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Preface

Advances in micro electromechanical systems and wireless technologies have
allowed for the emergence of inexpensive micro-sensors with embedded processing
and communication capabilities. A wireless sensor network (WSN) is a collection
of these physically distributed micro-sensors communicating with one another over
wireless links. In their various shapes and forms, the WSNs have greatly facilitated
and enhanced the automated, remote, and intelligent monitoring of a large variety
of physical systems and have found applications in various areas, such as industrial
and building automation; environmental, traffic, wildlife, and health monitoring;
and military surveillance. The purpose of a WSN is to provide users access to
the information of interest from data gathered by spatially distributed sensors.
In most applications, users are interested in a processed data that carries useful
information of a physical plant rather than a measured data contaminated by noises.
Therefore, it is not surprising that signal estimation, especially the multisensor
fusion estimation, has been one of the most fundamental collaborative information
processing problems in WSNs. The WSN, as a typical multisensor system, has
greatly extended application areas of multisensor information fusion estimation,
which was originally developed for military applications, such as target tracking and
navigation. Although WSNs present attractive features, challenges associated with
communication constraints, such as the scarcity of bandwidth and energy, as well as
the delays and packet losses, in wireless communications have to be addressed in the
WSN-based information fusion estimation and have attracted increasing research
interest during the past decade.

This book provides the recent advances in distributed multisensor fusion esti-
mation methods for WSNs with communication constraints, including the energy
constraint, bandwidth constraint, communication delays, and packet losses. First,
a review on the latest developments in the literature is presented in Chap. 1.
Then, two energy-efficient fusion estimation methods, namely, the transmission
rate method and the packet size reduction method, are introduced for sensor
networks with energy constraints in Chaps. 2, 3, 4 and 5. Specifically, by slowing
down the sampling and estimation rates, a multi-rate fusion estimation method is
presented in Chap. 2 for sensor networks, where the sampling rate and the estimation
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rate are allowed to be different from each other and are parameters that can be
designed to meet the energy constraints. In Chap. 3, a distributed state fusion
estimation method is presented for sensor networks with nonuniform estimation
rates, where the estimation rates among the various local estimators are allowed to
be nonuniform and different from each other, that is, each local estimator is allowed
to generate local estimates independently with an adjustable rate according to its
power status. In Chap. 4, a distributed H1 fusion estimation method is introduced
for sensor networks with nonuniform sampling rates, where the sampling rate of
each sensor is allowed to be nonuniform and can be adjusted according to the
sensor’s power status. The energy-efficient fusion estimation method based on
packet size reduction is introduced in Chap. 5, where a dimension reduction method
is presented to reduce the size of packets containing the local estimates to be
transmitted to the fusion estimator. The bandwidth constraint problem is considered
in Chaps. 6 and 7. Specifically, a distributed H1 fusion estimation method is
presented for sensor networks with quantized local estimates in Chap. 6. In Chap. 7,
a hierarchical structure is presented for multisensor fusion estimation systems
to reduce the communication burden of the fusion center. The communication
uncertainties, including the delays and packet losses, are considered in Chaps. 8
and 9. Specifically, the fusion estimation for sensor networks with communication
delays is introduced in Chap. 8, while the fusion estimation with both delays and
packet losses is presented in Chap. 9.

The work was supported in part by the National Natural Science Foundation
of China under Grant No. 61104063 and 61573319, the Research Fund for the
Doctoral Program of Higher Education of China under Grant 20113317120001, the
Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education
Institutions of China under Grant No.141064, and the Zhejiang Provincial Natural
Science Foundation of China under Grant No. LR16F030005.
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Hangzhou, China Haiyu Song
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Chapter 1
Introduction

1.1 Distributed Fusion Estimation for Sensor Networks

The multisensor fusion estimation has attracted considerable research interest
during the past decades and has found applications in a variety of areas, such
as target tracking and localization, guidance and navigation, and fault detection
[1, 2, 5, 17]. Multisensor fusion is used because of potentially improved estimation
accuracy [2, 71] and enhanced reliability and robustness against sensor failures.
Many useful fusion estimation methods have been presented in the literature (see,
e.g., [8, 12, 14, 20, 25, 36, 41, 46, 58, 69, 70, 75, 77, 80, 86] and the references
therein). Recently, the rapid developments of wireless sensor networks (WSNs)
have greatly widen applications of the multisensor fusion estimation theory, which
in turn, helps the WSNs monitor the environment more accurately and efficiently.
Therefore, the WSN-based multisensor fusion estimation and its applications have
attracted considerable research interest during the past decade [22, 39, 57, 83].

It is known that the WSN consists of a group of sensor nodes which communicate
with each other via wireless networks and the sensor nodes are usually powered
by batteries. Therefore, the sensor nodes are usually constrained in energy, and
developing energy-efficient algorithms for WSN-based estimation to reduce energy
consumption and prolong network life is of great practical significance [9, 50, 54–
56, 61, 82, 97]. Consider the situation where a WSN is deployed to observe
and estimate states of a dynamically changing process, but the process is not
changing too rapidly. Then it is wasteful from an energy perspective for sensors
to transmit every measurement to an estimator to generate estimates, and this
waste is amplified by packet losses which are usually unavoidable in WSNs
[34, 64, 67, 68, 74, 78, 79, 85, 92]. Therefore, it is not surprising that many research
works have been denoted to the design of energy-efficient estimation methods for
sensor networks with energy constraints. There are mainly two approaches in the
existing results, namely, the quantization method [3, 4, 18, 22–24, 26, 30, 37–
40, 47, 50, 54, 56, 63, 65, 66, 73, 82, 89, 95] and dimension-reduction method

© Science Press, Beijing and Springer Science+Business Media Singapore 2016
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2 1 Introduction

[10, 22, 61, 96, 97]. In the quantization method, the measurements are quantized and
represented by a finite number of bits before they are transmitted to the estimator
for estimation. The coarser the quantization, the smaller the size of the packet
packaging the measurements, and thus one is able to save energy consumptions
in the packet transmissions. In the dimension-reduction method, the dimension of
the measurement to be transmitted is reduced by applying some data compression
methods [97]. Consequently, the size of the packet packaging the measurement to
be transmitted is reduced, and the energy consumption in the packet transmission is
thus reduced. The main idea in both the quantization method and the dimension-
reduction method is to reduce the packet size and ultimately reduce the energy
consumption in the packet transmissions. Therefore, they may be intuitively called
as the packet size approach. Note that in the WSNs, data packets are transmitted
through wireless communication channels, which are usually constrained in band-
width, that is, the bit rate is constrained in communication. Thus, an advantage
of the packet size approach is that it is able to save energy and meanwhile meet
the bandwidth constraint. However, the quantization usually introduces nonlinear
dynamics which adds difficulty to the estimator design; moreover, the design of
quantizers involves additional computations. As investigated in [97], it is usually
difficult to find a data compression operator analytically when one applies the
dimension-reduction method. In this book, a novel dimension-reduction method
will be introduced for energy-efficient fusion estimation without involving a data
compression operator. The main idea of the proposed dimension-reduction method
is that only partial components of each local estimate are selected to be transmitted
to the fusion center to save communication energy, and the fusion center adopts
compensation strategy to compensate the components of the local estimates that
are not transmitted. Detailed results will be presented in Chap. 5. Actually, in
addition to the packet size approach, a useful and straightforward approach to
save energy is to slow down the information transmission rate in the sensors, for
example, the sensors may measure and transmit measurements with an interval
that is several times of the sampling period. Moreover, one may purposively close
the sensor nodes to save power during certain time interval and wake them up
when necessary. That is to say, in many situations, it is not necessary for sensors
to transmit measurements and generate estimates at every sampling instants from
the energy-efficient perspective, and the sensors may work and generate estimates
with two rates, namely, a fast rate and a slow rate according to their power
situations. The main idea in the aforementioned approach is to slow down the
measurement transmission rate and ultimately slow down the estimation rate to
save energies consumed in the communication, and then one is able to make a
trade-off between energy efficiency and estimation performance by appropriately
designing the information transmission rates. Therefore, the approach might be
intuitively called as a transmission rate approach and will be introduced in detail in
Chaps. 2, 3 and 4. Specifically, a multi-rate scheme by which the sensors exchange
measurements with neighbors and generate local estimates at a slower time scale and
generate fusion estimates at a faster time scale is proposed to reduce communication
costs in Chap. 2, a state fusion method with nonuniform estimate rates is introduced
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in Chap. 3, and an H1 fusion estimation method with nonuniform sampling rates is
presented in Chap. 4.

In WSNs, the multisensor fusion estimation could be done under the end-to-end
information flow paradigm by communicating all the relevant measurements from
various sensors to a central collector node, e.g., a sink node. Such a structure for
fusion estimation is usually termed as a centralized one. The centralized structure
is, however, a highly inefficient solution in WSNs, because it may cause long packet
delay, consume large amounts of energies, and require a large bandwidth in the
fusion center end and it has the potential for a critical failure point at the central
collector node. An alternative solution is for the estimation to be performed in-
network [19, 27, 33, 35], i.e., every sensor in the WSN with both sensing and
computation capabilities performs not only as a sensor but also as an estimator,
and it collects measurements only from its neighbors to generate estimates. Such a
setup is usually called as the distributed structure and possesses several advantages,
such as lower communication costs and bandwidth requirement in fusion center
and higher reliability against sensor failures, as compared with the centralized
structure. However, it is obvious that local estimates obtained at each sensor by
the distributed structure are not optimal in the sense that not all the measurements
in the WSN are used. Moreover, there exist disagreements among local estimates
obtained at different sensors. In other words, local estimates at any two sensors
may be different from each other. As pointed out in [51], such form of group
disagreement regarding the signal estimates is highly undesirable for a peer-to-peer
network of estimators. This gives rise to two issues that should be considered in
designing a distributed estimation algorithm: (1) how could each sensor improve its
local performance by taking full use of limited information from its neighbors? (2)
how to reduce disagreements of local estimates among different sensors? Consensus
strategy [4, 51, 52, 62, 84] and diffusion strategy [6, 7] have been presented in the
literature to deal with the aforementioned two issues. The main idea of the consensus
strategy is that all sensors should obtain the same estimate in steady state by using
some consensus algorithms. In the diffusion strategy, both measurements and local
estimates from neighboring sensors are used to generate estimates at each sensor.
A hierarchical two-stage fusion estimation method will be introduced in Chaps. 2
and 7 for distributed fusion estimation.

Communication delays and packet losses are usually unavoidable in WSNs
and are main sources deteriorating the estimation performance. Therefore, opti-
mal estimation with delayed or missing measurements has attracted considerable
research interest during the past decades. For example, the optimal estimation with
delayed measurements has been investigated in [11, 16, 43, 45, 49, 53, 72, 81,
87, 90, 91, 93], and [13, 15, 21, 28, 31, 32, 42, 44, 48, 59, 60, 67, 88, 94] are
devoted to the optimal estimation with missing measurements. However, most of the
aforementioned results are concerned with single-sensor systems. For multisensor
fusion estimation systems, the state estimation with uncertain observations was
investigated in [76], while the robust minimum variance linear estimation for
multiple sensors with different failure rates was presented in [29]. Based on the
consensus strategy, a distributed H1 consensus filtering with multiple missing
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measurements was investigated in [64]. Subsequently, the optimal fusion estimation
problems in the linear minimum variance sense have been investigated in [13] and
[44] for multisensor systems with multiple packet dropouts. However, most of the
existing results adopted the centralized fusion structure. For the multisensor fusion
estimation with time delays, the information fusion problem was investigated in
[72] and [43] for linear stochastic systems with delayed measurements, where the
observation delays are assumed to be constant. Recently, based on the well-known
federated filter, a practical architecture and some algorithms were discussed in [81]
for the networked data fusion systems with time-varying delays, where the accurate
time delay over each sampling period should be known for online computation
of the estimators. Chapters 8 and 9 of this book are devoted to the design of
multisensor fusion estimators for sensor networks with delays and packet losses.
A novel model will be presented to describe the fusion system with delays and
packet losses, and fusion estimators with matrix weights will be designed without
resorting to the augmentation method as usually did in existing results. Moreover,
some sufficient conditions for the boundness and convergence of the estimator will
also be presented.

1.2 Book Organization

So far many important and interesting results have been presented for distributed
multisensor fusion estimation for sensor networks. However, there lacks of a
monograph to provide the up-to-date advances in the literature. Thus, the main
purpose of this book is to fill such gap by providing some recent developments in
the design of distributed fusion estimation for sensor networks with communication
constraints. The materials adopted in the book are mainly based on research results
of the authors.

Besides this short introduction, this book is organized as follows.
Chapter 1 provides a review on the background and latest developments of

distributed fusion estimation for sensor networks with communication constraints
in the literature.

Chapter 2 investigates the multi-rate distributed fusion estimation for sensor
networks. A multi-rate scheme by which the sensors estimate states at a faster
time scale and exchange information with neighbors at a slower time scale is
proposed to reduce communication costs. The estimation is performed by taking
into account the random packet losses in two stages. At the first stage, every
sensor in the WSN collects measurements from its neighbors to generate a local
estimate, then local estimates in the neighbors are further collected at the second
stage to form a fused estimate to improve estimation performance and reduce
disagreements among local estimates at different sensors. It is shown that the time
scale of information exchange among sensors can be slower while still maintaining
satisfactory estimation performance by using the developed estimation method.
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Chapter 3 investigates the multisensor fusion estimation problem for sensor
networks with nonuniform estimation rates. Firstly, each sensor generates local
estimates with two rates, namely, a fast rate and a slow rate according to its power
situation, where the estimation rates among the sensors are allowed to be different
from each other. Secondly, a fusion rule with matrix weights is designed for each
sensor to fuse available local estimates generated at different time scales. The fusion
algorithm is applicable to both cases where the measurement noises are mutually
correlated and are uncorrelated and is also applicable to the case where the sensors
are not time synchronized. Two types of estimators are designed according to
different considerations of design complexity and computation costs.

Chapter 4 is devoted to the problem of distributed sampled-data H1 filtering
problem for sensor networks with nonuniform sampling periods. The measurements
are sampled with nonuniform sampling periods, and each sensor in the network
collects the sampled measurements only from its neighbors and runs a distributed
H1 filtering algorithm to generate estimates. A sufficient existence condition for the
distributed H1 filters is derived, and it is shown that the obtained condition critically
depends on the sampling periods and the packet loss probabilities. The designed
filters guarantee that the filtering system is mean square exponentially stable and all
the filtering errors satisfy an average H1 noise attenuation level.

Chapter 5 addresses the distributed finite-horizon fusion Kalman filtering prob-
lem for a class of networked multisensor fusion systems with energy constraints.
Only partial components of each local estimate are allowed to be transmitted to the
fusion center over one sampling period. Then, a compensation strategy is used at the
fusion center to compensate the untransmitted components of each local estimate,
and a recursively distributed fusion Kalman filter is derived in the linear minimum
variance sense. It is shown that the performance of the designed fusion filter is
dependent on the selecting probability of each component of the local estimate;
some criteria for the choice of the probabilities are derived such that the mean square
errors of the fusion filter are bounded or convergent.

Chapter 6 focuses on the problem of the distributed H1 fusion filtering for a
class of networked multisensor fusion systems with bandwidth constraints. Due
to the limited bandwidth, only finite-level quantized local estimates are sent to
the fusion center, and multiple finite-level logarithmic quantizers are adopted as
the quantization strategy. The co-design of the fusion parameters and quantization
parameters is converted into a convex optimization problem. It is shown that the
performance of the fusion estimator provides better performance than each local
estimator.

Chapter 7 is concerned with hierarchical fusion estimation problem for clustered
sensor networks. The sensors within the same cluster are connected to a local
estimator, and all the local estimators are linked with a fusion center. The fusion
center and the local estimators are not required to be synchronous. A minimum
variance estimation algorithm is presented for each cluster to aperiodically generate
local estimates. A covariance intersection fusion strategy is presented for the fusion
center to generate fused estimates by using asynchronous local estimates without
knowing the cross-covariances among the local estimation errors.
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Chapter 8 deals with the problem of robust fusion Kalman filtering for multi-
sensor systems with randomly delayed measurements and parameter uncertainties.
The stochastic parameter perturbations are considered, and the proposed fusion
estimator is robust against the parameter uncertainties in the system model. Without
resorting to the augmentation of system states and measurements, a robust optimal
recursive filter for each subsystem is derived in the linear minimum variance sense
by using the innovation analysis method. Based on the optimal fusion algorithm
weighted by matrices, a robust distributed state fusion Kalman filter is derived, and
the dimension of the designed filter is the same as the original system, which helps
reduce computation costs as compared with the augmentation method.

Chapter 9 considers the problem of distributed Kalman filtering for a class
of networked multisensor fusion systems with random delays and packet losses.
A novel stochastic model is proposed to describe the estimation system with
transmission delays and packet losses, and an optimal distributed fusion Kalman
filter is designed based on the optimal fusion criterion weighted by matrices. Some
sufficient conditions are derived such that the mean square error of the fusion filter
is bounded or convergent.
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Chapter 2
Multi-rate Kalman Fusion Estimation for WSNs

2.1 Introduction

It is known that the WSNs are usually severely constrained in energy, and
energy-efficient methods are thus important for WSN-based estimation to reduce
energy consumption and to prolong network life. Several energy-efficient estimation
methods have been available in the literature, such as the quantization method
[1–6] and the data-compression method [1, 7–10]. The main idea in quantization
and compression is to reduce the size of a data packet and thus to reduce
energy consumption in transmitting and receiving packets, and they can be called
as the packet size-based energy-efficient estimation methods. Actually, a useful
and straightforward approach to saving energy is to slow down the information
transmission rate in the sensors, for example, the sensors may measure and transmit
measurements with a period that is several times of the sampling period. This
is the transmission rate method to be presented in this chapter. Specifically, a
multi-rate scheme by which the sensors estimate states at a faster time scale and
exchange information with neighbors at a slower time scale is proposed to reduce
communication cost. Packets exchanged among the sensors may be lost during
the transmission, and several binary-valued white Bernoulli sequences are used to
describe the random packet losses. Then, by applying a lifting technique as used in
[11] and [12], the multi-rate estimation system is finally modeled as a single-rate
discrete-time system with multiple stochastic parameters.

On the other hand, the distributed structure instead of the centralized structure
will be adopted in this chapter to design the fusion estimation system. In the
distributed structure, the WSN is considered to be a peer-to-peer network without
a fusion center, and every sensor in the network collects information only from its
neighbors to generate estimates. It is obvious that local estimates obtained at each
sensor by such a distributed method are not optimal in the sense that not all the
measurements in the WSN are used. Moreover, there exist disagreements among
local estimates obtained at different sensors. In other words, local estimates at any
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two sensors may be different from each other. As pointed out in [13], such form of
group disagreement regarding the signal estimates is highly undesirable for a peer-
to-peer network of estimators. A two-stage hierarchical fusion estimation method
will be presented in this chapter to help improve local estimation precision and
reduce disagreement among local estimates. At the first stage, every sensor in the
WSN collects measurements from neighboring sensors to generate a local estimate,
and then local estimates from neighboring sensors are further collected to form
a fused estimate at the second stage. By fusion of both measurements and local
estimates, more information from different sensors are used to generate estimates in
the two-stage method as compared with the one-stage one where only measurements
are collected to generate estimates.

Then, by using the orthogonal projection principle and the innovation analysis
approach, an estimation algorithm with a set of recursive Lyapunov and Riccati
equations is presented to design the distributed estimators. The obtained estimation
performances critically depend on the information transmission rate and the packet
loss probabilities, and it is demonstrated by a simulation example of a maneuvering
target tracking system that the time scale of information exchange among sensors
can be slower while still maintaining satisfactory estimation performance by using
the proposed estimation method.

2.2 Problem Statement

Consider a discrete-time stochastic linear system described by the following state-
space model

x.kiC1/ D Apx.ki/C Bp!p.ki/; i D 0; 1; 2; : : : (2.1)

where x.ki/ 2 <n is the system state, !p.ki/ 2 <p is a zero-mean white noise,
hp D kiC1�ki, and 8 i D 0; 1; 2; : : : is the sampling period of system (2.1). A WSN
consisting of N spatially distributed sensors is deployed to collect observations of
system (2.1) according to the following observation models:

yl.ki/ D Cplx.ki/C Dpl�pl.ki/; l D 1; 2; : : : ;N (2.2)

where yl.ki/ 2 <ml is the observation collected by sensor l at time instant
ki, �pl.ki/ 2 <ql are white measurement noises with zero means, and Ap, Bp,
Cpl, and Dpl are constant matrices with appropriate dimensions. !p.ki/ is uncor-
related with �pl.ki/, while �pl.ki/ are mutually correlated, and Ef!p.ki/!

T
p .kj/g D

Q!pıij; Ef�pl.ki/�
T
ps.kj/g D Q

�p

l;sıij, l; s 2 Z0, where ıii D 1 and ıij D 0 (i ¤ j).
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Fig. 2.1 A structure of the distributed estimation system

The WSN is considered to be a peer-to-peer network, there is no fusion center in
the network, and every sensor in the network acts also as an estimator. A structure
of the distributed fusion estimation system is schematically shown in Fig. 2.1. The
observations are transmitted among the sensors in an ad hoc manner via unreliable
wireless communication channels and may be subject to random packet losses. We
say that two sensors are connected if they can communicate directly with each other,
i.e., they can communicate with each other within one hop. For example, in Fig. 2.1,
sensor 4 is connected to sensors 3, 5, and 6. Notice that a sensor is always connected
to itself. The set of sensors connected to a certain sensor r is called the neighborhood
of senor r and is denoted by Nr, r 2 Z0 , f1; 2; : : : ;Ng (notice that r 2 Nr), and the
number of neighbors of sensor r is given by the number of elements of Nr, written
as nr. For example, in the neighborhood Nr in Fig. 2.1, one has Nr D f3; 4; 5; 6g
and nr D 4.

Denote by Li;j, i; j 2 Nr the link between sensor i and sensor j in a neighborhood.
Then, the random packet loss in the link Li;j is described by a white binary
distributed random process ˛i;j.ki/, where ˛i;j.ki/ D 1 indicates that a packet
transmitted from sensor i successfully arrives at sensor j at instant ki, while ˛i;j.ki/ D
0 implies that a packet is lost during the transmission from sensor i to sensor j.
�i;j , Ef˛i;j.ki/g D Probf˛i;j.ki/ D 1g is called the packet arriving probability

(PAP), while 1 � �i;j , 1 � Ef˛i;j.ki/g D Probf˛i;j.ki/ D 0g is called the packet
loss probability (PLP). By definition, one has ˛i;j.ki/ D ˛j;i.ki/, �i;j D �j;i, and
�i;i D 1. It is assumed that ˛l;r.ki/, 8 l 2 Nr; r 2 Z0 are mutually independent
and are also independent of !p.ki/, �pl.ki/, and the initial system state. All the
sensors in the network are assumed to be time synchronized. Moreover, the sensors
are time-driven, i.e., they calculate the state estimates periodically at certain time
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instants, and the sensors are not necessary to know the packet transmission status in
the network.

Suppose that the dynamic of the stochastic process (2.1) is not changing too
rapidly, then brutal force collection of every measurement at sampling instants ki is
a waste of energy, and this waste is amplified by packet losses. To reduce the energy
waste, we suppose that every sensor r transmits measurements to its neighbors with
a period hm that is larger than the sampling period hp. Denote ti, i D 0; 1; 2; : : : as
the measurement transmission instants, and then hm D tiC1 � ti, i D 0; 1; 2; : : :.
Thus, every sensor in the WSN collects measurements, runs a Kalman estimator,
and calculates and outputs local estimates with a period hm. In practice, one may
expect to obtain estimates not only at the instances ti but also at instances over the
interval .ti�1; ti�; this is to say, one may expect to update the estimates at a rate that is
higher than the estimate output rate. Suppose that estimates are updated at instances
Ti and TiC1 � Ti D he, i D 0; 1; 2; : : :. In this generic case, the estimation system
runs with three rates, namely, the measurement sampling rate (also the system state
updating rate), the measurement transmitting rate (also the estimate output rate),
and the estimate updating rate. In what follows, the multi-rate estimation system
model will be transformed into a single-rate system model for further development
by using the lifting technique.

For simplicity but without loss of generality, it is assumed that both the
measurement transmitting period hm and the estimate updating period he are integer
multiple of the measurement sampling period hp and hm is also integer multiple of
he. Specifically, let he D ahp and hm D bhe, where a and b are positive integers
and chosen as small as possible in practice under energy constraints of the sensor
networks. Then, by applying the difference equation in (2.1) recursively, one obtains
the following state equation with a state updating period of he

x.TiC1/ D Aex.Ti/C Be!e.Ti/; i D 0; 1; 2; : : : (2.3)

where Ae D Aa
p and

Be D �
Aa�1

p Bp � � � ApBp Bp
�

!e.Ti/ D �
!T

p .Ti/ !
T
p .Ti C hp/ � � � !T

p .Ti C .a � 1/hp/
�T

Similarly, applying the difference equation in (2.3) recursively leads to the following
state equation with a state updating period of hm

x.tiC1/ D Amx.ti/C Bm!m.ti/; i D 0; 1; 2; : : : (2.4)

where Am D Ab
e and

Bm D �
Ab�1

e Be � � � AeBe Be
�

!m.ti/ D �
!T

e .ti/ !
T
e .ti C he/ � � � !T

e .ti C .b � 1/he/
�T
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The corresponding observation models are as follows:

yl.ti/ D Cplx.ti/C Dpl�pl.ti/; l D 1; 2; : : : ;N (2.5)

By following the similar procedures for obtaining the equation (2.4), one has for
j D 1; 2; : : : ; b � 1 that

x.tiC1 � jhe/ D Amjx.ti/C Bmj!m.ti/ (2.6)

where Amj D Ab�j
e and

Bm1 D ŒAb�2
e Be � � � AeBe Be 0�

:::

Bm.b�1/ D ŒBe 0 � � � 0�
Define

�.ti/ D �
xT.ti/ xT.ti � he/ � � � xT.ti � .b � 1/he/

�T

then one obtains the following augmented single-rate estimation system model from
equations (2.4), (2.5) and (2.6):

8
<

:

�.tiC1/ D A�.ti/C B!m.ti/
yl.ti/ D Cl�.ti/C Dpl�pl.ti/
l D 1; 2; : : : ;N; i D 0; 1; 2; : : :

(2.7)

where Cl D ŒCpl 0 : : : 0� and

A D

2

6
6
6
4

Am 0 � � � 0
Am1 0 � � � 0
:::

:::
:::
:::

Am.b�1/ 0 � � � 0

3

7
7
7
5
; B D

2

6
6
6
4

Bm

Bm1
:::

Bm.b�1/

3

7
7
7
5

The initial states x.t0 � jhe/, j D 0; 1; : : : ; b � 1 are mutually uncorrelated and are
also uncorrelated with !p.ti/ and �pl.ti/, l D 1; 2; : : : ;N and satisfy

Efx.t0 � jhe/g D Nxj; E
˚
.x.t0 � jhe/ � Nxj/.x.t0 � jhe/ � Nxj/

T� D NPj

where t0 is the initial time.
At each instant ti, every sensor collects measurements yl.ti/ from its neighbors

to generate an unbiased state estimate O�.tiCjjti/, where j is an integer, and thus the
following estimates

Ox.tiCjjti/; Ox.tiCj � hejti/; : : : ; Ox.tiCj � .b � 1/hejti/
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Fig. 2.2 An example of the multi-rate estimation

are obtained simultaneously in blocks. An example of the multi-rate state estimation
is shown schematically in Fig. 2.2, where a one-step prediction is considered, and
hm D 2he, he D 2hp, ki are the measurement sampling instants (also the system
state updating instants), Ti are the estimate updating instants, and ti are the estimate
output instants (also the measurement transmitting instants). At each instant ti, every
sensor collects measurements from its neighbors, and the predictions Ox.tiC1jti/ and
Ox.tiC1 � hejti/ are then generated simultaneously. In the system model (2.7), the
state x.ti/ is included in the augmented state �.ti/. Notice that when filtering is
considered, Ox.ti � hejti/, : : :, Ox.ti � .b � 1/hejti/ are all delayed estimates. So, one
advantage of the proposed model is that it can provide at least one non-delayed
estimate Ox.tijti/, and this is important in many practical applications, such as real-
time moving target tracking. Second, the lifted noise !m.ti/ is still uncorrelated with
�pl.ti/, l D 1; 2; : : : ;N provided that !p.ki/ and �pl.ki/ are uncorrelated.

In what follows, an estimation system model with random packet losses will be
established based on the model (2.7). Denote by zl.ti/ the measurement that sensor r
receives from sensor l, and then zl.ti/ might not equal yl.ti/ since yl.ti/ may be lost
during the transmission. Suppose that the hold input mechanism [14] is adopted by
all the sensors, i.e., sensor r will hold at its last available input when the current
measurement is lost, and then one has in this scenario that

zl.ti/ D ˛l;r.ti/yl.ti/C .1 � ˛l;r.ti//zl.ti�1/

Stacking zl.ti/, l 2 Nr into an augmented vector Zr.ti/ D colfzl.ti/gl2Nr which will
be used to generate local estimates, one obtains

Zr.ti/ D colf˛l;r.ti/yl.ti/gl2Nr C colf.1 � ˛l;r.ti//zl.ti�1/gl2Nr (2.8)

It can be seen from (2.8) that the stochastic variables ˛l;r.ti/ are incorporated into
each element of the estimator input Zr.ti/, which makes the estimator design
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problem intractable. To remove the difficulty, the following auxiliary matrices

˘l;r D diag

8
<

:
0; : : : ; 0„ ƒ‚ …

l�1
; Il;r; 0; : : : ; 0„ ƒ‚ …

nr�l

9
=

;
; l 2 Nr

are introduced to rewrite Zr.ti/ in (2.8) as follows:

Zr.ti/ D
0

@
X

l2Nr

˛l;r.ti/˘l;r

1

A Yr.ti/C
0

@Ir �
X

l2Nr

˛l;r.ti/˘l;r

1

A Zr.ti�1/ (2.9)

where Yr.ti/ D colfyl.ti/gl2Nr , Il;r 2 <ml�ml , and Ir 2 < Nmr� Nmr are identity matrices
and Nmr D P

l2Nr

ml. Denote

Gr D colfClgl2Nr ; Hr D diagfDplgl2Nr ; �r.ti/ D colf�pl.ti/gl2Nr

and then Yr.ti/ is written as

Yr.ti/ D Gr�.ti/C Hr�r.ti/ (2.10)

Furthermore, denote

	r.ti/ D �
�T.ti/ ZT

r .ti�1/
�T
; 
r.ti/ D �

!T
m.ti/ �

T
r .ti/

�T

and then one obtains the following augmented system model from (2.7), (2.9), and
(2.10)

8
<

:

	r.tiC1/ D QAr.ti/	r.ti/C QBr.ti/
r.ti/
Zr.ti/ D QCr.ti/	r.ti/C Q�r.ti/

r 2 Z0; i D 0; 1; 2; : : :

(2.11)

where Q�r.ti/ D P

l2Nr

˛l;r.ti/˘l;rHr�r.ti/, and

QAr.ti/ D
2

4
A 0P

l2Nr

˛l;r.ti/˘l;rGr Ir � P

l2Nr

˛l;r.ti/˘l;r

3

5

QBr.ti/ D diag

8
<

:
B;
X

l2Nr

˛l;r.ti/˘l;rHr

9
=

;

QCr.ti/ D
� P

l2Nr

˛l;r.ti/˘l;rGr Ir � P

l2Nr

˛l;r.ti/˘l;r

�
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Let Q! D E
˚
!m.ti/!T

m.ti/
�

and Q�r D E
˚
�r.ti/�T

r .ti/
�
. Then

Q! D diagfQ!pga�b; Q�r D ŒQ
�p

l;s �; l; s 2 Nr

To reduce energy consumption, the transmission rate method is used, and it
naturally results in a multi-rate estimation system. By using the lifting technique,
the multi-rate estimation system with random packet losses is finally modeled as
a single-rate system with multiple stochastic parameters as in equation (2.11).
Note that, if b D 1, i.e., the estimate output rate equals the estimate updating
rate (hm D he), then �.ti/ and !m.ti/ reduce to x.Ti/ and !e.Ti/, respec-
tively, while A, B, and Cl reduce to Ae, Be, and Cpl, respectively, and thus the
model (2.7) reduces to the model (2.3). Moreover, if a D 1 and b D 1, then
hm D he D hp, x.Ti/ becomes x.ki/, !e.Ti/ reduces to !p.ki/, while Ae and
Be reduce to Ap and Bp, respectively, and thus the model (2.3) reduces to the
model (2.1).

Based on the system model (2.11), a two-stage fusion estimation method will be
proposed to help improve local estimation performance of each sensor and reduce
disagreements among local estimates caused by the distributed structure of the
estimation system. At each time step, every sensor collects measurements from its
neighbors and runs a Kalman estimation algorithm to obtain a local estimate of
the system state. At the second stage, the sensor further collects and fuses local
estimates available at its neighbors to obtain a fused estimate. Thus, state estimation
at each sensor based on local measurements and the further fused estimation based
on the exchanged estimates among neighbors constitute the two-stage distributed
fusion estimation at hand. Then, the objective of the chapter is described as
follows.

Objective of the chapter: Design distributed Kalman estimators for system
(2.11) with packet losses and establish relationships between the measurement
transmission rate, PLPs, and estimation performances. The design is carried out
in two stages. At the first stage, every sensor r, r 2 Z0 collects measurements
from its neighborhood Nr and generates a local estimate O�r D gr.yl; ˛l;r/l2Nr ,
where gr.�/ is a local Kalman estimation algorithm. At the second stage,
sensor r collects local estimates from its neighborhood Nr and generates
a fused estimate O�o

r D fr. O�l; ˛l;r/l2Nr , where fr.�/ refers to a local fusion
algorithm.
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2.3 Two-Stage Distributed Estimation

2.3.1 Local Kalman Estimators

This subsection is devoted to the design of the local Kalman estimation algorithm
gr.�/.

Taking expectations on QAr.ti/, QBr.ti/, and QCr.ti/ yields, respectively:

NAr , E
˚ QAr.ti/

� D
2

4
A 0P

l2Nr

�l;r˘l;rGr Ir � P

l2Nr

�l;r˘l;r

3

5

NBr , E
˚ QBr.ti/

� D diag

8
<

:
B;

X

l2Nr

�l;r˘l;rHr

9
=

;

NCr , E
˚ QCr.ti/

� D
2

4
X

l2Nr

�l;r˘l;rGr Ir �
X

l2Nr

�l;r˘l;r

3

5

Denoting

A0l;r D
�

0 0

˘l;rGr �˘l;r

�
; C0l;r D Œ˘l;rGr �˘l;r�

one obtains
8
<̂

:̂

QAr.ti/ � NAr D P

l2Nr

.˛l;r.ti/ � �l;r/A0l;r

QCr.ti/� NCr D P

l2Nr

.˛l;r.ti/� �l;r/C0l;r
(2.12)

Then, some lemmas which play important roles in the derivation of main results are
first presented as follows:

Lemma 2.1 From the distributions of ˛i;j.ti/, it can be easily obtained for ˛i;j.ti/ ¤
˛r;s.ti/, i; j; r; s 2 Z0 that

E
˚
˛2i;j.ti/

� D �i;j

E
˚
˛i;j.ti/˛r;s.ti/

� D �i;j�r;s

E
˚
.˛i;j.ti/� �i;j/

2
� D �i;j.1 � �i;j/

E
˚
.˛i;j.ti/� �i;j/.˛r;s.ti/ � �r;s/

� D 0
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Lemma 2.2 For r 2 Z0, E
˚ Q�r.ti/ Q�T

r .ti/
�

satisfies

E
˚ Q�r.ti/ Q�T

r .ti/
�
, �r;r D

X

l2Nr

�l;r˘l;rHrQ�r H
T
r ˘

T
l;r

C
X

l2Nr

X

j2Nr ;j¤l

�l;r�j;r˘l;rHrQ�r H
T
r ˘

T
j;r (2.13)

Proof Lemma 2.2 can be followed by Lemma 2.1.

Lemma 2.3 Define the state covariance matrix as

�r;r.ti/ , E
˚
	r.ti/	

T
r .ti/

�

and then �r;r.ti/ satisfies the following recursion:

�r;r.tiC1/ D NAr�r;r.ti/ NAT
r C diag

˚
BQ!BT; �r;r

�

C
X

l2Nr

�l;r.1� �l;r/A0l;r�r;r.ti/A
T
0l;r (2.14)

where the initial value of �r;r.ti/ at t0 is given by

�r;r.t0/ D
�
� O1

OT
1 O2

�

� , E
˚
�.t0/�

T.t0/
� D diag

˚ NP0 C Nx0 NxT
0 ;

NP1 C Nx1 NxT
1 ; : : : ;

NPb�1 C Nxb�1 NxT
b�1
�

and O1 2 <bn� Nmr and O2 2 < Nmr� Nmr are zero matrices.

Proof 	r.tiC1/ can be rewritten as

	r.tiC1/ D NAr	r.ti/C � QAr.ti/ � NAr
�
	r.ti/C QBr.ti/
r.ti/ (2.15)

Since Ef QAr.ti/ � NArg D 0 and 	r.ti/?
r.ti/, one has by (2.15) that

�r;r.tiC1/ D NAr�r;r.ti/ NAT
r C E

n� QAr.ti/ � NAr
�
	r.ti/	

T
r .ti/

� QAr.ti/� NAr
�T
o

CE
˚ QBr.ti/
r.ti/


T
r .ti/ QBT

r .ti/
�

(2.16)
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It follows from (2.12) and Lemma 2.1 that

E
n� QAr.ti/� NAr

�
	r.ti/	

T
r .ti/

� QAr.ti/ � NAr
�T
o

D E

8
<

:

X

l2Nr

.˛l;r.ti/ � �l;r/
2 A0l;r	r.ti/	

T
r .ti/A

T
0l;r

9
=

;

CE

8
<

:

X

l2Nr

X

j2Nr ;j¤l

.˛l;r.ti/ � �l;r/
�
˛j;r.ti/ � �j;r

�

�A0l;r	r.ti/	
T
r .ti/A

T
0j;r

�

D
X

l2Nr

�l;r.1 � �l;r/A0l;r�r;r.ti/A
T
0l;r (2.17)

Since !m.ti/ and �r.ti/ are uncorrelated, one has by Lemma 2.2 that

E
˚ QBr.ti/
r.ti/


T
r .ti/ QBT

r .ti/
�

D E

8
<

:
diag

8
<

:
B;

X

l2Nr

˛l;r.ti/˘l;rHr

9
=

;

�
!m.ti/
�r.ti/

�

�
�
!m.ti/
�r.ti/

�T

diag

8
<

:
B;

X

l2Nr

˛l;r.ti/˘l;rHr

9
=

;

T
9
>=

>;

D diag
˚
BQ!BT; �r;r

�
(2.18)

Substituting (2.17) and (2.18) into (2.16) leads to (2.14). The proof is thus
completed.

With Lemmas 2.1, 2.2 and 2.3 in hand, it is now ready to present design
procedures for the finite-horizon local Kalman estimators. Let O	r.tijti/ and O	r.tiC1jti/
denote, respectively, the unbiased linear minimum MSE filtered estimate and
one-step predicted estimate of the state 	r.ti/. Then, the recursive local Kalman filter
for system (2.11) is given in the following theorem.

Theorem 2.1 For system (2.11), the finite horizon local Kalman filter in the sensor
r, r 2 Z0 is given by

"r.ti/ D Zr.ti/� NCr
O	r.tijti�1/ (2.19)

˝r.ti/ D
X

l2Nr

�l;r.1 � �l;r/C0l;r�r;r.ti/C
T
0l;r

C NCrPr;r.tijti�1/ NCT
r C�r;r (2.20)
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Kr.ti/ D Pr;r.tijti�1/ NCT
r ˝

�1
r .ti/ (2.21)

Fr.ti/ D
2

4
X

l2Nr

�l;r.1 � �l;r/A0l;r�r;r.ti/C
T
0l;r

CNArPr;r.tijti�1/ NCT
r C

�
0

�r;r

�
3

5˝�1
r .ti/ (2.22)

O	r.tijti/ D O	r.tijti�1/C Kr.ti/"r.ti/ (2.23)

O	r.tiC1jti/ D NAr
O	r.tijti�1/C Fr.ti/"r.ti/ (2.24)

Pr;r.tijti/ D Pr;r.tijti�1/� Kr.ti/˝r.ti/K
T
r .ti/ (2.25)

Pr;r.tiC1jti/ D
X

l2Nr

�l;r.1 � �l;r/.A0l;r � Fr.ti/C0l;r/

��r;r.ti/.A0l;r � Fr.ti/C0l;r/
T

Cdiag
˚
BQ!BT; �r;r

�

C � NAr � Fr.ti/ NCr
�

Pr;r.tijti�1/
� NAr � Fr.ti/ NCr

�T

� �0 'T
r;r.ti/

� � �
0 'T

r;r.ti/
�T C %r;r.ti/ (2.26)

where "r.ti/ is the innovation sequence with covariance

˝r.ti/ , E
˚
"r.ti/"

T
r .ti/

�

Kr.ti/ and Fr.ti/ are gain matrices of the filter and the one-step predictor, respec-
tively; Pr;r.tijti/ and Pr;r.tijti�1/ are the covariance matrices of the filtering error
and the prediction error, respectively; and the initial values of O	r.tijti�1/ and
Pr;r.tijti�1/ at t0 are given, respectively, by

O	r.t0jt�1/ D
�
�0
0

�

Pr;r.t0jt�1/ D
�
P O1

OT
1 O2

�

P D diag
˚ NP0; NP1; : : : ; NPb�1

�

�0 , E f�.t0/g D �NxT
0 NxT

1 : : : NxT
b�1
�T
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and

'r;r.ti/ D
X

l2Nr

�l;r˘l;rHrQ�r H
T
r ˘

T
l;rF

T
r .ti/

C
X

l2Nr

X

j2Nr ;j¤l

�l;r�j;r˘l;rHrQ�r H
T
r ˘

T
j;rF

T
r .ti/

%r;r.ti/ D
X

l2Nr

�l;rFr.ti/˘l;rHrQ�r H
T
r ˘

T
l;rF

T
r .ti/

C
X

l2Nr

X

j2Nr ;j¤l

�l;r�j;rFr.ti/˘l;rHrQ�r H
T
r ˘

T
j;rF

T
r .ti/

Proof The innovation "r.ti/ is defined as

"r.ti/ , Zr.ti/ � OZr.tijti�1/ (2.27)

Taking projection of both sides of the output equation in (2.11) onto the linear space
L.Zr.t0/;Zr.t1/ ; : : : ;Zr.ti�1// yields

OZr.tijti�1/ D NCr
O	r.tijti�1/C

0

@
X

l2Nr

�l;r˘l;rHr

1

A

�projf�r.ti/jZr.t0/;Zr.t1/; : : : ;Zr.ti�1/g (2.28)

Define a set #r.ti/ ,
S

l2Nr
ˇl;r.ti/, where

ˇl;r.ti/ D f˛l;r.t0/; ˛l;r.t1/; : : : ; ˛l;r.ti/g

Then, one has by (2.11) that

Zr.ti/ 2 L.�r.ti/; 
r.ti�1/; : : : ; 
r.t0/; 	r.t0//#r.ti/ (2.29)

where L.�/#r.ti/ denotes that the linear space L.�/ is dependent on the stochastic
parameters in the set #r.ti/. It follows from (2.29) that

L.Zr.t0/;Zr.t1/; : : : ;Zr.ti�1// � L.�r.ti�1/; : : : ;

�r.t0/; 
r.ti�2/; : : : ; 
r.t0/; 	r.t0//#r.ti�1/ (2.30)

Since �r.ti/?L.�r.ti�1/; : : : ; �r.t0/; 
r.ti�2/; : : : ; 
r.t0/; 	r.t0//#r.ti�1/, it follows
from (2.30) that

�r.ti/?L.Zr.t0/;Zr.t1/; : : : ;Zr.ti�1// (2.31)
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Since Ef�r.ti/g D 0, (2.31) implies that

projf�r.ti/jZr.t0/;Zr.t1/; : : : ;Zr.ti�1/g D 0

which together with (2.28) and (2.27) yields (2.19).

By projection [15], one has the following equations for determining the filtered
estimate O	r.tijti/:

O	r.tijti/ D O	r.tijti�1/C Kr.ti/"r.ti/ (2.32)

Kr.ti/ D E
˚
	r.ti/"

T
r .ti/

�
˝�1

r .ti/ (2.33)

Notice that (2.32) is just the equation in (2.23). Define the prediction error as
Q	r.tijti�1/ D 	r.ti/ � O	r.tijti�1/ and then substituting Zr.ti/ in (2.11) into (2.19)
leads to

"r.ti/ D � QCr.ti/ � NCr
�
	r.ti/C NCr

Q	r.tijti�1/C Q�r.ti/ (2.34)

Since 	r.ti/?�r.ti/, Q	r.tijti�1/?�r.ti/ and Ef QCr.ti/� NCrg D 0, one has by (2.34) that

˝r.ti/ D E
n� QCr.ti/� NCr

�
	r.ti/	

T
r .ti/

� QCr.ti/� NCr
�T
o

CE
n NCr

Q	r.tijti�1/ Q	T
r .tijti�1/ NCT

r

o

CE
˚ Q�r.ti/ Q�T

r .ti/
�

(2.35)

By (2.12) and Lemma 2.1, and following the similar derivation procedures as in
(2.17), one obtains

E
n� QCr.ti/ � NCr

�
	r.ti/	

T
r .ti/

� QCr.ti/ � NCr
�T
o

D
X

l2Nr

�l;r.1 � �l;r/C0l;r�r;r.ti/C
T
0l;r (2.36)

Then, (2.20) follows from (2.35), (2.36) and Lemma 2.2. Substituting (2.34) into
(2.33) and taking the facts

E
˚ QCr.ti/� NCr

� D 0; 	r.ti/?�r.ti/; O	r.tijti�1/?Q	r.tijti�1/
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into account yield

Kr.ti/ D E
n
	r.ti/ Q	r.tijti�1/ NCT

r

o
˝�1

r .ti/

D E
n	 O	r.tijti�1/C Q	r.tijti�1/


 Q	r.tijti�1/ NCT
r

o
˝�1

r .ti/

D Pr;r.tijti�1/ NCT
r ˝

�1
r .ti/ (2.37)

By projection [15], one has the following equations for determining the one-step
predicted estimate O	r.tiC1jti/:

O	r.tiC1jti/ D O	r.tiC1jti�1/C Fr.ti/"r.ti/ (2.38)

Fr.ti/ D E
˚
	r.tiC1/"T

r .ti/
�
˝�1

r .ti/ (2.39)

Taking both sides of the state equation in (2.11) onto the space L.Zr.t0/;Zr.t1/;
: : : ;Zr.ti�1// yields

O	r.tiC1jti�1/ D NAr
O	r.tijti�1/C NBr

�projf
r.ti/jZr.t0/;Zr.t1/; : : : ;Zr.ti�1/g (2.40)

It follows from (2.30) that 
r.ti/?L.Zr.t0/;Zr.t1/; : : : ; Zr.ti�1//, which together with
the fact Ef
r.ti/g D 0 leads to

projf
r.ti/jZr.t0/;Zr.t1/; : : : ;Zr.ti�1/g D 0 (2.41)

Combining (2.38), (2.40), and (2.41) yields (2.24). Substituting the state equation
in (2.11) into (2.39) yields

Fr.ti/ D E
˚ QAr.ti/	r.ti/"

T
r .ti/

�
˝�1

r .ti/

CE
˚ QBr.ti/
r.ti/"

T
r .ti/

�
˝�1

r .ti/ (2.42)

Substitute (2.34) into (2.42), and then one obtains by (2.12), Lemma 2.1, and
	r.ti/?
r.ti/, O	r.tijti�1/?Q	r.tijti�1/ and Ef˛l;r.ti/� �l;rg D 0 that

E
˚ QAr.ti/	r.ti/"

T
r .ti/

�

D E
n QAr.ti/	r.ti/	

T
r .ti/

� QCr.ti/ � NCr
�T C QAr.ti/	r.ti/ Q	T

r .tijti�1/ NCT
r

o

D E

8
<

:

2

4 NAr C
X

l2Nr

.˛l;r.ti/� �l;r/A0l;r

3

5 	r.ti/	
T
r .ti/
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�
0

@
X

l2Nr

.˛l;r.ti/� �l;r/C0l;r

1

A

T
9
>=

>;

CE
n QAr.ti/. O	T

r .tijti�1/C Q	T
r .tijti�1// Q	T

r .tijti�1/ NCT
r

o

D
X

l2Nr

�l;r.1� �l;r/A0l;r�r;r.ti/C
T
0l;r C NArPr;r.tijti�1/ NCT

r (2.43)

Since 	r.ti/?
r.ti/, Q	r.tijti�1/?
r.ti/, and !m.ti/?�r.ti/, one has by Lemma 2.2 that

E
˚ QBr.ti/
r.ti/"

T
r .ti/

� D �
0 �T

r;r

�T
(2.44)

Combining (2.42), (2.43) and (2.44) leads to (2.22).
Derivation procedures for the covariance matrices Pr;r.tiC1jti/ and Pr;r.tijti/ are

presented as follows. Substituting (2.24) and the state equation in (2.11) into the
right-hand side of the equation Q	r.tiC1jti/ D 	r.tiC1/ � O	r.tiC1jti/, one has by (2.12)
and (2.34) that

Q	r.tiC1jti/ D
2

4 NAr C
X

l2Nr

.˛l;r.ti/� �l;r/A0l;r

3

5 	r.ti/

� NAr
O	r.tijti�1/C QBr.ti/
r.ti/ � Fr.ti/"r.ti/

D NAr
Q	r.tijti�1/C

2

4
X

l2Nr

.˛l;r.ti/ � �l;r/A0l;r

�Fr.ti/
X

l2Nr

.˛l;r.ti/ � �l;r/C0l;r

3

5 	r.ti/

CQBr.ti/
r.ti/ � Fr.ti/ NCr
Q	r.tijti�1/

�Fr.ti/
X

l2Nr

˛l;r.ti/˘l;rHr�r.ti/

D
X

l2Nr

.˛l;r.ti/ � �l;r/.A0l;r � Fr.ti/C0l;r/	r.ti/

C � NAr � Fr.ti/ NCr
� Q	r.tijti�1/C QBr.ti/
r.ti/

�
X

l2Nr

˛l;r.ti/Fr.ti/˘l;rHr�r.ti/ (2.45)
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Since 	r.ti/?
r.ti/, 	r.ti/?�r.ti/, Q	r.tijti�1/?
r.ti/, Q	r.tijti�1/?�r.ti/, and
Ef˛l;r.ti/ � �l;rg D 0, one has by Lemma 2.1 and (2.18) and following the similar
derivation procedures as in (2.17) that

Pr;r.tiC1jti/
D E

n Q	r.tiC1jti/ Q	T
r .tiC1jti/

o

D
X

l2Nr

�l;r.1 � �l;r/.A0l;r � Fr.ti/C0l;r/�r;r.ti/.A0l;r � Fr.ti/C0l;r/
T

C � NAr � Fr.ti/ NCr
�

Pr;r.tijti�1/
� NAr � Fr.ti/ NCr

�T

�E
˚ QBr.ti/
r.ti/�

T
r .ti/

�

�E
n
�r.ti/

� QBr.ti/
r.ti/
�T
o

Cdiag
˚
BQ!BT; �r;r

�

CE
˚
�r.ti/�

T
r .ti/

�
(2.46)

where �r.ti/ D P

l2Nr

˛l;r.ti/Fr.ti/˘l;rHr�r.ti/. By following the similar derivation

procedures as in (2.44), one obtains

E
˚ QBr.ti/
r.ti/�

T
r .ti/

� D �
0 'T

r;r.ti/
�T

(2.47)

Moreover, it follows from Lemma 2.1 that

E
˚
�r.ti/�

T
r .ti/

� D %r;r.ti/ (2.48)

Combining (2.46), (2.47), and (2.48) leads to (2.26).
Substituting (2.23) into the right-hand side of the equation Q	r.tijti/ , 	r.ti/ �

O	r.tijti/ yields

Q	r.tijti/ D Q	r.tijti�1/� Kr.ti/"r.ti/ (2.49)

Let ˚.ti/ D Ef Q	r.tijti�1/"T
r .ti/g, and then it follows from (2.49) that

Pr;r.tijti/ D E
n Q	r.tijti/ Q	T

r .tijti/
o

D Pr;r.tijti�1/� Kr.ti/˚
T.ti/� ˚.ti/K

T
r .ti/

CKr.ti/˝r.ti/K
T
r .ti/ (2.50)
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Since O	r.tijti�1/?"r.ti/, one has by (2.33) that

˚.ti/ D E
n	
	r.ti/ � O	r.tijti�1/



"T

r .ti/
o

D E
˚
	r.ti/"

T
r .ti/

�

D Kr.ti/˝r.ti/ (2.51)

Substituting (2.51) into (2.50) leads to (2.25). The proof is thus completed.
Theorem 2.1 provides a set of recursive equations for designing the finite-horizon

local Kalman filters as a by-product; the local one-step predictor is also given.
Denote O�r.tiCkjti/ and P�r;r.tiCkjti/ .k D 0; 1/, respectively, the estimate of the
system state �.ti/ and the corresponding error covariance generated at sensor r.
Then, O�r.tiCkjti/ and P�r;r.tiCkjti/ are given by

O�r.tiCkjti/ D ŒIbn O1� O	r.tiCkjti/
P�r;r.tiCkjti/ D ŒIbn O1�Pr;r.tiCkjti/ŒIbn O1�

T

where Ibn 2 <bn�bn is an identity matrix.
In Theorem 2.1, every sensor r in the WSN generates local estimates by using

measurements only from its neighbors. Each local estimate thus obtained is subop-
timal in the sense that not all the measurements in the WSN are used. Moreover,
there may exist disagreements among local estimates at different sensors. Similar
to [13], one may define some disagreement potentials as follows to characterize the
disagreement of local estimates in the neighborhood Nr (r 2 Z0):

�r.ti/ D 1

2nr

X

u;s2Nr

k O�u.tiCkjti/� O�s.tiCkjti/k2 (2.52)

 r.ti/ D 1

2nr

X

u;s2Nr

�
Tr.P�u;u.tiCkjti//� Tr.P�s;s.tiCkjti//

�2
(2.53)

where k D 0; 1, and �r.ti/ and r.ti/ are the disagreement potential of estimates and
the disagreement potential of estimation performances, respectively. Notice that at
each time step, not only a measurement but also a local estimate is available at each
sensor. Therefore, one efficient way to improve each local estimation performance
and reduce the disagreement is to further collect local estimates available at
neighboring sensors and then generate a fused estimate at every sensor in the WSN.
This gives rise to the two-stage estimation strategy. Different from the approach in
[16] where a fusion rule with scalar weights is used, a fusion criterion weighted
by matrices in the linear minimum variance sense will be used in this chapter to
generate fused estimates, and the main results will be presented in the following
subsection.
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2.3.2 Distributed Fusion Estimation

In this subsection, a fusion criterion weighted by matrices in the linear minimum
variance sense is applied to generate fusion estimates for every sensor r, r 2 Z0, and
the criterion is first given in the following lemma.

Lemma 2.4 ([17]) Let Oxi, i 2 NZ , f1; 2; : : : ;mg be unbiased estimates of a
stochastic state vector x 2 <n. Let the estimation errors be Qxi D xi � Oxi. Assume
that Qxi and Qxj, i ¤ j are correlated, and define the covariance and cross-covariance
matrices as Pii D EfQxi QxT

i g and Pij D EfQxi QxT
j g (i ¤ j), respectively. Then, the optimal

fusion estimate of x with matrix weights is given by

Oxo D
mX

iD1
AoiOxi (2.54)

where the optimal matrix weights Aoi, i 2 NZ are computed by

col
˚
AT

oi

�
i2NZ D ��1e

�
eT��1e

��1

� D ŒPij�, i; j 2 NZ is an nm � nm symmetric positive-definite matrix, and e D
ŒIn; : : : ; In„ ƒ‚ …

m

�T, In 2 <n�n is an identity matrix. The corresponding covariance matrix

of the fused estimation error is computed by Po D .eT��1e/�1, and one has that
Po � Pii, i 2 NZ.

When local estimates calculated by the estimators in Theorem 2.1 are available
at the sensors in the WSN, every sensor r, r 2 Z0 then collects them from its
neighborhood Nr to generate a fused estimate according to the fusion rule in
Lemma 2.4. Note that the links in the WSN are subject to packet losses, local
estimates O	l, l 2 Nr may be lost during the transmission, and thus only the estimates
that successfully arrive at the sensor r are used to generate the fused estimate
O�or of the system state �. Let NNr.ti/ denote the index set of the estimates O	l that
are successfully received by sensor r at instant ti and Nnr.ti/ denote the number
of elements in NNr.ti/. Then, by Lemma 2.4, one has the following theorem that
determines the fused estimates and the corresponding covariance matrix of the
estimation error at sensor r, r 2 Z0:

Theorem 2.2 For system (2.11), the fusion estimator in the sensor r, r 2 Z0 is
given by

O�or.tiCkjti/ D
X

u2 NNr.ti/

NAou;k.ti/ O�u.tiCkjti/; k D 0; 1 (2.55)
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where

O�u.tiCkjti/ D ŒIbn O1� O	u.tiCkjti/

and the optimal matrix weights NAou;k.ti/, u 2 NNr.ti/ are computed by

col
˚ NAT

ou;k.ti/
�

u2 NNr.ti/

D � �1
r;k .ti/er.ti/

�
eT

r .ti/�
�1

r;k .ti/er.ti/
��1

; k D 0; 1 (2.56)

where �r;k.ti/ D ŒP�u;s.tiCkjti/�, u; s 2 NNr.ti/ is an bnNnr.ti/ � bnNnr.ti/ symmetric
positive-definite matrix, and

P�u;s.tiCkjti/ D ŒIbn O1�Pu;s.tiCkjti/ŒIbn O1�
T

er.ti/ D ŒIbn; : : : ; Ibn„ ƒ‚ …
Nnr.ti/

�T

The corresponding covariance matrix of the fusion estimation error is computed by
P�or.tiCkjti/ D .eT

r .ti/�
�1

r;k .ti/er.ti//�1, and one has that P�or.tiCkjti/ � P�u;u.tiCkjti/,
u 2 NNr.ti/. The estimates O	u.tiCkjti/ and the covariance matrices Pu;u.tiCkjti/ are
computed by the recursive equations in Theorem 2.1.

Proof Theorem 2.2 follows directly from Lemma 2.4.

It can be seen from (2.56) that computation of the cross-covariance matrices
Pu;s.tiCkjti/, k D 0; 1, u; s 2 NNr.ti/, u ¤ s is one of the key issues in applying
the fusion estimator in Theorem 2.2. In what follows, computation procedures for
the cross-covariances Pu;s.tiCkjti/ will be presented, but before which, some useful
lemmas are first given as follows:

Lemma 2.5 For any two augmented measurement noise vectors �u.ti/ and �s.ti/,
u; s 2 Nr, u ¤ s, define Q�u�s D Ef�u.ti/�T

s .ti/g. Then, one has

Q�u�s D Œ�l;j�; l 2 Nu; j 2 Ns (2.57)

where �l;j D
(

Q
�p

l;l ; l; j 2 Nu;s; l D j
Q
�p

l;j ; otherwise
and Nu;s D Nu \ Ns.

Lemma 2.6 For u; s 2 Nr and u ¤ s, E
˚ Q�u.ti/ Q�T

s .ti/
�

satisfies

E
˚ Q�u.ti/ Q�T

s .ti/
�
, �u;s

D �s;u.1 � �s;u/˘s;uHuQ�u�s H
T
s ˘

T
u;s

C
X

l2Nu

X

j2Ns

�l;u�j;s˘l;uHuQ�u�s H
T
s ˘

T
j;s (2.58)
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Proof Since u 2 Nr and s 2 Nr, i.e., sensor u and sensor s are neighbors, one has
u 2 Ns and s 2 Nu. Moreover, by the facts ˛s;u.ti/ D ˛u;s.ti/ and �s;u D �u;s, one
has by Lemma 2.1 that

E
˚ Q�u.ti/ Q�T

s .ti/
� D E

8
<

:

0

@
X

l2Nu

˛l;u.ti/˘l;uHu�u.ti/

1

A

�
0

@
X

j2Ns

˛j;s.ti/˘j;sHs�s.ti/

1

A

T
9
>=

>;

D E

8
<

:

0

@
X

l2Nu

˛l;u.ti/˘l;uHu�u.ti/

1

A

� .˛u;s.ti/˘u;sHs�s.ti//
T
o

CE

8
<

:

X

l2Nu

X

j2Ns;j¤u

˛l;u.ti/˛j;s.ti/˘l;uHu�u.ti/�
T
s .ti/H

T
s ˘

T
j;s

9
=

;

D
X

l2Nu;l¤s

�l;u�u;s˘l;uHuQ�u�s H
T
s ˘

T
u;s

C�s;u˘s;uHuQ�u�s H
T
s ˘

T
u;s

C
X

l2Nu

X

j2Ns ;j¤u

�l;u�j;s˘l;uHuQ�u�s H
T
s ˘

T
j;s

D �s;u.1 � �s;u/˘s;uHuQ�u�s H
T
s ˘

T
u;s

C
X

l2Nu

�l;u�u;s˘l;uHuQ�u�s H
T
s ˘

T
u;s

C
X

l2Nu

X

j2Ns ;j¤u

�l;u�j;s˘l;uHuQ�u�s H
T
s ˘

T
j;s

D �u;s (2.59)

The proof is thus completed.

Lemma 2.7 Define the state cross-covariance matrix as

�u;s.ti/ , E
˚
	u.ti/	

T
s .ti/

�
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where u; s 2 Nr and u ¤ s. Then �u;s.ti/ satisfies the following recursion:

�u;s.tiC1/ D �s;u.1 � �s;u/A0s;u�u;s.ti/A
T
0u;s

CNAu�u;s.ti/ NAT
s C diagfBQ!BT; �u;sg (2.60)

where the initial value of �u;s.ti/ at t0 is given by �u;s.t0/ D �u;u.t0/.

Proof It follows from (2.15) that

�u;s.tiC1/ D E
˚
	u.tiC1/	T

s .tiC1/
� D NAu�u;s.ti/ NAT

s C �1 C �2 (2.61)

where

�1 D E
n� QAu.ti/� NAu

�
	u.ti/	

T
s .ti/

� QAs.ti/� NAs
�T
o

�2 D E
˚ QBu.ti/
u.ti/


T
s .ti/ QBT

s .ti/
�

Noting u 2 Ns, s 2 Nu, and u ¤ s, and by (2.12), Lemma 2.1, and the facts
˛s;u.ti/ D ˛u;s.ti/ and �s;u D �u;s, one obtains that

�1 D E

8
<

:

2

4
X

l2Nu

.˛l;u.ti/� �l;u/A0l;u

3

5 	u.ti/	
T
s .ti/

�
2

4
X

j2Ns

.˛j;s.ti/ � �j;s/A0j;s

3

5

T
9
>=

>;

D �s;u .1 � �s;u/A0s;u�u;s.ti/A
T
0u;s (2.62)

Since !m.ti/ and �l.ti/, l 2 Nr are uncorrelated, one has by Lemma 2.6 that

�2 D E

8
<

:
diag

8
<

:
B;

X

l2Nu

˛l;u.ti/˘l;uHu

9
=

;

�
!m.ti/
�u.ti/

�

�
�
!m.ti/
�s.ti/

�T

diag

8
<

:
B;

X

j2Ns

˛j;s.ti/˘j;sHs

9
=

;

T
9
>=

>;

D diag
˚
BQ!BT; �u;s

�
(2.63)

Substituting (2.62) and (2.63) into (2.61) leads to (2.60). The proof is thus
completed.
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A set of equations for calculating the cross-covariances Pu;s.tiCkjti/, k D 0; 1,
u; s 2 Nr, u ¤ s are now presented in the following theorem based on
Lemmas 2.5, 2.6 and 2.7.

Theorem 2.3 For system (2.11), the cross-covariance of local Kalman estimation
errors between the sensors u and s in the neighborhood Nr, r 2 Z0 satisfies the
following recursive equations:

Pu;s.tijti/ D �1 C �2 C �3 (2.64)

Pu;s.tiC1jti/ D �4 C �5 C �6 C diag
˚
BQ!BT; �u;s

�

� �0 'T
u;s.ti/

�T � Œ0 �u;s.ti/� (2.65)

where

�1 D �NIu � Ku.ti/ NCu
�

Pu;s.tijti�1/
�NIs � Ks.ti/ NCs

�T

�2 D �s;u.1 � �s;u/Ku.ti/C0s;u�u;s.ti/C
T
0u;sK

T
s .ti/

�3 D �s;u.1 � �s;u/Ku.ti/˘s;uHuQ�u�s H
T
s ˘

T
u;sK

T
s .ti/

C
X

l2Nu

X

j2Ns

�l;u�j;sKu.ti/˘l;uHuQ�u�s H
T
s ˘

T
j;sK

T
s .ti/

�4 D �s;u.1 � �s;u/.A0s;u � Fu.ti/C0s;u/�u;s.ti/

�.A0u;s � Fs.ti/C0u;s/
T

�5 D . NAu � Fu.ti/ NCu/Pu;s.tijti�1/. NAs � Fs.ti/ NCs/
T

�6 D �s;u.1 � �s;u/Fu.ti/˘s;uHuQ�u�s H
T
s ˘

T
u;sF

T
s .ti/

C
X

l2Nu

X

j2Ns

�l;u�j;sFu.ti/˘l;uHuQ�u�s H
T
s ˘

T
j;sF

T
s .ti/

'u;s.ti/ D �s;u.1 � �s;u/˘s;uHuQ�u�s H
T
s ˘

T
u;sF

T
s .ti/

C
X

l2Nu

X

j2Ns
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j2Ns
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and NIu 2 <bnC Nmu and NIs 2 <bnC Nms are identity matrices; Q�u�s and�u;s are given by
(2.57) and (2.58), respectively; and �u;s.ti/ is computed by (2.60), the initial value
of Pu;s.tijti�1/ at t0 is given by Pu;s.t0jt�1/ D Pu;u.t0jt�1/.
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Proof Substituting (2.19) into (2.23) yields

O	u.tijti/ D �NIu � Ku.ti/ NCu
� O	u.tijti�1/C Ku.ti/Zu.ti/; u 2 Nr (2.66)

Substituting the output equation in (2.11) into (2.66) leads to

O	u.tijti/ D �NIu � Ku.ti/ NCu
� O	u.tijti�1/

CKu.ti/ QCu.ti/	u.ti/

C
X

l2Nu

˛l;u.ti/Ku.ti/˘l;uHu�u.ti/

D �NIu � Ku.ti/ NCu
� O	u.tijti�1/C Ku.ti/ NCu	u.ti/

CKu.ti/
� QCu.ti/ � NCu

�
	u.ti/

C
X

l2Nu

˛l;u.ti/Ku.ti/˘l;uHu�u.ti/

D O	u.tijti�1/C Ku.ti/ NCu
Q	u.tijti�1/

CKu.ti/
� QCu.ti/ � NCu

�
	u.ti/

C
X

l2Nu

˛l;u.ti/Ku.ti/˘l;uHu�u.ti/ (2.67)

Subtracting 	u.ti/ from both sides of (2.67) and taking (2.12) into account yield

Q	u.tijti/ D �NIu � Ku.ti/ NCu
� Q	u.tijti�1/

�
X

l2Nu

.˛l;u.ti/� �l;u/Ku.ti/C0l;u	u.ti/

�
X

l2Nu

˛l;u.ti/Ku.ti/˘l;uHu�u.ti/ (2.68)

Since Q	u.tijti�1/ consists of the linear combination of f!m.ti�2/; : : : ; !m.t0/;
�u.ti�1/; : : : ; �u.t1/; 	u.t0/g, applying the projection property [15] and following
the similar derivation procedures as in (2.29), (2.30) and (2.31), one has

Q	u.tijti�1/?�s.ti/
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Moreover, since 	u.ti/?�s.ti/, Ef˛l;u.ti/ � �l;ug D 0, and Ef˛j;s.ti/ � �j;sg D 0,
l 2 Nu, j 2 Ns, one has by (2.68) that

Pu;s.tijti/ D E
n Q	u.tijti/ Q	T

s .tijti/
o

D �NIu � Ku.ti/ NCu
�

Pu;s.tijti�1/
�NIs � Ks.ti/ NCs

�T

C�3 C �4 (2.69)

where
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>=

>;

Since u 2 Ns, s 2 Nu, and u ¤ s, one obtains by Lemma 2.1 and ˛s;u.ti/ D ˛u;s.ti/
and �s;u D �u;s that

�3 D �2 (2.70)

By following the similar derivation procedures as in the proof of Lemma 2.6, one
has that

�4 D �3 (2.71)

Combining (2.69), (2.70) and (2.71) leads to (2.64). Notice that one has to calculate
Pu;s.tijti�1/ in computing Pu;s.tijti/. Since the following facts hold

	u.ti/?
s.ti/

	u.ti/?�s.ti/

Q	u.tijti�1/?
s.ti/

Q	u.tijti�1/?�s.ti/



36 2 Multi-rate Kalman Fusion Estimation for WSNs

Ef˛l;u.ti/� �l;ug D 0

Ef˛j;s.ti/ � �j;sg D 0

l 2 Nu; j 2 Ns

one has by (2.45), (2.63), Lemma 2.1, and following the similar derivation proce-
dures as in (2.62) that

Pu;s.tiC1jti/ D �4 C �5 C diag
˚
BQ!BT; �u;s

�

CE
˚
�u.ti/�

T
s .ti/

� � E
˚ QBu.ti/
u.ti/�

T
s .ti/

�

�E
˚
�u.ti/. QBs.ti/
s.ti//

T� (2.72)

where

�u.ti/ D
X

l2Nu

˛l;u.ti/Fu.ti/˘l;uHu�u.ti/

�s.ti/ D
X

j2Ns

˛j;s.ti/Fs.ti/˘j;sHs�s.ti/

By following the similar derivation procedures as in the proof of Lemma 2.6, one
obtains

E
˚
�u.ti/�

T
s .ti/

� D �6 (2.73)

By following the similar derivation procedures as in (2.63) and Lemma 2.6, one has

E
˚ QBu.ti/
u.ti/�

T
s .ti/

� D �
0 'T

u;s.ti/
�T

(2.74)

E
˚
�u.ti/. QBs.ti/
s.ti//

T
� D Œ0 �u;s.ti/� (2.75)

Combining (2.72), (2.73), (2.74) and (2.75) yields (2.65). The proof is thus
completed.

By fusing local estimates, more measurements from different sensors are used
to generate fused estimates at every sensor, which helps improve local estimation
performance and reduce the disagreement of local estimates. Similar to (2.52) and
(2.53), one may define some disagreement potentials as follows to characterize the
performance of the distributed estimation algorithm in Theorems 2.2 and 2.3:

�o
r .ti/ D 1

2nr

X

u;s2Nr

k O�ou.tiCkjti/ � O�os.tiCkjti/k2 (2.76)

 o
r .ti/ D 1

2nr

X

u;s2Nr

�
Tr.P�ou.tiCkjti//� Tr.P�os.tiCkjti//

�2
(2.77)
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where k D 0; 1, �o
r .ti/, and o

r .ti/ are, respectively, the disagreement potential of the
fused estimates and the disagreement potential of the fused estimation performances
in the neighborhood Nr, and some smaller �o

r and  o
r imply a better performance of

the estimation algorithm in Theorems 2.2 and 2.3.
It can be seen from Theorems 2.1, 2.2 and 2.3 that the estimation performance

assessed by the error covariances critically depend on the parameter b that deter-
mines the measurement transmission rate, and thus one may see how the mea-
surement transmission rate can affect the estimation performance by applying
the algorithms in Theorems 2.1, 2.2, and 2.3. On the other hand, the proposed
two-stage fusion estimation needs more computation and communication costs as
compared with the one-stage one. Nevertheless, the multi-rate scheme helps reduce
communication costs significantly since the transmission rate of the measurements
and local estimates is slowed down, and it is well known that computation
consumes much less energy than communication in WSNs. Energy saved from
the multi-rate scheme can be used to implement the second-stage fusion estimation
which helps improve estimation performance. Thus, the two-stage estimation may
achieve a better performance without consuming more energy than the one-stage
estimation.

2.4 Simulations

In this section, simulations of a maneuvering target tracking system are presented to
demonstrate the effectiveness of the proposed estimator design method, where the
target’s position and velocity evolve according to the state-space model in (2.1) with

Ap D
�
1 hp

0 1

�
;Bp D p

10

"
h2p=2

hp

#

(2.78)

where hp is the sampling period. The state is x.ki/ D ŒxT
p .ki/ xT

v .ki/�
T, where

xp.ki/ and xv.ki/ are the position and velocity of the maneuvering target at time ki,
respectively. Suppose that the target is not moving too fast, and we take hp D 0:5 s
in the simulation.

A wireless sensor network with 12 sensor nodes is deployed to monitor the
target, and the topology of the WSN is shown in Fig. 2.3. The wireless links in the
WSN may be subject to random packet losses. Suppose that only the position of the
target is measurable, and the observation equations of the sensors are given by (2.2),
where �pl.ki/ D cl!0.ki/C �0l.ki/, !0.ki/ is a zero-mean white noise with variance
Q!0 , �0l.ki/ are zero-mean white noises with variances Q�0l , �0l.ki/ are mutually
uncorrelated and are independent of !0.ki/, !0.ki/ and �0l.ki/ are uncorrelated with
!p.ki/, and

Cp1 D Œ1 0�; Cp2 D Œ0:8 0�

Cp3 D Œ0:7 0�; Cp4 D Œ0:6 0�; Cp5 D Œ0:5 0�
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Fig. 2.3 Network topology
with N D 12 sensor nodes

Cp6 D Œ0:4 0�; Cp7 D Œ0:3 0�; Cp8 D Œ0:2 0�

Cp9 D Œ1 0�; Cp10 D Œ0:8 0�; Cp11 D Œ0:6 0�

Cp12 D Œ0:7 0�; Dpl D 1; l D 1; 2; : : : ; 12

It can be easily calculated that

Q
�p

l;l D c2l Q!0 C Q�0l ; Q
�p

l;s D clcsQ!0 ; l ¤ s; l; s D 1; 2; : : : ; 12

In the simulation, we take cl D 0:1l and

Q!p D 0:1; Q!0 D 1

Q�01 D 0:4; Q�02 D 0:7

Q�03 D 0:4; Q�04 D 0:4

Q�05 D 0:3; Q�06 D 0:2

Q�07 D 0:3; Q�08 D 0:3

Q�09 D 0:5; Q�010 D 0:4

Q�011 D 0:3; Q�012 D 0:1

It can be seen from the topology of the WSN that sensors 2 and 5 are directly
connected to sensor 1, and thus they are neighbors of the sensor 1, and the
neighborhood N1 consists of three sensors, and they are sensors 1, 2, 5. In what
follows, estimation at the sensors in neighborhoodN1 will be considered to show the
effectiveness of the proposed estimator design. At each instant ti, sensor 1 collects
measurements from itself and sensors 2 and 5 to generate local estimates, and then
at the second stage, sensor 1 collects local estimates from itself and sensors 2 and 5
to form fused estimates.

We first consider the situation where a D b D 2, i.e., the sensors in N1

collect measurements from their neighborhoods and generate estimates with period
hm D 2 s which is 4 times of the sampling period, and the estimates are updated
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with period he D 1 s which is 2 times of the sampling period. By slowing down the
measurement transmission rate and the estimate updating rate, one may expect to
save energies consumed in communications and computations. The PLPs in the links
L2;1 and L5;1 are supposed to be 1��2;1 D 1��5;1 D 0:2. The initial time is t0 D 0,
and the initial state is given by x.0/ D x.�1/ D Œ1 0:5�T, and Nx0 D Nx1 D Œ1:5 1:0�T,
NP0 D NP1 D diagf0:25; 0:25g. By applying Theorems 2.1, 2.2 and 2.3, the true
values and the filtered fusion estimates of the target positions obtained at sensor 1
are depicted in Fig. 2.4a, while Fig. 2.4b depicts the true values and the filtered
fusion estimates of the target velocities. It can be seen that the sensor 1 is able to
track the maneuvering target well in the presence of random packet losses and with
slow measurement transmission rate. Figure 2.5 shows the individual estimation
performance (assessed by the trace of estimation error covariance) of every sensor in
the neighborhoodN1. It can be seen from Fig. 2.5 that the estimation performance at
sensor 1 is improved by using the two-stage fusion strategy and the fusion estimator
outperforms each of its local estimators.

The advantage of the two-stage fusion estimation strategy is further shown
in Figs. 2.6 and 2.7. In Fig. 2.6. It can be seen that the estimation performance
may be improved by using more measurements from different sensors, and the
estimation performance can be further improved by fusing local estimates from
its neighborhood. The disagreement of estimates and disagreement of estimation
performances obtained by two estimation strategies (one-stage estimation and two-
stage estimation) are shown, respectively, in Fig. 2.7a, b. It is clearly shown by
Fig. 2.7 that both the disagreement of estimate and the disagreement of estimation
performance are significantly reduced by using the two-stage estimation strategy.

0 5 10 15 20 25 30 35 40 45 50
−20

−10

0

10

time / s

(a)    

po
si

tio
n

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

time / s

(b)    

ve
lo

ci
ty

true value of x
p

filtered estimate of x
p

true value of x
v

filtered estimate of x
v

Fig. 2.4 True values and fused estimates (obtained at sensor 1) of the target positions and
velocities with a D 2, b D 2, �2;1 D �5;1 D 0:5
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Fig. 2.5 Estimation performances obtained at the sensors in the neighborhood N1 with a D 2,
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Fig. 2.7 Comparison of disagreement potentials in two estimation strategies, a D 2, b D 2,
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Fig. 2.8 Comparison of estimation performance and energy consumption in two estimation
strategies, �2;1 D �5;1 D 0:9

Notice that the two-stage estimation usually causes more communication costs as
compared with the normal one-stage estimation, because, besides of measurements,
local estimates in the neighborhood should also be transmitted among sensors in the
group to generate a fused estimate. Fortunately, by slowing down the measurement
transmission and estimate updating rates, energies can be saved to implement the
two-stage estimation. In this way, the two-stage strategy may be realized to improve
each local estimation performance and reduce the disagreement of estimates among
different sensors without consuming more energies than the normal one-stage
strategy. An example is shown in Fig. 2.8 which depicts filtering performances
obtained at sensor 1 with �2;1 D �5;1 D 0:9. The curve with plus symbol in
Fig. 2.8 shows the filtering performance obtained by using the one-stage estimation
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strategy with a D 2 and b D 1, i.e., sensor 1 collects measurements from sensors 2
and 5 and generates estimates with a period of 1 s, and thus totally 4 times of
measurement transmissions and 2 times of estimate computations are involved over
every 2 s by using the one-stage estimation. The curve with star in Fig. 2.8 shows
the filtering performance obtained by using the two-stage estimation strategy with
a D 4 and b D 1, i.e., sensor 1 collects not only measurements but also local
estimates from sensors 2 and 5 and generates fused estimates with a period of 2 s,
and therefore totally 4 times of measurement transmissions and 2 times of estimate
computations are involved over every 2 s by using the two-stage estimation. It thus
can be observed from Fig. 2.8 that, though the two strategies consume the same
communication and computation costs, the two-stage estimation is able to provide
a better performance than the one-stage estimation, confirming that the two-stage
strategy may outperform the one-stage one without increasing energy consumption
due to the benefits from slowing down the measurement transmission rate.

In what follows, we will show how the packet loss and the measurement
transmission period may affect the estimation performances. Figure 2.9 shows the
filtering performances of the sensors in N1 with different PLPs, and Fig. 2.10 shows
filtering performances of the sensors in N1 with different measurement transmission
periods. It can be seen from Figs. 2.9 and 2.10 that packet loss degrades estimation
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estimation performances of sensor 1. (b) Local estimation performances of sensor 2. (c) Local
estimation performances of sensor 5. (d) Fusion estimation performances of sensor 1
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performance and a smaller measurement transmission period leads to a better
estimation performance, which are as expected and demonstrate the effectiveness
of the proposed estimator design method.

2.5 Conclusions

An energy-efficient distributed fusion estimation algorithm has been developed
in this chapter for estimating states of discrete-time linear stochastic systems
with slowly changing dynamics and random packet losses in WSN environment.
A transmission rate method was proposed to reduce energy consumption in
exchanging information among sensors, and a two-stage fusion estimation method
has been proposed to improve each local estimate and reduce disagreements of local
estimates. It is shown that the obtained estimation performance critically depends
on the measurement transmission rate and the packet loss probabilities and that
the time scale of information exchange among sensors can be slower while still
maintaining satisfactory estimation performance. However, it is assumed in this
chapter that the estimator generates estimates periodically with a uniform rate. In
the next chapter, this restriction will be removed, and a novel fusion estimation
method with nonuniform estimation rates will be developed.
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Chapter 3
Kalman Fusion Estimation for WSNs with
Nonuniform Estimation Rates

3.1 Introduction

As mentioned in Chap. 2, developing energy-efficient algorithms for WSN-based
estimation is of great practical significance since the sensor nodes are usually
constrained in energy. As usually did in WSNs, one may purposively close the
sensor nodes to save power during certain time interval and wake them up when
necessary. That is to say, in many situations, it is not necessary for sensors to
transmit measurements and generate estimates at every sampling instant from the
energy-efficiency perspective, and the sensors may work and generate estimates
with two rates, namely, a fast rate and a slow rate according to their power situations.
Therefore, adopting a nonuniform estimation rate is a more preferable strategy for
sensor network-based estimation system with energy constraints.

An example of multisensor track-to-track fusion estimation with nonuniform
estimation rates is shown in Fig. 3.1, where each sensor i broadcasts its local
estimates to the other sensors and meanwhile collects local estimates from itself
and the other sensors to generate fused estimates at instants ti;k, k D 0; 1; 2; : : :.
It can be seen from Fig. 3.1 that the number of local estimates for fusing at each
sensor is time varying, and local estimates available for fusing at a particular
sensor may be generated in various different time scales. These problems caused
by the asynchronism add much difficulty to the design of fusion rules, especially,
the computation of cross-covariances of estimation errors across different sensors.
Hence, there are two issues that should be considered in designing fusion estimators
with nonuniform estimation rates. The first issue is how to design an optimal local
estimator for each sensor with a nonuniform estimation rate, and the second issue
is how to design an optimal fusion rule for each estimator to fuse local estimates
generated at different time scales.

© Science Press, Beijing and Springer Science+Business Media Singapore 2016
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45



46 3 Kalman Fusion Estimation for WSNs with Nonuniform Estimation Rates

Fig. 3.1 An example of multisensor fusion with nonuniform estimation rates

For the first issue, some relevant results have been presented in the literature on
networked estimation with packet losses [1–4] or estimation with sensor failures
[5]. In these results, it is usually assumed that the estimator input keeps the last
available value or is set to zero if the current measurement is lost, and the estimates
are then generated with a uniform rate at every sampling instant. Therefore, the
aforementioned results are essentially not applicable to the nonuniform estimation
problem. Recently, a stochastic sampling method was presented in [6] to design
sampled-data H1 filters with a filtering rate taking two values according to a known
probability distribution law. For the single-sensor scenario, the method in [6] is
useful for the nonuniform estimation problem. If each local estimation is performed
periodically with a single rate, then the problem in the aforementioned second
issue can be immediately solved by applying some distributed fusion methods as
presented in [7–12] (where estimation rates at different sensors are required to be the
same) or by using the multi-scale state fusion method as presented in [13–15] (where
estimation rates at different sensors are allowed to be different). When considering
the problems in both the aforementioned two issues, few result is available in
the literature except for [16–18]. In [16], the ratio between the sampling rates of
different sensors is allowed to be any positive integer, and some of the estimators
are allowed to generate local estimates with nonuniform rates. Thus, the result in
[16] extends those as given in [13–15]. However, it is required in the algorithm in
[16] that at least one estimator should generate its local estimates uniformly with a
single rate, and all the other estimation rates are integer multiple of this single rate.
In [17] and [18], some very general asynchronous fusion estimation methods were
presented for multisensor systems, which allow for out of sequence data and latent
data. However, the results in [17] and [18] were concerned with the sampled-data
fusion estimation, where the estimators estimate states at some discrete instants for
a continuous-time process. In the sampled-data fusion estimation, it is required that
all the local estimates are time stamped so that each estimator is able to calculate
exact state-transition matrices and some corresponding integration terms at every
estimation instant. These state-transition matrices and integration terms are then
used to lift the states at sampling instants to those at the fusion estimation instants.
In this way, some well-developed fusion rules were then applied to design the
fusion estimators. For discrete-time systems, the approaches in [17] and [18] are
not applicable to solve the problem in the aforementioned issue two since one is



3.2 Problem Statement 47

unable to lift the states at sampling instants to those at estimation instants by using
state-transition matrices.

This chapter presents a design method for multisensor track-to-track fusion
estimators with nonuniform estimation rates, and the aforementioned two issues
will be addressed. In the estimation system, a WSN with a group of sensors is
deployed to monitor the outputs of a discrete-time stochastic dynamic process, and
each sensor acts also as an estimator. At the first stage, each sensor generates local
estimates with a nonuniform rate by using its own measurements, and it is assumed
that the estimation rate switches between a fast one and a slow one according to
a white Bernoulli random process, and each local estimation system is modeled
as a discrete-time system with a stochastic parameter. Then, the optimal local
estimators are designed by using innovation analysis and projection principle. At
the second stage, each sensor collects and fuses local estimates from itself and the
other sensors to generate fused estimates. The fusion algorithm is designed by using
the lifting technique and a distributed fusion rule with matrix weights in the linear
minimum variance sense, and a set of recursive equations are presented to compute
the estimation error cross-covariances. Since the estimation rates at different sensors
are allowed to be different from each other, the proposed fusion algorithm is able to
fuse local estimates generated at different time scales. Then, each sensor generates
fused estimates according to the fusion rule, if local estimates from the other sensors
are available, and keeps its own estimates as the fused ones otherwise. Two types
of fusion estimators are designed according to different considerations of design
complexity and computation costs, and the convergence of the type II estimators is
also discussed.

3.2 Problem Statement

Consider a linear discrete stochastic system described by the following state-space
model

x.TkC1/ D Ax.Tk/C B!.Tk/; k D 0; 1; 2; : : : (3.1)

where x.Tk/ 2 <n is the system state and !.Tk/ 2 <q! is a zero-mean white noise
with variance Q! , i.e., Ef!.Tk/!

T.Tt/g D Q!ı.k � t/, where ı.k/ is the Dirac Delta
function. The sampling period is denoted by h and h D TkC1 � Tk, k D 0; 1; 2; : : :.
A group of N sensors are deployed to monitor the outputs of system (3.1), and the
output equations are given by

yi.Tk/ D Cix.Tk/C Di�i.Tk/; i 2 Z0 , f1; 2; : : : ;Ng (3.2)

where yi.Tk/ 2 <pi and �i.Tk/ 2 <qi are zero-mean white measurement noises
with variances Q�

i;i, i.e., Ef�i.Tk/�
T
i .Tt/g D Q�

i;iı.k � t/. The noises �i are mutually
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correlated, and the covariance of �i and �j is given by Ef�i.Tk/�
T
j .Tt/g D Q�

i;jı.k �
t/, i; j 2 Z0 and i ¤ j. Each sensor i generates estimates with two rates, namely, a fast
rate and a slow rate denoted by hi1 D ai1h and hi2 D ai2h, respectively, where ai1

and ai2 are positive integers and ai1 < ai2. The sensor may switch between the two
rates according to its power situation, requirements of estimation performance, and
dynamic changes of the process under monitoring. Denote by ti;k, k D 0; 1; 2; : : : the
instants at which the estimates are generated at sensor i, i 2 Z0. Then, the estimation
rate is denoted by hi.ti;k/ D ti;kC1 � ti;k and hi.ti;k/ 2 fhi1; hi2g. Then, the output
equation at time scale ti;k is represented by

yi.ti;k/ D Cixi.ti;k/C Di�i.ti;k/; i 2 Z0 (3.3)

where xi.ti;k/ denotes the system state at time scale ti;k.
There is no fusion center in the estimation system, each sensor acts also as

an estimator. Each sensor i first generates local estimates Oxi D fi.yi/ by using
measurements from itself and then generates fused estimates Oxoi D gi.Ox1; : : : ; OxN/

by using available local estimates from itself and the other sensors, where fi.:/
and gi.:/ are the local estimation algorithm and the fusion rule to be designed at
sensor i, respectively. Since ti;k is generally not equal to tj;k for any i; j 2 Z0 and
i ¤ j, k D 0; 1; 2; : : :, the fusion rule gi.:/ should be able to fuse local estimates
generated at different time scales. Denote by Pi;i and Poi the local estimation error
covariance and the fused estimation error covariance of sensor i, respectively. Then,
the objective of this chapter is as follows.

Objective of the chapter: For system (3.1) and (3.3) with nonuniform estimation
rates, design an optimal local estimator fi.:/ and an optimal fusion rule gi.:/ with
matrix weights for each sensor such that the fused estimates Oxoi.ti;kjti;k/ are unbiased
optimal estimates of the system state xi.ti;k/, i.e., EfOxoi.ti;kjti;k/g D Efxi.ti;k/g, and
Poi.ti;kjti;k/ D minfP.ti;kjti;k/g, Poi.ti;kjti;k/ � Pi;i.ti;kjti;k/, where P.ti;kjti;k/ denotes
the estimation error covariance of an arbitrary fusion estimator with matrix weights,
i 2 Z0.

3.3 Modeling of the Estimation System

It can be seen from (3.1) and (3.3) that the system state in (3.1) evolves with a
constant period h, while the estimates Oxi are generated with a time-varying period
hi.ti;k/. Therefore, (3.1) and (3.3) are essentially a multi-rate estimation system
model which cannot be directly used for designing fusion estimators, and a single-
rate estimation system model is necessary and will be established in this section. By
applying the state equation (3.1) recursively, one obtains a new state equation with
time scale ti;k as follows:

xi.ti;kC1/ D Ai.ti;k/xi.ti;k/C !i.ti;k/; i 2 Z0 (3.4)
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where Ai.ti;k/ D Aai.ti;k/, ai.ti;k/ 2 fai1; ai2g, and

!i.ti;k/ D
ai.ti;k/�1X

jD0
Aai.ti;k/�j�1B!.ti;k C jh/

From the expression of !i.ti;k/, it can be seen that !i.ti;k/ is zero mean. Besides,
since ti;k C jh < ti;k C ai.ti;k/h D ti;kC1, 8 j D 0; 1; : : : ; ai.ti;k/ � 1, one has
Ef!i.ti;k/!T

i .ti;l/g D 0, 8 l ¤ k. Moreover, let Q!i.ti;k/ D Var.!i.ti;k//, one has

Q!i.ti;k/ D
ai.ti;k/�1X

jD0
Aai.ti;k/�j�1BQ!BT

�
Aai.ti;k/�j�1�T

Thus, !i.ti;k/ is a zero-mean white noise with a time-varying variance.
It is assumed that the sensors do not know a priori the exact values of the

estimation rate, but instead, the sensors only know that hi.ti;k/ switches between
ai1h and ai2h randomly with known probabilities. Specifically, it is assumed that
hi.ti;k/ takes ai1h and ai2h according to a white binary-valued Bernoulli sequence
�i.ti;k/ 2 f0; 1g, and hi.ti;k/ takes ai1h if �i.ti;k/ D 1 and takes value ai2h if
�i.ti;k/ D 0, i.e.,

Probfhi.ti;k/ D ai1hg D Probf�i.ti;k/ D 1g
Probfhi.ti;k/ D ai2hg D Probf�i.ti;k/ D 0g (3.5)

Then, ai.ti;k/ and Ai.ti;k/ can be written as

ai.ti;k/ D �i.ti;k/ai1 C .1 � �i.ti;k//ai2 (3.6)

Ai.ti;k/ D �i.ti;k/Ai1 C .1 � �i.ti;k//Ai2 (3.7)

where Ail D Aail , l D 1; 2. By (3.6), !i.ti;k/ can be rewritten as

!i.ti;k/ D �i.ti;k/
ai1�1X

jD0
Aai1�j�1B!.ti;k C jh/

C .1 � �i.ti;k//
ai2�1X

jD0
Aai2�j�1B!.ti;k C jh/; i 2 Z0 (3.8)

Suppose that hi.ti;k/ takes value ai1h with probability N�i, then it follows from the
distribution of �i.ti;k/ that Ef�i.ti;k/g D N�i and

8
<

:

E
˚
�i.ti;k/2

� D N�i; E
˚
.1 � �i.ti;k//2

� D 1 � N�i

Ef�i.ti;k/.1 � �i.ti;k//g D 0

Cov.�i.ti;k// D Cov.1 � �i.ti;k// D N�i.1 � N�i/

(3.9)
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For notational convenience, in what follows we will denote

�i1.ti;k/ D �i.ti;k/; �i2.ti;k/ D 1 � �i.ti;k/

N�i1 D N�i; N�i2 D 1 � N�i; i 2 Z0 (3.10)

Then, by (3.8) and (3.9), the variance of the noise !i.ti;k/ is

Q!i D
2X

lD1
N�il

ail�1X

jD0
Aail�j�1BQ!BT �Aail�j�1�T

(3.11)

The probabilities N�i, i 2 Z0 are parameters that are assigned a priori according
to facts such as power situations of the sensors and requirements of estimation
performance. For example, for the sensor with full power, one may set a relatively
large probability of working at the fast estimation rate. In this way, one is able to
make a trade-off between estimation performance and energy consumptions of the
sensors.

In what follows, two types of fusion estimators will be designed based on the
system model (3.3), (3.4), (3.7), and (3.8). The following assumptions are needed in
the derivation of the main results.

Assumption 3.1 8 i 2 Z0, the initial states xi.ti;0/ D x.T0/ are uncorrelated to
!.Tk/ and �i.Tk/, and Efx.T0/g D x0, Var.x.T0/� x0/ D P0, !.Tk/ is uncorrelated
to �i.Tk/.

Assumption 3.2 8 i 2 Z0, �i.ti;k/ are mutually independent and are independent of
xi.ti;0/, !.Tk/ and �i.Tk/.

3.4 Design of the Fusion Estimators (Type I)

3.4.1 Design of Local Estimators

Lemma 3.1 Denote by �i.ti;k/ the variance of the state in (3.4), i.e., �i.ti;k/ D
Var.xi.ti;k//, then �i.ti;k/ satisfies the following recursive equation

�i.ti;kC1/ D
2X

lD1
N�ilAil�i.ti;k/A

T
il C Q!i ; i 2 Z0 (3.12)

Proof Equation (3.12) can be followed by (3.4), (3.9) and the fact xi.ti;k/?!i.ti;k/.
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Lemma 3.2 Let NAi D EfAi.ti;k/g D
2P

lD1
N�ilAil and Xi.ti;k/ D

2P

lD1
.�il.ti;k/ �

N�il/Ailxi.ti;k/, then Q�i.ti;k/ D Var.Xi.ti;k// satisfies

Q�i.ti;k/ D
2X

lD1
N�ilAil�i.ti;k/A

T
il � NAi�i.ti;k/ NAT

i (3.13)

Proof Equation (3.13) can be followed by (3.9) and some similar procedures as in
(2.15), (2.16), (2.17) and (2.18) in Chap. 2.

For sensor i, i 2 Z0, denote by Pi;i.ti;kjti;k/ and Pi;i.ti;kjti;k�1/ the filtering error
covariance matrix and the one-step prediction error covariance matrix, respectively.
Then, the optimal local estimator for sensor i is given in the following theorem.

Theorem 3.1 For sensor i with a nonuniform estimation rate hi.ti;k/ satisfying
(3.5), the local recursive optimal linear estimator is given by

Oxi.ti;kC1jti;k/ D NAi Oxi.ti;kjti;k/ (3.14)

Oxi.ti;kC1jti;kC1/ D Oxi.ti;kC1jti;k/C Ki.ti;kC1/"i.ti;kC1/ (3.15)

"i.ti;kC1/ D yi.ti;kC1/� Ci Oxi.ti;kC1jti;k/ (3.16)

Ki.ti;kC1/ D Pi;i.ti;kC1jti;k/CT
i ˝

�1
i .ti;kC1/ (3.17)

˝i.ti;kC1/ D CiPi;i.ti;kC1jti;k/CT
i C DiQ

�
i;iD

T
i (3.18)

Pi;i.ti;kC1jti;k/ D NAiPi;i.ti;kjti;k/ NAT
i C Q�i.ti;k/C Q!i (3.19)

Pi;i.ti;kC1jti;kC1/ D .I � Ki.ti;kC1/Ci/Pi;i.ti;kC1jti;k/
�.I � Ki.ti;kC1/Ci/

T

CKi.ti;kC1/DiQ
�
i;iD

T
i KT

i .ti;kC1/ (3.20)

where "i.ti;k/ D yi.ti;k/ � Oyi.ti;kjti;k�1/ is the innovation, ˝i.ti;k/ D Var."i.ti;k//,
Oxi.ti;0jti;0/ D x0, Pi;i.ti;0jti;0/ D P0.

Proof Theorem 3.1 can be followed by Lemmas 3.1 and 3.2 and some similar
approaches in Theorem 2.1.

3.4.2 Design of the Fusion Rule

At the fusion stage, each sensor collects available local estimates from itself and
the other sensors to generate fused estimates. Since the measurement noises are
mutually correlated, the estimation errors at the various sensors are also mutually
correlated, and one has to compute the cross-covariances of the estimation errors
in the fusion estimation. Moreover, since the local estimates from different sensors
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Fig. 3.2 Illustration for
asynchronous fusion
estimation

are generated at different time scales, the updating rates of the cross-covariances
are nonuniform and the number of local estimates for fusion at a particular sensor
is time varying. For any two sensors i and j, denote by tij

k , k D 0; 1; 2; : : : the time
instants when Oxi and Oxj are available for fusion. An example of fusion estimation with
two sensors is shown in Fig. 3.2 to illustrate the above statements and the notation
tij
k . In Fig. 3.2, sensor i generates local estimates with rate hi.ti;k/ 2 fh; 2hg, while

the local estimates are calculated in sensor j with rate hj.tj;k/ 2 fh; 3hg. Pi;j denotes
the cross-covariance of the estimation errors at sensors i and j. At instants ti;0, ti;5,
and ti;8, sensor i fuses local estimates from itself and sensor j to generate fused
estimates. At instants ti;1, ti;2, ti;3, ti;4, ti;6, and ti;7, local estimates from sensor j are
not available, and sensor i thus keeps its own local estimates as the fused ones. The
cross-covariance Pi;j is computed only at the instants tij

0 , tij
1 and tij

2 , where tij
0 D ti;0 D

tj;0, tij
1 D ti;5 D tj;2, and tij

2 D ti;8 D tj;4, and it can be seen that Pi;j is updated with a
nonuniform rate.

From the above analysis, an optimal fusion rule, which is able to treat the
variation of the number of local estimates, is needed in developing the asynchronous
fusion algorithm. Let Ni.ti;k/ denotes the index set of local estimates Oxl, l 2 Z0 that
are available for fusion at sensor i, and mi.ti;k/ denotes the number of elements in
Ni.ti;k/. It is clear that mi.ti;k/ � N and Ni.ti;k/ � Z0. Then, by Lemma 3.3 one has
the following theorem that determines the fused estimates and the corresponding
covariances of the estimation errors at sensor i, i 2 Z0.

Theorem 3.2 For the system (3.3) and (3.4) with nonuniform estimation rates, the
fusion estimator at sensor i, i 2 Z0 is given by

Oxoi.ti;kjti;k/ D
X

l2Ni.ti;k/

NAi;l.ti;k/Oxl.ti;kjti;k/ (3.21)

where the optimal matrix weights NAi;l.ti;k/, l 2 Ni.ti;k/ are computed by

col
˚ NAT

i;l.ti/
�

l2Ni.ti;k/
D � �1

i .ti;k/ei.ti;k/
�
eT

i .ti;k/�
�1

i .ti;k/ei.ti;k/
��1

(3.22)

�i.ti;k/ D ŒPl;j.ti;kjti;k/�, l; j 2 Ni.ti;k/ is an nmi.ti;k/ � nmi.ti;k/ symmetric positive-
definite matrix and ei.ti;k/ D ŒI; : : : ; I„ ƒ‚ …

mi.ti;k/

�T. The corresponding covariance matrix of
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the fusion estimation error is computed by Poi.ti;kjti;k/ D .eT
i .ti;k/�

�1
i .ti;k/ei.ti;k//�1,

and one has that Poi.ti;kjti;k/ � Pl;l.ti;kjti;k/, l 2 Ni.ti;k/, i.e., the fusion estimation
is more accurate than each local one. The local estimates Oxl.ti;kjti;k/ and the covari-
ance matrices Pl;l.ti;kjti;k/ are computed by the recursive equations in Theorem 3.1.

Proof Theorem 3.2 follows directly from Lemma 2.4.

Since the number of local estimates for fusion at sensor i is time varying, the
dimension of the matrix �i.ti;k/ is also time varying. If there is no local estimate
from the other sensors, then �i.ti;k/ reduces to Pi;i.ti;kjti;k/, and Oxoi.ti;kjti;k/ reduces
to Oxi.ti;kjti;k/, i.e., sensor i keeps its own estimate as the fused one.

If the measurement noises are uncorrelated, then Pl;j.ti;kjti;k/ D 0, l ¤ j, and
�i.ti;k/ and Poi.ti;kjti;k/ reduces to

�i.ti;k/ D diagfPl;l.ti;kjti;k/gl2Ni.ti;k/

Poi.ti;kjti;k/ D
0

@
X

l2Ni.ti;k/

Pl;l.ti;kjti;k/
1

A

�1

In this case, it is not necessary to calculate the cross-covariances of estimation
errors from different sensors, and each sensor just collects local estimates and
their corresponding error covariances from itself and the other sensors to generate
fused estimates. Otherwise, it can be seen from (3.22) that the computation of the
cross-covariances Pi;j is one of the key issues in applying the fusion estimators
in Theorem 3.2. In what follows, a procedure for the computation of the cross-
covariances will be presented.

Consider any two sensors i and j in the estimation system, i; j 2 Z0, i ¤ j. Let

ti;ik D fti;ljti;l D tij
k ; l D 0; 1; 2; : : : I k D 0; 1; 2; : : :g (3.23)

tj;jk D ftj;ljtj;l D tij
k ; l D 0; 1; 2; : : : I k D 0; 1; 2; : : :g (3.24)

Taking the situation in Fig. 3.2 for example, one has

ik W i0 D 0; i1 D 5; i2 D 8

jk W j0 D 0; j1 D 2; j2 D 4

Let ns.t
ij
k / denote the number of sampling periods over the interval Œtij

k ; t
ij
kC1� at

sensor s, where s D i; j. Considering the interval Œtij
0 ; t

ij
1 � in Fig. 3.2 for example,

one has ni.t
ij
0/ D 5 and nj.t

ij
0/ D 2, and

tij
1 � tij

0 D hi.ti;0/C hi.ti;1/C hi.ti;2/C hi.ti;3/C hi.ti;4/

tij
1 � tij

0 D hj.tj;0/C hj.tj;1/
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For l 2 Zi , f0; 1; : : : ; ni.t
ij
k /g and q 2 Zj , f0; 1; : : : ; nj.t

ij
k /g, let

�i;l

	
tij
k



D

lX

sD1
hi.ti;ikCs�1/ (3.25)

�j;q

	
tij
k



D

qX

sD1
hj.tj;jkCs�1/ (3.26)

where the summation in (3.25) equals zero if l < s and that in (3.26) equals
to zero if q < s. Denote by  i;l.t

ij
k /, l 2 f0; 1; : : : ; ni.t

ij
k / � 1g and  j;q.t

ij
k /,

q 2 f0; 1; : : : ; nj.t
ij
k / � 1g, respectively, the sampling intervals of sensors i and j

over the period Œtij
k ; t

ij
kC1�. Then, one has

 i;l

	
tij
k



D
h
tij
k C �i;l

	
tij
k



; tij

k C �i;lC1
	

tij
k


i
;

l 2 NZi ,
n
0; 1; : : : ; ni

	
tij
k



� 1

o
(3.27)

 j;q

	
tij
k



D
h
tij
k C �j;q

	
tij
k



; tij

k C �j;qC1
	

tij
k


i
;

q 2 NZj ,
n
0; 1; : : : ; nj

	
tij
k



� 1

o
(3.28)

If  i;l.t
ij
k /\  j;q.t

ij
k / ¤ �, then let

 i;l

	
tij
k



\  j;q

	
tij
k




D
h
tij
k C �i;l

	
tij
k



C ui;l

	
tij
k



h;

tij
k C �i;l

	
tij
k



C
	

ui;l

	
tij
k



C �l;q

	
tij
k




h
i

D
h
tij
k C �j;q

	
tij
k



C uj;q

	
tij
k



h;

tij
k C �j;q

	
tij
k



C
	

uj;q

	
tij
k



C �l;q

	
tij
k




h
i

(3.29)

where �l;q.t
ij
k /h is the overlap of the two time intervals  i;l.t

ij
k / and  j;q.t

ij
k /, while

tij
k C �i;l.t

ij
k /C ui;l.t

ij
k /h and tij

k C �j;q.t
ij
k /C uj;q.t

ij
k /h are the instants when the overlap

begins to happen at sensors i and j, respectively. Taking the interval Œtij
0 ; t

ij
1 � in Fig. 3.2

for example, it can be seen that

 i;2

	
tij
0



D
h
tij
0 C �i;2

	
tij
0



; tij
0 C �i;3

	
tij
0


i
D Œti;2; ti;3�

 j;1

	
tij
0



D
h
tij
0 C �j;1

	
tij
0



; tij
0 C �j;2

	
tij
0


i
D Œtj;1; tj;2�
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and

 i;2

	
tij
0



\  j;1

	
tij
0




D
h
tij
0 C �i;2

	
tij
0



C h; tij

0 C �i;2

	
tij
0



C 2h

i

D
h
tij
0 C �j;1

	
tij
0



; tij
0 C �j;1

	
tij
0



C h

i

and one has ui;2.t
ij
0/ D 1, uj;1.t

ij
0/ D 0, and �2;1.t

ij
0/ D 1.

A recursive equation for computing the cross-covariances Pi;j.t
ij
k jtij

k /, i; j 2 Z0,
i ¤ j is now presented in the following theorem.

Theorem 3.3 For the system (3.3) and (3.4) with nonuniform estimation rates, the
cross-covariance of local estimation errors at sensors i and j, i; j 2 Z0, i ¤ j satisfies
the following recursive equation

Pi;j

	
tij
kC1jtij

kC1



D
3X

lD1
�l (3.30)
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and the initial value of Pi;j.t
ij
kC1jtij

kC1/ is given by Pi;j.t
ij
0 jtij

0/ D Pi;i.t
ij
0 jtij

0/.

Proof Subtracting xi.ti;kC1/ from both sides of (3.14) and taking (3.4) into consid-
eration, one obtains

Qxi.ti;kC1jti;k/ D NAi Qxi.ti;kjti;k/C Xi.ti;k/C !i.ti;k/ (3.36)

Subtracting xi.ti;kC1/ from both sides of (3.15) and taking (3.16) and (3.3) into
account, one obtains

Qxi.ti;kC1jti;kC1/ D .I � Ki.ti;kC1/Ci/Qxi.ti;kC1jti;k/
� Ki.ti;kC1/Di�i.ti;kC1/ (3.37)

Substituting (3.36) into (3.37) yields
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C
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Applying (3.38) recursively, yields the following state equation of the estimation
error at the time scale tij
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where
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and we define that
bQ

jDa
f . j/ D I if b < a in (3.40), (3.41), (3.42) and (3.43).

For i; j 2 Z0 and i ¤ j, define the cross-covariance of estimation errors in sensors
i and j as Pi;j.t
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k /, one has by (3.39), (3.40), (3.41), (3.42) and (3.43) that
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By following some routine computations, one has
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For all l D 1; 2 and s D 1; 2, one has by Assumption 3.2 that
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It follows from (3.46) that
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k / D �, then since !.ti;k/ is a white noise, one has by (3.8) that
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Thus, one obtains (3.33). It follows from (3.42) and (3.48) that
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Then, (3.30) follows from (3.44), (3.45), (3.47), (3.50), and (3.51). The proof is thus
completed.

Based on Theorems 3.1, 3.2 and 3.3, the track-to-track fusion estimation
algorithm with two rates in sensor i, i 2 Z0 is given as follows.

Algorithm 3.1

Step 1: Sensor i generates its local estimates Oxi by applying the recursive equa-
tions in Theorem 3.1.

Step 2: Sensor i collects available local estimates, error covariances and estimator
gain matrices from itself and the other sensors.

Step 3: If there is no local estimates from the other sensors, then sensor i keeps
its own local estimate as the fused one. Otherwise, it determines the parameters
ui;l, uj;q and �l;q, i; j 2 Z0, i ¤ j, l 2 NZi, q 2 NZj according to the time stamps in
the local estimates and then generates fused estimates according to the recursive
equations and the fusion rule in Theorems 3.2 and 3.3.

If the estimation rate hi.ti;k/, i 2 Z0 are known exactly by the sensors a priori at
every estimation instant, then standard Kalman estimators can be designed for each
local estimation system, and the corresponding fusion algorithm can be designed by
following the similar lines as presented in this section.

3.5 Design of the Fusion Estimators (Type II)

In the type I fusion estimator, it can be seen from Algorithm 3.1 that one has to
determine the parameters ui;l, uj;q, and �l;q in computing the cross-covariances.
This section will present another design method for the fusion estimators, and
the parameter determination procedures as in the type I fusion estimators will be
removed.
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3.5.1 Estimator Design

We will first present a new model for each local estimation system. It follows from
(3.7) and �i1.ti;k/C �i2.ti;k/ D 1 that

Ai.ti;k/ D �i1.ti;k/Ai1 C .1 � �i1.ti;k//Ai2

D Ai2 C �i1.ti;k/.Ai1 � Ai2/ (3.52)

Substituting (3.52) into (3.4) leads to

xi.ti;kC1/ D Ai2xi.ti;k/C Q!i.ti;k/; i 2 Z0 (3.53)

where

Q!i.ti;k/ D �i1.ti;k/.Ai1 � Ai2/xi.ti;k/C !i.ti;k/ (3.54)

By (3.9), Assumption 3.2 and the fact xi.ti;k/?!i.ti;k/, one has

Var. Q!i.ti;k// D Bi.ti;k/B
T
i .ti;k/ (3.55)

where

Bi.ti;k/ D Œ#i.ti;k/ �1 �2�

#i.ti;k/ D N�1=2i1 .Ai1 � Ai2/�
1=2
i .ti;k/

�l D
h N�1=2il Aail�1BQ1=2

! : : : N�1=2il ABQ1=2
!

N�1=2il BQ1=2
!

i
; l D 1; 2

Moreover, one has by Assumptions 3.1 and 3.2 that Q!i.ti;k/ is a zero-mean white
random process. Therefore, random processes Q!i.ti;k/ and Bi.ti;k/
.ti;k/ have the
same (first- and second-order) statistics, where 
.ti;k/ is a zero-mean unit-variance
white random process that is uncorrelated to �i.ti;k/, i 2 Z0. Thus, the system model
in (3.4) can be rewritten as

xi.ti;kC1/ D Ai2xi.ti;k/C Bi.ti;k/
.ti;k/; i 2 Z0 (3.56)

It can be seen from (3.56) that each local estimation system is described as a
linear time-varying stochastic system. Then, a standard Kalman estimator can be
designed to estimate the state xi.ti;k/ based on the system model (3.56), and the
estimator is given in the following lemma.
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Lemma 3.3 For sensor i with a nonuniform estimation rate hi.ti;k/ satisfying (3.5),
the local recursive Kalman estimator for system (3.56) is given by

Oxi.ti;kC1jti;kC1/ D .I � Ki.ti;kC1/Ci/Ai2Oxi.ti;kjti;k/
CKi.ti;kC1/yi.ti;kC1/ (3.57)

Ki.ti;kC1/ D Pi;i.ti;kC1jti;k/CT
i .CiPi;i.ti;kC1jti;k/CT

i

CDiQ
�
i;iD

T
i /

�1 (3.58)

Pi;i.ti;kC1jti;k/ D Ai2Pi;i.ti;kjti;k/AT
i2 C Bi.ti;k/B

T
i .ti;k/ (3.59)

Pi;i.ti;kC1jti;kC1/ D .I � Ki.ti;kC1/Ci/

�Pi;i.ti;kC1jti;k/.I � Ki.ti;kC1/Ci/
T

CKi.ti;kC1/DiQ
�
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T
i KT

i .ti;kC1/ (3.60)

where Oxi.ti;0jti;0/ D x0, Pi;i.ti;0jti;0/ D P0, and the state variance�i.ti;k/ in Bi.ti;k/ is
computed by the recursive equation in (3.12).

When the local estimates computed by the recursive equations in Lemma 3.3
are available, each sensor then collects local estimates, error covariances, and
Kalman gain matrices from itself and the other sensors to generate fused estimates
according to the fusion rule given in Theorem 3.2. Similar to the design of the type
I fusion estimator, one has to calculate the estimation error cross-covariances in the
second-stage fusion estimation, and a recursive equation for computing the cross-
covariances Pi;j.t

ij
k jtij

k / for the type II fusion estimators is presented in the following
theorem.

Theorem 3.4 For the system (3.3) and (3.56) with nonuniform estimation rates, the
cross-covariance of local estimation errors at sensors i and j, i; j 2 Z0, i ¤ j satisfies
the following recursive equation
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and the state variance �i.t
ij
k / in Bi.t

ij
k / is computed by the recursive equation in

(3.12); the initial value of Pi;j.t
ij
kC1jtij

kC1/ is given by Pi;j.t
ij
0 jtij

0/ D Pi;i.t
ij
0 jtij

0/.

Proof It follows from (3.56), (3.57) and (3.3) that

Qxi.ti;kC1jti;kC1/ D .I � Ki.ti;kC1/Ci/Ai2 Qxi.ti;kjti;k/
C.I � Ki.ti;kC1/Ci/Bi.ti;k/
.ti;k/

�Ki.ti;kC1/Di�i.ti;kC1/ (3.65)

Applying (3.65) recursively, yields the following state equation of the estimation
error at the time scale tij

k

Qxi

	
tij
kC1jtij

kC1



D �i1

	
tij
k



C �i2

	
tij
k



� �i3

	
tij
k



(3.66)
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and we define that
bQ

jDa
f . j/ D I if b < a in (3.67), (3.68) and (3.69). Since
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Direct computation yields

E
n
�i1

	
tij
k



�T

j1

	
tij
k


o
D �1 (3.71)

Let

� 

l;q

	
tij
k



D E

n


	

tij
k C �i;l

	
tij
k





T
	

tij
k C �j;q

	
tij
k



o
; l 2 NZi; q 2 NZj (3.72)

Then, direct computation gives
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Note that
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Then, since 
 is a white noise, one has by (3.72) and (3.74) that
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Substituting (3.75) into (3.73) leads to
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By following some similar derivations for (3.51), one obtains
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Then, (3.61) follows from (3.70), (3.71), (3.76), and (3.77). The proof is thus
completed.

By lifting the stochastic parts in the system matrix Ai.ti;k/ into the noise, we
obtain a reformulated system model with a constant system matrix and a unit-
variance noise as shown in (3.56), and this reformulated system model helps derive
the type II estimator with a simpler structure as compared with the type I estimator.
It can be seen from Theorem 3.4 that in designing the type II estimators, it is
not necessary to know the parameters ui;l, uj;q and �l;q as required in the type I
estimators. However, the disadvantage of the type II estimator is that the matrix
Bi.ti;k/, i 2 Z0 is an augmented one, which increases computation costs.

In the state equation (3.56), Ai2 is a constant matrix, while Bi.ti;k/ is a time-
varying one depending on the state variance �i.ti;k/, and Bi.ti;k/ converges to a
constant value if �i.ti;k/ is convergent. Then, it is well known from the standard
Kalman filtering that the local estimators designed in Theorem 3.4 may converge to
steady-state estimators. The convergence analysis for the type II fusion estimators
will be presented in the next subsection.
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3.5.2 Convergence of the Estimator

We have the following lemma about the convergence of the state variance �i.ti;k/,
i 2 Z0.

Lemma 3.4 If there exists a matrix Qi > 0 and a scalar 0 < �i < 1 such that the
following inequality

˝i ,
2X

lD1
N�ilA

T
ilQiAil � �2i Qi < 0; i 2 Z0 (3.78)

holds, then the state variance �i.ti;k/ converges exponentially fast to a steady-state
value, and the steady-state value denoted by N�i is independent of the initial value
�i.ti;0/.

Proof Consider the following dynamic system

Lxi.ti;kC1/ D Ai.ti;k/Lxi.ti;k/; i 2 Z0 (3.79)

Let L�i.ti;k/ D Var.Lxi.ti;k//, then by (3.9), L�i.ti;k/ satisfies the following recursive
equation

L�i.ti;kC1/ D
2X

lD1
N�ilAil L�i.ti;k/A

T
il (3.80)

Choose the following Lyapunov function for system (3.79)

Vi.ti;k/ D LxT
i .ti;k/Qi Lxi.ti;k/ (3.81)

Then, one has by (3.9), (3.78), (3.79), and (3.81) that

EfVi.ti;kC1/jLxi.ti;k/g � �2i Vi.ti;k/ D LxT
i .ti;k/˝iLxi.ti;k/ < 0 (3.82)

Applying (3.82) recursively, yields

EfVi.ti;k/jLxi.ti;0/g < �2.ti;k�ti;0/
i Vi.ti;0/ (3.83)

Thus, if the inequality (3.78) holds, then it can be seen from (3.83) that the Lyapunov
function Vi.ti;k/ converges to zero exponentially fast. Moreover, it follows from
(3.83) that

�min.Qi/EfkLxi.ti;k/k2jLxi.ti;0/g
� EfVi.ti;k/jLxi.ti;0/g
< �

2.ti;k�ti;0/
i �max.Qi/kLxi.ti;0/k2 (3.84)
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which leads to

EfkLxi.ti;k/k2jLxi.ti;0/g < ��2.ti;k�ti;0/
i kLxi.ti;0/k2

where � D �max.Qi/=�min.Qi/. The above inequality implies that the system (3.79)
is mean square exponentially stable. Thus, the inequality (3.78) guarantees that
the state variance L�i.ti;k/ converges exponentially fast to zero. Furthermore, by
following some similar derivation procedures as in Proposition A.3 in [19], one has
that the convergence of L�i.ti;k/ guarantees the convergence of �i.ti;k/, and the limit
of �i.ti;k/ is independent of the initial value�i.ti;0/. The proof is thus completed.

Since Bi.ti;k/ depends on �i.ti;k/, the convergence of �i.ti;k/ implies the conver-
gence of Bi.ti;k/. Denoted by NBi the steady-state value of Bi.ti;k/, then NBi is given by

NBi D � N#i �1 �2
�

(3.85)

where N#i D N�1=2i1 .Ai1 � Ai2/ N�1=2
i . Since �i.ti;k/ converges exponentially fast to its

steady-state value, Bi.ti;k/ also converges exponentially fast to NBi, i.e., there exist a
constant T� such that Bi.ti;k/ D NBi when ti;k > T�. Then, it is well known from the
standard Kalman filtering that the recursive estimators designed by Lemma 3.3 may
converge to steady-state Kalman estimators, and the Kalman gain matrices Ki.ti;k/
and the estimation error covariances Pi;i.ti;k/ may converge to steady-state values.
Moreover, since Theorem 3.2 indicates that the fused estimation error covariance
is always smaller or equal to each of the local estimation error covariances, the
convergence of local estimation error covariances implies that the fused estimation
error covariance is bounded. Then, the convergence of the type II fusion estimators
is presented in the following theorem.

Theorem 3.5 For the estimation system in sensor i with a estimation rate hi.ti;k/
satisfying (3.5), if

(1) there exists a matrix Qi > 0 and a scalar 0 < �i < 1 such that the following
linear matrix inequality

���2i Qi �1i

�T
1i ��2i

�
< 0; i 2 Z0 (3.86)

holds, where �1i D Œ N�1=2i1 AT
i1Qi

N�1=2i2 AT
i2Qi� and �2i D diagfQi;Qig.

(2) .Ai2;Ci/ is observable and .Ai2; NBi/ is controllable, i 2 Z0.

then, the local Kalman estimator given in Theorem 3.4 converges to a steady-state
linear time-invariant estimator, i.e.,

lim
k!1 Ki.ti;k/ D K�

i ; lim
k!1 Pi;i.ti;kjti;k/ D P�

i;i

and the fused estimation error covariance Poi.ti;kjti;k/ is bounded.
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Proof By Schur complement lemma, the inequality (3.86) is equivalent to ˝i < 0;
thus, one has by Lemma 3.3 that the condition (1) guarantees that Bi.ti;k/ converges
exponentially fast to NBi. Moreover, the condition (2) is well known for the existence
of a steady-state estimator. More details about the condition (2) can be found in
the literature, such as [20]. On the other hand, it follows from Theorem 3.2 that
Poi.ti;kjti;k/ � Pl;l.ti;kjti;k/, l 2 Ni.ti;k/. Therefore, the convergence of Pi;i.ti;kjti;k/,
i 2 Z0 implies that Poi.ti;kjti;k/ is bounded. The proof is thus completed.

Remark 3.1 In the design of the type II fusion estimators, after the local estimators
converge, one may apply the steady-state ones for the remaining time, and then it is
not necessary for each sensor to calculate the estimator gain and transmit the gain
and the estimation error covariance to the other sensors for fusion. In this way, one
may expect to save both computation and communication costs by using the steady-
state type II estimators. However, it should be noted that additional conditions as
given in (3.86) may require to be satisfied to guarantee the convergence of the type
II estimators, which restricts applications of the steady-state estimators.

Remark 3.2 By the results in Theorems 3.3 and 3.4, the fusion estimators of both
type I and type II are able to calculate the estimation error cross-covariances with a
nonuniform rate, and thus the fusion algorithms are adaptive to the variation of the
number of local estimates for fusion, that is, each sensor just picks up the available
local estimates to generate fused ones and keeps its own estimate as the fused one
if there is no local estimate from the other sensors. Therefore, the proposed fusion
algorithms are easy for implementation and are also applicable to situations where
the sensors are not time synchronized. Moreover, by simply setting Pi;j D 0, i ¤ j in
Theorem 3.2, the estimators are also applicable to the case where the measurement
noises are uncorrelated.

Remark 3.3 For the general case where each estimator works at multiple rates, the
estimator design method can be similarly obtained by Theorems 3.1, 3.2, 3.3, 3.4
and 3.5 and Lemma 3.3.

3.6 Simulations

In this section, simulations of two examples are presented to demonstrate the
effectiveness of the proposed design method.

Example 3.1 Consider a maneuvering target tracking system where the target’s
position and velocity evolve according to the following state-space model [21]

�
xp.TkC1/
xv.TkC1/

�
D
�
1 h
0 1

� �
xp.Tk/

xv.Tk/

�
C p

10

�
h2=2

h

�
!.Tk/ (3.87)

where xp.Tk/ and xv.Tk/ are the position and velocity of the target at time Tk,
respectively, h is the sampling period, and !.Tk/ is a zero-mean white noise with
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variance Q! . Let x.Tk/ D Œxp.Tk/ xv.Tk/�
T, then we take h D 0:5 s, Q! D 1 and

x.T0/ D x.0/ D Œ1 0:5�T in the simulation.

The target is monitored by three sensors, and suppose that only the position
of the target is measurable. There is no fusion center in the estimation system,
and each sensor acts also as an estimator. Each sensor measures the position of
the maneuvering target and generates local estimates of the position and velocity
by using the measurements from itself and then collects available local estimates
from itself and the other sensors to generate fused estimates of the position and
velocity of the target according to the designed fusion algorithms. Each sensor i,
i 2 f1; 2; 3g generates estimates with a nonuniform rate hi.ti;k/ D ti;kC1 � ti;k, where
ti;k, k D 0; 1; 2; : : : are instants when the measurements are collected and estimates
are generated. Then, the measurement equations of the three sensors at time scale
ti;k are given by (3.3) with

C1 D Œ0:8 0�; C2 D Œ0:7 0�; C3 D Œ1 0�

D1 D 0:6; D2 D 0:7; D3 D 0:5

and the measurement noises are given by

�i.Tk/ D ci!0.Tk/C �0i.Tk/; i D 1; 2; 3 (3.88)

where !0.Tk/ is a zero-mean white noise with variance Q!0 , �0i.Tk/ are zero-
mean white noises with variances Q�0i , �0i.Tk/ are mutually uncorrelated and are
independent of !0.Tk/, and !0.Tk/ and �0i.Tk/ are uncorrelated with the process
noise !.Tk/. It is clear that the noises given by (3.88) are mutually correlated, and it
can be calculated that Q�

i;i D c2i Q!0 CQ�0i and Q�
i;j D cicjQ!0 , i ¤ j, i; j D 1; 2; 3. In

the simulation, we take ci D 0:5i, Q!0 D 1, Q�01 D 1:75, Q�02 D 0:5, and Q�03 D 0.
Each sensor generates estimates with two rates, a fast one and a slow one,

specifically, suppose that

h1.t1;k/ 2 fh; 2hg; h2.t2;k/ 2 f2h; 3hg; h3.t3;k/ 2 fh; 3hg (3.89)

Then, a11 D 1, a12 D 2, a21 D 2, a22 D 3, a31 D 1, a32 D 3. For i D 1; 2; 3,
assume that hi.ti;k/ takes ailh, l D 1; 2 according to a white binary-valued Bernoulli
sequence �i.ti;k/ 2 f0; 1g. Specifically, hi.ti;k/ takes ai1h if �i.ti;k/ D 1 and takes ai2h
if �i.ti;k/ D 0. Then, hi.ti;k/ takes ai1h with probability N�i D Ef�i.ti;k/g and takes
ai2h with probability 1 � N�i, i D 1; 2; 3. In the simulation, we take N�1 D N�2 D N�3 D
0:5.

In this example, we consider the type I fusion estimator. Suppose that the initial
local estimates are Oxi.ti;0jti;0/ D Oxi.0j0/ D x0 D Œ1:2 0:8�T. Then, by applying the
estimator design method in Theorems 3.1, 3.2 and 3.3, the true values and the fused
estimates of the target positions and velocities obtained at sensor 1 are depicted in
Fig. 3.3. It can be seen that the sensor is able to track the maneuvering target well
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Fig. 3.3 Target tracking results (obtained at sensor 1)
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Fig. 3.4 Local estimation error covariances in sensors 1–3 and the fused estimation error
covariance in sensor 1

with a nonuniform estimation rate. Figures 3.4, 3.5 and 3.6 shows the individual
estimation performance (assessed by the trace of estimation error covariance) of the
three sensors, where the curves with circle depict the fused estimation performance,
while the other curves show the local estimation performance. At the first stage, each
sensor generates local estimates with a nonuniform rate by using measurements
from itself. At the second stage, each sensor keeps its own local estimates as
the fused ones if there is no local estimates from the other sensors. Otherwise, it
just collects the available local estimates to generate fused ones according to the
fusion rule given in Theorem 3.2. It can be seen from Figs. 3.4, 3.5 and 3.6 that
the estimation performance in each sensor is improved by fusing local estimates,
showing the effectiveness of the designed estimators.

Example 3.2 Consider system (3.1) with

A D
�
0:3 0:4

0:2 0:3

�
; B D

�
1

0:5

�
(3.90)
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Fig. 3.5 Local estimation error covariances in sensors 1–3 and the fused estimation error
covariance in sensor 2
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Fig. 3.6 Local estimation error covariances in sensors 1–3 and the fused estimation error
covariance in sensor 3

and !.Tk/ is a zero-mean white noise with variance Q! . In the simulation, we take
the sampling period h D 0:5 s, the variance Q! D 1, and the initial state x.T0/ D
x.0/ D Œ0:9 0:6�T.

Similar to the setup in Example 3.1, the process in (3.90) is monitored by three
sensors. Each sensor generates estimates with a nonuniform rate hi.ti;k/, i D 1; 2; 3,
and it is assumed that hi.ti;k/ take values according to (3.89). Then, the measurement
equations of the three sensors at time scale ti;k are given by (3.3) with

C1 D Œ0:6 0�; C2 D Œ0:8 0�; C3 D Œ0:2 0�; D1 D 0:6; D2 D 0:7; D3 D 0:5

and the measurement noises are given by (3.88) with ci D 0:5i, Q!0 D 1, Q�01 D
1:5, Q�02 D 0:2, and Q�03 D 0. For i D 1; 2; 3, assume that hi.ti;k/ takes ailh,
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l D 1; 2 according to a white binary-valued Bernoulli sequence �i.ti;k/ 2 f0; 1g.
Let N�i D Ef�i.ti;k/g, then hi.ti;k/ takes ai1h with probability N�i and takes ai2h with
probability 1 � N�i. In the simulation, we take N�1 D N�2 D N�3 D 0:5.

In this example, we consider the type II fusion estimator. By using the LMI
control toolbox, it is found that the linear matrix inequalities in (3.86) are feasible
for 0:48 � �1 < 1, 0:28 � �2 < 1, and 0:50 � �3 < 1. Thus, �i.ti;k/, i D 1; 2; 3

are convergent, and the steady-state values of �i.ti;k/ are

N�1 D N�2 D N�3 D
�
1:3774 0:7650

0:7650 0:4362

�

Substituting N�i into NBi, it can be verified that .Ai2; NBi/, i D 1; 2; 3 are controllable.
On the other hand, it can be checked that .Ai2;Ci/, i D 1; 2; 3 are observable.
Therefore, one has by Theorem 3.5 that the three local Kalman estimators designed
by applying Lemma 3.3 are convergent, and the fusion estimation error covariances
obtained by applying Theorems 3.2 and 3.4 are bounded. Suppose that the initial
local estimates are Oxi.ti;0jti;0/ D Oxi.0j0/ D x0 D Œ0:8 0:8�T. Then, the simulations
are shown in Figs. 3.7, 3.8 and 3.9, where the black curves show the local estimation
performance and the red curves depict the fused estimation performance. It can
be seen that the local estimation error covariances in the three sensors converge.
Moreover, the three local estimator gains also converge to steady-state values after
three steps of iterations, and the steady-state estimator gains are

K�
1 D Œ0:6002 0:3236�T; K�

2 D Œ0:6133 0:3392�T; K�
3 D Œ0:8683 0:4783�T

Therefore, we implement the steady-state estimators from the fourth step to save
computation and communication costs. It can be seen from Figs. 3.7, 3.8 and 3.9
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Fig. 3.7 Local estimation error covariances in sensors 1–3 and the fused estimation error
covariance in sensor 1
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Fig. 3.8 Local estimation error covariances in sensors 1–3 and the fused estimation error
covariance in sensor 2
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Fig. 3.9 Local estimation error covariances in sensors 1–3 and the fused estimation error
covariance in sensor 3

that the estimators provides satisfactory performance. Moreover, the estimation
performance in each sensor is improved by fusing local estimates from the other
sensors, showing the effectiveness of the proposed fusion estimator.

3.7 Conclusions

A track-to-track fusion estimation algorithm has been presented in this chapter for
multisensor discrete-time stochastic systems with nonuniform estimation rates. A
fusion algorithm was designed for each sensor to fuse available local estimates
generated at different time scales, where the estimation rates at different sensors
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are allowed to be different from each other. The algorithm is applicable to both
cases where the sensor noises are mutually correlated and are uncorrelated and can
be further extended for fusion estimation where the sensors are not strictly time
synchronized. The proposed algorithm is useful for energy-efficient fusion in sensor
networks with power constraints, and the sensors may adjust their estimation rates
according to their power situations and make a satisfactory trade-off between energy
consumption and estimation performance.
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Chapter 4
H1 Fusion Estimation for WSNs
with Nonuniform Sampling Rates

4.1 Introduction

In Chap. 3, Kalman fusion filters are designed for sensor networks with nonuniform
estimation rates. Though the celebrated Kalman filtering is commonly regarded
as one of the most popular and useful approaches to filtering problem, it usually
assumes that the system model is precise and that the external noises are white
Gaussian. Such assumptions may not hold in many practical applications. In this
case, one may resort to other useful filtering algorithms. The H1 filtering is among
these useful algorithms, it provides a guaranteed noise attenuation level and does
not have to know exact statistical information of external noises.

In this chapter, an H1 fusion filter will be designed for sensor networks
with nonuniform sampling periods. Although there have been a lot of results on
sampled-data estimation (see, e.g., [1–7] and the references therein), few of them
are concerned with the nonuniform sampling except for [8–11]. In [8], finite-horizon
H1 filters were designed for continuous time-varying systems with nonuniform
sampling periods. In [9], Kalman filters were designed for a nonuniformly sampled
multi-rate system. In [10], an input-delay approach was used to design sampled-data
H1 filters with a time-varying sampling period which is assumed to take values
over a continuous interval. In many practical applications, the sampling period may
not necessarily take infinitely many values over a continuous interval but take only
a finite number of values. For example, in some target tracking systems, target
states are sampled with a small period to improve tracking performance when the
target is moving fast and are sampled with a large period to save power when the
target is moving slowly, and thus the sampling period takes only two values and
switches between them. In this scenario, the input-delay approach may no longer
be applicable. Recently, a stochastic sampling method was presented in [11] to
design sampled-data H1 filters with a time-varying sampling period taking only two
values according to a known probability distribution law. Note that the distributed
estimation is not considered in all the aforementioned results. Until very recently,
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the stochastic sampling method is used in [12] to study the distributed sampled-data
H1 filtering problem, and it was also assumed in [12] that the sampling period takes
only two values according to a known probability distribution law.

In this chapter, a continuous-time LTI system is considered, and the measure-
ments of the system are sampled by each sensor in the network with a time-varying
period taking a finite number of values. An innovation-like quantity is defined for
each filter based on the sampled measurement and the state of the filter. Then, at
each time step, each sensor in the network collects both innovation-like quantities
and filter states to generate estimates. Random packet losses, which are usually
unavoidable in sensor networks and may degrade estimation performance [13–16],
are further considered, and the filtering error system is described as a discrete-
time switched system with multiple stochastic parameters and a finite number
of subsystems. By using the average dwell time method for switched systems,
a sufficient condition is derived for the existence of the distributed sampled-data
H1 fusion filters. It is shown that the obtained condition depends on both the
values and variation rate of the sampling periods and the packet loss probabilities.
It is also shown that the design of the filters can be accomplished by solving a
convex optimization problem subject to linear matrix inequality constraints, and the
resulting filtering system is mean square exponentially stable, and all the filtering
errors in the sensor network satisfy an average H1 noise attenuation level.

4.2 Problem Statement

Consider a continuous-time LTI system described by the following state-space
model:

(
Px.t/ D Apx.t/C Bpwp.t/

z.t/ D Lpx.t/
(4.1)

where x.t/ 2 <nx is the system state, z.t/ 2 <nz is the signal to be estimated, and
wp.t/ is the disturbance input belonging to L2Œ0;C1/. A sensor network consisting
of m sensors is deployed to collect observations of system (4.1) according to the
following observation models:

(
y.l/.tk/ D Cp.l/x.tk/C Dp.l/vp.l/.tk/
l 2 Zy , f1; 2; : : : ;mg (4.2)

where y.l/.tk/ 2 <nyl is the observation collected by sensor l at discrete instants tk,
k D 0; 1; 2; : : :, and 0 D t0 < t1 < � � � < tk < � � � , vp.l/.tk/ 2 <nvl , l D 1; 2; : : : ;m
are measurement noises belonging to l2Œ0;C1/, Ap, Bp, Lp, Cp.l/ and Dp.l/ are
constant matrices with appropriate dimensions. At time instants tk, k D 0; 1; 2; : : :

each sensor collects measurements from its neighbors and gives an estimate of z.tk/.
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Define the measurement sampling period as hk , tkC1�tk, then hk is not necessarily
constant but may vary with k. Suppose that hk takes only a finite number of values.
Specifically, let hk D nkT0, where nk 2 fi1; i2; : : : ; ing, i1 < i2 < � � � < in, T0 is a
constant, and ij, j D 1; 2; : : : ; n are positive integers. Then, hk takes n values and

hk 2 NZ , fi1T0; : : : ; inT0g (4.3)

A switched system model of the discrete-time version of system (4.1), (4.2)
and (4.3) is first given as follows. Discretizing system (4.1) with period hk and
applying a zero-order hold, one obtains


x.tkC1/ D A.hk/x.tk/C B.hk/wp.tk/

z.tk/ D Lpx.tk/; k D 0; 1; 2; : : :
(4.4)

where

A.hk/ D eAphk ; B.hk/ D
Z hk

0

eAp�d�Bp

Denote

A0 D eApT0 ; B0 D
Z T0

0

eAp�d�Bp

then one has

A.hk/ D eApnkT0 D �
eApT0

�nk D Ank
0 (4.5)

B.hk/ D
Z nkT0

0

eAp�d�Bp

D
 

nk�1X

iD0

Z .iC1/T0

iT0

eAp�d�

!

Bp

D
 

nk�1X

iD0
eApiT0

Z T0

0

eAp�d�

!

Bp

D
nk�1X

iD0
Ai
0B0 (4.6)

It can be seen from (4.5) and (4.6) that A.hk/ and B.hk/ explicitly depend on nk

which is varying over different sampling intervals and takes n distinct values. Thus,
the discrete-time version of the aperiodic sampled-data system (4.1), (4.2) and (4.3)
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is essentially a switched system with a finite number of subsystems. Moreover,
define a piecewise constant switching signal �.t/ 2 Z� , f1; 2; : : : ; ng and let

A�.tk/ D A
i�.tk/
0 and B�.tk/ D Pi�.tk/

jD1 Aj�1
0 B0, then it follows from (4.5) and (4.6)

that the system (4.2), (4.3) and (4.4) can be rewritten as the following discrete-time
switched system:

s�.tk/ W
8
<

:

x.tkC1/ D A�.tk/x.tk/C B�.tk/wp.tk/
y.l/.tk/ D Cp.l/x.tk/C Dp.l/vp.l/.tk/
z.tk/ D Lpx.tk/; l 2 Zy; k D 0; 1; 2; : : :

(4.7)

Some modeling methods for sampled-data systems with nonuniform sampling
periods have been presented in the literature, such as the input-delay method [17]
and the uncertain system method [18, 19]. However, the aforementioned methods
are not applicable to model the considered filtering system since they assume
that the sampling period take infinitely many values over a continuous interval.
In this chapter, a switched system approach is proposed to model the sampled-data
filtering system with nonuniform sampling periods, and the filtering system is finally
described as a discrete-time switched system with a finite number of subsystems
as shown in (4.7). Each subsystem of (4.7) describes the sampled-data filtering
system (4.1), (4.2) and (4.3) with a constant sampling period taking a value in NZ.
Moreover, A�.tk/ and B�.tk/ depend critically on the sampling periods, which enables
us to establish relations between the sampling periods and filtering performance.

The sensor network deployed to monitor the plant is considered to be a
peer-to-peer network, there is no estimation center in the network, and every sensor
in the network acts also as an estimator. The measurements are transmitted among
the sensors in an ad hoc manner via unreliable wireless communication channels
and may be subject to random packet losses. We say that two sensors are connected
if they can communicate directly with each other, i.e., they can communicate with
each other within one hop. Notice that a sensor is always connected to itself. The
set of sensors connected to a certain sensor r is called the neighborhood of sensor
r and is denoted by Nr (notice that r 2 Nr). A structure of such a distributed
estimation system for sensor networks has been shown in Fig. 2.1. Denote by L.ij/,
i; j 2 Nr the link between sensor i and sensor j in a neighborhood. Then, the
random packet loss in the link L.ij/ is described by a binary-valued Bernoulli random
process ˛.ij/.tk/ 2 f0; 1g, where ˛.ij/.tk/ D 1 indicates that a packet transmitted
from sensor i successfully arrives at sensor j at instant tk, while ˛.ij/.tk/ D 0

implies that a packet is lost during the transmission from sensor i to sensor j.
�.ij/ , Ef˛.ij/.tk/g D Probf˛.ij/.tk/ D 1g is called the packet arriving probability

(PAP), while 1 � �.ij/ , 1 � Ef˛.ij/.tk/g D Probf˛.ij/.tk/ D 0g is called the packet
loss probability (PLP). Since a packet transmitted from sensor i to sensor j and
from sensor j to sensor i goes through the same link L.ij/, it is natural to see that
˛.ij/.tk/ D ˛.ji/.tk/ and �.ij/ D �.ji/. Besides, since the measurement y.l/.tk/ is always
available for sensor l itself, one has ˛.ii/.tk/ D 1 and �.ii/ D 1. It is assumed that
˛.rl/.tk/, l 2 Nr, r 2 Zy are mutually independent.
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At each time step, every sensor collects information from its neighbors and runs
an H1 filtering algorithm to generate an estimate of z.tk/. Consider the following
switching-mode-dependent linear filter for sensor r, r 2 Zy.

f.r/�.tk/ W

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

Ox.r/.tkC1/ D F.rr/�.tk/ Ox.r/.tk/
C G.rr/�.tk/".r/.tk/C u.r/.tk/

u.r/.tk/ D P

l2Nr=frg
F.rl/�.tk/ Oxo

.l/.tk/

C P

l2Nr=frg
G.rl/�.tk/"

o
.l/.tk/

Oz.r/.tk/ D L.r/�.tk/ Oxr.tk/

(4.8)

where Ox.r/.tk/ is the state of the filter f.r/�.tk/ and is also an estimate of the plant’s state
x.tk/, Oz.r/.tk/ is the estimate of z.tk/ in sensor r, Oxo

.l/.tk/ D ˛.rl/.tk/Ox.l/.tk/, "o
.l/.tk/ D

˛.rl/.tk/".l/.tk/, l 2 Nr=frg, ".l/.tk/ , y.l/.tk/ � Cp.l/ Ox.l/.tk/ is an innovation-like
quantity in sensor l, l 2 Nr, and Oxo

.l/.tk/ and "o
.l/.tk/ are, respectively, the filter state

and the innovation-like quantity received by sensor r from sensor l, l 2 Nr=frg,
F.rl/�.tk/, G.rl/�.tk/ and L.r/�.tk/, l 2 Nr, r 2 Zy are the switching-mode-dependent
filter gain matrices to be designed. At each time step, the sensor r collects both
the filter states and innovation-like quantities from its neighbors to generate the
estimate Oz.r/.tk/, and the quantity u.r/.tk/ represents the information received from
its neighbors.

It is implicitly assumed in (4.8) that all the sensors in the network are time
synchronized and have the same sampling period hk, 8 k D 0; 1; 2; : : :. Besides,
the zero input mechanism [14] is applied in (4.8), i.e., Oxo

.l/.tk/ and "o
.l/.tk/ are,

respectively, set to zero when Ox.l/.tk/ and ".l/.tk/ are lost during the transmissions.
A similar structure of the distributed filter in (4.8) has been used in [20] to
investigate distributed H1-consensus filtering for sensor networks, and the structure
is actually motivated by the standard Kalman filter which uses innovations and
filtered estimates at past time steps to generate filtered estimates at current time
step.

A filtering error system model is established as follows based on (4.7) and (4.8).
Substituting (4.2) into (4.8) and taking into account the facts ˛.rr/.tk/ D 1 and
�.rr/ D 1, one obtains

Ox.r/.tkC1/ D
X

l2Nr

˛.rl/.tk/.F.rl/�.tk/ � G.rl/�.tk/Cp.l//

�Ox.l/.tk/C
X

l2Nr

˛.rl/.tk/G.rl/�.tk/Cp.l/x.tk/

C
X

l2Nr

˛.rl/.tk/G.rl/�.tk/Dp.l/vp.l/.tk/ (4.9)
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For j 2 Zy, denote

Ox.tk/ D col
˚Ox.l/.tk/

�
l2Zy

v.tk/ D colfvp.l/.tk/gl2Zy

xm.tk/ D colfx.tk/gm

F.r/�.tk/ D colT
n
FT
.rl/�.tk/

o

l2Zy

G.r/�.tk/ D colT
n
GT
.rl/�.tk/

o

l2Zy

F�.tk/ D colfF.r/�.tk/gr2Zy

G�.tk/ D colfG.r/�.tk/gr2Zy (4.10)

C. j/ D diagfı. j � 1/Cp.1/; : : : ; ı. j � m/Cp.m/g
D. j/ D diagfı. j � 1/Dp.1/; : : : ; ı. j � m/Dp.m/g
˘. j/ D diagfı. j � 1/In; : : : ; ı. j � m/Ing
�. j/.tk/ D diagf˛.1j/.tk/In; : : : ; ˛.mj/.tk/Ing

where 8 l … Nr , F.rl/�.tk/ D 0 and G.rl/�.tk/ D 0, and ı 2 f0; 1g is the Kronecker
delta function. Then, one obtains from (4.9) and (4.10) that

Ox.tkC1/ D
mX

jD1
�.j/.tk/.F�.tk/˘.j/ � G�.tk/C.j//Ox.tk/

C
mX

jD1
�.j/.tk/G�.tk/C.j/xm.tk/

C
mX

jD1
�.j/.tk/G�.tk/D.j/v.tk/ (4.11)

Moreover, denote

Am�.tk/ D diagfA�.tk/gm

Bm�.tk/ D diagfB�.tk/gm

wmp.tk/ D colfwp.tk/gm

then one obtains from the state equation in (4.7) that

xm.tkC1/ D Am�.tk/xm.tk/C Bm�.tk/wmp.tk/ (4.12)
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Define the estimation errors as

e.r/.tk/ , z.tk/� Oz.r/.tk/; r 2 Zy

and denote

e.tk/ D colfe.r/.tk/gr2Zy

	.tk/ D �
xT

m.tk/ OxT.tk/
�T


.tk/ D �
wT

mp.tk/ v
T.tk/

�T

NLp D diagfLpgm

L�.tk/ D diagfL.r/�.tk/gr2Zy

Then, one obtains the following filtering error system from (4.7), (4.8), (4.11), and
(4.12).

=�.tk/ W
(
	.tkC1/ D QA�.tk/	.tk/C QB�.tk/
.tk/
e.tk/ D NC�.tk/	.tk/; k D 0; 1; 2; : : :

(4.13)

where

QA�.tk/ D
"

Am�.tk/ 0Pm
jD1 �.j/.tk/G�.tk/C.j/ �1

#

�1 D
mX

jD1
�.j/.tk/.F�.tk/˘.j/ � G�.tk/C.j//

QB�.tk/ D diag

8
<

:
Bm�.tk/;

mX

jD1
�.j/.tk/G�.tk/D.j/

9
=

;

NC�.tk/ D � NLp � L�.tk/
�

In the considered filtering system, each sensor collects both measurements and
estimates from its neighbors to generate its own estimates. Since the measurements
and estimates may be lost during the transmission, several stochastic variables used
to describe the random packet loss processes are incorporated into the proposed
filtering error system model (4.13), which adds new difficulties to the design of
the filters. In what follows, an average dwell time approach will be proposed
to design the distributed H1 filters. Suppose that the average activation rate of
the subsystem =i, i 2 Z� over the interval Œt0; tk/ is �i. Then, the subsystem =i

appears �i.tk/ D �ik times over the interval Œt0; tk/, and one has
Pn

iD1 �i D 1. Let
tk.1/ ; : : : ; tk.s/ , s � 1 denote the switching instants of �.t/ over the interval Œt0; tk/,
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where tk.j/ 2 ft1; : : : ; tk�1g, j D 1; 2; : : : ; s, and t0 < tk.1/ < � � � < tk.s/ < tk. Denote
t�
k.j/

, j 2 f1; 2; : : : ; sg the instant that is immediately before tk.j/ . Then, the following
useful definitions are first given before proceeding further.

Definition 4.1 ([21]) For k � 1, let N� .t0; tk/, denote the number of switchings of
the switching signal �.t/ over the interval Œt0; tk/. If N� .t0; tk/ � N0 C k=�a holds
for N0 � 0 and �a > 0, then �a is called the average dwell time and N0 the chatter
bound.

The idea of the average dwell time in Definition 4.1 is that there may exist
consecutive switchings separated by less than �a sampling periods, but the average
time interval between consecutive switchings is not less than �a sampling periods.
For simplicity, but without loss of generality, N0 is set to 0 in the subsequent
development, and one has in this case that �a � 1 since N� .t0; tk/ � k. The switching
signal �.tk/ is determined by the variation of the sampling periods. Specifically,
=�.tk/ switches from one subsystem to another when the sampling period hk varies
from one value to another. Thus, it can be seen from the definition of �a that the
parameter 1

�a
shows the variation rate of the sampling period, and this is one of the

main motivations of using the average dwell time method for the filtering analysis
and design, which will help establish relations between filtering performance and
the variation rate of the sampling period.

Definition 4.2 For any given initial conditions '.t0/ , .	.t0/; ˛.rl/.t0/; l 2 Nr;

r 2 Zy/, the system =�.tk/ with 
.tk/ D 0 is mean square exponentially stable if its
solutions satisfy

E
˚k	.tk/k2j'.t0/

� � c�kk	.t0/k2;8 k � 0

where c > 0 is a constant and � < 1 is the decay rate.

Definition 4.3 The filtering errors e.r/.tk/, r D 1; 2; : : : ;m are said to satisfy a
prescribed average H1 noise attenuation level � if, under zero initial condition, the
inequality

mX

rD1
ke.r/k2E2 � �2

mX

rD1
k#.r/k22

holds for all nonzero wp.tk/ 2 l2Œ0;C1/ and vp.r/.tk/ 2 l2Œ0;C1/, where

ke.r/kE2 D E

( 1X

kD0
ke.r/.tk/k2

) 1=2

#.r/.tk/ D
h
wT

p .tk/ v
T
p.r/.tk/

iT
; r 2 Zy
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The H1 filtering is concerned with the design of filters which ensure a bound
on the L2-induced gain from noises to filtering errors, and Definition 4.3 gives
a definition on the filtering performance of the H1 filter to be designed in the
following sections.

The distributed sampled-data H1 fusion filtering problem addressed in this paper
is expressed as follows: Consider the distributed sampled-data filtering problem, and
given a system in (4.1), (4.2) and (4.3), determine the filter gain matrices F.rl/�.tk/,
G.rl/�.tk/, and L.r/�.tk/, l 2 Nr, r 2 Zy of the filter in (4.8) such that the filtering
error system (4.13) with nonuniform sampling periods is mean square exponentially
stable satisfies a prescribed average H1 noise attenuation level for all admissible
random packet losses.

4.3 H1 Performance Analysis

Let

�.j/ , Ef�.j/.tk/g D diagf�.1j/In; : : : ; �.mj/Ing; j 2 Zy

NA�.tk/ , E
˚ QA�.tk/

� D
"

Am�.tk/ 0Pm
jD1 �.j/G�.tk/C.j/ �2

#

�2 D
mX

jD1
�.j/.F�.tk/˘.j/ � G�.tk/C.j//

NB�.tk/ , E
˚ QB�.tk/

� D diag

8
<

:
Bm�.tk/;

mX

jD1
�.j/G�.tk/D.j/

9
=

;

Then, the following theorem gives a sufficient condition for the filtering error system
=�.tk/ to be mean square exponentially stable and all the filtering errors satisfying a
prescribed average H1 noise attenuation level.

Theorem 4.1 Consider the filtering error system (4.13). For given positive scalars
� , � > 1, �i < 1, and � < 1, if there exist matrices Pi > 0, i D 1; 2; : : : ; n such
that �a > �

�
a , ln�= ln��1, � > N�, and the following matrix inequalities

(
˝i , T

i
NPii C diag

˚ NCT
i

NCi � �iPi;��2I
�
< 0

Pi � �Ps;8 i; s 2 Z�
(4.14)

hold, then the filtering error system (4.13) is mean square exponentially stable with
decay rate " D �1=�a N� and all the filtering errors satisfy an average H1 noise
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attenuation level N� D �
q

1��
1�N�=� , where N� D max

i2Z�
�i, � D min

i2Z�
�i, and

T
i D

" NAT
i

N�c.1/AT
.1/i � � � N�c.m/AT

.m/iNBT
i

N�c.1/BT
.1/i � � � N�c.m/BT

.m/i

#

A.j/i D
�

0 0
GiC.j/ Fi˘.j/ � GiC.j/

�

B.j/i D diag
˚
0;GiD.j/

�

NPi D diagfPigmC1; N�c.j/ D diagf0; �c.j/g

�c.j/ D diag

q
�.1j/.1 � �.1j//In; : : : ;

q
�.mj/.1 � �.mj//In

�
; j 2 Zy

Proof Denote N�.j/.tk/ D diagf0;�.j/.tk/g and N�.j/ D diagf0;�.j/g, 8 j 2 Zy, then
the filtering error system in (4.13) can be rewritten as

8
ˆ̂
<̂

ˆ̂
:̂

	.tkC1/ D NA�.tk/	.tk/C NB�.tk/
.tk/
CPm

jD1
� N�.j/.tk/� N�.j/

�
A.j/�.tk/	.tk/

CPm
jD1

� N�.j/.tk/� N�.j/
�

B.j/�.tk/
.tk/
e.tk/ D NC�.tk/	.tk/; k D 0; 1; 2; : : :

(4.15)

Since ˛.rl/.tk/, l 2 Nr, r 2 Zy are mutually independent, one has

E
˚� N�.j/.tk/� N�.j/

� � N�.i/.tk/ � N�.i/
�� D

 N�c.j/; i D j
0; i ¤ j

(4.16)

Let

� .tk/ , ke.tk/k2 � �2k
.tk/k2;
'.tk/ , .	.tk/; ˛.rl/.tk/; l 2 Nr; r 2 Zy/; 8 k D 0; 1; 2; : : :

and choose the Lyapunov function V�.tk/.tk/ D 	T.tk/P�.tk/	.tk/ for system (4.15).
Then, 8 i 2 Z� , one has by (4.14), (4.15) and (4.16) and the fact Ef. N�.j/.tk/ �
N�.j//g D 0 that

EfVi.tkC1/j'.tk/g
D E

˚
	T.tkC1/Pi	.tkC1/j'.tk/

�� �i	
T.tk/Pi	.tk/

C� .tk/C �iVi.tk/ � � .tk/
D �T.tk/˝i�.tk/C �iVi.tk/ � � .tk/
< �iVi.tk/ � � .tk/ (4.17)
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where �.tk/ D Œ	T.tk/ 
T.tk/�T. Setting tk D tk.s/ and tk D tk.s/C1 in the inequality in
(4.17), one obtains, respectively,

E


V
�
	

tk.s/

.tk.s/C1/j'.tk.s/ /

�

< �
�
	

t
k.s/


V
�
	

t
k.s/


.tk.s/ /� � .tk.s/ / (4.18)

E


V
�
	

tk.s/

.tk.s/C2/j'.tk.s/C1/

�

< �
�
	

t
k.s/


V
�
	

t
k.s/


.tk.s/C1/ � � .tk.s/C1/ (4.19)

Taking expectation Ef�j'.tk.s//g on both sides of the inequality in (4.19) and taking
into account (4.18) yield

E


V
�
	

t
k.s/


.tk.s/C2/j'.tk.s/ /
�
< �2

�
	

tk.s/

V

�
	

t
k.s/


.tk.s/ /

��
�
	

tk.s/

� .tk.s/ /� Ef� .tk.s/C1/j'.tk.s/ /g (4.20)

Applying the procedures in (4.18), (4.19) and (4.20) recursively for t D tk.s/ ;
tk.s/C1; : : : ; tk, one obtains

EfV�.tk/.tk/j'.tk.s/ /g

D E


V
�
	

tk.s/

.tk/j'.tk.s/ /

�

< �k�k.s/

�
	

t
k.s/


V
�
	

tk.s/

.tk.s/ /

�
k�1X

jDk.s/

�
k�1�j

�
	

tk.s/

Ef� .tj/j'.tk.s/ /g (4.21)

Similarly, one has for a D 1; 2; : : : ; s that

E


V
�
	

t�
k.a/


.tk.a/ /j'.tk.a�1/ /

�

D E


V
�
	

t
k.a�1/


.tk.a/ /j'.tk.a�1//

�

< �k.a/�k.a�1/

�
	

tk.a�1/


 V
�
	

tk.a�1/


.tk.a�1/ /

�
k.a/�1X

jDk.a�1/

�
k.a/�1�j

�
	

t
k.a�1/


Ef� .tj/j'.tk.a�1/ /g (4.22)
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where tk0 D t0. It follows from the inequality Pi � �Ps that

V
�
	

t
k.a/


.tk.a/ / � �V
�
	

t�
k.a/


.tk.a/ /; a D 1; 2; : : : ; s (4.23)

Thus, one has by (4.21) and (4.23) that

E
˚
V�.tk/.tk/j'.tk.s/ /

�
< ��k�k.s/

�
	

t
k.s/


V
�
	

t�
k.s/


.tk.s/ /

�
k�1X

jDk.s/

�
k�1�j

�
	

t
k.s/


Ef� .tj/j'.tk.s/ /g (4.24)

Taking expectation Ef�j'.tk.s�1/ /g on both sides of the inequality in (4.24) and
considering (4.22) yield

EfV�.tk/.tk/j'.tk.s�1/ /g
< ��k�k.s/

�
	

t
k.s/


�k.s/�k.s�1/

�
	

t
k.s�1/


 V
�
	

t
k.s�1/


.tk.s�1/ /

�
k�1X

jDk.s/

�
k�1�j

�
	

t
k.s/


Ef� .tj/j'.tk.s�1/ /g

���k�k.s/

�
	

t
k.s/




k.s/�1X

jDk.s�1/

�
k.s/�1�j

�
	

t
k.s�1/


Ef� .tj/j'.tk.s�1/ /g (4.25)

Applying (4.25) recursively, one obtains

EfV�.tk/.tk/j'.t0/g < �N� .t0;tk/�k�k.s/

�
	

t
k.s/




��k.s/�k.s�1/

�
	

tk.s�1/

 � � ��k.1/

�.t0/
V�.t0/.t0/ � �.� / (4.26)

where

�.� / D �N� .t0;tk�1/�k�k.s/

�
	

t
k.s/




s�1Y

jD1
�k.jC1/�k.j/

�
	

t
k.j/




�
k.1/�1X

jD0
�

k.1/�1�j
�.t0/

Ef� .tj/j'.t0/C �N� .t0;tk�1/�1
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��k�k.s/

�
	

tk.s/



s�1Y

jD2
�k.jC1/�k.j/

�
	

tk.j/



k.2/�1X

jDk.1/

�
k.2/�1�j

�
	

t
k.1/




�Ef� .tj/j'.t0/g C � � � C �0
k�1X

jDk.s/

�
k�1�j

�
	

t
k.s/


Ef� .tj/j'.t0/g

Now, we consider the exponential stability of the filtering error system (4.13) for

.tk/ D 0. One has by (4.26) and Definition 4.1 that

EfV�.tk/.tk/j'.t0/g
< �N� .t0;tk/�k�k.s/

�
	

tk.s/

�k.s/�k.s�1/

�
	

tk.s�1/

 � � ��k.1/

�.t0/
V�.t0/.t0/

< �N� .t0;tk/ N�kV�.t0/.t0/

<
�
�1=�a N��k

V�.t0/.t0/

D "kV�.t0/.t0/ (4.27)

Let ˇ1 D min
i2Z�

�min.Pi/ and ˇ2 D max
i2Z�

�max.Pi/, then it follows from (4.27) that

ˇ1E
˚k	.tk/k2j'.t0/

� � EfV�.tk/.tk/j'.t0/g < "kV�.t0/.t0/ � ˇ2"
kk	.t0/k2

which yields

E
˚k	.tk/k2j'.t0/

�
<

s
ˇ2

ˇ1
"kk	.t0/k2

Moreover, �a > ��
a and � > N� guarantee that " < 1. Thus, it is concluded from

Definition 4.2 that the filtering error system (4.13) with 
.tk/ D 0 is mean square
exponentially stable with decay rate ".

To prove the H1 noise attenuation performance, we consider 
.tk/ ¤ 0. Replace
Ef� .tj/j'.t0/g in �.� / by Efke.tj/k2j'.t0/g and k
.tj/k2 and denote the resulting
terms by �.e/ and �.
/, respectively, then �.� / can be written as �.� / D �.e/�
�2�.
/. Then, under zero initial condition, one has by (4.26) that �.� / < 0, and
thus

k�1X

jD0
�N� .tj;tk�1/�k�1�jE

˚ke.tj/k2j'.t0/
� � �.e/

< �2�.
/ � �2
k�1X

jD0
�N� .tj;tk�1/ N�k�1�jk
.tj/k2 (4.28)
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It follows from N� .tj; tk�1/ � k � 1 � j

�a
and �a > ln�= ln��1 that N� .tj; tk�1/ �

ln��.k�1�j/

ln�
, which together with the facts � > 1 and N� .tj; tk�1/ � 0 yield

1 � �N� .tj;tk�1/ � ��.k�1�j/ (4.29)

Thus, one has by (4.28) and (4.29) that

k�1X

jD0
�k�1�jE

˚ke.tj/k2j'.t0/
�
< �2

k�1X

jD0
. N�=�/k�1�jk
.tj/k2 (4.30)

Summing both sides of the inequality in (4.30) from k D 1 to C1 and changing
the order of the summation lead to

.1 � �/�1
C1X

jD0
E
˚ke.tj/k2j'.t0/

�

D
C1X

kD1

k�1X

jD0
�k�1�jE

˚ke.tj/k2j'.t0/
�

< �2
C1X

kD1

k�1X

jD0

� N�=��k�1�j k
.tj/k2

D �2
�
1 � N�=���1

C1X

jD0
k
.tj/k2 (4.31)

which implies that

mX

rD1
ke.r/k2E2 D kek2E2

< �2
1 � �
1 � N�=�k
k22

D �2
1 � �
1 � N�=�

 

nkwpk22 C
mX

rD1
kvp.r/k22

!

D �2
1 � �
1 � N�=�

mX

rD1
k#.r/k22

Therefore, it can be concluded from Definition 4.3 that the m filtering errors satisfy

an average H1 noise attenuation level N� D �

s
1� �

1 � N�=� . The proof is thus

completed.



4.4 H1 Filter Design 89

4.4 H1 Filter Design

An existence condition for the distributed H1 filters of form (4.8) is given in the
following theorem based on Theorem 4.1.

Theorem 4.2 For given positive scalars � , � > 1, �i < 1, and � < 1, if there
exist matrices Pi1 > 0, Pi2, Pi3 > 0, Ri, Si, Qij, NF.rl/i, NG.rl/i, L.r/i, i D 1; 2; : : : ; n,
j D 1; 2; : : : ;m, l 2 Nr, r D 1; 2; : : : ;m such that �a > �

�
a , � > N�, and the following

linear matrix inequalities (LMIs)

8
ˆ̂
<

ˆ̂
:

N̋ i ,

2

4diag
˚
�iPi; �

2I
� �

˚a ˚c ˚e

˚b ˚d 0

�

	 diagf�0i; �i; Ig

3

5 > 0

Pi � �Ps;8 i; s 2 Z�

(4.32)

hold, then the filters in (4.8) guarantee that the filtering error system (4.13) is mean
square exponentially stable with decay rate " and all the filtering errors satisfy an
average H1 noise attenuation level N� , and the filter gain matrices are given by
Fi D Q�T

i
NFi, Gi D Q�T

i
NGi and Li, where

˚T
a D

�
�3 �4
�5 �6

�

˚T
b D

"
BT

miRi BT
miSiPm

jD1 DT
.j/

NGT
i �.j/

Pm
jD1 DT

.j/
NGT

i �.j/

#

˚T
c.j/ D

"
CT
.j/

NGT
i �c.j/ CT

.j/
NGT

i �c.j/

�7 �8

#

; j D 1; 2; : : : ;m

˚T
d.j/ D

"
0 0

DT
.j/

NGT
i �c.j/ DT

.j/
NGT

i �c.j/

#

; j D 1; 2; : : : ;m

˚T
c D

h
˚T

c.1/ � � � ˚T
c.m/

i
; ˚T

d D
h
˚T

d.1/ � � � ˚T
d.m/

i

˚T
e D � NLp � Li

�T

�0i D
�

Ri C RT
i � Pi1 QT

i C Si � Pi2

	 Qi C QT
i � Pi3

�

�i D diagf�0igm; Pi D
�

Pi1 Pi2

	 Pi3

�

Qi D diagfQi1; : : : ;Qimg
NF.r/i D colT

n NFT
.rl/i

o

l2Zy

; where NF.rl/i D 0; 8 l … Nr



90 4 H1 Fusion Estimation for WSNs with Nonuniform Sampling Rates

NG.r/i D colT
n NGT

.rl/i

o

l2Zy

; NG.rl/i D 0;8 l … Nr

NFi D col
˚ NF.r/i

�
r2Zy

; NGi D col
˚ NG.r/i

�
r2Zy

Li D diagfL.r/igr2Zy

�3 D AT
miRi C

mX

jD1
CT
.j/

NGT
i �.j/

�4 D AT
miSi C

mX

jD1
CT
.j/

NGT
i �.j/

�5 D
mX

jD1
˘T
.j/

NFT
i �.j/ �

mX

jD1
CT
.j/

NGT
i �.j/

�6 D
mX

jD1
˘T
.j/

NFT
i �.j/ �

mX

jD1
CT
.j/

NGT
i �.j/

�7 D ˘T
.j/

NFT
i �c.j/ � CT

.j/
NGT

i �c.j/

�8 D ˘T
.j/

NFT
i �c.j/ � CT

.j/
NGT

i �c.j/

Proof By Theorem 4.1 in [22], ˝i < 0 is equivalent to that there exists a matrix Vi

such that the matrix inequality

Q̋ i ,
�

diag
˚
�iPi � NCT

i
NCi; �

2I
�

T
i Vi

	 Vi C VT
i � NPi

�
> 0

holds. Let Vi be a block-diagonal matrix: Vi D diagfV0igmC1, where V0i D
�

Ri Si

Qi Qi

�
.

Denote NFi D QT
i Fi and NGi D QT

i Gi. Then, one can directly obtain the LMIs
N̋ i > 0 in (4.32) from the inequality Q̋ i > 0 by following some routine matrix

manipulations, Schur complement lemma, and the relations �.j/Qi D Qi�.j/ and
�c.j/Qi D Qi�c.j/. The rest of the proof is similar to that for Theorem 4.1 and is
omitted. The proof is thus completed.

In Theorem 4.2, the existence condition for the filters is given in terms of
LMIs which is convex in the scalar �2. Therefore, one may solve the following
optimization problem to obtain the filter gain matrices that minimize the H1 noise
attenuation level for given �i and �, i D 1; 2; : : : ; n.

min � s:t: (4.32) with � D �2 (4.33)
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If �� is the optimal value of the objective function in the above minimization
problem, then the designed filters guarantee that all the filtering errors satisfy an

average H1 noise attenuation level N�� D
s
��.1 � �/

1 � N�=� .

The condition �a > ��
a in Theorems 4.1 and 4.2 indicates that the variation rate

of the sampling periods should be small enough to guarantee an existence of the H1
filters. Thus, Theorems 4.1 and 4.2 implicitly establish a relationship between the
variation rate of the sampling period and the filtering performance. Since �a � 1,
�� < 1 guarantees that �a > ��

a . Therefore, in case that �a is not known exactly in
practice, one may use the condition �� < 1 instead of �a > ��

a in Theorems 4.1
and 4.2. Then, the exponential decay rate " is bounded by " � "� , � N�.

Since switching-mode-dependent filters are designed, it is implicitly assumed
that the sampling periods are known a priori by each sensor in the network, and
each of the filters switches its gains according to the variation of the sampling
periods. In case that the sampling periods are not known a priori, one may design
switching-mode-independent filters by following the similar procedures as given in
Theorems 4.1 and 4.2.

Based on Theorem 4.2, the design of the distributed H1 filters is summarized in
the following algorithm.

Algorithm 4.1

Step 1: Solve the optimization problem (4.33) off-line to get the filter gain
matrices Fi, Gi and Li, i D 1; 2; : : : ; n.

Step 2: At each sampling instant tk, each sensor r broadcasts its measurement
yr.tk/ and local estimate Oxr.tk/ to its neighbors and meanwhile collects measure-
ments yl.tk/ and local estimates Oxl.tk/, l 2 Nr=frg from its neighbors.

Step 3: Each sensor calculates the estimate Oxr.tkC1/ according to (4.8).

4.5 Simulations

Consider a continuous stirred tank reactor (CSTR) shown schematically in Fig. 4.1,
where A and B are the educt and the desired product, respectively, CA0 is the low
concentration of educt A, CB is the concentration of the product B, and # denotes
the reactor temperature. The balance equations of the CSTR are given by [23]

dCA

dt
D F

V
.CA0 � CA/� k1CA (4.34)

dCB

dt
D � F

V
CB C k1CA � k2CB (4.35)

d#

dt
D F

V
.#0 � #/C kwAR

�CPV
.#k � #/

�k1CA$HAB
R C k2CB$HBC

R

�CP
(4.36)
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Fig. 4.1 Continuous stirred
tank reactor

Table 4.1 Model parameters
and main operating point

k0 D 1:2467 � 1012 h�1 EA1;2=R D 9867:5K

$HAB
R D 4:2 kJ/mol $HBC

R D �11 kJ/mol

� D 0:9342 kg/l CP D 3:01 kJ/kg K

AR D 0:215m2 V D 10:01

#0 D 403:15K kw D 4032 kJ/h m2K

CAs D 1:235mol/l CA0 D 5:1mol/l

CBs D 0:9mol/l #s D 407:29K

F=V D 0:3138

where F is the normalized process stream inflow, V is the volume flow, � is the
density, CP is the heat capacity, $HR is the reaction enthalpy, k1 and k2 are the
rate coefficients which depend exponentially on the reactor temperature. The model
parameters and main operating point of the CSTR (4.34), (4.35) and (4.36) are given
in Table 4.1.

Based on (4.34), (4.35) and (4.36), the linearized state-space model of the CSTR
near the operating point is given by

Px.t/ D Apx.t/C Bp!p.t/ (4.37)

where x.t/ D Œx1.t/ x2.t/ x3.t/�T, x1.t/, and x2.t/ are, respectively, the concentration
of the educt A and the product B at time instant t, x3.t/ is the temperature of the
reactor at instant t, !p.t/ is the noise belonging to L2Œ0;C1/, Bp D Œ0 1 0�T, and
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Ap is the linearized system matrix given by

Ap D

2

66
6
6
6
4

� F
V � k1 0

EA1

R#2s
k1CAs

k1 � F

V
� k2 a23

�k1$HAB
R

�CP
�k2$HBC

R

�CP
a33

3

77
7
7
7
5

D
2

4
�0:9388 0 0:0459

0:625 �0:9388 �0:0125
�0:9335 2:4449 �0:8894

3

5

where

a23 D � EA1

R#2s
k1CAs C EA2

R#2s
k2CBs

a33 D � F

V
� kwAR

�CPV
C EA1k1CAs$HAB

R C EA2k2CBs$HBC
R

R#2s �CP

In practice, it may be necessary for one to know the concentration of the
desired product B for other use, but the direct measure of the concentration by
using traditional chemical approaches is usually expensive. An alternative yet
non-expensive approach is to use signal processing approaches to estimate the
concentration. In this example, only the measurements of the reactor temperature
# are used to estimate the concentration of the desired product B. To enhance the
reliability of the estimation system against sensor failures and improve estimation
performance, two sensors are deployed to monitor the reactor temperature, and one
has Cp.1/ D Cp.2/ D Œ0 0 1�, Dp.1/ D Dp.2/ D 1, Lp D Œ0 1 0�. The sensors measure
the reactor temperature with a time-varying sampling period hk 2 fT0; 2T0g, where
T0 D 1min. At each sampling instant, each sensor broadcasts its measurement
and local estimate to the other sensors and meanwhile collects measurements and
local estimates from the other sensors to generate its fused estimate. Random packet
losses may happen during the data transmission, and the PAPs are �12 D �21 D 0:9.
Discretizing system (4.37) with period T0, one obtains

A0 D
2

4
0:3872 0:0222 0:01823

0:2444 0:3897 0:0007102

�0:06849 0:9711 0:4008

3

5

B0 D
2

4
0:009496

0:6474

0:6779

3

5

By applying the modeling method in Sect. 4.2, the filtering system can be described
as a stochastic switched system with two subsystems S1 and S2 since the sampling
period hk takes two values. Specifically, when hk takes T0 and 2T0, the filtering
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Fig. 4.2 The noises

system resides in the subsystem S1 and S2, respectively. Moreover, one has Ai D
Ai
0; Bi D Bi

0; i D 1; 2.
Choose �1 D 0:85, �2 D 0:90, and � D 1:05 such that the LMIs in (4.32) have a

feasible solution. Suppose that �a D 1:5. Then, choose � D 0:94 such that both the
conditions �a > �

�
a D 0:7885 and � > N� D 0:90 are satisfied. Then, by solving the

minimization problem in (4.33), one obtains an optimal value �� D 0:9617 and all
the corresponding filter gain matrices. Thus, the filtering errors in the two sensors

satisfy an average H1 noise attenuation level N�� D
s
��.1 � �/
1 � N�=� D 1:8412.

In the simulation, the noises are chosen as those shown in Fig. 4.2. The
simulations are shown in Figs. 4.3 and 4.4, where Fig. 4.3 shows the concentration
and its estimates in the two sensors, while Fig. 4.4 depicts the estimation errors. It
can be seen from the simulations that the designed filters perform well. Specifically,
we obtain from the results in Figs. 4.2 and 4.4 that

� D
P2

rD1 ke.r/k2
P2

rD1 k#.r/k2
D 0:7571 < N�� D 1:8412

Moreover, all the filtering errors finally converge to zero after the noises are elim-
inated. The exponential stability of the filtering error system is shown in Fig. 4.5,
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0 10 20 30 40 50 60 70 80 90
−0.15

−0.1

−0.05

0

0.05

0.1

time / min

es
tim

at
io

n 
er

ro
rs

 o
f t

he
 c

on
ce

nt
ra

tio
n

estimation errors of sensor 1
estimation errors of sensor 2
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where the curve without star shows the trajectory of g.tk/ D
s
ˇ2

ˇ1
"kk	.t0/k2 D

6:0328 � 0:9298k and the curve with stars shows the trajectory of k	.tk/k2. It can
be seen from Fig. 4.5 that k	.tk/k2 < g.tk/, then, according to Definition 4.2, the
filtering error system is exponentially stable with decay rate 0:9298. The simulations
demonstrate the effectiveness of the designed H1 filters.
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Fig. 4.5 k	.tk/k2 and
g.tk/ D 6:0328 � 0:9298k
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Table 4.2 Comparison of the
H1 filters with uniform
sampling period and
nonuniform ones

N�� �

Fn with hk given by Fig. 4.3 1.8412 0.7571

Fu with hk D 1:5T0 1.7155 0.6810

The performance of the H1 filters with nonuniform sampling periods and
uniform one are compared in Table 4.2, where Fn and Fu represents, respectively,
the filters with nonuniform sampling periods and those with uniform one, and N��
and � represents, respectively, the calculated value and the simulation result of the
average H1 noise attenuation level. It can be seen from Table 4.2 that both Fn and
Fu consume the same amount of energy, and Fu performs slightly better than Fn.
However, the main advantage of the proposed Fn lies in its flexibility of adjusting
the sampling periods according to its energy status and being able to make a trade-
off between the energy consumption and estimation performance.

4.6 Conclusions

Distributed sampled-data H1 filters have been developed in this chapter for sensor
networks with nonuniform sampling periods and random packet losses. A discrete-
time switched system with multiple stochastic parameters has been proposed to
model the filtering system. It has been shown that the existence condition of the
filters depends on both the lengths and variation rate of the sampling periods and the
packet loss probabilities. The designed filters guarantee that all the filtering errors
in the sensor network satisfy an average H1 noise attenuation level.
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Chapter 5
Fusion Estimation for WSNs Using
Dimension-Reduction Method

5.1 Introduction

In Chaps. 2, 3, and 4, energy-efficient fusion estimation methods are presented
by slowing down the transmission rates of measurements/local estimates and the
estimation rate. In this chapter, a dimension-reduction method will be introduced
for energy-efficient fusion estimation. To satisfy finite communication bandwidth
and save energies consumed in communication, different dimensionality reduction
approaches have been proposed in [1–7] to solve the fusion estimation problem,
and the main idea of these approaches is that all the components of a vector signal
are weighted and added to realize the objective of dimension reduction. Note that
one should resort to the feedback information from a fusion center to obtain the
compression matrices [3]. Different from the existing methods, this chapter presents
the idea of directly choosing a part of components of local estimates to reduce the
dimension of the local estimates to be transmitted to a fusion center. Specifically,
when a local estimate is available at each sensor, only a part of the elements of
the local estimate is selected and transmitted to the fusion center to save energy
and meet the network bandwidth constraint. After the fusion center receives the
local estimate with reduced dimension, a compensation strategy is proposed to
reconstruct the local estimate and design the local unbiased estimator and improve
the fusion estimation precision. Based on the optimal fusion estimation algorithm
weighted by matrices, a recursive distributed fusion estimator is designed in the
linear minimum variance sense. The gain matrix of the designed fusion estimator
can be computed off-line as it does not need to know whether each component is
sent or not at a particular time. Since the performance of the fusion estimator is
dependent on the local estimate components selecting probabilities, some sufficient
conditions, which are related to the selecting probabilities and system parameters,
are derived such that the mean square error (MSE) of the fusion estimator is
bounded. For linear time-invariant systems, some sufficient conditions are presented
for the convergence of the fusion estimators.

© Science Press, Beijing and Springer Science+Business Media Singapore 2016
W.-A. Zhang et al., Distributed Fusion Estimation for Sensor Networks
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5.2 Problem Statement

5.2.1 System Models

Consider the following linear discrete-time stochastic system

x.t C 1/ D A.t/x.t/C � .t/w.t/ (5.1)

yi.t/ D Ci.t/x.t/C vi.t/; 1 � i � L (5.2)

where x.t/ 2 <n represents the state of the process and yi.t/ 2 <qi is the measured
output from sensor i. A.t/ 2 <n�n, � .t/ 2 <n�m, and Ci.t/ 2 <qi�n are time-
varying matrices. w.t/ 2 <m and vi.t/ 2 <qi are uncorrelated zero-mean Gaussian
white noises satisfying

E
n
ŒwT.t/ vT

i .t/�
TŒwT.t1/ vT

j .t1/�
o

D ıtt1diagfQw.t/; ıijQvi.t/g (5.3)

where ıtt1 D 0 if t ¤ t1 and ıtt1 D 1 otherwise. A group of sensors are deployed
to monitor the outputs of the process. Each sensor acts also as an estimator and
has enough processing capabilities to generate local state estimates of x.t/. Based
on the statistical properties (5.3) and the measurements fyi.1/; yi.2/; : : : ; yi.t/g, the
local optimal (in the linear minimum variance sense) estimate Oxi.t/ is recursively
computed by the standard Kalman filter [8]:

 Oxi.t/ D ŒIn � Ki.t/Ci.t/�A.t � 1/Oxi.t � 1/C Ki.t/yi.t/
Ki.t/ D P�

ii .t/C
T
i .t/ŒCi.t/P�

ii .t/C
T
i .t/C Qvi.t/�

�1 (5.4)

and the optimal estimation error covariance matrix Pii.t/ is defined by

Pii.t/
$D E

˚
Œx.t/ � Oxi.t/�Œx.t/ � Oxi.t/�

T
�

and is computed by


Pii.t/ D ŒIn � Ki.t/Ci.t/�P�

ii .t/
P�

ii .t/ D A.t � 1/Pii.t � 1/AT.t � 1/C O� .t � 1/
(5.5)

where P�
ii .t/ denotes the one-step prediction error covariance matrix and

O� .t � 1/
$D � .t � 1/Qw.t � 1/� T.t � 1/ (5.6)



5.2 Problem Statement 101

Define

8
<̂

:̂

QxT
a .t/

$D �
.x.t/ � Ox1.t//T � � � .x.t/ � OxL.t//T

�

I0
$D ŒIn � � � In�

T 2 <nL�n

OP.t/ $D E
˚Qxa.t/QxT

a .t/
� D .Pij.t// 2 <nL�nL

(5.7)

Then it follows from (5.3) and (5.4) that the optimal estimation error cross-
covariance matrix Pij.t/ defined by

Pij.t/
$D E

˚
.x.t/ � Oxi.t//.x.t/ � Oxj.t//

T
�

is computed by [9]

Pij.t/ D ŒIn � Ki.t/Ci.t/�ŒAi.t � 1/Pij.t � 1/

�AT
i .t � 1/C O� .t � 1/�ŒIn � Kj.t/Cj.t/�

T; i ¤ j (5.8)

Thus, the estimation error covariance matrix OP.t/ in (5.7) can be obtained from
(5.5) and (5.8). After the fusion center receives all the local estimates Oxi.t/, i D
1; 2; : : : ;L, then it follows from Lemma 2.4 that the optimal fusion estimate Oxo.t/ is
given by

Oxo.t/ D
LX

iD1
Fi.t/Oxi.t/ (5.9)

where Oxi.t/ is computed by (5.4) and the optimal matrix weights are determined by

ŒF1.t/;F2.t/; : : : ;FL.t/� D
	

IT
0

OP�1.t/I0

�1

IT
0

OP�1.t/ 2 <n�nL (5.10)

and the fusion estimation error covariance matrix

Po.t/
$D E

˚
Œx.t/ � Oxo.t/�Œx.t/ � Oxo.t/�

T
�

is calculated by

Po.t/ D
	

IT
0

OP�1.t/I0

�1

(5.11)

Moreover, the relationship between the fusion estimation performance and the local
estimation performance is

Tr.Po.t// � Tr.Pii.t//; i D 1; 2; : : : ;L (5.12)
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Note that the covariance matrices (5.5) and (5.8) do not depend on the measurements
and can thus be computed at the fusion center, which helps reduce communication
consumptions.

As mentioned before, when each local estimate Oxi.t/ is transmitted to the
fusion center through a WSN, the sensor energy and communication bandwidth
constraints should be taken into account in designing the distributed fusion esti-
mation algorithm. In this chapter, a dimensionality reduction method combined
with a transmission rate reduction method is presented to solve this problem, and
the detailed approach is described as follows: at a particular time t, since the
communication channels are constrained by a limited bandwidth, it may not be able
to allocate enough bits to send the local estimates. To satisfy finite communication
bandwidth, only ri .1 � ri < n/ components of the vector Oxi.t/ are allowed to be
transmitted to the fusion center, and it is reasonable to consider that there are enough
bits coding the ri transmitted components such that the transmitted messages have
no distortion. In this case, if the sensor i sends information to the fusion center at
time t, the reorganized state estimate Oxr

i.t/, which is received by the fusion center at
time t, has�i possible cases, and it follows from the alignment combination formula
that

�i D Cri
n D n.n � 1/.n � 2/ � � � .n � ri C 1/

ri.ri � 1/.ri � 2/ � � � 1 (5.13)

and the reorganized state estimate Oxr
i.t/ can only take one signal from the following

finite set:

�i.t/
$D ˚

Hi
1 Oxi.t/; : : : ;H

i
hi

Oxi.t/; : : : ;H
i
�i

Oxi.t/
�

(5.14)

where Hi
hi

, hi D 1; 2; : : : ; �i denote different diagonal matrices and Hi
hi

contains
ri diagonal elements “1” and n � ri diagonal elements “0”. It is obvious that the
set (5.14) contains all possible cases of the reorganized state estimate Oxr

i.t/. On
the other hand, when the bandwidth and energy constraints are taken into account
simultaneously, the sensor may not send the local information to the fusion center
at every fusion estimation instant. In the case that the local estimate is not chosen
to be transmitted to the fusion center, the reorganized state estimate Oxr

i.t/ is chosen
from the set f0g.

To describe the reorganized state estimate Oxr
i.t/ in a simple way, suppose that

�i elements of the set �i are indexed from 1 to �i, then the following indication
functions are introduced:

� i
hi
.t/ D

(
1 if Oxr

i.t/ D Hi
hi

Oxi.t/
0 if Oxr

i.t/ ¤ Hi
hi

Oxi.t/
; hi D 1; 2; : : : ; �i (5.15)

which means that if the hith element of the set (5.14) is chosen as Oxr
i.t/, then

� i
hi
.t/ D 1. Otherwise, � i

hi
.t/ D 0. When the sensor i does not send information
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to the fusion center at time t and the value of Oxr
i.t/ is not in the set (5.14), then

it follows from (5.15) that � i
1.t/ D � i

2.t/ D : : : D � i
�i
.t/ D 0. In this case, the

reorganized state estimate Oxr
i.t/ can take at most one value from (5.14); thus, the

introduced binary variables � i
hi
.t/, hi D 1; 2; : : : ; �i satisfy

8
<̂

:̂

� i
hi
.t/� i

ho
i
.t/ D 0; hi ¤ ho

i 
�iP

hiD1
� i

hi
.t/

!

2 f0; 1g; i D 1; 2; : : : ;L
(5.16)

where
P�i

hiD1 �
i
hi
.t/ D 0 indicates that there is no communication between sensor i

and the fusion center at time t. Therefore, it is derived from (5.15) and (5.16) that
the reorganized state estimate Oxr

i.t/ is

Oxr
i.t/ D Hi.t/Oxi.t/ (5.17)

where Hi.t/
$D P�i

hiD1 �
i
hi
.t/Hi

hi
. It follows from (5.15) and the definition of Hi

hi

that Hi.t/ is a diagonal matrix, and the diagonal elements of Hi.t/ are 0 or 1. For
presentation simplicity, the binary variables � i

`.t/ 2 f0; 1g (` D 1; 2; : : : ; n) are
introduced to denote the n diagonal elements of Hi.t/, i.e.,

Hi.t/ D diagf� i
1.t/; : : : ; �

i
n.t/g (5.18)

It can be seen that each binary variable � i
`.t/; ` 2 f1; 2; : : : ; ng is dependent on the

choices of the values � i
„i
.t/, „i D 1; 2; : : : ; �i. Moreover, it follows from (5.15) and

(5.16) that

 
nX

`D1
� i
`.t/

!

2 f0; rig; i D 1; 2; : : : ;L (5.19)

where ri .ri 2 NC and 1 � ri � n/ denotes the finite bandwidth constraint.
Particularly, it follows from (5.19) that if

Pn
`D1 � i

`.t/ D ri holds, then the partial
sensor message satisfying the finite bandwidth will be sent to the fusion center at
time t. Otherwise,

Pn
`D1 � i

`.t/ D 0 means that there is no communication between
sensor i and the fusion center and the energy of this sensor can be saved at time t.

For ri D n, it is derived from (5.20) that

�
nP

`D1
� i
`.t/

�
2 f0; ng and � i

`.t/ 2 f0; 1g;

thus, Hi.t/ is only taken as In or 0 at time t. In this case, the model (5.17)
only describes the energy constraint case. On the other hand, if the equationP�i

hiD1 �
i
hi
.t/ D 1 always holds, then it follows from (5.15) and (5.16) that the

sensors and fusion center communicate with each other at each time step, which
means that the model (5.17) only describes the bandwidth constraint problem.

In what follows, when only the communication bandwidth constraints are
considered, a simple example is given to explain how to obtain the reorganized state
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estimate Oxr
i.t/ by using (5.17). For n D 3, r1 D 2, r2 D 1, and L D 2, it follows from

(5.14) that

8
<

:

�1 D 3;H1
1 D diagf1; 1; 0g;H1

2 D diagf1; 0; 1g
H1
3 D diagf0; 1; 1gI�2 D 3;H2

1 D diagf1; 0; 0g
H2
2 D diagf0; 1; 0g;H2

3 D diagf0; 0; 1g
(5.20)

Note that H1
i and H2

i in (5.20) represent different component transmission situations.
For example, H1

1 in (5.20) means that the first and second components of Ox1.t/ are
transmitted to the fusion center, but the third component of Ox1.t/ is discarded at
time t: On the other hand, it follows from (5.18) and (5.20) that

8
ˆ̂
<

ˆ̂
:

H1.t/ D diagf�11 .t/; �12 .t/; �13 .t/g
D diagf1 � �13 .t/; 1 � �12 .t/; 1 � �11 .t/g

H2.t/ D diagf�21 .t/; �22 .t/; �23 .t/g
D diagf�21 .t/; �22 .t/; �23 .t/g

(5.21)

where

3P

`D1
�1` .t/ D 3 �

3P

`D1
�1` .t/ D 2;

3P

`D1
�2` .t/ D

3P

`D1
�2` .t/ D 1

Therefore, the reorganized state estimate Oxr
i.t/, i D 1; 2 is obtained by substituting

(5.21) into (5.17). Obviously, for this example, (5.17) describes all possible cases of
each reorganized state estimate.

5.2.2 Problem of Interests

According to the proposed communication strategy, it is considered that each
component of the local estimate Oxi.t/ is randomly sent to the fusion center. In this
case, Hi.t/ in (5.17) is a random matrix, and it is difficult to be known a priori,
but it can be obtained from the identification process of reorganized state estimate
Oxr

i.t/. For each local estimate Oxi.t/; it is considered that if the order information of
selected components is flagged before transmission, then the order information of
the received components for each reorganized state estimate will be determined by
their flags in the fusion center, and other untransmitted components are regarded as
0. It is noted that the required bandwidth for the added flags is negligible compared
with that for the data packet transmission. Then, the diagonal element � i

j .t/ 2 f0; 1g
of the matrix Hi.t/ can be directly determined at time t by judging whether the
flag of the jth component is included in the arrived data packet or not. A simple
example is given to explain how to determine the matrix Hi.t/ at time t. For the ith
local estimate Oxi.t/ D Œ1:2 1:5 0:8�T, if the first and second components of Oxi.t/
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are selected to send to the fusion center, the corresponding order information will
be flagged before being transmitted. Once the transmitted components arrive at the
fusion center, it follows from the flags of the data packet that xr

i.t/ D Œ1:2 1:5 0�T,
and only the flag of the third component is not included in this data packet; thus, one
has � i

3.t/ D 0 and � i
j .t/ D 1, j D 1; 2, which means that Hi.t/ D diagf1; 1; 0g.

On the other hand, it follows from (5.15), (5.16), and (5.17) that the practical
communication situation is determined by the binary variables � i

hi
.t/, „i D

1; 2; : : : ; �i; therefore, it is specified that each stochastic process f� i
hi
.t/g; „i 2

f1; 2; : : : ; �igI i 2 f1; 2; : : : ;Lg is i.i.d (independent and identically distributed)
and the random variables w.t/, vi.t/, and � i

hi
.t/, i D 1; 2; : : : ;L are mutually

uncorrelated, i.e.,

E
˚
� i

hi
.t/wT.t/

� D 0; E
˚
� i

hi
.t/vT

j .t/
� D 0 ;8 i; j (5.22)

E
n
� i

hi
.t/� j

ho
j
.t1/

o
D

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
:

0; i D j; t D t1; hi ¤ h0i
E
˚
� i

hi
.t/
�
; i D j; t D t1; hi D h0i

E
˚
� i

hi
.t/
�

E
n
� i

ho
i
.t1/

o
; i D j; t ¤ t1;8hi; h0i

E
˚
� i

hi
.t/
�

E
n
�

j
ho

j
.t1/

o
; i ¤ j;8t; t1; hi; h0j

(5.23)

Moreover, the occurrence probabilities of the cases � i
hi
.t/ D 1 and � i

hi
.t/ D 0 are

given by

Probf� i
hi
.t/ D 1g D� i

hi
; Probf� i

hi
.t/ D 0g D1 � � i

hi
(5.24)

where � i
hi

is a given positive scalar satisfying

0 �
�iX

hiD1
� i

hi
� 1 (5.25)

Then it follows from (5.16) that the expected energy-saving rate �i for the ith sensor
is given by

�i D E

8
<

:
1 �

�iX

hiD1
� i

hi
.t/

9
=

;
D 1 �

�iX

hiD1
� i

hi
(5.26)

Additionally, it follows from the statistical properties (5.23) and the definition of
� i
`.t/ that the binary variables � i

`.t/, ` D 1; 2; : : : ; n are independent Bernoulli

distributed white sequences taking values of 1 or 0 with Probf� i
`.t/ D 1g $D � i

`

and Probf� i
`.t/ D 0g $D 1 � � i

`. Meanwhile, it follows from (5.16) and (5.19) that
the condition

Pn
`D1 � i

`.t/ D ri is equivalent to
P�i

hiD1 �
i
hi
.t/ D 1; thus, it is derived
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from (5.24) and (5.26) that

E

(
nX

`D1
� i
`.t/

)

D ri

�iX

hiD1
� i

hi
D ri.1 � �i/ ; i D 1; 2; : : : ;L (5.27)

Moreover, it is obtained from (5.22) that the random variables � i
`.t/, w.t/, and vi.t/

are mutually uncorrelated, i.e.,

8
<

:

E
n
� i
`.t/�

j
`1
.t/
o

D � i
`�

j
`1
; i ¤ j

E
˚
� i
`.t/w

T.t/
� D 0;E

n
� i
`.t/v

T
j .t/

o
D 0; 8i; j

(5.28)

Then, the problems to be solved in this chapter are described as follows: For a
given arbitrary group of binary variables

� i
1.t/; : : : ; �

i
hi
.t/; : : : ; � i

�i
.t/; i D 1; 2; : : : ;L

satisfying (5.22), (5.23), (5.24), and (5.25), design an optimal fusion estimate Ox.t/
with bandwidth and energy constraints such that

( Ox.t/ D arg min
Ox�.t/

Ef.x.t/ � Ox�.t//T.x.t/ � Ox�.t//g
EfOx.t/g D Efx.t/g

(5.29)

where Ox�.t/ is an arbitrary linear combination of Oxc
i .t/; i D 1; 2; : : : ;L; and Oxc

i .t/
denotes the ith compensation state estimate of x.t/ from the reorganized state
estimate Oxr

i.t/: Then, based on the fusion estimation algorithm, find a probability
selecting criterion such that the MSE of the designed fusion estimate Ox.t/ in (5.29)
is bounded, i.e.,

Covfx.t/� Ox.t/g D TrfEf.x.t/ � Ox.t//.x.t/ � Ox.t//Tgg � p0 (5.30)

holds for t > N0, where p0 denotes a positive scalar and N0 represents a positive
integer.

5.3 Design of Finite-Horizon Fusion Estimator

5.3.1 Compensating Strategy

According to the proposed communication strategy, each component of the local
estimate Oxi.t/ is randomly sent to the fusion center at time t; thus, it is possible
that the jth component of the reorganized state estimate Oxr

i.t/ is zero at time t.
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Particularly, when the energy and bandwidth constraints are taken into account
simultaneously, the case that Oxr

i.t/ D 0 may occur when the ith sensor does not
send information to the fusion center for reducing energy consumption. In this case,
the jth component of the fusion estimate Ox.t/ may be zero at time t; however, the
real value of the state variable in the system (5.1) is not zero and may even be
very large for unstable systems. In this sense, if the distributed fusion estimator is
directly designed based on the local reorganized state estimates, then the overall
fusion estimation performance may degrade seriously. Therefore, it is necessary to
compensate each reorganized state estimate for improving its estimation precision.
Let us define

(
Œe1.t/ � � � eL.t/�

$D Œx.t/ � Oxc
1.t/ � � � x.t/ � Oxc

L.t/�

˙.t/
$D E

˚
ŒeT
1 .t/ � � � eT

L.t/�
TŒeT

1 .t/ � � � eT
L.t/�

� (5.31)

When the local compensated state estimates are available, then it follows from (5.9)
that the optimal fusion estimate Ox.t/ with bandwidth and energy constraints is given
by

Ox.t/ D
LX

iD1
˝i.t/Oxc

i .t/ (5.32)

Then it follows from (5.10) and (5.11) that the optimal weighting matrices

˝1.t/;˝2.t/; : : : ;˝L.t/

and the corresponding error covariance matrix

P.t/
$D E

˚
.x.t/ � Ox.t//.x.t/ � Ox.t//T�

are calculated by


Œ˝1.t/; : : : ;˝L.t/� D .IT

0 ˙
�1.t/I0/�1IT

0 ˙
�1.t/

P.t/ D .IT
0 ˙

�1.t/I0/�1
(5.33)

where I0 is defined in (5.7) and one has

LX

iD1
˝i.t/ D In (5.34)

Moreover, it follows from (5.32) and (5.34) that the optimal fusion estimate Ox.t/ is
unbiased only if each compensated state estimate Oxc

i .t/, i 2 f1; 2; : : : ;Lg is unbiased,
i.e.,

EfOxc
i .t/g D Efx.t/g ) EfOx.t/g D Efx.t/g (5.35)
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Therefore, an appropriate compensating strategy will be presented in the following
theorem such that the equations

EfOxc
i .t/g D EfOx.t/g D Efx.t/g; i D 1; 2; : : : ;L

hold.

Theorem 5.1 If the initial values of the optimal fusion estimate Ox.t/ and the local
estimates Oxi.t/; i D 1; 2; : : : ;L satisfy

EfOx.0/g D EfOxi.0/g D Efx.0/g; i D 1; 2; : : : ;L (5.36)

then the ith compensated state estimate Oxc
i .t/ is given by

Oxc
i .t/ D Hi.t/Oxi.t/C ŒIn � Hi.t/�A.t � 1/Ox.t � 1/ (5.37)

where .In � Hi.t//A.t � 1/Ox.t � 1/ is used to compensate the diagonal elements “0”
of Oxr

i.t/. Under this condition, the fusion estimate Ox.t/ and the local compensated
state estimate Oxc

i .t/ are unbiased estimates of x.t/, i.e.,

Efx.t/g D EfOx.t/g D EfOxc
i .t/g (5.38)

Proof Each compensated state estimate Oxc
i .t/ designed in (5.37) means that when n�

ri components of the local estimate Oxi.t/ are not transmitted to the fusion center, they
are replaced by one-step predictions of the fusion estimate Ox.t �1/. In what follows,
the unbiasedness of the designed compensated state estimate and the fusion estimate
will be proved. First, it is well known that the local estimate Oxi.t/ is unbiased only
if the initial value Oxi.0/ of the local estimate is the unbiased estimate of the initial
value x.0/, i.e.,

EfOxi.0/g D Efx.0/g ) EfOxi.t/g D Efx.t/g (5.39)

It follows from (5.37) that

Oxc
i .1/ D Hi.1/Oxi.1/C ŒIn � Hi.1/�A.0/Ox.0/ (5.40)

Taking (5.22), (5.39), and (5.40) into account yields

EfOxc
i .1/g D EfHi.1/gEfx.1/g C EfŒIn � Hi.1/�gA.0/EfOx.0/g (5.41)

Since w.t/ is a zero-mean white noise, it is verified from (5.1) and (5.22) that

Efx.1/g D EfHi.1/gEfx.1/g C Ef.In � Hi.1//gEfx.1/g
D EfHi.1/gEfx.1/g C Ef.In � Hi.1//gA.0/Efx.0/g (5.42)
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Then, it is derived from (5.41) and (5.42) that

EfOx.0/g D Efx.0/g ) EfOxc
i .1/g D Efx.1/g (5.43)

Combining (5.35) and (5.43) yields

EfOx.1/g D Efx.1/g (5.44)

Therefore, for t > 1, (5.38) can be obtained from the similar derivations of (5.44).
The proof is completed.

The result in Theorem 5.1 implies that if the initial values of the system (5.1), the
fusion estimate given in (5.32), and the compensated state estimates (5.36) are set
to the same value, the fusion estimate Ox.t/ is an unbiased estimate of x.t/, i.e., the
second equation of (5.29) holds.

To guarantee the unbiasedness of the designed fusion estimator with bandwidth
and energy constraints, the compensated state estimate of x.t/ can also be selected
by

Oxc�
i .t/ D Hi.t/Oxi.t/C ŒIn � Hi.t/�A.t � 1/Oxc�

j .t � 1/ (5.45)

where j 2 f1; 2; : : : ;Lg. However, the estimation performance of (5.37) is better
than that of (5.45).

5.3.2 Design of Finite-Horizon Fusion Estimator

In what follows, computations of the error covariance matrix˙.t/, which are needed
in the calculation of the weighting matrices˝i.t/; i D 1; 2; : : : ;L, will be presented.

Two useful lemmas are given as follows before presenting the error covariance
matrix˙.t/.

Lemma 5.1 For stochastic matrices M; B; and G; where

M
$D diagfm1; : : : ;mng

B
$D diagfb1; : : : ; bng

G
$D

2

6
4

g11 � � � g1n
:::
: : :

:::

gn1 � � � gnn

3

7
5
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If each random variable gij in G is independent of any random variables of mi and
bi, i D 1; 2; : : : ; n, then

EfMGBg D EfM ˇ Bg ˝ EfGg (5.46)

where “˝” is defined as ŒG1 ˝ G2�ij D G1
ijG

2
ij (this product is called Hadamard

product [10]) and the product “ˇ” for the diagonal matrices M and B is defined by

M ˇ B D

2

6
4

m1b1 � � � m1bn
:::

: : :
:::

mnb1 � � � mnbn

3

7
5 (5.47)

Moreover, the product “ˇ” has the following property

M ˇ B D .B ˇ M/T (5.48)

Lemma 5.2 Define

8
<̂

:̂

˚i.t/
$D EfQx.t � 1/QxT

i .t/g
OH.t/ $D diagfH1.t/; : : : ;HL.t/g
NH.t/ $D Œ.In � H1.t//T; : : : ; .In � HL.t//T�T

(5.49)

where Qx.t � 1/ D x.t � 1/� Ox.t � 1/ and Qxi.t/ D x.t/� Oxi.t/. Suppose that P.t � 1/
and ˙.t � 1/ have been obtained at time t, then ˚i.t/ is computed by the following
recursive form

˚i.t/ D Ȯ .t � 1/ NHA.t � 2/˚i.t � 1/ OAT.t � 1/
C Ȯ .t � 1/ OH OPi.t � 1/ OAT.t � 1/

C Ȯ .t � 1/ NH O� .t � 2/ŒIn � Ki.t � 1/

�Ci.t � 1/�T OAT.t � 1/ (5.50)

where

8
ˆ̂
<̂

ˆ̂
:̂

OPi.t � 1/ D ŒPT
1i.t � 1/ � � � PT

Li .t � 1/�T

Ȯ .t � 1/ D P.t � 1/IT
0˙

�1.t � 1/
OA.t � 1/ D A.t � 1/� Ki.t/Ci.t/A.t � 1/

NH D E
˚ NH.t � 1/

�
; OH D E

n OH.t � 1/
o

(5.51)

and O� .t � 2/ is defined in (5.6). Meanwhile, Ki.t/ and Pji.t � 1/ D PT
ij.t � 1/ are

computed by (5.4) and (5.8), respectively.
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Proof It follows from (5.1) and (5.4) that

Qxi.t/ D A.t � 1/Qxi.t � 1/C � .t � 1/w.t � 1/� Ki.t/"i.t/ (5.52)

"i.t/ D Ci.t/A.t � 1/Qxi.t � 1/C Ci.t/� .t � 1/w.t � 1/C vi.t/ (5.53)

Then, substituting (5.53) into (5.52) yields

Qxi.t/ D .A.t � 1/� Ki.t/Ci.t/A.t � 1//Qxi.t � 1/
C.� .t � 1/� Ki.t/Ci.t/� .t � 1//

�w.t � 1/� Ki.t/vi.t/ (5.54)

Following the facts Qxi.t�1/?w.t�1/ and E
˚
vi.t/wT.t � 1/

� D 0, it is derived from
(5.54) that

E
˚Qxi.t/w

T.t � 1/
� D .In � Ki.t/Ci.t//� .t � 1/Qw.t � 1/ (5.55)

Define &i.t/
$D �
� i
1.t/; �

i
2.t/; : : : ; �

i
�i
.t/
�
, then one has by (5.32) and (5.37) that

Qx.t � 1/ 2 Spanfw.0/;w.1/; : : : ;w.t � 2/;
vi.0/; : : : ;vi.t � 1/; &i.1/; : : : ; &i.t � 1/
„ ƒ‚ …

iD1;2;:::;L
g (5.56)

Thus, it follows from (5.22), (5.23), and (5.56) that

w.t � 1/?Qx.t � 1/ and vi.t/?Qx.t � 1/ (5.57)

Then, it is derived from (5.55) and (5.57) that

˚i.t/ D EfQx.t � 1/.QxT
i .t � 1/ŒA.t � 1/� Ki.t/

�Ci.t/A.t � 1/�T C wT.t � 1/Œ� .t � 1/� Ki.t/

�Ci.t/� .t � 1/�T � vT
i .t/K

T
i .t//g

D �i.t � 1/ OAT.t � 1/ (5.58)

where

�i.t � 1/
$D E

˚Qx.t � 1/QxT
i .t � 1/

�

and OAT.t � 1/ is defined in (5.51). Subsequently, it follows from (5.1) that

I0x.t/ D OH.t/I0x.t/C NH.t/A.t � 1/x.t � 1/C NH.t/� .t � 1/w.t � 1/ (5.59)
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where OH.t/ and NH.t/ are defined in (5.49). Define

Oxc.t/
$D �
.Oxc
1.t//

T � � � .Oxc
L.t//

T�T

Then, it is derived from the first equation of (5.33) and (5.59) that

Qx.t � 1/ D �
IT
0 ˙

�1.t � 1/I0
��1

IT
0˙

�1.t � 1/

�.I0x.t � 1/� Oxc.t � 1// D Ȯ .t � 1/ OH.t � 1/

�Qxa.t � 1/C Ȯ .t � 1/ NH.t � 1/A.t � 2/Qx.t � 2/
C Ȯ .t � 1/ NH.t � 1/� .t � 2/w.t � 2/ (5.60)

where Qxa.t � 1/ and Ȯ .t � 1/ are defined in (5.7) and (5.51), respectively. Next, it
follows from (5.55) and (5.60) that

�i.t � 1/ D Ȯ .t � 1/E
n OH.t � 1/

o OPi.t � 1/

C Ȯ .t � 1/E ˚ NH.t � 1/
�

A.t � 2/˚i.t � 1/

C Ȯ .t � 1/E ˚ NH.t � 1/
�
� .t � 2/Qw.t � 2/

�� T.t � 2/.In � Ki.t � 1/Ci.t � 1//T (5.61)

where OPi.t � 1/ is defined in (5.51). Therefore, (5.50) is obtained by substituting
(5.61) into (5.58). This completes the proof.

The intermediate variable ˚i.t/ is presented in (5.50) by a recursive form, and it
follows from (5.51) that ˚i.t/ is dependent on P.t � 1/ and ˙.t � 1/; thus, if the
initial values of P.t/ and ˙.t/ are given, then ˚i.t/ will be obtained. Notice that
˚i.t/ given by (5.50) will be used to derive the recursive form of ˙.t/.

Theorem 5.2 Define

ij
$D EfHi.t/ˇ Hj.t/g

Wij
$D Ef.In � Hi.t//ˇ .In � Hj.t//g

Vij
$D EfHi.t/ˇ .In � Hj.t//g

then the estimation error covariance matrix ˙ij.t/
$D E

n
ei.t/eT

j .t/
o
; i; j 2

f1; 2; : : : ;Lg is computed by

˙ij.t/ D ij ˝ Pij.t/C Vij ˝ Œ˚T
i .t/A

T.t � 1/C .In

�Ki.t/Ci.t// O� .t � 1/� C VT
ji ˝ ŒA.t � 1/˚j.t/
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C O� .t � 1/Œ.In � Kj.t/Cj.t//
T�C Wij ˝ ŒA.t � 1/

�P.t � 1/AT.t � 1/C O� .t � 1/� (5.62)

where Pij.t/.i D j/ is computed by (5.5), Pij.tjt/.i ¤ j/ is calculated by (5.8),
and O� .t � 1/ is defined by (5.6). Moreover, the optimal fusion estimation error
covariance matrix P.t/ in (5.33) is given by the following recursive form

P.t/ D f .P.t � 1/;Pii.t/;Pij.t/;Vij; ij;Wij„ ƒ‚ …
iD1;2;:::;LIjDi;iC1;:::;L

/ (5.63)

Note that each local estimation error covariance matrix

˙ii.t/
$D Efei.t/e

T
i .t/g

can be obtained by (5.62) for i D j and the relationship between the optimal fusion
estimation performance and each local compensated state estimation performance
given in (5.37) is

Tr.P.t// � Tr.˙ii.t//; i D 1; 2; : : : ;L (5.64)

Proof It follows from (5.48) and Lemma 5.2 that

VT
ji D Ef.In � Hi.t//ˇ Hj.t//g (5.65)

E
˚Qxi.t/QxT.t � 1/� D ˚T

i .t/;E
˚Qx.t � 1/QxT

j .t/
� D ˚j.t/ (5.66)

Meanwhile, it is derived from (5.1) and (5.37) that

ei.t/ D Hi.t/Qxi.t/C .In � Hi.t//A.t � 1/Qx.t � 1/
C.In � Hi.t//� .t � 1/w.t � 1/ (5.67)

Since Hi.t/ and In � Hi.t/, i D 1; 2; : : : ;L are all diagonal matrices, then it follows
from (5.67) and Lemma 5.1 that

˙ij.t/ D ij ˝ Pij.t/C Vij ˝ �
EfQxi.t/QxT.t � 1/g

�AT.t � 1/
�C Vij ˝ �

EfQxi.t/w
T.t � 1/g� T.t � 1/�

CEfŒIn � Hi.t/�ˇ Hj.t/g ˝ ŒA.t � 1/
�EfQx.t � 1/QxT

j .t/g
�C EfŒIn � Hi.t/�ˇ Hj.t/g

˝ �
� .t � 1/Efw.t � 1/QxT

j .t/g
�C Wij ˝ ŒA.t � 1/

�P.t � 1/AT.t � 1/C O� .t � 1/
i

(5.68)
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Therefore, (5.62) is obtained by substituting (5.55), (5.57), (5.65), and (5.66) into
(5.68). Under this condition, the recursive form of P.t/ is given by (5.63). Moreover,
(5.64) is obtained from (5.12). This completes the proof.

From the definition of ˙.t/, a procedure for the determination of ˙.t/ is given
by (5.62) in Theorem 5.2; thus, the weighting matrices ˝i.t/; i D 1; 2; : : : ;L are
computed by the first equation in (5.33). In this case, the optimal fusion estimate Ox.t/
is computed by substituting the weighting matrices and (5.37) into (5.32). Moreover,
for a given group of the probabilities � i

1; : : : ; �
i
�i
; i D 1; 2; : : : ;L satisfying (5.25),

according to Theorems 5.1 and 5.2, the computation procedures for the finite-
horizon fusion estimate with bandwidth and energy constraints can be summarized
as follows:

Algorithm 5.1

Step 1: Initialize fPii.0/; Oxi.0/; ˚i.0/gL
iD1, fPij.0/gL

jDi, P.0/, and Ox.0/.
Step 2: Calculate each local estimate and estimation error covariance matrices:

For i D 1 W L
Calculate Oxi.t/ by using (5.4)
Calculate Pii.t/ by using (5.5)
For j D i C 1 W L

Calculate Pij.t/ by using (5.8)
End

End

Step 3: Calculate each local compensated state estimate and L intermediate
variables:

For i D 1 W L
Calculate Oxc

i .t/ by using (5.37)
Calculate ˚i.t/ by using (5.50)

End
Step 4: Calculate the local estimation error covariance matrices of the compen-
sate state estimates

For i D 1 W L
Calculate ˙ii.t/ by using (5.62) with i D j
For j D i C 1 W L

Calculate ˙ij.t/ by using (5.62) with i ¤ j
End

End
Step 5: Calculate the fusion estimation error covariance matrix P.t/ and the
weighting matrices˝1.t/; : : : ;˝L.t/ by using (5.33).
Step 6: Calculate the finite-horizon fusion estimate Ox.t/ by using (5.32).
Step 7: Return to Step 2 and implement Steps 2–6 for obtaining Ox.t C 1/.
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It follows from Theorem 5.2 that the computation procedures for the error
covariance matrix ˙.t/ are only dependent on the probabilities of the introduced
binary variables. Therefore, it follows from (5.32) and (5.33) that the updating of
the weighting matrices˝i.t/, i D 1; 2; : : : ;L does not need to know the transmitting
situation of each component at time t. When the selecting probabilities � i

`.` D
1; 2; : : : ; �iI i D 1; 2; : : : ;L/ are known a priori, the weighting matrices can be
computed off-line, which helps reduce the computation burden of the fusion center.
Under this condition, it is concluded from (5.37) that if the selected components of
each local estimate Oxi.t/ are transmitted to the fusion center, then Algorithm 5.1 will
be easily implemented in practical applications, where each random matrix Hi.t/ in
(5.37) is obtained from the identification process of reorganized state estimate Oxr

i.t/.

5.4 Boundness Analysis of the Fusion Estimator

In this section, we will discuss the performance of the designed fusion estimator.

First, define &i
$D Œ� i

1; : : : ; �
i
�i
�T, and then it follows from (5.18) that there exists a

constant matrix Ui
` 2 R1��i such that

� i
` D Ui

`&i; ` D 1; 2; : : : ; nI i D 1; 2; : : : ;L (5.69)

where an arbitrary element of Ui
` is 1 or 0. In what follows, a probability selecting

criterion will be given in Theorem 5.3 such that the MSE of the designed fusion
estimator is bounded.

Theorem 5.3 Consider optimal fusion estimator associated with systems (5.1) and
(5.2) under the bandwidth and energy constraints.

(C1). The system (5.1) is uniformly completely controllable, i.e., there exists an
integer N > 0 and positive scalars �1; �2; such that the following inequality
holds for t � N

�1In �
tX

jDt�NC1
�.t; j/� . j/Qw. j/� T. j/�T.t; j/ � �2In (5.70)

where �.t; j/ is the state-transition matrix satisfying

8
<

:
�.t; j/ D

t�jQ

`D1
A.t � `/; t > j; �. j; j/ D In

�. j; t/ D ��1.t; j/; t < j
(5.71)
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(C2). There exists at least one measurement equation yi.t/ in (5.2) such that the
ith subsystem (which is described by (5.1) and yi.t/) is uniformly completely
observable, i.e., there exist an integer N > 0 and positive scalars �3, �4,
such that the following inequality holds for t � N

�3In �
tX

jDt�NC1
�T. j; t/CT

i . j/Q�1
vi
. j/Ci. j/�. j; t/ � �4In (5.72)

(C3). At each time t; there exists at least a set of selecting probabilities satisfying

TrfMi ˝ ŒA.t � 1/P.t � 1/AT.t � 1/�g < TrfP.t � 1/g (5.73)

where Mi D diagf1� Ui
1&i; : : : ; 1 � Ui

n&ig and Ui
` can be obtained by (5.69).

It can be concluded that if the conditions C1, C2, and C3 hold, then the MSE of
the designed fusion estimate Ox.t/ will be bounded, i.e., there exists a scalar p0 such
that

lim
t!1 TrfP.t/g � p0 (5.74)

Proof For the ith subsystem, it follows from Theorem 7.4 in [8] that the optimal
local estimate given by (5.4), (5.5), and (5.6) is uniformly asymptotically stable
when the conditions C1 and C2 hold. In this case, it follows from Lemma 7.1 in [8]
that if Pii.0/ � 0, then Pii.t/ is uniformly bounded for all t � N, i.e., there exists a
scalar ˛i > 0 such that Pii.t/ � ˛iIn, t � N, which implies that

Tr.Pii.t// � n˛i; t � N (5.75)

Moreover, it follows from (5.70) that O� .t/ is bounded, i.e., there exists a scalar ˇ >
0 such that

Trf O� .t/g � ˇ (5.76)

Define OWi.t/
$D ii ˝ Pii.t/C Wii ˝ O� .t �1/, then it follows from (5.75) and (5.76)

that there exist a scalar Omi > 0 such that

Trf OWi.t/g � Omi; t � N (5.77)
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On the other hand, it is derived from the definition of Vij.t/ in Theorem 5.2 and
(5.47) that

Vii D

2

6
6
6
4

0 Ef�1.t/.1 � �2.t/g
Ef�2.t/.1 � �1.t/g 0

:::
:::

Ef�n.t/.1 � �1.t/g Ef�n.t/.1 � �2.t/g
� � � Ef�1.t/.1 � �n.t/g
� � � Ef�2.t/.1 � �n.t/g
: : :

:::

� � � 0

3

7
7
7
5

(5.78)

Then, taking the property of the operator Tr.�/ into account, one has


TrfVii ˝ Œ˚T

i .t/A
T.t � 1/C .In � Ki.t/Ci.t// O� .t � 1/�g D 0

TrfVT
ii ˝ ŒA.t � 1/˚i.t/C O� .t � 1/.In � Ki.t/Ci.t//T�g D 0

(5.79)

TrfWii ˝ ŒA.t � 1/P.t � 1/AT.t � 1/�g
D TrfMi ˝ ŒA.t � 1/P.t � 1/AT.t � 1/�g (5.80)

where Mi is defined in C3. Subsequently, it is derived from (5.80) that if the
condition (5.73) holds, there exists a scalar dp.t � 1/ such that

TrfWii ˝ ŒA.t � 1/P.t � 1/AT.t � 1/g
D dp.t � 1/TrfP.t � 1/g; 0 < dp.t � 1/ < 1 (5.81)

Meanwhile, it follows from (5.64) that there exists a scalar d˙ii.t/ such that

TrfP.t/g D d˙ii.t/Trf˙ii.t/g .0 < d˙ii.t/ � 1/ (5.82)

Then, according to (5.62), (5.79), (5.81), and (5.82), Tr.˙ii.t// is rewritten as

Tr.˙ii.t// D Trf OWi.t/g C dp.t/TrfP.t � 1/g

D Trf OWi.t/g C
t�NX

`D1

((
Ỳ

�D1
dp.t � �/d˙ii.t � �/

)

�Trf OWi.t � `/gg C dp.t � N � 1/

�
(

t�NY

`D1
dp.t � `/d˙ii.t � `/

)

TrfP.t � N C 1/g (5.83)
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It is noted from (5.81) and (5.82) that there exists a scalar dp˙ , 0 � dp˙ < 1 such
that

dp.t � �/d˙ii.t � �/ � dp˙; t � N and 8� (5.84)

Therefore, it follows from (5.77), (5.83), and (5.84) that the following inequality

Trf˙ii.t/g � Omi C
(

t�NX

`D1
d`p˙

)

Omi C dp.t � N � 1/

�
(

t�NY

`D1
dp.t � `/d˙ii.t � `/

)

TrfP.t � N C 1/g (5.85)

holds for t � N. Moreover, it is derived from (5.77), (5.83), and (5.85) that

8
ˆ̂<

ˆ̂
:

lim
t!1


dp.t � N � 1/


t�NQ

`D1
dp.t � `/d˙ii.t � `/

��
D 0

lim
t!1


t�NP

`D1
d`p˙

�
D dp˙

1 � dp˙

(5.86)

Then, taking limit on both sides of (5.85) yields

lim
t!1 Tr.˙ii.t// � Omi C dp˙

1 � dp˙
Omi

which implies that there exists an integer N0 > N > 0 such that

Tr.˙ii.t// � p0; t � N0 (5.87)

where p0 D Omi C dp˙

1 � dp˙
Omi. Therefore, (5.74) is obtained from (5.64) and (5.87).

The proof is thus completed.
Generally, it is considered that the following optimal selecting probabilities

f&�
1 ; &

�
2 ; : : : ; &

�
L g

in the finite time interval Œ1;T� can be obtained by solving the following optimiza-
tion problem:

min
f&1;&2;:::;&Lg

1
T

TP

tD1
TrfP.t/g

s:t: (5.25) and 0 � � i
hi

� 1; i D 1; 2; : : : ;L
(5.88)
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where the optimal estimation error covariance matrix P.t/ is computed by the second
equation in (5.33). For this optimization problem, an explicit optimal solution is
far from clear at the present stage. However, the objective function and constraint
conditions in (5.88) are independent of the sequence of the measurements, and
thus, this problem can be solved off-line. In this case, it is reasonable that this
optimization problem may be solved by using the exhaustive search algorithm. On
the other hand, it can be seen from Theorem 5.3 that if the systems (5.1) and (5.2)
satisfy C1 and C2, while the selecting probabilities are determined by C3, then the
MSE of the designed fusion estimator will not diverge, which implies that the fusion
estimation performance will not degrade seriously under the bandwidth and energy
constraints.

For the systems (5.1) and (5.2) with constant system matrices, i.e., the systems
(5.1) and (5.2) reduce to the following form:

x.t C 1/ D Ax.t/C � w.t/ (5.89)

yi.t/ D Cix.t/C vi.t/; i D 1; 2; : : : ;L (5.90)

where w.t/ and vi.t/ are zero-mean white noises with stationary covariances
Qw.t/ 
 Qw and Qvi .t/ 
 Qvi , respectively. Then, one has the following theorem
for the convergence of the MSE of the fusion estimator:

Theorem 5.4 Consider the optimal fusion estimator for the systems (5.89) and
(5.90) under the bandwidth and energy constraints.

(C5) The linear stochastic system (5.89) is completely controllable, that is,

rank.Œ�;A�; : : : ;An�1� �/ D n (5.91)

Meanwhile, for the L measurement equations (5.90), there exists at least one
observation matrix Ci satisfying

rank.ŒCT
i .CiA/

T � � � .CiAn�1 /T�T/ D n (5.92)

where the condition (5.92) implies that the ith subsystem is completely
observable.

(C6) At each time t; there exists at least a set of selecting probabilities satisfying

�i.&i/
$D �maxfATMiAg < 1 (5.93)

or
(
�i.&i/

$D �maxfATMiAg D 1

�maxfATMiAg ¤ �minfATMiAg (5.94)

where Mi D diagf1 � Ui
1&i; : : : ; 1 � Ui

n&ig and Ui
` can be obtained by (5.69).
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It can be seen that if the systems (5.89) and (5.90) satisfy C5, and the selecting
probabilities satisfy C6, then the limit of the MSE exists, i.e.,

lim
t!1 Tr.P.t// D p (5.95)

Proof For the ith subsystem, it is well known that if the conditions (5.91) and (5.92)
hold, the optimal local estimation error variance matrix Pii.t/ will be convergent,
i.e., lim

t!1 Pii.t/ D Pii. This implies that there exists an integer N > 0 such that

Pii.t/ D Pii .t � N/ (5.96)

On the other hand, it follows from the property of the operator ˝ that

TrfMi ˝ ŒAP.t � 1/AT�g D Tr

8
<

:
M

1
2
i AP.t � 1/AT

 

M
1
2
i

!T
9
=

;

D Tr
˚
ATMiAP.t � 1/� (5.97)

Since ATMiA is a symmetric matrix and P.t � 1/ is a positive-definite matrix, it
follows from the results in [11] that

TrfATMiAP.t � 1/g � �maxfATMiAgTrfP.t � 1/g (5.98)

Consequently, if (5.93) holds, it is derived from (5.97) and (5.98) that

TrfMi ˝ ŒAP.t � 1/AT�g � TrfP.t � 1/g
� TrfATMiAgTrfP.t � 1/g � TrfP.t � 1/g < 0

which implies that

TrfMi ˝ ŒAP.t � 1/AT�g < TrfP.t � 1/g (5.99)

Moreover, it is concluded from the proof of Lemma 1 in [11] that the symmetric
matrix ATMiA is decomposed as

D D UT
�
ATMiA

�
U (5.100)

where D is a diagonal matrix formed by the eigenvalues of ATMiA and U is an
orthogonal matrix whose columns are normalized eigenvectors. Then, it is derived
from (5.100) that

TrfATMiAP.t � 1/g D TrfUTP.t � 1/UDg (5.101)
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According to the property of the matrix trace and the matrix structure of D, it is
concluded from (5.101) that the equation

Tr
˚
UTP.t � 1/UD

� D �max.D/Tr
˚
UTP.t � 1/U

� D �max.D/TrfP.t � 1/g

holds if and only if all the eigenvalues of ATMiA are the same. This means that if
(5.94) holds, then (5.99) can also be obtained.

In what follows, based on the result (5.99), it will be proved that the MSE of the
fusion estimator converges to a steady-state value.

From Theorem 5.3, one can obtain from (5.96) and (5.99) that there exists a
positive scalar Np0 such that

Trf˙ii.t/g � Np0 (5.102)

Define

OMi.t/
$D ii ˝ Pii.t/C Wii ˝ �

� Qw�
T
�

then it follows from (5.102) that

OMi
$D lim

t!1
OMi.t/ D ii ˝ Pii C Wii ˝ .� Qw�

T/

In this case, it is derived from (5.83) and (5.99) that for t � N

Trf˙ii.t/g D �.t/C dp.t � N � 1/

�


t�NQ

`D1
dp.t � `/d˙ii.t � `/

�
TrfP.t � N C 1/g (5.103)

where

�.t/ D Trf OMig C
t�NX

`D1

((
Ỳ

�D1
dp.t � �/d˙ii.t � �/

)

Trf OMig
)

Note that the sequence f�.t/jt D N0;N0 C 1; : : : ;1g is monotonically increasing
and the variable �.t/ is bounded from (5.102); hence, the limit of �.t/ exists, i.e.,

lim
t!1�.t/ D � (5.104)
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Moreover, it follows from the first equation of (5.86) that there exists an integer
N0 > N > 0 such that

dp.t � N � 1/

(
t�NY

`D1
dp.t � `/d˙ii.t � `/

)

�TrfP.t � N C 1/g D 0; t � N0 (5.105)

Therefore, it follows from (5.62), (5.79), (5.80), and (5.103), (5.104), and (5.105)
that the limit of Trf˙ii.t/g exists, i.e.,

lim
t!1 Trf˙ii.t/g D lim

t!1fTrfii ˝ Pii.t/

CWii ˝ ŒAP.t � 1/AT C � Qw�
T�gg D Trf˙iig (5.106)

Then, according to (5.106), in the structure of TrfWii ˝ ŒAP.t � 1/AT C � Qw�
T�g

and the recursive form of P.t/ in (5.63), one can obtain that lim
t!1 P.t/ D P which

implies that (5.95) holds. The proof is thus completed.
For the time-invariant systems (5.89) and (5.90) satisfying C5, it is concluded

from Theorem 5.4 that if the selecting probabilities &1; : : : ; &L satisfy C6, then the
objective function in (5.88) will be convergent, that is,

lim
T!1

1

T

TX

tD1
TrfP.t/g D pf&1;&2;:::;&Lg

Under this condition, a group of suboptimal selecting probabilities &�
1 ; &

�
2 ; : : : ; &

�
L

can be obtained by solving the following optimization problem:

min
f&1;&2;:::;&Lg

pf&1;&2;:::;&Lg

s:t: W

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

nP

`D1
Ui
`&i D ri.1 � �i/ .i D 1; 2; : : : ;L/

0 � Ui
`&i � 1.` D 1; 2; : : : ; n/8

<

:

�max
˚
ATMiA

�
< 1 or

�max
˚
ATMiA

� D 1

�max
˚
ATMiA

� ¤ �min
˚
ATMiA

�

(5.107)

where

MiD diagf1 � Ui
1&i; : : : ; 1 � Ui

n&ig

and Ui
` represents the relationship matrix between � i

` and &i (see (5.69)); ri,
i D 1; 2; : : : ;L denote the finite-bandwidth constraints; and �i, i D 1; 2; : : : ;L
represent the expected energy-saving rates (ESRs) that can reflect the energy-saving
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efficiency. Compared with the original problem (5.88), the constraint conditions
(5.93) and (5.94), which are added in (5.107), help decrease the searching range;
thus, the time consumption of calculation may be shortened by using the same
exhaustive search algorithm. Notice that if all the selecting probabilities &i, i D
1; 2; : : : ;L satisfy C6, then the solution of the optimization problem (5.107) is
globally optimal.

The controllability and observability conditions C1, C2, and C5 in Theorems 5.3
and 5.4, which are only dependent on the system parameters, can be easily satisfied
in the practical applications. Particularly, it follows from the result in [8] that the
conditions C1 and C2 are equivalent to C5 when the systems (5.1) and (5.2) reduce
to (5.89) and (5.90). On the other hand, it can be seen from the proof of Theorem 5.4
that if the condition C5 and the inequality (5.99) (i.e., TrfMi ˝ ŒAP.t � 1/AT�g <
TrfP.t � 1/g) hold, then the MSE of the designed fusion estimator will converge to
a steady-state value. Notice that the condition (5.99) is dependent on the variable
P.t/, which implies that it is difficult to obtain an effective probability selecting
range such that the MSE of the designed fusion estimator is convergent. In this
sense, though the conditions (5.93) and (5.94) are given with certain conservatism,
it is easily judged by (5.93) and (5.94) that whether a group of selecting probabilities
can guarantee convergence of the MSE or not.

When the system matrix A.t/ in the time-varying system (5.1) is norm bounded,
then there exists a scalar �1 > 0 such that �max.AT.t/A.t// � �1, 8t. In this case, it
follows from (5.97) and (5.98) that there exists a group of upper bounds f i

v.&i; �1/,
i D 1; 2; : : : ;L, such that

�max
�
AT.t � 1/MiA.t � 1/

� � f i
v.&i; �1/; 8t

Then, it is concluded from Theorem 5.3 that a straightforward judgment criterion
for the time-varying systems (5.1) and (5.2) is given as follows: if there exists at
least one upper-bound satisfying f i

v.&i; �1/ < 1, and the conditions C1 and C2 hold,
then the MSE of the fusion estimator is bounded.

When only energy constraint case is considered in some practical applications,
based on Theorems 5.3 and 5.4, a simple judgment criterion, which is related to the
expected ESR, will be given in Corollary 5.1 such that the MSE of the designed
fusion estimator is bounded or convergent.

Corollary 5.1 Consider the time-varying systems (5.1) and (5.2) satisfying C1 and
C2, if there exists at least one expected ESR �i satisfying

Trf�iAT.t � 1/A.t � 1/P.t � 1/�g < TrfP.t � 1/g (5.108)

for each time t; then the MSE of the corresponding fusion estimator will be bounded,
i.e., there exists a scalar p1 such that lim

t!1 TrfP.t/g � p1. On the other hand, when

the dynamic target and sensor measurements are described by (5.89) and (5.90),
and if systems (5.89) and (5.90) satisfy C5, and there exists at least an expected
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ESR �i satisfying

ui.�i/
$D �maxf�iA

TAg < 1 (5.109)

Then the limit of the MSE of the fusion estimator exists, i.e., lim
t!1 Tr.P.t// D p2:

5.5 Simulations

Consider a networked multisensor fusion system, where the maneuvering target is
described by the following state-space model [3, 12]:

x.t C 1/ D Ax.t/C � w.t/ (5.110)

where

A D
�
1 T0
0 1

�
; � D

�
0:5T20

T0

�

and T0 is the sampling period and w.t/ is a zero-mean white noise with covariance
Qw. The state is x.t/ D Œs.t/ Ps.t/�T, where s.t/ and Ps.t/ are the position and velocity
of the moving target at time t, respectively. Suppose that this maneuvering target is
monitored by two sensors, and the measurement equations are described by

yi.t/ D Cix.t/C vi.t/; i D 1; 2 (5.111)

where C1 D C2 D I2. v1.t/ and v2.t/ are uncorrelated zero-mean white noises
with covariances Rv1 and Rv2 , respectively, and they are also uncorrelated with w.t/.
Since

rank.Œ�;A� �/ D 2; rank.ŒCT
i ; .CiA/

T�T/ D 2 (5.112)

the judgment condition C5 holds. For this example, it is assumed that each sensor
has enough processing capabilities to compute local estimate. However, to satisfy
the finite communication bandwidth and the limited energy of each sensor, at most
one component of Oxi.t/ is allowed to be transmitted to the fusion center, i.e., r1 D
r2 D 1. Under this condition, it follows from (5.14) that

H1
1 D H1

2 D diagf1; 0g; H2
1 D H2

2 D diagf0; 1g (5.113)
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Then, it is derived from (5.113) and Theorem 5.1 that the compensated state
estimates xc

i .t/.i D 1; 2/ are given by

Oxc
i .t/ D diagf� i

1.t/; �
i
2.t/gOxi.t/

Cdiagf1 � � i
1.t/; 1 � � i

2.t/gAOx.t � 1/ (5.114)

where � i
1.t/ and � i

2.t/; i D 1; 2 are binary random variables satisfying

Probf� i
1.t/ D 1g D� i

1; Probf� i
2.t/ D 1g D� i

2

Then, it follows from (5.69) that Ui
1 D Œ1 0� and Ui

2 D Œ0 1�, and thus, one has

M1 D diag
˚
1 � �11 ; 1 � �12

�
; M2 D diag

˚
1� �21 ; 1 � �22

�

In the simulation, choose

T0 D 0:5 s; Qw D 0:3; Rv1 D diagf0:5; 0:1g; Rv2 D diagf0:1; 0:3g
and the initial values are taken as

Ox.0/ D Ox1.0/ D Ox2.0/ D Œ0:15 0:25�T

P.0/ D diagf0:09; 0:21g

˚1.0/ D
�
0:02 0:03

0:02 0:01

�

˚2.0/ D
�
0:05 0:01

0:03 0:02

�

5.5.1 Bandwidth Constraint Case

To satisfy the constraints of the finite communication bandwidth, only one compo-
nent of each local estimate Oxi.t/, i 2 f1; 2g is randomly transmitted to the fusion
center at each time step. Therefore, the binary random variables � i

1.t/ and � i
2.t/

satisfy
2P

`D1
� i
`.t/ D 1, i D 1; 2, which means that � i

1 D 1 � � i
2. First, consider the

situation where �11 D 0 and �21 D 1, then it follows from C6 that

�1.&1/ D 1:25; �2.&2/ D 1 (5.115)

�max.A
TM2A/ ¤ �min.A

TM2A/ (5.116)

By taking (5.112), (5.115), and (5.116) into account, it follows from Theorem 5.4
that the MSE of the fusion estimator Ox.t/ will converge to a steady-state value.
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Fig. 5.1 (a) Comparison of the estimation performances for the fusion estimates Ox.t/ and Oxo.t/ and
local compensated state estimates Oxc

i .t/; i D 1; 2. (b) Comparison of the estimation performances
for the fusion estimates Ox.t/ and local estimates Oxi.t/

Then, applying Algorithm 5.1, the estimation performance (assessed by the trace of
estimation error covariance matrix) of local compensated state estimates Oxc

i .t/; i D
1; 2; local estimates Oxi.t/; i D 1; 2; and fusion estimates Ox.t/ and Oxo.t/ are shown
in Fig. 5.1. It can be seen from Fig. 5.1a that the estimation performance of fusion
estimate Ox.t/ is better than that of each local compensated state estimate. However,
the estimation performance of Ox.t/ is worse than that of Oxo.t/, which implies
that the bandwidth constraints degrade the estimation performance. On the other
hand, Fig. 5.1b shows that though the estimate Ox.t/ is obtained under the limited
communication bandwidth, the estimation performance of the fusion estimate Ox.t/
is still better than that of each local estimate.

For this networked fusion estimation system with communication bandwidth
constraints, it can be obtained from the inequalities (5.93) and (5.94) that 0:25 �
� i
1 � 1. Then, it follows from Theorem 5.4 that when one chooses 0:25 �
�11 � 1; 0 � �21 � 1 or 0:25 � �21 � 1; 0 � �11 � 1, the corresponding
MSE of the fusion estimate Ox.t/ will be convergent. In this sense, by solving
the optimization problem (5.107), one obtains a group of suboptimal selecting
probabilities �11 D 0, �21 D 1. To verify the above results, by taking different
selecting probabilities, the corresponding estimation performances are depicted in
Fig. 5.2. It can be seen from Fig. 5.2a that the MSE of the fusion estimate is minimal
when the selecting probabilities are only taken as �11 D 0 and �21 D 1. Particularly,
Fig. 5.2a also shows that all MSEs converge to some steady-state values for the
selecting probabilities satisfying C6, which verifies the theoretical analysis results

in Theorem 5.4. Moreover, define �i.�
i
1/

$D TrfMi ˝ ŒAP.t � 1/AT�g � TrfP.t � 1/g,
then �i.�

i
1/; i D 1; 2 for different groups of selecting probabilities are depicted in

Fig. 5.2b, which implies that the criterion C6 is effective.
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Fig. 5.2 (a) Comparison of the estimation performances with different selecting probabilities. (b)
The trajectories of �i.�

i
1/

5.5.2 Energy Constraint Case

In this subsection, only the energy constraint issue will be considered. According
to the proposed communication strategy, each local estimate Oxi.t/; i 2 f1; 2g is
intermittently transmitted to the fusion center for reducing the energy consumption,
and each compensated state estimate Oxc

i .t/; i 2 f1; 2g is designed based on the one-
step prediction of fusion estimate Ox.t�1/, i.e., the local compensated state estimates
are given by

Oxc
i .t/ D �i.t/Oxi.t/C .1 � �i.t//AOx.t � 1/; i D 1; 2 (5.117)

where the random binary variable �i.t/ satisfies Probf�i.t/ D 1g D Ef�i.t/g D
1 � �i and �i denotes the expected energy-saving rate. To specify the energy-
saving efficiency, the practical energy-saving rate ci.t/ is defined as ci.t/ D 1 ��

tP

TD1
�i.T/

��
t, which helps give a quantitative relationship between the expected

and practical energy-saving rates.
Consider the situation where �1 D 0:2 and �2 D 0:3, then it follows from

Corollary 5.1 that the MSE of the fusion estimates will converge to a steady value
as time goes to infinity. Meanwhile, the expected energy-saving rates �i, i D 1; 2

and practical energy-saving rates ci.t/, i D 1; 2 are depicted in Fig. 5.3. It can
be seen from Fig. 5.3 that the practical energy-saving rates approach the expected
energy-saving rates as time increases, which implies that this energy-saving strategy
performs well. On the other hand, the condition �1 D 0:1 yields u1.�1/ < 1, then it
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Fig. 5.3 Relationship between the practical energy-saving rate (ESR) ci.t/ and the expected
energy-saving rate �i
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Fig. 5.4 Relationship between the expected energy-saving rates and fusion estimation perfor-
mances

follows from Corollary 5.1 that the limit of MSE for the fusion estimator will always
exist for choosing an arbitrary energy-saving rate �2. The relationships between the
expected energy-saving rates and the fusion estimation performance are depicted in
Fig. 5.4. It is shown from Fig. 5.4 that the MSE of the fusion estimator converges
to a steady-state value, which verifies the result of Corollary 5.1. Figure 5.4 also
shows that the fusion estimation performance becomes better with the decrease
of the expected energy-saving rates, which is as expected for this energy-saving
strategy.
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Fig. 5.5 Local estimation performances for different compensating strategies

To demonstrate the advantage of the proposed compensating strategy, it is com-
pared with the compensating strategy of (5.45). Note that the idea of (5.45) has been
used in [13] to solve the fusion estimation problem with limited communication rate.
In this case, each compensated state estimate of x.t/ can be described by

Oxc�
i .t/ D �i.t/Oxi.t/C .1 � �i.t//AOxc�

i .t � 1/ (5.118)

where the binary variable �i.t/ has been defined in (5.117). Thus, it follows from

the proof of Theorem 5.2 that the local estimation error covariance matrix ˙o
ii .t/

$D
Ef.x.t/ � Oxc�

i .t//.x.t/ � Oxc�
i .t//

Tg is computed by

˙o
ii.t/ D .1� �i/Pii.t/C �i.A˙

o
ii.t � 1/AT C � Qw�

T/ (5.119)

For �1 D 0:2 and �2 D 0:3, the relationship between Tr.˙ii.t// and Tr.˙0
ii .t// is

depicted in Fig. 5.5, where the computation procedures for ˙ii.t/ and ˙0
ii .t/ have

the same initial values. It can be seen from the simulations that the estimation
performance of local compensated state estimate in (5.117) is better than that given
by (5.118).

5.5.3 Bandwidth and Energy Constraints Case

When the bandwidth and energy constrains are taken into account simultaneously,
it follows from the proposed communication strategy that at most one component of
the local estimate Oxi.t/ is allowed to be transmitted to the fusion center at each time
step. Under this condition, the local compensated state estimates are computed by

(5.114), and the random variables � i
1.t/ and � i

2.t/ in (5.114) satisfy


2P

`D1
� i
`.t/

�
2

f0; 1g. Thus, it follows from (5.26) that the expected ESR �i for the ith sensor is
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given by

�i D 1 � E

(
2X

`D1
� i
`.t/

)

D 1 �
2X

`D1
� i
`

which means that � i
1 D 1 � �i � � i

2. In this case, the expected and practical total
energy-saving rates for all sensors are given by

Ec D 1

2

2X

iD1
Prob

(
2X

`D1
� i
`.t/ D 0

)

D 1 � 1

2

2X

iD1

2X

`D1
� i
` (5.120)

c.t/ D
 

tX

TD1

2X

`D1
�1` .T/C

tX

TD1

2X

`D1
�2` .T/

!,

2t (5.121)

and the notation �i.&i/ in Theorem 5.4 is simplified as �i.�i; �
i
1/.

For this networked fusion estimation system, the power-efficient dimensionality
reduction approach in [3] can also solve the problem of bandwidth and energy
constraints by reducing the communication traffic at each time step. From Sec-

tion II in [3], the sensor i should send the dimension-reduced signal zi.t/
$D	 OCi.t/Œyi.t/ � Oyi.tjt � 1/�



2 < to the fusion center, where Oyi.tjt � 1/ D Ci.t/A.t �

1/Oxi.t � 1/. When it is assumed that there is no noise in the fusion center, the
compression matrices OCi.t/.i D 1; 2; : : : ;L/ can be obtained by solving the similar
problem (5.7) in [3]. Different from the proposed communication strategy, all
sensors must send information to the fusion at each time step, and the fusion
estimation algorithm in [3] is implemented under the centralized fusion framework.
However, the experimental studies in [14] show that the communication tasks
consume the largest portion of the total energy needed for the overall WSN. In
this sense, if each dimension-reduced signal zi.t/ is intermittently sent to the fusion
center for the fusion estimation algorithm in [3], then the performance of the
corresponding centralized fusion estimator may be worse than that of the proposed
fusion estimator. This is because the centralized fusion method has weaker fault-
tolerant abilities as compared with the distributed fusion method [9].

To illustrate the above result, it is considered that zi.t/ is randomly sent to
the fusion center at each time step, where the random variable �i.t/ 2 f0; 1g
denotes whether the signal zi.t/ is sent to the fusion center or not. Meanwhile, let
PD.t/ denote the centralized fusion estimation error covariance matrix based on the
incomplete information zi.t/. Then, for different expected energy-saving rates �i,
the trajectories of Tr.P.t// and Tr.PD.t// are plotted in Fig. 5.6, where the initial
values of P.t/ and PD.t/ are different. It can be seen from (a) of Fig. 5.6 that the
performance of the fusion estimator in [3] is better than that of the proposed fusion
estimator when each sensor should send information to the fusion center at each
time step. However, when each sensor intermittently sends information to the fusion
center for reducing energy consumption, it can be seen from (b) to (c) of Fig. 5.6
that the trace of the error covariance matrix PD.t/ becomes large as time increases,
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Fig. 5.6 Comparison of the estimation performance for the designed fusion estimator and the
fusion estimator based on the power-efficient approach in [3]

but the trace of the error covariance matrix P.t/ converges to a steady-state value.
Moreover, it can be seen from (b) to (c) of Fig. 5.6 that Tr.PD.t// > Tr.P.t//.t > 3/,
which implies that the performance of the proposed fusion estimator is better than
that of the centralized fusion estimator in [3] with intermittent transmissions.

In what follows, the situation for the proposed communication strategy will be
considered, where �1 D 0:2 and �2 D 0:4. According to the condition C6 of
Theorem 5.4, �2.�2; �21 / is always larger than one, and there exists an approximate
range Œ0:38; 0:70� of �11 such that �1.�1; �11 / � 1. Then, it can be seen from
Theorem 5.4 that if 0:38 � �11 � 0:70 and 0 � �21 � 0:60, then the MSE
of the designed fusion estimator will converge to a steady-state value. Therefore,
choose �11 D 0:70 and �21 D 0, then the fusion estimator Ox.t/ is obtained from
Algorithm 5.1. The trajectories of Ox.t/ and x.t/ are depicted in Fig. 5.7, which
shows that the fusion estimator Ox.t/ can track the maneuvering target well with
bandwidth and energy constraints. Meanwhile, it can be seen from (a) of Fig. 5.8
that the trace of the covariance matrix P.t/ converges to a steady-state value and the
performance of the fusion estimator is better than that of the local compensated state
estimates. On the other hand, to compare the actual estimation precision between the
fusion estimates and local compensated state estimates, the root-mean-square errors
(RMSEs) for those estimators are computed with 100 Monte Carlo runs by using
the RMSE formula in [15]. Then the trajectories of different RMSEs are plotted in
(b) of Fig. 5.8, which shows that the estimation precision of the fusion estimator
Ox.t/ is higher than that of each local compensated state estimate. It can also be
seen from Fig. 5.8 that the estimation precision of the fusion estimator Ox0.t/ is still
higher than that of the Ox.t/, which implies that the bandwidth and energy constraints
may deteriorate the fusion estimation performance of the networked fusion systems.
Moreover, Fig. 5.9 shows that the error between the practical and expected total
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Fig. 5.7 Trajectories of x.t/ and the fusion estimator Ox.t/ for �11 D 0:7 and �21 D 0
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Fig. 5.8 (a) The traces of the estimation error variance matrix for the fusion estimates and local
compensated state estimates. (b) The RMSEs for the fusion estimates and local compensated state
estimates

energy-saving rates becomes smaller as time increases, which implies that the
proposed energy-saving strategy is quite straightforward yet efficient. Therefore, it
can be concluded from the above discussion that when the selecting probabilities are
taken as �11 D 0:7 and �21 D 0 for this example, the designed fusion estimator not
only satisfies the bandwidth constraint condition (r1 D r2 D 1) but also reduces
about 30% energy consumptions for all sensors. Particularly, the RMSE of the
designed fusion estimator is bounded under the mixed constraint conditions.
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Fig. 5.9 The energy-saving effect of the proposed fusion estimation algorithm

5.6 Conclusions

In this chapter, the distributed finite-horizon fusion estimation problem was inves-
tigated for a class of networked multisensor fusion systems in a bandwidth- and
energy-constrained WSN. Multiple binary random variables with known statistical
properties were introduced to model the mixed constraints of bandwidth and energy.
An optimal recursive fusion estimator was designed in the linear minimum variance
sense by using the optimal fusion algorithm weighted by matrices. Moreover, some
sufficient conditions, which were related to the selecting probabilities and system
parameters, have been obtained such that the MSEs of the designed fusion estimator
were bounded or convergent.
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Chapter 6
H1 Fusion Estimation for WSNs
with Quantization

6.1 Introduction

By quantization, one is able to reduce the size of data packet containing the
quantized signal and thus is able to satisfy the bandwidth constraint of the sensor
network and reduce communication costs from the sensors to the fusion estimator.
In this chapter, a design method for the H1 multisensor fusion estimator will be
presented for sensor networks with quantized local estimates. The H1 estimator
does not make any assumption on the statistics of the process and measurement
noises; the only assumption is that the external disturbance has bounded energy
[1, 2]. A group of finite-level logarithmic quantizers [3] are introduced to deal
with the bandwidth constraints, and the corresponding fusion estimation error
system model is established. By using the discrete-time bounded real lemma, a
convex optimization problem on the choices of the optimal weighting matrices and
quantization parameters is established in terms of linear matrix inequalities (LMIs).
Moreover, it is proved that the performance of the designed fusion estimator is better
than that of each local quantized estimator.

6.2 Problem Statement

Consider a dynamical stochastic process described by the following state-space
model:

x.t C 1/ D Ax.t/C Bw.t/ (6.1)
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L sensors are deployed to monitor the outputs of the process, and the measurement
equations are given by

yi.t/ D Cix.t/C Diw.t/; i D 1; 2; : : : ;L (6.2)

where x.t/ 2 <n is the state of the process, yi.t/ 2 <qi is the measured output from
sensor i. A, B, Ci, and Di are constant matrices with appropriate dimensions, where
A is Schur stable. w.t/ 2 l2Œ0;1/ is the noise signal. It is assumed that each sensor
has the processing capabilities to compute the local estimate Oxi.t/ which is given by

Oxi.t C 1/ D Afi Oxi.t/C Bfi yi.t/ (6.3)

where Afi 2 <n�n and Bfi 2 <n�qi are filter gain matrices to be determined such
that the corresponding estimation error system ensures an H1 performance level �i.
Note that the filter matrices Afi and Bfi can be designed by using the result in [2].
Particularly, it is well known that the designed filter matrix Afi must be Schur stable
if the system matrix A is Schur stable.

Remark 6.1 For ease of presenting the main idea, the process noise is considered to
be the same as the measurement noise. When the process and measurement noises
are different, the corresponding state-space model can be transformed to the form
as in (6.1) and (6.2) by using the augmentation method.

When the local estimate generated by the sensor is transmitted to the fusion
center through communication networks, it should be quantized before being
transmitted. Due to the finite communication bandwidth, only finite-level quantized
local estimates from the sensor are sent to the fusion center. Then, consider a
logarithmic quantization strategy:

Qi.�/ D �
qi1.�/ qi2.�/ � � � qin.�/

�T 2 <n�1

for the ith local estimate Oxi.t/, and qij.�/ 2 <, j 2 f1; 2; : : : ; ng is called quantizer
�ij, which is used to quantize the jth component of the vector signal Oxi.t/. The set of
the quantization level of the quantizer �ij is represented by

Uij D
n
˙u.ij/„ W u.ij/„ D �„

ij u
.ij/
0 ;„ D 0;˙1;˙2; : : :

oS f0g
0 < �ij < 1; u

.ij/
0 > 0

where �ij is the quantization density. Then the logarithmic quantizer qij.�/ is defined
as follows:

qij.v/ D

8
<̂

:̂

u.ij/„ ; 1
1Cıij

u.ij/„ < v � 1
1�ıij

u.ij/„
0; v D 0

�qij.�v/; v < 0

(6.4)
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where

ıij
$D 1 � �ij

1C �ij

�
0 < ıij < 1

�
(6.5)

It is known from [3] that qij.v/ can be expressed as qij.v/ D .1C Q�ij/v for certain
Q�ij satisfying j Q�ijj � ıij. Moreover, it is known that a larger ıij leads to a coarser
�ij. This implies that the size of the transmitted data packet will be decreased as the
value ıij increases. Therefore, it is reasonable to model the bandwidth constraints
via ıij as follows:

nX

jD1
ıij � ı0i ; i D 1; 2; : : : ;L (6.6)

where ı0i ; i 2 f1; 2; : : : ;Lg is the minimum values satisfying the communication
capacity of the channel i, and it is assumed that those lower bounds are known a
priori. Notice that the quantization parameters ıij, i D 1; 2; : : : ;L, j D 1; 2; : : : ; n
can be adjusted to satisfy the constraint condition (6.6). However, the optimal quan-
tization parameters are to be designed such that the fusion estimation performance
is optimal.

Let Oxr
i .t/ denote the local quantized estimate, then it follows from (6.4) that

Oxr
i .t/ D Œqi1. Oxi1.t// qi2. Oxi2.t// � � � qin. Oxin.t//�

T D .I C Q�i/ Oxi.t/ (6.7)

where

 Q�i D diag
˚ Q�i1; Q�i2; : : : ; Q�in

�

Q�ij 2 Œ�ıij; ıij�; j 2 f1; 2; : : : ; ng (6.8)

The distributed H1 fusion estimator Ox.t/ is given by

Ox.t/ D
LX

iD1
Wi Oxr

i .t/ (6.9)

where the weighting matrices W1;W2; : : : ;WL are to be designed. Then it is derived

from (6.1), (6.7), and (6.9) that the fusion estimation error e.t/
$D x.t/ � Ox.t/ is

given by

e.t/ D x.t/ �
LX

iD1
fWi.I C Q�i/ Oxi.t/g (6.10)
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where Q�i is defined by (6.8). Let

X.t/ D � OxT
1 .t/ � � � OxT

L.t/ xT.t/
�T

then it is derived from (6.1), (6.2), (6.3) and (6.10) that

G W


X.t C 1/ D OAX.t/C OBw.t/
e.t/ D QCX.t/

(6.11)

where

OA D

2

6
6
6
6
6
4

Af1 0 � � � 0 Bf1C1
0 Af2 � � � 0 Bf2C2
:::

:::
: : :

:::
:::

0 0 � � � AfL BfL CL

0 0 � � � 0 A

3

7
7
7
7
7
5

(6.12)

OB D

2

66
6
4

Bf1D1

:::

BfLDL

B

3

77
7
5

(6.13)

QC D ��W1 � � � �WL I
�C ��W1

Q�1 � � � �WL Q�L 0
�

(6.14)

Then it is known from (6.14) that OA is a stable matrix. Moreover, it follows from
[4] that the real rational transfer function matrix of the linear discrete-time systems
(6.11) is given by

T.z/ D QC
h
zI � OA

i�1 OB (6.15)

The objective of this chapter is to find a group of optimal weighting matrices
W1;W2; : : : ;WL and the optimal quantization parameters ıi1; ıi2; : : : ; ıin, i D
1; 2; : : : ;L such that, for the bandwidth constraint condition (6.6), the H1 � norm
bound of the system (6.11) is minimal, i.e.

fWi; ıi1; ıi2; : : : ; ıin.i D 1; 2; : : : ;L/g D arg min �

s:t: jj QC
h
zI � OA

i�1 OBjj1 < � and (6.6)
(6.16)

where jj � jj1 denotes the standard H1 norm, and � represents the H1 disturbance
attenuation level bound that is used as a fusion estimation performance index. As
is well known, the H1� norm constraint in (6.16) is interpreted as the L2� gain
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constraint and is represented as

1X

tD0
eT.t/e.t/ < �2

1X

tD0
wT.t/w.t/; w.t/ 2 L2Œ0;1/

under the zero initial condition.
Before giving the main results, the following lemma is introduced.

Lemma 6.1 ([5] (Schur complement lemma)) For a given matrix

S D
�

S11 S12
ST
12 S22

�

with S11 D ST
11 and S22 D ST

22, then the following statements are equivalent:

(1) S < 0I
(2) S22 < 0; S11 � S12S�1

22 ST
12 < 0I

(3) S11 < 0; S22 � ST
12S

�1
11 S12 < 0.

Lemma 6.2 ([1]) Given appropriately dimensioned matrices˙1,˙2, and˙3, with
˙T
1 D ˙1, then the following inequality

˙1 C˙3�.t/˙2 C˙T
2 �

T.t/˙T
3 < 0

holds for all �.t/ satisfying �T.t/�.t/ � I if and only if there exists a scalar " > 0
such that the following inequality

˙1 C "�1˙3˙
T
3 C "˙T

2 ˙2 < 0

holds.

6.3 Distributed H1 Fusion Estimator Design

Theorem 6.1 For given � > 0, 0 < ıij < 1, i D 1; 2; : : : ;L, j D 1; 2; : : : ; n,
the distributed H1 fusion estimate Ox.t/ in the form of (6.9) can ensure an H1
disturbance attenuation level bound � under the quantization effect, if and only
if there exist P > 0, " > 0 and the weighting matrices Wi, i D 1; 2; : : : ;L such that
the following linear matrix inequality holds

2

6
6
6
66
6
6
4

�"I 0 "D 0 0 0

	 �P P OA P OB 0 0

	 	 �P 0 OCT
0

	 	 	 ��2I 0 0

	 	 	 	 �I E
	 	 	 	 	 �"I

3

7
7
7
77
7
7
5

< 0 (6.17)
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where
8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�i
$D diagfıi1;ıi2; � � � ;ıing

D
$D diagf�1 � � � �L 0g

OC $D Œ�W1 � � � � WL I �

E
$D Œ�W1 � � � � WL 0�

(6.18)

Proof when OA is a stable matrix, it follows from the discrete-time bounded real
lemma in [4] that the inequality jjT.z/jj1 < � holds if and only if there exists
P > 0 such that

(
OATP OA � P C ��2 OATP OB

h
I � ��2 OBTP OB

i�1 OBTP OA C QCT QC < 0

��2 OBTP OB � I < 0
(6.19)

According to Lemma 6.1, (6.19) is equivalent to

� OATP OA � P C QCT QC ��1 OATP OB
	 ��2 OBTP OB � I

�
< 0

which implies that

2

6
6
4

�P P OA P OB 0

	 �P 0 QCT

	 	 ��2I 0

	 	 	 �I

3

7
7
5 < 0 (6.20)

On the other hand, it is known from (6.7) that

Q�T
i WT

i D �iF Q�i
WT

i (6.21)

where F Q�i

$D diag

( Q�i1

ıi1
;

Q�i2

ıi2
; : : : ;

Q�in

ıin

)

, and F Q�i
satisfies

F Q�i
FT

Q�i
� I (6.22)

Define QC Q�
$D Œ�W1

Q�1 � � � �WL Q�L 0 �, then it follows from (6.20), (6.21) and (6.22)
that

2

6
66
4

0 0 0 0

0 0 0 QCT
Q�

0 0 0 0

0 0 0 0

3

7
77
5

D

2

66
4

0

D
0

0

3

77
5F Q�Œ0 0 0 ET� (6.23)
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where D and E are defined in (6.18), and

F Q�
$D diag

˚
F Q�1;F Q�2; : : : ;F Q�L

; I
�

It is known from (6.22) that F Q�FT
Q� � I, then according to (6.23), it can be concluded

from Lemma 6.2 that the inequality (6.20) holds if and only if there exists a scalar
" > 0 such that

2

6
6
6
4

�P P OA P OB 0

	 �P 0 OCT

	 	 ��2I 0

	 	 	 �I

3

7
7
7
5

C "

2

6
6
4

0

D
0

0

3

7
7
5

2

6
6
4

0

D
0

0

3

7
7
5

T

C "�1

2

6
6
4

0

0

0

E

3

7
7
5

2

6
6
4

0

0

0

E

3

7
7
5

T

< 0

By using Lemma 6.1, the inequality (6.24) is equivalent to

2

66
6
6
6
66
4

�"�1I 0 DT 0 0 0

	 �P P OA P OB 0 0

	 	 �P 0 OCT
0

	 	 	 ��2I 0 0

	 	 	 	 �I E
	 	 	 	 	 �"I

3

77
7
7
7
77
5

< 0 (6.24)

Therefore, (6.17) is derived from pre- and post-multiplying (6.24) by the matrix
diagf"I; I; I; I; I; Ig. The proof is thus completed.

When the quantization parameters ıij, i D 1; 2; : : : ;L; j D 1; 2; : : : ; n satisfying
the condition (6.6) are given, a necessary and sufficient condition has been presented
in Theorem 6.1 to judge whether there exists a group of weighting matrices or
not such that the H1 � norm bound of the system (6.11) achieves a prescribed � .
However, the solutions of (6.16) cannot be obtained from Theorem 6.1 because the
quantization parameters are required to be determined. In fact, to obtain the optimal
weighting matrices and quantization parameters simultaneously, the quantization
parameters ıij; i D 1; 2; : : : ;LI j D 1; 2; : : : ; n will be considered as nL variables
in (6.17). In this case, (6.17) is a nonlinear matrix inequality, which is difficult to
be solved. Therefore, an equivalent linear matrix inequality representation for the
inequality (6.17) is written as

2

6
66
6
6
6
6
4

�"I 0 OD 0 0 0

	 �P P OA P OB 0 0

	 	 �P 0 OCT
0

	 	 	 � O� I 0 0

	 	 	 	 �I E
	 	 	 	 	 �"I

3

7
77
7
7
7
7
5

< 0 (6.25)
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where

O� $D �2; OD $D diagf O�1 � � � O�L 0g

For taking the constraint condition (6.6) into account, the variable O�i is defined by

O�i
$D diag f"ıi1; "ıi2; : : : ; "ıing (6.26)

Moreover, according to the constraint condition (6.6), the variables O�i, i D
1; 2; : : : ;L satisfy

0 < O�i � "I and Tr. O�i/ � ı0i " (6.27)

Based on the above analysis, the optimal weighting matrices Wi, i D 1; 2; : : : ;L
and the optimal quantization parameters �i, i D 1; 2; : : : ;L satisfying (6.6) can be
obtained by implementing the following algorithm.

Algorithm 6.1

Step 1: Determine the optimal weighting matrices W1; : : : ;WL and other optimal
parameters O� , ", O�i; i D 1; 2; : : : ;L by solving the following optimization
problem:

min O�
s:t: LMIs (6.25) and (6.27)

(6.28)

Step 2: Compute the optimal H1 disturbance attenuation level bound and quanti-
zation parameters by

� D
p

O�; �i D diagf "�1; : : : ;"�1
„ ƒ‚ …

n elements

g O�i.i D 1; 2; : : : ;L/ (6.29)

The optimization problem (6.28) can be directly solved by the function “mincx”
of the MATLAB LMI Toolbox [5], and thus the solution of the optimization problem
(6.16) can be easily obtained by implementing Algorithm 6.1.

Theorem 6.2 For the local quantized estimate Oxr
i .t/ and the distributed H1 fusion

estimate Ox.t/, under the same bandwidth constraint condition (6.7), the performance
of the distributed H1 fusion estimate is better than that of each local quantized
estimate, i.e.,

�� � ��
i ; i D 1; 2; : : : ;L (6.30)

where ��
i denotes the local optimal H1 disturbance attenuation level bound for the

ith local quantized estimate Oxr
i .t/, while �� represents the optimal H1 disturbance

attenuation level bound for the fusion estimate Ox.t/.
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Proof When the weighting matrices in (6.28) are taken as

Wi D I; Wj D 0; j ¤ i (6.31)

then the local optimal disturbance attenuation level bound for the ith local quantized
estimate can be obtained by solving the corresponding optimization problem (6.28).
Moreover, when (6.31) holds, the fusion estimate in the form of (6.9) is reduced
to the ith local quantized estimate, i.e., Ox.t/ D Oxr

i .t/. Note that the matrix weights
in (6.9) include (6.31) as a special case. On the other hand, it is known from [5]
that (6.28) is a convex optimization problem, and the solution of (6.27) is globally
optimal. This implies that if the optimal weighting matrices determined by (6.28)
are not equivalent to (6.31), then it must be �� < ��

i . Particularly, if the optimal
weighting matrices are identical to (6.31), then ��

i D ��. This completes the proof.

6.4 Simulations

Consider a dynamic system which is monitored by two sensors, where the parame-
ters of the systems (6.1) and (6.2) are given by

A D
�
0:5 1

0:3 �0:6
�
; B D

�
1

0:5

�

C1 D Œ 1 0 �; C2 D Œ 0 1 �

D1 D 0:5; D2 D 0:3

For �1 D 0:9553 and �2 D 0:8169, by using the result in [2], the filter matrices in
(6.3) are obtained as

Af1 D
��0:0514 0:9999
0:0308 �0:600

�
;Bf1 D

�
0:5514

0:2692

�

Af2 D
�
0:5000 �0:4695
0:3000 �0:2817

�
;Bf2 D

�
1:4695

�0:3183
�

In the simulation, the lower bounds ı01 and ı02 of the bandwidth constraint
condition (6.6) are set as

ı�
1 D 0:3; ı�

2 D 0:5 (6.32)

Then, by solving the optimization problem (6.28) using the MATLAB LMI Toolbox
[5], it is obtained that the optimal distributed fusion H1 disturbance attenuation
level bound is �� D 1:7482, and the optimal weighting matrices and quantization
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parameters are obtained as

W1 D
�
0:6178 0:5993

0:5934 0:9356

�
;


ı11 D 0:0191

ı12 D 0:2809

W2 D
�
0:4881 �0:2249

�0:5314 0:5778

�
;


ı21 D 0:0094

ı22 D 0:4906

(6.33)

It can be seen from (6.33) that the inequalities ı11Cı12 � ı�
1 and ı21Cı22 � ı�

2 hold,
which are in line with the constraint condition (6.6). Moreover, when the weighting
matrices of (6.25) are taken as W1 D I;W2 D 0, or W1 D 0;W2 D I; then the
corresponding optimization problem (6.28) can be solved, and thus the local optimal
H1 disturbance attenuation level bounds are ��

1 D 2:0120 and ��
2 D 1:9446. Then

it follows from the above results that

��
1 > �

�; ��
2 > �

� (6.34)

Then, the logarithmic quantizers qij.�/, i D 1; 2, j D 1; 2 are determined by the
parameters ıij, i D 1; 2, j D 1; 2 of (6.33), and the fusion estimate Ox.t/ in the form
of (6.9) is given by the weighting matrices of (6.33). Under this condition, the noise
signal is chosen by

w.t/ D .2C 0:2 cos.1:7t// exp
	
� t

15
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Fig. 6.1 Trajectories of x1.t/ and the distributed H1 fusion estimate (DHFE) Ox1.t/
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Fig. 6.3 Trajectories of e.t/

Then the trajectories of x.t/, Ox.t/, and e.t/ are depicted in Figs. 6.1, 6.2 and 6.3,
which shows that the fusion estimator performs well, and the estimation error con-
verges to zero in the presence of disturbances and quantization effects. Moreover,
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one has by simple calculation that

vu
u
t

120X

tD0
eT.t/e.t/

,
120X

tD0
wT.t/w.t/ D 0:4211

which verifies that jjT.z/jj1 < ��, showing the effectiveness of the proposed
distributed H1 fusion filter.

6.5 Conclusions

In this chapter, the distributed H1 fusion filtering problem was investigated for
a class of networked multisensor fusion systems with communication bandwidth
constraints, where the system model is subject to energy-bounded disturbance input.
Based on the discrete-time bounded real lemma and LMI technique, the fusion
estimation problem was converted into a convex optimization problem, which can
be easily solved by using the MATLAB LMI Toolbox. It has been proved that
the performance of the proposed fusion estimator is better than that of each local
quantized estimator.
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Chapter 7
Hierarchical Asynchronous Fusion Estimation
for WSNs

7.1 Introduction

Distributed fusion is a typical structure for multisensor fusion estimation in WSNs,
where the sensors generate local estimates ahead and then send them to a fusion
center (FC) for fusion estimation [1, 2]. When the number of sensors is large,
it is wasteful to embed in each sensor an estimator, and the FC requires a large
bandwidth to communicate with the various sensors in a short time, which is usually
impossible since the WSN is limited in bandwidth. An improvement is to adopt a
hierarchical structure for fusion estimation [3–6]. In a hierarchical fusion estimation
system, the sensors are divided into several clusters, and the sensors within the same
cluster are connected to a local estimator. Moreover, only the local estimators are
linked to the FC, and the measurements from sensors in a cluster are pretreated
by local estimators in advance. A structure of the hierarchical fusion system is
shown in Fig. 7.1. There are mainly two deficiencies in the existing hierarchical
fusion estimation. First, local estimations and the fusion estimation are assumed
to be time synchronized, which is restrictive as the processing rates of different
clusters may be different from each other. Second, during the estimation interval,
each sensor communicates with the local estimator only once, which implies that
only one measurement from a sensor can be used for local estimation.

In this chapter, a novel hierarchical fusion estimator design method will be
presented, and the method provides two improvements to overcome the aforemen-
tioned deficiencies. First, local estimators are not required to be time synchronized
and are allowed to be asynchronous with the FC. Second, in each cluster, the
sensors transmit as many measurements as possible to the local estimator before an
estimation instant begins. In the proposed estimator design method, a centralized
optimal estimator is designed to aperiodically generate local estimates. Then,
a covariance intersection (CI) fusion strategy is presented to design the fusion
estimator by using the last fused estimate and the asynchronous local estimates,

© Science Press, Beijing and Springer Science+Business Media Singapore 2016
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Fig. 7.1 Structure of a hierarchical fusion estimation system

without knowing the cross-covariances among local estimates and the last fusion
estimate.

7.2 Centralized Aperiodic Optimal Local Estimation

In this section, a centralized multisensor estimation system in a cluster is considered.
Suppose that there are n sensors in a cluster and the sensors connected to an
estimator independently observe outputs of a linear continuous-time stochastic
process described by the following state-space model:

Px.t/ D Ax.t/C Bw.t/ (7.1)

where x.t/ 2 <p is the state, w.t/ 2 < is a zero-mean white noise with covariance
Qw 2 < > 0, and A and B are known matrices of appropriate dimensions. Denote
by T D ftk W k D 1; 2; : : :g the set of estimation instants of the estimator. In view
of the time effectiveness of the measurements and the energy consumption of the
communications, two rules are set as follows:

Rule 1: At the estimation instant tkC1, only those measurements produced during
.tk; tkC1� will be used for estimation.

Rule 2: In the estimator, the maximum time horizon of the sampled information
is ı, i.e., the time horizon of the oldest measurement received by the estimator
during .tk; tkC1� should not be smaller than tkC1 � ı.

Rule 1 is set to guarantee the timeliness of the estimation, i.e., only the
measurements generated over the present estimation interval will be used to produce
the estimate at the present estimation instant. Rule 2 is introduced to specify the
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allowable number of measurements during each estimation interval (note that more
samplings and transmissions need larger energy consumption). Denote by � the
minimum time interval of two consecutive samplings. To ensure that the estimator
is able to use the latest several measurements, ı can be expressed as ı D a�C Qı,
where 0 � Qı < � and a is an integer. Then it follows from Rules 1 and 2 that the
set of sampling instants of the sensors during the estimation interval .tk; tkC1� can
be specified as follows:

Sk D ˚
tk;j W tk;j D tkC1 � .ak � j/�; j D 1; 2; : : : ; ak

�

where ak D min
˚
a;
˙ tkC1�tk

�

��
and d	e denote the maximum integer that is no larger

than 	. Thus, the measurement equation of sensor i at time tk;j is given by

y.i/k;j D C.i/xk;j C D.i/v
.i/
k;j (7.2)

where xk;j D x.tk;j/, y.i/k;j 2 < is the measurement from sensor i at time tk;j, v
.i/
k;j 2 <

is the measurement noise with zero mean and covariance Q.i/
v 2 < > 0, and C.i/ and

D.i/ are known matrices of appropriate dimensions.
In view of sensor failures or communication link failures, the phenomenon of

packet dropout is considered and described by a set of binary variables as follows:
�
.i/
k;j D 1 if y.i/k;j is successfully received by the estimator at time tk;j and �.i/k;j D 0

otherwise, where

Prob
n
�
.i/
k;j D 1

o
D �

.i/
k ; Prob

n
�
.i/
k;j D 0

o
D 1� �

.i/
k ; 0 < �

.i/
k � 1

�
.i/
k;j , i D 1; 2; : : : ;L, j D 1; 2; : : : ; ak, are assumed to be independent of each other,

i.e., the random packet loss procedures over the sensors are independent of each
other. 1 � �

.i/
k is the packet loss probability of sensor i over estimation interval

.tk; tkC1�. During .tk; tkC1�, due to possible packet losses, the measurements available
at the estimator from sensor i is given by

Qy.i/k D
n
�
.i/
k;1y

.i/
k;1; : : : ; �

.i/
k;ak

y.i/k;ak

o

Denote

�
.i/
k D diag

n
�
.i/
k;j

oak

jD1 ; y.i/k D vecT
n
y.i/k;j

oak

jD1

then, Qy.i/k can be written in a vector form as Qy.i/k D �
.i/
k y.i/k .

Discretizing (7.1) at the sampling instants, then it follows from [7] that

xk;j D


eA.tk;1�tk/xk C wk;0; j D 1

eA�xk;j�1 C wk;j�1; j D 2; 3; : : : ; ak
(7.3)
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where

wk;j D
( R tk;1�tk

0 eA�Bw.tk;1 � �/d�; j D 0R �
0

eA�Bw.tk;jC1 � �/d�; j D 1; 2; : : : ; ak � 1

It follows from (7.3) that

xk;j D eA.. j�1/�Ctk;1�tk/xk C
j�1X

lD0
e. j�1�l/A�wk;l (7.4)

Thus, over the estimation interval .tk; tkC1�, the measurements available at the
estimator from sensor i is given by

�
.i/
k y.i/k D �

.i/
k F.i/k xk C �

.i/
k G.i/

k wk C �
.i/
k D.i/

k v
.i/
k (7.5)

where

F.i/k D vecT
n�

C.i/eA. j�Ctk;1�tk/
�T
oak�1

jD0

G.i/
k D

2

66
6
4

C.i/ O � � � O
C.i/eA� C.i/ � � � O
:::

:::
:::

C.i/e.ak�1/A� C.i/e.ak�2/A� � � � C.i/

3

77
7
5

D.i/
k D diag

8
<

:
D.i/; : : : ;D.i/

„ ƒ‚ …
ak

9
=

;

wk D vecTfwk;jgak�1
jD0

v
.i/
k D vecT

n
v
.i/
k;j

oak

jD1

By using the local estimate Oxk and the available measurements �.i/k y.i/k , i D
1; 2; : : : ; n, the following linear estimator will be designed to generate an estimate
OxkC1 at the estimation instant tkC1

OxkC1 D eA.tkC1�tk/ Oxk C
nX

iD1
H.i/

k

	
�
.i/
k y.i/k � Q�.i/k F.i/k Oxk



(7.6)

where Q�.i/k D diag

8
<̂

:̂
�
.i/
k ; : : : ; �

.i/
k„ ƒ‚ …

ak

9
>=

>;
and H.i/

k ; i D 1; 2; : : : ; n, are the estimator gains

to be determined.
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Define the estimation error at tk by "k D xk � Oxk, then the estimation error
covariance matrix at tkC1 is

PkC1 D E
˚
"kC1"T

kC1
�

(7.7)

Then, in what follows, a set of estimator gains H.i/
k , i D 1; 2; : : : ; n, will be designed

for the optimal estimator to generate an estimate OxkC1 in the minimum variance
sense, i.e.,

H.i/
k D arg min

H
.i/
k ; iD1;:::;n

tr fPkC1g (7.8)

Before presenting the estimation algorithm, two useful propositions are first pre-
sented as follows.

Proposition 7.1 It follows from the statistical characteristics of w.t/ that wk;j, j D
0; 1; : : : ; ak, are zero mean and

E
˚
wk;0w

T
k;0

� D
Z tk;1�tk

0

eA�BQwBT
�
eA�
�T

d� , Wk;0 (7.9)

E
˚
wk;jw

T
k;j

� D
Z �

0

eA�BQwBT
�
eA�
�T

d� , W (7.10)

Moreover, wk;l is uncorrelated with wk;q for any l ¤ q.

Proof Note that Efw.tk;j � �/wT.tk;j ��/g D Qw if � D � and Efw.tk;j � �/wT.tk;j �
�/g D 0 if � ¤ � , then (7.9) and (7.10) hold.

Proposition 7.2 For any positive semi-definite matrix Q � 0 with appropriate
dimensions, one has

E f�kQ�kg D �kQ�k C Q ˇ �
�k � �2k

� � 0 (7.11)

E f.�k � �k/Q .�k � �k/g D Q ˇ �
�k � �2k

� � 0 (7.12)

where �k D diag
n
�
.i/
k

on

iD1 and �k D diag
n Q�.i/k

on

iD1, the symbol ˇ denotes the matrix

dot product, namely, A ˇ B D Œ˛ijˇij�r1�r2 , where A D Œ˛ij�r1�r2 and B D Œˇij�r1�r2 .
Moreover, E f�kQ�kg is positive definite if Q > 0.

Proof Note that E
n
�
.i/
k;j

o
D �

.i/
k , E

n
�
.i/
k;j �

.i/
k;j

o
D �

.i/
k , E

n
�
.i/
k;j �

.r/
k;l

o
D �

.i/
k �

.r/
k . j ¤ l/,

E
n	
�
.i/
k;j � �

.i/
k


 	
�
.i/
k;j � �

.i/
k


o
D �

.i/
k

	
1 � �.i/k



and E

n	
�
.i/
k;j � �

.i/
k


 	
�
.r/
k;l � �.r/k


o

D 0 . j ¤ l/, then (7.11) and (7.12) hold.
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Denote

Hk D vec
n
H.i/

k

on

iD1

Fk D vecT

	
F.i/k


T
� n

iD1

Gk D vecT

	
G.i/

k


T
� n

iD1

Dk D diag
n
D.i/

k

on

iD1

Vk D diag
n
Q.i/
v;k

on

iD1

Wk D diag

8
<

:
Wk;0;W; : : : ;W„ ƒ‚ …

ak�1

9
=

;

Q.i/
v;k D diag

8
<̂

:̂
Q.i/
v ; : : : ;Q

.i/
v„ ƒ‚ …

ak

9
>=

>;

yk D vecT

	
�
.i/
k y.i/k


T
� n

iD1

vk D vecT

	
v
.i/
k


T
� n

iD1

The following theorem determines the estimator gains in the minimum variance
sense and the estimation error covariance matrix at each estimation instant.

Theorem 7.1 For system (7.1) and (7.2), the gains of the optimal estimator (7.6) is
determined by

Hk D �T
k

 
4X

iD1
�
.i/

k

!�1
(7.13)

with the corresponding estimation error covariance matrix

PkC1 D 'kPk'
T
k C˝kWk˝

T
k ��T

k

�
4P

iD1
�
.i/

k

��1
�k (7.14)
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where

'k D eA.tkC1�tk/

�k D �kFkPk'
T
k C �kGkWk˝

T
k

�
.1/

k D �kFkPkFT
k �

T
k

�
.2/

k D �
FkXkFT

k

�ˇ �
�k � �2k

�

�
.3/

k D �kGkWkGT�k
k C �

GkWkGT
k

�ˇ �
�k � �2k

�

�
.4/

k D �kDkVkDT�k
k C �

DkVkDT
k

�ˇ �
�k � �2k

�

˝k D �
e.ak�1/A� e.ak�2/A� � � � I

�

XkC1 D E
˚
xkC1xT

kC1
� D 'kXk'

T
k C˝kWk˝

T
k

Moreover, the local optimal estimates obtained by using (7.6) and (7.13) are
unbiased.

Proof Note that

xkC1 D eA.tkC1�tk/xk C˝kwk (7.15)

OxkC1 D eA.tkC1�tk/ Oxk C Hk .yk � �kFk Oxk/ (7.16)

yk D �kFkxk C �kGkwk C �kDkvk (7.17)

By using Propositions 7.1 and 7.2, it follows from (7.7), (7.15), (7.16), and (7.17)
that

PkC1 D 'kPk'
T
k C˝kWk˝

T
k � Hk�k

��T
k HT

k C Hk

 
4X

iD1
�
.i/

k

!

HT
k (7.18)

Denote

�k D vec
n
�
.i/
k

op

iD1

Hk D vecT

	
h.i/k


T
� p

iD1

'k D vecT

	
'
.i/
k


T
� p

iD1

˝k D vecT

	
˝
.i/
k


T
� p

iD1
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then one has tr fPkC1g D
pP

iD1
�
.i/
kC1, where

�
.i/
kC1 D '

.i/
k Pk

	
'
.i/
k


T C˝
.i/
k Wk

	
˝
.i/
k


T C h.i/k

 
4X

iD1
�
.i/

k

!	
h.i/k


T

�h.i/k �
.i/
k �

	
�
.i/
k


T	
h.i/k


T

Note that �.i/kC1 depends only on h.i/k , and the trace of PkC1 is equivalent to the

summation of �.i/kC1, i D 1; 2; : : : ; n. To minimize the trace of PkC1, the condition

@�
.i/
kC1
.
@
	

h.i/k


T D 0 should be satisfied, from which one has

h.i/k D
	
�
.i/
k


T
 

4X

iD1
.�

.i/
k /

T
!�1

(7.19)

which implies that (7.13) holds. Substituting (7.13) into (7.19) yields (7.14). The
proof is thus completed.

7.3 Hierarchical Asynchronous Fusion Estimation

This section is devoted to the hierarchical fusion estimation. A fusion strategy
based on the asynchronous local estimates will be presented to generate the fused
estimates. A clustered sensor network is deployed to measure outputs of the object
(7.1) and is divided into L clusters. Denote by nr the number of sensors in the rth
cluster. The sensors within the same cluster are connected to a local estimator, and
a FC is linked with the L local estimators.

Firstly, the local estimator r collects measurements from sensors in the rth cluster
during each estimation interval and generates a local estimate at the estimation
instant. Secondly, all local estimates are sent to the fusion center for generating the

fused estimate. Denote by Tfc D
n
t fc
k W k D 1; 2; : : :

o
the set of the fusion instants

of the fusion center and Tr D ftr;k W k D 1; 2; : : :g the set of the estimation instants
of the local estimator r. The fusion instants and the local estimation instants are
not necessarily synchronous. Denote by Oxr;k and Pr;k the local estimate and the local
estimation error covariance matrix of the local estimator r generated by Theorem 7.1
at time tr;k, respectively.

For each cluster, it is assumed that all the local estimates are sent to the fusion
center in real time, and only the most recent local estimate received by FC during	

t fc
k ; t

fc
kC1
i

will be used for fusion at fusion instant t fc
kC1. Denote by Ur;kC1 D
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n
tr;k W t fc

k < tr;k � t fc
kC1; tr;k 2 Tr

o
the set of time instants when the local estimates

are generated by the local estimator r during
	

t fc
k ; t

fc
kC1
i
. If

TL
rD1 Ur;kC1 D ¿, then,

it indicates that no local estimate is sent to the FC. If
TL

rD1 Ur;kC1 ¤ ¿, then the set

of available local estimates at the FC during the fusion interval
	

t fc
k ; t

fc
kC1
i

is denoted

by

XkC1 D f Oxe
r;kC1 D Ox.te

r;kC1/ W te
r;kC1 D maxUr;kC1; Ur;kC1 ¤ ¿; r D 1; 2 : : : ;Lg

Then, the fusion rules are set as follows:

Case 1: If
TL

rD1 Ur;kC1 D ¿, then Ox fc
kC1 D f1

	
Ox fc
k



2 L

	
Ox fc
k




Case 2: If
TL

rD1 Ur;sC1 ¤ ¿, then Ox fc
kC1 D f2

	
Ox fc
k ;XkC1



2 L

	
Ox fc
k ;XkC1



,

where Ox fc
k is the fused estimate at t fc

k and f1 .�/ and f2 .�/ denote the fusion rules to be
designed. For Case 1, the fusion rule is given by

f1
	

Ox fc
k



D eA

	
t

fc
kC1�t

fc
k




Ox fc
k (7.20)

For Case 2, the local estimates in XkC1 are first lifted to those at the fusion instant,
i.e.,

Ox fc
r;kC1 D eA

	
t

fc
kC1

�ter;kC1




Oxe
r;kC1 (7.21)

Then, by using the CI fusion method [8, 9], the fusion rule in Case 2 is given by

f2
	

Ox fc
k ;Xr;kC1



D P fc

kC1
X

r2T fc
kC1

˛r;kC1
	

P fc
r;kC1


�1 Ox fc
r;kC1 (7.22)

where

Ox fc
0;kC1 D eA

	
t

fc
kC1

�t
fc
k




Ox fc
k

P fc
0;kC1 D eA

	
t

fc
kC1�t

fc
k




P fc
k

�
eA
	

t
fc
kC1�t

fc
k


�T

C QW0;k

P fc
r;kC1 D eA

	
t

fc
kC1

�ter;kC1




Pr;kC1
�

eA
	

t
fc
kC1

�ter;kC1


�T

C QWr;k

QW0;k D
Z t

fc
kC1

�t
fc
k

0

eA�BQwBT
�
eA�
�T

d�
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QWr;k D
Z t

fc
kC1

�tr;kC1

0

eA�BQwBT
�
eA�
�T

d�; r 2 T fc
kC1=f0g

	
P fc

kC1

�1 D

X

r2T fc
kC1

˛r;kC1
	

P fc
r;kC1


�1

and T fc
kC1 D f0gS fr W Ur;kC1 ¤ ¿; r D 1; 2 : : : ;Lg. The optimal weights ˛r;kC1

and r 2 T fc
kC1 are determined by minimizing the trace of P fc

kC1:

min tr
n
P fc

kC1
o

(7.23)

s:t: 0 � ˛r � 1 and
X

r2T fc
kC1

˛r;kC1 D 1

Different from the conventional CI fusion rule with only local estimates, past
fused estimates are used for generating the fusion estimate at current fusion instant
in both Cases 1 and 2.

Similar to the analysis in [9], for system (7.1) and (7.2), the actual fusion
estimation error variance NP fc

kC1 satisfies NP fc
kC1 � P fc

kC1. Moreover, the following
accuracy relation

tr
	 NP fc

kC1



� tr
	

P fc
kC1



� min
r2T fc

kC1

n
tr
	

P fc
r;kC1


o
(7.24)

holds, which means that the actual fusion accuracy is higher than that of each local

estimator and has an upper bound tr
	

P fc
kC1



.

7.4 Simulations

Consider a continuous-time linear stochastic system described by

8
<

:

Px1.t/ D �0:3x1.t/ � 0:1x2.t/C w.t/
Px2.t/ D �0:2x2.t/ � 0:15x3.t/C 0:5w.t/
Px3.t/ D 0:1x2.t/ � 0:25x3.t/C 0:75w.t/

(7.25)

where xi.t/ 2 <, i D 1; 2; 3, are the states of the system, w.t/ 2 < is the process
noise with zero mean and covariance Qw D 1. A clustered sensor network consisting
of nine sensors is deployed to measure outputs of the system. The sensors are
divided into three clusters, and the numbers of the sensors in each cluster are 2,
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3, and 4. The measurement equations are given by (7.2) with

C.1/
1 D Œ1 0 0�; C.2/

1 D Œ0 1 0�

C.1/
2 D Œ1 0 0�; C.2/

2 D Œ0 1 0�; C.3/
2 D Œ0 0 1�

C.1/
3 D Œ1 0 0�; C.2/

3 D Œ0 1 0�; C.3/
3 D Œ0 0 1�; C.4/

3 D Œ1 0 1�

D.i/
r D 0:1; r D 1; 2; 3; i D 1; 2 : : : ; nr

The observation noises are zero mean with Q.i/
v;r D 1. The minimum sampling

period of the sensors is � D 1 s, and the estimation periods of the clusters 1, 2, and
3 are 3 s, 4 s, and 5 s, respectively. The maximum time horizons of the allowable
sampled information are ı1 D 2 s, ı2 D 3 s, and ı3 D 4 s. Given the initial local
estimation error covariance matrices Pr;0 D diagf5; 5; 5g, r D 1; 2; 3. The traces of
the fusion estimation error covariance matrices under different packet dropout rates
are depicted in Fig. 7.2, which shows that a smaller packet dropout rate results in
a better fusion estimation performance. Figure 7.3 shows that the accuracy of the
proposed fusion rule is higher than that of each local estimator. Compared with
the centralized estimation, the performance loss due to the hierarchical network
structure is also shown in Fig. 7.3. Figure 7.4 implies that the precisions of local
estimators with multiple samplings are higher than that of single sampling ones.
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Fig. 7.2 Traces of the fusion estimation error covariance matrices under different packet dropout
rates
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Fig. 7.3 Comparison of the traces of the estimation error covariance matrices
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Fig. 7.4 Comparison of the traces of local estimation error covariance matrices with multiple
samplings and single sampling

7.5 Conclusions

This chapter presents a hierarchical fusion estimator design method for clustered
sensor networks, where local estimators and the fusion center are allowed to be
asynchronous. Optimal local estimators were designed in the minimum variance
sense, and a CI fusion strategy was presented to fuse both local estimates and past
fused estimates.
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Chapter 8
Fusion Estimation for WSNs with Delayed
Measurements

8.1 Introduction

In this chapter, a state fusion estimator design method will be introduced for
multisensor systems with measurement delays, which is usually inevitable in
sensor networks. Due to delays in the measurements, it is difficult to construct
an innovation sequence that is still white Gaussian as usually does in the standard
Kalman filter. Therefore, many research works have been devoted to the design of
optimal linear estimators for time-delay systems by using the innovation analysis
approach and linear matrix inequality approach [1–7]. For the multisensor case,
the information fusion problem has been investigated in [8, 9] for linear stochastic
systems with time-delayed measurements, where the observation delays were
assumed to be constant. Recently, based on the well-known federated filter, a
practical architecture and some algorithms have been discussed in [10] for the
networked data fusion systems with packet losses and variable delays, where one
has to know the accurate time delay over each estimation interval. Most of the
aforementioned results use the measurement augmentation method to deal with
the delayed measurements, which increases the dimension of the measurement
used in the state estimation and ultimately increases computation costs. On the
other hand, the parameters of the system model may not be precisely known in
practical applications due to a number of reasons such as model reduction and
varying parameters. The parameter uncertainties in the system model degrade
the performance of conventional information fusion estimators. Therefore, it is
necessary to develop robust information fusion estimators. However, only a few
results [11–14] were concerned with the robust information fusion problem for
multisensor systems with parameter uncertainties. In [12, 13], the robust information
fusion Kalman filtering problem was investigated for uncertain stochastic systems,
where the deterministic parameter perturbations were considered in the system
matrices. In view of the above consideration, a novel state fusion estimator will
be designed in this chapter for multisensor systems with delayed measurements

© Science Press, Beijing and Springer Science+Business Media Singapore 2016
W.-A. Zhang et al., Distributed Fusion Estimation for Sensor Networks
with Communication Constraints, DOI 10.1007/978-981-10-0795-8_8
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and parameter uncertainties without resorting to the measurement augmentation
approach. The robust distributed estimator is derived by using the optimal fusion
algorithm weighted by matrices in the linear minimum variance sense, and the
dimension of the designed fusion estimator is the same as the system state, which
helps reduce computation costs as compared with the augmentation method.

8.2 Problem Statement

Consider a discrete-time linear system with stochastic parameter perturbations
described by the following state-space model:

x.t C 1/ D
 

A C
„X

#D1
A#˛#.t/

!

x.t/C � w.t/ (8.1)

where x.t/ 2 <n is the state; A 2 <n�n and A# 2 <n�n, # D 1; 2; : : : ;„ are known
matrices with appropriate dimensions; and � 2 <n�1 is a constant matrix. The
scalar w.t/ is a zero-mean white noise with covariance Qw. The random sequences
˛#.t/; # D 1; 2; : : : ;„ are introduced to describe the uncertainty of the system
model; they are of zero mean and with variance �# and are mutually uncorrelated.

Suppose that L sensors are deployed to monitor the outputs of system (8.1) and
the measurement equations are given by

Qyi.t/ D Hix.t/; i D 1; 2; : : : ;L (8.2)

where Hi 2 <mi�n are constant matrices. The measurement Qyi.t/ is transmitted
to the local estimators via communication channels and may be delayed during
transmission. Denote the random time delay in the ith channel as �i.t/ D di.t/T,
where T is the sampling period and di.t/ takes values from a finite set f0; 1; : : : ; dig.
This means that the delay is assumed to be bounded, and the upper bound is di.
Due to the random delays, several measurements from sensor i, i 2 1; 2; : : : ;L may
arrive at the estimator over an estimation interval. It is assumed that only the most
recent measurement from sensor i, i 2 1; 2; : : : ;L, is adopted to generate a local
state estimate Oxi and the other measurements from sensor i will be discarded. Then,
the measurement received by the estimator from sensor i is given by

yi.t/ D Hix.t � di.t//C Divi.t/ (8.3)

where vi.t/ is the noise from the communication channel and is assumed to be a
zero-mean white noise with variance Rvi .
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The random delay fdi.t/g is assumed to be i.i.d. (independent and identically
distributed) [15], and the occurrence probabilities of the delays are known a priori
through statistical test, that is,

Probfdi.t/ D `g D � i
`; ` D 0; 1; : : : ; di (8.4)

Moreover, the following assumptions are needed in developing the main results.

Assumption 8.1 The random delays di.t/; i D 1; 2; : : : ;L are mutually indepen-
dent and uncorrelated with w.t/, vi.t/, and ˛#.t/.

Assumption 8.2 The random variables vi.t/ are uncorrelated with w.t/ and ˛#.t/,
and the random correlated variables v1.t/; : : : ; vL.t/ satisfy

Efvi.t/v
T
j .t/g D Sij.i ¤ j/

Assumption 8.3 Define d D maxfd1; d2; : : : ; dLg, then the initial states x.�t/; t D
0; 1; : : : ; d � 1 are uncorrelated with w.t/, vi.t/, ˛#.t/, and di.t/.

Since di.t/ takes only one value in f0; 1; : : : ; dig randomly over an estimation
interval, the following random binary-valued update function is introduced to
describe the random delays in (8.3):

�fdi.t/D`g D

1; di.t/ D `

0; di.t/ ¤ `
` 2 f0; 1; : : : ; dg (8.5)

and �fdi.t/D`g satisfies the following property:

�fdi.t/D`1g � �fdi.t/D`2g D 0; `1 ¤ `2 (8.6)

Then by (8.4) and (8.5), one has

Ef�fdi.t/D`g D 1g D Probfdi.t/ D `g D� i
` (8.7)

and the output equation (8.3) can be rewritten as

yi.t/ D Hi

dX

`D0
�fdi.t/D`gx.t � `/C Divi.t/ (8.8)

It can be seen from (8.5) that
Pd

`D0 �fdi.t/D`g D 1 if di.t/ � d, which means that at
least one measurement will be used by the estimator for generating a state estimate if
the delay di.t/ is under the maximal bound d. In case that the delay di.t/ exceeds the
maximal allowable upper bound d, that is, di.t/ > d, then the packet containing the
measurement will be considered to be lost, and only the noise Divi.t/ will be used in
generating the state estimates. In this case, one has by (8.5) that

Pd
`D0 �fdi.t/D`g D 0
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since di.t/ ¤ l. Therefore, one has

dX

`D0
�fdi.t/D`g 2 f0; 1g

Let

Prob

(
dX

`D0
�fdi.t/D`g D 1

)

D �i; Prob

(
dX

`D0
�fdi.t/D`g D 0

)

D 1 � �i

Then, 1 � �i is defined as the packet loss rate.
Rewriting the state-space model (8.1) as the following compact form

x.t C 1/ D Ax.t/C˝.t/ (8.9)

where

˝.t/ D
„X

#D1
A#˛#.t/x.t/C � w.t/

Then, it follows from Assumptions 8.1 and 8.2 that

Ef˝.t/g D 0;Ef˝.t/vi.t1/g D 0; 8 t; t1

Ef˝.t/˝T.t1/g D 0; 8t ¤ t1

Ef˝.t/�fdi.t1/D`gg D 0; 8t; t1 (8.10)

which implies that ˝.t/ is a zero-mean white noise and uncorrelated with other
random variables. To calculate the covariance matrix of ˝.t/, define

.t; t/ D Efx.t/xT.t/g

Since ˛#.t/ and w.t/ are mutually uncorrelated white noises, .t; t/ can be directly
computed as follows:

.t C 1; t C 1/ D A.t; t/AT C � Qw�
T C

„X

#D1
�#A#.t; t/A

T
# (8.11)

Then the covariance matrix of ˝.t/ is given by

˙.t/ D Ef˝.t/˝T.t/g D
„X

#D1
�#A#.t; t/A

T
# C � Qw�

T (8.12)
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In this chapter, the robust information fusion Kalman filtering problem for
multisensor systems is described as follows: first, design a local optimal filter for
system (8.1) based on fyi.1/; : : : ; yi.t/g such that

min
Oxi.tjt/

fE.Oxi.tjt/ � x.t//T.Oxi.tjt/ � x.t//g (8.13)

where Oxi.tjt/ is the local optimal state estimate. Second, design a fusion estimator
with matrix weights in the form

Ox.tjt/ D
LX

iD1
NAi.t/Oxi.tjt/ (8.14)

where NA1.t/; NA2.t/; : : : ; NAL.t/ are optimal weighting matrices to be designed such
that the following function

Tr.P.tjt// D Tr.Ef.x.t/ � Ox.tjt//.x.t/ � Ox.tjt//T/ (8.15)

is minimized, and EfOx.tjt/g D Efx.t/g.
Note that the random delay takes values in a finite set, the systems (8.1) and

(8.3) can be transformed into a certain higher-order one by augmenting the mea-
surements, and then the full-order fusion filter may be designed for the augmented
system in a centralized framework by using the results of [11]. However, the
centralized framework by using results of [11] may bring expensive computational
cost and large memory space with the increase of communication delays and the
number of sensors. Therefore, without resorting to the augmentation method, a
recursive information fusion estimator will be designed in the following sections
under the distributed state fusion framework of [16], and the dimension of the fusion
filter is the same as the system state to be estimated.

8.3 Preliminary Results

In this section, some useful lemmas will be provided as follows before presenting
the main results. Define the estimation error as Qxi.t1jt/ D x.t1/ � Oxi.t1jt/ and the
innovation sequence as "i.t/ D yi.t/ � Oyi.tjt � 1/, then the following operators

˚
i;j
t .t1; t2/ D EfQxi.t1jt/.Qxj.t2jt//Tg

Gi;j.t/ D Ef"i.t/." j.t//Tg

are introduced, where Oxi.t1jt/ is the ith linear minimum variance estimate of state
x.t1/ and Oyi.tjt � 1/ is the ith linear minimum variance estimate of observation yi.t/.
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By the definition of the operator ˚ i;j
t .t1; t2/, the local optimal prediction error

covariance matrices are given by

Pi.t � �jt/ $D ˚ i;i
t .t � �; t � �/; � D �1; 0; 1; : : : ; d � 1

while the estimation error cross-covariance matrices between the ith and jth local
estimates are given by

Pi;j.t � �jt/ $D ˚
i;j
t .t � �; t � �/; � D �1; 0; 1; : : : ; d � 1

Some useful notations are first given as follows.

˘ i
�.t/

$D Ef"i.t/.x.t � �//Tg
^

˘�.t/
$D Ef"i.t/.Qxj.t � �jt � 1//Tg

_

˘�.t/
$D EfQxi.t � �jt � 1/."j.t//Tg

Ki
�.t/

$D Efx.t � �/."i.t//Tg.Gi;i.t//�1

Ni
�.t/

$D ˚ i;i
t .t; t � �C 1/

^

N�.t/
$D ˚

i;j
t .t � �C 1; t/

_

N�.t/
$D ˚

i;j
t .t; t � �C 1/

�i
� .t; `/

$D ˚ i;i
t .t C 1 � `; t � ` � �/

_

�
i;j

� .t; `/
$D ˚

i;j
t .t C 1 � `; t � ` � �/

^

�
i;j

� .t; `/
$D ˚

i;j
t .t � ` � �; t C 1 � `/

Lemma 8.1 Define

.t C 1 � `; t � ` � �/ D Efx.t C 1 � `/xT.t � ` � �/g

Then for ` D 0; 1; : : : ; d � 1, .t C 1 � `; t � ` � �/ satisfies

.t C 1 � `; t � ` � �/ D A�C1.t � ` � �; t � ` � �/;

� D 0; 1; : : : ; d � ` � 1 (8.16)

where .t � ` � �; t � ` � �/ is computed by (8.11).
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Proof Equation (8.16) can be easily followed by the state equation (8.8) and
Assumptions 8.1 and 8.2. The proof is thus completed.

Lemma 8.2 For � D 2; 3; : : : d, Ni
�.t/;

^

N
i

�.t/;
_

N
i

�.t/ can be computed by the
following recursive equations:

Ni
�.t/ D ANi

��1.t � 1/� Ki.t/˘ i
��1.t/ (8.17)

^

N�.t/ D ^

N��1.t � 1/AT C Ki
��1.t/G

i;j.t/.Kj.t//T

�Ki
��1.t/

^

˘0.t/ � _

˘��1.t/.Kj.t//T (8.18)
_

N�.t/ D A
_

N��1.t � 1/C Ki.t/Gi;j.t/.Kj
��1.t//

T

�Ki.t/
^

˘��1.t/ � _

˘0.t/.K
j
��1.t//

T (8.19)

where Ki.t/ D Efx.t/."i.t//Tg.Gi;i.t//�1. In particular, when � D 1, one has

Ni
1.t/ D Pi.tjt/; ^

N1.t/ D _

N1.t/ D Pi;j.tjt/: (8.20)

Proof By the definitions of N�.t/,
^

N�.t/, and
_

N�.t/, one can easily obtain (8.20)
for � D 1. Moreover, the following recursive equations can be derived by using the
projection theory [17]:

Oxi.t � �C 1jt/ D Oxi.t � �C 1jt � 1/C Ki
��1.t/"

i.t/ (8.21)

Ki
��1.t/ D Efx.t � �C 1/."i.t//Tg.Gi;i.t//�1 (8.22)

Therefore, it follows from (8.21) that

˚ i;i
t .t; t � �C 1/ D ˚ i;i

t�1.t; t � �C 1/� Ki.t/Ef"i.t/.Qxi.t � �C 1jt � 1/T/g
�EfQxi.tjt � 1/."i.t//Tg.Ki

��1.t//
T

CKi.t/Ef"i.t/."i.t//Tg.Ki
��1.t//T (8.23)

By considering

˘ i
��1.t/ D Ef"i.t/.x.t � �C 1//Tg D Ef"i.t/.Qx.t � �C 1jt � 1//Tg

and substituting (8.22) into (8.23), one obtains

˚ i;i
t .t; t � �C 1/ D ˚

i;i
t�1.t; t � �C 1/� Ki.t/˘ i

��1.t/ (8.24)
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By applying the projection theory [17], one can obtain the following recursive
equations:

Oxi.t C 1jt C 1/ D Oxi.t C 1jt/C Ki.t C 1/"i.t C 1/ (8.25)

Ki.t C 1/ D Efx.t C 1/."i.t C 1//Tg.Gi;i.t C 1//�1 (8.26)

Meanwhile, one can obtain the following equation by taking projection of both sides
of (8.9):

Oxi.t C 1jt/ D AOxi.tjt/ (8.27)

Combining (8.9) and (8.27) yields

Qxi.t C 1jt/ D AQxi.tjt/C˝.t/ (8.28)

It follows from (8.28) that

Qxi.tjt � 1/ D AQxi.t � 1jt � 1/C˝.t � 1/ (8.29)

Then one has by the fact ˝.t � 1/?Qxi.t � �C 1jt � 1/ that

˚ i;i
t�1.t; t � �C 1/ D A˚ i;i

t�1.t � 1; t � �C 1/ (8.30)

By the definition of Ni
�.t/, (8.17) can be obtained by substituting (8.30) into (8.24).

On the other hand, it follows from (8.25) and (8.21) that

˚
i;j
t .t � �C 1; t/ D ˚

i;j
t�1.t � �C 1; t/� Ki

��1.t/Ef"i.t/.Qxj.tjt � 1//Tg
�EfQxi.t � �C 1jt � 1/."j.t//Tg.Kj.t//T

CKi
��1.t/Ef"i.t/."j.t//Tg.Kj.t//T (8.31)

From the similar derivation process of (8.30), one obtains the following recursive
equation:

˚
i;j
t�1.t � �C 1; t/ D ˚

i;j
t�1.t � �C 1; t � 1/AT (8.32)

By the definitions of
^

N�.t/,
^

˘�.t/, and
_

˘�.t/ and substituting (8.32) into (8.31)
yields

^

N�.t/ D ^

N��1.t � 1/AT � Ki
��1.t/

^

˘0.t/ � _

˘��1.t/.Kj.t//T

CKi
��1.t/G

i;j.t/.Kj.t//T (8.33)
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Moreover, (8.19) can be obtained by following the similar derivation procedures of
(8.33). The proof is thus completed.

Lemma 8.3 For ` D 2; 3; : : : ; d � 1, the following recursive equations hold

�i
� .t; `/ D �i

� .t � 1; ` � 1/� Ki
`�1.t/˘

i
`C� .t/ (8.34)

^

�
i;j

� .t; `/ D ^

�
i;j

� .t � 1; ` � 1/� Ki
`C� .t/

^

˘`�1.t/

� _

˘`C� .t/.Kj
`�1.t//

T C Ki
`C� .t/G

i;j.t/.Kj
`�1.t//

T (8.35)

_

�
i;j

� .t; `/ D _

�
i;j

� .t � 1; ` � 1/� Ki
`�1.t/

^

˘`C� .t/

� _

˘`�1.t/.Kj
`C� .t//

T C Ki
`�1.t/G

i;j.t/.Kj
`C� .t//

T (8.36)

Meanwhile, one can obtain the following equations for ` D 0; 1

8
<̂

:̂

�i
� .t; 0/ D ANi

�C1.t/; �i
� .t; 1/ D Ni

�C2.t/
^

��.t; 0/ D A
^

N�C1.t/;
^

��.t; 1/ D ^

N�C2.t/
_

�� .t; 0/ D A
_

N�C1.t/;
_

��.t; 1/ D _

N�C2.t/
(8.37)

where � D 0; 1; : : : ; d � ` � 1, Ni
�.t/,

^

N�.t/ and
_

N�.t/ are calculated by (8.17),
(8.18), and (8.19), respectively.

Proof When ` D 0 or ` D 1, the results in (8.37) can be given from the definitions

of �i
� .t; `/,

_

�
i;j

� .t; `/, and
^

�
i;j

� .t; `/. On the other hand, it follows from the similar
derivation process of (8.24) that

�i
� .t; `/ D ˚

i;i
t�1.t C 1 � `; t � ` � �/ � Ki

`�1.t/˘ i
`C� .t/ (8.38)

Then by the definition of �i
� .t; `/, (8.34) can be obtained from (8.38).

The derivation processes for (8.35) and (8.36) are similar to the proof of (8.34),
and they are thus omitted. This completes the proof.

Lemma 8.4 For � D 2; 3; : : : ; d � 1, the following recursive equations

˚
i;i
t�1.t � `; t � �/ D .Ni

`C1��.t � �//T

�
��1X

&D1
Ki
`�& .t � &/˘ i

��& .t � &/ (8.39)

˚
i;j
t�1.t � `; t � �/ D ^

N`C1��.t � �/ �
��1X

&D1
fKi

`�& .t � &/ ^˘��& .t � &/g
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C
��1X

&D1
Ki
`�& .t � &/Gi;j.t � &/.Kj

��& .t � &//T

�
��1X

&D1
f _

˘`�& .t � 1/.Kj
��& .t � &//Tg (8.40)

˚
i;j
t�1.t � �; t � `/ D _

N`C1��.t � �/ �
��1X

&D1
fKi

��& .t � &/
^

˘`�& .t � &/g

C
��1X

&D1
Ki
��& .t � &/Gi;j.t � &/.Kj

`�& .t � &//T

�
��1X

&D1
f _

˘��& .t � 1/.Kj
`�& .t � &//Tg (8.41)

hold, and for � D 1, the following equations

8
<̂

:̂

˚
i;i
t�1.t � `; t � 1/ D .Ni

`.t � 1//T

˚
i;j
t�1.t � `; t � 1/ D ^

N`.t � 1/

˚
i;j
t�1.t � 1; t � `/ D _

N`.t � 1/

(8.42)

are true, where ` D �C1; : : : ; d, Ni
`C1��.t ��/, ^

N`C1��.t ��/, and
_

N`C1��.t ��/
are computed by (8.17), (8.18), and (8.19), respectively.

Proof For � D 1, (8.42) can be easily obtained from the definitions of Ni
�.t/,

^

N�.t/

and
_

N�.t/. For the other cases, the following recursive equations can be derived by
using the similar derivation processes of (8.24) and (8.31):

˚ i;i
t�& .t � `; t � �/ D ˚ i;i

t�&�1.t � `; t � �/� Ki
`�& .t � &/˘ i

��& .t � &/ (8.43)

˚
i;j
t�& .t � `; t � �/ D ˚

i;j
t�&�1.t � `; t � �/� Ki

`�& .t � &/ ^˘��& .t � &/

� _

˘`�& .t � 1/.Kj
��& .t � &//T

CKi
`�& .t � &/Gi;j.t � &/.Kj

��& .t � &//T (8.44)

˚
i;j
t�& .t � �; t � `/ D ˚

i;j
t�&�1.t � �; t � `/� Ki

��& .t � &/ ^˘`�& .t � &/

� _

˘��& .t � 1/.Kj
`�& .t � &//T

CKi
��& .t � &/Gi;j.t � &/.Kj

`�& .t � &//T (8.45)
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On the other hand, it follows from the definitions of Ni
�.t/,

^

N�.t/, and
_

N�.t/ that

8
<̂

:̂

˚
i;i
t��.t � `; t � �/ D .Ni

`C1��.t � �//T

˚
i;j
t��.t � `; t � �/ D ^

N`C1��.t � �/

˚
i;j
t��.t � �; t � `/ D _

N`C1��.t � �/

(8.46)

Then, (8.39), (8.40), and (8.41) can be derived from (8.43), (8.44), and (8.45). The
proof is thus completed.

8.4 Robust Information Fusion Kalman Estimator

Based on Lemmas 8.1, 8.2, 8.3, and 8.4, the optimal local estimator is given in the
following theorem:

Theorem 8.1 For systems (8.1) and (8.3) with Assumptions 8.1, 8.2, and 8.3 and
given parameters 0 � � i

` � 1; ` D 0; 1; : : : ; d satisfying
Pd

`D1 � i
` � 1; i D

1; 2; : : : ;L, the ith optimal local recursive linear estimator is given by

Oxi.t C 1jt C 1/ D AOxi.tjt/C Ki.t C 1/fyi.t C 1/� � i
0HiAOxi.tjt/

�
dX

`D1
� i
`Hi Oxi.t C 1 � `jt/g (8.47)

8
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:

Ki.t C 1/ D ˚
� i
0P

i.t C 1jt/HT
i

C
dP

`D1
� i
`ANi

`.t/H
T
i

�
.Gi;i.t C 1//�1

Pi.t C 1jt C 1/ D Pi.t C 1jt/ � Ki.t C 1/

�

� i
0P

i.t C 1jt/HT
i C

dP

`D1
� i
`ANi

`.t/H
T
i

� T

Pi.t C 1jt/ D APi.tjt/AT C˙.t/

(8.48)

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂:

Gi;i.t C 1/ D
dP

`D0
f.� i

`/
2
HiPi.t C 1 � `jt/HT

i g

C
dP

`D0
f� i

`.1 � � i
`/Hi.t C 1 � `; t C 1 � `/HT

i g

C
d�1P
`D0

fMi
`.t C 1/C .Mi

`.t C 1//
Tg C DiRvi D

T
i

Mi
`.t C 1/ D � i

`Hi

d�1�`P

�D0
� i
`C�C1�i

� .t; `/H
T
i

�� i
`Hi

d�1�`P

�D0
� i
`C�C1.t C 1 � `; t � ` � �/HT

i

(8.49)
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8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂̂
:

Oxi.t � �jt/ D Oxi.t � �jt � �/C
��1P
&D0

Ki
��& .t � &/"i.t � &/

Pi.t � �jt/ D Pi.t � �jt � �/�
��1P
&D0

Ki
��& .t � &/˘ i

��& .t � &/

� D 1; 2; : : : ; d � 1

(8.50)

Ki
��& .t � &/ D .˘ i

��& .t � &//T.Gi;i.t � &//�1 (8.51)

˘ i
�1
.t/ D

(
�1�1X

`D0
� i
`Hi�

i
��.`C1/.t � 1; `/

)

C � i
�1

HiP
i.t � �1jt � 1/

C
8
<

:

dX

`D�1C1
� i
`Hi˚

i
t�1.t � `; t � �1/

9
=

;
; �1 D 1; 2; : : : ; d � 1 (8.52)

where Ni
`.t/, �

i
� .t; `/ and ˚ i;i

t�1.t � `; t � �/ are computed by (8.17), (8.34), and
(8.39), respectively. ˙.t/ and .t C 1 � `; t � ` � �/ are calculated by (8.11) and
(8.16), respectively.

Proof The third equation in (8.48) can be derived from the fact ˝.t/?Qxi.tjt/ that

Pi.t C 1jt/ D APi.tjt/AT C˙.t/ (8.53)

Taking projection of both sides of the output equation (8.3) yields

Oyi.t C 1jt/ D � i
0Hi Oxi.t C 1jt/C

dP

`D1
� i
`Hi Oxi.t C 1 � `jt/ (8.54)

Therefore, (8.47) can be obtained by substituting (8.27) and (8.54) into (8.25).

The innovation sequence "i.t C 1/ can be rewritten in the form

"i.t C 1/ D Hi

dX

`D0
.�fdi.tC1/D`g � � i

`/x.t C 1 � `/

C� i
0Hi Qxi.t C 1jt/C Hi

dX

`D1
� i
` Qxi.t C 1 � `jt/

CDivi.t C 1/ (8.55)

By Assumptions 8.1, 8.2, and 8.3, one has

Ef.�fdi.t/D`1g � � i
`1
/.�fdi.t/D`2g � � i

`2
/g D

(
� i
`1
.1 � � i

`1
/; `1 D `2

�� i
`1
� i
`2
; `1 ¤ `2

(8.56)
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It follows from the facts Oxi.t C 1jt/?Qxi.t C 1 � `jt/, vi.t C 1/?Oxi.t C 1jt/, vi.t C
1/?Qxi.t C 1jt/ that

Efx.t C 1/."i.t C 1//Tg D
dX

`D1
� i
`˚

i;i
t .t C 1; t C 1 � `/HT

i

C� i
0P

i.t C 1jt/HT
i (8.57)

and it can be derived from (8.28) and the fact ˝.t/?Qxi.t C 1 � `jt/ that

˚ i;i
t .t C 1; t C 1 � `/ D A˚ i;i

t .t; t C 1 � `/ (8.58)

Then substituting (8.58) into (8.57) leads to

E
˚
x.t C 1/."i.t C 1//T

� D
dX

`D1
� i
`A˚

i;i
t .t; t C 1 � `/HT

i

C� i
0P

i.t C 1jt/HT
i (8.59)

By the definition of Ni
�.t/, the first equation in (8.48) can be derived by substituting

(8.59) into (8.26). Subsequently, the second equation of (8.48) can be easily
obtained from (8.47) and the first equation of (8.48).

Moreover, it follows from (8.55) and (8.56) that

Gi;i.t C 1/ D
dX

`D0
f.� i

`/
2
HiP

i.t C 1 � `jt/HT
i g

C
dX

`D0
f� i

`.1 � � i
`/Hi.t C 1 � `; t C 1 � `/HT

i g

C
d�1X

`D0
fMi

`.t C 1/C .Mi
`.t C 1//

Tg C DiRvi D
T
i (8.60)

where

Mi
`.t C 1/ D � i

`Hi

d�1�`X

�D0
� i
`C�C1˚ i;i

t .t C 1 � `; t � ` � �/HT
i � � i

`Hi

�
d�1�`X

�D0
� i
`C�C1Efx.t C 1 � `/xT.t � ` � �/gHT

i (8.61)
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Then, by the definitions of�i
� .t; `/ and.tC1�`; t�`��/, (8.49) can be obtained

from (8.60) and (8.61).
Derivation procedures for Oxi.t � �jt/ and Pi.t � �jt/ are presented as follows. By

using projection theory, one has

Oxi.t � �jt � &/ D Oxi.t � �jt � & � 1/C Ki
��& .t � &/"i.t � &/ (8.62)

which leads to

Pi.t � �jt � &/ D Pi.t � �jt � & � 1/� Ki
��& .t � &/˘ i

��& .t � &/ (8.63)

where

Ki
��& .t � &/ D Ef.x.t � �C &/."i.t � &//TgGi;i.t � &/ (8.64)

then by the definition of˘ i
�.t/, (8.51) can be obtained from (8.64).

Note that Oxi.t ��jt � & � 1/ and Pi.t ��jt � & � 1/ are, respectively, the estimate
and estimation error covariance at instant one step before Oxi.t � � C 1jt � &/ and
Pi.t � �C 1jt � &/. Then, one can obtain (8.50) from (8.62) and (8.63).

Since the set f˘ i
�1
.t/; �1 D 1; 2; : : : ; d � 1g is the same as the set f˘ i

��& .t �
&/; & D 0; 1; : : : ; � � 1g, then from the definition of ˘ i

�1
.t/, one has

˘ i
�1
.t/ D

dX

`D0
� i
`Hi˚

i;i
t�1.t � `; t � �1/

D
(
�1�1X

`D0
� i
`Hi˚

i;i
t�1.t � `; t � �1/

)

C� i
�1

HiP
i.t � �1jt � 1/

C
8
<

:

dX

`D�1C1
� i
`Hi˚

i;i
t�1.t � `; t � �1/

9
=

;
(8.65)

For 0 � ` � �1 � 1, it follows from the definition of �i
� .t; `/ that

˚ i;i
t�1.t � `; t � �1/ D �i

�1�.`C1/.t � 1; `/

Then, substituting the above equation into (8.65) yields (8.51). The proof is thus
completed.

The computation procedures of the local optimal estimator by using Theorem 8.1
is summarized as follows:
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Algorithm 8.1 Given the initial values Pi.�d C 1j0/; : : : ;Pi.0j0/, x.�d C
1/; : : : ; x.0/, Oxi.�d C 1j0/; : : : ; Oxi.0j0/,˘ i

1.0/; : : : ;˘
i
d�1.0/, and Ni

1.0/; : : : ;N
i
d.0/.

Step 1. From � D d � 1 to � D 1, ˚ i;i
t�1.t � `; t � d C 1/; : : : ; ˚

i;i
t�1.t � `; t � 1/,

` D �C 1; : : : ; d are computed by (8.39).
Step 2. Compute ˘ i

�.t/ by substituting (8.39) into (8.52), then Ki
�.t/, � D

1; 2; : : : ; d � 1 is calculated by substituting (8.52) into (8.51).
Step 3. Compute Ni

`.t/; ` D 1; 2; : : : ; d by substituting (8.51) and (8.52) into
(8.17), while Oxi.t � �jt/ and Pi.t � �jt/; � D 1; 2; : : : ; d � 1 are calculated by
substituting (8.51) and (8.52) into (8.50).

Step 4. Compute�i
� .t; 0/ and�i

� .t; 1/ by substituting (8.12) into the first equation
of (8.37), then based on the obtained �i

� .t; 0/ and �i
� .t; 1/, �

i
� .t; `/, ` D

1; 2; : : : ; d � 1 are calculated by substituting (8.51) and (8.52) into (8.34).
Step 5. Compute Mi

`.t C 1/; ` D 1; 2; : : : ; d � 1 by substituting (8.16) and (8.34)
into the second equation of (8.49), then Gi;i.t C 1/ is calculated by substituting
the second equation of (8.50) and Mi

`.t C 1/ into the first equation of (8.49).
Step 6. Compute Ki.t C 1/ by substituting (8.17) and the first equation of (8.49)

into the first equation of (8.48), while Pi.tC1jt/ is calculated by the third equation
of (8.48). Then Pi.t C 1jt C 1/ is computed by substituting Ki.t C 1/, Pi.t C 1jt/,
and (8.17) into the second equation of (8.48).

Step 7. Compute the local optimal state estimate Oxi.t C 1jt C 1/ by substituting
Ki.t C 1/ and Oxi.t � �jt/ into (8.47).

Based on the local estimates obtained by Theorem 8.1, the optimal state fusion
estimator with matrix weights will be presented in the following theorem. The proof
is similar to that given in [16] and is omitted for brevity:

Theorem 8.2 For systems (8.1) and (8.3), the robust distributed state fusion
estimator is given by

Ox.tjt/ D
LX

iD1
NAi.t/Oxi.tjt/ (8.66)

NA.t/ D ��1.t/I0.IT
0 �

�1.t/I0/�1 (8.67)

where

NA.t/ D Œ NA1.t/; : : : ; NAL.t/�
T 2 <nL�n

I0 D ŒIn; : : : ; In�
T 2 <nL�n

�.t/ D

2

6
6
6
4

P1;1.tjt/ P1;2.tjt/ � � � P1;L.tjt/
P2;1.tjt/ P2;2.tjt/ � � � P2;L.tjt/

:::
:::

: : :
:::

PL;1.tjt/ PL;2.tjt/ � � � PL;L.tjt/

3

7
7
7
5

2 <nL�nL
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Moreover, the corresponding error covariance matrix of the fusion estimator is
given by P.tjt/ D .IT

0 �
�1.t/I0/�1 which satisfies

P.tjt/ � Pi.tjt/; i D 1; 2; : : : ;L

It can be seen from Theorem 8.2 that one has to compute the estimation error cross-
covariance Pi;j, i; j 2 f1; 2; : : : ;Lg in the design of the fusion estimators, and the
computation procedures are given in the following theorem.

Theorem 8.3 For given parameters 0 � � i
` � 1; ` D 0; 1; : : : ; d; i D 1; 2; � � � ;L

satisfying
Pd

`D1 � i
` � 1, the estimation error cross-covariance matrix between the

ith and the jth sensor subsystems at time instant t C 1 is computed recursively by

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

Pi;j.t C 1jt C 1/ D Pi;j.t C 1jt/ � Ki.t C 1/

�

� i
0HiPi;j.t C 1jt/C

dP

`D1
� i
`Hi

^

N`.t/AT

�

�

�

j
0P

i;j.t C 1jt/HT
j C

dP

`D1
�

j
`A

_

N`.t/HT
j

�

�.Kj.t C 1//T C Ki.t C 1/Gi;j.t C 1/.Kj.t C 1//T

Pi;j.t C 1jt/ D APi;j.tjt/AT C˙.t/

(8.68)

Gi;j.t C 1/ D
dX

`D0
f� i

`�
j
`HiP

i;j.t � `C 1jt/HT
j g

C
d�1X

`D0

(

� i
`Hi

d�`�1X

�D0
�

j
`C�C1

_

�
i;j

� .t; `/H
T
j

C� j
`

d�`�1X

�D0
� i
`C�C1Hi

^

�
i;j

� .t; `/H
T
j

)

C DiSijD
T
j (8.69)

Pi;j.t � �; t/ D Pi;j.t � �jt � �/�
��1X

&D0

n
Ki
��& .t � &/

^

˘��& .t � &/

�Ki
��& .t � &/Gi;j.t � &/.Kj

��& .t � &//
T

C _

˘��& .t � &/.Kj
��& .t�&//T

o
; �D1; 2; : : : ; d�1 (8.70)
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8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

^

˘�1.t/ D
(
�1�1P
`D0

� i
`Hi

_

��1�.`C1/.t � 1; `/
)

C � i
�1

HiPi;j.t � �1jt � 1/

C
(

dP

`D�1C1
� i
`Hi˚

i;j
t�1.t � `; t � �1/

)

_

˘�1.t/ D
(
�1�1P
`D0

�
j
`

^

��1�.`C1/.t � 1; `/HT
j

)

C �
j
�1

Pi;j.t � �1jt � 1/HT
j

C
(

dP

`D�1C1
�

j
`˚

i;j
t�1.t � �1; t � `/HT

j

)

�1 D 1; 2; : : : ; d � 1

(8.71)

where Ki.t C 1/ and Ki
��& .t � &/ are computed by (8.48) and (8.51), respectively,

while
^

N�.t/,
_

N�.t/,
^

��.t; `/,
_

��.t; `/, ˚
i;j
t�1.t � `; t � �/ and ˚ i;j

t�1.t � �; t � `/ are
computed by (8.18), (8.19), (8.35), (8.36), (8.40), and (8.41), respectively.

Proof Equations (8.70) and (8.71) can be obtained by following the similar
derivation procedures in (8.50) and (8.52), respectively. On the other hand, it follows
from (8.53) that

Pi;j.t C 1jt C 1/ D Pi;j.t C 1jt/� Ki.t C 1/Ef"i.t C 1/.Qxj.t C 1jt//Tg
�EfQxi.t C 1jt/." j.t C 1//Tg.Kj.t C 1//T

CKi.t C 1/Ef"i.t C 1/." j.t C 1//Tg.Kj.t C 1//T (8.72)

By Assumptions 8.1, 8.2, and 8.3, it follows from the similar derivation procedures
in (8.59) that

8
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂
:

^

˘0.t C 1/ D Ef"i.t C 1/.Qxj.t C 1jt//Tg
D � i

0HiPi;j.t C 1jt/C
dP

`D1
� i
`Hi˚

i;j
t .t � `C 1; t/AT

_

˘0.t C 1/ D EfQxi.t C 1jt/."j.t C 1//T

D �
j
0P

i;j.t C 1jt/HT
j C

dP

`D1
�

j
`A˚

i;j
t .t; t � `C 1/HT

j

(8.73)

Hence, by the definitions of
^

N`.t/ and
_

N`.t/, the first equation in (8.68) can be
obtained by substituting (8.73) into (8.72). Meanwhile, the second equation in (8.68)
can be derived from (8.28) and the facts˝.t/?Qxi.tjt/ and ˝.t/?Qxj.tjt/.
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For i ¤ j, it is easy to verify from Assumptions 8.1 and 8.2 that

(
Ef.�fdi.t/D`1g � � i

`1
/.�fdj.t/D`2g � �

j
`2
/g D 0

Efvivjg D Sij
(8.74)

Then, the following equation can be obtained from (8.55) and (8.74):

Gi;j.t C 1/ D
dX

`D0
� i
`�

j
`HiP

i;j.t � `C 1jt/HT
j

CDiSijD
T
j C

d�1X

`D0
f _

M`.t C 1/C ^

M`.t C 1/g (8.75)

where

_

M`.t C 1/ D � i
`Hi

d�`�1X

�D0
�

j
`C�C1

_

�
i;j

� .t; `/H
T
j

^

M`.t C 1/ D �
j
`

(
d�`�1X

�D0
� i
`C�C1Hi

^

�
i;j

� .t; `/

)

HT
j

Then, substituting the above equations into (8.75) leads to (8.71). The proof is
completed.

The computation procedures for the estimation error cross-covariance matrix by
using Theorem 8.3 are similar to Algorithm 8.1, and thus the detailed steps are
omitted here.

To discuss the computational complexities of the proposed estimator design
method, it is the number of multiplications and divisions that is used as the operation
count. Let CK denote the number of multiplications and divisions. Note that the
algorithm by Theorem 8.2 can be summarized as follows:

(i) Compute the local optimal estimates Oxi.tjt/; i D 1; 2; : : : ;L using Theo-
rem 8.1;

(ii) Compute the error cross-covariance matrices Pi;j.tjt/, i D 1; 2; : : : ;L, j D i; iC
1; : : : ;L by applying Theorem 8.3;

(iii) Compute the optimal state fusion estimate Ox.tjt/ by applying Theorem 8.2.

It is easy to know the total CK number of obtaining Ox.tjt/, for one step, denoted by
CKr, is given by

CKr D
LX

iD1
fnmi.1C mi/d2 C ..n3 C 1/mi C 7n2mi

C.2.mi/2 � mi/n/d C .mi C 2/n3 C .1C 2mi/n2 C ming
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C
L.L�1/=2X

iD1
f.n2mi C nmi C 3n3/d2 C .n2mi

C3.mi/2n C 2min � 3n3/d C 4n3 C min.1C n/g
Cf2n3L3 C 3n3L2 C Ln2g (8.76)

For the computational complexity function CKr, the highest power of d is 2,
which implies that the computational cost has been largely increased because of
the time delay when the number of sensors is fixed. Meanwhile, denote CKa as the
computational complexity function for the augmentation approach, then the CKa is
of magnitude O.d3/. Therefore, when the upper bound of the delay d is sufficiently
large, it is easy to know that CKa > CKr. On the other hand, it follows from (8.76)
that CKr is of magnitude O.L3/, which implies that as the number of the sensors
increases, the computation cost will increase rapidly.

The distributed state fusion estimator Ox.tjt/ obtained from Theorem 8.2 is
computed off-line as it only depends on the upper bounds and the occurrence
probabilities of delays at each step.

8.5 Simulations

In this section, two examples are presented to illustrate the effectiveness and
applicability of the proposed fusion estimator. Throughout this section, the trace of
estimation error covariance matrix is selected to specify the estimation performance.

Example 8.1 Consider the following state-space model with stochastic parameter
perturbations [11]:

x.t C 1/ D .A C A1˛1.t//x.t/C � w.t/ (8.77)

where

A D
�
0:3 0:7

0:2 0:6

�
;A1 D

�
0:1 0:05

0:2 0:1

�
; � D

�
1

0:5

�

and w.t/ and ˛1.t/ are zero-mean white noises with covariances Qw and �1,
respectively. Two sensors are deployed to measure the outputs of system (8.77),
and the observations received by the fusion center are given by


y1.t/ D H1x.t � d1.t//C D1v1.t/
y2.t/ D H2x.t � d2.t//C D2v2.t/

(8.78)
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where

H1 D Œ 0:5 1 �;H2 D Œ 1 1 �;D1 D 0:5;D2 D 0:2

and v1.t/ and v2.t/ are correlated Gaussian white noises satisfying

E
�
v1.t/
v2.t/

� �
v1.t/ v2.t/

�� D
�

Rv1 S12
S12 Rv2

�

Suppose that d1.t/ 2 f0; 1; 2g and d2.t/ 2 f0; 1; 2g, i.e., d D 2, then (8.78) is
rewritten in the form

8
ˆ̂
<

ˆ̂:

y1.t/ D H1

2P

`D0
�fd1.t/D`gx.t � `/C D1v1.t/

y2.t/ D H2

2P

`D0
�fd2.t/D`gx.t � `/C D2v2.t/

(8.79)

where

2X

`D0
f�fdi.t/D`gg 2 f1; 0g; Probf�fdi.t/D`g D 1g D � i

`

Then, the measurement receiving probability �i is given by �i D P2
`D0 � i

`, and
the measurement loss rate is 1 � �i. Define the average measurement receiving
probability of all the sensors as follows:

�0 D 1

L

LX

iD1
�i (8.80)

Choose Qw D 0:1, Rv1 D Rv2 D 0:3, S12 D 0, �1 D 0:1. Suppose that the
occurrence probabilities of the delays are �10 D 0:70, �11 D 0:15, �12 D 0:10,
�20 D 0:65, �21 D 0:15, and �22 D 0:05. Then, one has �1 D 0:95 and �2 D 0:85.

To verify the effectiveness of the proposed estimator design method, the robust
information fusion estimator Ox.tjt/ for systems (8.77) and (8.78) are shown in
Fig. 8.1, while the estimation performance is depicted in Fig. 8.2. It can be seen
from Figs. 8.1 and 8.2 that the estimator provides satisfactory performance and the
precision of the fusion estimator is higher than that of the local optimal estimators.

To demonstrate the advantage of the proposed estimator, its estimation perfor-
mance is compared with that of the robust estimator in [11], where the communica-
tion delays were not considered. Using the approach in [11], the measurements will
be regarded to be lost if they are not collected on time. Therefore, all the delayed
measurements are considered to be missed, and the measurement receiving rate �i

equals � i
0, i.e., �1 D 0:70 and �2 D 0:65. Denote the estimation error covariance
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Fig. 8.1 The state x.t/ and its fusion estimate Ox.tjt/
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Fig. 8.2 The estimation performance of local optimal estimators and fusion estimator

matrix of [11] by P0.tjt/, then by using Theorem 1 of [11] and Theorem 8.3,
respectively, the relationship between Tr.P.tjt// and Tr.P0.tjt// is depicted in
Fig. 8.3. It can be seen from Fig. 8.3 that the performance of the proposed estimator
is better than that of the centralized estimator in [11].
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Fig. 8.3 The estimation performance of the proposed estimator and the centralized estimator in
[11]

Table 8.1 The relationship between the steady-state values of Tr.P.tjt// and the average mea-
surements receiving rate �0

�0 0.90 0.85 0.80 0.75 0.70

S �Tr.P/ 0.2283 0.2670 0.2704 0.3030 0.3336

In what follows, the relationships between the average measurements receiving
rate and the information fusion estimation performance will be presented by sim-
ulations. By applying Theorem 8.3, one obtains the information fusion estimation
performance with respect to different average measurements receiving rate �0 as
shown in Table 8.1, where S �Tr.P/ denotes the steady-state values of Tr.P.tjt//.
It can be seen from Table 8.1 that the estimation performance becomes better with
the increase of the average measurements receiving rate, which indicates that large
measurement delays degrade the estimation performance.

Example 8.2 Consider a radar tracking system with two sensors

x.t C 1/ D
�
1 T0
0 1

�
C
��0:1 0:1
0:1 0:1

�
˛1.t/

�
x.t/C

�
0:5T20

T0

�
w.t/ (8.81)

yi.t/ D �i.t/Hix.t � di.t//C vi.t/; i D 1; 2 (8.82)
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where

H1 D Œ 1 0 �; H2 D Œ 0 1�

T0 is the sampling period. The state consists of the position s.t/ and the velocity Ps.t/
of the moving target as follows:

x.t/ D
�

s.t/
Ps.t/

�

˛1.t/ and w.t/ are zero-mean white scalar noises with covariances 0.1 and 0.3,
respectively. v1.t/ and v2.t/ are zero-mean white noises with covariances 0.2 and
0.3, respectively. Suppose that d1.t/ 2 f0; 1; 2; 3g and d2.t/ 2 f0; 1; 2g, then d D 3.
For i D 1; 2, (8.82) can be rewritten as

yi.t/ D Hif�fdi.t/D0gx.t/C �fdi.t/D1gx.t � 1/
C�fdi.t/D2gx.t � 2/C �fdi.t/D3gx.t � 3/g C vi.t/

where �fdi.t/D0g; �fdi.t/D1g; �fdi.t/D2g; and�fdi.t/D3g are binary random variables satis-
fying

Probf�fd1.t/D0gD 1g D0:5;Probf�fd1.t/D1gD 1g D0:2
Probf�fd1.t/D2gD 1g D0:1;Probf�fd1.t/D3gD 1g D0:1
Probf�fd2.t/D0gD 1g D0:4;Probf�fd2.t/D1gD 1g D0:2
Probf�fd2.t/D2gD 1g D0:2;Probf�fd2.t/D3gD 1g D0

then

�1 D Probf�1.t/ D 1g D 0:9

�2 D Probf�2.t/ D 1g D 0:8

The objective is to estimate the position and velocity of the moving target system
(8.81) when T0 D 0:04.

The local optimal estimates Ox1.tjt/ and Ox2.tjt/ are computed by applying The-
orem 8.1, while the fusion estimate Ox.tjt/ is computed recursively by applying
Theorems 8.2 and 8.3. The state x.t/ and its estimate Ox.tjt/ are depicted in Fig. 8.4.
It can be seen from Fig. 8.4 that the estimate Ox.tjt/ is close to the state x.t/, which
indicates that the proposed estimator provides satisfactory estimation performance.
The estimation performance is shown in Fig. 8.5, and the estimation precision of the
fusion estimator is higher than that of the local optimal estimator.
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8.6 Conclusions

In this chapter, the robust state fusion estimation problem was investigated for
multisensor systems with randomly delayed measurements and stochastic parameter
uncertainties. Multiple binary random variables with known statistical properties
were introduced to model the delayed measurements. Both robust local estimators
and state fusion estimators were designed without resorting to the measurement
augmentation method.
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Chapter 9
Fusion Estimation for WSNs with Delays
and Packet Losses

9.1 Introduction

Communication delays and packet losses are usually unavoidable in sensor networks
and should be taken into consideration in the estimator design. Both centralized and
distributed fusion estimation methods have been presented in [1–3] for multisensor
fusion estimation systems with delays or packet losses. To deal with the delays and
packet losses simultaneously, the centralized fusion estimators have been designed
in [4, 5] by using Kalman filtering and linear matrix inequality approaches, and
the distributed fusion estimation algorithm was developed in [6] based on the
well-known federated Kalman filtering approach. In [5, 6], the time-varying delay
was identified by using the time-stamp method over each estimation interval, and
exact values of the time delays should be known to update the estimator gain
matrices online. Different from the delay models in [4–6], the distributed fusion
Kalman filtering problem was investigated in [7] by assuming that the occurrence
probabilities of delays were known a priori, and the filter gains can be computed
off-line.

In this chapter, a distributed state fusion estimator is designed for sensor networks
with random time delays and packet losses. First, a local optimal estimator is
designed by taking missing measurements into consideration. Then, a distributed
state fusion estimator is designed by fusion local estimates which may be delayed
and lost during transmission from the local estimators to the fusion center. Some
sufficient conditions are derived such that the MSE of the designed distributed state
fusion estimator is bounded or convergent, and it is proved that the designed fusion
estimator does not depend on the choice of the initial values. Moreover, a design
method for the steady-state fusion estimator is also presented.

Throughout this chapter, it will be considered that
Q�2
�D�1 F.�/ D Im andP�2

�D�1 G.�/ D 0 if �1 > �2, where F.�/ and G.�/ represent different matrix
functions with respect to the variable � .

© Science Press, Beijing and Springer Science+Business Media Singapore 2016
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9.2 Problem Statement

The distributed fusion estimation problem for a class of multisensor systems is
shown in Fig. 9.1, where all the sensors are synchronized and have the same
measurement sampling rates. The dynamics of the system to be monitored and the
measurement equations of the L sensors are given by

x.t C 1/ D A.t/x.t/C � .t/w.t/ (9.1)

yi.t/ D �i.t/Ci.t/xi.t/C vi.t/; i D 1; 2; : : : ;L (9.2)

where x.t/ 2 <n is the state of the system and yi.t/ 2 <qi is the measured
output from sensor i. w.t/ 2 <p and vi.t/ 2 <qi are zero-mean white noises with
covariances Qw.t/ > 0 and Qvi .t/ > 0, respectively, and are mutually uncorrelated.
A.t/ 2 <n�n, � .t/ 2 <n�p, and Ci.t/ 2 <qi�n are time-varying matrices. The binary
stochastic variable �i.t/, which is used to describe the missing phenomenon of the
sensor measurement, is a Bernoulli distributed white sequence taking values of 1
and 0 with Probf�i.t/ D 1g D�i and Probf�i.t/ D 0g D1 � �i [8], where 1 � �i

is called the measurement missing rate. It is assumed that each sensor has enough
processing capabilities to compute the optimal local state estimate of x.t/ based on
the measurements fyi.1/; : : : ; yi.t/g. For the ith subsystem (which is described by
(9.1) and yi.t/), the local Kalman filter is given by (Corollary 1 in [7]):

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Oxi.tjt/ D .In � �iKi.t/Ci.t//A.t � 1/ Oxi.t � 1jt � 1/C Ki.t/yi.t/
Ki.t/ D �iP�

ii .t/C
T
i .t/f�iCi.t/Œ�iP�

ii .t/
C.1 � �i/.t/�CT

i .t/C Qvi .t/g�1
Pii.tjt/ D ŒIn � �iKi.t/Ci.t/�P�

ii .t/
P�

ii .t/ D A.t � 1/Pii.t � 1jt � 1/AT.t � 1/C O� .t � 1/

(9.3)

where

O� .t � 1/
$D � .t � 1/Qw.t � 1/� T.t � 1/

Fig. 9.1 A distributed fusion estimation system with delays and packet losses
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and.t/
$D Efx.t/xT.t/g is computed by

.t/ D A.t � 1/.t � 1/AT.t � 1/C O� .t � 1/ (9.4)

The estimation error cross-covariance matrix Pij.tjt/ is defined by

Pij.tjt/ $D E
˚
.x.t/ � Oxi.tjt//.x.t/ � Oxj.tjt//T

�

and it is calculated by:

Pij.tjt/ D ŒIn � �iKi.t/Ci.t/�ŒA.t � 1/Pij.t � 1jt � 1/
�AT.t � 1/C O� .t � 1/�ŒIn � �jKj.t/Cj.t/�

T (9.5)

When the local estimates Oxi.tjt/ are available, they are then transmitted to the
fusion center through communication networks for generating a fusion estimate,
where delay and packet loss may happen during transmissions. Denote the random
delay in the ith local estimate as di.t/, and the random delay is assumed to be upper
bounded and take values in a finite set as follows

di.t/ 2
n
di.tjt/ $D 0; di.t C 1jt/ $D 1; : : : ; di.t C dijt/ $D di

o
(9.6)

where di.t C`jt/.` 2 f0; 1; � � � ; dig/ denotes that the local estimate Oxi.tjt/ is delayed
by ` sampling periods and di represents the upper bound of the random delay.
Moreover, the stochastic process fdi.t/g is assumed to be i.i.d. (independent and
identically distributed), and the occurrence probabilities of the delays are known a
priori through statistical test, that is,

Probfdi.t/ D `g D � i
`; ` D 0; 1; : : : ; di (9.7)

where � i
` is a positive scalar and

Pdi
`D0 � i

` D 1. In the fusion center, there are L
different buffers that store the corresponding local estimates. Due to the random
transmission delays, multiple local estimates from a same sensor may arrive at the
fusion center over an fusion estimation interval. Therefore, it is assumed that the
local estimates Oxi.tjt/; i D 1; 2; : : : ;L are time stamped before being transmitted,
and then similar to the signal storing mechanism in [9], each buffer stores the most
recent local estimate from a sensor and discards the others according to the time
stamps. Therefore, if multiple local estimates from a same sensor arrive at the fusion
center over an estimation interval, then the fusion center selects only one local from
the following set:

Si.t/
$D f Oxi.tjt/; Oxi.t � 1jt � 1/; : : : ; Oxi.t � dijt � di/g (9.8)
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Let Oxr
i .tjt/ denote the local reorganized state estimate that is adopted by the fusion

center, then Oxr
i .tjt/ can be computed by

Oxr
i .tjt/ D

 
Ỳ

�D1
A.t � �/

!

Oxi.t � `jt � `/

if the adopted local estimate at time t is Oxi.t � `jt � `/; ` 2 f1; 2; : : : ; dig. On the
other hand, if no local estimate arrives at the fusion center over the fusion estimation
interval, then the local reorganized state estimate Oxr

i .tjt/will be compensated by one-
step prediction as Oxr

i .t � 1jt � 1/.
Introducing the following indicator functions to describe the random delays

�fdi.tC`jt/D`g D

1 if di.t/ D `

0 if di.t/ ¤ `
; ` D 0; 1; : : : ; di (9.9)

where �fdi.tC`jt/D`g; ` D 0; 1; : : : ; di satisfy

8
<

:

diP

`D0
�fdi.tC`jt/D`g D 1

�fdi.tC`1jt/D`1g � �fdi.tC`2jt/D`2g D 0; `1 ¤ `2

(9.10)

Therefore, it follows from (9.8), (9.9), and (9.10) that the local reorganized estimate
Oxr

i .tjt/ is given by

Oxr
i .tjt/ D

diX

`D0

(

˛i
`.t/

 
Ỳ

�D1
A.t � �/

!

Oxi.t � `jt � `/

)

Cˇi.t/A.t � 1/Oxr
i .t � 1jt � 1/ (9.11)

where the binary random variables ˛i
`.t/ 2 f0; 1g and ˇi.t/ 2 f0; 1g are defined by

8
ˆ̂̂
<̂

ˆ̂̂
:̂

˛i
`.t/

$D
(
`�1Q
�1D0

.1 � �fdi.tjt��1/D�1g/
)

�fdi.tjt�`/D`g

ˇi.t/
$D
(

diQ

�2D0
.1 � �fdi.tjt��2/D�2g/

) (9.12)

where ˛i
`.t/ D 1 means that the local estimate selected by the fusion center is

Oxi.t � `jt � `/ at time t. Then it is derived from (9.10) that

˛i
`.t/ � ˇi.t/ D 0;

diX

`D0
f˛i
`.t/g C ˇi.t/ D 1 (9.13)
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On the other hand, it follows from (9.6) and (9.7) that

Probfdi.t C `jt/ D `g D � i
`

then one has by the statistical property of di.t/ and (9.12) that

8
ˆ̂
<̂

ˆ̂
:̂

Ef˛i
`.t/g $D ˛i

`D
(
`�1Q
�1D0

.1 � � i
�1
/

)

� i
`

Efˇi.t/g $D ˇiD
diQ

�2D0
.1 � � i

�2
/

(9.14)

Note that ˇi.t/ D 1 means that no local estimates from sensor i arrive at the fusion
center at time t; thus, the packet loss rate of the ith channel is given by ˇi. Moreover,
it follows from the well-known arithmetic-geometric average inequality that ˇi �	

di
diC1


diC1
.

Assumption 9.1 The random variables �i.t/ and di.t/, i D 1; 2; : : : ;L are mutually
independent and uncorrelated with w.t/ and vi.t/.

Then, the problem to be solved in this chapter is described as follows:

(1) Find a group of optimal weighting matrices ˝1.t/; : : : ; ˝L.t/ such that the

MSE of the fusion estimator Ox.t/ D
LP

iD1
˝i.t/Oxr

i .tjt/ is optimal, that is,

fOx.t/;˝1.t/; : : : ;˝L.t/g D arg min Ef.x.t/ � Ox�.t//T.x.t/ � Ox�.t//g
s:t: Ox�.t/ D

LP

iD1
˝�

i .t/ Oxr
i .tjt/;

LP

iD1
˝�

i .t/ D In
(9.15)

(2) Find some sufficient conditions for the MSE of the fusion estimator in (9.15) to
be bounded or convergent.

9.3 Design of Finite-Horizon Fusion Estimator

Define ei.t/
$D x.t/ � Oxr

i .tjt/; then, it follows from Lemma 2.4 that the dis-
tributed fusion estimation performance is optimal if and only if the matrix weights
˝1.t/; : : : ;˝L.t/ for (9.15) are determined by

Œ˝1.t/;˝2.t/; : : : ;˝L.t/� D .IT
0 ˙

�1.t/I0/�1IT
0˙

�1.t/ (9.16)
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where

I0
$D Œ In � � � In �

T 2 <nL�n

˙.t/
$D EfŒeT

1 .t/ � � � eT
L.t/�

TŒeT
1 .t/ � � � eT

L.t/�g

and
PL

iD1 ˝i.t/ D In. Thus, the designed fusion estimator is unbiased when
Ef Oxr

i .tjt/g D Efx.t/g; i D 1; 2; : : : ;L. The fusion estimation error covariance matrix

P.t/
$D Ef.x.t/ � Ox.t//.x.t/ � Ox.t//Tg is calculated by

P.t/ D .IT
0 ˙

�1.t/I0/�1 (9.17)

In what follows, the recursive form of ˙.t/ will be given to obtain the optimal
weighting matrices. Before presenting the main results, three useful lemmas are
given as follows.

Lemma 9.1 The binary random variables ˛i
`.t/; ` D 0; 1; : : : ; di and ˇi.t/; i D

1; 2; : : : ;L satisfyW

˛i
�1
.t/˛i

�2
.t � t1/ D 0; di � �1 > �2; t1 D 0; 1; : : : ; �1 � 1 (9.18)

diY

�D0
ˇi.t � �/ D 0;

 
di�1Y

�D0
ˇi.t � �/

!

˛i
`.t � di/ D 0 (9.19)

8
ˆ̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂
:̂

E
n
˛i
`1
.t/˛ j

`2
.t � t1/

o
D
(
˛i
`1
˛i
`2

if i D j; t1 � `1 C 1

˛i
`1
˛

j
`2

if i ¤ j; 8t1

E
n
ˇi.t/˛

j
`2
.t � t1/

o
D

(
ˇi˛

i
`2

if i D j; t1 � di C 1

ˇi˛
j
`2

if i ¤ j;8t1
`1 2 f0; 1; : : : ; dig; `2 2 f0; 1; : : : ; djg

(9.20)

where ˛i
` and ˇi are computed by (9.14).

Proof Equations (9.18) and (9.19) can be directly obtained from (9.10) and (9.12).
For `i

1 2 f0; 1; : : : ; dig and `
j
2 2 f0; 1; : : : ; djg, it follows from (9.6), (9.9),

Assumption 9.1, and the statistical property of di.t/ that

E
n
�fdi.tC`i

1jt/D`i
1g�fdj.t1C`j

2jt1/D`j
2g
o

D E
n
�fdi.tC`i

1jt/D`i
1g
o

E
n
�fdi.t1C`j

2jt1/D`j
2g
o

fi D j; t ¤ t1g or fi ¤ j;8t; t1g

Then, (9.20) is obtained from the above result, (9.12) and (9.13).
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Lemma 9.2 For the random variables �xi
` .t/ and�wi

` .t/ with the following forms

�
xi
` .t/

$D

8
ˆ̂
<̂

ˆ̂
:̂

P̀

�0D0
� i
` .�0/; 0 � ` � di

2di�1�`P

�2D0
� i
` .�2/; di C 1 � ` � 2di � 1

(9.21)

�
wi
` .t/

$D

8
ˆ̂
<̂

ˆ̂
:̂

diP

k0D`
˛i

k0
.t/C

`�1P
&0D1

O� i
` .&0/C

`�1Q
&2D0

ˇi.t � &2/; 1 � ` � di

2di�`�1P

&3D0
O� i
` .&3/; di C 1 � ` � 2di � 1

(9.22)

where � i
` .�/ and O� i

`.&/ are defined by

� i
`.�/

$D

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:

˛i
� .t � `C �/

`���1Q

�1D0
ˇi.t � �1/; 0 � ` � di

˛i
d�� .t � ` � � C di/

`�diC��1Q

�3D0
ˇi.t � �3/;

di C 1 � ` � 2di � 1

(9.23)

O� i
`.&/

$D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

 
dP

k1D&
˛i

k1
.t � `C &/

!
`�&�1Q

&1D0
ˇi.t � &1/; 0 � ` � di

 
dP

k2Ddi�&
˛i

k2
.t � ` � & C di/

!
`C&�di�1Q

&4D0
ˇi.t � &4/;

di C 1 � ` � 2di � 1

(9.24)

The statistical correlations between the random variables ��i
` .t/, ` D 0; 1;

: : : ; 2di � 1, � 2 fx;wg satisfy

8
ˆ̂
<̂

ˆ̂
:̂

�
��
ii .`1; `2/

$D E
n
�
�i
`1
.t/��i

`2
.t/
o

D E
n
�
�i
`1
.t/
o
; `1 D `2

�
��
ii .`1; `2/

$D E
n
�
�i
`1
.t/��i

`2
.t/
o

D 0; `1 ¤ `2

�xw
ii .`1; `2/

$D E
n
�

xi
`1
.t/�wi

`2
.t/
o

D 0; `2 > `1

(9.25)

8
<

:

�xx
ij .`1; `2/

$D E
n
�

xi
`1
.t/�

xj

`2
.t/
o

D �xx
ii .`1; `1/�

xx
jj .`2; `2/

�xw
ij .`1; `2/

$D E
n
�

xi
`1
.t/�

wj

`2
.t/
o

D �xx
ii .`1; `1/�

ww
jj .`2; `2/

(9.26)

where Ef��i
`1
.t/g; � 2 fx;wg can be determined by (9.13) and (9.20).
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Proof It can be obtained from (9.13) and (9.18) that

(
� i
`1
.�1/� i

`2
.�2/ D 0;

�
`1 D `2; �

1 ¤ �2
�

or
�
`1 ¤ `2;8�1; �2

�

O� i
`1
.&1/ O� i

`2
.&2/ D 0;

�
`1 D `2; &

1 ¤ &2
�

or
�
`1 ¤ `2;8&1; &2

� (9.27)

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂:

� i
`1
.�1/ O� i

`2
.&1/ D 0;

 
diP

k0D`2
˛i

k0
.t/

!
`2�1Q
&2D0

ˇi.t � &2/ D 0

� i
`1
.�1/

 
diP

k0D`2
˛i

k0
.t/

!

D 0; � i
`1
.�1/

`2�1Q
&2D0

ˇi.t � &2/ D 0

`2 > `1;8�1; &1

(9.28)

Then, it follows from (9.27) and (9.28) that

8
<̂

:̂

�
�i
`1
.t/��i

`2
.t/ D �

�i
`1
.t/; `1 D `2; � 2 fx;wg

�
�i
`1
.t/��i

`2
.t/ D 0; `1 ¤ `2; � 2 fx;wg

�
xi
`1
.t/�wi

`2
.t/ D 0; `2 > `1

(9.29)

Therefore, (9.25) is obtained from (9.29). Meanwhile, (9.26) can be derived from
(9.20), (9.21), and (9.22).

Lemma 9.3 Define

�ij.t1; t2/
$D E

˚Qxi.t1jt1/QxT
j .t2jt2/

�

˚i.t1; t2/
$D E

˚Qxi.t1jt2/wT.t2/
�

then one has

�ij.t1; t2/ D
�

t1�t2�1Q

`D0
Œ�i.t1; `/A.t1 � ` � 1/�

�
Pij.t2jt2/; t1 � t2 (9.30)

˚i.t1; t2/ D
�

t1�t2�2Q

`D0
Œ�i.t1; `/A.t1 � `1 � 1/�

�
�i.t1; t1 � t2/

�� .t2/Qw.t2/; t1 > t2

(9.31)

where �i.t1; `/ D In � �iKi.t1 � `/Ci.t1 � `/.

Proof For t1 � t2, it follows from (9.1) and (9.3) that the local estimation error

Qxi.t1jt1/ $D x.t1/ � Oxi.t1jt1/ is calculated by

Qxi.t1jt1/ D
 

t1�t2�1Y

`D0
Œ�i.t1; `/A.t1 � ` � 1/�

!

Qxi.t2jt2/
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C
t1�t2X

„1D1

8
<

:

0

@
„1�2Y

`1D0
Œ�i.t1; `1/A.t1 � `1 � 1/�

1

A

��i.t1;„1 � 1/� .t1 � „1/w.t1 � „1/g

�
t1�t2�1X

„2D0
f
0

@
„2�1Y

`2D0
�i.t1; `2/

1

A Œ.�i.t � „2/ � �i/Ci.t � „2/

�x.t � „2/C Ki.t1 � „2/vi.t1 � „2/�g (9.32)

By taking the facts Qxi.tjt/?w.t1/ .t1 � t/, Qxi.tjt/?vi.t2/ .t2 > t/, and Assumption 9.1
into account, (9.30) and (9.31) follow from (9.32).

Theorem 9.1 For given parameters �i; i D 1; 2; : : : ;L, and 0 � � i
` � 1 satisfying

Pdi
`D0 � i

` D 1, the local estimation error covariance matrix ˙ii.t/
$D Efei.t/eT

i .t/g
is calculated by

˙ii.t/ D
2di�1X

`D0

(

�xx
ii .`; `/

 
Ỳ

�D1
A.t � �/

!

Pii.t � `jt � `/

�
 
Ỳ

�D1
A.t � �/

!T
9
=

;
C

2di�1X

`D1

(

�ww
ii .`; `/

 
`�1Y

�D1
A.t � �/

!

� O� .t � `/

 
`�1Y

�D1
A.t � �/

!T
9
=

;
(9.33)

where�xx
ii .`; `/ and�ww

ii .`; `/ are computed by (9.25), Pii.t�`jt�`/ are calculated
by (9.3), and O� .t � `/ is defined in (9.3). Moreover, the estimation error cross-

covariance matrix ˙ij.t/
$D Efei.t/eT

j .t/g is given by

˙ij.t/ D
2d�1X

`D0

(

�xx
ij .`; `/

 
Ỳ

�D1
A.t � �/

!

Pij.t � `jt � `/

�
 
Ỳ

�D1
A.t � �/

!T
9
=

;
C

2d�1X

`D1

(

�ww
ij .`; `/

 
`�1Y

�D1
A.t � �/

!

� O� .t � `/
 
`�1Y

�D1
A.t � �/

!T
9
=

;
C

2d�2X

`D0

( 
Ỳ

�D1
A.t � �/

!

� �
ij
` .t/C O� ji

` .t/

 
Ỳ

�D1
A.t � �/

!T
9
=

;
(9.34)
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where d D maxfdi; djg, �xi
`i
.t/ D 0, �wi

`i
.t/ D 0 .`i > 2di � 1/ and �

xj

`j
.t/ D

0; �
wj

`j
.t/ D 0 .`j > 2dj � 1/, Pij.tjt/ is calculated by (9.5), while � ij

` .t/ and O� ji
` .t/

are computed by

�
ij
` .t/ D

2d�2�`X

„D0

8
<̂

:̂
�xx

ij .`; ` � „ � 1/�ij.t � `; t � ` � „ � 1/

�
0

@
`C„C1Y

�1D1
A.t � �1/

1

A

T

C�xw
ij .`; ` � „ � 1/˚i.t � `; t

�` � „ � 1/� T.t � ` � 1/

0

@
`C„Y

�1D1
A.t � �1/

1

A

T
9
>=

>;
(9.35)

O� ji
` .t/ D

2d�2�`X

„D0

8
<

:
�xx

ij .` � „ � 1; `/

0

@
`C„C1Y

�1D1
A.t � �1/

1

A

��T
ji .t � `; t � ` � „ � 1/C�xw

ij .` � „ � 1; `/

�
0

@
`C„Y

�1D1
A.t � �1/

1

A� .t � ` � 1/˚T
j .t � ` � „ � 1; t � `/

9
=

;
(9.36)

where �ij.t � `; t � ` � „ � 1/ and ˚i.t � `; t � ` � „ � 1/ are computed by (9.30)
and (9.31), while �xx

ij .`1; `2/ and �xw
ij .`1; `2/ are determined by (9.26). Moreover,

the relationship between the optimal fusion estimator Ox.t/ and local reorganized
estimate Oxr

i .tjt/ is given by

TrfP.t/g � Trf˙ii.t/g (9.37)

Proof It follows from (9.1), (9.11), and (9.13) that

ei.t/ D
diX

`D0

(

˛i
`.t/

"

x.t/ �
 
Ỳ

�D1
A.t � �/

!

Oxi.t � `jt � `/

#)

Cˇi.t/Œx.t/ � A.t � 1/ Oxr
i .t � 1jt � 1/� (9.38)
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Then, it follows from (9.19) that (9.38) is equivalent to

ei.t/ D
2di�1X

`D0

(

�
xi
` .t/

 
Ỳ

�D1
A.t � �/

!

Qxi.t � `jt � `/
)

C
2di�1X

`D1

8
<

:
�

wi
` .t/

0

@
`�1Y

�1D1
A.t � �1/

1

A� .t � `/w.t � `/
9
=

;
(9.39)

where �xi
` .t/ and �wi

` .t/ are defined by (9.21) and (9.22), respectively. Meanwhile,
it follows from Assumption 9.1 that

Ef�xi
`1
.t/Qxi.t � `1jt � `1/QxT

j .t � `2; t � `2/�xj

`2
.t/g

D �xx
ij .`1; `2/�ij.t � `1; t � `2/ (9.40)

where�xx
ij .`1; `2/; 8i; j is obtained from Lemma 9.2 and �ij.t �`1; t �`2/.`1 � `2/

is computed by using (9.30). Note that it follows from (9.30) that

�ij.t � `1; t � `2/ D �T
ji .t � `2; t � `1/; `1 > `2

By taking the fact Qxi.t�`1; t�`1/?w.t�`2/, `1 � `2, i 2 f1; 2; : : : ;Lg into account,
(9.33) is obtained from (9.25), (9.39), and (9.40), while (9.34) is derived from (9.26),
(9.39), and (9.40). Moreover, at time t, the fusion estimation error covariance matrix
for Ox.t/ is computed by (9.17), and the local estimation error covariance matrix for
Oxr
i .tjt/ is calculated by (9.33), and then (9.37) is obtained from the result of [10].

This completes the proof.

Based on Theorem 9.1, the computation procedures for the fusion estimate Ox.t/
are summarized as follows:

Algorithm 9.1 For given �i; i D 1; 2; : : : ;L and 0 � � i
` � 1 satisfying

Pdi
`D0 � i

` D
1, one can determine the parameters ���

ii .`1; `2/.� 2 fx;wg/, �xw
ii .`1; `2/; i D

1; 2; : : : ;L, �xx
ij .`1; `2/, and �xw

ij .`1; `2/; j D i; i C 1; : : : ;L by using Lemma 9.2.

Step 1. Calculate the local estimates Oxi.tjt/, the error variance matrices Pii.tjt/,
and Pij.tjt/.i ¤ j/ by using (9.3) and (9.5).

Step 2. Calculate the local reorganized estimates Oxr
i .tjt/ by substituting Oxi.t�`jt�

`/; ` D 0; 1; : : : ; di into (9.11).
Step 3. Calculate �ij.t1; t2/ and ˚i.t1; t2/ by (9.30) and (9.31).
Step 4. Calculate˙ij.t/ by substituting Pij.tjt/, �ij.t1; t2/ and ˚i.t1; t2/ into (9.33)

and (9.34).
Step 5. Calculate ˝1.t/; : : : ;˝L.t/ by substituting˙ij.t/ into (9.16).
Step 6. Calculate the optimal fusion estimate Ox.t/ by substituting ˝1.t/; : : : ;
˝L.t/, and Oxr

i .tjt/ into Ox.t/ D PL
iD1 ˝i.t/ Oxr

i .tjt/.
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In [4–6], the estimator gain matrices should be computed online as they need
to know the delay exactly at each step. Different from these results, it is known
from (9.16) and Theorem 9.1 that the optimal matrix weights˝i.t/; i D 1; 2; : : : ;L
are independent of the sequences of the measurements and the local reorganized
estimates. Therefore, the optimal matrix weights can be computed off-line or at the
fusion center, which helps reduce the computational complexity of the fusion center
and the communication traffic between the sensors and the fusion center.

9.4 Stability Analysis for the Fusion Estimator

First, it is considered that the stochastic system (9.1) is uniformly completely
controllable, i.e., there exist an integer N > 0 and positive scalars �1 and �2, such
that the following inequality

�1In �
kX

jDt�NC1
Ac.t; j/� . j/Qw.i/�

T. j/AT
c .t; j/ � �2In (9.41)

holds for t � N, where Ac.t; j/ satisfies

Ac.t; j/ D
t�jY

`D1
A.t � `/.t > j/;Ac.j; j/ D In (9.42)

Ac.t; j/ D A�1
c .j; t/; t < j (9.43)

Theorem 9.2 Consider the optimal fusion estimator for systems (9.1) and (9.2),
where the system (9.1) is uniformly completely controllable. If

(C2.1) For 0 < �i < 1, there exist an integer N0 > 0 and a positive matrix 0

such that .t/ � 0 .t � N0/.
(C2.2) There exist an integer N1 > N0 > 0 and positive scalars �3 and �4 such

that the following inequality

�3In � Mi.t � N C 1; t/ � �4In; i D 1; 2; : : : ;L (9.44)

holds for t � N1, where the stochastic observability matrix Mi.t � N1 C 1; t/ is
computed by

Mi.t � N1 C 1; t/ D �2i

tP

jDt�N1C1
fAT

c . j; t/CT
i . j/Œ�i

�.1 � �i/Ci. j/0CT
i . j/C Qvi. j/��1Ci. j/Ac. j; t/g

(9.45)
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where Ac.t; j/ is given by (9.43). Then, the MSE of the designed fusion estimate Ox.t/
is bounded, i.e., there exist a scalar p0 > 0 such that

TrfP.t/g � p0 (9.46)

Moreover, the following equation

lim
t!1 P1.t/ D lim

t!1 P2.t/ (9.47)

always holds, where P1.t/ and P2.t/ are any fusion estimation error covariance
matrices with different initial conditions.

Proof The measurement equation (9.2) can be rewritten as

yi.t/ D �iCi.t/xi.t/C Ovi.t/ (9.48)

where Ovi.t/ D .�i.t/ � �i/Ci.t/x.t/ C vi.t/. Then, it follows from the statistical
characteristics of �i.t/ and vi.t/ that Ovi.t/ is a zero-mean white noise with covariance
Q Ovi.t/ D �i.1 � �i/Ci.t/.t/Ci.t/ C Qvi.t/. Moreover, the stochastic observation
matrix OM�i

i .t � N C 1; t/ of the systems (9.1) and (9.48) is given by

OM�i
i .t � N C 1; t/ D �2i

tX

jDt�NC1

n
AT

c . j; t/CT
i . j/Q�1

Ovi
. j/Ci. j/Ac. j; t/

o
(9.49)

Then, it is concluded from (9.49) and C2.2 that

�3In � OM�i
i .t � N1 C 1; t/ � �14In; t > N1 (9.50)

Under the conditions (9.41) and (9.50), it follows from Theorem 7.4 in [11]
that the local estimate Oxi.tjt/ is uniformly asymptotically stable and the local
optimal estimation error covariance matrix Pii.tjt/ is independent of the initial value
Pii.0j0/ > 0 as t goes to 1. Moreover, it follows from Lemma 7.1 in [11] that if
(9.41) and (9.50) hold, the covariance matrix Pii.tjt/ will be bounded. Then, (9.46)
is obtained from (9.37).

On the other hand, the local estimation error Qxi.tjt/ $D x.t/� Oxi.tjt/ is equivalent to

Qxi.tjt/ D Xi.t; t � 1/Qxi.t � 1jt � 1/C Xi.t; t � 1/
�A�.t � 1/� .t � 1/w.t � 1/� Ki.t/vi.t/ (9.51)

where A�.t/ satisfies A.t/A�.t/ D In and

Xi.t; t � 1/ $D ŒIn � �iKi.t/Ci.t/�A.t � 1/
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is the state-transition matrix of the estimator. Then, the estimation error cross-
covariance matrix (9.5) is rewritten as

Pij.tjt/ D Xi.t; t � 1/ŒPij.t � 1jt � 1/

CA�.t � 1/ O� .t � 1/ŒA�.t � 1/�T�XT
j .t; t � 1/ (9.52)

Let P1ij.tjt/ and P2ij.tjt/ denote any covariance matrices with initial conditions

P1ij.0j0/ and P2ij.0j0/, respectively; then,$Pij.t/
$D P1ij.tjt/ � P2ij.tjt/ is computed by

$Pij.t/ D Xi.t; t � 1/$Pij.t � 1/XT
j .t; t � 1/

which yields

$Pij.t/ D Xi.t; tk/$Pij.tk/X
T
j .t; tk/.t > tk � 0/ (9.53)

For the state-transition matrices Xi.t; t1/ and Xj.t; t2/ of the local estimates, it can
be derived from the results in [11] that there exist c1 > 0 and c2 > 0 such that

 jjXi.t; tk�/jj � c1e�c2.t�tk�/

jjXj.t; tk�/jj � c1e�c2.t�tk�/
(9.54)

holds for t > tk�. Then, it follows from (9.53) and (9.54) that

�
�$Pij.t/

�
� � kXi.t; tk�/k

�
�$Pij.tk�/

�
�
�
�XT

j .t; tk�/
�
� D c21e

�2c2.t�tk�/ (9.55)

and thus
�
�$Pij.t/

�
� ! 0 as t ! 1, which implies that the estimation error cross-

covariance matrix (9.52) is independent of the initial conditions.
It can be concluded from the above analysis that the covariance matrices Pii.tjt/

and Pij.tjt/ are independent of the initial conditions. On the other hand, it follows
from (9.17) that the fusion estimation error covariance matrix P.t/ is dependent on
Pii.tjt/, i D 1; 2; : : : ;L and Pij.tjt/; j D i C 1; : : : ;L. Thus, the covariance matrix
P.t/ is independent of the initial conditions, which implies that (9.47) holds. This
completes the proof.

For the systems (9.1) and (9.2) with constant system matrices, i.e., the systems
(9.1) and (9.2) reduce to


x.t C 1/ D Ax.t/C � w.t/
yi.t/ D �iCix.t/C Nvi.t/; i D 1; 2; : : : ;L

(9.56)

where w.t/ and Nvi.t/
$D .�i.t/ � �i/Cix.t/ C vi.t/ are zero-mean white noises with

covariances Qw and Q Nvi.t/ D �i.1 � �i/Ci.t/CT
i C Qvi , respectively. Then, (9.41)
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is equivalent to

rank.Œ�;A�; : : : ;An�1� �/ D n (9.57)

which implies that system (9.56) is completely controllable.

Theorem 9.3 Consider the optimal fusion estimator for systems (9.56) with (9.57).
If each observation matrix Ci, measurement missing rate 1 � �i, and the system
matrix A satisfy

� 1 < �max.A/ < 1; 0 < �i < 1 (9.58)

rank.�iŒCT
i .CiA/

T � � � .CiAn�1/T �T/ D n (9.59)

then for any initial values Pii.0j0/ > 0; i D 1; 2; : : : ;L and Pij.0j0/; j D i C
1; : : : ;L, the fusion estimation error covariance matrix P.t/ converges to a unique
positive-definite matrix, i.e., lim

t!1 P.t/ D P. Under this condition, the steady-state

fusion estimator for systems (9.56) is given by

8
ˆ̂
<̂

ˆ̂̂
:

Oxs.t/ D
LP

iD1
˝i Oxs

i .tjt/; ˝i D lim
t!1˝i.t/

Oxs
i .tjt/ D .In � KiCi/A Oxs

i .t � 1jt � 1/C Kiyi.t/
Ki D lim

t!1 Ki.t/

(9.60)

Proof For the system (9.56), it follows from (9.4) that

.t/ D At.0/.At/T C
t�1X

�D0
A�� Qw�

T.A�/T (9.61)

Then, one has by (9.58) and (9.61) that lim
t!1.t/ D . Let 1.t/ and 2.t/ denote

any state covariance matrices with initial values1.0/ and2.0/, respectively, and

then $
$D 1.t/ � 2.t/ is computed by $.t/ D At$.0/.At/T. Taking the

above equation and (9.58) into account yields lim
t!1$.t/ D 0, which means that

the limit  is the unique solution of (9.4). Following this fact, one obtains

lim
t!1 Q Nvi.t/ D Q Nvi D �i.1 � �i/CiCT

i C Qvi

This implies that there exist an integer T0 > 0 such that the equation Q Nvi .t/ D
Q Nvi holds for all t � T0. Under this conditions, (9.59) is equivalent to C2.2 for
t 2 ŒT0;1/; then, it follows from Theorem 9.2 that the covariance matrices P.t/,
Pii.tjt/ and Pij.tjt/ for the systems (9.56) are independent of any initial condition.

On the other hand, it is well known that if the conditions (9.57) and (9.59) hold
for t � T0, then each local estimate Oxi.tjt/ for the systems (9.56) will be stable, and
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Pii
$D lim

t!1 Pii.t/ must be the unique steady-state value of the sequence fPii.tjt/g.

Following the above facts, the gain matrix Ki.t/ converges to a steady-state value,
i.e., lim

t!1 Ki.t/ D Ki, and the limit Ki is also independent of any initial condition.

Therefore, the state-transition matrix OXi.t/
$D ŒIn � Ki.t/Ci�A of each local estimate

for systems (9.56) converges to a unique steady-state value. Moreover, the limit
OXi

$D lim
t!1

OXi.t/ is a stable matrix, i.e.,

� 1 < �max. OXi/ < 1; i D 1; 2; : : : ;L (9.62)

Meanwhile, it follows from (9.52) that Pij.tjt/ for (9.56) can be rewritten as

Pij.tjt/ D OXi.t/ŒPij.t � 1jt � 1/C A�� Qw�
T.A�/T� OXT

j .t/ (9.63)

Following the similar derivations of Theorem 9.2, it is derived from (9.62) and
(9.63) that lim

t!1 Pij.tjt/ D Pij. Therefore, it is concluded from the above analysis

that the fusion estimation error covariance matrix P.t/ for systems (9.56) converges
to a unique positive-definite matrix. Under this condition, the steady-state fusion
estimate for the systems (9.56) can be given by (9.60). The proof is thus completed.

The optimal matrix weights of the steady-state fusion estimator (9.59) are not
required to be calculated at each step; thus, the steady-state fusion estimator is
easy to be implemented in practices. On the other hand, for the multisensor fusion
estimation system without missing measurements, it can be seen from Theorems 9.2
and 9.3 that if the conditions (9.41), (9.44) (or (9.57), and (9.59)) hold, then the MSE
of the designed fusion estimator will be bounded or convergent.

9.5 Simulations

Consider a networked multisensor fusion estimation system with two sensors, where
the system parameters in (9.1) and (9.2) are given by [12]

A.t/ 

�
1 OT
0 1

�
; � .t/ 


�
0:5 OT2

OT
�

C1 D C2 D I2

Qw.t/ 
 0:5; Qv1 .t/ 

�
0:5 0

0 0:2

�
; Qv2.t/ 


�
0:8 0

0 0:3

�

�1 D 0:90; �2 D 0:85

where OT is the sampling period. The state of system (9.1) is x.t/ D Œs.t/ Ps.t/�T,
where s.t/ and Ps.t/ are, respectively, the position and velocity of the moving target
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Fig. 9.2 Trajectories of the system state x.t/ and the fusion estimate Ox.t/

at time t. For OT D 0:5, it is assumed that di.t/ 2 f0; 1; 2g; i D 1; 2; then, the
occurrence probabilities of delays are taken as �10 D 0:4; �11 D 0:3, �12 D 0:3,
�20 D 0:5, �21 D 0:4, �22 D 0:1. Under this condition, the local reorganized state
estimates Oxr

i .tjt/; i D 1; 2 are calculated by (9.11). To verify the effectiveness of the
proposed fusion estimator in Algorithm 9.1, the trajectories of the state x.t/ and the
fusion estimate Ox.t/ are shown in Fig. 9.2a, b, which shows that the designed fusion
estimator is able to track the maneuvering target well. Moreover, the estimation
performance (assessed by the trace of the estimation error covariance matrix) of
local reorganized state estimates Oxr

i .tjt/; i D 1; 2 and the fusion estimate Ox.t/ is
depicted in Fig. 9.3; then, it can be seen from these figures that the performance
of the fusion estimator is better than that of the local estimators. Meanwhile, the
relations between the fusion estimation performance and the measurement missing
rates are plotted in Figs. 9.4 and 9.5, which shows that the estimation performance
degrades as the measurement missing rate increases.

On the other hand, it can be verified that the conditions (9.57) and (9.59) hold for
�1 D �2 D 1; then, by using Theorem 9.3, the fusion estimation error covariance
matrix P.t/ converges to the unique positive matrix, and the steady-state fusion
estimates Oxs.t/ exists for this estimation system without missing measurements.
Moreover, one obtains the following parameters for the steady-state estimators by
applying Algorithm 9.1:

K1 D
�
0:2491 0:2211

0:0884 0:6263

�
;K2 D

�
0:2414 0:2263

0:0848 0:5562

�

˝1 D
�
0:5961 �0:0679
0:0611 0:3795

�
;˝2 D

�
0:4039 0:0679

�0:0611 0:6205
� (9.64)



204 9 Fusion Estimation for WSNs with Delays and Packet Losses

50

10

20

time/steps

T
he

 tr
ac

e 
of

 th
e 

es
tim

at
io

n 
er

ro
r 

co
va

ria
nc

e

γ
1
 = 0.90, γ

2
 = 0.85

Tr(P(t)) Tr(Σ
11

(t)) Tr(Σ
22

(t))

Fig. 9.3 The relationship between the local estimation performance and the fusion estimation
performance
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Fig. 9.4 The relationship between measurements loss rate and the performance of the fusion
estimator (�1 D 0.9)

Then, the steady-state estimate Oxs.t/ is calculated by substituting (9.64) into (9.60).
The trajectories of x.t/ and Oxs.t/ are depicted in Fig. 9.6a, b, which shows that the
steady-state estimator also performs well. Moreover, the trajectories of Tr.P.t//,
Trf˙11.t/g, and Trf˙22.t/g are plotted in Fig. 9.7a by applying Algorithm 9.1, and
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Fig. 9.5 The relationship between measurements loss rate and the performance of the fusion
estimator (�2 D 0.95)
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Fig. 9.6 The trajectories of x.t/ and steady-state fusion estimate Oxs.t/

then it can be seen from the figure that the MSE of the designed fusion estimator
converges to a steady-state value very fast. To compare the estimation performance
between the finite-horizon estimator and the steady-state estimator, the trajectories

of er.t/
$D Ox.t/ � Oxs.t/ are depicted in Fig. 9.7b, which shows that the steady-state

estimator provides a estimation precision that is very close to the finite-horizon
estimator.
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Fig. 9.7 (a): The relationship between the local estimation performance and the fusion estimation
performance; (b): The errors between the finite-horizon fusion estimates Ox.t/ and the steady-date
fusion estimates Oxs.t/

9.6 Conclusions

In this chapter, the distributed fusion estimation problem has been investigated for a
class of networked multisensor fusion systems with time delays and packet losses.
By using the optimal fusion algorithm weighted by matrices, an optimal recursive
state fusion estimator has been designed in the linear minimum variance sense.
Moreover, some sufficient conditions were given such that the MSE of the designed
fusion estimator is bounded or convergent.
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