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PREFACE

Theoretical treatment of the dynamics of chemical reactions has undergone a spec-
tacular development during the last few years, prompted by the progress in experiments.
Beam production, spectroscopic detection using high resolution, polarized lasers allowing
energy and angular momentum selection, etc. have advanced so much that the experi-
ments now offer detailed scattering information for theory to explain and rationalize. At
the same time advances in computing and networking technologies for heteregeneous and
grid environments are giving new possibilities for theoretical studies of chemical reactiv-
ity. As a consequence, by now calculation of atom+diatom reactions has become routine,
accurate methods have been developed to describe reactions in tetraatomic systems, non-
adiabatic reactions are being studied in simultaneous experimental and theoretical efforts,
and statistical theories of unimolecular reaction dynamics are applied to systems that were
a mystery a few years ago.

The increased interest in the field is testified by an intense activity of conferences,
schools and collaborative networks. The NATO scientific division has traditionally con-
tributed to this field through supporting workshops and schools. Along this line we or-
ganized the NATO Advanced Research Workshop on the Theory of the Dynamics of
Chemical Reactions in Balatonföldvár, Hungary in June, 2003. The workshop has given a
snapshot of the current status of research in reaction dynamics. At the meeting 36 papers
were presented followed by enlightening discussions. Accurate time-dependent and time-
independent methods of quantum scattering, treatment of non-adiabatic processes, studies
of associative and inelastic collisions, calculation of potential surfaces received increased
attention.

This book summarizes the proceedings of the Workshop, and is dedicated to Professor
E.E. Nikitin on the occasion of his 70th birthday. Authors of 21 papers of the meeting
agreed to make a written contribution aimed at giving a review of their recent work instead
of just summarizing the brand new results, with the hope of providing researchers in the
field with a useful reference.

We thank all the authors for their helpful collaboration. The grant from the NATO
Science Program, without which the meeting could not have been organized, is gratefully
acknowledged, as well as support from the Hungarian Ministry of Education. We thank
Dr. Ákos Bencsura, Erika Bene and Tamás Vértesi for their participation in organizing the
meeting. The efficient help of Dr. Andrea Hamza in editing the book is highly appreciated.

Antonio Laganà György Lendvay
Department of Chemistry, Institute of Chemistry,
University of Perugia, Italy Hungarian Academy of Sciences

Budapest, Hungary
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 It is our pleasure to dedicate this volume to Professor Evgueni Nikitin on the 
occasion of his 70th birthday. Evgueni has been an active contributor to the field of 
reaction dynamics for more than forty years and has become a leader in theoretical 
methodology of elementary processes, including uni- and bimolecular reactions, 
especially in the aspects related to nonadiabatic processes. His deep insight and original 
ideas led to completely new approaches and opened new areas of research.  

In his postdoctoral study he got interested in non-equilibrium effects in thermal 
decomposition of diatomic molecules. In his paper on thermal unimolecular reactions in 
1959 [P11]* he provided a description for thermal activation by weak collisions. His 
earlier work on this subject is summarized in a book [B1]. 

Later on he moved to the theory of non-adiabatic transitions. He extended the 
Landau-Zener model to low energies which was important for application of this model 
to atomic and molecular collisions in the thermal energy range [P77], and suggested a 
more general model with non-linear crossing or non-crossing diabatic potentials [P89] 
concisely described in his recent review articles [P251,P271]. 
 He applied the theory of nonadiabatic transitions to numerous specific systems. 
For atom-atom and ion-atom collisions, the one-dimensional models can be easily 
incorporated into a semiclassical scattering matrix [B10], which provides an easy 
interpretation of inelastic differential cross sections [P262]. Generalization of one-
dimensional models for atom-molecule and molecule-molecule collisions required 
passing a conceptual threshold which was done in 1967 [P62] when a semiclassical 
procedure was suggested to combine a one-dimensional transition probability with a 
trajectory in multidimensional space. He is, therefore, considered to be one of the 
founders of the so-called trajectory surface hopping method. His ensuing work in the 
theory of non-adiabatic transitions is related to the generalization of the Landau method 
of estimating transition probabilities under near-adiabatic conditions beyond the 
correspondence principle [P220,P233] and the application of this approach to 
vibrational predissociation and vibrational-to-translational energy transfer [P221,P257]. 
 In parallel to the study of dynamics of molecular collisions, he was working on 
a more accurate statistical description of unimolecular reactions and complex formation 
compared to the standard RRKM approach. He suggested a statistical theory which 
explicitly accounts for the conservation of the total angular momentum of a 
decomposing system, and laid down the foundations – simultaneously with John Light – 
of what is called the phase-space theory of chemical reactions [P51,P52]. This approach 
is described in detail in his books [B1,B8,B13]. Later Evgueni started [P198] and 
actively participated in the application of an advanced version of the statistical 
description (known as the statistical adiabatic channel model, SACM, by Quack and 
Troe) to particular processes (reviewed in [P259]). Now and again attempts were made 
to go beyond the adiabatic approximation without the need of being engaged in heavy 
numerical computations [P239]  
 Evgueni’s current interests lie in the theoretical study of vibrational relaxation 
at ultra-low energies where quantum suppression and resonance enhancement are 

* The numbers Bxx and Pxx refere to the corresponding line in the “Books” and 
“Papers” sections, respectively, of the ensuing List of Publications o Evgueni Nikitin. 

1

A. Lagana and G. Lendvay (eds.), Theory of Chemical Reaction Dynamics, 1–2.
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important [P276], classical chaotic dynamics and its relation to quantum resonances 
[P273,P277,P278], threshold effects in low-energy complex formation [P282] and 
vibrational predissociation [P285], molecular wavepacket dynamics on atto-second 
timescales [P286]. Some of these points are illustrated also by his contributions to this 
volume.  
 Besides active research he very much enjoys teaching. In the Physical-
Technical Institute of Moscow he taught (1966-1992) general courses on Molecular 
Dynamics and Chemical Kinetics. In the Technion (since 1992) he has taught and still 
teaches graduate courses on different subjects: Advanced Quantum Chemistry, Theory 
of Molecular Collisions, Kinetic Processes in Gases and Plasma, Theory of 
Fluctuations, Density Matrix Formalisms in Chemical Physics etc. 
 In addition to many people who enjoyed his teaching, Evgueni has a number of 
collaborators, including his former students and fellow researchers. The most notable 
among the latter is Prof. J. Troe of Göttingen. In addition, Evgueni always expressed his 
appreciation of his tight contacts with famous Russian kineticists like Prof. V. 
Kondratiev. The picture would not be complete without mentioning yet another of his 
long-term collaborators, his wife Dr. Elena Dashevskaya.  

Graduated from Saratov University in 1955, Evgueni joint the Institute of 
Chemical Physics, Academy of Sciences in Moscow, first as a graduate student, then a 
researcher and as a head of a research group. Since 1966 he also held a position of 
Professor of Chemical Physics at the Physical-Technical Institute of Moscow. Starting 
from 1992 he has been a Professor of Chemistry at the Department of Chemistry, 
Technion, Haifa and a Guest Professor at the Institut für Physikalische Chemie, 
Universität Göttingen, and the Max-Planck Institut für Biophysikalische Chemie. 
During the years, he was an invited professor in many institutions through the world and 
got several research awards, among them, the Alexander von Humboldt award and the 
Gauss Professorship of the Göttingen Academy of Science. He enjoys being a member 
of three renown Academies: the International Academy of Quantum Molecular 
Sciences, the Deutsche Akademie der Naturforscher Leopoldina, and the European 
Academy of Arts, Sciences and Humanities.  
 Evgueni is a person whose activity follows the motto “Der Zeit ihre Kunst, der 
Kunst ihre Freiheit”, the more so as he considers research and teaching as a kind of art. 
 We wish a lot of energy and health to Evgueni for the coming years and hope 
to see him at many more meetings. 

        The Editors 
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Abstract The asymptotic interactions at large intermolecular distances are determined 
for two open-shell systems, ( ) ( )2 3

1 2 2S g
−+ ΣH X O X  and ( ) ( )Oj Ω

 for fixed 
values of intramolecular distances r  .The electronic diabatic Hamiltonians are set up 
for two purposes: i) the direct diagonalization of the electronic Hamiltonian yielding 
two-dimensional potential energy surfaces (PES) which depend on the intermolecular 
distance R and the angle γ between R and r, and ii) the incorporation of the diabatic 
electronic basis into the diabatic roronic basis which can be used in the construction of 
the roronic Hamiltonian in the total angular momentum representation. The former 
procedure allows one to compare the asymptotic PES with their ab initio counterparts, 
while the latter provides the input data for the calculation of low temperature capture 
rate constants within the statistical adiabatic channel model (SACM).  

1. Introduction  
Rate constants for complex formation in collisions of two partners at low 

temperatures depend mainly on the long-range part of the interaction. If the partners are 
in open electronic states, this interaction is given by a set of electronic potential energy 
surfaces (PES) which depend on the coordinates of the nuclei and which are coupled by 
the nuclear motion. The complicated dynamical problem of calculating the capture cross 
section is considerably simplified within the adiabatic channel approximation [1]. The 
adiabatic channel potentials, or their generalisation, called the axially-nonadiabatic 
channel potentials [1g] can be constructed from the electronic adiabatic PES and the 
coupling between them provided that the electronic adiabatic basis is complemented by 
wave functions of nuclei for all the degrees of freedom except the interfragment 
distance R. The diagonalization of the full Hamiltonian in this extended basis yields the 
adiabatic channel potentials that depend on a single coordinate R. However, there exist 
an alternative way for the construction of adiabatic channel potentials which 
circumvents the unpleasant problem of calculating inter-PES nonadiabatic interactions. 
This is based on calculating first the matrix representation of the electronic Hamiltonian 
in the basis of pre-selected diabatic electronic states, then on supplementing this 

3 2O P + OH X
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electronic basis with the nuclear diabatic basis and, finally on the diagonalization of a 
diabatic electronic-nuclear Hamiltonian.  

For an atom-diatom system, the adiabatic electronic PES depend on three 
coordinates, the interfragment distance R, the intramolecular distance r, and the angle γ
between the vectors R and r. A useful insight into the structure of adiabatic PES can be 
gained by fixing r to be through the ground vibrational state averaged distance of the 
isolated diatom r0, that is by considering two-dimensional (2D) PES, that depend on R
and γ. Within the same approximation, the nuclear wave functions to be used in 
constructing the electronic-nuclear diabatic Hamiltonian matrix are just the roronic 
functions of the isolated diatom in its ground vibrational state. An implicit assumption 
in this approach is that on the stage of the complex-formation at large enough R (low 
collision energies), the collision-induced adiabatic change of the ground state 
vibrational wave function of a diatom is insignificant. It was shown in [2] by classical 
trajectory calculations on 2D and 3D ab initio PES for H+O2 system that capture rate 
constants practically are not influenced by this limitation to a 2D PES.  

With these remarks in mind, we set up the diabatic Hamiltonians for two systems of 
practical interest, ( ) ( )2 3

1 2 2S g
−+ ΣH X O X  and ( ) ( )O

3 2
j Ω+O P OH X . The former is relevant 

to the low temperature behavior of high pressure rate constants for the 
( ) ( )2 3

1 2 2S g
−+ ΣH Mu X O X addition reactions [2], while the temperature dependence of 

the capture rate constant in the latter system (see e.g. [3]) is relevant for O2 formation in 
interstellar chemistry.

2. The ( ) ( )2 3 -
1 2 2 gH X S + O X system  

We begin our discussion by representing the asymptotic 2D PES of the lowest 2A”
and 4A” electronic states to the sum of the exchange and dispersion interactions (a weak 
induction interaction in the system is neglected).  

By writing the exchange Hamiltonian in Heitler-London approximation as  

( ) ( )
2, 1

HL
1 1 112,

2

1 1 4 ,
2

in
x

k k ki
k

V V P
+

=

= − + ⋅s s    (1)  

we take into account the doublet 1s atomic shell of the fragment 1 (atom H) and the 
outer triplet 1πg

2 (i=1) and two inner singlet 1πu
4 (i=2) and 3σg

2 (i=3) molecular shells 
of the fragment 2 (molecule O2).  

The atomic orbital (AO) of H needs no comment. The spatial molecular orbital 
(MO) functions of O2 are linear combinations of the one-electron functions with leading 
one-center Coulomb asymptotics that correspond to the lowest angular momenta, l1=2,
l2=1, l3=0

( ) ( ) ( )1 1 2
1 2 3exp , , 2 , , 1, 0i i

i i

i
i i l i iC r r Yγ λ

λϕ γ θ φ γ λ λ λ−→ − = − = ± =e   (2)  

where εi are the binding energies of the MOs (in atomic units unless stated otherwise). 
The transformation of these functions, referred initially to the vector r, to the 
quantization axis directed along R, expresses the exchange integrals J(i) to the linear 
combinations of the asymptotic integrals I(00,limi|00,limi) with coefficients depending 
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on the angle γ between molecular axis r and axis R. The asymptotic coefficient C1 and 
asymptotic integrals can be found in [4] and in ref. 16 therein. The asymptotic 
coefficients C2 and C3 were evaluated by using available Hartree-Fock results for the 
corresponding MO functions [5].  

Expansion coefficients of the anisotropic dispersion interaction ~R-6 in the series of 
Legendre polynomials Pl(cosγ) were evaluated using the method of Reduced Spectra of 
Oscillator Forces (RSOF) by Meyer et al [6] and the relevant calculations of the 
dynamic fragment polarizabilities [7]  

( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )
1 2

1 2 1 2

1 1 2 2 1 2 1 2
1 2 1 2

1 1 1
11 1120 20 00 0 00 0
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4
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2 4
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j j
m m m ml l l

m m m m m m m m m m m m j j j j
m m m j j

f f
C C C C C C C

e e e e
+
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= − −
+

where j1 and j2 specify energies and oscillator forces of the reduced spectra of 
fragments.  

Expansion coefficients for the PES of the lowest electronic states 2A” and 4A”

( ) ( ) ( ) ( ) ( )
23

12
2 2 2

0

11, P cos
4

gS
i i i

i
V R W R S J Rπγ γ

=

= + −   (4)  

are represented by the sums of spin-independent and spin-dependent terms. In the spin-
dependent part, the σ, π, and δ components contribute:  
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Besides the dispersion interaction in the spin-independent part contribute σ and π
integrals of the exchange interaction with completely filled inner MOs  
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( ) [ ]
( )
( )

2 4 4

4 4

2

4

4

3 1 , 1 ,
0 ,0

1 , 1 ,
2 ,2

3

1 ,

1 ,

6
,0

6
,2

2 2 3,

2 3,

4.36exp -1.748 ,

8.721exp -1.748 ,

- 1.784exp -1.857 ,

-18.89 ,

-3.25 .

g u u

u u

g

u

u

disp

disp

disp

disp

W R V R J R J R J R

W R V R J R J R

J R R

J R R

J R R

V R R

V R R

σ π σ π π

π π π σ

σ

π σ

π π

−

−

= + + +

= + −

=

=

=

=

=

   (6)  

For the asymptotic exchange integrals we use simple exponential representations 
such as given in Eqs. 5 and 6.  

In order to fit the constructed PES to the local ab initio data [8] (data for quartet 
state and for T-shaped configuration are taken from [9]) we introduce the spin-
dependent contribution of the P6(cosγ) polynomial  
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( ) [ ]{ }21 6
6 -0.004444exp -1.03746 1+exp 4.371-0.5868 -0.00001019 .gJ R R R Rπ =    (7)  

For the spin-dependent contributions (see Fig. 1) of the lower polynomials we 
assume cut-off factors of the form:  

( )
( )
( )

6
00

4
02

6
04

1 exp 2.445-0.3191 -0.00004149 ,

=1+exp 1.728-0.0715 -0.0007877 ,

=1+exp -0.0998-0.4343 -0.00007025 .

corr

corr

corr

c R R R

c R R R

c R R R

= +
   (8)  
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m
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Figure 1. Spin-dependent terms 
21

0
g

l lc J π=  in Legendre expansion coefficients as functions of the 
interfragment distance R: dashed curves from Asymptotic Theory (AT); solid curves from AT 
corrected to fit ab initio data.  

Corrections to the spin-independent parts of coefficients are noticeable already at 
large distances R (see Fig. 2). Thus we introduce contribution of the P6(cosγ)
polynomial and replace the lower coefficients by  
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( ) [ ]{ }{ }
( ) [ ]{ }{ }
( ) [ ]{ }

6 8 2 3
0

6 8 2 4 5
2

6 8
4

24.8exp -1.661 -19.75 -1245 1 exp 9.442 6.922 1.391 0.09321 ,

20.33exp -1.62 -3.531 -1176 1 exp 117.9 81.8 16.74 0.3225 0.02444 ,

30.41exp -2.043 -1.055 -53.87 1 ex

W R R R R R R R

W R R R R R R R R

W R R R R

− −

− −

− −

= + − + −

= − − + − + −

= −{ }
( ) [ ]{ }{ }

2 3

6 8 5 6
6

p 28.02 16.84 3.342 0.2294 ,

-3.586exp -1.829 - 0.1655 8.286 1 exp 1.05 0.5363 0.0008951 0.0001325 .

R R R

W R R R R R R R− −

− + −

= + − − + −

(9)  
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R-6 / 10-5a0
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R / a0
4.64.855.25.567

Figure 2. Spin-independent contributions 1l lc W=  in Legendre expansion coefficients as functions 
of the interfragment distance R: dashed curves with l=0,2 from AT; solid curves with l=0,2,4,6 
from AT corrected to fit ab initio data. 

For a number of the interfragment distances R in Tabs. I-III we demonstrate the 
fitting quality of energies and bending frequencies in doublet (left side) and quartet 
(right side) states. One can see that our fitting reproduces sufficiently good local ab 
initio data along the linear Minimum Energy Path (MEP, Tab. I), in T-configuration of 
γ=90° (Tab. II), in non-linear MEP and saddle path configurations (Tab. III). 

 The contour plots of the lowest doublet and quartet PES are shown in Fig. 3 
and Fig. 4 (negative (attraction) and positive (repulsion) energies are shown by the 
dashed and solid curves respectively). Two dotted curves show the intersections of the 
PES differing in their energies by not more than spin-spin S-S fine structure (FS) 
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TABLE I. Fitting quality of Asymptotic Theory after the correction: linear 
configuration

2A” 4A”

R/a0 ω(0°)/cm-1 V(0°)/cm-1 ω(0°)/cm-1 V(0°)/cm-1

ab initio corr. AT ab initio corr. AT ab initio corr. AT ab initio corr. AT 

3.5  898.5i  2793 822.3 2838
4  645.2i  3880 325.6 4332

4.5  411.8i  2282 151.0 2487
5  256.9i  1060 92.4 90.2 1086.3 1078.4

5.5  158.9i  411.8 66.8 66.77 361.1 365.0
6  97.4i  117.1 51.4 53.01 75.6 69.64

6.5  59.1i  4.03 41.3 41.31 -21.0 -26.76
7  35.7i  -27.7 33.5 30.84 -43.9 -44.32

7.5  20.02i  -34.4 26.6 23.82 -41.7 -42.68
8 8.7i 9.15i -27.7 -30.6 20.3 18.57 -33.3 -34.49
9 6.4 6.87 -17.0 -18.3 10.8 11.68 -17.9 -19.16

10 6 6.26 -9.4 -9.92 7 7.71 -9.5 -10.12
11 5.1 4.81 -5.5 -5.38 5.3 5.31 -5.5 -5.43
12 4.1 3.62 -3.2 -3.02 4.1 3.80 -3.2 -3.04
15 1.6 1.65 -0.7 -0.68 1.7 1.67 -0.7 -0.68

TABLE II. Fitting quality of Asymptotic Theory after the correction: T-configuration 
of γ=90°  

2A” 4A”

R/a0 ω(90°)/cm-1 V(90°)/cm-1 ω(90°)/cm-1 V(90°)/cm-1

ab initio corr. AT ab initio corr. AT ab initio corr. AT ab initio corr. AT 

3.5  1002i  6607 788 -2202
4  641.8i  3738 383.1 563.1

4.5  374.6i  1466 241.3 271.6
5  220.7i  517.0 155.3 154.7 40.2 40.4

5.5  134.5i  156.4 96 96.3 -41.8 -42.6
6  85.1i  24.40 57.5 58.1 -54.4 -58.7

6.5  55.0i  -19.66 33.7 34.48 -47.3 -52.9
7  35.50i  -29.62 19.3 20.89 -37.4 -42.3

7.5  24.11i  -25.14 9.7 10.48 -28.4 -29.92
8 14.7i 16.94i -18.8 -19.04 2.3i 2.25i -20.7 -20.84
9 9.4i 9.23i -10.3 -10.12 7.4i 6.27i -10.6 -10.38

10 5.6i 5.63i -5.5 -5.36 5.2i 5.00i -5.5 -5.39
11 4.0i 3.73i -3.0 -2.94 3.8i 3.65i -3.0 -2.94
12 2.8i 2.61i -1.7 -1.69 2.9i 2.64i -1.7 -1.69
15 1.1i 1.09i -0.4 -0.41 1i 1.10i -0.4 -0.41
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parameter (see below in Eq.10 for the roronic Hamiltonian) in the whole asymptotic 
region limited by the dot-dashed curves. Fig. 3 demonstrates the characteristic 
switching between the linear van der Waals and the non-linear valence MEP in the 
lowest doublet state. The lowest quartet state showing similar van-der-Waals behaviour 
is fully repulsive at the shorter interfragment distances R (see Fig. 4).
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γ
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Figure 3. 2D asymptotic PES for the lowest 2A” electronic state of the H+O2 system: for solid, 
dashed, dotted, and dot-dashed curves see text above; contour energies in units of cm-1.

We now consider adiabatic channel potentials. As indicated in the introduction, for this 
system with rapid rotation of the collision axis R, we develop here the Axially 
Nonadiabatic version of the SACM [1g]. In order to take into account the quantum 
character of the also rapid radial motion we plan to provide a generalisation of the 
approach [10] developed for low-energy capture in systems with isotropic interaction. 
For open-shell systems, this SACM version is based on the diabatic matrix 
representation of the roronic Hamiltonian supplemented by the S-S FS interaction (see
e.g. [11]). Thus the total Hamiltonian reads: 
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( ) ( ) ( ){ } ( )

( ) ( ) ( ){ } ( ) ( ) ( )2

2 2 2
0 0 0 2 2 20

3 112 2
2 2 2

0

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 2 2 3

ˆ11 4 P cos ; 2g
i i i

i

H c R J c R B c R j B S B a s s

W R S J R c R Rπ γ µ
−

=

= − ⋅ + + + − ⋅ + ⊗ +

+ + − =

J j j S

  (10) 
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Figure 4. 2D asymptotic PES for the lowest 4A” electronic state of the H+O2 system: for solid, 
dashed, dotted, and dot-dashed curves see text above; contour energies in units of cm-1.

where the vectors J and S are the total angular and spin momenta of the system 
respectively; sk is the spin of a fragment k, vector j is the sum of s1 and total angular 
momentum of the molecular fragment, and B0 is the rotational constant of O2 in its 
ground vibrational state. The representation is done in the basis of the parity-adapted 
functions of the total angular momentum (for the symmetry of these functions see [12] 
and [13])

( )( )
( ) ( )

1 1 2 2 1 1 2 2

1 2

1 2
, , , , , 1 2 1 2

1 2 ,
,

2 , , , , , , , 1 , , , , , , , ;

, , , , , , , 1 2 ; 1,

S J
S j J

J j S
M s s s s

s s S j J M s s S j J M

s s S j J M D D C

ε

σ σ σ σ
σ σ

ψ ε

χ χ ε

+−
Σ Ω

Σ
Ω ΣΩ

= Σ Ω + − −Σ −Ω

Σ Ω = = ±
  (11)  

where M, Ω, and Σ are the projections of J, J or j, and j or S onto the space-fixed, onto 
the intermolecular (R), and onto the molecular (z) axes respectively, and ε is the parity.  

Non-zero matrix elements in this representation originate from the diagonal 
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matrix elements  
( )
( )
( )

2
1 2 1 2

2
1 2 1 2

2
1 2 1 2

2
1 2 1 2

1 2 1 2

ˆ, , , , , , , , , , , , , , 1 ;
ˆ, , , , , , , , , , , , , , 1 ;
ˆ, , , , , , , , , , , , , , 1 ;

ˆˆ, , , , , , , , , , , , , , ;
ˆ ˆ, , , , , , , , ,

s s S j J M J s s S j J M J J

s s S j J M j s s S j J M j j

s s S j J M S s s S j J M S S

s s S j J M s s S j J M

s s S j J M s s

Σ Ω Σ Ω = +

Σ Ω Σ Ω = +

Σ Ω Σ Ω = +

Σ Ω ⋅ Σ Ω = Ω

Σ Ω ⋅

J j

j S 2, , , , , ,S j J MΣ Ω = Σ

   (12)  

and from the non-diagonal Coriolis-type matrix elements  

( ) ( ){ } ( ) ( ){ }

( ) ( ){ } ( ) ( ){ }

1 2 1 2

1 2 1 2

ˆˆ, , , , , , , 2 , , , , , 1, ,

1 1 1 1 ;

ˆ ˆ, , , , , , , 2 , , , 1, , , ,

1 1 1 1 .

s s S j J M s s S j J M

J J j j

s s S j J M s s S j J M

j j S S

Σ Ω ⋅ Σ Ω ± =

= + − Ω Ω ± + − Ω Ω ±

Σ Ω ⋅ Σ ± Ω =

= + − Σ Σ ± + − Σ Σ ±

J j

j S

 (13)  

They originate also from the matrix elements  
( )

( ) ( )( ) ( )1 2

1 2 2 2 1 220

2 1
2 2 2 20

2 2 2 2

ˆ ˆ, , , , , , , , , , , , , ,

1 1 2
1 1 2 1 5 2 1 C

2
S s s S

S

s s S j J M s s s s S j J M

Ss s
s s s S

s s s sS
+ + ′Σ

Σ

′Σ Ω ⊗ Σ Ω =

= − + + +
′

  (14)  

indicating the coupling of the states with S´≠S, and from the “geometrical” matrix 
elements of elementary anisotropies  

( ), , , , , , , , , , 0 0
2 1cos C C .
2 1

j j
S j J l S j J j l j l

jP
jε εψ θ ψ ′ ′Ω Σ

′Σ Ω Σ Ω Ω Σ
+=

′ +
   (15)  

It is easy to prove that there is no coupling between states of different parity.  
In order to account for the nuclear spin statistics of O2, the representation just 

defined should be thinned out by the extraction of spectroscopically relevant matrix 
from the matrix turned to eigenvectors of the representation at R→∞ (in the limit of a 
free O2, see e.g. [11]).

3. The ( ) ( )O

3 2
j Ω+O P OH X  system  

Fragment 1 now is ( )
1

3O JP  in the state with spin S1=1, orbital momentum L1=1, and 
total angular momentum J1=2, 1, 0 with energies of the Spin-Orbit (S-O) FS 
components 0, 2A(1), 3A(1) (A(1)=0.000351), respectively. The outer AO 2p of the atom is 
occupied with n1=4 electrons and has a one-electron Coulomb asymptotic  

( ) ( )1

1

1 1 2
1 1 1 1, 1 Oexp , , 2mA r r Y Iγχ γ θ φ γ−≅ − =     (16)  

where IO=0.50045 is the first ionisation potential of the atom. The matching parameter 
A1=1.3 can be taken from [14].  

Fragment 2 is ( )ΩΠ ~
2OH  in the state with spin S2=1/2, orbital 1~ ±=Λ  and total 

angular 21,23~ ±±=Ω  momenta along the molecular axis, and with energies of S-O 
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FS components 0, A(2) (A(2)=0.000634), respectively. The outer valence MO 1π is 
occupied with n2,1=3 electrons and has a one-electron Coulomb asymptotic  

( ) ( ) ( )2,1
c.m.
1

1 1 2
2,1 2,1 1 1 2,1 11 exp , , 2

p
A r r Yγ

πχ π γ θ φ γ
±

−
±≅ − = −e    (17)  

which is approximately centred at the centre of mass (c. of m.) of the molecule. The first 
fully occupied (n2,2=2) inner MO 3σ has a one-electron Coulomb asymptotic  

( ) ( ) ( )2,2
c.m.
0

1 1 2
2,2 2,2 10 2,2 33 exp , , 2

p
A r r Yγ

σχ σ γ θ φ γ−≅ − = −e    (18)  

which also is approximately centred at the c. of m. of the molecule. ε1π and ε3σ here are 
the MO binding energies.  

The angles in Eqs. 17 and 18 marked with ~ correspond to the OH axis r directed 
towards H. All projections marked with ~ are those onto the molecular axis r. All 
unmarked projections are those onto the interfragment axis R in the direction from O to 
c. of m. of OH at an angle with respect to the axis r (i.e. conformation OHO 
corresponds to = ).
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Figure 5. Matching between HFR MO functions of OH and their one-centre one-electron 
asymptotics from Eqs. 17 and 18: outer and inner contours of the wave functions in the figure’s 
plane enclosing the molecular axis are differing by the factor 2; contours with a symmetry plane 
enclosing the axis are for 1π, contours with a symmetry plane orthogonal to the axis are for 3σ;
solid and dashed contours are differing in sign.  
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Hartree-Fock-Roothaan (HFR) MO functions of OH expanded in terms of Slater-
type functions centred on the nuclei of O and H (sO,H, pO,H, dO,H) were taken from [15]. 
Using these functions we start here with the estimations of the equilibrium distance 
Re=1.8342, of the orbital energies ε1π=-0.57215 and ε3σ=-0.66041, and of the matching 
parameters A21=1.3, A22=2.6 (see Fig.5; a coincidence of A21 and A1 was already 
assumed in [16]).  

We write the multipolar series of the electrostatic interaction as

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 1 2 1 2 2

1 2 1 2

1 2

1 21 2 1 0
1,2 1 , 2

, 1

2 2
1 ,

2

ˆ 4 2 1 , ! ! P cos

l l l l l l
l m l m l m m l

l l m

p is p s
p s p s p

l l
V R C Q d Q

l

Q p r Y p s p s e r

µ µ
µ

φ

τ γ τ

τ π θ φ θ

− − − +
− −

+
= −

= + = − +
  (19)  

taking into account terms with l1=2, l2=1, 2, 3, and |µ|=0, 2≤ l2 only, i.e. all of the terms 
beginning with the dipole-quadrupole interaction (~R-4) up to the quadrupole-octupole 
interaction (~R-6; in the pioneering work of [17] there were included terms up to the 
quadrupole-quadrupole interaction (~R-5) ). The required atomic matrix elements  

( ) ( ) ( ) { } ( ) ( ) ( )1 1 1 1 1 11 1 1 1 1

1 1 1 1 1 1 1 1 11

1 1
1 1 1 1 1 1 1 11 2 1 J

J

J L S l n nJ M L S J
J l m J J M l m J l L lJ M Q J M J C nl L S Q nl L Sτ + + − ′ ′

′′ ′ = − +  (20) 

are calculated using  
( ) ( ) ( ) 0

0
000111

1
11 21512 1

11

1

1

1 QCQLSLnlQSLnl L
lL

n
l

n −=+=    (21)  

where the maximal (in absolute value) quadrupole moment Q0 of the 0
1

=LM
component in the 3P(2p)4 atomic state can be expressed [18] in terms of the averaged 
square of the radius of the outer atomic electron (see e.g. [14])  

2
0 12 5 0.8 .Q r≈ − = −      (22)  

The molecular electrostatic multipole moments here are defined following 
Buckingham [19]:  

( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2
10 OH 2 1 2 2 2 2 2 2

22 2
20 OH 2 2 2 2 2 2 2 2

2 22 2 2
22 c,OH 2 2 2 2 2 2 2 2 2

22 3
30 OH 2 3 2 2 2 2 2 2 2

22 3 2
32 c,OH 2 3 2 2 2 2 2

P cos d d ,

1P cos d 3 1 d ,
2

P cos d 3 d ,

1P cos d 5 3 d ,
2

P cos d 15

q d r z

q Q r z

q Q r x y

q O r z z

q O r z x y

θ ρ τ ρ τ

θ ρ τ ρ τ

θ ρ τ ρ τ

θ ρ τ ρ τ

θ ρ τ

= = =

= = = −

= = = +

= = = −

= = = +( )2
2 2 2dρ τ

   (23)  

where the integration over the density of charge ρ2 is done taking the molecular axis r
as z-axis with origin in the c. of m. of OH. In order to estimate these moments, we again 
use HFR functions from [15] (the index n here marks contributions from the nuclei)  

3 2 2 2

3 2 2 2

3 2 2 2

3 2 2 2

nOH 1 3 2 1

n 1 3 2 1

OH n 1 3 2 1

n 1 3 2 1

c,OH OH c,OH

0.70 ;

0.86; 0.15; 0.09; 0.44; 0.22;

1.30;

3.07; 1.19; 2.50; 0.44; 0.02;

5.13; 2.47; 0.6

d d d d d d

d d d d d

Q Q Q Q Q Q

Q Q Q Q Q

Q O O

π σ σ σ

π σ σ σ

π σ σ σ

π σ σ σ

= + + + + ≅

= = = − = − =

= + + + + ≅

≅ ≅ ≅ − ≅ − ≅ −

= − = = 7 .

  (24)  
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These estimates are in surprisingly good agreement with recent experimental 
and ab initio data [20,21]. Apparently the value of QOH from [22] (just similar to the 
value given in Eq.24) was used in [23] and then in [17] as defined following 
Hirschfelder [24]. As result it produces two times too shallow asymptotic shape of the 
linear MEP (see Fig.6) which in no case could be adjusted to the ab initio data of [25] 
(see also the modeling of bending frequency along the linear MEP, Fig.7).  

4 6 8 10 12

-4

-3

-2

-1

0

6
7
8
9

1
2
3
4
5

V(
R)

/k
ca

l/m
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Figure.6. MEP for the two lowest doublet PES's of the 2A”, 2A’ states calculated without 
contribution of S-O interaction: energies are given in kcal/mol; curves 1-5 are for linear (γ=0)
MEP at long distances R; curves 6-9 are for non-linear MEP at short distances; solid curves 6, 8 
and dashed curves 7, 9 are for 2A” and 2A’ states, respectively; thick curves 1, 6, 7 are from this 
work (after preliminary optimisation through the coefficients A21, A22, C6, OOH and Oc,OH ) and 
thin curves 2, 8, 9 are from [25]; the dotted curve 3 is our recalculation (without contributions of 
S-O and exchange interactions) using parameters from [17] and [23]; curve 4 is the analytic 
representation DMBEIV from [26]; curve 5 is from the ab initio data of [27].  

Then in the basis of the Hund’s case c free fragment functions (FFC)  
2,11

11 1
1 1 1 2, , , ,

J

nn
JJ M J M p S L p Sψ Ω Λ = Ω Ω − Λ Λ    (25)  

the matrix elements of terms in the multipolar electrostatic expansion (19) can be 
reduced to the standard expressions using the definitions of Eqs. 20-23:  



            A.I.MAERGOIZ*, E.E.NIKITIN, J.TROE, AND V.G.USHAKOV34

( )

( ) ( ) { } ( )

( ) ( ) ( ) ( )

2, 2,21 1

1 1

1 2 1 2

1

12 1 2

2 1 21

2,
1 1 1 2 1,2 1 1 1 2

21 11 3 2
2 1 1,

22 0
2 2 2 2 ,,

2 46 2 1
1

45

! ! .

26

k k

J

J

n nln n
J J

J l J l
J

J Ml l
m l m J M m m l

m

J M p S L p S V J M p S L p S

lJ
R r

C C l l d qµ µµ
µ

δ

δ µ µ γ

+ − −
′′ ′Ω −Λ Ω−Λ

′ ′+
− −′Λ −Λ

′ ′ ′ ′ ′ ′Ω Ω − Λ Λ Ω Ω − Λ Λ =

++
= − ×

× − +
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Figure 7. Harmonic bending frequencies along the linear MEP at long distances R for the two 
lowest doublet PES’s of the 2A” (solid curves 1, 3, 5) and 2A’ (dashed curves 2, 4, 6) states 
calculated without contribution of S-O interaction: frequencies are given in cm-1; thick curves 1, 2 
are from this work (after preliminary optimisation through the coefficients A21, A22, C6, OOH and 
Oc,OH), thin curves 3, 4 are from the ab initio data of [25] and thin curves 5, 6 are from our 
recalculation (without contributions of S-O and exchange interactions) using parameters from 
[17] and [23]. 

Taking into account the exchange interactions of the fragments 1 and 2 in the 
Heitler-London approximation (the index k equal to 1 and 2 corresponds to exchange 
with 1π3 outer and 3σ2 inner molecular electronic shells respectively),  

( ) ( )
1 2,k1

1

HL
1,2k

1 1

1 1 4
2

n nn
x

i j ij ij
i j n

V V P
+

= = +

= − + ⋅s s    (27)  

we use for the matrix elements the re-projecting formula from [28]  
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( )

( )

2, 2,1 1

1 1

* *
1 11 1 1 1 2 2

* * * 1 1 2 21 1 1 11 1 1 1 1 1* *
1 1 2 21 1 1 1 1

HL * * * * * *
1 1 1 2 2 1 1 11,2k

2, , , ,
, ,, , , ,

, ; ,, ,

k k

J J

L J L L J L
J J L L

n nn n
J J

J M J M S L S Q
S L S QL M S M M L M S M M

S L S QJ M M M M

J M p S L p S V p S J M p S L

C C G G′ ′ ′ ′− −
′ ′ ′ ′

Ω Ω − Λ Λ Ω Ω − Λ Λ =

= −

( )( ) ( )

* *
1

1 1 1 2
* * * * * * * * * * * *

1 21 1 1 1 1 1 1 1 1 1 1 1 1 1

* *
11 1 1 1

3 2 2

, 3 2 , 0

, ,1
, , , 1, , 1,

1 2

2

3 2 1 2 1 1

J L

J L J L J L J L J L J L J L

J J L L

J

S M M S
M M M M S M M M M M M S M M M M

M M M M S

C C

S S

δ δ

Ω Ω =− =

− Ω−Λ−
− − Ω−Λ Ω −Λ − − − + Ω −Λ − − +

′ ′− + − + +

×

× + ×

× + + − { }{ }
( ) ( )

2 1 2 1 1 2 2

1 2

2, 2,1 1

1 1

1 1 2 1 2
1 2 1 1 2 1

* *
1 1 2 2 1 1 2 21,2k 1,2k .k k

S S S S S S S
S S

n nn nx
L LL p L M Q p Q V P L p L M Q p Q

+ + + ′ ′ ×

′ ′ ′ ′× Λ Λ

 (28) 
The transformation to the FFC basis (see Eq.25) with quantization of the atomic 

total angular momentum onto the intermolecular axis R is accomplished by the rotation  
( )1 1 1

1 11 1
1

1 1 1 1 1 1, .
J J

J

n J n
J JM M

M
J M p S L d J M p S Lγ=    (29)  

All non-zero coefficients of fractional parentage in Eq.28 are atomic coefficients 
1 1

1 1

,
,

S L
S LG ′ ′

( )1 21, 1 1 2 1, 1 1, 1 1
3 2,0 1 2,2 1 2,13 ; 5 12 ; 2G G G− −= − = = −     (30)  

and molecular coefficients 2 2

2 2

,
,

S Q
S QG ′ ′  for the outer (k=1)  

1 2,1 1 2 1,1 1 2 1 2,1 1 2
0,20, 0 1, 0

6 ; 3 ; 2G G G+ −
− − −= = − =     (31)  

and for the inner (k=2)  
( )1 21 2,1 1 1 2,1

0, 1 1, 12 ; 3 4G G−= =     (32)  
molecular electronic shells.  

The coordinate dependent interaction operators in the matrix elements of the last 
line in Eq.28 are enclosed in coordinate wave functions bound to the molecular axis r

( ) ( )
2, 2,1 1

1 1

*
1 11 1

* * * * * * * * *
1 1 11 1 2 2 1 1 1 1 2 1 211 1 1* *

1 1 2 2

* *
1 1 2 2 1 1 2 21,2k 1,2k

, ,
1 2, , 1,, , , 1, , , ,

, , ,

k k

L L

LL L L

n nn nx
L L

L M L M
k L M m mM m M m m m L M m m m m m m

m m m m

L p L M Q p Q V P L p L M Q p Q

n n C C Jδ δ ′ − ′− − Λ− Λ − −

′ ′ ′ ′Λ Λ ≅

≅
  (33) 

which can be easily transformed to the R axis using the transformation  
( ) ( ) ( ) ( )1 2 1 2

* * * * * *1 1 2 21 2 1 2 1 1 2 2* *
1 2 1 2

* *
, , 1 1 2 2 1 1 2 2, , , , ,

, , ,

l l l l
m m m m asm m m m m m m m

m m m m

J d d d d l m l m I l m l mγ γ γ γ=   (34)  

where l1,l2=1. Here it is taken into account that all relevant molecular addition 
coefficients ( )2

2 2 2

,
2 2 2 2, 1, : , , 1Q

Q m mC Q Q m mΛ
′ Λ−

′= Λ = Λ − =  omitted in Eq.33 are equal to 0 or 1.

Two-electron matrix elements *
2

*
121 1111 mmImm as , the related integrals of the 

Asymptotic Theory Ikn (Fig.8), and molecular addition coefficients are found in [29].  
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Figure. 8. Exchange integrals Ikn of the Asymptotic Theory for p electrons: asymptotic integrals 
are for the interactions of electrons from the outer AO 2p of O with electrons from the outer MO 
1π (right panel) and with electrons from the inner MO 3σ (left panel) of OH.  

For the evaluation of the averaged induction-dispersion interaction -C6R-6, we here 
accept based on the Slater-Kirkwood formula value C6=23.2 from the work [23]. In 
order to create more reliable estimations of the anisotropy of C6 term, one can again 
resort to the RSOF method by Meyer et al. [6] and to the related calculations of the 
fragment dynamic polarizabilities [20, 30]. The FFC basis of Eq.25 consists of 36 
functions transforming upon time inversion as  

( ) 1 1

1 11 1

1
2

, , , , , ,1 .J

J J

J M
t t J M J MI ψ ψ− + −Ω+Λ
→− Ω Λ − −Ω −Λ= −    (35)  

In a system with half-integer total spin, in accordance with Kramers's theorem (see e. g. 
in [31]), we find the symmetry  

1 11 1, , , , , , .
J Jt t t t J M J MI I ψ ψ− → →− Ω Λ Ω Λ= −    (36)  

The linear combinations of the FFC basis functions  
( ) 2~,~,,~,~,, 1111 ΛΩ−→ΛΩ ±

JJ MJttMJ Ii ψψ     (37)  

then constitute two uncoupled complex-valued sub-representations of the Hamiltonian 
reproducing, with their 18 real eigenvalues, the energies of 18 doublet eigenstates of the 
system (see left panels in Figs. 9-14; one should notice that, in these figures, 

γπγ −= ).
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Figure. 9. PES slices (angular potentials) Vi(R=5. a.u., γ): energies are given in kcal/mol; left 
panel: 18 doublet PES’s calculated with the contribution of S-O interaction; right panel: 12 PES’s 
(32A’+32A”+34A’+34A”) calculated without the contribution of SO interaction.  
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Figure. 10. PES slices (angular potentials) Vi(R=5.5 a.u., γ): details as in caption to Fig. 9. 
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Figure. 11. PES slices (angular potentials) Vi(R=6. a.u., γ): details as in caption to Fig. 9. 
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Figure. 12. PES slices (radial potentials) Vi(R, γ=0): energies are given in kcal/mol; left panel: 18 
doublet PES’s calculated with the contribution of S-O interaction are ascribed to 4 uncoupled 
groups of 1, 3, 6, 8 states with |MJ|=7/2, 5/2, 3/2, 1/2 shown with dash-dotted, dotted , dashed, and 
solid curves respectively; free-fragment correlations are assigned for the example of triple 
pseudo-crossing in the group of 8 states with |MJ|=1/2; right panel: 8 PES’s calculated without 
contribution of the S-O interaction are ascribed to irreducible representations (2Σ++2Σ-

+2Π+2∆+4Σ++4Σ-+4Π+4∆) of the symmetry group C∞v.
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In the linear configurations O-HO (γ=0) and O-OH (γ=π) there is no coupling between 
states differing in angular momentum projection MJ (at Fig.12 for γ=0 and at Fig.14 for 
γ=π Ω= ~

1JJ MM  respectively). In these cases, the complex valued matrix 
representations of the Eq.37 consist of the 4 Jordan cells with |MJ|=7/2, 5/2, 3/2, 1/2 
having dimensions 1, 3, 6, 8 respectively. As a result, there are a number of accidental 
crossings of the Renner cone type. Otherwise within the cells there exist also a number 
of pseudo-crossings with narrow splitting because of the coupling of the S-O 
components. In the asymptotic region of large R these couplings are mainly due to 
electrostatic interaction of the axially-polarised multipole moments 
( ( ) ( ) ( ) ( )

1 2

1 2
1 2andl m lQ Q µτ τ in Eq.19 with non-equal zero m and µ respectively). We believe 

that some qualitative difference in the T-shaped configuration (compare Fig.13 from 
this work with Fig.5 from [17]) is because of the incorrect matrices 1 2

2,O 2,OandQ Q
(Appendix A to [17]).  

If S-O interaction is neglected, then the system can be characterised additionally by 
the total spin S and A’/A” representations of Cs symmetry. In this case we have 6 
doublets and 6 quartets equally presented among 6 A’ and 6 A” states (see the right 
panels at Figs. 9-11). In the linear configurations (see right panels at Figs. 12,14), 
because of the higher symmetry C∞v, there exist additional degeneracies in two pairs of 
the doublet and in two pairs of the quartet states, i.e. we have 2 states with the 
degeneracy 2 (2Σ+, 2Σ−), 4 states with the degeneracy 4 (4Σ+, 4Σ−, 2Π(2), 2∆(2)) and 2 
states with the degeneracy 8 (4Π(2), 4∆(2)).
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Figure. 13. PES slices (radial potentials) Vi(R, γ=π/2): energies are given in kcal/mol; left panel: 
18 doublet PES’s calculated with the contribution of S-O interaction; right panel: 12 PES’s 
(32A’+32A”+34A’+34A”) calculated without the contribution of S-O interaction.  
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Figure. 15. Contour plots of the two lowest doublet PES, V1,2 calculated with the contribution of 
S-O interaction: energies are given in kcal/mol; solid and dashed contours are for PES indicating 
the adiabatic correlation between the 1st and 2nd from bottom components of the lowest multiplet 
O(3P2)+OH(2Π3/2) at long distances R and the lowest 2A” and 2A’ states at short distances, 
respectively.
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Figure. 16. Contour plots of the two doublet PES, V3,4 calculated with contribution of the S-O 
interaction: energies are given in kcal/mol; solid and dashed contours are for PES indicating the
adiabatic correlation between 3rd and 4th components of the lowest multiplet O(3P2)+OH(2Π3/2)
at long distances R and the lowest 4A” state at short distances, respectively.  
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Figure 17. Contour plots of the two doublet PES, V5,6 calculated with the contribution of S-O 
interaction: energies are given in kcal/mol; solid and dashed contours are for PES indicating the 
adiabatic correlation between 5th ( 3 2Ω = ) and 1st ( 1 2Ω = ) components of the multiplets 

( ) ( )3 2
2O P +OH X  at long distances R and the lowest 4A’ state at short distances, respectively. 
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In Figs. 15-17 we demonstrate the asymptotic anisotropic behaviour of the 6 lowest 
2D PES indicating the correlation of the lowest S-O multiplets of fragments with the 
lowest adduct states of 2A”, 2A’, 4A”, and 4A’ symmetry.  

For SACM applications, electronic wave functions of the FFC basis of Eq.25 are 
now incorporated in functions of the roronic basis  

( )2

1 2 11 1 1 1, , , , , , , , , , .
J J J J

J
J M J M M J M M MDψ γ φ− Ω Λ Ω Λ Ω −Ψ =    (38)  

In this construction of the complete basis, it is taken into account that, within the 
standard version of the SACM (nonrotating R), there are no interactions responsible for 
the coupling of states differing in the projection of the total angular momentum M along 
the intermolecular axis R.

In the rotational Hamiltonian we keep only terms (see e.g. [12])  
( ){ } ( )+−−+ +−+−−+−= ,2,2,2,20

2
,2,2,2,2

2
2,2,2

2
20rot 22 SJSJBLLSJSJBH zzzzzz SJ   (39)  

which, in the representation of Eq.38, generate the diagonal matrix elements  

( ) ( ) −Ω−−+=ΨΨ Ω+
ΛΩ−ΛΩ− 4

1~11
~21

220~,~,,,,rot~,~,,,, 12111211
JJBH

JJJJ MMJMJMMJMJ
  (40)  

and the non-diagonal matrix elements: 

( )
1 2 1 21 1 1 1

rot 0 2 2, , , , , , , , , , ,1

31 .
4J J J JJ M J M M J M J M MH B J Jδ′− Ω Λ − Ω Λ ′Ω −Ω

Ψ Ψ = − + −   (41)  

4. Conclusion  

 In this contribution, within the asymptotic approach, we have elaborated the basis 
for the calculation either of adiabatic channel potentials (diagonalization of the full 
Hamiltonian in a body-fixed frame at given interfragment distances) or of axially-
nonadiabatic channel potentials (diagonalization of the full Hamiltonian in a space-fixed 
frame at given interfragment distances). As a by-product, we have compared our 
asymptotic PES on different levels of approximations with available local ab initio data. 
In subsequent work, we envisage the calculation of low temperature rate constants for 
complex-formation of the title reactions.  
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Abstract  We describe in detail the determination of differential cross sections for the 
abstraction reaction of a halogen atom with molecular hydrogen.  As an illustration we 
give some examples of differential cross sections for the F+H2 HF+H and 
Cl+H2 HCl+H reactions, extending calculations described in earlier publications from 
our research groups. 

1.  Introduction

 Because of their experimental accessibility, the reactions of F and Cl with H2 and 
its isotopomers have become paradigms for exothermic triatomic reactions.[1]  The 
high-quality ab initio F+H2 potential energy surface (PES) of Stark and Werner (SW) 
[2] has been used in a number of quantum-scattering calculations [37] as well as quasi-
classical trajectory studies.[6, 8]  These theoretical studies have successfully reproduced 
the major features seen in both the photodetachment spectrum of the FH2  ion [3, 9] and 
the molecular-beam scattering studies of the reaction of F with H2,[10] D2,[11, 12] and 
HD.[11, 13, 14]  Concurrently, numerous quasiclassical trajectory and various quantum 
scattering investigations have been reported for the Cl+H2 reaction [15-18] on several 
potential energy surfaces (PESs).[19-21] 

Approach of the H2 molecule to a halogen atom splits the degeneracy of the 2P
state of the atom.  Two electronic states (12A' and 12A"; 2 + and 2  in linear geometry) 
correlate adiabatically with the ground-state atomic reactant (2P3/2) while a third state 
(22A' ; 2  in linear geometry) correlates adiabatically with the excited-state atomic 
reactant (2P1/2).[22]  Of these, only the 12A' electronic state correlates with the electronic 
ground state of the products [HX(X1 +) + H(2S)].  The two other electronic states 
correlate with electronically excited states of the products [HX(a3 ) + H(2S)] which are 
considerably higher in energy [23, 24] and, consequently, energetically inaccessible at 
low to moderate collision energies.  
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 The presence of these three electronic states, as well as the sizable spin-orbit 
(SO) splitting in the F and Cl atoms (1.15 kcal/mol for F and 2.52 kcal/mol for Cl [25]) 
raises two important questions:  (1) what is the reactivity of the excited (2P1/2) spin-orbit 
state relative to that of the ground (2P3/2) state and (2) how well is the dynamics of the 
reaction described by calculations on a single, electronically adiabatic potential energy 
surface (PES).  If the reaction were to proceed adiabatically on a single PES, as would 
be predicted by the Born-Oppenheimer (BO) approximation, then the excited SO state 
should not react.[26, 27]
 For F+H2 and its isotopomers the molecular beam, scattering studies mentioned 
above [10, 12] indicate that the reactivity of the excited spin-orbit state is below the 
sensitivity level of these experiments at collision energies below 2 kcal/mol.  (The 
barrier on the SW PES with the full spin-orbit Hamiltonian included is ≈ 1.9 kcal/mol 
[25]).  In subsequent molecular-beam experiments on the F+HD reaction Liu and co-
workers [13] also found that the reactivity of the spin-orbit excited state was only a few 
percent of that of the ground state. 
 In recent molecular beam experiments, Liu and co-workers [28, 29] used two 
different Cl atom sources to separate the reactivity of the two SO states of the Cl atom.  
Except at the lowest collision energies, they conclude that the excited SO state has a 
significantly larger reactive cross section.  This result is indeed surprising, because the 
body of experimental studies indicates that reactions which are allowed within the BO 
approximation (adiabatically allowed) always dominate.[27, 30] 
 Theoretical investigations of the role of excited electronic surfaces in the F+H2
reaction date back to the pioneering work of Tully.[31] Although scattering studies 
which include one (or both) of the excited electronic states have been reported by 
several groups,[32] these calculations have been subject to various approximations, 
both in the treatment of the dynamics as well as in the description of the PESs and 
couplings (non-adiabatic, Coriolis, and spin-orbit).  The vast majority of recent 
scattering studies of the Cl+H2 and F+H2 reactions have been based on a single, 
electronically-adiabatic potential energy surface. 
 In several recent papers, we have presented the complete methodology for the 

with molecular hydrogen.[33, 34] For the first time, we account for, accurately and 
completely, the electronic angular momenta of the halogen reactant and the spin-orbit 
coupling.  The treatment involves six three-dimensional hypersurfaces, four of which 
describe the diabatic potential energy functions and two of which describe the 
coordinate dependence of the spin-orbit coupling.  All Coriolis terms are included.  The 

 More recently we described the calculation of differential cross sections (DCSs) 
for the Cl+H2 reaction.[35]  These were used in the interpretation of ongoing crossed 
molecular beam studies.  The rationale for this investigation is that DCSs offer, in 
principle, a far more detailed probe of the dynamics than the integral cross sections 
(ICSs). This paper [35] marked the first ever fully quantum mechanical determination 
of reactive DCSs for a set of coupled ab initio PESs.  Because of space constraints, no 
details of the determination of the DCSs were reported.[35]  The goal of the present 
article is to present, for future reference, these details. 

review of the time-independent description of the collision dynamics and the details of 

time-independent, fully-quantum treatment of the abstraction reactions of halogen atoms

scattering is treated fully quantum mechanically, without any dynamical approximations.

The organization of this paper is as follows:  The next two sections contain a brief
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of DCSs is the subject of Sec. IV.  Section V reviews briefly the adiabatic and diabatic 
PESs which are necessary to describe the X+H2 reaction, and, in particular, the results 
of ab initio determinations of these PESs for the FH2 and ClH2 systems.  The results of 
representative calculations of DCSs for Cl+H2 and F+H2 are given in Sec. VI.  We close 
with a summary and conclusion. 

2. Hamiltonian and Basis Functions 

 The reactive scattering calculations are carried out in a manner similar to the 
recent work of Schatz and co-workers on the Cl+HCl exchange reaction.[36, 37]  We 
use an extension of the ABC code of Manolopoulos and co-workers.[5, 38]  The 
scattering wavefunction is expanded in an over-complete set of products of electronic-
vibrational-rotational states for each of the arrangement channels.  Canonical 
orthogonalization is then used to construct the surface eigenfunctions in each sector.  
For more details on the methodology [39] and the computer code (as applied to 
triatomic reactions in which the electronic fine structure of the atoms is ignored), we 
refer the reader to the earlier paper of Skouteris et al. [38]. We shall present here only 
those details which are relevant to the inclusion of the electronic fine structure and the 
participation of multiple PESs in the determination of DCSs for reaction. 
 We write the total Hamiltonian for collision of a halogen (X) in a 2P electronic 
state and the H2 (or any other diatomic) molecule as 

( , , ) ( , ) ( ; , ) ( ; , )nuc el soH R r q T R r H q R r H q R r= + + (1)
Here q  is a collective notation for the electronic coordinates, Hel is the electronic 
Hamiltonian, which, in the Born-Oppenheimer sense, depends parametrically on the 
positions of the three nuclei, and HSO is the spin-orbit Hamiltonian, which is not 
included in Hel.

 The nuclear coordinates R  and r  in eq. 1 designate the Jacobi vectors [40] in 
any one of the three chemical arrangements (X+HH, H+HX, or HX+H).  In terms of the 
mass-scaled Jacobi coordinates S and s, one defines Delves hyperspherical coordinates 
r and q .[40]  At each value of the hyperradius r we expand the total wavefunction in an 
overcomplete basis of rotational-vibrational-electronic wavefunctions in each 
arrangement.  In the X+H2 arrangement there are six electronic states.  For a halogen 
atom with a p5 electron occupancy these states correspond to the three spatial 
orientations of the p hole and the two possible spin-projection quantum numbers.  For 
the halogen halides, the lowest excited state is of  symmetry, and lies far above the 
ground state (X 1 +) in the region of the molecular minimum.[24]  If we neglect these 
excited   states, then, in each H+HX arrangement, we need retain only two states, 
which correspond to the HX molecule in its ground electronic state (1 +) combined with 
the two possible spin-projection quantum numbers of the H atom.   
 In each arrangement the basis functions are [34, 36, 41, 42] 

| J M K v j k λ σ > =

2
sin(2θ)

2J + 1
4π

   
         

      
1/2

DMK
J* (Ω) Yjk(γ ,0)φvj (θ; ρ) |λ σ > .

(2)

the application to reactions involving multiple PES's.  Discussion of the determination 
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Here J  is the total angular momentum, with projection M along the space-frame z-axis

and projection K along the Jacobi vector R  of the relevant arrangement.  The quantum 
number j designates the rotational angular momentum of the diatomic moiety in the 

same arrangement, with projection k along R .  Here, also, DMK
J* (Ω)  is a Wigner 

rotation matrix element,[43] Yjk (γ , 0)  is a spherical harmonic,[43] and φvj (θ; ρ) is the 
solution of a “vibrational” reference problem corresponding to motion in the hyperangle 
q  at the given (fixed) value of r.[38] 
 The quantities l and s in eq. 2 are the projection of the electronic orbital and spin 

angular momenta along R .  Since we consider here only doublet electronic states, the 
spin part of the wavefunction corresponds to s = 1/2 and s = ± 1/2.  The projection 
quantum numbers are related as follows 

 K = k + l + s . (3)
Note that we are using here a fully uncoupled treatment of the electronic angular 
momentum of the X atom [44] (case 2A in the notation of Dubernet and Hutson [45]).  
By contrast, in the work of Schatz and co-workers [36, 37] on the Cl+HCl exchange 
reaction, a “partially-coupled” basis set is used in which the total angular momentum ja

of the atom ( aj l s= + ) appears explicitly.  The advantage of the fully uncoupled 
electronic basis set is twofold:  First, it is not necessary to specify explicitly the 
magnitude l of the electronic orbital angular momentum, which is a good quantum 
number only asymptotically.  Second, use of a fully uncoupled basis set allows a direct 
connection with the results of ab initio calculations of the potential energy surface, 
without recourse to expansions in angular functions.[34] 
 To solve the close-coupled reactive scattering equations, one must first construct 
surface functions in each sector,[41, 46] by diagonalizing the total Hamiltonian, 
exclusive of the kinetic operator corresponding to radial motion in the hyperradius r, in 
the multiple arrangement basis consisting of the states defined by eq. 2.  Because the 
basis is non-orthogonal, it is necessary to determine matrix elements not only of the 
Hamiltonian but also of the overlap between the basis functions in the various 
arrangements.  In addition to the electrostatic interaction potential and the spin-orbit 
Hamiltonian, it is also necessary to determine matrix elements of the orbital angular 
momentum L2= (J – l – s – j )2.  For details on the determination of the matrix elements 
of the electronic and spin-orbit Hamiltonians and the orbital angular momentum, we 
refer the reader to Ref. [34]. 

3. Solution of the Time-Independent Close-Coupled Equations 

 As discussed above, for each value of the hyperradius r , we expand the total 
scattering wavefunction in a set of previously determined orthogonal surface functions.  
A log-derivative method [47] is used to propagate the solution numerically, from small 
r to large r.  The parameters which control the accuracy of the integration are (a) the 
number of sectors, (b) the number of vibration-rotation states included for each 
electronic state in each arrangement, and (c) the maximum value of the total projection 
quantum number K.  These are increased until the desired quantities (integral and/or 



DIFFERENTIAL CROSS SECTIONS FOR ABSTRACTION REACTIONS 49

reactions dominated by linear (or near linear) barriers, converged results can be 
obtained with only a few values of K, which greatly reduces the necessary computer 
time. 
 To reduce further the number of basis functions which must be simultaneously 
considered, we use definite-parity linear combinations of the signed-K rotation-
vibration-electronic basis functions (eq. 2).  These definite parity combinations are 
defined by [48] 
| J M K v j k λ σ η > = 2–1/2 [ ]
where h = ± 1, and the half-integer projection quantum number K is taken to be positive 
in this “definite-parity” basis.

Since the Hamiltonian is symmetric with respect to exchange of the two 
hydrogen nuclei, for reactions involving identical nuclei (X+H2/D2) the wavefunctions 
must be either symmetric or antisymmetric with respect to this operation.  For the basis 
functions in the reactant channel, the symmetry affects only the rotational wavefunction 
of the H2 moiety, which has the symmetry (–1)j.  Thus, only even (para-H2) or odd 
(ortho-H2) values of j need be included in the expansion in eq. 2.  For the product 
arrangement, we use the exchange-symmetrized basis functions [49] 

Ψ± = 2–1/2 [ Ψ2 ± (−1) j Ψ3 ]   , (5)
where Y2 and Y3 are basis functions [eq. 2] in each product arrangement (H+XH and 
HX+H) and the rotational quantum number j refers to the HX rotation.  The “+” 
functions must be used in calculations involving the reaction of pH2, and the “–” 
functions, in calculations for oH2.
 The propagation of the solutions to the CC equations are carried out entirely in 
the fully-uncoupled, body-frame basis of eq. 2.  At the end of the propagation, but 
before extraction of the S matrix, we transform the log-derivative matrix into the 
partially coupled basis discussed above.  Here, the atomic states in the reactant 
arrangement are labeled by the total electronic angular momentum of the atom, ja , and 

the projection of ja along R , which we designate ka.  In this basis the spin-orbit 
operator (and, hence, the total Hamiltonian) is diagonal.  These partially-coupled atomic 
states correspond to the Russell-Saunders spin-orbit states of the halogen atom.  Instead 
of eq. 2, the partially-coupled basis states are defined as 

| J M K v j k ja ka > =

2
sin(2θ)

2J + 1
4π

   
         

      
1/2

DMK
J* (Ω) Yjk(γ ,0)φvj (θ; ρ) | l s jaka >

 . (6)

Since l and s are fixed (l = 1 and s = 1/2), these indices are suppressed in the state label 
on the left-hand-side of eq. 6.  The transformation between the uncoupled states of eq. 2 
and the partially coupled states of eq. 6 is diagonal in K, j, k, and v, and given by 

| J M K v j k ja ka > = (lλsσ jaka )
λσ
 | J M K v j k λσ >    , (7)

where (.... | ..) is a Clebsch-Gordan coefficient.[50]  In the product arrangement, 
because the H atom has an electronic orbital angular momentum of zero, we need retain 
only a single electronic state.  Consequently, it is not necessary to carry out a similar 
transformation of the electronic basis states in the product arrangement. 

differential cross sections) have converged to within a reasonable limit.  For abstraction 

  , (4)| J M K v j k λ σ > + η | J M, –K, v j, –k, –λ, –σ >
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4. Differential Cross Sections

 The determination of integral reactive cross sections, either fully state-specific in 
the product vibrational and rotational quantum numbers, or summed over all product 
states, has been discussed in a previous paper.[34]  Basically, the probability for 
reaction at each value of the total angular momentum J is proportional to the square of 
the fully-state resolved S-matrix element for the transition in question.  The ICS is then 
obtained by summing over all values of the total angular momentum J and multiplying 
by p divided by the square of the reactant wavevector. 
 In terms of the definite-parity S -matrix elements, we have 

S J( ja ka j k v,σ j′k′v′) = SJ ( ja – ka j – k v, –σ j′ – k′v′)

1
2 SJη =+1( ja ka j k v,σ j′k′v′) + SJη=–1( ja ka j k v, σ j′k′v′)[ ]

(8a)

where h = ±1, and 
S J( ja ka j k v, –σ j′ – k′v′) = SJ ( ja – ka j – k v,σ j′k′v′)

1
2 SJη =+1( ja ka j k v,σ j′k′v′) – SJη=–1( ja ka j k v,σ j ′k ′v ′)[ ]

 . (8b)

 The DCS is the square of the scattering amplitude.  In the treatment of reactive 
scattering on a single potential energy surface, in which the only internal angular 
momentum (j) is the orbital (end-over-end) motion of the diatomic moiety, the DCS and 
scattering amplitude are often determined in the helicity representation, in which the 
states are defined by the vibrational (v) and rotational (j) quantum numbers of the 
diatomic and the projection of the latter along the reactant and arrangement channel 
Jacobi vectors.  We have 

dσ jkv→ j' k'v' (θ , Ecol) =
1

2 iki
f jkv→ j' k'v' (θ , Ecol)

2

   . (9)

where kj is the incident wavevector.  The scattering amplitude is given by [51] 

f jkv→ j' k'v' (θ , Ecol )=
1

2 iki
(2J + 1) 

J
 dkk'

J (θ )SJ ( j k v, j′k′v′; Ecol + ε j v)    , (10)

where q is the center of mass scattering angle and dkk'
J  is a Wigner reduced rotation 

matrix element.[43]  Note that –j J L= , where L  is the orbital angular momentum 
of the atom with respect to the diatomic fragment.  For simplicity, we shall suppress the 
vibrational quantum numbers.  By convention, the center-of-mass scattering angle q is 
measured counterclockwise from the initial relative velocity vector, as shown in the 
schematic Newton diagram in Fig. 1. 
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Figure 1. Schematic Newton diagram for the reaction of a halogen atom with molecular 
hydrogen.  The vector designated V' is the velocity vector of the HX products in the center-of-
mass frame.

In cases where the cm scattering angle is measured clockwise from R , then in eqs. 9 
and 10 the angle  should be replaced by. - . Note that the scattering calculations, and 
hence the S matrix, are performed at discrete values of the total energy.  Consequently, 
the determination of DCSs for different initial states, but at a given initial translational 
energy, requires scattering calculations at more than one value of the total energy. 
 We shall designate the total internal angular momentum by j12, where, for 
reaction of a 2P atom

12 – .aj J L j j l s j= = + = + + (11)
In the study of the X+H2 reactions the expression for the scattering amplitude analogous 
to eq. 10 is 

f j12k12→ j12 ′k12 ′(θ , Ecol) =

1
2iki

(2J + 1) 
J
 dk12k12 ′

J (θ)SJ ( j12 k12 , j12 ′k12 ′; Ecol + ε j ) ,
(12)

where k12 is the helicity frame projection of the total internal angular momentum.  We 
note that the S matrix which appears in eq. 12 is expressed in a fully-coupled basis, in 

which all the internal angular momenta are first coupled to form 12j , which is then 

coupled with the atom-molecular orbital angular momentum L , as summarized by 
eq. (11). 
 However, in the scattering calculations described in Secs. II and III above, the S
matrix is obtained in a basis in which the reactant states, determined in a partially 
coupled basis, are defined by the quantum numbers ja ka jk and the product states, by the 
quantum numbers s jk.  The relation between these bases and the fully-coupled basis 
defined in the preceding paragraph is (in the reactant arrangement) 

( ja j) j12k12 = jaka jk j12k12( )
ka k
 jaka j k  , (13)

where ja = 1/2 or 3/2.  In the product arrangement the corresponding relation is 
(s j′) j12 ′k12 ′ = sσ j′k′  j12k12( )

σ k
 sσ j ′ k′   . (14)



M.H. ALEXANDER, Y.-R. TZENG, AND D. SKOUTERIS52

( )( ) ),(1212|1212|

)1212,1212(

kjsjkakaj
JS''kjkjs

kkak
kjjkakaj

''kjkjJS

′′′′
′

=

σσ
σ

, (15)

where, for simplicity, we have suppressed the energy argument in the S-matrix 
elements. 
 The expression for the scattering amplitude (eq. 12) can then be expressed in 
terms of S-matrix elements in the partially-coupled basis as 

f j12k12→ j12 ′k12 ′(θ , Ecol) = 1
2iki

(2J + 1) 
J

 dk12k12 ′
J (θ)

jaka jk j12k12( ) sσ j′k′ j12 ′k12 ′( ) SJ ( jaka jk, sσ j′k′)
kakσ k ′
 .

(16)

However, the expression for the scattering amplitude can be transformed, similarly to 
eq. 15, into an expression between states expanded in the partially coupled basis, 
namely (hereafter, for simplicity, we suppress the dependence on Ecol)

f j12 k12 → j12 ′k12 ′(θ) =

jaka ′ j ′ ′ k j12k12( ) sσ ′ j′ ′ ′ ′ k j12 ′k12 ′( )f jaka ′ j ′ ′ k → sσ ′ j′ ′ ′ ′ k (θ )
ka ′ ′ ′ k ′ σ ′ ′ ′ k

  . (17) 

 Setting these last two equations equal, and using the orthogonality of the 
Clebsch-Gordan coefficients, we can obtain the following equation for the scattering 
amplitude in the partially coupled basis in terms of the S-matrix elements in the same, 
partially-coupled basis 

f jaka ′ j ′ ′ k → sσ ′ j′ ′ ′ ′ k (θ ) = 1
2iki J

 (2J + 1) 
j12k12 j12 ′k12 ′

 dk12k12 ′
J (θ)

jaka jk j12k12( ) jaka ′ j ′ ′ k j12k12( ) sσ j′k′ j12 ′k12 ′( )
kakσ k ′
 

× sσ′ j ′ ′ ′ ′ k j12 ′k12 ′( )SJ ( ja ka jk, sσ j′k′) .

(18)

Because the Clebsch-Gordan coefficient j1µ1j2µ2 jµ( ) vanishes unless the sum of the 
first two projection quantum numbers equals the third (µ1 + µ2 = µ) , only one value of 
k12 and only one value of k12

’ survive on the right-hand-side of this last equation.  
Subsequently, we can carry out the sum over j12 and j12

’ and use the orthogonality 
relation of the Clebsch-Gordan coefficients (with respect to summing over j12,k12 and 
j12

’,k12
’) to obtain the simplified expression, which we could have perhaps anticipated, 

f jaka jk→ sσ j′k ′(θ) =
1

2iki
(2J +1)

J
 dka +k ,σ +k′

J (θ) SJ( jaka jk,sσ j ′k′) . (19)

If we now insert, explicitly, the reactant and product vibrational quantum numbers, we 
obtain

Consequently, the S matrix elements in the fully-coupled basis are given by 
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f jaka jkv→sσ j′k ′v′(θ ) =
1

2iki
(2J + 1)

J
 dka +k,σ +k ′

J (θ) SJ ( ja ka jkv, sσ j′k′v′)   . (20)

 The corresponding DCS is obtained by squaring this expression 

dσ jaka jkv→ sσ j′k′v′(θ) = f jaka jkv→sσ j ′k ′v′ (θ)
2

  . (21)

The DCS, summed and averaged over projection quantum numbers, for reaction to 
yield HX products in rotational level j´ in vibrational manifold v’ is given by 

dσ ja jv→ s j′v′ (θ ) =
1

(2 j + 1)(2 ja + 1)
dσ jaka jkv→sσ j′k ′v′(θ )

ka kσ k ′
  . (22)

One can further sum over j´ to obtain an expression for the total DCS for reaction to 
yield HX products in vibrational level v’, summed over all accessible rotational levels in 
this vibrational manifold, namely 

dσ ja jv→ v′(θ) =
1

(2 j + 1)(2 ja +1)
dσ jaka jkv→sσ j′k ′v′ (θ)

ka k j′σ k ′
   . (23)

5.  Potential Energy Surfaces:  Adiabatic and Diabatic 

 Werner and co-workers [2, 21, 34] used internally-contracted multi-reference 
configuration-interaction (IC-MRCI) calculations, based on state-averaged (three-state) 
multi-configuration, self-consistent-field (MCSCF) calculations with large atomic 
orbital basis sets, to determine the three electronically adiabatic Cl(F)+H2 PESs in the 
reactant arrangement: 1A', 2A', and 1A''.  These all correlate with X(2P) + H2. These 
three adiabatic electronic states are the IC-MRCI approximations to the three lowest 
eigenfunctions of Hel, namely 

( , ; ) ( , ; ) ( , ) ( , ; )el i i iH R r q R r q E R r R r qψ ψ=   , (24)
where the subscript i  = 1,2,3 designates the |1A' >, |2A' >, and |1A'' > states.  The 
eigenvalues Ei define the three adiabatic PESs.
 We specifically subtract the energies of the reactants at infinite X–H2 separation, 
so that 

2
( , ) ( , ) – – ( )i i X HV R r E R r E E r=   . (25)

Here EX designates the electronic energy of the X atom in its 2P state exclusive of the 
spin-orbit Hamiltonian.  The zero of energy will be defined by the equilibrium 
internuclear separation of the H2 molecule as determined in the IC-MRCI calculations, 
so that

(| | ,| | ) 0i eV R r r=∞ = =  , (26)
where re is the equilibrium internuclear separation of the H2 molecule, as predicted by 
IC-MRCI calculations. 
 By analysis of the coefficients in the CI expansion of the XH2 electronic 
wavefunctions, the two PES's of A' reflection symmetry can be transformed to an 
approximate diabatic basis,[2, 52] in which the orientation of the p hole on the X atom 

is fixed with respect to the plane defined by the three atoms.  Here we take R  to define 
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the z axis and chose the y axis to be perpendicular to the triatomic plane.  We shall 
designate the diabatic states by the projections of the electronic orbital and spin angular 

momenta along R . We use the compact Cartesian notation | x >, | y >, and |  >.  
The two adiabatic states of A´ symmetry correspond to a 2 x 2 rotation of the| x >| and | 

 > diabatic states, namely 
1A′
2A′

   
   
   

   
   
   = T

Σ
Π x

  

   
   

  

  
    , (27)

where

T = cosζ sin ζ
– sinζ cosζ

   
      

  
    
  . (28)

Here the transformation angle  depends on R,  and .  Since there is no coupling 
between the | y> state, of A'' reflection symmetry, with the | x>  and | > states, of A'

reflection symmetry, the adiabatic and diabatic states of A'' reflection symmetry are 
identical.  Alternatively, we can define the diabatic states in terms of signed- , rather 
than Cartesian, projections, namely | 1>, | -1>, and | >.  These signed-  states are those 
which we used above in the expansion of the scattering wavefunction. Note that the 
state we designate as “ ” corresponds to = 0.
 As presented in detail in an earlier paper,[34] the matrix of the interaction 
potential, in the 6 x 6 basis defined by the three Cartesian diabatic states and the two 

possible spin projections (which are also defined with respect to R ) can be described 
in terms of three diagonal, electronically diabatic PES's:  Vxx, Vyy, and Vzz, [53] as well 
as a fourth PES, Vxz, which is the coupling between the two states of A' symmetry.  
Each of these four PES's is a function of the three internal coordinates.  Thus, the 
description of the interaction in the electronically diabatic basis, which involves these 
four potential energy functions is equivalent to the description in the electronically 
adiabatic basis, which involves three potential energy surfaces (V1A', V2A', and V1A'') plus 
the coordinate dependent mixing angle .
 The matrix of the spin-orbit Hamiltonian is determined fully by two 
components,[2] 

A(R, r,θ) ≡ i < Π y |Hso | Π x > (29)
and

B(R,r ,θ ) ≡ < Π x | Hso | Σ >   , (30)
where

lim
R→ ∞

B = lim
R →∞

A (31)

The spin-orbit functions A and B can be determined in the ab initio calculations, along 
with the PESs. 
 The three-state calculations carried out by Werner and co-workers [2, 21, 34] did 
not extend into the product arrangement.  In these regions the lowest electronically 
adiabatic PES from the three-state calculations was smoothly merged to either the 
single F+H2 PES of Stark and Werner (SW) [2] or the single Cl+H2 PES of Bian and 
Werner (BW).[20] The excited surface of A' symmetry, as well as the single surface of 
A'' symmetry, was harmlessly extrapolated to a high repulsive plateau.  In addition, the 
coupling potential was extrapolated to zero, outside of the region in which the three-
state   calculations   were  performed.   Thus,  outside   the   reactant   arrangement,   the 
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description of the FH2 and ClH2 systems is unchanged from the original SW or BW fits 
with the addition of two high-energy electronic states.  For the F+H2 system, the set of 
diabatic potential energy functions, along with the coordinate dependence of the two 
spin-orbit matrix elements is known, collectively, as the Alexander-Stark-Werner 
(ASW) PES,[34] and, for the Cl+H2 system, as the Capecchi-Werner (CW) PES.[18, 
21] 
 In the expression for the basis functions, the electronic states which appear in eq. 
(2) have a well-defined value of the projection of the electronic orbital angular 
momentum , even though l itself does not have a definite value, except when the X 
atom is infinitely far from the H2.[48]  In the pure-precession limit, l would everywhere 
fixed at its value for the separated halogen atom reactant, namely l= 1.
 When the spin-orbit Hamiltonian is included, the lowest electronically adiabatic 
PES corresponds to the lowest eigenvalue of Hel +HSO.  Since the  states lie so much 
higher than the  state at the barrier, the  -  component of the spin-orbit coupling 
[the B term of eq. (20)] has only a small effect on the  state. [The –  component, A
(eq. 19), will affect the  state only to higher order].  By contrast, asymptotically, the 
presence of the spin-orbit coupling results in a lowering of the energy of the lowest 
electronically adiabatic state by 1/3 the value of the spin-orbit constant of the atom. As 
has been discussed previously,[2, 6, 9, 36] the net result is an increase in the height of 
the barrier, with respect to the F+H2 reactants, by approximately 1/3 the halogen atom 
spin-orbit splitting.  After inclusion of this spin-orbit contribution, the predicted FH2
barrier is 2.33 kcal/mol [34] and the predicted Cl+H2 barrier is 8.45 kcal/mol.[20]  In 
addition, the spin-orbit Hamiltonian will make an appreciable contribution in the region 
of the van der Waals minimum.  The effect of this will not be explored further in the 
present article. 

6.  Calculations 

 Differential cross sections were determined for the Cl+H2 reaction at four 
different initial collision energies (3.85, 4.25, 5.2 and 5.85 kcal/mol), which correspond 
to those in two recent molecular-beam scattering studies.[28, 35]  The details of the 
calculation were similar to those reported in several earlier investigations of this 
system.[18, 35].  Values of the total angular momentum ranging from J = 0.5 to J =24.5 
were included in the calculation.  Figure 2 shows the reactive DCS summed over all 
rotational levels of the v=0 vibrational manifold of the HCl products at these collision 
energies.  We observe that the DCSs are all strongly backward peaked, and very small 
in magnitude.  This is a reflection of the low collision energy relative to the height of 
the barrier (Ea = 8.45 kcal/mol).    
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Figure 2. DCS for reaction of Cl with H2(j=0) to yield HCl(v=0), summed over all rotational 
levels of the product.  Shown are cross sections for reaction of the ground (ja=1.5) and excited (ja
=0.5) spin-orbit states of the Cl atom. 

 As the collision energy increases, the magnitude of the cross sections increases, 
as expected.  Additionally, we observe that the relative reactivity of the two spin-orbit 
states changes dramatically over this range.  Because of the sizable spin-orbit splitting 
in the Cl atom (2.5 kcal/mol), at a given collision energy the total energy available in 
the Cl*+H2 will be that much larger.  Although reaction of Cl* is adiabatically 
forbidden, at very low collision energies, where the adiabatically allowed reaction 
(Cl+H2) is strongly classically forbidden by the large barrier, the additional energy in 
the Cl*+H2 reaction will enhance the reactivity of the adiabatically forbidden channel.  
This effect can also be seen, of course, in the energy dependence of the ICSs.[18] 
 If the sum of the electronic interaction Hamiltonian plus the SO coupling in the 
6x6 electronic basis is diagonalized at each value of the coordinates, the lowest root 
will define a fully (electronic + spin-orbit) adiabatic X+H2 PES.  This is designated as 
the CWad PES for Cl+H2 [18] and the Hartke-Stark-Werner (HSW) PES for F+H2.[9]  
The reader should note that these PESs are different from the Bian-Werner (BW2) and 
Stark-Werner (SW) fits to the electronically adiabatic (no spin-orbit Hamiltonian) PES 

2 2for, respectively,Cl+H and F+H .  Because the CWad and HSW PESs have the full spin-
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orbit Hamiltonian included, they provide the single-surface analog to the CW and ASW 
PESs.  Comparison of integral and/or differential calculations determined on the 
CW as compared to the CWad PESs (or the ASW as compared to the HSW PESs) will 
be a direct probe of the effect of nonadiabatic couplings as the reaction occurs. 
 In the multi-state formulations of the X+H2 reaction, four states correlate with 
the ground-state [X(2P3/2)] reactants.  In collinear geometry these are the 2

1/2 and 2
3/2

states.[34]  Since the 2
3/2 states are repulsive and hence unreactive, to zeroth order, 

only 50% of the reactants will approach on a PES which leads to reaction.  However, in 
the single-state calculations we assume that all (100 %) of the reactants will approach 
on the reactive PES.  Dividing the single PESs cross sections by 2 provides a simple 
compensation for this fundamental difference.[34, 54]  Figure 3 compares the DCS for 
the Cl+H2 HCl(v=0)+H reaction as predicted by three-state calculations on the CW 
PESs and single-state calculations on the CWad PES. These are compared with (dashed 
line) the predictions of single-surface calculations on the CWad PES.  We observe (fig. 
3, left panel) that the DCS predicted by the single-surface (CWad)  

Figure 3. (Left panel) DCS for reaction of Cl and Cl* with H2(j=0) to yield HCl(v=0), summed 
over all rotational levels of the product.  Shown are cross sections for reaction of the ground 
(ja=1.5) and excited (ja =0.5) spin-orbit states of the Cl atom and (dashed line) predictions of 
single-surface calculations on the CWad PES. (Right panel) DCS for reaction of Cl with H2(j=1,
2, and 3) to yield HCl(v=0), summed over all rotational levels of the product.

calculations with the single-surface ABC code [38] are (once divided by 2) virtually 
identical to the DCS for adiabatically allowed reaction of the 2P3/2 state of the Cl atom 
from the multi-surface calculations based on the CW PESs. Since the methodology and 
formulation of the scattering are quite different, the good agreement confirms the 
accuracy of our multi-surface adaptation [34] of the ABC code. 
 In the right panel of fig. 3 this comparison is continued for reaction of Cl with H2
in higher rotational levels.  It is well known that rotational excitation of the H2 greatly 
enhances the probability of reaction.[17] This effect is apparent in the relative 
magnitudes of the DCSs shown in fig. 3.  We also observe that the agreement between 
the single-surface CWad DCSs and the multi-surface CW DCSs deteriorates with 
increasing initial rotational excitation of the H2 molecule.  As we have already noted in 
our determination of ICSs for the Cl+H2 reaction,[18] there are additional electronically 
inelastic  channels  in  the  multi-surface  formulation  which  do not occur in the single- 
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surface treatment.  The effect of these electronically inelastic channels is to decrease the 
flux leading to reaction, so that, when compared with the single-surface calculations, 
the multi-surface DCSs should be smaller.  Coupling between reaction, which occurs on 
the lowest (2 +) PES, and an inelastic collision on the repulsive 2   PES, can be induced 
by several terms in the expansion of the L2 operator, discussed at the end of Sec. II and 
in more detail in the Appendix to Ref. [34].  In particular, the j ⋅ l , j ⋅ J  , and j ⋅ s
terms will all vary linearly with the initial rotational angular momentum of the H2
molecule.  Consequently, we might anticipate that this inelastic loss mechanism will 
increase with increasing j, which is what is observed. 

Figure 4.  DCS for reaction of Cl with H2(j=0) to yield HCl(v=0, j´) at two collision 
energies.

 Figure 4 shows the dependence on final rotational state of the Cl+H2(v=0, j =0)
HCl(v=0,j´) DCSs at two different collision energies.  We observe that the DCSs all 
have a very similar shape.  Likely, this implies that the overall shape of the DCS is 
determined by the reactive probability (opacity) as a function of impact parameter and 
by an overall deflection function (b), while the product final state distribution is 
governed by the shape of the PES in the exit region of the arrangement channels.  We 
remark also that the determination of fully final-state resolved DCS does not present 
any particular difficulty for our time-independent method, but would not be feasible 
with some of the time-dependent methods which have been applied recently to the 
X+H2 reactions.[7, 16]
 We turn now to the F+H2 system.  Figure 5 shows reactive cross sections for the 
reaction of F(2P3/2 and 2P1/2) with H2 in j = 0 at Ecol =1.84, the lowest energy explored in 
the landmark molecular-beam experiment of Neumark et al.[10]  In contrast to the 
Cl+H2 DCSs, we observe that even at this low energy the adiabatically allowed reaction 
has a considerably larger DCS than the adiabatically forbidden reaction of F*.
Also in contrast to the Cl+H2 DCSs, those for F+H2 show a substantial sideways 
contribution and a pronounced forward peak.  However, the DCS for reaction with H2
in j =1,  which makes up the largest fraction of a supersonic beam of  nH2,  shows much  
less forward and sideways contributions to the DCS 
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Figure 5. DCSs for reaction of F (solid curves) and F* (dashed curves) with H2(j=0) (left panel) 
and H2(j=1) (right panel) to yield HF, summed over all final vibrational and rotational levels, at 
Ecol = 1.84 kcal/mol. 

 Figure 6 (next page) compares the prediction of the multi-surface calculations on 
the ASW PESs for reaction of F in its ground spin-orbit state with the predictions of 
single-surface calculations based on the fully adiabatic HSW PES.  As in the case of the 
Cl+H2 calculations on the fully-adiabatic CWad PES, the calculated DCSs are divided 
by 2 to compensate for the presence of the non-reactive 2

3/2 states with correlate with 
F(2P3/2)+H2.  We observe that both in shape and magnitude the HSW DCSs and the 
ASW F+H2 DCSs agree very well.  At the same collision energy, the DCS from single 
surface calculations based on the SW PES (not shown here), are similar in shape but 
somewhat larger in magnitude.  This reflects the lower barrier on the SW PES because 
of the absence of spin-orbit coupling, which, as discussed above, effectively lowers the 
barrier by ~ 1/3 the atomic spin-orbit splitting.  A more careful examination shows that 
the ASW DCSs are slightly depressed in the backward direction, when compared with 
the HSW DCSs. 
 We also observe that the backward scattering produces primarily HF product in 
v’=2, while the forward scattering peak corresponds primarily to HF products in v’=3.
This angular separation is virtually identical to what is predicted by the single-surface 
HSW calculations.  

7.  Summary and Conclusion  

 We have presented here the necessary formalism for the determination of 
differential cross sections for abstraction reactions of a halogen atom in a 2P state with 
molecular hydrogen. The scattering is treated fully quantum-mechanically, and involves 
six three-dimensional hypersurfaces, four of which describe the diabatic potential 
energy functions and two of which describe the coordinate dependence of the spin-orbit 
coupling. In addition, all Coriolis terms are included.  The DCSs can be obtained from a 
straightforward extension of the standard helicity-frame expression used in prior  
single-potential-surface  treatments. Using  the  available  fitted  ab initio  PESs  for  the
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Figure 6. DCSs for reaction of F with H2(j=0) (upper panels) and H2(j=1) (lower 
panels) to yield HF at Ecol = 1.84.  The left hand panels refer to single-surface 
calculations on the HSW PES while the right panels refer to the multi-surface 
calculations with the ASW PESs.  The heavy solid curve depicts the total reactive 
DCS, summed over all final states; the light solid and dashed curves designate the 
DCS for reaction into all rotational levels of HF in the v = 2 and v=3 vibrational 
manifolds, respectively. 

F+H2 and Cl+H2 systems, determined by Werner and his co-workers,[2, 9, 20, 21, 34] 
we presented calculated DCSs in the center-of-mass frame at a number of collision 
energies.
 For the Cl+H2 system, these calculations show that the reactive DCSs are all 
strongly backward peaked, independent of the collision energy and the initial rotational 
level of the H2 molecule.  At the lowest collision energies, well below the barrier, 
theDCS for reactivity of the excited spin-orbit state far exceeds that of the ground spin-
orbit state.  When the adiabatically allowed channel becomes too strongly energetically 
forbidden, then Cl* reaction, even though energetically forbidden, becomes facilitated
by the additional internal energy in the excited spin-orbit state.  As the collision energy 
increases, the adiabatically allowed reaction becomes rapidly dominant.  This result 
mirrors, of course, the conclusions of our earlier investigation of ICSs for the Cl+H2
reaction.[18]  Curiously, an opposite trend is inferred from the experiments of Liu and 
co-workers.[28, 29]  This disagreement is not yet understood. 
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 When compared with DCSs calculated on the lowest adiabatic Cl+H2 PES (the 
CWad PES), the multi-surface DCSs agree exceptionally well for transitions out of low 
H2 rotational levels.  This confirms the accuracy of the multi-surface methodology and 
scattering code.  However, as the H2 rotational level increases, the multi-surface 
reactive DCSs become progressively smaller than the single-surface CWad predictions.  
This is likely an indication of loss of reactive flux through electronically inelastic 
processes, which are not possible in a single-surface model.  Obviously, more work 
should be done on this aspect of the reaction. 
  Because the topology of the PESs are much different and because the barrier is 
considerably lower, calculated DCSs for the F+H2 reaction are much larger in 
magnitude and have a significant forward and sideways component not seen in the 
Cl+H2 DCSs.  At the collision energies considered, the DCS for reaction of the excited 
spin-orbit state of F is always significantly less than the DCS for adiabatically-allowed 
reaction of the ground spin-orbit state.  Overall, the DCSs for reaction of F and F* are 
quite similar in shape, although the excited spin-orbit channel does not show as strong a 
peaking in the backward direction.  Comparison of the multi-surface calculations based 
on the ASW PESs with single-surface calculations based on the fully adiabatic HSW 
PES indicate, as in the case of Cl+H2, that the adiabatically allowed reaction of F(2P3/2)
is mimicked very well by calculations on the lowest PES which neglect all electronic 
fine structure of the atom.   
 In a recent communication we have compared calculated Cl+H2 DCSs, 
transformed into the laboratory frame, with those determined in recent experiments.[35]  
In future papers, we shall present more detailed results of comparable simulations, for 
both the Cl+H2 and F+H2 reactions. 
 The formalism and computer codes developed here for the study of halogen-
hydrogen could, without great difficulty, be extended to the investigation of spin-orbit 
and electronic nonadiabatic effects in other atom-molecule abstraction reactions. 
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Abstract  In this article we present a survey of the various conical intersections which 
govern potential transitions between the three lower electronic states for the title 
molecular system. It was revealed that these three states, for a given fixed HH distance, 
RHH, usually form four conical intersections: two between the two lower states and two 
between the two upper states. One of the four is the well-known equilateral D3h ci and 
the others are, essentially, C2v cis: One of them is located on the symmetry line 
perpendicular to the HH axis (like the D3h ci) and the other two are located on both sides 
of this symmetry line and in this way form the twin C2v cis. The study was carried out 
for two RHH-values, namely, RHH=0.74 and 0.4777 Å.  

The second subject treated here, in some detail, is related to the possible 
quantization of the non-adiabatic coupling matrix. We show that in general for small 
enough regions surrounding a particular ci the two-state quantization is fulfilled. 
However, increasing the region surrounded by the contour shows larger and larger 
deviations from the two-state quantization but then the three-state quantization shows 
relevance as expected from pure theoretical considerations (Baer and Alijah, Chem. 
Phys. Lett. 319, 489 (2000)). 
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1. Introduction 

It is well known that molecular processes are governed by Coulomb interactions and 
therefore are accurately treated by applying the relevant Schrödinger equation (SE). The 
connection between the solutions of the SE and observables such as cross sections or 
spectroscopic measurements is established from the early days of quantum theory, so it 
seems that to a large extent the only theoretical interest one can find in molecular 
physics is in developing numerical algorithms to solve the SE for required situations. 
The basic theory that enables the quantum mechanical treatment of realistic (usually 
complicated) molecular systems was presented by Born and Oppenheimer (BO) and 
later completed by Born and Huang.[1,2] Any additional theoretical treatment is 
considered as overdoing. Indeed, as long as the main attention is given to processes 
taking place on the ground electronic state no additional theoretical input from first 
principles is needed.  
The situation changes once electronic excited states have to be included to account for 
possible electronic transitions. Hints towards potential difficulties follow already from 
the Hellmann-Feynman theorem[3] which points out the possibility that the BO 
approach may lead to magnitudes - the non-adiabatic coupling terms (NACT) - which 
are singular. The singularities can be considered as mishaps caused by the fact that 
electronic states become degenerate at certain points in configuration space.[4] In 
numerous cases it was assumed that singular NACTs are rare and therefore can be 
ignored. Consequently the Hellmann-Feynman theorem was overlooked for some time, 
even when, two decades later, Longuet-Higgins (LH) et al. revealed that the existence of 
the degeneracy may affect the single-valuedness of some of the adiabatic electronic 
eigenfunctions.[5,6] LH overcame this ‘nuisance’ by multiplying the (multivalued) 
eigenfunction by a phase factor, forcing the eigenfunctions to be singlevalued (without 
affecting their electronic features). This phase being available led Mead [7] to construct 
an adiabatic (nuclear) SE which is characterized by NACTs that are not necessarily 
identical to the original BO NACTs (as they should be). Consequently the relevant 
diabatic SE may be inadequate as well and erroneous results can be expected. 
There is no doubt that treating molecular systems affected by NACTs is much more 
complicated than treating them in cases when these effects are ignored. The main reason 
is that NACTs are not only occasionally spiky functions of the coordinates and therefore 
numerically unfriendly but, as mentioned earlier, they are frequently singular. [3] 
Having singular NACTs is not just a difficulty which can be treated using some 
numerical recipe; in fact, these singularities form non-local effects and therefore have to 
be eliminated, rigorously, without their physical contents being affected. [8,9]
Scanning through the published literature it is noticed that in many cases the NACTs are 
not as seriously considered as they should be. In contrast to the familiar vib-rotational 
coupling terms which are well understood and usually handled correctly, the NACTs are 
in most cases, either ignored or circumvented without proper justification. If ignored, 
not much can be added except to say that the results have to be considered unreliable 
and eventually non-relevant. More serious difficulties are encountered with treatments 
that circumvent the need to consider NACTs and give the impression that these 
treatments are well established and numerically sound. As it turns out it is impossible to 
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circumvent the (singular) NACTs because they form non-local effects which determine 
the minimal size of the group of (adiabatic) states one has to employ in order to form 
singlevalued diabatic potentials [9-11] In what follows this group is termed a Hilbert 
sub-space.  
A NACT is a vector characterized by two features: it has its origin at a degeneracy point 
[3] (i.e. where two electronic eigenstates become identical), known also as a conical 
intersection (ci), [12-14] and it has a spatial distribution which is well known to 
decreases like q-1, where q is a the distance from the ci, but maintains an angular 
dependence which is of major importance. [15-16]  
The BO theory enables two different approaches or frameworks for treating the 
interaction of the molecular species. The first is the above-mentioned adiabatic 
framework which consists of the adiabatic potential energy surfaces (PES) and the 
NACTs and the second is the diabatic framework which is expressed in terms of the 
diabatic potential matrix. Since the elements of the diabatic PES matrix are regular, 
smooth functions of the coordinates, the diabatic framework is preferred for treating the 
dynamics of the nuclei and indeed all rigorous quantum mechanical treatments aim at 
reaching it.[4,8,9,17-20] The diabatic framework can be formed in three ways: (1) The 
direct way, namely, deriving an electronic basis set, as well as a set of eigenvalues 
calculated at a given (one, single) point in configuration space, and applying them to 
calculate the diabatic potential matrix at any requested point (see, for instance, ref. [9c] 
Appendix D). (2) The indirect way, namely, deriving at each point in configuration 
space the electronic eigenvalues (which are recognized as the adiabatic potentials) and 
the electronic eigenfunctions, and transforming to the diabatic framework [8-9] 
(employing the NACTs calculated from the adiabatic eigenfunctions). This 
transformation is known as the adiabatic-to-diabatic transformation, or by its acronym 
ADT, and as was discussed on many other occasions the ADT yields a meaningful 
diabatic potential matrix if and only if certain conditions (to be discussed below) are 
fulfilled. [3] There is also a third way which is similar to the former one since it is based 
on an ADT matrix, but the relevant matrix elements are not calculated from the NACTs 
but by employing other considerations.[19]   
There is no doubt that on the face of it the direct way of reaching the diabatic 
framework is more convenient. Indeed, as long as the various NACTs form weak 
coupling terms this procedure is valid and simple. However, in case certain NACTs 
become singular, as for instance in case of the H+H2 system, where we established the 
existence of four strongly interacting cis, coupling at least three adiabatic PES [15] this 
procedure is most likely to fail and therefore is expected to yield irrelevant results. 
Indeed numerous PESs that were derived ignoring the relevant features of the NACTs 
may turn out to be inadequate for studying electronic transitions. In order to find out if 
such singular NACTs exist one has to ‘move’ into the adiabatic framework and 
calculate them for a highly dense grid of points which, in turn, makes this procedure 
(i.e. the direct one) essentially redundant. Another difficulty associated with the direct
approach has to do with the previously mentioned non-local effects which do not 
become apparent, at least not in an obvious way, within the diabatic framework. We 
showed in numerous articles that dynamic calculations are expected to be meaningless 
unless the non-local effects are properly treated and this can be done only by employing 
the NACTs. 
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As was shown in numerous articles, [10-11] and we briefly repeat it here, the non-local 
effects are properly treated if and only if the matrix, τ, that contains the NACTs is 
quantized. We will not elaborate on this issue now because it will be extensively 
discussed in the next section; however, for the sake of completeness, we just say the 
following: The ADT yields the diabatic PES matrix elements but there is no a-priori 
guarantee that these potentials are singlevalued. In fact if the non-local effects are not 
properly treated these potentials are most likely to become multivalued. In the numerical 
part that relates to the NACTs of the H+H2 system, we show that the ad-initio electronic 
eigenfunctions form quantized nonadiabatic coupling matrices (NACM).  
The article is arranged in the following way: In the next section we present the 
theoretical background related to the subject, namely discussing the adiabatic SE, the 
ADT, the single-valuedness of the diabatic potentials, the topological matrix (a subject 
not yet mentioned) and finally the quantization of the NACM. In the third and fourth 
sections is presented the numerical part of the article: in the third section we give 
numerical details regarding the H+H2 system and in the fourth we show the results. In 
the fifth section the results are discussed and the conclusions are summarized.  

2.  Theoretical Background 

2.1 THE ADIABATIC SCHRÖDINGER EQUATION   

The starting point is the Born-Oppenheimer-Huang (BOH) close coupling expansion:  

N

j= 1
j j

(e , )= ( ) (e | )ν ν ν  (1) 

where ν and e stand for nuclear and electronic coordinates, respectively, ψj(ν) is the j-th 
nuclear-coordinate-dependent coefficient (recognized as the j-th nuclear wave function) 
and ζj(e|ν) is the j-th electronic wave function, assumed to be the eigenfunctions of the 
electronic Hamiltonian He(e|ν):

( )j j j = 1 , . . . ,Ne ( e | ) -u ( ) ( e | ) = 0 ;H ν ν ν                                            (2) 

Here uj(ν); j=1,…,N are the adiabatic potential energy surfaces (PES) that govern the 
motion of the nuclei in this system. 
Next are introduced the non-adiabatic coupling matrix elements (NACME), τji, the main 
magnitudes considered in this article, which are defined as:  

, {1, ....};ji j i i jζ ζ == ∇                                                                       (3) 

where the grad operator is expressed with respect to the nuclear coordinates, ν, and the 
ζk(e|ν)-functions, k=j,i are the above-mentioned eigenfunctions. The NACTs become 
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apparent in the SE which describes the motion of the nuclei. Assuming the electronic 
manifold forms a Hilbert-space, this equation takes the form: (9) 

( ) ( )
2 2

2
E

m
− ∇ + + − =u 0

 (4) 

where τ is the above-mentioned anti-symmetric NACM, u is a diagonal matrix that 
contains the adiabatic PESs (introduced through Eq. (2)), Ψ is a column vector that 
contains the nuclear wave functions to be solved (introduced in Eq. (1)), E is the energy 
and m is the mass of the system (it is assumed that the grad operator is defined with 
respect to mass- scaled coordinates). Eq. (4) can be shown to be valid for a group of 
states that does not necessarily form a Hilbert space but which is strongly coupled to 
itself and, at most, weakly coupled to other states belonging to this manifold (in the 
region of interest). In what follows such a group of states is termed a Hilbert sub-
space.

2.2 THE ADIABATIC-TO-DIABATIC TRANSFORMATION (ADT) 

Considering Eq. (4) it is well noticed that for those cases where the NACTs are singular 
we encounter a differential equation that contains singular functions. As was mentioned 
earlier these singular functions create non-local effects and therefore eliminating them 
has to be done rigorously in order not to lose the physical non-local effects. This 
elimination is done by applying a unitary transformation matrix A that, as it turns out, 
transforms the adiabatic framework to the diabatic one, which is characterized by the 
fact that the resulting NACTs are zero (or close to zero). Due to this feature the matrix 
A is termed the adiabatic-to-diabatic transformation (ADT) matrix. Considering Eq. (4) 
we replace Ψ by Φ  where the two are related: 

= A (5) 

Substituting Eq. (5) in Eq. (4), performing the usual algebra, and demanding the 
elimination of the τ-matrix yields the following results: [8,9] 

(a) The new (diabatic) SE is: 

2

( - ) 0
2 m

E∇ + =2- W
 (6) 

where the diabatic potential W is given in the form: 

†=W A u A (7) 

(b) The differential equation to determine the ADT matrix, A:

∇ A + A = 0  (8) 
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Eq. (8) is a vectorial, first-order differential equation and as such has to be solved along 
contours. Consequently all theoretical considerations with respect to the behavior of 
physical magnitudes (in particular the diabatic potential matrix introduced in Eq. (7)) 
are done along contours. Another remark concerning Eq. (8) is that its solution, the 
matrix A, has to be a unitary matrix.  
The first difficulty we encounter with respect to Eq. (8) is that a solution is not always 
possible. In order to discuss this subject we first introduce the following tensorial matrix 
F defined as:  

{ , ; }, ;q p q p q p p q n
p q

∂ ∂= − −
∂ ∂

F  (9) 

where p and q are (Cartesian) internal coordinates (n stands for their number), τq and τp

are, respectively, the q and the p components of τ, and Fqp is recognized as the (p,q) 
component of the tensorial Yang-Mills field. [21] The set of equations in Eq. (9) can 
also be written in a more compact way: 

[ × ]C u r l= −F  (9’) 

It was shown that in case of a Hilbert space or even in case of a Hilbert sub-space (as 
introduced earlier), the components of F have to be zero at every point in configuration 
space for which the derivatives are valid [8a] (in particular see Appendix 1 in Ref.[8a]). 
Thus:

F = 0 (10)

In other words, if for a given group of states Eq. (10) is not fulfilled in the region of 
interest, Eq. (8) does not have an analytic solution and the ADT cannot be carried out.  
In case Eq. (10) is fulfilled a solution can be found for any contour, Γ in the region.  
Thus: [8b] 

0

0 0( , | ) e x p ' ( ' | ) ( )
s

s
s s d s s sΓ = ℘ − ⋅ ΓA A  (11) 

where the dot stands for a scalar product between τ(s) and a differential vector, ds,
along Γ, A(s0) is a given value of A at a boundary point s0 and ℘ is a path ordering 
operator introduced to indicate that this integral has to be carried out in a given order.  
Having the A-matrix we can derive the diabatic potential matrix W(s) as presented in 
Eq. (7). Until now the process of deriving W(s) seems to be straightforward as long as 
Eq. (10) is fulfilled. There is only one question, namely, whether these newly formed 
matrix elements are single-valued in configuration space. So far the single-valuedness 
issue was not raised although it is evident that in order to obtain a meaningful solution 
for the SE the diabatic potential matrix elements must be singlevalued. This issue is 
discussed next.  
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2.3. THE SINGLEVALUEDNESS OF THE DIABATIC POTENTIAL MATRIX W 
AND THE TOPOLOGICAL MATRIX D 

We consider a closed path Γ defined in terms of a continuous parameter λ so that the 
starting point s0 of the contour is at λ=0. Next, β is defined as the value attained by λ
once the contour completes a full cycle and returns to its starting point. For instance, in 
case of a circle, λ is an angle and β=2π.[10]
With these definitions we can now look for the necessary condition(s) for having a 
single-valued diabatic potential. Therefore, as is usually done in mathematics, we 
assume the existence of the outcome and search for the conditions for that to happen. In 
our case we assume that at each point s0 in configuration space the diabatic potential 
matrix W(λ) (≡W(s,s0)) fulfills the condition: 

W(λ=0) = W(λ=β) (12) 

Recalling Eq. (7), this requirement implies that for every point s0 we have: 

A†(0)u(0)A(0)= A†(β)u(β)A(β) (12’) 

Where A† is the complex conjugate of A. Next is introduced another transformation 
matrix, B, defined as: 

B =A(β)A†(0)    (13) 

which for every s0  and a given contour Γ, connects u(β) with u(0):

u(β) = B u(0) B† (14) 

The B-matrix is, by definition, a unitary matrix (it is a product of two unitary matrices) 
and at this stage except for being dependent on Γ and, eventually, on s0, it is rather 
arbitrary. Since the electronic eigenvalues (the adiabatic PESs) are uniquely defined at 
each point in configuration space we have: u(0) ≡ u(β) and therefore Eq. (14) implies: 

[ ,  ( 0 ) ]  =B u 0      (15) 

or more explicitly: 

( )
1

( 0 ) 0l j j k l k j k j
j

δ δ∗

=
− =B B u

 (16) 

Eq. (16) has to hold for every arbitrary point s0 (≡λ=0) on the path Γ and, 
therefore, for an essentially arbitrary set of non-zero adiabatic eigenvalues, uj(s0);
j=1,…,M. Due to the arbitrariness of the uj(s0)’s Eqs. (16) can be satisfied if and only if 
the B-matrix elements fulfill the relation: 
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, ,;l j j k l j j k l j k Mδ δ∗ ≤=B B  (17) 

or  

Bjk = δjkexp(iχk) (18) 

Thus, B is a diagonal matrix which contains in its diagonal (complex) numbers whose 
norm is 1 (this derivation holds as long as the adiabatic potentials are non-degenerate 
along the path Γ). From Eq. (13) we obtain that the B-matrix transforms the A-matrix 
from its initial value to its final value while tracing the closed contour: 

(  )  =  ( 0 )βA B A  (19) 

We return to Eq. (11) and consider the case when the contour Γ becomes a closed 
contour and A(s0) is the unit matrix. For this particular case we define the following 
matrix:

( )e x p sd
Γ

= ℘ ⋅−D  (20) 

From Eq. (11) it is noticed that if the contour Γ is closed the D-matrix transforms A(s0)
to its value A(s= s0| s0) obtained, once we reached the end of the (closed) contour, 
namely: 

0 0 0( s = s | s )  =  ( s )A D A  (21) 

Now comparing Eq. (19) with Eq. (21) it is noticed that B and D are identical. This 
implies that all the features that were found to exist for the B-matrix also apply for the 
matrix D as defined in Eq. (20). 
Returning to the beginning of this Section we establish the following: The necessary
condition for the A-matrix to yield single-valued diabatic potentials in a region 
surrounded by a close contour Γ is that the D-matrix, calculated along this contour (see 
Eq. (20)), be diagonal and that it have, in its diagonal, numbers of norm 1 (in fact the 
second outcome is redundant because the D-matrix is a unitary matrix and therefore, 
being diagonal, implies numbers with norm 1). Since we consider only real electronic 
eigenfunctions these numbers can be ±1. The diagonalization of the D-matrix ensures 
singlevalued diabatic potentials but not singlevalued ADT matrices, as is noted from 
Eq. (21) (because the D-matrix is not necessarily a unit matrix). In what follows the 
number of (-1)s in a given matrix D will be designated as K - defined as the topological
number.[22]  
It is important to mention that the relation between the phases of the D-matrix and 
Berry’s phase of each of the electronic adiabatic states is discussed by R. Baer [23]. In 
particular, for a real electronic basis set where the two phases are shown to be identical.
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2.4. THE QUANTIZATION OF THE τ-MATRIX 

The D-matrix as introduced in Eq. (20) is not expected to be diagonal for a  τ-matrix of 
an arbitrary dimension. For a given region only certain sizes of groups of eigenstates are 
capable of yielding diagonal D-matrices. In general this is a group which is strongly 
coupled to itself but, at most, weakly coupled to states outside the group. As one may 
recall we termed such a group as a Hilbert sub-space. In applications one starts with a 
group of two states and then, step by step increases the number of states until the 
calculated D-matrix becomes diagonal. (This we did recently in a detailed study based 
on the eigenfunctions obtained from the Mathieu equation (24)).
Considering a given region, Λ, in configuration space: we define those τ-matrices, that 
yield diagonal D-matrices in Λ, as being quantized in that region. The concept of 
quantization becomes clear when we consider a 2x2 τ-matrix which is presented in 
terms of one non-zero matrix element: 

0 ( )
( )

( ) 0
s

s
s

τ
τ

=
−

 (22) 

It can be shown (employing Eq. (11)) that the A-matrix takes the form: [8a] 

c o s ( | ) s i n ( | )
( | )

s i n ( | ) c o s ( | )
s s

s
s s

γ γ
γ γ

Γ Γ
Γ =

− Γ Γ
A

 (23) 

where γ(s|Γ) is the ADT  angle presented as: 

0

0( | ) ( ) s ( s | )
s

s
s s dγ γΓ = + ⋅ Γ  (24) 

Here the integration, as mentioned earlier, is carried out along a contour Γ. The D-
matrix, just like the A-matrix, can be written in the form: 

c o s ( ) s i n ( )
( )

s i n ( ) c o s ( )
α α
α α

Γ Γ
Γ =

− Γ Γ
D

(25) 

where α(Γ) is topological phase defined as:  
( ) s ( | )d sα ΓΓ = ⋅ Γ  (26) 

It is noticed that in order for the 2x2 D-matrix in Eq. (25) to become diagonal, τ(s) has 
to fulfill the well known Bohr-Sommerfeld quantization rule of the angular momentum, 
namely: [24] 

( ) s ( | )d s nα πΓΓ = ⋅ Γ =  (27) 

where n is an integer.  
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3.  Numerical Comments 

To carry out the numerical study we fix the position of two of the hydrogens and use the 
third hydrogen as a probe to reveal the various cis. Due to symmetry it is enough to 
consider the motion of this atom in one fixed plane and in order to follow its motion (on 
that plane) we need two (polar) coordinates; q the radial coordinate and ϕ the angular 
coordinate. In what follows we assume the contours to be circles with their centers at 
given points and with varying radii. Since the contours are circles, we need for the 
calculations only the angular component of the NACTs (which are the required 
tangential components in this case) to be designated as τϕjk(q, ϕ) and defined as: 

j k j k( | q ) = ( | q ) ( | q )ϕ ϕ ϕ ϕ
ϕ

∂
∂

(28) 

In case the Hilbert sub-space contains only two states, namely the j-th and the (j+1)-th 
states we are interested only in the ADT angle and the topological phase. The ADT 
angle, γ(ϕ|q), expressed in these coordinates is: 

0
j j+ 1 j j+ 1( |q ) = ( |q ) d

ϕ

ϕγ ϕ ϕ ϕ  (29) 

and the corresponding topological phase αjj+1(q) is given in the form: 

2

0
j j + 1 j j + 1( q ) = ( |q ) dϕ ϕ ϕ

 (30) 

The situation becomes more involved in case the Hilbert sub-space contains three states. 
In such a case the τϕ-matrix is of dimension 3x3, namely: 

1 2 1 3

1 2 2 3

1 3 2 3

0
( |q )= - 0

- - 0

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

ϕ
 (32) 

and as a result the (ϕ-dependent) ADT matrix becomes: 

0
( | ) e x p ( ' | ) 'q q d

ϕ

ϕϕ ϕ ϕ= ℘ −A  (33) 

In the forthcoming study we consider the diagonal elements of this matrix. In case  
ϕ=2π the ADT matrix becomes the topological D-matrix: 
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2

0
( ) e x p ( ' | ) 'q q d

π

ϕ ϕ ϕ= ℘ −D
(34) 

and the diagonal elements are expected to be ±1. The closer they are to one of these 
values the more is the τϕ-matrix quantized.
The calculation of the nonadiabatic coupling terms (along chosen circles) was carried 
out at the state-average CASSCF level using 6-311G** (3df,3pd) basis set [26] extended 
with additional diffuse functions. In order to take properly into account the Rydberg 
states we added, to the basis set, one s diffuse function and one p diffuse function in an 
even tempered manner,[27] with the exponents of 0.0121424 and 0.046875 respectively. 
We used the active space including all three electrons distributed on nine orbitals. Five 
different electronic states including the three studied states, namely, 12A’, 22A’ and 
32A’ were computed by the state-average CASSCF method with equal weights. To 
perform the above-mentioned integrations the relevant NACTs were obtained 
employing the MOLPRO program. The details how to operate it for our purpose were 
discussed in previous publications (in particular see Appendix of Ref. 28)and are not be 
repeated here.  
The numerical results in this article, presented Figs 1-4, are arranged in columns – each 
column for one situation. A column contains three sub-figures headed by a schematic 
drawing describing the ci-positions for the situation under consideration. We distinguish 
between two types of cis: Full squares designate (1,2) cis, and full diamonds designates 
(2,3) cis. Also, full circular dots designate the positions of the two ‘fixed’ hydrogens 
(which form the situation). In addition, dashed circles are the closed circular contours 
along which the reported integrations are performed. Next we describe what is shown in 
the various sub-figures (for a given column): The upper sub-figure contains the three 
non-adiabatic coupling terms, namely τϕ12(ϕ), τϕ23(ϕ) and τϕ13(ϕ) (see Eq. (28)); the 
middle sub-figure contains the two corresponding γ(ϕ)-angles, namely, γ12(ϕ) and γ23(ϕ)
(see Eq. (29)) and the lowest one contains the three diagonal elements of the A-matrix, 
namely, A11(ϕ),A22(ϕ) and A33(ϕ). Also, in the second sub-figure are reported the actual 
α-angles for the two relevant cases i.e. α12 and α23 (see Eq. (30)) − expected to be π or 
zero - and in the third sub-figure are listed the three Djj-values −  expected to be ±1 (see 
Eq. (34)). 

4. Numerical Verifications for Quantization: A Detailed Study of the H+H2 System 

In what follows we define a situation as a configuration of the three atoms where the 
distance RHH between two atoms is fixed (and the third atom is allowed to move 
essentially undisturbed). We present results for two situations, namely, RHH = 0.74 and 
0.4777 Å. In order to distinguish between them we term the first situation the loose
situation and the second the compact situation. 
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Figure 1. Results as calculated for RHH= 0.74 Å: Sub-figs (a)-(c) are for a circle located at the 
(1,2) D3h ci with radius q=0.1 Å; Sub-figs (d)-(f) are for a circle located at the (2,3) C2v ci with 
radius q=0.1 Å. In Sub-Figs (a) and (d) are presented the three tangential NACTs τϕij(ϕ|q); i<j 
(see Eq. (28)); In Sub-Figs (b) and (e) are presented the two adiabatic-to-diabatic transformation 
angles γjj+1(ϕ|q); j=1,2 (see Eq. (29)); In Sub-Figs (c) and (f) are presented the three diagonal 
elements of the adiabatic-to-diabatic transformation matrix A (see Eq. 33), namely, Ajj(ϕ|q); 
j=1,2,3 and are listed the three diagonal elements of the topological matrix D (see Eq. (34)), 
namely, Djj(q); j=1,2,3. Full dots stand for the two fixed hydrogens, full squares stand for (1,2) 
cis; full diamonds stand for (2,3) cis and the circles surrounding the cis are the contours. The
straight line perpendicular to the HH axis connects the mid-point between the two hydrogens and 
the D3h ci point (either the (1,2) or the (2,3) cis). 

MICHAEL BAER, GÁBOR HALÁSZ, A. M. MEBEL AND ÁGNES VIBÓK



QUANTIZATION OF NON-ADIABATIC COUPLING TERMS 79

4.1 THE STUDY OF THE LOOSE CONFIGURATIONS 

To study the loose configuration we consider the situation for which RHH=0.74 Å. 
The results are presented in Figs. 1 and 2. Figure 1 contains two columns presenting  
results as obtained by surrounding single cis: In the first column the circle surrounds a 
D3h ci and in the second it surrounds a sideways C2v ci.
The results in Figs. 1(a,b) indicate that the surrounded ci is a (1,2) ci because of the two 
NACTs τjj+1(ϕ); j=1,2 only τ12(ϕ) is nonzero. It is noticed that τ12(ϕ) is close to being 
constant (~0.5) along the whole ϕ-range and the corresponding ADT angle γ12(ϕ) is a 
uniformly increasing function which at ϕ=2π attains the value α12 =3.1452 Rads, a 
value close enough to π. In contrast to the (1,2) functions, the (2,3) functions, namely, 
τ23(ϕ) and γ23(ϕ) possess small values and α23 is therefore also relatively small (~0.0 
Rads.). Since this (1,2) ci happens for the equilateral configuration it is a D3h ci and 
altogether will be labeled as the (1,2) D3h ci. The fact that α12 is close to π implies that 
in the region surrounded by this circle τ12(ϕ) is quantized, or in other words the two 
lower states of the H+H2 system form in this region a Hilbert sub-space. 
Different results are obtained for the second case presented in Figs. 1(d, e, f) (second 
column). Here the integration is done along a different circle so that the main activity 
along the ϕ interval is now related to the (2,3) ci NACT. Among other facts, it is now 
α23 (and not α12) which is close to π (in fact 3.1533). Thus, in the region surrounded by 
this circle it is τ23(ϕ) which is quantized and therefore it is the second and the third 
states which form, in this case, a Hilbert sub-space.  
Next we briefly discuss the diagonal, ϕ-dependent, elements of the 3x3 A-matrix as 
presented in Figs. 1(c,f) and the listed 3x3 D-matrix diagonal elements. Both, the A- 
and the D-matrices become important if and only if the α-values, as calculated for the 
two-state system, are not multiples of π (or zero). In the case where all relevant α-
values of the system are multiples of π (or zero), the j-th A-matrix diagonal element is 
expected to be close either to cos(γjj+1(ϕ)) or to cos(γj-1j(ϕ)), as the case may be, and 
therefore the diagonal D-matrix elements are expected to be equal to ±1. As is noticed, 
the results due to both matrices confirm the two-state results (and do not yield any 
additional information). For instance the absolute value of all the D-matrix diagonal 
elements is, indeed, ~ 1; moreover, in the first case (Fig. 1(c)), the (1,1) and the (2,2) 
elements are equal to –1, which implies that we encounter a (1,2) ci, and in the second 
case, the (2,2) and the (3,3) elements are equal to –1, which implies that a (2,3) ci is 
encountered (for a detailed analysis on this subject see Ref. 22). 
Fig. 2 contains two columns presenting results obtained by surrounding two and three 
cis, respectively (still for the same situation). In the first column the calculations are 
done for a highly asymmetrical case where the center of the circular contour is located 
at the mid-point between the (1,2) and the (2,3) cis. In the second case we encounter a 
symmetrical situation where the contour is located at the (1,2) ci point. The results here  
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Figure 2. Results as calculated for RHH= 0.74 Å: Sub-figs (a)-(c) are for a circle located at the 
mid-point between (1,2) D3h ci and the (2,3) C2v ci with radius q=0.15 Å; Sub-figs (d)-(f) are for a 
circle located at the(1,2) D3h ci with radius q=0.3 Å. For the rest see Fig. 1. 
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are characterized by the fact that in both cases the values of α12 are 1.8004 and 1.8671 
Rads., respectively which and significantly different from π (see Figs 2(b, e)). 
Therefore, in the two regions surrounded by these two circles, it is most likely that the 
third state is strongly interacting with the two-state system (mainly with the second 
state) so that the two-state quantization related to the two lower states is, in this case, 
strongly perturbed.  
Next we examine the three-state quantization related to the three lower states and 
consider Figs. 2(c, f). The figure presents the diagonal, ϕ-dependent, elements of the 
3x3 A-matrix and lists the 3x3 D-matrix diagonal elements. It is noticed that all three 
diagonal elements of the A-matrix which start with the value of +1 at ϕ=0 reach, at 
ϕ=2π, the values ~ ±1 which constitutes the diagonal elements of the D-matrix. Since 
for both circular contours we find along the D-matrix diagonal the values ±1 this 
implies that in the regions surrounded by the above-mentioned contours, the NACM τϕ,
related the three lower 2A’, is quantized. In other words these results indicate that there 
exist circumstances where ab initio NACTs cannot form a two-state quantization but 
undoubtedly form a three-state quantization.
On numerous occasions we emphasized that a negative sign of the j-th diagonal element 
of the D-matrix implies that the j-th eigenfunction flips its sign while the electronic 
manifold traces the closed contour.[29] Thus, the results of Figs. 2(a, b, c) indicate that 
it is the signs of the first and the third eigenfunctions that flip their signs. This implies 
that the circle surrounds one (1,2) and one (2,3) cis (in such a case the sign of the 
second eigenfunction is flipped twice and therefore the net result is no change in sign) 
which, indeed, is the case. Different results are obtained in Figs. 2(d, e, f). Here the 
calculations indicate that it is the signs of the first and the second eigenfunctions that are 
flipped. This implies that the circle surrounds one (or an odd number of) (1,2) ci(s) and 
(none or) an even number of (2,3) cis. In such a situation the sign of the lowest (first) 
eigenfunction is flipped once, the sign of the second eigenfunction is flipped an odd 
number of times (in fact three times in this case) – and therefore the net result is, again, 
a change of sign, and the sign of the third eigenfunction is flipped twice and therefore, 
the net result is no sign-flip (similar results were obtained for the C2H molecule– see 
Sec. (III.B) of Ref. 30)

4.2.  THE STUDY OF THE COMPACT CONFIGURATIONS 

To study the compact situation we consider the configurations defined by assuming 
RHH= 0.4777 Å. The results are presented in Figs. 3 and 4. The more surprising finding 
that emerges from these figures is that for these configurations we encounter four (4) cis
in contrast to only the three (3) cis that were encountered in the previous case. Since cis
for different RHH-values are connected by seams, it is inconceivable that seams (or cis) 
can suddenly disappear or suddenly be formed (at most they may continue into the 
complex plane). This issue was elaborated in a previous publication (15) and will not be 
mentioned here as it is not immediately related to the present subject. Fig. 3 contains 
three columns showing results obtained by surrounding single cis: In the first column 
the results are due to a circle surrounding a D3h ci; in the second due to a circle 
surrounding a C2v ci located on the D3h symmetry line (at a distance of 0.7004 Å from  
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Figure 3. Results as calculated for RHH= 0.4777 Å: Sub-figs (a)-(c) are for a circle located at the 
(2,3) D3h ci with radius q=0.03 Å; Sub-figs (d)-(f) are for a circle located at the (2,3) C2v ci with 
radius q=0.1 Å; Sub-figs (g)-(h) are for a circle located at the (1,2) C2v ci with radius q=0.03 Å. 
For the rest see Fig. 1 (with the obvious variations). 
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the HH-axis) - labeled as a central C2v ci - and in the third column are presented results 
due to a circle surrounding one of the sideways C2v ci.
The results in the first column (i.e. sub-figs. 3(a, b, c)) indicate that the D3h ci is a (2,3)
Ci: The only NACT that is significantly different from zero is τ23(ϕ) which is a slightly 
ϕ-dependent function with a value of ~0.5 along the whole ϕ- range. As a result the 
corresponding ADT angle γ23(ϕ) is a uniformly increasing function which at ϕ=2π
attains the value α23 =3.167 Rads., a value close enough to π. In contrast to the (2,3) 
NACT the (1,2) NACT, namely, τ12(ϕ) attains small values and α12 is, therefore, also 
relatively small (=0.407 Rads.). The fact that it is α23 which becomes ~π and not α12
implies that the surrounded ci is not a (1,2) ci as expected, but a (2,3) ci. In other words, 
in this situation, the two excited states are responsible for the D3h ci. A similar situation 
is encountered for the central C2v ci as presented in the second column (Figs. 3(d, e, f)) 
The results indicate that it is α23 (and not α12) which is close to π (in fact 3.146) so that 
the revealed ci, just like the D3h ci, is a (2,3) ci.  
A different situation is obtained for the two symmetrical sideways cis (Figs. 3(g,h,i)). In 
each case the main activity along the ϕ-interval is for the (1,2) magnitudes (i.e. τ12(ϕ)
and γ12(ϕ)) and therefore, it is now, α12 and not α23, which becomes π (in fact 3.143) 
thus implying that this C2v ci, just like its symmetrical twin, are (1,2) cis. Since in all 
three cases the topological phase, whether it is α12 or α23, are close to becoming π, this 
implies that the relevant NACM is a 2x2 quantized matrix.   
Next we briefly relate to the diagonal, ϕ-dependent, elements of the 3x3 A-matrix as 
presented in Figs. 3(c, f, i) and the listed 3x3 D-matrix diagonal elements. Both, the A
and D-matrices become important if and only if the α-values as calculated for the 
relevant two-state systems are not multiples of π (or zero). In case the α-values are all
multiples of π (or zero) the j-th A-matrix diagonal elements is expected to be ~ equal 
either to cos(γjj+1(ϕ)) or to cos(γj-1j(ϕ)), as the case may be, and the diagonal D-matrix 
elements are expected to be ~ ±1, with the negative signs at appropriate positions. As is 
noticed, the results due to both matrices confirm the two-state results and do not yield 
any additional information (see discussion on Figs. 1(c,f)).  
In comparing our findings related to the configurations for which RHH = 0.4777 Å (see 
Fig. 3) to those for which RHH = 0.74 Å (see Fig. 1), we see that they are substantially 
different. For RHH = 0.74 Å the D3h ci was a (1,2) ci but here it is a (2,3) ci which is a 
D3h ci, then the sideways twin cis which were (2,3) cis are now, for RHH = 0.4777 Å, 
two sideways twin (1,2) cis. Thus the transition (1,2) cis⇔ (2,3) cis takes place in the 
interval {0.4777<RHH<0.74Å}. This issue was analyzed, in detail, elsewhere. [15] 
Fig. 4 contains three columns, presenting results as obtained by surrounding two, three 
and four cis, respectively. The results here are characterized by two facts: (1) in all of 
them the values of α12 and α23 are significantly different from π and/or from zero; (2) 
the diagonal elements of the D-matrix (listed in Figs. 4(c, f, i)) are, agains ~ ±1. These 
two facts imply that in the regions surrounded by the relevant circles, none of the two 
corresponding states can form a NACN that is quantized, but NACMs formed by the 
three states were quantized. 
Next we discuss briefly the signs of the diagonal D-matrix elements. We recall that a 
negative sign in front of the Djj implies that the j-th eigenfunction flips it sign while the 
electronic manifold traces the closed contour (circle). Thus the results of the first  
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Figure 4. Results as calculated for RHH= 0.4777 Å: Sub-figs (a)-(c) are for a circle located at the 
mid-point between the (2,3) D3h ci and the (1,2) C2v ci with radius q=0.03 Å; Sub-figs (d)-(f) are 
for a circle located at the (2,3) D3h ci with radius q=0.1 Å; Sub-figs (g)-(h) are for a circle located
at the C2v (2,3) ci with radius q=0.3 Å. For the rest see Fig. 1 (with the obvious variations). 
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column indicate that it is the signs of the first and the third eigenfunctions that flip their 
signs (like in case of Fig. 2(c)); the results in the second column indicate that it is the 
signs of the second and the third eigenfunctions that flip their signs (somewhat 
different, as in the case in Fig. 2(f), but with a similar interpretation). The more 
interesting case is the third case where all three diagonal D-matrix elements are positive
and therefore no sign flip takes place. This indicates that the (circular) contour 
surrounds an even number of (1,2) cis and an even number of (2,3) cis, as is really the 
case (we encounter, in the present case, two of each kind).  

5. Discussion and Conclusions 

We indicated in the Introduction that the reasons for writing this article are two-fold: (i) 
to present a survey of the various conical intersections which govern potential 
transitions between electronic states and (ii) to establish the 3-state quantization of the 
NACM for molecular systems.  
The survey is carried out for the three lowest states of the (H2,H) system. In what 
follows we summarize results and draw conclusions for two situations formed by fixed 
HH distances (labeled as RHH):

(1) We revealed that for these situations one encounters four conical intersections: 
two between the two lower states and two between the two upper states. One of the four 
is a D3h ci and the other three are C2v cis, one of which is located on the symmetry line 
perpendicular to the HH axis (just like the D3h ci) and the other two are located on both 
sides of this symmetry line and in this way form the twin-cis.

(2) We found that the D3h ci and the single (symmetric) C2v ci form one group of 
cis and the (sideways) twin-cis form another group. Each group couples, for a given 
RHH-value, one pair of states. However, a given group may couple one pair of states for 
one RHH-value, and another pair of states for a different RHH-value  

(3) The final point in this category is related to the fact that we termed all 
sideways cis as C2v-cis although they are expected to be Cs cis. We checked this finding 
very carefully and came to the following conclusion: The cis in the H+H2 system are 
either D3h-cis (the ones that form the equilateral triangles) or C2v-cis, (because they 
always form isosceles triangles). So far no Cs cis have been encountered. 
The second subject treated here, in some detail, is related to the possible quantization of 
the non-adiabatic coupling matrix. We shall not refer to the two-state quantization as 
this issue was analyzed in numerous publications. The more intriguing subject is the 3-
state quantization which was considered, recently, for the first time, for one single 
situation of the C2H molecule.[ 15] In the present publication we consider two different 
situations defined by assigning to RHH two different values, namely, RHH= 0.74 and 
0.4777 Å and in this way studying numerous configurations and cis. In each case we 
applied various circular contours, some for symmetrical situations and others for non-
symmetrical situations. Also, the number of cis that were surrounded varied from one 
case to another: in some cases we surrounded two cis, in others three cis and in one case 
four cis were surrounded. In all circumstances the diagonal elements of the 3x3 D-
matrix are very close be ±1 although sometimes, in particular when the radius of the 
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closed circular contour becomes relatively large, deviations are seen (the largest one is 
0.0145). The reason for the observed (slight) deviations is probably ‘background’ noise 
due to higher states which affects the third state (and therefore the two other states), for 
instance via remote (3,4) cis. We tried to locate (3,4) cis but we could not expose any, at 
least not at a reasonable distance from the ones discussed here.  

Acknowledgement 

One of the authors, GJH, would like to thank the Hungarian Academy of Sciences for 
partially supporting this research through the Grant ‘Bolyai’;  

 References 

1. M. Born and J.R. Oppenheimer, Ann. Phys. (Leipzig), 84, 457 (1927) 
2. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, (Oxford University, New 

York, 1954) 
3. H. Hellmann, Einfuhrung in die Quantenchemie, Franz Deutiche, Leipzig, 1937; R. 

Feynman, Phys. Rev. 56, 340 (1939)  
4. M. Baer and G.D Billing (Eds.), The Role of Degenerate States in Chemistry, Adv. Chem. 

Phys., Vol. 124 (John Willey & Sons Hoboken, N.J., 2002) 
5. H.C. Longuet-Higgins, U. Opik, M.H.L. Pryce and R.A. Sack, Proc. R. Soc. Lond. A 244, 1 

(1958); H.C. Longuet-Higgins, Adv. Spectrosc. 2, 429 (1961); G. Herzberg and H.C. 
Longuet-Higgins, Discuss. Faraday Soc. 35, 77 (1963); H.C. Longuet-Higgins, Proc. R. Soc. 
London  Ser. A 344, 147 (1975) 

6. M.S. Child, in The Role of Degenerate States in Chemistry, Eds. M. Baer and G.D. Billing, 
Adv. Chem. Phys., 124, Chap.1 (2002) 

7. C. A. Mead, Chem. Phys. 49, 23 (1980) 
8. (a) M. Baer, Chem. Phys. Lett. 35, 112(1975); (b) M. Baer, Molec. Phys., 40,1011 (1980) 
9.  (a) M. Baer, Chem. Phys, 259, 123 (2000); (b) ibid. Phys. Reps. 358, 75 (2002); (c) ibid.

Ref. 4, Chap.2 
10.  M. Baer and A. Alijah, Chem. Phys. Lett., 319, 489 (2000); (b) M. Baer, J. Phys. Chem., A 

104, 3181 (2000) 
11. M. Baer, S.H. Lin, A. Alijah, S. Adhikari and G.D. Billing, Phys. Rev. A, 62, 032506-1

(2000)
12. R. Englman, The Jahn-Teller Effect in Molecules and Crystals (Wiley (Interscience), New 

York, 1972) 
13. B. Bersuker and V.Z. Polinger, Vibronic Interactions in Molecules and Crystals (Springer, 

N.Y., 1989) 
14. I. B. Bersuker Chem. Rev. 101, 1067 (2001). 
15. G. Halász, A. Vibók, A.M., Mebel and M. Baer, J. Chem. Phys. 118, 3052 (2003) 
16. A. Vibók, G. Halász, T. Vertesi, S. Suhai, M. Baer and J.P. Toennies (submitted for 

publication)
17. W. Lichten, Phys. Rev., 164 ,131 (1967); F. T. Smith, Phys. Rev. 179, 112 (1967) 
18. (a) A. Kuppermann, in Dynamics of Molecules and Chemical Reactions, Eds. R.E. Wyatt, 

R.E. and J.Z.H. Zhang (Marcel, Dekker, Inc., N.Y., 1996) p. 411; (b) V. Sidis, in State-to-
State Ion Molecule Reaction Dynamics Eds. M. Baer, M. and C.Y. Ng, (Adv. Chem. Phys. 
82, 73 (1992)), Vol. II; (c) T. Pacher, L.S. Cederbaum and H. Köppel, Adv. Chem. Phys. 
84,293 (1993); (d) W. Domcke and G. Stock, Adv. Chem. Phys., 100,1 (1997); (e) M. Baer, 

MICHAEL BAER, GÁBOR HALÁSZ, A. M. MEBEL AND ÁGNES VIBÓK



QUANTIZATION OF NON-ADIABATIC COUPLING TERMS 87

in: Theory of Chemical Reaction Dynamics, Ed. M. Baer (CRC, Boca Raton, 1985), Vol. II, 
Chap. 4  

19.  (a) F. Rebentrost and W.A. Lester, J. Chem. Phys, 64, 3879 (1976); (b) F. Rebentrost, in 
Theoretical Chemistry: Advances and Perspectives, D. Henderson and H. Eyring, eds. 
(Academic Press, New York, 1981), Vol. VIb; (c) A. Macias and A. Riera, J. Phys. B 11,
L489 (1978); (d) A. Macias and A. Riera, Int. J. Quantum Chem. 17,181 (1980);(e) C. 
Petrongolo, G. Hirsch, and R. Buenker, Molec. Phys., 70, 825; 835, (1990) 

20. G.D. Billing, M. Baer and A.M. Mebel, Chem. Phys. Lett. 372, 1 (2003) 
21. Yang, C.N. and Mills, R.L., Phys. Rev. 96, 191 (1954) 
22. M. Baer, Chem. Phys. Lett. 329,450 (2000). 
23. R. Baer, J. Chem. Phys, 117, 7405 (2002). 
24. T. Vertesi, A. Vibók, G. Halász, A. Yahalom, R. Englman and M. Baer, J. Phys. Chem. A, 

(in press) 
25. D. Bohm, Quantum Theory (Dover Publications, Inc. 1989, N.Y.) p. 41 
26. R. Krishnan, M. Frisch and J.A. Pople, J. Chem. Phys. 72, 4244 (1980) 
27. D.F. Feller and K. Ruedenberg, Theor. Chim. Acta 52, 231 (1978) 
28. A. Mebel, A. Yahalom, R. Englman and M. Baer, J. Chem. Phys. 115, 3673 (2001). 
29. M. Baer J. Phys. Chem. A 105, 2198 (2001) 
30. A.M., Mebel, G. Halász, A. Vibók, A. Alijah, and M. Baer, J. Chem. Phys. 117, 991 (2002) 



NON-ADIABATIC DYNAMICS IN THE O+H2 REACTION: A TIME-
INDEPENDENT QUANTUM MECHANICAL STUDY

B. MAITI AND G.C. SCHATZ"
Department of Chemistry
Northwestern University, Evanston, IL 60208-3113 USA

Abstract. A time-independent quantum scattering method has been used to study
intorsystom crossing (ISC) effects in the bimolccular reaction 0 + H2. Our studios,
involving a four-state one dimensional model, give fully coupled reaction proba-
bilities that indicate significant quantum effects, including enhanced tunneling
for the ground state reaction, significant Stuckelberg oscillations at energies well
above threshold for certain states, and strong mixing of the product spin-orbit
populations that leads to statistical behavior for some initial states and even in-
verted populations in some cases. Comparison of these results with those from a
recently developed trajectory surface hopping (TSH) method which uses a "mixed"
representation in full dimensionality arc examined, and we conclude that the one-
dimensional model overemphasizes coherence and interference effects, although
many of the same effects occur.

1. Introduction

Spin-orbit mediated intcrsystcm crossing plays a key role in the dynamics of chem-
ical reactions in many areas of the chemistry, physics and particularly in biology;
particularly in reactions where the ground state of the reactants/products involves
a high spin state and during the course of the reaction a low spin state crosses
the high spin state to provide a lower energy path for reaction. A reaction which
provides an example of this behavior is O('jP,1D) + CH3I. Here, using crossed
molecular beam methods, Alagia ct al [1] demonstrated that there is a significant
probability of nonadiabatic transition from the triplet to the singlet state, which
opens up a more reactive path to the product through the formation of a long-lived
intermediate in the deep singlet well. Related behavior has been suggested for the
reaction of transition metal cations with dihydrogen (and its isotopomers). Here
Zhang et al. [2] predicted that because of strong spin-orbit coupling among surfaces
of differing spin, the reactivity of ground state third-row transition metal cations
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is much higher than that of the first and second-row transition metal cations due
to the presence of low energy pathways on low-spin surfaces.

In spite of these above quoted examples, very few quantitative theoretical stud-
ies of intersystem crossing effects have been reported. This is due to the fact that,
the number of potential energy surfaces that one needs to generate for even the
simplest atom-diatom reaction is significant (usually a minimum of three as we
shall see later). Also, spin-orbit (SO) coupling surfaces are not easy to calculate,
and they have rarely been determined as function of all the coordinates involved in
the reaction. In addition there are serious problems with developing dynamics al-
gorithms to study coupled states problems with multiple crossings, and asymptotic
coupling.

Recently. Hoffmann and Schatz [3] made some initial progress in the devel-
opment of theoretical methods for these problems by implementing a trajectory
surface hopping (TSH) procedure for studying ISC in bimolecular reactions and
applying it to the O + H2 reaction. For this reaction, whose intersystem crossing
dynamics has long been of interest [4], the ground state O(3P) (asymptotic degen-
eracy = 9) is coupled by spin-orbit interaction to the : D excited state (degeneracy
= 5); including one component which crosses all the triplet states to give the deep
water minimum. In addition, the singlet and triplet states interact as the prod-
ucts OH(2II)+H (asymptotic degeneracy = 8) are formed. Hoffmann and Schatz
demonstrated that it was possible to reduce the important components of the re-
action dynamics to just four states (3 triplet and 1 singlet) which are coupled in
the reagents, in the products and also at intermediate geometries. They developed
a TSH approach to describe the reaction dynamics, but they were forced to use a
diabatic representation in order to generate physically meaningful ISC probabil-
ities. Unfortunately, this approach fails to describe the asymptotic energy states
correctly, where because of asymptotic SO coupling, an adiabatic treatment is es-
sential. Another weakness of their study was that the SO coupling surfaces were
only developed for a restricted range of geometries (near the reactant and prod-
uct asymptotes) and then interpolated at close range. However, in spite of these
weaknesses, their results were useful for determining the role of the short range
singlet-triplet crossing on reactive cross sections and product energy partitioning,
and they found that this crossing produces a small but possibly measurable effect
at collision energies that arc well above the barrier.

Very recently, we have studied the O('jP,1D) + H2 reaction [5] using a TSH
method in full dimensionality that is based on a "mixed" representation in which
the reactant and product asymptotes are treated adiabatically. and the triplet-
singlet crossing seam region is treated diabatically with a smooth switch in repre-
sentations in between, and with transitions between states being described through-
out. In the mixed representation, the couplings between the locally denned
("mixed") states are relatively weak so the TSH approximation to the dynam-
ics is expected to be accurate. The results of the calculations confirmed the earlier
conclusions of Hoffmann and Schatz that nonadiabatic effects are relatively small
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at the point of crossing between the singlet and triplet surfaces, and in addition,
they provided for the first time information about the variation of reactivity with
reagent fine structure (of 0(3P2,i.o)) and the product fine structure distributions
(ofOH( 2n 3 / 2 ! l / 2 ) ) .

In this paper we study another aspect of the ISC dynamics associated with
the O(3P,1D) + H2 reaction, namely the quantum dynamics of the intersystem
crossing process. A full three dimensional quantum dynamics treatment of this
problem is still quite formidable, especially if product state-resolved cross sections
are to be considered, so in this work we simplify the problem to a one dimensional
model that includes the same four states that were considered previously [5]. This
is somewhat like an earlier study of Hoffmann and Schatz [8] who considered a
one dimensional quantum model with two coupled states, but the present model
enables us to study the influence of reagent and product asymptotic coupling, in
addition to the crossing between singlet and triplet states that occurs midway
during the reaction. In addition, in the present model the potential curves and
their couplings are derived from the ab initio calculations, rather than taken as
empirically determined functions.

The rest of the article is organized as follows: after a brief description of the
methodology used in our calculations in section 2, we discuss our results in section
3 and finally in section 4, we summarize our findings.

2. Potential Energies, Spin-orbit Coupling and Dynamics Calculations

We have adapted the general methodology proposed recently by Hoffmann and
Schatz [3] for studying ISC effects in bimolccular reactions. In that work it was
demonstrated that there are only seven electronic states that most directly are
coupled by spin orbit coupling in the 0 + H2 reaction dynamics. These seven
states correspond to the six states associated with the 3 n configuration of the
linear OH2 system and the lowest energy component of the lD state of 0 . By
invoking a parity decoupling transformation, the seven state basis can further be
reduced in dimension into 4 x 4 and 3 x 3 subblocks. As we arc only interested
in effects associated with transitions between the singlet and triplet surfaces, then
only the former subblock is relevant, as it includes the components of both the
singlet and triplet states: 3A"(M, = ±1), 3A'(MS = 0) and lk'(Ms = 0), while
the latter includes only triplet components: 3A"(Afs = 0), 3A'(Afs = ±1).

Within this four state basis, Hoffmann and Schatz used an effective nuclear
charge one-electron Breit-Pauli spin-orbit Hamiltonian and CASSCF calculations
to determine the spin-orbit coupling surfaces for a restricted range of geometries.
Subsequently. Maiti and Schatz [5] used a two electron Breit-Pauli Hamiltonian,
and determined global spin-orbit coupling surfaces. Here we use the latter coupling
surfaces to define the couplings for the one dimensional model. The nonrelativistic
surfaces used to define the diagonal potentials for the model are taken from the
work of Rogers et al [6].
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Figure 1. Reaction path model of singlet (:A' ) and triplet (3A' and 3A") potential
energy surfaces associated with the O(3P,1 D) + H2 reaction. The curves refer to the
potential along minimum energy patli of the triplet reaction for slightly bent O-H-H
geometries in: (a) diabatic and (b) adiabatic representation. Note that although there
are only three diabats, the adiabats are derived from the four state basis defined in the
text.

Our quantum scattering calculations refer to the reduced dimensional (reaction
path) model of O + H2 depicted in Figure 1. As mentioned above, the four states
that we include are: one singlet (1A'(MS = 0)). and three triplets (3A'(MS =
0) and two spin states associated with 3A"(MS = ±1)). The figure only shows
three energy levels (except in the product asymptote) because the two states in
3A"(MS = ±1) have the same nonrelativistic energy. The figure presents potential
curves in both diabatic and adiabatic representations, where "diabatic" in this
case refers to nonrelativistic while "adiabatic" refers to results in which the sum
of nonrelativistic and Breit-Pauli Hamiltonians is diagonalized. In all cases the
potential curve information has been derived from the potential and couplings
evaluated along the minimum energy path between rcactants and products, with
the constraint that the O-H-H structure is slightly (10° degrees) bent. The choice
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Figure 2. Spin-orbit coupling elements (in cm ') plotted against reaction coordinate
for slightly bent O-H-H geometries. The numbers in parentheses refer to: 1 = A A'l [ =

3 A"(-l) ], 2 = 3A;; [ = 3A"(+1) - 3 A"(-l) ], 3 = 3^'(0) and 4 = [A'(0).

of a bent structure was made because the crossing energy between the singlet and
triplet surfaces is anomalously high for linear O-H-H configurations. The crossing
energy is largely independent of angle for angles between 10 and 170 degrees, so
the precise choice of angle is not that important provided that it is not linear.

The curves in the bottom panel of Figure 1 show expected behavior of the
diabats, namely triplet states that have a 0.03 hartrcc barrier, with the reaction
overall being endoergic by roughly 0.01 hartree, and a singlet state with a small
well, and which crosses the triplets near the top of the triplet barrier. The splitting
between the 3A' and 3A" surfaces arises because of the slightly bent structure that
wras used for the reaction path analysis (the states are degenerate for collinear
geometries). Also, the singlet well would be much deeper if more bent structures
were used.

The curves in the top panel of Figure 1 are for the most part only slightly
different from those in the bottom, thereby demonstrating the weakness of the spin-
orbit interaction (as will be discussed further below). The inset to the figure shows
that in the product asymptote, the four adiabats split into two pairs, corresponding
to the 3/2 and 1/2 components of the 2n state of OH. Analogous behavior occurs
in the reagent asymptote, where 3A' and the two components of 3A" rccouplc to
form 3P2,i.o-
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Figure 2 presents the SO matrix elements associated with the four states in our
model. Here we use the following state labels: 1 = 3A^ [ = 3 .4"(+l) + 3 .4" ( - l )
], 2 = 'KA'lj [ = 3A"(+1) - 3A"(-1) ], 3 = 3A'(Q) and 4 = ^ ' (O) . The indicated
linear combinations of the triplet components with Ms values +1 and -1 are used
to obtain a real Hamiltonian matrix, as described by Hoffmann and Schatz. The
results in Figure 2 are based on full dimensional spin-orbit surfaces presented by
Maiti and Schatz. as evaluated along the same minimum energy path as used for
the results in Figure 1. We see that the magnitude of the coupling elements vary in
the range -80 to +80 cm"1. It turns out that the coupling matrix element H(l, 2)
between the two components of the 3A" state is identically zero for all geometries.
The other matrix elements have a complicated dependence on reaction coordinate
and most are nonzero in the reagent and product asymptotes (which is why the
adiabats are split in Figure 1 in the asymptotes).

The quantum scattering method which we use is related to a technique de-
scribed in detail by one of us previously [7], representing a generalization of the
earlier work of Hoffmann and Schatz [8] from two to four coupled states. In this
method the Schrodinger equation for the four states is solved by sector propaga-
tion, integrating from x = -20 to x =20 (where :/: is the reaction path coordinate),
using a step size of 0.005. The reduced mass in the calculation is 3263.09 AMU
(the O-Ha reduced mass). The 4x4 Hamiltonian matrix is defined by the diabats
in Figure 1. and the couplings in Figure 2. By propagating one set of independent
solutions from negative x to positive x and then a second set from positive to neg-
ative, a complete set of solutions is obtained, and then this is matched to proper
asymptotic solutions to determine the scattering matrix and the reaction prob-
abilities. Note that the proper asymptotic solutions arc defined in the adiabatic
representation, but the propagation is done in the diabatic representation, so a
tranformation of the solutions in both the reactant and product regions is required
before a reaction probability is defined. Tests of convergence of the probabilities
indicate that they are converged with respect to the integration parameters.

Statc-to-statc reaction probabilities arc related to the S matrix elements by

Pataiti{E) = \Sata>ti(E)\2 . (1)

where the index a refers to reagents or products and t refers to electronic state (t
— 1, 2, 3, 4). We will also calculate probabilities Pat which refers to the sum of the
state to state probability over all possible reactive final states. Since we are only
interested in reaction starting from O + H2, we omit the indices a and a1 in the
following, implicitly assuming that a refers to O + Ha and a' refers to OH + H.

3. Results and Discussion

We first consider scattering results for the limiting cases of uncoupled diabatic
and adiabatic dynamics. Figure 3 presents reaction probabilities as a function of
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energy for the three triplet and one singlet initial states of the reactants and going
to the four possible product states (two corresponding to the ground spin-orbit
state of OH, and two to the excited spin-orbit state of OH), with the top panel
referring to diabatic results and the bottom to adiabatic results. Since there is no
coupling, only the diagonal probabilities P« are nonzero, where for the adiabatic
representation the numbering convention refers to states ordered by energy in both
reagents and products, while for the diabatic representation, the states are ordered
by energy in the reagents but not the products.

The behavior of the diabatic and adiabatic results is easily understood based
on Figure 1. Thus, in the diabatic results, the two curves P n and P22, which refer
to the iA" states, are identical, with an effective threshold (where the reaction
probability first equals 0.01) of about 0.010 Hartree, while P33, which refers to
the 6A' state has a slightly higher effective threshold of about 0.016 Hartree. This
correlates with the larger barrier height in Figure 1, and we also see that P44 has
essentially a zero threshold energy relative to the O( :D) energy of 0.072 Hartree.

In the adiabatic picture, Figure 3 shows that the threshold energy of the lowest
energy curve, labelled P n , drops to 0.007 Hartree. while that for P22 rises to 0.012
Hartrees, and that for P33 drops to 0.012 Hartrees. These results arise because the
lowest adiabat now samples the singlet well, and its effective barrier is narrower
than in the corresponding diabatic system. The second adiabat, by contrast, has
a barrier that is very close to the lowest diabat, being slightly higher in energy
because it is repelled by the lowest adiabat. The third adiabat is very similar to
the second adiabat, as they have nearly degenerate energy curves to the right
of the singlet/triplet crossing. The fourth adiabat is very much the same as the
fourth diabat; except that the well is replaced by part of the triplet barrier. This
seems to have a negligible effect, as P44 is almost the same in the two panels in
Figure 3.

Fully coupled quantum results for the total reaction probabilities P j for t =
1, 2, 3 ; 4 are plotted in Figure 4 as a function of energy. Figure 4 shows that
the fully coupled results are in-between the adiabatic and diabatic results close to
threshold, with the effective thresholds being at 0.009 for P 1 ; and 0.012 for P 2 and
P3. The similar behavior of P2 and P3 is certainly closer to the adiabatic results,
but a key difference between the uncoupled and coupled results is that P2 and
P3 show oscillations in the coupled results, and neither probability rises above 0.9
until the energy is above the O('D) threshold.

Perhaps the most striking result in Figure 4 is the sharp peak in P2 and P3
at an energy of 0.025, while at the same time Pi shows no structure at all. To
understand this, we note that the diabats associated with all three of the triplet
states cross the singlet state (see Figure 1) at a reaction coordinate x value of
about -2. Under these circumstances, one would expect to see a rising reaction
probability for each triplet state at low energies (where the reaction probability is
less than 0.5), and then falling probabilities at higher energies that is associated
with reflection of the incident wave when the excited singlet can be accessed.
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In other words, the singlet state acts like a wall if the energy is high enough
to allow substantial transitions to the branch of the singlet that dissociates to
O(1D). However this behavior occurs for only two of the three triplet states due
to a remarkable property of the spin-orbit couplings depicted in Figure 2. Here
we find that the spin-orbit couplings if (1,4) and if (2,4) in Figure 2 arc nearly
identical at x = -2. This means that there is a linear combination of triplet states
1 and 2 which will have no coupling to state 4. In addition since these states 1 and
2 arc degenerate and have no direct coupling (H(l,2)=0), any linear combination
of these states is acceptable, in which case the one with no coupling to state 4 will
not show reflection at high energy.
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Figure 4- Fully coupled quantum reaction probabilities, summed over final states, as a
function of total energy (in Hartree) for the same four initial states as in Figure 3.

To further analyze the fully coupled results, in Figure 5 we present the break-
down of each of the exact probabilities in Figure 4 into final-state-resolved proba-
bilities, and in Figure 6 we show reaction probabilities that have been summed into
groups of product states that correspond to the 2n3/2 (the solid curve) and 2n1/2
(the dotted curve) states of OH. Note that the state numbers in Figure 5 refer
to the adiabatic ordering, i.e., by energy. Both figures show that the off-diagonal
reaction probabilities arc generally quite large, with significant interference os-
cillations that are similar to those seen in Figure 4. In addition, we find large
probabilities for states other than the adiabatic state to be populated, with Figure
6 showing almost identical probabilities for the two spin-orbit states for reaction
starting in states 1 and 4. Also, we find that reaction starting from state 2 pre-
dominantly gives the excited spin-orbit state of OH, while reaction starting from
state 3 predominantly gives the ground spin-orbit state.

To understand the behavior of Figures 5 and 6; we note from Figure 2 that all



98 B. MAITI AND G.C. SCHATZ*

Figure 5. Fully coupled final-state-resolved reaction probabilities as a function of total
energy (in Hartree). Solid curve represents branching to product channel 1, dotted curve
to channel 2, dashed curve to channel 3 and separated dotted curve to channel 4. Product
channel 1 and 2 correspond to OH( II3/2) + H. and channel 3 and 4 correspond to
OH(2Il1/2) + H.

the spin-orbit matrix elements go to zero for x greater than 15 except H(l,3) and
H(2,4). In addition, we note that the diabats in Figure 1 approach the product
asymptote between x = 10 and x = 15, which means that the four product states
experience strong coupling at just the point where the only significant coupling
involves H(l, 3) and H(2,4). As a result, we might expect that if the reaction dy-
namics was otherwise adiabatic, then the product state distributions would reflect
coupling between states 1 and 3, and states 2 and 4. This then gives some insight
concerning Figure 5, which shows that the largest probabilities associated with
initial state 1 arc to final states 1 and 3, while the largest reaction probability
associated with initial state 2 is to final state 4. These simple trends do not extend
to initial states 3 and 4, suggesting that the simple model of adiabatic behavior
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prior to the product asymptote is not correct for these states. However the results
for initial states 1 and 2 demonstrate that the product asymptotic coupling is very
strong, allowing in the case of initial state 1 for a larger population in final state 3
than in final state 1 (and likewise for initial state 2 yielding final state 4). In addi-
tion, we sec in Figure 6 that for initial state 1, the probability of the two spin-orbit
states is the same, which indicates that the excess of final state 3 over state 1 that
is seen in Figure 5 is balanced by a reverse trend for the populations in states 2
and 4. This can be rationalized by realizing that initial state 1 is coupled to state
4 (but not to state 2) by coupling matrix elements that go to zero asymptotically;
so any flux that is initially lost to state 4 will mostly end up in state 2 as a result
of the if (2,4) coupling. (Here we note that in contrast to our earlier argument
concerning the lack of coupling of states 1 and 4, in the product asymptote, the
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Figure 7. Same as Figure 4, except that for reduced coupling strength by a factor of 10.

coupling terms H{1A) and i?(2,4) arc very different in magnitude, and states 1
and 2 have different energies, so there is no linear combination of states 1 and 2
that is decoupled from state 4).

If we turn off the singlet-triplet coupling in the region where the singlet and
triplet potential surfaces cross, the full quantum probabilities (not shown) are very
similar to those in Figure 5. This indicates that for the one dimensional model,
couplings at/near the singlet-triplet crossing do not make a noticeable difference
in the state-selected reaction probabilities and hence the ISC processes. Therefore,
one could infer that the nonadiabatic transitions occur mostly near the rcactant
and product asymptotes. Which is in accord to our recent 3D trajectory surface
hopping results [5] which show that most of the hops occur near the asymptotes.

When we reduce the strength of the SO coupling by a factor of 10, there is a
dramatic change in the total reaction probabilities plotted against energy in Figure
7. Here we sec threshold behavior that is more like the diabats than the adiabats,
with Pi and P2 being nearly equal, with a threshold of about 0.010 hartree.
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while P3 has a somewhat higher threshold of about 0.013. Also, we still see a
strong oscillation in P 3 when the reaction probability exceeds 0.5 for the first time,
however P2 shows only a slight kink at the same point, and then continues rising.
Since the if(3,4) coupling is larger (Figure 2) than H(2A) this would suggest
that wave reflection associated with singlet-triplet crossing is more important for
initial state 3 than for initial state 2, and indeed this is what Figure 7 shows.

4. Summary and Conclusion

The present time-independent scattering calculations indicate that even though
the spin-orbit coupling matrix elements are weak (< 80 cm"1), there are many
noticeable effects that they produce in this reduced dimensional model of the
O('jP)+H2 reaction. The threshold behavior of the reaction probabilities is more
like that expected for the adiabats than the diabats, indicating that there can
be significant tunneling through the narrow barrier that results from intersection
between the triplet and singlet states than occurs through the pure triplet barrier.
Above threshold, some of the reaction probabilities show strong oscillations due to
reflection from the singlet state, which acts like a repulsive state in this context,
but the ground state is different due to an accidental decoupling of this state
from the singlet state that results because two spin-orbit matrix elements are the
same at the point of the crossing, and there is no direct spin-orbit coupling between
these states. In the product states, the results suggest that there is strong coupling
between pairs of the four states in the product asymptotic region, and this leads
to product spin-orbit distributions that on average even out the 2 n 3 / 2 and 2If1/2

populations of OH.
An important issue that we need to consider in this work is how these results

will extend to quantum dynamics in three dimensions, and moreover, what we
can learn from these results about the validity of the TSH calculations that have
already been done. With respect to the threshold behavior, it seems likely that the
enhanced tunneling that arises from the narrower barrier would be important if the
singlct-triplct crossing occurs before the triplet barrier. However the work of Hoff-
mann and Schatz[3] demonstrated that for most orientations of the O+H2 collision,
the crossing occurs after the barrier. In this case, the enhanced tunneling effect is
likely to be small. Further evidence for this comes from recent theory/experiment
comparisons for O+H2 [9] in which the excitation function observed in crossed
molecular beam experiments was found to be in excellent agreement for energies
close to threshold with the results of 3D wavepacket calculations using high quality
potential surfaces, but without inclusion of intersystem crossing effects. Thus at
this point we conclude that enhanced tunneling arising from intersystem crossing
is a small effect.

With respect to sharp oscillations in reaction probability that occur at higher
energy due to reflection from the excited singlet, we expect that this is a real
effect that should be captured by TSH calculations. Indeed, somewhat analogous
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behavior was soon by Hoffmann and Schatz in their two-state calculations [8],
and similar behavior for TSH calculations done using the same two state model
was also found. However, it is less clear that this effect will be as important in
throe dimensional dynamics as in a one-dimensional model, as the nature of the
intersections between singlet and triplet states in three dimensions is much more
complex, and this should lead to loss of coherence.

A related question is whether there would be differences in reactivity between
different fine structure states of O(3P) due to the accidental cancellation that
causes state 1 to be largely decoupled from state 4. The presence or absence of
this effect in 3D TSH calculations would be crucially dependence on the underlying
basis set (adiabatic or diabatic) used. For example, this would not show up if the
diabatic basis set that we used to set up our problem were used, but it should in
an adiabatic basis. However, the signatures of this effect are subtle, as it mostly
leads to a suppression of reactivity in state 2 compared to state 1. but there is
already suppression close to threshold due to the thicker barrier.

With respect to the product state distributions in Figures 5 and 6, here wre
found that there is very strong coupling between selected pairs of 2 n 3 / 2 and 2 n 1 / 2

states of OH, such that the average probability of these two states is about the
same, but with fluctuations about this average which lead to inverted spin-orbit
distributions for initial state 2 and uninverted distributions for initial state 3. In
our TSH calculations [a], we found only a relatively low transition probability
between 2 n 3 / 2 and 2 n 1 / 2 states in the product asymptote, indicating that this
effect is much less important in three dimensions than in one dimension. Since
the TSH calculations should be able to describe the transitions that would lead
to this effect, we infer that the coupling is weaker for geometries sampled in three
dimensions than for the specific reaction path considered here. These conclusions
indicate that the one dimensional model is likely exaggerating interference and
coherence effects, which is a wrell knowrn flaw of low dimensional models. However,
certain aspects of the present results, such as the enhanced tunneling on state 1,
should have a three dimensional counterpart for some reactions, and the coherence
and interference effects that we have studied will likely show up in detailed state-
to-state properties.
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Abstract. The semiclassical analysis is carried out for a two-state model poten-
tial system, in which two asymptotically degenerate Morse type potentials arc
coupled by an exponential diabatic coupling. Both crossing and non-crossing cases
are treated and explicit analytical expressions for the full scattering matrix are
obtained. The analytical solution is applied to the S-P type collisional resonant
excitation transfer between atoms. The corresponding cross-sections arc calculated
in the high energy approximation. Good agreement is obtained with the results
calculated previously by Watanabc with use of the fully numerical integration of
the time-dependent coupled differential equations.

1. Introduction

Nonadiabatic transitions play crucial roles in various fields of physics and chem-
istry [1, 2, 3; 4. 5, 7, 8; 9; 10], and it is quite important to develop basic analytical
theories so that we can understand fundamental mechanisms of various dynamics.
The most fundamental models among them are the Landau-Zener type curve cross-
ing and the Rosen-Zener-Demkov type non-curve-crossing. Furthermore, there is
an interesting intermediate case in which two diabatic exponential potentials are
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coupled by an exponential function [1]. Quantum mechanically exact solutions of
some special cases as well as a generalization of the Nikitin's semiclassical solu-
tion have been obtained [14, 15, 16, 17]. In addition to these well known cases
we have found diffraction type of nonadiabatic transitions between asymptotically
degenerate states [18, 19, 20, 21, 22, 23]. The properties of such transitions can be
clarified analyzing the limit h —> 0 for the solutions of semiclassical time dependent
equations

d

The asymptotic at Ti —> 0 behavior of diabatic amplitudes ib\ 2 is given by

(1 - iTvd + O(ti2)) cos n, (1 - iTiT + O(f2)) sin r/ \ / c, eiS/h)

- (1 + ITIT + O(T2)) sin7/, (1 + ifi/d + 0{t2)) cosr/ / \ c2e-'iSl%

with
/,

S(to,t) = / v7""2 + v2 dt, tan2r? = - , (3)
to

and
t

1 v • f v
t) = q sin2 7/ — J - q 2 sin 27/ di, T = q cos2 7/ + / -f/2 sin 2r/ <ii,

41 (4)

_ l d'l _ •

In the case of asymptotically degenerate at t —> +00 states we can assume

lim q — 0, lim v « 2 + v'2 — 0. lim q — —go = const. (5)
f—> —oc ' f—>+oc t—>+oc

Using the expression of Eq.(2) we get the relation between asymptotic values of
adiabatic amplitudes ^1,2

(6)
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where

and
+ OC

(pc = ft / -q2 sin2r/ dt (8)

— oc
represent the usual dynamical phase. The phase

fa = 7T/2 (9)

of the amplitude of asymptotic nonadiabatic transitions can be regarded as asymp-
totic dynamical phase. For the probability of nonadiabatic transitions in asymp-
totic region we get

Sin2rlJ = ( lim - * - ^ V = (J-V . (10)
2 looJ \t^+x AUad dt J \SMJ • V '

where E,M is the asymptotic Massey parameter. AUad = 2\/u2 + v'2 is the splitting
between adiabatic potentials.

In this paper, we present a full analysis of the following exponential model
(Eq.(ll) below) of Morse type potentials coupled by an exponential function:

= 0 , (11)
^^r+Ce-ax+De-2ax -E I \ V2 /2m dx2

where
D> B>0. (12)

This model is characterized by the finite value of asymptotic Massey parameter

G(D-B)'

Explicit analytical expression of the S—matrix is derived for this model. The case
A < C (A > C) corresponds to the non-crossing (crossing) diabatic potentials.

Introducing the dimcnsionlcss parameters,

| ^ (14)

using new functions /.; and new variable y

(-ax), y = exp(-ax), (15)
K
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we get

r\i I LIU \

ffi / ' o ; \ A 1
_.2 I .., "

/f, \
The unitary transformation to the adiabatic states I T is given as usual bvV * )

The corresponding adiabatic potentials are

Via(?/) = I [a + c + y(b + d) ± A/(a - a + y(b - d))1 + Ag2 ) . (18)

2. Transformation Into the Momentum Representation

The transformation into the momentum representation

fi= /exp(-pj / )*i(p) dp (19)

leads to

IK— + I K 7 T 1 + U 1 - f i \ / $ l \

^ d' | 1 = 0 ' (2°)
— Cj2- IK— h iKTT-2 + U-2 / \ $ 9 /dp / x 2 7

where
_ a - 2/; _ c - 2p

b + p2 ' d + p'2 '
(21)0 + »2 a + p2

9 9
9i-i—,—9; 52 = -r-—o-0 + j ; a + p

The transformation

(22)

gives the following coupled equations which will be analyzed in the subsequent
sections:

. d
IK— + U, -V \ I <Pl

d I I I = °- (2 3)
IK— U

dp
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Here

and

u =
— u-2 p2(a — c) — 2p(d — b) + ad — be

V =

2 (b + p2) {d + p2)

g

The potential matrix in Eq.(23) can be diagonalized as

cos 7, — sni7
sin 7, cos 7

u, -v
—v, —u

cos 7, sm 7
— sin 7, cos 7

w, 0
0. -w

where
tan 27 = v/u, w = v u2 + v'2.

(24)

(25)

(26)

(27)

3. WKB Type Semiclassical Analysis

The semiclassical solution of Eq.(23) with the first order correction for the pro-
exponential factor taken into account is given by (see Eq.(2))

Yi e cos 7, e lT sin 7
—elT sin 7, e cos 7 c2exp \--S

where

and

S= w dp = / V'«2 + v2dp

(28)

(29)

V r (j'Y
T — K— cos2 7 + K I —-— sin(27) dp.v I 2v

(30)

it — K— sm 7 — K / —-— sm(27) dp.v J 2v
The applicability condition of the semiclassical approximation is expressed as

.̂Frorn the total action of the functions '</'« expressed as

S(p-,y) - -lny+py + / X 2dp± / \/u2 +v2dp,

the corresponding saddle points in the /;—space can be obtained as

P(y) = 1±^1-Uh2(y)
y

(31)

(32)

(33)
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Denoting the saddle points in the /;—space corresponding to the turning points
and y2 on the adiabatic potentials U\ and U2 as

ih,2 = 1/2/1,2,

we define actions in p-rcprosontation in the form,

(34)

Si 2(y.p) = _ in J L +py -1+1 Ul + "2 dp ± / y / u 2 + v2dp. (35)
2/1.2 ./ 2 /

where indices 1 and 2 in Si .2 correspond to the signs + and —, respectively. Using
this definition we can obtain actions in ^-representation with the origin taken at
the turning points,

Su2(y) = Sh2(y,pc), Sh-2(y = 2/1,2) = 0.

Here pc is the left saddle point (see Eq.(33)),

My) = — J^1-
y

It should be noted that

£1,2(2/,Pc) = -Si,2{y,Pn) > 0,

where pn is the right saddle point (see Eq.(33)),

Pn = V

(36)

(37)

(38)

(39)

Using the scmiclassical solution of Eq.(28) for the amplitudes in p -representation,
we can obtain the diabatic wave functions in x -representation as

My)

I
cos 7

/b + p2

sin 7

sin

Vb+P2

cos 7
d + p2 ' Jd + p2

'^Sdy.j^ X (40)

dp.

By taking into account the direction of steepest descent, the asymptotic dia-
batic wave functions at x —> 00 can be expressed as a sum of contributions from
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the left and right saddle points at y —>• 0:

Mv)

My)
e cos T), elT sin r\

—e lT sin T), e l cos rj

e l cosr/.e /rsinr/

—e}T sin rj. el cos

with

sin rj. el cos i\

lim (T + t>) = K lim — = —K lim —- = K- — -.
y^oy ' p^oc v y^o g (a - c)2 + Ag2

In terms of the parameters

we have

and also the limiting value of the angle 7/ (y —>• 0) as

2K(d-b)

lim (r + •!?) = - — —
2/>ov 7 A2 + 46

sin(2Tj) =

COS(2TJ) =

A2+46"
- A

(41)

(42)

(43)

(44)

(45)

The connection between the amplitudes {c\,C2)c and (CI,C2)TJ is given by the
nonadiabatic transition matrix L

sin <

L = (46)
sin 0 /

where «/ and <j> arc the Landau-Zcncr parameter and the Stucckclbcrg phase given
by the usual contour integrals. Although this matrix L is unitary, it should be
noted that the double exponent term exp(—2i\v) has originated from the contin-
uation of the scmiclassical solution along the real axis passing between the two
complex conjugate zeros of the function \/u2 + v'2. The accuracy of the scmiclas-
sical representation of the solution along this contour is not high enough to give
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correct values of exponentially small terms compared to unity. Thus considering
the applicability condition of the semiclassical approximation,

we should change Eq. (46) to

L =
1, 2ier7TV sin <J)/K

2ie~7"/ sin <])/K, 1

(47)

(48)

Finally, let us try to formulate the scattering matrix within the present semi-
classical treatment. Using the adiabatic wave functions obtained by the saddle
point method.

a\-

0*2-

= exp

\ J
(49)

= cxp

thc S—matrix is defined bv
n^u.

a-2

FexP -S2(y) - i -

a-2
(50)

where the subindexes =F correspond to the incoming and outgoing waves and
Si,2(y) arc given by Eq.(36).

Introducing the notations for the matrices of adiabatic propagation W, basis
rotation R, and diffraction D,

W =
e-iSi(y)/K+in/4 g

0̂  c-iS2(y)/K+in/4

D =
e '"' cos 77. e t r s in 77

COS//, SHI 7/

— sin//, cos// (51)

—elT sin7/, e'^ cos//

and using Eqs.(17), (41), and (48), we find

5 = VTLV with V = lim W~lL
y-X)

(52)

where the index T means the transposition.



ASYMPTOTICALLY DEGENERATE STATES 113

The final expression for the semiclassical 5-matrix is found at A < 0 as

~7VV sin CJ)/K

i sin(2r/)(r + d) COS((/K) + 2ie~7V" sin (J>/K, 1

\

S =

1.

-2?

(A2 + 4J)4J)3/ i sin

(A2+4(5)4(5)'V2
+ 2?.e sin (/)/

(53)

where
C=Um(52(j/)-5,(j/)).

2/—>0
(54)

The formal limit v —> cc of the Eq.(53) gives the expression for the S-matrix at
A > 0. The applicability conditions for the present semiclassical expression of the
5—matrix are given as follows

1. v > 1, A 2 + 4 ( 5 > 1 . (55)

The expression of the Eq.(53) demonstrates the significant role of the diffraction
type nonadiabatic transitions originating from the asymptotic region x —> oc. The
contribution of this region to the amplitude of nonadiabatic transitions is equal to
the inverse Massey parameter of Eq.(13) which has finite value at x —> oc because
of the asymptotic degeneracy of potential energy curves.

4. High Energy Approximation

In this section we consider the solution of Eq.(23) at high energies,

E —> oo. a,b,c,d,g —> 0 (in the order of 1/E). (56)

The zeros of the adiabatic potential w(p) — y/u1 + v2 are the solutions of the
equation

(a - cf + 45
2] pA + 4(a - c)(b - d)pA + 4(6 - d)2p2p2

+4(6 - d)(ad - bc)p + (ad - be)2 + 4g2bd = 0.
(57)

The four solutions of this equation £>i_4 can be separated into two pairs in region
I: | p2 |3> (a, 6. c, d, g) and in region II: | p2 |<S (a, b, c. d. g). The local solutions for
each region can be considered separately.
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4.1. LOCAL SOLUTIONS IN REGION I

Suppose p is of the order of unity. Then by taking into account only the first three
terms of o(E~'2), Eq.(57) reads

[(a - c)p + 2(b - d)f + 4g2p2 = 0, (58)

which gives

with

z].-2=c-a±2ig. (60)

Since \p2 ^> a, b. c, d, g, we can express

U = ̂ - y d - 6 ) a n d , = A (61)

Introducing

wo obtain from Eq.(23)

d

= 0.

The point q — 0 corresponds to

p = P1 = 2d—^- (64)
a — c '

with -u(Pi) = 0.
Two linearly independent solutions of Eq.(63) can be chosen as

and (65)

e

The general solution of Eq.(63) is given by the linear combination of these solu-
tions.
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The contribution of the region I to the wave function i6j(y) at y —> 0 can thus
be expressed as

C p,
Vi (y) = "i • exp I - - 1 U J , : l exp y-yyj °— '-dp. (66)

Here Dj represents the value of <fi given by Eq.(65) at p = oc (y —>• 0). The
integral in Eq.(66) can be evaluated by using the saddle point method. As a result
we obtain the contribution of the region I as

-(; + -lny) Dl6 (±e-W"A) ,

4 /i K

Here the upper (lower) sign corresponds to the first (second) set of solutions in
Eq.(65). The phase £ is equal to

c v (- 'r'"1 + "'2 J , oi 2MC = llmii^oc PV + J ^ «p + 2 In - =
V ° . , / (68)

= 2 + - ( -4= + 4= ) + - In bd - 2 In 2.
4 VV6 Vd/ 2

4.2. LOCAL SOLUTIONS IN REGION II.

Suppose p is much less than unity. Then by neglecting the terms of ps and pA,
Eq.(57) reads

4(6 - d ) V + 4(6 - d){ad - bc)p + (ad - be)'2 + 4g2bd = 0. (69)

which gives

2(6 - d)

Since \p'2 <C a, b, c, d, g, we have

ad — be, d—b g

be — ad ± 2iqy/bd , .
• < 7 0 )

In terms of the new variable

>-Po) (72)
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with

Eq.(23) can bo simplified as

The two linearly independent solutions of this equation are

and (75)

The general solution of Eq.(74) is given by the linear combination of these solu-
tions. It should be noted that q = 0 corresponds to p = PQ with U(PQ) = 0.

Making use of the exact relation of the Weber functions [24],

(76)

with 0 < i?e/x < 1. we can finally obtain the contribution of the region II to the
diabatic wave functions ipj(y) in the ^-representation as

A K \ J (77)
7A--liij / jZ?_tf_i (±e !7r/4A).

Here the upper (lower) sign in Eq.(77) corresponds to the first (second) set of
solutions in Eq.(75) and the parameter A is given by

A 2 6 b a2d2 - c2b2 + 2abd (c - a) _
~ T ~ 2 n d + 8Kbd (d - b) "

(78)
_ a2d + c2b 6 b
~ 8nbd 2 U~d'

4.3. SCATTERING MATRIX

Matching the general local solutions using the scmiclassical type asymptotic ex-
pressions of D-functions has been carried out. As a result, the general diabatic
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wave functions in .r-rcprcscntation in asymptotic region x —>• oo can be expressed
as

— In y _ - — In y

- m y _ - - l n y
t + 0 2 e K

(79)

where the amplitudes V;i 2 a r e connected by the diabatic scattering matrix

V>\ = Sd
'02

(80)

where
sinx = er716^ \DiS (eri7T/

cos* = VS<rnS/4 \DiS-i (<r
e = hjn + Shi 6 - S + TT/4 - 2 a r g D i S ( e ^ ^ ^ A ) ,

e = h/K + Sin S-S + vr/4 - 2argL>,;,>_i ( e" i 7 r / 4 A)

^ 1

J \ /M 2 + '̂ '2 dp for the case A < 0.

+ oc Pi
/ \Jv? +1;2 dp+ J Vw2 +1 ' 2 dp for the case A > 0.

I p0 -00

(81)

(82)

/j is equal to the Stueckelberg phase and the quantities «i and S2 are denned from
the action integrals Si,2(y) (sec Eq.(36)) as

(83)

The 5-matrix in the adiabatic representation is obtained as

5 =
ei(s2-si)/K [72 sin a; - i (Rcosujcos2r) + r sm2t])], i (rcos2rj - R cos LJ sin 2T?)

i (rcos2r] — Rcosusin2r/), e
l(*i-s2)/« [/2sinw + i (Rcosuicos2r] + rsm2r])]

(84)
where

_Reiu-' = ei7r/4 (eif sin2 x + erie cos2 x) ,

r = sin (2x) sin ( '—— (85)
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the functions sin 27/ and cos 27/ arc given by Eq.(45), and

A

s-2 - Si = h - K / \/q2 + 45 dq. (86)

The applicability conditions for this high energy semiclassical expression for
S—matrix arc as follows

K,a,b,c,d,g<z:l. (87)

In closing this section, let us consider some limiting cases. First, if we assume
A2 + 46 ^$> 1. wo can use the asymptotic expressions of the D-functions and obtain

Sy>= <

-icos((,s2 - . S I ) / K

—i cos ((,s'2 — .SI)/K, + 2a)

251'2

(A2+4<5)3/2

26'/*

for A > 0,

- ^ + 2ie-nSy/l-e-2"ssiii (/I/K + a)
(A2+4Sf/2

for A < 0,
(88)

where
a = 6\n5-6 + arg Y (1 - id) + n/4. (89)

The expression of Eq.(88) coincides with Eq.(53) in the limits A2 + 462 3> 1 and

In the case of A = 0. wre can use

A.(0) =

and we obtain

(90)

(91)
e + e\ . (IT e-e

s m -
I • 2

Particularly when d" 3> 1 . this gives

5*12 = - i cos ( (s2 - SX)/K +
126 46

(92)

The phase averaged | Si2 |2 coincides with the limit of Eq.(2.47) of the previous
paper [23].
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5. S-P Collisional Resonant Excitation Transfer

In order to demonstrate the physical significance of asymptotic nonadiabatic tran-
sitions and especially the analytical theory developed an application is made to the
resonant collisional excitation transfer between atoms. This presents a basic phys-
ical problem in the optical line broadening [25]. The theoretical considerations
were made before [25, 27, 28, 29, 25, 30] and their basic idea has been verified
experimentally [31]. These theoretical treatments assumed the impact parameter
method and dealt with the time-dependent coupled differential equations under
the common nuclear trajectory approximation. At that time the authors could
not find any analytical solutions and solved the coupled differential equations nu-
merically. The results of calculations for the various cross sections agree well with
each other and also with experiments, confirming the physical significance of the
asymptotic type of transitions by the dipole-dipole interaction.

5.1. COORDINATE SYSTEMS, BASIS SETS, AND HAMILTONIAN

Two coordinate systems and basis sets describing to the collision of two identical
atoms in states S and P are employed. Following Watanabe [27], first we introduce
the standard space-fixed coordinate system with axis £ along the relative nuclear
angular momentum 1. i.e., axis perpendicular to the collision plane, axis ( in the
direction opposite to the asymptotic velocity vector v, and axis i\ normal to £ and
(. The following notation is used for the diabatic electronic basis states:

I I/>I)=\PS)A\S)B,

I II>*)=\S)A\PS)B,

| tt>3)=\Pr,)A\S)n,

| II>*)=\S)A\PV)B,

I IP-0)=\PC)A\S)B,

| ^6)=\S)A\P()B. (93)

This basis set is referred to as atomic basis and yields the final S—matrix elements.
Next, again following Watanabe [27], we introduce the body-fixed (molecular

or rotating) coordinate system: axis vf along 1, axis a along the molecular axis R
and axis n normal to the other two. In this system the projections of the electronic
angular momentum j and the total angular momentum J onto the molecular axis
R arc equal to each other and the corresponding basis states arc given by the
linear combinations of the states in Eq.(93) as

Pa) =sintf | Pc)+cosi? | Pn),

P^) = - cost* | Pc) + sintf | Pn),

Pw) =1 A ) , (94)

where t) is the angle between the two axes a and r/ with d G (—§,§)• The atomic
basis states with the definite projection (Q — ±1.0) of the electronic angular
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momentum j onto the molecular axis R arc given by

Po)=\P«). (95)

These define the following diabatic basis states which present the most convenient
one for solving the coupled Schroedinger equations:

V\)=\S)A\PQ)n,
¥>i) = | PO)A I S),},
¥>3) = | S)A I P+I)B,

¥>4> = | P+I)A I S)B,
<p5)=\S)A\P-l)l},
<p<i)=\P-,)A \S)n. (96)

Using the standard total angular momentum representation \JMjQ) corre-
sponding to the basis set of Eq.(96) (see for instance the book [1]) we obtain the
following form of Hamiltonian for the radial nuclear motion (atomic units):

where

H | n*> = TR

/ 1

2fiR2 v (97)

V

3.R3

0 0

v;

0 0

o vc — o o o

d2
Vc 0 0 0 0

Here Vc represents the Coriolis coupling

0 0

(98)

Vc = -
V2J(J+1)

2fiR2 (99)
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and the parameter d is defined as the S — P type dipole transition moment given
by the formula

3d = d • n | Po)

Now we introduce the representation satisfying the molecular symmetry

* ) = JMjQ),

where
( v2

0
V2
0
0

V o

0
-V2

0
0
0

0
1
0
1
1
1

0
1
0

- 1
1

- 1

0
1
0
1

- 1
- 1

0
1
0

- 1
- 1
1 )

£>*=., = -

This basis set factorizes the matrix of Eq. (98) to

-\-r - ^ - y/2Vc 0
flit O-TL

d2

0

(100)

(101)

(102)

3R3

0

0

0

0

0

1

&

0

0

2d2

3R3

' c

0

V2VC

d2

3R'6

0

0

0

0

0

d2

3R3

0

0

0

0

0

d2

3R3 I
(103)

This is obviously most convenient for solving the Schrocdingcr equation.
At d = ±TT/2 the molecular basis set determines the electronic state

connected with the original atomic one | tp) in Eq.(93) by the relation

(104)

with
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= +.7T/2)
f 0

0
0
0

- 1
1, - 1

0
0
0
0

- 1
1

=
cos d

—i sin i?
cos t)

—i sin i?
0
0

cos i) sin i)
—iami) icosi?
— cos "d sin "d

sin i) \
i cos i?

i sin •#
0
0

icosi) —icosd

-1 -1
\ - l 1

0 0
+i +i
0 0

Ti ±i
0 0
0 0

±1 ±1\
0 0

±1 +-
0
0
o /

(i) = ±7T/2) =

(105)

5.2. 5-MATRIX, TRANSITION PROBABILITY, AND CROSS SECTION

As in the previous studies, we apply the semiclassical approach to the problem.
This moans that the angular momenta arc considered to be large and the terms
~ l/fil£2 in the matrix of Eq.(103) can be neglected. Then the Hamiltonian matrix
can be reduced to the form

($1,3 I H | $2,4) = "
( J+ l /2 ) 2

2fiR2

J+l/2

J+l/2 ± ds

TT™- (106)

The full collision problem is now separated into two doubly-coupled and two un-
coupled systems. We represent the nuclear wave vector | \P) of the problem in the
form

-R
= cxP(i5fl - ITT/4) = cxp(i / ^2fi(E-(J+l/2)2/2fiR2dR - in /A) \ $).

(107)
The high energy approximation leads the first equation of Eq.(106) to

2d2 b
= 0, (108)

where the ordinary definition of the impact parameter b has been used,

J + 1/2 = fibv. (109)
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This equation can be transformed to the main coupled equations of Ref. [27] by the
variable transformations R2 = b2 + v2t2 and x = sin?9 together with the rotation
of the nuclear vector with the angle •&. As mentioned before, the previous authors
solved these coupled equations fully numerically.

Here, we try to apply our analytical theory. At first, we note that the transitions
wre are interested in occur in asymptotic regions, and thus we can leave only zeroth
order term in the expansion of radial velocity. This leads to the equation

. d
l~dR

±
2d2

3vR3

b
n? =F

b

d2

3vR3

= 0. (110)

Substitution of the variable R = ex reduces the problem to the exponential model
studied above. Using the S—matrix in the diabatic representation given by Eq.(80)
we finally obtain the S—matrix in the representation of Eq.(lOl) as

(111)

/

\

Sl2
0
0
0
0

JV2

s22
0
0
0
0

0
0

q*
' - ' l l

-S*2

0
0

0
0

~SV2
S"*2

0
0

0
0
0
0

Soo
0

0
0
0
0
0

^ no

where

9
1

52 2 - 2 e

51 2 =

ele[l - e"7"5]),

- e-z"° sin •
. e + e

2 ;

5on — e ' H*i+»2)_ (112)
1 X

e = s2 - Si + S In 6/2 -6+^+2 arg T ( - - i-),

e = s 2 - S SIn5/2 - arg
.(5

Here si,2 arc the radial adiabatic phase increments in the high energy approxima-
tion given by

c c 1 1
A'1,2 — -J1.2 - Jli — 7TS =F 77

65 Ad

dz,
66 ' 46 Jo y z(l-zr~'

and 6 is the principal single parameter of the model

6- —
~ I2'

(113)

(114)
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The overall transition matrix among the basis set | il;) correspondent to that
of Eq.(93) is given by

(115)

The simple manipulation leads to

N =

Soo

0
0
0
0

ilmSoo
ReSoo

0
0
0
0

0
0

-RcS 2 2
—jIinS'22
—ImS\2
iRcS12

0
0

—H111S22
- R e 5 2 2

iR,eSy2

-Illl5l2

0
0

Im5i2
-iRc.Sri
-ReSu
-ilmSii

0
0

-iReS1 2

Im5i2
—iImS-\-\
-Rc5u J

(116)

This matrix is unitary, because all the matrices on the right hand side of
Eq.(115) are unitary. It should be noted that Eq.(115) does not describe the formal
transformation from the body-fixed to space-fixed frame by coordinate transforma-
tion [1], but just gives the transformation of electronic basis sets in the asymptotic
region.

Eq.(116) together with Eqs.(112)-(113) gives the analytical solution of the S—P
resonant excitation transfer problem in the high energy approximation and can
provide all the dynamics information for this problem. In particular, we can find
the total cross-sections for all the related collision processes. In the semiclassical
approximation the standard expression of cross-section has the form

ffi* = 27r / Pik(6(b))bdb = — I Pik(6)d6, (117)
•Jo u Jo

where P\k arc the transition probabilities for the clastic and inelastic processes:

Pn =

Nik

(118)

The probability Pik as a function of 5 rapidly oscillates at 6 -» 0 and decreases
as 1/S2 at 5 —> ac. The calculated results in the unit of TTCPJV are presented in
Table 1.

Table 1 shows good agreement between the fully numerical solutions of the
time-dependent coupled equations [27] and the present results obtained by match-
ing the asymptotic analytical solutions, indicating the usefulness of the present
analytical theory.

If it is possible to specify the asymptotically defined projection of the electronic
angular momentum along the molecular axis, then the corresponding S—matrix is
turned out to be

Sv = D^S^D^. (119)
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TABLE 1. Cross sections for excitation transfer (exc.tr.), depolarization (depol.),
and elastic process (elas.) in unit of nd /v.

exc.tr. depol. elas.
(J^£ oqjj ^CC ^"^C ^ ^ C ^ € £ ^ ' / ' / ^CC

Ref.[27] TV 2.09 0.43 0.56 0.60
This work n 1.95 0.44 0.52 0.62 n 1.49 2.08

Unlike Eq.(115), the transformation made here is just a rotation of constant angle
(sec Eq.(102)) and we can easily obtain the unitary and symmetric S—matrix as

\/2 v̂ 2 \f2 \f2

ReS\\ -7jR.eS'i2 -4jImS'i2 -^ReS\2 -4j
iReS | lmS iReT | lmT2 2 2 2 ( 1 9 ^
i T v̂ . 1 -n v̂ . i T -V 1 -n -V- ; V 1 Z U /

|ImE ^ReE ^IniT ^ReT
iRcT | lmT iReE flmE

\ -^Rei>i2 -==lmii2 41m I Trliel ^-iniE rrReE /
\ V'2 v'2 '* 2 2 2 2 /

where
E = 522 + 5Oo, T = S22-S00. (121)

In this representation, one should take into account the fact that the molecular
axis rotates with the angle vr during the collision process, so that in the case
of transitions ±1 —>• =F1 the electronic angular momentum projection onto the
space-fixed axis does not change, but it does change in the case of ±1 —> ±1.
In addition, the amplitudes of clastic processes have signs opposite to the signs
of the corresponding elements Sv [1]. It redefines the transition probabilities and
cross-sections. The calculated results of these cross-sections in the unit of nd2/v
arc presented in Table 2.

TABLE 2. Cross sections for excitation transfer (exc.tr.), depolarization (depol.).
and clastic (elas.) processes in unit of ivd jv in the frame

0"o,o

0.44

exc.tr.
O"0,±l

0.52

<7±1,±1

2.35

a ± 1 , T l

0.20

depol.
O"0,±l

0.62 0.43

elas.
0"(J,O C-ti i=pi

2.08 1.88

Finally, the mean excitation transfer cross-section averaged over the initial
polarizations is found to be (o~e() = 2.19, which is again in good agreement with
the value 2.26 obtained from the numerical calculations [27].
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6. Concluding remarks

The new type of nonadiabatic transition between asymptotically degenerate states
has been fully analyzed with use of the Morse potential model, and the analytical
expression of the scattering matrix has been derived. The present analysis warns
that we have to be careful about this type of nonadiabatic transition whenever we
encounter asymptotic degeneracy of potential energy curves. The new mechanism
presented in this paper works whenever the limiting value at:/: —> oo of the inverse
Massey type parameter is a finite quantity:

\Lad{x)

The S — P type collisional excitation transfer process was shown to be nicely
treated analytically as one of the examples of nonadiabatic transitions between
asymptotically degenerate states. The theory can be nicely represented by the
asymptotic adiabatic parameter S, and the calculated results of cross section
were shown to agree well with the numerical solutions of the corresponding time-
dependent coupled differential equations. This indicates the following two things:
(1) appropriateness of the present analytical procedure that the transition in
the asymptotic region is accurately treated and the adiabatic waves are properly
matched in the region of turning point, and (2) physical significance of this type of
nonadiabatic transition between asymptotically degenerate states. The usefulness
of the analytical theory presented also have been clarified, since the theory is not
just restricted to the Morse potential model, but it can be applied to a wider class
of transitions between two asymptotically degenerate states.
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Izhorskaya 13/19, Moscow 127^12, Russia

Abstract. Coupling of electron momenta is considered for the resonant charge
exchange process in slow collisions. Since electron transfer proceeds at large dis-
tances between colliding particles compared to their sizes, where ion-atom inter-
actions are relatively weak, one can separate different types of interactions and
ascertain the character of coupling of electron momenta in a quasimolcculc con-
sisting of colliding ion and atom under real conditions. The number of types of
interactions for colliding particles exceeds that used in the classical Hund scheme
of momentum coupling. Momentum coupling in the case of halogen and oxygen
atoms is outside the Hund scheme. In these cases of resonant charge exchange, the
quantum numbers of the quasimolcculc in the course of electron transfer arc the
total momenta J, j of colliding atom and ion, and the projection Mor M.j of the
atom orbital or total momentum onto the molecular axis. The ion-atom exchange
interaction potential docs not depend on the ion fine state, and the resonant charge
exchange process is not entangled with processes of rotation of electron momenta
under these conditions, as it takes place in the case "a" of Hund coupling. The
partial cross section of the resonant charge exchange process depends on quantum
numbers of colliding particles, while the average cross section depends weakly on
the coupling scheme.

1. Introduction

The process of resonant electron transfer in slow collisions of an ion and parent
atom results in transition of a valence electron from one core to the other. In the
simplest case of s—electron transition, this process is determined by an interference
of even and odd electron terms of the quasimolecule consisting of the colliding ion
and atom. Correspondingly, the probability of this transition is expressed through
the energy difference for the even and odd states of the quasimolcculc, as well as
the cross section of this process [4]. In the case of transfer of a p—electron with
participation of an ion and atom with partially filled electron shells, the reso-
nant charge exchange process becomes more complex, since the electron transfer
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may be entangled with the processes of rotation of electron momenta and tran-
sitions between fine states of colliding particles. One can simplify the analysis of
this process, constructing the hierarchy of interactions in the quasimolecule and
choosing in this way a suitable case of Hund coupling [5. 6, 7]. as well as certain
quantum numbers of the quasimolecule. Though this scheme is constructed for a
diatomic molecule when a distance between nuclei is fixed, it can be generalized
to a quasimolecule consisting of colliding particles [8, 9, 10. 11]. Then, according
to a general scheme by Nikitin, a certain type of Hund coupling is realized in each
part of the particle trajectory. If the range of transition between different cases
of Hund coupling is narrow, one can construct the wave function of the colliding
particles and S—matrix of transition by sewing the wave functions from different
parts of the transition range [10]. This alkws one to divide different processes and
find the probabilities for variation of quantum numbers of colliding particles at a
given trajectory.

This general scheme may be used for the analysis of the resonant charge ex-
change process involving an ion and an atom with noncompleted electron shells
when the resonant charge exchange process may be entangled with other processes
(rotation of electron momenta, transitions between fine structure states). Then,
within the framework of the classical Hund scheme of momentum summation [5],
three types of interactions are introduced for the quasimolecule: the electrostatic
interaction. Ve, the fine splitting of energy levels, 5f, that corresponds to spin-orbit
interaction and other relativistic interactions, and the rotational energy, Vroi, or
Coriolis interaction that accounts for an interaction between the orbital and spin
electron momenta with rotation of the molecular axis. Depending on the ratio
between these interaction energies, one can construct six cases of Hund coupling
[5, 6, 7], and for each case of momentum summation, the quasimolcculc is char-
acterized by certain quantum numbers. These cases arc used as models for the
analysis of some transitions in atomic collisions [10, 11. 22].

Electron transfer from one core to another takes place at large distances be-
tween colliding particles in the resonant charge exchange process in slow collisions,
so that all ion-atom interaction potentials are small. This allows one to separate
different interactions and to analyze the character of momentum coupling for real
cases. Carrying out this analysis, we find that the number of interactions is larger
than within the framework of the Hund scheme. Indeed, the electrostatic interac-
tion. Ve, includes the exchange interaction, Vex, inside atomic particles that leads
to certain orbital momenta of the atom, L. and ion, I, and to certain spins 5, ,s of
these atomic particles; a long-range interaction U(R), and the exchange ion-atom
interaction A(R). In addition, the fine splitting of levels refers separately to the
atom. Sa, and ion. Si, and competition between all these interactions give many
other cases of momentum coupling in comparison with the Hund coupling scheme.
Therefore, it is more correct to analyze this problem for certain ion-atom systems
when a restricted number of momentum coupling is realized. Below we consider
this problem successive for resonant charge exchange of halogens and oxygen, if
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ions and atoms arc found in the ground electronic state, and the collision energy
ranges from thermal ones up to tens eV, because this energy range is of interest
for a low-temperature plasma.

2. Asymptotic theory of resonant electron transfer

First we formulate a general method to analyze this problem. We use the asymp-
totic theory of resonant charge exchange [14, 15, 17, 22]. This accounts for the
tunneling character of electron transfer. The main contribution to the cross sec-
tion of the resonant charge exchange process gives large impact parameters of
collisions. Then a reciprocal value of a typical impact parameter of collisions is a
small parameter of the asymptotic theory for this process. Expanding the cross
section over this small parameter and restricting by two expansion terms, one can
express the ion-atom exchange interaction potential and the cross section through
asymptotic parameters of a transferring electron in an isolated atom and quantum
numbers of ion and atom electron shells. In contrast to models, the asymptotic
theory allows us to find a correct value of the cross section with an estimated ac-
curacy. In the case of transition of a p-electron in the collision energy range under
consideration this accuracy is better than 10% [19, 20].

We start from two schemes of momentum coupling for an atom and ion [2, 23, 7].
In the case of the LS—scheme, that is realized under the criterion Vex >> Sa. Si, we
take LMLS as the quantum numbers of the atom and Ims as the quantum numbers
of the ion, where L,l arc the orbital angular momenta, M,rn arc their projections
on the molecular axis, and S, sarc the spins of the atom and ion correspondingly.
In the case of the j — j coupling scheme for an individual atomic particle, that takes
place at Vex << Sa,Si, we use JMj as the atom quantum numbers, jrrij as the
ion quantum numbers, where J,j arc the total electron momenta, and Mj,rrij arc
their projections onto the molecular axis for the atom and ion correspondingly.
These quantum numbers arc the basis for the limiting cases of electron terms of
the quasimolecule.

Let us summarize the Hund coupling scheme [5, 6, 7] that is given in Table 1
together with the quantum numbers of the quasimolecule for each case of Hund
coupling. We denote by L the total electron angular momentum of the molecule,
S is the total electron spin, J is the total electron momentum of the molecule, n
is the unit vector along the molecular axis, K is the rotation momentum of nuclei,
A is the projection of the angular momentum of electrons onto the molecular axis,
it is the projection of the total electron momentum J onto the molecular axis, Sn

is the projection of the electron spin onto the molecular axis, L/y, S\y, J;y are
projections of these momenta onto the direction of the nuclear rotation momentum
N. Below we will take this scheme as a basis.

We now write down the possible interaction potential in the quasimolcculc un-
der consideration. In contrast to the Hund coupling scheme (Table 1), we separate
various interactions of an ion and atom at laree distances in the form
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TABLE 1. The cases of Hund coupling.

Hund case

a

b

c.

d

c

Relation

Ve » Sf » V-at

Ve » Vrat » Sf

Sf » Vc » VroL

VroL » Vc » Sf

VroL » Sf » Vc

Quantum numbers

A, S, Sn

A, S, SN

n
L,S,LN,SN

J, JN

v; uM =
Q MM

R3
QMM (jmm

R5 A(R), 6U Sa, Vrot (1)

We divide the electrostatic interaction Ve of Table 1 into four parts: the exchange
interaction. Vex, inside the atom and ion that is responsible for electrostatic split-
ting of levels inside an isolated atom and ion, the long-range interaction, UM, of
the ion charge with the quadrupole moment of the atom, the long-range interac-
tion. Um, that is responsible for splitting of ion levels, and the ion-atom exchange
interaction potential, A, that determines the cross section of resonant charge ex-
change. The fine splitting of levels dj of Table 1 is written separately for the ion,
Si, and the atom, 5a. Here M, m are the projections of the atom and ion angular
momenta on the molecular axis, R is an ion-atom distance, Qik is the tensor of the
atom quadrupole moment, q^ is the quadrupole moment tensor for the ion. As
is seen, the number of possible coupling cases is larger than that in the classical
case. Of course, only a small fraction of these cases can be realized.

In order to find the suitable scheme of momentum coupling in real cases, we
find the above ion-atom interaction potentials at distances which determine the
resonant charge exchange cross section. Constructing the hierarchy of interactions,
we find the quasimolcculc quantum numbers in this distance range and then the
partial cross sections corresponding to these quantum numbers. This allows us
to ascertain the scheme of momentum summation in slow ion-atom collisions with
resonant electron transfer. In turn, the character of momentum coupling may influ-
ence the value of the cross section averaged over initial quantum numbers. Below
we will realize this operation for certain cases of ion-atom collisions when the
colliding ion and atom arc found in the ground electronic state.

3. Hierarchy of ion-atom interactions for halogens

Let us consider the resonant electron transfer involving a halogen atom and its ion
in their ground electronic states
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X+(2P)+X(iP) -^ X(iP)+X+(2P) , (2)

where X is the halogen atom. We collect in Table 2 some parameters of colliding
atomic particles for this case. Note that the fine structure of the lower ionic states
includes the momenta of states with the total electron momenta J = 2,1,0, and
the parameter Si in Table 2 is the splitting of the 3P-2 —3 PQ ion levels. Next, the
value Vex is the splitting between the ground ion level 3p2 and the level lD-i in
notations of the LS- scheme of momentum coupling. Because for all the ions the
ratio SilVex is less than unity, the LS— scheme of momentum coupling is more
or less valid. Hence, we take as a basis the LS coupling scheme for atoms and
ions. The interaction potentials UM(R), Vrot(R), A(7?,) are taken in Table 2 at a
ion-atom distance Ro. so that the cross section of resonant charge exchange aex
for the case "a" of Hund coupling [19, 20, 21] is equal to

at the collision energy leV.
The quantity UM in Table 2 is equal to

., ., ., Qoo - Qu 6«V
UM = Uoo - Un = j ^ = T ^ , (4)

where e is the electron charge, and r is the distance of a valence atomic p—electron
from the nucleus inside the atom. Table 2 lists the corresponding values of UM
and also the ratio UM /Sa that is usually less than unity, so that the fine structure
of level splitting is of importance for the process under consideration. Note that
an estimate of this ratio is rough because we take for UM the difference between
extreme values. The rotational energy of the quasimolecule, Vrot, assumes particles
to be moved along straight-line trajectories. Taking the impact parameter of ion-
atom collision to be Ro, we evaluate the rotation energy at closest approach of
colliding particles as

where v is the relative ion-atom velocity, and % is the Planck constant. We give in
Table 2 values of the rotational energy that arc found to be smaller than the other
interaction potentials (UM-.&i-.&a)-, that determines the character of momentum
coupling in this case.

On the basis of the above analysis, one can construct the hierarchy of interac-
tions for a quasimolecule consisting of a halogen ion and its parent atom at typical
distances between these particles for resonant charge exchange (2). As a result, we
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TABLE 2. The parameters of halogen atoms and
ions [1, 13].

Sa, cm

Su cm-1 ~}

Vax.cm-1

Si/Vex

Ro-do

H, at

UM , cmT'

UM 15a

Vrot,cm,-X

A(Ro),cm-1

F

404

490

20873

0.023

10.6

1.54

341

0.84

30

23

Cl

882

996

11654

0.085

13.8

4.06

407

0.46

17

14

Br

3685

3840

11410

0.34

15.1

5.22

448

0.12

10

8.4

/

7603

7087

13727

0.52

17.2

7.20

372

0.049

7.1

6.1

*)The energy differences for levels of the states dP2 and 3P0.

have the following hierarchy of interactions which is fulfilled more or less for all
the halogen cases in the range of collision energies 0.1 — 10 eV :

Vex Si, Sa U
M

Um,V
rol

(6)

Comparing this with the data in Table 1, the real situation is found to be between
the cases "a" and "c" of Hund coupling, but case (6) docs not correspond exactly
to any one of the Hund cases. Now we evaluate the exchange ion-atom interaction
potential A(R) on the basis of the formula for the resonant charge exchange cross
section aex in the case of the transition of s—electron [4, 14, 15]

A(R0) =0.28,

and 7 is the asymptotic parameter for the electron wave function of a transferring
valence electron (A(7?) ~ exp(—7!?)). From this one can compare the exchange
interaction potential A(i?o) at a characteristic distance Ro with the rotational
energy (5) of the quasimolcculc at the impact parameter Ro of collision and the
minimal distance between the colliding ion and atom

A{RO) = = 0.22 (8)
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We consider a small parameter of expansion of the asymptotic theory

At collisional energies in the eV range we have ^/Ro = 10 -=- 15, so that the val-
ues above are comparable A(RO) ~ VTOL- The values of the exchange interaction
potential in Table 2 confirm this statement.

The hierarchy (6) of interactions leads to the following quantum numbers of the
quasimolecule: LSJMjlsjnij. where L,l are the atom and ion angular momenta,
S.s are the atom and ion spins, J,j are the total electron momenta of the atom
and ion. and Mj, rrij are their projections on the molecular axis. Correspondingly,
the quasimolecule's wave function is

L S J ] \ I s j 1 , . f ,,, m
M Ms Mj \ \ m ms m7- I LMSM> "msm> v v)

MMsrnm. L J L J

where $.'(/; are the wave functions of the weakly interacting atom and ion with
quantum numbers LMSMg and lmsms, respectively, if we ignore spin-orbit and
other relativistic interactions.

We now find the positions of the electron levels for a quasimolecule consisting
of an atom and parent ion at large distances between them being guided by the
hierarchy (6) of interactions in the halogen case. We have the quasimolecule quan-
tum numbers LSls in the first approach for interactions and will be guided by
the halogen case, taking the electron terms of the ground states, i.e. the electron
term is 2P for the atom and 3 P for the ion. The quasimolcculc quantum numbers
in the second approach arc Jj, and the splitting between the fine-structure levels
are determined by the corresponding values 5a,5i for an isolated atom and ion.
The third approach includes the quantum number Mj, the projection of the total
atom electron moment onto the molecular axis, and the splitting between energy-
levels with different Mj due to interaction of the ion charge and atom quadrupole
moment is given by

QMM
^LSJM, )I

<? T I 2

(11)

I?3

QMM \ L S J

MJ(Mj) =

MMS " > • - - M S

In the case of interaction of a halogen atom and ion X(2P) + X+(dP), where X
is a halogen atom, this formula takes the form

=U
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and

and QMM is the component of the quadrupole moment tensor for the atom, ra

is the distance of a valence electron from the nucleus, and the bar means average
over electron positions in the atom.

The fourth level of interactions leads to the quantum number rrij, the projection
of the total ion electron momentum onto the molecular axis, and the energy level
splitting for different Mj due to interaction between ion and atom quadrupole
momenta is given by

A V _ T QMM_ [ L S J 1* [ I s J 2
A l ~ 2s Ro M Ms Mj 2s Qmm m m, ,rH

MMS mm., L • J

where qmm is the component of the tensor of the ion quadrupole moment. Note
that the electron terms of the quasimolecule are degenerate with respect to the sign
of the total momentum projections. In the case of interaction of atomic particles
X(2P) + X+(iP). where X is a halogen atom, this formula can be rewritten in
the form

AV(JMjjmj

v;

where

and the distances ra, r* refer to the atom and ion respectively.
As an example, we construct the lowest energy levels for the chlorine ion-atom

quasimolecule at R — 14ao that corresponds approximately to the resonant charge
exchange cross section at the collision energy of leV (see Table 2). We have for a
typical energy chargc-quadrupolc (formula (12)) and quadrupolc-quadrupolc inter-
action (formula (15)) at this separation Uo — 130cm"1. Vo — O.Gcm"1. Therefore,
in this case with the use of the data from Table 2 we have the hierarchy of inter-
actions (6) in the form

Vex » 6i,6a »UM » A,Vrot » Urn (16)
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Wo give in Table 3 the energies E of levels according to the formula

E = Si + Sa + UM + eo , (17)

where eo is taken such, that the lowest term has zero energy E = 0. The quasi-
molecule energies of Table 3 are valid for the ground electronic state of the atom
and ion. i.e. to quantum numbers L = 1, / = 1, S = 1/2. s = 1. The states
of other quantum numbers LSls are characterized by higher energies. Indeed, the
excitation energy of the ion state 1D-2 is 11654cm~1, and the excitation energy
of the ion state 'So is 27878cm"1. These ion states have the same electron shell
3/;4. Halogen atoms with an unexcited electron shell have only one electron term
L = I. S = 1/2, that simplifies the analysis.

The data of Table 3 are obtained by neglecting the interaction potentials
A,VrOL,Um which would give additional quantum numbers of the quasimolcculo.
Hence, the accuracy of the data in Table 3 is determined by these values: A(R) ~
Vrot ~ 10cm"1, Um ~ lcm" 1 . In the used approximation the statistical weight of
the quasimolcculo states is

g = 2 • 2 • (2j + 1) . (18)

and the first factor accounts for the degeneration over the sign of Mj. the second
factor corresponds to separation of quasimolecule states into odd and even, so
that this degeneration is removed by the exchange interaction A(R), and the third
factor in formula (18) accounts for degeneration over rrij that is removed by all
the neglected interactions A,Vrot,Urn.

Thus, the above analysis for interaction of a halogen ion and atom at large
separations shows that the character of electron momentum coupling differs from
that of the Hund coupling scheme. Along with the quantum numbers of electron
shells of an isolated atom and ion within the framework of the LS— coupling
scheme, the quantum numbers of the quasimolecule are JjM.j (the total electron
momenta of the atom and ion, and also the projection of the total atom momentum
onto the molecular axis). Other quantum numbers of the quasimolecule arc mixed
due to the exchange A, rotation Vrot, and quadrupole-quadrupole Um interactions
between the atom and ion.

4. Ion-atom exchange interaction for halogens

We now determine the exchange ion-atom interaction that allows us to evaluate
the cross section of resonant charge exchange. On this way we represent the wave
function of the atom having n valence electrons of momentum le within the frame-
work of the LS—coupling scheme in the form [2, 12, 23] :

lmsms f

rl 4l^^(l)-femm,(2,..,n)(19)
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TABLE 3. The lowest energy levels E of
the quasiiiiolcculc Cl+ — Cl at the distance
R = 14ao between nuclei. The energy of each
state is taken with respect to the energy of
isolated Cl(2P) + C/+(3P). The statistical
weight g relates only to the even (or odd)
quasimolecule states.

JMJJ

l |2
112
111
3 i l

2 2 U

- - 2
2 2 Z

2 2 U

iil2 2

^ 02 2 U

9

20

20

12

12

4

20

4

12

4

A[/(M.7).CTr1

-130

130

-130

130

-130

0

130

0

0

E.cnr1

0

260

696

956

996

102

1256

1708

2009

Here $,ip,ip are the wave functions of the atom, ion and valence electron with
indicated quantum numbers, respectively, //, a arc the projections of the angular
momentum and spin of a valence electron, the argument of the wave function
indicates electrons involving in each atomic particle, the operator P permutes these
electrons, and the parentage coefficient Gff(le.ji) is responsible for addition of a
valence electron to an ion for construction of an atom for given quantum numbers
of these atomic particles.

The exchange interaction potential is given by the formula [11, 17]

1 H i H (20)

Here \Pi is the wave function of the quasimolcculc when a valence electron is lo-
cated near the first core (an electron is connected with the first nucleus), and ^2
corresponds to electron location near the second nucleus, H is the Hamiltonian of
electrons. Note that for an accurate evaluation of this interaction it is necessary
to use the accurate wave functions of the quasimolcculc which take into account
interaction of a valence electron located between the cores with both cores simul-
taneously. We assume this to be fulfilled within the framework of the asymptotic
theory. Using a general method of calculation of the exchange interaction potential
A(R) by analogy with that for the case "a" of Hund coupling [3, 17, 20, 21], we
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obtain

w = "<G"')2 £ , E, „ E ['; „', M
fi .ill,ill' . M. M , fJ;(J ,'mH ,'ma ; m« ; M5 . M J, , 111 . Uls

\ s S 1 [ L 5 J j f l .s j 1 \ l e I L
a m's Ms \ [ M Ms Mj \ [ m ms m:i \ [ 11 m" M'
1 s s u L s j 1 r 1 s j
a1 m!'s M's \ [ M' M's Mj \ [ rn ms m:j

Here we take into account the character of coupling of electron momenta in the
quasimolecule, so that first the quantum numbers of an atomic core lsm'ms and
atomic numbers of a valence electron lefi-^a are summarized in the atomic quantum
numbers LSM^Ms- and then the atom quantum numbers are summed in quan-
tum numbers LSJMj, as wrell as ion quantum numbers lsmms are summed in
ion quantum numbers Isj. We sum or average over other quasimolecule quantum
numbers which are not realized under the considered conditions. The following
relations for the Clebsh-Gordan coefficients are used

E f '
m.m.,.rn .m, L

' ' If ' • ' 1=1
m s m.; I I rn ms rn

,s S
Ms \ [a' m^ M's \ ~6MSM'S

In formula (21) A;c/J is the one-electron exchange interaction potential that
respects the case when a valence electron with quantum numbers is located in the
field of two structureless cores and has the same asymptotic wave function as in
real atoms. As a result, we obtain by analogy with the case "a" of Hund coupling
[3, 9. 17, 20, 21]

where the exchange interaction potential relates to certain quantum numbers
JMjj, and this formula reduces the problem of exchange interaction between an
atom and ion with noncomplctcd electron shells to transition of one electron be-
tween structureless cores. It is of importance that the exchange interaction poten-
tial docs not depend on the ion moment j . The one-electron exchange interaction
potential A;cM is given by the formula [9, 11, 16, 17]

Here le,fi arc the quantum numbers of a valence electron, and 7, A arc the pa-
rameters of the asymptotic wave function of this electron. Formula (22) contains
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the first term of the asymptotic expansion of the ion-atom exchange interaction
potential over a small parameter I/7I?,.

Thus, formula (22) gives for the exchange interaction potential involving the
halogen atom X(2P) with its ion X+(?'P)

A(JMj,R) = , * , m x ' l 1 1 1 12T 1 1/2 J

3Aio(i?) [ 1 1/2 J I2

2 [ 1 Af,7 - 1 Mj \ ' l '

where we extract the strongest term in the sum (22) that is proportional to
Aio(-R) (see formula (23)). We give in Table 4 the values of the exchange in-
teraction potential for the ground electronic states of the halogen atom X(2P)
and ion X+(dP) at different fine-structure quantum numbers for these particles.
The energies are taken at the separation R = 14ao that corresponds to the cross
section (3) at the collision energy of leV.

For demonstration of these results, we return to the above example of interac-
tion of Cl(2P) + Cl+(3P) at the distance R = 14ao between nuclei. The energy
splitting between even and odd quasimolecule states is A]0 = 14cm"1, An =
2.0 crnr1 if we consider the cores to be structureless. Table 4 contains the values
of the exchange interaction potential under these conditions for given quantum
numbers of interacting particles. We ignore the ion-atom quadrupole-quadrupole
interaction as well as the rotational energy, and the energy of the even or odd
state with given quantum numbers is E ± A(i?)/2. The data of Table 4 confirm
the used hierarchy of interactions between halogen atoms and their ions.

5. Resonant charge exchange for halogens

The above results for the exchange interaction potential allow us to determine the
cross section of resonant charge exchange in slow collisions of halogen atoms and
their ions in the ground electronic states. The asymptotic formula for the partial
cross section of resonant charge exchange is given by[14. 15]

where - J^A(R0) = 0.28 (25)

Here v is the collision velocity, the asymptotic coefficient 7 is expressed through
the atom ionization potential / , and in atomic units it is equal to 7 = v 2 / (sec
also formula (23)). This formula is valid for transfer of an s—electron or in the
case when transitions for states with given quantum numbers may be separated.
In particular, the partial cross sections of resonant charge exchange in the chlorine
case are given in Table 4.
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TABLE 4. The ion-atom exchange interaction potential
A(R) for the ground electronic states of the quasimoloculo
Cl(2PjMj) + Cl+(3Pj) and different fine-structure states JMjj
of this system. The exchange interaction potential is taken at
R = 14ao, as well as the total energy E of these states (Table
3) in neglecting the quadrupole-quadrupole ion-atom interaction,
and the rotational energy. The partial cross sections of resonant
charge exchange aex are expressed in A and are given at colli-
sion energies e correspondingly 0.1: 1; and 10elA in the laboratory
reference frame.

JMjj

| | 2

| | 2

| | 1

| | 1

| | 0

| | 2

2 2 U

Hi
Ho

A(R)

| A 1 0

| A 1 0

| A 1 0

| A 1 0

3 \
2 1 ( )

AlO

1 \
2^10

An,

Am

A, cm"1

87

29

87

29

87

58

29

58

58

E^cnr1

0

260

696

956

996

1012

1256

1708

2009

(TRX,e = 0.1; 1.0; WaV

110:92:76

93:77:62

110:92:76

93:77:62

110;92:76

104;86:71

93:77;62

104;86:71

104;86:71

We introduce the cross section of resonant charge exchange averaged over fine
states assuming the initial population of atom and ion fine states to be proportional
to their statistical weights

3 3 3 1 1 1 (26)

where the atom quantum numbers J, M.j are given as arguments of the partial
cross section. If we expand the cross section of resonant charge exchange over the
small parameter I/-R7 and restrict the expansion to two terms, then formula (25)
for the averaged cross section (26), taking into account formula (24). takes the
form

Vres = 2
where = 0 . 2 8 , (27)

and Aoo(-R) is the ion-atom exchange interaction potential for a transferring s—ele-
ctron with a given asymptotic parameters 7, A of its wave function. This value
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TABLE 5. The average cross sections for the halogen atom and
ion in the ground electronic states X('2P)+X+(3P) in 1(P lBcm2

at indicated collision energies e in the laboratory frame of ref-
erence for the hierarchy (6) of interactions and for case " a" of
Hund coupling[19, 21] (in parentheses).

cn-r
Br{~,

7 ( 7

= 1.132,

= 0.976,

= 0.932,

= 0.876,

A

A

A

A

= 1.6)

= 1.8)

= 1.8)

= 1.9)

e = O.leF

6.2(6.0)

10(10)

13(12) |

16(16)

e = leV

5.1(4.9)

8.7(8.4)

11(10)

14(13)

e = WeV
4.1(4.0)

7.1(6.9)

8.9(8.2)

12(11)

is connected to the one-electron exchange interaction potential Aio(-R) with a
transferring p—electron in accordance with formula (23) by Aio(-R) = 3Aoo(-R).
Table 5 contains the average cross sections of resonant charge exchange for halogen
atoms and their ions in the ground electronic state X(2P) + X+(?'P) allowing for
the hierarchy (6) of interactions in a quasimolcculc. These cross sections are close
to the average cross sections for the ground fine states of the colliding particles,
i.e. for the process X(2P3/2) + X+(?'p2). Thus, an average over hue states of
the ground electronic states and over momentum projections of the ground fine
state of the colliding particles leads to similar results. In addition, these data arc
compared with the cross sections for the case " a" of Hund coupling which are taken
from Rcfs. [19, 20]. As it follows from the comparison, the difference between the
cross sections for different methods of momentum coupling docs not exceed several
percent.

One more peculiarity of the resonant charge exchange for momentum cou-
pling at the hierarchy (6) of interactions is such that the difference between quasi-
molecule state energies of different projections of the atom electron momentum
exceeds the rotational energy Vrot at ion-atom distances responsible for electron
transfer. Hence, transitions between states of different quantum numbers JMjj
are absent at these distances, and the resonant charge exchange process is not
entangled with a change of these quantum numbers. Therefore, in contrast to the
case "a" of Hund coupling, rotation of the molecular axis in the course of electron
transfer does not influence on resonant charge exchange.

Above we evaluated precisely the cross section of resonant charge exchange
accounting for the coupling of momenta of a transferring electron with momenta
of atomic cores. Let us estimate the error if we ignore this coupling. Let us take a
p—electron that has the same asymptotic parameters as valence electrons of halo-
gen atoms, but this electron is located in the field of structureless cores. Then we
obtain for the cross section of resonant charge exchange for chlorine at energies
0.1, l,and 10eV the values 87, 71. and 57-10~16cm2, resp.. instead of those of Table
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5. As it is soon, ignoring the coupling between the momenta of a transferring elec-
tron and atomic cores leads to a remarkable error. Thus, resonant charge exchange
proceeds at a certain value of the quantum numbers JMjj of the quasimolecule
consisting of the colliding halogen ion and atom, and these quantum numbers do
not change in this process. The partial cross sections of resonant charge exchange
depend on molecular quantum numbers, whereas the average cross sections depend
weakly on the scheme of momentum coupling.

6. Resonant charge exchange for oxygen

We now consider one more example of resonant charge exchange with transition
of a p—electron

O+(45) + O(3P) -> O(3P) + O+(45) , (28)

with participation of an oxygen atom and ion in the ground electronic states.
Constructing the hierarchy of interactions (1) in this case, we take as a basis the
previous case (6) when the quantum numbers of the quasimolecule consisting of the
colliding particles are JMj. According to formula (12). the interaction potential
of the ion charge with the atom quadrupole has in this case the form

(29)

where we use the notations of formula (12), and Table 6 contains the values
a(JMj). On the basis of formula (22) we have in the oxygen case for the exchange
interaction potential instead of formula (24) for halogens

( 3 O )

and the coefficients of this formula are given in Table 6.
Note that the excitation energies of the oxygen atom fine states from the ground

fine state :iP2 is 158cm"1 for the state 3 Pi , and 220cm"1 for the state 3P0, and the
parameter Uo of formula (29) at a typical separation for electron transfer is U0(R =
12ao) = 102cm"1. These values arc comparable, and we have an intermediate case
of momentum coupling for oxygen. In the above example for halogens 6a > > Uo,
the quantum numbers of the quasimolcculc arc JMjj. while in the other limiting
case 6a << Uo the quantum numbers of the quasimolcculc arc JMj (M. Mj arc the
projections of the orbital and total atom momentum onto the quasimolecule axis).
The first limiting case is used in Table 6 which contains the quasimolcculc energies
E in accordance with formula (17), where we consider the fine-structure splitting
of levels and charge-quadrupole ion-atom interaction in the limit 6a > > All. The
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TABLE 6. The parameters of interaction for the quasimolecule
O+(453/2) —O(3Pj), and the interaction potentials at the distance R = Ylao
between nuclei. The partial cross sections of resonant charge exchange atx
are expressed in A2 and are taken at collision energies e in the laboratory
frame of reference of 0.1,1 and 10r;V respectively.

JMj

22

21

20

11

10

00

a(JMj)

-1

1/2

7/6

1/2

-1/2

1/3

A(JMj)

| A , ,

§Aio

3 Al()

2 \

4 \
9 A l "

E,cm~]

0

153

220

311

209

363

A, cm '
6.8

20

27

20

4.4

13

o-el;e = (). l : l :10ey

63:51:40

77:62:49

81:66;52

77:62;49

56:44;34

72:57;45

energies are taken at the ion-atom distance B = 12a0 that corresponds to typical
impact parameters which determine the cross section of resonant charge exchange
at the collision energy about leV. Note that the rotational energy is 29crn~1 foi-
ls' = 12a0 and e = leV, i.e. the rotational energy is small compared to the fine
splitting of ion and atom levels and the long-range ion-atom interaction potential
Uo.

The average cross section of resonant charge exchange is

^ = - [2aex(22) + 2^,(21) + aex(20) + 2aex(U) aex(00)], (31)

where the quantum numbers of the fine-structure atom state JMj arc given in
parentheses, and we assume the population of these states to be proportional to
their statistical weight. If we neglect the electron transitions due to rotation of
the molecular axis, we have for the average cross section by analogy with formulas
(25) and (27) (we use the notation of these formulas)

Vres = 2
where 2.9

Aoo(Ro) =0.28 (32)

The average cross sections of Table 6 relate to formula (31) while formula (32)
gives for the average cross section of resonant charge exchange the values 71,57,
and 45-10~16cm2 at the collision energies 0.1,1. and 10eV respectively, while these
cross sections for the case "a" of Hund coupling arc equal [19, 20] to 73,60, and
48 • 10~16cm2, respectively. Note that averaging only over the momentum projec-
tion Mj. we obtain for the partial cross sections (i.e. for the process 4
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TABLE 7. The ion-atom exchange interaction potential for the quasi-
molecule O+(4S3/2) — O(3Pj) when its quantum numbers are J and
M (the total atom moment and the projection of the atom orbital mo-
mentum onto the molecular axis). The partial cross sections of resonant
charge exchange aex at indicated quantum numbers and collision ener-
gies e in the laboratory frame of reference are expressed in A .

JM

20

21

10

11

00

01

A(JAfj)

— A

fA10

| A n

| A 1 0

| A , ,

- A

a ex, ,£ = 0-l('V

69

84

63

77

51

63

(Tex, ,£ = 1('-V

56

68

51

62

41

50

(Tex, , £ = WciV

40

55

45

49

31

38

O(3P2)) the values 72.58, and 46 • 10~16cm2 at the collision energies 0.1,1, and
lOeV. As it is seen, the difference of the above average cross sections and the
average partial cross sections does not exceed their accuracy. Next, if we ignore
the coupling of a transferring electron with the cores, i.e. if we consider transition
of a p—electron between structureless cores at the same asymptotic parameters of
its wave function as in the above cases, we obtain for the average cross sections
of resonant charge exchange the values 64, 51, and 40 • 10~16cm2 at the indicated
collision energies. In all the cases, in order to make the comparison under iden-
tical conditions, we ignore the influence of rotation of the molecular axis on the
cross section value. Rotation of the molecular axis increases the cross section of
resonant charge exchange for oxygen by several percent in the case " a" of Hund
coupling. From this analysis one can conclude that, though partial cross sections
depend remarkably on the quantum numbers of colliding particles, the average
cross sections depend weakly on the scheme of momentum coupling.

The other limiting case of the interaction hierarchy 5a << Uo between the
fine splitting of atom levels and ion-quadrupole interaction potential leads to the
quasimolcculc quantum numbers JMj, where M is the projection of the atom
angular momentum onto the quasimolecule axis. In this limiting case formula (22)
for the ion-atom exchange interaction potential takes the form for the process (28)

= r
H-Ms

i i i
fi M - ii M

1 1 J
M Ms Ms + (33)

An average of the cross sections of Table 7 over fine states of the ground electronic
state gives for the average cross section of resonant charge exchange the values
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70,56. and 44- 10~16rrm2 at the collision energies 0.1, Land 10eV correspondingly,
and for the ground fine state ,7 = 2 these values are equal to 79, 64, and 50 •
10"16cm2 correspondingly. In this case the average cross section differs from that
for the lowest fine state. Next, for the cross section averaged over fine states with
accounting for the logarithm dependence for the cross section on the collision
velocity we obtain the following relation instead of formula (32)

7}2 O f / ,,, 7T>

<TreS = -f- , where '• J?-Z-&0Q(Ro) = 0.28 ,

and it differs from formula (32) sligthly. Thus, we find that the average cross
sections depend weakly on the character of momentum coupling.

We now consider one more process of the resonant charge exchange involving
an oxygen negative ion :

f)-(2P) + O(3P) -> O^P) + f)-(2P) , (34)

This case is of interest because the electron shells of colliding particles are identical
to the halogen case (2), and the states of the oxygen atom are the same for the
process (28) involving a positive oxygen ion. Nevertheless, though we are based on
the same coupling scheme in all these cases, the character of coupling is different
for them. As in the previous cases, we are based on formula (22) for the ion-atom
exchange interaction potential and try to restrict the terms which are proportional
to Aio(-R), the strongest exchange interaction potential. In contrast to the case of
the positive oxygen ion, the exchange interaction potentials for fine atom states
arc nonzero in this approximation, and we have on the basis of formula (22) for
the process (34)

M\[M
M

Table 8 contains the values of ion-atom exchange interaction potentials for different
atom fine states. Thus, the parentage coefficients are the same in this case as in the
halogen case, and the fine structure parameter arc identical to the case of positive
oxygen atom. Because formula (22) contains the parameters of the atomic core,
the exchange interaction potentials of Table 6 and 7 are different.

Using the expression for the onc-clcctron exchange interaction potential of a
negative ion and its atom at large separations [18]

A10(i*) = ^ - e x p ( - 7 i i ) , (36)

and using the asymptotic formula (7) for the cross section of electron transfer, we
obtain partial cross sections of the resonant charge exchange process wrhich are
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TABLE 8. The ion-atom exchange interaction potential for the quasi-
molecule O~(2Pj) — O(3Pj) when its quantum numbers are J and Mj
(the total atom moment and its projection onto the molecular axis).
The partial cross sections of resonant charge exchange alx at indicated
quantum numbers and collision energies e in the laboratory frame of
reference are expressed in 10~ °crn .

JMj

22

21

20

11

10

00

A (JMj)

§A 1 0
1 A
3 1 0

| A 1 0

2 A
3 1 0

| A 1 0

2 .

(Tex, ,£ = O.ldV

25

21

21

25

21

19

aCix, ,£ = leV

19

16

16

19

16

14

O'ex, £ = WciV

13

11

11

13

11

9.2

given in Table 7. We use the parameters j = 0.328 and A = 0.65 [13] for the
oxygen negative ion.

7. Conclusion

Considering the character of momentum coupling for the resonant charge exchange
process in slow collisions, we find that the number of possible cases of momentum
coupling is larger than that in the classical Hund scheme of momentum coupling.
Constructing the hierarchy of interactions for a quasimolcculc consisting of the
colliding ion and atom, wre find the strongest interaction to be the exchange in-
teraction of electrons in these atomic particles, and therefore the quasimolcculc
quantum numbers for the ion and atom electron shells arc LSls (the orbital mo-
mentum and spin of the atom and the same quantum numbers for the ion). For
the cases under consideration (halogens and oxygen), the rotational energy Vrot of
the colliding particles is small compared to the fine splitting of atomic ionic levels,
5a and Si, as well it is small in comparison with a long-range charge-quadrupole
interaction U between an ion and atom. Hence, the resonant charge exchange pro-
cess in these cases proceeds at certain quantum numbers JMjj or JMj (J.j are
the total atom and ion momenta, M, Mj are the total projections of the atom or-
bital and total momentum onto the quasimolcculc axis) depending on the relation
between 6a and U. This character of momentum coupling does not correspond to
any of the cases of the Hund coupling scheme.

In contrast to the case "a" of Hund coupling, in the halogen and oxygen cases
the resonant charge exchange process is not entangled with transitions between
fine states of colliding particles and rotaion of the molecular axis. This increases
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the accuracy of the asymptotic theory in the evaluation of the cross section of
electron transfer. The cross section depends on the initial quantum numbers of the
quasimolecule, while according to the analysis for halogens and oxygen, the cross
sections averaged over fine atom states depend weakly on the coupling scheme.

References

1. Bashkin, S. and Stoner, ,T. (1978) Atomic Energy Levels and Grotrian Diagrams.
North Holland, Amsterdam, vol.1, 1978; vol. 2, 1978: vol. 3, 1981; vol. 4, 1982.'

2. Condon, E.U. and Shortley, G.H. (1949) Theory of Atomic Spectra, Cambridge
Univ. .Cambridge.

3. Duman, E.L, and Smirnov, B.M. (1970) Sov. Phys. Tech. Phys. 15, 61.
4. Firsov. O.B. (1951) Zh. Exp. Theor. Fiz. 21. 1001.
5. Mulliken. R.S. (1930) Rev. Mod. Phys. 2, 60.
6. Hund, F. (1936) Z. Phys. 36, 637.
7. Landau, L.D. and Lif'schitz, E.M. (1980) Quantum Mechanics, Porgamon Press,

London.
8. Nikitin, E.E.(1966) Optika and Spectr. 22, 379.
9. Nikitin, E.E. and Smirnov, B.M. (1978) Sov. Phys. Uspekhi 21 , 95.
10. Nikitin, E.E. and Umanskii, S.Ja. (1984) Theory of Slow Atomic Collisions.

Springer, Berlin.
11. Nikitin, E.E. and Smirnov, B.M. (1988) Atomic and Molecular Processes., Nauka,

Moscow.
12. Racah, G. (1942) Phys. Rev. 61 , 186; 62, 438.
13. Radzig, A.A. and Smirnov, B.M. (1985) Reference Data on Atoms, Molecules and

Ions. Springer, Berlin.
14. Smirnov, B.M. (1964) Sov. Phys. JETP 19, 692.
15. Smirnov, B.M. (1965) Sov. Phys. JETP 20, 345.
16. Smirnovj B.M. (1966) Teplophys. Vys. Temp. 4, 429.
17. Smirnov, B.M. (1972) Asymptotic Methods in Theory of Atomic Collisions, Atom-

izdat, Moscow.
18. Smirnov, B.M. (1982) Negative Ions, McGraw-Hill, New York.
19. Smirnov, B.M. (2000) Phys. Scripta. 61 , 595.
20. Smirnov, B.M. (2001) Sov. Phys. Uspekhi 44, 221.
21. Smirnov, B.M. (2001) JETP 92, 951.
22. Smirnov, B.M. (2003) Physics of Atoms and Ions, Springer NY, New York.
23. Sobclman, I.I. (1979) Atomic Spectra and Radiative Transitions, Springer, Berlin.



TIME-DEPENDENT WAVEPACKET CALCULATIONS FOR REACTIVE
SCATTERING AND PHOTODISSOCIATION

GABRIEL G. BALINT-KURTI
School of Chemistry
The University of Bristol, Bristol BS8 1TS, UK

AND
ALEX BROWN
Department of Chemistry
University of Alberta, Edmonton, AB, T6G 2G2, Canada

Abstract.
The theory of time-dependent wavepaeket calculations of reactive scattering

and photodissociation is briefly reviewed and some illustrative results presented.
Particular attention will be paid to the theory of differential scattering cross sec-
tions, arising from both types of process, and to the symmetry of angular depen-
dent scattering in a photodissociation process. Electronically non-adiabatic pro-
cesses will be discussed and illustrations from the reactive scattering of O(1D) +
H2 and from the photodissociation of HF are presented.

1. Introduction

Heller [1, 2, 3] introduced and popularised wavepaeket dynamics in the context
of the theory of molecular photodissociation. In a photodissociation process, the
molecule starts in a well defined initial state and ends up in a final scattering state.
The initial bound state vibrational-rotational wavefunction provides a natural ini-
tial wavepaeket in this case.

In the case of a reactive scattering process, there is no natural initial wavepaeket
and it must be created artificially. The artificially created wavepaeket is placed in
the entrance channel of the reaction and is given an inward momentum toward the
strong interaction region. The wavepaeket is localised in space and consequently, as
a result of Heisenberg's uncertainty principle, it contains a range of energies. But
as the energy is a conserved quantity for the isolated reacting system, each energy
component of the wavepaeket propagates independently and a correct analysis of
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the final wavopackot dynamics should bo able to provide information concerning
the cross sections and reaction probabilities corresponding to all energies contained
within the original wavepacket.

Photodissociation theory is in principle much simpler than reactive scatter-
ing theory. This is because only three values of the total angular momentum are
involved in a photodissociation process while reactive scattering requires a sum-
mation over a very large number of total angular momentum quantum numbers.

2. Molecular Photodissociation

The key to performing a wavepacket calculation is the propagation of the wavepacket
forward in time so as to solve the time-dependent Schrodingcr equation. In 1983,
Kosloff proposed the Chebyshev expansion technique [5, 6, 7. 8] for evaluating the
action of the time evolution operator on a wavepacket. This led to a huge advance
in time-dependent wavepacket dynamics [9, 10, 11, 12. 13. 14, 15, 16, 17, 18, 19,
20, 21, 22. 23, 24, 25, 26, 27, 28, 29] . Several studies have compared different
propagation methods [30, 31, 32] and these show that the Chebyshev expansion
method is the most accurate.

In this section, the basic formalism for calculating both integral and differential,
total and partial cross sections is briefly reviewed. A fuller discussion may be found
in a recent review [33].

2.1. TOTAL INTEGRAL CROSS SECTION

Within the semiclassicaL perturbational treatment of the interaction of radiation
with matter [35. 36] and within the dipolc approximation [37] the total energy
absorption cross section may be written in the form [38, 40, 41, 39]:

atot(E) = — V f dk | <ipf\e-il\il>i > |2 (1)

where V;; and il)f are the wavefunctions of the nuclear motion corresponding to the
initial and final states respectively, e*is the polarisation vector of the electric field
of the light and fi is the transition dipolc vector (which depends on the nuclear
geometry).

For the photodissociation of a triatomic molecule, the asymptotic form of the
final state, continuum wavefunction, correctly normalised on the energy scale[42],
may be written as[39]:

M ; J j ^ r ^ (2)
v'j'm1, I
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where k denotes the direction of observation (i.e., the direction in which the two
fragments scatter), r is the vector joining the two atoms of the diatom fragment, Ft,
is the distance between the center-of-mass of the diatom and the atomic fragment,
v is the vibrational quantum number of the final diatomic photofragment and j is
its rotational quantum number. The summation over final states in Eq. (1) also
includes an integration over all the directions of dissociation, k. The boundary con-
ditions of the wavefunction 'ip~jrn. (r, R: k, E) correspond to a pure outgoing wave
and with a final photofragment vibrational-rotational wavefunction Xvj{i")Yjm(r).

Using the theory given in Refs. [33] (see especially appendix A) and [43], we
can write the final state wave function in the body-fixed form (see also Refs. [4]
and [39] for details of the space-fixed body-fixed transformation):

j

V~-m. (r, R ; k, £) = Y Y Y*™, Mti1-™ \jrrijlmi) Y (JjlQ\JKj - K)
,JM Imip K = \

J

x Y ^K'V:Kp(r--R^:E)\J--K^M^P> : (3)
K' = \

where

(4)

and \J,K,M,p) arc parity adapted cigenfunctions [43] of the total angular mo-
mentum (J) corresponding to specified space-fixed (M) and body-fixed (K) z
components: $~JviKp{r,R,9\E) is a body-fixed wavefunction with the correct
boundary conditions [39] so as to yield the asymptotic behaviour specified in Eq.
(2): (JjlO\JKj — K) are Clebsch-Gordan angular momentum coupling coefficients
[44. 45] and the coordinates r\R,0 arc the body-fixed Jacobi coordinates with 9
being the angle between the scattering coordinate R and the diatomic molecu-
lar axis direction, r (see Ref. [43]). QJ<K'(9) are normalised associated Legendre
Polynomials [45]. These arc just the polar angle part of the spherical harmonics.

The parity adapted total angular momentum cigenfunctions [43] arc defined
as:
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The parity is given by (—1)'7+A+P, where /; can take the values p = 1 or p = 2,
thereby yielding positive or negative parity states, depending on the values of J
and \K\. The DJ

K M(oS)s are Wigner D matrices and are functions of the three
Euler angles. LJ{= a.fj.j), which orient the three atom system in the space-fixed
frame [44]. The DJ

K M{UJ) matrix elements corresponding to the same absolute
value, but different signs, of K must be combined to form parity eigenfunctions
[39, 45].

The asymptotic form of the body-fixed radial scattering wavefunction, $\,,j,JK/(R),
is [4, 39]:

"•v'.j- \ -ik , ., ; / ,j\

The S matrix elements, which occur in Eq. (7), contain information about the
dynamics or scattering on the final or upper state electronic energy surface, but
they do not contain information about the probability of the photodissociation
process.

The initial wavefunction, ipi, appearing in Eq. (1) is an eigenfunction of the
total angular momentum, J, of its space-fixed z component, M, and of the parity,
(—iyJ+K+i\ It may be written in the form:

•J;

^ = iS!J^M<'P(r,R,e,u)= Y,i>Ji'Ki'P{J:Ri0)\Jr,K,MuP> (8)
K=\

where the functions \J,K.M,p > have been defined above (see Eq. (5) )

2.2. PARTIAL INTEGRAL CROSS SECTION

We are interested not only in the total absorption cross section, Eqs. (1) , which
gives us a measure of the total probability that the molecule will absorb light and
dissociate, but also in the probability that different product quantum states will
be formed. This probability is given by a partial cross section, <jf(E). ^From Eq.
(1), we sec that this partial integral cross section may be written as:

/ d k | ^ | ? ^ | 2 (9)

The partial cross section gives the probability of absorbing light and producing a
particular final product quantum state. The total photodissociation cross section
is clearly given by the sum over all partial photodissociation cross sections.

(10)
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By omitting the integrals over all final scattering directions in Eqs. (1) and (9),
we obtain a cross section for scattering into a specific final direction. These are
the differential cross sections.

These partial differential cross section are therefore given by (see Eqs. (2)) and
(3))):

(11)

Substituting Eq. (3) into the above, we obtain:

avjmj (E; k) = 2TI'2V

JM KK'p

; Yi*mi (Ok, 4>k)(jUM\:jmjlmi)(Jjl0\JKj - K]

(12)

Following the treatment in Refs. [39] and [33], we can show that this can be
rewritten as:

avjmj (E; k) =
ce0 4 E E

JM KK'p

(J, K', j ; R, 9: E) e • (13)

The form of the angular distribution of the photofragments [39, 46] is deter-
mined by the product of Wigncr DJ

K M(UJ) matrix elements in Eq. (13), i.e.,
DJ

K M(9k;0k,O)D3_K _m.(9k,<f'k;0). In particular this form shows clearly that if
either the polarisation of the initial molecular state (i.e. the Mi quantum number)
or the polarisation of the product diatomic rotational state, rrij, is selected, then
the angular distribution of the photofragments is more complex than is normally
assumed. In particular, if linearly polarised light is used to accomplish the pho-
todissociation, the angular distribution will require terms of the form P4(cos(0k))
(i.e., fourth order Legendre polynomials in the scattering angle) for its description
and the conventional 5 parameter, associated with second order Lcgcndrc poly-
nomials arc not sufficient [39]. Also more recently, Pc'cr. Shapiro and one of the
authors (GGBK) have argued [46] that the backward-forward symmetry of the
angular distribution of the photofragments may be destroyed under the same cir-
cumstances. The integral on the right hand side of Eq. (13) contains the essential
molecular dynamics of the photodissociation process.
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2.3. THE TIME-DEPENDENT FORMULATION

The key to re-expressing the integral cross section (Eq. (1)) in terms of time-
dopondcnt quantities is the recognition that the continuum functions 'ip~jrn/ (r, R ; k, E)
(Eqs. (2) and (3)) form a complete set for the space of functions with energy E.
This fact can be expressed as [1, 2, 47]:

E
vjrrij

(14)

The Dirac delta function may be represented as a Fourier transform over time:

~-i(H.-E)t
«J(H - E) = - i - / dt exp

Ti
(15)

Replacing the final state wavefunction, ijif. in Eq. (1) by ipvijim., (r, R : k, E) and
using Eq. (15), we obtain:

ceo'i -fA dt exp -i(U-E)t
Ti

If we now define the "initial wavepacket" as

(16)

(17)

we can re-express the energy dependent total photodissociation cross section as:

dt exp iEt
IT

x ($j(r, R, t — 0)| exp

The time-dependent Schrodinger equation is:

-iUt

dt

(18)

(19)

If the Hamiltonian H docs not depend on time, this equation has the analytic
solution:

= exp n
(20)

Using Eq. (20) in the right hand side of Eq. (18). we can rewrite the expression
for the total absorption cross section as:

ceon J_00
dt exp iEt (21)
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The time-dependent quantity in the integrand of Eq. (21), ($,;(< = 0)|$,;(£)), is
called the auto-correlation function. It is the integral over all space of the product
of the initial wavepacket with the wavepacket at time t. Krishna and Coalson [47]
have shown that the Fourier transform over time in Eq. (21) can be replaced by
twice the half Fourier transform where the time integral runs from t = 0 to t = oc.
Using this result we obtain the final expression:

$ i(r,R,i = 0)|$i(r,R,i)) . (22)<Tioi{E) l dtcx
ceoh ,/0

Eq. (22) expresses the total absorption cross section as the half Fourier transform of
an autocorrelation function, (<&(t = 0)|$(£)), where the angular brackets indicate
integration over all spatial coordinates.

2.4. THE INITIAL WAVEPACKET

The initial wavefunction of the molecule has a well defined total angular momen-
tum. Jj. and a specified space-fixed z component, Mj. of this angular momentum.
It may therefore be expanded as a linear combination of the parity adapted total
angular momentum eigenfunctions[43], \Ji,K.Mj.p >. as defined in Eq. (5). The
initial wavepacket, $,(r, R, t = 0) (Eq. (17)), is obtained by multiplying the ini-
tial wavefunction by e* • /I, where e is the electric field polarisation vector of the
linearly (or circularly) polarised light and fl is the transition dipole moment for
the electronic transition involved and depends on the molecular geometry. Note
that e* is defined in the space-fixed reference frame and must be rotated to the
body-fixed frame using Wigner D matrices. Despite the fact that the direction
or sense of the electric field of the light wave oscillates, the vector e takes on a
constant, though maybe arbitrarily defined, direction. For linearly polarised light,
this direction is used to define the space-fixed z axis. While the actual choice of
direction of e* is unimportant, it has the important consequence of differentiating
between the positive and negative Mi and rrij states of the initial molecule and the
product diatomic, respectively. The derivation of the detailed form of the initial
wavepacket and its relationship to the initial bound state wavefunction arc fully
discussed in Ref. [43] (see also Ref. [33]). As expected, from the vector property
of the polarisation vector of the incident light beam, the result is that the initial
wavepacket becomes a linear combination of functions with up to three possible
values of the total angular momentum, differing from Ji by at most one, i.e..

Ji + lJi + l / 1

E /iyn+M; / i
V m

Jl J1

i Mi -(m + Mi)

<S>{'K{r,R,O,t = 0) \J',K,Mi+m,p') ) (23)
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where the detailed form of $:/ K(r, R.O.t = 0) is given in Ref. [43] and in Appendix
B of Ref. [33] .

It should be noted that K, which is the z component of the total angular
momentum along the body-fixed z axis, is not a good quantum number and in
general the initial wavefunction, ipi, will be a linear combination of parity adapted
total angular momentum eigenfunctions corresponding to different values of K
but the same ,/,;. The label m relates to the nature of the space-fixed electric
field polarisation vector, m = 0 denotes linearly polarised light with the electric
field vector pointing along the space-fixed z axis, while m = ±1 corresponds to
circularly polarised light, with the space-fixed z axis pointing along the propagation
direction of the light beam. The parity factor, ( — l)p . of the wavefunction for
nuclear motion is the same as that of the initial wavefunction if the electronic
transition is perpendicular, i.e. the transition dipole moment is perpendicular to
the molecular plane, and it is opposite to the initial parity for a parallel electronic
transition.

The functions $f K (r. R.O.t = 0) involve a product of the initial wavefunction
and the internal coordinate dependent vector components of the transition dipole
moment (see Ref. [43] and Appendix B of Ref. [33] ). As the total angular momen-
tum is a conserved quantity during the time propagation of the wavepacket, we
may divide up the initial wavepacket (Eq. (23)) into three components [43], one
for each of the allowed values of J'. Thus Eq. (23) may be rewritten as:

Ji + l / I T - V
v ' ' ' ^ v ' \m Mi -(m + Mi

x$/ ' ( r ,R , i = 0) (24)

where the function $f (r, R, t = 0) corresponds to the curly bracket in Eq. (23):

j'

' \K,Mi+m,p') (25)
K=\'

and A' takes on the value of 0 or 1 depending on the parity number p'. Each of
the wavepackcts $ / ' (r. R, t = 0) corresponds to a single total angular momentum
value J ' and each may be propagated forward in time independently of the other
component wavepackcts.

It should be noted that for values of J' > 0 there will be J ' or J ' + 1 different
values of K (depending on the value of p') involved in the summation of Eq. (25).
The set of body-fixed wavepackcts, $,/ K (r, R.,0.,t = 0), corresponding to the same
value of J' but to different values of K. must be propagated together as they
are coupled or mixed during the propagation process by the centrifugal coupling
[39, 48].

If we substitute Eqs. (24) and (25) into Eq. (22), average over the z components
of the initial total angular momentum and sum over the z components of the final
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total angular momentum, wo obtain [43] (note the proof in Rcf. [43] is specialised
to the case of linearly polarised light, m = 0):

x f K(rR0t = Q)\$f Kr,R,0,t = Q)\$f K(r,R,6,t)\ (26)

2.5. PARTIAL CROSS SECTIONS. PRODUCT STATE DISTRIBUTIONS. AND
DIFFERENTIAL CROSS SECTIONS

Equation (22), and its widespread application [1, 3. 50, 11, 34. 43, 49] shows clearly
that total absorption cross sections may be computed by propagating an initial
wavepacket forward in time. The initial wavepacket is localised in space, therefore,
by Hoiscnborg's uncertainty principle, it necessarily contains a range of relative
momenta and kinetic energies. This range of initial energies is reflected in the fact
that the use of Eq. (22) immediately yields the cross section over the full range of
energies from a single calculation (i.e. based on the motion of a single wavepacket).
The autocorrelation function is a time-dependent function. The Fourier transform
of a time-dependent function yields an energy, or frequency, dependent quantity,
namely, in this case, the total absorption cross section.

It seems reasonable to suppose that some alternative analysis of properties of
the same time-dependent wavepacket might also yield more detailed information,
such as the partial cross sections or the probability of producing different quantum
states of the products. This was realised at a very early stage by Kulandcr and
Heller [2] who discuss the evaluation of partial cross sections by projection onto
the final scattering states of the system. Related methods have been developed by
Kouri and coworkcrs [51, 52] in the context of inelastic scattering and were applied
to photodissociation problems at an early stage by the groups of Gray [53] and
Schinke [54]. In this section, an alternative approach, which is ideally suited for
use in conjunction with a grid or Discrete Variable Representation [55] (DVR) of
the final scattering coordinate is presented.

Our method relies on drawing an analysis line, perpendicular to the scatter-
ing coordinate, at some large asymptotic intcrfragment separation, R = Rx, and
analysing the wavepacket at each time step as it passes by this line [33, 56]. The
analysis consists in expanding the cut through the wavepacket along the analy-
sis line in terms of a linear combination of fragment cigenfunctions. This yields
a set of time-dependent coefficients. The half-Fourier transform of these time-
dependent coefficients yields energy dependent photofragmentation T matrix ele-
ments in terms of which all the experimentally measurable cross sections may be
expressed. The theory is outlined in detail in Appendix C of Ref. [33] (see also
Ref. [56]).

The most detailed possible photofragmentation cross section is the detailed
final-state resolved differential photofragmentation cross section defined in Eq.
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(11) which measures the probability of the formation of a particular final state,
v.j,m.j scattered into a specified scattering direction, k = 9k ,0k- This cross sec-
tion has been discussed in Ref. [39] in the context of time-independent theory of
photodissociation. The partial differential cross section may be written as (see Eqs.
(13) and Appendix C of Ref. [33]):

:k) = ^ -
Cf.Q • E

m Mi -(m + Mi
(27)

where T'v • p is the photofragmentation T matrix element and is given by:

Tlfv' = ^2{i>K'!vjKp' (r, R , 0; E)|$;7A" (r, R , 0 , t = 0)) . (28)
K<

Eqs. (27) and (28) have been developed and defined entirely within a time-
independent framework. These equations are identical to Eqs. 35 and 32 respec-
tively of Ref. [39]. They differ only in that a different, more appropriate, normali-
sation has been used here for the continuum wavefunction and that the transition
dipolc moment function has not been expanded in terms a spherical harmonic ba-
sis of angular functions. All the analysis previously given in Ref. [39] continues to
be valid. In particular, the details of the angular distributions of the various dif-
ferential cross sections and the relationships between the various possible integral
and differential cross sections have been described in that paper.

The photofragmentation T matrix elements in Eq. (28) contain all possible
information concerning the dynamics of the photodissociation process. The time-
dependent theory needed for the evaluation these matrix elements has bee dis-
cussed in Ref. [33] (sec Appendix C in particular). The first step is the calculation
of a set of time-dependent coefficients. This is done by fixing the scattering co-
ordinate in the time-dependent wravepacket at its value on the analysis line, R^,
and then multiplying by the fragment cigenfunctions and integrating over all the
other coordinates:

(29)

where the angular brackets , ( ), indicate integration over the variables r and 6
and it is implied that QJK{0) on the left of the integral must only be associated
with the same value of K on the right.
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Initial state: Second excited vibrational state.
Two quanta of stretch.

300 350

Wavelength / nm

Figure 1. Ab initio computed photoabsorption cross section for second U.V. absorption
band of HOBr (XM' -+ 2^') from the v=2 HO-Br stretching mode See Ref. [43].

We now take the half-Fourier transform of this integral over time to give us an
energy dependent quantity:

AJ
vf{E) = -!-Z7rZ7r

(30)

In Ref. [33], it has been shown that the T matrix elements can be obtained from
the coefficients of Eq. (30) through the relationship:

.(31)

These equations enable us to compute all the possible photofragmentation cross
sections, in particular the partial differential cross section given in Eq. (27) and
the partial integral cross section below.

; 2

(32)

2.6. EXAMPLES OF PHOTODISSOCIATION PROCESSES

The absorption cross section for HOBr(X1A') + hv —>• OH + Br via excitation
to the 2XA' state [43] is shown in Figure 1. The three peeks seen in the figure
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K=1 --> J=0,1,2
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J=1,odd parity, K =2 --> J=0,1,2
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Figure 2. Contribution of different total angular momenta to the total photodissoci-
ation cross section for the second U.V. absorption band of HOBr (X1^' —> 21 A'). The
HOBr molecule is initially in its lowest vibrational state with one unit of total angular
momentum and has odd parity. Panel A corresponds to the molecule initially in its lowest
energy state, K — 1 , and panel B corresponds to the molecule being in the first excited
state," if = 2.

arise from the fact that the initial state of the molecule corresponds to an excited
vibrational state, v=2 of the HO-Br stretching motion.

Figure 2 shows the three different final total J contributions to the total ab-
sorption cross section of HOBr(X1yl' —> 21A') for HOBr initially in two different
K states of its J = 1 ground vibrational state [43] (note that K is used merely as
a formal label, it is not a valid quantum number). In a differential cross section
measurement; the amplitudes associated with the different J contributions shown
would interfere and might lead to characteristic angular distribution patterns.

Figure 3 illustrates the F atom branching fraction, F = op* /[up* +CTF], where
F = F(2P:i/2) and F* = F(2P1/2), arising from the photodissociation of HF in
its v=3 vibrational state [57]. The characteristic sharp features in the branching
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5 6 7
Energy (104 cm"

Figure 3. The F atom branching fraction, T = a[F(2P1/2)}/[a[F(2P1/2)} + a[F(2P3/2)]],
as a function of photon energy for photodissociation out of the v = 3 vibrational state
for HF. Also, shown is the experimentally measured branching fraction of Wittig and
co-workers [61] at 193.3 nm for HF.

fraction graph arise from the nodal structure of the initial vibrational state.
Other examples of wavepacket calculations applied to photofragmentation may

be found in Refs. [34], [57] and [58]. Most recently, time-dependent methods have
been used to compute vector correlations and alignment parameters [59, 60].

3. Reactive Scattering Theory

The quantum theory of reactive molecular scattering was initially based on time-
independent scattering theory [4, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. After several early attempts to
apply time-dependent quantum theory to reactive scattering processes [88, 89, 90,
91, 92, 93, 94, 95], the modern era of the field really began with the seminal work
of Kosloff et al. [5] on the Chebyshev expansion of the time propagation operator
and their subsequent application to the reactive scattering problem by Neuhauser
and Baer and co workers [96, 13, 97]. There have been many recent developments
in the field [98, 99, 48, 103, 100, 102, 101] and several reviews and a book have
been written on the topic [104, 105, 106, 107, 33]. The following section will outline
the basic methods of time-dependent quantum theory used in reactive scattering
calculations.
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Figure 4- The initial wavepacket superimposed on an Li+HF potential energy surface.
Also shown (in a schematic manner) is the analysis line, marked Roo, in the product
channel. In an actual calculation, the analysis line would be placed at a much larger
value of the product scattering coordinate.

3.1. THE INITIAL WAVEPACKET

Figure 4 shows an initial wavepacket for a reactive scattering calculation superim-
posed on a potential energy surface for the Li + HF ->• LiF + H reaction [15, 108].
The initial wavepacket is placed in the asymptotic region of the rcactant channel,
where there is no force between the rcactant molecules. It is constructed by first
calculating the desired initial vibrational-rotational eigenfunctions of the reactant
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fragments and multiplying the product of those by a one dimensional wavepacket,
g(R), where Ft, is the scattering coordinate which is the distance between the cen-
ters of mass of the two reactants. This wavepacket is then multiplied by exp[—ikR]
so as to give it a momentum of magnitude kfi toward the strong interaction or
reactive region. This leads to an initial wavepacket which is intrinsically complex
(in the mathematical sense).

The most common form of the one dimensional wavepacket in /?, is a Gaussian
wavepacket [98, 109]. This wavepacket has a Gaussian shape in both coordinate
and in momentum space. Recently, wre have proposed the use of an alternative
form of wavepacket, a sine wavepacket [110, 111]. In general, we will be interested
in computing reactive scattering cross sections over a range of initial collision
energies. When the sine wavepacket is used, the amplitude of the wavepacket is
roughly constant over most of the energy range covered by the wavepacket. The
Gaussian wavepacket in contrast has a long tail at both high and low energies. This
makes it more difficult to determine the energy range covered accurately by the
Gaussian wavepacket. as cross sections corresponding to energies associated with
a small amplitudes of the initial wavepacket will be subject to greater round-off
errors and cannot be considered reliable. In practice, both types of wavepacket
may be used and, with care, yield identical results.

3.2. THE ANALYSIS OF THE WAVEPACKET AND COMPUTATION OF
INTEGRAL CROSS SECTIONS

One of the key aspects of time-dependent reactive scattering theory arises from
the conservation of the total energy. This has the consequence that each energy
component of the wavepacket propagates independently. In order to calculate the
cross sections, we must therefore know the amplitude of the initial wavepacket with
a given energy. Let us denote the initial one dimensional wavepacket by g{R)- The
component of this wavepacket with momentum component —kti pointed toward
the strong interaction or reactive scattering region is:

eikKg(R)dR . (33)
O

The analysis of the wavepacket proceeds in exactly the same way as described
above for the case of photodissociation theory [108, 15, 98] (see section (2.5)).
An analysis line is drawn corresponding to a fixed value of the product Jacobi
scattering coordinate R' perpendicularly across the exit channel in the the asymp-
totic region of the potential energy surface [56, 98]. Specializing the formulae to
the case of an atom-diatom reaction, we may write the body-fixed wavepacket as
fyjK' ( ^ #'. ^>'. £), where the primes on the coordinates indicate the use of product
Jacobi coordinates and the wavepackets corresponding to the different K1 values
arc coupled by the propagation dynamics (sec below). We must first take a cut
through the wavepacket along the analysis line and project this onto the prod-
uct vibrational-rotational eigenfunctions. In this way, we obtain a time-dependent
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coefficient, Cffi (t):

C™,\t) = {Qj,K,(0')xv>?(r')\*JK'(r',e',R' = R'^t)) . (34)

Wo then take the half-Fourier transform of this to obtain an energy dependent

Ai*: (E) 1 exp (i

o
The analysis of Ref. [56] (see also Ref. [98]) enables us to relate this to the reactive
S matrix elements through the expression:

(36)

where the primed variables indicate quantities relating to the products and the
unprimed to the reactants. Note the presence of the term g(—kvj) in the denom-
inator and the fact that the quantum numbers K and K' are associated with
the z components of the total angular momentum referred to body-fixed reactant
and product axes, respectively. We have purposely included here the initial state
quantum numbers, vjK. which relate to the construction of the initial wavepacket
as they will be needed later when we discuss the calculation of differential cross
sections.

The total reaction probability for a particular value of the total angular mo-
mentum; J, . averaged over all values of rrij and M for the reactants and summed
over all values of ray and M' for the products, is given by:

^ 2 . (37)
J v'j' KK'

The total integral reactive cross section for reaction from a particular initial state
to all possible final states is then given by a summation over all total angular
momenta which can contribute to the reaction:

^ c f(£) • (38)

3.2.1. Reactant coordinate calculations for the total reactive cross sections
Calculation of the total reactive cross section docs not necessarily require a knowl-
edge of the wavepacket dynamics in the exit channel of the reaction. All that is
required is a knowledge of the particle flux which results in the creation of prod-
ucts. This can be accomplished by calculating the flux of particles passing through
a plane corresponding to a large constant value of the reactant diatom separation
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[114. 112, 113]. This allows us to use roactant coordinates instead of product co-
ordinates and often greatly simplifies the calculation. It also permits the use of
the helicity decoupling or centrifugal sudden approximation [112, 113], in which
we ignore the coupling between different K components corresponding to a single
J value (see below for further details). This important simplifying approximation
is much more difficult to justify when there is a transformation from reactant to
product coordinates [48].

3.2.2. Capture model and total reactive cross sections
The problem with Eqs. (37) and (38) is that they require the exact calculation
of the scattering dynamics and the S matrix elements for many values of J. The
computational effort required for exact J > 0 calculations is very great. For J > 0,
\K\ takes on either (J + 1) or J values depending on the parity. The wavepack-
ets corresponding to each of these K values will be coupled by the propagation
dynamics of the wavepacket. In general, quite large values of J are important for
the calculation of the total reactive cross section. Thus in the case of O(' D) + Ha,
J values up to between 40 and 66 wrere required [109, 112, 113] while for heavier
collision partners much higher values of J are needed [115]. The precise range of
J values required depends of course on the range of collision energies covered by
the calculations, but, clearly for J > 0, calculations are far more computationally
demanding than for J = 0.

The calculation of total reaction cross sections may be greatly simplified by
using any one of a family of approximations known as J-shifting approximations
[118; 119]. In this type of approximation, the reaction probability is calculated
for a limited number of J values, or even just for J = 0, and approximate meth-
ods are used to estimate the reaction probability for other required values of J
from those for which more accurate calculations have been performed. J-shifting
approximations rely on the identification of a "bottleneck" geometry, such as a
transition state. The changes in rotational energy of the system, when fixed at
this geometry, provide an energy shift, ~EJ shift, which is used in estimating the
reaction probabilities:

PriadiE) = Pri^cliE ~ EJ
ahifl) , (39)

where P^^t{E) is the accurately computed reaction probability for J — 0, at the
total energy E, and P:l!pncl{E) is the estimated reaction probability for another
value of J.

The J-shifting method depends upon our ability to identify a unique bottleneck
geometry and is particularly well suited to reactions which have a barrier in the
entrance channel. For cases where there is no barrier to reaction in the potential
energy surface, a capture model [112, 113, 115] approach has been developed. In
this approach, the energy of the centrifugal barrier in an effective one-dimensional
potential is used to define the energy shift needed in Eq. (39). For the case of
K = 0, we define the one-dimensional effective potential as (see Ref. [113] for the
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case of |if| > 0) :

Ve
J
If(R) = (vj\V\vj) ev] + h 2 j ^ l) , (40)

where (vj\V\vj) is the potential averaged over the initial vibrational-rotational
state of the reactants and is a function of the rcactant scattering Jacobi coordinate.
evj is the vibrational-rotational energy of the initial state of the diatomic. The
effective potential exhibits a centrifugal barrier in the entrance channel. Let VJ*
be the height of the effective potential barrier corresponding to a total angular
momentum quantum number ,7. In the capture model, the reaction probability is
now estimated as:

PLct{E)=r^t{E-VJ*) . (41)

Both in the J-shifting model and in the capture model, it is assumed that the
reaction probabilities are a function of the available energy, which is the energy in
excess of the barrier height. This function of the excess energy is assumed to be
universal (i.e., the same for all ,7 values). One can then take the results for some
particular J values and use them to define how reaction probability varies as a
function of the excess energy.

Rather than using just calculations for ,7 = 0 as a basis for approximating
reaction probabilities for all higher values of J, we have adopted the technique
of calculating reaction probabilities for a reasonably large number of ,7 values,
in general using the hclicity decoupling approximation [112, 116, 117], and using
capture model techniques to interpolate between the J values for which more
accurately computed reaction probabilities arc available. Suppose that we have
calculated the reaction probability for Ji and J-2 and that J lies between these two
J values (Ji < J < J2). Then the reaction probability for J can be estimated as:

a(E+[V^-VJ*])j^)- . (42)
(•J2 ~ Jl)

For values of J greater than any for which actual dynamical calculations have
been performed, the reaction probability may be extrapolated from that calculated
for this highest value using the formula:

PrearAE)=P^acl{E-[VJ*-VJ^]) . (43)

where, in this case, J\ is the highest value of J for which helicity decoupled
wavepacket calculations were carried out.

3.2.3. Backward propagation method
The theory used to analyse the wavepacket and to determine the reaction probabil-
ity requires that the initial wavepacket be placed in the asymptotic region, where
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there is very little interaction between the reactants [98, 114]. This is because we
require knowledge of the amplitude of the initial wavepacket associated with a
given relative translational energy in this asymptotic region. For large values of
the total angular momentum, the centrifugal potential is very long ranged and, in
practice, it is impossible to place the initial wavepacket at sufficiently large separa-
tions so as to render the centrifugal potential unimportant. In order to overcome
this problem and also to overcome problems arising from the intrinsically long
range nature of the potential energy surfaces, we place the initial wavepacket at
a large but manageable separation of the reactants and after calculating an effec-
tive potential, as in Eq. (40), we propagate the R dependent part of the initial
wavepacket (i.e., g(R) as discussed in Eq. (33) see section (3.1)) backward in one
dimension. We then analyse the backwards-propagated wavepacket and use the
resulting momentum distribution in the analysis of the final wavepacket to yield
the total reaction probability [98, 113, 115].

3.2.4. Differential reactive cross sections
The differential reactive state-to-state cross section may be written in the form
[66, 120, 4, 68]:

—-> = ^E^ Y,(2J +l)S;,jlK,tVJK{E)dJ
KK,{9)

j

(44)

As we have given an explicit expression for the S matrix in Eq. (36), there would
seem to be no problem in calculating the reactive differential cross section. This is
however not entirely true. The problem arises because the definition of the cross
section relates to the large R asymptotic form of the wavefunction. Furthermore,
the method we use for the analysis of the wavepacket relies on an analysis line, Rx,
drawn in the asymptotic region of the potential. The problem arises, as indicated in
the preceding section ( 3.2.3), for larger values of the total angular momentum J.
In such cases, the centrifugal potential and the centrifugal coupling terms are very
long ranged. The long-range nature of these terms is a result of using the body-
fixed coordinate system rather than the space-fixed one [39] and it is essential to
transform back to the space-fixed system as part of the process of calculating the
S matrix elements. This was clearly recognised in the recent reactive wavepacket
scattering calculations of Althorpe [101,121,122] and the discussion below borrows
heavily from this work and from the Ph.D. thesis of M. Hankcl [123].

In the space-fixed axis system, the channel quantum numbers for an atom-
diatom collision are jl, where j refers to the rotational quantum number of the
diatomic and I is the quantum number for the orbital angular momentum of the
relative motion of the two fragments. We have ignored the vibrational quantum
number for the purposes of this discussion. The part of the Hamiltonian with the
longest range, when working in this axis system is the effective centrifugal repulsion
term (ti21(1 +1)) / (2fi R2). There is no kinetic energy coupling between the different
jl channels and the long range part of the effective centrifugal repulsion is fully



168 GABRIEL G. BALINT-KURTI AND ALEX BROWN

accounted for analytically through the use of the spherical Bessel functions and
their analytic behaviour in the asymptotically large Ft, region [124. 4]. In contrast,
as we will discuss more explicitly in the next section, the channels are labeled
with the quantum numbers jK when body-fixed axes are used, K being the z
component of the total angular momentum with respect to the body-fixed z axis.
Rotation to the body-fixed axes simplifies the coupling arising from the potential
energy term, but it creates new couplings in the kinetic energy term [4, 39]. Thus,
there are couplings between different K quantum numbers when the Hamiltonian
is expressed in the body-fixed axes. These couplings are, furthermore, very long
ranged and there is no satisfactory means of including them analytically in the
scattering formulation [39].

The solution to this problem is to transform, or half transform, the S matrix
from the body-fixed to the space-fixed axis system; then to use the known ana-
lytic properties of the spherical Bessel functions, which are the solutions to the
potential-free scattering problem in the space-fixed axes: and finally to transform
back to the body-fixed axes and then to use Eq. (44) to calculate the differential
cross section.

For a given value of J and the parity, p, the first step is to calculate the
transformation matrix from the body-fixed jK basis to the space-fixed jl basis.
This transformation matrix has been derived in Eq. (A17) of appendix A in Ref.
[33]. Alternatively, the transformation matrix may be computed by using the ma-
trix elements of the kinetic energy operator in the body-fixed axis system. These
arc just the diagonal and off-diagonal elements of the centrifugal coupling (sec
Rcf. [39]). If we then diagonalisc this matrix, the eigenvectors of this matrix form
the desired transformation matrix from the body-fixed to the space-fixed basis
[125]. We denote this transformation matrix by T^, where p denotes the parity,
(—ijJ+K+P = (_i)j+'. The S matrix in the space-fixed axes may then be written
as:

KK<

_

where the extra phase factor of il~l is discussed below.
As the kinetic energy operator has no off-diagonal elements in the space-fixed

axis representation, we may more easily correct for the fact that the analysis
line is not truly in the asymptotic region as far as the centrifugal representation
is concerned. We do this firstly by subtracting the residual centrifugal repulsion,
/'(/' + l)/(2/u'lf"2), from the radial kinetic energy at the analysis line in the product
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channel. Thus we use the expression:

(46)

to calculate the wavenumber of the products at the analysis line, which we use in
evaluating the S matrix elements in Eq. (45).

The analysis underlying the evaluation of the S matrix elements was formulated
for the J = 0 (and / = 0) case [56] and did not take proper account of the correct
asymptotic phases of the spherical Bessel functions [124]. This phase should have
been exp(—i{k'v,^R'x — Z'TT/2) rather than the phase given in Eq. (45) above.
To correct for this omission in both the reactant and product channels wre must
multiply by a phase of exp(—il'n/2) = i~l for the products and i! for the reactants.
These factors are included on the right hand side of Eq. (45).

After making these adjustments to allow7 for the fact that the analysis line
cannot be located in the region of space where the centrifugal coupling in the
body-fixed coordinates is negligible and also for the fact that the analysis of Ref.
[56] did not take account of the long-range analytic form of the spherical Bessel
functions, the space-fixed S matrix of Eq. (45) must be transformed back to the
body-fixed axes and Eq. (44) used to compute the state-to-state differential cross
sections [101. 123].

3.3. THE GRID AND THE ABSORBING POTENTIAL

In both photodissociation and reactive scattering theory, the wavepacket is even-
tually propagated to large values of the scattering coordinate. As we arc forced
to use finite sized grids for numerical reasons, the problem arises as to what is to
be done with the wavepacket when it approaches the edge of the grid. If Fourier
transforms arc used to compute the action of the radial derivatives in the Harnil-
tonian operator, then serious errors will arise if the wavepacket is allowed to reach
the edge of the grid. This arises from the fact that the Fourier transform method
implicitly assumes a cyclic boundary condition and. if the function is non-zero at
the grid edge, then it will be reflected to the opposite side of the grid causing well
documented "aliasing" problems [126]. It is therefore imperative that something
should be done to prevent the wavefunction reaching the grid edge.

Arbitrarily setting the wavepacket to zero at some large value of the scattering
coordinate is not an acceptable solution, because this would cause reflection waves
which would impact on the wavepacket in the physically important inner region of
coordinate space. Therefore the crucial criteria for handling this problem is that
any alteration of the wavepacket must be sufficiently gentle so as not to change
the computed values of the physical observables of interest. But at the same time
no part of the wavepacket must be allowed to reach the edge of the grid.

There are two general methods for addressing this problem. The first is the
"gobbler" method. This involves multiplying the part of the wavepacket near the
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edges of the grid, at each time step, by a positive function which is smaller than
unity and which will generally decrease toward grid edge [16, 53, 11, 127, 128].
The other is the "negative imaginary potential" (NIP) method, in which a negative
imaginary potential, which is non-zero only in an absorbing region close to the grid
edge, is added to the potential. This method has a long tradition within scattering
theory and was previously knowTn as the "optical potential" method [129, 130]. It
has been popularised within the context of time-dependent and time-independent
scattering theory through the wrork of Neuhauser and Baer [131, 132]. Several
papers have been written suggesting optimal forms and parameterisations for the
KIPs [133. 134. 8. 30, 96. 135, 136, 137] and discussing the effectiveness of different
functional forms of the negative imaginary potentials [136, 138].

In general, we use a complex absorbing potential of the form:

. , XL *C ttdam.p
Vdamp(B) = l . . / H-Hdamp V a " " . D . / D / D (47)

where ridamp is s e t equal to 2 or 3, and wre choose the parameters A,iamp and Rdamp
in accordance with the recommendations given in Refs. [136] and [137].

There have also been attempts to find optimal complex (as opposed to purely
imaginary) absorbing potentials [139, 140, 141] and to relate these to the gobbler
method [142]. Most recently Manolopoulos [143] has proposed a very interesting
simple potential of this type which guarantees zero transmission of the wavepacket.
The main practical problem with absorbing potentials is that it is very difficult to
find appropriate potentials which can absorb a component of a wavepacket with
a low translational energy, and therefore a long wavelength. This is at present
the major challenge to the wavepacket theory of reactive scattering (sec however
Rcf. [108] where stable threshold reactive scattering probabilities were successfully
computed).

3.4. THE REAL WAVEPACKET METHOD

The initial wavepacket, described in section (3.1), above is intrinsically complex
(in the mathematical sense). Furthermore, the solution of the time-dependent
Schrodinger equation (Eq. (20)) also involves an intrinsically complex time evolu-
tion operator, exp (—itlt/fi). It therefore seems reasonable to assume that all the
numerical operations involved with generating and analysing the time-dependent
wravefunction will involve complex arithmetic. It therefore comes as a surprise to
realise that this is in fact not the case and that nearly all aspects of the calcula-
tion can be performed using entirely real wavefunctions and real arithmetic. The
theory of the real wavepacket method described in this section has been developed
by S.K. Gray and one of the authors (GGBK) [98].

Consider the propagation of a wravepacket forward in time, from time t to (t+r)
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(see Eq. (20)):

exp

cos

-ii I T "

h

Hr

IT $ (
Hr
IT (48)

The corresponding expression for the backward propagation, from t to t — r is:

— T) = cos
Hr
IT +?! sin

H r
* (* ) (49)

By adding Eqs. (48) and (49) we obtain:

- r) + 2 cos
Hr
IT (50)

This equation is exact and constitutes an iterative equation equivalent to the time-
dependent Schrodinger equation [144, 145]. The iterative process itself does not
involve the imaginary number i and therefore, if $(£) and $(< — r) were the real
parts of the wavepacket then $(£ + r) would also be real and would be the real
part of the exact wavepacket at time (t + r) . Therefore if $(i) is complex, then
we can use Eq. (50) to propagate the real part of $(£) forward in time without
reference to the imaginary part.

In Rcf. [98], we show that all the observable cross sections and reaction prob-
abilities may be obtained from an analysis of the real part of the wavepacket,
without any reference to the imaginary part. The analysis itself is identical to that
described in section (3.2) but when the real part of the wavepacket is used to
compute A^F-i (E) in Eq. (36) we must multiply by an extra factor of 2.

The iterative relationship in Eq. (50) is still very difficult to apply, just as
much so in fact as the original form of the evolution operator (Eq. (20)). The
relationship can be dramatically simplified by applying a functional mapping of
the Hamiltonian. The presence of the cosine term in Eq. (50) suggests an inverse
cosine type mapping. If such a mapping is to be used, it is necessary to ensure that
it is single valued. So the next step is to shift and scale the Hamiltonian operator
in exactly the same way as in the Chebyshev expansion of the evolution operator
[5, 41, 98]. This shifting and scaling ensures that the spectrum (or eigenvalues)
of the Hamiltonian falls entirely within the range (-1,1). The shifted and scaled
Hamiltonian, H s ; is then subject to the following mapping:

/(Hs) = —cos-^H,
r

(51)
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The use of this mapping moans that wo are no longer solving the time-dependent
Schrodinger equation, but rather a modified equation of the form:

^ , (52)

where a subscript "/" has boon placed on the wavofunction to emphasize that it
is the solution of a mapped equation rather than of the original time-dependent
Schrodinger equation. The same arguments which led to the iterative equation,
Eq. (50). now lead to the simplified form:

. (53)

In Ref. [98] we show that analysis of the real part of $/(£), the solution of the
mapped Schrodinger equation, can yield all the observable cross sections. Further-
more, we show that the arbitrary time-step, T, cancels out in all expressions for
the cross sections and can effectively be set to unity, i.e., r = 1.

In order to carry out the iteration process in Eq. (53), we need the wavepacket
at two previous iterations (i.e., at t — T and at t). If the initial wavepacket is taken
to be $ (t — T) . the mapped version of Eq. (48),

$(i) = H$(t - r) - i \]l - H2 $(i - r) , (54)

can be used to find $(£), where the operator y 1 — H2 is evaluated using a Cheby-
shev expansion [146]:

1 - 2 V (4s2 - 1 ) 1 T2s(H) (55)

where T-2S(x) is a Chcbyshcv polynomial of the first kind.
Taken together, the use of the real part of the wavepacket and the mapping

of the time-dependent Schrodinger equation, lead to a very significant reduction
of the computational work needed to accomplish the calculation of reactive cross
sections using wavepacket techniques. To summarize, a real wavepacket calculation
proceeds as follows:
1) Define an initial complex wavepacket, <bJK (r',6',R',t = 0). as described in
section (3.1).
2) Use Eq. (54) to obtain the complete wavepacket after the first iteration at t = T,
§JK\r',0',R',t = T).
3) Use Eq. (50) to propagate the real part of $JK' (r'.O'.R'.t) forward in time, for
D + H2 1,000 to 1,500 iterations arc required [98] while for a system such as N +
O2 about 40.000 iterations arc required [115].
4) The analysis proceeds as in section 3.2, except that iteration numbers are used
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in performing a discrete Fourier transform rather than a trapezoid rule integration
over time.

Similar techniques to those described in this section and in Ref. [98], but
used within a time-independent framework, have been developed by Kouri and
co-workers [147. 148] and by Mandelshtam and Taylor [149, 150]. Kroes and
Neuhauser [151, 152, 153, 154] have used the methods developed in these papers
to perform time-independent wavepacket calculations using only real arithmetic.
The iterative equation which lies at the heart of the real wavepacket method,
Eq. (50), is in fact just the Chebyshev recursion relationship [146]. This was re-
alised by Guo who developed similar techniques based on Chebyshev iterations
[18, 19, 155, 156, 157, 158, 159, 160].

3.5. EXAMPLES

Figures 5A and 5B present the total reactive cross section for reaction N(2D) +
O2(X3£") -> O(3P) + NO(X2fI) as a function of the initial relative translational
energy [115] on its two lowest adiabatic surfaces (22A' and I2A"). The O2 reactant
is in its ground vib-rotational state in both cases. The cross sections have been
calculated using the real wavepacket [98] and the capture model approaches [112].
Figure 5A shows the total reactive cross section on the 22A' surface.

The reactive cross section is seen to increase smoothly with relative transla-
tional energy and reaches a constant value at an energy of around 0.4 eV. The cross
section has a very small non-zero value at zero relative translational energy. This
arises from a small tunneling contribution to the reaction probability [115]. Except
for this, the cross section shows the typical behaviour for a reaction with an energy
barrier along the minimum energy path (MEP) between reactants and products.
Also shown in the figure arc the values of the cross section at different energies
evaluated by the quasiclassical trajectory method for O-2(v = O.j = 0) using the
TRIQCT program [161]. The agreement between the QCT and the wavepacket
calculations is quite satisfactory in this case showing that, except perhaps in the
vicinity of the threshold energy, there arc no large quantum effects for this reaction.

Figures 6 to 8 are concerned with the reaction O(1D) + H2 —> OH + H on its
lowest three potential energy surfaces (l^A'. 21A" and 21A') [113]. Figure 6 shows
the J = 0 reaction probabilities as a function of the total energy for dynamics
started initially on each of these surfaces. The reaction probability for the 1:A'
rises sharply immediately above the threshold, i.e., the energy of the ground state
reactants. This is typical of a reaction without any barrier. The probability for
the 2'A" is initially zero and rises more gradually starting at a higher energy.
This surface has a barrier of 0.1 eV and the form of the reaction probability is
typical of a reaction with a barrier. The most interesting curve is that for the 21 A'.
This surface also has a barrier of 0.1 eV, but displays a small rise in probability
immediately above the zero kinetic energy threshold. This important small peak in
the reaction probability arises entirely from electronically nonadiabatic transitions
from the 2'A' to the I1 A' surface.
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Figure 5. Total reactive cross section, calculated using the quantum wavepacket
method, for the reaction N(2D) + O2(XSE-) ->• O(3P) + NO(X2I1). The initial vi-
brational-rotational state of the O2 reactant is v=0; j=0. The cross sections correspond
to calculations on the two lowest adiabatic potential energy surfaces and are plotted as a
function of the relative translational energy Tirana- (A) 22A PES and (B) I2 A" PES. Also
shown arc quasiclassical trajectory results (shaded circles) (published with permission,
see Ref. [115]).
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Figure 8. Ratio of cross sections for the reactions O(1D) + H-2('t; = 0, j = 1) —> OH +
H (a = 1) and O('D) + H2('t; = 0, j = 0) -> OH + H (a = 0) as a function of collision
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Figure 7 shows the computed total reactive cross sections for reaction on the
same potential energy surfaces as were used to compute the J — 0 reaction proba-
bilities shown in figure 6. We sec that reaction on the I1 A' and 21A' surfaces both
give cross sections which are extremely large just above the zero kinetic energy-
threshold. The explanation for this situation is found in Eq. 38; from wrhich wre
sec that if the reaction probability is non-zero when kVj = 0 then the cross section
will be infinite. We have already discussed, in connection with Fig. 6, the fact that
the reaction probability is non-zero very close to threshold for reactions started
on both the I1 A' and 2XA' surfaces.

Figure 8 shows the excellent agreement [113] achieved between theory and
experiment for the ratio of cross sections for the two reactions O(1D) + H-2(v =
0, j = 1) -> OH + H (a = 1) and O(1D) + U2(v = 0,j = 0) -> OH + H (a = 0).
We note that similar values for this ratio have been reported by S-H Lcc and K.
Liu [162], but at only very slightly higher energies (0.174 cV). Their experiments
show a <7i/(70 ratio of 1.4, wrhich is wrell above that predicted by our quantum
mechanical wavepacket calculations.

4. Conclusions

This chapter has discussed some of the methods underlying the use of wavepack-
ets in molecular dynamics. This field, wrhich was initially popularised through
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the work of Heller [1, 2, 3], has now reached maturity and is probably now the
main technique used in the quantum theory of photodissociation and reactive scat-
tering. The chapter has focused on some of the basic aspects of time-dependent
wavepacket theory. To make the discussion more specific, we have concentrated
on the photodissociation of triatomic molecules and on atom-diatom reactive scat-
tering collisions. Many aspects of the theory discussed within this context apply
quite generally also to larger systems.

Time independent and time-dependent theory are not really separate disci-
plines. This should be clear from the work of Kouri [147, 148] and Althorpe
[101. 121] who use time-independent wavepacket techniques. These are easily de-
rived from the more natural time-dependent versions by Fourier transforming the
propagator over time. This is is equivalent to transforming from the time to the
energy domain at the beginning of the calculation rather than at. the end.

The first part of the chapter deals with aspects of photodissociation theory and
the second with reactive scattering theory. Key topics covered in the chapter are
the analysis of the wavepacket in the exit channel to yield product quantum state
distributions, photofragmentation T matrix elements, state-to-state S matrices
and the real wavepacket method, which we have applied only to reactive scattering
calculations.

Perhaps the most problematic area for the wavepacket theory of reactive scat-
tering is the treatment of the reactive scattering probabilities close to the thresh-
old, where the wavelength of the relative translational motion of the products is
extremely large and it is very difficult to absorb the wavepacket near the edge of
the grid. This problem is providing a strong motivation for developing improved
absorbing potentials [143].
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Abstract.
Wo describe quantum-dynamical calculations of insertion reactions involving

metastable C; N and O atoms with hydrogen molecules. We use a time indepen-
dent hyperspherical body-frame formalism. Reaction probabilities, rovibrational
distributions, integral and differential cross sections and product translational en-
ergy distributions have been computed and compared with recent experimental
data.

1. Introduction

The detailed study of the dynamics of elementary chemical reactions of the kind
A + BC —> AB + C has recently undergone great progress.

On the experimental side, the coupling of crossed molecular beam techniques
with sophisticated detection techniques (Laser Induced Fluorescence, CARS or
REMPI spectroscopy, Rydbcrg tagging photoionisation using synchrotron radi-
ation or VUV lasers) has improved considerably the detailed study of chemical
reactivity. It is now possible to prepare rcactants in a well defined state and to
analyze the reaction products at a fixed scattering angle for a collision at a well
defined kinetic energy [1].

On the theoretical side, the tremendous increase of computer power has per-
mitted to obtain very accurate ab initio global Potential Energy Surfaces (PES)
for triatomic systems and to develop efficient classical and quantum dynamical
methods. Thus, in the last decade, good agreement between theory and experi-
ment has been obtained for elementary reactions such as H + H2 —> Ha + H and
F + H2 -» FH + H.
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Schematically, these reactions are of the direct type [2]. They involve potential
surfaces which have no deep well. The reaction mechanism is of the abstraction
type. The A atom approaches atom B and forms a new chemical bond while the
old BC bond is broken gradually. The product angular distributions are backward
peaked while rotational and vibrational distributions are very specific.

In an indirect reaction [2] A + BC ->• B-A-C ->• AB + C or AC + B. In
a first step, the A atom inserts into the BC diatom forming an ABC complex.
Two new bonds (AB and AC) are formed while the BC bond is broken. Then
the complex dissociates with a breaking of one of these two bonds. This reaction
mechanism is called insertion. In contrast with abstraction reactions, all three
bonds in the triatomic molecule ABC participate actively in the reaction. Two
bonds are formed temporarily while only one exists for the reactants and products.
Thus, the potential energy surface involves a very deep well (several eV) which
correspond to a stable ABC molecule or radical. When the lifetime of the ABC
molecule is larger than its rotational period, angular distributions of the products
are symetric with a backwrard/forward peak and the population of rovibrational
states of the products presents a statistical character.

Because of the very large well in the potential energy surface, very fewr accurate
quantum dynamical results were available five years ago, either by time-dependent
or by time-independent methods. Indeed, a very large number of channels or of
grid points are necessary to converge reaction probabilities and cross sections.

In this contribution, we will describe the essential features of the hypcrsphcrical
body-frame method (section 2) and of its numerical implementation (section 3).
We will then present in section 4 selected recent results obtained for the three inser-
tion reactions O(1D) + H2, N(2D) + H2 and C(1D) + H2. Our timc-indcpcndcnt
quantum-dynamical results will be compared with experiment.

2. Theory

2.1. HYPERSPHERICAL DEMOCRATIC COORDINATES

Mass-scaled Jacobi coordinates associated to a generic arrangement X (— a for A
+ BC, P for B + CA and 7 for C + AB) arc denoted by f\ (diatom vector) and
R\ (atom-molecule vector). They are used in the definition of hyperspherical coor-
dinates which parametrize the nuclear motion of the system, namely the principal
axis body frame hyperspherical coordinates [3, 4, 5]. These coordinates are :

(i) three external Euler angles, denoted collectively by £, to specify the orienta-
tion of the principal axis frame in space. The principal axes of inertia are denoted
by X, Y, Z, with Z the axis of smallest inertia, X the second axis in the molecular
plane, and Y the axis of largest inertia, perpendicular to it.

(ii) the hyperspherical radius p = \/R\ + r2
x which is independent of the ar-

rangement A and is a measure of the global size of the triatomic system.
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(iii) two internal angles 6 and <j)\ (see figure 1) which specify the shape of the
ABC molecule :

6 = 2 arctan ( — )
ttz J

2Rx.fx
2 (1)

where Rx and Rz are the inertial radii. The angle 0 remains in the interval [0, TT/2]
and is 0 for linear configurations and TT/2 for symmetric top configurations. The
range of variation of <j)\ is [0, 2TT].

Figure 1. Definition of the 0 and <pa hyperangles. Ra and fa are the Jacobi coor-
dinates for arrangement a. The inertial radii arc related to p and 6 by the formulas
Rx = psin (6/2)., Rz = pcos (6»/2); RY = p.

2.2. HAMILTONIAN

The hamiltonian of the ABC system in body-frame hyperspherical democratic
coordinates is written as [4] :

— n5 — 4- V 4- C (21

where the internal hamiltonian % is given by

n = sin 26 06
sin 261- d2

06 cos2 6 062 sin2 6
(3)

It contains deformation and rotation around the axis of least inertia at fixed-/) and
also the potential energy V. In equation (2), C contains the remaining rotational
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terms and Coriolis coupling :

1 / J\ - J\ Jl sin<9 d\
~ 2 ^ ? ^ C0S2 Q/2 + cos2 0 ~ %'Y cos2 0 ~d4>) ( '

where JX-,JYI JZ a r c th° components of the total angular momentum in the
principal axis frame.

2.3. HYPERSPHERICAL ADIABATIC STATES

We consider a p dependent basis of five dimensional functions [4] :

Jtf;6,<l>)N£M(£) (5)

which are eigenstates of the Hamiltonian of Jz and H with eigenvalues Q and
£fcQ (p) • The functions ipi-n are solutions of a two-dimensional Schrodinger equation
at fixed hyperradius p :

HQ(P;0,0) ipkn(p;Q,4>) = £kn{p) <Pkn{p;O;0) (6)

with the fi and p dependent hamiltonian :

A ^)V{P-QA) (7)^ , 1 , sin20|, AflTsin 20 30 30 cos2 0 d sin

Equation (6) is solved by variational expansion over a basis of two-dimensional
pscudo-hypcrsphcrical harmonics (PHH) yxvit •

yKuii (0., <f>) = 9K*ii {0) h iy4> ~ HTr/2) (8)

where h — cos or sin (for symmetric or antisymmetric states) and the functions
9Kuii(0) arc solutions of the onc-dimcnsional differential equation :

KVa{6) = K(K + 4) gKvQ{6) (9)cos2 0 sm

with K = v + 2il + An. n being a non negative integer [4] which is even (odd) for
even (odd) parity states. The size of the basis of yKvii functions can be monitored
by the parameter .KMAX> which is the maximum value of the quantum number K.
The yKuii functions arc dclocalizcd in all configuration space, whereas the surface
functions (fkn arc more and more concentrated in the arrangement valleys around
8 — 0 when p increases. As a result, the expansion of the tpkn functions on the
yKuii basis converges slowly at large hypcrsphcrical radius. Faster convergence is
achieved by using for large p a contracted basis, obtained by diagonalizing the
operator l /cos 2# in the yxvQ basis and by keeping the states with eigenvalues
smaller than some maximum which depends on p [6]. The resulting cigenfunctions
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arc localized in an interval [0,#MAX (/•>)] and arc the most useful to represent the
surface states.

2.4. COUPLED HYPERRADIAL EQUATIONS

The Schrodinger equation is solved using the diabatic-by-sector method [7] in
which the range of /; is divided into small sectors [pp-\/2, Pp+1/2] centered around
Pp. In each sector, the total wavefunction is expanded on the basis defined at pp :

* J M ( p ; ^ 0 ^ ) = ^ ^ < l ) ^ ( p p : ^ 0 , f ) i ^ ( p p ; p ) (10)

The hyperradial functions Fj?Q(pp; p) are solutions of a set of coupled second
order differential equations :

Ckn,k>n> (PP- P)Fk'9j (PP- P) = 0
k'iV

with coupling matrix elements given by :

<l))\ipkln(pP;e,<l)))e^ (12)

, ^v(PP-A(t>,S))e4,£ (13)
Due to the factorisation of the basis functions ${^f into an internal part ip^Q

which is independent of the total angular momentum J and an external part NQM ,
the evaluation of matrix elements in equations (12,13) is easy. Firstly, the coupling
matrix H is independent of the total angular momentum J and connects states
with the same projection Q. Secondly, when computing the C matrix elements,
integrals over the 9. </> internal coordinates arc independent of J while integrals
over the Eulcr angles £ can be performed analytically. C connects states with
Af2 = 0. ±1.±2 and needs only to be evaluated at the middle of each sector.
Finally, we note that C is smooth and well behaved for linear configurations (6 = 0)
but becomes large for symmetric top configurations (0 = TT/2).

The logarithmic derivative of linearly independent solutions of the coupled
equations (11) arc propagated outwards in each sector [pp-i/2; Pp+1/2] using the
Johnson-Manolopoulos [8] algorithm. At the boundary of each sector pp+i/2 , a
transformation to the basis of the next sector [pp+i/2, Pp+3/2] computed at pp+i is
performed. This is repeated until the last sector (centered at pm) corresponding
to the asymptotic region is reached.

In practice, we retain a finite number of basis functions in this expansion. In
previous work on abstraction reactions such as H + H2 [4], F + H2 [6] or F + D2
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[9], wo could use at small /; the contraction scheme decribed before. For insertion
reactions, this cannot be used, because symmetric top configurations lie near the
potential minimum of the triatom ABC molecule.

When computing J ^ 0 partial waves, we tried to use a truncated fi-basis by
including in the close-coupling expansion states with | S"21 < H\IAX- For abstraction
reactions [4, 6, 9], this procedure is very efficient in reducing the number of channels
needed for convergence, provided that 1!MAX is small, say 5. It is not satisfactory
for insertion reactions, because of the already mentioned reason that symmetric
top configurations, where Coriolis couplings are large, are energetically accessible.
It is thus necessary to keep all il components to accurately represent this effect.

As a result of these two effects, the mentioned insertion reactions require be-
tween 3000 and 5000 channels to get convergence, whereas F + Ha for example
requires only 500 channels.

2.5. ASYMPTOTIC ANALYSIS

The expression (10) is not suitable to determine collisional wavefunctions because
their asymptotic part is determined in Jacobi space-fixed coordinates specific for
each arrangement A. The transformation from body-frame hypcrsphcrical demo-
cratic coordinates (p,8,(j),£) to space-fixed (R\,r\) Jacobi coordinates is per-
formed in several steps. It necessitates the introduction of Fock internal hyper-
spherical coordinates [p,uj\,7j\) to analyze the rovibrational character of the sur-
face functions ip^n in the fragmentation region at large p.

2.5.1. Transformation to Fock Body-Frame coordinates
For a given arrangement A, the twro Fock angles (uix.jjx) are the hyperradial cor-
relation angle ui\ — tan"1 (r\/R\) and the bending angle rj\ — cos^1 (R\.f\). The
expression of the hamiltonian 1~L in Fock Body-Frame coordinates is

(14)
sin 2OJ\ ow\ dui\ sin

At large hyperspherical radius p. the potential V does not depend on the angle
r]\. hence the adiabatic states ifuu converge to a rovibrational states vj in each
arrangement A :

VkQ -> X\vj(p;u\) Pjnivx) (15)

where PJQ is an associated Legendre function and X\vj are solutions of the one-
dimensional equation :

\2fip2 [ sm2 2ujxdujx dujx sm2 2OJX J / (16)
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Hence, the wavofuiiction can bo written as

*JM = J2 KMV) X\vj(Pm;ux) P:in (r,x) F{vjii(pm; p) (17)
XvjQ

2.5.2. Transformation to Fock Space-Fixed coordinates
The hypcrradial components are then transformed to a new representation with
an internal quantization axis along the Jacobi vector R\. This transformation can
be written as a matrix

UX'v'j'Q'xXvjQ = (XXv'j'(Pm^x) Pj'Q'x\d^Q{AX)\XXvj{Pm;^x) PjQx)u,-y,,x (18)

where fi'A is the projection of J on the Jacobi vector Rx and A^ is the (small) angle
between Z and R\. Once this transformation is performed, the new expression of
the wavofuiiction is

* J M = E Ni^^) XxvAPm-^x) PjnAm)H^M (19)

Then we transform the hyperradial components to the usual Arthurs-Dalgarno
representation with coupled spherical harmonics \jl,JM). The wavefunction is thus
written as :

*'7M = E yjtM(rxRx) XXvjiPmWx) Ffvjl(p) (20)
Xvjl

2.5.3. Transformation to Jacobi Space-Fixed coordinates
Asymptotic functions are written in Jacobi coordinates

jJM(±) V.JM / - o \ ^ („ \ L ( ± ) (T> \

^Xvji = Yji (rA^A) Xxvj{rx)n,Xvjl(Hx)

are projected at fixed p on the rovibrational basis at pm
% , j ^ (22)

Then the matching of FXvjt to F^ permits to extract the S matrix with elements
^Xvjix'v' j'l' • Cross-sections are then given by the usual partial wave sum :

a(Xvj -> X'v'j') = -?- Y\{2J + 1)PJ (Xvj ^ X'v'f) (23)
fcAi'J j

where k\vj is the initial wavenumber and where the partial reaction probabilities
arc given by :

PJ(Xvj -+ X'v'f) = E E \Sxvjix'Vj'i' I2 (24)
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3. Numerical implementation

3.1. COMPUTER CODES

A suite of computer codes permits to study the quantum dynamics of insertion
reactions.

— TB computes essentially the basis of two-dimensional functions tpkn(Pp',9<t>)
and coupling matrix elements H^}k, (pp; p) and the rovibrational functions x.Vj-
This part is independent of the total energy E and of the total angular mo-
mentum ,/.

— TJ computes all the quantities which depend on the total angular momen-
tum ,/ but are independent of the total energy E, such as the couplings
C'ln k'n'(Pp>P) a n ( l the transformation matrices for the asymptotic analysis.

— TK solves the coupled equations (11) for each J and E using the Johnson-
Manolopoulos [8] logarithmic-derivative propagator. It determines also the
reactance if-matrix.

— TDCS computes the scattering matrix S = (l+iK)/(l — iK) and the differential
cross sections.

— TS computes the integral state-to-state cross sections.

3.2. TYPICAL COMPUTER REQUIREMENTS

In this section, we describe typical computer requirements for the O(1D) + H2
reaction. The TB, TJ and TK codes use about 2 GBytes of core memory. They have
been implemented on a NEC-SX5 vector computer (8 Gflops peak performance per
processor) at IDRIS/CNRS (Orsay, France). All the codes arc efficiently vectorized
and use the optimized BLAS and LAPACK linear algebra libraries.

The size of the PHH basis in the TB code varies from 1400 to 6200, depending
on Q and of the hyperradius p. Q values range from 0 to 30 and the size of sectors
ranges from 0.05a0 at small p (2 - 8a0) to 0.1a0 at large p (8 - 14a0). This results
in the diagonalisation of several thousand matrices. The CPU time is 30 hours on
a single processor, with a performance of 4 Gflops. The TJ code is executed for
each partial wave but is independent of the total energy E.

The TK code is the most time-consuming part, because it has to be run for each
J value (typically from 0 to 30). The time per partial wave varies from 30 sec. for
J = 0 (310 channels) to 6 hours for J = 30 (4721 channels) for each energy, with
a sustained performance of 7 Gflops.

The communication between the TB, TJ and TK codes is performed using a 2
GBytes file whose most part is dedicated to information necessary to build the
coupled equations (11).
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4. Selected results

4.1. O('D) + H2(X'E+) ->• OH(X2n) + H

4.1.1. Introduction
The O(1D) atom is a mctastablo species with a radiative lifetime of about 150
s. This species, with the ground O(3P) state of atomic oxygen, is an important
constituent of several dilute media, such as the interstellar medium and the upper
atmosphere. The rate constants of O(1D) + H2. CH4, H2O and N2O reactions
is much larger than for O('3P) with the same species. Thus, even if O(1D) atoms
are less abundant than O(3P), they play an important role in astrochemistry.
They give highly reactive radical products as OH or NO which are for instance
responsible for a significant reduction of the Earth's ozone layer. The O(1D)+H2
reaction is also important in combustion chemistry.

The O(' D) +H2 reaction has been widely investigated both experimentally and
theoretically and has become the prototype of insertion reactions [1, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. The combination of
high resolution experiments and high accuracy of the theoretical calculations has
allowed remarkable improvement in understanding of the reaction dynamics of this
system. Many experimental results are available such as differential cross section
(DCS), product translational energy distribution, excitation function and product
rotational angular momentum polarization [15, 17, 18. 23]. Two complementary
detailed experiments have recently been performed.

The group of X. Yang [25, 26] (Taiwan) has achieved a high angular and en-
ergy release resolution at a wrell defined collision energy of 56 meV. Yang and his
coworkcrs used crossed molecular beams coupled with the Rydbcrg tagging TOF
technique for the detection of the product H atoms. They obtained for the first
time angle-resolved product translational energy distribution for each center-of-
mass scattering angle.

In another experiment, M. Brouard and coworkcrs [28] (Oxford) searched a
proof for the possible participation of electronic excited states in the reaction
dynamics at higher collision energies. A significant fraction of the collisions takes
place at energies higher than the threshold for reaction on the first excited surface.
In this bulk experiment, Brouard and coworkers generated O( :D) atoms by pho-
tolysis of N2 0 in a mixture of this gas with H2. They used the Dopplcr-rcsolvcd
polarized laser induced fluorescence technique to measure for the first time in
this collision energy range the product OH(?;' = 3,4) rotational distributions and
OH('<;' = 3. 4) rotational alignment polarization parameters.

The large well depth in the ground electronic state (~ 7.2 eV) and the high
exoergicity (1.9 eV) makes particularly difficult an exact QM study of the dynam-
ics of this reaction. Theoretical studies often used the quasi-classical trajectory
(QCT) method [12, 16, 18, 24]. Only a few quantum-mechanical (QM) studies
have been reported. They are exact for the total angular momentum J = 0 but
approximate for higher J. Total reaction probability has been calculated with a
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time-dependent QM method for J = 0 [10, 13, 20, 21]. The total integral cross
section (ICS) has been calculated with the centrifugal sudden [10] and capture
model approaches [21]. A QM time-independent method has been reported but
it used some approximations [22] such as absorbing potentials. Moreover, these
approximate methods did not produce DCSs. Thus, the degree of comparison be-
tween theory and experiment wras less good than for abstraction reactions, such as
F + H2 or F + D2. where accurate QM dynamics has been performed [29, 9, 30].
Recently, we have performed the first accurate QM calculations for J / 0 and
obtained converged DCSs for this reaction [27].

4.1.2. Potential energy surfaces
From a fundamental point of view, the O(1D)+H2 reaction adiabatically involves
two different reaction pathways: the reactivity is dominated by the highly at-
tractive ground I1 A' state potential energy surface (PES) which is linked to the
insertion mechanism. For the linear approach Coo,,, (Figure 2a) the barrier is small
(~0.02 eV). For the perpendicular approach C^v, the PES is barrierless (figure 2b)
and is characterized by a deep well (~7.2 eV) associated with the ground state of
water, supporting many bound states, which is formed following the insertion of
the excited atom into the H-H bond.

0
4

0
2 4 6

Ron (ao) RCM (ao)
Figure 2. (a) Contour plots (in eV) of the 1A' potential energy surface of OH2 as a
function of Run and Ron at 6 — 0°. (b) Contour plots (in cV) of the l A' potential energy
surface of OH2 as a function of RHH and RCM = R0-H2 at 6 = 90°. The origin of the
energies is taken at the bottom of the O(1D) + H2 valley at infinite RCM distance.
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In contrast, the first excited l-'-A" PES (figure 3) presents a very high (~ 700
rneV) barrier for the C-2V geometry (figure 3b). so the insertion mechanism cannot
occur on this PES. Moreover the Coo,, collinear barrier (figure 3a) is small but
significant (~ 100 meV). We therefore expected that the l^A" PES plays only a
role in the reaction at collision energies higher than 100 meV and exhibits direct
rebound dynamics reminiscent of the F + H2 reaction.

\\V\ \ (b)

0

Figure 3. (a) Contour plots (in eV) of the :A" potential energy surface of OH2 as a
function of Run and Ron at 6 — 0°. (b) Contour plots (in cV) of the 1A" potential
energy surface of OH2 as a function of RHH and RCM = R0-H2 at 9 = 90°. The origin of
the energies is taken at the bottom of the O(:D) + H2 valley at infinite RCM distance.

Two sets of new high quality ab-initio PES have been proposed for both 1A'
and I1 A" states: the K PES [11, 12] and the DK PES [19]. They arc very similar
in topology but some little differences exist. For instance, the ground state H2O
well depth is smaller in the K PES than in the DK one. We used the DK PESs for
scattering calculations.

4.1.3. Convergence parameters
The fundamentals of the QM time-independent methodology employed here can be
found in Section 2. We just briefly give the relevant details for the studied reaction.
QM calculations were performed for the O( :D) + H2(u = 0, j = 0,1, 2) reaction at
Ecoi=2o. 56; 84; 100 and 137 meV collision energy on the ground 1XA' DK PES.
For the J = 0 partial wave, the scattering wave-function was expanded on a basis
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with 310 states dissociating at largo hyporradius into the H2 (14,12,8,2) and OH
(40,38,36,33,30,28,24,21,17,11) rovibrational sots (this notation indicates the
largest rotational level j for each vibrational manifold v = 0 ,1 , . . . ) . There are
throe closed vibrational manifolds in the roactant arrangement and five in the
product one. No restrictions were placed on the helicity quantum number i} (the
projection of the total angular momentum J of the system on each of the atom-
diatom axes). Thus fimax = J and the number of coupled equations increases
from 310 for J = 0 to 4505 for J = 25. Propagation goes from p= 1.8 to 14.2 ao,
including a total of 93 sectors into which the hyper-radius p has been divided. Two
different sector sizes have been used: 0.1 ao from 1.8 to 8.0 rio and 0.2 «o from 8.0
to the asymptotic matching distance 14.2 a0-

Hyperspherical radius p (a0)

Figure 4- (a) OH2 hyper-
spherical adiabatic energies
for 1A' as a function of hy-
perspherical radius p in ao.
(b) same for 1A". The zero
of the energy is taken at the
asymptotic minimum of the
O^D) + H2(« = 0,j = 0)
channel.

Hyperspherical radius p (a3)

QM calculations have been performed by J.F. Castillo [28] on the excited 11A"
DK PES following a different hyperspherical coordinate scheme described in detail
elsewhere [31]. In this case, the convergence of the calculations is less costly than
on the ground state PES and only requires helicity quantum numbers K = 0 — 3.
The number of coupled channels is small and constant equal to 294 for calculations
at total angular momentum J > 3. Only partial waves with J < 17 were needed
to obtain converged results.
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4.1.4. Hyperspherical adiabatic energies
The H2O hyporsphorical adiabatic energies as a function of hyper-radius /; for J =
0 are displayed in Figures 4a and 4b calculated respectively on the I1 A' and I1 A"
PESs. They illustrate the large number of channels which have been considered
in this study. At large hyperradius, the hyperspherical adiabatic energies goes to
the atom-diatom energies, both O(1D) + H2(i>. j) and OH(V, j ' ) + H. For the
I1 A' (Figure 4a), the most striking feature is the presence of a deep well. The
lowest energy has a minimum of 7.2 eV relative to the O(1D) + H2 asymptote
at p=2.7 ao- In contrast, for the 11A" (Figure 4b) there is no well, such as the
hyperspherical adiabatic states obtained for pure abstraction reactions (H + H2,

4.1.5. Reaction probabilities
In the following sections, except explicitly mentioned, all calculations have been
performed on the 1XA' PES.
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Figure 5. (a) Total reaction probabilities for O(1D) + R2(v = 0, j = 0) -^ OH + H. (b)
Vibrationally state-resolved probabilities for O(1D) + H2(w = 0, j = 0) -> OU(v') + H.

Figure 5a shows the total reaction probability for the reaction O(XD) + H2(y =
0, j = 0) —>• OH + H for the total angular momentum J = 0. This probability be-
haves similarly to the QM one computed by Gray et al [21] using a time-dependent
method. There is no collision energy threshold as a consequence of the absence of
an entrance barrier in the PES for the C ^ geometry. The total reaction proba-
bility presents smooth undulations. They average the more numerous structures
obtained in the vibrationaly state-resolved reaction probabilities (figure 5b).



200 PASCAL HONVAULT AND JEAN-MICHEL LAUNAY

4.1.6. Opacity and excitation functions
We have also computed reaction probabilities for Ha(t' = 0, j = 0) and ,/ > 0. The
opacity functions P(J) (total reaction probability as a function of total angular
momentum J at a fixed energy) are plotted in figure 6 for four collision energies
(25, 56, 84 and 100 meV).

25meV

.total

5 10 15 20
Total angular momentum J

25

56 meV

5 10 15 20
Total angular momentum J

25

5 10 15 20
Total angular momentum J

5 10 15 20 25
Total angular momentum J

Figure 6. Reaction probabilities for O(1D) + H2(w = 0, j = 0) -> OH(o') + H as a
function of the total angular momentum J at 25, 56, 84 and 100 meV.

At all energies, P(J) increases slowly with J and reaches its largest value (close
to one) for J = 6. keeps this value up to a Jmax (which is shifted towards larger
values of J with increasing collision energy) and then decreases rapidly above Jmax
when J increases. The vibrationally state-resolved reaction probabilities P(J.v')
keep the same order :

P{J. v' = 0) > P(.L v = 1) > P(.L v = 2) > P(J, v1 = 3) > P(.L v = 4).
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This non-invcrtcd behaviour is in contrast with abstraction reactions such as F +
H2. Another difference with this latter system is the presence of many small peaks
in P(J.v') and even in P(J).

Figure 7 shows the excitation function (the total ICS as a function of the
collision energy). The cross section decreases rapidly with increasing energy. This
behavior is typical for a reaction without any barrier.

0 30 60 90 120
Collision energy (meV)

Figure 7. Total
reaction cross-section for O(1D) +
H2(JJ = 0,j = 0) ->• OH + H as a
function of collision energy.

The excitation function obtained using the I1 A" PES is totally different, show-
ing a threshold at about 100 1110V and then a regular increase when energy increases
[32].

4.1.7. Vibrational and rotational distributions
Figure 8 shows for the reaction O(1D) + H2(v = 0,j = 0) ->• OH(v',f) + H
reaction the vibrational distribution (ICS as a function of the product vibrational
quantum number v' for five collision energies (25, 56, 84, 100 and 137 meV).
At all energies, the most populated vibrational level is v' = 0. ICS decreases
when the product vibrational quantum number v' increases. This decrease reflects
the diminution of open rotational states in a given vibrational manifold. For all
energies, the distributions arc vibrationally cold and these non-invcrtcd vibrational
populations arc in sharp contrast with those computed for abstraction reactions
such as F + H2 -> FH + H [29] and F + D2 -> FD + D [9] abstraction reactions
which show a vibrational population inversion.

Figure 8. Integral cross sections vs
final vibrational quantum number
v' for O(1D) + R2(v = 0J = 0) ->
OH(w') + H at the five collision en-
ergies 25, 56, 84, 100, and 137 meV.

1 2 3 4
OH vibrational quantum number v'
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This vibrational distribution for abstraction reactions is similar to that ob-
tained on the first excited state surface, 1^4" (not shown here). There is a strong
population inversion and only v' = 3,4 have appreciable cross sections.

Rotational distributions (QM vibrationally state-resolved ICSs as a function
of the product rotational quantum number j') for the O(lD)+B.2(v = O.j = 0) —>
OH(?;', j') + H reaction calculated at the 84 meV collision energy are displayed in
Figure 9.

0 10 20 30
OH product rotational quantum number j '

Figure 9. Rotational inte-
gral cross sections for O('D) +
H2(i; = 0.J = 0) -> OH(v',f) +
H as a function of final rotational
quantum number j ' at 84 inoV.

For each product vibrational state v', ICS increases with j ' and when the energy
of the product states reaches the total energy available, it decreases abruptly to
zero. This typical shape of ICS suggests the existence of a long-lived intermediate
complex during the collision and may therefore be considered as a signature of the
insertion mechanism. A similar shape is found at other collision energies and for
other insertion reactions.

Figure 10 also shows the results for O(lD)+B.2(v = 0. j = 1) at 84 mcV and
the influence of the initial rotational excitation of H2 for an insertion reaction.

84meV

Figure 10. Integral cross sec-
tions vs final vibrational quan-
tum number v' for O(:D) +
H2(t; = 0.J = 0) -> OH(v') + H
and O(1D) + H2(y = O.J = 1) ->
OH(w') + H at 84 meV.

OH product vibrational quantum number v'

Vibrational distributions for each j — 0 and j — 1 are similar. However the
reactivity is not exactly the same for these two initial rotational states. The
vibrational distribution is slightly hotter for j = 1. More precisely the ratio
ICS(ji = l)/ICS(j,=O) is below 1 for v' = 0 and v' = 1, is equal to 1 for v' = 2 and
above 1 for v' = 3 and v' = 4. Rotational distributions for j = 0 and j = 1 arc
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similar at all collision energies although the structures arc of course not exactly
the same. We also find that the effect of initial H2 rotation is small for opacity
functions.

In conclusion, when the internal rotation molecular state of H2 going from
j = 0 to j = 1. changes are minor for probabilities, vibrational and rotational
distributions.

4.1.8. Differential cross sections
Figure 11 shows total DCSs for O(1D) + H2(<; = 0. j = 0) ->• OH + H as a function
of the center of mass scattering angle at 25, 56, 84, 100 and 137 meV.

Figure 11. Total differential
cross sections versus center-of-mass
scattering angle 6 for O( 1D) +
H 2 (JJ = 0,j = 0) ->• OH + H at
the five collision energies 25, 56, 84,
100. and 137 meV.

30 60 90 120 150
CM scattering angle θ (degree)

We see that for each energy the total DCS has a roughly forward-backward
symmetry which is a characteristic of a reaction with an intermediate complex
[2]. However the full symmetry is not obtained and a slight preference for forward
scattering is found. Then this insertion reaction is not purely statistical. An inter-
esting point is related to the forward/backward peak ratio which is always larger
than one for all energies.

Figure 12 shows the vibrationally-rcsolvcd DCSs and exhibits also another
important feature. At all energies, we sec that the forward and backward scattering
and in particular the forward and backward peaks are not vibrationally specific
because all product vibrational quantum number v' contribute with the largest
contribution to the forward peak from v' = 0. This is in sharp contrast with
abstraction reactions. Indeed in the F + H2 (F + D2) reaction, the total DCS,
although preferentially backward, has a small forward peak which is due only
to v' = 3 (V = 4). Finally the relative magnitude of the vibrationally state-
resolved DCSs is almost the same at all scattering angles, with a decrease when
increasing v' and undulations arc more pronounced than in total DCSs. Total DCS
obtained with the 11A" PES (not shown here) arc purely backward peaked and
this behaviour is that of an abstraction mechanism. The main difference with the
F+H2 reaction is that OH products arc not formed in the forward direction.

The effect of initial reagent molecular rotation excitation on DCSs is shown
in figure 13 at 25 and 84 meV. Sideways scattering are similar for j — 0 and
j = 1. Most dramatic changes appear in DCS for forward scattering (0-20 °) and
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Figure 12. Vibraticmally resolved differential cross sections versus ccntcr-of-mass scat-
tering angle 9 for O^D) + H2(v = 0,j = 0) ->• OH(o') + H at 25, 56, 84 and 100
meV.

j=0 : solid line

j=1 : dashed line

Figure 13. Total differential
cross sections versus ccntcr-of-mass
scattering angle 6 for O( 1D) +
H2(i; = 0, j = 0) ->• OH + H and
OOD) + H2(t; = 0,j = 1) -^ OH
+ H at the two collision energies 25
and 84 meV.

0 50 100 150
CM scattering angle θ (degree)
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backward scattering (160-180 °). Forward and backward peaks become smaller and
broader when increasing j . We find the same principal features at other collision
energies. The QM degree of polarisation (i.e. the DCS at 90 degrees with respect
to 0 degree) is also increased by initial rotational excitation. Whereas increase in
j has no appreciable influence on the ICSs, rotational excitation of H2 molecules
plays a significant role for angular distributions.

4.1.9. Comparison with experiments
We also present some comparisons with two recent experiments. First, our QM
results are compared with Yang's experiments [25, 26]. This very high resolution
experiment is performed at 56 rnoV for H2(v = 0,j = 0), a collision energy where
the reactivity on the I1 A" surface is expected negligible. So the mechanism in-
volved in the reaction should be onlv insertion.

Figure 14- Comparison between
the QM and experimental vibra-
tional distributions for O('D) +
H2(i; = Q,j = 0) -> OH(o') + H
at 56 meV.

0 1 2 3 4
OH vibrational quantum number v'

Figure 14 shows the comparison between the QM vibrationally state-resolved
ICSs calculated on the ground state 1XA' PES with the experimental data. The
agreement between the experimental and QM v' state-resolved ICSs is good. For
v' = 0,1,2 QM results arc slightly smaller than the experimental values, whereas
it is the reverse for v' = 3,4. QM calculations therefore predict a somewhat hotter
vibrational distribution of the OH products.

Figure 15 compares the QM and experimental rotational distributions.
A good agreement is found with the experimental data. However, the QM

distributions are somewrhat broader for v' — 0 and v' — 1. For all v', except v' — 3,
the maximum peak (just before the fall) is underestimated by QM results.

The QM total DCS is compared in Figure 16 with the corresponding exper-
imental DCS. It should be recalled that the derivation of the experimental DCS
from the raw experimental data yields some uncertainties and experimental data
include some degree of angular smearing, whereas the QM curves arc obtained
without any smoothing. QM DCS therefore appears in good agreement with the
experimental angular distribution, although total QM DCS presents sharp peaks
at 0° and 180°. Similar results arc found for the vibrationally state-resolved DCSs.

Figure 17 shows the comparison between QM (a) and experimental (b) total
product translational energy distributions P(E :

t) in the ccntcr-of-mass frame.
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Figure 15. Comparison between the QM and experimental rotational distributions for
O(1D) + H2(i; = 0, j = 0) ->• OH(D') + H at 56 meV for v = 0,1, 2 and 3.

QM
Experiment

0 50 100 150
CM scattering angle (degrees)

Figure 16. Comparison between
the QM and experimental total dif-
ferential cross section for O(1D) +
R2(v = 0,j = 0) -> OH + H at 56
mcV.

It is clear that a very good agreement is obtained. However, the QM distribution
is overestimated in the high energy part (14000-16000 cm"1) which corresponds
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to the production of only 0H(V = 0) in low rotational states
In a recent work [33], we have compared the most detailed observable, QM

angle- and (quasi)state-resolved product translational energy distribution P(E't, 9).
with the experimental ones at three different angles. The agreement is excellent
at 0 = 90° and for other angles around it. So the sideways scattering is well re-
produced by QM results. The largest discrepancies concern the forward and to
a smaller extent the backward scattering. Once more the QM distribution over-
estimates the forward and backward scattering. A close inspection reveals that
the reactivity is overestimated in the high energy part corresponding to the lower
rotational states of OH(i/ = 0).
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0.0

(a) 56meV
QM

11! i . 11
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Product translational energy E't (cm"1)

(h) 56meV
Experiment
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Figure 11. Comparison between the QM (a) and experimental (b) total product trans-
lational energy distributions for O(1D) + ~H.2(v — 0,j — 0) at 56 mcV collision energy.

We have also studied at higher collision energy (> 100 mcV) the influence
of the first electronic excited I1 A" state on the dynamics [28]. and especially on
rotational distributions for 0H(V = 4) which have been measured by Brouard
and co-workers. The agreement between QM and experimental results is largely
improved by considering contributions on both the I1 A" and 11A' PES. When
comparing the OH rotational angular momentum alignment parameters [28], we
found yet again that the best agreement is obtained when we consider both con-
tributions.

In conclusion, at a collision energy of 56 mcV, the overall good agreement
obtained between QM and experimental results indicate that it is not necessary to
invoke the contribution of the first excited I1 A" PES to the reactivity. In contrast,
at higher energy, above 100 mcV, the 11A" PES plays a crucial role and we have
taken it into acount to model quantitatively the experimental results. Moreover,
comparisons indicate that the DK PES is accurate enough to reproduce the most
detailed experimental obscrvablcs.
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4.2. OTHER INSERTION REACTIONS

4.2.1. N(2D) + H2(X]Y,+) -» NH(XSZ-) + H
The N(2D) + H2 reaction has been less studied than O('D) + H2. However atomic
nitrogen is of fundamental interest in combustion and astrophysieal and atmo-
spheric chemistry. For instance, reactions involving this species with simple hy-
drocarbons play a role in the atmosphere of Saturn's moon Titan. The N(2D) +
H2 reaction is perhaps a better prototype of an insertion reaction than O(1D)+H2.
Here, there is no abstraction mechanism due to an excited PES [34].

An accurate ab-initio PES for the NH2 ground state has been computed at the
second-order CI level [35]. This I2A" surface has a deep potential well of 5.48 eV
for a C-2v geometry with a HNH angle of 102.7° and a NH bond length of 1.94a0,
corresponding to stable NH2(l2Bi). The insertion C-2V barrier is 83.5 meV and the
collinear Coc one is 200 meV. The dynamics may therefore be different from the
O(1D) + H2 reaction,

In a recent crossed molecular beam experiment. Alagia et al. [36] measured the
total DCS and product translational energy distribution for the N(2D)+D2 reac-
tion at 165 and 220 meV collision energies. They found an exact forward-backward
symmetry which is consistent with an insertion mechanism and the existence of an
intermediate complex. Using a laser-induced fluorescence technique, Umemoto [37]
measured nascent rotational distributions and concluded that only the insertion
mechanism is important in the N(2D)+H2 reaction at low and medium energy.
This result has been recently confirmed by the measure of the product vibrational
population for NH(V = 0,1,2,3,4) [38].

10.0

• QM
• . 0 A QCT (Pederson et al.)

(b)

165 meV

0.0
1 2 3

Vibrational quantum number v'
1 2 3

Vibrational quantum number v'

Figure 18. (a) Integral cross sections vs final vibrational quantum number v' for N(2D)
+ H2(i; = 0, j = 0) -> NH(v') + H at 70 meV. (b) The same for 165 meV.
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For the J = 0 partial wave, the scattering wavefunction is expanded on a basis
with 217 states dissociating at large hyperradius into the NH (35. 32, 30, 27, 24, 20,16,11)
and H2 (12, 8, 2) rovibrational sets (this notation indicates the largest rotational
level j for each vibrational manifold v = 0,1,...). There are two closed vibrational
manifolds in the reactant arrangement and three in the product one. This yields
2917 coupled equations for the highest partial wave (J = 26). We computed inte-
gral cross sections (ICS) for the reaction N + H2('<; = 0, j = 0) ->• NH(j;',j') + H
reaction for several collision energies in the range 70-165 meV [40].

The ICS as a function of the product quantum number v' at two energies is pre-
sented in figure 18. The most populated vibrational level is ?/ = 0, with a decrease
which reflects the diminution of open rotational states in a given vibrational man-
ifold This indirect reaction yields vibrationally cold products. These non-inverted
vibrational populations agree to Umemoto's experimental results [38]. The QM
results are consistently greater than the QCT results of Schatz et al. [35]. the dif-
ference increasing when the kinetic energy decreases because of a tunnelling effect
in the entrance arrangement. At 70 meV, the QM total reaction ICS is about four-
times larger than the QCT one. The low energy collision dynamics is therefore in-
fluenced by quantum effects, such as tunnelling and zero point vibrational energy-
effects. Rotational distributions (not shown here) agree with those measured by
Umemoto et al. [37] and show a similar shape to those obtained for O(1D)+H2.
Moreover, QM predictions for laboratory angular distribution and time-of-flight
spectra are in a very good agreement with those derived from Casavecchia's ex-
periments [39]. This is not the case for QCT results. QM DCSs present a for-
ward/backward symmetry as in experiments. A comparison between experimental,
QCT and QM results [39] has pointed out a quantum effect, possibly the effect of
tunneling through the combined potential and centrifugal barrier.

• EXP (Suzuki etal. 1993)
- QM (this work)
- QCT (Pederson et al. 1999)

Figure 19. Comparison between
the QM (solid line), QCT (dashed
line) [Pederson et al. 1999] and ex-
perimental [Suzuki ct al. 1993] rate
coefficients for N(2D) + H2.

We have also calculated the reaction rate constant (figure 19). We have com-
puted the total integral cross section for N(2D) + H2 at four collision energies (70,
110, 137 and 165 meV). The threshold is 50 meV for this reaction. We found that
the total integral cross sections for j = 0 and j = 1 at 165 meV arc identical (23.89
ag vs 23.90 a;j) and QCT calculations [35] show that the integral cross sections for
j = 0 and j = 1 arc similar at all collision energies. So we assume that the total
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cross sections arc independent of the inital state j of H2. The excitation function
is very smooth and this allows a spline interpolation. The rate constant is then
obtained by averaging the calculated and interpolated cross sections over collision
energies with a Boltzmann distribution. Our QM rate constant agrees very well
with the experimental one [41], in contrast with QCT calculations [35] which yield
a much smaller value.

Finally, these comparisons show that QM dynamics performed on the NH2
ground state I2 A" PES reproduces qualitatively both average and more detailed
experimental results. Dynamics can therefore be described by using only the
ground PES.

4.2.2. C(AD) + H2(XAT,+) ->• CH(X2H) + H
We have performed the first quantum reactive scattering calculations for the C(1D)
+ Ha —> CH + H reaction on a recent ab initio PES [46] calculated in our group.
The C~2v geometry shows no barrier and a deep well (4.32 eV) corresponding to
the 11A\ electronic state of the CH2 species. In contrast the collinear barrier is
very large (0.535 eV). This reaction is similar to the O('D) + Ha reaction because
no barrier occurs for the perpendicular geometry. However there are three main
differences, the well is less deep, the collinear barrier is larger and the exothermicity
is much smaller (0.273 eV).

For total angular momentum J = 0, the scattering wave function is expanded
on a basis of 289 states dissociating at large hyperradius into the H2 (18.16,12.10,6)
and CH(39,36,34,31,28,25,22,17,12) rovibrational sets (this notation indicates the
largest rotational level j for each vibrational manifold v = 0—4 for H2 and v' = 0—8
for CH). The number of coupled equations increases from 289 for J = 0 to 4210
for J = 30.

Figure 20 shows total and vibrationally statc-rcsolvcd reaction probabilities
as a function of collision energy at total angular momentum J — 0 in the 0-0.5
eV collision energy range. These probabilities exhibit a dense resonance structure
especially at lower energies corresponding to quantum resonances associated with
the deep CH2 well in the PES. These resonances are seen for the first time for
a neutral atom + H2 reaction. Indeed we find them rather in ionic reactions,
such as He + H+ [42], Nc + H+ [43] and N+ + H2 [44, 45]. A deeper study of
these resonances is currently under way in our group. Vibrational and rotational
distributions (not SIIOWTI here) are similar to those obtained for O('D) + Ha.

QM total and vibrationally state-resolved DCSs are forward/backward peaked
as for the two previous studied insertion reactions. First comparisons between QM
and recent crossed beam experimental results at 80 meV lead to a fairly good
agreement for laboratory angular distributions but a significant disagreement in
timc-of-fiight spectra for some angles. This suggests that there is need to invoke
a contribution from the second excited PES. This PES exhibits very high barriers
at linear and perpendicular geometries, but no barrier at 60°. We are currently
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Figure. 20. (a) Total reaction probabilities for C('D) + H2(> = 0, j = 0) -> CH + H.
(b) Vibrationally state-resolved probabilities for C(1D) + H2(i; = 0, j = 0) -> CH(w') +
H.

performing dynamical calculations on this latter PES, in order to improve the
agreement with experiments.

Comparisons between our QM results and QCT results have also allowed a sig-
nificant improvement of the QCT method by using the gaussian-weighted binning
procedure instead of the usual histogramatic binning procedure [47].

5. Summary and prospects

Accurate quantum dynamical studies of insertion reactions involving H2 molecules
are now feasible for a single potential energy surface and we have obtained the same
degree of comparison with experiment as for abstraction reactions ten years ago.
The computational effort is however much larger, O + H2 being roughly 100 times
more expensive than F + H2.

We have described in this contribution the quantum dynamics of three atom-
H2 insertion reactions O(1D) + H2, N(2D) + H2 and C(1D) + H2. The common
features which appear arc :

— Vibrational distributions arc similar and decrease regularly with v'.
— Rotational distributions for a given v' increase regularly with j1 until the limit

dictated by energy conservation is reached.
— Center of mass differential cross sections (presented here only for O(1D) + H2)

present a quasi forward-backward symmetry and small undulations. The de-
gree of polarisation (ratio of DCS for forward/sideways or backward/sideways)
is high (~ 3) for initial rotational state j = 0 and decreases with j . The for-
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ward and backward peaks arc present for all final vibrational states v' in
contrast to the F + H2 reaction.

However, some features are specific for each reaction :

— For 0( 'D) + Ha, the excited 'A" surface has to be considered for energies
larger than 100 nieV.

— For N(2D) + H-2, the tunneling effect is very important because of the barrier
in the ground electronic state.

— For C(1D) + H2, we have found a very dense resonance structure in reaction
probabilties.

In the future, we plan to investigate isotopic H —> D effects for the previous
insertion reactions and 11011 adiabatic effects involving couplings between potential
energy surfaces. Another fruitful route is the study of alkali-dialkali collisions for
which the insertion mechanism is possible even at ultra-low temperatures [48].
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CHEBYSHEV PROPAGATION AND APPLICATIONS TO SCATTERING 
PROBLEMS
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Abstract. The Chebyshev operator is a discrete cosine-type propagator that bears many 
formal similarities with the time propagator. It has some unique and desirable numerical 
properties that distinguish it as an optimal propagator for a wide variety of quantum 
mechanical studies of molecular systems. In this contribution, we discuss some recent 
applications of the Chebyshev propagator to scattering problems, including the 
calculation of resonances, cumulative reaction probabilities, S-matrix elements, cross-
sections, and reaction rates.  

1. Introduction 

Many of the recent advances in reaction dynamics have been driven by time-dependent 
wave packet propagation methods.[1,2] The time-dependent approach is based on the 
expansion of the relevant operators, such as the Green’s operator ( 1)ˆ( −−= HEG ), in 

terms of the time propagator ( tHie
ˆ−  with 1= ). The success of this approach can be 

attributed to a number of advances in wave packet propagation. First, the action of the 
time propagator, which is an exponential function of the Hamiltonian, can often be 
approximated with schemes in which repetitive application of the Hamiltonian onto the 
propagation wave packet is performed.[3,4] In doing so, the major numerical task in 
propagation becomes matrix-vector multiplication, which can be readily accomplished 
by a digital computer. Second, the Hamiltonian is commonly discretized in a sparse and 
highly structured form such that it can be readily generated on-the-fly. Thus, it is 
memory efficient as only a few vectors need be stored. In addition, the use of pseudo-
spectral methods such as fast Fourier transform (FFT)[5] and discrete variable 
representation (DVR)[6] further simplifies the matrix-vector multiplication and renders 
favorable scaling laws with respect to the dimensionality of the system. The time-
dependent wave packet propagation method has been widely and successfully used to 
compute S-matrix elements, total reaction probability, cross-sections, canonical and 
microcanonical rate constants, and other properties describing scattering processes.  

For these properties in the energy domain, there is no particular reason why the 
propagation has to be carried out in the time domain. Recently, there has been a keen 
interest in search for alternative and potentially more efficient propagators to compute 
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the same properties. Such a propagator should be accurate, efficient in both memory and 
cpu requirements, easy to implement, and preferably possesses physically transparent 
properties. Here, we discuss such a propagator based on the Chebyshev polynomials 
and review some of its applications to scattering problems. We want to emphasize that 
this work is not meant to be a thorough review of the field. Rather, it represents a 
summary of some recent research in our group. 

2. The Chebyshev propagator 

The Chebyshev polynomials of the first kind have long been recognized as an effective 
basis for fitting non-periodic functions.[7] In many aspects they resemble the Fourier 
basis for periodic systems. This special type of classical orthogonal polynomials can be 
generated by the following three-term recurrence relationship:[8] 

212 −− −= kkk TxTT  for 2≥k    (1) 
with xT =1  and 10 =T . The variable x is defined on the real axis in [-1, 1]. Outside this 
range, the polynomials diverge exponentially.  
 A unique property of the Chebyshev polynomials is that they can be mapped to 
a cosine function: 

)arccoscos( xkTk ≡ ,    (2) 

and the recurrence relationship in Eq. (1) is nothing but the following trigonometric 
identity:

φφφφ kkk coscos2)1cos()1cos( =−++ .  (3) 

In other words, the Chebyshev polynomials are essentially a cosine function in disguise. 
This duality underscores the effectiveness of the Chebyshev polynomials in numerical 
analysis, which has been recognized long ago by many,[7] including the great 
Hungarian applied mathematician C. Lanczos.[9] In particular, Fourier transform (and 
FFT) can be readily implemented in the spectral method involving the Chebyshev 
polynomials.  
 In Chemical Physics, Tal-Ezer and Kosloff were among the first to realize that 
the Chebyshev polynomials can be used to approximate the time propagator with a 
time-independent Hamiltonian [10]. In the operator form, it can be shown 

−−=
=

−

0
0

ˆ
)ˆ()())(2(

k
kk

k
k

tHi HTtJie δ ,    (4) 

provided that the eigenvalues of the Hamiltonian are normalized to [-1,1], which can be 
readily achieved: −+−= HHHHn /)ˆ(ˆ  with 2/)( minmax HHH ±=± . (For 
discussions below, the Hamiltonian is assumed to have been normalized.) Indeed, the 
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approximation converges uniformly in the entire spectral range as the Bessel functions 
of the first kind ( kJ ) decay exponentially to zero when k > t. Subsequently, Kouri, 
Hoffman and coworkers demonstrated that similar expansions can be devised for the 
Green’s function [11,12] and Dirac’s delta function:[13] 
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In fact, any analytic function of the Hamiltonian can be expressed as an expansion in 
terms of the Chebyshev operator ( )ˆ(HTk ).[14] It is interesting to note that in both Eqs. 
(4) and (5), the energy shows up only in the expansion coefficients. In other words, the 
Chebyshev recursion yields information at all energies. These advances opened the 
doors for both time-dependent and time-independent studies of quantum dynamics and 
spectra using the Chebyshev polynomials.  
 A closer look at the Chebyshev operator ( )ˆ(HTk ) reveals that it possesses 
many similar properties with the better known time propagator. Because of the cosine 
mapping in Eq. (2), one can equate the Chebyshev operator to the real part of an 
effective time propagator:[15,16] 

)ˆcos()ˆ( Θ≡ kHTk ,    (6) 

in which the Chebyshev order k serves as the discrete effective time and the Chebyshev 
angle operator ( Ĥarccosˆ ≡Θ ) defines the effective Hamiltonian. In other words, the 
Chebyshev operator can be considered as a discrete cosine-type propagator. In contrast 
to the time propagator, however, the propagation in the Chebyshev order domain with 
an initial state 0ψ  can be carried out exactly: 

210
ˆ2)ˆ( −− −=≡ kkkk HHT ψψψψ  for 2≥k   (7) 

with 01
ˆψψ H= . The above recursion is stable and accurate as neither interpolation nor 

discretization error is introduced in the propagation. Unlike the time propagator, 
however, the Chebyshev propagator does not conserve the norm.  

It can be further shown that the Chebyshev order (k) and angle ( Earccos=θ )
form a conjugate pair of variables, similar to energy and time.[17] The two conjugated 
representations, which are related by an orthogonal cosine transformation, are 
isomorphic. Thus, properties in the angle domain can be readily extracted from 
propagation in the order domain and the convergence is uniform. The Chebyshev angle 
does not introduce any complications as its mapping to energy is single-valued, albeit 
non-linear. In many cases, we are interested in the dynamics near the low end of the 
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spectral range of the Hamiltonian. The non-linear mapping actually provides more 
interpolation points in this range, and thus better convergence. 
 The realization of the propagator nature of the Chebyshev operator is not 
merely a formality, it has several important numerical implications. Indeed, any 
formulation based on time propagation can be readily transplanted to one that is based 
on the Chebyshev propagation. In addition, the propagation can be implemented easily 
and exactly with no interpolation errors. Like the time propagation, the major 
computational task is repetitive matrix-vector multiplication, which is amenable to 
sparse matrix techniques with favorable scaling laws. The memory request is minimal 
as the Hamiltonian matrix needs not be stored. Finally, the entire propagation can be 
performed in real space as long as a real initial wave packet and real-symmetric 
Hamiltonian are used. General properties of the Chebyshev propagator and its 
applications to spectroscopic studies have been reviewed by us earlier.[18] 
 When applied to scattering problems, one is forced to deal with the continuum 
and the implementation of the appropriate boundary conditions. This is often done in 
time propagation with a negative imaginary potential in the asymptote [19]. Since the 
Chebyshev polynomials are defined on the real axis, the use of a complex-symmetric 
Hamiltonian with a negative imaginary potential will lead to instability in the 
propagation. To solve this problem, Mandelshtam and Taylor replaced the negative 
imaginary potential with the following damping scheme:[20,21] 

)ˆ2( 21
d
k

d
k

d
k DHD −− −= ψψψ ,  (8) 

where 01
ˆψψ HDd = . The damping function (D) is real and decays in the asymptote 

smoothly from unity. It has the effect of removing outgoing waves near the end of the 
grid and is thus related to an energy-dependent negative imaginary asymptotic potential. 
Its form can be chosen quite arbitrarily as long as it enforces the outgoing boundary 
conditions.[22-24] The advantage of such a damping scheme is that the corresponding 
wave packet can still be propagated in real space, which greatly enhanced the 
applicability and efficiency of the Chebyshev propagator for systems containing 
continua.[25] 
 We note here in passing that Chebyshev propagation is related to several other 
recursive methods based on the Krylov subspace: }ˆ,...,ˆ,{ 0

1
00

)( ψψψ −= KK HHspan^ .
A prominent example of such methods is the Lanczos algorithm.[26] Both the 
Chebyshev and Lanczos approaches generate the Krylov subspace recursively using 
three-term recurrence relationships, but the Lanczos algorithm imposes further 
orthogonalization among the recurring vectors. As a result, instability of the Lanczos 
algorithm ensues in finite precision arithmetic as a result of round-off errors.[27]  On 
the other hand, the same round-off errors also reduce the linear independence of the 
Chebyshev propagation states. In many respects, their convergence behaviors and 
efficiency are quite similar.[28-31] 
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3. Applications 

3.1. RESONANCES

Resonances can be considered as bound states that coupled with dissociative continua. 
Since these metastable states can significantly influence scattering dynamics, their 
studies are of great importance.[32] A resonance can be characterized by a complex 
eigenvalue ( 2/Γ− iE ) of a negative imaginary potential augmented,[33] or more 
rigorously complex scaled,[34] Hamiltonian. The real and imaginary parts of the 
eigenvalue define respectively the peak position of the resonance and its width, which is 
inversely proportional to its lifetime. The eigenvalues can be obtained by direct 
diagonalization of the complex-symmetric Hamiltonian matrix.  
 However, the direct diagonalization is limited by the dimension of the matrix 
(N) as the memory and cpu scale as N2 and N3, respectively. A more efficient alternative 
is to use the low-storage filter-diagonalization (LSFD) method,[35] which constructs a 
series of small generalized eigenproblems in the energy range of interest from one or 
more correlation functions. This strategy is particularly suitable for the Chebyshev 
propagation as no integration over time is needed.[36-40] However, our earlier 
numerical tests showed that the Chebyshev-based LSFD requires roughly twice the 
matrix-vector multiplication steps as the complex-symmetric Lanczos method.[29]  

This difference stems from the abandonment in the damped Chebyshev 
propagation of the doubling relation commonly used for the conventional Chebyshev 
autocorrelation function,[35] which can again be derived from trigonometry: 

00202 2 CTC kkkk −=≡ ψψψψ ,  (9a) 

1112 2 CC kkk −= ++ ψψ .   (9b) 

Such doubling relations obviously do not hold for damped Chebyshev propagation 
prescribed by Eq. (8), but the real question is whether they will allow the extraction of 
the narrow resonances using the Chebyshev-based LSFD.  
 To answer this question, we computed the resonance positions and widths of 
HCO[41] and HN2,[42] using both doubled and undoubled autocorrelation functions 
obtained from the damped Chebyshev propagation. The results indicated that the 
enforced doubling of the autocorrelation function yields no appreciable differences in 
both positions and widths of the narrow resonances when compared with those obtained 
from a directly calculated autocorrelation function. The differences are plotted in Fig. 1 
for the low-lying resonances of HN2. The largest differences are for resonances with 
widths on the order of a few hundred wave numbers.[42]  
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Figure 1 Differences in positions and widths for HN2 resonance calculated from doubled and 
undoubled Chebyshev correlation functions.

 The outcome should probably not be too surprising since the narrow 
resonances are largely localized in the interaction region and minimally affected by the 
damping. Consequently, its frequency information should still be accurately accounted 
for in the doubled autocorrelation function despite the fact that the correlation function 
is different from the true value because of damping. The doubling scheme results in a 
50% reduction of computational costs and its implementation is trivial. In accordance to 
the fact that both are based on the Krylov subspace, roughly the same number of matrix-
vector multiplication steps is needed for the Chebyshev-based LSFD and Lanczos 
algorithm, As the latter is complex, LSFD based on the (real) damped Chebyshev 
propagation is strongly preferred for determining the positions and widths of narrow 
resonances. Our work has also stimulated further exploration of the doubling of 
autocorrelation function in pseudo-time propagation.[43]  

3.2 CUMULATIVE REACTION PROBABILITIES 

In studying reaction dynamics, one may only be interested in averaged properties such 
as cumulative reaction probabilities and thermal rate constants. These quantities can of 
course be obtained from state-to-state probabilities, but as shown by Miller and 
coworkers they can be calculated directly and more efficiently without knowledge of the 
S-matrix elements.[44,45] The cumulative reaction probability, for example, can be 
computed as follows: 

]ˆ)ˆ(ˆ)ˆ([2)( 2 FHEFHETrEN −−= δδπ ,  (10) 

where F̂  is the flux operator for a given dividing surface separating the reactants from 
products. Earlier approaches for calculating such attributes include direct matrix 
inversion or diagonalization.[46-48] Since )(EN  is determined largely by dynamics 
near the transition state, a small gird surrounded by a negative imaginary potential is 
often sufficient. Later work by Zhang and Light took advantage of the fact that the flux 
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operator has only two non-zero eigenvalues and designed a wave packet propagation 
approach for calculating )(EN .[49] This so-called transition state wave packet 
approach has a much better scaling with the dimensionality of the problem and is thus 
applicable to larger systems. Further developments include the use of recursive methods 
based on the Krylov subspace.[50,51] and reformulations using correlation 
functions.[52,53] 
 We follow the correlation function formulation of Miller and Carrington,[52] 
which rewrites the cumulative reaction probability as follows: 

−−−=
′

+
′

−+
′

+

ii
iiii HEHEEN

,

22
22 )ˆ()ˆ(4)( φδφφδφλπ , (11) 

where the transition state wave packets in the above equation are constructed as a 
product of the eigenfunctions of the flux operator and the eigenfunctions of a reduced-
dimensional Hamiltonian defined on the dividing surface: 

±=±
ii φφ ,     (12) 

where ±±=± λF̂  with 0≠λ . Instead of expanding the Dirac’s delta function in 
terms of the time propagator, we use the Chebyshev propagation to compute the 
correlation functions:[54] 
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where the Chebyshev cross-correlation functions are defined as +
′

±±′ ≡ iki
ii

k HTC φφ )ˆ(, .

By prudently choosing the dividing surface, the numbers of surface eigenfunctions and 
thus the correlation functions are minimized.  
 The advantage of the correlation function approach is that only the storage of 
scalar quantities, rather than wave packets, is needed. Thus, the memory requirement is 
significantly reduced, an issue that may become more important for large systems. The 
implementation with the Chebyshev propagator takes further advantage of its numerical 
properties discussed above. In cases where resonances are dominant, the LSFD 
approach can be used to further reduce computational costs. We note in passing this 
approach can be extended to the calculation of thermal rate constants. 
 We have tested this approach for the three-dimensional H + H2 exchange 
reaction (J=0) and found excellent agreement with the time-dependent results of Zhang 
and Light.[49] It was then used to calculate the cumulative reaction probability for the 
Li + HF  LiF + H reaction, also with zero total angular momentum.[54] Figure 2 
displays the cumulative reaction probability of this reaction below 0.65 eV. It can be 
readily seen that the cumulative reaction probability is dominated by numerous narrow 
resonances. These resonances are well known in state-resolved reaction probabilities 
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and have apparently survived the summation over both the reactant and product states. 
The details of the calculations can be found in our original publication.[54] 
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Figure 2 Cumulative reaction probability for the Li + HF  LiF + H reaction (J=0).

3.3. S-MATRIX ELEMENTS  

Since the S-matrix provides the most detailed information for a collision process, its 
determination is of great interest. The S-matrix can be expressed as a Green’s function 
matrix between the incoming ( +

iχ ) and outgoing ( −
fχ ) wave packets:[55,56] 

++−
← = if

fi
if EG

EaEa
iES χχ

π
)(

)()(2
)( * ,  (14) 

where χ)()( EEa Ψ=  are the energy amplitudes of the wave packets. The time-
dependent wave packet propagation approach can thus be considered as the direct 
results of expanding the Green’s function operator in Eq. (14) using the time 
propagator.[2] Alternatively, a Chebyshev expansion can be utilized to gain further 
numerical advantages. Indeed, several variants of the latter approach have been 
explored by a number of groups.[11,12,16,20-22,25,57-60] Extensions to “half-
collision” processes have also been proposed.[1,61,62] 
 We have recently studied rotational and vibrational inelastic scattering between 
two H2 molecules using the damped Chebyshev propagation with a full-dimensional 
Hamiltonian.[63-65] The corresponding S-matrix elements were obtained as Fourier 
transforms of correlation functions ( +−≡ ikf
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In such calculations, the initial (and final) wave packet can be conveniently chosen to be 
the product of an internal state eigenfunction and a real translational wave packet placed 
at the asymptote. A complete column of the S-matrix at all energies can be computed 
from a single propagation. Cross-sections and thermal rate constants can then be 
obtained by properly summing and averaging the state-to-state probabilities.  
 For the diatom-diatom collision, we have used a mixed basis/grid 
representation and pseudo-spectral methods for evaluating the action of the Hamiltonian 
matrix on to the propagation vector.[66] Both the parity and diatomic exchange  
symmetry were adapted for the wave packet using a method proposed earlier.[67] For 
J>0, the centrifugal sudden approximation was used.[68,69] Both para and ortho-
hydrogen molecules were considered. Figure 3 shows the integral cross-sections for 
rotational inelastic scattering between two para-H2 in their ground ro-vibrational states. 
Although only the inelastic channels were explored, the same approach can be readily 
implemented for reactive scattering. 
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Figure 3. Integral cross-sections for rotationally inelastic collisions between two para-H2 in their 
ground ro-vibrational states.

3.4 TOTAL REACTION PROBABILITIES AND RATES 

Because of their energy global nature, wave packet methods are ideally suited for 
calculating the energy dependence of reaction probabilities.[2] Instead of repeating the 
calculation of the entire S-matrix at every energy grid point, the total reaction 
probability can be convinently computed at all energies from a single wave packet 
propagation. This becomes particularly important for reactions that are affected by 
shape resonances for which a very fine energy grid is needed to resolve the rich 
structure.
 The total reaction probability is typically obtained from the reactive flux 
calculated at the dividing surface placed at a point-of-no-return.[70,71] This surface is 
often located in the product channel, but not necessarily at the asymptote where the S-
matrix elements are completely converged. Consequently, such calculations can be 
conveniently carried out in reactant Jacobi coordinates and the computational costs are 
no more expensive than that for inelastic scattering. Implemented for the Chebyshev 
propagation, the reaction probability is given as below:[72] 
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where r = fr  defines the dividing surface and rµ is the reduced mass for the r
coordinate. The derivative in the above equation can be carried out analytically. Our 
approach is essentially the same as that proposed by Meijer et al.[60] and used by the 
same authors.[73,74]  
 The above approach was recently applied to the C(1D) + H2  CH + H 
reaction,[72] which serves as a prototype for insertion reactions. Because of a deep CH2
well, a large grid and long propagation were necessary to converge all the resonance 
features in the total reaction probability. The calculations were carried out on a recently 
developed ab initio PES.[75,76] Figure 4 displays the total reaction probability for the 
C(1D) + H2(v=0,j=0) reaction (J=0) up to 0.5 eV of collision energy. It is clear from the 
figure that this reaction shows no threshold, which is consistent with the barrierless 
insertion pathway in this system. Strong oscillatory structures dominate the relatively 
large reaction probability, particularly at low collision energies. These structures can be 
attributed to long-lived resonance states supported by the CH2 well. Our results are in 
reasonably good agreement with time-independent results. 
 Very recently, we have extended the calculation to include non-zero total 
angular momenta[77] with the centrifugal sudden approximation.[68,69] The resulting 
rate constant indicates a mild dependence on the temperature, consistent with the lack of 
reaction barrier in this system. At room temperature, the calculated rate constant is 
about a factor of two larger than experimental measurements. Considering the neglect of 
several important non-adiabatic channels, such as the Renner-Teller coupling between 
two lowest-lying singlet PESs, the agreement is very encouraging. 
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Figure 4. Total reaction probability for the C(1D) + H2(v=0,j=0) reaction (J=0).
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4. Conclusions 

In this work, we have demonstrated that the Chebyshev propagator can be used as an 
effective tool to study a wide range of properties in scattering dynamics, including 
resonances, cumulative reaction probabilities, S-matrix elements, and rate constants. It 
is also well known that it provides an optimal way to compute ro-vibrational spectra of 
polyatomic molecules. The Chebyshev approach bears many similarities with the time-
dependent wave packet propagation method. Compared with the time propagator, 
however, it is more efficient and accurate. In particular, the Chebyshev propagator can 
be exactly implemented with no interpolation errors and the propagation can be carried 
out in real space. In addition, the Chebyshev propagation provides more favorable 
convergence for dynamics near the spectral extrema. It can be expected that this 
approach will find more and more applications in quantum studies of reactive scattering 
processes. 
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MOLECULAR DYNAMICS: ENERGY SELECTED BASES

JOHN C. LIGHT AND HEE-SEUNG LEE
Department of Chemistry and James Franck Institute University of
Chicago, Chicago. IL 60637

1. Introduction

Large amplitude vibrational motions of molecules occur at high temperatures, in
weakly bound complexes, in chemical reactions, and in many other circumstances.
In a subset of these cases the specific quantum states and dynamics are important,
e.g. light atom transfer reactions, unimolecular decay and isomerization of small
molecules, proton transfer in liquids, photodissociation and reactions "guided" by
laser control.

Small amplitude vibrational motions are well described by normal modes ex-
cept in the most unusual of cascs[l]. Normal modes arc, in fact, extremely powerful
tools for the description of molecular motions, forces, and shapes, being the most
widely used representation, and for good reasons. The efficiency of normal mode
descriptions comes about because of the confluence of several requirements for effi-
cient quantum description of molecular systems. These are due to the fact that all
stable molecular systems (or fragments) have a potential energy minimum which
yields a quadratic approximation to the potential energy surface (PES), accurate
at low energies. Since the kinetic energy operator is also quadratic in momentum
or coordinate derivatives, an orthogonal transformation takes the Hamiltonian
to a separable normal coordinate form, i.e. a sum of quadratic one dimensional
Hamiltonians for each normal coordinate. Fortunately, these have analytic har-
monic oscillator solutions both classically and quantum mechanically, and these
approximations are quite accurate for most molecules to energies well above room
temperature, making normal modes an extremely useful representation.

However, normal mode representations eventually run out of steam; they do not
provide an adequate representation for large amplitude motions such as those men-
tioned above. As the vibrational energies increase, the PES's become anharmonic,
the coupling between degrees of freedom grows in all coordinate representations,
harmonic oscillators are no longer good approximate solutions, and analytic so-
lutions are no longer available. Over the past 20 years or so, we have turned to
computers to provide requisite information about large amplitude vibrational mo-
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tions, both to determine the PES's for the molecular systems[7] using empirical
and ab initio quantum mechanical methods and to determine the vibrational states
or dynamics on these surfaces[8, 9, 10]. Such methods require a number of theo-
retical or computational steps and all of which are current activities of research.
The steps are:
(i) Evaluation of the electronic energies at many molecular configurations;
(ii) Determination of a PES, i.e. a usable representation of this information:
(iii) Determination of a coordinate system in which to represent the motions of
the system;
(iv) Determination of the Hamiltonians in this coordinate system:
(v) Determination of a finite representation of the Hamiltonian. i.e. a basis (or a
spectroscopic or algebraic) representation which may be a coordinate grid, phase
space grid, functional Hilbert space, or an abstract algebraic form;
(vi) Solution of the Schrodinger equation for the states of interest: and finally
(vii) Use of the solutions for characterization of motions and determination of the
properties or dynamics of the molecules of interest.

For large molecules or very high molecular energies each step is difficult. The
dimension or the number of degrees of freedom of the molecule grows by three for
each additional atom and the difficulty of each step grows as some power (1 up to
3) of the dimension. In addition, the number of solutions of interest, Nsoln , also
often grows exponentially with the number of dimensions.

In this paper we present a method which, given a PES and coordinate system,
promises to make the subsequent steps both more computationally efficient and
simpler, and with solutions interpretable in terms of quantum numbers of charac-
teristic motions where physically possible. While no single step in this approach is
truly new, the combination of the steps into a general method is new and powerful.
In the following we summarize the method, describing the reasons for the choices,
present an application to H2O to energies above dissociation. Finally we look at
future applications and improvements and caveats in the approach.

2. Zero order H's, ESB's, and IRLM Solution:

In recent years the solution of problems of large amplitude motions (LAM's) has
usually been based on grid representations, such as DVR,[11, 12] of the Hamiltoni-
ans coupled with solution by sequential diagonalization and truncation (SDT[13,
9]) of the basis or by Lanczos[2] or other iterative methods[14]. More recently, fil-
ter diagonalization (FD)[5, 4] and spectral transforms of the iterative operator[15]
have also been used. There has usually been a trade-off between the use of a com-
pact basis with a dense Hamiltonian matrix, or a simple but very large DVR with
a sparse H and a fast matrix-vector product.

The energy selected basis (ESB) presented here has the best of both worlds. The
choice of zero order reduced Hamiltonians provides a good zero order basis; energy
selection from this basis provides an extremely compact basis with limited spectral
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range: the zero order quantum numbers provide an approximate assignment of the
states; and iterative solution for the eigenpairs of the Hamiltonian in this basis
is simple and efficient. The efficiency of iterative solution is greatly enhanced by
both the reduced size and reduced spectral range of the matrix representation of
the Hamiltonian.

Since this method has been described in the literature[16]; we provide here
only a brief outline of the numerical algorithm, but then discuss aspects of it in
some detail. The application to H2O in Section III should clarify the implementa-
tion and performance of the method. The algorithm has three parts: definition of
coordinates and coordinate groups and zero order Hamiltonians for each; genera-
tion of an ESB from solutions of the zero order Hamiltonians; and solution of the
Schrodinger equation for many vibrational states efficiently by iterative methods.

2.1. ZERO ORDER HAMILTONIANS:

We start with the premise that we are interested in solutions for the vibrational
states up to some maximum energy, Emnx < Ecul. Note that with a finite range
basis Emax and Ecut may be in the continuum to include resonance states. In
an orthogonal coordinate system we may define each coordinate to be in a set
{qk} and for each set {qk} we may define a zero order Hamiltonian and the full
Hamiltonian as the sum of the zero order Hamiltonians and correction terms:

H = J2hk + Af + AV (1)
fc=i

AV = V-JTvo(qk) (2)
k=l

where hk is the zero-order Hamiltonian for the kil group containing V (qk). the
reference potential for the {qk} group. AT refers to the remaining terms originating
from the complex kinetic energy terms, if any. The hk arc operators depending on
qk only and contain all the differential operators for qk. However, complex kinetic
energy operators may contain f(qk<) times the differential operators in qk (wrliere
k! and k refer to different coordinate groups). This is the usual case for kinetic
energy operators for angular coordinates. The zero order Hamiltonians have f(qk')
replaced by f{q°kj). i.e fixed values so that hk contains only qk coordinates.

Since we want a basis which can represent motions in any degree of freedom
up to the energy contour of the PES at EcuL, the basis for each group must extend
over the PES to Ecut. Thus we define the reference potential for each zero order
Hamiltonian, hk to be the minimum of V(qk) with respect to all variables qkj not
in the group qk. We then determine the zero order eigenpairs for each group k:

< < (3)

The eigenfunctions, 4>n (Qk)i c a n be- represented in primitive direct product DVR's.
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The multidimensional correlated basis functions for the full molecule are then
defined as energy selected products of eigenfunctions of zero order Hamiltonians.
The i*l wavefunction of the system is expanded as

/ y nl,n.2,...,n.n
n1,n2 n k = \

d

where C// „. „ are expansion coefficients and we include only those product
basis functions that satisfy the energy cut-off:

k=l

Thus the basis is tailored to the potential to span the ranges of coordinates for
energies up to Ecut. This is, however, a very small basis compared to the direct
product of the basis functions for each coordinate group.

2.2. COORDINATE GROUPS AND SEPARABILITY:

In order to have efficient iterative solution of the Schrodinger equation, the spectral
range of the Hamiltonian matrix should be restricted. If the choice of coordinates
were such that the Hamiltonian is separable into the coordinate groups qk. then
the AVr and AT terms would be small or negligible and the zero order wave
functions would be very accurate. In this case also the spectral range of the matrix
representation of H would then be limited by Ecut. Even when the interactions
arc included, the reduced spectral range of H greatly improves the convergence of
the iterative methods of solution.

However, if there is significant correlation in the potential between coordinates
in different groups, (i.e. significant non-separability between groups) then the AV
matrix will have large off-diagonal elements coupling different groups. This will
increase the spectral range and slow convergence.

One clue to the appropriate grouping of coordinates arc the "minimum paths"
of the other coordinates qk* along the minimum potentials V (qk)- If the primed
coordinates vary significantly along the minimum potential paths of the unprimed
coordinates, then there is significant coupling between the two sets and a better
partitioning may be sought. An example of this was given[16] for HCN where
the H-CN distance and angle are correlated on the path between the stable H-CN
minimum and the local minimum at the isomer CN-H. Thus a grouping of distance
(TII-CN) a n d angle (0/_nCN) was made for this system to reduce the spectral range
of H.

2.3. ITERATIVE SOLUTION:

We use the Arnoldi algorithm of the ARPACK[14] libraries which is the imple-
mentation of implicitly restarted Lanczos method (IRLM) of Sorensen[17]. The
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iterative solution requires the user to provide a subroutine for the operation of the
Hamiltonian on a vector. In our approach this is done by sequential transformation
(as much as possible) to a DVB, or other representation in which the AV and AT
terms are easy to evaluate, followed by transformation back to the ESB.

For the triatomic case with one dimensional (1-D) groups of coordinates (i.e.
rA. r2 and the interior angle 9 in Jacobi or Radau coordinates), the explicit zero
order Hamiltonians and the AV and AT terms can be written as:

h = -

where (rl,r%) are the fixed values of (r1 ,r2), usually at the equilibrium geometry.
For this particular partitioning of the Hamiltonian. we can remove the AT term
in Eq. (1) by rearranging the Hamiltonian as

H = h]+h2 + ^f^-h3 + AV (7)

AV = V(r1,r2,9)-V\r1)-V\r2)-fJf^-V°(6). (8)

The three dimensional (3-D) basis functions are then defined as products of
cigenfunctions of zero-order Hamiltonians with the energy cut-off criterion. The
eigenfunctions for each coordinate, 4>n \Qk); a r e represented in the primitive DVR
functions and they arc denoted as Ta'rl- where a is the index for the primitive
DVR functions. The Hamiltonian matrix has a simple structure and its elements
are given by (| n.m.l) is a product ESB function)

,v - / m (2)\ - Ii) (n'.Tn' I fir-, .r->)\ n.rn)
H n, m, I) = < > ' A ' < V ^ + e ) + * ' A ] ^

+ (n',m',l' AV n.m.l). (9)

From Eq. (9), we can divide the matrix-vector product into three parts. Since
the first term in Eq. (9) is diagonal and is obtained from Eq. (3). its contri-
bution to the cost of matrix-vector product is trivial. For the third term, we
evaluate the matrix-vector product by transforming the vector in the ESB rep-
resentation to the primitive DVR. For the second term, we may explicitly calcu-
late (n , rn \ f {i\. r2) | n. rn) and save it before the matrix-vector product routine is
called.

Explicitly, the (n',m',l') element of the matrix-vector product is given by
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8

' , „ , M(l) N(rnX)

where (na,n$,n^) and (rQ, r ,-j, #„,) are the number and the location of primitive
DVR points for (r,. r2, 0). respectively. Note that the upper limits for the summa-
tions over n and m depend on ('in. I) and (/), respectively, due to the non-direct
product nature of the basis. The limits of the summations, Nfjn.l) and M(l) may
be stored in small arrays before the matrix-vector routine is called. In practice,
the summation is carried out sequentially from the right to the left of Eq. (10).

In other words, the summation over n is carried out first for all values of
(a. rn, I), which transform the vector v into the DVR for r, and the 4>m (r2)4>i' ($)
representation for for (r2,9). The subsequent summation over in for all values of
(a. 0,1) transforms the vector in the (a,m,l) representation to that in (a, 3,1)
representation. Once the vector is transformed into the primitive DVR for all
three coordinates after summing over (ji, m, I), the multiplication with the diagonal
potential matrix, AV(ra,r6,9^), is performed. The results are transformed back
to the ESB representation by summing over the primitive DVR points for each
(n' .m',/ ' ) element of the u vector.

Since the summation limits arc always less than or equal to the summation
limits for a direct product basis representation, the number of operations is reduced
by the ESB. A more complete description of the advantages of the sequential
transformation can be found in the work of Carrington and coworkcrs.[18]

The overall scaling of the computer time with parameters of the calculation
is not simple. It appears, however, that for this simple 3-D case the CPU time
scales approximately as the product of the number of accurate solutions desired,
Nsoln, the total number of grid points, Ngrid, and the number of ESB functions
kept, NESJJ (which is important for the accuracy). The number of matrix-vector
products required per converged eigenvalue depends on these parameters as well
as the spectral density and range. This leads to an overall CPU time scaling for a
given problem of approximately

T a hgrid ^

In the very high energy calculations of the vibrational states of H2O given below,
the scaling is slightly slower than this. The ESB is very efficient, with Ar

K57i

~ 4 x Nsoln being adequate for about 7 figure accuracy, at least in the H2O case
given below.
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3. A simple example: H2O to dissociation and above

In this section wo give an example of the ESB/IRLM solution for the vibrational
states of H20 to the dissociation limit and above. The potential used is reasonably
accurate (the PJT2 potential[10] was used) although there may be problems near
the dissociation limit. This is a non-trivial problem on which to demonstrate the
efficiency and convergence characteristics of the method. The calculations reported
here are meant to be representative of a simple triatomic system, not the most
accurate possible for real water molecules.

The dissociation energy of this model potential is about 46.350 cm"1, to the
minimum of the OH potential. Thus the dissociation energy to H+OH(v=0) re-
quires the addition of the zero point energy of OH. ~1350 cm" . yielding a D(, of
~47700 cm" . The model system has over 1340 bound states for J = 0, 730 even
and 611 of odd symmetry with respect to H exchange.

The DVR grid used was varied from small to quite large, with up to 140 grid
points for each of the three dimensions, i.e. 2.7x10' DVR points. Radau coordi-
nates were used without symmetry reduction which meant that each calculation
yielded all vibrational states. The grids were simple, evenly spaced (Chebychev)
points in rx and r2 and Legendre points for 8. These choices are simple but not
optimal. Use of PODVR:s[19, 20] might reduce the grid size by a factor of 2 to 4
with a proportionate decrease in CPU time. Use of symmetry would reduce the
grid size by a factor of two.

It is instructive in this case to examine briefly the zero order potentials and
eigenvalues. Using Radau coordinates the potentials for rv and r2 arc identical.
The zero order potentials are given Figures 1 and 2 as functions of bond length
(Ron) an(i bond angle (cos(#/HOH)). The barrier to linearity is just over 10000
cm" and the dissociation energy (given by V at large Ron) is just over 46300
cm"1. The zero order energies for ^i(r1) (stretch) and h3(8) (bend) are given in
Figures 3 and 4, respectively. For h3(8), r\ and r2 arc set to equilibrium value, fj,
in the kinetic energy operator as defined in Eq. (6). It is worth noting that the
zero order energies for both coordinates show7 a linear (harmonic) range followed
(for stretch coordinates) by an anharmonic regime near the dissociation energy,
followed by a quadratic behavior in the "square well" due to the finite range of
the basis at higher energy. Thus the higher zero order energy states represent a
discretization of scattering states in this energy range. The quadratic behavior of
the high energy zero order angular states is due to nearly "free rotation".

The convergence was checked with respect to the grid size, the ESB size and the
ranges of the coordinates. Agreement to .02 cm"1 was found between the largest
calculations for almost all the lowest 1400 states. The largest calculation, with
140 DVR points in each dimension, corresponding to the maximum -RQH = 13.3
au, and EcuL — 80,000 cm" resulted in an ESB of 11788 3-D functions. The size
of direct product 3-D basis (without imposing energy cut-off) would have been
68 x 68 x 42 = 194,208 functions. This calculation required 7143 matrix vector
products to converge (within the basis) 1800 eigenvalues (even and odd) and took



238 JOHN C. LIGHT AND HEE-SEUNG LEE

80000

60000

40000

20000

Figure 1. The minimum potential for stretch coordinate is plotted with respect to the
OH bond distance, i?oH-
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Figure 2. The minimum potential for bend coordinate is plotted with respect to the
bond angle, COS(#HOH)-

^largest — 535 minutes on a single 2.4 GHz Pentium IV processor. A more modest
calculation with 11369 basis functions and 120 points per dimension yielded 1500
eigenvalues in Tmorfesf = 100 minutes. This shows the scaling noted above:
^largest = ( 5 3 5 m ) ~ ^modest X (^~solnL / ^SOITIM) X ( ^DV HL / ^ D V RNl) X

(^ESBL/^ESBL) =(567 m)
Above the dissociation energy both resonance and discrete representations of

the scattering states exist in the "bound" state calculation. Figure 5 shows both
the convergence of the eigenvalues of the bound states and the variation of the
eigenvalues above the dissociation energy with respect to the range of radial coor-
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Figure 3. Zero order energies for stretch coordinate (r,)
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Figure 4- Zero order energies for bend coordinate (9). The angular kinetic energy is
calculated with the radial coordinates fixed at their equilibrium value.

dinatc.
The resonance states arc easy to identify by their stability with respect to

variation of the range. Even states between number 730 and about 790 appear to
be resonance states since they vary only slightly ( < .03 cm"1) with the range of
the radial grid. Most even states above 790 vary substantially with range and arc
probably discrete representations of scattering states (or equivalently very short
lived resonance states). However, even in this energy range (> 48700 cm" ) there
arc resonance states which have very small variation with range. The lifetimes
of these states can presumably be determined by adding an absorbing potential
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1000

Figure 5. Variation of oven vibrational energy levels of H2O near the dissociation energy
with the range of grid in stretch coordinate. Plotted is the energy difference between two
calculations with maximum R.QH = 12.78 a.u. and 13.31 a.u. The last even bound state
is number 730.

0.1

0.1
500 600 700 800

Figure 6. Variation of odd vibrational energy levels of H2O near the dissociation energy
with the range of stretch coordinate. Plotted is the energy difference between two calcu-
lations with maximum Ron = 12.80 a.u. and 13.30 a.u.. The energy scale is expanded
to show resonances for which the energy docs not vary with the grid range. The last odd
bound state is number 611.

to the Hamiltonian and using the last 100 or so states as a basis, diagonalizing
it to yield the complex resonance energies.[6] We did not evaluate the lifetimes
explicitly.

The odd states vary in a very similar fashion. In Figure 6 we show an enlarged
view of the variation of the odd state energies with the range of the DVR for states
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below and above the dissociation energy. The negative AE''s near states 664 are
the result of quadrature errors for the smaller calculation, all but one (# 664) of
which are smaller than 0.1 cm"1.

4. Conclusion and Comments:

In this paper we have reviewed briefly the ESB algorithms and in particular their
application to the bound states and resonances of the P.IT2 PES for the water
molecule. The application demonstrates the efficiency of the approach, with all
bound states below 46,200 cm"1 being converged to about 0.1 cm"1. The last few
states below dissociation are probably not converged this well since the range of
stretch coordinates for the largest calculation was to -Ron = 13.3 a.u. where the
potential was still ~10 cm" below D,,.

The results given in this paper demonstrate that the ESB generated using
reduced dimensional minimum potentials and the energy cut-off provides an ex-
cellent basis for multidimensional vibrational problems. The ESB provides a very
compact representation adequate for eigenfunctions up to a pre-selected energy
which has a reduced spectral range and which can be used effectively in an it-
erative method of solution. In the calculations reported here we used the IRLM
of ARPACK[14] with excellent results. Even without optimization of the grid or
symmetry reduction, the combination of basis size reduction, spectral range reduc-
tion and iterative solution permitted the use of very large grids and the accurate
calculation of over 1400 bound states in quite reasonable computation times. The
ESB approach should also be advantageous for determination of resonances and
unimolccular dissociation rates as well as for the square intcgrablc portions of
scattering calculations.

We close by discussing some remaining questions about this approach. The
simplest is

"Why is Ecut ~ 80000 cm"1 required for accurate calculation of eigenvalues to
about 52000 cm"1?"

There appear to be two major reasons. First, the separability of the PES in
Radau coordinates is good, but far from perfect for H2O. Therefore the basis must
be sufficiently large to yield accurate results to the desired energy. Since the density
of states of the zero order ESB is close to that of the exact states and the coupling-
increases some energies, extra basis functions are required to converge the energies
desired. Since the coupling depends on the coordinates and the PES, the number
of extra functions will vary. However, the ratio of basis size to accurate eigenvalues
for the ESB ( < 5) is excellent for this system.

A second reason may be that the ESB may not be "well tempered". i.e. may not
cover the desired phase space uniformly. In particular, the kinetic energy operator
for angles is approximated in the zero order Hamiltonians. If /(r , . r2) used in h3(6)
is too large, then the density of angular states will be reduced and fewer angular
functions will be included in the ESB at a given Ecul. This appears to be the case
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for H 2 0 where we included only 42 angular functions versus 68 for each stretch
with Ecul of 80,000 cm"1.

Finally the use of PODVR's and symmetry should improve the efficiency of
the calculations substantially. We have also used the method to look at four atom
(six dimensional) systems such as HOOH and H2CO. These are, of course, much
more demanding and require the use of PODVR's and symmetry reduction. These
will be reported in separate publications.
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1. Introduction 

The scope of this article is to account for some aspects regarding the possibility of 
overcoming steric hindrances in chemical reactivity. This is one of the main themes of 
research in all fields of chemistry: we will present here a progress report on our 
understanding of elementary chemical processes and especially some recent 
achievements in experimental techniques for controlling the spatial orientation of 
molecules. For the time being, these achievements represent tools for investigations of 
the basic mechanisms, but perspectives are open to also exploit them for applied 
purposes.  
Since the role of the spatial orientation of molecules in physical, chemical, and 
biological properties is ubiquitous, control of molecular orientation is a current 
challenge of advanced research in several areas of molecular sciences. Recently, this 
aim appears within reach as techniques for molecular alignment become available. In 
the next section we will illustrate the state of the art with two examples from the 
laboratories of the authors and then proceed with an overview of current progress in 
experimental and theoretical approaches and of further perspectives. 

2. Aligning and orienting molecules 

Two recent papers [1,2] provide updated views of advances in the production of intense 
and continuous beams of aligned molecules. In [1], it was demonstrated that in the 
prototypical case of a seeded supersonic expansion of a molecular beam of benzene, 
besides acceleration and cooling, orientation of the molecular plane also occurs because 
of the anisotropy of the intermolecular forces which govern collisions. This work is 
reviewed in Sec.2.1. Previous studies on the collisional alignment of the rotational 
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angular momentum of diatomic molecules regarded O2 [3], for which the effect was 
probed by magnetic analysis, and N2 [4] for which the probe was molecular beam 
scattering.
Up to now, we have been using terms like orientation and alignment as synonyms. 
According to current usage, we should consistently use alignment here, leaving 
orientation only for cases where one also specifies "heads" or "tails" spatial features of a 
molecule. However, "alignment of a molecular plane" is somewhat contrary to common 
linguistic usage and we will often employ "orientation" to obtain a more immediate 
picture of the phenomenon. We refer to collisional alignment techniques as "natural" 
ones, as compared to those where external field induce a "forced" alignment. We 
mention the focusing in electric fields through the Stark effect, which can be either 
second order for linear molecules [5] or first order for symmetric top molecules [6] (the 
latter being stronger than the former), the use of polarized absorption (limited to 
optically favorable transitions in the molecular manifold) [7], the brute force [8] 
techniques, which use strong electrical or magnetic fields and are applicable only to 
rotationally relaxed molecules with permanent electric or magnetic dipole moments, and 
the alignment in intense non-resonant laser fields [9]. Further details and updated 
developments toward dramatic improvement in intensity was reported in [2] and briefly 
summarized in Sec.2.2. 

MOLECULAR
BEAM SOURCE

VELOCITY
DISTRIBUTION

BOLOMETER

PULSED POLARIZED
LASER BEAM

VELOCITY
SELECTOR

TARGET
GAS BOX

MASS
SPECTROMETER

TIME OF FLIGHT

Figure 1 - The two experimental arrangements used to probe the alignment of benzene molecules 
in a seeded supersonic beam by direct polarized IR laser absorption (upper device) and molecular 
beam scattering (lower device). For further details see Ref. [1]. 
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2.1. NATURAL ALIGNMENT IN SUPERSONIC SEEDED BEAMS 

A natural and effective molecular alignment technique involves microscopic collisions 
in environments exhibiting anisotropic velocity distributions, such as supersonic 
expansions of seeded molecular beams. Simple inorganic molecules, like Na2 [10,11], 
Li2 [12], I2 [13–17], and CO2 [18], have been found to align their rotational angular 
momentum in supersonic expansions when seeded with lighter carriers. Considerable 
efforts were devoted to the characterization of the dependence of the phenomenon on 
the probed rotational levels and on the beam source conditions, such as the stagnation 
pressure, the gas carrier composition, and the angular displacement of the molecular 
beam axis [11,13–18].  
In 1994, by measuring the variation of the paramagnetism of O2 in continuous 
supersonic seeded molecular beams of molecular oxygen relaxed in the lowest 
rotovibrational states, the first experimental evidence of the strong dependence of the 
alignment on the final molecular speed was reported by some of the authors [3]. Later, 
similar effects were observed by UV spectroscopy on CO in molecular beams seeded in 
He [19]. These findings, depending on the analyzed rotational level, were ascribed to 
the sequence of state-to-state elastic and inelastic events, associated with the large 
number of collisions in the expansion zone [20] and to the selective dependence of their 
relative role on the total angular momentum of the collision complex [21,22]. Further 
probing of alignment by scattering cross section measurements, performed downstream 
of the beam source and using as projectiles velocity selected O2- and N2-seeded 
molecular beams and rare gas as targets [4,23], confirmed the correlation between 
molecular alignment and molecular velocity and allowed both an accurate determination 
of the involved interaction potential energy surfaces and characterization of the 
collisional dynamics of aligned molecules [24–26]. These experiments suggested that 
measurements of anisotropy effects in the scattering cross sections, combined with a 
proper velocity selection of the molecular beams, are an alternative source of 
information on the molecular alignment degree if the topography of the potential energy 
surface and details of the involved collisional dynamics are available. 
Recently, our interest has been addressed to the demonstration that the disk-shaped 
benzene molecule in supersonic seeded molecular beams would act similarly. Note that 
in this case the alignment of the rotational angular momentum corresponds to a 
preferential orientation of the molecular plane along a particular direction. Benzene is a 
favorite target of organic chemists, for studies of steric effects, so we could imagine a 
wide range of applications for an oriented benzene molecular beam, in particular for 
investigation of the stereodynamics of elastic, inelastic, and reactive events. The 
probing of the orientation has been carried out through two complementary experiments 
-direct IR laser absorption and molecular beam scattering- and preliminary results have 
been anticipated in a Letter [27], while [1] gives a full account. An accompanying Fig.1 
shows a sketch of the two experimental arrangements. 

2.2. FORCED ORIENTATION BY HEXAPOLE FIELD: THE HONEYCOMB 

Several molecular beam techniques to select the molecular orientation have been 
developed using electrostatic [28-33] or optical methods [34]. Other references have 
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been listed above. Here we deal in particular with the hexapole electrostatic state-
selector, which is frequently employed to study the stereodynamics in chemical 
reactivity, such as reactive gas-phase scattering [35], surface scattering [36], 
photodissociation [37], and electron scattering [38], because of the high degree of 
molecular orientation which can be achieved with this technique. Even the selection of a 
single quantum rotational-state of molecule can be achieved using a long hexapole field 
[39,40]. 

2000 mm

pulsed valve

skimmer
collimator

honeycomb electrode mass spectrometer

Figure 2 - The upper panel shows a global view of the apparatus, where the hexapole honeycomb 
electrode is installed. The geometry of the field and a perspective look of the road system to 
generate it are also shown. Further details can be found in Ref. [2]. 

The beam intensities of oriented molecules using hexapole electric field, however, turn 
out to be poor because the state selection requires a very large flight-length as compared 
with conventional molecular beam set-ups. In order to increase the beam intensity, one 
may propose a way to increase the stagnation pressure of the nozzle. However, the 
characteristics of the molecular beam such as stream velocity, rotational temperature 
and the size distribution of clusters are generally changed [41]. Motivation of the study 
of Ref.[2] has been to develop a new type of electrostatic state-selector in order to 
produce an intense oriented molecular beam. Basic idea of this experiment has been that 
the beam intensity should be simply proportional to the number of beam lines if the 
molecular beams can be focused on a point in space.  
Fig. 2 illustrates the new apparatus for the “honeycomb electric field” which consists of 
seven sets of nozzle, skimmer, collimator, and electric field. This new type of electro-
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static state-selector that consists of seven sets of adjacent hexapole fields forming a 
honeycomb field has been newly developed in order to integrate intensities of seven 
oriented molecular beam lines [2]. The cross section of the electric field is gradually 
diminished from the inlet to the outlet in order to sum up the seven molecular beam 
lines and focus on a focal point located at 1000-mm down-stream from the honeycomb 
field outlet. Again, non-focusable rare gases such as Ar and Kr were used as to check 
the assembly alignment, and then the polar molecule acetonitrile (CH3CN, µ=3.92 D) 
seeded in the noble gases was employed to characterize the quantum state-selectivity of 
the honeycomb field. The dependence of the focused CH3CN beam intensity on the 
honeycomb electrode voltages was obtained. It was also possible to reproduce the 
experimental focusing curve by use of a modified trajectory simulation applicable to the 
honeycomb electric field. The present beam character (i.e. rotational temperature and 
stream velocity) was confirmed to be maintained. Fig.2 provides some schematic views 
of the device and Ref. [2] gives further details. 

3. Stereospecific control by molecular orientation: experiments and theory 

In this section, the authors give a personalized account of the most recent (even 
unpublished) experiments and theoretical advances with which they are familiar.  

3.1. EXPERIMENTS 

Studies of the photodissociation dynamics of HCl dimers using hexapole electric fields 
(see for example Ref. [41]) give indication on the relative orientations of the monomers 
in establishing the properties of the dimer itself. In the latest activity of the group of P. 
R. Brooks [42-44] the process of electron transfer for K to oriented t-butyl bromide is 
found strongly dependent on the orientation. Systems involving metal atoms are 
traditional favorites of molecular beam studies, particularly of stereodynamics. In recent 
experiments [45], with brute force oriented ICl, experimental determination was made 
of the cone of acceptance for reactivity (steric effect) in a "harpooning" reaction, Sr + 
ICl leading to electronically excited products detected via their chemiluminescence 
[45].  
The hexapole technique has been extensively exploited for the study of oriented open 
shell molecules such as OH (see Ref. [46] and references therein) and NO (see Ref. [47] 
and references therein), the latter also for scattering on surfaces [48]. This is a very 
important topic, because the basic tool for enhancement of chemical reactivity is 
catalysis at surfaces. In Ref. [49], for examples, the oxidation of Si (001) induced by 
incident energy of O2 molecules is studied by synchrotron radiation photoemission 
spectroscopy and mass spectrometry, a process of a kind which may show propensities 
regarding molecular orientation of O2 as it impinges on the surface, possibly controlled 
by techniques of the kind described in previous sections.  
In a recent experiment [50] the sticking of ethylene molecules on a (001) Ag surface, at 
80 K and saturated with O2 molecules, has been studied as a function of the degree of 
alignment of ethylene as produced in a velocity selected supersonic seeded beam. It has 
been found that the sticking coefficient strongly depends on such an alignment: when 
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the molecules arrive on the surface rotating "helicopter"-like, they have a sticking 
tendency about 30% larger than that when they arrive rotating "cartwheel"-like.

3.2. THEORY 

Relevant to the topic of surface scattering, the theory reviewed in [51] described an 
approach to surface science which specifically leads to a reaction design where the 
conversion yield for the ortho-para hydrogen conversion via catalysis on a copper 
surface is increased by molecular orientation. This is a process of possible relevance for 
the extremely important problem of hydrogen storage in the anticipated crucial 
technology of future energetic power sources. The theory is checked against early 
experimental findings for production of aligned molecules ["helicopter" or "cartwheel" 
states] in collisional dissociation at surfaces [52]. 
Reaction stereodynamics focuses on vector properties, such as angular momentum 
vector correlation and steric effects, of the reactive process under investigations. Thanks 
to the development of molecular beam techniques with polarized lasers as well as 
electric and magnetic fields, experimental observation of stereodynamics properties has 
become feasible [53] and also their theoretical investigation has recently been 
performed using a time-independent hyperspherical coordinate method. Within this 
approach, it is possible to calculate the full S matrix, from which exact 3-D values of 
stereodynamic properties can be derived. We refer e.g. to Ref. [54] for a recent 
comparative study of classical and quantum stereodynamics for the O(1D)+H2 reaction. 
We have shown some time ago that reaction stereodynamics studies can be carried out 
using alternative representations of the S matrix. Body-fixed representations, each of 
them taking a different vector of the arrangement as the quantization axis, are 
particularly advantageous. The stereodirected representation is characterized by the 
introduction of the steric quantum number, v, the projection of an artificial vector, 
precessing around the Jacobi vector pointing from the diatom center of mass to the third 
atom of the arrangement. As the modulus of this vector increases, the grid of the 
discrete values of the precession angle more finely scans the angle between the Jacobi 
vectors. Different representations can be easily interconverted by means of orthogonal 
transformations, expressed in terms of  Wigner 3j symbols, which preserve the 
symmetry and unitarity of the S matrix in each representation [55,56]. The exact 3-D 
method based on the stereodirect representation has recently been employed to calculate 
stereodynamic properties of the reactions Li + HF [57,58], Na + HF [59], Sr + HF [60], 
F + HCl [61], and C + CH [62,63] for zero total angular momentum. The extension to 
all partial waves has been made for the F + H2 reaction [64]. 

4. Conclusions 

In the preceding sections we have listed experimental progress and theoretical analysis 
on the theme of how to overcome obstacles to reactivity by acting on the preexponential 
(steric factor) ingredient of the Arrhenius equation, a not so often exploited path with 
respect to the conventional catalysis mechanisms which operate mainly on the 
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activation energy. Our point of view has been at the level of microscopic elementary 
processes and it is anticipated that possible practical applications will necessitate further 
effort at this level. 
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THE ROTATING BOND UMBRELLA MODEL APPLIED TO ATOM-
METHANE REACTIONS
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Gotaborg University, SE-^12 96, Gotaborg, Sweden

Abstract. To accurately treat chemical reactions, methods based on quantum
dynamics may be required. For most reactions involving several atoms, applying
full quantum dynamics is presently prohibitive in terms of computer demand. One
option is then to use reduced dimensionality approaches. Here we will focus on
the Rotating Bond Umbrella (RBU) model and its application to atom-methane
reactions. In the RBU model four internal motions are treated explicitly, viz. the
breaking and forming bonds, the umbrella motion, and a reactant bend motion,
which becomes a product CH3 rotation. Hyperspherical coordinates are used. Here
we describe how accurate boundary conditions arc applied and how the matrices
relating to the angular degrees of freedom arc diagonalizcd using the iterative
Guided Spectral Transform eigenproblem solver. We end by showing some illus-
trations of calculations for the A (A=H,O,C1)+CH4 —> HA + CH3 reactions and
a dcutcratcd analogue.

1. Introduction

Chemistry is a broad discipline of science but central to it is chemical reactions.
Studies of chemical reactions have traditionally focusscd on determining thermal
rate constants. With the availability of lasers, more detailed quantities such as
integral and differential cross sections become accessible, even on a statc-to-statc
level in favourable cases. While initially experimental efforts dominated, today the
development goes hand in hand with theoretical efforts which become more and
more accurate.

Here we are interested in the theoretical description of reaction dynamics of
small gas phase reactions. In many cases a good description of how the reactions
occur can be obtained by solving the classical equations of motion. This is usually
the case when we are interested in highly averaged results, where state-to-state
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information gets washed out, and if the atoms involved are reasonably heavy. We
will however be particularly interested in reactions where a light atom, usually the
hydrogen atom, is involved in a bond-breaking/bond-forming process. Tunneling
will then play a role, particularly so at low temperatures. Our aim shall therefore
be to include this effect, which here is done by solving the quantum mechanical
Schrodinger equation in reduced dimensionality. We shall assume that the Born-
Oppenheimer approximation is valid.

Time-independent approaches to quantum dynamics can be variational where
the wavefunction for all coordinates is expanded in some basis set and the pa-
rameters optimized. The best known variational implementation is perhaps the
S-matrix version of Kohn's variational principle which was introduced by Miller
and Jarisen op de Haar in 1987[1]. Another time-independent approach is the so
called hyperspherical coordinate method. The name is unfortunate as hyperspher-
ical coordinates may also be used in other contexts, for instance in time-dependent
wavepacket calculations [2].

The hyperspherical coordinate method is the subject of the present article. In
this method, one coordinate, the hyperradius, is treated by a propagator method.
This leaves one coordinate less to treat by a basis set expansion than in the vari-
ational approaches. Thus the corresponding matrices are one dimension smaller.
Here I will focus on two aspects of the theory, viz. the application of boundary
conditions and how the matrices can be diagonalized. A short derivation of a
Hamiltonian operator for umbrella type motions is also included. 1 will end with
some illustrations of calculations that we have performed and finally there will be
some concluding remarks.

2. Reduced dimensionality models

An early reduced dimensionality model is the Rotating Linear Model (RLM) of
Child[3], Wyatt[4], and Connor and Child[5], developed in the late sixties. In this
model the dynamics of atom-diatom reactions is treated in a collinear arrangement
which is allowed to rotate. Walker and Hayes implemented a correction to include
adiabatic effects of the bending degrees of freedom in their ground states. This
produced the bending-corrected RLM which has been reviewed previously[6, 7].
Inclusion of these bending corrections is important and has been frequently uscd[6].
Nyman has used essentially the RLM model to treat larger reactions by approx-
imately including the zero point energy of all modes not explicitly treated. This
2D model is referred to as the Rotating Line Approximation (RLA)[8. 9].

Four-atom reactions came into focus with the development by Clary of the Ro-
tating Bond Approximation (RBA)[10, 11] and Bowman's reduced-dimensionality
adiabatic bend (RD-AB) calculations of four-atom reactions. In the latter three
stretching vibrational motions are treated explicitly quantum dynamically while
the bending degrees of freedom are treated adiabatically and one diatom is as-
sumed to be a spectator[12, 13, 14, 15, 16]. The RBA may be seen as an extension
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of the RLM by exchanging the atom for a diatom, which is allowed to rotate.
For a reaction AB+CD -> A+BCD the RBA treats the breaking bond of AB,
the forming bond BC, the rotation of CD, the bend of BCD and overall rotation.
Sometimes the CD vibration is also treated.

Yu and Nyman have developed two reduced dimensionality models intended
for A+CD3H —>• HA+CD3 reactions, where often CD3H has been methane. These
models have been termed the rotating line umbrella (RLU) model[17, 18] and the
rotating bond umbrella (R.BU) model[19]. These may again be viewed as exten-
sions of the RLM by adding an umbrella motion (RLU) and for the RBU model
additionally adding a bending motion of CD3 about the line AHP where P is the
center of mass of CD3. For the reactions O+CH4 ->• OH+CH3 and H+CH4 ->•
H2+CH3 accurate rate constants, for a given potential energy surface, have been
calculated and those have turned out to be in excellent agreement with previous
calculations using the RBU model[20, 21].

Zhang developed a quite general reduced dimensionality model, the Semirigid
Vibrating Rotating Model (SVRT)[22], which can be used to treat chemical re-
actions involving polyatomic molecules. For an atom-polyatom reaction the basic
SVRT model treats the atom-polyatom separation, one vibration of the polyatom
and the polyatom rotation. While this model gives generality, it does not treat
the umbrella motion, which is often important for atom-methane reactions. In a
generalised version of the model the umbrella motion has been included[23]. The
SVRT model has been found to give rate constant that differ substantially from
accurate calculations where such arc available for atom-mcthanc rcactions[20, 21].
The reasons for this is presently not clear.

In reactive quantum dynamics, choosing coordinates is a delicate task as rc-
actant and product geometries arc best described by different coordinates. For
state-to-state resolved calculations the reaction must be described all the way out
to asymptotic conditions for the rcactants and products. One approach to solve
this problem is to use reactant-product decoupling methods which were introduced
by Peng and Zhang[24] and improved by for instance Althorpe[25]. Hyperspherical
coordinates attempts to solve the problem by treating both rcactants and products
with the same hyperradius and the same set of angles, orthogonal to each other
and the hyperradius. There is thus just one coordinate that becomes infinite as all
the other coordinates arc angles, with bounded ranges. The hyperradius is handled
separately by a propagator method, usually the R-matrix method[26, 27] or the
log-derivative method[28, 29]. A drawback with the hyperspherical coordinates is
that boundary conditions are best applied in Jacobi coordinates and either ap-
proximate boundary conditions are used or else a transformation between these
coordinates is necessary. This we will discuss further in Sec. 2.3.

For the angular variables a basis set expansion is used. This gives rise to ma-
trices which are to be diagonalized. Diagonalizing matrices is a subject of its own
but we will discuss some aspects of this in Sec. 2.4 as we have taken a particular
interest in efficient diagonalization of large sparse hermitian matrices, wThich ap-
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pear in our implementations of the hyperspherieal coordinate method. The Guided
Spectral Transform matrix diagonalization method that we have developed is quite
general and has also been used in the context of finding highly excited molecular
vibrational states[30] which further motivates discussing it here.

2.1. THE RBU HAMILTONIAN

In the RJ3U model, four internal motions are treated. The model has been applied
to hydrogen abstraction reactions of the type A+CH4 —>• HA+CH3, with A being
a hydrogen, chlorine or oxygen atom. The four motions treated are the H-C and
H-A reactive bond stretches, the umbrella-type mode of the CH3/CH4 fragments,
and a reactant bending mode which becomes a rotational motion of CH3. The
umbrella motion, where the three hydrogens move in phase, here with a fixed C-H
bond length, is treated exactly within the model.

The hyperspherieal coordinates used in the RBU model are defined by the
mass-scaled Jacobi coordinates (Ra. ra. R^,, r%,,) as

P2 = R2
a + ri = R'i + r'L, 0 < p < oo

taii^ = ra/Ra, 0 < <p < ifmax

z = z, —re < z < re

0 = 6, 0 < 6 < -K (1)

where the symbols a and 7 label the reactant A+CD3H and product HA+CD3
channels respectively, while fi will be used to denote cither channel, p, ip.y z and
0 arc the hypcrradius, the hypcranglc, the umbrella coordinate and a rotation
angle, respectively. The latter twro coordinates are here actually not part of the
hyperspherieal coordinates, but they arc of finite extent and orthogonal to p. The
maximum value of the hyperangle is

_ mHmT '
Vmax = tail

0 is the ZHPC. where P is the CD3 center of mass, which in the product arrange-
ment represents the CD3 rotation, sec Fig. 1.

The umbrella coordinate z is the distance from X to C in Fig. 1. z and 0 arc
unchanged by coordinate transformations between these hyperspherieal and Jacobi
coordinates.

The mass-scaled Jacobi coordinates arc given by

R<* — Ca RA,CV3U, Ry — C-, RIIA,CD3

fa — CaIin,CD3, Ty — CryRuA
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Figure 1. Coordinates used in the RBU model.

where RA.CD3H-, RH.CD3, RHA.CD3 and RHA are the distances of A to the CD3H
center of mass, of H to the CD3 center of mass, of the HA center of mass to the
CDa center of mass and the HA internuclear distance, respectively.

The RBU Hamiltonian in hyperspherical coordinates for the reaction A+CD3H
—> HA+CD3 is expressed as

1 0 3 0 , 1 d21 h2 d ^ _ A d , ft2?
-p3

2// |_/;3 Sp dp p2 d<p2 \ 2 dz y ' dz 21 (z)

0 f. 2 (? «)
2fip2 sm 93
y(p,^^,0) (2)

with the volume element for the internal variables

dr — pAdpdifdz sin 6d6,

where

I(z) = mnr2
e(l - cos77) + m j y m c r g ( l + 2cos??),

02; — r
cos" =

I1 =

G(z) =

2rl

mcn

mA +

jjJr2,

3

mil + me
v\-z2

+ 3m D z2

1/2

~:DS -,

/me)
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and the rotational angular momentum operator is

Here rriA is the mass of the A atom with similar notation for other atoms/fragments.
re is a fixed C-D bond length. To obtain the Hamiltonian. the centrifugal sudden
approximation has been invoked, whereby both the total angular momentum J
and {}, the projection of J on the Z-axis of the body-fixed frame (along the H-A
bond), are treated as good quantum numbers. Leaving out the term containing
G(z) and the z dependence in I(z) in Eq. (2) we obtain the RBA Hamiltonian in
the form derived by Nyman and Claryfll].

The potential V in Eq. 2 needs special attention in reduced dimensionality stud-
ies. It is desirable that it somehow accounts for the modes not explicitly treated
in the reduced dimensionality model. This gives rise to an effective potential en-
ergy surface Veff(q/y. q^), which is an explicit function of the explicitly treated
variables q£>. but may implicitly also depend on the other degrees of freedom,
QF- Several approachcs[31, 32, 33, 34, 35, 36] have been used to construct the
potential Veff. In the adiabatic approach[31], the global potential energy function
y(qz5,qi?) is minimised for given values of the dynamical variables to obtain a
potential VOPL (qr>)- At this geometry, vibrational energies _Eqj7 for the other coor-
dinates are calculated using normal mode analysis. Finally, the effective reduced
dimensionality potential function is obtained as,

Veff(qv) - VOpt(qD) + EqF (qD). (4)

This method gives the correct reaction thermicity and vibrationally adiabatic
ground state barrier height, AVr

a
G, (if it is an activated reaction) for a given poten-

tial energy surface. The adiabatic approach gives good rcsults[31]. but it requires
finding Vopt{(\o) and performing the normal mode analysis for every geometry of
the dynamic variables. In addition the global potential energy surface must be
available.

Instead of performing the normal mode analysis we have used a more approx-
imate method to take the q^-coordinates into account. For the Cl + CH4/CD4
reactions we have in some work used a tanh-function in the breaking bond to
interpolate between the saddle point and the product asymptote to get both the
reaction thermicity and AYa

G consistent with the ab initio calculations[18]. In
addition, if the effective potential energy surface of the system is modeled by
the semiempirical London-Eyring-Polanyi-Sato (LEPS) function, the correction is
made directly in the Morse parameters for the two reactive bonds by adjusting the
Sato parameters[17, 19].

Another approach to obtain the effective potential is a sudden approximation,
where the potentials are functions of the dynamical variables with the remaining
coordinates fixed. This approach may give incorrect reaction thermicity and AV£'.
The effects on rate coefficients and cross sections can be approximately corrected
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by using an energy shifting scheme[37, 31]. We used this method for the O(3P) +
CH4 -> OH + CH3[38] and H + CLL, -> H2 +CH3[39] reactions.

We next give a brief derivation of the G(z)-term in the RBU Hamiltonian,
which has previously not been done. The general procedure is to derive the classical
Lagrangian for the constrained motions of the model and then transforming this
to the Hamiltonian form [40, 41]. Let

Z = Zc + ZX

m,czc = rn3Dzx

z = zc + zx

(5)
(6)
(7)

where the dot signifies time derivative and some other symbols are illustrated in
Fig. 2. X is the center of mass of the three D atoms and P the center of mass of
CD3. From Eq. 5 we find that the kinetic energy in the z-coordinate. Tz, can be
written

(8)

(9)

where uz

Using
is defined
z = re cos

T

above.
X gives

mcz
2

2
a

m3l}zx

2

2;

2

Figure 2. Coordinates for the umbrella motion.

For the coordinate y, which is orthogonal to z, we have y — re sinx and get
for the kinetic energy Ty in this coordinate

T —iy — m-solf
2

m3D / x 2 - 2

(recosx) X = (10)
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The Lagrangian corresponding to this umbrella motion is

L = Tz+Ty-V(X), (11)

which gives
_dL _ . z2

The corresponding Hamiltonian is

from which G(z) is obtained as given above.
The kinetic energy operator corresponding to G(z) is hermitian above. Loss

of hermiticity may lead to spurious eigenvalues appearing in the calculations [42].
To avoid this, a proper basis should be chosen. For instance, to treat the term
involving G(z) in the RBU Hamiltonian, a Fourier DVR basis was used[38].

2.2. COUPLED-CHANNEL EQUATIONS

We here derive the coupled channel equations in Jacobi and hyperspherical co-
ordinates. By using Eqs. (1) and (2), we can obtain the Hamiltonian in Jacobi
coordinates for either channel as

tun as f2 \1 d 2 d ^ 1 d 2 d
2ft [p2 ORB ORB pz orB orr-

2 dz v 'dz 2I(z)

h2

(14)

dr — p'2dR0drgdz sin 9d9.

The hypcrradius p is divided into L$ sectors i. For all values of J and il. the
functions [ib'^ > with initial quantum state m are expanded in the coupled channel
form

LS N

^ , z , ^ : t , f 2 ) > (15)
i= l n=l

in hyperspherical coordinates, or as

N

Y , r 0 , z , O ; n ) > (16)
n=l
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in Jacobi coordinates. Here, \F£(rf), z. 0; il) > are the vibrational/rotational states
with eigenvalues £%' in the limit of large values of Rr-j. These states are determined
by solving

h^d^ _ti^c^G d_ h2
 n

2fj,dr2 2 dz dz 2I(z)

n \ 2 t i 2 - & ) + V${rp,z,e) (18)f 2z sin
V^(r0,z,9) = lim V{p,cp,z,9) (19)

TJfl—>OC

and are independent of J. The potentials really refer to effective potentials as
discussed in Sec. 2.1 but for notational convenience this is not made explicit, here.
In Eq. (15), \Hn(tp, z. 0; i. il) > are the eigenstates of the surface Hamiltonian Hs
with the potential Vn(<p,z,0;i) = V(p = pi,<p,z,9) for fixed p, i.e.

Hs\Hn(ip,z,6;i,n) >= £"'\Hn{ip,z,0:,i,tt) > (20)
ti2 d2 n2 d „ . , d h2ti d n d „ . , d h ,2

Hs = - G{z) + J

^ ( ? - « 2 )2fj,p'j sin2 c,

The eigenstates are calculated by a Krylov subspace iteration method, which will
be described in Sec. 2.4. The set of {\Hn(tp,z,9;i,i1.) >} is also independent of J
and orthogonal for a constant pi, i.e.

< Hn.(tp,z,9;i,n)\Hn(tp,z,9;i,n) >=5n.n (22)

By substituting the wavefunctions defined in Eqs. (15) and (16) into the time-
independent Schrodingcr equation H\ijj >= E\ij.; >, we obtain the coupled channel
equations

9 N

-^fnm{R<T-J*tt)+ V(Dp,)nn'/5m(Ra: J-&) = 0 (23)clR1 ' ' *-^ ' ' 'n'=0

d2 A
-p^hnm(p; i, J, n) + 22 (DH)nn'hn'm(p; i, J, it) = 0 (24)

P n'=0
where the coupling matrices have elements

2fip2
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is a diagonal matrix. Wo have solved the coupled channel equations in Eq. (24)
using the quasi-adiabatic log-derivative algorithm of Manolopoulos[29].

2.3. BOUNDARY CONDITIONS

Here we derive boundary conditions for the RBU model using the log-derivative
propagation mcthod[29] and hypcrsphorical coordinates. For the log-derivative
propagation we have h' = Y(p,;)h, where Y(/;J) is the log-derivative matrix, h'
is the derivative matrix of h with respect to p and h has elements hnm. defined
by Eq. 15. This means that we need to find expressions for the matrix elements
hnm and their derivatives with respect to /;, incorporating accurate boundary con-
ditions. The derivation here closely follows Ref. [19], which in turn is based on
Refs.[43, 17]. Dropping the channel index, the asymptotic form fnm(R;JAY) in
Eq. (16) can be expressed as

fnm(R; J, fi) ~ k-l'2h^(knR; J, Q)Snm + k'1^'(knR; J, fi)S™ (26)
where kn = \j2\i(E — ££)/% is the channel wave number, and S^m is an S ma-
trix element, hj : are the Rlccati-Hankel functions, which can be defined by the
Riccati-Bcsscl functions fjj and hj as[44]

Up{knR- J, fi) = fn{knR; J, n) + HniknR; J, fi)
U'p R-.JA^-ih^R:,]^) (27)

and / is defined later. Using Eqs. (15) and (22) and integrating over ip, z and 9,
we have

hkm = <Hk(<p,z,9;i,n)\p3/2i/>%\p,tp,z,0)>
Substituting for \pil)f^(p,ip,z,ff) > using Eq. (16) and inserting the asymptotic
form of fnm in Eq. (26) yield

] (28)
Taking the derivative of hkm with respect to p, wre have

Hk(ip,z,e;i,n)\knRhfy(knR;J,n)\Fn(r,z,d;Q) > 5n

< Hk(tp, z,9:i^)\h(p (knR: J , n ) r | F > , z,9;U) > Snm

< Hk(ip,z,9;i,n)\knRh<?y(knR;J,n)\Fn(r,z,0;n) > S?lm

<Hk (<p, z, 0; i, n)\h\ l ) (knR; J, n)r\F'n(r, z, 0; Q) > SJ
r^} (29)
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where

h, (knR.JAl) - ^ ^ -kn QR ,

and we have used the relations,

dp
Or
TP = r/p-

For convenience, we now introduce four real matrices

X^ = P1'2 < Hk((p, z,0;i,n)\ju(knR; J,n)\Fn(r,
X^ = p-A/'2 < Hk(<p, z, 6: i, n)\knBy'i(knR; J, Q)

or in matrix form

X{^ = p-1'2 <Hk(ip,z,6;i,tt)\knRriI{knR;J,tt) +

^nj(knR: j,n)\Fn(r,z,e-,n) >

+p~i/2 < Hk{ip,z,e:,i,i1)\7ii{knR\ J,l1)r\Fn{r,z,6]i1) > (31)

Then, hkm and hkm can be rewritten as

hkm = Y.Kl'2x^snm-lYJKl'2x^5nm
n n
, y ^ i,-i/2 ^(1) OJQ , • y ^ u-1/2 x(2) <?JQ

n

nkm — 2—in
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Using the expression for the log-derivative matrix Y(/•;;) given above, we can solve
these equations to obtain the S-matrix

Sm(E) = - k 1 / 2 W- 1 W*k- 1 / 2 (33)

where
W = [ Y ( P I ) ^ 0 ) - * ( 3 ) ] + i [Y(PI)X^ - X^'j (34)

and k is a diagonal matrix with the elements (k)n/n = kn8nin. Eq. (33) is valid for
large values of p,;. Note here that only a single p-scctor is involved in applying the
boundary conditions. To instead use the i?,-matrix propagation, only W has to be
modified according to

W = [R4(p,:)^(4) - ^ ( 2 ) ] - i [R4(tt)* (3) - ^ ( 1 ) ] . (35)
where R4 is a block of the R matrix[43].

The order / of the Riccati-Hankel functions h\ ' '' given in Eq. (26) can be
defined from the coupling matrix in Eq. (25) as

7 ( / + l ) = J(J + l)-n2 + 1 (36)

We have taken the nearest integer value of / and ignored the resulting small
error in the centrifugal potential in applying boundary conditions[45, 19]. Also, we
have noticed that the cigenstates of the surface Hamiltoiiian defined in Eq. (20)
approach the asymptotic vibrational/rotational states for large p such that

\Fn(r,z,0;n)> » R-1/2\Hn(<p,z,O;i,n)> (37)

£b
n * Si1- (38)

As a result of this approximation, the asymptotic states {\Fn(r,z,9;Q) >}, need
not be calculated. Further, in our applications the integrands can be integrated
over the z and 6 variables first. These integrations arc only done once for a given
Q value, as they are independent of the scattering energy and J. Usually the
scattering calculations are performed for several energies. The wavefunctions and
their derivatives required to apply the boundary conditions need only be calculated
for the first energy and can then be reused at other energies.

We end this section by showing reaction probabilities calculated using accurate
boundary conditions as described and by applying approximate boundary condi-
tions. The approximate boundary conditions are applied directly in the hyper-
spherical coordinatcs[46, 47]. Fig. 3 shows how the state-to-state reaction prob-
abilities oscillate as a function of the hyperradius when using the approximate
boundary conditions. The illustration here is for the CI+CH4 —> HCI+CH3 reac-
tion. The straight line is an average value. Here the RLA model[9] was used and
CH4 had initially two quanta in a C-H stretch mode while HC1 formed in the first
excited vibrational state.
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12 14 16 18 20 22 24 26 28
p/a0

Figure 3. State-to-state reaction probabilities as a function of the hyperradius, calculated
using approximate boundary conditions for tho CI+CH4 —> HCI+CH3 reaction. CH4
had initially two quanta in a C-H stretch mode while HC1 formed in the first excited
vibrational state.

Fig. 4 compares statc-to-stato reaction probabilities obtained using the accu-
rate and approximate boundary conditions for the CI+CH4 —> HCI+CH3 reaction
using the RLA model. The results from the approximate calculations have been
averaged over sectors. CH4 had initially one quantum in a C-H stretch mode while
HC1 formed in the ground vibrational state.
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Figure 4- State-to-state reaction probabilities obtained using the accurate (solid line)
and approximate boundary conditions (dashed line) for the CI+CH4 —> HCI+CH3 re-
action. CH4 had initially one quantum in a C-H stretch mode while HC1 formed in the
ground vibrational state.
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2.4. ITERATIVE DIAGOXALIZATION

Diagonalization of matrices is important in many contexts [48, 49] and a variety
of efficient diagonalization routines exist. When the matrices are large, computer
memory and CPU-time limitations must however be considered. If the matrices
additionally are sparse and only a fraction of the eigenpairs are desired, iterative
diagonalization routines can be expected to perform well. Large sparse matri-
ces are often obtained when grid methods are used. There are a variety of grid
methods available, for instance the finite element method[50, 51, 52], the collo-
cation method[53], the adiabatic pseudo-spectral transform method[54] and the
distributed approximating functional approach[55. 56. 57]. In quantum dynamics
calculations the discrete variable representation (DVR) method, which is a collo-
cation method based on orthogonal polynomials, is frequently used[40].

There is a range of iterative diagonalization routines to choose between, includ-
ing classical orthogonal polynomial expansion methods[48], Davidson iteration[58]
and Krylov subspace iteration methods. Here the popular Lanczos method[59] will
be discussed in the context of finding the eigenstates of the surface Hamiltonian
appearing in the hyperspherical coordinate method.

The Lanczos algorithm generates a set of vectors, usually from a three term
recursion formula[60] and is easy to use. Two drawbacks of the standard Lanc-
zos algorithm are the loss of orthogonality between the generated vectors and the
observation that eigenvalues in dense interior regions are converged slowly. This
observation can be turned into an advantage by applying a suitable spectral trans-
form. The idea behind the Guided Spectral Transform mcthod[61, 19] is to dilate
the eigenvalue spectrum in the interesting regions, whereby these will be converged
faster.

The Lanczos algorithm, using the conventional three-term recurrence[59] and
incorporating a hermitian filter F(Hs), may be written

>=F(Hs)\qj > - ~0j\qj-j\qj-i (39)

with
ft = 0, \q0 > = 0. (40)

The generated Lanczos vectors arc formally orthogonal but due to the finite pre-
cision in the calculations, loss of orthogonality occurs. This can be remedied by
reorthogonalising the vectors, for instance using the partial reorthogonalization
method due to Simon[62]. The recursion coefficients Oj and 0j+i are the mean en-
ergy and residue of the j l h vector, respectively. They define the tridiagonal matrix

02
02
a2

03

0

03

(41)
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Diagonalizing this matr ix gives the eigenvalues en and the expansion coefficients
C " of the eigenvectors in the Krylov subspace {\qk > , k = 1. • • • .j} such tha t

k=l

where \Hn > are eigenfunctions of Hg as before.
If the subspace is big enough to converge a set of N states of F(Hg), the

corresponding N eigenstates of the surface Hamiltonian Hg, which has the same
eigenvectors but different eigenvalues E'J, can then be obtained. This is a result of
the Krylov subspace being invariant under the spectral transformation performed.
The eigenvalues £// of Hg can be determined from en = F(S'lI).

In quantum scattering calculations we are typically interested in the eigenstates
in the low energy end of the spectrum. For this purpose an exponential filter
f(Hg) = exp[—a(Hg — Hrnin)] is useful as it will dilate the eigenvalues at low
energies. The action of the filter on the vectors can be performed via the Chebyshev
polynomials [63, 64],

L
f(H,s) = exp[-a(Hs - Hmin)] m ^ Ai(a)Ti(Hnorm) (43)

1=0

where T; denotes the llh Chebyshev polynomial, and Hnorm the normalized oper-
ator

Hnorm = —^77— (44)

with

n-hn +77 1
11 — Q L max ~r ±1 min\

\ TJ r TT TT 1
^••tl — -z[nmax — limin],

where Hmax and Hmin are respectively estimates of the maximum and minimum
eigenvalues of Hg.

The expansion coefficients Ai(a) in Eq. (43) are determined by the following
integral

Ma) =

(45)

which can be evaluated by Gauss-Chebyshev quadrature.
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TABLE 1. Compar-
ison of the order of
the Chobyshev expan-
sion for the exponential
f(Hs) = e-*("s-"-»>
filter with the guided
filter F(HS) defined in
Eqs. (46). Hmin = 0.0
and a = 0.5 eV~1 were
used.

Hmax/eV

15.0
20.0
25.0
30.0
40.0
50.0
60.0
80.0

L

16
18
19
21
23
25
27
31

La

6
7
7
8
9
9
10
11

Although the expansion in Eq. (43) converges exponentially once / > aAH, it
is not necessary to converge it for the calculation of cigenstatcs. Instead, we use
the truncated polynomials as the filter in the Lanczos iteration, i.e.

LG

F(HS) = Y, Al (^Tl (Hnorm), (46)
1=0

where the coefficients A/(I > LQ) which have an absolute value less than O.Of have
been excluded. In an application to the CI+CH4 —> HCI+CH3 reaction we found
that LQ was substantially smaller than L as listed in Table f. This significantly
enhances the efficiency of the spectral transformation as the CPU time increases
approximately linearly with the number of expansion polynomials. As the expo-
nential function is not accurately represented by the filter F{Hs), but merely acts
as a guide for the filter being produced in the Chcbyshcv expansion, the algorithm
is referred to as the guided spectral transform (GST) Lanczos method. The GST
method is quite general and can also be used in other fields. It has been used to
calculate all bound states of the NO2 molcculc[30] and also to calculate eigenvalues
of four and five atom molecules[65, 66].

Fig. 5 shows a typical curve of the GST for the exponential filter. It is clear
that the approximate spectral transform well represents the profile of the expo-
nential filter at low energies, where the curve is also smooth and monotonous.
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Although there arc deviations and waves appearing at high energies, this will not
affect the calculation of the lowest eigenstates required in the quantum scattering
application. The eigenvalues of Hg are determined by the roots of the GST curve
for obtained F{E) values as shown in Fig. 5. Finding the roots is fast and can be
done with several algorithms, e.g., the Newton-Raphson method[67].
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Figure 5. The curve of the guided spectral transform (dashed line) with LG = 8 for
the exponential function exp(—Q.bE) (solid line) from Emln = 0.0 to Emax = 30.0 eV',
divided into two panels for better resolution.

The CPU scaling of the GST method with the size of the basis set expansion
has been investigated in an application to CI+CH4. A scaling better than Ar2,
close to NlnN in fact, was observed as illustrated in Fig. 6. This is also the
scaling normally found in wavepacket calculations and decidedly better than the
approximately N~3 scaling observed in direct diagonalization methods. Note also
that the GST method has only small requirements on primary memory.

3. Applications
The RBU model has been applied to study the hydrogen abstraction reactions, X
(X=C1, O and H) + CH4 -> HX + CH3. These occur through a potential energy
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300 800 900

Figure 6. CPL time for diagonalizing a matrix of size A* using the guided spectral
transform approach in a reactive scattering application to CI+CH4 —> HCI+CH3. JVmiV
and A'2 scaling laws are included for comparison.

barrier wherefore strong quantum effects are expected for these light atom transfer
reactions. We here discuss thermal rate constants, effects of vibrational excitation,
product rotational distributions, differential cross sections and tunneling.

3.1. THERMAL RATE COEFFICIENTS

For the H+CH4 -> H2+CH3[20] and O+CH4 -> OH+CH3[21] reactions, accurate
Multi Configurational Time Dependent Hartree (MCTDH) calculations have been
performed. These calculations include all vibrational modes and are for a total
angular momentum J = 0. The flux correlation function formalism[68, 69, 70]
was employed to calculate cumulative reaction probabilities for J — 0, NJ=0(E).
Employing the J-shifting approximation[31] the thermal rate constant could then
be found from

grot CH [+<
dEexp{-E/kT}NJ=0(E); (47)

where Qroi{T) is the partition function for the overall rotational degrees of freedom
evaluated at the transition state. In some of the work on H+CH4, the rcactant par-
tition function Qr{T) was evaluated harmonically[71. 72]. It was however found[73]
that the anharmonicity ought to be considered, which has also been done in later
work[20, 21]. In even more recent work it has been found that on a new more
accurate potential energy surface, the anharmonic effects are negligible[74]. Sev-
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oral reduced dimensionality quantum scattering calculations of the thermal rate
constant have also appeared for the H+CH4 -> H2+CH3[75, 39, 76; 77, 78, 79]
and O+CH4 -> OH+CH3[80, 81, 82, 38, 83] reactions. The rate constants from
the MCTDH and RBU calculations using the same potential energy surfaces are
shown for the two reactions in Figs. 7 and 8. The agreement is seen to be very
good. The O+CH4 calculations by Palma and Clary[83] also agree well with the
MCTDH results. The SVRT results are for these two reactions substantially below
the MCTDH results. The reasons for this is at present not clear.

The reactions show a non-linear Arrhenius behaviour. For the 0 + CH4 reac-
tion, this is attributed to spin-orbit interactions and tunneling. For the H + CH4
reaction, tunneling plays the major role. At high temperature, the curvature is also
caused by the vibrational excitations of the CH4 reactant. which can significantly
enhance the reaction.

1e-21
2.5 3 3.5

1000/T

Figure 7. Thermal rate constants for the H+CH4 —> H2+CH3 reaction obtained us-
ing the RBU (x) model and full-dimensional MCTDH calculation (+). In both cases
J-shifting is employed.

3.2. VIBRATIONAL ENHANCEMENT

The RBU model can be used to study the effect of exciting the vibrational modes
treated within the model. For the reactions X (X=C1, O and H) + CH4 -» HX
+ CH3 we find that exciting a vibrational mode results in a lower threshold to
reaction. It was also found that exciting the reactive C-H stretch enhances the
reactivity more than exciting the CH4 umbrella mode. Vibrational enhancements
for the umbrella and C-H stretch vibrations have also been found in other studies
of the dynamics[75; 80] and in canonical variational transition state theory (CVT)
calculations[84]. Enhancement of the Cl + CH4 reaction due to vibrational excita-
tion of the H-CH3 stretch has also been confirmed by experimental measurements
by Zare and coworkers[85].
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1e-21

Figure 8. Thermal rate constants for the O+CH4 —> OH+CH3 reaction obtained us-
ing the RBU (x) model and full-dimensional MCTDH calculation (+). In both cases
./-shifting is employed.

Interestingly, for the HC1 + CH3 —> Cl + CH4 reaction, we find that exciting
the HC1 stretch mode significantly enhances the rate whereas exciting the umbrella
mode of CH3 has the opposite effect. The same observation was made by Duncan
and Truong[84] based on their CVT calculations. We have made the same observa-
tion in a study of the HB1+CH3 —> Br + CH4 reaction using the RLU model[86].
To explain the retarding effect of the umbrella mode excitation, assume that the
reaction behaves largely vibrationally adiabatic, which is reasonable at low ener-
gies considering that a light hydrogen atom transfers between two heavy atoms.
Since the vibrational frequency for the umbrella motion of CH4 is substantially
higher than that of CH;3; this means that energy must be transferred into the um-
brella mode as the reaction proceeds, wrhich increases the vibrationally adiabatic
threshold to reaction and slows it down. Again, in experimental measurements
by Zare and coworkers on the HC1 + CH3 reaction it has been found that vibra-
tional excitation of the CH3 reactant has small to negative effects on the reaction
ratc[87].

3.3. ROTATIONAL DISTRIBUTIONS

The rotational degree of freedom about the smaller principal axis of inertia in CH3
is treated in the RBU model. The corresponding rotational distributions of CH3
can therefore be calculated for the X + CH4 —>• HX + CH3 reactions. The results
obtained show that the rotational distribution of CH3 is rather cold for the X +
CH4 reactions out of the vibrational ground-state of CH4. This is consistent with
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a collincar or nearly collinoar "X-H-CH3" transition state. As an example, Fig. 9
shows the distributions for Cl + CH4 reacting out of the vibrational ground state
at a kinetic energy of 0.159 eV. The most populated state is j = 1. Cold rotational
distributions for the Cl + CH4 reaction have been measured by Zare's group[88].

= 6

Figure 9. Calculated rotational state distributions of CH3 for Cl + CH4 reacting out of
the vibrational ground state to give HC1 in the ground state and CH3 in the vibrational
ground state at a kinetic energy of 0.159 eV.

3.4. DIFFERENTIAL CROSS SECTIONS

Zare and co-workers [89] have measured differential cross sections for the Cl +
CH4(^6 = 0) -> HClfV = 0, j) + CH3 and Cl + CH4(^36 = 1) -> HC1(> = 0/1, j)
+ CH3 reactions, at an average translational energy of 0.159 eV. Here u-n is a
stretch motion of H-CH3 and j is the HC1 rotational quantum number. In order
to compare with these experimental results, we have calculated differential cross
sections at this collision energy. Since the HC1 rotational degree of freedom is not
treated in the RBU model, we compare with the experimental results for j — 0.

For Cl + CH4 reacting out of the vibrational ground state to form products
in the vibrational ground state we find predominantly sideways and backward
scattering. Also, the umbrella mode of the CH3 product is not excited. These
calculated results arc in good agreement with the experimental measurements.

For CI+CH4 reacting out of a state with one quantum in the H-CH3 stretch,
HC1 is formed in the ground state or in the first excited state. For HC1 excited, CH3
forms almost exclusively in the ground state, which is in agreement with the ex-
periments. Forward and sideways scattering dominates which qualitatively agrees
with the experimental results. For the case where HC1 forms in the ground vibra-
tional state, the products arc predominantly scattered in the backward hemisphere,
which again is consistent with the experimental measurements. The umbrella mo-
tion of CH3 is however significantly excited in the calculations, with two quanta
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in it being most probable, while the experiments indicate no. or only small vibra-
tional excitation. We have made the same observation both in three-dimensional
RLU and four dimensional RBU calculations. In the case of the RLU model a new
ab initio potential energy surface was developed and used with the same result[18].
This discrepancy in regards to the excitation of the umbrella motion of CH3 may-
be due to the constraints of the reduced dimensionality models used, where in
particular the rotational degree of freedom of HC1 is not treated.

Kandel and Zare[87] have measured the differential cross sections for the CI+CD4
->• DC1 + CD3 reaction at collision energies of 0.18, 0.22 and 0.25 eV. Results for
CD4 initially in its ground vibrational state with DC1 forming in its vibrational
ground state are shown in Fig. 10 together with calculated differential cross sec-
tions using the RLU model. The agreement is good. The DC1 product is backward
scattered at low energy. It becomes more sideways scattered as the collision energy-
increases . but remains predominantly in the backward hemisphere at the energies
considered here. In Table 2, relative cross sections for reaction out of the CD4
vibrational ground state are shown. DC1 is formed in its vibrational ground state.
From the table it is seen that the umbrella mode of CD3 is hardly excited at all.
The results for the cross sections are in good agreement with the experimental
observations as are the differential cross sections[85, 87].

In summary, the agreement with the experimental results is good except in one
case. This is for the normal isotope reaction out of CH4 with one quantum in a
stretch vibration giving ground state HC1. In this case the calculations gives more
umbrella mode excitation than the experiments.
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Figure 10. Differential cross sections for the reaction Cl + 004(7/35 = 0,1̂ 4 = 0) —>
DC1(V — 0) + CH3<V2 — 0) at several kinetic energies. The angle 180° refers to backward
scattering of the DC1 product. RLU results (crosses) arc compared to the experimental
results of Zare and coworkers(solid lines).
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TABLE 2. Relative reaction cross sections a for CI+CD4 in the vibrational ground state
giving DC1 in the vibrational ground state. The umbrella excitation of CDs is indicated
by uumb and the kinetic energy by Ekin-

EM

0
0

n/eV
.15
.18

{Mum

(0)
(0)
(1)

a
0
3
0

15
70
04

Ekin/eV
0.22

{Mum
(0)
(1)

b) a
13.01
0.11

Ekin/eV
0.25

(uumb)
(0)
(1)
(2)

a
17.48
0.23
0.001

TABLE 3. RBU calculated ground state tunneling (if")
and transmission (KG) coefficients for the X (X=C1, O
and H) + CH4 ->• HX + CH3 reactions.

T/K

200
250
300
400
600
800

C1 +
<f

13.4
9.9
7.8
5.3
3.0
2.2

CH4

K
u

2.3
1.6
1.2
0.9
0.6
0.5

O +
rf

264.9
73.7
34.6
14.8
6.9
4.8

CH4

K
u

33.8
9.0
4.0
1.6
0.7
0.4

H +

<t
71.0
23.0
12.0
5.8
3.1
2.3

CH4

KCV

66.9
21.7
11.2
5.4
2.8
2.0

3.5. TUNNELING

Table 3 gives the ground-state tunneling (r]G) and transmission (K G ) coefficients
for the reactions X (X=C1, O, H) + CH4 ->• HX + CH3 as calculated within the
RBU model, if' is defined as the ratio of the thermal rate constant out of the
ground state to the thermal rate constant out of the ground state obtained if re-
action probabilities below the vibrationally adiabatic threshold arc set to zcro[36].
K° gives the ratio of the quantum mechanical ground state rate constant to the
one where no tunneling occurs and there is no reflection at energies above the adi-
abatic ground state barricr[36, 90]. Thus the ratio i\G / KF defines the rccrossing for
reaction out of the ground state. It is seen that tunneling is important for all three
reactions, which is related to the fact that a light hydrogen atom is transferred in
these reactions.

It is also clear that rccrossing is important for the hcavy-light-hcavy (HLH)
reactions Cl/O + CH4, while the rccrossing is small for the H + CH4 reaction.
This difference is largely due to the trapped states, or Feshbach resonances, that
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arc associated with the region of the potential near the barrier top. Resonance
scattering often plays a role in HLH reactions, which here is particularly accentu-
ated for the Cl + CH4 reaction. This is reflected in plots of cumulative reaction
probabilities versus total energy where there is more structure for Cl + CH4 than
for H + CH4. For H + CH4 a smoothed step-like curve is obtained, where the
steps correspond to quantized transition states[9f].

4. Summary

I have here summarised some of the quantum reactive scattering work we have per-
formed, focusing on the Rotating Bond Umbrella (RBU) model but also including
some results from the Rotating Line Umbrella (RLU) model. In the RBU model
four degrees of freedom are treated which are chosen to particularly efficiently treat
atom-methane reactions or similar reactions with umbrella type motions. The RBU
model reduces to the Rotating Bond Approximation (RBA) in its fullest form, if
the RBU umbrella motion is treated in the pseudo-diatom approximation. Nor-
mally the RBU is implemented with an exact treatment of the umbrella motion,
within the RBU model, and the derivation of the corresponding Hamiltonian has
been explicitly given here for the hist time. The RBU model reduces to the RLU
model if the bend motion is not treated.

We have shown how accurate boundary conditions can be implemented into the
RBU model and illustrated the effect of using approximate boundary conditions.
We have also described the guided spectral transform. GST, method for iterative
diagonalization of large sparse matrices.

It has been found that the RBU model gives rate constants in good agreement
with accurate MCTDH calculations. The model can however additionally be used
to calculate for instance statc-to-statc integral and differential cross sections. In
particular for the CI+CH4 and CI+CD4 reactions there are many experimental
results to compare with and the agreement between these and the RBU and RLU
results is generally very good.
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Abstract. Over the last decade, advances in quantum dynamics, notably the 
development of the initial state selected time-dependent wave packet method, coupled 
with advances in constructing ab initio potential energy surfaces, have made it possible 
for some four-atom reactions to be addressed from first principles, in their full six 
internal degrees of freedom. Attempts have been made to extend the time-dependent 
wave packet method to reactions with more internal degrees of freedom. Here, we 
review the full-dimensional theory for the A + BCD four-atom reaction and use it to 
guide the reduced-dimensionality treatment of the X + YCZ3 reaction. Comparison of 
rigorous calculations with recent experiments are presented for (a) the benchmark H + 
H2O abstraction reaction, and (b) the H + CH4  H2 + CH3 reaction. 

1. Introduction 

The development of theory for reliable calculations of chemical dynamics has two 
components: the construction of accurate, ab initio, multidimensional potential energy 
surfaces (PESs) and the performance of reactive scattering calculations, either by time-
independent (TI) or time-dependent (TD) methods, on these surfaces. Accurate TI 
quantum methods for describing atom-diatom reactions, in particular for the benchmark 
H + H2 reaction, have been achieved since 1975.[1,2,3] Many exact and approximate 
theories have been tested with the  H + H2 reaction.[4,5] 

The progression from accurate quantum scattering calculations of three atoms 
to four atoms by TI methods proved formidable.[6,7,8] It is only in recent years that we 
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have achieved a quantitative level of understanding for the quantum reactive scattering 
of some four-atom systems in their full six internal coordinates,[9,10,11,12] comparable 
to what was attained for three-atom systems nearly three decades ago. This has been 
achieved largely through the use of the initial state TD quantum wave packet 
approach.[13,14]  The benchmark four-atom reaction has been H + H2O  H2 + OH. 
Both the forward and reverse reactions have been studied in detail. The framework 
suggests that given an accurate PES for a four-atom reaction, quantum dynamical 
calculations could provide quantitative details such as state-to-state reaction 
probabilities, fully converged integral cross sections, and accurate thermal rate 
coefficients to compare with experiments. 

Recently, there has been some progress made in treating polyatomic systems 
beyond four-atoms in full dimension.[15,16,17] However, due to the quantum nature of 
the reactive scattering problem, it is necessary to resort to approximation methods, e.g. a 
reduced dimensionality approach to overcome the exponential increase in basis set 
functions to be included in the scattering calculations, to remain practical. Meyer and 
Manthe et al. employed a time-dependent basis set in the multi-configuration time-

rotating bond approximation (RBA).[21,22,23] Bowman et al. used the adiabatic bend 
energy-shift approximation.[24,25] Yu and Nyman deployed the rotating bond 
umbrella[26,27] to study reactions of the type X + CH4 (X = H, O). Zhang et al.
developed the semi-rigid vibrating rotor target (SVRT) model.[28,29,30] The SVRT 
model is capable of providing rather accurate total reaction probability by an accurate 
treatment of the spatial motion. 

A reaction of the type X + YCZ3, with six atoms, would have twelve internal 
degrees of freedom, and this poses a severe challenge for both the construction of the 
PES as well as the reactive scattering calculation. The H + CH4  H2 + CH3 reaction, in 
particular, is an important combustion reaction. It has served as a prototype for this kind 
of reaction, and has been the subject of both experimental[31,32] and 
theoretical[15,16,17,24,26,30,33,34,35,36,37] interest for many years. As five of the six 
atoms are hydrogens, the system is a suitable candidate for pursuing both high quality 
ab initio calculation of the PES and accurate quantum reactive calculation. By viewing 
the X + YCZ3 system as similar to the atom-triatom reaction A + BCD, with CD being 
replaced by CZ3 it is possible to reduce the critical internal degrees of freedom from 
twelve to just seven: two degrees of freedom more than the tetraatomic system with the 
CD bond frozen, one for the umbrella motion of CZ3 and the other for the torsional 
motion of CZ3 which is assumed to retain its C3v symmetry throughout. Various other 
models ranging from a collinear four-atom system33 to a full twelve-dimensional 
quantum transition state approach have been used.[15,16] 

This paper draws a parallel between the (full) six-dimensional H + H2O  H2
+ OH and the (reduced) seven-dimensional H + CH4  H2 + CH3 abstraction reactions. 
In Sec. 2, we briefly present the initial state TD quantum wave packet approach for the 
A + BCD and X + YCZ3 reactions. The Hamiltonians, body-fixed (BF) parity-adapted 
rotational basis functions, initial state construction and wave packet propagation, and 
extraction of reaction probabilities, reaction cross sections, and thermal rate coefficients 
from the propagated wave packet to compare with experiments are discussed. In Sec. 3 
we briefly outline the potential energy surfaces used in the calculations. Some 

dependent Hartree (MCTDH) method.[15,16,17,18,19,20] Clary et al. developed the 
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interesting results for the H + H2O and H + CH4 abstraction reactions are presented in 
Sec. 4.  

2. Theory 

2.1 HAMILTONIAN FOR THE A + BCD REACTION AND BASIS SET 
EXPANSION

The A + BCD atom-triatom reaction has been discussed in detail in previous 
papers,[11,12] and we shall only briefly summarize the theory here. The six internal 
Jacobi coordinates ( )ϕθθ ,,,r,rR, 1 212  for an A+ BCD reaction are shown in Fig. 1. 
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Figure 1.  Jacobi coordinates for an atom-triatom reaction A + BCD. 

 The Hamiltonian for the “internal motion” can be written as[11] 
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where µ is the reduced mass of A and BCD; 1µ  is the reduced mass of B and CD; 2µ
is the reduced mass of CD; R is the distance from A to the centre of mass of BCD; 1r  is 

the distance from B to the centre of mass of CD; 2r  is the bond length of CD; J is the 
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total angular momentum operator; j1 is the orbital momentum operator of B with respect 
to CD; j2 is the rotational angular momentum operator for CD; and j = j1 + j2 is the 
coupled total angular momentum operator for BCD. The one-dimensional vibrational 
Hamiltonians )(rh 11  and )(rh 22  are defined as 

2,1,)(
2

)(
2

22
=+

∂
∂−= irV
r

rh ii
ii

ii µ
  (2) 

where )( 11 rV  and )( 22 rV  are one-dimensional reference potentials obtained from the 
total global potential ),,,,(V 212tot ϕθθrrR, 1  with other degrees of freedom fixed as 
follows:

,),,,,V 20212021tot11 ϕθθθ ==∞→= rrr,(R)(rV   (3) 
,),,,,,(V)( 2121tot22 ϕθθrrRrV ∞→∞→=   (4) 

and 2020 θ,r  denote the equilibrium values for 22 , θr  in the free triatomic BCD 
molecule. The interaction potential ),,,,,( 2121 ϕθθrrRV  in Eq. (1) is thus given by 

.)()(),,,,,(V),,,,,( 22112121tot2121 rVrVrrRrrRV −−= ϕθθϕθθ   (5) 
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Figure 2. Schematic configuration space for the reaction A + BCD  AB + CD. R is the radial 
coordinate between A the centre of mass of BCD, and r1 is the distance from B to the centre of 
mass of CD. The shaded regions are the absorption zones for the time-dependent wave function to
avoid boundary reflections. The reactive flux is evaluated at the r1 = rs surface.
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The time-dependent wavefunction is expanded in terms of the translational basis of R,
the vibrational bases )(),( 2211 rFrF vv  which are eigenfunctions of )(),( 2211 rhrh ,
respectively, and the BF parity-adapted rotational basis functions: 
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where v denotes (v1, v2) and j~  denotes (j1, j2, j).  In order to save computational time, 
the configuration space for the reaction A + BCD  AB + CD is partitioned into an 
interaction region I and an asymptotic region II, as shown in Fig. 2, with the v
dependent translational basis function )R(u v

n  defined as 
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where R2 and R3 define the interaction and asymptotic grid ranges, respectively, and 
v1asy and v2asy are chosen to define the bases which can accurately expand the 3D 
rovibrational states of the free BCD molecule for the scattering calculation. The general 
wavefunction expansion given in Eq. (6) allows the cleavage of the CD bond, but it can 
also be treated as a non-reactive bond by using only a few vibrational basis functions for 
the CD diatom in the interaction region as well as the asymptotic region. 
 The parity-adapted BF total angular momentum basis functions )ˆ,ˆ,ˆ( 21~ rrRY εJM

Kj  in 

Eq. (6) are the eigenfunctions for J, j1, j2, j, K and the parity operator, where K is the 
projection of J along the BF z-axis, chosen to be along R. They are defined as 
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where *J
KMD  is the Wigner rotation matrix,[38]  is the parity of the system, the 

projection of the total angular momentum on the body-fixed axis is restricted to 
),(min0 jJK ≤≤ , and jK

jjY
21

 are the angular momentum eigenfunctions of j, K defined 

as,

,)0,(0
4

12
),,( 2212

1
1

*
21

θ
π

ϕθχ mj
m

j
Km

jK
jj yjmmjj

j
DY

+
=       (9) 



DONG H. ZHANG AND MINGHUI YANG 284

where jmmjj 012  is a Clebsch-Gordon coefficient and jmy  are spherical harmonics. 

In Eq. (8), the restriction 1)1( 21 =− +++ Jjjjε  for K = 0, partitions the whole rotational 
basis set into even and odd parities. Thus a K = 0 initial state can only appear in one of 
these two parity blocks. For K > 0, however, there is no such restriction, the basis set is 
the same for even and odd parities; hence a K > 0 initial state can appear in both 
parities.

2.2.  NITIAL STATE CONSTRUCTION AND WAVE PACKET PROPAGATION 
FOR A + BCD REACTIONS 

The initial wavefunction is chosen to be the direct product of a localized translational 
wave packet for R and a specific (JM ) state for the atom-triatom system with a specific 
rovibrational eigenstate for the triatom BCD: 

,),,ˆ()()0,,,( 2121 0000000
rrRrrR ε

ν
ε ψ JM

Lk
JM

Lv RGt ΩΩ ==Ψ     (10) 

where the translational wave packet )(
0

RGk  is chosen to be a Gaussian function 
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with δ,0R  as the centre and width, respectively, of the Gaussian function and 

00 2 Ek µ= , with 0E  as the central energy of the Gaussian function, and 

),,ˆ( 21000
rrRε

νψ JM
L Ω  is an eigenfunction of the triatom BCD Hamiltonian 
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with 000 ,, ΩLv  representing the triatom BCD’s initial vibrational state, total angular 

momentum, and its projection on the BF z axis, R̂ , of the atom-triatom system, 
respectively. The initial wavefunction, Eq. (10), can be expanded as in Eq. (6) and the 
wave packet is propagated using the split operator method[39]: 

,),,,(),,,( 21
2/02/2/2/0

21 teeeeet iHiUiViUiH rrRrrR Ψ=∆+Ψ ∆−∆−∆−∆−∆−      (13) 

with reference Hamiltonian H0 given by 
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the potential V given by Eq. (5), and the centrifugal potential U defined by 
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2.3. REDUCED DIMENSIONAL HAMILTONIAN FOR THE X + YCZ3 SYSTEM 
AND BASIS SET EXPANSION 

The X + YCZ3 system would have 12 internal coordinates, which makes it 
computationally very challenging. A reduced dimensionality, taking into consideration 
only the most important internal coordinates for the reaction, is necessary. Here we 
view the system as an extension of the A + BCD system, as depicted in Fig. 3, with the 
CD part replaced by CZ3, and imposing the requirement that the CZ3 group has fixed 
CZ bond lengths and maintains C3v symmetry in the course of the reaction. Five of the 
Jacobi coordinates ),,,,( 1211 ϕθθrR  in the A + BCD system are retained, and the sixth 
coordinate r2 for the CD bond is replaced by two angles appropriate for CZ3, and 
keeping the CZ bond length fixed. 

Figure 3. Jacobi coordinates for the X + YCZ3 system, as exemplified by H + CH4.

The CD axis now corresponds to the symmetry axis of CZ3 and is described by the unit 
vector ŝ . The umbrella motion of the CZ3 group and its rotation is described by two 
internal angles: χ , the angle between a CZ bond and the symmetry axis ŝ , and the 
rotation angle 2ϕ  of CZ3 about ŝ . The angles 1ϕ  and 2ϕ  are also known as the 
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azimuthal angles about the 1r̂  and ŝ axes, respectively. The CZ bond length, 2r , is 
taken to be constant. In the eight dimensional model of Palma and Clary,[40] r2 is 
allowed to vary. Here, the seven Jacobi coordinates for the X + YCZ3 system are taken 
to be ),,,,,,( 21211 χϕϕθθrR .

The reduced dimensionality Hamiltonian for the X + YCZ3 system can be 
written as [40] 
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where µ  is the reduced mass of X atom and YCZ3 entity, 1µ  is the reduced mass of Y 

atom and CZ3. The first two terms are the kinetic energy operators of R  and 1r ,

respectively. totJ  is the total angular momentum operator of the system; J  is the 

rotational angular momentum operator of molecule YCZ3; and l  is the orbital angular 
momentum operator of Y with respect to CZ3 group. vibK 3CZ

ˆ  and rotK 3CZ
ˆ  are the umbrella 

vibrational kinetic energy operator and the rotational kinetic energy operator of CZ3,
respectively. The operators have been defined by Palma and Clary40 with the following 
explicit forms,  
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where r2 is the fixed bond length of CZ, xµ  and sµ  are masses defined as 

Zx m3=µ and ( )ZCZCs mmmm 33 +=µ . AI  and CI  are the rotational inertia of the 
CZ3 group defined as 
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,sin3 22 χ2ZC rmI =     (20) 

while j  is the rotational angular momentum of CZ3 and zj  is its z-component. The last 
term in Eq. (16), ),,,,,,( 21211 χϕϕθθrRV , is the total global potential energy.
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The rotational basis functions used in this work are very similar to those used in the 
initial state wave packet dynamics study of H+H2O. The rotational basis function has 
the following explicit form 
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where M and K are the projections of the total angular momentum totJ  on the z-axis of 
the space-fixed and body-fixed frames, respectively. The rotation matrix 

),,(* γβαtotJ
MKD  depends on the Euler angles that rotate the spaced-fixed frame on to the 

body-fixed frame and are eigenfuctions of 2
totJ . The body-fixed internal angular 

momentum function in Eq. (21) is given by 
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By exploring the space inversion symmetry of the rotational basis functions, we can 
construct the parity-adapted rotational basis functions 
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where ),min(0 JJK tot≤≤ .
The time-dependent wavefunction is expanded in the parity-adapted rotational 

basis functions as, 
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where )(tc MKJ
Jljknnn

tot

urR

ε  are time-dependent coefficients to be solved for. The quantum 

numbers nR, nr and nχ labels the basis functions for the degrees of the freedom in R, r1

and χ,  respectively. In Eq. (24), the translational basis function )R(u
Rn  is defined as 
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while the basis functions )( 1rF rn  and )(χunH  are obtained by solving one-
dimensional reference Hamiltonians which are defined, respectively, as follows 
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and for the umbrella motion 

)()( 3CZ χχ ref
u

vib
u vKh +=     (27) 

where )( 11 rvref  and )(χref
uv  are the corresponding reference potentials.   

2.4.  INITIAL STATE CONSTRUCTION AND WAVE PACKET PROPAGATION 
FOR X-YCZ3 REACTION 

The initial wavefunction is constructed as the direct product of a localized wave packet 
for R, )(

0
RGk , as defined in Eq. (11), and a specific state ),,( εMJtot  of the system 

with a specific rovibrational eigenstate (n0, J0, K0, p0) for YCZ3, where n0, J0, K0, p0
represent, respectively, the initial vibrational state, total angular momentum, projection 
of total angular momentum on the body-fixed z axis of X-YCZ3 system, and the parity 
of YCZ3. The rovibrational eigenfunction of YCZ3 is expanded as follows: 
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which is a solution of the YCZ3 Hamiltonian 
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where the potential is given by 
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.),,,,,,(),,,( 212112213YCZ χϕϕθθχϕθ rRVrV ∞→=     (30) 

The wavefunction is propagated using the split-operator propagator.  

,)()( 2/02/0 teeet iHiUiH Ψ=∆+Ψ ∆−∆−∆−     (31) 

where the reference Hamiltonian H0 is defined as 
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and the reference potential U is defined as 
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2.5.  REACTION PROBABILITY, CROSS SECTION, AND RATE CONSTANT 

For both the A + BCD and X + YCZ3 reactions, the energy-dependent scattering 
wavefunction is obtained by a Fourier transform of the propagated wave packet[41] 
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where the subscript i denotes the initial rovibrational quantum state of the reactants, and 
the coefficient ai(E) is given by 

,)0()0()( iiEiiEi Ea Ψ=Ψ= + φψ     (35) 

where iEφ  is the free or asymptotic stationary wavefunction. 

 With the stationary solution +
iEψ , one can use asymptotic boundary conditions to 

extract the scattering matrix. However, for the total reaction probability Pi(E) the 
calculation can be simplified by evaluating the reactive flux through any dividing 
surface which separates the reactant from products, e.g. at a hypersurface close to the 
transition state, without the need to compute the state-to-state S matrix: 
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f
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where the flux operator is 

[ ] ,)ˆ(ˆˆ)ˆ(
2
1ˆ

00 ssvvssF ss −+−= δδ     (37) 

with s being the coordinate perpendicular to a surface located at s0 for the flux 
evaluation, and sv̂ is the velocity operator. In our case, it can also be simplified to 
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where +′iEψ  is the first derivative with respect to 1r , the coordinate of the bond that 
breaks. 
 In general, the cross section for a specific initial state can be calculated from 
the reaction probability,  
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J
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and the rate constant can be calculated from the cross section 
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3. Ab initio potential energy surfaces 

3.1 PES’S FOR THE H + H2O  H2 + OH REACTION

The approximate, analytic Walch-Dunning-Schatz-Elgersma (WDSE) PES[42] featured 
prominently in facilitating the development of classical and quantum dynamical 
methods to study the H2 + OH  H + H2O reaction. Recently, some high level 
interpolated ab initio PESs were reported for the reverse abstraction reaction H + H2O

 H2 + OH and its isotopic analogs.[43,44] The, so called, QCISD(T)/6-
311++G(3df,2pd) ab initio PES is not defined in the region of the H2 + OH entrance 
channel, due to the presence of a second low-lying electronic state, and so cannot be 
used to evaluate the final state distribution of H2 + OH products from the H + H2O
reaction, or to study the H2 + OH reaction. The near degeneracy of the ground and first 
excited electronic states in the H2 + OH entrance channel has recently been addressed 
by employing the CASSCF/MRCI+Q/aug-cc-pVQZ level of theory, using the 
MOLPRO package,[45] in a substantial part of the H2 + OH entrance channel, while 
elsewhere the QCISD(T)/6-311++G(3df,2pd) level of theory was used. Two new ab
initio Yang-Zhang-Collins-Lee global PESs - YZCL1 and YZCL2 - resulted.[46] They 
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were constructed using the interpolation of ab initio data procedure of Collins et al.[47] 
The YZCL1 surface has 1,600 data points. The energy of each of these data points was 
then evaluated at the UCCSD(T)/aug-cc-pVQZ level of theory to produce the YZCL2 
surface, considered the best global PES for H3O today. 

3.2  PES’S FOR THE H + CH4 REACTION 

Numerous PES’s have been proposed for the H + CH4 reaction. The early ones were 
empirical form fit to experimental results and neglected the symmetry of the methane 
molecule.[48] Later, semiempirical and ab initio surfaces, with partially correct permu-
tation symmetry, were developed. Notable among them is the semi-empirical PES by 
Jordan and Gilbert (JG), symmetric with respect to all four hydrogens on methane.[49] 
It was built on earlier PESs given by Joseph et al.[50] and Duchovic et al.[51] 
 We have used a new seven-dimensional ab initio PES in which the CH3 group 
retains C3v symmetry and fixed CH bond lengths in our time-dependent 
calculations.[52] The energy near the minimum energy path (MEP) is described by a 
basis set corrected calculation using the quadratic configuration interaction treatment 
with all single and double excitations (QCISD): 

,[MP2/B1][MP2/B2][QCISD/B1]1 EEEE −+=     (41) 

where MP2 denotes the second order Moller-Plesset perturbation theory, and B1=cc-
pVDZ  and B2=aug-cc-pVDZ denote the correlation consistent basis sets. Similar to the 
construction of the H3O PES, the CH5 PES is given by an interpolation of second order 
Taylor expansions of Eq. (41) at data points scattered throughout the configuration 
space using the method of Collins et al.47 The reliability of the PES was further 
improved by replacing the energy E1 at each data point by 

,pVTZ]ccug[CCSD(T)/a2 −−= EE     (42) 

where CCSD(T) denotes a coupled cluster approximation, and it is this more accurate 
PES that is used in the quantum dynamics calculations below. 

4.  Theoretical and experimental results

4.1 ABSTRACTION REACTION OF H + H2O

There are two possible outcomes of the H + H2O reaction: 
  Abstraction reaction, H  + H2O  H H + OH 
  Exchange reaction,                  H + H OH . 
Our focus here is on the abstraction reaction. It has a saddle point with OHH'
close to a collinear geometry; hence the H  atom should collide with the H2O molecule 
at totally different angles in order to abstract one H atom or the other. As a result, it 
should be possible to treat the unbroken OH bond as a spectator bond in the abstraction 



DONG H. ZHANG AND MINGHUI YANG 292

reaction, but this assumption would not be valid for the exchange reaction.[53] Figure 4 
shows the total reaction probability for the abstraction reaction as a function of the 
translational energy for total angular momentum J=0 on the YZCL2 PES with the H2O
reactant in the ground rovibrational state [the (00)(0) state in the local mode notation], 
where the unbroken bond OHb is treated in various ways. Using a limited number of one 
or five 

Figure 4. Total reaction probability for the H + H2O(00)(0)  H2 + OH abstraction reaction as a 
function of the translational energy on the YZCL2 PES for J = 0. 

vibrational basis functions (VBF) means that the OHb bond is unreactive, a spectator, 
but could be either frozen vibrationally, VBF(OHb) = 1, or not frozen vibrationally, 
VBF(OHb) = 5. The abstraction reaction probability is very small, due to the small 
reaction cone, but, more importantly, the results are almost identical whether the OHb
bond is treated as a spectator or as a reactive bond. It should be noted that when the OHb
bond is a spectator, then the reaction probability from OHa alone is multiplied by two 
for comparison with the probability for two reactive bonds. Similar results, shown in 
Fig. 5, were obtained for J=0 with the H2O reactant in the vibrationally excited 
symmetric or antisymmetric )0()01( ±  stretching states. In the vibrationally frozen 

state for the OHb bond, the ±)01(  states become one unsymmetrized local mode (10), 
and the result is again very close to the accurate result. For comparison, we also show 
the small abstraction probability for the ground state, at the bottom right in Fig. 5. 
Clearly, the OH stretching excitation enhances the reaction a great deal because the 
abstraction reaction has a later barrier which can be surmounted with the vibrational 
excitation energy. 
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Figure 5 .  Same as Fig. 4, but for the H2O(01)(0) state 

 A recent set of calculations on the H + H2O, D2O abstraction reactions had taken 
advantage of restricting one of the OH (OD) bonds in the H2O (D2O) reactant from 
being broken, leaving just 5 degrees of freedom, to reduce the computational time.[44] 
A global YZCL1 PES, in hindsight, was used. The results showed that for the H + H2O

 H2 + OH reaction there is agreement between experiment and theory for the thermal 
rate constant, as shown in Fig. 6. In the low temperature region, the thermal rate 
coefficient is dominated by contributions from the excited OH stretching states ±)02(
and ±)01( , and in the high temperature region contributions from ±)03(  also become 
important. The centrifugal sudden (CS) approximation is commonly invoked to reduce 
the number of rotational basis functions used in the computation. Under the CS 
approximation and using only the K = 0 rotational basis functions, there was a total of 
220 million basis functions for J = 15 alone. Relaxing the CS approximation, for 
example, with K = 0, 1 and J = 15 led to 650 million basis functions.  To approach the 
fully coupled-channel (CC) results, i.e. without the CS approximation, we had to use 
three K-blocks for J = 5, 10, 15, 20, 25, and four K-blocks for J = 30, 35, 40, resulting 
in many more rotational basis functions.11 The integral cross sections, comparing the 
CS versus CC for the H + H2O(00)(0)  H2 + OH reaction  on the more accurate 
YZCL2  PES, are shown in Fig. 7, and for the H + H2O(01)(0)  H2 + OH reaction 
they are shown in Fig. 8. The quasiclassical trajectory (QCT) integral cross section at E
= 1.4 eV reported on the same surface,[54] is also shown in Fig. 7. Clearly, the CS  
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Figure 6. Comparison of theory and experiment for the thermal rate constant of the H + H2O
H2 + OH reaction, and the calculated contributions from the individual vibrational states of H2O. 

approximation does not work well for the abstraction reaction particularly from the 
ground rovibrational state. The CC cross section is larger than the CS cross section, by 
about 60% for the ground rovibrational state of H2O, and by about 15% for the first 
excited rovibrational state.  
 A recent experiment[55] for the abstraction reaction gave a cross section of 0.041 ± 
0.018 Å2 at collision energies close to 2.46 eV, which is about a factor of two lower 
than calculations, as shown in Fig. 9. The calculations include the 5D QM results, which 
treat one OH bond as spectator and correspond to the CC cross section, and the quasi-
classical trajectory (QCT) results of Schatz et al.[56] on the WSLFH PES[57] using 
normal and Gaussian binning procedures. Possible reasons for the discrepancy between 
experiment and theory include the presence of a close lying excited electronic state. At 
the abstraction barrier, this state is only ~2 eV above the equilibrium energy of the 
reactants, and could play a role at the energies sampled in the experiment. 
 We are now also able to calculate the state-to-state integral cross section (ICS) for 
the H + H2O (00)(0)  H2(v1,j1) + OH(j2) abstraction reaction, which is very demanding 
as it requires state-to-state reaction probabilities for J > 0. A 5D calculation, with one 
OH bond as spectator, on the YZCL2 surface has been performed.[12] From the state-
to-state ICS, we can calculate the fractions of energy going into the internal motions of 
the products, as shown in Fig. 10. It was found that (a) the H2 molecule is produced 
vibrationally cold for collision energy up to 1.6 eV, (b) the OH rotation takes away 
about 4% of the total available energy in the products, and (c) the fraction of energy 
going into H2 rotation increases with collision energy to about 20% at 1.6 eV.   
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             H + H2O(00)(0)  H2 + OH 

Figure 7. The coupled channel (CC) and centrifugal sudden (CS) integral cross section for the H 
+ H2O(00)(0) abstraction reaction. Other results: x CS, Ref. 44;  QCT, Ref. 54. 

         H + H2O(01)(0)  H2 + OH 

              
Figure 8. Same as Fig. 7, but for the H + H2O(01)(0) reaction 
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Figure 9. Comparison between the experimental abstraction reaction H + H2O(00)(0) cross 
section (  with error bars), the 5D QM results (solid line), the 6D QM cross sections with the CS 
approximation (dotted line), and the QCT data using normal (o) and Gaussian ( ) binning 
procedures. 

       

Figure 10. The fraction of the total available energy in the product channel going into rovibration 
of H2 and rotation of OH as a function of the translational energy. Curves without open circles 
were calculated from the J = 0 state-to-state reaction probability. 
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Sometimes, the fractions obtained for the J = 0 reaction probabilities are used to 
approximately study the distribution of the total available energy among the products, 
and are shown (as curves without open circles) in Fig. 10 for comparison. 

4.2 SEVEN DIMENSIONAL CALCULATION OF THE H + CH4 ABSTRACTION    
REACTION

The initial state selected time-dependent wave packet method has been applied to the 
abstraction reaction H + HCH3  H2 + CH3 using the seven-dimensional (7D) model 
above.[37,52] The wave packet calculation for each selected initial state of CH4 was 
carried out with total angular momentum J = 0. Calculations were performed on both 
the Jordan-Gilbert (JG) potential,49 as well as a new interpolated ab initio PES.52 The 
new surface has a classical barrier height of 61.2 kJ mol-1, in agreement with recent 
semiempirical PESs in which the classical barrier has been fitted to the observed 
reaction rate yielding a barrier height of 61.9 kJ mol-1. In order to describe the quantum 
tunneling dynamics accurately, the PES must also accurately describe the barrier shape. 
 In Fig. 11, we compare the present 7D and 6D (  = 107.45°) total reaction 
probability for the ground rovibrational initial state with earlier results using other 
approximation methods – the SVRT 5D and 4D (  = 107.45°) models30 and the Wang-
Bowman (WB) 6D atom-triatom model24 - on the JG PES.  An obvious feature is an 
energy shift of 0.08-0.18 eV between the 7D probability and the WB 6D atom-triatom 
model. This is likely due to differences in some parameters used in the two studies to  

Figure 11. Comparison between the present 7D total reaction probability for the ground initial 
state with those of the SVRT model and the Wang-Bowman 6D atom-triatom model on the JG 
PES. 



DONG H. ZHANG AND MINGHUI YANG 298

define the geometry of the system or the asymptotic energy. However, there is 
consistency in good overall agreement between the 7D and SVRT-5D probability, and 
between the 6D and SVRT-4D results.[37]  
 The importance of an accurate PES is illustrated in Fig. 12 which shows the 
large difference between the reaction probability calculated with the present ab initio
global PES versus the semiclassical JG PES.52 Comparatively, the JG PES 
overestimates the reactivity of the ground state and underestimates  that of the CH 
stretch excited state.  
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Figure 12. The reaction probability for the ground (000) and CH stretch excited (100) states of 
CH4 for the ab initio PES and the Jordan-Gilbert (JG) PES as a function of the translational (A) 
and total (B) energy. 
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The necessary J > 0 reaction probabilities for the initial state selected rate 
coefficient were estimated using the centrifugal sudden approximation. Figure 13 
compares the thermal rate coefficient calculated here from first principles with the JG 
PES, the ab initio global PES, and the best fit to the experimental data. The plot also 
shows the contribution of some initial states of CH4 to the rate. Despite a small 
discrepancy at high temperatures, the agreement between experiment and the ab initio
global PES results is excellent. The reaction at low temperature is due to tunneling from 
the ground state. The novel implication is that even though the population of molecules 
with an excited CH bond stretch is low in the temperature range of Fig. 13, they have 
high reactivity and account for the overall reactivity of CH4 above 450K. 

Figure 13. Comparison of the best fit experimental thermal rate coefficient with the total value for 
the JG PES, the ab initio PES, and the contribution from the initial CH stretch (n00), HCH bend 
(0n0), and umbrella (00n) states. 

5. Conclusions 

The time-dependent wave packet method has been outlined to solve the A + BCD and 
the X + YCZ3 reactions. The tetraatomic system could be solved in full-dimensionality, 
but to solve the hexaatomic system we followed the method of Palma and Clary,40 
where the CD bond is replaced by CZ3 with C3v symmetry throughout the reaction, with 
reduced dimensionality. Calculations were performed for the H + H2O reaction in full-
dimensionality, and the H + CH4 reaction in seven dimensions. 
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 We learnt that in the H + H2O  H2 + OH abstraction reaction: (a) the 
unbroken OH bond can be treated as a spectator bond, (b) the OH stretching excitation 
in H2O enhances the reaction greatly due to a late barrier in the abstraction reaction, (c) 
the centrifugal sudden approximation gives a cross section that is low compared to the 
exact coupled-channel results, (d) the measured abstraction reaction cross section at a 
collision energy of 2.46 eV is a factor of two lower than theoretical prediction on the 
global YZCL2 surface, and (e) much of the total internal energy of the products from 
the H + H2O (00)(0) reaction appears in the H2 rotation, followed by OH rotation. 
 For the H + CH4 reaction, it is shown that: (a) there is substantial difference 
between the reaction probability calculated with the new ab initio global PES versus the 
semi-empirical Jordan-Gilbert PES, (b) CH4 molecules with an excited CH bond stretch 
have high reactivity and accounts largely for the overall reactivity of CH4 above 450K, 
and (c) the thermal rate coefficients calculated with the ab initio global PES agree very 
well with experimental data. 
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1. Introduction 

Although experimental and computational methods in chemical reaction dynamics have 
advanced greatly over the last few decades, simple collision models of bimolecular 
reactions retain their importance. Comparison of their predictions with experimental 
results, or with the results from more sophisticated scattering calculations, can provide 
considerable insight into the dynamics of reactive collisions. In efforts to rationalize 
particular features observed in experimental data or in the results of complex 
calculations simple models can be very helpful. Furthermore, once they have been 
validated by comparison with accurate scattering calculations, such models, which 
require much less computational effort than accurate calculations, might be used to 
predict values of the rate constants outside the regimes investigated experimentally and 
they could be applied in the modelling of processes of technological importance or in 
environmental studies. 
   In simple models of chemical reactions attention is focused on the reacting system at 
the »critical dividing surface« [1] separating reactants from products. Reaction is 
assumed to occur if the relevant component of the kinetic energy exceeds the potential 
energy, or effective potential energy, on this surface. For a long time, the venerable but 
simplistic, line-of-centers (LOC) model [2-4] was often used to predict the forms of the 
opacity and excitation functions [1] for activated bimolecular reactions. In this model, 
the critical energy is assumed the same at all points on the spherical critical dividing 
surface and consequently no allowance is made for stereodynamical effects, i.e.,  the 
dependence of reaction probability on the orientation of the reagents as they reach 
critical separation. The development of powerful experimental and computational 
techniques has exposed the shortcomings of this model and the need for improvements. 
   A natural extension of the classical LOC model, in which the orientational dependence 
of the barrier to reaction is taken into account and which leads to the concept of a »cone-
of-acceptance« which depends on collision energy, was proposed by Smith [1,5] and 
independently by Levine and Bernstein [6], although, as later pointed out by Levine [7], 
these models are similar to that suggested as long ago as in 1932 by Pelzer and Wigner 
[7,8]. This model, generally referred to as the angle-dependent line-of-centers (ADLOC) 
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model, has been modified and developed in a number of subsequent publications [9-14]. 
Among other developments, the original assumption of a spherical dividing surface on 
which the critical potential energy depends on the angle describing the orientation of the 
reagents at impact has been extended to systems where critical dividing surface is 
nonspherical [15,16,18,19] and where it is nonrigid [17]. 
   The models referred to above have been developed essentially on the basis of energy 
considerations. It is assumed that reactions will occur when some portion of the kinetic 
energy at the critical dividing surface – either that associated with reagent motion along 
the line-of-centers (the ADLOC model) or that directed perpendicular to the surface (the 
angle-dependent line-of-normals model) [10,15,16,18,19] – exceeds the potential energy 
or effective potential energy at the critical dividing surface. However,  the need to 
conserve total angular momentum is not explicitly taken into account, since, in general, 
the assumptions that orbital angular momentum is conserved up to the critical dividing 
surface and that either the energy associated with motion perpendicular to the line-of-
centers or with motion parallel to the critical dividing surface is »inactive« in barrier 
crossing are not equivalent to conserving angular momentum. The approximation may 
well be justified in the ADLOC model if the interaction between the approaching 
reagents is nearly independent of angle, so that the equipotential contours are 
approximately spherical – as it is in some reactions of diatomic molecules with atoms. 
However, such models are likely to be less suitable for reactions of, for example, the 
light + light-heavy (L + LH) and heavy + light-heavy (H + LH) categories, where the 
interactions are less likely to be spherical and the effects of reagent rotation therefore 
more pronounced. This feature should be even more marked in reactions involving 
nonspherical polyatomic molecules when considerable coupling between the orbital and 
rotational angular momentum can occur en route to the critical dividing surface. 
Conservation of total angular momentum then restricts the amount of energy available 
for barrier crossing. 
   In [10] the energy available for barrier crossing in reactions of nonrotating molecules 
with ellipsoidally shaped critical dividing surfaces was considered to be restricted by 
rotational recoil. The available energy given in [10] differs somewhat from the results 
which we derive below and it is not clear to what extent it is compatible with the 
conservation of total angular momentum. In [18] modifications due to the conservation 
of total angular momentum were derived for reactions of atoms with nonrotating (j = 0) 
diatomic molecules. These results are entirely in agreement with the results which we 
derive below for the more general case of an atom reacting with a polyatomic molecule 
with arbitrary rotational angular momentum j.
   We have more recently derived an extension of the original ADLOC model by taking 
explicit account of the anisotropy of the critical dividing surface as well as the 
anisotropy of the equipotential surfaces close to the critical dividing surface [20-22]. 
Both chemical and physical shape of the molecules [7] are thus considered in the model. 
The effects of rotational excitation of the reactants are included and total angular 
momentum is conserved. The model still preserves the essential simplicity of the 
treatment and, moreover, in the limit of »hard molecules« our formalism becomes 
rigorous. Although originally formulated for reactions of atoms with diatomic molcules 
[20] it was then extended to reactions of atoms with polyatomic molecules [21]. An 
extension to reactions of two polyatomic molecules is also possible but has not been 
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worked out yet. In order to make the model more realistic and to be able to compare its 
predictions with those of quasiclassical trajectory or quantum mechanical calculations, 
or with experimental results, an adequate treatment of vibrational zero-point energy 
effects had to be included in the model. The method which has been chosen for this 
purpose has the same basis as vibrationally adiabatic transition state theory [23-27], 
namely it is assumed that motion up to the critical dividing surface is vibrationally 
adiabatic. The essential simplicity and transparency of the model is thereby still 
maintained. The model has been tested on several reactions [20-22]: H + F2 , O + H2 ,   
O + HCl , O + DCl , O + HBr and N + O2 , for all of which quasiclassical or quantum 
mechanical results have been reported. 
   In Section 2 a derivation of the model will be given for reactions of atoms with 
polyatomic molecules. It will be shown that conservation of both linear and total angular 
momentum leads to a  kinematic mass, similarly as conservation of linear momentum 
alone is reflected in the occurence of the usual reduced mass of collision partners. The 
kinematic mass in this case, however, is position-dependent. Because of the importance 
of this mass we called the model »kinematic mass model«. General conditions for 
applicability of the kinematic mass model will be discussed, particularly with regard to 
physical shape, i.e., equipotential contours of the molecules. Furthermore, vibrational 
zero-point energy effects will be briefly discussed, to provide  support for our method of 
incorporating them into the model. Most relevant results which have been obtained with 
kinematic mass model so far are presented in Section 3. Surprisingly strong 
enhancement of reaction rates with rotational excitations found in trajectory studies of 
several reactions will be analysed and it will be shown that the strong enhancements in 
question are not due primarily to the increase of the kinetic energy available for barrier 
crossing but rather to favourable changes of collision geometry due to the reagent 
rotational excitation. Wider implications of these results for understanding the effects of 
excitations of rotations, internal rotations or librations in various systems will also be 
pointed out. 

2. The Kinematic Mass Model 

Simple models of activated bimolecular reactions have been founded on the assumption 
that reactive trajectories can be adequately approximated by straight line trajectories up 
to the critical dividing surface, and that »trajectory funnelling effects« could thus be 
neglected. The dynamics bringing about reaction is assumed to occur in a small, crucial 
region of the potential energy surface near the critical dividing surface. To describe the 
motion on such a small potential surface element dS a method can be adopted which has 
been successful in energy transfer studies in molecular collisions [28-33]. The 
underlying transformations of the energy function actually embody also earlier ideas 
about an effective mass in energy transfer theory [34-36]. 
   Kinematic mass model can actually be derived for reactions of two polyatomic 
molecules, along the lines of reasoning developed in the energy transfer studies [30,31]. 
This possibility has not been explored yet. In the present case a derivation of the model 
will be presented for reactions of atoms with polyatomic molecules. The model will be 
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then applied to study mechanisms of enhancement of reactions of atoms with diatomic 
molecules due to rotational excitations. 
   Let us consider a straight line trajectory traversing an element dC of the critical 
dividing surface at point X (Figure 1). dS denotes an element of the potential energy 
surface which is near the critical dividing surface element dC and which the trajectory in 
question passes en route to the barrier. n is the unit vector normal to the surface element 
dS, i.e., in the direction of the gradient of the potential on dS, and R is the vector 
between the center of mass of the molecule and the atom. At the point of the trajectory 
which lies on dS the relative velocity can be decomposed as v = vn + v|| , where vn is the 
velocity component in the direction n and v|| is parallel to the surface element dS. The 
system is characterized by the conserved total angular momentum J0

                           
Figure 1. Schematic presentation of a short segment of a trajectory passing through an element dS 
of the potential energy surface near the critical dividing surface element dC. Defined are the 
relevant components of the relative velocity v of the collision partners. R is the vector joining the 
centers of mass of the colliding species, n is the unit vector in the direction of the potential 
gradient at dS. 

                                    J0 = j + µR × v = j + µR × vn + µR × v||                                     (1) 

j is rotational angular momentum of the molecule and µ is the reduced mass of the 
collision partners. For the sake of convenience we write 

        
                                                    J0 = J + µR × v         ||                                                     (2)

where 
                                             J = j +  µR× vn  j + µRvn k                                               (3) 
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                                                       k  R ×  n/R .                                                        (4) 

The total kinetic energy Ek of the system is 
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where Ii ( i = 1,2,3) are the moments of inertia of the molecule. To derive the condition 
for the reaction to occur we first note that Ek can be rewritten in the following 
remarkable form [29,30]  
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Ji and ki are components of vectors J and k defined by Equations 3 and 4 respectively  
The generalized velocity v* and the corresponding mass µ* are defined by [29,30]  
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is angular velocity vector ( i = ji/Ii). Equation 6 is an identity valid at any point on the 
trajectory. In the mass µ*, which is position dependent, conservation of linear and total 
angular momentum is reflected. The transformation given by Equation 6 affords an 
efficient, though approximate way of dealing with processes dominated by the dynamics 
of the system on a potential surface element dS which is small when compared with the 
dimensions of the system (i.e., processes dominated by the sudden regime). v|| is then 
nearly conserved during this crucial motion on dS during which changes of n and R can 
be also assumed to be negligibly small. Vectors k and J are then also nearly conserved. 
It should be noted, however, that changes of vn and j can be large on the potential 
surface element dS in question but they are coupled  through (near) conservation of J. In 
the present treatment of the sudden regime translational-rotational coupling is therefore 
included. 
   It should be noted furthermore that during the motion of the collision partners on dS 
only the the term µ*v*2/2 in Equation 6 may vary appreciably, since in the remaining 
terms only those quantities appear which, according to the above arguments, may be 
expected to change negligibly. Therefore, if the motion of the reactants is dominated by 
a small potential surface element dS near the critical dividing surface, the condition that 
reaction occurs in the encounter depicted in Figure 1 is given by 

                                         
                                               b

2
2

1 Ev ≥∗∗µ                                                          (9) 
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where Eb is the barrier energy at the point of the critical dividing surface lying on the 
line of the trajectory. This equation expresses the essence of the kinematic mass model 
as applied to activated elementary bimolecular reactions and emphasizes its difference 
from the ADLOC model. In the latter, the »active« kinetic energy is assumed to be that 
part of the collision energy associated with the relative velocity vector directed along R
at the critical dividing surface. In that case no account is taken of how the physical 
shape of the molecule serves to modify the components of relative velocity 
perpendicular and parallel to the equipotential contours.  
   The opacity function P(Etrans,b), i.e., the reaction probability averaged over all 
orientations at a given impact parameter b and translational energy Etrans can be 
expressed as  

                   )2
1(

4
1),( b

2
trans EvHdbEP −Ω= ∗∗µ

π
                                                 (10)                

where H(x) is the unit step function, i.e., H(x) = 1 for x  0 and H(x) = 0 for x < 0. The 
integration runs over full range of solid angles  describing the orientation of the 
molecules. 

2.1  VIBRATIONAL ZERO-POINT ENERGY CORRECTIONS 

In the quasiclassical trajectory calculations of reaction cross-sections, as well as in 
quantum mechanical calculations, the threshold energies are usually found to be shifted 
considerably from the values determined by the bare electronic potential energy surface, 
which shows that vibrational effects, associated with the presence of zero-point energy 
can be quite large. The model presented above must therefore be extended to include 
vibrational effects in order that comparison with quasiclassical trajectory calculations, or 
with experiments, be meaningful. In the following the present model is modified to 
include vibrational effects in an approximate way so that the essential simplicity of the 
model is preserved and reasonable agreement with trajectory calculations is obtained, in 
particular with respect to the threshold behavior. The conclusions as to molecular shape 
effects should be applicable, even when vibrational effects are present, provided that 
account is taken of changes in the shape of the critical dividing surface at higher 
vibrational excitation.
   The simplest way of taking account of vibrational effects is to assume vibrational 
adiabaticity during the motion up to the critical dividing surface [27]. As mentioned 
already in the Introduction, much of the earlier work on vibrational adiabaticity was 
concerned with its relationship to transition-state theory, especially as applied to the 
prediction of thermal rate constants [24-26]. It is pointed out in [27] that the validity of 
the vibrationally adiabatic assumption is supported by the results of both quasiclassical 
and quantum scattering calculations. The effective thresholds indicated by the latter for 
the D + H2(  =1) and O + H2(  =1) reactions [37,38] are similar to those found from 
vibrationally adiabatic transition-state theory, which is a strong evidence for the 
correctness of the hypothesis of vibrational adiabaticity. Similar corroboration is 
provided by the combined transition-state and quasiclassical trajectory calculations [39-
44]. For virtually all the A + BC systems studied [39-44], both collinearly and in  three                   
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dimensions, motion between the transition state and separated reagents was found to 
exhibit a high degree of vibrational adiabaticity. 
   The vibrationally adiabatic potential Vad( ,x) for an A + BC reaction is given by [27] 

                                [ ]),(),()(),( vibvibelad −∞−+= ννν ExExVxV                                (11) 

where x is the coordinate describing position along the minimum energy path and Vel(x)
is the electronic potential energy independent of vibrational state. Evib( ,x) is the energy 
of the -th state of vibration orthogonal to the minimum energy path at the point x on it, 
and Evib( ,- ) is the vibrational energy of isolated BC( ). It is straightforward to 
incorporate vibrational adiabaticity into the treatment of reactions of more than three 
atoms.Instead of Equation 11 we have then [27] 

                          [ ]−∞−+=
i

ii ExExVxV ),(),()(),...,,( vibvibel21ad νννν                    (12) 

To use this equation it is necessary to know how the energies associated with the states 
of several vibrational modes vary along the minimum energy path. This model explains 
why the pre-exponential factors in the rate constant expressions, as well as the activation 
energies, depend on the vibrational state of the reagents. 
   The position of the maximum value of  Vad( ,x) depends on  because, although Vel(x)
increases toward the potential barrier, Evib( ,x) decreases, and this second contribution to 
Vad( ,x) assumes increasing importance as  increases. Although the  = 0 adiabatic 
maximum is usually located at the electronic saddle point, the maxima for higher states 
of bond-stretching vibration may be displaced into the entrance and exit valley on the 
potential energy surface. Vibrationally adiabatic motion is then expected up to the first 
of these maxima (rAB > rBC). Trajectory calculations support this expectation [39-44]. 
   In reactions with vibrationally excited reagents additional shape effects may thus arise 
for two reasons [22]. First, the energies and form of the critical dividing surface for each 
vibrationally adiabatic state of the system will be different. Second, the physical shape 
of the reagent molecule may also depend on its vibrational states. In case of A + BC(  = 
0) reactions vibrational zero-point energy effects alter the barrier height but the position 
of the critical dividing surface is not shifted from that on the bare electronic potential 
surface. The vibrationally adiabatic barriers given by Equation 11 can be evaluated by 
noting that in collinear encounters Evib( ,0) can be assumed to be the energy of the  = 0 
level of the symmetric vibrational mode of ABC at the top of the electronic barrier. For 
noncollinear collisions the barrier is evaluated at values of the A-B-C angle on the 
critical dividing surface. A »symmetric« vibrational mode can still be defined 
orthogonal to the minimum energy path also in this case. It is, however, not a normal 
mode of the system. Approximately the problem may be treated in a »quasilinear« 
approximation: At each angle , the force constants at the critical dividing surface are 
calculated and then the vibrational frequency is evaluated as in general nonlinear 
triatomic systems, with bending motion frozen. No allowance is thus made for 
quantization of the bending modes of ABC. The approximation introduced may thus be 
expected to be less appropriate for noncollinear encounters. The critical dividing surface 
and the barrier heights are normally calculated in terms of internal coordinates 
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(rBC,rAB, ). They have to be transformed to Jacobi coordinates (rBC,R, ) in order to be 
applied in the kinematic mass model. 

2.2  EFFECTS OF THE SHAPE OF THE EQUIPOTENTIAL SURFACES 

Although the condition for a reaction to occur, given by Equation 9, might in fact be 
valid quite generally, its applicability in building simple reaction models depends on the 
validity of the assumption that the reactive trajectories can be adequately approximated 
by straight line trajectories and that any »trajectory funnelling« effects could thus be 
neglected.  
   It appears to be difficult to state general conditions  as to when reactive trajectories in 
reactions of an atom with a polyatomic molecule could be expected to be reasonably 
straight lines up to the barrier. In the case of A + BC reactions, however, the problem in 
question was studied in considerable detail for O + HCl (DCl) reactions [45-48] on two 
London-Eyring-Polanyi-Sato (LEPS) potential surfaces [49] usually referred to as 
Surface I and Surface II. The two surfaces, although perhaps not very accurate, 
nevertheless allow us to draw important conclusions of quite general validity. They 
differ mainly in the shape of the equipotential contours in the region near the H atom:  

Figure 2. The shape of the prolate Surface I and the oblate Surface II for O + HCl reaction near 
the barrier, at E = 10 kcal/mol [47]. n is the direction of force exerted by the approaching atom at 
the point of impact. The resulting torque tends to rotate the molecule away from the atom in the 
first, and towards the atom in the second case. With the curved broken line the circular shape is 
indicated. Adapted from [47].  
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Surface I is prolate in this reagion whereas Surface II is oblate (Figure 2). An atom 
colliding with the H atom side of the HCl molecule would exert a torque that would tend 
to rotate the molecule away from the approaching atom in the first, and towards the 
approaching atom in the second case (Figure 2). The effects of this difference on the 
reaction dynamics are rather dramatic, as revealed by the studies presented in [45-48]. 
They can be explained by the behaviour of typical reactive and nonreactive trajectories 
on Surface I and II [46] depicted on Figure 3. We can see that the assumption of 
straight-line approach to the barrier is reasonably justified only in the case of Surface I. 
In the case of Surface II even trajectories beginning at a rather large angle are still 

Figure3.  Typical behaviour of reactive (1) and nonreactive (2) trajectories on Surfaces I and II 
for the O + HCl reaction. They refer to translational energy Etrans = 10 kcal/mol,  j = 0 and zero 
impact parameter. R and   are the Jacobi coordinates and RC represents the critical dividing 
surface. In the case of Surface II even trajectories beginning at a rather large angle are still guided 
to the critical region. The assumption of straight-line trajectory approach is thus reasonably 
justified only in the Surface I case. The numbers on the equipotentials give energy in kcal/mol. 
[Reproduced from Chemical Physics, Vol. 112, Hansjuergen Loesch: "The Effects of Reagent 
Rotation on Reaction Cross Sections for O(3P) + HCl --> OH  + Cl : A Rationale for 
Contradictory Predictions", pp. 85-93, copyright 1987, with permission from Elsevier]    

guided to the critical region where the barrier energies are  the lowest. The strong 
»trajectory funnelling« effects would not allow to develop simple models in this case, 
even if the condition expressed by Equation 9 would be still reasonably correct.  
   There are two readily understandable consequences arising from the particularities of 
the shape properties of Surfaces I and II. The reaction cross-section for O + HCl at the 
rotational angular momentum j = 0 is much larger (more than one order of magnitude) in 
the case of Surface II (Figure 4), due to the trajectories being funnelled towards the low 
barrier energy region [46]. The two surfaces are characterized by similar barrier heights 
at  = 0 [49], but the rise of the barrier height with noncolinearity is steeper for the 
oblate Surface II. The second important difference is in the j dependence of the cross-
section for O + HCl(DCl) reaction [47]. In the case of Surface I the cross-section rises 
with increasing j. It will be shown in the following section that only for not too high j
values (for j < 8) this effect can be ascribed as being due almost entirely to the increase 
of the kinetic energy available for the barrier crossing. The cross-section decreases 
rapidly with j in the case of Surface II. Increased rotational excitation in this case can be 
expected to disrupt the funnelling of the trajectories, so that they can no longer reach the 
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barrier region of low energy that they can cross. The decline in cross section is primarily 
a function of the ratio of the rotational and linear velocities [47].   
  It should be stressed that the conclusions arrived at above cannot be directly extended 
to reactions of an atom with a polyatomic molecule. If we take, e.g., a linear triatomic 
molecule and assume that the equipotential surfaces near its end-point atom are locally 

Figure 4.  j dependence of the total cross section for the O + HCl reaction on Surface I and 
Surface II at the translational energy Etrans = 10 kcal/mol [47]. At j = 0 the cross section is much 
larger in the case of Surface II, due to the »trajectory funnelling« effect (se the text) which 
diminishes when j is increased Adapted from [47]. 

of oblate shape, similar to that of Surface II (Figure 2), the torque exerted by the 
approaching atom in  this case does not rotate the molecule towards the approaching 
atom but rather away from it, as in the case of prolate diatomic. The trajectory 
funnelling mechanism of the kind discussed above (Figure 3) is then absent. Trajectories 
may be funnelled, however, due also to other features of the potential surface. This 
possibility would have to be explored before a judgement is made about applicability of 
the model in a particular case. 

3. Effects of Rotational Excitation on Chemical Reaction Cross-Section 

The measurement and understanding of how reaction cross-sections depend on the 
energy present in different motions of the reagent is a crucial element of the field of 
molecular reaction dynamics [1,50]. Investigation of the role played by each possible 
mode of reactant energy has been an active area of research for the last three decades 
[51-57]. In particular, for direct activated bimolecular reactions, the relative importance 
of translational and vibrational energy has been exhaustively investigated both 
experimentally and theoretically [51-53] and are now quite well-understood , at least for 
three-atom sytems of the A + BC  AB + C type, via the »Polanyi rules« [52]. Reagent 
vibrational excitation selectively enhances the reaction cross-section in the case of  a 
»late« barrier on the potential energy surface, a situation which is expected for an 
endothermic reaction [52], whereas translational energy selectivity promotes reactions 
where the barrier is »early«, as is usually found for exothermic reactions [52]. In each 
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case, the effect is easily understood, since the effective motion is the one which 
effectively couples to the motion along the reaction coordinate which carries the system 
over the potential energy barrier. 
   The role of rotational energy in enhancing reaction rate has not been studied in 
comparable detail; indeed it is often summarily dismissed as ineffective. Intuitively, it is 
often felt that rotational motion is »perpendicular« to the reaction coordinate and hence 
cannot assist in crossing the barrier to reaction. The experimental data base on rotational 
energy effects is quite sparse, reflecting the difficulty of preparing molecules in defined 
rotational state and of maintaining that selectivity in the face of facile collisional 
relaxation. A corollary may be that rotational effects provide a more sensitive probe of 
the potential energy surface for a reaction, or at least of that part of the surface leading 
to and including the critical dividing surface between reagents and products [1]. 
Extensive reviews of the effects of reagent rotation on reaction cross-section have been 
given in [58,59]. Even in reactions of atoms with diatomic molecules the experimentally 
found dependence of the reaction cross-sections on the rotational excitation is often 
quite complex, indicating that there are several mechanisms that could play an important 
role in the dynamics of reactions. 
    The great majority of information about the effects of reagent rotation on chemical 
reactions comes from quasiclassical trajectory calculations. Nevertheless, there has been 
rather little systematic effort to unravel the separate effects, for example, of the form of 
the potential energy surface and of the kinematics or mass combination for the reaction. 
Notable results on these problems are provided, e.g by the studies of the shape effects of 
the surfaces already mentioned [45-48], or by the quasiclassical trajectory calculations 
of reaction cross-sections for the transfer of a light atom between two heavier atoms on 
potential energy surfaces which possess a barrier to reaction [60], where it is found that 
reactant rotational energy is more efficient at promoting reaction than either translation 
or vibration, regardless of the reaction energetics. Most quasiclassical trajectory studies, 
however, have aimed to quantify the rotational effects for a particular reaction. The 
dependence of the reaction cross-section has often been found to be quite difficult to 
rationalize. Moreover, it has not proven easy from quasiclassical trajectory calculations 
to identify the crucial elements of the collision dynamics and it remains a challenge to 
theory to explain how reaction cross-sections depend on j.
   Broadly speaking, the mechanisms that have been put forward to explain reagent 
rotational effects can be classified as either »energetic« or »reorientational«. As 
suggested in [58], as the reagent rotational energy is increased, more product states 
become accessible so, at least in the phase space limit, the reaction cross-section may be 
expected to increase. However, direct reactions rarely, if ever, obey phase space theory, 
so more dynamical explanations should be sought. One such explanation would be that 
rotational motion in the reagent assists the system to surmount the potential energy 
barrier to reaction. Although, as pointed out before [60], on a simple basis it is difficult 
to see reactivity can be enhanced in this manner for a reaction dominated by a collinear 
minimum energy path, since rotational motion would be orthogonal to the motion along 
the reaction coordinate, rotational energy might assist in those many noncollinear 
collisions that lead to reaction, even in those cases where the lowest barrier to reaction is 
for a collinear geometry. In the examples which we discuss below rotational 
enhancement of the energetic origin is clearly seen to arise. The effect, however, is not 
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sufficient to provide an explanation for the surprisingly strong rotational enhancement 
of the reaction cross-sections found in the trajectory calculations in question. 
   Reorientational effects of reagent rotation have largely emphasized the possibility that 
increased reagent rotational motion will disrupt the progress of a trajectory towards the 
most favorable, i.e., lowest energy, geometry for reaction. Arising of such trajectory 
reorientation effects in interactions of diatomic reagents with atoms in the case of an 
oblate potential energy surface was pointed out and discussed in some detail in Section 
2.2. In the systems in question the surface tends to guide the trajectories towards the 
region of lowest barrier energies, thereby greatly increasing the reaction cross-section. 
Rotational excitation disrupts this »funnelling effect« and causes a decline in reactivity 
with rotational quantum number in such systems. 
   More recently we found [61,62], assuming again that straight-line trajectories en route 
to the barrier are a reasonably good approximation, that rotational excitation of the 
reagent affects the distribution of collisions with the barrier. The effect depends strongly 
on the ratio of the rotational and translational velocity, vrot/vtrans ; when this ratio is 
increased the distribution of collisions is shifted towards the apex region of the critical 
dividing surface. If the barrier energies are low in the apex region this leads to a strong 
increase of the reaction cross-section. The increase could be much larger than what one 
could reasonably expect from the »energetic« mechanism. This effect will be 
demonstrated and discussed in more detail using reactions O(3P) + H2 and O(3P) +HCl 
(DCl) as examples. Cross-sections for these reactions obtained by the trajectory 
calculations on well-known potential energy surfaces show peculiarly strong j
dependence which can be convincingly explained by the above mechanism [61,62].  

3.1  ACCELERATION OF REACTIONS O + H2 AND O + HCl (DCl) DUE TO                            
       ROTATIONAL EXCITATION 

We shall now apply the kinematic mass model introduced in Section 2 to bring out the 
physical content of the results of the trajectory calculations for reactions O + H2 [63] 
and O + HCl (DCl)  [47] where, as mentioned already, peculiarly strong enhancement of 
the reaction cross sections due to rotational excitation of the reagents was found. For 
each of the reactions the shape of the critical dividing surface and of the near-by 
equipotential surfaces in the region where the reaction could possibly occur will be 
approximated by the ellipsoidal surfaces (Figure 5), with axes chosen to reasonably fit 
the shapes derived directly from the potential energy surface for the particular reaction. 
The main conclusions of our analysis will be quite insensitive to the details of these 
fittings.
   Let again R be the center-of-mass separation vector at a point of the trajectory, v the 
relative velocity and n the unit vector perpendicular to the equipotential contour at the 
point in question (Figure 5). In the case of a diatomic reagent the formulas given in 
Section 2 assume the following simpler form: 
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Figure 5.  Schematic representation of O + H2 and O + HCl (DCl) collisions. The heavy line 
repesents a part of the critical dividing surface, lighter lines represent equipotential contours. 
Ellipsoidal approximations are used for both kind of surfaces as described in the text. v is the 
relative velocity of the collision partners, R is their center-of-mass separation vector,  is te Jacobi 
angle, n is the normal to the equipotential energy surfaces. The coordinate origin is at the center of 
mass of the molecule; axis x coincides with its longitudinal axis. In the present model 
calculations, straight line trajectories up to the critical dividing surface are assumed.
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If it can be supposed that the process is essentially controlled by the dynamics over a 
potential surface element dS of dimentions which are small when compared with the 
dimensions of the system considered, µ*, n, R, v|| and J can be regarded as nearly 
conserved over dS. The second term in Equation 14: µ*v*/2  thus gives the kinetic 
energy of the motion perpendicular to dS which is available for the barrier crossing. The 
first and the third term in Equation 14 are nearly conserved on dS. They become exactly 
conserved in the limit when the range of force goes to zero.  
   Evidence presented in [46] show that, in the case of the potential surfaces of the shape 
being considered here, it can be reasonably assumed that the trajectories are nearly 
straight lines up to the critical dividing surface. Within the above theoretical framework, 
the condition for the reaction to occur is given by Equation 9, where Eb is the barrier 
height at the point of impact and the values of µ* and v* must be calculated at the same 
point. For the present purpose, limiting the analysis to coplanar collisions was regarded 
to be adequate, since the trajectory studies of O + HCl (DCl) reactions referred to are for 
coplanar collisions. Monte Carlo methods were used to generate the impact parameter 
and the angle defining the initial orientation of the reagent for individual collisions.  

3.1.1. O + H2 Reaction
The reaction : O(3P) + H2  OH + H is important in combustion and as a prototypical 
oxygen atom reaction. A considerable number of theoretical and experimental 
investigations of this reaction that have been reported are quoted in the trajectory study 
[63] devoted primarily to the effects of reagent rotation in this reaction. The work in 
[63] is based on Johnson-Winter LEPS potential surface [64] from which also the 
relevant parameters were derived for the kinematic mass model analysis [61] of the 
trajectory results in question.  
   It should be noted that O + H2, like O + HCl (DCl) and O + HBr, belongs to the few 
reactions for which, according to quasiclassical trajectory calculations, the cross-section 
increases monotonically with reagent rotation. This rather simple behaviour, however, 
does not seem to have a simple explanation. In [63] the qusiclassical trajectory 
calculations of the reaction cross-section Sr are given for 0 j  10 and translational 
energies Etrans = 12, 15 and 20 kcal/mol. Sr is found to be strongly j dependent at all three 
collision energies considered (see Figure 7 below). As noted already in the original 
paper [63], such strong j dependence of Sr cannot be easily reconciled with the shape of 
the equipotential surfaces which, in this case, does not deviate much from the spherical, 
and is only slightly prolate. It has been argued therefore [63] that the observed j
dependence arises because the Sr–reducing effect of trajectory reorientation by the 
prolate surface may be the strongest at j = 0 and then diminishes at larger values of j. On 
closer examination of the reorientation properties of  trajectories  in [63] one is led to 
the conclusion that trajectory reorientation effects in O + H2 should be comparable to 
those found in the case of O + HCl (DCl) [46]. The j dependence of Sr for these 
reactions, however, is quite weak at j < 8, in sharp contrast to what is found in O + H2.
Although trajectories are reoriented to some degree towards higher barrier energies in 
the case of prolate equipotential surfaces [46], and the reorientation effect in question 
should be diminished at higher values of j, this does not provide a likely explanation for 
the strong j dependence of Sr found in the trajectory calculations for O + H2 reaction 
[63]. This conclusion is further corroborated by the results of  modelling O + HCl [21], 
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showing that most of the effects which has previously been ascribed to reorientation of 
trajectories in the case of a prolate surface [47] in fact comes from the anisotropy of a 
narrow region of the potential surface near the barrier, even if reorientation of 
trajectories is neglected. 
  In the kinematic mass model investigation of the strong j dependence of the reaction 
cross-section Sr in the O + H2 reaction [61] the shape of the critical dividing surface in 
the region relevant for the reaction was approximated by an ellipsoid with the axes a = 
1.59Å and b = 0.75a which were estimated from the analysis of the potential energy 
surface in [63]. The equipotential surfaces were also assumed to be approximately 
ellipsoidal, with axes b1 = 0.92a1. These parameters were chosen to match the shape of 
the critical dividing surface and the equipotential surfaces near the saddle point on the 
potential energy surface for collision geometry [63]. The origin of the ellipsoids 
coincides with the center-of-mass of the diatomic reagent. Qualitatively the results 
should not depend much on the details of shape approximations. The dependence of the 
barrier height on the Jacobi angle for the potential surface in question is given in 
Figure 6. In addition to the pure electronic barrier, the vibrationally adiabatic barrier for 
 = 0 is also presented. It was determined as described in Section 2.1. Since the reaction 

in question was studied by quasiclassical trajectory calculations, the vibrational zero-
point energy effects on the barrier crossing were included and thus have to be taken into 
account also in the kinematic mass model calculations. 
  Kinematic mass model calculations of the reaction cross-sections Sr were initially 
calculated as if the points of impact on the critical dividing surface were reached 
instantaneously, with the orientation angle, the translational energy and the rotational 
angular momentum having the values as initially selected. Consequently, any effects of 
the rotational motion on the distribution of the points of impact on the critical dividing 
surface were neglected: at any value of j this distribution was therefore as in the j = 0 
case. The results of these calculations, presented in Figure 7, show a rather weak 

Figure 6. The dependence of the barrier height on the Jacobi angle  for the potential energy 
surfaces used in the present cross section calculations for O + H2 and O + HCl (DCl)  reactions: 
( ) pure electronic barrier; (---) vibrationally adiabatic barrier (  = 0) [21].  
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dependence of the reaction cross-section on j, very much in accordance with the 
conventional views that rotational effects on a potential energy surface which is of an 
almost spherical shape should be small. The results of the model clearly are in sharp 
contrast with the j dependence found in the trajectory calculations.   

Figure 7. Reaction cross sections for O + H2(  = 0, j) as function of j. ( , ), ( , ), and ( , )
correspond to collision energies Etrans = 20, 15 and 12 kcal/mol respectively. Open symbols: 
quasiclassical trajectory results [64], full symbols: results of the kinematic mass model 
calculations. Effect of reagent rotation on the distribution of collisions at the barrier is neglected 
in (a); it is taken into account in (b)[61]. 

  It was pointed out in [21] that effects of the rotational motion on the distribution of the 
points of impact may not be negligible for reactions where the critical dividing surface 
is nonspherical and the rotational velocitiy is comparable, or larger than, the relative 
translational velocity. This is the case, i.e., in O + H2 and O + HCl (DCl) reactions 
presently considered. The above hypothesis was confirmed [61] by analysing the 
distribution of points of impact on the critical dividing surface, calculated with proper 
averaging, so that the distributions obtained correspond to those that should occur in 
calculations of the reaction cross-sections. The distribution of collisions on the critical 
dividing surface for j = 0 and j = 10, at collision energy Etrans = 12 kcal/mol, depicted in               
Figure 8 show that at higher rotational numbers j the distribution is shifted towards 
smaller values of angle  where the barrier energy is lower (Figure 6). This leads to a 
mechanism of possibly strong rotational enhancement of the reaction cross-section, in 
addition to the enhancement due to an increase of the kinetic energy available for the 
barrier crossing. If changes in the distribution of collisions due to rotational excitation 
are taken into account in the kinematic mass model calculations the strong rotational 
enhancement of the cross-sections is essentially reproduced (Figure 7). Since the results 
of a coplanar collision model are in this case being compared with 3-dimensional 
quasiclassical trajectory results, a normalization factor had to be introduced which was 
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chosen by matching the results at j = 0 and Etrans = 20 kcal/mol. This may be one of the 
reasons for the agreement between the results in Figure 7 not being better. Even more 

      
Figure 8. The effect of rotational excitation on the distribution of collisions at the barrier for O + 
H2 reaction, for j = 0 ( ) and for j = 10 ( ). The collision energy was Etrans = 12 kcal/mol in each  
case[61]. 

important in this respect may be the fact that in the quasiclassical trajectory calculations   
the vibrational zero-point energy effects are included. According to the assumed 
potential energy surface, the barrier for O + H2 reaction rises only slowly with the 
angle (Figure 6), which means that even collisions at fairly large values of  can be 
active. As pointed out in Section 2.1, the method of calculating vibrational zero-point 
energy effects on the barrier in the kinematic mass model can be regarded as less 
reliable at larger values of ; at such angles is thus the vibrationally adiabatic barrier 
(Figure 6) likely to be less accurate. 
   The largeness of the interval of angle  over which the collisions O + H2 can be 
reactive is also the reason for the effects of rotational excitation on  the distribution of 
collisions being manifested already at small values of j. The situation in O + HCl (DCl) 
reactions, to be discussed next, is in this respect entirely different. 

3.1.2 O + HCl (DCl) Reactions
The trajectory results for O(3P) + HCl (DCl)  OH (OD) + Cl reactions obtained with 
the Surface I [47] reveal a j dependence of the reaction cross-section Sr which differs 
strikingly from that in the O + H2 case. For O + HCl, Sr rises slowly with j up to j ~ 8, 
and then increases rapidly for j > 8 (Figure 9). In the case of O + DCl the situation is 
similar, with the increase for j > 8, however,  being much slower. There is also a weak 
decrease in Sr at values of j in this case which will not be addressed here. 
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   It should be noted that in the present case the trajectory calculations were carried out 
for coplanar collisions with the vibration of HCl (DCl) frozen [47]. A trajectory was 
assumed to be reactive if it reached a point on the top of the electronic barrier. There are 
no corrections of the barrier height due to the vibrational zero-point energy effect in this 
case. These trajectory results are therefore more directly comparable with the results of 
the kinematic mass model than the 3-dimensional quasiclassical trajectrory calculations 
discussed in the previous case. 
   At the present level of rigour, the potential energy surface (Surface I) may be 
characterized by a critical dividing surface of roughly ellipsoidal shape with axes a = 
2.57Å and b = 0.69a, and the equipotential surfaces near the barrier which may also be  

Figure 9. Rotational dependence of the reaction cross section for O + HCl and O + DCl reactions 
at Etrans = 10 kcal/mol. ( ) classical trajectory results [48]; ( ) results of the kinematic mass model 
with the dependence of the distribution of collisions at the barrier on reagent rotation taken into 
account; ( ) results of the same model with the effect of rotation on the distribution of collisions 
neglected[61].

Figure 10. Effect of rotational excitation on the distribution of collisions at the barrier in O + HCl 
and O + DCl reactions at Etrans = 10 kcal/mol. The angle  = 0 corresponds to the colinear Cl-H-O 
(Cl-D-O) geometry. Values: j = 0 ( ), 8( ), 12 ( ) and 16 ( )[62]. 

assumed to be roughly ellipsoidal, with b1 = 0.84a1. As in the previous case, these 
shapes are assumed to approximate the surfaces in question over the region relevant for 
the reaction and the main conclusions can be expected to depend little on finer details of 
these approximations. The dependence of the barrier energy on angle  for this surface is 
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given in Figure 6. Its characteristic property is that it rises steeply with the angle. The 
range of  values for which the reaction can occur is almost three times smaller than in 
the case of the O + H2 reaction: at Etrans = 10 kcal/mol and j = 0, e.g., the maximum  is 
only ~ 11°. As we shall see below, the difference in the steepness of the dependence of 
the barrier energy on  is the main reason that rotational enhacements in O + H2 and O + 
HCl reactions are strikingly different.  
   The results of the kinematic mass model calculations for O + HCl (DCl) in which the j
dependence of distribution of collisions on the barrier was neglected , so that at each j
this distribution was the same as for j = 0, are presented in Figures 9. We see that 
agreement with the trajectory results is quite good for j < 8, at higher values of j,
however, the rotational enhancement of the reaction cross-section found in  the 
trajectory calculations is much stronger than in the results of the model, particularly for 
O + HCl. By taking the effects of rotational excitation on the distribution of collisions 
into account, a much better agreement with the trajectories is obtained for j  8, while 
the results for j < 8 remain essentially unchanged. In this respect the present results are 
surprisingly different from the corresponding results in the O + H2 case where the 
effects of rotationally induced changes in the distribution of collisions become important 
already at small  values of j. These striking peculiarities, however, can be readily 
explained by considering the j dependence of the collision distributions (Figure 10) and 
the barrier energy dependence on angle  (Figure 6). We see that for j < 8 the rotational 
excitation does not affect much the number of collisions over the barrier region (0<  < 
15°) where the reaction is energetically possible. For j  8, however, the number of 
reactive collisions increases rapidly, due, first, to the increased range of , but much 
more so due to the change of the collision distribution induced by the rotation: at higher 
rotational excitation collisions accumulate over the  region of the barrier close to the 
longitudinal axis where the barrier energies are the lowest. This effect is present also in 
O + DCl reaction; it is, however, much weaker because the rotational velocity at a given 
value of j is only half of the value in the HCl case. As already mentioned, the barrier for 
the O + H2 reaction rises rather slowly with : at j = 0, max ~ 30° at Etrans = 12 kcal/mol 
and ~ 50° at Etrans = 20 kcal/mol. The changes in the distribution of collisions therefore 
become effective in increasing the cross-section already at small values of j, so that this 
effect cannot be neglected for any j > 0. 
   It is illustrative to consider also the dependence of the cross-section for the O + HCl 
(DCl) reactions on the rotational energy Erot. The results presented in Figure 11 show 
that at increased rotational energy the effect of the change in the distribution of 
collisions can be quite large also for O + DCl, reaching about half of the value for O + 
HCl at the largest Erot considered. For comparison, also given are the results of the 
calculations in which j = 0 but the translational energy Etrans = 10 kcal/mol is increased 
by Erot. The cross-section for O + DCl can be larger than for O + HCl in this case 
because of the larger value of the mass µ*, the velocity v* at each translational energy 
being roughly the same for both reactions. The energy µ*v*2/2 for barrier crossing 
(Equation 9) can thus be larger for O + DCl collisions in this case.  
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Figure 11. Rotational energy Erot dependence of the cross section for O + HCl and O + DCl 
reactions at Etrans = 10 kcal/mol. Compared are the results of the classical trajectory calculations 
( ) [47], kinematic mass model results which only include the energetic effects of the reactant 
rotation ( ), kinematic mass model results which include rotational effects on the distribution of 
collisions with the barrier in addition to the rotational energetic effects ( ), and the kinematic 
mass model results for rotationally unexcited reactants (j = 0) and the translational kinetic energy 
increased by the amount of Erot ( ) [62]. 

4. Concluding Remarks

Notwithstanding the simplifications introduced in the derivation of the kinematic mass 
model for chemical reactions, the mechanism of strong rotational enhancement of the 
reaction cross-sections found in this model in the case of O + H2 and O + HCl (DCl) 
reactions can be regarded as conclusively established. The »energetic effect«  in the 
rotational enhancement, as given by the model, is rather weak, just as it is commonly 
expected, and the strong rotational enhancement found in the trajectory calculations is 
shown to be largely due to the changes of the distribution of collisions with the barrier 
arising through the rotational excitation. Several important characteristic properties of 
the mechanism in question could also be clearly pointed out: (i) the magnitude of the 
effect arising from this mechanism depends very much on the ratio of the rotational and 
translational velocity , vrot /vtrans. This can be seen, e.g., by comparing the effect of 
rotational excitation in the O + HCl and O + DCl reactions. In the latter, the rotational 
enhancement at a particular Erot is considerably weaker, due to smaller vrot, vtrans being 
roughly the same in both reactions at a given Etrans. (ii) depending on how steeply the 
barrier energy rises with angle , the enhancement effect of the mechanism in question 
may set in to an appreciable extent only at a high enough value of  j, say, at j = j0, like in 
the O + HCl (DCl) reactions. For j < j0 the changes in the distribution of collisions occur 
mostly over the regions of the barrier which cannot be crossed, the barrier energies 
being too high there. For such j values the rotational enhancement then is due essentially 
to the »energetic effect« which is generally much weaker. If the barrier energy rises 
slowly with angle , the enhancement due to the change of the distribution of collisions 
may be appreciable already at any j > 0, like in O + H2 reaction. 
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   The results presented here provide a convincing explanation, e.g., of the conclusion of 
Mayne [60] that »it appears that rotational excitation is the most efficient way to 
promote hydrogen atom abstraction«. He made this observation on the basis of extensive 
quasiclassical trajectory calculations. It is particularly noteworthy that even in the case 
of the reaction O + HCl on Surface II, where a decline in reactivity with rotation was 
found at rotational energies less than 8 kcal/mol [47,49], for higher rotational energy, 
and at higher translational energies rotation strongly enhances H atom transfer [60]. 
Although the shape of the equipotential surfaces is oblate for Surface II, the shape of the 
critical dividing surface is prolate (Figure 3) and at high enough rotational velocities the 
effect of the accumulation of collisions over the region of the barrier near the 
longitudinal axis prevails over the effects disrupting »trajectory funnelling« which, as 
discussed earlier, tend to decrease the cross-section. 
   As pointed out already in [62], the mechanism in question could also have a crucial 
role in reactions in condensed phases where it should arise due to large amplitude 
oscillatory motions, like internal rotations or librations, of molecules or reactive atomic 
groups. Such oscillatory motion could be excited, e.g., by microwaves and the 
mechanism in question should thus be of great importance also for understanding 
microwave acceleration of chemical reactions in condensed phases. 
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Abstract. We report theoretical simulations of hyperthermal O(3P) collisions
with CH4. CaHo and CyHg that are related to erosion processes in low Earth orbit
(LEO). In the first part of this paper, wo use electronic structure calculations to
show that at energies well below those accessible in LEO, there is a whole new
body of reaction channels that are open in addition to the well known lowest bar-
rier one, H abstraction to give OH + alkyl radicals. For instance, 0 addition to
the hydrocarbon followed by H elimination to give alkoxy radicals + H is possible
through barriers of about 2 eV. Similar barrier heights are found for direct carbon-
carbon bond breakage processes that can take place in hydrocarbons containing
C-C bonds (ethane and propane). In the second part of this paper, we carry out
reaction dynamics calculations using the quasiclassical trajectory method in con-
junction with a novel semienipirical Hamiltonian termed MSINDO. Cross section
calculations reveal that H elimination and C-C breakage arc both competitive
with H abstraction in the reactions of O(3P) with ethane and propane. In O(3P)
+ methane, elimination is even more important than H abstraction under LEO
conditions. Energy distributions for the majority channels show different patterns
according to the kinematics of the products that are formed. For H abstraction
to give OH, most of the energy is released as product translation, while OH is
fairly cold. For H elimination, most energy is released as internal energy of the
oxyradical. Angular distributions also depend on the product channel. H abstrac-
tion shows a trend with collision energy that matches that of reactions undergoing
a direct mechanism. Near threshold H elimination and C-C breakage angular dis-
tributions reveal the presence of two different saddle points that connect reagents
and products for each process.

1. Introduction

The reaction of ground electronic state atomic oxygen with short-chain hydro-
carbons to give OH + alkyl radicals has been of considerable ongoing interest in
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the gas phase kinetics community due to its importance in combustion chemistry
[1]. As a result thermal rate constants for O(3P) + RH -> OH + R (R, = short-
chain saturated alkane) have been measured for a variety of alkanes over a broad
temperature interval. The recommended rate constant expressions for O(3P) +
CH4 -^OH + CH3, O(3P) + C2H6 -> OH + C2H5 and O(3P) + C3H8 -> OH
+ C3H7. are (in units of cm3 molecule"1 s"1), respectively, (1.15 x 10~15)T1-5G

exp(-4270/T) (T = 300 - 2500) [2], (1.66 x lO"15)^-5 exp(-2920/T) (T = 300 -
1200) [3], and (1.3 x 10"21) T3-5 exp(-1280/T) (T = 298 - 2000) [4]. The rela-
tively small rate constant values at room temperature (5.5 10~18, 5.1 10~16, 8.5
10~15 cm3 molecule"1 s^1, respectively) imply relatively large barriers (roughly
0.4 eV). These large barriers have limited the availability in nonthermal reaction
dynamics experiments. In the early 80's, Andresen and Luntz observed rovibra-
tional distributions of OH generated in the reaction of O(3P) atoms with several
saturated hydrocarbons with energies barely above the barrier [a]. More recently,
McKcndrick and coworkers reported OH rovibrational distributions for O(3P) reac-
tions with short-chain hydrocarbons, including methane and ethane [6, 7]. Energy
disposal data in the partner alkyl product have been harder to obtain, and only
vibrational distributions of the umbrella mode of the CH3 generated in the O('jP)
+ CH4 reaction have been published [8].

Here, we shall be interested in other aspects of the title reactions not connected
with thermal processes. The surfaces of spacecraft in low Earth orbit (LEO) are
eroded due to the harsh oxidizing environment encountered in that region [9, 10].
Oxygen atoms in the ground state dominate the 200-700 km altitude range associ-
ated with LEO [11]. After seminal after-flight analysis revealing important erosion
patterns in spacecraft surfaces, ground-based experiments were subsequently car-
ried out to verify the eroding character of O(3P) atoms in LEO conditions for
polymer surfaces analogous to those found on spacecraft [12, 13] (for a recent re-
view7 see [14]). These experiments revealed that under steady-state bombardment
conditions, mass was carried away from the surfaces by means of volatile species
such as CO or CO2. It is therefore of crucial importance to examine O atom reac-
tions with polymer surfaces in order to establish LEO erosion mechanisms. As a
first step in this direction, we consider the microscopic mechanisms whereby O(3P)
atoms react with gas-phase molecules that mimic the polymer surfaces, of which
the simplest example is short-chain hydrocabons. Thus in the following wre shall
describe theoretical studies of O(3P) atoms reacting with the three shortest-chain
saturated hydrocarbons under high energy (few7 eV) conditions, such as would be
found in LEO. Insight gained in these studies will provide an initial understanding
of the LEO erosion problem, and will aid in the development of theoretical models.

The novel feature of the present studies lies in the conditions upon which O(3P)
reacts with hydrocarbons. Orbital motion in LEO leads to a collision energy be-
tween O(3P) atoms and spacecraft surfaces of about 5 eV [15]. Such a high collision
energy has not been explored in previous thermal studies of O(3P) + hydrocarbon
reactions, and it seems obvious that the thermal reactivity cannot be straightfor-
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wardly cxtrapolatod to hypcrthcrmal conditions. Those drastic energy conditions
open the possibility of new reaction channels that have been unresolved until very
recently [16, 17, 18, 19]. We shall focus here on these novel reaction channels as
they may provide effective pathways for erosion in LEO. Our theoretical approach
to the title reactions comprises two different levels of the chemical reaction theory.
First, we perform quantum chemistry calculations on the electronic structure of the
product reaction channels and saddle points that are accessible under LEO condi-
tions. Second, we carry out direct dynamics studies to identify dynamics properties
of the most important reaction pathways. Comparisons with experiments that are
being developed by Minton and Garton at Montana State University will be made
throughout [16. 19. 20].

The paper is organized as follows: the details of the electronic structure calcu-
lations are in Section II, Section III is for the dynamics studies and conclusions
and future directions are given in Section IV.

2. Quantum chemistry calculations

Reagents, products and pathways connecting between them have boon studied
for the title reactions at different levels of electronic structure theory. Results
of semiempirical PM3 [21] and MSINDO [22, 23] calculations are examined in
comparison with more rigorous density functional theory (DFT) and ah initio pre-
dictions. Semiempirical techniques are not expected to provide accurate represen-
tations of the potential energy surfaces, however, they provide electronic structure
schemes that are amenable for use in conjunction with dynamics studies (so-called
direct dynamics calculations). For instance, sample gradient calculations on O('jP)
+ CH4 or C2H6 indicate that MSINDO and PM3 arc about 3000 times faster
than B3LYP/6-31G*. This implies that a dynamics study of the title reactions
with statistical significance employing first-principles techniques poses a tremen-
dous computational expenditure, whereas semiempirical techniques can provide
detailed studies in a more timely manner. It is therefore interesting to verify the
accuracy of the semiempirical techniques as they arc potentially suitable candi-
dates to be used in subsequent reaction dynamics studies.

PM3 and ab initio UMP2 calculations have been carried out using the GAMESS
package of programs [24], JAGUAR [25] has been used for DFT B3LYP/6-31G*
and MSINDO 1.1 for MSINDO calculations. All of our calculations are based on
unrestricted wave-functions. Spin contamination was never larger than 7.5% of
the expectation value of the exact squared spin operator (< S2 > = 2.0) in any of
the stationary points reported here. Likewise, all of the calculations refer to the
ground electronic state (I3A in C., symmetry). The effects of excited triplet sur-
faces have been considered in dynamics studies of the O(3P)+CH4 —>H + OCH3
reaction reported elsewhere [19]. Reaction energies calculated using these methods
are compared with experiments [26, 27], whereas reaction barriers are compared
with highly accurate coupled-cluster calculations carried out by us for the reactions
involving ethane and methane.
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TABLE 1. Energetics of the most

Stationary Point

O(3P)+CH4

OH + CH3 (abstraction)
TS1 (abstraction)
H + OCH3 (elimination)
TS2 (elimination)
TS3 (elimination)

O ( 3 P ) + C 2 H B
OH + C2H5 (abstraction)
TS1 (abstraction)
H + OC2H5 (elimination)
TS2 (elimination)
TS3 (elimination)
OH3 + OCH3 (C-C breakage)
TS4 (C-C breakage)

O(3P)+C3H8

OH + 11-C3H7 (I) (abstraction)
OH + 11-C3H7 (II) (abstraction)
TS1 (abstraction. I)
TS2 (abstraction, II)
H + n-OC3H7 (I) (elimination)
H + n-OC3H7 (II) (elimination)
TS3 (elimination; I)
TS4 (elimination; II)
CH3 + OC2H5 (C-C breakage)
OCH3 + C2H5 (C-C breakage)
TS5 (C-C breakage)
TS6 (C-C breakage)

important O( P) -

PM3

-0.876
0.304

-0.446
1.104
1.181

-1.205
0.192

-0.501

1.119
-1.257

-1.443

0.207
0.203

-0.508
-0.484
1.214
1.112

-1.282
-1.556

MSIXDO

-0.342
0.564
0.081
1.869
1.990

-0.758
0.370

-0.209
1.701
1.671

-0.720
1.645

-0.764
-0.757
0.355
0.354

-0.208
-0.235
1.861
1.760

-0.855
-0.981
1.773
2.054

f CH4, C2

B3LYP
6-31G*

0.250
0.264
0.511
1.815
2.158

0.040
0.081
0.328
1.857
2.050

-0.199
1.692

0.056
0.071
0.087
0.094
0.310
0.248
1.871
1.791

-0.304
-0.329
1.703
2.110

H6 and C3

UMP2
6-311G**

0.291
0.774
0.801
2.542
2.915

0.175
0.632
0.607
2.571
2.789
0.365
2.533

0.207
0.215
0.645
0.607
0.604
0.538
2.601
2.497
0.297
0.387
2.619
2.916

Hs reactions.

Exp.
(CCSD(T))6

0.10c

(0.497)
0.64c

(2.096)
(2.509)

-0.07c

(0.415)
0.39c

(2.191)
(2.457)
-0.01c

(2.062)

-0.12d

-0.17d

-0.10"'

" Energies in cV with respect to reagents.
b CCSD(T)/AUG-cc-pVTZ calculations over UMP2/AUG-cc-pVDZ geometries and fre-
quencies for O(3P)+CH4 . CCSD(T)/cc-pVTZ calculations over UMP2/cc-pVTZ geome-
tries and frequencies for O(3P)+C2He.
c Experimental values (AR^SK) come from the heats of formation of Rcf. [27].
d Experimental values (AH^'ggx) come from the heats of formation of Ref. [26].

We report in Table 1 the thermodynamics of the most important reaction
channels that arc open under LEO conditions. Abstraction of a hydrogen atom to
generate OH and alkyl radicals is the reaction pathway that has been observed in
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earlier experiments [5, 6]. However, under LEO conditions there are other possible
reactive processes such as O addition to the hydrocarbon with subsequent elimi-
nation of a hydrogen atom (that we term H elimination). or direct breakage of a
carbon-carbon bond in ethane and propane to generate two hydrocarbon fragments
(that we term C-C breakage). Both H elimination and C-C breakage lead to the
formation of oxyradicals, where oxygen atoms are directly bonded to hydrocarbon
fragments. Evidence for generation of oxyradicals has been given by experiments
on liquid hydrocarbons in steady-state bombardment with 0( 3P) atoms, where
volatile species such as CO or CO2 scattering from the hydrocarbon surface were
detected [14]. Initial steps for generation of these products require oxyradical for-
mation and this is one of the reasons why H elimination or C-C breakage are
particularly interesting reaction pathways. Of course, C-C breakage is also of cru-
cial importance to materials damage in LEO as it provides a direct mechanism for
the production of volatile products (small alkyl radicals or oxyradicals).

It should be noted that the hydrogen abstraction or elimination calculations
reported here for O(3P) + C:3H8 only refer to processes that involve primary
carbon atoms. However, it is well known that the secondary radicals coming from
abstraction or elimination of hydrogen atoms initially bound to the central carbon
atom are more stable than primary radicals [5]. Although we consider all of the
possibilities in the dynamics studies that we report later, Table 1 only shows the
thermodynamics of reactions involving primary locations so as to establish useful
comparisons with ethane and methane, where radicals can only be primary. In
addition, there are two possible (primary) 11-C3H7 and 11-OC3H7 radicals. 11-C3H7
(I) is that in which the lacking hydrogen with respect to propane is originally
in the plane defined by the carbon atoms of the molecule, whereas n-C3H7 (II)
corresponds to the radical generated by abstraction of either of the remaining two
hydrogen atoms which are symmetric by the C-C-C plane. Likewise 11-OC3H7 (I)
shows Cs symmetry, and the oxygen atom replaces an H atom initially belonging
to the plane defined by the carbons chain. n-OC:jH7 (II) is not symmetric and the
oxygen atom occupies an out-of-plane position. As noted in Table 1, each of these
products connects with reagents through a different saddle point.

Experimental reaction energies for the lowest energy barrier abstraction pro-
cesses (O(3P) + RH ->• OH + R) arc slightly overestimated by DFT and UMP2
calculations, and strongly underestimated by scmicmpirical techniques in all three
reactions. Only CCSD(T) calculations with correlation consistent triple zeta ba-
sis sets are able to reproduce the experimental reaction energy within chem-
ical accuracy (0.05 eV). B3LYP/6-3IG* calculations are closer to experiments
than UMP2/6-3IIG**. For the two semiempirical techniques, the improvement of
MSINDO over PM3 is quite evident from the data in Table I. and roughly speak-
ing, the deviation of MSIXDO from experiment is 50-70% of the PM3 deviation.

For the H elimination (O(3P) + RH ->• OR + H) channel, the reaction en-
ergies calculated using B3LYP/6-3IG* are in better agreement with experiment
than UMP2/6-3IIG**. Again, semiempirical techniques largely underestimate the
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reaction energy, and MSINDO substantially improves over PM3. Note in Table 1
that for the UMP2 and B3LYP calculations the reaction energy for H elimination is
larger than the barrier for H abstraction. C-C breakage is also possible in the reac-
tions involving ethane and propane, and the reaction energies of these processes are
not all that different from H abstraction. Much as happens for H elimination, the
B3LYP/6-31G* predictions are closer to experiment than UMP2/6-311G** and
MSINDO improves over PM3, although both semiempirical Hamiltonians largely
underestimate the experiments. It should be noted that several other products
are possible. For instance, double H elimination after O addition to the hydro-
carbon leads to aldehydes (formaldehyde, acetaldehyde, propanal) and ketones
(propanone). Also double H atom abstraction leads to water and a hydrocarbon
diradical. Although we observe all of these products in our reaction dynamics
studies, we have omitted them in Table 1 as they are very minor products.

Regarding the reaction barriers, it can be clearly seen in Table 1 why pro-
cesses other than H abstraction have not been extensively investigated in the
past. Whereas H abstraction can proceed through barriers surmountable by O(3P)
atoms generated by UV laser photolysis of NO2 or SO2; barriers of about 2 eV
make H elimination or C-C breakage inaccessible under typical laboratory con-
ditions. However, LEO conditions involve collision energies substantially larger
than these barriers, allowing for generation of oxyradicals by H elimination pro-
cesses or direct C-C bond breakage. Both novel reaction pathways have been very
recently detected in molecular beam experiments involving hyperthermal O(3P)
atoms [16, 19]. Therefore, it is interesting to carry out a detailed analysis of the
properties of the stationary points connecting reagents with H elimination and
C-C breakage products. Whereas B3LYP/6-31G* calculations of reaction energies
arc in better agreement with experiments than UMP2/6-311G** in all cases, we
observe different behavior for the reaction barriers, here using CCSD(T) data as a
benchmark for comparison. The abstraction barriers are clearly underestimated by
B3LYP/6-31G* but arc satisfactorily reproduced by UMP2/6-311G**. For H elim-
ination, there arc at least two saddle points that connect reagents and products in
all three reactions. The CCSD(T) lowest energy H elimination barrier is somewhat
better reproduced by B3LYP/6-31G* than by UMP2/6-311G**, whereas neither
the DFT nor UMP2 calculations cleanly agree with CCSD(T) for the higher energy-
barrier. It is noteworthy that B3LYP and UMP2 predictions always give a lowrer
and upper bound to the CCSD(T) energies. C-C breakage barriers have about
the same height as the H elimination barriers. For the only C-C breakage barrier
wrhere we have conducted CCSD(T) calculations, the DFT estimates seem to be
more accurate than UMP2, and again both represent upper and lower bounds to
the CCSD(T) values.

An illustrative comparison of abstraction, H elimination and C-C breakage
processes for the reactions of O(3P) with methane, ethane and propane is depicted
in Figure 1. The graph shows energies calculated at the B3LYP/6-31G* level. For H
abstraction processes (Figure l(a)) the reaction with methane seems to be the more
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Figure 1. Energy profiles of the most important reaction channels in the O(3P) +
methane, ethane and propane reactions, (a) H abstraction O(3P) + RH —> OH + R. (b)
H elimination O(3P) + RH ->• H + RO. (c) C-C breakage O(3P) + R ->• OR' + R". The
energy scale of (a) is half that of (b) and (c). The energy of the stationary points refers
to B3LYP/6-31G* calculations.

endocrgic one whereas the reactions with ethane and propane show very similar
reaction energies. This is in agreement with experiments. The B3LYP/6-31G*
trends in the barriers are supported by CCSD(T) calculations in the reactions with
methane and ethane. The reaction with methane has the largest barrier, whereas
there arc arc only small differences between barriers for H abstraction in ethane or
propane, much as it happens in the reaction energies. This agrees with the values of
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the thermal rate constants at room temperature for the three systems mentioned
in the introduction. B3LYP/6-31G* calculations for H elimination (see Figure
l(b)) indicate that methoxy generation is relatively more endoergic than formation
of ethoxy or n-propoxy radicals, and this is supported by the rest of quantum
chemistry techniques. This would indicate that longer chains more successfully
stabilize oxyradicals. The lowest energy barriers for H elimination are however very
similar for all three reactions, and this is supported by all the calculations reported
in Table 1. Note that there are other saddle points at higher energy that can also
lead to H elimination that have been omitted in the figure for clarity. Regarding C-
C breakage, all the product channels considered here for the reactions with ethane
and propane are within 0.1 eV according to B3LYP and UMP2 calculations and
0.2 eV according to experiments. The lowest energy barriers for C-C breakage
in ethane and propane are also very similar. Independence of barrier height for
C-C breakage with the hydrocarbon chain length has been previously reported
for O(3P) + linear saturated hydrocarbon reactions involving hydrocarbons up to
heptane [28]. However, Table 1 and Figure l(c) show the presence of higher energy
barriers that can also lead to C-C breakage under LEO conditions. We have plotted
the higher energy saddle point in the O('jP) + CsHs reaction as this is the lowest
energy saddle point that we have located leading to the OCH3 + C2H5 product,.
The 0.3 eV higher energy of this saddle point with respect to that leading to the
CH3 + OC2H5 product suggests that the preferred approach of O('3P) to propane
molecules involves interaction with the secondary carbon atom rather than with
the primary ones.

Scmicmpirical predictions of the reaction barriers show many of the trends re-
vealed in the calculations of the reaction energies. Thus MSINDO clearly improves
over PM3, particularly in regards to the saddle points involved in the H elimination
and C-C breakage processes. It is also interesting to note that although the perfor-
mance of MSINDO regarding the reaction energies is not as accurate as would be
desired, the barrier heights arc very satisfactorily described. Indeed, the root mean
square deviation of the MSINDO barriers with respect to B3LYP/6-31G* values is
only 0.20 eV. PM3 deviations are much larger. In addition we have failed to locate
any of the C-C breakage saddle points at the PM3 level, and the geometry opti-
mizations attempted using initial geometry guesses coming from optimized saddle
points from the rest of the techniques all lead to H elimination saddle points.

What we learn from the electronic structure calculations carried out here is that
short-chain hydrocarbons can experience a variety of reactions upon collisions with
hyperthermal O(3P) atoms. We find that H elimination and C-C breakage may
compete with the lower barrier H abstraction at energies above 2 eV, opening new
mechanisms for damage in LEO. The recently developed MSINDO Hamiltonian
shows improved performance with respect to PM3. Although MSINDO reaction
energies substantially underestimate the experiments, MSINDO reproduces the
reaction barriers calculated using higher accuracy first-principles methods very
satisfactorilv.
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3. Dynamics

3.1. COMPUTATIONAL DETAILS

We have interfaced the MSINDO Hamiltonian with a fifth-order predictor sixth-
order corrector integrator of the classical equations of motion to investigate the
dynamics of the title reactions. Equations of motion are solved with a 10 a.u.
time integration step. Trajectories are started with an initial distance of 12 a.u.
between the O('3P) projectile and the target hydrocarbon center of mass. Around
10 000 trajectories have been calculated at various collision energies relevant to
LEO conditions. Initial conditions of the hydrocarbons are sampled from zero point
energy motion. Results for H abstraction and elimination in the reactions involving
propane take into account the possibility of both primary and secondary H atoms.
The thermodynamics of these two channels are slightly different, and therefore
analysis of energy partitioning has to be carried out separately. Energy disposal
data for o+propane reported here is therefore an average of processes involving
primary and secondary H atoms weighted according to the respective total cross
sections.

As mentioned before, we detect in our reaction dynamics calculations a variety
of reaction products other than H abstraction, H elimination or C-C breakage. The
cross sections of these other reaction channels (such as aldehyde + 2H, or H2O +
hydrocarbon dirradical) are much smaller than those for the three more important
processes, and therefore we omit a detailed analysis of these channels here.

3.2. CROSS SECTIONS

Reactive cross sections for H abstraction, H elimination and C-C breakage as a
function of collision energy arc presented in Figure 2.

Figure 2(a) shows the H abstraction cross sections. The size of the cross sections
is apparently correlated with the length of the hydrocarbon chain. However, the
small difference in the barrier heights for H abstraction is not important enough
to explain the trends observed in the cross sections, particularly given that most
of the energies considered in the dynamics studies arc way above the barrier.
Instead, the cross section correlates closely with number of H atoms in the target
molecule, which obviously increases with the chain length. At Ecou — 3.92 eV,
the propane : ethane : methane cross section ratio is 2.00 : 1.46 : 0.63, which is
very close to the ratio of hydrogen atoms (2.0 : 1.5 : 1.0). Later we show that
angular distributions for H abstraction at high energies is dominated by forward
scattering, so a stripping process seems to dominate the reaction dynamics, which
means that the cross section should scale with the number of exposed hydrogen
atoms (i.e.. all the hydrogen atoms for these small molecule targets).

H elimination cross sections are given in Figure 2(b). Here the dependence
of the cross sections on the length of the hydrocarbon chain is not as evident
like it is for H abstraction. Instead the H elimination cross sections all have a
very similar size and threshold. An increase in the cross sections for the longer
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Figure 2. Excitation functions of the most important reaction channels in the O(3P) +
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H elimination O(3P) + RH ->• H + RO. (c) C-C breakage O(3P) + R -> OR' + R".

hydrocarbon chains be inferred at high energies, but it is a minor effect. Two
factors seem to be responsible for these results. First the reaction barriers for H
elimination are all about the same. Second, in order for H elimination to occur, the
incoming O atom needs to impulsively hit a carbon atom (rather than a hydrogen
atom), which means that the number of hydrogen atoms in the molecule is not
important. In addition, we find that for ethane and propane, the most effective
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impulsive collisions arc ones where the axis of the molecule is collinear with the
incident relative velocity vector. This means that the effective area of the molecule
that leads to H elimination is about the same for methane, ethane and propane.

It should also be noted that whereas in the case of the O(3P) reactions with
ethane and propane H elimination has a smaller cross section than H abstraction,
in the case of methane H elimination takes over H abstraction at high energies.
This is somewhat surprising given that there is a difference of about 1.5 eV in
the reaction barriers that would favor H abstraction. This is direct evidence of
the fact that knowledge of the O(3P) + hydrocarbon reaction pathways at low
energies cannot be directly extrapolated to LEO conditions and suggests the ne-
cessity of developing detailed studies at high energies to properly characterize the
microscopic mechanisms occurring under hyperthermal conditions. Very recently
[19], H elimination cross sections have been measured in a crossed-beams experi-
ments for O('3P) + CH4. Comparison of those measurements with our MSINDO
calculations reveals a difference in the MSINDO and experimental thresholds that
is consistent with the difference between MSINDO and CCSD(T)/AUG-cc-pVTZ
barrier heights. More importantly, the slope of the experimental excitation func-
tion can only be reproduced by the calculations when the excited surfaces of overall
triplet multiplicity adiabatically correlating reagents and products are explicitly
accounted for in our treatment.

Figure 2(c) shows the cross sections for the principal C-C breakage processes
that take place in the O('3P) reactions with ethane and propane. We distinguish
two C-C breakage reaction channels in 0 + propane, OC2H5 + CH3 and OCH3
+ C2H5. We do not observe apparent differences in the cross sections of these two
channels at high energies. However, the data of Table 1 and Figure l(a) indicate
that these processes have slightly different barriers, of about 0.2 eV in the MSINDO
calculations. This turns into a shift in the thresholds, and whereas we observe a
very small cross section leading to OC2H5 + CH3 at Ecou — 1.75 eV. we do not
see any reactivity to OCH3 + C2H5. We note that although the cross sections for
both propane C-C breakage channels arc smaller than 0 + ethane C-C breakage
cross sections, the global 0 + propane C-C breakage cross section overlaps that for
ethane at high energies. Remarkably, although H elimination and C-C breakage
have similar reaction barriers, H elimination has clearly a larger cross section.
This can be rationalized if one imagines that the initial step for H elimination
and C-C breakage is the same, namely hard impact of the 0 on a carbon atom,
and that this is followed either by elimination of H or C-C breakage, with the
probability of each channel being determined by the number of hydrogen atoms
that can eliminate compared to the number of C-C bonds that can break. In fact,
when an O('3P) impacts directly with a C atom of C2H6, there are three hydrogen
atoms that can eliminate but only one C-C bond that can break. The calculated
H elimination : C-C breakage cross section ratio in the O('3P) + C2H6 reaction
throughout the collision energy interval considered is in fact very close to 3.0, in
qualitative agreement with this statistical argument.



340 DIEGO TROYA AND GEORGE C. SCHATZ

3.3. ENERGY DISTRIBUTIONS

Figure 3 presents product average fractions of the available energy that appear
in selected product degrees of freedom as a function of collision energy for the H
abstraction processes taking place in the O('3P) reactions with methane, ethane
and propane. We consider energy release to translation. OH vibration and rotation,
and internal energy of the hydrocarbon radical. We focus first on the high collision
energy regime. Average fractions of product translational energy (Figure 4(a)) are
the largest in all reactions and increase with collision energy. However, it can be
seen that the larger the hydrocarbon is, the smaller the fraction of translational
energy is. At high energies OH is vibrationally cold (Figure 4(b)) and there is
little variation of the OH vibrational energy fractions with collision energy or
with the reaction under consideration. However, OH fractions of rotational energy
decrease with collision energy and depend on the hydrocarbon; the smaller the
product alkyl radical is, the larger the OH average rotational energy fraction is.
The reverse trend is noticed for the average fractions of the alkyl radical internal
energy, and whereas the CH3 fraction internal energy is barely above zero point
at high energies, the average fraction of C2H5 and C3H7 are respectively larger
and larger. In fact, in the O(3P) + C2H6 and CsH8 reactions the average fraction
of internal energy of the alkyl radical is larger than the fraction in OH rotational
energy.

Let us consider now the low collision energy results. McKendrick and cowrork-
ers experiments [6] indicate that OH is both vibrationally and rotationally cold
at energies barely above the abstraction barrier. Although our MSINDO calcula-
tions show that OH generated in the methane reaction is vibrationally cold, OH
becomes more excited as the reagent hydrocarbon becomes larger. The increase
in OH vibrational energy with the hydrocarbon is much larger than is seen in the
experiments, which is an effect that we demonstrated earlier is an artifact due
to the QCT approach, wherein some of the reagent zero point energy ends up as
product OH vibrational energy as a result of excessive intramolecular vibrational
redistribution [18]. Calculations carried out with methane or ethane having half
their usual zero point energies lead to colder OH products, in better agreement
with experiments.

We also note that there is a much larger fraction energy released to OH ro-
tation than seen in the experiments. This wras shown earlier to be tied to the
inaccuracy the MSINDO potential surface, which predicts much looser bending
energy curves than is seen in ab initio calculations. Thus, although MSINDO is a
reasonable technique for determining cross sections, as the barrier heights for the
title reactions are accurate, it also contains flaws affecting regions of the potential
energy surface that determine energy partitioning. Batches of a few hundred tra-
jectories that we generated using B3LYP/6-31G* at high energies show agreement
with MSINDO fractions for translation and OH vibration energy release. However,
OH is rotationally cold in the B3LYP/6-31G* results, and the alkyl products are
hotter than is predicted by MSINDO, which seems to be in agreement with lowr
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Figure 3. Average fractions of energy in products as a function of collision energy for the
H abstraction reaction channel in the O( P) + methane, ethane and propane reactions.
(a) Average fractions of translational energy, (b) Average fractions of OH vibrational
energy, (c) Average fractions of OH rotational energy, (d) Average fractions of methyl,
ethyl and propyl internal energy.

energy measurements. It should also be noted that although the average fractions
of translational and OH vibrational energy calculated by MSINDO and B3LYP/6-
31G* arc in agreement, the absolute values of the energies differ substantially due
to a large overestimation of the reaction energy by MSINDO.

Figure 4 shows the average fractions of energy released in the H elimination
reactions. Here we only distinguish between product translational energy and en-
ergy released to the oxyradical. The trends are similar for all three hydrocarbons
considered, with average fractions of the oxyradical product energy increasing as
collision energy increases at the expense of product translation energy. This trend
is opposite to that of H abstraction in Figure 3(a) which can be rationalized based
on the distinct kinematics of the two reactions. H abstraction (O(3P) + RH —>
OH + R) can be modeled as having Hcavy-Light-Hcavy (HLH) kinematics. In
HLH systems, the reagents orbital angular momentum is preserved as final or-
bital angular momentum, which in turn means that larger collision energies arc
going to provide larger product translational energy. On the other hand, H elim-
ination reactions (O(3P) + RH -> H + OR) show HHL kinematics. This implies
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H elimination reaction channel in the O(" P) + methane, ethane and propane reactions.
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average fractions of internal energy in the oxyradical molecules.

an inefficient tranformation of initial orbital angular momentum to final orbital
angular momentum. Hence, the release of energy to translation with increasing
collision energy is not promoted. It is also noticeable that although the trends for
H elimination energy release are parallel for the three hydrocarbons, the reactions
involving ethane and propane show very similar values of the average fractions of
energy that arc different from those of methane. Interestingly, akin to what we
see in Figure l(b) for B3LYP/6-31G* calculations, MSINDO reaction energies for
H elimination for 0 + ethane and O + propane are very close, and less exoergic
than that for O + methane.

We have also studied how energy is distributed among the various degrees of
freedom of the products generated in the C-C breakage reactions. The picture that
captures the energy distribution is a mixed contribution of the trends seen for H
abstraction and H elimination, although it is much closer to H abstraction. Thus
most of the energy available to products (around 70%) is released as product rela-
tive translation in all cases (O(3P) + C2H6 -> CH3 + OCH3, and O(3P) + C3H8
—> OCH3 + C2H5, CH3 + OC2H5). The average fractions of product translational
energy slowly decrease with increasing collision energy. The remaining energy is
distributed differently between the hydrocarbon fragments that result in the C-
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C breakage process. The oxyradical receives more energy than the alkyl radical,
the latter being barely above its zero point in all cases. In addition, the oxyrad-
ical energy increases with collision energy, a trend akin to that reported for H
elimination.

3.4. ANGULAR DISTRIBUTIONS

CO
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OH+I'KOPYI.

cos(kk')

Figure 5. Angular ditributions expressed in terms of normalized differential cross sec-
tions (— )(~^r) for the H abstraction reaction channel in the O(3P) + methane, ethane

TY dill
and propane reactions, (a) Econ=0.65 cV. (b) Eco//=3.92 cV.

Analysis of angular distributions provides fundamental details of the micro-
scopic reaction mechanisms taking place in O(3P) reactions with saturated hydro-
carbons. Figure 5(a) shows angular distributions for H abstraction reactions at 0.65
cV. This collision energy is representative of the reaction near the threshold, and
is particularly relevant as a result of experimental measurements on homologous
reactions involving larger hydrocarbons at comparable energies above the barrier
by Suits and coworkcrs [29, 30]. Calculated differential cross sections arc clearly
backward, and this is in qualitative agreement with the experiments. However, the
measured angular distributions seem to be more backward than those plotted in
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Figure 5(a). In addition, there seems to be a trend toward less backward scattering
with increasing hydrocarbon chain length. Therefore it could be argued that cal-
culated angular distributions for hydrocarbons used in the experiments (n-butane,
i-butane and cyclohexane) would be even less backward. However, preliminary
studies of the O(3P) + cyclohexane reaction at ECO;/=0.65 eV carried out by us
using the MSINDO Hamiltonian give angular distributions that are coincident
with those for ethane and propane within a relatively large statistical uncertainty.
The clearly backward scattering for all of the O(3P) + saturated hydrocarbons re-
actions reported here at low energies is a direct consequence of the geometry of the
saddle point for abstraction. O('3P) approaches in a nearly collinear way toward
the C-H bond that is breaking, and the resulting OH is scattered back towards
the direction of the incoming O atom. This behavior is analogous to what is found
for a variety of H abstraction reactions with nearly collinear saddle points [31, 32].
The small mismatch between theory and experiment could be due to the quality of
the MSINDO Hamiltonian, however, there are several other factors involved. For
example, O(3P) + CH4 and C2H6 QCT calculations in which the hydrocarbon
molecules have initially half their zero point energy provide low energy scattering
distributions that are more backward than are shown in Figure 5(a). As mentioned
before, redistribution of the zero point, energy for large molecules has the effect of
vibrationally exciting the OH product molecule. Thus it seems that caution has
to be used when interpreting the results of QCT calculations involving molecules
that have a large zero point energy. Some of these problems were noticed before by
Hase, who showed that the classical treatment of molecules having a large num-
ber of degrees of freedom provides excessively rapid intramolecular vibrational
distribution in unimolecular reactions [33].

Angular distributions for high collision energy calculations (Figure 5(b)) show
forward peaked distributions, in clear contrast with the low energy calculations
mentioned above. The transition from low energy to large energy scattering dis-
tributions is smooth for all three reactions, and for example at Eco;; = 1.5 cV the
angular distributions have an important sideways character. This behavior is typi-
cal of reactions occurring through a direct mechanism, and whereas the low energy-
result shows a direct 'rebound' mechanism, the high energy behavior is typical of
stripping dynamics, in which the attacking atom simply picks up the atom that is
abstracted, changing very little its initial momentum [34].

H elimination angular distributions are presented in Figure 6 at Ecou = 2.36
eV (Figure 6(a)) and Eco// = 3.96 eV (Figure 6(b)). The low energy distributions
in O + methane are predominantly backward. However, the distributions of the
O('jP) reactions with ethane and propane show bimodal character, with peaks in
the backward and sideways region. This also happens for 0 + methane at slightly
smaller energies. The two different peaks come from the two different reaction
paths whereby H atoms can eliminate, as noted in Table 1. The lowest energy H
elimination saddle points are characterized by a near collinear O-C-H arrangement
(where H is the atom that eliminates), and is analogous to the well known SN2
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mechanism. Trajectories following this reaction path lead to backward scattering,
as the H atom that eliminates exits in the same direction as the incoming O(3P)
atom. On the other hand, the geometry of the higher energy saddle point implies a
near perpendicular O-C-H arrangement, which in turn leads to sideways scattering.
Thus the bimodal distributions seen in Figure 6(a) are the result of the contribution
of two different reaction paths for H elimination that can take place in all three
reactions. At higher energies, the distinct contribution of both reaction paths fades,
and the angular distributions become significantly broader. The flux scattered in
the backward distribution is larger than that in the forward, though.
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Figure 0. Angular distributions expressed in terms of normalized differential cross

sections (—)(——) for the H elimination reaction channel in the O(3P) + methane.
TV dill

ethane and propane reactions, (a) ECO;;=2.36 eV. (b) ECO((=3.92 eV.

We finish our analysis by mentioning angular distributions for C-C breakage.
The angular distributions at energies near threshold in O + ethane reveal the
presence of two reaction pathways, much as occurs in H elimination. The predom-
inant peak is backward and has its origin on the geometry of the C-C breakage
saddle point reported in Table f. This saddle point is characterized by a near
collincar O-C-C arrangement, which implies that the CH3 fragment is scattered
in the same direction as the incoming 0 atom. The second peak comes from ap-
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proach of the oxygen atom perpendicular to the C-C bond, resulting in sideways
scattering. At high energies the contributions of a pure SN2 process seem to vanish,
and although the scattering distributions are rather broad, they are significantly
sideways peaked. Analogous trends are observed in both C-C breakage processes
that are possible in the O(3P) + C^Hg reaction.

4. Concluding Remarks

We have performed extensive theoretical studies of the O(3P) + CH4, CaHg and
C^Hg reactions, primarily focusing on high collision energies so as to simulate low
Earth orbit conditions.

Under such high energy conditions, a variety of product channels other than
the archetypal H abstraction to give OH plus an alkyl radical are open. Among
these, the most important are H elimination to generate oxyradicals, and C-C
breakage leading to oxy and alkyl radicals. The reaction energies and barriers for
H elimination and C-C breakage have been characterized using several electronic
structure techniques. Although H elimination is slightly endoergic and C-C break-
age is thermoneutral, both reaction channels show similar barriers of about 2 eV.
These barriers are easily surmountable under LEO conditions, and our predictions
confirm experimental findings that these high energy reaction paths exist.

Reaction dynamics investigations of cross sections reveals that at under LEO
conditions H abstraction and C-C breakage are both competitive with H abstrac-
tion. In fact, in O(3P) + CH4 the H elimination cross sections are larger than the
H abstraction cross sections at high energies. Analysis of energy distributions in
products indicates that kinematics factors control energy partitioning. Abstraction
reactions can be modeled by HLH kinematics, where product translation energy
is the most excited product degree of freedom, whereas OH and alkyl radicals
are both fairly cold. H elimination corresponds to HHL kinematics, and in this
case the internal energy of the alkoxy radical is more significant. C-C breakage
reactions are not easily associated with either of the previous models, and trans-
lational excitation of products is more important than internal excitation of the
oxyradical, while the partner alkyl radical product docs not receive a large amount
of excitation.

An analysis of the angular distributions reveals that the microscopic mecha-
nism for H abstraction corresponds to a rebound mechanism at low energies and
stripping dynamics at high energies. Near threshold angular distributions for H
elimination and C-C breakage show contributions of two different reaction path-
ways. The SN2-like mechanism is responsible for backward scattering while the
slightly higher energy bent approach leads predominantly to sideways scattering.

Although the work presented here unveils many details of novel processes that
take place under LEO conditions, a thorough analysis of the fundamentals of mate-
rials damage in LEO clearly requires us to study the interactions of hypcrthcrmal
O(3P) atoms with condensed-phase surfaces analogous to those coating spacecraft.
In work which is currently undenvay, wre are investigating O(3P) hyperthermal
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interactions with hydrocarbon self-assembled monolayers as a more realistic repre-
sentation of erosion of a polymer surface. Preliminary results suggest the presence
of reaction channels that are similar to those found here, and with dynamics prop-
erties that make contact with experiments on O('3P) hyperthermal collisions with
liquid hydrocarbon surfaces [35].
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Abstract. Excitation functions from quasiclassical trajectory calculations on the H + 
H2O → OH + H2, H + HF → F + H2 and H + H’F → H’ + HF reactions indicate a 
different behavior at low and high low and high vibrational excitation of the breaking 
bond. All these reactions are activated when the reactant tri- or diatomic molecule is in 
vibrational ground state or in low vibrationally excited states. i.e. there is a nonzero 
threshold energy below which there is no reaction. In contrast, at high stretch excited 
states capture-type behavior is observed, i.e. at low translational energies the reactive 
cross section diverges. The latter induces extreme vibrational enhancement of the 
thermal rate consistent with the experiments. The results indicate that the speed-up 
observed at high vibrational excitation is beyond the applicability of Polanyi’s rules; 
instead, it can be interpreted in terms of an attractive potential acting on the attacking H 
atom when it approaches the reactant with a stretched X-H bond. 

1. Introduction 

Collisions of highly vibrationally excited molecules is commonly a topic in the field of 
unimolecular reactions [1,2,3,4,5]. Collisions of vibrationally excited molecules in that 
field are studied in the context of energy transfer, namely, when nonreactive but 
inelastic collisions change the energy content of the molecule that may undergo a 
unimolecular reaction. The possibility that the collisions of the excited molecules in the 
gas phase with reactive partners can show specific phenomena has traditionally not been 
considered, except for diatomic molecules. Bimolecular reactions of vibrationally 
excited molecules have become a subject of intense study recently, when experimental 
work indicated that a remarkable speed-up and state specificity can be observed when 
simple molecules in vibrationally excited states collide with reactive partners [6,7,8, 9].  
 According to the molecular beam experiments on the reaction of vibrationally 
excited water with H atoms [6-10], 
                                                    H + H2O(00v) → OH + H2   (R1, R-1) 
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the vibrational excitation of the O-H stretch modes induces a remarkable state 
specificity: when the H atoms of the water molecule are tagged by isotope labeling, one 
can observe that the H or D atom is selectively abstracted depending on whether the O-
H or O-D bond is vibrationally excited. In the experiments under thermal conditions 
[8,9] reaction rates exceeding the gas kinetic collision rate were observed that 
correspond to thermal average cross sections of around 20 2. The classical trajectory 
and quantum scattering calculations indicate that reactivity increases with increasing 
excitation of the O-H stretch vibrational mode of water [10,11,12]. This is not surprising 
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Figure. 1 Potential energy profiles together with some of the reactant energy levels for the H + 
H2O → OH + H2 (a) and the H + H’F → F + H2 reaction (b). On panel (a) the energies of the 
stationary points are derived from the WSLFH PES [11], the initial energy levels for water are 
calculated with a DVR method using Radau coordinates, and the final levels for the products are 
obtained from the Morse potentials corresponding to the PES. On panel (b) the energies of the 
stationary points are obtained from the 6-SEC PES [13]; both the initial and final energy levels 
are calculated from the Morse parameters obtained by fitting a Morse curve to the potential for the 
separated HF and H2 oscillators.  

as the reaction is characterized by a late barrier which, according to Polanyi’s rules 
[14,15,16] can be more easily surmounted if the atom to be abstracted vibrates with 
larger amplitude. The magnitude of the increase is, however, much larger than what one 
can expect based on the bobsled effect that is beyond Polanyi’s rules. The details of how 
and why the reactant in lower and higher vibrationally excited states reacts differently 
have not been investigated. It is not clear whether the extreme speed-up of the reaction 
is specific to the reaction of excited H2O or can also happen in other systems. 
Accordingly, we studied the reactive cross sections of reaction (R1) and some other 
processes that are similar to it, namely, the reaction of H atoms with HF. The potential 
profiles for these two reactions, shown in Fig. 1, are similar: the reaction is highly 
endoergic. As the potential barrier is late for both, and the extra OH bond in H2O is a 
well-behaved spectator bond, and the masses are similar, one can expect similar 
dynamics. 
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 In this paper we summarize the results of our work performed with the purpose of 
elucidating the details of how the vibrational excitation increases the rate of the 
reaction. In the rest of the paper we first summarize the theoretical methods (section 2) 
then present the results of the quasiclassical study of the dynamics of the H+H2O
reaction in section 3 and those on the H + HF abstraction and exchange processes 
(section 4). In section 5 we attempt to trace back the enhancement of the rate to the 
properties of the potential surface. 

2. Methods 

The calculations of reactive cross sections for reactions with vibrationally excited 
reactants were performed using the standard quasiclassical trajectory method. The 
peculiarity of the calculations of the reaction of the triatomic water molecule is that 
trajectories are started from an initial state of H2O which is represented by a “root” 
trajectory. This is obtained by searching for a periodic trajectory for which the 
calculated vibrational classical action variables for the three vibrational modes 
correspond to the selected quantum numbers (+1/2 according to the Einstein-Brillouin-
Kramers quantization rule). As water in higher vibrational states is better described by 
local modes, the (02)0, (03)0, and (04)0 excited states were described by 0 quantum in 
one O-H stretch, and 2, 3, or 4 quanta in the other, and the bend mode is in ground state 
(denoted by the subscript 0 after the parenthesis). In all calculations the connection 
between the orbital angular momentum and the initial impact parameter was considered 
to be purely classical. It is remarkable that in the calculations at low initial relative 
translational energy the maximum impact parameter has to be set to a very high value 
(see Fig. 4. below), otherwise the large reactive cross sections can not be observed. 
Similarly, as the relative velocity is very small under these conditions, the upper limit of 
the integration time of the trajectories must be carefully set so that no reactive trajectory 
should be lost. The calculations for the atom+diatom reactions were performed using an 
extensively modified parallel version of the VENUS code [17]. The atom + triatomic 
molecule reactions were performed with the code used in Ref. 11. 

3. The reaction of H atoms with vibrationally excited water molecules 

The H + H2O → OH + H2 and the reverse reaction have served as the testing ground for 
methods to treat reactions with four-atomic systems. Most of the earlier calculations 
have been performed on the WDSE potential surface [18] but recently more precise 
surfaces appeared. The hybrid WSLFH surface [11] combines a spline-fitted reduced 
dimensional section of the surface with asymptotic reactant and product potentials 
derived from experiments using simple analytical and switching functions. This 
potential surface treats the two hydrogen atoms of the water molecules or, alternatively, 
the two H atoms of the diatomic H2 as equivalent. The OC surface [19], which is based 
on the rotating bond order formalism [20], treats all hydrogen atoms equivalent but the 
exchange reaction was not addressed and is not described correctly. The most recent and 
most extended is the YZCL2 potential surface [21] which is based on Sheppard 
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interpolation and explicitly treats the exchange channel. All hydrogen atoms are 
equivalent on this surface. There is a price for the increased accuracy, namely, that the 
calculation of the potential energy becomes more and more time-consuming in the cited 
order. We selected for the calculations reported in this work the WSLFH surface, 
because we focus our interest on the abstraction channel which is adequately described 
by this PES, and because the computations are much faster on this surface than on the 
other two. 
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Figure. 2 The section of the WSLFH potential surface of the H + H2O → OH + H2 reaction  when 
the H’-H-O angle is set to 180 degrees and the spectator coordinates are fixed at their values 
corresponding to the saddle point 
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 The collinear section of the WSLFH PES on Fig. 2 shows that, as expected, the 
potential barrier is slightly in the product H2 + OH valley. Based on Polanyi’s rules one 
can expect that vibrational excitation of the reactant’s O-H bond will be favorable for 
the reaction. This is what we observed in quasiclassical trajectory calculations on the 
H+ H2O(0v)0 reaction at low vibrational excitation (v=0,1, or 2) as shown in Fig. 3. The 
calculations resulted in a qualitatively different excitation function at low and high 
vibrational excitation, in agreement with the results reported earlier [10,11] for the OC 
potential surface of Ochoa and Clary [19]. At low vibrational excitation the reactive 
cross section is zero at low relative translational energy, and there is a finite threshold 
for reaction while at high vibrational excitation the reactive cross section diverges at 
low excitation energy and drops with increasing Etr. At v=0,1,2 the threshold energy 
decreases with increasing vibrational excitation, being about 17.3, 4.6 and 0.1 kcal 
mol-1, respectively. The magnitude of the reactive cross section increases with the initial 
relative translational energy, and at large Etr it is approximately proportional to the 
initial vibrational quantum number. At v=3,4 the limiting high-energy cross section is 
also much larger than at lower v, but the large difference as compared to v=0,1,2 is that 
the reactive cross section decreases with increasing initial relative kinetic energy. At 
low Etr the cross section increases roughly according to an inverse power law with 
decreasing Etr. This behavior is characteristic of capture processes [22]. Further details 
can be obtained from the opacity functions presented in Fig. 4. At low relative 
translational energy larger reactive probability is observed at large impact parameters 
than in close to head-on collisions, indicating that the slowly moving reactants are 
attracted into a reactive arrangement. Increasing the initial relative translational energy, 
the reactive cross section becomes larger at small impact parameters, which means that 
if the partners approach fast, the influence of the small attractive force is quickly 
overridden.  
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 The thermal rate coefficients calculated for the inverse power law excitation 
functions for the (04)0 state on both the WSLFH and the OC potential surfaces are in 
very good agreement with the experiments [23] 

4. The reaction of H atoms with vibrationally excited HF molecules 

The
                                                    H + HF(v) → F + H2   (R2, R-2) 

reaction is the elementary reaction for which the best potential surfaces are available. 
Both the 6-SEC surface of Truhlar et al. [13] and the Stark-Werner potential surface 
[24] are based on ab initio calculations that cover almost all of the electron correlation 
energy. The saddle point on both surfaces is in the product valley, but both at a non-
linear arrangement. In our calculations both the 6-SEC and the SW surfaces were 
studied with similar results. In this paper we report results based on the 6-SEC surface. 
 The excitation functions for H abstraction from vibrationally excited HF at various 
initial vibrational quantum numbers are shown in Fig. 5. The pattern is very similar to  
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Figure. 5 Excitation function for the H + HF(v) → F + H2 reaction at various vibrational 
excitations v obtained on the 6-SEC potential surface 

that of the H + water reaction: activated behavior at low vibrational excitation, up to 
v=2, and capture type excitation functions at higher vibrational excitation beginning 
with v=3. The higher the vibrational excitation the higher is the reactive cross section at 
any translational energy (so that the  – Etr curves do not cross). The quasiclassical 
trajectory method allows fine tuning of vibrational excitation and determining more 
precisely when the reaction switches from activated to capture-like. The excitation 
functions calculated at non-integer vibrational quantum numbers are shown in Fig. 6. 
The comparison of Figs. 5 and 6 shows the details of the switch from activated to 
capture type behavior. At the very high vibrational excitations of Fig. 5 (v=5,4,3) at low 
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initial relative translational energy the cross sections drop smoothly with increasing Etr
and follow an inverse power law up to around Etr=1 kcal mol-1. At slightly smaller 
vibrational excitation, v=2.8, (Fig. 6) a dip appears at around Etr=1 kcal mol-1 after 
which the reactive cross section increases first, then passes a local maximum and 
continues the pattern started at low translational energies, i.e., drops further (a slight 
sign of this can already be seen on the v=3 curve in Fig. 5 in the form of a shoulder). As  
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Figure. 6  Same as Fig. 5 but at non-integer HF vibrational “quantum numbers” 

section up to a threshold energy with Ethreshold 1 kcal mol-1 at v=2.2 and 3 kcal mol-1 at 
v=2.1. Except for the statistical scatter in the cross sections, the excitation functions 
seem not to cross each other at the low excitation range shown in Fig. 6. In particular, at 
very high translational energies the cross sections increase with increasing v. The final 
state distributions for the H2 product of this reaction are peaked at v=0 independently of 
the initial vibrational excitation, indicating that the process is vibrationally highly non-
adiabatic. The switch from activated to capture type behavior seems not to be restricted 
to the H + HF abstraction reaction. The excitation function for the exchange channel, 

                                                    H + H'F(v) → FH + H'  (R3, R-3) 

is shown in Fig. 7 for integer initial vibrational quantum numbers and in Fig. 8. for non-
integer “quantum numbers”. Activated behavior can be seen for v=1 and 2, and 
beginning with v=3 capture-type cross sections are observed. On these capture-type 
excitation functions a very well expressed feature is what was seen for the abstraction 
reaction near the switching point between activated and capture-type behavior. Namely, 
the inverse power decrease of the cross section at low Etr leads to a local minimum from 
which the cross sections start rising again with increasing relative translational energy.  
The switching between the activated and capture-type behavior is at around v=2.4 or 
2.5, very close to that for the abstraction reaction. 
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Figure. 7  Excitation function for the H + H'F(v) → FH + H' reaction at various vibrational 
excitations v obtained on the 6-SEC potential surface 
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5. Reverse reactions 

As the change of the excitation function from activated to capture type is not unique to 
the H + H2O reaction where it was first observed, it seems to be promising to check 
other reactions. Really, the unusual features of high reactivity can also be observed  for 
the reverse OH + H2(v=1) reaction on the OC potential surface, while Fig. 7. shows the 
excitation functions for the very exothermic F + H2(v) reaction for v=0 to 4. The 
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threshold energy is very low even for the reaction of H2 in vibrational ground state 
(around 0.9 kcal mol-1 at this QCT approximation) in agreement with the low barrier on 
the PES in the exothermic direction, and quickly decreases to 0.6 and 0.2 kcal mol-1 at 
v=1 and 2, respectively. The switch from activated to capture-type behavior occurs 
between v=2 and 3, where the threshold disappears and the cross section quickly 
increases with the decrease of the initial relative translational energy. 

0 2 4 6 8 10
0

1

2

3

4

5

6

7 F + HH -> FH + H

σ 
/ A

ng
st

ro
m

2

E  /kcal mol-1

 v=4
 v=3
 v=2
 v=1
 v=0

Figure. 9  Excitation function for the F + H2 (v) → H + HF reaction at various vibrational 
excitations v obtained on the 6-SEC potential surface 

6. Discussion  

The quasiclassical trajectory calculations on both exothermic and endothermic (as well 
as thermoneutral) atom-transfer reactions indicate that the excitation functions for the 
reaction of an atom with a vibrationally excited reactant undergoes a qualitative change 
as the vibrational excitation increases. For an endothermic reaction at low vibrational 
excitation the expectations based on Polanyi’s rule are fulfilled. At low kinetic energy 
there is no reaction, the cross sections increase above zero at a high threshold, and 
increase slowly and monotonously with the initial relative translational energy. The 
threshold energy decreases as the vibrational excitation increases, and the rate of 
increase is similar at different vibrational energies. The same amount of energy is more 
efficient for enhancing reactivity if invested in the form of vibrational energy than in the 
form of translational energy, which is one formulation of Polanyi’s rule. At higher 
vibrational excitation energy a different type of excitation function is observed. The 
cross section is very large at low relative translational energy, and drops quickly, at a 
close to inverse power law with increasing Etr. The decrease slows down when Etr is 
around a few kcal mol-1. In certain cases the excitation functions keep decreasing 
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monotonously, but more and more slowly as Etr increases. In several cases, however, a 
well defined minimum can be observed. The cross sections start to increase again after 
the minimum, and may pass a flat maximum. The composite nature of the excitation 
function indicates that there are two different features that determine its shape: one that 
is responsible for the divergence of the cross section with decreasing Etr at low relative 
kinetic energies, and one that causes the slow increase at larger kinetic energies. The 
latter is very probably the manifestation of Polanyi’s rule, similarly to what we 
described for low vibrational excitation. It is easy to visualize that as the amplitude of 
the reactant’s  vibrational motion increases, the reaction rate should increase. However,  
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that picture would not explain why the reactive cross section should diverge at low 
translational energy: it looks like the beneficial effect of the increased vibrational 
amplitude can be better manifested if the reactants approach slowly. Capture-type 
excitation functions are characteristic of collisions between partners that exert an 
attractive force on each other. Investigating potential surfaces for atom-transfer 
reactions, one can find that there is an attractive interaction between a vibrationally 
highly excited molecule and an atom for situations that do not occur when the reactant 
is not vibrationally highly excited, namely, when the breaking bond is significantly 
stretched. The existence of such an attraction was shown for several ab initio potential 
surfaces for H + H2O [10,11], but it is not unique to that reaction. Figure 10 shows the 
potential experienced by the H atom approaching the H atom of an HF molecule when 
the F-H bonds is extended to the turning point of at the collinear arrangement and at the 
bent arrangement corresponding to the saddle point of the 6-SEC PES. The potential is 
attractive already at large distances. The bond of a highly excited molecule can often be 
relatively long, and if the attacking atom arrives at the right phase, “passing the barrier” 
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may be a smooth downhill walk. Such an attraction can also be observed on the SW 
potential surface and not only for H-atom abstraction but also for the exchange reaction.  
 The idea that the vibrational enhancement of the rate is due to the attractive potential 
for excited vibrational states of  the reactant is closely related to the observation made 
long ago based on transition state theory [25,26]. Pollak [25] found that for vibrationally 
highly excited reactants the repulsive pods (periodic orbit dividing surface) is way out 
in the reactant valley, and the corresponding adiabatic barrier is shallow. Based on this 
theory one can explain why dynamical thresholds are observed in reactions with 
vibrationally excited reactants. The simplicity of the theory and its success for mostly 
collinear reactions has a real appeal. However, to reconcile the existence of a 
vibrationally adiabatic barrier with the capture-type behavior – which seems to be 
supported by the agreement of the calculated and experimental rate coefficients [23] – 
needs further study. 
 The explanation for the capture-type behavior displayed in the theoretical studies of 
reactions of vibrationally highly excited reactants can help to make the connection 
between the properties of the potential surface and the extreme speed-up of the reaction 
observed experimentally.  
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1. Introduction

The evolution of computer technologies from single extremely sophisticated pro-
cessor machines to clusters of commodity computing nodes and assemblies of het-
erogeneous computing Grids has shifted the focus of computational chemistry from
simple to complex systems and from models to realistic a priori simulations.

A sketch of the present situation in Grid computing is given in ref. [1]. A key
advantage of Grid platforms is the flexibility of their operating environments in
which either codes or data can be distributed for a total or a partial coordinated
concurrent execution on the subset of available machines of the Grid system most
suited for the job. Another important feature of these platforms is the capability
to operate through interfaces making the utilization of the highly different com-
puter hardware and basic software of these heterogeneous architectures more user
friendly. This makes the Grid not only a powerful scalable virtual computer offer-
ing to the partner laboratories a significant amount of extra resources, but also
a computing environment particularly suited to enhance the development of com-
plex computational applications resulting from the collaboration of geographically
distributed laboratories. This has stimulated a great deal of research on the ex-
ploitation of the network as an infrastructure for running coarse-grained parallel
applications [2, 3, 4] and on the design of tools allowing scientists to use Grid
platforms and still rely on the microlanguage of their specific scientific field (with
no need for learning about related underlying technicalities [5, 6]).

As a matter of fact, a significant amount of Grid software (like Globus, StaMPI,
Pacx-MPL MPICH-G) has been produced with the specific purpose of enabling
multi-institutional research efforts aimed at providing a high performance world-
wide computing environment for complex computation oriented applications [7].
This type of environment is appropriate to complement geographically distributed
computing platforms and networking infrastructures with a specific middleware
acting as a problem solving environment (PSE) [8] devoted to the management of
coordinated investigations. The aim of these PSEs is mainly to allow researchers
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to build complex computational applications by assembling already available or
ad hoc constructed blocks.

The European Union (EU) is also active in promoting the development of
complex computational applications based on the collaboration of geographically
distributed European scientific laboratories and centers with the aim of "solving
complex problems which cannot be solved with current technologies" [9]. In this
spirit COST [10] (European Cooperation in the field of Science and Technical Re-
search whose initiatives follow a bottom up approach allowing scientists to group
and collaborate on common research projects) in Chemistry has launched the D23
Action "METACHEM: Metalaboratories for complex computational applications
in chemistry" [11. 12]. Its aim is to promote Grid based collaborative laborato-
ries (Meta-laboratories) committed to deal with the realistic modeling of materials
and processes using a priori molecular approaches. A key feature of the Metalab-
oratories is, therefore, the coordinated use of the distributed computer hardware
and software resources, the development of specific Grid based problem solving
environments and the design of Grid oriented computational approaches.

This has pushed the evolution of chemical reactivity computer codes towards
approaches better allowing multiscale treatments based on loosely coupled algo-
rithms building complexity out of a large number of simpler computational tasks.
This has led to the development of Grid based molecular simulations (GMS). A
first prototype GMS has been developed within METACHEM for an a priori sim-
ulation of molecular beam experiments (SIMBEX ' [13]).

The paper discusses in section 2 the high level structure of the simulator, in
section 3 illustrates the use of advanced tools for concurrent computing and in
section 4 some new approaches designed having in mind large systems.

'The SIMBEX COST in Chemistry project (D23 003/01) [13] is at present being devel-
oped (mainly for atom diatom systems) by two groups of laboratories gathered together
on a Mctacomputcr. Some laboratories take care of developing and implementing friendly
computer tools for dealing with metacompilers. The other participating laboratories are
active in developing computational approaches dealing with the molecular nature of re-
active chemical processes. To the first group belong the Department of Mathematics and
Informatics of the University of Perugia that coordinates the project, the Unit for parallel
and distributed computing of CNUCE, Pisa, the Computer Science Department of the
Complutcnsc University, Madrid, the Centre of Excellence for Computing, Budapest, the
Polish Supcrcomputing and Networking Center, Poznan, and the Central Laboratory for
High Performance Computing of the Research Council, Daresbury. To the second group
belong the Department of Physical Chemistry of the University of the Basque Country,
Vitoria, the School of Chemistry, University of Bristol, Bristol, the Department of Chem-
istry, University of Goteborg, Goteborg, and the Institute of Chemistry of the Academy
of Science, Budapest. More recently, collaborations with other Chemistry, Physics and
Informatics Departments are being established within national and transnational initia-
tives. The prototype SIMBEX application is described in more detail in ref. [14, 15, 16].
The client level consists of a Web browser connected to the portal of SIMBEX. The web
page drives the user to the selection of the specific application, to the collection of the
related input data and to the recollection of the results obtained from the calculations
performed on the Grid. Then the user can start running the application and choose the
virtual monitors needed to follow the evolution of the calculation and the pile up of the
results into relevant statistical indices.
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2. The high level structure of the simulator

The assemblage of a GMS requires the convergence of the competences and the
action of various exports in calculating molecular electronic structures, heavy par-
ticle dynamics and collective measurable properties.

The present version of SIMBEX is implemented on a prototype Grid platform
made of three Internet connected Beowulf-like workstation clusters. On this model
Grid platform we installed Globus Toolkit 2 [7] for use within Globus Grid. We
have also implemented (still within Globus Grid) a local topology-aware distribu-
tion system using MPI. This minimizes point-to-point communications over slow
links and hides slow-bandwidth communication behind fast traffic and process
activity [14].

The high level structure of SIMBEX is articulated into three computational
blocks each taking care of a different aspect of the calculation: INTERACTION,
DYNAMICS and OBSERVABLES. Each of these blocks is taken care by one or
more laboratories of the Metalaboratory.

The first block, INTERACTION, is devoted to the calculation of electronic en-
ergies determining the potential energy surface (PES) on which the nuclear motion
takes place. The second block, DYNAMICS, is devoted to the integration of the
scattering equations to determine the outcome of the molecular process. The third
block, OBSERVABLES, is devoted to the reconstruction of the observable proper-
ties of the beam from the calculated dynamical quantities. All these blocks require
not only different skills and expertise but also specialized computer software and
hardware.

The Metalaboratory environment facilitates these tasks by allowing the inves-
tigators to use on the network complex packages, to deal with the various steps
implemented and maintained in a proper environment, to collect the necessary in-
formation from specialized data banks on the web, to perform locally the necessary
statistical manipulations as well as to render the results using graphics, animation
and virtual reality techniques.

2.1. INTERACTION

The INTERACTION block usually involves the activation of the ABINITIO pro-
cedure for the calculation of a sufficiently extended set of ab initio values of the
electronic energy when these are not available on the web or no routine evaluating
the PES in an accurate way is available. To perform ab initio calculations of the
electronic energy values it is possible to use a wide choice of standard quantum
chemistry computational packages like NWChem[17], Gaussian[18], CADPAC[19],
Turbomole[20], H0ND0[21], etc. involving the expertise of various laboratories.
The package presently adopted by SIMBEX is GAMESS-UK[22] and has been
specialized for three atom systems. If ab initio calculations are impractical to
perform, empirical or semiempirical approaches can be adopted. This is often the
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case when the system is very large. This part of the procedure is computationally
very heavy and particularly suited for being distributed for Grid computing.

A different approach ("on-the-fiy") to the use of the ABINITIO procedure is
its incorporation as a single value call inside the DYNAMICS block when the
potential energy is calculated only at the time it is needed by the integration of
the equations of motion.

Once defined the level of accuracy and the modality of use of ABINITIO, one
has to define also the characteristics of the grid of points to be considered as well as
all the other parameters characterizing the system and the ab initio calculations.

A separate group of programs is then used to fit the calculated ab initio values
(often after some adjustments to reproduce the known spectroscopic properties of
the system) to produce a global functional representation of the interaction to be
used in the DYNAMICS block. The fitting procedures are not yet standardized to
the point of making use of commercial packages. This step still involves a significant
amount of human intervention, specific know how and, possibly, ad hoc graphic
software and visual manipulation tools.

2.2. DYNAMICS

DYNAMICS, is the second block of the GMS in which dynamical calculations
are carried out using either quasiclassical (QCT) or quantum (QM) mechanics
approaches.

If the system is small enough (a few light atoms) one can tackle the problem of
solving exactly the QM coupled differential equations in the nuclear coordinates
generated by the expansion of the global wavefunction of the system [23] in terms
of the electronic cigenfunctions and the averaging over the electronic coordinates.

In QM approaches either a time-dependent or a time-independent technique
can be chosen. In the time-dependent technique, the wavepacket associated with
the system is collocated on a spatial grid. The resulting time-dependent scattering
equations are integrated in time by repeatedly applying the time step propagator.
The wavepacket is mapped onto the local basis set in the product region. The
coefficients of the expansion are half Fourier transformed from a time to an energy-
representation to produce the corresponding elements of the scattering (S) matrix
[24]. When the whole information over all the open states is needed in a single
fixed energy QM calculation, a method based on a time-independent approach
is used. In this approach, the time variable is factored out and the stationary
wavefunction is expanded in terms of a set of one-dimension-less functions of the
bound coordinates. This expansion and the subsequent integration over all the
bound variables leads to a set of coupled differential equations on the coordinate
connecting reactants to products (reaction coordinate) [25].

For larger systems mixed QM-QCT or pure QCT codes are used. QCT codes
integrate the equations of the classical mechanics to directly produce the prob-
ability matrix (P) or even more averaged quantities. One has also the option,
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especially convenient for very large systems, of introducing (a certain amount of)
statistical considerations.

The present version of SIMBEX is designed to use both QM and QCT cal-
culations. However, only one QCT computational engine (ABCtraj [26] for three
atom systems) is fully operative while other two (Venus[27] for more than three
atom systems and DL_POLY [28] for many atom systems) are still in the process
of being implemented.

It is worth pointing out here that for reactive scattering calculations (especially
the quantum ones) most of the codes are non commercial and are designed from
scratch or largely readapted from academic software.

2.3. OBSERVABLES

In the third block OBSERVABLES, macroscopic (observable) properties are eval-
uated by manipulating the scattering S matrix and/or the probability matrix P
calculated in the DYNAMICS block or by making direct use of the outcome of
the INTERACTION block. If only thermodynamic properties are of interest, as is
more often the case of condensed phases or complex gas mixtures like air, ionized
media, high temperature plasma these are determined using computing programs
based on standard statistical treatments of the potential energy values associated
with the various geometries of the system calculated in the INTERACTION block.
This task entails the development of chemical equilibrium models as well as the
calculation of the partition functions for ions and/or excited species. When dy-
namical information is needed use is made of other programs manipulating the
elements of the S or of the P matrix. This is the case, for example, of the simula-
tion of molecular beams [13] or jets and shock waves [29]. For molecular beams, in
which a single collision regime holds, the postprocessing of DYNAMICS outcomes
is mainly limited to the calculation of cross sections and product distributions for
which only an averaging over the unobserved parameters has to be performed. In
the case of jets and shock waves, due to higher density of the gas. single collision
regime docs not apply and kinetic equations as well as fluid dynamics equations
may need to be integrated. Transport properties can be evaluated from the colli-
sion integrals calculated from the S or the P matrix state to state elements. For
ionized gases these have to include the effect of electromagnetic fields and the
related anisotropy of the transport coefficients. Flows in the transient regime or
in strong shock conditions can be treated using cither a state to state approach
or a Direct Simulation Monte Carlo (DSMC) method (or mixed ones like those
based on the density matrix formalism). An example of particular relevance for
concurrent computing is the DSMC method in which a kinetic description of the
state to state nature of the process can be given and microscopic cross sections
can be used to describe the intervening elementary processes. Concurrency is also
vital to extend the calculations to three dimensions and to render the results (as
well as the evolving value of the observables) using virtual monitors.

Most of these quantities, in fact, can be visualized as graphs or movies on
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dedicated Virtual Monitors. This is extended to other non observable quantities
of the DYNAMICS block in order to provide useful means for rationalizing the
molecular process.

3. The use of innovative tools for concurrent computing

To make Grid computing effective, concurrency has to be exploited both at coarse
grain (like, for example, the one between the blocks of the GMS) and at fine grain
(like, for example, the one between the various instructions of a given routine) level.
This implies the use of specific software tools allowing the parallel restructuring
with a high degree of code reuse and portability.

A standard software for parallel computing restructuring is MPI[30]. MPI is a
set of portable libraries allowing the concurrent management of the activities of
the computing nodes through simple calls. We used MPI to restructure some of
our codes on parallel machines [31, 32]. Recently, some attempts to adapt MPI
for managing Grid calculations have been made (see for example [33, 34, 35]).
Unfortunately. MPI is a low level formalism that does not allow an easy estimate
of computing costs since it cannot make use of the information on the status of the
system made available by the middleware. Therefore, the price to pay for using
MPI (and taking advantage of its simplicity) is the lack of control of the efficiency
parameters.

3.1. SKELETON BASED COORDINATION LANGUAGES

An interesting approach to this problem is the use of a structured approach having
constraints which allow the programmer to deal with the code as an ensemble of
modules (skeletons) organized according to specific schemes. This is the basic
feature of the structured concurrent programming environments based on the use
of a coordination language and of the already mentioned skeletons (elementary
structured parallel modules).

We arc presently experimenting a programming environment based on skeletons
whose name is SkiE (Skeleton Integrated Environment) [36]. Skeletons refer either
to stream (the flow sequence of the information) or to data (the allocation of
the information) models. Typical stream-parallel modules arc farms, pipelines and
loops. The farm consists of a replication of a function into a number of identical
and independent workers, to which the stream elements are scheduled according
to a load balance strategy. The pipeline consists of a parallel implementation of
a set of functions into cascade stages through which the elements flow. The loop
consists of a data-driven iterative computation through which the stream elements
and their transformations flow until a certain condition is satisfied. Typical data-
parallel structures are the map, the reduce and the compose. The map consists
of a replication of a function into a number of identical and independent workers
to which the elements of the data structure are distributed. The reduce consists
of a parallel reduction of a data structure by binary associative and commutative
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operations. The compose consists of a sequential set of functions expressing a
parallel computation-replication and partitioning of data with communications
designed according to a predetermined stencil [37]. In both stream-parallel and
data-parallel paradigms, some data can be replicated.

The skeletons, usually employed as building blocks to construct complex paral-
lel applications, are also useful perspective tools for managing concurrent comput-
ing on the Grid. In SkiE, in fact, the skeletons can be encapsulated and glued in
more complex structures using the related coordination language SkiE-CL. SkiE-
CL allows, in this way, a uniform and rapid development and prototyping of Grid
applications thanks also to the use of de facto standards (like MPI itself), mon-
itoring and debugging tools, application oriented environments. Moreover, SkiE
offers the user the possibility of a " reuse" of large sections of the sequential code
if this is written in one of the most popular sequential languages.

3.2. ASSIST-CL

The most recent evolution of SkiE is ASSISTJ38]. Using the related coordination
language, ASSIST-CL, the programmer can organize parallel/distributed programs
as generic graphs without losing the possibility of making also use of already
structured specific modules (the classical Skeletons) for which some interesting cost
models already exist. These components can be sequential or parallel and exhibit
high flexibility to meet the requirements of the applications and the characteristics
of the platform.

One of the key features of ASSIST-CL is the introduction of a new parallel con-
struct, more powerful and flexible than classical skeletons. This construct, called
•parallel 'module or parmod, can be considered as a sort of generic skeleton that can
be structured so as to cither emulate some specific classic skeleton of SkiE or their
personalized variants and combinations to the end of achieving a more satisfactory
degree of high and low level structuring, expressive power, reuse and efficiency. This
is linked to the possibility of implementing simple and efficient cost models and the
consequent possibility of optimizing the code not only at compiling time but also
at running time. The exploitation of run time support is particularly useful since
the parallel modules can have a non deterministic behaviour. The optimization
of the composition of the parallel codes using the parmod exploits therefore in a
very general way the mechanisms of streams. An extremely important additional
feature of ASSIST-CL is the fact that the parmod modules can make use of shared
object implemented by forms of a Distributed Shared Memory-like feature. In fact,
while the stream based composition is the basic mechanism for structuring the ap-
plications and defining the component interfaces, shared memory objects are the
basic mechanism for saving memory. This increases the programmability of highly
dynamic structures and the communicability of the heavy data sets. Moreover, the
modules for a parallel application can refer to any kind of existing external objects.

ASSIST is based upon a library of extremely powerful classes and methods
which presents significant advantages. For illustrative purposes a test has been
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carried out to distribute efficiently the matrices in blocks of columns and rows
using the parametric class Collective < IMP > of the ASSIST library. In this
way it has been possible to implement broadcast and scatter classes to send infor-
mation to the nodes. At the same time, on the way back, it has been possible to
collect the results produced by the nodes by using a reduce operation implemented
via a gathering function. I/O operations on a communication channel have been,
in turn, implemented using the put and get methods of the used collectives of
communication [39].

3.3. CONCURRENCY FOR QUANTUM DYNAMICS CODES

The parallel execution of the dynamical calculations is already built in into SIM-
BEX. In the present version of the simulator the introduction of concurrency has
been fairly simple due to the fact that only classical mechanics approaches are
available. To the end of implementing also quantum approaches we have carried
out performance tests of the relevant quantum dynamics suites of codes.

The time-independent codes have an articulation that more naturally fits into a
coarse grain parallel and distributed organization. In particular, since these codes
need first to calculate a suitable function basis set and then use them to carry out
the propagation of the solution along the reaction coordinate one can divide the
application in a first section (or program) running in parallel the calculation of the
surface functions at different values of the reaction coordinate and then running
in parallel the integration of the coupled propagation differential equations at
different energies.

More monolithic is the coarse grain structure of the time-dependent (TIDEP)
code that is considered here in more detail. The high level structure of TIDEP is:

Read input data: v, j , energy, atomic masses, ...
Perform preliminary calculations
LOOP on J

LOOP on t
LOOP on A

Perform time step integration
Perform the asymptotic analysis
Store C(t) coefficients

END loop on A
END loop on t

END loop on J
Calculate final quantities
Print outputs

in which the most time consuming component is the propagation step that
has to be iterated for several thousand times. As can be seen from the scheme
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given above, calculations are performed at fixed value of the vibrational (v) and
rotational (j) quantum number of the reactant diatom as well as for a given range
of translational energy and a single J value. Therefore, the coarsest grain of par-
allelism that can be adopted is the one distributing the calculation for a pair of
initial vibrational and rotational states, a given interval of the relative translational
energy and a fixed value of J. In this case, a task farm dynamically assigning the
computational workload has to be adopted. This very coarse grain approach was
fruitfully implemented on a cluster of powerful workstations for a limited number
of J values.

However, when calculating a state to state cross section or. even worse, a state
to state rate coefficient; the amount of time needed to perform the calculation
goes beyond any acceptable limit if simplifications are not introduced. In fact, to
evaluate a vibrational state selected rate coefficient; the calculation needs to be
performed for the whole accessible translational energy and to be repeated for
all the reactant rotational states j populated at the temperature considered. In
addition, the calculations need to be converged with ,7 and convergence is usually
reached only at ./ > 100. This increases enormously the computational load not
only because calculations have to be repeated for all J values but also because the
dimension of the matrices to be handled in a single J calculation is J + 1 times
larger than that of J = 0. As a matter of fact, computing time, that depends on
the third power of the matrix dimension, rapidly becomes exceedingly large even
at small J values to make the calculation unfeasible on the machines presently
available for academic use at the large scale computing facilities in Europe.

A next lower level of parallclization is the one based on the combined distribu-
tion of fixed J and fixed A calculations. There is no problem in distributing fixed J
calculations: J is a good quantum number (i.e. calculations for different J values
arc fully decoupled) and, accordingly, the parallclization on J is natural. On the
contrary, the decoupling of A is artificial since one has to introduce physical con-
straints of the infinite order sudden type (i.e. the projection of J on the z axis of
the body fixed frame remains constant during the collision). This allows to perform
separately the step-propagation of the wavepacket for blocks of fixed A values and
the recombination of the various contributions only at the end of the propagation
step. This is a key feature of the adopted computational scheme since it allows
a decomposition of the domain of the wavepacket that otherwise would lead to a
drastic increase of the demand for memory when J increases. Moreover, fixed J
calculations were carried out in pairs for all the J + 1 components of A in order
to further save computer time and allow a better load balance. However, since for
this parallel model I/O is a real bottleneck, when generalizing the model node zero
was exclusively dedicated to act as a master and the centralized management of
I/O was abandoned.
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3.4. A TIME PROPAGATOR TEST CASE

For TIDEP the parallolization can bo pushed at a fine grain level by focusing
on the time propagation routine (AV) that in our code is based on a Discrete
variable representation (DVR) approach [24, 40]. The routine propagates the sys-
tem wavepacket by repeating at each time step the following stream of matrix
operations

G = A • C + C • B T + V CO C (1)

where A and B are terms of the matrix representation of the Laplacian operator
(whose blocks of rows and columns are broadcasted, like V, once for ever at the
beginning of the calculation to the worker nodes), C is the collocation matrix of
the wavefunction, V is the matrix representation of the potential (V CO C is the
direct product of the single component V matrix with C). Eq. (1) is recursive since
the value of C is taken at time r — 1 wrhile that of G is taken at time r (the value
of C at time r. in turns, depends on that of G at the same time r even though, in
order to simplify the notation, we have dropped the time subindex). The matrices
used here are square matrices of order N. Such a constraint, however, can be easily
removed with no prejudice for the results.

To make the propagator run concurrently at first use was made of MPI and of a
Task Farm model [41]. In the startup phase the Master process distributes the rows
of C using a cyclic policy. This implies that in the startup phase if j = i mod M
(with M being the number of scheduled Workers) the vector Row(j. C) is sent to
the worker Wi. At the end of the startup phase each Worker has stored the rows
received from the Master in a local (unshared) secondary space storage hereafter
called Dataset(Wi, C). Similarly, all the elements of the matrices A and B referred
by the Worker Wi arc stored in an analogous Dataset during the wavepacket
initialization (immediately before the first step T = 0).

To carry out the subsequent operations, the Master process adopts a scheduling
policy to broadcast Row(j,C) to each Worker. Each scheduled Worker loads from
a local (unshared) secondary memory space all the elements needed to carry out
the calculation of:

Wi(h) = Wi{h) + Row(j, C) • Row{h, B) V/i £ E{

with i being the index of the Worker process, j being the index of the Rowr of G to
be calculated. Dj = [L]M with M being the number of scheduled Workers and E.j
being the set of contiguous indexes assigned to Worker Wi allowing an optimum
balancing of the load among the Workers. Through a reduce operation the Master
reassembles the resulting rows of matrix G.

ASSIST turned out to be very useful to restructure the code at this level and
some attempts have been made by using some parametric classes of ASSISTlib
(the library of ASSIST). To this end, in the AV routine the Scattering collective
(SCATTER) is used on the producer side to distribute the matrices of Eq. 1.
More in detail. SCATTETLP carries out the distribution of blocks of rowrs and
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columns of A, B and C from the Master to the workers (this has been obtained by
writing a simple template). In a similar way SCATTER_C takes care of the scatter
operation on the consumer side. The blocks of G resulting from the activity of the
workers are re-collected by the Master using a Gathering function implementing
through the related parametric class of ASSISTlib. Read and write operations on
the communication channel are performed synchronously using the put and get
methods of the communication collectives. The put and get methods are simpler
to execute than their asynchronous analogues and its choice is made possible by the
fact that the communications considered are not a bottle neck of the computation.
A detailed report on the implementation of the AV routine using ASSIST is given
in the reports of the PQE 2000 project [39].

4. The impact on the calculations for large systems

As already mentioned, the impact of concurrent computing can be accounted for
at a finer level by reconsidering the theoretical framework. The key point is, in
fact, the adoption of approaches allowing a high level of locality for the calculation.
For this reason, in the followings, we revisit, some features of the usual formulation
of the scattering equations (by confining our attention to the prototype collinear
A + BC reaction) in a search for alternative approaches.

Quantum reactive scattering calculations are based on the integration of the
time-dependent Schrodinger equation

U*({x},t) = ih^-t*({x},t) (2)

where H is the Hamiltonian of the system, $({2:} , t) is its wavefunction and \x} is a
suitable set of coordinates. When using a timc-dcpcndcnt approach to integrate Eq.
2, the time variable t is taken as a continuity variable even when the Hamiltonian
H is time-independent. In time-independent approaches, the time dependence is
separated and, in order to integrate the resulting stationary Schrodinger equation,
a proper combination of spatial coordinates is taken as a continuity variable.

The {x} variables are usually taken to be some kind of internal orthogonal
coordinates. Moving to large systems it becomes more convenient to use non or-
thogonal coordinates like the intcrnuclcar distances or other related variables.

4.1. THE BOND ORDER FORMULATION OF THE INTERACTION

The coordinates in which the potentials are usually formulated are the internuclear
distances. However, in order to avoid redundancy problems one cannot use the
whole set of intcrnuclcar distances since their values arc not mutually independent.
For this reason more often use is made of process coordinates considering a mixed
set of intcrnuclcar distances and related angles [42. 43]. Accordingly, interactions
arc usually formulated using a many-body expansion (MBE) [44] whose individual
terms are expressed as polynomials in damped internuclear distances.
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Particularly suitable coordinates not needing damping corrections are the bond-
order (BO) ones which for the collinear A + BC atom diatom systems are denned
as

= exp [-/3ijc(r-i5c - r"iC)] (3)
= fixp [-/?AB(?~AB - r'ku)}

with pi and r° being empirical parameters linked to the vibrational spectroscopic
properties of the related diatomic molecule [45]. BO coordinates have a clear ad-
vantage over internuclear distances since they are denned over a limited spatial
range and converge at large distance (they tend to zero as the related internu-
clear distances tend to infinity). This makes polynomials in the BO coordinates a
suitable functional representation for the interaction [46].

We currently use the BO polynomials in a systematic way to fit the potential
energy surfaces of few-atom systems. An extension of BO functional forms to the
formulation of more than three atom systems can also be made. For this purpose
one can adopt a polynomial in more than three BO variables or derive from them at
each geometry local normal coordinates. This makes the treatment more complex
and may in certain cases introduce numerical instabilities.

A simpler approach that wre introduce here for the first time is the ALBO
functional form. In the ALBO approach the potential is expressed in a form that
makes the optimization of the parameters easier by pivoting the search for their op-
timum value by means of physical considerations. To this end the overall potential
is formulated in the following pscudo pair additive form

ni) (4)

where j runs over all diatomic pairs making the functional a sum of pscudo ("effec-
tive") diatomic model potentials having a shape depending on the vicinity of the
other atoms. For this reason, Qj and Pj arc expressed as (low order) polynomials
in the BO variables of the (other) pairs of atoms. In particular, Qj depends on all
the BO variables but rij and makes the depth of the effective diatomic potential
depend on the vicinity of the other atoms. Due to the nature of the BO variables
these contributions vanish, as it should be, as the other atoms fly away. Pj depends
on rij and its coefficients depend parametrically on the other rik variables.

Usually, in the BO polynomial approach the j th diatomic component (to which
Pj tends as all the other atoms fly awray) is expressed as a pure fourth (sometimes
sixth) order polynomial. For illustrative purposes the ALBO formulation of the
interaction can be compared with the LEPS one. To this end, the polynomial is
truncated to the second order so as to make the resulting ALBO asymptotic Morse
like expression (rij/JIQJ)2 — 2(rij/TIQJ) coincide with that of the LEPS. In particular,
the dependence of Pj on the other BO variables is enforced via TIQJ which tends to
I as the other atoms move to infinity (so as to coincide with the polynomial of the
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isolated diatom). In the strong interaction region TIQJ deviates from 1 to account
for the displacement of the minimum of the effective diatomic potential from 1
due to the action of multi- (larger than 2) body interaction when the other atoms
gets closer. Therefore, a reasonable formulation of TIQJ for a triatomic system is
noj = 1 + b\nk + b-2ni + bsn2

k + bAn'f + b5nkm.
The formulation adopted for Qj (Qj=a-\rik + a-2.ni + a^nf. + a\ri\ + a^n^ni)

is similar. This formulation allows the dissociation energy to tend to the correct
asymptotic value at, both asymptotes and strong interaction limits. This loads
to a functional representation of the interaction that is more flexible than the
LEPS one thanks to the larger number of parameters and to the incorporation of
the asymptotic limits. As a matter of fact one can obtain quite small root, mean
square deviations when using the ALBO potential to fit the LEPS values. An
obvious advantage of this formulation is that it, automatically extends to larger
systems by adding further pseudo diatomic terms and by reusing the parameters
worked out for smaller systems. This can be used also on the way down to restricted
geometries to build up fast estimates of the potential parameters.

4.2. THE HYPERSPHERICAL BOND ORDER FORMULATION OF THE
INTERACTION

A different way of tackling the problem is to describe the reactive process in terms
of the variation of the parameters of a diatomic-like interaction that evolves for
the rcactant to the product, arrangement, while rotating [47]. For the atom diatom
collinear system, the rotation angle a of this BO potential (ROBO, rotating BO)
is the continuity variable of the reactive process while the pseudo diatomic like
bond length p is a collective coordinate that accounts for the deformation of the
geometry of the system [48, 49, 50]. The a and p variables are the polar coordinates
of the BO space (HYBO. hypcrsphcrical BO coordinates). For collinear systems a
and p read as

P = V nAB + nBC
a = arctan rise

(whose extension to higher dimensionality is obtained by adding more angles). Ac-
cordingly, a simple formulation of the ROBO potential for the process P analogue
of the Rotating Morse potential reads as:

9 ' - 2 -
Po(a)J po(a)

(6)

The reaction channel is then shaped by assuming a proper functional dependence
of Dp and p0 from a. In this respect, the HYBO a angle clearly plays the role of
reaction coordinate [47. 50] of the P process (for this reason these coordinates arc
called process coordinates). The whole potential V is then obtained by a weighed
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(through the weights wp) combination of the three ROBO functionals Vp of the
three possible reaction channels (A + BC, B + CA, C + AB)

This generalized form of the ROBO potential (called LAGROBO) has been suc-
cessfully used to fit the potential energy surface of several three-atom systems and
has been also extended to four-atom systems [51]. Other successful applications to
four atom reactions have been made [52, 53] by modifying the original definition of
the angles and by composing the fixed angle minimum energy paths as piecewise
functions. This has allowed the reproduction of highly structured potential energy
surfaces including entrance and exit channel wells and barriers.

Application of the three and four atom HYBO functional form to the formu-
lation of the interaction of larger systems is not straightforward. However, since
the MBE expansion of the interaction of large systems is. in general, truncated to
the four body terms one can easily assemble the related force field by composing
related HYBO three and four atom blocks.

4.3. PROCESS COORDINATE FORMULATIONS OF THE LAPLACIAN

The coordinates more commonly used to formulate reactive scattering equations
are of the orthogonal arrangement type [54]. The fact that these coordinates are
orthogonal makes the formulation of the Laplacian simpler and the scattering
equations diagonal. However, all arrangement coordinates are, as already seen,
scarcely suited to describe the interaction during the entire reactive process. More-
over, when using arrangement coordinates, only small deviations from the reference
geometry (like in inelastic and elastic encounters when using the reactant Jacobi
coordinates) can be dealt without varying the reference geometry. This means that
in order to obtain a homogeneous description of the Laplacian arrangement coor-
dinates need to undergo appropriate transformations at each step of the reactive
process. This implies also heavy computational overheads.

On the contrary, internuclear and bond order coordinates can be considered
as process coordinates since they apply to the whole (specific) reactive process
connecting a given set of rcactants to a given set of products. The formulation
of the Hamiltonian using process coordinates eliminates the need for carrying
out coordinate transformations and allows a homogeneous description of both the
Laplacian and the potential energy operators of the Hamiltonian at each step of
the dynamical calculation. As a matter of fact, bond length coordinates [43] have
already been used in the literature to calculate static and dynamic properties of
three-atom systems (see. for example, refs. [55, 56, 57]). This is also true for the
BO coordinates.

As for the BO coordinates, the additional properties of being inverted with
respect to the bond length ones (the zero of the BO coordinates corresponds to an
infinite bond length while large BO values correspond to short bond lengths) and
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being confined into a finite volume make HYBO coordinates particularly appealing
for formulating the Hamiltonian and studying reaction dynamics [42. 48, 49]. These
properties are particularly useful when using collocation methods and grid-point
techniques.

Alike in the case of bond length coordinates the Hamiltonian is more compli-
cated with respect to that of the Jacobi coordinates and a (trivial in the collinear
case) conversion to Jacobi coordinates at, the asymptotes is needed to perform the
related analysis.

The collinear Hamiltonian reads, in fact, in bond order coordinates as

[ Q 2 Q ~I r ^ 2

dnfiC onB

,„ 9L +V(nBC,nAB) (8)

with the coefficients being Cnnx = - ( M B C ) 2 / 2 / ^ B C , Cnny = -(TifiAB)2/^AB and
C-nxy = Ti 0\ic0A\i/'m\i when the breaking and forming diatoms have the same
force constant, p. The BO formulation of the Hamiltonian is currently being used
for classical trajectory [42] and quantum time-dependent [49] calculations. It, has
also been tested in variational [48, 49] reactive calculations.

In HYBO coordinates the collinear atom diatom Hamiltonian has the more
complex form

tl ^ O ( Q ) ~l~ O (tt ) ^ O (/9 Q ) ^ O ( /̂  Q ) ^

where

BC^B ( 1 ( ] )

mii J

(11)
H\iC MAB mB

I \ ^ \ • o (P\)i • 2 PuC 2 \ A V B / ? B C . . 1 / 1 o x

Pa (P, a) = p \ sin 2a -^^ sm a ^^ cos a sin 4Q (12)
2 [ V/*AB J"BC / 2mB J

z-t / \ ^ 2 r ^ A B • 4 , $TiC 4 / ? A B / 9 B C • 2 O 1 [TO\

Cpp(p,a) — p -±1S- sin a H — ^ cos a sm 2a (13)
2 L/XAB MBC: 2mB J
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Cp(p, a) = --p\?™ cos2 a (l + sin2 a) + ^ sin2 a (l + cos2 a) + ^ ^ sin2 2a] (14)
2 L/*BC /'AH 2mis J

5. Conclusions

The impact produced by the evolution of computer technologies towards Grid
systems on the size and the complexity of the problems that theoretical and com-
putational studies of chemical reactions can afford is discussed. The analysis is
extended on one side to how this affects the way computer codes are structured
to gain significant efficiency and on the opposite side to how alternative formula-
tion of the reactive scattering equations can be written to exploit the advantages of
concurrent computing. In particular, the use of traditional low level parallelization
libraries has been considered and compared with that of coordination languages
based on skeletons and related extensions. As for alternative approaches those
based on BO coordinates which have the advantage of formulating in a homoge-
neous way the potential and the Laplacian operator, are analyzed. In particular
new formulations of the functional representations of the interaction are discussed
and the formulation of the Hamiltonian in terms of both BO and HYBO coordi-
nates are given.
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VIBRATIONAL PREDISSOCIATION: QUASICLASSICAL TUNNELING 
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Abstract  Vibrational predissociation (VP) of van der Waals complexes occurs via an 
isolated resonance. An isolated resonance possesses no classical counterpart. And yet, 
classical calculations of the decay yield the rates that are sometimes not too different 
from the quantum rates. We resolve this puzzle by addressing the following points: 
i)   Quantum theory of VP: accurate and perturbative approaches; 
ii) Quasiclassical theory of VP: Landau method and recovery of VP transition 
probabilities from the correspondence principle transition probabilities;
iii) Classical theory of VP: diffusional description of long-time chaotic dynamics. 
   We calculate the ratio of the classical to quantum VP rates, determine the conditions 
when the rates of quantum dynamical tunneling is close to the classical diffusional 
rates across the chaotic sea and establish a classical counterpart of quantum 
perturbation approach.  

1. Introduction 

Vibrational predissociation (VP) of a van der Waals triatomic complex A..BC is an 
example of a unimolecular reaction the rate of which is controlled by the intramolecular 
vibrational energy redistribution (IVR) [1]. Within a rigorous quantum mechanical 
approach, the VP dynamics is completely characterized by the complex-valued energies 

2/nnn iE Γ−=E  that lie above the dissociation threshold of A..BC  into an atom A and 
a diatomic molecule BC. The important property of VP is that the widths of the levels, 

nΓ , are small compared to the spacing between neighboring levels, nn EE −+1 . It 

means that the quasistationary state nE  decays exponentially with a VP rate constant 
/nnk Γ=  and that the energy nE  of the complex can be split, to a good 

approximation, into the energy BCE  of a free diatomic molecule BC and the energy 

vdWE  of the van der Waals bond [2]. We therefore can specify the state-specific VP 
event as  
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)()( BC
vdWE

BC
vdWE

EBCAEBCA ′+→⋅⋅⋅
′

           (1) 

In what follows, we will discuss the IVR dynamics and VP event for a collinear non-
rotating triatomic vdW complex A..BC. For this model, all the complications that arise 
from the partitioning of the total angular momentum of the complex into the relative 
angular momentum of the dissociation fragments and intrinsic angular momentum of 
the diatomic fragment do not appear, and the quantum (Q) state-specific rate constant of 
the VP event in Eq.(1) can be written in more details as 

),;,( BCvdWBCvdW
Q EEEEkkn ′′= . With four variables, one is redundant because of the 

conservation of total energy. Introducing the energy transfer to the vdW bond, E, one 
can write the VP rate constant as );,( BCvdW

QQ EEEkk ∆=  where all three variable 
assume discrete (quantized) values. Here the energy transfer E can be expressed, of 
course, through the transition frequency as EE ∆=∆ ω , );,( BCvdW

QQ
EEEkk ∆= ω .

The quasiclassical (QCl) counterpart of Qk , QClk , will depend on the classical 
frequency of the BC fragment, associated with the initial quasiclassical energy BCE ,

))(;,( BCBCvdW
QClQCl EEEkk ω= . The definition of the classical (Cl) VP rate is not 

straightforward as their quantum counterpart, because the classical decay is not 
exponential. One has, therefore, to adopt a certain way of extracting a reasonable 
parameter from the decay curves, which can be considered as an effective VP rate 
constant, Cl

effk . The latter will depend on three classical quantities, )(,, BCBCvdW EEE ω ,

i.e. ))(,,( BCBCvdW
Cl
eff

Cl
eff EEEkk ω= .

   Comparative discussion of three functions, Cl
eff

QClQ ,, kkk  and the approximations, 
which are used to derive them, sheds light onto the quantum, quasiclassical and classical 
dynamics of vibrational predissociation.  
   Quantum numerical calculations of kQ for a given potential surface are nowadays quite 
straightforward, especially when one uses the complex scaling technique that formally 
reduces a nonstationary problem to finding complex-valued eigenvalues of a non-
Hermitian Hamiltonian [3]. Since the resultant eigenvalues fall into the category of non-
overlapping resonances, it is clear that a perturbation scheme must exist for calculation 
of kQ. However, a question arises here as to the zero-order basis to be used in 
calculating kQ. This question can hardly be answered by purely numerical methods since 
they can not unambiguously indicate the optimal separation of the Hamiltonian into the 
zero-order Hamiltonian and a perturbation. 
   Quasiclassical perturbative calculations to be discussed here are based on the Landau 
method of calculation of the transition matrix elements [2] and the recovery of the 
Landau quasiclassical exponent from the classical encounter time [4-6]. The 
quasiclassical VP rate constants, kQCl, contain classical dynamical parameters that 
characterize a vdW complex motion in the classically allowed regions. In this respect, 
quasiclassical Landau approach indicates a possible way of transition from quantum to 
classical dynamics. This transition is not at all trivial, since the correspondence 
principal limit ( )0→  of kQCl yields zero rate. 
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   Classical calculation of decay plots by integrating classical equation of motion is also 
straightforward. A recovery from these plots such kinetic coefficients as Cl

effk  requires 
some approximate scheme (see above). Though the classical decay is slow on the 
timescale of vdW motion, there is no standard perturbation method for calculation of 

Cl
effk . This is due to the fact that the classical VP dynamics is chaotic [7-12].  

   With the above comments in mind, we first briefly discuss a hierarchy of models for 
VP (Section 2), then dwell on the quantum (Section 3), quasiclassical (Section 4) and 
classical (Section 5) theories of VP. After that, we compare different approaches 
(Section 6) and summarize our results on the quantum-classical correspondence for 
isolated resonances, which is the case for vibrational predissociation.  

2. Hierarchy of models 

A standard model of VP, which is repeatedly used in the study of VP dynamics, 
corresponds to two coupled Morse (M) oscillators, one low-frequency (LF) dissociating 
oscillator, coordinate R , and the other high-frequency (HF) oscillator, coordinate r , in 
bound states. The Hamiltonian of such a Morse-Morse system is written as 

          ),(),ˆ(),ˆ(),ˆ;,ˆ(ˆ
MMHFMLFMMM rRVrpHRPHrpRPH RRrR ++=          (2) 

This Hamiltonian can be simplified without losing any interesting features of VP by 
using special conditions pertinent to the VP event. The simplification is carried out in 
several steps thus creating a hierarchy of models. 
i) Since in a VP event the HF oscillator suffers a one-quantum transition, it can be 
replaced, for a given transition, by a harmonic (H) oscillator of the same transition 
frequency and properly modified coupling strength [11]. We thus replace the Morse-
Morse system by a Morse-Harmonic system with the Hamiltonian: 

        ),(),ˆ(),ˆ(),ˆ;,ˆ(ˆ
MHHFHLFMMH rRVrpHRPHrpRPH RRrR ++=          (3) 

ii) If the energy of a harmonic oscillator is noticeably higher than the energy loss in the 
VP event, the HFH oscillator can be considered as a source of time-dependent 
perturbation acting on LFM oscillator. Accordingly, the two-degree-of-freedom 
Hamiltonian in Eq.(3) is replaced by one-degree-of-freedom time-dependent 
Hamiltonian of a driven Morse (DM) oscillator [13]: 

        ),(),ˆ();,ˆ(ˆ
DMLFMDM tRVRPHtRPH RR +=            (4) 

where ))(,(),( MHDM trRVtRV = with )(tr  being the trajectory of unperturbed harmonic 
oscillator.
iii) Because of large disparity of frequencies of LF and HF oscillators, the time-
dependent interaction in Eq.(4) can be represented adequately by the two terms of its 
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Fourier expansion [14]. This would correspond to the harmonically-driven Morse 
oscillator with the Hamiltonian: 

( )ϕω +++= tRVRVRPHtRPH DRR cos)()(),ˆ(ˆ);,ˆ(ˆ
1,DM0,DMLFMHDM          (5) 

In what follows, we will use the Hamiltonian from Eq.(3) in assessing the applicability 
of first order diabatic perturbation theory for calculation of kQ, and the Hamiltonian 
from Eq.(5) for calculation of QClk  and Cl

effk .
   The VP dynamics for the Hamiltonian in Eq.(5) is most conveniently discussed in 
terms of dimensionless energy of a Morse oscillator for a system “A + center of mass 
BC”, ε , dimensionless frequency  of a harmonic oscillator, the dimensionless time 

and the dimensionless “Planck constant”
~

. The initial energy of a harmonic oscillator 
affects the VP dynamics only through yet another dimensionless parameter that 
characterizes the coupling strength between the Morse oscillator and the harmonic 
perturbation. The explicit expressions for ~,,, τε Ω are 

M

vdW

2D
E

=ε    , eM,BC / ωω=Ω , et M,ωτ =   , MeM, 2/~ Dω=         (6) 

where EvdW is counted from the dissociation threshold of the Morse potential well of the 
depth DM, BC is the frequency of the harmonic oscillator, and M.e is the small-
amplitude frequency of the Morse oscillator. In this parameterization, the Hamiltonian 
HHDM is transformed into dimensionless Hamiltonian MHDMHDM 2DH=η which 
contains dimensionless coordinate q and time  [14].  

3. Quantum VP rate. 

The quantum approach to the VP dynamics was formulated by Rosen [15] who used the 
first order perturbation theory for description the intermode energy transfer. The 
partition of the total energy in two parts was done ignoring the kinematic coupling 
between two modes. It was shown that the large disparity between frequencies of the 
vdW mode and that of the molecular moiety is responsible for a very slow decay rate on 
the time scale of the slow vdW vibrational motion. Much later, a comprehensive 
theoretical model of VP was developed by Beswick and Jortner [16-18]. They also 
relied on the perturbative approach and used a model of weakly coupled Morse 
oscillators that permitted deriving an analytical expression for the VP rate through the 
golden rule formula. Their approach corresponded to the partitioning of the energy by 
identifying vdWE  with the energy of the vdW complex for the non-vibrating BC 
oscillator. In the current nomenclature, this approach is dubbed as first order diabatic 
(FOD) approximation; the respective rate constant FODQ,k  reads:  

2D
BCvdWMMBCvdW

D
vdW

FODQ,
MM ,,2),( EEVEEEEk ′′=∆ π          (7) 
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where 
D...  are the eigenfunctions of the Hamiltonian LFMLFM

ˆˆ HH + . The HDM 
counterpart of Eq.(7) reads: 

2D
1,

DFODQ,
HDM 2/2),( εεπεε DMVk ′=∆           (8) 

where the zero-order functions 
Dε  are the eigenfunctions of the Hamiltonian LFMĤ

and ε , ε′  are related as Ω=∆∆+=′ ~, εεεε .
   The rate constant kQ,FOD is an increasing function of initial state energies, and therefore 
a question arises about the high-energy limit below which the FOD approach provides a 
reasonable approximation to the accurate rate constant kQ. As an example, Fig.1 shows 
the low-lying complex energy levels (in reduced units, see [11]) for a model linear 
ICl…Ne system calculated accurately by the complex scaling method and within the 
FOD approximation. For this model =8.36 and the Morse potential supports three 
bound states. The energy levels 2/,,, nvnvnv iγε −=Ε  counted from the dissociation 
threshold correspond to the vibrational quantum numbers 8,7,6,5,4,3,2,1=v  for the BC 
high frequency mode and n = 0,1,2 for vdW low-frequency mode (for clarity, Fig.1 
shows the ground vdW states, n = 0, only).  
    It is seen that though the VP rate constant is very small (the VP transition probability 
is of the order of 10-5 per one vibration of the vdW bond), the FOD approximation, at 
least for this particular example, is reasonable only for the VP induced by transition 
from the state =1. Therefore, one can ask what are particular physical effects, which 
are ignored within the FOD approach. The following might be the reasons for 
noticeable overestimation of the rates by FOD approach compared to the accurate rates:  
i) Ignoring a decrease in the steepness of the repulsive part of the interaction potential 
which is due to a springy property of the high-frequency vibrating oscillator (the 
mattress effect). 
ii) Ignoring an increase in the force constant of the high-frequency vibrating oscillator 
upon its compression by a low-frequency motion (the stiffening effect). 
   The above effects are properly taken into account when one passes from diabatic zero-
order basis to the adiabatic zero-order basis, and uses first order adiabatic (FOA) 
perturbation theory [19,20]. This passage is easily seen in terms of the HDM 
Hamiltonian, when Eq.(8) is modified as 

2A
1,DM

AFOAQ,
HDM 2/2 εεπ Vk ′=            (9) 

where Aε  are the eigenfunctions of adiabatically-corrected Hamiltonian 

0,DMLFMALFM
ˆˆ VHH += . The same approximation can be used to calculate complex 
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Figure 1. Complex energy levels for a model ICl-Ne system (in reduced units). Shown are the 
accurate results (complex scaling method, crosses), first-order diabatic (FOD, filled squares) and 
first-order adiabatic (FOA, open circles). 

eigenvalues of the initial Hamiltonian in Eq.(2). The result is also shown in Fig.1. We 
indeed see that the adiabatic basis serves as a very good zero-order approximation. A 
very noticeable difference between FOD and FOA eigenvalues can be traced back to the 
fact that FOA approximation takes into account the mattress and stiffening effects. 
These two effects cause a small relative change in the large Massey parameter of the VP 
problem thus noticeably affecting the absolute value of the VP rate. In other words, the 
convergence of the perturbation series in the adiabatic basis is much quicker compared 
to that in the diabatic basis. This indicates that the Beswick-Jortner rates, based on the 
FOD approximation, can not be unconditionally used for comparison of accurate 
quantum and classical rates, though this procedure was adopted in the first paper 
devoted to the classical VP dynamics [21].  

4. Quasiclassical VP rate 

In adopting the quasiclassical approximation, we use the important property of 
the VP dynamics that VP transition probability is induced by the interaction close to the 
inner turning point of the LF oscillator. Then, the expression for the rate constant 
kQCl( , ) can be split in two factors, the classical frequency )(εν  and the quasiclassical 
probability PQCl( , ) for VP transition per one excursion of the LF oscillator to the 
repulsive part of the potential.  
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),()(),( QClQCl εεενεεκ ∆=∆ P           (10) 

According to Landau [2], the first order probability PQCl,FO is proportional to an 
exponential function which contains the absolute value of the difference in the classical 
actions for the initial and final states, calculated from the classical turning points qti and 
qtf to the stationary phase point qstph which in our case lies in the classically forbidden 
region of motion. Explicitly,  

∆∆−=∆ ),(~
2exp),(FOQCl, εεσεε BP         (11) 

with

′
′−=∆∆

stphq

tq
q

stphq

tq
q dqqpdqqp ),(),(),( εεεεσ         (12) 

The momentum pq is found from the equation  

ευ =+ )(
2

2

q
pq            (13) 

where )(qυ  is a potential that determines the unperturbed motion of the LF oscillator. 
For FOD approximation, )(qυ  is identified with the Morse potential )(M qυ , while for 
FOA approximation )(qυ  is equal to the adiabatically-corrected Morse potential, 

)()()( 0,DMM
A
M qqq υυυ += .

   A path tstpht qqq ′→→  is the classically forbidden part of the VP trajectory (we call 
it a "trajectory" since it is defined by the classical Hamiltonian; however, it is 
"classically forbidden" since for this part of the trajectory the momenta are imaginary). 
Taken together with the classically allowed parts of the incoming and outgoing 
trajectories, it defines the full trajectory for the VP event, see Fig.2.  
   The preexponential factor in Eq. (11) can be found either by calculating the transition 
amplitude within the stationary phase approximation as explained in [2], or by 
considering the correspondence-principle (CP) limit of the QCl transition amplitude. 
We will follow the latter prescription since it allows an easier comparison of classical 
and quantum rates in Sect.6.  
   The VP quasiclassical expression for the rate can be expressed through classical 
dynamical quantities following our suggestion for recovering the Landau matrix 
elements from the Fourier components of classical functions [4-6]. 
According to [6], the Landau exponent in Eq. (11) is related to the encounter time enτ
as

εετεεσ
εε

ε
d

∆+
=∆∆ )(),( en           (14) 
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Figure 2. The Landau “classical” VP trajectory in the )Im(),Re(, ppq  space (bold line) The 
dashed line indicates the potential energy contour at the dissociation threshold. The solid circle 
represents the initial point of the trajectory, the open circle represents the equilibrium point of the 
potential; arrows show the direction of the motion.  

Here the energy-dependent encounter time enτ  is given by  

−′
′

=
)(

en
2)(2

)(
ε

ευ
ετ

q

stphq q
qd           (15) 

The preexponential factor in Eq.(11) can be found by comparing the correspondence 
principle (CP) limit of this expression (condition  >> ) with the FO CP transition 
probability PCP,FO( , ).The latter can be expressed by using CP relation between the 
classical and quantum FO mean-square energy transfer per one encounter (one 
excursion of the vdW oscillator into the repulsive region of the interaction). In this way 
we get:  

),()(2)()( FOCP,2FOCP,2FOCl,2 εεεεε ∆∆=∆=∆ P        (16) 

wherefrom 

2

FOCl,2
FOCP,

)(2

)(
),(

ε

ε
εε

∆

∆
=∆P           (17) 

On the other hand, the CP limit of Eq.(11) is: 
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           ∆−=∆=∆ <<∆ )(~
2exp),(),( en

FOCP,FOQCl, ετεεεεε εε BPP        (18) 

From the comparison of Eqs.(17) and (18) we determine B and finally express 
PQCl,FO( , ) as 

          
( )[ ] )(),()(2exp

)(

)((

2
)(

),(

tunen2

FOCl,2

FOQCl,

εεεετετ
ε

εεεν

εεκ

∆+Θ∆−Ω
∆

∆
=

=∆

i

       (19) 

where the dynamical tunneling time from the level  to the level = +  is defined as 

             
∆+

∆
=∆

εε

ε
εετ

ε
εετ d)(1),( entun           (20)  

The plots of the encounter and tunneling times vs. energy are shown Fig. 3.  
The Heaviside step function ( + ) in Eq.(19) indicates that the FO VP rate is nonzero 
only when the final energy ε∆+ε  is positive. Since Ω=ε∆ ~

 and ε  is negative, it 

is clear that the classical limit of QCl FO VP rate is zero (the limit fixed,0~ Ω→ ). 
This is expected since an isolated resonance has no classical counterpart, and the one-
quantum vibrational predissociation does not belong to the events that conform to the 

Figure 3. Classical encounter time )(en ετ , and quasiclassical tunneling times ),(tun ε∆ετ  (dashed 
curves) for a Morse oscillator. (The curves for ),(tun ε∆ετ  are labeled by the values of ε∆ ).
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correspondence principle. On the other hand, the QCl FOA approach provides a very 
good approximation to accurate VP rates [11,19,20]. 

5. Classical effective VP rate  

 Classical VP occurs as a result of chaotic motion of the driven LF oscillator 
toward the dissociation threshold. The effective dynamic rate constant ),(Cl

eff Ωεk  for 
the crossing the chaotic sea that separates the initial state of energy ε  from the 
dissociation threshold can be defined as a reciprocal time during which the initial 
population drops by a factor of e. It has been shown that a fair approximation to 

),(Cl
eff Ωεk  is given by the effective diffusion rate constant ),(DiffCl,

eff Ωεk  [12] which is 
recovered from the solution of the Kramers equation that simulates the chaotic 
dynamical behavior of the driven LF oscillator. In turn, ),(DiffCl,

eff Ωεk  can be 

reproduced by an analytical formula ),(DiffCl,
bottl Ωεk  when one exploits the fact that the 

energy diffusion coefficient in the Kramers equation increases strongly with the energy 
[22]. In this (so-called bottleneck) approximation we write 

DiffCl,
bottl

DiffCl,
eff

Cl
eff kkk ≈≈  `          (21) 

The rate constant ),(DiffCl,
bottl Ωεk  reads [22]: 

2

Cl2
DiffCl,

bottl ))((

)(

4
)()(

εδε

εεενεκ
∆

=          (22) 

Here
Cl2 )(εε∆  is the mean-square energy transfer per one encounter (one excursion) 

of the LF oscillator into the repulsive region of the interaction for the initial energy ,
and ( ) is the width of the energy bottleneck layer that is adjacent to the initial energy 
level. The inverse width of this layer is determined by the rate of increase of the energy 
transfer with the energy: 

Cl2 )(ln
)(

1 εε∆
ε

=
εδε d

d
          (23) 

Under the condition when one can use FO perturbation approach in quantum and 
quasiclassical calculations, the classical mean square energy transfer can also be 
calculated in the FO classical perturbation theory. This again opens a possibility for 
comparison of FOD and FOA (now classical) approximations. Fig.4 shows the 
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dependence of 
Cl2 )(εε∆ (trajectory calculations), 

FODCl,2 )(εε∆  and 
FOACl,2 )(εε∆  on the initial energy of the LF oscillator. Once again, we see that the 

classical adiabatic perturbation approach performs much better than the diabatic one. 
Within the FO treatment (both diabatic and adiabatic), the mean-square energy transfer 
is of the following form [14]: 

( ) ( ))(2exp en
FOCl,2 ετε Ω−=∆ A           (24) 

which defines the FO bottleneck layer as  

ε
ετ

εδε d
d )(

2
)(

1 en
FO Ω−=            (25) 

Thus, the FO counterpart of Eq.(22) reads: 

                 )(
))((

)(

4
)()( Ch

2FO

FOCl,2
FODiff,Cl,

bottl εε
εδε

εεενεκ −Θ
∆

=         (26) 

Figure 4. An example of the dependence of the mean square energy transfer per encounter, 
2)( ε∆ , on the energy ε  of the driven oscillator with 7=Ω . The open circles represent 

accurate trajectory results, the dashed line the FOD treatment, and the full line FOA treatment. 
Negative values of ε  correspond to the bound states of the Morse oscillator, positive to the 
dissociative states. 
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The Heaviside step function ( + ) in Eq.(26) symbolically emphasizes the fact that 
the FO VP diffusion description is valid when the initial energy level lies above the 
chaos onset limit  = Ch.
   According to Chirikov [23], the onset of chaos is associated with the overlap of 
neighboring nonlinear resonances. The overlap criterion, which bears the qualitative 
significance, uses the model of isolated resonances. Each resonance is characterized by 
its width, the maximum distance (in the action variable) from the elliptic fixed point. 
The overlap means that the sum of the widths of two neighboring resonances is equal to 
the distance between two fixed points of these isolated resonances. We start with the 
pendulum Hamiltonian, which describes an isolated 1:N resonance under the periodic 
perturbation of frequency :

φυιδβιδη NNNNN cos)()2/1())(2/1(),( 1
2pend Ω+−=         (27) 

Here ιδ N  and φ  are the conjugate action-angle variables, with ιδN  counted from the 

resonance action Nι , and )(1 Ωυ N  is the interaction parameter that is generated from 

the interaction energy ),( Ωευ  at the N:1  resonance: 
NN εεευυ =Ω=Ω ),()(1  with Nε

found from the N:1  resonance condition Ω=)( NN εω . The resonance 
width, max)( ιδ N , for the Hamiltonian (27) is:  

NN 1max 2)( υιδ =            (28) 

We write the overlap criterion as 

NNNN ιιιδιδ −=+ ++ 1maxmax1 ])()[(          (29) 

and, furthermore, maxmax11 )()(,/ ιδιδιιι NNNNN dNd ==− ++  (which is valid since 
)1>>N , and NNN /1 Ω=−= ιω  (which is valid for a Morse oscillator described by 

the scaled Hamiltonian.). Eqs. (28) and (29) now yield an equation for the resonance 
N = NCh which corresponds to the chaos onset  

4

2

ch1
8

)(
ch

N
N
Ω=Ωυ           (30) 

Once this equation is solved for NCh, it also determines the critical energy Ch and the 
critical value of the interaction 

ch1Nυ  for the chaos onset. Eq.(30) can be rephrased in 
terms of a condition which insures that the energy level  lies in the chaotic region: 

2

4

8
)(),(

Ω
εω≥Ωευ             (31) 
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Now, the quantity ( , ) can be related to the mean square energy transfer for the 
Morse oscillator per one excursion into the repulsive region of the potential: 

( ) FOCl,2
2

2 )()(2),( εε
π

εωευ ∆
Ω

=Ω          (32) 

In turn, ( ) FOCl,2)(εε∆  determines the effective bottleneck rate constant in Eq.(26). 

Therefore the Chirikov condition for the interaction strength ( , )  in Eq.(31) can be 
reformulated as a condition for the effective rate constant

               
2

en
7

FODiff,Cl,
bottl

)(
2

)()();()( =≥
ε

ετεωελελεκ
d

d
      (33) 

An interesting property of an inequality in Eq.(33) is that rate constant FODiff,Cl,
bottlκ

depends, beside the energy , on the coupling strength and the driving frequency, while 
the “chaos onset boundary”  depend only on . This makes it possible to discuss  
different classical models on equal footing [14]. We indeed found out that the chaos 
onset limit for the VP events is given by the criterion of overlapping resonances, 
Eq.(33), and that the transition from the regular motion (from where the VP is 
forbidden) to the chaotic motion is quite abrupt. The latter property permits symbolic 
use of the step function in Eq.(26), where the energy of the chaos onset Ch is found 
from the Chirikov criterion: 

)()( ChChFODiff,Cl,
bottl ελεκ =            (34) 

6. Comparison of classical and quantum predissociation rates  

The classical effective predissociation rate, )(Cl
eff εκ , out of the energy level nε=ε ,

can now be compared with the quantum predissociation rate Q( n, ) via their 
diffusional and quasiclassical counterparts, )(FODiff,Cl,

bottl nεκ  from Eq.(26) and 
QCl,FO( , ) from Eq.(19). For this purpose, we calculate the ratio R of the bottleneck 

classical to quasiclassical rate constants:   

( ){ }),()(2exp
)(

2

),(

)(
),(

tunen

2

en

FOQCl,

FODiff,Cl,
bottl

εετετ
ε

ετε

εεκ
εκ

εε

εε
∆−Ω−⋅Ω∆=

=
∆

=∆

=
nn

n

n

n
n

d
d

R

        (35) 
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   Two important properties of this expression are:  
i) The ratio R depends on the coupling strength only through its manifestation in the 
adiabatically-corrected interaction potential. 
ii) The ratio R depends on the adiabatically-corrected interaction potential only through 
its manifestation in the encounter time. In this respect, Eq. (35) has more general 
significance than an expression applicable only to the dissociating Morse oscillator. 
Note, however, that the adiabatic correction to the encounter time affects the difference 
in the exponent of the r.h.s. of Eq.(35) in much smaller degree than it does for the 
individual terms. Therefore, the ratio ),( εε ∆nR  can be considered in the FOD 
approximation. 
iii) For a given value of n, the Planck constant enters into R only through the 
transferred energy Ω=∆ ~ε .
   The quantity R in Eq.(35) should provide a fair estimate of the ratio of 
classical/quantum rate constants, if the following basic conditions are fulfilled: the 
initial energy n should be above the chaos threshold energy Ch

, n > Ch, and the final 
energy should be positive, n +  >0. Of course, the whole discussion is valid only if 

, the ratio of the driving frequency to the frequency of the vdW moiety, is noticeably 
larger than one.  
   One sees that the ratio R can be larger or smaller than unity. This follows from the 
following observation. The preexponential factor in Eq (35) is always larger than unity 
since it equals the square of the ratio of the transferred energy  to the classical 
diffusional energy layer δε , ( ) 1/ 2 >>∆ δεε . On the other hand, the exponential factor 
may be substantially smaller than unity since the classical encounter time en is always 
longer than the quasiclassical tunneling time tun, such as illustrated in Fig. 3.  
   A useful insight into the ratio R can be gained if one plots R as a function of  for 
given value of nε  and the scaled Planck constant 

~
. First we note that nε  for as Morse 

potential is given by formula:  

( ) ( )[ ] Nnnnn ,....1,0,2/12/1~12/1~ =−+−+=ε         (36) 

where 
~

 is defined by Eq.(6). Second, we put )2/1(1~ += N . This means that the 
Morse potential supports just N+1 levels with the upper lever at the dissociation 
boundary. We then write  

)2/1/(1~, ),()( +=∆=Ω NnNn RR εε           (37) 

The plots of the functions )(, ΩNnR  are presented in Fig. 5 for N=1,2,3 and discussed in 
detail in [14]. 
   Here we only note that for the classical models studied earlier [7-12, 21] the classical 
VP rates are higher than the quantum rates. We interpret this as a consequence of 
inability for a quantum system to follow available classical paths, which turn out to be 
too narrow to allow the minimal finite action of volume  to squeeze through them. 
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Figure 5. Ratios )(, ΩNnR  of the classical bottleneck VP rates to the quasiclassical VP rates vs. 

driving frequency  for different initial vibrational states n of the vdW oscillator with a Morse 
potential well that supports just N+1 0 states, N=1,2,3. The curves are labeled by (n,N) quantum 
numbers; filled points correspond to the model of [12] (states (01), (13), (12) and (23) for fixed 
frequency ; shaded areas correspond to the models of [8] and [21] (states (02) and (01), 
respectively) for a ranges of frequencies such as indicated.  

Nonetheless, with an increase of the driving frequency, the tunneling quantum decay 
eventually takes over. This is predicted by Eq (35), since 0)(lim =Ω

∞→Ω nNR . However, 

this limit is not very interesting because the initial classical states fall into the regular 
regime where the diffusional description becomes inapplicable.  

We believe that the above comparison clarifies the statement in [1] that if the 
quantum decomposition occurs via isolated resonances, only in special cases do the 
classical and quantum rates coincide. 

7. Conclusion  

 Summarizing, we note that the single-quantum vibrational predissociation of a 
weak van-der-Waals bond in a triatomic molecule and the classical dissociation of the 
same system do not represent processes which can be compared in the correspondence 
principle limit. Our study explains why the classical and quantum rates sometimes are 
close to each other and show the same trends with a change of the interaction 
parameters. The underlying logic in comparing of classical and quantum and VP rates is 
as follows:
i)   The classical motion, which leads to dissociation, is chaotic;
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ii) The chaotic motion can be approximately described by the diffusion model, and the 
effective classical VP rate can be related to the energy diffusion coefficient in the initial 
state;
iii) The diffusion coefficient is related, within the first-order classical perturbation 
approach, to certain Fourier components of the interaction potential;  
iv) The same Fourier components can be used to recover the quasiclassical transition 
matrix element that connects the initial and final states; 
v) The quasiclassical transition matrix elements approximate well the respective 
quantum mechanical matrix elements;  
vi) These quantum mechanical matrix elements determine the dissociation rate within 
the first-order quantum perturbation approach.

However, the classical approach should not be used for a quantitative 
interpretation of the experimental results for single-quantum vibrational predissociation. 
The classical process, which should show the correspondence with the quantum one, is 
the cleavage of a bond under a condition when the quantum of energy transferred to this 
bond from a diatomic fragment, Ω , is much smaller than the dissociation energy, ED ,
of the bond, i.e. DE<<Ω . This condition does not contradict the classical limit, 

0→ . The actual study of this limit (small but finite value of ) is rather 
complicated, as it is already evident from the chaotic classical dynamics and from the 
inapplicability of a first-order perturbation approach in the quantum dynamics. 
However, at least the classical limit under the condition that the dissociation energy is 
large compared to the “vibrational temperature” of the molecule is clear: it is the 
diffusional description of IVR supplemented with the standard mean first passage time 
approach for calculation of the rate constant [24-28].  
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1. Introduction 

Ion-molecule reactions and reactions of neutral species in the gas phase have much in 
common. Nevertheless, because different communities were concerned, theories of the 
kinetics of these processes have often been developed separately, missing the chances 
for synergism and for more rapid progress. Fortunately, this unsatisfactory situation is 
changing and the common aspects, but also the characteristic differences are becoming 
identified more clearly. 
 This report describes the state-of-the-art of modeling ion-molecule association 
reactions. For these reactions, the rate coefficients depend on the temperature T, the 
chemical nature and the concentration [M] of the bath gases M. The modeling of the 
corresponding recombination reactions of neutral species has been a traditional part of 
unimolecular rate theory. The "falloff curves", i.e., the dependences of the second-order  
rate coefficients k on [M], together with the limiting low pressure (k0) and high pressure 
(k∞) rate coefficients, have been analyzed in detail (see e.g. [1]) and amply documented 
(see e.g. [2]). Experimental studies of the falloff curves covered wide pressure ranges, 
from fractions of a millibar to a thousand bar (see e.g. [3]). Such wide variations have 
not been realized for ion-molecule associations. First, it is essential that truly thermal 
conditions are being applied. Second, experiments should be conducted up to high gas 
pressures. Using laser-induced ionization for reactant preparation and laser-induced 
fluorescence for product detection, falloff curves for ion-molecule association, however, 
are now also becoming accessible up to relatively high pressures [4]. In the following, 
we consider the framework for modeling falloff curves of association reactions in 
general and, subsequently, we try to specify where ionic and neutral reaction systems 
differ or agree. 

2. General Formalism 

The energy-transfer (ET) mechanism of association reactions involves the following 
steps

                                               *ABBA →+  (1) 
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                                                 BAAB* +→  (-1) 
                                          M*ABM*AB →+  (2) 

The second-order rate coefficient 

                                         [ ] [ ]( ) [ ] dtdk /ABBA 1−=  (3) 

at steady-state takes the form 

                                      [ ] [ ]( ){ }1221 M/M −+= kkkkk . (4) 

The corresponding thermal dissociation starts with the reverse of reaction (2), 

                                       M*ABMAB +→+  (-2) 

and is completed by a competition of reactions (-1) and (2) so that a first-order rate 
coefficient

                                       [ ]( ) [ ] dtdkdiss /ABAB 1−−= , (5) 

given by 

                                   [ ] [ ]( ){ }1212 M/M −−− += kkkkkdiss , (6) 

is obtained. Obviously, k and kdiss are linked by the equilibrium constant Keq through 

                                     2121 // −−== kkkkKkk eqdiss . (7) 

 In reality, more complicated expressions apply because of the multi-step character of 
the reaction: k1 and k-1 depend on the energy E and the angular momentum (quantum 
number J), and the collisional energy transfer is a multi-step process with activations 
and deactivations, to be characterized by a master equation. It has become customary to 
consider "strong collisions" first and to introduce "weak collision effects" afterwards. 
For strong collisions, equation (6) takes the form 

                     [ ] [ ]{ }
∞

=

∞

+=
0 )(

),(M/),(),(M
J JE

SC
diss

o

JEkZJEkJEfdEZk  (8) 

where k2 is replaced by a total energy transfer collision frequency Z, k-1 is represented 
by the specific rate constants k(E,J) for dissociation of the excited adducts AB*, Eo(J)
denotes the J-dependent threshold energies for dissociation of AB*, and f(E,J) are 
equilibrium populations of the states of the adduct in that part of the metastable range 
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which is populated or depopulated by collisions. The corresponding strong collision rate 
coefficient k for association follows through eq. (7). 

In the low pressure limit, eq. (8) approaches 

                                       [ ] ∞

=

∞

=
0 )(

0, ),(M
J JE

SC
diss

o

JEdEfZk  (9) 

which can be expressed in an economical way [1] as 

                [ ] [ ]TJEFFF
Q

TE
Zk orotanhE

vib

ohvibSC
diss k/)0(exp

k)(
M ,

0, =−≅
ρ

 (10) 

with the vibrational harmonic density of states ρvib,h(E), the vibrational partition function 
Qvib, a factor FE accounting for the E-dependence of ρvib,h(E), a factor Fanh accounting 
for the anharmonicity of the vibrational density of states, and a factor Frot accounting for 
the rotational contributions to eq. (9). Provided that the relevant molecular parameters 
of AB are known, the evaluation of eq. (10) is straightforward. Likewise, the conversion 
to k0 via eq. (7) can easily be made; however, an internally consistent set of molecular 
parameters has to be used. 
 In reality, collisions will not be "strong" which is expressed by a collision efficiency 
βc through 

                                                       SC
disscdiss kk 0,0, β= . (11) 

Solution of the master equation has related βc to the average energy ∆E  transferred per 
collision [1] by 

                                                ( ) TFE Ecc k/1/ 2
1 ∆−≈− ββ . (12) 

In the high-pressure limit, eq. (8) approaches 

                                            
∞

=

∞

∞ =
0 )(

, ),(),(
J JE

SC
diss

o

JEkJEfdEk . (13) 

Statistical unimolecular rate theory expresses k(E,J) by 

                                               ),(h/),(),( JEJEWJEk ρ=  (14) 

where W(E,J) is the number of "open channels", of "activated complexes", or of 
"capture channels". The features of W(E,J) in ionic and neutral systems need to be 
analyzed, since W(E,J) is determined by the properties of the potential energy surface of 
the reaction system, see below. 
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 Reduced falloff curves k/k∞ as a function of a "reduced pressure scale" k0/k∞, being 
proportional to [M], are identical for dissociation and association reactions. In the 
simplified mechanism given above, they take the form 

                                                        
∞

∞

∞ +
=

kk
kk

k
k

/1
/

0

0 . (15) 

Because of the described multi-step character of the mechanism, broadening factors 
F(k0/k∞) have to be introduced, i.e., 

                                               ( )∞
∞

∞

∞ +
= kkF

kk
kk

k
k /

/1
/

0
0

0 . (16) 

It was shown in [1] that, in the simplest way, F(k0/k∞) is approximated by 

                                             ( ) [ ]{ }2
0 N/)/log(1/1

0 / ∞+
∞ ≈ kk

centerFkkF . (17) 

with N ≈ 0.75-1.27 logFcenter. More accurate, although more complicated, 
representations of F(k0/k∞) require detailed models for k(E,J). Examples have been 
calculated recently in [5],[6]. Some asymmetries of F(k0/k∞) and minor shifts of the 
minimum were observed. The center broadening factor Fcenter can either be used as a 
fitting parameter or it can be calculated from unimolecular rate theory, see below. 
 In rare cases [7],[8] a different mechanism has been identified in neutral association 
reactions, named the radical-complex (RC) or chaperon mechanism. It involves 
complexes AM and proceeds by the steps 

                                                    AMMA →+  (18) 
                                                        MAAM +→  (-18) 
                                                  MABBAM +→+  (19) 

such that 

                                                 ( ) [ ]M/ 191818 kkkk −= . (20) 

This mechanism sometimes dominates the low-pressure range for reactions involving 
only few atoms; more generally the high-pressure range can be influenced. As ions A 
more easily form complexes AM with the bath gas M with stronger bonds, one has to 
look for RC-contributions more regularly in ionic than in neutral reaction systems, see 
below.
 In the following, we shall discuss the properties of k0, k∞, and of the reduced falloff 
curves in more detail, trying to identify common and different contributions for ionic 
and neutral reaction systems. 
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3. High pressure limit of association reactions 

Converting eqs. (13) and (14) to high pressure association rate coefficients, leads to 

                 
)B)()A(

*
)B()A(

)AB(
k2

h
h

k

el

2
3

2

vibrotvibrotel

el

QQ
Q

QQ
Q

T
Tk =∞ µ

 (21) 

with an "activated complex partition function" Q* given by 

                             
∞

=

∞

−=
0 )(

)k/exp(),(*
J JEo

TEJEWdEQ . (22) 

Qel and Qvibrot denote electronic and rovibrational partition functions, respectively. In 
general, the contributions of the internal degrees of freedom of A and B cancel in Q*
and Qvibrot(A)Qvibrot(B ), such that only contributions from the external rotations of A 
and B and the relative motion, summarized as "transitional modes", need to be 
considered. Under low temperature quantum conditions, these can be obtained by 
statistical adiabatic channel (SACM) calculations [9],[10] while classical trajectory 
(CT) calculations [11]-[14] are the method of choice for higher temperatures. CT 
calculations are run in the capture mode, i.e. trajectories are followed from large 
separations of A and B to such small distances that subsequent collisions of AB* can 
stabilize the adduct. 
 In the case of isotropic potential energy surfaces, such as appropriate 
(approximately) for ion A - induced dipole B systems, the situation is even simpler. In 
this case, the external rotational levels of A and B transfer unchanged into W(E,J) and 
Q* becomes a centrifugal partition function 

                                              [ ]∞

=
−=

0
k/)(exp*

J
o TJEQ . (23) 

For an ion - induced dipole (α) potential 

                                                  42 2/)( rqrV α−= , (24) 

Eo(J) follows as 

                                              
22

2)(2
)1()(

2
1

+=
q

JJJEo µα
, (25) 

such that 
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2

1

2 2
k2* = TqQ µ  (26) 

and

                                               2
1

)/(2 µαqkk L ==∞  (27) 

(as long as Qel(AB)/Qel(A)Qel(B) = 1). Eq. (27) is the well-known Langevin rate 
constant for capture of induced dipoles by ions which here is represented as part of a 
general formulation of association rate coefficients. 
 When the potential becomes anisotropic, such as in ion - permanent dipole (µD) and 
ion - quadrupole potentials, the situation immediately becomes more complicated. 
Earlier treatments like the average dipole (or quadrupole) orientation (ADO or AQO) 
methods were not physically correct because thermal averaging was done before the 
treatment of capture, while the opposite order is required. Classical trajectory 
calculations by Su and Chesnavich [11], for ion - permanent dipole capture, instead led 
to

                                         20950.00967.01/ xxkk L ++≈∞  (28) 

and

                                             6200.04767.0/ +≈∞ xkk L  (29) 

where x = µD/(2αkT)1/2, and eq. (28) applies for x ≤ 2 while eq. (29) is for x ≥ 2. These 
were confirmed and extended over the full range between adiabatic and sudden 
dynamics in [12]. At very low temperatures (kT/B, B = rotational constant of the dipole 
rotor), eqs. (28) and (29) cease to be valid. Instead, a transition to 

                                         2
12 )3/1(/)0( BkTk DL αµ+=→∞  (30) 

takes place [9] which prevents the divergence of eq. (29). CT calculations for ion - 
quadrupole capture have also been done in detail and represented analytically in 
[13],[14].
 Eqs. (28) and (29) show that ion - induced + permanent dipole association reactions 
at high pressures should be dominated by the permanent dipole at low temperatures 
while they are governed by the induced dipole at high temperatures. At very high 
temperatures, finally the valence part of the potential comes into play [15]. In the 
following, we confront this expectation with experimental observations [16] for the 
formation of the proton-bound dimer of ammonia 

                                NH3 + NH4
+ + M → NH3H+NH3 + M. (31) 
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Figure 1 shows second-order rate coefficients measured in a CRESU flow apparatus 
over a wide temperature range at a variety of pressures and bath gases. 

0 100 200 300
10-11

10-10

10-9

10-8

k re
c 
/c

m
3 m

ol
ec

ul
e-1

s-1

T / K

Figure. 1   Second-order rate coefficients for the reaction NH3 + NH4
+ + M → N2H7

+ + M      
from CRESU experiments in [16] (full line = Su-Chesnavich  prediction of eqs. (28) 
and (29), circles: M = He, squares: M = Ar, diamonds: M = N2).

 The Su-Chesnavich line corresponds to eqs. (28) and (29), illustrating the changing 
contribution of the induced and permanent dipoles of NH3. As k∞(T→0) = 1.65×10-8 cm3

molecule-1 s-1 is derived from eq. (30) and Beff(NH3)/k = 7 K, the quantum range of k is 
not reached in the measurements down to 15 K, and CT calculations are fully 
appropriate for all measurements. The deviations of the experiments from the Su-
Chesnavich line, therefore, have to be attributed to falloff effects, see below. In order to 
reach the high-pressure limit, higher pressures would have had to be applied in these 
experiments. With increasing molecular size of A and B, the transition to the high 
pressure limit shifts to lower pressures. Going from reaction (31) to larger amines, this 
was demonstrated in [17]. 
 Quantum effects become important only at very low temperatures, i.e. for B/kT ≈ 1. 
The best candidates for observing these effects thus are hydrides. Quantum effects 
become more pronounced when A and/or B are species with open electronic shells; see 
e.g. the differences between the associations N2 + N2

+ → N4
+ and O2 + O2

+ → O4
+ at 

temperatures below 10 K [10]. Before leaving this section, it should be mentioned that 
alternative approaches such as the ACCSA treatment from [18], the perturbed rotational 
state treatment from [19] and the semiclassical adiabatic invariance method from [20] 
all represent simplified variants of the here described SACM/CT approach and, like the 
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ADO and AQO approaches, today are superseded by the more accurate and more 
general treatments from [9]-[15]. 

4. Low pressure limit of association reactions 

An experimental illustration for the approach of the low pressure limit k → k0, where k0
is proportional to the bath gas concentration [M] and the association reaction is a 
termolecular process, is shown in figure 2 for the reaction 

                                           N2 + N2
+ + He → N4

+ + He (32)

In this case,  pressures below about 10 Torr would be required for reaching the low 
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Figure. 2    Second order rate coefficients for the reaction N2 + N2
+ + He → N4

+ + He 
from [4] (dash-dotted line = low pressure limit, dotted line = eqs. (16)-(17), full line 
= more rigorous falloff fit, see [4], diamonds = flow system, squares = static 
system). 

pressure limit. An analysis of k0 has been made in [4] on the basis of eqs. (10)-(12). 
Since the required molecular parameters for N4

+ are fairly well known today, most of 
the factors in eq. (10) can be calculated easily following the prescriptions of [1]. In 
these factors there is no principle difference between ionic and neutral systems. There is 
the same basic uncertainty about anharmonicity factors Fanh. The rotational factors Frot
for ionic AB should rather use centrifugal barriers from electrostatic potentials such as 
given by eq. (25), than relying on short-range valence potentials; in any case Frot
reaches the order of magnitude of its maximum value in the absence of centrifugal 
barriers and determined by the bond strength of AB [1]. The major difference between 
the ionic and neutral systems is in the product Z βc. At present, there exists much less 
direct information on collisional energy transfer of highly excited molecular ions than 
for excited neutrals. For the latter, Z generally is approximated by the Lennard-Jones 
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collision frequency and βc is consistent with directly measured ∆E -values, typically 
being in the -hc 100 cm-1-range for M = He and in the -hc 200 cm-1-range for M = N2. In 
[4], Z was assumed to be given by the Langevin rate constant for N4

+ + M - collisions. 
Then βc ≈ 0.4 for M = He, and βc ≈ 0.9 for M = N2 was derived. Underestimating Fanh

and Frot would have led to an overestimate of βc which seems not improbable. In any 
case, the assumption of Z ≈ kL appears highly reasonable, leading to βc-values not far 
away from the corresponding values for neutrals. However, this approach to βc, and 
hence to ∆E , is much too uncertain to decide whether energy transfer of highly excited 
ions and neutrals have similar properties or not. This question has recently been 
answered for highly excited ethylbenzene ions in collision with M = He and N2 [21]. By 
chemical activation experiments, where energy transfer was measured relative to the 
known k(E) for fragmentation, quite similar ∆E -values for ions were derived as for the 
corresponding neutrals. One, therefore, can conclude that the modeling of k0 by eqs. 
(10)-(12) for neutrals and ions can be made in the same way, except for the different 
total collision frequencies Z which for ions can be identified with the AB + M - capture 
rate constants from section 3. Apart from this difference, termolecular ion - molecule 
association rate constants, therefore, should be modeled within the general formalism of 
section 2 and should not follow special formulations developed separately. 

5. Falloff curves for ion-molecule association reactions 

It remains to be discussed, whether eq. (17) provides an adequate representation of the 
falloff curves interpolating between k0 and k∞, and how the parameter Fcenter can be 
predicted. This question applies as well to neutrals as to ionic systems. The question has 
a strong collision and a weak collision aspect. If one concludes that ∆E  and βc are 
similar for ionic and for neutral systems, then the weak collision broadening factor 

WC
centerF  in SC

center
WC

centercenter FFF =  can be estimated [1] by 

                                                      14.0
c

WC
centerF β≈ . (33) 

The strong collision broadening factor SC
centerF  requires the knowledge of all details of 

k(E,J) and of W(E,J) such as given by unimolecular rate theory. Details of this treatment 
cannot be given here. It should, however, be mentioned that the dominant ingredients 
for this treatment are the same as described in section 3. For isotropic potentials, W(E,J) 
directly follows from phase space theory (PST) and can be easily calculated. The effects 
of anisotropy of the potential are represented by specific rigidity factors frigid(E,J) such 
that

                                            PSTrigid JEWJEfJEW ),(),(),( =  (34) 

frigid(E,J) generally follows from CT calculations such as shown in [22]. For ion - 
permanent dipole capture, however, a simple expression for frigid(E,J) was derived by 
SACM methods in [9], giving 
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                                         Drigid qJJJEf µµ2/)1(1),( 2+−≈ . (35) 

On this basis, strong collision broadening factors were calculated for reaction (31) in 
[16]. Figure 3 shows the results. SC

centerF  is close to 0.2 and does not show a particular  
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Figure. 3    Strong collision broadening factors FSC(x) for the reaction NH3 + NH4
+ + M 

→ N2H7
+ + M from [16] (numbers in the figure = T/K, x = k0/k∞).

temperature dependence. The considered ion - permanent dipole - system is 
characterized by vanishing centrifugal barriers as long as J(J+1) 2 ≤ 2µqµD. It is, 
therefore, special and different from ion-induced dipole- and neutral radical - radical 
systems. For the latter, one would have expected [6] SC

centerF  to be close to 0.42. Some 
deviations of figure 3 from eq. (17) are also noted. For neutral radical - radical 
associations, asymmetries of F(k0/k∞) were observed which are opposite to those of 
figure 3. Unless one can do the complete treatment, eq. (17) provides a good first 
approximation, SC

centerF  being of the order of 0.42 for nonlinear A + nonlinear B, 0.47 for 
nonlinear A + linear B, 0.53 for linear A + linear B, 0.59 for atomic A + nonlinear B, 
and 0.63 for atomic A + linear B [23]. The fitted Fcenter ≈ 0.47 for M = He and Fcenter ≈
0.52 for M = N2 in reaction (32) from [4] are well consistent with these values and eq. 
(33). 
 The described procedure for modeling the limiting low and high pressure rate 
coefficients k0 and k∞, and the falloff curves interpolating between these values, can be 
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employed for localizing experimental data such as illustrated in figure 1. As an 
example, in figure 4 we compare modeled strong collision falloff curves for reaction 
(31) in the bath gas M = He with the measurements from figure 1. One realizes that  
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Figure. 4     Experimental second-order rate coefficients (points) for the reaction 
 NH3 + NH4

+ + He → N2H7
+ + He with modeled strong collision falloff curves (lines) 

(numbers = T/K, results from [16]). 

the experimental data at the higher temperatures are systematically lower than the 
modeled curves whereas they nearly fall on the curves at lower temperatures. This is 
easily explained by weak collision effects. Taking into account collision efficiencies βc
of the order of 0.2 over the range 150-300 K, leads to shifts of the curves from left to 
right such the experiments scatter around the modeled curves. At lower temperatures, on 
the one hand, according to eq. (12) (with temperature independent ∆E ) βc increases, on 
the other hand, because of the approach of the experiments to the high-pressure limit, 
weak collision effects do not influence much the position of the curves relative to the 
measurements. One can, therefore, conclude that the modeled rate coefficients of 
reaction (31) with M = He very well agree with the measurements over a wide 
temperature range. Without this modeling, the data points such as obtained from the 
CRESU experiments in figure 1 could not have been understood. 
 One may try to apply the same analysis of the experimental data for reaction (31) 
with different bath gases M. It was shown in [16] that low pressure rate coefficients for 
strong colliders such as M = CH4 or NH3 at 200-350 K are well reproduced by the 
modeled k0. On the other hand, there is a problem with the data for M = N2 from figure 
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1. Figure 5 compares the experiments from figure 1 with modeled falloff curves for M = 
N2. The low temperature results are systematically above the 
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Figure. 5    As figure 4, for NH3 + NH4
+ + N2 → N2H7

+ +N2.

modeled strong collision falloff curves and at higher temperatures the results are less 
below the curves than one would have expected with typical βc. In view of the good 
agreement between experiment and theory for M = He this is surprising. However, an 
interpretation of the discrepancy can be found [16] by considering the interaction 
between NH4

+ and N2: NH4
+N2 complexes are known to have binding energies of the 

order of D/k ≈ 3000 K and higher complexes NH4
+(N2)n are similarly strongly bound. 

As a consequence, at lower temperatures NH4
+ will be fully solvated by N2 and the 

reaction proceeds by the radical-complex mechanism 

                                         NH4
+(N2)n + NH3 → N2H7

+(N2)n. (36) 

The rate of this reaction can again be estimated by the capture theory from section 3 
under the assumption that NH4

+ is heavily clustered (reduced mass µ[NH4
+(N2)n + NH3]

≈ m[NH3]) and that the charge of NH4
+ is shielded by the solvation shell (charge q ≈ q/ε

with ε = dielectric constant of liquid nitrogen). Using this interpretation, the modeling 
of the combined ET- and RC-mechanism such as given in [16] succeeds to reproduce 
the experimental results from figure 6. 
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6. Conclusions 

Ion-molecule association reactions and the corresponding reactions of neutral species 
have much in common and, therefore, should be interpreted and modeled by the same 
theoretical framework. Nevertheless, there are also characteristic differences which 
require specific changes of the analysis. On the energy transfer side, different collision 
frequencies Z have to be considered while average energies ∆E  appear to be of similar 
size in ionic and related neutral systems. Specific rigidity factors frigid(E,J) and 
centrifugal barriers Eo(E,J) may also be characteristically different, but such differences 
have only minor influences on reduced falloff curves. Finally, capture rate constants 
determining the high pressure rate coefficients in ionic systems are governed by long 
range electrostatic potentials in a way which can well be expressed by the analytical 
representation of classical trajectory results. 
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Abstract A generalization of the Landau-Teller model for vibrational relaxation of 
diatoms in collisions with atoms at very low energies is presented. The extrapolation of 
the semiclassical Landau-Teller approach to the zero-energy Bethe-Wigner limit is 
based on the quasiclassical Landau method for calculation of transition probabilities, 
and the recovery of the Landau exponent from the classical collision time. The quantum 
suppression-enhancement probabilities are calculated for a general potential well, which 
supports several bound states, and for a Morse potential with arbitrary number of states. 
The model is applied to interpretation of quantum scattering calculations for the 
vibrational relaxation of H2 in collisions with He.  

1. Introduction 

Vibrational relaxation (VR) of diatomic molecules in collisions with atoms (the loss of 
the vibrational energy of a diatom released as the relative translational energy of the 
partners and the rotational energy of a molecule) represents a simplest example of non-
reactive collisions between molecular species (see, e.g. [1,2]). The VR event in a 
collision

),(),( jnBCAjnBCA ′′+→+        (1) 

is schematically represented in Fig.1, with n,j being the vibrational and rotational 
quantum numbers of a diatom. Shown are an interpartner interaction potential of A and 
BC coupled to an oscillator BC, and energy levels for the relative motion before, E ,
and after, E ′ , the collision.  
The increase in the energy E E =E+ E is accompanied by the decrease of the energy 
of the oscillator, which is depicted as a lowering of the vibrational amplitudes. Two 
limiting collision regimes are presented here. 
i) The high-energy regime, valid under the condition E>> E, corresponds to the well-
known Landau-Teller (LT) model, with the VR transition probability PVR  given by the 
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Figure 1. Schematic representation of VR collision in the high and low energy regimes.

Landau-Teller expression ( )vEPP απ∆−∝= 2expLTVR  for a head-on collision. Here 
v is the collision velocity and  is the logarithmic derivative of the repulsive exponential 
potential [3].
   The exponential dependence of PVR on velocity is the manifestation of the Ehrenfest 
adiabatic principle [4], once /E∆  is identified with the frequency  of a perturbed 
system (the BC diatom) and 2 /  with the characteristic time of the perturbing force  
(E) for the exponential interaction. A representation  

( )/)(exp),(LTVR EEAEEPP τ∆−=∆=         (2) 

suggests a generalization of the LT approach for an arbitrary interaction provided that 
the change of the action variable of a perturbed system is small compared to the initial 
action. Note also that LT transition probability PLT is an example of the correspondence 
principle transition probability, which is based on the fundamental relation between the 
quasiclassical matrix elements and the Fourier components of the respective classical 
quantities [5].  
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ii) The low-energy regime corresponds to the condition when the de Broglie wave 
length of the relative motion k/1= (with k  being the wave vector) is much larger 
then the length characterizing the collision complex. In the limit of vanishingly small k ,
the VR s-wave transition probability in the case of attractive interaction is given by the 
general Bethe-Wigner (BW) expression [6,7]: 

kELEEPP BWVR )(4),( ∆′′=∆=         (3) 

where L ′′  is the inelastic scattering length that contains all the information on the 
dynamics of an inelastic event. The universal k dependence (or velocity dependence) of 
the transition probability in the low-energy exoergic collisions follows from the general 
unitary properties of the scattering matrix [5].  
   In this contribution we will discuss the VR event in the BW limit and beyond it and 
also consider the energy dependence of the VR cross section in a wide energy range for 
a particular case with A = He and BC = H2. The plan of the presentation is the 
following. Section 2 describes the problem. Section 3 is devoted to the quantum 
suppression in the case of quasiclassical potential well of the intermolecular interaction. 
Section 4 deals with specific model of the Morse potential which allows one to relax the 
quasiclassical conditions for the motion in the well region. In Section 5 we discuss the 
Landau transition probability for the Morse potential. Section 6 describes the bridging 
between the low- and high-energy regimes of the VR cross sections for H2-He
collisions. We conclude by indicating key parameters that determine the energy 
dependence of the VR cross section over wide energy range. 

2. State-specific VR cross sections 

State-specific rovibrational relaxation cross section (n <n) in a collision (1) has a 
standard form: 

′′′′ +
+

=
J

J
njjnnjjn kPJ

jk
k )()12(

)12(
)( ;2;

πσ            (4) 

where k  is the wave vector in the initial state, µ2/22kE = , J
njjnP ;′′  is the probability 

of the transition jnjn ′′→ ,, , and J is the total angular momentum J. In turn, J
njjnP ;′′  is 

a sum of probabilities J
njjnP ;′′′  that correspond to all possible relative angular momenta 

′,  compatible with Jjj ,, ′ ,
′

′′′′′ =
,

;;
J

njjn
J

njjn PP . In order to avoid a complicated 

algebra of angular momentum addition we will consider a specific transition between 
initial and final rotationless states j=0 j =0. Then the sum 

′
′′′

,
;

J
njjnP  reduces to a 

single term J
JnJnP 0;0′ . Also, for definiteness, we assume that VR corresponds to 
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deactivation of the first vibrational state of a diatom, i.e. we will discuss the transition, 
n=1 n=0. Omitting all unessential subscripts we put ),()(00;10 kkPkP VR

J
J

JJ ′= ,

),()(00;10 kkk VR ′= σσ , where we emphasized the dependence of the VR transition 
probabilities and VR cross section on initial and final wave vectors kk ′, . Then Eq. (4) 
assumes the form:  

′+=′
J

J kkPJ
k

kk ),()12(),( VR
2

VR πσ        (5) 

If the probability ),(VR kkPJ ′  is calculated within first-order perturbation approach and 
if the motion in the exit channel is quasiclassical, then, as follows from the generalized 
Landau method [8], ),(VR kkPJ ′  can be factorized into the quasiclassical Landau 

probability ),(L kkPJ ′  and the so-called a suppression-enhancement factor )(kS J [6], 
i.e.

)(),(),( LVR kSkkPkkP JJJ ′=′             (6) 

In this approximation, the nonquasiclassical character of motion in the entrance channel 
is associated with the elastic scattering in this channel ( JS  depends only on k , and not 
on k ′ ). The two possibilities, 1)( <kS J ) or 1)( >kS J  correspond to the suppression or 
enhancement of the VR probability compared to the quasiclassical probability. 
   The LT limit of Eq.(5) corresponds to high collision energies, when 1)( =kS J , and 
many partial waves contribute to the cross section: 

( )/)(exp),(2

),(),(

LTLTVR,
2

LTVR,VR

EEQdJEEP
k

J

EEkk

J

EE

τπ

σσ

∆−=∆=

=∆=′ ∆>>

      (7) 

Here /)(EEτ∆  is assumed to be large, and QLT depends on E much weaker than the 
exponential does.  
   The BW limit of Eq.(5) refers to extremely small values of the wave vector, when 
only the s-wave contributes to the cross section [7,8]:  

k
kS

kkP
k

kkP
kk

Lkk
kkk

)(
),(lim),(4),( 0L

000

VR
020

VR ′=′=
′′

=′
→→→

πππσ        (8) 

In what follows, we discuss a simple model, which allows one to interrelate quantities 
entering in Eqs. (2) and (3), identify the key parameters that clarify the meaning of the 
BW limit 0→k , determine the basic features of the low-energy VR relaxation, and 
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suggest an interpolation formula that bridges the gap between the LT and BW limits. 
This proves to be possible due to two important features of the VR event: rather small 
probability of the VR event and the quasiclassical character of motion of the partners in 
the exit channel. The former feature allows one to rely on the perturbation approach in 
an appropriate basis (say, adiabatic channel basis [9]),  while the latter permits to use 
the generalized Landau method of calculating transition probabilities [10,11]. 

3. s-wave inelastic VR scattering for a potential with a quasiclassical well  

It is well known that the VR energy transfer is induced by short-range repulsive part of 
the intermolecular interaction A-BC [1,2,12]. This part is separated from the long-range 
attractive part by a potential well, which may or may not support bound states of a 
complex A-BC. If the well supports at least several bound states, the motion inside the 
well for the energies not too close to the bottom and to the dissociation threshold is 
quasiclassical. We call this well a quasiclassical well. The VR event occurs as a result 
of the travel of an atom A above the well to the repulsive part (the entrance channel) 
where the atom A gains the energy and then departs (exit channel). An inelastic event 
occurs close to the turning point with the quasiclassical transition probability PL which 
can be calculated by the Landau method [4]. On the way to the repulsive part, the 
incoming wave in the entrance channel can suffer a partial reflection from the potential 
step of the long-range attractive part. The attenuation of the wave in traversing the step 
towards the turning point is the reason of the quantum suppression (compared to the 
quasiclassical behavior) [13]. Clearly, the quantum suppression disappears if the step is 
traversed quasiclassically. A part of the wave that elastically reflected from the 
repulsive part of the potential suffers the reflection from the potential step in its attempt 
to exit the well. A succession of these reflections (from the turning point and from the 
step) leads to a temporary trapping of the collision pair. This trapping increases the 
overall VR transition probability, which is the reason for the quantum enhancement. 
This event is also schematically depicted in Fig.1.
   The interplay of the suppression and enhancement can be comparatively easily 
described for a quasiclassical well when the inelastic transition and transmission across 
the step can be considered independently [14,15]. Under this condition, the suppression-
enhancement factor S0(k)=S0

QCl(k) is expressed via the probability of transmission 
across the potential step T(k), and the phase (k), which is accumulated during the 
motion in the region of the well. The phase (k) equals to a certain quasiclassical phase 
integral complemented with a non-quasiclassical correction. The explicit expression for 
S0(k) reads [15]: 

))(1()(2cos)(121
)()(QCl

0 kTkkT
kTkS

−+Ψ−+
=           (9) 

With increase in k, when T(k) 1, S0
QCl(k) tends to its quasiclassical limit 

S0
QCl(k)T 1. Here, however, we are interested in the case when k  is small. In this 



                    E. I. DASHEVSKAYA, E. NIKITIN, I. OREF AND J. TROE418

case T is small and linear in k [16], and the function (k) can be identified with its value 
for k=0: 

ψ=Ψ=Ψ
<<→

=0

*

)()(
1

kkk
kRT

       (10) 

Then 

ψ22*

*

1*
QCl

cos16)(
)(4)(

+
=

<< kR
kRkS

kR
     (11) 

3.1. VR TRANSITION PROBABILITY IN THE BETHE-WIGNER LIMIT AND 
BEYOND IT 

Consider first the BW limit of Eq.(11). It corresponds to the case when S0
QCl(k) is linear 

in k , that is when ψcos4* <<kR

ψψ 2

*
BWQCl,

cos4*
QCl

cos4
)()( kRkSkS

kR
==

<<
    (12) 

Eq.(12) defines the inelastic scattering length as 

ψ2

L*BWQC,
0

cos164
pR

k
pS

L
L

==′′       (13) 

where  

),(lim L

0

L kkPp
k

′=
→

       (14) 

Consider now two quantities, R* and , that determine L  in Eq.(13). They have been 
discussed in [13,16].  
  The length parameter R* is related to the long-range attractive part of the interaction as: 

( )
( )−−∝
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−
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The phase integral  is related to the elastic scattering length L . This relation is 
especially simple when the deviation  of the phase  from the value (n*+1/2) with 
an integer n* is small, (| | <<1):

),2/1*(*)(21)2/1*( +−−−=+−=∆
∞

ndRRUn
inR

πφµπψψ      (17) 

Here

( )−−∝
−=−=

aRRU
RCRUs

att

s
att

/exp)(for,0
)(for,)2(2* πφ         (18) 

Then, when | |<<1,

L
R

′
=∆≈

4
cos

*
ψψ            (19) 

If n* in Eq.(17) equals the quantum number of the upper bound state N, n*=N, L  is 
positive, and it determines the energy of a weakly bound (upper) state EN:

2

2

)(2 L
EN ′

−=
µ

           (20) 

If n* in Eq.(17) equals N+1, then the quantity L  is associated with a virtual state [5]. In 
terms of L , Eq.(12) reads: 

*

2
BWQCl, )(4

R
LkS

′
=            (21) 

Finally, the expression for the inelastic scattering length reads: 

L
*

2)( p
R
LL

′
=′′             (22) 

   This equation expresses the inelastic scattering length L  in terms of the elastic 
scattering length L , which is determined by the energy of a weakly-bound state, the 
zero-energy quasiclassical Landau probability pL, which is governed by the short–range 
behavior of the potential, and a length parameter R*, which characterizes the 
transmission through the long-range part of the interaction potential.  
   The quantities L  and L  determine the complex scattering length L=L + iL  that enters 
into the scattering matrix in the BW limit. The condition of small transition probability 
is now written as L <<| L |, i.e. pL<<R*/|L |<<1. The limit k 0 (the Bethe limit) 
means kL <<1. Note, that Eqs. (21) and (22) are valid for the following hierarchy of 
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lengths: Rrep<< Re<<R*<<|L |<<1/k where Rrep is the range of the repulsive part of 
the potential well and Re is the position of its minimum. 
   We go now beyond the BW limit, but assume that kR*<<1. Expressed through L
(under the condition R*<<L ) Eq.(12) assumes the form 

2*
*

1*QCl

)(1
4

Lk
Lk

R
LS

LR
kR ′+

′′
=

′<<
<<           (23) 

   We see that under the condition |L |/R*>>1 the function SQCl in Eq.(23), after a linear 
increase with k, passes through the maximum 12 *QCl

max >>′= cRLS  at kL =1. Thus, the 
function SQCl(k) in Eq.(23) describes the quantum suppression of the quasiclassical 
probability pL, if SQCl(k)<1, and the quantum enhancement of the quasiclassical 
probability pL if  SQCl(k)>1. Both effects can exist not only for kRS

*<<1 but also in the 
Bethe region (k|L |<<1). This interesting feature persists for a non-quasiclassical Morse 
well (see Section 4) and can be also seen in the results of accurate numerical 
calculations for a system with a realistic potential (see Section 6). Of course, the 
prerequisite of these effects is an existence of a weakly bound state. 

3.2. LOW-ENERGY s-WAVE CROSS SECTIONS 

From Eq.(23) one gets the expression for VR(k) under condition kR*<<1:

2*

2
VR

)(1
)(4)(

Lk

p

kR
Lk

L

′+
′

= πσ           (24) 

The quasiclassical counterpart of VR(k), VR,QCl(k), is of the form: 

L
2

QClVR, )( p
k

k πσ =            (25) 

For a comparison, we cite the expression for the elastic cross section, el(k), written in 
the same approximation: 

2
2el

)(1
1)(4)(
Lk

Lk
′+

′= πσ           (26) 

From Eqs.(24) and (26) we get the relation between the elastic and inelastic cross 
sections:

*

L
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)(
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k
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σ
σ             (27) 
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Note that this ratio does not depend on L , that is on the energy of a weakly-bound state. 
We also see that depending on k, the low-energy (kR*<<1) VR cross section VR can be 
suppressed or enhanced compared to the quasiclassical cross section VR,QCl. The 
suppression occurs in the BW regime (k|L |<<1). The enhancement can be seen in the 
BW regime, though it reaches its maximum beyond the BW range (at about k|L | 1). 
Eqs.(24) and (26) are valid for Re<<R*<<1/k. If the condition R*<<1/k is not well 
fulfilled, one should go beyond the scattering length approximation, and resort, for 
instance, to the effective range approach [5]. 

4. S-wave inelastic VR scattering for a Morse potential with an arbitrary well  

The suppression factor S0(k) for a non-quasiclassical potential can be found by solving 
the Schroedinger equation for the energy E across the whole potential range with 
subsequent correlation of JWKB asymptotics in the region of free motion and in the 
classically forbidden region. If such a potential is taken to be a linear function of the 
coordinate near the turning point, this procedure yields the standard JWKB result for 
which S0(k)=1 [5]. In our case we consider a Morse potential in the form 

( )[ ] DaRRDRU e −−−−= 2M /)(exp1)(          (28) 

Calculation of the suppression factor for a Morse potential, S0(k)=S0
M(k), allows one to 

see the effect of the potential well in both quasiclassical (large D) and non-
quasiclassical (small D) conditions. Of course, in the limit of high energies (E>>D, 
k >>1) the linear approximation to the Morse potential close to the turning point can be 
used, and the Morse comparison equation goes over to the Airy equation. 
   The solution of the Schroedinger equation for a Morse potential is well known (see 
e.g. [5]), so that the suppression-enhancement amplitude can be calculated using the 
available information on the solution of the respective equation (see, e.g. [17]). Let us 
introduce two dimensionless quantities, the reduced wave vector , associated with the 
incoming wave, and the wave-vector-like quantity D, associated with the potential well 
depth: 

/2 aEµκ = , /2 aDD µκ =           (29) 

The number of bound states N supported by the Morse potential is N=integer( D+1/2)
and the negative bound-state energy levels are 

+−++−= )2/1(
4

1)2/1( n
D

nDE e
en

ωω ,    (30)

µω /2)/1( Dae = , 1,....1,0 −= Nn

The energy of the last bound state is  
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( )2
2

2

1 2/1
2

N
a

E DN −+−=− κ
µ

2/1≥Dκ     (31) 

which identifies the scattering length as 

[ ]N
aL

D −+
=

2/1κ
       (32) 

The suppression-enhancement probability for the VR event with the Morse interaction 
potential reads [6]: 

( ) 2
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The surface plot of the function S0
M( D, ) is shown in Fig.2. It is seen that S0

M( D, ) can 
be lower (suppression) and higher (enhancement) than unity; the latter occurs only when 
cos2( D) 1/2. 

Figure 2. Surface plot of the probability ),(M
0 DS κκ  for the Morse potential.

   The function As ( , D,) defined by Eq.(33) is actually the asymptotic expression of 
| (1/2+ D + i )|2 so that the last factor in r.h.s. of Eq.(33) tends to unity if the motion in 
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the region of the potential well is quasiclassical, 122 >>+κκ D . Thus, the 
quasiclassical limit of S0

M reads: 

)](cos)([sinh2
)2sinh(
22

QClM,
0

D

S
πκπκ

πκ
+

=
     (34) 

This expression coincides with a general expression (9) provided T is identified with the 
transmission probability through the exponential potential step, which corresponds to 
the attractive part of the Morse potential )/exp()(attr aRRU −−∝ , and  is taken as the 
quasiclassical phase integral for the Morse potential: 

)4exp(1)4exp(1 akT ππκ −−=−−=       (35) 

Dπκψ ==Ψ M

If ND πκπψ −+=∆ )2/1(  is small, 1<<∆ψ , it defines the scattering length 

ψπ ∆=′ aL         (36) 

This expression can be obtained from Eqs.(19) by substitution R* 4 . Therefore, the 
expression for the BW-limit of the suppression factor assumes the form: 

a
kLS

N
ND

k
πκ

2

1
,12/1

,0QClM,
0

)( ′
=

>>
<<−+

→       (37) 

that corresponds to the inelastic scattering length 

ML,
2

QClM,

4
)()( p
a

LL
π
′

=′′        (38) 

   Two interesting non-quasiclassical limits of Eq.(33) correspond to purely repulsive 
potential and to the case when the potential well supports a single bound state. 
i) If D=0, the Morse potential becomes a purely repulsive exponential potential 

)/2exp()(rep aRRU −∝ . For this case, Eq.(33) yields:  
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=
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In this case we have a pure suppression of the quasiclassical probability, so that the BW 
limit BWVRP ,  for 4 k <<1  yields the following expression for L :
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M )()( apLL
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      (40) 

where pL,exp is the zero-energy Landau transition probability for the repulsive 
exponential interaction. 
ii) If D is close to ½, the suppression probability behaves as in Eq.(22) but with an 
additional factor /e. In this case, the expression for the BW-limit of the suppression-
enhanced factor assumes the form: 

ea
kLS

D
k

M
2

12/1
,00

)( ′
=

<<−
→

κ
       (41) 

This expression for S0
M corresponds to the following inelastic scattering length: 
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where pL,M  is the zero-energy Landau transition probability for the Morse potential.  
   A comparison of Eqs.(42) and (22) with R*=4  shows that the breakdown of the 
quasiclassical conditions does not dramatically change the relation between the inelastic 
and elastic scattering lengths.  

5. Landau transition probability: application to a Morse potential 

Calculation of the transition probability by the Landau method is based on the analytical 
continuation of classical dynamical variables into the classically forbidden region of the 
potential [5]. Alternatively, the Landau transition probability can be recovered from the 
Fourier components of certain classical quantities, related to the transitions in question 
[10,11]. This allows one to write the Landau VR probability as 

−=
∆+ EE

E

L EdEAP )(1exp τ       (43) 

where )(Eτ is the classical characteristic time for the collision energy E  in the field of 
a given potential. Eq.(43) can be regarded as a generalization of the Ehrenfest theorem 
for a quasiclassical case when the change of the action variable is not small, but the 
probability of this change is small [18]. 
   For the model of a Morse oscillator )()( M EE ττ ≡ , and the Landau transition 
probability depends, beside , D, on one more parameter, E, which is associated with 
the energy transfer E or on the final wave vector :
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22;/2 EE aE ∆∆ +=′∆= κκκµκ      (44) 

The explicit expression for ML,P  reads [10]: 

[ ]),(),(exp),,(ML,
DDD MMAP κκκκκκκ +′−=′ ,    (45) 

where the prefactor A does not depend on , , D, and M( , D) is 

[ ]2)/(1ln)/arctan(2),( DDDDM κκκκκκκκ +−= .    (46) 

   In the low-energy limit, the exponent in Eq. (45) is: 

)/ln(22),(),( ,0 DEDDE
E

DD MM κκκκπκκκκκ
κκ

κ ∆∆
∆→′

→ −+=−′ ,  (47) 

and the Landau probability tends to a constant 

        ( ) )2exp(/),(),,0( 2ML,ML,
DEDEDEDE

DApP κπκκκκκκκκ κ +−=≡→ ∆∆∆∆  (48) 

In the high-energy limit, the exponent in Eq. (45) is: 

κπκκκκκ κκκκ 2),(),( 2
,, EEDDD MM ∆∆>>′ =−′     (49) 

The transition probability from Eq. (45) with the exponent given by Eq.(49) coincides 
with the LT probability.  

6. VR cross section for H2 - He collisions over a wide energy range 

Vibrational relaxation of H2 in collisions with He atom provides an interesting realistic 
example that illustrates low-energy features of the collisional energy transfer. The cross 
sections for the collision  

H2(n=1, j=0)+ He → H2 (n=0, j=0) + He     (50) 

were accurately calculated by Balakrishnan, Forrey and Dalgarno (BFD) [19] for the 
potential surfaces from [20]. The PES used possesses a potential well of about 10cm-1

depth, and this well supports a weakly bound state of binding energy of 0.0016 cm-1.
The energy range covered by calculations extends from the BW to LT limits. In 
addition to VR cross section for this PES, calculations were performed for a modified 
PES in which the attractive interaction was ignored. In this section we compare the 
results for the Morse model with accurate quantum calculations. We first consider the 
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s-wave scattering and then the quasiclassical scattering where a noticeable number of 
partial waves contribute.  

6.1. LOW-ENERGY CROSS SECTION AND THE ISOTOPE EFFECT

At low energies only the first partial cross section contributes to the sum over J, so that  
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In the BW limit, S0
M( , D) should be considered as a linear function of ,

S0
M( , D)=BM( D)  and PM,L can be replaced by its zero-  limit. Referring to Eqs.(33) 

and Eq.(48), we thus get  
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Two liming expressions for B( ) correspond to a pure repulsive potential ( D 0) and a 
potential that supports a single weakly-bound state ( D= D-1/2<<1)  
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6.2. MEDIUM AND HIGH ENERGY CROSS SECTION 

With increase in the collision energy, more and more partial cross sections contribute to 
the total VR cross section, so that one has to calculate the transition probabilities PJ

VR

for J>0. If the suppression-enhancement effects are ignored for J>0, one can use the so-
called effective quantum number approximation [21].This amounts to the following: 

;0),,(),( LVR >′=′ JkkPkkP JJ       (55) 

),(),( L
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where 

2
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22 /)1(;/)1( RJJkkRJJkk JJ +−′=′+−= ,  (56) 

Here R0 is the distance of closest approach for the collision with J=0. This 
approximation is valid when the radius R0 is considerably larger that the length 
parameter of the repulsive interaction. In this way we get: 
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Here ),( 0
** ρκJJ =  is the largest integer for which the radicand in the expression for 

2
0

2 /)1( ρκκ +−= JJJ , with aR /00 =ρ , is positive. If the number of terms that 
contribute to the cross section in Eq.(57) is large, and the kinetic energy substantially 
exceeds both the transferred energy and the potential well depth, the cross section 

VR(E) becomes the LT cross section: 
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The following comments about Eq.(57) will be in order: 
i) Beside three parameters , , D discussed in Sections 4 and 5, the VR cross section 
within our model depends on yet another parameter 0, which controls the contributions 
from higher angular momenta. In the approximation adopted, the tunneling through the 
centrifugal barriers towards the repulsive wall of the potential and the overbarrier 
reflection that prevents reaching this region are ignored. As follows from our recent 
results on the calculation of the capture cross sections at low energies [21], to a good 
approximation these two effects can be accounted for by simply replacing the sum over 

J by an integral, 
==

→
),(

1

),(

1

0
*

0
*

......
ρκρκ J

J

J

J
dJ . However, we will not discuss this modification 

here since the peaks, associated with sudden onset of successive partial contributions to 
the VR cross section in Eq.(55) provide useful bookkeeping of the number of essential 
partial cross sections. This bookkeeping disappears, of course, in the LT limit, Eq.(56). 
ii) The energy dependence of the VR cross section is controlled by parameter , see 
Eq.(29).
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iii) The dependence of the VR cross section on the potential depth is controlled by 
parameter D, see Eq.(29). 
iv) The dependence of the VR cross section on the energy release is controlled by 
parameter E, see Eq.(44). 
     Presumably, these parameters constitute a minimal set for a physically adequate 
model of VR over a wide energy range. 

6.3. COMPARISON OF THE MODEL CROSS SECTION WITH THE ACCURATE 
QUANTUM RESULTS

Since the variation of energy from the BW region to the LT region produces a very 
large change in the cross sections, we will use the log-log representation of GL vs. .
This choice is dictated also by our intent to compare our results with numerical results 
from [19] where the same representation of the VR cross section BFD versus the 
collision energy was used. Since the energy-independent coupling strength factor A is 
not specified in VR,M, the log BFD – log E graph can be superimposed onto the graph 
log VR,M – log  (or vice versa) by a vertical shift and with the proper adjustment of 
the energy scale. The latter is set by the value of E since (E/ E)=( / E)2. After this 
adjustment, the general shape of the curve log VR – log E is determined by the values 
of three parameters: D, E, and 0. Two parameters, D and E, control the s-wave 
cross section. The value of D is very sensitive to the interaction potential and cannot be 
deduced from our model. Therefore, we have determined it from the ratio of elastic 
scattering lengths for H2(v=0,j=0)+4He and H2(v=0,j=0)+3He collisions. In this way we 
find D 0.533. The value of E is related, for given µ and E, to the length parameter 
of the Morse potential. It can, therefore, be estimated from the repulsive portion of the 
interaction potential adopted in the numerical calculations [19]. Once  is determined, it 
sets, through the relation /2 aEE ∆=∆ µκ , the energy scale in the dependence of the 
cross section on the collision energy, or log VR,M – log E plot.
In order to use the general formula given in Eq.(58) for higher energies, one has to 
adopt a value for the collision radius 0. The value of 0 can be expected to be close or 
somewhat less than the equilibrium distance of the H2He complex [22]. From Fig.2. of 
Ref.[20] we find ARe 3.3≈  that is 0 6-7. A slight variation of 0 about this value 
allows one to make the uppermost right points of the two graphs, log VR,M – log E and 
log BFD – log E coincide. The final result of the fitting with parameters 0=6, E=9.5, 

D=0.533 is shown in Fig.3. Note that in this fitting, we have forced coincidence of only 
three points: two at the left side of the figure (one for each curve, with the attraction and 
without it), and one at the right part (where the two curves coalesce). The region across 
the minimum of the cross section was not fitted (for details see [22]). 
   Fig.3 shows a good qualitative agreement between the model and ab initio BFD cross 
sections for the collision in Eq. (51). Here, the upper set of curves represents scattering 
on a potential with a well, and the lower set represents scattering on a purely repulsive 
potential. In both cases the solid lines give the cross sections, Eq.(51), the dashed curves 
give the cross sections without quantum correction (Eq.(51) with S0

M=1) and squares are 
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Figure 3. Comparison of the model (full and dotted lines) and numerical (squares) cross sections 
for VR collisions H2(v=1, j=0)+4He → H2(v=0, j=0)+4He. Lower curves and symbols correspond 
to a pure repulsive interaction, upper to the interaction with the potential well. 

the numerically computed points from Ref. [19].  
   The present model adequately reproduces the VR cross sections and can be used to 
explain the main features of the plots in Fig.3.  
i) The cross sections for both potentials used have minima in the region where the p-
wave scattering sets on. The corresponding energy Em (of about 10-3.3 eV) is marked by 
the small “tips” in both curves. They are due to the approximation used, (Eq.(51)), 
which ignores the tunneling through the centrifugal barrier. This is also the energy, 
below which the s-wave quasiclassical (Landau) cross section and the quantum cross 
section begin to differ. The reason why the two features (the onset of the p-scattering for 
E>Em  and the onset of the quantum effects for E<Em) correspond to the same energy 
E Em can be traced to the fact that the threshold value of the momentum for the p-wave 
scattering, 24.02 0

th ≈= ρκ p , matches the beginning of the quantum suppression (or 
enhancement) for the s-wave scattering. Note that the value of Em 103.3eV cm-1 is of 
the same order of magnitude as is the energy of the cross section minimum for VR in I2
- He collisions (at about 10cm-1) [23]. 
ii) The quantum s-wave scattering cross section for the repulsive potential lies below the 
quasiclassical one; this is consistent with the quantum suppression. The ratio of slopes 
of the linear portions of the cross sections agrees with 1/v (BW) and 1/v2 (quasiclassical) 
predictions. The quantum s-wave scattering cross section for the potential with a well 
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also lies below the quasiclassical one at very low energies (the BW limit), but before it 
reaches this limit it surpasses the quasiclassical cross section. This quantum 
enhancement of the quasiclassical scattering is due to a resonance phenomenon, which 
is associated with the existence of a weakly bound complex H2He. We also see that the 
BW threshold law is valid for energies just below Em while for interaction with 
attraction it is valid at much lower energies, by four orders0 of magnitude, at 
Em<10-6eV. This agrees with the findings for I2 - He collisions calculated for a potential 
surface with an attractive well [23].  
iii) A huge effect of the attraction on the cross section at low energies can be understood 
in terms of “resonance” and “potential” (Landau) contributions to the enhancement ratio 
of the BW cross sections, RBW, for attractive and repulsive interactions. We thus write: 
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where Rres( D) is the ratio of the suppression-enhancement factors for the potential with 
the well and a pure repulsive potential, and Rpot( E, D) is the ratio of the Landau cross 
sections for the same potentials: 
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Plots of the functions Rpot, Rres, RBW vs. D for E=10 are shown in Fig.4. A point on the 
RBW curve corresponds to H2-He collisions on the Morse potential surface. One can see 
that the attractive enhancement of the VR cross section under consideration comes 
roughly evenly from resonance and potential effects. 
iv) The effect of the attraction on the cross section at high collision energies, Dκκ >> ,
can easily be seen when one calculates the ratio of the Landau cross section to the LT 
cross section: 
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One can see that even when the ratio EDD // =κκ  is small (the collision energy is 
high compared to the well depth) the effect of the attraction can be significant since the 
ratio κκ /2

E∆  is large, and the exponent in Eq.(62) can exceed unity. This is illustrated in 
Fig.3 by the divergence of the curves (one for the potential with the attraction, and the 
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other for a pure repulsive potential) with decrease in the collision energy at the right-
hand side of the graph. 

Figure 4.  Attractive enhancement ratio for the BW cross sections with increase of D across the 
first resonance at D =1/2 for E=10. Shown are the resonance contribution Rres, potential 
contribution Rpot and the total enhancement ratio RBW= RresRpot. A point on the RBW  curve 
corresponds to H2-He collisions on the Morse potential surface in the BW limit. 

Finally, consider the isotope effect, which is due to the change of the reduced mass of 
colliding partners (change of mass of an atom A). Let µ  and µ~  be the reduced masses 
in collisions with participation of two isotopes of atom A. Assume for simplicity that 
the mass difference, µµ −~ , is small compared to µ . We thus want to investigate the 

effect of a small parameter µµµδ /)~( −=  on the ratio LL ′′′′~  assuming the Morse 
interaction potential. Referring to Eq.(38), we write:  
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Expanding Dκ~  and Eκ~  through first order in , we have 
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If D is close to ½ and  is negative (atom A~  is lighter than atom A), the first factor in 
the r.h.s. of Eq.(62) can depend on  very strongly. The second factor can noticeably 
depend on  if E>>1.  

We illustrate this result by comparing H2+4He and H2+3He collisions. The 
values of the parameters which are needed for estimation of the ratio of inelastic 
scattering lengths from Eq.(64) are D=0.533, E=9.5, =0.1. In this way we have  
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L32
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L         (65) 

This value is close to 50 that can be inferred from the numerical data points of Fig.2 and 
3 of Ref.[19]. The difference of about 20% between the model estimate and accurate 
result can be presumably blamed for an erroneous long-range behavior of the model 
Morse potential (exponential long-range attraction) compared to the accurate potential 
(van der Waals attraction). Nonetheless, a simple model explains a large difference 
between the ratios of inelastic and elastic scattering lengths in collisions for two 
isotopes of He (50 and 4 respectively). 

7. Conclusion 

We conclude that the qualitative pattern of the energy dependence of the VR cross 
section for collision energies above Em (incipient p-wave scattering) can be 
reconstructed from knowledge of three basic parameters of the atom-molecule 
interaction: the collision radius, the well depth and the steepness of the repulsive part of 
the interaction. At energies below Em, one has to know the value of yet another 
parameter, which is related to the elastic scattering length of collision partners or to the 
position of the real or virtual energy level close to the dissociation threshold of the 
complex. 
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COLLISIONAL ENERGY TRANSFER IN THE GAS PHASE BY CLASSICAL 
TRAJECTORY CALCULATIONS 
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Abstract  Classical trajectory calculations provide useful information about molecular 
collisions in the gas phase. Various energy transfer quantities such as the average 
energy transferred per collision < E>, the lifetime of the collision complex and their 
dependence on temperature, pressure and intermolecular potential can be calculated by 
this method and clues as to the mechanism of collision and energy transfer may come to 
light as a result of these calculations. Examples from our work are provided below for 
energy transfer between Ar and benzene and toluene and between Li+ and C60 under a 
variety of experimental conditions. 

1.  Introduction 

Collisional energy transfer (CET) plays a major role in chemical, photochemical and 
photo physical processes [1]. Binary collisions are an important means by which energy 
is transferred in and out of molecules enabling them to undergo chemical 
transformation. What is less known, is the overall detailed picture of the collisional 
energy transfer process, especially in polyatomic molecule, which is the subject of the 
present paper. Over the years, a large amount of experimental and theoretical 
information on CET has been accumulated by various groups. This work gave a glimpse 
of the various, complicated, aspects that comprise the process of energy transfer in large 
molecules. The early work on CET in polyatomics can be divided into work on highly 
excited molecules and on molecules with low level internal excitation. The latter shed 
light on level-to-level energy transfer. The subject matter of the present paper 
constitutes only theoretical work on CET of highly excited polyatomic molecules. Until 
the 1980’s the theoretical work on CET of large, highly excited, molecules was mostly 
involved in developing empirical models for CET probability density functions that, 
when used in the context of master equations gave average quantities such as average 
energy transferred in a collision, < E>, that could be compared with experiment. 
However, in the mid-eighties, classical trajectory calculations, CTC , were applied to 
CET with great success. Hase, Gilbert, Miller, Schatz, Lendvay, Luther, Barker and 
their coworkers as well as others have all used CTC , and their computations have 
added to our present understanding of CET.  This paper, not being a review, will discuss 
only work done by the authors without meaning to imply a diminution of the seminal 
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work of all those who have contributed to our present knowledge of CET in polyatomic 
molecules. This report summarizes work which is reported in 20 papers and deals with 
various aspects of CET between Ar and toluene and benzene and between C60 and Li+.

2. Theory 

The numerical methods which were used in our work were discussed in detail 
previously [2, 3] and only a general outline will be presented here. The equations of 
motion were integrated by using a modified public domain program Venus [4]. For an 
intermolecular potential we have used a potential calculated by Bludsky, Spirko, 
Herouda, and Hobza [5] (BSHH) who reported ab initio calculations of an Ar-benzene 
cluster and fitted the results to a potential function which is based on pair-wise atom-
atom interactions. This is called the BSHH potential.  

61,;1
76 −=−−= ji

r

C

r
B

r

A
V

ij

ij

ij
ij

ij

ij
ij α (1)

A, B and C are constants, r is the CM relative distance, i indicates a carbon or a 
hydrogen atom and j indicates an argon atom. The parameters for the benzene/Ar 
system can be found in ref. 6. In some cases a Lenard-Jones pair-wise potential was 
used. 

612 −− −= ijijijijij rBrAV  (2) 

The intramolecular potential includes all the normal mode contributions, 
stretching, bending, wagging and torsion. The values of the parameters for the potential 
for benzene were obtained from the modified valence force field calculations by 
Draeger [7] and are given also in references 2 and 3. The initial translational and 
rotational energies were chosen from the appropriate thermal energy distributions and 
the initial vibrational energies were the average thermal energies at the temperatures of 
the calculations or, when so desired, chosen value. The energy was distributed 
statistically among all the normal modes of the molecule.  The initial impact parameter 
(b) was chosen randomly from values between 0 and its maximum value bm. The 
maximum value of the impact parameter bm was determined separately [2, 3]. The 
number of trajectories used was chosen to give good statistics. In some cases it was over 
100000 for a given set of initial conditions.  

One of the major problems in classical calculations is how to define the 
beginning and the end of an effective collision since trajectories of events that occur at 
very large distances do not contribute to CET. To separate effective collisions from 
long-distance non-effective events we have developed a method which we call Forward 
and Backward Sensing (FOBS) [2, 3]. In this method, events that affect the internal 
energy of the polyatomic molecule  even temporarily are defined as collisions. Each 
trajectory is scanned forward and the first instance that a change ε in the internal energy 
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of the hot molecule in a time period t occurred is noted,. Then, the trajectory is 
scanned backward and again, when a change ε is detected in a time period t, the time 
is noted again. These two points in the trajectory time bracket the collisional event. The 
value of the gradient ε/ t was optimized after a careful study in which ε was changed 
systematically and it was verified that all effective collisions are counted and that a 
small variation in ε did not change the initial time or duration of the collision.   

Average quantities <x> such as < E> or average lifetime of a collision, <τ> were 
calculated from the following formula: 

.1
N

N

i ix
x =>=<  (3) 

where xi is the individual quantity in trajectory i and N is the total number of FOBS 
effective collisions.  

Termolecular collision were also studied. Such collisions may be regarded as a 
sequence of two binary collisions. In the first, a single Ar atom collides with a benzene 
molecule and in the second the binary collision complex collides with an additional Ar 
atom. The beginning and the end of each collision was determined by FOBS. The 
starting distance between the centers of mass of the binary complex, BAr and the 
second atom Ar’, Rin, of the second collision is chosen randomly from the free paths 
probability density function 

λλ /)/exp()( inin RRP −= (4)

between the values of the collision radius, rc, and infinity. λ is the mean free path 
determined by the pressure of the system. The number of termolecular trajectories was 
weighted by the probability density function 
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The combined distance-volume probability density distribution function has the general 
form 

CRRP inin /)/exp(2 λ−=  (6) 

where C is a normalization factor. This type of a distribution ensures that the 
termolecular trajectories that are initiated at large distances will not have an undue 
effect on energy transfer quantities. It should be noted that Rin includes the excluded 
volume of the binary collision complex. Taking just the center-of-mass distances will 
bias the results, especially at high pressure where the mean free path is short. 

There are many details that relate to individual subjects. For details of the 
calculation for Ar colliding with benzene and toluene and for Li+ colliding with C60 the 
interested reader may consult references cited below. 
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2.1.  MECHANISM OF ENERGY TRANSFER 

When CET occurs between an atom and an excited polyatom the collision partners 
approach each other and at a certain center-of-mass, CM, or minimal distance, MD, 
from the closest atom of the polyatom, FOBS become operational. The colliding pair 
forms or does not form a collision complex depending on how the latter is defined. At 
300K the Ar-toluene collision complex lifetime is 0.68 ps while at 1500K it is 0.23 ps 
[2]. These timescales are long enough for the excited molecule to execute few 
vibrations even of low lying internal modes but they are not long enough for rotations to 
take place. They also hardly affect the toluene-Ar van der Waals modes. This tells us 
right away that, at least in the present system, sequential pumping and un-pumping by 
the atom is unrealistic. E for up and down collisions has a narrow temporal 
distribution [2] with the averages reported above. However, the averages are misleading 
from mechanistic point of view. The actual energy transfer occurs on a much shorter 
timescale in a kick that may last around 50 fs. That is to say, the average complex 
lifetime is not related to the actual time of the energy transfer process.  

The collision lifetime of benzene with Ar increases as the relative kinetic energy 
of the colliding partners decreases [8]. The long lifetimes of the collision complex at 
low kinetic energies enable stabilizing termolecular collisions to occur and this fact 
explains the formation of clusters in low-temperature molecular beams.  

The minimal initial separation or MD at the moment of the collision as defined 
by FOBS, does not change much with temperature being 0.299 nm at 300K and 0.308 
nm at 1500 K [3].  The distribution of E with MD is narrow and there is no correlation 
between the collision lifetime and the MD [8]. The MD varies during the course of the 
collision as the atom moves around the molecule and the latter executes its internal 
vibrations. Even a greater insight on the detailed mechanism of CET can be obtained by 
studying the relative CM velocities of the colliding pair [9]. Few types of collisions 
were observed. In collisions lasting less than 300 fs the relative velocities as a function 
of time are straight lines [9]. These impulsive Ar-toluene collisions which do not form a 
collision complex comprise 62% of all inelastic collisions. To the second group of 
collisions belong those with duration greater than 300 fs and less than the chracteristic 
time for intramolecular vibrational redistribution, (IVR),  ~600 fs [10]. In these 
chattering collisions the relative CM velocity is close to zero while the atom interact 
with various parts of the molecule. The van der Waals modes have a much slower 
period and therefore chattering does not lead to significant energy transfer between the 
atom and the molecule. Rather, the sort of collision which results in large energy 
transfer may be characterized as a sudden, impulsive kick. This type of collisions 
amount to over 30% of all inelastic collisions. The balance of the inelastic collisions, 
those of longer duration, do not contribute much to the overall value of < E>.

By now we have a fairly detailed understanding of the mechanism of CET 
between highly excited molecules and a bath atom. We turn next to understanding of the 
relative contribution of rotation and vibration to the CET process. We performed  
clasical trajectory calculations of the average energy transferred per collision, <∆E>,
between an exited benzene molecule and an argon atom [11] in which three cases were 
investigated. a) collisions with unconstrained “normal” initial conditions. b) collisions 
where the rotations of the benzene molecule are initially “frozen”. c) collisions where 
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the out-of-plane vibrations of the benzene molecule are initially “frozen”. The 
distributions of <∆E> vs. collision durations and the values of <∆E> for collisions with 
frozen degrees of freedom are different than those obtained in normal collisions. 
Rotations were found to have the largest effect on CET. Next in efficiency are the out-
of-plane vibrations. This corroborates quantum mechanical calculations which show 
that out-of-plane motions are particularly efficient in energy transfer compared with in-
plane vibrations, for example [12]. It was found that in rotational CET and in 
vibrational CET, the C-H group is the vehicle for CET and that CET does not take place 
when the Ar hits the center of the benzene ring. Measurements of C-Ar and H-Ar van 
der Waals distances in the energy transferring moiety show that C is the prominent atom 
in the energy transfer mechanism [13]. 

As mentioned above, rotations play a major role in CET. Most of the CET occurs 
via a T/R mechanism in which the translational energy goes into rotation.  This is 
confirmed in a detailed study of single mode excitation [14] where each mode of the 
benzene was pumped separately. It was found that the values of < Er>all are a factor of 
~3-5 larger than the values of < Ev>d. The conclusion that rotations are the major 
contributors to the values of < E>all in all specific-modes excitation energies is 
supported by the work of Rosenblum et al. [15] who found that in SO2 rare gas 
collisions, rotations are the major energy transferring mode.  

By now we know quite a lot about the mechanism of energy transfer, but we can 
take it even one step further. We know that out-of-plane vibrations are more efficient 
than the in-plane in transferring energy but are they all equally efficient, or is there a 
hierarchy of efficiencies among them? Using single mode excitation, we found that 
there are two factors that affect energy transfer: the frequency and the type of molecular 
motion that is associated with the mode [14]. We found that the lowest frequency, out of 
plane torsion mode of the benzene molecule, is the gateway mode for energy transfer. 
When the same frequency is assigned also to the in plane mode, the out of plane mode 
is still more efficient. Only when the frequencies of the out of plane and the in plane 
modes are switched does the in plane mode becomes the gateway mode for energy 
transfer. Therefore, the lowest frequency is always the gateway mode and given two 
modes of identical frequencies the molecular motions determine the efficiency of 
energy transfer. These results agree with quantum calculations by Clary et al. [12].  

2.2. SUPERCOLLISIONS 

Supercollisions are collisions which transfer an inordinate amount of energy in a single 
event. They were found experimentally [16-19] and in trajectory calculations [2, 3, 9, 
11, 13, 20-24] and transfer as much as 3000 cm-1 in a single collision between an Ar 
atom and an excited toluene or benzene or as much as 10000 cm-1 in a collision between 
an excited CS2 and a cold CO. There seems to be a probability of 1 in a 800 for a 3000 
cm-1 transfer to occur [2, 3]. These supercollisions, by virtue of the large value of ∆E
which is transferred, affect the values of the rate coefficient, collisional efficiency and 
the average energy transferred per collision <∆E> in a very prominent way. One 
supercollision (SC) of 10 000 cm-1 in 1000 collisions changes the value of the rate 
coefficient by a factor of 9 in the low pressure region. Five SC of the same magnitude in 
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1000 collisions change the value of the rate coefficient by a factor of 20 [23]. Similar 
results have been found for the collisional efficiency and the values of <∆E> [23].

All the SC trajectories indicate that the energy transfer event takes place when 
the atom approaches perpendicularly to the plane of the molecule. There are two ways 
in which this particular configuration affects a SC. In one the atom receives a sudden 
kick from an out-of-plane vibration of the molecule when it is in phase with the out-of-
plane motion. The other way is that the plane of a fast rotating molecule hits in phase 
the incoming atom. This tennis-ball effect, which appears in both modes of energy 
transfer, is probably responsible for the large energy transfer quantities exchanged in 
supercollisions. However, these two conditions, perpendicularity and phase, are not 
sufficient to affect large vibrational energy transfers.  A third very important condition 
must be fulfilled as well. Large quantities of internal energy must be present in a moiety 
from which energy is transferred. The out of plane motions have low frequencies and 
they must be highly excited to affect large energy transfers. The probability of having 
large values of excitation energy in a small moiety in a highly excited benzene molecule 
is actually rather high [25], and it does not appear to be a bottleneck in the CET process. 
When the three conditions are fulfilled simultaneously, a supercollision may occur.  

2.3. GLOBAL POTENTIAL 

There are a number of ways of using an intermolecular potential in trajectory 
calculations. One is to use a pairwise potential, the other is to calculate it on-the-fly as 
the trajectory progresses. There is a basic difference between the pairwise potential 
between the individual atoms in the system and the overall, global potential which is the 
sum of the individual interactions. We have calculated [26-28] an average, or global, 
dynamic potential by averaging many single-trajectory potentials. It represents a 
quantity that is based on averaging tens of thousand of trajectories with all possible 
orientations and impact parameters chosen by Monte Carlo sampling of impact 
parameters and Euler’s angles. It is obtained by binning the potential energy as a 
function of the CM distance for all the trajectories and averaging it by dividing the sum 
in each bin by the number of times the atom traverses a given CM distance that is 
represented by a particular bin. Global potentials are especially useful for non-spherical 
molecules like benzene [26, 28]. The dynamic global potential is a function of the 
temperature and explanations, which take into consideration the anisotropic potential of 
the benzene molecule and the effects of the vibrational, rotational, and translational 
energies on the dynamic global potential are provided in reference 28. It is to be noted 
that Lennard-Jones or ab initio pairwise potentials yield Buckingham-type global 
potentials.

2.4. VIRIAL COEFFICIENTS 

Using trajectory calculations with an ab initio pair-wise potential or an assumed 
Lennard-Jones pair-wise potential, we can calculate the intermolecular dynamic global 
potential which can be used to calculate experimentally obtained quantities such as a 
second virial coefficient. From classical statistical mechanics one obtains the following, 
well known, equation  for the second virial coefficient:  
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where V(r) is the dynamic intermolecular global potential and r is the separation 
between the centers of mass of the colliding pair. The agreement between calculated and 
experimental quantities is a measure of the quality of the intermolecular potential that is 
used in such calculations. The method was demonstrated for benzene-Ar collisions [28]. 
An ab initio and a Lennard-Jones pair-wise potentials were used, and calculations of the 
dynamic global potential and the second virial coefficient were performed at various 
temperatures. Comparison with publish results shows large discrepancies between 
classical calculations with isotropic potentials and the present work. The method applies 
to neat gases as well as to binary gas mixtures. 

2.5. INTERMOLECULAR ENERGY TRANSFER PROBABILITY DENSITY 
FUNCTION

One of the most important and elusive quantities in molecular dynamics calculations of 
reacting system is the intermolecular energy transfer probability density function 
P(E’,E) which is used in master equation calculations of reaction rate coefficients [1]. 

We have used trajectory calculations to calculate this quantity [26]. Our method 
distinguishes between effective trajectories that contribute to P(E’,E) and those with 
very large impact parameter which do not. The P(E’,E) thus found, obeys conservation 
of probability and detailed balance and is independent of the impact parameter. The 
method is demonstrated for benzene-Ar collisions at various temperatures and internal 
energies. With this method, it is possible to combine ab initio inter and intramolecular 
potentials with trajectory calculations, obtain P(E’,E) and use that in master equation 
calculations to obtain rate coefficients and population distributions without resorting to 
any a priori assumptions and energy transfer models.   

2.6. DYNAMICS AND ENERGY RELEASE IN BENZENE/AR-CLUSTER 
DISSOCIATION 

The breakdown of a dimer, or a binary cluster, is referred to, mistakenly, as half-
collision because the partners carry away energy thus deactivating the excited molecule. 
It differs from an actual collision because of the absence of relative translational energy 
and rotations of the monomers. We have studied the energy disposal distributions and 
lifetimes of Ar-benzene clusters, ABC [6,29]. Four intermolecular potentials, Lennard-
Jones, ab initio, and two Buckingham-type potentials, were used in the calculations. 
The Ar atom was placed in one of the five minima of the potential surface at 0 K. The 
benzene monomer in ABC at 0 K was excited to various internal energies, and internal 
energy loss of the monomer following dissociation was calculated. The average energy 
removed, <∆E>, depends on the depth of the potential well and on the initial structure of 
the cluster. The highest value was obtained when the cluster was formed at the deepest 
well, in which the Ar atom is above the center of the ring. Regardless of the initial 
structure, it was found that the atom migrated from well to well including the deepest, 
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and dissociation occurred from a structure different from the initial one. No correlation 
was found between the energy removed and the cluster lifetime, i. e. the dissociation 
process is history independent. Rotations and out-of-plane vibrations play a major role 
in the dissociation process. Except for the lowest values of ∆E, the energy disposal 
probability density function, P(E’,E), is exponential in ∆E. The cluster lifetime 
distributions depend on the potential, and can be fit by multi-exponential functions. 
Within a given potential, the shallower the well the narrower the temporal distribution, 
and the higher the internal energy of ABC the shorter the lifetime. Application of 
RRKM Theory to cluster modes, which contain an amount of energy ∆E, yields 
lifetimes with values similar to those obtained directly from trajectory calculations. A 
comparison between P(E’,E), <∆E>, and lifetimes obtained in cluster-dissociation and 
gas-phase collisions for identical inter- and intramolecular potentials show that energy 
transfer quantities and lifetimes are larger in clusters. On the other hand, the mechanism 
of energy transfer, and the contribution to it of rotations and out-of-plane vibrations are 
found to be similar in both systems. 

2.7.  INTRAMOLECULAR ENERGY REDISTRIBUTION IN C60 FOLLOWING
HIGH-ENERGY COLLISIONS 

It is interesting to consider energy flow in a large polyatom following initial impact by a 
small, energetic collider. We have addressed this issue by investigating high energy 
collisions between a C60 molecule and a Li+ ion [17, 30].  When an inelastic collision 
occurs, the sudden internal excitation of the C60 sets in motion an intramolecular 
dynamics that ends up in the molecule being ergodic. The non mode-specific excitation 
of a moiety in the molecule by a collision involves a number of internal modes that in 
turn are coupled to additional modes and it is of interest to determine the rate of IVR for 
such a collisional event. We have monitored specific collisional events where the Li+
hits the molecule at pre-specified locations: a five-member ring, a double bond, a single 
bond, and a carbon atom. The criteria used to follow the temporal evolution of the 
excitation in the molecule are bond lengthening and energy contents in the stretchings 
and bendings at various points in the molecule. For example, the IVR dynamics of a 5 
member ring excitation was followed by observing the average lengths of the 5 bonds in 
the ring being impacted (front), of the 5 bonds in the ring directly opposite to the front 
ring at the back of the molecule (back), and of the 5 bonds in the side rings (side) as a 
function of time. In addition, the average energies in the 5 bonds of the rings were 
determined as a function of time. 
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Figure 1.  A schematic drawing of a C60 molecule used in conjunction with 
studies of IVR. Front indicates the location of the impact of the Li+ ion. Back 
indicates the ring opposite to the location of the front ring and Side indicates the 
side ring depicted in the drawing. 

As an example, a collision of C60 with Li+ with relative translational energy of 15 eV 
deposits 13.7 eV in a 5 member ring of a C60 at 613 K. The initial excitation is of the 
stretches of the C-C bonds in the ring. This manifests itself in the lengthening of these 
bonds while excitation of the bends takes place much more slowly, i.e. on a time scale 
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of 600 fs. Excitation of the local stretches of the back ring begins after about 67 fs. The 
bends follow with a longer time delay. There is “beating”, excitation exchange, between 
back and front rings that slowly decays to a steady state. While the back and front rings 
are “communicating” with each other, the stretches in the side rings are hardly affected. 
Their excitation is modest with little fluctuations and beatings. The bending modes, on 
the other hand, are excited relatively soon, only 70 fs after the stretches in the ring are 
first excited. This is in contrast to the situation in the front and back rings where the 
bends are relatively passive in the initial stage of the energy exchange.  

The initial rate of IVR is extremely fast. Only 67 fs after the initial excitation 
of the front ring, energy appears in the back ring. This does not mean, of course, that the 
energy randomizes on this time scale, but it indicates that local clustering of energy in a 
molecule for an extended period of time is impossible. The methode of fast Fourier 
Transforms was used to identified the modes that participated in the IVR. Only four 
normal modes, out of the available 174 modes, were excited and participated in the 
initial phase of IVR. Even though it took 60 fs for the excitation to move from the front 
to the back of the molecule, total relaxation was obtained however, only after few ps.  

2.8.  TERMOLECULAR COLLISIONS 

Three-body collisions play a major role in many atmospheric and combustion reactions. 
A much cited explanation for third-body-assisted bimolecular reactions in the gas phase 
is the following sequence of two binary collisions. 

A + B  AB* 
AB* + M  AB + M 

The first step is formation of a long-lived excited complex and the second is 
stabilization by energy transfer. A modification of this mechanism is the Chaperon 
mechanism, 

A + M  AM 
B + AM  AB + M 

The chaperon M forms a weak complex with A in the first step and stabilizes the 
product by removing energy in the second step. The relative importance of the two 
mechanisms depends on the details of the potential energy surface of the system, 
namely, whether the reactants are radicals or polar and whether M is a noble gas atom 
or a polyatom. These types of reactions are of current theoretical and experimental 
interest.

We have studied termolecular collisions between a benzene molecule and two 
Ar atoms as a function of pressure, temperature and intermolecular potential without 
presupposing a given mechanism but, instead, letting the calculations dictate the final 
results [31]. The results show that termolecular collisions form termolecular complexes 
and occur by three mechanisms: a) the Chaperon mechanism, in which the first Ar in is 
the first Ar out of the termolecular complex, is the dominant one at high pressures. Two 
thirds of all termolecular collisions go by this mechanism. b) The Energy Transfer 
mechanism, in which the first Ar in is the last Ar out of the termolecular complex, 
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comprises about a quarter of all termolecular collisions at high pressures. c) The 
concerted channel, in which both argon atoms depart from the benzene simultaneously 
and does not lead to products in reactive systems, comprises about 10% of all 
termolecular collisions. We have evaluated and reported energy transfer quantities and 
collision complex lifetimes and their dependence on inter and intramolecular harmonic 
and anharmonic potentials, temperature, pressure, and internal energy of the benzene 
molecule. It was found that: a) The value of energy transfer quantities increase with 
internal energy, temperature and the well depth of the intermolecular potential. b) 
Termolecular collision complex lifetime increases with increase in internal energy, 
decreases with temperature, and increases with increase in the well depth of the 
intermolecular potential and depends in a very weak way on pressure. c) Anharmonic 
coupling does not significantly change energy transfer quantities, which were obtained 
by harmonic potential. d) Lowering the temperature increases the termolecular 
collision-complex lifetime because it reduces the translational/rotational energies. For 
that reason, it decreases the energy transfer quantities. Even though at first glance 
trajectory calculations of termolecular collisions seem a simple extension of 
bimolecular collisions this is not the case at all.  The density of the gas is a major factor 
here while in binary collisions it does not enter at all. This inflicts major computational 
difficulties and use of proper probability density functions for random gas is required. 

3. Conclusion  

Trajectory calculations together with ab initio inter and intramolecular potential are 
efficient and productive in producing detailed information on the mechanism of binary 
and termolecular collisions and provide numerical values of collisional energy transfer 
quantities such as the average energy transferred in a collision, the average lifetime of 
binary and ternary collision complex, the energy transfer probability density function, 
supercollisions and the second virial coefficient.   
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MANIPULATION OF ATOMS AND MOLECULES WITH LASER
RADIATION AND EXTERNAL FIELDS
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Department of Physics, University of Latvia. 19 Rainis boulevard,
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Abstract. The paper provides analysis of a process, when a laser radiation ab-
sorption of a specific polarization creates a specific spatial distribution of molecular
bonds and angular momenta of small molecules. It is discussed how an external
fields electric or magnetic can influence this distribution. Some practical ex-
amples involving optical polarization of molecules in magnetic and electric fields
are presented. '

1. Introduction

Laser radiation has proved to be an efficient tool to control the shape of wave
functions. The ability to control the shape of a quantum state may lead to methods
for bond-selective chemistry and novel quantum technologies such as quantum
computing. The classical coherence of laser light has been used to guide quantum
systems into desired target states through interfering pathways. These experiments
allow to control properties of the target state such as light absorption, fluorescence,
angular momentum or molecular bond spatial orientation etc.

Probably coherent effects in atomic excitation with light were studied first by
Wilhclm Hanlc. The very first publication about the effect, which is now called
Hanlc effect, appeared in Zeitschrift fur Physik as early as in 1924 [1]. In the
paper it was shown that the resonance fluorescence of Hg excited with linear
polarized light is depolarized by an external magnetic field. That publication docs
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not provide solely the measurements of this depolarization. It also shows that the
plane of polarization of the fluorescence is rotated by the external magnetic field.
To analyze this effect W. Hanle used a model of decaying linear oscillators that
precess in the magnetic held with an angular velocity depending on the magnetic
field strength. In this first paper the quantum theoretical importance of the effect
was already discussed.

During the following years, efforts to provide a consistent interpretation of the
effect played an important role in the development of quantum theory. The essence
of Hanle effect, as we understand it today, is the creation of low frequency coher-
ences between magnetic Zeeman sublevels of an atomic state and the destruction
of these coherences by lifting of the magnetic sublevel degeneracy by an applied
external magnetic held. Those Zeeman coherences are associated with spatial po-
larization (orientation or alignment) of angular momenta of atoms or molecules.
To this day Hanle effect still is an effective tool to study atomic [2] and molecular
structure [3].

If the optical field that excites atoms or molecules is strong enough, it can
create Zeeman coherences not only in the excited state of atoms or molecules, but
also in the ground state. In a slightly different context this effect for the first time
was studied as an optical pumping of atomic states.

As early as in 1949 Kastler [4] draws attention to the remarkable properties of
the interaction of resonance light with atoms. Kastler points out that the absorp-
tion and scattering of resonance light could lead to large population imbalances
along with atomic excited state also in atomic ground state. Ground state optical
pumping soon was observed experimentally by BrosseL Kastler and Winter [5] and
by Hawkins and Dickc [6].

In the absence of the external fields, the effect of optical pumping can easily
be analyzed without using the concept of atomic coherences, but if one is will-
ing to consider the influence of the external fields on optically pumped atoms or
molecules then the idea about Zeeman coherences in the ground state of atoms or
molecules becomes vital. In this case, we arc speaking about creation of dark states
or coherent population trapping. This effect was first directly observed in 1976 in
the interaction of sodium atoms with a laser field [7]. In the case of coherent popu-
lation trapping the destructive quantum interference between different excitation
pathways causes the trapping of population in a coherent superposition of ground
state sublevels. Once established, such a superposition (a dark state) [8] is immune
against further radiative interaction. As a result, a fluorescence from an ensemble
of atoms decreases, while the intensity of the transmitted light increases. An ex-
ternal magnetic field B applied perpendicularly to the light polarization vector E
destroys the coherence between ground state sublevels and restores the absorption
and fluorescence of the ensemble of atoms.

To describe all phenomena related to the creation and evolution of coherences
created in an ensemble of atoms or molecules, one can deal with probability am-
plitudes for different quantum states involved in the process of light — matter
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interaction. Nevertheless, it is a rather complicated business to follow all the am-
plitudes and, what is most important, all the phase relations between the states
involved in the process. It is much more convenient to describe an ensemble of par-
ticles by means of quantum density matrix. The application of quantum density
matrix for the description of atomic processes was pioneered by U. Fano (see, for
example [9]). Currently this approach is recognized as very fruitful and is used in
various contexts. In a standard form the interaction of laser radiation with gaseous
atoms or molecules is described by means of the Liouville or optical Bloch equation
for the quantum density matrix [8]. In the case of optical Bloch equations the use
of monochromatic, intense optical field is assumed.

At the same time very often the real optical field interacting with atoms has
rather broad spectral profile, width of which is broader or comparable with the
inhomogeneous width of the atomic transition. In this case, a broad spectral line
approximation for quantum density matrix approach has proved to be very reward-
ing. This approximation was introduced in the 1960s by C. Cohen-Taimoudji for
excitation of atoms with ordinary light sources [10]. This was an era before lasers.
Later on it was adjusted for application for excitation of atoms with multimode
lasers [11] and for excitation of molecules in the case of large angular momentum
states [3. 12].

It is demonstrated in different occasions that the quantum density matrix so-
lutions for atomic or molecular states can be connected to a form of created wave
function and spatial distribution of atomic angular momentum [13, 14]. This ap-
proach proved to be especially fruitful in the case of molecules. For example, for
diatomic molecules that typically possess states with very large angular momen-
tum quantum numbers J oc 100, the spatial orientation of this angular momentum
with respect to a chosen direction of quantization axis varies almost continuously.
As a result, the transition from the quantum density matrix solution to the spatial
distribution of angular momentum and molecular axes seems to allow to have a
very clear insight into the processes taking place during the interaction of molec-
ular ensemble with the optical fields [3, 15]. This method allows one to prepare
molecules in a desired state of their orientation in a laboratory frame as well.
It also allows one to study different stereoscopic or spatial effects of molecular
interactions and interaction of molecule with the laser radiation.

2. Angular momentum polarization by laser radiation
2.1. VECTOR MODEL

The main purpose of this vector model treatment of light absorption in molecules is
to provide a simple visual model for the absorption of light by diatomic molecules
in which the geometrical implications of light polarization and molecular spatial
orientation may be made appearent.

Let us start with the following picture of laser light interacting with diatomic
molecule. We have a rotating diatomic molecule with a large total angular momen-
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turn J. It is largely created by molecular rotation, which contributes an angular
momentum N as a main part of J. Additionally, it is created also from an elec-
tronic angular momentum L, and, more precisely, from its projection A on an
internuclear axis of the molecule. Due to the axial symmetry of the internal fields
in the molecule this is a quantity, which is conserved in a molecular frame (see
Fig. 1).

N

Figure 1. The main angular momentum components in a diatomic molecule.

If we ask a simple question what is changing, if such a molecule absorbs
radiation in an electronic transition? The answer is obvious. Light can change an
electron motion in the molecule and it means that electronic angular momentum
in molecule and along with it the projection of this angular momentum on inter-
nuclear axis will be changed. In molecular spectroscopy one can distinguish two
different types of transitions between electronic states of diatomic molecule. One
is a perpendicular transition in which A is changed by ±1 and another one is a
parallel transition when A remains constant. For example E <—> E or II <—> II
arc parallel molecular transitions, but E <—> II is a perpendicular transition. The
notation of the transition as being parallel or perpendicular is coming from the
vector model and an analysis of the behavior of transition dipolc momentum dur-
ing the transition in this model. For the parallel transition this dipole moment
oscillates along the internuclear axis, wrhile in the case of perpendicular transition
it rotates in a plane perpendicular to the internuclear axis. It is obvious, how this
behavior of the transition dipole moment is coming into existence. If, for example,
wre have a E —> II absorption, then as a part of the transition probability wre will
need to calculate a dipole transition matrix clement

= l |d|J"A = (1)

where d denotes transition dipole operator and J' and J" denote the angular mo-
mentum quantum numbers of an excited and ground state respectively. As wre see,
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during this transition projection of an angular momentum J on the intranuclear
axis is increased by 1. This can be provided only by the dipole moment compo-
nent d^ol which in an angular momentum vector model can be associated with
a rotation of the transition dipole momentum in a counterclockwise direction in
a plane perpendicular to the quantization axis with a frequency ui [13], in this
particular case - internuclear axis (see Fig. 2 a). In a similar way the behavior of
the transition dipole momentum of molecule during the parallel type of transition,
for example S <—> £ transition

CO

a
Figure 2. Perpendicular (a) and parallel (b) type of molecular transition.

V = 0) (2)

in a straightforward way can be associated with an oscillation with a frequency
ui of a transition dipole momentum along the internuclear axis (see Fig. 2 b).
Unfortunately, this picture alone is not sufficient to understand what will be the
spatial distribution of molecular axes or angular momentum of molecules after the
molecules absorb the polarized light with a fixed polarization in the laboratory
frame. The transition dipole. which follow its own motion with frequency ui, si-
multaneously rotates together with the molecule with a frequency it. In order to
understand what will be the angular momentum or molecular axis spatial distri-
bution in the laboratory frame when a molecule absorbs polarized light, one needs
to decompose the composite motion of the transition dipole momentum into com-
ponents fixed in the laboratory frame. Most suitable for this purpose are the cyclic
components of the vector. The unit vectors of this reference frame can be written
as [3, 16, 17]

e + i = - l 2(ex + iey), (3)
(4)
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e_i = l / v ^ ( e x - i € (5)

These vectors can easily represent the linear oscillations along the z axis (eo) arid a
circular motion in the clockwise (e_i), as well as counterclockwise (e+i) direction
in the xy plane [13]. In these coordinates a transition, which corresponds to the
transition angular momenta component in a laboratory frame d+1. increases the
total angular momentum J of the molecule by 1. This is a so-called Ft, type of the
molecular transition and it is associated with the rotation of transition dipole mo-
mentum in a system of coordinates which is fixed to the total angular momentum
of molecule in a counterclockwise direction — in a direction that coincides with
a direction of the molecular rotation. The transition dipole momentum rotation
frequency in this case is ui + ft. The transition, which corresponds to the transition
dipole momenta d~] component, decreases the angular momentum of the molecule
by 1. This is a so-called P type of molecular transition and it is associated with
the rotation of the transition dipole momentum in a clockwise direction — in a
direction which is opposite to the direction of molecular rotation. The transition
dipole momentum rotation frequency in this case is UJ — il. As far as there is a
transition dipole momentum component in the plane perpendicular to the total
angular momentum of the molecule for both cases of molecular transition - parallel
as well as perpendicular both transition types (P and R) exist for both parallel
and perpendicular molecular transition [3, 18]. Additionally, for the perpendicular
type of molecular transition there is a component of transition dipole momentum
in a direction perpendicular to the molecular axis. This component of transition
dipole can be associated with linear oscillations along the total angular momentum
of the molecule. Frequency of these oscillations is ui. This is a so-called Q type of
the molecular transition [3, 18]. All three types of molecular transition are shown
in Fig. 3.

Figure 3. Spatial orientation of transition dipole moment for P , Q and R types of
molecular transitions.
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This vector model of the transition dipolo moment behavior provides a very
simple and straightforward way to analyze the kind of spatial distribution of angu-
lar momenta or molecular axis that will be created by the absorption of the light
of a definite polarization. For example, let us assume that we have light polarized
along the z axis and the frequency of the light is equal to the frequency at which
the transition dipole oscillates — ui. This light is absorbed by the molecules under-
going Q type transition (transition dipole moment parallel to angular moment). As
far as the classical probability to absorb light by a linear dipole is proportional to
cos2 9. where angle 0 is an angle between transition dipole moment and an electric
vector of the light (see Fig. 4a), it is obvious that in this vector model the spatial
distribution pci(8.tp) of the angular momentum of molecules will be represented
by the dumb bell shape probability density function pci(8.tp) ~ cos2 9, (see Fig.
5a).

Let us now consider the absorption of circularly polarized light. We will describe
the handedness of the light in accordance with the definition accepted in optics
[19]. It means that if we are looking at the light beam, which is approaching us,
and in this beam the electric field vector E rotates from left to right (clockwise
direction) then we will call this light a right-polarized light, but if the electric
field vector rotates from right to left (counterclockwise direction) then we will
call this light a left-polarized light. Now, for example, a left-polarized light is
propagating along the z axis. Its frequency coincides with the frequency u — Q
of the P type transition in a particular molecule (see Fig. 46). According to the
figure, if the angular momentum of the molecule is in the positive direction of the
z axis, then the transition dipole momentum and the electric field vector of the
light rotate in the opposite direction and the molecule is not able to absorb the
light. On the contrary, if the angular momentum of the molecules is pointed in the
negative direction of the z axis, then the transition dipole moment of the molecule
and the light electric field rotate in the same direction with the same angular
frequency. This means that such a molecule can absorb the light efficiently. If wre
arc putting the analysis we performed in quantitative terms, then it means that
the probability of the molecule to absorb left-hand circularly polarized light that
travels in positive direction of z axis in case of P type of molecular transition is
proportional to pc[(9,ip) ~ (1 — cos#)2/4, sec, Fig. 56.

Such type of analysis in each particular case of light polarization and type of
molecular transition allows to obtain a simple and comprehensive picture, which
shows, what kind of angular momentum distribution we can expect if the ensemble
of molecules absorbs the light with a specific polarization.

2.2. LIOUVILLE (OPTICAL BLOCH) EQUATIONS

Of course, a vector model described above has strong limitations. It can be ap-
plied only in the case of large angular momentum quantum number values. To
have a precise quantum mechanical description of light interaction with atoms and
molecules, one should use a quantum mechanical description. Usage of monochro-
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a
Figure 4- n absorption of lineal polarized light by a Q typo of molecular transition
and b of the left hand circular polarized light by a P typo of molecular transition.

matic. intense and continuously tunable radiation sources permits a very precise
control of atomic and molecular states. To describe this interaction for intense
laser radiation, one can use an optical Bloch equation [8. 20]

(6)

where p(t) is a density matrix describing population of the levels and coherences
created in a system. H is a Hamilton operator, which describes atom or molecule
and its interaction with the laser radiation. Finally. Y is the relaxation matrix,
which phenomenologically describes all the relaxation processes in a system. Usu-
ally this system of equations is solved in the rotating wave approximation, which
eliminates fast oscillations with a frequency of the order of optical transition fre-
quency for the density matrix elements.

For example, in the simplest possible case of two non-degenerated level system
interacting with laser radiation, we have the following Liouvillc equations

Pn = Fi - F ipn + Y21P22 + 2

Pl2 =

P22 = - (r2 + F2i) P22 - -A

(7)

(9)

where Y'21 is a spontaneous emission rate from level 2 to level 1 and F; is an
additional loss rate from level i, i = 1,2. Excitation is parameterized by a Rabi
frequency Q — d^S/h, where di2 is a dipole operator matrix element between
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a

Figure 5. a — angular momentum alignment (angular momentum spatial distribution
probability density) created by an absorption of linear polarized light on a Q type of
molecular transition and b — angular momentum orientation created by a left-hand
polarized light on a P type of molecular transition.

states 1 and 2 and £ is an electric field strength of the laser radiation. Parameter
A describes a detuning of the laser frequency from the exact resonance. 7 is equal
to the laser radiation spectral line-width, p^. — p*ki. These equations represent the
excitation processes of a two level system with an accuracy which is adequate for
most experiments that study collision dynamics or chemical reactions. Even more,
molecular systems are often open systems. This means that excited molecules
usually decay to very many molecular states and there is a very small chance for a
molecule in a spontaneous process to return to the initial level. Consequently, we
are arriving at a situation when ^ 1 = 0 and even in case of degenerated molecular
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states the problem very often can be treated as a set of many independent two
level systems. Each system of equations describes an independent pairs of levels
from the degenerated two level transition.

This system in many cases can be simplified further. For example, if we have
a broad spectral line excitation with a not very intense laser radiation, we have a
situation for an open transition when 7 >̂ Fj, H. In practical cases this condition is
often fulfilled at excitation with cw lasers operating in a multimode regime. If the
homogeneous width of spectral transition usually is in the range of 10 MHz, then
the laser radiation spectral width broader than 100 MHz usually can be considered
as a broad line excitation. In this case we can use a procedure known as adiabatic
elimination. It means that we are assuming that optical coherence pi2 decays much
faster than the populations of the levels pu,i = 1,2. Then we can find stationary
solution for off-diagonal elements for the density matrix and afterwards find a rate
equations for populations in this limit. For the two level system we will have

Pu =

(27+ F, + F 2 + F 2 1 ) 2 + 4 A 2

, r ^ r x , (27 + r= - (r2 + r 2 1 ) P 2 2 + ( ^ + F

(27 + Fi + r 2 + F21)2+4A2

In these equations that are valid for broad spectral line excitation (large 7) and
arbitrary values for all other parameters, one can easily see a simple rate equations
if we assume that absorption rate is expressed as

If we are interested in a stationary solution of Eqs. (10 and 11), then balance
equations that can be obtained from Eqs. (10 and 11) setting right-hand-side
of equations equal to zero arc valid for any values of parameters and the broad
spectral line assumption is not necessary any more. It means that very often for
two level system Liouvillc equations can be replaced with a simple rate equations.

Situation becomes much more complicated if we have a two-step excitation.
For example, the first laser excites transition 1 —> 2 and the second laser further
excites transition 2 —>• 3. In this case for nondcgcncratcd three level system we will
have the following Liouvillc equations:

For the diagonal elements or the populations of three levels we have

P11 - Fi - F ipn + T21P22 + T31p33 + - (pi2 - P21) Hi2, (13)

P22 = - ( r 2 + T2i)p22 + T
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2 (Pi-2 - P2l) ^12 + ^ (/;23 - P32) ^23, (14)

pas = - (r3 + r3 1 + r 3 2 ) p33 - ~ (p-n - P-M) ̂ 23-

The density matrix equations for the single-photon coherences are

7 7

p (Pll - P'22) ^12 + -zPVi ^23, (16)

P23 =

t t
2 Pl3^12 + ^ (P22 - P33) ^23, (17)

while the equation for the two-photon coherence is

pis = --z (-*Ai3 + r3 i + r 3 2 +

(18)

In these equations all the notations are similar to the notations used for the two
level system.

The procedure of adiabatic elimination in this case leads to rather complicated
equations for diagonal elements of the density matrix, which in a general case
can not be reduced to simple rate equations for populations. To examine the
essential characteristics of the equations for populations we shall make a number
of simplifying assumptions. First, let us consider an exact resonance

A^ = 0. (19)

Next, we neglect all spontaneous emission between states 1.2 and 3. (Such terms
arc essential when one deals with a closed system, but can often be neglected
for such an open system as most of molecules.) We assume that the remaining
relaxation rates, to other levels, arc all equal:

Ttj = 0, Tj = T. (20)

Finally, we take the two Rabi frequencies to be equal,

Qij = n. (21)

With these assumptions we have the following rate equations for populations in
an assumption of broad spectral line excitation

pu - 2 r ( 7 + r) + fi* + 4(7 + r)[2F(7 + F)
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p.,2 - r ^ + 2 r ( 7 + r ) + n 2 + 2 r ( 7 + r ) + n 2 , (23)

. = _ r^(P: j3p22) n^pnpis) , ,
p:i3 P3:i 2T(j + r) + n2 4(7 + r) [2r(7 + r) + n2}' l J

from where one and two photon absorption rates can be defined as

Q2T
Tpump(l) = 2 r ( 7 + r ) + Q2 , (25)

r) + n2]" (26)

If, as before, we are interested only in the steady state solution (steady state
populations) for three levels, then the obtained equations are valid for arbitrary
values of all the parameters and the assumption of broad spectral line (large 7) is
not needed.

In these equations we can clearly see the two photon transition probabilities
that directly connect levels 1 and 3 and are proportional to the fourth power of
Rabi frequency. These equations in the limit of weak excitation (small Q) lead to
the "phenomenological" rate equations, which do not take into account two photon
transitions

rvi ^ ti2(pu - P22) , „„ .
Pn = T(l-Pll)- 2 ( 7 + r ) , (27)

r »2(P11 - P 2 2 ) »2(P33 - P 2 2 )
P22 = ~TP22+ +2(7 + r) + 2(7

n'2(p;i:i - p22) , ,
P,s = -Tp,A- 2 ( 7 + r ) . (29)

We see that, taking into account assumptions made with respect to the relaxation
rates and other parameters, we basically have arrived at the same absorption rate
that we had for a two level system, compare to Eq. (12). It is interesting to note
the ratio between two-photon transition rate and one-photon transition rate. This
ratio is

I pump{2) ' '
rp u m p(i)

which means that the transition rate for two photon transitions is negligible for
weak excitation, but can play a dominant role for strong laser radiation and cannot
be neglected.

To illustrate the method described above, let us consider now one particular
example (see Fig. 6). The diatomic molecule, for example Na2, is excited in twro
steps by two weak linear polarized lasers, which arc at an exact resonance (A = 0)
— first one with the first molecular transition, but the second one with the second
molecular transition. In the first case lasers are polarized parallel to each other.
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Angular momenta of the molecular states involved in the transition are J" = 7 —>
J[ = 8 —> J-2 = 9. As a result we have molecular axis distribution in the second
excited state as depicted in the Fig. 6a. The z axis in this figure is directed along
the direction of polarization of both lasers. As we see, molecular axes are very
strongly aligned along the direction of quantization axis (direction of polarization
of a laser beams).

On the contrary, if we have lasers polarized in perpendicular directions to each
other, we point the z-axis in the direction of polarization of second laser and
consider molecular transitions in a sequence J" = 7 —> J[ = 8 —> J'2 = 8, then we
have molecular axes distribution in the second excited state as shown in Fig. 6?;.
Now molecular axes are very strongly aligned in the plane that is perpendicular
to the axis of quantization. This example demonstrates, how efficiently we can
manipulate the molecular axes distribution just by varying angular momentum of
the states excited by laser beams and mutual polarization of lasers.

Figure 6. The probability distribution of molecular axes for two step laser excitation of
diatomic molecules. For case a we have angular momentum quantum number sequence
7-8-9 in molecular transitions, but for case b we have 7-8-8 sequence. Mutual laser polar-
ization for both cases is shown in the figure.

3. Rate equations for degenerate levels

Let us analyze further to what consequences assumption of spectrally broad laser
excitation leads. We shall assume that we have degenerate ground and excited
state of optical transition. For example, it can be an optical transition between two
molecular states that consists of a large number of degenerate magnetic (Zccman)
sublcvcls. It means that this large width of laser line will prevent the formation of
the optical coherences between pairs of magnetic sublevels, in which one sublevel
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belongs to the ground sate and another to the excited state optical coherences.
At the same time there is no reason why, with the spectrally broad radiation,
coherences between pairs of magnetic sublevels for which both sublevels belong
either to the ground or to the excited state could not be created. To analyze these
Zeeman coherences, the density matrix equations for degenerated two level system
for a broad spectral line excitation can be used [3, 12]

M,,M'g
<M°\ E * d \Ma) (K

M" M,,

M'g)* <pMgM> -

M, M,

fMcM.. -

(31)

< M , | E * d | M e ) ( M ; ' | E * d | M e » M » M , -

M'J
Me) (M'g\E*d \M'C)* l<PMBM>g

(32)

where by /M^M1. a n d ^M,JM! are denoted the density matrices of an excited and
ground state level respectively. The first term on the right-hand side of Eq.(31)
describes the absorption of light at the rate Tp. The transition matrix elements of
the form (Me \ E*d \Mg) account for the conservation of angular momentum during
photon absorption with E being the light polarization vector. The second and the
third terms describe the stimulated emission of the light and the dynamic Stark
shift ui.s- The fourth term characterizes the relaxation of the density matrix JM^M1

with a rate constant T. Finally, the fifth term describes the Zccinan splitting of
the magnetic sublevels Me and M[ by a value of OJM^ML — {EM,. — EM^)/?I.

The first and the second terms on the right-hand side of Eq.(32) describe a
light absorption and the dynamic Stark shift, the third term — the stimulated
light emission, the fourth term — the relaxation processes in the ground state,
the fifth term — the Zccrnan interaction, the sixth term — the rcpopulation by

M M!

spontaneous transitions at a rate r M
c

M ' . and the seventh term — the relaxation
of the density matrix of the ground state atoms interacting with the gas in a cell,
not influenced bv the radiation.
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The matrix element of electric dipole transition (Me\ E*d \Mg) is expanded as
[3, 16, 17]

(MR | E*d |Mg) = Y,(Eq)* (MR | d" |Mg) , (33)
g

where the superscript q denotes the cyclic components of the respective vectors.
The matrix element at the right-hand side of equation (33) are further expanded,
applying the Wigner Eckart theorem, as [3, 16, 17]

d"

where (Je ||d|| Jg) is the reduced matrix element. Under conditions of stationary
excitation the system of equations (31) and (32) becomes a system of linear equa-
tions for the ground and excited state density matrix elements. The coefficients
of this system are calculated using angular momentum algebra and the formulas
presented above. For further details see, for example [3].

Solution of this equation allows to calculate spatial distribution and its evolu-
tion in time for angular part of probability density, which in case of atoms means
angular distribution of valence electron but in case of diatomic molecules the
spatial distribution of molecular axis. This is an important information, if the
stereo effects for different interactions are under the study. Hence, for example, if
we know the density matrix of the excited state of diatomic molecule, then the
molecular axes distribution can simply be calculated as [15]

Pax{0,<f)= E fM1M2YjMl(e,(p)YJ*M2{9,ip). (35)
Mi M2

If one is interested in a spatial distribution of angular momentum created by laser
radiation, then there is a method how to make a transition from quantum den-
sity matrix to the continuous angular momentum spatial distribution probability
density. As it is shown in [21], a classical probability density pci(9,<p) for angular
momentum spatial distribution can be connected to the density matrix elements
JMM1- At the J —> oo limit these elements can be considered as coefficients of the
Fourier expansion of a classical probability density pci (0, if)

00 2Af
Pj(O,f)= E e ^ / ^

The last equation is not restricted to the case when we have a coherent superposi-
tion of two M states belonging to the same J. If they belong to different J states,
all we need to do is replace J with (Ji + J^ji. The inverse of (36) can be written
as

/ M + | , M - | = -^ j (Tiev Pd {0, v) dip. (37)
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In practice, we almost always have the situation when for those / M + | , M - | that
differ from zero, values of e are small in comparison to the interval of all allowed M
values. For most cases of practical interest it makes the calculation of (36) rather
simple.

4. Influence of external fields

The action of the external fields like electric or magnetic can be taken into account
in a very general way. External fields, as a rule, lift the degeneracy of different
magnetic sublevels of the angular momentum state. It means that in the external
field magnetic sublevels are split and cause appearance of the nonzero Zeeman
frequencies UJM,M^ = (EM,, - £ J W ( , ) / ^ Ft>r different molecules in different (electric
or magnetic) fields pattern of magnetic sublevel splitting can be very different.
It means that Zeeman frequencies UM,M^ can have different dependence on Me,
M'e for different cases. The simplest case is the linear Zeeman effect, when in the
magnetic field each magnetic sublevel obtains additional energy, which is directly
proportional to the magnetic field strength and magnetic quantum number. The
coefficient of proportionality is the Bohr magneton fin multiplied by the Lande
factor g

EM = gunBM. (38)

As a result, Zeeman frequencies are simply UIM.M^ = gH/sBAM/U, wrhere
AM = M — M'. In terms of the vector model described above, this means that
the linear Zeeman effect causes precession of the angular momentum probability
distribution around the magnetic field with Larmor frequency uJLarmor = 9HBB/TI.
Shape of probability density during this precession is preserved [15]. However, in
many cases Zeeman effect deviates from a simple linear behavior and then the influ-
ence of the external field on the polarization of molecules created by the laser field
can be a sensitive probe of this nonlinearity of Zeeman effect. As it was shown,
for example, for Tc2 in [22] and [23], the nonlinearity of the Zeeman effect can
cause a symmetry breaking of the angular momentum spatial distribution, which
exhibits itself as an appearance of the orientation of angular momentum in the
initially aligned ensemble and appearance of the circularly polarized laser induced
fluorescence after linear polarized laser excitation, as a consequence. Observation
of such type of effects allows to study the reasons for nonlinearity of the Zeeman
effect and to determine such molecular constants as the rate of magnetic predisso-
ciation and state mixing matrix elements in external fields. In this particular case
a rather strong circularity (up to 5%) was observed at a magnetic field strength
of 0.4 T (see Fig. 7)

In the case of an electric field, situation can be even more peculiar. In most
cases Stark effect in molecules is in principle nonlinear (quadratic) over the elec-
tric field strength £ and magnetic quantum number M. This allows to exploit this
intrinsic nonlinearity and to manipulate angular momentum spatial distribution of
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Figure 7. Circular polarization rate created by an alignment to orientation conversion in
laser excited fluorescence of the Te2 molecule due to magnetic intramolecular interactions
and magnetic predissociation.

orientation

a
Figure 8. The angular momentum probability distribution of diatomic molecule in
absence of an electric field — case a and when electric field is applied along the z axis
— case b.

molecules. Let us consider one example. In Fig. 8 angular momenta spatial distri-
bution arc shown for two cases. In case a we have initially aligned molecules. This
alignment is created by a lincrly polarized laser radiation in Q type of molecular
transition. Laser is polarized in yz plane at an angle TT/4 with respect to z axis.
Molecules arc aligned along the laser polarization vector. If now an electric field is
applied along z axis angular momenta distribution is changed in such a way that
more angular momenta are pointed in the negative direction of x axis than in the
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positive direction. As a result, we have transverse (perpendicular to the axis of
quantization) orientation of angular momenta of molecules. For more details, see
[15]-

This alignment to orientation conversion can be exploited for practical pur-
poses. In molecular beams alignment of angular momentum of molecules due to
collisions during the beam formation usually occurs almost automatically [24]. If we
apply an electric field in the direction of vr/4 to the beam direction, this alignment
can be efficiently converted into orientation. Choosing appropriate region length
along the beam direction in which field is applied and field strength one can orient
molecules in a selected rotational state and even for a selected isotopomer of the
molecule. For details, see [25].

When speaking about nonlinear Zeeman or Stark effects in molecules as well as
in atoms, we should keep in mind that usually these nonlinearities are caused by
mixing in the external field of the different molecular states — be that rotational
states of the molecules or other close lying states like, for example, Lambda doublet
components in the II states of the diatomic molecules. This state mixing does
not only cause nonlinear magnetic sublevel splitting but also modifies state wave
functions between which light causes transitions. It means that the matrix elements
of a type (MR\ E*d \Mg) do not describe any more transition probabilities between
states with well defined angular momentum ,/ but between states the wave function
of which, in general case, can be represented as

\XM,^ = Y,CJAJ1M!^ . (39)
J;

As it was shown in [26], this leads to the substantial modification of the tran-
sition probabilities between molecular states and it can happen that transitions
that arc strictly forbidden in absence of the external held, in presence of the field
become to be allowed and exhibit high probability.

5. Conclusions

In this paper it was very briefly demonstrated that the laser radiation in combi-
nation with external fields can be a powerful tool to prepare molecules in specific
quantum state that can be characterized with a well pronounced spatial anisotropy
of molecular axes (chemical bonds) and angular momentum. These states in past
have been exploited in studies of molecular properties including dynamics of chem-
ical reactions, but it seems that full capacity of this method still needs to be
explored.
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PHOTODISSOCIATION OF HYDROGEN HALIDES IN A CRYOGENIC
RARE GAS ENVIRONMENT: A COMPLEX APPROACH TO SIMULATIONS
OF CLUSTER EXPERIMENTS
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J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences

of the Czech Republic and Center for Complex Molecular Systems
and Biomolecules, Dolejskova 3, 18223 Prague 8, Czech Republic

Abstract. Simulation of the photodissociation experiment performed in a largo
neutral cryogenic clusters is described in this chapter. The emphasize is put on
the methodological aspects of the simulations, namely on the correct preparation
of the initial state. Possible control of photodissociation process is discussed. The
good agreement between theory and experiment not only indicates the quantita-
tive predictive power of the calculations, but also confirms that the experimental
concepts and analysis of cluster production in supersonic beams are quite reliable.

1. Introduction

Photodissociation of small molecules in different cluster environments has at-
tracted much attention in recent years. The reason is the possibility to explore
physical properties as a function of a cluster size. One can thus address the ques-
tion of the onset of surface and bulk solvation. Moreover, for molecular cluster
certain quantities such as the kinetic energy distribution of the photodissociated
fragments arc experimentally available and direct comparison with theoretical cal-
culations is feasible. Hydrogen halide molecules interacting with different rare gas
clusters have served as a prototypal systems for such investigations using different
levels of theoretical treatment [1, 8, 22, 23, 24, 25, 28, 29, 31, 32, 36, 37, 41, 45, 46].
Photodissociation in a cryogenic rare gas environment have several appealing fea-
tures from the theoretical point of view. First, rare gas atoms serve as simplest,
structureless solvents. Rare gas atoms exhibit only elementary features of solvation.
Basically, the only important solute-solvent interaction is the repulsion between
the photodissociation fragments and the rare gas atoms. Second, under cryogenic
conditions the system is usually prepared in a well denned state. We can thus avoid
complications connected with averaging over thermodynamical distributions. On

467
A. Lagana and G. Lendvay (eds.), Theory of Chemical Reaction Dynamics, 467-494.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



468 PETR SLAVICEK AND PAVEL JUNGWIRTH

the other hand, nuclear quantum effects such as the zero point energy motion can
play a crucial role.

Recently, a lot of new experimental results in supersonic beams have been pro-
duced in this field [8]. The basic setup of a cluster experiment is following. First,
the clusters are prepared in a supersonic beam. Second, the clusters are photodis-
sociated by a polarized laser beam, and, third the photodissociated fragments are
ionized and detected by techniques of mass spectrometry.

The experimental setup has its counterpart in the theoretical methodology.
First, the doped cluster has to be prepared. In theory this means to construct the
multidimensional potential energy surface for the interaction of particles in the
ground state (even simple systems like Lennard-Jones clusters can form surpris-
ingly rich energy landscapes). The potential energy surface of the HX-R,gn system
can be constructed from the known interactions between cluster fragments. If these
are not available, it is required to calculate them by means of ah initio quantum
chemistry methods. The cluster is prepared under cryogenic conditions and quan-
tum vibrational and rotational effects can thus be of a vital importance. The initial
ground state wavefunction of the system is constructed. Since we deal with large
systems, usually approximations are applied. The experiment is, however, not per-
formed at T = 0 K. therefore, we have to ask what is the role of entropic effects
on the initial state of the doped cluster. The thermodynamical averaging via a
certain simulation tool, e.g., molecular dynamics, is thus performed.

The second experimental step is photodissociation. From a theoretical point of
view this means (i) changing the potential energy surface of the system and (ii)
time evolution of the system. As for the ground state, also after the photoexcitation
the potential energy surface has to be constructed from known or calculated inter-
actions between cluster fragments. In the excited state, open shell systems occur.
A simple and elegant method for the construction of the potential energy surface
of large systems containing an open shell particle is the Diatomics-in-Molcculcs
approach. Then, an appropriate method has to be chosen for the dynamics. Fully
quantum description of the dynamics is not computationally feasible and certain
approximations have to be adopted. Approximations can basically go in two di-
rections. The first one is to connect the quantum dynamics with its classical coun-
terpart. The second option is the factorization of the problem. The actual choice
depends not only on the system under study but also on the type of questions we
raise. A certain level of treatment is used wrhen the dominant quantum effect is
the change in the energetics, wrhile a different approach is used if interference and
coherence effects are of interest.

The third step in the experiment is detection. On the simulation side this is
equal to visualizing the results. A time evolution of the calculated wavefunction
(or a swarm of classical trajectories) has to be translated into a physically mean-
ingful pictorial representation. Finally, at this stage we should link our simulations
with the measurements. This means to find measurable quantities which can be
compared with the experiment. We can calculate quantities both in the time and
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in the energy domain. Both can be in principial reached experimentally.
In this chapter we concentrate namely on the methodological aspects of the

simulations of photodissociation process in large clusters. The aim is, however,
not only to describe the process but also to address the question about how to
actively influence the process, i.e., how to control photodissociation by employing
weak forces, external fields or an IR laser pulse.

The organization of this chapter follows the above mentioned division: in sec-
tion 2 we discus the theoretical tools for initial state description, section 3 describes
the methodology of photodissociation simulations in extended systems, in section
4 we describe the analysis of experimental results and in section 5 we discuss the
possible control of photodissociation process.

2. Preparation of clusters

As is further stressed in section 5, the initial state of the cluster, i.e., the state
prior to the photodissociation is of a fundamental importance for the subsequent
photodissociation dynamics. The determination of the initial cluster structure con-
sists of three steps: first we find the optimized structure, i.e., the minimum on the
potential energy surface of the ground state. In a second step, we calculate the
ground state vibrational wavefunction. This second step can qualitatively change
the initial structure. The final step is to explore what is the distribution of isomers
at a thermodynamic equilibrium corresponding to experimental temperature. Even
though this temperature is quite low, its non-zero value may play a significant role
for weakly bound clusters.

2.1. OPTIMAL STRUCTURES

For finding optimal classical structures it is first required to construct reliable
potential energy surface for the system in the ground state. Usually, several ap-
proximations are employed. First, we neglect three body interactions within rare
gas atoms, and second we assume that the interaction between the hydrogen halidc
and the rare gas atom is within a certain range independent of the HX bond dis-
tance. The latter approximation is not necessarily always justified [9]. With these
approximations we can write the PES of a HX-Rgn cluster as a following sum

V(HX - Rgn) = Y, Vux-Hg + ^ E V*9-Hg + V(HX), (1)

where VHX-RQ is a three body term for the interaction between a rare gas atom
and a hydrogen halide molecule with a fixed bond length, Vna-na is a pair rare
gas-rare gas potential and V(HX) is a potential of HX in the ' £ state. The
expression 1 has been found to provide good estimates of structural properties of
larger HX-Rgn clusters [3].

To find the classical structure of a molecular cluster basically means a mini-
mization of the potential energy function 1. Since we treat systems with as many as
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Figure 1. Possible positions of the HX dopant in or on the surface of large rare gas
cluster. 1. Smooth adsorption, 2. Incorporation in the surface, 3. Central solvation. 4.
Subsurface solvation.

300 particles, this task is generally very difficult to perform. We have performed
the optimization in two stops: in the first one wo have obtained the optimized
structure of the impurity free rare gas cluster. Then we have chosen a position
where the dopant is placed and we have locally re-optimized the structure.

Once we have a structure of the rare gas cluster, we have to decide into which
position the dopant is placed. On Fig. 1 all the possibilities are described. The
dopant may occupy a smooth adsorption site, i.e., it can stay on the surface of
the cluster, interacting thus basically only with three nearest neighbors (1). Other
position is the substitutional surface place, in which the dopant replaces one of the
rare gas atoms from the most outer shell (2). The cluster can replace the central
argon atom of the cluster (3), or can be placed also in the subsurface substitutional
place (4). After adding the dopant, a local optimization is performed. The choice
of the dopant position should reflect the way the cluster is prepared, cither by
a pick-up procedure or by co-expansion. Under experimental conditions we may
expect both the surface and the embedded isomcrs to be kinctically stable even
though the global minimum can be energetically well bellow the second isorncr.
This turns out to be the case of argon clusters. For the weakly bound neon clusters,
however, one has to be cautious. At the experimental temperature the dopant can
be distributed over several positions.

2.2. INITIAL VIBRATIONAL WAVEFUNCTION OF LARGE CLUSTERS:
SEPARABLE APPROACH AND DIFFUSION MONTE CARLO METHOD

The quantum delocalization of the particles has two consequences for the photodis-
sociation experiment. First, the smearing of the initial state changes the sampling
statistics during the photodissociation. This is especially important for the HX li-
brational motion. This motion has a highly delocalized character (e.g., the dopant
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inside the cluster cage the HX behaves almost as a free rotor). Starting the dy-
namical calculations from the minimum of the potential energy surface has then
little physical justification. We discuss in more detail this issue in the next chapter.
Another consequence of the quantum delocalization is that one is forced to rethink
the concept of structure in certain molecular clusters.

For a correct description of the cluster state at a temperature T=0 K it is,
therefore, inevitable to treat the effect of quantum delocalization. Technically, this
means to solve the N-dimoiisional vibrational Schrodingcr equation. One can calcu-
late the ground state wavefunctions for systems of interest either exactly (for small
systems) or by dividing the system degrees of freedom into several groups and treat-
ing them separately. Finally, one can calculate the exact N-dimcnsional ground
state wavefunction by mean of the stochastic Diffusion Monte Carlo method. This
method can not, however, be directly used as a starting point for the subsequent
quasi-classical molecular dynamics simulations, and it is also not straightforward
to extend this method for excited states calculations. In following paragraphs, we
briefly describe the employed methodology of the vibrational calculations. Gener-
ally, we aim to solve the stationary Schrodinger equation with Hamiltonian

Hi= }_^ TAr,i +TX+TH + Vcs(HX - Rgn). (2)
i=l,n

Here T stands for the kinetic energy operator and VQS{HX — Rgn) is the potential
energy surface in the ground state. The first approximation which we introduce is
a separation of the fast HX vibrational (stretching) motion from all other degrees
of freedom. The HX distance is thus held constant during the calculations.

So far, we have only separated out the HX vibrational motion. Generally, such a
solution of the stationary Schrodinger equation is not computationally feasible for
clusters with more atoms. Therefore, other approximations have to be employed.
At the same time, all phenomena important for the cluster structure have to be
properly included. We have performed an adiabatic separation of the HX libra-
tional motion from the motion of the heavy particles, i.e.. from the cage modes.
Moreover, the cage modes have been calculated within the harmonic approach, i.e.,
by a diagonalization of the Hessian matrix. Formally, the wavefunction is expressed
as

(3)

where qi are the normal coordinates of cage (i.e., heavy atoms), and p is the H-X
separation. The factor 1/p comes from the use of spherical coordinates. As has
been already said, the cage modes arc taken into account within the harmonic
approximation, while the librational wavefunction of the HX molecule 0/^(0,$)
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is calculated by a diagonalization of the HX (hindered) rotational Hamiltonian in
the basis of spherical harmonics

Hrot =

The term connected with the overall rotation of the cluster is neglected since /*i B2

is much larger than //2'r2- Due to the loss of cylindrical symmetry the potential
V becomes also ^-dependent. Both the potential for the hindered rotation of
HX and the librational wavefunctions are parametrically dependent on the cage
coordinates.

This approach is satisfactory for systems, where the minima corresponding to
HX-RgVj and XH-R.gn structures are well separated or correspond to similar heavy
atom geometries and. therefore, we can separate the librational and cage modes.
The energy gap between minima corresponding to possible isomeric structures is
increasing with the number of rare gas atoms. Thus, the coupling between vibra-
tion and internal rotation does not usually have a strong effect on the ground
state structure of the explored complexes (Ar- • -HI and Ne- • -Hf). however, it can
seriously influence the bound states. Another concern is connected with the role
of cage anharmonicity.

Principally exact solution of the vibrational Schrodinger equation can be found
by applying the Diffusion Monte Carlo (DMC) method [40], where the accuracy
for ground state calculations is limited only by the statistical noise, which can be
reduced to a desired level by a sufficient investment of computer time.

We demonstrate the importance of proper description of initial vibrational
wavefunction on the case of small HI(Ar)n complexes [36]. For the correct de-
scription of HX-Rgn photodissociation dynamics the HX librational wavefunction
tpni, is the key component of the vibrational wavefunction. If the hydrogen halide
molecule is embedded in the cluster, we observe an almost free rotation of HI. This
is a consequence of the high symmetry of this solvation site and the short range
character of the van der Waals forces. On the other hand, the HI molecule on the
surface of an argon cluster is strongly oriented. This is caused by the asymmetry
of the surface site. To properly describe the orientation of the HI molecule on the
surface of an argon cluster is not trivial. The interaction potential between HI
and argon manifests two collincar minima. The lower minimum corresponds to the
H-I...Ar arrangement while the secondary minimum has a hydrogen atom pointing
towards the argon atom (I-H...Ar). The first minimum is energetically preferred by
approximately 50 cm"1. After accounting for zero point motions, the ground state
energies DQ differs, however, by only 8 cm"1. For the HI-Ar system the hydrogen
wavefunction is oriented away from the argon atom. If this would be also the case
for larger argon clusters, then no caging can be observed for the surface isorner.
With the use of reduced dimensionality vibrational calculations we found a flip
of the librational wavefunction when going from HI-Ara to HI-Ar3 cluster, then a
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back-flip for HI-A14 (with librational wavofuiiction pointing outside of the cluster
once again). Starting from HI-Ar5 all larger clusters are characterized by hydrogen
pointing towards the argon cluster. It is important to emphasize that quantum de-
localization (i.e., the zero point energy) plays a major role in the determination of
the cluster structure.

Since quantum effects are so important in this case, we have decided to re-
calculate the ground state wavefunctions for these clusters with the use of Diffusion
Monte Carlo Method. A composite Fig. 2 depicts the square of the wave-function
as a function of cosO, where 0 is the angle between the HI molecular axis and
the vector connecting the argon cluster center of mass with the HI center of mass.
The librational wavefunction corresponds to hydrogen pointing away from the
rare gas atoms for HI-Ar and HI-Ar2 clusters. Starting from the HI-Ar3 cluster,
hydrogen is oriented towards the argon cluster. Unlike the reduced dimensionality
calculations, the change is gradual and there is still some wavefunction component
with the hydrogen atom pointing outside of the cluster for the HI-Ar3 cluster.
No back-flip at HI-Ar^ is observed. We conclude that the general trend of the
change of the hydrogen orientation has been confirmed by the DMC calculations,
while the back-flip has been found to be an artefact of the previous approximate
vibrational calculations. The implications of the size evolution of the librational
wavefunction on the photodissociation dynamics are obvious. It, suggests that no
cage effect should be observed upon photodissociating the HI-Ar complex. Indeed,
no low energy signal in the KED spectrum has been observed for this system [4],
while for a similar Ar-HBr cluster a weak single atom cage effect has been observed
[33]. On the other hand, the cage effect for larger cluster should be pronounced
and this is exactly what has been measured and calculated [35].

One of the goals is to use the results of DMC simulations for subsequent quasi-
classical studies of photodissociation process. For this purpose, one needs to have
a swarm of walkers sampling the square of the wavefunction (or even better a set
of walkers in the classical phase space sampling the Wigner distribution). We have
reached this goal by the descendant weighting method [6]. DMC sampling of the
Wigner distribution is still difficult due to the oscillatory character of the integrand
and the problem is still open. Recently, there has been an attempt to overcome the
difficulties by approximative separating of the momentum and coordinate space
probability distributions, which arc evaluated by the DMC wavefunction [5]. This
approach, however, is not universal.

2.3. SIMULATION OF PICK-UP PROCEDURE AND PHASE BEHAVIOR
ANALYSIS

Mixed molecular clusters can be prepared by two different, techniques: (i) by a
co-expansion, where a mixture of the dopant with a rare gas is expanded into the
vacuum, or (ii) by a pick-up procedure, in which case the neat rare gas clusters
prepared by a supersonic expansion travel through a chamber with a dopant and a
buffer gas. For solid systems one is thus able to prepare clusters with the dopants
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d) f)

Figure 2. Size dependence of the DMC calculated ground vibrational (librational)
wavefunction for HI on Arrl (n = 1 — 6, corresponding with labels a) to f)). Wavefunction
is depicted as a function of cos 0 where 0 is the angle between the cluster center of
mass and the center of mass of the dopant. Note the flip of the H wavefunction towards
the rare gas clusters upon increasing cluster size seen for the calculations in reduced
dimensionality is no more observed.

in different positions in or on the cluster according to the way of preparation. How-
ever, for ergodic systems (e.g., for liquids) the final dopant sites are simply given by
the equilibrium thcrmodynamical distributions, and they arc thus independent of
the cluster preparation. The question concerning the degree of ergodicity is inter-
esting particularly in the case of pick-up procedure. The dopant can significantly
increase the temperature in this case and even liquidity an originally solid cluster.
Molecular dynamics simulation can help in answering the question what is the dis-
tribution of positions under experimental conditions corresponding to the pick-up
process. Classical molecular dynamics has a limited validity for neon clusters with
intermediate quantum effects. Indeed, these quantum effects influence the binding
energy per particle (the ground state binding energy is only about 60% of the
well depth for a neon dimcr) and the mean particle distances and will forcsccably
have an important effect on the dopant embedding dynamics, the dopant mobility
inside the cluster, and the number of neon atoms evaporating after an impact.
For description of these clusters, dynamical methods accounting for at least the
principal quantum effects have to be used.

Molecular dynamics is an appropriate tool for the study of the pick-up proce-
dure. It is imperative to perform dynamical (and not thermodynamical) simulation
because (i) we do not know in forward the final temperature of the system and (ii)
for non-crgodic systems the final distribution can represent just a local minimum
on the free energy surface of the system, i.e., a metastable state with a high ki-
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notical stability. Thus, equilibrium techniques such as Path Integral Monte Carlo
(PIMC) can not be used. Full quantum dynamical simulation of dynamic proper-
ties of neon clusters at finite temperature is impossible with present computational
techniques. Thus we now face a question how to simulate the quantum systems
using essentially classical equations of motion.

We have resorted to an approximate technique which attempts to include the
above mentioned main quantum effects via the construction of effective potentials
Vq. Basically, each particle is represented by a single particle wavefunction and
the Ehrenfest theorem is applied. Similar ideas have been used with good success
even for quantum solids like hydrogen [38]. Effective quantum potentials are also
among the results of the Feynman-Hibbs treatment [12] which have been applied
to pure neon clusters in the past [34].

While it is possible to construct quantum effective potentials for bulk systems
by fitting particle binding energies, bulk densities, and pair correlation functions,
our strategy for the construction of the effective quantum potential for clusters
avoids the use of empirical information. We use a self consistent iterative proce-
dure, which has been applied previously with surprising success to pure and doped
helium clusters [30]. This method is particularly suitable for clusters where empir-
ical density and pair correlation information are unavailable. Conceptually, each
particle is replaced by a probability distribution <j)'2 (r), centered around its classi-
cal position, and assumed to have a spherical symmetry. Starting from the original
pair potential Vci(R) = Vq.o(R), a delta distribution (j>l(r), and known masses the
construction is based on the following sequence of calculations, which is repeated
until the n-th order potential and distributions have reached self consistency

1. Construction of the pair correlation function Pn(R) between classical particle
positions from a classical molecular dynamics simulation at temperature T
with the current potential Vq:n(R).

2. Convolution of the pair correlation function with the current single particle
distribution <^(s) according to

Construction of the radial potential Vra,i:n(r) experienced by each particle in
the 'cage' formed by the others by integration over the current pair potential
and the particle distribution following

V;ttd;n(|r|) = f Vcl(\r - R|)P,;n(|R|)dR. (6)

Solution of the radial Schrodinger equation in the radial potential Vr
rat;:n(r)

in order to find <pn+\ (r) for each particle in the mean field of the others.
Construction of the next generation effective pair potential Vq:n+i_(R) by the
convolution

Vq,n+1{R) =11 y c / ( | R + r - r ' ) ^ n + 1 ( | r | ) ^ n + 1 ( | r ' | ) r I r r I r ' . (7)
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Figure 3. Convergence of the Ne-Ne effective quantum potential during its iteration.

The algorithm was described for a construction of an effective potential for
the Nc-Nc interaction. Analogically, one can construct the potential for a Ke-
dopant interaction. All radial and pair potentials are computed on a grid and spline
interpolated for the molecular dynamics simulations and for the solution of the
Schrodinger equation. The number of iterations required to reach self consistency
is modest. On Fig. 3 the convergence of the effective potential is shown. The figure
depicts the classical potential, the first iteration and the 10*'' iteration which is fully
converged. Actually, only 4 iterations are required for a fully converged effective
quantum potential in this case. The 'broadening' of each particle described by
4>n tends to fill in the potential well and leads to a shift to larger mean particle
distances clearly accounting qualitatively for the quantum zero point effects. The
resulting potentials arc clearly temperature dependent and could in principle be
reconstructed periodically during a non equilibrium impact simulation. This would
have sense if we were interested in the first stage of the pick-up process, i.e., in the
collision. We address, however, a question what is the final dopant distribution,
therefore, this recalculation of the effective quantum potential is not required.
Note also that (unlike, e.g., the Feynman-Hibbs potential) our effective quantum
potential is size dependent. This corresponds to a fact that smaller systems exhibit
generally a stronger quantum character. Thus, this approach is well suited for the
study of large moderately quantum clusters.

Figure 4 displays the result of the HBr pick-up on a cluster with 130 neon
atoms. The simulation can be visualized in twro ways. On Fig. 4a the density of
the dopant atom as a function of the distance from the center of mass of the
cluster is depicted. For comparison also the density of neon atoms is added in
the graph. The majority of the dopant atoms stays in the surface area of the
cluster, i.e., in the third shell. There is also a peak in the very central position of
the cluster. Note, however, that the depicted quantity is a density, which should
be multiplied by a factor Aur2 to obtain the number of dopant atoms. Thus, only
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b)
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Figure 4- Pick-up of HBr on noon clusters, a) Density of dopant atoms (solid lino)
in comparison with the density of neon atoms (histogram) (Neiao). b) Distribution of
number of nearest neighbors to the dopant atom (Nei3o). c) Density of dopant atoms for
the N0300 case, d) Nearest neighbors for the N0300 ease.

some 7 % of the dopants land in the fully embedded positions. Most of the dopants
stay deeply in the third shell, often on the border with a second shell. The NC130
cluster is apparently of a scmiliquid character after the impact of the dopant,
enabling occasionally the dopant to come to the center. However, the position in
the surface is preferred. Another way how to visualize the final solute distribution
in the cluster is to display the number of neon atoms in the proximity of the
dopant (i.e., closer than 4.3 A) . The resulting distribution is displayed on Fig.
4b. Fully embedded dopants arc those with the number of nearest neighbors larger
than 15 (also some of the neon atoms from second solvation layers are occasionally
counted). Most of the dopants are interacting with either 6 neon atoms or with
around 10 neon atoms (this corresponds to the dopant position between the third
and the second layers). There is no evidence for smooth adsorption of the HBr
dopant on the neon clusters, in which case, one would expect the HBr molecule to
directly interact only with approximately 3 neon atoms.

The situation for Nê oo cluster is different. Neon clusters with four solvation
layers arc much more stiff than clusters with tree layers. Moreover, quantum effects
arc less important for larger clusters since neon atoms arc now more confined. As
a result, none of the HBr dopants penetrates into the fully embedded position
(corresponding densities for dopant and neon atoms arc depicted in Fig. 4c). Most
of the HBr particles stay deeply solvatcd in the outer, fourth neon layer. There
is also a small portion (6 %) of dopants in the smooth adsorption position. This
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amount is, however, too small to allow to decide whether it is only an artefact
of a short duration of the pick-up simulation or whether the occupation of this
position actually reflects a genuine thermodynamical distribution. Fig 4d shows
the number of nearest neighbors of the HBr dopant for the same system. We can
observe the typical feature of the surface solvation with 6-10 solvent atoms closer
than 4.3 A. This result indicates that the cluster is solid after the pick-up of the
dopant and the part of the phase space with embedded dopant is virtually not
accessible under the experimental conditions.

One of the important issues addressed in our simulations is the character of
clusters under study. Are these clusters solid or liquid under experimental con-
ditions? If they are liquid, then the distribution we observe in the pick-up and
consequently in the photodissociation simulations corresponds to a statistical dis-
tribution at a given temperature. If, however, the cluster is solid then both in the
simulations and in the experiment we observe a quasi-stationary state with a very
long lifetime rather than an equilibrium thermodynamical state. This question can
be resolved by means of the instantaneous normal modes (INM) density of states
(DOS) spectrum. To calculate INM DOS we construct the Hessian matrix in a
mass-weighted atomic Cartesian coordinate basis of N atoms xnjl with ji={x. y, z}.
The 3N eigenvectors in the form C\x,C\y,C\z,C2X,C2y,C2Z, c^x,c^y,c^z de-
scribe the contribution of each atom to the i-th mode. A quantity which is the basic
output of the INM procedure is the density of states. This is nothing more than a
histogram of frequencies averaged over an ensemble of configurations obtained by
molecular simulation techniques:

3JV-6 \
^ 6(UJ - ui) j . (8)

We have omitted the six frequencies corresponding to rotational and translational
motions of the whole cluster. One of the advantages of the INM analysis is that
wre can perform projections of the density of states. One can decompose the den-
sity of states spectrum, e.g., into molecular rotational and translational motion
[39]. For molecular clusters it is interesting to explore the localization of the mo-
tion described by the Hessian eigenvectors at different frequencies. Even though
the harmonic motion is inherently collective, certain motions can be attributed
to a limited area. This is the case of non-homogeneous systems, where the spec-
tral characteristics can be quite different for different spatial parts. We define a
projector Pnren

Parea= £ £ ^ (9)
nEarea ji=x,y,z

where area can be, e.g., a certain cavity around a host molecule. The projected
density of state is then given as:
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/3/V-6

parea(u) = ( 2 ^ PareaS(ui - U>{) ) . (10)

A critical issue is the sampling of instantaneous configurations for the INM
analysis. We have sampled the instantaneous configurations via classical molecu-
lar dynamics run on effective quantum potentials (the same as we have used for
simulating the pick-up procedure).

The typical INM DOS spectrum for a liquid differs significantly from that for
a solid. A typical DOS spectrum of an atomic liquid consists of a right triangular
pattern for the real frequencies distribution corresponding to translational atomic
motion [39]. This shape is caused by a dominant presence of the slow, soft modes
in liquids. Furthermore, a significant fraction of imaginary frequencies is present in
liquids (imaginary modes are usually depicted for convenience on the negative axis
of the DOS spectra). Imaginary frequencies dissappear in solid systems. Moreover,
the right-triangular shape of the positive part of the spectrum disappears. The
spectrum for an atomic bulk solid shows different spectral features, corresponding
to longitudinal and transversal mode peaks. We can see the onset of these features
in clusters. They become more important for larger clusters where the fraction of
the interior neon atoms is larger. We calculated the INM DOS spectra for clusters
of the same size as those in the pick-up simulations, i.e., with 130 neon atoms
and with 300 neon atoms. We took the advantage of the projection technique to
investigate the phase behavior of the neon atoms in different cluster layers.

Figure 5a depicts the INM DOS of N e m cluster at 10 K. The DOS of the
interior part of the cluster has the imaginary frequencies strongly suppressed.
However, there is still a certain fraction of them and we may conclude that a
cluster of this size is a border line case, close to the phase transition. This is in
agreement with previous experiments on the doped neon clusters [43]. Still, the
core of the cluster is more solid than liquid. Moving closer to the surface of the
cluster, the character of the density of states changes. Now, it is a typical spectrum
for a liquid state with the right triangular shape in the real part of the spectrum
and with a significant imaginary frequency contribution.

The INM DOS spectrum for the interior part of the Ne293 cluster (Fig. 5b)
exhibits feature typical for a solid. Frequency distribution is shifted towards higher
values and no imaginary frequencies are observed. This is basically true for all the
layers except for the outermost one, which is apparently liquid. We may thus
conclude that both clusters explored (NC127 and NC293) have a solid core with a
liquid surface. This enables the dopant to be deeply solvated in the surface. The
character of the cluster, however, prevents the dopant to penetrate deeper into the
inner layers. It is interesting to compare these cluster DOS with those calculated
or measured for the bulk (phonon spectrum) [10. 21]. Clusters should represent
" the bridge between the isolated molecule and the bulk". Typical bulk features
are boson peaks observed in the phonon DOS. We can observe such a feature
for the interior neon atoms. However, the convergence to the bulk limit is rather
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Figure 5. INM density of states of different layers in neon clusters. All density distri-
butions are normalized. Imaginary frequencies are displayed on the negative part of the
axis, a) N0130 cluster. Outer shell-solid line, medium layer-dotted line, inner part of the
clustcr-dashcd-dottcd line, b) NC300 cluster. Outer shell-solid line, third shell-dashed line,
second layer-dotted line, inner part of the cluster-dashed-dotted line.

slow. This is not surprising if we assume that even for the largest cluster explored
approximately one half of the neon atoms form the outer shell.

3. Photodissociation

Once the cluster is prepared in its initial state, described usually by the ground
state wavefunction ^o(r), the exciting laser pulse is switched on. Let's assume
for the moment that the laser pulse is infinitely short (we modify this assumption
later). This simply means that the whole wavefunction is promoted into the excited
state, i.e., the Hamiltonian has instantaneously changed from Hj into the excited
state Hamiltonian H. The wavefunction is then no more an eigenfunction of the
Hamiltonian H and the system starts to evolve according to the timc-dcpcndcnt
Schrodingcr equation

(11)

If we neglect the spatial dependence of the transition dipolc moment, the initial
condition for the cq. 11 is

We now face the task to numerically solve equation 11 and to analyze the final
wavefunction. Note at this moment that the vector r has a dimension 3Ar (N is
number of particles). Although there arc efficient numerical algorithms for prop-
agating the time-dependent Schrodinger equation both on a grid or in a suitable
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basis [20], those can hardly bo used for systems exceeding several particles. There-
fore, we have to choose an approximative way of the solution of the eq.ll.

We have to assess how strongly quantum mechanical the system is. Accord-
ing to the de Broglie wavelength, hydrogen seems to be a good candidate for
the strongly quantum part of the system. This is certainly true in the ground
state where the energy is small. In the excited state, however, energy of several
electronvolts is pumped into the system. Due to this high excess energy the hydro-
gen atom starts to behave almost classically. For obtaining most of the relevant
physical information and insight it is required to describe the initial wavefunction
in a fully quantum way, while the subsequent dynamics can be treated classically.
Practically, this is performed via the so called Wigner trajectories method, which is
described in the next section. Finding a connection between quantum and classical
mechanics represents one direction of the approximate solution of eq. 11. Wigner
trajectories are the crudest example of these techniques. With this method we
loose all effects connected with the interferences, e.g., tunneling To account for
these phenomena, we can use approximative quantum methods exploiting the sep-
arability of the wavefunction or semiclassical methods from the WKB family.

3.1. CONSTRUCTION OF POTENTIAL ENERGY SURFACE

The interaction potential in excited states of the HX-Rgn clusters has been divided
into a non-pairwise X- • -Rgn component and the remaining pairwise additive in-
teractions

Y, V(Rg • • • # ) + £ £ V^-na, (13)
i—l.n i—l.nj — Ln

where the index a denotes the particular HX excited state (1II, 3S and 3II). The
interaction potential of the rare gas dimer has been assumed to be the same as in
the case of the ground state. The interaction between the rare gas atom and the
hydrogen atom has been calculated by ab initio methods (see later in this section).

The interaction between an open shell atom with a closed shell atom or molecule
can be modeled with the Diatomics-in-Molecule (DIM) method [11]. This is an ap-
proximate approach, however, with a sound chemical motivation. The total inter-
action energy between an open shell atom and all the remaining closed shell atoms
in the cluster can be expressed in a pair additive way as VniM = 2;=i n U')IM (fl),
where f\ is the radius vector between the i-th rare gas atom and the p-atom (open
shell atom) and U[)IM is the interaction energy between a single rare gas atom
and the open shell atom. The Uf}''M term is expanded in Legendre polynomials,
with only two terms contributing 6rf/M(r,;, 7,;) = V0(r,) + V2 (r, )P2 (cos 7,;) The
potentials are then obtained by a diagonalization of VDIM m a suitable electronic
basis (px, py, pz functions).
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3.2. QUANTUM DYNAMICS OF LARGE CLUSTERS: REDUCED
DIMENSIONALITY AND SEMICLASSICAL APPROACH

The time dependent quantum dynamical method based on the assumption of sep-
arability is so called TDSCF approach (also called the Time-Dependent Hartrcc
method) [13]. The goal is to find using the time-dependent variational principle
the best single particle separable representation of the multidimensional time-
dependent wavefunction. Thus, we star with expressing the total wavefunction as
$(<Zi..... qi\i,t) = T[j=L<t>j(clj; t): where the multiplication runs over all modes. For
the description of photodissociation process we have widely used an extension of
TDSCF method called the Classical Separable Potential method, in which the ef-
fective potentials in the one dimension Schrodiger equation are evaluated using
classical trajectories [17]. Note that both for the TDSCF and CSP method the
configuration interaction extension is possible, although the convergence is very
slow7. Other approximative methods are based on the use of gaussians or on the
path integral formalism of quantum mechanics [18].

3.3. CLASSICAL DYNAMICS: WIGNER TRAJECTORIES APPROACH

The method of Wigncr trajectories is essentially a purely classical dynamics with
a set of initial conditions given by an initial wavefunction. Thus, the only issue in
this method is how to properly map the initial wavefunction onto a classical phase
space. The coordinate distribution is in quantum mechanics given by a square of
the modulus of the wavefunction ^(( f ) ) ! 2 , analogically we can get the distribu-
tion in the momentum space. Due to the Heisenberg uncertainty relations it is
impossible to specify uniquely coordinates and momenta at the same time. This
is a principial issue with no analogue in classical mechanics. There arc plenty of
quantum phase-space distributions and some of them look almost like the classical
phase-space distribution functions. This problem is more serious for photodissoci-
ation than for the collisional processes: the motion in the excited state begins at
short distances, in an area where the interaction between modes is the strongest.
A small change in the initial conditions may cause a huge change in the final
distribution.

The distribution which is most widely used is the so called Wigner distribution
function [15]. It is defined as

W(q,p) = ̂  / dr^*(q+ f )*(? - f )e^, (14)
Till J 2 2

where q and p arc coordinates and conjugated momenta. The Wigncr function
has many appealing features which suggest it as a good candidate for a classical
phase-space representation of the wravefunction. Most importantly, the time evo-
lution equations for the Wigncr function collapse to classical Hamilton equations
in the limit fi —> 0 [15]. The price is that the Wigncr distribution function is not
necessarily always positive.
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Wo have taken the initial coordinates and momenta for the swarm of trajec-
tories from the Wigner distribution. It can be easily proven that for a separable
wavefunction the Wigner function can be written in a product form. As a ba-
sis for photodissociation calculations we have used a wavefunction in the form 3,
therefore, the corresponding Wigner distribution is given by an expression

;Jz,Pz,
pHX.v,

(>)
\b i

\

oc

Jill •>) pHX,rol(ct),e,

(15)

Jz;PzP)-

Here, p; is the momentum coordinate of a cage mode i, pp is the momentum in
the HX vibrational coordinate, Jz and pzp are conjugated momenta to the polar
angles </> and 0. respectively. Jz is the projection of the total angular momentum
onto the z-axis and pzp is the momentum in the z-axis multiplied by the radius.
j>HX,vib a n ( j Y>HX,roL a r 0 t n 0 Signer quasi-probabilitios for the degrees of freedom
of the HC1 molecule.

Once the initial coordinates, momenta, and weights are generated, a swarm of
classical trajectories is propagated by numerically solving the Newton equations
of motion [26] in a standard way [2]. Typically, several hundreds trajectories are
required for converged results.

If we impose an assumption that the chromophore molecule is excited by an
ultrashort laser, then the pulse covers all the frequencies. Consequently, the whole
initial wavefunction is promoted to the excited state. In the experiment, however,
a cw laser with a fixed wavelength is usually used. Within the Wigner trajectories
approach we have, therefore, to filter the Wigner distribution function in such a
way that the energetic relation

tiuj = ERg_HX - Ea
Rg_HX (16)

is fulfilled. Here, TIUJ is the energy of the exciting photon, E9
Rg_HX and Re

Rg_Jlx

arc the interaction energies between argons and HX in the ground and in the ex-
cited states. Note that quantum dynamics simulation of photodissociation process
with a cw laser field would require incorporating the laser held into a molecular
Hamiltonian. The difference between a simulation with an ultrashort excitation
time and that with a fixed wavelength can be rather pronounced, namely when
the wavelength excites the blue or the red tail of the ground state wavefunction.

3.4. NON-ADIABATIC DYNAMICS

After the HX molecule is promoted into a specific electronic state, it evolves and
can also relax back to the ground electronic state via a non-adiabatic transition.
It has been referred [27] that non-adiabatic transitions can play an important role
for large HCl-Arn systems. Within the DIM approach it is possible to construct
not only the potential energy surfaces of the excited states but also non-adiabatic
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couplings. Then the dynamics can proceed via a somiclassical surface hopping
algorithm as proposed by Tully [42].

4. Analysis
4.1. QUANTITIES IN TIME AND ENERGY DOMAINS

The result of a molecular dynamics simulation is a time dependent wavefunction
(quantum dynamics) or a swarm of trajectories in a phase space (classical dynam-
ics). To analyze what arc the processes taking the place during photodissociation
one can directly look at these. This analysis is, however, impractical for systems
with a high dimensionality. We can calculate either quantities in the time domain
or in the energy domain. In the time domain survival probabilities can be mea-
sured by pump-probe experiments [44], in the energy domain the distribution of
the hydrogen kinetic energy can be experimentally obtained [8].

In the case of our systems it is in principal possible to measure the probability of
hydrogen to stay in the cluster. In the molecular dynamics simulation the survival
probability is calculated by integrating the square of the wavefunction over the
cluster region P(t) = ,/cluster ^/(r, t)\ dr. where tyj(r,t) is the time-dependent
hydrogen wavepacket. In classical simulations we simply count at each the number
of trajectories localized in the cluster region. The cluster region we define as a
sphere to a radius corresponding with the cluster size.

In the energy domain, one can calculate the final distribution P(E) of the
kinetic energy of the hydrogen outgoing from the cluster (KED spectrum). While
the calculation of this quantity within the classical framework is straightforward
(simply we do a histogram of the final kinetic energies), the calculation of this
quantity from wavepackcts deserves a small remark. The KED spectrum is given
as

lim P{Ekin,t) = jim. -^- / | (exp(iAr) | * / ( r , t ) ) | sin((9fc)d(9fcd^,

^., (17)

where *f> j is hydrogen wavefunction moving on the excited surface, k is the momen-
tum of hydrogen divided by the Planck constant, fis the coordinate of hydrogen,
and rn is the hydrogen mass. It can be shown that

lun^ P(Ekin,t) = I , (*(r, t = 0)|*(r, t)) cxp f ^ k i n * ) dt, (18)

which is actually nothing else than a Fourier transform of an autocorrelation func-
tion. This prescription is (except of the prefactor) identical with that for absorption
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or omission spectrum [14]. The recurrences in the time domain correspond to res-
onances in the energy domain. These phenomena are not apparent in the classical
framework.

4.2. SCATTERING OF HYDROGEN ATOMS FROM THE CAGE AND MIXING
OF ELECTRONIC STATES

The direct comparison of calculations and experiment is more complicated for
systems which are excited into more than one electronically excited state depending
on laser polarization, e.g. in the case of HI where the system is excited to three
states corresponding either with ground or excited spin orbit state I and I*. We
define a branching fraction

r - [J*] ,19)

The measured kinetic energy distribution spectrum P(E) is then actually
a functional of the two dimensional kinetic energy distributions Pg(E,&s) and
Pe(E.Qs) (where index g denotes ground spin orbit state, e excited spin orbit
state and Qs is a scattering angle of the photodissociated hydrogen). Without
going into details [35], the measured KED spectrum is given as:

P(E) = hl-T) I I smeEPg(eD,E)sm2(&E)d&Edch
2 Jo Jo

+T f f sxn®EPe{®D,E)axi2{®E)d®Ed4>E (20)
Jo Jo

where the angle ®o is related to the 0^ depending on the laser polarization used.
Thus, we can obtain not only energetic information but by comparing the

calculation with the experiment also an information on scattering characteristics
of the photodissociated hydrogen atoms. Let us show this on an example of HI-
Ari47 cluster. Here we assume two dopant positions, cither in the second (sub-
surface) shell, or in the surface shell. The overall KED integrated over all scattering
angles are almost identical for these two cases. However, two-dimensional plots of
Pg{E,®s) and Pe(E,<ds) arc completely different for these two isomcrs (sec Fig.
6). After processing the two dimensional KEDs according to cq. 20, we can directly
compare the calculations with the experiment. In Fig. 6e.f we can see that wrhile wre
have a very good agreement for a surface isomcr for both polarizations measured,
this agreement is lost for the sub-surface isomcr. This strongly suggests that the
true position of the HI is in the surface substitutional position.
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0 0,5 1 1,5 2 2,5
KED of the H fragment / eV

Figure 6. Angular and kinetic energy distribution of the outgoing hydrogen atoms.
Graphs a) and c) corresponds to the H + I exit channel, while b) and d) with the H + I*
channel. In the case a) and b) the dopant is placed in the second shell, while in the case c)
and d) the dopant is on the surface, e) Simulation of the photodissociation of the dopant
on the surface (histogram) compared with a pick-up photodissociation experiment (line
with error bars). f) Simulation of the photodissociation of the dopant in the sub-surface
shell (histogram) compared with a pick-up photodissociation experiment (line with error
bars).

5. Simulation of experiment and control
5.1. SIZE AND SITE CONTROL

Size of the cluster as well as the position of the dopant can significantly change
the character of the photodissociation. We show this effect on the example of the
HBr-Arn clusters. Fig. 7 depicts these survival probabilities for embedded (surface)
isomcrs of different sizes initially in the ground rotational (librational) state of
HBr. There is a dramatic difference in the decay of the hydrogen population in the
cage between the two smaller and the larger clusters with embedded HBr. Figure
7a clearly shows that the first two solvation layers arc quite inefficient in caging,
which only becomes strong after the third argon layer starts to build up. The size
dependence is much weaker for surface isomers wrhere we see a continuous increase
of the transient survival probabilities upon enlarging the cluster.

KED spectra for HBr(Ar)n clusters arc depicted in Figs. 8. For each cluster
size two KED spectra have been evaluated, corresponding to the embedded or
surface isomcr. The KED spectra for these two isomcrs differ significantly from
each other at each size. Note, that caging is very inefficient for the embedded isomcr
of HBr(Ar)i2- As a result, high energy peaks at 1.3 and 0.9 eV, corresponding to
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b)

V;

Figure 7. a)Transient probabilities of finding the photodissociating hydrogen inside the
cluster for embedded HBr(Ar)rl (n=12-146) isomers. b) Transient probabilities of finding
the photodissociating hydrogen inside the cluster for embedded HBr(Ar)n (n=12-146)

directly exiting hydrogens for the Br and Br* channels, represent the main features
in the KED. Upon adding more argon atoms, a peak at zero hydrogen velocity,
which corresponds to efficient caging, starts to grow and finally dominates the
spectrum. For large embedded isomers, we observe only a small component of
fast hydrogen for the HBr(Ar)97 (not shown here) cluster with a half-filled third
solvation layer and zero intensity at high kinetic energies for the HBr(Ar)i46 cluster
with three complete solvation layers. In contrast, the KEDs for surface isomers
change only slightly upon increasing the cluster size from 12 to 146 argon atoms.
Even for the smallest surface isomer under study, the HBr(Ar)i2 cluster, caging is
efficient and, consequently, a significant signal at zero kinetic energy is observed.
The results for the three larger surface isomers are very similar. The dominant
signal appears at zero velocity, however, the fast hydrogen component does not
vanish even for the largest cluster. Effectively, HBr deposited on the argon cluster
surface is surrounded by more argon " solvation layers". than for the embedded
isomer of the same size. On the other hand, some trajectories corresponding to
tails of the librational wavefunctions do not penetrate into the argon cluster.

The experimental results depicted on Fig. 9 can be readily compared with
simulations of HBr(Ar),54 to HBr(Ar)i46 clusters depicted at Fig. 8. It is obvious
that all the trends both for the embedded an for the surface isomers arc well
reproduced by the MD simulation. Namely that for a surface isomers, only a
weak size dependence of the KED spectra is observed, while strong dependence on
the cluster size is recorded for the embedded isomer. Note, that the experiment
generates clusters with a certain size distribution and also that for smaller clusters
there arc rather pronounced error bars in the experiment. This can explain small
differences between experiment and simulation in the sharpness of the peaks in
the KED spectra, especially for the embedded case. Note also that in the case of
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HBr-Ar,,12

HBr-Ar54

h-nrr-r

HBr-Ar,,146

Figure 8. Final kinetic energy distributions of the photolyzcd hydrogen for the a)
embedded and b) surface isomers of HBr(Ar)n.

surface isomcr also different clusters with different dopant positions can contribute
and can enhance the fast component of the KED spectrum [7].
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Figure 9. Experimental kinetic energy distributions of the photolyzed hydrogen for
the a) embedded and b) surface isomers of HBr(Ar)rl with a mean value of n changing
gradually from 55 (lower graphs) to 139 (upper graphs).

5.2. LIBRATIONAL CONTROL

The control scheme of librational control [19] relics on the following scheme

AB + hv(IR) —> AB(v > 0)
AB(v > 0) + lw(UV) —> AB *

AB* —>A(a)+B(/3),

(21)

where AB(v > 0) denotes the vibrationally excited AB molecule in its ground
state and AB* is the electronically excited AB molecule. The initial wavefunction
can have different spatial orientations and by choosing the proper vibrationally
excited state we can determine the photodissociation results. This principle is
demonstrated on the HCl-Arn system [46].

In all clusters there exist low-lying excited librational states, where most of
the hydrogen wavefunction is oriented away from the cluster or at least sidewisc.
This is demonstrated in Fig. 10 for the case of the HCl(Ar)i2 complex. For these
excited librational states caging becomes inefficient since the photodissociating
hydrogen minimizes the interaction with the argon cage. In other words, librational
preexcitation can be used to "turn off' the cage effect for surface solvated hydrogen
halidcs.

Among of the systems under study, clusters with three, five, six and twelve
atoms possess higher symmetries having more than a twofold rotational axis. As
a result doubly degenerate librational states occur in these complexes. In Fig.
10 one of the possible representations of these degenerate states in the HCl(Ar)i2
cluster is displayed, however, any linear combination of these functions is also valid.
Three pronounced recurrences shown in Fig. 10 demonstrate repeated collisions
of hydrogen with the cluster. The situation becomes dramatically different for
photolysis started from the first non-degenerate librationally excited state. In this
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Figure 10. a) Ground and b)-c) lowest excited librational wavefunctions of the HC1
molecule deposited on clusters with twelve argon atoms. The shadowing represents the
angular hydrogen probability and the wired spheres correspond to effective radii of the
heavy atoms. Note the structures b) and c) corresponding to a degenerate pair of func-
tions. For the sake of clarity, the radius of the hydrogen sphere is artificially expanded.
In the right part, the quantum dynamics of the radial hydrogen wavepacket motion for
HC1 photolysis on the Ari2 cluster initiated from the a) ground, b) first non-degenerate
excited librational state is represented.

state most of the initial hydrogen density is oriented sidewise with respect to the
cage. As a results caging becomes very inefficient and, consequently only a single
recurrence occurs during the dynamics.

From the point of view of measurable quantities, this is manifested in a follow-
ing way. Fig. 11 shows the KED spectra for HC1 photolysis on the A112 cluster,
initiated either from the ground or from the first non-degenerate excited librational
state. In the former case strong caging results in a well developed vibrational struc-
ture in the KED. This means that a significant part of the hydrogen wavefunction
lives for nearly 100 fs in the cage and repeatedly returns to the Franck-Condon
region. Clearly, the resonant structure is the strongest among the systems under
study. It is even stronger than in the case of a rotationally cold photodissociating
HC1 molecule fully solvated in the Ari2 cluster. On the other hand, the structure
in the KED disappears upon librational preexcitation, which orients most of the
photodissociating hydrogen away from the argon cluster.

For the possible experimental realization of librational control it is important
to take into account energy considerations. Our calculations show7 that the level
spacing between the ground and lowest excited librational state amounts to 35-70
cm"1. Thus, for efficient discrimination between the librational states the cluster
temperature should not exceed fewr tens of Kelvins. This is realistic for the clus-
ter sizes investigated here. For larger clusters, where higher temperatures might
cause a problem, the technique of embedding in helium droplets, which leads to
a very efficient cooling, could in principle be employed. Another point is which



PHOTODISSOCIATION OF HX IN CRYOGENIC RARE GAS 491

Figure 11. Kinetic energy distributions of hydrogen atoms produced from photolysis of
HCl@Ari2 started from the ground (GS) or first non-degenerate excited (ES) librational
states of the HC1 molecule. For clarity, the spectra are arbitrarily vertically shifted with
respect to each other.

experimental observable should be used as a fingerprint of the librational con-
trol mechanism. Here, we suggest to monitor the disappearance of the resonant
structure in the hydrogen KED upon librational preexcitation. The present setup
corresponds to an ultrashort (therefore, energetically broad) exciting UV pulse.
Another option is to use a longer (nanosecond) pulse with a frequency at the low
energy tail of the hydrogen halidc absorption band. Such an excitation produces a
much less energetic hydrogen, which is more efficiently trapped in the argon cage.
An observable consequence of librational preexcitation is then a disappearing low
energy part of the KED, corresponding to caged hydrogens.

5.3. EXTERNAL ELECTRIC FIELD

The librational wavefunction delocalization can be efficiently controlled by a direct
current electric field [16]. The dipole moment of the HX molecule is coupled to
the external electric held by a factor —fl.E in the the Hamiltonian. The higher
the intensity of the electric field, the more classically the system behaves. The
principle is demonstrated for the case of the Nc-HI molecule 12. This molecule has
a vibrationally averaged structure corresponding to a secondary minimum (DMC
wravefunction in Fig. 12a). If we apply an electric field of the intensity 2.5x10°
V/cm, the librational wavefunction becomes more classical but still the structure
is not covering the global minimum on the potential energy surface. An electric field
of the intensity of 2.5.10° V/cm flips the wavefunction. so that the other isomer is
formed. Note that unlike for the ground state no cage effect would be observed for
this second minimum. For smaller fields applied, the cage effect would be, however,
more pronounced. One could observe in this case long living resonances.
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a) b) c)

Figure 12. Structure control of a Ne-HBr cluster by a DC electric filed, x-axis: cosQ,
y-axis: wavcfunctioii(0 is the angular part of the Jacobi coordinate system).

6. Conclusions

In this chapter we have described the way how7 to simulate the photodissociation
dynamics in large, cryogenic clusters. We have emphasized the role of the initial
conditions for the correct description of the experimental quantities. Preparing the
system in different initial states is also a way how to control the photodissociation
process. We can tune the cage effect by changing cluster size, the site of the
chromophorc, by librational prooxcitatiori, by an external electric field, by cluster
composition of by changing the temperature of the clusters. All these control
exploits the the orientation by weak intermolecular forces. We have shown that
for the dynamical description usually the classical mechanics within the Wignor
trajectories approach is sufficient.

Acknowledgment

Support of the Czech Ministry of Education to the Center for Complex Molecular
Systems and Biomolecules (Grant No. LN00A032) is gratefully acknowledged.

References

1. Alimi, R. and R. Gerber: 1990, 'Solvation effects on chemical reaction dynamics in
clusters: Photodissociation of HI in XcnHI'. Phys. Rev. Lett. 64, 1453-1456.

2. Allen, M. P. and D. J. Tildesley: 1987, Computer Simulations of Liquids. Clarendon
Press, Oxford.

3. Anderson, D., S. Davis, and D. Ncsbitt: 1997, 'Sequential solvation of HC1 in argon:
High resolution infrared spectroscopy of ArnHCl(«=l,2,3)'. J. Chern. Phys. 107,
1115-1127.

4. Aques, C, L. Valachovic, S. Iionov, E. Bohmer, Y. Wen, J. Segall, and C. Wittig:
1993, 'Photoinitiatcd processes in complexes - subpicosccond studies of CO2-HI and
stcrcospccificity in Ar-HX'. J. Chern. Soc. Faraday T 89, 1419-1425.

5. Auer, B. M. and A. B. McCoy: 2003, 'Using diffusion Monte Carlo to evaluate
the initial conditions for classical studies of the photodissociation dynamics of HC1
dimcr'. J. Phys. Cham. A 107, 4-12.

6. Barnett, R. N., P. J. Reynolds, and W. A. Lester: 1991, 'Monte Carlo algorithms
for expectation values of coordinate operators'. ,7. Comput Phys. 96, 258-276.

7. Baumfalk, R... N. Nahler, U.Buck, M. Niv, and R. Gerber: 2000, 'Photodissociation
of HBr adsorbed on the surface and embedded in large Arn clusters'. J. Chern. Phys.
113(1), 329-338.

8. Buck, U.: 2002, 'Photodissociation of hydrogen halide molecules in different cluster



PHOTODISSOCIATION OF HX IN CRYOGENIC RARE GAS 493

environments'. J. Phys. Chern. 106, 10050 10062.
9. Castillo-Chara, J., R. R. Lucchese. and J. W. Bcvan: 2001, 'Differentiation of the

ground vibrational and global minimum structures in the Ar : HBr intermolecular
complex'. ,/. Chern. Phys. 115, 899-911.

10. Dickey, J. M. and A. Paskin: 1969, 'Computer simulation of the lattice dynamics of
solids'. Phys. R.ev. 188, 1407-1418.

11. Ellison. F. O.: 1996, 'A method of Diatomics in Molecules. I. General theory and
applications'. J. Am. Chern. Soc. 85, 3540 3544.

12. Feyninan. R. P. and A. R. Hibbs: 1965. Quantum Mechanics and Path Integrals.
New York: McGraw Hill.

13. Gerber, R. B., R. Kosloff, and M. Ratner: 1986, 'Time dependent wavepacket cal-
culations of molecular scattering from surfaces'. Cornp. Phys. Rep. 5, 59 113.

14. Heller, E.: 1981, 'The semiclassical way to molecular spectroscopy'. Ace. Chern.
Ii.es. 14, 368-375.

15. Hillery, M., R. F. O'Connel, M. O. Scully, and E. P. Wigner: 1984, 'Distribution
functions in physics - fundamentals'. Phys. Rep. 106, 121 167.

16. Hindc, R. J.: 1998, 'Structural control of Ar-HF complexes using dc electric fields:
a diffusion quantum Monte Carlo study'. Chem. Phys. Lett. 283, 125-130.

17. Jungwirth, P. and R. B. Gerber: 1995, 'Quantum dynamics of large polyatomic
systems using a classically based separable potential method'. J. Chem. Phys. 102,
6046 6056.

18. Jungwirth, P. and R. B. Gerber: 1999, 'Quantum molecular dynamics of ultrafast
processes in large polyatomic system's'. Chern. Rev. 99, 1583 1606.

19. Jungwirth; P., P. Zdanska, and B. Schmidt: 1998, 'Librational control of photo-
chemical reactions in small clusters'. J. Phys. Chern. A 102, 7241 7244.

20. Kosloff, R.: 1994, 'Propagation methods for quantum molecular dynamics'. Annu
Rev. Phys. Chem. 45. 145-178.

21. Leake, .1. A., W. B. Daniels, J. J. Skalyo, B. C. Frazer, and G. Shirane: 1969, 'Lattice
dynamics of neon at two densities from coherent inelastic neutron scattering'. Phys.
Rev. 181, 1251-1260.

22. Lcpctit, B. and D. Lcmoinc: 2002, 'Statc-to-statc ArHBr photodissociation quantum
dynamics'. J. Chem. Phys. 117, 8676-8685.

23. Monnerville, M. and B. Pouilly: 1998, 'First quantum investigation of the photodis-
sociation of the Ar-HBr complex: Three-dimensional time-dependent approach'.
Chem. Phys. Lett. 294, 473-479.

24. Nahlcr, N. H., R. Baumfalk, U. Buck, H. Vach, P. Slavicck, and P. Jungwirth: 2003,
'Photodissociation of HBr in and on Arre clusters: the role of the position of the
molecule'. Phys. Chem. Chem. Phys. 5, 3394.

25. Narcvicius, E. and N. Moiscycv: 1998, 'Structured photo-absorption spectra of
ArHCl: fingerprints of overlapping broad resonances'. Chem. Phys. Lett. 287, 250-
254.

26. Newton, I.: 1687, Philosophic/, Naturalis Prindpia Mathernatica. London.
27. Niv, M., A. Krylov, and R. Gerber: 1997a, 'Photodissociation, electronic relaxation

and recombination of HC1 in ArTi(HCl) clusters: Nonadiabatic molecular dynamics
simulations'. Faraday Discussions 108, 243-254.

28. Niv, M., A. I. Krylov, and R. B. Gerber: 1997b, 'Photodissociation, electronic re-
laxation and recombination of HC1 in Ar?, (HC1) clusters'. Faraday Discuss. Chem.
Soc. 108, 243.

29. Niv, M. Y.. A. I. Krylov, R. B. Gerber, and U. Buck: 1999, 'Photodissociation of
HC1 adsorbed on the surface of an Ari2 cluster: Nonadiabatic molecular dynamics
simulations'. J. Chem. Phys. 110, 11047.

30. Portwich, G.: 1995. Master's thesis, Universitat Gottingen.
31. Schmidt, B.: 1999, 'Quantum dynamics of HF photodissociation in icosahedral

Ari2HF clusters: rotational control of the hydrogen cage exit'. Chem. Phys. Lett.
301, 207.

32. Schroder, T.. R. Schinke, S. Liu, Z. Bacic. and J. Moskowitz: 1995. 'Photodissozi-



494 PETR SLAVICEK AND PAVEL JUNGWIRTH

ation of HF in ArnHF (n=l-14,54) van dor Waals clusters: Effects of the solvent
cluster size on the solute fragmentation dynamics'. J. Cham. Phys. 103, 9228 9241.

33. Segall, J.. Y. Wen, R. Singer. C. Wittig, A. Garcia-Vela, and R. Gerber: 1993, 'Ev-
idence for a Cage Effect of HBr in Ar-HBr. Theoretical and Experimental Results'.
Cham. Phys. Lett. 207, 504 509.

34. Sese, L. M.: 1994, 'Study of the Feynman-Hibbs effective potential against the path-
integral formalism for Monte Carlo simulations of quantum many-body Lennard-
Jones systems'. Mol. Phys. 81, 1297 1312.

35. Slavicek, P., P. Jungwirth, M. Lewerenz, N. H. Nahler, M. Farnik, and U. Buck: 2003,
'Photodissociation of HI on the surface of large argon clusters: The orientation of the
librational wavefunction and the scattering from the cluster cage'. ,/. Chem. Phys.
p. submitted.

36. Slavicek, P., M. Roeselova, P. Jungwirth, and B. Schmidt: 2001, 'Preference of
cluster isomers as a result of quantum delocalization: Potential energy surfaces and
intermolecular vibrational states of Ne-•-HBr. Ne-•-HI. and HI(Ar)n (n = l -6) ' .
J. Cham. Phys. 114(4), 1539 1548.

37. Slavicek, P., P. Zdanska, P. Jungwirth, R. Baumfalk, and U. Buck: 2000, 'Size effects
on photodissociation and caging of hydrogen bromide inside or on the surface of
large inert clusters: From one to three icosahedral layers'. ,/. Phys. Chem. A 104,
7793-7802.

38. Sterling, M., Z. Li, and V. A. Apkarian: 1995, 'Simulations of quantum crystals by
classical dynamics'. J. Chem. Phys. 103, 5679 5683.

39. Stratt, R,. M.: 1995. 'The instantaneous normal-modes of liquids'. Accounts Chem.
Res 28, 201-207.

40. Suhm, M. A. and R. O. Watts: 1991, 'Quantum Monte Carlo studies of vibrational-
states in molecules and clusters'. Phys. Rep 204, 293 329.

41. Trin, J., M. Monnerville, B. Pouilly, and H. D. Meyer: 2003, 'Photodissociation of the
ArHBr complex investigated with the multiconfiguration time-dependent Hartree
approach'. J. Chem. Phys. 118, 600 609.

42. Tully, J. C: 1990, 'Molecular-dynamics with electronic-transitions'. J. Chem. Phys.
93, 1061-1071.

43. von Pictrowski, R., M. Rutzcn, K. von Hacftcn, S. Kakar, and T. Mollcr: 1997,
'Fluorescence excitation spectroscopy of xenon doped neon clusters: size and site
effects, and cluster melting'. Z. Phys. D 40, 22-24.

44. Willbcrg, D. M., M. Gutmann, J. J. Brccn, and A. H. Zcwail: 1992, 'Real time
dynamics of clusters 1.: I2Xre (n=l)'. J. Chem. Phys. 96, 198-212.

45. Zdanska, P., B. Schmidt, and P. Jungwirth: 1999, 'Photolysis of hydrogen chlo-
ride embedded in the first argon solvation shell: Rotational control and quantum
dynamics of photofragments'. J. Chem. Phys. 110, 6246-6256.

46. Zdanska, P., P. Slavicek, and P. Jungwirth: 2000, 'HC1 photodissociation on
argon clusters: Effects of sequential solvation and librational preexcitation'.
J. Chem. Phys. 112(24), 10761-10766.



LIST OF PARTICIPANTS 495

List of participants of the Advanced Research Workshop 

Alexander M.H.  
University of Maryland, College Park, MD, USA 

Aquilanti V.
University of Perugia, Italy 

Auzinsh M.  
University of Latvia, Riga, Latvia 

Baer M.
Soreq NRC, Yavne, Israel 

Balint-Kurti G.G.
University of Bristol, UK 

Basilevsky M.V.
Karpov Institute of Physical Chemistry, Moscow, Russia 

Bencsura Á.  
Institute of Chemistry, Budapest, Hungary 

Bene E.
Institute of Chemistry, Budapest, Hungary 

Bosanac S.D.
R. Boskovic Institute, 10001 Zagreb, Croatia 

Clary D.C.
University of Oxford, UK 

Császár A.  
Eötvös University, Budapest, Hungary 

Dashevskaya E.  
Technion, Haifa, Israel 

Drahos L.  
Institute of Chemisty, Budapest, Hungary 

Faginas Lago N.  
University of Perugia, Italy 

Guo H.  
Department of Chemistry, University of New Mexico, Albuquerque, NM, USA 

Harding L.B.  
Chemistry Division, Argonne National Laboratory, Argonne, IL, USA 

Herman Z.  
Heyrovsky Institute, Prague, Czech Republic 

Lagana A.  
University of Perugia, Italy 

Launay J. M.  
PALMS/SIMPA - UMR 6627 du CNRS, Universite de Rennes I, Rennes, 
France 

Lendvay G.  
Institute of Chemistry, Hungarian Academy of Sciences, Budapest, Hungary 

Light J.C.  
University of Chicago, IL, USA 

495

A. Lagana and G. Lendvay (eds.), Theory of Chemical Reaction Dynamics, 495–497.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



LIST OF PARTICIPANTS 496

Maergoiz A.
Institute of Chemical Physics, Russian Academy of Science, Moscow, Russia 

Manthe U.  
Theoretische Chemie, TU Muenchen, Garching, Germany 

Miklavc A.  
National Institute of Chemistry, Ljubljana, Slovenia 

Miller W.H.
University of Berkeley, CA, USA 

Nikitin E.E.
Technion, Haifa, Israel 

Nyman G.  
University of Göteborg, Sweden 

Oref I.  
Technion, Haifa, Israel 

Rozgonyi T.
Institute of Chemistry, Budapest, Hungary 

Schatz G.C.  
Department of Chemistry, Northwestern University, Evanston, IL. USA 

Schiller R.
KFKI Atomic Energy Research Institute, Budapest, Hungary 

Schinke R.  
University of Göttingen, Germany 

Slavicek P.  
Heyrovsky Institute of Physical Chemistry, Academy of Sciences, Prague, 
Czech Republic 

Smirnov B. M.  
Institute for High Temperatures, Russian Academy of Sciences, Moscow, 
Russia

Szalay P.
Department of Theoretical Chemistry, Eötvös University, Budapest, Hungary 

Szalay V.
Research Institute for Solid State Physics and Optics, Budapest, Hungary 

Troe J  
Institut für physikalische Chemie, Universität Göttingen,  Göttingen, Germany 

Troya D.  
University of La Rioja, Logrono, Spain 

Ushakov V.
Institute of Problems of Chemical Physics, Chernogolovka, Russia 

Vértesi T.  
Unversity of Debrecen, Hungary 

Wagner A.F.  
Chemistry Division, Argonne National Laboratory, Argonne, IL, USA 

Werner H.-J.  
Institute for Theoretical Chemistry, University of Stuttgart, Germany 

Zhang D. H.  
University of Singapore, Singapore 



LIST OF PARTICIPANTS 497

The only experimentalist at the Workshop. 

We thank Zdenek Herman for permission to publish his drawing. 



LIST OF PAPERS 499

List of papers given at the Advanced Research Workshop 

Alexander M.H.  
Nonadiabatic effects in abstraction reactions of 2P atoms with H2

Aquilanti V. 
Exact reaction cross sections and rates by the hyperquantization algorithm 

Auzinsh M. 
Manipulation of atoms and molecules with a laser radiation and external fields 

Baer M. 
On the Quantization of the Electronic Non-Adiabatic Coupling Terms: The 
H+H2 system as a case of Study 

Balint-Kurti G.G. 
Time-Dependent wavepacket calculations for reactive scattering and 
photodissociation 

Basilevsky M.V. 
Momentum representation of the solute/bath interaction in the dynamic theory of 
chemical processes in condensed phase  

Bosanac S.D. 
Dynamics of atoms and molecules in phase space 

Clary D.C. 
Quantum reaction dynamics of polyatomic molecules  

Császár A.  
Chemical reactions at the focal point  

Dashevskaya E.  
Vibrational relaxation of diatoms in collisions with atoms at low energies 

Guo H. 
Chebyshev propagation and applications to scattering problems  

Harding L.B. 
Radical-Radical Reactions 

Herman Z. 
Dynamics of chemical reactions of molecular dications: Beam scattering studies 

Laganà A. 
Towards a grid based molecular simulator  

Launay J.M. 
Quantum dynamics of atom-hydrogen insertion reactions 

Lendvay G. 
Dynamics of reactions of vibrationally excited molecules 

Light J.C. 
Energy Selected Bases for Vibrations and Reaction Dynamics  

Maergoiz A. 
Statistical Adiabatic Channel Model for low-temperature capture in open shell 
systems. Asymptotic interactions in H+O2 and O+OH systems 

Manthe U. 
Accurate quantum dynamics calculations for polyatomic reactions  

499

A. Lagana and G. Lendvay (eds.), Theory of Chemical Reaction Dynamics, 499–500.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



LIST OF PAPERS 500

Miklavc A. 
Strong Acceleration of Chemical Reactions Arising Through the Effects of 
Rotational Excitation on Collision Geometry 

Miller W.H. 
Using the Semiclassical Initial Value Representation to add Quantum Effects to 
Classical Molecular Dynamics Simulations  

Nikitin E.E.
Vibrational Predissociation: quasiclassical tunneling through the classical chaotic 
sea

Nyman G. 
  Wavepacket calculations in curvilinear coordinates on coupled potential energy 

surfaces and a Wigner transform of the Boltzmann operator 
Oref I. 

Termolecular collisions between benzene and Ar 
Schatz G.C. 

 Intersystem crossing effects in chemical reactions 
Schinke R. 

Isotope effects in ozone: Some answers, more questions  
Slavicek P. 

Exact reaction cross sections and rates by the hyperquantization algorithm  
Smirnov B. M. 

Coupling of electron momenta in ion-atom collosions 
Szalay P.

Analytic Evaluation of Nonadiabatic Coupling Terms and Efficient Searching 
Algorithm of Conical Intersections within the COLUMBUS Program System  

Szalay V. 
On one-dimensional discrete variable representations with general basis 
functions

Troe J. 
Recent advances in the modeling of ion-molecule reactions in the gas phase 

Troya D. 
Dynamics Studies of O(3P)+Hydrocarbon Reactions 

Ushakov V. 
Wavepacket calculations in curvilinear coordinates on coupled potential energy 
surfaces and a Wigner transform of the Boltzmann operator  

Wagner A.F. 
Theoretical Studies of the Addition of H or D to Acetylene  

Werner H.-J. 
Non-adiabatic effects in bimolecular reactions  

Zhang D. H. 
Quantum Reaction Dynamics in Tetraatomic Systems and Beyond  



501

INDEX 

abstraction
 46ff, 188ff, 256ff, 281ff,   
 325, 329ff, 349ff 
adiabatic
 - electronic 43ff, 69ff,  
 90ff, 107ff, 190ff, 254ff,  
 266, 414ff, 458, 483ff 
 - vibrational 
 272ff, 311, 359ff 
alignment 
 196, 207, 464ff 
alkoxy
 329, 344 
alkyl
 329ff 
angular distribution 
 206, 210 
anharmonic  
 231, 237, 270, 445 
asymptotic theory 
 131ff 
Bloch equation  
 449 
body-fixed coordinates 
 119, 124, 248 
bond order  
 373ff 
Born-Oppenheimer 
 46ff, 70, 254 
Breit-Pauli Hamiltonian 
 91 
C(1D) + H2
 227 
capture
 173, 196, 214, 349ff 

C + CH 
 248 
centrifugal barrier 
 210 
centrifugal sudden  
 approximation  
 196, 226, 258 
chaos
 381ff 
chaperon mechanism 
 402, 444 
Chebyshev 
 173, 217ff, 268ff 
classical trajectory 
 42ff, 196, 328, 349ff,  
 435ff 
Cl + CH4
 283 
Cl + H2
 46ff 
cluster
 - computer 363ff 
 - molecular 436ff, 469ff 
coherence 
 89, 103, 457ff 
concurrent computing 
 364ff 
Coriolis
 30, 46, 59, 130, 192 
correlation function 
 270, 475 
cpu
 194, 218, 221, 236, 266,  
 269 
CRESU
 405, 410 

501

A. Lagana and G. Lendvay (eds.), Theory of Chemical Reaction Dynamics, 501–504.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



INDEX502

crossed molecular beam 
 89, 187, 243ff 
cumulative reaction  
 probability 224 
Delves coordinates 
 47 
density of states 
 241, 401ff, 478ff 
diabatic
 46, 53ff, 68, 71ff, 90ff,  
 107ff, 191, 214 
differential cross section
 45ff, 149ff, 187ff, 253ff 
discrete variable 

 representation 217, 231ff, 
266, 372 

dissociation energy 
 237ff, 375 
electric field 
 491 
elimination reaction 
 329ff 
energy selected basis 
 231ff 
energy transfer 
 349, 435ff 
enhancement of rate 
 104ff, 271, 351ff 
excitation function 
 102, 104, 195ff, 339, 345, 
 349ff 
falloff curve 
 407 
F + H2
 45ff, 248, 326ff, 349ff 
F + HCl 
 248 
fine structure 
 91, 104, 130ff 

grid software 
 363 
H2O
 236ff, 281ff, 350ff 
H + CH4
 255ff, 279ff 
HCO
 222, 242 
heavy-light-heavy 
 275, 341 
helicity
 50ff, 198ff 
helium droplet 
 491 
H + H2O
 279ff, 349ff  
HN2
 222 
hyperspherical 
 47ff, 187ff, 248, 253ff,  
 375 
hyperthermal 
 329ff 
insertion reaction  
 188ff, 226 
integral cross section 
 150ff, 196, 211, 280 
intersystem crossing 
 89ff, 103, 104 
ion-molecule reactions 
 399ff 
IVR
 381ff, 438ff 
Jacobi coordinate 
 47, 226, 281ff, 312, 313 
kinematic mass model 
 307ff 
kinetic energy operator 
 231ff, 260, 286 



INDEX 503

Krylov subspace 
 220ff, 266ff 
Landau-Teller
 413ff 
Landau-Zener 
 105 
Langevin rate constant 
 404ff 
large amplitude motion 
 231 
lifetime 
 188, 195 
Li + HF 
 224, 248 
low Earth orbit 
 329ff 
magnetic field 
 463ff 
Massey parameter 
 107 
metalaboratory
 365 
minimum energy path 
 92ff, 311ff 
momentum representation 
 108ff 
Morse oscillator 
 258, 350, 383, 365ff,  
 415ff, 424 
MSINDO
 329ff 
Na + HF 
 248 
non-adiabatic coupling 
 67ff, 214 
normal mode 
 231, 258 
O + CH4
 255ff 

O + H2
 187ff, 307ff 
opacity function 
 354 
orientation 
 243ff, 305ff, 464ff 
parallel computing 
 363ff, 369 
parity
 29ff, 49ff, 91, 225, 280ff 
photodissociation 
 149ff, 231, 246-247, 472ff  
polarized light 
 453ff 
predissociation 
 381f, 464ff 
quantum effect 
 210, 405 
quasiclassical approximation 
 381ff, 413ff 
quasiclassical trajectory  
 method  45, 173, 196, 211,  
 329, 349ff, 366, 386 
Radau coordinates 
 235, 237, 350 
reduced spectra of oscillator 
  forces, 23 
Renner-Teller coupling 
 226 
resonances 
 210, 221ff, 240ff, 275 
  491 
resonant electron transfer 
  129ff 
ROBO
 375 
rotational distribution 
 273 



INDEX504

SACM
 403ff  
semiclassical
 105ff, 482 
separability
 234, 241, 482 
SIMBEX
 365ff 
singlet-triplet coupling 
 45ff, 99 
S-matrix 
 50ff, 107, 217ff, 254ff 
spacecraft 
 330ff 
space-fixed coordinates 
 119ff, 192ff 
spin-orbit
 46ff, 89ff, 130ff, 271 
Sr + HF 
 248 
state to state
 94, 367, 371 
statistical unimolecular rate 
  theory 401 
stereodirect representation 
  248 
stereodynamics 
 243ff, 303ff 
steric hindrance 
 243 
strong collision 
 408 
supersonic beam 
 468 
task farm  
 368, 371-372 
termolecular collisions 
 447 

thermal rate 
 63, 222ff, 253ff, 269ff,  
 281, 294ff, 310ff, 349ff 
threshold energy 
 95, 327, 349ff, 394 
time-dependent 
 105, 119ff, 149ff, 188ff, 
 254, 481ff 
time-independent  
 46ff, 89ff, 158, 187ff, 
 217ff, 248, 254ff, 279,  
 373 
time propagator 
 217, 372 
trajectory surface hopping 
 1, 89ff 
transport properties 
 367 
triatomic
 45ff, 150, 187ff, 235ff, 
 282, 311ff, 351ff, 375,  
 382, 446 
tunneling
 89, 210, 213, 254ff, 271ff, 
297ff, 381ff, 427, 429 
valence force field 
 436 
vibrational distribution 
 200ff, 290, 342, 355 
vibrationally adiabatic 
 272ff, 307, 310ff, 359ff 
vibrationally excited
 349ff, 489 
Wigner rotation matrix 
 48, 284 




