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Preface

Advances in micro electromechanical systems and wireless technologies have
allowed for the emergence of inexpensive micro-sensors with embedded processing
and communication capabilities. A wireless sensor network (WSN) is a collection
of these physically distributed micro-sensors communicating with one another over
wireless links. In their various shapes and forms, the WSNs have greatly facilitated
and enhanced the automated, remote, and intelligent monitoring of a large variety
of physical systems and have found applications in various areas, such as industrial
and building automation; environmental, traffic, wildlife, and health monitoring;
and military surveillance. The purpose of a WSN is to provide users access to
the information of interest from data gathered by spatially distributed sensors.
In most applications, users are interested in a processed data that carries useful
information of a physical plant rather than a measured data contaminated by noises.
Therefore, it is not surprising that signal estimation, especially the multisensor
fusion estimation, has been one of the most fundamental collaborative information
processing problems in WSNs. The WSN, as a typical multisensor system, has
greatly extended application areas of multisensor information fusion estimation,
which was originally developed for military applications, such as target tracking and
navigation. Although WSNs present attractive features, challenges associated with
communication constraints, such as the scarcity of bandwidth and energy, as well as
the delays and packet losses, in wireless communications have to be addressed in the
WSN-based information fusion estimation and have attracted increasing research
interest during the past decade.

This book provides the recent advances in distributed multisensor fusion esti-
mation methods for WSNs with communication constraints, including the energy
constraint, bandwidth constraint, communication delays, and packet losses. First,
a review on the latest developments in the literature is presented in Chap. 1.
Then, two energy-efficient fusion estimation methods, namely, the transmission
rate method and the packet size reduction method, are introduced for sensor
networks with energy constraints in Chaps. 2, 3, 4 and 5. Specifically, by slowing
down the sampling and estimation rates, a multi-rate fusion estimation method is
presented in Chap. 2 for sensor networks, where the sampling rate and the estimation
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rate are allowed to be different from each other and are parameters that can be
designed to meet the energy constraints. In Chap.3, a distributed state fusion
estimation method is presented for sensor networks with nonuniform estimation
rates, where the estimation rates among the various local estimators are allowed to
be nonuniform and different from each other, that is, each local estimator is allowed
to generate local estimates independently with an adjustable rate according to its
power status. In Chap. 4, a distributed H, fusion estimation method is introduced
for sensor networks with nonuniform sampling rates, where the sampling rate of
each sensor is allowed to be nonuniform and can be adjusted according to the
sensor’s power status. The energy-efficient fusion estimation method based on
packet size reduction is introduced in Chap. 5, where a dimension reduction method
is presented to reduce the size of packets containing the local estimates to be
transmitted to the fusion estimator. The bandwidth constraint problem is considered
in Chaps.6 and 7. Specifically, a distributed Hy, fusion estimation method is
presented for sensor networks with quantized local estimates in Chap. 6. In Chap. 7,
a hierarchical structure is presented for multisensor fusion estimation systems
to reduce the communication burden of the fusion center. The communication
uncertainties, including the delays and packet losses, are considered in Chaps. 8
and 9. Specifically, the fusion estimation for sensor networks with communication
delays is introduced in Chap. 8, while the fusion estimation with both delays and
packet losses is presented in Chap. 9.

The work was supported in part by the National Natural Science Foundation
of China under Grant No. 61104063 and 61573319, the Research Fund for the
Doctoral Program of Higher Education of China under Grant 20113317120001, the
Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education
Institutions of China under Grant No.141064, and the Zhejiang Provincial Natural
Science Foundation of China under Grant No. LR16F030005.
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Hangzhou, China Bo Chen
Hangzhou, China Haiyu Song
Hangzhou, China Li Yu
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Chapter 1
Introduction

1.1 Distributed Fusion Estimation for Sensor Networks

The multisensor fusion estimation has attracted considerable research interest
during the past decades and has found applications in a variety of areas, such
as target tracking and localization, guidance and navigation, and fault detection
[1, 2, 5, 17]. Multisensor fusion is used because of potentially improved estimation
accuracy [2, 71] and enhanced reliability and robustness against sensor failures.
Many useful fusion estimation methods have been presented in the literature (see,
e.g., [8, 12, 14, 20, 25, 36, 41, 46, 58, 69, 70, 75, 77, 80, 86] and the references
therein). Recently, the rapid developments of wireless sensor networks (WSNs)
have greatly widen applications of the multisensor fusion estimation theory, which
in turn, helps the WSNs monitor the environment more accurately and efficiently.
Therefore, the WSN-based multisensor fusion estimation and its applications have
attracted considerable research interest during the past decade [22, 39, 57, 83].

It is known that the WSN consists of a group of sensor nodes which communicate
with each other via wireless networks and the sensor nodes are usually powered
by batteries. Therefore, the sensor nodes are usually constrained in energy, and
developing energy-efficient algorithms for WSN-based estimation to reduce energy
consumption and prolong network life is of great practical significance [9, 50, 54—
56, 61, 82, 97]. Consider the situation where a WSN is deployed to observe
and estimate states of a dynamically changing process, but the process is not
changing too rapidly. Then it is wasteful from an energy perspective for sensors
to transmit every measurement to an estimator to generate estimates, and this
waste is amplified by packet losses which are usually unavoidable in WSNs
[34, 64,67, 68, 74,78, 79, 85, 92]. Therefore, it is not surprising that many research
works have been denoted to the design of energy-efficient estimation methods for
sensor networks with energy constraints. There are mainly two approaches in the
existing results, namely, the quantization method [3, 4, 18, 22-24, 26, 30, 37—
40, 47, 50, 54, 56, 63, 65, 66, 73, 82, 89, 95] and dimension-reduction method
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2 1 Introduction

[10,22,61, 96, 97]. In the quantization method, the measurements are quantized and
represented by a finite number of bits before they are transmitted to the estimator
for estimation. The coarser the quantization, the smaller the size of the packet
packaging the measurements, and thus one is able to save energy consumptions
in the packet transmissions. In the dimension-reduction method, the dimension of
the measurement to be transmitted is reduced by applying some data compression
methods [97]. Consequently, the size of the packet packaging the measurement to
be transmitted is reduced, and the energy consumption in the packet transmission is
thus reduced. The main idea in both the quantization method and the dimension-
reduction method is to reduce the packet size and ultimately reduce the energy
consumption in the packet transmissions. Therefore, they may be intuitively called
as the packet size approach. Note that in the WSNs, data packets are transmitted
through wireless communication channels, which are usually constrained in band-
width, that is, the bit rate is constrained in communication. Thus, an advantage
of the packet size approach is that it is able to save energy and meanwhile meet
the bandwidth constraint. However, the quantization usually introduces nonlinear
dynamics which adds difficulty to the estimator design; moreover, the design of
quantizers involves additional computations. As investigated in [97], it is usually
difficult to find a data compression operator analytically when one applies the
dimension-reduction method. In this book, a novel dimension-reduction method
will be introduced for energy-efficient fusion estimation without involving a data
compression operator. The main idea of the proposed dimension-reduction method
is that only partial components of each local estimate are selected to be transmitted
to the fusion center to save communication energy, and the fusion center adopts
compensation strategy to compensate the components of the local estimates that
are not transmitted. Detailed results will be presented in Chap.5. Actually, in
addition to the packet size approach, a useful and straightforward approach to
save energy is to slow down the information transmission rate in the sensors, for
example, the sensors may measure and transmit measurements with an interval
that is several times of the sampling period. Moreover, one may purposively close
the sensor nodes to save power during certain time interval and wake them up
when necessary. That is to say, in many situations, it is not necessary for sensors
to transmit measurements and generate estimates at every sampling instants from
the energy-efficient perspective, and the sensors may work and generate estimates
with two rates, namely, a fast rate and a slow rate according to their power
situations. The main idea in the aforementioned approach is to slow down the
measurement transmission rate and ultimately slow down the estimation rate to
save energies consumed in the communication, and then one is able to make a
trade-off between energy efficiency and estimation performance by appropriately
designing the information transmission rates. Therefore, the approach might be
intuitively called as a transmission rate approach and will be introduced in detail in
Chaps. 2, 3 and 4. Specifically, a multi-rate scheme by which the sensors exchange
measurements with neighbors and generate local estimates at a slower time scale and
generate fusion estimates at a faster time scale is proposed to reduce communication
costs in Chap. 2, a state fusion method with nonuniform estimate rates is introduced
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in Chap. 3, and an H, fusion estimation method with nonuniform sampling rates is
presented in Chap. 4.

In WSNs, the multisensor fusion estimation could be done under the end-to-end
information flow paradigm by communicating all the relevant measurements from
various sensors to a central collector node, e.g., a sink node. Such a structure for
fusion estimation is usually termed as a centralized one. The centralized structure
is, however, a highly inefficient solution in WSNs, because it may cause long packet
delay, consume large amounts of energies, and require a large bandwidth in the
fusion center end and it has the potential for a critical failure point at the central
collector node. An alternative solution is for the estimation to be performed in-
network [19, 27, 33, 35], i.e., every sensor in the WSN with both sensing and
computation capabilities performs not only as a sensor but also as an estimator,
and it collects measurements only from its neighbors to generate estimates. Such a
setup is usually called as the distributed structure and possesses several advantages,
such as lower communication costs and bandwidth requirement in fusion center
and higher reliability against sensor failures, as compared with the centralized
structure. However, it is obvious that local estimates obtained at each sensor by
the distributed structure are not optimal in the sense that not all the measurements
in the WSN are used. Moreover, there exist disagreements among local estimates
obtained at different sensors. In other words, local estimates at any two sensors
may be different from each other. As pointed out in [51], such form of group
disagreement regarding the signal estimates is highly undesirable for a peer-to-peer
network of estimators. This gives rise to two issues that should be considered in
designing a distributed estimation algorithm: (1) how could each sensor improve its
local performance by taking full use of limited information from its neighbors? (2)
how to reduce disagreements of local estimates among different sensors? Consensus
strategy [4, 51, 52, 62, 84] and diffusion strategy [6, 7] have been presented in the
literature to deal with the aforementioned two issues. The main idea of the consensus
strategy is that all sensors should obtain the same estimate in steady state by using
some consensus algorithms. In the diffusion strategy, both measurements and local
estimates from neighboring sensors are used to generate estimates at each sensor.
A hierarchical two-stage fusion estimation method will be introduced in Chaps. 2
and 7 for distributed fusion estimation.

Communication delays and packet losses are usually unavoidable in WSNs
and are main sources deteriorating the estimation performance. Therefore, opti-
mal estimation with delayed or missing measurements has attracted considerable
research interest during the past decades. For example, the optimal estimation with
delayed measurements has been investigated in [11, 16, 43, 45, 49, 53, 72, 81,
87, 90, 91, 93], and [13, 15, 21, 28, 31, 32, 42, 44, 48, 59, 60, 67, 88, 94] are
devoted to the optimal estimation with missing measurements. However, most of the
aforementioned results are concerned with single-sensor systems. For multisensor
fusion estimation systems, the state estimation with uncertain observations was
investigated in [76], while the robust minimum variance linear estimation for
multiple sensors with different failure rates was presented in [29]. Based on the
consensus strategy, a distributed Hy, consensus filtering with multiple missing
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measurements was investigated in [64]. Subsequently, the optimal fusion estimation
problems in the linear minimum variance sense have been investigated in [13] and
[44] for multisensor systems with multiple packet dropouts. However, most of the
existing results adopted the centralized fusion structure. For the multisensor fusion
estimation with time delays, the information fusion problem was investigated in
[72] and [43] for linear stochastic systems with delayed measurements, where the
observation delays are assumed to be constant. Recently, based on the well-known
federated filter, a practical architecture and some algorithms were discussed in [81]
for the networked data fusion systems with time-varying delays, where the accurate
time delay over each sampling period should be known for online computation
of the estimators. Chapters 8 and 9 of this book are devoted to the design of
multisensor fusion estimators for sensor networks with delays and packet losses.
A novel model will be presented to describe the fusion system with delays and
packet losses, and fusion estimators with matrix weights will be designed without
resorting to the augmentation method as usually did in existing results. Moreover,
some sufficient conditions for the boundness and convergence of the estimator will
also be presented.

1.2 Book Organization

So far many important and interesting results have been presented for distributed
multisensor fusion estimation for sensor networks. However, there lacks of a
monograph to provide the up-to-date advances in the literature. Thus, the main
purpose of this book is to fill such gap by providing some recent developments in
the design of distributed fusion estimation for sensor networks with communication
constraints. The materials adopted in the book are mainly based on research results
of the authors.

Besides this short introduction, this book is organized as follows.

Chapter 1 provides a review on the background and latest developments of
distributed fusion estimation for sensor networks with communication constraints
in the literature.

Chapter 2 investigates the multi-rate distributed fusion estimation for sensor
networks. A multi-rate scheme by which the sensors estimate states at a faster
time scale and exchange information with neighbors at a slower time scale is
proposed to reduce communication costs. The estimation is performed by taking
into account the random packet losses in two stages. At the first stage, every
sensor in the WSN collects measurements from its neighbors to generate a local
estimate, then local estimates in the neighbors are further collected at the second
stage to form a fused estimate to improve estimation performance and reduce
disagreements among local estimates at different sensors. It is shown that the time
scale of information exchange among sensors can be slower while still maintaining
satisfactory estimation performance by using the developed estimation method.
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Chapter 3 investigates the multisensor fusion estimation problem for sensor
networks with nonuniform estimation rates. Firstly, each sensor generates local
estimates with two rates, namely, a fast rate and a slow rate according to its power
situation, where the estimation rates among the sensors are allowed to be different
from each other. Secondly, a fusion rule with matrix weights is designed for each
sensor to fuse available local estimates generated at different time scales. The fusion
algorithm is applicable to both cases where the measurement noises are mutually
correlated and are uncorrelated and is also applicable to the case where the sensors
are not time synchronized. Two types of estimators are designed according to
different considerations of design complexity and computation costs.

Chapter 4 is devoted to the problem of distributed sampled-data H, filtering
problem for sensor networks with nonuniform sampling periods. The measurements
are sampled with nonuniform sampling periods, and each sensor in the network
collects the sampled measurements only from its neighbors and runs a distributed
H filtering algorithm to generate estimates. A sufficient existence condition for the
distributed H filters is derived, and it is shown that the obtained condition critically
depends on the sampling periods and the packet loss probabilities. The designed
filters guarantee that the filtering system is mean square exponentially stable and all
the filtering errors satisfy an average H, noise attenuation level.

Chapter 5 addresses the distributed finite-horizon fusion Kalman filtering prob-
lem for a class of networked multisensor fusion systems with energy constraints.
Only partial components of each local estimate are allowed to be transmitted to the
fusion center over one sampling period. Then, a compensation strategy is used at the
fusion center to compensate the untransmitted components of each local estimate,
and a recursively distributed fusion Kalman filter is derived in the linear minimum
variance sense. It is shown that the performance of the designed fusion filter is
dependent on the selecting probability of each component of the local estimate;
some criteria for the choice of the probabilities are derived such that the mean square
errors of the fusion filter are bounded or convergent.

Chapter 6 focuses on the problem of the distributed Hy, fusion filtering for a
class of networked multisensor fusion systems with bandwidth constraints. Due
to the limited bandwidth, only finite-level quantized local estimates are sent to
the fusion center, and multiple finite-level logarithmic quantizers are adopted as
the quantization strategy. The co-design of the fusion parameters and quantization
parameters is converted into a convex optimization problem. It is shown that the
performance of the fusion estimator provides better performance than each local
estimator.

Chapter 7 is concerned with hierarchical fusion estimation problem for clustered
sensor networks. The sensors within the same cluster are connected to a local
estimator, and all the local estimators are linked with a fusion center. The fusion
center and the local estimators are not required to be synchronous. A minimum
variance estimation algorithm is presented for each cluster to aperiodically generate
local estimates. A covariance intersection fusion strategy is presented for the fusion
center to generate fused estimates by using asynchronous local estimates without
knowing the cross-covariances among the local estimation errors.
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Chapter 8 deals with the problem of robust fusion Kalman filtering for multi-
sensor systems with randomly delayed measurements and parameter uncertainties.
The stochastic parameter perturbations are considered, and the proposed fusion
estimator is robust against the parameter uncertainties in the system model. Without
resorting to the augmentation of system states and measurements, a robust optimal
recursive filter for each subsystem is derived in the linear minimum variance sense
by using the innovation analysis method. Based on the optimal fusion algorithm
weighted by matrices, a robust distributed state fusion Kalman filter is derived, and
the dimension of the designed filter is the same as the original system, which helps
reduce computation costs as compared with the augmentation method.

Chapter 9 considers the problem of distributed Kalman filtering for a class
of networked multisensor fusion systems with random delays and packet losses.
A novel stochastic model is proposed to describe the estimation system with
transmission delays and packet losses, and an optimal distributed fusion Kalman
filter is designed based on the optimal fusion criterion weighted by matrices. Some
sufficient conditions are derived such that the mean square error of the fusion filter
is bounded or convergent.
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Chapter 2
Multi-rate Kalman Fusion Estimation for WSNs

2.1 Introduction

It is known that the WSNs are usually severely constrained in energy, and
energy-efficient methods are thus important for WSN-based estimation to reduce
energy consumption and to prolong network life. Several energy-efficient estimation
methods have been available in the literature, such as the quantization method
[1-6] and the data-compression method [1, 7-10]. The main idea in quantization
and compression is to reduce the size of a data packet and thus to reduce
energy consumption in transmitting and receiving packets, and they can be called
as the packet size-based energy-efficient estimation methods. Actually, a useful
and straightforward approach to saving energy is to slow down the information
transmission rate in the sensors, for example, the sensors may measure and transmit
measurements with a period that is several times of the sampling period. This
is the transmission rate method to be presented in this chapter. Specifically, a
multi-rate scheme by which the sensors estimate states at a faster time scale and
exchange information with neighbors at a slower time scale is proposed to reduce
communication cost. Packets exchanged among the sensors may be lost during
the transmission, and several binary-valued white Bernoulli sequences are used to
describe the random packet losses. Then, by applying a lifting technique as used in
[11] and [12], the multi-rate estimation system is finally modeled as a single-rate
discrete-time system with multiple stochastic parameters.

On the other hand, the distributed structure instead of the centralized structure
will be adopted in this chapter to design the fusion estimation system. In the
distributed structure, the WSN is considered to be a peer-to-peer network without
a fusion center, and every sensor in the network collects information only from its
neighbors to generate estimates. It is obvious that local estimates obtained at each
sensor by such a distributed method are not optimal in the sense that not all the
measurements in the WSN are used. Moreover, there exist disagreements among
local estimates obtained at different sensors. In other words, local estimates at any
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two sensors may be different from each other. As pointed out in [13], such form of
group disagreement regarding the signal estimates is highly undesirable for a peer-
to-peer network of estimators. A two-stage hierarchical fusion estimation method
will be presented in this chapter to help improve local estimation precision and
reduce disagreement among local estimates. At the first stage, every sensor in the
WSN collects measurements from neighboring sensors to generate a local estimate,
and then local estimates from neighboring sensors are further collected to form
a fused estimate at the second stage. By fusion of both measurements and local
estimates, more information from different sensors are used to generate estimates in
the two-stage method as compared with the one-stage one where only measurements
are collected to generate estimates.

Then, by using the orthogonal projection principle and the innovation analysis
approach, an estimation algorithm with a set of recursive Lyapunov and Riccati
equations is presented to design the distributed estimators. The obtained estimation
performances critically depend on the information transmission rate and the packet
loss probabilities, and it is demonstrated by a simulation example of a maneuvering
target tracking system that the time scale of information exchange among sensors
can be slower while still maintaining satisfactory estimation performance by using
the proposed estimation method.

2.2 Problem Statement

Consider a discrete-time stochastic linear system described by the following state-
space model

x(kiv1) = Apx(k) + Byw, (k). i =0,1,2, ... 2.1)

where x(k;) € N”" is the system state, w,(k;) € NP is a zero-mean white noise,
hy =kiy1—ki,andVi=0,1,2,...is the sampling period of system (2.1). A WSN
consisting of N spatially distributed sensors is deployed to collect observations of
system (2.1) according to the following observation models:

yilks) = Cpx(ki) + Dprup(ki), 1 =1,2,....N 2.2)

where y;(k;) € 9™ is the observation collected by sensor / at time instant
ki, upi(k;) € NR? are white measurement noises with zero means, and A,, B,
Cyi, and Dy are constant matrices with appropriate dimensions. w,(k;) is uncor-
related with vy, (k;), while vy(k;) are mutually correlated, and E{w,,(ki)w;(kj)} =

Q0,835 E{up(k) vk (k)} = 0,8y, I.s € Zy, where §; = 1 and §; = 0 (i # )).

23
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_ O sensor
T /\ target

Fig. 2.1 A structure of the distributed estimation system

The WSN is considered to be a peer-to-peer network, there is no fusion center in
the network, and every sensor in the network acts also as an estimator. A structure
of the distributed fusion estimation system is schematically shown in Fig.2.1. The
observations are transmitted among the sensors in an ad hoc manner via unreliable
wireless communication channels and may be subject to random packet losses. We
say that two sensors are connected if they can communicate directly with each other,
i.e., they can communicate with each other within one hop. For example, in Fig. 2.1,
sensor 4 is connected to sensors 3, 5, and 6. Notice that a sensor is always connected
to itself. The set of sensors connected to a certain sensor r is called the neighborhood
of senor r and is denoted by NV, r € Z 2 {1,2,...,N} (notice that r € N,), and the
number of neighbors of sensor r is given by the number of elements of N, written
as n,. For example, in the neighborhood W, in Fig.2.1, one has N, = {3,4,5,6}
and n, = 4.

Denote by L;j, i,j € N, the link between sensor i and sensor j in a neighborhood.
Then, the random packet loss in the link L;; is described by a white binary
distributed random process «;j(k;), where o;;(k;) = 1 indicates that a packet
transmitted from sensor i successfully arrives at sensor j at instant k;, while «; j(k;) =
0 implies that a packet is lost during the transmission from sensor i to sensor j.
0;, £ E{o;;(k))} = Prob{o;;(k;) = 1} is called the packet arriving probability
(PAP), while 1 — 6; 2| - E{w j(ki)} = Prob{o;;(k;) = 0} is called the packet
loss probability (PLP). By definition, one has «;;(k;)) = «;;(k;), 6;j = 0;;, and
0;; = 1. It is assumed that o, (k;), Y I € N,, r € Zy are mutually independent
and are also independent of w,(k;), vy (k;), and the initial system state. All the
sensors in the network are assumed to be time synchronized. Moreover, the sensors
are time-driven, i.e., they calculate the state estimates periodically at certain time
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instants, and the sensors are not necessary to know the packet transmission status in
the network.

Suppose that the dynamic of the stochastic process (2.1) is not changing too
rapidly, then brutal force collection of every measurement at sampling instants k; is
a waste of energy, and this waste is amplified by packet losses. To reduce the energy
waste, we suppose that every sensor r transmits measurements to its neighbors with
a period h,, that is larger than the sampling period 4,. Denote t;, i = 0,1,2,... as
the measurement transmission instants, and then h,, = ;41 —t;, i = 0,1,2,....
Thus, every sensor in the WSN collects measurements, runs a Kalman estimator,
and calculates and outputs local estimates with a period #,,. In practice, one may
expect to obtain estimates not only at the instances #; but also at instances over the
interval (¢,—1, t;]; this is to say, one may expect to update the estimates at a rate that is
higher than the estimate output rate. Suppose that estimates are updated at instances
T;and Ty —T; = he, i = 0,1,2,.... In this generic case, the estimation system
runs with three rates, namely, the measurement sampling rate (also the system state
updating rate), the measurement transmitting rate (also the estimate output rate),
and the estimate updating rate. In what follows, the multi-rate estimation system
model will be transformed into a single-rate system model for further development
by using the lifting technique.

For simplicity but without loss of generality, it is assumed that both the
measurement transmitting period 4, and the estimate updating period A, are integer
multiple of the measurement sampling period /, and 4, is also integer multiple of
he. Specifically, let h, = ah, and h,, = bh,, where a and b are positive integers
and chosen as small as possible in practice under energy constraints of the sensor
networks. Then, by applying the difference equation in (2.1) recursively, one obtains
the following state equation with a state updating period of A,

x(Tit1) = Aex(T)) + B.w.(Ty), i =0,1,2,... (2.3)
where A, = A; and
B, =[A"'B, --- A,B, B,]
T
we(Ti) = [w, (T) @) (T; + hy) -+ &) (T; + (a— 1)hy)]

Similarly, applying the difference equation in (2.3) recursively leads to the following
state equation with a state updating period of A,,

X(ti+1) = Amx(ti) + Bmwm(ti), i=0,1,2,... 2.4)
where A,, = A? and
B, =[AY"'B, --- A.B. B.]

on(t) = [01(6) 0Tt + he) -+ ot + (b= Dho)]"
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The corresponding observation models are as follows:
)’l(ti) = Cl,lx(ti) + D‘,,IU‘,,](IL'), I=12,...,N (2.5

By following the similar procedures for obtaining the equation (2.4), one has for
j=12,...,b—1that

x(t,-_H —jhe) = Amix(t,-) + ija)m(t,-) (2.6)
where A,,; = A~ and

B, = [A"?B, --- A.B, B, 0]

Bup-1) = [Be 0 --- 0]
Define
n(t) = [x"(6) X"t —he) -+ x"(ti— (b—Dh)]"

then one obtains the following augmented single-rate estimation system model from
equations (2.4), (2.5) and (2.6):

n(ti+1) = An(;) + Bon(1;)
yi(ti) = Cn(t;) + Dpupi(t;) 2.7
[=1,2,...,N,i=0,1,2,...

where C; = [C,; 0 ... 0] and

A, 0---0 B,
Anmy 0---0 B
A = . . , B =
Am(h—l) 0---0 Bm(b—l)
The initial states x(ty — jh.),j = 0,1,...,b — 1 are mutually uncorrelated and are
also uncorrelated with w, (#;) and v(#;), I = 1,2,..., N and satisfy

E{x(to — jhe)} = %, E{(x(to — jhe) — %)) (x(to — jhe) — %)} = P;

where ¢ is the initial time.

At each instant #;, every sensor collects measurements y;(¢;) from its neighbors
to generate an unbiased state estimate 7j(#;4|¢;), where j is an integer, and thus the
following estimates

)AC(l‘i+j|l‘i),)AC(l‘i+j — he|ti), - ,)AC(l‘H_j — (b — l)he|ti)
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Fig. 2.2 An example of the multi-rate estimation

are obtained simultaneously in blocks. An example of the multi-rate state estimation
is shown schematically in Fig. 2.2, where a one-step prediction is considered, and
hy = 2he, hy = 2h,, k; are the measurement sampling instants (also the system
state updating instants), T; are the estimate updating instants, and #; are the estimate
output instants (also the measurement transmitting instants). At each instant ¢;, every
sensor collects measurements from its neighbors, and the predictions x(¢;+1|#;) and
X(ti+1 — he|t;) are then generated simultaneously. In the system model (2.7), the
state x(f;) is included in the augmented state 7(#;). Notice that when filtering is
considered, x(¢t; — h.|t;), ..., X(t; — (b — 1)h,|t;) are all delayed estimates. So, one
advantage of the proposed model is that it can provide at least one non-delayed
estimate X(;]#;), and this is important in many practical applications, such as real-
time moving target tracking. Second, the lifted noise wy, (#;) is still uncorrelated with
vu(t), I =1,2,..., N provided that w, (k;) and vy (k;) are uncorrelated.

In what follows, an estimation system model with random packet losses will be
established based on the model (2.7). Denote by z;(¢;) the measurement that sensor r
receives from sensor /, and then z;(¢;) might not equal y,(;) since y;(f;) may be lost
during the transmission. Suppose that the hold input mechanism [14] is adopted by
all the sensors, i.e., sensor r will hold at its last available input when the current
measurement is lost, and then one has in this scenario that

() = ar(t)yi(t) + (1 — oy, () zi(ti-1)

Stacking z(#;), I € N, into an augmented vector Z,(¢;) = col{z;(#;)};en;, which will
be used to generate local estimates, one obtains

Z.(t;) = col{ot (t)yi(t:) hien, + col{(1 — o, (t:))z1(ti=1) }ien, (2.8)

It can be seen from (2.8) that the stochastic variables «; .(#;) are incorporated into
each element of the estimator input Z.(z;), which makes the estimator design
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problem intractable. To remove the difficulty, the following auxiliary matrices

Hl,,:diag 0,...,0,11’,«,0,...,0 s ZEM
N—— N——

-1 =l
are introduced to rewrite Z,(t;) in (2.8) as follows:

Z(t) = | Y o () | Yot) + | L= D e, )y | Zetim) - (2.9)
lEN; IEN,

where Y,(t;) = col{yi(t:) }ien;, I € W™, and I, € N> are identity matrices
andm, = ) my. Denote
IEN,
Gr = CO]{Cl}leNra Hr = diag{Dpl}lEJ\/,d Ur(ti) = COI{Upl(ti)}leNr
and then Y,(¢;) is written as

Yr(ti) = Grn(ti) + HrUr(ti) (2.10)

Furthermore, denote

@) = [17@) 250" i) = [0l v @)]

and then one obtains the following augmented system model from (2.7), (2.9), and
(2.10)

E-(tiv1) ZNAr(ti)sr(ti) + Br(ti)‘)r(ti)
Z,(t;)) = Co(t)§,(1:) + U (1) (2.11)
rGZ(), i=0,1,2,...

where U,(t;) = > o (t)I1;,H,v,(t), and

[EN,

A 0

Ar(ti) = Z al,r(ti)nl,rGr Ir_ Z al,r(ti)nl,r
IEN, IEN,

B,(t}) = diag { B. > " o, (t;) [T, H,
IEN,

C ) = o ,r(ti)n,rGr Ir - (02 ,r(ti)n,r
&) = | I, @G b= 3 ens T
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LetQ, =E {wm(ti)a)gl(ti)} and 0, = E {v,(ti)v,T(ti)}. Then

Q. = diag{Qu, }axs. Ou, = [Q)"]. Ls €N,

To reduce energy consumption, the transmission rate method is used, and it
naturally results in a multi-rate estimation system. By using the lifting technique,
the multi-rate estimation system with random packet losses is finally modeled as
a single-rate system with multiple stochastic parameters as in equation (2.11).
Note that, if b = 1, i.e., the estimate output rate equals the estimate updating
rate (h,, = h,), then n(t;) and w,(#;) reduce to x(T;) and w,(T;), respec-
tively, while A, B, and C; reduce to A., B,, and C,;, respectively, and thus the
model (2.7) reduces to the model (2.3). Moreover, if a = 1 and b = 1, then
hyw = he = hy, x(T;) becomes x(k;), w.(T;) reduces to w,(k;), while A, and
B, reduce to A, and B,, respectively, and thus the model (2.3) reduces to the
model (2.1).

Based on the system model (2.11), a two-stage fusion estimation method will be
proposed to help improve local estimation performance of each sensor and reduce
disagreements among local estimates caused by the distributed structure of the
estimation system. At each time step, every sensor collects measurements from its
neighbors and runs a Kalman estimation algorithm to obtain a local estimate of
the system state. At the second stage, the sensor further collects and fuses local
estimates available at its neighbors to obtain a fused estimate. Thus, state estimation
at each sensor based on local measurements and the further fused estimation based
on the exchanged estimates among neighbors constitute the two-stage distributed
fusion estimation at hand. Then, the objective of the chapter is described as
follows.

Objective of the chapter: Design distributed Kalman estimators for system
(2.11) with packet losses and establish relationships between the measurement
transmission rate, PLPs, and estimation performances. The design is carried out
in two stages. At the first stage, every sensor r, r € Zj collects measurements
from its neighborhood A/, and generates a local estimate 7§, = g,(yi, ¥, )ien,
where g,(-) is a local Kalman estimation algorithm. At the second stage,
sensor r collects local estimates from its neighborhood A, and generates
a fused estimate 79 = f.(;, 04, )ien,, Where f.(-) refers to a local fusion
algorithm.
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2.3 Two-Stage Distributed Estimation

2.3.1 Local Kalman Estimators

This subsection is devoted to the design of the local Kalman estimation algorithm

gr(')' _ B B
Taking expectations on A,(t;), B,(t;), and C,(z;) yields, respectively:

- A 0
A 2EA®m) = S 0,.00,G, I, — 3 6,00,
[EN; IeEN,
B, 2E {B (t,)} = diag { B, Z 0,11, H,
[EN;
C é C(tl - Zelrner I_Zelrnlr

IEN, IEN,

Denoting

0 0
A r = s C r — II rGr — 17, r
0 ={ o, _m, | G =116 =)

one obtains

A1) —A, = Y (1) — 0.)A0,

N [EN; 2.12
Cot)— G = Y (@) — 6,)Cors (2-12)

IEN,
Then, some lemmas which play important roles in the derivation of main results are
first presented as follows:

Lemma 2.1 From the distributions of o; j(1;), it can be easily obtained for o j(t;) #
Olm(t,-), i,j,r,s € Zy that

E {otizd-(t,-)} =0

E {0 (1) (1)} = 0:10r

E {(0ij (1) — 6;))*} = 6;;(1 — 6;))

E {(O{Lj(ti) — 0;) (0 5(t:) — Qm)} =0
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Lemma 2.2 Forr e Zy, E {f),(ti)f);r(ti)} satisfies

E {f)r(ti)ﬁ;r(ti)} é Ar,r = Z el,rnl,rHerrH;FH[:rr
IEN,

+ Y 01,0, 00,,H,Q,, H T}, (2.13)
IEN; jEN, j#1

Proof Lemma 2.2 can be followed by Lemma 2.1.

Lemma 2.3 Define the state covariance matrix as

- A
(1) 2 E{&m)E, (1)}
and then E, .(t;) satisfies the following recursion:
Err(tip1) = AEr (1)A] + diag {BOLB', A,,}

+ > 0, (1= 0,) A0, B, (1A, (2.14)
IEN,

where the initial value of B, ,(t;) at ty is given by

A, Oy
Errt = 7
(O) |:0"1r 02:|

Ay 2E {n(to)n" (t0)} = diag {Po + XoX). Py + XiX]..... Pp—t + Xp—1X,_, }

and O € R qnd O, € W< qre zero matrices.

Proof &.(ti4+1) can be rewritten as
E (i) = Ak () + (A1) — A) &(8) + B (1)v, (1) (2.15)
Since E{A,(1;}) —A,} = 0 and &.(t;) Lv,(t;), one has by (2.15) that
Eriltiv) = AE, AT + E{(A.(0) = 4) &0 @) (A1) - 4,)' )

+E {B,(t)v, () v} (1) B} (t:)} (2.16)
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It follows from (2.12) and Lemma 2.1 that

E{(A,0) —4) &) 1) (A1) - 4))"}

=E Z (alr(tz) - 91 r) AOlrSr(tz)gT(tt)AOZr

IEN;

FELY Y (@) = 0,) () — 6))

IEN; JEN, j#I
XAOI r%-r(tl)é (tl)AOI r}

= > 0,.(1 = 0,) A0, 8, (1A, (2.17)
[EN,

Since w,(#;) and v,(t;) are uncorrelated, one has by Lemma 2.2 that

E {B,(t:)v,(t;)v,} (t:)B} (1)}

=E {diag{B. Y o, (t)1,.H, [“”"(”)}

IEN, ur(ti)
T
t) '
x[‘“'"(‘} diag {B. Y a;,(t)11,,H,
Ur(ti) leN,
= diag {BQ,B", A,,} (2.18)

Substituting (2.17) and (2.18) into (2.16) leads to (2.14). The proof is thus
completed.

With Lemmas 2.1, 2.2 and 2.3 in hand, it iS now ready to present design
procedures for the finite-horizon local Kalman estimators. Let 5, (t;|t;) and g,(tLH |#:)
denote, respectively, the unbiased linear minimum MSE filtered estimate and
one-step predicted estimate of the state &,(¢;). Then, the recursive local Kalman filter
for system (2.11) is given in the following theorem.

Theorem 2.1 For system (2.11), the finite horizon local Kalman filter in the sensor
r, r € Zy is given by

et) = Z, (1) — C& (ti]ti-1) (2.19)
2:(t;) = Z 01.-(1 = 0,,)Corr 1. (1) Cy,
IEN,

+érPr,r(ti|ti—l)a’f + AI‘J (220)
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K.(t;) = Py, (ti]ti-0)CF 27 (1) (2.21)

F(1) = Z 01r(1 = 0,.) Aot By (8) Cyy,

IEN,
+AP,(t:]ti-)CF + |:AO :| 27 (1) (2.22)
E(ti]t) = E(tiltim1) + Ko(t)er () (2.23)
E(ti 1) = AE(t1i1) + Fo(t)e ;) (2.24)
P, (ti|t:) = P (tiltic1) — Ko (1) 2,(t) K (1;) (2.25)
Py (tipalt) = Y 0,1 = 01,)(Aorr — Fo(t)Cor)

lEN,
x &, (1)) (Aot — Fr(t;)Corr)"
+diag {BQ,B". A,,}

+ (A, = FAt)C) Py (tltir) (A, — Fo(1)C,)"
—[0 ¢" @] = [0 ¢F ()] + o (1) (2.26)

where &,(t;) is the innovation sequence with covariance

2,(t) 2 E{e,(1)e} (1))

K, (t;) and F(t;) are gain matrices of the filter and the one-step predictor, respec-
tively; P, ,(t;|t;) and P, .(t;|ti—1) are the covariance matrices of the filtering error
and the prediction error, respectively; and the initial values of é,(ti|ti_1) and
P, (ti|ti1) at ty are given, respectively, by

£ (to]1-1) = [TZ)O:|

Ap 01:|

P, (to]t—)) =
(tolt-1) [0¥02

Ap = diag {Po, Py, ..., Py_1}

_ _ _ T
o 2 Edn(to)} = [% % ... T1_]
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and

@r,r(ti) = Z el,rnl,rHerrH;ranrF;r(ti)
[EN,

+3°Y " 000,110, H,Qu H TTTFY (1)
IEN; JEN, j#I

Qr,r(ti) = Z 91,rFr(ti)nl,rHerrHjnﬁF,T(ti)

IEN,
+ Z Z el,rej,rFr(ti)Hl,rHerrHEIZTrFE(ti)
1EN; JEN, j#1

Proof The innovation &,(t;) is defined as
e,(t) £ Z,(t) = Z,(tl1i-1) (2.27)
Taking projection of both sides of the output equation in (2.11) onto the linear space

L(Zr(t())v Zr(tl) IR Zr(ti—l)) ylelds

Z,(tiltim1) = C (i) + Z 61,11, H,
IEN,

xproj{ v, ()|, (t0), Zo(t1), - . ., Zy(ti1)} (2.28)
Define a set 9,(1;) 2 Jyen; B (1), where
Bur(ti) = {ou,(t0), o (1), - . ., 00 (13)}
Then, one has by (2.11) that
Z.(t;) € L(v,(t;), ve(tic1), ..., ve(20). §-(t0)) 5, 1) (2.29)

where L(-)y,(,) denotes that the linear space L(-) is dependent on the stochastic
parameters in the set 9,(¢;). It follows from (2.29) that

L(Zr(tO)aZr(tl)v s aZr(ti—l)) - L(Ur(ti—l)v R
U,(t()), \)r(l‘i_z), e Ur(l‘o), g,(l‘o))ﬁr(tiil) (2.30)

Since v, (t;) LL(vr(tiz1), ..., U(t0), Vr(tiz2), . . ., V(t0), &-(t0))w,(1iy), it follows
from (2.30) that

v (t) LL(Z, (1), Z:(t1), . . ., Z,(ti=1)) (2.31)



24 2 Multi-rate Kalman Fusion Estimation for WSNs
Since E{v,(#;)} = 0, (2.31) implies that

proj{v, (t)|Z,(t0). Z,(t1), . . . . Z,(ti-1)} = 0

which together with (2.28) and (2.27) yields (2.19).

By projection [15], one has the following equations for determining the filtered
estimate &,(¢;|t;):

E @l = Etltimr) + K (1), () (2.32)
Ki(6) = E{&(0)e] (1)} 2,7 (1) (2.33)
Notice that (2.32) is just the equation in (2.23). Define the prediction error as

g,(ti|ti_1) = &.(t;) — &(t;]t;i-1) and then substituting Z,.(¢;) in (2.11) into (2.19)
leads to

er(t;) = (C(t) — C) Ext:) + CEtiltim1) + Dy (8) (2.34)
Since &,(t;) Lu, (1)), §,(t,~|t,-_1)J_ur(t,-) and E{C,(1;) — C,} = 0, one has by (2.34) that
2:) = E{(C(t) — €) &) 1) (G )~ T)')
+E Gl (- CT
+E {0,(t:)9, (1)} (2.35)

By (2.12) and Lemma 2.1, and following the similar derivation procedures as in
(2.17), one obtains

E{(C/0) = &) @8 @) (C) - C) '

= > 0,1 = 0,)Coir By (6) Cy, (2.36)
IEN,

Then, (2.20) follows from (2.35), (2.36) and Lemma 2.2. Substituting (2.34) into
(2.33) and taking the facts

E{C,(1) — C,} = 0. & () Lu(r). & (tiltim1)LE (t:]ri1)
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into account yield
K, (1) = E{& @& wln-nCT} 27 @)
=E {(ér(tilti—l) + gr(tilti—l)) ér(tilti_l)éf} 71
= P, (tilti-1)Cr 27 (1) (2.37)

By projection [15], one has the following equations for determining the one-step
predicted estimate &,(¢;41t;):

Etip1|t) = E-(tipr[timy) + Fr(t)e (1) (2.38)
Fo(t)) = E{&(tip1)e, (1)} 2,7 (1) (2.39)

Taking both sides of the state equation in (2.11) onto the space L(Z.(ty), Z.(t1),
- Z(ti-1)) yields

E(ti|tim1) = AL (tltisy) + B,
Xproj{v,(ti)|Z,(t0), Zr(t1)7 (RN Zr(ti—l)} (240)

It follows from (2.30) that v,(¢;,) LL(Z,(ty), Z.(1), - - - , Z,(ti—1)), which together with
the fact E{v,(#;)} = 0 leads to

proj{vr(ti)lzr(IO)s Zr(tl)v B Zr(ti—l)} =0 (2.41)

Combining (2.38), (2.40), and (2.41) yields (2.24). Substituting the state equation
in (2.11) into (2.39) yields

F(t) = E{A(t)&(t)e) (1)} 2,7 (1)
+E {B,(t)v,(t)el (1)} 27 (1) (2.42)

Substitute (2. 34) into (2 42), and then one obtains by (2.12), Lemma 2.1, and
&)Ly, (1), é,(tl|t, 1)J_§,(tl|t, 1) and E{o; () — 0;,} = O that

E {4, (1) (t)e) (1))
= E {05 1) 1) (C:0) = &) + A )6 0E (41T
=E{ A+ Y (@) - 6.)A0s | &0E @)

IEN,
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T
x (Z (o (1) — 61.)Corr

[EN,

+E {Ar(ti)@? (tiltim1) + ET (ti]ti-1))ET (ti|ti—l)6;r}

= Z 01.-(1 = 0, Aorr B (6) Coy,p + ArPr,(1i]1i-1) Cf (2.43)
IEN,

Since &,(t;) Lv, (1)), gr(t,-|t,~_1)J_vr(t,-), and wy, (t;) Lv,(1;), one has by Lemma 2.2 that
E {B,(t)v, (1)l (1)} = [0 AT, ] (2.44)

Combining (2.42), (2.43) and (2.44) leads to (2.22).

Derivation procedures for the covariance matrices P, ,(f;+1|t;) and P, ,(t;|t;) are
presented as follows. Substituting (2.24) and the state equation in (2.11) into the
right-hand side of the equation é,(tm It) = & (tit1) — é,(tH_l |t;), one has by (2.12)
and (2.34) that

Etin|t) = [ A+ D (i (t) — 61)Aws | &(1:)

IEN,

A& (tilti) + Bo(t)ve(t) — Fo(1)en(t)

= AE(t|t-1) + Z (et (1) — O )Aorr
IEN,

—F:(t;) Y _ (o, (1) = 61,)Corr | E-(8;)

IEN,
+B,(1:)v,(1;) — Fo(t:) /&, (t:]1i-1)

_Fr(ti) Z Oll,r(ti)nl,rHrUr(ti)
IEN,

= Y (@ (1) = 01) (Ao — Folt:) Cor )6/ (1)

IEN,
+ (A = F,(1)C) & (tiltim1) + B (6 v, (1)

= > e () Fo () T, Hyo (1) (2.45)
IEN,
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Since  £.(t) Lv.(t), &) Lu(r), E(tltim) v (1), E(tltim1) Lus(r), and
E{o;,(t;) — 6;,} = 0, one has by Lemma 2.1 and (2.18) and following the similar
derivation procedures as in (2.17) that

Pr,r(tH-l |ti)
=E {gr(ti+l |)ET (ti1 |ti)}

= Z O,-(1 — 01,) (Ao, — F(t:)Corr) By (1) (Aot — Fr(t:)Corr) "
IEN,

+ (Ar - Fr(ti)ér) Pr,r(ti|ti—1) (Ar - Fr(ti)ar)T

—E {B,(t)v,(t)o] (1;)}

—E {o,6) (Btve(n) '}

+diag {BQ.B", A,,}

+E {o,(t)o (1)} (2.46)

where o,(t;)) = Y ai.(&)F () 1,,H,v,(t;). By following the similar derivation
IEN,
procedures as in (2.44), one obtains

E {B.(t)v. (1o} (1)} = [0 o], ()] (247)
Moreover, it follows from Lemma 2.1 that
E {0.(t)o, (1)} = 0rr(t:) (2.48)

Combining (2.46), (2.47), and (2.48) leads to (2.26).
Substituting (2.23) into the right-hand side of the equation &,.(#;|1;) £ &) —
&-(1i]1;) yields

E(tilt) = & (tiltim1) — K (1) (1) (2.49)
Let (1) = E{g,(ti|ti_1)5f(ti)}, and then it follows from (2.49) that
Pr(tlt) = E {E (1)ET (ln) |

= P, (tiltic1) — K (t:) @™ (1) — P(t)K (1)
+K, (1) 2,(1)K] (1) (2.50)
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Since ér(t,-|t,-_1)J_er(t,-), one has by (2.33) that

() = E{(&0) =& wli-n) el ()]

= E {&(t)e (1)}
= K, (t,)2,(t;) (2.51)

Substituting (2.51) into (2.50) leads to (2.25). The proof is thus completed.

Theorem 2.1 provides a set of recursive equations for designing the finite-horizon
local Kalman filters as a by-product; the local one-step predictor is also given.
Denote 7,(fisx|t;) and P} (tisk|t;) (k = 0, 1), respectively, the estimate of the
system state 1(#;) and the corresponding error covariance generated at sensor r.
Then, 7,(t;14]t;) and P} .(ti4«|t;) are given by

Al t) = U O1E (tia 1)
P! (tixklt) = Upn OVPrr(tigilt) [Ipn O1]"

where I, € R ig an identity matrix.

In Theorem 2.1, every sensor r in the WSN generates local estimates by using
measurements only from its neighbors. Each local estimate thus obtained is subop-
timal in the sense that not all the measurements in the WSN are used. Moreover,
there may exist disagreements among local estimates at different sensors. Similar
to [13], one may define some disagreement potentials as follows to characterize the
disagreement of local estimates in the neighborhood N, (r € Zy):

1 N N
k(i) = > Z 17 (tisa 1) = s tial ) 17 (2.52)
ne
u,SENr
1
Urt) = 5= D7 [Tr(PL il ) = Te(PL (s ) ] (2.53)
nr u,SENr

where k = 0, 1, and «,(¢;) and V,(¢;) are the disagreement potential of estimates and
the disagreement potential of estimation performances, respectively. Notice that at
each time step, not only a measurement but also a local estimate is available at each
sensor. Therefore, one efficient way to improve each local estimation performance
and reduce the disagreement is to further collect local estimates available at
neighboring sensors and then generate a fused estimate at every sensor in the WSN.
This gives rise to the two-stage estimation strategy. Different from the approach in
[16] where a fusion rule with scalar weights is used, a fusion criterion weighted
by matrices in the linear minimum variance sense will be used in this chapter to
generate fused estimates, and the main results will be presented in the following
subsection.
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2.3.2 Distributed Fusion Estimation

In this subsection, a fusion criterion weighted by matrices in the linear minimum
variance sense is applied to generate fusion estimates for every sensor r, r € Zy, and
the criterion is first given in the following lemma.

Lemma 2.4 ([17]) Let %, i € Z 2 {1,2,...,m} be unbiased estimates of a

stochastic state vector x € R". Let the estimation errors be X; = x; — X;. Assume
that X; and Xj, i # j are correlated, and define the covariance and cross-covariance
matrices as P; = E{X;x! } and P; = E{)?,)?IT} (i # j), respectively. Then, the optimal
fusion estimate of x with matrix weights is given by

X = Xm:Amfci (2.54)

i=1

where the optimal matrix weights A, i € Z are computed by

T —w, (L Ty—1,)\"!
col{A) )., =W e ("W le)
¥ = [Pyl i,j € 7 is an nm X nm symmetric positive-definite matrix, and e =
(L, ..., L], I, € W™ is an identity matrix. The corresponding covariance matrix
N ———

m
of the fused estimation error is computed by P, = (e"W~'e)™!, and one has that

P, <Py ieZ

When local estimates calculated by the estimators in Theorem 2.1 are available
at the sensors in the WSN, every sensor r, r € Zj then collects them from its
neighborhood A, to generate a fused estimate according to the fusion rule in
Lemma 2.4. Note that the links in the WSN are subject to packet losses, local
estimates él, I € N, may be lost during the transmission, and thus only the estimates
that successfully arrive at the sensor r are used to generate the fused estimate
flor of the system state 7. Let N;(z;) denote the index set of the estimates él that
are successfully received by sensor r at instant #; and n,(f;) denote the number
of elements in ./\_/,(ti). Then, by Lemma 2.4, one has the following theorem that
determines the fused estimates and the corresponding covariance matrix of the
estimation error at sensor r, r € Zy:

Theorem 2.2 For system (2.11), the fusion estimator in the sensor r, r € Z is

given by

Ror(tirilt) = Y Apur(t)Rutiilt), k =0,1 (2.55)
ueN,(t;)
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where

Nu(tirrlt) = Upn O1)E(tigrlti)

and the optimal matrix weights A, x(t;), u € N,(t;) are computed by

col {A}, (1)) }ME./\_/r(Ti)
= 173 Wee) (e ) T3 Wer) L k= 0.1 =

where Vi (t;) = [Pus(tirilt))], u,s € Ni(t;) is an bnin,(t;) x bnn,(t;) symmetric
positive-definite matrix, and

P! (tigi|t) = [Ton O1]Pus(tigklt)on O1]"
er(ti) = [Ibna ey Ihn]T
————
ﬁr(ti)
The corresponding covariance matrix of the fusion estimation error is computed by
PZr(ti+k|ti) = (ef(ti)Trjcl (ti)e,(ti))_l, and one has that PZr(ti+k|ti) < PZ,u(ti+k|ti)r

u € Ny(t,). The estimates &,(t;1«|t;) and the covariance matrices P, (t;1i|t;) are
computed by the recursive equations in Theorem 2.1.

Proof Theorem 2.2 follows directly from Lemma 2.4.

It can be seen from (2.56) that computation of the cross-covariance matrices
Pus(tivklt), k = 0,1, u,s € Ny(t;}), u # s is one of the key issues in applying
the fusion estimator in Theorem 2.2. In what follows, computation procedures for
the cross-covariances P, ;(f;+«|t;) will be presented, but before which, some useful
lemmas are first given as follows:

Lemma 2.5 For any two augmented measurement noise vectors v, (t;) and vg(t;),
u,s € Ny, u# s, define Qy,0, = E{u,(t;)vI(t;)}. Then, one has

Quvo, = G1j]. 1 € Nusj € N (2.57)

QZIZ)v lsj ENM,S? l:

U, N
0, ;’, otherwise

J and N,z = N, NN,

where {;; =
Lemma 2.6 Foru,s € N, andu # s, E {ﬁu (ti)ﬁ;r(ti)} satisfies
E {'Du(tl)ﬁ;r(tl)} é Au,s
= Qs,u(l - Qs,u)ns,uHuQvl,va?H,Is

+ Z Z el,uei,snl,uHuQvl,uxH;rlzji (258)
1EeN, jEN;
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Proof Since u € N, and s € N, i.e., sensor u and sensor s are neighbors, one has
u € N and s € N,. Moreover, by the facts &, (#;)) = (%) and 6, = 6,5, one
has by Lemma 2.1 that

E {ﬁLt(ti)O;T(ti)} =E Z al,u(ti)nl,uHuvu(ti)

le'/\/u
T
x Z o (1) IT; sHyug (1)
JEN;

=E Z al,u(ti)nl,uHuUu(ti)
IEN,

X (au,s (ti)nu,sHsvs (ti))T}

+E Z Z (1)t s (6) I Hy v (1) vy (6 H, T
[eEN, jEN jF#u

= Z 91,1,1eu,snl,uHuQv,4UxH3HuT,s
IEN,IF#s

+0, 1T, Ho Qoo HUTL

+ Z Z Ql,uej,xnl,uHuQvuvjH;FH,':I;
IEN, JEN jFu

= 05 (1 = 05,) [T, H, Qoo HY 1T

+ Z el,u eu,snl,uHu QUMUXH;FH/IX

leN,
+ Z Z Ql,uej,xnl,uHuQvuvjH;rqa
IEN, JEN jFu
= Ay, (2.59)

The proof is thus completed.

Lemma 2.7 Define the state cross-covariance matrix as

Bus(t) 2 E{E,()E (1)
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where u,s € N, and u # s. Then &, (t;) satisfies the following recursion:

Eu,s(ti-i-l) = es,u(l - es,u)AOX,uEu,s(ti)Agu,s
+A, B s(t)AT + diag{BQ,B", A} (2.60)

where the initial value of B, ,(t;) at ty is given by B, ;(ty) = E,.,(t)-

Proof Tt follows from (2.15) that
Bus(tiv) = E{&(60DE (tir1) ) = AuBus (AT + 11 + x2 (2.61)
where
1 =E{A0) —A,) 6008 @) (A1) - A)'}
X2 = E{Bu(t)vu(t)v (6)B] (1)}

Noting u € N, s € N, and u # s, and by (2.12), Lemma 2.1, and the facts
s u(t) = o 5(t;) and 6, = 6,5, one obtains that

x1 =E Z (@ (t) = Or)Aor | Et)EN (1)

leN,
T
< | Y (@s(®) = 6.9)Agis
JEN;
= e‘v,u (1 - es,u) AOA‘,M Eu,x(ti)AguJ (262)

Since wy, (¢;) and v;(t;), [ € N, are uncorrelated, one has by Lemma 2.6 that

x2 = E { diag { B, Zal,u(ti)ﬂl,uHu |:a)m(t,-):|

IEN, Uu(ti)
T
w7
% |:a)m i :| diag B, Zaj,x(ti)m,sl'lx
Us(ti) /EM
= diag {BQ,B", A.} (2.63)

Substituting (2.62) and (2.63) into (2.61) leads to (2.60). The proof is thus
completed.
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A set of equations for calculating the cross-covariances P, (t;14|t;), k = 0,1,
u,s € N,, u # s are now presented in the following theorem based on
Lemmas 2.5, 2.6 and 2.7.

Theorem 2.3 For system (2.11), the cross-covariance of local Kalman estimation
errors between the sensors u and s in the neighborhood N,, r € Zy satisfies the
following recursive equations:

where

Pty =11+ 1+ 13
Pus(tir|t;) = Ty + I's + T + diag {BO,B", A}

—[0 ¢ @] =10 7y ()]

Fl = (ju - Ku(ti)au) Pu,s(ti|ti—1) (iv - Kv(ti)CS)T
F2 = e‘v,u(l - G‘V,M)Ku(ti)COS,uEu,s(ti)CT KT(ti)

Ou,s™s

I3 = 0,u,(1 — 05,) K (t) s Hu Qv HY T K (1)

+ )0 Oty Kult) 11 H, Qoo HY TTEK] (1)

IEN, JEN;

Iy = 05,(1 — 05) (Aos.u — Fulti) Cosu) B s (i)

X(Aous — Fs(t)) Cous)"
I's = (A — Fu(t) C)Pus(tiltio ) (As — Fo(t)Co)T
T = 05 (1 = 0. Fu(t) I, Ho Qu, o, H Ty FL (1)

ust s

+ Z Z el,uej,sFu(ti)nl,uHuQUL,USH;FIZT};Fg(ti)
IEN, jEN;

(pu,s(ti) = e‘v,u(l - Qv,u)Hv,uHuQvuvsH;[‘HT FT(ti)

u,st s

+ Z Z Ql,uej,xHl,uHuQvuva?quFZ(ti)
LEN. JEN

ﬁu,x(ti) = e‘v,u(l - e‘Y,M)Fu(ti)HY,MHMQU“UXH;rnT

u,s

+ Z Z Ql,uej,sFu(ti)nl,uHuQUMUSH;FIZ}L
IEN, jEN;

(2.64)

(2.65)

and ju e Mot gnd ZY € Mbmtms gre identity matrices; Q.,v, and A, s are given by
(2.57) and (2.58), respectively; and =, 5(t;) is computed by (2.60), the initial value
OfPu,s(tiIti—l) at to is given by Pu,s(t0|t—1) = Pu,u(tOIt—l)'
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Proof Substituting (2.19) into (2.23) yields
Eutlt) = (I — Ku(t)C) Eu(tiltiy) + Ku(t)Zu(t). u € N, (2.66)

Substituting the output equation in (2.11) into (2.66) leads to

Eult) = (T, — Ku(t)Cu) Eutiltim1)
+K (1) Cu(1)E (1)

+ Z oty (2:) Ky (1) I Hy v, (1)
1EN,

= (L, — Ku(1)Cy) Eutiltiy) + Ku(1) Cubu(t;)
+Ku(ti) (6u(ti) - éu) Su(ti)

+ > () K () I Hy v (1)
leN,

= E,(ti1t1) + Ko (1) Cubu(tiltio)
+Ku(ti) (6u(ti) - Cu) gu(ti)

+ D () K () T Hy v (1) (2.67)
1EN,

Subtracting &,(#;) from both sides of (2.67) and taking (2.12) into account yield

Eutlt) = (I — Ku(1)C) Eu(til1i-1)
= > (@t = O1a) Ku(8) Corubu(t)

IEN,
— Y () Ko (6) Ty Hyva (1) (2.68)
IEN,

Since g,,(t,-|t,~_1) consists of the linear combination of {w,(ti—2),...,wu.(t),
Uu(tiz1), - .., uu(ty), €4(%0)}, applying the projection property [15] and following
the similar derivation procedures as in (2.29), (2.30) and (2.31), one has

E(ti]tim1) Loy (1)
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Moreover, since &,(t;) Lvug(t;), E{ou(t;)) — 0143 = 0, and E{o;(1;) —

1 € N,,j € N,, one has by (2.68) that

Pustiiln) = B {Euln)E uli |
= (ju - Ku(ti)éu) Pu,s(tilti—l) (jv - Kv(ti)éx)T
+x3+ x4

where

x=E Z (o (ti) — 1)K (t:) Core | Eulti)
leN,

T

xE (1;) Z (0 s(t;)) — 6;.)Ks(t:) Coj s
JENS

xa =E D oK (6) MuHy | va(e)v] (1)
IEN,,

X Z aj,s(ti)Kv(ti)Ijj,va
JEN;
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Qj,s} = O,

(2.69)

Since u € Ny, s € N, and u # s, one obtains by Lemma 2.1 and «,(t;) = o, 5(t;)

and 6, = 0, that

x3 =13

(2.70)

By following the similar derivation procedures as in the proof of Lemma 2.6, one

has that

xa =13

2.71)

Combining (2.69), (2.70) and (2.71) leads to (2.64). Notice that one has to calculate

P, s(t;]t;i—1) in computing P, ,(%|t;). Since the following facts hold

Eu(ti) Ly ()
€u(ti) Lus (1)
Eu(tiltim1) Lvg(t;)
gu (tilti—1) Lug(%)
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E{oy,(t;) — 0.} =0
E{“j,‘v(ti) - ej,y} =0
le Ny jeN

one has by (2.45), (2.63), Lemma 2.1, and following the similar derivation proce-
dures as in (2.62) that

Py s(tim1|t}) = Iy + s + diag {BQ,B", A}
+E {0.(1)p7 (1)} — E{B.(t)vu (1) pT (1)}
—E {pu(t;)(Bs(t:))vs(1:)) "} (2.72)

where

pulti) = Y () Fu(t) I Hy v (1)

leN,

ps(t) = Y 0 (6)Fy(6) I o Hiui (1)

JENS

By following the similar derivation procedures as in the proof of Lemma 2.6, one
obtains

E{p,(t)p; (1)} = I (2.73)

By following the similar derivation procedures as in (2.63) and Lemma 2.6, one has

E {B.(t)vu(t)pf (1)} = [0 ¢, ()] (2.74)
E {pu(t) (B, (1) v, ()"} = [0 715(1)] (2.75)

Combining (2.72), (2.73), (2.74) and (2.75) yields (2.65). The proof is thus
completed.

By fusing local estimates, more measurements from different sensors are used
to generate fused estimates at every sensor, which helps improve local estimation
performance and reduce the disagreement of local estimates. Similar to (2.52) and
(2.53), one may define some disagreement potentials as follows to characterize the
performance of the distributed estimation algorithm in Theorems 2.2 and 2.3:

1

K7 (t) = ) Z 1 fou il 23) = R tiel 1) | (2.76)
"y u,sEN,
1

Yy (t) = G Z [Tr(P), (ti44 1)) — Tr(PZs(li+k|li))]2 (2.77)

u,sE./\/r
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where k = 0, 1, k7 (t;), and v/ (#;) are, respectively, the disagreement potential of the
fused estimates and the disagreement potential of the fused estimation performances
in the neighborhood ,, and some smaller ¢ and ¢ imply a better performance of
the estimation algorithm in Theorems 2.2 and 2.3.

It can be seen from Theorems 2.1, 2.2 and 2.3 that the estimation performance
assessed by the error covariances critically depend on the parameter b that deter-
mines the measurement transmission rate, and thus one may see how the mea-
surement transmission rate can affect the estimation performance by applying
the algorithms in Theorems 2.1, 2.2, and 2.3. On the other hand, the proposed
two-stage fusion estimation needs more computation and communication costs as
compared with the one-stage one. Nevertheless, the multi-rate scheme helps reduce
communication costs significantly since the transmission rate of the measurements
and local estimates is slowed down, and it is well known that computation
consumes much less energy than communication in WSNs. Energy saved from
the multi-rate scheme can be used to implement the second-stage fusion estimation
which helps improve estimation performance. Thus, the two-stage estimation may
achieve a better performance without consuming more energy than the one-stage
estimation.

2.4 Simulations

In this section, simulations of a maneuvering target tracking system are presented to
demonstrate the effectiveness of the proposed estimator design method, where the
target’s position and velocity evolve according to the state-space model in (2.1) with

2
A, = [(1) hf’] B, =10 hz/z (2.78)
14

where £, is the sampling period. The state is x(k;) = [x[T,(ki) xT(k)]T, where
X,(k;) and x, (k;) are the position and velocity of the maneuvering target at time k;,
respectively. Suppose that the target is not moving too fast, and we take i, = 0.5
in the simulation.

A wireless sensor network with 12 sensor nodes is deployed to monitor the
target, and the topology of the WSN is shown in Fig. 2.3. The wireless links in the
WSN may be subject to random packet losses. Suppose that only the position of the
target is measurable, and the observation equations of the sensors are given by (2.2),
where vy (k;) = cjwo (ki) + voi(ki), wo(k;) is a zero-mean white noise with variance
Quwy» Voi(k;) are zero-mean white noises with variances Q,,,, Uo/(k;) are mutually
uncorrelated and are independent of wy (k;), wo(k;) and vy, (k;) are uncorrelated with
wp(k;), and

Coi=1[10], C, =[0.8 0]
Cp3 =[0.7 0], Cps = [0.6 0], Cps = [0.5 0]
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Fig. 2.3 Network topology 10
with N = 12 sensor nodes 11

Cps = [0.4 0], C,7 =[0.3 0], Cps = [0.2 0]
Cpo = [1 0], Cpio = [0.8 0], Cpiy = [0.6 0]
Coo=1[070., Dy=1,1=12,....12

It can be easily calculated that

711) = Clewo + Qvow Q}jI; = Clchwoa l7é s, lLs=1,2,...,12

In the simulation, we take ¢; = 0.1/ and

Qu, = 0.1, Quy = 1
Qv = 0.4, Qu, = 0.7
Qv = 0.4, Oy, = 0.4
Quys = 0.3, Qup = 0.2
Quyy = 0.3, Oy = 0.3
Qupy = 0.5, Qupyo = 0.4
Quys = 0.3, Quy, = 0.1

It can be seen from the topology of the WSN that sensors 2 and 5 are directly
connected to sensor 1, and thus they are neighbors of the sensor 1, and the
neighborhood A consists of three sensors, and they are sensors 1, 2, 5. In what
follows, estimation at the sensors in neighborhood A will be considered to show the
effectiveness of the proposed estimator design. At each instant #;, sensor 1 collects
measurements from itself and sensors 2 and 5 to generate local estimates, and then
at the second stage, sensor 1 collects local estimates from itself and sensors 2 and 5
to form fused estimates.

We first consider the situation where ¢ = b = 2, i.e., the sensors in N
collect measurements from their neighborhoods and generate estimates with period
h, = 2s which is 4 times of the sampling period, and the estimates are updated
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with period 4, = 1 s which is 2 times of the sampling period. By slowing down the
measurement transmission rate and the estimate updating rate, one may expect to
save energies consumed in communications and computations. The PLPs in the links
L, and Ls are supposed tobe 1 — 6,1 = 1—05; = 0.2. The initial time is #p = 0,
and the initial state is given by x(0) = x(—1) = [1 0.5]T, and Xy = X; = [1.5 1.0]T,
Py = P, = diag{0.25,0.25}. By applying Theorems 2.1, 2.2 and 2.3, the true
values and the filtered fusion estimates of the target positions obtained at sensor 1
are depicted in Fig.2.4a, while Fig.2.4b depicts the true values and the filtered
fusion estimates of the target velocities. It can be seen that the sensor 1 is able to
track the maneuvering target well in the presence of random packet losses and with
slow measurement transmission rate. Figure 2.5 shows the individual estimation
performance (assessed by the trace of estimation error covariance) of every sensor in
the neighborhood V}. It can be seen from Fig. 2.5 that the estimation performance at
sensor 1 is improved by using the two-stage fusion strategy and the fusion estimator
outperforms each of its local estimators.

The advantage of the two-stage fusion estimation strategy is further shown
in Figs.2.6 and 2.7. In Fig.2.6. It can be seen that the estimation performance
may be improved by using more measurements from different sensors, and the
estimation performance can be further improved by fusing local estimates from
its neighborhood. The disagreement of estimates and disagreement of estimation
performances obtained by two estimation strategies (one-stage estimation and two-
stage estimation) are shown, respectively, in Fig.2.7a, b. It is clearly shown by
Fig. 2.7 that both the disagreement of estimate and the disagreement of estimation
performance are significantly reduced by using the two-stage estimation strategy.

(a) 10 T T
é 10 —+ true value of xp |
— o filtered estimate of x
p I P T
-20 I T T P
0 5 10 15 20 25 30 35 40 45 50
time /s
(b) 2
2 of 5 .
8
T k R o0 ee%\ ) [:%“ —+— true value of x| |
{?/ —o—filtered estimate of x|
4 I I I I I _
0 5 10 15 20 25 30 35 40 45 50

time /s

Fig. 2.4 True values and fused estimates (obtained at sensor 1) of the target positions and
velocities witha = 2,b = 2,6, =65, = 0.5
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Fig. 2.5 Estimation performances obtained at the sensors in the neighborhood N with a = 2,
b= 2, 92y1 . 95,1 = 0.8
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Fig. 2.6 Estimation performances of sensors 1 with different estimation strategies, a = 2, b = 2,
6h1 =051 =08
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Fig. 2.8 Comparison of estimation performance and energy consumption in two estimation
strategies, 6,1 = 65; = 0.9

Notice that the two-stage estimation usually causes more communication costs as
compared with the normal one-stage estimation, because, besides of measurements,
local estimates in the neighborhood should also be transmitted among sensors in the
group to generate a fused estimate. Fortunately, by slowing down the measurement
transmission and estimate updating rates, energies can be saved to implement the
two-stage estimation. In this way, the two-stage strategy may be realized to improve
each local estimation performance and reduce the disagreement of estimates among
different sensors without consuming more energies than the normal one-stage
strategy. An example is shown in Fig.2.8 which depicts filtering performances
obtained at sensor 1 with 6,; = 65; = 0.9. The curve with plus symbol in
Fig. 2.8 shows the filtering performance obtained by using the one-stage estimation
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strategy with @ = 2 and b = 1, i.e., sensor 1 collects measurements from sensors 2
and 5 and generates estimates with a period of 1s, and thus totally 4 times of
measurement transmissions and 2 times of estimate computations are involved over
every 2s by using the one-stage estimation. The curve with star in Fig. 2.8 shows
the filtering performance obtained by using the two-stage estimation strategy with
a = 4and b = 1, i.e, sensor 1 collects not only measurements but also local
estimates from sensors 2 and 5 and generates fused estimates with a period of 2,
and therefore totally 4 times of measurement transmissions and 2 times of estimate
computations are involved over every 2 s by using the two-stage estimation. It thus
can be observed from Fig.2.8 that, though the two strategies consume the same
communication and computation costs, the two-stage estimation is able to provide
a better performance than the one-stage estimation, confirming that the two-stage
strategy may outperform the one-stage one without increasing energy consumption
due to the benefits from slowing down the measurement transmission rate.

In what follows, we will show how the packet loss and the measurement
transmission period may affect the estimation performances. Figure 2.9 shows the
filtering performances of the sensors in V] with different PLPs, and Fig. 2.10 shows
filtering performances of the sensors in NV} with different measurement transmission
periods. It can be seen from Figs. 2.9 and 2.10 that packet loss degrades estimation

—
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Fig. 2.9 Estimation performances of sensors in A with different PLPs, a = 2, b = 2. (a) Local
estimation performances of sensor 1. (b) Local estimation performances of sensor 2. (¢) Local
estimation performances of sensor 5. (d) Fusion estimation performances of sensor 1
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Fig. 2.10 Estimation performances of sensors in A with different measurement transmission
periods, 6, = 605, = 0.8. (a) Local estimation performances of sensor 1. (b) Local estimation
performances of sensor 2. (¢) Local estimation performances of sensor 5. (d) Fusion estimation
performances of sensor 1

performance and a smaller measurement transmission period leads to a better
estimation performance, which are as expected and demonstrate the effectiveness
of the proposed estimator design method.

2.5 Conclusions

An energy-efficient distributed fusion estimation algorithm has been developed
in this chapter for estimating states of discrete-time linear stochastic systems
with slowly changing dynamics and random packet losses in WSN environment.
A transmission rate method was proposed to reduce energy consumption in
exchanging information among sensors, and a two-stage fusion estimation method
has been proposed to improve each local estimate and reduce disagreements of local
estimates. It is shown that the obtained estimation performance critically depends
on the measurement transmission rate and the packet loss probabilities and that
the time scale of information exchange among sensors can be slower while still
maintaining satisfactory estimation performance. However, it is assumed in this
chapter that the estimator generates estimates periodically with a uniform rate. In
the next chapter, this restriction will be removed, and a novel fusion estimation
method with nonuniform estimation rates will be developed.
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Chapter 3
Kalman Fusion Estimation for WSNs with
Nonuniform Estimation Rates

3.1 Introduction

As mentioned in Chap. 2, developing energy-efficient algorithms for WSN-based
estimation is of great practical significance since the sensor nodes are usually
constrained in energy. As usually did in WSNs, one may purposively close the
sensor nodes to save power during certain time interval and wake them up when
necessary. That is to say, in many situations, it is not necessary for sensors to
transmit measurements and generate estimates at every sampling instant from the
energy-efficiency perspective, and the sensors may work and generate estimates
with two rates, namely, a fast rate and a slow rate according to their power situations.
Therefore, adopting a nonuniform estimation rate is a more preferable strategy for
sensor network-based estimation system with energy constraints.

An example of multisensor track-to-track fusion estimation with nonuniform
estimation rates is shown in Fig.3.1, where each sensor i broadcasts its local
estimates to the other sensors and meanwhile collects local estimates from itself
and the other sensors to generate fused estimates at instants #;;, k = 0,1,2,....
It can be seen from Fig. 3.1 that the number of local estimates for fusing at each
sensor is time varying, and local estimates available for fusing at a particular
sensor may be generated in various different time scales. These problems caused
by the asynchronism add much difficulty to the design of fusion rules, especially,
the computation of cross-covariances of estimation errors across different sensors.
Hence, there are two issues that should be considered in designing fusion estimators
with nonuniform estimation rates. The first issue is how to design an optimal local
estimator for each sensor with a nonuniform estimation rate, and the second issue
is how to design an optimal fusion rule for each estimator to fuse local estimates
generated at different time scales.

© Science Press, Beijing and Springer Science+Business Media Singapore 2016 45
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sensor i-1 O (] ] O O
tiio  tig liap liiy  lia

sensor i [ ] il O
tio tin lin i3

sensor i+1 [J 1 O
tiv10 lis11 tiv12

Fig. 3.1 An example of multisensor fusion with nonuniform estimation rates

For the first issue, some relevant results have been presented in the literature on
networked estimation with packet losses [1-4] or estimation with sensor failures
[5]. In these results, it is usually assumed that the estimator input keeps the last
available value or is set to zero if the current measurement is lost, and the estimates
are then generated with a uniform rate at every sampling instant. Therefore, the
aforementioned results are essentially not applicable to the nonuniform estimation
problem. Recently, a stochastic sampling method was presented in [6] to design
sampled-data H, filters with a filtering rate taking two values according to a known
probability distribution law. For the single-sensor scenario, the method in [6] is
useful for the nonuniform estimation problem. If each local estimation is performed
periodically with a single rate, then the problem in the aforementioned second
issue can be immediately solved by applying some distributed fusion methods as
presented in [7—12] (where estimation rates at different sensors are required to be the
same) or by using the multi-scale state fusion method as presented in [13—15] (where
estimation rates at different sensors are allowed to be different). When considering
the problems in both the aforementioned two issues, few result is available in
the literature except for [16—18]. In [16], the ratio between the sampling rates of
different sensors is allowed to be any positive integer, and some of the estimators
are allowed to generate local estimates with nonuniform rates. Thus, the result in
[16] extends those as given in [13—15]. However, it is required in the algorithm in
[16] that at least one estimator should generate its local estimates uniformly with a
single rate, and all the other estimation rates are integer multiple of this single rate.
In [17] and [18], some very general asynchronous fusion estimation methods were
presented for multisensor systems, which allow for out of sequence data and latent
data. However, the results in [17] and [18] were concerned with the sampled-data
fusion estimation, where the estimators estimate states at some discrete instants for
a continuous-time process. In the sampled-data fusion estimation, it is required that
all the local estimates are time stamped so that each estimator is able to calculate
exact state-transition matrices and some corresponding integration terms at every
estimation instant. These state-transition matrices and integration terms are then
used to lift the states at sampling instants to those at the fusion estimation instants.
In this way, some well-developed fusion rules were then applied to design the
fusion estimators. For discrete-time systems, the approaches in [17] and [18] are
not applicable to solve the problem in the aforementioned issue two since one is
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unable to lift the states at sampling instants to those at estimation instants by using
state-transition matrices.

This chapter presents a design method for multisensor track-to-track fusion
estimators with nonuniform estimation rates, and the aforementioned two issues
will be addressed. In the estimation system, a WSN with a group of sensors is
deployed to monitor the outputs of a discrete-time stochastic dynamic process, and
each sensor acts also as an estimator. At the first stage, each sensor generates local
estimates with a nonuniform rate by using its own measurements, and it is assumed
that the estimation rate switches between a fast one and a slow one according to
a white Bernoulli random process, and each local estimation system is modeled
as a discrete-time system with a stochastic parameter. Then, the optimal local
estimators are designed by using innovation analysis and projection principle. At
the second stage, each sensor collects and fuses local estimates from itself and the
other sensors to generate fused estimates. The fusion algorithm is designed by using
the lifting technique and a distributed fusion rule with matrix weights in the linear
minimum variance sense, and a set of recursive equations are presented to compute
the estimation error cross-covariances. Since the estimation rates at different sensors
are allowed to be different from each other, the proposed fusion algorithm is able to
fuse local estimates generated at different time scales. Then, each sensor generates
fused estimates according to the fusion rule, if local estimates from the other sensors
are available, and keeps its own estimates as the fused ones otherwise. Two types
of fusion estimators are designed according to different considerations of design
complexity and computation costs, and the convergence of the type II estimators is
also discussed.

3.2 Problem Statement

Consider a linear discrete stochastic system described by the following state-space
model

X(Tk+1) :Ax(Tk) +Ba)(Tk), k=0,1,2,... 3.1

where x(Ty) € N" is the system state and w(Ty) € N9 is a zero-mean white noise
with variance Q,,, i.e., E{o(T)w™(T,)} = Q,8(k—1), where §(k) is the Dirac Delta
function. The sampling period is denoted by hand h = Ty4 — Ty, k = 0,1,2,....
A group of N sensors are deployed to monitor the outputs of system (3.1), and the
output equations are given by

Yi(T) = Cix(Ty) + Dyui(Ty), i € Zg 2 {1,2,...,N} (3.2)

where y;(Ty) € NP and v;(Ty) € N9 are zero-mean white measurement noises
with variances QV,, i.e., E{v;(Ty)v; (T} = 1:6(k — 7). The noises v; are mutually

ii’
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correlated, and the covariance of v; and vj is given by E{Ui(Tk)va(T,)} = Q}8(k—
1),i,j € Zpand i # j. Each sensor i generates estimates with two rates, namely, a fast
rate and a slow rate denoted by h;; = a;1h and hj; = aph, respectively, where a;;
and ap are positive integers and a;; < a;. The sensor may switch between the two
rates according to its power situation, requirements of estimation performance, and
dynamic changes of the process under monitoring. Denote by #;4, k = 0, 1,2, ... the
instants at which the estimates are generated at sensor i, i € Zj. Then, the estimation
rate is denoted by h;(tix) = tix+1 — tix and hi(t;x) € {hi, hia}. Then, the output
equation at time scale #; is represented by

yiltix) = Cixi(tix) + Divi(tix), i € Zy (3.3)

where x;(#; 1) denotes the system state at time scale ;.
There is no fusion center in the estimation system, each sensor acts also as

an estimator. Each sensor i first generates local estimates X; = fi(y;) by using
measurements from itself and then generates fused estimates x,; = g;(X1,...,Xn)

by using available local estimates from itself and the other sensors, where f;(.)
and g;(.) are the local estimation algorithm and the fusion rule to be designed at
sensor i, respectively. Since #;; is generally not equal to #;; for any i,j € Zy and
i #j,k=0,1,2,..., the fusion rule g;(.) should be able to fuse local estimates
generated at different time scales. Denote by P;; and P,; the local estimation error
covariance and the fused estimation error covariance of sensor i, respectively. Then,
the objective of this chapter is as follows.

Objective of the chapter: For system (3.1) and (3.3) with nonuniform estimation
rates, design an optimal local estimator f;(.) and an optimal fusion rule g;(.) with
matrix weights for each sensor such that the fused estimates X,;(¢; «|f;x) are unbiased
optimal estimates of the system state x;(¢;x), i.e., E{X,;(tix|tix)} = E{x;(t;x)}, and
Poi(ti,k|ti,k) = min{P(ti,klti,k)}, Poi(ti,k|ti,k) < Pi,i(ti,k|ti,k), where P(ti,klti,k) denotes
the estimation error covariance of an arbitrary fusion estimator with matrix weights,
i € 7.

3.3 Modeling of the Estimation System

It can be seen from (3.1) and (3.3) that the system state in (3.1) evolves with a
constant period &, while the estimates X; are generated with a time-varying period
hi(t;x). Therefore, (3.1) and (3.3) are essentially a multi-rate estimation system
model which cannot be directly used for designing fusion estimators, and a single-
rate estimation system model is necessary and will be established in this section. By
applying the state equation (3.1) recursively, one obtains a new state equation with
time scale #; as follows:

Xi(tigr1) = Aiti)xi(tix) + wi(tix), i € Zoy (3.4)
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where A;(t;x) = A4l a;i(tix) € {ain, ap}, and

ai(tix)—1
witi) = ) AYD T Bty + jh)
j=0

From the expression of w;(f;;), it can be seen that w;(f;) is zero mean. Besides,
since tjx + jh < tix + ai(ti,k)h = lik+1, vVji=201,... ,ai(ti,k) — 1, one has
E{a)i(ti,k)a)iT(ti,l)} =0, V I # k. Moreover, let O, (tix) = Var(w;(t;x)), one has

aj(tix)—1
O, (i) = Z Aai(fi.k)—j—lBQwBT (Aﬂi(fi.k)_j_l)T
j=0

Thus, w;(t;x) is a zero-mean white noise with a time-varying variance.

It is assumed that the sensors do not know a priori the exact values of the
estimation rate, but instead, the sensors only know that A;(z;;) switches between
ajth and aph randomly with known probabilities. Specifically, it is assumed that
hi(t;x) takes a; h and aph according to a white binary-valued Bernoulli sequence
pi(tix) € {0,1}, and h;(#;x) takes a;ih if p;(t;x) = 1 and takes value aph if
pi(tix) = 0, ie.,

PI‘Ob{hi(l‘i,k) = ailh} = PI'Ob{,Oi(l‘i’k) = 1}

Prob{hi(ti,k) = aizh} = PI'Ob{,Oi(l‘i’k) = O} 3.5
Then, a;(t; ;) and A;(; ;) can be written as

ai(tix) = pitix)an + (1 —pi(tix))an (3.6)
Ai(tix) = pi(tip)Ain + (1 — pi(tin))An 3.7

where A; = A%, [ = 1,2. By (3.6), w;(t;x) can be rewritten as

aj;—1
witix) = piltin) Y AT Bo(tiy + jh)
Jj=0
ap—1
+ (1= pi(ti) Y AT Bty + jh), i € Zy (3.8)
j=0

Suppose that £;(z; ;) takes value a; h with probability p;, then it follows from the
distribution of p;(#; ;) that E{p;(t;x)} = p; and

E{oi(ti)*} = pi, E{(1 = pi(ti0))*} = 1 = pi
E{pi(tix) (1 — pi(tix))} = 0 (3.9)
Cov(pi(tix)) = Cov(l — pi(tix)) = pi(1 — pi)
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For notational convenience, in what follows we will denote

Oin(tix) = pitix), On(tix) =1 — pi(tix)

9,‘1 = ,5,‘, 9,‘2 =1 —,55, I € Z() (310)

Then, by (3.8) and (3.9), the variance of the noise w;(#;x) is

2 aj—1
Qu =Y 0y AT BQ,BT (A=) 3.11)
=1 j=0

The probabilities p;, i € Z; are parameters that are assigned a priori according
to facts such as power situations of the sensors and requirements of estimation
performance. For example, for the sensor with full power, one may set a relatively
large probability of working at the fast estimation rate. In this way, one is able to
make a trade-off between estimation performance and energy consumptions of the
Sensors.

In what follows, two types of fusion estimators will be designed based on the
system model (3.3), (3.4), (3.7), and (3.8). The following assumptions are needed in
the derivation of the main results.

Assumption 3.1 V i € Z, the initial states x;(t;0) = x(Ty) are uncorrelated to
w(Ty) and v;(Ty), and E{x(Ty)} = xo, Var(x(To) — x9) = Py, @(Ty) is uncorrelated
to v;(Ty).

Assumption 3.2 Vi € Z, p;(t;x) are mutually independent and are independent of
xi(tip), @(Tx) and vi(Ty).

3.4 Design of the Fusion Estimators (Type I)

3.4.1 Design of Local Estimators
Lemma 3.1 Denote by O;(t;;) the variance of the state in (3.4), i.e., O;(t;y) =
Var(x;(t; 1)), then ©;(t; ;) satisfies the following recursive equation

2

Ortisr1) = Y 0aAaO@i(ti)A] + Quy» i € Zo (3.12)
=1

Proof Equation (3.12) can be followed by (3.4), (3.9) and the fact x;(#; ) Lw;(t;x)-
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_ 2 _ 2
Lemma 3.2 Let A,’ = E{A,’(l,"k)} = ZeﬂAﬂ and X,'(l,'qk) = Z(Qil(ti,k) —
=1 =1
Oi)Auxi(tiz), then O;(tix) = Var(Xi(tis)) satisfies

2
Oilti) = Y BuAu®i(ti) A} — AiO(t:,)AT (3.13)
=1

Proof Equation (3.13) can be followed by (3.9) and some similar procedures as in
(2.15),(2.16), (2.17) and (2.18) in Chap. 2.

For sensor i, i € Zj, denote by P;;(#;x|t;x) and P;;(#;x|tix—1) the filtering error
covariance matrix and the one-step prediction error covariance matrix, respectively.
Then, the optimal local estimator for sensor i is given in the following theorem.

Theorem 3.1 For sensor i with a nonuniform estimation rate h;(t;;) satisfying
(3.5), the local recursive optimal linear estimator is given by

Xi(tiprltia) = Ai(tixltiz) (3.14)
Yi(tigt1|tin+1) = Xi(tirtr[tin) + Ki(tir ) ei(tin41) (3.15)
&iltig+1) = yiltix+1) — Ciki(tijet1 |tix) (3.16)
Ki(tik+1) = Pii(tix1|tix) CF 27 (tikg1) (3.17)
Qi(tir1) = CiPii(tixs1 1.0 C + DiQD; (3.18)
Pii(tixr1ltin) = AiPii(tir|ti)AT 4+ Oi(tin) + O, (3.19)

Pii(tigs1ltizs1) = (I — Ki(tig 1) COP; i (8 g1 |8 )
x(I — Ki(tix+1)C)"
+K;(tis11)Di QYD K (ti4e41) (3.20)
where &i(tix) = Yi(tix) — Ji(tixltix—1) is the innovation, $2;(t;y) = Var(ei(t;x)),
Xi(tioltio) = xo, Pii(tioltio) = Po.

Proof Theorem 3.1 can be followed by Lemmas 3.1 and 3.2 and some similar
approaches in Theorem 2.1.

3.4.2 Design of the Fusion Rule

At the fusion stage, each sensor collects available local estimates from itself and
the other sensors to generate fused estimates. Since the measurement noises are
mutually correlated, the estimation errors at the various sensors are also mutually
correlated, and one has to compute the cross-covariances of the estimation errors
in the fusion estimation. Moreover, since the local estimates from different sensors
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are generated at different time scales, the updating rates of the cross-covariances
are nonuniform and the number of local estimates for fusion at a particular sensor
is time varying. For any two sensors i and j, denote by tZ, k=0,1,2,... the time
instants when ; and %; are available for fusion. An example of fusion estimation with
two sensors is shown in Fig. 3.2 to illustrate the above statements and the notation
#{. In Fig. 3.2, sensor i generates local estimates with rate h;(t;x) € {h,2h}, while
the local estimates are calculated in sensor j with rate i;(¢x) € {h, 3h}. P;; denotes
the cross-covariance of the estimation errors at sensors i and j. At instants #;, t; 5,
and #;3, sensor i fuses local estimates from itself and sensor j to generate fused
estimates. At instants ; 1, 2, t;3, t;4, ti6, and t; 7, local estimates from sensor j are
not available, and sensor i thus keeps its own local estimates as the fused ones. The
cross-covariance P;; is computed only at the instants i t” and t” where 1) = t;p =
1.0 tl =ti5 = tj», and t2 = t;g = t;4, and it can be seen that P;; is updated with a
nonuniform rate.

From the above analysis, an optimal fusion rule, which is able to treat the
variation of the number of local estimates, is needed in developing the asynchronous
fusion algorithm. Let N;(#; ;) denotes the index set of local estimates %;, [ € Z, that
are available for fusion at sensor i, and m;(#;;) denotes the number of elements in
Ni(t:x). It is clear that m;(t;;) < N and N;(¢;x) € Zo. Then, by Lemma 3.3 one has
the following theorem that determines the fused estimates and the corresponding
covariances of the estimation errors at sensor i, i € Z.

Theorem 3.2 For the system (3.3) and (3.4) with nonuniform estimation rates, the
fusion estimator at sensor i, i € Zy is given by

Roi(tialti) = Y Au(ti)fi(tialtic) (3.21)
1eN;(tix)

where the optimal matrix weights A; (t;x), | € Ni(tix) are computed by

oA (1)} e pr = Ti (adeiltin) (F )Y etn) ' (3.22)

Yi(tix) = [Prj(tixltin)] Lj € Ni(tix) is an nm;(t; ) x nm;(t;x) symmetric positive-
definite matrix and e;(t;;) = [I,...,1]*. The corresponding covariance matrix of
N ——

m;(ti k)
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the fusion estimation error is computed by P,;(t; ¢|tix) = (eiT (ti,k)'fi_l (tix)eiti) ™,
and one has that P, (t;x|tix) < Pri(tikltix), I € Ni(tix), i.e., the fusion estimation
is more accurate than each local one. The local estimates X;(t; x|t; ) and the covari-
ance matrices P;(t; x|t ) are computed by the recursive equations in Theorem 3.1.

Proof Theorem 3.2 follows directly from Lemma 2.4.

Since the number of local estimates for fusion at sensor i is time varying, the
dimension of the matrix Y;(#;;) is also time varying. If there is no local estimate
from the other sensors, then 7;(z;x) reduces to P;;(#;x|t;x), and X,;(¢; x|t;x) reduces
to X;(t; x|ti k), i.€., sensor i keeps its own estimate as the fused one.

If the measurement noises are uncorrelated, then P;;(tx|tix) = 0, [ # j, and
Ti(t;x) and P,;(t; x|t; k) reduces to

Yi(tin) = diag{Pr;(t; k|tix) }1en: (0
-

Poitixltin) = Z P(tikltix)

1EeN;(tix)

In this case, it is not necessary to calculate the cross-covariances of estimation
errors from different sensors, and each sensor just collects local estimates and
their corresponding error covariances from itself and the other sensors to generate
fused estimates. Otherwise, it can be seen from (3.22) that the computation of the
cross-covariances P;; is one of the key issues in applying the fusion estimators
in Theorem 3.2. In what follows, a procedure for the computation of the cross-
covariances will be presented.
Consider any two sensors i and j in the estimation system, i,j € Zy, i # j. Let

fi = ity =10, 1=0,1,2,...: k=0,1,2,...} (3.23)
f =l =1, 1=0,1,2,...: k=0,1,2,...} (3.24)

Taking the situation in Fig. 3.2 for example, one has
k: =0 01=5 i=28
JeiJo=0,1=2jp=4

Let ns(tg) denote the number of sampling periods over the interval [t;z, t;(’ ] at

£

sensor s, where s = i,j. Considering the interval [t;, t’ij] in Fig. 3.2 for example,

one has ni(tg) = 5and nj(tg) =2, and

llij - lg = hi(tio) + hi(ti1) + hi(ti2) + hi(ti3) + hi(t;4)
] — 10 = hi(t0) + hy(5;1)
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ForleZ 2{0.1,....n(t)yand g € Z £ {0, 1,....n;(i)}, let

1

a () = Y hittgers-) (3.25)

s=1
Tiq (IZ) = Z hj(t) jits—1) (3.26)

s=1
where the summation in (3.25) equals zero if / < s and that in (3.26) equals
to zero if ¢ < s. Denote by Vi, (2)), I € {0,1,....m()) — 1} and v, (1)),
qg € {0,1,.. n,(t,f) 1}, respectively, the sampling 1ntervals of sensors i and j

over the perlod [/, /. ,]. Then, one has

(
lez 2 {0,1,...,n,~ (r}'j)—l} (3.27)
(

qezjé{o,l,...,nj(zj{)—l} (3.28)

I 0 (0) O 5, (1F) # ¢, then let

Vi (fff ) N Vg (fff )
= [+ 7 () + wa () 1
s 8) o (8) ()]
= [tZ + 5 (ﬁf) + 'm( ) h.
)+ 5 (1) + (10 () + 70 () ) 1] 329

where 7, (tfj)h is the overlap of the two time intervals wi,z(l;Z) and ij,q(t;Z), while
t;z + ti,l(tg) + u,-,l(t;Z)h and t;z + rj,q(tZ) + Ujq (tfj)h are the instants when the overlap
begins to happen at sensors i and j, respectively. Taking the interval [tg , tij] in Fig. 3.2
for example, it can be seen that

tf{) = [tf{ + s (tf{), 4 15 (tf{)] = [tia. t;3]
tg) = [Z‘g + 71 (tf{), l‘g + T2 (l‘g)] = [t1, t2]

Vi

aum

Vi

aum
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and

Yio (lg) N Y (lg)

= [zg + Tis (zg) +h 1)+ 1o (zg) + Zh]
= [tg + 71 (tf)’) 2+ 1 (tg) + h]

and one has Mlz(l‘o) =1,u l(tg) =0, and 7. 1(t ) = 1.
A recursive equation for computing the cross-covariances P; J-(tZ|tZ), i, j € Zy,
i # jis now presented in the following theorem.

Theorem 3.3 For the system (3.3) and (3.4) with nonuniform estimation rates, the
cross-covariance of local estimation errors at sensors i andj, i,j € Zy, i # j satisfies
the following recursive equation

3
P (t;{+1|z,;'+1) =>"u (3.30)
=1

where

X1 = <_i_Ki(IZ+Ti,Z<tZ))CiA) lJ(tkl )

x (& = & (i + 5 (7)) G4)) (3.31)

n,-(tZ)—ln_,-(tZ —1 n, tl
[T (e 4. (2)

=0 q=0 s=I+2

x C, I-K; (tk + Ty ( )) Ci)

xTiq (IZ') (1 K; (ﬁf + Tg+1 (fl' )) Cj>T
()

<| TT (A=K (4 + e (1)) 6A) (3.32)

s=q+2

T
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P (H) Ny, (H) S _ _
Tl <tk]) Tig (f;f) s Vi (ku) n ;sq EIZ) #¢ fesaes G

g (l‘;{f) +1

2 2 )
Tiq (tZ) - Z Z 010 Z Aai"_”i"(t’?)_ﬂ
r=1 s=1 p=1
ij T
XBQwBT (Aajs_“j-q (tk)_ﬂ) (3.34)
=K <IZ+1) DiQZijTKjT <IZ+1) (3.35)

and the initial value ofPiJ-(z‘;‘z+1 |tZ+1) is given by PiJ-(tg|tg = Pi,i(tg|tg .

Proof Subtracting x;(#; x+1) from both sides of (3.14) and taking (3.4) into consid-
eration, one obtains

Xt |tig) = AFi(tixltie) + Xi(tin) + @i(tix) (3.36)

Subtracting x;(t;x+1) from both sides of (3.15) and taking (3.16) and (3.3) into
account, one obtains

Xi(tikt1ltinr1) = (I — Ki(tix+1) CXi(ti k1 ti4)

— Ki(tix+1)Divi(tik+1) (3.37)
Substituting (3.36) into (3.37) yields

Sl lticr1) = (A — Ki(tigr 1) CiAY) Xiltie|1i0)

(0ati) — 0a) (I — Ki(tixr1) C)Auxi(ti)

M~

+

1

+ (I = Ki(tix+1) CHwi(ti i) — Ki(tik+1)Divi(ti k1) (3.38)

Applying (3.38) recursively, yields the following state equation of the estimation
error at the time scale 7}

() = Yo () ~ 6 () 33
=1
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where

e (4) = [T (A—&i (4 + 7 () cAi) % (1)) (3.40)

~

3 (00 (84 ()~ ) s (4 () @40

&3 (lZ) = (Ai - K; (lZ + Tis (ﬁf)) CiAi)

=0 s=I42
x (I —K; (l‘z + Tiit1 (l‘:)) CL) w; (Z‘Z + Ty (t;f)) (3.42)

ni(d) ni(e)
€i (f;f) = Z l—[ (Ai - K; (Z‘Z + Tig (t;f)) CiAi)

=1 s

—1 s=it+1
xK; (t;f + 1y (t}j)) Djv; (t;f + 1y (t}j)) (3.43)

b
and we define that [] f(j) = I if b < a in (3.40), (3.41), (3.42) and (3.43).

J=a

Fori,j € Zy and i # j, define the cross-covariance of estimation errors in sensors
iandjas Pt 1)) = E{x(t]|5)X] (1] |4))}. Then, since E{6;, (8] +-7.,(t]))—0ir} = O,
r=1,2,1=0,1,...,m(d)), 5| Lay(t] + 1,())), %tV |1)) Lo(e) + 7,,(t))),
q=0,1,..., n;(t/), one has by (3.39), (3.40), (3.41), (3.42) and (3.43) that

4
Pi; (tz+1|tz+1) = ZE {Eil (IZ) } (lZ)} (3.44)
I=1
By following some routine computations, one has

E e (7) 8] (7)) = (3.45)
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Foralll/ = 1,2 and s = 1, 2, one has by Assumption 3.2 that
E {(0u(tix) — 61) (0(t;0) — 6)} =0, ij € Zo, i # ] (3.46)

It follows from (3.46) that

Ef (7) &8 (1)} =0 (3.47)

Forl € Z;, q EZj, let

Rl =Bl (s ()l (rn ()] o

If w,-,z(tf(") N Yy (tff) = ¢, then since w(f;;) is a white noise, one has by (3.8) that
Y10(t]) = 0.1 ¥, (1)) N Y 4(t]) # ¢, then one has by (3.8) and (3.9) that

ajy—1

Tha (t;f) =E {22: Oir (t;f + T (t}!)) 3 Aah
r=1 =
wongem[Enlond
r=1

aj3—1

T
Senien]
p=0
) Mi.l(tg)'Fﬂl.q(’/ij)
el () X ae
r=1 ﬂ=u,~_1(t,ij)

2

xBo (1] + 7y (i) + h) [Z 0 (1 + 54 (1))

r=1
Ujg (t;f) +niq (t;f)
X Z A% F=1Bg (IZ + 14 (IZ) + ,Bh)
/3=”./'.q(’1i(j)

=T, (tj{) (3.49)

T
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Thus, one obtains (3.33). It follows from (3.42) and (3.48) that

el (1)1 (0)) = »

Since #/ + 1, # 1V + 1, V1€ {1,2,....n(t)) =1}, g € {1,2,....n;()) — 1},

and ] + 7

ij .
=1 T. i, one obtains
i) = e T Gy

E{§i4 (tj{) 1 (t,{)} =1 (3.51)

Then, (3.30) follows from (3.44), (3.45), (3.47), (3.50), and (3.51). The proof is thus
completed.

Based on Theorems 3.1, 3.2 and 3.3, the track-to-track fusion estimation
algorithm with two rates in sensor i, i € Z is given as follows.

Algorithm 3.1

Step 1:  Sensor i generates its local estimates %; by applying the recursive equa-
tions in Theorem 3.1.

Step 2:  Sensor i collects available local estimates, error covariances and estimator
gain matrices from itself and the other sensors.

Step 3:  If there is no local estimates from the other sensors, then sensor i keeps
its own local estimate as the fused one. Otherwise, it determines the parameters
uig, ujg and myg, i,j € Zo, i # j, 1 € Zi, q € Zj according to the time stamps in
the local estimates and then generates fused estimates according to the recursive
equations and the fusion rule in Theorems 3.2 and 3.3.

If the estimation rate £;(#; 1), i € Zy are known exactly by the sensors a priori at
every estimation instant, then standard Kalman estimators can be designed for each
local estimation system, and the corresponding fusion algorithm can be designed by
following the similar lines as presented in this section.

3.5 Design of the Fusion Estimators (Type II)

In the type I fusion estimator, it can be seen from Algorithm 3.1 that one has to
determine the parameters u;;, u;4, and 7;, in computing the cross-covariances.
This section will present another design method for the fusion estimators, and
the parameter determination procedures as in the type I fusion estimators will be
removed.
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3.5.1 Estimator Design

We will first present a new model for each local estimation system. It follows from
(3.7) and 6;1(t;x) + 0i2(tix) = 1 that

Ai(tig) = On(ti)Ain + (1 = On (tix))An2
= Ap + 0 (i) (A — Ap) (3.52)
Substituting (3.52) into (3.4) leads to
Xi(tig+1) = Anxi(tix) + @i(tix), i € Zp (3.53)
where
@i(tix) = 01 (1) (A — Ap)xi(tix) + 0i(tix) (3.54)
By (3.9), Assumption 3.2 and the fact x;(#; ) Lw; (% ), one has
Var(@;(t;x)) = Bi(tix)B] (tix) (3.55)
where
Bi(tix) = [Pi(tix) k1 k2]
Vi(tix) = éill/z(Ail _Ai2)@il/2(ti,k)

= |0)7A% B0l .. 8;7ABOL? 8)7BOY?]. 1=1.2

Moreover, one has by Assumptions 3.1 and 3.2 that @;(#;x) is a zero-mean white
random process. Therefore, random processes @;(;x) and B;(#;x)v(tix) have the
same (first- and second-order) statistics, where v(#; ) is a zero-mean unit-variance
white random process that is uncorrelated to v;(#;x), i € Zy. Thus, the system model
in (3.4) can be rewritten as

Xi(tik+1) = Apxi(tix) + Bi(tix)v(tix), i € Zy (3.56)

It can be seen from (3.56) that each local estimation system is described as a
linear time-varying stochastic system. Then, a standard Kalman estimator can be
designed to estimate the state x;(#;;) based on the system model (3.56), and the
estimator is given in the following lemma.
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Lemma 3.3 For sensor i with a nonuniform estimation rate h;(t; ) satisfying (3.5),
the local recursive Kalman estimator for system (3.56) is given by

Xi(tiksiltigr1) = (I — Ki(ti 14-1) CARXi (8 k|t )

+Ki(ti g+ 1)yi(Tig+1) (3.57)

Ki(tigt1) = Pii(tix11tix) CF(CiPyi(ti g1 |tix) CF
+D;Q¥.D))™! (3.58)
P;i(tijr1|tin) = AnPii(tixlti )AL + Biti ) B! (t:x) (3.59)

Pii(tix+1ltin1) = (I — Ki(tix+1)C)
XP;i(tig1 1) I — Ki(tixr1)C)
+K; (1144 1)DiQY:D K (i 541) (3.60)

where Xi(t;io|ti0) = xo, Pii(tio|tio) = Po, and the state variance ©;(t; ;) in Bi(t; ;) is
computed by the recursive equation in (3.12).

When the local estimates computed by the recursive equations in Lemma 3.3
are available, each sensor then collects local estimates, error covariances, and
Kalman gain matrices from itself and the other sensors to generate fused estimates
according to the fusion rule given in Theorem 3.2. Similar to the design of the type
I fusion estimator, one has to calculate the estimation error cross-covariances in the
second-stage fusion estimation, and a recursive equation for computing the cross-
covariances P; (1} |t]) for the type II fusion estimators is presented in the following
theorem.

Theorem 3.4 For the system (3.3) and (3.56) with nonuniform estimation rates, the
cross-covariance of local estimation errors at sensorsiandj, i,j € Zy, i # j satisfies
the following recursive equation

3
Pij (fﬁfﬂltﬁfﬂ) =) 1 (3.61)
=1

where

I = (Ai2 - K; (l;f + Ty (l;!)) CiAiZ) P (f;fm])

ij T
1\ )

x| TT (4 =& (d + 5a (1)) cia) (3.62)

g=1
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(%)

5= 1 (An—k (4 + 7 (4)) Cian)

s=2
x (1=K (4 + 7 (4)) )
0 0)310) - 50 9)
"./(fij) '
<| T1 (Aiz —K; (ll’ + s (ll’ )) CjAjz) (3.63)
=2
Iy = K (i) DoiDIKT (1) (3.64)

i = Pi,i(tgltg .

and the state variance O;(t]) in Bi(1}) is computed by the recursive equation in
0

(3.12); the initial value of P (1], ||t ) is given by PiJ-(tg|t
Proof 1t follows from (3.56), (3.57) and (3.3) that
Xi(tig+1tin+1) = (I — Ki(tig+1)C)ApX(tix|tix)
+( — Ki(tik+1) C)Bi(ti ) v (ti k)

—Ki(tik+1)Divi(tix+1) (3.65)

Applying (3.65) recursively, yields the following state equation of the estimation

error at the time scale 7]

Xi (ZZ+1|ZZ+1) = N (l;f) + M2 (l;f) — i3 (lZ) (3.66)

where
o) o
i (8) =TT (=5 00 (1)
=1
xCiAR % (1) (3.67)

) ni(fg)—l ”’(tz) i i
Ni2 (f;cj) = Z l—[ (Aiz —Ki (tZ T Tis (IZ))

=0 s=I42
xCiAp) (1 -K; (t;! + Tigg (l;f)) Ci)
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xB; (tjf + T (tj{)) v (IZ + Ty (tjf)) (3.68)
) ()
ni3 (lZ) = Z l_[ (Aiz —K; (l;f + Tis (l;f)) CiAiZ)

=1 s=Il+1

xk; (1 + 7ia (1)) Dovi (1] + 7 (1)) (3.69)

b
and we define that [] f(j) = I if b < ain (3.67), (3.68) and (3.69). Since

j=a
% (tj{ |th) Ly (tj{ + Tg (t}f))
5 (D) Loy (4 + 50 (4)) - g = 0.1,y (1)

one has by (3.66), (3.67), (3.68) and (3.69) that

3
Pij (t;c]-i-l |t;cl+l) =) E {ﬂil (l;f) m (l;f)} (3.70)
=1
Direct computation yields
E {rm (tf{) m (t,f)} = (3.71)

Let
7, (tif) =E {v (fif + Tis (tk’)) pT (tfj + 1, (tk’))} l€Zi.qeZ (372

Then, direct computation gives

E {ns (1) 1) @}
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X (1 — K (ﬁf + gt (ﬁf)) Cj)T
| TT (4 =& (4 + 5 (1)) GiAn) (3.73)

s=q+2
Note that

; .
f+t#10 + 1,

Vie {1,...,ni(z;§)—1}, qe{l,...,nj(z;fj)—l} (3.74)
tg"'TiJZIZ"'Tj,q’ 1=0,¢g=0

Then, since v is a white noise, one has by (3.72) and (3.74) that

v (Y _ Osl#OsQ7éO
7, () = % 1,1=0,4g=0 (3.75)

Substituting (3.75) into (3.73) leads to

E {mz (tf{) "5 (t,f)} =D (3.76)
By following some similar derivations for (3.51), one obtains
E {rm (tZ) s (tk’)} =0 (3.77)

Then, (3.61) follows from (3.70), (3.71), (3.76), and (3.77). The proof is thus
completed.

By lifting the stochastic parts in the system matrix A;(#;x) into the noise, we
obtain a reformulated system model with a constant system matrix and a unit-
variance noise as shown in (3.56), and this reformulated system model helps derive
the type II estimator with a simpler structure as compared with the type I estimator.
It can be seen from Theorem 3.4 that in designing the type II estimators, it is
not necessary to know the parameters u;;, u;, and 7, as required in the type I
estimators. However, the disadvantage of the type II estimator is that the matrix
Bi(tix), i € Zy is an augmented one, which increases computation costs.

In the state equation (3.56), A;; is a constant matrix, while B;(f;;) is a time-
varying one depending on the state variance ©;(t;x), and B;(f;x) converges to a
constant value if ®;(z;;) is convergent. Then, it is well known from the standard
Kalman filtering that the local estimators designed in Theorem 3.4 may converge to
steady-state estimators. The convergence analysis for the type II fusion estimators
will be presented in the next subsection.
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3.5.2 Convergence of the Estimator

We have the following lemma about the convergence of the state variance &;(#; ),
i € 7.

Lemma 3.4 If there exists a matrix Q; > 0 and a scalar 0 < A; < 1 such that the
following inequality

2
2,2 0aAL0iAn — 110 < 0. i € Zy (3.78)
=1

holds, then the state variance ©;(t;;) converges exponentially fast to a steady-state
value, and the steady-state value denoted by ©; is independent of the initial value
Oi(tip).

Proof Consider the following dynamic system
Xi(tix+1) = Ai(tin)Xi(tin), i € Zo (3.79)

Let @v,-(t,;k) = Var(X;(#;x)), then by (3.9), @i(t,-,k) satisfies the following recursive
equation

2
Oitist1) = Z 0uAia®;(ti 1) A} (3.80)
I=1
Choose the following Lyapunov function for system (3.79)

Viltia) = X (1) QiXi(tiz) (3.81)

Then, one has by (3.9), (3.78), (3.79), and (3.81) that
E{Vi(ti1) [Xi(tin)} — AFViltin) = X} (1) 2% (ti) <0 (3.82)

Applying (3.82) recursively, yields

E(Vi(ti0)[%it:0)} < A7 OVi(1;0) (3.83)
Thus, if the inequality (3.78) holds, then it can be seen from (3.83) that the Lyapunov

function V;(#;x) converges to zero exponentially fast. Moreover, it follows from
(3.83) that

Amin () EL|I%: (7.0 1 *1%: (£i.0) }
< E{Vi(tip)|Xi(ti0)}
< 27T e (O i (1) 1 (3.84)
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which leads to
E{5(60) P Fi(10)} < €A77 %,10) |12

where € = Aax (Q:)/Amin(Q;). The above inequality implies that the system (3.79)
is mean square exponentially stable. Thus, the inequality (3.78) guarantees that
the state variance (:)i(ti,k) converges exponentially fast to zero. Furthermore, by
following some similar derivation procedures as in Proposition A.3 in [19], one has
that the convergence of (:)i (tix) guarantees the convergence of ®;(#;x), and the limit
of ®;(t;) is independent of the initial value ®;(#; o). The proof is thus completed.
Since B;(t; ) depends on ©;(#; ), the convergence of ©;(#;x) implies the conver-
gence of B;(t; ;). Denoted by B, the steady-state value of B;(t; ), then B, is given by
Bi = [l?l K1 K2] (385)
3 5172 S1/2 o ) )
where & = 0,/ “(Aj —Ap)®,;’". Since ©;(t;x) converges exponentially fast to its
steady-state value, B;(#;) also converges exponentially fast to B, i.e., there exist a
constant T* such that B;(r;;) = B; when ;; > T*. Then, it is well known from the
standard Kalman filtering that the recursive estimators designed by Lemma 3.3 may
converge to steady-state Kalman estimators, and the Kalman gain matrices K;(7; )
and the estimation error covariances P;;(f;x) may converge to steady-state values.
Moreover, since Theorem 3.2 indicates that the fused estimation error covariance
is always smaller or equal to each of the local estimation error covariances, the
convergence of local estimation error covariances implies that the fused estimation
error covariance is bounded. Then, the convergence of the type II fusion estimators
is presented in the following theorem.

Theorem 3.5 For the estimation system in sensor i with a estimation rate h;(t; ;)
satisfying (3.5), if

(1) there exists a matrix Q; > 0 and a scalar 0 < A; < 1 such that the following
linear matrix inequality

-\20; =
[ /;TQL 71; } <0,ieZ (3.86)
S T

holds, where Ey; = [0}*A% 0: 0?AL0/] and Ex; = diag{0Q;, 0:}.
(2) (A, C)) is observable and (A, B;) is controllable, i € Zy.

then, the local Kalman estimator given in Theorem 3.4 converges to a steady-state
linear time-invariant estimator, i.e.,

lim Ki(ti,k) = Ki*’ lim Pi,i(ti,k|ti,k) = P:i
k—00 k—00

and the fused estimation error covariance P,;(t; ;|t:x) is bounded.
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Proof By Schur complement lemma, the inequality (3.86) is equivalent to £2; < 0;
thus, one has by Lemma 3.3 that the condition (1) guarantees that B;(t; ;) converges
exponentially fast to B;. Moreover, the condition (2) is well known for the existence
of a steady-state estimator. More details about the condition (2) can be found in
the literature, such as [20]. On the other hand, it follows from Theorem 3.2 that
Poi(tinltin) < Pr(tirltin), I € Ni(tix). Therefore, the convergence of P;;(tix|tix),
i € Zyp implies that P,;(t; x|t; x) is bounded. The proof is thus completed.

Remark 3.1 In the design of the type II fusion estimators, after the local estimators
converge, one may apply the steady-state ones for the remaining time, and then it is
not necessary for each sensor to calculate the estimator gain and transmit the gain
and the estimation error covariance to the other sensors for fusion. In this way, one
may expect to save both computation and communication costs by using the steady-
state type II estimators. However, it should be noted that additional conditions as
given in (3.86) may require to be satisfied to guarantee the convergence of the type
II estimators, which restricts applications of the steady-state estimators.

Remark 3.2 By the results in Theorems 3.3 and 3.4, the fusion estimators of both
type I and type II are able to calculate the estimation error cross-covariances with a
nonuniform rate, and thus the fusion algorithms are adaptive to the variation of the
number of local estimates for fusion, that is, each sensor just picks up the available
local estimates to generate fused ones and keeps its own estimate as the fused one
if there is no local estimate from the other sensors. Therefore, the proposed fusion
algorithms are easy for implementation and are also applicable to situations where
the sensors are not time synchronized. Moreover, by simply setting P;; = 0,i # jin
Theorem 3.2, the estimators are also applicable to the case where the measurement
noises are uncorrelated.

Remark 3.3 For the general case where each estimator works at multiple rates, the
estimator design method can be similarly obtained by Theorems 3.1, 3.2, 3.3, 3.4
and 3.5 and Lemma 3.3.

3.6 Simulations

In this section, simulations of two examples are presented to demonstrate the
effectiveness of the proposed design method.

Example 3.1 Consider a maneuvering target tracking system where the target’s
position and velocity evolve according to the following state-space model [21]

Xp(Teg) | [ 1A ][ x(Tk) )
|:XZ(TI¢+1):| B [0 1:| |:XZ(T]¢):| + m[ h }w(Tk) (3.87)

where x,(Tx) and x,(Ty) are the position and velocity of the target at time Ty,
respectively, & is the sampling period, and w(Ty) is a zero-mean white noise with
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variance Q. Let x(Ty) = [x,(Tx) x, (TY]", then we take & = 0.5s, Q, = 1 and
x(To) = x(0) = [1 0.5]T in the simulation.

The target is monitored by three sensors, and suppose that only the position
of the target is measurable. There is no fusion center in the estimation system,
and each sensor acts also as an estimator. Each sensor measures the position of
the maneuvering target and generates local estimates of the position and velocity
by using the measurements from itself and then collects available local estimates
from itself and the other sensors to generate fused estimates of the position and
velocity of the target according to the designed fusion algorithms. Each sensor i,
i € {1,2,3} generates estimates with a nonuniform rate ;(t;x) = t;x+1 — t;x, Where
tix, k =0,1,2,... are instants when the measurements are collected and estimates
are generated. Then, the measurement equations of the three sensors at time scale
t;x are given by (3.3) with

C1=1[0.8 0], C; =[0.7 0], C3 =11 0]
Dy =0.6, D, = 0.7, Dy = 0.5

and the measurement noises are given by
Vi(Ty) = ciwo(Ty) + voi(Tw), i =1,2,3 (3.88)

where w(Ty) is a zero-mean white noise with variance Q,,, vo;(Tx) are zero-
mean white noises with variances Q,,,, vo;(Tx) are mutually uncorrelated and are
independent of wy(Ty), and wy(Tx) and vy;(Ty) are uncorrelated with the process
noise w(Ty). It is clear that the noises given by (3.88) are mutually correlated, and it
can be calculated that Q}fi = cizQa,0 + Qy,; and QZ[ = ¢i¢jQuy, I # J,0,j=1,2,3.In
the simulation, we take ¢; = 0.5i, Qu, = 1, Qy,, = 1.75, Oy, = 0.5, and Q,,; = 0.

Each sensor generates estimates with two rates, a fast one and a slow one,
specifically, suppose that

h](l‘lﬁk) € {]’l, Zh}, hz(l‘zﬁk) € {2]’1, 3]’1}, h3(t3,k) € {h, 3]’1} (3.89)

Then, ayg = 1, ajpp = 2, ar = 2, axy = 3, azy = 1, azy = 3.Fori = 1, 2, 3,
assume that A;(t; ;) takes ayh, I = 1,2 according to a white binary-valued Bernoulli
sequence p; (i) € {0, 1}. Specifically, h;(#; ) takes a;i h if p;(t;x) = 1 and takes a;h
if pi(tix) = 0. Then, h;(t;x) takes a;;h with probability p; = E{p;(#;x)} and takes
aph with probability 1 — p;, i = 1, 2, 3. In the simulation, we take p; = p» = p3 =
0.5.

In this example, we consider the type I fusion estimator. Suppose that the initial
local estimates are %;(#;0|ti0) = X;(0]0) = xo = [1.2 0.8]T. Then, by applying the
estimator design method in Theorems 3.1, 3.2 and 3.3, the true values and the fused
estimates of the target positions and velocities obtained at sensor 1 are depicted in
Fig.3.3. It can be seen that the sensor is able to track the maneuvering target well
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Fig. 3.4 Local estimation error covariances in sensors 1-3 and the fused estimation error
covariance in sensor 1

with a nonuniform estimation rate. Figures 3.4, 3.5 and 3.6 shows the individual
estimation performance (assessed by the trace of estimation error covariance) of the
three sensors, where the curves with circle depict the fused estimation performance,
while the other curves show the local estimation performance. At the first stage, each
sensor generates local estimates with a nonuniform rate by using measurements
from itself. At the second stage, each sensor keeps its own local estimates as
the fused ones if there is no local estimates from the other sensors. Otherwise, it
just collects the available local estimates to generate fused ones according to the
fusion rule given in Theorem 3.2. It can be seen from Figs.3.4, 3.5 and 3.6 that
the estimation performance in each sensor is improved by fusing local estimates,
showing the effectiveness of the designed estimators.

Example 3.2 Consider system (3.1) with

0.30.4 1
A= [0.2 0.3] B= [0.5} (3:50)
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Fig. 3.5 Local estimation error covariances in sensors 1-3 and the fused estimation error
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Fig. 3.6 Local estimation error covariances in sensors 1-3 and the fused estimation error
covariance in sensor 3

and w(Ty) is a zero-mean white noise with variance Q,,. In the simulation, we take
the sampling period 7 = 0.5s, the variance Q,, = 1, and the initial state x(Ty) =
x(0) = [0.9 0.6]".

Similar to the setup in Example 3.1, the process in (3.90) is monitored by three
sensors. Each sensor generates estimates with a nonuniform rate #;(t;;), i = 1,2, 3,
and it is assumed that /;(z; ;) take values according to (3.89). Then, the measurement
equations of the three sensors at time scale #;; are given by (3.3) with

C; =[0.60], C, =[0.80], C3 =[0.20], D; = 0.6, D, =0.7, D3 = 0.5

and the measurement noises are given by (3.88) with ¢; = 0.51, O, = 1, Oy, =
1.5, Qu,, = 0.2, and Qy,; = 0. Fori = 1,2,3, assume that A;(#;z) takes a;h,
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[ = 1,2 according to a white binary-valued Bernoulli sequence p;(f;x) € {0, 1}.
Let p; = E{pi(t;x)}, then h;(;;) takes a; h with probability p; and takes a;h with
probability 1 — p;. In the simulation, we take p; = p, = p3 = 0.5.

In this example, we consider the type II fusion estimator. By using the LMI
control toolbox, it is found that the linear matrix inequalities in (3.86) are feasible
for0.48 < A; < 1,0.28 < A, < 1,and 0.50 < A3 < 1. Thus, O;(t;x), i = 1,2,3
are convergent, and the steady-state values of &;(t; ) are

- - 1.3774 0.7650
) — — H) =
61 =6,=6; [0.7650 0.4362:|

Substituting O; into B, it can be verified that (Ap, Bi), i = 1,2, 3 are controllable.
On the other hand, it can be checked that (A5, C;), i = 1,2,3 are observable.
Therefore, one has by Theorem 3.5 that the three local Kalman estimators designed
by applying Lemma 3.3 are convergent, and the fusion estimation error covariances
obtained by applying Theorems 3.2 and 3.4 are bounded. Suppose that the initial
local estimates are X;(#;0t;0) = %:(0]0) = xo = [0.8 0.8]T. Then, the simulations
are shown in Figs. 3.7, 3.8 and 3.9, where the black curves show the local estimation
performance and the red curves depict the fused estimation performance. It can
be seen that the local estimation error covariances in the three sensors converge.
Moreover, the three local estimator gains also converge to steady-state values after
three steps of iterations, and the steady-state estimator gains are

K} =1[0.6002 0.3236]", K5 = [0.6133 0.3392]", K3 = [0.8683 0.4783]"

Therefore, we implement the steady-state estimators from the fourth step to save
computation and communication costs. It can be seen from Figs. 3.7, 3.8 and 3.9
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Fig. 3.7 Local estimation error covariances in sensors 1-3 and the fused estimation error
covariance in sensor 1
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Fig. 3.9 Local estimation error covariances in sensors 1-3 and the fused estimation error
covariance in sensor 3

that the estimators provides satisfactory performance. Moreover, the estimation
performance in each sensor is improved by fusing local estimates from the other
sensors, showing the effectiveness of the proposed fusion estimator.

3.7 Conclusions

A track-to-track fusion estimation algorithm has been presented in this chapter for
multisensor discrete-time stochastic systems with nonuniform estimation rates. A
fusion algorithm was designed for each sensor to fuse available local estimates
generated at different time scales, where the estimation rates at different sensors
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are allowed to be different from each other. The algorithm is applicable to both
cases where the sensor noises are mutually correlated and are uncorrelated and can
be further extended for fusion estimation where the sensors are not strictly time
synchronized. The proposed algorithm is useful for energy-efficient fusion in sensor
networks with power constraints, and the sensors may adjust their estimation rates
according to their power situations and make a satisfactory trade-off between energy
consumption and estimation performance.
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Chapter 4
H, Fusion Estimation for WSNs
with Nonuniform Sampling Rates

4.1 Introduction

In Chap. 3, Kalman fusion filters are designed for sensor networks with nonuniform
estimation rates. Though the celebrated Kalman filtering is commonly regarded
as one of the most popular and useful approaches to filtering problem, it usually
assumes that the system model is precise and that the external noises are white
Gaussian. Such assumptions may not hold in many practical applications. In this
case, one may resort to other useful filtering algorithms. The H filtering is among
these useful algorithms, it provides a guaranteed noise attenuation level and does
not have to know exact statistical information of external noises.

In this chapter, an Hy, fusion filter will be designed for sensor networks
with nonuniform sampling periods. Although there have been a lot of results on
sampled-data estimation (see, e.g., [1-7] and the references therein), few of them
are concerned with the nonuniform sampling except for [8—11]. In [8], finite-horizon
H filters were designed for continuous time-varying systems with nonuniform
sampling periods. In [9], Kalman filters were designed for a nonuniformly sampled
multi-rate system. In [10], an input-delay approach was used to design sampled-data
H filters with a time-varying sampling period which is assumed to take values
over a continuous interval. In many practical applications, the sampling period may
not necessarily take infinitely many values over a continuous interval but take only
a finite number of values. For example, in some target tracking systems, target
states are sampled with a small period to improve tracking performance when the
target is moving fast and are sampled with a large period to save power when the
target is moving slowly, and thus the sampling period takes only two values and
switches between them. In this scenario, the input-delay approach may no longer
be applicable. Recently, a stochastic sampling method was presented in [11] to
design sampled-data H filters with a time-varying sampling period taking only two
values according to a known probability distribution law. Note that the distributed
estimation is not considered in all the aforementioned results. Until very recently,
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the stochastic sampling method is used in [12] to study the distributed sampled-data
H filtering problem, and it was also assumed in [12] that the sampling period takes
only two values according to a known probability distribution law.

In this chapter, a continuous-time LTI system is considered, and the measure-
ments of the system are sampled by each sensor in the network with a time-varying
period taking a finite number of values. An innovation-like quantity is defined for
each filter based on the sampled measurement and the state of the filter. Then, at
each time step, each sensor in the network collects both innovation-like quantities
and filter states to generate estimates. Random packet losses, which are usually
unavoidable in sensor networks and may degrade estimation performance [13—16],
are further considered, and the filtering error system is described as a discrete-
time switched system with multiple stochastic parameters and a finite number
of subsystems. By using the average dwell time method for switched systems,
a sufficient condition is derived for the existence of the distributed sampled-data
H fusion filters. It is shown that the obtained condition depends on both the
values and variation rate of the sampling periods and the packet loss probabilities.
It is also shown that the design of the filters can be accomplished by solving a
convex optimization problem subject to linear matrix inequality constraints, and the
resulting filtering system is mean square exponentially stable, and all the filtering
errors in the sensor network satisfy an average H, noise attenuation level.

4.2 Problem Statement

Consider a continuous-time LTI system described by the following state-space

model:

x(t) = Apx(t) + Byw, () @.1)
2(t) = Lyx(?)

where x(f) € R™ is the system state, z(#) € I’ is the signal to be estimated, and
w,(?) is the disturbance input belonging to .#5[0, +-00). A sensor network consisting
of m sensors is deployed to collect observations of system (4.1) according to the
following observation models:

4.2
leZ, 2{1.2,....m} (4.2)

{ Yoy (&) = Coyx(tx) + Dpyvpay (1)
where y(;) () € N™ is the observation collected by sensor [ at discrete instants #,
k=0,1,2,..,and 0=ty <t <--- <t < ---, U[,(l)(tk) ef™ 1 =1,2,....m
are measurement noises belonging to 5[0, +00), A, By, Ly, Cpqy and D, are
constant matrices with appropriate dimensions. At time instants #, k = 0,1,2,...
each sensor collects measurements from its neighbors and gives an estimate of z(#;).
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Define the measurement sampling period as 4y 2 tr+1— I, then Ay is not necessarily
constant but may vary with k. Suppose that /; takes only a finite number of values.

Specifically, let by = n Ty, where ny € {i1, iz, ...}, 01 < iy < -+ < iy, Topisa
constant, and i;, j = 1,2, ..., n are positive integers. Then, h; takes n values and
5 A . .
hk €z = {llTo,...,lnT()} (43)

A switched system model of the discrete-time version of system (4.1), (4.2)
and (4.3) is first given as follows. Discretizing system (4.1) with period /; and
applying a zero-order hold, one obtains

X(trt1) = A(h)x(te) + B(hi)wy (1)

4.4
2(tx) = Lpx(t), k=0,1,2,... (@4)
where
I
A(hy) = e, B(h) = / eA”’der
0
Denote
To
Ao =e*T0, By = / er’drB,
0
then one has
Ahy) = etrmTo = (eMTo)™ = A 4.5)
ngTo
B(hy) =/ e*’drB,
0
m—1 L (i+1)Ty
— (X[ evar)s
p
i=0 YiTo
ng—1 To
= Z eAI’iT"/ e*’dr | B,
i=0 0
ng—1
= ZA630 (4.6)
i=0

It can be seen from (4.5) and (4.6) that A(%) and B(h;) explicitly depend on ny
which is varying over different sampling intervals and takes n distinct values. Thus,
the discrete-time version of the aperiodic sampled-data system (4.1), (4.2) and (4.3)
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is essentially a switched system with a finite number of subsystems. Moreover,
define a piecewise constant switching signal o (1) € Z, 2 {1,2,...,n} and let
Aoy = Ag™ and Bo(y = Y 2% AL By, then it follows from (4.5) and (4.6)
that the system (4.2), (4.3) and (4.4) can be rewritten as the following discrete-time
switched system:

X(tk1) = AgX(tk) + Bo@ywp (te)
Soy) -y Yo t) = Couyx(te) + Dpayvpry (t) 4.7)
Z(lk) = pr(lk), le Zy, k=0,1,2,...

Some modeling methods for sampled-data systems with nonuniform sampling
periods have been presented in the literature, such as the input-delay method [17]
and the uncertain system method [18, 19]. However, the aforementioned methods
are not applicable to model the considered filtering system since they assume
that the sampling period take infinitely many values over a continuous interval.
In this chapter, a switched system approach is proposed to model the sampled-data
filtering system with nonuniform sampling periods, and the filtering system is finally
described as a discrete-time switched system with a finite number of subsystems
as shown in (4.7). Each subsystem of (4.7) describes the sampled-data filtering
system (4.1), (4.2) and (4.3) with a constant sampling period taking a value in Z.
Moreover, Ay () and B, ;) depend critically on the sampling periods, which enables
us to establish relations between the sampling periods and filtering performance.

The sensor network deployed to monitor the plant is considered to be a
peer-to-peer network, there is no estimation center in the network, and every sensor
in the network acts also as an estimator. The measurements are transmitted among
the sensors in an ad hoc manner via unreliable wireless communication channels
and may be subject to random packet losses. We say that two sensors are connected
if they can communicate directly with each other, i.e., they can communicate with
each other within one hop. Notice that a sensor is always connected to itself. The
set of sensors connected to a certain sensor r is called the neighborhood of sensor
r and is denoted by N, (notice that r € N,). A structure of such a distributed
estimation system for sensor networks has been shown in Fig.2.1. Denote by L;),
i,j € N, the link between sensor i and sensor j in a neighborhood. Then, the
random packet loss in the link L; is described by a binary-valued Bernoulli random
process o (%) € {0, 1}, where o; (%) = 1 indicates that a packet transmitted
from sensor i successfully arrives at sensor j at instant #, while o (%) = 0
implies that a packet is lost during the transmission from sensor i to sensor j.
O = E{o ;) (%)} = Prob{a(t) = 1} is called the packet arriving probability
(PAP), while 1 — 60 21— E{oj (1)} = Prob{o; () = 0} is called the packet
loss probability (PLP). Since a packet transmitted from sensor i to sensor j and
from sensor j to sensor i goes through the same link L), it is natural to see that
o) () = agi () and ;) = 6. Besides, since the measurement y() () is always
available for sensor [ itself, one has «;(#x) = 1 and 6; = 1. It is assumed that
o (1), I € N, r € Z, are mutually independent.
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At each time step, every sensor collects information from its neighbors and runs
an Hy filtering algorithm to generate an estimate of z(#;). Consider the following
switching-mode-dependent linear filter for sensor 7, r € Z,.

Xy (te1) = FiroXe) ()
+ Gmyo )€ (1) + ugr) (t)

Nurn@) = Y FenounX)y (%)
Jow) IEN,/{r} B 4.8)

+ Z G(rl)o(tk)s?z) (tk)
leN;/ir}

2y () = Lino(uoXr(te)

where X, (%) is the state of the filter f(;),(;) and is also an estimate of the plant’s state
x(t), Z(» (tx) s the estimate of z(#) in sensor r, )Acz’l) (tr) = e (t)xa(t), &0y (1) =

oy ()2 (), I € Ni/{rh, e (t) 2 yay(t) — Coopiay(#) is an innovation-like
quantity in sensor [, [ € N,, and 5“‘()1) (%) and &0 () are, respectively, the filter state
and the innovation-like quantity received by sensor r from sensor I, [ € N,/{r},
Funowys Gioy and Liye(y), | € N,, r e Z, are the switching-mode-dependent
filter gain matrices to be designed. At each time step, the sensor r collects both
the filter states and innovation-like quantities from its neighbors to generate the
estimate Z(») (), and the quantity u,(f) represents the information received from
its neighbors.

It is implicitly assumed in (4.8) that all the sensors in the network are time
synchronized and have the same sampling period A, V kK = 0,1,2,.... Besides,
the zero input mechanism [14] is applied in (4.8), i.e., )?z’l)(tk) and 8‘()1)(l‘k) are,
respectively, set to zero when X () and e (#) are lost during the transmissions.
A similar structure of the distributed filter in (4.8) has been used in [20] to
investigate distributed Ho-consensus filtering for sensor networks, and the structure
is actually motivated by the standard Kalman filter which uses innovations and
filtered estimates at past time steps to generate filtered estimates at current time
step.

A filtering error system model is established as follows based on (4.7) and (4.8).
Substituting (4.2) into (4.8) and taking into account the facts o (%) = 1 and
0+ = 1, one obtains

&y (ter) = Y () Finow) — Gunow Con)
IEN,

<& (t) + D () Gno o Coux(t)
IEN,

+ Z (1) (1) Gy (1) Pp 1y Vp 1y (2) (4.9)
IEN,
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For j € Z,, denote

)Ac(tk) = col {)%(1) (tk)}lEZy
v(tx) = col{vp (t) }iez,
xm(tk) = COl{x(tk)}m

T [T
Fo ) = col {F (rl)U(rk)} ez,

T [T
Gro(w) = col {G(rl)a(tk)} ez,

Fo(y) = cO{F (o) rez,

Gon) = cOl{G o) }rez, (4.10)

Cij = diagl8(i— )Gy - - 8( = m) Com}

D) = diag{s(j — 1)Dy(1y, . .., 8(j — m)Dpm}

I = diag{6(j — Dly.....8(j —m)L,}

Ay () = diag{ay) () s - - - ) (1) 1}
where V I ¢ N, Fopo) = 0 and Gipoy = 0, and § € {0, 1} is the Kronecker
delta function. Then, one obtains from (4.9) and (4.10) that

(ter1) = Y A1) Foo o) — Got C)3(0)
j=1

+ Z A ) (1) Go (1) Cijym (1)

Jj=1

+ Z A (1) Go (1) Dy v (tr.) (4.11)
j=1

Moreover, denote
Ama(tk) = diag{Aa(tk) }m

Bma(tk) = diag{Ba(tk) }m

Winp (tk) = COI{W[) (tk) }m

then one obtains from the state equation in (4.7) that

X (1) = Ao i) Xm (tx) + Buno (1) Winp (1) (4.12)
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Define the estimation errors as

A ~
e (1) £ 2(t) — 20 (1), r € Z,

and denote

e(ty) = coliew)(t)}rez,

£ = [¥N(n) 3T (w)]'

v(t) = [wh, () v (@w)]
L, = diag{L,}

La(tk) = diag{L(r)a(tk)}rEZy

Then, one obtains the following filtering error system from (4.7), (4.8), (4.11), and
4.12).

- (4.13)

ot §$(Ik+1) = Ag)E () + Boyv (1)
So(t) -
P et = CoupEt). k=0,1,2,...

where

A= ) 0
70T Y A 80 Gow Co 11

X =Y A¢t)Fouyllj — Gowy C)

Jj=1

By = diag { Buow)» Y, A6 (#)Go( D

j=1
Cd(tk) = [Z'P - U(fk)]

In the considered filtering system, each sensor collects both measurements and
estimates from its neighbors to generate its own estimates. Since the measurements
and estimates may be lost during the transmission, several stochastic variables used
to describe the random packet loss processes are incorporated into the proposed
filtering error system model (4.13), which adds new difficulties to the design of
the filters. In what follows, an average dwell time approach will be proposed
to design the distributed H, filters. Suppose that the average activation rate of
the subsystem J;, i € Z, over the interval [y, #x) is p;. Then, the subsystem J;
appears 7;(tx) = p;k times over the interval [fo, 7), and one has Y _, p; = 1. Let
L, - - - Lo, s > 1 denote the switching instants of o (7) over the interval [z, i),
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where t,») € {t1,.... i1}, = 1,2,...,s,and ty < fay < -+- < hiy < fx. Denote
ti»J € {1,2,..., s} the instant that is immediately before 7). Then, the following
useful definitions are first given before proceeding further.

Definition 4.1 ([21]) For k > 1, let N, (%, ), denote the number of switchings of
the switching signal o (¢) over the interval [to, ;). If N, (t9, ) < No + k/z, holds
for Ny > 0 and 7, > 0, then 17, is called the average dwell time and Ny the chatter
bound.

The idea of the average dwell time in Definition 4.1 is that there may exist
consecutive switchings separated by less than r, sampling periods, but the average
time interval between consecutive switchings is not less than t, sampling periods.
For simplicity, but without loss of generality, Ny is set to 0 in the subsequent
development, and one has in this case that 7, > 1 since N, (#, #x) < k. The switching
signal o(#;) is determined by the variation of the sampling periods. Specifically,
S (4 switches from one subsystem to another when the sampling period 7 varies
from one value to another. Thus, it can be seen from the definition of 7, that the
parameter % shows the variation rate of the sampling period, and this is one of the
main motivations of using the average dwell time method for the filtering analysis
and design, which will help establish relations between filtering performance and
the variation rate of the sampling period.

Definition 4.2 For any given initial conditions ¢(f) 2 (&(t0), oy (10), 1 € N,
r € Zy), the system I, with v(#;) = 0 is mean square exponentially stable if its
solutions satisfy

E {|lE@)[*le(t0)} < cA*[E@0)|12,V k>0

where ¢ > 0 is a constant and A < 1 is the decay rate.

Definition 4.3 The filtering errors ey (#), r = 1,2,...,m are said to satisfy a
prescribed average H, noise attenuation level y if, under zero initial condition, the
inequality

m m

2 2 2
> llewlE, < 72D 19013
r=1 r=1

holds for all nonzero w,(#) € L[0, +00) and v,y (%) € [0, +00), where

lew e, = E

00 1/2
> ||e<r>(rk)||2§

k=0

T
S0 (1) = [pr(tk) vg(,)(tk)] . rez
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The H filtering is concerned with the design of filters which ensure a bound
on the £,-induced gain from noises to filtering errors, and Definition 4.3 gives
a definition on the filtering performance of the H, filter to be designed in the
following sections.

The distributed sampled-data H fusion filtering problem addressed in this paper
is expressed as follows: Consider the distributed sampled-data filtering problem, and
given a system in (4.1), (4.2) and (4.3), determine the filter gain matrices F(,;0(y),
Giyo(n)> and Loy, | € N, r € Z, of the filter in (4.8) such that the filtering
error system (4.13) with nonuniform sampling periods is mean square exponentially
stable satisfies a prescribed average Hoo noise attenuation level for all admissible
random packet losses.

4.3 H, Performance Analysis

Let

Oy £ E{A;) (%)} = diag{0upl. ... . Owmpln}. j € Z,

Aoy EE{Aop} = | o o 0
(%) { (tk)} |:Zj=1 @(/‘)Ga(tk)c(/) X2

X2 = Z O (Foun 1) — Gowy C)
=1

m
Bowy 2 E{Boy} = diag { Buowy. Y, 0)Gowy Dy
j=1

Then, the following theorem gives a sufficient condition for the filtering error system
So (1) to be mean square exponentially stable and all the filtering errors satisfying a
prescribed average H, noise attenuation level.

Theorem 4.1 Consider the filtering error system (4.13). For given positive scalars
y, > 1,4 < 1,and A < 1, if there exist matrices P; > 0,i = 1,2,...,n such
that T, > T 21 w/InA~Y A > A, and the following matrix inequalities

‘Qi é A;FPZAZ + dlag{ClTé, — Al‘Pi, —)/21} <0 (4 14)
P, < uPs,Vi,s €Z, '

hold, then the filtering error system (4.13) is mean square exponentially stable with
decay rate ¢ = ‘%) and all the filtering errors satisfy an average Hoo noise
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attenuation level y = y %, where A = max A, A =minA;, and
- €27y - i€Zy

C BT OBl Ocam B,

iT 5 T 5 T
AT = | A OcvAqy; = OcmAiuy
i *

a0 0
"L Gicy Filly — GiCy
B(j),' = diag {0, G,'DU)}
P; = diag{P;}t1, O = diagf{0, O}

@c(j) = diag { ﬂe(]j)(l — 9(1/))],1, ceesn/ Q(mj)(l — G(mj))ln} s j S Zy

Proof Denote A_(,-) (t) = diag{0, A;)(%)} and @(,-) = diag{0, ©}, V j € Z,, then
the filtering error system in (4.13) can be rewritten as

g(tk+l) = AU(Tk)E(tk)_—i_ Bo(rk)v(_tk)
+ X051 (A6 (1) = 0) Agook (4)

- (4.15)
X5 (Ao ) = O¢) Bhow v (1)
E(tk) = Ca(tk)g(tk)’ k=0, 1, 2, .
Since o (), [ € Ny, re Z, are mutually independent, one has
O (A Gy — | O =i
E{(4¢)(®) = 0) (Ap(t) — Op)} = (4.16)

0. i#j

Let

Y1) £ lle@]” =y v,
o(1) 2 E@). au(t). e Ny reZ), V=012, ...
and choose the Lyapunov function Vo, (#) = ST(tk)Pa(tk)E(tk) for system (4.15).
Then, V i € Z;, one has by (4.14), (4.15) and (4.16) and the fact E{(A;(#) —
O))} = 0 that
E{Vi(ter-Dle ()}
= E{&" (i) Pi (i) l0(t0) ) — 1€ (1) Pif (1)
+7 (1) + AiVi(te) = T (1)
= 0" () Q2imn(1) + 4iVi(t) — T (1)
< AiVite) = T (1) (4.17)
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where n(tx) = [ET(t) vT(#%)]". Setting #x = f;» and #x = f,»; in the inequality in
(4.17), one obtains, respectively,

E { Vo(r (x)) (tk(”+l)|(/’(tk(.v))}
= Ao V() ) = T o) (4.18)

E V (tk(*)+2)|(p(tk(v)+1)}

< Aa(tk(q)) o (1 ))(tk(5)+l) =T (to41) (4.19)

Taking expectation E{-|¢(#)} on both sides of the inequality in (4.19) and taking
into account (4.18) yield

E { VU (fk(s)) (tk(x) +2) |(p(tk(s) )} < Ai(tk(s)) VU ([k(s)) (lk(s))

_Aa(tk(s))r(tk(“) —E{T (01 )le(to)} (4.20)

Applying the procedures in (4.18), (4.19) and (4.20) recursively for =1tyy,
Ly 41 - - - » Ik, ONE Obtains

E{Vo 0 (1)@ (1)}

_E { vg(,k(s))<rk>|ga<tk®)}

k—k©®
<) Vo) 1)

o\l

- Z x"(l‘f)E{T(rnko(rk(y))} @21

j=k©)

Similarly, one has fora = 1,2,...,s that
E % ( )(lk<a>)|§0(fk(a 1))}
k@)

=E % Vo(rk(a1))(tk(“>)|(ﬂ(tk(a1))}

(@) _p(a—1)
< Ak k'

”(%—1)) "(’k(a—l)) (fa=)

k@9 —1
(a)_1_
—- 3 AT EY @)e ()} (4.22)
j= kla—1) (k(a 1))
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where 0 = fp. It follows from the inequality P; < pP; that
Vv L) < puV tha =1,2,. 4.23
U(,k(a))(ku)_,u (k(a)(k()) a= (4.23)
Thus, one has by (4.21) and (4.23) that

E {Vo(o (1) |9(t0) } < pAk (k;(;) Vi) )

- Z BT WG} @29

=k)

Taking expectation E{-|¢(fys-1))} on both sides of the inequality in (4.24) and
considering (4.22) yield

E{Vo @ (1)@ (te—n)}

—k©) Ak(s)_k(sfl)

k
<H/\U(tkm) U(rk(rl)) (T(tk(sil))(tk(xfl))

_ Z ,xk(l(—)/)E{T(tj)kp(tk(x )}

j=k©)

k-1
(s () —1—
—p AR KN AR T R () |t} (4.25)

a(tk(S))j=k(s—1> 7(ten)

Applying (4.25) recursively, one obtains

(s)
E{V‘T(tk)(tk)lfp(to)} < ’uNa(to 1) ) k—k

o [k(s)

s) _p(s—1) (1
X/\k((’ (k ) A Vo (t0) = W(T) (4.26)
K=
where

ll/(,r) _ HNU(TO T I)Ak k) nkk(1+l) k0
o tk(Y) k(/))

kD1
KD —1—j _1)—
x Z Aoy EAT (@)l (to) + pe ot
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s—1 K21
S Q=K PR /\k(”—l—j
oo L) 22 Potin)
k—1 )
XET @I} o4 1 ) A BT Glp(0)
=k kS

Now, we consider the exponential stability of the filtering error system (4.13) for
v(#) = 0. One has by (4.26) and Definition 4.1 that

E{V;() (1)@ (1)}
No (t0.11) § k=) 9 kO—k=D Ak(”

o\ 1) (T(tk(x_l)) U(to)VU(fo)(to)
< 102V 4 (10)
=\k
< (1™ R) Vo (t0)
= &V, (1) (t0) (4.27)

<p

Let 8 = nel%n Amin(P;) and B, = m%x Amax (P;), then it follows from (4.27) that
1€Ly €25

BiE {IIE 10 1Ple(t0)} < E{Vou(t0)l@(to)} < € Vouy (o) < B2 IE (10) I

which yields

E{[lE10) Pl (o)} < \/%Skllé(to)llz

Moreover, 7, > 7 and A > A guarantee that ¢ < 1. Thus, it is concluded from
Definition 4.2 that the filtering error system (4.13) with v(z) = 0 is mean square
exponentially stable with decay rate ¢.

To prove the H, noise attenuation performance, we consider v(#;) # 0. Replace
E{Y (t)|¢(t)} in ¥(T) by E{[le(1)[|*|¢(t0)} and ||v(z) | and denote the resulting
terms by ¥ (e) and ¥ (v), respectively, then ¥(7") can be written as ¥ (1) = ¥(e) —
y>¥(v). Then, under zero initial condition, one has by (4.26) that ¥(T") < 0, and
thus

k—1
> oD YR fle(1) 1P lg(to)} < W (e)
j=0
k—1 ~
<YW () <y? Y phe e T (1)) (4.28)

=0
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k—1—j
It follows from Ny (#;, t—1) < o and 7, > Inp/In A" that Ny (4, t5—1) <
In A~ Gk=1-) ‘
YT which together with the facts u > 1 and N, (¢, tx—1) > 0 yield
nu
1< MNn(fj,tk—l) < A—(k—l—j) (4.29)

Thus, one has by (4.28) and (4.29) that

k—1 k=1
ATl PleG)} < v YA/ HIv@IP @30
j=0 j=0

Summing both sides of the inequality in (4.30) from k = 1 to +o00 and changing
the order of the summation lead to

+o00
A=D7"Y E{le@)Ple(t)}

J=0

+o0 k

ZZ MY {le() 2o (t0) )
j=0

400 k—1

<Y @) T T v 1P
k=1 j=0
(1—2A/A) Z @)1 (4.31)

which implies that

m

2 2
> llewllz, = llellz,
r=1

1-2
1-1/1

1—
ey (nnwpuz B ||v,,<,>||2)

r=1

2 2
<Y v

= 1_WZ||19@||2

Therefore, it can be concluded from Definition 4.3 that the m filtering errors satisfy
1-1
1—A/A

an average Ho, noise attenuation level y = y

The proof is thus

completed.
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4.4 H Filter Design

An existence condition for the distributed H, filters of form (4.8) is given in the
following theorem based on Theorem 4.1.

Theorem 4.2 For given positive scalars y, i > 1, A; < 1, and A < 1, if there
exist matrices P;; > 0, Py, Pz > 0, R;, Si, Qij, F(rl)iy é(,[)i, L(r)i; i = 1, 2, R (S
j=12,....mleN,r=12,... msuchthatt, > t}, A > /i, and the following
linear matrix inequalities (LMIs)

. D, D. D,
5 A diag {AiPi,yZI} |:¢b &, 0 :| >0

* diag{&y;, &;, I}
P, < uPs,Vi,seZ,

(4.32)

hold, then the filters in (4.8) guarantee that the filtering error system (4.13) is mean
square exponentially stable with decay rate ¢ and all the filtering errors satisfy an
average Hs, noise attenuation level y, and the filter gain matrices are given by
F; = Qi_TF,-, G, = Ql._TC_;,- and L;, where

T — [)(3 )(4}
“ x5 X6
BrTniRi BrTniSi ]

@T = m = m ~
b |:Zj=l D(Tj)GiT@(/) Zj:l D(Tj)GiT@(/)

T AT T AT )
o [C(/)Gi O C)Gi @"(’)], j=12,.

N = ..,m
<0 X7 X8

0 0
2= | pr ¢ : i=12,...
v [D(Ti)GiT@c(n D(T,-)G,T@cq)]’ =S
T _ T T T T T
of = [@], -+ #L,)]. oF = [#k, - ok
@eT = [i‘p _ L[]T

|:Ri+R,-T—P51 Q,-T+Si—Pi2:|
0 =

6]

* Qi + Q;T - Pi3
~ . ~ P P
&; = diag{Eoi}pm, Pi = [ : Pij

O; = diag{Qi1, ..., Qim}
F(pyi = col” {I_*"(Trl)i} , where F(,;; =0, VI¢ N,

lez,
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C_;(r)i = COlT {C_;;I;l)l} s C_;(rl)i = 0, \2) ¢ .A/r
I€Zy

F; = col {F(V)i}rezy , G; = col {G(r)i}rezy
Li =

diag{L(r)i}rGZy

X =AnRi+ ) C(,GlO,
=1

xa=AuSi+ Y CLGIOg,

J=1

15 =Y MGF 6 =Y C;,Gl oy
j=1 j=1

X6 =Y MGF 0y - C(,Gloy,
j=1 j=1

X7 = TG F O — €, G O
s = I{F} 0. — C(,G] O

Proof By Theorem 4.1 in [22], §2; < O is equivalent to that there exists a matrix V;
such that the matrix inequality

5, A diag {l,’P,’ - C;FC,-, )/21} A;.FVI- =0
o * Vi+VI— P

holds. Let V; be a block-diagonal matrix: V; = diag{Vy;}+1, where Vo; = [S‘ Z’ i|
Denote F; = QTF; and G; = QFG;. Then, one can directly obtain the LMIs
2; > 0 in (4.32) from the inequality 2:>0 by following some routine matrix
manipulations, Schur complement lemma, and the relations &;Q; = Q;0; and
Oc)Qi = QiBc). The rest of the proof is similar to that for Theorem 4.1 and is
omitted. The proof is thus completed.

In Theorem 4.2, the existence condition for the filters is given in terms of
LMIs which is convex in the scalar y2. Therefore, one may solve the following
optimization problem to obtain the filter gain matrices that minimize the H, noise
attenuation level for given A; and A, i = 1,2,...,n.

mink s.t. (4.32) with k = yz (4.33)
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If «* is the optimal value of the objective function in the above minimization
problem, then the designed filters guarantee that all the filtering errors satisfy an
K*(1=2)
1—A/A

The condition 7, > 7 in Theorems 4.1 and 4.2 indicates that the variation rate
of the sampling periods should be small enough to guarantee an existence of the Hyo
filters. Thus, Theorems 4.1 and 4.2 implicitly establish a relationship between the
variation rate of the sampling period and the filtering performance. Since 7, > 1,
uA < 1 guarantees that t, > t. Therefore, in case that 7, is not known exactly in
practice, one may use the condition A < 1 instead of 7, > t in Theorems 4.1

average H, noise attenuation level y* =

and 4.2. Then, the exponential decay rate ¢ is bounded by ¢ < &* 2 wA.

Since switching-mode-dependent filters are designed, it is implicitly assumed
that the sampling periods are known a priori by each sensor in the network, and
each of the filters switches its gains according to the variation of the sampling
periods. In case that the sampling periods are not known a priori, one may design
switching-mode-independent filters by following the similar procedures as given in
Theorems 4.1 and 4.2.

Based on Theorem 4.2, the design of the distributed H, filters is summarized in
the following algorithm.

Algorithm 4.1

Step 1:  Solve the optimization problem (4.33) off-line to get the filter gain
matrices F;, G;and L;, i = 1,2, ..., n.

Step 2: At each sampling instant #;, each sensor r broadcasts its measurement
v,(#) and local estimate X, (#) to its neighbors and meanwhile collects measure-
ments y;(#) and local estimates X;(¢;), [ € N, /{r} from its neighbors.

Step 3:  Each sensor calculates the estimate X,(#+1) according to (4.8).

4.5 Simulations

Consider a continuous stirred tank reactor (CSTR) shown schematically in Fig. 4.1,
where A and B are the educt and the desired product, respectively, Cyg is the low
concentration of educt A, Cp is the concentration of the product B, and ¥ denotes
the reactor temperature. The balance equations of the CSTR are given by [23]

dCy F

A (Cho— Ca) — ki C 434
ar V( a0 — Ca) — ki1 Cy (4.34)
dCp F

— = ——C kiCy — krC 4.35
m” v B+ k1Cq — krCp (4.35)
do F k,Ar

Y N 9 — 0

” V( 0 )+,0CPV( =)

k1Cy AHQB + szBAch
pCp

(4.36)
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Fig. 4.1 Continuous stirred Reactor Feed A, CAO Reactor
tank reactor T emperature
— Jacket
Temperature
sensor 2 O
O sensor 1
Reactor Product B, C,
Table 4.1 Model parameters kO = 1.2467 x 1012 hfl EAI 2/R = 9867.5K
d i ti int -
anc main operating porn AHP = 4.2KI/mol AHEC = —11 Kl/mol
p = 0.9342kg/l Cp = 3.01kl/kgK
Ag = 0.215m? vV =10.01
¥y = 403.15K k,, = 4032kJ/h m?K
Cyps = 1.235mol/l Cpo = 5.1 mol/l
Cps = 0.9mol/l ¥y = 407.29K
F/V = 03138

where F is the normalized process stream inflow, V is the volume flow, p is the
density, Cp is the heat capacity, AHg is the reaction enthalpy, k; and k, are the
rate coefficients which depend exponentially on the reactor temperature. The model
parameters and main operating point of the CSTR (4.34), (4.35) and (4.36) are given
in Table 4.1.

Based on (4.34), (4.35) and (4.36), the linearized state-space model of the CSTR
near the operating point is given by

x(1) = Apx(t) + Byw, () (4.37)
where x(1) = [x1(f) x2(f) x3(6)]7, x1(¢), and x, () are, respectively, the concentration

of the educt A and the product B at time instant #, x3(¢) is the temperature of the
reactor at instant 7, w,(7) is the noise belonging to %[0, +00), B, = [0 1 0]T, and
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A is the linearized system matrix given by

B Ep
F
“hok 0 ZZSkCa
F s
A, = ki v ky a3
ki AHAR  ky AHEC
- - a
L pCp pCp 33
[ —0.9388 0 0.0459
= 0.625 —0.9388 —0.0125
| —0.9335 2.4449 —0.8894

where
Ex Ep»
= ———k|Cpy + —=krChy
as Rl?f 1CA; +Rl9§ 2(B;
F kyAr  ExkiCasAHRE + Eqoks Cp AHEC
asy = —— —
BTV pcpv RO2pCp

In practice, it may be necessary for one to know the concentration of the
desired product B for other use, but the direct measure of the concentration by
using traditional chemical approaches is usually expensive. An alternative yet
non-expensive approach is to use signal processing approaches to estimate the
concentration. In this example, only the measurements of the reactor temperature
¥ are used to estimate the concentration of the desired product B. To enhance the
reliability of the estimation system against sensor failures and improve estimation
performance, two sensors are deployed to monitor the reactor temperature, and one
has Cy1) = Cp2) = [0 0 1], Dp1y = Dp2y = 1, L, = [0 1 0]. The sensors measure
the reactor temperature with a time-varying sampling period A € {Ty, 2T}, where
To = 1 min. At each sampling instant, each sensor broadcasts its measurement
and local estimate to the other sensors and meanwhile collects measurements and
local estimates from the other sensors to generate its fused estimate. Random packet
losses may happen during the data transmission, and the PAPs are 6, = 6,; = 0.9.
Discretizing system (4.37) with period Ty, one obtains

0.3872 0.0222 0.01823
Ay = 0.2444 0.3897 0.0007102
L —0.06849 0.9711 0.4008

0.009496
Bo=| 0.6474
| 0.6779

By applying the modeling method in Sect. 4.2, the filtering system can be described
as a stochastic switched system with two subsystems S| and S, since the sampling
period Ay takes two values. Specifically, when A takes Ty and 2Ty, the filtering
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(a) noises
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Fig. 4.2 The noises

system resides in the subsystem S; and S5, respectively. Moreover, one has A; =
A, B;=Bj, i=1,2.

Choose A; = 0.85, 1, = 0.90, and & = 1.05 such that the LMIs in (4.32) have a
feasible solution. Suppose that 7, = 1.5. Then, choose A = 0.94 such that both the
conditions 7, > 7} = 0.7885and A > A = 0.90 are satisfied. Then, by solving the
minimization problem in (4.33), one obtains an optimal value x* = 0.9617 and all
the corresponding filter gain matrices. Thus, the filtering errors in the two sensors
K*(1-2)

1—2A/A

In the simulation, the noises are chosen as those shown in Fig.4.2. The
simulations are shown in Figs. 4.3 and 4.4, where Fig. 4.3 shows the concentration
and its estimates in the two sensors, while Fig. 4.4 depicts the estimation errors. It
can be seen from the simulations that the designed filters perform well. Specifically,
we obtain from the results in Figs. 4.2 and 4.4 that

2
= Lilewls s . y* = 18412

2
=1 1002

Moreover, all the filtering errors finally converge to zero after the noises are elim-
inated. The exponential stability of the filtering error system is shown in Fig.4.5,

satisfy an average Ho, noise attenuation level y* = = 1.8412.
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Fig. 4.3 The concentration and its estimates
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Fig. 4.4 Estimation errors
. . B2
where the curve without star shows the trajectory of g(t;) = ﬂ—eng )|I> =
1

6.0328 x 0.9298* and the curve with stars shows the trajectory of ||£(#)||%. It can
be seen from Fig. 4.5 that ||£(5)||> < g(#), then, according to Definition 4.2, the
filtering error system is exponentially stable with decay rate 0.9298. The simulations
demonstrate the effectiveness of the designed H, filters.
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Fig. 4.5 ||£(t)|*> and
¢(tr) = 6.0328 x 0.9298

state decay trajectory

920

time / min

Table 4.2 Comparison of the —%

. . 14 4
H o filters with uniform 7 with . oi by Fie. 43 | 18412 107571
sampling period and n With fy;given by Tig. 4. : :
nonuniform ones F, with by = 1.5T, 1.7155 | 0.6810

The performance of the Hy, filters with nonuniform sampling periods and
uniform one are compared in Table 4.2, where F,, and F, represents, respectively,
the filters with nonuniform sampling periods and those with uniform one, and y*
and y represents, respectively, the calculated value and the simulation result of the
average H, noise attenuation level. It can be seen from Table 4.2 that both F,, and
F, consume the same amount of energy, and F, performs slightly better than F,.
However, the main advantage of the proposed F,, lies in its flexibility of adjusting
the sampling periods according to its energy status and being able to make a trade-
off between the energy consumption and estimation performance.

4.6 Conclusions

Distributed sampled-data H, filters have been developed in this chapter for sensor
networks with nonuniform sampling periods and random packet losses. A discrete-
time switched system with multiple stochastic parameters has been proposed to
model the filtering system. It has been shown that the existence condition of the
filters depends on both the lengths and variation rate of the sampling periods and the
packet loss probabilities. The designed filters guarantee that all the filtering errors
in the sensor network satisfy an average Ho, noise attenuation level.
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Chapter 5
Fusion Estimation for WSNs Using
Dimension-Reduction Method

5.1 Introduction

In Chaps.2, 3, and 4, energy-efficient fusion estimation methods are presented
by slowing down the transmission rates of measurements/local estimates and the
estimation rate. In this chapter, a dimension-reduction method will be introduced
for energy-efficient fusion estimation. To satisfy finite communication bandwidth
and save energies consumed in communication, different dimensionality reduction
approaches have been proposed in [1-7] to solve the fusion estimation problem,
and the main idea of these approaches is that all the components of a vector signal
are weighted and added to realize the objective of dimension reduction. Note that
one should resort to the feedback information from a fusion center to obtain the
compression matrices [3]. Different from the existing methods, this chapter presents
the idea of directly choosing a part of components of local estimates to reduce the
dimension of the local estimates to be transmitted to a fusion center. Specifically,
when a local estimate is available at each sensor, only a part of the elements of
the local estimate is selected and transmitted to the fusion center to save energy
and meet the network bandwidth constraint. After the fusion center receives the
local estimate with reduced dimension, a compensation strategy is proposed to
reconstruct the local estimate and design the local unbiased estimator and improve
the fusion estimation precision. Based on the optimal fusion estimation algorithm
weighted by matrices, a recursive distributed fusion estimator is designed in the
linear minimum variance sense. The gain matrix of the designed fusion estimator
can be computed off-line as it does not need to know whether each component is
sent or not at a particular time. Since the performance of the fusion estimator is
dependent on the local estimate components selecting probabilities, some sufficient
conditions, which are related to the selecting probabilities and system parameters,
are derived such that the mean square error (MSE) of the fusion estimator is
bounded. For linear time-invariant systems, some sufficient conditions are presented
for the convergence of the fusion estimators.
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5.2 Problem Statement

5.2.1 System Models

Consider the following linear discrete-time stochastic system

x(t + 1) = A()x(t) + T'(H)w(r) (5.1)
yit) = Gi()x(1) +vi(1), 1 =i <L (5.2)

where x(f) € N" represents the state of the process and y;(f) € 0¥ is the measured
output from sensor i. A(t) € R™", I'(r) € R, and C;(r) € R¥*" are time-
varying matrices. w(f) € R" and v;(f) € N? are uncorrelated zero-mean Gaussian
white noises satisfying

E {0 () v O " (1) o] ()]} = b1 diag{0u (). 60,0} (53)

where §,, = 0if ¢t # 1, and §,, = 1 otherwise. A group of sensors are deployed
to monitor the outputs of the process. Each sensor acts also as an estimator and
has enough processing capabilities to generate local state estimates of x(r). Based
on the statistical properties (5.3) and the measurements {y;(1), y:(2),...,y:(¢)}, the
local optimal (in the linear minimum variance sense) estimate X;(f) is recursively
computed by the standard Kalman filter [8]:

Xi(t) = [I, = Ki() Ci()]A(t — Dxi(t — 1) + Ki(0)yi(2)

Ki() = Py (0 O[COP; (T (1) + 0 0] oH
and the optimal estimation error covariance matrix P;(t) is defined by
Pi(t) = E {[x(t) — %(0][x(1) — %:(0)]"}
and is computed by
Pii(t) = [In - K,(I)C,([)]P;(l‘) (55)

P=(1) = A(t— )Pyt — DAT(t— 1) + F(t — 1)

where P}; (1) denotes the one-step prediction error covariance matrix and

F—1D)2T@e—1)0,(—1)ITE—1) (5.6)
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Define

O [(x(@) = &1 ()T -+ (x(0) — 2L())7]
2L, - L]T e fbxn (5.7)
P 2 E{&(0F ()} = (Py(0)) € frbxnt

Then it follows from (5.3) and (5.4) that the optimal estimation error cross-
covariance matrix P;(f) defined by

A N N
Pyi(1) = E{(x(t) — %)) (x(r) — X(1)"}
is computed by [9]
Pi(t) = [l = Ki( C:()][Ai(t — DP;(t — 1)
ATt =1) + I (e = DL ~ KOG, i # (5.8)
Thus, the estimation error covariance matrix IA’(t) in (5.7) can be obtained from
(5.5) and (5.8). After the fusion center receives all the local estimates x;(¢), i =

1,2,...,L, then it follows from Lemma 2.4 that the optimal fusion estimate X, () is
given by

L
R(1) = ) FiD&(0) (5.9)

i=1

where %;(¢) is computed by (5.4) and the optimal matrix weights are determined by
A -1 .
[F1(1), F(0), ..., Fi(1)] = (Ig P! (t)Io) TP () e R (5.10)

and the fusion estimation error covariance matrix
A o N
Po(t) = E{[x(t) — %,()][x(1) — X,()]"}
is calculated by
" -1
P(f) = (IOT P! (t)Io) (5.11)

Moreover, the relationship between the fusion estimation performance and the local
estimation performance is

Tr(P,(f)) < Te(Pi(1), i =1,2,....L (5.12)
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Note that the covariance matrices (5.5) and (5.8) do not depend on the measurements
and can thus be computed at the fusion center, which helps reduce communication
consumptions.

As mentioned before, when each local estimate X;(¢) is transmitted to the
fusion center through a WSN, the sensor energy and communication bandwidth
constraints should be taken into account in designing the distributed fusion esti-
mation algorithm. In this chapter, a dimensionality reduction method combined
with a transmission rate reduction method is presented to solve this problem, and
the detailed approach is described as follows: at a particular time ¢, since the
communication channels are constrained by a limited bandwidth, it may not be able
to allocate enough bits to send the local estimates. To satisfy finite communication
bandwidth, only r; (1 < r; < n) components of the vector x;(¢) are allowed to be
transmitted to the fusion center, and it is reasonable to consider that there are enough
bits coding the r; transmitted components such that the transmitted messages have
no distortion. In this case, if the sensor i sends information to the fusion center at
time ¢, the reorganized state estimate )Acf.(t), which is received by the fusion center at
time ¢, has A; possible cases, and it follows from the alignment combination formula
that

o nn=Dm—=2)---(n—r1;+1)
Ai=C = it — 1) —2) -1 -13)

and the reorganized state estimate X}(f) can only take one signal from the following
finite set:

yi(H) = {Hlx,(t), G H R, HY 3D} (5.14)

where H}l ,hi = 1,2,..., A; denote different diagonal matrices and H’ contains
1 dlagonal elements “1” and n — r; diagonal elements “0”. It is 0bV10us that the
set (5.14) contains all possible cases of the reorganized state estimate x}(r). On
the other hand, when the bandwidth and energy constraints are taken into account
simultaneously, the sensor may not send the local information to the fusion center
at every fusion estimation instant. In the case that the local estimate is not chosen
to be transmitted to the fusion center, the reorganized state estimate X'(r) is chosen
from the set {0}.

To describe the reorganized state estimate x}(¢) in a simple way, suppose that
A; elements of the set y; are indexed from 1 to A;, then the following indication
functions are introduced:

1 ifRN(r) = H) %i(r)

. L hi=1.2,.., A 5.15
0 if &(r) # Hj 5 (1) (5.15)

o) (1) =

which means that if the Z;th element of the set (5.14) is chosen as X{(7), then
0,’;1_ (r) = 1. Otherwise, 0,’;1_ (r) = 0. When the sensor i does not send information
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to the fusion center at time ¢ and the value of X}(r) is not in the set (5.14), then

it follows from (5.15) that o{(r) = 0j(t) = ... = 0y (1) = 0. In this case, the
reorganized state estimate X}(r) can take at most one value from (5.14); thus, the
introduced binary variables a;;i 0, hi =1,2,..., A satisfy

0, (N0}, (1) =0, hi # h?

A;
(Z G;il.(t)) €l0,1}i=1,2,...,L (5.16)

hi=1

where 22;1 cr,’;l_ (r) = 0 indicates that there is no communication between sensor i
and the fusion center at time ¢. Therefore, it is derived from (5.15) and (5.16) that
the reorganized state estimate X} (7) is

x;(t) = Hi(t)%(1) (5.17)

where H;(t) 2 Zh,i:l a;;i (t)Hili. It follows from (5.15) and the definition of Hfli
that H;(¢) is a diagonal matrix, and the diagonal elements of H;(¢) are O or 1. For
presentation simplicity, the binary variables y}(r) € {0,1} (¢ = 1,2,...,n) are
introduced to denote the n diagonal elements of H;(?), i.e.,

H(1) = diag{y{(1),....7,(n)} (5.18)
It can be seen that each binary variable yé (), £ € {1,2,...,n}is dependent on the
choices of the values oil_(t), h; = 1,2,..., A;. Moreover, it follows from (5.15) and

(5.16) that

(Zy,j;(t)) ef{o,r), i=12,...,L (5.19)
(=1

where r; (r; € Ny and 1 < r; < n) denotes the finite bandwidth constraint.
Particularly, it follows from (5.19) that if }",_, /() = r; holds, then the partial
sensor message satisfying the finite bandwidth will be sent to the fusion center at
time z. Otherwise, » ;_, yé (t) = 0 means that there is no communication between
sensor i and the fusion center and the energy of this sensor can be saved at time .

For 1; = n, it is derived from (5.20) that (Z )/lf(t)) € {0,n} and y/(r) € {0.1};
=1

thus, H;(t) is only taken as [, or O at time t. In this case, the model (5.17)
only describes the energy constraint case. On the other hand, if the equation
Zh,-i=l cr,’;l_ (f) = 1 always holds, then it follows from (5.15) and (5.16) that the
sensors and fusion center communicate with each other at each time step, which
means that the model (5.17) only describes the bandwidth constraint problem.

In what follows, when only the communication bandwidth constraints are
considered, a simple example is given to explain how to obtain the reorganized state
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estimate x}(¢) by using (5.17). Forn = 3,1, = 2,1, = 1, and L = 2, it follows from
(5.14) that

Ay =3,H] = diag{1,1,0}, H) = diag{1,0, 1}
H) = diag{0, 1,1}; A, = 3, H} = diag{1,0, 0} (5.20)
H? = diag{0, 1,0}, H = diag{0,0, 1}

Note that H] and H? in (5.20) represent different component transmission situations.
For example, H| in (5.20) means that the first and second components of %;(7) are
transmitted to the fusion center, but the third component of x;(¢) is discarded at
time ¢. On the other hand, it follows from (5.18) and (5.20) that

Hi (1) = diag{y{ (1), y; (1), y3 (1)}

= dlag{l - GSI(t)v 1— 021(t)v - Gll(t)}
Hy(1) = diag{y# (1), y3(1). v (D)}

= diag{o? (1), 03 (1), 03 ()}

(5.21)

where
3 3 3 3
Yrm=3-Y 0 0=2 Yyi=Y oq0=1
(=1 (=1 (=1 (=1

Therefore, the reorganized state estimate )Acf.(t), i = 1,2 is obtained by substituting
(5.21) into (5.17). Obviously, for this example, (5.17) describes all possible cases of
each reorganized state estimate.

5.2.2 Problem of Interests

According to the proposed communication strategy, it is considered that each
component of the local estimate x;(¢) is randomly sent to the fusion center. In this
case, H;(¢) in (5.17) is a random matrix, and it is difficult to be known a priori,
but it can be obtained from the identification process of reorganized state estimate
Xi(¢). For each local estimate X;(¢), it is considered that if the order information of
selected components is flagged before transmission, then the order information of
the received components for each reorganized state estimate will be determined by
their flags in the fusion center, and other untransmitted components are regarded as
0. It is noted that the required bandwidth for the added flags is negligible compared
with that for the data packet transmission. Then, the diagonal element y; (1) € {0,1}
of the matrix H;(f) can be directly determined at time ¢ by judging whether the
flag of the jth component is included in the arrived data packet or not. A simple
example is given to explain how to determine the matrix H;(¢) at time ¢. For the ith
local estimate %;(f) = [1.2 1.5 0.8]T, if the first and second components of X;(¢)
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are selected to send to the fusion center, the corresponding order information will
be flagged before being transmitted. Once the transmitted components arrive at the
fusion center, it follows from the flags of the data packet that x!(z) = [1.2 1.5 0],
and only the flag of the third component is not included in this data packet; thus, one
has y5(r) = 0 and y/(r) = 1,j = 1,2, which means that H;(r) = diag{1,1,0}.

On the other hand, it follows from (5.15), (5.16), and (5.17) that the practical
communication situation is determined by the binary variables 0}” ®, h; =

1,2,..., A;; therefore, it is specified that each stochastic process {cr,’;l_ 0}, h; €
{1,L2,...,A;};i € {1,2,...,L} is ii.d (independent and identically distributed)
and the random variables w(¢), v;(¢), and a,ii (»,i = 1,2,...,L are mutually

uncorrelated, i.e.,

E {0, (Ow' (0} = 0. E {0} ()v/ ()} = 0.V i.j (5.22)
0, i=jt=t,h #h
E {0} (1} i=jt=t,h="n

E{o,i,.(t)O{;;(n)}z E{ff;i,.(t)}E{U;;,a(tl)},i=j,t7ét1,Vh,-,h? (5.23)
E {0}, (0} E {U;;;?(tl)} SRR NN

Moreover, the occurrence probabilities of the cases cr,’;l_ () =1and a,ii (t) = 0 are
given by

Prob{o}, (1) = 1} =m, , Prob{o; (1) = 0} =1 — 7, (5.24)
where n,‘;i is a given positive scalar satisfying
A
0=y =, <1 (5.25)
h,‘=1

Then it follows from (5.16) that the expected energy-saving rate n; for the ith sensor
is given by

ni=E{1=) oj(t)¢ = 1—271,;_ (5.26)

Additionally, it follows from the statistical properties (5.23) and the definition of
Y4 (1) that the binary variables y/(r), £ = 1,2,...,n are independent Bernoulli

distributed white sequences taking values of 1 or 0 with Prob{y/(r) = 1} 2 Vi

and Prob{y/(r) = 0} 2 ¥+ Meanwhile, it follows from (5.16) and (5.19) that
the condition ) j_, y{() = r; is equivalent to ), ", o} (1) = 1; thus, it is derived
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from (5.24) and (5.26) that

E

n Aj
Zyg(t)§ =5y m=nl-n).i=12....L (5.27)
=1

hi=1

Moreover, it is obtained from (5.22) that the random variables Vé (1), w(t), and v;(r)
are mutually uncorrelated, i.e.,

E{yioy,, 0} = vivh,. i #]

. . (5.28)
E {yi(ow" (0} = 0.E {yi(hv] (0} = 0, Vi,

Then, the problems to be solved in this chapter are described as follows: For a
given arbitrary group of binary variables
o{(0),....00(0).....00 (1), i=12,... L

satisfying (5.22), (5.23), (5.24), and (5.25), design an optimal fusion estimate x(f)
with bandwidth and energy constraints such that

X(r) = arg ing)l E{(x(t) — % (1) T (x(1) — 34(0)}
E{x(0} = E{x(n}

(5.29)

where X4(f) is an arbitrary linear combination of X{(r), i = 1,2,...,L, and X;(1)
denotes the ith compensation state estimate of x(#) from the reorganized state
estimate X{(r). Then, based on the fusion estimation algorithm, find a probability
selecting criterion such that the MSE of the designed fusion estimate () in (5.29)
is bounded, i.e.,

Covix(1) — (1)} = Tr{E{(x(r) — 2(1)) (x(1) —%(1)"}} < po (5.30)

holds for t > Ny, where py denotes a positive scalar and Ny represents a positive
integer.

5.3 Design of Finite-Horizon Fusion Estimator

5.3.1 Compensating Strategy

According to the proposed communication strategy, each component of the local
estimate x;(z) is randomly sent to the fusion center at time f; thus, it is possible
that the jth component of the reorganized state estimate X}(r) is zero at time .
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Particularly, when the energy and bandwidth constraints are taken into account
simultaneously, the case that x{(f) = 0 may occur when the ith sensor does not
send information to the fusion center for reducing energy consumption. In this case,
the jth component of the fusion estimate x(f) may be zero at time #; however, the
real value of the state variable in the system (5.1) is not zero and may even be
very large for unstable systems. In this sense, if the distributed fusion estimator is
directly designed based on the local reorganized state estimates, then the overall
fusion estimation performance may degrade seriously. Therefore, it is necessary to
compensate each reorganized state estimate for improving its estimation precision.
Let us define

A ~C ~C
ler(®) - eL(®] = [x(t) —x{(®) -+ x(t) — XL ()]
A T T(A1T[,T T (3D
(1) =E{le](®) - efO]"[e] (1) -+ ] (D]}
When the local compensated state estimates are available, then it follows from (5.9)

that the optimal fusion estimate X(7) with bandwidth and energy constraints is given
by

L

&) =) (0% (1) (5.32)

i=1

Then it follows from (5.10) and (5.11) that the optimal weighting matrices

$21(1), (1), ..., £2,.(1)
and the corresponding error covariance matrix

A N A
P(1) = E {(x(t) — X(0) (x(1) — 3(1))"}

are calculated by

[21(0), ... 2u(0] = (G X~ o) 15 27" (1)
T y—1 -1 (5.33)
P(1) = (Iy X~ (1)1o)
where [ is defined in (5.7) and one has
L
> i =1, (5.34)
i=1
Moreover, it follows from (5.32) and (5.34) that the optimal fusion estimate x(¢) is
unbiased only if each compensated state estimate x{(r), i € {1,2, ..., L} is unbiased,
i.e.,

E{X;(0} = E{x(n} = E{Z()} = E{x()} (5.35)
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Therefore, an appropriate compensating strategy will be presented in the following
theorem such that the equations

EE()) = EGO} = Ex®}, i=1.2,....L

hold.

Theorem 5.1 If the initial values of the optimal fusion estimate x(t) and the local
estimates X;(t),i = 1,2, ..., L satisfy

E{x(0)} = E{x;(0)} = E{x(0)}, i=1,2,...,L (5.36)
then the ith compensated state estimate X (t) is given by

X)) = Hi(0xi(t) + [l — Hi(O)AC — D@ — 1) (5.37)
where (I, — H;())A(t — 1)x(¢ — 1) is used to compensate the diagonal elements “0”

of Xi(t). Under this condition, the fusion estimate X(t) and the local compensated
state estimate X5 (t) are unbiased estimates of x(1), i.e.,

E{x()} = E{X(n)} = E{x{()} (5.38)

Proof Each compensated state estimate { (f) designed in (5.37) means that when n—
r; components of the local estimate X;(¢) are not transmitted to the fusion center, they
are replaced by one-step predictions of the fusion estimate x( — 1). In what follows,
the unbiasedness of the designed compensated state estimate and the fusion estimate
will be proved. First, it is well known that the local estimate X;(¢) is unbiased only
if the initial value X;(0) of the local estimate is the unbiased estimate of the initial
value x(0), i.e.,

E{%i(0)} = E{x(0)} = E{xi(} = E{x()} (5.39)
It follows from (5.37) that
3 (1) = Hi(Dxi(1) + [I, — Hi(1)]A(0)x(0) (5.40)
Taking (5.22), (5.39), and (5.40) into account yields
E{3f (1)} = E{H;(D}E{x(1)} + E{[1, — H:(1)]}A(0)E{x(0)} (5.41)
Since w(r) is a zero-mean white noise, it is verified from (5.1) and (5.22) that

E{x(1)} = E{H:(D)}E{x(1)} + E{(Z, — H;(1))}E{x(1)}
= E{H;()}E{x(D)} + E{(l, — Hi((1))}JA(O)E{x(0)}  (5.42)
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Then, it is derived from (5.41) and (5.42) that
E{x(0)} = E{x(0)} = E{x;(1)} = E{x(1)} (5.43)

Combining (5.35) and (5.43) yields
E{z(1)} = E{x(1)} (5.44)

Therefore, for ¢t > 1, (5.38) can be obtained from the similar derivations of (5.44).
The proof is completed.

The result in Theorem 5.1 implies that if the initial values of the system (5.1), the
fusion estimate given in (5.32), and the compensated state estimates (5.36) are set
to the same value, the fusion estimate X(7) is an unbiased estimate of x(¢), i.e., the
second equation of (5.29) holds.

To guarantee the unbiasedness of the designed fusion estimator with bandwidth
and energy constraints, the compensated state estimate of x(z) can also be selected
by

() = Hi0xi(0) + [, — Hi(OJA(r — DX (1 — 1) (5.45)
where j € {1,2,...,L}. However, the estimation performance of (5.37) is better
than that of (5.45).

5.3.2 Design of Finite-Horizon Fusion Estimator

In what follows, computations of the error covariance matrix X (¢), which are needed
in the calculation of the weighting matrices £2;(r), i = 1,2, ..., L, will be presented.

Two useful lemmas are given as follows before presenting the error covariance
matrix X' (7).

Lemma 5.1 For stochastic matrices M, B, and G, where

M2 diag{my, ...,m,}
B 2 diag{by, ..., by}
811+ 8ln

G2

8nl *** 8mn
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If each random variable g; in G is independent of any random variables of m; and
b,i=1,2,...,n, then

E{MGB} = E{M O B} ® E{G} (5.46)

where “®” is defined as [G' ® G?]; = G}jGizj (this product is called Hadamard

product [10]) and the product “©” for the diagonal matrices M and B is defined by

miby -+ mib,
MOB=| : - (5.47)

myby --- myb,
Moreover, the product “©” has the following property
MOB=BOM" (5.48)
Lemma 5.2 Define

(1) = B — DI (1)}
H(t) £ diag{H\ (1), ... H.(1)} (5.49)
H(®) 2 (U= H ) (= H )T
where X(t — 1) = x(t — 1) — x(t — 1) and X;(t) = x(¢) — x;(¢). Suppose that P(t — 1)
and X (t — 1) have been obtained at time t, then ®;(t) is computed by the following
recursive form
@i(f) = X (t — DHA( —2)@i(t — DAT(1 — 1)
+2(t— DHPj(1— DAT(1—1)
+X(t—DHL(t=2)[I, = Ki(r— 1)
xCi(t — D]"AT(t = 1) (5.50)

where

Pir=1) =[Pl —1) - P[, = D]
S(t—1)=Pe—DITZ"'(1-1)

At=1) = Al - 1) = K()C:(DA(t — 1) (5D
H=E{fG- 1} =E{f0-1)

and ﬁ(t —2) is defined in (5.6). Meanwhile, K;(t) and Pj;(t — 1) = PiTj(t — 1) are
computed by (5.4) and (5.8), respectively.
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Proof Tt follows from (5.1) and (5.4) that

() =A@ —Dx;t—1)+ I'(t— Dw(—1) — Ki()&:(?) (5.52)
gi(t) = C(OAt—Dx;t— 1) + C;(O) T (¢t — Dw(t— 1) + vi(2) (5.53)
Then, substituting (5.53) into (5.52) yields
%() = (A — 1) = KD (DA — 1)F(t — 1)
+( -1 -K()GOI (- 1))
xw(t — 1) — Ki(t)v;(¢) (5.54)

Following the facts X;(t—1) Lw(r— 1) and E {v;(t)w" (t — 1)} = 0, it is derived from
(5.54) that

E{G(w' (1= 1)} = (L, = KOG T (= 1)Qu(t = 1) (5.55)
Define ¢;(t) £ [0i(1). 0}, ..., o'y, (1)], then one has by (5.32) and (5.37) that
X(t — 1) € Span{w(0), w(1),..., w(t —2),
v;(0), ..., vi(t—1),¢i(1),..., ci(t—1)} (5.56)
i=12...L

Thus, it follows from (5.22), (5.23), and (5.56) that
w(t—1)1x(t—1) and v;(t)Lx(r—1) (5.57)
Then, it is derived from (5.55) and (5.57) that

@i(1) = E{x(t — )& (t = D[AG = 1) = Ki(1)
xCi(OA(t — DT+ wi@— D[t —1) —Ki(0)
xCi(OT (1= D]" = v (DK} ()}
=g(t—DAT(—1) (5.58)

where
Wit — 1) 2 E{x0 — D' (1 — 1))
and AT(t — 1) is defined in (5.51). Subsequently, it follows from (5.1) that

Iox(t) = HO)Iox(1) + HOA( — Dx(t—1) + HOT(t — Dw(t—1)  (5.59)
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where A (1) and H(¢) are defined in (5.49). Define

F0E[E@O) - &'

Then, it is derived from the first equation of (5.33) and (5.59) that

Hi—1) = (T2 = Dl) Tt 1)
x(Iox(t—1) =@ —1)) = 21— DH(I - 1)
X%a(t = 1) + 2t — DH( — DA — 2)%(t — 2)
+2(t—DHE— 1)t —2)w(t —2) (5.60)

where x,(t — 1) and ﬁ(t — 1) are defined in (5.7) and (5.51), respectively. Next, it
follows from (5.55) and (5.60) that
Wi(t—1) = £(t— DE {H(r— 1)}?,(;— 1)
+3(t—DE{H{I - D} AG—2)®i(r— 1)
+3(—DE{HE— 1)} (1 —2)0,(t —2)

xI'T(t=2)(I, — Ki(t = 1) Ci(r — 1))T (5.61)
where f’i(t — 1) is defined in (5.51). Therefore, (5.50) is obtained by substituting
(5.61) into (5.58). This completes the proof.

The intermediate variable @;(¢) is presented in (5.50) by a recursive form, and it
follows from (5.51) that @;(¢) is dependent on P(t — 1) and X' (¢ — 1); thus, if the

initial values of P(7) and X'(f) are given, then @;(f) will be obtained. Notice that
@;(t) given by (5.50) will be used to derive the recursive form of X'(7).

Theorem 5.2 Define
Ay = E{H,(1) © Hy(1)}
Wy 2 E{(I, — Hi(1) © (I, — Hy(1))}
Vi 2 EH() © (I, — Hi()}

then the estimation error covariance matrix X(t) 2 E {e,-(t)ejT(t)} , 1, €
{1,2,...,L} is computed by

Zi(t) = Ay @ Py(t) + Vi @ [&F (DA (1 — 1) + (U,
KO CO) (1= 1)] + Vi ® [AGt — D) B;(0)
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+1 (= D[ = Ki(C0)"] + Wy ® [AGC— 1)
xP(t—DAT(t—1)+ 't —1)] (5.62)

where Py(t)(i = j) is computed by (5.5), P;(t|1)(i # J) is calculated by (5.8),

and f‘(t — 1) is defined by (5.6). Moreover, the optimal fusion estimation error

covariance matrix P(t) in (5.33) is given by the following recursive form

P(1) = f(P(t — 1), Pi(1), Py(1), Vi, Ay, Wy) (5.63)

Note that each local estimation error covariance matrix
A T
Zi(1) = E{ei(te; (1)}

can be obtained by (5.62) for i = j and the relationship between the optimal fusion
estimation performance and each local compensated state estimation performance
givenin (5.37) is

Tr(P(1)) < Tr(Zi(t), i = 1,2,....L (5.64)
Proof 1Tt follows from (5.48) and Lemma 5.2 that
Vi = E{(I, — Hi(1)) © H;(1))} (5.65)
E{G(0x"(t— D} = &/ (1), E{x(t — DX (1)} = &;(1) (5.66)
Meanwhile, it is derived from (5.1) and (5.37) that
ei(t) = Hi()xi(t) + (I, — Hi()A(r — Dx(r — 1)
4+, — Hi () 't—Dw(—1) (5.67)

Since H;(t) and I, — H;(¢), i = 1,2,..., L are all diagonal matrices, then it follows
from (5.67) and Lemma 5.1 that

(1) = Ay ® Py(t) + Vy ® [E{Z:(DX" (1 — 1)}
xAT(t— 1]+ Vy  [EGOw (¢ — DT (1= 1)]
+E{[l, — Hi(N] © H;(1)} ® [A(r — 1)
xE{x(t — DX} (0}] + E{[l, — Hi()] © H;(1)}
® [t — DE{w(t — DX ()}] + Wy @ [AGt — 1)

)Pt — AT = 1) + (1 — 1)] (5.68)



114 5 Fusion Estimation for WSNs Using Dimension-Reduction Method

Therefore, (5.62) is obtained by substituting (5.55), (5.57), (5.65), and (5.66) into
(5.68). Under this condition, the recursive form of P(¢) is given by (5.63). Moreover,
(5.64) is obtained from (5.12). This completes the proof.

From the definition of X'(¢), a procedure for the determination of X'(¢) is given
by (5.62) in Theorem 5.2; thus, the weighting matrices §2;(¢), i = 1,2,...,L are
computed by the first equation in (5.33). In this case, the optimal fusion estimate x(7)
is computed by substituting the weighting matrices and (5.37) into (5.32). Moreover,
for a given group of the probabilities 7}, ..., ng’,, i=1,2,...,Lsatisfying (5.25),
according to Theorems 5.1 and 5.2, the computation procedures for the finite-
horizon fusion estimate with bandwidth and energy constraints can be summarized
as follows:

Algorithm 5.1

Step I: Initialize {P;;(0), x;(0), ;(0)},, {PU(O)}jL:i, P(0), and x(0).
Step 2: Calculate each local estimate and estimation error covariance matrices:
Fori=1:L
Calculate x;(f) by using (5.4)
Calculate P;;(¢) by using (5.5)

Forj=i+1:L
Calculate P;;(t) by using (5.8)
End
End

Step 3: Calculate each local compensated state estimate and L intermediate
variables:
Fori=1:L
Calculate x$(f) by using (5.37)
Calculate @;(7) by using (5.50)
End
Step 4: Calculate the local estimation error covariance matrices of the compen-
sate state estimates

Fori=1:L
Calculate X;(7) by using (5.62) withi = j
Forj=i+1:L
Calculate Xj;() by using (5.62) with i # j
End
End

Step 5: Calculate the fusion estimation error covariance matrix P(f) and the
weighting matrices §21(¢), . .., §2.(¢) by using (5.33).

Step 6: Calculate the finite-horizon fusion estimate x(¢) by using (5.32).

Step 7: Return to Step 2 and implement Steps 2—6 for obtaining x(¢ + 1).
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It follows from Theorem 5.2 that the computation procedures for the error
covariance matrix X' (f) are only dependent on the probabilities of the introduced
binary variables. Therefore, it follows from (5.32) and (5.33) that the updating of
the weighting matrices £2;(f),i = 1,2, ..., L does not need to know the transmitting
situation of each component at time 7. When the selecting probabilities né « =
1,2,...,A;i = 1,2,...,L) are known a priori, the weighting matrices can be
computed off-line, which helps reduce the computation burden of the fusion center.
Under this condition, it is concluded from (5.37) that if the selected components of
each local estimate X;(¢) are transmitted to the fusion center, then Algorithm 5.1 will
be easily implemented in practical applications, where each random matrix H;() in
(5.37) is obtained from the identification process of reorganized state estimate x}(r).

5.4 Boundness Analysis of the Fusion Estimator

In this section, we will discuss the performance of the designed fusion estimator.

. A : . .
First, define ¢; = [my,..., n‘Ai]T, and then it follows from (5.18) that there exists a
constant matrix U} € R4 gych that

vi=Ug, t=12,...,n;i=12,...,L (5.69)

where an arbitrary element of U, 2 is 1 or 0. In what follows, a probability selecting
criterion will be given in Theorem 5.3 such that the MSE of the designed fusion
estimator is bounded.

Theorem 5.3 Consider optimal fusion estimator associated with systems (5.1) and
(5.2) under the bandwidth and energy constraints.

(CI). The system (5.1) is uniformly completely controllable, i.e., there exists an
integer N > 0 and positive scalars py, p2, such that the following inequality
holds fort > N

piln < Y WEHT DD (1)) < paln (5.70)
j=t—N+1

where W (t,j) is the state-transition matrix satisfying

=
ll/(tv]) = [l;llA(t_ Z)s t>], lI/(],]) = In (571)
w0 =v11)), 1<
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(C2). There exists at least one measurement equation y;(t) in (5.2) such that the
ith subsystem (which is described by (5.1) and y(t)) is uniformly completely
observable, i.e., there exist an integer N > 0 and positive scalars ps, pa,
such that the following inequality holds for t > N

t

psln < Y WTGLOCTDOL DCDW LD < paly (5.72)
j=t—N+1
(C3). Ateach time t, there exists at least a set of selecting probabilities satisfying

Tr{M; ® [A(t — )Pt — DAT(t — D]} < Te{P(t — 1)}  (5.73)

where M; = diag{1 — Ulg;,...,1—Ulg;} and U} can be obtained by (5.69).

It can be concluded that if the conditions C1, C2, and C3 hold, then the MSE of
the designed fusion estimate x(¢) will be bounded, i.e., there exists a scalar py such
that

Jlim Tr{P(D)} =< po (5.74)

Proof For the ith subsystem, it follows from Theorem 7.4 in [8] that the optimal
local estimate given by (5.4), (5.5), and (5.6) is uniformly asymptotically stable
when the conditions C1 and C2 hold. In this case, it follows from Lemma 7.1 in [8]
that if P;;(0) > 0, then P;(¢) is uniformly bounded for all > N, i.e., there exists a
scalar o; > 0 such that P;(¢) < a,l,, t > N, which implies that

Tr(P;i(t)) < noy, t > N (5.75)

Moreover, it follows from (5.70) that r (r) is bounded, i.e., there exists a scalar § >
0 such that

Te{ (1)} < B (5.76)

Define Wi(f) 2 Ay ® P;i(1) + Wi ® I'(— 1), then it follows from (5.75) and (5.76)
that there exist a scalar 77; > 0 such that

Tr{Wi(0)} < iy, t>=N (5.77)
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On the other hand, it is derived from the definition of V;;(¢) in Theorem 5.2 and
(5.47) that

0 E{y1(0(1 - ()}
| B0 =} 0
E{y,(0)(1 =10} E{ya()(1 — y2(0)} (5.78)

- Eni (@1 =y (0}
- Efn @1 =y}

0
Then, taking the property of the operator Tr(-) into account, one has

Te{Vi; ® [@T(NAT(1 — 1) + (I, — Ki() C;(0) [ (t — 1)]} = 0

TI'{V;]; ® [A(t — 1)¢,(l) + ﬁ(l‘ — 1)(In _ Ki(t)Cj(l))T]} -0 (579)

Tr{W; ® [A(t — D)P(t — DAT(t — 1)]}

= Tr{M; ® [A(t — 1)P(t — DAT(t — 1)]} (5.80)

where M; is defined in C3. Subsequently, it is derived from (5.80) that if the
condition (5.73) holds, there exists a scalar d,(f — 1) such that

Tr{W; ® [A(t — 1)P(t — DAT(t— 1)}
=d,(t— DTre{P(t— 1)}, 0 < dp(t— 1) < 1 (5.81)

Meanwhile, it follows from (5.64) that there exists a scalar dx,(f) such that
Tr{P(1)} = dx,(OTr{Z; ()} (0 <dz,(t) < 1) (5.82)
Then, according to (5.62), (5.79), (5.81), and (5.82), Tr(X;(¢)) is rewritten as

Tr(Zi(1)) = Tr{Wi(1)} + d, (N Tr{P(r — 1)}

t—N l
= Tr(W;()} + ) { [[dot—v)ds, (- r)§
=1 =1

XTr{W;(t — O)}} + d,(t — N — 1)

t—N
x g [Tt = Ods,(t — O)f TeP( =N+ 1)} (5.83)

(=1
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It is noted from (5.81) and (5.82) that there exists a scalar d,x, 0 < d,5 < 1 such
that

dy(t — T)ds,(t —T) < dpx. t>Nand V1 (5.84)

Therefore, it follows from (5.77), (5.83), and (5.84) that the following inequality

t—N

> dys

(=1

Tr{Zi(t)} < i + M +d,(t—N—1)

X

TH{P(t—N+1)}  (5.85)

t—N
[t - 0ds,t—0)
(=1

holds for > N. Moreover, it is derived from (5.77), (5.83), and (5.85) that

lim {dp(z—zv— 1) {tﬁvdp(t—ﬁ)dz,.,-(t—é)}} =0
1—00 (=1

_ (5.86)
=N d
. 0 _ pX
’1—1’1& {z;dpx} 1 —dpy
Then, taking limit on both sides of (5.85) yields
. A dpE A
lim Tr(X5(1) < m; + mn;
t—00 1— >
which implies that there exists an integer Nyp > N > 0 such that
Tr(X;(t)) < po, t = Ny (5.87)
d
where po = m; + 1 22 m;. Therefore, (5.74) is obtained from (5.64) and (5.87).
—d,s

The proof is thus completed.
Generally, it is considered that the following optimal selecting probabilities

{1 60.---.60}

in the finite time interval [1, T] can be obtained by solving the following optimiza-
tion problem:

T
min 1 r; Tr{P(r)} (5.88)

{s1.52,--6} '
s.t. (5.25)and 0 < JT;“ <1l,i=12,...,L



5.4 Boundness Analysis of the Fusion Estimator 119

where the optimal estimation error covariance matrix P(f) is computed by the second
equation in (5.33). For this optimization problem, an explicit optimal solution is
far from clear at the present stage. However, the objective function and constraint
conditions in (5.88) are independent of the sequence of the measurements, and
thus, this problem can be solved off-line. In this case, it is reasonable that this
optimization problem may be solved by using the exhaustive search algorithm. On
the other hand, it can be seen from Theorem 5.3 that if the systems (5.1) and (5.2)
satisfy C1 and C2, while the selecting probabilities are determined by C3, then the
MSE of the designed fusion estimator will not diverge, which implies that the fusion
estimation performance will not degrade seriously under the bandwidth and energy
constraints.

For the systems (5.1) and (5.2) with constant system matrices, i.e., the systems
(5.1) and (5.2) reduce to the following form:

x(t+ 1) = Ax(t) + T'w(?) (5.89)
yi(t) = Cix(t) + v;i(¢), i=1,2,...,L (5.90)
where w(r) and v;(f) are zero-mean white noises with stationary covariances

O.(t) = Q, and Q,, () = Q,,, respectively. Then, one has the following theorem
for the convergence of the MSE of the fusion estimator:

Theorem 5.4 Consider the optimal fusion estimator for the systems (5.89) and
(5.90) under the bandwidth and energy constraints.

(C5)  The linear stochastic system (5.89) is completely controllable, that is,
rank([[L AL, ...,A"™'I')) =n (5.91)

Meanwhile, for the L measurement equations (5.90), there exists at least one
observation matrix C; satisfying

rank([CT (CA)" --- (GA")") = n (5.92)
where the condition (5.92) implies that the ith subsystem is completely

observable.
(C6) At each time t, there exists at least a set of selecting probabilities satisfying

11(5) = A {ATMA} < 1 (5.93)
or

Mi(gi) é /\max{ATMiA} =1

5.94
AmaxiATMAY # Amin{ATMA} 699

where M; = diag{1 — U}gi, ..., 1 — U} and U}, can be obtained by (5.69).
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It can be seen that if the systems (5.89) and (5.90) satisfy C5, and the selecting
probabilities satisfy C6, then the limit of the MSE exists, i.e.,

lim Tr(P(r)) =p (5.95)
—>00
Proof For the ith subsystem, it is well known that if the conditions (5.91) and (5.92)

hold, the optimal local estimation error variance matrix P;(¢) will be convergent,
i.e., lim P;(t) = Pj;. This implies that there exists an integer N > 0 such that
—>00

Pii(t) = P; (t = N) (5.96)

On the other hand, it follows from the property of the operator ® that

1 1\ T
Tr{M; ® [AP(t — DA"]} = Tr{ MZAP(1 — 1)A” (M?)

= Tr {ATM;AP(t — 1)} (5.97)

Since ATM;A is a symmetric matrix and P(t — 1) is a positive-definite matrix, it
follows from the results in [11] that

Tr{ATMAP(t — 1)} < Anax{ATMAVTH{P(t — 1)} (5.98)
Consequently, if (5.93) holds, it is derived from (5.97) and (5.98) that

Tr{M; ® [AP(t — DAT]} — Tr{P(t — 1)}
< TH{ATMA}Tr{P(t — 1)} — Tr{P(t — 1)} < 0

which implies that
Tr{M; ® [AP(t — 1)AT]} < Tr{P(r — 1)} (5.99)

Moreover, it is concluded from the proof of Lemma 1 in [11] that the symmetric
matrix ATM;A is decomposed as

D=U"(A"MA)U (5.100)
where D is a diagonal matrix formed by the eigenvalues of ATM;A and U is an
orthogonal matrix whose columns are normalized eigenvectors. Then, it is derived

from (5.100) that

Tr{AT™M;AP(t — 1)} = Tr{UTP(t — 1)UD} (5.101)
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According to the property of the matrix trace and the matrix structure of D, it is
concluded from (5.101) that the equation

Tr{U"P(t — 1)UD} = Apax(D)Tr {U"P(t — 1)U} = Apax(D)Tr{P(t — 1)}
holds if and only if all the eigenvalues of ATM;A are the same. This means that if
(5.94) holds, then (5.99) can also be obtained.

In what follows, based on the result (5.99), it will be proved that the MSE of the
fusion estimator converges to a steady-state value.

From Theorem 5.3, one can obtain from (5.96) and (5.99) that there exists a
positive scalar pg such that

Tr{Zii(1)} < po (5.102)
Define
M) 2 Ay ® Pilt) + Wy ® (ro.rv
then it follows from (5.102) that
M; 2 lim Mi(1) = Ay ® P + Wi ® (I Q,TT)
—>00

In this case, it is derived from (5.83) and (5.99) that fort > N

Tr{ ()} = x(1) + dp(t =N — 1)

=N
X % [1dy(t—t)ds,(r — Z)} Tr{P(t — N + 1)} (5.103)
=1
where
t— 14
X(t) = Tr{ML} + Z { l—[ dp(t - T)dzii(t - t)} Tr{Mt}}
(=1 =1
Note that the sequence {y(#)|t = No,No + 1,..., 00} is monotonically increasing

and the variable y(#) is bounded from (5.102); hence, the limit of y(¢) exists, i.e.,

lim y(t) = x (5.104)
—>00
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Moreover, it follows from the first equation of (5.86) that there exists an integer
Ny > N > 0 such that

t—N
dy(t =N = 1) { [ [ dp(t = O)dz, (t — 0)
(=1
XTr{P(t—N + 1)} = 0, 1 > Ny (5.105)

Therefore, it follows from (5.62), (5.79), (5.80), and (5.103), (5.104), and (5.105)
that the limit of Tr{X};(r)} exists, i.e.,

tl_1)1£10 Tr{X:(0)} = TE)IEO{TT{Aii ® Pii(1)
+Wi ® [AP(t— DAT + I'Q,, I} = Tr{Z;;}  (5.106)

Then, according to (5.106), in the structure of Tr{W; ® [AP(t — 1)AT + 'Q,, ']}
and the recursive form of P(¢) in (5.63), one can obtain that t1_1>1}>10 P(t) = P which
implies that (5.95) holds. The proof is thus completed.

For the time-invariant systems (5.89) and (5.90) satisfying CS5, it is concluded
from Theorem 5.4 that if the selecting probabilities ¢, . .., ¢ satisfy C6, then the
objective function in (5.88) will be convergent, that is,

T
. 1
Tlgrolo T § 1: Tr{P(1)} = Plsi.s2..61}
t=

Under this condition, a group of suboptimal selecting probabilities ¢;*,¢5, ..., s}
can be obtained by solving the following optimization problem:

min - pee o, o}
{s1.62,6L}
Y Usi=r(1—n) (i=12,....L)
(=1
0<Ug<1(t=12,...,n) (5.107)

Amax JATM;A} < 1 or
Amax {ATMA} = 1
Amax {ATMA} # Amin {ATM;A}

where
M;= diag{1 — Uig;,..., 1 = U}
and U}; represents the relationship matrix between Vé and g; (see (5.69)); 1;,

i = 1,2,...,L denote the finite-bandwidth constraints; and 7n;, i = 1,2,...,L
represent the expected energy-saving rates (ESRs) that can reflect the energy-saving
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efficiency. Compared with the original problem (5.88), the constraint conditions
(5.93) and (5.94), which are added in (5.107), help decrease the searching range;
thus, the time consumption of calculation may be shortened by using the same
exhaustive search algorithm. Notice that if all the selecting probabilities ¢;, i =
1,2,...,L satisfy C6, then the solution of the optimization problem (5.107) is
globally optimal.

The controllability and observability conditions C1, C2, and CS5 in Theorems 5.3
and 5.4, which are only dependent on the system parameters, can be easily satisfied
in the practical applications. Particularly, it follows from the result in [8] that the
conditions C1 and C2 are equivalent to C5 when the systems (5.1) and (5.2) reduce
to (5.89) and (5.90). On the other hand, it can be seen from the proof of Theorem 5.4
that if the condition C5 and the inequality (5.99) (i.e., Tr{M; ® [AP(t — 1)AT]} <
Tr{P(t — 1)}) hold, then the MSE of the designed fusion estimator will converge to
a steady-state value. Notice that the condition (5.99) is dependent on the variable
P(f), which implies that it is difficult to obtain an effective probability selecting
range such that the MSE of the designed fusion estimator is convergent. In this
sense, though the conditions (5.93) and (5.94) are given with certain conservatism,
itis easily judged by (5.93) and (5.94) that whether a group of selecting probabilities
can guarantee convergence of the MSE or not.

When the system matrix A(f) in the time-varying system (5.1) is norm bounded,
then there exists a scalar A; > 0 such that A, (AT(H)A(¢)) < A1, V. In this case, it
follows from (5.97) and (5.98) that there exists a group of upper bounds f! (g, A1),
i=1,2,...,L,such that

Amax (AT(t - 1)M,'A(l‘— 1)) Sfli(gl'a /\l)s Vi

Then, it is concluded from Theorem 5.3 that a straightforward judgment criterion
for the time-varying systems (5.1) and (5.2) is given as follows: if there exists at
least one upper-bound satisfying f7(g;, A1) < 1, and the conditions C1 and C2 hold,
then the MSE of the fusion estimator is bounded.

When only energy constraint case is considered in some practical applications,
based on Theorems 5.3 and 5.4, a simple judgment criterion, which is related to the
expected ESR, will be given in Corollary 5.1 such that the MSE of the designed
fusion estimator is bounded or convergent.

Corollary 5.1 Consider the time-varying systems (5.1) and (5.2) satisfying C1 and
C2, if there exists at least one expected ESR n; satisfying

Te{nAT(t — DAt — 1)P(t — D]} < Tr{P(t — 1)} (5.108)

for each time t, then the MSE of the corresponding fusion estimator will be bounded,
i.e., there exists a scalar py such that lim Tr{P(t)} < pi. On the other hand, when
—>00

the dynamic target and sensor measurements are described by (5.89) and (5.90),
and if systems (5.89) and (5.90) satisfy C5, and there exists at least an expected
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ESR n; satisfying
A T
ui(ni) = Amax{niA A} <1 (5109)

Then the limit of the MSE of the fusion estimator exists, i.e., lim Tr(P(t)) = p».
—>00

5.5 Simulations

Consider a networked multisensor fusion system, where the maneuvering target is
described by the following state-space model [3, 12]:

x(t + 1) = Ax(t) + T'w(?) (5.110)

2
A= 1Ty = 0.5T;
01 To
and T is the sampling period and w(¢) is a zero-mean white noise with covariance
Q... The state is x(f) = [s(¢) 5(¢)]T, where s(f) and §() are the position and velocity

of the moving target at time ¢, respectively. Suppose that this maneuvering target is
monitored by two sensors, and the measurement equations are described by

where

yi(t) = Cix(t) + vi(1), i = 1,2 (5.111)

where C; = C; = L. vi(¢) and v,(¢) are uncorrelated zero-mean white noises
with covariances R,, and R,,, respectively, and they are also uncorrelated with w(z).
Since

rank([[",AT']) = 2, rank([CT, (C;:A)"]") = 2 (5.112)

the judgment condition C5 holds. For this example, it is assumed that each sensor
has enough processing capabilities to compute local estimate. However, to satisfy
the finite communication bandwidth and the limited energy of each sensor, at most
one component of X;(¢) is allowed to be transmitted to the fusion center, i.e., r; =
r, = 1. Under this condition, it follows from (5.14) that

H| = Hj = diag{1,0}, H} = H = diag{0, 1} (5.113)
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Then, it is derived from (5.113) and Theorem 5.1 that the compensated state
estimates x{ (¢)(i = 1, 2) are given by

% (1) = diaglo} (1), 03 (0} ()
+diag{1 — o{ (1), | — o5 (t)}A%(t — 1) (5.114)

where o (r) and 05(7), i = 1,2 are binary random variables satisfying

Prob{o|(t) = 1} =, Prob{o}(t) = 1} =nx}
Then, it follows from (5.69) that U} = [1 0] and U} = [0 1], and thus, one has

My =diag{l —n{.1—m,}, M, = diag{1 — 7}, 1 — 73}
In the simulation, choose
To =0.5s, 0, = 0.3, R,, = diag{0.5,0.1}, R,, = diag{0.1, 0.3}

and the initial values are taken as

%(0) = %1(0) = %,(0) = [0.15 0.25]T
P(0) = diag{0.09,0.21}

0.02 0.03
)] =
1) [0.02 0.01}
0.05 0.01
®:00) = [0.03 0.02}

5.5.1 Bandwidth Constraint Case

To satisfy the constraints of the finite communication bandwidth, only one compo-
nent of each local estimate ;(¢), i € {1,2} is randomly transmitted to the fusion
center at each time step. Therefore, the binary random variables o} (7) and o} (?)

2
satisfy Y 0,(1) = 1,i = 1,2, which means that 7; = 1 — m,. First, consider the
(=1

situation where ] = 0 and 77 = 1, then it follows from C6 that

pi(s1) = 1.25, pua(s2) = 1 (5.115)
A'max ATMZA) ?é A'min ATMZA) (5116)

By taking (5.112), (5.115), and (5.116) into account, it follows from Theorem 5.4
that the MSE of the fusion estimator X(¢) will converge to a steady-state value.
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Fig. 5.1 (a) Comparison of the estimation performances for the fusion estimates x(¢) and X, (¢) and
local compensated state estimates x5 (r), i = 1, 2. (b) Comparison of the estimation performances
for the fusion estimates X(¢) and local estimates X; ()

Then, applying Algorithm 5.1, the estimation performance (assessed by the trace of
estimation error covariance matrix) of local compensated state estimates X (1), i =
1,2; local estimates X;(7), i = 1,2; and fusion estimates x(f) and X,(7) are shown
in Fig.5.1. It can be seen from Fig.5.1a that the estimation performance of fusion
estimate x(¢) is better than that of each local compensated state estimate. However,
the estimation performance of x(¢f) is worse than that of x,(¢), which implies
that the bandwidth constraints degrade the estimation performance. On the other
hand, Fig.5.1b shows that though the estimate x(¢) is obtained under the limited
communication bandwidth, the estimation performance of the fusion estimate x(z)
is still better than that of each local estimate.

For this networked fusion estimation system with communication bandwidth
constraints, it can be obtained from the inequalities (5.93) and (5.94) that 0.25 <
n{ < 1. Then, it follows from Theorem 5.4 that when one chooses 0.25 <
nl < 1,0 <72 <1or025 < 7} < 1,0 < 7/ < 1, the corresponding
MSE of the fusion estimate x(f) will be convergent. In this sense, by solving
the optimization problem (5.107), one obtains a group of suboptimal selecting
probabilities 7/ = 0, 77 = 1. To verify the above results, by taking different
selecting probabilities, the corresponding estimation performances are depicted in
Fig.5.2. It can be seen from Fig. 5.2a that the MSE of the fusion estimate is minimal
when the selecting probabilities are only taken as nll =0and nlz = 1. Particularly,
Fig.5.2a also shows that all MSEs converge to some steady-state values for the
selecting probabilities satisfying C6, which verifies the theoretical analysis results
in Theorem 5.4. Moreover, define p;(m}) 2 Tr{M; ® [AP(1— 1)AT]} — Te{P(t— 1)},
then w;(m}),i = 1,2 for different groups of selecting probabilities are depicted in
Fig. 5.2b, which implies that the criterion C6 is effective.
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Fig. 5.2 (a) Comparison of the estimation performances with different selecting probabilities. (b)
The trajectories of y;(})

5.5.2 Energy Constraint Case

In this subsection, only the energy constraint issue will be considered. According
to the proposed communication strategy, each local estimate x;(¢), i € {1,2} is
intermittently transmitted to the fusion center for reducing the energy consumption,
and each compensated state estimate X7 (¢), i € {1, 2} is designed based on the one-
step prediction of fusion estimate x(z— 1), i.e., the local compensated state estimates
are given by

X0 =nxi@) + (1 —n@)AX@—1), i=1,2 (5.117)

where the random binary variable 7;(¢) satisfies Prob{n;(r) = 1} = E{n:(t)} =
1 — n; and n; denotes the expected energy-saving rate. To specify the energy-
saving efficiency, the practical energy-saving rate c;(¢) is defined as c;(f) = 1 —

t
( > ni(T)) / t, which helps give a quantitative relationship between the expected
T=1

and practical energy-saving rates.

Consider the situation where n; = 0.2 and 7, = 0.3, then it follows from
Corollary 5.1 that the MSE of the fusion estimates will converge to a steady value
as time goes to infinity. Meanwhile, the expected energy-saving rates 7;, i = 1,2
and practical energy-saving rates c;(¢), i = 1,2 are depicted in Fig.5.3. It can
be seen from Fig. 5.3 that the practical energy-saving rates approach the expected
energy-saving rates as time increases, which implies that this energy-saving strategy
performs well. On the other hand, the condition 1; = 0.1 yields u; (1) < 1, then it
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Fig. 5.4 Relationship between the expected energy-saving rates and fusion estimation perfor-
mances

follows from Corollary 5.1 that the limit of MSE for the fusion estimator will always
exist for choosing an arbitrary energy-saving rate 7,. The relationships between the
expected energy-saving rates and the fusion estimation performance are depicted in
Fig.5.4. It is shown from Fig. 5.4 that the MSE of the fusion estimator converges
to a steady-state value, which verifies the result of Corollary 5.1. Figure 5.4 also
shows that the fusion estimation performance becomes better with the decrease
of the expected energy-saving rates, which is as expected for this energy-saving
strategy.
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Fig. 5.5 Local estimation performances for different compensating strategies

To demonstrate the advantage of the proposed compensating strategy, it is com-
pared with the compensating strategy of (5.45). Note that the idea of (5.45) has been
used in [13] to solve the fusion estimation problem with limited communication rate.
In this case, each compensated state estimate of x(¢) can be described by

X0 =m0 + (1 — m))AX" (= 1) (5.118)

where the binary variable 7;(#) has been defined in (5.117). Thus, it follows from

the proof of Theorem 5.2 that the local estimation error covariance matrix X7 (f) 2
E{(x(t) — 2* (1)) (x(1) — %* (1))} is computed by

Zi0) = (1= n)Pa(@) + ni(AZ(— DA + 70, I'T) (5.119)

For n; = 0.2 and 7, = 0.3, the relationship between Tr(X; (7)) and Tr(X2(r)) is
depicted in Fig.5.5, where the computation procedures for X;(f) and X (¢) have
the same initial values. It can be seen from the simulations that the estimation
performance of local compensated state estimate in (5.117) is better than that given
by (5.118).

5.5.3 Bandwidth and Energy Constraints Case

When the bandwidth and energy constrains are taken into account simultaneously,
it follows from the proposed communication strategy that at most one component of
the local estimate x;(z) is allowed to be transmitted to the fusion center at each time
step. Under this condition, the local compensated state estimates are computed by

2
(5.114), and the random variables o7 (r) and o’ (¢) in (5.114) satisfy {121 cré (t)} €
{0, 1}. Thus, it follows from (5.26) that the expected ESR #; for the ith sensor is
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given by

2

2
Zaé(t)} =1- Zné
(=1

(=1

n=1-E

which means that 7; = 1 — n; — 7. In this case, the expected and practical total
energy-saving rates for all sensors are given by

2 2

1 2 2 ) 1 )
E. = EZProb{;og(t) = 0} =1- EZZJT’ (5.120)

i=1 i=1 (=1

r2 t 2
(ZZ%I(T) + ZZG%(T))/% (5.121)

T=1 (=1 T=1 (=1

c(?)

and the notation p;(s;) in Theorem 5.4 is simplified as (1, 7}).

For this networked fusion estimation system, the power-efficient dimensionality
reduction approach in [3] can also solve the problem of bandwidth and energy
constraints by reducing the communication traffic at each time step. From Sec-
tion II in [3], the sensor i should send the dimension-reduced signal z;(7) 2
(é,-(t)[y,-(t) — Sl — 1)]) € 9 to the fusion center, where (7]t — 1) = Ci()A(r —
1)x;(t — 1). When it is assumed that there is no noise in the fusion center, the
compression matrices é’i(t)(i = 1,2,...,L) can be obtained by solving the similar
problem (5.7) in [3]. Different from the proposed communication strategy, all
sensors must send information to the fusion at each time step, and the fusion
estimation algorithm in [3] is implemented under the centralized fusion framework.
However, the experimental studies in [14] show that the communication tasks
consume the largest portion of the total energy needed for the overall WSN. In
this sense, if each dimension-reduced signal z;(¢) is intermittently sent to the fusion
center for the fusion estimation algorithm in [3], then the performance of the
corresponding centralized fusion estimator may be worse than that of the proposed
fusion estimator. This is because the centralized fusion method has weaker fault-
tolerant abilities as compared with the distributed fusion method [9].

To illustrate the above result, it is considered that z;(f) is randomly sent to
the fusion center at each time step, where the random variable n;(t) € {0, 1}
denotes whether the signal z;(¢) is sent to the fusion center or not. Meanwhile, let
Pp(1) denote the centralized fusion estimation error covariance matrix based on the
incomplete information z;(¢). Then, for different expected energy-saving rates 7;,
the trajectories of Tr(P(¢)) and Tr(Pp(¢)) are plotted in Fig.5.6, where the initial
values of P(¢) and Pp(?) are different. It can be seen from (a) of Fig. 5.6 that the
performance of the fusion estimator in [3] is better than that of the proposed fusion
estimator when each sensor should send information to the fusion center at each
time step. However, when each sensor intermittently sends information to the fusion
center for reducing energy consumption, it can be seen from (b) to (c) of Fig.5.6
that the trace of the error covariance matrix Pp(f) becomes large as time increases,
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Fig. 5.6 Comparison of the estimation performance for the designed fusion estimator and the
fusion estimator based on the power-efficient approach in [3]

but the trace of the error covariance matrix P(f) converges to a steady-state value.
Moreover, it can be seen from (b) to (c) of Fig. 5.6 that Tr(Pp(?)) > Tr(P(?))(¢ > 3),
which implies that the performance of the proposed fusion estimator is better than
that of the centralized fusion estimator in [3] with intermittent transmissions.

In what follows, the situation for the proposed communication strategy will be
considered, where n; = 0.2 and 1, = 0.4. According to the condition C6 of
Theorem 5.4, 2 (12, 7112) is always larger than one, and there exists an approximate
range [0.38,0.70] of 7] such that p1(n1,7{) < 1. Then, it can be seen from
Theorem 5.4 that if 0.38 < ]Tll < 0.70 and 0 < ]T12 < 0.60, then the MSE
of the designed fusion estimator will converge to a steady-state value. Therefore,
choose 7111 = 0.70 and ]T12 = 0, then the fusion estimator x(¢) is obtained from
Algorithm 5.1. The trajectories of x(f) and x(r) are depicted in Fig.5.7, which
shows that the fusion estimator x(z) can track the maneuvering target well with
bandwidth and energy constraints. Meanwhile, it can be seen from (a) of Fig.5.8
that the trace of the covariance matrix P(f) converges to a steady-state value and the
performance of the fusion estimator is better than that of the local compensated state
estimates. On the other hand, to compare the actual estimation precision between the
fusion estimates and local compensated state estimates, the root-mean-square errors
(RMSEs) for those estimators are computed with 100 Monte Carlo runs by using
the RMSE formula in [15]. Then the trajectories of different RMSEs are plotted in
(b) of Fig.5.8, which shows that the estimation precision of the fusion estimator
X(¢) is higher than that of each local compensated state estimate. It can also be
seen from Fig. 5.8 that the estimation precision of the fusion estimator Xo(¢) is still
higher than that of the x(¢), which implies that the bandwidth and energy constraints
may deteriorate the fusion estimation performance of the networked fusion systems.
Moreover, Fig.5.9 shows that the error between the practical and expected total



132 5 Fusion Estimation for WSNs Using Dimension-Reduction Method

(a) T T [ w22 I R2.9 & !
X 5% AR e2.2Q9 g
o 40 .u%:iﬁéb'alﬂsu 2R R R4
s @®®
3 20 we®
@ = » -
o 88
o 0 eeaeudd 88 -+ % - the ture position - - @ - - the estimates of the position
C I I I | 1 1 1 1 1
10 15 20 25 30 35 40 45 50 55 60
time/steps
(b) 10 T I I I I I
- - x - - the true velocity - - @ - - the estimates of the velocity
(7] =y 88
8 5r R ERETEE Ty a
= XX xm X T X8 ® 0.
S N E'O'Oab ° 3212.9'9.;3:3. X'Q‘D'o o
o Of%Xx “x Xy X 0.9 O X
é.‘& Rou0BLXx0 o
_ | | | | | | | | |
10 15 20 25 30 35 40 45 50 55 60

time/steps

Fig. 5.7 Trajectories of x(f) and the fusion estimator X(¢) for 7{ = 0.7 and 7} =0

(@) 0.35 ] ® -+ - DFKF (5.9)
P B e E R RN RN "o - DFKF (5.32)
8 . 1.2 H - - - The first CSE (5.37) 1
_5 0.3 1 « - The second CSE (5.37)
5 '.
>
8
- 025 1
o
5 90000000000 0:00000- (LJIJJ
s o2 1
©
£ o THPM)
@ 0.15 o - THP(t) 1
o ce s THEL M)
8
© 0.1 oo TER0) | 4
0.05 : ; ;
5 10 15 20
time/steps time/steps

Fig. 5.8 (a) The traces of the estimation error variance matrix for the fusion estimates and local
compensated state estimates. (b) The RMSEs for the fusion estimates and local compensated state
estimates

energy-saving rates becomes smaller as time increases, which implies that the
proposed energy-saving strategy is quite straightforward yet efficient. Therefore, it
can be concluded from the above discussion that when the selecting probabilities are
taken as 7] = 0.7 and 7} = 0 for this example, the designed fusion estimator not
only satisfies the bandwidth constraint condition (r; = r, = 1) but also reduces
about 30 % energy consumptions for all sensors. Particularly, the RMSE of the
designed fusion estimator is bounded under the mixed constraint conditions.



References 133

0.4} b

ESR

0.2 W

200 250 300 350 400
time/steps

Fig. 5.9 The energy-saving effect of the proposed fusion estimation algorithm

5.6 Conclusions

In this chapter, the distributed finite-horizon fusion estimation problem was inves-
tigated for a class of networked multisensor fusion systems in a bandwidth- and
energy-constrained WSN. Multiple binary random variables with known statistical
properties were introduced to model the mixed constraints of bandwidth and energy.
An optimal recursive fusion estimator was designed in the linear minimum variance
sense by using the optimal fusion algorithm weighted by matrices. Moreover, some
sufficient conditions, which were related to the selecting probabilities and system
parameters, have been obtained such that the MSEs of the designed fusion estimator
were bounded or convergent.
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Chapter 6
H, Fusion Estimation for WSNs
with Quantization

6.1 Introduction

By quantization, one is able to reduce the size of data packet containing the
quantized signal and thus is able to satisfy the bandwidth constraint of the sensor
network and reduce communication costs from the sensors to the fusion estimator.
In this chapter, a design method for the Hy, multisensor fusion estimator will be
presented for sensor networks with quantized local estimates. The Ho, estimator
does not make any assumption on the statistics of the process and measurement
noises; the only assumption is that the external disturbance has bounded energy
[1, 2]. A group of finite-level logarithmic quantizers [3] are introduced to deal
with the bandwidth constraints, and the corresponding fusion estimation error
system model is established. By using the discrete-time bounded real lemma, a
convex optimization problem on the choices of the optimal weighting matrices and
quantization parameters is established in terms of linear matrix inequalities (LMIs).
Moreover, it is proved that the performance of the designed fusion estimator is better
than that of each local quantized estimator.

6.2 Problem Statement

Consider a dynamical stochastic process described by the following state-space
model:

x(t + 1) = Ax(¢) + Bw(?) 6.1)
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L sensors are deployed to monitor the outputs of the process, and the measurement
equations are given by

yi(t) = Cax(t) + Dyw(t), i = 1,2,...,L (6.2)

where x() € M" is the state of the process, y;(f) € R¥ is the measured output from
sensor i. A, B, C;, and D; are constant matrices with appropriate dimensions, where
A is Schur stable. w(f) € 1[0, 00) is the noise signal. It is assumed that each sensor
has the processing capabilities to compute the local estimate x;(r) which is given by

£t + 1) = AgRi(r) + Bryio) (6.3)

where A; € 0" and B;, € N7 are filter gain matrices to be determined such
that the corresponding estimation error system ensures an H, performance level 7;.
Note that the filter matrices Ay and Bj; can be designed by using the result in [2].
Particularly, it is well known that the designed filter matrix A; must be Schur stable
if the system matrix A is Schur stable.

Remark 6.1 For ease of presenting the main idea, the process noise is considered to
be the same as the measurement noise. When the process and measurement noises
are different, the corresponding state-space model can be transformed to the form
as in (6.1) and (6.2) by using the augmentation method.

When the local estimate generated by the sensor is transmitted to the fusion
center through communication networks, it should be quantized before being
transmitted. Due to the finite communication bandwidth, only finite-level quantized
local estimates from the sensor are sent to the fusion center. Then, consider a
logarithmic quantization strategy:

0:() = [gu () ga() -+ qm(.)]T c gpx]

for the ith local estimate %;(7), and ¢;;(-) € N, j € {1,2,...,n} is called quantizer
Xij> which is used to quantize the jth component of the vector signal ;(z). The set of
the quantization level of the quantizer y;; is represented by

Uy = {iu;"/’ Ll = P = 0,£1,%2, ... } U0}
0<p;< l,ugj)>0

where p;; is the quantization density. Then the logarithmic quantizer g;;(-) is defined
as follows:
() 1 @) L @)
Up 5t <V =05
q;(v) = § 0, v=20 (6.4)
—q;j(—v), v<0
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where

A 1—pj
8i'=— 0<5,"<1 6.5

It is known from [3] that ¢;;(v) can be expressed as g;;(v) = (1 + A,,)v for certain
A; satisfying |A;| < 8;. Moreover, it is known that a larger §; leads to a coarser

xij- This implies that the size of the transmitted data packet will be decreased as the
value §; increases. Therefore, it is reasonable to model the bandwidth constraints
via §;; as follows:

8 =8 i=1.2.....L (6.6)

where 8?, i € {1,2,...,L} is the minimum values satisfying the communication
capacity of the channel i, and it is assumed that those lower bounds are known a
priori. Notice that the quantization parameters §;, i = 1,2,...,L,j = 1,2,...,n
can be adjusted to satisfy the constraint condition (6.6). However, the optimal quan-
tization parameters are to be designed such that the fusion estimation performance
is optimal.

Let X/ () denote the local quantized estimate, then it follows from (6.4) that

fzr(t) = [qil (fil(t)) qi2(£i2(t)) ce qm(xm(t))]T o+ A; )xl(t) (6.7)

where

i = diag {A~i1, Ap..... Ain} (6.8)
Aj € [=6;.85). je{l.2,....n} |

The distributed Hy, fusion estimator x(¢) is given by

L
(1) =) Wikl () (6.9)

where the weighting matrices Wi, Ws, ..., Wy, are to be designed. Then it is derived

from (6.1), (6.7), and (6.9) that the fusion estimation error e(f) 2 x(t) — x(¢) is
given by

L
e(t) = x(t) = Y_AWill + A)5i(0)} (6.10)

i=1
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where A, is defined by (6.8). Let

X0 = [ - fFo o]
then it is derived from (6.1), (6.2), (6.3) and (6.10) that

[ X(t+ 1) = AX(1) + Bw(1)

: < 6.11
e(t) = CX(1) ( .
where
[A; O - 0 BjCy
0 Ap - 0 BpGy
A=l oo ©6.12)
0 0 -4y ByCr
L0 0--0 A
[ BDi
Aol (6.13)
B,Dy
L B
C=[-Wy - =W I]+[-W A - =W AL O] (6.14)

Then it is known from (6.14) that A is a stable matrix. Moreover, it follows from
[4] that the real rational transfer function matrix of the linear discrete-time systems
(6.11) is given by

T() = 6[z1—A]_11§ (6.15)

The objective of this chapter is to find a group of optimal weighting matrices
Wi, Wa, ..., W, and the optimal quantization parameters 6;1,68;,...,0p, I =
1,2,..., L such that, for the bandwidth constraint condition (6.6), the Hy, — norm
bound of the system (6.11) is minimal, i.e.

{Wi, 6i1.0,....8u(i=1,2,...,L)} = argmin y
. N, (6.16)
s.t. ||C[zI—A] Blleo <y and (6.6)

where || - ||oo denotes the standard H, norm, and y represents the Ho, disturbance
attenuation level bound that is used as a fusion estimation performance index. As
is well known, the Hoo— norm constraint in (6.16) is interpreted as the %, — gain
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constraint and is represented as

D e e() <y* Y wiOw(). w(t) € L[0.00)

=0 =0

under the zero initial condition.
Before giving the main results, the following lemma is introduced.

Lemma 6.1 ([5] (Schur complement lemma)) For a given matrix
§— [S 1ns 12}
S S22
with S11 = S;FI and S» = S;Z, then the following statements are equivalent:

(1) S<0;

(2) S2 <0,81; —51252_215?2 < 0;

(3) S11<0,8» —SFIFZSl_llSlz < 0.

Lemma 6.2 ([1]) Given appropriately dimensioned matrices Xy, X5, and X', with
ElT = X, then the following inequality

I+ Z:0(0%, + 20T ()X <0

holds for all O(t) satisfying OT(£)O(t) < I if and only if there exists a scalar ¢ > 0
such that the following inequality

T +e D] +eX) 5, <0

holds.

6.3 Distributed H, Fusion Estimator Design

Theorem 6.1 For given y > 0,0 < 8y < 1,i=1,2,...,L j = 1,2,...,n
the distributed Ho, fusion estimate x(t) in the form of (6.9) can ensure an Hyo
disturbance attenuation level bound y under the quantization effect, if and only
if there exist P > 0, ¢ > 0 and the weighting matrices Wy, i = 1,2, ..., L such that
the following linear matrix inequality holds

[—eI 0 eD 0 0 0
* —PPA PB 0 0
« P 0 C 0
* x —y21 0 0
*x x x —I E
* x  x  x —gl |

<0 (6.17)

* X *x ¥
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where

A 2 diag{8i1.8n. - S}
D £ diag{A, --- A 0}
CE[-W, o =W, I
Eé[—Wl cee =W 0]

(6.18)

Proof when A is a stable matrix, it follows from the discrete-time bounded real
lemma in [4] that the inequality ||T(z)||coc < y holds if and only if there exists
P > 0 such that

~ ~ ~ ~ PO [t DUSEEN -
ATPA—P + y‘zATPB[I ~ y_ZBTPB] BTPA+CTC<0 (g
y2BTPB—1<0
According to Lemma 6.1, (6.19) is equivalent to
ATPA—P+C'C y'ATPB -0
* _ZBTPB I
which implies that
—PPA PB 0
_ T
* P 0 C (6.20)
x % —pl 0
* % x  —1
On the other hand, it is known from (6.7) that
ATW! = AF; wl (6.21)
Al Al Ain .
where FA‘ el diag i —2, el ,and F 3 satisfies
i 8in 8in :
FiF; <1 (6.22)

Define C; 2 [“W\A, --- =W, A, 0], then it follows from (6.20), (6.21) and (6.22)

000 0 0

000CL D T
A F:[0 00 E 6.23

000 0 0 al ] (6.23)
0

000 0
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where D and E are defined in (6.18), and
A .
Fz=diag{F; .Fz,.....F;.1I}

It is known from (6.22) that F ; F E < I, then according to (6.23), it can be concluded
from Lemma 6.2 that the inequality (6.20) holds if and only if there exists a scalar
& > 0 such that

_PPA PB 0 orro" 07ro1"
AT
« —P 0 C p||D Llollo
<0
x * —pi 0 te 0 0 te 0 0
* % x =1 0 0 E E

By using Lemma 6.1, the inequality (6.24) is equivalent to

[[—¢7'1 0 DT 0 0 0
* —PPA PB 0 0
AT
* * —P 02 c 0 <0 (6.24)
* * x —y I 0 0
* * ok x —I E
| *x x % ok % —el |

Therefore, (6.17) is derived from pre- and post-multiplying (6.24) by the matrix
diag{el,I,1,1,1,1}. The proof is thus completed.

When the quantization parameters 8;, i = 1,2,...,L;j = 1,2,...,n satistying
the condition (6.6) are given, a necessary and sufficient condition has been presented
in Theorem 6.1 to judge whether there exists a group of weighting matrices or
not such that the Hy, — norm bound of the system (6.11) achieves a prescribed y.
However, the solutions of (6.16) cannot be obtained from Theorem 6.1 because the
quantization parameters are required to be determined. In fact, to obtain the optimal
weighting matrices and quantization parameters simultaneously, the quantization
parameters §;, i = 1,2,...,L;j = 1,2,...,n will be considered as nL variables
in (6.17). In this case, (6.17) is a nonlinear matrix inequality, which is difficult to
be solved. Therefore, an equivalent linear matrix inequality representation for the
inequality (6.17) is written as

[—eI 0 D 0 0 0
x —PPA PB 0 0
AT
¥ xR0 C0 (6.25)
* x x —yl 0 O
* % *x % —] F
* k% ok ok ok —gl |
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where

A

p 2 y% D= diag{d, --- A, 0}

For taking the constraint condition (6.6) into account, the variable A, is defined by
AA,- e diag{ed;1, €8i2, . - ., €6in} (6.26)

Moreover, according to the constraint condition (6.6), the variables AA,-, i =
1,2,..., L satisfy

0 < A; <el and Tr(A)) > 8% (6.27)
Based on the above analysis, the optimal weighting matrices W;,i = 1,2,...,L
and the optimal quantization parameters A;, i = 1,2,..., L satisfying (6.6) can be
obtained by implementing the following algorithm.
Algorithm 6.1
Step 1:  Determine tlze optimal weighting matrices Wy, ..., Wy and other optimal
parameters p, &, A;, i = 1,2,...,L by solving the following optimization
problem:
ny (6.28)

s.t. LMIs (6.25) and (6.27)

Step 2:  Compute the optimal H,, disturbance attenuation level bound and quanti-
zation parameters by

y =7, Ai=diag{e™ !, ... e YA(i=1.2,...,L) (6.29)
N e’

n elements

The optimization problem (6.28) can be directly solved by the function “mincx”
of the MATLAB LMI Toolbox [5], and thus the solution of the optimization problem
(6.16) can be easily obtained by implementing Algorithm 6.1.

Theorem 6.2 For the local quantized estimate x\(t) and the distributed Hy, fusion
estimate X(t), under the same bandwidth constraint condition (6.7), the performance
of the distributed H fusion estimate is better than that of each local quantized
estimate, i.e.,

y <y i=12,...,L (6.30)
where y* denotes the local optimal Hy, disturbance attenuation level bound for the

ith local quantized estimate X/ (t), while y* represents the optimal Ho, disturbance
attenuation level bound for the fusion estimate x(t).
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Proof When the weighting matrices in (6.28) are taken as
Wi=1 W;=0,j#i (6.31)

then the local optimal disturbance attenuation level bound for the ith local quantized
estimate can be obtained by solving the corresponding optimization problem (6.28).
Moreover, when (6.31) holds, the fusion estimate in the form of (6.9) is reduced
to the ith local quantized estimate, i.e., X(f) = X/ (). Note that the matrix weights
in (6.9) include (6.31) as a special case. On the other hand, it is known from [5]
that (6.28) is a convex optimization problem, and the solution of (6.27) is globally
optimal. This implies that if the optimal weighting matrices determined by (6.28)
are not equivalent to (6.31), then it must be y* < yp*. Particularly, if the optimal
weighting matrices are identical to (6.31), then y* = y*. This completes the proof.

6.4 Simulations

Consider a dynamic system which is monitored by two sensors, where the parame-
ters of the systems (6.1) and (6.2) are given by

A= 05 1 B= 1
0.3 -0.6 0.5

Ci=[10], ;;=[01]

D, =0.5, D, =0.3

For n; = 0.9553 and 1, = 0.8169, by using the result in [2], the filter matrices in
(6.3) are obtained as

~ [—0.0514 0.9999 _ [o05514
10,0308 —0.600 |7 T | 0.2692

4 [0:5000 —0.46957 . [ 1.4695
27 10.3000 —0.2817 |2 ~ | —0.3183

In the simulation, the lower bounds &) and §9 of the bandwidth constraint
condition (6.6) are set as

57 =03,8) =05 (6.32)
Then, by solving the optimization problem (6.28) using the MATLAB LMI Toolbox

[5], it is obtained that the optimal distributed fusion H, disturbance attenuation
level bound is y* = 1.7482, and the optimal weighting matrices and quantization
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parameters are obtained as

W, = |:0.6178 0.5993:| { 811 = 0.0191
0.5934 0.9356 |’ 812 = 0.2809
Wy = |: 0.4881 —O.2249i| %821 = 0.0094
—0.5314 0.5778 || 820 = 0.4906

(6.33)

It can be seen from (6.33) that the inequalities 611 +812 > &} and 6>; +62> > 85 hold,
which are in line with the constraint condition (6.6). Moreover, when the weighting
matrices of (6.25) are taken as W, = I, W, = 0, or W; = 0, W, = I, then the
corresponding optimization problem (6.28) can be solved, and thus the local optimal
Hy disturbance attenuation level bounds are y;" = 2.0120 and y, = 1.9446. Then
it follows from the above results that

>y >yt (6.34)
Then, the logarithmic quantizers g;(-), i = 1,2, j = 1,2 are determined by the
parameters §;, i = 1,2, j = 1,2 of (6.33), and the fusion estimate () in the form

of (6.9) is given by the weighting matrices of (6.33). Under this condition, the noise
signal is chosen by

w(t) = (2 + 0.2 cos(1.71)) exp (_l_tS) € [0, co)

oy —e—x,(t)
5r) —+— DHFF of x,(t) 1

trajectories of true states and state estimates

20 40 60 80 100 120
time/steps

Fig. 6.1 Trajectories of x; () and the distributed Hoo, fusion estimate (DHFE) x; (r)
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Fig. 6.2 Trajectories of x,(¢) and the DHFE %, (7)

1 -
—e—e,(t)
——e,()
(2]
S
c 05 ]
k]
©
£
@
(0]
k)
(%]
0
s 09
°©
Q2
g
-05 L L L L L
20 40 60 80 100 120
time/steps

Fig. 6.3 Trajectories of e(r)

Then the trajectories of x(¢), £(z), and e(¢) are depicted in Figs. 6.1, 6.2 and 6.3,
which shows that the fusion estimator performs well, and the estimation error con-
verges to zero in the presence of disturbances and quantization effects. Moreover,
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one has by simple calculation that

120 120
D eT(De(r) [ Y wT(ow() = 04211
=0 =0

which verifies that ||T(z2)||cc < y*, showing the effectiveness of the proposed
distributed H fusion filter.

6.5 Conclusions

In this chapter, the distributed Hs, fusion filtering problem was investigated for
a class of networked multisensor fusion systems with communication bandwidth
constraints, where the system model is subject to energy-bounded disturbance input.
Based on the discrete-time bounded real lemma and LMI technique, the fusion
estimation problem was converted into a convex optimization problem, which can
be easily solved by using the MATLAB LMI Toolbox. It has been proved that
the performance of the proposed fusion estimator is better than that of each local
quantized estimator.
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Chapter 7
Hierarchical Asynchronous Fusion Estimation

for WSNs

7.1 Introduction

Distributed fusion is a typical structure for multisensor fusion estimation in WSNis,
where the sensors generate local estimates ahead and then send them to a fusion
center (FC) for fusion estimation [1, 2]. When the number of sensors is large,
it is wasteful to embed in each sensor an estimator, and the FC requires a large
bandwidth to communicate with the various sensors in a short time, which is usually
impossible since the WSN is limited in bandwidth. An improvement is to adopt a
hierarchical structure for fusion estimation [3—6]. In a hierarchical fusion estimation
system, the sensors are divided into several clusters, and the sensors within the same
cluster are connected to a local estimator. Moreover, only the local estimators are
linked to the FC, and the measurements from sensors in a cluster are pretreated
by local estimators in advance. A structure of the hierarchical fusion system is
shown in Fig.7.1. There are mainly two deficiencies in the existing hierarchical
fusion estimation. First, local estimations and the fusion estimation are assumed
to be time synchronized, which is restrictive as the processing rates of different
clusters may be different from each other. Second, during the estimation interval,
each sensor communicates with the local estimator only once, which implies that
only one measurement from a sensor can be used for local estimation.

In this chapter, a novel hierarchical fusion estimator design method will be
presented, and the method provides two improvements to overcome the aforemen-
tioned deficiencies. First, local estimators are not required to be time synchronized
and are allowed to be asynchronous with the FC. Second, in each cluster, the
sensors transmit as many measurements as possible to the local estimator before an
estimation instant begins. In the proposed estimator design method, a centralized
optimal estimator is designed to aperiodically generate local estimates. Then,
a covariance intersection (CI) fusion strategy is presented to design the fusion
estimator by using the last fused estimate and the asynchronous local estimates,

© Science Press, Beijing and Springer Science+Business Media Singapore 2016 147
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Cluster.e.l_ o Cluster ¢

@ Sensor

D Estimator

Clusterb . .‘Sjb3 o

Fig. 7.1 Structure of a hierarchical fusion estimation system

without knowing the cross-covariances among local estimates and the last fusion
estimate.

7.2 Centralized Aperiodic Optimal Local Estimation

In this section, a centralized multisensor estimation system in a cluster is considered.
Suppose that there are n sensors in a cluster and the sensors connected to an
estimator independently observe outputs of a linear continuous-time stochastic
process described by the following state-space model:

(1) = Ax(t) + Bw(?) (7.1)

where x(r) € N? is the state, w(r) € N is a zero-mean white noise with covariance
Oy € N > 0, and A and B are known matrices of appropriate dimensions. Denote
by T = {tr : k =1,2,...} the set of estimation instants of the estimator. In view
of the time effectiveness of the measurements and the energy consumption of the
communications, two rules are set as follows:

Rule I: At the estimation instant ;4 , only those measurements produced during
(., tx+1] will be used for estimation.

Rule 2:  In the estimator, the maximum time horizon of the sampled information
is §, i.e., the time horizon of the oldest measurement received by the estimator
during (#, tx+1] should not be smaller than #;4; — 6.

Rule 1 is set to guarantee the timeliness of the estimation, i.e., only the
measurements generated over the present estimation interval will be used to produce
the estimate at the present estimation instant. Rule 2 is introduced to specify the
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allowable number of measurements during each estimation interval (note that more
samplings and transmissions need larger energy consumption). Denote by A the
minimum time interval of two consecutive samplings. To ensure that the estimator
is able to use the latest several measurements, § can be expressed as § = aA + 4,
where 0 < § < A and a is an integer. Then it follows from Rules 1 and 2 that the
set of sampling instants of the sensors during the estimation interval (#, f;+1] can
be specified as follows:

Sy = {l‘kzjZlkJ:lk+1—(ak—j)A,j: 1,2,...,ak}

where g; = min {a, [#]} and [ denote the maximum integer that is no larger
than . Thus, the measurement equation of sensor i at time #;; is given by

) = Cx + DOvy) (7.2)

where xi; = x(#), y,ilj € N is the measurement from sensor i at time #, vk e

is the measurement noise with zero mean and covariance Q(,f) e N > 0,and CY and
D are known matrices of appropriate dimensions.

In view of sensor failures or communication link failures, the phenomenon of
packet dropout is considered and described by a set of binary variables as follows:
9,5” = 1if y(') is successfully received by the estimator at time #;; and 9() =0
0tf1erw1se where

Prob {9,5’]) = } — /\,((‘), Prob {9(1) O} — l—kff), 0 < /\]((i) <1

9,53, i=12,...,L,j=1,2,...,a, are assumed to be independent of each other,
i.e., the random packet loss procedures over the sensors are independent of each
other. 1 — A,(f) is the packet loss probability of sensor i over estimation interval
(tx, tr+1]. During (#, ty+1], due to possible packet losses, the measurements available

at the estimator from sensor i is given by

() _ @) () @) @
Yk {eklykl"' ekakykak}
Denote

ax
6" = diag {9(‘)} Y = vee {y,(:;}j 1

then, )7,((") can be written in a vector form as j;,(j) = 9/5") y,(j) .
Discretizing (7.1) at the sampling instants, then it follows from [7] that
eAtk1—1) i=1
wy=16, kTweod (7.3)
A Xk j—1 +wa_1,J=2,3,...,ak
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where

ST A Bw (e — T)de, j=0

Wy i =
T JA A Bt —Ddr, =12, a4 — 1

It follows from (7.3) that
j-1

— A((j_l)AJrrk’l_tk).Xk—f-Ze(j_l_l)AAWk,l (7.4)
=0

Xk j

!

Thus, over the estimation interval (#, f;+1], the measurements available at the
estimator from sensor i is given by

00y = 00 Fxi + 00 G wi + 6D vy (7.5)
where
FO — yecT {(C(i)eA(jA+fk.l_Tk))T}ak_l
k o
c® 10) ... 0
Ol Al c ... 0

G =

COe@—DAA c)e@—2A4 .. ()

DY = diag{D?,...,D®
~——————
ay
-1
Wp = vecT{wa};lLO
0 _ T{ <i>}“k
v, = Vec v,
k kg =1
By using the local estimate x; and the available measurements Géi)y,(:) , 1

1,2,...,n, the following linear estimator will be designed to generate an estimate
Xr+1 at the estimation instant #;4

n
xAk+l — A(thrl—tk)x"k + ZHI?) (9151))’/((1) _ ;'/(CI)F/?)“G/() (76)

i=1

where :X,(f) = diag A(i), ... ,)L,(j) and H,ii), i=1,2,...,n, are the estimator gains
~——

ak
to be determined.
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Define the estimation error at f; by & = x; — X, then the estimation error
covariance matrix at fy4 is

Py = E{erri60,,} (7.7)

Then, in what follows, a set of estimator gains H, Q) ,i=1,2,...,n,will be designed
for the optimal estimator to generate an estimate X;4+; in the minimum variance
sense, i.e.,

H,ii) =arg min tr{Piyi} (7.8)
HY i=

Before presenting the estimation algorithm, two useful propositions are first pre-
sented as follows.

Proposition 7.1 It follows from the statistical characteristics of w(t) that wyj, j =
0,1,...,ax are zero mean and

Ty [T A T(AT\T 4 A
E {wiowgo} = ¢""BQ,B" (") dr £ Wy (7.9)
0

A
E {wewy) = /0 ¢""BO, B (") dr 2 W (7.10)

Moreover, wy is uncorrelated with wy 4 for any | # q.

Proof Note that E{w(t,; — 1)w' (1x;—0)} = O, if T = 0 and E{w(tx; — t)w' (1 ; —
0)} = 0if t # o, then (7.9) and (7.10) hold.

Proposition 7.2 For any positive semi-definite matrix Q > 0 with appropriate
dimensions, one has

E {006} = M0k + QO (A — A7) = 0 (7.11)
E{0:— ) Q6 —A)} =00 (A —27) =0 (7.12)

where 0, = diag {9:) }’?_1 and A = diag {i,(j) }11, the symbol © denotes the matrix

dot product, namely, A © B = [0 Bijlr xr,, where A = [0l xr, and B = [Bijly xr,-
Moreover, E {6,00,} is positive definite if Q > 0.

Proof Note that E {9,53} =10 K {e,jf‘}e,jf}} =10 K {e,jf‘}e,jf}} = A0 (£,

E{(00 - 20) (60 = 2)} = 20 (1= 20) and E{ (07 = 20) (67 = 2)}
=0 (j # [), then (7.11) and (7.12) hold.
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Denote
- n
Hy = vec {H,ﬁl)}.
i=

F;, = vecT

Gy = vecT

— @\"
Dy = diag {Dk }
Ve = diag {00

Wi = diag

Q,), = diag {QL"% 0

S nT)”
yi = vec’ (9,8)%(:)) }

Vp =

<
[}
(¢}
—
——
/N
<
3
N—"
-
——

The following theorem determines the estimator gains in the minimum variance
sense and the estimation error covariance matrix at each estimation instant.

Theorem 7.1 For system (7.1) and (7.2), the gains of the optimal estimator (7.6) is
determined by

4 -1
Hy = 6] (Z F,j"’) (7.13)

i=1

with the corresponding estimation error covariance matrix

4 N}
Piyr1 = oePrpl + S2Wi 82 — @,(T(Z Fk(L)) O (7.14)

i=1
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where

g = et
Or = MF Pyl + MG 2]

Y = MFPFIAT

52 = (FXFY) © (A — A2)

P = MGWGH + (GWiGT) © (A — D)

Y = uDViD™ + (D ViD}) © (A — A7)
2 = [e(ak—l)AA ela—244 I]

Xir1 = E{xg1xy ) = olXewl + QW82

Moreover, the local optimal estimates obtained by using (7.6) and (7.13) are
unbiased.

Proof Note that

X1 = eHTx 4 2wy (7.15)
Bpr = AHTOR 4+ Hy (v — ArFike) (7.16)
Vi = OcFrxx + 0Grwy + kD (7.17)

By using Propositions 7.1 and 7.2, it follows from (7.7), (7.15), (7.16), and (7.17)
that

Piy1 = guPrpy + S24Wi82) — Hi Oy

4
—OH} + H, (Z Fk“’) HY (7.18)

i=1

Denote

O, = vec {@,ﬁ”}
Hy = vec’ { (h,(f))T} .
el

2 = vec" { (Q,Ei))T}p

i=1

p

i=1

p
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then one has tr {Py1} = Z ”1514)-1’ where
i=1

. N\ T . 4 . N\ T
olh = m(ol) = aw(al) o (S ()

i=1
_hPe _ (ng))T(hg))T

Note that 71’k 11 depends only on h", and the trace of P+ is equivalent to the
summation of nk Ti=12,...,nTo minimize the trace of P4+, the condition

,53_1 / d (h(') ) = 0 should be satisfied, from which one has

4 -1
n = (6f) (Z (Fk("))T> (7.19)

i=1

which implies that (7.13) holds. Substituting (7.13) into (7.19) yields (7.14). The
proof is thus completed.

7.3 Hierarchical Asynchronous Fusion Estimation

This section is devoted to the hierarchical fusion estimation. A fusion strategy
based on the asynchronous local estimates will be presented to generate the fused
estimates. A clustered sensor network is deployed to measure outputs of the object
(7.1) and is divided into L clusters. Denote by n, the number of sensors in the rth
cluster. The sensors within the same cluster are connected to a local estimator, and
a FC is linked with the L local estimators.

Firstly, the local estimator r collects measurements from sensors in the rth cluster
during each estimation interval and generates a local estimate at the estimation
instant. Secondly, all local estimates are sent to the fusion center for generating the

fused estimate. Denote by 7}0 = {r[c k=1,2,.. } the set of the fusion instants

of the fusion center and 7, = {t, : k = 1,2, ...} the set of the estimation instants
of the local estimator r. The fusion instants and the local estimation instants are
not necessarily synchronous. Denote by X, ; and P, the local estimate and the local
estimation error covariance matrix of the local estimator r generated by Theorem 7.1
at time ¢, ;, respectively.

For each cluster, it is assumed that all the local estimates are sent to the fusion
center in real time, and only the most recent local estimate received by FC during

(t,{c,r,{j_l] will be used for fusion at fusion instant r,{j_l Denote by U, ;41 =
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{t,,k : t,{C <t < t,{ﬁrl, i € 7;} the set of time instants when the local estimates

are generated by the local estimator r during (tf t,{j_l] If ﬂf=1 Uy 1+1 = O, then,
it indicates that no local estimate is sent to the FC. If ﬂr=l U, k+1 # D, then the set

of available local estimates at the FC during the fusion interval (t,{c, t,{ﬁrl] is denoted
by

X1 = X,y = X540 )) <t gy = MaxUpr, Unppr # 9, r=1,2... L}
Then, the fusion rules are set as follows:

Case I: 1 (Y Upsrr = @, then &5, = fi (#) € £ (5)

Case 2t 1 (N Upyrr # @, then &5y = f (£, X1 ) € £(3 ),

where )E{C is the fused estimate at t,{c and fi (+) and f5 (-) denote the fusion rules to be
designed. For Case 1, the fusion rule is given by

fi (x,f) _ Al ’k)Af” (7.20)

For Case 2, the local estimates in A} are first lifted to those at the fusion instant,
i.e.,

: fe
i = M an) e rht1 (7.21)

Then, by using the CI fusion method [8, 9], the fusion rule in Case 2 is given by

f (;e[",)(,,kﬂ) =Pl ) “r,k+1<P 'rff}c+1) i (7.22)
reTl
where
o Y g
£ng+1 = eA(tk+l " )xlfc

T
P(f;ka = eA(t{:r‘ ~ )Pﬂ( (tk“ t’{)) + Wo,k

T
fe e fe e ~
eA (tk+1 fr,k+1) Pt (eA (tk+1 tr,k+1)) W,k

fe
Pr,k+1

fe fe
. L1t
Wou / " BQ, BT (") dv
0
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- D1 T de1
Wy = / e'"BQ, BT (") dr.r € T, /10}
0

—1 -1
Jfc fc
(Pk+1) = 2 : aqu+1(Pr,k+l)

’eﬁfil

and 7%, = {0y U{r: Upps1 # @, r=1,2...,L}. The optimal weights e+
andr € 7;{;1 are determined by minimizing the trace of P,{‘_F 1

min 1 {Pf},} (7.23)
s.t. 0 <a, <1and Z U1 =1
rGTlfJrl

Different from the conventional CI fusion rule with only local estimates, past
fused estimates are used for generating the fusion estimate at current fusion instant
in both Cases 1 and 2.

Similar to the analysis 1n [9], for system (7. 1) and (7.2), the actual fusion
estimation error variance Pk 41 satisfies P/ 1 = Pk +1- Moreover, the following
accuracy relation

w(Bfy) =u(Ply) = 2717121 {ir (Ples)} (7.24)

holds, which means that the actual fusion accuracy is higher than that of each local
estimator and has an upper bound tr (P,fﬁrl)

7.4 Simulations

Consider a continuous-time linear stochastic system described by

X1(f) = —0.3x1(t) — 0.1x2(¢) + w(z)
X2() = —0.2x5(¢) — 0.15x3(¢) + 0.5w(r) (7.25)
X3(f) = 0.1x2(7) — 0.25x3(¢) + 0.75w(?)

where x;(f) € R, i = 1,2, 3, are the states of the system, w(t) € N is the process
noise with zero mean and covariance Q,, = 1. A clustered sensor network consisting
of nine sensors is deployed to measure outputs of the system. The sensors are
divided into three clusters, and the numbers of the sensors in each cluster are 2,
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3, and 4. The measurement equations are given by (7.2) with

A" =100], c?=1[010]

c’=n00,c?=[010,cP=[001]
cV=pn00,c? =010, cd=001],c?=[01]
DY =0.1,r=1,23i=12...,n,
The observation noises are zero mean with Q(') 1. The minimum sampling
period of the sensors is A = 1, and the estimation periods of the clusters 1, 2, and
3 are 3s, 4s, and 5, respectively. The maximum time horizons of the allowable
sampled information are §; = 2, 6, = 35, and §3 = 4s. Given the initial local
estimation error covariance matrices P,y = diag{5, 5,5}, r = 1,2, 3. The traces of
the fusion estimation error covariance matrices under different packet dropout rates
are depicted in Fig. 7.2, which shows that a smaller packet dropout rate results in
a better fusion estimation performance. Figure 7.3 shows that the accuracy of the
proposed fusion rule is higher than that of each local estimator. Compared with
the centralized estimation, the performance loss due to the hierarchical network

structure is also shown in Fig.7.3. Figure 7.4 implies that the precisions of local
estimators with multiple samplings are higher than that of single sampling ones.

1.6 ‘ : :
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- -« - packet dropout rate is 0.3

- packet dropout rate is 0.2
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Fig. 7.2 Traces of the fusion estimation error covariance matrices under different packet dropout
rates
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Fig. 7.4 Comparison of the traces of local estimation error covariance matrices with multiple
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7.5 Conclusions

This chapter presents a hierarchical fusion estimator design method for clustered
sensor networks, where local estimators and the fusion center are allowed to be
asynchronous. Optimal local estimators were designed in the minimum variance
sense, and a CI fusion strategy was presented to fuse both local estimates and past
fused estimates.
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Chapter 8
Fusion Estimation for WSNs with Delayed
Measurements

8.1 Introduction

In this chapter, a state fusion estimator design method will be introduced for
multisensor systems with measurement delays, which is usually inevitable in
sensor networks. Due to delays in the measurements, it is difficult to construct
an innovation sequence that is still white Gaussian as usually does in the standard
Kalman filter. Therefore, many research works have been devoted to the design of
optimal linear estimators for time-delay systems by using the innovation analysis
approach and linear matrix inequality approach [1-7]. For the multisensor case,
the information fusion problem has been investigated in [8, 9] for linear stochastic
systems with time-delayed measurements, where the observation delays were
assumed to be constant. Recently, based on the well-known federated filter, a
practical architecture and some algorithms have been discussed in [10] for the
networked data fusion systems with packet losses and variable delays, where one
has to know the accurate time delay over each estimation interval. Most of the
aforementioned results use the measurement augmentation method to deal with
the delayed measurements, which increases the dimension of the measurement
used in the state estimation and ultimately increases computation costs. On the
other hand, the parameters of the system model may not be precisely known in
practical applications due to a number of reasons such as model reduction and
varying parameters. The parameter uncertainties in the system model degrade
the performance of conventional information fusion estimators. Therefore, it is
necessary to develop robust information fusion estimators. However, only a few
results [11-14] were concerned with the robust information fusion problem for
multisensor systems with parameter uncertainties. In [12, 13], the robust information
fusion Kalman filtering problem was investigated for uncertain stochastic systems,
where the deterministic parameter perturbations were considered in the system
matrices. In view of the above consideration, a novel state fusion estimator will
be designed in this chapter for multisensor systems with delayed measurements

© Science Press, Beijing and Springer Science+Business Media Singapore 2016 161
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and parameter uncertainties without resorting to the measurement augmentation
approach. The robust distributed estimator is derived by using the optimal fusion
algorithm weighted by matrices in the linear minimum variance sense, and the
dimension of the designed fusion estimator is the same as the system state, which
helps reduce computation costs as compared with the augmentation method.

8.2 Problem Statement

Consider a discrete-time linear system with stochastic parameter perturbations
described by the following state-space model:

h
xt+1)= (A + ZAlsom(t)) x(t) + T'w(t) (8.1)
B=1
where x(t) € N" is the state; A € N"*" and Ay € N, ¥ = 1,2, ...,k are known

matrices with appropriate dimensions; and I" € %"*! is a constant matrix. The

scalar w(t) is a zero-mean white noise with covariance Q,,. The random sequences
ap(t), 0 = 1,2,...,h are introduced to describe the uncertainty of the system
model; they are of zero mean and with variance 0y and are mutually uncorrelated.

Suppose that L sensors are deployed to monitor the outputs of system (8.1) and
the measurement equations are given by

i(t) = Hix(), i = 1,2,... L (8.2)

where H; € N> are constant matrices. The measurement y;(¢) is transmitted
to the local estimators via communication channels and may be delayed during
transmission. Denote the random time delay in the ith channel as 7;(r) = d;(¢)T,
where T is the sampling period and d;(f) takes values from a finite set {0, 1, ...,d'}.
This means that the delay is assumed to be bounded, and the upper bound is d'.
Due to the random delays, several measurements from sensor i, € 1,2, ..., L may
arrive at the estimator over an estimation interval. It is assumed that only the most
recent measurement from sensor i, i € 1,2,...,L, is adopted to generate a local
state estimate X; and the other measurements from sensor i will be discarded. Then,
the measurement received by the estimator from sensor i is given by

yi(t) = Hx(t — di(1)) + Djv;(1) (8.3)

where v;(¢) is the noise from the communication channel and is assumed to be a
zero-mean white noise with variance R,,.
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The random delay {d;(¢)} is assumed to be i.i.d. (independent and identically
distributed) [15], and the occurrence probabilities of the delays are known a priori
through statistical test, that is,

Prob{d;(t) = £} =}, L =0,1,....d (8.4)

Moreover, the following assumptions are needed in developing the main results.

Assumption 8.1 The random delays d;(f), i = 1,2, ..., L are mutually indepen-
dent and uncorrelated with w(r), v;(¢), and oy (7).

Assumption 8.2 The random variables v;(¢) are uncorrelated with w(f) and oy (7),
and the random correlated variables v;(7), .. ., vy (¢) satisfy

E{v,()v] (1)} = Sy(i # )

Assumption 8.3 Define d = max{d',d?,...,d"}, then the initial states x(—1), t =
0,1,...,d — 1 are uncorrelated with w(r), v;(f), oy (¢), and d;(¢).

Since d;(t) takes only one value in {0, 1,...,d"} randomly over an estimation
interval, the following random binary-valued update function is introduced to
describe the random delays in (8.3):

1, di(t) = K

Ola (=t = 0. dit) £ L e{0,1,...,d} (8.5)
and 0y4,;)=¢; satisfies the following property:
Oldin=t} X Ota(n=t3 = 0, €1 # L2 (8.6)
Then by (8.4) and (8.5), one has
E{o(y)=¢; = 1} = Prob{d;(t) = £} =n;, (8.7)

and the output equation (8.3) can be rewritten as

d

Yilt) = Hi Y 0(a=0x(t — £) + Divi(1) (8.8)
(=0

It can be seen from (8.5) that Y9_, 0(s.¢y=y = 1 if di(r) < d, which means that at
least one measurement will be used by the estimator for generating a state estimate if
the delay d;(f) is under the maximal bound d. In case that the delay d;(7) exceeds the
maximal allowable upper bound d, that is, d;(f) > d, then the packet containing the
measurement will be considered to be lost, and only the noise D;v;(¢) will be used in
generating the state estimates. In this case, one has by (8.5) that Z(Z:o O(ain=0y = 0
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since d;(t) # I. Therefore, one has
d

Y =0 € 0.1}
=0

Let

d d
Prob { ZO’{di(r):(} = 1} = Vi Prob { ZO’{di(r):(} = 0} =1- Yi
(=0 (=0

Then, 1 — y; is defined as the packet loss rate.
Rewriting the state-space model (8.1) as the following compact form

x(t+1) = Ax(r) + 2(¢) (8.9)
where
h
(1) =) Apay (0x(t) + T'w(t)
¥=1
Then, it follows from Assumptions 8.1 and 8.2 that
E{Q2(®)} = 0,E{Q()vi(1)} =0, V1,1

E{Q(NQ2" (1)} =0, Vi #1
E{2()om=0} =0, V1,1 (8.10)

which implies that £2(¢) is a zero-mean white noise and uncorrelated with other
random variables. To calculate the covariance matrix of §2(¢), define

At.1) = E{x()x" (0}

Since oy (f) and w(r) are mutually uncorrelated white noises, A(, f) can be directly
computed as follows:

h
A+ 11+ 1) = AA@ A" + TO T + ) Ay A(t. A} (8.11)
=1
Then the covariance matrix of £2(¢) is given by
A
T =E{Q0RT10)} =) _ 0sAy A(t.DAY + I Q,I'" (8.12)

=1
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In this chapter, the robust information fusion Kalman filtering problem for
multisensor systems is described as follows: first, design a local optimal filter for
system (8.1) based on {y;(1), ..., y;(¢)} such that

}}}i‘n){E(fci(tlt) —x(1)" & (t]n) — x(1)} (8.13)

where X(¢|f) is the local optimal state estimate. Second, design a fusion estimator
with matrix weights in the form

L
Rl =) A0 () (8.14)

i=1

where A, (f), A5 (7)., ...,A.(f) are optimal weighting matrices to be designed such
that the following function

Te(P(1]1)) = Tr(E{(x(t) — X(t0) (x(1) — %(t1)") (8.15)

is minimized, and E{x(¢#|7)} = E{x(¢)}.

Note that the random delay takes values in a finite set, the systems (8.1) and
(8.3) can be transformed into a certain higher-order one by augmenting the mea-
surements, and then the full-order fusion filter may be designed for the augmented
system in a centralized framework by using the results of [11]. However, the
centralized framework by using results of [11] may bring expensive computational
cost and large memory space with the increase of communication delays and the
number of sensors. Therefore, without resorting to the augmentation method, a
recursive information fusion estimator will be designed in the following sections
under the distributed state fusion framework of [16], and the dimension of the fusion
filter is the same as the system state to be estimated.

8.3 Preliminary Results

In this section, some useful lemmas will be provided as follows before presenting
the main results. Define the estimation error as X'(|f) = x(¢;) — X'(#;|f) and the
innovation sequence as &'(f) = y;(t) — y;(t|t — 1), then the following operators
@/ (11.12) = E{F (1) (¥ (12]1) "
GY(1) = E{g'(n(e/ ()"}

are introduced, where %'(t;|¢) is the ith linear minimum variance estimate of state
x(t1) and y;(¢|t — 1) is the ith linear minimum variance estimate of observation y; (7).
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By the definition of the operator @f‘j(z‘l, 1), the local optimal prediction error
covariance matrices are given by

Pit—¢ln 2 H(t—¢.t—¢), ¢ =—1,0,1,....d— 1

while the estimation error cross-covariance matrices between the ith and jth local
estimates are given by

Pi(t—¢l) 2 0t —p.t—¢). ¢ =—1,0,1,....d— 1
Some useful notations are first given as follows.
I (1) = BLe (1) (x(e — 1)}
IT5(t) = B{e" ()@ (1 — Al — 1)"}
(1) = B{F (1= Al = DE(0)")
Ki (1) 2 Efx(t — M)(e'(0) (G (1)
N (1) & it t— A+ 1)
Nu(1) 2 &7t — A+ 1,1)
Na(f) & @Y(t,t — A+ 1)
Ot ) 2 di(t+1—L,t—L—1)
(:)i‘j(t,e) 2ot +1—L1—L—1)

— i A g
O,tH)=0t—Cl—1,t+1-10)

Lemma 8.1 Define
A+ 1—L01—L—1) =Ex(t+1-0Ox"(t—£—1)}
Then for{ =0,1,...,d—1, A(t+ 1 —£,t — £ — 1) satisfies

At+1—Lt—L—1) =AM A -t — 1,1 — L — 1),
t=01,....d—{—1 (8.16)

where A(t — £ — t,t — { — 1) is computed by (8.11).
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Proof Equation (8.16) can be easily followed by the state equation (8.8) and
Assumptions 8.1 and 8.2. The proof is thus completed.

Lemma 8.2 For A = 2,3,...d, Na(t), NA(I), IQIA(I) can be computed by the
following recursive equations:

N () = AN, (1= 1) =K' IT}_, (1) (8.17)
Nu(1) = Nymi (1 = DA™ + K, (0GY (1) (K ()"
—Kj_ ()T o(t) — 1 (1)) (K (1) (8.18)
NA (1) = AN (1 = 1) + K'(DG (1) (K _, (1))
—K ()T 5-1(1) = Mo (1) (K], ()" (8.19)
where Ki(t) = E{x(1)(¢'(1))" W (G (1))~". In particular, when . = 1, one has

Ni(1) = Pi(t]r). Ny(1) = Ny (1) = PY(1]r). (8.20)

Proof By the definitions of N, (¢), N, (1), and I(IA (1), one can easily obtain (8.20)
for A = 1. Moreover, the following recursive equations can be derived by using the
projection theory [17]:

Fe—A+ 1) =30 —A+ 1= 1)+ K, (1)) (8.21)
K5 (1) = E{x(t = 2 + D (') G ()™ (8.22)

Therefore, it follows from (8.21) that

QM t— A+ 1)=& (t,t— A+ 1) =K (@OE{' (t)F(t — A + 1]t — 1)T)}
—E{¥ (1] — D(" ()"} (K;_, ()"
+KI(DELe (1) (" (1)} (K-, ()" (8.23)

By considering
IIi_(t) = E{'@O(x(t — A + 1)1} = E{' (O EEt— A + 1|t — 1)}
and substituting (8.22) into (8.23), one obtains

Qi t—A+ 1)=& (t,t— 1+ 1) =K OI_ (1) (8.24)
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By applying the projection theory [17], one can obtain the following recursive
equations:

Fe+1t4+1) =7+ 1) + K@+ De't+ 1) (8.25)
Ki(t+ 1) = E{x(t + D('(t + 1)THG"(t + 1)) (8.26)

Meanwhile, one can obtain the following equation by taking projection of both sides
of (8.9):

(4 1]t) = AR (] (8.27)
Combining (8.9) and (8.27) yields
Tt + 1)) = AX(t]t) + (1) (8.28)
It follows from (8.28) that
F(tlt—1) =A@ —1t=1) + 2(—1) (8.29)
Then one has by the fact 2(r — 1) L¥(t — A + 1|t — 1) that
O (tt—A+1) =AY (1—1,t— A+ 1) (8.30)

By the definition of Ni (1), (8.17) can be obtained by substituting (8.30) into (8.24).
On the other hand, it follows from (8.25) and (8.21) that

Ot —A+ 1,0 =07 (1— A+ 1,0 — K, (OE{ () (1] — 1)}
—E{& (1 — A+ 1= D) WK @)
+K;_ (OE{E' (0)(¢/ (1)} (K (1) (8.31)

From the similar derivation process of (8.30), one obtains the following recursive
equation:

O (t—A+1,0=07 (t—A+1,1— DAT (8.32)

By the definitions of N, (#), IT,(¢), and IT,(f) and substituting (8.32) into (8.31)
yields

No(t) = Nyoi(t = DAT = Ki_ (0T o(t) — o1 (1) (K (1) "
+Ki_, ()G (K ()" (8.33)
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Moreover, (8.19) can be obtained by following the similar derivation procedures of
(8.33). The proof is thus completed.

Lemma 8.3 For{ =2,3,...,d — 1, the following recursive equations hold
OL(t0) = OL(t— 1.4 — 1) —K|_ ()}, () (8.34)
0 (0 =0 (—1,0-1)— Kl (0T -1 (1)
M4 (DK, () + Ky (OGTO K, (0) (835)
(:)ij(t, 0) = (:)i;i(t — 16— 1) =K} (DT g4(1)
~IT (0K ()" + K (0GY(O(K . (0)" (836)
Meanwhile, one can obtain the following equations for £ = 0, 1

OL(1,0) = AN (1), ©L(t,1) = Ni_ (1)
O+(1,0) = AN 11(1). O (1. 1) = N 1(1) (8.37)
O.(t,0) = AN, 11 (1), O.(t.1) = Neja(£)

where © = 0,1,...,d — £ — 1, Ni (1), Ny(1) and N; (1) are calculated by (8.17),
(8.18), and (8.19), respectively.

Proof When E' =0or = 1, the results in (8.37) can be given from the definitions

) ~ i iy
of ®L(t,£), ©, (t,£), and O _ (¢, £). On the other hand, it follows from the similar
derivation process of (8.24) that

Ol ) = (t+1—L,t—L—1) =K\ (DT}, (1) (8.38)

Then by the definition of ® (7, £), (8.34) can be obtained from (8.38).

The derivation processes for (8.35) and (8.36) are similar to the proof of (8.34),
and they are thus omitted. This completes the proof.

Lemma 8.4 For A =2,3,...,d — 1, the following recursive equations
O (1= L,1—2) = (Niy _; (r = A)T
A—1
=S K| (=) __(t1—¢) (8.39)
c=1
A—1

B (1= 1=2) =Nepat—=2) = Y AK]_ (1= )T (t—¢)}
=1
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>~
L

K|_ (1= §)G(t — ) (K,_ (1— <))

+
i1

A—1

(Moo= 1D)(K,_ (1—5) '} (8.40)
¢=1

O (1= t—0) =Neg1a(t=2) = Y {K}__(t— ) (t— )}
=1
A—1 ' 3 ) T
+) K (t=6)GY(t— o) (K)_(t—¢))

=1
A—1 ) T

(-t = D(K|_ (1)) } (8.41)
=1

hold, and for . = 1, the following equations

O (t—L.1—1) = Nyt —1)T
,_1(t— , —1)=Nz(f—1) (8.42)
O (1 —1,1—0) = N(r—1)

are true, where L = A +1,....,d, N2+1—A(I_M’ N4+1_A(t—k), and I:IZ+1_A(I—A)
are computed by (8.17), (8.18), and (8.19), respectively.

Proof For A = 1, (8.42) can be easily obtained from the definitions of Na (0, I(IA (1)

and N (). For the other cases, the following recursive equations can be derived by
using the similar derivation processes of (8.24) and (8.31):

D (t—L.1—}) =D 'g (=1 =2) =K (t—)T;__(t—¢) (8.43)
O (1= L1 =) =B (1=t —=2) —K|_ (1= )T (t =)
—M (= DK, _ (=)
(=Gt =) (K,_ (t—5)" (8.44)
O (1= At =) =B [ (1=A 1 =) —Ky_ (1= )T (t =)
—IT) (e — 1)(K12_§ (t—)"

+K,_ (1 = )G (1= ) (K (1—¢)" (8.45)
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On the other hand, it follows from the definitions of Ni (0, I(IA (1), and ﬁl (¢) that

O (L t—2) = (N, (t— )T
O (t—L.t—21) =Npgralt— 1) (8.46)
@7 (t= At =) = Ny (t = A)

Then, (8.39), (8.40), and (8.41) can be derived from (8.43), (8.44), and (8.45). The
proof is thus completed.

8.4 Robust Information Fusion Kalman Estimator

Based on Lemmas 8.1, 8.2, 8.3, and 8.4, the optimal local estimator is given in the
following theorem:

Theorem 8.1 For systems (8.1) and (8.3) with Assumptions 8.1, 8.2, and 8.3 and
given parameters 0 < ﬂé <1, £ = 0,1,...,d satisfying Zi=1 rré <1, i=
1,2, ..., L, the ith optimal local recursive linear estimator is given by

R+ 1+ 1) = AV + K (t + Dyt + 1) — m HAF (1]1)

d
=Y i HE (41—} (8.47)
(=1

Ki(t+1) = {n{P(t+ 1|)HT
d . . ..
+> ngAN;(t)H,.T} (GHi(t+1)7!
=1

Pi(t+1t+1) =P+ 1) =K@+ 1) (8.48)
d T
X{N(’;Pi(t + 1UnH] + 3 m AN, (nH]
(=1
Pi(t+ 1]t) = AP/ (t|HAT + X (1)

G+ 1) = 3 {(el) HiP (e + 1 — L HT)
=0

d
+ Y {7 (1 —a)H A+ 1—L, 1+ 1—0)H}
=0
d—1 . .
+ Y Mt 4 1) + (Mi(t + 1))} + DiR,, DT (8.49)
(=
My (t + 1) = m,H; Zo Tyyoq1O: (1 OH,

Cod—-1—t
—m,H; Z:o Ty AC+1 =Lt —L—0)H!
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. A A'_l . .
Me—A) =X@—Alt=2) + ZOK’A_g(t —5)Et=¢)
‘=

: . Al : (8.50)
P(t—Alt) =P (t—Alt— 1) — ZOK;_g(t - _ (1=¢)
=

A=1,2,....d—1

=t =) = T, _ (1= ) (G (1)) (8.51)
Ar—1

I () = Y wHiO) ) (t—1.0)¢ + ) HiP'(t— |t —1)

=0

d
+1 Y mH® (t—Lt—A)p. A =12.....d-1 (852
{=X1+1

where NQ (1), OL(1,£) and QD:’il(t —L,t — L) are computed by (8.17), (8.34), and

(8.39), respectively. X (t) and A(t + 1 —{£,t — { — 1) are calculated by (8.11) and
(8.16), respectively.

Proof The third equation in (8.48) can be derived from the fact £2(f) Lx'(¢|¢) that
Pi(t+ 1]t) = AP (t|nA" + X (1) (8.53)
Taking projection of both sides of the output equation (8.3) yields
S d. .
yi(t + 1|t) = gl Hx'(t + 1|1) + Zgl T HX (41— L) (8.54)

Therefore, (8.47) can be obtained by substituting (8.27) and (8.54) into (8.25).

The innovation sequence &'(7 + 1) can be rewritten in the form

d

gt +1) = H Y (Otaurn=0 —m)x(t+1—10)
£=0

d
G HE (¢ + 1[0 + H; Y mE (e + 1—Ln)
(=1

+Djvi(r + 1) (8.55)

By Assumptions 8.1, 8.2, and 8.3, one has
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It follows from the facts (r + 1]£) Lx'(t + 1 — £]t), vi(t + 1) L& (¢ + 1]2), vi(t +
1) L¥ (¢ + 1]7) that

d
E(x(t+ DE @+ 1) =Y mjdfi(t+ 1.1+ 1 - OH]
=1

+r Pt + 1|)H] (8.57)
and it can be derived from (8.28) and the fact £2(¢) LX'(r + 1 — £|f) that
QH(t+1,t+1—40) =AD/(t,t + 1 1) (8.58)
Then substituting (8.58) into (8.57) leads to

d
E{x(t+ DE@+ 1)} =Y mAd} (t.t + 1 — OH]
(=1

+r Pt + 1|)H] (8.59)
By the definition of Na (1), the first equation in (8.48) can be derived by substituting
(8.59) into (8.26). Subsequently, the second equation of (8.48) can be easily

obtained from (8.47) and the first equation of (8.48).
Moreover, it follows from (8.55) and (8.56) that

d
GH(r+1) = Y {(x) HiP't + 1 — (InH]}

£=0
d
+ ) A (1= a)DHAG+1— L1+ 1= OH}
£=0
d—1 T
+ ) M+ 1) + (Mi(t + 1)) } + DiRy,D; (8.60)
£=0
where
d—1—¢
Myt +1) = mH; Y 7wy B (t+ 1= L.t —L—)H] — 7}H
=0
d—1—{
X Y Ty Bt 1= Ox"(t— £ — 1)}H] (8.61)

=0
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Then, by the definitions of @! (¢,£) and A(t+1—4,1—{—1), (8.49) can be obtained
from (8.60) and (8.61).

Derivation procedures for ¥ (f — A|¢) and P'(t — A|f) are presented as follows. By
using projection theory, one has

H—At—g) =R —At—g—1)+K\_(1—5)e'(t—¢) (8.62)
which leads to
Pt=At—g) =P —Alt—g = 1) =K,_ (t—)Tj__(t—5) (8.63)
where
Ki_ (1=¢) =E{(x(t =2 +5)('(t =) }G"(t =) (8.64)
then by the definition of [T i (1), (8.51) can be obtained from (8.64).
Note that ¥(t — A|t — ¢ — 1) and P'(t — A|t — ¢ — 1) are, respectively, the estimate
and estimation error covariance at instant one step before X'(t — A + 1|t — ¢) and
Pi(t — A + 1|t — ¢). Then, one can obtain (8.50) from (8.62) and (8.63).

Since the set {IT; (1), Ay = 1,2,...,d — 1} is the same as the set {Hi_g(l -
¢), ¢ =0,1,...,A1 — 1}, then from the definition of Hi'l (1), one has

d
I (6 = > w{H;®)! (1 — L.t — Ay)
£=0

Al_l P
=Y mH®D (1€ t— L)
=0

+7} HiP'(t — M|t — 1)
d Py
T D mH® (== h) (8.65)
(=1+1
For 0 < ¢ < Ay — 1, it follows from the definition of @i (¢,€) that
O (=Lt =) = Oy, (t—1.0)

Then, substituting the above equation into (8.65) yields (8.51). The proof is thus
completed.

The computation procedures of the local optimal estimator by using Theorem 8.1
is summarized as follows:
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Algorithm 8.1 Given the initial values P/(—d + 1|0),..., P (0]0), x(—d +
1),...,x(0), ¥(—d + 1]0),...,%(0|0), [T (0), ..., IT;_,(0), and N (0), ..., N%(0).

Stepl. FromA=d—1tod=1,&" (t—L,t—d+1), ..., D (t—L,1—1),
£ =A+1,...,d are computed by (8.39).

Step 2. Compute I1 i (1) by substituting (8.39) into (8.52), then K’l ®, r =
1,2,...,d — 11is calculated by substituting (8.52) into (8.51).

Step 3. Compute N;'{(t), £ = 1,2,...,d by substituting (8.51) and (8.52) into
(8.17), while ¥(t — A|f) and Pi(t — Al), A = 1,2,...,d — 1 are calculated by
substituting (8.51) and (8.52) into (8.50).

Step 4. Compute O (z,0) and @' (¢, 1) by substituting (8.12) into the first equation
of (8.37), then based on the obtained @!(7,0) and ®.(z,1), @i (1,£), L =
1,2,...,d — 1 are calculated by substituting (8.51) and (8.52) into (8.34).

Step 5. Compute Mf{(t+ 1), £ =1,2,...,d— 1 by substituting (8.16) and (8.34)
into the second equation of (8.49), then G*'(¢ + 1) is calculated by substituting
the second equation of (8.50) and Mf{ (t + 1) into the first equation of (8.49).

Step 6.  Compute K'(¢ 4 1) by substituting (8.17) and the first equation of (8.49)
into the first equation of (8.48), while P!(+1|¢) is calculated by the third equation
of (8.48). Then Pi(t + 1|t + 1) is computed by substituting Ki( + 1), Pi(t + 1|1),
and (8.17) into the second equation of (8.48).

Step 7. Compute the local optimal state estimate ¥(t + 1|t + 1) by substituting
Ki(¢ + 1) and X (¢t — A|t) into (8.47).

Based on the local estimates obtained by Theorem 8.1, the optimal state fusion
estimator with matrix weights will be presented in the following theorem. The proof
is similar to that given in [16] and is omitted for brevity:

Theorem 8.2 For systems (8.1) and (8.3), the robust distributed state fusion
estimator is given by

L
() =) A0F (10 (8.66)

i=1

A = ¥ OLUIY () ™! (8.67)
where
A(D) = [A1(0), ..., AL(D)]T e ;JrLxn

Iy =[I,....I,]" € ="

P (t|r) PY2(t]r) - PUE(e|n)
P>L(t|t) P>2(t]t) --- P>L(1]r)

l]l(t) c ?ﬁannL

Pl PL(l) -+ LGl
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Moreover, the corresponding error covariance matrix of the fusion estimator is
given by P(1|t) = (IZW =1 (1)1o) ™" which satisfies

P(tt) < Pi(tlr), i=1,2,...,L

It can be seen from Theorem 8.2 that one has to compute the estimation error cross-
covariance P, i,j € {1,2,...,L} in the design of the fusion estimators, and the
computation procedures are given in the following theorem.

Theorem 8.3 For given parameters 0 < ]Té <l,¢=0,1,....d,i=1,2,---,L
satisfying ZZ:I Jté < 1, the estimation error cross-covariance matrix between the
ith and the jth sensor subsystems at time instant t + 1 is computed recursively by

P+ 1+ 1) = PY(r+ 1) —K(t+1)
d -
X {HéHiPi=j(t+ 1)+ > néHiNz(t)AT}
(=1

o d . -
- %rr(’)P"’(t +1DH + X HéAN{(l)H;F} (8.68)
(=1 ’
X(Ki(t + )T + Ki(t + 1)G¥(r + DK (t + 1))"
P (1 + 1]7) = APH(t|NAT + 2 (1)
d .
GY(t+1) =Y {mjmH:PY(t— L+ 1[DH]}
{=0
d—1 ‘ d—(—1 ) i
+Y 7miH; Y Al O, (L OH]
(= =0
'd—l—l Cij
tm) Y iy HiO, (G OHT Y + DiS;D] (8.69)
=0
A—1 _
PUE= A1) = PP = 21 =2) = YK, (1= ) Tag 1= )
s=0

—K}__(1~ )Gt~ )(K)_ (1—5)

T (0= ) (K (t—g))T} A=1.2,....d—1 (8.70)
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m, (1) = 112__2)1 TIHO — 41y (1 — 1,5)}
+ :r_ilHiP"J(t—mt— 1)
+ f ngH,-quil(z—e,t—Al)§
L=A1+1
I, () = 112__2)1 jré(:))‘l—((+l)(t — l,ﬁ)HjT§ (8.71)

+ 7, P (t — Ayt — DHT

=141
AM=12,...,d-1

d P
+9 > Jrédﬁ;’_ll(t—kl,t—ﬁ)l-le}

where Ki(t 4+ 1) and Kﬁ_g (t — ¢) are computed by (8.48) and (8.51), respectively,

while N; (1), Ny (), O (t,£), O, (t,£), @7 (t— £, 1 — A) and D (1 — A, 1 — ) are
computed by (8.18), (8.19), (8.35), (8.36), (8.40), and (8.41), respectively.

Proof Equations (8.70) and (8.71) can be obtained by following the similar
derivation procedures in (8.50) and (8.52), respectively. On the other hand, it follows
from (8.53) that
PY(t+ 1t 4+ 1) = PY(t+ 1)) —K'(t + DE{e'(t + DF(r + 1]1)T}
—E{F (@ + 1)+ 1)K @+ 1)T
+Ki(r + DE{'(r + D (/(t + 1) I (r + 1)T (8.72)

By Assumptions 8.1, 8.2, and 8.3, it follows from the similar derivation procedures
in (8.59) that

Mot + 1) = E{ei(t + D + 1|1)T}
d

= mpHPY( A+ 1n) + 3 7 Hi® (1= £+ 1 )AT
. ‘ o= (8.73)
Mot + 1) = EF @+ (e + 1)T

d
= m)P(t + nHT + El TADH (1,1 — €+ DH]

Hence, by the definitions of Ng(t) and I:I((t), the first equation in (8.68) can be
obtained by substituting (8.73) into (8.72). Meanwhile, the second equation in (8.68)
can be derived from (8.28) and the facts §2(¢) Lx'(¢|¢) and £2(¢) L¥(¢|1).
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For i # j, it is easy to verify from Assumptions 8.1 and 8.2 that

E{(o,0)=0.3 — ”él)(a{dj(f)=lz} - ”éz)} =0 (8.74)
E{vivj} = Slj

Then, the following equation can be obtained from (8.55) and (8.74):

d
GY(t+1) =Y mimHPY(t— L + 1|)H]

£=0
d—1 _ _
+DiSyDT + Y AM(t + 1) + My(r + 1)} (8.75)
£=0
where
d—{—1

~ . . i
Mf(t + 1) = ]TéHi Z né+t+l@t (tv K)PIJT
=0

d—(—1 ..
- . . — b
M+ D) =m{ > 7y HO, (t.0)¢ H
=0

Then, substituting the above equations into (8.75) leads to (8.71). The proof is
completed.

The computation procedures for the estimation error cross-covariance matrix by
using Theorem 8.3 are similar to Algorithm 8.1, and thus the detailed steps are
omitted here.

To discuss the computational complexities of the proposed estimator design
method, it is the number of multiplications and divisions that is used as the operation
count. Let CK denote the number of multiplications and divisions. Note that the
algorithm by Theorem 8.2 can be summarized as follows:

(i) Compute the local optimal estimates X, i = 1,2,...,L using Theo-
rem 8.1;
(ii) Compute the error cross-covariance matrices P (¢|f),i = 1,2,...,L,j = i,i+

1,...,L by applying Theorem 8.3;
(iii) Compute the optimal state fusion estimate x(¢|f) by applying Theorem 8.2.

It is easy to know the total CK number of obtaining X(#|¢), for one step, denoted by
CK,, is given by

L
CK, = Y _{nm'(1 + m)d® + ((n* + Dm' + Tn’m’

i=1

+@2(m'")? —mn)d + (m' + 2)n> + (1 + 2m')n* + m'n}
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LI—1)/2
+ Z {(®m' + nm' + 3n°)d* + (n*m!’
i=1

+3(m)n + 2m'n — 3n®)d + 4n® + m'n(1 + n)}
+{20°L% + 30’1 + Ln*} (8.76)

For the computational complexity function CK,, the highest power of d is 2,
which implies that the computational cost has been largely increased because of
the time delay when the number of sensors is fixed. Meanwhile, denote CK, as the
computational complexity function for the augmentation approach, then the CK,, is
of magnitude O(d*). Therefore, when the upper bound of the delay d is sufficiently
large, it is easy to know that CK, > CK,. On the other hand, it follows from (8.76)
that CK, is of magnitude O(L?), which implies that as the number of the sensors
increases, the computation cost will increase rapidly.

The distributed state fusion estimator X(¢|f) obtained from Theorem 8.2 is
computed off-line as it only depends on the upper bounds and the occurrence
probabilities of delays at each step.

8.5 Simulations

In this section, two examples are presented to illustrate the effectiveness and
applicability of the proposed fusion estimator. Throughout this section, the trace of
estimation error covariance matrix is selected to specify the estimation performance.

Example 8.1 Consider the following state-space model with stochastic parameter
perturbations [11]:

xt+1)=@A+A101(0)x(t) + T'w(r) (8.77)
where
A= 0.30.7 A = 0.1 0.05 = 1
0.2 0.6 0.2 0.1 0.5
and w(f) and «4(¢) are zero-mean white noises with covariances Q,, and 6,

respectively. Two sensors are deployed to measure the outputs of system (8.77),
and the observations received by the fusion center are given by

% y1(t) = Hix(t — di(t)) + Dyvi(2) (8.78)
y2(t) = Hox(t — da(t)) + Dyv2(2) .
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where
H =[051],H, =[11],D; =0.5,D, =0.2

and v (7) and v,(¢) are correlated Gaussian white noises satisfying

v1(2) | Ry, S12
E{[Uz(l):| [ vz(t)]} B |:512 sz}
Suppose that dy(f) € {0,1,2} and d,(¢¥) € {0,1,2}, i.e., d = 2, then (8.78) is

rewritten in the form

2
yi() = Hi Y 0ga,y=03x(t — £) + Dyvy (1)

0 (8.79)
y2(t) = Hz 3 0(a,y=3x(t — £) + Dova(t)
(=0
where
2
> {otw=0} € {1.0}. Prob{ogp= = 1} = 7}
(=0
Then, the measurement receiving probability y; is given by y; = Z%:o ]Té, and

the measurement loss rate is 1 — y;. Define the average measurement receiving
probability of all the sensors as follows:

L
1
' = 3 > v (8.80)
i=1

Choose Q,, = 0.1, R,, = R,, = 0.3, S = 0, 6; = 0.1. Suppose that the
occurrence probabilities of the delays are 71(% = 0.70, 7111 = 0.15, JTZl = 0.10,

7} = 0.65, 77 = 0.15, and 77 = 0.05. Then, one has y; = 0.95 and y, = 0.85.

To verify the effectiveness of the proposed estimator design method, the robust
information fusion estimator x(z|z) for systems (8.77) and (8.78) are shown in
Fig.8.1, while the estimation performance is depicted in Fig. 8.2. It can be seen
from Figs. 8.1 and 8.2 that the estimator provides satisfactory performance and the
precision of the fusion estimator is higher than that of the local optimal estimators.

To demonstrate the advantage of the proposed estimator, its estimation perfor-
mance is compared with that of the robust estimator in [11], where the communica-
tion delays were not considered. Using the approach in [11], the measurements will
be regarded to be lost if they are not collected on time. Therefore, all the delayed
measurements are considered to be missed, and the measurement receiving rate y;
equals né, i.e., y1 = 0.70 and y, = 0.65. Denote the estimation error covariance
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Fig. 8.1 The state x(¢) and its fusion estimate x(¢|¢)
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Fig. 8.2 The estimation performance of local optimal estimators and fusion estimator

matrix of [11] by P°(¢|f), then by using Theorem 1 of [11] and Theorem 8.3,
respectively, the relationship between Tr(P(t|f)) and Tr(P°(t|t)) is depicted in
Fig. 8.3. It can be seen from Fig. 8.3 that the performance of the proposed estimator
is better than that of the centralized estimator in [11].
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Fig. 8.3 The estimation performance of the proposed estimator and the centralized estimator in

(11]

Table 8.1 The relationship between the steady-state values of Tr(P(¢|f)) and the average mea-
surements receiving rate y°

y0 0.90 0.85 0.80 0.75 0.70

S —Tr(P) 0.2283 0.2670 0.2704 0.3030 0.3336

In what follows, the relationships between the average measurements receiving
rate and the information fusion estimation performance will be presented by sim-
ulations. By applying Theorem 8.3, one obtains the information fusion estimation
performance with respect to different average measurements receiving rate y° as
shown in Table 8.1, where S —Tr(P) denotes the steady-state values of Tr(P(¢|¢)).
It can be seen from Table 8.1 that the estimation performance becomes better with
the increase of the average measurements receiving rate, which indicates that large
measurement delays degrade the estimation performance.

Example 8.2 Consider a radar tracking system with two sensors
1 Ty —0.10.1 0.5T}
r+1) = )¢ x(f O lw(@ (8.81
TR P B8 [t EACTFECRY R O
yi(t) = yi(t)Hix(t — dl(l)) + Ui(t), i=1,2 (8.82)
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where
Hy =[10], Hy =[01]

T? is the sampling period. The state consists of the position s(¢) and the velocity §(f)
of the moving target as follows:

s
= [s(r)}

a1 (1) and w(f) are zero-mean white scalar noises with covariances 0.1 and 0.3,
respectively. vy (f) and v,(f) are zero-mean white noises with covariances 0.2 and
0.3, respectively. Suppose that d;(¢) € {0, 1,2,3} and d»(¢) € {0, 1,2}, then d = 3.
Fori = 1,2, (8.82) can be rewritten as

yi(t) = H{o(a,m=03x(1) + 0(g,y=13x(t — 1)
+0(a1=23X(t — 2) + 0(aq,)=33x(t — 3)} + vi(?)

where 0¢4,()=0}» O(d;(=1} O{d;()=2} > and0Oyy,;)=3} are binary random variables satis-
fying

Prob{a{dl(,)=0}: 1} =O.5,Pr0b{o{dl(,)=1}= 1} =0.2
PI‘Ob{O'{dl(,)=2}: 1} :O.I,Prob{(f{dl(,):3}: 1} =0.1
PI‘Ob{O'{dz(,)=0}: 1} :O.4,Prob{0{d2(,):1}: 1} =0.2
PI‘Ob{O'{dz(,)=2}: 1} :O.Z,Prob{o{dz(,):3}: 1} =0

then

y1 = Prob{y;(r) = 1} = 0.9
y, = Prob{y,(t) =1} = 0.8

The objective is to estimate the position and velocity of the moving target system
(8.81) when Ty = 0.04.

The local optimal estimates X' (¢|f) and 3(¢|f) are computed by applying The-
orem 8.1, while the fusion estimate x(¢|f) is computed recursively by applying
Theorems 8.2 and 8.3. The state x() and its estimate X(¢|¢) are depicted in Fig. 8.4.
It can be seen from Fig. 8.4 that the estimate x(¢]¢) is close to the state x(¢), which
indicates that the proposed estimator provides satisfactory estimation performance.
The estimation performance is shown in Fig. 8.5, and the estimation precision of the
fusion estimator is higher than that of the local optimal estimator.
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8.6 Conclusions

In

this chapter, the robust state fusion estimation problem was investigated for

multisensor systems with randomly delayed measurements and stochastic parameter
uncertainties. Multiple binary random variables with known statistical properties
were introduced to model the delayed measurements. Both robust local estimators
and state fusion estimators were designed without resorting to the measurement
augmentation method.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Zhang H, Xie L, Zhang D, Soh YC (2004) A reorganized innovation approach to linear

estimation. IEEE Trans Autom Control 49(10):1810-1814

. Chen B, YuL, Zhang WA (2011) Robust Kalman filtering for uncertain state delay systems with

random observation delays and missing measurements. IET Control Theory Appl 5(17):1945-
1954

. Dong H, Wang Z, Gao H (2010) Robust H filtering for a class of nonlinear networked

systems with multiple stochastic communication delays and packet dropouts. IEEE Trans
Signal Process 58(4):1957-1966

. Zhang H, Feng G, Han C (2011) Linear estimation for random delay systems. Syst Control

Lett 60(7):450-459

. Zhang H, Feng G, Duan G, Lu X (2006) H filtering for multiple-time-delay measurements.

IEEE Trans Signal Process 54(5):1681-1688

.MaL, DaF, Zhang KJ (2011) Exponential Hx filter design for discrete time-delay stochastic

systems with markovian jump parameters and missing measurements. IEEE Trans Circuits
Syst-I Regul Pap 58(5):994-1007

. Yang F, Wang Z, Feng G, Liu X (2009) Robust filtering with randomly varying sensor delay:

the finite-horizon case. IEEE Trans Circuits Syst-I Regul Pap 56(3):664—672

. Sun XJ, Deng ZL (2009) Information fusion wiener filter for the multisensor multichannel

ARMA signals with time-delayed measurements. IET Signal Process 3(5):403—415

. Lv N, Sun SL (2009) Scalar-weighted fusion estimators for systems with multiple sensors and

multiple delayed measurements. In: Proceedings of IEEE conference on decision and control,
Shanghai, Dec 2009, pp 7599-7602

Xia Y, Shang J, Chen J, Liu GP (2009) Networked data fusion with packet losses and variable
delays. IEEE Trans Syst Man Cybern B Cybern 39(5):1107-1120

Hounkpevi FO, Yaz EE (2007) Robust minimum variance linear state estimators for multiple
sensors with different failure rates. Automatica 43(7):1274-1280

Ahmad A, Gani M, Yang F (2008) Decentralized robust Kalman filtering for uncertain
stochastic systems over heterogeneous sensor networks. Signal Process 88(8):1919-1928
Wang Z, Zhen Z, Zhang H, Chen Z (2009) Robust information fusion filtering method
for discrete-time linear uncertain system. In: IEEE international conference on control and
automation, Christchurch, Dec 2009, pp 1734-1738

Feng J, Wang Z, Zeng M (2013) Distributed weighted robust Kalman filter fusion for uncertain
systems with autocorrelated and cross-correlated noises. Inf Fusion 14(1):78-86

Gao H, Meng X, Chen T (2008) Stabilization of networked control systems with a new delay
characterization. IEEE Trans Autom Control 53(9):2142-2148

Sun SL, Deng ZL (2004) Multi-sensor optimal information fusion Kalman filter. Automatica
40(6):1017-1023

Kailath T, Syayed AH, Hassibi B (2000) Linear estimation. Prentice Hall, Upper Saddle River



Chapter 9
Fusion Estimation for WSNs with Delays
and Packet Losses

9.1 Introduction

Communication delays and packet losses are usually unavoidable in sensor networks
and should be taken into consideration in the estimator design. Both centralized and
distributed fusion estimation methods have been presented in [1-3] for multisensor
fusion estimation systems with delays or packet losses. To deal with the delays and
packet losses simultaneously, the centralized fusion estimators have been designed
in [4, 5] by using Kalman filtering and linear matrix inequality approaches, and
the distributed fusion estimation algorithm was developed in [6] based on the
well-known federated Kalman filtering approach. In [5, 6], the time-varying delay
was identified by using the time-stamp method over each estimation interval, and
exact values of the time delays should be known to update the estimator gain
matrices online. Different from the delay models in [4-6], the distributed fusion
Kalman filtering problem was investigated in [7] by assuming that the occurrence
probabilities of delays were known a priori, and the filter gains can be computed
off-line.

In this chapter, a distributed state fusion estimator is designed for sensor networks
with random time delays and packet losses. First, a local optimal estimator is
designed by taking missing measurements into consideration. Then, a distributed
state fusion estimator is designed by fusion local estimates which may be delayed
and lost during transmission from the local estimators to the fusion center. Some
sufficient conditions are derived such that the MSE of the designed distributed state
fusion estimator is bounded or convergent, and it is proved that the designed fusion
estimator does not depend on the choice of the initial values. Moreover, a design
method for the steady-state fusion estimator is also presented.

Throughout this chapter, it will be considered that [ F(r) = I, and

=11

32 _G(r) = 0if 7y > 1), where F(r) and G(t) represent different matrix

=1

functions with respect to the variable t.
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9.2 Problem Statement

The distributed fusion estimation problem for a class of multisensor systems is
shown in Fig.9.1, where all the sensors are synchronized and have the same
measurement sampling rates. The dynamics of the system to be monitored and the
measurement equations of the L sensors are given by

x(t+ 1) = A@)x(t) + T (H)w(r) 9.1)
yvi(t) = i) Ci(O)xi(t) + vi (1), i=1,2,...,L 9.2)

where x(f) € N" is the state of the system and y;(rf) € NR% is the measured
output from sensor i. w(t) € NP and v;(f) € R¥ are zero-mean white noises with
covariances Q,,(f) > 0 and Q,, () > 0, respectively, and are mutually uncorrelated.
A(t) € WP, (1) € R™P, and Ci(f) € N4™" are time-varying matrices. The binary
stochastic variable y;(¢), which is used to describe the missing phenomenon of the
sensor measurement, is a Bernoulli distributed white sequence taking values of 1
and 0 with Prob{y;(r) = 1} =y; and Prob{y;(r) = 0} =1 — y; [8], where 1 — y;
is called the measurement missing rate. It is assumed that each sensor has enough
processing capabilities to compute the optimal local state estimate of x(¢) based on
the measurements {y;(1), ..., yi(r)}. For the ith subsystem (which is described by
(9.1) and y;(t)), the local Kalman filter is given by (Corollary 1 in [7]):

Li(tln) = (L — yiKd() G (D))A(r — DXt — 1] — 1) + Ki(@)yi(2)
Ki(r) = yiPy; () C] () {yiCi(0) [yiPy; (1)
+(1 = y) ADIC (1) + Qv (1)} 9.3)
Pi(tlt) = [, — yiKi() Ci ()] P (1) .
P;() =A(t—DPu(t—1t—DATt— 1)+ T'(t—1)

where

F—1)2It— 10— DIT@E—1)

| |
Local ! !
estimator | |
| |
: | |
. Loca | | Fusion
Linear > R > | | >
hasti estimator | | center
stochastic — . I network |
| |
System . | |
. | |
| |
Local ! !
estimator | |
| |

Fig. 9.1 A distributed fusion estimation system with delays and packet losses
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and A(1) 2 E{x(1)x" ()} is computed by
At =AGt—DAGt—DATt— D)+ @t—1) 9.4)

The estimation error cross-covariance matrix Py(t|¢) is defined by

Py(tlt) 2 E {(x() — £(10) (x(0) — 3(112)")
and it is calculated by:

Py(t]t) = [I, — yiKi()) Ci()][A(r — 1) Py(r — 1]t — 1)
xAT(t = 1) + I'(t = D[, — y, KO C;(0)]" 9.5)

When the local estimates x;(¢|f) are available, they are then transmitted to the
fusion center through communication networks for generating a fusion estimate,
where delay and packet loss may happen during transmissions. Denote the random
delay in the ith local estimate as d;(), and the random delay is assumed to be upper
bounded and take values in a finite set as follows

di(t) e {di(m) 20,d+ 121, dit+din) =2 di} (9.6)

where d;(t + £|t)(€ € {0, 1,--- , d;}) denotes that the local estimate x;(z|7) is delayed
by £ sampling periods and d; represents the upper bound of the random delay.
Moreover, the stochastic process {d;()} is assumed to be i.i.d. (independent and
identically distributed), and the occurrence probabilities of the delays are known a
priori through statistical test, that is,

Prob{d;(t) = £} = 7, £ = 0,1,...,d, 9.7)
where 711’{' is a positive scalar and ZZ; 0 Jrz; = 1. In the fusion center, there are L
different buffers that store the corresponding local estimates. Due to the random
transmission delays, multiple local estimates from a same sensor may arrive at the
fusion center over an fusion estimation interval. Therefore, it is assumed that the
local estimates x;(¢t]f), i = 1,2,...,L are time stamped before being transmitted,
and then similar to the signal storing mechanism in [9], each buffer stores the most
recent local estimate from a sensor and discards the others according to the time
stamps. Therefore, if multiple local estimates from a same sensor arrive at the fusion
center over an estimation interval, then the fusion center selects only one local from
the following set:

Si(?) ES {%i@t)0), Xt — 1t —1),..., x5t —di|t — d;)} (9.8)
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Let X/ (¢|t) denote the local reorganized state estimate that is adopted by the fusion
center, then x7(#[f) can be computed by

l
() = (]‘[ At — f)) it =Lt —10)

=1

if the adopted local estimate at time ¢ is x;(t — €]t — £), £ € {1,2,...,d;}. On the
other hand, if no local estimate arrives at the fusion center over the fusion estimation
interval, then the local reorganized state estimate %] (¢|f) will be compensated by one-
step prediction as &} (r — 1|t — 1).

Introducing the following indicator functions to describe the random delays

1 ifdi(r) = ¢

. —n = ,0=0,1,....4d; 9.9
T+ =8 10 if d() £ ¢ ©-9)
where o(g,¢+en=e3, £ = 0,1,...,d; satisfy
di
Oty = =1
go (=63 (9.10)

Oldy+taln=t} X Odii+toln=63 = 0, L1 # £s

Therefore, it follows from (9.8), (9.9), and (9.10) that the local reorganized estimate
X[(t]?) is given by

dl' J4
ACOEDY g i (1) (]‘[ At — z)) Xt — )t — z)§

(=0 =1
FB(NA(t — DF(t— 1]t — 1) 9.11)

where the binary random variables oz;; (1) € {0, 1} and B;(¢) € {0, 1} are defined by

-1
i A
ay(t) = § [T —U{dl-<rr—n>=n})} Old(thi—0)=0)
n=0 § (9.12)

Iz=0

d;
Bi(n) = { [T (I = 0laui—n)=n})

where aé () = 1 means that the local estimate selected by the fusion center is
X;(t — £|t — £) at time 7. Then it is derived from (9.10) that

d;
ap(t) x Bit) = 0, Y {0} + Bi(t) = 1 9.13)

£=0
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On the other hand, it follows from (9.6) and (9.7) that
Prob{d;(t + £|t) = £} = n}
then one has by the statistical property of d;(¢) and (9.12) that
. A -1 : .
E{o;(n} = )= {nl_[=0 1- n;1)§ T,

d; .
E(Bi(0)} = Bi= [] 1 —7')

=0

(9.14)

Note that 8;(f) = 1 means that no local estimates from sensor i arrive at the fusion
center at time ; thus, the packet loss rate of the ith channel is given by ;. Moreover,
it follows from the well-known arithmetic-geometric average inequality that §; <

4\t
a+1 :

Assumption 9.1 The random variables y;(¢) and d;(¢), i = 1,2, ..., L are mutually
independent and uncorrelated with w(z) and v;(t).

Then, the problem to be solved in this chapter is described as follows:
(1) Find a group of optimal weighting matrices £2;(¢), ..., $2.(¢) such that the

L
MSE of the fusion estimator X(f) = Y £2;(r)x{(¢]¢) is optimal, that is,
i=1

(3(0), 21(1), ... 200} = arg min E{(x(1) — £.(1))" (x(t) — (1))}

LB = Y 2O, 320 =1, ©.15)
i=1 i=1

(2) Find some sufficient conditions for the MSE of the fusion estimator in (9.15) to
be bounded or convergent.

9.3 Design of Finite-Horizon Fusion Estimator

Define ¢;(1) £ x(t) — X/ (t|r); then, it follows from Lemma 2.4 that the dis-
tributed fusion estimation performance is optimal if and only if the matrix weights
(1), ...,82.(¢) for (9.15) are determined by

[21(1), 22(0)..... 2.0 = (G 27 (O1) " [g Z7H(0) (9.16)
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where
I A 1, ___In]T e gRnLxn
D) 2Ef ) - O] @) - e[ )]}
and Z,'L=1 2;(t) = I,. Thus, the designed fusion estimator is unbiased when
E{x[ (1]} = E{x(r)}, i = 1,2,..., L. The fusion estimation error covariance matrix

P(1) £ E{(x(t) — £(1))(x(1) — £(1))} is calculated by
P(t) = (I; 27 (O1p) ™! 9.17)

In what follows, the recursive form of X(¢) will be given to obtain the optimal
weighting matrices. Before presenting the main results, three useful lemmas are
given as follows.

Lemma 9.1 The binary random variables o (t), £ = 0,1,....d; and Bi(t), i =
1,2,..., L satisfy:

ol (Dol (t—1) =0, d; = k1 > kot =0,1,....6 — 1 (9.18)

d,' di—l
[[pGc—o =0, (]"[ Bi(t — ‘C)) al(t—d) =0 (9.19)
=0 =0
Ol;:{l()lzz ifi=j,n>4+1
ay oy, ifi #j, ¥n
; B ifi=jt>di+1 (9.20)

ElB:(Nal (t—1)} = &

B0 (1= 1)} {&%zﬁi¢ﬁwl
Zl € {0,1,...,d,’}, Ez € {0,1,...,61]'}

E {a;;l(t)agz(t— tl)} - {

where Olé and B; are computed by (9.14).
Proof Equations (9.18) and (9.19) can be directly obtained from (9.10) and (9.12).
For ¢/ € {0,1,...,d;} and &, € {0,1,...,d;}, it follows from (9.6), (9.9),
Assumption 9.1, and the statistical property of d;(f) that
E {U{di(tH’; 10=13% ;1 +zf'2|t1)=zf'2}} =E {U{di(tH’i \t)=l’i}} E {U{di(n+z§\tl)=z§}}
{i=j,t#n}or{i #j,Vt 1}

Then, (9.20) is obtained from the above result, (9.12) and (9.13).
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Lemma 9.2 For the random variables ©;'(t) and ©, (t) with the following forms

J4
> Ti(w), 0<€<d

CHOES S/ 0.21)
Z TZ(‘Q), di+1<£<2d;—1
=0
d =1 -1
Yoo+ X Yo+ [ Bit—¢2), 1 <L <d
AU PR . 022
> Ti(gs), di+1<t<2d—1
53=0

where TZ(‘L’) and ?Z(g) are defined by

l—t—1
Oli([—e‘i‘f) l_[ ﬂi(t—fl), OEE Ed,
iy A = (—di+7—1
O =N ai —t—ctd) 1 Al—w), ©.23)

3=0

di+1<€<2d—1

d . l—¢c—1
(Z O‘il(f—e+§)) [[ Bit—g1). 0<L=<4d;

o A k=g s1=0
7,(5) = d ts—di—1 (9.24)
> oa,t—t—c+d)] I Bilt—ga),
ky=di—¢ c4=0
di+1<{<2d—1
The statistical correlations between the random variables @f"(z‘), { = 0,1,

oo 2di — 1, x € {x, w} satisfy
O (. ) 2E{OL 0L 0] =E{6f M}, ti =6
O (t.6) 2 E {@f{'(t)@f; (t)} =0. 6 #6 (9.25)
O (t, 1) 2 E{O: (001 (0] =0, o> £

A Xi Xj XX XX
05t £2) 2 E{O] (0010} = 07 (1, £) O (12, 1)

xw A Xi Wi XX ww (926)
O (L, 1) 2 {0} (00} ()] = OF (L1, )0} (b2, L)

where E{@Z; ®)}, x € {x,w} can be determined by (9.13) and (9.20).



194 9 Fusion Estimation for WSNs with Delays and Packet Losses

Proof Tt can be obtained from (9.13) and (9.18) that

LEOHTLE) =0 [h=borl # 2] o [0 £ LVTL2] g
THETLE =0, [6= s £ 6 or [t £ 6. 6]

$2=0

. d; . -1
T, (YT (s =0, (k;/ Ol/io(t)) [l Bit—52) =0

o di RN = (9.28)
Y@ X o0 =07 () [] Bit—52) =0
ko=1{> 52=0
Ez > 61,Vr1,g1
Then, it follows from (9.27) and (9.28) that
@Zl"(t)@g(t) = @fl"(t), by =1, x € {x,w}
(9.29)

O (NOF (1) =0, £y # Lo, x € {x, w}
Oy (O (1) =0, £y > £,

Therefore, (9.25) is obtained from (9.29). Meanwhile, (9.26) can be derived from
(9.20), (9.21), and (9.22).

Lemma 9.3 Define
Wy(t1.12) = E 4T [1)F (1))}

®i(t.1) = E {xi(t1|)w' (1)}

then one has

t1—th—1
qf,‘j(l‘l,l‘z) = ( ]_[ ['Y}(tl,K)A(tl —{— 1)]) Pij(tzltz), Hh>tn (9.30)

Hh—h—2
@it 1) = ( ZI;IO [Yi(t1, OA(n — €1 — 1)]) Ti(n.t — 1) 9.31)
xI'(t)0w(t2), t1 > 1

where Yi(t1,£) = I, — yiKi(t; — £)Ci(t; — £).
Proof For t; > t,, it follows from (9.1) and (9.3) that the local estimation error

%(t1]1) 2 x(ty) — (1) is calculated by

t—tr—1

%i(t|n) =< I1 m(rl,z)A(rl—e—m) %i(na|)

£=0
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hy
+ Z {(]‘[ [Yi(t1, €At — €1 — 1)])

hi=1 £1=0

XYty hy — D)t — h))w(t — A1)}

n—t—1 [hy—1
- Z {(H Yi(t, 52)) [(vi(t — h2) — ) Ci(t — h2)

ha=0 \L=0
xx(t — ha) + Ki(t1 — ho)vi(t) — ho)]} (9.32)
By taking the facts X;(¢|t) Lw(t") (t' > 1), %;(¢|t) Lv;(*) (£* > t), and Assumption 9.1
into account, (9.30) and (9.31) follow from (9.32).
Theorem 9.1 For given parameters y;, i = 1,2,...,L, and 0 < ]Té < 1 satisfying

. : . . . . A
Z?‘:o 7, = 1, the local estimation error covariance matrix X;(t) = E{ei(t)el (1)}
is calculated by

2di—1 14
Zi) = Y {050 (]_[ Ar — r)) Pi(t— L)t —{)
=0 =1

{—1
oM (L, L) (]_[ At — z))

=1

()5

-1 T
x [(t— E)(l—[ A(t— z)) } (9.33)

=1

where O (L, E) and O (L, £) are computed by (9.25), P;i(t—L|t—{) are calculated
by (9.3), and F(t — 1) is defined in (9.3). Moreover, the estimation error cross-

covariance matrix X(t) 2 E{e,-(t)ejT(t)} is given by

2d—1 l
i) = Y {050 (]_[ At — r)) Py(t— L)t —0)
=0 =1
¢ T 2d—1 -1
x(l_[A(t— f)) } + Y oo (l_[A(t— f))
=1 =1 =1

-1 T 2d—2
xﬁ(t—e)(]_[A(t— z)) } +y

=1 =0

(o

=1

T
x &J(1) + "”(t)(]_[A(t—r)) } (9.34)
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where d = max{d;.d;}, O} (1) = 0, ©}"(t) = 0 (¢; > 2d; — 1) and @g(t) =

0, @/ (1) = 0 (& > 2d; — 1), Py(t]1) is calculated by (9.5), while 8J(t) and & (1)
are computed by

2d—2—L
El= > 105U L—h—D)We—L1—L—h—1)
A=0

{+h+1 T
<[ T] A¢—t) | +05¢.t—t—-1)di(t—L.1

71=1

{+h T
——h—1)I -t - 1)(]_[ A(t—tl)) (9.35)

Il=l

. 2d—2—¢ C+h+1
E(1) = Z {@y(@ —h—-10 ( l_[ At — rl))

h=0 11=1

xWT(t— Lt —L—h—1)+ Ol —h—1.0)

{+h
<[ []AC=m) r(t—e—l)q)jT(t—ﬁ—h—1,t—e)} (9.36)

71=1

where Wii(t = £,t —€ —h — 1) and &;(t — £, t — L —h — 1) are computed by (9.30)
and (9.31), while @;;"(El, £5) and @;W(Zl, {>) are determined by (9.26). Moreover,
the relationship between the optimal fusion estimator x(t) and local reorganized
estimate X (t|t) is given by

Tr{P(1)} < Tr{Zu(1)} (9.37)
Proof Tt follows from (9.1), (9.11), and (9.13) that

d; l
e(t) =) {a;(t) |:x(t) - (]_[ At — r)) Rt — €t — e)]}

=0 =1
+BiO() =A@ — DXt — 11— 1)] (9.38)



9.3 Design of Finite-Horizon Fusion Estimator 197

Then, it follows from (9.19) that (9.38) is equivalent to

2d;—1 1
POEDIREAC! (]_[ Alt— r)) Tt — )t — z)}
=0 =1
2d;—1 —1
+Y oy [[ac—w) | re—owe—10 (9.39)
(=1 71=1

where ©,'(¢) and ®,"(¢) are defined by (9.21) and (9.22), respectively. Meanwhile,
it follows from Assumption 9.1 that

E{O} (0%i(1 — L1|t — L)X (1 — Lo, 1 — ) O} (1)} (9.40)

= OF (b, L)Wt — b1 —b) .
where ©;({1,{), Vi,jis obtained from Lemma 9.2 and ¥;(t — {1, 1 —£>) (£ < {>)
is computed by using (9.30). Note that it follows from (9.30) that

lI/ij(l‘—El,t—ez) = lI{;(t—Kz,t—Kl), Ly >,

By taking the fact x;(t— €, t—£1) Lw(t—4£3), €1 > £5,i € {1,2,..., L} into account,
(9.33) is obtained from (9.25), (9.39), and (9.40), while (9.34) is derived from (9.26),
(9.39), and (9.40). Moreover, at time ¢, the fusion estimation error covariance matrix
for x(7) is computed by (9.17), and the local estimation error covariance matrix for
XI(t]?) is calculated by (9.33), and then (9.37) is obtained from the result of [10].
This completes the proof.

Based on Theorem 9.1, the computation procedures for the fusion estimate x(r)
are summarized as follows:

Algorithm 9.1 Forgiveny;, i=1,2,...,Land0 < Jfé < 1 satisfying Z?i:o Jfé =
1, one can determine the parameters @;;X(zl,ez)(;( € {x,w}), @ ((1,42),i =
1,2,...,L, @;;X(ﬁl,ez), and @j}w(ﬁl,ﬁz), j=1i,i+1,...,Lbyusing Lemma9.2.

Step 1. Calculate the local estimates x;(z|f), the error variance matrices P;;(t|t),
and P;(#|7)(i # j) by using (9.3) and (9.5).

Step 2. Calculate the local reorganized estimates £} (|7) by substituting x;(r —£|t —
£),£=0,1,...,d;into (9.11).

Step 3. Calculate Wj;(t1, ;) and @;(t1, 12) by (9.30) and (9.31).

Step 4.  Calculate X;(¢) by substituting Py;(t[t), ¥j(t1, ) and @;(ty, 1) into (9.33)
and (9.34).

Step 5. Calculate £21(¢), ..., £2.(¢) by substituting Xj;(7) into (9.16).

Step 6. Calculate the optimal fusion estimate x(7) by substituting £2,(¢), .. .,
2,(1), and £/ (t]1) into £(r) = S, 2i(OF/ (1]2).
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In [4-6], the estimator gain matrices should be computed online as they need
to know the delay exactly at each step. Different from these results, it is known
from (9.16) and Theorem 9.1 that the optimal matrix weights £2,(¢), i = 1,2,...,L
are independent of the sequences of the measurements and the local reorganized
estimates. Therefore, the optimal matrix weights can be computed off-line or at the
fusion center, which helps reduce the computational complexity of the fusion center
and the communication traffic between the sensors and the fusion center.

9.4 Stability Analysis for the Fusion Estimator

First, it is considered that the stochastic system (9.1) is uniformly completely
controllable, i.e., there exist an integer N > 0 and positive scalars p; and p,, such
that the following inequality

k
piln <Y AL)NT (DT T (DAL (2.)) < pal, (9.41)
j=t=N+1

holds for t > N, where A.(t,j) satisfies

=

Aty = [TAC= 0O > ). AcG.)) = 1, (9.42)
(=1
Act)) =A7'G. 1< (9.43)

Theorem 9.2 Consider the optimal fusion estimator for systems (9.1) and (9.2),
where the system (9.1) is uniformly completely controllable. If

(C2.1) For(Q < y; < 1, there exist an integer Ny > 0 and a positive matrix Ay
such that A(t) < Ag (t > Ny).

(C2.2) There exist an integer N > Ny > 0 and positive scalars p3 and py such
that the following inequality

o3, <Mi(t =N+ 1,0) < pal,, i=1,2,... L (9.44)

holds for t > N, where the stochastic observability matrix M;(t — Ny + 1,1) is
computed by

1
M;(t —N; + 1,1) = y? AT, 0CT(G)ly:
(t—Ni ) yj:r—ZMH{ (. 0C (Dly 9.45)

x(1 =y Ci()ACT (j) + Qo (DI CiDA(). 1)}
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where A (1,)) is given by (9.43). Then, the MSE of the designed fusion estimate x(t)
is bounded, i.e., there exist a scalar py > 0 such that

Tr{P(D)} < po (9.46)
Moreover, the following equation

lim Pi(t) = lim P»(7) (9.47)
—>00 —>00
always holds, where P\(t) and P,(t) are any fusion estimation error covariance

matrices with different initial conditions.

Proof The measurement equation (9.2) can be rewritten as
yi(t) = yiCi(D)xi(1) + 0:(2) (9.48)

where 0;(t) = (yi(t) — y:)Ci(t)x(t) + v;(¢). Then, it follows from the statistical
characteristics of y;(r) and v;(¢) that 0;(¢) is a zero-mean white noise with covariance
0;,(1) = vi(1 = y)Ci(H A@)Ci(1) + Oy, (1). Moreover, the stochastic observation
matrix I\A/If./" (t— N + 1,1) of the systems (9.1) and (9.48) is given by

t

M-N+ 1=y Y {AIGCT (O (DCALD]  (949)
j=t—N+1

Then, it is concluded from (9.49) and C2.2 that
p3ly <MI(t =Ny + 1.1) < pily. 1> Ny (9.50)

Under the conditions (9.41) and (9.50), it follows from Theorem 7.4 in [11]
that the local estimate X;(¢|f) is uniformly asymptotically stable and the local
optimal estimation error covariance matrix Pj;(t|t) is independent of the initial value
P;;(0]0) > 0 as t goes to co. Moreover, it follows from Lemma 7.1 in [11] that if
(9.41) and (9.50) hold, the covariance matrix P;;(¢|f) will be bounded. Then, (9.46)
is obtained from (9.37).

L - A . . .
On the other hand, the local estimation error X;(f|f) = x(f) —x;(¢|¢) is equivalent to

Xi(tt) = Xi(t,t — Dxi(t — 1t — 1) + Xi(t,t — 1)
xA*(t— 1) — Dw(r—1) — Ki(H)vi(2) (9.51)

where A*(¢) satisfies A(r)A*(t) = I, and

Xi(t.t— 1) 2 [I, — yiKi() Ci (DAt — 1)
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is the state-transition matrix of the estimator. Then, the estimation error cross-
covariance matrix (9.5) is rewritten as

Py(t|) = Xi(t, t — D[Pyt — 1]t — 1)
+A* (1= D= DA = DX (1= 1) (9.52)

Let Pilj(t|t) and P?i(t|t) denote any covariance matrices with initial conditions

Pilj(0|0) and Pizj(0|0), respectively; then, APj(z) 2 Pilj(tl 1) — P%j(ﬂ 1) is computed by
APy(1) = Xi(t.t = DAPy(t — DX] (1,1 = 1)
which yields
AP;(t) = Xi(t. 1) APy(1)X] (£, 1) (t > 1 = 0) (9.53)

For the state-transition matrices X;(z,#;) and X;(t, ) of the local estimates, it can
be derived from the results in [11] that there exist ¢; > 0 and ¢, > 0 such that

X (1, tie) || < creme21) (9.54)
|12, 1) || < creme2070) '

holds for ¢ > #;«. Then, it follows from (9.53) and (9.54) that
[ AP0 || < IXit ) | APy (1) | [|X] (2 t1) | = cte207%) (9.55)

and thus H AP(1) || — 0 as t — oo, which implies that the estimation error cross-
covariance matrix (9.52) is independent of the initial conditions.

It can be concluded from the above analysis that the covariance matrices P;;(|t)
and Pj(t|t) are independent of the initial conditions. On the other hand, it follows
from (9.17) that the fusion estimation error covariance matrix P() is dependent on
Pi(tlt),i = 1,2,...,Land Py(t|t), j = i + 1,..., L. Thus, the covariance matrix
P(¢) is independent of the initial conditions, which implies that (9.47) holds. This
completes the proof.

For the systems (9.1) and (9.2) with constant system matrices, i.e., the systems
(9.1) and (9.2) reduce to

x(t+ 1) = Ax(¢) + T'w(r) 9.56)
yi(t) = inix(t) + l_)i(l), i=1,2,... L ’

where w() and v;(7) 2 (yi(®) — y:)Cix(t) + v;(¢) are zero-mean white noises with

covariances Q,, and Qz, (1) = y;(1 — y;)C;A(t)C]" + Q,,, respectively. Then, (9.41)
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is equivalent to
rank([[L AL, ...,A"™'I')) =n (9.57)

which implies that system (9.56) is completely controllable.

Theorem 9.3 Consider the optimal fusion estimator for systems (9.56) with (9.57).
If each observation matrix C;, measurement missing rate 1 — y;, and the system
matrix A satisfy

—1<2Anx@) <1, 0<y <1 (9.58)
rank(y;[ CT (CA)T - -- €A1 =n (9.59)

then for any initial values P;(0|0) > 0, i = 1,2,...,L and P;(0/0), j = i +

1,...,L, the fusion estimation error covariance matrix P(t) converges to a unique

positive-definite matrix, i.e., lim P(t) = P. Under this condition, the steady-state
—>00

fusion estimator for systems (9.56) is given by

L
50 = X 280, 2= lim ()
N o0

i=1
Rl = (U~ KCHAR (1 — 11 = 1) + Kyyi(0) (0.60)
K; = lim K,‘(l‘)
—>00
Proof For the system (9.56), it follows from (9.4) that
—1
A@) = A'AQ0)AN + Y AT, (A" (9.61)

k=0

Then, one has by (9.58) and (9.61) that tgm A(t) = A. Let A;(t) and A,(¢) denote
o0
any state covariance matrices with initial values A;(0) and A,(0), respectively, and
then AA 2 Aq(f) — Ay(1) is computed by AA(f) = A’AA(0)(A")T. Taking the
above equation and (9.58) into account yields tlim AA(f) = 0, which means that
—00

the limit A is the unique solution of (9.4). Following this fact, one obtains
t1—1>120 Ql_li(t) =0y = yi(l— VZ)CZAC;F + Oy,

This implies that there exist an integer Top > 0 such that the equation Qj, () =
Qj, holds for all + > Ty. Under this conditions, (9.59) is equivalent to C2.2 for
t € [Ty, 00); then, it follows from Theorem 9.2 that the covariance matrices P(7),
P;i(t|t) and Py;(¢|t) for the systems (9.56) are independent of any initial condition.

On the other hand, it is well known that if the conditions (9.57) and (9.59) hold
for ¢ > Ty, then each local estimate £;(¢|¢) for the systems (9.56) will be stable, and
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A .

P;; = lim Pj;(¢) must be the unique steady-state value of the sequence {P;(¢|t)}.
—>00

Following the above facts, the gain matrix K;(z) converges to a steady-state value,
i.e., lim K;(f) = K, and the limit K; is also independent of any initial condition.

—0o0

. Y A .

Therefore, the state-transition matrix X;(t) = [I, — K;(f)C;]A of each local estimate
for systems (9.56) converges to a unique steady-state value. Moreover, the limit

&AL O . L.
X; = lim X;(7) is a stable matrix, i.e.,
—> 00

1< dmX) <1,i=1,2,...,L (9.62)
Meanwhile, it follows from (9.52) that P;;(¢|f) for (9.56) can be rewritten as
Py(tl) = Xi@)[Py(t — 11t = 1) + A* T 0, (A" "IX] (1) (9.63)

Following the similar derivations of Theorem 9.2, it is derived from (9.62) and
(9.63) that lim Pj(t|t) = Pj. Therefore, it is concluded from the above analysis
—>00

that the fusion estimation error covariance matrix P(#) for systems (9.56) converges
to a unique positive-definite matrix. Under this condition, the steady-state fusion
estimate for the systems (9.56) can be given by (9.60). The proof is thus completed.

The optimal matrix weights of the steady-state fusion estimator (9.59) are not
required to be calculated at each step; thus, the steady-state fusion estimator is
easy to be implemented in practices. On the other hand, for the multisensor fusion
estimation system without missing measurements, it can be seen from Theorems 9.2
and 9.3 that if the conditions (9.41), (9.44) (or (9.57), and (9.59)) hold, then the MSE
of the designed fusion estimator will be bounded or convergent.

9.5 Simulations

Consider a networked multisensor fusion estimation system with two sensors, where
the system parameters in (9.1) and (9.2) are given by [12]

T 2
At) = [éﬂ re= [O'STT }
Ci=C=05hL

Qw(l‘) = 0.5, Qvl(t) = [005 002:| ’ sz(t) = |:008 003i|

Y1 = 0.90, Y2 = 0.85

where T is the sampling period. The state of system (9.1) is x(t) = [s(¢) 5(1)]T,
where s(7) and §(¢) are, respectively, the position and velocity of the moving target
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Fig. 9.2 Trajectories of the system state x() and the fusion estimate x(7)

at time ¢. For T = 0.5, it is assumed that d;(r) € {0,1,2}, i = 1,2; then, the
occurrence probabilities of delays are taken as ]Té = 0.4, Jfll = 0.3, JT21 = 0.3,
Jfg = 0.5, JT12 = 04, JT22 = 0.1. Under this condition, the local reorganized state
estimates x7(#]), i = 1,2 are calculated by (9.11). To verify the effectiveness of the
proposed fusion estimator in Algorithm 9.1, the trajectories of the state x(¢) and the
fusion estimate x(¢) are shown in Fig.9.2a, b, which shows that the designed fusion
estimator is able to track the maneuvering target well. Moreover, the estimation
performance (assessed by the trace of the estimation error covariance matrix) of
local reorganized state estimates x/ (), i = 1,2 and the fusion estimate x(¢) is
depicted in Fig.9.3; then, it can be seen from these figures that the performance
of the fusion estimator is better than that of the local estimators. Meanwhile, the
relations between the fusion estimation performance and the measurement missing
rates are plotted in Figs. 9.4 and 9.5, which shows that the estimation performance
degrades as the measurement missing rate increases.

On the other hand, it can be verified that the conditions (9.57) and (9.59) hold for
y1 = y» = 1; then, by using Theorem 9.3, the fusion estimation error covariance
matrix P(f) converges to the unique positive matrix, and the steady-state fusion
estimates X;(f) exists for this estimation system without missing measurements.
Moreover, one obtains the following parameters for the steady-state estimators by
applying Algorithm 9.1:

. — [024910.2211 _ [0.24140.2263

"7 0.0884 0.6263 |2 T | 0.0848 0.5562 ©.64)
[0.5961 —0.0679:| [ 0.4039 0.0679} :
1= 5 2 =

0.0611 0.3795 —0.0611 0.6205
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Fig. 9.4 The relationship between measurements loss rate and the performance of the fusion

estimator (y; =0.9)

Then, the steady-state estimate x(¢) is calculated by substituting (9.64) into (9.60).
The trajectories of x(¢) and X, (¢) are depicted in Fig. 9.6a, b, which shows that the
steady-state estimator also performs well. Moreover, the trajectories of Tr(P(¢)),
Tr{X1(?)}, and Tr{X»(r)} are plotted in Fig.9.7a by applying Algorithm 9.1, and
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Fig. 9.5 The relationship between measurements loss rate and the performance of the fusion

estimator (y, = 0.95)
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Fig. 9.6 The trajectories of x(f) and steady-state fusion estimate X;(7)

then it can be seen from the figure that the MSE of the designed fusion estimator
converges to a steady-state value very fast. To compare the estimation performance
between the finite-horizon estimator and the steady-state estimator, the trajectories

A, N . R .
of ¢"(t) = x(f) — X;(¢) are depicted in Fig.9.7b, which shows that the steady-state
estimator provides a estimation precision that is very close to the finite-horizon

estimator.
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performance; (b): The errors between the finite-horizon fusion estimates x() and the steady-date
fusion estimates x,(7)

9.6 Conclusions

In this chapter, the distributed fusion estimation problem has been investigated for a
class of networked multisensor fusion systems with time delays and packet losses.
By using the optimal fusion algorithm weighted by matrices, an optimal recursive
state fusion estimator has been designed in the linear minimum variance sense.
Moreover, some sufficient conditions were given such that the MSE of the designed
fusion estimator is bounded or convergent.
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