

Hardware Based Packet Classification for
High Speed Internet Routers

1 C

Chad R. Meiners • Alex X. Liu • Eric Torng

Hardware Based
Packet Classification for
High Speed Internet Routers

ISBN 978-1-4419-6699-5 e-ISBN 978-1-4419-6700-8
DOI 10.1007/978-1-4419-6700-8
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010928719

© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Chad R. Meiners
Michigan State University
Department of Computer Science
 and Engineering
Engineering Building 3115
East Lansing, MI 48824-1226
USA
meinersc@cse.msu.edu

Eric Torng
Michigan State University
Department of Computer Science
 and Engineering
Engineering Building 3115
East Lansing, MI 48824-1226
USA
torng@msu.edu

Alex X. Liu
Michigan State University
Department of Computer Science
 and Engineering
Engineering Building 3115
East Lansing, MI 48824-1226
USA
alexliu@cse.msu.edu

This material is based upon work supported by the National Science Foundation under
Grant No. 0916044. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

This book is dedicated to chance encounters at the correct time.
– Chad Meiners

Dedicated with love and respect
to my parents Shuxiang Wang and Yuhai Liu (God rest his soul),

to Huibo Heidi Ma
to my twin sons Max Boyang and Louis Boyang,

to whom I owe all that I am and all that I have accomplished.
– Alex X. Liu

Dedicated to Pat and Annika.
– Eric Torng

Contents

1 Introduction . 1
1.1 Motivation . 2
1.2 Contribution . 3

2 Background . 5
2.1 Firewall decision diagrams . 6
2.2 One-Dimensional Classi er Minimization . 9

3 Related Work . 15
3.1 TCAM Based Classi ers . 15

3.1.1 Classi er Minimization: . 15
3.1.2 Range Encoding: . 18
3.1.3 Circuit Modi cation: . 20

3.2 Software Based Techniques . 20
3.2.1 Parallel decomposition . 21
3.2.2 Decision Trees . 23

Part I Equivalent Transformation Techniques

4 TCAM Razor . 31
4.1 Multi-dimensional TCAM Minimization: The Basics 31

4.1.1 Conversion to Firewall Decision Diagrams 31
4.1.2 Multi-dimensional TCAM Minimization 32
4.1.3 Removing Redundant Rules . 34
4.1.4 The Algorithm . 34
4.1.5 TCAM Update . 35

4.2 Multi-dimensional TCAM Minimization: The Optimization
Techniques . 35
4.2.1 Lazy Copying in FDD Construction . 35
4.2.2 Hashing in FDD Reduction . 36

vii

viii Contents

5 Bit Weaving . 41
5.1 Bit Swapping . 43

5.1.1 Pre x Bit Swapping Algorithm . 43
5.1.2 Minimal Cross-Free Classi er Partitioning Algorithm 45
5.1.3 Partial List Minimization Algorithm . 47

5.2 Bit Merging . 47
5.2.1 De nitions . 48
5.2.2 Bit Merging Algorithm (BMA) . 48

5.3 Discussion . 51
5.3.1 Redundancy Removal . 51
5.3.2 Incremental Classi er Updates . 51
5.3.3 Composability of Bit Weaving . 52
5.3.4 Pre x Shadowing . 53

5.4 Complexity Analysis of Bit Weaving . 54

6 All-Match Redundancy Removal . 57
6.1 All-Match Based Redundancy Theorem . 57

6.1.1 All-Match FDDs . 57
6.1.2 The All-Match Based Redundancy Theorem 59

6.2 All-Match Based Redundancy Removal . 60
6.2.1 The All-Match FDD Construction Algorithm 60
6.2.2 The All-Match Based Redundancy Removal Algorithm 60
6.2.3 Proof of Complete Redundancy Removal 63

6.3 Optimization Techniques . 64
6.3.1 Decision Chaining . 64
6.3.2 Isomorphic Terminal Nodes Elimination 66

6.4 Classi er Incremental Updates . 67
6.4.1 Rule Insertion . 68
6.4.2 Rule Deletion . 68
6.4.3 Rule Modi cation . 69

6.5 Redundancy Analysis . 69

Part II New Architectural Approaches

7 Sequential Decomposition . 75
7.1 Multi-Lookup Approach . 77

7.1.1 Constructing Multi-lookup Table . 77
7.1.2 Packet Processing . 80
7.1.3 Analysis . 81

7.2 Pipelined-lookup Approach . 82
7.2.1 Pipelined-Table Construction . 82
7.2.2 Packet Processing . 84
7.2.3 Analysis . 84

7.3 Packing Approach . 85
7.3.1 Strict Partitioning . 86

Contents ix

7.3.2 Shadow Packing . 89
7.3.3 Strict Partitioning vs. Shadow Packing 93

7.4 Table Consolidation . 93
7.4.1 Table Consolidation Algorithm . 93
7.4.2 Hierarchical Table Consolidation . 94
7.4.3 TCAM/SRAM Space Tradeoff via Bounded Consolidation . 96

7.5 One-Dimensional Table Consolidation . 96
7.5.1 Table Consolidation with Sequential Decomposition 96
7.5.2 Coping with More Fields than TCAM chips 97

7.6 Implementation Issues . 97
7.6.1 TCAM Update . 97
7.6.2 Non-ordered FDDs . 98
7.6.3 Lookup Short Circuiting . 98
7.6.4 Best Variable Ordering . 99

8 Topological Transformations . 101
8.1 Topological Transformation . 103

8.1.1 Architectures . 103
8.1.2 Measuring TCAM space . 105
8.1.3 TCAM Update . 106

8.2 Domain Compression . 106
8.2.1 Step 1: Compute Equivalence Classes 107
8.2.2 Step 2: Construct Transformers . 107
8.2.3 Step 3: Construct Transformed Classi er 109

8.3 Pre x Alignment . 111
8.3.1 Pre x Alignment Overview . 111
8.3.2 One-dimensional Pre x Alignment . 113
8.3.3 Multi-Dimensional Pre x Alignment . 116
8.3.4 Composing with Domain Compression 117

References . 119

Index . 123

List of Figures

2.1 Illustration of FDD construction . 8
2.2 An example one-dimensional TCAM minimization problem 12
2.3 Illustration of dynamic program . 12

4.1 A rewall decision diagram . 32
4.2 “Virtual” one-dimensional packet classi er . 33
4.3 Lazing copying of subgraphs . 36
4.4 Example of lazing copying . 37
4.5a Before FDD reduction . 37
4.5b After FDD reduction . 37

5.1 Example of the bit weaving approach . 42
5.2 Example of bit-swapping . 45
5.3 Applying bit weaving algorithm to an example classi er 45
5.4 Example of Bit Merging Algorithm Execution 50

6.1 A simple packet classi er . 58
6.2 An all-match FDD for the packet classi er in Fig 6.1 58
6.3 Constructing an all-match FDD . 61
6.4 The containment list and the residency List for the all-match FDD . . 62
6.5 The resulting packet classi er after removing redundant rules 63
6.6 Constructing an all-match tree with decision chaining 66
6.7 All-Match Tree with decision tree chaining constructed in rule

order and reverse order. 67

7.1 Reducing information redundancy . 76
7.2 FDD generation and reduction . 78
7.3 The Multi-lookup scheme . 79
7.4 Table generation and table mergence in the pipelined-lookup

approach . 83
7.5 Example of a pipelined-lookup . 84

xi

xii List of Figures

7.6 Strict partitioning of a TCAM chip . 87
7.7 Decisions in SRAM . 87
7.8 Reassigning the table IDs . 88
7.9 Shadow packed tables & shadow packing tree . 90
7.10 The shadow packing process. 92
7.11 Consolidation of 2-dimensional tables . 94
7.12 Table consolidation for pipelined-lookup sequential decomposition . . 95

8.1 Example of topological transformations . 102
8.2 Multi-lookup architecture . 104
8.3 Parallel pipelined-lookup architecture . 104
8.4 Chained pipelined-lookup architecture . 105
8.5 Step 1 of domain compression . 108
8.6 Step 2 of domain compression . 109
8.7 Step 3 of domain compression . 109
8.8 Example of 1-D pre x alignment . 112

List of Tables

1.1 An example packet classi er . 1
1.2 TCAM Razor output for the example packet classi er in Table 1.1 . . 1

4.1 A minimum packet classi er corresponding to v2 in Fig. 4.1 32
4.2 A minimum packet classi er corresponding to v3 in Fig. 4.1 33
4.3 A minimum packet classi er corresponding to v1 in Fig. 4.1 34
4.4 Packet classi er generated from the FDD in Figure 4.1 34
4.5 Rules from the FDDs in Figure 4.5a and Figure 4.5b 38

5.1 The second partition bene ts from the pre x shadow of the rst
partition . 53

5.2 The output of bit merging determines the input. 54
5.3 The set of all ternary covers generated per round 55

xiii

Chapter 1
Introduction

Packet classi cation, which is widely used on the Internet, is the core mechanism
that enables routers to perform many networking services such as rewall packet l-
tering, virtual private networks (VPNs), network address translation (NAT), quality
of service (QoS), load balancing, traf c accounting and monitoring, differentiated
services (Diffserv), etc. As more services are deployed on the Internet, packet clas-
si cation grows in demand and importance.

The function of a packet classi cation system is to map each packet to a decision
(i.e.,, action) according to a sequence (i.e.,, ordered list) of rules, which is called a
packet classi er. Each rule in a packet classi er has a predicate over some packet
header elds and a decision to be performed upon the packets that match the predi-
cate. To resolve possible con icts among rules in a classi er, the decision for each
packet is the decision of the rst (i.e., highest priority) rule that the packet matches.
Table 1.1 shows an example packet classi er of two rules. The format of these rules
is based upon the format used in Access Control Lists on Cisco routers.

Rule Source IP Destination IP Source Port Destination Port Protocol Action
r1 1.2.3.0/24 192.168.0.1 [1,65534] [1,65534] TCP accept
r2 * * * * * discard

Table 1.1 An example packet classi er

Rule Source IP Destination IP Source Port Destination Port Protocol Action
r1 1.2.3.0/24 192.168.0.1 0 * * discard
r2 1.2.3.0/24 192.168.0.1 65535 * * discard
r3 1.2.3.0/24 192.168.0.1 * 0 * discard
r4 1.2.3.0/24 192.168.0.1 * 65535 * discard
r5 1.2.3.0/24 192.168.0.1 [0,65535] [0,65535] TCP accept
r6 * * * * * discard

Table 1.2 TCAM Razor output for the example packet classi er in Table 1.1

1C. R. Meiners et al., Hardware Based Packet Classification for High Speed Internet Routers,
DOI 10.1007/978-1-4419-6700-8_1, © Springer Science+Business Media, LLC 2010

2 1 Introduction

1.1 Motivation

To classify the never-ending supply of packets at wire speed, Ternary Content Ad-
dressable Memories (TCAMs) have become the de facto standard for high-speed
routers on the Internet [Lakshminarayanan et al(2005)Lakshminarayanan, Rangara-
jan, and Venkatachary]. A TCAM is a memory chip where each entry can store
a packet classi cation rule that is encoded in ternary format. Given a packet, the
TCAM hardware can compare the packet with all stored rules in parallel and then
return the decision of the rst rule that the packet matches. Thus, it takes O(1) time
to nd the decision for any given packet. In 2003, most packet classi cation devices
shipped were TCAM-based. More than 6 million TCAM devices were deployed
worldwide in 2004.

A traditional random access memory chip receives an address and returns the
content of the memory at that address. A TCAM chip works in a reverse manner: it
receives content and returns the address of the rst entry where the content lies in the
TCAM in constant time (i.e.,, a few CPU cycles). Exploiting this hardware feature,
TCAM-based packet classi ers store a rule in each entry as an array of 0’s, 1’s, or
*’s (don’t-care values). A packet header (i.e.,, a search key) matches an entry if and
only if their corresponding 0’s and 1’s match. Given a search key to a TCAM, the
hardware circuits compare the key with all its occupied entries in parallel and return
the index (or the content, depending on the chip architecture and con guration,) of
the rst matching entry.

Despite their high speed, TCAMs have their own limitations with respect to
packet classi cation.

∙ Range expansion: TCAMs can only store rules that are encoded in ternary for-
mat. In a typical packet classi cation rule, source IP address, destination IP ad-
dress, and protocol type are speci ed in pre x format, which can be directly
stored in TCAMs, but source and destination port numbers are speci ed in ranges
(i.e.,, integer intervals), which need to be converted to one or more pre xes be-
fore being stored in TCAMs. This can lead to a signi cant increase in the number
of TCAM entries needed to encode a rule. For example, 30 pre xes are needed
to represent the single range [1,65534], so 30×30 = 900 TCAM entries are re-
quired to represent the single rule r1 in Table 1.1.

∙ Low capacity: TCAMs have limited capacity. The largest TCAM chip available
on the market has 18Mb while 2Mb and 1Mb chips are most popular. Given
that each TCAM entry has 144 bits and a packet classi cation rule may have a
worst expansion factor of 900, it is possible that an 18Mb TCAM chip cannot
store all the required entries for a modest packet classi er of only 139 rules.
While the worst case may not happen in reality, this is certainly an alarming
issue. Furthermore, TCAM capacity is not expected to increase dramatically in
the near future due to other limitations that we will discuss next.

∙ High power consumption and heat generation: TCAM chips consume large
amounts of power and generate large amounts of heat. For example, a 1Mb
TCAM chip consumes 15-30 watts of power. Power consumption together with

1.2 Contribution 3

the consequent heat generation is a serious problem for core routers and other
networking devices.

∙ Large board space occupation: TCAMs occupy much more board space than
SRAMs. For networking devices such as routers, area ef ciency of the circuit
board is a critical issue.

∙ High hardware cost TCAMs are expensive. For example, a 1Mb TCAM chip
costs about 200∼ 250 U.S. dollars. TCAM cost is a signi cant fraction of router
cost.

1.2 Contribution

This work describes two methods of addressing packet classi cation and the related
TCAM based issues: equivalent transformation techniques and new architectural
approaches.

Equivalent transformation techniques seek to nd semantically equivalent but
more ef cient classi ers. Three methods of equivalent transformation are TCAM
Razor, Bit Weaving, and All-Match Redundancy Removal. TCAM Razor decom-
poses a multi- eld problem into a series of single- eld problems; these problems
are solved optimally and then recomposed into a greedy multi- eld solution. Bit
Weaving differs from TCAM Razor in that it treat the multi- eld rules as rules with
a single eld. This new classi er is analyzed for rule adjencies to produce a smaller
list of single eld rules, which are then converted back into multi- eld rules. In con-
trast, All-match Redundancy Removal identi es a maximal set of rules that can be
removed from a packet classi er without changing the packet classi er’s semantics.

New architectural approaches seek to modify how the TCAM based packet clas-
si ers operate in order to improve ef ciency. We propose two approaches: sequen-
tial decomposition and topological transformation. Sequential decomposition de-
composes a single d- eld packet classi cation TCAM lookup into a sequence of
d 1- eld TCAM lookups. Topological transformations provide methods to trans-
late the domain of each packet eld into a more ef cient representation. Both tech-
niques allow for the ef cient utilization of TCAM space. These techniques mitigate
the effects of range expansion; however, they also have the unique advantage that
they nd optimizations beyond range expansion. This advantage allows for sublin-
ear compression.

Chapter 2
Background

We now formally de ne the concepts of elds, packets, and packet classi ers. A
eld Fi is a variable of nite length (i.e.,, of a nite number of bits). The domain of
eld Fi of w bits, denoted D(Fi), is [0,2w−1]. A packet over the d elds F1, ⋅ ⋅ ⋅ ,Fd

is a d-tuple (p1, ⋅ ⋅ ⋅ , pd) where each pi (1 ≤ i ≤ d) is an element of D(Fi). Packet
classi ers usually check the following ve elds: source IP address, destination
IP address, source port number, destination port number, and protocol type. The
lengths of these packet elds are 32, 32, 16, 16, and 8, respectively. We use Σ to
denote the set of all packets over elds F1, ⋅ ⋅ ⋅ ,Fd . It follows that Σ is a nite set and
∣Σ ∣ = ∣D(F1)∣ × ⋅ ⋅ ⋅× ∣D(Fd)∣, where ∣Σ ∣ denotes the number of elements in set Σ
and ∣D(Fi)∣ denotes the number of elements in set D(Fi).

A rule has the form ⟨predicate⟩ → ⟨decision⟩. A ⟨predicate⟩ de nes a set of
packets over the elds F1 through Fd , and is speci ed as F1 ∈ S1∧⋅⋅ ⋅∧Fd ∈ Sd where
each Si is a subset ofD(Fi) and is speci ed as either a pre x or a nonnegative integer
interval. A pre x {0,1}k{∗}w−k with k leading 0s or 1s for a packet eld of length
w denotes the integer interval [{0,1}k{0}w−k,{0,1}k{1}w−k]. For example, pre x
01** denotes the interval [0100,0111]. A rule F1 ∈ S1∧ ⋅⋅ ⋅∧Fd ∈ Sd → ⟨decision⟩
is a pre x rule if and only if each Si is represented as a pre x.

A packet matches a rule if and only if the packet matches the predicate of the
rule. A packet (p1, ⋅ ⋅ ⋅ , pd) matches a predicate F1 ∈ S1∧⋅⋅ ⋅∧Fd ∈ Sd if and only if
the condition p1 ∈ S1∧⋅⋅ ⋅∧ pd ∈ Sd holds. We use DS to denote the set of possible
values that ⟨decision⟩ can be. Typical elements ofDS include accept, discard, accept
with logging, and discard with logging.

A sequence of rules ⟨r1, ⋅ ⋅ ⋅ ,rn⟩ is complete if and only if for any packet p, there
is at least one rule in the sequence that p matches. To ensure that a sequence of
rules is complete and thus a packet classi er, the predicate of the last rule is usually
speci ed as F1 ∈ D(F1)∧ ⋅⋅ ⋅Fd ∈ ∧D(Fd). A packet classi er ℂ is a sequence of
rules that is complete. The size of ℂ, denoted ∣ℂ∣, is the number of rules in ℂ. A
packet classi er ℂ is a pre x packet classi er if and only if every rule in ℂ is a
pre x rule. A classi er with d elds is called a d-dimensional packet classi er.

Two rules in a packet classi er may overlap; that is, a single packet may match
both rules. Furthermore, two rules in a packet classi er may con ict; that is, the two

5C. R. Meiners et al., Hardware Based Packet Classification for High Speed Internet Routers,
DOI 10.1007/978-1-4419-6700-8_2, © Springer Science+Business Media, LLC 2010

6 2 Background

rules not only overlap but also have different decisions. Packet classi ers typically
resolve such con icts by employing a rst-match resolution strategy where the de-
cision for a packet p is the decision of the rst (i.e., highest priority) rule that p
matches in ℂ. The decision that packet classi er ℂ makes for packet p is denoted
ℂ(p).

We can think of a packet classi er ℂ as de ning a many-to-one mapping function
from Σ to DS. Two packet classi ers ℂ1 and ℂ2 are equivalent, denoted ℂ1 ≡ ℂ2,
if and only if they de ne the same mapping function from Σ to DS; that is, for any
packet p∈ Σ , we have ℂ1(p) =ℂ2(p). A rule is redundant in a classi er if and only
if removing the rule does not change the semantics of the classi er. Furthermore, we
de ne the equivalence relation that classi er ℂ de nes on each eld domain and the
resulting equivalence classes. We use the notation Σ−i to denote the set of all (d−1)-
tuple packets over the elds (F1, ⋅ ⋅ ⋅ , Fi−1, Fi+1, ⋅ ⋅ ⋅ , Fd) and p−i to denote an element
of Σ−i. Then we use ℂ(pi, p−i) to denote the decision that packet classi er ℂ makes
for the packet p that is formed by combining pi ∈ D(Fi) and p−i.

De nition 2.1 (Equivalence Class). Given a packet classi er ℂ over elds F1, ⋅ ⋅ ⋅ ,
Fd , we say that x,y ∈ D(Fi) for 1 ≤ i ≤ d are equivalent with respect to ℂ if and
only if ℂ(x, p−i) = ℂ(y, p−i) for any p−i ∈ Σ−i. It follows that ℂ partitions D(Fi)
into equivalence classes. We use the notation ℂ{x} to denote the equivalence class
that x belongs to as de ned by classi er ℂ.

In a typical packet classi er rule, the elds of source IP, destination IP, and pro-
tocol type are speci ed in pre x format, which can be directly stored in TCAMs;
however, the remaining two elds of source port and destination port are speci ed
as ranges (i.e.,, non-negative integer intervals), which are typically converted to pre-

xes before being stored in TCAMs. This leads to range expansion, the process of
converting a non-pre x rule to pre x rules. In range expansion, each eld of a rule
is rst expanded separately. The goal is to nd a minimum set of pre xes such that
the union of the pre xes corresponds to the range (see Algorithm 1). For example, if
one 3-bit eld of a rule is the range [1,6], a corresponding minimum set of pre xes
would be 001, 01∗, 10∗, 110. The worst-case range expansion of a w−bit range
results in a set containing 2w− 2 pre xes [Gupta and McKeown(2001)]. The next
step is to compute the cross product of the set of pre xes for each eld, resulting in
a potentially large number of pre x rules.

2.1 Firewall decision diagrams

A crucial data structure required for this work is the Firewall Decision Diagram
(FDD) [Gouda and Liu(2004)]. A Firewall Decision Diagram (FDD) with a deci-
sion set DS and over elds F1, ⋅ ⋅ ⋅ ,Fd is an acyclic and directed graph that has the
following ve properties: (1) There is exactly one node that has no incoming edges.
This node is called the root. The nodes that have no outgoing edges are called ter-
minal nodes. (2) Each node v has a label, denoted F(v), such that

2.1 Firewall decision diagrams 7

Input: An interval Interval = (a,b) and a pre x aligned interval test = (c,d) s.t.
a,b,c,d ∈ ℕ.

Output: A list of pre x aligned ranges.
Let i= (e, f) be the intersection of Interval and test ;1
if i is empty then2

return an empty list ;3
else4

if i= test then5
return a list that contains only test ;6

else7
Split test into two pre x intervals low and high ;8
return the concatination of GetPre xes(Interval,low)) and9
GetPre xes(Interval,high) ;

end10
end11

Algorithm 1: GetPre xes(Interval, test = (0,232−1)

F(v) ∈
{
{F1, ⋅ ⋅ ⋅ ,Fd} if v is a nonterminal node,
DS if v is a terminal node.

(3) Each edge e:u→ v is labeled with a nonempty set of integers, denoted I(e),
where I(e) is a subset of the domain of u’s label (i.e.,, I(e) ⊆ D(F(u))). (4) A
directed path from the root to a terminal node is called a decision path. No two
nodes on a decision path have the same label. (5) The set of all outgoing edges
of a node v, denoted E(v), satis es the following two conditions: (i) Consistency:
I(e) ∩ I(e′) = /0 for any two distinct edges e and e′ in E(v). (ii) Completeness:∪
e∈E(v) I(e) = D(F(v)).
We de ne a full-length ordered FDD as an FDD where in each decision path all

elds appear exactly once and in the same order. For ease of presentation, we use the
term “FDD” to mean “full-length ordered FDD” if not otherwise speci ed. Given
a packet classi er ℂ, the FDD construction algorithm in [Liu and Gouda(2004)]
can convert it to an equivalent full-length ordered FDD f . Figure 2.1(a) contains a
sample classi er, and Figure 2.1(b) shows the resultant FDD from the construction
process shown by Agorithms 2 and 3.

Input: A packet classi er f : ⟨r1,r2, ⋅ ⋅ ⋅ ,rn⟩
Output: A t for packet classi er f
Build a path from rule r1. Let v denote the root. The label of the terminal node is ⟨1⟩. ;1
for i= {2, . . . ,n} ∈C do2

APPEND(v, ri, 1, i) ;3
end4

Algorithm 2: FDD Construction Algorithm

After an FDD f is constructed, we can reduce f ’s size by merging isomorphic
subgraphs. A full-length ordered FDD f is reduced if and only if it satis es the

8 2 Background

F1 F2 Decision
000 000 accept
000 111 accept
110 000 accept
110 111 accept
010 0** accept
100 0** accept
*** 1** accept
*** *** discard

(a)

⇓ FDD Construction

F1

F2

daa

F2

da

F2

da

000 110

000

111

F2

da

001
01*

10*
110

F2

daa

000

111

001
01*

10*
110

0** 1** 0** 1** 1** 0**

010 100

001 011101
111

(b)

⇓ FDD Reduction

110

111
010

001
F1

F2 F2

ad

110
000

000
111

F2

001

01*
10*

1** 0**
0** 1**

100

011
101

(c)

Fig. 2.1 Illustration of FDD construction

following two conditions: (1) no two nodes in f are isomorphic; (2) no two nodes
have more than one edge between them. Two nodes v and v′ in an FDD are iso-
morphic if and only if v and v′ satisfy one of the following two conditions: (1) both
v and v′ are terminal nodes with identical labels; (2) both v and v′ are nonterminal
nodes and there is a one-to-one correspondence between the outgoing edges of v and
the outgoing edges of v′ such that every pair of corresponding edges have identical
labels and they both point to the same node. A reduced FDD is essentially a canoni-

2.2 One-Dimensional Classi er Minimization 9

Input: A vertex v, a rule (F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩, a depth m, and a rule number i.
Output: v includes the rule (F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩ in the FDD
/* F(v) = Fm and E(v) = {e1, ⋅ ⋅ ⋅ ,ek} */
if m= d+1 then1

Make i’s decision of v’s label if the decision is not already de ned. ;2
return3

end4
else if (Sm− (I(e1)∪⋅⋅ ⋅∪ I(ek))) ∕= /0 then5

Add an outgoing edge ek+1 with label Sm− (I(e1)∪⋅⋅ ⋅∪ I(ek)) to v ;6
Build a decision path from (Fm+1 ∈ Sm+1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩, and make ek+17
point to the rst node in this path ;
Add i to the end of the label of the terminal node of this decision path ;8

end9
for j := 1 to k do10

if I(e j)⊆ Sm then11
APPEND(e j’s target,(F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩,m+1,i);12

end13
Add one outgoing edge e to v, and label e with I(e j)∩Sm;14
Make a copy of the subgraph rooted at the target node of e j , and make e points to the15
root of the copy ;
Replace the label of e j by I(e j)−Sm ;16
APPEND(e’s target,(F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩,m+1,i) ;17

end18
return19

Algorithm 3: APPEND

cal representation for packet classi ers. Figure 2.1(c) shows the reduced FDD from
Figure 2.1(b).

2.2 One-Dimensional Classi er Minimization

The special problem of weighted one- eld TCAM minimization is used as a build-
ing block for multi-dimensional TCAM minimization. Given a one- eld packet
classi er f of n pre x rules ⟨r1,r2, ⋅ ⋅ ⋅ ,rn⟩, where {Decision(r1),Decision(r2), ⋅ ⋅ ⋅ ,
Decision(rn) } = {d1,d2, ⋅ ⋅ ⋅ ,dz} and each decision di is associated with a cost
Cost(di) (for 1≤ i≤ z), we de ne the cost of packet classi er f as follows:

Cost(f) =
n

∑
i=1
Cost(Decision(ri))

Based upon the above de nition, the problem of weighted one-dimensional TCAM
minimization is stated as follows.

De nition 2.2. Weighted One-Dimensional Pre x Minimization Problem Given a
one- eld packet classi er f1 where each decision is associated with a cost, nd a

10 2 Background

pre x packet classi er f2 ∈ { f1} such that for any pre x packet classi er f ∈ { f1},
the condition Cost(f2)≤ Cost(f) holds.

The problem of one-dimensional pre x minimization (with uniform cost) has
been studied in [Draves et al(1999)Draves, King, Venkatachary, and Zill, Suri
et al(2003)Suri, Sandholm, and Warkhede] in the context of compressing routing ta-
bles. I generalize the dynamic programming solution in [Suri et al(2003)Suri, Sand-
holm, and Warkhede] to solve the weighted one-dimensional TCAM minimization.
There are three key observations:

1. For any one-dimensional packet classi er f on {∗}w, we can always change the
predicate of the last rule to be {∗}w without changing the semantics of the packet
classi er. This follows from the completeness property of packet classi ers.

2. Consider any one-dimensional packet classi er f on {∗}w. Let f ′ be f appended
with rule {∗}w→ d, where d can be any decision. The observation is that f ≡ f ′.
This is because the new rule is redundant in f ′ since f must be complete. A rule
in a packet classi er is redundant if and only if removing the rule from the packet
classi er does not change the semantics of the packet classi er.

3. For any pre x P ∈ {0,1}k{∗}w−k (0≤ k≤w), one and only one of the following
conditions holds:

a. P ∈ {0,1}k0{∗}w−k−1,
b. P ∈ {0,1}k1{∗}w−k−1,
c. P = {0,1}k{∗}w−k.

This property allows us to divide a problem of {0,1}k{∗}w−k into two sub-
problems: {0,1}k0{∗}w−k−1, and {0,1}k1{∗}w−k−1. This divide-and-conquer
strategy can be applied recursively.

We formulate an optimal dynamic programming solution to the weighted one-
dimensional TCAM minimization problem.

Let P denote a pre x {0,1}k{∗}w−k. We use P to denote the pre x {0,1}k
0{∗}w−k−1, and P to denote the pre x {0,1}k1{∗}w−k−1.

Given a one-dimensional packet classi er f on {∗}w, we use fP to denote a
packet classi er on P such that for any x ∈P , fP(x) = f (x), and we use f d

P
to

denote a similar packet classi er on P with the additional restriction that the nal
decision is d.
C(fP) denotes the minimum cost of a packet classi er t that is equivalent to fP ,

and C(f d
P
) denotes the minimum cost of a packet classi er t ′ that is equivalent to

fP and the decision of the last rule in t ′ is d.
Given a one-dimensional packet classi er f on {∗}w and a pre x P where P ⊆

{∗}w, f is consistent onP if and only if ∀x,y ∈P , f (x) = f (y).
The dynamic programming solution to the weighted one-dimensional TCAM

minimization problem is based on the following theorem. The proof of the theorem
shows how to divide a problem into sub-problems and how to combine solutions to
sub-problems into a solution to the original problem.

2.2 One-Dimensional Classi er Minimization 11

Theorem 2.1. Given a one-dimensional packet classi er f on {∗}w, a pre x P

whereP ⊆ {∗}w, the set of all possible decisions {d1,d2, ⋅ ⋅ ⋅ ,dz} where each deci-
sion di has a cost wdi (1≤ i≤ z), we have that

C(fP) =
z

min
i=1
C(f di

P
)

where each C(f di
P
) is calculated as follows:

(1) If f is consistent onP , then

C(f di
P
) =

{
wf (x) if f (x) = di
w f (x) +wdi if f (x) ∕= di

(2) If f is not consistent onP , then

C(f di
P
) = min

⎧⎨
⎩

C(f d1
P
)+C(f d1

P
)−wd1 +wdi ,

. . . ,

C(f di−1
P

)+C(f di−1
P

)−wdi−1 +wdi ,
C(f di

P
)+C(f di

P
)−wdi ,

C(f di+1
P

)+C(f di+1
P

)−wdi+1 +wdi ,
. . . ,

C(f dz
P
)+C(f dz

P
)−wda +wdi

Proof. (1) The base case is when f is consistent on P . In this case, the minimum
cost pre x packet classi er in { fP} is clearly ⟨P → f (x)⟩, and the cost of this
packet classi er iswf (x). Furthermore, for di ∕= f (x), the minimum cost pre x packet
classi er in { fP} with decision di in the last rule is ⟨P → f (x),P → di⟩ where
the second rule is redundant. The cost of this packet classi er is wf (x) +wdi .

(2) If f is not consistent on P , divide P into P and P . The crucial observation
is that an optimal solution f ∗ to { fP} is essentially an optimal solution f1 to the
sub-problem of minimizing fP appended with an optimal solution f2 to the sub-
problem of minimizing f

P
. The only interaction that can occur between f1 and f2

is if their nal rules have the same decision, in which case both nal rules can be
replaced with one nal rule covering all of P with the same decision. Let dx be
the decision of the last rule in f1 and dy be the decision of the last rule in f2. Then
we can compose f ∗ whose last rule has decision di from f1 and f2 based on the
following cases:
(A) dx = dy = di: In this case, f can be constructed by listing all the rules in f1
except the last rule, followed by all the rules in f2 except the last rule, and then the
last rule P → di. Thus, Cost(f) = Cost(f1)+Cost(f2)−wdi .
(B) dx= dy ∕= di: In this case, f can be constructed by listing all the rules in f1 except
the last rule, followed by all the rules in f2 except the last rule, then rule P → dx,
and nally rule P → di. Thus, Cost(f) = Cost(f1)+Cost(f2)−wdx +wdi .
(C) dx ∕= dy,dx = di,dy ∕= di: We do not need to consider this case becauseC(f di

P
)+

C(f dy
P
) =C(f di

P
)+(C(f dy

P
)+wdi)−wdi ≥C(f

di
P
)+C(f di

P
)−wdi .

(D) dx ∕= dy,dx ∕= di,dy = di: Similarly, this case need not be considered.
(E) dx ∕= dy,dx ∕= di,dy ∕= di: Similarly, this case need not be considered.

12 2 Background

Figure 2.2 shows the illustration of a one-dimensional TCAM minimization
problem, where the black bar denotes decision “accept” and the white bar denotes
decision “discard”. Figure 2.3 illustrates how the dynamic programming works on
this example. Algorithm 4 shows the pseudocode for nding C(f di

P
).

00 01 10 11

Fig. 2.2 An example one-dimensional TCAM minimization problem

00 01 10 11 00 01 10 11

00 01 00 01 10 11 10 11

00 00 01 01 10 10 11 11

Fig. 2.3 Illustration of dynamic program

2.2 One-Dimensional Classi er Minimization 13

Input: AUniverse they contains the color information of each pre x in the domain, a pre x
interval p, and dictionary of weights for each color.

Output: A dictionary that contains the cost of the optimal pre x solution for keys
(Pre f ix,Color) where the pre x Pre f ix has the background colorColor.

Let c be the colors at pre x p onUniverse ;1
LetColors be the set of colors de ned byColorWeights ;2
if c is monochromatic then3

Let answer be an emtpy dictionary ;4
foreach color ∈Colors do5

if color ∕= c then6
answer[(p,color)] =ColorWeights[c]+ColorWeights[color] ;7

else8
answer[(p,color)] =ColorWeights[c] ;9

end10
end11

else12
Split p into low and high ;13
Let answer be a new dictionary that contains the keys from14
ODPM(Universe, low,ColorWeights) and ODPM(Universe, low,ColorWeights) ;
foreach color that is de ned by ColorWeights do15

answer[(p,color)] =16

mincc∈Colors

⎧⎨
⎩

answer[(lowPre f ix,cc)]+answer[(highPre f ix,cc)]
−ColorWeights[cc] if color = cc

answer[(lowPre f ix,cc)]+answer[(highPre f ix,cc)]
−ColorWeights[cc]+ColorWeights[color] otherwise

⎫⎬
⎭

;
end17

end18
return answer ;19

Algorithm 4: ODPM(Universe, p, ColorWeights)

Chapter 3
Related Work

There is signi cant prior work on packet classi cation for both TCAM based packet
classi cation and software based packet classi cation. While TCAM based sys-
tems are more immediately relevant, software based classi cation shares a degree
of commonality with the sequential decomposition technique; however, differences
in available hardware result in very different design decisions.

3.1 TCAM Based Classi ers

There is signi cant prior work on minimizing the TCAM space occupied by a sin-
gle classi er. Such work falls into three broad categories: (1) classi er minimization
(e.g.,, [Draves et al(1999)Draves, King, Venkatachary, and Zill,Suri et al(2003)Suri,
Sandholm, and Warkhede, Applegate et al(2007)Applegate, Calinescu, Johnson,
Karloff, Ligett, and Wang, Liu and Gouda(2005), Dong et al(2006)Dong, Banerjee,
Wang, Agrawal, and Shukla, McGeer and Yalagandula(2009)]), which converts a
given classi er to a semantically equivalent classi er that requires fewer TCAM en-
tries; (2) range encoding (e.g.,, [Liu(2002),van Lunteren and Engbersen(2003),Pao
et al(2006)Pao, Li, and Zhou, Lakshminarayanan et al(2005)Lakshminarayanan,
Rangarajan, and Venkatachary, Bremler-Barr and Hendler(2007)]), which encodes
the ranges (i.e.,, source port and destination port) in a manner that reduces range ex-
pansion; and (3) circuit modi cation (e.g.,, [Spitznagel et al(2003)Spitznagel, Tay-
lor, and Turner]), which modi es TCAM circuits to accommodate range compar-
isons.

3.1.1 Classi er Minimization:

The basic idea is to convert a given packet classi er to another semantically equiva-
lent packet classi er that requires fewer TCAM entries. Several classi er minimiza-

15C. R. Meiners et al., Hardware Based Packet Classification for High Speed Internet Routers,
DOI 10.1007/978-1-4419-6700-8_3, © Springer Science+Business Media, LLC 2010

16 3 Related Work

tion schemes have been proposed [Draves et al(1999)Draves, King, Venkatachary,
and Zill,Suri et al(2003)Suri, Sandholm, and Warkhede,Applegate et al(2007)Apple-
gate, Calinescu, Johnson, Karloff, Ligett, and Wang, Liu and Gouda(2005), Dong
et al(2006)Dong, Banerjee, Wang, Agrawal, and Shukla]. The work in [Draves
et al(1999)Draves, King, Venkatachary, and Zill, Suri et al(2003)Suri, Sandholm,
and Warkhede,Applegate et al(2007)Applegate, Calinescu, Johnson, Karloff, Ligett,
and Wang] focuses on one-dimensional and two dimensional packet classi ers.

Construction Optimal IP Tables

In [Draves et al(1999)Draves, King, Venkatachary, and Zill], Draves et al. present
a polynomial algorithm for generating a minimum equivalent packet classi er for
one-dimensional pre x match classi ers. Their algorithm, Optimal Routing Table
Constructor(ORTC), works by reducing a longest matching pre x trie to its minimal
representation via three traversals. This minimal trie can then be used to use to
generate a minimum single eld pre x classi er. A longest match pre x classi er
can be trivially converted into a rst match pre x classi er by sorting the rules such
that the longer pre x rules appear before shorter pre x rules.

Compressing Two-Dimensional Routing Tables

In [Suri et al(2003)Suri, Sandholm, and Warkhede], Suri et al. present a polyno-
mial time dynamic program that generates a minimum equivalent packet classi er
for one-dimensional pre x classi ers. This dynamic program is equivalent to the
dynamic program presented in Chapter 2.2. Furthermore, Suri et al. present a gen-
eralization of this dynamic program for two or more elds. They show that this
generalization produces optimal two eld classi ers when the the solution space of
classi ers is restricted such that the predicates of any two rules in the a classi er are
either disjoint, or one predicate is a subset of the other. However, these generalized
algorithms have a signi cant time requirements, O(N∣DS∣(w1× ⋅⋅ ⋅ ×wd)), where
wd is the number of bits used for Fi. As a result, the dynamic program ceases to be
usable for more than two elds.

Complete Redundancy Detection in Firewalls

In [Liu and Gouda(2005)], Liu and Gouda, propose the rst algorithm that is guar-
anteed to detect and remove a maximal set of redundant rules within a classi er.
They propose two types of redundant rules, upward redundant rules and downward
redundant rules. These two types of rules are shown to completely categorize the
set of all redundant rules. Liu and Gouda’s algorithm rst uses an iterative FDD
construction technique to remove all upward redundant rules, and it uses a different
iterative FDD construction technique to remove all downward redundant rules. By

3.1 TCAM Based Classi ers 17

removing both types of rules, the algorithm produces a classi er free of redundant
rules. Note, that this algorithm is not guaranteed to remove the maximum number
of redundant rules since there can be interdependencies between redundant rules.
However, this algorithm is effective for all types of classi ers, and its ef ciency
scales well as the number of elds in a classi er increases.

Packet Classi ers in Ternary CAMs can be Smaller

In [Dong et al(2006)Dong, Banerjee, Wang, Agrawal, and Shukla], Dong et al. pro-
pose the rst algorithm that modi es rules within a classi er in an attempt to reduce
the effects of range expansion. They propose four types of operations: trimming
rules, expanding rules, merging rules, and adding rules. The basic idea of their al-
gorithm is that by trimming or expanding the space covered by a predicate, the
range expansion for each rule can be reduced. They propose a two stage algorithm
that rst trims the predicate space of every rule and then expands the predicate space
of each rule going from last to rst. This algorithm is signi cant in that it accom-
modates classi ers with more than two elds. However, it is unknown whether or
not the algorithm is optimal given a one-dimensional classi er. Furthermore, The
algorithm requires repeated applications for a classi er to converge upon a minimal
set of rules and depends heavily upon repeated applications of the redundancy re-
moval technique found in [Liu and Gouda(2005)]. This suggests that their algorithm
requires a signi cant amount of computational overhead.

Compressing Rectilinear Pictures and Minimizing Access Control Lists

In [Applegate et al(2007)Applegate, Calinescu, Johnson, Karloff, Ligett, and Wang],
Applegate et al. propose an optimal solution for two eld classi ers composed en-
tirely of strip rules. Strip rules have a wild card for at least one eld. However, while
this work is of theoretical interest, it does not scale to d-dimensional classi ers, and
it is not clear that packet classi ers can be ef ciently represented with strip rules

Minimizing Rulesets for TCAM Implementation

In [McGeer and Yalagandula(2009)], McGeer and Yalgandula show that nding the
minimal number of TCAM rules to represent a classi er is NP-hard. They show this
property by reducing circuit equivalence to TCAM rule minimization. However,
their reduction does not produce a feasible method for optimal TCAM rule mini-
mization. The author, instead, propose a heuristic based approximation algorithm
for TCAM classi ers with exactly two decisions.

18 3 Related Work

3.1.2 Range Encoding:

The basic idea is to rst encode ranges that appear in a classi er and store the en-
coded rules in a TCAM. When a packet comes, the packet needs to be preprocessed
so that the resulting encoded packet can be used as a search key for the TCAM.
Previous range encoding schemes fall into two categories: database independent
encoding schemes [Lakshminarayanan et al(2005)Lakshminarayanan, Rangarajan,
and Venkatachary, Bremler-Barr and Hendler(2007)], where the encoding of each
rule is independent of other rules in the classi er, and database dependent encod-
ing schemes [Liu(2002),van Lunteren and Engbersen(2003),Pao et al(2006)Pao, Li,
and Zhou], where the encoding of each rule may depend on other rules in the classi-

er. The advantage of database independent encoding schemes is that they allow fast
incremental updates to the classi er since each rule is encoded independently. How-
ever, database dependent schemes have the potential for better space savings since
they can utilize the low number of unique ranges that appear in real life classi ers
to achieve lower range expansion.

Algorithms for Advanced Packet Classi cation

Lakshminarayanan et al. propose a scheme called fence encoding, which encodes in-
terval ranges as a range of unary numbers [Lakshminarayanan et al(2005)Lakshmin-
arayanan, Rangarajan, and Venkatachary]. All ranges under fence encoding have an
expansion factor of one, which implies that all ranges can be encoded with one rule,
but the number of unary bits required for each rule is prohibitive since a eld with
length w requires 2w bits per rule. To reduce the required number of bits in a rule,
Lakshminarayan et al. proposed the technique called DIRPE, which compresses the
size of fence encodings at the expense of increasing the average expansion ratio.
DIRPE works by dividing a eld into equally sized sub- elds, which are called
chunks, and fence encoding these chunks. Selecting the number of chunks pro-
vides a trade-off between range expansion and TCAM entry width. The authors also
propose a method of combining DIRPE with Liu’s range encoding scheme found
in [Liu(2002)] to handle ranges that have a large expansion factor under DIRPE.
However, this combination negates DIRPE’s ability to allow fast updates for classi-

ers.

Space-ef cient TCAM-based Classi cation using Gray Coding

Bremler-Barr and Hendler, in [Bremler-Barr and Hendler(2007)], propose a scheme
in which eld domains are encoded using binary re ected gray codes(BRGC).
While there is no advantage or disadvantage to using a BRGC for elds that con-
tain only pre x ranges, using BRGC on non-pre x ranges breaks up the range in
such a way that additional ternary bits can be used to eliminate some of the pre xes
needed to represent a range. The result is that some of the pre xes ranges required

3.1 TCAM Based Classi ers 19

to represent a range are merged together into a single ternary entry. The authors note
that this encoding technique is especially effective for small ranges and name their
encoding algorithm short range gray encoding or SGRE. Since SGRE does not re-
quire any additional TCAM bits to encode ranges, Bremler-Barr and Hendler also
propose a method of combining SGRE with Liu’s range encoding technique. Like
DIRPE this combination negates SGRE’s ability to support fast updates for classi-

ers, but it allows for the technique to concisely encode ranges with large expansion
factors under SRGE.

Ef cient Mapping of Range Classi ers into Ternary-CAM

In [Liu(2002)], Liu proposes an encoding method that designates speci c ternary
bits within each TCAM entry to represent a speci c range. A packet eld is en-
coded via an SRAM lookup table that maps each eld value to a codeword that has
a designated bit set to 1 if and only if the value is an element of the corresponding
range. Each rule’s range predicate can then be encoded such that the designated bit
is set to 1 and every other bit is set to ∗. This technique eliminates range expansion
completely; however, it also requires n bits per TCAM entry when a classi er has n
unique ranges in a eld. This technique quickly becomes impractical as the number
of unique ranges within a eld increases. To combat the explosive growth in required
bits, Liu proposes splitting a eld domain into k disjoint ranges such that each dis-
joint range intersects with a small number of unique ranges. Since ⌈logk+1⌉ bits
are needed to encode these disjoint ranges, this scheme allows for a eld to be en-
coded using ⌈logk+1⌉+n′ bits where n′ is the maximum number of unique ranges
that intersect with a given disjoint range. Using this scheme means that rule predi-
cates that intersects with more than one disjoint range must be replicated for each
intersection. To manage the trade off between rule expansion and bit expansion, Liu
proposes a heuristic algorithm that repeatedly nds and merges the pair of disjoint
ranges that reduces rule expansion the most. These merges continue until a budget
of b bits is exhausted.

Fast and Scalable Packet Classi cation

In [van Lunteren and Engbersen(2003)], van Lunteren and Engbersen propose an
encoding method similar to [Liu(2002)]. In their encoding scheme, they control the
required number of bits by partitioning the unique ranges into l layers. The ranges
within each layer are then broken into disjoint ranges so that each layer can be
encoded in ⌈logni⌉ bits where ni is the number of disjoint ranges in layer i. Each

eld then become the concatenated encoding for each layer. The authors also note
that if a disjoint range r in one layer contains a disjoint range r′ in another layer, this
information can be used to reduce the number of bits needed to encode r′’s layer.
Unfortunately, no algorithms are given for partitioning unique ranges into layers.

20 3 Related Work

An Encoding Scheme for TCAM-based Packet Classi cation

In [Pao et al(2006)Pao, Li, and Zhou], Pao et al. propose an encoding algorithm
called pre x inclusion encoding(PIC). PIC utilizes van Lunteren and Engbersen’s
observation that containment information for one layer can reduce the number of
bits required to encode ranges in the next layer. That is the scheme produces a series
of l layers L1, . . . ,Ll such that each disjoint range in Li is a subset of a single range
of Li−1 for i ∈ {2, . . . , l}. With this property, PIC can encode a eld predicate into a
compact pre x range. PIC was designed for encoding elds with pre x ranges and
large domains such as the source IP for IPv6 headers. However, the authors do sug-
gests techniques for adapting their scheme to encode range elds. These techniques
require breaking overlapping ranges into disjoint ranges, which in turn requires that
encoded rules are replicated in a manner similar to other encoding techniques.

3.1.3 Circuit Modi cation:

The basic idea is to modify TCAM circuits to accommodate range comparisons.
For example, Spitznagel et al. proposed adding comparators at each entry level to
better accommodate range matching [Spitznagel et al(2003)Spitznagel, Taylor, and
Turner]. While this research direction is important, such solutions are hard to deploy
due to high cost [Lakshminarayanan et al(2005)Lakshminarayanan, Rangarajan, and
Venkatachary], and modi ed TCAMs may be less applicable to applications other
than packet processing.

3.2 Software Based Techniques

The simplest software based technique for packet classi cation is a linear search,
which has excellent storage requirement but becomes too slow for wire speed packet
classi cation for even modest sized classi ers. As a results, a rich body of software
based packet classi cation techniques have been developed [Singh et al(2003)Singh,
Baboescu, Varghese, and Wang, Qiu et al(2001)Qiu, Varghese, and Suri, Taylor and
Turner(2005), Lakshman and Stiliadis(1998), Gupta and McKeown(1999a), Feld-
mann and Muthukrishnan(2000),boe scu and Varghese(2001),Woo(2000),Baboescu
et al(2003)Baboescu, Singh, and Varghese,Srinivasan et al(1998)Srinivasan, Vargh-
ese, Suri, and Waldvogel, iva san et al(1999)iva san, Suri, and Varghese], and an ex-
tensive survey of these techniques can be found in [Taylor(2005)]. These techniques
trade storage space for an improvement in search time via special preprocessing
of the classi er rules. Techniques can be partitioned into two categories: parallel
decomposition and decision tree classi cation.

3.2 Software Based Techniques 21

3.2.1 Parallel decomposition

The objective of parallel decomposition techniques [Lakshman and Stiliadis(1998),
boe scu and Varghese(2001), Srinivasan et al(1998)Srinivasan, Varghese, Suri, and
Waldvogel,iva san et al(1999)iva san, Suri, and Varghese,Gupta and McKeown(1999a),
Taylor and Turner(2005)] is to break the classi cation process into several steps that
can performed in parallel. The above techniques perform the decomposition along
the eld boundaries of a packet header. This in effect allows for fast and ef cient
single eld classi cation solutions to encode each eld in parallel. These new val-
ues are then composed via one or more additional classi cations stages to yield a
correct classi cation.

High-speed Policy-based Packet Forwarding using Ef cient Multi-dimensional
Range Matching

In [Lakshman and Stiliadis(1998)], Lakshman and Stiliadis propose encoding each
eld’s value into a bitmap that speci es a containment relationship among values

and rules [Lakshman and Stiliadis(1998)]. This bitmap indicates whether or not an
encoded value intersects with a given rule’s eld predicate. Once each eld is en-
coded, this method uses customized parallel AND gates to perform an intersection
of these bitmaps and ultimately nds the rst matching rule. This technique is ef-
fective; however it requires a bit line for each rule in the classi er and must be
implemented on customized hardware.

Scalable Packet Classi cation

In [boe scu and Varghese(2001)], Baboescu and Varghese improve on the above
technique by observing that for classi ers with a low occurrence of wildcards,
bitmaps will be sparely populated with 1’s. They group bits within each bitmap
into chunks and represent each chuck with a single bit which is the logical OR of
all the bits within the chunk. This allows the second stage to skip the comparison of
a signi cant number of bits. For classi ers that have a low occurrence of wildcards,
this technique is very effective at reducing the number of memory access needed
to perform the second stage processing; however, this reduction is diminished once
wildcards occur more frequently within a classi er.

Fast and Scalable Layer Four Switching

In [Srinivasan et al(1998)Srinivasan, Varghese, Suri, and Waldvogel], Srinivasan et
al. propose an encoding method called cross-producting that assigns a unique num-
ber to each maximal disjoint range within a classi er eld and constructs a lookup
table for the cross product of the numbers associated with each eld. This technique

22 3 Related Work

is fast; however, its storage requirements multiplicatively increases as the number
of elds and ranges increases. As a result, the authors only intend crossproducting
for small classi ers with two elds.

Packet Classi cation on Multiple Fields

In [Gupta and McKeown(1999a)], Gupta and McKeown propose an encoding
method called Recursive Flow Classi cation (RFC) that is an optimized version of
the cross-producting scheme. This uses recursive cross-producting tables to reduce
the space requirements of regular cross-producting tables. Furthermore, they map
disjoint ranges that are contained by the same set of rules into a single value. RFC’s
mapping tables de ne an equivalence relation; however, this equivalence relation is
less general than the domain compression technique discussed in Chapter 8, so they
are unable to achieve a maximum compression for each eld domain in most cases.
Furthermore, the recursive cross-producting scheme requires a signi cant amount
of space to store in memory.

Packet Classi cation using Tuple Space Search

In [iva san et al(1999)iva san, Suri, and Varghese], Srinivasan et al. propose a tuple
based search approach. This approach transforms each rule predicate with d elds
into a d-tuple, which is in essence a hash of the predicate. The idea is that this initial
hashing divides the search space into regions that can be searched in parallel. Perfect
hashing functions are used to nd exact matches in each tuple’s search space. The
authors propose two methods of determining appropriate tuples to search. The rst
method is an exhaustive search of each tuple, and the second uses a set pruning trie
for each eld that returns a set of candidate tuples. With set pruning, the intersections
of the results from each eld is the set of tuple spaces that need to be searched.

Scalable Packet Classi cation using Distributed Crossproducting of Field Labels

In [Taylor and Turner(2005)], Taylor and Turner propose the Distributed Crosspro-
ducting of Field Labels (DCFL) method that assigns each locally unique range
within a eld a locally unique number. Each eld value is encoded into a set of num-
bers, which represents the ranges that contains the value. These sets are crosspro-
ducted together and then intersected with the set of unique tuples generated from
the classi er’s eld predicates. The resulting intersection provides a list of rules
that the packet header matches. The authors optimize this technique by incremen-
tally performing the crossproduct and ltering the intermediate results after each
incremental crossproduct. This optimization can dramatically reduce that number
of false positive tuples that are generated. Since overlapping ranges diminish the
incremental crossproducts’ ability to keep the number of candidate matches low, the

3.2 Software Based Techniques 23

technique’s performance depends on classi ers having a low number of overlapping
ranges.

3.2.2 Decision Trees

Decision tree techniques [Gupta and McKeown(1999b), Singh et al(2003)Singh,
Baboescu, Varghese, and Wang, Woo(2000), Qiu et al(2001)Qiu, Varghese, and
Suri, Feldmann and Muthukrishnan(2000), Baboescu et al(2003)Baboescu, Singh,
and Varghese] use tree structures to successively prune the search space to a single
rule or a small number of rules, which are then searched linearly to nd a match.
Decision tree methods such as HiCuts [Gupta and McKeown(1999b)] and Hyper-
cuts [Singh et al(2003)Singh, Baboescu, Varghese, and Wang] are similar in avor
to our sequential decomposition approach in that they use a sequence of searches
where each search uses a portion of the packet predicate to classify a packet. How-
ever, software-based methods are constrained by a complex tradeoff among how
many searches need to be performed, the time required to perform a search and
the space required to store the data structure that facilitates the search. In the worst
case, these methods require many searches, slow searches, or tremendous amounts
of memory.

Classi cation Using Hierarchical Intelligent Cuttings

In [Gupta and McKeown(1999b)], Gupta and McKeown present a decision tree al-
gorithm called HiCuts. This algorithm builds a decision tree similar to an unordered
FDD with the following differences: Each node makes a decision based on a parti-
tion of a eld’s domain, and leaves are allowed to store a list of rules. The rationale
for both of these decisions is derived directly from the limitations of SRAM lookup
methods. The authors implement each node as a lookup table so that the next node
in the tree can be found in constant time. However, since a eld domain of size 232 is
prohibitively large, the eld domain must be cut into subsets to limit the size of each
tree node. This technique successively prunes the set of candidate rules with the de-
cision tree until the set of rules is below a certain threshold. Once this threshold is
reached, the list of remaining rules is stored in the leaf at the end of the decision
path. The rationale for this decision is to save storage space since small lists usu-
ally result in big subtrees. The authors also present a parameterized construction
algorithm that allows the user to trade maximum lookup time for storage space.

Packet Classi cation using Multidimensional Cutting

In [Singh et al(2003)Singh, Baboescu, Varghese, and Wang], Singh et al. present
HyperCuts, which is an improvement upon HiCuts. The authors contribution is to

24 3 Related Work

allow each node in the decision tree to build a multidimensional lookup table from
cuts in multiple elds. This improvement allows for a more effective pruning of
the list of candidate rules. The authors show that HyperCuts signi cantly improves
upon the performance of HiCuts.

A Modular Approach to Packet Classi cation

In [Woo(2000)], Woo uses a three stage approach to classifying packets. The rst
stage is a lookup table that distributes packet value among a set of decision trees by
matching m bits within a rule predicate. These decision trees are binary trees where
the nodes select the appropriate bit within the predicate to determine which edge to
follow. The second stage traverses the decision tree until the third stage is reached
when a leaf in the decision tree is found. These leaves contain a list of one or more
candidate matches that is searched sequentially until a match is found. One key
assumption in Woo’s work is that each classi er predicate needs to be transformed
into a ternary bit string. This assumption implies that classi ers with signi cant
amounts of range expansion will degrade the storage ef ciency of this technique.

Fast Firewall Implementations for Software-based and Hardware-based Routers

In [Qiu et al(2001)Qiu, Varghese, and Suri], Qiu et al. revisit two trie-based lookup
schemes for packet classi cation that have been traditionally dismissed as being in-
ef cient and show that for real packet classi ers, they offer predictable classi cation
speeds. Longest pre x matching tries are an ef cient data structure for performing
an exact match for a single eld packet; however, once packet classi ers requires
multiple eld packets, some packets will not match against the longest pre x in all
dimensions. The rst technique that they examine uses a backtracking search on
a multi- eld trie to nd every candidate rule. They provide a set of optimizations
for the multi- eld trie that speeds up the backtracking search; however, the num-
ber of memory accesses required to classify each packet range from 117 to 196 for
real-life classi ers. The second technique that they examine uses set pruning tries,
which enumerate all decision paths so that each packet value can only follow a sin-
gle path. The authors also propose two compression algorithms that help to reduce
the storage requirements for set pruning tries and backtracking tries. Set pruning
tries outperform backtracking search at the expense of additional memory storage
requirements; however, experimental results suggest that backtracking tries offer a
better performance for storage trade off. The experimental results suggest that these
techniques offer a 2 to 5 times speedup over linear search.

3.2 Software Based Techniques 25

Tradeoffs for Packet Classi cation

In [Feldmann and Muthukrishnan(2000)], Feldmann and Muthukrishnan propose
building lookup-up trees similar to HiCuts; however, instead of using a lookup table
at each node, they employ an inverted lookup tree call a Fat Inverted Segment(FIS)
tree to store a complete set of cuts of each eld. This technique allows for a more
compact representation of the classi er, but it can signi cantly increasing the num-
ber memory accesses needed to classify a packet when compared to HiCuts or Hy-
perCuts.

Packet Classi cation for Core Routers: Is there an Alternative to CAMs?

In [Baboescu et al(2003)Baboescu, Singh, and Varghese], Baboescu et al. propose
the Extended Grid-of-Tries(EGT) technique. EGT uses a two- eld trie to prune the
candidate rule list and uses a path compression algorithm to minimize the amount
of memory needed to store the trie. For core router tables, EGT provides reasonable
performance; however, EGT’s performance depends on the structural properties of
the core routing tables. Packets classi ers used in other applications (e.g., rewalls)
may not have acceptable performance with EGT.

Part I
Equivalent Transformation Techniques

29

Consider the following TCAM Minimization Problem: given a packet classi er,
how can we generate another semantically equivalent packet classi er that requires
the least number of TCAM entries? Two packet classi ers are (semantically) equiv-
alent if and only if they have the same decision for every packet. For example, the
two packets classi ers in Tables 1.1 and 1.2 are equivalent; however, the one in Ta-
ble 1.1 requires 900 TCAM entries, and the one in Table 1.2 requires only 6 TCAM
entries.

Solving this problem helps to address the limitations of TCAMs. As we reduce
the number of TCAM entries required, we can use smaller TCAMs, which results
in less board space and lower hardware cost. Furthermore, reducing the number of
rules in a TCAM directly reduces power consumption and heat generation because
the energy consumed by a TCAM grows linearly with the number of ternary rules it
stores [Yu et al(2005)Yu, Lakshman, Motoyama, and Katz].

While the optimal solution to the above problem is conceivably NP-hard, in this
thesis, we propose a practical algorithmic solution using two techniques. Our rst
technique, TCAM Razor, generates new but equivalent classi ers, whereas our sec-
ond technique, all-match redundancy removal, nds a set of rules that can be safely
removed from a classi er

Chapter 4
TCAM Razor

TCAM Razor consists of the following four basic steps. First, convert a given packet
classi er to a reduced decision diagram, which is the canonical representation of
the semantics of the given packet classi er. Second, for every nonterminal node in
the decision diagram, minimize the number of pre xes associated with its outgoing
edges using dynamic programming. Third, generate rules from the decision dia-
gram. Last, remove redundant rules. As an example, running our algorithms on the
packet classi er in Table 1.1 will yield the one in Table 1.2.

The solution is named “TCAM Razor” following the principle of Occam’s ra-
zor: “Of two equivalent theories or explanations, all other things being equal, the
simpler one is to be preferred.” In our context, of all packet classi ers that are equiv-
alent, the one with the least number of TCAM entries is preferred.

4.1 Multi-dimensional TCAMMinimization: The Basics

In this section, we present TCAM Razor, our algorithm for minimizing multi-
dimensional pre x packet classi ers. A key idea behind TCAM Razor is processing
one dimension at a time using the weighted one-dimensional TCAM minimization
algorithm in Section 2.2 to greedily identify a local minimum for the current dimen-
sion. Although TCAM Razor is not guaranteed to achieve a global minimum across
all dimensions, it does signi cantly reduce the number of pre x rules in real-life
packet classi ers.

4.1.1 Conversion to Firewall Decision Diagrams

To facilitate processing a packet classi er one dimension at a time, we rst convert
a given packet classi er to an equivalent reduced Firewall Decision Diagram (FDD)

31C. R. Meiners et al., Hardware Based Packet Classification for High Speed Internet Routers,
DOI 10.1007/978-1-4419-6700-8_4, © Springer Science+Business Media, LLC 2010

32 4 TCAM Razor

[Gouda and Liu(2007)]. Given a packet classi er f1, we can construct an equivalent
FDD f2 using the FDD construction algorithm in [Liu and Gouda(2004)].

Fig. 4.1 A rewall decision diagram

4.1.2 Multi-dimensional TCAM Minimization

We start the discussion of our greedy solution by examining the reduced FDD in
Figure 4.1. We rst look at the subgraph rooted at node v2. This subgraph can be
seen as representing a one-dimension packet classi er over eld F2. We can use the
weighted one-dimensional TCAM minimization algorithm in Section 2.2 to mini-
mize the number of pre x rules for this one-dimensional packet classi er. The algo-
rithm takes the following 3 pre xes as input:

10∗∗ (with decision accept and cost 1),
0∗∗∗ (with decision discard and cost 1),
11∗∗ (with decision discard and cost 1).

The one-dimensional TCAM minimization algorithm will produce a minimum (one-
dimensional) packet classi er of two rules as shown in Table 4.1.

Rule # F1 Decision
1 10** accept
2 **** discard

Table 4.1 A minimum packet classi er corresponding to v2 in Fig. 4.1

Similarly, from the subgraph rooted at node v3, we can get a minimum packet
classi er of one rule as shown in Table 4.2.

4.1 Multi-dimensional TCAM Minimization: The Basics 33

Rule # F1 Decision
1 **** discard

Table 4.2 A minimum packet classi er corresponding to v3 in Fig. 4.1

Next, we look at the root v1. As shown in Figure 4.2, we view the subgraph
rooted at v2 as a decision with a multiplication factor or cost of 2, and the subgraph
rooted at v3 as another decision with a cost of 1. Thus, the graph rooted at v1 can be
thought of as a “virtual” one-dimensional packet classi er over eld F1 where each
child has a multiplicative cost.

1000 0***
1001

F

11**

1

F2 10** accept

F2 **** discard
F2 **** discard

101*

Fig. 4.2 “Virtual” one-dimensional packet classi er

Now we are ready to use the one-dimensional TCAM minimization algorithm
in Section 2.2 to minimize the number of rules for this “virtual” one-dimensional
packet classi er. The algorithm takes the following 5 pre xes and associated costs
as input:

1000 (with decision v2 and cost 2),
101∗ (with decision v2 and cost 2),
0∗∗∗ (with decision v3 and cost 1),
1001 (with decision v3 and cost 1),
11∗∗ (with decision v3 and cost 1),

Running the weighted one-dimensional TCAM minimization algorithm on the
above input will produce the “virtual” one-dimensional packet classi er of three
rules as shown in Table 4.3.

Combining the “virtual” packet classi er in Table 4.3 and the two packet clas-
si ers in Table 4.1 and 4.2, we get a packet classi er of 4 rules as shown in Table
4.4.

34 4 TCAM Razor

Rule # F1 Decision
1 1001 go to node v3
2 10** go to node v2
3 **** go to node v3

Table 4.3 A minimum packet classi er corresponding to v1 in Fig. 4.1

Rule # F1 F2 Decision
1 1001 **** discard
2 10** 10** accept
3 10** **** discard
4 **** **** discard

Table 4.4 Packet classi er generated from the FDD in Figure 4.1

4.1.3 Removing Redundant Rules

Next, we observe that rule r3 in the packet classi er in Table 4.4 is redundant. If we
remove rule r3, all the packets that used to be resolved by r3 (that is, all the packets
that match r3 but do not match r1 and r2) are now resolved by rule r4, and r4 has the
same decision as r3. Therefore, removing rule r3 does not change the semantics of
the packet classi er. Redundant rules in a packet classi er can be removed using the
algorithms in [Liu and Gouda(2005)] or the algorithm in the next chapter. Finally,
after removing redundant rules, we get a packet classi er of 3 rules from the FDD
in Figure 4.1.

4.1.4 The Algorithm

To summarize, TCAM Razor, our multi-dimensional TCAM minimization algo-
rithm, consists of the following four steps:

1. Convert the given packet classi er to an equivalent FDD.
2. Use the FDD reduction algorithm described in the next section to reduce the size

of the FDD. This step will be explained in more detail in the next section.
3. Generate a packet classi er from the FDD in the following bottom up fashion.

For every terminal node, assign a cost of 1. For a non-terminal node v with z
outgoing edges {e1, ⋅ ⋅ ⋅ ,ez}, formulate a one-dimensional TCAM minimization
problem as follows. For every pre x P in the label of edge e j, (1≤ j≤ z), we set
the decision of P to be j, and the cost of P to be the cost of the node that edge e j
points to. For node v, we use the weighted one-dimensional TCAM minimization
algorithm in Section 2.2 to compute a one-dimensional pre x packet classi er
with the minimum cost. We then assign this minimum cost to the cost of node v.
After the root node is processed, generate a packet classi er using the pre xes

4.2 Multi-dimensional TCAM Minimization: The Optimization Techniques 35

computed at each node in a depth rst traversal of the FDD. The cost of the root
indicates the total number of pre x rules in the resulting packet classi er.

4. Remove all the redundant rules from the resulting packet classi er.

4.1.5 TCAM Update

Packet classi cation rules periodically need to be updated. The common practice
for updating rules is to run two TCAMs in tandem where one TCAM is used while
the other is updated [Lekkas(2003)]. TCAM Razor is compatible with this current
practice. Because TCAM Razor is ef cient and the resultant TCAM lookup table is
small, TCAM updating can be ef ciently performed by rerunning TCAM Razor on
the updated rules. When rules are frequently added to a classi er, we suggest the
following lazy update strategy. First, after running TCAM Razor, store the resulting
rules in the lower portion of the TCAM. Let n denote the total number of entries
in the TCAM, m denote the total number of TCAM entries needed by a packet
classi er after applying Razor, and let array T denote the TCAM. Initially, the m
entries are stored from T [n−m] to T [n−1]. When a new rule r needs to be added to
the classi er, we rst perform range expansion on r. Let m1 be the number of pre x
rules that are created. We store these rules in locations T [n−m−m1] to T [n−m−1].
As new rules are added, this process continues until the TCAM is lled up. Thus,
TCAM Razor only needs to run periodically rather than when each new rule is
added.

4.2 Multi-dimensional TCAMMinimization: The Optimization
Techniques

In this section, we discuss the following two optimization techniques that we im-
plemented to reduce the running time and memory usage of TCAM Razor: lazy
copying in FDD construction and hashing in FDD reduction.

4.2.1 Lazy Copying in FDD Construction

The FDD construction algorithm in [Liu and Gouda(2004)] performs deep copying
of subgraphs when splitting edges. This is inef cient in terms of both running time
and memory usage. In TCAM Razor, we use the technique of lazy copying, which
is explained as follows. Consider the subgraph (of an FDD) in Figure 4.3. The root
of this subgraph is v, and v has k outgoing edges e1,e2, ⋅ ⋅ ⋅ ,ek, which point to the
subgraphs g1,g2, ⋅ ⋅ ⋅ ,gk respectively. When we need to make another copy of this
subgraph, instead of making a deep copy of the whole subgraph, we only make

36 4 TCAM Razor

another copy of the root of the subgraph. Let v′ denote the new node. Node v′ has
the same label as v, and also has k outgoing edges e′1,e′2, ⋅ ⋅ ⋅ ,e′k, where each e′i has
the same label I(ei) as ei, and also points to the same subgraph gi that ei points to.

Each time we need to modify a node v, we rst need to check its in-degree (i.e.,,
the number of edges that point to v): if its indegree is 1, then we can directly modify
v; if its indegree is greater than 1, then we need to rst make a lazy copy of the
subgraph rooted at v, and then modify the new node v′. To the outside, lazy copy-
ing looks like deep copying, but it reduces unnecessary copying of subgraphs (and
promotes the sharing of common subgraphs) in the constructed FDD as much as
possible.

……

I(e1)

F

I(e2) I(ek)

F
I(e1)

I(e2)
I(ek)

g1 g2
gk

Fig. 4.3 Lazing copying of subgraphs

Fig. 4.4 shows the process of appending rule (F1 ∈ 0000)∧ (F2 ∈ 010∗)∧ (F3 ∈
0∗∗∗)→ d to node v1 of the partial FDD in the upper left side of the gure. A partial
FDD is a diagram that has all the properties of an FDD except the completeness
property.

In step (a), we split the single edge leaving v1 into two edges, where v5 is a
shallow copy of v2. In step (b), we further split the edge labeled 01** into two
edges, where v6 is a shallow copy of v4. In step (c), we add the edge labeled 00** to
v6.

The pseudocode for the lazy copying based FDD construction algorithm is in
Algorithm 5.

4.2.2 Hashing in FDD Reduction

To further reduce the number of rules generated by our algorithm, after we convert
a packet classi er to an equivalent FDD, we need to reduce the size of the FDD. An
FDD is reduced if and only if it satis es the following three conditions: (1) no two
nodes are isomorphic; (2) no two nodes have more than one edge between them; (3)
no node has only one outgoing edge. Two nodes v and v′ in an FDD are isomorphic
if and only if v and v′ satisfy one of the following two conditions: (1) both v and
v′ are terminal nodes with identical labels; (2) both v and v′ are nonterminal nodes

4.2 Multi-dimensional TCAM Minimization: The Optimization Techniques 37

Fig. 4.4 Example of lazing copying

and there is a one-to-one correspondence between the outgoing edges of v and the
outgoing edges of v′ such that every pair of corresponding edges have identical
labels and they both point to the same node.

We next show an example where FDD reduction helps to reduce the num-
ber of pre x rules generated from an FDD. Consider the two equivalent FDDs in
where Figure 4.5a is non-reduced and Figure 4.5b is reduced. If we run our multi-
dimensional TCAM minimization algorithm on the two FDDs, we will produce 4
pre x rules as shown in Table 4.5(a) and 2 pre x rules as shown in Table 4.5(b),
respectively.

Fig. 4.5a Before FDD reduction

Fig. 4.5b After FDD reduc-
tion

38 4 TCAM Razor

Input: A packet classi er f of a sequence of rules ⟨r1, ⋅ ⋅ ⋅ ,rn⟩
Output: An FDD f ′ such that f and f ′ are equivalent
build a decision path with root v from rule r1;1
for i := 2 to n do APPEND(v, ri);2

APPEND(v, (Fm ∈ Sm)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩) /*F(v) = Fm and E(v) = {e1, ⋅ ⋅ ⋅ ,ek}*/3
if (Sm− (I(e1)∪⋅⋅ ⋅∪ I(ek))) ∕= /0 then4

add an outgoing edge ek+1 with label Sm− (I(e1)∪⋅⋅ ⋅∪ I(ek)) to v;5
build a decision path from rule (Fm+1 ∈ Sm+1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩, and make ek+16
point to the rst node in this path;

end7
if m< d then8

for j := 1 to k do9
if I(e j)⊆ Sm then10

if Indegree(Target(e j))> 1 then11
(1) create a new node v′ labeled the same as Target(e j);12
(2) let e j point to v′;13
/*suppose Target(e j) has h outgoing edges ε1,ε2, ⋅ ⋅ ⋅ ,εh*/14
(3) create h new outgoing edges ε ′1,ε ′2, ⋅ ⋅ ⋅ ,ε ′h for v′, where each new edge15
ε ′t point to Target(εt) for 1≤ t ≤ h;

end16
APPEND(Target(e j), (Fm+1 ∈ Sm+1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩);17

end18
else if I(e j)∩Sm ∕= /0 then19

(1) create a new node v′ labeled the same as Target(e j);20
(2) create a new edge e from v to v′ with label I(e j)∩Sm;21
(3) replace the label of e j by I(e j)−Sm;22
/*suppose Target(e j) has h outgoing edges ε1,ε2, ⋅ ⋅ ⋅ ,εh*/23
(4) create h new outgoing edges ε ′1,ε ′2, ⋅ ⋅ ⋅ ,ε ′h for v′, where each new edge ε ′t24
point to Target(εt) for 1≤ t ≤ h;
(5) APPEND(Target(e j), (Fm+1 ∈ Sm+1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩);25

end26
end27

end28
Algorithm 5: Lazy Copying Based FDD Construction

F1 F2 Decision
1 00** 010* accept
2 00** **** discard
3 **** 010* accept
4 **** **** discard
Rules generated from Figure 4.5a

(a)

F1 F2 Decision
1 **** 010* accept
2 **** **** discard
Rules generated from Figure 4.5b

(b)

Table 4.5 Rules from the FDDs in Figure 4.5a and Figure 4.5b

A brute force deep comparison algorithm for FDD reduction was proposed in
[Gouda and Liu(2007)]. In TCAM Razor, we use a more ef cient FDD reduction

4.2 Multi-dimensional TCAM Minimization: The Optimization Techniques 39

algorithm that processes the nodes level by level from the terminal nodes to the root
node using signatures to speed up comparisons. This algorithm works as follows.

Starting from the bottom level, at each level, we compute a signature for each
node at that level. For a terminal node v, set v’s signature to be its label. For a
non-terminal node v, suppose v has k children v1,v2, ⋅ ⋅ ⋅ ,vk, in increasing order of
signature (Sig(vi) < Sig(vi+1) for 1 ≤ i ≤ k− 1), and the edge between v and its
child vi is labeled with Ei, a sequence of non-overlapping pre xes in increasing
order. Set the signature of node v as Sig(v) = h(Sig(v1),E1, ⋅ ⋅ ⋅ ,Sig(vk),Ek) where
h is a one-way and collision resistant hash function such as MD5 [Rivest(1992)]
and SHA-1 [Eastlake and Jones(2001)]. For any such hash function h, given two
different input x and y, the probability of h(x) = h(y) is extremely small.

After we have assigned signatures to all nodes at a given level, we search for
isomorphic subgraphs as follows. For every pair of nodes vi and v j (1 ≤ i ∕= j ≤
k) at this level, if Sig(vi) ∕= Sig(v j), then we can conclude that vi and v j are not
isomorphic; otherwise, we explicitly determine if vi and v j are isomorphic. If vi and
v j are isomorphic, we delete node v j and its outgoing edges, and redirect all the
edges that point to v j to point to vi. Further, we eliminate double edges between
node vi and its parents. For example, the signatures of the non-root nodes in Figure
4.5a are computed as follows:

Sig(v4)= a
Sig(v5)= d
Sig(v2)= h(Sig(v4),010∗,Sig(v5),00∗∗,011∗,1∗∗∗)
Sig(v3)= h(Sig(v4),010∗,Sig(v5),00∗∗,011∗,1∗∗∗)

At the end, for any nonterminal node v, if v has only one outgoing edge, we
remove v and redirect the incoming edge of v to v’s single child. As this step does
not affect the number of rules generated from the FDD, we can skip it in practice.

Chapter 5
Bit Weaving

Prior TCAM-based classi er compression schemes [Draves et al(1999)Draves,
King, Venkatachary, and Zill,Suri et al(2003)Suri, Sandholm, and Warkhede,Apple-
gate et al(2007)Applegate, Calinescu, Johnson, Karloff, Ligett, and Wang, Dong
et al(2006)Dong, Banerjee, Wang, Agrawal, and Shukla, Liu and Gouda(to ap-
pear), Meiners et al(2007)Meiners, Liu, and Torng] suffer from one fundamental
limitation: they only produce pre x classi ers, which means they all miss some op-
portunities for compression. A pre x classi er is a classi er in which every rule is
a pre x rule. In a pre x rule, each eld is speci ed as a pre x bit string (e.g.,, 01**)
where *s all appear at the end. In a ternary rule, each eld is a ternary bit string
(e.g.,, 0**1) where * can appear at any position. Every pre x rule is a ternary rule,
but not vice versa. Because all previous compression schemes can only produce
pre x rules, they miss the compression opportunities created by non-pre x ternary
rules.
Bit weaving is a new TCAM-based classi er compression scheme that is not

limited to producing pre x classi ers. The basic idea of bit weaving is simple: ad-
jacent TCAM entries that have the same decision and have a hamming distance of
one (i.e.,, differ by only one bit) can be merged into one entry by replacing the
bit in question with *. Bit weaving applies two new techniques, bit swapping and
bit merging, to rst identify and then merge such rules together. Bit swapping rst
cuts a rule list into a series of partitions. Within each partition, a single permuta-
tion is applied to each rule’s predicate to produce a reordered rule predicate, which
forms a single pre x where all *’s are at the end of the rule predicate. This single
pre x format allows us to use existing dynamic programming techniques [Meiners
et al(2007)Meiners, Liu, and Torng,Suri et al(2003)Suri, Sandholm, and Warkhede]
to nd a minimal TCAM table for each partition in polynomial time. Bit merging
then nds and merges mergeable rules from each partition. After bit merging, we
revert all ternary strings back to their original bit permutation to produce the nal
TCAM table. We name our solution bit weaving because it manipulates bit ordering
in a ternary string much like a weaver manipulates the position of threads.

The example in Figure 5.1 shows that bit weaving can further compress a mini-
mal pre x classi er. The input classi er has 5 pre x rules with three decisions (0,

41C. R. Meiners et al., Hardware Based Packet Classification for High Speed Internet Routers,
DOI 10.1007/978-1-4419-6700-8_5, © Springer Science+Business Media, LLC 2010

42 5 Bit Weaving

1, and 2) over two elds F1 and F2, where each eld has two bits. Bit weaving com-
presses this minimal pre x classi er with 5 rules down to 3 ternary rules as follows.
First, it cuts the input pre x classi er into two partitions which are the rst two rules
and the last three rules, respectively. Second, it swaps bit columns in each partition
to make the two-dimensional rules into one-dimension pre x rules. In this example,
in the second partition, the second and the fourth columns are swapped. We call the
above two steps bit swapping. Third, we treat each partition as a one-dimensional
pre x rule list and generate a minimal pre x representation. In this example, the
second partition is minimized to 2 pre x rules. Fourth, in each partition, we detect
and merge rules that differ by a single bit. In the rst partition, the two rules are
merged. We call this step bit merging. Finally, we revert each partition back to its
original bit order. In this example, for the second partition after minimization, we
swap the second and the fourth columns again to recover the original bit order. The

nal output is a ternary packet classi er with only 3 rules.

Fig. 5.1 Example of the bit weaving approach

To implement bit weaving, we must solve several challenging technical prob-
lems. First, we need to develop an algorithm that partitions a rule list into the least
number of partitions. Second, we must develop an algorithm that permutes the bit
columns within each partition to produce one-dimensional pre x rule lists. Third,
we must adapt the existing one-dimensional pre x rule list minimization algorithms
to minimize incomplete one-dimensional rule lists. Finally, we must develop algo-
rithms to detect and then merge mergeable rules within each partition.

Our bit weaving approach has many signi cant bene ts. First, it is the rst
TCAM compression method that can create non-pre x classi ers. All previous
compression methods [Liu and Gouda(2005), Liu et al(2008)Liu, Meiners, and
Zhou, Meiners et al(2007)Meiners, Liu, and Torng, Dong et al(2006)Dong, Baner-
jee, Wang, Agrawal, and Shukla] generate only pre x classi ers. This restriction to
pre x format may miss important compression opportunities. Second, it is the rst
ef cient compression method with a polynomial worst-case running time with re-
spect to the number of elds in each rule. Third, it is orthogonal to other techniques,
which means that it can be run as a pre/post-processing routine in combination with
other compression techniques. In particular, bit weaving complements TCAM Ra-
zor [Meiners et al(2007)Meiners, Liu, and Torng] nicely. In our experiments on
real-world classi ers, bit weaving outperforms TCAM Razor on classi ers that do
not have signi cant range expansion. Fourth, it supports fast incremental updates to
classi ers.

5.1 Bit Swapping 43

The rest of this chapter proceeds as follows. We de ne bit swapping in Sec-
tion 5.1 and bit merging in Section 5.2. In Section 5.3, we discuss how bit weaving
supports incremental updates, how bit weaving can be composed with other com-
pression methods, and the complexity bounds of bit weaving.

5.1 Bit Swapping

In this section, we present a new technique called bit swapping. It is the rst part of
our bit weaving approach.

5.1.1 Pre x Bit Swapping Algorithm

De nition 5.1 (Bit-swap). A bit-swap β of a length m ternary string t is a permu-
tation of the m ternary bits; that is, β rearranges the order of the ternary bits of t.
The resulting permuted ternary string is denoted β (t). □

For example, if β is permutation 312 and string t is 0∗1, then β (t) = 10∗. For
any length m string, there are m! different bit-swaps. Bit-swap β is a pre x bit-swap
of t if the permuted string β (t) is in pre x format. Let P(t) denote the set of pre x
bit-swaps for t: speci cally, the bit-swaps that move the ∗ bits of t to the end of the
string.

A bit-swap β can be applied to a list ℓ of ternary strings ⟨t1, . . . , tn⟩ where ℓ
is typically a list of consecutive rules in a packet classi er. The resulting list of
permuted strings is denoted as β (ℓ). Bit-swap β is a pre x bit-swap for ℓ if β is a
pre x bit-swap for every string ti in list ℓ for 1 ≤ i ≤ n. Let P(ℓ) denote the set of
pre x bit-swaps for list ℓ. It follows that P(ℓ) = ∩ni=1P(ti).

Pre x bit-swaps are useful for two main reasons. First, we can minimize pre-
x rule lists using algorithms in [Meiners et al(2007)Meiners, Liu, and Torng, Suri

et al(2003)Suri, Sandholm, and Warkhede,Draves et al(1999)Draves, King, Venkat-
achary, and Zill]. Second, pre x format facilitates the second key idea of bit weav-
ing, bit merging (Section 5.2). After bit merging, the classi er is reverted to its
original bit order, which typically results in a non-pre x format classi er.

Unfortunately, many lists of string ℓ have no pre x bit-swaps which means that
P(ℓ) = /0. For example, the list ⟨0∗,∗0⟩ does not have a pre x bit-swap. We now
give the necessary and suf cient conditions for P(ℓ) ∕= /0 after de ning the following
notation.

Given that each ternary string denotes a set of binary strings, we de ne two new
operators for ternary strings: 0̂(x) and ⊑. For any ternary string x, 0̂(x) denotes the
resulting ternary string where every 1 in x is replaced by 0. For example, 0̂(1*)=0*.
For any two ternary strings x and y, x ⊑ y if and only if 0̂(x) ⊆ 0̂(y). For example,
1*⊑0* because 0̂(1*)=0*={00, 01} ⊆ {00, 01}=0̂(0*).

44 5 Bit Weaving

De nition 5.2 (Cross Pattern). Given two ternary strings t1 and t2, a cross pattern
on t1 and t2 exists if and only if (t1 ∕⊑ t2)∧ (t2 ∕⊑ t1). In such cases, we say that t1
crosses t2. □

We rst observe that bit swaps have no effect on whether or not two strings cross
each other.

Observation 5.1. Given two ternary strings, t1 and t2, and a bit-swap β , t1 ⊆ t2 if
and only if β (t1)⊆ β (t2), and t1 ⊑ t2 if and only if β (t1)⊑ β (t2). □

Theorem 5.1. Given a list ℓ = ⟨t1, . . . , tn⟩ of n ternary strings, P(ℓ) ∕= /0 if and only
if no two ternary strings ti and t j (1≤ i< j ≤ n) cross each other. □

Proof. (implication) It is given that there exists a pre x bit-swap β ∈ P(ℓ). Suppose
that string ti crosses string t j. According to Observation 5.1, β (ti) crosses β (t j).
This implies that one of the two ternary strings β (ti) and β (t j) has a ∗ before a 0 or
1 and is not in pre x format. Thus, β is not in P(ℓ), which is a contradiction.
(converse) It is given that no two ternary strings cross each other. It follows that

we can impose a total order on the ternary strings in ℓ using the relation ⊑. Note,
there may be more than one total order if ti ⊑ t j and t j ⊑ ti for some values of
i and j. Let us reorder the ternary strings in ℓ according to this total order; that is,
t ′1⊑ t ′2⊑ ⋅⋅ ⋅ ⊑ t ′n−1⊑ t ′n. Any bit swap that puts the ∗ bit positions of t ′1 last, preceded
by the ∗ bit positions of t ′2, . . . , preceded by the ∗ bit positions of t ′n, nally preceded
by all the remaining bit positions will be a pre x bit-swap for ℓ. Thus, the result
follows.

Theorem 5.1 gives us a simple algorithm for detecting whether a pre x bit-swap
exists for a list of ternary strings. If a pre x bit-swap exists, the proof of Theorem
5.1 gives us an algorithm for constructing a pre x bit-swap as shown in Algorithm
6. The algorithm sorts bit columns in an increasing order by the number of strings
that have a ∗ in that column.

Before we formally present our bit swapping algorithm, we de ne the concepts of
bit matrix and decision array for a possibly incomplete rule list (i.e.,, there may exist
a packet that none of the n rules matches). Any list of n rules de nes a bit matrix
M[1..n,1..b] and a decision array D[1..n], where for any 1 ≤ i ≤ n and 1 ≤ j ≤ b,
M[i, j] is the j-th bit in the predicate of the i-th rule and D[i] is the decision of
the i-th rule. Conversely, a bit matrix M[1..n,1..b] and a decision array D[1..n] also
uniquely de nes a rule list. Given a bit matrix M[1..n,1..b] and a decision array
D[1..n] de ned by a rule list, our bit swapping algorithm swaps the columns in M
such that for any two columns i and j in the resulting bit matrixM′ where i< j, the
number of *s in the i-th column is less than or equal to the number of *s in the j-th
column. Figure 5.2(a) shows a bit matrix and Figure 5.2(b) shows the resulting bit
matrix after bit swapping. Let L1 denote the rule list de ned byM and D, and let L2
denote the rule list de ned by M′ and D. Usually, L1 will not be equivalent to L2.
This is not an issue. The key is that if we revert the bit-swap on any rule list L3 that
is equivalent to L2, the resulting rule list L4 will be equivalent to L1.

5.1 Bit Swapping 45

Fig. 5.2 Example of bit-swapping

Input: A classi erC of n rules ⟨r1, . . . ,rn⟩ where each rule has b bits.
Output: A classi erC′ that isC after a valid pre x bit-swap.
LetM[1 . . .n,1 . . .b] and D[1 . . .n] be the bit matrix and decision array ofC;1
Let B= ⟨(i, j)∣1≤ i≤ b where j is the number of *’s inM[1 . . .n, i]⟩;2
Sort B in ascending order of each pair’s second value;3
LetM′ be a copy of M;4
for k := 1 to b do5

Let (i, j) = B[k];6
M′[1 . . .n,k] :=M[1 . . .n, i];7

end8
Output C′ de ned by M′ and D;9

Algorithm 6: Finds a pre x bit-swap

Fig. 5.3 Applying bit weaving algorithm to an example classi er

5.1.2 Minimal Cross-Free Classi er Partitioning Algorithm

Given a classi er ℂ, if P(ℂ) = /0, we cut ℂ into partitions where each partition has
no cross patterns and thus has a pre x bit-swap. We treat classi er ℂ as a list of
ternary strings by ignoring the decision of each rule.

Given an n-rule classi er ℂ = ⟨r1, . . . ,rn⟩, a partition ℙ on ℂ is a list of con-
secutive rules ⟨ri, . . . ,r j⟩ in ℂ for some i and j such that 1 ≤ i ≤ j ≤ n. A parti-
tioning, ℙ1, . . . ,ℙk, of ℂ is a series of k partitions on ℂ such that the concatenation
of ℙ1, . . . ,ℙk is ℂ. A partitioning is cross-free if and only if each partition has no
cross patterns. Given a classi er ℂ, a cross-free partitioning with k partitions is min-
imal if and only if any partitioning of ℂ with k−1 partitions is not cross-free. The

46 5 Bit Weaving

goal of classi er partitioning is to nd a minimal cross-free partitioning for a given
classi er. We then apply independent pre x bit-swaps to each partition.

We give an algorithm, depicted in Algorithm 7, that nds a minimal cross-free
partitioning for a given classi er. At any time, we have one active partition. The
initial active partition is the last rule of the classi er. We consider each rule in the
classi er in reverse order and attempt to add it to the active partition. If the current
rule crosses any rule in the active partition, that partition is completed, and the active
partition is reset to contain only the new rule. We process rules in reverse order to
facilitate ef cient incremental update (Section 5.3.2). New rules are more likely to
be added to the front of a classi er than at the end. It is not hard to prove that this
algorithm produces a minimal cross-free partitioning for any given classi er.

Input: A list of n rules ⟨r1, . . . ,rn⟩ where each rule has b bits.
Output: A list of partitions.
Let P be the current partition (empty list), and L be a list of partitions (empty);1
for i := n to 1 do2

if ri introduces a cross pattern in P then3
Append P to the head of L;4
P := ⟨ri⟩;5

else6
Append ri to the head of P;7

end8
end9
return L;10

Algorithm 7: Find a minimal partition

The core operation in our cross-free partitioning algorithm is to check whether
two ternary strings cross each other. We can ef ciently perform this check based
on Theorem 5.2. For any ternary string t of length m, we de ne the bit mask of
t, denoted M(t), to be a binary string of length m where the i-th bit (0 ≤ i < m)
M(t)[i] = 0 if t[i] = ∗ andM(t)[i] = 1 otherwise. For any two binary strings a and b,
we use a&&b to denote the resulting binary string of the bitwise logical AND of a
and b.

Theorem 5.2. For any two ternary string t1 and t2, t1 does crosses t2 if and only if
M(t1)&&M(t2) is different from both M(t1) and M(t2). □

For example, given two ternary strings t1 = 01∗0 and t2 = 101∗, whose bit masks
are M(t1) = 1101 M(t1) = 1110, we have M(t1)&&M(t2) = 1100. Therefore, t1 =
01∗0 crosses t2 = 101∗ because M(t1)&&M(t2) ∕= M(t1) and M(t1)&&M(t2) ∕=
M(t2).

Figure 5.3 shows the execution of our bit weaving algorithm on an example clas-
si er. Here we describe the bit swapping portion of that execution. The input clas-
si er has 10 pre x rules with three decisions (0, 1, and 2) over two elds F1 and
F2, where F1 has two bits, and F2 has six bits. We begin by constructing a maximal

5.2 Bit Merging 47

cross-free partitioning of the classi er by starting at the last rule and working up-
ward. We nd that the seventh rule introduces a cross pattern with the eighth rule
according to Theorem 5.2. This results in splitting the classi er into two partitions.
Second, we perform bit swapping on each partition, which converts each partition
into a list of one-dimensional pre x rules.

5.1.3 Partial List Minimization Algorithm

We now describe how to minimize each bit-swapped partition where we view each
partition as a list of 1-dimensional pre x rules. If a list of 1-dimensional pre x rules
is complete (i.e.,, any packet has a matching rule in the list), we can use the algo-
rithms in [Suri et al(2003)Suri, Sandholm, and Warkhede,Draves et al(1999)Draves,
King, Venkatachary, and Zill] to produce an equivalent minimal pre x rule list.
However, the rule list in a partition is often incomplete; that is, there exist pack-
ets that do not match any rule in the partition.

Instead, we adapt the Weighted 1-Dimensional Pre x List Minimization Algo-
rithm in [Meiners et al(2007)Meiners, Liu, and Torng] to minimize a partial 1-
dimensional pre x rule list L over eld F as follows. Let {d1,d2, ⋅ ⋅ ⋅ ,dz} be the
set of all the decisions of the rules in L. Create a default rule r∗ that matches all
packets and assign it decision dz+1. Append r∗ to L to create a new classi er L′. As-
sign each decision in {d1,d2, ⋅ ⋅ ⋅ ,dz} a weight of 1 and the decision dz+1 a weight
of ∣D(F)∣, the size of the domain F . Finally, run the weighted 1-dimensional pre x
list minimization algorithm in [Meiners et al(2007)Meiners, Liu, and Torng] on L′.
Given our weight assignment for decisions, we know the nal rule of the resulting
classi er L′′ will still be r∗ and that this rule will be the only one with decision dz+1.
Remove this nal rule r∗ from L′′, and the resulting pre x list is the minimal partial
pre x list that is equivalent to L.

Continuing the example from Figure 5.3, we use the partial pre x list minimiza-
tion algorithm to minimize each partition to its minimal pre x representation. In this
example, this step eliminates one rule from the bottom partition.

5.2 Bit Merging

In this section, we present bit merging, the second part of our bit weaving approach.
T he fundamental idea behind bit merging is to repeatedly nd in a classi er two
ternary strings that differ only in one bit and replace them with a single ternary
string where the differing bit is ∗.

48 5 Bit Weaving

5.2.1 De nitions

Two ternary strings t1 and t2 are ternary adjacent if they differ only in one bit, i.e.,,
their hamming distance [Hamming(1950)] is one. The ternary string produced by
replacing the one differing bit by a ∗ in t1 (or t2) is called the ternary cover of t1
and t2. For example, 0∗∗ is the ternary cover of 00∗ and 01∗. We call the process
of replacing two ternary adjacent strings by their cover bit merging or just merging.
For example, we can merge 00∗ and 01∗ to form their cover 0∗∗.

We now de ne how to bit merge (or just merge) two rules. For any rule r, we use
ℙ(r) to denote the predicate of r. Two rules ri and r j are ternary adjacent if their
predicates ℙ(ri) and ℙ(r j) are ternary adjacent. The merger of ternary adjacent rules
ri and r j is a rule whose predicate is the ternary cover of ℙ(ri) and ℙ(r j) and whose
decision is the decision of rule ri. We give a necessary and suf cient condition where
bit merging two rules does not change the semantics of a classi er.

Theorem 5.3. Two rules in a classi er can be merged into one rule without chang-
ing the classi er semantics if and only if they satisfy the following three conditions:
(1) they can be moved to be positionally adjacent without changing the semantics of
the classi er; (2) they are ternary adjacent; (3) they have the same decision. □

The basic idea of bit merging is to repeatedly nd two rules in the same bit-
swapped partition that can be merged based on the three conditions in Theorem 5.3.
We do not consider merging rules from different bit-swapped partitions because any
two bits from the same column in the two bit-swapped rules may correspond to
different columns in the original rules.

5.2.2 Bit Merging Algorithm (BMA)

5.2.2.1 Pre x Chunking

To address the rst condition in Theorem 5.3, we need to quickly determine what
rules in a bit-swapped partition can be moved together without changing the seman-
tics of the partition (or classi er). For any 1-dimensional minimum pre x classi er
ℂ, let ℂs denote the pre x classi er formed by sorting all the rules in ℂ in decreas-
ing order of pre x length. We prove that ℂ ≡ ℂ

s if ℂ is a 1-dimensional minimum
pre x classi er in Theorem 5.4.

Before we introduce and prove Theorem 5.4, we rst present Lemma 5.1. A rule
r is upward redundant if and only if there are no packets whose rst matching rule
is r [Liu and Gouda(2005)]. Clearly, upward redundant rules can be removed from
a classi er with no change in semantics.

Lemma 5.1. For any two rules ri and r j (i< j) in a pre x classi er ⟨r1, ⋅ ⋅ ⋅ ,rn⟩ that
has no upward redundant rules, ℙ(ri)∩ℙ(r j) ∕= /0 if and only if ℙ(ri)⊂ ℙ(r j). ⊓⊔

5.2 Bit Merging 49

Theorem 5.4. For any one-dimensional minimum pre x packet classi erℂ, we have
ℂ≡ ℂ

s.

Proof. Consider any two rules ri,r j (i < j) in ℂ. If the pre xes of ri and r j do
not overlap (i.e.,ℙ(ri)∩ℙ(r j) = /0), changing the relative order between ri and r j
does not change the semantics of ℂ. If the pre xes of ri and r j do overlap (i.e.,,
ℙ(ri)∩ℙ(r j) ∕= /0), then according to Lemma 5.1, we have ℙ(ri)⊂ℙ(r j). This means
that ℙ(ri) is strictly longer than ℙ(r j). This implies that ri is also listed before r j in
ℂ
s. Thus, the result follows. ⊓⊔

Based on Theorem 5.4, given a minimum sized pre x bit-swapped partition, we
rst sort the rules in decreasing order of their pre x length. Second, we further

partition the rules into pre x chunks based on their pre x length. By Theorem 5.4,
the order of the rules within each pre x chunk is irrelevant.

5.2.2.2 Bit-Mask Grouping

To address the second condition in Theorem 5.3, we need to quickly determine what
rules are ternary adjacent. Based on Theorem 5.5, we can signi cantly reduce our
search space by searching for mergeable rules only among the rules which have the
same bit mask and decision.

Theorem 5.5. Given a list of rules such that the rules have the same decision and
no rule’s predicate is a proper subset of another rule’s predicate, if two rules are
mergeable, then the bit masks of their predicates are the same.

Proof. Suppose in such a list there are two rules ri and r j that are mergeable and
have different bit masks. Because they are mergeable, ℙ(ri) and ℙ(r j) differ in only
one bit. Because the bit masks are different, one predicate, say ℙ(ri), must have
a ∗ and the other predicate, ℙ(r j), must have a 0 or 1 in that bit column. Thus,
ℙ(r j)⊂ ℙ(ri), which is a contradiction.

5.2.2.3 Algorithm and Optimality

The bit merging algorithm (BMA) works as follows. BMA takes as input a mini-
mum, possibly incomplete pre x classi er ℂ that corresponds to a cross-free parti-
tion generated by bit swapping. BMA rst creates classi er ℂs by sorting the rules
of ℂ in decreasing order of their pre x length and partitions ℂs into pre x chunks.
Second, for each pre x chunk, BMA groups all the rules with the same bit mask
and decision together, eliminates duplicate rules, and searches within each group
for mergeable rules. The second step repeats until no group contains rules that can
be merged. Let ℂ′ denote the output of the algorithm.

Figure 5.4 demonstrates how BMA works. On the leftmost side is the rst par-
tition from Figure 5.3. On the rst pass, eight ternary rules are generated from the

50 5 Bit Weaving

original seven. For example, the top two rules produce the rule 1000*0** → 1.
These eight rules are grouped into four groups with identical bit masks. On the sec-
ond pass, two unique rules are produced by merging rules from the four groups.
Since each rule is in a separate group, no further merges are possible and the algo-
rithm nishes. Algorithm 8 shows the general algorithm for BMA.

Fig. 5.4 Example of Bit Merging Algorithm Execution

Input: A list I of n rules ⟨r1, . . . ,rn⟩ where each rule has b bits.
Output: A list of m rules.
Let S be the set of rules in I;1
LetC be the partition of S such that each partition contains a maximal set of rules in S where2
each rule has an identical bitmask and decision;
Let OS be an empty set;3
for each c= {r′1, . . . ,r′m} ∈C do4

for i := 1 to m−1 do5
for j := i+1 to m do6

if ℙ(r′i) and ℙ(r′j) are ternary adjacent then Add the ternary cover of ℙ(r′i) and7
ℙ(r′j) to OS;

end8
end9

end10
Let O be OS sorted in decreasing order of pre x length;11
if S= O then12

return O;13
else14

return the result of BMA with O as input;15
end16

Algorithm 8: Bit Merging Algorithm

The correctness of this algorithm, ℂ′ ≡ ℂ, is guaranteed because we only com-
bine mergeable rules. We now prove that BMA is locally optimal as stated in Theo-
rem 5.6.

Lemma 5.2. During each execution of the second step, BMA never introduces two
rules ri and r j such that ℙ(ri)⊂ ℙ(r j) where both ri and r j have the same decision.
□

5.3 Discussion 51

Lemma 5.3. Consider any pre x chunk in ℂs. Let k be the length of the pre x of this
pre x chunk. Consider any rule r in ℂ′ that was formed from this pre x chunk. The
kth bit of r must be 0 or 1, not ∗. □

Theorem 5.6. The output of BMA, ℂ′, contains no pair of mergeable rules.

Proof. Within each pre x chunk, after applying BMA, there are no pairs of merge-
able rules for two reasons. First, by Theorem 5.5 and Lemma 5.2, in each run of the
second step of the algorithm, all mergeable rules are merged. Second, repeatedly
applying the second step of the algorithm guarantees that there are no mergeable
rules in the end.

We now prove that any two rules from different pre x chunks cannot be merged.
Let ri and r j be two rules from two different pre x chunks in ℂ

′ with the same
decision. Suppose ri is from the pre x chunk of length ki and r j is from the pre x
chunk of length k j where ki > k j. By Lemma 5.3, the ki-th bit of ri’s predicate must
be 0 or 1. Because ki > k j, the ki-th bit of r j’s predicate must be ∗. Thus, if ri and
r j are mergeable, then ri and r j should only differ in the ki-th bit of their predicates,
which means ℙ(ri)⊂ ℙ(r j). This con icts with Lemma 5.2. ⊓⊔

Continuing the example in Figure 5.3, we perform bit merging on both partitions
to reduce the rst partition to two rules. Finally, we revert each partition back to its
original bit order. After reverting each partition’s bit order, we recover the complete
classi er by appending the partitions together. In Figure 5.3, the nal classi er has
four rules.

5.3 Discussion

5.3.1 Redundancy Removal

Our bit weaving algorithm uses the redundancy removal procedure in Chapter 6 as
both the preprocessing and postprocessing step. We apply redundancy removal at
the beginning because redundant rules may introduce more cross patterns. We apply
redundancy removal at the end because our incomplete 1-dimensional pre x list
minimization algorithm may introduce redundant rules across different partitions.

5.3.2 Incremental Classi er Updates

Classi er rules periodically need to be updated when networking services change.
When classi ers are updated manually by network administrators, timing is not a
concern and rerunning the fast bit weaving algorithm will suf ce. When classi ers
are updated automatically in an incremental fashion, fast updates may be very im-
portant.

52 5 Bit Weaving

Bit weaving supports ef cient incremental classi er updates by con ning change
impact to one cross-free partition. An incremental classi er change is typically in-
serting a new rule, deleting an existing rule, or modifying a rule. Given a change, we

rst locate the cross-free partition where the change occurs by consulting a precom-
puted list of all the rules in each partition. Then we rerun the bit weaving algorithm
on the affected partition. We may need to further divide the partition into two cross-
free partitions if the change introduces a cross pattern. Note that deleting a rule never
introduces cross patterns. We generated our partitions by processing rules in reverse
order because new rules are most likely to be placed at the front of a classi er.

5.3.3 Composability of Bit Weaving

Bit weaving, like redundancy removal, never returns a classi er that is larger than
its input. Thus, bit weaving, like redundancy removal, can be composed with other
classi er minimization schemes. Since bit weaving is an ef cient algorithm, we can
apply it as a postprocessing step with little performance penalty. As bit weaving
uses techniques that are signi cantly different than other compression techniques, it
can often provide additional compression.

We can also enhance other compression techniques by using bit weaving, in
particular bit merging, within them. Speci cally, multiple techniques [Meiners
et al(2007)Meiners, Liu, and Torng, Meiners et al(2008a)Meiners, Liu, and Torng,
Meiners et al(2008c)Meiners, Liu, and Torng, Pao et al(2007)Pao, Zhou, Liu, and
Zhang, Che et al(2008)Che, Wang, Zheng, and Liu] rely on generating single eld
TCAM tables. These approaches generate minimal pre x tables, but minimal pre x
tables can be further compressed by applying bit merging. Therefore, every such
technique can be enhanced with bit merging (or more generally bit weaving).

For example, TCAM Razor [Meiners et al(2007)Meiners, Liu, and Torng] com-
presses multiple eld classi ers by converting a classi er into multiple single eld
classi ers, nding the minimal pre x classi ers for these classi ers, and then con-
structing a new pre x eld classi er from the pre x lists. A natural enhancement
is to use bit merging to convert the minimal pre x rule lists into smaller non-pre x
rule lists. In our experiments, bit weaving enhanced TCAM Razor yields signi -
cantly better compression results than TCAM Razor alone.

Range encoding techniques [Liu(2002), van Lunteren and Engbersen(2003), Pao
et al(2007)Pao, Zhou, Liu, and Zhang, Che et al(2008)Che, Wang, Zheng, and
Liu,Meiners et al(2008c)Meiners, Liu, and Torng] can also be enhanced by bit merg-
ing. Range encoding techniques require lookup tables to encode elds of incoming
packets. When such tables are stored in TCAM, they are stored as single eld classi-

ers. Bit merging offers a low cost method to further compress these lookup tables.
Our results show that bit merging signi cantly compresses the lookup tables formed
by the topological transformation technique [Meiners et al(2008c)Meiners, Liu, and
Torng].

5.3 Discussion 53

5.3.4 Pre x Shadowing

During bit swapping, we produce a list of partial classi ers when we run the mini-
mal cross-free partitioning algorithm. We then compress each partial classi er using
the Weighted 1-Dimensional Pre x List Minimization Algorithm. During this step,
when compressing a partial classi er, we take into account later partial classi ers
with a high cost default rule. Speci cally, we add a default rule to the partial classi-

er and give it high weight which forces the minimization algorithm to keep this rule
as the last rule which can then be removed to produce a minimal partial classi er.
We now show how we can further compress these partial classi ers by considering
prior partial classi ers. We call this technique pre x shadowing.

Partition 1
∗000→ d ⇒ ∗000→ d
0111→ d ⇒ 0111→ d
Partition 2
010∗→ a
0110→ a ⇒ 0∗∗∗→ a
00∗∗→ a

Table 5.1 The second partition bene ts from the pre x shadow of the rst partition

Table 5.1 contains two partitions or partial classi ers that are both minimal ac-
cording to the partial list minimization algorithm. Partition 1’s bit swap is changed to
partition 2’s bit swap in order to directly compare the predicates of each partition’s
rules. We observe that if the rule 0111→ d was present in partition 2, partition 2’s
three rules could be written as a single rule 0∗∗∗ → a. Therefore, utilizing pre x
coverage information from prior partitions can decrease the size of later partitions
in the classi er.

We modify the partial list minimization algorithm to account for pre xes that
are covered by prior partitions as follows. Let L be the list of rules in the partial
classi er with original decisions d1, . . . ,dz. Let r∗ represent the default rule with
single decision dz+1 that accounts for all later partial classi ers. The original deci-
sions d1, . . . ,dz are assigned weight 1 whereas the decision dz+1 is assigned weight
∣D(F)∣. Let L̂ represent the list of all pre xes that are covered by prior classi ers,
and let dz+2 be the single decision for all pre xes in L̂. We give decision dz+2 weight
0 because all rules with decision dz+2 are free. Speci cally, pre xes with decision
dz+2 are covered by prior partial classi ers which makes them redundant. Thus, all
rules with decision dz+2 can be safely removed from the given partial classi er with-
out changing the semantics of the entire classi er. We create an input instance for
the Weighted 1-Dimensional Pre x list Minimization Algorithm by concatenating
L̂ with L followed by r∗. For our example, this algorithm produces the single entry
partial classi er in partition 2 instead of the three entry classi er.

54 5 Bit Weaving

5.4 Complexity Analysis of Bit Weaving

There are two computationally expensive stages to bit weaving: nding the minimal
cross-free partition and bit merging. For analyzing both stages, let w be the number
of bits within a rule predicate, and let n be the number of rules in the input. We show
that bit merging’s worst case time complexity is O(w×n2lg3) (where lg3 = log2 3),
which makes bit weaving the rst polynomial-time algorithm with a worst-case time
complexity that is independent of the number of elds in the input classi er.

Finding a minimal cross-free partition is composed of a loop of n steps. Each of
these steps checks whether or not the adding the next rule to the current partition
will introduce a cross pattern; this requires a linear scan comparing the next rule to
each rule of the current partition. Each comparison takes Θ(w) time. In the worst
case, we get scanning behavior similar to insertion sort which requires Θ(wn2) time
and Θ(wn) space.

We now analyze the complexity of bit merging, the most expensive stage of bit
weaving. The key to our analysis is determining how many ternary covers are gen-
erated from our input of n rules. This analysis is complicated by the fact that the
generation of ternary covers proceeds in rounds. We sidestep this complication by
observing that if the total number of ternary covers generated in all rounds is f (n),
then the total space required by bit merging is O(w f (n)) and the total time required
by bit merging is O(w(f (n))2). The time complexity follows because in the worst
case, each ternary cover is compared against every other ternary cover to see if a
new ternary cover can be created. This is an overestimate since we only compare
the ternary covers generated in each round to each other, and we only compare
ternary covers within the same pre x chunk to each other. We now show that the
total number of ternary covers generated is O(nlg3) which means that bit merging
has a worst case time complexity of O(wn2lg3) and a worst case space complexity
of O(wnlg3).

0∗∗∗0 ⇒

00000
00010
00100
00110
01000
01010
01100
01110

Table 5.2 The output of bit merging determines the input.

Based on Lemma 5.3, we restrict our attention to individual pre x chunks (where
all the rules have the same decision) since we never merge rules from different pre x
chunks. Furthermore, based again on Lemma 5.3, we assume that all input rules end
with a 0 or 1 by eliminating all the ∗’s at the right end of all rules in this pre x chunk.
We now perform our counting analysis by starting with the output of bit merging for
this pre x chunk rather than the input to bit merging.

5.4 Complexity Analysis of Bit Weaving 55

First consider the case where we have a single output rule with b ∗’s such as
0∗∗∗0. We observe that the number of input rules in this pre x chunk with the
same decision must be exactly 2b because the initial input is generated by the partial
list minimization algorithm which only generates classi ers with pre x rules. Thus,
the original input rules could not include non-pre x ternary rules like 000 ∗ 0. We
illustrate this observation in Table 5.2 where we list all 8 input rules that must exist
to produce the single output of 0∗∗∗0.

Pass
0 1 2 3

000∗0
00000 001∗0 00∗∗0
00010 010∗0 01∗∗0
00100 011∗0
00110 00∗00

00∗10 0∗0∗0 0∗∗∗0
01∗00 0∗1∗0

01000 01∗10
01010 0∗000
01100 0∗010 0∗∗00
01110 0∗100 0∗∗10

0∗110(3
0
)
×23−0 (3

1
)
×23−1 (3

2
)
×23−2 (3

3
)
×23−3

Ternary Covers

Table 5.3 The set of all ternary covers generated per round

We now count the total number of ternary covers that are generated during each
round of bit merging. If we consider the input set of rules as round 0, we observe
that the number of ternary covers at round k is exactly

(b
k
)
× 2b−k for 0 ≤ k ≤ b.

Table 5.3 illustrates this property for the bit merging output 0∗∗∗0. If we sum over
each round, the total number of ternary covers is exactly ∑bk=0

(b
k
)
2b−k = 3b by the

binomial theorem. Since the input size n= 2b, the total number of ternary covers is
3b = (2b)lg3 = nlg3.

We now consider the case where the output for a single pre x chunk (with the
same decision) is q rules R = {ri ∣ 1 ≤ i ≤ q} where q > 1. Let bi for 1 ≤ i ≤ q be
the number of ∗’s in output rule ri. Let Ii be the set of input rules associated with
rule ri and let Ci be the set of ternary covers generated by Ii during the course of
bit merging. For any subset R′ ⊆ R, I(R′) = ∩ri∈R′ Ii andC(R′) = ∩ri∈R′Ci where the
intersection operator for a single set returns the same set. Stated another way, I(R′)
is the set of input rules common to all the output rules in R′, and C(R′) is the set of
ternary covers common to all the output rules in R′. Let c(R′) be the ternary cover
in C(R′) with the most stars. This ternary cover is uniquely de ned for any R′. In
particular, c(R′) would be the output rule if the input rules were exactly I(R′), and
C(R′) would be exactly the set of ternary covers generated from I(R′). Let bR′ be
the number of stars in c(R′). This implies I(R′) contains exactly 2bR′ input rules and
C(R′) contains exactly 3bR′ ternary covers.

56 5 Bit Weaving

Let TI(R) be the total number of unique input rules associated with any output
rule in R and let TC(R) be the total number of unique ternary covers associated with
any output rule in R. We now show how to compute TI(R) and TC(R) by applying
the inclusion-exclusion principle. Let Rk for 1 ≤ k ≤ q be the set of subsets of R
containing exactly k rules from R.

TI(R) =
w

∑
k=1

(−1)k−1 ∑
R′∈Rk

∣I(R′)∣=
w

∑
k=1

(−1)k−1 ∑
R′∈Rk

2bR′

TC(R) =
w

∑
k=1

(−1)k−1 ∑
R′∈Rk

∣C(R′)∣=
w

∑
k=1

(−1)k−1 ∑
R′∈Rk

3bR′

It follows that the total number of ternary covers generated is O(nlg3).
For example, suppose q= 2 and r1 = 0∗∗∗0 and r2 = ∗∗∗00. Then c(R) = 0∗∗00,

I(R) = {00000,00100,01000,01100}, and the remaining four elements of C(R′)
are {00∗00,0∗000,01∗00,0∗100}, and TI(R) = 23 +23−22 = 8+8−4 = 12 and
TC(R) = 33 +33−32 = 27+27−9 = 45.

Chapter 6
All-Match Redundancy Removal

We present an all-match based complete redundancy removal algorithm. This is the
rst algorithm that attempts to solve rst-match problems from an all-match per-

spective. We formally prove that the resulting packet classi ers have no redundant
rules after running our redundancy removal algorithm.

We have improved upon [Liu and Gouda(2005)] in two ways. First, the redun-
dancy theorem becomes simpler. The redundancy theorem in [Liu and Gouda(2005)]
distinguishes upward and downward redundant rules, and detects them separately.
In contrast, the redundancy theorem presented here gives a single criterion that can
detect both upward and downward redundant rules. Second, the new redundancy re-
moval algorithm is more ef cient. The algorithm in [Liu and Gouda(2005)] scans a
packet classi er twice and build FDDs twice in order to remove the two types of re-
dundant rules. In comparison, the new algorithm only scans a packet classi er once
and builds one all-match FDD with a cost similar cost to building an FDD. The new
algorithm is about twice as ef cient as the algorithm in [Liu and Gouda(2005)].

6.1 All-Match Based Redundancy Theorem

In this section, we introduce the concept of all-match FDDs and the all-match based
redundancy theorem.

6.1.1 All-Match FDDs

De nition 6.1 (All-Match FDD). An all-match FDD t for a packet classi er f :
⟨r1,r2, ⋅ ⋅ ⋅ ,rn⟩ over elds F1, ⋅ ⋅ ⋅ ,Fd is an FDD that has the following ve properties:

1. Each node v is labeled with a packet eld denoted F(v). If v is a nonterminal
node, then F(v) is a packet eld. If v is a terminal node, then F(v) is a list of
integer values ⟨i1, i2, ⋅ ⋅ ⋅ , ik⟩ where 1≤ i1 < i2 ⋅ ⋅ ⋅< ik ≤ n.

57C. R. Meiners et al., Hardware Based Packet Classification for High Speed Internet Routers,
DOI 10.1007/978-1-4419-6700-8_6, © Springer Science+Business Media, LLC 2010

58 6 All-Match Redundancy Removal

2. Each edge e:u→ v is labeled with a nonempty set of integers, denoted I(e), where
I(e) is a subset of the domain of u’s label (i.e.,, I(e)⊆ D(F(u))).

3. The set of all outgoing edges of a node v in t, denoted E(v), satis es the following
two conditions:

a. Consistency: I(e)∩ I(e′) = /0 for any two distinct edges e and e′ in E(v).
b. Completeness:

∪
e∈E(v) I(e) = D(F(v)).

4. A directed path from the root to a terminal node is called a decision path. No
two nodes on a decision path have the same label. Given a decision path P :
(v1e1v2e2 ⋅ ⋅ ⋅vmemvm+1), the matching set of P is de ned as the set of all packets
that satisfy (F(v1) ∈ I(e1))∧ (F(v2) ∈ I(e2))∧ ⋅⋅ ⋅ ∧ (F(vm) ∈ I(em)). We use
M(P) to denote the matching set of P .

5. For any decision path P : (v1e1v2e2 ⋅ ⋅ ⋅vmemvm+1) where F(vm+1) = ⟨i1, i2, ..., ik⟩
and for any rule r j(1≤ j ≤ n), if M(P)∩M(r j) ∕= φ , then M(P)⊆M(r j) and
j ∈ {i1, i2, ⋅ ⋅ ⋅ , ik}. □

Fig 6.2 shows an all-match FDD for the simple packet classi er in Fig 6.1. In
this example, we assume every packet has only two elds F1 and F2, and the domain
of each eld is [1,10].

r1 : F1 ∈ [1, 5]∧F2 ∈ [1,10] → accept
r2 : F1 ∈ [1, 5]∧F2 ∈ [5,10] → accept
r3 : F1 ∈ [6, 10]∧F2 ∈ [1,3] → discard
r4 : F1 ∈ [1, 10]∧F2 ∈ [1,10]→ discard

Fig. 6.1 A simple packet classi er

Fig. 6.2 An all-match FDD for the packet classi er in Fig 6.1

In an all-match FDD for a packet classi er f , for any decision path P : (v1e1v2e2
⋅ ⋅ ⋅ vmemvm+1) where F(vm+1) = ⟨i1, i2, ..., ik⟩, if a packet p satis es this path P ,
then {ri1 ,ri2 , ...,rik} are exactly all the rules in f that p matches. This is why we
call such a FDD an “all-match FDD”.

6.1 All-Match Based Redundancy Theorem 59

6.1.2 The All-Match Based Redundancy Theorem

Before we present the All-Match Based Redundancy Theorem, we rst prove the
following lemma.

Lemma 6.1. Let t be an all-match FDD for packet classi er f : ⟨r1,r2, ⋅ ⋅ ⋅ ,rn⟩. For
any rule ri in f , letP1,P2, ⋅ ⋅ ⋅ ,Ph be all the decision paths whose terminal node
contains ri, then the following condition holds: M(ri) =

∪h
j=1M(P j). □

Proof:
(1) According to property 5 in the de nition of all-match FDDs, we have

M(P j)⊆M(ri) for every j (1≤ j ≤ h). Thus, we have
∪h
j=1M(P j)⊆M(ri).

(2) Consider a packet p in M(ri). According to the consistency and complete-
ness properties of all-match FDDs, there exists one and only one decision path
that p matches. Let P be this decision path. Thus, we have p ∈ M(ri)∩M(P).
According to property 5 in the de nition of all-match FDDs, i is in the label of
P’s terminal node. Thus, we have P ∈ {P1,P2, ⋅ ⋅ ⋅ ,Ph}. Therefore, we have
p ∈

∪h
j=1M(P j). Thus we get M(ri)⊆

∪h
j=1M(P j). □

Theorem 6.1 (All-Match Based Redundancy Theorem). Let t be an all-match
FDD for packet classi er f : ⟨r1,r2, ⋅ ⋅ ⋅ ,rn⟩. Rule ri is redundant in f if and only if
in all terminal nodes of t that have i as their rst value, i is immediately followed by
another integer j such that ri and r j have the same decision.

Proof. (1) Suppose in all terminal nodes of t that have i as their rst value, i is im-
mediately followed by another integer j such that ri and r j have the same decision.
We next prove that ri is redundant in f .

We observe that removing a rule ri only possibly affects the decisions for the
packets in M(ri). Let P1,P2, ⋅ ⋅ ⋅ ,Ph be all the decision paths in t whose terminal
node contains i. According to Lemma 6.1, we haveM(ri) =

∪h
j=1M(P j). Consider

an arbitrary packet p in M(ri). Suppose we have p ∈M(P j). Let f ′ be the result-
ing packet classi er after removing ri from f . To prove that ri is redundant in f ,
we only need to prove f (p) = f ′(p). Let the label of the terminal node of P j be
⟨i1, i2, ⋅ ⋅ ⋅ , ik⟩. Because i ∈ {i1, i2, ⋅ ⋅ ⋅ , ik}, there are two cases:

1. i1 ∕= i. In this case, ri1 is the rst rule in f that pmatches. Thus, removing ri does
not affect the decision for p. In this case, we have f (p) = f ′(p).

2. i1 = i, and ri has the same decision as ri2 . In f , ri is the rst rule that p matches.
In f ′, ri2 is the rst rule that pmatches. Because ri and ri2 has the same decision,
we have f (p) = f ′(p) in this case.

Therefore, ri is redundant in f .
(2) Suppose rule ri is redundant in f and there exists a terminal node in t whose

rst two values are i followed by j, and ri and r j have different decisions. Let P

denote the decision path from the root to this terminal node. Consider a packet
p ∈M(P). Thus, ri is the rst rule that p matches in f and r j is the rst rule that
p matches in f ′. Because ri and r j have different decisions, we have f (p) ∕= f ′(p).

60 6 All-Match Redundancy Removal

This con icts with the assumption that ri is redundant. Therefore, if ri is redundant
in f , then in all terminal nodes of t that have i as their rst value, i is immediately
followed by another integer j such that ri and r j have the same decision.

6.2 All-Match Based Redundancy Removal

In this section, we rst present an algorithm for constructing all-match FDDs from
packet classi ers. Second, we present a redundancy removal algorithm based on
Theorem 6.1. Third, we prove that the resulting packet classi er does not have any
redundant rules.

6.2.1 The All-Match FDD Construction Algorithm

According to Theorem 6.1, in order to detect and remove redundant rules in a packet
classi er, we rst need to construct an all-match FDD for that packet classi er. The
pseudocode for the all-match FDD construction algorithm is shown in Algorithms
9 and 10.

Input: A packet classi er f : ⟨r1,r2, ⋅ ⋅ ⋅ ,rn⟩
Output: A all-match FDD t for packet classi er f
Build a path from rule r1. Let v denote the root. The label of the terminal node is ⟨1⟩. ;1
for i= {2, . . . ,n} ∈C do2

APPEND(v, ri, 1, i) ;3
end4

Algorithm 9: All-Match FDD Construction Algorithm

Consider the packet classi er in Figure 6.1. The process of constructing the cor-
responding all-match FDD is shown in Figure 6.3.

6.2.2 The All-Match Based Redundancy Removal Algorithm

We rst introduce two auxiliary lists that are used in the all-match based redundancy
removal algorithm: containment list and residency list. Given an all-match FDD that
hasm terminal nodes, we assign a unique sequence number in [1,m] to each terminal
node. In the containment list, each entry consists of a terminal node sequence num-
ber and the rule sequence numbers contained in the terminal node. In the residency
list, each entry consists of a rule sequence number and the set of terminal nodes

6.2 All-Match Based Redundancy Removal 61

Input: A vertex v, a rule (F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩, a depth m, and a rule number i.
Output: v includes the rule (F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩ in its all-match structure.
/* F(v) = Fm and E(v) = {e1, ⋅ ⋅ ⋅ ,ek} */
if m= d+1 then1

Add i to the end of v’s label. ;2
return3

end4
else if (Sm− (I(e1)∪⋅⋅ ⋅∪ I(ek))) ∕= /0 then5

Add an outgoing edge ek+1 with label Sm− (I(e1)∪⋅⋅ ⋅∪ I(ek)) to v ;6
Build a decision path from (Fm+1 ∈ Sm+1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩, and make ek+17
point to the rst node in this path ;
Add i to the end of the label of the terminal node of this decision path ;8

end9
for j := 1 to k do10

if I(e j)⊆ Sm then11
APPEND(e j’s target,(F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩,m+1,i);12

end13
Add one outgoing edge e to v, and label e with I(e j)∩Sm;14
Make a copy of the subgraph rooted at the target node of e j , and make e points to the15
root of the copy ;
Replace the label of e j by I(e j)−Sm ;16
APPEND(e’s target,(F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩,m+1,i) ;17

end18
return19

Algorithm 10: APPEND

Fig. 6.3 Constructing an all-match FDD

62 6 All-Match Redundancy Removal

which contains this rule. The all-match list and the residency list for the all-match
FDD in Figure 6.2 are in Figure 6.4.

Fig. 6.4 The containment list and the residency List for the all-match FDD in Figure 6.2

The all-match based redundancy removal algorithm works as follows. Given a
packet classi er f : ⟨r1,r2, ⋅ ⋅ ⋅ ,rn⟩, this algorithm scans f from rn to r1, and checks
whether each rule is redundant using Theorem 6.1. Whenever a rule is detected as
redundant, the rule is removed from f . The pseudocode of the algorithm is shown
in Algorithm 11.

Input: A packet classi er f : ⟨r1,r2, ⋅ ⋅ ⋅ ,rn⟩, and an all-match FDD t for f .
Output: A packet classi er f ′ where f ≡ f ′ and there is no redundant rule in f ′.
Build the containment listConList[1..m] from t ;1
Build the residency list ResList[1..n] from t ;2
for i := n to 1 do3

redundant := true ;4
for each terminal node sequence number tn in ResList[i] do5

if i is the only value in ConList[tn]) or i is the rst value in ConList[tn] and the6
second value in ConList[tn], say j, satis es the condition that ri and r j have
different decisions then

redundant := false ;7
break ;8

end9
end10
if redundant then11

remove ri from fi ;12
for each terminal node sequence number tn in ResList[i] do13

delete i from ConList[tn] ;14
end15

end16
end17

Algorithm 11: All-Match Based Redundancy Removal Algorithm

6.2 All-Match Based Redundancy Removal 63

Consider the packet classi er in Figure 6.1 and its all-match FDD in Figure 6.2.
The all-match list and the residency list are in Figure 6.4. We next demonstrate the
process of determining whether r4 is redundant using the all-match based redun-
dancy removal algorithm shown in Figure 11. From the residency list, we know that
rule r4 is contained in terminal nodes 1,2,3 and 4. In terminal node 4, r4 is the only
value, and thus is not redundant. Next, we check whether r3 is redundant. From the
residency list, we know that r3 is contained in terminal node 3. In terminal node 3,
the rst value is 3, and is immediately followed by a 4, and r3 and r4 have the same
decision. According to the Theorem 6.1, r3 is redundant. Subsequently, we remove
r3 from the packet classi er and delete 3 from the third entry of the all-match list. In
a similar fashion, we can further detect that r2 is redundant and r1 is not redundant.
The resulting packet classi er is shown in Figure 6.5.

F1 ∈ [1, 5]∧F2 ∈ [1,10] → accept
F1 ∈ [1, 10]∧F2 ∈ [1,10]→ discard

Fig. 6.5 The resulting packet classi er after removing redundant rules from the packet classi er
in Figure 6.1

6.2.3 Proof of Complete Redundancy Removal

A packet classi er redundancy removal algorithm is a complete redundancy removal
algorithm if and only if for any packet classi er the algorithm produces a semanti-
cally equivalent packet classi er in which no rule is redundant.

Theorem 6.2. The All-Match Based Redundancy Removal Algorithm is a complete
redundancy removal algorithm. □

Proof:
Let f be a given packet classi er and let t be an all-match FDD for f . Let f ′′ be

the resulting packet classi er after running the all-match based redundancy removal
algorithm. Suppose f ′′ has a rule ri that is redundant in f ′′. Let f ′ be the resulting
packet classi er after the algorithm has examined all the rules from ri+1 to rn and
the redundant rules from ri+1 to rn has been removed. Because the algorithm does
not remove ri, ri is not redundant in f ′. According to Theorem 6.1, there is at least
a terminal node v that satis es one of the following conditions:

1. this terminal node only contains i,
2. this terminal node has i as its rst value and i is immediately followed by another

value j such that ri and r j have different decisions.

If v satis es one of the two conditions, then v still satis es that condition after the
algorithm removes all the redundant rules above ri, because i will never be deleted

64 6 All-Match Redundancy Removal

from v according to the algorithm. Therefore, ri is not redundant in f ′′ according to
Theorem 6.1. □

It is worth noting that the order from n to 1 in detecting redundant rules is critical.
If we choose another order, the algorithm may not be able to guarantee complete
redundancy removal. Take the order from 1 to n as an example. When we check
whether ri is redundant, suppose ri is not redundant because there is one and only
one terminal node in the all-match FDD that has i as its rst value and i is im-
mediately followed by another value j such that ri and r j have different decisions.
We further suppose j is immediately followed by another value k where ri and rk
have the same decision. After moving all the redundant rules after ri, j is possi-
bly removed from the terminal node and consequently ri and rk become the rst
two values in the terminal node and they have the same decision. Thus, ri becomes
redundant.

6.3 Optimization Techniques

In this section, we present two optimization techniques, decision chaining and iso-
morphic terminal nodes elimination. These two techniques reduce the amount of
memory used in constructing all-match trees and henceforth speed up the construc-
tion process.

6.3.1 Decision Chaining

The terminal nodes in an all-match tree may consume a substantial amount of mem-
ory. Whenever a subtree in an all-match tree needs to be copied, a substantial amount
of time maybe needed to copy terminal nodes, where each terminal node stores an
array of rule indexes. Next, we present an optimization technique called decision
chaining, which stabilized both the amount of memory needed for storing terminal
nodes and the time needed for copying subtrees.

Decision chaining is based upon the observation that rules are always added to
the end of each terminal node’s array. With this observation, we store the rules for
each decision in a singly linked list. Furthermore, we order our lists in reverse order
so that we can insert rules at the head of the list in constant time. Storing decisions in
a singly linked list allows each terminal node to be copied in constant time since we
only have to copy the head node of the list. With this optimization, we can reduce
that total amount of memory used to store rules since rules can be shared among
terminal nodes.

The pseudocode for the modi ed append subroutine, which is needed to preform
this optimization, is shown in Algorithm 12. Figure 6.6 shows the process of con-
structing an all-match tree with the optimization of decision chaining. Note that r1

6.3 Optimization Techniques 65

gets reused in the second insertion, and this reuse is maintained for the life of the
tree.

Input: A vertex v, a rule (F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩, a depth m, and a rule number i.
Output: v includes the rule (F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩ in its all-match structure.
Let F(v) = Fm and E(v) = {e1, ⋅ ⋅ ⋅ ,ek} ;1
if m= d+1 then2

Add i to the head of v’s label list ;3
return4

end5
else if (Sm− (I(e1)∪⋅⋅ ⋅∪ I(ek))) ∕= /0 then6

Add an outgoing edge ek+1 with label Sm− (I(e1)∪⋅⋅ ⋅∪ I(ek)) to v ;7
Build a decision path from (Fm+1 ∈ Sm+1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩, and make ek+18
point to the rst node in this path ;
Add i to the end of the label of the terminal node of this decision path ;9

end10
for j := 1 to k do11

if I(e j)⊆ Sm then12
APPEND(e j’s target,(F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩,m+1,i) ;13

end14
Add one outgoing edge e to v, and label e with I(e j)∩Sm ;15
Make a copy of the subgraph rooted at the target node of e j , and make e points to the16
root of the copy ;
Replace the label of e j by I(e j)−Sm ;17
APPEND(e’s target,(F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩,m+1,i) ;18
return19

end20
Algorithm 12: APPEND with decision chaining

Decision chaining is compatible and complementary to lazy copying [Meiners
et al(2007)Meiners, Liu, and Torng], another optimization technique that we use in
constructing all-match trees. Lazy copying can reduce the number of subtrees that
are copied during construction.

With decision chaining, we construct an all-match tree by inserting the rules in
a classi er from the last to the rst. This all-match tree constructing method does
not require modi cation to our redundancy removal algorithm. In addition, when
compared to inserting rules from the rst to the last, this method can signi cantly
improve the ef ciency of lazy copying and decision chaining. This advantage is il-
lustrated in Figure 6.7, where Figure 6.7(a) shows the all-match tree constructed by
inserting the rules in the classi er in Figure 6.1 from the rst to the last and Fig-
ure 6.7(b) shows the all-match tree constructed by inserting the rules in the same
classi er from the last to the rst. Note that in gure Figure 6.7(a) rule r4 is repli-
cated across all four terminal nodes and in gure Figure 6.7(b) rule r4 is stored only
in one terminal node. The intuition behind this optimization is that the rules that ap-
pear later in a classi er tend to cover larger areas, and thus, they typically intersect
with more rules than rules that appear towards the front of the classi er. Inserting a
rule that intersects with a large number of rules that have been inserted before it will

66 6 All-Match Redundancy Removal

Fig. 6.6 Constructing an all-match tree with decision chaining

result in many subtree being copied. Therefore, inserting rules from back to front
results in less subtree copying and more memory sharing.

6.3.2 Isomorphic Terminal Nodes Elimination

In constructing an all-match tree from a packet classi er, the intermediate trees may
contain isomorphic nodes. Two nodes v and v′ in an all-match tree are isomorphic
if and only if v and v′ satisfy one of the following two conditions: (1) both v and
v′ are terminal nodes with identical labels; (2) both v and v′ are nonterminal nodes
and there is a one-to-one correspondence between the outgoing edges of v and the
outgoing edges of v′ such that every pair of corresponding edges have identical
labels and they both point to the same node.

Combining two isomorphic nodes into one node will clearly reduce memory us-
age. However, the time and space required for detecting all isomorphic node after
appending every rule may over weigh its bene t. Therefore, we propose to elimi-
nate only isomorphic terminal nodes, rather than eliminating all isomorphic nodes,
for two reasons. First, isomorphic terminal nodes can be detected much more ef -
ciently than isomorphic nonterminal nodes. Second, isomorphic terminal nodes ap-

6.4 Classi er Incremental Updates 67

Fig. 6.7 All-Match Tree with decision tree chaining constructed in rule order and reverse order.

pear more often than isomorphic nonterminal nodes, and they consume a signi cant
amount of memory.

We detect isomorphic terminal nodes using collision resistant hash functions. We
rst iterate over the list of terminal nodes and use the hash function to insert each

node into a hash table that store nodes with identical hashes in a hash collision list.
During the insertion process, whenever we encounter a hash collision we compare
the new node for equality with every node within the hash collision list and add
the new node only if it is not equal any node within the list. Once we are nished
inserting nodes, we use the hash table entries to construct a list of unique terminal
nodes. In our example, the four terminal nodes ⟨1,4⟩, ⟨1,2,4⟩, ⟨3,4⟩, ⟨4⟩ would all
have different hashes so none of the terminal nodes would be eliminated.

6.4 Classi er Incremental Updates

Packet classi cation rules periodically need to be updated. There are three possible
incremental updates on a classi er: inserting a rule, deleting a rule, and modifying a

68 6 All-Match Redundancy Removal

rule. Next, we discuss how our all-match based redundancy removal algorithm can
be adapted to handling each type of update ef ciently.

6.4.1 Rule Insertion

Typically the update on a packet classi er is to insert new rules. If a rule is inserted
on the top of a classi er, we can simply add this rule on the top of the redundancy
free classi er produced by our redundancy removal algorithm, although the result-
ing classi er is not guaranteed to be redundancy free. If a rule is inserted in the mid-
dle of a classi er, we cannot directly insert this rule to the redundancy free classi er
because some redundant rules that we have removed may become non-redundant.
In what follows, we present an ef cient algorithm for handing such insertion of a
new rule.

Let f = ⟨r1, ⋅ ⋅ ⋅ ,ri,ri+1, ⋅ ⋅ ⋅ ,rn⟩ be the original given classi er. Suppose the up-
date on this classi er is to insert a new rule ri′ between ri and ri+1. We let the index
i′ to be a real number whose value is between i and i+1. Next, we present a method
for quickly constructing the all-match tree of f ′, based on which we can use our
all-match based redundancy removal algorithm to remove all redundant rules from
f ′. The basic idea is to insert the new rule ri′ to the all-match tree constructed from
classi er f . Note that we assume that the all-match tree constructed from classi er
f has been kept for handling updates; otherwise we have to reconstruct an all-match
tree from the updated classi er f ′ = ⟨r1, ⋅ ⋅ ⋅ ,ri,ri′ ,ri+1, ⋅ ⋅ ⋅ ,rn⟩ to remove all redun-
dant rules from f ′. Since we construct an all-match tree by running updates in sorted
order, every terminal node will have the rule numbers in sorted order. We can mod-
ify append to perform an insertion by changing how it modi es the terminal node
labels. Instead of adding the rule number to the end of the label, the insertion mod-
i es terminal labels by inserting the rule number according to the sorted order. The
pseudocode for the insertion function is shown in Algorithm 13. After the all-match
tree for f ′ = ⟨r1, ⋅ ⋅ ⋅ ,ri,ri′ ,ri+1, ⋅ ⋅ ⋅ ,rn⟩ is obtained, we rerun our all-match based
redundancy removal algorithm to remove all redundant rules from f ′.

If a large number of insertions need to be performed at once, the normal update
function can be used; however, before the all-match redundancy removal is rerun,
the list of numbers within each terminal node will need to be sorted.

6.4.2 Rule Deletion

For rule deletion, suppose that we delete rule ri from classi er f = ⟨r1, ⋅ ⋅ ⋅ ,ri,ri+1,
⋅ ⋅ ⋅ , rn⟩, we delete rule ri from all terminal nodes of the all-match tree con-
structed from f . The resulting tree is the all-match tree for the updated classi er
f ′ = ⟨r1, ⋅ ⋅ ⋅ ,ri−1,ri+1, ⋅ ⋅ ⋅ ,rn⟩. Then, we rerun our all-match based redundancy re-
moval algorithm to remove all redundant rules from f ′.

6.5 Redundancy Analysis 69

Input: vertex v, a rule (F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩, a depth m, and a rule number i.
Output: v includes the rule (F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩ in its all-match structure.
/* F(v) = Fm and E(v) = {e1, ⋅ ⋅ ⋅ ,ek} */
if m= d+1 then1

Add i to the end of v’s label ;2
return3

end4
else if (Sm− (I(e1)∪⋅⋅ ⋅∪ I(ek))) ∕= /0 then5

Add an outgoing edge ek+1 with label Sm− (I(e1)∪⋅⋅ ⋅∪ I(ek)) to v ;6
Construct a decision path from (Fm+1 ∈ Sm+1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩, and make ek+17
point to the rst node in this path ;
Insert i according the sorted order of the label of the terminal node of this decision path ;8

end9
for j := 1 to k do10

if I(e j)⊆ Sm then11
INSERT(e j’s target,(F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩,m+1,i) ;12

end13
Add one outgoing edge e to v, and label e with I(e j)∩Sm ;14
Make a copy of the subgraph rooted at the target node of e j , and make e points to the15
root of the copy ;
Replace the label of e j by I(e j)−Sm ;16
INSERT(e’s target,(F1 ∈ S1)∧⋅⋅ ⋅∧ (Fd ∈ Sd)→ ⟨dec⟩,m+1,i) ;17
return18

end19
Algorithm 13: INSERT

6.4.3 Rule Modi cation

For rule modi cation, we model it as a rule deletion plus a rule insertion. Suppose
that we modify rule ri to be ri′ in classi er f = ⟨r1, ⋅ ⋅ ⋅ ,ri,ri+1, ⋅ ⋅ ⋅ ,rn⟩. We rst
get the all-match tree for the classi er f ′ = ⟨r1, ⋅ ⋅ ⋅ ,ri−1,ri+1, ⋅ ⋅ ⋅ ,rn⟩ in the way
that we handle rule deletions. Second, we obtain the all-match tree for the classi er
f ′′ = ⟨r1, ⋅ ⋅ ⋅ ,ri−1,ri′ ,ri+1, ⋅ ⋅ ⋅ ,rn⟩ in the way that we handle rule insertion. Finally,
we rerun our all-match based redundancy removal algorithm to remove all redundant
rules from f ′′.

6.5 Redundancy Analysis

In this section, we rst introduce the concept of redundancy analysis, the goal of
which is to calculate the set of rules that causes a particular rule to be redundant.
Then, we present an algorithm for redundancy analysis.

Redundancy analysis is very useful for system administrator to investigate the
reason of a rule being redundant. Updates to rule lists often unintentional cause
older rules to become redundant. Redundant rules also can indicate miscon guration
within rule lists. For example, in the rule list in Figure 6.1, we have two redundant

70 6 All-Match Redundancy Removal

rules, r2 and r3. For each of these rules, we can nd rules that make them redundant:
r2 is redundant because r1 precedes it, and r3 is redundant because r4 makes it
ineffective.

Formally we de ne a redundancy cause set of ri to be a set of causal sets where
a causal set S is a set of rules such that removing all the rules in S will make ri non-
redundant. In our example, the redundancy cause set of r2 is {{r1}} where {r1} is a
causal set, and the redundancy cause set of r3 is {{r4}} where {r4} is a causal set.

We observe that the containment and residency lists in Figure 6.4 provide com-
plete information for calculating the causal sets for any rule in a rule list. Recall
from Theorem 6.1 that a ri is redundant if none of its occurrences in the contain-
ment list’s terminal nodes appear at the front of a list or all of its occurrences at the
front of a terminal node list are followed by a rule with the same decision. There-
fore, each terminal node that contains ri provides a cause for ri’s redundancy and
forms a causal set.

The redundancy cause sets provide a succinct list of causes for each rule’s redun-
dancy, and we compute the redundancy cause set for ri in the following manner: For
each entry j in the residency list, the algorithm enumerates out a single causal set
for ri at the terminal node j in the containment list. According to Theorem 6.1, re-
moving any one set of rules will prevent ri from becoming redundant. Algorithm 14
contains the psuedocode for computing the redundancy cause set of ri given a con-
tainment and residency list.

Input: A rule number ri, a containment listC[1 . . .m], and a residency list R[1 . . .n].
Output: S is the redundancy cause set of ri.
S← /0 ;1
for each j ∈ R[i] do2

ForeCause← the set of all rules preceding ri in C[j] ;3
A f tCause← the set of all rules between ri and the rst rule that follows it with a4
different decision inC[j] ;
if (ForeCause∪A f tCause) ∕= /0 then5

Add (ForeCause∪A f tCause) to S ;6
end7

end8
return S9

Algorithm 14: Find redundancy cause set of ri

Each causal set can be reviewed by a system administrator to determine if the
cause is legitimate or not. Additional techniques can be used to further prune this list
of causal set to assist the administrator. For example, we can eliminate causal sets
that contain only rules that are older than ri; this ltering allows the administrator to
review the causal sets which have been changed or created during a recent rule list
update. Conversely, by eliminating causal sets that contain only rules that are newer
than ri, the administrator can review the original causal sets that ri had with the
classi er when it was originally added. By examining both types of ltered causal
sets, the administrator can determine if the intent of ri is still being enforced.

Part II
New Architectural Approaches

73

New architectural approaches seek to modify how the TCAM based packet clas-
si ers operate in order to improve ef ciency. We propose two approaches: sequen-
tial decomposition and topological transformation. Sequential decomposition de-
composes a single d- eld packet classi cation TCAM lookup into a sequence of
d 1- eld TCAM lookups. Topological transformations provide methods to translate
the domain of each packet eld into a more ef cient representation. Both techniques
allow for the ef cient utilization of TCAM space. These techniques mitigate the ef-
fects of range; however, they have the unique advantage that they nd optimizations
beyond range expansion. This advantage allows for sublinear compression.

Chapter 7
Sequential Decomposition

The problem that sequential decomposition tries to solve in this chapter can be stated
intuitively as follows: how can we squeeze the most information possible into TCAM
chips with little or no performance loss? Solving this problem helps to address al-
most all limitations of TCAMs. Given a packet classi er, if we can represent it
using fewer bits, we can use a smaller TCAM chip, which will result in lower power
consumption, less heat generation, less board space, and lower hardware cost. Fur-
thermore, reducing the number of TCAM rules results in less power consumption
and heat generation because the energy consumed by a TCAM grows linearly with
the number of ternary rules it stores [Yu et al(2005)Yu, Lakshman, Motoyama, and
Katz].

Sequential decomposition is composed of four algorithmic approaches to re-
thinking and redesigning TCAM-based packet classi cation systems: multi-lookup,
pipelined-lookup, packing, and table consolidation. These approaches move beyond
the traditional paradigm that performs a single lookup on a single TCAM for each
search key. The following two observations of information redundancy and a ternary
search key, which have mostly been ignored in prior work, form the theoretical basis
for our new approaches.

Information Redundancy

Information stored in TCAMs tends to have high redundancy from an information
theory perspective. Speci cally, we observe that the same ternary string for a spe-
ci c eld may be repetitively stored in multiple TCAM entries. For example, in the
simple two-dimensional packet classi er in Figure 7.1(a), the strings 001, 010, and
100 from the rst eld are each stored three times in the TCAM, and the strings
001, 010, and *** from the second eld are each stored three times in the TCAM
as well. Such information redundancy is primarily due to the multi-dimensional na-
ture of packet classi cation rules. One source of information redundancy is range
expansion in two or more elds.

75C. R. Meiners et al., Hardware Based Packet Classification for High Speed Internet Routers,
DOI 10.1007/978-1-4419-6700-8_7, © Springer Science+Business Media, LLC 2010

76 7 Sequential Decomposition

Single-lookup
001,001 accept
001,010 accept w. log
001,*** discard
010,001 accept
010,010 accept w. log
010,*** discard
100,001 accept
100,010 accept w. log
100,*** discard
, discard w. log

Multi-lookup
t1

001 t2
010 t2
100 t2
*** t3

t2
001 accept
010 accept w. log
*** discard

t3
*** discard w. log

(a) (b)

Fig. 7.1 Reducing information redundancy

Ternary Search Key

A TCAM chip typically has a built-in Global Mask Register (GMR) that supports
ternary search keys. The GMR of a TCAM chip contains a bit mask that speci es
which bit columns in the chip participate in a search. For example, in a TCAM chip
that contains two entries 1010 and 0100, if the search key is 0101 and the GMR
speci es that only the rst two columns participate in this search, the TCAM chip
will return that the lookup key matches the second entry 0100. In essence, the GMR
allows the user to specify the search key in ternary format. In the above example, the
GMR transforms the search key 0101 into 01**. The GMR opens new opportunities
for further improving TCAM space ef ciency. Intuitively, the GMR allows multiple
lookup tables to be packed into one TCAM chip where the GMR can be used at run
time to dynamically select the right table to search.

The multi-lookup approach is based on three key observations. First, breaking a
multi-dimensional packet classi er into multiple one-dimensional classi ers greatly
reduces information redundancy in TCAMs. Second, multiple lookup tables can co-
reside in TCAM as long as extra bits are set to distinguish them. Third, a search
key can be segmented into multiple search keys where each is searched in a one-
dimensional classi er. Breaking the two-dimensional classi er in Figure 7.1(a) re-
sults in the three one-dimensional classi ers in Figure 7.1(b). Although in this par-
ticular example, the number of entries in the original single-lookup table is only two
more than the total number of entries in the multi-lookup tables, the savings will in-
crese signi cantly as the repetition in each eld increases. Furthermore, note that
the width of the multi-lookup tables is much smaller than that of the single lookup
table.

The space ef ciency achieved by the multi-lookup approach comes with the price
of more clock cycles to perform each search. Our pipelined-lookup approach speeds
up the multi-lookup approach by pipelining the multiple lookups using multiple
TCAM chips. Interestingly, the pipelined-lookup approach achieves even higher

7.1 Multi-Lookup Approach 77

packet classi cation throughput than the traditional single-lookup approach because
the narrower TCAM entries now t on the data bus.

The packing approach is based on the following three observations. First, TCAM
chips have limited con gurability on their width. This prevents us from con guring
the TCAM width to exactly the table width, which could cause a signi cant number
of bits in each TCAM entry to be unused. Second, the multi-lookup and pipelined-
lookup approaches produce “thin” tables of varying width. Third, search keys for
TCAM chips can be ternary, which allows TCAM columns to be dynamically se-
lected for each lookup. The basic idea of the packing approach is that multiple tables
can be placed within the same TCAM entries. These tables will be distinguished by
the GMR.

In addition to the packing approach, table consolidation allows one TCAM table
to store multiple classi ers ef ciently at the expense of extra SRAM. Table consol-
idation is based on the two observations. First, TCAM is far more expensive and
consumes much more power than SRAM; it makes sense to use a large SRAM with
a small TCAM rather than a small SRAM with a large TCAM. Second, semantically
different TCAM tables may share common entries, and transferring this redundancy
to SRAM removes the information redundancy from the more expensive TCAM.

7.1 Multi-Lookup Approach

Prior work and current practice have assumed the use of a single-lookup for TCAM
based systems. We observe that relaxing this assumption could yield unexpected
savings on TCAM space with minor throughput degradation. In this section, we pro-
pose a multi-lookup approach to redesigning TCAM based systems. We present two
algorithms to support this approach: an algorithm for constructing a multi-lookup
table and an algorithm for processing packets.

7.1.1 Constructing Multi-lookup Table

The algorithm for constructing a multi-lookup TCAM table from a given packet
classi er consists of the following four steps, which are illustrated in Figure 7.2 and
Figure 7.3: (1) FDD Construction: Constructing a tree-like representation, called
a Firewall Decision Diagram (FDD), of the packet classi er. (2) FDD Reduction:
Reducing the size of the FDD. (3) Table Generation: Generating a TCAM table
from each nonterminal node in the reduced FDD. (4) Table Mergence: Merging the
generated TCAM tables into a single multi-lookup TCAM table.

78 7 Sequential Decomposition

F1 F2 Decision
000 000 accept
000 111 accept
110 000 accept
110 111 accept
010 0** accept
100 0** accept
*** 1** accept
*** *** discard

(a)

⇓ FDD Construction

F1

F2

daa

F2

da

F2

da

000 110

000

111

F2

da

001
01*

10*
110

F2

daa

000

111

001
01*

10*
110

0** 1** 0** 1** 1** 0**

010 100

001 011101
111

(b)

⇓ FDD Reduction

110

111
010

001
F1

F2 F2

ad

110
000

000
111

F2

001

01*
10*

1** 0**
0** 1**

100

011
101

(c)

Fig. 7.2 FDD generation and reduction

7.1.1.1 FDD Construction

To generate a multi-lookup TCAM table, we rst convert a given packet classi er
to an equivalent rewall decision diagram.Figure 7.2(b) shows the FDD constructed
from the packet classi er in Figure 7.2(a).

7.1 Multi-Lookup Approach 79

⇓ Table Generation

110

111100

001
F1

F2 F2

ad

110
000

000
111

001

01*
10*

1** 0**
0** 1**

010
011

101

00

11

01

10

11***

01110

10100

10010

01000

d***

a1**

d***

a0**

d***

a111

a000

F2
(a)

⇓ Table Mergence

d***

a111

a000

d***

a0**

11***

01110

10100

10010

01000

d***

a1** d11***

a111**

d10***

a100**

d01***

a01111

a01000

1100***

0100110

1000100

1000010

0100000

00

01

10

11

(b)

Fig. 7.3 The Multi-lookup scheme

7.1.1.2 FDD Reduction

Reduction is an important step in reducing the total number of TCAM entries in the
nal multi-lookup table because the reduction step reduces the number of nonter-

minal nodes, which consequently reduces the number of TCAM entries generated.
Figure 7.2(c) shows the resultant FDD after FDD reduction. A brute force algo-

80 7 Sequential Decomposition

rithm FDD reduction algorithm can be found in [Gouda and Liu(2004)]; however,
we provide a more ef cient reduction algorithm in Section 7.6.

7.1.1.3 Table Generation

Suppose the reduced FDD has n nonterminal nodes. Consider any nonterminal node
v. Since v is complete with respect to its labeled eld, we can view v as a one-
dimensional packet classi er in which its outgoing edges point to its classi er’s
decisions. We will construct a corresponding TCAM table Table(v) for each non-
terminal node v in the FDD, and we assign a unique ID in the range 0 to n− 1 to
both v and Table(v). We will refer to ID as both node v’s ID and table Table(v)’s
ID. The meaning should be clear from context. For example, the IDs for the four
nonterminal nodes in Figure 7.3(a) are 00, 01, 10, and 11.

For any table t, we de ne its height h(t) to be the number of entries in t, and
we de ne its width w(t) to be the number of bits in each TCAM entry. In the
single lookup approach, most people assume w(t) = 144 because the ve packet

elds require 104 bits. Using the multi-lookup approach, we will show we can make
w(t) = 72.

We generate Table(v) in two steps. We rst generate a correct packet classi er
by making one entry for each pre x on each edge. That is, for each of v’s outgoing
edges e from v to v′ and for each pre x p on edge e, we generate a rule r as follows:
the predicate of r is p; if v′ is a terminal node, the decision of r is the label of v′;
if v′ is a nonterminal node, the decision of r is the ID of v′. We then minimize the
number of TCAM entries in Table(v) by using an optimal, polynomial-time algo-
rithm for minimizing one-dimensional pre x packet classi ers [Suri et al(2003)Suri,
Sandholm, and Warkhede]. Figure 7.3(a) shows the four minimal TCAM tables that
correspond to each of the four nonterminal nodes in the FDD.

7.1.1.4 Table Mergence

The nal step is to merge all n TCAM tables into a single multi-lookup table. For ev-
ery nonterminal node v, we prepend v’s ID to the predicate of each rule in Table(v).
Since each table ID provides a unique signature that distinguishes that table’s entries
from all other table entries, all n tables can be merged into a single multi-lookup
table. Figure 7.3(b) shows the resultant multi-lookup table from merging the four
TCAM tables in Figure 7.3(a).

7.1.2 Packet Processing

After the multi-lookup TCAM table is built for a d-dimensional packet classi er, the
decision for a d-dimensional packet (p1, . . . , pd) can be found by d searches on the

7.1 Multi-Lookup Approach 81

TCAM. The rst search key k1 is formed by concatenating the root node’s ID and
p1. Let f (k1) denote the search result of k1. The second search key, k2 is formed by
concatenating f (k1) and p2. This process continues until we compute f (kd), which
is the decision for the packet. For example, given the two dimensional multi-lookup
table in Figure 7.2(e) and a packet (010,001), the rst search key is 00010, which
returns 10. The second search key is 10010, which returns accept as the decision for
the packet.

7.1.3 Analysis

We analyze the impact of the multi-lookup approach on TCAM space and packet
classi cation throughput.

7.1.3.1 Space

We de ne the space used by a packet classi er in a TCAM chip as the number of
classi er entries or rules multiplied by the width of the TCAM chip in bits:

space= # of entries×TCAM width

Given a packet classi er f , let Single(f) denote the resulting single lookup TCAM
table and let Multi(f) denote the resulting multi-lookup TCAM table. It follows
that width w(Single(f)) = 144 because the table must accommodate the 104 bits in
the ve packet elds, and the number of entries is h(Single(f)). Thus, the number
of bits required by the single lookup approach is h(Single(f))× 144. On the other
hand, we can safely set width w(Multi(f)) = 72. This follows as the maximum
width of the ve packet elds is 32, which leaves 40 bits for storing a table ID and
optionally, the decision. This is more than suf cient for any realistic TCAM for the
forseeable future. Thus, the number of bits required by the multi-lookup approach
is h(Multi(f))×72. The multi-lookup table starts with a 50% reduction in width.

7.1.3.2 Throughput

Based on the above analysis that there are at least 40 bits to store table IDs plus the
decision, there is suf cient space to store the decision for each rule in the TCAM
entry and still have each TCAM entry t within the 72 bits of the typical TCAM bus
width. Thus, it will require two bus cycles to process each packet eld: one cycle to
send the search key and one cycle to perform the search and return the result. Given
there are ve packet elds that need to be processed, the total packet processing
time will require ten TCAM bus cycles. The single lookup approach requires either
four TCAM bus cycles or ve TCAM bus cycles to nd the decision for a packet:

82 7 Sequential Decomposition

four bus cycles if the decision is stored in TCAM, ve bus cycles if the decision is
stored in SRAM. Note that the overall packet processing throughput for the multi-
lookup approach may actually be closer to the packet processing throughput of the
single lookup approach because TCAM lookup is normally not the bottleneck of
such systems; instead other operations such as moving a packet in and out of queues
are the real bottlenecks, so taking a few more bus cycles to process a packet may
not have a signi cant impact on throughput.

7.2 Pipelined-lookup Approach

The multi-lookup approach is an effective method for reducing TCAM space needed
for packet classi ers. However, this reduction in space reduces packet classi cation
throughput by requiring multiple lookups on a single TCAM chip. In this section,
we present our pipelined-lookup approach, which improves packet throughput by
using one TCAM chip for each eld. That is, we will use ve TCAM chips where,
for 1 ≤ i ≤ 5, chip i stores table ti which is the merger of all tables of Fi nodes.
Having one merged table per eld in a separate TCAM chip enables us to pipeline
the multiple lookups needed for processing each packet. Surprisingly, the pipelined-
lookup approach can be four to ve times faster than the traditional single-lookup
approach. Furthermore, separating the tables from different elds yields new op-
portunities to save bits. The result is that while more TCAM chips are needed, the
pipelined-lookup approach can be even more space ef cient than the multi-lookup
approach. Next, we present the technical details of the pipelined-lookup approach
to redesigning TCAM based systems. In particular, we present two algorithms to
support this approach: an algorithm for constructing a sequence of d TCAM tables
and an algorithm for processing packets.

7.2.1 Pipelined-Table Construction

Our algorithm for constructing a sequence of d tables t1 through t5 consists of four
steps. The rst two steps are FDD construction and FDD reduction, which are sim-
ilar to the rst two steps in the multi-lookup approach. The last two steps, table
generation and table mergence, require some modi cations as described below.

7.2.1.1 Table Generation

This step differs from the table generation step in the multi-lookup approach in as-
signing node IDs in the constructed FDD. Here, we assign each node an ID that
can uniquely discriminate that node from all other nodes of the same eld. Let mi
be the number of nodes with label Fi in the constructed FDD. The ID assigned to

7.2 Pipelined-lookup Approach 83

each Fi node consists of ⌈logmi⌉ bits. For example, the IDs of the three F2 nodes
in Figure 7.4(a) are 00, 01, and 10. In contrast, in the table generation step of
the multi-lookup approach, the ID assigned to each node with label Fi consists of
⌈log(∑di=1mi)⌉ bits. Note that each Fi node has a unique ID in the context of Fi. We
also observe that for eld F1, there will always be a single table. Therefore, we do
not need an ID to distinguish this table from tables of other elds. In the remainder
of this section, we assume no ID is needed for the F1 table.

7.2.1.2 Table Mergence

Similar to the table mergence step in the multi-lookup approach, for every nontermi-
nal node v, we rst prepend v’s ID to each rule in Table(v). Second, for every eld
Fi, we combine all tables of Fi nodes into one table ti. For example, Figure 7.4(b)
shows the two pipelined TCAM tables generated from the FDD in Figure 7.4(a).

(a)

⇓ Table Mergence

(b)

Fig. 7.4 Table generation and table mergence in the pipelined-lookup approach

84 7 Sequential Decomposition

7.2.2 Packet Processing

Similar to the multi-lookup approach, in the pipelined-lookup approach, a d-dimen-
sional packet search is separated into d searches; however, with the pipelined-lookup
approach, these searches can be pipelined. That is, the d TCAM chips are chained
together into a pipeline such that the search result of the i-th chip is part of the
search key for the (i+ 1)-th chip, and the result of the last chip is the decision for
the packet. With such a chain, d packets can be processed in parallel in the pipeline.

Figure 7.5 illustrates the packet processing algorithm for the two tables t1 and
t2 in Figure 7.4(b). Suppose two packets (010,001) and (111,010) arrive one after
the other. When (010,001) arrives, the rst search key, 010, is formed and sent to
t1 while the rest of the the packet (001) is forwarded to t2. When the next packet
(111,010) arrives, table t1 has sent the search result 01 to table t2. When the rst
search key for the second packet 111 is formed, the second search key for the rst
packet 01001 is formed in parallel, and both are sent to tables t1 and t2, respectively.
This cycle will yield a result of accept for the rst packet, and a result of 10 for the
second packet. The above process continues for every received packet.

(010,001) 010

001

01

01001 accept

10***

00110

01100

01010

00000

d00***

a00111

a00000

d10***

a101**

d01***

a010**

d00***

a00111

a00000

F1 F2
t
1

t
2

Fig. 7.5 Example of a pipelined-lookup

7.2.3 Analysis

We next analyze the impact of the pipelined-lookup approach on TCAM space and
classi cation throughput.

7.3 Packing Approach 85

7.2.3.1 Space

The pipelined-lookup approach is at least as space ef cient as the multi-lookup ap-
proach, and there are many cases where it uses even fewer TCAM bits. We rst
observe that the pipelined-lookup approach generates the same number of TCAM
entries as the multi-lookup approach. That is, if t is the table formed by the multi-
lookup approach and t1 through t5 are the tables formed by the pipelined-lookup
approach, we have that h(t) = ∑5

i=1 h(ti). The space savings of the pipelined-lookup
approach results from requiring fewer bits per entry. The rst opportunity for saving
space comes from the fact that the number of bits needed to encode a table ID in
the pipelined-lookup approach is less than or equal to that for the multi-lookup ap-
proach as we only need to distinguish a table from other tables with the same eld
label. The second opportunity for savings comes from the three elds with width 16
or 8 bits. For these elds, we may use width w(ti) = 36 whereas w(t) = 72. Specif-
ically, for the source port and destination port elds, we have 36− 16 = 20 bits to
represent a table ID and optionally the decision of each rule. For the protocol eld,
we have 36− 8 = 28 bits for this purpose. For most classi ers, these bits should
suf ce. In summary, the pipelined-lookup approach is at least as space ef cient as
its multi-lookup counterpart; furthermore, there are cases where it is more space
ef cient.

7.2.3.2 Throughput

The pipelined-lookup approach clearly leads to higher throughput than the multi-
lookup approach. More so, the pipelined-lookup approach actually achieves four
or ve times higher throughput than the traditional single-lookup approach. In the
pipelined-lookup approach, because a search key can always be transmitted over the
bus in one cycle, the packet classi cation throughput is one packet per cycle. In con-
trast, the packet classi cation throughput of the traditional single-lookup approach
is one packet per four or ve cycles.

7.3 Packing Approach

In this section, we present the TCAM packing approach. This approach reduces
space consumption by allowing multiple rules from different TCAM tables to co-
reside in the same TCAM entry. The TCAM packing approach is orthogonal to the
multi-lookup and pipelined-lookup approaches in that it can be combined with the
two approaches to further improve TCAM space ef ciency. The TCAM packing
idea is based on the following three key observations:

First, the recon gurability of TCAM widths is limited. TCAM chips typically
only allow entry widths of 36, 72, 144, or 288 bits. This leads to wasted space as
typical TCAM tables rarely can be con gured to exactly one of these widths. In the

86 7 Sequential Decomposition

standard single lookup approach, up to 40 bits might be unused given the predicate
will be 104 bits.

Second, the multi-lookup and pipelined-lookup approaches produce “thin” tables
of varying widths. We say the tables are thin because each table focuses on a single
packet eld. Thus, the table widths are much smaller than 104 bits. The widths vary
because the packet elds have different lengths: 8, 16, and 32, and these predicate
bits form a signi cant fraction of each table entry. Having multiple elds of varying
widths provides opportunities to better approach the standard TCAM widths.

Third, the search key for TCAM chips can be ternary. In other words, TCAM
columns are dynamically selectable for each lookup. A typical TCAM chip has
a global mask register, which dynamically selects the columns that participate in
a lookup. The global mask register allows multiple entries from different lookup
tables to co-reside in the same TCAM entry without con icting with each other.

We developed two TCAM packing schemes, which we call strict partitioning
and shadow packing.

7.3.1 Strict Partitioning

7.3.1.1 Basic Strict Partitioning

The basic idea of strict partitioning is to divide a TCAM chip into multiple columns
and distribute multi-lookup or pipelined-lookup tables among these columns. The
distribution needs to satisfy the following two conditions: (1) all tables in the same
column must have different node IDs, (2) all the rules in a table are stored in only
one column. Multiple tables in the same column are discriminated by their table ID.
Multiple columns in the same TCAM chip are discriminated by the GMR of the
chip. The appropriate GMR can be selected by using a column ID which must have
enough bits to discriminate all the columns.

We illustrate the strict partitioning scheme using the four multi-lookup tables in
Figure 7.2(d) in a TCAM chip with entry width 21 bits. Figure 7.6 shows a possible
arrangement of the four tables: table 00 in column 1, table 01 in column 2, and
tables 10 and 11 in column 3. We use column IDs 00, 01, and 10 for columns 1,
2, and 3, respectively. We decode the rst entry 00 000 01@01 in column 1 as
follows. The rst two bits 00 encode the table ID, the next three bits 000 are the
rule predicate, and the last four bits 01@01 encode the rule decision where the

rst two bits encode the next table ID and the last two bits encode the column ID
of the next table. By partitioning the TCAM chip into three separate columns, the
TCAM chip is essentially divided into three TCAM chips. Lookups in the TCAM
chip are performed by padding the search key with the appropriate ternary bits via
the GMR. For example, to lookup 111 in table 10 of column 10, the lookup key is
***************10111*.
Storing Decisions: Because packing schemes can use previously unused bits in

the multi-lookup and pipelined-lookup approaches to store rules, storing the deci-

7.3 Packing Approach 87

TCAM chip
Col 00 Col 01 Col 10

00 000 01@01 01 000 a 10 0** a
00 010 10@10 01 111 a 10 *** d
00 100 10@10 01 *** d 11 1** a
00 110 01@01 11 *** d
00 *** 11@10

Fig. 7.6 Strict partitioning of a TCAM chip

sion of each rule in the TCAM entry is not space or cost effective. Therefore, for all
our packing schemes, we assume that the rule decisions are stored in SRAM. Fig-
ure 7.7 shows a version of the strict partitioning in Figure 7.6 with decisions stored
in SRAM.

TCAM chip
Col 00 Col 01 Col 10
00 000 01 000 10 0**
00 010 01 111 10 ***
00 100 01 *** 11 1**
00 110 11 ***
00 ***

SRAM Table
Col 1 Col 2 Col 3

01@01 a a
10@10 a d
10@10 d a
01@01 d
11@10

Fig. 7.7 Decisions in SRAM

Packing multi-lookup tables vs. packing pipelined-lookup tables: Recall that
all our packing schemes can be applied to both the multi-lookup and pipelined-
lookup approaches. The only difference is that when we pack multi-lookup tables
into one TCAM chip, we need to deal with tables of variable width. In contrast,
when we pack pipelined-lookup tables into d TCAM chips, we only deal with tables
of the same width for each chip, ignoring minor differences induced by table IDs.
Reassigning Table IDs With Fewer Bits: The original table IDs were used to

distinguish a table from either all other tables (in the multi-lookup approach) or
all other tables of the same eld (in the pipelined-lookup approach). However, in
a packing scheme, we only need to distinguish a table from the other tables in the
same column. Therefore, we can often use fewer bits for tables IDs. In our packing
schemes, after tables are allocated to columns, we reassign table IDs using the least
number of needed bits, and the decisions for the rules have to be updated to re ect
the new table IDs. Note that different columns may have different table ID widths,
and rule decisions may have different lengths. In the strict partitioning scheme, for
a column with n tables, the number of bits in the reassigned ID of each table is
⌈logn⌉. Figure 7.8 shows a version of strict partitioning in Figure 7.7 with table IDs
reassigned with fewer bits.
Processing Packets: We describe the algorithm for processing packets under the

strict partitioning approach using examples. Suppose the given packet is (000,110),
the rst TCAM lookup is 000******* and the lookup result is the index value of

88 7 Sequential Decomposition

TCAM chip
Col 00 Col 01 Col 10

000 000 0 0**
010 111 0 ***
100 *** 1 1**
110 1 ***

Decision Table
Col 00 Col 01 Col 10
@01 a a
0@10 a d
0@10 d a
@01 d
1@10

Fig. 7.8 Reassigning the table IDs

0. This index value is used to nd entry 0 in the column 00 in the SRAM to nd
the decision of @01, which means that the second lookup should be performed on
column 01. To further perform the second lookup, the GMR is modifed to make the
second lookup key ***110****. The result of the second lookup is the index value
of 1, which means the decision is stored in the second entry of column 01 in SRAM.
The second entry of column 01 in SRAM is “a”, which means that the nal decision
for the given packet is accept.

7.3.1.2 Optimized Strict Partitioning

Given a set of TCAM tables to be packed in a single TCAM chip, there are many
ways to do strict partitioning. First, we can choose the TCAM width to be 36, 72,
144, or 288. Second, for each possible TCAM width, there are many possible ways
to divide the TCAM. Third, for each possible division of the TCAM, there are many
possible ways to allocate TCAM tables to columns. Among all possible strict parti-
tioning solutions for a TCAM chip, we want to nd the solution that uses the least
TCAM space under throughput constraints. Note that the classi cation throughput
may decrease as the TCAM width increases. We formally de ne the Strict Par-
titioning Optimization Problem as follows. We omit throughput constraints in the
de nition for ease of presentation.

De nition 7.1. Given n TCAM tables t1, . . . , tn, nd a partition of the tables to m
sets c1, . . . ,cm that minimizes the objective TW ×maxmi=1 Rules(ci) such that

∙
∪m
i=1 ci = {t1, . . . , tn}

∙ ∑mi=1(maxt j∈ci(w(t j))+ log ∣ci∣)≤ TW

where TW ∈ {36,72,144,288}, w(t j) denotes the width of table t j, ∣t j∣ denotes the
number of rules within t j, and Rules(ci) denotes the total number of table entries in
ci, which is ∑t j∈ci ∣t j∣.

The problem of makespan scheduling on multiple identical machines [Garey and
Johnson(1978)], which is NP-complete, is a special case of this problem. Thus, the
strict partitioning optimization problem is NP-complete. It belongs to NP because
the solution can be veri ed in polynomial time.

7.3 Packing Approach 89

7.3.2 Shadow Packing

In strict partitioning, we viewed columns as the primary dimension of TCAM chips
and sought to pack tables into xed width columns. In shadow packing, on the other
hand, we view rows as the primary dimension of TCAM chips and seek to pack ta-
bles within xed height rows. We consider shadow packing because of the following
two observations.

First, with strict partitioning, when tables of varying width are allocated to the
same column, the number of bits assigned to each table t is equal to h(t)×w(t ′)
where t ′ is the widest table assigned to that column. This leads to many unused bits
if tables of different widths are assigned to the same column. On the other hand,
horizontally packed tables can be placed next to each other as keeping the vertical
boundaries across multiple tables is unnecessary. Of course, there may be wasted
bits if tables of different heights are packed in the same column. We will allow
tables to be stacked in the same row if they t within the row boundaries.

Second, with strict partitioning, the table ID’s between tables in different columns
cannot be shared. Thus, the number of bits used for table IDs grows essentially lin-
early with the number of columns. On the other hand, horizontally aligned tables
in the same row can potentially share some “row ID” bits in their table IDs; these
tables would be distinguished by their horizontal offsets.

Based on the above two observations, we design the shadow packing scheme
that achieves more space ef ciency by packing tables horizontally and allowing
multiple tables to share bits in their IDs. We rst de ne the concept of shadowing
for table ID inheritance and the concept of shadow packing trees for representing
table ID inheritance. Then, we present the shadow packing algorithm and discuss
the procedure for processing packets with shadow packing.

7.3.2.1 Shadowing

In Figure 7.9(a), table t0 shadows tables t00 and t01. We de ne the concept of shad-
owing as follows:

De nition 7.2 (Shadowing Relationship). For a table t stored in a TCAM, we
use VBegin(t) and VEnd(t) to denote the vertical indexes of the TCAM entries
where the table begins and ends respectively, and use HBegin(t) and HEnd(t) to
denote horizontal indexes of the TCAM bit columns where the table begins and
ends respectively. For any two tables t1 and t2 where [VBegin(t2),VEnd(t2)] ⊆
[VBegin(t1),VEnd(t1)] and HEnd(t1)< HBegin(t2), we say t1 shadows t2.

When table t1 shadows t2, the ID of t1 can be reused as part of t2’s ID. Suppose
table t shadows tables t1, ⋅ ⋅ ⋅ , tm, because t’s ID de nes the vertical TCAM region
[Begin(t), End(t)], each ti (1 ≤ i ≤ m) can use t’s ID to distinguish ti from tables
outside [Begin(t),End(t)] vertically, and use ⌈logm⌉ bits to distinguish ti from tables
inside [Begin(t), End(t)] vertically. Horizontally, table t and each table ti can be
distinguished by properly setting the GMR of the TCAM.

90 7 Sequential Decomposition

De nition 7.3 (Shadow Packing). Given a region de ned vertically by [v1,v2]
and horizontally by [h1,h2], all tables completely contained within this region are
shadow packed if and only if there exist m (m ≥ 1) tables t1, ⋅ ⋅ ⋅ , tm in the region
such that the following three conditions hold:

1. v1 = VBegin(t1), VEnd(ti)+1 = VBegin(ti+1) for 1≤ i≤m−1, VEnd(tm)≤ v2;
2. no tables are allocated to the region de ned vertically by [VEnd(tm)+1,v2] and

horizontally by [h1,h2];
3. for each i (1≤ i≤m), the region de ned vertically by [VBegin(ti),VEnd(ti)] and

horizontally by [HEnd(ti)+ 1,h2] either has no tables or the tables allocated to
the region are also shadow packed.

For example, the tables in Figure 7.9(a) are shadow packed. Figure 7.9(b) shows
the tree representation of the shadowing relationship among the tables in Fig-
ure 7.9(a).

1

t
00

*

0

01
t
100

t
110

t
000

t
001

t
01

t
0

t
00

t
01

t
1

t
101

t
000

t
001

t
110

t
101

t
01

t
0

t
01

t
1

t
100

(a) (b)

0

0
1

00
1

10

Fig. 7.9 Shadow packed tables & shadow packing tree

7.3.2.2 Shadow Packing Algorithm

Given a set of tables and a TCAM region, the shadow packing algorithm allocates
the tables into the region. The goal of a shadow packing algorithm is to minimize
the number of TCAM entries occupied by the tables, i.e.,, to minimize VEnd(tm).
We call this minimization problem the Shadow Packing Optimization Problem. This
problem becomes more dif cult as we recurse because we must also address which
tables should be allocated to which region. Whether this problem can be solved in
polynomial time is an open problem.

In this chapter, we present a shadow packing algorithm SPack, which has been
shown to be effective in our experiments on real-life packet classi ers. The basic

7.3 Packing Approach 91

idea of SPack is as follows. Given a set of tables S and a TCAM region, SPack rst
nds the tallest table t that will t in the region where ties are broken by choosing the

fattest table. SPack returns when there are no such tables. Otherwise, SPack places
t in the top left corner of the region, and SPack is recursively applied to S−{t} in
the region to the right of t. After that, let S′ be the set of tables in S that have not
yet been allocated. SPack is applied to S′ in the region below t. Intuitively, SPack
greedily packs the tallest (and fattest) possible table horizontally. The pseudocode
of SPack is shown in Algorithm 15.

Input: S : a set of tables, and a region [v1,v2], [h1,h2].
Output: S′: the set of tables in S that have not been packed.
Find the tallest table t ∈ S that will t in [v1,v2], [h1,h2] such that ties are broken by choosing1
the fattest table ;
if no table is found then2

return S ;3
else4

Place t in the top left corner of [v1,v2], [h1,h2] ;5
S′′ ← SPack(S′,VBegin(t),VEnd(t),HEnd(t)+1,h2) ;6
return SPack(S′′,VEnd(t)+1,v2,h1,h2) ;7

end8
Algorithm 15: Shadow Packing (SPack)

We, however, must compute the initial SPack region. The height of the initial
region is the total number of rules within the set of tables. We do not need to set this
value carefully because SPack only moves to another row when all the remaining
tables do not t in any of the current shadows. The width is more complicated and
must be computed iteratively. For each valid TCAM width w ∈ {36,72,144,288},
we set the initial width to be w and run SPack. Once we have a packing, we de-
termine the number of bits b that are needed for node IDs. If the packing could
accommodate these extra b bits, we are done. Otherwise, we choose an aggressive
backoff scheme by recursing with a width of w− b. It is possible, particularly for
w= 36, that no solution will be found. To determine which TCAM width we should
use, we choose the width w ∈ {36,72,144,288} whose nal successful value re-
sulted in the fewest number of entries. Note that there are other possible strategies
for determining the width of the SPack regions; for instance, instead of reducing the
region width by b, the width could be reduced by 1. Furthermore, to speed up this
process, SPack can be modi ed to abort the packing once it detects that the table
packing and IDs can not t within the region.
Reassignng Table IDs and Rule Decisions: Because shadow packing estab-

lishes a hierarchy of table IDs, each table needs a new ID, and all the rule decisions
need to be remapped to re ect these new IDs. Each table ID is determined by a tree
representation similar to the one found in Figure 7.9(b), which we call a shadow
packing tree. For each node v in a shadow packing tree, if v has m > 1 outgoing
edges, each outgoing edge is uniquely labeled using ⌈logm⌉ bits; if v has only one
outgoing edge, that edge is labeled ∗. For each table t, let v be the corresponding

92 7 Sequential Decomposition

node in the shadow packing tree. All the bits along the path from the root to v are all
the bits needed to distinguish t from all other tables. Note that the ∗ corresponds to a
table where no additional ID bits are needed. In our shadow packing algorithm, we
reserve l bit columns in the TCAM where l is the maximum number of bits needed
to the distinguish a table. Reserving some bit columns for storing table IDs has the
advantage of simplifying the processing of packets since the bit columns containing
the table IDs are xed in the TCAM.

Figure 7.10(a) shows the shadow packing tree for the four tables in Figure 7.2(d)
and their reassigned table IDs. Figure 7.10(b) shows the nal memory layout in
the TCAM chip after shadow packing and the conceptual memory layout of the
decision table within SRAM. The one bit ID column in Figure 7.10(b) is needed to
distinguish between the tables with original IDs 01 and 11. Note that table 10 shares
the table ID 0 with table 01 as it is the only table in table 01’s shadow. To make
the decision table in Figure 7.10(b) easier to understand, we encode it in a memory
inef cient manner using columns.

t
11

t
00

t
01

t
10

*

1

0

* Table ID Reassignment
Table ID

00 ∗
01 0
10 0
11 1

(a)

⇓ Construct tables
TCAM chip

0 123 456 789
0 000 000 0**
0 010 111 ***
0 100 ***
1 110 1**
1 *** ***

Decision Table
Col 00 Col 01 Col 10

0@4 : 01 a a
0@7 : 10 a d
0@7 : 10 d
0@4 : 10 a
1@4 : 01 d

(b)

Fig. 7.10 The shadow packing process.

Processing Packets: We describe the algorithm for processing packets under
the shadow packing approach using examples. Given a packet (000,111), the rst
TCAM lookup is *000******, and the lookup result is the index value of 0. This
index value is used to nd entry 0 in the column 00 in the SRAM which contains
the decision of 0@4 : 01. The 0@4 means that the second lookup key should occur
in table ID 0 at horizontal offset of 4, and the 01 means that decision of the next
search is located in column 01 in SRAM. To perform the second lookup, the GMR
is modi ed to make the second lookup key 0***111***. The result of the second
lookup is the index value of 1, and the decision stored in the second entry of column
01 in SRAM is retrieved, which is accept.

7.4 Table Consolidation 93

7.3.3 Strict Partitioning vs. Shadow Packing

We now compare the space ef ciency of strict partitioning and shadow packing. The
sole advantage of strict partitioning is that it has no horizontal boundaries. On the
other hand, shadow packing has two key advantages. It has no vertical boundaries,
and tables in the same row can share some table ID bits. Furthermore, we mitigate
some of the disadvantage of horizontal boundaries by greedily packing tables in the
shadow of other tables.

7.4 Table Consolidation

The basic idea of table consolidation is to use one TCAM table to represent multiple
TCAM tables. Table consolidation is motivated by the following two observations.
First, two TCAM tables may share common entries, which result in the same infor-
mation being stored multiple times. Second, existing TCAM-based packet classi -
cation systems are based on a “fat” TCAM and “thin” SRAM architecture, which
means that the majority of the information (i.e.,, the predicates of rules) represent-
ing a packet classi er is stored in TCAMs and little information (i.e.,, the decision
of rules) is stored in SRAMs. However, because TCAMs are much more expensive
than SRAMs, we ideally would store more information in SRAMs and less infor-
mation in TCAMs.

We begin with two new concepts: k-decision rule and k-decision classi er. A
k-decision rule is a classi cation rule whose decision is an array of k decisions.
A k-decision classi er is a sequence of k-decision rules following the rst-match
semantics. We formally de ne the table consolidation problem as follows:

De nition 7.4 (Table Consolidation Problem). Given k 1-decision classi ers
ℂ1, ⋅ ⋅ ⋅ ,ℂk, nd a k-decision classi er ℂ such that for any i (1 ≤ i ≤ k), the con-
dition ℂi ≡C[i] holds.

We emphasize that a k-decision classi er can be viewed as a 1-decision classi er
if we view the array of k decisions of each rule as one decision. In general, a k-
decision classi er can be viewed as a k′-decision classi er where k′ < k, if we treat
some decisions as one decision.

7.4.1 Table Consolidation Algorithm

We use multi-match FDDs to facilitate table consolidation. A multi-match FDD sat-
is es all the properties of an all-match FDD except the condition j ∈ {i1, i2, ⋅ ⋅ ⋅ , ik}
in the 5th property.

Our table consolidation algorithm works as follows. First, given a set of k clas-
si ers ℂ1, ⋅ ⋅ ⋅ ,ℂk, we concatenate the set of classi ers into one classi er ℂ1−k =

94 7 Sequential Decomposition

ℂ1∣ ⋅ ⋅ ⋅ ∣ℂk. Second, we construct a multi-match FDD f from ℂ1−k such that f satis-
es the following additional condition: for any decision path P , the terminal node

of P consists of k numbers {m1,m2, ⋅ ⋅ ⋅ ,mk} where, for each i (1≤ i≤ k), rule rmi
is the rst rule in ℂi that contains P . In other words, for any decision path P in
the multi-match FDD f and for any classi er ℂi, only the index of the rst rule in
ℂi that contains P is included in the label of P’s terminal node. Third, after the
multi-match FDD f is constructed, we run the TCAM Razor algorithm presented
in [Meiners et al(2007)Meiners, Liu, and Torng] on f and generate the nal compact
k-decision classi er C. Figure 7.11 shows the process of consolidating two TCAM
tables t1 and t2. The nal 2-decision classi er is TCAM table t4. The correctness of
the table consolidation algorithm is based on Theorem 7.1.

Theorem 7.1. Given k 1-decision classi ers ℂ1, ⋅ ⋅ ⋅ ,ℂk, the table consolidation al-
gorithm generates a k-decision classi erℂ where for any i (1≤ i≤ k), the condition
ℂi ≡C[i] holds.

Fig. 7.11 Consolidation of 2-dimensional tables

7.4.2 Hierarchical Table Consolidation

In building a multi-match FDD from a set of classi ers, each classi er in uences the
shape of the FDD and causes the FDD to grow. To localize the expansion impact of
one classi er on others, we propose the following hierarchical table consolidation

7.4 Table Consolidation 95

strategy. Given k classi ers, rst, we equally divide them into ⌈k/m⌉ buckets where
every bucket has m classi ers except for one bucket that may have less than m clas-
si ers. Second, for the classi ers in each bucket, we apply the table consolidation
algorithm and get an m-decision classi er. Thus, we get ⌈k/m⌉ classi ers. By treat-
ing each m-decision classi er as a 1-decision classi er, we apply the above process
again on the ⌈k/m⌉ classi ers. This process repeats until we get the nal k-decision
classi er. We refer to the strategy of choosing m = k as at table consolidation.
Theorem 7.2 establishes the correctness of hierarchical table consolidation.

Theorem 7.2 (Hierarchical Table Consolidation Theorem). Given the same in-
put of k 1-decision classi ers and the same table consolidation algorithm, the strate-
gies of hierarchical table consolidation and at table consolidation output the same
k-decision classi er.

⇒ ⇒

(a) Classi er (b) Constructing FDD and tables

⇒

(c) Table Consolidation (d) Pipelined lookup process

Fig. 7.12 Table consolidation for pipelined-lookup sequential decomposition

96 7 Sequential Decomposition

7.4.3 TCAM/SRAM Space Tradeoff via Bounded Consolidation

Table consolidation creates a tradeoff between TCAM storage and SRAM stor-
age. On one hand, merging multiple classi ers into one classi er results in less
TCAM storage. On the other hand, each entry in the resulting classi er requires
more SRAM for storing the decision list. We could simply merge all classi ers into
a single classi er; however, this may require more SRAM space than what is avail-
able. To address this issue, we propose the following bounded consolidation scheme.
The basic idea of bounded consolidation is to limit the number of classi ers that we
combine. Given a set of k 1-decision classi ers, we rst sort the classi ers in de-
creasing (or increasing) order according to size (i.e.,, the number of rules in each
classi er). Second, we partition the sorted classi ers into ⌈k/m⌉ chunks where the

rst ⌈k/m⌉− 1 chunks are of uniform size m (1 ≤ m ≤ k). Third, for every chunk,
we apply the table consolidation algorithm to the classi ers that it contains. Finally,
we get ⌈k/m⌉ multi-decision classi ers. Note that m is an adjustable parameter.

7.5 One-Dimensional Table Consolidation

While table consolidation can be applied to d-dimensional classi ers for arbitrary d,
we show that it is especially effective for consolidating one-dimensional classi ers.
In particular, Theorem 7.3 shows that table consolidation is guaranteed to reduce
TCAM space occupied when applied to one-dimensional classi ers. Table consol-
idation’s effectiveness on one-dimensional classi ers implies that it is especially
effective when combined with sequential decomposition to minimize the space re-
quired by any single classi er. We defer the proof of Theorem 7.3 to the appendix.

Theorem 7.3. Given any set of k 1-decision 1-dimensional classi ers ℂ1, ⋅ ⋅ ⋅ ,ℂk,
the k-decision 1-dimensional classi er ℂ output by the TCAM distillation algorithm
satis es the following condition: ∣C∣ ≤ ∣C1∣+ ⋅ ⋅ ⋅+ ∣Ck∣− k+1.

7.5.1 Table Consolidation with Sequential Decomposition

Because table consolidation is guaranteed to work well on one-dimensional clas-
si ers, table consolidation can be integrated with the sequential decomposition
scheme to further reduce the space required by a TCAM-based packet classi er.
Basically, in the third step of pipelined-lookup sequential decomposition, for each

eld Fi, we group all the tables of Fi nodes and apply our table consolidation algo-
rithm to produce a multi-decision table rather than using table ID’s. For example,
given the two tables of the two F2 nodes v0 and v1, our table consolidation algorithm
outputs the 2-decision table t2 in Figure 7.12(c). In this case, table consolidation re-
duced the required number of TCAM entries from 4 to 3.

7.6 Implementation Issues 97

The packet lookup process on the d multi-decision TCAM tables proceeds as
follows. The rst table has only one column of decisions and each decision is the
decision column index of the second table. Similarly, each decision in the i-th (1≤
i < d) table is the decision column index of the next table. We illustrate the packet
lookup process using the example in Figure 7.12(d). Given a packet (010,001), we

rst use 010 to search the table t1 and get result 0. Second, we use 001 to search
table t2 and get search result (d1,d4). The nal result is the rst element of (d1,d4),
which is d1. Note that each TCAM chip has its own SRAM. Therefore, the packet
lookup process can be pipelined to achieve the throughput of one packet per cycle.

7.5.2 Coping with More Fields than TCAM chips

If we have fewer TCAM chips than packet elds, we have two choices. One is
to strategically combine selected elds into one eld until the number of elds is
equal to the number of TCAM chips. We can use the FDD structure to facilitate
combination of multiple elds. For example, given a d-dimensional classi er over

elds F1,F2, ⋅ ⋅ ⋅ ,Fd and the corresponding FDD, we can combine the rst k (1 <
k < d) elds into one eld by treating the subgraph rooted at each Fk+1 node as
a terminal node and then use our TCAM Razor algorithm presented in [Meiners
et al(2007)Meiners, Liu, and Torng] to generate a k-dimensional table for the k-
dimensional FDD. Then, for each subgraph rooted at an Fk+1 node, we can apply
the above process recursively.

A second choice is to employ the sequential decomposition multi-lookup ap-
proach where we store tables from multiple elds on a single TCAM chip. For ex-
ample, if we have d dimensions and q chips, we would store tables from either ⌈d/q⌉
or ⌊d/q⌋ elds in each chip in the pipeline. Each stage of the pipeline would require
either ⌈d/q⌉ or ⌊d/q⌋ lookups. This would result in a classi cation throughput of
one packet per ⌈d/q⌉ TCAM bus cycles.

7.6 Implementation Issues

7.6.1 TCAM Update

Packet classi cation rules periodically need to be updated. The common practice for
updating rules is to run two TCAMs in tandem where one TCAM is used while the
other is updated [Lekkas(2003)]. All our approaches are compatible with this cur-
rent practice. Because our algorithms are ef cient (running in milliseconds) and the
resultant TCAM lookup tables are small, updating TCAM tables can be ef ciently
performed.

98 7 Sequential Decomposition

If an application requires very frequent rule update (at a frequency less than a
second, for example), we can handle such updates in a batch manner by chaining
the TCAM chips in our proposed architecture after a TCAM chip of normal width
(144 bits), which we call the “hot” TCAM chip. When a new rule comes, we add the
rule to the top of the hot TCAM chip. When a packet comes, we rst use the packet
as the key to search in the hot chip. If the packet has a match in the hot chip, then
the decision of the rst matching rule is the decision of the packet. Otherwise, we
feed the packet to the TCAM chips in our architecture described as above to nd the
decision for the packet. Although the lookup on the hot TCAM chip adds a constant
delay to per packet latency, the throughput can be much improved by pipelining the
hot chip with other TCAM chips. Using batch updating, only when the hot chip is
about to ll up, we need to run our topological transformation algorithms to recom-
pute the TCAM lookup tables.

7.6.2 Non-ordered FDDs

Recall that the FDD construction algorithm that we used produces ordered FDDs,
that is, in each decision path all elds appear in the same order. However, ordered
FDDs may not be the smallest when compared to non-ordered FDDs. The FDD
construction algorithm can be easily modi ed so that different subtrees may use
different eld ordering. By adding eld information to the decisions in each table
entry, we can easily accommodate different eld orderings. Thus, the packet pro-
cessing algorithm for both multi-lookup and pipelined-lookup can select the correct

eld for each lookup. The size advantage of non-ordered FDDs comes at the cost
that FDD reduction will not be able to process subtrees that have different eld or-
ders. Nevertheless, the use of non-ordered FDDs does open new possibilities for
further optimizations.

7.6.3 Lookup Short Circuiting

So far, we have assumed the use of full-length FDDs where in each decision path all
elds appear exactly once. Actually, this constraint can be relaxed so that some paths

may omit unnecessary elds when a node in the path contains only one outgoing
edge. In this case, the node along with singleton outgoing edge can be pruned. Using
FDDs that are not full-length has the advantage of reducing FDD size and conse-
quently reducing the total number of tables. Furthermore, this optimization allows
some speci c decision paths to be performed with a reduced number of lookups,
which will allow for faster packet processing when the tables are processed in a
multi-lookup fashion. Therefore, we call this optimization technique lookup short
circuiting. Similar to the use of non-ordered FDDs, this optimization technique re-
quires storing eld information in the decisions.

7.6 Implementation Issues 99

7.6.4 Best Variable Ordering

In converting a packet classi er to an equivalent FDD, the order of the elds used
by decision paths has a signi cant impact on the size of the resulting FDD. Given
that fewer nodes in an FDD normally lead to a smaller multi-lookup or pipelined-
lookup table, choosing a good variable order (i.e.,, eld order) is important in FDD
construction. Given a packet classi er that has ve elds, we can easily try all 5! =
120 permutations to nd the best permutation for that particular packet classi er.

Chapter 8
Topological Transformations

One approach for mitigating the effects of range expansion has been to reencode
critical ranges. The basic idea is to reencode a given packet and use the reencoded
packet as the TCAM search key. For instance, Liu [Liu(2002)], Lunteren and Eng-
bern [van Lunteren and Engbersen(2003)], and Pao et al. [Pao et al(2006)Pao, Li,
and Zhou] all proposed methods of representing speci c ranges as special bit-strings
using extra TCAM bits. Lakshminarayan et al.and Bremler-Barr and Hendler pro-
posed to replace the pre x encoding format with alternative ternary encoding for-
mats, called DIRPE [Lakshminarayanan et al(2005)Lakshminarayanan, Rangarajan,
and Venkatachary] and SRGE [Bremler-Barr and Hendler(2007)], respectively.

Previous reencoding schemes suffer from two fundamental limitations. First, they
only consider range elds and ignore all other elds; thus, they miss many optimiza-
tion opportunities that can be applied to pre x elds as well. It was not realized that
packet classi ers often have the potential of being minimized in TCAM even when
no elds are speci ed in ranges. Second, they require either computationally or
economically expensive reencoding steps that do not easily integrate into existing
packet classi cation systems. As each packet needs to be reencoded before it can
be used as a search key, previous range reencoding schemes propose to perform
packet reencoding using software, which greatly increases packet processing time,
or customized hardware, which is expensive from a design, cost, and implementa-
tion perspective.

In this chapter, we take two novel views on range reencoding that are funda-
mentally different from previous range reencoding schemes. First, we view range
reencoding as a topological transformation process from one colored hyperrectan-
gle to another. Whereas previous range reencoding schemes only deal with range

elds, we perform reencoding on every packet eld. Speci cally, we propose two
orthogonal, yet composable, reencoding schemes: domain compression and pre x
alignment. In domain compression, we transform a given colored hyperrectangle,
which represents the semantics of a given classi er, to the smallest possible “equiv-
alent” colored hyperrectangle. In pre x alignment, on the other hand, we strive to
transform a colored hyperrectangle to an equivalent “pre x-friendly” colored hy-
perrectangle where the ranges align well with pre x boundaries, minimizing the

101C. R. Meiners et al., Hardware Based Packet Classification for High Speed Internet Routers,
DOI 10.1007/978-1-4419-6700-8_8, © Springer Science+Business Media, LLC 2010

102 8 Topological Transformations

costs of range expansion. Second, we view range reencoding as a classi cation pro-
cess that can be implemented with small TCAM tables. Thus, while a preprocessing
step is still required, it can be easily integrated into existing packet classi cation
systems using the same underlying TCAM technology. Furthermore, implement-
ing our schemes on a pipeline of TCAM chips even increases packet classi cation
throughput because our schemes enable the use of TCAM chips of small width.
Domain Compression: The fundamental observation is that in most packet clas-

si ers, many coordinates (i.e.,, values) within a eld domain are equivalent. The idea
of domain compression is to reencode the domain so as to eliminate as many redun-
dant coordinates as possible. This type of reduction not only leads to fewer rules, but
also narrower rules, which results in smaller TCAM tables. From a geometric per-
spective, domain compression “squeezes” a colored hyperrectangle as much as pos-
sible. For example, consider the colored rectangle in Figure 8.1(A) that represents
the classi er in Figure 8.1(H). In eld F1 represented by the X-axis, all values in
[0,7]∪ [66,99] are equivalent; that is, for any y ∈ F2 and any x1,x2 ∈ [0,7]∪ [66,99]
, packets (x1,y) and (x2,y) have the same decision. Therefore, when reencoding F1,
we can map all values in [0,7]∪ [66,99] to a single value, say 0. By identifying such
equivalences along all dimensions, the rectangle in Figure 8.1(A) is reencoded to
the one in Figure 8.1(D), whose corresponding classi er is shown in Figure 8.1(I).
Figures 8.1(B) and (C) show the two transforming tables for F1 and F2, respectively;
note that these tables can be implemented as TCAM tables. We use “a” as a short-
hand for “accept” and “d” as a shorthand for “discard”.

Fig. 8.1 Example of topological transformations

Pre x Alignment: The basic idea of pre x alignment is to “shift”, “shrink”, or
“stretch” ranges by transforming the domain of each eld to a new “pre x-friendly”
domain so that the majority of the reencoded ranges either are pre xes or can be
expressed by a small number of pre xes. In other words, we want to transform
a colored hyperrectangle to another one where the ranges align well with pre x
boundaries. This will reduce the costs of range expansion. For example, consider the
packet classi er in Figure 8.1(I), whose corresponding rectangle is in Figure 8.1(D).

8.1 Topological Transformation 103

Range expansion will yield 5 pre x rules because interval [1,2] or [01,10] cannot
be combined into a pre x. However, by transforming the rectangle in Figure 8.1(D)
to the one in Figure 8.1(G), the range expansion of the resulting classi er, as shown
in Figure 8.1(J), will have 3 pre x rules because [2,3] is expanded to 1*. Figures
8.1(D) and (E) show the two transforming tables for F1 and F2, respectively. Again,
these tables can be implemented in TCAM.

8.1 Topological Transformation

The basic idea of our transformation approach is to transform a given packet classi-
er into another classi er that can be stored more ef ciently in TCAM. Furthermore,

we need a transformer that can take any packet and transform it into a new packet
that is then used as the search key on the transformed classi er. Of course, the de-
cision that the transformed classi er makes for the transformed packet must be the
same as the decision that the original classi er makes for the original packet. We
also require that the transformer itself be a packet classi er that can be ef ciently
stored in TCAM. This is one of the features that differentiates our work from previ-
ous reencoding approaches.

More formally, given a d-dimensional packet classi er ℂ over elds F1, ⋅ ⋅ ⋅ ,Fd ,
a topological transformation process produces two separate components. The rst
component is a set of transformers 𝕋= {𝕋i ∣ 1≤ i≤ d} where transformer 𝕋i trans-
forms D(Fi) into a new domain D′(Fi). Together, the set of transformers 𝕋 trans-
forms the original packet space Σ into a new packet space Σ ′. The second compo-
nent is a transformed d-dimensional classi er ℂ′ over packet space Σ ′ such that for
any packet (p1, ⋅ ⋅ ⋅ , pd) ∈ Σ , the following condition holds:

ℂ(p1, ⋅ ⋅ ⋅ , pd) = ℂ
′(𝕋1(p1), ⋅ ⋅ ⋅ ,𝕋d(pd))

Each of the d transformers 𝕋i and the transformed packet classi er ℂ′ are imple-
mented in TCAM.

8.1.1 Architectures

There are two possible architectures for storing the d+1 TCAM tables ℂ′,𝕋1, ⋅ ⋅ ⋅ ,𝕋d :
the multi-lookup architecture and the pipelined-lookup architecture, each of which
is described below.

In the multi-lookup architecture, which is similar to the multi-lookup architecture
in Section 7.1, we store all the d+ 1 tables in one TCAM chip. To identify tables,
for each table, we prepend a ⌈log(d+ 1)⌉ bit string, which we call the table ID, to
every entry in the table. Figure 8.2 illustrates the packet classi cation process using
the multi-lookup architecture when d = 2. Suppose the three tables are ℂ

′, 𝕋1, and

104 8 Topological Transformations

T2, and their table IDs are 00, 01, and 10, respectively. Given a packet (p1, p2), we
rst concatenate 𝕋1’s table ID 01 with p1 and use the resulting bit string 01∣p1 as the

search key for the TCAM. Let p1
′ denote the search result. Second, we concatenate

𝕋2’s table ID 10 with p2 and use the resulting bit string 10∣p2 as the search key for
the TCAM. Let p2

′ denote the search result. Third, we concatenate the table ID 00
of ℂ′ with p1

′ and p2
′, and use the resulting bit string 00∣p1

′∣p2
′ as the search key

for the TCAM. The search result is the nal decision for the given packet (p1, p2).

Fig. 8.2 Multi-lookup architecture

We recommend two pipelined-lookup architectures for implementing our trans-
formation approaches: parallel pipelined-lookup and chained pipelined-lookup. In
both architectures, we store each of the d+ 1 tables in separate TCAMs. As one
TCAM stores only one table, we do not need to prepend table entries with table IDs
for either approach. In the parallel pipelined-lookup architecture, the d transformer
tables 𝕋, laid out in parallel, form a two-element pipeline with the transformed clas-
si er ℂ′. Figure 8.3 illustrates the packet classi cation process using the parallel
pipelined-lookup architecture when d = 2. Given a packet (p1, p2), we send p1 and
p2, in parallel over separate buses, to 𝕋1 and 𝕋2, respectively. Then, the search re-
sult p1

′∣p2
′ is used as a key to search on ℂ

′. This second search result is the nal
decision for the given packet (p1, p2).

Fig. 8.3 Parallel pipelined-lookup architecture

8.1 Topological Transformation 105

The (d+ 1)-stage chained pipelined-lookup architecture is similar to the previ-
ously proposed pipelined-lookup architecture. Figure 8.4 illustrates the packet clas-
si cation process using the chained pipelined-lookup architecture when d = 2.

Fig. 8.4 Chained pipelined-lookup architecture

In comparison with the pipelined-lookup architecture, The main advantage of the
multi-lookup architecture is that it can be easily deployed since it requires minimal
modi cation of existing TCAM-based packet processing systems. Its main draw-
back is a modest slowdown in packet processing throughput because d+ 1 TCAM
searches are required to process a d-dimensional packet. In contrast, the main advan-
tage of the two pipelined-lookup architectures is high packet processing throughput.
Their main drawback is that the hardware needs to be modi ed to accommodate
d+1 TCAM chips.

Implementing our reencoding schemes on pipelined-lookup architectures actu-
ally improves packet processing throughput over conventional TCAM implementa-
tions. While the width of TCAM entries can be set to 36, 72, 144, or 288 bits, the
typical TCAM bus width is 72 bits. Thus the conventional TCAM lookup approach,
which uses a TCAM entry width of 144 bits, requires either four or ve TCAM bus
cycles to process a packet: four bus cycles if the decision is stored in TCAM, ve
bus cycles if the decision is stored in SRAM. Because all the tables produced by
our reencoding schemes have width less than 36 bits, we can set TCAM entry width
to be 36. Thus, using pipelined-lookup architectures, our reencoding approaches
achieve a classi cation throughput of one packet per cycle; using multi-lookup ar-
chitectures, our reencoding approaches achieve a classi cation throughput of one
packet per twelve cycles.

8.1.2 Measuring TCAM space

The TCAM space needed by our transformation approach is measured by the to-
tal TCAM space needed by the d+ 1 tables: ℂ′,𝕋1, ⋅ ⋅ ⋅ ,𝕋d . We de ne the space
used by a classi er or transformer in a TCAM as the number of entries (i.e.,, rules)
multiplied by the width of the TCAM in bits:

space= # of entries×TCAM width

106 8 Topological Transformations

Although TCAMs can be con gured with varying widths, they do not allow arbi-
trary widths. The width of a TCAM typically can be set at 36, 72, 144, and 288
bits (per entry). The primary goal of the transformation approach is to produce
ℂ
′,𝕋1, ⋅ ⋅ ⋅ ,𝕋d such that the TCAM space needed by these d+ 1 TCAM tables is

much smaller than the TCAM space needed by the original classi er ℂ. Note that
most previous reencoding approaches ignore the space required by the transformers
and only focus on the space required by the transformed classi er ℂ′.

8.1.3 TCAM Update

Packet classi cation rules periodically need to be updated. The common practice for
updating rules is to run two TCAMs in tandem where one TCAM is used while the
other is updated [Lekkas(2003)]. All our approaches are compatible with this current
practice. Because our algorithms are ef cient and the resultant TCAM lookup tables
are small, updating TCAM tables can be ef ciently performed.

If an application requires very frequent rule update (at a frequency less than a
second, for example), we can handle such updates in a batch manner by chaining
the TCAM chips in our proposed architecture after a TCAM chip of normal width
(144 bits), which we call the “hot” TCAM chip. When a new rule comes, we add the
rule to the top of the hot TCAM chip. When a packet comes, we rst use the packet
as the key to search in the hot chip. If the packet has a match in the hot chip, then
the decision of the rst matching rule is the decision of the packet. Otherwise, we
feed the packet to the TCAM chips in our architecture described as above to nd the
decision for the packet. Although the lookup on the hot TCAM chip adds a constant
delay to per packet latency, the throughput can be much improved by pipelining the
hot chip with other TCAM chips. Using batch updating, only when the hot chip is
about to ll up, we need to run our topological transformation algorithms to recom-
pute the TCAM lookup tables.

8.2 Domain Compression

In this section, we describe our new reencoding scheme called domain compression.
The basic idea of domain compression is to simplify the logical structure of a clas-
si er by mapping the domain of each eld D(Fi) to the smallest possible domain
D′(Fi). We formalize this process by showing how a classi er ℂ de nes an equiv-
alence relation on the domain of each of its elds. This equivalence relation allows
us to de ne equivalence classes within each eld domain that domain compression
will exploit.

Domain compression has several bene ts. First, with a compressed domain
D′(Fi), we require fewer bits to encode each packet eld. This allows us to set
TCAM entries widths to be 36 bits rather than 144 bits, which saves both space

8.2 Domain Compression 107

in the TCAM and time as each entry ts on the 72 bit TCAM bus. Second, each
transformed rule r′ in classi er ℂ′ will contain fewer equivalence classes than the
original rule r did in classi er ℂ. This leads to reduced range expansion and the
complete elimination of some rules, which allows us to achieve expansion ratios
less than one.

Our domain compression algorithm consists of three steps: (1) computing equiv-
alence classes, (2) constructing transformer 𝕋i for each eld Fi, and (3) constructing
the transformed classi er ℂ′.

8.2.1 Step 1: Compute Equivalence Classes

In domain compression, we compress every equivalence class in each domain D(Fi)
to a single point in D′(Fi). The crucial tool of the domain compression algorithm is
the Firewall Decision Diagram (FDD).

The rst step of our domain compression algorithm is to convert a given d-
dimensional packet classi er ℂ to d equivalent reduced FDDs f1 through fd where
the root of FDD fi is labeled by eld Fi. Figure 8.5(a) shows an example packet
classi er over two elds F1 and F2 where the domain of each eld is [0,63]. Fig-
ures 8.5(b) and (c) show the two FDDs f1 and f2, respectively. The FDDs f1 and
f2 are almost reduced except that the terminal nodes are not merged together for
illustration purposes.

The crucial observation is that each edge of reduced FDD fi corresponds to one
equivalence class of domainD(Fi). For example, consider the the classi er in Figure
8.5(a) and the corresponding FDD f1 in Figure 8.5(b). Obviously, for any p1 and p1

′

in [7,11]∪ [16,19]∪ [39,40]∪ [43,60], we have ℂ(p1, p2) = ℂ(p1
′, p2) for any p2

in [0,63], so it follows that ℂ{p1}= ℂ{p1
′}.

Theorem 8.1 (Equivalence Class Theorem). For any packet classi erℂ over elds
F1, ⋅ ⋅ ⋅ ,Fd and an equivalent reduced FDD fi rooted at an Fi node v, the labels of
v’s outgoing edges are all the equivalence classes over eld Fi as de ned by ℂ.

8.2.2 Step 2: Construct Transformers

Given a packet classi er ℂ over elds F1, ⋅ ⋅ ⋅ ,Fd and the d equivalent reduced FDDs
f1, ⋅ ⋅ ⋅ , fd where the root node of fi is labeled Fi, we compute transformer 𝕋i as
follows. Let v be the root of fi, and suppose v has m outgoing edges e1, ⋅ ⋅ ⋅ ,em.
First, for each edge e j out of v, as all the ranges in e j’s label belong to the same
equivalent class according to Theorem 8.1, we choose one of the ranges in e j’s
label to be the representative, which we call the landmark. Any of the ranges in
e j’s label can be chosen as the landmark. For each equivalence class, we choose the
range that intersects the fewest number of rules in ℂ as the landmark breaking ties
arbitrarily. We then sort edges in the increasing order of their landmarks. We use Lj

108 8 Topological Transformations

F1 F2 Decision
[12,15] [7,60] Discard
[41,42] [7,60] Discard
[20,38] [0,63] Accept
[0,63] [20,38] Accept
[7,60] [10,58] Discard
[1,63] [0,62] Accept
[0,62] [1,63] Accept
[0,63] [0,63] Discard

(a)

⇓

(b)

(c)

Fig. 8.5 Step 1 of domain compression

8.2 Domain Compression 109

F1 Decision
[0,0] 0

[1,6]∪ [20,38]∪ [61,62] 1
[7,11]∪ [16,19]∪ [39,40]∪ [43,60] 2

[12,15]∪ [41,42] 3
[63,63] 4

(a)

F2 Decision
[0,0] 0

[1,6]∪ [61,62] 1
[7,9]∪ [20,38]∪ [59,60] 2

[10,19]∪ [39,58] 3
[63,63] 4

(b)

Fig. 8.6 Step 2 of domain compression

F1 F2 Decision
[3,3] [2,3] Discard

/0 [2,3]] Discard
/0 [0,4] Accept

[0,4] /0 Accept
[2,3] [3,3] Discard
[1,4] [0,3] Accept
[0,3] [1,4] Accept
[0,4] [0,4] Discard

(a)

⇓
F1 F2 Decision

[3,3] [2,3] Discard
[2,3] [3,3] Discard
[1,4] [0,3] Accept
[0,3] [1,4] Accept
[0,4] [0,4] Discard

(b)

Fig. 8.7 Step 3 of domain compression

and e j to denote the landmark range and corresponding edge in sorted order where
edge e1 has the smallest valued landmark L1 and edge em has the largest valued
landmark Lm. Our transformer 𝕋i then maps all values in e j’s label to value j where
1≤ j ≤ m. For example, in Figures 8.5(b) and (c), the greyed ranges are chosen as
the landmarks of their corresponding equivalence classes, and Figures 8.6(a) and (b)
show transformers 𝕋1 and 𝕋2 that result from choosing those landmarks.

8.2.3 Step 3: Construct Transformed Classi er

We now construct transformed classi er ℂ′ from classi er ℂ using transformers 𝕋i
for 1≤ i≤ d as follows. Let F1 ∈ S1∧⋅⋅ ⋅∧Fd ∈ Sd→⟨decision⟩ be an original rule in

110 8 Topological Transformations

ℂ. The domain compression algorithm converts Fi ∈ Si to Fi′ ∈ Si′ such that for any
landmark range Lj (0≤ j ≤ m−1), Lj ∩Si ∕= /0 if and only if j ∈ Si′. Stated another
way, we replace range Si with range [a,b] ⊆ D′(Fi) where a is the smallest number
in [0,m−1] such that La∩Si ∕= /0 and b is the largest number in [0,m−1] such that
Lb ∩ Si ∕= /0. Note, it is possible no landmark ranges intersect range Si; in this case
a and b are unde ned and Si′ = /0. For a converted rule r′ = F1

′ ∈ S1
′ ∧ ⋅ ⋅ ⋅ ∧Fd ′ ∈

Sd ′ → ⟨decision⟩ in ℂ
′, if there exists 1≤ i≤ d such that Si′ = /0, then this converted

rule r′ can be deleted from ℂ
′.

For example, consider the rule F1 ∈ [7,60]∧F2 ∈ [10,58] → discard in the ex-
ample classi er in Figure 8.5(a). For eld F1, the ve landmarks are the ve greyed
intervals in 8.5(b), namely [0,0], [1,6], [7,11], [12,15], and [63, 63]. Among these

ve landmarks, [7,60] overlaps with [7,11] and [12,15], which are mapped to 2 and
3 respectively by transformer 𝕋1. Thus, F1 ∈ [7,60] is converted to F1

′ ∈ [2,3]. Sim-
ilarly, for eld F2, [10,58] overlaps with only one of F2’s landmark, [10,19], which
is mapped to 3 by F2’s mapping table. Thus, F2 ∈ [10,58] is converted to F2

′ ∈ [3,3].
Figure 8.7 shows the resultant domain compressed classi er.

Next, we prove that ℂ′ and 𝕋 are semantically equivalent to ℂ.

Theorem 8.2. Consider any classi erℂ and the resulting transformers 𝕋 and trans-
formed classi er ℂ′. For any packet p= (p1, ⋅ ⋅ ⋅ , pd), we have

ℂ(p1, ⋅ ⋅ ⋅ , pd) = ℂ
′(𝕋1(p1), ⋅ ⋅ ⋅ ,𝕋d(pd)).

Proof. For each eld Fi for 1 ≤ i ≤ d, consider p’s eld value pi. Let L(pi) be the
landmark range for ℂ{pi}. We set xi = min(L(pi)). We now consider the packet
x= (x1, ⋅ ⋅ ⋅xd) and the packets x(j) = (x1, . . .x j−1, p j, . . . , pd) for 0≤ j ≤ d; that is,
in packet x(j), the rst j elds are identical to packet x and the last d− j elds are
identical to packet p. Note x(0) = p and x(d) = x. We now show that ℂ(p) = ℂ(x).
This follows from ℂ(x(0)) = ℂ(x(1)) = ⋅ ⋅ ⋅= ℂ(x(d)). Each equality follows from
the fact that x j and p j belong to the same equivalence class within D(Fj).

Let r be the rst rule in ℂ that packet x matches. We argue that p′ will match the
transformed rule r′ ∈ℂ′. Consider the conjunction Fi ∈ Si of rule r. Since x matches
rule r, it must be the case that xi ∈ Si. This implies that L(pi)∩ Si ∕= /0. Thus, by
our construction pi′ = 𝕋i(pi) = 𝕋i(xi) ∈ Si′. Since this holds for all elds Fi, packet
p′ matches rule r′. We also argue that packet p′ will not match any rule before
transformed rule r′ ∈ ℂ

′. Suppose packet p′ matches some rule r1′ ∈ ℂ
′ that occurs

before rule r′. This implies that for each conjunction Fi ∈ Si of the corresponding
rule r1 ∈ℂ that L(pi)∩Si ∕= /0. However, this implies that xi ∈ Si since if any point in
L(pi) is in Si, then all points in L(pi) are in Si. It follows that x matches rule r1 ∈ℂ,
contradicting our assumption that rule r was the rst rule that x matches in ℂ. Thus,
it follows that p′ cannot match rule r1′. It then follows that r′ will be the rst rule in
ℂ that p′ matches and the theorem follows.

8.3 Pre x Alignment 111

8.3 Pre x Alignment

In this section, we describe a new topological transformation approach called pre x
alignment. When applying this approach, we assume that we have a classi er ℂ

that needs to be converted into a pre x classi er via range expansion. We observe
that range explosion happens when ranges do not align well with pre x boundaries.
The basic idea of pre x alignment is to “shift”, “shrink”, or “stretch” ranges by
transforming the domain of each eld to a new “pre x-friendly” domain so that the
majority of the reencoded ranges either are pre xes or can be expressed by a small
number of pre xes. This will reduce the costs of range expansion. Of course, we
must guarantee that our pre x alignment transformation preserves the semantics of
the original classi er.

We rst consider the special case where the classi er has only one eld F . We de-
velop an optimal solution for this problem using dynamic programming techniques.
We then describe how we use this solution as a building block for performing pre x
alignment on multi-dimensional classi ers. Finally, we discuss how to compose the
two transformations of domain compression and pre x alignment.

8.3.1 Pre x Alignment Overview

The one-dimensional pre x alignment problem can be described as the following
“cut” problem. Consider the three ranges [0,12], [5,15], and [0,15] over domain
D(F1) = [0,15] in classi er ℂ in Figure 8.8(A), and suppose the transformed domain
D′(F1) = [00,11] in binary format. Because D′(F1) has a total of 4 elements, we
want to identify three cut points 0 ≤ x1 < x2 < x3 ≤ 15 such that if [0,x1] ∈ D(F1)
transforms to 00 ∈ D′(F1), [x1 + 1,x2] ∈ D(F1) transforms to 01 ∈ D′(F1), [x2 +
1,x3] ∈ D(F1) transforms to 10 ∈ D′(F1), and [x3 + 1,15] ∈ D(F1) transforms to
01 ∈ D′(F1), the range expansion of the transformed ranges will have as few rules
as possible. For this simple example, there are two families of optimal solutions:
those with x1 anywhere in [0,3], x2 = 4, and x3 = 12, and those with x1 = 4, x2 =
12, and x3 anywhere in [13,15]. For the rst family of solutions, range [0,12] is
transformed to [00,10] = 0∗∪10, range [5,15] is transformed to [10,11] = 1∗, and
range [0,15] is transformed to [00,11] = ∗∗. In the second family of solutions, range
[0,12] is transformed to [00,01] = 0∗, range [5,15] is transformed to [01,11] = 01∪
1∗, and range [0,15] is transformed to [00,11] = ∗∗. The classi er ℂ

′ in Figure
8.8(A) shows the three transformed ranges using the rst family of solutions. Thus,
in both examples, the range expansion of the transformed ranges only has 4 pre x
rules while the range expansion of the original ranges has 7 pre x rules.

We now illustrate how to compute an optimal solution using a divide and conquer
strategy. The rst observation is that we can divide the original problem into two
subproblems by choosing the middle cut point. The second observation is that a cut
point should be the starting or ending point of a range if possible in order to reduce
range expansion. Suppose the target domain D′(F1) is [0,2b− 1]. We rst need to

112 8 Topological Transformations

Fig. 8.8 Example of 1-D pre x alignment

choose the middle cut point x2b−1 , which will divide the problem into two subprob-
lems with target domains [0,2b−1− 1] = 0{∗}b−1 and [2b−1,2b− 1] = 1{∗}b−1 re-
spectively. Consider the example in Figure 8.8(A), the x2 cut point partitions [0,15]
into [0,x2], which transforms to pre x 0∗, and [x2 +1,15], which transforms to pre-

x 1∗. The rst observation implies either x2 = 4 or x2 = 12. Suppose we choose
x2 = 4; that is, we choose the dashed line as shown in Figure 8.8(A). This then di-
vides the original problem into two subproblems where we need to identify the x1
cut point in the range [0,4] and the x3 cut point in [5,15]. Furthermore, in the two
subproblems, we include each range trimmed to t the restricted domain. For ex-
ample, in the rst subproblem, ranges [0,12] and [0,15] are trimmed to [0,4], and
in the second subproblem, ranges [5,15] and [0,15] are trimmed to [5,15] and range
[0,12] is trimmed to [5,12]. It is important to maintain each trimmed range, even
though there may be multiple copies of the same trimmed range. We then see in the

rst subproblem that the choice of x1 is immaterial since both trimmed ranges span
the entire restricted domain. In the second subproblem, the range [5,12] dictates that
x3 = 12 is the right choice.

This divide and conquer process of computing cut points can be represented as a
binary cut tree. For example, Figure 8.8(B) depicts the tree where we select x2 = 4
and x3 = 12. This binary cut tree also encodes the transformation from the original
domain to the target domain: all the values in a terminal node will be mapped to the
pre x represented by the path from the root to the terminal node. For example, as
the path from the root to the terminal node of [0,4] is 0, all values in [0,4] ∈ D(F1)
are transformed to 0∗.

Note that in the domain compression technique, we considered transformers that
mapped points in D(Fi) to points in D′(Fi). In pre x alignment, we consider trans-
formers that map points in D(Fi) to pre x ranges in D′(Fi). If this seems confusing,

8.3 Pre x Alignment 113

we can also work with transformers that map points in D(Fi) to points in D′(Fi)
with no change in results; however, transformers that map to pre xes more accu-
rately represent the idea of pre x alignment than transformers that map to points.
Note also that since we will perform range expansion on ℂ

′ with no redundancy
removal, we can ignore rule order. We can then view a one-dimensional classi er ℂ
as a multiset of ranges S in D(F1).

8.3.2 One-dimensional Pre x Alignment

We next present the technical details of our dynamic programming solution to the
pre x alignment problem by answering a series of four questions.

8.3.2.1 Correctness of Pre x Alignment

The rst question is: why is the pre x alignment transformation process correct?
In other words, how does the pre x alignment transformation preserve the seman-
tics of the original classi er? We rst de ne the concept of pre x transformers and
then show that if pre x transformers are used, the pre x alignment transformation
process is correct.

Given a pre x P, we use minP and maxP to denote the smallest and the largest
values in P, respectively.

De nition 8.1 (Pre x transformers). A transformer 𝕋i is an order-preserving pre-
x transformer from D(Fi) to D′(Fi) for a packet classi er ℂ if 𝕋i satis es the

following three properties. (1) (pre x property) ∀x ∈ D(Fi), 𝕋i(x) = P where P
is a pre x in domain D′(Fi); (2) (order-preserving property) ∀x,y ∈ D(Fi), x < y
implies either 𝕋i(x) = 𝕋i(y) or max𝕋i(x) < min𝕋i(y); (3) (consistency property)
∀x,y ∈ D(Fi), 𝕋i(x) = 𝕋i(y) implies ℂ{x}= ℂ{y}.

The following Lemma 8.1 and Theorem 8.3 easily follow the de nition of pre x
transformers.

Lemma 8.1. Given any pre x transformer 𝕋i for a eld Fi, for any a,b,x ∈ D(Fi),
x ∈ [a,b] if and only if 𝕋i(x) ∈ [min𝕋i(a),max𝕋i(b)].

Theorem 8.3 (Topological Alignment Theorem). Given a packet classi er ℂ over
elds F1, ⋅ ⋅ ⋅ ,Fd, and d pre x transformers T = {𝕋i ∣ 1 ≤ i ≤ d}, and the clas-
si er ℂ

′ constructed by replacing any range [a,b] over eld Fi (1 ≤ i ≤ d) by
the range [min𝕋i(a),max𝕋i(b)], the condition ℂ(p1, ⋅ ⋅ ⋅ , pd) = ℂ

′(𝕋1(p1), ⋅ ⋅ ⋅ ,
𝕋d(pd)) holds.

114 8 Topological Transformations

8.3.2.2 Find Candidate Cut Points

The second question is: what cut points need to be considered? To answer this ques-
tion, we rst introduce the concept of atomic ranges. For any multiset of ranges S
(a multiset may have duplicate entries) and any range x over domain D(F1), we use
S@x to denote the set of ranges in S that contain x.

De nition 8.2 (Atomic Range Set). Given a multiset S of ranges, the union of
which constitute a range denoted

∪
S, and a set of ranges S′, S′ is the atomic range

set of S if and only if the following four conditions hold: (1) (coverage property)∪
S =

∪
S′; (2) (disjoint property) ∀x,y ∈ S′, x∩ y = /0; (3) (atomicity property)

∀x ∈ S and ∀y ∈ S′, x∩y ∕= /0 implies y⊆ x; (4) (maximality property) ∀x,y ∈ S′ and
maxx+1 = miny implies S@x ∕= S@y.

For any multiset of ranges S, there is one and only one atomic range set of S,
which we denote as AR(S). Because of the maximality property of atomic range
set, the candidate cut points correspond to the end points of ranges in AR(S). We
now show how to compute S-start points and S-end points. For any range [x,y] ∈ S,
de ne the points x− 1 and y to be S-end points, and de ne the points x and y+ 1
to be S-start points. Note that we ignore x− 1 if x is the minimum element of

∪
S;

likewise, we ignore y+ 1 if y is the maximum element of
∪
S. Let (s1, ⋅ ⋅ ⋅ ,sm) and

(e1, ⋅ ⋅ ⋅ ,em) be the ordered list of S-start points and S-end points. It follows that for
1≤ i≤ m−1 that si ≤ ei = si+1 +1. Thus, AR(S) = {[s1,e1], ⋅ ⋅ ⋅ , [sm,em]}.

For example, if we consider the three ranges in classi er ℂ in example Figure
8.8(A), range [0,12] creates S-start point 13 and S-end point 12, range [5,15] creates
S-end point 4 and S-start point 5, and range [0,15] creates no S-start points or S-
end points. Finally, 0 is an S-start point and 15 is an S-end point. This leads to
AR(S) = {[0,4], [5,12], [13,15]}.

8.3.2.3 Choose Target Domain Size

The third question is: how many bits should be used to encode domain D′(F1)? The
number of bits b used to encode the domain D′(F1) may impose some constraints
on possible pre x transformers. Consider the example from ℂ in Figure 8.8(A) with
ranges [0,12], [5,15], and [0,15]. Suppose there were a fourth range [5,7]. For this
multiset of ranges S, we then have AR(S) = {[0,4], [5,7], [8,12], [13,15]}. If we al-
low only 2 bits to encode D′(F1), then there is only one possible pre x transformer.
We must have [0,4] map to 00, [5,7] map to 01, [8,12] map to 10, and [13,15] map
to 11. On the other hand, if we allow 3 bits, we can also allow additional pre x
transformers such as [0,4] map to 000, [5,7] map to 001, [8,12] map to 01∗, and
[13,15] map to 1∗∗. In this case, the rst pre x transformer is superior to this sec-
ond pre x transformer. However, if the original ranges had been [0,4], [0,7], [0,12],
and [0,15], the second pre x transformer would have been superior, and this pre x
transformer is only possible if we encode D′(F1) with at least 3 bits.

8.3 Pre x Alignment 115

We will include the number of bits b used to encode D′(F1) as an input parameter
to our pre x alignment problem. We determine the best b through an iterative pro-
cess of repeatedly incrementing b and computing an optimal solution for that b. We
start by choosing b= ⌈log2 ∣AR(S)∣⌉, which is the smallest possible number of bits
for any legal pre x transformer. Once we have a solution, we increment b and re-
peat the process until we cannot reduce the range expansion any further. We choose
a linear search as opposed to a binary search for ef ciency reasons. As we shall see
in a moment, any solution using b bits will require a sub-solution using b− 1 bits.
Thus, when we fail to nd a solution using b bits and try to nd a solution using 2b
bits, we will require a sub-solution for each number from b+1 to 2b−1 (otherwise
we would have found a solution using b bits). Furthermore, the binary search may
miss the best b by a large factor, which will lead to a large amount of unnecessary
computation.

8.3.2.4 Choose Optimal Cut Points

The fourth question is: How do we choose the optimal cut points? As we noted be-
fore, we can view a one-dimensional classi er ℂ as a multiset of ranges S in D(F1).
We then formulate the one-dimensional pre x alignment problem as follows: Given
a multiset of ranges S over eld F1 and a number of bits b, nd pre x transformer
𝕋1 such that the range expansion of the transformed multiset of ranges S′ has the
minimum number of pre x rules and D′(F1) can be encoded using only b bits.

We now present an optimal solution for this problem using dynamic program-
ming. Given a multiset of ranges S, we rst compute its atomic range set AR(S).
Suppose there are m atomic ranges R1, ⋅ ⋅ ⋅ ,Rm with S-start points s1 through sm
and S-end points e1 through em sorted in increasing order. For any S-start point sx
and S-end point sy where 1 ≤ x ≤ y ≤ m, we de ne S⋓ [x,y] to be the multiset of
ranges from S that intersect range [sx,sy]; furthermore, we assume that each range in
S⋓ [x,y] is trimmed so that its start point is at least sx and its end point is at most sy.
We then de ne a collection of subproblems as follows. For every 1≤ x≤ y≤m, we
de ne a pre x alignment problem PA(x,y,b) where the problem is to nd a pre x
transformer 𝕋1 for [sx,ey]⊆ D(F1) such that the range expansion of (S⋓ [x,y])′ has
the smallest possible number of pre x rules and the transformed domain D′(F1) can
be encoded in b bits. We use cost(x,y,b) to denote the number of pre x rules in the
range expansion of the optimal (S⋓ [x,y])′. The original pre x alignment problem
then corresponds to PA(1,m,b) where b can be arbitrarily large.

The key observation that allows the use of dynamic programming is that the
pre x alignment problem obeys the optimal substructure property. For example,
consider PA(1, m,b). As we employ the divide and conquer strategy to locate a
middle cut point that will establish what the pre xes 0{∗}b−1 and 1{∗}b−1 cor-
respond to, there are m− 1 choices of cut points to consider: namely e1 through
em−1. Suppose the optimal cut point is ek where 1 ≤ k ≤ m− 1. Then the opti-
mal solution to PA(1,m,b) will build upon the optimal solutions to subproblems
PA(1,k,b− 1) and PA(k+ 1,m,b− 1). That is, the optimal pre x transformer for

116 8 Topological Transformations

PA(1,m,b) will simply append a 0 to the start of all pre xes in the optimal pre-
x transformer for PA(1,k,b− 1), and similarly it will append a 1 to the start of

all pre xes in the optimal pre x transformer for PA(k+ 1,m,b− 1). Moreover,
cost(1,m,b) = cost(1,k,b− 1) + cost(k + 1,m,b− 1)− ∣S@[1,m]∣. We subtract
∣S@[1,m]∣ in the above cost equation because ranges that include all of [s1,em] are
counted twice, once in cost(1,k,b−1) and once in cost(k+1,m,b−1). However, as
[s1,ek] transforms to 0{∗}b−1 and [sk+1,em] transforms to 1{∗}b−1, the range [s1,em]
can be expressed by one pre x {∗}b = 0{∗}b−1∪1{∗}b−1.

Based on this analysis, Theorem 8.4 shows how to compute the optimal cuts
and binary tree. As stated earlier, the optimal pre x transformer 𝕋1 can then be
computed from the binary cut tree.

Theorem 8.4. Given a multiset of ranges S with ∣AR(S)∣ = m, cost(l,r,b) for any
b ≥ 0,1 ≤ l ≤ r ≤ m can be computed as follows. For any 1 ≤ l < r ≤ m, and
1≤ k ≤ m, and b≥ 0:

cost(l,r,0) = ∞,
cost(k,k,b) = ∣S@[k,k]∣,

and for any 1≤ l < r ≤ m and b≥ 1

cost(l,r,b) = min
k∈{l,...,r−1}

⎛
⎜⎜⎜⎜⎝

cost(l,k,b−1)
+

cost(k+1,r,b−1)
−

∣I@[l,r]∣

⎞
⎟⎟⎟⎟⎠

□

Note that we set cost(k,k,0) to ∣S@[k,k]∣ for the convenience of the recursive
case. The interpretation is that with a 0-bit domain, we can allow only a single value
in D′(F1); this single value is suf cient to encode the transformation of an atomic
interval.

8.3.3 Multi-Dimensional Pre x Alignment

We now consider the multi-dimensional pre x alignment problem. Unfortunately,
while we can optimally solve the one-dimensional problem, there are complex inter-
actions between the dimensions that make solving the multi-dimensional problem
optimally extremely dif cult. In particular, the total range expansion required for
each rule is the product of the range expansion required for each eld. Thus, there
may be complex tradeoffs where we sacri ce one eld of a rule but align another

eld so that the costs do not multiply. However, we have not found a polynomial
algorithm for optimally choosing which rules to align well in which elds. It is
an open problem to prove whether the optimal multi-dimensional pre x alignment
problem is NP-hard.

8.3 Pre x Alignment 117

In this chapter, we present a hill-climbing solution where we iteratively apply
our one-dimensional pre x alignment algorithm one eld at a time to improve our
solution. The basic idea is to perform pre x alignment one eld at a time; however,
because the range expansion of one eld affects the numbers of ranges that appear
in the other elds, we run pre x alignment for each eld more than once. Running
pre x alignment more than once allows each eld to use more and more accurate
information about the number of times each range appears in a eld.

For a classi er ℂ over elds F1, . . . ,Fd , we rst create d identity pre x trans-
formers 𝕋0

1, . . . ,𝕋
0
d . We de ne a multi- eld pre x alignment iteration k as follows.

For i from 1 to d, generate the optimal pre x transformer 𝕋ki assuming the pre x
transformers for the other elds are {𝕋k−1

1 , . . . , 𝕋k−1
i−1 , Tk−1

i+1 , . . . , Tk−1
d }. Our iter-

ative solution starts at k = 1 and preforms successive multi- eld pre x alignment
iterations until no improvement is found for any eld.

8.3.4 Composing with Domain Compression

Although the two transformation approaches proposed in this chapter can be used
individually to save TCAM space, we advocate combining them together to achieve
higher TCAM reduction. Given a classi er ℂ over elds F1, . . . ,Fd , we rst per-
form domain compression resulting in a transformed classi er ℂ′ and d transform-
ers 𝕋dc1 , . . . ,𝕋dcd ; then, we perform pre x alignment on the classi er ℂ′ resulting in
a transformed classi er ℂ′′ and d transformers 𝕋

pa
1 , . . . ,𝕋pad . To combine the two

transformation processes into one, we merge each pair of transformers 𝕋dci and 𝕋
pa
i

into one transformer 𝕋i for 1≤ i≤ d. One nice property of their composition is that
since the transformer for domain compression is a function from D(Fi) to a point in
D′(Fi) and each point in D′(Fi) will belong to its own equivalence class in D′(Fi)
for 1≤ i≤ d, each point x ∈ D′(Fi) de nes an atomic range [x,x].

A good property of the two proposed topological transformation approaches
is that they are composable with many other reencoding or TCAM optimization
techniques. For example, we can apply previous TCAM minimization schemes
(such as [Liu and Gouda(2005), Dong et al(2006)Dong, Banerjee, Wang, Agrawal,
and Shukla, Meiners et al(2007)Meiners, Liu, and Torng]) to a transformed classi-

er to further reduce TCAM space. Furthermore, as new classi er minimization
algorithms are developed, our transformations can potentially leverage these fu-
ture results. Finally, we can apply the optimal algorithm in [Suri et al(2003)Suri,
Sandholm, and Warkhede] to compute the minimum possible transformers 𝕋i for
1≤ i≤ d.

References

[Applegate et al(2007)Applegate, Calinescu, Johnson, Karloff, Ligett, and Wang] Applegate DA,
Calinescu G, Johnson DS, Karloff H, Ligett K, Wang J (2007) Compressing rectilinear pic-
tures and minimizing access control lists. In: Proc. ACM-SIAM Symposium on Discrete Al-
gorithms (SODA)

[Baboescu et al(2003)Baboescu, Singh, and Varghese] Baboescu F, Singh S, Varghese G (2003)
Packet classi cation for core routers: Is there an alternative to CAMs? In: Proc. IEEE INFO-
COM

[Bremler-Barr and Hendler(2007)] Bremler-Barr A, Hendler D (2007) Space-ef cient TCAM-
based classi cation using gray coding. In: Proc. 26th Annual IEEE conf. on Computer Com-
munications (Infocom)

[Che et al(2008)Che, Wang, Zheng, and Liu] Che H, Wang Z, Zheng K, Liu B (2008) DRES:
Dynamic range encoding scheme for tcam coprocessors. IEEE Transactions on Computers
57(7):902–915

[Dong et al(2006)Dong, Banerjee, Wang, Agrawal, and Shukla] Dong Q, Banerjee S, Wang J,
Agrawal D, Shukla A (2006) Packet classi ers in ternary CAMs can be smaller. In: Proc.
ACM Sigmetrics, pp 311–322

[Draves et al(1999)Draves, King, Venkatachary, and Zill] Draves R, King C, Venkatachary S, Zill
B (1999) Constructing optimal IP routing tables. In: Proc. IEEE INFOCOM, pp 88–97

[Eastlake and Jones(2001)] Eastlake D, Jones P (2001) Us secure hash algorithm 1 (sha1). RFC
3174

[Feldmann and Muthukrishnan(2000)] Feldmann A, Muthukrishnan S (2000) Tradeoffs for
packet classi cation. In: Proc. 19th IEEE INFOCOM, URL citeseer.nj.nec.com/
feldmann00tradeoffs.html

[Garey and Johnson(1978)] Garey MR, Johnson DS (1978) Strong NP-completeness results: mo-
tivation, examples, and implications. Journal of ACM 25(3):499–508

[Gouda and Liu(2004)] Gouda MG, Liu AX (2004) Firewall design: consistency, complete-
ness and compactness. In: Proc. 24th IEEE Int. conf. on Distributed Computing Sys-
tems (ICDCS-04), pp 320–327, URL http://www.cs.utexas.edu/users/alex/
publications/fdd.pdf

[Gouda and Liu(2007)] Gouda MG, Liu AX (2007) Structured rewall design. Computer Net-
works Journal (Elsevier) 51(4):1106–1120

[Gupta and McKeown(1999a)] Gupta P, McKeown N (1999a) Packet classi cation on multi-
ple elds. In: Proc. ACM SIGCOMM, pp 147–160, URL citeseer.nj.nec.com/
gupta99packet.html

[Gupta and McKeown(1999b)] Gupta P, McKeown N (1999b) Packet classi cation using hierar-
chical intelligent cuttings. In: Proc. Hot Interconnects VII

119

120 References

[Gupta and McKeown(2001)] Gupta P, McKeown N (2001) Algorithms for packet clas-
si cation. IEEE Network 15(2):24–32, URL citeseer.nj.nec.com/article/
gupta01algorithms.html

[Hamming(1950)] Hamming RW (1950) Error detecting and correcting codes. Bell Systems Tech-
nical Journal 29:147–160

[Lakshman and Stiliadis(1998)] Lakshman TV, Stiliadis D (1998) High-speed policy-based
packet forwarding using ef cient multi-dimensional range matching. In: Proc. ACM
SIGCOMM, pp 203–214, URL citeseer.nj.nec.com/lakshman98highspeed.
html

[Lakshminarayanan et al(2005)Lakshminarayanan, Rangarajan, and Venkatachary] Lakshmin-
arayanan K, Rangarajan A, Venkatachary S (2005) Algorithms for advanced packet
classi cation with ternary CAMs. In: Proc. ACM SIGCOMM, pp 193 – 204

[Lekkas(2003)] Lekkas PC (2003) Network Processors - Architectures, Protocols, and Platforms.
McGraw-Hill

[Liu and Gouda(2004)] Liu AX, Gouda MG (2004) Diverse rewall design. In: Proc. Int. conf. on
Dependable Systems and Networks (DSN-04), pp 595–604

[Liu and Gouda(2005)] Liu AX, Gouda MG (2005) Complete redundancy detection in re-
walls. In: Proc. 19th Annual IFIP conf. on Data and Applications Security, LNCS 3654,
pp 196–209, URL http://www.cs.utexas.edu/users/alex/publications/
Redundancy/redundancy.pdf

[Liu and Gouda(to appear)] Liu AX, Gouda MG (to appear) Complete redundancy removal for
packet classi ers in tcams. IEEE Transactions on Parallel and Distributed Systems (TPDS)

[Liu et al(2008)Liu, Meiners, and Zhou] Liu AX, Meiners CR, Zhou Y (2008) All-match based
complete redundancy removal for packet classi ers in TCAMs. In: Proc. 27th Annual IEEE
conf. on Computer Communications (Infocom)

[Liu(2002)] Liu H (2002) Ef cient mapping of range classi er into Ternary-CAM. In: Proc. Hot
Interconnects, pp 95– 100

[van Lunteren and Engbersen(2003)] van Lunteren J, Engbersen T (2003) Fast and scalable packet
classi cation. IEEE Journals on Selected Areas in Communications 21(4):560– 571

[McGeer and Yalagandula(2009)] McGeer R, Yalagandula P (2009) Minimizing rulesets for tcam
implementation. In: Proc. IEEE Infocom

[Meiners et al(2007)Meiners, Liu, and Torng] Meiners CR, Liu AX, Torng E (2007) TCAM Ra-
zor: A systematic approach towards minimizing packet classi ers in TCAMs. In: Proc. 15th
IEEE conf. on Network Protocols (ICNP), pp 266–275, Reprinted, with permission

[Meiners et al(2008a)Meiners, Liu, and Torng] Meiners CR, Liu AX, Torng E (2008a) Algorith-
mic approaches to redesigning tcam-based systems [extended abstract]. In: Proc. ACM SIG-
METRICS

[Meiners et al(2008b)Meiners, Liu, and Torng] Meiners CR, Liu AX, Torng E (2008b) Bit weav-
ing: A non-pre x approach to compressing packet classi ers in tcams. In: Proc. IEEE ICNP,
Reprinted with permission

[Meiners et al(2008c)Meiners, Liu, and Torng] Meiners CR, Liu AX, Torng E (2008c) Topologi-
cal transformation approaches to optimizing tcam-based packet processing systems. In: Proc.
ACM SIGCOMM (poster session)

[Pao et al(2006)Pao, Li, and Zhou] Pao D, Li YK, Zhou P (2006) An encoding scheme for
TCAM-based packet classi cation. In: Proc. 8th IEEE Int. conf. on Advanced Communication
Technology (ICACT)

[Pao et al(2007)Pao, Zhou, Liu, and Zhang] Pao D, Zhou P, Liu B, Zhang X (2007) Enhanced pre-
x inclusion coding lter-encoding algorithm for packet classi cation with ternary content

addressable memory. Computers & Digital Techniques, IET 1:572–580
[Qiu et al(2001)Qiu, Varghese, and Suri] Qiu L, Varghese G, Suri S (2001) Fast rewall imple-

mentations for software-based and hardware-based routers. In: Proc. the 9th Int. conf. on Net-
work Protocols (ICNP), URL citeseer.nj.nec.com/qiu01fast.html

[Rivest(1992)] Rivest R (1992) The md5 message-digest algorithm. RFC 1321

References 121

[iva san et al(1999)iva san, Suri, and Varghese] iva san VS, Suri S, Varghese G (1999) Packet
classi cation using tuple space search. In: Proc. ACM SIGCOMM, pp 135–146, URL
citeseer.nj.nec.com/srinivasan99packet.html

[boe scu and Varghese(2001)] boe scu FB, Varghese G (2001) Scalable packet classi cation.
In: Proc. ACM SIGCOMM, pp 199–210, URL http://citeseer.nj.nec.com/
baboescu01scalable.html

[Singh et al(2003)Singh, Baboescu, Varghese, and Wang] Singh S, Baboescu F, Varghese G,
Wang J (2003) Packet classi cation using multidimensional cutting. In: Proc. ACM
SIGCOMM, pp 213–224, URL http://www.cs.ucsd.edu/˜varghese/PAPERS/
hyp-sigcomm03.pdf

[Spitznagel et al(2003)Spitznagel, Taylor, and Turner] Spitznagel E, Taylor D, Turner J (2003)
Packet classi cation using extended TCAMs. In: Proc. 11th IEEE Int. conf. on Network Pro-
tocols (ICNP), pp 120– 131

[Srinivasan et al(1998)Srinivasan, Varghese, Suri, and Waldvogel] Srinivasan V, Varghese G, Suri
S, Waldvogel M (1998) Fast and scalable layer four switching. In: Proc. ACM SIGCOMM,
pp 191–202, URL citeseer.nj.nec.com/srinivasan98fast.html

[Suri et al(2003)Suri, Sandholm, and Warkhede] Suri S, Sandholm T, Warkhede P (2003) Com-
pressing two-dimensional routing tables. Algorithmica 35:287–300

[Taylor and Turner(2005)] Taylor D, Turner J (2005) Scalable packet classi cation using dis-
tributed crossproducting of eld labels. In: Proc. IEEE INFOCOM, pp 269–280

[Taylor(2005)] Taylor DE (2005) Survey & taxonomy of packet classi cation techniques. ACM
Computing Surveys 37(3):238–275

[Woo(2000)] Woo TYC (2000) A modular approach to packet classi cation: Algorithms and
results. In: Proc. IEEE INFOCOM, pp 1213–1222, URL citeseer.nj.nec.com/
woo00modular.html

[Yu et al(2005)Yu, Lakshman, Motoyama, and Katz] Yu F, Lakshman TV, Motoyama MA, Katz
RH (2005) SSA: A power and memory ef cient scheme to multi-match packet classi ca-
tion. In: Proc. Symposium on Architectures for Networking and Communications Systems
(ANCS), pp 105–113

c⃝[2010] IEEE. Reprinted, with permission, from Proceedings of the IEEE In-
ternational Conference on Network Protocols 2007 (“TCAM Razor: A System-
atic Approach Towards Minimizing Packet Classi ers in TCAMs”), Proceedings
of the IEEE International Conference on Computer Communications 2008 (“Fire-
wall Compressor: An Algorithm for Minimizing Firewall Policies”), Proceedings
of the IEEE International Conference on Network Protocols 2009 (“Bit Weaving: A
Non-pre x Approach to Compressing Packet Classi ers in TCAMs”).

c⃝[2010] ACM. Reprinted, with permission, from Proceedings of the ACM
Special Interest Group for the computer systems performance evaluation commu-
nity 2009 (“Topological Transformation Approaches to Optimizing TCAM-Based
Packet Classi cation Systems”).

c⃝[2010] ACM/IEEE. Reprinted, with permission, from IEEE/ACM Transac-
tions on Networking (“TCAM Razor: A Systematic Approach Towards Minimizing
Packet Classi ers in TCAMs”)

Index

atomic range set, 114

bit merging, 48
algorithm, 50

bit swapping, 43
bit-swap, 43

cross pattern, 44
fast cross pattern check, 46

nding, 45
pre x, 43

decision, 5

equivalence class, 6

FDD, 6
all-match, 57

cause sets, 70
construction, 60, 61
redundancy removal, 62

construction, 7, 9
hashing reduction, 36
lazy copying, 35, 38

eld, 5
rewall decision diagram, 6

packet, 5
packet classi er, 5

equivalence, 6

one- eld, 9
predicate, 5
Pre x Expansion, 7
pre x transformers, 113

range expansion, 6
rule, 5

con ict, 5
cross-free partitioning, 45

nding, 46
overlap, 5
partitioning, 45
redundant, 6

shadow packing, 90
algorithm, 91
shadowing relationship, 89

strict partitioning problem, 88

table consolidation, 93
heirachrical, 95

ternary adjacent, 48
ternary cover, 48

weighted one-dimensional pre x minimization
problem, 9

algorithm, 13
dynamic programming, 10
incomplete classi ers, 47

123

	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contribution

	Chapter 2 Background
	2.1 Firewall decision diagrams
	2.2 One-Dimensional Classier Minimization

	Chapter 3 RelatedWork
	3.1 TCAM Based Classiers
	3.1.1 Classier Minimization:
	3.1.2 Range Encoding:
	3.1.3 Circuit Modication:

	3.2 Software Based Techniques
	3.2.1 Parallel decomposition
	3.2.2 Decision Trees

	Part I Equivalent Transformation Techniques
	Chapter 4 TCAM Razor
	4.1 Multi-dimensional TCAM Minimization: The Basics
	4.1.1 Conversion to Firewall Decision Diagrams
	4.1.2 Multi-dimensional TCAM Minimization
	4.1.3 Removing Redundant Rules
	4.1.4 The Algorithm
	4.1.5 TCAM Update

	4.2 Multi-dimensional TCAM Minimization: The Optimization Techniques
	4.2.1 Lazy Copying in FDD Construction
	4.2.2 Hashing in FDD Reduction

	Chapter 5 BitWeaving
	5.1 Bit Swapping
	5.1.1 Prex Bit Swapping Algorithm
	5.1.2 Minimal Cross-Free Classier Partitioning Algorithm
	5.1.3 Partial List Minimization Algorithm

	5.2 Bit Merging
	5.2.1 Denitions
	5.2.2 Bit Merging Algorithm (BMA)
	5.2.2.1 Prefix Chunking
	5.2.2.2 Bit-Mask Grouping
	5.2.2.3 Algorithm and Optimality

	5.3 Discussion
	5.3.1 Redundancy Removal
	5.3.2 Incremental Classier Updates
	5.3.3 Composability of Bit Weaving
	5.3.4 Prex Shadowing

	5.4 Complexity Analysis of Bit Weaving

	Chapter 6 All-Match Redundancy Removal
	6.1 All-Match Based Redundancy Theorem
	6.1.1 All-Match FDDs
	6.1.2 The All-Match Based Redundancy Theorem

	6.2 All-Match Based Redundancy Removal
	6.2.1 The All-Match FDD Construction Algorithm
	6.2.2 The All-Match Based Redundancy Removal Algorithm
	6.2.3 Proof of Complete Redundancy Removal

	6.3 Optimization Techniques
	6.3.1 Decision Chaining
	6.3.2 Isomorphic Terminal Nodes Elimination

	6.4 Classier Incremental Updates
	6.4.1 Rule Insertion
	6.4.2 Rule Deletion
	6.4.3 Rule Modication

	6.5 Redundancy Analysis

	Part II New Architectural Approaches
	Chapter 7 Sequential Decomposition
	7.1 Multi-Lookup Approach
	7.1.1 Constructing Multi-lookup Table
	7.1.1.1 FDD Construction
	7.1.1.2 FDD Reduction
	7.1.1.3 Table Generation
	7.1.1.4 Table Mergence

	7.1.2 Packet Processing
	7.1.3 Analysis
	7.1.3.1 Space
	7.1.3.2 Throughput

	7.2 Pipelined-lookup Approach
	7.2.1 Pipelined-Table Construction
	7.2.1.1 Table Generation
	7.2.1.2 Table Mergence

	7.2.2 Packet Processing
	7.2.3 Analysis
	7.2.3.1 Space
	7.2.3.2 Throughput

	7.3 Packing Approach
	7.3.1 Strict Partitioning
	7.3.1.1 Basic Strict Partitioning
	7.3.1.2 Optimized Strict Partitioning

	7.3.2 Shadow Packing
	7.3.2.1 Shadowing
	7.3.2.2 Shadow Packing Algorithm

	7.3.3 Strict Partitioning vs. Shadow Packing

	7.4 Table Consolidation
	7.4.1 Table Consolidation Algorithm
	7.4.2 Hierarchical Table Consolidation
	7.4.3 TCAM/SRAM Space Tradeoff via Bounded Consolidation

	7.5 One-Dimensional Table Consolidation
	7.5.1 Table Consolidation with Sequential Decomposition
	7.5.2 Coping with More Fields than TCAM chips

	7.6 Implementation Issues
	7.6.1 TCAM Update
	7.6.2 Non-ordered FDDs
	7.6.3 Lookup Short Circuiting
	7.6.4 Best Variable Ordering

	Chapter 8 Topological Transformations
	8.1 Topological Transformation
	8.1.1 Architectures
	8.1.2 Measuring TCAM space
	8.1.3 TCAM Update

	8.2 Domain Compression
	8.2.1 Step 1: Compute Equivalence Classes
	8.2.2 Step 2: Construct Transformers
	8.2.3 Step 3: Construct Transformed Classier

	8.3 Prex Alignment
	8.3.1 Prex Alignment Overview
	8.3.2 One-dimensional Prex Alignment
	8.3.3 Multi-Dimensional Prex Alignment
	8.3.4 Composing with Domain Compression

	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

