
large fields one gets a rotation in the uu;-plane with frequency 2 f2R.(£). This oscillation
is the Rabi oscillation. The resulting temporal evolution of the inversion w has already
been shown in Fig. 8. If, for example, during the action of the electric field pulse, the
Bloch vector performs one complete rotation in the uio-plane, the pulse area © is equal
to 2TT. There is, however, no simple mathematical expression for 0 . For finite fl and £2R,
the dynamics of the Bloch vector is a combination of both rotations, one in the uu-plane
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and one in the uio-plane. Graphical examples are shown in Fig. 10.

Example 3.1.: Consider zero light field, in which case we have fiR
 = 0- From Eq. (59)

we obtain the two coupled equations: u = +Q,v and v = —Q,u, leading to u + Q2 u = 0,
which is nothing but the harmonic oscillator equation.

Example 3.2.: For an electric field of E(f, t) = Eo = 4 x 109 V/m and GaAs param-
eters (dcv = 0.5 enm, with the elementary charge e = 1.6021 x 10~19 As) we obtain
HQR = 2 eV which is comparable to the photon energy of HUJQ = 1-42 eV corresponding
to the GaAs band gap (see section 4.1.).

For semiconductors in general, one gets additional contributions to the Rabi frequency
as a result of the Coulomb interaction of electrons and holes [1,22, 23,24,25, 26, 27,28,
29]. This modified or renormalized Rabi frequency can be interpreted as an internal field,
which adds to the external laser field. We will neglect this aspect throughout this article.

Often (but not in this article), the Bloch equations are modified by a transformation
to a frame, which rotates in the uu-plane with frequency UJQ. In addition, one neglects
off-resonant contributions. This procedure is called the rotating wave approximation.
Details can be found in Ref. [1]. Within this approximation, the transition frequency Q.
in the Bloch equations has to be replaced by the detuning Q, = Q — w0, and one gets an
envelope Rabi frequency Q R given by hClR = dcvE(t), which varies in time according
to the electric field envelope E{t) but no longer oscillates with the frequency of light. The
corresponding envelope pulse area 6 is defined according to

e = / nR(t)dt. (62)

Exercise 3.1.: Consider resonant excitation of a two-level system in the incoherent limit.
(This brings us back to the qualitative discussion in the introduction of section 3.1.)
Specifically, compute the steady-state inversion, w, of the two-level system via the opti-
cal Bloch equations (Eq. (59)) for the Bloch vector (u, v, w)T and account for dephasing

o \ pvc
-srPvc I = 7=r in the limit T2 —• 0. T2 is called the dephasing time or
d t /rel r2

transverse relaxation time. The latter notion originates from nuclear magnetic resonance
(NMR), where the components u and v of the Bloch vector correspond to the real space
x and y-components of the magnetization, x and y are perpendicular (transverse) to the
static magnetic field, which is usually oriented along the ^-direction.
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3.2. PONDEROMOTIVE ENERGY

We have seen in section 3.1. that the electric field of a laser pulse can promote electrons
from the ground state (valence band) into the excited state (conduction band). In addition
to this, the electric field can also accelerate electrons within the bands, classically speak-
ing, or, quantum mechanically, it can modify the states, it can modify the band structure -
an aspect, which is not contained in the Hamiltonian Eq. (47). This leads to "dressed elec-
trons" within the effective mass approximation (section 3.2.) and to the "Wannier-Stark
ladder" beyond the effective mass approximation (section 3.3.).

Let us start by assuming that the effective mass approximation applies. In this case,
classically, Newton's second law17 for the electron displacement, x, gives

me x(t) = hkx(t) = -eE(t), (63)

with the (effective) electron mass me. Inserting the electric field18 E(t) polarized along
the x-direction

E(t) = EQ cos{ujQt + 4>), (64)

we obtain the solution

x(t) = - ^ 5 cos(u>0t + <f>) • (65)

For the velocity v(t) this results in

v(t) = - - ^ - 2 - sin(wo< + <t>) • (66)

Averaging19 the kinetic energy Ekin(t) = ^ v2(t) over an optical cycle 2-K/LJO we

obtain the ponderomotive energy (or quiver energy)

(67)

Obviously, the ponderomotive energy is directly proportional to the light intensity /
(oc E2, see Eq. (16)). The peak kinetic energy is twice the ponderomotive energy.

"Here we have already omitted the term -ev x B from the Lorentz force. In a medium, \B\ = \E\/c
holds. Thus, \v x B\ becomes comparable to \E\ if |v| fa c, i.e., for relativistic velocities. For the parameters
relevant for solids in this article, the electron velocities \v\ are small compared to the medium light velocity c.
However, for gases and extremely large intensities, the force -evx Bean become important (see example 3.4.
and section 6.).

18 For clarity, we suppress the spatial dependence as well as the vector character of the electric field.
19Remember that (sin2(u;ot + 4>)) = 1/2.
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Example 33.: For £ o = 4 x 109 V/m and GaAs parameters (me = 0.07 x mo, with the
free electron mass ro0 = 9.1091 x 10~31 kg and hu0 = £g

G a A s = 1.42 eV) one obtains
(Skin) = 2.16 eV. For Eo = 6 x 109 V/m and ZnO parameters (me = 0.24 x m0 and
hu0 = 1.5 eV) we get <£kin) = 1.27 eV.

By the way: For EQ = 4 x 109 V/m and GaAs parameters, the peak acceleration of the
crystal electron, a°, is given by \a°\ = e/me Eo = 1.0 x 1022 m/s2 = 1021 x g with the
gravitational acceleration constant near the earth's surface g = 9.81 m/s2 . Compared
with this, the maximum acceleration of a Formula-1 race car, which is on the order of
101 x g, is really negligible ...

Quantum mechanically but still within the effective mass approximation, the problem
of a crystal electron in a laser field (oscillating in time) is somewhat analogous to that of
the light field with carrier frequency OJQ in a mode-locked laser oscillator (see section 2.3.).
There, the electromagnetic wave packet (the laser pulse) periodically oscillates back and
forth between the laser mirrors (with the round trip frequency / r ) . This leads to sidebands
of u>0 - the frequency comb. These sidebands are rigidly shifted by the carrier-envelope
offset frequency /^ as a result of the phase slip A<j> of the electromagnetic wave packet
from one round trip to the next according to Eq. (33). In analogy to this, semiclassically
speaking, the electron wave packet in a periodic laser field acquires a quantum phase in
one optical cycle, A<pe, which is given by the cycle-average20

V^phase ~ ^groupj
(68)

with the electron deBroglie wavelength Ae = 2ir/kx and the period of light 2-K/OJO-

With the dispersion relation of, e.g., vacuum electrons or conduction band electrons in a
semiconductor within the effective mass approximation

Ec(kx) = hwe(kx) = | ^ , (69)

and with t>phase = we/&x and ^grOup = du>e/dkx, we obtain the phase slip of the oscillat-
ing electron wave packet from one optical cycle to the next

( hkx hkx \ 2TT
— 2

AJ>e = ( 2 A 2 m e 2m£

2-K/kx

= - 2 T T -
2me

Ae, uphase> an(J I'group vary in time via kx = kx(t).
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. (70)

Note that the minus sign is due the fact that the electron group velocity is larger than
its phase velocity, while for photons the situation is usually reversed, i.e., their group
velocity is smaller than their phase velocity.

According to Eq. (70), the phase slip becomes appreciable in magnitude if the
ponderomotive energy approaches the carrier photon energy, i.e. (-E!kin)/(^o) w 1-
Furthermore, in analogy to the light field in a laser cavity, we expect that the density
of states of the combined system electron and light field, i.e., of the so called dressed
electron, exhibits photon sidebands of the electron density of states at ±N x %UJQ (with
integer N), which - in analogy to Eq. (33) - are shifted according to

^ Ekin). (71)

Thus, the entire spectrum is shifted towards higher energy by the ponderomotive energy
<£kin> [30, 31].

Thus, (Ekin) for electrons is analogous to /^ for photons.

For semiconductors, however, the concept of the ponderomotive energy is only mean-
ingful within the range of validity of the effective mass approximation, which obviously
fails for large values of (Skin), typically already above several 0.1 eV (see Fig. 9). This
limits the importance of the ponderomotive energy for semiconductors under extreme
conditions.

For real electrons in atoms, on the other hand, it is always a valuable quantity. There,
however, for the same laser intensity I, the ponderomotive energy is substantially smaller
than in solids, because the free electron mass mo is larger than typical effective electron
masses by about an order of magnitude. Also, for atoms, the ponderomotive energy has to
be compared with the Rydberg energy (13.6 eV for H-atoms), which is at least one order of
magnitude larger than typical transition energies in solids. Thus, with the combined effect
of both aspects, the laser intensities in atoms have to be two to three orders of magnitude
larger than in solids to make the ponderomotive energy comparable to a characteristic
energy scale.

For yet larger intensities, the ponderomotive energy reaches the relativistic rest
energy of the free electron mo C2,. We will come back to this aspect in section 6.

Example 3.4.: For £ 0 = 8 x 1012 V/m, hu>0 = 1.5 eV and free electrons (me = mo =
9.1091 x 10~31kg) we get (JSkin) = 540 keV, which is comparable to the relativistic
rest energy m0 CQ = 512 keV of the electron. Thus, the non-relativistic expression of the
kinetic energy Eq. (67) no longer applies. The corresponding intensity is 9 x 1018 W/cm2 .
Thus, we anticipate an appreciable influence of relativistic effects already at intensities
around 1018 W/cm2 (see section 6.2.).
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3.3. BLOCH ENERGY

The failure of the concept of the ponderomotive energy in solids for large laser intensities
asks for a more general quantity which reflects the kinetic energy of the electrons within
the bands without employing the effective mass approximation. Let us first consider a
static electric field Eo (again parallel to the x-direction). If the electrons are accelerated
so much that their wave number kx reaches the end of the first Brillouin zone, i.e. kx =
±7r/a with the lattice constant a, they are Bragg-reflected to kx — T^/a, i-e., their
momentum changes sign (Fig. 9). This leads to a real space oscillation of the electron
position, known as Bloch oscillation (for a recent review see, e.g., chapter 8 of Ref. [1]).
From Eq. (63) for a constant electric field EQ starting from electron wave number kx (0) =
0 we get

^ (72)

For half a Bloch oscillation period Tr/fieioch, the electron wave number hits the end of
the Brillouin zone, i.e., A;x(7r/f2Bioch) — —TT/O and we obtain for the Bloch frequency

from this semiclassical reasoning

(73)

As in our case the electric field of the laser pulse oscillates in time, also the Bloch
frequency oscillates with the frequency of light UJQ - in analogy to the Rabi frequency
(Eq. (60) in section 3.1.).

What is the appropriate quantum mechanical picture? Without electric field, the elec-
tron wave functions of the atoms forming the solid overlap, which lifts their degeneracy,
leading to the bands (see Fig. 9) describing delocalized electron wave functions. In the
presence of a strong electric field, i.e., for aeEo large compared with the width of the
band (typically a few electron Volts), the potential drop over one lattice constant, aeEo,
lifts the degeneracy and the wave functions become localized again. The correspond-
ing eigenenergies, EM, are evenly separated in energy according to the Wannier-Stark
ladder

EM = M x aeEo, (74)

with integer M = —oo, ..., —1, 0, 1, +oo. An electronic wave packet is a superposition
of these Wannier-Stark states and leads to a quantum beating between these states in
time. This quantum beating is the quantum mechanical analogue of the Bloch oscillations.
Thus, the Bloch frequency HBioch is given by

(75)EM =

This quantum mechanical result, Eq. (75), is identical to that of the semiclassical reason-
ing, Eq. (73). Note that Eq. (74) is analogous to the frequency comb of mode-locked laser
oscillators (see section 2.3.), were fiBioch/27r plays the role of the repetition frequency / r

(seeEq.(31)).
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Example 3.5.: For EQ = 4 x 109 V/m and a = 0.5 nm (ZnO along the c-axis or
GaAs) this leads to a Bloch energy of Ml&\oc\i = 2 eV, equivalent to a Bloch period of
27r/fiBioch = 2 fs. As this is already shorter than one cycle of light (e.g., 2IT/UJO = 2.8 fs
for fkJo = 1.5 eV), one approaches the point at which the carriers experience Bragg
reflections within an optical cycle, i.e., the electron kinetic energy reaches the top of the
conduction band or the end of the first Brillouin zone.

In general, both interband transitions as well as intraband transitions, are im-
portant. Moreover, one generally also obtains a contribution to the optical polarization
associated to the intraband processes. For the experiments on GaAs, ZnO and CdS dis-
cussed in this article, however, this contribution turns out to be much smaller than the
interband polarization. Hence, one has to solve the problem discussed in sections 3.2.
and 3.3. so far together with the optical Bloch equations (section 3.1.). This task has
not been fully solved yet in the literature. Within the acceleration theorem approximation
(see, e.g., Refs. [1, 32]), it can be considerably simplified by a transformation to the accel-
erated frame21. In essence, this leads to the same Bloch equations as described in section
3.1., however, with a time-dependent optical (interband) transition frequency Q. For the
electron wave vector, k = (kx, ky, kz)

T, Newton's law (63) for an electric field polarized
along the x-direction delivers hkx(t) = -eE(t), the components ky and kz are constant
in time. This leads to

Q(k)-+n(kx(t),ky,kz), (76)

with

M*) = * £ - § / E(t')dt'. (77)

In Eq. (76), the actual dispersion relations of the bands enter according to
ft(k) = (Ec(k) - Ev(k))/h (see Fig.9 and Eq.(56)). Thus, the transition fre-
quency Q, = Q.(t) itself oscillates in time with an amplitude which obviously increases
with increasing peak field amplitude EQ. For symmetric dispersions Q(k) with respect
to kx it oscillates with frequency 2UQ, for a non-symmetric dispersion with frequency
u>o- In general, the oscillation of Q(t) is not harmonic. After the pulse is over, i.e.,
for t —> +oo, the transition frequency comes back to its original value, because of
J-^ E(t') d*' = 0 (see discussion at the end of section 2.3.).

Exercise 3.2.: What are the peak (classical) charge displacements, XQ, for an electric field
of Eo = 4 x 109 V/m for a) Rabi oscillations, b) free motion of a particle (ponderomotive
energy) and c) Bloch oscillations ? How does XQ scale with EQ for the three cases a) - c) ?

21This semiclassical treatment of intraband processes is really only justified for weak electric fields, i.e., as
long as the band structure remains intact. In principle, one has to calculate the time-dependent "band structure"
under the influence of the strong laser electric field.
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4. Carrier-Wave Rabi Flopping of Electrons in Semiconductors

The notion carrier-wave Rabi flopping was first used by S. Hughes, who discussed an en-
semble of identical uncoupled two-level systems [33, 34] (also see Refs. [35, 36, 37, 38]).
It refers to Rabi flopping under the condition that the Rabi frequency is approximately
equal to the light frequency [39]. As one is interested in the system's dynamics on a
timescale of one period of light or less, both, the rotating wave approximation and the
slowly varying envelope approximation [1, 14] must obviously not be used. His theoret-
ical work as well as that of others [40] is based on the theoretical framework of Ref. [41],
i.e., on numerical solutions of the coupled Maxwell-Bloch equations (see sections 2.1.
and 3.1.) in one dimension.

U

10 20 30 40 50 60 70
TIME (fs)

4 6 8 10 12 14
TIME (fs)

Figure 10: (a) Scheme of the trace of the Bloch vector for conventional Rabi flopping. The rotating wave

approximation is not used. Pulse duration is 20 optical cycles, envelope pulse area is © = 2 w. (b) Same

for carrier-wave Rabi flopping. Pulse duration is 2 optical cycles, © = 4 n. The optical pulse envelopes are

indicated by the grey areas on the RHS.

What are the anticipated signatures of carrier-wave Rabi flopping? The condition Rabi
period equal to the light period corresponds to a huge intensity (see section 3.1.). While
it might be possible to reach this condition with pulses of several tens of femtoseconds in
duration, it is not very likely that the samples will survive the large deposited energy (=
intensity x duration). Thus, it seems favorable to study excitation with very short pulses,
ideally with only one or two cycles of light in duration with minimum deposited energy.
Remember that, for GaAs parameters, the period of light corresponding to the room tem-
perature band gap energy is 2.9 fs. To highlight the general aspects of carrier-wave Rabi
flopping, let us first review the behavior for an ensemble of uncoupled and identical two-
level systems, which is the level of sophistication of Refs. [?, 39, 40, 41]. For reference,
Fig. 10(a) schematically depicts conventional Rabi flopping plotted on the Bloch sphere,
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Figure 11: Grey-scale plots of the radiated light intensity / r a ci (i.e., normalized square modulus of the Fourier

transform of the second temporal derivative of the optical polarization P(t) oc u(t) from the Bloch equations)

versus spectrometer frequency u>. (a) Position of the peaks of the fundamental and the third harmonic Mollow

triplet versus peak Rabi frequency Q R in units of the laser carrier frequency uo for Q/uo = 1 with fi^o =

1.5 eV and for a N = 30 cycle long box-shaped optical pulse (see center inset for N = 3). (b) Dependence

on the integer number of cycles N = 1,2, ...30 in the pulse for fixed fifi/wo = 0.5. Note the occurrence of

additional side maxima for few-cycle pulses.

i.e., the Rabi period is much larger than the light period. For clarity, we neglect any
damping at this point. The components u and v of the Bloch vector (u, v, w)T have been
explained in section 3.1. In this representation, the optical oscillation corresponds to an
orbiting of the Bloch vector parallel to the equatorial plane (uu-plane) with the optical
transition frequency fl (here Q, = UJQ = 2TT/2.9 fs), the oscillation of the inversion to a
motion in the vw-planc. For a square-shaped pulse with envelope pulse area © = 2 TT
starting from the south pole, i.e., all electrons are in the ground state (valence band), the
Bloch vector spirals up to the north pole, i.e., all electrons are in the excited state (conduc-
tion band) and back to the south pole. This up and down leads to a temporal modulation
of the real part of the optical transition amplitude u(t) (Fig. 10(a)). Fig. 10(b) shows re-
sults for 6 = 4 7T and for a much shorter pulse, such that the Rabi period equals the light
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period. Two related aspects are obvious. First, although O = 4TT, the Bloch vector does
not come back to the south pole. In this sense, the usual definition of the envelope pulse
area O fails. Hence, also the area theorem of nonlinear optics [14], which is based on
this definition, fails. Despite this failure, we quote Q for reference at some points in this
article. Second, it is obvious that the optical polarization becomes strongly distorted dur-
ing the two cycles of the optical pulse (see u versus time in Fig. 10(b)). Thus, harmonics
are being generated, the most prominent of which, for an inversion symmetric medium, is
the third harmonic. For low intensities, this is nothing but the resonantly enhanced third-
harmonic generation (see section 2.4.). Note that absolutely no harmonics are generated
after the two cycles of the optical pulse (see Fig. 10(b)). Here one merely has a free (har-
monic) oscillation of the optical polarization with the optical transition frequency Q. of
the two-level system.

In the frequency domain (see Fig. 11), pairs of sidebands around the fundamental tran-
sition frequency, i.e, at fi±fiR, and around its third harmonic, i.e., at 3 J 2 ± Q R result from
the temporal modulation of the optical transition with the Rabi frequency. Together with
the corresponding central peaks, these pairs of sidebands form the fundamental Mollow
triplet [42] and the carrier-wave Mollow triplet at the third harmonic, respectively.

4.1. EXPERIMENT: GALLIUM ARSENIDE

The experiments are performed with 5 fs linearly polarized (p-polarization) optical pulses
at / r = 81 MHz (= 1/12 ns) repetition frequency, which have recently become available
[43]. Our home-built copy of this laser system very nearly reproduces the pulse properties
described in Ref. [43]. The typical average output power of the laser lies in the range 120
-230mW.

(a) 1-0

700 800 900 1000
WAVELENGTH (nm)

-30 -20 -10 0 10 20 30
TIME DELAY x (fs)

Figure 12: Experiment: (a) measured laser spectrum, (b) measured interferometric autocorrelation. The grey

curve in (b) is the autocorrelation computed from the laser spectrum under the assumption of a constant spectral

phase (no chirp). The inset in (b) depicts a 4.8 fs full width at half maximum real time intensity profile computed

under the same assumption.
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Fig. 12(a) shows a typical laser spectrum, which has been obtained via Fourier-transform
of an interferogram taken with a pyroelectric detector, which is spectrally extremely flat.
The Michelson interferometer used at this point and for all results throughout this article
is carefully balanced and employs home-made beam splitters fabricated by evaporating a
thin film of silver on a 100/um thin glass substrate. The Michelson interferometer is ac-
tively stabilized by means of the Pancharatnam screw [44], which allows for continuous
scanning of the time delay while maintaining active stabilization. The remaining fluctu-
ations in the time delay between the two arms of the interferometer are around ±0.05 fs.
The spectral wings which can be seen in Fig. 12(a) result from the spectral characteris-
tics of the output coupler. The measured interferometric autocorrelation22 depicted in
Fig. 12(b) is very nearly identical to the one computed from the spectrum (Fig. 12(a)) un-
der the assumption of a constant spectral phase. This shows that the pulses are nearly
transform-limited. The intensity profile computed under the same assumption is shown
as an inset in Fig. 12(b) and reveals a duration of about 5 fs. As a result of the strongly
structured spectrum (a square-function to zeroth order), the intensity envelope versus time
shows satellites (a sinc2-function to zeroth order23). Using a high numerical aperture re-
flective microscope objective [45], we can tightly focus these pulses to a profile which
is very roughly Gaussian with 1/xm radius. This value has carefully been measured by
a knife-edge technique at the sample position (see Fig. 17(a)). This sample position is
equivalent to that of the second-harmonic generation (SHG) crystal used for the auto-
correlation in terms of group delay dispersion. In front of the sample, each arm of the
interferometer typically has an average power of about 8 mW. The resulting peak inten-
sity of one arm can be roughly estimated as

7o =
 8 m

4
W "£ = 0.6 x 10- W/cm2. (78)

7r(10~4cm)J 5fs

Following our discussion in the introduction (section 2.2. and Eq. (16)), this intensity
corresponds to a peak of the field envelope (in vacuum)

Eo = \2J—10 = 2.1 x 109 V/m (79)

for one arm, or 4.2 x 109 V/m - which is roughly the number we have used in several
examples in sections 2 and 3 - for two constructively interfering arms of the interferom-
eter (4> r = 0). To further estimate the envelope pulse area & (see section 3.1.). one
furthermore needs the dipole matrix element dcv of the optical dipole transition. From the
literature for GaAs we find dcv = 0.3 enm [46] and dcv = 0.6 enm. k • p perturbation
theory according to Eq.(50) delivers dcv = 0.65enm. Choosing dcv = 0.5enm for
GaAs in this article, the value for Eo from Eq. (79) translates into an envelope pulse area
of

G = h~1dcvE0 x5fe = 8.1 > 2TT (80)

22 In an interferometric autocorrelation, the output of the Michelson interferometer is sent onto a x ' 2 ' medium.
The resulting second harmonic is recorded as a function of the time delay r of the interferometer.

23Remember that the sine-function is defined as sinc(i) = — — - .
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Figure 13: Experiment: Spectra of light emitted into the forward direction around the third harmonic of the GaAs

band gap frequency. The spectra are shown on a linear scale, vertically displaced and individually normalized

(from top to bottom: maxima correspond to 5664, 439, 34 and 4counts/s). Excitation with 5fs pulses. The

intensity / of the pulses is indicated.

for one arm (/ = 0.601 x 70 corresponds to 2n pulse area), and > 4 n (two Rabi
periods) for two constructively interfering arms of the interferometer. For a 5 fs pulse and
a 2.9 fs band gap period, this corresponds to a Rabi frequency which even slightly exceeds
the light frequency. It is also interesting to give a very rough estimate for the excited
carrier density under these conditions. The GaAs band-to-band absorption coefficient is
a = 104 cm"1. If all the light was absorbed according to this number - certainly an upper
limit - one arrives at a carrier density of

ne h = a IQ x 5 fs/1.42eV = 1.3 x 1020 cm"3 . (81)

For constructive interference of the two arms of the interferometer, this number needs to
be multiplied by a factor of four. Thus, we can safely conclude that the highest carrier
densities approach 1020 cm"3. In the experiment, we use a 0.6 /zm thin film of GaAs clad
between Alo.3Gao.7As barriers, grown by metal-organic vapor phase epitaxy on a GaAs
substrate. The sample is glued onto a 1 mm thick sapphire disk and the GaAs substrate
is removed. Finally, a A/4-antireflection coating is evaporated. The light emitted by this
sample, held under ambient conditions, is collected by a second reflective microscope
objective [45], is spectrally pre-filtered by a sequence of four fused-silica prisms, and is
sent into a 0.25 m focal length grating spectrometer connected to a liquid-nitrogen cooled,
back-illuminated, UV-enhanced charge-coupled-device (CCD) camera. For a second set
of experiments the transmitted light is dispersed in a miniature spectrometer which allows
to simultaneously cover the wavelength range from 500 nm to 1100 nm.

Let us first discuss results for single pulses only, i.e., we block one arm of the interfero-
meter. Fig. 13 shows spectra at the third harmonic for different pulse intensities / in mul-
tiples of 7o, as defined above. For the attenuation we have used metallic beam splitters on
100 ̂ m thin fused silica substrates, the dispersion of which has carefully been compen-
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sated for by the extra-cavity sequence of four CaF2 prisms [43]. At low intensity, i.e., for
I — 0.017 x IQ, we observe a single maximum around 300nm wavelength which is inter-
preted as the usual third-harmonic generation which is resonantly enhanced by the GaAs
band edge here. With increasing intensity, we find a second maximum emerging at the
long wavelength side, which gains more and more weight. At the highest intensity, i.e.,
I = 0.779 x 7o, the lOx magnification reveals an additional smaller maximum around
340 nm wavelength. In Ref. [39] we have interpreted this overall behavior as a signature
of carrier-wave Rabi flopping. Note that the intensities revealing a double-peak structure
in the third-harmonic spectrum correspond very well to our above simple estimates, i.e.,
we estimated a full Rabi flop for an intensity of I = 0.601 x 7o.

In the second set of experiments we study the third-harmonic spectra for excitation
with phase-locked pulse pairs with time delay r , i.e., we open both arms of the interfer-
ometer. It is interesting to note that 0 is the same for T = 0 and for, e.g., r equal to
two optical cycles - because the two optical fields simply add. Yet, the corresponding
Rabi frequency is larger for r = 0. For low intensities (Fig. 14(a)), i.e., for small Rabi
frequency as compared to the light frequency, the third-harmonic spectrum is simply mod-
ulated as a function of r due to interference of the laser pulses within the sample leading
to a period of about 2.9 fs. In contrast to this, for higher intensities (Fig. 14(b)-(d)), where
the Rabi frequency becomes comparable to the light frequency, the shape of the spectra
changes dramatically with time delay r . For, e.g., r = 0 in Fig. 14(b), the two pulses
simply interfere constructively and we find the same spectral double-maximum structure
as in the single pulse experiments (Fig. 13). For larger r , i.e., after one or two optical cy-
cles, this double maximum disappears and is replaced by one prominent and much larger
maximum. For the highest intensity, i.e., for Fig. 14(d) - which corresponds to an enve-
lope pulse area © of more than 4 7r - the behavior is quite involved with additional fine
structure for \T\ < 1 fs. Note that the spectra for r = 0 nicely reproduce the behavior
seen in Fig. 13.

We have also deliberately introduced positive or negative group velocity dispersion
by moving one of the extra-cavity CaF2 prisms in or out of the beam with respect to
the optimum position (Fig. 15) [39]. Obviously, this leaves the amplitude spectrum of the
laser pulses unaffected. We find that one quickly gets out of the regime of carrier-wave
Rabi flopping, i.e. both, the splitting at T = 0 as well as the dependence of the shape on
the time delay r , quickly disappear with increasing pulse chirp. This demonstrates that it
is not just the large bandwidth of the pulses but the fact that they are short - two optical
cycles - which is important for the observation of carrier-wave Rabi flopping.

Apart from the interference of the laser pulses in the sample, at larger time delays
\T\ one additionally observes interference of the third-harmonic signals corresponding to
the two phase-locked pulses on the detector leading to periods around one femtosecond
in Fig. 16. It can also be seen from Fig. 16 that the splitting in the spectra gradually
approaches zero for large time delays. In independent experiments we have verified that
the pulses are really 5 fs in duration at the sample position, which rules out that the tails
at large time delay are an artifact of our experiment.

It is clear that one also expects large induced transmission at the GaAs band gap as
a result of the Rabi flopping, which brings us to the third set of experiments we have
performed on GaAs. Fig. 17(a) schematically shows the geometry. To vary the excitation



125

- 7 0

-5 0 5
TIME DELAY x (fs)

10

Figure 14: Experiment: Same as Fig. 13, however, using pairs of phase-locked 5fs pulses. The signal around

the third harmonic of the band gap is depicted versus time delay r in a grey-scale plot (note the saturated grey

scale on the right hand side). (a)-<d) correspond to different intensities / as indicated. / refers to one arm of the

interferometer.

intensity without having to introduce filters (which would definitely require to change the
dispersion compensation), we simply move the sample in the ^-direction through the fixed
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Figure 15: Experiment: As Fig. 14(c), however, the additional/removed amount of CaF2 material is indicated.

This changes the chirp of the pulses but not their amplitude spectrum, (c) corresponds to Fig. 14(c), i.e., to

/ = 0.213 x IQ.
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Figure 16: Experiment: Similar to Fig. 14(c) with / = 0.120 x Io, however, for a larger range of the time

delay r . Around r = 0 the interference of the laser pulses within the sample dominates, while we additionally

observe interference of the third-harmonic signals corresponding to the two phase-locked pulses on the detector

for larger \T\.

sample

Figure 17: (a) Scheme of the z-scan experiment (the measured radii are fitted with the formula r(z) =

0.97 fj.my'l + 0.12 • (z/fim)2 , (b) transmitted light intensity on a logarithmic scale versus sample position

z for an intensity of / = 1.752 x Jo (referring to z = 0).

focus (z — 0) of the microscope objective and collect the transmitted light with the fixed
second microscope objective. To enhance the visibility of the changes in transmission
shown in Fig. 17, we define a differential transmission, AT/T, as

AT = h{z) -It{z = -oo)
T It{z = -oo)

(82)

where It(z) is the transmitted light intensity at sample position z. The condition z — — oo
actually corresponds to z = —20 //m in the experiment, where the profile is so large that
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Figure 18: Differential transmission A T / T as a function of the sample coordinate z for three different incident

intensities / (referring to z = 0). (a) / = 0.145 x Jo, (b) / = 0.518 x 70, (c) I = 1.752 x Jo-

we can safely assume that linear optics applies.
Fig. 18 shows corresponding results for three different incident light intensities I in
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units of Jo as defined above. First, all results are closely symmetric around z = 0,
which indicates that changes in absorption dominate. Changes in the refractive index
might lead to focusing or defocusing of the beam which would result in an asymmet-
ric dependence on z (similar to the known so called z-scan technique, e.g., described in
Ref. [48]). Second, one can see a large increase in transmission for wavelengths shorter
than the GaAs band edge (approximately 870 nm) around z = 0 (Fig. 18(a)). z = 0 cor-
responds to the highest intensity in each plot. The maximum around 670 nm wavelength
results from bleaching of the band gap of the Alo.3Gao.7As barriers of the GaAs double
heterostructure which accidentally coincides with the pronounced maximum in the laser
spectrum (Fig. 12(a)) also around 680 nm. For larger intensity, Fig. 18(b), the transmis-
sion maximum around z — 0 flattens and we observe pronounced induced absorption
for wavelengths longer than the GaAs band edge. For the highest intensity (Fig. 18(c)),
this increased absorption becomes the dominating feature throughout most of the spec-
tral range. Note that little if any induced transparency is observed for wavelengths be-
tween 780nm (170meV above the unrenormalized band gap Es = 1.42eV) and 700nm
(350 meV above the unrenormalized band gap) while the laser spectrum (Fig. 12) still has
significant amplitude there. This indicates that these states high up in the band-to-band
continuum of GaAs must experience a much stronger damping (phase relaxation) and/or
energy relaxation than those states near the band gap.

4.2. THEORY

In the introduction to this section we have already discussed the behavior for one two-level
system resonant with the center frequency of the laser pulses. In the following we discuss
the result of only the Bloch equations as a function of the detuning, which is relevant for
states in the continuum of states of the semiconductor bands. Corresponding results24 are
depicted in Fig. 19. Here, u> denotes the (spectrometer) photon frequency, UJQ the laser
carrier frequency and Q. — Q,(k) = h~1(Ec(k) — Ev(k)) the transition frequency of one
transition within the band. All states are assumed to have the same dipole matrix element
and the same phenomenological relaxation in Eq. (55) according to

# (83)
rel T 2

with the dephasing time T2 = 50 fs. Relaxation for the occupation numbers can be ne-
glected. Without band gap renormalization, it is clear that there are no states below the
band gap energy (dashed horizontal line); nevertheless, we depict these data. Again, the
laser carrier frequency is centered at the band gap energy, i.e., we have Tiwo = Es. The
laser spectrum is shown on the right hand side lower corner as the grey-shaded area. The
spectrum for hu>o = ^fi = Eg is also depicted by the white line. It corresponds to the
result of a single resonantly excited two-level system. For small envelope pulse area,
0 = 0.5TT, we find a single rather narrow maximum around CJ/WO — 3 and Q/u>o — 1.
Its width correlates with the width of the laser spectrum. This single maximum is noth-
ing but the usual, yet resonantly enhanced, third-harmonic generation. It experiences a

24Remember that the sech-function is defined as sech(x) = l/cosh(i) = 2/(exp(+i) + exp(-z)) .
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Figure 19: Theory: Grey-scale plot of the intensity (square modulus of pvc) as a function of spectrometer

frequency w and transition frequency £2 (see Fig. 9). The carrier frequency wo of the optical pulses (see grey

areas on the RHS) is centered at the band gap frequency, i.e., /two = Ee. The spectrum for a transition right

at the band gap, i.e. HCi = Eg,is highlighted by the white curve. The diagonal dashed line corresponds to

Q = u. Excitation with sech2-shaped 5 fs pulses. The envelope pulse area © increases from (a) to (d).
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Figure 20: Theory: As Fig. 19, however for sine2-shaped *FWHM = 5.6 fs pulses (spectrum see grey areas

on the RHS) with envelope pulse area 0 = 4ir. The CEO phase <j>, i.e., the phase between the electric field

envelope and the carrier wave, is parameter. Note that significant changes occur within the black rectangles, (a)

4> = O.OOTT, (b) <p = 0.1077, and (c) <j> = 0.25TT. The corresponding electric fields versus time are depicted on

the RHS. The grey curves on the RHS are the field envelopes.

constriction for 0 = I.OTT, which evolves into a shape that resembles an anticrossing
for 0 = 2.0TT. Here, two separate peaks are only observed in a rather narrow region
around HQ = 7iu>o = Ee, while for larger HQ, only a single maximum occurs. Also,
we find that the contribution of larger frequency transitions is by no means small. For,
e.g., hfl — 2eV transition energy, the signal is actually larger than for the band gap,
i.e., for HO, — 1.42 eV. This trend continues for yet larger pulse areas (see 0 = 4.0TT

in Fig. 19(d)). While there is considerable resonant enhancement (as can be seen from
Fig. 19(a)), this enhancement becomes less important at large pulse areas because the
resonant transitions are completely saturated.
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The actual spectra (see section 3.1.) are the integral over the individual contribu-
tions, multiplied with the combined density of states, over the relevant range of transition
energies. The bands themselves clearly have contributions even at HO, = 5 eV. If one
would sum up all these contributions at, e.g., 0 = 4.0TT (Fig. 19(d)), one no longer gets
two maxima but rather a single maximum around OJ/UIQ = 3, which would no longer be
in agreement with the experiments. Thus, there must be a reason why the high-energy
transitions do not contribute significantly. It was first pointed out to us by Hartmut Haug
that the reason might be that the high-energy transitions are likely to have much shorter
dephasing times which significantly suppresses their contribution. Also, band gap renor-
malization becomes quite significant at these very large carrier densities. If one, e.g., inte-
grates the spectra from 1.2 to 1.6 eV transition energy HO. with a constant density of states
(not shown), the experimental behavior is reproduced quite well. In particular, one gets a
gradual growth of a second spectral maximum rather than the sudden splitting observed
for a single two-level system. This interpretation of short dephasing times of high-energy
transitions as a result of the large excitation is consistent with our experimental obser-
vations depicted in Fig. 18, where we do not observe any induced transmission for these
states either.

Finally, we depict in Fig. 20 results obtained for sine2-shaped pulses25. Note that the
splitting of the Mollow sidebands is larger for the sinc2-shaped pulses than for the sech2-
pulses (compare Fig. 20(a) and Fig. 19(d)) for the same envelope pulse area of © = 4TT
and for cj> = 0. This is due to the fact that the envelope of the sine2 pulses contains neg-
ative parts. Thus, in order to give the same envelope pulse area, the peak Rabi frequency
has to be larger than for the sech2-pulses. In Fig. 20 we furthermore find a dependence of
the third-harmonic spectra on the optical phase <p (see signals in the lower LHS black rect-
angles in Fig. 20), which is due to the interference of the contributions of the fundamental
and the third harmonic, i.e., of the contributions of the optical polarization originating
from <jj/u)o = 1 and LJ/U>O = 3, respectively (see general discussion in section 2.4.). This
interference is illustrated in the inset of Fig. 22(a).

4.3. ROLE OF THE CARRIER-ENVELOPE OFFSET PHASE

Theory: In order to actually observe this interesting interference and the corresponding
dependence on the CEO phase, one must take care that propagation effects do not obscure
the behavior anticipated from the Bloch equations. In order to account for propagation
effects in a more realistic manner than in the previous section, where we have used the
concept of a background dielectric constant, we employ an ensemble of two-level sys-
tems, which fits the measured shape of the linear dielectric function of GaAs according to
Ref. [49] (reproduced in Fig. 21(d)).

The linear dielectric function of GaAs exhibits two strong resonances, the so called E\
and E2 resonance, which are due to the particular shape of the band structure. Following
our discussion on high-energy transitions in section 4.2., only the optical nonlinearities
of the band edge transitions are accounted for, the other transitions are assumed to be

25The long-time tails (posing significant numerical problems) have been suppressed by a Gaussian, i.e.,
E(t) = Eo s inc(t / t0) exp[ - t 2 / (2T§ a u s s ) ] cos(w0t + </>) with t0 = t F W H M/2.7831 and r G a u s s = 20 fs.
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Figure 21: \E(w)\2 (normalized to the maximum of the incident electric field spectrum) as a function of hu>

and 2, <j> = 0. Note the strong variation as a function of z. (a) sine2-shaped 5.6fs pulses, EQ — 3.5 x

109 V/m, the GaAs cap layer thickness is <2cap = 30 nm. (b) As (a), but for sech2-shaped 5 fs incident optical

pulses with Eo = 3.5 x 109 V /m, and dcap = 10nm. (c) As (a), but for incident pulses which are fitted

[47] to the experiment (see Fig. 12(a)), Eo = 2.5 x 109 V /m, d c a p = 10 nm. (d) The real (circles) and

imaginary (squares) part of the linear dielectric function of GaAs (full) and Alo.3Gao.7As (open), respectively,

are shown for comparison. The symbols are the experimental data from Ref. [49], the full curves correspond to

our modeling.
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Figure 22: (a) Signal intensity (linear scale, normalized to the maximum intensity, /max, of the incident laser

spectrum) emitted into the forward direction versus spectrometer frequency w in units of the laser carrier fre-

quency UIQ for different values of the CEO phase <f>. The GaAs film with L = 20 nm thickness on a substrate

with es = const = (1.76)2 has no Alo.3Gao.7As barriers on either side, but a front-side antireflection (AR)

coating, Eo = 3.5 x 109 V /m, 5.6fs sinc2-shaped pulses. The inset illustrates the interference of the dif-

ferent Mollow sidebands as the Rabi frequency f2pi = ft"1 dcv E increases, (b) As (a), but signal intensity

(normalized) on a logarithmic scale for fixed <f> = 0 and for different incident electric field amplitudes (in units

of 109 V/m) as indicated. Taken from Ref. [50].

linear (their occupation is set to zero). The corresponding coupled Maxwell-Bloch equa-
tions in one dimension with phenomenological dephasing rates are solved numerically
without further approximations [50] (see Appendix 13.1. on the finite-difference time-
domain algorithm). This is a rather demanding numerical task. Results for the GaAs
double heterostructure already introduced in section 4.1. are shown in Fig. 21 for (a)
5.6 fs sinc2-shaped pulses, (b) 5fs sech2-shaped pulses, and (c) for pulses which match
the experimental spectrum (see Fig. 12(a)) and which have no chirp (corresponding to the
grey curve in Fig. 12(b)) [47]. The layer structure of the sample is shown on the RHS.
While propagating through the sample, the fundamental spectrum becomes significantly
distorted, which leads to a lengthening of the pulse in time, and, thus to a reduction of the
field amplitude and the Rabi frequency. This effect is most pronounced for pulses corre-
sponding to the experiment (see Fig. 21(c)), where especially the sharp high-energy peak
of the laser spectrum is largely affected. The effect is close to negligible for sech2-shaped
pulses (Fig. 21(b)). The dispersive effects due to the linear dielectric function (Fig. 21(d))
further enhance the pulse distortions. Both effects lead to a reduction of the splitting of the
Mollow sidebands around the third harmonic (compare Figs. 21(c) and 19). This explains
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Figure 23: Grey-scale image of the emitted light intensity into the forward direction versus field amplitude of

the incident pulses, corresponding to the inset in Fig. 22. Parameters as in Fig. 22(a). (a) <f> — 0, (b) 4> = TT/2.

Taken from Ref. [50].

the much (factor of two) smaller splitting seen in Fig. 13 as compared to the simple mod-
eling (see white curves in Fig. 19) as well as the tails for large time delays \T\ in Fig. 16.
This reduced splitting between the Mollow sidebands obviously largely suppresses the
anticipated interference term. Thus, the GaAs double heterostructure discussed in sec-
tion 4.1. is not suitable for observing a dependence on the CEO phase. Also, it becomes
obvious from Fig. 21 that the signal around the third harmonic varies very strongly with
propagation coordinate z. This is mainly due to the fact that the absorption coefficients
(for the third harmonic) of both, GaAs and Alo.3Gao.7As, are on the order of l/(10nm)
which can easily be estimated from the corresponding linear dielectric functions shown
in Fig.21(d). As a dramatic result, the detected signal does not stem from the 600 nm
thick GaAs layer sandwiched between Alo.3Gao.7As barriers - which we have initially
believed [39] - but rather from the thin GaAs cap layer initially employed as an antioxida-
tion layer. The band edge of the Alo.3Gao.7As barriers leads to an (almost) off-resonant
nonlinear signal which is expected from the dependence on detuning shown in Fig. 19.

Fig. 22(a) shows the spectra of light emitted into the forward direction of a thin layer
of GaAs which has no Alo.3Gao.7As barriers for various values of the CEO phase <fi.
Samples as such could be produced by molecular-beam epitaxy on GaAs substrates and
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Figure 24: Grey-scale image of the emitted intensity as a function of w and <j> for a thin GaAs film with thickness

L without Alo.3Gao.7As barriers on a substrate with dielectric constant es. (a) L = 100 nm, EQ = 3.5 x

109 V/m, and es = (1.76)2, (b) as (a) but L = 20 nm, (c) as (b) but with an additional front-side antireflection

coating (as in Fig. 22), (d) as (c) but for an electric field amplitude of EQ = 4.0 x 109 V/m.

subsequent selective etching, first of the GaAs substrate and then of the Alo.3Gao.7As
etch stop layer. The meeting of the different Mollow sidebands (see inset) can also be
seen in the actual calculations (Fig. 22). Furthermore, it becomes clear from the intensity
dependence shown in Fig. 22(b) that it is not simply the interference of the tail of the
laser spectrum itself (which is roughly equal to a box-function) with the third-harmonic
signal - which would be similar to the approach outlined in section 2.4. - but rather the
interference of different Mollow sidebands. Fig. 23 exhibits the same data as Fig. 22, but
represented as a grey-scale image.

Fig. 24(a) depicts the intensity spectra of light emitted into the forward direction ver-
sus CEO phase (p for a L = 100 nm thin GaAs film on a substrate with es = (1.76)2 (e.g.,
sapphire). Note the dependence on <fi with large visibility around UI/WQ = 2.05—2.25 (this
is a 284 meV or 38 nm broad interval) and the period of TT according to Eq. (40) (rather
than 2n according to Eq. (38)) resulting from the inversion symmetry of the problem. In
other words: The signal does not depend on the sign of the electric field, (b) Same for
L = 20 nm, indicating that one already has some distortions in (a) due to the finite thick-
ness of the sample as a result of different group and phase velocities - the high-energy
transitions do not react instantaneously as would be the case for the background dielectric
constant, (c) As (b), but introducing a front-side A/4-antireflection (AR) coating designed
for the fundamental laser frequency UIQ. Note that (b) and (c) are shifted with respect to
each other horizontally, because the incident optical pulses, and thus also <f>, are distorted
as a result of multiple reflections, (d) As (c), but for a different incident electric field
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Figure 25: Experiment: Spectra of light (linear scale) emitted into the forward direction by a I = 100 nm

thin GaAs film on sapphire substrate resonantly excited by a pair of 5 fs pulses with time delay r . The CEO

phase <f> of the laser pulses is not stabilized, (a) Excitation intensity / = 0.24 x 101 2 W / c m 2 , (b) / =

2.8 x 1012 W/crn 2 (both arms at T = 0). The contribution centered around A = 425 nm wavelength is due

to surface SHG. The single peak in (a) centered around A = 300 nm wavelength (the third harmonic of the

GaAs band gap) evolves into three peaks in (b), which are attributed to the carrier-wave Mollow triplet. The

corresponding three black lines are a guide to the eye. The white curve at the top of (b) (another guide to the

eye) indicates the position of the high-energy peak of the fundamental Mollow triplet. For (b) we estimate that

the peak Rabi energy within the GaAs film (and accounting for reflection losses at the air-GaAs interface) is

given by OR/WO = 0.76. Taken from Ref. [51].

amplitude EQ- This variation also leads to a horizontal shift, which is both interesting as
well as disturbing. It is interesting on the one hand because no such intensity dependence
occurs in off-resonant perturbative nonlinear optics (see section 2.4.) - pointing out the
distinct difference between the two scenarios. It is disturbing on the other hand, because
in order to use the effect to determine the CEO phase, one needs to calibrate the incident
electric field amplitude, or, more precisely, the Rabi frequency. This is, however, possible
in principle via the measured splitting of the Mollow sidebands.

Experiment: How can one actually get to very thin GaAs films with high damage
thresholds and without Alo.3Gao.7As barriers ? This problem has led us to epitaxially
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Figure 26: Experiment: Spectra of light (logarithmic scale) emitted into the forward direction by a I = 100 nm

thin GaAs film on sapphire substrate excited by 5 fs pulses (cuts through Fig. 25 at r = 0). For low excitation

intensity 7 = 0.24 x 101 2 W / c m 2 (lower curve), well separated peaks at the second harmonic and the third

harmonic of the laser occur. When increasing the intensity to / = 2.8 x 1012 W / c m 2 (upper curve, shown

on the same absolute scale), the deep valleys between the second harmonic and the third harmonic as well as

between the fundamental and the second harmonic are filled and additional maxima are observed. Taken from

Ref.[51].

growing a GaAs layer of thickness I directly on sapphire substrate in a molecular-beam
epitaxy machine [51]. The growth of the thin GaAs layer on the 0.43-mm-thick 51-mm-
diameter epi-ready sapphire substrate (University Wafer) mounted in an In-free moly-
block was performed the same as for a GaAs wafer with a growth rate of 0.25 nm/s. We
have investigated four samples with GaAs film thicknesses of/ = 25 nm (two samples),
I = 50 nm, and I — 100 nm. Only the latter two samples turn out to have a damage
threshold sufficiently large to actually perform the experiments at large Rabi energies.
The experimental observation that thicker samples have a higher damage threshold is in
contrast to what one might expect intuitively based on considering the areal energy den-
sity deposited in the film. The actual damage threshold might rather be determined by
growth details or by different surface-to-volume ratios. Although these samples are not
comparable in linewidth with state-of-the-art GaAs/Alo.3Gao.7As double heterostructures
grown on GaAs substrate (see section 4.1), the I = 100 nm thin GaAs film on sapphire
substrate does exhibit a band edge in linear optical transmission experiments at room
temperature (not shown). As the relevant energy scales in our experiments are larger than
0.1 eV anyway, linewidth is not much of an issue.

Fig. 25 shows the spectra of light emitted into the forward direction for the I = 100 nm
sample, (a) corresponds to low excitation intensity, (b) to high excitation. The cuts
through these data sets at r = 0 are depicted in Fig. 26. At high excitation (Fig. 25(b)),
the emitted light intensity around the third harmonic of the GaAs band gap splits and
overlaps with the second-harmonic generation (SHG) signal. From the dependence on I
(not shown) we conclude that the SHG has a large surface contribution (or is even com-
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Figure 27: Experiment: Radio-frequency power spectra (logarithmic scale), 10 kHz resolution and video band-

width, for various optical detection wavelengths A and two GaAs film thicknesses (as indicated. The spectra are

vertically displaced for clarity. The excitation intensity is comparable to that in Fig. 25(b), r = 0. The peaks at

the CEO frequency f<f, and at ( / r — /^ ) are highlighted by grey areas. Taken from Ref. [51].

pletely generated at the two GaAs surfaces), while the third harmonic is consistent with
a bulk effect. At r = 0 , the spectrum exhibits three peaks around the third harmonic
which evolve with time delay r . The solid lines are guides to the eye and indicate that the
splitting decreases with increasing |r|. These three peaks are interpreted as the carrier-
wave Mollow triplet. Note also that a contribution from the fundamental moves into the
picture from the top. Following the above theory, this is expected to be the high-energy
peak of the fundamental Mollow triplet. The data of the I = 50 nm sample (not shown)
are compatible with the I = 100 nm sample data (Fig. 25(a) and (b)), however - as already
discussed above - the second-harmonic contribution is more prominent with respect to the
third harmonic in the I = 50 nm case as compared to the / = 100 nm case due to a larger
surface contribution. This significantly reduces the visibility of the low-energy peak of
the third-harmonic Mollow triplet.

Fig. 27 shows measured radio-frequency (RF) power spectra of the signals corre-
sponding to Fig. 25(b), r = 0. To enhance the signal levels, we have removed the inter-
ferometer, leading to a larger average laser power of about 45 mW in front of the sample.
Compensating this increased power by slightly moving the GaAs film out of focus results
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in similar light intensities on the GaAs sample, hence in similar Rabi energies - but leads
to larger absolute signal levels due to the increased area of emitting GaAs. This trick
boosts the signal levels in the RF power spectrum upwards, which is essential consider-
ing the peak heights in Fig. 27. In these experiments we have employed a second optical
grating spectrometer (Jobin Yvon HR460 with a 300 lines/mm grating blazed at 250 nm
wavelength). Opening both slits of this spectrometer to a width of 2 mm corresponds to
the detection of a 20 nm broad spectral interval with center wavelength A. The exit slit
of the spectrometer is connected to a 50 ̂ -terminated photomultiplier tube (Hamamatsu
R4332, Bialkali photocathode). Its output voltage is fed into an RF spectrum analyzer
{Agilent PSA E4440A) operated at 10 kHz resolution and video bandwidth. In Fig. 27 se-
lected examples are shown. The peak at 81 MHz arises from the repetition frequency / r

of the laser oscillator (see section 2.3.). From the optical spectra depicted in Figs. 25 and
26 one expects an optimum interference of the high-energy fundamental Mollow triplet
with the surface SHG around A = 465 nm and an optimum interference of the surface
SHG with the low-energy third-harmonic Mollow triplet around A = 340 nm. At these
wavelengths, Fig. 27 does indeed show peaks at the CEO frequency /^ and at difference
frequency (/r — / ^ ) . The value of /^ changes from measurement to measurement. This
is partly due to the fact that our laser oscillator is not CEO-frequency stabilized. Fur-
thermore, we have intentionally moved the intracavity prism near the high-reflector to
demonstrate the influence of intracavity dispersion on the results. For other detection
wavelengths shown in Fig. 27, no corresponding peaks are observed, even though the ab-
solute signal levels are larger (see larger /r-peak). Note that the fj, and (/r - /$) peaks
in the RF power spectrum are less than 8 dB smaller than the /r-peak, indicating that the
relative modulation depth of the beat signal versus time is as large as 40%. Similar results
are observed for the I — 50 nm thin sample (see lowest data set in Fig. 27). As we have
discussed in the theory section, for such sample thicknesses, only small changes of the
CEO phase within the GaAs film are expected. As argued above, this might allow for
measuring the CEO phase itself. However, we will see in sections 5.1. and 5.3. that other
semiconductor choices and excitation conditions are likely to be even better suited for this
task than resonant excitation of GaAs.
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5. "Off-Resonant" Carrier-Wave Nonlinear Optics of Electrons in Semiconductors

In section 4, we have concentrated on resonant excitation of the semiconductor band gap,
exemplified by the III-V semiconductor GaAs. Let us now discuss two examples for
"off-resonant" excitation, using the II-VI semiconductors ZnO and CdS.

5./. EXPERIMENT: ZINC OXIDE

The direct gap semiconductor ZnO has a room temperature band gap energy of Eg =
3.3 eV. Amazingly, the precise value of the band gap energy of ZnO was subject of scien-
tific discussions until rather recently [52]. ZnO has a c-axis without inversion symmetry
and is birefringent (E\ \c and E ± c are inequivalent). For ZnO single crystal platelets
(here about 100 ̂ m thick), the c-axis lies within the plane of the platelet, while for the
350 nm thin ZnO epitaxial film discussed in this article, the c-axis is perpendicular to the
film. The ZnO interband dipole matrix element is smaller than for GaAs. From k • p
perturbation theory according to Eq. (50) we obtain dcv = 0.19 e nm (remember that we
have used dcv = 0.5 e nm for GaAs).

In the ZnO experiments [53] we use the same 5 fs laser system with TLUJQ « 1.5 eV,
the same stabilized Michelson interferometer and the same focusing optics as in the GaAs
experiments (see section 4.1.). Also, the reference intensity 1$ = 0.6 x 1012 W/cm2 (one
arm of the interferometer) has the same definition and the same value. The light emitted
by the samples into the forward direction is spectrally filtered (3 mm Schott BG39) to re-
move the prominent fundamental laser spectrum and is sent into a 0.25 m focal length grat-
ing spectrometer connected to a charge-coupled-device (CCD) camera. Alternatively, we
send the light through a combination of filters (3 mm Schott BG39, 3 mm Schott GG455,
and Coherent 35-5263-000 480 nm cut-off interference filter for the 100 fim ZnO single
crystal and Coherent 35-5289-000 500 nm cut-off interference filter for the 350 nm epitax-
ial film, respectively) onto a 50 ̂ -terminated photomultiplier tube (Hamamatsu R 4332,
Bialkali photocathode), connected to an RF spectrum analyzer {Agilent PSA E4440A). No
kind of intentional spatial filtering of the emitted light is performed.

Fig. 28 shows measured optical spectra in the spectral region energetically above the
laser spectrum (which has its short wavelength cut-off above 650 nm) and below the band
gap of ZnO of Es = 3.3 eV for (a) low excitation and (b), (c) large excitation intensity
versus time delay r of the interferometer. Note that (b) and (c) are the same data plot-
ted with different levels of saturation in order to reveal details. The measured intensity
is given in actual counts per second (one count corresponds to about two photons). All
spectral components shown in Fig. 28 are also easily visible with the naked eye. If the
ZnO sample is moved out of the focus by some tens of microns, all the spectral compo-
nents shown in Fig. 28 completely disappear, indicating that none of them comes directly
out of the laser. Polarization dependent experiments under these conditions show that all
these spectral components have the same linear polarization as the laser pulses. In (a), the
light around 390-470 nm wavelength is due to second-harmonic generation (SHG), the
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Figure 28: Experiment: Spectra of light emitted by the 100 fim thick ZnO single crystal into the forward

direction versus time delay T of the Michelson interferometer, E\\S. (a) / = 0.15 x Jo, (b) I = 2.04 x Jo,

and (c) as (b), but different saturation of the grey-scale. The light intensities decay near the ZnO band gap of

Eg = 3.3 eV. The white curve in (b) labeled IAC is the independently measured interferometric autocorrelation

using a BBO crystal, the black curve in (c) is a cut through the ZnO data at 395 nm wavelength (see arrow).

components above 500 nm are due to self-phase modulation26 (SPM). Interestingly, the
independently measured interferometric autocorrelation of the laser pulses (using a thin

26 As already pointed out in section 2.4., the e0 x
( 3 ) E3(t) term in Eq. (35) also contains a contribution at the

fundamental laser frequency w0 (see Eq. (39)). This contribution can be rewritten [9] in terms of a nonlinear
refractive index according to n(t) = no + ri21(t), with the linear optical refractive index no and the nonlinear
contribution given by the coefficient ri2 and the laser intensity I(i). For a wave propagating over length I,
this nonlinear index leads to a phase shift - called self-phase modulation (SPM) - of n 2 / ( t ) 2TT/A0 I, with
the vacuum laser center wavelength Ao. The derivative of this time-dependent phase shift gives rise to a time-
dependent shift of the instantaneous frequency, i.e., to a broadening of the laser spectrum.
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Figure 29: Experiment: RF spectra, 10 kHz resolution and video bandwidth, r = 0 fs (equivalent to an average

total power of 64mW in front of the sample), (a) 100^m thick ZnO single crystal, E\\c, corresponding to

Figs. 28 (b), (c), optical filter roughly corresponds to 455 nm - 480 nm, (b) 350 nm thin ZnO epitaxial layer,

E ± c, optical filter roughly corresponds to 455 nm - 500nm. The peaks at the repetition frequency fT, the

carrier-envelope offset frequency f^, its second harmonic 2 / ^ and the mixing products ( / r — /#) and (ft—2/^)

are labeled. The black and grey data correspond to slightly different laser end mirror positions. When removing

intracavity prism material (CaF2), the f$ and 2/^, ( ( / r — /^ ) and (/ r — 2/^)) peaks shift to the left (right).

beta barium-borate (BBO) SHG crystal, see curve labeled IAC in Fig. 28(b)), is closely
reproduced by a cut at 395 nm wavelength (see white curve in Fig. 28(c)). This indicates
that the pulses are not severely broadened in the ZnO crystal due to, e.g., group veloc-
ity dispersion. Furthermore, the spectral width of the SHG contribution indicates that
phase-matching effects do not play a major role, which is not surprising considering the
short Rayleigh range of the microscope objective of only several microns (see Fig. 17(a)).
For higher intensities, the spectral overlap of SPM and SHG becomes immediately ob-
vious from the spectra in Fig. 28(c) and a rich fine structure as a function of r appears
in this spectral region. Feeding the spectral components of this interference region into
an RF spectrum analyzer, we find clear evidence for a peak at the carrier-envelope offset
frequency fa (Fig. 29) which arises because <f> changes from pulse to pulse of the mode-
locked laser oscillator due to different group delay and phase delay times per round trip of
the laser cavity (see section 2.3.). To further check this assignment, we also depict the RF
spectrum for a slightly different laser end mirror mirror position, which shifts the /^, peak
as well as the mixing product (/r — /^) (see labels in Fig. 29). In the 350nm thin ZnO
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film (Fig. 29(b)), both, the /</> peak as well as the 2/^, peak are still visible. Interestingly,
the 2/4, peak is even larger than the fa peak.

If one is interested not only in determining a dependence on the CEO phase <f> but
rather interested in measuring <p of the incident pulse itself, it obviously relevant to ask
whether <j> changes while propagating through the sample (as we have done for the GaAs
case in section 4.3.). Two effects can change the CEO phase within the sample: Linear
optical propagation effects and nonlinear optical effects. The magnitude of the linear
optical propagation effects is much easier to estimate for the ZnO case as compared to the
GaAs case because of the off-resonant excitation conditions. In other words: Absorption
plays no role here. Under these conditions, for a carrier frequency u>o and a center vacuum
wavelength Ao = 2T:CQ/UQ, the change of <j> of the pulse, 5<j>, as a result of propagation
over a length I results from the different group and phase velocities according to

group
27T/WO

(84)

with the vacuum-wavelength dependent refractive index n(X). From the first to the sec-
ond line in Eq. (84) a few straightforward mathematical manipulations are necessary. For
many materials, the dependence n(A) is parametrized using the so called Sellmeier for-
mula27 according to

( 8 5 )

with A = A/(0.1 nm). For the relevant wavelengths A, the refractive index according to
Eq. (85) is real. Ref. [54] determined the fit parameters A - 2.0065, B = 1.5748 x 106,
C = 108, V = 1.5868, and S = 2606.3 for ZnO, E 1 c. This fit is applicable to the
visible part of the spectrum only. With Eq. (84) for Ao = 826 nm (<» tiujo = 1.5 eV) and
after some tedious mathematics, this finally delivers

<tyznO,Ao=826nm = 0.013 X 2nl/100 (86)

For the above experiments with 100 pm thick ZnO single crystals, the effective interaction
length I is given by the depth of focus (see Fig. 17(a)) which is on the order of five microns,
in which case we have 5<j> = 0.7 x 2TT - a significant change of the CEO phase within
the sample. For the I = 350 nm thin ZnO epitaxial film, 6<p is merely 4.6% of 2n, which
might be sufficiently small for many applications.

27This is nothing but the dielectric function of the sum of two resonances as, e.g., from the optical Bloch
equations, plus a constant.
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5.2. THEORY: "THG IN DISGUISE OF SHG'

From our discussion in section 2.4. it is clear that the peaks in the RF spectra at f<j, orig-
inate from an interference of the fundamental with the second harmonic, while the peaks
at 2/0 and the mixing products (/r - 2f$) in Fig. 29 stem from an interference of the fun-
damental and the third harmonic. This is really amazing! The centers of the fundamental
and the third harmonic are separated by twice the laser carrier frequency - yet, they do
interfere. Is a simple description of the nonlinear optical polarization in terms of nonlin-
ear optical susceptibilities according to Eq. (35) going to work at all? To see inasmuch
it works, we solve Eq. (35) together with the one-dimensional Maxwell equations (see
section 4.2.) numerically, i.e., we do not employ the slowly varying envelope approxima-
tion28 and work with the real electric laser field E(z, t) and with the actual layer structure
of the sample, i.e., a I = 350 nm thin layer of ZnO on a semi-infinite sapphire substrate.
The latter has a dielectric constant of es = (1.76)2 (compare sections 4.2. and 4.3.), i.e.,
its optical nonlinearities are neglected29. For the description of the ZnO layer we use the
nonlinear suceptibilities x ( 2 ) = 4 x 10~12 m/V [57] and x ( 3 ) = 7 x 10~21 m 2 /V 2 [58].
Terms of order four and higher are neglected. On this level of modelling, the optical spec-
tra of the experiment are nicely reproduced (not shown). Inspection of the corresponding
calculated RF power spectrum (calculated on the basis of Eqs. (44) and (46)) shows a peak
at frequency f$ but no contribution at frequency 2/^ (not shown), while in the experiment
the 2/^ peak is even larger than the /^ peak (see Fig. 29(b)). Thus, we conclude that the
2/0 peak in the RF power spectra of ZnO can definitely not be explained on the basis
of perturbative off-resonant nonlinear optics.

The solution [59] to the "riddle of the 2/^, peak" was already visible in section 4.2.
and is related to the signal contribution labeled fi = u in Fig. 19. In section 4.2. we have
focused on the behavior around Cl/uio = 1 on the vertical axis of Fig. 30, which is due
to carrier-wave Rabi flopping. Remember that these calculations are based on the optical
Bloch equations of two-level systems introduced in section 3.1., i.e, they correspond to
an inversion-symmetric material. In order to make the Q = u> contribution in Fig. 19
more visible, we depict similar calculations in Fig. 30, where we have chosen broader
frequency intervals for the vertical as well as for the horizontal axes, have plotted the
intensity on a logarithmic rather than on a linear scale to enhance the dynamic range, and
have chosen ZnO parameters (V transition frequencies Cl: dcv = 0.19 enm, Ti = 00,
T2 = 50 fs) as well as sine2-shaped pulses of *FWHM = 5.0 fs in duration with DWQ =
1.5 eV.

The signal contribution around the Q, — u line in Fig. 303 0 exhibits a constriction, the
exact position of which depends on the Rabi frequency. Let us start the discussion with
the part above this constriction and consider a transition frequency il on the vertical axis

MThis is in contrast to, e.g., Refs. [55, 56] which address similar phenomena in optical fibers. There, the
slowly varying envelope approximation is necessary because one needs to integrate the equations for propagation
lengths on the order of millimeters.

29 Indeed, no measurable nonlinear signal of the sapphire substrate itself occurs in independent additional
experiments.

^Note that under these conditions, the square modulus of the optical polarization P is not simply proportional
to that of the optical transition amplitude pvc. This difference arises from a tail of the contributions in the
spectrum at negative frequencies which reaches up to the positive frequencies of interest shown in Fig. 30.
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Figure 30: Grey-scale image of the square modulus of the optical polarization P (normalized) versus spectrom-

eter frequency u in units of the laser carrier frequency u>o with 7iu>o = 1.5 eV. The peak Rabi frequency of

the exciting sinc2(t) pulses with duration tFWHM is OR/WO = 0.76. (a) |P(u>)|2 versus transition frequency

fi for a fixed CEO phase <j> = 0 and *FWHM = 5 fs. The white curve is a cut though the data at f2/u>o = 2

(linear scale). The laser pulse spectrum is shown as the grey area on the RHS. (b) |P(w) | 2 versus pulse duration

*FWHM for fixed n /wo = 2 and <j> = 0. (c) |P(u;) |2 versus <p for fixed f2/u»o = 2 and <FWHM = 5 fs.
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Figure 31: As Fig. 30, but for different Rabi energies, (a) nR/u>o = 0.10, (b) QR/U> 0 = 0.25,

0.50, and (d) fiR/wo = 2.0.
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Figure 32: As Fig. 30, but as a function of peak Rabi energy O R in units of the laser carrier frequency u>o for

fixed f2/wo = 2, <j> = 0 and *FWHM = 5fe. Around ftft/cjo « 1.7 on the vertical axis, a Rabi flop is

completed even though the excitation is off-resonant for one-photon absorption.

at the second harmonic of the laser carrier frequency u>o, i.e., at Q/wo = 2 in Fig. 30(a).
Here we observe a well-defined peak in the optical spectra right at spectrometer frequency
u> = 2wo (see white curve in Fig. 30(a) which is a cut through the data at Q/u>o — 2
plotted on a linear scale). What is the origin of this peak? A part of it is the resonant
enhancement way down in the low-energy tail of the third harmonic of the laser photon
energy. For pulses containing many cycles of light, this contribution would disappear
because of negligible overlap of the third-harmonic response function and the resonance
- it is specific for the regime of few-cycle pulses (see dependence on pulse duration
depicted in Fig. 30(b)). This third-harmonic contribution is expected to be associated with
a phase Z<j> - even though it peaks right at spectrometer frequency ui = 2UJ0. Its signal
strength roughly scales with the third power of the laser intensity. The part of the Q — u
signal contribution below this constriction can be interpreted as the resonantly enhanced
SPM due to absorption of photons from the high-energy tail of the laser spectrum with
phase l<f>. Its signal strength is roughly proportional to the intensity itself. Thus, the
upper part gains relative weight with respect to the lower part for increasing intensity or
increasing Rabi energy fin in Figs. 31 and 32.

Exercise 5.1.: Consider a sinc2-pulse with htjo = 1.5 eV exciting a narrow two-level
resonance at fi/wo = 2. What is the maximum pulse duration £FWHM which leads to
third-harmonic generation in disguise of second-harmonic generation in the x ^ -limit ?
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Figure 33: Dielectric function of ZnO versus (spectrometer) photon energy fou. The black curve represents

the data measured in Ref. [60], the grey curve is a fit using an ensemble of 45 two-level systems with different

transition frequencies fi. This ensemble is used for the calculations presented in Fig. 34.

Fig. 30(c) shows the dependence on the CEO phase <f> for a selected transition fre-
quency of CI/UJO = 2. All other parameters are as in Fig. 30(a). It becomes obvious that a
part of the interference occurs in between the fundamental, i.e. LO/UJQ = 1, and LO/UQ = 2.
Note that the period of the signal versus <fi is TT rather than 2TT, equivalent to a peak at fre-
quency 2/0 in the RF spectrum. The usual SHG would appear in the same region in the
optical spectra as the third harmonic in disguise of a second harmonic, but its phase is 20
rather than 2<fi, thus, it leads to a peak at frequency f$ in the RF spectra when beating
with the fundamental. Another part of the interference in Fig. 30(c) occurs in between
UI/UJO = 2 and OJ/LOQ = 3. This shows that the peak around UJ/UJ0 = 2 in Fig. 30(a) is
indeed a mixture of resonantly enhanced SPM and resonantly enhanced THG.

Fig. 31 illustrates the dependence on Rabi energy. For large Rabi energies (d), the
"THG in disguise of SHG" becomes the dominating feature in the optical spectrum (black
curve at Q./u>o — 2). The unusually small contribution of P around the laser carrier
frequency, i.e., at UJ/UJO = 1 in Fig. 31(d) is due to carrier-wave Rabi flopping (see section
4.). Indeed, the inversion w starts at -1, reaches values near +1 in the maximum and
comes almost back to -1 after the pulse - even though the excitation is "off-resonant"
with Q/CJQ = 2. This illustrates the fact that the detuning of the carrier frequency from
resonance becomes negligible if the Rabi energy is larger than the detuning.

If one interpretes the transition energy hfi. in Fig. 30(a) as the band gap energy Eg of a
semiconductor, the lower RHS triangle formed by the Q. = w line experiences strong reab-
sorption in the semiconductor band-to-band continuum, while the upper LHS triangle is in
the transparency regime of the semiconductor. "THG in disguise of SHG" overlaps with
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Figure 34: Theory, Eo = 6 x 109 V / m at r — 0. (a) Grey-scale image of the light intensity (normalized) emit-

ted into the forward direction versus spectrometer photon energy Ku and time delay T. The data are averaged

over <j> = O...2TT. The white thin lines are a guide to the eye. The white curve labelled IAC is the interferometric

autocorrelation of the laser pulses, (b) Radio-frequency power spectrum S R F of the intensity at the spectral

position indicated by the arrow on the LHS in (a), T = 0.

this line. In order to study corresponding reabsorption and phase-matching effects, we
now present numerical solutions of the coupled Maxwell-Bloch equations in one dimen-
sion without using the rotating wave approximation and without using the slowly varying
envelope approximation and accounting for the actual sample geometry, i.e., we model a
350 nm thin film of ZnO on a sapphire substrate with dielectric constant es = (1.76)2.
Furthermore, for a semiconductor, one does not have a single nonlinear two-level sys-
tem but rather a band continuum, i.e., one needs to integrate P along the vertical axis
in Fig. 30(a). To be close to the experiment, we fit an ensemble of 45 two-level systems
(3.3 eV - 7.9 eV) to the known measured linear dielectric function of ZnO over a broad
frequency regime [60] (see Fig. 33). Thus, linear and nonlinear propagation effects as
well as multi-photon absorption into high-energy states are accounted for exactly within
this model. In addition to this, ZnO has no inversion symmetry and shows a nonvanishing
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Figure 35: Experiment on the 350 nm ZnO film, EQ = 6 x 109 V / m at r = 0. (a) Grey-scale image of the

light intensity (normalized) emitted into the forward direction versus spectrometer photon energy hu> and time

delay r . </> is not stabilized. The white thin lines are a guide to the eye. The white curve labelled IAC is the

interferometric autocorrelation of the laser pulses, obtained from an independent measurement using a /3-barium

borate SHG crystal, (b) Radio-frequency power spectrum S R F of the intensity in the spectral interval indicated

by the grey area on the LHS in (a), r = 0. Note the good agreement with the theory calculated under the same

conditions (Fig. 34).

X^2^—susceptibility. For simplicity, we describe this aspect by a frequency-independent
^(2) = 4x 10~1 2m/V[57]. Furthermore, we employ excitation with a pair of collinearly
propagating identical pulses with time delay r. The pulses are taken directly from the ex-
periment [47] (see section 4.3.). The ratio of the pulse repetition frequency / r and the
CEO frequency /^ is set to / r / / ^ = 5, with / r = 81 MHz.

In Fig. 34(a) we depict the calculated optical spectra versus time delay r . Note that
none of the spectral components originates from the incident pulses directly, all of them
are rather generated in the 350 nm thin ZnO layer. The spectral components above 530 nm
wavelength are due to SPM, those in the range from 365 nm to 455 nm wavelength are due
to a combination of conventional SHG and "THG in disguise of SHG". In between the
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two regions, interference leads to a dependence on the CEO phase <p. Indeed, filtering
out this region and computing the corresponding RF spectrum delivers peaks at the CEO
frequency f$ and at 2 /^ (Fig. 34(b)) as expected from our above reasoning. Interestingly,
the peak at frequency 2 fa is comparable in strength to that at /$, equivalent to a "THG
in disguise ofSHG" contribution comparable to traditional SHG.

Fig. 35 shows the experimental results corresponding to Fig. 34. The agreement is
good, especially if one keeps in mind that there are no fit parameters to arrange for the
relative height of the SPM component, the traditional SHG and the "THG in disguise of
SHG" in the optical spectrum, or for the height of any of the peaks in the RF spectrum.
In particular, note that the heights of the peaks at frequencies f$ and 2 /^ in the RF spec-
trum are comparable, both for theory and experiment, indicating that "THG in disguise of
SHG" is comparable in magnitude to conventional SHG under these conditions. Further-
more, the nodal lines in the optical spectra indicated by the white thin lines in Fig. 35(a)
nicely match those obtained for the complete modelling (see Fig. 34(a).

5.3. EXPERIMENT: CADMIUM SULFIDE

The direct gap semiconductor CdS has a room temperature band gap of Eg = 2.5 eV,
which lies roughly half way in between that of GaAs (Es = 1.42 eV, see section 4.1.)
and that of ZnO (Eg = 3.3 eV, see section 5.1.). With hu>0 = 1.5 eV and with hQ = Es

one arrives at Q/w0 = 1.67 on the vertical axis of Fig. 31. Due to the lower band gap
of CdS compared to ZnO, larger nonlinearities are anticipated for CdS (see contributions
around u>/u>o — 1.5 and fi/wo = 1-67 in Fig. 31). Although the nonlinearities of GaAs
are yet larger than those of CdS, in contrast to GaAs, the beat signal arising from the
interference of the fundamental and the second harmonic (roughly around OJ/UIQ = 1.5,
equivalent to a detection photon energy of Tiw = 2.25 eV « Eg — 10%) is still below the
band gap for CdS, while reabsorption is a major problem in the GaAs case (see sections
4.2. and 4.3.). These two aspects combined should result in a CEO-phase beat signal
larger than that of both GaAs and ZnO. This has been our main motivation to study this
material system. Similar to ZnO, CdS has no inversion symmetry and the CdS single
crystal platelets have a crystallographic c-axis which lies within the platelet plane. From
k • p perturbation theory, we estimate a CdS dipole matrix element of dcv = 0.23 e nm
(using Eq. (50) with roe = 0.2 x m0 and Eg = 2.5 eV). The free-standing CdS single
crystal platelet discussed here has a thickness of about / = 50 /jm. The 5 fs laser system
as well as the other experimental conditions are identical to sections 4.1. and 5.1. Indeed,
when focussing the 5 fs pulses onto the sample, the light emitted by the CdS platelet looks
much brighter as compared to ZnO (for GaAs, hardly anything could be seen with the
naked eye). Due to the reabsorption at photon energies above EK = 2.5 eV, the emission
appears greenish for CdS rather than white for ZnO. Suppressing the laser spectrum itself
with a short-pass filter (3 mm Schott BG39) and with no further filtering leads to /</,
peaks in the RF spectrum as large as 35 dB at 100 kHz resolution and video bandwidth -
yet larger than for ZnO - under conditions comparable to those in the ZnO experiments.
Unfortunately, however, the CdS crystals deteriorate on a timescale of several seconds,
which makes this observation useless for applications.
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6. Attosecond Pulses and Interaction of Intense Laser Fields
With Atoms, Electrons and the Vacuum

So far, we have discussed the interaction of electrons bound in solids and light up to
light intensities around 1013W/cm2. Let us now make a journey up to intensities of
102 8W/cm2.

6.1. ELECTRONS BOUND IN ATOMS

How can electromagnetic pulses be generated which are yet shorter than a few femtosec-
onds? From exercise 2.2. it has become clear that the carrier photon energy of such pulses
would move out of the visible range towards larger photon energies leading to extreme
ultraviolet (EUV) or soft x-ray pulses. The general idea of mode-locking, which we have
introduced in section 2.3., is still expected to work. However, it has not been possible
so far to realize an x-ray laser or even a mode-locked x-ray laser oscillator. What is the
essential ingredient of mode-locking? It is to consider a superposition of electromagnetic
waves with equidistant frequencies and deterministic phases leading to a periodic train
of pulses in the time domain. A comb of equidistant frequencies can also be obtained
outside a laser cavity, namely by generation of harmonics, e.g., according to Eq. (35).
For example, the 21st, 23rd, 25th, ... harmonics are evenly separated by twice the laser
carrier frequency u>o- If one was able to generate all this harmonics at the same time in a
medium, if all of their phases would be fixed and favorable, a train of attosecond pulses
(1 as = 10~18 s) would arise.

2.8fs

350as

Figure 36: Scheme of the electric field versus time of a train of attosecond pulses. It arises from the superposition

of the 21st, 23rd, 25th,... 31st harmonic of the fundamental wave with carrier photon energy KUJQ = 1.5 eV,

equivalent to a fundamental light period of 2n/uio = 2.8 fs. All harmonics are assumed to have equal amplitude

and phase, the envelope of the fundamental is taken as constant in time. Note that the period of the electric field

of the pulse train is 2.8 fs, that of the intensity would be 1.4 fs.

This scenario was first predicted in Refs. [61, 62]. Recently, attosecond beating as a
result of the superposition of high harmonics, obtained by focusing a femtosecond laser
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pulse in a gas jet has been observed experimentally indeed [63, 64]. To make these ex-
treme harmonics appreciable in strength, one clearly needs very large electric field ampli-
tudes - yet larger than the ones we have discussed for solids. Indeed, at these intensities,
solids usually vaporize, leaving gases of atoms as an option. As gases have inversion
symmetry (on a macroscopic scale), all even harmonics are absent in perturbative nonlin-
ear optics (see section 2.4.) - as already accounted for in the above example. A graphical
example is shown in Fig. 36. A periodic train of pulses with a width of the individual
pulses around 350 attoseconds and with a period corresponding to the period of light of
the fundamental results. In section 2.4. we have seen that the interference of the fun-
damental with the second harmonic or the interference of the fundamental with the third
harmonic can lead to a dependence on the CEO phase <f>. In analogy to this, we also
expect an influence of the CEO phase [65, 66] on the interference of, e.g., the ..., 79st,
81rd, 83th,... harmonic and thus also on the shape of the train of attosecond pulses. This
has recently been demonstrated experimentally [67] for soft x-ray photon energies in the
range from 120eV to 130 eV. In this work [67], the authors have used a CEO phase sta-
bilized mode-locked laser oscillator, have amplified the pulses, generated a "white-light"
continuum via self-phase modulation in a hollow-core waveguide filled with neon, have
re-compressed the resulting pulses and used these 5 fs pulses for excitation of a 2 mm long
sample of neon gas at intensities around I = 7 x 1014 W/cm2 (in vacuum this intensity
corresponds to a peak of the electric field envelope of EQ — 7.3 x 1010 V/m and with
hu>o = 1.5 eV to an electron ponderomotive energy of (-Ekin) = 46.7 eV). Amazingly,
the CEO phase of these excitation pulses turns out to be also fixed if the CEO phase of the
mode-locked oscillator is fixed with a relative jitter of merely 50mrad [67], equivalent to
less than l%of 2TT.

Mathematically, we can closely follow along the lines of section 2.4. This leads to
the general form for the high harmonic intensity spectrum (compare with IUo 2Wo (w) in
Eq.(37))

(87)

The shape and height of the spectral envelope E^Wo (u>) of the JV-th harmonic with car-
rier frequency NLJQ depends on the details (e.g., on the electron dynamics, pulse duration
and shape). In order to get a feeling for the overall qualitative behavior, let us consider
the simplest possible case and assume an instantaneous response according to the non-
linear optical susceptibilities in Eq. (35), such that the polarization P(t) is a sum over
terms oc EN(t) with E(t) = E(t)cos(Lj0t + <j>). For, e.g., a Gaussian envelope with
E(t) = Eo exp(—(t/to)2), the Fourier transform of any power N of the envelope is
again a Gaussian, i.e.

••wo, 3wo, ...,79u>o, 81wo, 83u;o, •••y^l <-x-

W,odd

2

EN(JJO(UJ)=CJ2T]N e

u> —

(88)
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Figure 37: Scheme of the intensity spectrum of high harmonics and its dependence on CEO phase <j> according to

Eqs. (87) and (88). Here we have set T)N — const, for N = 1,3,5,..., 87 = ATcut_off and 0 elsewise, hu>o =

1.5 eV. The pulse duration of the incident Gaussian pulses is {FWHM = *o 2 y ln\/2. (a) J F W H M = 5 fs,

(b) *FWHM = 20fs. The two curves in each figure correspond to <j> = 0, n, 2TT, ... and <j> = 7r/2, 3TT/2, ...,

respectively. The latter has been stretched vertically by factor 4 for clarity in (a). Note that the various peaks at

odd harmonics in (a) merge for "cos" 5 fs pulses, whereas the individual peaks are clearly separated for "sin"

5 fs pulses. No influence of the CEO phase is visible on this scale for 20 fs pulses, see (b).

The coefficients CTNU0
 m m e denominator of the exponent are given by

aNui0 = 2VJVA0 • (89)

Note that the spectral width is proportional to <JNW0 and scales as oc \/JV, which sub-
stantially increases the spectral overlap of adjacent hight harmonics (see section 2.4.).
Our reasoning implies an optically thin medium, the u2 factor stems from the Fourier
transform of the second temporal derivative on the RHS of Eq. (10). The prefactors TJ^
depend on intensity and can be calculated in principle. The resulting dependence on
the CEO phase <f> is illustrated in Fig. 37(a) for 5 fs excitation pulses. For CEO phase
<p = 0,n,2n,..., the tails of the different odd harmonics add up constructively, leading
to a smooth total spectrum. The Fourier transform of this smooth spectrum is a single
attosecond pulse in the center of the optical pulse. For CEO phase <j> = n/2, 3TT/2, ...,
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the tails of two adjacent odd harmonics interfere destructively, leading to deep valleys
in between them in the spectrum. The corresponding time domain behavior is a train of
attosecond pulses. For 20 fs pulses (see Fig. 37(b)), the latter is true for any value of the
CEO phase, because here the spectral tails of the different high harmonics hardly interfere
at all (also see Fig. 36). This qualitative overall behavior remains valid in more realistic
calculations, including propagation effects, which can, e.g., be found in Ref. [67].

Another way to obtain attosecond pulses is to consider just one very high harmonic
as, e.g., the N = 101st harmonic of a 5 fs Gaussian optical pulse with 7iu>o = 1.5 eV. We
have just seen that the spectral width of a Gaussian to the power of N scales as oc y/N,
hence, the temporal width scales as oc 1/^/N. Thus, the temporal width of the N = 101st
harmonic is reduced by a factor of VlOl « 10, leading to a 5 fs/10 = 500 as short pulse
with a carrier photon energy of N HUJQ = 151.5 eV. Single x-ray pulses with a duration
of 650 as have indeed been reported recently [68, 69].

Characterization of such x-ray attosecond pulses poses a major challenge. Recently,
several proposals were made, including, e.g., an attosecond streak camera [70]. In a
conventional streak camera, optical pulses are sent onto a photocathode, which emits an
electron bunch with the same temporal profile. A ramped electrostatic field deflects the
electrons and converts time into a spatial variation along one coordinate on a screen. In
the attosecond streak camera, electrons are generated by x-ray photoionization of atoms
and deflected by the electric field of an intense optical pulse. In this approach, only single
attosecond x-ray pulses with a duration less than half an optical cycle can be measured.

This possibility to generate attosecond pulses or attosecond pulse trains shall be suf-
ficient motivation to have a closer look at the microscopic physics of high harmonic gen-
eration in atoms. For a recent review of this field see, e.g., Ref. [71].

High harmonics from two-level systems: It is tempting to simply continue along the
lines of sections 4 and 5 where we have successfully used the Bloch equations of a two-
level system (see section 3.1.) with transition frequency Q. Here, the two levels could be
two characteristic energy levels in an atom. Indeed, it has been shown that high harmonics
(N « 77) and attosecond pulses are generated if a two-level system is resonantly excited
(fl/wo = 1) with 18 fs optical pulses and pulse areas up to 200 TT [34] (with a dipole
matrix element of 0.26enm, this is equivalent to a peak electric field of 5 x 1010 V/m
[34]). A more systematic overview is given in Figs. 38 and 39 [72]. Here we have em-
ployed N = 30 cycle long, box-shaped optical pulses, identical to the ones in Fig. 11
(see illustration there). For large Q but not too large peak Rabi frequencies QR in Fig. 38,
well separated high harmonics are observed, as expected from our above heuristic rea-
soning based on nonlinear optical susceptibilities. On the diagonal, where u) = Cl, very
large resonant enhancement effects are observed. This is also true for the adjacent har-
monics at spectrometer frequencies w = Q, ± 2Mwo with integer M, which altogether
leads to a band of enhancement around the diagonal in Fig. 38. Especially note that large
contributions can occur at the spectral position of even harmonics, which is the obvious
generalization of what we have said about "THG in disguise ofSHG" in section 5. For
resonant excitation, i.e., for fi/wo = 1 on the vertical axis in Fig. 38, the various Mollow
sidebands (see section 4.3.), centered at odd integer values U/UJQ, give rise to a complex
structure because the behavior of the Mollow sidebands deviates strongly from simple
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Figure 38: Grey-scale image of the radiated intensity 7rad oc \u2u(u>)\2 from exact numerical solutions of the

two-level system Bloch equations (59) versus spectrometer frequency u> and transition frequency fi in units of

the laser carrier frequency o»o- The peak Rabi frequency J IR of the exciting N = 30 cycle long box-shaped

optical pulses is parameter (pulses identical to Fig. 11). (a) fiR/u>o = 1, (b) OR/WO = 10. Compare with

Figs. 30 and 31. Taken from Ref. [72].
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sidebands shifted by ±QR (see section 4.1., e.g., Fig. 11). This can be seen from Fig. 39.
The various Mollow sidebands are "repelled" from the odd harmonics. Whenever two
Mollow sidebands cross each other, a set of peaks at even harmonics occurs in the spec-
trum. The corresponding period versus ^IR/OJQ is TT/2 for QR/WO 3> 1. For excitation
pulses with a non-constant envelope within the pulse as, e.g., a Gaussian, one effectively
averages along the vertical axis in Fig. 39 (see Fig. 40(a)). Moreover, for pulses contain-
ing only few cycles of light, many of these intricate and beautiful structures merge into
each other and interfere, giving rise to rather "messy" spectra (see Fig. 40(b)).

Is there anything that can easily be evaluated on a piece of paper rather than on a
computer? For times much shorter than a cycle of light, 2TT/O;O, we can employ the
"frozen-wave approximation", i.e., we approximate QR(£) = O R as constant in time. In
this limit, it is straightforward to solve the Bloch equations (59) analytically [1]. This
leads to the Bloch vector

()
v(t)
w(t)

= M(t)
()

v(0)
w(0)

(90)

with the (3 x 3) rotation matrix

M(t) = -77— sin(nefft)
"e f f

(cos(fteff£) -

—— sin(Qeff£)

COS(fteffi)

(Cos(Qefft) -

Rsin{QeSt)

eff
(91)

Obviously, the optical polarization P(t) oc u(t) as well as the other two components of
the Bloch vector oscillate with the effective frequency Qeff, which is given by

(92)

Remember that this frozen-wave approximation is only justified for times t <C 2-K/UJO,

hence relevant in the limit D,eg » LJQ. It can be viewed as the opposite of the rotating
wave approximation (see section 3.1.). There, almost nothing is supposed to happen on
the timescale of light, whereas here all the significant dynamics takes place within an
optical cycle. For fiR » ft, we have Qeff

 K 2 OR, which means that twice the peak
Rabi frequency is the largest occuring frequency, hence, the highest harmonic generated
is given by iVcut-off « 2 OR/WO (compare black areas on the lower RHS in Figs. 39 (a)
and (b)).

Starting from the ground state, i.e., from Bloch vector (0,0, - 1 ) T at time t — 0, the
inversion according to Eqs. (90) and (91) is given by

(93)
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Thus, the two-level system can even perform Rabi flopping for far off-resonant conditions,
i.e. for Q » wo, if the intensity is so large that it roughly corresponds to a Rabi frequency
of $7R — ft, which leads to w(t) = - 1 / 5 - 4/5 x cos(>/5 Q.Rt) with maximum inversion
w = +3 /5 («• 80% maximum occupation of the excited state).

Within the "square-wave approximation" (see Appendix 13.2.), which can be viewed
as an extension of the frozen-wave approximation, one can analytically show that the con-
strictions formed by the crossing Mollow triplets in Fig. 39 can be interpreted as points of
commensurability of the three frequencies UJQ, fi, and QR. Specifically, commensurability
occurs for Rabi frequencies with

(94)

with integer M = 1, 2, 3, ... For these Rabi freqiencies, an integer number of Rabi flops
is completed after half an optical cycle and, thus, peaks at even integers OJ/UJO occur in
the optical spectrum.

Photo-ionization of atoms: However, such two-level-system approach completely ig-
nores one of the most crucial aspects of the problem, i.e., that the atom can be ionized (in
which case the two-level system effectively "disappears"). To see this, let us compare the
optical field with the electric field which attracts the electron to the nucleus. The simplest
example is the Is state of a hydrogen atom, in which case the field is given by

r <95)

With the hydrogen Bohr radius of T-B = 0.053 nm, we obtain an electric field of

|£|H,is = 5 . 1 7 x l O n V / m , (96)

which is comparable to the laser fields under discussion here. The corresponding electric
potential experienced by the electron in the presence of a strong laser field is illustrated
schematically in Fig. 41: The light field introduces a large oscillating tilt in the poten-
tial, which can sweep the electron out of its bound state, i.e., ionize the atom. In this
process, the timescale of the light period (a few femtoseconds) has to be compared with
the classical orbit time of the electron in the Is state given by the Rydberg energy of
fr^Rydberg — 13.6 eV, equivalent to a period of 27r/fiRycjberg = 304 attoseconds. Under
these conditions, it is certainly not justified to compute the harmonics on the basis of the
nonlinear optical susceptibilities according to Eq. (35) (as we have done in the above in-
tuitive discussion), because significant electron dynamics takes place on the timescale of
the fundamental period of light and, hence, the nonlinear polarization does not follow the
driving electric field instantaneously.

What is the highest harmonic, 7VCut-off. which is generated? Ref. [73] argues that the
harmonics are mostly generated by the ionized electron during the first optical cycle after
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2.8 fs

Figure 41: Electric field E(t) of a Gaussian <FWHM = 5 fe laser pulse with carrier photon energy tujo =

1.5 eV and 0 = 0 versus time and (two-dimensional) scheme of the resulting electric potential experienced by

an electron initially bound in an atom at three characteristic points in time. The large "tilt" along the electric

field vector axis in the center of the pulse leads to tunnelling of the electron. At very large fields, the electron

can even (classically) be swept out of its binding potential. Both processes lead to ionization of the atom.

it is ionized due to the strong laser field. The highest harmonic iVcut_off is m e n given by
the simple, semi-empirical formula

-^cut-off x hw0 = £ i o n + 3.17 x <£k i n) i s t , (97)

where ElOD is the ionization potential of the atom, and (£kin)ist is the electron pon-
deromotive energy in the first optical cycle after ionization. This seems plausible:
Before ionization, the electron more or less harmonically orbits around the nucleus
(classically speaking), long after ionization, the electron is free and again no harmon-
ics are generated (the electron velocities are not yet relativistic at intensities around
I = 1015 ... 1016 W/cm2). Thus, most of the anharmonicities in the electron motion
occur in the transition regime. Eq. (97) indirectly introduces a dependence on the pulse
duration. For long and weak pulses, the atom is ionized in the center of the pulse and
the ponderomotive energy is small, hence the cut-off is low. For long and intense pulses
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the atom is ionized far before the maximum of the electric field of the pulse is reached
and, again, the ponderomotive energy is low. For short and intense pulses, the atom is
ionized near the center of the pulse where the intensity and the ponderomotive energy are
large, thus, the cut-off is shifted towards high harmonics. In Ref. [73], the authors used
26 fs pulses and generated, e.g., in He resolved harmonics up to TV = 221 at intensities of
I = 6 x 1015 W/cm2 (and unresolved harmonics up to N = 297). One possible applica-
tion of these high harmonics could be using 13 nm wavelength radiation (<=> N « 61) for
EUV nanometer lithography in which case large EUV fluences are desirable. It has been
demonstrated that quasi phase-matching in modulated, centimeter-long, gas-filled hollow
waveguides can increase the EUV fluences significantly [74].

6.2. ELECTRONS IN VACUUM

When a gas is excited with yet larger laser intensities than the ones we have just discussed,
the atoms are rapidly ionized and the electromagnetic field essentially acts on free (i.e.,
unbound) electrons. At some point, the laser intensity becomes so large that the magnetic
component of the Lorentz force on a free electron with charge —e,

F{r,t) = -eE(f,t) -ev(t) x B(f,t) = ^f^ , (98)
> v '> v ' at

electric magnetic

associated with the light field becomes comparable to the electric component [75] (see
example 3.4.). Using EQ/B0 = CQ (see section 2.2.), this is equivalent to the condi-
tion VO/CQ « 1. With the peak velocity VQ = e.Eo/(mowo) from Newton's second law
(Eq. (98) with me —> mo and Bo K 0), this is furthermore equivalent to stating that the
dimensionless parameter31 £, which is given by

(99)
ruo u>o co

becomes comparable to unity.

Example 6.1.: In vacuum, for electrons with rest mass mo = 9.1091 x 10~31 kg, carrier
photon energy TWJQ = 1-5 eV and with the fundamental constants e and CQ, we have

£ = 1 (100)

Eo = 3 . 8 x l 0 1 2 V / m

31 In the literature, the parameter £ is often rather called a. In this article, the symbol a has already been used
for the lattice constant and will later also be used for the acceleration.
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= 1 .3xlO 4 T

= 1.9xlO 1 8W/cm 2 .

If we had just the magnetic field component of the laser field and if it were a static
field, a non-relativistic electron would simply orbit in circles around the magnetic field
axis with the cyclotron frequency u>c given by

(101)

Introducing Eq. (101) into Eq. (99) we get

(102)

Thus, we can equivalently say that something special is expected to happen when the
cyclotron energy Tnoc becomes comparable to the carrier photon energy TILUQ. Obvi-
ously, the cyclotron energy is just another entry into the list of energies which are asso-
ciated to the laser intensity I (section 3.: Rabi energy, ponderomotive energy and Bloch
energy).

Fields on the order of S = 1 can lead to relativistic nonlinear Thomson scattering
on free electrons32 [76, 77, 78]. Let us first give an intuitive explanation and then look
at the mathematics. If the electric field propagating along z is polarized along the x-
direction, the electron harmonically oscillates along x with frequency u>o according to
Eq. (65) for low intensities (the electron velocity components in the y and z-direction are
constant). The periodic acceleration (see RHS of Eq. (10)) of the charged electron is the
source of waves, i.e., light can be scattered elastically into directions other than the z—
direction. For larger intensities, the magnetic field component along the y-direction leads
to a force comparable in amplitude to the electric component and the electron can, e.g.,
move in figure-eight patterns (i) in the zz-plane with an additional drift in the z-direction
(ii) superimposed. Let us have a closer look at aspects (i) and (ii). (i) The figure-eight
pattern results from the fact that the z-component of the force, Fz = — e vx By, oscillates
with frequency 2UJQ because vx as well as By oscillate with UJQ, while the ^-component
of the force oscillates with frequency OJO as argued above. This, e.g., leads to second-
harmonic generation - even though an electron in vacuum has inversion symmetry (see
Fig. 42 RHS column), (ii) A drift motion perpendicular to E and perpendicular to B also
occurs for orthogonal static electric and magnetic fields in the non-relativistic regime -
as described in many textbooks. The Hall effect [1] also stems from this drift motion.

32Non-relativistic linear Thomson scattering on an individual charge is analogous to Rayleigh scattering on
an electric dipole - which makes the sky blue (Hertz dipole).
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Figure 42: Relativistic motion (laboratory frame) of a free electron in vacuum under the influence of a strong

laser field according to Eqs. (104)-(106). The light propagates along z with E and B being polarized along x

and y, respectively. £ is the normalized electric field strength given by £ = wc/u>o. (a) £ = 0.1, Co = 0; (b)

£ = 1. Co = 0; (c) £ = 10, Co = 0; and (d) £ = 10, Co = w/2. Note the different vertical and horizontal

scales. In (a), the oscillation period of z(t) is w, equivalent to a motion of z(t) with frequency 2wo, which

leads to second-harmonic generation. In (b) and (c), the period of x(t) becomes larger than 2TT, equivalent to

an oscillation frequency of x(t) smaller than LJQ due to the relativistic Doppler red-shift. Indeed, z(i) PS i in

(c) is equivalent to a drift velocity along z close to the speed of light Co. The trajectories as well as the periods

also depend on the initial condition of the electron. For example, the period of x(i) in (c) is 26 x 27r, while it

is about 76 x 2TT in (d) - although the laser intensity is the same.
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Under these conditions, the solution of Newton's second law (98) is given by vx(t) =
vo cos(u)ct), vy(t) = 0 and vz(t) = — VQ sin(wct)+VdriH< where vo depends on the initial
conditions. thrift = Ex/By would be the drift velocity. The corresponding trajectories
are called trochoids. A roughly similar behavior is anticipated for intense optical fields, in
which case the drift velocity can approach the speed of light CQ. The acceleration towards
this drift velocity occurs when the laser intensity is ramped up. As a result of the drift
along z, the spatial dependence of the incident fields, i.e., Ex(z,t) = EQCOS(KZZ —
u>ot — <f>) and By(z,t) — BQCOS(KZZ - uot — <fi)t becomes important - "the electron
rides on the electromagnetic wave like a surfer". Note that the spatial dependence
of the electromagnetic field has been irrelevant for all other examples of carrier-wave
nonlinear optics discussed so far. In addition to aspects (i) and (ii), the electron mass in
Eq. (98) changes with time due to relativistic effects according to

me = me(t) = . m ° . (103)

f W
This anharmonicity in the electron motion enhances the generation of harmonics. As
always in electrodynamics, an accelerated charge does not lead to radiation along the
direction of its acceleration. Thus, all harmonics have their own specific emission pat-
terns [78] and, e.g., no second-harmonic emission is expected for detection along the
z-direction from our reasoning.

At first sight, it seems hopeless to solve Newton's second law (98) with the relativistic
mass (103) under these conditions exactly. Nevertheless and quite amazingly, for a plane
wave with a constant light intensity, an exact analytical implicit solution can be given in
terms of a parameter £. Assuming a CEO phase $ — 0 and introducing the normalized
and dimensionless x and z coordinates, x = XU>O/CQ and z — ZUQ/CQ as well as the
normalized dimensionless time i = t OJQ, one gets [79]

x(C) - £( (cosCo-cosC)- (C-Co)s inCo) , (104)

= * - C , (105)

(106)

*(0 = (C-Co) l + ^ ( i

sin2< „ > . ^ 3sin2Co
— - ^ + 2cos<sinCo - ^

The initial electron velocity v is assumed to be zero at time t = 0. The parameter £0

results from the initial position of the electron at t = 0 and is given by z(i = 0) = —Co
(see Eq. (105)). It can be interpreted as the phase of the electron and is equal to the
CEO phase <f> at this point, but not identical to it in general: For a cloud of electrons
with an extent along the z-direction comparable to or even larger than the wavelength of
light 2TTCO/UJO, one has a distribution of values for £0- A similar effect can occur in the
actual focus of a lens where the phase fronts are not plane everywhere. Selected examples
of electron trajectories are given in Fig. 42. In each of the plots, £ runs from 0 to 4TT.
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Figure 43: Scheme of the intensity spectrum / ( u ) of light emitted by an electron in vacuum driven by a strong

laser field at carrier frequency wo according to Eq. (107) with CJO/WQ « 0.9 corresponding to £ « 0.6 and

£0 = 0. Note that the ratio WQ/WO depends on £ as well as on £o. see Fig. 42.

In the limit £2 <C 1, one has i = C — Co. thus z = —Co = const., while the x-
coordinate oscillates harmonically with time, i.e., x{t) oc cos(woi) - as explained above
(Fig. 42(a)). In Fig. 42(b) where 5 = 1, the excursion along the x-direction is already
on the order of x = 1, corresponding to an actual value33 of about x = 0.1 /j,m for
fujQ = 1.5 eV. Deep in the relativistic regime, i.e. for £2 » 1, a modification arises
which we have not discussed thus far. In Fig. 42(c) where £ = 10, the oscillation fre-
quency wo is smaller than u>o by factor 26. This means that, e.g., for a laser carrier fre-
quency of hujo = 1.5 eV, photons with photon energies as small as 58meV are emitted.
This modification stems from the fact that the "source" of the incident electromagnetic
wave (the laser) and the "observer" (the electron) move away from each other due to the
relativistic drift velocity of the electron (which is parallel to the light wave vector). This
leads to a relativistic Doppler red-shift. Thus, the electron "feels" a driving frequency Qo

which is smaller than UJQ. Note, however, that the ratio u>o/^o cannot simply be calculated
from the usual textbook (longitudinal) Doppler effect formulae which would only apply
if the electron was a system of inertia - which it is not.

The peak heights IN in the intensity spectrum I(u>) of the emitted light depend sen-
sitively on Co, CEO phase <p and also on the detection direction. It should, however, be
clear from Fig. 42 that the general form is always given by

(107)

where the order N covers odd and even harmonics of the Doppler red-shifted laser
carrier frequency uo with

0 < <I>o = wo(£, CO) < u>o • (108)

33In order to make our model of isolated electrons in vacuum realistic, residual scatterers (e.g. ionized
atoms) in the vacuum should have a number ATatom per volume V of less than (1 /x) 3 = 1015 c m " 3 =
102 1 m~ 3 . With the equation of state of ideal gases from thermodynamics, i.e., PV = N&%omksT with
Boltzmann's constant &B = 1-3804 x 10~ 2 3 J /K, this density translates into a maximum residual pressure of
P = 1021 m ~ 3 k B T = 4 Pa at T = 300 K - a "bad vacuum".
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Fig. 43 illustrates this behavior. For example, the highly anharmonic motion of x(t) cor-
responding to Fig. 42(c) leads to contributions at large values of N, but without any even
contributions. Finally, remember that we have discussed a light field with constant inten-
sity in time. For pulsed excitation, £ and thus also u>o are expected to vary in time.

6.3. TOWARDS COLOSSAL LASER INTENSITIES

Multi-Terawatt laser pulses (7 = 1019... 1020 W/cm2) can even initiate photonuclear
fission in solid targets [80, 81] - a phenomenon, which was predicted theoretically more
than ten years earlier [82]. The physics of this laser-induced fission of nuclei is roughly
similar to the laser-induced ionization of atoms we have discussed in section 6.1.

The peak focused laser intensities starting to become available today or in the near
future are around I = 1023W/cm2 [83]. Some authors [83, 84] already speculate
about future physics, as, e.g., light-induced (i.e., TWJQ « leV) electron-positron
generation in vacuum: According to relativistic quantum mechanics, the vacuum,
i.e., the fully occupied Dirac sea, is analogous to the fully occupied valence band
of a semiconductor. Positrons correspond to holes and the real electrons are analo-
gous to conduction band electrons. Hence, electron-positron generation in vacuum
is roughly similar to electron-hole generation in a semiconductor with a band gap
energy of "Es"= 1.024 MeV = 2moCg under far off-resonant excitation conditions
("Es"tt 106 x TIUJQ). Note that this would be nonlinear optics in vacuum, i.e., such
effects would violate the superposition principle following from the Maxwell equations
in vacuum.

However, in contrast to electron-hole pair generation in semiconductors, a photon
corresponding to a single plane wave in vacuum cannot generate an electron-positron
pair! This is due to the fact that it is not possible to simultaneously fulfill energy (E) and
momentum (p) conservation in this process with the photon dispersion

E = pco (109)

and the relativistic electron dispersion

E = ± ^/(m0c2)2 + (pc0)
2 = ± mec

2
0 (110)

- the photon momentum is too large (see Fig. 44). This problem can be circumvent by
using counterpropagating laser beams with an effective photon momentum equal to zero
(or by considering other four-particle processes). Recently, even Rabi oscillations of the
Dirac sea have been predicted theoretically [85] for oppositely directed laser beams 34.

Zetta35- and Exawatt lasers with focused intensities around I = 1026 ... 1028 W/cm2

might become accessible around the year 2010 and beyond. At these intensities, the peak

34 Also see our discussion on Rabi flopping in the two-level model within the "frozen-wave approximation"
in section 6.1. which also holds for a transition frequency Q/UJQ * 106.

35One Zettawatt=l ZW=1021 W, one Exawatt=l EW=1018 W.
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Figure 44: Relativistic quantum mechanical dispersion relation of electrons in vacuum, i.e., E =

±Y/(TTIOCO)2 + (pco)2 . (solid curves) and dispersion relation of photons (dashed straight lines with E =

± p co). The vacuum corresponds to a fully occupied lower band and an empty upper band as indicated by the

full dots. An unoccupied state in the lower band is called positron, an occupied state in the upper band is called

electron. Compare with Fig. 9. The arrows indicate the generation of an electron-positron pair by many photons

from two counterpropagating light beams (not to scale). Actually, around 106 laser photons with huo « 1 eV

are necessary as 2 mocjj = 1.024 MeV.

electron acceleration a° becomes truly colossal (also see example 3.3.). For example at
an intensity of / = 1028 W/cm2 , <&• Eo = 2.7 x 1017 V/m and Bo = 1.7 x 106T
in vacuum, one gets a classical, i.e., non-relativistic acceleration of \a®\ = e/moEo =
4.7 x 1028 m/s 2 = 4.8 x 1027 x g. This acceleration would be comparable to the gravita-
tional acceleration near the edge of a black hole. In the latter case, the large gravitational
acceleration is the origin of the so called Hawking radiation [86], the theoretically pre-
dicted energy loss channel of a black hole. The Unruh radiation [87, 88, 89] would be
the analogue of that for acceleration by the laser electric field [83]. If the acceleration ae

was constant, thermal radiation would result, with a temperature T given by the relation

(111)

For, e.g., ae = 102 8m/s2 , c = CQ and Boltzmann's constant fcB = 1-3804 x 10~23 J/K,
one arrives at a temperature of T = 42 x 106 K. Obviously, this Unruh radiation has to
be distinguished from Bremsstrahlung, as usual originating from accelerated charges in
the Maxwell equations (4).
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7. Summary

Nonlinear optics with pulses as short as just a few cycles of light and with large intensities
takes us into an exciting and unexplored regime of light-matter interaction and into a new
regime of nonlinear optics, often referred to as extreme nonlinear optics or carrier-wave
nonlinear optics. Here, significant dynamics of electrons takes place during an optical
cycle and one has to think about the electric field of the laser pulse interacting with a
material rather than its intensity being responsible. Thus, some aspects of this ultrashort
time behavior can be understood in terms of static electric fields - strange, but true. This
leads to completely new effects, one of which is a dependence on the carrier-envelope
offset phase of a single pulse, the phase between the rapidly oscillating carrier wave and
the electric field envelope. This carrier-envelope offset phase is strictly irrelevant in tradi-
tional nonlinear optics. However, in carrier-wave nonlinear optics, its effects can become
quite large and approach a 100% influence on the signal amplitude in spectral regions as
large as a significant fraction of an electron Volt. Besides, it also has a large impact on fre-
quency metrology as it turns out that its Fourier domain counterpart, the carrier-envelope
offset frequency, shifts the frequency comb of the pulse train out of a mode-locked laser
oscillator. If this shift can be fixed to zero, the frequency comb can be used for measur-
ing frequencies much like a ruler for measuring millimeters. In particular, the microwave
time standard of the S.I. unit system can conveniently be related to optical frequencies.
In solids, the strength of the laser field can be expressed by the Rabi energy for interband
transitions and by the ponderomotive energy or the Bloch energy for the case of intraband
transitions, which all have to be compared with the carrier photon energy of the exciting
laser pulses. Interband transitions tend to be more pronounced for resonant excitation,
intraband effects take over in the off-resonant limit. For resonant excitation, carrier-wave
Rabi oscillations do occur. This regime is potentially relevant for applications because
already today, semiconductor saturable absorbers do play a role in passive mode-locking
of femtosecond lasers. On the scale of just few cycles of light, coherent effects eventually
take over. The combination of saturable absorption, coherence and times on the order of
a cycle of light leads directly to carrier-wave Rabi oscillations. Their specific signature
is the occurrence of Mollow sidebands around the third harmonic of the optical transition
photon energy. If these sidebands interfere with those of the fundamental, a dependence
on the carrier-envelope offset phase results. For off-resonant excitation, we have not only
observed a peak at /^ in the RF spectra but also one at 2/^, as evidence of interference of
the fundamental with the second harmonic and the third harmonic, respectively. Using,
e.g., ZnO, allows for measuring fa and hence controlling the carrier-envelope offset phase
with powers as low as just some tens of mW directly from a mode-locked femtosecond
laser oscillator, which opens a whole new field of possible experiments. Furthermore,
the ZnO experiments offer the perspective to determine the carrier-envelope offset phase
itself - the ultimate complete characterization of laser pulses. In atoms, the laser inten-
sities have to be yet larger than in solids in order to reach characteristic energies of the
atoms. When the ponderomotive energy reaches the Rydberg energy, atoms are ionized
by the light field on a timescale of an optical cycle, which results in the generation of
harmonics beyond the 100th harmonic of the laser frequency. These harmonics can be
used to generate single attosecond pulses or trains of attosecond pulses in the EUV.
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10. Solutions of Exercises

Solution of Exercise 1.1:

In a "dark" room held at room temperature, one still has the unavoidable black-body
radiation. The corresponding intensity / of electromagnetic radiation is given by Planck's
law

f3 _ h fkBT\4 7T4,_ f°° h_
hf/kBT _1

aj d \ h ) 15

For T = 300 K one gets / = 0.7 x 10~2 W/cm2. Only a very (!) small fraction of that
intensity, however, is visible light (photon energies hf in the interval [1.5 eV, 3.0eV]). To
roughly estimate that fraction, we remember that most of the light stems from the long-
wavelength end of the visible spectrum, let us say from the interval [1.5 eV, 1.6 eV]. The
center frequency of that interval is / = 3.7 x 1014 Hz, its width is d / = 2.4 x 1013 Hz.
This leads to an estimated intensity of visible light at T = 300 K of I = 10 ~23 W/cm2 .
This value corresponds to a flux of about one photon through your finger tip in six hours
time - it does not get any darker at room temperature.

Note that it takes 22 orders of magnitude to get from the intensity of a "dark" room to that
of the sun on the earth. We will go another 29 orders of magnitude upwards in intensity
at the end of this article.

Solution of Exercise 2.1.:

Under these conditions, the intensity I oc y/iE% (see Eq. (16)) is the same in air and in
the dielectric. In air e = 1, in the dielectric e = 10.9. =>• Eo in the dielectric is given by
4 x 109 V / m / v V l O J = 2.2 x 109 V/m.

Solution of Exercise 2.2.:

There is no unique answer to this unprecise question ... The most stringent way to
interpret the question is that all frequency components of the pulse must lie in the
visible, i.e., roughly in the photon energy interval [1.5 eV, 3.0 eV] - one octave. Let us
assume that all frequency components have the same amplitude and the same phase,
which leads to the shortest pulse. This "box-spectrum" with a FWHM of hSu = 1.5 eV,
<& 5w = 2.28/fs, leads to sinc2(i)-pulses of 5t = 2TT x 0.8859/<Jw = 2.44 fs in
duration (for the duration-bandwidth product 5w St see footnote in section 2.3.). With a
carrier frequency of huj0 - 2.25 eV, <£> 2n/u0 = 1.84 fs period of light, these pulses
contain 1.3 optical cycles. The electric field of these pulses with 6LJ/U>0 = 2/3 is very
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nearly similar to that depicted in Figs. 3(b) and (c), where 5u>/u0 — 0.60 has been chosen.

By the way: The number of locked modes is given by the width of the spectrum
devided by the distance between adjacent modes, i.e., by the ratio 8UJ/AW. With
Aw = 2n x 100 MHz from example 2.2. and 5UJ = 2.28/fs this leads to 3.6 x 106

locked modes.

Solution of Exercise 3.1.;

The relaxation for pvc translates into a relaxation of u and v via Eq. (58) according to
u = —U/T2 and v = —v/T?. Thus, the complete optical Bloch equations including
dephasing read

u = +tlv- £-

v = -nu-2ClRw- ^r

w = + 2QRv.

In the stationary limit we have w = 0. From the third line it follows that v = 0, hence
v — 0. Inserting v = 0 into the first line we furthermore get u = 0. From the second
line with i> = u — v = 0we finally get w = fc — fv — 0, i.e., with fc + fv — 1.
the occupation of the excited state and of the ground state are both 50%, the system
is transparent. Note that the only point at which the strong dephasing assumption has
entered is the existence of a stationary limit. According to the equations of motion for u
and v, this limit is reached on a timescale comparable to T2.

If the inversion additionally experiences relaxation towards the ground state, i.e.,
towards w = —1, according to w = —(w + \)/T\, with the occupation relax-
ation time or longitudinal relaxation time Ti, the steady-state inversion is generally
smaller then zero, i.e., — 1 < w < 0. In the limit Ti —> 0, we get w = —1
(<=> / c = 0 and fv = 1) from the third line of the optical Bloch equations, i.e., from
w = 0 = +2ttRv - (w + 1)/Ti w - (w + 1)/Ti.

Solution of Exercise 3.2.:

a) The dipole moment of one oscillator is (dcvu) (see Eqs.(48) and (58)) or (ex).
The peak value of u = 1 is reached for a Rabi oscillation with EQ = 4 x 109 V/m in
GaAs (see Fig. 10), hence, for e.g. dcv = 0.5 enm (GaAs) we obtain xp = 0.5 nm « a
oc (Eo)°. (Actually, for even much larger fields with QR ^> £1, u approaches zero, as the
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Bloch vector rotates in the uio-plane only.)

b) According to Eq. (65), we have

oc (EQ)+1. For ZnO parameters (me = 0.24 x m0, tiojQ = 1.5 eV) we obtain
xp = 0.56 nm » a.

c) Starting from Eq. (63) within the effective mass approximation and with the initial
1 e

conditions x(0) — x(0) = 0, the electron displacement is x(t) = EQ t2. The peak
2 me

displacement x = XQ is reached at half the Bloch oscillation period, i.e., at t = 7r/£2Bioch>
where the velocity x changes sign. Thus, we have

2 me \"Bloch/ iI7letl

cx (JEo)"1. For ZnO parameters (me = 0.24 x mo, a = 0.5 nm) this leads to
xn = 1.5 nm ~ 3 a.

To conclude the result of exercise 3.2.: Even for laser intensities around
I = 2 x 101 2W/cm2, » £ o = 4 x 109V/m (see example 2.1.), the classical
crystal electron displacements stay on the order of one lattice constant a.

Solution of Exercise 5.1.:

In order to obtain a non-vanishing "THG in disguise of SHG" contribution, the low-
frequency end of the THG spectrum needs to overlap with spectrometer frequency 2w0.
For sinc2-pulses and within the x^3' -limit, the width of the THG spectrum with carrier
frequency 3wo is three times that of the fundamental spectrum, i.e., it is given by 3 Su.
This leads to the condition 2w0 = 3u>o — 3(W/2 •£*• SLJ/U0 = 2/3, equivalent to a
spectral width of one octave (see solution of exercise 2.2.). With the duration-bandwidth
product of 5u> St = 2-ir x 0.8859 for an unchirped sinc2-pulse (see footnote in section
2.3. or solution of exercise 2.2.) and with hwo = 1.5 eV, this corresponds to a maximum
pulse width of £FWHM = St — 3.6 fs. Note, however, that the "THG in disguise of
SHG" signal would still be arbitrarily small at this point. Thus, the 5fs pulses discussed
in section 5.2. can only lead to significant "THG in disguise of SHG" deep inside the
non-perturbative regime.
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11. Important Symbols and Constants

a, lattice constant of a crystal
a°, peak electron acceleration
a, absorption coefficient
B(f, t), S-field or magnetic field
B o . peak of magnetic field envelope
c, medium speed of light
Co, vacuum speed of light with c0 = 2.998 x 108 m/s
X = X^< linear optical susceptibility
X^NltV>, nonlinear optical susceptibilities
dcv, dipole matrix element for valence band to conduction band transitions
D(f,t), 5-field
5w 5t, duration-bandwidth product with, e.g., 8w 5t = 2TT X 0.8859 for sinc2(i)-pulses
Aw, mode spacing in a mode-locked laser oscillator
A(j), pulse-to-pulse phase slip of the light field
e, elementary charge with e = 1.6021 x 10~19 As
E(f, t), electric field
E(t), electric field envelope
E$, peak of electric field envelope
Eg, semiconductor band gap energy
(-Skin), ponderomotive energy
e, material dielectric function
eb, background dielectric constant
e0. vacuum dielectric constant with e0 = 8.8542 x 10~12 AsV"1^^"1

£, normalized electric field strength (relativistic regime)
/e, /h, electron and hole occupation numbers, respectively
U = l/£<£, carrier-envelope offset (CEO) frequency
/ r = l / t r , repetition frequency
F, force vector
h, Planck's constant h divided by 2-K, with h = 0.658 eV fs or h - 1.054 x 10"3 4 Js
H{f,t), H-field
7i, Hamiltonian
/ , light intensity
/o, reference intensity
j , electrical current density
k, electron wave vector
fcB, Boltzmann's constant with fcB = 1.3804 x 10~23 J/K
K, wave vector of light
I, sample thickness
L, length of the laser resonator
A, wavelength of light
m0, free electron (rest) mass with m0 = 9.1091 x 10~31 kg
me, effective electron mass or relativistic electron mass, respectively
mh, effective hole mass
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M(f,t), magnetization
Ho, vacuum permeability with ^ 0 = 4TT x 10~7

n, refractive index
7i2, nonlinear refractive index
neh. electron hole density
O, arbitrary quantum mechanical observable
u, spectrometer frequency
UJO, carrier frequency of laser pulse
LJC, cyclotron frequency
fi, optical (interband) transition frequency
^Bioch. Bloch frequency
QR, Rabi frequency
fift, envelope Rabi frequency
p, electron momentum
PyC, transition amplitude for valence band to conduction band transitions
P(f,t), optical polarization
<j>, carrier-envelope offset (CEO) phase
p, electrical charge density
S(f, t), Poynting-vector
5 R P , spectral radio frequency power density
t, time
*FWHM = 8t, full width at half maximum of the temporal intensity profile of a laser pulse
T, time delay of a Michelson interferometer
T, temperature
Ti, longitudinal relaxation time
T-z, transverse relaxation time
9 , pulse area
0, envelope pulse area
(u, v, w)T, Bloch vector
U(t), photomultiplier voltage
v, velocity vector
w, inversion
x, classical displacement
XQ, peak classical displacement
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12. Appendices

12.1. APPENDIX: ID FINITE-DIFFERENCE TIME-DOMAIN ALGORITHM

As an experimentalist, one is often deeply impressed by numerical solutions of the
Maxwell equations. It is the aim of this brief appendix to show that - at least in one
dimension - exact numerical solutions of the nonlinear Maxwell equations are actually
rather simple. A more complete overview on numerical solutions of the Maxwell equa-
tions based on finite-difference time-domain (FDTD) algorithms can, e.g., be found in
Ref. [90].

For a plane electromagnetic wave propagating along the z-direction with the electric
field E polarized along x, the magnetic field B is directed along y. Under these condi-
tions, Maxwell's equations (4) in S.I. units reduce to the two coupled first-order partial
differential equations

dE(z,t) dB(z,t)

dz dt

dH{z,t) dD(z,t)

(112)

(113)
dz dt

In a non-magnetic medium we furthermore have

B(z,t) = n0H(z,t) (H4)

and
D(z,t) = e0E(z,t) + P(z,t), (H5)

with the medium polarization P(z, t).
In order to implement this initial value problem on a computer, we discretize space

and time according to
= E(MAz,NAt), (116)

= H(MAz,NAt), (117)

and P correspondingly. M and N are integers, the step sizes Az and At have to be suf-
ficiently small. Their actual choice will be discussed below. The central idea of Ref. [91]
is to displace the positions of the electric and magnetic field by Az/2 in space and At/2
in time, respectively (see Fig. 45). This leads to a simple iterative scheme: Replacing the
partial derivatives in Eq. (112) by finite fractions immediately delivers

•^M+i.Af+i ~HM+iN_^ - ^ (EM+1,N ~ EM,N) • (118)

At some point in time, the initial value of the electric as well as magnetic field must be
known at all positions z. If the magnetic field on the RHS of Eq. (118) is, e.g., known at
time t = (JV — | ) A t and the electric field is known at time t = NAt, the magnetic field
at time t = (N + 5) At at all coordinates z = {M + \)Az can directly be calculated from
Eq. (118). Accordingly, Eq. (113) leads to

EM,N+I = EM,N ~ j - ^ [HM+iN+i - HM_iN+ij - — {PM,N+I - PM,N) •

(119)
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Figure 45: Illustration of the one-dimensional finite-difference time-domain (FDTD) discretization and iteration

scheme. The spatial step size is Az, the temporal step size At, M and N are integers. The electric field E is

parallel to the Z-direction, the magnetic field H parallel to y, and the wave is propagating along z.

On the RHS of Eq. (119), the magnetic field at time t = (N + | ) A i and the polarization
and electric field at time t — NAt are known at this point of the calculation. EM,N+I and
PM,N+\ have to be calculated for all coordinates z = MAz. In vacuum, P — 0 holds
and EM,N+I can again be directly calculated. The same holds for a linear optical material
with P = tQ\E, in which case eo has to be replaced by erj —* e eo and P disappears. In
nonlinear optics, P is generally a nonlinear functional of E. If, for example, we have a
X(2)-medium with P = e0X

(2)-E2> we obtain PM,N+I = eoX(2)-Ejtf,Ar+i> a n d Eq.(119)
is a quadratic equation in EM,N+\ allowing to determine the electric field at time t =
(N +1) At for all coordinates z = MAz. This then allows to calculate the magnetic field
at time t = (N + | )A* via Eq.(118), etc., which completes the iterative scheme. The
knowledge of the electric field E and the magnetic field H delivers the Poynting vector
\S\ = \E x H\ = EH, hence also the light intensity / (see section 2.2.).

Typically, the step size Az should be chosen smaller than one tenths of the smallest
medium wavelength. At should be smaller than A z / v j j ^ , where v^^ is the largest
(anticipated) phase velocity of the problem.

In practice, one has to be careful not to obtain artifacts from the spatial boundaries of
the simulated region. The artificial reflections from these boundaries can, in principle, be
delayed to very long times by making the simulated region sufficiently large. This "brute
force" approach can, however, be rather CPU-time consuming. A faster and more elegant
approach is to suppress these reflections by so-called absorbing boundary conditions [92]
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or by a projection operator technique [93]. The latter has been used for the calculations
presented in this article. It also allows for injection of the optical pulses from one side.

12.2. APPENDIX: "THE SQUARE-WAVE APPROXIMATION"

Let us continue our discussion on high harmonics from two-level systems of section 6.1.
and derive simple analytical expressions which help us to obtain a better understanding of
the behavior of the two-level system in the regime of extreme nonlinear optics, especially
of the peaks at positions u> in the optical spectrum corresponding to peaks at the spectral
position of even harmonics of the carrier frequency of light U>Q.

The Bloch equations (59) describe rotations of the Bloch vector on the Bloch sphere.
Within the regime of extreme nonlinear optics, the behavior becomes "enriched" by the
fact that one of the rotation frequencies, namely 2OR(£) , itself oscillates with the carrier-
frequency of light and periodically changes sign. This oscillation is sinusoidal, yet, one
might ask whether it is really so important that it is sinusoidal. Having in mind what we
have said about the "frozen-wave approximation" in section 6.1., it is straightforward to
extend that result to piecewise constant electric fields E(t) or Rabi frequencies OR(£) , re-
spectively [72]. This leads us to investigating the "square-wave approximation" in which
we approximate the Rabi frequency for constant envelope via

OR(*) = ^R cos(u0t + 4>) -> - QR sign(cos(w0i + </>)) (120)

where the signum function is defined as sign(x) = +1 for x > 0, sign(x) = —1 for x < 0
and sign(a:) = 0 for x = 0. The prefactor 2/TT ensures that the average Rabi frequency
within half an optical cycle is the same for the "square-wave approximation" and the
exact problem. In that half of the optical cycle where the Rabi frequency is positive
(negative), the Bloch vector rotates via the Matrix M+ (M-), where M± results from
M by replacing QR —* ± (2/TT) fiR in eqs. (91) and (92). For more than half an optical
cycle, the dynamics of the Bloch vector is described by

(121)

where the total matrix Altot is a product of simple analytical (3 x 3) rotation matrices: For
times t after the optical pulse with integer number of cycles of light N, where fiR.(t) = 0,
we have

Mtot(t) = M0(t~N—) ( M - ( - ) M + ( - ) ) , (122)
V w y v v ^ / \ u J J

where Mo results from M by replacing f2R —> 0 in eqs. (91) and (92). Mo describes
nothing but a rotation in the uv-plane with the transition frequency ft and can be simpli-
fied to

cos(fti) +sin(fit) 0
Mo{t)=\ -sin(Qi) cos(fti) 0 ) . (123)

0 0 1
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Within the optical pulse, we obtain for times t with ClR(t) > 0

Mot(i) =M+(t- Nt —) (M- (—) M+ (—)) ' , (124)

and for times t with QR(£) < 0

Aft

Aft

(125)
Here we have introduced the integer number of cycles Nt completed up to time t, which
is given by

Nt = int (%*) . (126)

The value of the integer function int(x) is given by the largest integer < x.
We first test the "square-wave approximation" by depicting its solutions in Fig. 46. Pa-

rameters are identical to those of the exact numerical calculations in Fig. 39, which allows
for a direct comparison. The overall qualitative agreement is amazing, especially for the
(a) parts. There, fi/wo = 1 (resonant excitation), which is nothing but the generalization
of Rabi flopping and Mollow triplets. For instance, the periodically occuring constrictions
of the repelling Mollow sidebands at even integers W/UQ versus QR/O;O with period n/2
(see discussion in section 6.1.) are very nicely reproduced. For off-resonant excitation
(il/uo = 5) in (b), the square-wave approximation is less convincing. This aspect can
be understood intuitively. For resonant excitation (fi/wo = 1), the transition frequency
resonantly enhances those frequency components of the square-wave with frequency wo-
Thus, the artificial higher harmonics of the square-wave at frequencies 3u>o, bu>o, ... are
relatively suppressed. Clearly, the "square-wave approximation" does not properly re-
cover the limit of linear optics, in the sense that u(t) is not sinusoidal in that limit (as
it should be), equivalent to higher harmonics of the carrier frequency UQ in the Fourier
domain. Thus, the lower RHS of Figs. 46(a) and (b) (which is dark in Figs. 39(a) and (b))
is an obvious artifact of the "square-wave approximation". This artifact is unimportant
because we are rather interested in the regime of extreme nonlinear optics.

The simplest cases of commensurability of the frequencies LOQ, ft, and QR within the
"square-wave approximation" are given by

M 2 (127)

with integer M, for which we have

/ x / 1 0 0 \
{ ) \ (128)— ]=M-{ — ) = \ 0

Under these conditions, an integer number of Rabi flops is completed after half an optical
cycle TT/UJQ. Inserting

Q 2 + Q 2 ( 1 2 9 )
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Figure 46: As Fig. 39, but based on the analytical solution of the two-level system Bloch equations within the

"square-wave approximation", (a) fi/u>o = 1, (b) Q/OJO = 5. Taken from Ref. [72].
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into Eq. (127), we get that commensurability occurs for specific Rabi frequencies given
by the relation

(130)

with M — 1, 2, 3, ... For these Rabi frequencies, peaks at even integers

Wo

_ ^ e f f _

Wo

I > 5

\

)
+

/ Q V 2

\U>oJ
= 2M (131)

are observed in the optical spectrum - apart from the less interesting peaks at odd integers
LJ/OJQ, which also occur in traditional nonlinear optics. These peaks at even integers
UI/LJO form the bright band in Fig. 46, whereas the other even integers UJ/UQ are absent
in the spectrum. This bright band also occurs in the exact numerical solutions (Fig. 39).
There, in contrast to the "square-wave approximation", the instantaneous Rabi frequency
f2R,(t) varies within half an optical cycle (somewhat similar to a "chirped" optical pulse),
which also introduces peaks at other even integers UI/U)Q. This altogether shows that
the constrictions formed by the crossing Mollow triplets in Fig. 39 can be interpreted as
points of commensurability of the carrier frequency of light uio, the transition frequency
fi, and the peak Rabi frequency OR. Here an integer number of Rabi flops is completed
after half an optical cycle and, thus, peaks at even integers UI/WQ occur in the optical
spectrum. For, e.g., M = Iandf2/wo = l inEq. (130), weget^R/wo = >/3 n/4 « 1.36
(Fig. 46), which roughly agrees with CIR/U>O » 1 in the exact numerical calculations
(Fig. 39). For integers M » 0,/UIQ we get QR/WO = M w/2. This period of TT/2 is also
precisely found in the exact numerical calculations (Fig. 39). For large Rabi frequencies,
commensurability is easily achieved and these "even harmonics" become the rule rather
than the exception - despite the fact that the two-level system has inversion symmetry. In
between these points of commensurability, it takes some optical cycles to again approach
the initial state. In the Fourier domain, this obviously corresponds to nearby sidebands
around those even integers U>/CJ0 (see Figs. 39 and 46).
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1. Introduction

Carotenoids are, along with chlorophylls, the most abundant pigments found in nature. They are
present in most organisms including humans, but can be synthesized only by plants and
microorganisms. While they are perhaps best known for their bright colors, they have well-
documented multiple functions in nature: they serve as light-harvesting pigments in almost all
photosynthetic organisms covering a region of the visible spectrum not accessible by
(bacterio)chlorophylls ((B)Chl) and they protect against excessive light by quenching both singlet
and triplet states of (B)Chls.1"5 Outside photosynthesis, they are known as efficient quenchers of
dangerous singlet oxygen and various reactive radicals by intercepting the chain of oxidative
reactions.6 There is accumulating evidence that this antioxidative function is a key mechanism of
protection against various diseases including cancer, atherosclerosis and macular degeneration in
humans.7'8 Yet, knowledge of the detailed molecular mechanism of such actions is so far very
limited.
Most of the experimental and theoretical effort aiming for deeper knowledge of carotenoid excited
state dynamics performed in recent years was driven by ability of carotenoids to transfer energy of
sunlight absorbed by their singlet excited states to (B)Chls, thereby actively participating in the light-
harvesting process. The first study providing a clear evidence of the light-harvesting function of
carotenoids was performed more than 60 years ago.9 It represented a milestone that promoted further
interest in studies of carotenoid excited states. Due to the absence of spectroscopic methods allowing
to follow excited state dynamics of carotenoids, the time period until the late eighties was
characterized by studies relying mostly on measurements of fluorescence excitation spectra.
Experiments carried out during this period, which are reviewed for example by Govindjee,10

established the involvement of carotenoid excited states in energy transfer between carotenoids and
(B)Chls, and demonstrated that quantum yields of carotenoid-(B)Chl transfer are not far from unity in
some cases. Along with the efforts to understand details behind the light-harvesting function of
carotenoids, a number of studies of carotenoids, and their close relatives polyenes, in solution was
performed. In 1972, an important breakthrough in the field of carotenoid photophysics was reported;
it was demonstrated that the absorbing state of longer polyenes is not the lowest excited state, but that
an additional, 'dark' state is located between the ground state and the absorbing state.11'12 This
discovery radically affected further research on carotenoid photophysics, as a major part of the
experimental and theoretical studies was directed towards localization of this dark state and
elucidation of its role in light harvesting and photoprotection. Further theoretical investigations of
polyenes showed that other dark states occur in the vicinity of the absorbing state,13 and these
additional dark states were only recently tackled by experimental methods.1415 The studies on
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polyenes were vitally important for understanding of carotenoid photophysics and the reader is
referred to reviews by Orlandi16 or Hudson17 for a more detailed account.
The availability of spectroscopic methods enabling to explore dynamics of excited states on
(sub)picosecond time scales became in the late eighties another turning point in carotenoid
photophysics. Since the pioneering experiment performed by Wasielewski and Kispert who were the
first to measure the S| lifetime of P-carotene,18 a large number of successive experiments, often
supported by theoretical investigations, attempted to disentangle the complicated picture of
carotenoid excited state dynamics in both solution and various light-harvesting complexes2'3'19. In this
chapter we will focus on experimental approaches to locate the dark S, state of carotenoids and to
reveal its role in light-harvesting processes. We will start by discussing properties of carotenoid
excited states in solution, as the knowledge of relaxation pathways in isolated carotenoids is a
necessary prerequisite to understand carotenoid dynamics in complex systems. Then we deal with
carotenoids in light-harvesting systems with the aim of understanding mechanisms and pathways of
carotenoid-B(Chl) energy transfer.

2. Excited state structure of carotenoid molecules

The diversity of carotenoid functions is unmatched by any other class of natural pigments. The
functional variety is directly related to their unique spectroscopic properties resulting from the
structure of the carotenoid molecule (Figure 1). The central pattern repeated in all carotenoids is a
backbone consisting of alternating single and double carbon bonds that form a conjugated 7i-electron
system responsible for most of the spectroscopic properties of carotenoids. Until recently, most of our
knowledge of properties of carotenoid excited states was largely based on spectroscopic studies of
polyenes that belong to the same idealized C2h point symmetry group as carotenoids. In terms of C2h
symmetry labels, the two low-lying singlet excited states denoted 21 Ag" and 11BU

+, are responsible for
most of the spectroscopic properties of carotenoids. Since the ground state of carotenoids is of Ag"
symmetry, the one-photon transition between the ground state and the 2'Ag' state is symmetry
forbidden, while that between the ground state and the l'Bu

+ state is allowed. In 1972, experiments
on the polyene diphenyloctatetraene,12 supported by calculations" established that the lowest excited
state in this polyene is located below the strongly allowed l'Bu

+ state, making the lowest energy
transition symmetry forbidden. This discovery aroused a number of experimental and theoretical
studies of polyenes, which established that the forbidenness of the lowest energy transition is a
common feature of all polyenes having conjugation length N>3.13 This 'reverse' ordering of the
excited states is also a central feature of all carotenoids occurring in nature, since most of them have a
conjugation length between 7-13 (Figure 1).
While the l 'Bu

+ state, in terms of molecular orbitals, is described by a simple HOMO—»LUMO
transition, the theoretical explanation of the fact that the 2'Ag' state lies below the 1 'Bu

+ state requires
involvement of highly excited configurations that are able to take into account electron-electron
interactions.l3>20"22 To describe properly the properties of the 2'Ag' state, at least doubly excited
configurations must be used, because this state represents a mixture of singly and doubly excited
configurations. In terms of molecular orbitals, the singly excited configurations correspond to
(HOMO-l)-KLUMO) and (HOMO)-*(LUMO+1) transitions, while the most important doubly
excited configuration is the (HOMO, HOMO)-»(LUMO, LUMO) transition.16 For polyenes,
involving doubly excited configurations it is usually enough to push the 2'Ag" state below the 1 'Bu

+,
but quantitative agreement between experimental and theoretical 2*A ' energies required even higher
configuration interaction.13'20"22 The doubly-excited character of the 2 Ag" state can be rationalized as
involving two 13BU triplet excitations that are coupled to an overall singlet state, which explains the
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fact that the energy of the 2'Ag' state is about twice the energy of the lowest triplet state.13 Besides
these two states of ionic (Bu

+) and covalent (Ag~) nature, other covalent states formed by various
combinations of triplet excitations coupled to a singlet state exist in the excited state manifold of
polyenes and carotenoids. From a spectroscopic point of view, the most interesting ones are the 1 'Bu '
and 3'Ag' states that are formed as a combination of 13BU and l3Ag, and l3Ag and l3Ag triplet states,
respectively,13 because the energies of these states approach the energy of the absorbing l'Bu

+ state
as the conjugation length increases to N~l 1." The detailed descriptions of the electronic properties of
the excited states of polyenes can be found elsewhere.16'17'23

Throughout this chapter, we use the following notation to describe excited states of carotenoids. In
the symmetry notation, we will omit the spin index for singlet states. For description of excited states,
we will follow the conventional notation used throughout literature about carotenoid excited states to
date, thus the absorbing 1BU

+ state will be called S2 state and the dark 2Ag' state S| state. When other
states are discussed, they will be designated by their symmetry label.

2.1 The S2 state of carotenoids

The strong absorption of carotenoids (extinction coefficients of the order of 105) in the blue-green
spectral region is caused by the strongly allowed S0-S2 transition.24 The So-S2 transition of
carotenoids usually exhibits a characteristic three-peak structure corresponding to the lowest three
vibrational levels of the S2 state (Figure 3). The energy gap between vibrational peaks of-1350 cm"1

results from the combination of two symmetric vibrational modes with energies of ~1150 cm"1 (C-C
stretch) and ~1600 cm"1 (C=C stretch). The resolution of vibrational peaks in the absorption spectrum
is an important spectroscopic measure as it reflects certain structural properties of a carotenoid
molecule. The vibrational structure is well resolved for linear carotenoids such as lycopene or
spheroidene, while a clear loss of resolution of vibrational bands is observed for carotenoids having
conjugation extended to various end groups. A typical example is P-carotene, for which the
conjugation extends to the terminal P-ionylidene rings.

2.1.1 The S2 lifetime

While the radiative lifetime of the S2 state as calculated by the Strickler-Berg equation25 is in the
range of nanoseconds, measured quantum yields of the S2 emission of the order of 10'5 showed that
internal conversion on the subpicosecond time scale governs the S2 dynamics.26'27'28 Thus,
information about the dynamics of the S2 state relies solely on ultrafast time-resolved techniques,
particularly on fluorescence up-conversion and transient absorption data. Application of these
techniques to a number of carotenoids employed in photosynthetic light harvesting established that
the S2 lifetime is in the range of 100-300 fs, 28'29"31 and dependent on both conjugation length and
solvent parameters. A detailed fluorescence up-conversion study of the effect of solvent properties on
the S2 dynamics of P-carotene28 demonstrated that increasing polarizability of solvent decreased the
S2 lifetime of P-carotene from 180 fs in n-hexane to 130 fs in CS2 due to the polarizability shift of the
S2 state, making the S2-Si gap smaller and thus facilitating the internal conversion. For all solvents,
the S2 decay was successfully fitted by a monoexponential decay with no rise component, signaling
that no dynamical Stokes shift is present. Similar results were obtained with excitation of p-carotene
into higher vibrational levels31 and were further confirmed also for the linear carotenoid
neurosporene.30 The effect was explained in terms of sub-100 fs vibrational relaxation in the S2 state.
While the solvent effect on the S2 lifetime was successfully explained using the S2-S| energy gap, the
effect of conjugation length and carotenoid structure on the S2 lifetime is more difficult to explain.
For a number of different carotenoids of various conjugation lengths it was observed that the S2
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lifetime, contrary to expectations based on the energy gap law, decreases with increasing conjugation
length.29'3132'33 A consistent explanation of these observations is still missing, but it has been
suggested that a higher density of accepting vibrational modes facilitates the S2-Si internal
conversion for longer carotenoids and that states located between the S2 and S, states may affect the
internal conversion relaxation process.14-15'34"37'38

2.2 The S, State of carotenoids

As described in the previous section, after being promoted to the S2 state a carotenoid molecule
undergoes fast relaxation on a time scale 100-300 fs (depending on environment and structure of the
carotenoid) to the lowest singlet excited state Si, implying that properties of the S| state are crucial
for understanding photophysics of carotenoids. Because of the forbidden nature of the So-S|
transition, knowledge about energetics and dynamics of this key excited state was very limited. Since
the theoretical prediction in 1972 of the 2Ag' state being the lowest excited state in longer polyenes
and carotenoids," it took more than 20 years until the energy of this state could be determined
experimentally for longer carotenoids.

2.2.1 Energy of the S, state

The first attempt to localize the Si state experimentally was carried on in 1977 by Thrash et al. who
analyzed the Raman excitation profile of P-carotene and located its S, energy above 17000 cm"'.39

However, this rather high value was questioned by subsequent studies of polyenes40 and carotenoids41

that utilized St emission of shorter polyenes/carotenoids. On the basis of a theoretical analysis of
excited states of polyenes,'3 one can deduce that the Si energy of carotenoids decreases with
conjugation length, and this decrease is slightly steeper than for the S2 state, making the S2-S, gap
larger for longer carotenoids. This is the reason for the characteristic switch between S2 and Si
emission observed for conjugation lengths around 8. Thus, carotenoids with N<8 exhibit appreciable
S| emission with a maximum corresponding to the 0-2 vibrational band of the Si-S0 transition,
signaling a substantial displacement of the So and S, potential surfaces.42'43 Consequently, spectral
analysis of the Si emission spectra enabled to determine the 0-0 origin of the Si-S0 transition. Both
Cosgrove40 and DeCoster41 used knowledge of the spectral origin of the Si-S0 transition for shorter
polyenes/carotenoids to extrapolate the Si energy of longer ones. They showed that for a carotenoid
having 11 C=C bonds such as P-carotene, the S, energy must lie substantially lower than the 17000
cm"' proposed by Thrash et al,39 and on the basis of the extrapolation they concluded that the Si state
of P-carotene is located between 13000-14000 cm"'.40'41 With knowledge of S, lifetimes of longer
carotenoids (see below), the extrapolation method was further improved by application of the energy
gap law for radiationless transitions,44 which led to refinement of the P-carotene S] energy to
14100 cm"1.45 In addition, the energy gap law was used to estimate S, energies of a number of
biologically important carotenoids such as spheroidene, zeaxanthin, violaxanthin, antheraxanthin
canthaxanthin, diatoxanthin and diadinoxanthin.45"47 Nevertheless, experimental verification of these
extrapolations was necessary and quest for a reliable experimental method that would enable the
determination of the Si energy became one of the dominating streams in carotenoid photophysics in
recent years.

Some properties of the Si state can be monitored via its characteristic, strong S,-SN excited state
absorption occurring in the visible spectral range which spectral profile is shown in Figure 3. Due to
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symmetry reasons, the final SN state must be of Bu
+ symmetry to account for such a strong transition.

Consequently, it must be present also in the ground state absorption spectrum. Inspection of the UV
part of the absorption spectra of carotenoids reveals rather broad absorption bands below 300 nm48'49

that were assigned to states of Bu
+ symmetry.48 Then, knowing the energies of the S)-SN and S0-SN

absorption bands from transient absorption and steady-state experiments, it would be possible to
calculate the energy of the Si state. However, attempts to determine the S, energy by this method
failed due to two reasons. First, higher Bu

+ states in the absorption spectrum are rather structureless.
Therefore, assessment the 0-0 origin of the S0-SN transition suffers from a significant error. Second,
the SI-SN excited state absorption (ESA) band overlaps with ground state bleaching, thus the St-SN

ESA band observed in experiment does not correspond to the spectral profile of the Si-SN transition
as the bleaching cuts its higher-energy part (Figure 3). Nevertheless, the shape and position of the SI-
SN band is, similarly to the ground state absorption spectrum, a fingerprint of a carotenoid molecule.
As shown in Figure 3, dependence of the S]-SN maximum on conjugation length always follows that
of the S0-S2 transition, but the shift of the SI-SN band is usually larger. Even though no clear
vibrational structure of the Si-SN band was observed so far, the vibrational structure of the absorption
spectrum is imprinted into the shape of the S,-SN ESA band. Linear carotenoids with highly resolved
vibrational peaks in their ground state absorption spectrum have a sharp, narrow S]-SN ESA band,
while significant broadening of the SrS>j ESA is observed for carotenoids with less-structured
absorption spectrum (Figure 3). Thus, although Si-SN ESA can give information about certain
properties of the Si state (especially about lifetime as described below), different techniques are
needed to determine the S] energy.
Until the late nineties, experimental studies to locate the Si energy relied on progress in fluorescence
detection techniques that enabled detection of weak S, emission even for carotenoids with N>9. Due
to very low quantum yields of the S, emission, on the order of 10'5-10'7,26'27 and due to substantial
overlap with the dominating S2 emission for longer carotenoids, these measurements required
extremely precise detection to analyze the spectral profile of the Si emission. The first room
temperature fluorescence spectrum of P-carotene reported by Bondarev50 displayed a weak, distinct
band that was assigned to S, emission, with its 0-0 spectral origin being located at 1320O±300 cm'1.
This value is significantly below the values predicted by extrapolations,45 but, as shown later, this
inconsistency was mainly due to rather poor signal/noise ratio that did not allow resolution of the
vibronic structure of the S, emission and, consequently, separation of vibronic bands from
overlapping contributions of S2 and S| emissions. Nevertheless, the important conclusion of this
experiment was that the S, energy is much less sensitive to solvent polarizability than the S2 state:
while S2 emission shifts significantly going from «-hexane to CS2, the weak S, emission is only little
affected.50 Later, more accurate measurements of P-carotene Si emission revealed vibronic structure
of the Si emission band51 that enabled a more detailed analysis of the vibronic transitions. On the
basis of the fact that the maximum of the S, emission corresponds to the 0-2 vibrational band, these
authors concluded that the 0-0 origin of the S|-So transition must be completely hidden under the red
tail of the more intense S2 emission band and the low S| energy reported by Bondarev et al.50 was
concluded to be one vibronic band (~1300 cm"1) too low due to their wrong assignment of vibronic
bands. Spectral analysis performed by Andersson et al.51 positioned the S, energy of P-carotene in
CS2 at 14200±500 cm'1, which, despite rather high error, was in good agreement with the energy gap
law extrapolations. A slightly higher value of 1450O±150 cm'1 was reported on the basis of analysis
of Si emission of p-carotene in n-hexane at 170 K.52

Motivated by the key importance of the Si energy for understanding energy transfer pathways, the Si
energy of several other carotenoids playing role in photosynthetic light harvesting was also located
by measurements of weak S, emission. Generally, the obtained St energies are in good agreement
with the energy gap law predictions and they also fit to extrapolations based on S) energies of shorter
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carotenoids, measured by fluorescence spectroscopy.45 The St energies of various carotenoids are
summarized in Table 1.
Raman spectroscopy is also a useful tool to obtain S| energies of carotenoid molecules. The ground
state Raman spectrum of carotenoids in the frequency region 1000-1800 cm'1 is dominated by two
Raman lines at -1500 cm'1 and ~1150 cm'1 (exact frequencies of these lines depend on carotenoid),
which correspond to symmetric stretching C=C and C-C vibrations of the conjugated backbone.53

Under the conditions of resonance Raman when the excitation light is in resonance with an electronic
transition of the studied molecule, the intensities of the Raman lines are greatly enhanced. Thus,
tuning the detection to the frequency of either C=C or C-C stretching modes and scanning the
excitation light over a broad spectral range, a resonance Raman profile can be obtained. The high
sensitivity of Raman line intensities to the resonance conditions enables detection of even dark states
with very low transition dipole moments. S| energies of several carotenoids have been measured with
this method, generally in good agreement with other methods.
Our own work lead to an approach employing femtosecond time-resolved spectroscopy for locating
carotenoid Si states.49 The method is based on the fact that the S,-S2 transition is symmetry allowed
and thus corresponds to a strong, easily detected transition. A femtosecond excitation pulse populates
the lowest vibrational band of the well-characterized S2 state to avoid contribution from vibrational
relaxation within this state. The excited molecule then relaxes to the Si state on the time scale of 50-
300 fs. By scanning the wavelength of the probe pulse within the time window dictated by the
lifetime of the St state, the S r S 2 resonance can be mapped. Given the known spectral profile of the
S2 state and lifetime of the S, state, the Si-S2 transition must 1) reflect the spacing between the S2

vibrational bands; 2) decay with the S) lifetime. If these two conditions are fulfilled, the energies of
the vibrational bands of the S r S 2 transition can be determined. The precise location of the carotenoid
Si state can then be obtained, since its 0-0 spectral origin can be calculated from the spectral origins
of So-S2 and SpS2 transitions.49 Although this approach is quite straightforward, its application was
complicated by the necessity to have tunable femtosecond pulses in the 1-2 (im spectral range where
the Si-S2 transition is expected. Along with availability of sources generating such pulses in the late
nineties, this method became a powerful tool to study the properties of the Si state of carotenoids.
Typical S r S 2 profiles of two carotenoids with different conjugation lengths are shown in Figure 4.
The first application of this method was used to locate the Si energies of two carotenoids,
violaxanthin and zeaxanthin, that participate in the xanthophyll cycle of higher plants.49 Transient
absorption spectra recorded for both carotenoids in the spectral region 900-1600 nm resembled well
the characteristic three-peak structure of the S2 state, with vibrational spacing matching perfectly that
observed in the ground state spectrum (see Figure 4 for the SpS2 spectrum of violaxanthin). In
addition, the whole near-infrared transient absorption spectrum decayed with a time constant of
8.8 ps for zeaxanthin and 25 ps for violaxanthin, thus agreeing with the known Si lifetimes of these
carotenoids (see Table 2). Consequently, it was concluded that the recorded transient absorption
spectrum indeed reflected the spectral profile of the S,-S2 transition and the well-resolved vibrational
bands allowed for the location of the 0-0 origin of the SpS2 transition, peaking at 7010 cm"1

(zeaxanthin) and 6950 cm"1 (violaxanthin). Then, with the knowledge of the S r S 2 and So-S2

transition energies, the position of the S] level of both carotenoids was determined by a simple
subtraction. To improve the precision, both the 0-0 and 0-1 transitions of the steady state and
transient absorption spectra were used, leading to an S| energy of 14030 ± 90 cm"1 for zeaxanthin and
14470 ± 90 cm"1 for violaxanthin.49 Although these values fall into the range of energies expected for
carotenoids with these conjugation lengths, using an experimental approach exploiting the allowed
S)-S2 transition (while the methods used before relied exclusively on detection of weak signals
originating from the forbidden Si-S0 transition) revealed a number of interesting new features that
ignited lively discussions about the Si state of carotenoids.
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First, the SpS2 spectra of violaxanthin (N=9) and zeaxanthin (N=l 1) are almost the same, indicating
that the S r S 2 energy gap is only little affected by the conjugation length, and both the Si and S2

states are shifted by about the same energy with increased conjugation. In addition, the difference
between the Si energies of these two carotenoids is significantly smaller than predicted by
extrapolations using the energy gap law; while the St energy of zeaxanthin is close to the expected
one, for violaxanthin having a conjugation length 9 the extrapolations predicts an Si energy above
15000 cm'1,54 substantially higher than the 14470 cm"1 extracted from the S,-S2 spectra. Thus, this
new approach demonstrated that extrapolations from the energy gap law are not straightforward when
carotenoids with different structures are compared. This conclusion was later confirmed by detecting
Si emissions of violaxanthin and zeaxanthin.55

Since recording of SpS2 spectra proved to be a very useful technique to establish Si energies of
carotenoids, subsequent studies of various carotenoids followed. A more detailed study, including
temperature dependence, was performed on spheroidene (N=10), and revealed additional subtleties of
the SpS2 spectra.56 The analysis of the Si-S2 spectrum supported by simulations proved that the
observed bands correspond to three vibrational levels of the S2 state, with the 0-0 transition being the
strongest one (Figure 4), suggesting only a small shift between the Si and S2 potential surfaces.
Interestingly, the energy of the 0-0 spectral origin of the S,-S2 transition at 7300 cm'1 put the
spheroidene Si state at 13400±90cm'\ about 800 cm"1 lower than the energy obtained from
fluorescence and resonance Raman measurements. This intriguing result was explained as a result of
different carotenoid configurations occurring in the Si state. Thus, it was proposed that the crucial
difference leading to different results when different techniques are used lies in the fact that while the
S]-S2 technique probes an allowed transition, fluorescence and resonance Raman monitors a
forbidden transition. With a statistical distribution of conformers in the S! state, fluorescence and
resonance Raman techniques detects predominantly the conformations deviating from the idealized
C2h symmetry, since these have the S|-So transition least forbidden. An exactly opposite situation
holds for the allowed S,-S2 transition, because the least distorted conformations give the dominant
contribution to the S,-S2 spectrum. The difference in S] energies obtained by the different techniques
is consequently a result of that each technique probes a different subset of Si state conformations.56

This implies that the spheroidene S, energy of 13400 cm"1 obtained from the S,-S2 spectra
corresponds to the S| energy of the all-trans configuration, while the higher energy of 14200 cm'1

was assigned to conformations deviating from the ideal C2h symmetry. This hypothesis is further
supported by the fact that the 0-0 band of the S,-S2 transition exhibited a clear asymmetry, having a
shoulder on the low energy side. If the Si energy is calculated on the basis of this shoulder, a nearly
perfect match with the energies determined from Si fluorescence and resonance Raman was found.
Accordingly, it was concluded that the low energy shoulder in the S,-S2 spectra is due to the distorted
Si conformations.56

To date, S r S 2 spectra of violaxanthin,49 zeaxanthin,49 spheroidene,56 lycopene,57 rhodopin
glucoside,58 spirilloxanthin,59 peridinin,60'61 spheroidenone,62 siphonaxanthin62 and fucoxanthin62

have been reported. The resulting Si energies, together with those obtained by other techniques are
summarized in Table 1. Except for rhodopin glucoside, for which emission or resonance Raman data
are not available so far, the Si energies extracted from S)-S2 spectra are systematically lower than
those determined by fluorescence and/or resonance Raman spectroscopy, with a difference depending
on carotenoid structure. The difference is almost negligible for the carbonyl carotenoids peridinin,
fucoxanthin and siphonaxanthin, but the S| state properties of these carotenoids are markedly
different from those without a carbonyl group6061. The difference found for the linear carotenoids
spheroidene and lycopene (800 cm'1) is about twice that revealed for violaxanthin (400 cm"1) and
zeaxanthin (500 cm'1). The latter have a more complicated structure leading to a more restricted
ability to form conformers than for their linear counterparts. The 'conformational' hypothesis is



194

further supported by measurements on the long (N=13), linear carotenoid spirilloxanthin. For this
carotenoid, the 0-0 band of the Si-S2 transition is significantly broader, signaling a much wider
distribution of S, conformers. In addition, spirilloxanthin is known to isomerize spontaneously on a
time scale of minutes.63 Thus ground state conformers are inevitably present in measurements of both
S|-S2 spectra and fluorescence. Therefore, the actual difference between these two techniques is
slightly smaller than for other linear carotenoids (Table 1).

2.2.2 The S, Lifetime of Carotenoids

Although not directly useful for determination of the Si energy, measurements of the Si-SN ESA
signals have been widely used to obtain Si lifetimes. The first work in the late eighties by
Wasielewski and Kispert gave the S] lifetimes of P-carotene (N=ll, 8.4 ps), canthaxanthin (N=13,
5.2 ps) and P-apo-8' carotenal (N=10, 25.4 ps).18 This pioneering work was followed by a number of
studies on various carotenoids that established not only the S) lifetimes, but also their dependence on
conjugation length, carotenoid structure and environment (Table 2 and Figure 5). A systematic
dependence of the Si lifetime on conjugation length was demonstrated for a few series of carotenoid
analogs. For example, measurements on spheroidene analogs yielded lifetimes of 400 ps (7), 85 ps
(8), 25 ps (9), 8.7 ps (10), 3.9 ps (11), 2.7 ps (12) and 1.1 ps (13).64 A similar dependence was found
for a P-carotene series, although the actual lifetimes were slightly different: 282 ps (7), 96 ps (8),
52 ps (9) and 8.1 ps (II).65 Apart from the conjugation lengths 7-13 that are characteristic of
carotenoids occurring in natural systems, a few studies of carotenoids with both shorter and longer
conjugation lengths added more experimental data to the conjugation length dependence of the S|
lifetimes. A Si lifetime of 2.7 ns was found for a very short p-carotene analog with N=5,65 and an
even longer S] lifetime was estimated for the naturally occurring cw-phytofluene (N=5) on the basis
of the quantum yield of the Si emission.66 On the longer conjugation side, S, lifetimes of 2.5, 1.1 and
0.5 ps were obtained for p-carotene analogs with 13,67 15 and 1968 conjugated C=C bonds,
respectively, confirming the decrease of the Si lifetime with conjugation length as was successfully
explained by the energy gap law.45'64

The effect of carotenoid structure on S, lifetimes can be evaluated from a number of studies
measuring S! lifetimes of various carotenoids. In fact, observed changes of the S! lifetime can be in
most cases rationalized as a deviation of carotenoid structure from the ideal polyene C2h symmetry,
causing a decrease of the effective conjugation length. As an example, one can consider carotenoids
having N=l l . For the linear unsubstituted carotenoid lycopene, the Si lifetime is 4 ps.69'70'71 For
spheroidenone, a linear carotenoid containing 10 C=C bonds and one C=O group, the S| lifetime is
prolonged to 6 ps,62'72 because the conjugated carbonyl group that is in s-cis position relative to the
C=C conjugated backbone makes the effective conjugation length slightly shorter than for the full 11
C=C conjugation in lycopene. Further prolongation of the Si lifetime to 9ps is noticed for P-
carotene,71'73 in which two C=C bonds are located in the terminal p-ionylidene rings leading to even
shorter effective conjugation.
In contrast, various substituents that are not in contact with the conjugated backbone have no effect
on Si lifetime (see Table 2). Rhodopin glucoside (N=l 1), possessing a glucoside ring at the end of
the linear conjugated chain, has the same Si lifetime of 4 ps as its non-substituted counterpart
lycopene. Similarly, violaxanthin (N=9), with its terminal rings containing epoxy groups decoupled
from the conjugated backbone, has a lifetime of 24 ps, the same as observed for the unsubstituted
N=9 carotenoid neurosporene.
While there is in fact no information about temperature dependence of the S2 lifetime, a few studies
of the temperature effect on the Si lifetime were performed. Single-photon counting measurements of
the S| emission of mini-9-P-carotene (N=9) revealed a significant increase of the S| lifetime from
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60 ps at 293 K in toluene to 130 ps at 77 K in 3-methylpentane.51 A comparable increase of the Si
lifetime was observed for a shorter mini-8-p-carotene (100 ps at 293 K and 280 ps at 77 K).51 A
markedly smaller effect was reported for spheroidene, yielding an Si lifetime of 8 ps at room
temperature and 9.5 ps at 186 K in n-hexane.56 Studies of several carotenoids in various solvents have
shown that for carotenoids without a conjugated carbonyl group there is almost no solvent effect on
the Si lifetimes. However, this rule is dramatically violated for carbonyl carotenoids, having unique
Si state properties.60'74

2.3 Other Excited States of Carotenoids

Calculations on polyenes predicted additional states besides the St and S2 states. From extrapolations
of state energies to longer polyenes it became apparent that two other excited states of 1BU" and 3Ag'
symmetry are of interest in carotenoids, since especially the 1BU' state approaches the S2 state for
N~9 and it should be located in between the S| and S2 states for N>10.13 As a result, for most of
naturally occurring carotenoids this state can be involved in the excited state dynamics. The 3Ag'
state was predicted to be in the vicinity of the S2 state for N~13,13 and thus above the S2 state for
most of carotenoids, but it could affect the dynamics of the longest carotenoids such as
spirilloxanthin. Since transition from the ground state to both 3Ag" and 1BU" states is forbidden (for
1BU" it is both one- and two-photon forbidden),13 location of these states suffered from the same
problems as of the S| state. However, for the 3Ag' and 1BU' states the experimental difficulties are
further enhanced by the fact that these states, if populated, will relax quickly to the St state, limiting
their lifetime to the hundred femtosecond time scale. Resonance Raman and time resolved
experiments have given some information about these states. Also other excited states, S* and S#,
have been suggested and we refer to our recent review75 for a more detailed discussion of these states.

3. Excited states of Carotenoids in Pigment Protein complexes

Most of the biological functions of carotenoids are carried out when carotenoids are bound to specific
proteins. Although a number of carotenoid-binding proteins are known to date, excited state
properties of carotenoids were studied in detail only in photosynthetic light-harvesting complexes.
There are two main reasons for the lack of knowledge about carotenoid excited states in other
carotenoid-binding proteins. First, structures of a few light-harvesting complexes are known in great
detail; the conformation of a carotenoid and its interaction with the protein environment deduced
from the structure facilitates the studies of excited state properties. Second, in light-harvesting
complexes, carotenoids serve as antenna pigments, making their excited states directly involved in
the light-harvesting process, a vital function in all photosynthetic organisms. For other carotenoid-
binding proteins, the relation between excited states properties and biological function of carotenoids
is not always apparent, although for example carotenoid-binding proteins found in the human eye are
potential candidates for involvement of carotenoid excited states in photoprotection. However, even
for carotenoid-binding proteins that are not involved in light-triggered reactions, studies of carotenoid
excited states can be helpful for investigating the interactions between carotenoids and protein
environment, which can be of key importance for understanding the molecular functions of
carotenoids in various biological tissues.
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3.1 Carotenoids in Light Harvesting Complexes of Photosynthetic Purple Bacteria

Properties of excited states of carotenoids in pigment-protein complexes are best understood in light-
harvesting complexes of purple bacteria, because the detailed structural knowledge available for these
proteins provides an ideal platform for experimental and theoretical investigations of energy transfer
processes between carotenoids and BChl. To date, structures of two light-harvesting complexes were
resolved in great detail. In 1995, the LH2 complex from Rhodopseudomonas (Rps.) acidophila
containing the carotenoid rhodopin glucoside was determined with 2.5 A resolution, and the 2.4 A
structure of the LH2 complex from Rhodospirillum (Rs.) molischianum containing lycopene followed
shortly after.77 The structure, depicted in Figure 6, revealed the BChl-a and carotenoid molecules
arranged in a ring with its axis perpendicular to the membrane plane. The elementary building blocks
of LH2 complexes are aP-polypeptide pairs that bind two strongly coupled BChl-a molecules
absorbing at around 850 nm (B850), one BChl-a molecule having an absorption band at 800 nm
(B800), and one carotenoid molecule spanning the membrane. The carotenoid is in close contact with
both the B800 and B850 molecules with the closest distances 5.4-9.3 A to the central Mg atoms of
the neighboring BChl-a molecules.76 The main difference between the two LH2 structures, apart from
accommodating different carotenoids, is that while the LH2 of Rs. acidophila exhibits nine-fold
symmetry, LH2 of Rs. molischianum contains only eight elementary building blocks. A hydrogen
bond between rhodopin glucoside and the B800 BChl was found by quantum chemical calculations
on LH2 of Rps. acidophila.n The pigment arrangement of LH2 allows carotenoids to serve as
efficient donors in the light-harvesting process, but it was also discovered that they are good probes
of processes involving BChl-a molecules, because they are very sensitive to electric fields. The
carotenoid band shifts observed in LH2 complexes were interpreted as resulting from the local
electric field associated with excitation of nearby BChl-a molecules,79 and this explanation was also
supported by calculations.80 Linear dichroism measurements showed that the transition dipole
moment of rhodopin glucoside in LH2 is 9.1° off axis from the n-electron conjugated chain,81'82 and it
was concluded that this deviation is not due to perturbations by the protein environment but it is
rather a consequence of the single-double bond alternation in carotenoids. Moreover, intermolecular
7t-7t stacking interactions between lycopene and the surrounding aromatic amino acid residues were
found by means of quantum chemical calculations on the LH2 structure of Rs. molischianum}3 These
interactions were suggested to be a molecular mechanism for binding of carotenoids in LH2, and as
shown later for other complexes, the role of n-n stacking interactions in carotenoid binding may be a
general feature of photosynthetic proteins.84

Importantly, a refinement of the structure of LH2 from Rps. acidophila to 2.0 A was reported
recently, revealing a second carotenoid molecule in the elementary building block that was not
resolved in the initial structure.85 The second rhodopin glucoside is located at the periphery of the
LH2 complex and it adopts a m-configuration. Nevertheless, it was suggested that the observed cis-
form could result from the preparation procedure and the actual in vivo configuration is likely to be
all-trans?5 Earlier chemical analyses determined a carotenoid/BChl ratio of 1:2 in a few LH2
complexes.86'87 It suggests that this situation is not unique for Rps. acidophila, but it is likely that also
other LH2 complexes possess the second carotenoid. It is, however, worth noting that spectral
reconstitution resulted in a ratio of-1:3 for Rps. acidophila and Rs. molischianum™ indicating that
the second carotenoid on the periphery of LH2 might be removed during preparation in some cases.
Since all studies of carotenoid-BChl energy transfer in LH2 complexes were so far interpreted in
terms of only one carotenoid in the elementary building block (with the exception of ref. 89), this
finding will certainly influence our understanding of carotenoid function in LH2 complexes.
Besides the two structures described above, structural information with lower resolution is also
available for other complexes. Cryo-electron microscopy studies of the LH2 complex from Rb.
sphaeroides revealed nine-fold symmetry of this complex and suggested that the structure is similar
to the one from Rps. acidophila.90 Similarly, an 8.5 A resolution electron microscopy projection map
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of LHl from Rhodospirillum (Rs.) rubrum91 revealed a ring consisting of 16 subunits, each of which
accommodates two BChl-a molecules and the carotenoid spirilloxanthin.
That carotenoids can transfer energy to BChls was known long before the X-ray structures were
resolved. On the basis of fluorescence excitation spectra, carotenoid-BChl energy transfer efficiencies
of 80-100% were reported for Rb. sphaeroides containing spheroidene (N=10),92'94 while lower
values between 35-70% were obtained for Rps. acidophila containing rhodopin glucoside (N=l I).94"
96 The carotenoid-BChl energy transfer yield drops to -30% for LHl of Rs. rubrum containing
spirilloxanthin (N=13).97 Less than 25% efficiency was obtained for Rps. palustris accommodating
rhodovibrin (N=12) as the dominating carotenoid.94

Initial suggestions regarding mechanisms and pathways of carotenoid-BChl energy transfer in LH2
and LHl complexes proposed energy transfer via the S| state, because of extremely fast deactivation
of the S2 state. The forbidden nature of the S, state led to a suggestion that the Dexter electron
exchange mechanism is active in this process.98"100 However, the first time-resolved experiments
performed in the early nineties showed that following excitation of carotenoids, the B850 Qy state
was populated in less than 200 fs, signaling that both the S) and S2 states may be efficient donors in
the carotenoid-BChl energy transfer process.l01'02 Calculations of carotenoid-BChl energy transfer
for neurosporene also led to the conclusion that both the Si and S2 states can be active in energy
transfer.103 When LH2 structures to atomic resolution became available,76'77 a number of
experimental and theoretical investigations of energy transfer mechanisms and pathways between
carotenoids and BChls confirmed the initial proposal that both the S] and S2 states are involved in the
energy transfer processes. It was also concluded that the precise pathways and directions of energy
flow are governed mainly by the conjugation length of the involved carotenoid. In addition, new
experimental approaches and improved methods of data analysis recently revealed new energy
transfer pathways that contribute to the overall carotenoid-BChl energy transfer in light-harvesting
complexes of purple bacteria. A schematic representation of energy transfer pathways within the LH2
complex is depicted in Figure 7. Below we will give a detailed account of these processes.

3.1.1 Energy transfer via the S2 state

Absorption spectra of carotenoids in LH2 and LHl complexes resemble well those obtained for
carotenoids in solution, except for a red shift of ~1000 cm'1 caused by interaction with the protein
environment (Figure 6). The vibrational sub-structure of the carotenoid S2 state in LH2 is usually
very similar to that obtained in solution, although for some carotenoids the protein environment
represents a confinement of the carotenoid structure, leading to a better resolution of vibrational
bands of the S2 state in protein.
The first experimental data on energy transfer via the S2 state was obtained by fluorescence up-
conversion. S2 emission decays of spheroidene in LHl and LH2 complexes of Rb. sphaeroides
yielded time constants of 55 fs and 80 fs, respectively.29 Comparing these results with the markedly
longer decays in solution (-150-250 fs), it was concluded that energy transfer via the S2 state takes
place with time constants of 90 fs for LHl and 170 fs for LH2 (corresponding efficiencies of 65%
and 47%, respectively), demonstrating that energy transfer can successfully compete with S2-Si
internal conversion. On the basis of spectral overlap, it was concluded that energy transfer via the S2

state occurs to the Qx state of Bchl.29 Similar results were reported for the B800-B820 LH2 complex
from Rps. acidophila, for which analysis of up-conversion kinetics supported by calculations yielded
an S2-Qx energy transfer rate of (120-150 fs)'1. The S2-Qx channel was concluded to be the
dominating one, accounting for 60% of the total energy transfer efficiency.104 Later, up-conversion
experiments were carried out on the wild type B800-B850 LH2 complex of Rps. acidophila and a
complex lacking the B800 BChls. Upon combining the results for these two LH2 complexes,
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Macpherson et al. addressed the question of energy acceptors in the carotenoid-BChl energy
transfer.105 An observed overall efficiency of S2-mediated energy transfer of 51% confirmed the
results obtained for the B800-B820 complex,104 and it was in addition shown that 20% of the S2

population transfers energy to B800 BChl, while the rest (31%) goes to B850.
The fast and efficient S2 energy transfer pathway was also observed by transient absorption
measurements. A study of the LH2 complex from Chromatium purpuratum accommodating the
carotenoid okenone (N=11+C=O) revealed S2-mediated energy transfer characterized by a time
constant of 50-100 fs.89 In addition, it was shown that shaping of excitation pulses could control the
ratio between S2-Sj internal conversion and energy transfer. For LH2 from Rps. acidophila, an
increase, by a factor 1.4, of S2-S] internal conversion was achieved by optimizing the envelope and
phase of the excitation pulses,106 demonstrating that the actual S2 energy transfer efficiency depends
also on other parameters. Higher efficiencies of 60-70% for the S2-mediated energy transfer were
reported for the LH2 complex from Rb. sphaeroides G1C that has neurosporene (N=9) as the main
carotenoid.107 Comparing the results on LH2 complexes containing carotenoids with N=9-13, there is
a certain trend, suggesting higher efficiency of the S2 energy transfer for shorter carotenoids. This
trend is supported by experiments on LH2 of the carotenoidless mutant Rb. sphaeroides R26 with
incorporated spheroidene analogs of different conjugation lengths. With the help of Si-S2 internal
conversion rates measured in solution, overall carotenoid-BChl energy transfer efficiencies, and Si-
mediated energy transfer efficiencies, the efficiencies of S2 energy transfer were calculated. Although
the LH2s with spheroidene analogs having N=8,9 have slightly less efficient S2 energy transfer than
LH2 with spheroidene (N=10), the decrease of S2 efficiency from 50% (spheroidene) to 12% for the
analog having N=13, supported the observed trend of decreasing S2-mediated energy transfer
efficiency with increasing conjugation length.108 Although less efficient for very long carotenoids, the
S2 energy transfer route operates in all purple bacterial antenna complexes studied so far with
efficiencies in the range 30-70%. In a number of cases it represents the dominant energy transfer
pathway between carotenoid and BChl.
The effective competition of S2 energy transfer with the S2-S| internal conversion was also
rationalized theoretically. The contribution of the electron-exchange (Dexter) energy transfer
mechanism'09 to the S2 energy transfer is negligible and the FOrster-type mechanism
dominates.104104'110 However, contrary to the dipole-dipole interaction used in the FOrster formula,111

full Coulombic interaction is usually used to calculate couplings between carotenoids and BChl. Even
without knowledge of detailed structural information, Nagae et al.103 calculated the Coulombic
couplings between the S0-S2 transition of neurosporene and the Qx transition of BChl-a, for a few
hypothetical configurations. They concluded that S2 energy transfer via this route can be faster than
100 fs, provided the proper orientation of donor and acceptor is realized.103 Determination of the LH2
structure provided detailed information about the mutual orientation of pigments within LH2,
allowing more precise calculations of couplings between carotenoids and BChl-a. Krueger et al.
applied an advanced method, the so-called transition density cube method, to calculate full
Coulombic couplings between pigments in both B800-B820104 and B800-B850112 LH2 complexes
from Rps. acidophila. This method replaces the vector description of the transition dipole moments
by three-dimensional transition density volumes, which is expected to give a more accurate account
of the interaction between molecules."2 The couplings of the So-S2 transition of rhodopin glucoside
with all possible transitions of neighbouring BChl-a were calculated for the B800-B820 complex,
yielding couplings larger than 100 cm'1 for P-B820 Qx, B800 Qy and also for the B800 Qy transition
of BChl-a located in the neighboring building block. However, due to the small value of the spectral
overlap integral for the Qy states, only the S2-B820 Qx yielded an appreciable energy transfer rate of
(240 fs)'1.104 Similar results were obtained for the B800-B850 complex. Although the actual
couplings were slightly different from those calculated for the B800-B820 complex, the S2-B850 Qx
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channel represented the dominating route, characterized by an energy transfer rate of (135 fs)'1.112

The results of these calculations are in very good agreement with the observed depopulation rates of
the S2 state, but absence of significant coupling of the S2 state to the B800 Qx contradicts the
experimental observation that a substantial part of the S2 route in Rps. acidophila leads toward
B800.105 On the other hand, similar calculations using full Coulombic couplings performed on the
basis of the LH2 structure of Rs. molischianum containing the carotenoid lycopene, yielded
appreciable couplings of the S0-S2 transition with both the B850 and B800 BChls, resulting in S2

energy transfer times of 200 and 250 fs for the B850 and B800 acceptors, respectively.110 Essentially
the same results were obtained by calculations of the lycopene-BChl couplings by means of the
collective electronic oscillators algorithm."3 An energy transfer rate of (120 fs)"1 was calculated for
the S2-Qx channel, proposing an S2 depopulation time of 69 fs for lycopene in LH2. Thus, while the
calculations reproduce very well the observed rates of S2-mediated energy transfer and confirm the
BChl-a Qx transitions being the energy acceptors in the S2-mediated energy transfer, there are still
contradictions regarding the branching ratio between B850 and B800 acceptors.

3.1.2 Energy transfer via the Si state

Efficient energy transfer via the Si state requires the Si energies of carotenoids to be higher than
those of the acceptor states. Until recently, no information about Si energies in LH2 and related light-
harvesting complexes was available, mainly due to the fact that the most used techniques to locate Si
energies of carotenoids, detection of Si fluorescence and measurements of resonance Raman profiles,
were not applicable to such complex systems. However, since it was known that S) energies are
usually insensitive to solvent properties (except carbonyl carotenoids that are not typical for purple
bacterial light-harvesting complexes), it was reasonable to assume that the S, energies in LH2 and
LH1 complexes should be very close to those determined for carotenoids in solution. Under this
assumption, Si energies of carotenoids with N<10 were estimated to be high enough to transfer
energy to the Qy states of both B800 and B85O BChls. The first experimental evidence of this fact
was provided by investigation of LH2 complexes from the Rb. sphaeroides R26 mutant with
incorporated spheroidene analogs of different conjugation lengths. The efficiencies of Si-mediated
energy transfer were calculated from S] lifetimes of carotenoids in solution and in LH2, obtained
from S r S N ESA decays. While for conjugation lengths N>11 the S] energy transfer was undetectable,
a quenching of the Si state due to energy transfer was observed for shorter carotenoids.'08 This result
was explained in terms of spectral overlap between hypothetical Si fluorescence and the B850
absorption band, which became small for longer carotenoids. Another direct experimental verification
of the Si-mediated energy transfer in the LH2 complex from Rb. sphaeroides was obtained by means
of two-photon fluorescence excitation."4 Forbidden for a one-photon transition, the Si state can be
excited directly via a two-photon transition."5 By measuring B850 emission after two-photon
excitation of the S) state (achieved by exciting in the 1200-1500 nm spectral range), Krueger et al.
demonstrated active participation of the spheroidene Si state in energy transfer. In addition, the two-
photon excitation spectrum enabled determination of the spectral profile of the S0-Si transition,
placing the 0-0 energy of spheroidene in LH2 at 13900 cm'1, " 4 confirming the similarity of the Si
energies in LH2 and in solution. It is worth noting, however, that the 0-0 band of the So-S, transition
was unreasonably weak, having about 40 times less intensity than the 0-1 band. Although no clear
explanation of this phenomenon was offered, later experiments suggested that it might be due to the
fact that the two-photon absorption spectrum reflects the energy transfer efficiency that does not
necessarily mirror the Franck-Condon intensities of the vibrational bands. Indeed, a possibility of
energy transfer from higher vibrational levels of the S, state of spheroidene was demonstrated
later.116'117
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Zhang et al. used three LH2 complexes, accommodating different carotenoids, to investigate the
dependence of Si-mediated energy transfer efficiency on conjugation length of the carotenoid.118 On
the basis of measured Si lifetimes of neurosporene (N=9), spheroidene (N=10) and lycopene (N=l 1)
in solution and LH2, a dramatic decrease of Si energy transfer efficiency was observed; it dropped
from 94% (neurosporene) to 82 % (spheroidene) and further to less than 30 % (lycopene), as the
conjugation length increased from 9 to 11. Similar results were obtained for spheroidene and
rhodopin glucoside in LH2 complexes from Rb. sphaeroides and Rps. acidophila by means of
measurements of S r S N kinetics after two-photon excitation of the Si state.119 These authors
confirmed the ~1.8ps Si lifetime of spheroidene in LH2, but for rhodopin glucoside a longer S)
lifetime (6-7 ps) than in solution was observed, suggesting that there is no energy transfer via the S!
state for rhodopin glucoside."9 A few subsequent studies confirmed this trend and established that for
carotenoids with N=l 1 the S, state is too low to achieve efficient energy transfer via the S| state,
although the long Sj lifetime of rhodopin glucoside observed by Walla et al.119 was not confirmed by
other authors. Instead, an S! lifetime of 3.7 ps was measured for rhodopin glucoside in LH2, while
values of 4.1-4.9 ps were recorded in solution, showing that the S, energy transfer efficiency is
around 5% in LH2.105 The same Si lifetime of 3.7 ps for rhodopin glucoside in LH2 was measured
recently,120 while a slightly longer value (4 ps) was determined by Polivka et al.58 A study of a Rb.
sphaeroides mutant synthesizing the longer lycopene instead of spheroidene present in wild type
LH2, proved that the efficiency of St energy transfer is fully determined by the conjugation length of
the carotenoid, while the protein environment plays only a negligible role. When lycopene is present
in the complex, the efficiency of Si-mediated energy transfer drops dramatically to about 20%, while
more than 80% is achieved in the wild type.57 Further evidence that carotenoids with N=l 1 are on the
edge of capability to transfer energy via the S, state was provided by studies of LH1 complexes from
Rs. rubrum containing spirilloxanthin (N=13). Within experimental error, no difference between Si
lifetimes in solution and in the LH1 complex was found. '122 The same result was obtained for LH2
complexes from Rb. sphaeroides R26 reconstituted with spirilloxanthin,117 suggesting that no Si-
mediated energy transfer is possible for spirilloxanthin because the Si energy is too low for efficient
overlap with BChl Qy states.
The significance of spectral overlap for the Si-mediated energy transfer was recently confirmed by
direct measurements of the Si energies of spheroidene and rhodopin glucoside in LH2 complexes by
recording the S,-S2 spectra (Figure 8). Si energies of 13400±100cm"' and 1255O±150 cm'1 were
determined for spheroidene and rhodopin glucoside, respectively,58 showing that the difference of
850 cm"1 makes a dramatic change in the energy transfer pathways in these two LH2 complexes. In
the case of spheroidene, the Si energy extracted from the S r S 2 spectra is the same as that determined
by this method in solution, while for rhodopin glucoside the Si energy is 250 cm"1 lower than that in
solution.58 This difference was explained by confinement of rhodopin glucoside in the LH2 structure,
which narrows the distribution of conformers presented in solution.
Together with the spectral overlap, calculations of the couplings between the So-S, transition and Qy

transitions of both B800 and B850 demonstrated that the observed S| transfer rates can be explained
in terms of the same energy transfer mechanism as for the S2 route. Although the very small
transition dipole moment of the So-Si transition led initially to a suggestion that the Dexter
mechanism had to be invoked,98"100 more detailed calculations later showed that the Dexter
contribution is negligible and that higher-order Coulombic and polarization interactions dominate the
Si-mediated energy transfer.'03110"2"3123 In a few works, the Coulombic couplings for the S, state
were obtained by scaling down the couplings calculated for the S2 state, using an estimate that the
transition dipole moment of the So-S, transition is about 4-6% of the S0-S2 transition. Although the
results of this approach were promising, the calculated rates could not reproduce the measured energy
transfer rates.110"8 To resolve this problem, an increase of So-S| Coulombic coupling via intensity
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borrowing from the allowed S2 state due to S2-S, mixing was proposed.110'"8 Under the assumption
that the degree of mixing is inversely proportional to the square of the Si-S2 energy gap, Zhang et al.
calculated Si energy transfer rates for LH2 from Rs. molischianum that were reasonably close to the
measured values.118 Further improvement of the agreement between experiment and theory was
obtained by calculations of Coulombic couplings by means of time-dependent density functional
theory (TTDFT).124125 This method, which allows ab initio calculations of the S, couplings with Qy

states of BChl, confirmed that small mixing between S2 and S, states plays an important role in the
Coulombic coupling. S| energy transfer rates for LH2 complexes from three different species of
purple bacteria were calculated using the Coulombic couplings obtained from TDDFT, and the
obtained values (9 ps)"1 (Rs. molischianum), (1.2 ps)"1 (Rb. sphaeroides) and (3 ps)"1 (Rb. sphaeroides
G1C)124 are very close to the experimental ones of (12 ps)"1, (2.4 ps)"1 and (1.4 ps)"1.118 For LH2 from
Rps. acidophila, an S) energy transfer time >25 ps was calculated,124 also in a good agreement with
the very low efficiency obtained experimentally.105120

Regarding energy acceptors in the S,-mediated energy transfer route, both B800 and B850 Bchls are
capable of accepting energy from carotenoids, but the SrB800 channel seems to be the dominating
one. In experiments employing incorporation of spheroidene into LH2 from the carotenoidless Rb.
sphaeroides R26 mutant lacking B800 BChl, the efficiency of energy transfer via the Si pathway
reached only 35%.'17 This is significantly less than -80% observed for the LH2 containing both B800
and B850,57-58118119126 signaling that the main pathway involves B800 as an acceptor. The same
conclusion was reached for LH2 from Rps. acidophila. Although the Si efficiency is only 4-5% in the
wild type complex,105120 removing the B800 BChls led to a complete absence of S, energy transfer.105

Similarly to the S2-mediated energy transfer, the experimentally observed branching ratios are not
fully consistent with calculations. Whereas for Rb. sphaeroides the branching ratio matches that
obtained from TDDFT calculations, yielding a ratio of-1:5 (B850:B800), for Rps. acidophila the
calculated branching ratio is 3:2,119 in obvious contradiction with experiments.105

In addition to the S,-mediated energy transfer occurring from the thermalized S, state discussed
above, a fractional energy transfer channel from the vibrationally hot Si state was also proposed. This
type of energy transfer was first revealed in the LHCII complex from higher plants,127 and later
proved to be active also in the LH2 complex of Rb. sphaeroides. Using global analysis of their data,
Papagiannakis et al. observed the decay of a species associated spectrum corresponding to the
vibrationally hot Si state, suggesting the presence of an energy transfer channel via the hot Si state.116

The contribution of this pathway to the total energy transfer efficiency was only 5%. Interestingly, no
such pathway was found when spheroidene was incorporated into the carotenoidless LH2 Rb.
sphaeroides R26 mutant lacking B800. This was interpreted in terms of B800 being the only acceptor
for this energy transfer pathway.117 Similarly, the energy transfer pathway via the hot S, state is
absent in the LH2 complex from Rps. acidophila}20 the LH1 complex from Rs. rubrum,121 and LH2
complex from Rb. sphaeroides R26 reconstituted with spirilloxanthin,"7 demonstrating that this
channel is of minor importance for overall energy transfer in light-harvesting complexes from purple
bacteria (Figure 7). Also the S* state mentioned above has been suggested to be active in energy
transfer from carotenoids to bacteriochlorophyll. For a discussion of this topic we refer to our recent
review.75

3.2 Carotenoids in pigment proteins of green plants

The antenna complexes associated with Photosystem II (PSII) in green plants consist of a number of
proteins belonging to the Lhcb gene family.128 A higher structural complexity of these proteins,
which usually bind more than one type of carotenoid in addition to Chl-a and Chl-b molecules,129

results in a more complicated network of possible energy transfer and internal conversion pathways.
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Nonetheless, the energy transfer between carotenoids and Chls was extensively studied in the recent
few years, because in addition to the light-harvesting function, singlet excited states of carotenoids in
these complexes were also suggested to play a photoprotective role, in which the 'back' energy
transfer from Chi to carotenoid was the central issue. Yet, the understanding of energy transfer
pathways between carotenoids and Chi molecules in light-harvesting complexes of green plants is
poorer than for their purple bacterial counterparts.
The most abundant protein of the Lhcb family is LHCII that is located at the periphery of PSH, while
minor light-harvesting proteins called CP29, CP26 and CP24 are located close to the core of the PSII
supercomplex.130 Structural knowledge of the Lhcb proteins is based on the crystal structure of
LHCII whose structure was determined with 3.4 A resolution.131 The structure shows that the native
form of LHCII has a trimeric organization, and each of the monomeric subunits (Figure 9) binds 12
Chi molecules and 2 carotenoids. The 12 Chls usually occur in a ratio of 7 Chl-a and 5 Chl-b, but
slight variation has been observed.132 Since the structural data did not allow differentiation of Chl-a
and Chl-b, the exact assignment of Chls in the LHCII structure is still matter of debate. Contrary to
purple bacteria, in which the carotenoid content is species-dependent and more than 100 different
carotenoids were detected in various species,133 only five different carotenoids are accumulated in
light-harvesting proteins of green plants: (i-carotene, lutein, violaxanthin, neoxanthin and
zeaxanthin.'34 The two carotenoids in the LHCII structure were assigned to luteins, but later
biochemical studies showed that while the LI carotenoid site is exclusively occupied by lutein, the
L2 site also binds violaxanthin though with a lutein/violaxanthin affinity of 80/20.135 Further
biochemical analysis revealed two additional carotenoid-binding sites present in LHCII: the Nl site,
specific for neoxanthin,136 and a violaxanthin selective site VI.'37 The VI site is easily removed
during detergent treatment and seems to be occupied preferentially in plants grown at high light
conditions.137 The violaxanthin molecule occupying this site, however, is not able to transfer energy
to Chi.138 Although the sequence homology between LHCII and the other proteins of the Lhc family,
particularly CP29, CP26 and CP24 complexes, suggests that these proteins are not structurally much
different, each of the proteins has a unique carotenoid composition. It seems that all proteins except
LHCII have only two carotenoid binding sites.139 While the LI site is selective for lutein in all
complexes, the L2 site can accommodate lutein or violaxanthin in all complexes. In CP26 and CP29
the L2 site even shows affinity to neoxanthin.'39'40 Under certain conditions the L2 site can also be
occupied by zeaxanthin and this was suggested to trigger a structural change of the protein leading to
quenching of Chi fluorescence,139'141 which is the origin of the photoprotective mechanism called
non-photochemical quenching (NPQ). This mechanism protects against damage caused by excessive
photon flux by dissipating the energy thermally in PSII.'42'143 It involves a cascade of processes
triggered by high light conditions resulting in enzymatic conversion of violaxanthin to zeaxanthin by
means of the xanthophyll cycle. Although a fundamental understanding of NPQ is still lacking, it is
clear that one of the crucial components is a zeaxanthin-induced quenching of Chl-a excited state, as
presence of this carotenoid reduces markedly the Chl-a fluorescence lifetime. ""144'146 Since a direct
quenching by the Si state of zeaxanthin was suggested as one of the possible mechanisms,46 studies
of carotenoid Si dynamics in LHCII and related complexes became an important part of
investigations of NPQ mechanisms.

Most of the studies of carotenoid-Chl energy transfer were performed on the LHCII and CP29
proteins. While LHCII is the only one whose structure is known to fine detail, the CP29 is favorable
for studies of carotenoid-Chl energy transfer as it contains only 2 Chl-b molecules. This minimizes
the overlap between the carotenoid S2 state and the Chl-b Soret band peaking at around 475 nm
(Figure 9). To overcome problems with the presence of a few different carotenoids with overlapping
absorption spectra preventing selective excitation of only one carotenoid species, recombinant
proteins that allow reconstitution with a single carotenoid species135 were also used.145'148 A number
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of studies established that the overall carotenoid-Chl energy transfer efficiency in the Lhcb family of
proteins is in the range 70-90 o/o5,i32,i45,i47-i52 md m a t t h e m a j o r j t y of the energy transfer occurs via
the S2 state (for scheme of energy transfer pathways see Figure 10).
It can be estimated that the efficiency of energy transfer from carotenoid S, states to chlorophylls is
very low. Thus, knowing the energy of the lowest Qy transition of Chl-a in LHCII-type complexes of
-14600 cm'1 and Si energies of carotenoids estimated either from measurements in solution or the
energy gap law (Table 1), a simple comparison with LH2 complexes of purple bacteria suggests that
the Si-mediated pathway should be inefficient in the LHCII-type complexes. As demonstrated for
LH2, the S, state should be at least 800 cm'1 above the acceptor state to achieve a sufficient overlap
between the hypothetical Si emission and absorption of the acceptor. While such an arrangement
often occurs in LH2, for LHCII-type complexes it implies that the S] energy of the carotenoid should
be at least 15400 cm"1, which is higher than expected for carotenoids occurring in these complexes
(see Table 1). These expectations of inefficient energy transfer from carotenoid S] states have been
verified by experiment . However, it has been found that because of the relatively slow vibrational
relaxation '73' in the carotenoid Si state, energy transfer to chlorophyll can occur from higher Si
vibrational states. Comparing the two-photon excitation spectra of LHCII with those of lutein and P-
carotene in solution, it was concluded that the energy transfer must occur from the vibrationally hot
S, state with a rate of (250 fs)"1 and an efficiency of ~50%.119 Energy transfer from the hot S, state
was recently confirmed by transient absorption measurements of the CP29 complex,148 but the
observed transfer rate is slower, (700 fs)'1, leading to modest efficiency of only -10% (see Figure 10
for summary).
Above, we concluded that energy transfer from the thermalized carotenoid Si state is inefficient,
since for the carotenoids present in LHCII-type of complexes the Si state has a lower energy than the
Chl-a Qy state. This opens up the possibility of back energy transfer from Chl-a to the Si state of
carotenoids. This energy transfer route was first suggested by Frank et al. who proposed the so called
'molecular gear shift mechanism' as a mechanism for NPQ.46 In the initial proposal based on Si
energies estimated from the energy gap law, violaxanthin was supposed to have its S| energy above
the Qy transition of Chl-a serving as energy acceptor, while zeaxanthin had an S, energy sufficiently
low to act as quencher of excited Chl-a. Then, exchange of violaxanthin to zeaxanthin by means of
the xanthophyll cycle would enable increase of quencher concentration, explaining the mechanism of
NPQ. Later, direct measurements of the Si energies in both solution4955 and LHCII146 challenged this
mechanism, since the St energies of both violaxanthin and zeaxanthin were shown to be below the
Chl-a Qy state. Nevertheless, although the initially proposed 'molecular gear shift' would not work,
the location of the zeaxanthin S, state below the Chl-a Qy transition still allows direct quenching. To
detect directly the possible Chl-a quenching by the zeaxanthin Si state represents a nontrivial task,
because the fastest component of the Chl-a lifetime observed in the quenched state has a time
constant of-500 pS.141-144146 if this component were due to energy transfer from Chl-a to zeaxanthin,
the Si state of zeaxanthin would have essentially zero population due to its 10 ps lifetime, making it
almost impossible to detect in a transient absorption experiment. On the other hand, such conditions
would make the zeaxanthin S! state a very effective sink for Chl-a excitations. Therefore, although
experimental data could not unambiguously assign the mechanism of quenching, a direct quenching
by means of singlet energy transfer was considered as a possibility.1391'46 However, contrary to the
previous suggestions,46 the key role of zeaxanthin was not due to the intrinsic photophysical
properties of zeaxanthin but rather due to its ability to promote a conformational change allowing
suchatransfer.139-141'153

Direct involvement of the zeaxanthin Si state in NPQ was also shown in a transient absorption study
of intact thylakoid membranes of Arabidopsis thaliana}5* After excitation of either Chl-b or Chl-a by
-100 fs pulses at 664 and 683 nm, respectively, an excited state absorption in the spectral region 530-
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570 ntn was observed directly after excitation. On the basis of the spectral profile reconstructed from
a few kinetic traces measured across this region, having decays characterized by a time constant of
~10ps, it was concluded that this signal corresponded to the S r S N spectrum of zeaxanthin.
Importantly, using transgenic A thaliana plants, the intensity of the S|-SN signal was correlated to the
presence of the PsbS protein that is known to be an essential part of NPQ,155 thus confirming the
relation between population of the zeaxanthin Si state and NPQ. Although the quenching mechanism
could not be disclosed from the experimental data, either energy transfer from Chi to the zeaxanthin
S] state or formation of a zeaxanthin-Chl heterodimer was suggested.154 It is worth noting that this
phenomenon can represent a different quenching mechanism than decrease of the Chl-a lifetime
observed earlier. While the SJ-SM signal was observed only for intact thylakoid membranes, the
shortening of the Chl-a lifetime was evidently detected even in isolated monomeric LHCII-type
complexes.141'145'146 Similar zeaxanthin-induced quenching was also observed in artificial zeaxanthin-
pheophorbide dyads where pyropheophorbide emission lifetime was markedly shortened when
covalently linked to zeaxanthin156'57 or in a mixture of carotenoids and Chl-a embedded in DMPC
liposomes.158 Moreover, the Sj-SN spectrum of zeaxanthin observed for A. thaliana154 is apparently
blue-shifted from that recorded for LHCII reconstituted with zeaxanthin.'46 Therefore (since the
detection of S r S N spectrum of zeaxanthin after Chi excitation is connected with presence of PsbS
protein), zeaxanthin detected in these experiments might be located outside the LHCII-type
complexes, somehow interacting with the PsbS protein. One possibility could be the PsbS-zeaxanthin
complex discovered recently.159

It must be noted that besides the Chl-zeaxanthin energy transfer and formation of Chl-zeaxanthin
heterodimer, other mechanisms that do not involve the S, state of zeaxanthin were also proposed. A
quenching of Chi singlet state by electron transfer from carotenoids to Chi was suggested on the basis
of observations on artificial carotenoporphyrin dyads.160"162 Another hypothesis proposed that the
essential function of zeaxanthin is to promote changes in structure and/or organization of the light-
harvesting complexes that eventually lead to quenching conditions. One such mechanism involves a
structural change facilitating a formation of Chl-a excitonic pairs, which than play a role of
quenchers.143-163 A long-range change involving aggregation and/or desaggregation of antenna
complexes was also proposed. l64'165"167 i n these processes, zeaxanthin is not directly involved in
quenching but acts as a trigger of the particular process. Very recently, 'activation' of zeaxanthin,
achieved by binding zeaxanthin to the PsbS protein was proposed to be an important mechanism to
trigger energy dissipation in plants.159 Which of these mechanisms play the most important role in
NPQ is not known yet. The experimental data collected recently did not lead to general consensus.
Nevertheless, given the complexity of the NPQ process, it is quite possible that all of these
mechanisms have a certain place, and all together lead to the effective protection against excess light
in higher plants.
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Figure 1. Molecular structures of carotenoids frequently used for studies of excited state dynamics. Conjugation
length is denoted in parentheses as follows: N - number of conjugated C=C bonds in the linear conjugated
backbone; pn - conjugation is extended to n C=C bonds located at a terminal ring; O - conjugation extended to a
carbonyl group; LO - conjugation extended to a carbonyl group located at a lactone ring; A - conjugation
extended to an allene moiety.
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Figure 2. Simplified energy level scheme of a carotenoid molecule including transitions corresponding to
transient signals occurring after excitation (blue arrow). The SN state in this scheme represents only a symbolic
final state for S]-SN (green), S2-SN (purple), 1BU-SN (black) and S*-SN (black) transitions. In reality, the final states
of these transitions must be of different symmetry and therefore the SN state in the scheme consists actually of
four different states.
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Figure 3. The S0-S2 (ground state absorption) and SI-SN (excited state absorption) transitions of violaxanthin
(solid line and full symbols) and zeaxanthin (broken line and open symbols) having conjugation lengths of 9 and
11 (9P2), respectively. The SI-SN spectra were recorded 3 ps after excitation at 480 nm (violaxanthin) and 490 nm
(zeaxanthin). All data were obtained in methanol solution at room temperature.

Energy (cm'1)
9000 8000

1000 1100 1200 1300 1400
Wavelength (nm)

Figure 4. Transient absorption spectra of spheroidene in ra-hexane (open circles) and violaxanthin in methanol
(full squares) in the spectral region 850-1750 nm representing the spectral profile of the S,-S2 transition. The
spectra were recorded 3 ps following excitation at 490 nm (spheroidene) and 480 nm (violaxanthin). The solid and
broken lines are results of fitting the spectra to a sum of Gaussian profiles.



207

Time (ps)

Figure 5. Kinetics representing decay of the Si state recorded at the maximum of the S,-SN transition of lycopene
(N=ll) in n-hexane (circles), spheroidene (10) in n-hexane (squares) and violaxanthin (9) in methanol (triangles).
Solid lines represent monoexponential fits of the decays yielding S, lifetimes of 4.2 ps (lycopene), 8.5 ps
(spheroidene) and 24 ps (violaxanthin). Excitation wavelengths were 480 nm (violaxanthin), 490 nm
(spheroidene) and 510 nm (lycopene).

Wavelength (nm)

Figure 6. Bottom: arrangement of carotenoid and BChl-a molecules within the LH2 antenna complex of Rps.
acidophila. The B800 BChl-a molecules are horizontally oriented, and the tightly coupled B850 BChl-a molecules
are vertically oriented. The carotenoids are snaking between the BChl molecules. Top: absorption spectrum of the
LH2 complex from Rps. acidophila. The horizontal bars show spectral regions of BChl-a (upper bars) and
carotenoid (lower) absorption bands.
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Car B800 B850

Figure 7. Schematic representation of energy levels and energy transfer pathways between carotenoids and BChl-
a in the LH2 complex. Double arrow represents excitation of the S2 state of a carotenoid. Wavy arrows denote
intramolecular relaxation processes, while the dashed arrow represents the long-lived BChl-a fluorescence. Solid
arrows represent the dominating energy transfer channels involving the S2 and Si states, although the Si channel
can be completely suppressed in some LH2 species. The dotted lines represent minor energy transfer channels that
usually contributes only fractionally to the total energy transfer: the pathway via higher vibrational levels of the Si
state and the pathway via the S* state observed for some LH2 complexes. Energy transfer pathways are labeled by
the corresponding time constant. See text for details.
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Figure 8. Near-infrared transient absorption spectra of LH2 complexes from Rb. sphaeroides recorded at 2 ps
(full squares) and 20 ps (open squares). Excitation wavelength is 515 nm. The transient absorption spectrum
measured after excitation of the B850 band is shown for comparison (dotted line). The B850 band was excited at
850 nm and the transient spectrum after 850 nm excitation was normalized to have the same magnitude of B850
bleaching as the transient spectra excited in the carotenoid region. Inset shows spectral profiles of the amplitudes
of the 1.7 ps (full squares) and 8 ps (open circles) decay components as extracted from multiexponential global
fitting of the kinetics, demonstrating different origin of the 960 nm band (carotenoid radical) and 1600 nm band
(Si-S2 ESA).
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Figure 9. Bottom: Model structure of the LHCII antenna protein based on crystalographic data and in vitro
reconstitution and mutational analysis. Two luteins (LI) and (L2) were revealed in the crystal structure, while
neoxanthm (Nl) was identified by biochemical studies. Chlorophyll molecules are depicted as tetrapyrole rings.
Top: Absorption spectrum of the LHCII complex.
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Figure 10. Scheme of energy levels and energy transfer pathways between carotenoids and Chi molecules in the
LHCII complex. The double arrow depicts excitation into the S2 state of a carotenoid. Intramolecular relaxation
processes are denoted by wavy arrows, while the dashed arrow represents the long-lived Chl-a fluorescence. Solid
arrows represent the energy transfer channels confirmed by time-resolved studies. The dotted lines represent
possible energy transfer channels involving energy transfer between thermalized carotenoid S! state and Chl-a,
and back energy transfer from Chl-a to the Si state of a carotenoid. The known energy transfer pathways are
labeled by the corresponding time constant. See text for detail



211

Table 1. Energies of the S2 and St States of Carotenoids.8

Carotenoidb

Spirilloxanthin

anhydrorhodovi
brin

Lycopene

rhodopin
glucoside

Spheroidenone

Spheroidene

(3-carotene

Zeaxanthin

Lutein

Violaxanthin

nonaene*

Neurosporene

m9-p-carotene*

Siphonaxanthin

Fucoxanthin

Peridinin

octaene*

heptaene*

Nc

13

12

11

11

10O

10

9(32

9(32

9(31

9

9

9

7(32

80

7OA

7LO
A

8

7

S2 energy

19000

19400

19900

20000

19500

20700

20840

21010

21200

21230

21510

21300

22500

20870

20960

20620

22420

23530

Si energy

Fluorescen
ce

11900

12500

13300

14200f

14200±500
14500h

14550±90
14610±40j

14880±90

isssoieo1

15120±220

15300

-16000

-16000

16200 *
16700 *

16840±170

18160±40

Raman
d

11780

12195

13200
12920

14200

14670
14500

15750

S1-S2

11560±200

12500±150

12800±200
12550±150
e

13200±100

13400±90g

14030±90
13850±20Oi

HOSOiSOO*

16610±200

16520±200

16100±200

2-photon

13900±l
50e

-14500

<15100
~15300k

18500-
18850*
-16200 *
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a) The values correspond to room temperature measurements unless stated
otherwise. Solution measurements were performed in w-hexane except the
following cases: violaxanthin, zeaxanthin, lutein and rhodopin glucoside in
methanol; fucoxanthin and siphonaxanthin in CS2; lutein in octanol; P-
carotene in octane.

b) Carotenoids marked by asterisk are synthesized molecules that do not occur
naturally.

c) Conjugation length. See caption of Figure 1 for explanation.
d) All resonance Raman measurements were carried out with crystalline

carotenoid microcrystals deposited on KBr discs.
e) In LH2 complex.
f) At both room temperature and 170 K.
g) In both LH2 complex and «-hexane solution. The same value was obtained

also in solution at 185 K.
h) At 170 K.
i) At 77 K in EPA glass.
j) In LHCII complexes reconstituted with a single carotenoid species,
k) In native LHCII complexes containing lutein, violaxanthin and neoxanthin

with stoichiometry approximately 1.8:1:0.2

*) Slightly different values obtained in different experiments
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Table 2. Sf Lifetimes of Carotenoids without Conjugated Carbonyl Group/

Carotenoid"
dodecapreno-P-carotene *
decapreno-p-carotene*
tetradehydrospheroidene*
spirilloxanthin
anhydrorhodovibrin
didehydrospheroidene*
didehydrospheroidene *
Lycopene
Rhodopin glucoside
15,15-cw-spheroidene
P-carotene
zeaxanthin
spheroidene
diatoxanthin
Lutein
antheraxanthin
Nonaene*
neurosporene
diadinoxanthin
violaxanthin
dihydrospheroidene*
neoxanthin
m9-p-carotene*
octaene*
tetrahydrospheroidene*
m8-P-carotene*
m7-p-carotene*
Heptaene*
tetrahydrospheroidene *
m5-P-carotene*

N*
17P2
13p2
13
13
12
12
11
11
11
10
9p2
9p2
10
9AP
9pl
9(31
9
9
9A
9
9
8A
7p2
8
8
6p2
5p2
7
7
3p2

tsi (PS)
0.5
1.1
1.1
1.4
2.2
2.7
3.9
4-4.7
4.2-4.8
7
9-11
9
8-9.5
13.3
14
14.4
18
21.2
22.8
24
25.4
35
52
68
85
96
282
290
407
2700

a) all the values refers to measurements at room temperature
b) carotenoids marked by asterisk are synthesized carotenoids that do not occur naturally
c) conjugation length. See caption of Figure 1 for description.
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Germany

Abstract: After a short introduction to the electronic properties of solids, especially of
semiconductors, we present examples for interband and intersubband spectroscopy, preferentially on
CdS/ZnSe structures. After a further introduction to phonons, their properties in CdS/ZnSe
superlattices will be reviewed.

1. Prolog

The author presents two contributions to this school. The first one on spectroscopy of quantum wells
and superlatttices can in most parts not be considered as "investigating extreme physical conditions"
in contrast to the second one, though it covers the spectral range from a few meV to a few eV and
concentrates on new materials of reduced dimensionality.

The motivation of treating this topic can be illustrated in various ways e.g. by the following anecdote:
In August 1845 Friedrich Wilhelm IV, King of Prussia visited the University of Bonn. (The
Rheinland was at that time a province of Prussia). At the University he visited the observatory and
the astronomer Prof. Friedrich Wilhelm Argelander who was rather famous at that time. Jovially the
king asked "Na, Argelander, was gibt's Neues am Himmel? (Well, Argelander, what is new in the
sky?) and he obtained the answer: "Kennen Ihre Majestat schon das Alte?" (Does his majesty already
know the old?).

Other ways to say it are: "one should never underestimate the pleasure of the audience to hear things
which they already know", "repetitio est mater studiorum" and according to the director of this
school we are all students.

Finally and much simpler, the material outlined here will be used by the author and other lectures of
the school in the following. The second contribution "Excitonic Bose Einstein Condensation versus
"Electron-Hole Plasma Formation" reaches indeed the frontiers of optical spectroscopy and treats
extreme conditions. As we shall see, excitonic Bose condensation has been predicted 40 years ago but
is still an unsolved problem.
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2. Introduction to Electronic Properties

In this section we give a short and basic introduction to some of the electronic properties of solids in
general and especially to semiconductors. Then we present in chapter 3 a classification of quantum
wells and superlattices. Details can be found in many textbooks on solid state physics like [1] or
semiconductor physics [2-4], from which the Figs, in chapters 2, 3 and 6 are taken, generally with
modifications.

In Fig. 1 we explain how a band structure, i.e. a reduced zone scheme (b) develops starting either
from the atomic orbitals of the constituent atoms (d) or from free electrons (a). If we bring the atoms
closer together, the discrete atomic orbitals below the ionisation continuum shown schematically in
Fig. Id, start to overlap and to split (Fig. lc) in a similar way as the frequency of n identical harmonic
oscillators splits into n close laying frequencies under weak coupling.

The number n is of the order of 1023 cm'3 for a solid. This means one atomic orbital splits into about
1023 sublevels per cm3. Since the band width is typically of the order of one to ten eV, these levels
can be considered for any practical purpose as a continuum. If the atoms are arranged periodically in
space, it can be shown, that (quasi-) momentum HU. is a good quantum number allowing the
transition from Fig. lc to Fig. lb.
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Figure 1: The appearance of an electronic band structure in the reduced zone scheme (b) starting from free
electrons in a weak periodic potential (a) or from the atomic orbitals of the constituent atoms (d, c). Schematic!
From [4],
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Free electrons on the other hand have a non relativistic parabolic dispersion relation

/ 0 2m0

where k is the wave-vector and mo the free electron rest mass. See the dashed line in Fig. la.

If we introduce a weak periodic potential, the plane waves of the free electrons are scattered off this
potential. For a general k, the scattered waves cancel essentially. There are however special wave
vectors, for which all back-scattered waves interfere constructively resulting together with the
incident wave in a standing wave. This standing wave can have its antinodes at the position of the
mimina or of the maxima of the weak periodic potential resulting for the same k vector in two
different potential energies, while the kinetic energy is the same in both cases. This fact explaines the
appearance of the gaps at theses specific k vectors. See the solid lines in Fig. la. Theses specific k
vectors are the boarders of the Brillouin-zones given for a simple cubic lattice by positive and
negative integer multiples of ir/a. Furthermore it can be shown that the dispersion relation of every
crystal is periodic in k-space with integer multiples of the vectors of the reciprocal lattice. These
reciprocal lattice vectors are given again for an idealized simple cubic lattice by

gt=n—; « = ±1,±2,....; i = x,y,z (2)

a

resulting in

E(k) = E(k + g) (3)
This fact allows to shift all "outer" banches of the dispersion relation into the first Brillouin zone
extending from -x/a to + T/a as shown in Fig. la by the horizontal arrows, resulting in the so-called
reduced zone scheme of Fig. lb. In other words, we can understand the development of bands from
discrete atomic levels through the overlap of the atomic orbitals and the appearance of gaps by the
action of a periodic potential on the continous parabolic dispersion of free electrons.

The next step is to populate the bands with the available electrons according to Fermin-Dirac
statistics. If we end up at T = OK with a partly filled band we have a metal. If we have at T = 0
completely filled, so-called valence bands and completely empty so-called conduction bands, we
have a semiconductor or an insulator. If the energy gap Eg between the energetically highest valence
band (for chemists HOMO = highest occupied molecular orbital, if we consider a crystals as a huge
molecule) and the lowest empty conduction band (LUMO = lowest unoccupied molecular orbital)
falls in the range

0 < Eg <, 4eV => semiconductor (4a)

Actually diamond with Eg » 5.5eV is considered as one of the semiconductors with the largest gap.

We have usually insulators for Eg above 4eV
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4eV ^ Eg => insulator (4b)

and so-called semimetals for vanishing gap i.e. for a situation where conduction and valence band
touch

0 « Eg => semimetal (4c)

If one looks up band structures of real semiconductors (or other crystalline solids) e.g. in [5] one
notices that they are much more complex than Fig. lb. This is mainly a consequence of the fact, that
we have to fold back the dispersion relation in three dimensions. To illustrate this statement, we show
in Fig. 2 the result of the back folding of the free electron dispersion for a diamond lattice into the
first Brillouin zone for two different directions in k space, and for the potential of a Si crystal which
crystallizes in the diamond structure, neglecting spin but including some more directions in k-space.
The D-point is always the center of the first Brillouin zone i.e. k = 0.

Close to their extrema, the various bands tend to be parabolic. This allows to treat the states
essentially as free particles, however with a modified so-called effective mass m given by

i _ i d2E
m~h2 dk2 (5a)

or more generally in tensor notation

d2E
(5b)

This means the curvature and thus the effective mass may be anisotropic i.e. it depends on the
direction in k-space.

For a chemists approach to band-structures see e.g. the contribution by C. Ronda to this book. In the
contribution by C. Ronda another intuitive introduction to the band structure has been given starting
from a chemists point of view on chemical bonding. It has been shown e.g. that the character of the
states changes from the top to the bottom of a band, which is also true in real semiconductors.

A real semiconductor like Si tends, however, to be more complex. As shown in Fig. 3 there is a
transition from simple s and p orbitals to sp3 hybridization with decreasing distance. The fact that
there are two identical atoms in the primitive unit cell results in a backfolding of the bands. Actually
the top of the valence band has p character and the bottom of the conduction band is of s-type.
Furthermore the three dimensional densities of states shows for parabolic bands close to the extrema
the well know square-root dependence of the density of states on energy in three dimensional
systems.

In the periodic table (table 1) we show, where the most widely investigated and technologically
relevant semiconductors can be found. In column IV we find diamond (C), silicon (Si) and
germanium (Ge). Graphite is a semimetal, tin a metal except for the modification grey tin, which is
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also a semimetal. Lead (Pb) is finally only a metal. There is obviously a tendency of decreasing band
gap in a column with increasing atomic number:

El « 5.5eF, Ef *l.leF; E? « Q.leV EfeyS" « OeF

Energy

OL

rfooo]
Wavevector k

b

A x
Wavevector k

Figure 2.- Folding back of the free electron dispersion of eq. (1) into the first Brillouin zone for a diamond
structure and vanishing periodic potential (a) and for a weak periodic potential. Solid and dashed lines are two
different theoretical approximations (b). According to [3].
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nce between a-toms

Figure 3: Transition from atomic s and p levels to the binding and antibinding sp3 hydride states in a covalent
semiconductor as a function of inter atomic distance. According to [lb, 6].
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Table 1: The periodic table of elements

In a Ge crystal we can now replace one half of the atoms by Ga the others by As. This procedure
leaves the total number of electrons unchanged, results if properly done in the zinc-blende structure
and leads to the so called III-V semiconductors. These are all compounds of B, Al, Ga and In with N,
P, As or Sb. Repeating this procedure again, leads to the II-VI semiconductors i.e. the compounds of
Zn, Cd and Hg with O, S, Se or Te. Another repetition results finally in the I-VII compounds of Cu or
Ag with Cl, Br, and J. The chemical binding which is purely covalent for the group IV
semiconductors gets increasingly and finally dominantly ionic when going to the HI-V, II-V and I-
VII materials.
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In Fig. 4 we show some more details of the bandstructures of various semiconductors. The bands
show deviations from parabolicity for larger k-vectors especially pronounced e.g. in InSb. A
semiconductor is said to have a direct gap, or to be a direct semiconductor, if the band extrema occur
at the same points of the Brillouin zone (generally at the D-point). Examples are GaAs, InP, GaN most
of the II-VI compounds or the Cu-halides. If the extrema occur at different points in k-space, the
material is indirect like Si (conduction band minimum in the D-direction close to the X-point, the Fig.
4 shows the anisotropic surfaces of constant energy) or Ge (conduction band minima at the L-point).
Some III-V materials are also indirect like GaP, AlAs or the Ag-halides. If spin is included the
valence-band

Figure 4: Details of the band structures of various semiconductors (a). According to [2].

maximum (which occurs in all of the above mentioned semiconductors at the D-point) shows a rather
complex behaviour. There are two valence bands, split by spin-orbit interaction D̂ ,. The D8 band is
generally the upper one. It is four fold degenerate at k = 0 and splits for k it 0 into two twofold
degenerate bands with different curvature, which are consequently labelled heavy hole (hh) and light
hole (lh) band.

The concept of holes or defect electrons is based on the fact, that it is easier to describe the behaviour
of the few unoccupied states in an otherwise filled valenceband than the many electrons in this band.
The holes have positive charge and momentum and spin opposite to those of the removed electron.

The next question is now, how can we create electrons and / or holes in semiconductors? The first
possibility which may come to mind is thermal excitation of carriers across the gap. Since Eg is in the
range of eV and kBT = 25meV at room temperature, the Boltzmann term

Qxp{-Eg/kBT] (6)
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is extremely small. If this would be the only possibility to create electrons and / or holes, the
investigation of semiconductors would be a merely academic problem without any technical
relevance.

The overwhelming technical relevance of semiconductors and their application in all types of diodes,
bipolar- and field effect transistors, thyristors etc. comes from the fact that semiconductors can be
doped, some of them even both n- and p-type.

Doping means to introduce intentionally atoms which form levels just below the conduction band
(donors) or just above the valence band (acceptors) which exchange carriers with these bands
according to

D° <-> D+ + ecB => donor (7a)

eVB + A0 <-> A' or A0 <-> A" + h => acceptor (7b)

Group V elements act e.g. as donors on lattice sites in Si or Ge, group III elements as acceptors. Si
can act as donor on Ga sites in GaAs and as acceptor on As sites. Depending on the majority of
carriers one speaks of n- or p-doping or of n- or p-semiconductors.

A third possibility to create carriers is via optical excitation and this is the one in which we are
obviously interested in a school on spectroscopy.

In optical inter-band excitation (Fig. 5a) an electron is lifted or excited from the valence band into the
conduction band under absorption (or annihilation) of a photon of sufficient energy. Simultaneously a
hole is created. This means, that all optical interband excitation (recombination) processes create
(annihilate) two particles, namely an electron and a hole. This is however not the whole story.
Electron and hole attract each other via their Coulomb potential, resulting in a Hydrogen- or
positronium atom like series of states (the so-called excitons) below the gap. See Fig. 5b. The
ionisation continuum coincides with the band gap. The excitonic Rydberg energy Ry* is given in
simpliest (Wannier exciton) approximation by

Ry-=13.6ev\-±

*
The excitonic Bohr radius <2B is given by

a* = a • s my (9)

Typical values for semiconductors are

4meV<Ry* <200meV

and
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Figure 5: Optical interband excitation (a) the dispersion of excitons in a direct gap semiconductor (b) and the
absorption spectrum for a dipole-allowed band-to-band transition (c) (schematic).

0.5nm < aB < 200nm (10b)

The excitons can be directly created by absorption of light quanta of an energy given by

E — Ry~Y • For a direct gap semiconductor with a dipole allowed band-to-band transition this

results at low temperature in a hydrogen like series of exciton absorption peaks followed by an
almost constant absorption in the ionization continuum (Fig. 5c), which is significantly enhanced
compared to the square-root absorption spectrum expected under the same conditions but neglecting
the e-h Coulomb interaction band (Sommerfeld enhancement). See the dotted line in Fig. 5c.

Many examples of such spectra and of the corresponding resonances in the reflection spectra and a
discussion of corrections to this simple model or of the situation for indirect gap materials are found
in [2-5].

3. Quantum Wells and Superlattices

By advanced epitaxial growth techniques like molecular beam epitaxy (MBE), metal-organic
chemical vapour deposition (MOCVD) also known as metal organic vapour phase epitaxy (MOVPE)
and their various variants, it is possible to grow semiconductor structures almost layer by layer on an
atomic scale.
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Imagine now, that you grow a thin layers of a material I with a smaller band gap between thick layers
of a material II with a larger gap. You may obtain a band alignment as shown schematically in Fig.
6a. Later on we shall call this a type I structure.

"Thin" means in this context that the width of this layer dj is comparable to or smaller than some
characteristic length scale lc (1 la) where lc can be the de Brogie length 0B which is in the Boltzmann
limit given by (lib) or the distance d of free flight between collisions of the carriers ( l ie) or the
excitonic Bohr Radius aB (1 Id)

d.<L (lla)

/ , = * , „ = h (lib)

(lie)

wave vector k j -

Figure 6: A single quantum well (SQW) of type I (a) a multiple quantum well (b) and a superlattice (only the
conduction band is shown) (c) and the mini-band dispersion (d).

with V,), = thermal velocity and T2 time between collisions or phase relaxation time which is also
temperature dependent.
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Then the electrons and holes are confined in growth (or z-) direction to material I which is called a
quantum well, while they can move still as free particles in x and y directions. There is a finite
number n2i of such quantized states with quantization energies Ej since the barrier height is finite. We
show in Fig. 6a the first two quantized electron and hh states and the first lh state.

The dispersion relation of such quasi two dimensional states is given for simple isotropic and
parabolic bands with effective mass m by

(12)

For the valence band shown e.g. in Fig. 4 the in-plane dispersion relation is more complex as shown
e.g. in [2-5]. Especially the heavy hole and the light hole states have different quantization energies
Eihh and Em,, respectively.

For optical interband transitions the selection rules are in the simplest case

n?-n?=0 (13a)

and for intersubband transitions

The interband transitions are again modified by electron-hole pair Coulomb interaction resulting in
hh and lh exciton states for every interband transition. We shall see examples below. The excitons in
such quantum wells have higher binding energies and oscillator strength compared to those of the
parent bulk quantum well material. For details see e.g. [2-5, 7].

Typical values of lz are around lOnm. With absorption coefficients of the order of 104cm'' not much
signal is obtained in transmission spectroscopy of a single quantum well. Therefore one grows often
multiple quantum well samples (Fig. 6b) for which the barrier is so thick that the wave functions of
the quantized layers do not overlap.

If the barrier layers are on the other hand so thin, that the wave functions overlap, this overlap leads
again to the formation of now so-called mini-bands in the mini Brillouin zone extending from

71 , 71 . , ,
- - < £ , = - , d = d,+dll 04)

a a

as shown in Fig. 5d. In this case the carriers are delocalized again in z-direction, however with an
effective mass depending on the overlap i.e. on the barrier thickness.
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If one grows a material with a smaller band gap between barriers with larger gap, an alignment of the
band edges as in Fig. 6 or 7a is not necessary. The so-called type I band alignment occurs e.g. for

GaAsIAlx_yGayAs; In^yGayNIGax_yiAlnN or Cdx_yZnySelZnSe where we

gave the well material first. If electrons and holes are confined in the two different materials one has
a type II staggered band alignment (Fig. 7b) with examples like CdS/ZnSe or InP/GaAs. If the
conduction band of one material overlaps with the valence band of the other one speaks about type II
misaligned (Fig. 7c) and the combination of a semiconductor with a semimetal is finally called type
III (Fig. 7d).

type I

m
' • • . •

type II misaligned

•c

P
type U staggered

L_HL
type 111

Figure 7: Various bandalignments: type I (a), type II staggered (b), type II misaligned (c), type III (d).

Various layers grow most easily on top of each other if the lattice constants and the coordination of
atoms e.g. tetrahedral are equal and if the type of binding (covalent or ionic) is similar. In this sense
the combination of GaAs/Al^GayAs is almost ideal and possibly the most widely investigated
material combination.

The growth of an ionic material on a covalent one or vice versa is difficult to impossible even if the
lattice constants are similar (e.g. ZnS on Si). The growth of materials with similar type of binding but
different lattice constant leads to strained layers like Si/Ge, InAs/GaAs, CdSe/CdS, CdS/ZnSe or
CdSe/ZnSe.

If the strained layer grows pseudomorphic to the substrate it accumulates with increasing thickness
more and more elastic deformation energy which will be released above a critical thickness either by
(highly unwanted) formation of misfit dislocations or by the formation of growth islands. See [4, 7].
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4. Interband Spectroscopy

In this section we show a few examples of interband spectroscopy.

Fig. 8 shows absorption spectra of two different MQW samples. The heavy hole and light hole
excitons with main quantum number nB = 1 can be seen for the transitions between the first, second
and partly third electron- and hole subbands according to the selection rule (13a).

The higher states of the Hydrogen series merge generally with the ionization continuum.

At low temperatures, the absorption and emission spectra are usually inhomogeneously broadened,
caused by alloy disorder in well and / or barrier and by fluctuations of the well width and

interdiffusion at the interfaces, which is more important for narrower wells due to the l~2

dependence of the quantization energies Eh In good GaAs/Al,.yGayAs MQW samples the widths of
absorption and luminescence bands is the order of or below lmeV (Fig. 9a) larger fluctuations
especially of the well width lead to wider bands and a considerable Stockes Shift between absorption
and emission maxima, as shown in Fig. 9b.

50 x (10 nm GaAs.lO nm Al0 3Gap 7As)

100 x (11 nm InGaAs, 10 nm InP)

Figure 8: Absorption spectra of GaAs/Al,.yGayAs and of In,.j,Gaj,As/InP MQW samples. According to [4].

We give now some results for the type II system CdS/ZnSe summarized in [8, 9]. Fig. 10 shows the
band alignment with some data and the four quantized electron levels in the CdS layer. The numbers
given in Fig. 10 show that the energy of the first quantized exciton can be tuned over a large spectral
range from 2.0eV almost up to the band gap or more precisely the exciton energy of ZnSe at 2.8eV
for vanishing CdS layer thickness.
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60 x (15 nm AIo3Gao7As, 10 nm GaAs)

Figure 9: Absorption and luminescence spectra of two different GaAs/Ali.yGayAs samples with different degrees
of well width fluctuations. From [4].

ZnSe

2.82 eV

CdS ZnSe

AELB=0.82 eV

2.00 eV

2.49 eV

AEVB=0.49eV

Figure 10: Band alignment of CdS/ZnSe. From [8-10].
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Figure /./.• Luminescence spectra of coherently strained CdS/ZnSe quantum well samples with various CdS layer
thickness. From [9, 10].

In Fig. 11 we show low temperature luminescence spectra for various CdS layer thicknesses, from
4.5nm down to 0.6nm which cover almost the whole above mentioned range. For details see [8-10].

In Fig. 12 we show a difference between a CdS/ZnSe superlattice and a multiple quantum well
sample. The photo-luminescence spectra (PL) are similar. In contrast the photoluminescence
excitation spectra, which are similar to the absorption spectra, are different. For the MQW the hole
resides in the ZnSe, the electron in the CdS and the spatial overlap is restricted to the interface region.
Consequently the exciton binding energy is small and is completely masked by the inhomogenous
broadening. In the SL, the electron and holes are delocalized. They overlap more and consequently
the exciton binding energy is larger and a pronounced exciton resonance appears in the PLE
spectrum. The different overlap of the electron and hole wave
functions manifests itself also in different lifetimes. For a MQW sample with dZnSe » dcds the
luminescence decay time is after pulsed excitation in the range of 20 to 30ns. It decreases both with
decreasing dois. because the electron wave function tunnels more into the ZnSe, and with decreasing
dznse because the hole wave function becomes more delocalized. Consequently the luminescence
decay time can reach the (sub-)ns regime for short period CdS/ZnSe SL's [8, 9, 11].

A phenomenon, that is observed very frequently in the spectroscopy of semiconductor systems with
disorder like in bulk alloy crystals (e.g. [12, 13] and in QW or SL is a so-called S-shape behaviour
(e.g. [14, 15, 16] for the CdS/ZnSe system) of the luminescence maximum as a function of
temperature. Actually it is an n shaped behaviour but the first name has been introduced and is
difficult to change, though it is wrong.
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Figure 12: Photoluminescence (PL) and -excitation (PLE) spectra of a CdS/ZnSe SL (a) and a MOW sample (b)
From [8-10].
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Figure 13: The temperature dependence of the emission maximum of a (lnm CdS/1.2nm ZnSe) superlattice (full
squares) and of the half width of the emission band (full triangles) under excitation with the 351nm line (3.53eV)
of an Ar+ laser. According to [8,9, 14-16].



237

The phenomenon is shown in Fig. 13. The emission maximum shifts first to the red with increasing
temperature, shows then a distinct blue shift, accompanied with a maximum in the spectral half-width
and then approaches the temperature dependence of the band gap resulting again in a red shift.

The general interpretation is always in terms of disorder produced localized tail states. For details see
e.g. [8,9,14-16] and references therein. At low temperature the localized states, including metastable
ones, are populated under above band gap excitation randomly, resulting in an inhomogeneously
broadened emission band. With increasing temperature there are first thermally activated hopping and
tunnelling processes of the electron-hole pairs (excitons) or of single carriers to deeper localized
states resulting in a red shift. With further increasing temperature, thermal activation becomes
possible to higher localized and extended states which have a much higher density of states
explaining the blue shift. The excitons reach then a thermal distribution and the emission follows
essentially the temperature dependence of the gap resulting again in a red shift.

This model has been treated in various approximations [14-16] and can be verified by the following
experiment from [8, 14-16].

If one increases the spatial resolution of the inhomogenously broadened emission band at low
temperature, it decays into individual, narrow lines originating from various localization sites (Fig.
14a).

The global or average maximum shifts with increasing temperature in the way shown in Fig. 13 and
14b, c, while the spectral position of the emission from individual lines follows from the very
beginning the temperature dependence of the gap as seen in Fig. 14b, c.

As a last example we shown an effect, which can be observed in CdS/ZnSe SQW. See [9, 17, 18]. In
such a structure, the hole should be in principle completely delocalized in ZnSe and the electron
confined in the CdS layer. A small attraction results from the e-h Coulomb interaction. This effect is
enhanced since both CdS and ZnSe are slightly n-type, even without intentional doping. The capture
of electrons in the CdS well results in a negative space charge in the CdS layer, in a curvature of the
bottom of the well and in an electric field F in the barrier which drives the holes towards the
interface. See the insert of Fig. 15a.

An increasing field F results in a increasing localization and quantization of the hole at the interface
and a decreasing CdS well width results in an increasing tuneling of the electron wave function into
the barrier, as seen in Fig. 15a where the calculated and measured average lifetimes are given as a
function of the CdS well width with the field strength F as a parameter. The experimental data
obtained under weak cw-excitation agree for small well width with close to zero field calculations
and for larger well width with data for 0.5 D 104 V/cm, since wider wells tend to accumulate more
carriers from the ZnSe.

With increasing cw pump power more and more electrons are accumulated in the well resulting in an
increasing confining potential for the holes and consequently in an overall blue shift of the emission
maximum as shown in Fig. 15b. The self-consistent calculation takes the density dependent electron-
and hole envelope functions and their decreasing lifetimes into account.



238

2.26 2.27 2.28 2.29 2.30 2.31 220 2.2? 2.28 2.29 2.30 2.31

tr^Jivttuai l ln** ; ind)<

"TvJ\
XJ

0 10 20 30 40 SD

temperature (K)

c

Figure 14: Micro-photoluminescence spectra of a (1.9nm CdS, 1.9nm ZnSe) SL for T = 5K and various detection
spot diameters (a) spectra for lum and various temperatures (b) and the temperature dependence of the global
maximum and that of individual lines (c). From [6, 14-17],

5. Intersubband Transitions

If there are some carriers in a well it is also possible to investigate transitions between the various
quantized levels in one band, the so-called intersubband transitions. Many references for this topic
can be found in [21-24]. We concentrate here again an CdS/ZnSe MQW samples.

If the band itself is simple and parabolic, originating e.g. from s-type atomic orbitals, as is the case
for the conduction band of II-VI compounds, the selection rules are also simple. See eq. (13b).
Furthermore it can be seen, that the dipole moment of a transition from the nz = 1 to the nz = 2 level is
oriented normal to the quantum well (see Fig. 6a) and this means that only that component of the
electric field of the incoming IR radiation couples to this transition.

A consequence is, that the transition is forbidden for normal incidence of the light beam. Oblique
incidence does not help much, because the beam propagates in the sample almost normal to the well
because of Snellius law.
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Figure 15: The lifetime of excitons in a CdS/ZnSe SQW as a function of the well width with the electric field F
defined in the inset as a parameter (a) and experimental and calculated data for the excitation induced blue-shift of
the emission maximum (b) from [9, 18].
For polarized light the emission spectra depend on the properties of the interface see [8, 19] and references therein
for other material combinations like ZnSe/BeTe [20].

A better solution is (apart from a grating coupler) a geometry as shown in the l.h. insert of Fig. 16. A
beam polarized perpendicular to the plane of incidence (s-pol) does not couple to the transition and
can be used as a reference beam in the Fourier spectrometer while the orthogonal one (p-polarisation)
has a reasonable field component normal to the well. The carriers in the CdS well can be created by
doping. Here Cl-donor doping in the well has been used which has the advantage over modulation-
doping in the ZnSe barrier that almost no space charges are built up, however it increases the
scattering rate of the carriers from ionized donors. The ratio of the transmission spectra in the allowed
and forbidden polarisations Tp/Ts for samples with various well widths and a carrier density around 3
D 1012cm'2 show clearly the transition nz = 1 -> nz = 2. The transition shifts to the blue with decreasing
well width as expected and in agreement with theory [21-24].
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Figure 16: Intersubband transitions of CdS:Cl/ZnSe MQW samples with various CdS well thicknesses. From [21-
24].

In Fig. 17a we show a similar normalized transmission spectrum as in Fig. 16, however for a MQW
sample with much lower doping level of 6 D 1010cm'2 resulting in a much smaller signal.

If this sample is additionally excited by a cw Ar+ laser one increases the electron density in the CdS
well resulting in a measurable signal now in a plot TP lnit / TP ohne i.e. the transmission spectrum in p-
polrization with additional pump beam normalized by the one with the same polarization but without
pump.

As shown in [21, 24] one can observe with an interband pump beam also intersubband transitions in
the valence band. Further examples can be found in [21, 24] for the interminiband transitions in
CdS/ZnSe SLs, which have a characteristic lineshape with a tail to higher energies resulting from
miniband formation and the corresponding modification of the density of states [3, 4, 7].

6. Phonons in Bulk Semiconductors

Before we come to phonons in superlattices, we give here again a short and very elementary
introduction to phonons in bulk, crystalline solids.
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Figure 17: The transmission spectrum as in Figure 16 for a much lower doped sample (a) and the transmission
change induced by optical interband pumping with the 488nm line (2.54eV) of an Ar+ laser. From [21-24].

In Fig. 18 we show schematically the phonon dispersion in the first Brillouin zone of a crystal with
two different atoms in the primitive unit cell, compare to Fig. lb for the electronic dispersion.
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Every crystal has for every direction in k space three so-called acoustic phonon branches, two
transversal ones TA[, 2 and one longitudinal one LA. Transversal and longitudinal refer to the

71
elongation of the atoms with respect to the direction of k (for small k « —) .

a

The acoustic branches start for k = 0 at ft(Q = 0 with a linear dispersion giving the velocity of

sound

(15a)

(15b)

where p, G and E stand for the density and the shear and elastic modulus, respectively.

co ..

•n. / a

Figure 18: Schematic drawing of the phonon dispersion of a crystal with two atoms per primitive unit cell.

Since E > G one has always vTA ^ vLA.The two TA branches may be degenerate or not, depending
on the symmetry of the crystal and on the orientation of k relative to the crystal axes.

For increasing k, i.e. decreasing phonon wavelength, the acoustic phonon branches deviate from a
linear dispersion e.g. in the way shown in Fig. 18.

If the crystal has more than one atom in the primitive unit cell, e.g. s atoms, then there are 3s - 3
optic branches above the acoustic ones. If the atoms carry an electric charge, some of these branches
may couple to the electromagnetic radiation field resulting in a finite transverse longitudinal splitting
at k = 0.
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In crystals with inversion symmetry, optical phonons are either IR- or Raman active. Without
inversion symmetry they may be both.

For more details on phonons in bulk samples see e.g. [1 - 5].

7. Phonons in Superlattices

In a superlattice one has, as discussed already in chapter 3 an artifical periodicity in growth direction
leading to a mini-Brillouin-zone for the k-vectors in this direction (14).

Two different things can now happen with the phonon dispersion in this direction:
backfolding, if the corresponding phonon branches in materials A and B (or I and II)
overlap energetically
confinement, if they do not overlap.

The acoustic branches necessarily overlap, since their dispersions start always at the origin We
discuss therefore backfolding for acoustic phonons and with respect to the selection rules for the LA
branches.

One defines in the so-called Rytov model [8, 25-29] an average longitudinal velocity of sound Vjj[

by

dAtVA+dB/VB

(16)

Then the dispersion relation of the (linear part) of the LA-branch is backfolded into the first mini-
Brillouin zone as shown in Fig. 19. The selection rules for Raman scattering say that in a backward
configuration only the backfolded LA phonons can be observed for parallel polarisation of the
incident and scattered beam and that small, but finite wave vector q results from k-conservation in
the scattering process

where n; and Oj are the refractive index and vacuum wavelength of the incident and backscattered light
beams. Furthermore one expects, that the intensities decrease rapidly with increasing order m of the
backfolded branch and that the intensities for the even numbers are smaller than those for the odd
numbers and vanish even for dA = dB.
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Figure 19: Backfolding of the lower, linear part of the LA phonons in the first mini-Brillouin. From [8, 27].
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Figure 20: Raman spectra of two different CdS/ZnSe SL in the spectral range of backfolded longitudinal acoustic
phonons (FLAPS). From [8,26, 27].

In Fig. 20 we show the Raman spectra for two different SL and find all expectations verified. For D)
one can even see the expected splitting caused by the finite q in (17). The calculated energies D[ are
indicated in Fig. 20a by arrows and the experimental data in Fig. 20b by circles.
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The peak labelled by "?" coincides for one SL with the third backfolded LA phonon but does not
shift with the SL period. Its origin is not completely clear, it could be connected with an electronic
Raman process e.g. at donors, which are unintentionally present in many II-VI crystals (see chapter
5).

If the branches of the phonons in materials A and B do not overlap energetically, a phonon excited in
material A does not find any resonant partner in material B (and vice versa). Consequently the
excitation remains confined in material A with nodes at the interface or a very rapidly decaying tail.
Due to the confinement, only discrete wavelength Dn and vectors kn in growth direction can occur
given by

Since the dispersion of the optical phonons decreases generally with increasing k as shown in Fig. 18
the corresponding phonon frequencies are ordered

COn+1<COn (19)

In Fig. 21 we show the calculated longitudinal displacement patterns of the first two confined LO
phonon modes in CdS and ZnSe in a superlattice, the composition of which is indicated in the first
line labelled IF.

The selection rules indicate that the odd (even) numbers of the confined phonon modes are observed
for crossed (parallel) polarizations of incident and scattered beams in a backward Raman scattering
experiment [8, 27].

Fig. 22 shows a Raman spectrum in the range of the optical phonons of CdS and ZnSe for the two
above mentioned polarisations. There is a small peak from CdS TO modes. The dominant structures
come as expected from the LO modes. The above given polarisation selection rules are especially
obvious for the ZnSe modes, while they are obscured by the mode IF in the CdS region. This mode
will be discussed later.

The confined modes of superlattices with various ZnSe layer thicknesses allow to reproduce the bulk
LO phonon dispersion over a wide fraction of the first Brillouin zone as shown in Fig. 23. The bulk
dispersion had to be shifted by 4cm"1 to lower energies due to the strain in the SL, otherwise the
agreement between experiment and theory is excellent.
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Figure 21: Calculated displacement patterns of CdS and ZnSe LO phonons in a SL. From [8, 26, 27].
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Figure 23: The dispersion of LO phonons in ZnSe compared to data from the first two confined modes in
CdS/ZnSe SL. From [8, 26,27].

The peak labelled IF in Fig. 22 is due to a type of interface modes, which are especially pronounced
in superlattices without common anion nor cation as CdS/ZnSe. At the interface a ZnS bond can
occur. Since Zn and S are the lighter ones out of the two cat- and anions, this mode is situated
energetically above the highest CdS mode and can thus be seen as a distinct structure. Indeed one
sees in Fig. 21, that the displacement pattern has a maximum at the interface in contrast to the
confined CdS and ZnSe modes and decays (exponentially) on both sides the faster the further away
the corresponding bulk modes are. The CdSe interface mode not shown here couples in contrast to
the ZnSe modes and does not show up as individual structure [8, 26, 27].

More examples for the properties of phonons in quantum wells are compiled e.g. in [7, 28, 29] and
the references given therein.
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8. Conclusion and Outlook

With these few examples of spectroscopy of quantum wells and superlattices, which were mainly
selected from work on CdS/ZnSe of the research group of the author, we hope that we could
demonstrate that these types of spectroscopy, though not involving "extreme" conditions, contain a
lot of beautiful physics and exciting insights in the properties of systems of reduced dimensionality,
thus reaching at least partly frontiers of optical spectroscopy.

Once the systems have been understood, one can start to approach "extreme conditions" in various
directions. One can increase the spatial resolution to conditions where only one or a few localized
states are observed, one can enhance the spectral resolution to investigate the linewidth and a possible
spectral diffusion of these states. Is it possible to increase the temporal resolution in the range of the
dephasing time or of the free polarization decay of such states or the (pulsed) pump power to come to
high density effects and lasing. One could apply extremely high uniaxial or hydrostatic pressure to
investigate its influence on the electronic transition energies and on the phonon spectra, resulting in
data for electronic or phononic deformation potentials. Various of these aspects have been treated in
contributions to this or to preceeding schools of this series like the one on Ultrafast Dynamics of
Quantum Systems in 1997 or on Spectroscopy of Systems with Spatially Confined Structures 2001.
Another access to such phenomena in literature is given by the proceedings of the international
workshops on "Nonlinear Optics and Excitation Kinetics" (NOEKS) published in phys. stat. sol. b
146,159 (1), 173 (1), 188 (1), 206 (1), 221 (1), 238 (1).

We investigate in the other contribution to this school scenarios which may appear under increasing
excitation intensity in an exciton system, namely either their Bose-Einstein condensation or the
transition to an electron-hole plasma.
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7. LASERS FOR FRONTIER SPECTROSCOPY
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Abstract

The first laser has been invented in 1960 by using the red light from a ruby crystal, and since then the
laser field exploded almost exponentially, and thousands of different materials, in the state of solids,
liquids, vapors, gases, plasmas, and elementary particles have lased up to now from less than 1 A to
more than 1 mm. Many of them have been used with outstanding results both in basic science, and in
industrial and commercial applications, by changing for ever the same lifestyle of humankind. As far
as spectroscopy is concerned, the laser light has started an unprecedented revolution because of its
unique properties as monochromaticity, coherence, power, brightness and short-pulse regime,
unrivaled by any other natural and artificial light source. Spectroscopy applications increased
qualitatively and quantitatively with the laser sources themselves, and they are still proceeding in
parallel with the moving of the laser field towards new territories. Apart the opening up of new
regions of the electromagnetic spectrum, like the terahertz gap, and the outstanding increase of the
output power which is giving rise to completely new spectroscopic effects, the improvement of laser
sources and auxiliary equipments is producing a growth of traditional laser spectroscopy with
superior resolution and sensitivity. Moreover, spectroscopic techniques and laser light contributed to
the development of new chemical and physical processes which have been used to fabricate photonic
materials with new spectroscopic properties enriching the laser field itself, in a virtuous cycle
spectroscopy—>laser—>material and back to spectroscopy with no end in sight.

1. Introduction

A laser emission was produced for the first time in 1960 in the red region of the spectrum from
a rod of crystalline ruby [1], but its story began much earlier with the observation of natural optical
phenomena, which have been always at the center of curiosity of mankind since ancient times.

As a matter of fact, the origins of this fantastic invention which has revolutionized the science
of light date back to the dawn of the human civilization. Indeed, luminous phenomena, not connected
with the well known burning fire or lightning, have been recorded in ancient times both in the East
and in the West. There are clear references in the classic literature at light emitted by animated
bodies, like bacteria in the sea, and inanimate bodies, like fabulous precious stones, and it seems
certain that in Japan and China luminous paint was known more than 1000 year ago [2], but only in
Europe with the Renaissance do the records assume a more credible character [3]. Well known was
the stone, a ruby or more probably a diamond, in the ring of Catherine of Aragon, ~ 1530, which

251

B. Di Bartolo and O. Forte (eds.), Frontiers of Optical Spectroscopy, 251-288.
© 2005 Springer. Printed in the Netherlands.



252

luminesced at night, or a diamond described by Benvenuto Cellini in 1568 which shone after
exposure to light. So interesting were considered at that time such unusual phenomena that Conrad
Gesner wrote the first known book on luminescence with the rather long title A short treatise on rare
and marvelous plants that are called lunar because they shine at night and incidentally on other
things -which shine in darkness, and published it in Zurich in 1555.

However, the greatest discovery in the entire history of inorganic luminescence occurred in
Bologna where Vincenzo Casciarolo, a cobbler by profession but an alchemist at heart, used to bake
minerals of various extraction in the hope of finding a way to transform them in solid gold. He never
obtained gold, but one day of 1603 a stone, after being heated, started to shine in the dark and became
famous as the petra luminifera bononiensis. The material, probably containing barium sulphate,
immediately aroused the greatest interest among the scholars of the time, among them also Galileo
Galilei who understood that the emitted light was due to internal properties of the material itself, the
first artificial phosphor.

Other discoveries of phosphor materials followed afterwards, but no real breakthroughs were
made until the introduction of the prism spectroscope at the beginning of the nineteenth century. It is
true that the dispersive power of prisms was experimented by Newton and was even known before as
an aesthetic effect in some glass items fabricated in Venice, but only later on, with the introduction of
the slit in 1802 by W.H. Wollaston, it was utilized systematically in laboratory instruments. Anyway,
in 1852 G.G. Stokes noticed that the light emitted by the phosphors is always degraded, in the sense
that its wavelength is longer than that of the exciting light. Because he was working with fluorspar,
calcium fluoride, he also decided to call fluorescence the light emitted, while only in 1888 the more
general and still used term luminescence was introduced by E. Wiedemann. The Stokes law, or
Stokes shift as it is better known, represented the first accurate scientific description of the
luminescent phenomena, which remains substantially valid nowadays.

However, a true understanding of the luminescence was only possible at the beginning of the
twentieth century with the discovery of quantum mechanics, where all physical systems are reduced,
as far as the energy is concerned, to a series of discrete energy levels which can interact with the
electromagnetic radiation of frequency resonant with the energy difference of the previous levels.
Soon, it was also found that the radiation could be absorbed or emitted spontaneously, the latter
process explaining at last the hidden nature of the luminescent phenomena, which for centuries
aroused the fantasy of many scholars and baffled their efforts of comprehension [3]. Moreover, it was
found later on that the radiation, besides being emitted spontaneously, could also be induced to be
emitted by the same radiation in a process called stimulated emission.

This last process was very difficult to be observed experimentally and only later on in 1954,
well after the spectacular scientific advancements during World War II, it was put to work in the
microwave region of the spectrum with the realization of the first maser, acronym from microwave
amplification by stimulated emission radiation, working with ammonia gas [4].

2. The rise of lasers

2.1 DISCOVERY OF LASERS

After the realization of the first maser, theoretical and experimental efforts were devoted to the
extension of the electromagnetic (e.m.) radiation amplification at higher frequencies, i.e. in the
optical range and beyond. But, it was immediately recognized that such frequency jump posed new
problems, the toughest ones concerning the stimulated emission and the optical cavity. Indeed, it was
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well known that spontaneous emission grows with the third power of the frequency, and so in the
optical region the stimulated emission has to compete with it more toughly than in the microwave
region. Moreover, optical cavities allowed many resonance modes and their technology was not
developed, contrary to the monomode microwave cavities well known for their application in radar
devices.

Anyway, without going into too much details which is beyond the purpose of this work, within
a few years the previous problems were brilliantly solved, and atomic, molecular, and semiconductor
materials were proposed as active materials [5,6,7]. However, the first optical maser did not work
with any such materials but with a ruby crystal [1]. It is worthwhile to note that the inventor, T.H.
Maiman, knew very well this kind of crystal having worked in the maser field with it, and he was
aware of its optical spectroscopy with the well known intense red light emission at 694 nm.

Anyway, before describing the subsequent developments of this new important optical field, it
is worth remarking that, although the invention of the first optical maser is attributed to Maiman and
the paternity of the field in general to C.H. Townes, N.G. Basov, and A.M. Prokhorov, who obtained
the Nobel Prize in 1964 "for fundamental work in the field of quantum electronics, which has led to
the construction of oscillators and amplifiers based on the maser-laser principle", the first recorded
idea of such device has been attributed to Gordon Gould. Indeed, in November 13, 1957, he uses for
the first time the world laser for light amplification by stimulated emission of radiation, and in 1988
his various patents were issued by the USA Patent Office, so closing a legal battle which lasted for
more than 20 years [8].

Having established the priorities of the laser invention, it is necessary to say that many other
people were working in the laser field with different material systems and technical approaches.
Indeed, later on in 1960 a He-Ne laser emitted at 1.15 um [9]. Only two years later this system lased
at the classical 632.8 nm red line [10].

In 1961 the Nd3+ ion in CaWO4 produced laser emission at 1.06 ^m [11], but only in 1964 the
well known Nd:YAG system was tested positively [12].

Soon after in 1962, laser emission at 904 nm was obtained at the junction of a p-n
semiconductor, a gallium arsenide diode [13,14,15].

The laser boom continued with increasing momentum to such an effect that by the end of 1963
gases and vapors produced more than 200 different wavelengths from the visible to the middle
infrared, various crystals with impurities displayed 40 different wavelengths from the visible to the
infrared and, besides 6 different semiconductor diode lasers, also several glasses, plastics and liquids
did show laser emission [5]. It is evident that it would not be possible to give justice to the whole
story of this frantic and amazing endeavor in the present work, which has so been limited only to the
major breakthroughs.

Laser emissions in the visible region of the e.m. spectrum from argon ions [16] and at X.-10 nm
from CO2 [17] were found in 1964.

The color center laser was demonstrated in 1965 at a wavelength of 2.7 \xm [18] and, although
it was practically developed only ten years later [19] for a complex series of human and scientific
events [20], it represented and still represents today a model case for the much wider class of vibronic
lasers which are an important part of the family of tunable solid state lasers.

In 1965 the first laser emission driven by chemical reactions was obtained in hydrogen chloride
[21], while tunable laser emission was also demonstrated in a liquid containing an organic dye, the
first dye laser [22].

During the seventies the discovery of completely new types of lasers slowed down
considerably, and only a few of them are worthy of being mentioned hereafter.
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In 1970 the first laser in the violet and ultraviolet region of the spectrum was a liquid Xe dimer
emitting at 1760 A [23], while the more reliable excimers appeared only in 1974 starting with an
emission at 2828 A from XeBr [24].

Elementary particles produced laser emission in 1977, when the first free-electron laser worked
at 3.4 urn [25]. The active material consisted of a beam of electrons, and an "optical cavity" was still
used to capture the e.m. radiation emitted by the oscillating electrons moving in a periodic magnetic
field.

X-ray emission was observed in 1981 by using highly ionized carbon [26] and a plasma
produced by nuclear explosions [27]. The x-ray laser can hardly be compared with the previously
described types of lasers as far as the material, the excitation, and the cavity are concerned. Indeed,
very often the term superradiance instead of laser emission is utilized to describe it.

Finally, in 1982 the Ti:sapphire lased for the first time [28], and now with its continuous
emission in the interval 650-1000 nm is one of the most successful tunable solid state laser, although
not the most efficient one.

2.2 ENERGY LEVELS OF LASER EMISSION

Apart x-ray and free electron lasers, all the other lasers mentioned in the previous section are
based on radiative transitions among atomic, molecular, and band energy levels, and the vast majority
of them can be well described by only ̂ u r different energy schemes.

Figure la shows the energy levels of the Cr3+ ion in a sapphire (A12O3) crystal, i.e. a ruby,
involved in the functioning of the first laser emission. For that the ruby is excited by light, originally
by a flash lamp but any other equally intense optical source would suffice, from the ground 4A2 state
to the higher 4F2 and 4F[ bands, from where the electron excitation decays during a few ps
nonradiatively in the doublet 2E level which eventually emits light at 694 nm with a lifetime of 3 ms.
This optical cycle has, however, the drawback that the lower emission level is also the ground state of
the Cr ion, and so it is very difficult to obtain a continuous inversion population between the excited
2E and ground 4A2 state, which is one of the prerequisite for having light amplification. Indeed, in this
case the condition UT»1 must be fulfilled, where U is the pumping rate out of the ground state, and it
was a fortunate coincidence in ruby that the lifetime of the 2E emitting level is long enough so that
practical pumping is possible. Anyway, this laser is not very efficient, and usually it works only in
pulsed regime. The previous situation is much more clear in Fig.lb where the essential three level
energy scheme has been sorted out from the many ruby levels. It is immediately evident that only a
very powerful pumping source is able to populate level 3 more than level 1, being level 2 only
transitory for the excited electron.

Contrary to the previous three-level energy scheme of ruby, Fig.2a shows the case of the Nd3+

ion in YAG crystal (Yttrium Aluminum Garnet, Y3Als0i2), where the population inversion condition,
UT>0, is less demanding, being satisfied for any pumping rate LM) out of the ground state. Indeed,
because nonradiative transitions last a few ps, the state 4In/2 ' s never appreciably populated during the
excitation, and so the inversion with the state 4F3/2, which is involved in the laser emission, is secured
for any intensity pumping. The present situation is commonly known as a four level energy scheme,
as in Fig.2b where level 1 is the ground state, 2 the excited state, 3 the relaxed excited state, and 4 the
unrelaxed ground state. The adjective relaxed is used for level 3 because it is reached after a
nonradiative transition where the energy is delivered to the lattice vibrations, i.e. phonons, and this
last process is usually known as relaxation.
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(b)

Figure 1. Energy levels of Cr3* in sapphire (A12O3), and radiative (continuous lines) and nonradiative (dashed
lines) transitions connected with the laser emission at 694 nm, the so called R, line, (a), and the three
essential energy levels (b), where level 3 is known as the relaxed excited state.

rather wide energy bands, which is the usual case for point defects, i.e. color centers,
atomic and molecular ions, impurities, etc., in insulating crystals. This new class of solid state
materials is often called vibronic because of the coupling between the electronic excitation and the
lattice vibrations, and their complex optical properties can be described by means of the
conflgurational coordinate diagram, as shown in Fig.3. Here the diagram is limited to only two states
and the conduction band for reasons of simplicity, but in general it can contain any number of states.
Anyway, the vibronic state is represented by a parabola which describes the energy of the electron as
a function of the coordinate Q, in practice the distance of the neighbor ions of the host crystal from
the defect. The two parabolas representing the ground and the excited state have the minima at
different coordinates, Qe-Qg is a measure of the electron-lattice coupling, and the horizontal lines
inside the parabolas represent the vibration levels of the lattice, in this case only one vibrational mode
is shown. An optical excitation produces a vertical transition, A for absorption, from the minimum of
the ground state, GS, to the excited state in a highly excited vibrational level. The vibronic system
relaxes in a matter of a few ps to the minimum of the excited state, which is known as relaxed excited
state, RES. The excitation can remain in this peculiar state for a relatively long time, from ms to ns,
before returning
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Figure 2. Energy levels of Nd3+ in YAG (Yttrium Aluminum Garnet, Y3AI5O12), and radiative (continuous lines)
and nonradiative (dashed lines) transitions connected with the laser emission at 1.06 urn (a), and the
four essential energy levels (b), where level 3 is known as the relaxed excited state.

In the previous two notable cases, the energy levels connected with the laser emission are atomic-
like, but by looking carefully at higher energies in Figs.l and 2 it is easily observed that the levels are
to the ground state parabola with a vertical transition accompanied very often by light emission. Soon
afterwards, a further lattice relaxation completes the optical cycle to the GS. However, the emission
which is also called ordinary luminescence, OL, is not the only radiative process which takes place
after excitation. Indeed, little beyond the obvious Rayleigh line, a structured emission reveals the
presence of Raman scattering, RS, which contains detailed information on the lattice modes coupled
to the electronic transitions. Still beyond that and up to OL, there is a very weak emission tail known
as hot luminescence, HL, which originates from decaying processes during the relaxation. Moreover,
in the case the temperature is high enough, a thermal excitation process can subtract a fraction of
excitations from the RES to the conduction band in this case, but to any other upper state in general,
so decreasing the optical efficiency of the optical cycle. Anyway, RS and HL are usually a few order
of magnitude less intense than OL, which together with the absorption A remain the most
conspicuous optical effects during the optical cycle. From the laser point of view the system is
equivalent to a four level energy scheme, with the difference that both the absorption and the
emission are now broad bands as a consequence of the interaction with the lattice. In conclusion, all
solid state materials can be described as in Fig.3, where the electron-lattice coupling can be weak in
the rare-earth ions, strong in transition metal ions, and very strong in color centers, with the
consequence of narrow emissions, as in Figs.l and 2, or very broad emission bands, as in Ti:Sa [28]
and color centers [29]. In these last two cases it is possible to have efficient laser emissions tunable
within the broad emission bands.
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In Figs.l, 2, and 3 the electron excitation is localized at the site of the defect center, while the
same excitation is completely delocalized in the semiconductor material, where the energy bands
refer to the whole sample under study. This is a consequence of the electrons moving all over the
semiconductor crystal, while in the defect centers they belong to each defect. Figure 4a describes the
energy status of an intrinsic semiconductor crystal at T=0 K, where the valence band is full while the
conduction band above the energy gap is empty of electrons. Some electrons of the valence band can
be excited radiatively in the conduction band as in Fig.4b, and the same excited electrons can
recombine with the holes in the valence band with the emission of light, which may have laser
character in presence of an optical cavity around the crystal and enough pumping power. This is the
operation principle of a semiconductor laser, but hardly an efficient way to have laser emission which
is instead obtained by electrical current excitation as in Figs.4c and 4d. In a junction p-n, the bands in
the two differently doped crystals assume at equilibrium different energy values in order to avoid any
current flow as in Fig.4c. However, in case a forward voltage
is applied the levels of the two Fermi seas are different, see Fig.4d, and a current is promoted with the
combination of electrons and holes in the active region of the junction. Radiation is emitted with high
efficiency approximately at the energy of the gap, and so it is possible to have laser emissions in a
wide region of the spectrum, by choosing among the many existing semiconductor materials with
different gaps.

Normal mode coordinate Q

Figure 3. Configuration coordinate diagram illustrating the absorption and emission phenomena of vibronic
materials, i.e. impurities and point defects in insulating crystals. See text for details.
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Figure 4. Energy bands and operation principles of semiconductor lasers in a normal material, (a) and (b), and in a
junction, (c) and (d). See text for details.

2.3 LASER PANORAMA AND OPTICAL TECHNOLOGIES IN THE NINETIES

Going back to laser development, at the same time when new laser emissions were discovered
almost daily, studies were performed both at scientific institutions and at just born commercial
industries, to improve also the performances of the already working models. This huge effort has
produced thousands of new emission lines from thousands of materials, has improved considerably
the efficiency of the already existing laser systems, and gave rise to new optical techniques [30,31].
Among the latter ones, it is worthwhile to mention the enormous progresses of the pulsed regime. As
it is well known, a few lasers, among them the excimer and ruby ones, operate only in pulsed regime,
mainly because of inherent difficulties to obtain a continuous inversion of the lasing population. As a
consequence, the duration of the light pulses is given by the physical system itself, ~10 ns for
excimer and ~ 1 ns for ruby, for instance. Other more efficient lasers operate indifferently in
continuous wave (cw) and pulsed regime, the Nd:YAG and CO2 lasers for instance. However,
almost all the lasers can be compelled to emit pulses of light with controlled duration down to -10 ns
with Q switching, ~1 ns with cavity dumping, ~1 ps with mode locking, and a few fs with
compression by negative dispersion and other advanced techniques. By shrinking the pulse, also the
peak power has been increased with respect to the cw regime up to reach the density values of 1015

W/cm2 and more, when properly focused. The high value of power available from lasers allowed an
incredible expansion of non-linear optics, until then limited by the scarcity of intense pumping
sources.

It would be impossible to give in the present work even a partial account of the laser
developments up to a decade ago, so the efforts will be limited only to a few aspects regarding the
successful and parallel stories of two families of laser materials, semiconductors and solid state
crystals, which have been and are still utilized extensively in spectroscopy.

As reported previously, semiconductor diode lasers, SDL, were introduced in the laser race
quite early, but for more than a decade they remained more an interesting scientific curiosity than a
tool of any practical use. Indeed, they were not reliable, the efficiency was very low, most of them
needed low temperatures to operate, and they could hardly survive to a few temperature cycles.
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However, in due time the techniques of handling semiconductor materials improved so much, also as
a by-product of the modern integrated electronic industry, that it was possible to fabricate reliable
diode lasers, most of them slightly tunable, emitting from the visible region of the spectrum up to
about 30 urn [32,33]. Above ~2.5 |im they work only at low temperatures, 4-200 K, and the power
decreases with increasing wavelength falling well below 1 mW for lead salt diodes above 10 |im.
Below -2.5 urn they work also at room temperature and the maximum power of about 100 mW is
emitted in the near infrared region, although also the new discovered blue SDLs are improving very
fast [34]. The TDLs have found many scientific and technological application niches for their high
emission efficiency, easiness of handling and, in particular, in spectroscopy for their tunability from
the visible up to the infrared region of the spectrum. However, because of their poor spatial and
spectral characteristics, the high frequency noise, the easy-facet damage by power output, which does
not allow a regime of short and powerful pulses, they could not compete for specialized applications
with other well established laser sources, like solid state lasers, SSL.

The latter ones, following vast and detailed studies of luminescence in old and new solids
[35,36], are based on thousands of laser active crystals in the range 0.3-5 urn. However, the big
majority of laser emissions did not receive any attention beyond the experimental demonstration, and
only a few of them were developed up to the point to be widely spread among the scientific and
technical communities. The latter lasers include the ruby, the Nd:YAG, and the Ti:sapphire [28]. A
large amount of work has been devoted to find new reliable hosts especially for high power regimes,
but up to now only the crystal SLiSrAlF6 (LiSAF) has shown some promising characteristics when
doped with Cr3* [37]. Very important among SSLs are the vibronic lasers based on point defects in
dielectric crystals, because of their broad and continuous tunability from about 0.7 to 4 um. The
power output depends strongly on the pumping power and schemes, dimensions of the crystals,
cooling etc., but it can easily reach a few W in cw and GW in pulsed regime, while they operate
mostly at room temperature with the exception of color center lasers above 1.5 urn which require
liquid nitrogen temperature [38].

Contrary to SDLs, all SSLs possess very good spatial and spectral characteristics which mark
them as unique laser sources for a lot of applications which require well defined optical modes, beam
shape, single frequency operation, smooth pulse shape, etc.. However, all SSLs are marred by an
inherent weakness which is related to their low overall efficiency from plug to beam energy, which
seldom is getting over 0.5%. This low figure is due in part to intrinsic factors like the relaxation
processes, shown in Figs.l, 2 and 3 for ruby, Nd:YAG, and vibronic systems in general, which are
unavoidable, and mostly to the poor overlapping between the exciting spectrum of the pumping
optical source, usually an arc lamp, and the absorption spectrum of the active optical material. Figure
5 show the absorption spectrum of Nd3+ in YAG and, superimposed, the typical emission spectrum of
a xenon lamp usually used to pump SSLs. No more than 5% of the luminous energy of the lamp,
which apart a few strong lines in the infrared emits like a black body radiation source, is transferred
to the Nd3+ ions. When the active ions are excited by a laser line, like in Tirsapphire or in color
centers, both pumped with optical efficiencies up to 50% by an argon ion laser, the overall efficiency
is still very low, because the efficiency of the argon laser itself is hardly higher than 0.1 percent. This
unfortunate situation changed abruptly with the availability of SDLs, whose emission lines can match
exactly the absorption transitions of SSL. In particular the GaAlAs diode can pump with an optical
efficiency of 50% the 4F5/2-4l9/2 transition of the Nd: Y AG at -809 nm, see Fig.6, by producing the 1.06
|im laser radiation with an overall efficiency of ~20%! This new pumping technology has been
applied to obtain for instance a diode pumped SSL with superior qualities as compactness, beam
quality and frequency stability but a modest power output of ~30 mW, called monolithic nonplanar
ring oscillator [39], and another SSL with near-diffraction limited beam quality at a level of power
output of 147 W, called disk laser [40]. In conclusion, this new possibility of merging the good beam
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qualities of SSLs and the peculiar pumping capacities of the SDLs opened completely new
perspectives for the development of SSLs and SDLs altogether.
Anyway, at the beginning of the nineties more than thousands of laser emissions at different
wavelengths and bands in practically every form of matter, solid, liquid, gas, plasma, and also
elementary particles have been discovered and utilized [41]. All these emissions have been
approximately reported in Fig.7 classified accordingly to the different states of matter as a function of
wavelength. A general look at it is really impressive because, in practice, laser devices fill the e.m.
spectrum from soft x-ray to the far-infrared and beyond. However, it should be reminded that there is
not usually a continuous wavelength tuning inside each family, and on this respect gas and solid state
lasers represents two extreme cases. Gas lasers emit at discrete wavelengths, like excimers in the UV
and CO2 in the IR, and only when high pressure is used, as in the case of CO2, it is possible to get a
limited tunability. Instead, solid state lasers, with a few notable exceptions, like ruby and Nd-YAG,
include the vibronic family almost continuously tunable from 0.7 to 4.0 urn. The average power, not
reported in Fig.7, varies from nW of lead salt diode lasers to kW of carbon dioxide laser, with peak
powers up to TW for pulsed devices with duration as short as a few tens fs. However, these
achievements should not surprise anybody, because they are a logical consequence of the quantum
nature of the matter and light and, practically, any kind of material could become a potential
candidate for laser emission, once the required conditions for laser action are satisfied, which in time
has proved easier than it would have been expected four decades ago.
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Fig.5 - Absorption spectrum at room temperature of Nd3+ions in YAG, full line, and the typical emission
spectrum of a xenon lamp, gray area.
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Fig.6 - Absorption spectrum at room temperature ofNd3+ions in YAG expanded around 810 nm, thin full line,
and the emission line of a GaAlAs semiconductor diode laser, thick full line.

3. Spectroscopy with lasers

3.1 PROPERTIES OF LASERS RELATED TO SPECTROSCOPY

Since the realization of the first lasers, both the discoverers and experts alike realized the enormous
potentialities of this new tool. Indeed, although those new light sources did not display better
efficiencies with respect to the old classical sources of lights, they possessed unique characteristics
which were and are still unparalleled by any other light source. In particular, laser radiation is
coherent and monochromatic, carries high power with high brightness, and can be pulsed very easily,
all properties that have been used up to now in hundredths of applications, among them alignment,
automation and robotics, bar readers, communication, displays, holography, isotope enrichment, laser
fusion, material treatment, medicine, metrology, nonlinear optics, optical storage, plasma diagnostics,

photochemistry, printing, ranger finder, remote sensing, spectroscopy, surgery, ultrafast processes,
weapons.

As far as spectroscopy is concerned, all five previous properties of lasers perform their part,
although monochromaticity is the main actor. Figure 8 show the absorption spectrum of water vapor
measured with one of the first available TDL [42]. It is easily observed that the resolution power of
the new system is more than 105, a figure at least two order of magnitude bigger with respect to the
standard spectrophotometers using prisms or gratings. This high resolution not only allowed for the
first time the separation of nearby absorption lines, as the triplet in Fig. 8 which could not have been
resolved with classical optical systems, but it also opened the possibility to study the lineshape of the
single lines, which bears the imprint of the atomic and molecular interactions, a possibility limited to
very few cases before the invention of laser sources, and mostly dreamed by the experts of
spectroscopy until that time.
Moreover, the lasers did not limit themselves to increase the resolution, to which later on the
improved laser sources still added several orders of magnitude with respect to the already notable one
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Figure 7. Approximate spectral ranges of the existing lasers at the beginning of the nineties classified according to
the state of matter of the active material.

of Fig.8, but also the sensitivity was very much increased for the intrinsic functioning of
the laser itself. Figure 9 shows the intensity of a color center laser emission over its
continuously tuning band, which contains several absorption features of atmospheric water
and carbon dioxide [43]. The rather strong intensity of the molecular absorption is due to
intracavity amplification effects in only a few cm atmospheric path, which in a classical optical
system would have amounted to an extremely weak absorption barely observable. In this case no care
has been paid to select a single mode and so the resolution, although larger than in a classical
spectrophotometer, is worst than that reported in Fig.8, but the intensity of the absorption is at least
two order of magnitude bigger than that reported in the same Fig.8, as it results by taking into
account the very different optical paths in the two experiments.

The previous two examples indicate that laser sources have provided the field of spectroscopy
with much more than the simple addition of their exceptional characteristics. Indeed, they have
opened such a Pandora box that it would be impossible to describe it summarily in this limited work,
for which it is referred mostly to specialized literature [44,45]. So, in the following the matter will be
limited only to the description of a few spectroscopic laser techniques which, however, well represent
the great revolution aroused by the laser invention in the then rather old and dozing spectroscopic
field. However, this brief description in not limited to spectroscopy alone, but it is also
propaedeutical to a better understanding of the same laser sources.
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Figure 8. Absorption lines in the v2 band of water vapor at 1880 cm"1 measured over a 7.4 m air path with a
tunable diode laser [42].
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Figure 9. The emission intensity of the KCI:Li FA(II) color center laser is tuned in a spectral range rich of
absorption lines from water vapor and carbon dioxide, contained in small traces in the atmosphere [43].
See text for details.
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3.2 LASERS AND SPECTROSCOPIC TECHNIQUES

The most simple and diffuse spectroscopic technique is the linear absorption of the optical
beam through the sample, solid, liquid or gas, which consists essentially in measuring the intensity of
the beam before and after having traversed the sample as a function of wavelength. Figure 8 is an
example of such measurements with a laser beam. It is evident that the spectrum is very much rough,
although its novelties in comparison with the spectra performed by using classical light sources are
outstanding as recalled in the previous section. However, the final form of the laser spectrum can be
improved, together with the signal to noise ratio, by using special electronic techniques.

Figure 10 shows four spectra of ammonia around 781 cm'1 at room temperature taken by mean
of a TDL spectrometer with an optical path 24 m long, and on each spectrum there are four
absorption lines not yet identified then, but hundred times less intense than other well known
ammonia lines [46]. The top signal shows the four absorption lines on the slope of the TDL mode,
and it has been obtained by averaging 100 times the signal from the detector while the spectral
interval was swept at 100 Hz. The second signal from the top has been obtained by modulating the
intensity of the laser beam at 400 Hz and analyzing the signal from the detector with a lock-in system
and Is constant time, while the frequency of the TDL is swept through the spectral interval slowly, let
say 10 m. The two spectra are almost equal, which is the consequence of the two apparently different
averaging methods, which instead are substantially similar in principle; in practice there are
advantages of one method on the other one only when there are instabilities of temperature, laser
beam intensity, etc., i.e. when the parameters of the whole system, spectrometer and sample, change
during the relatively long averaging time. The third spectrum from the top has been obtained by fast
modulating the frequency of the TDL while the same frequency is swept slowly through the spectral
interval, and by using a lock-in system to analyze the output signal. The absorption lines assume the
typical derivative shape and the initial slope of the laser mode is canceled, allowing a bigger
amplification of the small absorption signals. As a result, the signal to noise ratio is very much
improved with respect to the two previous spectra. This way to analyze signals is usually called first
derivative lock-in method, and it can also be extended to the second derivative lock-in method, and so
on, up to arrive to n'h subsequent derivative analysis with, in principle, an ever improving signal to
noise ratio, but in practice no substantial improvements are obtained after the first few derivative
steps. Anyway, Fig. 10 shows at bottom the second derivative spectrum which is less noisy than the
previous one, as expected. Apart the resolution of the spectrum, which does not improve in the four
methods, the increasing intensity of the absorption signal moving from top to bottom indicates that
this simple measuring ammonia system can be used to detect down to 500 ppb of NH3 molecules in
the atmosphere, a very useful result for environmental studies, indeed.

Going back to Fig.8, although rough and distorted it displays the three absorption lines with
well defined widths, which are not due to instrumental effects. As it is well known, an atomic or
molecular gas possesses Lorentzian absorption lines with a natural linewidth determined essentially
by the energy levels involved in the transition and their lifetimes. However, because of thermal
motion, the Doppler effect adds to the natural linewidth up to obtain a Gaussian absorption line with
a larger width, which depends on the atomic or molecular weight and the temperature as well.
Moreover, when the gas density increases the collisions add still more to the linewidth, transforming
the absorption lines in Voigtian curves witch tend to become Lorentzian curves at high pressures,
again as at the beginning of this story but with a much larger linewidth. Lasers are particularly good
at studying all these complex steps, because of their spectral purity and tunability.
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Figure 10. Absorption spectra of ammonia vapors in air obtained by using a TDL and a multipass cell at room
temperature [46]. See text for details.

Figure 11. Absorption line of the aR(2,l) transition of ISNH5 at 988.396 cm', pressure 71 Torr and path length 1
m, and of an unassigned transition at 988.200 cm'1 which belongs to the more abundant species
14NH3 (a). Normalized absorption profile of the two above transitions (b), the solid line represents the
best fit of the experimental points, and the bottom line shows the residuals [47].
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Figure 11 shows one of the first examples of lineshape studies performed by using TDLs and
the calculus capacities of personal computers (PC) [47]. The upper part represents the direct linear
absorption spectrum of ammonia around 988.3 cm'1, with the laser mode and the fringes of
interferences for determining the relative frequency, while the bottom part is the result of the
intensity normalization, frequency linearization, and fitting with a special program, which at the end
delivers the shape (in the present case Lorentzian), width, and shift. All these parameters are then
compared with proper theories based on molecular interaction models, which are so submitted to
severe experimental tests. The measurements and analyses shown in Fig. 11 are not of very good
quality because they were among the first ones to be performed, but both TDLs, fitting programs, and
PCs increased so much and so quickly their qualities and versatility that better final data were
obtained in the following years, as it will be described later on in the paper.

The previous spectroscopy examples show that the new laser devices are capable to resolve
structures smaller than the usually broadened lines of the spectra measured in atomic or molecular
gases. But such resolution power is useless until the linewidths are substantially decreased, which can
be accomplished by resorting to lower gas density and temperature, and mostly by using molecular
beams. As it is well known, the Doppler width depends on the square root of the temperature and so,
by decreasing the temperature of the gas in especially built cells, it is possible to reveal more fine
details in the spectra. However, this method is severely limited by the low vapor pressure of most of
the atomic and molecular species of some interest for spectroscopy at the desired temperatures, so
that temperatures lower than 200 K, which reduce the width of only 20%, are seldom utilized.
Anyway, although this cryogenic technique is currently used to better resolve congested spectra, a
much more efficient method of cooling gaseous species is given by the molecular beam technology
[48,49].

A speedy stream of atoms or molecules can be produced by expanding the correspondent gas
(also solid materials can be heated and vaporized) in an evacuated vessel through a small orifice, and
in the expansion process the temperature of the gas can be lowered easily by two order of magnitude
by maintaining a still sizeable and optically measurable density [50]. Moreover, by using properly
designed skimmers and mobile mechanical devices, highly directional and monoenergetic atomic and
molecular beams have been produced, with the result of reducing still more the temperature, by
keeping in mind that in a beam there is a longitudinal and a transversal temperature, which are
usually different each other. However, without recurring to complex experimental apparatus, a
straightforward and rugged molecular beam system can be easily coupled to a laser
spectrophotometer with the result of simplifying notably the absorption spectra, especially those of
rather complex molecules. This is the case of fluoro-carbon-12, CF2C12, which has been studied
intensively in the recent past because it was suggested to reduce the total amount of ozone in the
atmosphere [51], a matter still debated today when the production of fluoro-carbon (freon) gases has
been halted in most industrialized countries. Anyway, Fig. 12 shows the spectra of such molecule
taken in a normal cell and in a free (without limiting structures, and so very simple) jet, where the
rotational and vibrational temperatures are 90 and 180 K, respectively [52]. Besides the longitudinal
and transversal temperatures of the molecular beam, any degree of freedom of the molecules attains a
different temperature, because the beam is not a thermodynamic system in a thermal equilibrium, as it
is the case of a gas in a volume at a given temperature and pressure. Going back to Fig. 12, the
spectrum (a) differs from the spectrum (b) because of a bump toward the end of many absorption
lines, and this feature represents the starting point of a Q branch whose lines have been numbered as
reported in the figure. Only the cooling in the free jet allowed the precise determination of the head of
the branch, which is completely blurred out in the spectrum at room temperature in the cell.
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Figure 12. Diode laser spectrum of CF2Ch in a free jet (a) and in a cell at room temperature (b). The ammonia line
aQ(l 1,10) has been used to calibrate the frequency scale [52].

However sophisticated a molecular beam can be considered, the spectroscopic technique is still
the same as in the previous linear case with the cell, where the optical radiation is produced by a laser
and revealed by a detector after having been absorbed by the material under study. The same linear
absorption method holds also when the absorbed energy is not revealed by an optical detector, as a
difference between the input and the output intensity, but rather by the effects produced by the
absorbed energy on the gas itself. In one case the absorption is revealed through its heating locally
the gas which generates sound waves picked up by a microphone, photo-acoustic spectroscopy. In
another case, the energy of the absorbed radiation unbalances the equilibrium threshold of an
electrical discharge which is so started on the onset of absorption, opto-galvanic spectroscopy. Both
experimental methods were well know much before the invention of the laser. For instance, the
photo-acoustic effect has been discovered by Edison, and the opto-galvanic effect was experienced in
the early gas-discharge experiments, but both of them were revitalized by the laser sources which
possess the high resolution and the high intensity they needed to be usefully utilized in spectroscopy
[53,54].

Especially important in the two previous cases was the intensity of the laser beam, which
increases the sensitivity of the techniques up to be competitive with other ones, but without changing
the character of the fundamental linear absorption. On the contrary, the intensity of the laser sources
can also be used to open the vast realm of non linear optical phenomena, which have originated new
forms of spectroscopy like saturation, two-photon, and Raman. Really these effects were known
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before the invention of the laser, but only with these new singular sources they ceased to be mere
scientific curiosities, however important in basic research.
If a monochromatic laser beam, the pump, is absorbed by an atomic or molecular transition line, it
can happens at certain values of the intensity that the energy is not absorbed linearly any more, and
the lineshape of the transition develops what is commonly called a hole-burning, i.e. a sharp dip in
the much wider absorption curve. If at the same time a counter-propagating beam, the probe, identical
to the previous one but much weaker, is switched on, it can measure the narrow dip with a much
higher resolution than the linear absorption method. It should be added that this saturation method
needs some kind of tunability on the side of the laser or some modulation of the spectroscopic
structure under observation, but it allows an increasing of orders of magnitude in the resolution of the
spectral features, like the hyperfine structures otherwise buried under the Doppler broadened
absorption lines.
The linear absorption is well known to be the result of the first term in an expansion series of the
matter-light interaction, where the coefficients of the various terms are decreasing in values with
increasing order, but at the same time increasing with the intensity to the power of the order. In short,
the first term is proportional to the intensity, linear response, the second term increases as the square
of the intensity, the third term as the cube of the intensity, and so on. Hence, it is clear that at low
intensity levels only linear effects can be observed, while the high order terms are observed only at
high levels of intensity, and are called in general nonlinear effects. Clearly, in this peculiar context
the laser has changed the field of optics as never before [55,56].
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Figure 13. One- (a) and two-photon (b) absorption spectra of excitons in Cu2O measured at liquid helium
temperature, by using laser sources to excite the exciton gas in the semiconductor and to reveal the
spectroscopic structure. Let note the different energy positions of the various peaks in the two series
[57].
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One of these nonlinear effects is the two-photon absorption, which has been discovered in 1931
with intense classical light sources, and where a transition is excited by two photons having each half
the energy of the transition itself, and the absorption probability is proportional to the square of the
intensity. To be noted that the same optical radiation would not be absorbed at all at low intensity.
But, why this non linear spectroscopy, which requires powerful optical sources and also other
technical tricks, is so worthy to be pursued in the first place? The answer to this apparently silly
question is given by Fig. 13, which reports the absorption spectrum of the excitons in a Cu2O crystal
measured by one and two photons spectroscopy [57]. The excitons, which are couples of bound
electrons and holes like an atomic system, are generated in the energy gap of the semiconductor by a
high power laser, a Raman-shifted Nd-YAG laser at 0.6496 eV, and their quasi-atomic spectrum
measured by a tunable dye laser pumped by a krypton laser, a rather complex experimental apparatus.
Anyway, Fig. 13 show in (a) and (b) two different spectra which correspond to the normal linear
spectrum and the two-photon spectrum, respectively. This apparently strange result is a consequence
of the energy levels and transition rules of the exciton transitions in the crystal. Indeed, like an atomic
system, the exciton possesses several energy levels above the ground state, which can be reached by
light absorption according to the transition rules and the parity of the levels. Without going in more
details, it suffices here to say that certain levels are allowed and other ones are forbidden to one
photon absorption, while in general the contrary case holds for two photon absorption. This means
that one photon absorption reaches different levels with respect to two photon absorption, with the
result that the two spectra look differently as in Fig. 13. In this case the two series of absorption peaks
are complementary to each other, and it is clear that the two-photon absorption technique has opened
a new spectroscopic dimension for the optical transitions. The previous case of two-photon
absorption in a solid material applies just the same in gaseous or liquid materials, clearly with
different experimental approaches as required by the circumstances.

Another prominent non linear effect concerns the interaction between the light beam and
matter, where the incident photons undergo inelastic collisions with atoms, molecules, and crystals. A
small fraction of photons emerges with slight lower or higher energy with respect to before the
collision, having left or taken the energy difference to or from the electronic, vibrational, rotational
energy levels of the illuminated material. This effect is called Raman from the name of the Indian
Scholar who discovered it in 1927 and, in practice, consists in the emerging light beam retaining the
imprint of the material itself. As an example for crystalline matter, Fig. 14 shows the Raman
scattering on silicon, and it consists of a very intense central peak at the same frequency as the laser
source, due to Rayleigh elastic scattering, and of two almost symmetrical spectra, called Stokes and
anti-Stokes, which contain in the present case some lattice vibrations of the crystal, i.e. surface
phonons, R, and acoustic transversal, T, and longitudinal, L, phonons [58]. With the Raman
spectroscopy it is possible to measure the frequencies of the various vibrational modes and,
eventually, the variations due to the presence of impurities or defects which are easily detected, while
for gases the information regards the rotational, vibrational, and electronic structure with very high
resolution. However, by looking more carefully at Fig. 14, it is easily realized that the new emerging
frequencies have very week intensities with respect to the scattered original light, which is a
consequence of their high order generation process, and the separation from the central line is very
small. Both previous observations indicate that only laser sources could have given such resolved
spectra with their high intensity and high spectral purity. However, it is worth noticing that the
experimental results in Fig. 14 are reported as scattered points denoting the presence of consistent
noise due to the still primitive laser source used in the experiment, an argon ion laser at 514.5 nm.
The improvements of lasers in the following years have very much improved the Raman
spectroscopy, as will be shown later on in the paper.
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Figure 14. Raman (also called Brillouin for small energy differences, as in this case) scattering spectrum of Si at
room temperature excited at 514.5nm by an argon ion laser. Because of the relatively high temperature
used, both Stokes (right) and anti-Stokes (left) spectra have been measured, and as expected they are
symmetrical with respect to the center energy. The peaks correspond to surface phonons (R), acoustic
transversal (T), and longitudinal (L) phonons, i.e. part of the vibrational spectrum of silicon lattice.

4. Advancements of laser and spectroscopy

4.1 PRESENT PANORAMA OF LASERS AND MARKET

At the end of the nineties the laser panorama did not change dramatically from what depicted in
Fig.7, but new improved models and optical materials have been introduced, poorly covered gaps
were better filled, and a few spectral regions have been added up to obtain the new situation reported
in Fig. 15 [59].

SDLs extended from VIS to the blue region and below with the introduction of the nitride
semiconductor materials [60], and above 30 nm up to 3 mm, a region called far infrared or terahertz
still not easily accessible for lacking of well developed technology.
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Figure 15. Approximate spectral ranges of laser sources around the year 2000 classified according to the state of
matter of the active material. The gray areas show the laser emissions added between 1990 and 2000
with respect to Fig.7, while the dashed lines refer to regions under development.

However, germanium intervalence band lasers are working up to 300 \xm, and a new approach called
terahertz time-domain spectroscopy is opening the region above 300 \\.m [61].

SSLs moved in the UV down to about 0.2 |xm, but essentially stabilized themselves with more
reliable materials and technologies, similarly to dye (liquid in the figure) lasers which also extended a
little more in the IR.

Highly ionized plasmas extended beyond 400 A up to almost 1000 A, and free electron lasers
moved well above 1 mm, and are moving below the UV region of the spectrum.

The average power of the laser sources remained more or less the same, from |aW for lead salt
lasers to kW of carbon dioxide lasers, but the time domain moved with pulsed devices having
durations as short as a few fs or less [62] and peak powers in the TW range.

At moment laser technology has reached high levels of sophistication but, while improvements
or new lasers were and are still expected for a few types or families, for other ones there have not
been marked advancements lately. Among the latter ones, excimer, helium-neon, helium-cadmium,
ion, dye, copper vapor, color center, ruby, carbon dioxide, far-infrared gas, and other ones, which
cannot be listed here for sake of space, have indeed reached a high degree of maturity, with some
exceptions for the excimer lasers which recently have been subjected to increased interests for better
reliability and higher beam qualities [63]. A discussion apart deserve free electron and x-ray lasers.
They both look exceptional optical tools, the first ones for their broad tunability and power [64], and
the second ones for their short wavelength emissions [65]. Lately, both of them went through new
and interesting developments. Free electron lasers have been demonstrated to be able to emit
efficiently in the very ultraviolet and soft x-rays region [66] with a promising brightness ten time
bigger with respect to any existing x-ray source. Soft x-rays lasers, which have been realized with
highly ionized plasmas produced by high-power laser on solid targets, have been obtained more
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recently also with plasma confined in narrow capillary channels [67] with unique spatial and
temporal properties. For these characteristics they both have been and are applied with success in
spectroscopy, bio-medicine, material research, nano-technology, and military weapons. But, although
they went, as discussed above, through lengthy processes of improving theoretical knowledge and
experimental systems, they still remain very complex devices confined mainly in research
laboratories, which is especially true for free electron lasers.

At this points, leaving aside free electron and x-ray lasers, exotic lasers like inversionless
lasers, nuclear pumped laser, two-photon lasers, micro-spherical lasers, and other ones which are still
developed and used only in specialized laboratories, it is worthwhile to have a close look at the
commercial side of the laser field in order to gain useful insights for a better assessment of the whole
matter [68]. Figure 16a displays the global market of lasers during the last ten years. The lasers have
been divided in two groups, SDLs and all the other ones, which in turn have been further on splitted
among the most important families in Fig.6b. This second addition has been deemed necessary
because of the fast surging of SDLs on the market since 1996. Indeed, until 1995 one graph was
enough to describe the sales of all types of lasers, having all of them similar sale figures, but later on
the sales of SDLs, which are mostly used in optical storage and telecommunication applications and
only after the 10th place in basic research, increased so much that they represent nowadays more than
70% of all sales. Conversely, the other lasers are used, in the order, in material processing, medical
therapeutic and at the 3rd place in basic research, well known not to be adequately supported, which
explains to some extent why SDLs, used in chatting and entertaining, are sold much more. Anyway,
as far as the total sales are concerned, apart the small decreasing in 1993 due mainly to a general
world recession, they have shown up to 2000 an unprecedented growth, especially for SDLs, that was
projected in 2001 to 11.5 Billion$, a value about 30% more with respect to 2000 and well outside the
scale of the figure. Contrary to the expectations, in 2001 the assessed total market went down by
almost 40% to a value of 5.6 BillionS, a gasping debacle which raised many doubts on the long
established methods used for the annual predictions, incredibly wrong this time.

Without entering in a detailed discussion of this unusual event, it is worth observing that it has
been originated mainly by the loss of the ten year momentum of the information technology growth,
which crumbled also because of the beginning of the end of the "new economy". Since about 90% of
the applications of SDLs refer to telecommunication and optical storage, it is clear why the largest
decreasing of sales occurred to SDLs alone. Moreover, the crisis of the information technology hit
also the material-processing industries which reflected, for instance, on the excimer lasers forming
the basis of any lithography equipment. Indeed, the excimer laser market has been the second hard
hit, as shown in Fig.6b. However, the other kinds of lasers have kept in 2001 more or less the same
commercial figures of 1999, with actually an increase for SSLs. In 2002 there has been a still
consistent decreasing of sales for SDLs and a general stagnation for the all the other lasers, but the
forecasts for 2003 indicate a small but significant increase of the whole market, well at least as in
1999. Anyway, by discarding the abrupt increase and decreasing of sales during 1999-2001, due
mostly to the unrealistic expectations of the telecommunication industry, the constant growth of the
laser market is quite evident in Figs. 16a and 16b since 1995, especially for SDLs and SSLs. Now, it
is well known that a lot of R&D went toward these two kinds of laser sources, because scientific and
technological novelties are very much expected from them. So, market, investments, and exciting
scientific progress are still moving together in some conspicuous laser families, which have not yet
reached a stage of technical maturity.
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Figure 16. Worldwide commercial laser sales in the last ten years from data reported in Laser Focus World. All
types of lasers divided between SDLs and all the other ones are reported in (a), while only four types of lasers
among the other ones with appreciable figures have been reported in (b).

4.2 NEW KINDS OF LASERS AND OPTICAL MATERIALS

As it has been discussed in the previous section, the most steadily scientific and technological
growth belongs to SDLs and SSLs, which is also a consequence of the recent symbiosis of these two
families of lasers. Indeed, while both of them have their well separated fields of application, SSLs
pumped by SDLs have demonstrated more simplicity, power and efficiency with respect to the same
lasers pumped by lamps. So, diode-pumped SSLs have opened new perspectives both for high and
low power laser systems [69]. On this respect, the biggest diode-pumped laser system is being
realized at the National Ignition Facility at Livermore, USA, to deliver 1.8 MJ in 1 ns [70], while the
much more tiny diode-pumped microlaser can easily produce peaks powers of 80 kW during 300 ps
or 100 mW of cw output [71,72].

However small a microlaser can be, about 10 mm of cavity and active material, microchip
lasers can be smaller by an order of magnitude, and still be efficient and even more stable. They are
monolithic miniaturized devices displaying single longitudinal and transverse mode operation, and
low threshold. Figure 17 shows the schematic drawing of one of them which, with a pump power of
150 mW at 980 nm, delivers 25 mW at 1535 nm in a TEMoo mode with M2=1.06 (M2 is usually
referred to as the beam quality, being M2=l for a gaussian beam) [72].

The dimensions of the previous microchip lasers cannot be reduced any further for
technological problems arising from the energy dissipation and the thickness of the active crystals.
But, by renouncing to power it is possible to circumvent the previous limitations and to reduce by
more than two order of magnitude the longitudinal dimension of these laser devices. Indeed, by using
different techniques for producing thin films, a certain number of active materials can be used
between layers of dielectric compounds functioning as Bragg reflectors. Among them it is worth
mentioning films of LiF colored with low energy beams of electrons. Figure 18 shows one such
sample, where the vertical dimension is of the order of a few um by excluding the silica substrate
[73]. The LiF film has been colored by 6 keV electrons which produce color centers, and among them
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F3
+ and F2 point defects emitting at 530 and 650 nm, respectively, upon 458 nm excitation, as shown

by the dashed curve in Fig. 18(b). When the Bragg reflectors are built around the LiF layer by
completing a symmetric microcavity, the emission changes as reported by the full line of the same
Fig.l8(b), which together with a severe narrowing of the cone emission along the axis, not reported
here, implies a laser type operation.

Laser devices as the ones just described or slightly modified are not limited to LiF, but any
other suitable active material can be used amid microcavities. Semiconductors as InGaAs have been
used recently with new and interesting results regarding also the ability to engineer photonic states in
coupled cavities [74]. Also solid conjugated polymers are very promising as active materials, as it is
the case of PPPV blended in a passive matrix of PMMA and lasing efficiently in the blue-green
region [75]. It is still open for investigation whether organic molecules, like Alq3 for instance, which
has found widespread application

100-300 umErYb glass disk

InGaAs LD @ 980 nm

Output beam

o

Reshaping Optics
1% Output coupler
@1535nm

HR@1535nm

Figure 17. An Er-Yb:glass microchip laser showing from right to left the tiny crystal+cavity, an adapting optics,
and the pumping TDL [72]. The whole laser can be very tiny, of the order of a few mm, by using well
known optoelectronic techniques of miniaturization.

in light emitting devices for its very promising optical properties [76], can be usefully utilized as
active material for photonic structures, although a laser emission has been demonstrated recently
[77]. However, the energy of the 500 ps output pulse was limited to a few nJ, mainly a consequence
of the low conductivity of the material itself, which is a problem common to all organic materials.

Anyway, the biggest revolution in both types of lasers, i.e. SDLs and SSLs, happened because
new optical active materials have been discovered and nanostructure technology is introducing new
optical structures.

Among the former ones, by using layers of AlGaN instead of GaN, transparent ultraviolet LED
(Light Emitting Diode) structures have been fabricated with the result of moving the blue SDLs still
towards the high energy spectrum [78]. These new diodes emit 1 mW at 350 nm, a substantial
improvement on the previous situation. Among the latter ones there are the photonic crystals (PC) in
one, two and three dimensions, also called photonic band gaps (PBG) because of the analogy of
photons in PGBs with electrons in metals and semiconductors [79]. These new dielectric structures
display strong photon suppressing properties, i.e. only photons with given wavelengths and
polarization states can propagate in PGBs [80,81,82], and so they promote laser action [83]. One
recent example of new structures and known materials is given by a two-dimensional PBG coupled to
a
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Figure 18. Schematic representation of a colored LiF based microcavity, showing the various Bragg reflector
layers and the active LiF film (a). Room temperature photoluminescence spectra of the colored LiF
film in a single layer and microcavity configuration (b). By curtesy of R.M. Montereali [73].

SDL which deliver 2.6 mW at 1.53 um in cw operation at room temperature in a highly pure
spectral mode, see Fig. 19 [84].

By using the sophisticated technology of molecular beam epitaxy [85], as in the previous case
which is however limited to a few layers, it has been possible to fabricate sandwiches of hundreds of
nanometric-sized layers of different semiconducting materials, which mimic in the energy domain a
series of quantum levels in cascade where the electrons can fall by moving under a driving electrical
field, and so producing photons in the infrared region of the spectrum [86]. This singular SDL, called
quantum cascade laser (QCL), is not bound to the energy-gap value of the materials utilized, like the
classical SDLs, but rather to their thickness and spatial sequence, because of subsequent and
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appropriately different quantum confinement effects. In practice, peak powers of hundreds of mW
have been obtained, and cw regimes maintained up to 175°C with tens of mW of power in the
wavelength region from 3.4 to 17 urn [87]. Lately, their functioning has been extended successfully
in the far infrared spectral region, and Fig.20 shows the emission intensity of one such laser at 4.45
THz (67.4 urn) [88]. The 1.25 mm long and 180 urn wide device produces a few mW at 8 K in a
single mode, and improvements are pursued in order to raise at least above 77 K, liquid nitrogen
temperature, the uncomfortably low operating temperature.

The ability to manipulate the laser-active materials and/or the structures which may support
them at microscopic level, is also delivering new opportunities with the novel ceramic materials.
Indeed, very often the performances of SSLs are limited by the active crystal itself which cannot be
doped above a certain value, due to limiting segregation factor and concentration quenching effects
on the emission [89], and cannot be as big and shaped as required because of crystal growth
limitations. Usually, crystals are substituted by doped glasses, like the Nd.glass which takes the place
of the much more expensive Nd:YAG crystal. But, glasses do not eliminate the concentration
quenching effects, and their physical properties are inferior with respect to crystals, resulting in a
lower efficiency of the final laser system. On the other side, the long known ceramic materials
usually possess a sizeable light scattering, which cannot sustain laser action. However, new ceramic
materials have lately been fabricated with very little scattering of light, so that it is possible now to
use them as efficient active materials. They are not as good as the best crystals, but rather similar to
the average-quality crystals. However, they can be fabricated with the highly desired ion
concentration, in various shapes and sizes, and also together with other materials for multipurpose
functions, at low prices, and still possessing an optical-optical conversion efficiency of =25%, as it
has been recently demonstrated in polycrystalline l%Nd:YAG ceramic rod laser [90].

The previous new ceramic materials differ from the well known old ones mainly because of
smaller grain size and innovative pressing technologies, and the very tiny dimensions are for sure
determining their interesting optical properties. In case the grain dimensions are further reduced to a
few nm, then new quantum phenomena appear as in the case of quantum dots, known formerly as
colloids. These nanoparticles can be coupled to periodic photonic structures for enhancing their
optical properties, as it happens to CdSe
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Figure 19. Laser emission from a photonic crystal coupled to a semiconductor diode laser based on InGaAsP and
InP layers grown by molecular beam epitaxy. The spectrum shows a side mode suppression greater
than 42 dB [84],
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quantum dots, whose light emission increases by almost a factor 3 when embedded in a half-
wavelength one-dimensional cavity, i.e. two distributed Bragg reflectors, [91].

In the material field, also lasers and spectroscopy are playing an important role. Indeed, small
structures can be easily realized by merging together optical processes and chemical properties, as in
the case shown in Fig.21. The solid structures have been fabricated with a modelocked Ti:sapphire
laser and photoinitiator resins by means of multiphoton spectroscopy [92]. In particular the resin
contains the two-photon absorbing molecule Lucirin-TPOL, and the short pulse of the focused laser
promotes the photopolimerization of the solution which, after washing out the still liquid part, results
in microscopic features smaller than the diffraction limit of the optical system, as the four
interconnected towers in Fig.21. It is evident as this new chemical and physical technology can be
broadly utilized for the realization of photonic materials like PBGs.
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Figure 20. Emission intensity of a waveguide quantum cascade laser operating at 8 K in the THz region. The
intensity grows nonlinearly with the excitation current up to reach the laser threshold at 880 raA. The
laser emission at 1240 mA, which has been reduced by several orders of magnitude in intensity with
respect to the other curves, possesses a side mode suppression of 20 dB [88].

4.3 LATEST DEVELOPMENTS OF LASER SPECTROSCOPY

In section 3.2 several examples of laser spectroscopy have been described in some detail,
and the advantages of the laser sources over the classical optical ones for pursuing spectroscopy have
been widely discussed. It was very clear from the beginning that the laser sources were going to open
a new golden age for spectroscopy, not only by improving already known techniques but also by
paving the way for new ones, with the adding of the new calculus possibilities offered by PCs. These
expectations have been fulfilled in the following years to such an extent that spectroscopy is
commonly referred to as before and after the sixties, so sharp has been the divide between the two
periods of time.
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Figure 21. Three-dimensional microstructures fabricated by two-photon absorbed near infrared
photopolimerization by using 100 fs laser pulses. The square relief in the center right is 15x15 um2. By curtesy of
T. Baldacchini [92].

As far as TDLs are concerned, their contribution really started later on during the late
seventies when they became more reliable, and Fig.8 shows an application still in its infancy at that
time [42]. Later on, with improving laser sources and calculus systems, better measurements have
been performed, as those shown in Figs. 11, 12, 22, and 23. Figure 22 refers to foreign gas
broadenings and shifts of an ammonia transition line at room temperature. The two important
molecular parameters have been measured at the same time with great precision as never before, and
the different effects of N2, O2, H2, Ar, He on the lineshape of the line aQ(9,9) are clearly observed
[93], At the same time the potentialities of the SDLs to detect small traces of molecular gases were
fully developed, and Fig.23 gives an example of their versatility [94]. It represents one hour of
continuous measurements of methane content in the atmosphere of Moscow while moving along its
streets, and a big increase of methane was detected nearby a natural gas refilling station. The single
peak structure was due both to the movement of the van and to the wind blowing from different
directions, and so changing the amount of methane in the measuring device.

The photo-acoustic spectroscopy has been so refined lately that it offers now the possibility
to monitor gases at ppbv levels, as in the case of methane produced by a single cockroach insect
(Periplaneta Americana) [95]. These studies are important not only for agricultural purposes but also
for environmental effects, if one keeps in mind that 25% of world methane production is originated
by insects, and that methane is 20 time more effective than carbon dioxide as a green house effect
gas. Also opto-galvanic spectroscopy has been so much improved to be used in precision
spectroscopic measurements of uranium isotopes [96], which is a matter of utmost concern for
industrial and environments purposes.

A very high sensitivity has been also reached by the Raman effect, which previously was
used mainly to study the inner structure of matter, but lately also the impurities in the same matter.
Figure 24 shows the Raman spectrum obtained by pumping with the 476.5 nm line of an Ar+ laser a
natural diamond where, between the Brillouin components on the left and the only Raman component
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on the right, a single weak peak A' indicates the presence of boron impurities [97]. It is worth
observing the practically inexistence of noise in the spectrum, especially in comparison with the old
results displayed in Fig. 14. This situation is going to improve still further, because the Raman
efficiency depends on the fourth power of the carrier frequency and on a superlinear power of the
carrier intensity. And frequencies of SDLs and SSLs are moving towards the violet region, their
intensity is increasing, and the intensity is much more stable than an ion gas laser! Besides basic
research, Raman spectroscopy is also widely applied in various field as medicine, the case illustrated
in Fig.25. It represents the Raman response of 1-mm spot size on the retina of a human volunteer
when excited with the 488 nm line of an Ar+ laser [98]. The three peaks reveal the presence of
carotenoid molecules which are normally contained in human retina. Their absence or an amount
smaller than normal seems to be related to age
macular degeneration, an invalidating diseases witch can be probably prevented with an early
detection by using the previous simple Raman analysis.

High laser intensities are also required to detect gases dispersed in non transparent media
where the new technique GASMAT (gas in scattering media absorption spectroscopy) can be
applied. Indeed, spectroscopic analysis of the weak scattered light can still be performed if the laser
beam is intense enough, and with success as in the case of oxygen in wood [99].

Not so is the case, with reference to high intensity, of a new technique where the absorption
of gases in a cell is measured by the time it takes for a laser signal to decay while bouncing between
two highly reflective mirrors [100]. Here it is not the intensity of the laser beam which plays a mayor
role, but the highly sophisticated requirements for the mirror optical properties and optical elements
in general. Indeed, the sensitivity of the method which is called cavity ring-down spectroscopy is
proportional to the number of passages trough the cell, and so to the degree of reflectivity of the
mirrors. However, such measurements would have been impossible without lasers. In principle this
method isequivalent to the well known linear absorption in a multipass cell, but in practice it is the
result of a sophisticated technique which requires also short pulsed lasers.

Different is the case of the correlation spectroscopy, where the laser can play an important
role in improving the sensitivity of the system but it is not essential. Indeed, the method consists in
comparing the experimental spectrum with other ones already known, and from the correlation it is
possible to measure the amount of the unknown gas. However, the spectra of many gases should be at
disposal in order to perform the comparison in real time, which is not an easy task. So, it has been
found recently that a computer can generate diffractive optical elements that synthesize the spectra of
various gases, solving at the roots the problem [101]. It is worth noticing that this method does not
need to possess necessarily a high resolution to have a high sensitivity, because the comparison of the
spectra occurs in a large spectral portion where there are many spectroscopic features that should
correspond each other both in the exact spectral position and in intensity, contrary to what happens to
slightly tunable SDLs which look at single and isolated resonances, as in Figs.8 and 10.

Up to now, pulsed lasers have been described as functional to some types of classic spectroscopic
methods, as saturation, two-photon, cavity ring-down, lifetime, etc., but in reality new
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Figure 22. Lineshape of the aQ(9,9) ammonia transition induced by collisions with N 2 ,0 2 , H2, Ar, and He moving
top-down. The spectra are measured in a cell 19 cm long, at 301 K, and at a foreign-gas pressure of
about 460 Torr with a few Torr of ammonia. The sharp peak in each spectrum is given by a reference
cell of NH3 at low pressure, and it is used to measure the shift of the broadened line [93].
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Figure 23. Methane content in the atmosphere of Moscow as measured by a mobile TDL instrument on 16 July
1999, during one hour interval. The intense peaks on the right are originated by methane leaking from a
gas refilling station when the van car was passing nearby [94],
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fields of investigation concerning the same quantum nature of matter are opened up by
short pulse excitation. When matter is excited by a light pulse, it is possible in particular
circumstances to generate an excitation at identical quantum levels witch is described by a wave
packet. This process is usually called a coherent excitation, i.e. a quantum state of superimposed
quantum waves with the same intensity and phase. This coherent status changes in time because of
population decay by spontaneous emission, i.e. the intensity of the single components of the wave
packet is decreasing with life-time T b longitudinal relaxation time, which is measured usually in the
normal incoherent spectroscopy. The same status changes in time because of phase-perturbing
interactions, i.e. the phases of the single components go astray, with the result of the intensity of the
wave packet decreasing with decay-time T2, transverse relaxation time, which can be measured in
coherent spectroscopy. Generally, T2<T|, and the transverse relaxation time varies in different
materials as in the following:

10-100 fs in atomic collisions,
50-300 fs in molecular relaxation in dyes,
100-1000 fs in molecular vibrations,
100 fs-10 ps in chemical reactions,
= 1 ps in interactions in liquids,
1-10 ps in point defect in solids,
= 40 ps in semiconductor quantum dots.

Although coherent spectroscopy has been introduced before the invention of lasers, limited however
to a few fortunate and accidental cases, the adding of ultra fast light pulses allowed for the first time
the direct measurement of wave packets coherently excited, their motion on the potential energy
surfaces, and their ultimate fate [102].
However, the values given above for T2 pose severe restrictions on the pulse duration of the exciting
and probing laser, which should be much shorter than T2 itself. Indeed, the transverse relaxation time
is only the envelope of quantum oscillations with periodicity order of magnitude shorter. In the case
of color centers in KBr, while T2=2.6 ps the oscillation period is T=0.4 ps which can be measured
only with pulse duration of less than 40 fs [102], as it is clearly shown in Fig.26. In this case, it is
worth reminding that the radiative lifetime of the relaxed excited state is Tj=l.l (is, although at room
temperature, as in this experiment, the real lifetime is shortened by five order of magnitude by
thermal excitation effects. Coherent optical control of the quantum state has been also attained on
single quantum dots, where T2=40 ps but the measured luminescence oscillations are in the ps regime
or less [104]. With analogous techniques it has also been possible to follow the molecular dynamics
after laser excitation, which in [Ru(bpy)3]

2+ has shown a coupling to the surrounding solvent and a
different one that follows an energy potential internal to the molecule, with different time scales
ranging from 50 fs to 1 ps [105]. It is evident how the previous examples and considerations
stimulate the quest for shorter and shorter light pulses in all frequency domains of the
electromagnetic spectrum.

A last mention deserves the opening up to spectroscopy of a new region loosely defined in
the frequency range from 0.1 to 10 THz (1 THz=1012 Hz) or wavelength range from 3 mm to 30 urn.
In the literature it is often referred to as terahertz (THz) gap, because until recently it was not an
easily accessible region for lacking of well developed technologies both for sources and detectors.
Indeed, the microwave region, well served by electronic devices, is limited to a few mm, while only a
few optical devices operate efficiently above 30 um. It is true, however, that some free electron lasers
(FEL) emit intense radiation in this region, but these complex laser sources operate only in
specialized laboratory, and possess light beams with peculiar time-energy structures which strongly
limit their utilization. Lately, semiconductor laser devices (germanium intervalence band) and new
technologies (terahertz time-domain) are closing the gap from the low frequency side, while quantum
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cascade lasers (QCL) are entering into the gap from the high frequency side with promising results
[88,106].
The opening up of this last frontier of electro-optical technology and spectroscopy is expected to be
very much rewarding [107]. Indeed, apart the basic research interests, applications are awaiting, for
instance, in fields like spectroscopy of light molecules, spectroscopy of doped semiconductors,
characterization of high temperature superconductors, optical pump and THz probe of materials, THz
wave imaging, genetic analysis and cancer detection, THz bio sensors. Terahertz technology and
spectroscopy have grown greatly in the last decade, and they are going to be more and more
pervasive with the improvements of the related technologies, which comprise also laser sources.
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Figure 24. Raman spectrum of a diamond containing boron impurities obtained at 5 K by pumping with the 476.5
nm line of an Ar* laser. The intense resonances belong to the various vibrations of the diamond lattice,
while the peak A' is due to boron [97],
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Figure 25. Raman spectrum of a spot in the human retina excited by the 488 nm line of an Ar+ laser. The top trace
is the original spectrum before the subtraction of fluorescence background [98].
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Figure 26. Transmission changes AT of the probe pulse as a function of delay time between pump and probe
pulses on the absorption band of F centers in KBr at room temperature. The exponential dashed line
represents the relaxation decay toward the RES, T=2.6 ps, while the much faster modulation derives
from the coherent oscillations of the electronic wave packet in the vibronic potential [102].
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5. Conclusions

At moment laser technology has reached a high level of sophistication, and while only a
few new lasers have been devised, the mayor development have been in improving in every respect
the old laser types and in introducing new active optical materials.

On the second category belongs the dendrimer laser, where the dye molecule is nestled in
the branches of a large polymer dendrimer molecule, in this way partially solving the old problems of
quenching effects and heat dissipation, a very common plague for all organic optically active
materials [108].

On the first category belong the most successful SSLs, Yb:YAG diode side-pumped and
diode end-pumped [109], which are both projected to produce more than 10 kW of average output
power [110], Among them, also the disk laser configuration has benefited from higher dopant levels
and improved optical schemes, by reaching 70% of optical efficiency [111]. In the disk laser,
invented at the University of Stuttgart in 1992, the active medium is shaped as a thin disk with its
plane surface acting as heat sink and cavity mirror at the same time [112]. In this way no thermal
lensing effects develop at the expenses of absorption, which is increased by using multi-pass
technologies, well known in atomic and molecular spectroscopy. This is an example of how
spectroscopy can help laser developments, which can then be again utilized in spectroscopy.

This virtuous circle where spectroscopy played a central role in the discovery and
development of laser sources, and conversely lasers contributed to the improvement of spectroscopy,
which in turn allowed the realization of new laser devices and to improve the already existing ones, is
a symbiosis as old as the laser itself. Still today, laser and spectroscopy are so strongly intertwined
that new exchanges of basic and technological knowledge are producing outstanding results. Among
them a few are listed as it follows:

in the disk laser, as just described, the active element should be as thin as possible in order
to dissipate easily the heath produced by the pumping. As a consequence the optical
absorption is very much reduced, and so the output power. The problem has been solved by
using optical multipass techniques developed long ago for spectroscopy,
the two-photon absorption is a well known method in spectroscopy, and is particularly
efficient when lasers are used as optical sources. Today, the two-photon absorption is
utilized to fabricate complex microscopic structures, that can also be used as photonic
materials for new laser emissions,
powerful lasers produce soft x-ray bursts when focused on any material. X rays are used in
photolithography to fabricate photonic circuits for active and passive optical devices,
having smaller dimensions and higher resolutions,
luminous patterns are efficiently and easily produced on the surface of LiF crystals by
using soft x-rays as above. The emissions in LiF have been used since long ago in pulsed
tunable solid state lasers,
Two-photon polymerisation is used firstly to built micro-nanometric tools, and afterwards
two-photon radiation moves the same tools, by using laser induced forces, to perform
useful tasks in the nano-world.

The last sentence is not a fruit of fantasy but it has been implemented recently, where the gradient
force of the radiation pressure exerted by the focused laser beam is the driving motor of the micro
mechanism, just fabricated with the chemical- laser technique [113]. This fruitful relationship, which
is a consequence of the quantum mechanical nature of the matter, is not going to abate but, on the
contrary, new and surprising results will be obtained with the increasing capability of manoeuvring
the matter at atomic level.
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The pulsed regime of lasers, which is of paramount importance for laser applications where
short time domains and high peak powers are required, as we have seen in the last section, has also
witnessed some improvements.

The ultrashort pulse record of 4.5 fs from a Ti:sapphire laser in combination with other
techniques [114] has been further lowered at 3.9 fs more recently [115], which can hardly be
improved because of the limits set by the laser field oscillation cycle in the visible spectral range.
However, such limits are removed by moving to extreme UV and x-ray sources, where a pulse
duration of 0.650 fs has been obtained at 90 eV by resorting to nonlinear processes [116]. On this
respect, also x-ray table-top lasers [117], and FELs generating high-brightness hard x-rays down to
less than 2.5 A [118] possess very interesting short pulse properties, and they will allow new
experiments in spectral regions up to now of difficult access.

Besides the well known application fields of short pulses, a new spectroscopy is rapidly
developing in nuclear matter. Indeed, photo-nuclear reactions can be induced by the actual lasers
which reach an intensity of 1021 Wcm"2, and there are plans to built lasers 100 time more intense
[119]. High energy x-rays and 100 MeV electrons have been already produced by firing powerful
lasers on solid targets, as gold for instance, and much more will be accomplished in the near future,
as the production of positron and electron couples, a new frontier for spectroscopy.

Going back to the main purpose of this work, it is a common opinion among the experts of the
laser field that further achievements should be expected from technological advancements in general
and in material science in particular. Indeed, the fabrication of micro lasers, photonic band gap lasers,
and quantum cascade lasers is the result of our ability to assemble atoms and molecules in new
artificial structures. This complex game is actually at its infancy, so that others promising results
should be obtained especially from the development of new materials and nanotechnology. As far as
spectroscopy is concerned, the accessible spectrum has been consistently increased in the last decade.
In particular, the fast development of laser sources and auxiliary equipments, above all computers,
prompted a wide diffusion of laser spectroscopy with superior resolutions and sensitivity. Moreover,
excitations in gas, liquid and solid materials are being investigated systematically, especially by using
time resolved spectroscopy in the fs regime and, recently, also below. As a consequence, new
luminescent materials with greater efficiency may appear soon, especially in frontier regions like
THz and x-rays.

By looking again at the business side of the laser field, it has been often taken as a rule that an
increasing market has always produced bigger investments and, as a consequence, exciting scientific
progresses. This relationships between market and laser development has been apparently shaken by
the great fall during 2001-2002, see section 4.1, but at a second sight it resulted more an industrial
debacle than a scientific one. Indeed, the commercial crisis has been originated by the crumbling of
the information technology which hit severely SDLs, to a less extent excimer lasers, and not at all the
other families of lasers. In particular SSLs show positive trends especially in connection with SDL
pumping and better technologies. So, the investments did not decrease in the laser fields still under
development, and the previous parallelism between bigger sales and better technologies remains a
good omen for future trends of R & D in lasers in general.

In conclusion, the laser field looks well alive, and new surprises are awaiting ahead with
significant results also in basic and applied spectroscopy.
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8. COHERENT SPECTROSCOPY OF STRATIFIED SEMICONDUCTOR
MICRO- AND NANOSTRUCTURES

V.G. LYSSENKO
Institute of Microelectronics Technology,
Chernogolovka, Moscow district, 142432 Russia

1. Introduction [1]

The enhancement or inhibition of the interaction between light and matter is of
great interest, for the fundamental and applications reasons. In perfect direct-gap
bulk semiconductors, absorption at low temperatures is dominated by relatively
strong and narrow excitonic transitions. At room temperature weakly bounded
excitonic states are ionised, and absorption band extends over the whole
conduction and valence bands. Therefore, there has been a lot of attempts to
develop semiconductor structures, which would have sharper optical features due
to higher exciton binding energy or redistribution of oscillator strengths due to
band edge density of states reconstruction. For example, impurity or localised
defects, disturbing periodicity of crystal lattice, can form sharp exciton-impurity
transitions near band edge of bulk semiconductors due to their well-defined, atom-
like energy levels.

Another way to obtain sharp optical features of semiconductor structures is
through electronic band-gap engineering by the use of quantum-confined
structures: quantum wells, wires or dots. The improved light-matter interaction
relies on the reducing of one degree of freedom, yielding more spectrally
concentrated optical features: absorption, reflection or gain.

Besides the quantum-confined scheme of low dimensional structures, sharp
optical features may be obtained through photon-mode selection. Yablonovitch
noticed [2] that analogously to band structure of electronic states in periodic lattice
of semiconductors, light waves propagation in periodic structures also give rise to
formation of allowed and forbidden photonic states. He suggested using periodic
distribution of optical properties to create a photonic ban gap structures, which
relies on multiple reflections from periodically distributed scatters. Placing inside a
photonic ban gap structure an active material with energies within the photonic
bandgap gives complete suppression of light-matter interaction: no photon mode
can interact with the active material. Deviation from periodicity in photonic ban
gap structure can localise light and alter transmission and emission properties of
semiconductor material within photonic ban gap structure, analogously to
formation of impurity states in periodical lattice of semiconductor. Then, a
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localised photon state build up, similar to localised electronic states of chemical
impurities or defects in otherwise perfect solids.

Microcavity (MC) is one-dimensional realisation of photonic ban gap structure,
consisting of two parallel high-reflective mirrors and "optical impurity" - active
semiconductor layer - between them. When dimension of the "impurity layer" in
periodical structure is equal to the quarter- or half-wavelength of light, one or few
resonant modes are enhanced by multiple constructive interference. All other
modes are suppressed by multiple destructive interferences. All electron-hole pairs
not matching a photon cavity mode either recombine nonradiatively or scatter to
the photon-matched electronic quantum states through energy and momentum
relaxation.

2. Maxwell's equations [3]

Time evolution and spatial distribution of electric E and magnetic H field
amplitudes in media with dielectric constant s, permeability |a~l, and conductivity
a obeys set of Maxwell's equations [2]. From Maxwell's equations follows "wave"
equation

V 2 F V*d2E
c2 dt2

describing propagating of electromagnetic wave with electric field E in the
nonconducting (<r= 0) isotropic and nondispersive medium. Semiconductor can be
characterized by index of refraction «, the ratio of speed of light in a vacuum c and
its speed in a medium v

n = - = Jsjl s Vs (2.2)
v

In simplest case of monochromatic electromagnetic wave it is periodic function

of time E~cos((i>t+0), therefore E, =-(02E, and spatial distribution of electric
field E along z-axis is described by equation

'0 2

TE = 0. (2.3)

Solutions of equations (2.1) and (2.3) are plane waves, oscillating with
frequency co and propagating in space with wavevector k = oml c

E = Re[Eoe-'^'-2/c)] = Re[ V ^ " " * 0 ] • (2-4)

For conductive nondispersive medium, characterized by conductivity a ^ 0 ,
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from Maxwell's equations follows "telegraph" equation

„ , =. dE 82E
(2.5)

which contains a damping term dE/dt. In spite of different forms of equations
(2.1) and (2.5), second equation can be reduced to first one by introducing
"complex" dielectric constant

co
For monochromatic wave with frequency co spatial distribution of the electric

field in absorbing medium is described by Helmholz equation

\i(e-i-)E =
co

(2.6)

It is identical to equation (2.3) derived for nonconducting media if the "real" index
of refraction n is replaced by "complex" index of refraction

n - Vs =n-ik = n(\ - J (2.7)

In hetero- or stratified structure index of refraction changes abruptly across
interfaces. In the absence of surface current and surface charge at the interfaces the
tangential components of the electric and magnetic vectors must be continuous
across the interface. From above mentioned boundary conditions follows, that the
angle of incidence 0/, angle of reflection Br, and angle of transmission 0, must be
related by (Fig. 3.1)

Figure 2.1. Amplitudes of TE(s)-
and TM(p) -polarised incident (i),
reflected (r) and transmitted (/)
waves near interface z = 0 between
two semi-infinite media with
refractive indices n0 and «,.
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e,=er
, = «2sin0,

(2.8)

independently of polarization, where ri\ and «2 are indices of refraction of the first
and second medium, respectively.

3. Transmission and Reflectivity [3]

Consider first spatial distribution of electromagnetic wave amplitudes near
interface between two nonabsorbing semi-infinite media with refraction indices «o
and rt\. A plane wave incident on the surface z = 0, the plane of incidence being the
plane xOz, the angle of incidence 9, and the angle of refraction 9, (Fig. 3.1). Since
the incident wave with electric field of amplitude Et is a plane wave, the solutions
for the transmitted Et and reflected Er waves will be also plane waves. Tangential
components of electric fields should be continuous across the boundary. Hence we

have for complex Fresnel transmission t^f = Es,'p I E'J'P and Fresnel reflection

°-°0 20 40 60 80
Angle of Incidence (degree)

Figure.3.1 Reflectivity 5R =|rOi|2 and transmission T=|<0i|
2 of interface between two semi-infinite

media with refractive indices «0
=l and n,=1.5 for s- (dashed or dotted lines) andp-(solid lines)

polarized light. Phases (|»oi are presented by dash-dotted and solid lines for s- and p-polarized light.
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s'p = E''p I Es
j'

p coefficients for s- and/?-polarized plane waves'01

^ _ Ef _ n0 COS0, -nx cos0o _ tan(0, - 0 o )

Ef nocos0,+«1cos0o tan(0]+0o)
(3.1)

_ El" _ 2fl0cos90 2s in0,cos0o
01

s _
01

Ef «ocos0, +«, cos0o sin(0, +0o)cos(0, -0 O )

_E'l _ n0 cos0o -«j cos0, _ sin(0, - 0 o )

«0 cos0o + «, cos0, " since, + 0o)

_Es
t _ 2«ocos0o _2sin0,cos0o

.COSOQ+^COS©, s in(0 ,+0 o )

Reflectance Rs
0\

p =\rsp |2and transmittance T0\-
p =\ts'p \2 nx cos0, /« o cos0 o

of the interface between two media with refractive indices «o and tt\, defined as the
ratios of reflected or transmitted energy to incident energy, are presented at Fig.3.2

as a function of incident angle for 5- or /7-polarized light. Phases tys
0'f of reflected

or transmitted s- and/?-polarised light are presented by dash-dotted and solid lines.

From equations (3.1) and (3.2) one can see that t^ = \ + r£, fo\ =1 + 7"^,so

that, for the case HQ> n\, transmitted amplitudes exceed incident ones.

4. Multiple-beam interference [3]

Consider a plane-parallel transparent dielectric plate of refractive index «,,
bounded on either side by semi-infinite nonabsorbing media of refractive indices
n0 and «2- Plane wave of monochromatic light is incident upon the plate at angle 90

and is subdivided into reflected and transmitted parts. Such division occurs at both
interfaces each time the beam crosses them (Fig. 4.1). Therefore the amplitudes of
the transmitted and reflected beams are obtained by summing the multiple reflected
and transmitted amplitudes, accounting change of their phases. The expression
given below will be valid for either direction of the polarisation provided that r and
t are given the appropriate values from equations (3.1)-(3.2).

After a travel of the plate with thickness h\, wave with vacuum wavelength Xo
changes phase by

8,=—A^/ZJCOSO, (4.1)

The complex reflected amplitude r is thus given by
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n

Figure 4.1. Amplitudes of transmitted and reflected plane waves in plane-parallel media of thickness
h and refractive index rt\, surrounded by semi-infinite media of refractive indices noand n2.

r=r,o\ r^ exp(-z45,) + ...

= '"
(4.2)

01 l + rlor,2exp(-/25,)

where rat, (- -rta) and tat, (=2- ti,a) are the reflection and transmission coefficients
for waves propagating from medium a to medium b.

Analogously, the amplitudes of the transmitted light is:

ri
2
2 exp(-z58,)"'58

y,2exp(-/5,)
l + r01r12exp(-/25,)

(4.3)

For nonabsorbing media reflectance $R=|roi|2=|-rio|2 and transmittance T =

= /01 -̂ ,0 of the interface between media with refractive index «o and ri\ satisfy

energy conservation condition T +9? =1, so that t0ltl0 = 1 - r0
2, and
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r =/b1+r1 2exp(-i281) ( 4 4 )

l + rmr12exp(-/28,)
In case of identical surrounding media with equal refractive indices «o=«2
transmittance T and reflectance R of layer "1 "sandwiched between two identical
media "0"can be expressed in terms of interface reflectance 91 =|r0i|

2

2(l-cos28,)9t 491 sin2 8, Fsin28, , „
Ram = z • = z l—z = ri—, (4.5)

l + 9?2-29Jcos28, (l-9i)2+49lsin281 1 + Fsin281

0 1 0~l + 9l2-29lcos281 ~(l-9l)2+4sin251 ~1 + Fsin28, '

where the parameter F is defined as
49?

F= . . (4.7)
(1-5R)2

As shown in Fig.4.2, the intensity of the transmissivity minima falls, and the
maxima become sharper, when 9? is increased. When 91 —> 1, F becomes large.
Then the transmitted light consists of narrow fringes separated by deep minima.



296

15 1 °
0.5

0.0

Figure 4.2. Transmittance of non-absorbing Fabry-Peiot Interferometer as a function of phase

8, =27w,fc,cos8,/A.oand F = 4SR/(1-SR)2.

The FWHM A of the fringes is determined from relation

1

Fsin —
4

2A 2

1 4
= —, therefore A = (4.8)

5. Refraction and reflection at the surface of an absorptive medium

Most of derived above formulae can be extended on absorptive media by replacing

the real refractive index n by a complex term h = n-ik . Since h is complex, 0,

in accordance with the refraction low

sin 9,
sinG, =

n
(5.1)

is also complex, therefore no longer has significance of an angle of refraction. The



297

Figure 5.1. Absorptive layer of complex
refractive index ri\-ik\ surrounded by two
dielectrics with real indices n0 and n2.

Fresnel coefficients and expression for r and t then also become complex. The
phase changes on reflection are no longer necessarily 0 or n. Moreover, the
reflectivities and phase changes on the two sides of the film are different when the
bounding media are of different refractive index.

In simplest case, when the media on the two surfaces of the layer are identical,
(4.6) and (4.6) hold provided we interpret 5R as the reflectivity for internal
reflection ri0 = rn, and replace 8i by

5' = — M +cp,

where (p is phase change on internal reflection. If A is the fraction of the absorbed

light,

1
\-R)

Absorption diminishes the intensity of the transmitted light, and phase cp is
equivalent to an increase of thickness of the layer by (pXo/27r«iCos0t.

If the first medium is a dielectric, the reflected wave has a real phase factor. The

amplitude components E*, Ej7 of the incident wave and corresponding

components E* and E, of the reflected wave are related by (3.1, 3.2). Since 9i is

now complex, so are the ratios ro
v, = Es

r IE* and r^ = E{? IEf, i.e. characteristic

phase changes occur on reflection; thus incident linearly polarized light will in

general become elliptically polarized on reflection at the absorptive surface. Let (4

and fa be the phase change, and ps and pp the absolute values of the reflection

coefficients, i.e.
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(5.2)

For normal incidence (9i = 0), the distinction between / and r* disappears,
therefore replacing n by h in (23), we get

MM "~'01 ~ ., '

which gives, for reflectance R = r • r* of the absorptive media surface

(5.4)

Figure 5.1. Absorptive layer of complex refractive index k\-ik\ surrounded by two dielectrics with
real indices n0 and n2. ~, . , , . . . .
Consider now a plane-parallel absorbing film situated between two dielectric media
(Fig.5.1). It is convenient to set [3]

«, cosG, =ux +ivx, (5.5)

Using the Fresnel law, the real ux and v, can be expressed in terms of the angle of

incidence 0o and refractive indices no, n\ and k\ of the first two media.

«,2 - v2 = n2 - k\ - n2
0 sin2 9 0 , (5.6)

K,V, =»,*, . (5.7)
In the case of electric vector perpendicular to the plane of incidence (TE or s-wave)
we have, replacing in (3.2) nx cos9, by w, + z'v,:

" " ' ' . (5.8)

From (5.8) we have equations for amplitude and phase of reflected beam

_ |(w0cose0-K1)2+v1
2
 t s 2vxn0coseQ

\(n0cosQ0+ux)
2+vx

2' 9o1 M2+v2-«2cosG0

Calculated intensities | pf2 |2and | p,^ | 2 , phases (|)sand §p of reflected from

silver surface s- and/>-polarized light are presented at Fig. 5.2.

From (3.2) follow equations for amplitude TQ, and phase %oi of transmission

ro
s, = To, exp(z'Xoi) at the first "01" interface

s _ 2^0cos90 , _ v,
Toi - I , , » t a n X o i a • ^ • l u - )

^J(n0cosQ0+ux)
2+v2 n0cosQ0+ux
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0.98"
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Angle of Incidence {degree)

Figure 5.2. Intensities ^?oi=koi|2=Pi22 and phases <|>oi of reflected from silver surface s- andp-
polarized light. Real and imaginary refractive indices of Ag at 550 nm are «]=0.06, £i=3.6.

Analogously we obtain expressions for reflection and transmission at the second
interface:

s =

12

,c 2V,H, cos0,tan(()f2 = - = P—r—?-2—
«, + V, - «0 COS 0 ,

+v,2
tan x12 = -5

u;

v.n^cosQ-,

cosG,
(5.12)

The angle 02 is determined from 90 by means of the formula

«2sin02 =«osin0o. (5.13)

Expression for amplitudes and phases of p-polarized (TM-wave) reflected plane
waves could be deduced from (3.1). Amplitude and phase of the reflected from first
interfaces-polarized light are
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= /[(w,2 - £ 2 ) c o s 8 0 -nQuxf + [2/1,*, cos0o - ^ v j 2

U 2 ^ 2 )cose + « M ] 2 +[211* cos9 + n v ] 2
M l ]

2 +[211,*, cos90 +nov,]2

cos0o

Corresponding expressions for transmitted through first interface light are

2 ( K 2 + * 2 ) C O S 8 0 m «

(n,2 + k}
2)2cos20O + «2[(«,2 ~kx

2)ux + 2kxvxnx]

Analogously we obtain expressions for amplitude and phase of /^-polarized light,
reflected from the second interface:

_ /[(w2 - ^ 2 ) c o s 8 2 - W 2 K , ] 2 +[2/1,*, cos02 - ^ v , ] 2

1M^1 -(w2 -*,2)v,]

e 2 ( ? 2 ) > ( }

From the knowledge of the quantities p01, <()01, etc., the complex reflection
coefficient of the absorbing film may be evaluated. It is useful to set

r| = —/!,, (5.19)

so that

• " ' • x n - ( 5 - 2 ° )

The equation (4.4) now becomes

From (5.2) we obtain the expressions for the reflectivity ^?=|p|2 and for the phase
change 8, on reflection:
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Thickness {XM* 1 0 1.0

Figure 5.3. The reflectivity of absorbing layer with real part of refractive indices «i=3.5 as a
function of its imaginary part k{ and optical thickness h, surrounded by semi-infinite
substrate of «2

=l-5 and air with «0=l.

P= n2 =
^ cos(<|>

01

(522)

t a n 6 -
r

where phase change on reflection 8r is referred to the interface 0-1. Formulae
(22,23) are valid for s- and p-polarized waves. In the former case one must
substitute for p and § the value given by (6) and (9), in the latter case those given
by (13) and (16).

Fig. 5.3 illustrates the dependence of the reflectance on the thickness h\ of the
absorbing layer and imaginary part of refractive index k\. For a nonabsorbing film
R are periodic functions of the film thickness hx, with a period of one wavelength.
Absorbing is seen to reduce the amplitude of the successive maxima.

For a thick film, we have from (5.22) and (5.23)
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i?sp0 1 , 8rs<|)01. (5.24)

6. Absorptive Fabry-Perot interferometer [4]

Considers now absorptive Fabry-Perot interferometer, consisting of layer with
complex frequency-dependent refractive index «(co) = «(co) - ik(a>) and thickness
hi between two ideal (without losses) metal mirrors having intensity reflectivity
5R -\ro\\2 and transmission T=tOitiO (5R +7M). From above presented formulae (4.3)
and (5.22) transmission and reflection of such Fabry-Perot interferometer are for
perpendicular incidence angle 90=0

(6.1)

11 - 9? expHW©,/*, )]exp[-a(to)/z, ] |2

where a(©)/?i =2k(o))h\O)/c describes light absorption and <|)((»,/zi)=2«(oo)/?ico/c is
the phase shift caused by one optical round trip of the light between mirrors
separated by a distance h\, c - is the vacuum speed of light. Consider first the
empty cavity case, for which «(eo) and a(co) are described by the frequency-
independent background index of refraction «B and absorption ocB , respectively. In
the case of resonance the reflection reaches minima and transmission reaches
maxima when the phase shift is an integral multiple of 2n. For a small energy
deviation 7j8cofrom the cavity resonance phase <()=2/W7I+26CO«B^I/^CJ where m =
±1, ±2,... The transmission can be expressed using expansion of phase-dependent
exponent in (7):exp(/<)>) = 1 + i2b(snBhx /hc+...,

T((a) = (l^)exp(q^)
| (1 M-aBh) a ^ ^ ^ ^ I h |2 '| ( ) ^ I he |

Therefore the Fabry-Perot transmission has a Lorentzian form, T((£>) QC| 8G> - /A |~2

with the energetic HWHM

j£O^p (6.4)

7. Basic physics of microcavities [5]

The simplest semiconductor microcavities consist of two Distributed Bragg
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Reflectors (DBRs) on either side of a cavity region, as shown schematically in
Figure 7.1. The DBRs are multiple repeats of alternating high- and low-index
layers, each with thickness Xo/Atij, where Wj is refractive index of layer j material.
This gives a broad-band high-reflectivity region centred on XQ, called the stop-
band, with oscillating side-lobes on either side. In the stop band, the mirror
reflectivity is given by [3, 6]

R^I-AM^-T (7.1)

where «L> «H » nc and «o are the refractive indices of the low- and high-index layers,
the cavity material and the external medium respectively, and N is the number of
pairs of mirror layers. The cavity between the two mirrors has thickness Lc chosen
to be an integer multiple of l/ln in the medium. The semiconductor microcavity is
very similar to the above-considered Fabry-Perot structure with ideal metal
mirrors, therefore most of the standard Fabry-Perot results for the reflectance,
transmittance etc apply.

The simple physical picture of MC is that in order to form a Fabry-Perot
resonance the round-trip phase shift has to be an integer multiple of 2n. Further
insight into normal-mode coupling can be gained from a graphical solution of the
resonance condition

A,0 = 2nm, m = ±l,±2,

which allows to find resonance frequencies of MC and give further insight into MC
property. This condition can be presented as

m (7.2)

DBR mirror spacer DBR mirror

air

«H

active
layers

substrate

Figure 7.1. Schematic of a planar MC consisting of two DBRs, spacer layer of thickness
Lc with two active layers in the cavity-field antinode. DBR mirrors consist of several
layers with Low and High refractive indices nL and nH and thicknesses Xo/4«.
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For an empty cavity, the left side of Eq. (7.2) is just a frequency-independent
constant nc (horizontal dotted line at Fig. 7.2.b) and the right side is a straight (short

j.a/=0.005 / \

T" I " I I i i i i 1 i i i i I i i i i I i i i i | " i " r T

500 525 550 575 600
Wavelength X (nm)

Figure 7.2. (a) Spectra of the normalised MC transmission, (b) Spectral dependence of the refractive
index n(X) and extinction K(X) for three different optical densities of MC active layer a0rf=0.005
(dotted); 0.02 (dashed) and 0.05 (solid) lines. Crossings of n(X) with straight dotted line X/2LC

(sircels) determine spectral positions of the MC transmission maxima.
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Figure 7.3. Spectra of absorption coefficient a(X) (lower solid curve) and refractive index «P
(upper solid curve) of organic semiconductor PTCDA and straight lines X/2LC (dashed or dotted lines)
for different thicknesses Lc of MC spacer. Intersections of «PTCDA(A.) with these lines determine resonant
maxima of MC transmission.

- dotted) line, shown in Fig. 7.2 (b). The single intersection of these two straight
lines gives the wavelength of the single longitudinal mode of the cavity. For a
many-oscillator cavity the left-hand side of Eq. (7.2) varies rapidly in the vicinity
of the resonance; if the transition is sufficiently narrow and strong, three
intersections result, as depicted in Fig. 7.2. The very high absorption at the central
solution results in very low transmission there; the other two solutions give the
wavelengths of the two transmission peaks.

For arbitrary absorption lineshapes, one can use Kramers-Kronig relations to
obtain n(X) and use this graphical method to find the MC peak positions as a
function of detuning determined by Lc. In Fig. 7.3 we have plotted the rather
complicated absorption spectrum of organic crystal PTCDA, reconstructed from
Kramers-Kronig relation spectrum of refractive index «PTCDA(̂ -X

 ar>d straight lines
k/2Lc for different thicknesses Lc of microcavity spacer. Intersections of these
straight lines with HPTCDA(^) give spectral positions of MC transmission maxima.

7.1. LORENTZ OSCILLATOR

Up to now spectral dependence and nature of dielectric function and complex
refractive index was not specified. The many aspects and ideas of MC physics can
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be understood on the basis of an ensemble of the simple Lorentz oscillators in a
planar Fabry-Perot interferometer with ideal metal mirrors [15]. In the simple case
the light-matter interaction is characterized via complex susceptibility 8 or
refractive index h-n — ik. The analytic form of susceptibility is essential to an
understanding of the MC response, therefore much theoretical effort is focused on
the its microscopic origin. One of the simplest way to introduce dispersion of the
susceptibility is to assume that spacer between the cavity mirrors is filled with
Lorentz oscillators described by the model susceptibility of Eq. (8.1) [6]; it was
first applied to semiconductor MC by Weisbuch et al [14]. The linear susceptibility
8 of a system of Lorentz oscillators can be found by solving the optical Bloch
equations in steady state [17,18].

Zhu et al [15] demonstrated that the linear dispersion theory can be used to
describe the so-called vacuum Rabi splitting. The cavity is modelled by the
standard Airy description of a Fabry-Perot oscillator and the two-level atomic
system of thickness d by a Lorentz oscillator dispersive dielectric constant:

l) fl-2
 l— , (7.3)

m coo -co — ryOco
where/is oscillator strength per atom, e (m) the charge (mass) of the electron, TV
the oscillator density, a>o the resonance frequency and y the oscillator linewidth.
The frequency-dependent absorption coefficient a(co) and refractive index «(co) of
the Lorentz oscillators are given

() (Q>~°)%)y° a=cc0 ^ L (7.4)
° 4(a>-co0)2 + Y

2

where cc0 = 2Nfe2 /mcy is absorption coefficient in the line center co=co0-

The transmission 7(a)), reflectivity i?(oo) of the cavity + atom system is given by
equations (6.1, 6.2), where now

An ( )
§(a,Lc) =—{(<j)-(£>c)Lc+d[n((d)-nB\<ti] (7.5)

is the phase experienced by the field upon completion of a round-trip through the
cavity , ad is the single-pass absorption. For an empty cavity with sufficiently
large finesse F (4.7), the empty-cavity resonance width is given by yc = c/2LcF.
Dispersion of linear absorption and refraction alter the transmission T((n) through
cavity with Lorentz oscillators: now it may exhibit a structure which is completely
different from that found in empty-cavity case. The location and even the number
of transmission extrema may change.

Consider first simplest case of low absorption (aod « 1), high cavity finesse
(9? = 1), cavity resonance (coo^Oc), small detuning [((o-oo0) « LJc], and
comparable Lorentz oscillator and cavity resonance widths (yc« yo).
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The zeros of <t>(co,Zc) determine the peak positions in MC transmission spectra,
and the slope d^/dco at the zeros provides a measure of the resonance widths. In
Fig. 7.2 (b), the dispersions of refractive index and absorption coefficient (7.4) are
plotted for several optical densities of MC active layer. At ceo—»0, n(co) s «B,
therefore expression for n(k) contains a single nonzero term corresponding to a
horizontal straight line [dotted line in Fig. 7.2 (b)], indicating that the cavity has a
single peak at co = co0. For a0 > 0, a second dispersion term contributes to n(X) as
well. At low oco, the dispersion changes the slope of n(k) at co » co0 thereby
broadening the cavity transmission resonance. At higher ao, n(X) is so distorted by
the dispersive term that it actually passes through zero three times. One zero, as in
the empty-cavity case, occurs at co = coo, and two new zeros, located symmetrically
about co = coo, appear [Fig. 7.2(a)]. The absorptive part of oscillator response (7.4)
destroys the central transmission peak and slightly shifts the remaining two peaks
away from the zeros of the <j>(co,Z,c) [see Fig. 7.2(a)].

Consider now the coupling between the cavity mode and excitonic states in
active layers grown within the cavity. In order to obtain a significant interaction
between the two, the exciton energy is chosen to be close to resonance with the
cavity mode. The coupling is determined by the exciton oscillator strength and the
amplitude of the cavity field at the active layer position. It is characterized by
energy, the vacuum Rabi splitting, which, for active layer placed close to the
electric field antinodes, is given by [6]

\2rcN (7.6)

where Na is the exciton density in active layers in the cavity , hTo is the radiative
width of a free exciton and can be expressed in terms of the exciton oscillator
strength per unit area [7, 13],/^, as

n e2 h -
n T / (7 7>nc 4ne0 mec

In the strong coupling regime, where the vacuum Rabi splitting is greater than
the widths of the cavity and exciton modes, this corresponds to a measurable
splitting in the optical spectrum when the two modes anticross. Figure 7.4 shows a
calculated anticrossing obtained at tuning of cavity resonance coc through the
exciton resonance cox by changing cavity thickness Lc. Since only the cavity mode
couples directly to external photons, away from resonance the excitonic mode
becomes predominantly weak.

A more detailed analysis reveals that the two peaks in the cavity transmission
are approximately Lorentzian in shape, occur at the frequencies A = co-coo = ± Q/2,
where

wi,h a_ - . % * £ « IZBU , (7.8)
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Figure 7.4. Dependence of calculated by transfer matrix model transmission spectra of MC with
GaAs active layer on cavity thickness Lc. Due to strong excitonic absorption and refractive index
dispersion cavity resonance splits into 3 transmission lines. Central line at 1.512 eV invisible due to
strong absorption. Intensities of other two lines are dependent on detuning from excitonic

have an intensity

1 = (7.9)

and a FWHM of y'c = (yc + y o ) / 2 , that is the average of the uncoupled oscillator

and cavity widths. The maximum splitting is only a function of total oscillator
strength and the cavity size, but not of the finesse. The splitting will be resolved
w h e n f i » ( y c + y0)/2.

The properties of complicated MC structures consisting of multilayer DBRs and
cavity with dispersive refractive index nc(co) are easily calculated using transfer
matrix theory [3] to propagate the electromagnetic field through the structure. The
calculated photon field distribution for the MC structure, resembling presented at
Fig. 7.1, at the cavity mode wavelength Xc-2LJm, is shown in Figure 7.5 and
shows enhancement of the electric field amplitude at the centre of the cavity by a
factor of -10, relative to the external field.

Values for the vacuum Rabi splitting, #Q;, can also be obtained from the
transfer matrix model by including the excitons directly in the calculation, as a
contribution to the dielectric constant in the active layer material [15]. This is an
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Figure 7.5. Calculated photon field distribution in GaAs cavity with 15-layers GaAlAs/AlAs DBRs at
resonant (solid line) and slightly off-resonant (dashed line) wavelengths. The ~10 times field
enhancement in the GaAs cavity region is visible. Amplitudes of intracavity and transmitted fields are
maximal at resonance wavelength Xc=2LJm.

appropriate treatment since, in the linear regime, the exciton can be treated as a
classical oscillator, which appears as a dispersive term in the dielectric constant. A
more accurate treatment of the exciton contribution to the dielectric constant,
taking into account the polariton dispersion in the active material, has been given
byPauetal[S].

A reflectivity spectra calculated from the transfer matrix model for an MC are
presented in Figure 7.6 for different numbers N of DBR's layers. These spectra
exhibit many of the important features discussed so far. Two coupled-mode dips of
nearly equal intensity are observed arising from the coupled exciton-cavity modes.
These dips are superimposed on the high-reflectivity (-100%) stop-band of the
DBR mirrors. Inspection of figure 7.6 shows that for high-finesse structures
FWHM of the reflectivity dips decrease up to ~1 meV. Splitting between two lines
are nearly independent on reflection of DBRs, as already pointed out in Eq. (7.8).
High excitonic absorption in GaAs active layer results in addition structure at
excitonic resonance /zcox=1.512 eV. The high finesse leads to many passes of the
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Figure 7.6. Calculated reflection spectra of the MC with GaAs active layer between DBRs consisting
of WGaAlAs/AlAs layers.

light through the active layer before photon escape occurs through the DBR mirrors
and thus results in the high levels of absorption which occur on resonance.

7.2. CAVITY POLARITONS

The metal mirrors of the Fabry- Perot interferometer and DBRs of the MC force
the axial wavevector kz in the medium to be 2n/Lc. A planar cavity provides no
confinement perpendicular to the z-axis, so the photon has an in-plane dispersion.
Therefore the cavity photon energy is approximately

(7.10)

This dispersion is parabolic for small % and so it can be described by a cavity
photon effective mass mphot = hnclcLc. This very small mass is typically ~10"5/ne

[10]. Such dispersions can be measured directly in angle tuning experiments:
moving away from normal incidence in a reflectivity measurement introduces an
in-plane component to the photon wavevector [3]. In-plane wavenumbers up to k\\ ~

7 1p
107 m'1 can be probed in this way.

Experiments involving non-normal incidence can also be modelled by including
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an appropriate in-plane wavevector for the field. These calculations give the energy
of the cavity mode, in terms of the structural parameters, and also its homogeneous
broadening due to tunnelling through the barriers. A small amount of absorption
has to be added in the mirrors and active layer for the calculation to obtain good
agreement with the experimental cavity mode widths.

An even simpler model than the transfer matrix simulations can be obtained by
treating the cavity and photon modes as coupled oscillators, with coupling matrix
element ftQ/2. This captures most of the essential physics of the cavity polaritons
and has the advantage of being simple enough to solve analytically. The various
parameters, such as the vacuum Rabi splitting, the cavity and photon mode widths,
are treated phenomenologically, to be obtained either by separate calculation or
from fitting to experimental data.

The simplest situation which can be treated like this is a single QW in a
microcavity. The coupling between the exciton and cavity oscillators is described
by a 2x2 matrix Hamiltonian:

H = \ x ' (7.11)
{hQ/2 h )

Here, ft(ox and h(oc are the energies of the exciton and cavity modes respectively
and hQj is the vacuum Rabi splitting. This Hamiltonian is easily diagonalized, to
give eigenvalues

hco± =
 mo' + m ° c ± V ( ^ ) 2 ±(Jtox -/Koc)

2 . (7.12)

The coupled oscillator model can readily be used to calculate microcavity in-
plane dispersions [3]. To do this, the uncoupled exciton and cavity photon energies
are made k dependent according to their dispersions. The polariton dispersion is
then obtained by solving the coupled oscillator problem for each value of k.

If accurate values of hQ.t are to be extracted from experimental data, care is
required to account properly for the broadening. This is most obviously done by
adding an imaginary part to the exciton and photon energies, corresponding to a
homogeneous broadening of the oscillator. For the cavity mode, this is probably
appropriate, as the linewidth is believed to be mainly homogeneous, originating
from the tunnelling decay of the photon through the mirrors. For the exciton, by
contrast, the dominant broadening mechanism is inhomogeneous, because of
disorder. The inhomogeneous linewidth of an active layer exciton is typically a few
meV, while the homogeneous width is at most a small fraction of an meV. Hence it
is not really appropriate to treat the exciton linewidth as due to homogeneous
broadening. However, this is frequently done, because a better treatment is
considerably more difficult. The reason why some sort of broadening needs to be
included is that the separation of the spectral features is reduced by the broadening,
so the measured splitting at resonance is less than hClj [15]. Moreover, the
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modifications to the splitting in absorption, transmission and reflectivity are
different [18].

As shown in [6-8], the penetration of the cavity field into the DBR means that,
in some of the formulae, the Fabry-Perot cavity length Lc has to be replaced by a
significantly larger effective length:

Leff=Lc + LDBR (7.13)
where LDBR is the penetration length into the DBRs and is given by [6]

X nLnH
^DBR ~ \'-lH)

2nc nH - n L

where A. is the wavelength of light in the cavity. For typical GaAs/AlAs structures
LDBR ~ (3-4)Zc. As a result of the field penetration into the DBRs, the cavity mode
frequency for a microcavity is given by com = (I.ccoe + LDBR(OS)/ Leff [9], where coc

is the Fabry-Perot frequency defined by the length of the cavity and cos is the
frequency of the centre of the DBR stop band. For coc ^ cos, as may arise from
imperfectly controlled growth, the observed Fabry- Perot frequency is no longer
equal to coc, and is in fact more sensitive to oos than to coc, since LDBR is significantly
greater than Lc. Because of the fact that the mirrors have finite transmission
probability, the cavity mode has finite width Ae (full width at half-maximum),
given by, for R -»1 [6],

This width can be considered as homogeneous lifetime broadening of the
confined cavity mode, brought about by the decay through the mirrors. A typical
width of ~1 meV corresponds to a cavity mode lifetime of ~4 ps. The smallest
reported "empty" cavity width of 0.13 meV [10], gives a finesse, defined by mode
separation divided by width, of about 6000.

8. Angle-dependent properties [5]

The cavity photon modes of a MC have strong in-plane dispersion, which is not
quantized. Following from equation (7.10) the energy of a photon with quantized
wavevector kz = 2%ILC, and in-plane wavevector k\\ in the medium, is given by

where w^is the effective refractive index of the structure [9] and Eo = hclneffLc is
the photon energy for k\\ = 0. Equation (8.1) corresponds to strong in-plane
dispersion which can be characterized by a very small in-plane mass of ~10'5w0.
Each k\\ in-plane photon mode couples only with exciton states of the same k\\ to



0 10

313

satisfy the requirement of wavevector conservation. The resulting coupled modes,
the cavity polaritons, also show strong in-plane dispersion, but with marked
perturbation in the region of strong interaction between the two modes.

Ay is related to the external angle of incidence by

(8.2)

and as a result a particular k\\ mode can be selected simply by varying the external
angle of incidence of 0/. Elimination of k\\ in equations (8.1) and (8.2) leads to the
following expression for the energy of the Fabry-Perot mode as a function of 0,:

*°"f (8.3)
2

Tuning of the exciton-cavity interaction can thus be achieved simply by varying 0/.
Compared with other tuning techniques such as cavity thickness, application of
external electric or magnetic field, angle tuning has the particular advantage that
the exciton states are independent of angle to a very good approximation. As a
result the exciton-cavity interaction potential is also independent of angle, leading
to a very straightforward way to study polariton-tuning phenomena. Furthermore,
the polariton dispersion can be investigated directly by measuring optical spectra as
a function of the external angle 0,.

One of the notable features of the angle dependence is that there is a splitting
between the TE and TM modes for 0/ > 0. This arises from the slightly different
phase shifts and penetrations of the optical modes into the Bragg mirrors £DBR for
the two polarizations. Its magnitude is determined by the energy difference
between the cavity mode and the centre of the DBR stop bands, as shown by
analytical calculations in [9]. Additional results of the work of Baxter et al [19]
include the observation of a marked polarization dependence of the dip intensities
and linewidths [20], interaction of the cavity mode with active layer excited state
transitions and broadening of the cavity mode as it becomes degenerate with
exciton continuum states. The polarization dependence of the intensities at finite
angle was found to be in agreement with the predictions of the transfer matrix
simulations and was shown to arise physically from the differing degree of
matching between upper and lower mirror reflectivities in TE and TM
polarizations.

8.1. ANGLE AND POLARISATION DEPENDENCE OF OFF-RESONANTLY
EXCITED EMISSION FROM ORGANIC MC.

We have investigated stationary and picosecond time-resolved emission from
"organic" microcavity, consisting of 120 nm layer of spin-coated J-aggregate in
PVA matrix («c=1.54) surrounded by silver mirror and DBR, made of 9 couples of
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Figure 8.1. The absorption (open circles) and photoluminescence emission (solid line) spectra of a
thin film of cyanine dye J- aggregates dispersed in a PVA matrix. The inset shows the chemical
structure of the specific cyanine dye studied here.

X/4«, layers of SiO2 (ni =1.45) and SixNy («// =1.54). Absorption and emission
spectra of the J-aggregate layer, measured at room temperature outside of
microcavity, are presented at figure 8.1 by open circles and solid lines. They
consist of single main peak at approximately 1.78 eV, FWHM ~ 25-50 meV, and
order-of-magnitude weaker short- or long-wavelength tails.

At near resonance 633 nm excitation by HeNe laser emission from investigated
MCs always consist of two lines: independent on observation angle free exciton
line in spectral range 665-695 nm with FWHM ~50 nm and polariton emission,
which spectral position was dependent not only on MC thickness Lc, but also on
angle of observation Go. At 90 « 45° two emission lines approach each other,
producing due to anticrossing two slightly overlapping exciton-polariton lines.

At off-resonance 442 nm CW excitation by HeCd laser in addition to above-
mentioned exciton and polariton lines several high-energy lines have been
observed in spectral range 480-600 nm of transmission lobes of DBR mirror.
Hence at HeCd excitation emission consists of 3 types of lines: (see, for example,
Figure 8.4 for observation angle 45°)

1) Single line with FWHM -15-25 meV, centered at approximately 1.78 eV due
to emission of J-aggregate (exciton). Intensity, width and polarization ratio of this
line are dependent on observation angle 8, while spectral position is angle-
independent.

2) Single line due to emission from "normal cavity mode", situated in stop-band
of DBR mirror, with all parameters (including spectral position) strongly
dependent on angle of observation 0. At angle~45° spectral position of this lines
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Figure 8.2 Room - temperature emission spectra
of MC with J-aggregate in PVA for two angles of
observation Q: a) 8=0; 6)9=45° and different
polarisation angles a. Thick solid lines are for a
= O°(s-polarisation), 10 and 20°. Broken lines
present emission at p-polarisation (<x=90°), a=80°
and 70°. Emissions at intermediate polarisation
ancles a presented bv thin lines.
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Figure 8.3. Emission spectra of the MC #14 with
J-aggregate in PVA for 0=45° (a) and 80° (b).
Emission spectra for s-polarisation and small
polarisation angle a=10and 30° are presented by
thick solid lines, for p-polarisation and large a=
80 and 70° are presented by broken lines, for
intermediate polarisation angels - by thin solid
lines.

crosses (or anti-crosses) above-mentioned J-aggregate transition.
3) Several emissions bands due to high-energy lobes of DBR mirror above its

stop-band. Their positions and polarization properties are strongly dependent on
angle of observation.

At observation angle perpendicular to MC surface (see Fig. 8.2 a) excitonic
lines dominated in emission spectra at all polarisation angles a. Spectral positions,
shapes and intensities of emission lines are independent on polarisation angle.

At 0o=450 (Fig.8.2 b), due to anticrossing between exciton and cavity mode
transitions they produce doublet 640-665 nm, better visible in s-polarization. s-
polarised emission due to high-energy transmission maxima of DBR are much
stronger then exciton (665 nm) and low-energy DBR transmission maximum (785
nm) emissions. Changing of polarisation angle from 0° (^-polarisation) to 90° (p-
polarisation) results in decreasing of high-energy line intensities and simultaneous
increase of exciton and cavity polariton emission. Moreover, at these changes high-
energy lines shift to lower energies while lowest line (785 nm) shifts to higher
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energy.
At higher (0O = 65 and 80°) observation angles exciton-polariton doublet splits

into two separate lines, lower stays on free exciton position while high-energy
component shifts to higher energy at increasing observation angle a (Figure 8.3).
Polarisation dependence of line intensities is the same like at 45°: at increasing a
emission through DBR maxima decreases while intensities of the exciton and
cavity mode emission increase. At a = 65 and 80°, it became obvious that at
increasing a high-energy lines in spectral range 500-600 nm are not shifted but are
substituted by new lines growing with a at another spectral position.

Angle and polarisation dependencies of emission spectra for another
investigated MCs are qualitatively the same.

Angle and polarisation dependence of DBR transmission in spectral range 450-
650 nm can also be extracted from excitation spectra. Excitation spectra of
excitonic emission at 665 nm from organic MC at room temperature for s- and p-
polarisations are presented on Figure 8.4 for different excitation angles. As follows
from Fig. 8.4, excitation spectra are modulated with period and phase dependent
both on excitation angle and polarisation of excitation light.

It is more convenient to plot angle-dependence of s- and p-polarised emission
from MC as a two-dimensional contour map, presented on Figure 8.5 a) and b) for

510'
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Figure 8.4. Excitation spectra of excitonic luminescence at 665 nm from organic MC at room
temperature for four different angles of excitation of s-(lower group of lines) and p-(upper group of
lines) polarised light.
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Figure 8.5. Contour plot of experimentally measured emission spectra of organic MC for different
observation angles 90 for s- (left panel) andp-(right panel) polarisations.
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Figure 8.6. Contour plot of the calculated transmission of the MC with Lorentz oscillator medium
between silver and DBR mirrors as a function of wavelength and angle of observation for s- (left
panel) and/>-(right panel) polarisations.
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s- and /^-polarised emission. Anticrossings of exciton and cavity modes are
observed at ~30-35° and 40-45° for s- and ^-polarisations correspondingly. All
lines shift to higher energy at increasing of observation angle with different rates
for s- and p-polarisations.

Spectral positions of polariton states and transmission maxima of MC with
silver and DBR mirrors have been calculated using transfer matrix method. Results
of calculations are presented at Figure 8.6. Single Lorentz oscillator with energy,
oscillator strength and damping coinciding with these reported in previous papers
has simulated J-aggregate layer. Spectral positions of allowed s- and p-polarised
transitions in MC with J-aggregate as a function of external angle are presented at
left and right panels correspondingly.

Calculation explains different spectral positions of exciton-polariton lines, high-
and low-energy transmission maxima of MC with Lorentzian-type active layer. At
small observation angle spectra for both polarisations are similar. At angle ~30-40°
cavity mode anticrosses excitonic transition, what results in polariton splitting. At
larger observation angle cavity mode and especially transmission maxima have
non-coinciding spectral positions for s- or p-polarisation. Even stop-band widths
are different for different polarisations. Calculations qualitatively and partly
quantitatively coincide with experimental observation and allow determining
contribution of active layer and each of mirrors to observed wavelength and angle
dependencies.

8.2. TIME-RESOLVED PHOTOLUMINESCENCE FROM ORGANIC MC.

Most of optical investigations of microcavities have been carried out using
transmission or reflection spectroscopy. Photoluminescence (PL) or PL excitation
spectroscopy can also yield important information about microcavity properties.
Influence the exciton or carrier relaxation and recombination on PL from MC at
non-resonant excitation has been investigated theoretically in [21-23]. Influence of
the small polariton density of states close to k = 0 on PL relaxation phenomena
nave been also discussed in [24]. It follows from these works that the
recombination dynamics is mostly influenced by the uncoupled exciton states
radiating into the leaky modes of the cavity, arising for large exciton in-plane
wavevectors k [23]. The decay of the exciton population is determined by the
dynamics of the large k mostly exciton-like states of the lower polariton branch
with large k. Luminescence from the upper and lower polariton branches close to k
= 0 results due to phonon scattering from this large-A, thermally populated
excitons. In the radiative region close to k = 0 a bottleneck in the polariton
populations is predicted. It arises because of a combination of the slowing down of
relaxation rates due to the very small polariton density of states and the increased
radiative recombination rates due to mixing with the cavity modes.

Experimental investigation of CW PL phenomena is contained in the work [25].
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These experiments were carried out in the 3A72 cavity with non-resonant excitation
at 115 K, where the thermal energy is of the order of the vacuum Rabi splitting.
Simultaneous measurements were made from the front of the sample, where PL
from the strong coupling states is observed and from the edge where only PL of
uncoupled excitonic states is seen. In investigated microcavity, PL spectra is
described very well by the absorption spectrum multiplied by a Boltzmann
distribution, therefore the PL spectrum arises from fully thermalized polariton
distributions at a given detuning. Another observation of this work is that, moving
away from resonance, the photon-like branch of the polariton was found to be more
luminescent than the exciton-like mode, the photon-like branch reaching a
maximum intensity at medium detuning. This behaviour is shown to be a
consequence of the high absorption that occurs in high-finesse microcavities
containing strongly absorbing active layer. The total absorption is not maximum on
resonance, since on resonance the intracavity single-pass absorption is sufficiently
high that the photon field in the cavity does not build up as strongly as arises for
medium detuning; on resonance the cavity is only relatively weakly coupled to the
outside world. The maximum total absorption, and hence maximum PL, is instead
shown to arise when a photon, in a single round trip, has the same probability of
being absorbed as of escaping from the cavity, i.e. when the round trip absorption
is 50% and transmission equals internal absorption (impedance matching
condition). In investigated microcavities this condition is not fulfilled on
resonance, but instead arises 5-10 meV from resonance. In detuning the cavity
away from the exciton, the intracavity single round trip absorption drops but
approaches that needed for the above impedance matching. Thus the total cavity
absorption increases, and so does the PL intensity.

PL experiments at temperatures of 5 K and 30 K and resonant excitation of
cavity polaritons have been carried out in [23]. For temperatures above 30 K the
PL spectra were found to be thermalized with only a weak dependence on
excitation energy. On the other hand, at 5.2 K the PL spectra were very sensitive to
excitation energy, indicating that the PL does not arise from a thermalized
distribution. For thermalization to occur the exciton fraction of the polaritons must
interact effectively with acoustic phonons. According to [26] polariton lifetime is
~7 ps, whereas the acoustic phonon scattering times at 5 K and 30 K are 26 ps and
4.2 ps, respectively. Therefore at T >30 K polaritons are expected to thermalize
before emission by fast scattering, whereas at T~ 5 K the radiative lifetime is faster
than the acoustic phonon scattering time and emission occurs before thermalization
is complete.

What is surprising - distribution of relative intensities of three types of emission
lines at Fig. 8.2 and 8.3 are inverse to presented at Fig. 8.1: low-energy emission of
"cavity mode" is weakest while high-energy emission, transmitted through DBR
maxima above stop-band nave highest intensities at room temperature. Therefore
question arise: is it due to non-equilibrium distribution of excitations (hot
luminescence), or that is result of strong spatial inhomogeneity of J-aggregate and
PVA matrix?
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Figure 8.7. Gray-scale representation of the measured by streak-camera room-temperature emission
decay of organic MC at picosecond 435 nm excitation for observation angle 90=0°. Emission spectra
consist of free-exciton emission at ~660 nm, cavity mode emission at -710 nm and 3 high-energy
bands at DBR.

Gray-scale plot of microcavity emission kinetics at pulsed laser excitation (pulse
duration -2 picoseconds, average power 5 mW, repetition rate 80 MHz, excitation
wavelength 435 nm), recorded by streak-camera with time resolution ~ 5 ps,
presented at Figure 8.7 for observation angle 0°. As at CW excitation, time-
resolved luminescence consists of exciton, "cavity mode" and emission through
DBR lobes. Relations between their intensities differ from recorded at CW
excitation: excitonic line has strongest initial amplitude, emission of cavity mode is
comparable or weaker than excitonic emission, while high-energy emission lines
have weak initial amplitudes. Rise-times < 5 ps for all 3 different types of lines are
approximately the same, no visible delay in emission is detected. Decays of exciton
and cavity mode are two-exponential/ while decays of all high-energy emission
bands are monoexponential. Initial decay time of cavity mode at 0° is —15-18 ps,
which change after -200 ps to decay time -120-400 ps. Exciton start to decay with
decay time -42-48 ps, after ~200ps it also change decay tame to 120-400 ps. High-
energy part of emission decay always with same decay time 570 ±60 ps. We
attribute these long-lived luminescence bands to emission of PVA matrix, which at
large delays > 0.5 ns partially transfer their excitations to low-energy excitonic
states, therefore at large delays all lines decays synchronously with approximately
the same decay times -0.6 ns.

At observation angle 30° (Figure 8.9) cavity mode and high-energy emission
band are shifted to higher energy. Cavity mode approaches to and nearly merges
with excitonic emission line. Low-energy part of common emission band, which
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Figure 8.8. Picosecond kinetics of three different
types of the organic MC emission (solid lines and
symbols) and their exponential fits (broken lines)
at observation angle 9=0°. Solid lines - emission of
high-energy bands. Lowest three-angles and
squares - emission of cavity-mode state. Other
symbols - emission of the middle and high-energy
parts of the exciton line.

Figure 8.9. Same as Fig.8.8 for
observation angle 9 = 30° Solid lines -
emission of high-energy bands. Circles -
emission of the low-energy tail of the
exciton-polariton doublet. Other symbols -
emission of the middle and high-energy
parts of the exciton-polariton doublet.

has photon-like nature, decay with initial time —9-11 ps, then gradually change
decay time to 90-150 ps. Central and high-energy parts of exciton-photon band
decay initially with time 17 ps, after ~0.2 ns decay rate characterized by 100-150
ps. High-energy emission bands (which we attribute to matrix emission) decay
monoexponentially with decay time 560-620 ps, that is like at angle 0°.

Analysing two last figures, we can come to conclusion, that after ps laser pulse all
states are "immediately" excited, then decay in accordance with their lifetimes.
Lifetime of cavity mode is mainly radiative lifetime of the order 9-11 ps. Probably,
radiative lifetime of exciton is approximately 20 ps, therefore they decay with this
time in direction 30°. In perpendicular to MC plane direction radiative decay is
suppressed, therefore observed at 0° excitonic decay is ~2.5 times longer. In other
words, emitted in perpendicular direction light is reflected by cavity mirrors and
reabsorbed, forming exciton. Such mutual conversions of excitons into photons and
back results in longer decay time. At large delays part of conserved in PVA matrix
energy relax into lower excitonic or cavity mode states, therefore at large delays all
states decay with same time ~0.6 ns.

Our results confirm suppression of excitonic spontaneous emission in
tuned off-resonance microcavity and explain abnormal intensity distribution at CW
excitation by substantial differences in emission decay times of matrix, excitonic
and cavity mode states.
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9. Electron envelope wavefunctions *F(z)

Advances in molecular beam epitaxy made it possible to grow semiconductor
nanostructures with optical properties, substantially deviating from those of bulk
materials. In such nanostructures - quantum wells, wires or dots - the energetically
low-lying electron and hole states are confined in one, two or three directions to a
region of length!.

Simplest one-dimensional structure - quantum well - usually consists of GaAs
or InGaAs layer (L~3 0-200 A) deposited between two thick barriers with a wider
bandgap, made of AlxGai.xAs (x~0.05-0.4). Electron wavefunction can be
represented as a product of plane-waves, propagating in x,y direction, and standing
wave, depending on z

i(kxx+kvy)

V(r) = ;(z) uL. (9.1)

The Schrodinger equation for the electron is
[He(r) + V(z)Mr) = Ey(r). (9.2)

For x-y plane there is no quantum confinement, therefore the electrons can move
freely in plane QW with momentum k±. We assume that the electron energy is

2me

where me is the effective mass of electron. Replacing %kz —» itid 18z we find the
equation for standing-wave envelope C,(z):

n2 d2

2me dz2

Confinement potential V(z) has form

V(z) (9.4)

[0 for\z\<LI2\
V(z) = \ J ' k (9.5)K) \VC for\z\>LI2\

In quantum well at \z\<LI2 solutions are^(^) = Asm(k2z) + Bcos(kzz) and

k)=2me^. (9.6)

Outside of the QW solutions are

C,(z) = C±e±KZ with K2=2mB
V~fz . (9.7)

Wavefunctions and their derivatives should matches at the interfaces ± z/2,
therefore solutions are
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The number of bound states in the QW depends on the depth of the QW V. If V> 0,
there is always at least one bound state. If more than one bound state exists, the
symmetry between the successive higher states alternates, until one reaches the
highest bound state.

The task to experimentally demonstrate the spatial extent of a wave function in
sign and amplitude has been attracting considerable experimental attention in
several fields of physics. While experimental techniques were developed to
measure the quantum state of an atom or molecule [27, 28], and to control wave
packets and reconstruct their constituents in amplitude and relative phase [29, 30],
solids, at first glance, seem not to be a very promising playground for the
investigation of the coherent temporal evolution of wave functions. In contrast to
discrete atomic energy states, they feature continuous energy bands leading to
complicated dynamics. Besides, the corresponding dephasing times in a solid are
orders of magnitude smaller, which leaves only a narrow time window for
observation.

Despite these unfavourable features, semiconductors offer one unique
advantage. Namely, the opportunity to grow heterostructures, which gives freedom
to design virtually any model potential system for the holes and electrons, has
spurred interest and led to a variety of beautiful experiments demonstrating the
wave nature of the carriers [31-34].
Possibility of the reconstruction of a Wannier- Stark state in amplitude and sign by
resolving the spatial origin of the emitting polarisations by a transient multiple-
grating experiment is demonstrated below.

9.1. DESCRIPTION OF INVESTIGATED SUPERLATTICE.

Semiconductor superlattices (SLs) are artificial analogy of crystals where the
periodic modulation of conduction and valence bands in one spatial direction
(usually chosen as the z direction) leads to periodic potentials for both electrons
and holes [35]. With no electric field applied, minibands form from the overlapping
confined quantum-well (QW) states, resulting in wave functions extended over the
whole structure, similar to Bloch states in bulk material. With an electric field F
applied, the wave functions localise spatially, and the energy spectrum forms the
Wannier-Stark ladder [36], a set of equidistant levels En(F) - E(0)+meFd, where m
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is the integer ladder index, e is the elementary charge and d is the length of the
elementary cell in the direction of growth.

In our case, this periodic potential sequence was slightly modified: the structure
used comprises 15 strongly coupled quantum wells with their well width
monotonically increasing from 22 to 36 monolayers (MLs) of GaAs (1ML «2.8A),
respectively, separated by barriers of 10 MLs of Gao.3Alo.7As. The external electric
field was applied via a semitransparent Schottky contact and an ohmic contact. For
experiments in transmission geometry the w-doped substrate was removed by
chemical wet etching.
Increasing the well width by one monolayer results in an energetic shift of the Is
exciton interband resonance of about 1.7 meV, enabling selective interband optical
excitation of one particular direct transition within one well. This is in contrast to a
strictly periodic superlattice, where always all quantum wells are excited. If the line
width of the interband transition is below 1.7 meV, information about the spatial
position of a wave function is gained by its spectral position. In electric field-
dependent PL and differential reflection experiments we derived a linewidth of
0.8-1.2 meV (FWHM). From the observed non-diagonal transitions in the
differential reflection experiments we estimated a built-in electric field of 5 - 7
kV/cm.

In cross-correlation experiments in optical interferometry, the amplitudes of the
optical "test" wave packet constituents are gained by correlating them with a
known "probe" laser pulse and de-convoluting the second-order spectrally resolved
signal. Analogously, we correlate a "test" Wannier-Stark state (arbitrarily chosen
to be centred in one particular well) with a set of spectrally (and thus spatially)
close "probe" states, hereby increasingly overlapping "test" and "probe" states,
while recording the quantum interferences of the generated wave packet.

In a partially degenerate four-wave-mixing (FWM) [37] geometry, a first laser
pulse with wave vector k\, after passing through a pulse shaper [38], which
provides one or two spectrally narrow (0.3 meV FWHM) lines, each resonantly
exciting the Is exciton interband transition in one particular well only, composes
ensembles of one or two wave functions, i.e. both the "test" and "probe" states.
Each exciton ensemble is centred at a different spatial location and gives rise to

coherent first-order polarisations Pf*. The optical electric field of the delayed,

spectrally broad co-linearly polarised 100-fs pulse propagating in direction k2,

together with the polarisations PJl), induced by pulse k\, creates a set of gratings,

propagating in directions ± (k2-k\), on which pulse k2 self-diffracts.
The diffracted signal in directions ± (2k2-k\) is spectrally resolved with an

optical multichannel analyser (resolution -0.02 meV) and recorded with respect to
delay time T. We measured the FWM signal in both reflection and transmission
geometry; only data gathered in reflection geometry are presented. The excitation
density was ~108 cm"2 per well. All experiments were performed at 4.2K.
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Figure 9.1. Dependence of emission (Logarithm scale) spectra of the graded superlattice emission at
CW excitation by HeNe laser and temperature ~10K on bias voltage.

Luminescence of the investigated graded SL at above-band-gap CW HeNe laser
excitation for different external electric field from +10kV/cm to -40 kV/cm is
presented on Figure 9.1. Spectral position and emission intensities of most
intrawell transitions are nearly independent on electric field. Few lowest- and
highest-energy transitions are accompanied by broadened field-dependent
interband transitions.

Figure 9.2 presents the spectrally resolved FWM signal for increasing delay
time T from one excited quantum well (pulse k\ has a duration of about 2 ps
FWHM in the time domain). It shows the following key features of the experiment
which are not due to quantum interferences:
(i) the FWM signal from the excited QW reaches its maximum at Tmax ~ 3.5 ps

and decays exponentially with a decay time T~ 4 ps;
(ii) the weaker FWM signal from neighbouring, unexcited wells is observed to

have a rise time of 1 ps only, but decays much faster in a non-
monoexponential fashion;

(iii) the FWM signals from remote, non-excited QWs practically coincide with the
temporal pulse shape of pulse k\. If the exciting pulse k\ is shaped to
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Figure 9.2. Spectrally resolved FWM signal at selective excitation of QW (9) by a spectrally narrow
pump pulse *, and a broad probe pulse k2; a) grey-scale plot of the FWM signal versus delay time r;
b) solid curves represent the experimentally obtained kinetics of the interband direct transition in the
excited well and neighbouring unexcited wells. Symbols show the calculated FWM intensity

consist of two narrow lines resonantly exciting two consecutive quantum wells (the
"test" and "probe" wave functions), interferences are observed.

Figure 9.3 shows FWM spectra for three different wave-function combinations,
exhibiting the following further features:
(i) the oscillatory modulation of the FWM signal decays with a decay time Tmod

which is significantly shorter than the FWM signal decay time T;
(ii) the FWM-modulation/signal ratio is much larger in the intermediate, non-

excited quantum wells;
(iii) the signal maxima from individual quantum wells have relative phases which

do evolve in time.
The spectral laser power in each line was carefully adjusted to yield a maximal

signal modulation in the intermittent unexcited well. These spectral weights Mj of
the laser later enter the calculation of the macroscopic first-order polarisation. The
above features will eventually allow us to reconstruct the wave function.

In Fig. 9.4, experimental FWM data and numerical calculations are compared
for the exemplary cases of zero (a and d), one (b and e) and two (c and./) unexcited
wells of spatial separation between two transitions excited by pulse k\, which
consisted of two narrow lines.
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Figure 9.3. Experimental kinetics of spectrally resolved FWM signals from selectively excited (solid
lines) and nonexcited (broken or thin lines) with respect to delay time x. a) two neighbouring wells
#8 and #7 are selectively excited by pulse kx consisting of two narrow lines; b) between excited
wells is one intermediate unexcited well; c) between excited wells are two unexcited wells.

9.3. THEORETICAL MODEL
The numerical modelling of the experimental findings is accomplished in three
steps. First, the electron wave function y/j(z), centred in one particular welly, was
calculated by a transfer matrix method, including electron- hole Coulomb
interaction. The only parameter used for optimisation, aiming to match the relative
FWM intensity and modulation ratio from different wells, was the internal electric
field F. A change in F affects the spatial extension and distribution of the electron
wave function in different wells.

Figure 9.5 shows calculated electron wave functions excited via a direct
interband optical transition from the localized hole in the QW with 29 MLs width.
The combined action of Coulomb attraction and internal electric field may result in
an asymmetric spatial shape of the wave function. Different regimes can be
identified: at -2 kV/cm the electron is localized due to the Coulomb attraction,
while having a symmetric shape. The electric field compensates for the asymmetry
of the conduction-band potential of the graded superlattice structure. At 2 kV/cm,
the electron has overcome the Coulomb binding potential and is delocalised,
similarly to field-induced ionisation in atoms. Further increasing the field to 5
kV/cm localises the electron again, with the wave function changing sign in the 31
MLs QW; at 7 kV/cm, the sign change is at the 30ML QW. At yet higher electric
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Figure 9.4 Gray-scale representation of experimental {left) and modelled {right) spectrally resolved
FWM signals for selective excitation of two QWs, separated by zero (a, d), one (b, e) and two (c, f)
non-excited wells

fields, e.g. 15 kV/cm, the electron localises mainly in the central well [39,40]. The
numerical results shown in Fig. 9.4 were obtained for F = 5 kV/cm.

In a second step, we derived spatial weights j m for a given electron wave
function y for each well m close toy, i.e. m =j, j ±1, j ±2, j ±3, by integrating over
the electron wave function within well m, disregarding the shape of the localised
hole wave function iny. In the case where several wave functions y exist at well m,
the wave packet i//(m, t) is summed by adding the weights of the excited electron
wave functions, i.e.'V ym(0 where the weights oscillate in time t with their

respective interband transition frequencies.
In the third step, the non-linear signal is calculated. To distinguish between

different mechanisms for the induction of a transient non-linear excitonic optical
signal, one considers the effect of the optical excitation on the susceptibility (7.3)
[41], depending on the oscillator strength y^ of the interband transition in QW,-,
being proportional to the square of the dipole transition matrix element uy and the
square of the exciton relative-motion wave function Vj (r) at r = 0. It also depends
on is the transition energy /KDJ and the interband dephasing time y7. If one of the
quantities in (7.3) is changed during the pulsed excitation, a non-linearity arises. In
neglecting a dependence of the exciton wave function on the e-h pair density, i.e.
Vj = const, a change of/y is mediated by the Fermi exclusion principle, i.e. phase-
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space filling (PSF). If, on the other hand, the dephasing rate y, is changed during
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Figure 9.5.The z dependence of the electron envelope wave function in the potential of the graded
index superlattice (shown are GaAs QWs with thicknesses from 27 to 31 monolayers, respectively
separated by 10 monolayers of A10.3Ga0.7As), the Coulomb potential of the heavy hole (localised in
the 29ML well) and the external electric field F= 15, 7, 5,2 and -2 kV/cm

excitation, the resulting change in dielectric function is labelled excitation-induced
dephasing (EID). EID will subsequently lead to a non-linear signal.

For a quantitative understanding of the experimental findings it is necessary to
extend the theoretical approach to the third-order response of an inhomogeneously
broadened system [42] with both PSF [43] and EID [44-46] as mechanisms
responsible for the FWM signal.

We write the optical field of pulses k\ and k2 as

E(t) = Ex(t) exp[ t)] + E2(t -x) exp [/ (k2r-Qt)]+c.c. (9.8).

Q is the centre frequency of the spectrally unshaped laser, E\ and E2 are the
temporal envelopes of the electric fields of the first and second pulses, respectively,
and we introduce an exciton density dependent dephasing rate % of transition^':

(9.9)

where the parameter a describes the influence of the density «, on the dephasing
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rate phenomenologically. It leads to a real-time dependence of the third-order
polarisation of an inhomogeneously broadened transition y [44]:

x)0(x)e"T' exp{-r2(r-2x)2 I2} + NGTX exp{-(rx)2

l-x)0(x)(l-e-( '- t) /r i)exp{-[r2(r-x)2/2-yx]}+l j> + c.c.(9.10)
r ')exp{-r2r2/2-y(f-2x)}

Â  is the number of oscillators excited and T\ is the interband recombination
time. As a result of the inhomogeneity of the excited transition, the first two terms
contain the Gaussian multipliers exp{-r2(f-2x)2/2} and exp{{-r2(f-x)2/2}
respectively, which describe the rephasing of the individual constituents of the
polarisation. In the third term no rephasing for x > 0 occurs. Fourier transforming
(4) calculates the spectrum of the time-integrated FWM signal. The spectrum of the
PSF term (first term in curly brackets in (4)) at positive delay x reads:

(9.1

where erfc means the complementary error function. According to (5), the
observed FWM signal resulting from PSF is not instantaneous. It has a rise time,
which depends on the ratio p = y/T. At (3 < 0.1 the FWM intensity reaches its
maximum after a few picoseconds. At larger delay, x > 5/T, the FWM intensity
decays exponentially, 7inh <x exp(-4yx) . The different mechanisms dominating the
signal at different delay times also alter the spectrum with respect to x. During the
signal rise time the FWM signal resulting from PSF has a Voigt line shape. For
large delays, x > 5/T, the line shape becomes Gaussian.

The PSF term (5) suffices to describe several features of the observed FWM
signal from quantum wells resonantly excited by pulse £i.

The in z direction extended electron wave function, excited by both pulse k\ and
pulse k2 from a hole localised in one well, causes its density to be periodically
distributed over neighbouring wells also. Subsequently, the periodic modulation of
the dephasing rates affects transitions in neighbouring wells, unexcited but cast
over by the extended electron wave function of the excited transition. With the
susceptibility (7.3) being inversely proportional to the dephasing rate y, an exciton
density-induced change in the dephasing rate yields a contribution to the non-linear
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Figure 9.6. Contribution of Phase Space Filling (a) and Excitation Induced Dephasing (b) to third
order polarization. FWM spectra due to PSF have Voigt lineshape for small delays t, then at delays
T> 5/F convert into Gaussian. EID part of FWM is independent on delay T and has Voigt lineshape at
any delay.

FWM signal. This spatial modulation of the dephasing rate of a transition
"unbleached" by pulse k\ is observed from neighbouring wells in which a direct
transition is excited. The heterostructure design allows us to explicitly differentiate
between FWM signals caused by PSF and EID.

The spectrum of the EID part from (9.10) for positive delay x (second term in
curly brackets) reads

y exp{/(2*2 - * , ) • r + (© + coy -2O)x}x

expj- TV
- y x +

The third-order polarisation P^)£/D(co,x) decays for x > 0 with a Gaussian

delay-time dependence, having its maximum shifted to small negative delay xmax =

- y/T2. The expression for Pt$
EID(o&,x) for x<0 is identical, except for a deviation in

the decay dependence, i.e. at negative delays -P^)£7D(co,x)~exp{-F2x2 /2 + 2yx}.
The spectrum of the EID signal is, in contrast to the PSF term, completely
independent of the delay x. The explanation of the observed experimental features
for excitation of one well follows immediately from the distinct mechanisms for
the non-linear signal; i.e. xup and xi reflect the inhomogeneous and homogeneous
line widths, respectively.

The experiments were modelled using homogeneous inverse line widths of y =
31-52 |xeV and inhomogeneous inverse line widths of F = 400-420 ueV (different
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line widths for the individual QWs). As signals from unexcited wells are entirely
due to EID, a was chosen to match the relative FWM intensities between excited
and unexcited wells. Both EID and PSF are present in an excited well.

Let us now consider the excitation of welly -1 and welly +1 by pulse k\, with
the FWM emission from well j at /MO7 being entirely induced by the EID grating
(please see Fig. 9.3b). The emission is modulated in delay t with the difference
frequency h(a>J+\- co7.i) of the two excited transitions. If both wave functions y +1
andy -1 have identical weights within welly, the FWM is fully modulated. In our
experiments, we used different spectral laser weights to achieve maximal
modulation in the intermittent well, as the electron wave function is not symmetric
with respect to the central well. The weaker modulation ratio in the excited wells
shows that the overlapping wave functions have here different weights. The
modulation decay time Tint again reflects the inhomogeneity of the system. When
two unexcited wellsy' andy +1 lie between excited wellsy -1 andy +2, the emission
from all excited and unexcited wells oscillates with the same difference frequency
fi((8j+\- (ty-i), because only these two transitions were excited by pulse k\. The
complex amplitudes of the wave functions in the individual QWs determine the
exact relative phases of the emissions, and the different rephasing times of the
third-order polarisations induced by PSF and EID. With the set of wave functions
calculated for an internal electric field of 5 kV/cm and the above-given
homogeneous and inhomogeneous line widths, our model yields the observed
FWM amplitudes in great detail, and to some extent the complex evolution of the
FWM-signal's relative phases.

In summary, by using a graded-index SL, which inherently allows us to
spatially resolve the excitation position, we were able to reconstruct the spatial
extension and shape of an electron wave function. The consideration of an exciton
wave function extended in the growth direction, thereby neglecting the extension of
the localised heavy hole, and the distinction of PSF and EID as mechanisms
responsible for the FWM signal of our inhomogeneously broadened system, were
required to model the experimental results.
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9. CONSEQUENCES OF EXTREME PHOTON CONFINEMENT IN MICRO-
CAVITIES: I. ULTRA-SENSITIVE DEDECTION OF PERTURBATIONS
BY BIO-MOLECULES
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Abstract

It is becoming possible to confine optical photons within a dielectric microparticle
(radius- lOOum) for microseconds. This lifetime would allow a free-ranging photon to
travel -300 m in vacuum. In the frequency domain such a mode resonates with a ratio
of frequency to line-width Q -109. With such a narrow line-width, the sensitivity to size
and refractive index perturbations is extreme. An average size change of less than 1
picometer shifts the resonance line through its complete width. These resonances may
be stimulated evanescently by coupling to the guided wave in an optical fiber core.
Researchers recently used this fiber-microsphere system to detect hybridization of DNA
on a microsphere surface, and found that a single nucleotide polymorphism (SNP, one
base mismatch) in a long DNA target could be detected with a signal to noise ratio of
54.
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1. Introduction

In a previous course at this school in June, 2001 one of us (S. A.) taught about the
effect which confinement in spherical micro-cavities has on spontaneous and stimulated
emission.1 Although the experimental photon lifetime within a Photonic Atom Mode
(Fig.l, a.k.a. Whispering Gallery Mode) in fused silica was of unprecedented length for
an optical microstructure (~109 oscillations for a lOOum radius sphere), it was never as
long as theory would have predicted based on a smooth homogeneous dielectric sphere.

Fig.l Photonic Atom Mode (a.k.a. Whispering Gallery Mode). Light circumnavigating within a
micro-sphere, confined by total internal reflection.

We suspected that the reason was due to sub-nanoscopic perturbations associated with
molecular roughness. Opportunity is often built on just such problems. Since such
resonant micro-cavities might be particularly sensitive to perturbations, why not cause
perturbations by attaching nanoscopic particles to the surface, and measure spectral
effects caused by them? Biology offers a multitude of uniform nanoscopic particles in
the form of protein, DNA, etc. The result of this work was not only to understand the
perturbations,2'3 but also to generate the world's most sensitive bio-sensor for unlabeled
molecules4'5. In what follows we will talk about the perturbation of spherical micro-
cavities by presenting theoretical ideas first, and then compare the theoretical results
with experiment.
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2. Simple Considerations

The picture in Fig.l easily explains photon confinement, but it takes a wave
picture to explain spectral discreteness, and to gain a heuristic awareness of the effects
of a geometrical perturbation. Fig.2a takes the wave point of view.

2(X+(5 X)

(a) (b)

Fig.2 (a) Photonic Atom Mode from a wave point of view; (b) Anticipated wavelength change
caused by the addition of a spherically symmetric layer.

One can imagine driving energy into such a mode. To most it should be clear that the
only way to drive the mode resonantly is if the wave returns in phase (as shown). In
Sec.4 we will outline the means by which this mode can be driven, however at this
point we want to characterize our simple mode. There are precisely 30 waves that wrap
around the interior circumference in this figure. This will be our mode characteristic or
mode number. Suppose now that material of an identical nature and a small thickness t
adsorbs on the sphere (Fig.2b). This will cause the wave to circumnavigate a larger
circumference, and in order to maintain the same mode number, one might expect the
mode wavelength to increase in proportion to the size change. On this basis the
fractional increase in wavelength AX/X will be approximately equal to the fractional
increase in radius t/a,

AX t
— « —
X a

(1)

Suppose now that the adsorbing material is 1 nanometer in thickness. For a sphere
having a 100 urn radius, the fractional shift in wavelength according to Eqn.l would be
~10"5. This is smaller than the resolution of a grating spectrometer, but is a "piece of
cake" (i.e. easy) for the microsphere as a spectrometer. The reason is that the
resonances of a microsphere are extremely narrow. Resonances with Q's of 107



340

(linewidths of 1 part in 107) are considered "broad". But such a "broad" line would shift
one hundred times its linewidth for a 1 nm layer. For it to shift just one linewidth
requires only a 10 picometer layer (i.e. one tenth the size of a hydrogen atom). So such
a small perturbation should be easy to observe.

Our picture thus far is heuristic, and may in fact be incorrect. In Sec. 5 we will see
what exact perturbation theory says. However first we will discuss the physical nature
of the modes more exactly.

3. Theoretical Approach

As students at this school you likely come from both physical and chemical
backgrounds. Extensive theory into electromagnetics is generally not pursued within
chemistry departments. However quantum mechanics is common to both. Fortunately
an understanding of the electrodynamics of Photonic Atom Modes in a sphere can be
gained by reducing the electrodynamic problem to a quantum analog. We will take this
approach just as we had in the last school, however here our interest will be to perturb
the sphere, and look for particular consequences of this perturbation.

First let us establish the quantum analog. Resonant modes contain photons with
quantized angular momentum similar to the electron in a Bohr atom. In order to
determine the exact characteristics of these modes one has to solve the Electromagnetic
wave equation for a dielectric sphere. In a dielectric microsphere with no excess charge,
the governing Helmholtz equation is

V2E + k2E = 0. (2)

where E is the electric field, k = con(r)/c is the propagation constant and n(r) is the
refractive index. Inspired by the orbiting images displayed in Figs.l and 2, and the
spherical symmetry associated with the problem, we emphasize the importance of the
angular momentum by constructing the Laplacian using the angular momentum

f2 fl 5 ( r ) L |
operator L = -i(rx V); V = j ~ ~~ I • ^ n - * becomes

d J
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Considering that the angular momentum operator commutes with its square (i.e.
\L , L] = 0), a solution to Eqn 3 can be written down by examination, E = L\y. This is
a so-called TE mode. With this form L can be factored through, leaving Eqn. 3 in the
form

+ k ( 1 0
dr r J

This is a convenient form since it is clear that the vector Helmholtz equation can be
satisfied so long as the scalar equation within the brackets in Eqn. 4 is set to zero;

2 ~ 2 -r*. \iyj —0 . (5a)
or r

Eqn. 5a can be re-written in the form of a Schrodinger equation. First we set

r \|/(r) = v|/r(r) Y, )m (5b)

and use L Ye m - (.{(. + 1)Y£ m , where £ is the angular momentum quantum number

and Ye m is a Spherical Harmonic function with azimuthal quantum number m. Next we

add and subtract ko2 yr from the left in Eqn. 5a. With these modifications Eqn. 4a takes

the form

^ + { k o
2 - [ k ^ ( l - n 2 ) + ^ + l)/r2] }v|/r=0, (6a)

dr

which is clearly identified as a Schrodinger-like equation, in which the effective energy
is ko2 and the effective potential6

Veff (r;ko,n,*)= k « ( l - n2) + £(£ + l)/r2. (6b)

This potential is an important key for constructing a perturbation theory, and we will
return to it often.
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Eqn. 6b describes the behavior of light (trapped photon) inside the dielectric
microsphere. The first term in the effective potential is negative and leads to dielectric
confinement of light, while the second centripetal term is repulsive. The sum of these
two terms generates a potential pocket in which photons can be confined. In Fig 3 we
have plotted the effective potential for i = 23, n =1.41, and k0=105/cm, for a sphere

with radius, a =1.94 jam.

a= 1.942 urn, 1 =23,n= 1.414

r/a

(1-nX2

Fig. 3 The effective potential vs. (r/a) for a photonic mode trapped in a dielectric microsphere.

Solutions for \\i2 at particular values of the effective energy ko2 show a substantial
buildup of intensity, as seen in Fig.3. These solutions can be stimulated to "resonate"
using an external source (i.e. plane wave or evanescent field), and their form conveys a
great deal of physical information.

By transforming the independent variable in Eqn 6a from radius r to the product
of free space wave vector ko times r, we create an convenient "dimensionless length",
which at the surface is known as optical size X; X = koa. For a given refractive index n,
the optical size alone identifies the "dimensionless frequency" of a resonance (i.e. as
the size changes, the optical size remains constant). If a particle were to grow in size by
a small increment 5a of identical material, then the free-space frequency of a given
resonance must shrink in the same proportion, i.e. 5ko/ko= - 8a/a, consistent with Eqn.l.
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The first two modes plotted above correspond to the lowest order and next higher
order resonance with optical sizes, (ko,i a) = 19.42 and (ko,2 a) = 23.46. Note that
photons in these states are not strictly confined by "classical turning points". The
photon can extend into "classically forbidden regions" where the effective energy is
lower than the effective potential. Most notably, the probability of locating a photon
just outside the particle decays exponentially. This is the region of the so-called
"evanescent field" which will be described in more detail in Sec. 4. This field is
responsible for the interaction with macromolecules just outside the sphere, and is
essential for coupling energy into the sphere from a guided wave.

4. Experimental Insights which grow out of the Fig.3

The evanescence demonstrated in each of the resonant solutions in Fig.3 allows us
to construct a means for coupling energy into a photonic atom mode of a microsphere.
Once again we can learn from quantum mechanics. The electronic wavefunction of a
metal decays exponentially just outside at its surface. When two metals are brought
close to each other these exponential tails overlap leading to transfer of electrons
between the metals due to tunneling. From a photonic standpoint we can affect the
same sort of tunneling by overlapping the evanescent tails between confining dielectric
structures. A one-dimensional structure for confinement is an optical fiber. If the core
of such a fiber is brought close to a microsphere at the correct frequency then the
situation illustrated in Fig.4 can occur.

The diminishing amplitude of the guided wave as it passes the microsphere is a
consequence of energy loss in the sphere. Actually the system is an interferometer.
Tunneling into the fiber is accompanied by a 90° phase shift relative to the wave which
proceeds down the fiber. When the light tunnels back into the fiber after many
circumnavigations of the microsphere it is subject to an additional 90° phase shift. So
the wave arriving back from the fiber at resonance is 180° out of phase with the wave
travelling down the fiber. This leads to a spectral dip in the forward going energy
(Fig.5).
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Fig.4 Illustration of coupling of optical energy between a guided wave in an optical fiber and a
Photonic Atom mode in a microsphere. The vector r, points to a small nano-perturbation.

(b)

50MHz

1GH2

Frequency

Fig.5 The transmitted light shows a dip corresponding to a Photonic Atom resonance.7

A perturbation at the microsphere surface may be expected to lead to a change in
the spectral dip (i.e. spectral position or linewidth). The frequency shift of the dip may
be expected based on our heuristic model (Eqn.l). This shift will be the basis for
transducing the adsorption of bio-molecules. If the surface is conditioned with specific
biological recognition elements, the frequency shift can inform us as to the existence of
particular bio-molecular interactions (e.g. antibody molecules for antibody-antigen
detection, or single stranded DNA for DNA detection through hybridization). Before
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presenting experiments, we will estimate the shift from perturbation theory.

5. First Order Perturbation Theory: Spherically Symmetric Layer

Before proceeding we remind the reader of our Quantum analog

dr

This Equation has the usual Schrodinger form, with various analogs listed below;

(6a)

Energy

Potential

Schrodinger

E

V

Analog

E eff = ko

Veff=ko2(l-n2)+ £(£+l)/r2

Table. 1 Quantum Analogs

Adding a nanoscopic layer to the surface leads to a perturbation in the potential,

oVeff=5[k0
2(l-n2)]. (7)

This perturbation will lead to a first order energy shift 8E eff- The standard result from

quantum mechanics is that the first order perturbation in the energy of a quantum level

is

(8)
¥,\ Vr

where Veff is the perturbation of the potential. Using our analogs from Table 1

transforms Eqn.8 to
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< WAV, >

The change in the square of the refractive index square is 8(n ) = n ^ - n m , where

n^ and nm are the refractive indices of the layer and medium respectively. Furthermore

having in mind that the energy ko2 will not be constant, we expand Eqn. 9 to;

5 ( k o ) * < v | / r | i | / r > = 8 ( k > < i | / r | v j / r > +

<i|/ r | - k 2 (n 2 -n2j| \\ir > + < \|/r | -2ko8konI
21 y r >,

which reduces to

< ^ r | - k 2 ( n 2 -nm)\y/t >+< ^ r | - 2 k 0 ^ 0 n 2 | y,t >= 0. (11)

Expressing Eqn. 11 in terms of integrals;

J 2 ^ k 0 k J 2 d v = 0. (12)
layer all space

With the first integral only taken over a nanoscopic layer on a 100 \im radius sphere,
and using continuity for the wave function at the surface

^ ^ f . k f . (13)
layer

In addition with 94% of the square of the wavefunction within the sphere,8 the second
integral can be reasonably taken over just the interior volume.

on2s J - d r W \y/T{rf (2ko)<Skon
2.

all space 0

(14)

Therefore according to Eqn. 12, 13 and 14, the fractional shift in frequency
.8& 5k0
( — = — a ), will be

0) kn
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The volume integral in the denominator of Eqn. 15 can be related to the surface value of
the square of the spherical Bessel function in the limit in which the wavelength is much
smaller than the microsphere radius,9

(16)

Substituting Eqn. 16 in the denominator of Eqn. 15 gives a differential shift due to
accretion of a layer on the surface, where 8™ is the relative permittivity of the
surrounding medium (e.g. water).

8 c o 8 X ( s r , - s r m ) t (n?-i£) t
© X (eri-srm) a (nj- i£) a'

In Eqn. 17 we have presented the 1st order shift in terms of refractive indices and

relative permittivities (i.e. n2 = er ). Eqn. 17 agrees with Eqn.l when ne = ns, as

anticipated heuristically, and is consistent with the shift obtained through detailed
electromagnetic theory for a layer on a microparticle in vacuum.10

One can think of the perturbation problem in terms of molecular properties by
imagining the layer to be carved up into a jigsaw pattern. Of course there are few
identical shapes that could fit into such a pattern (in a monolayer) without leaving
voids. However we will assume that the molecular layer is voidless and return to the
question of voids in discussing experimental results in a later section. We will call this
model the Voidless Tile Model. It turns out that Eqn. 17 is easily transformed by
introducing two new parameters: the tile excess polarizability aex (excluding
depolarization effects), and the surface density of tiles a. By using the constitutive
equation eE = e0E + P, and applying it to two situations: tile present and tile absent, we
arrive at the following expression for the permittivity difference times thickness in the
numerator of Eqn. 17,

r ' "
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where pex is the excess dipole moment for a tile, and v, is the tile volume. Using the
expression at furthest right in Eqn.18 we obtain

X eo(n*-r£)a
This equation is perfectly correct for a voidless layer which is considerably thinner than
the evanescent field depth. However, it is approximately true also for a dilute layer so
long as it is uniformly distributed and one can neglect local field effects (i.e.
depolarization effects which are always present for partially isolated nanoparticles). It
turns out that it is a good approximation for a dilute layer of particles considerably
smaller in size than the microsphere (< 50 nm on a microsphere lOOum in radius).
Under these circumstances the shift will be proportional to the surface concentration as
indicated.

Finally we are interested in the possibility for single protein detection. Single
protein detection would be possible by looking at steps in the change of 67JX with time,
and this in turn provides a possible means for separately measuring aex. Since the light
within a WGM circumnavigates the equator (0= TI/2) in an orbit which is confined to a
thin ring, molecules at polar angles outside the ring cannot influence the mode
frequency. The greatest signal comes from molecules which stick at 6 = TI/2. For a TE
mode which circulates at the equator t = m, and the angular intensity is proportional to

|LYM| , which for large t is proportional to |YM| ." So the ratio of the frequency shift

for a protein at the equator to that averaged over random positions on the surface is

enhanced by a factor EF = 47t|YM(7i/2,(p)| . This spatial enhancement EF can be

significant. For the average size microparticle anticipated (a ~ 100(im) , I - 1000 and

EF s 36. To obtain the average shift for an individual protein at a random position, we

set the surface density in Eqn. 19 to a = l/(4nR2) with the result

(5\/\)T = ccex /[4rao(ns - nm )R ]. The shift due to a single protein at the equator

is (8A./X.)e = EFx (6X1 X)r, or

v20)
so(ns - n m )a3

The first test of all of this theory requires attaching biological nanoparticles to the
microsphere and tracking dips in resonances.
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6. Experimental Setup

To carry out our perturbation experiments it is necessary to construct a situation
similar to the concept in Figs.4 and 5. This requires forming a microsphere and an
eroded optical fiber, and touching one against the other while measuring the excitation
spectrum of the transmitted light through the fiber. The entire system will be immersed
in a buffer solution (pH = 7.4) where protein molecules can fold into there natural
biological shape. In what follows we will briefly describe the microsphere and fiber
fabrication, the sample cell, and our means for taking high resolution spectra of the
microsphere.

To fabricate a microsphere one can simply cut a small portion of the single mode
fiber (about 10 cm) and then melt the stripped end of the fiber by exposing it to the
butane/nitrous oxide microtorch flame (Microflame, Inc.), while rotating the fiber. As
the fiber rotates the melting silica will form into a spheroidal shape under the force of
surface tension. A spheroid manufactured in this form can have a radius as small as 70
urn. Such a microspheroid is shown in Fig.6b. The excitation fiber is led from the laser
source to the detector and held in place while a 1 cm section is eroded using 25% HF
acid. The erosion is terminated when this local portion of the fiber reaches 4 urn in
diameter. The fiber can be seen in Fig.6b as what appears to be a narrow vertical line in
contact with the microspheroid.

The sample cell shown in Fig.6a is used to contain 1 mL of aqueous buffer
solution between the two glass slides (top and bottom) by means of surface tension. It is
assembled around the the etched portion of the fiber. Two silicone rubbers are placed
on each side of the lower glass slide, and the stem of a surface modified microsphere
(note: the preparation of the surface will be described) is held between silicone strips on
the right side as illustrated in Fig.6a. The opossite side of the cell holds a thermocouple
in the same fashion.

The light source has stringent requirements. It must operate at a single frequency
with a linewidth smaller than that of a microsphere resonance, and it must be tunable.
At first these requirement may seem simple enough until one looks at the specifics. The
linewidths of the resonances which are to be interrogated may be as small as
0.0000 lnm, hardly a width that can resolve with a source consisting of an arc lamp
followed by a grating monochromator. For such a source a linewidth below 0.0lnm
would be challenging to produce. Fortunately the telecommunication community has
produced small semiconductor laser with linewidths in line with our needs.12 However
simple heterojunction lasers cannot be tuned without mode hopping, which is
unacceptable. To remedy this situation a Bragg grating is imprinted within the laser and
resulting device is
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Fig.6 (a) Experimental setup. Optical resonances of a spheroidal glass microparticle are excited
by coupling the spheroid evanescently to an eroded single mode optical fiber, (b) Picture of the
spheroid coupled to the eroded part of the optical fiber, (c) Resonances dips vs. wavelength.

termed a Distributed Feedback Laser (DFB). The DFB can be easily tuned by changing
the drive current or the temperature. For our purposes the temperature was held
constant in order to avoid time delays in tuning. The current tuning coefficient, which is
~0.01nm/mA is sufficient to locate a resonance in a slightly spheroidal glass
microstnictures with a radius of a couple of hundred micrometers. Since our research is
highly dependent on precise knowledge of the tuning coefficient, measurements
independent from the specifications provided by the manufacturer were needed. These
measurements were obtained using a scanning Michelson Interferometer.

Fig. 6c shows a typical spectrum of the microsphere while immersed in the buffer
solution. Note that the entire sweep of the laser is only -0.2 nm, but the resonance lines
are considerably narrower (Q ~ 106). Also note that one of the dips in transmission
subtracts 70% from the incident light.
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7. Experimental Results

To test our perturbation theory we have chosen to use protein molecules.
Typically they are a few nanometers in size. An example of an abundantly available
protein is Human Serum Albumin (HSA). In fact, it is the most abundant protein in our
blood. The bovine form of the protein (BSA) is available in high purity, and has a
known crystal structure13. The surface of our microsphere must be treated in order to
make the protein "stick".

In our buffer solution BSA carries a negative charge. To promote adsorption to
the microsphere the sphere's surface is modified so as to give it a positive charge. To
give the microsphere surface a positive charge it is treated with a solution 3-
aminopropyltrimethoxysilane. This compound reacts with the surface and self
assembles a "rug" of amine groups (NH 2 ,Fig. 7).

MsO
/ / \ '

Fig. 7 Chemical action of the silane coupling agent.

The amine groups acquire a positive charge in the buffer solution. So BSA sticks
readily to this amine "rug".

BSA is added to the sample cell by injecting a 10 uL of a BSA buffer solution
into the sample cell. The expectation for our first experiment was an increase in the
wavelength of a resonance. Fig.8a shows that the effect initially went in the opposite
direction.
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Fig.8 BSA adsorption measurements, (a) shows the shift of the microsphere resonance
in real time, (b) adsorption isotherm.

Turns out that the student had retrieved the solution from a cooler so that the overall
solution got a bit cooler upon injection, and the microsphere shrunk by a few tenths of a
nanometer. This was evidenced by the slight drop in temperature recorded by the
thermocouple (lower plot in Fig. 8a). With a little time for equilibrium to be re-
established the negative wavelength shift began to recover and the experiment recorded
an overall positive shift in wavelength of 0.02 nm. The BSA had adsorbed. The lower
plot shows an isotherm for the process. Basically different concentrations of BSA were
injected. The threshold for seeing a change was unprecedentedly small for unlabelled
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adsorption (<1 nM). Although the experiment in Fig.8a was carried out for a solution
concentration of 2uM. Fig.8b clearly shows that the adsorption process saturated above
~20nM. The shape reflected here is called a Langmuir isotherm. Where it flattens there
is 100% coverage. That does not mean there are no voids, however before dealing with
this question we want to show the dependence of the saturation shift on the radius of the
microsphere.

Our theoretical results for for the fractional shift in wavelength at saturation
(Eqns. 17 and 19) show a distinct inverse size dependence on microsphere radius. Fig.9
displays the measured size dependence.

10 12

1/a(mrrT1)

Fig.9 The dependence of the shift in resonance frequency on microsphere curvature.

The theory in this respect is clearly borne out. Furthermore, the slope of the plot ( 3.6
nm) can be compared directly with theory. From Eqn. 17 the slope is just the fractional
shift times the microsphere radius, or more precisely

CD (Sn.-Srm)
(21)

If the permitivity of the layer were the same as that of silica, then the slope would be
the thickness of the layer. In fact the permitivity of protein is known to be slightly
larger than silica. So the thickness of the layer may be expected to be less than 3.6 nm.
Since BSA is known from x-ray crystallography to be a thick heart shaped pancake
with a dimension in the plane of ~6 nm and a thickness between 3, and 4 nm our
measurement leads us to the conclusion that the largest area of the molecule is against
the surface of the silica. This configuration should minimize the coulombic energy
between the positively charged amine rug and the negatively charged protein. This
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conclusion is in agreement with recent neutron reflection experiments which also show
that BSA flattens to a 3 nm thickness due to the coulombic tug of the surface.14

Based on our existing data and the neutron reflection results we can take our
analysis one further step. Since we expect voids to exist, and the wavelength is
considerably larger than a molecule, we will express the permitivity of the layer in
terms of a mean field approximation.

srf=fpsrp+a-fp)erm. (22)

where fp is the fractional volume of protein in a layer of thickness t. Joining Eqn.22
with Eqn.21,

Slope in Fig.9 = - a — = ̂  " £ r J t . (23)
«> ( 6 e )

A protein molecule contains a polypeptide chain which includes 21 different amino
acids. Because of this statistical mix of similar components, the refractive index from
one protein molecule to the next is basically the same, np & 1.50.15 Water and silica
have refractive indices which are well known and equal to 1.33 and 1.46, respectively.
Using our measured slope (3.6 nm), a thickness of BSA from neutron reflectance (3.0
nm) along with the aforemention refractive indices, fp is found to be 0.90. This means
that the void fraction is about 10%. Thus BSA forms an extremely compact monolayer.
More compact than hexagonal close packed spheres in 2D.

Our results on BSA and on five other proteins agree with our perturbation model.
This perturbation model enables us to extract slopes for variety of other proteins with
molecular weights differing by orders of magnitude. We have discovered that the
coulombic interactions between protein molecules and the amine groups drive the
adsorption of molecules in a particular way, such that proteins deform in a similar
aspect ratio (thickness divided by the square root of surface area occupied by protein)
upon adsorption.16 It appears that the Photonic Atom adsorption sensor is an extremely
sensitive realtime probe to nanoscopic layers. However, this lesson thus far has only
scratched the surface.

The Photonic Atom sensor also acts as a biosensor. It can be used to identify the
adsorbing molecule. It is important to note here that the means for doing this is not
through conventional spectroscopy. Although chemists and physicists have
traditionally learned to identify atoms and molecules by optical spectroscopy
(absorption, fluorescents, etc.), there is not light deep in our cells. Yet our cells
recognize tens of thousands of different proteins well enough to enable us to function.
Much of this recognition is through shape complimentarity aided by sticky physio-
chemical interactions. For example in a sensitized person, the allergic reaction to
certain toxic proteins on the surface of pollen grain, causes a specific antibody to engulf
the invading allergen like a lock covering a key. This highly specific physio-chemical
recognition will not occur with other proteins. Another example is the hybridization
that occurs between complimentary strands of DNA. If we mimic biology, we would
also sense biomolecules through dark interactions. The Photonic Atom Biosensor is
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ideal for this purpose. Simply by attaching a biorecognition element to its surface,
adsorption becomes specific For example, antibody molecules can be attached for the
detection of specific antibody-antigen interactions, or single stranded DNA for DNA
detection through hybridization. This is not "pie in the sky". The experiments have
already been done with the Photonic Atom Biosensor.4'5

There is much more to do. Perturbation theory will not simply stop at first order
for the "light atom", just as it did not stop at first order for the electronic atom. In
addition there is a great deal to be done concerning single molecule detection.
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1. Introduction

In this chapter, we deal with optical properties of quantum dots. These are particles in
which electronic properties are depending on the size of the particles. Such quantum dots
are very small; generally size effects are expected only for particles smaller than about
lOnm.
We will start with explaining the interest in these particles, for didactical reasons. After
having gained the attention of the interested reader this way, we will treat the basic
quantum mechanical properties of electrons (and holes) in these very small particles. We
will describe the properties of a particle in a potential well. In addition, we will briefly
touch upon the quantum mechanical description of atoms, taking the simplest ion, the
hydrogen atom as example. Then we will treat the properties of electrons in an infinite
crystal. Finally we will treat the elementary properties of coupled electrons and holes.
In the next section, we will deal with the quantum mechanical properties of quantum dots,
both in the weak and strong confinement limit
In the last section, the manifestation of quantum confinement in optical absorption and
luminescence will be elucidated.
This contribution ends with a summary and an outlook.
Some of the material presented here has also been presented in [1], which deals with a very
similar topic. In this paper, some recent results are added.

2. Some possible application areas of very small semi-conductor quantum dots

A very prominent feature of quantum dots is the dependence of the optical properties of
quantum dots on the dot size: the optical absorption and the emission spectra depend are
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material emitting in different colours by solely changing particle size. This property gained
much interest, both in industrial and academic research laboratories: dependent on the
particle size distribution, relatively narrow emission bands can be observed, enabling to
tune the emission bands to spectral regions, optimally adapted to the application in contrast
to e.g. line emission generated by rare-earth ions of which the spectral position of the
individual emission lines is more or less fixed.
As quantum dots are much smaller than the wavelength of visible light, at least in principle
non-scattering emitting layers can be made. This can have interesting applications in f.i.
displays, in which scattering induces light loss.
Very small particles also can be used in electroluminescent devices: due to their very small
size, both electrons and holes can be injected into the quantum dots without the need of
long range electrical conductivity in the nano-crystalline material. Radiative recombination
then results in the generation of light.
A schematic example of such a structure is given in fig. 1.

(PPV/PMA)

(PPV/SPS)

Nanocrystals

Organic HTL

ITO anode

Glass slide

hv hv

Figure 1: Sketch of an electroluminescent cell based in which emitting nano-crystals are used. The organic layers
are applied by layer-by-layer sequential absorption.

Al serves as cathode, ITO as anode and there are two hole-transporting layers, to optimise
charge injection into the nano-particles. In this particular structure, the nano-crystal layer
itself also serves as electron transporting layer. PPV is the abbreviation for
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polyphenylenevinylene, PMA means polymethacrylic acid and SPS is short for sulfonated
polystyrene. Glass is used as material carrying the electroluminescent structure. The
injection efficiency is dependent on the size of the nano-particles as the position of the first
excited state and the ground state of the small particles, relative the valence band and
conduction band of the electron transport layer varies as a function of the size of the nano-
particles.
As the excitation voltages can be very low (typically less than 10 V), the energy efficiency
of such electroluminescent cells can be very high.
The normalised electroluminescence and photoluminescence spectra of CdSe nano-
particles as a function of the particle size are given in fig. 2. We observe a clear
dependence of the emission wavelength on particle size. The emission in the green part of
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Figure 2: Normalised electroluminescence (and photoluminescence) of CdSe nanoparticles as a function of the
particle size.
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the spectrum is originating from the hole-transporting layer (PPV in this case). For smaller
particles, no EL is observed due to complete quenching of the emission at the surface. The
onset value for EL is about 3 - 3.5 V, in principle enabling an energy efficiency larger than
50%. The external quantum efficiency (photons per electron) typically is 0.1%, however.

Apart from the intrinsic efficiency of the quantum dots and the quality of the interface,
which determines the voltage needed to generate luminescence, the efficiency of EL
devices is also determined by outcoupling efficiencies. In addition, the lifetime of such a
device is important for practical applications.
As an alternative, quantum dots can be incorporated in e.g. an organic electroluminescent
layer. Energy transfer of excitons in the organic electroluminescent layer to the quantum
dots on the one hand likely stabilises the organic material and on the other hand generates
an extra degree of freedom to adjust the emission colour.
Nano-particles can also be used in LEDs, f.i. to make white LED lamps based on UV or
blue light emitting LEDs.
In addition, quantum dots can be used to generate efficiently IR emission. In general, this is
not easy using emission generated by ions, as small lattice relaxation already leads to
quenching in case of small energy differences between the ground- and the excited state.
Finally, very small semi-conductor nano-crystals have discrete energy levels, enabling the
possibility to manipulate the electrical conductivity (Coulomb blockade). In this way,
switches can be made with can be manipulated with one electron only.

To judge the applicability of nano-particles in practical devices, it is important to
understand their properties in at least some detail. Therefore, we continue with an
elementary description of the electronic properties of quantum dots.

3. Elementary quantum mechanics

In this section, we describe elementary quantum mechanical treatments describing particles
in a number of different environments. There are many textbooks on this subject. A
recommended one is ref. [2]. For a number of readers, this treatment might be well known;
these are advised to go to the subsequent sections. We start with a description of a particle
in potential well and in the first two examples, the explicit mathematical shape of the
potential well is not taken into account.

3.1. PARTICLE IN A POTENTIAL WELL

For this system, the time independent Schr6dinger equation is given by:

-(h2/2m)d2y/(x)/dx2 + U{x)if/{x) = Ey/{x) (1)



in this equation, m is the mass of the particle, the potential is given by U(x) and E is the
energy of the particle with wave function v|/(x).
First we describe the case of a well with width a and with a potential U(x) = 0 for |x | = <
a/2 and infinite otherwise. The solutions of equation (1) are even and odd types of
expressions (by n, the quantum number, see below):

Vodd = V(2/a) cos (1/ ft W(2mE)x) (2)

for odd expressions and

Veven = V(2/a) sin (l//i.V(2mE)x) (3)

for even expressions

These solution are found for |x| < a/2. Outside this range, \\i(x) = 0. The corresponding
discrete set of energy levels is given by:

En = (7t2frV2ma2)n2 (4)

which means that in this case, the energy levels can be described by only one quantum
number n.

The energy separation between two subsequent levels is given by:

E ^ T T 2 S2(2n+l)/2ma2 (5)

Until now, we have calculated values for the kinetic energy of a particle in potential well.
As the kinetic energy, momentum p and wave number k are related:

E = p2/2m; p=f tk (6)

and therefore:

pn = (TI h I a)n ; k,, = (TC / a) n (7)

we learn that these quantities also take discrete values.
The wave functions vanish at x > a. When a particle exists in the well, the product vj/vy*
must be nonzero somewhere. This excludes n = 0. The minimum energy of a particle is
therefore nonzero and given by:

(8)
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Please note that equation (8) can also be derived (apart from a constant) from the
Heisenberg uncertainty relation.
For potential wells with walls with a finite height, the nature of the solutions obtained are
almost the same, there are, however, a few differences. Above a certain value for the
kinetic energy (Uo, corresponding to the height of the well), the states form a continuum,
which corresponds to continuous motion. In addition, the probability to find a particle
outside the box is larger than zero and the probability increases with increasing n. The
number of states inside the well is given by the following expression:

>7ift(n-l) (9)

for n = 1, this condition always holds and therefore, there is at least one state inside the
well. The number of states within the well corresponds to the value for n for which
equation (9) still holds.
For a particle in a potential well, the dispersion relation (which gives the kinetic energy of
the particle as a function of k) consists of points on a parabola, as the energy increases with
k2. The dispersion relation is given by (equations (6)).

E=/Pk2/2m (10)

Below Uo, again only discrete points are possible, as is the case for any energy level in the
case of a particle in a potential well with infinitely high walls. Above Uo, any value of k is
possible, and the dispersion curve is a continuous curve, quadratically dependent on k.
In fig. 3, the results obtained are summarized.
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*• k

( C )

Figure 3: Energy levels and waveftinctions for: a) particle in a well with infinitely high walls; b) particle in a well
with finite height; c) gives the dispersion curve for a free particle. The dots on this curves are discrete energy
values for a particle in a box and in case of a finite well, above Uo the dispersion curve for a free particle is
obtained.

3.2. PARTICLE IN A SPHERICALLY SYMMETRIC POTENTIAL

In this case, it is convenient to write the Hamiltonian as:

H = -( / i 2 /2m)V2 + U(r) (11)

in which r = V(x2 + y2 + z2). As the system has spherical symmetry, we describe the system
in spherical co-ordinates:

x = r sin9 cos cp; y = r sin0 sin cp and z = r cos <p (12)
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Using these expressions, we rewrite equation (11) as:

H = - ( h 2/2m)(l/ r2) ( d I d r) (r2 d I d r) - (ft ^ m r 2 ) A + U(r) (13)

in which the operator A is given by:

A = l / s i n 9 [ d / d 9 ( s i n 9 dl 5 0 ) + 1 /sinG d2/ 5(p2] (14)

We write the wave function as product of separate functions of r, 9 and cp:

v|/n.i.m (r, 9, q>) = (un,, (r) / r) Ylm (9, cp) (15)

In equation (15), Yim are spherical harmonics and u(r) satisfies:

- (ti 2/2m) d 2u / d r2 + [ U(r) + ( t i 2/2m)(l/ r2) l(l+l)]u(r) = Eu(r) (16)

So, the 3-dimensional problem of equation (13) has now been reduced to a 1-dimensional
one, as far as the energy values are concerned. The state of the system is characterised by
three quantum numbers: n (the principal quantum number), 1 (the orbital number) and m
(the magnetic number).
The orbital number determines the angular momentum L:

L2= h M (1+1), 1 = 0,1,2,3,.... (17)

The magnetic quantum number determines the component of L parallel to the axis of the
magnetic field, usually the z-axis:

Lz= H m, m = 0, ± 1,±2,. . . ±1 (18)

The states with different 1 values are usually denoted as s, p, d, f, states. Every state 1 is
(21+1) fold degenerate, as follows from (18). The parity of the states is given by 1: the
radial part of the wave function is not sensitive to inversion of r and the spherical functions
Yim (9, cp) transform as:

Yt a(e,<p)-»(-l) lYl m(e,q>) (19)

Taking again a potential well with an infinite barrier, as in the previous section, we obtain
for the energy values of this system:

x2
nl (20)
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Where Xni are roots of the spherical Bessel functions with n the number of the root and 1 the
order of the function. For 1=0, equation (16) is equal to equation (1).

When the potential well is finite with potential Uo, equation (20) is a good approximation
only for:

(21)

The right side of this equation simply follows from the Heisenberg uncertainty relation:

ApAx > nil (22)

with Ax = a, it follows for the energy:

AE = Ap2/2m = 7i78ma2 (23)

Only for values of Uo much larger than given by the uncertainty principle, the values of the
energy E^i are determined by the system.
The smallest value for the energy is obtained for the state with 1 = 0 and n= 1. For this case,
the energy E10 is given by:

E,,o= (n2hV 8ma2) (24)

For Uo < (n2h2f 8ma2), no state exists within the well, in contrast to the one-dimensional
problem.
Until now, we have derived our equations without knowing exactly the form of the
potential. Solutions were nevertheless obtained which were found to depend on the system
chosen. For a particle in a one dimensional quantum well, the state of the system can be
described by one quantum number only, for a particle in a spherically symmetric potential,
three quantum numbers are needed. In the next part we will extend our treatment with a
known potential.

3.3. ELECTRON IN A COULOMB POTENTIAL

The Coulomb potential is given by (in all derivations, the quantity \/(4n) has been
omitted):

U(r) = - e2/r (25)

The equation for the radial part of the wave function can be written as:
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[d */ a r2 + e + 2/p - l(l+l)/p2] u(p) = 0 (26)

In this equation, dimensionless arguments for distance and energy are used:

p = r/a» ; e = E/Eo (27)

a,, = ft2/(m0e
2) » 5.29.10'2 nm (m0 being the electron mass) and

Eo=e2/2ao«13.6eV

Equation (26) has as solution:

l + l ) 2 = - l /n2 (28)

The number n = nr + 1 + 1 is the so-called principal quantum number. It has as minimum
value 1. nr determines the number of nodes of the corresponding wave function. For any
value of n, n states exists, which differ in 1 and 1 runs from 0 to (n-1). In addition, for every
1 value (21+1) degenerate states occur, with respect to m = 0, ± 1, ± 2,... ± 1. The total
degeneracy is given by:
n-\

X (21+l) = n2 (29)
/=o

For n=l and 1=0 (ls-state), the wave function has spherical symmetry with a,,
corresponding to the most probable distance (from the centre from which the Coulomb
potential originates) where the electron can be found (Bohr radius in atoms). For E > 0, the
particle has infinite motion with a continuous spectrum.
So far, we have dealt with one-particle problems. The simplest real quantum mechanical
topic that can be treated is that of the hydrogen atom: a particle with a positive charge
(proton, mass Mo) and a particle with a negative charge (electron, mass mo).
The Hamiltonian, describing this system is a two-particle equation and therefore consists of
three terms, one term for each particle and a term describing the interaction between the
particles:

H = -[(7P/2M0)Vp2+(/*2/2m0)Ve
2+e2/|rP-re|] (30)

In this equation, the proton and electron radius vectors are given by rP and re, respectively.

In what follows, we use r for rP - re and R for:

R = (more + Morp)/(mo + Mo) (31)
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For the masses, we write

M = mo + Mo ; u = n^ MJ( m0 + Mo) (32)

We now read equation (30) as:

H = - [(/i2/2M) V R
2 + (&72u) V r

2 + e2/r] (33)

Equation (33) now describes a Hamiltonian of a free particle with mass M and a
Hamiltonian of a particle
with reduced mass u in the potential -e2/r. The first term is that of the centre of mass
motion of the two particle atom which describes continuous motion, the other terms
generate internal states, the energies of which we have derived before:

En = - R y / n 2 f o r E < 0 (34)

in which Ry = ez/2aB and aB = 7i2/ue2 (35)

Ry is the Rydberg constant, which corresponds to the ionisation energy of the lowest state
and aB is the Bohr radius of a hydrogen atom. As derived before, the energy difference
between neighbouring levels decreases with increasing n and for E>0 the motion of the
electron and proton is continuous.
Equation (27) and (35) differ only by u/me. Please note that equation (27) has been derived
for a single particle problem. u/me has, for the hydrogen atom, a value of 0.9995, justifying
that for the hydrogen atom also the single particle equations are used frequently.
Although elementary, the equations derived and the procedures used will accompany us
further. The single particle problem is important for the description of an electron and a
hole in nano particles, whereas the two particle equations are important in the description
of excitons. Moreover, our treatment of the two particle system has shown that, by using
mass renormalisation, using the reduced mass instead of the individual particle masses can
be used to treat the problem as a single particle problem, beit at the cost of differentiation
between centre of mass translational motion and single particle motion in an effective field.

3.4. PARTICLE IN A PERIODIC POTENTIAL

For a particle in a 1-dimensional periodic potential with period a, the potential energy U
satisfies:

U(x) = U(x + a) (36)

This implies for the Schrodinger equation:
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- (h212m)d2y/(x + a)/dx2 + U{x)y/{x + a) = E y/{x + a) (37)

which means that the wave function after a translation over a has the same eigen value E.
This, in turn, means that the eigen functions may differ in a constant coefficient only:

v|/ (x + a) = cy (x) (38)

In view of normalisation:

| c |= l (39)

and therefore:

(40)

This means that the probability to find a particle at an interval Ax near x is the same as near
to (x + a). This leads to the, to be expected, result that the average spatial distribution of
particles possesses the periodic periodicity of the crystal.
After two translations, we obtain:

v|/ (x + am + a^) = cnlcn2vj/ (x) (41)

in which we used: an = na; n = 1, 2, 3,

As

we find:

V (X + a,,, + arf) = \|/ (X + Si., + n 2 ) = Cnl +

equation (42) has as solution:

cn = exp [ika,,] (43)

in which k can adopt all values

The resulting wave functions can be written as:

\y (x) = expfikx] uk (x), with uk (x) = uk (x + an) (44)
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From this equation, we learn that the eigen function of a Hamiltonian with a periodic
potential is a plane wave modulated with a period, which is the same as that of the
potential. Bloch obtained this famous result for the first time and the respective wave
functions are also called 'Bloch functions'.
We now think a bit about the physical meaning of this result. The period of the potential in
real space is a. In reciprocal space, the period is given by 2nl&, as we deduce from e.g.
equation (43). This means that wave numbers k] and k2 differ by a value 27t/na, with n
being any integer number, are equivalent. Taking the minimum energy at k = 0, this means
that all physically relevant k values are contained in equivalent intervals given by e.g.:

- 7t/a < k < 7i/a; it/a < k < 37i/a, etc. (45)

Each of these intervals contains all non-equivalent k values. Such an interval is called
'Brillouin zone'. The dispersion curve differs from the one of a free particle and has
discontinuities at the points:

kn = (7t/a) n, with n = ±1, ±2, ± n (46)

as for these values of k, two standing waves exists with different potential energies. As a
result, forbidden energy levels occur for which no propagating waves exist, leading to
energy gaps, just being the result of the periodic modulation of the potential in the crystal.
If one folds all dispersions curves into the first Brillouin zone, see fig. 4, one obtains the
reduced zone schemes, in which the allowed and forbidden energy zones can be observed
clearly. Please note that k still takes discrete values.
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-2rc/a -n/a 0 n/s. 2n/a
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Figure 4: Dispersion curves for particles in a 1-dimensional periodic potential: a) extended zones; b) reduced
zone; c) gives resulting energy bands

The quantity

(47)

is called quasi momentum. It implies that the quasi momentum is conserved with
which again is a direct consequence of the translational symmetry of the lattice. It differs
from momentum due to the conservation law, which finds its origin in the symmetry of the
lattice.
For the E(k) relation we now formally write:

E = fi2k72m*(k) (48)

Where m*(k) is usually called effective mass. The effective mass generally is not equal to
the rest mass of the particle, due to curvature of the energy bands:

E(k) = Eo + (k-ko)(dE/dk)|k=0 + (49)

Defining Eo = 0 and ko = 0 and looking at the extrema only, which justifies neglecting
terms with order higher than k2, we find:

E(k) = '/2 k
2 (d2E/dk2)|k=0 (50)
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This leads to (with equation (48)):

1/m* = l/ft2(d2E/dk2)|k=0 (51)

This equation strongly resembles the equation for a free particle with mass m as is derived
easily from equation (10).

Again formally, Newton's second law can be applied using the effective mass:

m*a = F (52)

In the vicinity of a minimum point, the effective mass m* is much smaller than the inertial
mass of a particle. In a periodic potential, therefore, a particle can be 'lighter' or 'heavier'
than in free space. It can even have a negative effective mass, dependent on the curvature
of E(k). The difference in momentum does not vanish, but is transferred to the lattice,
adjusting the periodic potential.

4. Electrons in a Crystal

After having treated single particles, we now extend our treatment to a large number of
particles in a crystal, i.e. we are treating a system of interacting electrons in a system with
translation symmetry.

The Hamiltonian for this system is written as:

H= £fi

+'/*]•]£/3 (Ra-Rb) (53)
a*b

In this equation, m is the electron mass and M the mass of the nuclei. R is the radius vector
of the nuclei and r of the electrons. The last three terms in this equation describe interaction
between the electrons, the electrons and the nuclei and between the nuclei, respectively.
As the number of particles is in the order of 10 23/cm3, this equation is not soluble.
Therefore a number of approximations is made.
The first approximation is the adiabatic approximation. This approximation relies on the
fact that the nuclear mass is much larger than the mass of the electrons. The wave function
of the system is then separated into two functions and two Hamiltonians are obtained: one
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for the nuclear system and one for the electronic system. We continue with the electron sub
system only:

We obtain:

^ ^ 5 ] C / E R ^ ( 5 4 )

In this equation, the nuclear co-ordinates are parameters, not variables.

The second approximation is that core and shell electrons are treated differently. This
approximation is justified by the fact that many of the measurable properties of such
systems are determined by the valence electrons only (conductivity, optical properties,
magnetic properties, etc.). The result is that we now treat ionic cores instead of nuclei.

Using this second approximation, we obtain for the interaction between the electrons:

If now we take a mean interaction between the electrons and assume a periodic potential,
equation (55) reduces to the single-particle equation (equation (11)), which we have
already solved. The same kind of solutions is obtained here: we obtain bands, separated by
forbidden gaps.
If the bands are partly filled, the material is expected to show metallic conductivity. In e.g.
materials with partly filled d-bands, this is not observed. This is due to strong interactions
between the d-electrons and here our assumption of a mean interaction is not valid
anymore. Systems with completely filled or empty bands are dielectric materials.
The bands which are at least partly filled at T = OK are called valence bands, the other
bands, at this temperature being empty, are called conduction bands. The energy separation
between the lowest lying empty band and the highest lying, at least partly, filled band is the
energy gap.
When the minimum of the conduction band is observed for the same k value as the
maximum of the valence band the material is a direct gap material, otherwise it is indirect.
Indirect gap materials might even have a negative value for the energy gap.
The dispersion curve E(k) can be rather complicated in real crystals. By no means, the
effective mass can be considered to be constant.
In the next part, we will try to combine the physics derived above with the more intuitive
world of chemistry. Both ways of conceptual thinking have there own difficulties and
possibilities. Most chemists have a rather localised picture and like to think in real space as
chemical reactions take place in real space and are localised. As such, in such of a way of
thinking, delocalisation as described by the expressions we just derived and which
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physicists usually favour, does not play an important role. So we have to look for a way to
combine both worlds. To this end, we first relate the way the bands run, derived from the
properties of the wave functions of the atoms. Then we will derive the so-called density of
states from the Bloch functions, using which we are able to derive a local picture from the
delocalised bands. The interested reader is referred to [3] for a more elaborate treatment of
this issue.
If we look at fig.4, we observe that the energy of the band with the lowest energy increases
when k increases, starting at k=0. For the second band, the opposite situation is observed.
Of course, this result has been derived in the treatment above by first formally deriving the
wave functions of the system and then applying the symmetry rules which follow from the
periodicity of the system. But: can we also intuitively understand the way the bands run?
Yes, there is a way. To this end we look at the bonding character of the delocalised wave
function as a function of k.
We start with considering a delocalised wave function built from atomic s-states. For k= 0,
we find that all atoms contribute to the bonding in the system, as a clearly visible in fig. 5.

Figure 5: Delocalised wave function constructed from atomic s-orbitals at k= 0

Figure 6: Delocalised wave function constructed from atomic s-orbitals at k= ic/a

For k= 7t/a, we find that the resulting wave function is completely antibonding, as sketched
in fig. 6.

So for atomic s-states we expect a dependence of the energy of the Bloch functions as a
function of k as given in fig. 7.



376

t
E

E(k)

7t/a

Figure 7: Energy dependence of Bloch functions constructed from atomic s-orbitals as a function of k. The left
part of the figure shows the band to be formed from single atomic s-orbitals

Now we consider a delocalised wave function constructed from atomic p-functions. For
k=0, we find a complete antibonding wave function, whereas for k = 7i/a, we find that the
resulting wave function has highest bonding character. So we expect the delocalised wave
function to run from highest to lowest energy in increasing k from 0 to rc/a, as sketched in
fig. 8.
It is exactly this behaviour, which has been derived above. Our comparison between the
physicists and the chemist world, however, teaches us more: the bonding character in the
bands changes as a function of their energy, and eventually the top of a band can even have
antibonding character which is often not realised by chemists and physicists and which has
consequences for reactivity. In addition, the folding back of the bands into the first
Brillouin zone gives rise to a difference in symmetry behaviour for the different bands as
some bands go up and some down as a function of k, which as we now understand reflects
the symmetry properties of the atomic orbitals. This should not surprise us, as we learned
already in the first section that application of a potential well results in wave functions with
a difference in symmetry behaviour.
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E(k)

71/a

Figure 8: Energy dependence of Bloch functions constructed from atomic p-orbitals as a function of k

The interested reader might try to obtain the energy dependence of the different d-functions
onk.

Now we try to obtain a localised picture and try to answer the questions where the electrons
are. This implies a transition to real space. The means we use is to calculate the 'density of
states' from the dispersion relation, which follows from the Bloch functions. The density of
states at the energy E (DOS(E)) is simply the number of states we find in an energy interval
dE at E. The DOS(E) is inversely proportional to the slope of E(k) versus k. Graphically,
we can understand the transition from the dispersion relation to the DOS as given in fig. 9.

E
E(k) DOS (E)

7C/a

26

DOS

Figure 9: Dispersion curve and corresponding density of states
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Please recall that the dispersion relation is given by E(k) versus k. The DOS curve counts
the levels and at T = OK for levels below the Fermi energy also the electrons. The DOS
curves plot the distribution of the energy of the levels, which in many cases can clearly
traced back to the atomic or molecular orbitals they originate from. Chemists can draw
DOS plots intuitively, taking electronegativity of the atoms into account. In this way, local
viewpoints (electronegativity, covalency, bonding character but also crystal field
arguments) can be taken into account and used, even if the Bloch functions result in
delocalisation of the electrons over the entire crystal.

5. Density of states in low dimensional structures

In this part, we quantitatively evaluate the density of states as a function of the
dimensionality of the structure. As argued above, the density of states is the number of
states present in a certain energy interval. We first derive the number of states in k-space
and then calculate the DOS function as a function of E.
It follows from the periodic boundary condition that k = 2nn/L. n is an integer and L the
length of the crystal. This means that n is given by kL/(27t). With arbitrary dimensionality
(D), this equation reads:

n = kD (L/2TI)D (56)

The number of states per energy interval (dn/dE) can be written as:

dn/dE = dn/dk. dk/dE (57)

Insertion of (56) leads to:

dn/dE = (L/2TI)D. dDk/dE (5 8)

Assuming free particles, for which the relation between k and E is known (6), we now
write:

dk/dE = m/(/i2k) (59)

After doing some mathematics and normalising by dividing by the volume, we obtain:

DOS(E) = 1/LD . (L/2TI)D m/( h 2k). dkD/dk (60)

For three dimensions, we obtain (the states are in a sphere with radius k):

DOS3 (E) dE= l/47i2.(2m/ h 2fn (E- Eg°) m dE (61)



379

Please note that the number of electron states is twice as large.

The results for two dimensions and one dimension are:

DOS2(E) dE = \l%2. ml ti ME (62)

DOS,(E)dE = l/(2V2n). l/H . mm. (E- Eg°) "1/2dE (63)

Finally in a zero dimensional system, the DOS(E) is described by a set of 8- functions.

The results are summarised in fig. 10.

P(E)
3D

"2D

Energy-

Figure 10: Density of States for 3,2,1 and zero Dimensional Systems
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6. Electrons, holes and excitons

Electrons are particles with charge -e, mass m0 and spin lA. In a crystal only the charge and
the spin remain the same. As we have learned, in a crystal, the effective electron mass is
me* and the quasi momentum is h k,.. Holes have charge +e, spin lA , effective mass mh*
and momentum hkb.
We now treat electrons in the valence band and holes in the conduction band as elementary
excitations. Using the approach derived above, we obtain an approximate solution in terms
of a small number of non-interacting particles. These so-called quasi particles represent
excitations of the system, which consists of real particles. The ground state of the system
contains no electrons in the conduction band and no holes in the valence band. The first
excited state is the state with one electron in the conduction band and one hole in the
valence band. Such a transition can e.g. be induced by photon absorption. On applying
energy and momentum conservation, we obtain:

g Ekin,h (64)

and

/ i k = fcke+/zkh (65)

The momentum of the photons is very small; therefore only so-called vertical transitions
are possible, without a change in momentum. The reverse process is also possible, e.g.
leading to luminescence.
We now extend our treatment to interacting electrons and holes and add an interaction term
to the Hamiltonian. The resulting quasi particle is called exciton and in the framework of
almost free electrons and holes corresponds to the hydrogen atom:

H = - [ ( t m m j V e2 + (fi2/2mh) V h* ]- e2/ S |re - rh|] (66)

Which essentially is the same equation as equation (30), with adaptation of the masses and
insertion of the dielectric constant S of the crystal. We therefore obtain:

aB = e h V (ue2) = £ mj\i . 0.53 A (67)

for the Bohr radius of the electron.

For the reduced mass we obtain:
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H - ' - m V ' + mV 1 (68)

For the Rydberg energy of the system we find:

Ry* = e2/(2s aB) = He4/ (2e2/z2) = a/m,, .1/E2. 13.6 eV (69)

7. Low dimensional structures

In a semi-conducting material, the wavelength electron and holes, or the Bohr radius of an
exciton can be much larger than the lattice constant aL. On decreasing the dimensions of a
structure, we may enter the regime in which at least one of the dimensions is in the same
order of magnitude or even smaller than the wavelength of the electron, hole and the Bohr
radius of the exciton but still larger than aL. In such a structure, the elementary excitations
we discussed above will be quantum confined. The result is a finite motion in the direction
of the confinement axis and infinite in the other direction.
Confinement in one direction results in a quantum well, which we have treated.
Confinement in two directions results in a quantum wire. Confinement in three directions
results in an effectively zero-dimensional system: a quantum dot.
In what follows we will treat the electron and hole states in a nano-crystal. We will discuss
two limiting cases, the weak confinement regime and the strong confinement regime. In
both cases we will assume that we can use the effective mass approximation for the
electrons and the holes. We will derive the energy states and the optical spectra. As is the
case in other branches of spectroscopy, optical selection rules apply. The selection rules
obtained for the nano-crystals will be compared to selection rules known for optical
transitions on ions and in conventional solid-state physics.
We will deal with the nano-crystal adopting a three dimensional quantum well with an
infinite potential and electrons and holes with an isotropic effective mass.

7.1. THE WEAK CONFINEMENT REGIME

Weak confinement occurs when the radius (a) of the nano-particle is a few times larger
than the exciton Bohr radius (aB). In this case, the exciton centre of mass motion is
confined. We can easily derive the energy of the exciton from the results already derived in
the previous chapter. The kinetic energy of the exciton is obtained from the dispersion law
of an exciton in a crystal in which the kinetic energy of the free exciton is replaced by the
solution for a particle in a box:

= Eg - Ry*/n* + (tl V2Ma2) X*ml (70)
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The quantum number n describes the internal exciton states, which originate from the
Coulomb interaction between electron and hole in the exciton. The two additional numbers
m and 1 describes the states connected to the center of mass motion in the presence of the
external barrier. Both sets of numbers have states Is, 2s, 2p, etc.

The lowest state is given by n = 1, m = 1 and 1 = 0. Its energy is given by:

Eisu = Eg -Ry* + n2 h 2/(2Ma2) (71)

which can be written as, using the relations derived above:

Eisi. = Eg -Ry*(l- GI/MXTBIB' a)2) (72)

The last part of the expression gives the blue shift of the first exciton absorption as a
function of the particle size. When a » nR, this shift is small compared to Ry*.
As photons have almost zero angular momentum, optical absorption can only connect
states exciton with 1=0, as the Al = ± 1 part is already included in the optical transition
which connects the p-like valence band states to the s-like conduction band states. This
means that the absorption spectrum is given by equation (70) with xmo, which is ran:

E™, = Eg -Ry*/ n2 + %2 % 2/(2Ma2).m2 (73)

7.2. THE STRONG CONFINEMENT REGIME

In the strong confinement regime, the radius (a) of the nano-crystal is much smaller than
the exciton Bohr radius (aB): a « aB, in this case the confinement also has impact on the
electron and hole states.
In this situation, the zero-point kinetic energy is much larger than the Ry* value. The
electron and the hole do not have bound states corresponding to the hydrogen like exciton.
Therefore, in this physical limit, the electron and hole motion may be treated uncorrelated
and the Coulomb interaction between electron and hole is ignored. Please note that the
Coulomb interaction energy by no means vanishes, its contribution to the ground state
energy is even higher than in the bulk crystal. In the strong coupling limit, the Coulomb
energy of a free electron-hole pair is unequal to zero, but the zero-point kinetic energy is
even much larger.
The energy spectrum of electron and hole are given by, respectively:

Ee
nl = (/i2/2mea

2)x2ni (74)

and

l x2
n, (75)
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Please note that the electron and hole states are described by orbital quantum numbers only
(n and 1), reflecting the description of an uncorrelated electron and hole. Taking the
selection rules into account, in the optical absorption spectra we obtain discrete bands,
peaking at:

Enl = Eg + (^2/2na2)x2
nl (76)

indicating that only optical transitions are allowed between electron and hole states with
the same n and 1 values. Again the electric-dipole selection rule is obeyed, taking the
valence and conduction band character underlying the excitonic transition into account.
Here, there is a clear parallel to atoms. In the strong coupling limit, the optical spectrum is
determined by the number of atoms (via the size of the quantum dot), a beautiful
manifestation of which is given below. An atom has a discrete spectrum, dependent on its
atomic number.
As mentioned above, the electron and the hole in the quantum dot show Coulomb
interaction. The Hamiltonian describing this system is given by:

H = - [(fiV2me) V e
2 + (fi2/2mh) V h

2 ]- e2/ S |re - rh| + U(r) (77)

In which the last term gives the Coulomb interaction between the electron and the hole.
Please note the difference with equation (66). As we have seen above, it is this latter
potential which does not allow us to use to the mass renormalisation. This problem has
been treated by several authors [4-6]. The result for the electron-hole pair in the ground
state is:

Em, = Eg + 7t2 h V(2\ia2) - 1.786e2/ea (78)

The last term describes the Coulomb interaction between electron and hole. The exciton
Rydberg energy is e2/2saB and as a « aB, this means that the Coulomb energy does not
vanish as already stated above. For other optical transitions, the parameter 1.786 has
slightly different values. We now continue with a comparison of experimental results with
the theory derived above.

8. Quantum confinement in action

In this section, we will describe experimental results of optical investigations concentrating
on luminescence. First we will shortly discuss some important techniques for the
preparation on the nano-materials. We will then deal with luminescence properties of
compound quantum dots and of doped nano-materials.
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Quantum confinement studies are done on semi-conductor crystals (in contrast to
insulators) in view of the fact the exciton radii are large in semi-conductors (large dielectric
constants and small effective mass). Quantum confinement studies are done on semi-
conductor crystals typically in the range below 10 nm in size. At larger sizes, no quantum
size effects are observed. This can be understood relatively easily: for a dielectric constant
> 10 and reduced effective masses in the order of 0.01 - 0.1 m0, the exciton radii are in the
order of 1 - 10 nm and their binding energies vary between 0.1 - 10'3 eV, as can be
estimated with equations (67) and (69).
There are many techniques to prepare quantum dots, and all techniques have their own
advantages and disadvantages. Wet chemical precipitation methods are used and in recent
years have resulted in relatively narrow particle size distributions. In these methods, the
starting materials are dissolved in a liquid, reacted and the resulting nano-particles are not
soluble in this liquid. Changing the reaction conditions can vary the size of the particles. In
general, the quantum dots have to be protected from agglomerating with each other or from
uncontrolled growth. This is achieved by capping, e.g. by application of a coating on top of
the quantum dots. Although the particle size distribution obtained can be rather small (+/-
15%), nevertheless the emission spectra of such materials still show broad spectral features.
Sharp spectral features have been obtained by using quantum dots obtained via epitaxial
techniques. There are several different methods; some of them will be discussed:
Growth of islands on a substrate with lattice mismatch (Volmer-Weber)
Growth of a layer, which subsequently forms, islands (Stranski-Krastanow), due to lattice
mismatch.
Self organised growth of quantum dots, as found by Notzel [7]. Using this method,
quantum dot structures can be obtained with both a vertical and a lateral ordening in some
III-V material systems, also exploiting lattice mismatch. It is an interesting feature of this
method that the quantum dots bury themselves in the substrate layer and that one can study
the effect of contact between the individual quantum dots.
Laser ablation techniques are also used. Another interesting technique is the incorporation
of small particles in zeolites.
Luminescence studies require rather perfect materials with a well-defined surface. In
addition, as stated above, the quantum dots should not agglomerate to larger units. This can
be achieved by surface treatments with stabilising agents. Interestingly, size selective
precipitation can also be used to achieve narrower size distributions of the very small
particles, see e.g. [8].
Doped nano-particles, to the best of the authors' knowledge are prepared using wet
chemical techniques only.
In general, the optical absorption spectra are richer than the luminescence spectra. In the
absorption spectra, absorption features reflecting many excited states are observed. The
luminescence spectra discussed here are due to the lowest excited state. Emission from
higher excited states is generally absent, due to a rapid relaxation to the lowest excited
state. In addition, in many case near energy gap emission is observed and emission with a
much larger Stokes Shift, this latter emission generally being due to lattice defects.
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8.1. INFRARED ABSORPTION BY NEGATIVELY CHARGED ZNO QUANTUM
DOTS

Quantum dots can be charged electrically, e.g. by putting between two electrodes, which
are at a different potential. In this way, one or more electrons can be transferred to the nano
particles and consequently their spectroscopy can be studied. In case of ZnO, quite a few
electrons can be stored on the particles, dependent on the size up to virtually 10 electrons.
Optical transitions between conduction band states of the ZnO nano crystals can than be
observed, see [9]. As we have derived before, electron states, belonging to the nano
particles, of s, p, d, etc. character are expected. The wave functions, belonging to these
states are delocalised over the complete quantum dot. Optical transitions between these
conduction band like states are expected, obeying the usual parity selection rule, i.e. s-p, p-
d optical transitions, etc. are allowed.
In fig. 11, the optical absorption, due to transitions between conduction band like states in
ZnO nano particles with a mean diameter of 4.3 nm is given. An experimental complication
is that there is not only a size variation but also an occupancy variation (with electrons) in
the quantum dots. All these factors haven been taken into account. The spectra obtained can
be deconvoluted, and the contribution of each individual peak can be compared to results
of tight binding calculations in terms of spectral position and intensity. The agreement
obtained is quite good; the interested reader is referred to [9].
Fig. 1 la shows the result for quantum dots with a low mean occupation number. This is
also reflected in the spectra: the shoulder at the right hand side is assigned to particles with
one electron, the left part is due to particles with two electrons. A very small portion of the
particles also has one electron in a p state as deduced from the p-d absorption observed.
Larger mean sizes allow a higher number of electrons to be stored on the quantum dots, in
the example given in fig. 12 up to almost 9 electrons. In this way, the relative contributions
of the different transitions to the spectrum can be varied, see fig. 11 and 12. In the larger
quantum dots with higher occupation numbers, even f states are involved in the optical
absorption process.
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Figure 11: Absorption spectra (black lines) and corresponding fits (thin black lines) for ZnO quantum dot thin
films (200 nm) with
mean size 4.3 nm at low and high orbital occupancy. The dip at 3000 cm'1 is due to the electrolyte used (propylene
carbonate).
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Figure 12: Absorption spectra (black lines) and corresponding fits (thin black lines) of for ZnO quantum dot thin
films (200 nm)
with mean size 5.2 nm at low and high orbital occupancy. The sharp spectral features are due to the electrolyte
used (propylene
carbonate).



8.2. PHOTOLUMINESCENCE OF NANO-PARTICLES PREPARED BY WET
CHEMICAL PRECIPITATION

Highly efficient luminescence for InP quantum dots has been reported by Micic et al. [10]
with a relatively high quantum efficiency of up to 60% at 10 K and 30% at 300 K.
Absorption- and emission spectra of HF etched samples (which produces the high quantum
efficiencies) are given in fig. 13. Again we observe a considerable blue shift of the
quantum dot emission with decreasing particle size, as bulk InP has a band gap of 1.35 eV
(corresponding to 918 nm). When the quantum dots are not treated with HF, they also show
an emission in the deep red part of the optical spectrum, with a wavelength larger than 850
nm., after the HF treatment, this emission is virtually gone. This observation again
underlines the importance of surface treatments of nano-particles.
The quantum efficiencies in this material are already rather high and are beginning to
approach the range where they are getting interesting for practical applications.
Mimic et al. have also found energy transfer between InP nano particles of a different size
when they are in close contact (see fig. 14), i.e. in a closed packed film [11]. In accordance
with expectations, energy transfer from smaller particles to larger particles takes place.
Using Forster-Dexter theory, the characteristic radius was found to be 90 A, quite a large
value.

8.3. PHOTOLUMINESCENCE FROM DOPED NANO-CRYSTALS

Apart from emission of the nano-particles itself, it is also interesting to study the
luminescence properties of doped nano-particles. In the beginning of the 90's, there was a
number of publications dealing with ZnS:Mn, claiming highly efficient Mn2+ emission and
a large decrease in decay time of the emission [12]. Already at that time, these findings
were discussed controversially.
Bhargava et al. argued that due to interaction of Mn2+ states with ZnS states, the optically
forbidden transition becomes allowed, this being the reason for the strong decrease in the
emission decay time (about a factor of 105). There are a few points here: the optical
transition on Mn2+ is spin forbidden and in principle parity allowed as the Mn + ion
incorporates on a site without inversion symmetry. In addition, the position of the Mn2+

emission band hardly shifts, as compared to bulk ZnS:Mn, which is hardly understandable
in view of the claimed strong interaction of Mn2+ states with ZnS host lattice states. Finally,
Bhargava et al. only performed decay time measurements in the ns range.
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Figure 13: Absorption and emission spectra of InP particles, treated with HF as a function of the particle size. The
spectra were recorded at 300K.
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Figure 14: Absorption and emission spectra (excited at 500 nm) of InP quantum dots with
Top: two sizes (2.8 and 3.7 nm) in closed packed films and a mixed solution
Middle: 3.7 nm quantum dots only
Bottom: 2.8 nm quantum dots only

These observations struck the attention of many other researchers and this particular
example was even mentioned in a number of textbooks on optical properties on nano-
crystals [2] or on luminescence, mentioning this discovery as one of the most important
ones in this field in this decade [13,14]. But is it true?
The emission spectrum of ZnS:Mn consists of two bands: one at about 420 nm, which is
also observed in undoped ZnS:Mn and one at about 590 nm, which is due to the 4T] -> 6At

transition on Mn2+. Bol et al. [15], have measured the emission spectrum of nanocrystalline
ZnS.Mn as a function of the delay time between the laser pulse and the emission These
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Figure 15: Emission spectra of ZnS:Mn as a function of the delay time and gate width. The delay times and gate
widths applied are: a) ~ 0 and 2 us; b) 3 us and 200 us; c) 0.5 and 1 ms and finally d) the time averaged spectrum.
All spectra were recorded at 300 K.

observations clearly show that there is no combination of a high luminescent efficiency of
Mn2+ coupled to a very short decay time (in the ns range) of the emission on this ion.
measurement. The results are given in fig. 15. As is clearly visible, the fast emission is the
emission centered at 420 nm and the Mn2+ emission is still very slow.
The results obtained by Bol and Meijerink imply that the fast emission, with a decay time
of 20 ns is not due to emission of Mn2+ but due to the emission on the ZnS host, which
extends, beit with low intensity, into the region where Mn2+ shows its orange emission.
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In recent years, also research on nano-particles of commercially used lamp phosphors has
been performed. We shortly discuss LaPO4:Ce,Tb as example [16]. The work concentrated
on absorption on Ce3+ and emission on Tb3+, i.e. on localised states. As such, the optical
transitions studied are not dependent on the particle size. However, the non-radiative
transitions likely are. This system is therefore of particular interest, as energy transfer is
needed to feed the Tb3+ emission. Haase et al. succeeded in obtaining nano-material with
quantum efficiency larger than 60% (sum of Ce- and Tb emission), beit that the relative
Ce3+ contribution is larger than in micro crystalline LaPO4:Ce,Tb. Also here, highly
efficient luminescent materials, consisting of nano-particles, have been obtained.

9. Outlook

Quantum dots likely have a number of applications. An application treated is their use in
luminescent devices. Here major research issues are: narrow particle size distributions,
contacting issues, improving of outcoupling efficiency and improving the lifetime of the
device. In many cases, energy is lost as a consequence on non-radiative energy losses at the
surface of the quantum dots. It has been shown in the literature that application of coatings
sometimes result in an increase of the quantum efficiency of the luminescence.
Once efficiently emitting quantum dots are obtained, they are likely to find application as
emitters in displays and lamps. One of the advantages is that the same compound can be
used to generate more than one colour of light. In addition, when the particle size
distribution is sufficiently well controlled, narrow band emissions can be obtained which
can be chosen optimally adapted to the human eye.
A second application field might be there use in electronic devices, e.g. the use of nano-
crystals in making transistors, f.i. based on the Coulomb blockade. Here the major issues
are the contacting of the nano-particles and the way to structure a device. It seems
unavoidable to make use of self-assembly methods here.
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It is now eight years since the first experimental realization of Bose-
Einstein condensation in a dilute gas, and the study of ultracold atomic
gases is well developed. Bose-Einstein condensation has been achieved for a
number of different atoms, those involved in the first pioneering experiments,
87Rb, 23Na and 7Li, and in addition 85Rb, 1H, 41K, 133Cs and 4He*, helium
atoms in an excited electronic state, the lowest energy electronic spin triplet
state. Bose-Einstein condensation has been realized also for an atom with
two valence electrons, Yb. Atomic Fermi gases have been cooled to well
below the degeneracy temperature, and experiments are underway to detect
the transition to the Bardeen-Cooper-Schrieffer state in which atoms are
paired in much the same way as in a metallic superconductor. Recently,
Bose-Einstein condensation of diatomic molecules of alkali atoms, e.g., 6Li-
6Li, has been achieved.

Experimentally the systems are almost ideal. First there are a number of
different atoms to choose from, with different atomic properties. Second, the
trapping geometry can be varied, thereby enabling one to study, for example,
systems in which certain degrees of freedom are frozen out, and the gases be-
have like lower-dimensional systems. Third, characteristic microscopic length
scales are typically of the same order as the wavelength of visible light and
since the atoms have strong transitions in this wavelength range, they may
be detected optically. Also because of the hyperfine splitting, these methods
are sensitive to the specific hyperfine state of an atom. Fourth, a number of
atoms have Feshbach resonances, which allow one to tune the atomic scat-
tering length, which determines the strength of interatomic interactions, to
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essentially any desired value. A further advantage is that the systems are
tractable theoretically, which has led to a lively interplay between theory and
experiment.

Within the compass of these lectures it is impossible to describe more
than a small fraction of work that has been carried out in the area. Our
philosophy will be to discuss a number of topical subjects in simple physical
terms. There are now textbooks on the basic physics of ultracold gases [1, 2],
as well as a number of review articles [3, 4], and the reader is referred to
these and the original literature for more details.

1 Energy and length scales
To set the scene, we begin with a review of the fundamental energy and
length scales for quantum gases. Densities n are typically in the range 1012

- 1014 cm"3, and therefore spacings rs between atoms are of order n~1//3 ~
10~4 - 10~5 cm, that is 1 - 0.1 fim or ~ lO4ao, where a0 = 4%eoh2/mee

2 is
the Bohr radius. These estimates are appropriate for alkali gases, while for
experiments on hydrogen, the density can be as high as 5 x 1015 cm"3.

Quantum phenomena set in when the de Broglie wavelength A<IB of an
atom becomes comparable to the distance between particles. For Fermi gases,
the Pauli exclusion principle comes into play, and the distribution of atoms
tends towards a filled Fermi sea while, for Bose gases, Bose-Einstein conden-
sation sets in. This occurs when

AdB = — ~ rs, (1.1)

where p is the particle momentum. The particle energy is therefore of order
p2/2m ~ /t2n2//3/m. This implies that effects of quantum degeneracy become
important when particle energies are less than or of the order of

fc2 2 / 3

* , ~ *£-. (1.2)
For a thermal gas, this corresponds to a temperature of order

where A is the mass number of the atom and ni2 is the atom number den-
sity in units of 1012 cm"3. This temperature is of order 0.1 — 1/JK un-
der typical experimental conditions. For Fermi gases, this is the magni-
tude of the Fermi temperature, while for Bose gases it is the temperature
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at which Bose-Einstein condensation first appears. The atomic unit of en-
ergy is me(e

2/4/K€o)2/h2 ~ 27 eV, which corresponds to a temperature of
~ 3 x 105 K, so these temperatures are minuscule on the scale of typical
atomic energies.

One cannot use ordinary containers for cold atoms, because atoms will be
lost by collisions with the walls. Instead one uses magnetic and optical traps.
In the case of magnetic traps, one constructs a configuration in which the
magnitude of the magnetic field has a local minimum. Atomic magnetic mo-
ments are of order the Bohr magneton fj,B = eh/(2me) « 5.8 x 10~5 eVT"1,
which in temperature units is ~ 0.67 KT"1. In experimental magnetic traps,
the scale of magnetic fields is commonly of order 0.1 T, so the depths of
traps are of order 0.1 K or less. This indicates the need to cool atoms before
they can be contained by magnetic traps. If one denotes the typical spatial
scale of the magnetic trap by L, the force constant K for the trap is of or-
der IJL-QB/L2. The angular frequency of atomic motions about the minimum
of the magnetic field is therefore of order (K/m)ll2 ~ (n^B/mL2)1/2. The
spatial scale of magnetic traps is about 0.1 m and, using the estimates above
for the magnetic field, one therefore finds frequencies of order 102 Hz. Con-
siderably higher frequencies can be achieved by the use of nanostructures
on chips. The currents that can be sustained are very much lower, but the
characteristic spatial scales of the structures are of order micrometers or less,
and consequently the frequencies, which scale as 1/L, are correspondingly
larger.

To construct an optical trap, one uses a focused laser beam. In an electric
field, the energy of an atom is changed by the Stark effect by an amount

AE = - i a (w)5* (1.4)

where £ is the strength of the electric field, a is the polarizability of the
atom, u) is the angular frequency of the electric field, and the bar denotes an
average over time. It is convenient to introduce the polarizability in atomic
units, which is defined as

- " (1.5)

and the energy shift (1.4) is then given by

AE = -47rogd(w) I ^I21 . (1.6)

The term in the square brackets is the energy density of the electric field,
and therefore the energy shift is equal to the electric field energy in a volume



A-Ka\a.{u>). For an alkali atom at low frequencies, the polarizability in atomic
units is of order 300. The large values are due to the existence of low-lying
resonance lines in their optical spectra. To give some idea of the size of the
magnitude of the polarizability, we recall that for a conducting sphere of ra-
dius R the polarizability is 47re0i?

3. Consequently, as far as the polarizability
is concerned, an alkali atom behaves like a conducting sphere with a volume
~ 103a;j, which is enormous compared with the physical size of an atom. If
we take as an example a laser beam with a power of 50 mW focused to a min-
imum diameter d of ~ 50 jum, the energy shift is AE « 3 x 10~31<5(u;) J or,
in temperature units, 2 x 10~8Q:(U;) K. For frequencies of the laser beam low
compared with that of the resonance lines, the depth of the potential is thus
of order 10 /xK. The frequency of oscillations of an atom transverse to the
direction of the laser beam is therefore ~ (AE/m)1^ /d, which is typically
in the kilohertz range.

The temperatures necessary for producing quantum degenerate gases can-
not be achieved by cryogenic means. In all experiments to date, except those
on hydrogen, the low temperatures were achieved by laser cooling followed
by evaporative cooling. For a discussion of laser cooling, we refer to Ref. [1]
and the monograph [5]. The physical idea behind evaporative cooling is to
remove atoms having an energy greater than the average, thereby lowering
the average energy of the remaining atoms. This has been exploited in tradi-
tional low-temperature physics, where cooling by evaporation of molecules or
atoms from liquid helium, liquid hydrogen and liquid nitrogen has been one
of the standard techniques for more than a century. In the case of trapped
gases, the method was first proposed by Hess [8]. Evaporation can be brought
about by lowering the depth of the potential well containing the atoms. In
magnetic traps, this leads to rates of evaporation which are too slow, so one
generally forces the evaporation by applying radio-frequency radiation which
changes the state of the atom to one for which the trapping potential is less.
In optical traps a steady rate of evaporation is achieved by lowering the depth
of the trap with time.

In evaporative cooling, interactions play an important role since, without
them, cooling would halt as soon as all atoms originally having an energy
sufficient to evaporate had left the trap. Collisions are necessary to repop-
ulate the higher-lying states from which evaporation can occur. We now
investigate typical properties of interactions between atoms. As a simple
model of an atom, one often imagines it to be a billiard-ball like object with
a radius of order a$. This is not a bad picture for phenomena at relatively
high energy, but it is extremely poor for low energy scattering. The reason
is the van der Waals interaction, which for large separations r of the two
atoms varies as — av<}wr~6, where avaw is a coefficient. While this is small
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on the scale of typical atomic energies, it is large compared with the kinetic
energy of atoms at microkelvin temperatures. A convenient measure of the
strength of two-body interactions is the scattering length a, which is the only
parameter needed to characterize low-energy scattering. In the limit of zero
relative energy, the wave function for the relative motion of a pair of atoms
is given by

* = 1 - ; , (1-7)

where the first term represents the initial wave and the second term represents
a spherical scattered wave. For particles that behave as hard spheres, a would
be the diameter of the sphere. The scattering length gives the strength of
the scattered wave, and it may be determined by solving the Schrodinger
equation for the relative motion of two atoms at zero energy. Let us consider
the Schrodinger equation for zero energy for a potential of the van der Waals
form. The two terms in the equation are the kinetic energy and the van der
Waals potential. One may estimate a characteristic length scale ro of the
zero energy wave function by equating these two contributions. The kinetic
energy term is of order tf [mr\ and the magnitude of the van der Waals
interaction is of order a:v<}wAo- Equating these two energies one finds

1 / 4
 n sx

\w) • (L8)

It is convenient to express quantities in atomic units. The atomic unit
of mass is the electron mass me and that of length is the Bohr radius
ao = 47reo/i2/mee

2. The van der Waals coefficient has the dimensions of
an energy times the sixth power of a length, so the unit is e2a\/AneQ and one
conventionally writes avaw = Cee2al/4ireo. It follows from Eq. (1.8) that

\me J

1/4
a0. (1.9)

For alkali atoms in the ground state, the coefficients C§ are large, and lie in
the range 103-104. The reason for these large values, like the large values of
the polarizabilities, can be traced to the existence in these atoms of strong
resonance lines in the optical part of the spectrum, as explained in Ref. [1,
p.106]. It therefore follows that for alkali atoms, the magnitude of scattering
lengths is of order lOOao- This result is remarkable, since it indicates that, at
low energies, alkali atoms behave as though they had linear sizes two orders
of magnitude larger than the size of the atomic core. The actual value of
the scattering length depends on properties of the interaction potential at
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short distances, where it is no longer given by the van der Waals form, and it
can have values ranging from +00 to —00. However, the estimate (1.9) sets
the typical scale of scattering lengths. That elastic cross sections are large,
typically of order 4?ra2 ~ 105Oo, is important for ensuring that evaporation
can take place sufficiently rapidly.

Another relevant energy scale is the spacing of vibrational states of molecules.
This is given by the typical scale of the kinetic and interaction energies for r ~
r0> that is tf/mr2 = avdW/r* = (h2/mf'2/a^2

w, which is (me/m)3/2C^/2

in atomic units. This is typically of order 100 /xK in temperature units, and
therefore at temperatures of order 1 (xK or less, it is generally not important
to take into account energy dependence of atomic scattering amplitudes.

The original motivation for investigating dilute atomic gases was to find
quantum systems which were tractable theoretically. The criterion for inter-
action effects to be small is that the magnitude of the scattering length be
small compared with the separation between particles:

|a| < rs. (1.10)

This condition ensures that the most important collision processes in the gas
are binary collisions, i. e. when atoms collide, the process may be regarded
as a two-body one, unaffected by other atoms. From the estimates given
above this condition is well satisfied under most conditions. There are, how-
ever, interesting exceptions. By means of Feshbach resonances, which will
be discussed in Section 7.2 it is possible to tune scattering lengths to an ar-
bitrary value, and condition (1.10) can be violated. Under such conditions,
many-body correlations play a crucial role.

2 Bose-Einstein condensation
The phenomenon of Bose-Einstein condensation in an ideal gas was predicted
almost 80 years ago. For a gas in a box, the physics is explained in standard
texts [6]. For a general external potential, the Bose-Einstein distribution
function is

where eu denotes the energy of the single-particle state for the particular
potential under consideration and fi is the chemical potential. The chemical
potential is determined as a function of the total number of particles N and
T by the condition that the total number of particles be equal to the sum of
the occupancies of the individual levels.
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In the ground state of the gas of identical bosons, all particles reside in the
lowest energy state v = 0. This implies that the chemical potential, which
at zero temperature is the energy required to add a particle to the system, is
eo- At nonzero temperature, the distribution function for all excited states
increases. Thus the number of particles in the lowest state must decrease if
the total number of particles is held fixed. The important discovery made by
Einstein was that for a gas in a three-dimensional box, the occupancy of the
lowest state was a nonzero fraction of the total number of particles up to a
temperature ~ Tdeg [7].

Experiments on dilute gases are generally made in traps whose potential
is well approximated by that of an anisotropic harmonic oscillator. One
can estimate the Bose-Einstein transition temperature for a trapped gas by
assuming that the transition occurs when the central density in the trap is
equal to that for Bose-Einstein condensation in a spatially uniform gas, Eq.
(1.3). If for simplicity we assume that the trap is isotropic, V(r) = mu>or2/2,
with r being the distance from the center of the trap, the spatial size R of
the cloud is found from classical arguments using the Boltzmann distribution
to be given by

kBT ~ \mulR2 (2.12)

or

that is of order the thermal velocity of the particle divided by the trap fre-
quency. The central density in the cloud is therefore ~N/R3 ~ N{muillk^T^^f^
at the transition temperature ~ Tdeg. It thus follows from Eq. (1.3) that the
transition temperature is given by

Tdeg
(2.14)

In the first experiments, evidence for Bose-Einstein condensation was
provided by observations of the properties of clouds when released from an
anisotropic trap [9, 10]. Consider first a non-interacting classical gas in a
trap which is switched off at time t = 0. The position of a particle initially
at position r0 and moving with velocity v0 is given at a later time t by

r(t) = ro + vot. (2.15)

Let us further assume that the size of the expanded cloud is large com-
pared with the initial size, in which case one may neglect ro compared with
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vot in Eq. (2.16). On summing over all particles, one finds for the mean
square value of the ith component of the position the expression

^vvfot2, (2-16)

where the bar here denotes an average over all particles. For a classical gas,
the mean square velocity of a particle in a given direction is independent of
position, and therefore the cloud becomes spherical when it has expanded to
much more than its original size. For a quantum mechanical particle in the
ground state of an anisotropic harmonic oscillator,

V(r) = i m ( a ^ 2 + a,2
2y2 + o,3V), (2.17)

where u)i is the angular frequency of classical motion in the ith direction, the
ground state wave function is

where the length

« ' = ( — y 2 (2-19)
\muij

sets the spatial scale of the wave function. In the directions in which the
cloud is tightly confined, the typical particle momenta are larger, by virtue
of the Heisenberg uncertainty principle, so on release the cloud will expand
more rapidly in the directions in which it was more tightly confined initially.
The wave function in the momentum representation is given by

^ ^ U ) ^ ^ ^ 6 ^ ^ ' (2-20)
where

Ci = — = JmhoJi. (2.21)

The mean square velocity in the ith direction is

i = ^i = (j_Y ( 2 2 2 )
1 4m \2mai) V '
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in agreement with the uncertainty principle. When the trap is switched off
and the cloud is allowed to expand to a size much greater than its original
one, the mean square size of the cloud is thus given by an equation analogous
to Eq. (2.16), except that the mean square velocity is given by the quantum
mechanical expression (2.22):

^*Wot2- (2-23)

After expansion, the size of the cloud in the ith. direction therefore varies
as u\' and, for an anisotropic trap, the cloud is anisotropic. This is to be
contrasted with the isotropic cloud which is expected for a nondegenerate
gas after release from an anisotropic trap. The experimental observation
of anisotropic expansion provided strong support for the conclusion that a
Bose-Einstein condensate had been produced.

3 Interatomic interactions
The properties of clouds are modified significantly by interatomic interac-
tions. An approach which has been extremely successful in treating such
effects is that of Gross and Pitaevskii, who adopted a mean-field point of
view. The basic idea is to make an ansatz for the many-body wave function
which is a product of single-particle wave functions. This is similar to what
Hartree did for electrons in atoms. For bosons the problem is simpler than
for fermions, since in the fully condensed state, all bosons are in the same
single-particle state, (j>{v), and therefore we may write the wave function of
the iV-particle system as

). (3-24)

The single-particle wave function ^{Ti) is normalized in the usual way,

|2 = 1. (3.25)

This wave function does not contain the correlations produced by the inter-
action when two atoms are close to each other. These effects are taken into
account by using an effective interaction U$5{T — r'), where r and r' are the
positions of the two particles. This approach is similar to what is done in
the shell model for nucleons in atomic nuclei, where an analogous approxi-
mation is made for the wave function, and the nucleon-nucleon interaction,
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which has a rather complicated structure, is replaced by a simpler effective
interaction, for example one of the Skyrme type.

The next task is to relate the effective interaction to the scattering length,
which encapsulates all the information required to characterize scattering at
low energies. The relation is

(3.26)
o

m
To understand this result, let us consider the simpler problem of a single
particle of mass M in a spherical box of radius d. The lowest energy s-wave
state of a particle is of the form

$0(r) = {C/r )sin(7rr/d)> (3.27)

(the spherical Bessel function jc for I = 0), where r is the radial coordinate
and C is a normalization constant, which by explicit calculation may be
shown to be given by

W 2 <3'28>
The factors in the argument of the sine function in Eq. (3.27) have been

chosen so that the wave function vanishes at the surface of the box and is
finite for r -¥ 0. The radial wave number for this state is k = w/d, and the
energy of the state is

l & <329>
Next we consider the case when there is a potential acting near the center of
the box, and which is characterized by a scattering length a. We shall assume
that the range of the potential is small compared with d. In the presence of
the potential, the lowest energy s-wave state which extends over the volume
of the box has the form (C'/r) sin[7r(r — a)/(d — a)] in the region where the
potential may be neglected. Here C is a new normalization constant. The
argument of the sine function is such that the wave function vanishes at the
surface of the box and at r = a, as is required by the condition that the wave
function for low energies vary as 1 — a/r. The wave number of the state is
k = ir/(d — a), and thus for a positive scattering length, the wavelength of
the state is reduced from 2d to 2{d — a). The energy of the state is
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and therefore the energy of the state is changed by an amount

„ „ ftV / I 1 \ ftVa
= E-E0 = —— — - — « ——-. (3.31

2M \d? (d-a)2) Md3

If we think about this problem in terms of effective interactions, the shift
in the energy of the particle due to the potential should be proportional to
the particle density at the origin. For the wave function in the absence of
the potential, |$0(r = 0)|2 = |C|27r2/d2 = 7r/(2d3), and therefore the energy
change may be written as

A t f = = ^ | 4 0 ( r = 0)|2. (3.32)

In general, the change in the energy contains contributions from both the
potential energy and also from the kinetic energy. This is illustrated most
dramatically for a hard-sphere interaction. The change in the potential en-
ergy is then zero, because the wave function always vanishes when the po-
tential is nonzero, and all the energy change is due to changes in the kinetic
energy.

Let us now apply this result to two interacting particles, rather than
a single particle in an external potential. The arguments above may then
be carried out in terms of the relative coordinate of the two particles, by
imagining the relative motion to be confined within a spherical box. One
important difference compared with the case of a single particle in a potential
is that in the Schrodinger equation for the relative motion of two particles the
reduced mass of the pair of particles enters, rather than just the particle mass.
Therefore in the expression for the energy, the mass M must be replaced by
reduced mass, which for two particles of mass m is m/2. Thus the energy of
one particle at point r due to the presence of a second particle is given by
Eq. (3.32), but with M replaced by m/2, and the wave function at the origin
replaced by the wave function of the second particle at point r:

E& = |<A(r)|2. (3.33)
m

The average energy due to interaction of two particles is therefore given by
multiplying the result (3.32) by the probability of finding the first particle at
point r, |</>(r)|2, and integrating over r:

/ | 4 . (3.34)

In the next section we shall apply this result to calculate the energy of a
dilute gas.



406

4 Equilibrium properties of a trapped gas
For a gas so dilute that the typical separation between particles is large
compared with the range of the potential and the scattering length, collisions
between atoms may be regarded as being essentially binary ones, since the
probability of a third atom being close enough to an interacting pair to have
a significant effect on the collision is small. Under these circumstances, the
energy change due to the interaction may be found by multiplying the energy
for a pair of atoms by the number of independent pairs that may be made
with N particles, N(N - l)/2. Thus

f ^ - U 0 1 dv\ct>(r)\4. (4.35)

where

Uo = ^ . (4.36)
m

The energy shift per particle at point r is therefore U0(N - l)|<?i(r)|2 =
n(r)[/o(l —1/iV), where n(r) = N\(f>(r)\2 is the particle density. For a uniform
gas, the energy change due to interactions is therefore given by

(4-37)

when terms of order 1/iV are neglected.
Interparticle interactions influence the properties of a trapped gas when

the shift in energy due to the interaction becomes comparable to or greater
than the spacing between single-particle energy levels in the trap, which
for an isotropic trap is hujosc, where UJOSC is the oscillator frequency. Let
us estimate the effects of interactions by using perturbation theory, starting
from a state in which all particles are in the lowest state of the oscillator. The
density distribution in the lowest state of the oscillator has a spatial extent
~ «osc = (h/mwosc)1/2, and therefore a typical particle density is n ~ N/alsc.
The ratio of the interaction energy to the level spacing is therefore

(4.38)

When Na/aosc is small compared with unity, the effects of interparticle
interactions may be determined from perturbation theory, while if it is large
compared with unity, interactions have a large effect on the trapped cloud.
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In experiments, aosc is typically of order one micrometer, while scattering
lengths are of order 10~2 micrometers. Since typical particle numbers are in
the range 104 - 107, interactions generally have a profound effect.

To understand how large they are, we estimate the radius R of a cloud
of interacting bosons in a harmonic trap. We shall employ a variational
approach, and shall only make order-of-magnitude calculations. For quanti-
tative details we refer to Refs. [11] and [1, Chapter 6]. The total energy of
the cloud may be expressed as the sum of contributions due to the kinetic
energy, the potential due to the trap, and the interactions:

E = EUia + £ t r a p + Eint. (4.39)

From the uncertainty principle, the typical momentum of a particle is of
order h/R, and the kinetic energy E^n for N particles is of order

£ (4-40)
and the energy due to the trapping potential is given by

£trap ~ ymu4ci?2. (4.41)

If particle interactions are neglected, the total energy has a minimum for
R ~ aOsc = (ft/mwosc)1//2, which is consistent with the exact result for the
wave function (2.18) for a particle in a a harmonic trap.

Let us now investigate the effects of interactions. The interaction energy
may be estimated from Eq. (4.35). Since the magnitude of the wave func-
tion is of order 1//23/2, as a consequence of the normalization condition, the
interaction energy is of order N2U0/R

3, which expresses the fact that the
energy per particle is of order £/0 times a typical particle density, N/R3. Let
us now calculate the equilibrium radius by minimizing the total energy. For
a repulsive interaction, the interaction energy, which decreases with increas-
ing R, will increase the equilibrium radius. When the interaction energy
becomes comparable to or greater than the energy of the non-interacting
cloud, the kinetic energy, which varies as 1/R2 plays little role in determin-
ing the equilibrium radius, which may be estimated by minimizing the sum
of the interaction energy and the trap energy. By equating the derivative
with respect to R of the sum to zero, one finds the condition

2£trap = 3£int, (4.42)
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from which one finds that the equilibrium radius is given by

/ Afn \ I/5

R ~ ( — ) aosc. (4.43)

In typical experiments, N is of order 104 - 106, a is of order 10~8 m, and
aosc is of order 10~6 m, so Na/aosc is of order 102 - 104. Consequently, Bose-
Einstein condensed clouds are considerably larger than one would predict for
a non-interacting gas.

An attractive effective interaction decreases the size of the cloud, and for
sufficiently large and negative Na/aosc, the cloud is no longer stable, and will
implode.

To derive a general expression for the equilibrium wave function, it is
convenient to adopt a variational approach. The total energy may be written
in the form (4.39), and for the wave function (3.24), the kinetic energy is given
by

Ekin = ^JdT\V4>(T)\> (4.44)

and the energy due to the trap by

\2. (4.45)

Combining these results with Eq. (4.35) for the interaction energy, one finds

E = N Jdv (^|V0(r) |2 + F(r)|<Kr)|2 + ^ ^ W ( r ) | 4 ) • (4-46)

For some purposes it is convenient to normalize the wave function in a
different way, and introduce the concept of the wave function of the condensed
state,

^ ( r ) = N1/2(/>(v). (4.47)

The density of particles is then given by

n(r) = |^(r)|2, (4.48)

and, with the neglect of terms of order 1/N, the energy of the system may
therefore be written as

= Jdv [^|V^(r)|2 + V{v)\^{v)\2 + ^W(r ) | 4 | . (4.49)
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To find the equilibrium form for V>, we minimize the energy (4.49) with
respect to variations ofip(r) and if>*(r) subject to the condition that the total
number of particles

N = Jdr\i>{r)\2 (4.50)

be constant. The constraint is conveniently taken care of by the method of
Lagrange multipliers. One finds

- ^ V V W + V(rMr) + WWlV(r) = /#(r), (4.51)

where fj,, the Lagrange multiplier, is the chemical potential. This equation
is the time-independent Gross-Pitaevskii equation. It has the form of a
Schrodinger equation in which the potential acting on a particle is the sum
of the external potential V and a non-linear term Uo\ip(r)\2 that takes into
account interactions with the other particles. Note that the eigenvalue is
the chemical potential, the energy required to add a particle to the system,
which for an interacting system is not the same as the average energy per
particle.

For a uniform Bose gas, ip = constant is a solution of the Gross-Pitaevskii
equation, with \x — Uo\ip\2- In the presence of an external potential, it is
generally necessary to solve the equation numerically. However, under many
situations of experimental interest, it is a good first approximation to neglect
the kinetic energy, in which case the Gross-Pitaevskii equation reduces to

[V(r) + C/0|</>(r)|2]V(r) = /#(r) , (4.52)

which is referred to as the Thomas-Fermi approximation since it resembles
the Thomas-Fermi approximation in the theory of electrons in atoms and
solids. The solution of the Thomas-Fermi equation is

n{r) = &(?)]* = fa-V(r))/U0, (4-53)

where the right hand side is positive, while tp — 0 elsewhere. The boundary
of the cloud is therefore given by

V(r) = p. (4.54)

For a harmonic trap, the Thomas-Fermi theory predicts a density profile
having the form of an inverted parabola, rather than the gaussian form found
in the absence of interactions.
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5 Dynamics of condensates
A remarkable property of Bose-Einstein condensates is that they can exhibit
superfluidity. To understand such phenomena, it is necessary to develop a
theory of the dynamics. The natural generalization of equation (4.51) to
time-dependent situations is the time-dependent Gross-Pitaevskii equation,

- (5-55)

The physical content of the equation may be brought out by writing ip — fe%(t>.
Making this substitution in Eq. (5.55), and dividing by et<f>, one finds by
equating the imaginary part of the equation to zero that

£ ( / « (5.56)

This has the form of a continuity equation and it expresses conservation of
particle number, since the particle density is given by

n = / 2 . (5.57)

The quantity

j = -f2V4> (5.58)
m

thus corresponds physically to the particle number current density, and

v = I _ _
n m

is naturally interpreted as the particle velocity. The reason for the continuity
equation having exactly the same form as for non-interacting particles,

^ + V-(nv) = 0, (5.60)

is that the energy of interaction between particles is local and independent
of particle momenta. A second equation is obtained by equating to zero the
real part of Eq. (5.55) after division by e**. This is

f \ ^ , ] . (5.61)
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This is a form of the Josephson relation, which expresses the fact that the
phase of the wave function decreases in time at a rate which is the local
chemical potential divided by h. For a system in an energy eigenstate, the
result follows quite simply if one makes use of the fact that the condensate
wave function corresponds to a matrix element of the boson annihilation
operator, ip(r):

j (5.62)

Since the eigenstates develop in time as exp(—zi^i/ft), the matrix element
varies as exp(—I(EN — EN-\)t/K), from which it follows that

d<f> _ EN - EN-! fi
m ~ h ~ "»• (5"63)

The latter result follows if the states N and N — 1 are ground states, since /i
is the energy required to add a particle to the ground state. In Eq. (5.61), the
first term on the right hand side corresponds to the contribution to \i from
the external potential, the second to the interaction energy evaluated for the
local density, and the third term to the kinetic energy of the condensate. The
final term is due to nonuniformity of the magnitude of the condensate wave
function.

To find the equation of motion for the velocity, given by Eq. (5.59), we
take the gradient of Eq. (5.61), and the resulting equation is

9v 1
m - ^ = - V ( / i + - m v 2 ) , (5.64)

where
* 2

jS = V + nU0 - -=V2y/n. (5.65)
2myn

Apart from the last term in Eq. (5.65), the so-called "quantum pressure
term", Eqs. (5.60) and (5.64) have precisely the same form as for the hydro-
dynamics of a perfect fluid. This remarkable result, which has far-reaching
consequences, is due to the fact that the superfluid may be described by
two variables, the amplitude and the phase of the condensate wave function
(or, equivalently, the particle velocity). In the case of an (ordinary) perfect
fluid, which has many degrees of freedom (corresponding classically to the
positions and velocities of every particle), a simplified description is possible
since it is assumed that collisions are so frequent that the system is in ther-
modynamic equilibrium locally. The fluid may then be described in terms
of the local density, fluid velocity and temperature. The conditions for a
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Bose-Einstein condensate are very different, and the reason for the hydrody-
namic description being possible is that all particles are in the same quantum
state. The hydrodynamic equations for superfiuids and ordinary fluids are
very similar since they follow from the conservation laws for particle number
and momentum.

As an application, we now consider small oscillations of a uniform Bose
gas (V = 0). In equilibrium, the chemical potential is given by /J, = nllo-

Following the standard procedure employed in, e. g. deriving the equa-
tions for sound waves in a classical gas, we linearize the continuity equation
(5.60) and the acceleration equation (5.64) by writing n = neq + 5n and
treating the velocity v and the changes in the other terms in the equations
as small quantities. The result is

- « V . v (5.66)
at

and
m~k = ~v '̂ (5-67)

where 5p,, which is obtained by linearizing (5.65), is given by

SJx = U05n V25n. (5.68)
Amn

To simplify notation, we have written n for neq. Taking the time derivative of
(5.66) and eliminating the velocity by means of (5.67) results in the equation
of motion

m ^ = V • (nVcS/i). (5.69)

We look for travelling wave solutions, proportional to exp(iq • r — iuit). From
Eq. (5.65) the change in ft, is seen to be equal to

o + p£) Sn (5.70)
Amn)

and the equation of motion becomes

mu25n = (nU0q
2 + ~-) 6n. (5.71)

y Am J
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It is convenient to work with the energy of an excitation, eq, rather than the
frequency. Nonvanishing solutions of (5.71) are possible only if the frequency
is given by u = ±eg//l, where

eg = pnU^q + {elf. (5.72)

Here

is the free-particle energy. This spectrum was first derived by Bogoliubov
from microscopic theory in a classic paper [12]. For long wavelengths, the
excitations are sound waves with velocity s given by

s = ^(nUo/m). (5.74)

This is just what one would expect on the basis of hydrodynamics, since
the sound velocity is given by s = J(dP/dp), where P is the pressure and
p = nm is the mass density [13], and for a uniform Bose gas, the energy
density and the pressure are both equal to UQU2/2. For short wavelengths
(q ~^> ms/h), the quantum pressure term dominates, and the leading term
in the energy is the free-particle energy shifted by an amount n£/0 due to
interactions. The length

£ = h/(V2ms) (5.75)

(the factor y/2 is inserted to agree with the usual convention) is referred
to as the healing length. On length scales greater than this, mean field
effects dominate, while on smaller length scales particles behave more like
free particles. The healing length also gives the length scale over which
the condensate wave function in a bulk superfluid responds to a localized
perturbation, such as the container boundary.

Bogoliubov's calculation resolved one of the great puzzles in the theory
of liquid 4He. In 1938, Fritz London suggested that the superfluid prop-
erties of liquid 4He were related to the phenomenon of Bose-Einstein con-
densation [14], and Tisza developed a two-fluid model based on the idea of
Bose-Einstein condensation of an ideal Bose gas [15]. Landau objected to
Tisza's proposal, his argument being in essence that a weak long-wavelength
perturbation of arbitrarily low frequency could remove atoms from the con-
densed state, and thereby lead to friction. On the basis of rather general
considerations, but without invoking explicitly Bose-Einstein condensation,
Landau had argued that the elementary excitations of liquid 4He at long
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wavelengths should be sound waves, and he developed a two-fluid model
based on a spectrum of elementary excitations not of the free-particle form
[16]. Bogoliubov's calculations showed for the first time how in a microscopic
theory, particle interactions could lead to elementary excitations which had a
sound-like dispersion relation at long wavelengths. This feature is due to the
mean field produced by particle interactions, rather than particle collisions,
which make possible a hydrodynamic description of classical gases.

The observation of collective modes of Bose-Einstein condensates in traps
is an important tool for investigating condensate properties. The character-
istic scale of frequencies may be estimated from results for the uniform gas,
since one would expect the fundamental mode of oscillation, corresponding
to a purely radial ("breathing") motion to have a period r roughly equal to
the time for a sound wave to travel across the condensate, i. e. r ~ R/s.
Here s is the sound speed, Eq. (5.74) evaluated at the centre of the cloud,
s ~ (NUo/mR3)1/2, and therefore the frequency of the mode is given in order
of magnitude by UJ ~ (NUo/mR5)1/2, which with the use of Eq. (4.43) is of
order the trap frequency UJ0. Repulsive interactions increase the size of the

cloud (which varies as t/0 )> DUt they also increase the sound velocity by
the same factor. Many different modes have been observed experimentally,
including those corresponding to a motion of the centre of mass of the cloud,
quadrupolar modes, and surface modes. A particularly interesting example
is the so-called scissors mode in an anisotropic trap. Imagine a gas in an
anisotropic trap. If the trap is suddenly rotated by a small angle, a perfect
classical fluid would oscillate like a rigid body about the equilibrium posi-
tion corresponding to the new configuration of the trap. However, as we
shall demonstrate in the next section, a condensate cannot rotate like a rigid
body and, consequently, a condensate will undergo a motion very different
from rigid-body rotation. The observation of this mode provided striking
confirmation of fundamental properties of the dynamics of condensates [19].

6 Potential flow and quantized vortices
The fact that the velocity of the condensate is the gradient of the phase of
the condensate wave function, Eq. (5.59), leads immediately to the conclusion
that

V x v = V x —V<f> = 0, (6.76)
m

provided the phase does not have a singularity at the point in question.
This equation states that the velocity field is irrotational. Consequently, the
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motions possible for a condensate are a very limited subset of those for a
classical fluid. In particular, a condensate cannot rotate like a rigid body:
for rotation with angular velocity fi, the velocity field is given by v = Cl x r,
from which it follows that V x v = 2J7 ^ 0. The requirement of irrotational
flow affects the frequencies of collective modes in condensates, and the good
agreement between calculated and observed frequencies provides support for
the correctness of the condition that the flow be irrotational.

Prom the fact that the condensate wave function is single-valued it follows
that the change A</> in the phase of the wave function must be a multiple of
2TT, or

A<f> = I V<f> • d\ = 2ir£, (6.77)

where £ is an integer. Thus the circulation F around a closed contour is given
by

dl=-2ir£ = £-, (6.78)
mm

which shows that it is quantized in units of h/m. The quantization of cir-
culation was first predicted by Onsager in a footnote to a conference paper
on classical turbulence, and elaborated by him in a comment following one
of the other papers at the same conference [17]. Onsager's profound insight
provided the basis for the study of quantized vorticity in both uncharged
superfluids and superconductors. The initial impact of Onsager's work was
slight, and it was only after its rediscovery by Feynman in the 1950s that
systematic investigations of quantized vortex lines began [18, 20].

The simplest example of quantized vorticity is a single vortex line. Con-
sider a bulk condensate in a uniform external potential, and we assume that
the wave function is independent of the z coordinate. For the condensate
wave function to be single valued, it must vary as e%tip, where <p is the az-
imuthal angle and £ is an integer. If p is the distance from the z axis, it
follows from Eq. (6.78) that the velocity is

vv = £-£—. (6.79)

The circulation is thus £h/m if the contour encloses the axis, and zero other-
wise. If £ 7̂  0, the condensate wave function must vanish on the axis of the
trap, since otherwise the kinetic energy due to the azimuthal motion would
diverge. The structure of the flow pattern is thus that of a vortex line. Under
most circumstances, vortex lines with \£\ ^ 1 are unstable to decay into a
number of vortices with \£\ = 1.
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Much work has been done on quantized vortex lines in Bose-Einstein
condensed gases, and a review may be found in Ref. [21]. We cannot go into
detail here, but will mention some highlights of recent work. Under rotation,
a superfluid can mimic solid-body rotation by means of an array of singly-
quantized vortex lines in which the number per unit area perpendicular to
the rotation axis is equal to 2m£l/h, since this ensures that the average
circulation is 2fi. Experimentally, arrays with some hundreds of vortex lines
have been observed, and the lines are arranged on a regular triangular lattice
[22]. At low rotation rates, the radius of the vortex core is of order the healing
length £, Eq. (5.75), but for fast rotation, vortices can be packed together
so closely that their cores begin to overlap, and the effective core size is of
order the vortex spacing [23]. In this regime, the physics bears similarities
to that of the quantum Hall effect [24]. The investigation of properties of
rapidly rotating condensate is currently an active field of study. Many novel
effects have been seen, including the elastic (Tkachenko) modes of the vortex
lattice [25, 26].

7 Other topics
Finally, we mention briefly some other important areas of current research.

7.1 Cold atoms in periodic potentials
Designing and constructing periodic condensed-matter systems with specific
electronic properties has been one of the important areas of physics over the
past two decades. Similar effects can be achieved for atoms in the periodic
potential produced by a standing-wave light field produced by two oppositely-
directed travelling waves. If one adds together two light waves propagating in
the z direction with electric fields in the x direction given by £Q cos{kz — tot)
and £ocos(—kz — ut), the total electric field is given by

£ = £0[cos{kz — Lot) + cos(—kz — ut)] = 2£0 cos kz cos u>t. (7.80)

When averaged over time, the energy shift of an atom in the electric field,
given by Eq. (1.4), has the form

~KE = -a(u)£% cos2 kz = -]-a(u) £% (I + cos 2k z). (7.81)

The laser beams thus produce a potential acting on the atoms which is sinu-
soidal in space, hence the name "optical lattice". The period of the lattice
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is equal to half that of the light. By superimposing two or three pairs of
laser beams one can make two- and three-dimensional lattices. The origi-
nal suggestion of the possibility of making optical lattices dates from 1968
[27] and the first experimental realization of a lattice was made in 1987 [28].
Since then the field has burgeoned, especially after the production of atomic
Bose-Einstein condensates.

Many experiments have been performed on such systems, and one recent
example is the observation of the transition between a Bose-Einstein con-
densed state (a superfluid) and one in which atoms are localized on individual
sites (an insulator) [29]. This is analogous to the Mott transition for electrons
in solids [30]. To set the scene, let us first consider a spatially-uniform, inter-
acting Bose gas at zero temperature. At low temperature, this will display
superfluid behavior because the wave function of the condensate is coherent
over the whole of the gas. When a three-dimensional optical lattice is applied
to the system, the atoms tend to become more and more localized around
the lattice sites at which the potential has local minima. Eventually, for
sufficiently strong lattice potentials, there will be essentially no transmission
of atoms between different potential wells. When that is the case, there is no
mechanism for locking together the phases of the wave function in different
parts of space, and long-range coherence is lost. The system will behave as
an insulator, since application of a weak external field will have no effect be-
cause tunneling between wells is absent due to the high potential barriers and
the repulsion between atoms on the same site. Note that the insulating state
cannot be described within the Gross-Pitaevskii mean-field approach because
the number of atoms on each lattice site is essentially fixed,, and there is no
phase coherence between different sites. Experimentally, the transition be-
tween the two sorts of states is detected by switching the lattice potential off
and allowing the gas to expand. When it is a superfluid, there is long-range
coherence between atoms on different sites, and one observes an interference
pattern determined by the structure of the lattice. In the insulating state,
there is no coherence between atoms on different sites, and no interference
pattern is seen.

Interparticle interactions can have important effects even when the system
is superfluid [31]. One of these is the appearance of swallow-tail features in
the band structure. For a single particle in a periodic potential, the wave
functions ^(r) of extended states have the general form

<A(r) = /(r)eik-r, (7.82)

where /(r) has the periodicity as the lattice. This result is referred to as
Bloch's theorem, or Floquet's theorem. Also for the Gross-Pitaevskii equa-
tion one can find solutions having the usual Bloch form. As shown for a
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Figure 1: Energy per particle in units of hu versus wave number for the
lowest band for a Bose-Einstein condensate in a periodic potential. The
dotted curve is for nUo/Vo — 0.57, the dashed one for HUO/VQ = 0.78 and
the full line for nU0/V0 = 0.99. The quantity u = (2Vr
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frequency of small oscillations about the minimum of the potential.
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Figure 2: Same as Fig. 1 but for nU0/V0 = 1.2.

one-dimensional lattice in Fig. 1, with increasing interparticle interaction
UQ, the energy spectrum becomes increasingly peaked at k = n/d and, re-
markably, for nUo > Vo the energy per particle becomes triple valued for
k close to n/d [32]. These effects may be shown to be related to periodic
soliton solutions [34, 33]. Yet another effect related to the interparticle in-
teraction is that the Gross-Pitaevskii equation has solutions which have a
periodicity different from that of the lattice. If the particle density is not
the same within each lattice cell, the total potential acting on an atom will
not have the periodicity of the lattice. For a one-dimensional optical lattice,
solutions with periods equal to integer multiples of the spacing of the optical
lattice have been found [35]. So far, these new nonlinear effects have not
been observed directly in experiment.

7.2 Strong correlations
The original motivation for investigating ultracold atomic gases was to study
quantum phenomena and superfluidity under conditions when particle inter-
actions were relatively unimportant, in the sense that the particle spacing rs
is large compared with the magnitude of the scattering length a. In recent
years, increasing attention has been paid to situations where correlations are
strong, that is |a|£rs. The tool employed is what is usually referred to as a



420

Figure 3: Schematic representation of a process in which two atoms combine
to make a molecule, which

Feshbach resonance [36]. The basic idea is that if there is a molecular state
of two atoms close to the energy of two low-energy atoms, the process in
which atoms are scattered to the molecular state with energy Emo\, which
subsequently decays into atoms again, will shift the energy of the atoms. The
process is represented diagramatically in Fig. 2. Quantitatively, the strength
of the induced interaction (or the scattering amplitude T for atom-atom
scattering) may be estimated by second order perturbation theory, and it is

Ties =
 9' , (7.83)

& ft

where g is the strength of the matrix element for coupling low-energy atoms
to the molecular state, and E is the energy of the two atoms. Thus there is
attraction between atoms if the molecular state lies at positive energy and
repulsion if the state is at negative energy, i. e. , it is bound with respect to
two atoms.

In most situations the magnitudes of induced interactions are limited by
the fact that resonances decay, thereby limiting the magnitude of the induced
interaction to ~ g2/F, where F is the width of the molecular state. At the
low energies of importance in experiments with cold atoms, the density of
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two-atom states into which the molecule can decay, which varies as E1/2 is re-
stricted, and widths can be very small. Consequently, large scattering lengths
can be realized and in practice they can be as large as micrometers, two or-
ders of magnitude larger than the typical scale of scattering lengths, Eq.
(1.9), when resonances are absent. An important feature of these resonances
is that, because the magnetic moment of the molecule is generally not equal
to that of two atoms, the energy of the resonance varies with the strength
of the magnetic field. For small values of the departure of the magnetic field
from the value Bo at which the molecule has zero energy (Em0\ = 0), one
may write

Emoi = A(M(B-B0), (7.84)

where A/i is the difference between the magnetic moment of two atoms and
that of the molecule. Consequently, the resonant contribution to the scat-
tering amplitude at zero energy (which is equal to the effective interaction)
is given by

We saw earlier that the scattering length is related to the effective interaction
by the relation C/o = 4nh2a/m. In general, there will be background (non-
resonant) contributions to the scattering length, and we denote these by
Combining these contributions one finds

« = «bg(i--Fr^-). (7-86)

where

abBAB = -?£-. (7.87)
4irh A/i

Equation (7.86) is the standard phenomenological expression used to fit prop-
erties of Feshbach resonances. The relationship between the phenomenologial
parameters and the microscopic ones is given by Eq. (7.87). When there is a
Feshbach resonance close to zero energy, the scattering length may be tuned
to essentially any value, positive or negative.

One application of Feshbach resonances is to produce strongly correlated
Bose gases. Theory predicts that when the scattering length becomes large
compared with the interparticle spacing, the energy per particle should be
of order (h2/m)n2/3 and independent of the scattering length, rather than
the low density result (2nh2/m)na, Eq. (4.37) [37]. A second application is
to create the BCS superfluid state of a mixture of fermions in two different
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internal (usually different hyperfine) states. This state is similar to that of
electrons in conventional superconductors. For strong interactions, transition
temperatures are predicted to be as large as ~ 0.25Tp, where Tp is the
Fermi temperature [38]. Such temperatures can be realized experimentally,
and much effort is being devoted to creating and detecting the superfluid
state. A third application is to form cold molecules by sweeping the magnetic
field through the resonance value, at which Emo\ = 0. This is the method
employed in the recent experiments that realized Bose-Einstein condensation
of molecules [39].

8 Concluding remarks
There are many other topics within the field of atomic quantum gases which
we have not been able to take up here. One is the properties of low-
dimensional systems, which can be created by making traps which are very
tight in some directions. Another area important for quantum information
is the control of atomic wave functions, including phase information. Cold
atomic gases are also being exploited in the development of better frequency
standards. The study of cold atoms has brought together workers in diverse
subfields of physics, including atomic physics, condensed matter physics, nu-
clear physics, nonlinear physics, and quantum optics. The field is developing
rapidly, and it promises to do so in the foreseeable future.
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1. Introduction

A Bose-Einstein condensate (BEC) of a dilute atomic vapor represents
the coldest matter ever produced in a laboratory, or even observed in
the universe. The temperature of the atoms, which we usually associate
with their translational (kinetic) energy can easily be in the nanoKelvin
regime. This is truly an extreme physical condition and the optical
techniques developed to create, probe and manipulate Bose-Einstein
condensates are at the frontiers of optical spectroscopy.

BEC in a dilute atomic vapor requires sufficiently low densities such
that the atoms can be considered as weakly interacting. This in turn
necessitates the attainment of extremely low temperatures such that
the thermal deBroglie wavelength of the atoms is comparable to the
interatomic spacing. To obtain and maintain such extraordinarily low
temperatures required the development of cooling and trapping tech-
niques for neutral atoms. Certainly, the techniques developed by the
spin polarized Hydrogen community especially evaporative cooling, has
been essential in producing Bose-Einstein condensates; however, laser
cooling and trapping of neutral atoms has allowed BEC in dilute gases
to be observed first with alkalis and has contributed greatly to many
of the beautiful experiments with condensates.

These notes are based on three lectures given at the International
School of Atomic and Molecular Spectroscopy at the Ettore Majorana
Center for Scientific Culture in May of 2003. The first two lectures were
a general discussion of the mechanical effects of light and laser cooling
and trapping techniques for neutral atoms. The third lecture describes
experiments with Bose-Einstein condensed sodium atoms at the Na-
tional Institute of Standards and Technology (NIST) in Gaithersburg,
Maryland, and represents a direct application of many of the wonderful
techniques developed for manipulating neutral atoms.

The topics to be covered in the general discussion of the mechani-
cal effects of light, and laser cooling and trapping techniques include:
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radiative forces, both spontaneous and dipole; diffraction of atoms by
optical standing waves; Doppler cooling and the Doppler cooling limit;
deceleration and cooling of atomic beams; optical molasses and the
discovery of sub-Doppler laser cooling; new laser cooling mechanisms,
including polarization gradient and Sisyphus heating; various topics
related to trapping neutral atoms, including magnetic traps, both static
and time-averaged orbiting potentials (TOP); laser dipole traps and
far-off resonant traps (FORTs); radiation pressure traps and the op-
tical Earnshaw theorem; magneto-optical traps (MOTs); mechanisms
limiting the loading of MOTs and techniques to increase the densities,
including dark spot MOTs; and finally, the confinement of atoms in
optical lattices.

These topics have been selected as representing some of the im-
portant developments in the interaction of electromagnetic fields and
atoms which have enabled the creation and manipulation of Bose-
Einstein condensates. More details on these topics, especially as they
are applied to BEC research, can be found in other sets of lecture notes,
special journal articles and review articles [1, 2, 3, 4, 5, 6, 7]

In addition, there are other related topics in the manipulation of
matter by light; atom interferometry, atom holography, and atom optics
in general, which are briefly covered in these notes in the context of
NIST's BEC research, but of greater scientific and technological sig-
nificance. Again, an introduction to these topics as well as detailed
discussions can be found in various lecture notes and review articles [8,
9, 10].

The last section of these notes describes experiments with Bose-
Einstein condensates. After a brief description of the strategy employed
to obtain condensates of sodium atoms in a TOP trap, we discuss
the normal incidence and Bragg diffraction of BEC, observation of
the motion of BEC in the trap, directional output coupling of atoms
from the condensate using stimulated Raman pulses and the demon-
stration of a quasi-continuous atom laser, as well as an interference
experiment to measure the effective coherence length of a BEC. These
matter-wave effects with BEC are analogous to effects observed with
light waves. When the interactions of the atoms are included, however,
effects analogous to those in nonlinear optics such as 4-wave mixing
and the generation of solitons can be observed with matter-waves.
The notes end with a description of such nonlinear matter-wave optics
experiments, which NIST has pioneered.

Before beginning the discussion of the mechanical effect of atom-
light interactions, we define for convenience, some frequently used no-
tation and symbols, with frequencies expressed in radians/second. The
reader is cautioned that other authors may have used other conventions:
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~ ^atom is the detuning of the laser frequency from the
natural resonant frequency of the atom.

F = T~1 is the decay rate of the population in the excited state, the
inverse of the natural lifetime, the linewidth of the transition.

k = 2?r/A is the laser photon wave vector.
fcs is Boltzmann's constant.
Q is the on-resonance Rabi frequency for a laser field, the precession

frequency of the Bloch vector representing the 2-level atom when 6 = 0.
I/IQ = 2O2/r2 is the normalized intensity of the laser.
M is the mass of the atom.
vrec — Kk/M is the recoil velocity of an atom upon emission or

absorption of a single photon.
Erec = Mv$ec/2 = h2k2/2M is the kinetic energy of an atom having

velocity vrec.

2. Radiative forces

Light comes in quantized packets of energy and momentum called pho-
tons. The transfer of energy and momentum between the photon and
an atom through either coherent or incoherent scattering results in a
force exerted on the atom. This is the basis for the mechanical effects
of atom-light interactions. Radiative forces or the mechnical effects of
light are generally divided into two catagories - the scattering force and
the dipole forces.

2.1. THE SCATTERING FORCE

The scattering force, also called the spontaneous force or radiation
pressure, is the force exerted on an atom by the incoherent scattering
of photons. More precisely it is the force on an atom corresponding to
absorption of a photon followed by spontaneous emission. The photon
absorbed transfers hk of momentum to the atom. The spontaneous
emission of the photon is symmetrically distributed and so the mo-
mentum transfer due to spontaneous emission, averaged over many
absorption-emission events, is zero. The average force on a two-level
atom moving with velocity v in a plane wave of wave vector k and
detuning <5 is

£ J / 7 ° CD
1 + I/h + ['

This force is the maximum scattering rate F/2, times the resonance
Lorentzian times the photon momentum, i.e. the rate of absorbing
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photon momentum. The detuning 6 — k • v accounts for the Doppler
shift, and the force is large when \S — k • v| < F. The spontaneous
force is limited by the rate at which spontaneous emissions can occur.
These occur at a rate F for excited atoms, whose maximum fractional
population is 1/2.

For real, multilevel atoms, the situation can be more complicated. A
common occurrence, typical of alkali atoms, is that the ground state is
split by the hyperfine interaction into two states separated in frequency
by many times the optical linewidth F. An atom excited by a laser from
one of these hyperfine levels to an optically excited state may decay by
spontaneous emission to the other hyperfine level. Transitions from
this level are then so far out of resonance that effectively no further
absorption occurs and no force is applied to the atom. While various
schemes involving selection rules and polarization of the light may be
used to avoid this problem of optical pumping, the most straightfor-
ward method is to apply a second laser frequency, tuned to resonance
between the "wrong" hyperfine state and the optically excited state.
This "repumper" keeps the atom out of the wrong ground state and
allows the atom to effectively feel the force of the laser acting on the
main transition.

Equation 1 is only valid if the force can be meaningfully averaged
over many absorption-emission events. If a single event changes the
atomic velocity so much that the resonance condition is not satis-
fied, such an average is not possible. This imposes a validity condition
hk2/M < f on eq. 1. This condition is well satisfied for most atoms
of interest in laser cooling. For example, MF/hk2 is 1200 for cesium
laser cooled on its resonance transition at 852 nm and is 200 for sodium
cooled at 589 nm.

2.2. THE DIPOLE FORCE

The dipole force, also called the gradient force or stimulated force, is
the force exerted on an atom due to coherent redistribution of photons.
The dipole force can be considered as arising from stimulated Raman
events - the absorption and stimulated emission of photons. (Note that
the absorption and stimulated emission cannot be thought of as succes-
sive and independent events; their correlation is central to the proper
understanding of the force.)

We can also understand the dipole force in analogy to a driven, clas-
sical oscillator. A harmonically bound charge driven by an oscillating
electric field E has an oscillating dipole moment /J, which is in phase
with the driving field when driven below resonance and out of phase
when driven above resonance. The energy of interaction between the
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Figure 1. a) Energy levels of a 2-level atom and a laser field in the bare basis, b)
dressed basis with the atom uncoupled and coupled to the field.

dipole and field is W = — /i • E. Below resonance the energy is negative
and the oscillator will be drawn toward a more intense field, while above
resonance it will be drawn to the weaker part of the driving field.

A particularly powerful and intuitive way of describing the dipole
force is in the dressed-atom picture. This has been treated in detail by
Dalibard and Cohen-Tannoudji [11] and we present the basic idea here.
Consider a 2-level atom with ground state \g) and excited state |e).
Separately consider a single mode of the radiation field, close to reso-
nance with the atomic transition, having energy levels labeled ...|n — 1),
|n), \n+ 1),... according to the number of photons in the mode. The
energy levels of these two distinct systems are shown in fig. la for
the case where the photon energy J?L is greater than the difference
in energy between the atomic states, Q\. This is the "bare" basis in
which we consider the atom's energy levels and those of the photon
field separately. If we now consider the atom and laser field together
as a single system we have the dressed basis (atom dressed by laser
photons) of fig. 16. If there is no interaction between the atom and
the laser field (as, for example, when the laser field does not spatially
overlap the atom's position) the dressed level energies are simply the
sum of the atom and field energies. This gives a ladder where each rung
is a pair of nearly degenerate energy levels, since an atom in the ground
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state with n photons in the laser field has nearly the same energy as
an atom in the excited state with n — 1 photons in the field (with the
energy difference being equal to the laser detuning). When the atom
interacts with the field, the dressed levels (the eigenstates of the full
Hamiltonian) become superpositions of ground and excited states and
of numbers of photons in the field. By convention, the higher of the two
levels in a rung is called |1), and the rungs are labeled by the photon
number n associated with the excited state in the uncoupled basis [12].
According to the general rule that interacting energy levels repel each
other by an amount depending on the coupling, the spacing between
the dressed levels increases from the detuning 8 to the "effective Rabi
frequency" £2eff

 = V(52 + S72 as the interaction turns on. Because each
of the dressed levels has both ground and excited state character, an
atom can make spontaneous emission transitions between the rungs
of the ladder. These transitions establish an equilibrium population
between the two types of levels [11].

Now consider a light field whose intensity varies in space, such as a
focused laser beam with a Gaussian intensity profile, or a plane standing
wave. The Rabi frequency seen by an atom now varies in space, so the
energy of the dressed levels also varies. The dipole force arises from
this variation in energy and the relative populations of the dressed
levels. Figure 2 illustrates the idea. For laser detuning above resonance
(S > 0) the upper of the two dressed levels is the one that connects
to the ground state in the limit of small interaction. This upper level
always has the largest population, and its potential tends to repel the
atom from the region of most intense light. For 8 < 0 it is the lower level
that connects to the ground state and that has the higher population;
its potential attracts the atom to the higher intensity. The actual dipole
force is the average force, weighted by population, for the two poten-
tials. The dipole force is derivable from a potential [11, 13, 14, 15, 16]
which can be written as

U = -log

Where the spatial dependence of the potential comes in through the
dependence of the intensity / on position.

2.3. DIFFRACTION OF ATOMS BY A STANDING WAVE

Light can be used to manipulate atoms in a manner analogous to the
manipulation of light by material elements such as lens, mirrors and
beamsplitters. This field is often referred to as "atom optics," in analogy
with conventional optics, and is an active area of research. I will discuss
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Figure 2. Top: the intensity profile of the laser field. Bottom: the dressed energy
levels as a function of position for this intensity profile, for laser detuning above and
below resonance. The sizes of the black dots indicate the relative population of the
dressed states.

atom or matter-wave optics in more detail in the context of Bose-
Einstein condensates, but at this point I would like to describe an effect
that illustrates the complementarity between the wave nature of matter
and light, namely, the diffraction of atoms by optical standing waves.
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In addition, it is a particularly nice demonstration of the quantized
mechanical effects of light.

When an atomic beam passes through a periodic optical potential
formed by a standing light wave, it diffracts similar to the diffraction
of light by a periodic grating. The diffraction can be divided into two
regimes, normal and Bragg diffraction. Both diffraction processes can
be thought of as arising from the simultaneous absorption of a pho-
ton from one laser beam of the optical standing wave, and stimulated
emission of a photon due to the counterpropagating laser beam. (This
is a similar picture for the origin of the optical dipole force and the
momentum transfer resulting from diffraction can be thought of as
arising from this force.) This necessarily means that the momentum
transfer to the atomic beam by the optical standing wave is quantized
in units of 2hk, twice the momentum associated with a single photon.

In normal diffraction illustrated in fig. 3a, the incident atomic beam
non-adiabatically enters the light field at normal incidence. As there is
no difference in frequency between the two laser beams comprising the
standing wave, the exiting atomic beam is symmetrically diffracted with
respect to the incident atomic beam. Energy conservation is satisfied
by the spread in energies associated with the non-adiabatic "turn-
on" and "turn-off' of the standing wave. For short interaction times
such that the atoms do not move appreciably along the direction of
the standing wave, the standing wave potential can be considered a
thin phase grating that modifies the atomic deBroglie wave with a
phase modulation, which for a square profile laser beam is given by
(f){x) = (UoT/h)cos2(kx), where UQ is the maximum depth of the optical
potential given by eq. 2 and r is the interaction time of the atomic beam
with the standing wave. An atom with zero momentum is therefore
split by the standing wave into multiple components with momenta
pn = 2nhk, (n = 0,±l ,±2, . . . ) , with populations Pn = J^(UQT/2h),
where Jn{x) are Bessel functions of the first kind. Normal incidence
diffraction of atoms by a near resonant optical standing wave was first
demonstrated in Pritchard's group at M.I.T. [17] in 1983.

When the atoms enter and exit the monochromatic standing wave
adiabatically, energy conservation must be explicitly satisfied in the
interaction between the atoms and the light field. In this regime, also
known as the Bragg regime, the energy difference of the atom before
and after the change of momentum of 2hk must come from the photon
field. This is typically accomplished by having the atomic beam incident
on the standing wave at an angle such that the atoms see a differential
Doppler shift between the two counterpropagating laser beams com-
prising the standing wave. This geometry is shown schematically in fig.
36. Under these conditions, Bragg diffraction can be understood as a
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Figure 3. a) Normal incidence diffraction b) Bragg diffraction c) Bragg diffraction
as a 2n-photon Raman transition.

stimulated Raman transition between two momentum states. Figure 3c
shows nth order Bragg diffraction as a 2n-photon, stimulated Raman
process in which photons are absorbed from one beam and stimu-
lated into the other. Conservation of energy and momentum requires
(n2hk)2/2M = 2nhkvsinO, where M is the mass of the atom, v is the
longitudinal velocity of the atomic beam and 6 is the angle of incidence
of the atomic beam on the standing wave. Bragg diffraction of atoms
by a near resonant optical standing wave was also first demonstrated
in Pritchard's group at M.I.T. [18] in 1988.

2.4. DOPPLER COOLING

Doppler cooling results from near resonant radiation pressure acting
on an atom and thus it is a particularly instructive example of an
application of the scattering force. To see how cooling works we shall
consider the one-dimensional motion of an atom in counterpropagating
plane waves. If the laser beams are tuned below the atomic resonance,
an atom moving in the direction opposite to one of the beams will, be-
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cause of the Doppler shift, see that beam shifted closer to its resonance
frequency. At the same time it sees the other laser beam, propagating in
the same direction as its velocity, shifted further away from resonance.
The atom absorbs more photons from the beam propagating opposite
to its velocity and thus slows down. Prom eq. 1, the forces due to the
positive and negative-going waves, along the direction of progagation
are

7 / / ° (3)

If we assume that I/IQ <C 1, so that the intensity is low enough for us
to add the forces from the two waves independently, and that kv -C F,
the total force is given by

„ Ahk2I/I0 28
F = F + F = '° v = -av. (4)

(28/F)2\ L

For 8 < 0, a is positive and the force damps the velocity at a rate
v/v = —a/M. The largest damping force is obtained for 8 = —F/2.

Atomic motion in a strong standing wave [11, 13, 14, 19] is beyond
the scope of this treatment, however a simple approximation for small
velocity, ignoring interference of the two beams and stimulated redis-
tribution of photons between the beams [20] shows that the friction
coefficient a maximizes at about a — Kk2 /A for I/IQ = 1 in each beam
and 28/F = — 1. Under these conditions the velocity damping time v/v
for sodium, cooled on the 589 nm resonance line, would be 13 fj,s.

So far we have only considered the average force on an atom in
a light field. We should remember that the force arises from discrete
photon scatterings, and so must fluctuate about its average. The fluc-
tuations can be thought of as arising from two sources: fluctuations in
the number of photons absorbed in a given time and fluctuations in the
direction of the spontaneously emitted photons. Both of these effects
arise because of the randomness of spontaneous emission.

The fluctuations represent a random walk of the atomic momentum,
with each random walk step being of magnitude hk. For simplicity we
will assume a fictitious one-dimensional situation where photons are
emitted as well as absorbed along a single axis. Each scattering event
represents two random walk steps, one from the absorption, which could
be from either of the counterpropagating beams, and one from the
spontaneous emission, which can be in either direction along the axis.
The mean square momentum of the atom increases linearly with the
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number of scattering events (random walk steps), with a rate

j t (p2) = 2Rh2k2 (5)

where R is the scattering rate; the factor of 2 comes from the two steps
per scattering. We define a momentum diffusion coefficient

on - i . / n 2 \ ($\

so that Dp/M is the rate of increase in kinetic energy, the heating rate.
The damping force decreases the kinetic energy as F • v = — av2 , the
cooling rate. At equilibrium we set the sum of the heating and cooling
rates to zero, finding

Dp/a = M (v2) = kBT. (7)

Here we have replaced v2 with its mean value and used the equipartition
theorem to identify kBT/2 as the mean kinetic energy M (y2) /2 in the
single degree of freedom. Using eq. 4 to get a, eqs. 5 and 6 to get
Dp, and remembering that the total scattering rate from the two laser
beams, each of intensity, / , is

l + (28/F)2' V

we find, for low intensity and small velocity:

_ nr i + (28/T)2

kBT ~ T 28/T • ( 9 )

This is the Doppler temperature, and we emphasize that it applies
to the fictional one-dimensional case we have constructed. A true ID
experiment, such as cooling an atomic beam along one axis, would
produce a lower temperature depending on the distribution of scattered
photons in 3D. However, it can be shown [20] that in a symmetrical
three dimensional case, the temperature is also given by eq. 9, which is
plotted in fig. 4. The temperature minimizes at a detuning of 8 = —F/2
where

kBToopp = ^ , (10)

defines the Doppler cooling limit. To derive the Doppler temperature
we assumed that the velocity was small enough that kv <C F. At the
Doppler limit, sodium atoms would have vr,m_s_ = 30 cm/s, correspond-
ing to a temperature of 240^uK and kvT.m,s, = F/20, so the assumption
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is justified in this case (and most others). We may also ask whether
the velocity distribution corresponds to a temperature. That is, is it
Maxwell-Boltzmann? It can be shown that for sodium, and similar
atoms where the recoil energy Erec = h2k2/2M <C hF, the velocity
distribution is indeed very close to being thermal [20]. What happens
if the recoil energy is not small? Then we violate the validity condition
on eq. 1, and the detuning due to the Doppler shift changes significantly
with each emission or absorption. In the limit where the linewidth F is
small compared to the recoil energy, we feel intuitively that the cooling
limit, rather than being related to F, as in eq. 10, is related to the
recoil energy. Indeed, it can be shown [20, 21] that in this case the
lowest temperature attainable (the recoil temperature) is given by

that is, one recoil energy per degree of freedom. While it might seem
that this is the ultimate limit of laser cooling, in fact it is possible to
break the recoil limit under certain circumstances where the interaction
with the light is turned off as the atomic velocity becomes small. One
way this may be achieved is by velocity selective coherent population
trapping in multilevel atoms [22, 23]. Atoms are optically pumped into
a coherent superposition of both internal states and center-of-mass
velocities, a superposition that cannot absorb the laser light. Another
way is velocity-space optical pumping [24, 25]. Atoms are cooled on
a transition with a narrow linewidth, but with a distribution of laser
frequencies such that the excitation rate for zero velocity atoms is small
or vanishing. This has been accomplished by use the use of pulsed
two-photon Raman transitions [26].

The damping force of eq. 4 is similar to the viscous force on an
object moving in a fluid. Because of this, the configuration of pairs
of counterpropagating laser beams is often called "optical molasses."
The viscosity is so high that a velocity corresponding to the Doppler
cooling limit is damped out and randomized while the atom travels only
a few tens of micrometers, much smaller than the size of the molasses,
which is typically a centimeter. Thus the atoms executes a Brownian-
like motion with a short mean free path, moving diffusively rather than
ballistically [27, 28]. The evidence for this is the long residence time
of atoms in optical molasses. Atoms require several seconds to diffuse
out of a typical optical molasses [28, 29], whereas, moving ballistically,
atoms cooled to the Doppler cooling limit would traverse a region the
size of a typical molasses in a few tens of milliseconds.
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Figure 4- Doppler temperature at low intensity as a function of laser detuning.

3. Deceleration and cooling of an atomic beam

Experimentally, atoms must first be at reasonably slow velocities (kv < F)

before Doppler cooling can be effective. The two general ways this has
been accomplished is by laser deceleration of an atomic beam [27, 30]
and by collection of slow atoms from a thermal gas [31, 32]. Loading
from a thermal gas has the advantage of allowing a more compact
and simpler apparatus, while the beam deceleration technique usually
allows lower background pressure and faster production of slow atoms.

Deceleration of an atomic beam is usually accomplished by directing
a near resonant laser beam so as to oppose the atomic beam. The
atoms absorb photons at a rate determined by the intensity of the laser
beam, the detuning from resonance and the atoms' velocity. For each
photon absorbed, the atomic velocity changes by vrec in the direction of
the laser propagation. The spontaneously emitted photons are emitted
randomly in a pattern that is symmetric on reflection through the atom,
so there is no net average change in the atomic velocity due to these
emissions. If the absorption is followed by stimulated emission into
the same direction as the incident laser beam (we assume the laser
beam is a plane wave), there is no net momentum transfer from the
absorption-emission process. Only absorption followed by spontaneous
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emission contributes to the average force, which is given by the rate of
scattering photons times the momentum of a photon. For a two level
atom this force is given by eq. 1. At high intensity this force saturates
to the value hkr/2.

The acceleration of an atom due to the saturated radiation pressure
force is amax = hkF/2M = vrecF/2, which can be quite large. For
sodium with A = 2n/k = 589 nm, l/F = 16 ns and M = 23 a.m.u.,
vrec & 3 cm/s and amacc « 106 m/s2. For cesium, with A = 2ir/k = 852
nm, 1/r = 30 ns and M = 133 a.m.u., vrec ?» 3.5 mm/s and amax «
6 x 104 m/s2. This acceleration would stop in 50 cm, a thermal, 1000
m/s Na atom scattering «33,000 photons in 1 ms and in 80 cm, a
thermal, 300 m/s Cs atom scattering *=s84,000 photons in 5 ms.

Implicit in eq. 1 is one of the major impediments to effective de-
celeration of an atomic beam using a counterpropagating laser beam.
The force acting on the atom is large if \2(6 — k • v)| < Fy/l + I/IQ.

Atoms much outside this resonant-velocity range will experience little
deceleration, and atoms intially within this range will be decelerated
out of it. This process results in a cooling or velocity compression
of a portion of the atomic beam's velocity distribution, and was first
observed by Andreev et al. [33]. Atoms initially at the resonant velocity
decelerate out of resonance. Other atoms with nearby velocites will also
decelerate, those with larger velocities first decelerating into resonance,
then to slower velocities out of resonance, while initially slower atoms
decelerate to still lower velocities. The atoms will "pile up" at a veloc-
ity somewhat lower than the resonant velocity. Both deceleration and
cooling occur because a range of velocities around the resonant velocity
are compressed into a narrower range at lower velocity. The change in
the velocity distribution of an atomic beam with a thermal spread of
velocities is illustrated in fig. 5.

The difficulty with the velocity distribution of fig. 5 is that only a
small portion of the total velocity distribution has been decelerated by
only a small amount. There are a number of possible solutions to this
problem, some of which have been discussed in [27]. These include Zee-
man tuning [27] where a spatially varying magnetic field compensates
the changing Doppler shift as the atoms decelerate so as to keep the
atoms near resonance; white-light deceleration [34] where a range of
laser frequencies ensures that some light is resonant with the atoms,
regardless of their velocity (within the range to be decelerated); diffuse-
light deceleration [35] where light impinges on the atoms from all angles
so that, with the Doppler shift, some of the light is resonant with each
velocity; Stark cooling [36] where a spatially varying electric field is used
to Stark shift atoms and keep them near resonance as they Doppler shift
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Figure 5. Longitudinal velocity distribution of an atomic beam before (dashed line)
and after (full line) interacting with a counterpropagating, fixed-frequency laser.
The arrow indicates the velocity resonant with the laser.

due to deceleration; intense standing wave deceleration [37] where the
linewidth is sufficiently power broadened to capture a large velocity
distribution for laser deceleration; and "chirp cooling" [38] in which
the frequency of the laser is swept up, or chirped, in time such that the
laser stays in resonance with atoms that have been decelerated, and
they continue to absorb photons and decelerate. Zeeman tuning and
chirp cooling were among the earliest atomic beam slowing techniques
demonstrated and they continue to be the most widely used techniques
to date.

3.1. CHIRP COOLING

In chirp cooling, the frequency of the laser is swept up, or chirped, in
time [38]. Because of the chirp, atoms that have been decelerated by
the laser stay in resonance, continue to absorb photons, and continue
to decelerate. Furthermore, the chirp brings the laser into resonance
with additional atoms having lower velocities than the original group
around the velocity initially resonant with the laser.
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In order to analyze this process, let us consider atoms having positive
velocities near some velocity V opposed by a laser beam propagating
in the negative direction. We express any atomic velocity as v = V + v'.
The acceleration of atoms having velocity V (v' = 0) is o = F(V)/M,
where F(V) is given by eq. 1. Therefore, we write V(t) = V(0) + at.
Also we let the detuning vary as 8(t) = 8' — kV(t). That is, we chirp
the laser frequency so as to stay a constant detuning 5' from resonance
with atoms having the decelerating velocity V(t). Now we transform to
a frame decelerating with V(t). In this frame the atomic velocity is v'
and the laser detuning is Doppler shifted to 8'. The force on an atom
in this frame is

F(v') = hk^ - I/Io , I/Io

+ m + [Hi-wii2 i + i/io + m2

(12)
The minus sign of the first term in the large brackets comes from the
laser propagating in the negative direction. The second term in the
large brackets is the "fictitious" inertial force felt by an atom in the
decelerating frame. Expanding this expression for small v', we get

The term multiplying v' is minus the friction coefficient a. When 8' < 0,
the force opposes the velocity v' and tends to damp all velocities to
zero in the decelerating frame, which is V(t) in the laboratory frame.
Maximum damping occurs for I/IQ = 2 and 28'/F = — 1. The final
velocity to which the atoms are decelerated is determined in practice
by the final frequency to which the laser is chirped. Figure 6 illustrates
the results of chirp cooling an atomic beam. All of the atoms in the
initial distribution below the velocity resonant with the laser at the
beginning of its chirp are decelerated.

The first definitive experiment showing such chirp cooling was in
ref. [39], with deceleration to zero velocity first achieved in ref. [40].
The analysis given above is similar to that given in ref. [41]. The robust
character of this sort of cooling is evident. Atoms within a range of
velocities around V(t) are damped (in velocity) toward V(t). Lower
velocities, not initially close to V(t), come within range as the laser
chirp brings V(t) into coincidence with them. If the laser intensity
changes during the time an atom is being decelerated (because, for
example, the laser beam is not collimated), the atoms will continue
to decelerate according to the chosen chirp rate, but with a different
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velocity
Figure 6. Longitudinal velocity distribution of an atomic beam before (thin line) and
after (bold line) deceleration by a chirped laser. The arrow indicates the velocity
initially resonant with the laser.

effective detuning 6'. The chosen chirp rate, however, must be consistent
with an achievable deceleration with the given 1/IQ. That is, the chirp
rate must satisfy

5 = ka =
hk2r
1M + +

(14)

This means that 8 has an allowable upper limit of kamax- We have
noted that for the velocities to be damped in the decelerating frame
we must have 6 < 0 and it is easy to show that the conditions for best
damping lead to a deceleration half as large as the maximum.

3.2. ZEEMAN TUNING

In the Zeeman tuning technique, a spatially varying magnetic field is
used to keep the frequency of an atom resonant with a counterpropa-
gating laser beam, as the atom slows down by scattering photons from
this laser. Because the atoms are slowed down and the spread of the
velocity distribution is narrowed, this process is often referred to as
"Zeeman cooling." Figure 7 illustrates the general idea of this scheme.

The atomic beam source directs atoms, which have a range of veloci-
ties, along the axis (z direction) of a tapered solenoid. This magnet has
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Figure 7. Upper: Schematic representation of a Zeeman slower. Lower: Variation of
the axial field with position.

more windings at its entrance end, near the source, so the field is higher
at that end. The laser is tuned so that, given the field-induced Zeeman
shift and the velocity-induced Dopper shift of the atomic transition
frequency, atoms with velocity VQ are resonant with the laser when
they reach the point where the field is maximum. Those atoms then
absorb light and begin to slow down. As their velocity changes, their
Doppler shift changes, but is compensated by the change in the Zeeman
shift as the atoms move to a point where the field is weaker. At this
point, atoms with initial velocities slightly lower than VQ come into
resonance and begin to slow down. The process continues with the
initially fast atoms decelerating and staying in resonance while initially
slower atoms come into resonance and begin to be slowed as they move
further down the solenoid. Eventually all the atoms with velocities lower
than VQ are brought to a final velocity that depends on the details of
the magnetic field and laser detuning. The magnetic field profile of the
tapered solenoid is

B(z) = (15)

with 0 < 2az < VQ. BQ is the magnetic field producing a Zeeman shift
equal to the Doppler shift for atoms with velocity vo and a < amax is
the deceleration rate.

The first experiment on the deceleration of atoms using the Zee-
man technique is in ref. [42]. Subsequently, neutral sodium atoms were
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Figure 8. Velocity distribution before (dashed) and after (solid) Zeeman cooling.
The arrow indicates the highest velocity resonant with the slowing laser. (The extra
bump at 1700 m/s is from F = 1 atoms, which are optically pumped into F = 2
during the cooling process.)

stopped in ref. [43]. Figure 8 shows the velocity distribution resulting
from Zeeman cooling: a large fraction of the initial distribution had
been swept down into a narrow final velocity group. The velocity dis-
tribution after deceleration was measured in a detection region some
distance from the exit end of the solenoid using a a separate detection
laser. We were able to determine the velocity distribution in the atomic
beam by scanning the frequency of the detection laser and observing
the fluorescence from atoms having the correct velocity to be resonant.

4. Traps for neutral atoms

Trapping of atoms usually refers to their confinement by the application
of external fields rather than by the use of a material container. In
contrast with the trapping of ions by electric and magnetic fields, the
trapping forces that can be applied to neutral atoms are relatively weak.
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Ions have a charge on which an electromagnetic field can exert a large
Coulomb or Lorentz force. Neutral atoms, however, may be acted upon
through their permanent magnetic dipole moments or induced electric
dipole moments, allowing generally smaller forces to be applied. The
strongest traps for neutral atoms have energy depths of only a few
kelvin, while ion traps can typically hold room temperature ions, and
have trapped particles with energies of a few thousand electron volts.

Another possible difficulty with traps for neutral atoms is that the
trapping potentials represent changes in the internal energy of the
atoms. That is, the postitions of and, in general, the spacings be-
tween energy levels are changed by the trapping fields. This means,
in particular, that high accuracy spectroscopy of trapped atoms is
problematic.

Neutral atoms have the advantage that the lack of space charge
effects means that one can generally trap larger numbers and densities
of neutral atoms than of ions. Furthermore, some applications demand
that one work with neutral atoms (as for example in Bose condensation
of an atomic gas). Fortunately, even rather weak forces are capable of
trapping atoms that have been laser cooled, and many different kinds
of neutral atom traps have been demonstrated. Among these are:

i) Magneto-static traps, first demonstrated in 1985 [44] rely on the
force exerted by a gradient magnetic field on the permanent magnetic
dipole moment of an atom such as a ground-state alkali.

ii) Laser dipole traps, first demonstrated in [45] use the dipole force
that results from the gradient of the energy of the oscillating dipole
moment induced on an atom in an inhomogeneous laser field.

iii) Radiation pressure traps use the scattering force of eq. 1, but are
not stable in 3D for two-level atoms. The magneto-optical trap (MOT),
using multilevel atoms and an inhomogenous magnetic field, was the
first radiation pressure trap to be demonstrated [46].

iv) Magneto-dynamic traps use the micromotion driven by oscil-
lating magnetic field gradients to allow trapping of high-field-seeking
states not stably trapped in static magnetic fields. Such a trap, first
demonstrated in 1991, is analogous to the radio frequency Paul trap
for ions [47].

v) Microwave traps are low-frequency, spontaneous emission free
analogs of laser dipole traps. Such a trap was first demonstrated near
a magnetic resonance transition [48].

vi) Electrostatic traps, while never demonstrated in 3D, have been
proposed [49] for excited atoms.

vii) Gravito-optical traps, which combine optical dipole forces with
gravity to produce stable trapping [50], are only one example of hy-
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brid traps that combine different types of forces to achieve trapping of
atoms.

viii) TOP traps (for Time-averaged Orbiting Potential) [51], are an
important modification of one type of magnetostatic trap. While time
dependent, they are not dynamic in the sense of atomic micromotion
being essential.

These notes will not treat each of these kinds of traps in detail,
nor attempt to give more complete references about them. We shall,
however, discuss the radiation pressure, laser dipole and magnetic traps
in some more detail below. Since these are the traps that are currently
in extensive use in BEC research.

4.1. DIPOLE FORCE TRAPS

The dipole force discussed in section 21 can be used to trap atoms. A
single, focused laser beam, tuned below resonance is the simplest dipole
trap and was first proposed by Ashkin in 1978 [52]. As an example,
consider sodium atoms interacting on their strongest transition (Jo = 6
mW/cm2) with a modest power, 10 mW Gaussian laser beam focused
to a 1/e2 radius of 10 /mi. This gives I/Io = 106 at the focus. For the
detuning maximizing U, we find Umaxl^B — 100 mK. For a 1W beam
we find Umax/kB = 1 K. Such traps can easily confine laser cooled
atoms.

The dipole potential is a conservative potential, so it does not have
any dissipative mechanism associated with it. It was not until the
demonstration of laser cooling in optical molasses [28] that such a trap
could be loaded and finally realized [45]. One of the difficulties involved
in such trapping is that although the trap is tuned below resonance (the
proper sign of the detuning to achieve cooling) the cooling provided
by the trapping light does not reduce the thermal energy below the
trap depth. Auxiliary cooling [53] is required, but even this is difficult
because the inhomogeneous light shifts induced by the trapping laser
interfere with the cooling process. Dalibard et al. [54, 55] proposed a
solution in which the trapping and cooling are alternated in time, and
this procedure was used for the first dipole trap [45].

Another difficulty with a single focus dipole trap is that the radi-
ation pressure force pushes the atoms away from the focus, while the
dipole force is attracting them to it. While more complicated, coun-
terpropagating beam geometries can avoid this difficulty [52, 56, 57],
one can, at the expense of reduced trap depth, solve the problem by
detuning the laser [45]. According to eq. 1, the destabilizing radiation
pressure force varies as l/<52 (for sufficiently large 5), while the dipole
trapping force obtained from the dipole potential given by eq. 2 varies
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as 1/5. Thus, for large enough detuning, the radiation pressure will be
negligible compared to the dipole trapping force.

Large detuning has other advantages, particularly when coupled
with multi-level laser cooling. When the detuning is large enough that
the trap depth is comparable to the natural linewidth, the thermal
energy of laser cooled multilevel atoms can still be considerably less
than this depth, which is comparable to the Doppler cooling limit of
eq. 10. Furthermore, the optimum detuning for good multilevel laser
cooling is at least several times the linewidth, the inhomogeneous light
shifts should not much affect the cooling. Such a far-off-resonance-trap
(FORT) has been demonstrated to work without the need to alternate
cooling and trapping phases [58, 59].

Another advantage [60] of such a FORT is that for sufficiently large
detuning the population of the trapped atoms is almost entirely in the
ground state. The trap is then nearly free of heating due to sponta-
neous emission [61] and of many of the collisional perturbations involv-
ing excited atoms. FORTs have been used to hold atoms for collision
experiments [62] and to trap atoms for evaporative cooling [63].

Variations of the dipole force trap include using the evanescent wave
created by total internal reflection of light (detuned blue of resonance)
to act as a mirror to reflect atoms [50, 64, 65], crossing two red-detuned
laser beams at their foci to achieve a strong gradient in all directions
[63] , and crossing sheets of blue-detuned light to form a box bounded
by light (with confinement in the vertical direction sometimes provided
by gravity) [66, 67].

4.2. RADIATION PRESSURE FORCE TRAPS

Radiation force traps use the spontaneous or scattering force to confine
atoms. Unlike the dipole force, the force generated by absorption of
a photon followed by spontaneous emission does not depend on the
gradient of the intensity. Hence larger volume traps can be created
using the scattering force compared to the dipole force for a given flux
of incident photons. A simple radiation force trap, shown in fig. 9, can
be made in ID using two counterpropagating focused laser beams with
separated foci [52]. Midway between the foci the radiation pressure from
the two beams is balanced and the net force on an atom is zero. As the
atom moves away from this equilibrium point toward one of the foci
it is pushed back by the higher intensity near that focus. In contrast
to the dipole force trap, radiation pressure trap depths on the order
of a kelvin can be achieved with a modest, near saturation intensity, i.
e., a few milliwatts per square centimeter [68]. While the trap of fig.
9 produces radiation pressure force trapping along only one axis, the



449

Figure 9. A one dimensional radiation pressure force trap formed from two coun-
terpropagating, focussed laser beams with separated foci. The length of each of the
pairs of arrows indicates the magnitude of the force from the respective laser beams
on an atom at the indicated positions.

dipole force can provide trapping along the two orthogonal axes [52], a
configuration first demonstrated in [57].

It is tempting to extend the trap idea of fig. 9 to three dimensions,
but it can be shown that such as extension is not possible when the
radiation pressure force is proportional to the photon flux from the
laser beams. The impossibility of such trapping is related to the fact
that the divergence of the Poynting vector is zero, and has been called
the optical Earnshaw theorem [69] by analogy with the theorem from
electrostatics forbidding stable trapping of a test charge in a charge-free
region.

In spite of the optical Earnshaw theorem, which applies to 2-level
atoms in a weak, static laser field, it is possible to create a 3D radiation
force trap by making use of such features as saturation, multiple lev-
els, optical pumping and Zeeman shifts. The most successful radiation
pressure trap that circumvents the Earnshaw theorem is the magneto-
optical trap or MOT. Conceived by Dalibard [70] and demonstrated in
an MIT-Bell Labs collaboration [46] its principle is illustrated in fig. 10
for 1-D operation and a simple J = 0 —* J — 1 transition.

A pair of current-carrying coils with opposing currents creates a
quadrupole magnetic field that is zero at the origin and whose vector
value is proportional to the displacement from the origin. The sim-
ple J = 0 —* J = 1 transition gives us a Zeeman shifted transition
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— 1

b)

Figure 10. a) Magnetic field and laser configuration for a 1-D MOT. b) Transition
scheme, c) Energy levels and transitions in the spatially varying magnetic field.
The designation of the m-state is with respect to a space-fixed axis, as is the laser
polarization.
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frequency with a non-degenerate ground state. (This non degeneracy
leads to Doppler rather than sub-Doppler cooling.) Two circularly po-
larized laser beams with opposite helicity counterpropagate along the
coils' axis. The a± beam excites atoms to the m = ±1 excited state
respectively. Thus, for a red-detuned laser frequency (6 < 0) atoms
displaced in the positive direction will experience a Zeeman shift that
brings the m = — 1 state into resonance with the laser frequency, and
the a~ laser beam that excites this state is the one that pushes it back
toward the origin. Similarly, an atom displaced in the negative direction
is pushed back by the CT+ beam. In addition to the restoring force, there
is also the usual Doppler-cooling damping force.

The force on an atom with velocity v and position z can be obtained
from eqs. 3 and 4 by replacing the effective detuning 6 ̂ f kv with S =p
(kv + f3z), where /3z is the magnitude of the Zeeman frequency shift at
position z:

Ak7~T I T /OJC\

[kv + /3z) (16)

where in the second expression we are in the limit of low velocity,
magnetic field and laser intensity. For negative detuning the above force
represents a damped harmonic oscillator. Typical operating conditions
for a MOT might be I/Io = 1, 26/T = - 1 and /3 = 10 MHz/cm. This
would lead to an oscillation frequency of about 1 kHz for Na, but with
strong overdamping.

While we have considered only the ID case for a simple transition,
the MOT was first demonstrated in 3D, on an atom with a degenerate
ground state (Na). The theory in 3D has been worked out in detail
for the J = 0 —> J = 1 transition [71] and for transitions allowing
sub-Doppler cooling, some insights have been gained by studying the
forces in ID on a moving atom in a magnetic field [72, 73, 74, 75].
Experiments have shown that, with a degenerate ground state, sub-
Doppler temperatures are achieved in a MOT [74] along with larger
trapping and damping than predicted by the J = 0 —> J = 1 theory.

The MOT has become an important tool in the study of cold atoms.
A particularly useful feature is that it can capture atoms from an
uncooled, thermal atomic vapor [31, 32]. This often allows considerable
simplification of the apparatus compared to one where an atomic beam
is first decelerated.

A MOT can concentrate atoms to the point that collisions [76, 77]
and radiation pressure exerted by the atoms' fluorescence [78] are fac-
tors limiting the density. A major advance in reducing such problems is
the "dark spot" MOT [79] in which atoms are, for the most part, opti-
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cally pumped into a state from which the excitation rate is considerably
smaller than in a conventional MOT. In practice this is accomplished,
for atoms with ground state hyperfine structure, by pumping the atoms
into one of the hyperfine states. Normally laser cooling and trapping
of such atoms is performed by applying a separate laser frequency to
excite each of the ground hyperfine states to the electronically excited
state, ensuring atoms are not pumped into a state from which they
cannot be excited. In a dark spot MOT, one of the laser frequencies
(the re-pumper) is eliminated from the central region of the trap. Atoms
then accumulate in the hyperfine state that would have been excited
by the missing frequency. These atoms are rarely excited (only by off-
resonant light or indirectly scattered resonant light) so problems due
to excited atoms are greatly reduced, even though the atoms are still
cooled and trapped. Such techniques have achieved atomic densities
near 1012 cm"3.

4.3. MAGNETO-STATIC TRAPS

Both laser dipole and radiation pressure traps involve optical excitation
of the atoms being trapped. Although in principle a sufficiently intense
laser dipole trap can be tuned far enough off resonance for the excita-
tion rate to be small, it is difficult in practice to make it truly negligible.
As a result, optical trapping generally results in some heating of the
atoms due to the random nature of spontaneous emission, and cooling
is required to keep the atoms in equilibrium. Magnetic traps do not
suffer this problem and so can be used to store atoms for long periods
of time without the need for additional cooling. On the other hand,
such traps only work for atoms having a magnetic dipole moment and
only for those states of such atoms whose Zeeman energy increases in
increasing magnetic field.

The idea of magnetic trapping was an extension of the magnetic
focusing of atomic beams [80] and was discussed by Paul during the
1950s [81]. The first published proposals for magnetic trapping of neu-
tral atoms were in the 1960s [82, 83, 84]. It was not until after the
demonstration of laser cooling of neutral atoms that the first magnetic
trapping of atoms was achieved [44].

The principle of the magnetic trap can be understood by considering
an atom with a Zeeman sub-structure such as that shown in the excited
state of fig. 10c. (Note that magnetic trapping is generally done on
ground state atoms with such Zeeman structure.) Since the energy
varies with magnetic field, an atom feels a force in a magnetic field
gradient. For states whose energy increases with magnetic field (low-
field-seeking states), a trap is formed by the field of the coils in fig. 10a.
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This quadrupole field is zero on the axis midway between the coils, and
its magnitude increases linearly along any line away from this central
point. Low-field-seeking atoms experience a restoring force towards and
are trapped around this point. (It can be shown [85, 86] that in a
current-free region no magnetic field can have a relative maximum in
its magnitude, so that high-field-seekers cannot be trapped.) The depth
of a magnetic trap is given by the maximum Zeeman shift along the
easiest escape path. A magnetic field of 1 mT (10 G) gives a typical
shift of 14 MHz, equivalent to 670 /xK, so laser cooled atoms are easily
trapped by modest fields.

The quadrupole magnetic field was used in the first magnetic trap [44]
and is the simplest of magnetic traps. It works for low-field-seekers as
long as they do not change their spin orientation with respect to the
local field. This means than they must adiabatically follow the changes
in the direction of the field as they orbit in the trap. The condition for
adiabatic following is that

d6
— < SiZeemani U ' j
at

where 6 is the angle of the magnetic field at the atom's position and
fizeeman is the Zeeman frequency separating states of different spin
orientation. Since laser cooled atoms move so slowly, they generally ex-
perience small field rotation rates, and their motion is usually adiabatic.
The quadrupole trap, however, has a point where the magnetic field is
zero and the adiabatic condition is impossible to satisfy. Atoms passing
sufficiently close to the trap center will fail to follow adiabatically,
change their spin orientation (undergo Majorana transitions) and be
ejected from the trap [44]. This difficulty can be avoided by a variety of
traps that do not have a point of zero magnetic field [87], but such traps
are generally not as "stiff' as a quadrupole trap. That is, the restoring
force near the center of the trap is not as large as for a quadrupole
trap. In practice, non-adiabaticity is usually a problem only for very
cold atoms confined very near the center of a quadrupole trap, which
is exactly what occurs on the way to BEC.

For achieving Bose-Einstein condensation through runaway evap-
orative cooling, it is desirable to have a "stiff' trap to maintain a
high collision or thermalization rate. For atoms cold enough to Bose
condense, the problem of non-adiabatic spin flip transitions at the zero-
field point of a quadrupole trap are quite severe [88, 89]. The TOP
trap solved this problem by superposing onto the quadrupole field a
magnetic field rotating in the plane of symmetry. The rotating field
guarantees that the field is not zero at the trap center, and produces a
rounding of the sharp-cusp quadrupole trapping potential. This time-
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averaged orbiting potential (TOP) trap [51], although time dependent,
is not a magneto-dynamic trap in the sense that the TOP trap does
not rely on micromotion of the atoms. The atoms respond to the time
averaged potential at a given point in the trap. A more detailed dis-
cussion of the TOP trap can be found in the discussion of the BEC
experiment at NIST-Gaithersburg, in section 71 of these lecture notes.

5. Sub-Doppler laser cooling

The early experiments [28, 90] on optical molasses produced a satisfying
agreement of the observed temperature and spatial diffusion with the
predictions of the theory of Doppler cooling as outlined in the previous
section. Some experiments, however, were in disagreement with expec-
tations [91]. Finally, in 1988, careful temperature measurements [92]
showed conclusively that atoms in optical molasses were much colder
than the Doppler cooling limit. The time-of flight (TOF) method used
to measure the temperature in those experiments has become a stan-
dard technique and is illustrated in fig. 11. Atoms are collected and
cooled in the optical molasses at the intersection of the molasses laser
beams. The molasses beams are suddenly extinguished and the released
atoms fall toward the probe. As the atoms pass through the probe laser
beam they absorb and fluoresce light. This fluoescence is measured,
with time resolution, by the detector. The distribution of detected
fluorescence in time gives the distribution of times of flight from the
molasses to the probe, and the temperature can be determined from
that distribution.

5.1. OBSERVATION OF SUB-DOPPLER TEMPERATURES

Figure 12 shows an example of an experimental TOF signal for sodium
atoms cooled in optical molasses [20]. The experimental points cor-
respond reasonably well with the predicted signal for a temperature
of 25 /xK, while 250 /iK, about the Doppler cooling limit for Na, is
completely inconsistent with the experimental points. Furthermore, the
dependence of the temperature on detuning was found to be inconsis-
tent with the theory of Doppler cooling. Figure 13 shows the measured
temperature as a function of laser detuning for Na, where the linewidth
is 10 MHz. The temperature decreases for detunings larger than T/2
(until the laser frequency approaches resonance with another hyperfine
state, about 60 MHz to the red of the chosen resonance). This is in
sharp contrast to the prediction of Doppler cooling theory (fig. 13),
which has the temperature increasing for detunings greater than F/2.
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Figure 11. Schematic of the time-of-flight temperature measurement. Atoms are
released from the optical molasses and travel ballistically to the probe region. The
distribution of arrival times, as measured by the fluorescence seen by the detector,
allows one to determine the atomic temperature.

In addition, the temperature was found to be linearly dependent on
laser intensity [93], again in contrast to the predictions of Doppler
cooling theory, and the temperature was found to depend on magnetic
field and laser polarization [92, 93]. These latter facts, particularly,
suggest that the magnetic sublevels of the atom play an important
role.
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Figure 12. Experimental time-of-flight distribution (points) for Na atoms released
from an optical molasses. Expected TOF distributions for temperatures of 25/tiK
and for 250/JK (approximately the Doppler cooling limit) are shown.

The observation of sub-Doppler-limit temperatures was quite sur-
prising. Doppler cooling theory at low intensity was simple and com-
pelling. Furthermore, at least for ID, there was a complete theory,
taking into account the effects of high intensity and interference be-
tween laser beams that were ignored in the treatment presented in
the previous section. The theory had been restricted to 2-level atoms,
but it was widely believed that this restriction was not particularly
important. At low intensity the Doppler temperature depended on the
transition linewidth and the detuning, and these were the same for
any of the degenerate Zeeman sublevels in a given alkali hyperfine
level. Nevertheless, the magnetic field and polarization dependence of
the sub-Doppler-limit temperatures pointed to the importance of the
Zeeman sublevels.

5.2. NEW COOLING MECHANISMS

The explanation for the sub-Doppler temperatures soon came in the
form of a new theory of multi-level laser cooling. The key elements of
the new theory [72, 94, 95] were optical pumping among the magnetic



457

500 -

10 20 30 40

detuning (MHz)

Figure 13. Measured temperature as a function of laser detuning for sodium atoms
cooled by a 3D optical molasses. The temperature predicted by Doppler cooling
theory is shown by the solid line.

sublevels of the electronic ground level and differential light shifts of
the sublevels. While the original theories treated cases where a spatial
gradient of the polarization of the optical field was important, it was
later demonstrated that such multilevel laser cooling was possible even
without polarization gradients [95, 96, 97, 98, 99, 100, 101].

The full theory of multilevel laser cooling is complicated, and arose
from a deeper understanding of the interaction of light with atoms
that developed along side experimental progress on the manipulation
of atoms with light. The most important of the multilevel cooling mech-
anisms is Sisyphus cooling [16, 72, 102, 103]. Semiclassically (when the
atom can be considered to be well-localized on the scale of an optical
wavelength) the simplified physical picture for Sisyphus cooling can be
understood by considering the atom and laser field situation illustrated
in fig. 14.

Figure 14a shows a 1-D set of counterpropagating beams with equal
intensity and orthogonal, linear polarizations. The interference of these
beams produces a standing wave whose polarization varies on a sub-
wavelength distance scale. At points in space where the linear polar-
izations of the two beams are in phase with each other, the resultant
polarization is linear, with an axis that bisects the polarization axes
of the two individual beams. Where the phases are in quadrature, the



458

w w ^ 0 * G y C y
(a)

X
X/4

i
A/2

m = -1/2 +1/2

(b)

Figure 14. a) Interfering, counterpropagating beams having orthogonal, linear polar-
izations create a polarization gradient, b) The different Zeeman sublevels are shifted
differently in light fields with different polarizations; optical pumping tends to put
atomic population on the lowest energy level, but non-adiabatic motion results in
"Sisyphus" cooling.

resultant polarization is circular and at other places the polarization
is elliptical. An atom in such a standing wave experiences a fortunate
combination of light shifts and optical pumping processes.

Because of the differing Clebsch-Gordon coefficients governing the
strength of coupling between the various ground and excited sublevels
of the atom, the light shifts of the different sublevels are different, and
they change with polarization (and therefore with position). Figure
156 shows the sinusoidal variation of the ground-state energy levels
(reflecting the varying light shifts or dipole forces) of a hypothetical
Jg = 1/2 —> Je = 3/2 atomic system. Now imagine an atom to be at
rest at a place where the polarization is a~ at z = A/8 in fig. 15a. As
the atom absorbs light with negative angular momentum and radiates
back to the ground states, it will eventually be optically pumped into
the nig = —1/2 ground state, and simply cycle between this state
and the excited me = —3/2 state. For low enough intensity and large
enough detuning we can ignore the time the atom spends in the excited
state and consider only the motion of the atom on the ground state
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potential. In the mg = —1/2 state, the atom is in the lower energy
level at z = A/8, as shown in fig. 156. As the atom moves, it climbs the
potential hill of the mg = —1/2 state, but as it nears the top of the hill
at z = 3A/8, the polarization of the light becomes a+ and the optical
pumping process tends to excite the atom in such a way that it decays
to the mg = +1/2 state. In the mg = +1/2 state, the atom is now
again at the bottom of a hill, and it again must climb, losing kinetic
energy, as it moves. The continual climbing of hills recalls the Greek
myth of Sisyphus, so this process, by which the atom rapidly slows
down while passing through the polarization gradient, is called Sisyphus
cooling. In Sisyphus cooling, the radiated photons, in comparison with
the absorbed photons, have an excess energy equal to the light shift.
While in Doppler cooling, the energy excess comes from the Doppler
shift.

In contrast to the case for Doppler cooling (see eq. 4) the friction
force is independent of laser intensity, and proportional to detuning
at low (but not too low) intensity and low velocity, while the momen-
tum diffusion coefficient is proportional to intensity and independent
of detuning. This leads, according to eq. 7, to a temperature that
depends linearly on intensity and inversely on detuning. That is, the
temperature is proportional to the light shift

oc hAiightshift = -jr- (18)

where the expression for the light shift is valid in the limit of low
intensity and large detuning.

A less restricted treatment [104] shows that the friction force is not
linear in the atomic velocity, nor is the momentum diffusion constant
independent of velocity. Nevertheless, the temperature remains approx-
imately linear in the light shift as long as the intensity is sufficiently
above a critical intensity. The lower limit to the temperature obtainable
by Sisyphus cooling is set by this lowest intensity for which the cooling
process works [104, 105]. This is the intensity at which the light shift
is comparable to the recoil energy, and it leads to a lower limit for the
thermal velocity on the order of a few times the recoil velocity.

These qualitative features of multi-level laser cooling have been con-
firmed by experiments on atoms cooled in 3D optical molasses [20, 106].
The experimental results showed the linear dependence of the tem-
perature on intensity and light shift for all but the largest intensity
at the smallest detuning, outside the limits of validity of the simple
results listed above. The constancy of the lowest temperature, once the
detuning is large enough, is consistent with its depending only on the
recoil energy. The temperature of 2.5 /xK obtained for Cs represents an



460

r.m.s. velocity of about three recoil velocities, similar to the case for
the lowest temperatures observed for Na [20, 97] and Rb [107].

Even more explicit confirmation of the theory of multilevel laser
cooling comes from a comparison of one-dimensional experiments with
ID theory. This is discussed below in the section on optical lattices.

6. Optical lattices

An optical lattice is an array of light-shift-induced potential wells cre-
ated by the interference of a set of intersecting laser beams. A good
optical lattice typically cools and confines atoms into low-lying quan-
tum states of center-of-mass motion in the individual wells. That is,
most atoms are well localized in some well of the lattice. The idea that
atoms experience a periodic potential is already implicit in the image
of Sisyphus cooling alluded to in section 52 above. Furthermore, the
idea that atoms could be trapped in such periodic light-shift potentials
predates even the idea of laser cooling [108]. Atoms were first ordered
by such a periodic potential in ID "channeling" experiments [109, 110]
in which the potential of a strong standing wave altered the spatial
distribution of an uncooled beam of atoms. The first 3D experiments,
which showed localization of atoms in a laser cooled gas [111], observed
Dicke narrowing of the spectrum of light radiated by atoms in an opti-
cal molasses. The Dicke narrowed spectrum, obtained when laser light
scatters from atoms localized to a distance smaller than the wavelength,
corresponds to transitions that leave the atom in the same vibrational
state of center-of-mass motion in a potential well.

6.1. LOCALIZATION OF ATOMS IN OPTICAL LATTICES

Optical lattices for laser cooled atoms have been constructed in one,
two and three dimensions. In each case, the phase relations between the
laser beams forming the lattice are important. In a ID lattice, formed
by a pair of counterpropagating laser beams, phase changes simply have
the effect of translating the origin of the lattice. In a 2 or 3D lattice
formed from 2 or 3 pairs of counterpropagating beams, the situation is
more complicated. In order to maintain a lattice that changes only by
a translation with changes in phase, one or two relative phases must
be fixed and stabilized by interferometric phase comparison [112]. An
alternative [113] is to use only three beams in 2D or four beams in
3D. Then one recovers the ID situation where changes in phase only
translate the lattice. Figure 15 shows a four-beam arrangement and
the structure of the 3D optical lattice it forms. Atoms are trapped at
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Figure 15. A four-beam arrangement for a 3D optical lattice. The interference of the
four beams produces a lattice with centered tetragonal structure. Lattice points, and
positions where atoms are trapped correspond to points of pure curcular polarization
along the z-axis. For this configuration, the lattice spacing along z is one half of the
spacing along x or y.

places where the local polarization of the light field is purely circular,
either a+ or a~, along the symmetry or z-axis.

The optical potential wells of an optical lattice result from the opti-
cal dipole force. As such, the detuning from resonance can be chosen to
determine the degree to which spontaneous emission is present. Similar
to dipole traps, optical lattices can be divided into two classes - near
resonant and far off resonant. Strategies for loading and the subsequent
localization of atoms in optical lattices depends on which class the lat-
tice falls in. For near resonant lattices, in which substantial spontaneous
emission is occuring, atoms are cooled into the lattice by Sisyphus or
sub-Doppler cooling mechanisms described in section 51 of these notes.
Typically, one starts with a cloud of laser cooled atoms, switches on the
lattice beams and subsequently, the atoms cool off and are localized in
the potential wells of the optical lattice. For far detuned lattices, where
there is little or no spontaneous emission, localization of atoms in the
potential wells is accomplished by starting with a cold cloud of atoms
and non-adiabatically or rapidly turning on the lattice beams. Those
atoms near the bottom of the potential wells at the instant when the
lattice beams are turned on will be localized in the wells. The density
of atoms trapped in optical lattices is substantially below degeneracy.
Typically, only 1/100 of the lattice sites are occupied in a 3D lattice.
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6.2. OBSERVATION OF ATOMS IN OPTICAL LATTICES

Various techniques have been employed to observe atoms in optical
lattices. Among them are high resolution measurements of the optical
absorption and emission spectrum, Bragg diffraction of near and far
detuned light and measurements of the redistribution of photons in the
lattice beams.

The absorption spectrum is measured by sending a weak probe beam
through the cloud of atoms confined in the lattice and recording the
absorption as a function of the detuning of the probe from resonance.
This technique for observing the confinement of atoms in optical lat-
tices was originally instituted by the ENS group, and a great many
insights into the behavior of atoms in optical lattices have been gained
by these experiments. The emission spectrum is obtained by measuring
the frequency of the lattice light scattered by the atoms using an optical
heterodyne technique. The fluorescent light emitted by the atoms held
in the lattice is mixed with a local oscillator derived from the same laser
that creates the lattice. This results in a high resolution measurement
of the spectrum of emitted light, since any frequency fluctuations due
to technical noise in the laser are common mode between the signal
and the local oscillator.

Transitions between the quantized vibrational states of atoms in the
potential wells of the optical lattice have been observed as sidebands in
the optical absorption and emission spectrum. Figure 16 is an emission
spectrum of atoms confined in a 3D optical lattice. Quantum mechani-
cally, the sidebands may be thought of as Raman scattered light, with
the lower frequency (red) sideband arising from processes beginning on
a given vibrational level of a potential well and returning to a higher
level, while the blue sideband comes from processes returning to lower
vibrational levels. The central peak represents those processes where
the vibrational level does not change. The temperature of atoms in
optical lattices can be extracted from the relative strengths of the red
and blue sidebands. This is possible because the red sideband comes
from processes starting on lower vibrational states, and for a thermal
distribution these states are more highly populated than the higher
states.

The first observations of the sidebands came in ID experiments
in the absorption spectrum [114] and the emission spectrum [115].
Sidebands were subsequently measured in 2 and 3 dimensional optical
lattices, and a great many insights into the behavior of atoms in optical
lattices have been gained by these experiments. The details of these and
other experiments, as well as the theoretical analysis are not covered
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Figure 16. Emission spectra taken at NIST-Gaithersburg for cesium atoms trapped
in the lattice of fig. 15. The upper spectrum was from light emitted along the a; axis
and the lower one from light along the z axis.

in these notes, but can be found in refs [112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127].

Just as x-rays may be Bragg scattered from 3D solid crystals whose
lattice constant is on the order of x-ray wavelengths, light can be Bragg
scattered from optical lattices whose lattice constant is on the order
of optical wavelengths. While they are closely related, we distinguish
Bragg scattering from four wave mixing processes in which a probe
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beam is directed into an optical lattice and the reflected beam is ob-
served [118, 123]. A common interpretation of such experiments is that
one of the lattice beams is Bragg reflected from a grating formed by
the interference of the probe with another of the lattice beams. In
experiments at NIST [128], the probe beam was introduced after the
lattice beams had been turned off, so the probe was Bragg scattered
from the arrangement of atoms that had been imposed by the lattice.
Similar experiments have been reported in Munich [129]. There, the
probe was a completely different color from the lattice laser beams,
and made use of the resonant enhancement near a different transition
than that used to create the lattice.

The intensity of the Bragg scattering is affected by the degree to
which atoms are localized at the optical lattice sites. This is expressed
by the Debye-Waller factor, familiar from x-ray scattering. The re-
flected signal is proportional to this factor

FD-W = exp(-K2Ax2) (19)

where K is the difference in wavevectors between incident and reflected
beams and Ax2 is the mean square spread of the atomic distribution in
a potential well, measured in the direction perpendicular to the Bragg
plane. Because of the exponential dependence of the Debye-Waller fac-
tor, the amount of Bragg scattering can be extremely sensitive to the
degree of localization.

The third technique for observing the motion of atoms in an optical
lattice is to detect the redistribution of photons associated with the
atoms interacting with the lattice. The optical dipole force experienced
by atoms in the lattice potential can be viewed as arising from the
simultaneous absorption of a photon from one beam and stimulated
emission into another beam. For example, an atom displaced from
the potential minimum in a ID standing wave would tend to simul-
taneously absorb a photon from the laser beam counterpropagating to
the displacement direction and, stimulated by the copropagating laser
beam, emit a photon in the same direction: the net result being that
the atom recoils toward the potential minimum with twice the single
photon momentum transfer from one beam. The photon-redistribution
technique detects the change or redistribution of photons amongst the
lattice beams as the atoms experience a net force on their center of
mass motion due to the optical potentials.

6.3. DYNAMICS OF ATOMS IN OPTICAL LATTICES

Bragg scattering and photon redistribution can be used to study the
motion of atoms in optical lattices. In turn, studying the dynamical be-



465

500 1000 1500 2000 2500

U O< E R>

Figure 17. Localization rate T ' in s ' and in units of the recoil frequency,
WR = 2TT x 2.07 kHz, versus the potential depth Uo, for fixed detunings.

havior of atoms in optical lattices provides insight into the mechanisms
of laser cooling previously infered from steady-state measurements.

We have used the exponential dependence of the Bragg scattering
on the localization of the atoms to sensitively measure the spread of
the atomic position in the optical potentials. In one such study, we
start with a disordered gas of atoms, turn on the optical lattice and
observe the Bragg signal after the lattice has been on for varying times.
Using the expression for the Debye-Waller factor, we determine the
time evolution of the localization from the Bragg signal. We find that
for a wide range of parameters the localization decays exponentially to
its steady state value [130]. The rate of exponential decay is found to
be proportional to the photon scattering rate of atoms trapped at the
lattice sites, as shown in fig. 17. In the ID experiments with Cesium
atoms, the localization rate is about 30 times slower than the scattering
rate and in 3D it is about 200 times slower. This dramatic difference
in the ID and 3D rates is not understood. Perhaps it is due to the
existence of orbits with angular momentum in 3D.

Bragg scattering can also be used to detect changes in the local-
ization caused by deliberate changes in the optical lattice potential.
Starting with atoms in steady state, reasonably well localized near the
lattice sites, we suddenly increase the intensity of the lattice beams and
correspondingly the depth of the potential wells. Figure 18 shows the
results of such an experiment in a ID cesium opitcal lattice [131]. There
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Figure 18. Wave-packet oscillations in a ID lattice formed by tow counter propa-
gating beams with orthogonal, linear polarization. The ocillations are induced by a
sudden increase, at t=0, of the potential depth by a factor of 4.6. The long-term
heating is best fitted by an exponential with a time constant of 45 /JS (dashed line).

is an initial decrease in the mean square position spread as the atoms
have received a kick due to the sudden increase in the lattice potential
depth, causing them to accelerate toward the centers of the potential
wells. They then oscillate through the centers, producing a breathing
motion of the wave-packet at twice the trap vibrational frequency. The
oscillations are damped mainly by dephasing due to dispersion of the
vibrational frequencies in the anharmonic trapping potential. Over a
longer period of time, the average value of the mean squared spread
increases, indicating a heating to a higher temperature in the deeper
potential well. For the data of fig. 18, this long-term heating is best
fitted by an exponential with a time constant of 45 fjs, which is much
longer than the localization time constant of 6 fis estimated for the
deeper potential well [131].

We also observe, using the photon redistribution technique [132],
the oscillatory motion of the atomic wave-packets in a ID optical
lattice formed by two, nearly counterpropagating, laser beams with
orthogonal, linear polarization. The two beams are directed onto pho-
todiodes and the difference signal is measured; taking the difference
signal strongly suppresses noise due to laser intensity fluctuations while
doubling the single-beam signal corresponding to the coherent photon
transfer. A similar redistributed photon detection technique was re-
cently used for observing the wave-packet motion of atoms also in a ID
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Figure 19. Experimental (solid) and theoretical (dotted) power transfer ratio,
(AP/P)(t), between the lattice beams induced by sloshing mode, wave-packet os-
cillations of atoms in a ID optical lattice. For clarity, the solid and dotted lines are
shifted with respect to each other. The oscillations are initiated by a sudden shift of
the lattice at t=0 by the indicated value of dz. The theoretical curve was obtained
from QMCWF calculations and is scaled to match the second extremum, because
the first is strongly affected by the time constant of the shift.

lattice [133], although in this experiment, the signal was interpreted as
arising from recoil-induced resonance.

Starting with the atoms cooled and localized at the bottom of the
potential wells, we suddenly shift the potential minima with respect
to the center of mass of the atoms by an amount 0 < dz < 0.25A
using a phase modulator in one of the lattice beams. The atoms then
execute a sloshing, oscillatory motion in the displaced lattice. Figure 19
shows a typical experimental result along with the results of quantum
Monte-Carlo wavefunction (QMCWF) calculations. The experimental
and theoretical curves are in excellent agreement, except for a faster
decay in the experimental data. We attribute this to intensity inhomo-
geneity in the experiment. The initial collapse of the oscillation is due
to dephasing, which results from the anharmonicity of the system. The
long-time structures evident in fig. 19 represent the first convincing
observations of wave-packet revivals in optical lattices. These revivals
occurred earlier than we expected based on dispersion due to anhar-
monicity alone. Instead, our QMCWF theory, which completely treats
dispersion and dissipation, shows that anharmonicity, band curvature
(resulting from tunneling between adjacent wells) and coherence trans-
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fer into lower vibrational states (due to dissipation) are all important
processes, contributing to the evolution of the wave-packet [132].

7. Manipulating Bose-Einstein condensates with light

The creation of Bose-Einstein condensates (BECs) in dilute atomic
vapors of Rb, Na and Li [134, 135, 136] is one of the major triumphs of
laser cooling and trapping of neutral atoms. Alternatively, the creation
of BECs has renewed interest in the applications of laser cooling and
trapping techniques for atom optics, the manipulation of atoms analo-
gous to the manipulation of light. Of the many remarkable properties
of Bose-Einstein condensates, its macroscopic coherence properties are
particularly significant for atom optics. The atomic analogue of a laser,
a beam of atoms with a coherence length significantly longer than the
size of the sample, would be the ultimate source of coherent deBroglie
waves. One promising approach is the coherent extraction of atoms
from a condensate.

The principal focus of research on Bose-Einstein condensates in the
Laser Cooling and Trapping Group of NIST is for atom optics and the
realization of the " atom laser," the atomic analogue of the optical laser.
Our atom optics experiments are performed on a BEC of sodium atoms
produced in a TOP trap. Using optical, stimulated Raman transitions,
we have demonstrated normal and Bragg diffraction of condensates
and directional output coupling of atoms from a BEC for a quasi
continuous-wave (CW) atom laser.

We begin with a brief description of our experimental apparatus
and approach for creating a Bose-Einstein condensate. We do this es-
sentially for two reasons: our strategy for achieving BEC is somewhat
different than other approaches, and it illustrates an application of
many of the techniques of laser cooling and trapping developed over
the last 15 years. This is followed by a description of experiments using
optical stimulated Raman pulses to manipulate condensates both in
and out of traps.

7.1. THE TRI-AXIAL TOP TRAP FOR SODIUM

Our Bose-Einstein condensates of sodium atoms are produced in a time-
averaged orbiting potential or TOP trap [51]. Our TOP trap differs
from those in other BEC experiments in two respects. First, all other
experiments with TOP traps that have resulted in BEC use rubid-
ium. We are currently the only group making condensates of sodium
in a TOP trap. The lighter mass of sodium poses a greater technical
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challenge in the design of the TOP trap compared to rubidium. Since
the oscillation frequency of an atom in a trap is higher for the lighter
atom, the frequency of the rotating bias field of the TOP trap must be
correspondingly higher so that the atom experiences the time-averaged
potential. Typically, sub-Doppler laser cooling can cool a sample of
atoms to an energy which is a few times the recoil energy. Since the
recoil energy is inversely proportional to the mass of the atom, the
TOP trap must also be deeper or stronger to contain the lower mass,
laser cooled atoms. Second, the geometry of our TOP trap is different
from other TOP traps resulting in a totally anisotropic or tri-axial,
time-averaged potential.

A time orbiting potential or TOP trap is a magnetic trap consist-
ing of a quadrupole magnetic field and a constant magnitude rotat-
ing bias field. The potential resulting from a superposition of these
two magnetic fields, averaged over a rotation period, is harmonic for
small displacements. The time-averaged value of the minimum mag-
netic field in the TOP trap is just the magnitude of the rotating
bias field. That is, the rotating bias field has effectively "plugged"
the zero field region of the quadrupole field. For a bias field Bj, =
Bo (xcos(fit) + ysm(/2i)),rotating at frequency /?, with magnitude Bo,
in the presence of a general quadrupole field Bg = bq (axx + f3yy + Fzz),
where the values of a, [3 and F must satisfy Maxwell's equations, the
magnitude of the magnetic field averaged over one rotation is,

(B)t = £- J dt\Bq + B6| = ^BmaxE{m) (20)

(Fbqz)2 (21)

r = J(ax)2 + ((3y)2 (22)
m = ABobqr/B2

max (23)

E(m) is a complete elliptic integral of the second kind. There is a locus
of points where the instantaneous magnetic field is zero, the "circle
of death." These points occur where the rotating bias field cancels
the quadrupole field, that is, these points corresponding to z = 0 and
bqr = Bo.

In the standard configuration for the TOP trap fields, such as in the
original trap of JILA used to create the first BEC of Rb, the bias field
rotates in the symmetry plane of the quadupole field, hence a = /? = 1
and F = — 2. For small displacements, the time-averaged potential is
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given by

The spring constant in the radial (x, y) direction is a factor of eight
less than the axial direction (z) producing a disk shaped time-averaged
potential.

In the NIST-Gaithersburg TOP trap, the bias field rotates in a plane
containing the symmetry axis of the quadrupole field. To obtain the
time-averaged magnitude of the magnetic field from eqs. 20-23, we make
the substitution: a = 1, /3 = —2, F = 1, x —+ x , y —> z and z —> y. For
small displacements, the time-averaged potential is given by

(B)t = Bo + i (x2 + 2y2 + 4z2) (25)

The spring constants of a magnetic trap given by eq. 25 are in the
ratio of 1:2:4 in the x, y and z direction. Such a tri-axial trap is closer
to spherical than the JILA TOP trap and better matched for loading
from the nearly spherical clouds of laser cooled atoms from the MOT.
Unlike the coventional TOP trap of JILA, described by eq. 24, this time-
averaged potential is tri-axial, that is, it has no rotational symmetry,
which poses an additional challenge for theoretical calculation.

Although the TOP trap has a number of desirable properties, in-
cluding some independent adjustments of the spring constants in the
three principle directions, there are certain limitations associated with
trapping a mixed state such the F = 1, mp = — 1 state of sodium.
The most important is the quadratic Zeeman effect which reduces the
"effective" magnetic moment of that state.

Equations 24 and 25 show that in order to achieve the stiffest TOP
trap for a given radius of the " circle of death" (a radius typically chosen
to be larger than the radius of the sample of trapped atoms), the
largest possible quadrupole field should be used. If the strength of the
quadrupole field is increased then the magnitude of the rotating field
must be increased to keep the radius of the "circle of death" constant.
The energy of the F = 1, mp = — 1 state of sodium as a function of
magnetic field initially increases linearly (the linear Zeeman effect), but
the slope decreases with magnetic field due to the quadratic Zeeman
effect. Eventually the energy of this state reaches a maximum around
31.5 mT (315 Gauss) above which it becomes an anti-trapped state.
Thus for a fixed radius of the "circle of death," the stiffness of the TOP
trap no longer increases linearly with the strength of the quadrupole
field, becoming extremely weak for sufficiently large values of the bias
field.



471

7.2. BEC OF SODIUM IN A T O P TRAP

Similar to other BEC experiments, our Bose-Einstein condensate of
alkali atoms is produced by evaporative cooling in a magnetic trap
loaded with laser cooled and trapped atoms, however, the details of
our technique differ from other groups. More specifically, we load a
dark spot MOT [79] from an effusive source of sodium at 625 K using
Zeeman slowing. The slowing laser beam passes through the trap so
that the capture area of the trap subtends a large solid angle of the flux
of slow atoms. In order to minimize the effect of the slowing laser on the
trapped atoms, we use a hybrid slower geometry [137]. A conventional
Zeeman slower is used to slow atoms from about 800 m/s down to
about 160 m/s, followed by a short section of reverse slower [138] to
slow atoms from about 160 m/s down to a few m/s, which is within the
capture velocity of the dark spot MOT. To avoid the loss of atoms in the
slowing process due to optical pumping as the atoms pass through the
zero field region between the conventional and reverse Zeeman slowing
magnets, a second laser frequency is in the slowing beam to pump
atoms from the F = 1 hyperfine level to the F — 2 level where they
can continue to be slowed. In addition, a dark spot is placed in the
slowing laser beam, creating a shadow in the region of the cloud of
atoms in the dark spot MOT [139]. This further reduces the effect of
the slowing laser beam on the trapped atoms. Typically, we load more
than 1010 atoms into the MOT in less than 0.5 seconds.

After loading into the dark spot MOT, the magnetic fields are rapidly
switched off and the atoms are further cooled to 200 /JLK by a brief
period of dark molasses (there is a dark spot in the repumper light in the
molasses beams), followed by optical pumping of the entire population
into the F = 1 hyperfine level. The magnetic trap is then rapidly
switched on, trapping atoms in the mp = — 1 sublevel of the F = 1
ground state. Since all three sublevels are present in equal populations
at the time when the magnetic trap is turned on, two-thirds of the
sample of laser cooled atoms are necessarily lost in the transfer. Exper-
imentally, we find that we are able to trap 4 to 5 xlO9 sodium atoms
in the magnetic trap.

The atoms are confined in the benign environment of a magnetic
trap in order to be evaporatively cooled [140, 141]. We have developed
two strategies for evaporatively cooling atoms to Bose-Einstein con-
densation. The first strategy involves evaporatively cooling using rf,
the atoms initially trapped in a quadrupole field. This is then followed
by rapidly transfering them into the TOP trap and further cooling the
sample to condensation again using rf-induced evaporation. The second
strategy involves starting with atoms in the TOP trap and evporatively
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cooling the atoms with the circle of death all the way to condensation.
Both strategies produce approximately the same number of final con-
densate atoms, about 3 x 106, at a BEC transition temperature of 1.2

The first strategy evolved in response to the quadratic Zeeman effect
problem in the mp — — 1 state of sodium, discussed in section 71. That
is, for the large cloud of atoms initially confined in the TOP trap, the
stiffness of the trap could not be increased, while keeping the "circle of
death" well outside the cloud, to sufficiently compress the sample for
runaway evaporation. Instead, we initially compress and evaporatively
cool the sample of atoms trapped in a quadrupole magnetic field. When
the sample is sufficiently cold and dense enough, we transfer them to
the TOP trap by rapidly switching on the rotating bias field while
the quadrupole field is on, after which further evaporative cooling can
proceed in the TOP trap. Evaporative cooling in the TOP trap can
be achieved by removing the higher energy atoms to untrapped states
with either rf-induced transitions or the circle of death. For most ex-
periments we use rf-induced transitions because it allows us greater
control and flexibility. By appropriate choice of frequency and power,
we can control the final energy of the atoms we are removing as well
as the width of cut made into the sample of atoms. In addition, the
parameters of the rf can be changed rapidly compared to changing
values of magnetic fields for the circle of death. This technique works
for a large range of initial numbers of trapped atoms. When the initial
number of trapped atoms in the MOT is > 109, we can achieve BEC
with atoms in the TOP trap, directly. We initially loose a large number
of atoms after transfer into the TOP trap because the circle of death can
not be placed sufficiently outside the cloud of atoms. After this initial
loss and the cloud of atoms has rethermalized to a lower temperature
and higher density, runaway evaporation can be achieve by compressing
the sample and removing high energy atoms with the circle of death.

We probe our samples of atoms using absorption imaging tech-
nique [134]. The TOP trap is rapidly shut off and after a variable delay,
a short laser pulse optically pumps the atoms from F = 1 to F = 2,
after which another short laser pulse resonant with the 3S!/2, F = 2
—* 3P3/2 , F'= 3 transition is applied to the atoms along the direction
of gravity (the x direction). The light absorbed from this laser beam is
imaged onto a CCD camera. From this image we extract the transverse
spatial dependence of the optical depth along the direction of the probe
beam.
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7.3. DIFFRACTION OF BEC BY OPTICAL STANDING WAVES

As discussed in section 21 of these lecture notes, atoms can be diffracted
by the periodic potential resulting from an optical standing wave. The
diffraction produces a coherent splitting of the atomic wave packet and
can be thought of as arising from the process of simultaneous absorption
of photons from one laser beam and stimulated emission of photons
into the other laser beam of the optical standing wave, each process
transfering ±2hk of momentum to the atoms. There are effectively
two regimes of diffraction, normal and Bragg. We have demonstrated
diffraction of Bose-Einstein condensates in both regimes.

In the early experiments demonstrating diffraction of atoms by opti-
cal standing waves [17, 18], a beam of atoms passed through an optical
standing wave and the diffracted beam was detected downstream. In
our experiments [142, 143], we start with BEC at a temperature suf-
ficiently below the transition temperature such that no discernable
thermal fraction is present. We then adiabatically reduce the strength
of the confining potential, which lowers the energy of the condensate by
both reducing the mean-field interactions and increasing the size of the
condensate wavefunction. We then expose the atoms to a short pulse of
the optical standing wave, while they are either still in the TOP trap,
or shortly after releasing them from the trap by rapidly shutting off
the magnetic fields. Hence the condensates are essentially at rest and
we expose them to the optical standing wave temporally. We detect the
momentum transferred to the atoms by the diffraction process by taking
an absorption image after a sufficient time delay, such that the various
atomic wave-packets with different momenta have spatially separated.

Figure 20 is an example of normal diffraction of BEC by a short
pulse of a weak and strong optical standing wave. The optical standing
wave is applied along the z-axis, 2 ms after the condensate atoms have
been released from the adiabatically expanded trap. For a weak pulse
there is only a small phase modulation imposed on the cloud of atoms
by the optical standing wave, as described in section 22, and only the
first diffraction orders with momentum ±2hk are observed (fig. 20a).
When the pulse intensity is increased by a factor of 5 there is a sub-
stantial phase modulation imposed on the released condensate atoms
and higher diffraction orders are observed. In fig. 206, both second and
third order diffraction, corresponding to momentum transfer of ±4hk
and ±6/lfc, is clearly evident. The images in fig. 20 were taken 10 ms
after the application of the diffraction pulse. The momentum spread of
the undiffracted atoms is approximately 0.06 hk and so the diffracted
components are clearly resolved.
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b)

Figure 20. Diffraction of a BEC by a short pulse, optical standing wave, a) For low
intensities only first order diffraction into ±2hk momentum states is visible, b) At
higher intensities, higher order diffraction (±4hk and ±6hk) is observed.

7.4. DIFFRACTION BEYOND THE RAMAN-NATH REGIME

In the description of normal diffraction by an optical standing wave as
a phase modulation of the atomic deBroglie wave, the pulse was consid-
ered short enough to be in the Raman-Nath regime, so that the phase
modulation was essentially instantaneous. Alternatively, in the picture
of diffraction as the simultaneous absorption and stimulated emission of
photons, the bandwidth of the standing wave pulse was broad enough
such that energy conservation can be satisfied for momentum transfer
in both directions. If the laser pulse is left on for a longer time, we will
violate the Raman-Nath approximation. The atoms can move along the
periodic potential of the standing wave and the phase modulation will
spatially average to a constant value. Alternatively, the pulse will have
insufficient frequency width to satisfy energy conservation. This regime
beyond Raman-Nath leads to periodic focusing and defocusing of the
atoms and is relevant for atom lithography.

We have studied the behavior of a BEC in a pulsed optical standing
wave beyond the Raman-Nath regime, the details of which can be found
in ref. [142]. We observed oscillations in the intensity of the diffracted
orders as a function of the laser pulse duration. Our results are in good
agreement with a simple model where we project an incoming plane
wave state onto a Bloch state basis, accumulate the differential phases
due to the different energies of the Bloch bands, and then project back
onto momentum eigenstates.
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7.5. THE PULSED TALBOT EFFECT

Periodic focusing and defocusing can also be studied within the thin
diffraction grating (Raman-Nath) regime. This behavior is known as
the Talbot effect. In the optical Talbot effect, coherent light passing
through a periodic grating will from an "image" of the grating at a
characteristic distance known as the Talbot length. For a phase grating,
this "image" corresponds to the initial intensity distribution of the light
with the phase distribution of the grating. Unlike light, however, atoms
can be initially at rest, and the "reimaging" of the phase grating occurs
at integer multiples of the Talbot time. Also, unlike light, atoms can be
exposed to a pulsed, phase grating, which leads to a unique manifesta-
tion of the Talbot effect. We have demonstrated a new manifestation
of the Talbot effect using the diffraction of a BEC by pulsed optical
standing waves. In our experiment, the details of which can be found in
ref. [144], we start with atoms at rest and apply a short pulse, optical
standing wave to diffract the condensate atoms. A second identical
diffraction pulse is applied after a variable delay to analyze the temporal
evolution of the resulting condensate wavefunction. We observe that the
initial phase distribution reimages itself at integer multiples of 10 ms,
the Talbot time for our parameters. When the second pulse is applied
at odd multiples of half the Talbot time, self imaging of the condensate
in momentum space is observed. Intermediate delays produce more
complicated momentum-space patterns that are in excellent agreement
with theory. The coherent property of the condensate provides signals
of very high contrast. In addition, we observe that the dynamics of the
short pulse is different from that of a static grating because it has a
broad frequency spectrum and hence can add energy to the system. It is
the dispersion relation of matter waves, not the path length difference
as in the case of static gratings, that results in this new manifestation
of the Talbot effect.

7.6. SPATIAL PHASE VARIATIONS ACROSS A BOSE-EINSTEIN
CONDENSATE

We have used an unequal arm length interferometer, based on nor-
mal diffraction by pulsed optical standing waves, to study the spatial
coherence of a BEC, the details of which can be found in ref. [146].
Two optical standing wave pulses of duration 100 ns and separation
time 8t are applied to the condensate. Each standing-wave phase grat-
ing diffracts the condensate, making small "copies" of the condensate
displaced in momentum space by twice the momentum of a single pho-
ton. As the first copy moves away from the condensate its phase is
evolving at 4Erec/h, where Erec is the single photon recoil energy. (For
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sodium atoms with an excitation wavelength of 589 nm, Erec/h is 25
kHz.) After the second copy is created at a time 5t later, the phase
of both copies then evolve at nominally the same rate. The quantum
mechanical amplitudes of each copy interfere, and the total number of
atoms coupled out of the condensate by the two pulses is measured.
The resulting interferogram oscillates at the expected 100 kHz phase
evolution of the first copy with respect to the second copy. The decay
of the envelope of the interferogram is due to both the spatial overlap
of the two copies (since the first copy has moved during 6t due to the
momentum kick) and on the initial spatial phase variations across the
condensate.

When the coherence measurement is made on a condensate held in
the trap, we obtain an interferogram whose envelope decays essentially
as the spatial overlap of the two coupled out copies. The results are
consistent with the trapped condensate having a uniform spatial phase.
Hence we have experimentally verified that the trapped BEC, despite
being spatially expanded due to the mean-field interaction between the
atoms, has a momentum spread that is determined by the Heisenberg
uncertainty principle. This result, which we measured in the time do-
main, was also obtained earlier, from measurements in the frequency
domain, by Ketterles group at MIT using Bragg spectroscopy [147].
Alternatively, a released BEC exhibits large phase variations across
the condensate as the mean-field interaction is converted into kinetic
energy. This is apparent in our measurements where we obtain an in-
terferogram with an envelope that decays much faster than the spatial
overlap of the two copies. Our measurements also confirm that the
successive, Raman output coupled pulses of atoms in our atom laser
are fully coherent.

7.7. BRAGG DIFFRACTION OF ATOMS

In order to Bragg diffract atoms by an optical standing wave, as de-
scribed in section 22, energy and momentum must be satisfied explicitly
for the duration of the pulse. Since diffraction results in the transfer
of multiple units of ±2hk to the atoms, the final kinetic energy of the
atomic ensemble can be different from the initial kinetic energy. For a
beam of atoms incident on a fixed standing wave, energy conservation
can be satisfied by chosing the angle of incidence such that the energy
difference comes from the differential Doppler shift of the two counter-
propagating beams of the standing wave, as seen by atoms. In the case
where we start with BEC essentially at rest, this differential Doppler
shift can be created by moving the standing wave with respect to the
atoms.
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We create our moving standing wave by having a frequency differ-
ence S between the two counterpropagating waves that make up the
standing wave. In the presence of this moving standing wave, an atom
intially at rest will simultaneously absorb photons from the higher
frequency laser beam and be stimulated to emit photons into lower
frequency beam acquiring momentum ±2nhk in the process. In order
to satisfy energy conservation, the detuning S must be chosen such that
n5 = n2AETec/h, where Erec is the recoil energy.

Figure 21 shows first, second and third order Bragg diffraction of
Bose condensed atoms released from the magnetic trap. When the
frequency difference between the two lasers is 100 kHz, atoms initially
at rest can resonantly absorb a photon from the higher frequency laser
beam and be stimulated to emit a photon into the lower frequency
beam. The result of this process is a transfer of two units of photon
momentum to the atoms, which then travels ballistically with a velocity
of 6 cm/s. Similarly, by setting the frequency difference of the lasers
to —100 kHz, the momentum transfer to the atoms from the Raman
process will be in the opposite direction. Since Bragg diffraction of
the atoms can be thought of as a two level system (the initial and
final momentum states) coupled by the Raman process, it is possible
to transfer all of the atoms to the final momentum state. We have
observed first order Bragg diffraction of 100% of the condensate atoms.
The amount of transfer was reduced in the images of fig. 22 so that
the location of the condensate atoms, initially at rest, could be easily
identified. Second and third order Bragg diffraction was observed when
the laser detuning was increased to 200 kHz and 300 kHz, respectively.
We have observed up to sixth order Bragg diffraction with a momentum
transfer of «12 hk (corresponding to a velocity of 0.35 m/s).

7.8. RAMAN OUTPUT COUPLING: DEMONSTRATION OF A QUASI-CW
ATOM LASER

In order to realize an atom laser from BEC, it is necessary to coher-
ently extract the condensed atoms; that is, an atom output coupler
is needed. The first demonstration of an output coupler for BEC was
reported in 1997 [148], where coherent, rf-induced transitions were used
to change the internal state of the atoms from a trapped state to an
untrapped one. This method, however, did not allow the direction of
the output coupled atoms to be chosen. The extracted atoms fell under
the influence of gravity and expanded because of the intrinsic repulsion
of the atoms. We have developed a highly directional method to opti-
cally couple out a variable fraction of a condensate. We use stimulated
Raman transitions between magnetic sublevels to coherently transfer
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Figure 21. Bragg diffraction of a BEC: By applying a moving standing wave (whose
velocity is determined by the frequency difference of the two waves comprising the
standing wave) we can Bragg diffract a portion of the condensate into a well-defined
momentum state.

trapped condensate atoms to an untrapped state while giving them a
momentum kick [145].

The Bragg diffraction of atoms [143] discussed earlier involves a
stimulated Raman transition between different momentum states while
keeping the atoms in the same magnetic sublevel. If the frequency-
difference between the lasers includes the additional Zeeman energy
between two magnetic sublevels, a simultaneous change in the momen-
tum and internal state of the condensate atoms can be achieved. This
is illustrated in fig. 22, where BEC trapped in the F = 1, mp = — 1
state is transferred to the F = 1, TUF = 0 state. Two units of photon
momentum are transferred in the Raman process, so the cloud of atoms
in the mp = 0 state has a velocity of 6 cm/s with respect to those
atoms in the mp = — 1 state.

We can repeatedly apply the Raman pulses to achieve multiple out-
put coupling of atoms from a BEC. This is shown in fig. 23. In order
to avoid changes in the Raman resonance frequency between differ-
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Figure 22. Raman output coupler: A stimulated Raman transition is used to transfer
2 hk of momenta, and change the magnetic sublevel from the trapped m — — 1
to the untrapped m = 0 state. The pictures are absorption images taken after a
time-of-flight period.

ent magnetic sublevels we synchronized the application of the Raman
pulses to our rotating TOP field. (Our condensate atoms were displaced
by gravity away from the zero of the quadrupole field, so that the local
magnetic field was modulated by the rotating TOP bias field.) Figure
23a-c are optical absorption images of the condensate after one, three
and seven Raman pulses respectively. For these images, the TOP trap
was held on for a 9 ms window during which time 6 fis Raman pulses
were applied at a subharmonic of the rotating TOP bias frequency. The
magnetic fields were then extinguished and the atoms were imaged 1.6
ms later. In fig. 23d, the TOP trap was held on for a 7 ms window during
which time 140 Raman pulses were fired at the 20 kHz frequency of
the rotating bias field and the distribution of atoms was imaged 1.6 ms
later. The Raman pulse duration was reduced to 1 x̂s in order to couple
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Figure 23. Series of images demonstrating multiple Raman output coupling of atoms
from BEC en route to demonstrating a quasi-continuous stream of coherent atoms.
In a-c), one, three and seven 6 /JS Raman pulses were applied to the condensate
respectively, d) is the result of the application of 1 fjs Raman pulses at the full
repetition rate of 20 kHz imposed by the frequency of the rotating TOP bias field
(140 pulses in 7 ms).

less atoms out of the condensate during each Raman pulse. In the time
between two Raman pulses each output coupled wavepacket moves only
2.9 fj,m. These pulses strongly overlap because this spatial separation
of 2.9 jum is much smaller than the « 50/um size of the condensate,
therefore the output coupled atoms form a quasi-continuous coherent
matter wave.

Our Raman output coupling scheme dramatically reduces the trans-
verse momentum width of the extracted atoms compared to other
methods such as rf output coupling [148]. This dramatic reduction
occurs because the output coupled atoms have received a substantial
momentum kick from the Raman process. If the atoms were simply
released from the trap with no momentum transfer, they would un-
dergo a burst of expansion due to the repulsive interactions with the
other condensate atoms. In our output coupling scheme, however, this
additional expansion energy is primarily channeled into the forward
direction. The increase in the transverse momentum width due to the
interaction between the atoms is reduced by roughly the ratio of the
timescale over which the mean field repulsion acts on the freely ex-
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panding condensate, divided by the characteristic time it takes the
output coupled atoms to leave the still trapped condensate. In our
case, the reduction ratio is about a factor of « 20 which results in a
well collimated beam of atoms.

One of the important properties of an optical laser is that the co-
herence length of the emitted beam of photons is much longer than
the size of the cavity. A similar property for an atom laser would be
highly desirable. The output coupled beam of our atom laser beam
is much longer than the characteristic size of the condensate. Since
stimulated Raman transitions are coherent processes, we expect the
coherence length of this beam to be much longer than the size of the
condensate, but this has yet to measured.

7.9. NONLINEAR ATOM OPTICS WITH BOSE-EINSTEIN CONDENSATES

The advent of the laser as an intense, coherent, light source enabled the
field of nonlinear optics to flourish. The interaction of light in materials,
whose index of refraction depends on the intensity, has led to effects
such as multi-wave mixing of optical fields to produce coherent light
of a new frequency, and optical solitons, pulses of light that propagate
without dispersion. Nonlinear optics now plays an important role in
many areas of science and technology. With the experimental realiza-
tion of Bose-Einstein condensation (many atoms in a single quantum
state) and the matter-wave or atom "laser" (atoms coherently extracted
from a condensate), we now have an intense source of matter-waves
analogous to the source of light from an optical laser. This has led us
to the threshold of a new field of physics: nonlinear atom optics [149].

The analogy between nonlinear optics with lasers and nonlinear
atom optics with Bose-Einstein condensates can be seen in the similar-
ities between the equations that govern each system. For a condensate
of interacting bosons, in a trapping potential V, the macroscopic wave
function \I> satisfies a nonlinear Schrdinger equation [150],

where M is the atomic mass, g describes the strength of the atom-
atom interaction (g > 0 for sodium atoms), and |\&| is proportional to
atomic number density.

7.9.1. Four-wave mixing with matter-waves
The nonlinear term in Eq.((19) is similar to the third-order suscepti-
bility term, x^3\ m the wave equation for the electric field describing
optical four-wave mixing. We therefore expect that if three coherent
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Figure 84- The process of four-wave mixing of matter-waves can always be trans-
formed to a reference frame where the mixing process is degenerate (all of the waves
have the same energy; left). The nonlinear term describing the mean-field, s-wave
interaction of the atoms is responsible for the four-wave mixing. Atoms from waves
1 and 3 scatter off each other and go off back-to-back. The scattering process can be
stimulated by wave 2, so that it is more likely that one of the scattering pairs goes
into this wave. By momentum conservation, wave 4 is created. The small cloud of
atoms in the image on the right is the fourth wave generated by four-wave mixing
of matter-waves.

matter-waves are spatially overlapped with the appropriate momenta,
a fourth matter-wave will be produced due to the nonlinear interaction,
analogous to optical four-wave mixing. In contrast to optical four-wave
mixing, the nonlinearity in matter-wave four-wave mixing comes from
atom-atom interactions, described by a mean-field; there is no need for
an external nonlinear medium.

Using the atoms from a BEC, we have observed such four-wave
mixing of matter-waves. This work is described in detail in ref. [151].
In our four-wave mixing experiment, we used optically induced Bragg
diffraction [143] to create three overlapping wavepackets with appro-
priately chosen momenta. As the three wavepackets spatially separate,
a fourth wavepacket, due to the wave-mixing process, is observed (see
Fig.24).

The process of four-wave mixing of matter-waves (and also optical
waves), can be thought of as Bragg diffraction off of a matter grating.
In this picture, two of the matter-waves interfere to form a standing
matter-wave grating. The third wave can Bragg diffract off of this grat-
ing, giving rise to the fourth wave. An alternative picture of four-wave
mixing is in terms of stimulated emission. In this picture it is helpful
to view the four-wave mixing process in a reference frame where the
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process looks like degenerate four-wave mixing; that is, all of the waves
have the same energy.

In four-wave mixing, both energy and momentum (corresponding to
phase matching) must be conserved. Since atoms, unlike photons, can
not be created out of the vacuum we have the additional requirement
for matter-waves of particle number conservation. (If we included the
rest mass of the atom, particle number conservation is contained in
energy conservation.) Given these three conditions, one can show that
the only four-wave mixing configurations possible with matter-waves
are those that can be viewed in some frame of reference as degenerate
four-wave mixing. This is also the geometry of phase conjugation. Fig.
24 shows the four-wave mixing geometry for matter-waves viewed in
the degenerate or phase conjugation frame.

In the picture of four-wave mixing as arising from stimulated emis-
sion, atoms in waves 1 and 3 can be considered as undergoing an elastic
collision. The scattering process results in atoms going off back-to-
back in order to conserve momentum, but at some arbitrary angle with
respect to the incident direction. (The scattering process is typically
s-wave and the outgoing waves can be considered spherical.) In the
presence of wave 2, however, this scattering process can be stimulated.
There is an enhanced probability that one of the atoms from the col-
lision of waves 1 and 3 will scatter into wave 2. (This probability is
enhanced by the atoms in wave 2.) Because of momentum conservation,
the enhanced scattering of atoms into wave 2 results in an enhanced
number of atoms in wave 4. In this picture, it is obvious that the four-
wave mixing process removes atoms from waves 1 and 3 and puts them
into waves 2 and 4. This may have some interesting consequences in
terms of quantum correlatons between the waves.

7.9.2. Quantum phase engineering
A three-dimensional image of an arbitrarily complex object can be con-
structed by sending light, with sufficient spatial coherence, through the
appropriate phase and/or amplitude mask. This is the basic principle
behind physical optics, which includes wave phenomena like diffrac-
tion and holography. Diffraction can be achieved with a periodic phase
and/or amplitude mask; while a more complicated mask is needed to
construct a complex holographic image. In each case, the mask modifies
the incoming wave and subsequent propagation produces the desired
pattern of light. This idea can be readily adapted to atom optics, es-
pecially when the "incoming" matter-wave is from a highly coherent
source such as a Bose-Einstein condensate.

We have developed a technique to optically imprint complex phase
patterns onto a Bose-Einstein condensate in order to create interest-
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ing topological states. This technique is analogous to sending a wave
through a thin phase mask. The basic idea is to expose the condensate
atoms to a short pulse of laser light with a spatially varying intensity
pattern. The laser detuning is chosen such that spontaneous emission
is negligible. (The phase mask can also serve as an amplitude mask by
tuning closer to resonance, so that spontaneous emission is significant.)
The pulse duration is sufficiently short such that the atoms do not move
an appreciable distance (i.e. the wavelength of light) during the pulse.
This is sometimes referred to as the Raman-Nath regime. During the
laser pulse, the AC Stark effect or optical dipole potential (see Eq.((2))
shifts the energy of the atoms by U(r, t). Hence the effect on the atomic
wavefunction is to "instantaneously" change its phase. This effect can
be represented by multiplying the wavefunction by the phase factor
exp(i<p(r)), where <j>(r) = - JU(r,t)dt/h. Since the AC Stark or light
shift is proportional to the intensity of the light, any spatial intensity
variation in the light field will be written onto the BEC wavefunction
as a spatial variation in its phase.

Optically induced phase imprinting is a tool for "quantum phase
engineering" of the wavefunction to create a wide variety of states. For
example, as discussed in the section on diffraction of the condensate,
the application of a short pulse of standing wave light will imprint
a sinusoidal phase onto the condensate. The imprinted wavefunction
subsequently evolves in momentum states differing by 2hk. It should be
possible to use quantum phase engineering to produce collective states
of excitation of the interacting BEC, such as solitons and vortices. The
application of a uniform intensity light field to half of the BEC imprints
a relative phase difference between the two halves. This phase step is
expected to give rise to dark solitons (see following section). Such soli-
tons will propagate with a speed related to the phase difference [152],
which can be adjusted by the intensity of the laser pulse.

It should also be possible to produce one or more vortices by ap-
plying a laser pulse which has a linearly-varying, azimuthal, intensity
dependence [153]. This will produce a topological winding of the BEC
phase, which if large enough (i.e. 2ir) should produce a vortex. Numer-
ical solutions to a 3-D Gross-Pitaevskii equation [154] show that this is
the case; and also show that such a vortex, although unstable because
it is created in a non-rotating trap, will live for a sufficient time to be
observable. Increasing the phase winding will generate multiple vortices
(vortices with more than h of angular momentum are not stable and will
immediately split into multiple vortices each with angular momentum
h). Quantum phase engineering can generate arbitrary phase patterns,
and perhaps other interesting quantum states. In this sense, it is a form
of atom holography [155]. The technological challenge is mostly one of
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imaging. Any complicated pattern must be imaged to the size of the
BEC, typically of order 50

7.9.3. Solitons in a BEC
Solitons are stable, localized waves that propagate in a nonlinear medium
without spreading. They may be either bright or dark, depending on the
details of the governing nonlinear wave equation. A bright soliton is a
peak in the amplitude while a dark soliton is a notch with a character-
istic phase step across it. Equation (26), which describes the weakly
interacting, zero-temperature BEC also supports solitons. The soli-
tons propagate without spreading (dispersing) because the nonlinearity
balances the dispersion; for Eq.(26) the corresponding terms are the
nonlinear interaction ^l^l2, and the kinetic energy — (ft2/2M)V2, re-
spectively. Our sodium condensate only supports dark solitons because
the atom-atom interactions are repulsive [152, 156] (g > 0).

A distinguishing characteristic of a dark soliton is that its velocity
is less than the Bogoliubov speed of sound [152, 156] vo = y/gn/M (n
is the unperturbed condensate density) and they travel opposite to the
direction of the phase gradient. The soliton speed vs can be expressed
either in terms of the phase step <S(0 < 5 < n), or the soliton "depth"
rid, which is the difference between n and the density at the bottom of
the notch [152, 156]:

VS/VQ = cos(5/2) = A/1 - nd/n (27)

For 6 = 7T the soliton has zero velocity, zero density at its center, a width
on the order of the healing length [156], and a discontinuous phase step.
As 6 decreases the velocity increases, approaching the speed of sound.
The solitons are shallower and wider, with a more gradual phase step.
Because a soliton has a characteristic phase step, optically imprinting
a phase step on the BEC wavefunction should be a way to create a
soliton.

7.10. OBSERVATION OF SOLITONS IN A BEC

We modified the phase distribution of the BEC by employing the tech-
nique of quantum phase engineering discussed in an earlier section. The
condensate atoms were exposed to a pulsed, off-resonant laser beam,
coaxial with the absorption probe beam, with a spatial intensity profile
such that only half of the BEC was illuminated. This was accomplished
by blocking half of the laser beam with a razor blade and imaging this
razor blade onto the condensate. The intensity pattern at the conden-
sate, as observed by our absorption imaging system, had a light to
dark (90 % to 0%) transition region of 7 jtrni. The intensity required to
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Figure 25. Space-time diagram of the matter-wave interferometer used to mea-
sure the spatial phase distribution imposed on the BEC. Three optically induced
Bragg diffraction pulses formed the interferometer. Each pulse consisted of two
counter-propagating laser beams detuned by about —2 GHz from atomic resonance
(so that spontaneous emission is negligible) with their frequencies differing by 100
kHz. The first pulse had a duration of 8 ms and coherently split the condensate
into two components \A) and \B) with equal number of atoms. \A) remained at
rest and \B) received two photon recoils of momentum. When they were completely
separated, we exposed the top half of \A) to a phase imprinting pulse of n, which
changed the phase distribution of \A) while \B) served as a phase reference. 1 ms
after the first Bragg pulse, a second Bragg pulse of 16 ms duration brought |5) to
rest and imparted two photon momenta to |J4). When they overlapped again, 1 ms
later, a third pulse of 8 ms duration converted their phase differences into density
distributions at ports 1 and 2, which appears in the images.

imprint a phase of n was checked with a Mach-Zehnder atom interfer-
ometer based on optically induced Bragg diffraction [157, 158] (see Fig.
25). Our Bragg interferometer [159] differs from previous ones in that
we can independently manipulate atoms in the two arms (because of
their large separation) and can resolve the output ports to reveal the
spatial distribution of the condensate phase. When a phase of ~n was
imprinted on one half of the condensate relative to the other half, the
two output ports of the interferometer displayed the complementary
halves of the condensate.

To observe the creation and propagation of solitons, we measure
BEC density distributions with absorption imaging after imprinting a
phase step. Figure 26 shows the evolution of the condensate after the
top half was phase imprinted with <j> = 1.5TT, a phase for which we
observe a single deep soliton (the reason for imprinting a phase step
larger than IT is discussed below). Immediately after the phase imprint,
there is a steep phase gradient across the middle of the condensate such
that this portion has a large velocity in the +x direction. This velocity
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Figure 26. Experimental (upper) and theoretical (lower) images of the integrated
BEC density for various times after we imprint a phase of about 1.5TT on the top
half of the condensate with a l^s pulse. The measured number of atoms in the
condensate was 1.7(3) x 106, and this value was used in the calculations. A positive
density disturbance moved rapidly in the +x direction and a dark soliton moved
oppositely at significantly less than the speed of sound. Because the imaging is
destructive, each image shows a different BEC. The width of the images is 70/im.

can be understood as arising from the impulse imparted by the optical
dipole force, and results in a positive density disturbance that travels
at or above the speed of sound. A dark notch is left behind, which is a
soliton moving slowly in the — x direction (opposite to the direction of
the applied force).

A striking feature of the images is the curvature of the soliton. This
curvature is due to the 3-D geometry of the trapped condensate, and
occurs for two reasons. First, the speed of sound VQ is largest at the
trap center where the density is greatest, and decreases towards the
condensate edge. Second, as the soliton moves into regions of lower
condensate density, we find numerically that the density at its center,
n—Tid, approaches zero, 5 approaches TT, and vs decreases to zero before
reaching the edge. This is because the soliton depth n<f rather than its
phase offset 5 appears to be a conserved quantity in a nonuniform
medium.

A clear indication that the notches seen in Fig.26 are solitons, rather
than simply sound waves, is their subsonic propagation velocity. To
determine this velocity, we measure the distance after propagation be-
tween the notch and the position of the imprinted phase step along the x
direction. Because the position of our condensate varies randomly from
shot-to-shot (presumably due to stray, time-varying fields) we cannot
always apply the phase step at the center. A marker for the location
of the initial phase step is the intersection of the soliton with the con-
densate edge, because at this point the soliton has zero velocity. Using
images taken 5 ms after the imprint, at which time the soliton has not



traveled far from the BEC center, we obtain a mean soliton velocity of
1.8(4) mm/s. This speed is significantly less than the mean Bogoliubov
speed of sound VQ= 2.8(1) mm/s. From the propagation of the notch
in the numerical solutions (Fig.26, lower images) we obtain a mean
soliton velocity, vs = 1.6 mm/s, in agreement with the experimental
value. The experimental uncertainty is mainly due to the difficulty in
determining the position of the initial phase step.

From the lower image of Fig.26 at 5 ms, we can extract the theo-
retical density and phase profile along the x-axis through the center of
the condensate. The dark soliton notch and its phase step are centered
at x = — 8 jtim. This phase step, 5 = 0.58TT, is less than the imprinted
phase of 1.5TT. The difference is caused by the mismatch between the
phase imprint and the phase and depth of the soliton solution of the
nonlinear Schrdinger equation (Eq.(19)): Our imprinting resolution of
7 fj,m is larger than the soliton width, which is on the order of the
healing length (0.7 fim), and we do not control the amplitude of the
wave function.

In order to improve our measurement of the soliton velocity, we avoid
the uncertainty in the position of the initial phase step by replacing the
razor blade mask with a thin slit. This produces a stripe of light with
a Gaussian profile (1/e2 full width « 15jitm). With this stripe in the
center of the condensate, numerical simulations predict the generation
of solitons that propagate symmetrically outwards. We select experi-
mental images with solitons symmetrically located about the middle of
the condensate, and measure the distance between them. For a small
phase imprint of 4> w 0.5TT (at Gaussian maximum), we observe soli-
tons moving at the Bogoliubov speed of sound, within experimental
uncertainty. For a larger phase imprint of 4> s=s 1.5TT, we observe much
slower soliton propagation, in agreement with numerical simulations.
An even larger phase imprint generates many solitons. The results of
these experiments on the creation and propagation of solitons can be
found in Ref. [159]. Solitons in a BEC have also been observed by a
group in Hannover [160].

Much of the experimental work described here was carried out in
the Laser Cooling Group led by Bill Phillips in the Atomic Physics
Division of the National Institute of Standards and Technology. It is
a pleasure to acknowledge the contributions to this work by the other
members of the Laser Cooling Group, Steve Rolston and Paul Lett, as
well as former member Chris Westbrook. This work would not have
been possible without the contributions of many postdocs, students,
and visitors to the group.

While not attempting to be a review of all the work on laser cooling
of neutral atoms, these notes have drawn extensively, both explicitly



and implicitly, on the work of many groups throughout the world that
have advanced the art and science of laser cooling. We are indebted
to all of those colleagues, both cited and not, who have contributed
so much to our understanding of laser cooling and to the pleasure of
working in this field.

The BEC experiments were carried out by present and past members
of the Laser Cooling Group, Steve Rolston, Jesse Simsarian, Johannes
Denschlag, Julien Cubizolles, Ed Hagley, Lu Deng, Mikio Kozuma,
Jesse Wen, Yuri Ovchinnikov, Joerg-Helge Muller, Robert Lutwak, Rob
Thompson, Aephraim Steinberg, Mike Gatzke, and Gerhard Birkl. These
experiments have also benefited greatly from direct interactions with
our theoretical colleagues Paul Julienne, Carl Williams, Marek Tippen-
bach, Yehuda Band, David Feder, Marya Doery, Charles Clark, Mark
Edwards and Keith Burnett.

We also gratefully acknowledge the financial support not only of
NIST, but of the U. S. Office of Naval Research, NASA and NSF.

References

1. Arimondo E., Phillips W. D. and Strumia F. Editors (1992) Laser Manipulation
of Atoms and Ions, Proc. S.I.F., Course CXVIII (North Holland, Amsterdam)

2. Dalibard J., Raimond J.-M. and Zinn-Justin J. Editors (1992) Fundamental
Systems in Quantum Optics (North Holland, Amsterdam)

3. Chu S. and Wieman C. Editors (1989) Feature issue on laser cooling and
trapping of atoms, J. Opt. Soc. Am. B, 6, 2020

4. Meystre P. and Stenholm S. Editors (1985) Feature issue on mechanical effects
of light, J. Opt. Soc. Am. B, 2, 1706

5. MetcaJf H. and van der Straten P. (1994), Phys. Reports, 244, 203
6. Kazantsev A. P., Surdutovich G. I. and Yakovlev V. P. (1990), Mechanical

action of light on atoms (World Scientific, Singapore)
7. Minogin V. G. and Letokhov V. S. (1987), Laser light pressure on atoms

(Gordon and Breach, New York)
8. (1992) Special issue on atom optics and interferometry, Appl. Phys. B, 54, 321
9. (1994) Special issue on atom optics and interferometry, J. de Physique, 4, 1877

10. (1996) Special issue on atom optics and interferometry Quant. Semiclass.
Optics, 8, 495

11. Dalilbard J. and Cohen-Tannoudji C. (1985) J. Opt. Soc. Am. B, 2, 1707
12. Cohen-Tannoudji C , Dupont-Roc J. and Grynberg G. (1992) Atom-photon

interactions: Basic Processes and Applications (Wiley, New York)
13. Gordon J. P. and Ashkin A. (1980) Phys. Rev. A, 21, 1606
14. Cook R. J. (1986) Phys. Rev. A, 22, 1078
15. Stenholm S. (1986) Rev. Mod. Phys., 58, 699
16. Cohen-Tannoudji C. (1992) in Fundamental Systems in Quantum Optics edited

by Dalibard J., Raimond J.-M. and Zinn-Justin J. (North Holland, Amsterdam)
17. Moskowitz P. E., Gould P. L., Atlas S. R. and Pritchard D. E. (1983) . Rev.

Lett, 51, 370; Gould P. L., Ruff G. E. and Pritchard D. E. (1986) Phys. Rev.
Lett., 56, 827



490

18. Martin P. J., Oldaker B. G., Miklich A. H. and Pritchard D. E. (1988) Phys.
Rev. Lett, 60, 515

19. Dalibard J. (1986) Thse de doctoral d'tat en Sciences Physique, Universit de
Paris VI

20. Lett P. D., Phillips W. D., Rolston S. L., Tanner C. E., Watts R. N. and
Westbrook C. I. (1989) J. Opt. Soc. Am. B, 6, 2084

21. Castin Y., Wallis H. and Dalibard J. (1989) J. Opt. Soc. Am. B, 6, 2046
22. Aspect A., Arimondo E., Kaiser R., Vansteenkiste N. and Cohen-Tannoudji C.

(1989) J. Opt. Soc. Am. B, 6, 2112
23. Aspect A., Arimondo E., Kaiser R., Vansteenkiste N. and Cohen-Tannoudji C.

(1988) Phys. Rev. Lett, 61, 826
24. Pritchard D. E., Helmerson K., Bagnato V. S., Lafyatis G. P. and Martin A.

G. (1987) in Laser Spectroscopy VIII edited by W. Persson and S. Svanberg
(Springer-Verlag, Berlin), 68

25. Wallis H. and Ertmer W. (1989) J. Opt. Soc. Am B, 6, 2211
26. Kasevich M. and Chu S. (1992) Phys. Rev. Lett, 69, 1741
27. Phillips W. D., Prodan J. and Metcalf H. (1985) J. Opt. Soc. Am. B, 2, 1751
28. Chu S., Hollberg L., Bjorkholm J., Cable A. and Ashkin A. (1985) Phys. Rev.

Lett, 55, 48
29. Hodapp T. W., Gerz C , Furtlelehner C, Westbrook C. I. and Phillips W. D.

(1995) Appl. Phys. B, 60, 135
30. Phillips W. and Metcalf H. (1982) Phys. Rev. Lett, 48, 596
31. Cable A., Prentiss M. and Bigelow N. P. (1990) Opt. Lett, 15, 507
32. Monroe C , Swann W., Robinson H. and Wieman C. (1990) Phys. Rev. Lett,

65, 1571
33. Andreev S., Balykin V., Letokhov V. and Minogin V. (1981) Pis'ma Zh. Eksp.

Teor. Fiz., Vol. no. 34, 463 [(1981) JETP Lett, 34, 442]
34. Hoffnagle J. (1988) Opt. Lett, 13, 102
35. Ketterle W., Martin A., Joffe M. A. and Pritchard D. E. (1992) Phys. Rev.

Lett., 69, 2483
36. Gaggl R., Windholz L., Umfer C. and Neureiter C. (1994) Phys. Rev. A, 49,

1119
37. Prentiss M. and Cable A. (1989) Phys. Rev. Lett, 62, 1354
38. Letokhov V. S., Minogin V. G and Pavlik B. D. (1976) Opt. Commun, 19, 72
39. Phillips W. D. and Prodan J. V. (1983) in Laser-Cooled and Trapped Atoms

edited by Phillips W. D. Natl. Bur. Stand. (U.S.) Spec. Publ., 653, 137; (1984)
Prog. Quantum Electron., 8, 231; in (1984) Coherence and Quantum Optics
V edited by Mandel L. and Wolf E. (Plenum, New York), 15; Phillips W.,
Prodan J. and Metcalf H. (1983) in Laser Spectroscopy Laser VI edited by
Weber H. and Luthy W. (Springer-Verlag, Berlin), 162

40. Ertmer W., Blatt R., Hall J. and Zhu M. (1985) Phys. Rev. Lett, 54, 996
41. Salomon C. and Dalibard J. (1988) C. R. Acad. Sci. Paris, 306, 1319
42. Prodan J., Phillips W. and Metcalf H. (1982) Phys. Rev. Lett, 49, 1149
43. Prodan J., Migdall A., Phillips W. D., So I., Metcalf H. and Dalibard J. (1985)

Phys. Rev. Lett, 54, 992
44. Migdall A., Prodan J., Phillips W., Bergeman T. and Metcalf H. (1985) Phys.

Rev. Lett, 54, 2596
45. Chu S., Bjorkholm J., Ashkin A. and Cable A. (1986) Phys. Rev. Lett, 57, 314
46. Raab E., Prentiss M., Cable A., Chu S. and Pritchard D. (1987) Phys. Rev.

Lett, 59, 2631
47. Cornell E., Monroe C. and Wieman C. (1991) Phys. Rev. Lett, 67, 3049



491

48. Spreeuw R. J. C , Gerz C, Goldner L., Phillips W. D., Rolston S. L., West-
brook C , Reynolds M. W. and Silvera I. F. (1994) Phys. Rev. Lett, 72,
3162

49. Wing W. (1980) Phys. Rev. Lett, 45, 631
50. Aminoff C. G., Steane A. M., Bouyer P., Desbiolles P., Dalibard J. and Cohen-

Tannoudji C. (1993) Phys. Rev. Lett, 71, 3083
51. Petrich W., Anderson M. H., Ensher J. R. and Cornell E. A. (1995) Phys. Rev.

Lett., 74, 3352
52. Ashkin A. (1978) Phys. Rev. Lett, 40, 729
53. Ashkin A. and Gordon J. (1979) Opt. Lett, 4, 161
54. Dalibard J., Reynaud S. and Cohen-Tannoudji C. (1983) Opt. Comm., 47, 395
55. Dalibard J., Reynaud S. and Cohen-Tannoudji C. (1984) J. Phys. B, 17, 4577
56. Gould P. L., Lett P. D., Phillips W. D., Julienne P. S., Thorsheim H. R. and

Weiner J. (1987) in Advances in Laser Science ///edited by Tam A., Gole J.
and Stwalley W. (American Institute of Physics, New York, N.Y.), 295

57. Gould P. L., Lett P. D., Julienne P. S., Phillips W. D., Thorsheim H. R. and
Weiner J. (1988) Phys. Rev. Lett, 60, 788

58. K. Helmerson (1991) Interdisciplinary Laser Conference (Unpublished, Mon-
terey, CA)

59. Rolston S. L., Gerz C , Helmerson K., Jessen P. S., Lett P. D., Phillips W. D.,
Spreeuw R. J. and Westbrook C. I. (1992) in 1992 Shanghai International Sym-
posium on Quantum Optics edited by Yuzhu Wang, Yigui Wang and Zugeng
Wang (Proc. SPIE, Shanghai), 1726, 205

60. Chu S., Bjorkholm J. E., Ashkin A., Gordon J. P. and Hollberg L. W. (1986)
Opt Lett, 11, 73

61. Miller J. D., Cline R. A. and Heinzen D. J. (1993) Phys. Rev. A, 47, R4567
62. Miller J. D., Cline R. A. and Heinzen D. J. (1993) Phys. Rev. Lett, 71, 2204
63. Adams C. S., Lee H. J., Davidson N., Kasevich M. and Chu S. (1995) Phys.

Rev. Lett, 74, 3577
64. Cook R. and Hill R. (1982) Opt. Comm., 43, 258
65. Kasevich M., Weiss D. and Chu S. (1990) Opt. Lett, 15, 607
66. Davidson N., Lee H. J., Adams C. S., Kasevich M. and Chu S. (1995) Phys.

Rev. Lett, 74, 1311
67. Lee H.-J., Adams C. S., Davidson N., Young B., Weitz M., Kasevich M. and

Chu S. (1995) in Atomic Physics 14 edited by Wineland D., Wieman C. and
Smith S. (AIP Press, N.Y.), 258

68. Phillips W. D. (1992) in Laser Manipulation of Atoms and Ions, Proc. S.I.F.,
Course CXVIII edited by Arimondo E., Phillips W. D. and Strumia F. (North
Holland, Amsterdam), 289.

69. Ashkin A. and Gordon J. (1983) Opt. Lett, 8, 511
70. Dalibard J. (1986) personal communication.
71. Walker T. (1994) Laser Physics, 4, 965
72. Dalibard J. and Cohen-Tannoudji C. (1989) J. Opt. Soc. Am. B, 6, 2023
73. Walhout M., Dalibard J., Rolston S. L. and Phillips W. D. (1997) J. Opt. Soc.

Am. B, 9, 1997
74. Steane A. and Foot C. (1991) Europhys. Lett, 14, 231
75. Werner J., Wallis H. and Ertmer W. (1992) Opt. Comm., 94, 525
76. Prentiss M., Cable A., Bjorkholm J. E., Chu S., Raab E. L. and Pritchard D.

E. (1988) Opt. Lett, 13, 452
77. Sesko D., Walker T., Monroe C , Gallagher A. and Wieman C. (1989) Phys.

Rev. Lett, 63, 961



492

78. Walker T., Sesko D. and Wieman C. (1990) Phys. Rev. Lett, 64, 408
79. Ketterle W., Davis K. B., Joffe M. A., Martin A. and Pritchard D. E. (1993)

Phys. Rev. Lett, 70, 2253
80. Ramsey N. F. (1956) Molecular Beams Edited by Elliott R. J., Krumhansl J.

A., Marshall W. and Wilkinson D. H. (International Series of Monographs on
Physics (Oxford University Press, Oxford), 1985

81. Paul W. (1985) personal communication
82. Heer C. V. (1963) Rev. Sci. lustrum., 34, 532
83. Heer C. V. (I960) in Quantum Electronics edited by Townes C. H. (Columbia

University Press, New York, N.Y.), 17
84. Vladimirski V. V. (1960) Zh. Eksp. Teor. Fiz, 39, 1062
85. Wing W. (1984) Prog. Quant. Electr., 8, 181
86. Ketterle W. and Pritchard D. E. (1992) Appl. Phys. B, 54, 403
87. Bergeman T., Erez G. and Metcalf H. J. (1987) Phys. Rev. A, 35, 1535
88. Davis K. B., Mewes M.-O., Joffe M. A., Andrews M. R. and Ketterle W. (1995)

Phys. Rev. Lett, 74, 5202
89. Cornell evaporation ICAP?
90. Sesko D., Fan C. G. and Wieman C. E. (1988) J. Opt. Soc. Am B, 5, 1225
91. Phillips W. D., Gould P. L. and Lett P. D. (1987) in Laser Spectroscopy VIII

edited by Persson W. and Svanberg S. (Springer, Berlin), 64.
92. Lett P. D., Watts R. N., Westbrook C. I., Phillips W. D., Gould P. L. and

Metcalf H. J. (1988) Phys. Rev. Lett, 61, 169
93. Phillips W. D., Westbrook C. I., Lett P. D., Watts R. N., Gould P. L. and

Metcalf H. J. (1989) in Atomic Physics 11 edited by Haroche S., Gay J. C. and
Grynberg G. (World Scientific, Singapore), 633.

94. Dalibard J., Salomon C, Aspect A., Arimondo E., Kaiser R., Vansteenkiste N.
and Cohen-Tannoudji C. (1989) in Atomic Physics 11 edited by Haroche S.,
Gay J. C. and Grynberg G. (World Scientific, Singapore), 199.

95. Ungar P. J., Weiss D. S., Riis E. and Chu S. (1989) J. Opt. Soc. Am. B, 6,
2058

96. Sheehy B., Shang S.-Q., Watts R., Hatamian S. and Metcalf H. (1989) J. Opt.
Soc. Am. B, 6, 2165

97. Weiss D. S., Riis E., Shevy Y., Ungar P. J. and Chu S. (1989) J. Opt Soc. Am.
B, 6, 2072

98. Sheehy B., Shang S.-Q., van der Straten P., Hatamian S. and Metcalf H. (1990)
Phys. Rev. Lett, 64, 858

99. Nienhuis G. (1992) in Laser Manipulation of Atoms and Ions, Proc. S.I.F.,
Course CXVIII edited by Arimondo E., Phillips W. D. and Strumia F. (North
Holland, Amsterdam), p 171.

100. Emile O., Kaiser R., Gerz C , Wallis H., Aspect A. and Cohen-Tannoudji C.
(1993) J. Phys. II (Paris), 3, 1709

101. Aspect A., Emile O., Gerz C , Kaiser R., Vansteenkiste N., Wallis H. and
Cohen-Tannoudji C. (1992) in Laser Manipulation of Atoms and Ions, Proc.
S.I.F., Course CX VII I edited by Arimondo E., Phillips W. D. and Strumia F.
(North Holland, Amsterdam), 401.

102. Cohen-Tannoudji C. and Phillips W. D. (1990) Physics Today, 43, 33
103. Cohen-Tannoudji C. (1992) in Laser Manipulation of Atoms and Ions, Proc.

S.I.F., Course CXVIIIedited by Arimondo E., Phillips W. D. and Strumia F.
(North Holland, Amsterdam), 99.



493

104. Castin Y., Dalibard J. and Cohen-Tannoudji C. (1991) in Light Induced
Kinetic Effects on Atoms, Ions and Molecules edited by Moi L., Gozzini S.,
Gabbanini C , Arimondo E. and Stumia F. (ETS Editrice, Pisa), 5.

105. Castin Y. (1992) Doctoral Dissertation, Ecole Normale Suprieure.
106. Salomon C, Dalibard J., Phillips W. D., Clairon A. and Guellati S. (1990)

Europhys. Lett, 12, 683
107. Gerz C , Hodapp T. W., Jessen , Jones K. M., Phillips W. D., Westbrook C.

I. and Mlmer K. (1993) Europhys. Lett, 21, 661
108. Letokhov V. (1968) Pis'ma Zh. Eksp. Teor. Fiz., 7, 348. [(1968) JETP Lett,

7, 272].
109. Salomon C , Dalibard J., Aspect A., Metcalf H. and Cohen-Tannoudji C.

(1987) Phys. Rev. Lett, 59, 1659
110. Prentiss M. G. and Ezekiel S. (1986) Phys. Rev. Lett, 56, 46
111. Westbrook C. I., Watts R. N., Tanner C. E., Rolston S. L., Phillips W. D.,

Lett P. D. and Gould P. L. (1990) Phys. Rev. Lett., 65, 33
112. Hemmerich A., Zimmermann C. and Hansch T. W. (1993) Europhys. Lett,

22,89
113. Verkerk P., Meacher D. R., Coates A. B., Courtois J.-Y., Guibal S., Lounis B.,

Salomon C. and Grynberg G. (1994) Europhys. Lett, 26, 171
114. Verkerk P., Lounis B., Salomon C, Cohen-Tannoudji' C , Courtois J.-Y. and

Grynberg G. (1992) Phys. Rev. Lett., 68, 3861
115. Jessen P. S., Gerz C, Lett P. D., Phillips W. D., Rolston S. L., Spreeuw R.

J. C. and Westbrook C. I. (1992) Phys. Rev. Lett, 69, 49
116. Courtois J.-Y. and Grynberg G. (1992) Phys. Rev. A, 46, 7060
117. Hemmerich A. and Hansch T. (1993) Phys. Rev. Lett, 70, 410
118. Grynberg G., Lounis B., Verkerk P., Courtois J.-Y. and Salomon C. (1993)

Phys. Rev. Lett, 70, 2249
119. Hemmerich A. and Hansch T. (1993) Phys. Rev. A, 48, R1753
120. Lounis B., Verkerk P., Courtois J.-Y., Salomon C. and Grynberg G. (1993)

Europhys. Lett., 21, 13
121. Courtois J.-Y., Grynberg G., Lounis B. and Verkerk P. (1994) Phys. Rev.

Lett, 72, 3017
122. Hemmerich A., Zimmermann C. and Hansch T. W. (1994) Phys. Rev. Lett,

72, 625
123. Hemmerich A., Weidemller M. and Hansch T. (1994) Europhys. Lett, 27, 427
124. Meacher D. R., Boiron D., Metcalf H., Salomon C. and Grynberg G. (1994)

Phys. Rev. A, 26, R1992
125. Hemmerich A., Weidemuller M., Esslinger T., Zimmermann C. and Hansch T.

(1995) Phys. Rev. Lett, 75, 37
126. Jessen P. S. (1993) Ph. D., University of Aarhus
127. Marte P., Dum R., Taieb R., Lett P. and Zoller P. (1993) Phys. Rev. Lett,

71, 1335
128. Birkl G., Gatzke M., Deutsch I. H., Rolston S. L. and Phillips W. D. (1995)

Phy. Rev. Lett, 75, 2823
129. Weidemuller M., Hemmerich A., Gorlitz A., Esslinger T. and Hansch T. W.

(1995) Phys. Rev. Lett, 75, 4583
130. Raithel G., Birkl G., Kastberg A., Phillips W. D. and Rolston S. L. (1997)

Phys. Rev. Lett, 78, 630
131. Raithel G., Birkl G., Phillips W. D. and Rolston S. L. (1997) Phys. Rev. Lett,

78, 2928
132. Raithel G., Phillips W. D. and Rolston S. L. (1998) Phys. Rev. Lett, 81, 3615



494

133. Kozuma M., Nakagawa K., Jhe W. and Ohtsu M. (1996) Phys. Rev. Lett, 76,
2428

134. Anderson M. H., Ensher J. R., Matthews M. R., Wieman C. E. and Cornell E.
A. (1995) Science, 269, 198

135. Davis K. B., Mewes M.-O., Andrews M. R., van Druten N. J., Durfee D. S.,
Kurn D. M. and Ketterle W. (1995) Phys. Rev. Lett, 75, 3969

136. Sackett C. A., Stoof H. T. C. and Hulet R. G. (1998) Phys. Rev. Lett, 80,
2031; Bradley C. C, Sackett C. A., Tollett J. J. and Hulet R. G. (1995) Phys.
Rev. Lett, 75, 1687

137. Witte A., Kisters T., Riehle F. and Helmcke J. (1992) J. Opt. Soc. Am. B, 9,
1030

138. Barrett T., Dapore-Schwartz S., Ray M. and Lafyatis G. (1991) Phys. Rev.
Lett., 67, 3483

139. Miranda S. G., Muniz S. R., Telles G. D., Marcassa L. G., Helmerson K. and
Bagnato V. S. (1999) to be published in Phys. Rev. A, 59,

140. Hess H. F. (1986) Phys. Rev. B, 34, 3476
141. Masuhara N., Doyle J. M., Sandberg J. C , Kleppner D., Greytak T. J.,

Hess H. F. and Kochanski G. P. (1988) Phys. Rev. Lett, 61, 935
142. Ovchinnikov Y., Muller J.-H., Doery M. R., Vrendenbrecht E. J. D., Helmer-

son K., Rolston S. L. and Phillips W. D. (1999) Phys. Rev. Lett, 83,
284

143. Kozuma M., Deng L., Hagley E. W., Wen J., Lutwak R., Helmerson K.,
Rolston S. L. and Phillips W. D. (1999) Phys. Rev. Lett, 82, 871

144. Deng L., Hagley E. W., Denschlag J., Simsarian J. E., Edwards M. A.,
Clark C. W., Helmerson K., Rolston S. L. and Phillips W. D. (1999) Phys.
Rev. Lett., 83, 5407

145. Hagley E. W., Deng L., Kozuma M., Wen J., Edwards M. A., Helmerson K.,
Rolston S. L. and Phillips W. D. (1999) Science, 283, 1706

146. Hagley E. W., Deng L., Kozuma M., Trippenbach M., Band Y. B., Edwards M.
A., Doery M., Julienne P. S., Helmerson K., Rolston S. L. and Phillips W. D.
(1999) Phys. Rev. Lett, 83, 3112

147. Stenger J., Inouye S., Chikkatur A. P., Stamper-Kurn D. M., Pritchard D. E.
and Ketterle W. (1999) Phys. Rev. Lett, 82, 4569

148. Mewes M.-O., Andrews M. R., Kurn D. M., Durfee D. S., Townsend C. G.
and Ketterle W. (1997) Phys. Rev. Lett, 78, 582

149. Lens G., Meystre P., and Wright E. W. (1993) Phys. Rev. Lett, 71, 3271
150. Dalfovo F., Giorgini S., Pitaevskii L. P. (1999)

Rev. Mod. Phys., 71, 463
151. Deng L., Hagley E. W., Wen J., Trippenbach M., Band Y. B., Julienne P. S.,

Simsarian J. E., Helmerson K., Rolston S. L. and Phillips W. D. (1999) Nature,
398, 218

152. Reinhardt W. P. and Clark C. W. (1997) J. Phys. B: At. Mol. Opt. Phys.,
30, L785

153. Dobrek L., Gajda M., Lewenstein M., Sengstock K., Birkl G. and Ertmer W.
(1999) Phys. Rev. A, 60, R3381

154. Feder D. L., Clark C. W. and Schneider B. I. (1996) Phys. Rev. Lett, 82, 4956
155. Fujita J., Morinaga M., Kishimoto T., Yasuda M., Matsui S. and Shimizu F.

(1996) Nature380, 1996, 691
156. Jackson A. D., Kavoulakis G. M. and Pethick C. J. (1998) Phys. Rev. A, 58,

2417



495

157. Torii T., Suzuki Y., Kozuma M., Kuga T., Deng L. and Hagley E. W. (2000)
Phys. Rev. A, 61, 041602

158. Giltner D. M., McGowan R. W. and Lee S. A. (1995) Phys. Rev. Lett, 75,
2638

159. Denschlag J., Simsarian J. E., Feder D. L., Clark C. W., Collins L. A., Cubi-
zolles J., Deng L., Hagley E. W., Helmerson K., Reinhardt W. P., Rolston S.
L., Schneider B. I. and Phillips W. D. (2000) Science, 287, 97

160. Burger S., Bongs K., Dettmer S., Ertmer W., Sengstock K., Sanpera A.,
Shlyapnikov G. V. and Lewenstein M. (1999) Phys. Rev. Lett, 83, 5198



13. ULTRAFAST STRUCTURAL DYNAMICS IN THE CONDENSED PHASE
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ICMB-BSP, CH-1015 Lausanne-Dorigny
Switzerland

ABSTRACT: We present a review of wave packet dynamics in different systems and stress their
relation to information on the ultrafast structural changes. We show how dynamical information is
obtained from ultrafast optical pump-probe studies on structural changes in isolated molecular systems,
before moving to complex systems, such as pure and doped solids, and biological systems. We end with a
presentation of new developments in structural dynamics, which are based on the pump-probe scheme,
using as probe ultrashort pulses of electron or X-rays. As detection methods, electron or X-ray diffraction
or X-ray absorption spectroscopies are discussed.

1. Introduction:

Observing atoms in the process of chemical reactions, biological functions or vibrations in solids has been
the dream of physicists, chemists and biologists for decades until the 1980s. It is then that the
implementation of femtosecond laser spectroscopies brought entirely new possibilities for the study of
light-induced phenomena in condensed matter physics, in chemistry and in biology. In particular, the
ultrafast studies of chemical reactions have given birth to the field of Femtochemistry [1], which was
recognized by the Nobel Prize to Ahmed Zewail in 1999.
For the first time, it was possible to conduct observations on time scales that are shorter than single
nuclear oscillation periods in solids or molecules. It therefore became possible, in principle, to monitor
molecules at various stages of vibrational distortion, recording "stop-action" spectroscopie events
corresponding to well-defined molecular geometries far from equilibrium, including stretched and/or bent
unstable transient structures. Molecular structures corresponding to such unstable intermediates between
reactant and product could be followed in real-time [1,2]. Distorted crystal lattices and other specific out-
of-equilibrium structures could be and have been characterized in real-time [3].
To get a feeling why femtosecond time resolution is needed for these "real-time" observations, it is useful
to note that an order of magnitude of the speed of atoms in matter is given by the speed of sound: 300
m/s-lOOOm/s, which translate to 0.3-1.0 A in 100 fs. Such length scales are precisely the ones one deals
with in dynamical processes of molecules, biological systems, and condensed matter.
The key to observing moving structures in real-time is based on the generation of wave packets and on
their detection, using suitable light sources for excitation and detection. The link between the optical
spectroscopy and the molecular or condensed phase structures is made via the knowledge of potential
energy surfaces, which is a prerequisite if one wants to get the structural dynamics. This review deal with
the physics of wave packets, first in isolated quantum systems, then we will consider more complex
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systems consisting of an excited centre and a "bath" (such as a doped crystal, a solution or a protein). The
last part will deal with the development of new tools that can probe structures in real-time, and are based
on the use of ultrashort pulses of electrons and X-rays. While we will often refer to molecular systems in
the following, the essence and the conclusions of this review also concern atomic and many-body
systems.

2. Historical background: from kinetics to dynamics [4]:

Kinetics is concerned with populations and their evolution over time. In chemistry, one looks at the
overall population of educts before a reaction and of products after the reaction, and conclusions can be
drawn about the reaction mechanisms. However, there is no better way to identify mechanisms than to
observe them in "real-time". The search for an ever greater time resolution to "clock" events in physics,
chemistry and biology was a process that took place over decades. In 1889, Svante Arrhenius presented a
description of how chemical reactions vary as a function of temperature. His well known formula
describes the temperature dependence of the reaction rate k(T):

(1)

where k is the Boltzmann constant, T is the temperature (in Kelvin) and Ea is the so-called activation
energy, i.e. the height of the barrier up to a hypothetical state called by Arrhenius, the "activated
complex". The Arrhenius equation has been, and is still used with success by chemists, physicists and
biologists to describe kinetic processes in a large class of media.

In 1931, H. Eyring and M. Polanyi developed the first potential energy surface for the H2 + H —> H + H2

reaction, and Hirschfelder, Eyring and Topley performed the first trajectory calculation with femtosecond
steps in 1936 using the then available computing power. This was the birth of a new way of thinking in
terms of potential energy surfaces with dynamics occurring through energy valleys and mountains, with
the transition state at the saddle point.
Around that time, Eyring, Evans and Polanyi formulated the transition-state theory for chemical reactions,
giving an explicit expression for the pre-exponential factor A in the Arrhenius equation by invoking
statistical mechanics. The theory gave an analytical expression for the rate constant with a "frequency"
for the passage through the transition state. This frequency factor is typically 1013 Hertz, the typical value
for the frequency of molecular vibrations !
Shortly before these developments, the foundations of quantum mechanics were being laid down. In
1926, Erwin SchrOdinger introduced the idea of "wave groups" in order to make a natural connection
between quantum and classical descriptions. A year later, Ehrenfest published his famous theorem,
outlining the regime for the transition from a quantum to a classical description: the quantum expectation
values behave classically in the limit of large quantum numbers. The use of wave groups, now called
wave packets in physics remained limited to a few theoretical examples and was only considered for
Gedanken experiments. Indeed, it was not possible to synthetise wave packets, as the temporal resolution
at that time was of seconds to milliseconds at best. The field had to wait several decades in order to reach
the required time resolution.
The long standing efforts to improve the latter were the works of many researchers. G. Porter, R. Norrish
introduced the Flash Photolysis technique, which allowed the millisecond time resolution in the second
half of the 1940s [5]. By exposing a chemical solution to a heat, a pressure or an electrical shock, M.
Eigen achieved the microsecond temporal resolution [6]. The advent of the pulsed nanosecond laser in the
mid 1960's [7] and soon after, of the picosecond laser [8] brought about million times better resolution.
However, even on the short picosecond time scale, molecular states already reside in eigenstates (see § 3)
and there is only one evolution observable, the change of population with time of that state. Hence, with
picosecond spectroscopy one is still concerned with kinetics, not dynamics. The advent of femtosecond
laser technology, thanks to the works of C. V. Shank and co-workers [9] finally opened the door to the



499

direct probing of nuclear motion in real-time. We have just entered the attosecond time regime [10], with
which it will be possible to probe the dynamics of electrons and of valency.

3. Basic Quantum Mechanics

The realization of these experimental possibilities requires not only adequate time resolution for probing
nuclear motion, but also excitation mechanisms suitable for initiating molecular motion in a phase-
coherent (i.e., synchronized) manner in order to "observe" the transient structures. This is based on wave
packets, since a wave-packet represents a quantum object that is localized in its position coordinate. As an example, for
diatomic molecules, the wave packet represents the fact that there is some uncertainty in the separation of the two
atoms. Here, we just recall a few points for the description of the dynamical behaviour of quantum
systems. The time-dependent SchrOdinger equation:

M ^ (2)
dt

has solutions of the form

(3)

where <|>(r) is the eigenflinction, which is the solution of the time-independent SchrOdinger equation and
the exponential term represents the time dependence. In general it is rare to find a physical system in just
one eigenstate. At t=0, the wave function of the system will be a linear combination of eigenstates given
by setting t=0 in eq. 3:

¥(r,0) = ]>>„?>„(>•) W
n

Each eigenstate evolves differently, as determined by its energy. In eq. 3, the temporal dependence is the
modulation of the phase of the wave function :

e-IE"h =cos(Et/h)-ism(Et/h) (5)

which oscillates from 1 to - i to 1 to i ..., at a frequency of E 1%. Thus the temporal dependence of the
wave function is due to the fact that its amplitude oscillates from <0 to >0 at a frequency determined by
its energy. As an example, the Is state of H has an energy E = 0, therefore the phase is a constant. The 2s
state has an energy of E= 1.6 10"'8 J, i.e. the phase oscillates a 2.5 1015 Hz (i.e. T= 0.4 fs).
If we now look at the system after a time t, eq. 4 becomes:

This is a linear combination of stationary wave functions but is not a solution of the stationary problem. It
represents a coherent superposition of states or a wave packet. The â  coefficients are given by:

(7)
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and are determined by the way the system has been excited. This will also determine the shape of the
wave packet. If we consider g(k) to be the weighing of the different eigenftinctions, which is determined
by the shape of the exciting pulse (with k being a continuous variable parameter), then eq. 6 becomes an
integral over k:

x¥(r,t)=\g(k)<yk(r,t)dk (8)
k

Creation of a wave packet supposes the simultaneous excitation of several levels (eq. 6), which are
reached due to the width of the exciting pulse. Indeed, if the pulse width is short enough, its spectral
width will be broad by virtue of the uncertainty principle, and in this case several levels are excited
simultaneously (see figure 1, left). If on the other hand the laser is spectrally sharp as is the case with nsec
lasers, then only a single level will be excited and one then looks at populations. The creation of wave
packets also imposes a phase relationship between the eigenftinctions composing it (eq. 6), i.e. a
coherence. A complete description of the populations and coherences is best given by the density matrix
formalism in Liouville space. It is more adequate than a Hilbert space description, which works well only
for isolated systems (i.e. in the absence of a dissipative bath). The survival or loss of this coherence can
deliver rich information about the system under investigation and its interaction with the environment
[11].

fs laser pulse ns laser pulse

coherent superposition single stationary state
= > wave packet

Figure 1. Excitation schemes with an ultrashort, spectrally broad laser pulse (left), and a spectrally
narrow but temporally long laser pulse (right)

Wave packet dynamics need not necessarily femtosecond pulses, and it is possible to visualise nuclear
motion with psec pulses provided the period of the motion is longer than the pulse duration(see table I).
Depending on the physics one wants to investigate, the pulse width of the laser will be selected.

TABLE I: Time-to-width relationships for homogeneous lines

Type of width Width (cm'1) Time (seconds)

Doppler 10"3-10-' 3 10"8-3. 10"10

Rotational 10"2to 10 3 10"9 - 3 10"12

Phononic < 100 >3. 10'13

Vibrational spacings 100 - 4000 3 10'13 - 8 10"15

Electronic spacings > 5000 < 6 10"15
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4. Wave packets dynamics in isolated systems:

The typical approach for recording wave packet dynamics is based on the pump-probe scheme which is
illustrated in fig. 2 in the case of a molecular system. Absorption of a first pulse of light (called the pump
pulse) brings the molecule from the ground state potential V, to the excited state potential V2. If the pulse is
sufficiently short in time (and at least shorter than the oscillation period of the molecule in the excited state
V2), then a coherent superposition of vibrational levels (a so-called wave packet) is created, which is
localized in space at the ground state equilibrium configuration at time t=0. The newly created wave packet
will feel the driving force of the excited state potential and will undergo oscillations at a frequency,
characteristic of the vibrational spacings of the excited state potential, if the latter is bound. Key issues here
are that: a) the creation of a wave packet implies that all excited molecules in the irradiated volume have
the same configuration to within the spatial spread of the wave packet. Thus, the shorter the pump pulse,
the sharper defined will the distribution of molecular configurations be. b) The time evolution of the wave
packet reflects that of the ensemble of coherently excited molecules, which evolve in phase.
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Figure 2: the pump-probe scheme in a molecular system. The pump pulse creates a wave
packet on the excited V2 potential, and the probe pulse samples the dynamics by inducing an
absorption from V2 to V3. The measured signal can be the absorption of the probe pulse, a
fluorescence it induces from V3 or an ion signal if V3 is above the ionization limit of the
molecule.

The observation of the dynamics of the wave packet is done using a second ultrashort laser pulse (called
the probe pulse) that interrogates the ensemble excited by the pump pulse and whose time delay with
respect to the latter can be continuously tuned. The probe pulse induces a transition between V2 and a
higher lying state V3. The choice of the probe wavelength determines the choice of the probed
configuration as can be seen in fig. 2. Thus changing the probe wavelength allows the probing of different
configurations. The spatial width of the window in real space, which is opened by the probe pulse, is
determined by its spectral width and by the slope of the potential difference between V2 and V3. Each time
the wave packet enters the probe window, a signal is detected, which can be the absorption of the probe
pulse, a fluorescence signal from V3 induced by the probe absorption, or an ion signal, if V3 is an ion
potential. The key point here is that the choice of the probe wavelength determines the choice of the
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probed configuration. Thus structural dynamics is retrieved from spectroscopic signals thanks to an a-
priori knowledge of the energetics of the molecular system, i.e. its steady-state spectroscopy.
As an illustration, we look at the decay of the ion-pair states Nai". The Nal molecule was excited to a
covalent state, which crosses the ground ion-pair state. The probe pulse examines the system at a
frequency that corresponds either to that of free Na or at a frequency in which the atom absorbs when it is
part of the complex. The latter frequency depends on the Na-I distance, so that an absorption (or more
often, a laser-induced fluorescence) is obtained each time the molecules return to the corresponding
position. Provided the wave packet is not completely spread (or dephased), one obtains a structural and a
dynamical information [12]. A typical result is shown in figure 3. The bound Na absorption intensity
shows up a series of oscillations that recur with a period of about 1 ps, and decays at a rate at which the
molecule dissociates (the system does not dissociate on every outward going swing). The free Na signal
also grows in an oscillating manner and shows the same period as before that gives it a chance to
dissociate each picosecond or so. Aside from being one of the first examples demonstrating nuclear
dynamics, it also showed that a wave packet launched on a surface can cross-over to another surface,
through non-adiabatic couplings, without loosing its coherent properties. This is of central importance in
chemistry, biology and condensed matter physics, where non-adiabatic couplings are the rule rather than
the exception.

Figure 3: Wave packet dynamics in Nal. The lower trace shows the wave packet dynamics within
the electronically excited bound state. The upper trace shows the build up of free Na atoms due to
predissciation processes occurring in the excited state and leading to free Na and I atom. After ref.
12.

The pump-probe scheme has been a revolutionary tool to observe motion in real-time of bound states of
small diatomic molecules such as I2, Na2, and of elementary chemical reactions, such as the dissociation
of ICN, Hgl2, to name a few. Its implementation (and variants of it) to the study of systems of even
greater'complexity has occurred throughout the 1990's, with the study of liquids, solids and biological
molecules [2,4,13]. This review is mainly concerned with the latter systems.
To finish this short introduction on wave packets in isolated systems, it is worth mentioning that not only
vibrational wave packets have been reported, but also electronic wave packets made up of Rydberg levels
of atoms This implies that the electronic cloud can be localised in time and space, and it was
experimentally demonstrated for both radial [14] and angular [15] Rydberg wave packets. We refer the
reader to refs [16, 17, 18] for a more complete discussion of wave packets in isolated atomic and
molecular systems.
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When dealing with many-body systems, several issues arise, which are absent in isolated systems: a) The
line widths are broadened due to both inhomogeneous and homogeneous contributions. The
inhomogeneous contributions arise from the different interaction each impurity, solute or chromophore is
experiencing with its environment, b) Due to fluctuations of the surrounding species atoms, if coherence
is imparted to an atomic or molecular entity, does it survive in a solvent, crystal or protein? c) If yes, is
there a coherence also imparted to the surroundings? In the case of chemical processes, is coherence of
the system transferred or destroyed upon product formation? These are only a few of the questions that
arise, bearing in mind that depending on the physical phenomena under study, many others will be asked.
In the following, we show a few representative examples of phonon wave packets dynamics in pure and
doped solids, and show that vibrational coherence is maintained. We will then discuss the case of
biological systems and show the occurrence of vibrational coherences in this case too.

5. Wave packets dynamics in solids

5.1 PHONON WAVE PACKETS IN PURE SOLIDS

Until the beginning of the 1990s, the sole sources of information about phonons in solids were Raman
spectroscopy, and in some cases IR spectroscopy. A technique was developed by K. Nelson [3,19,20],
which is based on a stimulated Raman process (ISRS or Impulsive Stimulated Raman Scattering).
Because of the large spectral width of the ultrashort fsec pump pulse, a stimulated Raman process takes
place, which creates phonons (cop) by way of two components (a>n and a»|2) of the excitation pulse (Fig. 4)
such that:

or (9)

spvc&il ifltwuity

Figure 4: a) Excitation of a Raman transition |1> —> |2> via an electronically excited state <fl. b)
For a fsec pulse of average carrier frequency co,, the two frequency components of the Raman
transition are contained within the pulse spectrum. The medium itself selects the frequency pairs
suitable to drive the Raman transition.

The excitation pulse has a duration shorter than the phonon period. The fsec excitation excites in phase a
large number of oscillators, which are phonons. The ISRS process therefore creates a standing wave
pattern, which damps out with time due to dissipation (fig. 5).
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Figure 5:a) Mass-on-spring model for impulsive stimulated Raman scattering (ISRS): at t=0,
the laser pulse sets the atom to oscillate coherently, b) Optical geometry for measuring ISRS
signal: the ISRS process creates a standing wave pattern that damps out with time. A third
pulse scatters on the pattern and is read in another direction due to wave vector conservation.
After ref. 20.

A second, probe pulse can record this damping, and its scattering on the sample will reflect the amplitude
of the phonon oscillation. Fig. 6 shows the results obtained in the case of a pyrelene crystal at 18 K. The
beat pattern is due to 4 Raman modes of the solid. The signal decays with a time constant of ~9 ps. This
method is however not very selective because the dispersion curve of optical phonons is almost flat for
most solids and all Raman modes satisfy eq. 1. A review on the further developments of this method and
on time-resolved vibrational spectroscopy in general is found in ref. 3.

Figure 6: ISRS signal of perylene at 18 K. After ref. 20

In solids with small energy gaps, the phonon vibrations can be observed in reflectivity or transmission,
because they directly affect the band gap structure of the solid, thus the dielectric function is affected by
the deformation potential. Alternatively, excitation of a small gap solid brings the charge carriers in an
excited state and leads to a screening of the lattice potential. This results in an impulsive departure of the
ions from their equilibrium position and to a coherent excitation of their oscillations. Fig. 7 shows the
relative reflectivity of Ti2O3 following excitation by a fsec pulse [21]. A number of examples of
coherences in solids are discussed in refs 3 and 22.
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Figure 7: Transient reflectivity changes of Ti2O3 after excitation with a fsec laser pulse. After ref. 21.

The above examples concern pure solids where the occurrence of phonon wave packets reflects a
collective oscillation of the solid. A complication arises in the case of doped solids as the lattice is
perturbed and its long range symmetry changed. The study of doped solids is also interesting as they
represent ideal model systems to identify localised vibrations and to clarify the fundamentals of wave
packet dynamics in many-body systems. As such, they are a first step towards the understanding of wave
packet dynamics in complex systems, such as liquids and biological molecules. In this case, one may ask
if vibrational coherence is created in the impurity, how long does it survive, and is there a transfer of
coherence to the lattice?

5.2 LOCALISED VIBRATIONAL WAVE PACKETS IN DOPED SOLIDS

The existence of vibrational wave packets of molecular impurities in solids was first demonstrated by
Apkarian et al [23,24,25,26] , in the case of solid rare gases at low temperatures, doped with the I2

molecule. Several groups have also investigated them using classical molecular dynamics simulations
[23-27]. The connection between classical trajectories and wave packets has been made by Martens and
co-workers [28].
We have studied the dynamics of vibrational wave packets and the energy dissipation mechanisms
between a molecular impurity and an Ar crystal in the case of the Hg2 molecule [27,29]. This system has
a very shallow ground state potential and excitation with a UV fsec pulse reaches the deeper D state [29]
and launches a wave packet, whose dynamics has been simulated [27]. It is shown in fig. 8 as the average
of a swarm of trajectories of the Hg-Hg bond distance as a function of time.

As the system relaxes to the lowest electronic state, the wave packet may dephase as a result of the
fluctuations of the medium. One can see the system undergoes several oscillations before complete
dephasing occurs.
We have also visualized the motion of the surrounding Ar atoms (fig. 9), and interestingly, one can see
that there is a concerted motion between the Hg2 vibration and the response of the matrix cage in
particular those atoms that are in a plane perpendicular to the internuclear axis (compare the oscillation
period in fig. 8 and fig. 9a), showing that the coherence of the impurity is transferred to the environment.
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Figure 8: Classical molecular dynamics simulation of the average over all trajectories of the
Hg-Hg distance (RHg-Hg) as a function of time for an excited H& dimer in solid argon. The
error bars result from the average of 100 trajectories. After ref. 27
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Figure 9: Average over all trajectories of the distance between Ar atoms and the Hg2 centre-
of-mass (COM) for: a) equatorial Ar atoms nearest to the Hg2 COM in the plane
perpendicular to the Hg internuclear axis; b) and c) first and second Ar atoms with respect to
the Hg2 COM in the direction of the internuclear axis, respectively. The error bars result
from the average of 100 trajectories. After ref. 27.

To summarize this part:
a. Vibrational coherences of molecular impurities occur in condensed matter, in spite of the presence of a
bath. Even more remarkable and of great interest for chemistry is the fact that vibrational coherences have
also been observed for solutes in liquid solvents. Examples concern I2 in liquids [30,31]. Transfer of
vibrational coherence resulting from a photochemical reaction in liquids has also been observed in the the
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photofragmentation of Hgl2 and I3" in liquids, were the departing diatom (Hgl, I2\ resp.) fragment is
ejected with an impulsive (coherent) vibrational excitation [32,33].
b. We also observe transfer of coherence from the impurity to the medium (fig. 9)
c. Therefore dephasing of vibrational motion is not immediate and an oscillator can be out of equilibrium
with the solvent. This has important consequences for quantum control of condensed phase chemical
reactions.
d. The presence or destruction of coherences depends on a number of parameters, of which the most
obvious are the frequency difference between the localised oscillators and the bath oscillators and the
coupling between these two types of oscillators. In many of the above cases, the occurrence of vibrational
coherences has to do with either a mismatch of oscillator frequencies or a poor coupling between
oscillators.

5.3. INTERMOLECULAR VIBRATIONAL WAVE PACKETS IN SOLIDS

In the preceding paragraph, we showed an example where the vibrational coherence imparted to an
impurity could be transferred to the surrounding medium. However, photoinduced events in condensed
matter start by absorption of a photon, which implies a redistribution of charge in the excited centre that
then sets the nuclear dynamics in action. Furthermore, the surrounding species are suddenly subject to
another field of forces and will, as a result, also rearrange in order to accommodate themselves to the new
situation. This process occurs prior or is concurrent to any internal rearrangements that may take place in
the excited centre. The rearrangement of the environment upon excitation of an impurity is a crucial
process in many light induced phenomena and is at the origin of radiation-induced defect formation in
solids, solvation dynamics in liquids, or dielectric relaxation in biological systems.
We investigated this process in the case of van der Waals (mainly rare gas and hydrogen/deuterium)
solids. The advantage of these solids is that they are ordered media, are easily amenable to computer
simulations, are not reactive chemically, and are the closest solids to the liquid phase due to their large
zero-point fluctuations. They can therefore serve as models for the latter. In order to free ourselves from
intramolecular contributions, we choose to excite a molecular impurity (NO) to its lowest electronic state
A-3s<r (i.e. principal quantum number n=3, 1=0 and its projection on the intramolecular axis ^=0) at its
lowest vibrational level v=0. Therefore the molecule can be considered as an atom, as no internal modes
are excited (the molecule is blocked in the rare gas matrix, so no rotation is taking place). The fact of
exciting the molecule to an s-type Rydberg orbital results in an extended spherically shaped electronic
cloud that overlaps the electronic clouds of the surrounding matrix species (see figure 10). This leads to a
strong shift to high energies of the absorption bands of the A-state (see fig. 11 for typical examples in
solid Ne and solid hydrogens) due to the repulsive interaction between the excited molecule and the
surrounding species [34].
The A-state fluorescence is strongly Stokes-shifted (fig. 11) as a result of the medium reorganization, due
to the fact that the matrix species are pushed outwards in order to accommodate the extended Rydberg
orbital. The steady-state absorption and emission lineshapes of fig. 11 were analysed in detail in a one-
dimensional (i.e. assuming one single effective mode) configuration coordinate model in the harmonic
approximation (see fig. 12) [34]. This model delivered details of the structural (equilibrium configuration
in the excited state) and physical parameters (effective phonon energies, Huang-Rhys factors, etc.)
governing the lattice relaxation process. In order to observe the latter in real-time we carried out fsec
pump-probe spectroscopy. The principle of which is shown in figure 12.
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Figure 10: Electron density map of the lowest Rydberg state of NO calculated by a
pseudopotential method (ref. 35); a) in the gas phase and, b) in an Argon matrix. The
minima in the map are due to avoidance of the Rydberg electron of the Ar atoms,
resulting from Pauli repulsion. After ref. 35.
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Figure 11: Absorption and emission bands of the lowest Rydberg state of NO in solid
Ne and solid hydrogens. After ref. 34.
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Figure 12: Intermolecular one-dimensional NO-matrix potentials extracted from steady-
state spectroscopic studies (see ref. 34) and principle of the pump-probe experiment: a)
Excitation process by a fsec pulse, b) Ultrafast relaxation of the environment, c)
fluorescence, d) relaxation in the ground state back to the initial configuration. The
probe pulse induces absorption of a photon from the excited A-Rydberg state to higher
lying ones (C or D). The choice of the probe wavelength determines that of the probed
configuration by knowledge of the difference potentials A-C and A-D.

A UV pump pulse at around 6 eV, excites the A Rydberg state and triggers the relaxation of the lattice in
a radial fashion, a second probe pulse whose wavelength can be tuned, samples the dynamics along the A-
state intermolecular potential surface. The choice of the probe wavelength determines the probed
configuration, so that a complete picture of the structural dynamics can be obtained. Typical results for
NO in solid Ar and solid Ne are shown in figure 13.

These transients exhibit a peak at time t=0, followed by an oscillatory pattern and a flat signal at longer
times. The flat signal reflects the fact that the system has fully relaxed at the bottom of the A-state
intermolecular potential well (fig. 12). The peak at early times is due to the departing wave packets of
intermolecular modes, which is created by the pump pulse. The interesting oscillatory features reflect the
fact that the cage of Ar (Ne) atoms is breathing in a coherent fashion around the excited impurity.
Interestingly, although the Ne cage is lighter the oscillation period is twice longer than that in solid Ar.
This is due to the fact that the Ne lattice is tighter, and the extended Rydberg orbital spans the first 2
shells around the impurity, so that they are simultaneously set in motion, and set simultaneously in
motion the next shells, because of the short range nature of the Ne-Ne interaction. The interpretation of
our pump-probe data was fully confirmed by classical molecular dynamics simulations [38]. In the case
of solid hydrogens (not shown here) the pump-probe data shown a one-way coherent process, with no
recurrence of the cage boundaries [34,36], suggesting that a shock wave is launched in the lattice.
These results showed that coherence in intermolecular modes of doped solids can be created and
observed. The remarkable point to stress is that these localized modes occur at frequencies that are within
the phonon spectrum of the respective solids, yet dephasing requires a finite time to take place.
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Figure 13: Pump-probe transients of NO in solid Ne and solid Ar, excited to its lowest
Rydberg state (after ref. 34, 37 and 38)

6. Wave packet dynamics in biological systems

The lack of an immediate equilibration of an oscillator in a phonon bath is also observed in the case of
biological systems. In such systems the observation of vibrational coherences (i.e. motions along specific
coordinates) may help establish the link between structural deformation and biological function. Structure
plays a crucial role in biology, but the advent of time-dependent structural studies are surely going to
unravel many details of the function, as the latter should be seen as a sequence of events over time.
I will only give one example here to demonstrate that despite their complexity, biological systems, in
particular proteins, exhibit a wealth of vibrational coherence phenomena. We look at the case of
myoglobin [39], as it is one of the most striking examples. The reaction center in such proteins is the so-
called heme pocket (fig. 14), which consists of a porphyrin plane with an iron atom in its center to which
ligands (X=NO, CO, O2, etc..) bind. This is the origin of the basic respiratory mechanism.

Excitation of the porphyrin near 400 nm (which corresponds to the maximum of its main UV-Visible
absorption band, the so-called Soret band) leads to dissociation of the ligand, if it is bound to the Fe atom,
or simply to excitation of the porphyrin itself, if no ligand is present. In fact, Champion and co-workers
observed vibrational coherences in both case. The first case would correspond to the equivalent of a
photochemical bond-breaking reaction (i.e. the so-called reaction-driven coherences), while the second
case corresponds to (laser) field driven coherences.
Fig. 15 shows the pump-probe transient obtained in the case of the unliganded myoglobin (Mb). The
pump was at 433 nm and the probe at 428 nm. A rich pattern of vibrational coherences is observed. Its
Fourier transform reveals something like 8 vibrational modes of the protein that are coherently excited by
the fsec pulse. It is compared in the lower panel with the resonance Raman spectrum of the same species.
The resonance Raman spectrum reflects the modes that are created by the pump pulse and the remarkable
resemblance between the two shows that the coherences are an intrinsic feature of the unliganded
myoglobin and are produced by the laser field (field-driven coherences).
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Figure 14: The ligand (CO in this case) binds to the Fe atom of the porphyrin, which is
found in the so-called Heme procket. Upon detachment (e.g. by a laser pulse) of the
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Figure 15: Femtosecond transients from deoxy Mb (upper panel). The inset shows
the absorption spectrum of deoxy Mb, the spectrum of the laser pulse (grayed) and
the detection wavelength. The lower panel shows the generated power spectrum
from the time-resolved transient (upper trace) and the experimental resonance
Raman spectrum of deoxy Mb. After ref. 39.
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If we repeat the experiment with the NO-liganded species (Mb-NO), we can see (fig. 16) from the
comparison of the power spectrum of the pump-probe signal with that of the unliganded species in fig. 15,
that the coherences are quite similar in both cases. However, comparing it with the resonance Raman
spectrum of Mb-NO, shows that the coherences are now no longer a property of the species, but result
from the photochemical reaction in which the NO fragment is ejected leaving behind the porphyrin with a
high vibrational energy content. Since the photochemical reaction is impulsive, the observed coherences
are now reaction-driven.
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Figure 16: Fsec pump-probe transients of Mb-NO. The inset shows the equilibrium
absorption spectrum of Mb-NO (reactant) amd deoxy Mb (product), the spectrum
of the laser pulse (grayed) and the detection wavelength. The lower panel compares
the power spectrum from the time-resolved experimental data with the resonance
Raman specrum of Mb-NO. After ref. 39.

An additional way to distinguish field from reaction driven coherences is to look at the phase of the
coherences. In the case of field driven ones, the phase follows that of the laser field. In the other case,
there is phase shift compared to that of the laser [39]
Many other instances exist of vibrational coherences in biological systems: in the photosynthetic light
harvesting system, in cytochrome c-oxidase, in retinal proteins, etc. (see e.g. ref. 13 for a few examples).
However, the relationship between the observed vibrational coherences and the actual biological function
is not trivial. Indeed, provided the experiment fulfills a number of conditions (see § 3), and that the
system does not dephase them too fast, vibrational coherences will be created and observed. However,
whether these reflect the biologically significant nuclear motions remains to be established. One way to
circumvent this difficulty is to be able to look at the structure in a more direct way than when using
optical spectroscopy.



513

7. New frontiers of ultrafast structural dynamics

While the relation between probe wavelength and probed configuration is a trivial one in the case of
diatomic (see § 4) and some triatomic molecules (provided their steady-state spectroscopy is well
established), this relationship becomes ambiguous as the molecular system increases in complexity and
size. A further degree of complexity is added to the problem, if we are dealing with condensed phase or
biological samples, since intermolecular coordinates come into play. Consequently, experimental
approaches are needed, which can overcome the limitations of optical studies for structural determination,
while maintaining the high temporal resolution of femtosecond spectroscopy.
Structural techniques such as X-ray diffraction, electron diffraction, X-ray absorption spectroscopy
(XAS) and neutron scattering can deliver the answer, provided sufficiently short and intense pulses of X-
rays, electrons or neutrons can be produced. While neutrons are a powerful tool for static structural
studies, we are not aware of work using them in time-resolved studies. The majority of time-resolved
structural studies have been carried out with ultrashort pulses of X-rays or electrons, either using
diffraction techniques or X-ray spectroscopies. Conceptually, the methods of ultrafast X-ray and electron
diffraction or X-ray absorption are similar to ultrafast optical pump-probe experiments. The principle of a
pump-probe X-ray or electron diffraction is shown in figure 18. The essential new ingredient is that the
probe is not optical but via an X-ray (or electron) pulse that is diffracted or absorbed (for X-ray
absorption only).

x-ray pulse

Figure 17: Principle of an ultrafast X-ray diffraction experiment. The optical laser pulse triggers a
structural change in the solid, the probe X-ray pulse samples these changes as a function of time
delay with respect to the pump pulse. The transient structures by the diffraction spots are visualized
on a 2-D detector after the sample. If the solid undergoes coherent phonon oscillations, the diffraction
spots will be seen to oscillate, if disorder sets in (e.g. melting), the diffraction spots become blur. The
same lay-out is valid for electron diffraction, except that the sample if a gas phase molecule.

An impressive effort over the last 12 years has recently culminated in the demonstration of ultrafast
electron diffraction, where transient structures of molecules in the gas phase, including molecules
containing low-Z atoms, have been determined with picosecond temporal resolution [40]. The key point
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to the success of electron diffraction lies in the high scattering cross sections of electrons, which is 5
orders of magnitude larger than that of X-rays. The fact that the energy deposited per scattering event is
2-3 orders of magnitude weaker is certainly attractive in view of destruction due to the probe beam.
Extending time-resolved electron diffraction to condensed phases would be a major challenge due to the
low penetration depth of electrons in matter, and the technique will most probably have success in the
study of surface phenomena.

7. 1 ULTRAFAST X-RAY DIFFRACTION

X-ray techniques, on the other hand, offer the advantage of high penetration depth in matter. Therefore, x-
ray techniques using diffraction or absorption offer the advantage to study systems in bulk media, e.g.,
biological molecules in physiological solutions. Sources of ultrashort X-ray pulses are of two types: a)
laser generated plasmas on a metal target, which deliver fsec X-ray pulses at characteristic X-ray
emission lines of the target. They are therefore of limited tenability; b) Synchrotrons, which are the most
powerful sources of X-rays, with extended tunability, but they deliver 20-100 psec long pulses. In the
following, we will show recent examples of applications of these sources in an ultrafast diffraction
experiment and an ultrafast x-ray absorption one.
Ultrafast time-resolved diffraction has been used only since the past five to ten years [41,42]. Most
studies have dealt with issues of material science, such as the dynamics of acoustic phonons, heating,
non-thermal behaviour of materials at or near the melting point, and phase transitions. Here we show a
recent example from the group of von der Linde [42]. Coherent lattice vibrations of Bismuth have been
probed in a pump-probe configuration, using 4.5 keV femtosecond x-ray pulses from a laser-driven
plasma source (see fig. 18). They determined oscillation periods of ~400 fs near the Lindemann stability
limit, which corresponds to bond distances, where the long-range order is lost, and melting most likely
occurs.
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Figure 18: X-ray diffraction efficiency of the (222) reflection as a function of time delay
between the optical pump pulse and the X-ray probe pulse. The decrease of the mean value
of the X-ray signal (dotted line) is explained by the Debye-Waller effect, and reflects the
increasing random component of the atomic motion. After ref. 42.

Aside from allowing an observation of structures in motion, ultrafast x-ray diffraction is interesting in
order to extend the range of probed modes in the Brillouin zone, as compared to optical techniques.
Indeed, any scattering event in a solid (Raman, Brillouin, etc..) satisfies the wave vector conservation
given by eq. 9. In the optical domain, the incident and scattered wave vectors lie in the 105 cm"1.
Therefore, the phonon wave vector q, will be of the same order of magnitude. In the X-ray domain, the
k's are in the 108 cm"1 range, so that one samples a larger part of the Brillouin zone. Thus, ultrafast X-ray
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diffraction will be very useful for the study of molecular solids, where high frequency modes are
common.
Most of the studies so far carried out with ultrafast X-ray diffraction have dealt with solid materials
(metals, semi-conductors, or insulators), in which a bulk effect (e.g., coherent phonons, melting, etc.) is
induced by the laser and subsequently probed with x-rays [41, 42]. Therefore, nearly all atoms in the
interrogated volume participate in the scattering process. For chemistry and biology, one needs structural
information on the atomic-scale of time and space during the response of molecular entities to light. Few
studies have dealt with chemical or biological systems, and while most of them dealt with bulk samples
(e.g., organic solids or protein crystals), none of them concerns the subpicosecond time domain.
In order to obtain full structural information, the largest number of Bragg reflections (see fig. 17) need to
be monitored. Upon onset of disorder the spots in the diffractogramme will experience a decrease in
intensity. In the above-cited example (fig. 18), only one Bragg reflection was used at a time, which is not
sufficient to retrieve a global structure. Two recent exceptions, however, demonstrate that this limitation
may be overcome, at least for bulk samples: One is the powder diffraction study of the DMABN
molecular crystal at a time resolution of 100 ps, where several Bragg reflections were simultaneously
recorded and geometries of different short-lived transients could be extracted [43]. The other is a
sequence of 6 snapshots of the Laue pattern of photoexcited MbCO ranging from the subnanosecond to
microsecond time scales, showing the movement of photodetached CO from the heme center [44].
Since most of natural and preparative chemistry, and of biology take place in liquid media, a technique
that allows visualization of the structural dynamics of dilute species in disordered media is highly needed.
Time-resolved X-ray absorption offers such a possibility. A complete review of its capabilities is given in
ref. 45. Here we only mention the most important points and a result from our work.

7.2 ULTRAFAST X-RAY ABSORPTION SPECTROSCOPY

X-ray absorption spectroscopy measures the absorption of x-rays as a function of incident x-ray energy E.
In such a plot, the x-ray absorption coefficient shows the presence of saw-tooth like features with a sharp
rise at discrete energies, called absorption edges. The energy positions of these features are unique to a
given absorbing atom. They occur near the ionization energy of inner-shell electrons and contain spectral
features due to core-to-unoccupied valence orbital transitions and core-to-continuum transitions. The
nomenclature for x-ray absorption features reflects the core orbital, from which the absorption originates.
For example, K edges refer to transitions from the innermost n = 1 electron orbital, L edges refer to the
n = 2 absorbing electrons (L\ to 2s, Lu to 2pm and Lm to 2p3/2 orbitals), and M, N, etc., to the
corresponding higher lying bound core shells. The transitions are always referred to unoccupied states,
i.e., to states with a photoelectron above the Fermi energy (£F), leaving behind a core hole, and
absorption features may appear just below the edge, which correspond to transitions to bound unoccupied
levels just below the ionization limit.
Zooming into of these edges one observes a number of fine structures as can be seen in fig. 19 for the
case of an iron compound. The region just below, at and just above the edge is called the X-ray Near-
Edge Absorption or XANES region. In the region tens to hundreds of eV's above the edge, one finds the
so-called the region of Extended X-ray Absorption Fine Structure or EXAFS.

The XANES region contains information both about the electronic and the molecular structure. Indeed, it
is sensitive to the oxidation state of the atom of interest. If an electron is removed from it, the ionization
potential shifts to higher energies, as more work is needed in order to extract another electron (fig. 19). If
an electron is added, the opposite occurs. Thus one can obtain information about the oxidation state of a
given atom. This is very important in coordination chemistry and in biology, where biologically active
centres undergo changes in the oxidation states, as shown below.
Above the ionization limit the excited electron is often referred to as a photoelectron, and in a solid,
depending on its kinetic energy, it can propagate more or less freely through the material. This occurs
even in insulators since the excited states are almost always delocalized states (quasi-free states in
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Figure 19: AT-edge x-ray absorption spectra of iron in K4Fe"(CN)6 and K3Feln(CN)6 bulk samples.
The relative absorption with respect to the high energy background is plotted. After ref. 46.

molecules and conduction band states in solids). Photoelectrons propagate through the solid as a spherical
wave with a kinetic energy £kin given by

Ekin=hv-EB (11)

where h v is the incident x-ray energy and £B the binding energy (which may be close to the Fermi
energy). The photoelectron wave vector is then defined as

2^-
k = •yJ2m(hv-EB) (12)

In the EXAFS region, the oscillatory structure is due to the interference between the outgoing
photoelectron wave and the wave scattered back at neighboring atoms. It therefore does not exist in the
case of the isolated atom. At high photoelectron kinetic energies, the scattering of electrons is such that
the only significant contributions to the final state wave function in the vicinity of the absorbing atom
comes from paths, in which the electron is scattered only once (single scattering events). The
photoelectrons emitted from the excited atom as spherical waves damp out rapidly due to inelastic effects
caused by the extended valence orbitals of the nearby-lying atoms. This limits the probed spatial region
and, ensures that multiple-scattering effects beyond simple back-scattering can be ignored. The fact that
multiple-scattering events can be neglected allows the analysis of the data by a simple Fourier
transformation. The absorption coefficient (for the oscillatory part) is written as:

2Rj

;m.^v (13)
J

 a J * * /
which is the standard EXAFS formula. The structural parameters (for which the subscript j refers to the
group of N; atoms with identical properties, e.g., bond distance and chemical species) are:
a) the interatomic distances R,,
b) the coordination number (or number of equivalent scatterers) Nt,
c) the temperature-dependent rms fluctuation in bond length OJ, which should also include effects due to
structural disorder.
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In addition, ffflr \jj(k) I e1*^ is the backscattering amplitude, Se is central-atom partial-wave phase shift
of the final state, and M,k) is the energy-dependent photoelectron mean free path (not to be confused with
its de Broglie wavelength), and S0

2 is the overall amplitude factor. Moreover, although the original
EXAFS formula referred only to single-scattering contributions from neighboring shells of atoms, the
same formula can be generalized to represent the contribution from NR equivalent multiple-scattering
contributions of path length 2R.
As an example of ultrafast X-ray absorption spectrum, we show the results we obtained on a coordination
chemistry compound [47,48]. Aqueous [Ru (bpy)3]

2+ is a model system for Metal-to-Ligand Charge
Transfer (MLCT) reactions. Light absorption by [Ru"(bpy)3]

2+ results in the formation of a Franck-
Condon MLCT singlet excited state, '(MLCT), which undergoes sub-picosecond intersystem crossing to a
long-lived triplet excited state, 3(MLCT), with near-unity quantum yield. The oxidation states of (ground
state) Ru" and (photoexcited) Rum complexes exhibit pronounced differences in their L-edge XANES,
due to the oxidation shift to higher energies. Removal of the weakest bound electron from the fully
occupied 4c?5/2fcg) level generates a trivalent ruthenium compound, opening up an additional absorption
due to the allowed 2p3/2 -> Ad5/2 (t2g) (feature A") in addition to an oxidation state induced shift (from B to
B'). Thus we observe the appearance of the AW doublet structure in the trivalent Lm XANES, together
with the energetic B-^B' and C-^C shift (Fig. 20a), resulting from the change of oxidation state of the Ru
central atom and formation of 3(MLCT). Below the Ru Lm edge in fig. 20 we also observe the chlorine K
edge absorption due to the Cl' counterions of the dissolved [Run(bpy)3]Cl2 sample, which does not
contribute to the time-resolved experiment.

2820 2830 2B40

2820 2fKG ?4W0 2650 2880

X-Ray Prob« Energy / oV

Figure 20: a) Static Lm-edge X-ray absorption spectrum of ground state [Ru"(bpy)3] (trace
R) and excited state absorption spectrum (trace P) generated from the transient data cuuve T
in b). b) Transient difference X-ray absorption spectrum between the laser excited and
unexcited samples at a time delay of 50 ps after the pump laser. After ref. 48.

A crucial aspect of ultrafast pump-probe spectroscopies is to have the ability to scan the time between
pump and probe pulses. This was successfully done for the first time between an optical pump pulse and
an x-ray probe pulse in our experiment [47,48].
The above example concerns the first evidence for optical pump- X-ray probe spectroscopy in the
picosecond time domain. Although it does not concern a structural study per se, as it focuses on electronic
structure changes, it sets the stage for future ultrafast experiment exploiting the information content of the
EXAFS region (see above and fig. 19 and eq. 13).
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The development of femtosecond spectroscopy and the ability it has opened to be able to observe
transient structures in real-time has revealed details of the photoinduced dynamics in molecules, liquids,
solids and biological systems, that were hitherto unthought of. With the advent of ultrafast structural
techniques such as electron diffraction, X-ray diffraction and X-ray absorption spectroscopy, we are at the
dawn of a new era, where the observation of transient structures will become more direct, and deliver new
information and insight.
Going beyond structural dynamics, one area, which we feel has a huge potential, especially with the
advent of new and intense source of ultrashort X-rays [45], is the field of non-linear x-ray phenomena,
which are the analogue to non-linear optical phenomena. Optical spectroscopy is based on correlation
functions of dipoles, x-ray spectroscopy and x-ray scattering are based on the correlation functions of
charge densities and of currents, respectively. Extending the formalisms and techniques of non-linear
optical methods to the x-ray domain [11], as is being proposed by Mukamel and his co-workers [49]
opens a whole new area of Science, where one could look at electron-electron correlations and the flow of
charges in a wide class of systems.
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14. LANTHANIDE SERIES SPECTROSCOPY UNDER
EXTREME CONDITION
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Abstract

Lasers evolved based on spectroscopic work that preceded them. In turn advanced
spectroscopic techniques evolved because of the availability of lasers. Lasers can serve as both pump
sources and spectroscopic probe beams while improvements in crystal growth needed for emerging
laser technology enable high concentrations of lanthanide series elements. These technology
advances can produce extreme effects in laser materials under consideration. Extreme effects include
absorption saturation, amplified spontaneous emission, energy transfer, self-quenching, up
conversion, and excited state absorption. These effects will be described along with methods of
analyzing the data.

1. Introduction

Historically, spectroscopy was performed using incandescent lamps or gaseous discharge
lamps on low concentration samples. Although many advances were made using lamps, typically
these sources are not very bright. Here brightness is defined as power per unit area and unit solid
angle. With a low brightness source, high levels of excitation are very difficult to achieve. Also,
spectroscopic samples often contain only a limited amount of lanthanide series atoms. Low
concentrations may be a result of crystallographic limitations. For example, the lanthanide series
atom should possess the same valance and atomic size as the atom in the crystal that it is replacing. If
the former is not true, charge compensation may be required to maintain charge neutrality. If the
latter is not true, lattice distortions may result. In either case, all of the lanthanide series atoms may
not enjoy the same environment. Different environments will randomly shift spectroscopic features,
broaden the features, and complicate the analysis, in general.

Given a sample of a lanthanide series atom in some crystal, the transmission and emission
spectra are measured. Typically transmission spectra are measured first so that excitation bands can
be identified for the laser material. These spectra may be a function of the polarization. Another
measurable parameter is the temporal history of the fluorescence emitted by a particular manifold.
Usually the particular manifold under investigation is excited by a short pulse. The fluorescence is
recorded as a function of time. Results are often fit to an exponential decay curve.

To be useful for the laser designer, basic spectroscopic data are usually analyzed to obtain
more useful parameters. Transmission spectra are corrected for Fresnel losses and then transformed
into an absorption coefficient as a function of wavelength. Emission spectra as a function of
wavelength are analyzed to produce an emission cross section. Usually, the lifetime is needed to
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calibrate the relative emission. Often fluorescence as a function of time can be fit to an exponential
function to produce a value for the lifetime. However, in many instances, a simple exponential
function is not good fit to the data. More complex temporal histories may indicate processes other
than radiative decay. These complex temporal histories often result from extreme conditions.

Extreme spectroscopy can result because of high excitation densities or high concentrations
of active atoms or both. High excitation densities can lead to decay curves that deviate from the
familiar exponential and nonlinearities in the fluorescence versus the level of excitation. High
concentrations can lead to energy transfer effects. That is, energy is exchanged between 2 physically
separated atoms without the emission and absorption of photons. There are several distinctive effects
that occur under extreme conditions.

Extreme conditions include absorption saturation, amplified spontaneous emission, general
energy transfer, self quenching, up conversion, and excited state absorption. With absorption
saturation, the spectroscopic probe beam is so intense that a non negligible fraction of the ground
state population density is partially depleted. This results in a transmission greater than predicted
from the small signal absorption coefficient. Amplified spontaneous emission results when the gain
is high enough that a spontaneously emitted photon enjoys a significant gain before it escapes from
the excited volume. Energy transfer is the exchange of energy between 2 closely spaced atoms
without the need to resort to the emission and subsequent absorption of a photon. Self quenching is
an energy transfer process whereby an excited lanthanide series atom shares energy with a similar
lanthanide atom. This is usually a deleterious process because it depletes the upper laser manifold
population density. Up conversion is often a deleterious process as well because it depletes the upper
laser manifold population density. However it accomplishes this by promoting the excited atom to a
yet higher manifold where energy is often lost by nonradiative transitions.

2. Absorption Saturation

Absorption saturation can occur if an intense laser pump beam is used. Absorption spectra
for lanthanide series atoms usually contain many relatively narrow spectral features. If the
wavelength of the pump beam coincides with the peak of the absorption feature, absorption of the
pump can be quite strong. Moreover, the laser beam can be confined to a relatively small volume
thereby limiting the number of lanthanide series atoms that are illuminated. With an intense pump
beam and strong absorption, the excitation can be so high that the number of atoms in the ground
manifold is significantly depleted. As depletion increases, transmission of the pump beam increases.

Absorption saturation can be described using an approach originally derived for laser
amplifiers. The basic amplifier
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where N)i N2, and Np are the population densities of the lower and upper laser manifold and the
photon densities, respectively, c is the speed of light, n is the refractive index, a is the cross section,
while Zi and Z2 are Boltzman factors describing the fraction of the manifold population that resides
in the lower and upper laser levels. Typically, effective absorption and emission cross sections are
used. In this case,

aa = (3)

For many lanthanide laser system, essentially all of the active atom population resides either in the
upper laser manifold or the ground manifold. If this is approximately true,

N, + N2 (4)

Combining these equations,

(5)

These equations can be solved to yield the transmission of the pump beam through the doped
material.

The population density and the transmission through the sample can be obtained by solving
the differential equations to yield

exp(craNol)

) \N Jr)dr
J t

(6)

where the population difference is defined as

-'la

(7)

This can be used to determine the transmission of the pump beam through the absorbing
crystal. This has been done for 2 different wavelengths in Ho:YAG and the results shown in Figure
1. If the wavelength of the pump beam corresponds to a weak
absorption feature, the transmission is relatively high but does not change significantly with the pump
power. If, on the other hand, the wavelength of the pump beam corresponds to a strong absorption
feature, the initial transmission is low. However, as the pump beam becomes more powerful, the Ho
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atoms available to absorb the pump becomes depleted. This saturation effect allows more
transmission. However, saturation may require a significant amount of energy.

3. Amplified Spontaneous Emission

If the gain of the medium is high enough, spontaneously emitted photons will enjoy gain
before they escape the pumped volume. Typically lanthanide series lasers are fabricated into long
rods, often circular in cross section. These laser rods are pumped so the gain along the length of the
laser rod is on the order of exp(3) or about 20. If an atom near the end of the laser rod emits a photon
spontaneous in the direction of the other end of the laser rod, it can cause 20 other atoms to also emit
a photon. An increase in emitted photons can significantly can increase the rate of loss of active
atoms in the excited state and thus decrease the lifetime. Because of total internal reflection, the
range of emission angles that enjoy gain along the entire laser rod length can be a significant fraction

If there is no amplified spontaneous emission, the rate equations describing the population density
can be expressed as

dN2

dt
(8)
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Figure 1. Transmission of Ho:YAG versus probe energy

After the cessation of pumping, R2, the usual exponential decay of the upper laser manifold
population, N2, with lifetime x2 occurs. If amplified spontaneous emission is significant, the
differentia! equation that describes the upper laser manifold population density becomes
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— = ^2 - f f f — exp(/o-,iV2)dVdQdA (9)
dt J J J T2

The integration is over the entire pumped volume, all possible angles of emission, Q, and emission
wavelengths, X. In this expression, the emission cross section, ae, is highly dependent on the
wavelength. It has been shown that the integration over wavelength can be approximately
independent of the integration over the volume and emission angles [1].

If amplified spontaneous emission is not too high, the 6 fold integration can be
approximated as

exp( )
N, = N^ 7= ^ _ ( 1 0 )' 2 - J y 20

c7eJaN20(\-exV(--))

In this expression, CTM is the average emission cross section and /a is the average path length that a
spontaneously emitted photon travels in the pumped volume. The former can be calculated from
spectroscopic data while the latter is often determined from experimental data [1].

Typical fluorescent data as a function of time displays a faster than exponential decay in the
influence of amplified spontaneous emission. Data for the fluorescence of Nd:YAG is shown in the
Figure 2. Initially the rapid decay can be noted. At longer times, when the gain is lower, the decay
becomes very nearly exponential with the characteristic lifetime. A fast initial decay erodes the
storage efficiency of high gain lasers.

4. Energy Transfer

Energy transfer, as defined here, is the exchange of a quantum of energy between 2
physically separated atoms. Perhaps the classic case of energy transfer is the Ho:Tm system. A Tm
atom residing in the first excited manifold, 3F4, transitions to the ground manifold, 3H6, causing a
nearby Ho atom to transition from the ground manifold, 5I8, to the first excited manifold, 5l7. This
occurs without the emission and subsequent absorption of a photon. For historical reasons, the atom
donating the quantum of energy is labeled as the sensitizer while the atom receiving the quantum of
energy is labeled the active atom.

The description of energy transfer was derived in 2 seminal papers 1 by Forster [2] and
another by Dexter [3]. The energy transfer parameter, PSA, is given by
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Figure 2. Decay of gain in Nd:YAG versus time

In the above expressions, h is Planck's constant, qe is the electronic charge, R is the separation
between the interacting atoms, ra and rs are the dipole moments of the interacting atoms, R is the
vector that connects the interacting atoms, E is the energy, and Pi(w;) is a probability distribution
function. In the second expression, Qa is the normalization of the absorption spectrum of the active
atom and TS results from the normalization of the emission spectrum of the sensitizer. The second
equation follows from the first after some mathematical manipulation.



527

X

* y

<rs>. <ra> - 3 (<ra>.R) (<rs>.R) /R2

Figure 3. Orientation of dipoles for energy transfer

An examination of the equation describing energy transfer reveals the physics. The strength of the
interaction decreases as the separation of the atoms to the inverse 6th power. This is because the
energy transfer is usually a dipole dipole interaction and the dipole field decreases as the inverse cube
of the distance. The interaction depends of the orientation of the individual dipole moments and the
orientation of the dipoles with respect to each other, Figure 3. This dependence appears in the dot
product of the vectors. Also, the energy transfer coefficient maximizes when the normalized
emission spectrum of the sensitizer, fs(E), and the normalized absorption spectrum of the active atom,
Fa(E), overlap. In this case, there is a resonance between absorption and emission and the integral
over the product becomes large.

The effect of the absorption and emission spectra can be seen for the Ho:Tm energy
transfer situation. Every energy transfer process has a reverse energy transfer process although they
may have substantially different magnitudes. The emission spectrum of the Tm 3F4 to

 3H6 transition
with the absorption spectrum of the Ho 5I8 to

 5I7 transition as well as the emission spectrum of the Ho
5I7 to

 5Ig transition with the absorption spectra of the Tm 3H6 to
 3F4 transition appear in the Figures 4

and 5. The figures indicate that the former has a much better overlap than the latter. In fact, the
calculated and measured
energy transfer parameters reflect this increased energy transfer parameter [4].

The energy transfer parameter depends on the orientation and position of the dipoles that
are set by the crystal lattice. The Dexter approach averages over all possible orientations of the
dipoles and all possible orientations of the dipoles with respect to each other. This is valid for fluids,
to which the energy transfer problem was initially addressed [2]. However, in a crystal material,



528

which most lasers are, the orientations of the dipoles are set by the crystal lattice. In addition, the
energy transfer model in fluids needs to determine the minimum separation of the interacting atoms.
This is critical because of the inverse 6th power dependence on the separation.
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Figure 4. Overlap of TnrYAG emission and Ho:YAG absorption

The original Forster and Dexter approach was modified to take into account the physics associated
with lanthanide series atoms in crystal lattices [5]. Rather than averaging over all possible
orientations, the model determines the orientations of the dipoles dictated by the crystal lattice and
uses them to calculate the dot products. The separations of the dipoles are also set by the crystal
lattice. These separations are used and a summation over all possible locations for the sensitizer and
active atoms is then performed. Finally, a quantum mechanical model is used to calculate line to line,
rather than manifold to manifold, branching ratios. This allows a summation over all possible initial
and final levels for both the sensitizer and active atom to be performed. This summation replaces the
need for integrating over the product of the emission and absorption spectra and thus obviates the
need to measure these parameters.

Diffusion abets the energy transfer process. Because of the inverse 6th power dependence on the
separation, atoms that are close have a far greater probability of achieving a transfer of energy than
atoms with greater separation. If the quantum of excitation were frozen in place, atoms at different
separations would have different energy transfer rates, complicating the description of the energy
transfer process. However, energy transfer can also occur between 2 atoms of the same type and
between the same manifolds. For example, a Tm atom in the 3F4 manifold can transition to the 3H6

manifold and simultaneously raise a neighboring Tm atom from the 3H6 manifold to the 3F4 manifold.
On the macroscopic scale, nothing appears changed. However, on the microscopic scale, the
quantum of excitation has moved or diffused through the laser material. By diffusing through the
laser material, the quantum of excitation can spend some time at a Tm atom where the nearest similar
neighbor site is occupied by a Ho atom with which energy transfer can occur.

Diffusion is usually orders of magnitude faster than other energy transfer processes. Energy transfer
processes are aided by energy resonances. Some transitions have energy resonances in the Tm to Ho
energy transfer processes. On the other hand, in the diffusion process, every transition has at least 1
energy resonance. The profusion of resonances greatly enhances the diffusion energy transfer
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processes. In turn, diffusion abets other energy transfer processes by transferring the quantum of
excitation to locations where the interacting atoms are in close proximity.

Several models have been developed to describe the energy transfer process. In the static
transfer approximation, the population density of sensitizers is expressed as [6]

q
3

(12)

where Ns is the population of sensitizers, NA is the population density of active atoms, T is the natural
lifetime, and CDA/R6 is the energy transfer parameter. In this treatment, sensitizer to sensitizer
diffusion is neglected as well as active atom to sensitizer back transfer.

[7]
In the diffusion limited approximation, the population density of sensitizers is expressed as

, 3 /2
•NA(CDAt)V2F(x)] (13)

where

F(x) =
.5;c2)

(1 + 8.74*)

3/4

( 1 4 )
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x = DC D A - 1 / 3 t 2 / 3 (15)

This approximation neglects any active atom to sensitizer back transfer but diffusion is included
through the x term. However, the energy transfer term is approximated as being much larger than the
diffusion term, in contrast to the analysis here.

In the migration assisted approximation, the population density of sensitizers is expressed
as [8]

/ 4_3/2
^--^~- NA(CDAt)l/1 -Wt] (16)

This approximation neglects any active atom to sensitizer back transfer. Diffusion among the
sensitizer atoms is included through the hopping term and is treated as a random walk process that is
fast enough to maintain the initial distribution of the excited sensitizers.

In the correlated placement approximation, the population density of the sensitizers is
expressed as [9]

Ns (0 = Ns (0) exp[- f- - \ nNA [Xnxl1 (CDAt?<2

T 3

(17)

+ R? (Y - X)<b{zx) exp(-z,) + Rl (1 - 7)O(z2) exp(-z2)]]

<D(Zj) = 1 + (TtzO^expCz^erfCZi"2) ( 1 9 )

In this approximation, diffusion among the sensitizers and sensitizer to donor back transfer is
neglected. However, a non random distribution of active atoms can occur in a correlated manner. If
X is greater than 1, an enhanced probability of sensitizers and active atoms being close exists. If X is
less than 1, the probability of sensitizers and active atoms being close is diminished.

Although all of the above approximations can be made to fit experimental data, each with
varying degrees of correlation, a somewhat different approach is advocated. The approach assumes
that diffusion is sufficiently fast to maintain a nearly uniform distribution of excited sensitizers, an
approximation borne out be calculations. It also takes into account both forward and back energy
transfer. The differential equations describing the population density of the excited sensitizer, N2,
as well as the population density of the excited active atom, N7, are [10]



531

dN2 N2
— - = — - - P 2 i N 2 N ° + P 7 , N 7 N , (20)

dt T2

— = -—-P7iN7Nl+P2SN2Ns (21)

Nj + N2 = CTNS (22)
N8 + N7 = CHNS (23)

The first 2 equations describe the natural lifetime as well as the forward and back energy transfer
processes. The latter 2 equations imply that the sensitizer and active atoms are either in the ground
manifold or the manifold from which the energy transfer will occur.

These 4 equations can be reduced to 2 equations by using the latter 2 equations to eliminate
Ni and N8, simplifying the differential equations using the light excitation approximation and solving.
The results are

N s ( t ) = Ns(0) [ ( p / ( a + P ) ) e x p ( - t / t ) + ( a / ( a + P ) ) e x p ( - ( a + P ) t ) ] (24)

NA(t) = aNs(0) [ e x p ( - t / x ) - e x p ( - ( a + P ) t ) ] / ( a + p ) (25)

a = P28CHNS (27)

P = P71CTNS (28)

1/T = (a/x7 + p A 2 ) / ( a + P ) (29)

The 2 exponential functions define the time constant associated with equilibrium being established
between the excited manifolds and the time constant associated with the mutual decay of the excited
manifolds. The excited sensitizers initially decay quickly while the excited active atoms increase.
After a quasi equilibrium is reached, they both appear to decay at the same rate.

Measurements taken on the fluorescence of a Ho:Tm system supports the sum of
exponentials approach [10]. Measurements were obtained by using tunable, Q-switched Co:MgF2

laser to excite either Ho or Tm to the first excited manifold. Following this, the fluorescence decay
of both the Ho 5I7 and 5I8 manifolds was recorded. This information was performed for a variety of
Ho and Tm concentrations in several different laser materials. A sample of the data is given in
Figures 6 and 7. In this case, the Tm 3F4 manifold was excited. An initial rapid decay of the Tm 3F4

manifold population density is mirrored by an initial rapid rise in the Ho % manifold population
density. After achieving quasi equilibrium, both population densities decay at essentially the same
rate, as predicted by the 2 exponential model.

The ratio of the forward and backward energy transfer parameters can be deduced with a
knowledge of the energy levels. Consider the case where only a single resonance exists for the
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energy transfer process. It may be noted that rate equations are written in terms of manifold
population densities rather than energy level population densities. Thus the rate of the forward
energy transfer parameter, P28, is proportional to the thermal occupation or Boltzmann factors for the
interacting levels in manifolds 2 and 8. It is also proportional to the strength of the interaction,
represented by a dipole moment. Thus, the forward transfer parameter is proportional to

P2e oc < r , x r . > e x p t - ( E 2 - E2ZL + E8) /kT] /Z2TZ8T (30)

0.5 1.0 I.S

Time (ms)

Figure 6. Decay of Tm 3F4 and Ho 5I7 under Tm 3F4 excitation

where E2ZL and E7ZL are the energies of the lowest level in the first excited manifolds of Tm and Ho,
k is Bollzmann's constant, T is the temperature, and Z2T and Z8T are partition functions of manifolds
2 and 8, the first excited manifold of Tm and the ground manifold of Ho. Using the same logic, the
backward transfer parameter is proportional to

- Ho:YAG decay

- T i m Y A G decay

0.0 5.0 10.(1 15.0 20.0 25.0 30.0 35.0 40.0

Time (ms)

Figure 7. Decay of Tm 3F4 and Ho 5l7 under Tm 3F4 excitation
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P71 x <ra><rs>exp[-(E7 - Em + E,)/1CT]/Z7TZ1T (31)

By taking the ratio of these energy transfer parameters, the dipole moments cancel because the same
transitions are involved in both processes. Because of the resonance, (E2 - Ei) is equal to (E7 - E8).
Thus, the ratio of the energy transfer parameters is dependent on the temperature according to

P28/P71 = [ZTT Z1T/ Z2T Z8T] exp[(E2ZL - E7ZL)/kT] (32)

This implies that the higher energy levels tend to transfer the quanta of energy to lower energy levels
much faster than the reverse process.

5. Self Quenching

Self quenching is a special case of generalized energy transfer in which the quanta of
energy is exchanged between lanthanide series atoms of the same type. This is likely to be
significant if the upper manifold is a metastable manifold. In this case, the self quenching process
shortens or quenches the lifetime of the metastable level. Self quenching occurs when a Nd atom in
the 4F3/2 manifold interacts with a neighboring Nd atom in the ground manifold or the 4I9/2 manifold
to produce 2 Nd atoms in the 4I|5/2 manifold.

The differential equations governing the self quenching process are as follows

PNN
at r4

Ni + N 4 = CNNS ( 3 4 )

Although there is a backward process, the Nd 4I15/2 manifold has such a short lifetime that the
backward energy transfer process seldom occurs. Under this approximation, the solution to this
differential equation is approximately [11]

N =N exp(-ar)
4 * ° [ l P N ( ( l ( ) ) / ]

a = (I/T4) + P41CNNS (36)

The lifetime, T4, is therefore shortened by the self quenching process, P41 approximately linearly with
the concentration, CN.

A shortening of the Nd lifetime can be observed under high levels of excitation. The
fluorescence from the 4F3/2 manifold as a function of time appears in Figure 8. An exponential fit to
the data also appears. Although the exponential fit to the data is not unreasonable, systematic
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deviations can be observed. On the other hand, fitting a solution that includes self quenching
eliminates almost all of the systematic deviations.

Diffusion also abets the self quenching process. Because the dipole moments between the
4F3/2 and the 4I,5/2 manifolds is small, only Nd atoms is close proximity have a high probability of self
quenching. However, diffusion can bring the quantum of excitation to a pair of Nd atoms in close
proximity. Because the diffusion process is essentially a random walk process, it requires some time
for the quantum of excitation to encounter a pair of Nd atoms. In the interim, the quantum of
excitation may decay away by a radiative process. If this were the case, the inverse of the lifetime
would depend rather weakly on the Nd concentration until a critical concentration was reached. The
critical concentration is defined by the average time interval required for the quantum of excitation to
reach a Nd atom pair. After the concentration is well above the critical concentration the inverse
lifetime increases linearly with the concentration.

FLUORESCENCE FROM Nd:YAG4F3R MANIFOLD
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Figure 8. Decay of Nd 4F3/2 with curve fits to data
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Data on the inverse lifetime of Nd:YAG supports this model. The inverse lifetime is plotted versus
the concentration in the Figure 9. Initially, the inverse of the lifetime is essentially independent of Nd
concentration. However, for concentrations above approximately 0.02, the inverse of the lifetime
appears to increase approximately linearly with Nd concentration. Both behaviors are consistent
with diffusion driven self quenching.

6. Up Conversion

In the up conversion process, 2 atoms both in an excited manifold interact, promoting 1
atom to a higher energy manifold and demoting the other atom to a lower manifold. A familiar
example of this involves the Ho:Tm system. A Ho atom in the 5I7 manifold and a Tm atom in the 3F4
manifold interact, process P27- The Ho atom is promoted to the 5I5 manifold while the Tm atom is
demoted to the 3H6 manifold. A Ho atom in the 5I5 manifold is likely to decay, usually by a
nonradiative process, to the 5I6 manifold before the backward process, P51, occurs. Because the
energy transfer parameter involving the Ho 5I6 manifold and the Tm 3H5 manifold is quite large,
energy transfer from the Ho 5I6 manifold to the Tm 3F4 manifold is likely, process P6i. The backward
process, process P38, is not likely because the Tm 3H5 manifold is likely to decay to the Tm 3F4
manifold through a nonradiative process. Thus, a quantum of excitation is lost in the process. This
has the effect of shortening the lifetime of the combined Ho 5l7 and Tm 3F4 manifolds.

The differential equations that govern this situation involve 7 different manifolds and can be
approximated as

dN N N
2 iyi p \r N + P N N + — - P N N + P N N (3D

— r 2 8 i v 2 i v 8 -i- / - 7 ,JV 7 JV, -r /^27iv2jv7 i - / - 5 , iv 5 jv , [in
at T2 r3

dN N
—L = —± + P6lN6N]-PiSN3Ns (38)

at T3

^ L = + PNNPNN^ + P2iN2N1-P5iN5Ni (39)
at r 5

( 4 0 )

dN N
7 - L+ PNN-PNN-PNN+PNN (41)

- + - r28- / V2-'V8 •r7iyV7-'Vl -r27-'V2-/V7 + - r 51 J V 5- / V l ( 4 1 >

at r7
Ni + N 2 + N 3 + N 4 = CTNS ( 4 2 )
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N7 + N6 + N 5 = CHNS ( 4 3 )

In these equations, v, are lifetimes of the respective manifolds. Approximations to the above rate
equations employed by others may neglect some of the participating manifolds and essentially use an
effective up conversion parameter, P27. Although this approach does hold some appeal, it
approximates away much of the physics of the situation and easily leads to a value for the up
conversion parameter which is widely different than actuality.

There is no obvious simple, closed form, solution to the above differential equations. To
illustrate the effects of the up conversion process, the population density of the Ho SI7 and Tm 3F4

manifolds are determined as a function of time utilizing numerical techniques. Results are displayed
for 2 in Figures 10 and 11 for Ho:Tm:YAG and Ho:Tm:YLF. In this analysis, the laser is not
allowed to oscillate, a situation similar to the pumping phase of a Q-switched laser. The analysis
assumes the same Ho and Tm concentrations in both materials and equal pumping rates.
Ho:Tm:YAG is subject to up conversion as can be observed in a rapid decrease in the population
densities of the Ho 5I7 and Tm 3F4 manifolds after the pump terminates. On the other hand, the
decrease in the population densities of these manifolds is not nearly as rapid, indicating there is less
detrimental up conversion.

7. Excited State Absorption

Excited state absorption occurs when a metastable manifold accumulates a sufficiently high
population density and has an appreciable absorption cross section, aESA, that it can compete with
other processes. Both pump and probe radiation can fall victim to excited state absorption. For pump
beam absorption, the rate equations are given by

' " n 2 pdt n dz n

^ B - 2 . + *!£NN ZB^NN fiu*U ( 4 5 )
dt r2 n F n rA

= - + ESA N2ND (46)
r n '

+
dt r 4

In many cases, the manifold to which the atom is promoted by the excited state absorption process,
N4, decays rapidly, returning a fraction of the quanta it receives, p42, to the metastable manifold. To
detect excited state absorption, the pump must be sufficiently intense to generate a significant
population in the excited state. It is also necessary to know the excited state population density, N2,
accurately. This is often not a trivial task because the pump beam profile is often not uniform and
absorption depletes the pump, thereby causing further nonuniform excitation.
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RISE AND FALL OF Ho:Tm POPULATION DENSITIES
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Figure 10. Rise and decay of Tm 3F4 and Ho % in YA

RISE AND FALL OF Ho:Tin POPULATION DENSITIES

Ho:Tm: YLF, 0.008:0.060, 4.0 by 40 mm la«w rod
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Figure 11. Rise and decay of Tm 3F4 and Ho 5I7 in YLF

The presence of excited state absorption may be detected by observing fluorescence from a
manifold that is higher than the metastable manifold [12]. Excited state absorption in Nd can be
detected by observing fluorescence from the 4G7/2 manifold. In this case, excited state absorption of a
probe beam rather than a pump beam is being detected. The probe beam is absorbed from the excited
state manifold, 4F3/2, and the doubly excited Nd atom relaxes to the 4G7/2 manifold from which some
fluorescence can be observed. Although this manifold is quenched, there is enough fluorescence to
allow the presence of excited state absorption to be deduced.
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8. Summary

Extreme effects can be observed in the spectroscopy of the lanthanide series atoms under
high levels of excitation or high concentrations. Extreme effects include: amplified spontaneous
emission, energy transfer, self quenching, up conversion, and excited state absorption. These effects
can often be described using a rate equation approach. If energy transfer effects are involved, energy
transfer parameters are needed. These can be computed using a quantum mechanical approach or
they can be measured by monitoring fluorescence emission.

The author would like to acknowledge and thank Dr. Brian Walsh for his many
contributions to this presentation. Also, the author wishes to thank Dr. Baldassare Di Bartolo for the
invitation to address this audience and his encouragement of these studies.

9. References

1. Barnes, N.P., and Walsh, B.M. (1999) "Amplified Spontaneous Emission-Application To Nd:YAG Lasers," IEEE J.
Quant Elect. OE-35 101-109
2. Forster, T.(1949) "Experimentelle Und Theoretische Untersuchung Des Zwishcenmolekularen Ubergangs Von
Elektronenregungeneragie," Zeitschrift Fur Naturforschung. 4A 321-327
3. Dexter, D.L., (1953) "A Theory Of Sensitized Luminescence In Solids," J. Chem. Phvs. 836-849

4. Walsh, B.M., Barnes, N.P., and Di Bartolo, B. (2000) "The Temperature Dependence Of Energy Transfer Between

The Tm 3F4 and Ho 5I7 Manifolds Of Tm Sensitized Ho Luminescence In YAG And YLF," J. Lumines. 90 39-48

5. Barnes, N.P., Filer, E.D., Morrison, C.A., and Lee, C.J. (1996) "Ho:Tm Lasers I: Theoretical," IEEE J. Quant. Elect.

QEO2 92-103
6. Inokuti, M. and Hirayama, F. (1965) "Influence Of Energy Transfer By The Exchange Mechanism On Donor
Luminescence," J. Chem. Phvs. 43 1978-1989
7. Yokota, M. and Tanimoto, O. (1967) "Effects Of Diffusion On Energy Transfer By Resonance," J. Phvs. Soc.
Japan 22 779-784
8. Burshtein, A.J.(1972) "Hopping Mechanism Of Energy Transfer," Soviet JETP Physics 35 882-885
9. Rotman, S.R. (1989) "Nonradiative Energy Transfer In Nd:YAG- Evidence For Correlated Placement Of Ions,"
Appl. Phvs. Lett. 54 2053-2055

10. Walsh, B.M., Barnes, N.P., and DiBartolo, B. (1997) "On The Distribution Of Energy Between The Tm 3F4 and Ho
5I7 Manifold In Tm Sensitized Ho Luminescence," J. Of Luminescence. 75 89-98

11. Barnes, N.P., Filer, E.D., and Morrison, C.A. (1996) "Self Quenching Of The Nd 4F3/2 Manifold," Proceedings Of

The Advanced Solid State Laser Conference. S.A. Payne and C.R. Pollock editors 1,526-529, (1996)
12. Guyot, Y., and Moncorge, R. (1993) "Excited State Absorption In The Infrared Emission Domain Of Nd3+

Doped Y3AI5O12, YLiF4, And LaMgAinO,,," J. Appl. Phvs. 826-8530
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Abstract: After a short introduction we outline the properties of the electron-hole plasma and give
some selected examples how its properties have been verified in direct and indirect gap bulk
semiconductors and in quantum wells.

Then we present the basic properties expected for an excitonic Bose-Einstein condensation, claims
for its observation and the objections put forward to these claims. The contribution will be finished
with a short conclusion and outlook.

1. Introduction

In the first contribution to this book we have introduced the concept of excitons in bulk material and
in various types of quantum wells. In this contribution we will follow two aspects of what could
happen if the density of excitons or of electron-hole pairs is increased.

We note, that we are throughout this contribution in a time regime longer than the dephasing time of
the initially created polarisation (via exciton and / or electron hole pair creation) with the driving
laser field. Effects of Rabi-flopping etc. treated e.g. in the contributions by B. Di Bartolo or M.
Wegener to this school are here of no relevance. Furthermore the pulses are not so intense that they
melt the sample (see the contribution of E. Mazur).

We give in Fig. 1 a very schematic and intuitive sketch of what might happen with increasing
generation rate.
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Figure 1: Schematic drawing of various properties of the electron-hole pair system in a semiconductor.

At low excitation density the absorbed incident light may directly form excitons or electron-hole
pairs for h(Oexc > Eg . The electron-hole pairs may bind to excitons or excitons my be thermally

dissociated at higher temperatures. At low temperature the excitons may be also bound to (point-)
defects like neutral acceptors or neutral or ionized donors to form bound exciton complexes. After an
average lifetime T! the excitons and carrier pairs recombine radiatively or radiationless. These
processes form the regime of linear optics, this means that the optical properties like the spectra of
absorption, transmission, reflection and luminescence do not depend on the light intensity. In other
words an expansion of the polarization in a power series of the electric field, as presented in several
contributions to this school, can be truncated after the linear term.

With increasing generation rate, we come to a region, where excitons are still good quasi particles,
but their density is so high, that they start to interact: there might be elastic and inelastic scattering
processes between excitons or excitons and free carriers or two excitons may bind together to form a
biexciton or excitonic molecule.

All theses phenomena lead already to excitation induced variations of the optical properties of the
semiconductor, i.e. to nonlinear optical effects, which can be described either by higher terms in the
power series expansion of P(E) including the well know x<2> and x<3> effects like second harmonic
generation, rectification of the light field (the dc effect) or four wave mixing or hyper-Raman
scattering, respectively. In the case of incoherent excitation this approach is better replaced by an

explicit dependence of the dielectric function E ( (O) = £] ( o ) + ZS2 (co) or of the complex index or

refraction « ( o ) = « ( © ) + nc(co) on the electron-hole pair density s ( c o , « p ) or n((O,np). For
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such effects see either various contributions to this school or [1] and the references given therein. For
even higher excitation densities two different things may happen.

If the density of excitons becomes so high, that the average distance of the excitons and / or carries is
comparable to the excitonic Bohr radius, one can no longer say that one electron is bound to one hole.
Instead one gets a new, metallic, collective phase of electrons and holes, which is know as electron-
hole plasma (EHP). As we shall see later this EHP may occur at low temperature in a liquid phase
(electron-hole liquid (EHL)) forming small electron-hole droplets (EHD).

In this situation the Fermi-character of the carriers, i.e. of the constituents of the excitons, dominates.

On the other hand, excitons are to a good approximation Bosons, because they have integer spin.
Actually the creation and anniliation operators for excitons obey the commutations rules for Bosons,

however with an additional term increasing with increasing exciton density of the order

where a^ is the excitonic Bohr radius.

For some early theoretical predictions of excitonic BEC see e.g. [2 - 4] and for older or recent
reviews or books [ 5 - 7 ] .

While the properties of the EHP are nowadays well established and used in every commercially
available semiconductor laser diode, the excitonic BEC is still an open question as we shall see, in
contrast to the one of (alkali-) atoms in a trap. For this latter topic see e.g. the contributions by Ch.J.
Pethick and K. Helmerson to this school and the references therein.

We start first to describe the properties of an electron hole plasma, then we discuss the excitonic BEC
and give finally a short conclusion and outlook.

2. The electron-hole Plasma

We start with the discussion of the EHP because its properties are well established.

2.1 BASIC PROPERTIES OF THE ELECTRON-HOLE PLASMA

In Fig. 2 we show schematically on the rhs the density dependent variations of electronic properties
when an EHP is formed and on the l.h.s. the resulting changes of the optical properties. The upper
half gives data for low and the lower half for high temperatures, respectively. The drawings are made
for a direct gap semiconductors with dipole-allowed band-to-band transition, but the sketches on the
r.h.s. are also valid for indirect gap materials.
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Inrip

Figure 2: Schematic drawing of the changes of the optical (a, b) and the electronic properties (c, d) when
increasing the electron hole pair density np and going from a low density exciton gas to an EHP. Low
temperatures (a, c), high temperatures (b, d).

At low temperature and density we see the exciton series with main quantum number nB for k^ = 0
(Fig. 2c) coupling to the radiation field and resulting in the series of exciton absorption peaks
followed by the transition into the ionization continuum (Fig. 2a solid line).

If we now start to increase the electron hole-pair (or exciton) density various things happen (for
details see e.g. [1,7] and references therein): The width of the forbidden gap is monotonously
decreasing with increasing nP. This band-gap renormalization (BGR) has two contributions. If the
electrons and holes would be randomly distributed the gap would be independent of nP, because the
terms describing mutual electron-hole attraction would cancel on the average with ones for electron-
electron and hole-hole repulsion. Actually they are not randomly distributed. At low density e and h
bind due to Coulomb interaction to form excitons. Even at densities where excitons do no longer exist
as individual quasi-particles there is still a (Coulomb) correlation energy which results from the
spatial correlation of the probability to find electrons and holes in the sense that there is in the
vicinity of a hole a higher probability to find an electron than to find another hole and vice versa. The
resulting average Coulomb attraction lowers the gap with increasing nP. A further contribution to this
BGR comes from the exchange interaction, which describes the fact that equal carriers with parallel
spin cannot be at the same place due to the Pauli principle and are thus on the average further apart
form each other. Such an increase of the average distance of equal particles reduces their average
repulsion and contributes to an overall lowering of the gap as shown in Fig. 2c and d. These effects
result in the BGR Eg'(nP) which is to a good approximation temperature independent.

The next effect is a density dependent decrease of the exciton binding energy caused by a screening
of the Coulomb-interaction between an electron-hole pair and especially in structures of reduced
dimensionality by phase space filling [1]. The Coulomb potential is then transformed to a screened
one according to (1)
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where the screening length lc decreases with increasing carrier density. For

a*/;1 =1.19 (2)

with aB = excitonic Bohr radius the binding energy of the exciton vanishes and no more bound
exciton state exists.

It can be shown that the BGR and the decrease of the exciton binding energy cancel to a good
approximation. This means, that the absolute energy of the exciton remains approximately constant
over the electron hole pair density as seen in Fig. 2b, but the damping and width increase until the
exciton state ceases to exist at a certain density nM. This density is generally referred to as the Mott
density. It describes at low temperatures the transition from an insulating state of neutral excitons
(originally of neutral donors) to a metallic state of electrons and holes. Actually it turned out later that
this is rather a continuous transition instead of an abrupt one [8]. Obviously the higher exciton states
disappear already at lower densities.

The last quantity shown in Fig. 2c, d is the chemical potential of the electron-hole pair system
H(nP,T). We introduce this quantity in the following.

In thermodynamic equilibrium the distribution of the electrons in the bands and in defect- or doping
centers can be described by one (electro-)chemical potential which is in semiconductor physics called
Fermi level EF for all temperatures.

The densities of electrons in the conduction band n or of holes in the valence band p are then e.g.
given by

nt = $D(E) • fFD (E, EF , kBT)dE (3a)

o

p = $D(E)(l-fFD)(E,EF,kBT)dE (3b)

where D(E) is the density of states in the respective band, and fFD (E, EF, kBT) the Fermi-Dirac
occupation probability (see below). The energy zero is assumed at the top of the valence band.

If we now increase the density of electrons and of holes e.g. by carrier injection in a forward biased
pn-junction or by optical excitation, and still assume that the carriers acquire a thermal distribution,
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which allows to define a temperature T, we can use again (3a, b) but with individual quasi-Fermi

levels for electrons and holes Ep .

The difference between these quasi-Fermi levels is just the chemical potential of the electron hole
pair system

V.{n,p,T)=Ee
F{n,T)-Eh

F{p,T) (4)

In thermal equilibrium \i vanishes obviously. It is positive if n and p are increased beyond the
equilibrium value and is negative in the opposite case e.g. in a pn junction biased in the blocking
direction.

In a similar way the chemical potential of the electron-hole pair system is defined if excitons are still
good quasi particles of density nex at a temperature

na = JDjEjfBEiE^kB^dE (5)

now using the Bose-Einstein occupation probability.

In Figs. 2c and d u is evidently zero for nP -> 0 and increases for finite nP. At low temperatures it may
show a non monotonous behaviour (Fig. 2c). At higher temperatures it is a monotonously increasing
function of nP (Fig. 2d).

The energetic distance between the exciton energy and the minimum of n(nP, T -> 0) is called the
binding energy of the EHP C>. It is indicated in Fig. 2b, with <J> > 0 indicating a bound state.

We assume now, that we have excited a direct gap semiconductor with dipole-allowed band-to-band

transition to a density nP which is above nMott and even so high that u exceeds the reduced gap Eg

li(nP,T)>Eg{nP) (6)

Then we have population inversion between conduction and valence band, and optical amplification

or gain between n and E if the band-to-band transition is direct and dipole allowed. For photon

energies above u(nP, T) there is band-to-band absorption enhanced by the remaining e-h correlation
in the plasma.

At higher temperatures the exciton resonances are thermally broadened (solid line in Fig. 2b) and

since u(nP, T) decreases with increasing T for constant nP it may no longer exceed E for the

assumed density nP resulting just in a bleaching of the absorption tail (dashed line in Fig. 2b) since
H(nP, T) gives always the transparency point.
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Note that there is no such thing as a simple Burstein-Moss shift i.e. a simple blue shift of the
absorption edge by state filling even for an unipolar plasma produced e.g. by strong n-doping. The
filling of states is always accompanied by a BGR and the interplay between both effects determines if
there is a red- or a blue shift of the absorption edge. At very high densities the state filling dominates
always over BGR.

2.2 EXAMPLES FOR BULK SEMICONDUCTORS WITH DIRECT,
DIPOLE-ALLOWED GAP

In this section we show some data for direct gap bulk semiconductors with dipole allowed band-to-
band transition.

We should note at this point, that there are also excitonic processes in the intermediate density regime
[1, 9], yielding optical gain, but all commercially available laser diodes relay on the gain in an EHP,
usually in quantum wells of direct gap semiconductors with dipole-allowed band-to-band transition.

In Fig. 3 we show for CdS at various lattice temperature TL transmission spectra of a CdS crystal
platelet which is a few urn thick without optical pump beam and with a 5ns pump pulse of Iexc =

4MW/cm2 and 7*00^ = 2.8eV. Since the lifetime T) of the carrier pairs is around < Ins one has

quasi-stationary conditions around the maximum of the pump beam. The temporal and spatial
maximum is probed by the weak probe beam.

In the transparent region the transmission is modulated by Fabry-Perot modes of the platelet type
sample. At TL = 5K the transmission minimum around 2.552eV results from the lowest free exciton
(Ar5). With pump beam the behaviour corresponds to the expectations of Fig. 2a, c. The exciton
resonance disappears both in transmission and reflection [8, 10], there is optical amplification

between u, and Eg. Both quantities are indicated in Fig. 3 a. The binding energy O of the EHP is

about lOmeV (see also Figs. 4 and 5). For higher temperatures the excitonic absorption edge is
smoother due to the Urbach rule
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Figure 3: Pump- and probe beam spectra of a thin CdS platelet for various lattice temperatures. From [10].

behaviour [1], the gain is smaller at 150K and vanishes almost at 300K. Only a pronounced bleaching
is left.

At all temperatures one observes a blue shift of the Fabry Perot modes, indicating a density

dependent decrease of the real part of the refractive index An (CO, np ) as expected from Kramers-

Kronig relations [11].

In Fig. 4 we show gain spectra deduced from data like in Fig. 3 now for various values of Iexc at a
lattice temperature TL = 5K.
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Figure 4: Gain spectra of a CdS crystal for various pump intensities at a lattice temperature TL = 5K. From [8,
10].

The gain spectra become broader with increasing excitation. They can be perfectly fitted with a
model taking into account band-to-band recombination under k-conservation and including some
(final-state) damping and the remaining Coulomb correlation [8, 10, 12]. For the highest excitation
the deduced parameters are given. It should be noted that the carrier temperature can be above the
lattice temperature. (See also Figs. 6, 7.)

In Fig. 5 we show, that there is good agreement between the calculated and measured dependencies

of the chemical potential u(nP, TP) and the reduced gap Eg\nP).

We come back to this Figure in another context later. Before we give some more experimental
results, to show that the formation of an EHP is a well established phenomenon in a wide variety of
semiconductors.

In Fig. 6a we show an EHP gain spectrum for ZnTe (another II-VI compound) and in b the absorption
spectrum for the III-V semiconductor GaAs. While the EHP forms evidently a bound state in ZnTe <&
= Eex - u = (2.3809 - 2,362)eV = 18.9meV the chemical potential is above the exciton energy in the
experiment shown in GaAs, but at lower densities u falls below Eex resulting again in a positive value
of* [16].
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(meV)
C d S

Figure 5: Calculated and measured density dependencies of the reduced gap Eg'(np) and the chemical potential
u(nP, TP). According to [10, 12 13].

Even in CuCl an EHP state has been reached under strong pulsed excitation, though the excitonic
Bohr radius does hardly exceed the lattice constant [17]. In Cu2O, a hot candidate to observe
excitonic BEC (see below) it was recently possible to bleach the whole exciton series down to the nB

= 2p state completely [18], and it is questionable if the remaining Is excitons can be still considered
as a weakly interacting Bose gas at these densities.

The agreement of the observed BGR with "universal formula" has been demonstrated in [19, 20] for
many semiconductors.

2.3 PHASE SEPARATION AND ELECTRON-HOLE LIQUID

We come back to Figs. 2b, d and 5. If the chemical potential u(nPT) shows below a certain critical
temperature Tc a non-monotonous behaviour, quasi-equilibrium thermodynamics predict a first order
phase transition to occur [5 - 7, 13, 21] in a very similar way as in a real or van der Waals gas. The
region with a negative slope in the n(nP, TP = const) curve is unstable. Instead a phase separation
occurs into a liquid like electron-hole plasma state (EHL) given by the high density border of the
coexistence region in Fig. 7 and a low
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Figure 6: Gain or absorption spectra, respectively, resulting from EHP formation in ZnTe and GaAs. From [14,
15].

density gas phase consisting of excitons and possibly biexcitons and, depending on temperature, of
some free carriers.

This means, that under excitation conditions with carrier temperature below Tc and an average
density in the coexistence region a phase separation should occur. The low energy side of the
coexistence region is given by [7, 22]

(7)

A certain modification of the phase diagram as indicated by the dashed like may occur at low
densities and temperature due to the finite carrier lifetime.

Above Tc a kind of Mott transition will take place as will detailed in 3.4.
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Figure 7: Calculated electron hole pair phase diagram for CdS. According to [13]

Evidently this phase separation is not observed in CdS, though the EHP forms a bound state. The
plasma densities could be varied continuously in the coexistence region by a simple variation of the
excitation intensity. The reason for this failure is not, that the binding energy of the EHP is too small,
but the reason is simply the short lifetime of the electron-hole pairs in the plasma, which is in the sub-
ns regime and might be even shorter if stimulated emission sets in.

The formation of a phase separation into liquid like droplets (EHD) surrounded by a low density gas
phase requires a spatial motion of the uniformly excited carriers and thus a finite time. If this time is
longer than the lifetime of the carrier pairs the phase separation does not take place though <I> > 0, as
shown explicitely for CdS [8, 21] and as is very likely true for all similar II-VI and III-V compounds.

2.4 EXAMPLES OF BULK SEMICONDUCTORS WITH INDIRECT GAP

In order to observe the phase transition, one has to investigate according to the above considerations
semiconductors with long electron-hole pair lifetime. Ideal candidates are the indirect gap materials
Ge and Si. The long lifetime results from the necessity to involve a momentum conserving phonon in
the recombination process. This fact has various advantages with respect to EHP research: High
densities can be easily reached, under favourable condition even under cw excitation.

Stimulated emission does not occur due to the small optical transition probability though population

inversion i.e. u > £ „ is easily reached. This latter fact is however a big disadvantage for the

application because it prevents the use of Si or Ge as laser or light emitting diodes!
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Figure 8: The LA phonon replica of the exciton and EHP emission of Ge. According to [23].

Indeed the formation of an EHL has been observed by many authors. We give below some examples.
In Fig. 8 we show the LA phonon assisted luminescence of a Ge crystal showing the free exciton
luminescence and the emission from the electron-hole droplets. The fact that a liquid like state has
been obtained follows from the fact, that the EHP density remains constant with increasing excitation
at constant temperature but the relative weight of the two bands changes as expected from the phase
diagram.

The phase diagram itself can be deduced from the luminescence data in the following way.

One increases the generation rate G and thus the average electron-hole pair density at constant carrier
temperature. As long as one stays below the low density boarder of the coexistence region only free
(and bound) exaction emission is observed. When one crosses this border, EHD emission appears.
From the generation rate and the lifetime it is possible to reconstruct the low density boarder while a
line shape analysis of the EDH gives the high energy side.

Phase diagrams in very close agreement with the one shown in Fig. 7, have thus been verified
experimentally for Ge and Si. The critical densities and temperatures turned out to be (8 • 1016cm"3,
6.5K) and (1.5 • 1018cm"3, 25K) while the liquid densities for T -> 0 n0 are 2.3 • 1017cm"3 and 3.5 •
1018 respectively, see e.g. [19, 24] and the references therein.

Beautiful experiments have been performed at that time with EHD's under high surface excitation.
The droplets are driven in pure samples into the bulk by the phonon wind [25], while macroscopic y-

drops have been observed in potential minima of E created by the application of inhomogeneous

stress [26].

The phase diagrams could be varied by the application of homogeneous stress to the samples which
reduces if properly applied the degeneracy of the multivally structure of the conduction band and
reduces thus the values of O, nc, Tc and n0 [19, 27].
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2.5 EXAMPLES FOR QUANTUM WELLS

To conclude this section we show data for the EHP formation in GaAs/Al,.yGayAs quantum wells in
Fig. 9.

The phenomena are qualitatively identical to bulk material. The lowest exciton resonances (hh and lh
nz = 1) disappear with increasing excitation intensity, the gap decreases monotonously with

increasing nP and \i shifts above Eg resulting in population inversion and gain. As mentioned

already above, this gain is the underlying process of all presently commercially available laser
diodes.

100 x (I 3 ran GaAs, 10 nm Ga0 7AI0.3AS)

1.50 1.55

photon energy (eV)

(a )

Figure 9: Luminescence spectra of a GaAs/Al,.yGayAs MQW (a) and the density dependence of \i and Eg'.(b).
From [28]
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It is remarkable, that the higher exciton states (nz = 2) disappear only when these states start to be

occupied and show a much smaller shift than the band gap Eg (nP), showing a non rigid behaviour of

the whole subband structure with increasing nP [28]. Similar data have been obtained also for In,.
SQW [29].

No reports of an EHP phase separation are known to the author for this type of materials.

For an EHP in quantum wires see e.g. the contributions by E. Kapon to this and the preceeding school
[30].

To summarize we can state that the existence of an EHP and the transition to an EHL under
favourable conditions is well established in bulk semiconductors and in quantum structures. The main
part of the work for bulk materials has been performed in the seventies and eighties of the last
century as can be also seen from the references.

3. Excitonic Bose-Einstein Condensation and Superfluidity

Now we concentrate on the possibility to observe excitonic Bose Einstein condensation (BEC). We
start with some general considerations and treat then the attempts to observe it in bulk and quasi two
dimensional semiconductors. The chapter will be finished with short comments about excitonic
insulators and on so-called "driven BEC".

3.1 BASIC PROPERTIES

A BEC is a macroscopic population of one quantum mechanical state by (ideally non or weakly
interacting) Bose particles in thermal (quasi-)equilibrium. It occurs if either the temperature T is
lowered below a critical temperature Tc at constant particle density n, or if n is raised above nc at
constant T.

For non-interacting ideal Bosons one finds the following relation between nc and Tc [7]

where m and g are the mass of the particles and the degeneracy of the state, respectively. The
condensate can show superfluidity. The facts that the mass of excitons is comparable to the free
electron mass while those of e.g. alkali atoms are ten or a hundred times the proton mass and that
excitons can be created by pulsed lasers easily in the density range up to 1017cm"3 allows one to
expect values of Tc up to around 1 OK while the successful experiments to observe atomic BEC in
traps required T as low as a few 10u,K.

The weak interaction should be slightly repulsive, to avoid condensation of the particles in real space,
since a BEC is a condensation in k-space.
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The only example of a BEC of weakly interacting Bosons is the condensation of alkali and H atoms
in a trap, treated in the contributions of Ch. J. Pethick and K. Helmerson to this school.

There are further examples of BEC for Bosons with rather strong interaction like the superfluidity of
4He and systems which involve the pairing of Fermions and the formation of a gap like
superconductors or superfluid 3He.

Excitons would evidently be another example for weakly interacting Bosons. Before we start to treat
experimental attempts to observe excitonic BEC and the objections against these interpretations, we
show how eq (8) can be understood.

We show in Fig. 10a the three occupation probabilities for particles with an effective mass m possible
in three dimensions namely the Boltzmann statistics for distinguishable particles and the Fermi-Dirac
and Bose-Einstein statistics for indistinguishable particles with half or integer spin, respectively.
They are given by

E,v)= (E^)lkBT (9a)

fFD(T,E,ii)=

fBE{T,E,v)= ( g _ , ) / v , (9c)

where |x is the chemical potential. Evidently they coincide for (E - n)/kBT > 2 and show characteristic
differences below.
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Figure 10: The occupation probabilities according to Boltzmann, Fermi-Dirac and Bose-Einstein as a function of
(E - n)/kBT (a) the square root density of states of particles with a finite (effective) mass in three dimensions (b)
and the step function in two dimensions (c).

For particles with a well defined density n, u. is defined by eq. (10)

n=\D{E) .fBFDBE{T,E,^)dE (10)

For particles, the density of which is not conserved like photons in black body radiation or phonons
in thermal equilibrium one has \i = 0. In Fig. 10b we show the square root density of states of
particles with a finite and constant (effective) mass m

(11)

If one performs now the integration (10) for a low density, u i.e. the origin of Fig. 10a is situated
below Eo. If the density increases, u shifts towards Eo. Eventually Eo coincides with u. There is no
singularity for Boltzmann particles and Fermions. The density one reaches under this condition for
Fermions is given by
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(mkBT

and is known as effective density of states [1]. For further increasing n, \i shifts into the band. For
Fermions, the distribution is then said to be degenerate since the Pauli principle reduces the
occupation probability from 1 to 'A and limits it to 1.

For Bosons the situation is different. The singularity at E - n = 0 does not allow to shift u beyond Eo.
For u = Eo the integrated population is finite and corresponds just to nc in (8).

For further increasing n > nc a macroscopic population of the lowest state develops and
accommodates all particles beyond nc. This is the Bose-Einstein Condensation. The condensed phase
may show superfluidity i.e. loss- or frictionless motion.

3.2 ATTEMPTS TO FIND BEC IN BULK SEMICONDUCTORS

We now present various attempts to observe excitonic BEC in bulk semiconductors and the
objections against these interpretations brought forward. Since the topic of excitonic BEC and / or
superfluidity appears almost regularly every few years in literature since its prediction in 1962 we
cannot treat all examples. We mention shortly some older ones and concentrate then on recent
experiments in Cu2O.

The macroscopic population of one state should or could show up in a narrow luminescence peak.
Therefore several attempts concentrated on spectrally narrow emission lines. Unfortunately not only a
condensed exciton phase gives rise to narrow emission lines but other processes, too. So the narrow
emission or absorption bands from bound exciton complexes (see Fig. 1) (which are by the way also
abbreviated by BEC) have been misinterpreted as excitonic BEC e.g. in AgBr, CdS or CuCl [31].

The recombination of biexcitons into a photon and an exciton gives rise to well known and
understood emission bands in different semiconductors like the Cu-halides, II-VI compounds or Si [1,
12, 32]. Under resonant two photon excitation of the biexciton narrow emission bands appeared,
which have also been interpreted as a BEC of biexcitons [33]. It could be shown however
independently by two groups, that these narrow lines result from a cold but non-condensed gas of
biexcitons and / or from resonant two-photon or Hyper-Raman scattering [32, 34]. However, it was
possible to verify the Bosonic character of biexcitons in CuCl in the sense that they are preferentially
scattered into a state which is strongly populated by an external laser pump source [35], but again no
spontaneous BEC could be reached. We come back to this type of experiments in 3.6.

For a short while the disappearance of excitonic features from the reflection and transmission spectra
of CdSe under high excitation has been considered as an indication for an excitonic BEC [36] but as
we know from chapter 2, this is actually an indication for a transition to an EHP.

In Ge the formation of an EHL at low temperatures could be suppressed by the application of stress
and magnetic field. Nevertheless it was also in this case not possible to reach an excitonic BEC with
increasing pump power, though a Bosonic line narrowing was observed at intermediate densities [37].
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After this short overview over older work we concentrate on Cu2O. This is a direct gap
semiconductor with a large exciton binding energy of 150meV but with parity forbidden band-to-
band transition. For data see [1] and references therein. The lowest exaction state (nB = 1) is split by
exchange interaction by 12meV in a lower para-exciton which is optically forbidden to all orders.

Only its F5~ LO phonon satellite is seen very weakly in the luminescence spectra [1, 38]. The ortho-

exciton is only quadrupole allowed nevertheless resulting in a beautiful polariton dispersion leading
continuously from the ortho exciton branch over the bottleneck and the photon like branch to E -> 0
for k -> 0. [38]. It is weakly seen both in absorption and emission and strongly in two photon
absorption [38]. Furthermore its various LO phonon replica show up strongly in luminescence and
absorption. The LO-phonon assisted absorption shows nicely the square root dependence of the
density of states. This absorption band is superimposed by the nBP exciton states, which are weakly
dipole allowed due to the odd parity of the P envelope function. In good samples the nBP series can
be observed up to nB = 7 and beyond.

The LO assisted luminescence bands, which reflect the distribution of the excitons in their bands,
prove that the excitons reach thermal equilibrium with the lattice down to temperatures well below
10K, at least under low excitation. Examples for all of these statements can be found in [1, 7, 39].

Since the relaxation of ortho excitons to para excitons is rather slow at low temperatures [40] there
was a hope that ortho excitons might be pumped to beyond nc at low crystal temperatures. A certain
change of the emission line shape from a simple Boltzmann to a narrower Bose type has been found
[7, 41], but various authors agree, that the density approaches the nc(Tc) curve from low densities but
never reaches it [7, 42].

The next approach came from transport measurements of presumably para excitons [43]. The
experimental set up and the main findings are the following. A brick-shaped Cu2O sample is exited
on one side by intense ns pulses in the LO phonon continuum, producing a cloud of excitons.

Their arrival at the opposite side is monitored by a current pulse produced by their field ionization in
a Cu2O/Cu Schottky contact barrier resulting in a current pulse which is monitored on an
oscilloscope. The signal starts after a delay time given by the LA velocity of sound, while the
following signal is temporally rather broad, indicating a diffusive transport of the excitons over the
sample length of about 3.5mm. It steepens and gets shorter if the density is increased at low
temperature or if the temperature is lowered at high excitation.

The interpretation given in [43] is that the excitons undergo a BEC into a superfluid state when the
critical values of nc, Tc are meat, and the condensed cloud propagates with vLA through the sample to
the Shottky barrier.

A first small problem in this interpretation is that the signal area saturates with increasing intensity
while one would expect rather the opposite behaviour for a BEC.

As is usual in the field of excitonic BEC, various alternative explanations have been put forward and
the BEC and superfluidity have seriously been questioned in various ways.

Due to the weak absorption in the Is ortho exciton state, excitons have to be excited in the LO-
phonon or ionization continuum, if one wants to reach high densities. Consequently a large non
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thermal population of optical and then of acoustic phonons is created by the relaxation of the exciton
to the (para-) exciton ground state, and later on by their dominantly non radiative recombination [40].
The phonon cloud created near the surface propagates into the sample and it has been calculated by
[44] that an exciton flux very similar to the experimentally observed signal can be expected at the
place of the detector caused by the phonon wind, i.e. a ballistic motion of the excitons driven by the
expanding non-thermal cloud of LA phonons.

This interpretation does not involve any superfluidity nor BEC of the excitons and explains easily
why the signal onset delay at the detector coincides with the time of flight of LA phonons.

Spatially and temporally resolved pump and probe beam spectroscopy of a thin Cu2O rod has been
performed in [45] using the broadening and bleaching of the higher nBP excitons states caused by a
high density of excitons [18, 39] as a measure of the density of excitons along the crystal as a
function of distance from the excited surface and time.

The results show exciton transport over distances of around lmm but the whole propagation process
could be simulated within experimental error by classical diffusive propagation for the temperature
range from 2 to 30K and the average propagation velocity of the exciton cloud was well below vLA.

Presently work is under way in the group of the author to combine electrical measurements like in
[43] with optical ones [45] on the same sample.

Another criticism came from a detailed analysis of the intensity and dynamics of the ortho exciton
luminescence [46] and led the authors to the conclusions, that the Bose-Einstein luminescence line
shape is due to inhomogenieties of the exciton population and, an artefact more important, that the
Auger-recombination of the excitons and the heating of the exciton gas are so dramatic, that one
cannot come even close to the conditions of an excitonic BEC.

This huge Auger cross section has in turn been questioned since the Bohr radius is small and the
excitons do not even carry an electric dipole moment. Instead an efficient ortho -> para conversion
mechanism has been put forward in theoretical investigations [47] for high densities. Experimentally
it has been found independently in [45, 48] that the Auger cross section is indeed small.

Even more recently it has been shown [49] that the Schottky barrier exciton detector used in [43] to
monitor the arrival of the excitons might be driven under the highest excitation conditions by several
orders of magnitude into saturation, explaining both qualitatively the variation of the time
dependence of the electrical signal with increasing excitation and the saturation behaviour of its time
integral. These arguments are subject of a presently ongoing debate.

First attempts failed to confine excitons in Cu2O in a potential trap caused by externally applied
inhomogeneous stress [50]. New experiments using two photon pumping, partly connected with
stress induced wells started recently [51, 52] but did not yet result in an evidence for excitonic BEC.

The same statement is true for excitonic inter subband spectroscopy (i.e. investiagion of the excitonic
Lyman series) for which theory predicts features characteristic for excitonic BEC [53, 54].

Though it is not possible to cite all experimental work published during the last forty years, the
selection shown here makes clear, that there is until now no clear cut and generally accepted proof for
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excitonic BEC. On the other hand, there is no generally accepted theoretical result explaining why it
should not occur at all [55].

So the search for it will and does continue, including structures of reduced dimensionality. Before we
go to such structures in section 3.5 we consider a simple phase diagram in section 3.4.

3.3 A PEDESTRIAN APPROACH TO A PHASE DIAGRAM

We gave in Fig. 7 already a phase diagram for the transition to an EHL. We want to complete this
phase diagram including excitonic BEC in Fig. 11 using a simple minded pedestrian approach.

Figure 11: A schematic phase diagram including EHL formation and excitonic BEC. For the meaning of the
various lines see text. The units on the x and y axes have to be considered as approximate ones only.

We mentioned in 2.1, that a transition to an EHP occurs beyond a certain density nM or if the
screening length lc becomes comparable to the excitonic Bohr radius as.

In the Debye Hiickel approximation lc is given by

_(ezokBf
< n w — :;

1/2

'DH (13a)
e ftp

resulting in

e aB 2a\Ry
(13b)
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This approach is only valid as long as the exciton and carrier gases can be described by classical
statistics. For very low temperatures it would give the unphysical result that a vanishing density

DM

results already in a screening of the exciton. We give therefore nM in Fig. 11 only for higher

temperatures. At low temperatures, where the carrier gas is degenerate, the Thomas-Fermi screening

length is more appropriate. It gives a temperature independent value of njj given roughly by

nfia*B*\ (13c)

which is also given in Fig. 11. This means than an EHP exists to the right and below these two
curves.

Now we give the criterion for a BEC for ideal Bosons according to eq. (8). We can anticipate, that
excitons will no longer behave as ideal Bosons close to the Mott transition to a Fermi gas.

In [56] it is claimed that excitons behave as weakly interacting Bosons for

nP a\« — « 0.04 (13d)

The limit 0.04 is shown as vertical line in Fig. 11, too.

The shaded region where an excitonic BEC can be expected became now already rather small.

Now we add the phase diagram for EHL formation from Fig. 7 for a finite binding 0 > 0 of the EHL
and see that the possibility to observe an excitonic BEC disappeared completely. This is also stated
on p 12 of [7], but is then wavied away rather quickly. The author feels, that some more consideration
should be given to this argument.

In Si and Ge the EHL has been clearly observed (see 2.4). Even if <1> was brought close to zero by
external fields, no excitonic BEC occurred.

In all HI-V and II-VI compounds the plasma forms a bound state. The fact that no phase separation
was observed is not due to the fact that the plasma is not bound, but that the carrier lifetime is too
short for the phase separation to form. Possibly it is also too short for the BEC condensation to take
place, which would explain the failure to observe it in this rather large group of materials.

In CuCl the creation of an EHP has been verified experimentally [17] however our knowledge of its
properties is too limited to give a definite statement about <J>. In CU2O no report of an EHP is known
to the author. Under conditions where it is possible to bleach all nBP exciton states [18], the Is
exctions are possibly far away from being idealized, weakly interacting Bosons.

To conclude this section, it should be mentioned, that more complex phase diagrams are discussed in
theory, which allow for an excitonic BEC pocket and are reviewed e.g. in [7]. However there does
not seem to be much of an experimental verification of these diagrams until now.
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3.4 BOSE-EINSTEIN CONDENSATION IN
(QUASI-) TWO-DIMENSIONAL SYSTEMS

Before discussing recent results on coupled quantum wells in section 3.5, we want to have a short
look into two-dimensional systems in general.

Shifting the step-like density of states function of a two-dimensional system of massive particles of
Fig. 10c over the Bose-Einstein distribution function of Fig. 10a shows immediately that strictly
speaking a BEC is not possible in two dimensions. Either \i is below Eo then there is no BEC or u
coincides with Eo then a divergence of the particle density arises from the product of a finite density
of states and the divergence in their occupation probability.

Actually the DOS is not step like in the sense of a mathematical heavy side function ®(E-E0). One
has a (often exponential) tail of localized states below Eo. These tail states behave however not like
Bosons. They can be empty, they can be occupied by one exciton. If two excitons (i.e. a biexciton)
are placed in this state the energy of both shifts to the red. Higher occupancies lead, if possible at all,
to a blue shift.

On the other hand it would be also difficult to imagine what a BEC of localized excitons means when
every particle sits in another place and at a different energy.

Though there is strictly no BEC in two dimensions for massive particles, a transition to a superfluid
state is possible according to Kosterlitz and Touless [7] (KTS) for densities nc above or temperatures
below Tc given by

_ (h2/2m)4nnc

T « -i r—L r4- (14a)
c lnln(l/«ca

2)
resulting to a good approximation in

n * * B cn c * ( 1 4 b )

In the following we describe to which extend these ideas could be realized in a system not completely
different from the one proposed in [57].

3.5 ATTEMPTS TO OBSERVE EXCITONIC SUPERFLUIDITY
IN TILTED COUPLED QUANTUM WELLS

According to the above considerations, there were recently attempts by two groups (L.V. Butov et al.
and D. Snoke et al.) to observe excitonic superfluidity in the frame of KTS using two coupled and
tilted quantum wells [58, 59]. The basic idea of the samples is the some one in both cases and is
shown in Fig. 12a. In a n+in+ structure two coupled wells with a narrow barrier are incorporated in the
intrinsic layer. A voltage applied to the n+ cladding layers tilts the band structure and separates the
lowest electron state from the highest hole state in the way shown in Fig. 12a. Butov et al. use
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n+GaAs and Ali.yGayAs barriers around and between the two GaAs wells in the intrinsic region while
Snoke et al. use In^yGaAs wells.

Figure 12: Schematic sketch of the band alignment of the samples used by [58, 59] (a) schematic drawings of the
luminescence ring structure observed by [59] (b) and by [58] (c) and the behaviour observed by both groups when
to excitation spots are used with decreasing distance (d).

In both cases excitons are formed which carry a permanent dipole moment due to the spatial
separation of electrons and holes under the action of an external field. This arrangement increases the
exciton lifetime to values in the 100ns regime, but reduces also the exciton binding energy [60], and
creates a repulsive interaction which prevents biexciton formation due to the parallel aligned electric
dipoles.

At low temperatures and under cw excitation both authors observe rather similar phenomena. With
increasing excitation in the barrier luminescence is not only observed from the excitation spot but
also from a bright ring with no detectable emission between Fig. 12b. except for some localization
centers in the case of [59].The diameter of the ring increases with increasing pump power reaching
diameters in the lmm regime. If the excitation spot is moved on the sample the ring structure follows
the excitation spot.

Temporal variations of the excitation intensity result in variations of the luminescence in the ring
structure indicating radial velocities of the order of (1 to 5) 106cm/s which is considerably larger than
the LA velocity of sound in GaAs [59].

Snoke at al. investigate the ring at temperatures of a few K but can follow it up to T = 90K(!!) Butov
et al. works preferentially at lower temperatures and observes a fragmentation of the ring into bright
spots which are rather equally spaced along the ring with some bright spots between the directly
excited area and the ring resulting from localization sites in the MQW structure [58]. See Fig. 12.
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If two widely separated spots are excited, they are surrounded by individual rings. If the excitation
spots are brought closer together, both groups find that the rings are deformed and merge to a single
structure in the way shown in Fig. 12d.

Though the experimental findings are rather similar, the interpretations of both groups are very
different.

Butov et al. claim that the mutual repulsion of the excitons (which is even enhanced by the
depolarization field) results in a rapid, presumably ballistic expansion of the excitons with

k | > k/(gA( so that they cannot radiate because k . is conserved at a plane interface. The velocities

given by Snoke are consistent with such arguments. After that expansion, the excitons undergo a
BEC transition resulting in the ring and the bright dots along the ring are considered as superfluid
vortices.

In contrast Snoke claimes that the excitons are in the KTS superfluid state in the dark range between
the excitation spot and the ring. The bright ring results from the transition of the excitons into their
normal state due to dilution and subsequent recombination. While being in the superfluid state,
emission is forbidden for the excitons for some reason or other, e.g. because of their large value of

k j , . The argument of Snoke against the interpretation of Butov is, that a purely ballistic propagation

of excitons in these structures over distances up to one mm is extremely unlikely. If on the other

hand, scattering is allowed, then excitons will be created also at smaller values of k» and a

measurable luminescence should be observed between the exciton spot and the ring.

The mergin of the rings is more difficult to explain in the model of Butov, because the density should
be higher in the overlapping region, while the observation of the equally space bright spots is difficult
to explain in Snoke's model.

At a recent workshop [61] on "Nonlinear Optics and Excitation Kinetics in Semiconductors"
(NOEKS), Snoke came up with a completely different interpretation of the data [62]. He observed,
that the ring appears only if the sample is excited in the barrier. If one excites the sample directly in
the wells, no ring structure appears, even if the incident intensity is increased to compensate for the
reduced absorption.

Snoke's present interpretation is, that the formation of the ring has nothing to do with a superfluid
state at all. If excited in the well carriers recombine essentially at the excitation spot. When excited in
the barrier, the holes are captured in their well, but electrons partly escape from the wells to the n+

layer or are not captured at all due to their smaller effective mass. This has the consequence that a
two-dimensional "puddle" of holes forms in the well at and around the excitation spot. Apart from the
directly excited area, hardly any electrons exist in this "puddle" and the luminescence occurs at its
boarder when electrons reach it, coming e.g. from the n+ layers. This model explains easily the
merging of the rings in Fig. 12d by a merging of the two hole "puddles". Butov still explains the
bright dots on the ring as superfluid vortices [63].
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As a short addendum it can be stated that similar rings have been observed by V. Lyssenko in GaAs
single quantum wells and superlattices [64], The appearance and disappearance of theses rings can be
influenced by varying the focussing of the excitation beam.

Luminescence ring structures have been also observed in thin CdS platelets under pulsed excitation
and at low temperatures [65] but have been interpreted as light scattering under conditions of
stimulated emission.

Evidently we are left in quasi two-dimensional systems with the same situation as in bulk material.
There are presently no clear, generally accepted evidences for excitonic BEC nor for superfluidity.

Possibly there are some still unknown reasons why it does not occur [55], which is a challenge to the
theoreticians, or, as L.V. Keldysh stated [66] "possibly we had it all the time without noticing it,
because its influences on the optical properties are completely unspectacular", which is a challenge to
experimentalists.

Furthermore Snoke stated during [61] as a joke that not every circular emission is connected with
KTS or BEC as the reader can confirm by entering "Hoag's Object" in a search machine in the Web.

3.6 DRIVEN EXCITONIC BOSE-EINSTEIN CONDENSATIONS

Since it is obviously difficult to find and to uniquely proof excitonic BEC or (KTS) superfluidity in
semiconductors, some authors invented the term "driven BEC".

A general property of these suggestions, which are shortly reviewed e.g. in [59] is, that it is no
process occurring in thermal (quasi-) equilibrium distribution and thus no BEC.

Instead one is either creating a coherent population by an external laser into which or out of which
particles are scattered or it involves lasing on the (photon-like) part of the exciton-polariton
dispersion.

It is also a common feature, that similar phenomena have bee found one or a few decades ago under
different names.

For example all of the processes shown in Fig. 1 in the intermediate density regime can result in
stimulated emission on the lower polariton branch as found theoretically or verified experimentally
[1, 12, 32] but at that time nobody had the idea to call such phenomena a BEC.

As mentioned already the scattering of biexcitons into a state which is populated coherently by an
external laser source was considered as a proof of the Bosonic character of biexcitons but not as a
BEC.

Another phenomenon connected with biexcitons or more generally two polariton states and which has
been observed in several I-VII and II-VI compounds [1, 12, 32], has been introduced as two-photon
or hyper Raman scattering.
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Two polaritons (index i) are created by an incident laser and scatter (possibly after forming an
intermediate virtually excited biexciton) in two outgoing particles 01 and 02 under energy and
momentum conservation according to

2h(Oi = fao01 + h(O02 (15a)

2ki = k01 + k02 (15b).

Depending on the scattering geometry and on other experimental conditions both or only one of the
outgoing quanta can appear in emission. One can also be on the longitudinal exciton branch. This
process can occur spontaneously, but it can also show gain and stimulated emission in the sense of an
optical parametric amplifier. Actually it is a processes belonging to the group of x(3) or of higher
order processes like four wave mixing (FWM).

The decay can also be stimulated by sending an external laser beam into one of the outgoing channels
resulting in an enhanced scattering into this and via (15a, b) also into the other channel. This would
be then a typical example for non degenerate four wave mixing (NDFWM) or electronic coherent
(ami-) Stokes Raman Scattering (CARS) [1, 12, 32].

The polariton concept as the quanta of the mixed state of electro-magnetic and polarization wave has
been introduced about forty years ago, for excitons e.g. by scientists like Thomas and Hopfield [67]
and for quantum wells in micro cavities in the eighties [68]. Now we can read papers speaking about
states in a micro cavity which are "half photon and half exciton" and which are scattered under a
"magic angle" in a micro cavity to produce populations at k» « 0 and k • = 2k > • where k»(. is the

incident wave vector.

Apart form the fact, that one has transferred the experiments from bulk samples to quasi two-
dimensional systems and cavities they are extremely similar to the process described shortly in
connection with eq. (15a, b).

3.7 EXCITONIC INSULATORS

To conclude this section on BEC we shortly mention another concept of excitonic BEC, namely the
so-called excitonic insulators. There are two scenarios for the occurrence of this phenomenon which
will be shortly outlined below. More details and many references can be found in [7].

One scenario occurs in narrow gap semiconductors with E" , or semimetals (Eg = 0). If the binding

energy of excitons is still finite, the system may lower its energy at sufficiently low temperatures by
the spontaneous formation of excitons provided that the following inequalities are fulfilled

Ry > E" and Ry » kBT (16)
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Since a gas of excitons is insulating compared to the gas of free carriers usually present in semimetals
and narrow gap semiconductors the transition to the excitonic insulator should show up in a
characteristic variation of the resistivily.

One of the candidates is or was the semimetal grey tin but no experimental indication of spontaneous
exciton formation nor of their condensation is known to the author.

In [69] experiments have been reported in TmSeo.45Teo 55, where the resistivity varies roughly three
orders of magnitude when tuning the gap by external pressure.

Another system where a transition to an excitonic insulator could occur are wide gap semiconductors
in which a degenerate EHP has been created. If the effective masses of electrons and holes are equal
(a situation generally not met in real semiconductor) a gap in the sense of a BCS-theory could open
simultaneously in the degenerate conduction and valence band populations with decreasing
temperature resulting in vanishing total conductivity of the condensates.

4. Conclusion and Outlook

To summarize we have shown that the existence and the properties of the electron-hole plasma in
semiconductors are well established both experimentally and theoretically. Concerning excitonic
BEC and superfluidity, the situation is still unclear and controversially discussed in literature even 40
years after the first theoretical prediction and it is to some extend a question of taste or of the personal
experiences of the scientist if he stresses the "pro" or "contra". The author is obviously presently
more on the "contra" side. In any case there is much more theoretical work on the topic than hard
experimental facts or as P.B. Littlewood stated [70] the "smoking gun" argument is still missing.
Possibly in comes in the future to finish with an optimistic statement.
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1. Introduction

This book chapter aims at reviewing in brief the fundamentals of rare-earth-ion
spectroscopy in dielectric solids, with special emphasis on energy-transfer upconversion
between neighboring active ions in a solid-state host lattice. The energy-level scheme of the
4 / sub-shell of rare-earth ions is explained and the main intra- and inter-ionic electronic
transition processes are introduced. The pump-power dependence of upconversion
luminescence and the influence of inhomogeneous active-ion distributions on energy-
transfer upconversion are discussed. Examples illustrate how energy-transfer upconversion
can impact the performance of solid-state lasers in a negative or positive manner.

2. Spectroscopic Processes of Rare-Earth Ions in Solid-State Laser Materials

2.1 SPECTRA OF RARE-EARTH IONS

The optical transitions of Ianthanide (rare-earth) ions in the visible and infrared spectral
region occur within the 4 / subshell. This subshell is shielded by the outer 5s and 5p
subshells and the influence of the host material is relatively small compared to, e.g., the 3d
transitions in transition-metal ions. The electronic structure of trivalent rare-earth ions
derives from the perturbation of the 4/energy level in the central-field approximation by
the non-centrosymmetric electron-electron interaction, the spin-orbit interaction, and the
crystal-field splitting (Stark effect), see the example of the energy-level scheme of Er3+ in
Fig. 1. The spin-orbit multiplets are commonly denoted by their 2S+lLj terms in Russell-
Saunders coupling, although the 4 / electrons of Ianthanide ions exhibit intermediate
coupling and the total angular momenta J of the spin-orbit multiplets are linear
combinations of the total orbital angular momenta L and total spins S. Single crystal-field
(Stark) transitions between two spin-orbit multiplets can be distinguished in many
crystalline host materials at ambient temperature. In glasses, inhomogeneous spectral-line
broadening occurs due to the local variation of the ligand electric field. Also homogeneous
(lifetime) broadening mechanisms are relevant in a number of glasses. This spectral-line
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broadening leads to lower absorption and emission cross-sections for the same transition in
glasses compared to single-crystalline hosts and, therefore, generally higher pump threshold
of laser transitions in glasses.

2.2 INTRAIONIC PROCESSES

Generally, the probability of an allowed electric-dipole transition is seven orders of
magnitude larger than that of an allowed magnetic-dipole transition. Since electric-dipole
transitions within the 4/subshell are parity forbidden, the intensities of radiative transitions

4F3/2

4f•11 2H 4 F 7 / 2
 Fs/2

-J12
2

4F
Hn/2

S3/2

T9/2

4 |

113/2

Central- Non- I Spin- Crystal-
Field Centrosym.l Orbit Field

Approx. Splitting I Splitting Splitting

4I15/2

Figure 1. Energy-level scheme of trivalent erbium indicating the splitting of
the 4 / " configuration in the central-field approximation by the non-
centrosymmetric electron-electron interaction, the spin-orbit interaction, and
the Stark splitting by the local electric field of the host material (indicated
only for selected spin-orbit multiplets). (Figure taken from [1]).
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in rare-earth ions are weak and the radiative lifetimes of the emitting states are long,
typically in the ms range. Mixing of the 4/states with higher-lying (typically 5d) electronic
states of opposite parity at ion sites without inversion symmetry, however, means that
electric-dipole transitions become partially allowed and are usually the dominant transitions
between 4 / electronic states. The oscillator strengths / and integrated absorption and
emission cross-sections a of these spin-orbit multiplet-to-multiplet transitions can be
calculated with the help of the semi-empirical Judd-Ofelt theory [2, 3]. If the degree of
inhomogeneous spectral-line broadening is relatively small and the absorption and emission
spectra are structured, the cross-sections o(k) at individual wavelengths that are relevant to
pump absorption and stimulated emission of narrow laser lines must be determined
experimentally.

Besides ground-state absorption (GSA), also excited-state absorption (ESA) of
pump photons [4], see Fig. 2(a), can play a significant role in the excitation mechanisms of
rare-earth ions, especially in the case of high-intensity pumping of materials with low
dopant concentration [5]. Since the absorption increases exponentially with the absorption
coefficient a(kp) = N <J(XP), ESA becomes relevant for the population dynamics of a laser
when (a) the ESA and GSA cross-sections a(A.P) are comparable at the pump wavelength k?

and (b) the population density N of the excited state in which the second pump-absorption
step originates becomes a significant fraction of the density of ions in the ground state, i.e.,
a large degree of ground-state bleaching must be present for ESA to play a significant role
[6].

A radiative transition from an excited state i to a lower-lying state j is
characterized by the radiative rate constant A\y If the decay occurs to several lower-lying
states, the overall radiative rate constant A\ is the sum of all individual rate constants. The
branching ratio of each radiative transition is defined as (3y = A^ I A\.

Radiative decay of excited states is in competition with nonradiative decay by
interaction with vibrations of the host material, called multiphonon relaxation. For an
ordered structure, the vibrational frequency v of the anion-cation bonds is given by

(1)

where M = mint2/(m\+m2) is the reduced mass for two bodies nt\, m2 vibrating with an
elastic restoring force k. Examples of maximum phonon energies in different host materials
are given in Table I. The influence of multiphonon relaxations is stronger in oxides as
compared to fluorides or halides [7] because of the smaller atomic mass m2 of the anion and
the larger elastic restoring force k, see (1), due to stronger covalent bonds in oxides [8],
both resulting in larger maximum phonon energies in oxides.

The rate constant of a multiphonon-relaxation process, W\, decreases exponentially
with the energy gap AE to the next lower-lying state and with the order of the process, i.e.,
the number p of highest-energy phonons required to bridge the energy gap [9, 10]:

(2)

p = AE/hv, (3)

where C and P are constants characteristic of the host material. The rate constant of
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multiphonon relaxation increases with host temperature. The measurable luminescence
lifetime T, of an excited state i is the inverse of the sum of the overall radiative rate constant
A\ and the rate constant of multiphonon relaxation, W\. The radiative quantum efficiency is
defined as r) = A-, I (A{ + W{).

(a)

Pump
(ESA)

Pump
(GSA)

Ion

Pump

(C)

1 ;

Pump

» <

; 1 »

s
\

\

1

Pump

Laser

Sensitizing Ion A Laser Ion B

(e)

Donor Ion Acceptor Ion

(b)

Donor Ion Acceptor Ion Acceptor Ion

(d)

Pump

Laser

r

Laser Ion A Quenching Ion B

(f)

Pump Pump

Donor Ion Acceptor Ion

Figure 2. Intra- and interionic processes in fiber lasers: (a) excited-state
absorption (ESA); (b) energy migration; (c) sensitization and (d) quenching of
a laser ion by an ion of a different type; (e) cross-relaxation and (f) energy-
transfer upconversion. (Figure taken from [1]).
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TABLE I. Maximum phonon energies in different host materials.

Host Material

Silica Glass
Y3A15O12(YAG)
LiYF4 (YLF)
ZBLAN Glass
Cs3Er2Cl9

Cs3Er2Br9

Cs3Er2I9

Maximum Phonon Energy
[cm1]
1100
800
550
500
280
190
160

A brief example: The luminescence lifetime of the Er3+ 4I9/2 level is partly
quenched by multiphonon relaxation. Typically, nonradiative decay becomes dominant if
five or less phonons are required to bridge the energy gap [11]. With an energy gap
between the \a and the next lower lying AIW2 levels of ~2000 cm"1, radiative decay
prevails for phonon energies below -400 cm"1, i.e., in halides (see Fig. 3).

Like absorption, the strength of a stimulated-emission process is characterized by
the emission cross-section a(XL) of the laser transition. From a simple analysis, for one
resonator round-trip of oscillating laser photons, the product t a(ki) with T the
luminescence lifetime of the upper laser level, is identified as a "figure of merit" for a
possible laser transition. The larger this product, the lower is the expected pump threshold
of the laser transition. This "figure of merit", however, does not take into account the
numerous parasitic effects that can occur in the population dynamics of a laser system, such
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I15/2
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• 11 MPR
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- 10000

-5000

- 0

Figure 3. Luminescence lifetime of the Er3+ 4I9/2 level in different host
materials. Multiphonon relaxation requires 2, 4, and 7 phonons in an oxide,
fluoride, and chloride host material, respectively, to bridge the energy gap.
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as pump ESA, reabsorption of laser photons, and energy-transfer processes. It is often these
parasitic processes that lead to surprising performance characteristics - as likely in the
negative as in the positive sense - and make the interpretation of rare-earth-doped solid-
state lasers challenging. Examples will be discussed in Sect. 4.

2.3 INTERIONIC PROCESSES

In addition to intraionic excitation and decay mechanisms, radiative energy transfer due to
reabsorption of emitted photons by other active ions in the sample and nonradiative energy-
transfer processes due to multipole-multipole or exchange interactions between neighboring
active ions can occur. Radiative energy transfer leads to an increase in the luminescence
lifetime. Among the nonradiative energy-transfer processes, most common is the electric
dipole-dipole interaction, which can occur as a direct [12] or phonon-assisted [13] energy
transfer. A direct energy transfer requires spectral resonance between the involved emission
and absorption transitions whereas an indirect transfer can also be non-resonant, i.e., an
existing energy gap between the emission and absorption transitions involved in the transfer
is bridged by one or several phonons. A process that leads to phonon emission has typically
a higher probability than a process requiring phonon absorption. Since the electrostatic field
of an electric dipole decreases with distance r as r"3, the probability RDA of an energy
transfer between two such dipoles exhibits a strong distance sensitivity of f6 [12]:

RDA=-—T——\fn(E)FAE)EdE (4)

where QA is the integral absorption cross-section of the acceptor transition, xD is the
radiative lifetime of the donor transition, fD is the normalized emission line shape of the
donor transition, FA is the normalized absorption line shape of the acceptor transition, and
rDA is the donor-acceptor distance. Therefore, nonradiative energy transfer occurs
predominantly between neighboring active ions.

An obvious possibility of an energy-transfer process is shown in Fig. 2(b). An
excited ion transfers its excitation to a nearby ion of the same type. If this process occurs
consecutively between a number of similar ions and the energy is thus transferred over a
larger distance, it is called energy migration. Quenching of the luminescence lifetime of an
excited state by energy transfer to impurities is often accelerated by energy migration
among the excited donor ions [14].

Figure 2 displays further energy-transfer processes that typically occur in rare-
earth-doped solid-state lasers. Rare-earth ions of a different type can be deliberately co-
doped into the host material in order to influence the laser properties of the lasing ions.
Efficient excitation by means of absorption and energy transfer of pump light from
sensitizing ions to the upper laser level of the lasing ions, see Fig. 2(c), can be exploited
when the lasing ions do not sufficiently absorb the pump light at the desired pump
wavelength or the dopant concentration of the lasing ions is limited because, e.g., the laser
transition terminates in the ground-state multiplet. Similarly, the transfer of excitation from
the lower laser level of the lasing ions to nearby quenching ions, see Fig. 2(d), is desirable
when the lifetime of the lower laser level is extremely long. The low relaxation rate from
the lower laser level would otherwise lead to accumulation of excitation in this level, which
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can result in self-terminating laser behavior and/or bleaching of the ground-state population
density and, consequently, decreased GSA.

Energy-transfer processes that have both ions in excited states before or after the
energy transfer are shown in Figs. 2(e) and 2(f). In the former case, an excited ion transfers
part of its excitation to a nearby ion in its ground state. This process is called cross-
relaxation. Its rate increases with the average number of non-excited neighboring ions, i.e.,
with dopant concentration. Therefore, cross-relaxation leads to concentration quenching of
the measured luminescent decay time of the initial excited state involved in the transfer
process. In the inverse process - called energy-transfer upconversion (ETU) - excitation is
transferred from one to another excited ion, see Fig. 2(f). After the absorption of two low-
energy pump photons, ETU leads to a single excitation of higher energy and a single high-
energy photon may be emitted from the second excited state.

In the presence of fast energy migration among the active ions, the excitation is
spatially diffused and all these energy-transfer processes can be described by rate-equation
analysis using a rate term WNa 7Va that comprises a macroscopic energy transfer probability
Wand the population densities N& and iVa of the initial states of the donor and acceptor ions,
respectively [15]. This model, however, is usually not applicable at low dopant
concentrations where energy migration is weak. In addition, a number of authors reported
on active-ion clusters in host materials, see, e.g., [16, 17, 18, 19]. This or any other non-
uniform distribution of active ions complicates the analysis of the influence of energy-
transfer processes on the performance of rare-earth-doped lasers, as ions within such
clusters are more susceptible to interionic processes than isolated ions. In the simplest
approach, this distinction defines two different classes of ions that exhibit different
population dynamics [20].

3. Upconversion Dynamics

Spectroscopic data such as absorption and emission spectra, luminescent transients, and the
pump-power dependence of luminescence intensities are essential to the understanding of
excitation mechanisms in luminescent and laser materials and to the improvement of device
performance. Special attention has been devoted to the investigation of upconversion-
induced luminescence [21, 22], partly because of the availability of near-infrared pump
sources for the excitation of visible luminescence [23, 24, 25, 26, 7] and laser emission [27,
28, 29, 30, 31, 32] and partly because these mechanisms can introduce a loss channel for
devices emitting in the infrared region [33, 34, 35, 36, 37, 38]. The two most common
excitation processes that lead to emission from energy states higher than the terminating
state of the first pump-absorption step are ETU and pump ESA.

3.1 POWER DEPENDENCE OF UPCONVERSION LUMINESCENCE

For the interpretation of short-wavelength luminescence, it is often assumed that the order n
of the upconversion process, i.e. the number n of pump photons required to excite the
emitting state, is indicated by the slope of the luminescence intensity versus pump power in
double-logarithmic representation. However, as a consequence of the conservation of
energy, a non-linear process which transfers energy from one quantum state to another
cannot maintain its non-linear nature up to infinite excitation energy. Consequently, the
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dependence of an upconversion-luminescence intensity on pump power is expected to
decrease in slope with increasing excitation, and a "saturation" of the intensity of an
upconversion luminescence for higher pump powers was already observed almost forty
years ago [39]. The same saturation can be detected in multiple-step upconversion
luminescence [40].

This experimentally observed decrease in the slope of an upconversion-
luminescence intensity versus pump power with increasing power is determined by the
competition between linear decay and upconversion processes for the depletion of the
intermediate excited states. The intensity of an upconversion luminescence which is excited
by the sequential absorption of n photons has a dependence on absorbed pump power P
which may range from P" in the limit of infinitely small upconversion rates down to Px for
the upper state and less than Px for the intermediate states in the limit of infinitely large
upconversion rates, as will be shown in the following.

The excitation mechanisms in systems with several metastable electronic excited
states are usually rather complex. We assume here the simplest possible model:

1) The ground-state population density is constant.
2) The system is pumped continuous-wave (cw) by GSA.
3) Upconversion steps between subsequent excited states take place by either ETU or ESA.
4) The excited states j have lifetimes r, and decay with rate constants A\ = if1 either to their

next lower-lying state or directly to the ground state.

In practice, the two different cases of 4) often correspond to a high-phonon-energy material
with a predominant multiphonon-induced decay to the next lower-lying state (denoted here
by a branching ratio P, = 1) and a low-phonon-energy host material with a predominant
radiative decay to the ground state (PJ = 0), respectively. However, it is not important
whether the decay mechanism is radiative or non-radiative. The assumptions of Pi = 1 or ps

= 0 simplify the solutions of the rate equations and are made here to exemplify the two
extreme limiting scenarios.

Since ground-state bleaching is assumed to be negligible, the ground-state
population density is

No = const. (5)

In the presence of ESA, the absorption coefficient a at the pump wavelength for a system
with n excited levels is given by the sum of the absorption coefficients Oj Nj of the
transitions from states j ,

a= L aJNj> <6)

j=O...n-\

where Oj is the absorption cross section from state j at the pump wavelength and Nj is its
population density. For absorption over a sample length I which is short compared to the
absorption length a"1, we expand the exponential function of the Lambert-Beer law for the
calculation of absorbed pump power into a Taylor series and approximate it by the leading
term:
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£a. (7)

From (6) and (7), it follows that the pump rate R{ of an individual transition from state / can
be written as [41]

a

he KWP

= pPaiNi, (8)

with ^p, the pump wavelength, wp, the pump radius, P, the incident pump power, h, Planck's
constant, and c, the vacuum speed of light. The pump constant is

As a consequence of the assumption of small absorption, the pump rate at the transition
from state i is independent of absorption at transitions from other statesy in (8).

We first demonstrate the relevant effect which leads to a decrease in the slope of
an upconversion luminescence with increasing pump power. The simplest system in which
upconversion luminescence can be observed is a three-level system as depicted in Fig. 4.
Assuming that the system is pumped by GSA and the upconversion step is achieved by
ETU with a corresponding parameter W\, the rate equations describing the excitation
mechanisms in this system are (5) and

dNx /dt = pPa0N0 - 2WxNf - AXN, (10)

l A 2 N 2 . (11)

Under steady-state excitation, this yields

rf (12)

/ 0 0 ^ 1 + 4 i V I . (13)

It follows from (12) that

N 2 oc JV,2 . (14)
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If linear decay (LUMi in Fig. 4) is the dominant depletion mechanism of level 1, we can
neglect the upconversion term in (13). It follows from (9) and (13) that N\ <x P and,
consequently, N2 °c N2 oc P2, corresponding to one limit. In contrast, if upconversion (ETU
in Fig. 4) is dominant, i.e., we can neglect the linear decay term in (13), then Nx

2 « P or N\
oc Pm, resulting in N2 oc A^2 oc P, corresponding to the other limit.

For intermediate pump powers, situations of competition between linear decay and
depletion by upconversion are established and, consequently, the slopes of the
luminescences are between the two limiting cases. For all pump powers, the slope of the
upconversion luminescence is twice that of the direct luminescence because of (14).

We also solve here the simplest case involving ESA as the upconversion
mechanism, i.e., the ETU process is replaced by the ESA process in Fig. 4. The rate
equations, in this case, are (5) and

dNjdt = pP(T0N0 -

dN2/dt = pPoxNx -

- AXNX (15)

(16)

From (9) and (16), we find that N2 oc P N\. If the linear decay from level 1 is dominant and,
thus, the ESA term is negligible in (15), we obtain Nt x P and, consequently, N2 oc P JV, oc
P2. For strong ESA, the linear decay term can be neglected in (15), and we derive that N\ is
independent of P, resulting in JV2 oc P JV, oc P.

N2 oc N,2

ETU

N, oc P1/2

GSA

0

LUM,

T v

N2 oc P N,

ESA

N, ocP0

LUM2 LUM2

Figure 4. Simple three-level upconversion scheme. Solid and dashed arrows
indicate the radiative and nonradiative population and depopulation
mechanisms for each level, respectively. The dependence of the population
density iVi on pump power for the corresponding depletion pathways, and the
dependence of N2 on N\ are indicated for the different cases of ETU and ESA.
(Figure taken from [20]).
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This shows that, with increasing pump power and the resulting increasing
importance of upconversion, the slope of the upconversion luminescence changes from
quadratic to linear, whereas the slope of the directly excited luminescence changes from
linear to less than linear, with different limits obtained for ETU and ESA. This behavior,
therefore, fundamentally derives from the competitive mechanisms of upconversion and
direct luminescence for the depletion of the intermediate excited state. A more detailed
description of the power dependence of upconversion luminescence can be found in [20].

3.2 INHOMOGENEOUS DISTRIBUTION OF ACTIVE IONS

Participation of only a fraction of ions in energy-transfer processes in general and in ETU
in particular has been a major complication in the spectroscopic investigation of these
processes, in the interpretation of measured luminescent decay curves, and in the transfer
between the micro- and macroscopic pictures of ETU.

There are several scenarios that can result in only a fraction of ions being able to
participate in ETU. First, energy transfer is an interionic process whose probability depends
strongly on the distance between the participating ions [12]. ETU is, therefore, influenced
by the lattice structure of the host material, the dopant concentration, energy migration
between the active ions, and the distribution of active ions in the host material. Practically,
one can define a critical interionic distance above which ETU is impossible. In a crystalline
lattice, situations are often found in which only nearest-neighbor lattice sites for the active
ions lie within the critical distance [42]. Consequently, one possible reason for fractional
ETU is a non-uniform distribution of ions in the host lattice. A statistical distribution of
active ions in the host lattice results in the existence of a range of distances between
neighboring ions. Non-statistical distributions have similar consequences. For example, a
fraction of ions may be isolated, arranged in clusters [18], or occupy different sites in the
host lattice with different nearest-neighbor distances [43, 7].

Second, the probability of an energy-transfer process depends on the spectral
overlap of the emission and absorption transitions involved in the energy transfer [12].
Another possible reason for fractional ETU is, therefore, the existence of two
spectroscopically different lattice sites for the active ions. Different crystal fields at these
sites result in different excited-state energies of the active ions, different spectral overlap of
the emission and absorption transitions involved in energy transfer, and, thus, different
strengths of the energy-transfer processes [44].

In all these cases, a knowledge of the fraction/of ions that can participate in ETU
has important consequences. For example, in the case of a non-uniform distribution of ions
in the host lattice, if this distribution is known, the critical distance between neighboring
ions for the occurrence of ETU can be derived with the knowledge of/ Vice versa, if the
critical distance can be determined by other methods, a knowledge of/ allows for testing
models of the active-ion distribution in the host lattice.

If only a fraction of ions fulfills the condition to participate in ETU, direct and
upconversion luminescence probe different classes of ions. While the former probes all
ions, the latter detects only luminescence from those ions that actually participate in ETU.
For those ions that fulfill the condition to participate in ETU, there is a quadratic correlation
between upconversion and direct luminescent decay at all times, according to (14).
However, since the detected overall direct luminescence is composed of the exponential
decay arising from the isolated ions and the non-exponential decay arising from those ions
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that are involved in ETU, the upconversion luminescence does not possess a quadratic
dependence on the overall direct luminescence, i.e., a decorrelation from the quadratic
dependence of ETU occurs.

Under continuous-wave [45] as well as under pulsed [46] pumping, a decorrelation
in the power dependence of upconversion and direct luminescent intensities was observed.
Simple models that account for the measured decorrelation were developed [20, 47],
however recent investigations show that the description of the observed effects requires a
more elaborate model [48].

4. Impact of Energy-Transfer Upconversion on Solid-State Laser Performance

In the following, two examples are presented that illustrate how ETU processes can
influence the performance of solid-state lasers in a negative or positive manner.

4.1 UPCONVERSION-INDUCED HEAT GENERATION IN Nd3+ 1 - um LASERS

The Nd:YAG (Nd3+:Y3A15OI2) and Nd:YLF (Nd3+:LiYF4) transitions at 1.064 um and
1.053 um, respectively, have been widely used for laser applications, because they offer
several advantages over other laser systems: The Nd3+ transition at 1 urn involves a four-
level scheme with fast multiphonon transitions populating the upper and depleting the
lower laser level. Its large stimulated-emission cross-section allows a low laser threshold,
while the small quantum defect allows high slope efficiency. YAG has a high fracture limit
which is of advantage for use in high-power laser systems. YLF, on the other hand, is an
attractive host material because of the wavelength match of the laser transition (1.053 urn)
with Nd3+ glass amplifiers, the long storage time of the Nd3+ upper laser level, its natural
birefringence, and its relatively weak thermal lensing on the polarization corresponding to
1.053 um operation.

However, under conditions of higher excitation density, such as non-lasing
conditions, Q-switched operation, or operation as an amplifier, a strong deterioration in the
performance of this seemingly simple system is observed. With increasing pump power and
intensity, the Nd:YLF system exhibits a significantly reduced storage time under Q-
switched operation and a decreasing laser efficiency [49, 50]. This behavior has been
explained by lifetime quenching owing to ETU processes involving two neighboring ions in
the upper laser level [37, 38, 51], see Fig. 5. As a consequence, Nd:YLF exhibits visible
luminescence from energy levels above the pump level. Nevertheless, most of the
upconverted excitation decays via multiphonon relaxation back to the upper laser level. The
downconverted excitation of the second ion that is involved in each ETU process decays
also via multiphonon relaxation to the ground state. Consequently, measurements of the
induced thermal lens under non-lasing (high excitation) compared to lasing (low excitation)
conditions demonstrate that significant additional heat is generated in the non-lasing
situation, with the same pump power [52]. For Nd:YAG, similar effects of luminescence
quenching [53, 54], additional heat generation [55, 56], and increased thermal lensing [36]
under non-lasing conditions have been observed.

The increased heat load has a number of undesirable consequences, such as
spherical aberration in the thermally-induced lens, with consequent degradation in laser-
beam quality and higher resonator losses. Ultimately, with sufficient heat load rod fracture



583

will occur. With these effects being particularly pronounced under non-lasing conditions, it
follows that Q-switched operation and operation as an amplifier are especially susceptible.
A more detailed description of ETU-induced thermal and thermo-optical effects in Nd3+ 1-
um lasers can be found in [36].
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Figure 5. Partial energy-level scheme of Nd3+ indicating the dominant
processes in the system: GSA, multiphonon relaxation to the 4F3/2 upper laser
level, laser transition (at 1064 nm in YAG) and ETU processes from the upper
laser level, followed by cascaded multiphonon relaxations (dashed lines).
(Figure modified from [36]).

4.2 ENERGY RECYCLING IN Er3* 3-um LASERS

The first observation [57] of coherent emission at 3 um from erbium ions was reported in
1967. Yttrium aluminum garnet (YAG), today's most widely used solid-state laser material,
entered the stage as a host for the erbium 3-um laser [58] in 1975. In this material with its
high phonon energies and strong multiphonon quenching of the \m upper laser level
(leading to an upper-to-lower level lifetime ratio of ~l:50 !), the first CW lasing at 3 um
was observed [59] in 1983.

While erbium-doped fiber lasers have been successfully operated at 3 um by
exploiting ESA [5, 60] or energy transfer from Er3+ to co-doped Pr3+ ions [35, 61] to
deplete the long-living lower laser level, the population mechanisms of the highly erbium-
doped crystal laser system are governed by ETU processes between neighboring erbium
ions in the lower laser level [62]. In Fig. 6, a partial energy-level scheme of erbium, a
suitable pump transition, the laser transition at 3 um, and the most important ETU process
are introduced. The ETU process (4Ii3/2, \vi) —> Chsn, \n) leads to a fast depletion of
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the lower laser level and enables CW operation of a laser transition which, otherwise, could
be self-terminating owing to the unfavorable lifetime ratio of the upper compared to the
lower laser level.

In particular, this ETU process offers another generous advantage. Half of the ions
that undergo this process are upconverted to the 4l9/2 level and, by subsequent multiphonon
relaxation, are recycled to the \\a upper laser level from where they can each emit a
second laser photon, for a single pump-photon absorption. For a large number of ions
participating in this process, a slope efficiency y\si of twice the Stokes efficiency r)5, = Xp/h
obtains [6], because the quantum efficiency x\q-nil np of pump photons converted to laser
photons increases from 1 to 2 (k and n are the wavelengths and photon numbers of laser
and pump transitions, respectively):

Vsl = = 2VSt • (17)

This mechanism is illustrated in Fig. 6.
The ETU process from \ia can be so dominant that even under direct pumping of

the 4In/2 lower laser level and subsequent excitation of the 4I11/2 upper laser level by ETU,
3-um laser operation was demonstrated in several host materials [64].

On the other hand, the multiphonon relaxation from the 4I9/2 level that follows each
ETU process produces a significant amount of heat, making this laser system even more
susceptible to thermal and thermo-optical effects than the Nd3+ 1-um laser [65].
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Figure 6. Partial energy-level scheme of erbium illustrating the process of
energy recycling from the lower to the upper laser level by ETU. Indicated are
the relative pump rate i> of the upper laser level and the quantum efficiency
r)? which increases from 1 to 2 if a large number of ions participate in the
process. Lifetimes are given for LiYF4. (Figure modified from [63]).
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The pump wavelength that provides the highest Stokes efficiency is 980 nm which
corresponds to pumping directly into the upper laser level [66]. For this pump wavelength,
the Stokes efficiency is r\st = A,p / A./ = 35%. The highest slope efficiency obtained
experimentally [67] is currently r|s/ = 50% in LiYF4:Er3+. This result shows that energy
recycling is indeed efficient and that slope efficiencies far above the Stokes efficiency can
be obtained under CW pumping. Under pulsed excitation, the slope efficiency is strongly
reduced, because the lower laser level is much less populated than in the steady-state
regime and the ETU processes which depend on the square of the population density are
less efficient [68, 69]. A detailed review of the Er3+ 3-um laser can be found in [63, 70].

5. Conclusions

In the last decades many research efforts have been undertaken and significant results have
been published in the literature that have broadened our knowledge on ETU. Nevertheless,
the mechanisms of ETU and its influences on upconversion luminescence dynamics have as
yet not been fully understood. Specifically, the presence of inhomogeneous active-ion
distributions complicates the understanding and theoretical description of ETU. Solid-state
luminescent light sources and lasers often show surprising behavior when influenced by
energy-transfer processes. Understanding these processes and exploiting their large
potential will contribute to the development of more efficient incoherent and coherent light
emitters that will illuminate our future.
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17. SOME NOVEL ASPECTS OF INTRAMOLECULAR
ELECTRONIC ENERGY TRANSFER PROCESSES

SHAMMAI SPEISER
Department of Chemistry, Technion - Israel Institute of
Technology Haifa 32000, Israel

Abstract

Intramolecular electronic energy transfer (intra-EET) is reviewed through examples
concerning the bichromophoric naphthalene (N) and anthracene (A) system as well
as the aromatic-dione system.. In addition the effect of the connecting bridge,
embedment in stretched films and the possibility of building logic functions based on
such interactions are discussed

1.Introduction

Electronic energy transfer (EET) process is one of the most common relaxation
mechanisms of an excited chromophore. Its understanding is important for studying
the natural photosynthetic processes, light harvesting, polymer photophysics, dye
laser operation, light interaction with molecular crystals and photochemical
synthesis[l]. EET was studied extensively in condensed systems and its mechanisms
are now thought to be well understood [e.g. 1-5].

In a simple model each of the two chromophores donor-D and acceptor-A
can be found either in its ground or in its excited electronic state, and also possesses
several vibrational modes that can be excited. The electronic origin transition energy
of donor chromophore ED is higher than the acceptor energy EA.
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Within the Born-Oppenheimer approximation the chromophore wavefiinctions are

here § and x are pure electronic and vibrational functions respectively, q; and Qj
denote electronic and vibrational coordinate sets. The D and A superscripts mirror
the fact that in the zero-order approximation at which there is no interchromophore
interaction, the wavefiinctions of one chromophore do not depend on the coordinates
associated with the other one. Introducing the interaction mixes the wavefiinctions,
but as the interaction of interest is small compared to the vibronic transition energies,
we will neglect this complication.

The chromophore excitations are approximated by one-electron processes.
In this case the total two-electron wavefiinctions should be antisymmetrized
according to the Pauli principle requirement:

(2)

here the right hand one-electron wavefiinctions are described by eq.(l), the ones with
a star corresponding to excited chromophore vibronic states, and the others to
ground states. The the zero-order Hamiltonian of the system corresponds to no
interchromophore interaction, and the interaction perturbation is

= e2/r12 (3)

where ri2 is the distance between the interacting electrons. The interchromophore
interaction matrix element VDA of perturbation responsible for the EET is

(4)

The first integral in eq. (4) corresponds to the simultaneous donor electron relaxation
and acceptor electron excitation and it is known as the Coulomb integral [6]. The
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second integral describes energy transfer by electron exchange [7] and is known as
the Dexter exchange integral. If one substitutes in eq.(4) the initial and final
wavefunctions including the spin parts, one obtains different spin selection rules for
the two integrals. The exchange integral selection rules are less strict, and thus in
some cases (e.g. triplet - triplet energy transfer) the first integral vanishes and energy
is transferred only via electron exchange. Generally, however, both integrals are non
zero and the corresponding mechanisms interfere.

The perturbation affects only electronic wavefunctions, and the nuclear
motion can be separated:

VDA ={< +» CQ#A (2) IVIK (WA. (2) > - < A>. (WA (2) I VI ^ {2)h> 0)

* < Zv I XD x ZA* I XA >=V; A < ZD> I ZD x ZA- I ZA >
(5)

where in order to separate the Franck-Condon factors an assumption was made that
the vibrations of the two chromophores are uncoupled. The quantity V^A is the
pure electronic matrix element.

In solution experiments the initially prepared vibronic states usually
undergo vibrational relaxation to a temperature dependent solvent broadened set of
states and the energy transfer proceeds from this set. In the supersonic free jet
experiments the donor retains with its excitation energy, and EET can be monitored
from a specific vibronic state. At sufficiently high vibrational energies the initially
prepared state is broadened by interaction with isoenergetic states. Even without this
effect the initial state is broadened by the interaction with the radiation field and by
the energy transfer process. The acceptor states are broadened by the interaction with
the radiation field and by the possible back transfer. The energy profiles of the initial

state PD(E-ED) and of the final states P A ( E - E A ) can be defined

( JP(E - E ' )dE == 1). The total EET rate is obtained then from the Fermi Golden

Rule:

i- = _ V v 2 fp ( E - E W' C E - E ' ~)dF (6)

By neglecting the coupling between the vibrations of the two chromophores, we
obtain

k -—(V ~)2 < v \v > 2 V < v ' Iv' >2 f p ^ F - F ">P ' rF -FMdF"•ET ~ ft VVDAJ ^ X D ' I X D ^ Z J < X A » I X A > J ^ ^ 1 1 ^ - D ^ A V 1 1 J^A/^111

(7)
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Thus within the framework of the employed assumptions the EET rate is
proportional to the square of the pure electronic interaction matrix element, Franck-
Condon factor for the transition from the donor vibronic state and Franck-Condon
weighted energy overlap integral between the donor level and acceptor levels.
Usually the acceptor density of states is higher than the donor state width, and the
integral in eq.(6) is approximated by the state density p or by the so-called Franck-
Condon factor weighted state density pFC:

This simple picture can be substantially incorrect if the electronic levels are
considerably mixed, if the vibrations of the two chromophores are coupled, if other
electronic levels of the chromophores are coupled by vibrations to the levels
involved in the EET, and so on.

The Coulomb integral can be approximated by two separate integrals
corresponding to the electronic transitions in the chromophores. These integrals can
then be expanded in series, with the largest term being the dipole - dipole interaction
term. If other terms are neglected as well as other contributions to the interaction
integral, it can be expressed by the chromophore transition dipole moments:

VDA -

RDA being the interchromophore distance and F being the mutual orientation factor
of the two transition dipole moments M [1]. Together with the translation of the
energy overlap integral and of the Franck - Condon factors into the spectral overlap
between donor emission and acceptor absorption it yields

90001nl0r2<D
D128wVNArD

0°)

here <J> and T are fluorescence quantum yield and lifetime, n is refractive index of the
medium, F is fluorescence spectrum and e is absorption spectrum. Thus Foerster
critical transfer radius Ro defined here and the EET rate can be calculated from
spectroscopic experimental data.

In cases where the Coulomb mechanism contribution is either small or spin
forbidden, the interaction matrix element can be expressed via the exchange integral.
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At large enough separations this integral dependence on the interchromophore
distance can be approximated by the exponential chromophore wavefiinctions spatial
overlap dependence [7]:

ViA=Kexp(-RD A /L) (11)

where L is an average decay radius of wavefiinctions of the two interacting states.
It can be seen from eqs. (10) and (11) that the Foerster mechanism rate is

proportional to Rp A , and this interaction is most important at intermediate
separations.. At close separations were the wavefiinctions overlap becomes
considerable, the exchange mechanism dominates.

Foerster critical transfer radius for most systems in solution is between 10
and 100A .. Eq. (9) is widely used to describe energy transfer in condensed phase
[1]. At distances less than about 5. the Dexter exchange mechanism usually becomes
more important. In real systems the exchange integral evaluation by computational
methods is extremely complicated, and without it the model mechanism can be
employed only in some very limited cases. Still, such computations were performed
in a study of series of bichromophoric molecules, yielding good agreement with
experimental data on distance and orientation dependence of the EET rate [8].

In addition, more complicated mechanisms than the two considered in
eq.(5) can contribute to the pure electronic interaction matrix element. Notably,
higher electronic levels for which wavefiinctions are localized spatially between the
two chromophores, can mediate the transfer. This effect ("superexchange") was
detected in bichromophoric molecules, where the rigid bridge connecting the
chromophores enhanced the exchange mechanism rate [2, 9].

When the donor chromophore is excited to some specific vibronic state, it
can undergo dephasing via intramolecular vibrational redistribution, (IVR),
involving other molecular states that have low Franck-Condon factors for excitation
(dark states). These states should have the same energy in the sense of eq.(6). It also
can undergo energy transfer to the isoenergetic levels of the acceptor chromophore.
As all the described processes do not involve energy change, the excitation can be
then transferred back, if the fluorescnce is sufficiently slow. Finally, a stationary
state is achieved, in which the excitation is spread over the two chromophores in a
ratio corresponding to the vibrational state density ratio of the chromophores.

The situation under supersonic jet cooling conditions is different from the
well-studied situation in condensed phase experiments. The geometry of the
bichromophoric unit is usually well defined. The effect of the relative orientations of
the chromophores on the EET rate can thus be conveniently studied under jet
conditions. The chromophores are no longer coupled to the low frequency solvent
vibrational bath. Consequently, no vibrational relaxation occurrs prior to the EET
process. Thus the EET process from a specific vibronic level can be studied, and the
density of the coupled states is better defined.

The EET rate depends on the vibronic level choice due to the changes in the
density of states. The density of vibronic states of the acceptor chromophore can be
so low that the equidistant quasi-continuum model may fail and specific vibronic
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level structure must be considered. The other source of the rate dependence on the
vibronic level is the change in the geometry of the unit that is affected by the
vibrations. The assumption of V^A independence on the vibrations is implied in the

Born - Oppenheimer approximation. A better approximation is to use the average of
the interaction matrix element over the molecular geometry changes associated with
the vibration. Eq. (8) then becomes:

here it is assumed that the initially prepared vibronic state can incorporate donor

intrachromophore vibrations (wavefunctions Xo(Qf ) ) an<^ interchromophore (or

"bridge") vibrations (wavefunctions XDACQJ
 A))> ^ u t n o acceptor vibrations. For

some vibrations (for example, an interchromophore stretch, or a vibration breaking
some symmetry that forbids the EET) such averaged matrix element value may differ
significantly from the frozen geometry value.

2. The naphthalene - anthracene bichromophoric molecular system

2.1 GENERAL PROPERTIES

Anthracene first singlet electronic transition origin is at 27695cm'1 . The pure
electronic transition is polarized along the short axis, and the transition dipole
moment in solution is 9.2*10'30Cm, this value can be obtained also from the
integrated anthracene absorption spectrum. The fluorescence quantum yield is 0.36
[10]. The second electronic transition origin is at about 30500cm'1, polarized along
the long axis. The oscillator strength of this transition is an order of magnitude lower
than that of the first one. Consequently, at any excitation energy above 30500cm'1

the vibrational mixing between the two electronic states ensures that anthracene
stationary states exhibit spectroscopic properties typical of the first transition [10].
The contribution of the second transition to the overall density of states at higher
energies can be safely neglected.

The first singlet electronic transition (32020cm'1) of naphthalene is
polarized along the long axis, but it has a very low oscillator strength depending on
the solvent and on the degree of involvement of the higher transitions in the
integration of the corresponding spectral band). The pure S] electronic transition
dipole moment is 4*10*31Cm [10]. The fluorescence quantum yield is 0.23 [10].
The fluorescence decay lifetime of the anthracene excited at its origin transition in
solution is 5ns [10]. In the cold free molecules in the jet this value is ~24ns [10]. The
Foerster radius for EET from naphthalene to anthracene in solution, calculated from
the spectral data is 23.2A [10]. This implies an EET rate of T ^ O ' V at a typical
sandwich cluster separation of 3.57A .. This estimate is, of course, very crude. It
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does not take into account the exchange mechanism. In addition, at such short
distances the dipole-dipole picture is not accurate, and contributions from higher
Coulomb terms must be included [10]. Supersonic jet studies of this system revealed
unique features for Intra-EET for isolated molecules. [10-14]

2.2 TIME-RESOLVED ANALYSIS OF INTRAMOLECULAR ELECTRONIC
ENERGY TRANSFER IN METHYLENES-LINKED NAPHTHALENE-
ANTHRACENE COMPOUNDS IN SOLUTION AND IN STRETCHED
POLYMER FILMS

Intramolecular electronic energy transfer in methylenes-linked naphthalene and
anthracene (referred to as AnN, n =1,3 and 6 denoting number of methylene units)
was examined by time-correlated single-photon counting technique in n-hexane and
in stretched PVA films. The energy transfer rates in A IN, A3N and A6N in solution
were measured and the chain length dependence of these rate constants is discussed
in terms of through-bond interaction via the connecting bridge, in addition to direct
Coulombic interaction.

The first spectroscopic study of bichromophoric molecules containing
naphthalene and anthracene chromophore in solution was performed by Schnepp and
Levy [15]. In fact, it was the first EET study in a bichromophoric molecule. The
three studied molecules contained 9-anthryl and 1-naphthyl linked by a one (A1N),
two (A2N) and three methylene (A3N) flexible chain. It was found for all the
molecules that all the fluorescence signal following the naphthalene moiety
excitation originated from the anthracene moiety. This corresponded to a complete
intra-EET process. Several more studies of these molecules followed [1,16,17].
EET was studied also in a bichromophoric molecule containing the two
chromophores linked by a rigid bridge consisting of norbornyl and bicyclohexane
units [1]. Evidence was found of the bridge mediated superexchange intra-EET
mechanism in this molecule.In addition to this flexible system Scholes et al.
elucidated the through-bond mechanism of energy transfer using rigidly bridged
naphthalene-anthracene moieties, and developed the formulation of exchange
interaction through a-bonds of the connecting bridge [2]. The geometry of flexible-
chain linked bichromopholic molecule is determined by the bond length of the chain
chemical units, the bond angles, the bond rotation, in addition to the attractive forces
between naphthalene and anthracene moieties. The molecular conformation of the
moieties connected by a flexible alkane chain exhibits a broad population
distribution as a function of the end-group distance as obtained mainly by molecular
mechanics calculation [2]. The energy minima with respect to the dihedral angle,
rotations about the bond between C-C bonds, are found at three different angles,

namely, trans, gauche" and gauche+.In the present study, the kinetics of
intramolecular EET process in A IN, A3N and A6N, are reported both in solution
and in stretched PVA films, together with analysis of their conformations. In
addition, it is demonstrated that the relaxation of higher vibronic levels of an
acceptor molecule depends on the number of intervening methylene units. The
results are compared with the study of Schoels et al [6] on rigidly connected
anthracene (An) and naphthalene (Np) moieitis and to the intamolecular EET
dynamics in AnN observed in supersonic jets.[8]The absorption spectra of the AnN
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samples in n-hexane, and in the stretched and (fig. 1) non-stretched films was
basically consistent with previously reported data which describe AnN spectra as
superposition of the spectra of Np and An [1,2,16,17]. The very weak emission
intensity in the naphthalene region, from 310nm to 370nm, implies that highly
efficient intramolecular EET (>99%) occurred both in A3N and A6N. For A1N only
An emission is observed indicative of very efficient intra EET process. The
fluorescence intensity of A3N at wavelengths higher than 411 run, which is assigned
as the 0-1 transition (denoted as An(O-l)), was slightly larger than that of A6N. The
difference in these emission spectra may be due to the formation of an intramolecular
exciplex, followed by the formation of a photocyclomer [16,17].

Basically for all samples two types of experiments were conducted. Time-
correlated single-photon counting measurements allowed the determination of the
lifetimes of the naphthalene moiety and the rise times of the An signals in A3N and
A6N. Direct excitation of An at 281nm could be neglected, since the absorption
cross section of Np is 20 times larger than that of An in either A3N or A6N.
Lifetime analyses of the fluorescence decay curves with a double exponential
function yielded the respective lifetime and normalized pre-exponential. In addition,
time resolved fluorescence spectra were recorded where the Np moiety was
excited.Figures 2 shows time-resolved fluorescence spectra of A1N, A3N and A6N
in stretched PVA films, which were normalized to the maximum intensity of each
respective spectrum. These spectra were made from fluorescence decays measured
in 1.5nm steps. These spectra show dual fluorescence bands where spectral features
at wavelengths shorter than 380nm are due to Np emission while those at longer
wavelengths are due to An fluorescence. Such spectra are the manifestation of
intramolecular EET [1]. For all AnN molecules the An bands are very similar in their
positions and in their relative intensities. They are, however, different at the Np
spectral region, where no activity is observed for A IN, some weak intensity at
negative times is observed for A3N, and higher intensity in A6N even at 16ps after
the peak excitation intensity (corresponding to Ops). This correlates with the
decreasing order of intramolecular EET rates in the series A IN, A3N and A6N. At
negative times, An emission is evidently characterized by broad spectral features.
Similar spectra were obtained for the AnN samples in solution and in non-streched
films, where comparison is made with the fluorescence spectrum of 9-
methylanthracene, serving as a reference compound. These results as well as those
for the rise and decay of the fluorescence signals associated with the An and Np
bands are summarized in Tables 1 and 2.
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Figure 1. Absorption and fluorescence spectra of A3N in stretched PVA film at 10 K.

Our general conclusions are in agreement with recent observations of
inefficient EET in flexibly connected bichromophores which exhibit highly efficient
EET processes when they are connected by a rigid bridge, in fact up to 5 order of
magnitude enhancement in the EET rate was observed.[18,19] While the distance
dependence is the manifestation of the through bond superexchange contribution to
the observed EET rates due to the stretched conformations, the direct Coulombic
interaction still determines the overall rate for all three AnN molecules in solution
for the face to face conformeres.

Table 1 summarizes the results of the analysis for the fluorescence decay
curves upon excitation at 280 nm (naphthalene, D) in stretched PVA films. The
decay curve of D fluorescence in A IN is almost single exponential with very short
lifetime at 10 K and 296 K, while those in A3N and A6N are composed of two or
three exponential decay functions with short and long lifetimes which gives a
distribution of the energy transfer rate even in stretched films. The decay curves of
anthracene (A) fluorescence are described simply by a single exponential rise and
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Figure 2. Time-resolved fluorescence spectra of A1N, A3N and A6N in stretched PVA

films at 10 K. The excitation wavelength is 280 nm ( Z,a absorption band of naphthalene).

Table 2 summarizes the fluorescence lifetimes for A IN, A3N and A6N in
nonstr-etchedPMMA films at 10 K and 296 K. All the decay curves can be analyzed
phenomenologically in the same way as in the stretched films. In striking contrast to
the case of stretched films, the decay kinetics are determined by the faster decays,
and as for the component with the dominant amplitude the decay properties show no
systematic change on going from A IN to A6N. It then follows that AnN's in
nomtretched films have a broader distribution of folded conformers, resulting in
faster decay kinetics. This can be compared to the solution case, Table 3showing
similar behavior.

For this reason, we confine our discussion to the EET dynamics associated
with the fluorescence decays with the dominant amplitude in the stretched film at 10
K, which will correlate directly with the D-A distance dependence on the EET rate
for the AnN molecules. The fluorescence lifetime is related to the energy transfer
rate (k^) by
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where kF = (rF) with Tp representing the fluorescence lifetime of a reference
molecule without an anthracene moiety. In this study we use the lifetime value of 1-
methylnaphthalene: i.e., TF = 70 ns in PMMA film at 10K. The calculated k^j

values are be 4 7 . 6 x l 0 1 0 s - 1 inAIN, l ^ x l O ^ s " 1 in A3N and 0.145 x
in A6N in stretched PVA films at 10K.

According to the Forster's mechanism , eq. 10, the EET rate constant is
expressed by the following equation:

(14)

The transition dipole moment of 50 to S1 (*Ib) transition in naphthalene (D)

is in the short molecular axis, while that of anthracene (A) 0La) is in the long
molecular axis. The k^^. values were calculated by using the literature value RQ =

25.51 A for 1-methylnaphthalene (D) and anthracene (A). [16,17]
Taking into consideration that there still exist possible conformers with

respect to mutual orientation of the two end groups in stretched films, we calculated
for the two extremes of conformations that the molecular planes of D and A are
parallel and perpendicular. The calculated A ^ values are in fair agreement with the
corresponding experimental values, although through - bond interaction in addition
to the F8rster-type through-space interaction should be considered. In the present
case of A IN, a contribution from the similar through-bond interaction via single
methylene group is probably responsible for the EET rate larger than the calculated
one.

In conclusion, the AnN's molecules incorporated in stretched films prefer a
conformation in which the methylene chain is elongated and the two end groups of D
and A are separated far apart. For this conformation, the intramolecular EET in
AnN's on the whole can be described approximately in terms of the Forster's dipole-
dipole interaction mechanism, with some contributions from through-space exchange
and through-bond superexchange interactions. On the other hand, the nonstretched
films exhibit EET rate which is much faster than the stretched films, indicating that
A3N and A6N in films takes predominantly folded conformations similarly to the
cases of AnN's in fluid solution. [20]
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T A B L E 1. Fluorescence decay lifetimes and amplitudes of naphthalene (D) and anthracene (A) , in
AIN, A3N (biexponential) and A6N (triexponential) in stretched PVA films with excitation of D at 280

10K 296K

Compound

AIN

A3N

A6N

(D/ps)

2.1

51
173

71
687
4500

(A/ps) (D/ps) (A/ps)

9165 2.9 8379

87
10920

97
10900

18
153

56
380

38
10250

111
10370
4090

TABLE 2. Bimodal fluorescence decay lifetimes of naphthalene (D) and anthracene
(A) in AIN, A3N and A6N in nonstretched PMMA films with excitation of D at 280
nm.

10K 296K

Compound

AIN

A3N

A6N

(D/ps) (A/ps) (D/ps) (A/ps)

3.5

19
197

37
188

51
11000

15
12000

14
12000

46
148

2.7

14
140

80
11000

14
11000

16
9300



603

3.Towards molecular scale devices based on controlled intramolecular
interactions

As was argued above charge and EET processes are well studied. We have
examples whereby different molecules can signal their state from one (the Donor, D)
to the other (the Acceptor, A). Here we propose to use this transfer as a way of
connecting between logical operations that are implemented on different molecules.
With such a concatenation one can begin to think of the construction of larger scale
integrated logic circuits, made up of many molecules. In particular, the already
demonstrated EET in trichromophoric molecules [21-24] assures us that a fanout
operation, that is the communication of a given output as input to more than one
circuit, will be possible. While we shall not make use of it, the scheme discussed in
this paper can exhibit a bidirectional transfer so that feedback is also possible.

The present work is in molecular electronics [25]. Rather than trying to make
molecules that can act as wires [8,9] switches [10-14] and other building blocks of
conventional electronic circuits, in this work individual molecules are instructed to
implement already non trivial logic tasks. We show that one molecule can
communicate its logic output as input to another molecule. This transfer is achieved
as an electronic energy transfer from a donor to an acceptor. We do discuss a
specific pair for which there is considerable data but the scheme is general enough to
allow a wide choice of D and A pairs. The results are for an intermolecular transfer
in solution but many similar D - A pairs that are bridged, have been studied [1,9].
Indeed, a rigid bridge will make the energy transfer much more efficient [18,19] so
that the rigid concatenation required for a circuit board is an advantage. A bridged
pair is a particular example of our general suggestion that a reactive molecular
coordinate can act as a bus.

Linked Donor-Acceptor bichromophoric molecular systems of the type Donor-
bridge-Acceptor (D-B-A), in which the bridge is a saturated hydrocarbon moiety,
have been developed into a major tool for studying various aspects of electron
donor-acceptor interaction over the past decades. In most cases the intra-EET rate
constant k g g j , is attributed to two possible contributions. The first is the long range

Coulombic contribution which was formulated and by Forster [6] in terms of dipole-
dipole interaction. The second contribution to EET is the short range exchange
interaction, as formulated by Dexter [7].There are many experiments, in particular
photo induced Intra-ELT studies, that indicate donor and acceptor interactions at D
and A separations that are much larger than the sum of their van der Waals orbital
radii [21-24]. The proposed mechanism is a superexchange interaction operating
beyond actual orbital overlap region, usually thought to be mediated by electronic
through band (TB) coupling of the interchromophore bridge orbitals.

Following their Intra-ELT work [26], Verhoeven and coworkers examined
singlet-singlet intra-EET processes in a series of bichromophoric molecules, DMN-
n-ketone, l(n), containing rigid polynorbornyl interchromphore bridge spacers,
separating the dimethoxynaphthalene donor from the carbonyl acceptor. When the
two chromophores were connected via 4-10 a bonds in an all trans conformation.
Intra-EET was observed even for R=11.5A where direct orbital overlap is not
possible. The measured transfer rate constant was much larger than that calculated
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from the Forster model and depended exponentially on the number of
interchromophore a bonds.

As expected for the TB mechanism, the EET rates display a strong exponential
distance dependence of the form shown by eq (1), in which n is the number of bonds
in the bridge relay, and P' is an attenuation coefficient with experimentally
determined values in the range of 2 - 2.5 per bond [18,19].

kEET = A exp(-p'n) = A exp (-(3R) (15)

In the background to the discussion is the proposal that entire logic gates and
even circuits, can be represented by the spectroscopy of a single molecule. With
even as few as 10 molecules, acting independently, one can already achieve
acceptable signal to noise.

The logic that can be implemented on a molecule is determined by the number
of states of the molecule that can be spectroscopically pumped and probed. High
resolution work can make the number of states large and this is one promising
direction. The other possible route and the one that is followed here, is to connect
different molecules in the manner made familiar by connecting arithmetic units into
larger chips. Note that we do not say 'to connect different molecules in the manner
made familiar by connecting transistors into larger circuits'. This is because of the
considerable versatility of modern molecular spectroscopy which allows the design
of non trivial circuits already on individual molecules. For example, either the donor
or the acceptor that are here discussed implements by itself both an AND gate and
an XOR (exclusive OR) gate, see figure 2 below. It takes several switches (=
transistors) to build any one of these gates.

This section discusses the photophysics of a full adder that is a circuit that
receives two binary one digit inputs plus the carry bit from the previous addition and
yields as output the sum of the two inputs and a new value for the carry bit (= carry
out). There are altogether eight possible inputs to the full adder. It is the (Boolean
value of the) intermediate sum that is communicated between the donor and
acceptor. The corresponding logic circuit is shown as Figure 3.

The proposed full adder needs two half adders such that one bit can be delivered
from the first half adder to the second. A molecular half adder is available for
molecules that have a detectable one photon and a detectable two photon absorption.
This seems to go against Kasha's rule but in fact there are enough exceptions.
Azulene and many of its derivatives provide one class. The emission from the second
electronically excited state, S2, is often as strong or stronger as the fluorescence from
S! [28,29]. More in general, emission from S2 is not forbidden, rather, due to
competing non radiative processes it often has a low quantum yield but it is
definitely detectable particularly so since it is much to the blue as compared to the
emission from Si. If necessary, the emission from S2 can be detected by photon
counting.
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Figure 5 . Logic circuits of a full adder, top panel and of a half adder, HA, bottom panel, ffi is
addition of Boolean variables, sometimes The full adder is drawn as if it has three outputs carry 1,
carry 2 and sum out. Either carry 1 or carry 2 will provide the value of the output carry bit. (If so desired,
one can feed them into an OR gate, a one photon broad absorber18, so as to get an answer that can be
communicated to the next circuit). The graphical notation for the AND and the XOR gates is a standard



606

concatenation by electronic energy transfer from a donor to an
acceptor ~Q P n / * .

c a r p y 1 - carry 2 : AND =
midway sum co3®

A N D = CQX®CD2
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transfer to part B
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X O R = cox + eo2

sum out:
? = ej] +o)2

= midway sum +
X O R = cox +a>2+

13400-11000
cm-1

= carry in

part A: rhodamine 6G
donor

part B: azulene
acceptor

Figure4. The Rh6G-azulene full adder: XOR gate on the Rh6g donor molecule is realized when either <B i or
(02 are present and the excitation is transferred to the acceptor azulene molecule, if both frequencies are present
the donor is excited to its second excited state where a carry 1 needs to be detected as 23500cm"1 fluorescence
to provide the AND gate of the half adder. The sumout XOR needs to be detected either if C03 is present alone
or if the midway sum is transferred. If both are present the carry 2 needs to be detected as an AND gate via
fluorescence from the second excited state of azulene at 26670cm"1.

We draw attention to a relative paucity of photophysical information on absorption
profiles and emission characteristics of S2 levels of potential donors and acceptors.
While there is enough data to anchor our proposed scheme on firm observations, it would
be useful to have more.

The concatenation between the two half adders is performed by the fairly fast [1]
intermolecular electronic energy transfer. Specifically we propose the well characterized
transfer from the Si level of rhodamine 6G to the Si of azulene, figure 2.

There are many possible variations on this theme. While we shall not make use of it,
we do mention that the scheme discussed in this Letter can have bidirectional transfer so
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that the result of the logic implemented on what we call the acceptor can be returned to
the donor. For example, the S2 level of azulene can transfer to a higher excited donor
level. See e.g., [33] for a recent discussion of the role of the energy gap in the transfer.

The photophysical details of the full adder are as follows:[21-24] the Si level of
rhodamine 6G can be readily pumped with photons absorbed within the So —»• Si band.
For example, we take the frequencies (O\ = 18797 cm"1 (the second harmonic of the Nd-
YAG laser) and ^ = 18900 cm"1.

In fact, since O\ and a>i are Boolean variables, they can be the same frequency but
from two physically distinct laser beams, say using a beam splitter with a beam stop (to
do the Boolean variable selection, 0,1 s o n , off) in either beam line. We do not need it
for the full adder but the absorption to S! can be detected through its emission at about
17500 cm"1. This emission is logically equivalent to
mi® a>i because if the intensity is high enough due to two photons being present, the
donor will be pumped either directly to S2 or to higher levels followed by ultrafast
nonradiative relaxation to S2. The large absorption cross-section of 2.5xl0"18

cm^molecule"1 for the Si-»Sn (n > 2) of rhodamine 6G insures efficient pumping of S2.

The emission from S2 is at about 23250 cm"1 with a quantum yield of about 10"4 [31]. It
is this emission which serves to logically implement the left AND gate and it is
equivalent to <D\® 0I (denoted as carry 1). The Si level of the donor transfers the energy,
via the Forster mechanism [1] to the azulene acceptor, whose Si level is at 14400 cm"1

[34]. This level emits in the 13400-11000 cm"1 range. The S2 level of azulene has its
absorption origin at 28300 cm"1 and so it can be reached from Si by a third photon of
frequency 14400 cm"1 . The same photon can also pump ground state azulene to its Si
level. Emission (or lack thereof) from S2 of azulene at 26670 cm"1 provides the carry 2
bit while emission from the Si level of azulene provides the sum bit. If one wants error
correction then the emission from the Si level of rhodamine 6G can be used as a check
bit, Figure 2.

The energy transfer rate for a solution of 10"3 M of azulene, estimated using the Si
fluorescence spectrum of rhodamine 6G and the absorption spectrum of azulene, is
about 1010 s"1. This rate can be increased [16] if the two chromophores are incorporated
within a single molecule using a short molecular bridge [1]. The increase will be
particularly significant (five orders of magnitude) if the bridge is rigid [18]. There are
many other couples based on commonly used laser dyes as donors and azulene
derivatives [21-24] that can be utilized for the implementation of the logic gate. We
have designed a novel donor-acceptor bichromophoric molecule that implement
combining rhodamine6G and azulene in a single rigid molecules to test these ideas.

Electron transfer from a donor to an acceptor is another way to achieve
concatenation. Rather than a direct donor to an acceptor transfer one can put a bridge in
between. One typically thinks of either through-space transfer without any bridge
involvement, or of a bridge in terms of the 'super exchange' mechanism . There are
however other options, where the bridge itself is actively involved. This allows one to
tune the components of the bridge such that the transfer is facile or not.
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In order to determine the role played by the interchromophore bridge we compared
[18,19] intra-EET between the same two chromophores connected by a rigid bridge for
which previous studies indicated a through-space exchange interaction controlled EET
for a flexible bridge [1].

Earlier studies of intra-EET in semiflexible aromatic compounds, of the type shown
in scheme 2, established through-space exchange interaction as the process promoting
mechanism [1]. This was implemented by the study of the DMN bichromophoric
compounds of scheme 1, which were synthesized by Paddon-Row and measured by
Ghiggino and coworkers [18].

M

MeO
2(6); m = 1

Scheme 1

The rigid compounds of scheme 1 were measured utilizing time resolved ultrafast
fluorescence spectroscopy to determine the EET rate by measuring the rise time of the
donor-dione fluorescence signal. These were compared with the corresponding data
obtained for the flexible molecules of scheme 2 and also to the rigid systems of
monoketone rigid system, synthesized by Paddon Row and utilized by Verhoeven and
coworkers [26].

This comparison between results pertaining to rigid and flexible bichromophores [12-
14] on one hand, and those pertaining to changing of the acceptor's chromophore for
rigid molecules on the other hand, is done in Table 1. The p values depend both on the
rigidity of the bridge and on the energy gap between bridge electronic energies and those
of D* and A*, as probed by comparing EET for monoketone and dione acceptors, as
expressed by McConnelFs model [27].
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o

O-n,n M-n,n P-n,n

2K^° fV ( C H 2 *^ 0

n=4,5,6 n=2,3,4 n=3,4

Scheme 2

McConnell suggested that orbital sites intervening between D and A could facilitate
ELT. In his superexchange model, an electron is transferred between degenerate D and A
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orbitals, aided by the presence of empty (not necessarily degenerate) high-lying bridge
orbitals. McConnell's expression for the coupling matrix element is given by

TABLE 3. Rates of intramolecular singlet-singlet EET in solution.

MOLECULE R(A) kEEr(s'') P(Al)

1,4-Naph-5,S

O-4,4

DMN-4-ketone

DMN-6-ketone

DMN-8-ketone

DMB-6-dione

DMN-6-dione

DMN-10-dione

5.23

6.00

5.00

7.50

10.0

7.50

7.50

12.5

6.0x108

5.0xl06

1.2x10'°

1.9xlO8

3.1xlO7

>10n

>10u

2.5xlO10

0.9

0.9

1.2

1.2

1.2

0.6

0.6

where HJJ is the tunneling integral between orbitals i and j , E ^ D is the degenerate D and
A orbitals energy, EBJ IS m e energy of the fth bridge orbital, and n is the number of B
orbitals.
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In McConnell's model only electronic couplings are taken into account. It complletly
ignores vibronic interactions that might affect coupling between the donor and the
acceptor to the bridge or intrabridge states coupling. While this may hold for rigid
bridges it is bound to fail for flexible bridges, where bridge vibrartional motion may be
coupled to the electron dynamics involved in the transfer process. We provide here
preliminary results for such a modified McConnell's model, suitable for dealing with
such flexible structures. [24]

The mechanism for electron and electron-energy transfer in donor-bridge-
acceptor(DBA) systems is studied in the presence of electron-nuclei coupling. The 30
years old McConnell model is generalized in order to account for the flexibility of the
molecular bridge and its effect on the electron transfer rate. The original tight-binding
model proposed by McConnell [27] is solved numerically, allowing for a non-
perturbative coupling between the bridge and the chromophors as well as between the
bridge subunits. In the simplest possible correction to this model, which accounts for the
flexibility of the bridge, the vibrations of the molecule are described as time-dependent
oscillations of the energy level of the bridge subunits. The rate of electron transfer
between the donor and the acceptor is calculated by solving the time-dependent
Schroedinger equation for the electronic degree of freedom with a time-dependent
Hamiltonian, representing the bridge motion. Following the population transfer from the
donor to the acceptor in the DBA system as a function of time one can obtain the transfer
rate. For small electron-nuclei coupling intensities, we find that when the bridge
frequency is similar to the energy-splitting between the donor and acceptor levels (the
electron transfer rate in the "stiff" bridge), the electron transfer rate is reduced
significantly, while for higher or lower vibrational frequencies the transfer rate is hardly
affected. This result is consistent with a perturbative treatment of the electron-nuclei
coupling and it suggests that the electron transfer rates is sensitive to bridge flexibility
when the electron transfer rate is of the order of molecular frequencies (100-1000 cm'1).

Our model is a time-dependent variant of the McConnell Hamiltonian,

= HQ+V(t)

Ho is the Hamiltonian matrix which represents a "stiff donor-bridge acceptor system

(see Fig.5),
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0 T 0

T D t

0 t D

D t 0

/ D T

0 T 0
(18)

The matrix dimension is N+2, where N in the number of the bridge sub-units. The

diagonal elements Hx, and HN+2N+2 stand for the electronic energy of the uncoupled

chromophors (taken as 0 for both the donor and the acceptor in the present model). The
direct coupling between the two chromophors is denoted S (taken to be negligible in the
numerical applications below). The parameter of electronic coupling between each
chromophore and its nearby bridge unit is T, and the parameter of coupling between
neighboring bridge subunits is t. D is the energy gap between the donor/acceptor levels
and the energy levels of the uncoupled bridge subunits.

In order to account for the flexibility of the bridge, a time dependent matrix is added to

H0(Fig.6),

F(O = Asi

0
0

0

0

0
1

0

0
0

1

...

1

0

0

0

1

0

0

0

0

0 (19)

X is the electron-nuclei coupling intensity parameter and (O is the frequency of the
bridge oscillations. According to this model, the electronic energy of the bridge subunits
oscillates with a typical frequency, corresponding, e.g., to a global nuclear motion (a
bridge "phonon") of the bridge subunits.



613

The electron transfer rate from the donor to the acceptor can be simulated by
solving the time-dependent Schroedinger equation, with H(t) . The initial state
corresponds to 100% population of the donor,

1̂

0

0

(20)

E i

D--

0 - -

t

1 2 N

t

Donor Acceptor

Figure 5. Schematic representation of the McConnell super exchange model

The coupling between the donor and the rest of the system by H(f) leads to

population transfer from the donor to the acceptor through the bridge, resulting in a
decay of the donor population. This process is reflected by a dynamical change in the
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wavefiinction y/(t), as a function of time. The numerical procedure for solving the
time-dependent Schroedinger equation was based on a split-operator method, in which
the time-axis is divided to small time interval, and the propagator at each time interval
reads,

-i±V(,+dt) -i-H0 -i—V(l)

= e 2h e * e 2n V ( 0 (21)

The potential matrix V(t) is therefore the operation of e 2n is straight forward.

The non-diagonal opei

transformation of Ho,

-4*.
The non-diagonal operator e is represented in terms of the diagonalization

e * =Ue n U'1 (22)

where D is a diagonal matrix, and H0U = UD . The solution of the time-dependent

schroedinger equation enables to define an effective electron transfer rate between the
donor and the acceptor. In the examples below we define the rate as the inverse of the
time-period in which the donor population reaches its minimal value. Time-dependent
simulations were performed for different values of the bridge frequency, for the model
parameters: N=8, D=3.2 eV, T=-0.856 eV, t=-0.9795 eV and £-=10"20 a.u.. The ratio
between the coupling parameters (t and T) and D was determind according to ab-initio fit
by Jordan and Paddon-Row [39] for the molecule in scheme 1.
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2TT
CO

Figure 6. Schematic representation of the oscillatory motion of the molecular bridge

In Figure 7 the population of the donor site | if/x (t) | is plotted as a function of time

(starting from 100% population at t=0) for X = 0 and for X = 0 .2D . The bridge
frequency CO was chosen as half of the energy gap between the two lowest energy levels
of Ho (the super exchange rate). Interestingly, the numerical result for X = 0 , gives a

rate of 5.4 • 10 1/sec, which is similar to the electron-energy transfer rate, measured for
a bridge with the same length [17,18]. The numerical results for the flexible molecule
demonstrate the effect of time delay in the decay of the donor population due to the
bridge vibrations. In figure 4, the decay time of the donor population is plotted for the
same system with X = 0. ID, as a function of the bridge frequency, illustrating the
significant effect of the bridge flexibility on the electron transfer rate, when the bridge
frequency matches the electron-transfer rate in the stiff system.

In conclusion we note that we have provided evidence that through bond
superexchange is significant in promoting Intra-EET in rigidly bridged bichromophoric
compounds at interchromophore separations exceeding 12A. This is not the case in
flexibly bridged compounds. We believe that the flexibility results in vibronic coupling
of bridge modes resulting in loss of coherence needed for efficient bridge mediated
through bond coupling, such as invoked in McConnell's model [27]. Similar
observations were made for the system composed of naphthalene (donor)-anthracene
(acceptor), thus indicating the possibility of controlling EET by judicious molecular
engineering.



616

time (a.u.) x10

Figure 7 . The time-decay of the donor population for a stiff bridge (grey) and for a flexible bridge (black).
The rapid oscillations are due to mixing between the donor/acceptor levels to the bridge levels.Inset: The
initial dynamics.

This is the first direct evidence that the rigidity of the interchromophore bridge
is significant for promoting through-bond bridge-mediated intramolecular EET. Such
control is needed for implementing molecular logic gates based on Intra EET.The
preliminary results outlined in the modified McConnell's model described here show that
the electron transfer rates is sensitive to bridge flexibility when the electron transfer rate
is of the order of molecular frequencies (100-1000 cm'1).
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Figure.8. The decay time of the donnor population as a function of the bridge frequency. The frequency is
measured in units of the decay rate of the "stiff' bridge.
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Abstract

The stimulated Raman scattering (SRS) phenomenon allows to convert pumping
laser emission wavelength of crystalline materials providing suitable molecular or lattice
vibration modes which contribute to the third order nonlinear optical susceptibility y^\
Renewed interest in this field emerged because of the discovery of efficient SRS in
crystals that contain molecular units exhibiting x(3)-active modes. Particularly, organic
nonlinear optical crystals used so far frequency doubling and third harmonic generation
seem to have a great potential for SRS applications. This lecture reported same results on
an efficient SRS lasing effects that were discovered during last three years in y^- and
X(3)-active organic crystals, as well as recent results on SRS spectroscopy of novel solid-
state laser materials - highly nanocrystalline ceramics based on cubic Y3AI5O12 garnet
and RE2O3 (here RE = Sc, Y, and lanthanides Ln) sesquioxides.

1. Introduction

Stimulated Raman scattering (SRS) in optical crystalline materials is of topical interest
in modern solid-state laser physics. The SRS process allows to shift laser emission
wavelength and compress laser pulses, it can improve the spatial quality of laser beams as
well as the contrast between peak and background intensities of ultra-short laser pulses,
etc. In the last two decides, solid-state SRS science and technology were becoming more
wide spread (see, e.g. [1-3]). Growth in the activity has been made possible by the
discovery of several new SRS-active inorganic crystals, including a successful application
given by nano- and picosecond Raman lasers generating specific and otherwise hard to
reach wavelengths in a wide spectral range [3-5]. Among other current applications of new
Raman lasers, remote sensing of the atmosphere is of great interest [6]. Furthermore,
crystalline lasers using SRS conversion process are very attractive for medical treatments
and for laser guide stars in precise astronomical experiments (see, e.g. [7]).
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New generation of Raman lasers requires crystalline materials providing a large
frequency shifts up to 3000 cm'1 or more. Unfortunately, with inorganic crystals such shifts
are difficult if not impossible to realize due to their ionic structure. As can be seen from
Table 1, among known SRS-active inorganic crystals a largest Raman frequency shift has
been measured for calcite (CaCO3) [8] and lithium formate monohydrate ( U H C O O H T O )

[9]. During last three years we have been discovered an efficient SRS effects in several
organic crystals many of them as indicated in Table 2 possess a frequency shifts as large
3000 cm'1 and a relatively high steady-state Raman gain coefficients for the first Stokes
generation. A number of them offer also both nonlinear x(2)+X(3) susceptibilities, which
may give rise to diverse parametric generation acts. It is of interest that in the field of
nonlinear optical organic crystals the attention has mainly been directed towards second
and third harmonic generation (see, e.g. [25,26]), but not towards SRS. This is rather
astonishing, because the bright optical %(3) effect, such as the SRS, was discovered in
organic liquid (nitrobenzene C6H5NO2) in 60 s just in the beginning of laser era [27].

Laser gain inorganic materials based on Ln3+-ion doped (in particular, Nd3+ and Yb3+)
highly transparent cubic Y3A15O12 and RE2O3 ceramics (here RE = Sc, Y, and Ln) are the
focus of m any research groups (see, e.g. [28-32]). It is enough to note here the results that
were achieved concerning of high-power Nd3+:Y3Al5Oi2 ceramic laser with laser-diode
(LD) pumping. Because of novel ceramic technology, only in the last three yeas has the
one-micron (4F3/2-»4In/2 lasing channel) CW output power been increased from a few
hundred milliwatts to the 1.5 kW range. This remarkable progress is summarized in Fig. 1.
A new generation of laser crystalline ceramics was obtained by the recently developed
revolutionary vacuum sintering method, where the raw materials were prepared by
nanocrystalline technology [41]. Investigations have shown that the Nd3+:Y3Al5Oi2

ceramic lasers demonstrate practically identical efficiency and output power as lasers
based on single crystals of the same material (see, e.g. [39,40,42]). However, this new
generation of laser ceramics has significant advantages over laser Nd3+:Y3Al5Oi2 single
crystals. They can be fabricated in large sizes and at low cost and with the required high
Ln3+ ion concentration, as well as in the form of very large multilayer plates for
multifunctional lasers [39,43]. These ceramics provide clear evidence that new ceramic
technology is not limited to Nd3+:Y3Al5Oi2, but that it is a really universal method for
fabricating other new ceramic crystalline laser materials. During last two years efficient
CW and femtosecond generation from Nd3+- and Yb3+-ceramic lasers based on refractory

lah -cubic Sc2O3, Y2O3, YGdO3, and Lu2O3 sesquioxides was obtained (Table 3). The
high optical quality of these undoped and Ln3+-doped laser nanocrystalline ceramics is
convincing evidenced by recent experiments on the excitation in them of high-order Stokes
and anti-Stokes lasing in the visible and near-IR regions under picosecond pumping [51-
53].

Present lecture summarized some main results on SRS spectroscopy of organic crystals
and highly transparent nanocrystalline ceramics - newel families of nonlinear laser solid-
state materials, and on new self-frequency conversion parametric effects observed in them
under ultra-short laser excitation.
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2. The steady-state stimulated Raman scattering

The nonlinear frequency conversion effects (SHG, SRS, etc.) are possible in any
optically transparent crystals in which the electron cloud of atoms tend to be polarized,
i.e. the refractive index « is a function of the electric-field strength E of the propagating
laser emission through these crystals (see, e.g. [54-56])

n(E) = n0 + n,E + n2E
2+... (1)

here n0 is the "linear" refractive index, and nlt n2 and so on are the higher-order coefficient
of n(E). A dielectric polarization vector P, defined as the electric dipole moment of the
optical crystal can be described phenomenologically in terms of nonlinear susceptibility
tensor of a crystal by expressing its polarization as a power series in electric-field strength
Eas

P(£) = %{0)E + y^E2 + x ( 3 ) ^ + • • • • (2)

where x(0) is the linear susceptibility tensor responsible for linear optical phenomena such
as refraction and reflection of the light; and x(2)> X(3)> e t c- a r e m e nonlinear optical
susceptibilities of a crystal. These tensors are related to the linear and nonlinear refractive
index as follows

X«) aJ-(^- l) , x m a J - ^ , X
(^^-n0n2 (3

An 2n In
and responsible for a large variety of nonlinear optical phenomena. The most important
nonlinear frequency conversion effects arise from the second and third terms in Eq. (2),
which are connected to electrical polarization as the are quadratic and cubic functions of
the electrical field strength. The second terms in Eq. (2) in gives rise to frequency mixing,
in particular SHG in acentric crystals, whereas the tensor x(3) of the third terms is not
subsided to symmetry restrictions. Therefore, in x(3) -active crystals several nonlinear
processes, such as SRS, third harmonic generation and so on are available in optically
isotropic and anisotropic crystals (Table 4).

The Raman lasers based on x(3)-crystals as mentioned above are extensively growing
area in modern laser material science and solid-state laser physics. It is not feasible to
present an examination of main theoretical aspects of SRS laser frequency conversion in
solids used so far. A few such comprehensive reviews are already present in the literature
(see, e.g. [1,3, 254,55,57-60]). Depending on the pump pulse duration TP, two temporal
SRS regimes, steady-state and transient, can be considered. The main condition for the
steady-state pumping condition, which is of more interested for many practical cases and
which was realized in most known nano- and picosecond crystalline Raman lasers, is

. (4)
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here T2 is the dephasing (phonon relaxation) time of the SRS-active vibration mode and
AVR is the linewidth (FWHM) of the corresponding Raman-shifted line with a frequency
(BSRs in the spontaneous Raman scattering spectrum. The condition for the first Stokes
steady-state generation regime in Raman lasers based on x(3)-active crystals [61]

Rm exp|2(g* VSRS - alcr \ n = 1 (5)

is very nearly the same as the condition for stimulated-emission (SE) generation in the
usual lasers on the base of activated crystals [62]

Rm exp[2(AN<rSElSE - plcr ) ] ^ = 1. (6)

In Eqs. (5) and (6): gfsRlplSRS is the Raman gain factor (here: gfsR is the steady-state

Raman gain coefficient, / is the laser pumping intensity, and lSRS is the SRS-active

crystal length), a is the loss coefficient at the first Stokes wavelength ASl , lcr is the total

crystal length, Rm = RmlRm2 is the reflectivity of resonator mirrors, AN(JSE is the gain

coefficient (here: AN is the inversion population of the Stark laser levels and aSE is the

cross-section of inter-Stark laser transition of an activator ions), and p is the loss

coefficient at the SE wavelength XSE.

If the intensity of plane-wave fundamental pump-laser radiation is much higher than

the intensity of the first Stokes generation ( / » I S l ), i.e. when the level of pump

depletion is very small, the SRS amplification at the first Stokes emission can be written
[63] as

SRS ail

(7)

where ISt (lSRS = 0) is the intensity of the spontaneous Raman scattering at the

wavelength XSt of the first Stokes generation (in the beginning lSRS = 0 of the amplified

crystal, i.e. from zero-point fluctuation of spontaneous scattering)



623

a, _ 2^a, -^as c/cr 1
mSthvp dQ.gZ= 7 , • — - — • («)

Clearly, in the first Stokes lasing process, very weak spontaneous Stokes Raman scattering
provides the major contribution, because its frequency-shifted emission at ©SRS of the
intensive line (s) acts as a "seed" for SRS amplification. This situation is analogous to the
luminescence (spontaneous emission) in the laser action in activated crystals. In Eqs. (7)

da
and (8): is the Raman scattering cross-section of the vibration transition of the

dQ

crystal, NSRS is the number (concentration) of SRS-active scattering centers, nSl is the

refractive index of the crystal at wavelength Xs , and AQ is the small solid angle of SRS

lasing. As seen from Eq. (8), the gs'sR coefficient is linearly proportional to the Raman

scattering cross-section and inversely proportional to the linewidth of the spontaneous
da 1

Raman scattering transition. The product may be considered as the

spectroscopic parameter providing a measure for peak intensity of a spontaneous Raman
transition. This figure of merit, as shown in [64,65], can be used in a comparative selection
for suitable SRS-active crystals. Therefore, high-gain Raman crystals for steady-state SRS

laser converters should have a small A VR value and strong spontaneous Raman scattering
transition. Solving Eq. (7) yields (see, e.g. [54,55,58,59])

U VSRS ) = hh QSBS = 0) expte* 7 , / ^ ) • (9)

In many known experimental cases (see, e.g. [3,56,58,59,66]) SRS lasing at the first

Stokes wavelength (coSl = G) — O)SRS) becomes with any assurance measurable when

the increment in Eq. (9) reaches a value of gfs
l
RIplSRS

 = 25-30, which corresponds to a

energy conversion efficiency of approximately 1%. The laser pumping intensity

( / = Ithr ) providing such an efficiency value is conditionally considered as the first

Stokes steady-state threshold pumping intensity (7S ( I Ithr « 0 . 0 1 ) . Thus approach

makes possible tentatively estimate of the gs'sR value for x (3 )"ac tive crystals in rather

simple pumping geometries, as in the single-pass SRS experiments (see, e.g. [11,67]).

Due to very strong x<3)- and x(2)-nonlinearities of the most used organic crystals (see
Table 2), the pumping condition in conducted SRS experiments were slightly different
from the model mentioned above. To avoid a manifestation of other possible nonlinear
effects (SHG, two-photon absorption and so on) in them, we can make only a comparative

estimation of their gfs'R coefficients applying several reference x(3)"active crystals
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(PbWO4, a-KY(WO4)2, a-KGd(WO4)2, and NaC103 [14,68,69]) and relatively "soft"
excitation condition. As a threshold intensity in these comparative experiments we
assumed the pumping energy at which the steady-state first Stokes lasing becomes
confidently perceptible (usually with signal/noise ratio «2). Conducted measurements with
our organic crystals showed that in the most cases their first-Stokes pumping "soft"
threshold significantly less then the "1%-threshold".

3. Stimulated Raman spectroscopy of nonlinear-laser organic crystals and
nanocrystalline ceramics

The spectroscopic single-pass SRS experiments in [17-21,51-53] were done using

oriented samples of organic single crystals with different active length (from lSRS « 0.5

mm for AANP to lSRS « 25 mm for benzophenone and GuZN-IH ), as well as several

centimetre length nanocrystalline ceramic bars. The reference crystals and measured
crystalline matertials were equal in length and their optical faces were polished plane-
parallel but not anti-reflection coated. For the excitation steady-state Stokes and anti-
Stokes generation in organic crystals, was used a home-made picosecond Nd3+:Y3Al5Oi2
laser with «30% efficient frequency doubler that generates «110 ps pulses (FWHM) at Xn

= 1.06415 um and an energy up 3 mJ, and «80 ps SHG at A^ = 0.53207 um wavelength
[70]. Pump radiation with Gaussian beam profile, as need, were focused onto the
investigated crystal by a lens with a focal distance adjusted (F = 25 cm) such that the SRS
lasing was maximum without a surface and volume optical damage sample, resulting in a
beam waist diameter of about 160 jxm (see used setup in the frame of Fig. 2). The spectral
composition of the Stokes and anti-Stokes, as well as self-FD and self SFM generation
emission was measured with a CCD-spectroscopic multichannel analyzer (CSMA)
consisting of a scanning grating monochromator (with Czerny-Turner arrangement), an
analyzer, and a Si-CCD array-sensor (Hamamatsu S3923-1024Q) as a detector. The
sensitivity dispersion of this CSMA system is given in the inset of Fig. 3.

3.1. Nonlinear x(3)- and x(2)-lasing effects in organic crystals

In addition to very large Raman shift and efficient first Stokes generation in discovered
SRS-active organic crystals in same an acentric of them, what are more a polar crystals,
were observed combined nonlinear lasing effects, namely self-FD and self-SFM [19-21].
This potential allows to classify these materials a as promising (x(3)+x(2))-medium for a
new type of laser-frequency converters.

C14H22NgOi3Zr (GuZN-III) crystal [20], two SRS-spectra (see Fig. 2 and 3) are shown
an identification of observed Stokes and anti-Stokes lines related to two SRS-active optical
vibration modes of the crystal OSRSI « 1008 cm'1 and (oSRS2 ® 2940 cm'1. The analysis is
shown that for the 62-atomic molecule Ci4H26N8O13Zr of a GuZN-III structure with
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orthorhombic space group D2 and Z = 4 (2 for primitive unit cell) overall degrees of

freedom (3Nx2) = 372 distributed into (at * = 0, center of Brillouin zone):

TN = 92A + 94B, + 93B2 + 93B3

irreducible representations. In accordance with [71], the A modes of a GuZN-III crystal
are Raman active only, and those of Bu B2, and B3 are both Raman and IR active. Among
them the (B! + B2 + B3) species are acoustic modes. As an illustration, Fig. 4 shows the
Raman spectrum of the fully symmetric A species, which was recorded under excitation
geometry &a(cc)&a practically as in the case of the SRS spectrum exhibited in Fig. 3. The
assignment of its strongest Raman shifted lines to the respective vibration modes of a
GuZN-III crystal yields that the A-symmetry lines at «1008 and «2940 cm"1 are promoting
modes of observed SRS lasing components. They correspond to the stretching vibrations of
the CH2 and N-C-0 bond systems, respectively.

CuHjoO (benzophenone), a-C^HnO (4-methylbenzophenone), and C14H10O2 (benzil)
crystals [18]. Their Stokes and anti-Stokes spectra are given in Figs. 5 and 6. The analysis
conducted in [18] is shown that most of their SRS-active modes (with the frequency of
«3070, 1650, and «1000 cm'1) correspond to the v(CH) vibrations of the benzene ring,
v(C=O) vibrations of the carbonyl unit, and symmetric v(CC) vibrations of the benzene
ring, respectively. The «103 cm"1 SRS-mode is lattice vibration;

C12H22O11 (sucrose or sugar) crystal [21]. Due to its low symmetry and, hence, the
large number of the vibrational modes (3NZ = 270; TN = 133A + 137B, here (A + 2B) are
acoustic modes), it is quite difficult at this initial stage of the research to establish the
relation of observed SRS-mode ©SRS

 a 2960 cm'1 (Fig. 7,a) to the specific C-H vibrational
bond (v[CH] or v[CH2]). It is interesting to note here that food sugar glassy caramel offers
also very efficient SRS lasing (Fig. 7,b). Besides intensive Stokes and anti-Stokes lasing
components, under picocesond pumping in a sugar, which is sufficiently good UV crystals,
were also observed rather efficient (%(3)+x(2))-nonlinear self-frequency conversion effects,
namely the self-FD ( A.seif.FD = 0.3158 um, i.e. l/2A.Sti, or ©SHG = 2fflsu) and self-SFM (KseK.
SFM = 0.2887 (am, i.e. SA.cA.sti or toSFM

 = G>G + »sti)- The SHG- and SRS-potential,
availability, very low cost, and various structural modifications of a Ci2H22Ou make this
crystal quite attractive for application in modern laser physics and nonlinear optics.

(AANP) [19] and Ci6H,5N3O4 (MNBA) [20] crystals. In these papers has
been discovered a great potential for very efficient SRS acting of these two polar organic
crystals. To our best knowledge, among all known x(3)-active crystals they offer the
greatest value of the steady-state Raman gain coefficient in near IR. These crystals are
promising candidate for a new generation of Raman laser converters, where relatively
short their SRS-interaction lengths (less then 1 mm) allow for miniaturization. In AANP
and MNBA were observed also several new parametric lasing effects which are illustrated
in Table 5 and Fig. 8. According to [19], for the 39-atomic C,5H19N3O3 of a AANP
structure overall degrees of freedom 3NZ = 468 distributed into

TN= 117A!+ 117A2+ 117B,+ 117B
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irreducible representations. The vibration modes can be divided into acoustic TT= A] + B]
+ B2, internal T; = 111 A, + 111A2 + 11 IB, + 111B2, and translatory and rotatory TT = 2A!
+ 3A2 + 2B, + 2B2 and TR= 3A] + 3A2 + 3B! + 3B2, respectively. All optical modes are
Raman active. Observed SRS spectrum shows (Fig. 8,a) Stokes and anti-Stokes lines
which related to the COSRS « 1280 cm'1 vibration mode. It connected with strongest
vibration of the bond C-N-C which links the pyridine ring and adamantylamino system of
AANP crystal. Unfortunately, vibration mode analysis for a MNBA crystal is embarrassing
at present due to absence of precise Jf-ray data. It should be done late. The large
nonlinearities and hence a very efficient Stokes and anti-Stokes generation related to the
©SRS * 1587 cm'1 vibration mode and other manifestation of frequency conversion lasing
of MNBA with aromatic rings, donor -OCH3 and acceptor group -NHCOCH3, are due to
extended rc-electron conjugation [25,72].

3.2 High-order Stokes and anti-Stokes generation of Y3A1SO12 and Y2O3 ceramics

The high optical quality of the new generation of laser host ceramics on the base of
Y3A15O12 and Y2O3 is evidenced by recent investigation on the excitation in these materials
of high-order Stgokes and anti-Stokes Raman lasing in the visible and near IR regions
under picosecond pumping [51-53]. For illustration, several selected spectra of SRS and
spontaneous Raman scattering are shown in Figs. 9-11.

Y3AI5O12 nanocrystalline garnet ceramics. The 80 atoms of the Ia3d primitive cell of
the Y3Al50i2 structure have 3N = 240 degrees of freedom, which, according to factor
group analysis and symmetry degeneracy [71], give rise to 98 vibration modes belonging
to the following irreducible representations (at k = 0):

TN = 3Alg + 8Eg + 14F2g + 5A,U + 5A2u + 5A2g + 10Eu + 14Flg + 16F2u +18Fitt.

Of these, 25 (A)g, Eg, and F2g) modes and 17 (F!u) modes should appear in spontaneous
Stokes Raman scattering and IR spectra, respectively. The comparison of energy spacing
between Stokes and anti-Stokes components in Y3Al5Oi2 ceramics (Fig. 9) and single
crystals (see Fig. 3 in [53]) in Raman shifted intensive lines in spontaneous Raman
scattering spectra makes it possible to attribute their SRS-active vibration modes OOSRS *

370 cm"1 to the internal Aig and F2g optical vibrations of tetrahedral AIO\~ and octahedral

AIO9
6~ groups of the garnet host laser materials.

Y2O3 ceramics. The C-modification of the Y2O3 sesquioxide with bixbyite mineral

structure crystallizes in the Idh cubic system with 16 formulae per unit cell, where 24 Y
occupy the C2 sites and the other 8 Y are locates in centrosymmetric C3i crystallographic
positions. Its primitive cell contains 40 atoms and hence 3N = 120 degrees of vibration
freedom. The irreducible representations for Y2O3 optical and acoustical modes (at k = 0)
are
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TN = 4Ag + 4Eg + 14Fg + 5A2u + 5EU + 17FU.

Factor group analysis predicts 22 Raman active modes (4Ag + 4Eg + 14Fg), 17FU modes
should appear in IR spectra (among them one Fu is the acoustic mode), and (A2u and Eu)

species are both Raman and IR inactive. For Ia3 -structure, spontaneous Raman and IR
spectra are mutually exclusive since there are no vibration modes that are both Raman and

IR active. The vibration modes (Au + Eu + 3FU) of C3i octahedral (YO\~ ) are Raman

inactive. In much the same manner as for the Y3AI5O12 crystalline compounds, in the case
of Y2O3 single crystal and nanocrystalline ceramics the spontaneous Stokes Raman spectra
are practically indiscernible (Fig. 10). According to our analysis (see, also [73]) the
strongest Raman shifted line «378 cm"1 can be assigned to the totally symmetric Ag- and

degenerated Fg- type modes connected with the vibrations of C2-octahedra (YO6~) of

these laser host crystalline materials. The observed in [51] and showed in Fig. 11 high-
order Stokes and anti-Stokes lasing in nanocrfystalline Y2O3 ceramics are governed exactly
by these vibration modes.

4. Conclusion

We have demonstrated a great potential for efficient SRS laser acting in several organic
and organometallic crystals. These first observation of their large frequency shifts and
high steady-state first Stokes Raman gain coefficients, as well as self-FD and self-SFM
parametric effects let us hope that these novel materials may be used for a new generation
of Raman laser converters, where relatively short their nonlinear %(3)-interaction lengths
allow for very attractive miniaturization. The multiple Stokes and anti-Stokes generation in
Y3Al50i2 and Y2O3 nanocrystalline demonstrates good optical quality these novel solid-
state laser host materials. Nearly completion the paper will be in order to illustrate the

St

results of our experimental estimations of corresponding value of the gain gss'R
coefficients for several investigated crystalline materials. These data a given in Table 6.
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Table 1. Selected easily accessible inorganic SRS-active crystals with laser frequency
shift (©SRS) more than 900 cm'1 [2,3,5,8-11] °

Crystal

LiHCOOH2O

NaClO3

NaY(WO4)2

KH2PO4 (KDP)

KA1(SO4)212H2O

a-KY(WO4)2

a-KGd(WO4)2

a-KYb(WO4)2

a-KLu(WO4)2

CaCO3

Ca4Gd(BO3)3O

CaWO4

ZnWO4

Sr5(PO4)3F

SrWO4

Ba(NO3)2

BaWO4

P'-Gd2(MoO4)3

PbWO4

Space group
Notation

C2
9

v-P«a2,

r4-P2,3
C6

4h-IA2/a

D2d-IA22d

Th
6-Pa3

C6
2h-C2lc

C\h-C2lc

C2h-C2/c

C6
2h-C2lc

Dl-R3c

C\-Cm

C\h~IA2la
C\h-P2lc
C2

6h-P63/m

C6
Ah-IA2la

Th
6-Pa3

Cl-IA2la
Cl-Pbal

Cl-IA2la

Number

(No. 33)

(No. 198)

(No. 88)

(No. 122)

(No. 205)

(No. 15)

(No. 15)

(No. 15)

(No. 15)

(No. 167)

(No. 8)

(No. 88)

(No. 13)

(No. 176)

(No. 88)

(No. 205)

(No. 88)

(No. 32)

(No. 88)

Nonlinearity
(class)

x( 2 )+x( 3 )

(polar)

x ( 2 ) n ( 3 )

x(3)

x( 2 )+x( 3 )

x( 3 )

x ( 3 )

x ( 3 )

x ( 3 )

x ( 3 )

x ( 3 )

x( 2 )+x( 3 )

(polar)

x( 3 )

x ( 3 )

x ( 3 )

x ( 3 )

x ( 3 )

x ( 3 )

x( 2 )+x( 3 )

x( 3 )

Lagest SRS-
active
vibration
mode (cm"1)
«1372

«936

«914

«915

«989

905

901

«907

907

«1085

933

«908

907

950

922

«1047

924

960

901

1} Most of these crystals are already commercial materials as the laser host-crystals
(indicated by bold letters) and crystals for second harmonic generation (SHG), as well as
some of them are well known birefringent and scintillator crystals (see, e.g. [12-15]). The
diamond is also x(3)-active crystal with coSRS « 1333 cm"1 [16], but it is not easily
accessible.
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Table 2. SRS-active organic and organometallic crystals [17-21 ]

Crystal Space group
Notation Number

Nonlinearit
y
(class)

SRS-active
vibration
mode (cm'1)

Observed
nonlinear laser
effect!)

Organic
CuHaO,,1'
(sucrose, sugar)

C13H10O
(benzophenone)
C13H10O3
(salol)
a-C14H12O3)

(4-
methylbenzophen
one

CuHwQi4'
(benzil,
dibenzoyl)
C15H19N3O2

(AANP) S)

CI6H15N3O4

(MNBA) 6)

Cl-Pl,

D\h-Pbca

Cl-P2xlc

D*-Plx2\

Cl-Pna2,

C\-Cc

(No. 4)

(No. 19)

(No. 61)

(No. 14)

(No. 152)

(No. 33)

(No. 9)

x( 2 )+x( 3 )

(polar)

x( 2 )+x( 3 )

x( 3 )

x ( 3 )

x( 2 )+x( 3 J

x(2)+x(3>

(polar)
x( 2 )+x( 3 )

(polar)

«2960

3070,1650,
998, «103
«315O

3065

«1000

«1280

«1587

SHG, SRS,
self-FD,
self-SFM
SHG, SRS

SRS

SRS

SHG, SRS

SHG, SRS,
self-SFM
SHG, SRS,
self-FD,
self-SFM

Organometallic
C14H26N8O13Zr
(GuZN-III) *>
C13H22N5TlZr
(TIGuZN) 8)

£>2-C222,

C2
2-P2i

(No. 20)

(No. 4)

x( 2 )+x( 3 )

x( 2 )+x( 3 )

(polar)

«1008, «2940

«1005, «2950

SHG, SRS

SHG, SRS

1} Used abbreviations self-FD and self-SFM are the self-frequency doubling and the
self-sum-frequency mixing, correspondingly.

2) Strongly shifted Stokes and anti-Stokes picosecond generation (COSRS « 2915 cm'1) was
observed also in glassy sugar caramel. Both sugar materials, single crystals and glassy
caramel are easily accessible and very cheap. They were bought in pastry shops.

3) It is known also the metastable P -Ci 4 Hi 2 0 phase which has trigonal space group

C] - P 3 , (No.l44)or C] -P32 (No.145) [22].
4) In accordance with [23] space group could be also D * - P 3 2 2 1 (No. 154).
5) Full chemical name is the 2-adamantylamino-5-nitropyridine.
6) Full chemical name is the 4'-nitrobenzylidene-3-acetamino-4-methoxyaniline.
^ Full chemical name is the bis(guanidinium) zirconium bis(nitrilotriacetate) hydrate.
8) Full chemical name is the thallium quanidinium zirconium bis(nitrilotriacetate)
dehydrate [24]. Refined data on SRS and SHG will be published soon with Dr.
E.Haussilhl, who grew and characterized of this crystal.
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Table 3. Stimulated-emission (SE) channels of Nd3+ and Yb3+ lasants in nanocrystalline
ceramics fabricated by the vacuum sintering method [41]

Ceramics

Y2O3

YGdO3

Y3A15O12

Sc2O3

Lu2O3

Space
group 1J

Tl
rh
ol°

Tl
Tl

Ln3+ lasants and their SE channels
Nd i+

4F3/2-A./2 [39,44]

4F3/2-^4In/2 [45]

4F3/2-Ai/2 [34,39]
4F3/2^4I,3/2 [35]

4F3/2^4Iii/2 [46]

Yb 3 +

2F5/2->2F7/2 [47,48]

2F5/2^2F7/2 [49]

2F5/2-»2F7/2 [50]

X) Ce ramic grains are nano- and(or) micrometer-s ized single crystals.

Table 4. Some possible x(2)- and x(3)-effects in undoped nonlinear-laser crystals (see, e.g.
[57]).

Nonlinear effect!)

Second harmonic generation2)

Sum frequency mixing2'
Difference frequency mixing2'
Third harmonic generation2'

Sum frequency mixing2'

Stimulated Raman scattering3)

Two-photon absorption3)

Frequency
Incident
0),(0

0)1,0)2

0)1,0)2

0),G),0)

0)1,0)2,0)3

0)1

0),0)

Created
2<B

0)3 = CO i+0) 2

0)3= C0]-0)2

3(0

0)4 = 0)1+0)2+0)3

0)2

-

Nonlinear
susceptibility

x ( 2 )

x ( 2 )

x ( 2 )

x ( 2 )

y (3)

x ( 3 )

Note

UV and visible
generation
Up-conversion
IR generation
VUV
generation
VUV and UV
generation
©2 = 0)! ±0)SRS

coc = 2o)

' ' It is available also self-frequency conversion effects, namely self-FD, self-SRS, etc.
2) Phase matching required.
3) COSRS and o)c are the crystal frequencies,.
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Table 5. Parametric lasing effects of nonlinear (x<3)+x(2))-interaction in organic polar
crystals C15H19N3O2 and C16Hi5N3O4 under picosecond Nd3+:Y3Al5Oi2-laser excitation at
Xn = 1.06415 |im wavelength [17,19].

X(3) and x(2) generation component
Wavelength
(um)1*

Line Attribution

SRS-ctive
crystal vibration
mode (cm'1)

C15Hi9N3O2 crystal, 1SRS « 0.4 mm2) (Fig. 8,a)
0.53207

0.5710

0.6160

0.8363

0.9366

1.06415

1.2320 4)

1.4626 "'

SHG (1/2 Jin)

2Afl,A.Stl (Xself-SFM)

2Xfi,A.st2 (̂ self-SFM)

ASt 2 (XASt2)

ASt, (XAS,,)

Xn
St, (XStl)

St2 (XSt2)

2a>n

fflfl + («fl - CBSRS)

(Bfl + (fflfl - 2C0SRS)

(ofl + 2coSRS

C0fl + ©SRS

COf,

% 1 - O>SRS
(Bfl - 2 ( 0 S R S

-
«1280

«1280

«1280

«1280
-

«1280

«1280

C,6HI5N3O2 crystal, 1SRS«1 mm2 ) (Fig. 8,b)
0.53207
0.5811

0.6402

0.7126

0.7955

0.8334

0.9104

1.06415

1.2804 v

1.6069"'

SHG (l/2Afl)

2Xfi,A,stl (XSelf.SFM)

SHG (1/2XS.0
SXstl.Xsc (Xself-SFM)

2Xfl,Xst3 (Xself-SFM)

ASt2 (XASO)

SHG (1/2XSQ)

ASt, (XAai)

Xf,
St, (Xs,i)

St2 (Xsa)

2cofl

COf, + ((Of, - ©SRS)

2coSti = 2((of, - CQSRS)

(»fl - (OSRS) + ((Of, - 2coSRS)

fflfl + (fflfi-3 fflsRs)

(Of, + 2(OSRS

2o)St2 = 2((ofi-2o)sRs)

fflfl + O>SRS

fflfl

fflfl - <BSRS

<Bfl " 2COSRS

-
«1587

«1587

«1587

«1587

«1587

«1587
-
«1587

«1587

1) Measurement accuracy is ±0.0003 nm.
2) XSRS is the SRS-lasing length of crystalline element.
3) XSeif.sFM is the wavelength of the self-sum-frequency mixing generation in which was
involved the pumping with the fundamental (ofl frequency and arising in the crystal first or
econd Stokes lasing with © S t i = an - G>SRS o r ®sa = %i - 2<»SRS frequency.
4) Due to zero sensitivity of used Si-CCD sensor (see Fig. 3) the Stokes lasing at this
wavelength is not detectable.
5) Xseif.SFM is the wavelength of the self-sum-frequency mixing generation in which was
involved the pumping with the first and second Stokes lasing emissions with coStl = cofl -
fflSRS and (aSt2= <on - 2G>SRS frequency.
6) Due to strong absorption (optical transparent of this crystal covers the spectral range of
«0.51-»2.2 um, see also Fig. 8,b)it is possible, in general, weak third Stokes lasing at the
wavelength XSt3

 = 2.1570 um, but this self-sum-frequency mixing generation process is
unreal.



632

Table 6. The steady-state Raman gain coefficients of Raman spectroscopic properties of
organic, organometallic crystals and nanocrystalline laser host ceramics1*

Crystal First Stokes lasing characteristics

kn = 1.06415 urn

(urn)
SssR
(cm/GW)

Xn = 0.53207 urn

4s<,
(|nm)

rrSl>
&ssR

(cm/GW)

Raman spectroscopic
property

«»SRS

(cm"1)
AvR

(cm"1)
T2

(ps)

Organic
C12H22O11

C13H10O

C15H19N3O2

C16H15N3O4

-
1.1906

1.2320
1.2804

-
«2.8

> 1 5 "
>14"

0.6315
0.5619
0.6360
-
-

>6.5
>10
>10
-
-

«2960
998
3070

«1280
«1587

«7
«3.5
«6.5
« 2 4 3 )

1.5

«2
«3
»1.6
«0.44
«7

Organometallic
Ci4H26N8Oi3Zr 1.1920

1.5487
*3.8
«3.22>

0.5622
0.6307

>10
>9

«1008
«2940

«5
« 1 4 3 )

«2
«0.8

Ceramics
Y3A15O12

Y2O3

1.1078
1.1088

0.1 ±0.02
0.6±0.08

-
-

-
-

«370
«373

«5.7
«4

»1.9
«2.6

J) Some of listed data are unpublished.
2) For this case, using nanosecond Nd3 +:Y3Al5Oi2 laser ( ^ « 20 ns) and an avalanche Ge

detector we can estimated only the lower limiting value of the gss'R coefficient.
3) Inhomogeneously broadened line.
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CW ceramic lasers
under LD pumping
at 300 K

-
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Fig . l . Progress in the development of LD-pumped Y3Al5012:Nd3+ nanocrystalline

ceramic CW lasers emitting at wavelengths of two 4F3/2-Ai/2 and 4F3/2->4Iu/2 generating

channels at 300 K under end (longitudinal, open circles and triangles) and side (transverse,

filled circles and triangle) pumping geometries. The CW laser output power is given in

mW or W
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Fig. 3 The orientational SRS and RFWM spectrum of an orthorhombic Cnl^NgOnZr
(GuZN-III) crystal obtained in pumping geometry a(cc)a under picosecond excitation at
Xa = 0.53207 \im wavelength, as well as wavelength dependence the spectral sensitivity of
used analyzing CSMA system (in the frame) [20]. Stokes and anti-Stokes lines related to
SRS-active vibration modes of the crystal ©SRSI «1008 cm"1 and <»SRS2 * 2940 cm"1 are
indicated by horizontal scale lines. Other notations as in Fig. 2.
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Fig. 5 The orientational SRS and RFWM spectra of an orthorhombic Ci3Hi0O
(benzophenone) crystal obtained in pumping geometry &b(&e&c)ab under picosecond
excitation at (a) ^ , = 1.06415 |am and (b) Xa = 0.53207 urn wavelengths [18]. Stokes and
anti-Stokes lasing lines related to SRS-active vibration modes of the crystals ©SRSI = " 8
cm', COSRS2= 1650cm"1,(BSRS3 = 3070cm'1, and 0^4*103 cm"1 are indicated by horizontal
scale lines. Other notations as in Fig. 2.
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Fig. 6 Stokes and anti-Stokes lasing spectra of (a) a trigonal C]4H10O2 (benzil) and (b) a
monoclinic a-Ci4HI2O (4-methylbenzophenone) crystals obtained under picosecond
excitation at ^fl =1.06415 jxm wavelength [18]. Pumping geometry for C14Hi0O2 crystal
was ±b(*bs4))±b and the a-Ci4Hi20 crystal was random oriented. The SRS-active
vibration modes of these crystals are indicated by horizontal scale lines. Other notations as
in Fig. 2.
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C12H22O11 (sugar) crystal and (b) glassy sugar caramel obtained under picosecond
excitation at A^= 0.53207 urn wavelength [21]. The SRS-active vibration modes of these
organic materials are indicated by horizontal scale lines. Other notations as in Fig. 2.
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Fig. 8 Parametric Raman lasing spectra of (a) orthorhombic C15H19N3O2 (AANP) and
(b) monoclinic C16Hi5N3O4 (MNBA) crystals obtained in pumping geometry b(aa)b for
AANP and b(&a&a)b for MNBA under picosecond excitation at A,n =1.06415 \xm
wavelength [17,19]. The arrows indicate the spectral positions of the first and second
Stokes lines non-detectable by the used Si-CCD sensor (see Fig. 3). Dashed lines are
showed the fragments of nonpolarized transmission spectra of 0.4- and »l-mm thick
samples for AANP and MNBA, respectively. The SRS-active vibration modes of these
strongly nonlinear crystal are indicated by horizontal scale lines. Other notations as in Fig.
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19. STRANGE PROPERTIES OF QUANTUM SYSTEMS
AND POSSIBLE INTERPRETATIONS

GIOVANNI COSTA
Dipartimento di Fisica "G.Galilei"
Universitd di Padova
Istituto Nazionale di Fisica Nucleare, Sezione di Padova
Via F.Marzolo, 8, 35131 Padova, Italy

Abstract. Quantum Mechanics (QM) applies successfully to all pheno-
mena at the atomic, nuclear and subnuclear levels, and all experiments
carried out so far have confirmed the validity of the theory. However, various
conceptual difficulties are still present and different interpretations have
been proposed. In the orthodox formulation, a central role is played by the
interaction between the physical system and the observer, that is between
the microworld and the macroscopic measuring instruments. In principle,
there are two different possibilities: either the domains of validity of QM
and classical physics are completely separated, or the properties of the
macroscopic objects are reducible to those of their quantum constituents.
In the first case, one does not know where to put the boundary between the
two domains, while in the second case there is the problem of reconciling
the probabilistic character of QM with the deterministic laws of classical
physics. After a brief introduction recalling the main principles of QM, the
above and related problems will be discussed and different interpretations
will be examined.

1. Introduction

The great majority of physicists who apply succesfully Quantum Mecha-
nics (QM) to different sectors of physics (ranging from atomic and con-
densed matter physics to nuclear and subnuclear physics) adopt, more or
less explicitly, the so-called Copenhagen interpretation. This interpretation
is based on the idea that the indeterminacy in the states of the physical
systems is an essential feature of quantum phenomena. In fact, this prin-
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ciple is the starting point of the present formulation which is the result
of the work of many physicists: Niels Bohr, Erwin Schrodinger, Werner
Heisenberg, Louis de Broglie, Max Born, Wolfgang Pauli and others.

In 1926 wave mechanics was proposed by Schrodinger in terms of wave-
packet interpretation. At the same time, Heisenberg adopted a more formal
approach based on matrix theory. Born gave the first probabilistic inter-
pretation of the wave function. Probability has a fundamental character: it
is not due to incomplete knowledge of a system, but it is an intrinsic prop-
erty of QM. In 1927 Heisenberg introduced the uncertainty principle and
Bohr formulated the complementarity principle; finally Pauli understood
that both principles were two sides of the same description.

In his book " Mathematical foundation of quantum mechanics", pub-
lished in German in 1932 [1], von Neumann presented an axiomatic and
complete treatment of QM. The physical observables are described by self-
adjoint operators, acting on the vectors in a Hilbert space which represent
the physical states of the system. The states evolve in time according to a
differential equation, but the act of measurement produces a sudden jump
in the system and the reduction to one of the relevant eigenstates.

All the predictions of QM have been tested and confirmed, but discus-
sions about alternative interpretations are going on, in particular on the
implications of the Einstein, Podolski and Rosen (EPR) theorem and on
the interaction between a quantum system and the instrument employed
by the observer who performs a measurement on the system.

In the following sections, after a brief recollection of the main principles
of QM, we discuss the properties of the entangled states and the implica-
tions of the EPR theorem. After mentioning the Bohm's theory with hidden
variables, we examine the Bell's inequality and its experimental tests. As
an interesting application, we consider the possibility of teleportation. In
the last section, we discuss the measurement problem and some of the para-
doxes that one has to face when extending the superposition principle to
macroscopic systems. Finally, in connection with the problem of reconciling
the laws of QM with the properties of macroscopic systems, we indicate two
different approaches, which are based on "spontaneous localization" and on
"decoherent histories".

2. Resume1 of the main ingredients of Quantum Mechanics

The formulation of quantum mechanics is based on the axioms which are
briefly summarized in the following (for more details see e.g. [2]).
- The states of a physical system S are represented by (normalized) vectors
in a Hilbert space H, which , following the Dirac notation, will be denoted
by |* >.
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- The physical observables A,B,... are represented by self-adjoint operators
A, B ... acting on the Hilbert space.

- The only possible results of the measurement of the observables A, B,..
are the eigenvalues a^bj ,.. of the operators A,B,...

- The expectation value of the observable A in the generic state |\fr > is
given by < <&\A\ty > .

- The time evolution of the state |\& > is determined by a linear differential
equation

ih^mt) >= H\*(t) > (l)

With the initial condition |\I>(£ = 0) >= |^o >, it can be written as

|tf(t)>=tf(O,t)|tto> (2)

where

U(0,t)=exp(-iHt/h) (3)

is the unitary operator of time evolution.

- If a measurement of A leads to the eigenvalue aj, then the state |*I> > is
changed suddenly (quantum jump) into the eigenstate |<Zj >. This is the
famous postulate of the wave-packet reduction.

- The maximal information on the states |^ > of a system 5 is determined
by measuring a complete set of commuting observables A,B... and it is
specified by a complete and orthonormal set of eigenvectors

|tf >=|oi,6,...> (4)

where ai,bj... are the eigenvalues of the operators A,B, ...
For the sake of simplicity, we assume a discrete spectrum for the eigenvalues,
but the generalization to a continuous spectrum can be carried out without
difficulties.

- We note that, while the state \^ > evolves in a deterministic way, only
probabilities can be assigned to the results of a measurement:

P(aibj,..) = \<ai,bj\<2>\2 (5)

- Since the time-evolution equation is linear, if |^i(f) > and |^2W > are
two different solutions, also the linear combination
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:*) >> (6)

with |p|2 + \q\2 = 1, is a solution. This is the famous superposition principle,
whose consequences lead to many speculations.

B

Figure 1. Sketch of the two-slit experiment.

It is instructive to consider explicitly a typical case of superposition,
namely the classical example of the two-slit experiment, quantum version
of the experiment performed by Thomas Young at the end of 18th century,
which indicated the ondulatory nature of light.
The source P (see Fig. 1) emits electrons, with very low intensity: only
one electron at a time passes through the two-slit screen S\ and hits a
photographic plate on the screen $2- If both slits are open, after some time,
an interference pattern appears on 52. The particle (electron) behaves as
a corpuscle when it is emitted and hits the screen 52, but it behaves as a
wave when it passes through S\ . It is meaningless to ask through which slit
the electron has passed; in fact, the interference pattern disappears if one
tries to answer this question experimentally. According to QM, the state of
the electron is the superposition of two distinct states
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and it is their interference which explains the strange behavior of the elec-
tron.

This example characterizes very nicely the content of the principle. On
the other hand, if this principle is applied to macroscopic objects, it leads
to strange paradoxes. According to Richard Feynman, this experiment is
"a phenomenon which is impossible, absolutely impossible, to explain in
any classical way, and which has in it the heart of quantum mechanincs".
(quoted in [3] ).

Another important point which we would like to recall is the distinction
between pure and mixed states. A pure state is a coherent superposition of
states, for example

|*>=5>K> (8)
i

where |CJ|2 gives the probability that, by measuring A, one finds the system
in the eigenstate |aj > . The expectation value of the observable A in the
state | * > is

<A>='£\ci\
3ai (9)

i

In statistical terms, a pure state corresponds to a pure ensemble in
which all the systems are in the same state. If we have an ensemble with
different states \^i >, each of which has a given probability Pi , one speaks
of mixed states or mixture. In this case, the expectation value is

> (10)
i

with Yji^i = I- It is convenient to introduce the density matrix

i

which satisfies the following properties:

p = p+, Trp = l (12)

and

< A >= Tr{pA) (13)

We note that for a pure state | ^ >, p reduces to
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p=\y >< * | (14)

from which one gets immediately:

p2 = p, Trp2 = l (15)

Instead, for a mixed state, one has:

i

and

For the sake of illustration, we apply the above formalism to the case
of spin-^ states, which we shall employ in the next section.
Let us consider a spin- \ particle: the three spin components are described
by the operators

where

Si = \n a (is)

(19)

Only one component can be diagonalized. With the usual choice for the
Pauli matrices

= ( 1 0 ) a2={i o) a* = { 0 - 1 J (20)

the two eigenstates corresponding to the eigenvalues + 5 , - 5 along the 3rd

(z) axis are represented by the two-component vectors

One can easily check that the eigenstates with eigenvalues + 5 , - 5 along
the 1st (x) axis are:

(22)
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(23)

As an application, let us consider the most general density matrix for
the spin-i states:

(l + ba) (24)

where b is a three-vector and a = (cxi, 02, CT3). One can immediately check
that the following relations hold

Trp=l, TrP
2=l-{\ + b% (25)

where 6 = |b|. Moreover, taking into account the properties of the Pauli
matrices:

< a >= Tr{pa) = b, (26)

so that 6 represents the degree of polarization along the direction of b .
The case 6 = 0 corresponds to an unpolarized beam, while the case 6 = 1
corresponds to a complete polarization.

3. Entangled states and the EPR argument

Albert Einstein was not satisfied with the probabilistic interpretation of
QM. His ideas can be expressed in the following way: each physical variable
has a definite value in each state of a physical system and the indetermina-
tion is only due to our approximate knowledge of the states . The statistical
description does not provide a complete description (ignorance interpreta-
tion). Einstein assumed that all physical systems possess intrinsic and well
defined properties even when they are not subject to measurement. Then
he formulated the following requisites for a physical theory:

a) completeness: every element of the physical reality has a counterpart in
the theory;

b) physical reality: if - without disturbing a system - one can predict with
certainty the value of a physical quantity, then there exists an element of
physical reality corresponding to this quantity;

c) locality: two elements of the physical reality separated by a spatial dis-
tance cannot have an instantaneous influence on each other.

These ideas gave rise to a famous "gedanken" experiment which was
proposed by Einstein, Podolsky and Rosen (EPR) [4]. In its original form,
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it was formulated in terms of positions and linear momenta, but it can be
expressed (as shown by David Bohm) in an equivalent form in terms of
angular momenta (EPRB version) [5].

Let us suppose that a spin-0 particle decays at rest into two spin-^
particles. The angular part of the state can be described in terms of the
eigenstates of Sz.

The total angular momentum is zero (S = 0, Sz = 0), while the two particles
have no definite values of Sz.

The state is not factorizable: it is a pure state which is entangled. This
is the general situation occurring for a system with more than one particle:
the system has well-defined quantum states, while the individual particle
states are not defined. This situation was pointed out by Schrodinger who
wrote in 1935: "the whole is in a definite state, the parts taken individually
are not". [6]

When particles 1 and 2 are far apart, a measurement of Sz (1) is per-
formed: there is equal probability for either of the two values : + 5 , - 5 ;
correspondingly, Sz(2) takes the opposite value. Suppose particle 1 is found
in |o:i >, then the state given in (27) collapses into

I* >—> |«i > |/?2 > (28)

After the measurement, the total angular momentum is no longer defined.
In fact, one has:

nr
) >} (29)

where the kets on the r.h.s of the equation represent the eigenstates \S,SZ >.
Moreover, for rotational invariance, the initial state |* > can be expressed
also as:

I* >= \j\{M > \& > - I f l > K >} (30)

where the spin 5 is now quantized along, say, the x-axis. If we measure Sx(l)
and find e.g. + 5, particle 2 will be in the state \/3'2 > with Sx(2) = —\ •

What can we conclude? The spin component Sz(2) — —\ is an element
of reality, since it can be predicted with certainty. Assuming that there
are no actions-at-a-distance effects, such element of reality must exist in-
dependently of the measurement on particle 1. Then we should attribute a
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physical reality also to the value Sx(2) = —5. On the other hand, accord-
ing to the rules of QM, the eigenvalues of 5a; and Sz cannot be determined
simultaneously, since Sx and Sz are non- commuting observables.

In conclusion, either QM is not complete, since it is not able to describe
all the elements of the physical reality, or the locality assumption is violated.

In 1952 there was an interesting development: David Bohm [7] succeeded
in building a theory with hidden variables (the so-called pilot-wave theory),
which is complete, in the sense that each state can be defined exactly in
terms of a set of variables A, even if they are not accessible to measure-
ment. In this way, he was able to produce a deterministic theory which
gives results equivalent to those of QM. Each component of the system has
a specific value for the position x and the linear momentum p, so that there
are trajectories as in classical physics. The possible trajectories are consis-
tent with the probability distributions given by the Schrodinger function tp
(x). This requires the introduction of a quanto-mechanical potential, which
has to be related to ^ (x). In a way, the motion of a particle is guided by
a wave. (Some more details can be found in [8]).

The weak point in Bohm's theory is that it is non-local and contextual:
the hidden variables cannot be assigned independently of the context, but
they depend also on the environment. In fact, the trajectory of a particle can
be changed instantaneously by the action performed in a far-away region.
On the other hand, it is interesting that a deterministic theory can produce
the same results of QM. Moreover, Bohm's theory is built in such a way
as to reproduce all the results of QM. But, since the hidden variables are
not accessible, the theory cannot be tested, i.e. it cannot be falsified. Then,
according to the requirement of the epistemologist Karl Popper, it would
not be considered a physical theory!

At the end, the question remains: is it possible to elaborate a model
along these lines, in agreement with the results of QM, but which satisfies
both determinism and locality?

This question was attacked by John Bell in 1963. He tried to investigate
whether it is possible to take into account the quantum correlations in a
local scheme. He did not succeed in his program: he proved that no -either
deterministic or probabilistic- theory which is local can reproduce all the
correlations predicted by QM. His research gave rise to an inequality which
is able to test, at the experimental level, whether the quantum correlations
are satisfied or QM has to be modified taking into account the requirement
of locality.
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4. Bell's inequality

Before discussing the Bell's inequality [9], we reconsider the EPRB gedanken
experiment, formulated in terms of linear polarization states. We define by
\x > and \y > the states of a photon with linear polarization along the
x-axis and along the y-axis, respectively.

The EPRB experiment can be realized with a source of two photons
emitted in opposite directions: if the source is in a state of zero angular
momentum and positive parity, the two photons will be in the following
state:

= V \^Xl

Then, a measurement of the polarization of one photon, (e.g. x\), fixes the
other photon to have the same polarization (#2).
In the case of negative parity, the two photons will be in the state

I*' >= \{\xi > \V2 > +\Vi > 1*2 >} (32)

but, with obvious modifications, one arrives at the analogous conclusion.
The state given in (31) is invariant under rotation of the polarization axes
in the x-y plane. In fact, making the rotation:

x' = x cos 9 + y sin 6
(33)

y' = — x sinO + y cosO

one gets

I* >= yfliWi > 14 > +\y[ > 2/2 >} (34)

Suppose that in a specific EPRB experiment two photons are emitted
in two opposite directions along the z-axis and two polarizers measure their
linear polarization along the vectors a and b in the x-y plane. The result
of each measurement will be indicated by either (+) or (—) according to
the case in which the photon passes or does not pass the test. Suppose that
our description is not complete and that, at least in principle, the states of
the system can be completely specified by a set of hidden variables A. We
define by

±) (35)
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the probability that a single photon (in the state defined by A) passes (+) or
does not pass (—) the test, i.e. that its polarization is along a, or orthogonal
to a. In the case of the two photons, we define by

PA(a,b;±,±) (36)

the probability of obtaining (±) for the polarization of one photon with
respect to a and of the other photon with respect to b.
The locality condition can be expressed as

PA(a,b;±,±) = PA(a;±) x PA(b;±) (37)

i.e. it is based on the assumption that the measurements on the two photons
are independent and exert no influence on each other. We note that these
arguments apply both to probabilistic and deterministic theories; in the
latter case, all PA have to be taken either equal to zero or to 1.

Then we define the correlation function

,b;H-,+) + P A ( a , b ; - , - ) - P A ( a , b ; + , - ) - P A ( a , b : - , + )
(38)

Making use of the locality condition and of the two relations

PA(a;+)+PA(a;-) = l (39)

- 1 < PA(a; +) - PA(a; - ) < +1 (40)

it is easy to prove that the following relation holds

|£A(a,b) - £A(a,d)| + \Ex(e,b) + Exc,d)\ < 2 (41)

Assuming the distribution function p(A) for the A-variables, with normal-
ization J d\p(X) = 1, we get

P(a,b;±,±) = |dAp(A)PA(a,b;±,±) (42)

a,b). (43)

Finally one obtains the Bell's inequality

S = |£(a,b) - £(a,d)| + \E(c,b) + E(c,d)\ < 2 (44)

Denoting by |'ira(+) > a nd \^a(—) > the photon states with polariza-
tion along a and orthogonal to a , respectively, one gets:
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and it is immediate to show that in QM

(45)

,b : - , - ) =

•t, b; - , + ) =

= cos 2(a.b)

1 2-cos 2

1 • 2
- s i n

(a.b)

(a.b)

(46)

(47)

(48)

so that the QM prediction is

We stress the fact that Bell's inequality is based on the locality require-
ment, but it applies both to deterministic or probabilistic theories.
There are specific orientations of the polarizers for which the QM prediction
violate the Bell's inequality. In fact, if one chooses the polarization vectors
a,b,c,d as indicated in Fig. 2, one gets:

SQM = 2V2

which is beyond the allowed range.

d

(49)

Figure 2. Orientations of the polarizers yielding SQM = 2\/2.
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5. Experimental tests

An interesting feature is that the Bell's inequality can be tested by real ex-
periments. Several experiments of increasing accuracy have been performed;
here we refer to the experiments by Aspect et al. [10], in which an optical
version of the EPRB experiment has been realized.

a

Figure 3. Scheme of the EPRB experiment with two photons 71 and 72 analized
by linear polarizers with orientations a and b.

As indicated in Fig. 3, a pair of photons 71 and 72 is analysed by two
linear polarizers with orientations a and b, and by photomultipliers; the
coincidence rate is monitored. In the experiment, the two photon excitation
cascade in 20Ca is employed. The atomic configuration is the following:

(l522SV3sV)452 = (Ar)As2

Prom the excited (Ar)4p2 the following transitions occur:

(Ar)4p2

(50)

I
(51)

Two correlated photons (one at each step) are emitted in opposite directions
with the same polarization.

The experiment reproduces the configuration of Fig. 2, which corre-
sponds to SQM = 2-\/2- Taking into account the experimental set up, the
effective theoretical value is reduced to Sth = 2.70±0.05. The experimental
value is Sexp = 2.697 ± 0.015, while Bell's inequality requires S < 2. The
results are then in agreement with QM.

These experiments have been performed with static setups, i.e. with
polarizers which were fixed during the run. One may question the validity
of the locality hypothesis, since some time has elapsed, in which some in-
formation might have exchanged between the two polarizers. Then it was
proposed to modify the settings of the experiment during the flight of the
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two photons. Such a timing experiment would certainly prevents any faster-
than-light influence.

In 1982 an experiment of this type was performed by Aspect et al.[ll].
The previous setting has been modified according to the scheme indicated
in Fig.4 . Each polarizer has been replaced by a setup involving a switching
device followed by two polarizers in two different orientations:

Figure 4. Scheme of the EPRB experiment modified with the inclusion of two
switching devices D\ and D%.

a, a' on one side, and b, b ' on the other side. Such an optical switch is
able to rapidly redirect the incident light from one polarizer to the other.
If the two switches work at random and are uncorrelated, it is possible to
make use of a modified Bell's inequality, which requires : — 1 < 5 < 0.
The experimental value is Sexp = 0.101 ± 0.020, which clearly violates the
condition S < 0 .

These results indicate that Nature follows QM. However, lot of discus-
sions are still going on because, from the epistemological point of view, the
interpretation is not satisfactory. The formalism of QM tells exactly what
are the predictions, but there is a subtle element of non-locality which is
not accepted by all the members of the physical community.
It is important to understand whether non-locality can be interpreted as an
instantaneous influence of a system on a distant one. Does it mean that we
can transfer information faster than the speed of light? This would violate
the Einstein's principle of relativity.

6. An application of the EPR theorem

An interesting application of the EPR theorem is teleportation [12, 13,
14]. The dream is to transfer instantaneously something from one place to
another distant location. Suppose Alice has a photon in a given state
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|*i >= o|xi > +%i > (52)

with \a\2 + \b\2 = 1, and she wants to transfer to Bob a photon in the same
state, but not by sending it directly to him, since the communication may
destroy the quantum coherence.

Bennet et al.[12] suggested that it is possible to transfer the quantum
state of a particle to another particle (quantum teleportation) making use
of the projection postulate.

To get teleportation, the following points have to be realized:

a) A pair of particles (photons 2 and 3) is initially shared by Alice and Bob
in the entangled state

1*23 >= V ^ N > life > "lift > |*3 >} (53)

This state contains no information on the individual particles 2 and 3; it
only indicates that they have opposite polarizations. As we know from the
EPR experiment, as soon as a measurement on one particle projects it in a
given state, say \x >, the other is determined to be in \y >, and viceversa.

b) Now Alice has photons 1 and 2, but particle 2 is entangled with 3, which
is in the hands of Bob. Next particles 1 and 2 have to be entangled.

Suppose that particles 1 and 2 become entangled in the state:

l*r2 >= y ^(l^i > in > -\vi > 1*2 >} (54)

QM predicts that when particles 1 and 2 are projected into |*^2 >, particles
3 is instantaneously projected into the initial state of particle 1. In fact, in
the entangled state, whatever the state of particle 1 is, particle 2 must be in
the opposite (orthogonal) state. But since particles 2 and 3 are orthogonal
to each other, particle 3 must be in the same state of 1.
The final state of particle 3 is then:

|*3 >= a\x3 > + % 3 > (55)

which coincides with the state in eq.(52). The transfer of quantum infor-
mation from particle 1 to 3 can occur over arbitrary distances.

In the above discussion, we have assumed that particles 1 and 2 are in
the entagled state *̂ "2 >• However, there are four different entangled states
in which a two-particle state can be decomposed; the other three are the
following:
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1*12 >= y\i\xi > \v* > +\vi > N >} (56)

1*12 >= V \{\XI > \X2 > +\Vl > \V2 >} (57)

l*« >= y | { k i > \x2 > -Ivi > \V2 >} (58)

The projection of an arbitrary state of two particles into the basis of the
four states is called a Bell-state measurement. Explicitly, the combination
of the two states given in eqs.(52) and (53) can be decomposed as follows:

|tfj3 >= i{|$f2 > (a\y3 > -b\x3 >)

> (a\y3 > +b\x3 >) - |#+2 > (a\xs > -b\y3 >) (59)

- | * r 2 > (o|x3 > +b\V3 >)}

The above relations show that particle 1 can be found in each of the four
states given in eqs. (55) and (56)-(58) with equal probability of 25%.
Therefore, in order that Bob selects the right state, he needs some extra
information; via a classical communication channel Alice has to transmit
to him the information about the entangled state. First of all, she has
to detect in which of the four states the two photon 1 and 2 have gone.
This is done by means of appropriate coincidence after a beam splitter.
According to what she finds, she sends the appropriate instruction to Bob.
In conclusion, Bob gets a particle in the identical state of the one in Alice's
hands; however, the quantum teleportation is not sufficient: he needs also
a physical messanger taking the extra information.

The results so far obtained are in agreement with the prediction of QM
and, moreover, we can conclude by saying that there is no contradiction
with causality, since it is not possible to employ non-local effects by sending
signals at superluminal speed. The non-local effects of QM appear to coexist
with relativity.

7. Macroscopic quantum superposition and the measurement pro-
blem

In the standard interpretation, microsystems obey QM while macrosystems
(specifically measuring instruments) obey the laws of classical physics. How-
ever, macrosystems are composed by elementary constituents of matter, and
their behaviour is described in terms of fundamental interactions which are
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ruled by QM. For a more general discussion see [15, 16]. But if QM is ap-
plied to macrosystems, one can have entanglement for macroscopic states
and paradoxes like the famous story of the Schrodinger's cat [6]. In his
"gedanken" experiment, a cat, closed in a box, is put in a pure state, which
is an even superposition of life and death, through the correlation with a
decaying radioactive atom. It is only the observer, when he opens the box,
that puts the cat either in a state of a living creature or in a state of a dead
one.

The measurement, i.e. the active presence of an observer, is a requisite
of the QM postulates. But what is the mechanism that transforms suddenly
a pure state into a statistical mixture? Suppose that a quantum system 5
is in a state 1*0 > and we want to measure the observable A. We know
from eq. (8) that |*o > can be decomposed into the eigenstates |OJ >:

(60)

The interaction of 5 with the instrument I\ (in the state |#i >) produces
the transition

|*o > |*i >—> \<k > | $ H > (61)

where |*ii > stands for the state of the instrument with its "pointer"
indicating the value aj. However, if we assume that the system S + I\ is
governed by a linear evolution equation we should have:

How can we determine the specific state |$ij >? We need a second instru-
ment /2, and we should get:

|*o > |$i > 1*2 >= X > | O i > |*!i > |$a > (63)
i

This procedure can be repeated, and we would obtain an infinite chain (von
Neumann's chain). Where can one stop? Can one put a clear separation
between a coherent superposition of states and a statistical mixture? We
limit ourselves here to mention a couple of hypothetical solutions.

According to Eugene P. Wigner [17], the breaking of the chain occurs
at the moment of the conscient perception of the observer (since the con-
sciousness is considered not to be reducible to physical processes).

The many-world interpretation was proposed by Hugh Everett III [18]:
all possibilities in the superposition of different states are realized at the
same time in different separated branches of the Universe.
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These interpretations are rather speculative, and do not provide a satis-
factory physical description. The role of the observer appears to be funda-
mental in QM. However, when QM is applied to astrophysics and cosmol-
ogy, what is the meaning of the observer? Is it possible a quantum theory
without observer? One would like to derive the deterministic laws that
approximately govern the domain of familiar experience from the proba-
bilistic properties of QM; how the causal connection among classical events
can emerge from the fundamental uncertainty of QM?
Two different approaches have been proposed:

1) Spontaneous localization [19, 20].
This approach combines Schrodinger evolution with spontaneous ran-

dom collapses. It is based on the postulate that all elementary constituents
of matter obey the linear dynamics of the Schrodinger equation, but they
are subjected also to spontaneous random (non-linear) processes of space
localization.

Let us consider the case of a single particle. At a given instant t = to,
the wave funtion ij) (x) is localized around ro-

V(r) —> F(T - ro) ~ exp{-(r - ro)
2/2d2} (64)

For instance, in the case of a particle with magnetic moment passing through
a Stern-Gerlach apparatus, one gets the superposition

+Mr)h (65)

where tpA and ipB represent the convergence toward two different regions
A and B. The stocastic localization occurs either in A or in B, and then it
makes a choice between ipA and tps-

Let us consider the measurement of this system by means of an instru-
ment: its pointer can indicate that the particle is in one of the two regions
A and B. The "state" of the instrument is described by

|$(xi,x2)x3...) > = ^ / - { | $ A ( X I , X 2 , X 3 . . . . ) > +|$B(x1,X2,x3...) >},

(66)
where X{ stands for the position of the i-th particle inside the pointer. It
contains a huge number of particles (of the order of the Avogadro number
~ 6.6 x 1023) but the random localization of Xj inside one of the two regions
A and B selects one of the two states §A and $£.
Even if the probability that a single particle is localized is extremely small,
it is practically certain that several particles (out of 1026) become localized
in a microsecond. According to the authors of [19], taking e.g. d = 10~6 cm
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and A = 10 16 sec l (frequency of localization), about 107 particle will be
localized in a second. In conclusion, it appears that the particle localization
makes the macroscopic instrument jump into a given position.

2) Decoherent histories [21, 22, 23].
A "quantum history h" is defined by the time evolution of a system

from the initial state |^o > a* * = 0 by applying to it the n-step projection
operator

E(h) = P(an)exp{-iH(t - tn)/h}....P(a,i)exp{-iH(ti - to)h} (67)

where P{a{) is the projection operator relative to the eigenstate \ai > of A.
We assume that at the time t = U the system is in \cn >, but there is no
observer performing a measurement.

Different histories have different intermediate steps. To each of them
one can assign a probability:

Ph =< E(h)Vo\E(h)yo > (68)

However, for a given set of histories, it can happen that the sum of the
relative probabilities exeeds 1; this means that there is some inconsistency.
To get consistent histories, one has to limit one self to a family of histories
which are decoherent.

For example, if the system is a particle of spin ^, the two histories
corresponding to the two possibilities Sz = +^ and Sz = — ̂  at t = t{
are in the same family, but they are incompatible with the two histories
relative to Sx = +\ and Sx — — 5, because Sz and Sx do not commute.

Gell-Mann defines a decoherence function

i) = < yg\-<£h > (69)

wich satisfies

D(h org, horg) = D(h, h) + D(g, g) + D{h, g) + D(g, h) (70)

The last two terms (interference terms), which can be re-written as

D(h, g) + D(g, h) = 2Re{D(h, g)} (71)

have no definite sign. Only if the sum in eq. (71) vanishes, h and g become
consistent histories.

According to Gell-Mann, in the case of a macroscopic system, one has
to consider coarse-grained histories which contain a very large number of
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fine-grained histories. In the total sum, the interference terms cancel among
themselves, and the decoherence function becomes a true probability which
gets a value very close to 1.

These two approaches that we have briefly considered (detailed discus-
sions can be found in the quoted references) deserve attention since they
are rather promising. On the other hand, they indicate that we have not
yet reached a unique and definite formulation.

In conclusion, we may ask: do we really understand QM? We know how
to employ the QM formalism and, up to now, all the predictions have been
confirmed and no limits appeared for the validity of the theory. On the
other hand, some of its features are still argument of discussion. At the end
of the 19*ft century, Heinrich Hertz remarked that "sometimes the equations
of physics are more intelligent than the person who invented them" [24].
Maybe this remark could be applied also to the equations of QM.
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20. MODULATION SPECTROSCOPY REVISITED

GEORGE J. GOLDSMITH
Boston College
Chestnut Hill,, MA 02467

1. Introduction

Modulation Spectroscopy is most widely applied to semiconductors although it has also been
used for studies of metals and organic compounds. It involves a straightforward technique in which the
derivative of the wavelength dependence of reflectance (or transmittance) or, the dependence under the
influence of a periodic perturbation of the dielectric function, by stress, photo excitation, electric field
excitation, magnetic field excitation, or thermal excitation. Under these conditions, in regions where
optical transitions have a high probability of taking place, e.g., where appropriate pairs of singularities
exist exist, specific optical transitions in the band structure can be isolated from the gross spectrum
through the application of lock-in techniques. Electro modulation and photo modulation are
particularly useful since these perturbations disrupt the translational symmetry of the semiconductor
which uncover details of the band structure and energy distribution. Wavelength , and stress (piezo)
modulation do not disturb the intrinsic symmetry of the sample. Illustrated in Fig. 1 is a comparison
between the total reflection spectrum and the extracted photomodulation reflection spectrum in the
vicinity of a singularity near the band edge of GaAs .

Early publications on the application of modulation techniques first began to appear in the mid to late
1960's notably by B. O. Seraphin, and M. Cardona (1).

Here we shall review the background and some of the essentials of the technique, and then present some
of the experimental details of electromodulation.

PR -SODC 109K 0428 Mo169

Fig. 1. Comparison of photomodulation and gross reflection spectra at 109K of gallium arsenide in the vicinity of
the fundamental band gap.
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2. The Dielectric Function and Reflectivity

We shall examine the relationship the between the measurable parameters, reflectance and absorption,
and the dielectric function, and how modulation of the dielectric function affects band-to-band
transitions in semiconductors.
When a beam of photons is incident on a substance it is both attenuated and reflected. The intensity of

the attenuated beam is I = loC where / is the intensity of the transmitted light, 70, the
incident intensity , a the absorption coefficient and x, the range in the medium. From the Fresnel

n-\
relations, the reflectivity is R — where ft is the frequency dependent complex index of

n+\
refraction. The region of interest in these studies is usually in the energy range near and above the
minimum energy gap. As a consequence of the strong absorption in that range, most studies employ
reflection methods Reflectivity at normal incidence, in terms of the refractive index, n, and the
extinction coefficient, k , :is:

(tt-\f+K2

R

The extinction coefficient is related to the absorption coefficient by the relation,

_ ca
K — , where G> is the frequency.

2nco

() (/27tO))
The reflectivity can thus be written, R = ~ ~J (2)

The quantities, n and k are therefore related to the dielectric constant, e:

n - K = S. (3)

2.1 THE KRAMERS-KRONIG RELATIONS

If we define a complex dielectric constant, £ = Yl , the real and imaginary parts, er and Ei have an
interdependent relationship known as the Kramers-Kronig relation.
The real part of the dielectric constant may be written as:
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n *na>"--a>" (4)

P is the Cauchy principal value of the integral:

The absorption coefficient, (XyflCOJ, or OC(E), where E is the energy of the photon Eq. (5) can

be written in terms of the extinction coefficient, K, and the real part of the refractive index, n:

and since K\tL ) = ~ ~ , in terms of the absorption coefficient becomes
AnE

2nL J^EfL-El (6>

On integration, this becomes

ch »°>, 1 da(E') I r ,
nil v *-([]£' ( 7 )

The absorption coefficient, CCyJli J, depends on the joint density of states and becomes

large where V , [E\ (k) -Ey (k)] = 0

Ec and Ev are, respectively, the conduction band and valence band energies at that point in the Brillouin
zone.. These sites are called critical points or van Hove singularities. In three-dimensional space there
are four kinds of van Hove singularities (fig. 2.1) (3)
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Fig. 2.1 Critical Points for which VkE(k) = 0

J(E)

' E

Fig. 2.2 Optical Density of states for the four main types of critical points

Given that a(E') is dependent on the joint density of states, in the vicinity of critical points the
da(E')

logarithmic term in Eq (8) is large and the derivative term,— * becomes dominant. Thus,
dE

because of the joint density of states functional dependence on energy for each of the four van Hove
da(E')

singularities (Fig. 2.2) (3), is large and positive above EQ and below Ej and large and
dE

negative above E2 below E3. Therefore n (see Eq 8) will go through a maximum at Eo and Et and a
minimum at E2 and E3. Further, it can be shown that direct transitions between parabolic bands across

da(E)
an energy gap, Eg yield a value of a(E) proportional to (E—Eg) . The derivative,

dE
, IS

proportional to (E—Eg)'
m which exhibits a singularity at Eg. For forbidden transitions a(£) is

da(E)
proportional to (£—Eg)m and for indirect transitions (E) is proportional to (E—Egf, and dE
goes gradually to zero at the critical point.
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Thus the refractive index, n, exhibits a structure whenever the derivative of the absorption coefficient
with respect to © goes through a maximum or a minimum. This behavior is superimposed on the gross
absorption spectrum (or reflection spectrum). If now a periodic perturbation such as an electric field is
applied, it produces a corresponding variation in the refractive index (Eq. 7):

4
A / r c , , ch °f Aa(E',E)E ,_,,

so that the change is: An(E,E ) = J \ — ClL . (9)

n o E -E

The band structure of silicon at room temperature, and two electromodulation spectra, one at 88K and
the other at 294K are shown in Fig. 3. They correspond to a transition along the F point in the band
structure between a pair if singularities at r25m and what appears to be F^. They are separated by
-3.38 eV, at room temperature, The minima in the Fig. 3 spectra locate a band gap wh;ch, at room
temperature, corresponds to the separation of the singularities.
Hamakawa, et. al. (4) have calculated the line shape of the dielectric constant, Ei and 62 for the four
types of critical points with and without electric field (fig. 4). The quantities, An and Act would show
the same functional dependence.

Seraphin (5) extracted a useful relation on applying the Kramers-Kronig relation to the change of the
dielectric function with energy, in terms of the change in the values of the refractive index and the
extinction coefficient,

ch "rAa(E')dE' ch

[(n+\)2 +k2 ][(n-\)2 +k2 ]
where

B =

A and B are known as the "Seraphim Coefficients".
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3. Modulation Methods

3.1 WAVELENGTH MODULATION:

Wavelength Modulation is the only modulation technique in which there is no perturbation of the
sample and hence no ambiguity in the corresponding response. Information is extracted either by
forming the first derivative of the reflection spectrum or by separating it from the gross reflection
spectrum by imposing a periodic incremental variation of the spectrometer output which is detected by
lock-in methods. This is accomplished by applying a periodic AA/At to the output of the spectrometer.
A very thorough study of the derivative spectra of a large number of semiconductors over a wide
temperature range was reported by Zucca and Shen (6) in 1979. These authors produced the A^At
perturbation by vibrating a quartz plate inside their spectrometer and by eliminating the influence of the
lamp spectrum and grating characteristics through a double beam feedback system. Their study
yielded details of the band energies for the six semiconductors, GaAs. GaSb, InAs,, InSb, Si, and Si.

3.2 THERMOREFLECTANCE

In this instance, the sample and mount must have a small heat capacity so that both sample and heater
can heat and cool rapidly and not suffer incremental increases in average temperature. Periodic thermal
pulses, which can be introduced by mounting the sample on a pulsed resistive heater, passing a pulse of
current directly through the sample, or supplying pulses of heat from an incandescent light source, are
applied to the sample the result of which are periodic perturbations of the energies of the critical points
It would be expected that thermoreflectance and wavelength reflectance would yield similar results
since both produce scalar effects, while piezo- and electro- reflectance effects are tensor quantities.

3.3 PIEZOREFLECTANCE

Piezoreflectance is produced by applying a periodic uniaxial stress to the sample by fixing the sample
to a piezoelectric transducer (e.g., lead zirconium titanate [PZT] ) and pulsing the transducer or by
applying a fixed stress and then employing a secondary modulation technique such as
electromodulation. The second of these techniques provides higher resolution of the spectral features.
This is accomplished. Because of the tensor nature of the response to stress, the results are highly
dependent on the direction of the stress relative to the crystallographic axes. Details of the band
structure such as the nature of excitonic states can be elucidated.

3.4 ELECTROMODULATION

Of the several modulation spectra systems electromodulation, while it is sometimes difficult to
interpret, yields the sharpest spectra . Of the several different possible configurations we will discuss
only electrolyte electroreflectance (EER) and Schottky Barrier electroreflectance (SBR) and
photoreflectance (PR). During the decades of the 80's and the 90's the technology of GaAs synthesis
improved. This II-VI alloy provides much improve electron mobility, a direct minimum gap, and
structural compatibility with other similar II-VI materials such as GaAlAs. These developments along
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with the introduction of Molecular Beam Epitaxi (MBE) and Chemical Vapor Deposition (CVD)
techniques for fabrication of precisely structured materials gave a large impetus to much improved
device performance. Electromodulation is one of the most useful techniques for characterizing these
new structures.

3.4.1 Electrolyte Electroreflectance
In this technique, the sample is immersed in a weak electrolyte along with an inert electrode. In one
configuration the sample is cemented to a microscope slide using silver conducting paint, A thin line of
silver paint is continued to the top of the slide where a contact wire is attached. The entire face of the
slide excepting the front of the sample is coated either with paraffin or a solution of an inert plastic
("Microstop")(Fig. 5) The electrolyte may be either a dilute aqueous or ethylene glycol .solution of
some electrolyte such as KOH. A periodic voltage pulse is applied between the sample and the inert
electrode forming a Helmholtz double layer at the face of the sample. The spectrum is measured by
directing the output of a monochromator at the face of the sample and scanning through an appropriate
wavelength range while measuring the reflected light intensity (R) and the output of the lock-in
amplifier (AR) to arrive at AR/R(A.).

platinum electrode £ £] Sample

Electrolyte Electromodulation Cell

Fig. 5. Electrolyte Electromodulation Cell

3.4.2 Schottky Barrier Electroreflectance (SBR)
A suitable Schottky barrier may be deposited on the polished surface of a semiconductor by evaporating
a transparent layer of a metal which has a work function greater than that of the semiconductor (e. g.,
~5 nM of Au). An ohmic contact is applied to the back surface (e. g. In-Ga eutectic). Modulation is
accomplished by applying a square wave to the front contact and a dc bias if required by the particular
study. Probe excitation is applied to the transparent front electrode. A sample mounted on the cold
finger of the cryostat is shown in fig. 6.

3.4.3 Photoreflectance (PR):

Photoreflectance is a variation on electroreflectance in which the electric field is generated by pulses of
strongly absorbed monochromatic light to the front of the sample. The electric field is created by the
optical separation of electron-hole pairs at the surface of the sample and their subsequent drift caused
by trapped surface charges formed by pinning of the Fermi level at the semiconductor-air interface.
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This technique requires no special preparation of the reflecting surface of the sample unless a dc bias is
required in which case a transparent metal front electrode is required.

3.4.4 Experimental Details
The experimental apparatus (Fig. 8) consists of a light source (either quartz-halogen 100 watt
incandescent or a 75 watt Xe discharge depending on the wavelength range of interest). The lamp
illuminates a monochromator, the wavelength drive of which is activated by a stepping motor. The
sample is mounted in the vacuum space of a temperature controlled cryostat. The detector of the light
reflected from the sample is either a Si or GaAsP photodiode the output of which (R) is fed to a lock-in
amplifier which provides the AR signal. Modulation is provided either by ahe square wave output of a
function generator of, in the case of photomodulation, by the chopped beam from the modulating
source.
The collected data are processed by a Lab VIEW program. The program collects data over the selected
wavelength range displaying AR /R in real time as a function of the number of data points. At the end
of the selected run the data are displayed as a function of wavelength. The following settings can be
entered: beginning wavelength, ending wavelength, the delay before recording a reading (relevant to
the time constant of the lock-in amplifier), the wavelength step to track the wavelength scan of the
monochromator, number of steps per reading. On completion of the wavelength range,

Fig. 6 Electromodulation sample and mount
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Computer Spread
Sheet

Details of Block Diagram (JElectromodulation):

Monochromator: : McPherson (model 218) 0.3 M Plane grating scanning monochromator.
1-range 105-1000 nM. Built-in adjustable wavelength drive, fitted with auxiliary stepper drive.

Cryostat: Janis custom cryostat. -0..5 liter coolant capacity.
Temperature control sensor, Si diode.sample T—range, 85-3O0K
(as measured by Cu-Constantan thermocouple on sample mount).

Temp, control: Lake Shore T- Controller
Function Gen.: Laboratory instrument (provides modulating pulse train and reference source.)
Lock-in amp: Signal Recovery DSP
DVM: Kiethley 197A multimeter with GPIB capability
Detector: UV enhanced Si photodiode
Computer. Macintosh PowerMac

Fig.7 Block diagram of modulation spectroscopy experiment
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Fig. 8 Electromodulation spectrum of epitaxial GaAs

the data are recorded graphically on the front panel as AR/R as a function of wavelength. All the
significant parameters are preserved and stored independently. The reading number, the wavelength and
the corresponding energy in eV, the value of R, AR, and the ratio AR/R are all stored independently*.

4. Some Applications

4.1 SINGLE HOMOJUNCTION

Gallium arsenide device fabrication is frequently carried out ON a substrate platform of semi-
insulating GaAs (i.e., doped in such a way as to compensate the free carrier concentration) onto which
is deposited by CVD or MBE a thin layer of the material in which the desired device is fabricated.
Such "homojunction" devices present unique problems of field distribution and optoelectronic behavior.
H. Poras (7 ) carried out a comprehensive study of a series of such GaAs structures using several
different variations on photo- and electro-modulation techniques._ The basic electromodulation
spectrum is shown in Fig.8.

* Photomodulation. The same basic block diagram is applicable to the photomodulation application
except for the following modifications: The function generator is eliminated, to be substituted by dc
bias if it is required. Modulation is accomplished by directing the chopped beam of a laser onto the
front surface of the sample, while providing a reference signal from the chopper control to the lock-in
amplifier.
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4.1.1 Energy range below the band gap {Region I)

It will be noted that there is considerable structure at energies both above

epitaxial layer-interface.

4,1,2 Energy Range at the band gap (Region 2)

precise value for the room temperature minimum band gap

(0)

Fig. 9. Electron tunneling, (a) in the dark, (b) with incident photons

4.1.3 Region above the bandgap (Region 3)

The oscillations on the high energy side if the band gap are caused by theFranz-Keldysh effect resulting from t acceleration of optically excited electrons across the tiltedboundaries by the electric field (Fig. 9).
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4.2 FRANZ-KELDYSH OSCILLATIONS

Indexing of the location of the Franz-Keldysh oscillations (FKO) (, Fig. 10) (8) will yield the value of
the surface field and the carrier concentration. The position of thenth extremum in the FKO oscillation

3_

is given by the relation, nn = — — f— + C.A plot of ~(En - Eg)1 vs. the index

(h0p
-3

number, n, is linear with a slope of (1x0) 2 . the surface field can then be calculated from the relation,
2h2E2

(HO) = ———. (HO) is the "elecro-optic energy" and Wf||, the effective mass of the electron.

Finally the carrier concentration is calculated from the relation Es

instance the surface field was 0.516 V/|AV.
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Fig.10 F-K oscillations in GaAs at 100K; (lower) (~)(En - Eg)1 vs. index number



683

Energy

Unconfln»d Stat*

n - 3
Conduction

Bond n »2
n - t

Valence HH
Band m«i (.H

•

j

•

O«As E

1 I
i

i

C«nf1n«d Stat ic

g A1O*A* E

C»nf1n»4 St»t»*

>
>

Unconflncd State

Fig. 11. Structural composition and energy band diagram of a superlattice

Orowlh
direction

Fig. 12 Multiple quantum well or suuperlattice



684

O.O5

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
-O

Uniform Sequence

o.oe

O.04 -

-O.O4 -

-o.oa
1.4 1.S 1.6 T.r i.8

BMJ4W3V («VJ

Random Sequence

1.9 2 . 1

O.2S

•O.25
1.4 1.5 1.6 1.7 1.6 I.ft

ENEROY (eV)

Fibonacci Sequence

2 . 1

Fig. 13 Photomodulation spectra of three differently composed superlatt



685

References

1. B. O. Seraphin, Proceedings of the International Conference on the Physics of Semiconductors,
Paris, 1964, Dunod Cie (1964); M. Cardona, Modulation Spectroscopy: F. Seitz, D. Turnbull,
and H. Ehrenreich, Academic Press (1969);

See also: F. Pollak,, H. H. Shen, Modulation spectroscopy of semiconductors: Bulk/thin
films rn.icrostructu.res, surfaces/interfaces, and devices. Mater. Sci. EngRlO, 275 91993)
2. Jacques I. Pankove, Optical Processes in Semiconductors, p.393, Dover Publications, New York
(1971)
3 L. van Hove: Phys. Rev. 89, 1189(1953).
4. Y. Hamakawa, P. Handler, and F. A. Germano, Phys. Rev. 167,709 (19680
5. B. O. Seraphim, Electroreflectance, Semiconductors and Semimetals, eds. R. K. Willardson and A.
C. Beer, Academic Press, New York pp. 10-17 (1972).

See also: D. Aspnes: Modulation spectroscopy/electric field effects on the dielectric function
of semiconductors, in Handbook of Semiconductortd. by M. Balkanski (North Holland, Amsterdam
1980) vol. 2, pp. 115-116.
6. R. R. Zucca and Y. Shen; Wavelength Modulation Spectra of Some Semiconductors, Phys. Rev. B, 1,
2668, (1970).
7. Henry Poras, PhD Thesis, Boston College, (1993)
8. Danni Liu, MS Thesis, Boston College, (1996)
9. Alan Tai, PhD Thesis, Boston College, (1991)



15. ADVANCES IN SOLID STATE LASERS AT NASA LANGLEY RESEARCH
CENTER

JAMES BARNES
NASA Langley Research Center - MS 430
Hampton, VA 23681-0001, USA

Abstract

An overview of NASA's vision for 21st Century using space-based solid-state lasers for
Earth observations was presented. Current and future usage of lasers for observing Earth
processes, such as climate systems caused by man-induced forces upon the environment
were highlighted. For some projects mission details and measurements systems using
lasers were discussed, covering also the laser systems development processes.

NASA international collaborations with missions such as CALIPSO and ICESAT were
stressed to invigorate thoughts from others regarding the benefits of joint missions.
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18. COMBINATORIAL CHEMISTRY TO GROW SINGLE CRYSTALS AND
ANALYSIS OF CONCENTRATION QUENCHING PROCESS:
APPLICATION TO Yb3+-DOPED LASER CRYSTALS.

G.BOULON
Physical Chemistry of Luminescent Materials,
Claude Bernard/ Lyonl University,
CNRS UMR 5620, Bat. A.Kastler, 10 rue Ampere,
69622 Villeurbanne Cedex,
France
e-mail: seorges. boulon(a),pcml. univ-lvonl.fr

Abstract

LHPG (Laser Heated Pedestal Growth) technique which is suitable to grow crystalline fibres has
been successfully applied for the study of a lot of laser crystals. Our general approach on the research
of diode-pumped Yb3+-doped host crystals is presented through three typical examples of oxides and
fluorides having cubic structure which are considered among important crystals either for basic or
applied reasons. Spectroscopic characterizations were carried out. Especially, Yb3+ 2F5/2 excited level
experimental decay time dependence on Yb3+ concentration is analyzed by using our own approach
on the synthesis of a concentration gradient fibre developed in the Laboratory. Our main objective is
to contribute to have a better understanding of concentration quenching mechanisms in laser crystals
and more generally in luminescent materials.

1.Introduction

Within the past decade, the development of high-power InGaAs laser diodes used as pump sources
between 900 and 980 nm has lead to a strong interest in Yb3+-doped materials like crystals, bulk
glasses and more recently glassy and crystalline fibers which are emitting around 1030 nm. Relative
to their Nd3+-doped counterparts, Yb3+-doped materials are much more likely to yield high
efficiencies at high powers. Indeed, the simple electronic structure of Yb3+ ions implies de facto the
absence of parasitic effects such as excited-state absorption or up-conversion and makes high doping
rates achievable in most host matrices. In addition, the small quantum defect between absorption and
emission wavelengths, 11% relative to 30-40% in Nd3+-doped laser hosts, contributes to weak thermal
effects so that Yb3+-doped materials have hence turned out to be relevant for efficient high power
continuous-wave lasers, up to the kilowatt class. Another advantage of Yb3+-doped materials is to
bring new advances in diode-pumped ultra-short sources in the femtosecond scale of time by playing
with the Yb3+ wide fluorescence spectrum. The understanding and the optimization of the optical
properties of Yb3+ -doped materials is then necessary. Among different parameters which are
influencing the emission properties, Yb3+ concentration dependence is probably the most important
since it leads to optimize laser materials. This is a huge task due to multiple influences in the optical
materials. Finally, since the use of luminescent materials for phosphors, amplifiers, lasers,
scintillators and detectors the detailed study of so-called concentration quenching processes has not
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been too much understood. Our objective is to bring a new look on such processes by taking benefit
of the Yb3+ simple electronic structure in the near infra-red in several well characterized Yb3+-doped
laser crystals due to recent applications. Indeed, such investigations may be considered like
something playing with extreme physical and chemical conditions, topics of this Summer School. Up
to now, several oxides were deeply investigated leading to general methods of evaluation [1,2].

Among such hosts, we are dealing with the main families of laser isotropic cubic crystals as oxides
(Y3Al5Oi2or YAG garnet, Y2O3 yttria sesquioxide) and fluoride (CaF2). They are considered to be
among the best laser crystals due to unusual combination of following favourable properties:
-optical :large transparency and low phonon energy which is in favor of high radiative transition
probabilities between electronic levels, especially in Y2Os and CaF2 with the dominant phonon
energies of 380cm'1 and 321cm'1 respectively.
-crystallographic structure: both of them have cubic structure and then are isotropic,
-thermal: refractory crystals characterized by high melting points (1850°C for YAG, 2380°C for
Yttria and 1360°C for CaF2). This is obvious that the high melting point of yttria is an obstacle for
classical crystal growth techniques as the growth by the Czochralski method. However, the Bridgman
process has been performed in expensive rhenium crucible. Un-doped CaF2 crystals are now growing
with large diameter mainly to be used as window materials for excimer lasers which are needed in the
semiconductor technology as optical lithography.
-the highest thermal conductivities of oxides, excepted sapphire: 12.8 W m'1 K"1 in undoped-Y2O3,
7.4 W m'1 K"1 in 3%Yb-doped Y2O3; 9.8 W m"1 K'1 in undoped-YAG and 6.7 W m"1 K"1 in 3%Yb-
doped YAG; 10 W m"1 K'1 in undoped CaF2.
-mechanical (robust).
The first step of this lecture will be to show a new combinatorial chemistry, original method for the
synthesis of sample having a continuous longitudinal concentration gradient for two extreme
conditions, from the lowest to the highest Yb3+ concentrations which has been recently developed [3]
allowing the obtaining of crystalline samples doped in an extremely wide range of concentration.
Based on the Laser Heated Pedestal Growth method (LHPG), which does not need the use a crucible,
it allows the study of many types of crystals, especially new class of high melting temperature laser
crystals like garnets and sesquioxides [4]. These advances in crystal growth are ideally suited for the
proposed study of quenching processes.

The second step will be to analyze quenching processes in Yb3+-doped crystals depending of the
extreme chemical conditions of the host purity [4]. Gradient concentration fibre is an unique tool to
make the correlation between Yb3+ concentration and lifetime measurements which have been measured in
situ in the same sample in relation to the distance from the top of the crystallized rod.This fast and simple
combinatorial method allows:
-to measure the Yb3+ intrinsic radiative lifetime which is very important to measure stimulated
emission cross-section,
-the influence of radiation trapping by the presence of the resonant 2F5/2 <-> 2F7/2 transition in Yb3+

near 980 nm,
-the detection of Yb3+ pairs detecting visible emission spectrum by up-conversion mechanism under
Yb3+ IR pumping which is controlled by convoluting the IR emission spectrum,
-at last, the nonradiative energy transfer to uncontrolled impurities in doped hosts giving a notable
contribution to the quenching processes.

All these quenching mechanisms are useful for estimate potential development as optical materials.
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2. Fibre crystal growth

2.1. PULLING FIBRE USING FLOATING ZONE BY THE LASER HEATED PEDESTAL
GROWTH (LHPG) METHOD

Poplawski [5] is the first one who has initiated crystal growth using a pedestal growth design process
based on melting materials by the energy created by an image furnace. Then Haggerty et al [6] have
developed the LHPG technique and has been improved by Feigelson [7] at the Stanford University.
The LHPG technique seen in "Figurel." has been installed at the Claude Bernard/Lyonl University
recently[8], is based on the utilization of a CO2 laser beam at 10.6 urn wavelength which is focused
on the end of a source rod (typically 0.5 to lmm in diameter) containing the desired host and dopant
materials, by means of circularly symmetric laser optics producing a homogeneous circular
distribution of radiation on the rod. The source rod materials can be used from oriented fibre single
crystal or polycrystalline reacted materials prepared by solid state reaction. A seed crystal, once
dipped into the molten zone, is withdrawn at some rate faster than the source material is fed in. By
conservation of melt volume, this leads to the crystalline fibre growing at some constant fraction of
the source rod diameter. Pictures shown in "Figure 2." are illustrating the types of samples which can
be grown.

2.2. CONCENTRATION GRADIENT FIBRE

The study of a laser system requires the measurement of several variables and particularly the dopant
content effect, needing the growth of quantities of samples. LHPG method allows to obtain a
continuous variation in composition and a single rod constitutes a "library" involving an infinite
number of samples in a selected range of composition. With such a technique a "concentration
gradient fibre" where composition changes continuously from one end to the other between two well-
defined compositions CA and CB is investigated [3]. In first, the gradient is created in the feed
ceramic rod as illustrated in "Figure 3(a).". So during the melting zone process the amounts of the
solubilized species vary in the liquid phase. Then with high freezing rate, the crystallized solid keep
the variation of concentration. Each point of the sample can be considered as a single crystal where
composition and physical properties like fluorescence lifetime can be correlated by means of in situ
measurements.
Such an example, "Figure 3(b)." shows the ytterbium concentration gradient between 0 to 15 %
obtained in Yb3+-doped CaF2 crystalline fibre (pulling rate : 30 mm/h). This "combinatorial
chemistry method" has been successfully applied to the study of Yb3+-Er3+ co-doped and Yb3+ mono-
doped sesquioxides [9-11] and YAG [4]. GGG garnet and other fluorides are under progress in our
team [12].
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Figure 1. Schematic diagram of the laser optics used in the LHPG technique
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Figure 2. (a)Photograph of a YAG fiber grown by the LHPG method and (b)Microscopic view of the LHPG
grown YAG fiber.
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3. Illustration of our approach for Yb -doped crystals

3.1. Yb3+ SPECTROSCOPY IN INORGANIC CRYSTALS

The Yb3+ ion has been selected since high average power lasers have gained much attentions because
of the availability of IR high power laser diodes. This topic is under study in our group since few
years in the framework of the CNRS Research Group (GDR 1148 on Laser Materials) as can be seen
in the recently published issue of Optical Materials [13]. Yb3+ activator ion possesses many
advantages because of its simple electronic structure as can be seen in "Figure 4.".
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Figure 3. (a) Scheme of the concentration gradient fibre growth process.
(b) As-grown single crystal of Cai-xYbxFu-x concentration gradient fibre (with x vary from 0 to 15 at% in the
crystal). The distribution of Yb'+ along the fibre was measured by electron probe microanalysis (EPMA)
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* There is no excited state absorption, no cross-relaxation process and no more up-conversion
internal mechanism able to reduce the effective laser cross-section.
* The intense and broad Yb3+ absorption lines are well suited for IR InGaAs diode laser pumping
between 900 and 980 nm.
* No absorption in the visible range.
* Small quantum defect, much smaller than in Nd3+ ion, between absorption and emission
wavelengths leads to a low thermal load (11% relative to 30-40% in Nd3+-doped laser hosts).

With respect to Nd3+ ion, which is an ideal 4-level scheme for laser operation, Yb3+ ion is only a
quasi-four level scheme and then "Figure 5." shows that a high crystal field is required in Yb3+ sites
to get the largest value of AE.

3.2. ASSIGNMENT OF ELECTRONIC AND VIBRONIC LINES IN Yb3+-DOPED CRYSTALS

Although the Yb3+ ion has a simple electronic structure with only one excited state (2FSQ) above
the ground state (2F7/2), the assignment of pure electronic lines is a rather difficult task due to a strong
electron-phonon coupling. The degeneracy of the two multiplets is raised and seven Stark electronic levels
are expected : four for the ground and three for the excited state, which have been labelled in "Figure 4." .
Room temperature and low temperature absorption and emission spectra of Yb3+-doped garnet ("Figure 6.
and Figure 7.") or sesquioxide crystals show clearly many more lines than can be expected for an
electronic transition alone. The problem is even more complicated when multisites are occurring which is
encountered in CaF2 crystals with the occurrence of several types of multisites. The assignment shown in
Figures is only a first approximation one. In addition of the main square anti-prism symmetry site, higher
resolution at low temperature show lines belonging to C4v tetragonal sites without O2' traces and trigonal
sites with the presence of O2' traces.
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Figure 7. Absorption spectrum and emission spectrum of 2% Yb3+-doped YAG under 915 nm laser
pumping at low temperature.

3.2.1 .Assignment of the spectroscopic data by comparing absorption, emission and Raman spectra.

-Yb3'-doped YAG [14]

Since the published data concerning the energy levels of Yb3+ in YAG are contradictory, mainly due to a
strong vibronic coupling, we have tried to contribute to this debate by again analyzing results in the
experimental following approach. We compare absorption, emission and Raman corrected spectra which
have been both drawn in wave number scale, to have at a glance, a quick evaluation on the difference
between electronic and vibronic spectroscopic properties. In so, we are admitting the hypothesis that
Raman spectrum should reflect vibronic structure accompanying the main 0-phonon line electronic
resonant transition as this is the case with 2E—>4A2 transition of Cr 3+-doped YAG These spectra were then
adjusted to the same energy scale, by taking the origin of the absorption and the emission at the 0-phonon
line energy, in coincidence with the Rayleigh line of the Argon laser (514.5 nm) used to record the Raman
spectrum. In Yb3+-doped oxide crystals, only the lowest level of the 2F5/2 excited state is emitting due to fast
non-radiative relaxation processes between the 3 Stark components separated by energy gap of the same
order of magnitude as the phonon energy. Hence, this is the reason why the resonant transition is the best
adapted to give vibronic side band, on one hand, in the highest frequency side (shorter wavelengths) of the
absorption spectrum, between 968 nm and 900 nm, and, in the other hand, in the lowest frequency side
(longer wavelengths) of the emission spectrum, between 968 nm and 1100 nm ("Figure 6." and "Figure
7."). In such a way, symmetric distributions of vibronic lines are expected around l<->5 resonant electronic
transition. By rotating the absorption spectrum around the origin, we get a direct comparison with the
emission and the Raman spectra, which are drawn to the lowest frequency side. Therefore, we should be
able to distinguish more clearly electronic and vibronic lines. This is actually our general approach on
several Yb3+ -doped crystals under analysis in our Laboratory applied here especially on Yb3+:YAG for



which a first analysis has been done in "Figure 8." but by only using expected symmetry of absorption and
emission spectra.
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-Yb3+-doped CaF2 [15]

The absorption and emission spectra of Cao995Ybo.005F2.005 crystals at room temperature are shown in
"Figure 9.", "Figure 10(a). and 10(b)." .We have chosen one sample doped by the lowest (0.5 at.%)
concentration of Yb3+ ions to avoid the cross-section calculation errors caused by a re-absorption
effect mainly of resonant transitions. The emission cross-section value was calculated using the
FUchtbauer-Ladenburg equation [11]. The 2F7/2<-»2F5/2 lowest energy resonant transition line was
found located at 980 nm. Other transitions between Stark's levels were located from 920 nm to 1060
ran. The shapes of absorption and emission spectra are quite broad. These shapes can be connected to
the appearance of several crystallographic sites in CaF2 structure and the thermal spreading of these
spectra. Such broad band spectra are similar to those of disordered materials like glasses and then
expected to be used for tuneable solid state laser sources. The stimulated emission cross section
around 1030 nm was estimated 3.0* 10~21 cm2, which is not high when we compare with Yb3+:YAG
(around 2.0xl0'20 cm2 [11]) but enough reasonable value compared with other fluoride hosts (for
example around 0.3><10'20 cm2 and l.OxlO"20 cm2 for Yb3+:LiYF4 in a and it polarization respectively
[4]).

Low temperature measurements at 12 K were carried out to avoid broadening of spectra and
determine exact Stark's level positions. The emission spectra were looking quite similar whatever the
nature of the crystal growth technique. As an example, "Figure 10." shows absorption and emission
spectra of Cao 995Yb0.005F2.005 crystal (a) by simple melting method and (b) by LHPG method. The
assignment of Yb3+ Stark levels is known to have problems since the appearance of a strong electron-
phonon mixes both electronic and vibronic transitions of the main site. In the case of Yb3+ ion
occupying several cationic sites, the spectra are becoming obviously further complex. This "Figure
10." shows clearly different types of sites, electronic and vibronic transitions.
Previous researches [16,17,18,19] help us to assign the l<->5 resonant transition of, both, tetragonal
C4v site at 968.5 nm, rhombic C2v site at 977 nm and also T2(O

2") site with the presence of one O2"
anion in substitution of one F" anion in the corner of anion cube at 975 nm and 910.5 nm,
respectively. These isolated tetragonal C4V, rhombic C2V defect sites were observed only for the
lowest (0.5 at.%) concentration. T2(O

2") sites were observed only in the crystals grown by LHPG
method. It could be explained from the fact that in the LHPG conditions using pure argon
atmosphere, ppm order of oxygen ions always existed and they could react with fluorides during
crystal growth, whereas CF4 atmosphere for simple melting is known to react with oxygen and
eliminate it effectively. Cubic Oh site with l«-»5 resonant transition lines located at 963 nm,
[16,17,18], were not detected in our samples. Such cubic site observation needs to work on very low
concentration (less than 0.2 at.%) since charge compensating F" ions must be situated somewhere far
from the Yb3+ site in such case. Our concentrations are much higher and we were not able to see any
cubic site in samples from 0.5 at.% to 30 at.%.
Other main lines seen in both absorption and emission spectra should be assigned to the principal
Yb3+ site that is the set of square-antiprism sites. The electronic absorption transitions (l-*5, 1—>6,
1—*1) and the resonant 5-+1 and non-resonant (5—>2, 5—>3, 5—»4) electronic emission transitions are
observed. In addition, vibronic lines can be also seen. One of the main difficulty of assignment is to
separate such electronic and vibronic lines. To identify vibronic peak, Buchanan et al. [20] have
already proposed the comparison between absorption and emission symmetric spectra around 0-
phonon line. This method is however difficult to apply in the case of crystals accepting multi-sites
because the broad peaks make difficult to identify the coincidence of peaks with the existence of the
several sites. Our own experimental approach has been used both absorption, emission spectra and
Raman spectra.
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First, vibronic transitions were assigned by the help of Raman spectrum. The Raman spectrum has a
very simple structure: only one sharp peak situated at 321 cm'1 in lowest doped sample, this unique
peak becoming lightly broader in the 30% doped sample. Thus, the vibronic lines should be found in
this frequency from the different 0-phonon electronic transitions. Some pairs of signals were found to
keep in this frequency as can be seen in "Figure 10.". The 1012 nm line could be assigned as the
vibronic transition from the 5—»1 resonant transition line. The symmetric of 1012 nm line is 950 nm,
this position is in obscurity of the broad absorption. Nevertheless, we have estimated there is a
vibronic transition, which is difficult to resolve due to the overlapping between 962.5 nm and 942.5
nm lines. The 1024 nm line could be also assigned as the vibronic overtone line of the 991.5 nm line.
Consequently, the 991.5 nm line could be an electronic transition which has been assigned as 5—*2
transition. In the similar approach, the 933.5 nm line could be the vibronic line of the 1—»6 (962:5
nm) transition.

4. Analysis of concentration quenching processes

Gradient concentration fibre is an unique tool to make the correlation between Yb3+ concentration and
lifetime measurements which have been measured in situ on the same sample in relation to the distance
from the top of the crystallized rod. By using a reference made of a homogeneous single crystal fibre of
well-defined composition, the two curves were correlated. The lifetimes have been directly measured on
each point of the concentration gradient fibre of 800 um diameter, with a beam laser of about 500 um size.
Because the volume of materials excited is steady, radiative trapping due to geometrical effect can be
supposed to be characterized by a constant value for each concentration, which should be weak due to the
small size of the excited sample. Experimental lifetime values have been fitted to an unique exponential
profile with an excellent agreement. Results are shown in "Figurell." as a function of the Yb3+

concentration for the three samples Y2O3, YAG and CaF2.

4.1. RADIATIVE LIFETIME MEASUREMENT FROM THE CONCENTRATION GRADIENT FIBRE

The measurement of intrinsic lifetimes has received attention since a long time in the literature [21-
24].The determination of the intrinsic radiative lifetime of Yb3+ in crystals requires a lot of precautions.
Especially in YAG, measurements of the room temperature effective stimulated emission cross-section
have ranged from 1.6-10"20 cm2 upon 2.03-10"20 cm2 [22]. Depending to the concentration, the self-trapping
process is more or less involved. The intrinsic lifetimes can be read by following the concentration
dependence to the lowest values. The value has been estimated 0.950 ms ± 0.001 in "Figure 11.", that is to
say in the same range as the two others 0.951 and 0.9489 ms respectively mentioned previously [22]. In
yttria, the radiative lifetime of 0.720 ± 0.001 ms has been measured and in CaF2 the value is 2.05 ms in
fibre samples grown by the LHPG technique and 2.14 ms in bulky samples which were grown by a simple
melting process [15]. The last measurements show the strong dependence of the crystal growth method on
the optical parameters.The intrinsic lifetime can be read by following the concentration dependence to the
lowest values in "Figure 11.". The value has been estimated 2.05 ±0.01 ms in CaF2.
The direct calculation of the spontaneous emission probability from the integrated absorption
intensity [25] is adapted to confirm the radiative lifetime value. Radiative lifetime can be deduced
from the absorption spectrum according to the formula (1):
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hrad>f
Si Ao

Where the g's are the degeneracies of the initial and final states (gf=4 for 2F7/2 and gj=3 for 2F5/2), n is
the refractive index (n=1.43), c is the light velocity, Xo is the mean wavelength of the absorption peak
(980 nm), a(X) is the absorption cross-section at wavelength X. The radiative lifetime in CaF2 was
calculated as Trad (theo.)=2.0 ms by the equation (2) quite close to the experimental value of Trad
(exp)=2.05 ms measured in "Figurell.". The lower value of Trad (tho,.) with respect of the Tra() ( ^ m i g h t
be related to the over estimated value of the integrated absorption cross-section including all types of
sites at room temperature and not only the highest population of the main square-antiprism sites.

4.2. SELF-TRAPPING AND SELF-QUENCHING PROCESSES

Identifying the origin of the concentration dependence of the observed experimental lifetime allows
understanding the excited state dynamics. The curves can be divided into two regimes in "Figure 11."

(i) in the lowest concentration range (up to 1.3% in YAG, 5% in yttria and 10% in CaF2) the
experimental lifetime increases as the doping concentration increases.
(ii) for the higher concentration range, the measured lifetime decreases when the doping rate
increases up to 4% in YAG, 25% in yttria and 30% in CaF2. This concentration range has been taken
as an example in our experiments, but other concentration ranges can be extended up to 100% if solid
solution of Yb3+-doped oxides or fluorides exists.
The first regime is the indication of the radiative energy transfer whereas the second one corresponds
to the usual quenching process by a non-radiative energy transfer to defects and other impurities in
the host. In the intermediate region, competition occurs between the two trends and consequently
they compensate each other, leading to a constant value of the measured lifetime.

4.2.1. Radiative energy transfer

The first regime is an indication of fluorescence re-absorption, the so-called self trapping process,
between levels 1 and 5, by the l<-»5 resonant transition, giving radiative energy transfer and then
migration of the energy on a long distance. Resonant radiative energy transfer is well known for
acting as a radiation trap. Actually resonant transitions permit a long-range energy diffusion between
identical ions by successive re-absorption/reemission processes. This serial mechanism affects the
experimental excited state decay since, after the initial emission occurs, each subsequent event acts as
a time reset on the relaxation of this excitation. Consequently, a lengthening of the fluorescence
lifetime measured over the volume of the sample relative to the lifetime of a single isolated ion
should be observed.



703

1100:
iooo:
900:
800"

600
500"
400
300"
200
100"

0
10 100

Yb(%) in Y2O3

V=684 us; o/=8.3xlO-23 cm3 (0.31 cm3/%); N0=1.9xl021 cm"3 (7.36
000 -

950 -

900 -

850 -

800 -

750 -

Y b " (%) in Y AG

2 . 8 -

2 . 4 -

2 . 0 -

1 . 6 -

1 . 2 -

0 . 8 -

T W =950 us; o7=1.9xlO"22 cm3; N0=2.3><10

10

,21

0.1 10 100

„ , Yb"(%)inCaF
TW=2.05 ms; a/=1.7xlO"22 cm (0.041 cm3/%); Kl0=7.47><102' cm"3 (32

Figure 11. Transversally measured lifetime of the Yb3+ 2F5/2—»2F7/2 transition in fibres of Y2O3, YAG and CaF2
versus molar % concentration along the fibre. Continuous curve is from Eq. (6).

Strong spectral overlap between the fluorescence and absorption spectra enhances fluorescence re-
absorption. The most relevant examples are those of the resonant laser transitions such as 2E—>4A2 of
Cr3+ in ruby at 694 nm, and several rare earth ions in laser host as 5I7—>-5I8 in Ho3+ at 2100 nm,
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3F4->
3H6 in Tm3+ at 2000 nm, 4Ii3/2—>4I]5/2 in Er3+ at 1540 nm and 2F5/2-^2F7/2 in Yb3+ at 980 nm. The

case of Yb3+-doped Y2O3 for which spectra are shown in "Figure 12." is clearly seen in "Figure 13."
where the decreasing of the relative intensities of the of the \<->5 resonant transition points out the
self-trapping phenomenon. An essay of the interpretation of the radiative energy transfer has already
been published [26], [27], [28].

4.2.2.Non-radiative energy transfer between Yb 3+ and unwanted rare earth impurities

An important feature has been clearly observed in our studied samples by the presence of Er3+ and
Tm3+ rare earth ions as unwanted impurities. This is a general tendency which has been observed in
all Yb3+-doped laser hosts. As a consequence, the decreased lifetime in the high doping concentration
region can be naturally assigned to an energy transfer through Yb3+ excited ion to unwanted traces of
rare earth impurities which are located near by Yb3+ ions to explain the efficiency of the recorded non
radiative energy transfer, although starting materials used in this study had a purity of 99.99%. It
means that laser materials obviously need the highest purity to allow better performances. Because
rare earth elements are chemically related, it is difficult to separate them from each other. Thus,
traces of impurities are inevitable. Moreover, looking at the Dieke diagram in "Figure 10.", one can
see that many resonant energy transfers are possible between trivalent lanthanide ions and effectively
observed both in "Figurel5.", "Figurel7." and "Figure 18.". In particular in the 10,000 cm'1 energy
range matching with excited state of Yb3+ ions, resonant energy transfer is allowed with the (4Iun)
excited level of Er3* ions and non-resonant energy transfer is also known with Tm3+ ions [14-27]. The
profiles of the fluorescence decay times recorded in the rare earth anti-stokes emission spectrum
under Yb3+ IR pumping, reveal also energy transfer both to Er3* at around 540 nm (4S3/2->

4Il5/2) and
650 nm and to Tm3+ at around 480 nm ('G4->

3H6) signed by an initial rise-time ("Figure 19."). This is
remarkable to see in Yb:CaF2 another step of up-conversion in the violet range at 410 nm under IR
pumping at 940 nm by Yb3+ rare earth non radiative energy transfer with only traces of unexpected
rare earth impurities [15].
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Figurel2. Absorption and emission spectra of Yb3+-doped Y2O3.
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Figre 15. Time resolved emission spectra of Cai.xYbxF2+x (x=0.05) crystals in visible region under A.= 932 nm
excitation by the LHPG method. Clear spectra around 500 nm indicate the convolution from Yb3+ IR emission
spectra [15].

4.2.3. Non-radiative energy transfer between Yb3* and unwanted OH" impurities

The occurrence of OH' is very often involved in the quenching mechanisms. This is the reason why
we are trying to point out such impurities. In fluorides OH- are excluded for chemical reason but in
oxides OH" have been shown to exist with the difficulty to probe a few traces and then to distinguish
the two contributions of rare earth ions and OH" groups in the quenching mechanisms. As an
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example, "Figure 16." shows clearly the presence of OH" groups in YAG characterized by an
absorption coefficient of 3.5 cm'1. Consequently, the contribution of OH' cannot be excluded but only
in oxide samples. The strongest influence of self-trapping in fluorides for a wider concentration range
seen in "Figures 11." by the increasing of the experimental lifetimes can be explained by the weakest
effect of self-quenching for higher Yb 3+ concentrations. As among impurities rare earth ions are
always present in both oxides and fluorides, we may say that this important effect might be associated
to the absence of OH- groups in fluoride crystals with respect of oxide crystals.

4.3.Yb3+ PAIR AND COOPERATIVE EMISSION

In the case of Yb3+-doped crystals, because of the presence of only one excited level, we cannot
expect an excited state mechanism inside Yb3+ ions which could reach other rare earth ions by an up-
conversion process. Only pair emission from two neighbour ions or cooperative emission from
aggregates which are observed in all our samples can occur with a weak probability, depending on
the shortest distances between two Yb3+ neighbour crystallographic sites :

-Y2O3 (C2 site - C3i site distance = 3.51 A and C2 site - C2 site distance = 3.53 A),
-YAG (site distance = 3.67 A),
-CaF2 (site distance = 3.84 A).

As an example, "Figure 15.", "Figure 17." And "Figure 18." " show the visible pair emission around
500 nm in CaF2, Y2O3 and YAG as compared with the convoluted IR emission spectrum obtained
under IR pumping. An additional argument in favour of the pairing effect is provided by the value of
the green decay time of pairs, half- value of the 2F5/2 IR emitting excited level without any initial rise-
time in the three hosts ("Figure 19."). Such observation of pairing effect is a signature of the
inhomogeneous distribution of Yb3+ in hosts.
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5.Model to interpret radiation self-trapping and self-quenching mechanisms in Yb3+.

For radiation trapping, a simple method already applied to solids is used on a Compton type spatial
diffusion equation containing the Einstein relationships between spontaneous and induced emission
and absorption but neglecting of the population inversion. In the case of "weak opacity", which is the
only one which can be analytically solved, the following formula has been deduced:

r, =r,(l + oM) (2)
where r, is the measured lifetime in the trapping conditions, *; is the intrinsic lifetime without
trapping, a is the transition cross-section, N the ion doping concentration, and / is the average
absorption length in the lifetime measurement experiment.
When the quenching centre is an impurity analogous to the active centre and having levels in
resonance or quasi resonance with the considered ion first excited state, the quenching probability can
be of the same order as the transfer probability for diffusion within the considered ion sub-system.
The strong quenching situation prevails as well as the limited diffusion process. In that case, because
both probabilities for quenching and diffusion are about equal, they can be assumed to be ruled by an
equivalent critical transfer distance Ro defined by :

C = (R0/R)S/TS (3)

where C is Dexter parameter for energy transfer probability P as given by P=C/RS\ R is the distance
between the two ions in interaction; r, is the ion lifetime before interaction; s is the multipolar index
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for the interaction; Ro is the critical transfer distance proportional to the spectral overlap insuring
energy conservation during the transfer; Ro also corresponds to the distance for which the non-
radiative energy transfer is as probable as photon emission. Ro can be linked to a critical
concentration by:

(4)

In such case it has been shown that, assuming an electric dipole-dipole interaction (s=6), the
self-quenching behaviour can be simply described by:

T{N)=Tj[l + (9/27r)(N/N0)
2] (5)

where TW is the measured lifetime at weak concentration.
In case of photon trapping be present, Eq.(4) has to be multiply by Eq.(l) identifying TW with rh

giving respectively:

TW(1 + OM)
T(N) = — - - (6)

l + (9/2;r)(JV/iV0)
2

This model fits well experimental data as can be seen in Figure 7 for the 3 hosts [27-28].

The theoretical fittings of Yb-doped crystals are shown in "Figure 11.", as continuous line for the
LHPG method.
The fitting parameters of Yb:CaF2 were found as :
o7=l .7x 1(T22 cm3 (0.041 cm3/%), N0=7.47x 1021 cm'3 (32 %) for the LHPG samples, respectively.

No being the parameter of the self-quenching, hence much higher No values than that of Yb:Y2O3

(N0=1.9xl021 cm"3) and Yb:YAG (N0=2.3xl021cm"3) mean weaker self-quenching probability as
compared with oxide laser crystals. Such weak self-quenching probability is agreeable property as
laser application.
It is also interesting that two curves for the two crystal growth techniques, the simple melting and the
LHPG ones, show same No value. It means two curves have theoretically same self-quenching
probability, therefore it confirms that the difference of decay time dependence between the two
growth methods mainly come from the self-trapping process and not from the self-quenching
processes.
Finally, it has been shown that self-quenching, for a rather large doping range, is well described by a
limited diffusion process within the doping ion subsystem towards impurities analogous to the doping
ions themselves.

Fast diffusion towards intrinsic non-radiative centers cannot explain the observed results. In addition,
the intrinsic center, cluster-like pair of rare earth active centers, which should yield a particular
multiphonon-assisted energy transfer between them has not been observed from the fitting of figures.
Being due to the vibronic properties of the host it cannot be however suppressed but seem be much
weaker than the limited diffusion process in the three examples of this study[28].

As an application, a simple quantitative method for optimizing the gain material concentration for
amplifiers and lasers has also been proposed and performed [28].
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6. Conclusion

The LHPG method have been described in order to be applied for the growth and the
characterization of optical parameters of Yb3+-doped host crystals, which might be used as high
average power solid-state lasers under pumping by high power laser diode. We have chosen Y3AI5O12
(YAG) yttrium aluminium garnet, Y2O3 yttria sesquioxide and CaF2 fluoride as typical host examples
which are considered among important crystals due to their unusual combination of favourable
properties. Moreover, a combinatorial chemistry approach has been applied on concentration gradient
crystal fibres. Gradient concentration fibre is an unique tool to make the correlation between Yb3+

concentration and lifetime measurements which have been measured in situ in the same sample in
relation to the distance from the top of the crystallized rod. This fast and simple combinatorial
method allows to measure:
-the Yb3+ intrinsic radiative lifetime at the lowest Yb3+ concentrations, which is one of the basic
parameters for laser application for measuring stimulated emission cross-section,
-the radiation trapping by the decreasing intensity of the resonant 2F5/2 <-» 2F7/2 transitions (l<->5 and
l<->6) between 930 nm and 980 nm when Yb3+ concentration increases,
-the non-radiative energy transfer to uncontrolled rare earth impurities in doped hosts giving a
notable contribution to the quenching processes,
-the non-radiative energy transfer to OH- impurities in doped hosts giving also a notable contribution
to the quenching processes mainly in oxides and probably less in fluorides explaining why the self-
trapping is much higher than the self-quenching in a wide concentration range above 10%,
-Yb3+ pairs detected by the up-conversion visible emission spectrum under Yb3+ IR pumping,
signature of the inhomogeneous distribution of ions in crystalline hosts but also possible signature of
intrinsic quenching, due to the electron-phonon coupling itself. This is an intrinsic self-generated
quenching center for lanthanides. This center, in fact a cluster-like pair of active centers, is shown to
come from a particular multiphonon-assisted energy transfer between them. Being due to the vibronic
properties of the host it cannot be suppressed. However his occurrence was not detected in our
crystals.

Finally, a limited diffusion process model within the doping ion subsystem towards impurities
analogous to the doping ions themselves has been given to interpret such mechanisms. Research is in
progress to detect any new unexpected impurities which could contribute to quenching mechanisms.
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23. TABLE-TOP SOFT X-RAY LASERS AND THEIR APPLICATIONS
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Abstract. A review of the developments of the table-top soft X-ray lasers, which have
been carried on in the last years utilizing different experimental techniques, is reported. A
comparison between the performances of the different devices is illustrated.

1. Introduction

Research on soft X-ray lasers - more properly, at the moment, X-UV single pass, high
gain (g >10) ASE radiation sources - has made great progresses since 1985, when lasing
in Ne-like Se (Se24+) ions, at X = 20.6 and 21 nm was first achieved by D.L. Mathews et
al. [1]. In that experiment x-ray lasing was achieved by focussing a high power, 0.5 ns,
Nd-glass laser on a Se target via energy levels population by electron collisional
excitation, according to a theoretical proposal first put forward by L.I. Gudzenko and
L.A.Shelepin in the far 1964. Today, the main challenge in improving X-ray lasers is in
building table-top lasers, i.e. low cost, small size, high repetition rate devices, as
alternative to X-ray sources based on large research facility as, for instance, storage
rings. In the last two decades many experiments have shown the excellent features of
such type of "lasers" in respect to monochromaticity, collimation, very high peak spectral
brightness, and fairly good coherence.
Table-top X-ray lasers open new possibilities in smart investigations on high density
plasma dynamics, in material science, for example, measurements of surface reflectivity
and optical properties of materials, testing multi-layer mirrors and gratings. Important
industrial applications will be nanobiology, i.e. single shot imaging of biological cells, X-
ray holography and phase-contrast imaging of microstructures, phase variation in
samples by interference methods.
Soft X-ray lasers actually cover the electromagnetic spectrum from the 50 nm down to
3.56 nm [2], an energy/pulse of 0. lfxJ -e-3 mJ, and some devices can operate at a repetition
rate up to 10 Hz [3-4]. The population inversion is created between external levels of
highly ionized atoms inside high temperature plasmas. Because of the short duration of
the population inversion (1 ps-1 ns) and the lack (today) of high reflectivity mirrors the
resonator is missing. Due to the short length of the plasma columns, which can be
experimentally created (typically 0.5 -5 cm) and the mirror-less amplification, the
saturation of the active medium requires very high gain values. This means that the
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pumping power density required to pump a soft X-ray laser scales more strongly than

r\
The physical processes involved in creating a population inversion are mainly or the
collisional excitation of the electrons from the ground state or the electron collisional
recombination. However, other processes, like photo-ionization [5] or resonant photo-
absorption [6] have been investigated.
2. Pumping Techniques

From the experimental point of view, different schemes have been tested to create the
plasma columns with the proper conditions for XUV amplification. Up to 1980/90 high
powerful lasers [1] (able to drive energies of » 500 J in = 1 ns) were mainly used.
Focused on the surface of a target they can produce hot and dense cylindrical plasmas
along the focusing line, where the population inversion may occur under quasi-stationary
conditions of density and temperature. With this approach X-ray laser pulses of few mJ
[1,2] of energy have been obtained at many wavelengths using different materials.
However, today, all the efforts are toward using small-scale, high power, ultra-fast (AT «
1 ps) optical laser pulses as drivers or alternatively, compact, high power discharges in a
gas or metal vapors filled capillaries.
In recent years a deep understanding of the factors influencing the gain has suggested
using a laser pumping by a multi-pulse irradiation to obtain lasing in Ne-like or Ni-like
ions. By this technique one irradiates a solid target with several pulses of few joule and
short time duration. In a double pulse arrangement [7], for instance, a first pulse ( = 1
Joule, = 1 ns) forms low temperature plasma with the required ionization stage and a
small density gradient for the laser propagation. About 1 ns later, the second, high
intensity pulse, («1—10 J in 1 ps), quickly heats the free electrons to reach much higher
temperatures. In this way it is possible to optimize the transient collitional excitation of
the upper laser level keeping fixed the optimal ionization stage. With such pumping
mechanism (so called Transient Collitional Excitation) the gain can be improved of one
or two orders of magnitude respect to the quasi-steady state excitation in the same
transition.
The TCE utilizes chirped pulse amplification (CPA) technology to create the laser pulses
of picosecond duration. Advantages of this technique are the possibility of a drastic
reduction of the energy of the pumping laser pulses (to few Joules) and the possibility of
scaling to shorter wavelengths, because the increase of the pumping power produces
higher temperature plasmas. Disadvantages of the technique are the low efficiency (10"),
the short length of the plasma (< 2 cm), the complicated and expensive optical systems
and the low energy/pulse of x-ray laser due to the shorter duration of the gain. This
scheme has been successfully operated in many laboratories. For instance, at X = 13.9
nm in Ni-like Ag at Lemail [8] and at X = 14.7 nm in Ni-like Pd at LLNL [9].
The development of CPA technique for pulse shortening has opened a successful way to
pump both collisional and recombination soft X-ray lasers. The Optical Field Ionization
(OFI) represents another promising approach [3] using fast pumping laser pulses. In [4],
a polarized, 20-50 femtosecond optical laser pulse, driving a relatively low energy (70-
600mJ), is focused into a <50 um spot, to reach an intensity of 1015-51017 W/cm across
a low density gas. Along the path, the quantum tunnelling process ionizes the atoms to
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the high-charged states. The ionization stages and the energy distribution of electrons
depend on the pumping laser characteristics (OFI being a threshold process), but the
largest effect on the free electron kinetic energy distribution is due to the polarization. A
linear polarization minimizes the mean electron distribution and it is suitable for strong
recombination. At contrary, when the pumping laser is circularly polarized, the released
electrons will maintain a kinetic energy equal to the ponderomotive potential of the laser
at the time of ionization and the hot electron distribution is apt to the collisional
excitation. In recent investigations on collisional excitation OFI x-ray lasers, by focusing
a 300-600 mJ circularly polarized, 35 femts, 10 Hz Ti:sapphire laser in a few mm-long
cell filled with Xe or Kr, a gain of 67cm1 in Pd like Xe at X = 41.8nm and a gain of 78
cm"1 in Ni-like Kr at X = 32.8 nm have been demonstrated [10]. Amplification has been
also observed in the 2-1 transition in H-like Lilll by collisional recombination at X = 13.5
nm [11]. However, in spite of the relatively high repetition rate, which can be reached
due to the low energy of the pumping laser pulse the energy/pulse of the X-ray beam
results, up to now, to be modest ( = 10-20 nJ) [3-4].
In 1994, the demonstration of a capillary discharge pumped soft X-ray by J.J. Rocca et al.
[12] at 46.9 nm in Ne-like Ar, really opened the possibility of a concrete realization of
efficient, compact and high repetition rate soft x-ray lasers. In this efficient pumping
scheme, a current flowing through a few mm in diameter and 10-30 cm long capillary
channel, initially filled with gas or a metal vapor creates the active medium. The high
(several tens of kA) and fast (rise time lower than 50 ns) current pulse, compresses the
plasma column towards the capillary axis (z-pinch), causing the plasma heating and the
increasing of the electron density. The laser developed by Rocca et al. in Ne-like Ar has
been demonstrated to operate at a repetition rate up to 7 Hz with a mean power of 1 mW
and can give up to » 1 mJ/pulse. Very recently, also other Laboratories [13-15] reported
capillary discharge pumped soft x-ray lasing in Ne-like Ar. Fig. 1 and fig.2 report
respectively the 46.9 nm, = 2 ns long x-ray laser pulse and the saturation of the active
medium obtained in L'Aquila experiment. With this experimental technique, however, it
results still difficult to determine the proper working point to scale to the shorter
wavelength region. Lasing has been reported only at the wavelengths of 52.9 nm and at
60.8 nm respectively in Ne-like Cl and S. The realization of capillary discharge soft X-
ray laser operating at shorter wavelength is still under investigation.
The generation of population inversion by photoionization ie ionizaton by incoherent X-
ray photons has been considered as a possible pumping system to achieve wavelengths
shorter than 1 nm. This scheme (ISPI) requires photon energies at least high enough to
photoionize preferentially the K shells electrons of a considered element while photons
with lower energies must be removed by appropriate filters to avoid pumping of lower
laser level.
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.1!

Figure 1. Intensity of the laser line at two different initial gas pressures: 330 mTorr
(full circles) and 250 mTorr (triangles) as a function of the capillary length.
The gain resulted to be respectively of 1 and 0.7 cm'1.

time(20ns/div)

Figure 2. Time evolution of soft x-rays emitted by the discharge in a 3-mm in
diameter, 20-cm long capillary channel initially filled with 0.32 Torr of Ar.

In the ISPI scheme a broad band X ray pumping source must be used with very high
photon density to get high gain in ASE operation regime as our. The scheme has the
advantage of avoiding a large pumping rate of the lower level and therefore the necessity
of a metastable upper level but unfortunately many competitive processes deplete the
population inversion as auto-ionization, auger effect and collisional ionization of outer
shells. These competitive processes can rapidly quench the gain. Thus the pumping
method must be faster than those competitive processes. This is the reason why ISPI X
ray lasers never have been demonstrated but only proposals have been forwarded in
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particular for low Z elements as, for instance transition of Ne at 1.5 nm by
photoionization of Is electrons of Ne atoms creating a population inversion and gain.
In conclusion, concerning this process we are waiting for ultra-fast very intense laser or
chirped amplification to use the necessary hundred Terawatt ligth pulses as pumping
tools.
Measurements on the spatial coherence of soft X-ray lasers have been done in few
Laboratories. Recently, for a TCE silver 20 uJ, X = 13.9 nm soft X-ray laser, a spatial
coherence length 1,= 100 um was found [16]. Also a 10 uJ output energy soft X-ray Ni-
like Sn laser, at X = 12.0 nm, has been also extensively studied by a double slit
experiment (as almost usually) with a total coherence length 1, = 35 urn at 21cm from the
source. Since 1997 on a capillary discharge pumped table-top laser J.J. Rocca and
coworkers observed a certain degree of coherence of the X-ray beam. Recently, with a
plasma column of 36 cm, they reported [17] a fully coherent (coherence length as big as
the dimension of the source), milliwatt average power laser, with a peak brightness =
21025ph/s mm2mrad20.01%bw.

High order harmonic generation appears to be a promising method for the production of
ultra-short coherent XUV pulses from a compact laser system. In spite of relatively small
number of photons/ harmonic pulse (typically = 105 at 31.8 nm) the spectral brightness
can be very high, due to the extremely short pulse duration and the good spatial
coherence 1022-1023 photons/(A s ster).
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1. Introduction

Rare-earth ion doped ceramic laser materials have recently shown great potential for efficient
microchip or high power lasers. Contrast to popular single-crystal laser materials such as the
single crystal Nd:YAG, ceramic laser materials are easy to be fabricated into large size at
potentially very low cost and readily to be doped with high rare-earth ion concentrations. Mass
production of ceramic laser materials is possible because no sophisticated technique and
expensive equipment are needed, compared with what are involved in the single-crystal growth
and subsequent fabrication. The first part of this lecture reviews some recent work done by
others on rare-earth ion doped ceramic laser materials, and the second part reviews some work
done by the author and her collaborators on a new kind of ceramic materials which have great
potentials and unique features in laser applications.

2. Nd doped Ceramic YAG

The average grain size of the Nd:YAG ceramics was about 10 |̂ m.
Highly efficient solid-state lasers are very important for many technologically important
applications, such as remote sensing, communications, and target recognition. Since the single
crystal Nd-doped Y3Al50i2 (Nd:YAG) laser material was first fabricated by Guesic et al.[1] in
1964, progress in the fabrication technique, the Czochralski (Cz) method, has rapidly improved
its optical quality. Single crystal Nd:YAG lasers have been applied with remarkable success to
various fields. But it is extremely difficult to grow large size and dope more than 1 at.% of Nd
homogeneously as a luminescent element in a single crystal YAG, because the effective
segregation coefficient of Nd for the host material is 0.2, thus limiting its possibility for high
power and highly efficient lasers. However, a recent breakthrough in the solid-state laser
material made of transparent poly crystalline YAG ceramics brought a new hope to the
community of high-power and high-efficiency lasers and microchip lasers.

In 1995 the first transparent Nd:YAG ceramic laser was obtained [21 with a slope
efficiency of 28%, pumped by a 600 mW laser diode (end pumping scheme). In this work,
fabrication of transparent Nd.YAG ceramics was started with powders of AI2O3, Y2O3, and
Nd2O3 of less than 2u,m particle size, followed by hot press.

Since then, the ceramic formation process and sintering process have been optimized.
The first high-power CW ceramic Nd:YAG laser [3J was demonstrated in 2000, with a laser
output power of 31 W because of the successful fabrication of highly transparent, high-quality
ceramic Nd:YAG. The Nd:YAG ceramic rod was pumped by 808nm laser diodes of a total
power with a grain-boundary width of less than lnm. The porosity level was at lppm level.
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Such low porosity level and narrow boundary width ensured very low scattering loss inside the
rod. Recently, in December 2003, ceramic Nd: YAG lasers achieved high output power of more
than 1 kilowatt.[4]

Laser characteristics of Nd:YAG ceramics were shown to be equivalent or far superior
to those of high-quality Nd:YAG single crystals. Ceramic lasers have a combination of
properties of both glass and single-crystal. Compared to single-crystal YAG's, ceramics are
much easier to fabricate, less expensive, readily increased in size, and suited for mass production.
Most importantly, the rare-earth-ion doping concentration, hence the lasing efficiency in ceramics,
could be much higher than that in a single crystal. Ceramic lasers with as high as 5 at.% Nd have
been successfully demonstrated. Shown in Fig. 1 and Fig. 2 are comparisons of absorption
coefficients and laser characteristics between the 1.0 at.% Nd:YAG single crystal and 4.8 at.%
Nd:YAG polycrystalline ceramic. Clearly, the highly doped ceramic Nd:YAG has higher

o

!•6

1.0at%Nd:YAG Single Crystal

840

Wavelength (nm)

Fig.1. Absorption spectra for (a) the single crystal 1.0 at.%
Nd:YAG and (b) the ceramic 4.8 at.% Nd:YAG between 780 and
840 nm.

300 400 500 600 700 800

Incident Pumping Power (mW)

Fig.2. Microchip laser characteristics of the single crystal
1 at.% Nd.YAG and the ceramic Nd heavily-doped YAG.
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TABLE 1. Comparison of physical properties of polycrystalline YAG ceramics
sintered at 1800°C with YAG single crystal grown by the Czochralski method.

Bulk density (g/cm3)

Vickers hardness (Gpa)

Refractive index c)

Polycrystalline

4.55

12.8

1.81

Thermal conductivity (J/cm-Cs)b)

at 20 °C

at 200 °C

at 600 °C

0.105

0.067

0.046

Single Crystal

4.55

12.6 a)

1.81 a)

0.107 a)

0.067 a)

0.046a)

a) Measured at <111> orientation.

b) Measured by laser flash method.

c) Measured by ellipsometer.

TABLE 2. Comparison of absorption coefficients of Nd:YAG ceramics
at different Nd concentrations, along with the 0.9% Nd:YAG
single crystal.

Material

Single
Crystal
YAG

Ceramic
YAG

Nd concentration

(at.%)

0.9

1.1

2.4

4.8

9.1

Absorption
Coefficient

(cm"1)

3.45

2.45

4.9

11.7

32.6

Wavelength

(nm)

808.3

808.3

808.3

808.3

808.3
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absorption coefficient and higher overall laser efficiency. Table 1 shows comparative
data for both ceramic YAG and single crystal YAG on bulk density, Vickers hardness, refractive
index, and thermal conductivity. These values show excellent agreement with each other. [51

Table 2 shows the comparisons of absorption coefficients at 808nm of the ceramic Nd:YAG at
different Nd concentrations ranging from 1 to 9% along with corresponding information of a
single crystal Nd:YAG. The maximum output power of the 4.8% Nd:YAG ceramic laser was 3
times higher than the conventional single crystal Nd:YAG because the ceramic YAG has four
times higher Nd ion concentration than the 0.9% Nd:YAG single crystal.'51

3. New Lead-based Ceramic Laser Materials

The author and her collaborators have been working on a new, highly transparent electro-optic
ceramic material, Er^-doped Pb^LaxZryTii.yOs (EnPLZT) fabricated by Boston Applied
Technologies, Inc. Since the host material (PLZT of some special compositions) has excellent
transparency in a wide optical window as shown in Fig.3 (29% of the optical loss in the visible
region is resulted from surface reflection which can be eliminated by proper anti-reflection
coating). PLZT has exceptionally high electro-optic (EO) effect, which has been successfully
used for a variety of optical devices in telecommunications. The EO-based laser material would
have unique features
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Fig.3. Transmission spectral of PLZT, where 29% of optical loss
in the visible region is resulted from surface reflection, which
can be eliminated by proper anti-reflection coating.

in phase and mode self-modulation that will lead to a revolutionary laser system of higher
efficiency, more compactness, and integrated multi-functions. Our optical property study of this
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new electro-optical ceramic material Er-doped PLZT is reviewed in this second part of the
lecture. Our work provides crucial information in its promising applications in new optical
devices including microchip and high-power ceramic lasers.

3.1. MATERIAL

PLZT is fabricated into a transparent ceramic based on the perovskite structure of ABO3
 [61,

formulated as (Pb,La)(Zr,Ti)O3, where Pb2+ and La3+ ions occupy A sites while Zr4+ and Ti4+ are
at B sites. From our research, it is believed that the Er3* and Yb3+ doping ions take B-sites in the
2%Er doped PLZT and 0.5%Er-2.5%Yb co-doped PLZT - two transparent ceramic samples
reported here. This kind of ceramic materials shows polycrystalline structure with the average
grain size in micrometer range and grain boundary width in nanometer. Fig.4 is a picture of a
typical sample, which shows an average grain size of 10|im. This work was focused on optical
and photoluminescence studies of the Er3+ ions in these two new materials with a particular
attention to the effect of Er3+ concentration and addition of the Yb3+ ion. Co-doping Yb3+ is for
the purpose of increasing the absorption of pump light. The wavelength of the pump light has to
match the Yb3+ energy level in near infrared and to one of the Er3+ levels in order for Yb3+ to be a
useful ion to increase absorption strength.

The Er doped and Er-Yb co-doped PLZT were fabricated by means of pressure assisted
sintering (PAS). Powders with proper Er or Er-Yb / PLZT stoichiometry were cold-pressed into
a pre-form of a 2 - 4 inch diameter. The cold pressed slug was then subjected to a high
temperature (1100-1300°C) and high pressure (up to 2500 psi), sintering under an oxygen
atmosphere in an HP22-0614 SC hot press system. The completed slug, which was transparent,
was then cut and polished into wafers or cubes for various studies.

Fig.4. Picture of a typical Er-doped PLZT sample.
The average grain size is 6u.
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3.2. EXPERIMENTAL

For absorption measurement, a Perkin Elmer Spectrophotometer and Ocean Optics Fiber Optic
Spectrometer were used. For photoluminescence measurement, the sample was excited by a
diode laser at ~800 nm or -970 nm or an Ar laser at ~488 nm ( all in multimode). Luminescence
emitted by the sample was observed at 90° with respect to the axis of the excitation laser beam
and analyzed by a 1-m McPherson Model 2051 (f/8.7) high resolution, coma free, scanning
monochromator with a grating of 600/mm, blazed at 1.25jx. The monochromator provided a
resolution of 0.8 A at 50 |im slit widths and had a wavelength reproducibility of 0.1 A.

An appropriate long-pass filter was used between the sample and the monochromator
entrance to prevent scattering of the pump laser light from getting into the monochromator.
Photoluminescence (PL) from the sample was modulated at a frequency of 250Hz before entering
the entrance slit. A PbS detector was used at the exit of the monochromator to convert the PL
signal to electrical, which was then amplified by a lock-in amplifier and recorded by a computer.
The sample was mounted on a cold finger of a Closed Cycle Refrigerator in order to change the
temperature from 25 to 300K, controlled by a Lake Shore Model 805 temperature controller.

3.3. EXPERIMENTAL RESULTS AND DISCUSSIONS

Absorption and photoluminescence (PL) spectra were investigated under different conditions, for
example, different pump laser wavelengths, for the 2%Er:PLZT and 0.5%Er-2.5%Yb:PLZT
ceramics. Shown in Fig. 5 are absorption spectra of these two samples at room temperature. In
order to separate the spectra for better viewing, the curve of the Er-Yb co-doped sample is shifted
up by 1 unit. Shown in Fig.6 are PL spectra of the samples in the 1550 nm region under a -800
nm diode laser pump at. The PL in the same spectral region pumped by a -970 nm laser diode is
shown in Fig.7. PL spectra at different temperatures ranging from 25 to 300K were also
measured. Fig.8 shows PL of the 2%Er:PLZT from 940 to 1760 nm at 25K and 300K, while
Fig.9 shows PL spectra of 0.5%Er-2.5%Yb:PLZT at 28K and 300K. Note that all the PL spectra
shown here have not been corrected for equipment's non-uniform intensity response to different
wavelengths.

From results shown in Figs.5-9, some observations, conclusions, and comments can be
made as follows.

1) The Er3+ and Yb3+ energy levels in solids are shown in Fig. 10 as a reference. The
bottom curve in Fig.5 shows absorption lines that are due to following Er3* 's energy manifolds:

4S3/2 and 2Hu/2 -520 nm (strongest)
4F9/2 660 nm (weak)
4I9/2 800 nm (weakest)
\ m -990 nm (weak)
4113/2 1560 nm (medium-strong)
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Fig.5. Absorbance spectra of 2%Er:PLZT and
0.5%Er-2.5%Yb:PLZT at room temperature.

3

I

3

2

Photoluminescence
~800nm pump

-1

1350

-0.5%Er,2.5%Yb:PLZT

2%Er: PLZT

2%Er:PLZT

0.5%Er, 2.5%Yb : PLZT

1450 1550 1650

Wavelength (nm)
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Fig.7. Photoluminescence spectra of the same samples
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Fig.9. Photoluminescence spectra of 0.5%Er-2.5%Yb:PLZT at
28K and 300K under -800 nm excitation.

Comparing the two absorbance spectra in Fig.5, one can see absorbance at -520 nm, -660 nm,
and -1560 nm is higher in 2%Er:PLZT (the lower curve) than in 0.5%Er, 2.5%Yb:PLZT. It is
obviously due to higher Er34 concentration in the 2%-Er sample. One exception is that the
absorbance in the 900-1 lOOnm region is higher in the sample of lower Er concentration (0.5%),
as shown in the top curve. One logic explanation is that, in the absorbance spectrum of 0.5%Er-
2.5%Yb:PLZT, Yb3+ contributes to the absorption lines at ~920nm and ~990nm groups due to its
2F5/2 manifold, together with weak Er3+absorption in the two groups.

2) PL in the 1550 nm region is due to transition from 4I,3/2 to 4I15/2 in Er3+. We believe that Yb3+

results in similar PL intensity for both the 2%Er and 0.5%Er doped samples, as shown in Fig.7,
when pumped by the -970 nm diode laser. Yb3+ in 0.5%Er-2.5%Yb:PLZT can absorb the pump
photon energy efficiently through its 2F5/2 manifold (because its energy matches the pump photon
energy), and then this absorbed energy can be transferred to the Er3* ion's 4 I n / 2 manifold for it has
very similar energy to the 2F5/2 of Yb3+ (see Fig. 10).

3) Since 2F5/2 is Yb3+ 's only manifold, corresponding to the 900-1 lOOnm wavelength
range, it cannot assist in absorbing pump energy if the sample is pumped by a ~800 nm diode
laser because of a large energy mismatch. In this case, the Er3+ concentration has to be the key
factor to determine PL intensity. As shown in Fig.6, the PL spectrum of the 2%Er-doped PLZT's
has about four times the intensity of the 0.5%Er-doped sample, matching the ratio of the two Er
concentrations (2%/0.5% = 4). We also observed similar behavior when the samples were
pumped by an Ar laser at ~488nm. (But it should be keep in mind that doping Er3+ beyond a
certain concentration level would cause PL quenching, instead of increasing, due to too much
energy migration.)
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Fig. 10. Energy level diagrams of Er3+ and Yb3+ in solids

4) In Figs.8 and 9, two groups of PL peaks are due to 4I1I/2 -> 4I|5/2 (-1000 nm) and 4I13/2
-> 4Ii5/2 (-1550 nm) transitions of the Er ions, pumped by a -800 nm diode laser. We can see
that the overall PL intensity for both samples decreases with temperature. There is, however, one
difference between Fig.8 and Fig.9: the ratio of PL intensity at -1000 nm to that at -1550 nm in
the 0.5%Er-doped PLZT (Fig.9) increases with temperature; this behavior does not show up in
the 2%Er-doped PLZT sample. It is probably due to faster increase with temperature in
upconversion [7][81 in the 0.5% sample from the 4I13/2 level to higher levels than from the 4IU/2

level.

5) Strong green luminescence (~550nm) was observed in both the 2%Er-doped PLZT and
the 0.5%Er-2.5%Yb-codoped PLZT under either -800 nm or -970 nm pump. The observed
green luminescence is due to upconversion energy transfer processes.'91 Efficient upconversion
in these materials is good for their possible applications in diode-pumped upcoversion lasers, but
is undesirable for their potential applications in the 980 or 1550 nm laser. In order to make these
materials efficient for the 980 or 1550 nm laser, the upconversion processes need to be greatly
reduced either from material engineering or by selecting a pump laser at other wavelengths, such
as 1480 nm.
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3.4. CONCLUSIONS

We have investigated optical properties of the novel, highly transparent, electro-optic ceramics,
2%Er:PLZT and 0.5%Er-2.5%Yb:PLZT, developed by Boston Applied Technologies, Inc.
Strong photoluminescence in these two ceramics in the 1550nm region was obtained when
pumped by diode lasers either at -970 nm or -800 nm. We also observed efficient green
upconversion luminescence. Absorption and PL spectra show the advantage of using Yb3+ for
enhancing Er^ emission in the 155Onm region. This work shows promising future for
developing microchip and high power ceramic lasers using Er-doped PLZT ceramics.
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4. Summary

This lecture reviewed an exciting area of developing transparent ceramic laser materials for
microchip and high-power lasers with high efficiency, focusing on recent breakthrough of
ceramic Nd:YAG lasers and a new type of highly transparent ceramic material - Er-doped PLZT.
Er-doped PLZT has exceptionally high electro-optic effect that can allow unique features in
phase and mode self-modulation and lead to a revolutionary laser system of higher efficiency,
more compactness, and integrated multi-functions.
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25. SHORT SEMINARS

CONFOCAL FLUORESCENCE AND RAMAN MICROSCOPY OF
FEMTOSECOND LASER-MODIFIED FUSED SILICA

Wilbur J. Reichman, James W. Chan, and Denise M. Krol
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Confocal fluorescence and Raman microscopy were used to probe for spatial variations in
defect concentration and glass structure across femtosecond (fs) laser-modified lines in
fused silica. Modified lines were written with 130 fs laser pulses from an amplified Ti-
sapphire laser operating at 800 nm at a repetition rate of 1 KHz. The sample was scanned at
20 um/s with laser pulse energies ranging from 1 to 35 uJ, resulting in modified lines with
diameters ranging from 8 to 40 um. The fluorescence intensity decreased with increasing
distance from line center, indicating a greater concentration of non-bridging oxygen hole
center defects near the line center. The Raman intensity increased with increasing distance
from line center. No significant variations in the concentration of 3- and 4-membered ring
structures were observed.

OPTICAL CHARACTERIZATION OF QUANTUM DOTS

Francisco Rafael Leon, Denis M. Krol, and Thomas Huser
Univ. of California at Davis, Department of Applied Science, Livermore, CA 94550 USA

Semiconductor nanocrystals have optical properties, which depend on their composition,
size and surface structure. In such structures, exciton confinement leads to size-dependent
excitation and emission spectra and they are therefore often called "quantum dots."
Because of this size-tunable optical behavior, colloidally-grown quantum dots have
possible applications as fluorescent markers for biological imaging and tags for the
detection of biomolecules. Fluorescence lifetime and quantum efficiency are also
important optical characteristics. By using a scanning confocal microscope with chromatic
and temporally-resolved detection systems, we will observe how the properties of single
quantum dots vary with synthesis technique. In addition, we hope to correlate these
observations with size measurements obtained via AFM and bond resonance data obtained
using SERS. In collaboration with a quantum simulation team and crystal growers, our goal
is to understand how to tune the optical properties of quantum dots in order to make them a
viable tool for biologists.
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NEW PHOSPHORS FOR ULTRAVIOLET EXCITATION

P. Vergeer and A. Meijerink
Debye Institute, Utrecht University, Princetonplein 1 Utrecht, THE NETHERLANDS

Finding new phosphors for vacuum ultraviolet excitation sources is important for the
development of efficient mercury free fluorescent tubes and plasma display panels [1]. The
main drawback of these phosphors is the energy loss when one vacuum ultra violet (VUV)
photon is converted into one visible photon. To solve this problem the process of down
conversion [2], where for each VUV photon absorbed two visible photons are generated, is

3+ 2+

being studied. Here the possibility of down conversion via energy transfer in the Pr -Mn
3+ 3 +

and the Pr -Eu couples is reported. Contrary to what is predicted theoretically, down
3+ 2+

conversion between Pr and Mn is not observed. Also Zachau et. al. [3] observed no

energy transfer for Pr3+ and Eu3+. Upon excitation of the SQ level of Pr indeed no Eu

emission is observed. This is however not due the absence of energy transfer, but to
3+

quenching. To investigate the quenching mechanism samples of YF3:Pr co-doped with
3+ 1

Yb were studied and found to also show quenching of the So emission. This indicates
that the quenching occurs via a metal-to-metal charge transfer state.

1. T. Justel, H. Nikol and C. Ronda, Angewandte Chemie International Edition 37 (1998)
3084.
2. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283 (1999) 663.3. M.
Zachau, F. Zwaschka and F. Kummer, Proceedings - Electrochemical Society 97-29,
edited by C. Ronda and T. Welker, (1998) 314.

MAIN TOPICS OF INTERESTS IN THE AREA OF LUMINESCENCE
MATERIALS

Artur Bednarkiewicz and Dariusz Hreniak
Inst. for Low Temp, and Structure Research, Polish Acad. of Sci., Wroclaw, POLAND

This talk had the purpose of presenting to the participants the activities that are taking place
in the Institute for Low Temperature and Structure Research of the Polish Academy of
Sciences. The Institute is located in Wroclaw, Poland.
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INTERACTION OF FEMTOSECOND PULSES WITH TRANSPARENT
MATERIALS

Rafael Gattass and Iva Maxwell
Harvard University - Gordon McKay Lab, Cambridge, MA 02138 USA

In this talk we presented an overview of femtosecond microstructuring of transparent
materials. Bulk structuring of transparent materials can be achieved by focusing high-
intensity femtosecond pulses. The morphology of the structures depends on the incident
energy per pulse and on the focusing conditions. At high focusing conditions the damage
threshold in silicate glasses is just a few nanojoules. This energy range is available from an
oscillator.

We demonstrated laser writing of embedded waveguides in silicate glasses with a
femtosecond oscillator. Laser machining at high laser repetition rate results in a cumulative
thermal mechanism of material modification which leads to structural index of refraction
changes beyond the focal volume. The cross-sectional index profile of the fabricated
structure depends on the number laser pulses irradiated.

We presented a parametric study of the role of the laser repetition rate in the size of the
machined structures. We identify two distinct regimes of processing in the kHz to MHz
range. As the time interval between pulses is reduced, we observe a transition from a
repetitive modification process (identical to what is frequently called multiple shot
damage) to a cumulative thermal mechanism. In the repetitive regime, each pulse acts
independently and the energy deposited diffuses out of the focal volume before the next
pulse arrives. In the cumulative thermal regime, the heat deposited is additive and leads to
structures of significantly different morphology whose size increases dramatically with the
decrease of the time interval between pulses.

ULTRAFAST PHASE TRANSITIONS IN SOLIDS

Maria Kandyla
Harvard University - Gordon McKay Lab, Cambridge, MA 02138 USA

In this talk we presented the coherent excitation and coherent control of the Al phonon
mode in Te. First, the underlying theory about the excitation of the Al phonon mode and
only this in a certain class of materials is discussed. The theory, called Displacive
Excitation of Coherent Phonons (DECP), predicts the excitation of the Al phonon mode as
a result of electronic excitation following absorption of an ultrashort laser pulse by the
material. Since there is no symmetry breaking mechanism in the electronic excitation
through absorption the effect can only be encountered in materials which possess the
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symmetry preserving, breathing Al phonon mode. Earlier experiments which demonstrate
the effect on Te, Sb, Ti2O3 and Bi are presented.

Next, our results on the excitation of Al phonons in Te were discussed. We excite Te with
an amplified femtosecond laser pulse and therefore promote a significant amount of
electrons from bonding to antibonding states. The Al phonon mode is excited with a large
amplitude of ion oscillations and the bandstructure of the material is altered considerably.
Our results exhibit a band crossing taking place in Te hundreds of femtoseconds after the
excitation. The indirect band gap of Te collapses and the material undergoes a
semiconductor to semimetal transition. As the oscillations of the ions continue and the ions
move toward their equilibrium position the material recovers its bandgap. The oscillations
have a frequency of about 3.6 THz, too fast to give time to the material to exhibit a metallic
behavior while it is in the crossed bands state. We have been working on a double pump
experiment which will allow us to stabilize the bandstructure in the semimetallic state for
times much grater than before and therefore study the response of the material under this
transition. Our most recent results on this coherent control were presented.

RELAXATION PATHWAYS FROM ELECTRONIC EXCITED STATES OF
OXYGEN DEFICIENT CENTERS IN GE-DOPED SILICA

A. Cannizzo and M. Leone
Dipartimento di Scienze Fisiche ed Astronomiche, Univ. di Palermo, Palermo, ITALY

Ge-doped amorphous silica (a-SiO2) is a material of large interest due to its application in
technological devices. Much interest arises from its enhanced photosensitivity that enables
to realize on fiber optical devices as Bragg gratings, filters and mirrors [1]. This
photosensitivity has been connected to the presence of oxygen deficient centers (ODC).
They are characterized by the so-called optical B-type activity, which is constituted by an
absorption band centered at 5.1-5.4 eV and two related emission bands: a singlet-singlet
transition at 4.2-4.3 eV and a triplet-singlet transition at 3.0-3.2 eV named ocE and p,
respectively [2, 3]. The involved excited singlet and triplet states are strongly connected via
an intersystem crossing (ISC) process with a typical rate of 2xl09sec"' at 300 K, which
shows a great dependence on temperature, [1,4] revealing a strong defect-lattice coupling.
This luminescence activity can be excited also in the vacuum ultraviolet (v-UV) range
around 7.4 eV. Many works were dedicated to the study of the ISC process in the
ultraviolet (UV) excitation range, but poor attention was devoted to the v-UV excitation
range, in order to investigate the defect-lattice coupling in higher excited electronic states.
We reported an experimental investigation of the emission spectra and of fluorescence time
decay of the B-type activity exciting in the v-UV and in the UV range, at room temperature
and at 10 K. We have found that, exciting in the v-UV range, the triplet population is 100
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times greater than exciting in the UV. We rationalize this result hypothesizing the presence
of ISC processes characterized by rates faster than 1010~10n sec"1.

1. G. Pacchioni, L. Skuja and D.L. Griscom, Defects in SiC>2 and related dielectrics:
Science and Technology (Kluwer Academic Publishers, Dordrecht, 2000).
2. V.B.Neustruev, J. Phys. Cond. Matter 6, 6901 (1994).
3. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998).
4. M. Leone, S. Agnello, R. Boscaino, M. Cannas and F. M. Gelardi Phys. Rev. B 60,
11475(1999).

DETECTING QUANTUM SIGNATURES IN THE DYNAMICS OF
TRAPPED IONS

A. Militello, A. Napoli and A. Messina
Dipartimento di Scienze Fisiche ed Astronomiche, Univ. di Palermo, Palermo, ITALY

Trapped ions provide the possibility of observing interesting quantum dynamical features
of a few bosonic-fermionic degrees of freedom quantum system. Such a kind of confined
particles may indeed be thought of as a composition of a one-, two- or three-dimensional
harmonic oscillator and a one-half spin system. Laser-driving the ion with suitable
configurations of classical fields, it is possible to implement a wide class of spin-boson-like
Hamiltonians. Moreover, suitable vibronic interactions and atomic population
measurements via quantum jump techniques provide tools to actually realize some
thomographic procedures [1]. We present here two new proposals for extracting
information concerning the trapped ion centre of mass motion.

The first one allows direct measurement of (in principle) any bosonic operator mean value
[2]. As direct we mean that the expectation value is immediately obtained without complete
reconstruction of the ion motion state. The method is based upon the idea of implementing
a vibronic coupling that induces atomic transitions modulated by the mean value of the
vibrational operator of interest. The procedure, interesting by in its own, reveals to be
useful in detecting some specific nonclassical behaviours of the system.

Our second proposal concerns a technique aimed at directly detecting centre of mass
motion density operator matrix elements, i.e. Fock populations and coherences [3]. The
method is based upon the possibility of implementing a suitable class of unitary
transformations, realizable as sequences of vibronic interactions.
The experimental feasibility of both the methods was briefly discussed.
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1. D.J. Wineland et al., J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998); L.G.Lutterbach
and L.Davidovich, Phys. Rev. Lett. 78 2547 (1997);
2. B.Militello, A.Napoli, A.Messina, Phys. Rev. A 66 23402 (2002)
3. B.Militello, A.Napoli, A.Messina, Proceedings of the Wigner Centennial Conference,
Hungary, Pecs (2002)

NON-EQUILIBRIUM POLARIZATION IN DIELECTRICS AND
RELATED PHENOMENA

V.A. Trepakov
A.F. Ioffe Physical-Technicallnstitute, Russian Acad. of Science -St.-Petersburg, RUSSIA

The purpose of this report is to give a short overview of some relatively new and not
widely known phenomena and accompanying effects that have been recognized and
studied in Ioffe Institute. These phenomena regard a macroscopic or microscopic
polarization appearance under photo- or non-uniform thermal excitation conditions.

As an example of the thermally induced effects, a family of so-called "dielectric
thermoelectric effects" is considered (M. Marvan, V. Gurevich, A. Tagantsev, G.
Smolensky, V. Trepakov, A. Kholkin, see [1] and references therein). These effects are
present in materials of all symmetry classes. They reveal themselves in experiments at
nearly the same conditions as classical thermoelectric effects in conventional
semiconductors and metals, but are caused by polarization responses of the phonon system
to the temperature gradients and related displacement currents. These are
thermopolarization effect (P ~ b d T/d x, which can be re-written also as

P = S^^b^JT = bWT), kinetic "reverse thermopolarization effect" (dielectric

Peltier), and dielectric Thomson effects. The dielectric thermoelectric effects appeared to
be pronounced, especially in highly polarizable media with soft modes and in ferroelectrics
near transition points. The equivalence of the conventional and displacement currents in
respect thermal effects production, which follows from the Maxwell equations, has been
shown to be universal due to dielectric thermoelectric effect observations.

Polarization can also appear under photoexcitation of impurity centers with internal
degrees of freedom (V. Vikhnin, V. Trepakov, [2,3] and references therein). Presence of
the degrees of freedom lead to local configuration instability, and possibility to the
reconstruction of the impurity or defect structure in the excited state. This is accompanied
by very unusual optical properties controlled by defects. As an example, it is shown that
the local configuration instability of the octahedral Cr3* centers in the 2E excited
degenerated state in perovskite-like materials with soft TO phonon modes (KTaO3,
KTaO3:Li,Nb, SrTiO3 and SrTiO3:Mg) leads to very strong and unusual changes in
position and shape of the R zero-phonon (2E —^A^) line of Cr3 v.s. changes in temperature
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and electric filed due to the quadratic multimode Jahn-Teller effect in the excited 2E state.
It has recently been found [3] that not only soft lattice, but also relaxation modes can give a
pronounced contribution and controlled temperature shift of the zero-phonon optical line
shift.

1. V.A. Trepakov, E.T. Rafikov, M. Marvan, L. Jastrabik, N.P. Divin, Europhys.Lett. 21
(1993)891.
2. V.A. Trepakov, L. Jastrabik, S. Kapphan, E. Giulotto, A. Agranat Optical Materials 19
(2002) 13.
3. V. A. Trepakov,, I. B. Kudyk, S. E. Kapphan, M. E. Savinov, A. Pashkin, L. Jastrabik,
A. Tkach, P.M. Vilarinho, A.L. Kholkin, J. of Luminescence, in press.

OPTICAL TRANSITIONS IN QUANTUM NANOSTRUCTURES BASED ON
IONIC MATERIALS

O. Proshina, I. Ipatova, and A. Maslov,
A.F. Ioffe Physical-Technical Institute, Russian Acad. of Science -St.-Petersburg, RUSSIA

We investigate theoretically optical transitions in quantum nanostructures based on
materials with high ionicity. In case of the strong electron-phonon interaction with
longitudinal optical phonons, the polaron effect results in multiple phonon replicas of the
exciton optical transition line [1], [2]. It was shown that the maximum influence of
electron-phonon interaction on optical spectra occurs in quantum dots.
The exciton states in many semiconductors are degenerate due to the valence band
degeneration. In the approach of Luttinger Hamiltonian the degeneration is classified
according to the angular momentum of hole J(h) = 3/2. We take into account the electron
and hole polarization of the medium in quantum dot based on semiconductor with high
ionicity. The allowed optical transition occurs into the polaron exciton state with the
angular momentum J = 1. The forbidden transition corresponds to J = 2. It is known that
exciton levels differ due to the exchange interaction.
It is shown in our study that in case of a spherical quantum dot, the polaron exciton in the
strong confinement regime creates the anisotropic polarization of the medium.
Nevertheless the polarization does not split the degenerate ground state of the polaron
exciton. The average value of angular momentum component Jz vanishes, <J2> = 0. The
optical light emitted from the spherical dot is not polarized.
The picture is different in a case of ellipsoidal quantum dot. The reduction of symmetry
results in the splitting of size quantization levels of the hole [3]. This splitting depends on
the properties of the material and on the specific of the quantum dot shape. The ground
state of the hole in nonspherical quantum dot is determined by the angular momentum
component Jz

(h) = ±3/2 or jj® = ±1/2. When the hole with an angular momentum
component Jz

(h) = ±3/2 contribute to the exciton transition, the average value of the polaron
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exciton angular momentum component < Jz >= ±1. The light emitted from nonspherical
dot has the specific polarization. The study enables us to make a conclusion on the
quantum dot geometry.

1. LP.Ipatova, A.Yu.Maslov, O.V.Proshina. Europhys. Lett, 53(6), pp. 769-775 (2001)
2. LP.Ipatova, A.Yu.Maslov, O.V.Proshina. Surface Science, 507-510, pp. 598-602
(2002)
3. Al.L.Efros, A.V.Rodina. Phys.Rev. B, 47, p. 10005 (1993)

LEDS MAKE THINGS BETTER

Cees Ronda
Philips GmbH - Forschungslaboratorien - Aachen, GERMANY

The advent of efficiently emitting LEDs in the blue and UV part of the spectrum has
induced quite some work on luminescent materials. In this contribution, I will deal with a
formulation of the requirements, LED phosphors have to fulfill and translate these
requirements into suitable ions and host lattices. Color rendering will be discussed as well.

Application fields and the current state of the art were reviewed in terms of materials
choice and efficiency. New developments were touched upon. The contribution ended with
an outlook.



741

26. POSTERS

PHOTOREFLECTANCE AND LUMINESCENCE MEASUREMENTS OF
GAINNAS/GAAS MULTIPLE QUANTUM WELL STRUCTURES

Andreas Grau, Michael Hetterich, and Claus Klingshirn
Institut fur Angewandte Physik, UniversitSt Karlsruhe, Karlsruhe, GERMANY

In recent years GalnNAs/GaAs has developed to one of the most promising material
systems for the realization of optoelectronic devices emitting in the near infrared at telecom
wavelength. The optical properties of GalnNAs are quite unusual.

Incorporation of only a few percent of nitrogen as for e.g. in InGaAs leads to a strong
bandgap reduction and an increased effective electron mass.

It is now really interesting to find out more about the fundamental parameters of this
material system (e.g. the behaviour of the effective mass with different nitrogen or indium
contents). In this work the results of photoreflectance (PR) and luminescence
measurements at various temperatures were shown.

First the effect of nitrogen on the bandstructure was discussed. In addition to that we
described how one can extract information from PR spectra by fitting procedures and
compare it with theoretical calculations. In particular one can get information about the
coupling parameter CMN , which is important in material systems with nitrogen.

SELF-CONSISTENT CALCULATION OF GROUND AND EXCITED ENERGY
LEVELS OF A DOPED QUANTUM DOT BY A QUANTUM GENERIC
ALGORITHM

Mehmet Sahin, UlfetAtav, and Mehmet Tomak
Selcuk Universitesi Fen-Edebiyat Fakulltesi Fizik Bolumii Kamptis, Konya - TURKEY

In this study, we have theoretically calculated ground and excited energy levels of a doped
quantum dot self-consistently. For this purpose, we have assumed that there are effectively
two energy levels in a modulation doped spherical semiconductor quantum dot (QD) and
we have determined the subband energy levels, corresponding wavefunctions, chemical
potential, and potential profile of the QD. Electrical charge and thermodynamical
equilibrium were also taken into consideration.
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THE WIRES DIRECTION PHOTOCONDUCTIVITY OF GAAS/ALGAAS
QUANTUM WIRES MEASURED ALONG

Miroslav Saraydarov
Dept. of Solid State Physics and Microelectronics, Sofia University Sofia, BULGARIA

A new photoconductivity (PC) study of undoped GaAs/AlGaAs quantum wires (Q WRs) is
carried out measuring the PC along the wires direction. The PC spectrum reveals several
peak structures, related to the QWRs. This suggestion is confirmed by the observed
dependence of the spectrum on the exciting light polarisation and by photoluminescence
and photoluminescence excitation measurements on a similar sample. A long pre-
illumination of the sample with infrared light (hn = 1.18 eV) is found to reduce
considerably the substrate related background in the PC spectrum, which makes the QWR
structures better manifested.

HIGH EXCITATION SPECTROSCOPY OF ZnO

H. Priller, J. Bruckner, Th. Gruber, C. Klingshirn, H. Kali, and A. Waag
Institut fur Angewandte Physik, Universitat Karlsruhe, Karlsruhe, GERMANY

We investigated ZnO epitaxial layers grown by MOVPE (Metal Organic Vapor Phase
Epitaxy) techniques. The sample was grown on sapphire with a GaN buffer layer (60 nm)
and a ZnO layer with a thickness of 400 nm.

The cw (continuous wave) luminescence experiments were carried out under excitation
with the 325 nm line of a HeCd laser. For the reflection measurements we used a 150 W
Xenon lamp. High excitation measurements were carried out with an Excimer Laser (308
nm, 15 ns pulse duration).

At medium excitation intensities exciton-exciton scattering with a super linear increase of
the luminescence was observed. At higher intensities a new, broad band appeared between
the bound exciton emission and the P band emission. This band strongly shifts to lower
energies with the excitation intensity even below the P band. This band is attributed to the
formation of an electron hole plasma, which leads to stimulated emission at a lower energy
with a super linear increase, and a spectral narrowing of the emission.

Measurement of the gain with the variable stripe length method also showed stimulated
emission.
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PROPERTIES OF PECVD a-SiOx:H FILMS

A. 0. Kodolbas, A. Bacioglu, and O. Oktu
Hacettepe University, Faculty of Engineering, Dept.of Physics Eng. Ankara,TURKEY

Hydrogenated amorphous silicon-oxygen alloy (a-SiOx:H) films were deposited by RF
glow-discharge decomposition of SiH4+CO2 gas mixture at a substrate temperature of
300°C. Optical band gap of the samples can be tuned between 1.65 and 2.73 eV by varying
the oxygen content
from 4.5 to 64.2 at. %. While, both room temperature photo and dark conductivity
decreases with oxygen alloying, for oxygen content below 15 at. % measured
conductivities are comparable to those of unalloyed a-Si:H. In contrast, deep defect density
and Urbach parameter continuously increases with oxygen alloying.

OPTICAL INVESTIGATION OF SPIN INJECTION INTO OPTICALLY ACTIVE
NANOSTRUCTURES

Daniel Troendle, Robert Hauschild, Hendrik Burger, and Heinz Kalt
Institut fur Angewandte Physik, Universitat Karlsruhe, Karlsruhe, GERMANY

In the past years the spin degree of freedom has become subject of substantial interest.
Especially spin-based quantum information processing (spintronics) appears to be quite
promising. Major challenges on the way to make a spin-based electronic device possible
are the preparation of spin-polarized carriers and their injection into semiconductors, the
transport of spins, the storage of spin information, and its coherent manipulation.

In our project we plan to use a micro-Photoluminescence setup inside a 14T Magnet to
investigate GalnNAs/GaAs quantum dots with a ZnMnSe spin aligner. In this poster we
presented the recently obtained first spin dependent measurements done on a well
characterized ZnCdSe/ZnSe quantum well sample which is used for confirmation purpose
of the system functionality. Besides we presented information about other experimental
techniques available in our labs.

ULTRAFAST PHASE TRANSITIONS IN SOLIDS

Maria Kandyla

Harvard University - Gordon McKay Lab, Cambridge, MA 02138 USA
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In this talk we presented the coherent excitation and coherent control of the Al phonon
mode in Te. First, the underlying theory about the excitation of the Al phonon mode and
only this in a certain class of materials was discussed. The theory, called Displacive
Excitation of Coherent Phonons (DECP), predicts the excitation of the Al phonon mode as
a result of electronic excitation following absorption of an ultrashort laser pulse by the
material. Since there is no symmetry breaking mechanism in the electronic excitation
through absorption the effect can only be encountered in materials which possess the
symmetry preserving, breathing Al phonon mode. Earlier experiments which demonstrate
the effect on Te, Sb, Ti2O3 and Bi were presented.
Next, our results on the excitation of Al phonons in Te were discussed. We excited Te with
an amplified femtosecond laser pulse and therefore promoted a significant amount of
electrons from bonding to antibonding states. The Al phonon mode was excited with a
large amplitude of ion oscillations and the bandstructure of the material was altered
considerably. Our results exhibited a band crossing taking place in Te hundreds of
femtoseconds after the excitation. The indirect band gap of Te collapses and the material
undergoes a semiconductor to semimetal transition. As the oscillations of the ions continue
and the ions move toward their equilibrium position the material recovers its bandgap. The
oscillations have a frequency of about 3.6 THz, too fast to give time to the material to
exhibit a metallic behaviour while it is in the crossed bands state. We have been working
on a double pump experiment which will allow us to stabilize the bandstructure in the
semimetallic state for times much greater than before and therefore study the response of
the material under this transition. Our most recent results on this coherent control were
presented.

STIMULATED EMISSION OF Nd0 5La0 SAIJCBOJ^ RANDOM LASER AND THE
THRESHOLD CONDITIONS FOR LARGE AND SMALL PUMPING REGIMES

K. J. Morris, M. Bahoura, G. Zhu, andM. A. Noginov
Norfolk State University, Center for Materials Research, Norfolk, VA 23504, USA

We have studied stimulated emission in Ndo.sLao.sA^BOs^ ceramic random laser in a
broad range of pumped spot diameters d. The developed heuristic model adequately
describes the dependence of threshold pumping energy density versus d at d > 150um. At
small pumping beam diameter (c?<100um), a very bright and strongly localized emission
was observed in the center of the pumped area. At the appearance of the bright-spot, no
lasing could be achieved. The spectrum of the bright-spot emission is not the spectrum of
Nd3+ emission.
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SPECTROSCOPY AND OPTICAL MICROSCOPY WITH NANO-LOCAL LIGHT
SOURCES

Jinquan Liu, Andrea Callegari, Jerome Morville, Dino Tonti,Awos Alsalman, and Majed
Chergui
LSUPC, ICMB,Faculte des Sciences de Base, BSP Ecole Polytech. FeU de Lausanne
Lausanne-Dorigny, SWITZERLAND

Instead of using only near-field light coming out from the fiber aperture as the source in
normal scanning near-field optical microscopy (SNOM), we are developing two version of
apertureless scanning near-field microscopy (A-SNOM) with a probe (a molecule or a
nanocrystal) attached to the fiber tip.

By using the probe attached on the fiber tip, we can measure the fluorescence spectra
induced by resonant energy transfer from the donor probe to the acceptor (sample).
Furthermore, gating fluorescence with pulsed laser, we can reduce the scattered light
substantially, get rid of donor fluorescence, and even study time resolved spectra. By
attaching a sharp metal nanocrystal to the fiber tip, we can implement a tunable light source
with high enhancement and spatial confinement of optical field. Spectroscopic
investigation of the sample using sum frequency generation with pulsed lasers offers the
possibility of time-resolved pump-probe experiments.

THE SIZE-EFFECT AND PHASE TRANSITIONS-EFFECT ON LUMINESCENCE
PROPERTIES OF BaTiO3:Eu3+NANOCRYSTALLITES PREPARED BY THE SOL-
GEL METHOD

D. Hreniak, W. Strek, G. Boulon, and R. Pqzik
Inst. for Low Temp, and Structure Research Polish Acad. of Sci., Wroclaw, POLAND

The effect of sintering temperature on optical properties of Eu3+:BaTi03 nanocrystallites
was investigated. The emission spectra and luminescence decays measurements were
performed. The strong attention was paid on the effects of grain size and concentration of
active ions on emission properties of Eu3+:BaTiO3 nanocrystallites and strong correlation of
grain sizes and luminescence properties of Eu3+ was found. To explain these differences a
detail analysis of luminescence spectra has been performed. It is well known that the
intensity parameters Q2,Q.4 and Q4 of the Judd-Ofelt theory [1,2] well characterize the
emission yields of RE ions. The intensity parameters Q2 and Q4 have been determined from
photoluminescence spectra following the method described recently by Kodaira et al [3].

1. B. R. Judd, Phys. Rev. 127 (1962).
2. G. S. Ofelt, J. Chem. Phys. 37 (1962) 511.
3. C.A. Kodaira, H.F. Brito, O.L. Malta, O.A. Serra, J. Luminescence 101 (2003)11.
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ENERGY TRANSFER IN Nd3+ and Yb3+ DODOPED NANOMETRIC YAG
CERAMICS

Artur Bednarkiewicz and Wieslaw Strek
Inst. for Low Temp, and Structure Research Polish Acad. of Sci., Wroclaw, POLAND

Spectroscopic properties of Yb3+ and Nd3+ co-doped Y3A15O12 nanocrystallites were
studied. The mechanisms of cooperative interaction responsible for the Nd3+-»Yb3+ energy
transfer, which was observed for all grains sizes, were discussed. In the case of smaller
grains (with diameter ~15nm) Yb3+->Nd3+ energy transfer, orange in color 'hot' anti-Stokes
emission of Nd3+ ions was also observed. Regarding energy level scheme of the ions, the
anti-Stokes emission is not obvious. However this luminescence was observed and bands
were prescribed to energy levels of neodymium ions. The power dependence measurements
carried, gave sequentially increasing order of the anti-Stokes process numbers vs. the
energy of emitting level of Nd3+ ion. Moreover the relation was linear. This suggests 4F3/2

level of neodymium to be the starting level for multiphonon assisted energy transfer. Due
to low probability of the processes with high orders, another hypothesis was put
considering sequential excitation of lower laying Nd3+ levels (4Ij where J=l 1/2, 13/2, 15/2).
Also long rise-times (of the order of seconds) of the observed Nd3+ emission stand behind
the second hypothesis. The larger grains doped with Nd and Yb ions do not exhibit
Nd->Yb energy transfer. We explain the observed behavior due to differences in thermal
energy dissipation abilities of grains with different sizes during CW pumping. The
experiments allowed us to support the thesis about influence of grain size onto the
luminescence properties of rare-earth doped materials.

ENVIRONMENT AND SHAPE EFFECTS ON DYNAMICS OF CdSe
NANOCRYSTALS: COMPARING QUANTUM DOTS AND RODS

Camilla Bonati, Mona Mohamed, Dino Tonti, Jinquan Liu, and Majed Chergui
LSUPC, ICMB,Faculte des Sciences de Base, BSP Ecole Polytech. Fed. de Lausanne
Lausanne-Dorigny, SWITZERLAND

Semiconductor nanocrystals present tunable optical properties due to the effects of
quantum confinement, and therefore are appealing structures both for fundamental studies
and applications such as biological labeling, local imaging and designing optoelectronic
devices.

CdSe quantum dots and rods with low size distribution (less than 5%) and high quantum
yield (more than 50%) have been prepared by chemical methods in colloidal solution, and
analyzed in this work by means of fluorescence up-conversion and pump-probe techniques.
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Comparing the dynamics of the relaxation processes of these nanometer-size structures in
different environments (changing both the capping material and the solvent) show that
there is an interaction between the crystals and the surrounding media, depending both on
the surface properties of the semiconductor particle and the polarity of the solvent.

The lack of a complete geometrical symmetry in quantum rods reveal the presence of states
that are not observed in dots of the same size, and that can be related to the degeneracy of
energy levels in the perfectly spherical quantum dots, as confirmed by the dynamics of the
relaxation processes in the two different geometries.

GAMMA AND PROTON IRRADIATION EFFECTS ON KU1 QUARTZ GLASS

M. R. Nemtanu andB. Constantinescu
National Inst. for Lasers, Plasma and Radiation Physics, Bucharest-Magurele, ROMANIA

Studies on gamma and high-energy proton irradiation-induced modifications in ultraviolet
transmission properties on KU1 quartz glass, known to be radiation-resistant, were
presented. It was irradiated at high doses with gamma and high-energy protons (similar to
thermonuclear reactor conditions). The optical transmission components of the future
fusion devices will be expected to maintain their transmission properties under high levels
of ionizing radiation during hundreds of hours. The results confirmed that KU1 quartz glass
is highly resistant and show the modifications in UV transmission varying with irradiation
dose.

FEATURES OF FEMTOSECOND LASER ABLATION OF SOLID TARGETS
M. Vitiello, S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta,
X. Wang, C. Altucci, and C. de Lisio
Dipartimento di Scienze Fisiche, Universita di Napoli "Federico II", Napoli, ITALY

Progress towards the characterization of laser ablation and cluster production by fs laser
pulse irradiation of solid targets of different materials was reported. In particular, we have
employed optical emission spectroscopy (OES) and ion probes for the diagnostics of fs
laser-ablation plume of different materials, in high vacuum. The OES analysis showed the
presence of temporally separated populations in the material blow-off. A first temporal
component was characterized by spectral line emission of the atomic constituents of the
target material, and was observed just after the irradiation of the laser pulse to the target. A
second component , which is much more delayed with respect to the first one, was
characterized by the emission of a structureless continuum spectrum. The continuum
emission has been ascribed to clusters and particles of nanometric size in the plume.
Moreover, the ion probe measurements also showed the presence of a third component due
to high energy ions.
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STUDY OF THE SURFACE OF SrTiO3 SINGLE CRYSTALS BY OPTICAL
SECOND HARMONIC GENERATION

G. Cerrone, L. Marrucci, F. Miletto, D. Paparo, and U. Scotti di Uccio
Dipartimento di Scienze Fisiche, Universita di Napoli "Federico II", Napoli, ITALY

A detailed characterization of the surface properties of SrTiO3 (STO) crystals is of
fundamental importance in many topical research fields that range from catalysis to thin-
film growth [1].

The most used crystallographic orientations of STO surfaces are (100) and (110), but
vicinal cuts are also frequently considered. In an idealized description, the (100) STO is
terminated by two undisturbed atomic layers, i.e., SrO or TiO2 plane. Most applications of
STO demand an extremely accurate control of surface structure and chemistry. For
instance, deposition on (100) STO substrates of high quality HTc superconductive thin-
films is undoubtedly connected to the kind of atomic layer that terminates the STO
structure. Despite the relevance of this problem, an effective technique suitable for
recognizing in situ the two terminations as well as other surface reconstructions is still
missing. Indeed standard probing techniques either are not suitable for in situ monitoring
(AFM, STM) or their use is restricted to evacuated environments (LEED, RHEED, etc.).

From this point of view, linear optical techniques offer invaluable advantages, but,
generally, are not surface specific. However, in the last decade, the nonlinear optical
technique of surface second harmonic generation (SSHG) has proved to be a powerful tool
for surface analysis [2], Its strength relies on the fact that the second-order optical
nonlinear processes are forbidden in the bulk of centrosymmetric materials. However, at
their interfaces, this symmetry is automatically broken and SSHG may take place. This
symmetry breaking occurs in the first few atomic layers in the case of ionic or covalent
crystals, making second harmonic generation highly surface specific.

In this work we reported experimental investigations on STO surfaces with different
terminations and orientations by means of SSHG. To date very few applications of SSHG
to STO surfaces can be found in the literature [3]. In any case, they have been focussed
only on (HO)-oriented surfaces. Compared to ref. [3], we have improved the basic SSHG
technique by employing an interferometric experimental scheme that allows measuring
both the amplitude and phase of the SSHG signal for exploiting all the potentialities of this
technique.

In order to gain the maximum information on the surface symmetries, we measured the
SSHG signal at different polarization combinations of both the input pump-beam and
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output second-harmonic beam, and at different azimuth angles with respect to the surface
normal. We have found that the second-harmonic amplitude and phase show different
symmetries between (100)- and (HO)-oriented surfaces. Experiments are in progress on
(100) STO surfaces with different terminations aimed at studying their influence on the
second-harmonic optical field.

1. C. Noguera "Condens. matter" 12, 367-410 (2000)
2. C. T. Williams, D. A. Beattie "Surface science" 500, 545-576 (2002)
3. E. D. Mishina et al. "Journal of experimental and theoretical physics", 94, 3, 552-567
(2002)

DLS MEASUREMENT OF NANOMETRIC CARBON CLUSTERS PRODUCED IN
LAMINAR PREMIXED FLAMES

A. Bruno, D. Cecere, P. Minutolo, and A. D 'Alessio
Dipartimento di Scienze Fisiche, Universita di Napoli "Federico II", Napoli, ITALY

There is an increasing demand for diagnostics to determine the physical and the chemical
characteristics of very small particles or molecular clusters in the size range of 1-10 nm.
The greatest fraction of long-lived particles of this dimension are produced in combustion
process are suspected of human toxicity. Epidemiological results have also showed a causal
relationship between particulate matter concentrations in ambient air and increased deaths
in several cities around the world (Wichmann et al. 2000).

Because of their size, optical properties, and partial water solubility, combustion generated
d=l-10 nm particles may also have significant effects on climate acting as cloud
condensation nuclei.

This Dynamic Light Scattering [1,2] is based on the study of the intensity fluctuations of
the light diffused by nanoparticles suspended in a medium, which are due to Brownian
motion. These fluctuations are random and related to the translational diffusion coefficient
D through the Stoke-Einstein relation and so to the diameter of the particles.

In the Rayleigh limit, the light intensity scattered by the particles is dependent on the six
power of the diameter and so to the particle diameter distribution function , N(d), and it
depends from a form factor that we assume to be spherical [4,5].

Laminar, premixed, sooting ethylene/air flat flames were studied using extra-situ sampling
technique. Combustion products were collected by means of an isokinetic water-cooled,
stainless steel probe placed at different height above the burner. The isokinetic property
guarantees that the velocity of the gases in the flame is not perturbed by the presence of the
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probe. From the probe this material was transported through a sampling line and bubbled
in 4ml of DI water. This type of sampling technique based on bubbling of combustion
products in water showed the ability to isolate nanoparticles from other flame products.

Size distribution function obtained with DLS of samples collected in water for different
C/O ratio and different height above the burner (z). A narrow range of particle size
distribution from 2nm up to 4 nm was observed in two flames. Good agreement was found
for the DLS distribution function of the hydrodynamic diameter and the distribution
function of the equivalent volume diameter obtained with the Atomic Force Microscopy
for the flame C/O =0,77 at z=3.5mm also using the mean diameter obtained by DLS
measurements, the imaginary part of the refractive index at A=266nm for these particle was
evaluated [7].

1. Finsy,R., Particle Sizing by Quasi-Elastic Light Scattering, Elsevier,1994
2. Berne, B.J., PecoraJR., Dynamic light scattering Wiley,New York,1976
3. Wyn Brown, Dynamic Light Scattering, Clarendon Press,1993
4. S.W.Provencher, Comput. Phys. Commun. 27,229-242 (1982)
5. Gousbet A.,Applied Optics, 16, 222, (1986)
6. Minutolo P.,Gambi G., Dv Alessio A., Proc.27 symposium on Combst.1461 (1998)
7. Borghese A. and Merola S., Proc.27 Symposium on Combst. 2101 (1998)
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