$$
\begin{gathered}
\text { FORMULAS } \\
\text { FOR } \\
\text { STRESS, STRAIN, } \\
\text { AND } \\
\text { STRUCTURAL } \\
\text { MATRICES } \\
\text { mem }
\end{gathered}
$$

WALTER D. PIL.KEY

FORMULAS FOR STRESS, STRAIN, AND STRUCTURAL MATRICES

SECOND EDITION

Walter D. Pilkey

University of Virginia
School of Engineering and Applied Science
Department of Mechanical and Aerospace Engineering
Charlottesville, Virginia

This book is printed on acid-free paper. \propto
Copyright © 2005 by John Wiley \& Sons, Inc. All rights reserved.
Published by John Wiley \& Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Pilkey, Walter D.
Formulas for stress, strain, and structural matrices / Walter D.
Pilkey.- 2nd ed.
p. cm.

Includes index.
ISBN 0-471-03221-2 (cloth)

1. Strains and stresses-Tables. 2. Structural analysis
(Engineering)-Tables. 3. Structural analysis (Engineering-Computer
programs. I. Title.
TA407.2 P55 2004
$624.1^{\prime} 76^{\prime} 0212 — \mathrm{dc} 22$
2003025749

To Larry and Debbie

If the facts don't fit the theory, change the facts.
Albert Einstein

C H A P T E R

Introduction

1.1 Notation 1
1.2 Conversion Factors 2
1.3 Sign Conventions and Consistent Units 2
1.4 SI Units 2
1.5 Typical Design Loads and Stresses 2
Tables 3

In this era of computers, general-purpose structural analysis computer programs are available to the engineer. However, many structures are configured so that they are analyzed more accurately as structural members than as three-dimensional systems using a general-purpose computer program. For example, because of the geometry of a train freight car, with its relatively long length and its cross section, which is symmetric about a longitudinal axis, the modeling problem can be reduced from that of a three-dimensional structure to a one-dimensional longitudinal and a twodimensional cross-sectional analysis. These two uncoupled analyses can be treated as structural member problems that can be solved with stress-strain formulas or simple member analyses. It is the purpose of this book to provide in compact form the formulas or the analysis procedure to treat such member problems.

This book should help meet the need for engineers to have simple, accurate, and comprehensive formulas for stress analysis. The tables permit a problem to be modeled realistically and to be solved accurately.

1.1 NOTATION

The notation used in the formulas is defined in each chapter. Certain symbols are common to several chapters. Occasionally, singularity functions are employed to assist in the concise expression of formulas,

$$
<x-a>^{n}= \begin{cases}0 & \text { if } x<a \tag{1.1}\\ (x-a)^{n} & \text { if } x \geq a\end{cases}
$$

$$
\begin{align*}
<x-a>^{0} & = \begin{cases}0 & \text { if } x<a \\
1 & \text { if } x \geq a\end{cases} \tag{1.2}\\
f<x-a> & = \begin{cases}0 & \text { if } x<a \\
f(x-a) & \text { if } x \geq a\end{cases} \tag{1.3}
\end{align*}
$$

where $f(x-a)$ is a function of $x-a$.

1.2 CONVERSION FACTORS

Some useful conversion factors are provided in Table 1-1.

1.3 SIGN CONVENTIONS AND CONSISTENT UNITS

The sign conventions for the formulas are always evident in that the given formula corresponds to the loading direction shown. An applied load in the opposite direction requires that the load be given a negative sign in the formula.

No units are assigned to any variables in the formulas. Any consistent units can be employed. Some examples of consistent units are listed in Table 1-2.

1.4 SI UNITS

The International System (SI) of units is described in Table 1-3, where useful prefixes are provided. Some factors for conversion to SI units are shown in Table 1-4. Metric conversions for some commonly occurring variables are given in Table 1-5 along with some rounded-off figures that may be easy to remember. These are referred to as recognition figures and can be useful in quick calculations. Table 1-6 is similar to Table 1-5 but deals with conversions to the U.S. Customary System.

1.5 TYPICAL DESIGN LOADS AND STRESSES

Table 1-7 provides several typical design loads as well as values of material constants and allowable stresses.

Tables

1-1 Conversion Factors 4
1-2 Consistent Units
1-3 International System (SI) of Units7
1-4 Conversion to SI Units91-5 Common Conversion Factors and SI Recognition Figures12
1-6 Common Conversion Factors and U.S. Customary Recognition Figures 13
1-7 Typical Values of Design Loads, Material Properties, and Allowable Stresses 14

TABLE 1-1 CONVERSION FACTORS

Multiply:	By:	To Obtain:
acre	0.4047	ha
acre	4047	m^{2}
atm	29.92	inch of mercury ($32^{\circ} \mathrm{F}$)
atm	101,300	$\mathrm{N} / \mathrm{m}^{2}$ (Pa)
atm	14.70	$\mathrm{lb} / \mathrm{in}^{2}$ (psi)
Btu/h	12.96	$\mathrm{ft}-\mathrm{lb} / \mathrm{min}$
cm / s	1.969	$\mathrm{ft} / \mathrm{min}$
$\mathrm{cm} / \mathrm{s}\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	0.010	$\mathrm{m} / \mathrm{s}\left(\mathrm{m} / \mathrm{s}^{2}\right)$
cm / s	0.6	$\mathrm{m} / \mathrm{min}$
$\mathrm{cm} / \mathrm{s}\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	0.0328	$\mathrm{ft} / \mathrm{s}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$
$\mathrm{cm} / \mathrm{s}\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	0.3937	in./s (in./s ${ }^{2}$)
$\mathrm{cm} / \mathrm{s}^{2}$	0.00102	g
circular mil	0.7854	mil^{2}
$\mathrm{cm}^{3} / \mathrm{s}$	0.002119	$\mathrm{ft}^{3} /$ min
cup	0.24	L (liter)
$\mathrm{ft}^{3} / \mathrm{min}$	471.9	$\mathrm{cm}^{3} / \mathrm{s}$
$\mathrm{ft}^{3} / \mathrm{min}$	0.1247	$\mathrm{gal} / \mathrm{s}$
$\mathrm{ft}^{3} /$ min	0.4719	L/s
$\mathrm{ft}^{3} / \mathrm{s}$	448.8	$\mathrm{gal} / \mathrm{min}$
degree (degree/s)	0.01745	$\mathrm{rad}(\mathrm{rad} / \mathrm{s})$
degree	0.00273	rev
dyne	10^{-5}	N
dyne	0.000002248	lb
fathom	1.829	m
ft	0.3048	m
foot of water ($60^{\circ} \mathrm{F}$)	0.8843	inch of mercury ($60^{\circ} \mathrm{F}$)
foot of water ($60^{\circ} \mathrm{F}$)	2986	$\mathrm{N} / \mathrm{m}^{2}$
foot of water ($60^{\circ} \mathrm{F}$)	0.4331	$\mathrm{lb} / \mathrm{in}^{2}$
$\mathrm{ft} / \mathrm{min}$	0.508	cm / s
$\mathrm{ft} / \mathrm{min}$	0.01136	mi / h
$\mathrm{ft} / \mathrm{s}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$	12	in./s (in./s ${ }^{2}$)
$\mathrm{ft} / \mathrm{s}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$	30.48	$\mathrm{cm} / \mathrm{s}\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
$\mathrm{ft} / \mathrm{s}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$	0.3048	$\mathrm{m} / \mathrm{s}\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{ft} / \mathrm{s}^{2}$	0.0311	g
ft / s	1.097	km/h
ft / s	0.5925	knot
$\mathrm{ft}-\mathrm{lb} / \mathrm{s}$	0.07716	Btu/min
ft -lb	1.356	$\mathrm{N} \cdot \mathrm{m}$
fluid ounce	29.57	mL
g (acceleration of gravity at sea level)	32.16	$\mathrm{ft} / \mathrm{s}^{2}$
g	386	in./s ${ }^{2}$
g	980	$\mathrm{cm} / \mathrm{s}^{2}$
g	9.80	$\mathrm{m} / \mathrm{s}^{2}$

TABLE 1-1 (continued) CONVERSION FACTORS

Multiply:	By:	To Obtain:
gal	3.8	L
gallon of water ($60^{\circ} \mathrm{F}$)	8.345	pound of water ($60^{\circ} \mathrm{F}$)
$\mathrm{gal} / \mathrm{s}$	8.021	$\mathrm{ft}^{3} / \mathrm{min}$
gal/s	227.1	L/min
g	980.7	dyne
$\mathrm{g} / \mathrm{cm}^{3}$	9807	$\mathrm{N} / \mathrm{m}^{3}$
$\mathrm{g} / \mathrm{cm}^{2}$	98.07	$\mathrm{N} / \mathrm{m}^{2}$
ha	2.471	acre
ha	10^{4}	m^{2}
hp	1.014	hp (metric)
hp (metric)	0.9863	hp (horsepower)
Hz	1	cycle/s, rev/s
Hz	6.283	rad/s
Hz	360	degree/s
in.	0.0254	m
inch of mercury ($32^{\circ} \mathrm{F}$)	0.03342	atm
inch of mercury ($60^{\circ} \mathrm{F}$)	1.131	foot of water ($60^{\circ} \mathrm{F}$)
inch of mercury ($60^{\circ} \mathrm{F}$)	3376	$\mathrm{N} / \mathrm{m}^{2}$
inch of mercury ($60^{\circ} \mathrm{F}$)	0.4898	$\mathrm{lb} / \mathrm{in}^{2}$
inch of water ($60^{\circ} \mathrm{F}$)	0.03609	$\mathrm{lb} / \mathrm{in}^{2}$
in./s (in./s ${ }^{2}$)	0.0833	$\mathrm{ft} / \mathrm{s}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$
in./s (in./s ${ }^{2}$)	2.540	$\mathrm{cm} / \mathrm{s}\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
in./s (in./s ${ }^{2}$)	0.0254	$\mathrm{m} / \mathrm{s}\left(\mathrm{m} / \mathrm{s}^{2}\right)$
in./s ${ }^{2}$	0.00259	g (acceleration of gravity)
kg	9.807	N
kg	0.6852177	slug
km/h	0.9113	ft / s
knot	1.688	ft / s
knot	1.151	mi / h
L	2.1134	pint
L	1.0567	quart
L	0.2642	gal
L/min	0.004403	$\mathrm{gal} / \mathrm{s}$
mL	0.0338	fluid ounce
m	0.1988	rod
$\mathrm{m} / \mathrm{min}$	1.667	cm / s
$\mathrm{m} / \mathrm{s}\left(\mathrm{m} / \mathrm{s}^{2}\right)$	3.28	$\mathrm{ft} / \mathrm{s}\left(\mathrm{ft} / \mathrm{s}^{2}\right)$
$\mathrm{m} / \mathrm{s}\left(\mathrm{m} / \mathrm{s}^{2}\right)$	39.37	in./s (in./s ${ }^{2}$)
$\mathrm{m} / \mathrm{s}\left(\mathrm{m} / \mathrm{s}^{2}\right)$	100	$\mathrm{cm} / \mathrm{s}\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
m / s	2.2369	mi / h
$\mathrm{m} / \mathrm{s}^{2}$	0.102	g (acceleration of gravity)
mil	0.001	in.
mil^{2}	1.273	circular mil
mi / h	88.0	$\mathrm{ft} / \mathrm{min}$

TABLE 1-1 (continued) CONVERSION FACTORS		
Multiply:	By:	To Obtain:
mi / h	0.8690	knot
mi / h	0.477	m / s
$\mathrm{N} / \mathrm{m}^{2}$	9.872×10^{-6}	atm
$\mathrm{N} / \mathrm{m}^{2}$	3.349×10^{-4}	foot of water ($60^{\circ} \mathrm{F}$)
oz (avoirdupois)	0.9115	oz (troy)
oz (troy)	1.097	oz (avoirdupois)
oz (troy)	0.06857	lb (avoirdupois)
pint	0.4732	L
lb	4.448	N
lb (mass)	0.4535	kg
lb (avoirdupois)	14.58	oz (troy)
lb (avoirdupois)	0.031081	slug
pound of water ($60^{\circ} \mathrm{F}$)	0.01603	ft^{3}
pound of water ($60^{\circ} \mathrm{F}$)	0.1199	gal
$\mathrm{lb} / \mathrm{in}^{2}$	0.06805	atm
$\mathrm{lb} / \mathrm{in}^{2}$	2.309	foot of water ($60^{\circ} \mathrm{F}$)
$\mathrm{lb} / \mathrm{in}^{2}$	6895	$\mathrm{N} / \mathrm{m}^{2}$
$\mathrm{lb} / \mathrm{in}^{2}$	2.042	inch of mercury ($60^{\circ} \mathrm{F}$)
$\mathrm{lb} / \mathrm{in}^{2}$	27.71	inch of water ($60^{\circ} \mathrm{F}$)
quart	0.9463	L
$\mathrm{rad}(\mathrm{rad} / \mathrm{s})$	57.30	degree (degree/s)
$\mathrm{rad} / \mathrm{s}$	0.1592	rev/s or Hz
rad/s	9.549	rpm
rev (revolution)	6.283	rad
$\mathrm{rev} / \mathrm{s}$ or $\mathrm{Hz}\left(\mathrm{rev} / \mathrm{s}^{2}\right)$	6.283	$\mathrm{rad} / \mathrm{s}\left(\mathrm{rad} / \mathrm{s}^{2}\right)$
rev/s or Hz	360	degree/s
rpm	0.1047	rad/s
rpm	6	degree/s
rod	5.029	m
slug	14.5939	kg
slug	32.1740	lb (avoirdupois)
$T\left({ }^{\circ} \mathrm{C}\right)$	$T\left({ }^{\circ} \mathrm{F}\right)=\frac{9}{5} T\left({ }^{\circ} \mathrm{C}\right)+32$	$T\left({ }^{\circ} \mathrm{F}\right)$
ton	2000	lb
ton (metric)	1000	kg

TABLE 1-2 CONSISTENT UNITS

Quantity	U.S. Customary (foot)	Old Metric (meter)	International Metric (SI) (meter)
Length	ft	cm	m
Force and weight, W	lb	kg	N
Time	S	s	S
Angle	rad	rad	rad
Moment of inertia	ft^{4}	cm^{4}	m^{4}
Mass, $=W / \mathrm{g}$	$\mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}$ (slug)	$\mathrm{kg}-\mathrm{s}^{2} / \mathrm{cm}$	kg
Area	ft^{2}	cm^{2}	m^{2}
Mass moment of inertia	$\mathrm{lb}-\mathrm{s}^{2}-\mathrm{ft}$	$\mathrm{kg}-\mathrm{s}^{2}-\mathrm{cm}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$
Moment	$\mathrm{lb}-\mathrm{ft}$	kg-cm	$\mathrm{N} \cdot \mathrm{m}$
Volume	ft^{3}	cm^{3}	m^{3}
Mass density	$\mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}^{4}$	$\mathrm{kg}-\mathrm{s}^{2} / \mathrm{cm}^{4}$	$\mathrm{kg} / \mathrm{m}^{3}$
Stiffness of linear spring	$\mathrm{lb} / \mathrm{ft}$	$\mathrm{kg} / \mathrm{cm}$	N / m
Stiffness of rotary spring	$\mathrm{lb}-\mathrm{ft} / \mathrm{rad}$	kg-cm/rad	$\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$
Torque	$\mathrm{lb}-\mathrm{ft}$	kg-cm	$\mathrm{N} \cdot \mathrm{m}$
Stiffness of torsional spring	$\mathrm{lb}-\mathrm{ft} / \mathrm{rad}$	$\mathrm{kg}-\mathrm{cm} / \mathrm{rad}$	$\mathrm{N} \cdot \mathrm{m} / \mathrm{rad}$
Stress or pressure	$\mathrm{lb} / \mathrm{ft}^{2}$	$\mathrm{kg} / \mathrm{cm}^{2}$	$\mathrm{N} / \mathrm{m}^{2}(\mathrm{~Pa})$

TABLE 1-3 INTERNATIONAL SYSTEM (SI) OF UNITS

[^0]
TABLE 1-4 CONVERSION TO SI UNITS

Example: To convert from psi to pascal, multiply by 6.894757×10^{3}. Then 1000 psi is 6.894757 MPa .

TABLE 1-4 (continued) CONVERSION TO SI UNITS		
To Convert from:	To:	Multiply by:
Mass		
grain	kg	6.479891×10^{-5}
lb (mass)	kg	4.535924×10^{-1}
slug	kg	14.59390
Mass per Volume (Density)		
$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$	1.000000×10^{3}
lb (mass)/ in^{3}	$\mathrm{kg} / \mathrm{m}^{3}$	2.767990×10^{4}
slug/ ft^{3}	$\mathrm{kg} / \mathrm{m}^{3}$	5.153788×10^{2}
Power		
Btu/h	W	2.930711×10^{-1}
$\mathrm{ft}-\mathrm{lb} / \mathrm{s}$	W	1.355818
hp	W	7.456999×10^{2}
Pressure or Stress		
atm (760 torr)	Pa	1.013250×10^{5}
bar	Pa	1.000000×10^{5}
centimeter of mercury ($0^{\circ} \mathrm{C}$)	Pa	1.33322×10^{3}
centimeter of water ($4^{\circ} \mathrm{C}$)	Pa	98.0638
dyne/ cm^{2}	Pa	1.000000×10^{-1}
$\mathrm{kg} / \mathrm{cm}^{2}$	Pa	9.806650×10^{4}
$\mathrm{kg} / \mathrm{mm}^{2}$	Pa	9.806650×10^{6}
$\mathrm{N} / \mathrm{m}^{2}$	Pa	1.000000
$\mathrm{lb} / \mathrm{in}^{2}$ (psi)	Pa	6.894757×10^{3}
torr ($\mathrm{mmHg}, 0^{\circ} \mathrm{C}$)	Pa	1.33322×10^{2}
Temperature		
degree Celsius (${ }^{\circ} \mathrm{C}$)	K (kelvin)	$T(\mathrm{~K})=T\left({ }^{\circ} \mathrm{C}\right)+273.15$
degree Fahrenheit (${ }^{\circ} \mathrm{F}$)	K	$T(\mathrm{~K})=\frac{T\left({ }^{\circ} \mathrm{F}\right)+459.67}{1.8}$
degree Fahrenheit (\%)		$T(\mathrm{~K})=\frac{1.8}{}$
${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$T\left({ }^{\circ} \mathrm{C}\right)=\frac{5}{9} T\left({ }^{\circ} \mathrm{F}\right)-32$
Time		
day	s	8.640000×10^{4}
hour	s	3.600000×10^{3}
year	s	3.153600×10^{7}

TABLE 1-4 (continued) CONVERSION TO SI UNITS

To Convert from:	To:	Multiply by:
	Velocity	
$\mathrm{ft} / \mathrm{min}$	m / s	5.080000×10^{-3}
ft / s	m / s	0.3048
ft / s	cm / s	30.48
$\mathrm{in} . / \mathrm{s}$	m / s	0.0254
$\mathrm{in} . / \mathrm{s}$	cm / s	2.540
$\mathrm{~km} / \mathrm{h}$	m / s	2.777778×10^{-1}
mi / h	m / s	4.470400×10^{-1}
	Viscosity	
cP (centipoise)	$\mathrm{Pa} \cdot \mathrm{s}$	1.000000×10^{-3}
P (poise)	$\mathrm{Pa} \cdot \mathrm{s}$	1.000000×10^{-1}
$\mathrm{lb}-\mathrm{s} / \mathrm{ft}^{2}$	$\mathrm{~Pa} \cdot \mathrm{~s}$	47.88026
	Volume	
barrel (oil, 42 U.S. gal)	m^{3}	1.589873×10^{-1}
fluid ounce	m^{3}	2.957353×10^{-5}
$\mathrm{ft}{ }^{3}$	$\mathrm{~m}^{3}$	2.831685×10^{-2}
gal (Imperial liquid)	m^{3}	4.546122×10^{-3}
gal (U.S. liquid)	m^{3}	3.785412×10^{-3}
in^{3}	$\mathrm{~m}^{3}$	1.638706×10^{-5}
L	$\mathrm{~m}^{3}$	1.000000×10^{-3}
	Special Conversion	
$\mathrm{ksi}-\sqrt{\text { in. }}$	$\mathrm{MPa}^{2} \sqrt{\mathrm{~m}}$	1.098843

TABLE 1-5 COMMON CONVERSION FACTORS AND SI RECOGNITION FIGURES

Units		
U.S. Customary System (USCS)	International System (SI)	Suggested SI Recognition Figure
Length		
1 in .	25.4 mm	25 mm
1 in .	2.54 cm	2.5 cm
10 in .	254 mm	250 mm
1 ft	0.3048 m	0.3 m
10 ft	3.048 m	3 m
1 mi	1609 m	1.6 km
1 yd	0.9144 m	0.9 m
Area		
1 acre	$4046.86 \mathrm{~m}^{2}$	$4050 \mathrm{~m}^{2}$
1 acre	0.4047 ha	0.4 ha
$1 \mathrm{ft}^{2}$	$0.09290 \mathrm{~m}^{2}$	$0.1 \mathrm{~m}^{2}$
1 ha	$10^{4} \mathrm{~m}^{2}$	$10^{4} \mathrm{~m}^{2}$
$1 \mathrm{in}^{2}$	$645.16 \mathrm{~mm}^{2}$	$645 \mathrm{~mm}^{2}$
$1 \mathrm{mi}^{2}$	$2.59 \mathrm{~km}^{2}$	2.6 km²
$1 \mathrm{yd}^{2}$	$0.836 \mathrm{~m}^{2}$	$0.85 \mathrm{~m}^{2}$
Temperature		
$32^{\circ} \mathrm{F}$	273 K	$\begin{aligned} & 0^{\circ} \mathrm{C}(270 \mathrm{~K}), \\ & 1 \mathrm{~K}=1^{\circ} \mathrm{C} ; \\ & \text { use of }{ }^{\circ} \mathrm{C} \text { is } \\ & \text { permissible in SI } \end{aligned}$
Velocity		
$1 \mathrm{ft} / \mathrm{min}$	$0.00508 \mathrm{~m} / \mathrm{s}$	$5 \mathrm{~mm} / \mathrm{s}$
$1 \mathrm{mi} / \mathrm{h}$	$1.609 \mathrm{~km} / \mathrm{h}$	$1.6 \mathrm{~km} / \mathrm{h}$
	$=0.447 \mathrm{~m} / \mathrm{s}$	$0.45 \mathrm{~m} / \mathrm{s}$
Power		
$1 \mathrm{hp}(550 \mathrm{ft}-\mathrm{lb} / \mathrm{s})$	745.7 W	0.75 kW
$\mathrm{ft}-\mathrm{lb} / \mathrm{s}$	1.3558 W	1.4 W
Volume		
$1 \mathrm{ft}^{3}$	$0.0283 \mathrm{~m}^{3}$	$0.03 \mathrm{~m}^{3}$
$1 \mathrm{yd}^{3}$	$0.765 \mathrm{~m}^{3}$	$0.8 \mathrm{~m}^{3}$
1 gal	$0.003785 \mathrm{~m}^{3}$	$0.004 \mathrm{~m}^{3}$

TABLE 1-5 (continued)	COMMIN CONVERSION FACTORS AND SI RECOGNITION FIGURES	
Units		
U.S. Customary System (USCS)	International System (SI)	Suggested SI Recognition Figure
Pressure		
1 psf	47.88 Pa	48 Pa
1 psi	6.894 kPa	6.9 kPa
Weight or Force		
1 lb (force)	4.448 N	4.5 N
1 kip (1000 lb)	4.448 kN	4.5 kN
Line Loads		
$1000 \mathrm{lb} / \mathrm{in}$.	$175.13 \mathrm{kN} / \mathrm{m}$	$175 \mathrm{kN} / \mathrm{m}$
$1000 \mathrm{lb} / \mathrm{ft}$	$14.59 \mathrm{kN} / \mathrm{m}$	$15 \mathrm{kN} / \mathrm{m}$
Mass		
1 lb (mass)	0.4536 kg	0.5 kg
1 slug	14.5939 kg	15 kg
1 ton	907.185 kg	907 kg
Stress or Pressure		
$1 \mathrm{psi}\left(\mathrm{lb} / \mathrm{in}^{2}\right)$	$6.895 \mathrm{kN} / \mathrm{m}^{2}$ (kPa)	$7 \mathrm{kN} / \mathrm{m}^{2}$
$1000 \mathrm{psi}(1 \mathrm{ksi})$	6.895 MN/m ${ }^{2}$ (MPa)	$7 \mathrm{MN} / \mathrm{m}^{2}$
1 psf	$47.88 \mathrm{~N} / \mathrm{m}^{2}(\mathrm{~Pa})$	$48 \mathrm{~N} / \mathrm{m}^{2}$
1 atm (760 torr)	$1.01325 \times 10^{5} \mathrm{~Pa}$	$10^{5} \mathrm{~Pa}$

TABLE 1-6 COMMON CONVERSION FACTORS AND U.S. CUSTOMARY RECOGNITION FIGURES

	Units	
International System (SI)	U.S. Customary System (USCS)	Suggested U.S. Customary Recognition Figure
1 mm	0.03937 in.	0.04 in.
1 cm	0.3937 in.	0.4 in.
1 m	3.2808 ft	3.3 ft
1 km	$=1.0936 \mathrm{yd}$	1.1 yd
$1 \mathrm{~m}^{2}$	0.621371 mi	0.62 mi
$1 \mathrm{~m}^{3}$	$10.7639 \mathrm{ft}^{2}$	$10.8 \mathrm{ft}^{2}$
$1 \mathrm{~km}^{2}$	$35.3147 \mathrm{ft}^{3}$	$35 \mathrm{ft}^{3}$
	$0.386102 \mathrm{mi}^{2}$	$0.4 \mathrm{mi}^{2}$
	$=247.105 \mathrm{acres}$	250 acres
$1 \mathrm{~m} / \mathrm{s}$	$=100 \mathrm{ha}$	100 ha

TABLE 1-7 TYPICAL VALUES OF DESIGN LOADS, MATERIAL PROPERTIES, AND ALLOWABLE STRESSES
$\left.\begin{array}{lcc}\hline \text { Quantity } & \begin{array}{c}\text { U.S. Customary } \\ \text { System (USCS) }\end{array} & \begin{array}{c}\text { International } \\ \text { System (SI) }\end{array} \\ \hline & \begin{array}{c}\text { Design Loads } \\ \text { Wind pressure } \\ \text { Snow } \\ \text { Moderate climate } \\ \text { Flat }\end{array} & 30 \mathrm{lb} / \mathrm{ft}^{2}\end{array}\right] 1.4 \mathrm{kN} / \mathrm{m}^{2}(\mathrm{kPa})$

TABLE 1-7 (continued) TYPICAL VALUES OF DESIGN LOADS, MATERIAL PROPERTIES, AND ALLOWABLE STRESSES

Density (Mass)		
Water	$0.9356 \times 10^{-4} \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in}^{4}$	$1000 \mathrm{~kg} / \mathrm{m}^{3}$
Steel	$7.3326 \times 10^{-4} \mathrm{lb-s}{ }^{2} / \mathrm{in}^{4}$	$7835.9 \mathrm{~kg} / \mathrm{m}^{3}$
	Acceleration of Gravity (g)	
	$32.174 \mathrm{ft} / \mathrm{s}^{2}$ (386.087 in./s ${ }^{2}$)	$9.8066 \mathrm{~m} / \mathrm{s}^{2}$
	Coefficients of Friction	
Iron on stone	0.5	
Timber on stone	0.4	
Timber on timber	0.3	
Brick on brick	0.7	

Geometric Properties of Plane Areas

2.1 Notation 17
2.2 Centroids 18
2.3 Moments of Inertia 19
Section Moduli 20
2.4 Polar Moment of Inertia 21
2.5 Principal Moments of Inertia 22
2.6 Mohr's Circle for Moments of Inertia 24
2.7 First Moment of Areas Associated with Shear Stresses in Beams 28
2.8 Shear Correction Factors 29
2.9 Torsional Constant 31
Thin-Walled Sections 31
2.10 Sectorial Properties 36
Sectorial Area 36
First Sectorial Moment 37
Sectorial Linear Moments 37
Warping Constant (Sectorial Moment of Inertia) 37
2.11 Shear Center for Thin-Walled Cross Sections 38
Open Cross Sections 39
2.12 Modulus-Weighted Properties for Composite Sections 41
References 44
Tables 45

The geometric properties of a cross-sectional area are essential in the study of beams and bars. A brief discussion of these properties along with tables of formulas are provided in this chapter. Computer programs (Ref. [2.1] or the web site for this book) are available to compute these properties for cross sections of arbitrary shape.

2.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and F for force.

```
            A Cross-sectional area \(\left(L^{2}\right)\)
            \(A_{0}\) Area defined in Fig. 2-9
            \(A^{*}\) Centerline-enclosed area \(\left(L^{2}\right)\)
\(f=Z_{p} / Z_{e}\) Shape factor
    \(I, I_{y}, I_{z}\) Moments of inertia of a cross section \(\left(L^{4}\right)\)
            \(I_{x y}\) Product of inertia \(\left(L^{4}\right)\)
            \(I_{\omega y}\) Sectorial linear moment about \(y\) axis \(\left(L^{5}\right),=\int_{A} \omega z d A\)
            \(I_{\omega z}\) Sectorial linear moment about \(z\) axis \(\left(L^{5}\right),=\int_{A} \omega y d A\)
            \(J\) Torsional constant ( \(L^{4}\) )
            \(J_{x}\) Polar moment of inertia \(\left(L^{4}\right),=I_{x}\)
            \(\bar{q}_{i}\) Normalized shear flow ( \(L^{2}\) )
        \(Q_{y}, Q_{z}\) First moment of area with respect to \(y\) and \(z\) axes, respectively \(\left(L^{3}\right)\)
            \(Q_{\omega}\) Sectorial static moment \(\left(L^{4}\right),=\int_{A_{0}} \omega d A\)
            \(r_{S(c)}\) Perpendicular distance from the shear center (centroid) to the tan-
                gent of the centerline of the wall profile \((L)\)
    \(r_{y}, r_{z}\) Radii of gyration ( \(L\) )
            \(s\) Coordinate along centerline of wall thickness ( \(L\) )
            \(S\) Designation of shear center; elastic section modulus
            \(t\) Wall thickness ( \(L\) )
            \(T\) Torque, twisting moment ( \(F L\) )
        \(x, y, z\) Right-handed coordinate system
        \(y_{c}, z_{c}\) Centroids of a cross section in \(y z\) plane ( \(L\) )
        \(y_{S}, z_{S}\) Shear center coordinates ( \(L\) )
            \(Z_{e}\) Elastic section modulus \(\left(L^{3}\right),=S\)
            \(Z_{p}\) Plastic section modulus \(\left(L^{3}\right),=Z\)
        \(\alpha_{y}, \alpha_{z}\) Shear correction factors in \(z, y\) directions
            \(\alpha_{s}\) Shear correction factor
            \(\Gamma\) Warping constant (sectorial moment of inertia) of a cross section
                \(\left(L^{6}\right),=\int_{A} \omega^{2} d A\)
            \(v\) Poisson's ratio
            \(\phi\) Angle of twist (rad)
            \(\omega\) Sectorial area, principal sectorial coordinate
            \(\omega_{S(c)}\) Sectorial area or sectorial coordinate with respect to shear center
            (centroid) \(\left(L^{2}\right),=\int_{0}^{s} r_{S(c)} d s\)
```


2.2 CENTROIDS

Coordinates and notation ${ }^{\dagger}$ are given in Fig. 2-1, which displays "continuous" and composite shapes. The composite shape is formed of two or more standard shapes,

[^1]
(a)

(b)

Figure 2-1: Coordinates and notation: (a) continuous shape; (b) composite shape.
such as rectangles, triangles, and circles, for which the geometric properties are readily available.

The centroid of a plane area is that point in the plane about which the area is equally distributed. It is often called the center of gravity of the area. For the area of Fig. 2-1 a the centroid is defined as

$$
\begin{equation*}
y_{c}=\frac{\int_{A} y d A}{\int_{A} d A}=\frac{\int_{A} y d A}{A}, \quad z_{c}=\frac{\int_{A} z d A}{\int_{A} d A}=\frac{\int_{A} z d A}{A} \tag{2.1}
\end{equation*}
$$

where $A=\int_{A} d A$.
For a composite area formed of two standard shapes, such as the one in Fig. 2-1b, the centroid is obtained using

$$
\begin{equation*}
y_{c}=\frac{A_{1} \bar{y}_{1}+A_{2} \bar{y}_{2}}{A_{1}+A_{2}}, \quad z_{c}=\frac{A_{1} \bar{z}_{1}+A_{2} \bar{z}_{2}}{A_{1}+A_{2}} \tag{2.2}
\end{equation*}
$$

In general, for n standard shapes, the equations become

$$
\begin{equation*}
y_{c}=\frac{\sum_{i=1}^{n} A_{i} \bar{y}_{i}}{\sum_{i=1}^{n} A_{i}}, \quad z_{c}=\frac{\sum_{i=1}^{n} A_{i} \bar{z}_{i}}{\sum_{i=1}^{n} A_{i}} \tag{2.3}
\end{equation*}
$$

where $A_{i}(i=1,2, \ldots, n)$ are the areas of identifiable simple areas and \bar{y}_{i}, \bar{z}_{i} are the coordinates of the centroid of area A_{i}.

2.3 MOMENTS OF INERTIA

The moment of inertia of an area (second moment of an area) with respect to an axis is the sum of the products obtained by multiplying each element of the area $d A$ by the square of its distance from the axis. For a section in the $y z$ plane (Fig. 2-1a), the moment of inertia is defined to be

$$
\begin{align*}
& I_{y}=\int_{A} z^{2} d A \text { about the } y \text { axis } \tag{2.4a}\\
& I_{z}=\int_{A} y^{2} d A \quad \text { about the } z \text { axis } \tag{2.4b}
\end{align*}
$$

Section Moduli

For bending about the y axis, the elastic section modulus $S=Z_{e}$ is defined by

$$
\begin{equation*}
S=Z_{e}=\frac{I_{y}}{c}=\frac{\int_{A} z^{2} d A}{c} \tag{2.5}
\end{equation*}
$$

where c is the z distance from the centroidal (neutral) axis y to the outermost fiber.
The plastic section modulus $Z=Z_{p}$ is defined as the sum of statical moments of the areas above and below the centroidal (neutral) axis y (Fig. 2-2),

$$
\begin{equation*}
Z_{p}=-\int_{A_{1}} z d A+\int_{A_{2}} z d A \tag{2.6}
\end{equation*}
$$

where A_{1} and A_{2} are the areas above and below, respectively, the neutral axis.
For a given shape, the ratio of the plastic section modulus to the elastic section modulus is called the shape factor f (i.e., $f=Z_{p} / Z_{e}$).

The product of inertia is defined as

$$
\begin{equation*}
I_{z y}=\int_{A} z y d A \tag{2.7}
\end{equation*}
$$

In contrast to the moment of inertia, the product of inertia is not always positive. With respect to rectangular axes, it is zero if either of the axes is an axis of symmetry.

For moments and products of inertia of composite shapes the parallel-axis formulas are useful. These formulas relate the inertia properties of the areas about their

Figure 2-2: Notation for section moduli.

Figure 2-3: Geometry for transformation of axes; c is centroid of cross section.
own centroidal axes to parallel axes. For the three moments of inertia, the formulas are

$$
\begin{equation*}
I_{y}=I_{\bar{y}}+A d_{z}^{2}, \quad I_{z}=I_{\bar{z}}+A d_{y}^{2}, \quad I_{y z}=I_{\bar{y} \bar{z}}+A d_{y} d_{z} \tag{2.8}
\end{equation*}
$$

It is important that the signs of the terms d_{y} and d_{z} be correct. Positive values are shown in Fig. 2-3, where d_{y} and d_{z} are the coordinates of the centroid of the cross section in the $y z$ coordinates.

A complicated area can often be subdivided into component areas whose moments of inertia are known. The moments of inertia of the original area are obtained by adding the individual moments of inertia, each taken about the same reference axis.

If an area is completely irregular, the moment and product of inertia can be obtained by evaluating the integrals numerically or by using a graphical technique. However, most computer programs rely on the technique of subdividing a section into standard shapes (e.g., rectangles), the more irregular the section, the finer the subdivision network required.

The radius of gyration is the distance from a reference axis to a point at which the entire area of a section may be considered to be concentrated and still have the same moment of inertia as the original distributed area. Thus for the y and z axes, the radii of gyration are given by

$$
\begin{equation*}
r_{y}=\sqrt{I_{y} / A}, \quad r_{z}=\sqrt{I_{z} / A} \tag{2.9}
\end{equation*}
$$

It is customary to express the instability criterion for a beam with an axial load in terms of one of the radii of gyration of the cross-sectional area.

2.4 POLAR MOMENT OF INERTIA

By definition, a polar axis is normal to the plane of reference (e.g., the x axis in Fig. 2-4).

Figure 2-4: Polar moment of inertia.

The moment of inertia of an area (Fig. 2-4) about a point 0 in its plane is termed the polar moment of inertia of the area with respect to the point. It is designated by the symbol J_{x} and defined by the integral

$$
\begin{equation*}
J_{x}=\int_{A} r^{2} d A=I_{x} \tag{2.10}
\end{equation*}
$$

where r is the distance of the area element $d A$ from the point 0 . Since $r^{2}=z^{2}+y^{2}$, it follows from Eqs. (2.4) that

$$
\begin{equation*}
J_{x}=\int_{A}\left(z^{2}+y^{2}\right) d A=I_{y}+I_{z} \tag{2.11}
\end{equation*}
$$

With respect to a parallel axis, the polar moment of inertia is (Fig. 2-3)

$$
\begin{equation*}
J_{x 0}=J_{x c}+A r^{2} \tag{2.12}
\end{equation*}
$$

where $J_{x 0}$ and $J_{x c}$ are the polar moments of inertia with respect to point 0 and the centroid c, respectively.

2.5 PRINCIPAL MOMENTS OF INERTIA

Moments of inertia are tensor quantities that possess properties that vary with the orientation θ (Fig. 2-5) of the reference axes. The angle θ is the angle of rotation of the centroidal reference axes and expresses the change of reference axes from the $y z$ system to the $y^{\prime} z^{\prime}$ system. The y^{\prime}, z^{\prime} coordinates expressed in terms of the y, z coordinates are

Figure 2-5: Geometry for rotation of axes.

$$
\begin{align*}
& y^{\prime}=y \cos \theta+z \sin \theta \\
& z^{\prime}=-y \sin \theta+z \cos \theta \tag{2.13}
\end{align*}
$$

Then the area moments of inertia in the rotated coordinate system are

$$
\begin{align*}
I_{y^{\prime}} & =\int z^{\prime 2} d A=I_{z} \sin ^{2} \theta+I_{y} \cos ^{2} \theta-2 I_{y z} \sin \theta \cos \theta \\
I_{z^{\prime}} & =\int y^{\prime 2} d A=I_{z} \cos ^{2} \theta+I_{y} \sin ^{2} \theta+2 I_{y z} \sin \theta \cos \theta \tag{2.14}\\
I_{y^{\prime} z^{\prime}} & =\int y^{\prime} z^{\prime} d A=I_{y z}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+\left(I_{y}-I_{z}\right) \sin \theta \cos \theta
\end{align*}
$$

Trigonometric identities $2 \cos ^{2} \theta=1+\cos 2 \theta, 2 \sin ^{2} \theta=1-\cos 2 \theta$, and $2 \sin \theta \cos \theta=\sin 2 \theta$ lead to an alternative form:

$$
\begin{align*}
I_{y^{\prime}} & =\frac{1}{2}\left(I_{y}+I_{z}\right)+\frac{1}{2}\left(I_{y}-I_{z}\right) \cos 2 \theta-I_{y z} \sin 2 \theta \\
I_{z^{\prime}} & =\frac{1}{2}\left(I_{y}+I_{z}\right)-\frac{1}{2}\left(I_{y}-I_{z}\right) \cos 2 \theta+I_{y z} \sin 2 \theta \tag{2.15}\\
I_{y^{\prime} z^{\prime}} & =\frac{1}{2}\left(I_{y}-I_{z}\right) \sin 2 \theta+I_{y z} \cos 2 \theta
\end{align*}
$$

To identify the angle θ at which the moment of inertia $I_{y^{\prime}}$ assumes its extreme value, use Eq. (2.15) and set $\partial I_{y^{\prime}} / \partial \theta$ equal to zero.

$$
\begin{equation*}
\left(I_{y}-I_{z}\right)(-\sin 2 \theta)-2 I_{y z} \cos 2 \theta=0 \quad \text { or } \quad \tan 2 \theta_{p}=\frac{2 I_{y z}}{I_{z}-I_{y}} \tag{2.16}
\end{equation*}
$$

The angle θ_{p} identifies the centroidal principal bending axes. Also, the angle θ_{p} of Eq. (2.16) corresponds to the rotation for which the product of inertia $I_{y^{\prime} z^{\prime}}$ is zero. This can be shown by substituting Eq. (2.16) into $I_{y^{\prime} z^{\prime}}$ of Eq. (2.15). Equation (2.16) determines two values of 2θ that are 180° apart, that is, two values of θ that are 90° apart. At these values, the moments of inertia $I_{y^{\prime}}$ and $I_{z^{\prime}}$ assume their maximum or minimum possible values, that is, the principal moments of inertia I_{1} and I_{2}. The magnitudes of I_{1} and I_{2} can be obtained by substituting θ of Eq. (2.16) into the first two of Eqs. (2.15).

In summary:

1. The value of $\theta=\theta_{p}$ defines the principal axes of inertia. At this orientation, $I_{y^{\prime}}$ and $I_{z^{\prime}}$ will assume maximum and minimum values. Also, at $\theta=\theta_{p}, I_{y^{\prime} z^{\prime}}=0$.
2. The principal moments of inertia have the values

$$
\begin{align*}
& I_{\max }=\frac{1}{2}\left(I_{z}+I_{y}\right)+\sqrt{\left[\frac{1}{2}\left(I_{y}-I_{z}\right)\right]^{2}+I_{y z}^{2}}=I_{1} \tag{2.17a}\\
& I_{\min }=\frac{1}{2}\left(I_{z}+I_{y}\right)-\sqrt{\left[\frac{1}{2}\left(I_{y}-I_{z}\right)\right]^{2}+I_{y z}^{2}}=I_{2} \tag{2.17b}
\end{align*}
$$

An axis of symmetry will be a principal axis and an axis of a zero product of inertia.

A useful relationship is

$$
\begin{equation*}
\theta_{p}=\tan ^{-1} \frac{I_{y}-I_{1}}{I_{y z}} \tag{2.18}
\end{equation*}
$$

which defines the angle θ between the y axis and the axis belonging to the larger principal moment of inertia. Since the angle between the smaller principal moment of inertia and the y axis is $\theta_{p}+90^{\circ}$, the specification of θ_{p} of Eq. (2.18) is sufficient to identify both principal axes.

2.6 MOHR'S CIRCLE FOR MOMENTS OF INERTIA

The effect of a rotation of axes on the moments and product of inertia can be represented graphically using a Mohr's circle (Fig. 2-6) constructed in a manner similar to that for Mohr's circle of stress (Chapter 3).

The coordinates of a point on Mohr's circle (Fig. 2-6) are to be interpreted as representing the moment and the product of inertia of a plane area with respect to the y axis (Fig. 2-5). The y axis is along the circle radius passing through the plotted point $I_{y}, I_{y z}$. The angle θ is measured counterclockwise from the y axis. However, the magnitudes of the angles on Mohr's circle are double those in the physical plane.

Example 2.1 Centroid Determine the centroid of the area shown in Fig. 2-7. This area is bounded by the y axis, the line $y=b$, and the parabola $z^{2}=\left(h^{2} / b\right) y$.

To use Eq. (2.1), choose the element of area $d A=z d y$ as shown in Fig. 2-7. Along the parabola, y and z are related by $z=h \sqrt{y / b}$. Then

$$
\begin{equation*}
y_{c}=\frac{\int_{A} y(z d y)}{\int_{A} d A}=\frac{\int_{0}^{b} y^{3 / 2} d y}{\int_{0}^{b} y^{1 / 2} d y}=\frac{3}{5} b \tag{1}
\end{equation*}
$$

Figure 2-6: Mohr's circle for moment of inertia of an area. This provides the moments of inertia with respect to the $y z$ system of Fig. 2-5 for an orientation of θ.

Figure 2-7: Example 2.1.

The formula $z_{c}=\int_{A} z d A / \int_{A} d A$ cannot be applied here because it is based on an element $d A$ whose centroid is at a distance z from the y axis (Fig. 2-1a). For the $d A$ employed here, the centroidal distance of $d A$ from the y axis is $z / 2$. Thus,

$$
\begin{equation*}
z_{c}=\frac{\int_{A} \frac{1}{2} z d A}{\int_{A} d A}=\frac{\int_{0}^{b} \frac{1}{2} z(z d y)}{\int_{0}^{b} z d y}=\frac{3}{8} h \tag{2}
\end{equation*}
$$

Other choices can be made for $d A$. For example, suppose that $d A=d z d y$; then

$$
\begin{equation*}
z_{c}=\frac{\int_{A} z d A}{\int_{A} d A}=\frac{\int_{A} z d z d y}{\frac{2}{3} b h}=\frac{3}{2 b h} \int_{0}^{b} \int_{0}^{z} z d z d y=\frac{3}{2 b h} \int_{0}^{b} \frac{z^{2}}{2} d y=\frac{3}{8} h \tag{3}
\end{equation*}
$$

(a)

(b)

Figure 2-8: Example 2.2: (a) angle cross section; (b) centroids.

Example 2.2 Moments of Inertia Compute the moments of inertia about the centroid, the angle of inclination of the principal axis, for the angle of Fig. 2-8a.

The centroid for the angle was computed and is shown in Fig. 2-8b. To compute the moments of inertia, use the parallel-axis theorem to transfer the individual shape inertias to the common reference axis of the angle's centroidal axes (Fig. 2-8b).

Begin with the product of inertia. For shape D.

$$
\begin{equation*}
d_{z}^{D}=-\left(\frac{3}{4}+\frac{1}{2}\right)=-\frac{5}{4} \text { in. }, \quad d_{y}^{D}=\frac{3}{4} \text { in. } \tag{1}
\end{equation*}
$$

The negative sign occurs, since with respect to the reference axes $y z$, the z-directed coordinate of c_{D} is on the negative side of the z axis:

$$
I_{y z}^{D}=I_{\bar{y}_{D} \bar{z}_{D}}+d_{z}^{D} d_{y}^{D} A_{D}=0+\left(-\frac{5}{4}\right)\left(\frac{3}{4}\right)(4)=-3.75 \mathrm{in}^{4}
$$

For shape B,

$$
\begin{align*}
& d_{z}^{B}=2-\frac{3}{4}=+\frac{5}{4} \text { in., } \quad d_{y}^{B}=-\frac{3}{4} \text { in. } \\
& I_{y z}^{B}=I_{\bar{y}_{B} \bar{z}_{B}}+d_{z}^{B} d_{y}^{B} A_{B}=0+\left(\frac{5}{4}\right)\left(-\frac{3}{4}\right)(4)=-3.75 \mathrm{in}^{4} \tag{2}
\end{align*}
$$

The product of inertia for the complete angle is then

$$
\begin{equation*}
I_{y z}=I_{y z}^{D}+I_{y z}^{B}=-3.75-3.75=-7.50 \mathrm{in}^{4} \tag{3}
\end{equation*}
$$

The moments of inertia are computed in a similar fashion:

$$
\begin{equation*}
I_{y}^{D}=I_{\bar{y}_{D}}+\left(d_{z}^{D}\right)^{2} A_{D}=\left(\frac{1}{12}\right)(4)\left(1^{3}\right)+\left(-\frac{5}{4}\right)^{2}(4)=6.583 \mathrm{in}^{4} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& I_{z}^{D}=I_{\bar{z}_{D}}+\left(d_{z}^{D}\right)^{2} A_{D}=7.583 \mathrm{in}^{4} \tag{5}\\
& I_{y}^{B}=I_{\bar{y}_{B}}+\left(d_{z}^{B}\right)^{2} A_{B}=\left(\frac{1}{12}\right)(1)\left(4^{3}\right)+\left(\frac{5}{4}\right)^{2}(4)=11.583 \mathrm{in}^{4} \tag{6}\\
& I_{z}^{B}=I_{\bar{z}_{B}}+\left(d_{y}^{B}\right)^{2} A_{B}=2.583 \mathrm{in}^{4} \tag{7}
\end{align*}
$$

For the entire angle,

$$
\begin{gather*}
I_{y}=I_{y}^{D}+I_{y}^{B}=18.167 \mathrm{in}^{4} \tag{8}\\
I_{z}=I_{z}^{D}+I_{z}^{B}=10.167 \mathrm{in}^{4} \tag{9}
\end{gather*}
$$

The angle of inclination with respect to the centroidal axis is given by

$$
\tan 2 \theta_{p}=\frac{2 I_{y z}}{I_{z}-I_{y}}=\frac{2(-7.50)}{10.167-18.167}=1.875
$$

so that

$$
2 \theta_{p}=61.93^{\circ} \text { or } \theta_{p}=30.96^{\circ}
$$

Some properties of plane sections for commonly occurring shapes are listed in Table 2-1.

Example 2.3 Section Moduli Find the elastic and plastic section moduli and shape factor of a rectangular shape of width b and height h with respect to its horizontal centroidal axis.

For a rectangle $c=\frac{1}{2} h$ and (Table 2-1)

$$
I=\frac{1}{12} b h^{3}
$$

so that the elastic section modulus becomes

$$
\begin{equation*}
S=Z_{e}=\frac{I}{c}=\frac{1}{6} b h^{2} \tag{1}
\end{equation*}
$$

From Eq. (2.6), the plastic section modulus is given by

$$
\begin{align*}
Z_{p} & =-\int_{A_{1}} z d A+\int_{A_{2}} z d A \\
& =-\int_{-h / 2}^{0} z b d z+\int_{0}^{h / 2} z b d z=\frac{1}{4} b h^{2} \tag{2}
\end{align*}
$$

The shape factor becomes

$$
\begin{equation*}
f=\frac{Z_{p}}{Z_{e}}=\frac{\frac{1}{4} b h^{2}}{\frac{1}{6} b h^{2}}=1.5 \tag{3}
\end{equation*}
$$

The section moduli for some selected cross sections are listed in Table 2-2.

2.7 FIRST MOMENT OF AREAS ASSOCIATED WITH SHEAR STRESSES IN BEAMS

In calculating the shear stress in a beam caused by transverse loading, a first moment Q with respect to the centroidal (neutral) axis of the beam is used. This first moment is defined by

$$
\begin{equation*}
Q=Q_{y}=\int_{A_{0}} z d A=A_{0} \bar{z}_{c} \tag{2.19a}
\end{equation*}
$$

where A_{0} (Fig. 2-9a) is the area of that part of the section between the position z_{1} at which the shear stress is to be calculated and the outer fiber and \bar{z}_{c} is the distance

Figure 2-9: First moment of area: (a) y axis is a centroidal axis; $(b) z$ axis is a centroidal axis.
from the y centroidal axis of the section to the centroid of A_{0}. The formulas for Q for some sections are provided in Table 2-3.

Similarly, for loading in the y direction, the corresponding first moment of area is given by (Fig. 2-9b)

$$
\begin{equation*}
Q_{z}=\int_{A_{0}} y d A=A_{0} \bar{y}_{c} \tag{2.19b}
\end{equation*}
$$

where \bar{y}_{c} is the distance from the z centroidal axis of the cross section to the centroid of A_{0}.

2.8 SHEAR CORRECTION FACTORS

Shear effects on deflection are often significant in the bending of short beams. These effects can be described in terms of shear correction factors, which are rather difficult to calculate. Accurate shear deformation coefficients depend on material properties and on the dimensions of the cross section. For software to calculate the accurate coefficients, see the web site for this book. This software is based on the theory described in Ref. [2.1]. The shear deformation coefficient formulas in this book are approximate and should be used with caution.

A common formula for shear correction factors is

$$
\begin{equation*}
\alpha_{y}=\frac{A}{I_{y}^{2}} \int_{A}\left(\frac{Q_{y}}{b}\right)^{2} d A=\alpha_{s} \tag{2.20a}
\end{equation*}
$$

for loading in the z direction (Fig. 2-9a), where A is the cross-sectional area. The quantities I_{y} and Q_{y} are defined in Eqs. (2.4a) and (2.19a), respectively. Also, b is as shown in Fig. 2-9a. In general, b may vary over the cross section.

In the same fashion, for a cross section loaded in the y direction (Fig. 2-9b) the shear correction factor α_{z} is defined as

$$
\begin{equation*}
\alpha_{z}=\frac{A}{I_{z}^{2}} \int_{A}\left(\frac{Q_{z}}{b}\right)^{2} d A \tag{2.20b}
\end{equation*}
$$

The quantities I_{z} and Q_{z} are given by Eqs. (2.4b) and (2.19b), respectively, and b is shown in Fig. 2-9b.

The shear correction factor may be viewed as the ratio of the actual beam crosssectional area to the effective area resisting shear deformation. It can be seen from Eqs. (2.20) that the shear correction factors are always greater than or equal to zero.

As mentioned, the relations [Eqs. (2.20)] for α_{y} and α_{z} are approximate. Somewhat more accurate determinations of shear correction factors can be made using the theory of elasticity. For solid rectangular and circular cross sections this leads to

$$
\begin{equation*}
\alpha_{\mathrm{rect}}=\frac{12+11 v}{10(1+v)}, \quad \alpha_{\mathrm{circ}}=\frac{7+6 v}{6(1+v)} \tag{2.21}
\end{equation*}
$$

In case of $v=0.3$, these equations give $\alpha_{\text {rect }}=1.18$ and $\alpha_{\text {circ }}=1.13$. If Eqs. (2.20) are used, the corresponding shear correction factors are $\alpha_{\text {rect }}=1.2$ and $\alpha_{\text {circ }}=1.11$, which differ little from the more precise values.

Approximate formulas for α_{s} for various beam cross sections are listed in Table 2-4. The computer programs available with this book (see the web site) can calculate shear correction factors for shapes of arbitrary geometry. The inverse of the shear correction factor, called the shear deflection constant, is often required as an input in general-purpose finite-element analysis software. References [2.1] and [2.2] discuss problems encountered in calculating and using shear correction factors.

Example 2.4 Shear Correction Factors Determine the shear correction factors of the rectangular cross section of Fig. 2-10.

From Table 2-3, $Q_{y}=\frac{1}{2} b\left(\frac{1}{4} h^{2}-z^{2}\right)$, where z_{1} is replaced by z, as shown in Fig. 2-10. From Table 2-1, $I_{y}=\frac{1}{12} b h^{3}$. Substitution of these values into Eq. (2.20a) leads to

$$
\begin{equation*}
\alpha_{y}=\alpha_{s}=\frac{b h}{\left(\frac{1}{12} b h^{3}\right)^{2}} \int_{-h / 2}^{h / 2}\left[\frac{1}{2}\left(\frac{1}{4} h^{2}-z^{2}\right)\right]^{2} b d z=\frac{6}{5} \tag{1}
\end{equation*}
$$

By the same reasoning, it can be shown that the shear correction factor for loading in the y direction is

$$
\begin{equation*}
\alpha_{z}=\frac{6}{5} \tag{2}
\end{equation*}
$$

Figure 2-10: Example 2.4.

2.9 TORSIONAL CONSTANT

For a bar with circular cross section the torsional constant is the polar moment of inertia of the section. For cross sections of arbitrary shapes, the torsional constant J can be defined by the torsion formula,

$$
\begin{equation*}
J=T / G \phi^{\prime} \tag{2.22}
\end{equation*}
$$

where $\phi^{\prime}=d \phi / d x$ with ϕ the angle of twist, T the torque, and G the shear modulus. Accurate values of the torsional constant often require computational solutions. Constants for cross sections of any shape can be obtained using the software available with this book (see the web site).

Thin-Walled Sections

Thin-walled sections may be either open or closed. Such common structural shapes as channels, angles, I-beams, and wide-flange sections are open thin-walled sections, since the centerline of the wall does not form a closed curve. Closed sections have at least one closed curve.

Although there is no clearly defined line of demarcation between thin-walled and thick-walled sections, it is suggested that thin-walled theory may be applied with reasonable accuracy to sections if

$$
\begin{equation*}
t_{\max } / b \leq 0.1 \tag{2.23}
\end{equation*}
$$

where $t_{\text {max }}$ is the maximum thickness of the section and b is a typical cross-sectional dimension.

The torsional constant for a thin-walled open section (Fig. 2-11) is J, approximated by

$$
\begin{equation*}
J=\frac{1}{3} \int_{\text {section }} t^{3} d s \tag{2.24a}
\end{equation*}
$$

Figure 2-11: Thin-walled open section.

Figure 2-12: Thin-walled closed section.
or for a section formed of M straight or curved segments of thickness t_{i} and length b_{i} :

$$
\begin{equation*}
J=\frac{\alpha}{3} \sum_{i=1}^{M} b_{i} t_{i}^{3} \tag{2.24b}
\end{equation*}
$$

where α is a shape factor. Use $\alpha=1$ if no information on α is available.
For closed, thin-walled sections (one cell only), as shown in Fig. 2-12, the torsional constant of the cross section is given by

$$
\begin{equation*}
J=\frac{4 A^{* 2}}{\int \frac{d s}{t}} \tag{2.25}
\end{equation*}
$$

where $\int(1 / t) d s$ is the contour integral along the centerline s of a wall of thickness $t=t(s)$ and A^{*} is the area enclosed by the centerline of the wall.

If the hollow cross section is composed of M parts, each with the constant wall thickness t_{i} and the length b_{i} of the centerline, the integral leads to

$$
\begin{equation*}
\int \frac{d s}{t}=\sum_{i=1}^{M} \frac{b_{i}}{t_{i}} \tag{2.26a}
\end{equation*}
$$

For the case of a constant wall thickness t of a section with a circumference of length S, the integral becomes

$$
\begin{equation*}
\int \frac{d s}{t}=\frac{S}{t} \tag{2.26b}
\end{equation*}
$$

A combination of the formulas for open and closed cross sections can be used to approximate the torsional constant for a hollow tube with fins (Fig. 2-13). Thus,

Figure 2-13: Fins on a hollow section.

$$
\begin{equation*}
J=\frac{1}{3} \sum_{i=1}^{M} b_{i} t_{i}^{3}+\frac{4 A^{* 2}}{\int(1 / t) d s} \tag{2.27}
\end{equation*}
$$

for M fins.

Figure 2-14 shows a thin-walled cross section with multiple cells. In general, these cells may be interconnected in any manner, and a cross section may consist of M cells. It can be shown that the torsional constant of this type of cross section is obtained by

$$
\begin{equation*}
J=4 \sum_{i=1}^{M} A_{i}^{*} \bar{q}_{i} \tag{2.28a}
\end{equation*}
$$

Figure 2-14: Multicell wing section.
where A_{i}^{*} is the centerline-enclosed area of cell i and \bar{q}_{i} is a normalized shear flow (with units of area) that can be determined from the following set of equations:

$$
\begin{equation*}
\bar{q}_{i} \oint_{i} \frac{d s}{t}-\sum_{k} \bar{q}_{k} \int_{i k} \frac{d s}{t(s)}=A_{i}^{*} \tag{2.28b}
\end{equation*}
$$

where $i=1,2,3, \ldots, M$ and k refers to cells adjacent to the i th cell. The quantity \bar{q}_{i} is the shear flow of Chapter 3 divided by $2 G \frac{d \phi}{d x}$, where G and $\frac{d \phi}{d x}$ are defined in Chapter 12.

Table 2-5 provides torsional constants for some cross sections, including the hollow sections discussed above.

Example 2.5 Torsional Constant of a Thin-Walled Section with Four Cells A thin-walled section with four cells is shown in Fig. 2-15. Determine the torsional constant using Eqs. (2.28).

Figure 2-15: Example 2.5: thin-walled cross section of uniform wall thickness $t=0.2 \mathrm{in}$.

Use case 6 of Table 2-5, or Eqs. (2.28). From Fig. 2-15, the enclosed areas of the cells are

$$
\begin{equation*}
A_{1}^{*}=A_{2}^{*}=A_{3}^{*}=A_{4}^{*}=2(3)=6 \mathrm{in}^{2} \tag{1}
\end{equation*}
$$

For cell $1, i=1$.

$$
\begin{equation*}
\bar{q}_{i} \oint_{i} \frac{d s}{t(s)}=\bar{q}_{1}\left(\frac{2(3)}{0.2}+\frac{2(2)}{0.2}\right)=\frac{10}{0.2} \bar{q}_{1} \tag{2}
\end{equation*}
$$

$$
\begin{align*}
\sum_{k} \bar{q}_{k} \int_{i k} \frac{d s}{t(s)} & =\bar{q}_{2} \int_{12} \frac{d s}{t}+\bar{q}_{3} \int_{13} \frac{d s}{t} \tag{3}\\
& =\bar{q}_{2} \frac{S_{12}}{t}+\bar{q}_{3} \frac{S_{13}}{t}=\bar{q}_{2} \frac{2}{0.2}+\bar{q}_{3} \frac{3}{0.2}
\end{align*}
$$

where S_{12} is the length of the common segments between cells 1 and 2. The length S_{13} is between cells 1 and 3. Therefore, for $i=1$, Eq. (2.28b) leads to

$$
\begin{equation*}
\bar{q}_{1} \frac{10}{0.2}-\left(\bar{q}_{2} \frac{2}{0.2}+\bar{q}_{3} \frac{3}{0.2}\right)=6 \tag{4}
\end{equation*}
$$

Similarly, for cells 2,3 , and $4, i=2,3,4$, Eq. (2.28b) yields

$$
\begin{align*}
& \bar{q}_{2} \frac{10}{0.2}-\left(\bar{q}_{1} \frac{2}{0.2}+\bar{q}_{4} \frac{3}{0.2}\right)=6 \tag{5}\\
& \bar{q}_{3} \frac{10}{0.2}-\left(\bar{q}_{1} \frac{3}{0.2}+\bar{q}_{4} \frac{2}{0.2}\right)=6 \tag{6}\\
& \bar{q}_{4} \frac{10}{0.2}-\left(\bar{q}_{2} \frac{3}{0.2}+\bar{q}_{3} \frac{2}{0.2}\right)=6 \tag{7}
\end{align*}
$$

respectively. Rearranging (4), (5), (6), and (7) into matrix format gives us

$$
\left[\begin{array}{rrrr}
10 & -2 & -3 & 0 \tag{8}\\
-2 & 10 & 0 & -3 \\
-3 & 0 & 10 & -2 \\
0 & -3 & -2 & 10
\end{array}\right]\left[\begin{array}{l}
\bar{q}_{1} \\
\bar{q}_{2} \\
\bar{q}_{3} \\
\bar{q}_{4}
\end{array}\right]=\left[\begin{array}{l}
1.2 \\
1.2 \\
1.2 \\
1.2
\end{array}\right]
$$

The solution of (8) is

$$
\begin{equation*}
\bar{q}_{1}=\bar{q}_{2}=\bar{q}_{3}=\bar{q}_{4}=0.24 \mathrm{in}^{2} \tag{9}
\end{equation*}
$$

Thus, the torsional constant of the cross section is, by Eq. (2.28a),

$$
\begin{align*}
J & =4 \sum_{i=1}^{4} A_{i} \bar{q}_{i}=4\left(A_{1} \bar{q}_{1}+A_{2} \bar{q}_{2}+A_{3} \bar{q}_{3}+A_{4} \bar{q}_{4}\right) \tag{10}\\
& =4(6)(0.24+0.24+0.24+0.24)=23.04 \mathrm{in}^{4}
\end{align*}
$$

2.10 SECTORIAL PROPERTIES

Sectorial properties of a cross section are useful in the study of restrained warping torsion, although they tend to be difficult to compute (Chapter 15). Some of the sectorial formulas for thin-walled cross sections are summarized below.

Sectorial Area

The sectorial area is given by

$$
\begin{equation*}
\omega_{P}=\int_{0}^{s} r_{P} d s \tag{2.29}
\end{equation*}
$$

which is two times the shaded region in Fig. 2-16a. Point I is chosen as the origin of variable s, which lies along the centerline of the cross section, point P is the pole with respect to which ω_{P} is defined, and r_{P} is the distance between segment $d s$ and P. Point P can be chosen arbitrarily.

Sectorial area ω_{P} is twice the area swept by $P-0$ as point 0 moves a distance s along the centerline of the cross section from initial point I (Fig. 2-16a). Consequently, the integration of Eq. (2.29) is reduced to the problem of finding the double-shaded area, which is referred to as direct integration. Define increment $d \omega$ as positive when $P-0$ rotates in the counterclockwise direction. If the pole is at the centroid or the shear center, the corresponding sectorial area is, respectively,

$$
\begin{align*}
& \omega_{c}=\int_{0}^{s} r_{c} d s \tag{2.30a}\\
& \omega_{S}=\int_{0}^{s} r_{S} d s \tag{2.30b}
\end{align*}
$$

(a)

(b)

Figure 2-16: Sectorial properties: (a) sectorial area (sectorial coordinate); (b) first sectorial moment.

First Sectorial Moment

The first sectorial moment is defined by

$$
\begin{equation*}
Q_{\omega}=\int_{A_{0}} \omega d A=\int_{A_{0}} \omega t d s \tag{2.31a}
\end{equation*}
$$

where A_{0} is shown in Fig. 2-16b and

$$
\begin{align*}
\omega & =\omega_{S}-\omega_{0} \tag{2.31b}\\
\omega_{0} & =\frac{1}{A} \int_{A} \omega_{S} d A \tag{2.31c}
\end{align*}
$$

The quantity ω_{S} is defined with the shear center as the pole [Eq. (2.30b)] and with arbitrary initial point I. Note that ω_{0} is a constant that depends on ω_{S}. This definition of ω makes

$$
\begin{equation*}
\int_{A} \omega d A=0 \tag{2.31d}
\end{equation*}
$$

This follows since

$$
\int_{A} \omega d A=\int_{A}\left(\omega_{s}-\omega_{0}\right) d A=\int_{A} \omega_{S} d A-\omega_{0} A=0
$$

Sectorial area ω as defined by Eq. (2.31b) is called the principal sectorial coordinate or the principal sectorial area.

Sectorial Linear Moments

Define the sectorial linear moments

$$
\begin{equation*}
I_{\omega y}=\int_{A} \omega_{P} z d A, \quad I_{\omega z}=\int_{A} \omega_{P} y d A \tag{2.32}
\end{equation*}
$$

where the integration is taken over the entire cross section A.

Warping Constant (Sectorial Moment of Inertia)

The warping constant is defined as

$$
\begin{equation*}
\Gamma=\int_{A} \omega^{2} d A \tag{2.33}
\end{equation*}
$$

with the integration taken over the entire cross section A. See the web site for software to calculate various constants, including the warping constant, for cross sections of any shape.

If the coordinates are set at the centroid, then

$$
\begin{equation*}
I_{\omega y}=\int_{A} \omega_{c} z d A, \quad I_{\omega z}=\int_{A} \omega_{c} y d A \tag{2.34}
\end{equation*}
$$

The choice of initial point for the sectorial coordinates is arbitrary. A different choice changes ω by a constant but leaves $I_{\omega z}$ and $I_{\omega y}$ unchanged.

For thin-walled sections consisting of straight elements, integration in the formulas above can be performed in a piecewise manner, leading to the summation formulas of Tables 2-6 and 2-7 and some parts of Table 2-5. These formulas give the values of ω_{c}, ω_{S}, and Q_{ω} at each junction point (node), and the values along an element between any two junction points can be found by linear interpolation. This method is called piecewise integration. It reduces the task of performing the direct integration to one of finding the length of the elements and perpendicular distance r_{P} from the pole to that element.

2.11 SHEAR CENTER FOR THIN-WALLED CROSS SECTIONS

To bend a beam without twisting, the plane of the applied forces must pass through the shear center of every cross section of the beam. Thus, if the resultant shear force on a cross section passes through the shear center, no torsion will occur. For a cross section possessing two or more axes of symmetry (e.g., an I section) or antisymmetry (e.g., a Z section), the shear center and the centroid coincide. However, for cross sections with only one axis of symmetry, the shear center and the centroid do not coincide, but the shear center falls on the axis of symmetry. For a cross section with two intersecting flanges, the shear center is at the location of the intersection. The location of the shear center is of great importance for a thin-walled open cross section because of its lower torsional stiffness than that for a closed section. See Fig. 2-17 for examples of shear center locations.

Figure 2-17: Locations of shear centers: (a) one axis of symmetry; (b) two axes of symmetry; (c) angle section. The centroid and shear center are denoted by c and S, respectively.

Open Cross Sections

If the material of the cross section remains linearly elastic and the flexure formula (Chapter 3) is valid, the shear center for thin-walled cross sections can be obtained using [2.1, 2.3]

$$
\begin{align*}
& y_{S}=\frac{1}{D}\left(I_{z} I_{\omega y}-I_{y z} I_{\omega z}\right) \tag{2.35a}\\
& z_{S}=\frac{1}{D}\left(-I_{y} I_{\omega z}+I_{y z} I_{\omega y}\right) \tag{2.35b}
\end{align*}
$$

with

$$
\begin{equation*}
D=I_{y} I_{z}-I_{y z}^{2} \tag{2.36}
\end{equation*}
$$

This definition of a shear center, which depends solely on the geometry of the cross section, is referred to as Trefftz's definition. Reference [2.1] provides a theory of elasticity based definition that depends on the material properties.

In Eqs. (2.35), the origin of the $y z$ coordinate system is at the centroid of the cross section, y_{S} and z_{S} are distances from point P (pole) (Fig. 2-18). Point P can be located arbitrarily for convenience of calculation. Normally, P is located at the centroid of the cross section.

When the $y z$ axes are principal axes $\left(I_{y z}=0\right)$, Eqs. (2.35) can be simplified as

$$
\begin{align*}
y_{S} & =\frac{1}{I_{y}} I_{\omega y} \tag{2.37a}\\
z_{S} & =-\frac{1}{I_{z}} I_{\omega z} \tag{2.37b}
\end{align*}
$$

If the cross section has one axis of symmetry (Fig. 2-19) and if the load $\left(P_{z}\right)$ is parallel to the z axis and passes through the shear center S, Eqs. (2.31) can be simplified

Figure 2-18: Shear center for an open thin-walled section.

Figure 2-19: Thin-walled open section with one axis (y) of symmetry.
further as

$$
\begin{align*}
y_{S} & =\frac{1}{I_{y}} I_{\omega y} \tag{2.38a}\\
z_{S} & =0 \tag{2.38b}
\end{align*}
$$

The shear centers for some common sections are given in Table 2-6.
For the shear center of closed sections, refer to Refs. [2.1] and [2.3].

Example 2.6 Shear Center Calculation Determine the shear center of the cross section shown in Fig. 2-20a.

To simplify the calculation, choose pole P at one corner and initial point I at another, as shown in Fig. 2-20b. This configuration makes $r_{P}=0$ for legs $I-P$ and $P-k$, so that $\omega_{P}=0$. For leg $I-J, r_{P}=2 a$. Then

$$
\omega_{P}= \begin{cases}-2 a s & (\operatorname{leg} I-J) \tag{1}\\ 0 & (\operatorname{legs} I-P \text { and } P-k)\end{cases}
$$

From Eqs. (2.32)

$$
\begin{align*}
I_{\omega y} & =\int_{A} \omega_{P} z d A=\int_{A_{I J}} \omega_{P} z d A+\int_{A_{I P}} \omega_{P} z d A+\int_{A_{P k}} \omega_{P} z d A \\
& =\int_{0}^{a}(2 a s) a t d s+0+0=a^{4} t \tag{2}\\
I_{\omega z} & =\int_{A} \omega_{P} y d A=\int_{0}^{a} 2 a s\left(s-\frac{1}{4} a\right) t d s+0+0=+\frac{5}{12} a^{4} t \tag{3}
\end{align*}
$$

Figure 2-20: Example 2.6.

From Eqs. (2.35) with $I_{y z}=0$,

$$
\begin{align*}
& y_{S}=\frac{I_{\omega y}}{I_{y}}=\frac{+a^{4} t}{\frac{8}{3} a^{3} t}=+\frac{3}{8} a \tag{4}\\
& z_{S}=-\frac{I_{\omega z}}{I_{z}}=-\frac{\frac{5}{12} a^{4} t}{\frac{5}{12} a^{3} t}=-a \tag{5}
\end{align*}
$$

This shear center S is indicated in Fig. 2-20b.

2.12 MODULUS-WEIGHTED PROPERTIES FOR COMPOSITE SECTIONS

For members of nonhomogeneous material it is useful to introduce the concept of modulus-weighted section properties. Define an increment of area as

$$
\begin{equation*}
d A^{*}=\frac{E}{E_{r}} d A \tag{2.39}
\end{equation*}
$$

where E_{r} is an arbitrary reference modulus that can be chosen to control the magnitude of the numbers involved in the computation of modulus-weighted properties and E assumes the value of the modulus of elasticity for the point of interest on the
cross section. For a homogeneous member set $E_{r}=E$ so that this modulus-weighted property will reduce to the ordinary geometric property of the section. The definition of Eq. (2.39) leads to the other modulus-weighted definitions:

Area:

$$
\begin{align*}
A^{*} & =\int_{A} d A^{*} \\
y_{c}^{*} & =\frac{1}{A^{*}} \int_{A} y d A^{*}, \quad z_{c}^{*}=\frac{1}{A^{*}} \int_{A} z d A^{*} \\
I_{y}^{*} & =\int_{A} z^{2} d A^{*}, \quad I_{z}^{*}=\int_{A} y^{2} d A^{*} \tag{2.40}\\
I_{y z}^{*} & =\int_{A} y z d A^{*}
\end{align*}
$$

Centroid:

$$
\text { Moments of inertia: } \quad I_{y}^{*}=\int_{A} z^{2} d A^{*}, \quad I_{z}^{*}=\int_{A} y^{2} d A^{*}
$$

For the case of a composite section E can be piecewise constant, as shown in Fig. 2-21. Then for this section formed of n materials:

$$
\begin{array}{ll}
\text { Area: } & A_{i}^{*}=\frac{E_{i}}{E_{r}} A_{i}, \quad A^{*}=\sum_{i=1}^{n} A_{i}^{*}=\sum_{i=1}^{n} \frac{E_{i}}{E_{r}} A_{i} \\
\text { Centroid: } & y_{c}^{*}=\frac{\sum_{i=1}^{n} \frac{E_{i}}{E_{r}} \int_{A_{i}} y_{0 i} d A_{i}}{\sum_{i=1}^{n} \frac{E_{i}}{E_{r}} \int_{A_{i}} d A_{i}}=\frac{1}{A^{*}} \sum_{i=1}^{n} \bar{y}_{0 i} A_{i}^{*} \\
& \tag{2.41b}\\
& z_{c}^{*}=\frac{\sum_{i=1}^{n} \frac{E_{i}}{E_{r}} \int_{A_{i}} z_{0 i} d A_{i}}{\sum_{i=1}^{n} \frac{E_{i}}{E_{r}} \int_{A_{i}} d A_{i}}=\frac{1}{A^{*}} \sum_{i=1}^{n} \bar{z}_{0 i} A_{i}^{*}
\end{array}
$$

Figure 2-21: Cross section of a composite beam.
where $\bar{y}_{0 i}, \bar{z}_{0 i}$ are the coordinates in the $y_{0} z_{0}$ system of the geometric centroid of the area A_{i} of the i th element. The moments of inertia are calculated as follows:

$$
\begin{equation*}
I_{y}^{*}=I_{y_{0}}^{*}-z_{c}^{* 2} A^{*}, \quad I_{z}^{*}=I_{z_{0}}^{*}-y_{c}^{* 2} A^{*}, \quad I_{y z}^{*}=I_{y_{0} z_{0}}^{*}-y_{c}^{*} z_{c}^{*} A^{*} \tag{2.42}
\end{equation*}
$$

where $I_{y}^{*}, I_{z}^{*}, I_{y z}^{*}$ are the modulus-weighted moments of inertia about the modulusweighted centroidal axes y, z and $I_{y_{0}}^{*}, I_{z_{0}}^{*}, I_{y_{0} z_{0}}^{*}$ are the modulus-weighted moments of inertia about the reference $y_{0} z_{0}$ axes:

$$
\begin{align*}
I_{y_{0}}^{*} & =\sum_{i=1}^{n} \frac{E_{i}}{E_{r}}\left(\bar{I}_{y_{i}}+\bar{z}_{0 i}^{2} A_{i}\right), \quad I_{z_{0}}^{*}=\sum_{i=1}^{n} \frac{E_{i}}{E_{r}}\left(\bar{I}_{z_{i}}+\bar{y}_{0 i}^{2} A_{i}\right) \\
I_{y_{0} z_{0}}^{*} & =\sum_{i=1}^{n} \frac{E_{i}}{E_{r}}\left(\bar{I}_{y_{i} z_{i}}+\bar{y}_{0 i} \bar{z}_{0 i} A_{i}\right) \tag{2.43}
\end{align*}
$$

where $\bar{I}_{y_{i}}, \bar{I}_{z_{i}}, \bar{I}_{y_{i} z_{i}}$ are the moments of inertia of area A_{i} about its own centroidal axis. Also,

$$
\begin{align*}
I_{y}^{*} & =\sum_{i=1}^{n} \frac{E_{i}}{E_{r}}\left(\bar{I}_{y_{i}}+\bar{z}_{i}^{2} A_{i}\right), \quad I_{z}^{*}=\sum_{i=1}^{n} \frac{E_{i}}{E_{r}}\left(\bar{I}_{z_{i}}+\bar{y}_{i}^{2} A_{i}\right) \tag{2.44}\\
I_{y z}^{*} & =\sum_{i=1}^{n} \frac{E_{i}}{E_{r}}\left(\bar{I}_{y_{i} z_{i}}+\bar{y}_{i} \bar{z}_{i} A_{i}\right)
\end{align*}
$$

where \bar{y}_{i}, \bar{z}_{i} are the coordinates in the centroidal $y z$ system of the geometric centroid of the area A_{i} of the i th element (Fig. 2-21).

The first moment is calculated as

$$
\begin{align*}
& Q_{y}^{*}=\int_{A_{0}} z d A^{*}=\int_{A_{0}} \frac{E}{E_{r}} z d A=\sum_{i=1}^{n_{0}} \bar{z}_{i} A_{i}^{*} \\
& Q_{z}^{*}=\int_{A_{0}} y d A^{*}=\int_{A_{0}} \frac{E}{E_{r}} y d A=\sum_{i=1}^{n_{0}} \bar{y}_{i} A_{i}^{*} \tag{2.45}
\end{align*}
$$

where the summations using index n_{0} extend over the area A_{0} (Fig. 2-16b). The warping constant is derived from

$$
\begin{equation*}
\Gamma^{*}=\int_{A} \omega^{2} d A^{*}=\int_{A} \frac{E}{E_{r}} \omega^{2} d A=\sum_{i=1}^{n_{o}} \frac{E_{i}}{E_{r}} \int_{A_{i}} \omega^{2} d A \tag{2.46}
\end{equation*}
$$

and the first sectorial moment from

$$
\begin{equation*}
Q_{\omega}^{*}=\int_{A_{0}} \omega d A^{*}=\int_{A_{0}} \frac{E}{E_{r}} \omega d A=\sum_{i=1}^{n_{0}} \frac{E_{i}}{E_{r}} \int_{A_{i}} \omega d A \tag{2.47}
\end{equation*}
$$

where A_{0} is defined in Fig. 2-16b. The shear center is calculated as

$$
\begin{equation*}
y_{S}=y_{P}+\frac{I_{z}^{*} I_{\omega y}^{*}-I_{y z}^{*} I_{\omega z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}}, \quad z_{S}=z_{P}-\frac{I_{y}^{*} I_{\omega z}^{*}-I_{y z}^{*} I_{\omega y}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}} \tag{2.48}
\end{equation*}
$$

where y_{S}, z_{S} are indicated in Fig. 2-18 and $I_{\omega y}^{*}=\int_{A} \omega_{P} z d A^{*}, I_{\omega z}^{*}=\int_{A} \omega_{P} y d A^{*}$.

REFERENCES

2.1. Pilkey, W. D., Analysis and Design of Elastic Beams: Computational Methods, Wiley, New York, 2002.
2.2. Schramm, U., Kitis, L., Kang, W., and Pilkey, W. D., "On the Shear Deformation Coefficient in Beam Theory," J. Finite Elem. Anal. Des., Vol. 16, 1994, pp. 141-162.
2.3. Cook, R. D., and Young, W. C., Advanced Mechanics of Materials, Macmillan, New York, 1985.
2.4. Cowper, G. R., "The Shear Coefficient in Timoshenko's Beam Theory," J. Appl. Mech. (ASME), Vol. 33, 1966, pp. 335-340.
2.5. Isakower, R. I., The Shaft Book, U.S. Army ARRADCOM MISD User's Manual 80-5, March 1980.
2.6. Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M., Advanced Mechanics of Materials, 5th ed., Wiley, New York, 1985.
2.7. Reissner, E., and Tsai, W. T., On the Determination of the Centers of Twist of Shear Cylindrical Shell Beams, ASME Paper 72-APM-XX, 1972.
2.8. Column Research Committee of Japan, Handbook of Structural Stability, Corona Publishing, Tokyo, 1971.
2.9. Timoshenko, S. P., and Gere, J. M., Mechanics of Materials, Van Nostrand, New York, 1972.
2.10. Galambos, T. V., Structural Members and Frames, Prentice-Hall, Englewood Cliffs, NJ, 1968.
2.11. Oden, J. T., and Ripperger, E. A., Mechanics of Elastic Structures, 2nd ed., McGraw-Hill, New York, 1970.

TABLE 2-1 AREAS, CENTROIDS, MOMENTS OF INERTIA, AND RADII OF GYRATION OF COMMON CROSS SECTIONS

Shape of Section	Area, Location of Centroid $\left(y_{c}, z_{c}\right)$	Moments of Inertia and the Polar Moment of Inertia ($J_{x}=I_{\bar{y}}+I_{\bar{z}}$) with Respect to Centroidal Axial Axis	Transverse Radii of Gyration and the Polar Radius of Gyration $r_{p}=r_{x}$
1. Rectangle	$\begin{aligned} A & =b h \\ y_{c} & =\frac{1}{2} b \\ z_{c} & =\frac{1}{2} h \end{aligned}$	$\begin{aligned} I & =I_{\bar{y}}=\frac{1}{12} b h^{3} \\ I_{\bar{z}} & =\frac{1}{12} h b^{3} \\ I_{\bar{y} \bar{z}} & =0 \\ J_{x} & =\frac{1}{12} b h\left(b^{2}+h^{2}\right) \end{aligned}$	$\begin{aligned} & r_{\bar{y}}=h / \sqrt{12} \\ & r_{\bar{z}}=b / \sqrt{12} \\ & r_{p}=\sqrt{\frac{1}{12}\left(b^{2}+h^{2}\right)} \end{aligned}$
2. Triangle	$\begin{aligned} A & =\frac{1}{2} b h \\ y_{c} & =\frac{1}{3}(a+b) \\ z_{c} & =\frac{1}{3} h \end{aligned}$	$\begin{aligned} I & =I_{\bar{y}}=\frac{1}{36} b h^{3} \\ I_{\bar{z}} & =\frac{1}{36} b h\left(b^{2}-a b+a^{2}\right) \\ I_{\bar{y} \bar{z}} & =\frac{1}{72} b h^{2}(2 a-b) \\ J_{x} & =\frac{1}{36} b h\left(h^{2}+b^{2}-a b+a^{2}\right) \end{aligned}$	$\begin{aligned} & r_{\bar{y}}=h / \sqrt{18} \\ & r_{\bar{z}}=\left[\frac{1}{18}\left(b^{2}-a b+a^{2}\right)\right]^{1 / 2} \\ & r_{p}=\sqrt{\frac{1}{18}\left(b^{2}+h^{2}-a b+a^{2}\right)} \end{aligned}$

	3. Trapezoid	$\begin{aligned} A & =\frac{1}{2} h(a+b) \\ y_{c} & =\frac{1}{2} a \\ z_{c} & =\frac{h}{3} \frac{a+2 b}{a+b} \end{aligned}$	$\begin{aligned} I & =I_{\bar{y}}=\frac{h^{3}}{36} \frac{a^{2}+4 a b+b^{2}}{a+b} \\ I_{\bar{z}} & =\frac{1}{48} h(a+b)\left(a^{2}+b^{2}\right) \\ I_{\bar{y} \bar{z}} & =0 \\ J_{x} & =I_{\bar{y}}+I_{\bar{z}} \end{aligned}$	$\begin{aligned} & r_{\bar{y}}=\frac{h\left(a^{2}+4 a b+b^{2}\right)^{1 / 2}}{\sqrt{18}(a+b)} \\ & r_{\bar{z}}=\left[\frac{1}{24}\left(a^{2}+b^{2}\right)\right]^{1 / 2} \\ & r_{p}=\sqrt{J_{x} / A} \end{aligned}$
	4.	$\begin{aligned} A & =\frac{1}{4} \pi d^{2} \\ y_{c} & =\frac{1}{2} d \\ z_{c} & =\frac{1}{2} d \end{aligned}$	$\begin{aligned} I & =I_{\bar{y}}=I_{\bar{z}}=\frac{1}{64} \pi d^{4} \\ I_{\bar{y} \bar{z}} & =0 \\ J_{x} & =\frac{1}{32} \pi d^{4} \end{aligned}$	$\begin{aligned} & r_{\bar{y}}=r_{\bar{z}}=\frac{1}{4} d \\ & r_{p}=d / \sqrt{8} \end{aligned}$
	5.	$\begin{aligned} A & =\frac{1}{4} \pi\left(d_{o}^{2}-d_{i}^{2}\right) \\ y_{c} & =\frac{1}{2} d_{o} \\ z_{c} & =\frac{1}{2} d_{o} \end{aligned}$	$\begin{aligned} I & =I_{\bar{y}}=I_{\bar{z}}=\frac{1}{4} \pi\left(r_{o}^{4}-r_{i}^{4}\right) \\ I_{\bar{y} \bar{z}} & =0 \\ J_{x} & =\frac{1}{32} \pi\left(d_{o}^{4}-d_{i}^{4}\right) \end{aligned}$	$\begin{aligned} & r_{\bar{y}}=r_{\bar{z}}=\frac{1}{4}\left(d_{o}^{2}+d_{i}^{2}\right)^{1 / 2} \\ & r_{p}=\sqrt{\frac{1}{8}\left(d_{o}^{2}+d_{i}^{2}\right)} \end{aligned}$

TABLE 2-1 (continued) AREAS, CENTROIDS, MOMENTS OF INERTIA, AND RADII OF GYRATION OF COMMON CROSS SECTIONS

Shape of Section	Area, Location of Centroid $\left(y_{c}, z_{c}\right)$	Moments of Inertia and the Polar Moment of Inertia ($J_{x}=I_{\bar{y}}+I_{\bar{z}}$) with Respect to Centroidal Axial Axis	Transverse Radii of Gyration and the Polar Radius of Gyration $r_{p}=r$
6.	$\begin{aligned} A & =\pi a b \\ y_{c} & =a \\ z_{c} & =b \end{aligned}$	$\begin{aligned} I & =I_{\bar{y}}=\frac{1}{4} \pi a b^{3} \\ I_{\bar{z}} & =\frac{1}{4} \pi b a^{3} \\ I_{\bar{y} \bar{z}} & =0 \\ J_{x} & =\frac{1}{4} \pi a b\left(b^{2}+a^{2}\right) \end{aligned}$	$\begin{aligned} r_{\bar{y}} & =\frac{1}{2} b \\ r_{\bar{z}} & =\frac{1}{2} a \\ r_{p} & =\sqrt{\frac{1}{4}\left(a^{2}+b^{2}\right)} \end{aligned}$
7. Semicircle	$\begin{aligned} A & =\frac{1}{2} \pi r^{2} \\ y_{c} & =r \\ z_{c} & =4 r / 3 \pi \end{aligned}$	$\begin{aligned} I & =I_{\bar{y}}=0.11 r^{4} \\ I_{\bar{z}} & =0.393 r^{4} \\ I_{\bar{y} \bar{z}} & =0 \\ J_{x} & =0.296 r^{4} \end{aligned}$	$\begin{aligned} r_{\bar{y}} & =0.264 r \\ r_{\bar{z}} & =\frac{1}{2} r \\ r_{p} & =0.565 r \end{aligned}$

	8. Parallelogram	$\begin{aligned} A & =b d \\ y_{c} & =\frac{1}{2}(b+a) \\ z_{c} & =\frac{1}{2} d \end{aligned}$	$\begin{aligned} I_{\bar{y}} & =\frac{1}{12} b d^{3} \\ I_{\bar{z}} & =\frac{1}{12} b d\left(b^{2}+a^{2}\right) \\ I_{\bar{y} \bar{z}} & =-\frac{1}{12} a b d^{2} \end{aligned}$	$\begin{aligned} r_{\bar{y}} & =0.2887 d \\ r_{\bar{z}} & =0.2887 \sqrt{b^{2}+a^{2}} \end{aligned}$
łəәu !o słuәسow ‘sp!̣oגł	9. Diamond	$\begin{aligned} A & =\frac{1}{2} b d \\ y_{c} & =\frac{1}{2} b \\ z_{c} & =\frac{1}{2} d \end{aligned}$	$\begin{aligned} I_{\bar{y}} & =\frac{1}{48} b d^{3} \\ I_{\bar{z}} & =\frac{1}{48} d b^{3} \end{aligned}$	$\begin{aligned} r_{\bar{y}} & =0.2041 d \\ r_{\bar{z}} & =0.2041 b \end{aligned}$

TABLE 2-1 (continued) AREAS, CENTROIDS, MOMENTS OF INERTIA, AND RADII OF GYRATION OF COMMON CROSS SECTIONS

Shape of Section	Area, Location of Centroid $\left(y_{c}, z_{c}\right)$	Moments of Inertia and the Polar Moment of Inertia $\left(J_{x}=I_{\bar{y}}+I_{\bar{z}}\right)$ with Respect to Centroidal Axial Axis	Transverse Radii of Gyration and the Polar Radius of Gyration $r_{p}=r_{x}$
10. Sector of solid circle	$\begin{aligned} A & =\alpha R^{2} \\ y_{c} & =R \sin \alpha \\ z_{c} & =R\left(1-\frac{2 \sin \alpha}{3 \alpha}\right) \end{aligned}$	$\begin{aligned} & I_{\bar{y}}=\frac{R^{4}}{4}\left(\alpha+\sin \alpha \cos \alpha-\frac{16 \sin ^{2} \alpha}{9 \alpha}\right) \\ & I_{\bar{z}}=\frac{R^{4}}{4}(\alpha-\sin \alpha \cos \alpha) \end{aligned}$	$\begin{aligned} & r_{\bar{y}}=\frac{R}{2} \sqrt{1+\frac{\sin \alpha \cos \alpha}{\alpha}-\frac{16 \sin ^{2} \alpha}{9 \alpha^{2}}} \\ & r_{\bar{z}}=\frac{R}{2} \sqrt{1-\frac{\sin \alpha \cos \alpha}{\alpha}} \end{aligned}$
11. Angle	$\begin{aligned} B_{1} & =b_{1}+\frac{1}{2} t \\ B_{2} & =b_{2}+\frac{1}{2} t \\ c_{1} & =b_{1}-\frac{1}{2} t \\ c_{2} & =b_{2}-\frac{1}{2} t \\ A & =t\left(b_{1}+b_{2}\right) \\ y_{c} & =\frac{B_{1}^{2}+c_{2} t}{2\left(b_{1}+b_{2}\right)} \\ z_{c} & =\frac{B_{2}^{2}+c_{1} t}{2\left(b_{1}+b_{2}\right)} \end{aligned}$	$\begin{aligned} I_{\bar{y}} & =\frac{1}{3}\left[t\left(B_{2}-\bar{z}\right)^{3}+B_{1} \bar{z}^{3}-c_{1}(\bar{z}-t)^{3}\right] \\ I_{\bar{z}} & =\frac{1}{3}\left[t\left(B_{1}-\bar{y}\right)^{3}+B_{2} \bar{y}^{3}-c_{2}(\bar{y}-t)^{3}\right] \\ I_{\bar{y} \bar{z}} & =-\frac{1}{2} t\left[b_{1} \bar{z}\left(b_{1}-2 \bar{y}\right)+b_{2} \bar{y}\left(b_{2}-2 \bar{z}\right)\right] \end{aligned}$	$\begin{aligned} r_{\bar{y}} & =\sqrt{I_{\bar{y}} / A} \\ r_{\bar{z}} & =\sqrt{I_{\bar{z}} / A} \\ r_{p} & =\sqrt{J_{x} / A} \end{aligned}$

	12. I section	$\begin{aligned} H_{1} & =h+t_{f} \\ H_{2} & =h-t_{f} \\ A & =2 b t_{f}+H_{2} t_{w} \\ y_{c} & =\frac{1}{2} b \\ z_{c} & =\frac{1}{2} H_{1} \end{aligned}$	$\begin{aligned} I_{\bar{y}} & =\frac{1}{12}\left[b H_{1}^{3}-\left(b-t_{w}\right) H_{2}^{3}\right] \\ I_{\bar{z}} & =\frac{1}{12}\left(H_{2} t_{w}^{3}+2 t_{f} b^{3}\right) \\ I_{\bar{y} \bar{z}} & =0, \quad J_{x}=I_{\bar{y}}+I_{\bar{z}} \end{aligned}$	$\begin{aligned} r_{\bar{y}} & =\sqrt{I_{\bar{y}} / A} \\ r_{\bar{z}} & =\sqrt{I_{\bar{z}} / A} \\ r_{p} & =\sqrt{J_{x} / A} \end{aligned}$
	13. Z section	$\begin{aligned} H_{1} & =h+t \\ B & =b+\frac{1}{2} t \\ C & =b-\frac{1}{2} t \\ A & =t(h+2 b) \\ y_{c} & =b, z_{c}=\frac{1}{2}(h+t) \end{aligned}$	$\begin{aligned} I_{\bar{y}} & =\frac{1}{12}\left[B H_{1}^{3}-C\left(H_{1}-2 t\right)^{3}\right] \\ I_{\bar{z}} & =\frac{1}{12}\left[H_{1}(B+C)^{3}-2 h C^{3}-6 B^{2} h C\right] \\ I_{\bar{y} \bar{z}} & =-\frac{1}{2} h t b^{2} \\ J_{x} & =I_{\bar{y}}+I_{\bar{z}} \end{aligned}$	$\begin{aligned} r_{\bar{y}} & =\sqrt{I_{y} / A} \\ r_{\bar{z}} & =\sqrt{I_{\bar{z}} / A} \\ r_{p} & =\sqrt{J_{x} / A} \end{aligned}$

TABLE 2-1 (continued) AREAS, CENTROIDS, MOMENTS OF INERTIA, AND RADII OF GYRATION OF COMMON CROSS SECTIONS

Moments of Inertia and the Polar Moment
Area, Location of Centroid $\left(y_{c}, z_{c}\right)$ of Inertia ($J_{x}=I_{\bar{y}}+I_{\bar{z}}$) with

Transverse Radii of Gyration and
Shape of Section
Respect to Centroidal Axial Axis the Polar Radius of Gyration $r_{p}=r_{x}$

$$
\begin{aligned}
A & =h t_{1}+\left(b-t_{1}\right) t_{2} \\
y_{c} & =\frac{1}{2} b \\
z_{c} & =\frac{1}{2} h
\end{aligned} \quad I_{\bar{y}}=\frac{1}{12}\left[t_{1} h^{3}+\left(b-t_{1}\right) t_{2}^{3}\right] ~ I_{\bar{z}}=\frac{1}{12}\left[t_{2} b^{3}+\left(h-t_{2}\right) t_{1}^{3}\right],
$$

$$
r_{\bar{y}}=\sqrt{I_{\bar{y}} / A}
$$

$$
r_{\bar{z}}=\sqrt{I_{\bar{z}} / A}
$$

$$
r_{p}=\sqrt{J_{x} / A}
$$

15.

Channel

$$
\begin{aligned}
B & =b+\frac{1}{2} t_{w} \\
C & =b-\frac{1}{2} t_{w} \\
H_{1} & =h+t_{f} \\
D & =h-t_{f} \\
A & =h t_{w}+2 b t_{f} \\
y_{c} & =\frac{2 B^{2} t_{f}+D t_{w}^{2}}{2 B H_{1}-2 D C} \\
z_{c} & =\frac{1}{2}\left(h+t_{f}\right)
\end{aligned}
$$

$r_{\bar{y}}=\sqrt{I_{\bar{y}} / A}$
$I_{\bar{y}}=\frac{1}{12}\left(B H_{1}^{3}-C D^{3}\right)$
$I_{\bar{z}}=\frac{1}{3}\left(2 t_{f} B^{3}+D t_{w}^{3}\right)-A\left(B-y_{c}\right)^{2}$
$r_{\bar{z}}=\sqrt{I_{\bar{z}} / A}$
$I_{\bar{y} \bar{z}}=0, \quad J_{x}=I_{\bar{y}}+I_{\bar{z}}$
$r_{p}=\sqrt{J_{x} / A}$

	16. T section	$\begin{aligned} H_{1} & =h+\frac{1}{2} t_{f} \\ C & =b-t_{w} \\ A & =b t_{f}+t_{w} D \\ y_{c} & =\frac{1}{2} b, D=h-\frac{1}{2} t_{f} \\ z_{c} & =\frac{H_{1}^{2} t_{w}+C t_{f}^{2}}{2\left(b t_{f}+D t_{w}\right)} \end{aligned}$	$\begin{aligned} I_{\bar{y}} & =\frac{1}{3}\left[t_{w}\left(H_{1}-z_{c}\right)^{3}+b z_{c}^{3}-C\left(z_{c}-t_{f}\right)^{3}\right] \\ I_{\bar{z}} & =\frac{1}{12}\left(b^{3} t_{f}+D t_{w}^{3}\right) \\ I_{\bar{y} \bar{z}} & =0, \quad J_{x}=I_{\bar{y}}+I_{\bar{z}} \end{aligned}$	$\begin{aligned} r_{\bar{y}} & =\sqrt{I_{\bar{y}} / A} \\ r_{\bar{z}} & =\sqrt{I_{\bar{z}} / A} \\ r_{p} & =\sqrt{J_{x} / A} \end{aligned}$

TABLE 2-2 SECTION MODULI ABOUT THE CENTROIDAL AXES

Case	Elastic Section Modulus $S=Z_{e}$	Plastic Section Modulus $Z=Z_{p}$	Shape Factor $f=Z_{p} / Z_{e}$
1. Rectangle	$\begin{aligned} & Z_{e y}=\frac{1}{6} b h^{2} \\ & Z_{e z}=\frac{1}{6} h b^{2} \end{aligned}$	$\begin{aligned} & Z_{p y}=\frac{1}{4} b h^{2} \\ & Z_{p z}=\frac{1}{4} h b^{2} \end{aligned}$	$f_{y}=f_{z}=1.5$
2. Hollow rectangle	$\begin{aligned} & Z_{e y}=\frac{1}{6} \frac{b h^{3}-b_{i} h_{i}^{3}}{h} \\ & Z_{e z}=\frac{1}{6} \frac{h b^{3}-h_{i} b_{i}^{3}}{b} \end{aligned}$	$\begin{aligned} & Z_{p y}=\frac{1}{4}\left(b h^{2}-b_{i} h_{i}^{2}\right) \\ & Z_{p z}=\frac{1}{4}\left(h b^{2}-h_{i} b_{i}^{2}\right) \end{aligned}$	$\begin{aligned} & f_{y}=1.5 \frac{h\left(b h^{2}-b_{i} h_{i}^{2}\right)}{b h^{3}-b_{i} h_{i}^{3}} \\ & f_{z}=1.5 \frac{b\left(h b^{2}-h_{i} b_{i}^{2}\right)}{h b^{3}-h_{i} b_{i}^{3}} \end{aligned}$

	TABLE 2-2 (continued) SECTION MODULI ABOUT THE CENTROIDAL AXES			
$\begin{aligned} & \text { İ } \\ & \text { om } \\ & \text { m } \\ & \text { N } \\ & N \end{aligned}$	6. Hollow circle	$Z_{e y}=Z_{e z}=\frac{\pi}{4} \frac{r_{o}^{4}-r_{i}^{4}}{r_{o}}$	$Z_{p y}=Z_{p z}=\frac{4}{3}\left(r_{o}^{3}-r_{i}^{3}\right)$	$f_{y}=f_{z}=1.698 \frac{r_{o}\left(r_{o}^{3}-r_{i}^{3}\right)}{r_{o}^{4}-r_{i}^{4}}$
	7. Ellipse	$\begin{aligned} Z_{e y} & =\frac{1}{4} \pi b a^{2} \\ Z_{e z} & =\frac{1}{4} \pi a b^{2} \end{aligned}$	$\begin{aligned} & Z_{p y}=\frac{4}{3} b a^{2} \\ & Z_{p z}=\frac{4}{3} a b^{2} \end{aligned}$	$f_{y}=f_{z}=1.698$
	8. Semicircle	$\begin{aligned} Z_{e y} & =0.1908 r^{3} \\ Z_{e z} & =\frac{1}{8} \pi r^{3} \end{aligned}$	$\begin{aligned} Z_{p y} & =0.3540 r^{3} \\ Z_{p z} & =\frac{2}{3} r^{3} \end{aligned}$	$\begin{aligned} f_{y} & =1.856 \\ f_{z} & =1.698 \end{aligned}$

	9. T section	$\begin{aligned} Z_{e y} & =\frac{I_{y}}{h+t_{f}-z_{c}} \\ Z_{e z} & =\frac{I_{z}}{\frac{1}{2} b} \end{aligned}$ where $I_{y}, I_{z}=$ moments of inertia of T section about y, z axes (Table 2-1, case 16)	If $t_{w} h \leq b t_{f}$, then $Z_{p y}=\frac{h^{2} t_{w}}{4}-\frac{b^{2} t_{f}^{2}}{4 t_{w}}-\frac{b t_{f}\left(h+t_{f}\right)}{2}$ Neutral axis y is distance $\frac{1}{2}\left(b t_{f} / t_{w}+h\right)$ from bottom If $t_{w} h>b t_{f}$, then $Z_{p y}=\frac{1}{4} t_{f}^{2} b+\frac{1}{2} t_{w} h\left(t_{f}+h-t_{w} h / 2 b\right)$ Neutral axis y is $\frac{1}{2}\left(t_{w} h / b+t_{f}\right)$ from the top $Z_{p z}=\frac{1}{4}\left(b^{2} t_{f}+t_{w}^{2} h\right)$	$\begin{aligned} f_{y} & =\frac{Z_{p y}\left(h+t_{f}-z_{c}\right)}{I_{y}} \\ f_{z} & =\frac{Z_{p z} b}{2 I_{z}} \end{aligned}$
	10. Channel	$\begin{aligned} Z_{e y} & =\frac{2 I_{y}}{h} \\ Z_{e z} & =\frac{I_{z}}{b+t_{w}-y_{c}} \end{aligned}$ where I_{y}, I_{z}, and y_{c} are given in case 15 of Table 2-1	$Z_{p y}=\frac{1}{4} h^{2} t_{w}+t_{f} b\left(h-t_{f}\right)$ If $2 t_{f} b \leq h t_{w}$, then $Z_{p z}=\frac{b^{2} t_{f}}{2}-\frac{h^{2} t_{w}^{2}}{8 t_{f}}+\frac{h t_{w}\left(b+t_{w}\right)}{2}$ Neutral axis z is $\frac{1}{2}\left(h t_{w} / 2 t_{f}+b\right)$ from left side If $2 t_{f} b>h t_{w}$, then $Z_{p z}=\frac{1}{4} t_{w}^{2} h+t_{f} b\left(t_{w}+b-t_{f} b / h\right)$ Neutral axis z is $t_{f} b / h+\frac{1}{2} t_{w}$ from right side	$\begin{aligned} f_{y} & =\frac{Z_{p y} h}{2 I_{y}} \\ f_{z} & =\frac{Z_{p z}\left(b+t_{w}-y_{c}\right)}{I_{z}} \end{aligned}$

TABLE 2-2 (continued) SECTION MODULI ABOUT THE CENTROIDAL AXES

Case	Elastic Section Modulus $S=Z_{e}$	Plastic Section Modulus $Z=Z_{p}$	Shape Factor $f=Z_{p} / Z_{e}$
11. I section	$\begin{aligned} Z_{e y} & =\frac{I_{y}}{t_{f}+h / 2} \\ Z_{e z} & =\frac{2 I_{z}}{b} \end{aligned}$ where I_{y}, I_{z} are given in case 12 of Table 2-1	$\begin{aligned} & Z_{p y}=\frac{1}{4} t_{w} h^{2}+b t_{f}\left(h+t_{f}\right) \\ & Z_{p z}=\frac{1}{2} b^{2} t_{f}+\frac{1}{4} t_{w}^{2} h \end{aligned}$	$\begin{aligned} & f_{y}=\frac{Z_{p y}\left(t_{f}+\frac{1}{2} h\right)}{I_{y}} \\ & f_{z}=\frac{Z_{p z} b}{2 I_{z}} \end{aligned}$

TABLE 2-3 FIRST MOMENT Q ASSOCIATED WITH SHEAR STRESS IN BEAMS ${ }^{a}$

Case	$Q=\int_{A_{0}} z d A=A_{0} \bar{z}$	$\frac{1}{8} b h^{2}$ when $z_{1}=0$
1. Rectangular section	$\frac{1}{2} b\left(\frac{1}{4} h^{2}-z_{1}^{2}\right)$	

${ }^{a}$ The shear stress is to be calculated at $z=z_{1}$.

Case	Correction Factor α_{s}
8.	$\frac{\left(12+72 j+150 j^{2}+90 j^{3}\right)+v\left(11+66 j+135 j^{2}+90 j^{3}\right)+30 k^{2}\left(j+j^{2}\right)+5 v k^{2}\left(8 j+9 j^{2}\right)}{10(1+v)(1+3 j)^{2}}$ where $j=2 b t_{f} / h t_{w}, \quad k=b / h$
9.	$\begin{aligned} & \frac{\left(12+72 j+150 j^{2}+90 j^{3}\right)+v\left(11+66 j+135 j^{2}+90 j^{3}\right)+10 k^{2}\left[(3+v) j+3 j^{2}\right]}{10(1+v)(1+3 j)^{2}} \\ & \text { where } j=b t_{1} / h t, \quad k=b / h \end{aligned}$
10.	$\frac{\left(12+96 j+276 j^{2}+192 j^{3}\right)+v\left(11+88 j+248 j^{2}+216 j^{3}\right)+30 k^{2}\left(j+j^{2}\right)+10 v k^{2}\left(4 j+5 j^{2}+j^{3}\right)}{10(1+v)(1+4 j)^{2}}$ where $j=b t_{f} / h t_{w}, \quad k=b / h$

${ }^{a}$ This table contains some traditional expressions for shear correction factors, following Cowper [2.4], with permission. More accurate values can be obtained using the computational methods of Ref. [2.1]. For example, the more accurate shear correction factor for a rectangular section (case 1) varies with the thickness of the rectangle. For software see the web site for this book.

TABLE 2-5 (continued) TORSIONAL CONSTANT Ja

Hollow, Closed Thin-Walled Sections

Structural Shapes
Shape Torsional Constant J

12.	$J=\frac{1}{3}\left(b_{1} t_{1}^{3}+b_{2} t_{2}^{3}+h t_{w}^{3}\right)$

$$
\begin{aligned}
& \text { 13. } \\
& J_{\mathrm{I}}=\frac{2}{3} b t_{f}^{3}+\frac{1}{3}\left(d-2 t_{f}\right) t_{w}^{3}+2 \alpha D^{4}-0.420 t_{f}^{4} \\
& J_{\perp}=\frac{1}{3} b t_{f}^{3}+\frac{1}{3}\left(d-t_{f}\right) t_{w}^{3}+\alpha D^{4}-0.210 t_{f}^{4}-0.105 t_{w}^{4} \\
& D=\frac{\left(t_{f}+r\right)^{2}+t_{w}\left(r+\frac{1}{4} t_{w}\right)}{2 r+t_{f}} \\
& \text { where } \quad 0.5 \leq t_{w} / t_{f} \leq 1.0 \\
& \alpha=C_{1}+C_{2}\left(t_{w} / t_{f}\right)+C_{3}\left(t_{w} / t_{f}\right)^{2} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& J_{\mathrm{I}}=\frac{1}{6}\left(b-t_{w}\right)\left(t_{1}+t_{2}\right)\left(t_{1}^{2}+t_{2}^{2}\right)+\frac{2}{3} t_{w} t_{2}^{3}+\frac{1}{3}\left(d-2 t_{2}\right) t_{w}^{3}+2 \alpha D^{4}-4 V t_{1}^{4} \\
& J_{\perp}=\frac{1}{12}\left(b-t_{w}\right)\left(t_{1}+t_{2}\right)\left(t_{1}^{2}+t_{2}^{2}\right)+\frac{1}{3} t_{w} t_{2}^{3}+\frac{1}{3}\left(d-t_{2}\right) t_{w}^{3}+\alpha D^{4}-2 V t_{1}^{4}-0.105 t_{w}^{4} \\
& D=\frac{\left(F+t_{2}\right)^{2}+t_{w}\left(r+\frac{1}{4} t_{w}\right)}{F+r+t_{2}} \\
& F=r s\left(\sqrt{\frac{1}{s^{2}}+1}-1-\frac{t_{w}}{2 r}\right) \\
& V=0.10504+0.10000 s+0.08480 s^{2}+0.06746 s^{3}+0.05153 s^{4} \\
& s=\frac{2\left(t_{2}-t_{1}\right)}{b-t_{w}}=\text { slope of flange } \\
& \text { where } \quad \begin{aligned}
& 0.5 \leq t_{w} / t_{2} \leq 1.0 \\
& \quad \alpha=C_{1}+C_{2}\left(t_{w} / t_{2}\right)+C_{3}\left(t_{w} / t_{2}\right)^{2}
\end{aligned}
\end{aligned}
$$

\[

\]

TABLE 2-5 (continued) TORSIONAL CONSTANT J ${ }^{a}$
Shape

20.	$J=2 H^{4}$ where for $0.1 \leq b / r \leq 0.4, ~$ $H=C_{1}+C_{2}(b / r)+C_{3}(b / r)^{2}+C_{4}(b / r)^{3}$
	For $0.2 \leq a / b \leq 1.5$

TABLE 2-5 (continued) TORSIONAL CONSTANT J ${ }^{a}$

Shape	Torsional Constant J
22.	$J=2 H r^{4}$ where for $0.1 \leq b / r \leq 0.5$,$H=C_{1}+C_{2}(b / r)+C_{3}(b / r)^{2}+C_{4}(b / r)^{3}$ For $0.2 \leq a / b \leq 2.0$ C_{1} $0.820637-0.087139(a / b)+0.061660(a / b)^{2}-0.019378(a / b)^{3}$ C_{2} $-0.321396+0.650230(a / b)-0.391181(a / b)^{2}+0.182355(a / b)^{3}$ C_{3} $0.760392-1.061566(a / b)+1.085027(a / b)^{2}-0.799552(a / b)^{3}$ C_{4} $-0.661936+0.541752(a / b)+0.872841(a / b)^{2}+1.417918(a / b)^{3}$
23.	$J=2 H r^{4}$ where for $0.1 \leq b / r \leq 0.5$,$H=C_{1}+C_{2}(b / r)+C_{3}(b / r)^{2}+C_{4}(b / r)^{3}$ For $0.2 \leq a / b \leq 2.0$ C_{1} $0.893973-0.313887(a / b)+0.269713(a / b)^{2}-0.084344(a / b)^{3}$ C_{2} $-0.943550+2.289479(a / b)-1.565538(a / b)^{2}+0.525646(a / b)^{3}$ C_{3} $2.432108-4.773638(a / b)+3.659461(a / b)^{2}-1.768291(a / b)^{3}$ C_{4} $-1.838383+1.733176(a / b)+2.880622(a / b)^{2}+2.464264(a / b)^{3}$

	24.	$J=2 H r^{4}$ where for $0 \leq a / r \leq 1.0$, $H=0.789153-0.286497(a / r)-1.000693(a / r)^{2}+0.648931(a / r)^{3}$
$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	25.	$J=2 H r^{4}$ where for $0 \leq a / r \leq 0.6$, $H=0.786896-0.632562(a / r)-2.002225(a / r)^{2}+1.998147(a / r)^{3}$
	26.	$J=2 H r^{4}$ where for $0 \leq a / r \leq 0.29289$, $H=0.781100-0.620726(a / r)-8.234127(a / r)^{2}+15.313776(a / r)^{3}$
	27.	$J=2 H r^{4}$ where for $0.1 \leq a / r \leq 0.5$, $H=0.785940-0.029096(a / r)-1.391780(a / r)^{2}+0.891659(a / r)^{3}$

TABLE 2-5 (continued)	TORSIONAL CONSTANT J^{a}	
Shape	$J=2 \mathrm{Hr}^{4}$ where for $0.1 \leq a / r \leq 0.5, ~$ $H=0.785300-0.013430(a / r)-3.069283(a / r)^{2}+2.549998(a / r)^{3}$	
28.	$J=2 H^{4}$ where for $0.1 \leq a / r \leq 0.5, ~$ $H=0.798080-0.197025(a / r)-5.683568(a / r)^{2}+6.666664(a / r)^{3}$	

${ }^{a}$ See the web site for software to calculate accurately J of any cross-sectional shape.
${ }^{b}$ See Ref. [2.5].

TABLE 2-6 SHEAR CENTERS AND WARPING CONSTANTS ${ }^{\text {a }}$

Shape	Location of Shear Center (S), e	Warping Constant, Γ
1. Sector of thin circle	$\frac{2 r}{(\pi-\theta)+\sin \theta \cos \theta}[(\pi-\theta) \cos \theta+\sin \theta]$ For split tube $(\theta=0)$ use $e=2 r$ Ref. [2.6]	$\frac{t r^{5}}{3}\left\{2(\pi-\theta)^{3}-\frac{12[(\pi-\theta) \cos \theta+\sin \theta]^{2}}{(\pi-\theta)+\sin \theta \cos \theta}\right\}$
2. Circle with different properties	$\begin{aligned} & \quad \begin{array}{l} \quad \frac{2 r}{\pi} \frac{\left(1-\frac{C_{G}^{*}}{C_{G}}\right) \sin \theta}{\left(1-\frac{\theta}{\pi}\right)+\frac{\theta}{\pi} \frac{C_{G}^{*}}{C_{G}} \frac{\theta}{\pi}} \\ \quad \times \frac{\left(1-\frac{\theta}{\pi}\right)\left(1-\frac{\theta}{\tan \theta}\right)\left(1-\frac{C_{E}^{*}}{C_{E}}\right)+\frac{C_{E}^{*}}{C_{E}}}{\left(1-\frac{\sin 2 \theta}{2 \theta}\right)\left(1-\frac{C_{E}^{*}}{C_{E}}\right)+\frac{C_{E}^{*}}{C_{E}}} \\ C_{E}=E t, C_{G}=G t \\ \text { Ref. }[2.7] \end{array} . \end{aligned}$	Use computer program
3. Semicircular section	$\frac{8}{15 \pi} \frac{3+4 v}{1+v} r$	Use computer program

TABLE 2-6 (continued) SHEAR CENTERS AND WARPING CONSTANTS ${ }^{a}$

Shape	Location of Shear Center (S), e	Warping Constant, Γ
4.	$-a\left(1+\frac{b^{2} A}{4 I_{z}}\right)+2 h \frac{I_{F}}{I_{z}}$ where $A=$ total area $I_{F}=$ moment of inertia of each lower flange with respect to web axis $I_{z}, I_{y}=$ moments of inertia with respect to z, y axes Ref. [2.8]	$\begin{aligned} & \frac{b^{2}}{4}\left[I_{y}+a^{2} A\left(1-\frac{b^{2} A}{4 I_{z}}\right)\right] \\ & \quad+2 h^{2} I_{F}-2 b d h^{2} A_{F}+b^{2} a h A \frac{I_{F}}{I_{z}}-4 h^{2} \frac{I_{F}^{2}}{I_{z}} \end{aligned}$ where $A_{F}=$ area of each lower flange $d=$ distance of centroid of lower flange from the web axis Ref. [2.8]
5. Channel with unequal flanges	$\begin{aligned} z_{S}= & e-\frac{b_{1}^{2} h t}{6\left(I_{y} I_{z}-I_{y z}^{2}\right)} \\ & \times\left[-3 I_{y z}(h-e)+I_{y}\left(2 b_{1}-3 d\right)\right] \\ y_{S}= & d+\frac{b_{1}^{2} h t}{6\left(I_{y} I_{z}-I_{y z}^{2}\right)} \\ & \times\left[-I_{y z}\left(2 b_{1}-3 d\right)+3 I_{z}(h-e)\right] \\ e= & \frac{h^{2}+2 b_{1} h}{2 h\left(b_{1}+b_{2}\right)}, \quad d=\frac{b_{1}^{2}+b_{2}^{2}}{2\left(h+b_{1}+b_{2}\right)} \end{aligned}$ Ref. [2.9]	Use computer program

	6. Thin-walled lipped angle	$\begin{aligned} & \frac{b}{\sqrt{2}} \frac{(3-2 \alpha) \alpha^{2}}{1+3\left(\alpha-\alpha^{2}\right)+\alpha^{3}} \\ & \alpha=\frac{c}{b} \\ & \text { Ref. } \end{aligned}$	$\frac{t b^{4} c^{3}(4 b+3 c)}{6\left(b^{3}+3 c b^{2}-3 c^{2} b+c^{3}\right)}$
	7. Thin-walled lipped channel	$\begin{aligned} & t=\text { const } \\ & \frac{b\left(3 b h^{2}+6 a h^{2}-8 a^{3}\right)}{h^{3}+6 b h^{2}+6 a h^{2}+8 a^{3}-12 a^{2} h} \end{aligned}$ Ref. [2.9]	Use computer program
$\begin{aligned} & \vec{\sim} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\underset{\omega}{\omega}} \end{aligned}$	8. Channel	$\frac{3 t_{f} b^{2}}{6 b t_{f}+h t_{w}}$	$\frac{b^{3} h^{2} t_{f}}{12} \frac{2 h t_{w}+3 b t_{f}}{h t_{w}+6 b t_{f}}$

	12. Thin-walled U section	$\begin{aligned} & \frac{4 r^{2}+2 b^{2}+2 \pi b r}{4 b+\pi r} \\ & \text { Ref. }[2.9] \end{aligned}$	Use computer program
	13. Tee	S lies at intersection of centerlines of flange and web	$\Gamma_{2}=\frac{t_{f}^{3} b^{3}}{144}+\frac{t_{w}^{3} h^{3}}{36}$ Secondary warping. See Ref. [2.11]
$\begin{array}{\|l} \substack{0 \\ \stackrel{0}{7} \\ \stackrel{\sim}{c} \\ \hline} \end{array}$	14. Thin-walled fork section	$\frac{3 b^{2}\left(h_{1}^{2}+h_{2}^{2}\right)}{h_{2}^{3}+6 b\left(h_{1}^{2}+h_{2}^{2}\right)}$ Ref. [2.9]	Use computer program

	Shape	Location of Shear Center (S), e	Warping Constant, Γ
$\begin{aligned} & \text { IT } \\ & \text { 菏 } \end{aligned}$	15. Thin-walled bowl section	$\begin{aligned} & r \frac{D+12 \frac{b b_{1}}{r^{2}}+3 \pi\left(\frac{b_{1}}{r}\right)^{2}-4\left(\frac{b_{1}}{r}\right)^{3} \frac{b}{r}}{3 \pi+12 \frac{b+b_{1}}{r}+4\left(\frac{b_{1}}{r}\right)^{2}\left(3+\frac{b_{1}}{r}\right)} \\ & \text { where } D=12+6 \pi \frac{b+b_{1}}{r}+6\left(\frac{b}{r}\right)^{2} \end{aligned}$ Ref. [2.6]	Use computer program
	16. Unequal leg angle	S lies at intersection of centerlines	$\Gamma_{2}=\frac{1}{36} t^{3}\left(b_{1}^{3}+b_{2}^{3}\right)$ If $b_{1}=b_{2}=b$, then $\Gamma_{2}=\frac{1}{18} t^{3} b^{3}$ Secondary warping. See Ref. [2.11]
	17. Zee section	$\frac{1}{2} h$	$\frac{b^{3} h^{2} t_{f}}{12} \frac{b t_{f}+2 h t_{w}}{2 b t_{f}+h t_{w}}$

	18.	$\frac{1}{2} h$	$\begin{aligned} & \frac{h^{2} I_{z}}{4} \\ & \text { Ref. [2.11] } \end{aligned}$
	19. Thin-walled lipped section	$\frac{1}{2} h$	$\begin{aligned} & \frac{t b^{2}}{6} \frac{D+\left(6 h^{2}+5 b h\right) C+b h^{2}+0.5 b^{2} h}{h+2 b+2 c} \\ & \text { where } D=C^{2}+2(h+2 b) C^{2} \end{aligned}$
	20.	Use computer program	$\frac{t_{1}^{3} h^{3}}{36}+\frac{t_{2}^{3} b^{3}}{36}+\frac{\pi r^{4} h^{2}}{4}$

$r_{c i}$ is perpendicular distance from centroid to tangent of wall profile for the i th element
ω_{p}, ω_{q} and $\omega_{c p}, \omega_{c q}$ are the principal sectorial coordinates (warping functions) and the sectorial coordinates with respect to centroid c of the p and q ends of element i Ref. [2.10], printed with permission.

Location of Shear Center (S), e

$$
\begin{aligned}
y_{S}= & \frac{I_{z} I_{\omega y}-I_{y z} I_{\omega z}}{I_{y} I_{z}-I_{y z}^{2}} \\
z_{S}= & -\frac{I_{y} I_{\omega z}-I_{y z} I_{\omega y}}{I_{y} I_{z}-I_{y z}^{2}} \\
\omega_{c}= & \int_{0}^{s} r_{c} d s \\
I_{\omega y}= & \int_{A} \omega_{c z} d A \\
= & \frac{1}{3} \sum_{i=1}^{M}\left(\omega_{c p} z_{p}+\omega_{c q} z_{q}\right) t_{i} b_{i} \\
& +\frac{1}{6} \sum_{i=1}^{M}\left(\omega_{c p} z_{q}+\omega_{c q} z_{p}\right) t_{i} b_{i} \\
I_{\omega z}= & \int_{A} \omega_{c y} y d A \\
= & \frac{1}{3} \sum_{i=1}^{M}\left(\omega_{c p} y_{p}+\omega_{c q} y_{q}\right) t_{i} b_{i} \\
& +\frac{1}{6} \sum_{i=1}^{M}\left(\omega_{c p} y_{q}+\omega_{c q} y_{p}\right)_{i} b_{i}
\end{aligned}
$$

Warping Constant, Γ
$\int_{A} \omega^{2} d A=\frac{1}{3} \sum_{i=1}^{M}\left(\omega_{p}^{2}+\omega_{p} \omega_{q}+\omega_{q}^{2}\right)_{i} b_{i}$
where $\omega_{j}(j=p$ or $q)$ is taken from case 1
of Table 2-7
${ }^{a}$ Warping constants are with respect to the shear center. See the web site for software to calculate accurately the shear center and warping constant for any cross-sectional shape.

TABLE 2-7 SOME WARPING PROPERTIES

Shape Principal Sectorial Coordinate ω

1.

Cross section formed of M straight thin elements

Ref. [2.10], printed with permission

ω (at point j)

$$
\begin{array}{rlrl}
=\omega_{j} & =\omega_{S j}-\omega_{0} & & \sum_{i} \\
\omega_{0} & =\frac{1}{A}\left[\frac{1}{2} \sum_{i=1}^{M}\left(\omega_{S p}+\omega_{S q}\right) t_{i} b_{i}\right] & \\
A & =\sum_{i=1}^{M} t_{i} b_{i} & \omega_{S p} \text { and } \omega_{S q} \\
\omega_{S j} & =\sum_{i} r_{S i} b_{i} & r_{S i} \text { and } r_{c i}
\end{array}
$$

$$
\omega_{S j}=\sum_{i} r_{S i} b_{i}
$$

$$
\omega_{c j}=\sum_{i}^{l} r_{c i} b_{i}
$$

Linear distribution of ω
means the summation along a line of elements. Begin at an outer element and sum until reaching the point j, where the values of $\omega_{S j}$ or $\omega_{c j}$ are desired.
are the sectorial coordinates of the p and q ends of element i.
is the average of sectorial coordinate ω_{S} for the whole section.
are the perpendicular distances from the shear center and centroid to element i, respectively.
See Chapter 15 for examples in using these formulas.

TABLE 2-7 (continued) SOME WARPING PROPERTIES

C H A P T E R

Stress and Strain

3.1 Notation 90
3.2 Definitions and Types of Stress 91
3.3 Stress Component Analysis 92
Sign Convention 92
Stress Tensor 93
Plane Stress 93
Variation of Normal and Shear Stress in Tension 94
Stress at an Arbitrary Orientation for the Two-Dimensional Case 95
Principal Stresses and Maximum Shear Stress for the Two-Dimensional Case 97
Mohr's Circle for a Two-Dimensional State of Stress 100
Construction of Mohr's Circle 100
Use of Mohr's Circle 101
Stress Acting on an Arbitrary Plane in Three-Dimensional Systems 102
Normal and Shear Stress on an Oblique Plane 102
Maximum Shear Stress in Three-Dimensional Systems 103
Mohr's Circle for Three Dimensions 104
Octahedral Stress 106
Mean and Deviator Stress 107
3.4 Relationship between Stress and Internal Forces 108
Average Shear Stress 109
3.5 Differential Equations of Equilibrium 109
3.6 Allowable Stress 109
3.7 Residual Stress 110
3.8 Definition of Strain 110
3.9 Relationship between Strain and Displacement 112
3.10 Analysis of Strain 112
3.11 Elastic Stress-Strain Relations 113
Poisson's Ratio 113
Hooke's Law 113
3.12 Stress and Strain in Simple Configurations 114
Direct Axial Loading (Extension and Compression) 114
Direct Shear in Connections 116
Torsion 116
Torsion of Thin-Walled Shafts and Tubes of Circular Cross Sections 117
Torsion of Thin-Walled Noncircular Tubes 118
A Useful Relation between Power, Speed of Rotation, and Torque 119
Normal and Shear Stress of Beams 120
Deflection of Simple Beams 122
Stress in Pressure Vessels 124
Cylinder Stress 124
Sphere Stress 124
Stress for Shells of Revolution 125
3.13 Combined Stresses 126
3.14 Unsymmetric Bending 129
Normal Stress 129
Loading in One Plane 129
Principal Axes 129
Bending about a Single Axis 130
Shear Stress 131
3.15 Theories of Failure 134
Concept of Failure 134
Maximum-Stress Theory 135
Maximum-Strain Theory 136
Maximum-Shear Theory 136
von Mises Theory 137
Mohr's Theory 137
Validity of Theories 138
3.16 Application of Failure Theories 139
References 141
Tables 143

The concepts of stress and strain are essential to design as they characterize the mechanical properties of deformable solids. A brief introduction to the concepts along with a discussion of theories of failure are provided in this chapter. Stress-strain formulas are given for bars subjected to extension, torsion, and bending.

3.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and F for force.

A Cross-sectional area $\left(L^{2}\right)$
A_{0} Original area; shear-related area defined in Fig. 3-29 (L^{2})
A^{*} Area enclosed by middle line of wall of closed thin-walled cross section (L^{2})
b Width (L)
c Distance from centroidal (neutral) axis of beam to outermost fiber (L)
E Modulus of elasticity, Young's modulus (F / L^{2})
F Internal force (F)
G Shear modulus $\left(F / L^{2}\right)$
I Moment of inertia of a member about its centroidal (neutral) axis (L^{4})
J Torsional constant; polar moment of inertia for circular cross section $\left(L^{4}\right)$
L Length of element, original length (L)
L_{s} Total length of middle line of wall of tube cross section (L)
M Bending moment ($F L$)
p Pressure (F / L^{2})
p_{z} Distributed loading (F / L)
P Load or axial force (F)
q Shear flow (F / L)
Q First moment of area beyond level where shear stress is to be determined $\left(L^{3}\right)$
R, r Radius (L)
$S=Z_{e}$ Section modulus of beam, $S=I / c\left(L^{3}\right)$
t Wall thickness (L)
T Torque or twisting moment ($F L$)
u, v, w Displacements in $x y, z$ directions (L)
V Shear force (F)
γ Shear strain
Δ Increment of length (L)
ε Normal strain
ε_{t} Natural strain or true strain
θ Angle (degree or radian)
v Poisson's ratio
σ Normal stress $\left(F / L^{2}\right)$
σ_{m} Mean stress $\left(F / L^{2}\right)$
$\sigma_{y s}$ Yield stress $\left(F / L^{2}\right)$
τ Shear stress $\left(F / L^{2}\right)$
ϕ Angular displacement (degree or radian)

3.2 DEFINITIONS AND TYPES OF STRESS

Normally, forces are considered to occur in two forms: surface forces and body forces. Surface forces are forces distributed over the surface of the body, such as hydrostatic pressure or the force exerted by one body on another. Body forces are

Figure 3-1: Stress.
forces distributed throughout the volume of the body, such as gravitational forces, magnetic forces, or inertial forces for a body in motion. Suppose that a solid is subject to external surface forces P_{1}, P_{2}, and P_{3} (Fig. 3-1). If the body were cut, a force F would be required to maintain equilibrium. The intensity of this force (i.e., the force per unit area) is defined to be the stress.

The force F will not necessarily be uniformly distributed over the cut. To define the stress at some point Q in a cut perpendicular to the x axis (Fig. 3-1), suppose that the resultant contribution of the internal force F on the area element ΔA at point Q is ΔF, and let the components of ΔF along the x, y, z axes be $\Delta F_{x}, \Delta F_{y}, \Delta F_{z}$. Stress components are defined as

$$
\begin{equation*}
\sigma_{x}=\lim _{\Delta A \rightarrow 0} \frac{\Delta F_{x}}{\Delta A}, \quad \tau_{x y}=\lim _{\Delta A \rightarrow 0} \frac{\Delta F_{y}}{\Delta A}, \quad \tau_{x z}=\lim _{\Delta A \rightarrow 0} \frac{\Delta F_{z}}{\Delta A} \tag{3.1}
\end{equation*}
$$

where σ_{x} is the normal stress and $\tau_{x y}, \tau_{x z}$ are the shear stresses. Normal stress is the intensity of a force perpendicular to a cut while the shear stresses are parallel to the plane of the element. Tensile stresses are those normal stresses pulling away from the cut, while compressive stresses are those pushing against the cut.

3.3 STRESS COMPONENT ANALYSIS

Sign Convention

An element of infinitesimal dimensions isolated from a solid would expose the stresses shown in Fig. 3-2. The face of an element whose outward normal is directed along the positive direction of a coordinate axis is defined to be a positive face. A negative face has its normal in the opposite direction. Stress components are positive if when acting on a positive face, their corresponding force components are in the positive coordinate direction. Also, stress components are said to be positive when their force components act on a negative face in the negative coordinate direction. Stress components not satisfying these conditions are considered as being negative.

These definitions mean that a normal stress component directed outward from the plane on which it acts (i.e., tension) is positive, while a normal stress directed toward

Figure 3-2: Stress components on an element.
the plane on which it acts (i.e., compression) is taken as being negative. Also, a shear stress is positive if the outward normal of the plane on which it acts and the direction of the stress are in coordinate directions of the same sign; otherwise it is negative. The stress components of Fig. 3-2 are positive.

Stress Tensor

In Fig. 3-2, there are three normal stresses components σ_{x}, σ_{y}, σ_{z}, where the single subscript is the axis along which the normal to the cut lies. There are also six shear stress components $\tau_{x y}, \tau_{y x}, \tau_{y z}, \tau_{z y}, \tau_{z x}, \tau_{x z}$, where the first subscript denotes the axis perpendicular to the plane on which the stress acts and the second provides the direction of the stress component. For example, the shear stress $\tau_{x y}$ acts on a plane normal to the x axis and in a direction parallel to the y axis.

The conditions of equilibrium dictate that shear stresses with the same subscripts are equal:

$$
\begin{equation*}
\tau_{x y}=\tau_{y x}, \quad \tau_{x z}=\tau_{z x}, \quad \tau_{y z}=\tau_{z y} \tag{3.2}
\end{equation*}
$$

In matrix form, the stress components appear as

$$
\left[\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \tag{3.3}\\
\tau_{y x} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}
\end{array}\right]
$$

This state of stress at a point is called a stress tensor. The stress tensor is a secondorder tensor quantity.

Plane Stress

In the case of plane stress, all stress components (the normal stress and two shear stress components) associated with a given direction are zero. For example, for a
thin plate in the $y z$ plane, plane stress corresponds to the x-direction stress components $\sigma_{x}, \tau_{z x}, \tau_{y x}$, being zero. For the case of plane stress, the state of stress can be determined by three stress components. The stress for thin sheets is usually treated as being in the state of plane stress.

Variation of Normal and Shear Stress in Tension

The bar in Fig. 3-3 is in simple tension. The stresses on planes normal to an axis of the bar are considered to be uniformly distributed and are equal to P / A_{0} on cross sections along the length, except near the applied load, where there may be stress concentration (Chapter 6). Here A_{0} is the original cross-sectional area of the bar. Consider the stress on an inclined face exposed by passing a plane through the bar at an angle θ, as shown in Fig. 3-4.

Figure 3-3: Axially loaded bar.

Figure 3-4: Stress on a cross section.

The stress acting in the x direction on the inclined face is $\sigma_{a x}=P /\left(A_{0} / \cos \theta\right)$, where $A_{0} / \cos \theta$ is the inclined cross-sectional area. This stress can be resolved in terms of the components σ_{N} and τ as though a force were being resolved since these stresses all act on the same unit of area. These relationships are as follows:

$$
\begin{align*}
& \text { normal stress }=\sigma_{N}=\frac{P \cos \theta}{A_{0} / \cos \theta}=\frac{P}{A_{0}} \cos ^{2} \theta \tag{3.4}\\
& \qquad \text { shear stress }=\tau=\frac{P \sin \theta}{A_{0} / \cos \theta}=\frac{P}{A_{0}} \sin \theta \cos \theta \tag{3.5}
\end{align*}
$$

Figure 3-5: Variation of stress with the angle of a plane.

From Eqs. (3.4) and (3.5),

$$
\begin{align*}
& \frac{\sigma_{N}}{P / A_{0}}=\frac{\sigma_{N}}{\sigma_{a}}=\cos ^{2} \theta \tag{3.6}\\
& \frac{\tau}{P / A_{0}}=\frac{\tau}{\sigma_{a}}=\sin \theta \cos \theta \tag{3.7}
\end{align*}
$$

where σ_{a} is the axial tensile stress on the section normal to the x axis. Equations (3.6) and (3.7) are plotted in Fig. 3-5. Note that the shear stress is a maximum at 45°, as shown at point M, and that it equals half the maximum tensile stress.

Stress at an Arbitrary Orientation for the Two-Dimensional Case

Consider an element removed from a body subjected to an arbitrary loading in the $x y$ plane (Fig. 3-6a). The stresses $\sigma_{x}, \sigma_{y}, \tau_{x y}$ will occur for the orientation of Fig. 3-6b. Once the state of stress is determined for an element with a particular orientation (such as $\sigma_{x}, \sigma_{y}, \tau_{x y}$ of Fig. 3-6b), the state of stress $\sigma_{x^{\prime}}, \sigma_{y^{\prime}}$, and $\tau_{x^{\prime} y^{\prime}}$ at that location for an element in any orientation (Fig. 3-6c, d) can be obtained using the following transformation equations for plane stresses:

$$
\begin{align*}
\sigma_{x^{\prime}} & =\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)+\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right) \cos 2 \theta+\tau_{x y} \sin 2 \theta \tag{3.8a}\\
\sigma_{y^{\prime}} & =\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)-\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right) \cos 2 \theta-\tau_{x y} \sin 2 \theta \tag{3.8b}\\
\tau_{x^{\prime} y^{\prime}} & =-\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right) \sin 2 \theta+\tau_{x y} \cos 2 \theta \tag{3.8c}
\end{align*}
$$

Note that it can be found from the equations above that

$$
\begin{equation*}
\sigma_{x^{\prime}}+\sigma_{y^{\prime}}=\sigma_{x}+\sigma_{y} \tag{3.9}
\end{equation*}
$$

(a)

(c)

(b)

(d)

Figure 3-6: (a) Object under load; (b) element at point A; (c) element with diagonal at point A, taken from $(b) ;(d)$ element at point A [this can replace the element of $(c)]$.

This shows that the sum of the normal stresses is an invariant quantity, independent of the orientation of the element at the point in question.

Example 3.1 State of Stress The state of stress of an element loaded in the xy plane is $\sigma_{x}=9000 \mathrm{psi}, \sigma_{y}=3000 \mathrm{psi}$, and $\tau_{x y}=2000 \mathrm{psi}$, as shown in Fig. 3-7a. Determine the stresses on the element rotated through an angle of 45°.

The state of stress desired can be found by substituting the given values of stresses $\sigma_{y}, \sigma_{y}, \tau_{x y}$ into Eqs. (3.8) with $\theta=45^{\circ}$. The results are $\sigma_{x^{\prime}}=8000 \mathrm{psi}, \sigma_{y^{\prime}}=4000$ psi, and $\tau_{x^{\prime} y^{\prime}}=-3000$ psi. This state of stress is shown in Fig. 3-7b.

Figure 3-7: Two-dimensional state of stress.

Principal Stresses and Maximum Shear Stress for the Two-Dimensional Case

The maximum value of $\sigma_{x^{\prime}}$ is found by differentiating Eq. (3.8a) with respect to θ :

$$
\begin{equation*}
\frac{d \sigma_{x^{\prime}}}{d \theta}=0=\frac{\sigma_{x}-\sigma_{y}}{2}(-2 \sin 2 \theta)+2 \tau_{x y} \cos 2 \theta \tag{3.10}
\end{equation*}
$$

from which

$$
\begin{equation*}
\tan 2 \theta_{1}=2 \tau_{x y} /\left(\sigma_{x}-\sigma_{y}\right) \tag{3.11}
\end{equation*}
$$

Extreme values of normal stresses occur on the orientations $\theta=\theta_{1}$ defined by Eq. (3.11). The two values of θ_{1} are 90° apart and locate two perpendicular planes of an element (Fig. 3-8). The maximum normal stress occurs on one of the planes while the minimum normal stress occurs on the other.

Principal stresses are defined as the algebraically maximum and minimum values of the normal stresses, and the planes on which they act are called principal planes

Figure 3-8: Orientation of principal planes.
(Fig. 3-8). From Eq. (3.11), it follows that

$$
\begin{align*}
& \sin 2 \theta_{1}=\frac{ \pm \tau_{x y}}{\sqrt{\left[\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right)\right]^{2}+\tau_{x y}^{2}}} \tag{3.12a}\\
& \cos 2 \theta_{1}=\frac{ \pm \frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right)}{\sqrt{\left[\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right)\right]^{2}+\tau_{x y}^{2}}} \tag{3.12b}
\end{align*}
$$

Substitution of Eqs. (3.12a) and (3.12b) into Eqs. (3.8a) and (3.8b) gives
Algebraic maximum normal stress: $\quad \sigma_{1}=\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)$

$$
\begin{equation*}
+\sqrt{\frac{1}{4}\left[\left(\sigma_{x}-\sigma_{y}\right)^{2}\right]+\tau_{x y}^{2}} \tag{3.13a}
\end{equation*}
$$

Algebraic minimum normal stress: $\quad \sigma_{2}=\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)$

$$
\begin{equation*}
-\sqrt{\frac{1}{4}\left[\left(\sigma_{x}-\sigma_{y}\right)^{2}\right]+\tau_{x y}^{2}} \tag{3.13b}
\end{equation*}
$$

Substitution of Eq. (3.11) into Eq. (3.8c) leads to $\tau_{x^{\prime} y^{\prime}}=0$. That is, the shear stress is always zero on the principal planes.

The original stressed element can be used to determine which value of θ_{1} for the orientation of principal planes corresponds to σ_{1} and which to σ_{2}. Define the diagonal of a stressed element that passes between the heads of the arrows for the shear stresses as the shear diagonal. For example, if $\tau_{x y}$ is negative, it should be drawn on the element shown in Fig. 3-9, forming the shear diagonal indicated. Then the direction of σ_{1} lies in the 45° arc between the algebraically larger normal stress and the shear diagonal.

To find the maximum shear stress, set $d \tau_{x^{\prime} y^{\prime}} / d \theta=0$ and find that

$$
\begin{equation*}
\tau_{\max }=\sqrt{\left[\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right)\right]^{2}+\tau_{x y}^{2}}=\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right) \tag{3.14}
\end{equation*}
$$

Figure 3-9: Shear diagonal.

(a)

(b)

Figure 3-10: Direction of maximum shear stress: (a) principal stresses; (b) direction of maximum shear stresses for the case of (a).

The corresponding values of θ are defined by

$$
\begin{equation*}
\tan 2 \theta_{2}=-\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right) / \tau_{x y} \tag{3.15}
\end{equation*}
$$

Comparison of Eqs. (3.15) and (3.11) shows that the planes of maximum shear stresses lie 45° away from the planes of the principal stresses.

The fact that the shear diagonal of the element on which the maximum shear stress occurs lies in the direction of the σ_{1} stress (Fig. 3-10) assists in determining the proper directions of the maximum shear stresses.

On the planes of maximum shear stress, the normal stress is found by substituting θ_{2} of Eq. (3.15) into Eqs. (3.8a) and (3.8b). The normal stress on each plane is

$$
\begin{equation*}
\sigma=\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right) \tag{3.16}
\end{equation*}
$$

Caution must be exercised in using Eq. (3.14) to calculate the maximum shear stress. There is always a third principal stress, σ_{3}, although it may be equal to zero. When the three principal stresses are considered, as shown later, there are three corresponding shear stresses induced, one of which is the maximum stress.

Example 3.2 Principal Stresses For the element in Fig. 3-7a, find the principal stresses and planes and the maximum shear stress.

The principal planes are located by using Eq. (3.11):

$$
\tan 2 \theta_{1}=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}=\frac{(2)(2000)}{9000-3000}=0.667
$$

or $2 \theta_{1}=33.7^{\circ}$ and $180^{\circ}+33.7^{\circ}=213.7^{\circ}$. Hence θ_{1} is 16.8° and 106.9°. Use of Eqs. (3.13) gives $\sigma_{1}=9605.6 \mathrm{psi}$ and $\sigma_{2}=2394.4 \mathrm{psi}\left(\right.$ Fig. 3-11a). The stress σ_{1} is located according to the rule for using the shear diagonal.

(a)

(b)

Figure 3-11: (a) Principal stress; (b) maximum shear stress.

The maximum shear stresses are located on planes identified by θ_{2} of Eq. (3.15). Thus $\tan 2 \theta_{2}=-(9000-3000) /(2 \times 2000)=-1.5$, or θ_{2} is -28.2° and 61.8° (Fig. 3-11b). Note that θ_{2} can be directly located by the fact that the planes of maximum shear stress are always 45° from the principal planes.

From Eq. (3.14), we obtain $\tau_{\max }=3605.6$ psi. The corresponding normal stress is, by Eq. (3.16), $\sigma=6000 \mathrm{psi}$ (Fig. 3.11b).

If $\sigma_{3}=0$, the actual maximum shear stress of the element is

$$
\tau_{\max }=\left(\sigma_{1}-\sigma_{3}\right) / 2=9605.6 / 2=4802.8 \mathrm{psi}
$$

Mohr's Circle for a Two-Dimensional State of Stress

A graphical method for representing combined stresses is popularly known as Mohr's circle method. As illustrated in Fig. 3-12, the Cartesian coordinate axes represent the normal and shear stresses so that the coordinates σ, τ of each point on the circumference of a circle correspond to the state of stress at an orientation of a stressed element at a point in a body.

Construction of Mohr's Circle

For a known two-dimensional state of stress σ_{x}, σ_{y}, and $\tau_{x y}$, Mohr's circle is drawn as follows:

1. On a horizontal axis lay off normal stresses with positive stresses to the right, and on a vertical axis place the shear stresses with positive stresses downward.
2. Find the location of the center of the circle along the σ (horizontal) axis by calculating $\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)$. Tensile stresses are positive; compressive stresses are negative. Plot this point.
3. Plot the point $\sigma=\sigma_{x}, \tau=\tau_{x y}$. Since the positive τ axis is downward, plot a positive $\tau_{x y}$ below the σ axis.

Figure 3-12: Mohr's circle for the two-dimensional stress of Fig. 3-6b. This provides the stresses of Fig. 3-6d for an orientation of θ.
4. Connect, with a straight line, the center of the circle from step 2 with the point plotted in step 3. This distance is the radius of Mohr's circle. Using $\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)$ on the horizontal axis as the center, draw a circle with the radius just calculated. This is Mohr's circle.

Use of Mohr's Circle

Interpret the coordinates of a point on Mohr's circle as representing the stress components $\sigma_{x^{\prime}}$ and $\tau_{x^{\prime} y^{\prime}}$ that act on a plane perpendicular to the x^{\prime} axis (Fig. 3-6d). The x axis is along the circle radius passing through the plotted point $\sigma_{x}, \tau_{x y}$. The angle θ is measured counterclockwise from the x axis. The magnitudes of the angles on Mohr's circle are double those in the physical plane. For example, the stresses $\sigma_{y^{\prime}}$, $\tau_{x^{\prime} y^{\prime}}$, and the y^{\prime} axis are found on the circle 180° away from $\sigma_{x^{\prime}}, \tau_{x^{\prime} y^{\prime}}$ and the x^{\prime} axis. It should be noted that a special sign convention of shear stress is required to interpret the $\tau_{x^{\prime} y^{\prime}}$ associated with $\sigma_{y^{\prime}}$. That is, positive shear stress is below the σ axis for σ_{x} while positive shear stress corresponding to σ_{y} is above the σ axis. From Mohr's circle the following holds:

1. The intersections of the circle with the σ axis are the principal stresses σ_{1} and σ_{2}. These values and their angle of orientation θ relative to the x axis can be
scaled from the diagram or computed from the geometry of the figure. The shear stresses at these two points are zero.
2. The shear stress $\tau_{\max }$ occurs at the point of greatest ordinate on Mohr's circle. This point has coordinates $\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right), \tau_{\max }$.
3. The normal and shear stresses on an arbitrary plane for which the normal makes a counterclockwise angle θ with the x axis (Fig. 3-6d) are found by measuring a counterclockwise angle 2θ on Mohr's circle from the x axis and then determining the coordinates $\sigma_{x^{\prime}}, \tau_{x^{\prime} y^{\prime}}$ of the circle at this angle.

Stress Acting on an Arbitrary Plane in Three-Dimensional Systems

The stress components on planes that are perpendicular to the x, y, z axes are shown in Fig. 3-13, where $\sigma_{N x}, \sigma_{N y}$, and $\sigma_{N z}$ are stress components on an arbitrary oblique plane P through point 0 of a member. (In the figure the plane P is shown slightly removed from point 0 .) The direction cosines of normal N with respect to $x y$, and z are l, m, and n, respectively.

If the six stress components $\sigma_{x}, \sigma_{y}, \sigma_{z}, \tau_{x y}=\tau_{y x}, \tau_{y z}=\tau_{z y}, \tau_{x z}=\tau_{z x}$ at point 0 are known, the stress components on any oblique plane defined by unit normal $N(l, m, n)$ can be computed using

$$
\begin{align*}
\sigma_{N x} & =l \sigma_{x}+m \tau_{y x}+n \tau_{z x} \\
\sigma_{N y} & =l \tau_{x y}+m \sigma_{y}+n \tau_{z y} \tag{3.17}\\
\sigma_{N z} & =l \tau_{x z}+m \tau_{y z}+n \sigma_{z}
\end{align*}
$$

Normal and Shear Stress on an Oblique Plane

The normal stress σ_{N} on the plane P is the sum of the projection of the stress components $\sigma_{N x}, \sigma_{N y}$, and $\sigma_{N z}$ in the direction of normal N. Therefore,

$$
\begin{equation*}
\sigma_{N}=l^{2} \sigma_{x}+m^{2} \sigma_{y}+n^{2} \sigma_{z}+2 m n \tau_{y z}+2 \ln \tau_{x z}+2 \operatorname{lm} \tau_{x y} \tag{3.18}
\end{equation*}
$$

Figure 3-13: Stress components $\sigma_{N x}, \sigma_{N y}, \sigma_{N z}$ on arbitrary plane having normal N.

For a particular plane through point $0, \sigma_{N}$ reaches a maximum value called the maximum principal stress. This maximum value along with other principal stresses are the solutions of

$$
\begin{equation*}
\sigma^{3}-I_{1} \sigma^{2}+I_{2} \sigma-I_{3}=0 \tag{3.19a}
\end{equation*}
$$

where

$$
\begin{align*}
I_{1} & =\sigma_{x}+\sigma_{y}+\sigma_{z} \\
I_{2} & =\left|\begin{array}{cc}
\sigma_{x} & \tau_{x y} \\
\tau_{x y} & \sigma_{y}
\end{array}\right|+\left|\begin{array}{cc}
\sigma_{x} & \tau_{x z} \\
\tau_{x z} & \sigma_{z}
\end{array}\right|+\left|\begin{array}{cc}
\sigma_{y} & \tau_{y z} \\
\tau_{y z} & \sigma_{z}
\end{array}\right| \\
& =\sigma_{x} \sigma_{y}+\sigma_{x} \sigma_{z}+\sigma_{y} \sigma_{z}-\tau_{x y}^{2}-\tau_{x z}^{2}-\tau_{y z}^{2} \tag{3.19b}\\
I_{3} & =\left|\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{x y} & \sigma_{y} & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & \sigma_{z}
\end{array}\right|
\end{align*}
$$

The quantities I_{1}, I_{2}, and I_{3} defined in Eq. (3.19b) are invariants of stress and must have the same values for all choices of coordinate axes (x, y, z).

The three roots ($\sigma_{1}, \sigma_{2}, \sigma_{3}$) of Eq. (3.19a) are the three principal stresses at point 0 . The directions of the planes corresponding to the principal stresses, called the principal planes, can be obtained from the following linear homogeneous equations in l, m, and n by setting σ in turn equal to σ_{1}, σ_{2}, and σ_{3} and using the direction cosine relationship $l^{2}+m^{2}+n^{2}=1$:

$$
\begin{equation*}
l\left(\sigma_{x}-\sigma\right)+m \tau_{x y}+n \tau_{x z}=0, \quad l \tau_{x z}+m \tau_{y z}+n\left(\sigma_{z}-\sigma\right)=0 \tag{3.20}
\end{equation*}
$$

The magnitude of the shear stress τ_{N} on plane P is given by

$$
\begin{equation*}
\tau_{N}=\sqrt{\sigma_{N x}^{2}+\sigma_{N y}^{2}+\sigma_{N z}^{2}-\sigma_{N}^{2}} \tag{3.21}
\end{equation*}
$$

The maximum value of τ_{N} at a point in the body plays an important role in certain theories of failure. This shear stress is zero on a principal plane.

Generally speaking, in any stressed body, there are always at least three planes on which the shear stresses are zero; these planes are always mutually perpendicular, and it is on these planes that the principal stresses act.

Maximum Shear Stress in Three-Dimensional Systems

Equations (3.13) and (3.14) deal with two-dimensional systems of stresses. In fact, there are always three principal stresses $\sigma_{1}, \sigma_{2}, \sigma_{3}$, where σ_{3} is the principal stress in the third orthogonal direction. In this three-dimensional situation, three relative maximum shear stresses exist:

$$
\begin{equation*}
\tau_{1}=\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right), \quad \tau_{2}=\frac{1}{2}\left(\sigma_{1}-\sigma_{3}\right), \quad \tau_{3}=\frac{1}{2}\left(\sigma_{2}-\sigma_{3}\right) \tag{3.22a}
\end{equation*}
$$

from which the true maximum shear stress can be chosen. This maximum shear stress would be

$$
\begin{equation*}
\tau_{\max }=\frac{1}{2}\left(\sigma_{\max }-\sigma_{\min }\right) \tag{3.22b}
\end{equation*}
$$

This, of course, is the maximum value of τ_{N} of Eq. (3.21). The three relative maximum shear stresses lie on planes whose normals form 45° angles with the principal stresses involved.

Usually, σ_{3} is small or zero in an assumed two-dimensional system of stresses. Then if σ_{1} and σ_{2} are both positive (in tension), comparison of the magnitudes of the shear stresses in Eqs. (3.22a) indicates that

$$
\begin{equation*}
\tau_{\max }=\frac{1}{2}\left(\sigma_{1}-\sigma_{3}\right) \approx \frac{1}{2} \sigma_{1} \tag{3.23}
\end{equation*}
$$

would be the true maximum shear stress.

Mohr's Circle for Three Dimensions

Like Mohr's circle for the two-dimensional state of stress, the three mutually perpendicular principal stresses can be represented graphically. Figure 3-14 shows Mohr's circle representation of the triaxial state of stress defined by the three principal stresses in Fig. 3-15. For any section in the σ_{1}, σ_{2} plane (i.e., planes perpendicular to plane 3) there corresponds a circle $B A$. In the σ_{2}, σ_{3} plane (i.e., planes perpendicular to plane 1) there is a circle $C B$, and for the σ_{3}, σ_{1} plane there exists a circle $C A$. From Fig. 3-14, $\sigma_{1}=0 A, \sigma_{2}=0 B, \sigma_{3}=0 C$, and $\tau_{\max }=$ radius $C A=\frac{1}{2}\left(\sigma_{1}-\sigma_{3}\right)$.

It can be shown [3.1] that all possible stress conditions for the body fall within the shaded area between the circles in Fig. 3-14.

Figure 3-14: Mohr's circle for a three-dimensional state of stress.

Figure 3-15: Triaxial state of stress.
Mohr's circles for some common states of stress are given in Table 3-1.

Example 3.3 Mohr's Circle For the state of stress shown in Fig. 3-16a, using Mohr's circle, determine graphically (a) the stress components on the element rotated through an angle of 45°, (b) the principal stresses and planes, and (c) the maximum shear stresses.

First, find the center 0^{\prime} of Mohr's circle on the σ axis by using $\sigma=\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)=$ 6000 psi , and plot the point Q with coordinates $(\sigma, \tau)=\left(\sigma_{x}, \tau_{x y}\right)=(9000,2000)$. Then draw a circle with radius equal to the distance between these two points, $0^{\prime} Q$. This is measured (or calculated) to be 3605.6 psi .
(a) The stress components on the element rotated through an angle of 45° are represented on Mohr's circle by rotating $0^{\prime} Q$ counterclockwise $2 \theta=2 \times 45=90^{\circ}$.

Figure 3-16: Example of Mohr's circle: (a) state of stress; (b) stress components on Mohr's circle.

This identifies the x^{\prime} axis. The intersection M of the x^{\prime} axis (i.e., $0^{\prime} M$) with the circle gives $\sigma_{x^{\prime}}=8000$ psi and $\tau_{x^{\prime} y^{\prime}}=-3000 \mathrm{psi}$. The $\sigma_{y^{\prime}}$ stress, which is found 180° away from the x^{\prime} axis $\left(0^{\prime} M\right)$, is 4000 psi. Refer to Fig. 3-16b.
(b) $\sigma_{1}=0 C=00^{\prime}+0^{\prime} C=6000+3605.6=9605.6 \mathrm{psi}, 2 \theta_{1}=33.6^{\circ}$ or $\theta_{1}=16.8^{\circ}$

$$
\begin{aligned}
\sigma_{2} & =0 B=00^{\prime}-0^{\prime} B=6000-3605.6=2394.4 \mathrm{psi} \\
\theta_{1} & =90^{\circ}+16.8^{\circ}=106.8^{\circ} \\
\sigma_{3} & =0
\end{aligned}
$$

(c) For a section in the σ_{1}, σ_{2} plane, the maximum shear stresses occur on the vertical through the center of the circle (i.e., $0^{\prime} P$). We measure $0^{\prime} P=\tau_{\max }=3605.6$ psi and $2 \theta_{2}=123.6^{\circ}$ or $\theta_{2}=61.8^{\circ}$. But since $\sigma_{3}=0$, the actual maximum shear stress of the element is $\tau_{\max }=\frac{1}{2}\left(\sigma_{1}-\sigma_{3}\right)=4802.3 \mathrm{psi}$.

Octahedral Stress

Suppose that coordinate axes x, y, z are principal axes that are perpendicular to each of the principal planes, respectively. In three dimensions there are eight planes (the octahedral planes) that make equal angles with respect to the x, y, z directions; that is, the absolute values of the direction cosines of the eight planes are equal, $|l|=$ $|m|=|n|=\frac{1}{3} \sqrt{3}$. The normal and shear stress components associated with each of these planes are called the octahedral normal stress $\sigma_{\text {oct }}$ and the octahedral shear stress $\tau_{\text {oct }}$.

For this case Eqs. (3.17) and (3.18) become

$$
\sigma_{N x}=\frac{1}{3} \sqrt{3} \sigma_{1}, \quad \sigma_{N y}=\frac{1}{3} \sqrt{3} \sigma_{2}, \quad \sigma_{N z}=\frac{1}{3} \sqrt{3} \sigma_{3}
$$

and

$$
\begin{equation*}
\sigma_{\text {oct }}=\sigma_{N}=\frac{1}{3} \sigma_{1}+\frac{1}{3} \sigma_{2}+\frac{1}{3} \sigma_{3}=\frac{1}{3} I_{1} \tag{3.24a}
\end{equation*}
$$

Substituting $\sigma_{N x}, \sigma_{N y}, \sigma_{N z}$, and σ_{N} into Eq. (3.21) yields

$$
\begin{align*}
\tau_{\mathrm{oct}} & =\tau_{N}=\frac{1}{3}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{1}-\sigma_{3}\right)^{2}\right]^{1 / 2} \\
& =\frac{1}{3}\left(2 I_{1}^{2}-6 I_{2}\right)^{1 / 2} \tag{3.24b}
\end{align*}
$$

In general, $\sigma_{x}, \sigma_{y}, \sigma_{z}$ are not principal stresses and $\tau_{x y}, \tau_{y z}, \tau_{z x}$ are not zero. However, the quantities I_{1}, I_{2}, and I_{3} are invariant. The quantities $\sigma_{\text {oct }}$ and $\tau_{\text {oct }}$ become

$$
\begin{align*}
\sigma_{\mathrm{oct}} & =\frac{1}{3} I_{1}=\frac{1}{3}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \tag{3.25a}\\
\tau_{\mathrm{oct}} & =\frac{1}{3}\left(2 I_{1}^{2}-6 I_{2}\right)^{1 / 2} \\
& =\frac{1}{3}\left[\left(\sigma_{x}-\sigma_{y}\right)^{2}+\left(\sigma_{x}-\sigma_{z}\right)^{2}+\left(\sigma_{y}-\sigma_{z}\right)^{2}+6\left(\tau_{x y}^{2}+\tau_{x z}^{2}+\tau_{y z}^{2}\right)\right]^{1 / 2} \tag{3.25b}
\end{align*}
$$

Mean and Deviator Stress

The mean stress σ_{m} is defined by

$$
\begin{equation*}
\sigma_{m}=\frac{1}{3}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)=\frac{1}{3}\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)=\frac{1}{3} I_{1} \tag{3.26}
\end{equation*}
$$

It is often contended that yielding and plastic deformation of some metals are basically independent of the applied normal mean stress σ_{m}. As a consequence, it is useful to separate σ_{m} from the other stresses so that the stress tensor [Eq. (3.3)] is expressed in terms of the mean and deviator stress

$$
\begin{equation*}
T=T_{m}+T_{d} \tag{3.27a}
\end{equation*}
$$

where

$$
\begin{aligned}
T & =\left[\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z}
\end{array}\right], \\
T_{m} & =\left[\begin{array}{ccc}
\sigma_{m} & 0 & 0 \\
0 & \sigma_{m} & 0 \\
0 & 0 & \sigma_{m}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{align*}
T_{d} & =\left[\begin{array}{ccc}
\frac{1}{3}\left(2 \sigma_{x}-\sigma_{y}-\sigma_{z}\right) & \tau_{x y} & \tau_{x z} \\
\tau_{x y} & \frac{1}{3}\left(2 \sigma_{y}-\sigma_{x}-\sigma_{z}\right) & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & \frac{1}{3}\left(2 \sigma_{z}-\sigma_{y}-\sigma_{x}\right)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
S_{x} & S_{x y} & S_{x z} \\
S_{y x} & S_{y} & S_{y z} \\
S_{z x} & S_{z y} & S_{z}
\end{array}\right] \tag{3.27b}
\end{align*}
$$

The matrix T_{m} is referred to as the mean stress tensor and the matrix T_{d} the deviator stress tensor. The components $S_{i j}$ of T_{d} are called the deviator stresses. For stress tensor T, the invariants of stress, I_{1}, I_{2}, and I_{3}, are defined in Eq. (3.19b). Similarly, for tensors T_{m}, T_{d}, the quantities $I_{1 m}, I_{1 d}, I_{2 m}, I_{2 d}$, and $I_{3 m}, I_{3 d}$ can also be defined. The stress invariants for principal axes x, y, z are as follows:

$$
\left.\begin{array}{rl}
I_{1 m} & =I_{1}=3 \sigma_{m}, \quad I_{2 m}=\frac{1}{3} I_{1}^{2}=3 \sigma_{m}^{2}, \quad I_{3 m}=\frac{1}{27} I_{1}^{3}=\sigma_{m}^{3} \quad\left(\text { for } T_{m}\right) \\
I_{1 d} & =0 \\
I_{2 d} & =I_{2}-\frac{1}{3} I_{1}^{2}=\left(-\frac{1}{6}\right)\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right] \\
I_{3 d} & =I_{3}-\frac{1}{3} I_{1} I_{2}+\frac{2}{27} I_{1}^{3} \tag{3.28b}\\
& =\frac{1}{27}\left(2 \sigma_{1}-\sigma_{2}-\sigma_{3}\right)\left(2 \sigma_{2}-\sigma_{3}-\sigma_{1}\right)\left(2 \sigma_{3}-\sigma_{1}-\sigma_{2}\right)
\end{array}\right\}
$$

The principal values of the deviator stresses are

$$
\begin{align*}
& S_{1}=\sigma_{1}-\sigma_{m}=\frac{1}{3}\left[\left(\sigma_{1}-\sigma_{3}\right)+\left(\sigma_{1}-\sigma_{2}\right)\right] \\
& S_{2}=\sigma_{2}-\sigma_{m}=\frac{1}{3}\left[\left(\sigma_{2}-\sigma_{3}\right)+\left(\sigma_{2}-\sigma_{1}\right)\right] \tag{3.29a}\\
& S_{3}=\sigma_{3}-\sigma_{m}=\frac{1}{3}\left[\left(\sigma_{3}-\sigma_{1}\right)+\left(\sigma_{3}-\sigma_{2}\right)\right]
\end{align*}
$$

It is apparent that

$$
\begin{equation*}
S_{1}+S_{2}+S_{3}=0 \tag{3.29b}
\end{equation*}
$$

The deviator stresses are sometimes used in theories of failure and in the theory of plasticity.

3.4 RELATIONSHIP BETWEEN STRESS AND INTERNAL FORCES

Both stress components and internal-force components are used to describe the state of the internal action of a solid. They are related in the sense that the internal forces are the resultant or total stresses. These are often referred to as stress resultants. Comparison of Fig. 3-17a and b for a bar cut perpendicular to the x axis leads to the following relationships:

$$
\begin{align*}
F_{x} & =P=\int_{A} \sigma_{x} d A \tag{3.30a}\\
V_{y} & =\int_{A} \tau_{x y} d A \tag{3.30b}\\
V & =V_{z}=\int_{A} \tau_{x z} d A \tag{3.30c}\\
M_{x} & =T=\int_{A} \tau_{x z} y d A-\int_{A} \tau_{x y} z d A \tag{3.30d}
\end{align*}
$$

Figure 3-17: Internal forces and stresses.

$$
\begin{align*}
M & =M_{y}=\int_{A} \sigma_{x} z d A \tag{3.30e}\\
M_{z} & =-\int_{A} \sigma_{x} y d A \tag{3.30f}
\end{align*}
$$

Average Shear Stress

The force acting on a plane cut in a body is called a shear force. Often an approximation for the stress acting on the plane is obtained by dividing the shear force by the area over which it acts. Thus,

$$
\begin{equation*}
\tau=\frac{\text { force }}{\text { area }}=\frac{V}{A} \tag{3.31}
\end{equation*}
$$

where τ is the shear stress, V the total force acting across and parallel to a cut plane, and A the cross-sectional area for the cut. This approximation, which is based on the assumption of a uniform distribution of stress, is called the average shear stress.

3.5 DIFFERENTIAL EQUATIONS OF EQUILIBRIUM

For equilibrium to exist throughout a solid for two-dimensional problems, the following differential equations must be satisfied:

$$
\begin{equation*}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+p_{x}=0, \quad \frac{\partial \tau_{y x}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+p_{y}=0 \tag{3.32a}
\end{equation*}
$$

In the case of three-dimensional stress, the equations above become

$$
\begin{align*}
& \frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+p_{x}=0 \tag{3.32b}\\
& \frac{\partial \tau_{y x}}{\partial x}+\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y z}}{\partial z}+p_{y}=0 \tag{3.32c}\\
& \frac{\partial \tau_{z x}}{\partial x}+\frac{\partial \tau_{z y}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+p_{z}=0 \tag{3.32d}
\end{align*}
$$

where p_{x}, p_{y}, and p_{z} represent body forces per unit volume, such as those generated by weight or magnetic effects.

3.6 ALLOWABLE STRESS

Either in analyzing an existing structure or in designing a new structure, it is very important to know what constitutes a "safe" stress level. The ability of a member to resist failure is limited to a certain level. A prescribed stress level that is not to be exceeded when a member is subjected to the expected load is the allowable or
working stress. The allowable stress is sometimes based on the stress level at the transition between elastic and nonelastic material behavior (i.e., yield stress). It may also be based on the occurrence of fracture (rupture) or the highest or ultimate stress that can occur in a member. In most cases the allowable stress is calculated to be lower than the yield or ultimate stress, the reduction being determined by a factor of safety. Values of allowable stress are established by local and federal agencies and by technical organizations such as the American Society of Mechanical Engineers (ASME).

3.7 RESIDUAL STRESS

Residual stress (or lockup stress, initial stress) [3.3-3.7] is defined as that stress that is internal or locked into a part or assembly even though the part or assembly is free from external forces or thermal gradients. Such residual stress, whether in an individual part or in an assembly of parts, can result from a mismatch or misfit between adjacent regions of the same part or assembly.

It is often important to consider residual stresses in failure analysis and design, although residual stresses tend to be difficult to visualize, measure, and calculate [3.8]. Residual stresses are three-dimensional, self-balanced systems that need not be harmful. In fact, it may be desirable to have high compressive residual stress at the surface of parts subject to fatigue or stress corrosion.

3.8 DEFINITION OF STRAIN

Strain can be defined in terms of normal and shear strain. Normal strain is defined as the change in length per unit length of a line segment in the direction under consideration. Normal strain is a dimensionless quantity denoted by ε_{i}, where the subscript i indicates the direction. Normal strain is taken as positive when the line segment elongates and negative when the line segment contracts. For the member in Fig. 3-18 with uniaxial stress,

$$
\begin{equation*}
\varepsilon_{x}=\frac{2 \Delta}{2 L}=\frac{\Delta}{L}=\frac{L_{f}-L}{L}, \quad \varepsilon_{y}=-\frac{2 \Delta h}{2 h}=-\frac{\Delta h}{h}=\frac{h_{f}-h}{h} \tag{3.33}
\end{equation*}
$$

where $2 L$ and $2 h$ are the original dimensions and $2 L_{f}$ and $2 h_{f}$ are the postdeformation dimensions.

Shear strain is defined as the tangent of the change in angle of a right angle in a member undergoing deformation. It is a dimensionless quantity. The symbol for the strain is $\gamma_{i j}$, where the subscripts have meanings similar to the subscripts for shear stress. For the small shear strains encountered in most engineering practice (usually less than 0.001), the tangent of the change in angle is very nearly equal to the angle change in radians. Positive shear strains are associated with positive shear

Figure 3-18: Elongation of an element.
stresses (Fig. 3-19a); negative shear strains correspond to negative shear stresses (Fig. 3-19b). Refer to the x^{\prime}, y^{\prime} axes of Fig. 3-18. If this member is lengthened and thinned, A and B will move to new positions A^{\prime} and B^{\prime}. Angle $A^{\prime} 0 B^{\prime}$ is now less than 90°. The tangent of the total change in angle is the shear strain.

Another useful definition of strain is the change in length divided by the instantaneous value of the length (rather than the original length):

$$
\begin{equation*}
\varepsilon_{t}=\int_{L}^{L_{f}} \frac{d \ell}{\ell}=\ln \frac{L_{f}}{L} \tag{3.34}
\end{equation*}
$$

where ε_{t} is referred to as the natural (or true) strain. The concept of true strain is very useful in handling problems in plasticity and metal forming. For the very small strains for which the equations of linear elasticity are valid, the two types of strains (strain and true strain) give almost the same values.

Figure 3-19: Shear strain sign.

3.9 RELATIONSHIP BETWEEN STRAIN AND DISPLACEMENT

In general, the state of strain at a point in a body is determined by six strains, ε_{x}, $\varepsilon_{y}, \varepsilon_{z}, \gamma_{y x}, \gamma_{x z}$, and $\gamma_{y z}$, arranged in the same fashion as stresses. These components can be assembled into a strain tensor similar to the stress tensor.

If u, v, and w are three displacement components at a point in a body for the $x y$, and z directions of coordinate axes, small strains are related to the displacements through the geometric relationships

$$
\begin{array}{ll}
\varepsilon_{x}=\frac{\partial u}{\partial x}, & \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\gamma_{y x} \\
\varepsilon_{y}=\frac{\partial v}{\partial y}, & \gamma_{x z}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}=\gamma_{z x} \tag{3.35}\\
\varepsilon_{z}=\frac{\partial w}{\partial z}, & \gamma_{y z}=\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}=\gamma_{z y}
\end{array}
$$

In the case of plane strain (zero strains in the z direction, i.e., $\varepsilon_{z}=\gamma_{x z}=\gamma_{y z}=$ 0), the foregoing equations become

$$
\begin{equation*}
\varepsilon_{x}=\frac{\partial u}{\partial x}, \quad \varepsilon_{y}=\frac{\partial v}{\partial y}, \quad \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\gamma_{y x} \tag{3.36}
\end{equation*}
$$

It can be shown that to assure unique continuous displacements, the strains cannot be independent. For example, the compatibility condition

$$
\begin{equation*}
\frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}}+\frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}}=\frac{\partial^{2} \gamma_{x y}}{\partial x \partial y} \tag{3.37}
\end{equation*}
$$

must hold. That is, the three strains of Eq. (3.36) must satisfy Eq. (3.37) to assure that the two displacements u, v are single valued and continuous.

3.10 ANALYSIS OF STRAIN

The strain components possess the same sort of tensor characteristics as the stress components. Hence, strains follow the same rules as stresses when axes are rotated. There are principal axes for strain, and a Mohr's circle for strain can be used to evaluate strain components at various orientations. The only difference is that the vertical axis is $\frac{1}{2} \gamma$ rather than τ, which is used with Mohr's circle of stress. Therefore, the normal $\operatorname{strain} \varepsilon_{N}$ at a point in the direction of N that makes a counterclockwise angle θ_{N} with the x axis is

$$
\begin{equation*}
\varepsilon_{N}=\varepsilon_{x} \cos ^{2} \theta_{N}+\varepsilon_{y} \sin ^{2} \theta_{N}+\gamma_{x y} \sin \theta_{N} \cos \theta_{N} \tag{3.38}
\end{equation*}
$$

In strain measurement, the majority of problems are two-dimensional. The extensions (or normal strain) in one or more directions are the quantities most often measured.

3.11 ELASTIC STRESS-STRAIN RELATIONS

Poisson's Ratio

For a bar of elastic material having the same mechanical properties in all directions and under a condition of uniaxial loading, measurements indicate that the lateral compressive strain is a fixed fraction of the longitudinal extensional strain. This fraction is known as Poisson's ratio v. In the case of the member of Fig. 3-18,

$$
\begin{equation*}
\varepsilon_{y}=-v \varepsilon_{x} \tag{3.39}
\end{equation*}
$$

Like the modulus of elasticity E of the following paragraph, Poisson's ratio is a material constant that can be determined experimentally. For metals it is usually between 0.25 and 0.35 . It can be as low as 0.1 for certain concretes and as high as 0.5 for rubber.

Hooke's Law

The stresses and strains are related to each other by the properties of the material. Equations of this nature are known as material laws or, in the case of elastic solids, as Hooke's law. For a three-dimensional state of stress and strain, Hooke's law for isotropic material appears as

$$
\begin{align*}
\varepsilon_{x} & =(1 / E)\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] \\
\varepsilon_{y} & =(1 / E)\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right] \tag{3.40}\\
\varepsilon_{z} & =(1 / E)\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right] \\
\tau_{i j} & =G \gamma_{i j} \quad(i, j=x, y, z ; i \neq j)
\end{align*}
$$

where E is the modulus of elasticity, v is Poisson's ratio, and G is the shear modulus. The dimensions of G and E are force per unit area [e.g., $\mathrm{lb} / \mathrm{in}^{2}$ or $\mathrm{N} / \mathrm{m}^{2}(\mathrm{~Pa})$]. Typical values of E and v for some materials are listed in Table 4-3. The bulk modulus K (also called volumetric modulus of elasticity, modulus of dilation, modulus of volume expansion, or modulus of compressibility) is a material constant defined as the ratio of the hydrostatic stress $\sigma_{1}=\sigma_{2}=\sigma_{3}$ (shear stresses are zero) to the volumetric strain (change in volume divided by the original volume). Of the many different material constants (e.g., E, v, G, and K), only two are independent if the material is isotropic. Table 3-2 lists the relationships between commonly used material constants.

Figure 3-20: Extension.

3.12 STRESS AND STRAIN IN SIMPLE CONFIGURATIONS

Direct Axial Loading (Extension and Compression)

A typical tension member is shown in Fig. 3-20. It is assumed that the force acts uniformly over the cross section so that the stress at any point is

$$
\begin{equation*}
\sigma_{x}=P / A \tag{3.41}
\end{equation*}
$$

As a result of the force P, the bar elongates an amount Δ. In terms of strain ε_{x} along the bar,

$$
\begin{equation*}
\varepsilon_{x}=\Delta / L \tag{3.42}
\end{equation*}
$$

The quantities σ_{x} and ε_{x} are called engineering stress and strain since they are based on the original dimensions of the bar.

Using Hooke's law for the axial fibers, $\sigma_{x}=E \varepsilon_{x}$, Eq. (3.41) becomes

$$
\begin{equation*}
\varepsilon_{x}=P / E A \tag{3.43}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta=P L / A E \tag{3.44}
\end{equation*}
$$

Frequently, it is convenient to relate the extension of a bar to the extension of a spring. If the force in the spring of Fig. 3-21a is linearly proportional to its displace-

Figure 3-21: Spring.
ment (Fig. 3-21b), the constant of proportionality is the spring constant

$$
\begin{equation*}
k=P / \Delta \tag{3.45}
\end{equation*}
$$

The constant k is also referred to as the stiffness coefficient. The reciprocal of the stiffness coefficient, $1 / k$, is the flexibility coefficient.

Example 3.4 Elongation of a Bar A steel bar with a uniform cross section of $1000 \mathrm{~mm}^{2}$ is subject to the uniaxial forces shown in Fig. 3-22a. Calculate the total elongation of the bar $\left(E=200 \mathrm{GN} / \mathrm{m}^{2}\right)$.

(a)

(b)

Figure 3-22: Bar.

The entire bar is in equilibrium since the sum of the axial forces is zero. The total elongation is determined by separating the bar into three sections, finding the elongation of each, and adding these elongations. The conditions of equilibrium give the internal force in each section. Thus, for Fig. 3-22b, $\sum F_{H}=0:-F_{b c}+10+$ $60=0$ or the internal force $F_{b c}=70 \mathrm{kN}$ in tension. Similar manipulations give $F_{a b}=100 \mathrm{kN}, F_{c d}=60 \mathrm{kN}$, both in tension. Then from Eq. (3.44),

$$
\begin{align*}
\Delta & =\Delta_{a b}+\Delta_{b c}+\Delta_{c d}=\frac{1}{A E}\left[(F L)_{a b}+(F L)_{b c}+(F L)_{c d}\right] \\
& =\frac{(100 \mathrm{kN})(3 \mathrm{~m})+(70 \mathrm{kN})(4 \mathrm{~m})+(60 \mathrm{kN})(5 \mathrm{~m})}{\left(1000 \mathrm{~mm}^{2}\right)\left(200 \mathrm{GN} / \mathrm{m}^{2}\right)} \tag{1}\\
& =4.4 \times 10^{-3} \mathrm{~m}=4.4 \mathrm{~mm}
\end{align*}
$$

There are some differences between compression and tension. First, in compression, instability failure by buckling may occur depending on the geometry, especially the length. Second, for ductile materials, there is no apparent ultimate strength in compression.

Figure 3-23: Examples of shear: (a) single shear; (b) double shear; (c) punch on a plate.

Direct Shear in Connections

Shear may be considered to be a process whereby parallel planes move relative to one another. In direct shear, the shear stress can be calculated as an average stress. Some examples of direct shear are shown in Fig. 3-23. For the configurations in Fig. 3-23a and b, the shear stresses in the bolts of cross-sectional area A are

$$
\begin{array}{ll}
\text { Single stress: } & \tau=\frac{P}{A}=\frac{P}{\pi d^{2} / 4}=\frac{4 P}{\pi d^{2}} \\
\text { Double stress: } & \tau=\frac{P}{2 A}=\frac{P}{2 \pi d^{2} / 4}=\frac{2 P}{\pi d^{2}} \tag{3.46b}
\end{array}
$$

The direct shear in Fig. 3-23c occurs as a punch tries to penetrate a plate. If the punch diameter is d and the plate thickness is t, the shear stress τ in the plate is

$$
\begin{equation*}
\tau=P / A=P /(\pi d t) \tag{3.46c}
\end{equation*}
$$

Torsion

For a bar subject to an applied torque (Fig. 3-24), the torsional or shear stresses τ on a cross section of circular shape, either solid or hollow, are linearly proportional in magnitude to the distance r from the centroidal axis of the bar. This stress, which acts normal to the radius, is given by

$$
\begin{equation*}
\tau=\operatorname{Tr} / J \tag{3.47}
\end{equation*}
$$

Figure 3-24: Torsion.
where τ is the shear stress [force per unit area, psi or $\mathrm{N} / \mathrm{M}^{2}(\mathrm{~Pa})$], T is the torque or twisting moment (length \times force, in.-lb or $\mathrm{N} \cdot \mathrm{m}$), r is the radial distance from longitudinal axis (length, in. or m), and J is the torsional constant (length to the fourth power, in^{4} or mm^{4}) of cross section; if the cross-sectional shape is circular, $J=I_{x}$, the polar moment of inertia about the longitudinal axis.

It can be seen from Eq. (3.47) that the highest stresses occur in the outer edge fibers:

$$
\begin{equation*}
\tau_{\max }=T r_{0} / J \tag{3.48}
\end{equation*}
$$

where r_{0} is the radial distance to the outer boundary of the circular cross section.
The shear strain γ for any section of the bar is given by

$$
\begin{equation*}
\gamma=\tau / G=\operatorname{Tr} / G J \tag{3.49}
\end{equation*}
$$

In addition, since at any distance $d x$ from the fixed end of the bar, $\gamma=r d \varphi / d x$, Eq. (3.49) shows that

$$
\begin{equation*}
\frac{d \phi}{d x}=T / G J \tag{3.50a}
\end{equation*}
$$

which upon integration gives

$$
\begin{equation*}
\phi=T L / G J \tag{3.50b}
\end{equation*}
$$

Torsion of Thin-Walled Shafts and Tubes of Circular Cross Sections

For the thin-walled circular section of Fig. 3-25, if the shear stress is assumed to be uniformly distributed across the thickness, the equilibrium conditions give

Figure 3-25: Thin-walled torsion.

$$
\begin{equation*}
T=2 \pi r^{2} t \tau, \quad \tau=T / 2 \pi r^{2} t \tag{3.51a}
\end{equation*}
$$

where r is the radius to the midwall.
Since the torsional constant for a thin circular section is approximately $J=$ $2 \pi r^{3} t$, the shear stress can be written as

$$
\begin{equation*}
\tau=\operatorname{Tr} / J \tag{3.51b}
\end{equation*}
$$

Equation (3.51a) also follows directly from Eq. (3.47). The angle of twist of this thin-walled circular section is still given by Eq. (3.50b).

Torsion of Thin-Walled Noncircular Tubes For thin-walled noncircular sections it is assumed that the wall thickness is small compared to the overall dimensions of the cross section and that the stress is uniform through the wall thickness. Experiments and comparisons with more exact analyses have shown this latter assumption to be reasonable for most thin-walled sections in the elastic range.

The formulas for thin-walled tubes (Fig. 3-26) are

$$
\begin{align*}
q & =T / 2 A^{*} \tag{3.52a}\\
\phi & =\frac{T L}{G J} \quad \text { or } \quad \frac{d \phi}{d x}=\frac{T}{G J} \tag{3.52b}\\
q & =\tau t \tag{3.52c}
\end{align*}
$$

where q is the shear flow, A^{*} is the area enclosed by the middle line of the wall, and J is the torsional constant.

For constant t, Eq. (3.52b) becomes

$$
\begin{equation*}
\frac{d \phi}{d x}=\frac{\tau S}{2 A^{*} G}=\frac{T S}{4 A^{* 2} G t} \tag{3.53}
\end{equation*}
$$

where S is the total length of the middle line of the wall of the cross section.
Note that although the shear flow q from Eq. (3.52a) is constant around the wall, the shear stress $\tau=q / t$ of Eq. (3.52c) can vary with t. The largest shear stress occurs where the wall is thinnest, and vice versa. Also note that no distinction is made by Eq. (3.52a) between different cross-sectional shapes. According to this formula, all

Figure 3-26: Thin-walled tube.
cross-sectional geometries with the same enclosed area A^{*} will experience the same shear flow for the same torque T. Equations (3.52) and (3.53) are simple to apply and quite accurate for thin-walled closed sections of arbitrary cross-sectional shape. Chapters 2 and 12 provide formulas for various cross-sectional shapes, including multicell thin-walled beams.

If the walls of the hollow shaft are very thin, the possibility of buckling should be considered. Thus, a shaft safe from the standpoint of yield stress level may well be unstable.

A Useful Relation between Power, Speed of Rotation, and Torque

Power is the measure of work developed per unit time. The work done by a torque T during one revolution of a shaft is $2 \pi T$. For a shaft rotating at n revolutions per minute (rpm), the work done per minute is $2 \pi T n$. In the U.S. Customary System, the usual unit of power is foot-pounds per second. In engineering work, a larger unit called horsepower (hp) is often used:

$$
\begin{equation*}
1 \mathrm{hp}=33,000 \mathrm{ft}-\mathrm{lb} / \mathrm{min} \tag{3.54a}
\end{equation*}
$$

If T is in inch-pounds, the horsepower transmitted is

$$
\begin{equation*}
\mathrm{hp}=\frac{2 \pi T n}{12(33,000)}=\frac{T n}{63,000} \tag{3.54b}
\end{equation*}
$$

For the International System (SI), the unit of power is the watt, $\mathrm{W}=\mathrm{N} \cdot \mathrm{m} / \mathrm{s}$. If T is in newton-meters,

$$
\begin{equation*}
\mathrm{W}=\frac{2 \pi T n}{60} \tag{3.54c}
\end{equation*}
$$

Figure 3-27: Beam under loading.

Normal and Shear Stress of Beams

When a simple beam bends under vertical downward load, the top fibers shorten the most and the bottom fibers lengthen the most (Fig. 3-27). Between the top and the bottom fibers, there exists a layer or surface that remains neutral; neither tension nor compression is generated in it, although it is curved like the rest of the layers. Hence, this layer is called the neutral surface. It is assumed that the fiber deformations are directly proportional to the distance from the neutral surface. This fundamental assumption about the geometry of deformation of a beam is stated as follows: Plane sections normal to the axis of a beam remain plane as the beam is bent.

The intersection of a cross-sectional plane with the neutral surface is called the neutral axis (NA). For example, the y axis shown in Fig. 3-27 is the neutral axis of the cross section. It can be shown that the neutral axis passes through the centroid of the cross section.

Note the sign convention here. The bending moment M is positive when tensile stress is on the bottom fiber or the center of curvature is above the beam. Positive z is taken to be downward.

On a cross section of a linearly elastic beam having the z axis as a vertical axis of symmetry, the normal stress $\sigma_{x}=\sigma$ acting on a longitudinal fiber at a distance z from the neutral axis is given by the flexure formula,

$$
\begin{equation*}
\sigma=M z / I \tag{3.55}
\end{equation*}
$$

Here M is the net internal bending moment at the section and I is the moment of inertia of the cross section about the neutral axis (y).

The stresses, like the deformations (and strains), vary linearly with the distance from the neutral axis (Fig. 3-28). The stresses are tensile on one side of the neutral axis and compressive (negative) on the other side. The maximum stress for a cross section occurs at the outermost fibers of the beam and is given by

$$
\begin{equation*}
\sigma_{\max }=M c / I \tag{3.56a}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma_{\max }=M / S \tag{3.56b}
\end{equation*}
$$

Figure 3-28: Stress distribution on a cross section of a beam.
where c is the distance from the neutral axis to the outermost fiber. The quantity $S=I / c$ is called the section modulus, which is a geometric property of the cross section (Chapter 2) and is a measure of the resistance to the development of bending stress.

If a vertical plane is passed through a transversely loaded beam perpendicular to the longitudinal axis, the vertical stresses acting along this plane are called shear stresses. Equilibrium requires that the vertical shear stress τ at any point on the cross section is numerically equal to the horizontal shear stress at the same point. These shear stresses, as well as the normal stresses, are assumed to be uniform across the width of the beam. However, the shear stress varies according to the shape of the cross section, as shown in Fig. 3-29.

The shear stress $\tau_{x z}=\tau_{z x}=\tau$ at any point of a prescribed cross section is given by

$$
\begin{equation*}
\tau=V Q / I b \tag{3.57a}
\end{equation*}
$$

where V is the shear force at the section, Q is a first moment (Chapter 2) with respect to the neutral axis of the area beyond the point at which the shear stress is desired,

Figure 3-29: Stress distribution on different cross-sectional shapes. A_{0} is the shaded area.
I is the moment of inertia about the neutral axis, and b is the width of the section measured at the level at which τ is being determined.

If the shear stress is to be determined at level z_{1} of a rectangle cross section, Q must be calculated for the shaded area A_{0} of Fig. 3-29a. Equation (2.15a) gives

$$
Q=A_{0} \bar{z}_{c}=b\left(\frac{1}{2} h-z_{1}\right)\left[z_{1}+\frac{1}{2}\left(\frac{1}{2} h-z_{1}\right)\right]=\frac{1}{2} b\left(\frac{1}{4} h^{2}-z_{1}^{2}\right)
$$

From Eq. (3.57a), the desired stress is

$$
\begin{equation*}
\tau=\frac{V}{2 I}\left(\frac{h^{2}}{4}-z_{1}^{2}\right) \tag{3.57b}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{\max }=\frac{V h^{2}}{8 I}=\frac{3}{2} \frac{V}{b h}=\frac{3 V}{2 A} \tag{3.57c}
\end{equation*}
$$

at the neutral axis $\left(z_{1}=0\right)$. This equation has been shown to be reasonably accurate for widths equal to or less than the depth $(b \leq h)$, but for $b>h$, Eq. (3.57c) should be used with caution. Accurate computational solutions have been developed (Chapter 15).

For a wide-flange I-shaped structural steel, the maximum shear stress given by Eq. (3.57a) is only slightly greater than the average stress obtained by dividing the shear force by the area of the web.

A useful formula in the study of a beam formed of more than one layer (e.g., two boards nailed together), is for the shear flow q. From Eq. (3.57a),

$$
\begin{equation*}
q=\tau b=V Q / I \tag{3.57d}
\end{equation*}
$$

This gives the horizontal shear force per unit length of beam that is transmitted between layers of the beam.

Deflection of Simple Beams

The sign convention for forces and displacements of a beam is shown in Fig. 3-30. Applied forces and moments are positive if their vectors are in the direction of a positive coordinate axis. Also, internal shear forces and bending moments acting

Figure 3-30: Positive applied loadings and internal forces.
on a positive face are positive if their vectors are in positive coordinate directions. The internal forces M, V and applied loads M_{1} (concentrated moment, force times length), p_{z} (loading intensity, force per length), and W (concentrated load, force) shown in Fig. 3-30 are positive.

Positive deflection w is downward (i.e., in the positive coordinate z direction). As shown in Fig. 3-30, θ (radians) is the angle between the axis and the tangent to the curve at a point. Positive and negative θ, which like moments adhere to the right-hand rule, are illustrated.

The basic differential equation relating the deflection w to the internal bending moment M in a beam is

$$
\begin{equation*}
\frac{d^{2} w}{d x^{2}}=-\frac{M}{E I} \tag{3.58a}
\end{equation*}
$$

where x is the axial coordinate and $E I$ is the flexural rigidity or bending modulus. This relationship applies to a beam that is linearly elastic and where the cross section is symmetric about the $x z$ plane.

For small angles, $\theta \approx \tan \theta=-d w / d x$, that is,

$$
\begin{equation*}
\frac{d w}{d x}=-\theta \tag{3.58b}
\end{equation*}
$$

and Eq. (3.58a) appears as $d \theta / d x=M / E I$. The equilibrium equations relate the internal forces M and V and the applied loading density p_{z} in the form $d V / d x=$ $-p_{z}, d M / d x=V$. If these relations are gathered together,

$$
\begin{equation*}
\frac{d w}{d x}=-\theta, \quad \frac{d \theta}{d x}=\frac{M}{E I}, \quad \frac{d M}{d x}=V, \quad \frac{d V}{d x}=-p_{z} \tag{3.59}
\end{equation*}
$$

These equations are called governing equations of motion for the bending of a beam. This first-order form is convenient to handle numerically using a computer. Analytically, it is frequently easier to deal with the higher-order forms:

For Variable EI
For Constant EI

$$
\begin{array}{rlrl}
\theta & =-\frac{d w}{d x} & \theta=-\frac{d w}{d x} \\
M & =-E I \frac{d^{2} w}{d x^{2}} & M & =-E I \frac{d^{2} w}{d x^{2}} \\
V & =\frac{d M}{d x}=-\frac{d}{d x}\left(E I \frac{d^{2} w}{d x^{2}}\right) & V & =-E I \frac{d^{3} w}{d x^{3}} \tag{3.60}\\
p_{z} & =-\frac{d V}{d x}=\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right) & p_{z}=E I \frac{d^{4} w}{d x^{4}}
\end{array}
$$

These relations are found by successive substitution of Eqs. (3.58) into each other.

Longitudinal Stress (if ends are closed)
$\sigma_{x}=\frac{p r}{2 t}$
Figure 3-31: Cylinder.

Stress in Pressure Vessels

Thin-walled containers or shells loaded with gas or liquid pressure and having the form of a surface of revolution, such as cylinders and spheres, are discussed in this section.

Cylinder Stress On the wall of a thin-walled cylinder subjected to internal pressure, two stresses in the plane of the wall are of prime interest (Fig. 3-31). These stresses, a longitudinal stress σ_{x} parallel to the axis of revolution and a hoop or circumferential or cylindrical stress σ_{θ} perpendicular to σ_{x}, are called membrane stresses. If there are no abrupt changes in wall thickness and the wall is thin (thickness less than about one-tenth the radius r), it can be assumed that the stresses are uniformly distributed through the thickness of the wall and that no other significant stresses occur. Application of the conditions of equilibrium suffices to determine these membrane stresses (Chapter 20). For a cylinder with internal pressure p,

$$
\begin{equation*}
\sigma_{\theta}=p r / t \tag{3.61a}
\end{equation*}
$$

If the ends of the cylinder are closed,

$$
\begin{equation*}
\sigma_{x}=p r / 2 t \tag{3.61b}
\end{equation*}
$$

The results for the circumferential stress are about 5% in error on the danger side when the thickness is one-tenth the radius of the cylinder $(t=0.1 r)$. Shells of greater relative thickness should be analyzed according to bending shell theories (Chapter 20).

Sphere Stress The stresses σ acting in the plane of the sphere wall are the same in all directions under uniform internal pressure (Fig. 3-32):

$$
\begin{equation*}
\sigma=p r / 2 t \tag{3.62}
\end{equation*}
$$

It can be seen that they are one-half the magnitude of the circumferential stresses of the cylinder. When the thickness equals one-fifth the radius of the sphere $(t=0.2 r)$, the thin-sphere formula gives values in error by about 2.5% on the danger side. If

Figure 3-32: Sphere.
the thickness exceeds one-fifth the radius, more accurate formulas should be used (Chapter 20).

Stress for Shells of Revolution A shell of revolution is formed by rotating a plane curve, called the meridian, about an axis lying in the plane of the curve (Fig. 3-33). The stresses on an element of a general membrane shell of revolution (Fig. 3-34a) are related to the pressure p by

$$
\begin{equation*}
\sigma_{\phi} / R_{\phi}+\sigma_{\theta} / R_{\theta}=p / t \tag{3.63}
\end{equation*}
$$

Figure 3-33: Shell of revolution.

Figure 3-34: Stresses in a shell of revolution: (a) shell element; (b) meridional stress; (c) circumferential stress.
where σ_{ϕ} is the meridional stress (psi, $\mathrm{N} / \mathrm{m}^{2}$ or Pa) (Fig. 3-34b), R_{ϕ} is the radius of curvature of the meridian, σ_{θ} is the hoop, ring, or circumferential stress ($\mathrm{psi}, \mathrm{N} / \mathrm{m}^{2}$) (Fig. 3-34c), and R_{θ} is the radius of curvature of the section normal to the meridian curve; that is, R_{θ} is the length of the normal between the surface and the axis of revolution and originates at the shell axis and in general is not perpendicular to the shell axis, whereas the center of curvature for R_{ϕ} in general will not lie on the shell axis (see Fig. 3-34a).

3.13 COMBINED STRESSES

In the most general case, a body may be subjected to a variety of types of loadings, such as a combination of tension, compression, twisting, and bending loads. In such a case, it will be assumed that each load produces the stress that it would if it were the only load acting on the body. As long as linearity prevails, the final stress is then found by careful superposition of the several states of stress.

Frequently, there is little difficulty in identifying the individual states of stress composing a combined stress problem. The appropriate stress formula developed
in previous sections should be associated with each load. For example, in a bar subjected simultaneously to tension and torsion loads, the axial normal stress component is $\sigma_{x}=P / A$, where P is the tensile load and A is the cross-sectional area of the bar. Also present is a shear stress due to the torque, $\tau=\operatorname{Tr} / J$, where T is the torque, r the radius of the section, and J the polar moment of inertia. The case above leads to one normal and one shear stress. Normal stresses (e.g., extension and bending stresses), are directly additive, as are shear stresses if they act in the same direction. If not, the methods in Section 3.3 are employed, usually to calculate the principal stresses at a point.

Note that superposition is valid if the material is linearly elastic and if the effect of one type of loading does not influence the internal force corresponding to other loadings of interest.

Example 3.5 Bar under Combined Stresses Find the maximum shear stress on the face of the shaft of circular cross section shown in Fig. 3-35.

At any axial location to the right of the 120 in .-lb torque (Fig. 3-35), we find the internal forces to be $V=800 \mathrm{lb}, T=120 \mathrm{in} .-\mathrm{lb}$, and $M=800 x \mathrm{in} .-\mathrm{lb}$. The shear stresses are given by Eqs. (3.47) and (3.57a). From these formulas the peak torsional stress occurs at the outer fibers, and the shear stress due to V is a maximum at the diameter 1-2 in Fig. 3-35c, where Q is a maximum. The maximum combined shear stress occurs at point 1, where the two peak shear stresses act in the same direction:

Figure 3-35: Bar under combined stresses.

$$
\begin{align*}
\tau_{\max } & =\frac{V Q}{I b}+\frac{T r_{0}}{J}=\frac{V\left(\pi r_{0}^{2} / 2\right)\left(4 r_{0} / 3 \pi\right)}{\left(\pi r_{0}^{4} / 4\right) 2 r_{0}}+\frac{T r_{0}}{J}=\frac{4 V}{3 \pi r_{0}^{2}}+\frac{T r_{0}}{J} \tag{1}\\
& =\frac{4 V}{3 A}+\frac{T r_{0}}{J}=\frac{4(800)}{3(0.196)}+\frac{120(0.25)}{0.00614}=10,328 \mathrm{psi}
\end{align*}
$$

where $A=\frac{1}{4} \pi d^{2}=0.196 \mathrm{in}^{2}$ and $J=\frac{1}{32} \pi d^{4}=0.00614 \mathrm{in}^{4}$. Note the bar also has an axial normal stress due to bending.

Example 3.6 Eccentric Loads A cantilever beam is loaded by a force of 40 kN applied 80 mm from the centroid (Fig. 3-36). Find the maximum normal stress for a vertical cross section. Neglect the weight of the beam.

Figure 3-36: Eccentric load.

The eccentric load $P=40 \mathrm{kN}$ is statically equivalent to the load P through the centroid and the moment $P e=40 \times 80 \mathrm{~mm} \cdot \mathrm{kN}$ about a centroid axis. The combined normal stress is

$$
\begin{equation*}
\sigma=-\frac{P}{A}-\frac{P e z}{I}=\frac{-40 \mathrm{kN}}{(200 \mathrm{~mm})(50 \mathrm{~mm})}-\frac{(40 \mathrm{kN})(80 \mathrm{~mm}) z}{\frac{1}{12}(50 \mathrm{~mm})(200 \mathrm{~mm})^{3}} \tag{1}
\end{equation*}
$$

The peak bending stresses occur at the outer fibers where $z= \pm 100 \mathrm{~mm}$. Thus, at the bottom fibers,

$$
\begin{equation*}
\sigma=-4.0-9.6=-13.6 \mathrm{~N} / \mathrm{mm}^{2}=-13.6 \mathrm{MN} / \mathrm{m}^{2} \quad \text { (compression) } \tag{2}
\end{equation*}
$$

At the top fibers,

$$
\begin{equation*}
\sigma=-4.0+9.6=5.6 \mathrm{~N} / \mathrm{mm}^{2}=5.6 \mathrm{MN} / \mathrm{m}^{2} \quad \text { (tension) } \tag{3}
\end{equation*}
$$

Example 3.7 Combined Bending and Torsion of Shafts Show that when a solid circular shaft of diameter d is subjected to a bending moment M and a torque T, (a) the maximum principal stress is equal to $16\left(M+\sqrt{M^{2}+T^{2}}\right) / \pi d^{3}$ and (b) the maximum shear stress is equal to $16 \sqrt{M^{2}+T^{2}} / \pi d^{3}$.

The maximum stresses, which occur at the outer fibers, are given by Eqs. (3.56a) and (3.47) with $J=2 I$ and $r=z=c$:

$$
\begin{equation*}
\sigma=M c / I, \quad \tau=T c / J=T c / 2 I \tag{1}
\end{equation*}
$$

The maximum principal stress is derived using Eq. (3.13a):

$$
\begin{align*}
\sigma_{1} & =\frac{\sigma}{2}+\sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}=\frac{M c}{2 I}+\sqrt{\left(\frac{M c}{2 I}\right)^{2}+\left(\frac{T c}{2 I}\right)^{2}} \tag{2}\\
& =\frac{16}{\pi d^{3}}\left(M+\sqrt{M^{2}+T^{2}}\right)
\end{align*}
$$

where we have set $c=\frac{1}{2} d$. The peak shear stress is found from Eq. (3.14):

$$
\begin{equation*}
\tau_{\max }=\sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}=\frac{16}{\pi d^{3}} \sqrt{M^{2}+T^{2}} \tag{3}
\end{equation*}
$$

For convenient reference, the basic stress formulas considered in this chapter for simple configurations are given in Table 3-3. The basic deformation formulas are given in Table 3-4.

3.14 UNSYMMETRIC BENDING

Normal Stress

The formula for normal stress in straight beams, $\sigma=M z / I$, is applicable only if the bending moment acts around one of the principal axes of inertia of the cross section. That is, the bending stress theory developed thus far is appropriate for a symmetric cross section bent in its plane of symmetry.

Consider the more general case of an unsymmetric cross section with positive (tensile) axial P and bending moment components $M_{y}=M$ and M_{z}. The formula

$$
\begin{equation*}
\sigma=\frac{P}{A}+\frac{M_{y} I_{z}+M_{z} I_{y z}}{I_{z} I_{y}-I_{y z}^{2}} z-\frac{M_{z} I_{y}+M_{y} I_{y z}}{I_{z} I_{y}-I_{y z}^{2}} y \tag{3.64}
\end{equation*}
$$

applies. The coordinates y, z are measured from axes passing through the centroid of the cross section. The moments of inertia $I_{y}=I, I_{z}, I_{y z}$ are taken about these axes.

Loading in One Plane If the bending moment M_{z} is zero, Eq. (3.64) reduces to a formula applicable to an unsymmetric section loaded in a single plane:

$$
\begin{equation*}
\sigma=P / A+M_{y}\left(I_{z} z-I_{y z} y\right) /\left(I_{z} I_{y}-I_{y z}^{2}\right) \tag{3.65}
\end{equation*}
$$

Principal Axes Suppose that y, z correspond to principal axes of inertia through the centroid. Then $I_{y z}=0$ and Eq. (3.64) becomes

$$
\begin{equation*}
\sigma=P / A+M_{y} z / I_{y}-M_{z} y / I_{z} \tag{3.66}
\end{equation*}
$$

where the bending moments have been resolved into components along the principal axes.

Bending about a Single Axis Equation (3.64) reduces to the usual bending stress formula of Eq. (3.55) if the bending moment acts around a single principal axis of inertia through the centroid. We use Eq. (3.66) with

$$
M_{y}=M, \quad P=0, \quad M_{z}=0, \quad I_{y}=I
$$

Then

$$
\sigma=M z / I
$$

Example 3.8 Unsymmetric Bending Consider the beam section in Fig. 3-37a. From the formulas of Chapter 2,

$$
\begin{equation*}
I_{z}=\frac{1}{12} t h^{3}, \quad I_{y}=\frac{1}{3} t h^{3}, \quad I_{y z}=\frac{1}{8} t h^{3} \tag{1}
\end{equation*}
$$

To compute the bending stresses, use Eq. (3.65) with $P=0, M_{y}=M$,

$$
\begin{equation*}
\sigma=\frac{M_{y}\left(I_{z} z-I_{y z} y\right)}{I_{z} I_{y}-I_{y z}^{2}}=\frac{M}{t h^{3}}\left(\frac{48}{7} z-\frac{72}{7} y\right) \tag{2}
\end{equation*}
$$

which is plotted in Fig. 3-37b. The peak stresses occur at extreme fibers. At point A, with $z=y=\frac{1}{2} h$, we find $\sigma_{A}=-12 M / 7 t h^{2}$. At B , with $z=\frac{1}{2} h$ and $y=0$, $\sigma_{B}=24 M / 7 t h^{2}$ (see Fig. 3-37b).

Figure 3-37: Example 3.8: unsymmetric bending.

If formula 4 in Table 3-3, which does not take the lack of symmetry into account, had been used, then

$$
\begin{equation*}
\sigma_{A}=\sigma_{B}=\left(\frac{M z}{I_{y}}\right)_{z=h / 2}=\frac{\frac{1}{2} M h}{\frac{1}{3} t h^{3}}=\frac{3 M}{2 t h^{2}} \tag{3}
\end{equation*}
$$

Comparison of this with the correct values of σ_{A} and σ_{B} shows that errors of 188 and 56%, respectively, would occur.

Shear Stress

The familiar formula for shear stress in straight beams, $\tau=V Q / I b$, applies to symmetric sections in which the shear force V is along one of the principal axes of inertia of the cross section. For an unsymmetric cross section with positive shear forces V_{z} and V_{y}, the average shear stress is given by

$$
\begin{equation*}
\tau=\frac{I_{z} Q_{y}-I_{y z} Q_{z}}{b\left(I_{z} I_{y}-I_{y z}^{2}\right)} V_{z}+\frac{I_{y} Q_{z}-I_{y z} Q_{y}}{b\left(I_{z} I_{y}-I_{y z}^{2}\right)} V_{y} \tag{3.67}
\end{equation*}
$$

where Q_{y} and Q_{z} are first moments of inertia of the area beyond the point at which τ is calculated (Fig. 3-38). These first moments are defined by Eq. (2.15).

The coordinates y, z in Eq. (3.67) are referred to axes passing through the centroid of the cross section. If the width b is chosen parallel to the y axis, Eq. (3.67) gives the stress $\tau_{z x}$. If b is parallel to the z axis, Eq. (3.67) corresponds to $\tau_{x y}$. Moreover, b can be chosen such that Eq. (3.67) gives the average shear stress in any direction. This is accomplished by selecting b to be the section width at the point where the stress is sought. This width is taken in a direction perpendicular to the desired stress. If the shear stress along the line 1-2 of the section in Fig. 3-38 is to be computed, b

Figure 3-38: Shear stress.
should be selected as indicated. This fixes area A_{0} and also establishes Q_{y} and Q_{z}. Note that according to this formula, the average shear stress is constant along $1-2$. Hence, only when the actual shear stress is constant along 1-2 is the average shear stress of Eq. (3.67) equal to the actual shear stress on b. Equation (3.67) is normally considered to be reasonably accurate for thin-walled sections and somewhat less accurate for thick sections. More accurate stresses are provided by the computer program discussed in Chapter 15.

Equation (3.67) is usually employed to calculate the shear stress or shear flow in thin-walled open sections. This relationship reduces to $\tau=V Q / I b$ if the loading is in the $x z$ plane $\left(V_{y}=0\right)$ and z and y are the principal axes of inertia $\left(I_{y z}=0\right)$.

Example 3.9 Shear Stress in Unsymmetric Bending Find the shear flow in the beam section in Fig. 3-39a due to the shear force V_{z}.

Figure 3-39: Example 3.9.

The shear flow is calculated from Eq. (3.67) using $q=\tau b$. The moments of inertia are given by Eq. (1) of Example 3.8. Equation (3.67), with $b=t$, reduces to

$$
\begin{equation*}
\tau=\frac{48 Q_{y}-72 Q_{z}}{7 t^{2} h^{3}} V_{z} \tag{1}
\end{equation*}
$$

The first moments Q_{y} and Q_{z} of Eq. (2.15) are taken about y, z coordinates passing through the centroid. For a point in the flange between A and B (Fig. 3-39b),

$$
\begin{align*}
Q_{z} & =\int_{A_{0}} y d A=\frac{1}{2}\left(\frac{1}{2} h+y\right) A_{0} \\
& =\frac{1}{2}\left(\frac{1}{2} h+y\right) t\left(\frac{1}{2} h-y\right)=\frac{1}{2} t\left[\left(\frac{1}{2} h\right)^{2}-y^{2}\right] \tag{2}\\
Q_{y} & =\int_{A_{0}} z d A=\frac{1}{2} h A_{0}=\frac{1}{2} h t\left(\frac{1}{2} h-y\right)
\end{align*}
$$

From (1), the stress between A and B is given by

$$
\begin{equation*}
\tau=\frac{12}{7 t h^{3}}\left({\frac{h^{2}}{4}}^{2}-2 h y+3 y^{2}\right) V_{z} \tag{3}
\end{equation*}
$$

which is a parabola in y.
For a point in the web between C and B in Fig. 3-39c,

$$
\begin{align*}
Q_{z} & =\int_{A_{0}} y d A=\frac{h}{4} A_{1}^{\prime}+(0) A_{2}^{\prime}=\frac{h}{4}\left(t \frac{h}{2}\right)=t \frac{h^{2}}{8} \\
Q_{y} & =\int_{A_{0}} z d A=\frac{h}{2} A_{1}^{\prime}+\left(z+\frac{h / 2-z}{2}\right) A_{2}^{\prime}=\frac{t}{2}\left(\frac{3 h^{2}}{4}-z^{2}\right) \tag{4}\\
\tau & =\frac{24}{7 t h^{3}}\left(\frac{3}{8} h^{2}-z^{2}\right) V_{z}
\end{align*}
$$

where A_{1}^{\prime} is the area of the lower flange and A_{2}^{\prime} is the area of that portion of the web beyond the point at which τ is calculated.

The distribution of shear stress is shown in Fig. 3-39a. The peak value of $9 V_{z} / 7 h t$ occurs at C , the centroid. If formula 5 in Table 3-3 were used to calculate the stress, the maximum value would occur at C. Using (4) above,

$$
\begin{equation*}
\tau=\frac{V Q}{I b}=\frac{V_{z} Q_{y}}{I_{y} t}=\frac{\frac{1}{2} V_{z} t\left(\frac{3}{4} h^{2}-z^{2}\right)}{\left(\frac{1}{3} t h^{3}\right) t}=\frac{3}{2 t h^{3}}\left(\frac{3}{4} h^{2}-z^{2}\right) V_{z} \tag{5}
\end{equation*}
$$

and at $z=0, \tau_{\max }=9 V_{z} / 8 h t$. This is 12.5% in error relative to the more exact value found using Eq. (3.67).

3.15 THEORIES OF FAILURE

Concept of Failure

Structural members and machine parts may fail to perform their intended functions if excessive elastic deformation, yielding (plastic deformation), or fracture (break) occurs. For a failure-safe design, the engineer must determine possible modes of failure of the structural or machine system and then establish suitable failure criteria that accurately predict the various modes of failure. The determination of modes of failure [3.8] requires extensive knowledge of the response of material or a structural system to loads. In particular, it may require a comprehensive stress analysis of the system. The mode of failure depends on the type of material used and the manner of loading (e.g., static, dynamic, and fatigue).

Two types of excessive elastic deformation result in structural failure:

1. Deformation satisfying the usual conditions of equilibrium, such as deflection of a beam or angle of twist of a shaft under gradually applied (static) loads. The ability to resist such deformation is referred to as the stiffness of a member. Furthermore, there can be excessive deformations associated with the amplitudes of the vibration of a machine member.
2. Buckling or an inordinately large displacement under conditions of unstable equilibrium that may occur in a slender column when the axial load exceeds the Euler critical load, in a thin plate when the in-plane forces exceed the critical load, or when the external pressure on a thin-walled shell exceeds a critical value. This is a form of instability, referred to as bifurcation.

To ascertain if it will serve its purpose, a load-carrying solid must be investigated from the standpoint of strength in addition to the possibility of the stiffness and stability failures considered above. A discussion of strength-related failure follows.

Yielding failure is due to plastic deformation of a significant part of a member, sometimes called extensive yielding to distinguish it from (localized) yielding of a small part of a member. Yielding under room and elevated temperatures is discussed in Chapter 4. Yielding occurs when the elastic limit (or yielding point) of the material has been exceeded. As indicated in Chapter 4, in a ductile metal under conditions of static loading at room temperature, yielding rarely results in fracture because of the strain-hardening effect. For simple tensile loading, failure by excessive plastic deformation is controlled by the yield strength of the metal. However, for more complex loading conditions, the yield strength must be used with a suitable criterion, a "theory of failure," which is discussed later in this section. At temperatures signifi-
cantly greater than room temperature, metals no longer exhibit significant hardening. Instead, metals can deform continuously at constant stress levels in a time-dependent yielding known as creep.

Members can fracture before failure defined by excessive elastic deformation or yielding can occur. The mechanisms of this fracture include the following:

1. Rapid fracture of brittle materials
2. Fatigue of progressive fracture
3. Fracture of flawed members
4. Creep at elevated temperatures

Fatigue deserves special attention because the magnitude of the repetitive load need not be high enough to cause static fracture (i.e., the stress may be relatively low). But under lengthy vibratory loading, fatigue cracks can form. Fatigue fracture is often ranked as the most serious type of fracture in machine design simply because it can occur under normal operating conditions. Fracture and fatigue are discussed in Chapter 7. Creep is discussed in Chapter 4. Failure theories for yield are treated in the following subsections. By replacing the yield stress by another critical stress level (e.g., the ultimate stress), these theories are often considered to be applicable to failures other than yield.

Tensile tests provide the most commonly available information about the failure level of a material. The problem arises when an attempt is made to relate these tensile data to a combined stress situation. In some combined stress cases tests can be performed to determine the yield stress. Usually, it is not convenient, or even possible, to conduct a suitable model test; consequently, it is necessary to develop a relationship between stress under complicated stress conditions and the behavior of a material in simple tension or compression.

For the theories considered here, it is assumed that the tension or compression critical stresses $\sigma_{y s}$ (yield stress) or σ_{u} (ultimate stress) are available as properties found from simple material tests. In developing the various failure criteria, it is convenient to use the fact that any state of stress at a point can be reduced through a rotation of coordinates to a state of stress involving only the principal stresses σ_{1}, σ_{2}, and σ_{3}. Often, these principal stresses are output by general-purpose structural analysis programs. The same reasoning applies to strains.

Maximum-Stress Theory In the maximum-stress theory, or Rankine theory, the maximum principal stress is taken as the criterion of failure. For the moment, failure is to be defined in terms of yielding, although the same theory applies if the yield stress is replaced by another stress level, such as the ultimate stress. For the maximum-stress theory, yield occurs at a point in the structure when one of the principal stresses at this point, which is subjected to combined stresses, reaches the yield strength in simple tension $\left(\sigma_{y s}\right)$ or compression for the material. According to this theory, yielding is not affected by the level of the other principal stresses. Thus, for material whose tension and compression properties are the same, the failure criterion

Figure 3-40: Graphical representation of theories of failure in a two-dimensional state of stress.
is defined as

$$
\begin{equation*}
\sigma_{1}=\sigma_{y s} \quad \text { or } \quad\left|\sigma_{3}\right|=\sigma_{y s}^{\prime} \tag{3.68}
\end{equation*}
$$

where $\sigma_{y s}$ and $\sigma_{y s}^{\prime}$ are the yield stresses in simple tension and compression, respectively. The principal stresses are so arranged that their algebraic values satisfy the relation $\sigma_{1}>\sigma_{2}>\sigma_{3}$.

Maximum-stress theory can readily be illustrated. For example, a graphical representation in a two-dimensional state of stress is shown in Fig. 3-40. The locus of failure points is the square $A B C D$.

Maximum-Strain Theory The maximum-strain theory, considered to be due to Saint-Venant, postulates that a ductile material begins to yield when the maximum extensional strain at a point reaches the yield strain in simple tension, or when the minimum strain (shortening) equals the yield point strain in simple compression. By means of Hooke's laws, for $\sigma_{1}>\sigma_{2}>\sigma_{3}$, this failure criterion is embodied in the equations

$$
\begin{equation*}
\sigma_{1}-v\left(\sigma_{2}+\sigma_{3}\right)=\sigma_{y s}, \quad\left|\sigma_{3}-v\left(\sigma_{1}+\sigma_{2}\right)\right|=\sigma_{y s}^{\prime} \tag{3.69}
\end{equation*}
$$

The maximum-strain theory is not considered to be reliable in many instances.
Maximum-Shear Theory The maximum-shear theory, or Tresca or Guest's theory, assumes that failure occurs in a body subjected to combined stresses when the
maximum shear stress at a point [e.g., $\frac{1}{2}\left(\sigma_{1}-\sigma_{2}\right)$], reaches the value of shear failure stress of the material in a simple tension test [e.g., $\frac{1}{2} \sigma_{y s}$]. Therefore, failure under combined stresses is decided by the condition

$$
\begin{equation*}
\sigma_{\max }-\sigma_{\min }=\sigma_{y s} \tag{3.70a}
\end{equation*}
$$

where $\sigma_{\max }$ and $\sigma_{\text {min }}$ are the maximum and minimum principal stresses, respectively.
The term $\sigma_{\text {max }}-\sigma_{\text {min }}$ can also be expressed as

$$
\begin{equation*}
\max \left(\left|\sigma_{1}-\sigma_{2}\right|,\left|\sigma_{2}-\sigma_{3}\right|,\left|\sigma_{3}-\sigma_{1}\right|\right) \tag{3.70b}
\end{equation*}
$$

The largest of these absolute values is sometimes referred to as the stress intensity. This quantity is often computed by general-purpose analysis software.

It is important to note that for the case $\sigma_{1}>\sigma_{2}>\sigma_{3}$, the failure criterion would be

$$
\begin{equation*}
\sigma_{1}-\sigma_{3}=\sigma_{y s} \tag{3.70c}
\end{equation*}
$$

A plot of this theory for a two-dimensional state of stress is given in Fig. 3-40. The locus of failure points is the polygon AHECIFA.
von Mises Theory The von Mises theory, also called the Maxwell-Huber-Hencky-von Mises theory, octahedral shear stress theory, and maximum distortion energy theory, states that failure at a particular location occurs when the energy of distortion reaches the same energy for failure in tension. That is, failure takes place when the principal stresses are such that

$$
\begin{equation*}
\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{1}-\sigma_{3}\right)^{2}=2 \sigma_{y s}^{2} \tag{3.71a}
\end{equation*}
$$

This relation holds regardless of the relative magnitude of σ_{1}, σ_{2}, and σ_{3}.
The quantity

$$
\begin{equation*}
\left\{\frac{1}{2}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{1}-\sigma_{3}\right)^{2}\right]\right\}^{1 / 2}=\sigma_{e} \tag{3.71b}
\end{equation*}
$$

is often referred to as the equivalent stress. This is sometimes available as output of general-purpose structural analysis software.

In a two-dimensional state of stress $\left(\sigma_{3}=0\right)$, Eq. (3.71a) becomes

$$
\begin{equation*}
\sigma_{y s}^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}-\sigma_{1} \sigma_{2} \tag{3.72}
\end{equation*}
$$

This relationship is plotted in Fig. 3-40.
Mohr's Theory Mohr's theory, also called Coulomb-Mohr theory or internalfriction theory, is based on the results of the standard tension and compression tests, which give the tensile and compressive strengths $\sigma_{y s}$ and $\sigma_{y s}^{\prime}$. Two Mohr circles for these experiments can be plotted on the same diagram. A pair of lines $A B$ and

Figure 3-41: Mohr's theory of failure.
$C D$ (Fig. 3-41) are drawn tangent to the two Mohr circles. Mohr's theory states that failure of an isotropic material, either by fracture or by the onset of yielding, will occur at a point where the largest Mohr circle for this point (having diameter $\sigma_{1}-\sigma_{3}$, as in Fig. 3-41) touches a failure envelope. Any "interior" circle, such as the dashed one in Fig. 3-41, represents a state of stress that is safe, while the solid circle represents a state of stress that is in failure. It can be shown that failure occurs when

$$
\begin{equation*}
\sigma_{1} / \sigma_{y s}+\sigma_{3} / \sigma_{y s}^{\prime} \geq 1 \tag{3.73}
\end{equation*}
$$

where $\sigma_{y s}>0$ and $\sigma_{y s}^{\prime}<0$ and the maximum and minimum principal stresses σ_{1} and σ_{3} carry their algebraic signs. In plane stress problems, if all normal stresses are tensile, Eq. (3.73) coincides with the maximum-stress theory ($\sigma_{1} \geq \sigma_{y s}$). For ductile materials, it is usually assumed that $\sigma_{y s}=-\sigma_{y s}^{\prime}$, so that Eq. (3.73) becomes $\sigma_{1}-\sigma_{3} \geq \sigma_{y s}$.

Validity of Theories

The appropriate failure theory to be used in a given design situation depends on the mode of failure. A theory that works for ductile failure may not be appropriate for brittle failure. A single theory may not always apply to a given material because the material may behave in a ductile fashion under some conditions and in a brittle fashion under others (see Chapter 4). For the foregoing theories, the material is assumed to be isotropic. These theories of failure pertain to material failure rather than to structural failure by such modes as buckling or excessive elastic deformation.

A comparison has been made [3.2] of experimental yield stresses for several metals under biaxial stress conditions with some of the failure theories described above. The results, which are for room temperature and slow loading, seem to indicate somewhat better agreement with von Mises theory than with maximum-shear theory.

Maximum-stress and maximum-strain theory are often applicable to brittle failure of materials, so that σ_{u} often replaces $\sigma_{y s}$ in Eqs. (3.68) and (3.69). Maximum-strain theory has been shown not to be reliable in many instances. Maximum-shear theory is applied frequently in machine design for ductile materials where $\sigma_{y s}=\sigma_{y s}^{\prime}$.

Maximum-shear theory has the advantage over von Mises theory that the stresses appear in a linear fashion.

Mohr's theory is generally used for brittle materials, which are much stronger in compression than in tension (e.g., for cast iron).

3.16 APPLICATION OF FAILURE THEORIES

The following examples illustrate use of the failure theories discussed above.

Example 3.10 Internal Pressure of a Cylindrical Vessel A cylindrical pressure vessel 80 in. in diameter and 1 in . thick is made of steel with a yield stress in tension of $35,000 \mathrm{psi}$. Determine the internal pressure that will produce yielding by using the von Mises theory of failure as the yield criterion.

From the stress formulas for thin-walled pressure vessels presented previously, the principal stresses at any point in a cylinder (Fig. 3-31) will be the circumferential stress σ_{θ}, the longitudinal stress σ_{x}, and the radial stress σ_{r}. Let $\sigma_{1}=\sigma_{\theta}, \sigma_{2}=\sigma_{x}$, and $\sigma_{3}=\sigma_{r}$. Equations (3.61) give

$$
\begin{equation*}
\sigma_{1}=p r / t, \quad \sigma_{2}=p r / 2 t \tag{1}
\end{equation*}
$$

The stress σ_{r} is small $\left(0 \leq \sigma_{r} \leq p\right)$ relative to σ_{θ} and σ_{x} and is neglected; that is,

$$
\begin{equation*}
\sigma_{3}=0 \tag{2}
\end{equation*}
$$

Substituting (1) and (2) in Eq. (3.71a) gives

$$
\begin{aligned}
\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{1}-\sigma_{3}\right)^{2} & =2\left(\sigma_{1}^{2}-\sigma_{1} \sigma_{2}+\sigma_{2}^{2}\right) \\
& =2\left[\left(\frac{p r}{t}\right)^{2}-\frac{p r}{t} \frac{p r}{2 t}+\left(\frac{p r}{2 t}\right)^{2}\right]=2 \sigma_{y s}^{2}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
p=\sqrt{\frac{4}{3} \frac{t^{2}}{r^{2}}\left(\sigma_{y s}^{2}\right)}=\frac{2}{\sqrt{3}} \frac{t \sigma_{y s}}{r}=\frac{2}{\sqrt{3}} \frac{(1)(35,000)}{80 / 2} \approx 1010 \mathrm{psi} \tag{3}
\end{equation*}
$$

According to von Mises theory, this p gives the pressure value that would initiate yielding of the cylinder.

If the maximum-stress theory of failure [Eq. (3.68)] and the maximum-shear theory [Eq. (3.70c)] are used, the internal pressure that will produce yielding in both cases is

$$
\begin{equation*}
p=\frac{t \sigma_{y s}}{r}=\frac{1(35,000)}{80 / 2}=875 \mathrm{psi} \tag{4}
\end{equation*}
$$

In establishing this relationship, remember that $\sigma_{3}=0$.

The results in (3) and (4) indicate that in this case, using the maximum stress theory and maximum shear theory is more conservative than using the von Mises theory.

Example 3.11 Application of Tresca and von Mises Theories If the yield strength of a material in a tensile test is $\sigma_{y s}=140 \mathrm{MN} / \mathrm{m}^{2}$, determine the largest safe shear stress τ in a cylinder of the same material in torsion.

In the simple tension test, the state of stress is $\sigma_{1}=\sigma_{y s}=140 \mathrm{MN} / \mathrm{m}^{2}, \sigma_{2}=$ $\sigma_{3}=0$. From Eq. (3.70a),

$$
\begin{equation*}
\sigma_{\max }-\sigma_{\min }=\sigma_{1}-0=\sigma_{\mathrm{ys}} \tag{1}
\end{equation*}
$$

For pure torsion of the cylinder $\tau=\operatorname{Tr} / J$ (Table 3-3). The principal stresses are, by Eqs. (3.13),

$$
\begin{equation*}
\sigma_{\max }=\sigma_{1}=\tau, \quad \sigma_{\min }=\sigma_{2}=-\tau, \quad \sigma_{3}=0 \tag{2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\sigma_{\max }-\sigma_{\min }=2 \tau \tag{3}
\end{equation*}
$$

Use of the Tresca theory yields [see Eq. (3.70a)], from (1) and (3),

$$
\begin{equation*}
2 \tau=\sigma_{y s} \quad \text { or } \quad \tau=\frac{1}{2} \sigma_{y s}=\frac{140}{2}=70 \mathrm{MN} / \mathrm{m}^{2} \tag{4}
\end{equation*}
$$

If the von Mises theory is to be used, the equivalent stress σ_{e} in Eq. (3.71b) is evaluated for the two states of stress. For simple tension

$$
\begin{equation*}
\sigma_{e}=\frac{1}{\sqrt{2}}\left(\sigma_{y s}^{2}+\sigma_{y s}^{2}\right)^{1 / 2}=\sigma_{y s} \tag{5}
\end{equation*}
$$

For torsion of the cylinder, from (2),

$$
\begin{equation*}
\sigma_{e}=\frac{1}{\sqrt{2}}\left(4 \tau^{2}+\tau^{2}+\tau^{2}\right)^{1 / 2}=\sqrt{3} \tau \tag{6}
\end{equation*}
$$

By the von Mises theory, equating (5) and (6), we have

$$
\begin{equation*}
\sqrt{3} \tau=\sigma_{y s} \quad \text { or } \quad \tau=0.577 \sigma_{y s}=80.83 \mathrm{MN} / \mathrm{m}^{2} \tag{7}
\end{equation*}
$$

Of course, the same result is obtained by applying Eq. (3.71a) directly.
The results in (4) and (7) indicate that for torsion of a cylinder, Tresca (maximumshear) theory is more conservative than von Mises theory.

REFERENCES

3.1. Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M., Advanced Mechanics of Materials, 5th ed., Wiley, New York, 1993.
3.2. Blake, A., Handbook of Mechanics, Materials, and Structures, Wiley, New York, 1985.
3.3. Campus, F., "Effects of Residual Stresses on the Behavior of Structures," in Residual Stresses in Metals and Metal Construction, ed. Osgood, W. R., Reinhold Publishing, New York, 1954, pp. 121.
3.4. Almen, J. O., and Black, P. H., Residual Stresses and Fatigue in Metals, McGraw-Hill, New York, 1964.
3.5. Baldwin, W. M., Jr., "Edgar Marburg Lecture: Residual Stresses in Metals," Proceedings, American Society for Testing and Materials, Vol. 49, 1949, pp. 539-583.
3.6. Vande Walle, L. J., Residual Stress for Designers and Metallurgists, American Society for Metals, Metals Park, OH, 1981.
3.7. Rosenthal, D., in Influence of Residual Stress on Fatigue, ed. Sines, G., and Waisman, J. L., McGrawHill, New York, 1959, pp. 170-196.
3.8. Wulpi, D. J., Understanding How Components Fail, American Society for Metals, Metals Park, OH, 1985.

Tables

3-1 Mohr's Circles for Some Common States of Stress1443-2 Relationships between Commonly Used Material Constants 145
3-3 Basic Stress Formulas1463-4 Basic Deformation Formulas: Bars of Linearly Elastic Material147

TABLE 3-1 MOHR'S CIRCLES FOR SOME COMMON STATES OF STRESS

1.

Uniaxial compression

$$
\begin{aligned}
\sigma_{x} & =\sigma_{3}, \\
\sigma_{1} & =\sigma_{2}=0, \text { so that } \\
\tau_{\max } & =\left(\sigma_{\max }-\sigma_{\min }\right) / 2=\sigma_{3} / 2
\end{aligned}
$$

2.

Uniaxial tension

σ_{x}	$=\sigma_{1}$,
σ_{2}	$=\sigma_{3}=0$, giving
$\tau_{\max }$	$=\left(\sigma_{\max }-\sigma_{\min }\right) / 2=\sigma_{1} / 2$

3.

Pure shear

$$
\begin{aligned}
\sigma_{x} & =-\sigma_{y}=\sigma_{1}=-\sigma_{3}, \\
\sigma_{2} & =0, \text { so that } \\
\tau_{\max } & =\sigma_{1}
\end{aligned}
$$

4.

Pure shear

$$
\begin{aligned}
\tau_{x y} & =\tau_{y x}, \\
\sigma_{2} & =0, \text { so that } \\
\tau_{\max } & =\sigma_{1}
\end{aligned}
$$

5.

Equal biaxial tension

$$
\begin{aligned}
\sigma_{x} & =\sigma_{y}=\sigma_{1}=\sigma_{2}, \text { giving } \\
\tau_{\max } & =\sigma_{1} / 2
\end{aligned}
$$

6.

Equal biaxial compression
$\sigma_{x}=\sigma_{y}=\sigma_{2}=\sigma_{3}$, so that $\tau_{\text {max }}=\sigma_{2} / 2$

7.

Equal triaxial compression $\sigma_{x}=\sigma_{y}=\sigma_{z}=\sigma_{1}=\sigma_{2}=\sigma_{3}$

TABLE 3-2 RELATIONSHIPS BETWEEN COMMONLY USED MATERIAL CONSTANTS ${ }^{\text {a }}$

1. Shear modulus $G\left(F / L^{2}\right)$
$G=\frac{E}{2(1+\nu)}$
2. Lamé coefficient $\lambda\left(F / L^{2}\right)$
$\lambda=\frac{E v}{(1+\nu)(1-2 \nu)}$
3. Bulk modulus $K\left(F / L^{2}\right)$
$K=\frac{E}{3(1-2 \nu)}$
where $\quad E=$ modulus of elasticity $\left(F / L^{2}\right)$
$v=$ Poisson's ratio
[^2]
TABLE 3-3 BASIC STRESS FORMULAS

Bars of Linearly Elastic Material

1. Extension: $\sigma=P / A$
2. Torsion: $\tau=\operatorname{Tr} / J$ (circular section)
3. Torsion: $\tau=T / 2 A^{*} t$ (closed, thin-walled section)
4. Bending: $\sigma=M z / I$
5. Shear: $\tau=V Q / I b$
where $\quad \sigma=$ normal axial stress $=\sigma_{x} \quad z=$ vertical coordinate from neutral axis
$\tau=$ shear stress $\quad I=$ moment of inertia about neutral axis
$P=$ axial force $\quad J=$ torsional constant $=$ polar moment
$T=$ axial torque of inertia for circular cross section
$V=$ vertical shear force $=V_{z} \quad b=$ width of cross section
$M=$ bending moment $\quad r=$ radius
in vertical plane $=M_{y} \quad Q=$ first moment with respect to neutral
$A=$ cross-sectional area axis of area beyond point at which
$A^{*}=$ enclosed area $\quad \tau$ is calculated
$t=$ wall thickness

Shells

6. Cylinder: $\sigma_{\theta}=p r / t, \quad \sigma_{x}=p r / 2 t$
7. Sphere: $\sigma=p r / 2 t$
where $\sigma_{\theta}=$ hoop stress in cylinder wall
$\sigma_{x}=$ longitudinal stress in cylinder wall
$\sigma=$ membrane stress in sphere wall
$p=$ internal pressure
$t=$ wall thickness
$r=$ radius

TABLE 3-4 BASIC DEFORMATION FORMULAS: BARS OF LINEARLY ELASTIC MATERIAL ${ }^{\text {a }}$

1. Extension: $\Delta=P L / A E$
2. Torsion: $\phi=T L / G J$
3. Bending: $\frac{d^{4} w}{d x^{4}}=\frac{p_{z}}{E I} \quad \theta=-\frac{d w}{d x} \quad M=-E I \frac{d^{2} w}{d x^{2}} \quad V=-E I \frac{d^{3} w}{d x^{3}}$
```
where \(\quad A=\) original cross-sectional area \(\left(L^{2}\right)\)
    \(\Delta=\) elongation ( \(L\) )
    \(E=\) modulus of elasticity \(\left(F / L^{2}\right)\)
    \(\phi=\) angle of twist
    \(G=\) shear modulus ( \(F / L^{2}\) )
    \(J=\) torsional constant \(\left(L^{4}\right)\)
    \(L=\) original length ( \(L\) )
    \(I=\) moment of inertia about neutral axis \(\left(L^{4}\right)\)
    \(P=\) axial force ( \(F\) )
    \(p_{z}=\) applied loading density \((F / L)\)
    \(T=\) torque ( \(L F\) )
    \(w=\) deflection \((L)\)
```

${ }^{a}$ The units are given in parentheses using L for length and F for force.

Mechanical Properties and Testing of Engineering Materials

4.1 Notation 151
4.2 Material Laws: Stress-Strain Relations 152
4.3 Tensile Test 154
4.4 Impact Tests 159
Notched-Bar Tests 159
Drop-Weight Test for the Nil-Ductility Temperature 160
Dynamic Tear Energy Test 162
4.5 Hardness Tests 162
Brinell Hardness Test 163
Vickers Hardness Test 163
Rockwell Hardness Test 163
Microhardness Test 164
4.6 Creep 165
Cumulative Creep 167
Simultaneous Creep and Fatigue 169
4.7 Ferrous Metals 169
Steel Classification and Specifications 172
Carbon Steels 173
Alloy Steels 174
Stainless Steels 175
Cast Irons 176
High-Strength, Low-Alloy Steels 177
Tool Steels 177
4.8 Nonferrous Metals 177
Aluminum 177
Magnesium 178
Other Nonferrous Metals 178
4.9 Plastics 178
4.10 Ceramics 179
4.11 Composites 180
4.12 Biomechanics 181
Bone Tissue Mechanics 181
Soft Tissue Mechanics 182
Cartilage 182
Muscle 182
Ligaments and Tendons 182
Factors That Influence Properties 183
Loading Rate 183
Anatomic Location 183
Loading Mode 183
Age 183
Storage and Preservation 183
Humidity 183
Species 183
4.13 Biomaterials 183
Classes of Biomaterials 184
4.14 Microelectromechanical Systems (MEMS) 184
4.15 Material Selection 185
References 189
Tables 191

Mechanical properties of materials are force-deformation (stress-strain) characteristics of materials. The American Society for Testing and Materials (ASTM) publishes annually standards on characteristics and performance of materials, products, and systems. Section 3, Vol. 03.01 [4.1], of the ASTM standards applies to the physical, mechanical, and corrosion testing of metals; other volumes treat wood, plastic, rubber, cement, and other materials. Some of the specifications establish uniform standards for defining and measuring such material properties as tensile strength, offset yield strength, nil-ductility temperature, and fatigue strength. Definitions of terms relating to mechanical testing are provided in ASTM E6.

Examples of sources of values of material properties are The Metals Handbook, the materials reference issue of Machine Design magazine, The Materials Selector compiled by the publishers of Materials Engineering magazine, and the product literature available from the companies that supply engineering materials. These and similar publications often include readable discussions of nomenclature, manufacturing processes, and the microstructural bases for the macroscopic behavior of materials. Texts on materials science [e.g., [4.2-4.4]] offer more detailed insight into the atomic and molecular characteristics that account for the aggregate behavior of materials.

This chapter covers the tensile test, hardness tests, and impact tests as well as such mechanical properties as creep. Discussions of ferrous metals, some nonferrous metals, plastics, ceramics, and composites are included.

Tables of values of mechanical properties of various materials are presented. Data on material properties such as fracture toughness and fatigue strength are presented
in Chapter 7. A discussion of important nonmetallic structural materials such as concrete, wood, and asphalt is available in several sources (e.g., [4.5]).

Several bioengineering materials are treated, including tables of human material properties helpful in biomechanics and properties of implant materials.

Finally, selection of the most appropriate materials is discussed. Tables for prescribed strength or stiffness for minimum weight design are included.

4.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, A for area, and F for force.

```
    A0 Initial undeformed cross-sectional area of tensile specimen ( }\mp@subsup{L}{}{2
    C Constant in creep extension equation
    C _ { L } \text { Constant in equation for Larson-Miller parameter}
        d Extension due to creep (L)
    di Extension under ith condition of stress and temperature (L)
    d}\mp@subsup{T}{T}{}\mathrm{ Total extension due to creep (L)
    E Modulus of elasticity, Young's modulus ( }F/\mp@subsup{L}{}{2}\mathrm{ )
    F Applied force in tension test
    G Shear modulus, Lamé constant (F/L L}
    HB Brinell hardness number
    HK Knoop hardness number
    HR Rockwell hardness number
    HV Vickers hardness number
    K Bulk modulus (F/L L
        \ell ~ S p e c i m e n ~ l e n g t h ~ i n ~ t e n s i l e ~ t e s t
    \ell
        L Length of member
    m Mass
        n Constant exponent in creep extension equation
P
PMH Manson-Haferd parameter
    R Modulus of resilience (F/L L
        t Time
        ti}\mathrm{ Time under ith condition of stress and temperature
        tki Initial time for the kth condition of stress and temperature
        T Temperature
Ta, ta}\mp@code{Constants in equation for Manson-Haferd parameter
```

Δ_{i} Time to failure under constant condition of i th stress and temperature
ε_{e} Engineering strain
ε_{t} True or natural strain
λ Lamé constant (F / L^{2})
v Poisson's ratio
ρ^{*} Mass per unit volume
σ_{a} Amplitude of cyclic applied stress
σ_{c} Static creep strength
σ_{e} Endurance limit
$\sigma_{\text {eng }}$ Engineering stress (F / A)
σ_{f} Fatigue strength
σ_{m} Mean stress level of cyclic applied stress
σ_{t} True stress (F / A)
$\sigma_{y s}$ Yield stress $\left(F / L^{2}\right)$

4.2 MATERIAL LAWS: STRESS-STRAIN RELATIONS

The stress-strain relations for isotropic materials are discussed in Chapter 3. An isotropic material has identical mechanical, physical, thermal, and electrical properties in every direction. However, an anisotropic material exhibits direction-dependent properties. An isotropic material may become anisotropic due to cold working and forging. Composite materials usually are anisotropic.

For an isotropic material, the constitutive relation [or Hooke's law, Eq. (3.40)] in matrix notation can be expressed as

$$
\begin{align*}
{\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z} \\
\tau_{x y} \\
\tau_{x z} \\
\tau_{y z}
\end{array}\right] } & =\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc:ccc}
1-v & v & v & & \\
v & 1-v & v & 0 & \\
v & v & 1-v & 0 & 0 \\
\hdashline & & \mathbf{0} & \frac{1-2 v}{2} & 0 & 0 \\
& & 0 & \frac{1-2 v}{2} & 0 \\
& & 0 & 0 & \frac{1-2 v}{2}
\end{array}\right]\left[\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
\varepsilon_{z} \\
\gamma_{x y} \\
\gamma_{x z} \\
\gamma_{y z}
\end{array}\right] \\
& =
\end{align*}
$$

where the stresses are shown in Fig. 3-2.
In the most general case, for an anisotropic material all components in the matrix of the constitutive law are nonzero, but the symmetry still holds.

$$
\left[\begin{array}{c}
\sigma_{x} \tag{4.2}\\
\sigma_{y} \\
\sigma_{z} \\
\tau_{y z} \\
\tau_{x z} \\
\tau_{x y}
\end{array}\right]=\left[\right]\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\varepsilon_{z} \\
\gamma_{y z} \\
\gamma_{x z} \\
\gamma_{x y}
\end{array}\right]
$$

There are 21 independent elastic constants in Eq. (4.2). The strains in terms of stresses appear as

$$
\left[\begin{array}{c}
\varepsilon_{x} \tag{4.3}\\
\varepsilon_{y} \\
\varepsilon_{z} \\
\gamma_{y z} \\
\gamma_{x z} \\
\gamma_{x y}
\end{array}\right]=\left[\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \bar{a}_{14} & \bar{a}_{15} & \bar{a}_{16} \\
& a_{22} & a_{23} & \bar{a}_{24} & \bar{a}_{25} & \bar{a}_{26} \\
& & a_{33} & \bar{a}_{34} & \bar{a}_{35} & \bar{a}_{36} \\
\text { symmetric } & a_{44} & \bar{a}_{45} & \bar{a}_{46} \\
& & & & a_{55} & \bar{a}_{56} \\
& & & & a_{66}
\end{array}\right]\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z} \\
\tau_{y z} \\
\tau_{x z} \\
\tau_{x y}
\end{array}\right]
$$

A material whose properties vary in three orthogonal directions is called orthotropic. In this case, the barred quantities in Eqs. (4.2) and (4.3) are zero, so that there are nine independent elasticity constants. The number of elastic coefficients present in both two- and three-dimensional elastic bodies and the corresponding elastic constant matrices are listed in Table 4-1.

The material constants in Eqs. (4.2) and (4.3) for orthotropic materials can be identified by performing simple tensile and shear tests. A tensile test in the x direction provides

$$
\begin{equation*}
a_{11}=\frac{1}{E_{x}}, \quad a_{21}=\frac{-v_{x y}}{E_{x}}, \quad a_{31}=\frac{-v_{x z}}{E_{x}} \tag{4.4a}
\end{equation*}
$$

where E_{x} is the elasticity modulus in the x direction. The constants $v_{x y}$ and $v_{x z}$ are Poisson's ratios in the $x y$ and $x z$ planes, respectively. Similarly, tensile tests in the y and z directions yield

$$
\begin{array}{lll}
a_{12}=-\frac{v_{y x}}{E_{y}}, & a_{22}=\frac{1}{E_{y}}, & a_{32}=-\frac{v_{y z}}{E_{y}} \\
a_{13}=-\frac{v_{z x}}{E_{z}}, & a_{23}=-\frac{v_{z y}}{E_{z}}, & a_{33}=\frac{1}{E_{z}} \tag{4.4c}
\end{array}
$$

Since $a_{i j}=a_{j i}$, it is seen that

$$
\begin{equation*}
\frac{v_{i j}}{E_{i}}=\frac{v_{j i}}{E_{j}} \quad(i, j=x, y, z) \tag{4.4d}
\end{equation*}
$$

A shear test [4.6] can provide the remaining constants a_{44}, a_{55}, and a_{66} :

$$
\begin{equation*}
a_{44}=\frac{1}{G_{y z}}, \quad a_{55}=\frac{1}{G_{x z}}, \quad a_{66}=\frac{1}{G_{y x}}=\frac{1}{G_{x y}} \tag{4.4e}
\end{equation*}
$$

Materials having the same properties in one plane (e.g., y, z) and different properties in another direction perpendicular to the plane (e.g., x direction) are called transversely isotropic. In this case, there are five independent elastic properties. In Eqs. (4.4), for transversely isotropic materials,

$$
E_{y}=E_{z}, \quad G_{x z}=G_{y x}, \quad v_{y x}=v_{z x}, \quad \frac{1}{G_{y z}}=2\left(\frac{1}{E_{y}}+\frac{v_{y z}}{E_{y}}\right)
$$

For elastic properties the same in all directions, an isotropic material, there are only two independent material constants. Normally, the material laws are expressed using two of the following constants: E (Young's modulus), v (Poisson's ratio), G (shear modulus), λ (Lamé constant), and K (bulk modulus). The relationships among these material constants are shown in Table 4-2. Table 4-3 gives elastic moduli values and Poisson's ratios for some important engineering materials.

4.3 TENSILE TEST

The tensile test serves as the basis for determining several important mechanical properties of materials. In this test, as described in ASTM E8, the yield strength, tensile strength, elongation, and reduction in area of a material specimen are determined. In addition, the modulus of elasticity, modulus of resilience, and modulus of toughness of a material are found from the stress-strain curve measured during the tensile test. (A different ASTM standard, E111, applies to the measurement of the modulus of elasticity.) In the tensile test the specimen is loaded in uniaxial tension until the specimen fractures. Standards for testing machines, specimen types, testing speed, and determination of values of material properties are given in ASTM E8. A standard test specimen and a symbolic stress-strain curve are shown in Fig. 4-1 a and b. Precise specifications of the specimen are provided in Ref. [4.1]. Typical stress-strain

G	Gage length	W	Width
L	Overall length	T	Thickness
R	Radius of fillet	A	Length of reduced section
C	Width of grip section	B	Length of grip section

(a)

(b)

Figure 4-1: (a) Tensile test specimen; (b) conventional stress-strain diagram for a metal with a yield point. [(a) From Ref. [4.1]. Copyright ASTM. Printed with permission.]

Figure 4-2: Engineering stress-strain curves for various metals. (From Ref. [4.7]. Copyright (C) AIAA 1940. Used with permission.)
curves obtained from tensile tests are shown in Fig. 4-2 for various metals and alloys. In these curves, stress (engineering) is defined as the applied force per unit original undeformed cross-sectional area of the specimen,

$$
\begin{equation*}
\sigma_{\mathrm{eng}}=F / A_{0} \tag{4.5}
\end{equation*}
$$

and strain is engineering strain,

$$
\begin{equation*}
\varepsilon_{e}=\left(\ell-\ell_{0}\right) / \ell_{0} \tag{4.6}
\end{equation*}
$$

The stress-strain curve of a metal will depend on many factors, such as chemical composition, heat treatment, prior plastic deformation, strain rate, and temperature. Table 4-3 lists material properties of selected engineering materials.

As Fig. 4-2 shows, metals differ from each other in the shape of the stressstrain curve they produce under tensile testing; consequently, the definition of yield strength depends on the shape of the stress-strain curve. When the point at which plastic deformation begins is not clearly evident, the offset yield strength is employed. The construction used to find the offset yield strength of a material is shown in Fig. 4-3, where $\sigma_{y s}$ is the offset yield strength and the offset is $0 A$, usually taken as $0.1-0.2 \%$. The offset yield strength is also known as the proof strength in Great Britain, with offset values of $0.1-0.5 \%$. In reporting a value of the offset yield strength, the specified offset strain value is normally provided. Like yield strength, the offset yield strength is utilized for design and specification purposes. Because of the difficulty in determining the elastic limit, it is commonly replaced by the proportional limit, which is the stress at which the stress-strain curve is out of linearity. The modulus of elasticity, or Young's modulus, E, a measure of the stiffness of the material, is the slope of the curve below the proportional limit. The increase in load that occurs in some materials after the yield strength is reached is known as strain hardening or work hardening.

Poisson's ratio v is the absolute value of the ratio of the transverse strain to the axial strain of a specimen under uniformly distributed axial stress below the elastic limit. The specimen for a Poisson's ratio tensile test is of rectangular cross section.

The tensile strength of the material is calculated by dividing the maximum applied load by the initial undeformed cross-sectional area of the specimen. For medium- to high-carbon steels, the tensile strength ranges from 45,000 to $140,000 \mathrm{psi}$. The tensile strength for duraluminum is $18,000 \mathrm{psi}$, for copper is $34,000 \mathrm{psi}$, and for acrylic polymer is 2000 psi. Elongation is the percentage increase in specimen length over its initial length (the initial length is often marked on the specimen by two lines 2 in . apart). The reduction of area of a specimen is the maximum change in crosssectional area at fracture expressed as a percentage of the original cross-sectional area. The modulus of resilience is the strain energy per unit volume absorbed up to the elastic limit for a tensile test and equals the area under the elastic part of the stress-strain curve. This quantity indicates how much energy a material can absorb without deforming plastically. For medium- to high-carbon steels the modulus of

Figure 4-3: Determination of tensile yield strength by offset method.
resilience varies from 33.7 to 320 . The modulus of resilience for duraluminum is 17 , for copper is 5.3, and for acrylic polymer is 4.0. The modulus of toughness equals the total area under the stress-strain curve and measures the capacity of the material to absorb energy without fracturing.

Example 4.1 Modulus of Resilience Compare the moduli of resilience of the American Iron and Steel Institute (AISI) 1020 carbon steel, extruded magnesium AZ31B-F, and wrought ${ }^{\dagger}$ titanium alloy 5Al-2.5Sn. The mechanical properties are $E=30 \times 10^{6} \mathrm{psi}$ and $\sigma_{y s}=48 \mathrm{ksi}$ for the steel, $E=6.5 \times 10^{6} \mathrm{psi}$ and $\sigma_{y s}=24 \mathrm{ksi}$ for the magnesium alloy, and $E=16 \times 10^{6} \mathrm{psi}$ and $\sigma_{y s}=117 \mathrm{ksi}$ for the titanium alloy.

Modulus of resilience is defined as the area under the elastic portion of the stressstrain curve. Let R be modulus of resilience. A reasonable approximation of R should be

$$
R=\frac{1}{2} \varepsilon \sigma_{y s}=\frac{1}{2}\left(\sigma_{y s}^{2} / E\right)
$$

High-energy-absorbing materials will have high strength $\sigma_{y s}$ and low stiffness (E) :

$$
\begin{array}{ll}
\text { Steel: } & R=\frac{1}{2}\left(48 \times 10^{3}\right)^{2} /\left(30 \times 10^{6}\right)=38.4 \\
\text { Magnesium: } & R=\frac{1}{2}\left(24 \times 10^{3}\right)^{2} /\left(6.5 \times 10^{6}\right)=44.3 \\
\text { Titanium: } & R=\frac{1}{2}\left(117 \times 10^{3}\right)^{2} /\left(16 \times 10^{6}\right)=427.8
\end{array}
$$

Note that this titanium alloy can absorb an order of magnitude more energy than the selected steel and magnesium alloys before plastic deformation is anticipated.

More precise data show that the modulus of resilience for steel can vary a great deal. The following properties from Ref. [8.7], which include the moduli of toughness, illustrate this.

	Modulus of Resilience $\left(\mathrm{in}-\mathrm{lb} / \mathrm{in}^{3}\right)$	Modulus of Toughness $\left(\right.$ in-lb/in ${ }^{3}$)
Type of Steel	20.4	16,600
Mild	33.7	16,300
Medium carbon	94.0	5,100
High carbon	200	19,400
High strength		

According to their ability to undergo plastic deformation under loading, materials are identified as being ductile or brittle. In a brittle material, fracture can occur suddenly because the yield strength and tensile strength are practically the same. The elongation and reduction of area give an indication of the ductility of a material

[^3]specimen, and the modulus of toughness shows the energy-dissipating capacities of the material, but both ductility and capacity for energy absorption are influenced by such factors as stress concentration, specimen size, temperature, and strain rate. A normally ductile material such as mild steel will behave in a brittle manner under conditions of low temperature, high strain rate, and severe notching. On the other hand, normally brittle materials will behave ductily under high hydrostatic pressures and temperatures. Therefore, assessment of the ductility and energy-absorbing capacity of a material must be made by taking into consideration the service conditions of the final product.

The curves shown in Fig. 4-2 are plots of engineering stress and strain; that is, stresses and strains are based on the undeformed dimensions of the specimen. Plots of true stress against true strain give a more realistic depiction of material behavior than do plots of engineering stress and strain. As mentioned in Chapter 3, true stress σ_{t} is defined as the applied load F divided by the instantaneous cross-sectional area A of the specimen at the time the load F is applied. True strain is defined by

$$
\begin{equation*}
\varepsilon_{t}=\int_{\ell_{0}}^{\ell} \frac{d \ell}{\ell}=\ln \frac{\ell}{\ell_{0}} \tag{4.7}
\end{equation*}
$$

If the material is incompressible and the distribution of strain along the gage length is homogeneous, the true or natural stresses and strains are expressed in terms of the engineering stresses and strains as follows:

$$
\begin{align*}
\varepsilon_{t} & =\ln \left(1+\varepsilon_{e}\right) \tag{4.8}\\
\sigma_{t} & =\sigma_{\mathrm{eng}}\left(1+\varepsilon_{e}\right) \tag{4.9}
\end{align*}
$$

These equations apply only until the onset of necking. A comparison of the two types of curves is shown in Fig. 4-4 for a low-carbon steel. In the true stress-true strain curve (also known as a flow curve) the curve increases continuously up to fracture.

Figure 4-4: Comparison of the engineering (nominal) stress-strain curve with the true stress-strain curve for mild steel.

4.4 IMPACT TESTS

In Section 4.3 the modulus of toughness of a material was defined as the area under the stress-strain curve obtained during the tensile test of a specimen of the material. This modulus indicates how much energy the material can absorb in a uniaxial tensile test without fracturing. However, ferritic steels and other metals with body-centeredcubic crystallographic structures exhibit fracture behavior that cannot be deduced from a simple tensile test. Under conditions of stress concentration, low temperature, and high strain rates, these metals exhibit much less ductility than is indicated by the tension test. Several tests have been developed to measure the relative ability of materials to absorb energy under severe service conditions. Chief among these tests are the notched-bar impact tests (Charpy and Izod), the drop-weight test for nil-ductility temperature, and the dynamic tear energy test. Another appropriate test is the crack arrest test.

Notched-Bar Tests

In Charpy (simply supported beam) and Izod (cantilever beam) tests, a notched material specimen is struck by a pendulum falling from a fixed height (Fig. 4-5). The energy lost by the pendulum in fracturing the specimen is the energy absorbed by the specimen before it fractures. This fracture energy obtained by the Charpy test is only a relative measure of energy and is difficult to use directly in design criteria. The test may be performed over a range of temperatures to determine the temperature at which the fracture changes from ductile to brittle. The transition point may be identified as occurring at a specified energy absorption, by a change in the appearance of the fracture surface, or by a specified amount of lateral contraction of the broken bar at the root of the notch, which the specimen undergoes during testing. The Charpy test apparatus is more suitable for testing over a range of temperatures than is the Izod. The standard Charpy specimens are detailed elsewhere [4.1]. The pendulum shape, the pendulum head velocity, the system friction, the height of the drop, and other details about the test are specified in the ASTM E23 standards. The Izod specimen is rarely used today.

Figure 4-5: Charpy impact test.

Figure 4-6: Typical Charpy-V notch curves for structural steel A36. (Slow-bend refers to a slow loading rate as compared with standard impact loading rates for CVN specimens.) (From Ref. [4.9]. Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.)

The energy measured by these tests depends on specimen size, notch shape, and testing conditions. The energy values are most useful in comparing the impact properties of different materials or of the same material under different conditions. Plane strain fracture toughness (discussed in Chapter 7) may be measured for impact loads, and this quantity can be used to establish a design stress in a finished product. Empirical formulas have been proposed for computing values of plane strain fracture toughness from Charpy energy values, but these formulas must be used with care [4.1]. The results of Charpy tests are useful primarily in acceptance testing of materials when a correlation has been established between energy values and satisfactory performance of a metal in the finished product. Typical Charpy-V notch (CVN) curves for structural steels A36 are shown in Fig. 4-6. Note that the energy absorbed decreases with decreasing temperatures, but for most cases the decrease does not occur sharply at a certain temperature. Normally, the material with the lowest transition temperature is preferred.

Drop-Weight Test for the Nil-Ductility Temperature

The nil-ductility transition temperature (NDT) is defined as the maximum temperature at which brittle fracture occurs at a nominal stress equal to the yield point when a "small" flaw exists in the specimen before loading.

The drop-weight test (DWT) has been developed especially for determining the NDT. The procedure for the NDT test is specified in ASTM E208. In the test, a weight is dropped onto the compression side of a simple beam specimen that has been prepared with a crack in a weld bead on the tension surface. The brittle weld

Figure 4-7: NDT test method.
bead is fractured at near yield-stress levels as a result of the falling weight. Because the specimen is a three-point bending beam and the anvil under it (Fig. 4-7) restricts the deflection of the specimen $\left(D_{C} \leq D_{A}\right)$, the stress on the tension face of the specimen is limited to a value that does not exceed the yield strength of the specimen material. Tests are conducted at various temperatures until the break and no-break points are found for yield point loading. This establishes the NDT.

The NDT is also known as the transition temperature at which fracture is initiated with essentially no prior plastic deformation. Below the NDT the probability of ductile fracture is negligible. For larger flaws, fracture occurs at the NDT at nominal stresses lower than the yield point. This behavior is shown in Fig. 4-8, which shows a fracture analysis diagram for temperature, stress, and flaw size. Figure 4-8 also shows the crack arrest temperature (CAT) curve; at stress-temperature points to the right of the CAT curve, cracks will not propagate. The point labeled FTE in Fig. 4-8 is the fracture transition elastic point, the highest temperature at which a crack propagates in the elastic load range. Similarly, the fracture transition plastic (FTP) point is the temperature at which the fracture stress equals the material ultimate tensile stress.

Figure 4-8: Fracture analysis diagram for temperature-stress-flaw size. Shown are initiation curves, indicating fracture stresses for spectrum of flaw sizes. (From Ref. [4.1]. Copyright ASTM. Printed with permission.)

Figure 4-9: Dynamic tear energy test. (From [4.1]. Copyright ASTM. Printed with permission.)

Above this temperature the material behaves as if it were flaw free. Thus, a crack, no matter how large, cannot propagate as an unstable fracture. The figure also shows a stress limitation curve; static loads below this level will not cause crack propagation in the absence of a corrosive environment. The fracture analysis diagram has been established as a reliable means of predicting the fracture behavior of finished products under service conditions.

Dynamic Tear Energy Test

The dynamic tear test is similar to the Charpy test, but the dynamic tear test uses a higher striking energy, a different size of specimen, and a sharper notch than the Charpy test (see ASTM E604). It is in effect a giant Charpy test (see Fig. 4-9). The dynamic tear test is used to measure energy absorption for crack progression that travels rapidly. A longer crack propagation distance is used in the dynamic test than in the Charpy. Use of the results of the dynamic test is similar to that of the Charpy.

4.5 HARDNESS TESTS

Hardness measures the resistance of a material to scratching, wear or abrasion, and indentation. For a given material a correlation exists between hardness and tensile strength; for example, the tensile strength of steel in psi is approximately 500 times the Brinell hardness number of the material. This approximation can provide a quick estimate of the tensile strength if the Brinell hardness number is available. The hardness test also serves to grade similar materials. A number of hardness tests have been developed, of which the best known are the Brinell, Rockwell, Vickers, and Knoop.

Various methods are used to measure the area of indentation, and some tests measure the increase in area associated with a load increment rather than beginning at zero load (Table 4-4). Despite these differences, the basic principle for all tests is the
application of a load to an indentor and the measurement of the size of the indentation.

Brinell Hardness Test

The test method for determining the Brinell hardness of metals is described in ASTM E10. This standard provides the details for two general classes of tests: referee tests (or verification, laboratory tests), in which a high degree of accuracy is required, and routine tests, for which a lower but adequate degree of accuracy is acceptable. The Brinell hardness test consists of indenting the metal surface with a $10-\mathrm{mm}$-diameter steel ball at a load of $3000 \mathrm{kgf}(29,400 \mathrm{~N})$. Hardness tests often involve the units grams-force (gf). For a soft surface, to avoid a deep impression, the load is reduced to 1500 or $500 \mathrm{kgf}(14,700$ or 4900 N$)$, and for very hard surfaces a carbide ball is employed to minimize distortion of the indentor. Different Brinell hardness numbers (BHN , or HB) may be obtained for a given material with different loads on the ball. The time interval over which the load is applied can influence the resulting hardness. The load is usually applied for 10 to 15 s in the standard test and for 30 s for soft metals.

Example 4.2 Hardness Test An annealed aluminum alloy 7075-0 has a Brinell hardness of 60 . What is the diameter of the indentation produced in the alloy during hardness testing?

For materials that are relatively soft such as aluminum, the test load is $P=$ $500 \mathrm{kgf}(4900 \mathrm{~N})$. From the formula for Brinell hardness in Table 4-4, HB $=$ $2 P /\left\{\pi D\left[D-\left(D^{2}-d^{2}\right)^{1 / 2}\right]\right\}$ with $D=10 \mathrm{~mm}$, we find $d=3.21 \mathrm{~mm}$.

Vickers Hardness Test

The Vickers hardness number (HV) is defined as the load divided by the surface area of the indentation (ASTM E92). In practice, this area is determined by microscopic measurements of the length of the diagonals of the impression (Table 4-4). The test can be conducted on very thin materials. The indentor is a squared-based diamond pyramid with an angle of 136° (see Table 4-4). The load is varied over the range $1-120 \mathrm{kgf}(9.8-1176 \mathrm{~N})$ according to the behavior of the thickness of the material. The HV test finds wide acceptance by researchers because it provides both accurate measurement and a continuous scale of hardness. The HV varies from 5 for a soft metal to 1300 (approximately 850 HB) for extremely hard metals.

Rockwell Hardness Test

The Rockwell hardness test is the most widely used hardness test in the United States, due primarily to the convenience of a test involving a small indentation size. The hardness number, which is related inversely to the depth of the indentation under prescribed loading, may be read directly from a dial on the test apparatus. The stan-
dard test methods for the Rockwell hardness of metallic materials are specified in ASTM E18. This test has 15 scales, covering a rather complete spectrum of hardness (Table 4-5). Each scale has a specific indentor and major load. Indentors are either a steel ball of specified size or a spheroconical diamond point. An initial load (called the minor load) of $10 \mathrm{kgf}(98 \mathrm{~N})$ is first applied that sets the indentor on the test specimen and holds it in position. The dial is set to zero on the black-figure scale, and the major load is applied. This major load is the total applied force. The depth measurement of the indentor depends only on the increase in depth due to the load increase from the minor to the major load. After the major load is applied and removed, according to standard procedure, the reading of the pointer is taken on the proper dial figures while the minor load is still in position. Rockwell hardness values are determined according to one of the standard scales (Table 4-5), not by a number alone. For example, 64 HRC means a hardness number of 64 on a Rockwell C scale.

Microhardness Test

The microhardness test is used to determine the hardness over very small areas or for ascertaining the hardness of a delicate machine part. The test is accomplished by forcing a diamond indentor of specific geometry under a test load of 1-1000 gf ($0.0098-9.8 \mathrm{~N}$) into the surface of the test material and to measure the diagonal or diagonals of indentation optically (ASTM E384-84). Usually, the Knoop hardness number and the Vickers hardness number are used to represent microhardness.

Knoop hardness number (HK) is defined as the applied load P divided by the unrecovered projected area A_{p} of the indentation:

$$
\mathrm{HK}=P / A_{p}=P / d^{2} c=14.229 P / d^{2}
$$

where P is the load (kgf), d is the length of the long diagonal (mm), and c is a manufacturer-supplied constant for each indentor.

Since the units normally used are grams-force and micrometers rather than kilograms-force and millimeters, the equation for the Knoop hardness number can be expressed conveniently as

$$
\mathrm{HK}=14.229 P_{1} / d_{1}^{2}
$$

where P_{1} is the load (gf) and d_{1} is the length of the long diagonal $(\mu \mathrm{m})$.
The Vickers hardness number for microhardness is established using the same indentor defined previously, with loads varying from 1 to 1000 gf. Similarly, it can be expressed as

$$
\mathrm{HV}=1854.4 P_{1} / d_{1}^{2}
$$

where P_{1} is the load (gf) and d_{1} is the mean diagonal of the indentation ($\mu \mathrm{m}$).
Tables for converting one hardness number to that found by a different method are available in ASTM E140.

4.6 CREEP

Creep is the occurrence of time-dependent strain in a loaded structural member, normally at elevated temperatures. In the case of metals, creep is thought to take place as the result of the competing processes of annealing due to high temperature and of work hardening caused by the load. Creep is variously attributed to grain boundary sliding and separation, vacancy migration, and dislocation cross-slip and climb. Creep deformation continues until the part fails because of either excessive deformation or creep rupture. The temperature must usually be at least 40% of the melting point in kelvin for creep to occur in a metal. Little correlation exists between room temperature mechanical properties and creep properties. Creep tests are conducted by measuring deformation as a function of time when the load and temperature are held constant. It is frequently not practical to conduct full-life creep tests; however, creep tests should last a minimum of 10% of the expected life of the part under test.

The standard practice for conducting creep, creep rupture, and stress rupture tests of metallic materials is specified in ASTM E139. In the simplest creep test, a specimen is subjected to a constant uniaxial tension at constant temperature, and the strain is measured as a function of time. The test may proceed for a fixed time, to a specified strain, or to creep rupture. The results of a typical creep test are depicted in Fig. 4-10. The typical creep curve is divided into three stages: primary, secondary, and tertiary. In the first stage, the creep strain rate diminishes. In the secondary stage the strain rate is approximately constant; this constancy of strain rate is attributed to a balance between the hardening and softening processes. In the final or tertiary stage the strain rate increases until creep rupture occurs. Under severe conditions of loading or temperature the material may strain to the rupture point without exhibiting the secondary stage of creep behavior; this phenomenon is known as stress rupture. Creep strength is the minimum constant nominal stress that will produce

Figure 4-10: Typical constant temperature-stress creep curve.

Figure 4-11: Constant-temperature abbreviated creep test.
a given strain rate of secondary creep under specified temperature conditions. The creep strengths of some metallic alloys are listed in Table 4-6.

A number of accelerated creep test procedures have been developed to shorten the time necessary to conduct creep tests. In one such accelerated test, specimens are tested at constant temperature, and strain is measured at various levels of constant stress for a fixed time. An acceptable design stress is found by extrapolating the curves to the desired life, as shown in Fig. 4-11. However, reliable extrapolation of this type can be made only when no microstructural changes are anticipated that would produce a change in the slope of the curve. Other accelerated test methods may vary strain level or temperature and measure stress as a function of time.

Two procedures for determining time-temperature test conditions that are equivalent for a given material and stress level are based on the Larsen-Miller parameter and the Manson-Haferd parameter. The Larsen-Miller parameter is

$$
\begin{equation*}
P_{\mathrm{LM}}=(T+460)\left(C_{L}+\log t\right) \tag{4.10}
\end{equation*}
$$

where T is the temperature in degrees Fahrenheit; C_{L} is a constant, usually 20; and t is the test time in hours to a failure condition (either rupture or a specific level of strain).

Example 4.3 Accelerated Creep Test of a Steel Bar A bar made of 2.25 Cr $1 \mathrm{Mo}\left(2.25 \%\right.$ chromium, 1% molybdenum) steel must withstand $10,000 \mathrm{~h}$ at $1000^{\circ} \mathrm{F}$ with a tensile load of 15 ksi . For the same material and loading, find the temperature of an equivalent 24-h test.

From Eq. (4.10),

$$
\begin{align*}
P_{\mathrm{LM}} & =\left(1000^{\circ} \mathrm{F}+460\right)\left(20+\log 10^{4}\right) \\
& =3.504 \times 10^{4} \tag{1}
\end{align*}
$$

The equivalent temperature is found from Eq. (4.10):

$$
\begin{aligned}
3.504 \times 10^{4} & =(T+460)(20+\log 24) \\
T & =\frac{3.504 \times 10^{4}}{20+\log 24}-460=1179^{\circ} \mathrm{F}
\end{aligned}
$$

The Manson-Haferd parameter is defined as

$$
\begin{equation*}
P_{\mathrm{MH}}=\left(T-T_{a}\right) /\left(\log t-\log t_{a}\right) \tag{4.11}
\end{equation*}
$$

where T_{a} and t_{a} are material constants and time is in hours. Values of these constants are listed in Table 4-7 for several materials.

Cumulative Creep

Several methods are available for analyzing creep behavior when the levels of stress and temperature vary with time. A linear law similar to the Palmgren-Miner fatigue law (Chapter 7), has been suggested [4.10]. According to this approach, the creep failure point will be reached when the equation

$$
\begin{equation*}
\sum \frac{t_{i}}{\Delta_{i}}=1 \tag{4.12}
\end{equation*}
$$

is satisfied. The quantity t_{i} is the time of exposure to the i th level of stress and temperature; Δ_{i} is the time to failure if the point were subjected only to the i th level of stress and temperature.

In the life-fraction approach to cumulative creep, the total creep strain is written as the sum of contributions from each level of stress and temperature:

$$
\begin{equation*}
\varepsilon_{T}=\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{n} \tag{4.13}
\end{equation*}
$$

If a stress and temperature condition were applied from time zero to $t_{1 f}$, strain ε_{1} could be read from a creep-time plot for stress σ_{1} and temperature T_{1}. When stress σ_{2} and temperature T_{2} act, the strain ε_{2} is found from a creep-time plot for σ_{2}, T_{2} beginning at time $t_{2 i}=t_{1 f} \Delta_{2} / \Delta_{1}$ and ending at time $t_{2 f}$ when a new condition of stress and temperature is applied. The creep for condition 3 is read from a creeptime curve for σ_{3}, T_{3} beginning at $t_{3 i}=t_{2 f} \Delta_{3} / \Delta_{2}$ and ending at time $t_{3 f}$. This procedure is repeated for all levels of stress and temperature. The method assumes that creep for each new load condition begins at the same fraction of the total life at the new load condition as was expended of the total lives under the previous load conditions. Thus, the effect of σ_{2} and T_{2} is assumed to begin at time $t_{2 i}$, which is taken from $t_{2 i} / \Delta_{2}=t_{1 f} / \Delta_{i}$.

Example 4.4 Cumulative Creep of a Tensile Specimen A metallic alloy has the tensile creep properties shown in Fig. 4-12 at $1200^{\circ} \mathrm{F}$. If a tensile specimen is loaded

Figure 4-12: Creep curves for the metal of Example 4.4.
at $1200^{\circ} \mathrm{F}$ as

> 4000 psi for 5 h
> 3000 psi for 10 h
> 2000 psi for 20 h
and if the maximum tolerable creep strain is 0.004 in ./in., determine if the specimen will complete the load cycle without reaching the maximum strain.

First we apply the cumulative creep relation of Eq. (4.12). From Fig. 4-12 the time to 0.004 in ./in. strain at each load level is found to be

$$
\begin{aligned}
& \Delta_{1}=12 \mathrm{~h} \text { at } 4000 \mathrm{psi} \\
& \Delta_{2}=26 \mathrm{~h} \text { at } 3000 \mathrm{psi} \\
& \Delta_{3}=53 \mathrm{~h} \text { at } 2000 \mathrm{psi}
\end{aligned}
$$

Summing the fractions of creep life at each load gives

$$
\begin{equation*}
\frac{5}{12}+\frac{10}{26}+\frac{20}{53}=1.18>1 \tag{1}
\end{equation*}
$$

We conclude that failure occurs before the end of the test. By the cumulative creep law the part would reach the failure point at $t=\left(1-\frac{5}{12}-\frac{10}{26}\right) 53=10.5 \mathrm{~h}$ of the 2000-load period or 25.5 h after the beginning of the test.

Consider the same problem using the life-fraction rule. At the end of the first 5 h at 4000 psi the strain is taken from Fig. $4-12$ to be $\varepsilon_{1}=0.0024$. The starting time for the second load is $t_{2 i}=t_{1 f} \Delta_{2} / \Delta_{1}=5 \times 26 / 12=10.8 \mathrm{~h}$. The strain at 3000 psi between 10.8 and 20.8 h is read from Fig. $4-12$ as $\varepsilon_{2}=0.0033-0.0024=0.0009$.

The total strain after the second load period is $\varepsilon_{1}+\varepsilon_{2}=0.0024+0.0009=0.0033$. The beginning time for the 2000-psi reading is $t_{3 i}=t_{2 f} \Delta_{3} / \Delta_{2}=20.8 \times 53 / 26=$ 42.4 h . The strain at 2000 psi between 42.4 and 62.4 h is from Fig. $4-12, \varepsilon_{3}=$ $0.0043-0.0035=0.0008$. The total strain for all three loads is $\varepsilon_{T}=0.0024+$ $0.0009+0.0008=0.0041$. Therefore, both methods predict failure, but the lifefraction method indicates the case is not as bad as the cumulative creep law shows. The life-fraction method is regarded as being superior to other schemes for estimating cumulative creep.

Simultaneous Creep and Fatigue

When a structural member is subjected to fluctuating loads at high temperatures (which may also fluctuate), the processes of creep and fatigue can occur simultaneously in the material. In an approach similar to the Goodman rule for fatigue (Chapter 7), failure for cyclic stress under creep temperature conditions occurs when the relation

$$
\begin{equation*}
\sigma_{a} / \sigma_{f}+\sigma_{m} / \sigma_{c} \geq 1 \tag{4.14}
\end{equation*}
$$

is satisfied, where σ_{a} is the amplitude of the fluctuating component of the load, σ_{m} is the mean applied load, σ_{f} is the fatigue strength of the material with $\sigma_{m}=0$, and σ_{c} is the static stress $\left(\sigma_{a}=0\right)$ that causes creep failure. A nonlinear version of Eq. (4.14) is sometimes applied for higher temperatures:

$$
\begin{equation*}
\left(\sigma_{a} / \sigma_{f}\right)^{2}+\left(\sigma_{m} / \sigma_{c}\right)^{2} \geq 1 \tag{4.15}
\end{equation*}
$$

A number of methods have been proposed for dealing with combined creep and low cycle fatigue. A summary of these approaches, particularly the strain range partition method, is available elsewhere [4.11].

4.7 FERROUS METALS

The mechanical properties of metals and alloys depend in part on the characteristics of the pure elements from which they are made. See Table 4-8 for some properties of pure metals.

The ferrous metals consist of a group of iron alloys in which the principal alloying element is carbon. If the carbon content is at least 0.02% but not more than 2% by weight, the alloy is called steel. Carbon steels are steels in which the levels of manganese, silicon, and copper do not exceed $1.65,0.60$, and 0.60%, respectively, and there is no minimum specification for other alloying elements except carbon. Wrought iron is a very low carbon steel with slag inclusions. Slag results from the union of limestone with impurities in iron ore during the manufacture of pig iron. Alloy steels are steels in which the level of manganese, silicon, or copper exceeds
the limits for carbon steels or in which other alloying elements are present in significant specified amounts. Stainless steel is an alloy steel that contains more than 10% chromium, with or without other elements. In the United States it has been customary to include with stainless steels those alloys that contain as little as 4% chromium. Cast irons contain more than 2% carbon and from 1 to 3% silicon. High-strength, low-alloy steel is a low-carbon steel that has been strengthened by the addition of manganese, cobalt, copper, vanadium, or titanium. Tool steels are high-alloy steels designed to have uniform properties of high strength and wear resistance. In addition, a number of specialty steels have been developed to give very high strength (e.g., maraging steels).

For a discussion of ferrous metals, several terms that describe the microstructure of steel must be defined: ferrite, cementite or iron carbide, pearlite, bainite, austenite, and martensite.

Ferrite is body-centered-cubic iron (α-iron) with a small amount of dissolved carbon. Ferrite is soft and ductile and gives steel good cold-working properties. Body-centered-cubic iron has a crystallographic structure composed of an iron atom at each of the eight corners of a cube plus one atom at the center of the cube. Cold working, which induces strain hardening, refers to mechanical deformation of a metal at ambient temperatures or at temperatures no more than one-half the recrystallization temperature. Recrystallization is a reversal of the effects of work hardening.

Cementite is iron carbide, $\mathrm{Fe}_{3} \mathrm{C}$; it is very hard and brittle at room temperature.
Pearlite is a lamellar structure of ferrite and cementite.
Bainite is a structure of ferrite and cementite in which the cementite is present in a needlelike form.

Austenite is a face-centered-cubic iron (γ-iron) with a maximum of 2% carbon in solution. The temperature at which austenite begins to form is called the lower critical temperature $\left[1333.4^{\circ} \mathrm{F}\left(723^{\circ} \mathrm{C}\right)\right.$ over most of the range of carbon content]. Face-centered-cubic iron has a crystallographic structure composed of iron atoms at the corners of a cube and one atom at the center of each of the six cube faces. The temperature at which the transformation to austenite is complete is called the upper critical temperature. The upper critical temperature varies with carbon content.

Martensite is a supersaturated solution of carbon in iron. Generally, it is produced by rapidly cooling steel from above the upper critical temperature. Martensite has a body-centered-tetragonal crystal and is hard, strong, and brittle.

The microstructure of steel depends on the alloying content, the temperature, and the thermal and mechanical processing. The equilibrium phase diagram for the ironcarbon system is shown in Fig. 4-13. The regions of the diagram are labeled with the forms of material that exist under the specified conditions of temperature and carbon content. Below the lower critical temperature $\left(723^{\circ} \mathrm{C}\right)$, the microstructure is either ferrite plus pearlite, or pearlite and cementite. Above the lower critical temperature, austenite begins to form. Figure 4-13 represents the equilibrium situation; the actual properties of steel depend on alloy content and time-temperature treatments. Here equilibrium refers to thermodynamic equilibrium; that is, processes are done quasistatically so that large gradients of temperature and concentration do not occur. In

Atomic Percent Carbon

Figure 4-13: Iron-carbon equilibrium diagram.
the following, terms that pertain to the heat treatment of steels (and in some cases, other materials as well) are defined.

Quenching involves heating the steel to the austenitic range and then cooling it rapidly, usually in water or oil or polymer solution, to form the martensite structure. Steel must contain at least 0.25% carbon to justify the quenching treatment.

Tempering involves heating quenched martensite steel to various temperatures below the lower critical temperature and cooling at a suitable rate to render the steel tougher, more ductile, and softer. The term drawing is sometimes used as a synonym for tempering.

Martempering is a process by which the steel is quenched to just above the temperature at which martensite forms, retaining it in the quenching medium until its temperature is uniform and then slowly cooling it through the martensite range. This process reduces the amount of distortion below that which occurs during normal quenching.

Austempering is similar to martempering except that the steel is held above the martensite-forming temperature to form bainite; then the steel is slowly cooled.

Annealing is a process carried out on wrought or cast metals to soften them and improve ductility. Annealing of steel is usually done by heating the steel to near the lower critical temperature $\left[1100-1400^{\circ} \mathrm{F}\left(593-760^{\circ} \mathrm{C}\right)\right]$ and then slowly cooling it in the furnace.

Normalizing is similar to annealing, but the steel is cooled at a higher rate in air rather than in a furnace, and the maximum temperature is usually about $100^{\circ} \mathrm{F}$ above the upper critical temperature. Normalizing is used to refine the grain structure as well as soften the material.

Spheroidize annealing produces the greatest softness by changing the shape of carbides to spheroidal. In the process the steel is held just below the lower critical temperature for an extended period of time.

Hardenability is the ease with which a uniform hardness can be attained throughout a material. The maximum hardness a heat-treated steel can reach is governed largely by its carbon content, and hardenability depends on other alloying elements in addition to carbon.

Hardening refers to increasing the hardness by suitable treatment, usually involving heating and cooling. In practice, more specific terms should be used, such as surface hardening, age hardening, or quench hardening. Surface or case hardening treatments include carburizing, nitriding, flame hardening, and induction hardening. Surface hardening produces a hard wear-resistant case and leaves the core tough and ductile. The best known of a number of tests for hardenability is the Jominy end quench test. In this test, a bar 1 in . in diameter and 4 in . long is heated above the critical temperature; one end is then quenched in water and the other end in air. The resulting hardness is measured along the bar length, and the hardness gradient is a measure of the hardenability of the steel. Some alloys of steel can be strengthened by precipitation or age hardening. In this process, the metal is held at a temperature in which a second phase precipitates in a supersaturated matrix phase. The precipitated second phase creates pinning locations that interfere with dislocation motion and so harden the material. Strain hardening techniques such as shot peening are also used, especially to increase surface resistance of materials to fatigue. In shot peening, a stream of high-velocity metal pellets impinge on the surface of the material and induce residual compressive stresses in the surface layer of the peened metal.

Steel Classification and Specifications

Steel can be classified on the basis of (1) chemical composition; (2) finishing methods, such as hot rolled or cold rolled; or (3) product form, such as bar, plate, sheet, strip, tubing, or structural shape. Classification by product form is very common in the steel industry.

Terms such as grade, type, and class are used to classify steel products. Grade is utilized to indicate chemical compositions, type indicates the deoxidation practice, and class describes some other attribute, such as strength level or surface smoothness. But in the ASTM specifications, these terms are used somewhat interchangeably. A specification is a written statement of attributes that a steel must possess to meet a particular application. A standard specification is a published document that describes a product acceptable for a range of applications and that can be produced
by many manufacturers. The most comprehensive and widely used standard specifications are those of ASTM.

Designation is the specific identification of each grade, type, or class of steel by a number, letter, symbol, name, or suitable combination unique to a particular steel. Chemical composition is the most widely used basis for designation followed by mechanical property specifications. The most commonly used system of designation in the United States is that of the SAE (Society of Automotive Engineers) and the AISI (American Iron and Steel Institute). The AISI-SAE (or AISI) designations for the compositions of carbon and alloy steels are normally incorporated into the ASTM specifications for bars, wires, and billets for forging. Table 4-9 lists some of the ASTM specifications that incorporate AISI-SAE designations for compositions of the various grades of steel.

An ASTM specification consists of the letter A (for ferrous materials) and an arbitrarily assigned number. Many of the ASTM specifications have been adopted by the ASME (American Society of Mechanical Engineers) with little or no modification. ASME uses the prefix S and the ASTM specifications (e.g., ASME SA-213 and ASTM A213 are identical).

Several ASTM specifications, such as A29, contain the general requirements common to each member of a broad family of steel products. Such specifications are referred to as generic specifications. Table 4-10 lists several of these generic specifications, which usually must be supplemented by another specification describing a specific mill for an intermediate fabricated product.

Carbon Steels

In general, low-carbon steels have a range of carbon from 0.06 to 0.25%, mediumcarbon steel from 0.25 to 0.55% carbon, and high-carbon steel above 0.55% carbon. The AISI and SAE designate many classes of carbon steels:

10xx is plain carbon with 1% maximum manganese. 11 xx is resulfurized steel. 12 xx is resulfurized and rephosphorized. $15 x x$ is plain carbon with $1-1.65 \%$ manganese.

Note that the numerical designation for these carbon steels begins with 1 . The second digit in some instances suggests a modification in the alloy. The xx refers to the percentage of carbon present; for example, a structural steel AISI 1020 contains 0.20% carbon. In addition to the four digits, there are various letter prefixes and suffixes that provide additional information on a particular steel (e.g., prefix E means steel made in an electric furnace). Plain carbon steels are cheaper than other types of steel, and they are the most widely used. The relatively poor hardenability of carbon steels prevents its use in many applications; the severe quenching required in hardening causes residual stresses, distortion, and sometimes quenching cracks. Manganese steel (13 xx) that contains 1.75% manganese is also classed with the plain carbon steels. Manganese improves the hot-working properties of steel, and the hard-
ness of manganese steels increases greatly with cold work. Hot working is done at a temperature at which recrystallization begins during or immediately after mechanical forming. Metals formed by mechanical deformation are referred to as wrought; examples of forming processes are rolling, extruding, and drawing. Metals formed by solidification of liquid metal in a mold are called cast. Steel is resulfurized or rephosphorized to improve machinability; these steels have poor weldability. Carbon steels with lead or boron added will contain L or B, respectively, between the second and third letters of the identifier. Boron increases the hardenability of steel without reducing its ductility, and lead improves machinability. Carbon steels may variously be described as cast, hot rolled, cold drawn, annealed, normalized, or quenched and tempered. The mechanical properties of some carbon steels are listed in Table 4-11. It should be noted that the material properties described in this book are associated with both chemical composition and heat treatment or processing conditions. In each table, the related heat treatment or processing conditions are given.

Alloy Steels

Alloys are added to steels to improve strength, hardenability, or some other properties, such as machinability or toughness. The AISI designation for alloys by broad category is partly as follows:

Manganese steels
13xx
Nickel steels
23xx
25xx
Nickel-chromium steels
31xx
32xx
33xx
$34 x x$
Molybdenum steels
40xx
44xx
Chromium-molybdenum steels
41xx
Nickel-molybdenum steels
46xx
48xx
Chromium steels
50xx
51xx
52xx
Chromium-vanadium steels
61xx

For example, AISI 4140 has a nominal alloy content of 0.40% carbon, 0.80% chromium, and 0.25% molybdenum. The last two digits of the designator give the nominal carbon content of the alloy (percentage $\times 100$). Additional categories of alloy steels exist, and the full classification is described elsewhere [4.12]. Table 4-12 lists the mechanical properties of some alloy steels.

Stainless Steels

The dividing line between chromium as an alloying element in steel and chromium as a corrosion inhibitor is about 10%. The stainless steels fall into five classes: austenitic, ferritic, martensitic, precipitation hardening, and duplex stainless steels. The AISI and UNS (Unified Numbering System) designations for stainless steels are shown in Fig. 4-14. Table 4-13 lists the mechanical properties of some stainless steels.

AISI	UNS	AISI	UNS
Austenitic			
201	S20100	310	S31000
202	S20200	310 S	S31008
301	S30100	314	S31400
302	S30200	316	S31600
302B	S30215	316L	S31603
303	S30300	316F	S31620
303Se	S30323	316 N	S31651
304	S30400	317	S31700
304L	S30403	317L	S31703
	S30430	321	S32100
304 N	S30451	330	N08330
305	S30500	347	S34700
309	S30900	348	S34800
3095	S30908	384	S38400
Ferritic			
405	S40500	430FSe	S43023
429	S42900	434	S43400
430	S43000	436	S43600
430F	S43020	442	S44200
		446	S44600
Martensitic			
403	S40300	420F	S42020
410	S41000	431	S43100
416	S41600	440A	S44002
416 Se	S41623	440B	S44003
420	S42000	440C	S44004
UNS is the unified numbering system; AISI is the American Iron and Steel Institute			

Figure 4-14: AISI and UNS designations for some stainless steels. (From Ref. [4.13]).

AISI uses a three-digit system to identify wrought stainless steels. The first digit indicates the classification by composition type. The 300 series is chromium-nickel alloys; the 400 series is straight chromium alloys.

Austenitic stainless steels such as 304, which is 19% chromium and 10% nickel, contain austenite, which the nickel and manganese present make stable at all temperatures. The austenitic stainless steels have good corrosion resistance and toughness. Type 304 is used widely in the chemical processing industry. Type 301 is strengthened more by cold work than is 304 ; type 347 is recommended for welding applications.

Ferritic stainless steels are not as tough and corrosion resistant as the austenitic, and they are difficult to harden by heat treatment or cold work. Typical applications of ferritic stainless steels are kitchen utensils, automotive trim, and high-temperature service. The chromium content ranges from 11.5% to about 28%.

Martensitic stainless steels have a high degree of hardenability but have lower corrosion resistance than that of ferritic or austenitic grades. Martensitic stainless steel is used when moderate corrosion resistance is needed along with high strength and hardness. In this group, the chromium range is from about 11.5 to 18.0%.

Cast stainless steels have a separate designation system from the wrought alloys. The most commonly used identification system is that of the Alloy Casting Institute. The ASTM provides information on the properties of cast stainless steel. Heatresistant types have an H in the identifier and corrosion-resistant types are denoted by a C.

Cast Irons

Cast irons are alloys of iron that contain more than 2% carbon and from 1 to 3% silicon. They are divided into four basic types: gray iron, white iron, ductile iron, and malleable iron. Properties of some cast irons are listed in Table 4-14.

Gray iron contains flake graphite dispersed in the steel matrix. It is specified by two class numbers (ASTM A48) that are related to the tensile strength in ksi. Class 40, for example, has a minimum tensile strength of $40,000 \mathrm{psi}$. These specifications are based on test bars. In practice, the letters A, B, C, and S indicate the size of the tensile specimen used in measuring the tensile strength. Gray iron is cheap, is easy to cast and machine, and is wear resistant and has good vibration damping qualities. The compressive strength of gray cast iron is much larger than its tensile strength. The ductility of gray iron is very low, and it is difficult to weld and has fair corrosion resistance.

White iron contains massive iron carbides and is hard and brittle. White iron can be produced by rapidly cooling a casting containing gray or ductile iron. The white iron is wear and abrasion resistant. By controlling the cooling rate, the cast part may be produced with a white iron surface region and a core of gray or ductile iron that is tough and machinable. The most common designation system used for white iron is that of A27 of ASTM.

Ductile, or nodular, iron is alloyed with magnesium to produce spheroidal graphite dispersed in the steel structure. This shape of graphite increases the ten-
sile strength and greatly increases the ductility over that of gray iron. Ductile iron is specified by three hyphenated numbers that give the minimum tensile strength, yield strength, and elongation. Type 80-55-06, for example, has a minimum tensile strength, yield strength, and elongation in 2 in . of $80,000 \mathrm{psi}, 55,000 \mathrm{psi}$, and 6%, respectively. The vibration damping capacity and thermal conductivity of ductile iron is lower than that of gray iron. ASTM specification A536 covers some ductile iron grades. There are additional ASTM specifications on special-purpose ductile irons (A476, A716, A395, and A667) and on austenitic ductile irons (A439 and A571).

Malleable iron is produced by heat-treating white iron to change the carbide to clumplike graphite sometimes called temper carbon. Malleable iron is stronger and more ductile than gray iron. Malleable iron has good impact and fatigue resistance, wear resistance, and machinability. Malleable irons may be ferritic, pearlitic, or martensitic in microstructure. The designation system in ASTM specifications (A47) is a five-digit number corresponding to certain mechanical properties.

High-Strength, Low-Alloy Steels

High-strength, low-alloy (HSLA) steels are low-carbon steels with small amounts of alloying elements added. These steels were developed primarily to replace plain lowcarbon steels by providing equivalent loading-carrying ability with a lower weight of material. The HSLA steels have improved formability and weldability over conventional low-alloy steels. The ASTM designation number followed by the strength grade desired is used to specify these HSLA steels. The ASTM specifications A242 and A588 cover these steels as structural shapes. A typical designation is: steel, ASTM A242, grade 70.

Tool Steels

Tool steels have high hardness and wear resistance, often even at elevated temperatures. The AISI has established a classification system based primarily on use. The seven broad categories of tool steels are as follows: (1) type W, water-hardening steel; (2) type S , shock-resistant steels; (3) types O, A, and D , cold-working die and tooling steels (type O is oil hardening and types A and D are air hardening); (4) type H, hot-working steels; (5) types T and M, high-speed steels; (6) types L and F, low-alloy and carbon tungsten specialty steels, respectively; and (7) types P, L, and F, specialpurpose steels (e.g., for molds and dies). Each type of tool steel has its particular advantages and disadvantages, and selection must be made on that basis [4.14].

4.8 NONFERROUS METALS

Aluminum

Wrought aluminum alloys are specified by a four-digit number followed by a temper designation. The first digit indicates the alloying element, as shown in Table 4-15.

The letter H following the four-digit number indicates a strain-hardening process with or without subsequent heat treatment. The letter T indicates heat treatment to cause age hardening. The partial temper code is listed in Table 4-16. Cast aluminum alloys have the same temper designation as wrought, but the designation numbering system is as shown in Table 4-17. Cast alloys are not strain hardened. Table 4-18 lists the mechanical properties of some wrought aluminum alloys.

Magnesium

Magnesium alloys are specified by two letters that designate the principal alloying elements followed by numbers that specify the amounts of the two principal alloying elements. The code AZ61 refers to a 6% aluminum, 1% zinc alloy of magnesium. The code letters used to designate these alloys are as follows:

A—Aluminum	Q—Silver
E—Rare earths	S—Silicon
H—Thorium	T—Tin
K—Zirconium	Z—Zinc
M—Manganese	

The temper designations for magnesium are identical to those for aluminum. Magnesium is difficult to cold work, and these operations should be avoided if possible. Table 4-19 lists the mechanical properties of some magnesium alloys.

Other Nonferrous Metals

Table 4-20 lists ranges of values of mechanical properties for several other nonferrous metals.

4.9 PLASTICS

Most plastics are composed of macromolecules that are polymers. These polymers are large molecules formed by joining together many smaller molecules. The mechanical behavior of plastics is quite different from that of metals. For example, plastics can continue to deform even after an imposed stress is removed. Such timedependent behavior is termed viscoelasticity. Continued deformation with time can limit stresses to values significantly lower than the short-term loading allowable stresses. The designer should take the stress-time history phenomena of a plastics part into account in addition to the factors considered for metals. A further challenge for a designer arises due to the temperature-dependent mechanical properties of most plastics. In the range between -50 and $150^{\circ} \mathrm{C}$, many plastics show significant changes in material properties. A glass transition temperature (T_{g}) can be identified when plastics change during cooling from a rubbery material to a
brittle state. Normally, the highest-strength plastics are brittle at $20^{\circ} \mathrm{C}$. Glass transition temperatures for some plastics are listed in Table 4-21.

In addition to relative ease of molding and fabrication, many plastics offer a range of important advantages in terms of high strength-weight ratio, toughness, corrosion and abrasion resistance, low friction, and excellent electrical resistance. Thus many plastics are now accepted as regular engineering materials and given the loose designation engineering plastics. ASTM [4.15] has established some standards for plastics. Refer to the literature [4.16] for the significance and theoretical background of the standard test for mechanical properties of plastics.

Since so many factors influence the behavior of plastics, mechanical properties (such as moduli) quoted as a single value will be applicable only for the conditions at which they are measured.

Table 4-22 lists the commonly used abbreviations for designating engineering plastics. Some typical mechanical properties of plastics are given in Table 4-23. Poisson's ratio for many brittle plastics (such as polystyrene, the acrylics, and the thermoset materials) is about 0.3. For the more flexible plasticized materials (e.g., cellulose acetate), Poisson's ratio is about 0.45 . For rubber the value is 0.5 . Poisson's ratio varies not only with the material itself but also with the magnitude of the strain for a given material. The Poisson ratios mentioned here are for zero strain [4.15].

4.10 CERAMICS

Generally speaking, there is no clear-cut boundary that separates ceramics and metals. Rather, there are intermediate compounds that behave in some aspects like ceramics and in others like metals [4.17]. In fact, ceramics are compounds of metals and nonmetals, or simply, ceramics are inorganic and nonmetallic solids.

Ceramic materials have become increasingly important in modern industrial and consumer technology. The traditional ceramic materials include clay products (china, brick, tile, refractories, abrasives), cement, enamels, and glasses. Traditional ceramics are brittle materials since they exhibit quite low ductility with an associated low tensile strength. They are used for furnaces and linings of furnaces, where the ceramics are often only lightly stressed, unless loading is consistently compressive. New types of ceramics are being developed for such uses as gas turbines, jet engines, sandblast nozzles, nuclear plants, and high-temperature heat exchangers for which a service temperature of $1000^{\circ} \mathrm{C}$ and higher may be required. The carbides, borides, and nitrides of the transition elements [e.g., silicon (Si) and magnesium (Mg)] are some examples of the new ceramics. Even at ordinary temperatures the new ceramics are widely used for their hardness and wear resistance.

A few ceramics consist of crystalline phases surrounded by glassy binders. If the ceramic content in such mixtures is reduced, hybrid materials with metallic alloys strengthened by refractory particles, called cermets, are obtained. Tables 4-3, 4-24, and 4-25 list some mechanical properties of ceramics.

4.11 COMPOSITES

It has long been recognized that two or more materials judiciously combined can perform differently and sometimes more efficiently than the materials by themselves. Such combinations can occur on three different levels: a basic or elemental level at which single molecules and crystal cells are formed; a microstructural level for which crystals, phases, and compounds are formed; and a macrostructural level at which matrices, particles, and fibers are considered.

In general, a composite material is composed of reinforcements (e.g., fibers, particles, laminae or layers, flakes, fillers) embedded in a matrix (e.g., metals, polymers, ceramics). The constituents to hold the reinforcements together to form some useful shape are referred to as a matrix. Based on the form of the reinforcements, composite materials can be classified as follows:

1. Fiber composites, composed of continuous or chopped fibers
2. Particulate composites, composed of particles
3. Flake composites, composed of flat flakes
4. Laminar composites, composed of layers or lamina constituents
5. Filled or skeletal composites, composed of continuous skeletal matrix filled by a second material

These five types of composites are illustrated in Fig. 4-15.

Figure 4-15: Types of composite materials.

See Ref. [4.18] for mechanical properties of some composite materials. For more data and design theories for anisotropic materials, see Refs. [4.6] and [4.19].

The mechanical properties of a composite material are often direction dependent (or anisotropic). ASTM provides numerous publications concerning the measurements of composites [4.9].

4.12 BIOMECHANICS

Bioengineering involves both physical and life sciences. In particular, if the human body is of concern, it is necessary to deal with a system that changes in response to its environment. For example, the material properties can fluctuate due to factors such as age. Also, the human body is able to adapt and heal itself. Furthermore, most components of the human body cannot be tested independently (e.g., the heart is not removable for testing). Some material properties in the areas of biomechanics and biomaterials will be treated here. Biomechanics applies theories and experimental methods of traditional mechanics to biological systems, focusing on forces acting upon a biological system and the resulting effects.

Bone Tissue Mechanics

Bone is a hard tissue structure that acts as an anisotropic, nonhomogeneous, viscoelastic material. Normally, bone is placed in two categories: cortical and cancellous bone (Table 4-26). Cortical bone is dense ($1700-2000 \mathrm{~kg} / \mathrm{m}^{3}$), structured, and compact, with a modulus of elasticity ranging from 5 to 35 GPa . In tension (compression), this bone has a strength of $55-200 \mathrm{MPa}(106-225 \mathrm{MPa})$ and ultimate elongation (contraction) of 0.5-4.9 (1.1-13.4) percent. Cortical bone forms the shaft of long bones such as the femur and tibia. In contrast to cortical bone is cancellous or trabecular bone, which comprises the irregularly shaped bones and the ends of long bones, with a density ranging from 100 to $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and modulus of elasticity of 0.001-9.8 GPa. In tension (compression) cancellous bone has a strength of $0.9-5.4$ (0.1-310) MPa and ultimate elongation (contraction) of 0.9-3.5 (1.1-13.4) percent. The properties of bones can vary greatly, due in part to modeling the bone as a linearly elastic isotropic material. For common strain rates, it is often common to model the bone as a linearly elastic anisotropic material, either transverse isotropic or orthotropic behavior. The equation for a linear elastic material can be written as a stress-strain relationship from Eq. (4.2). For an orthotropic material, the material matrices contain 12 components, nine of which are independent. Additional simplification results from symmetry of a transverse isotropic model as discussed in Section 4.2. Then

$$
\begin{equation*}
E_{y}=E_{z}, \quad G_{x z}=G_{y x}, \quad v_{y x}=v_{z x}, \quad \frac{1}{G_{y z}}=2\left(\frac{1}{E_{y}}+\frac{v_{y z}}{E_{y}}\right) \tag{4.16}
\end{equation*}
$$

The values for material constants for a cortical bone from a human femur are given in Table 4-27. Coordinate x is radial, y is circumferential, and the z axis is parallel with the long bone axis. These data are taken from Ref. [4.20].

Soft Tissue Mechanics

Although most soft tissue structures in the body are nonhomogeneous, anisotropic, and nonlinear viscoelastic, the fundamental equations are assumed to have homogeneity and linearity.

Variations of the Maxwell and Kelvin viscoelastic models (Chapter 10) are employed as linear approximations of the nonlinear response of biological materials. See Ref. [4.21] for a theory based on linear viscoelasticity that incorporates nonlinear stress-strain characteristics.

Cartilage The ends of articulating bones in human joints are usually covered with a dense, connective tissue called hyaline articular cartilage. Cartilage, which consists of a composite organic solid matrix swollen by water (75% by volume), distributes loads on joints and reduces wear and friction due to movement. Various properties of articular cartilage have been collected in several papers, including Ref. [4.22], and are given in Table 4-28.

Muscle The human muscular system is composed of three types of muscles: cardiac, smooth (involuntary), and skeletal (voluntary). Skeletal muscles control posture and enable movement to the body's parts. The force a skeletal muscle can apply is a function of factors such as length at stimulation, velocity and duration of contraction, fatigue, temperature, and prestretching. Typical forces (per unit area) exerted by a skeletal muscle range from 200 to $800 \mathrm{kN} / \mathrm{m}^{2}$. Hill's equation is used for obtaining more precise values, relating rate V of skeletal muscle contraction as a function of isotonic force:

$$
\begin{equation*}
V=\frac{b\left(F_{0}-F\right)}{F+a} \quad \text { or } \quad F=\frac{F_{0} b-a V}{b+V} \tag{4.17}
\end{equation*}
$$

where F_{0} is the force at $V=0$ and F is the instantaneous force. The experimentally evaluated constants a and b have units of force and velocity, respectively, and are found from

$$
\begin{equation*}
K=\frac{a}{F_{0}}=\frac{b}{V_{\max }} \tag{4.18}
\end{equation*}
$$

where the value of K usually ranges from 0.15 to 0.25 [4.23].
Ligaments and Tendons The connective tissues ligaments and tendons are composed of collagen fibers that are typically subjected to tension loads. Tendons connect muscles to bone and execute joint motion, in addition to storing energy. Ligaments differ in that they attach articulating bones across a joint in order to guide joint movement, limit a joint's range of motion, maintain joint congruency and aid
in joint stability. Some properties of ligaments and tendons are listed in Table 4-29, where the test specimens were loaded longitudinally.

Factors That Influence Properties

Many factors contribute to the variability observed in biomechanical properties, including the lack of standards for testing biological materials. Some other factors are discussed here.

Loading Rate High rates of loading tend to stiffen and strengthen biological materials. Furthermore, the loading rate can affect the patterns of failure of materials.

Anatomic Location As shown in Table 4-30, anatomical location can affect the material properties of biological tissues. The data in this table are from Ref. [4.22].

Loading Mode Properties such as strength and strain are very sensitive to the orientation of tissue structure with respect to loading direction.

Age Age is an important factor in the study of properties of biological materials. Usually, ultimate strength tends to decrease with increasing age, as seen in Table 4-31 [4.25] where bone, muscle, tendon, and cartilage experience decrease in ultimate strength as age increases following maturity. In contrast, skin and teeth experience increases.

Storage and Preservation Storage (cooling and freezing) and preservation (embalming) of tissue is important because as the result of its complexity, biomechanical testing requires a significant amount of time to complete.

Humidity The influence of specimen moisture level is significant, as can be seen, for example, by the Young's modulus of skin, which at 25% humidity may be 1000 times greater than at 100% humidity [4.26].

Species Trying to apply results from an animal test to a human can be difficult because of physiologic and anatomical discrepancies. Table 4-32 (data from Ref. [4.27]) illustrates some of the differences that can be observed in material properties between humans and animals.

4.13 BIOMATERIALS

Biomaterials are intended for use when direct contact with the internal tissues of the body may be involved, such as occurs with a surgically implanted device. Both the host and the implanted material must be studied carefully since foreign materials are being placed within the chemically active environment of the body. Biomaterials are classified into four categories according to the interaction with a host [4.28]. An inert material triggers little host reaction. An interactive material is intended to elicit
beneficial host response such as ingrowth. A viable biomaterial may include live cells at implantation, which the host sees as normal tissue and are actively resorbed. A replant material is native tissue, cultured in vitro (an artificial environment such as a test tube) from cells taken earlier from an implant patient. A discussion of the chemical and mechanical effects of interactions between implants and hosts is given in Ref. [4.28].

Classes of Biomaterials

Metallic biomaterials are chosen often in biomedical applications because of their high tensile strength. However, the high tensile strength also means high elastic modulus, which can cause the bone to stress shield. For example, a metallic implant may be placed in parallel with a bone to reduce the stress in a portion of the bone. Due to this reduction, the affected bone can atrophy since bone can remodel in response to loading and resorb in areas of low stress. This may lead to a loosening of the implant. Properties of some metallic biomaterials are given in Table 4-33. Corrosion (galvanic, crevice, pitting, intergranular, and stress/fatigue) is another concern with using metals in the human body.

Polymers are viscoelastic materials whose mechanical properties and host and material responses depend on molecular weight, degree of cross-linking, temperature, and loading rate. It should be noted that data, as in Table 4-34, corresponding to properties of polymers represent a general range of values. Properties of some degradable materials are also shown in Table 4-34.

Ceramics are among the hardest and strongest materials in common use. Composed mostly of inorganic compounds, ceramics exhibit unstable crack growth and therefore low tensile strength. Ceramic biomaterials are classified into two categories: relatively inert and bioactive. Relatively inert ceramics have high compressive strength and hardness to resist wear, while bioactive ceramics do not have high strength values and are used to bond with host tissue.

Composite biomaterials are a combination of two or more materials to obtain a biomaterial with desired properties. Use of composite biomaterials permits implants to be constructed to conform to the stiffness of surrounding tissue.

Natural origin materials can be xenogenous, meaning obtained from other species, or autogenous, obtained from the patient. Xenogenous materials from nonhuman animals are commonly used in soft tissue replacement and have mechanical properties very similar to human tissue but can cause immune system reaction as a result of foreign proteins. Autogenous materials are used for bone and skin relocation.

4.14 MICROELECTROMECHANICAL SYSTEMS (MEMS)

A new category of engineered microstructures and materials has resulted from the field of microelectromechanical systems (MEMS). MEMS are two-dimensional structures fabricated by deposition and photolithography techniques. Although no

ASTM standards for the mechanical characterization of materials for MEMS exist to date, considerable effort has been devoted in developing experimental techniques to measure the elastic and failure properties of these materials. The most common materials for MEMS include single crystal and polycrystalline silicon, amorphous diamondlike carbon, silicon carbide, polyimide, aluminum, and gold; the choice of which is used depends on the application. Among common experimental techniques for the mechanical characterization of these materials are beam bending, microtension tests, pressurized membrane deflection tests, and the use of resonant structures [4.30]. The applied load is measured directly via load cells or it is calculated using strength of materials equations after measuring the deflection of microcantilever beams. Fields of strains can be measured directly via an atomic force microscope (AFM) in combination with image correlation algorithms or via interferometry at a point on the surface of a specimen. The elastic constants for single crystal silicon are a function of the crystal direction, and range from 132 GPa for Si [100] to 189 GPa for Si [111], while the tensile strength of Si averages 3 GPa . The elastic properties of polycrystalline silicon can be bracketed via the Reuss-Voigt bounds that range from $160-165 \mathrm{GPa}$. For polycrystalline silicon, the average elastic modulus is 165 GPa and Poisson's ratio is 0.22 . On the other hand, the elastic modulus of diamondlike carbon materials is several times higher, reaching 750 GPa , with Poisson's ratio equal to 0.16 and a tensile strength that exceeds 11 GPa [4.31]. The strength values of brittle MEMS materials follow the Weibull statistical distribution that supports scaling of the mechanical properties of MEMS materials with the specimen volume, surface, or length, depending on the internal flaws, the surface roughness, or the "machining" process used the prepare the specimens, respectively. Due to this Weibull effect, smaller MEMS components have a higher strength than their larger counterparts, which gives rise to very durable, submicron scale microdevices.

4.15 MATERIAL SELECTION

This chapter has included various types of materials and their properties, ranging from metals to composites, and methods for procedures such as hardness testing. Using this information to formulate a design can be a tedious task. Fortunately, tools are available that can simplify choosing the optimal material for the application.

A material index is a material property or group of properties that describes how a material will perform in service. This index is a key to maximizing the performance of any component. A component or group of components serves a function, whether it is to support a load safely, to absorb vibration, or to transport electricity. The designer has an objective, such as minimizing weight, that is subject to constraints, such as fixed dimensions or prescribed critical loads. These limiting parameters define the boundaries necessary for choosing a material for the application. Performance can be maximized by use of a material index corresponding to the function, objective, and constraints of the design. Tables 4-35 and 4-36 provide commonly used indexes
for stiffness and strength limited designs. See Ref. [4.32] for other indexes, such as vibration-based design. The following example shows how a material index is derived.

Example 4.5 Material Index for a Light, Stiff Beam A baseball bat can be approximated as a beam where one end is fixed and the other is free. The bat must be stiff so that there will be minimal deflection when it strikes a baseball. In addition, the bat has to be light to obtain maximum swing speed and control. The first step in determining the best material for constructing a baseball bat is to derive its material index.

The bat functions as a beam. The objective is to select a material that minimizes the weight. The constraints are the stiffness and length L.

The maximum deflection, $w_{\max }$, of a cantilevered beam with the end loading W (Table 11-1, case 1) is given by

$$
\begin{equation*}
w_{\max }=\frac{W L^{3}}{3 E I} \tag{1}
\end{equation*}
$$

where $I=(\pi / 4) r^{4}$ for a solid, round cross section of radius r. Substitute the value of I into (1):

$$
\begin{equation*}
w_{\max }=\frac{4 W L^{3}}{3 E \pi r^{4}} \tag{2}
\end{equation*}
$$

Then solve for the free variable r, assuming that the cross section is of constant radius along the length:

$$
\begin{equation*}
r^{2}=\left(\frac{4 W L^{3}}{3 E \pi w_{\max }}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

The total mass of the bat is

$$
\begin{equation*}
m=\pi r^{2} L \rho^{*} \tag{4}
\end{equation*}
$$

where ρ^{*} is the mass per unit volume. Substitute (3) into (4) and regroup terms

$$
\begin{equation*}
m=\left(\frac{4 \pi W L}{3 w_{\max }}\right)^{1 / 2} L^{2} \frac{\rho^{*}}{E^{1 / 2}} \tag{5}
\end{equation*}
$$

Notice that the final factor in (5) contains only material properties. For this beam, the stiffness $W / w_{\max }$, length L, and circular shape are prescribed. Thus, to minimize the mass of the bat, minimize the term $\rho^{*} / E^{1 / 2}$, or equivalently, maximize the inverse, $E^{1 / 2} / \rho^{*}$. This value corresponds to Table $4-35$ for a beam loaded in bending with stiffness, length, and shape specified and section area free.

Material indexes are not used solely to minimize mass of a component. In this section we focus on minimal mass design because it is a common design goal. However, refer to Ashby [4.32] for methods to minimize cost, energy consumption, and environmental impact.

To ease the use of the material indexes, a material selection chart can be introduced. Material selection charts plot a property such as Young's modulus, E, against another, such as density, ρ^{*}. The range of property values that a group of materials covers is also plotted on the chart. Once the boundaries for the design are set, the material selection chart relating appropriate properties is used to eliminate those materials that fall outside these boundaries and select the material that maximizes performance. However, the information given in these charts is approximate, so the data should be used primarily in rough calculations. The following example will help clarify the process.

Example 4.6 Choice of Material for a Baseball Bat Return to the baseball bat of Example 4.5, where the material index (M) for a beam was derived as

$$
\begin{equation*}
M=\frac{E^{1 / 2}}{\rho^{*}} \tag{1}
\end{equation*}
$$

Based on the constraints from Example 4.5, what material should be used to construct the bat?

The relevant chart is that which plots Young's modulus, E, against density, ρ^{*}, as in Fig. 4-16. Notice that chart is plotted with log-log scales. From (1),

$$
\log E^{1 / 2}=\log \rho^{*}+\log M
$$

or

$$
\frac{1}{2} \log E=\log \rho^{*}+\log M
$$

so that

$$
\log E=2 \log \rho^{*}+2 \log M
$$

This is a set of straight lines on a chart of $\log E$ versus $\log \rho^{*}$ with slope 2 and constant M, which are referred to as guide lines. On Fig. 4-16 shift the guide line labeled $E^{1 / 2} / \rho^{*}$ upward (dark line labeled $M=E^{1 / 2} / \rho^{*}$), so that only a small group of materials lies above it. These materials have the largest material index and thus minimize the mass. From Fig. 4-16, the choices of materials is narrowed to wood, CFRP, and ceramics. However, ceramics can be eliminated because they are brittle and would fracture at impact. CFRP, an engineering composite, and wood are the best choices for constructing a baseball bat.

Most bats used in major league baseball are made of white ash. The players generally use a bat weighing between 32 and 35 ounces, and to keep the bats in the desired weight range while maintaining regulation size, wood is used. However,

Figure 4-16: Materials for a baseball bat based on a strength-limited design at minimum mass.

Little League and college baseball players use cheaper, more durable aluminum bats. Aluminum bats are significantly lighter, allowing higher swing speeds. In addition, aluminum bats store more energy, known to some as the trampoline effect, contributing to greater ball flight. Although these effects are acceptable at the Little League and college level, the professional leagues use wood to ensure that batting is based on skill level and strength rather than on technology, thus preserving the game's traditions.

Another useful resource for identifying a material that satisfies a design goal is a process selection chart. The most common of these charts can be found in Ref. [4.32]. Process selection charts can be used to determine the feasibility of subjecting a particular material, say ferrous metal, to a certain process, such as machining.

Selection of the best material for a component is an integral step in design, making material indices and selection charts quite useful. Comparing the data of several candidate materials can identify the material that is superior for use in design. In another case, a material currently in service could be replaced if an alternative material has a significantly higher index.

REFERENCES

4.1. Annual Book of ASTM Standards, Vol. 03.01, American Society for Testing and Materials, Philadelphia, 1993.
4.2. Eisenstadt, M. M., Introduction to the Mechanical Properties of Materials, Macmillan, New York, 1971.
4.3. Flinn, R. A., and Trojan, P. K., Engineering Materials and Their Applications, 2nd ed., Houghton Mifflin, Boston, 1981.
4.4. Jastrzebski, Z. D., The Nature and Properties of Engineering Materials, 2nd ed., Wiley, New York, 1976.
4.5. Cordon, W. A., Properties Evaluation, and Control of Engineering Materials, McGraw-Hill, New York, 1979.
4.6. Annual Book of ASTM Standards, Vol. 15.03, American Society for Testing and Materials, Philadelphia, 1992.
4.7. Templin, R. L., and Sturm, R. G., J. Aeronaut. Sci., Vol. 7, 1940, pp. 189-198.
4.8. Blodgett, O. W., Design of Welded Structures, James F. Lincoln Arc Welding Foundation, Cleveland, OH, 1966.
4.9. Hahn, T. H., "Simplified Formulas for Elastic Moduli of Unidirectional Continuous Fiber Composites," Compos. Technol. Rev., Fall 1980.
4.10. Robinson, E. S., "Effect of Temperature Variation on the Long Time Rupture Strength of Steels," ASME Trans., Vol. 74, 1952, pp. 777-781.
4.11. Collins, J. A., Failure of Materials in Mechanical Design, 2nd ed., Wiley, New York, 1993.
4.12. Metals Handbook, 10th ed., Vol. 1, Properties and Selection: Irons, Steels, and High Performance Alloys, American Society for Metals, Materials Park, OH, 1990.
4.13. Machine Design, Vol. 52, No. 8, 1980, p. 30.
4.14. "Materials Selector," Mater. Eng., Vol. 74, No. 4, 1971.
4.15. Annual Book of ASTM Standards, Vols. 08.01-08.03, American Society for Testing and Materials, Philadelphia, 1993.
4.16. Shah, V., Handbook of Plastics Testing Technology, Wiley, New York, 1984.
4.17. Schwartz, M. M., Engineering Applications of Ceramic Materials, American Society for Metals, Materials Park, OH, 1985.
4.18. Schwartz, M. M., Composite Materials Handbook, 2nd ed., McGraw-Hill, New York, 1992.
4.19. Vinson, J. R., and Sierakowski, R. L., The Behavior of Structures Composed of Composite Materials, Martinus Nijhoff, Dordrecht, The Netherlands, 1986.
4.20. Cowin, S. C., Van Buskirk, W. C., and Ashman, R. B., "Properties of Bone," in Handbook of Bioengineering, ed. Skalak, R., and Chien, S., McGraw-Hill, New York, 1987, pp. 2.1-2.27.
4.21. Fung, Y. C., Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., Springler-Verlag, New York, 1993.
4.22. Mow, V. C., and Soslowsky, L. J., "Friction, Lubrication, and Wear of Diarthrodial Joints," in Basic Orthopaedic Biomechanics, ed. Mow, V. C., and Hayes, W. C., Raven Press, New York, 1991, pp. 245-298.
4.23. McMahon, T. A., "Muscle Mechanics," in Handbook of Bioengineering, ed. Skalak, R., and Chien, S., McGraw-Hill, New York, 1987, pp. 7.1-7.26.
4.24. Reilly, D. T., and Burstein, A. H., The Elastic and Ultimate Properties of Compact Bone Tissue, J. Biomech., Vol. 8, No. 6, 1975, pp. 393-405.
4.25. Yamada, H., in Strength of Biological Materials, ed. Evans, F. G., Williams \& Wilkins, Baltimore, 1970.
4.26. Duck, F. A., Physical Properties of Tissue, Academic Press, San Diego, CA, 1990.
4.27. Aerssens, J., Boonen, S., Lowet, G. and Dequeker, J., "Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for In Vivo Bone Research," Endocrinology, Vol. 132, No. 2, 1998, pp. 663-670.
4.28. Crandall, J. R., Hall, G. W., and Pilkey, W. D., "Bioengineering," in Handbook of Mechanical Engineering, ed. Kreith, F., CRC Press, Boca Raton, FL, 1998.
4.29. Ivarsson, B. J., Crandall, J. R., Hall, G. W., and Pilkey, W. D., "Bioengineering," in Handbook of Mechanical Engineering, 2nd ed., ed. Kreith, F., CRC Press, Boca Raton, FL, 2004.
4.30. Chasiotis, I., and Knauss, W. G., "Experimentation at the Micron-Submicron Scale," in Encyclopedia of Comprehensive Structural Integrity, Vol. 8, Interfacial and Nanoscale Failure, ed. Gerberich, W., and Yang, W., Elsevier Science, Amsterdam, 2003, pp. 41-87.
4.31. Chasiotis, I., "Experimental Mechanics for MEMS and Thin Films: Direct and Local SubMicron Strain Measurements," in Micromechanics and Nanoscale Effects: MEMS, Multi-Scale Materials and Micro-Flows, ed. Harik, V. M., and Luo, L.-S., Kluwer Academic Press, New York, 2004, pp. 3-37.
4.32. Ashby, M. F., Materials Selection in Mechanical Design, 2nd ed., Butterworth-Heinemann, Woburn, MA, 1999.
4.33. Hayden, H. W., Moffat, W. G., and Wulff, J., The Structure and Properties of Materials, Vol. 3, Mechanical Behavior, Wiley, New York, 1965.
4.34. Manson, S. S., and Haferd, A. M., A Linear Time-Temperature Relation for Extrapolation of Creep and Stress Rupture Data, NACA Technical Note 2890, March 1953.
4.35. Felbeck, D. K., Strength and Fracture of Engineering Solids, Prentice-Hall, Upper Saddle River, NJ, 1984.
4.36. Boyer, H. E., and Gall, T. L. (Eds.), Metals Handbook, desk ed., American Society for Metals, Materials Park, OH, 1986.
4.37. Chanda, M., and Roy, S. K., Plastics Technology Handbook, 2nd ed., Marcel Dekker, New York, 1993.
4.38. Richerson, D. W., Modern Ceramic Engineering, Marcel Dekker, New York, 1982.

Tables

4-1 Material Law Matrices 193
4-2 Relationships between Material Constants for an Isotropic Linear Elastic Solid 194
4-3 Moduli of Elasticity, Poisson's Ratios, and Thermal Coefficients of Expansion 195
4-4 Hardness Testing 198
4-5 Rockwell Hardness Scales 199
4-6 Creep Strengths of Selected Metallic Alloys 200
4-7 Constants in Manson-Haferd Formula 200
4-8 Properties of Pure Metals at about $20^{\circ} \mathrm{C}$ 201
4-9 Selected ASTM Specifications Incorporating AISI-SAE Designations 203
4-10 Selected ASTM Generic Specifications 203
4-11 Mechanical Properties of Selected Carbon Steels in Hot-Rolled, Normalized, and Annealed Condition 204
4-12 Mechanical Properties of Selected Alloy Steels in Hot-Rolled and Annealed Condition 206
4-13 Mechanical Properties of Selected Stainless Steels 208
4-14 Mechanical Properties of Selected Cast Irons 209
4-15 Designation of Wrought Aluminum Alloys 211
4-16 Basic Temper Designation for Aluminum 211
4-17 Designation of Cast Aluminum Alloys 212
4-18 Mechanical Properties of Selected Non-Heat-Treatable Aluminum Alloys 213
4-19 Nominal Compositions and Typical Room Temperature Mechanical Properties of Magnesium Alloys 215
4-20 Ranges of Mechanical Properties for Selected Nonferrous Alloys 217
4-21 Glass Transition Temperature for Selected Plastics 218
4-22 Commonly Used Abbreviations for Engineering Plastics 218
4-23 Typical Properties of Plastics Used for Molding and Extrusion 220
4-24 Typical Room Temperature Mechanical Properties of Ceramics and Glasses 223
4-25 Typical Room Temperature Strengths of Ceramic Materials 224
4-26 Properties of Human Bone 226
4-27 Material Constants of Human Femur Cortical Bone 226
4-28 Properties of Human Articular Cartilage 227
4-29 Properties of Human Ligaments and Tendons 227
4-30 Influence of Anatomic Location on the Tensile Modulus of Human Meniscus 227
4-31 Influence of Age on Ultimate Tensile Strength of Various Tissues 228
4-32 Properties of Vertebral Cancellous Bone Specimens from Several Species 228
4-33 Properties of Metallic Biomaterials 229
4-34 Material Properties of Polymers 230
4-35 Stiffness-Based Design for Minimum Mass 232
4-36 Strength-Based Design for Minimum Mass 233

TABLE 4-1 MATERIAL LAW MATRICES

TABLE 4-2 RELATIONSHIPS BETWEEN MATERIAL CONSTANTS FOR AN ISOTROPIC LINEAR ELASTIC SOLID							
	G, E	G, K	E, K	G, v	E, v	K, v	λ, G
E	-	$\frac{9 G K}{3 K+G}$	-	$2 G(1+v)$	-	$3 K(1-2 v)$	$\frac{G(3 \lambda+2 G)}{G+\lambda}$
G	-	-	$\frac{3 E K}{9 K-E}$	-	$\frac{E}{2(1+v)}$	$\frac{3 K(1-2 v)}{2(1+v)}$	-
K	$\frac{E G}{9 G-3 E}$	-	-	$\frac{2 G(1+v)}{3(1-2 v)}$	$\frac{E}{3(1-2 v)}$	-	$\frac{2 G}{3}+\lambda$
ν	$\frac{E}{2 G}-1$	$\frac{3 K-2 G}{2(3 K+G)}$	$\frac{1}{2}\left(1-\frac{E}{3 K}\right)$	-	-	-	$\frac{\lambda}{2(G+\lambda)}$
λ	$\frac{(E-2 G) G}{3 G-E}$	$K-\frac{2 G}{3}$	$\frac{3 K(3 K-E)}{9 K-E}$	$\frac{2 G v}{1-2 v}$	$\frac{E v}{(1+v)(1-2 v)}$	$\frac{3 K v}{1+v}$	-

TABLE 4-3 MODULI OF ELASTICITY, POISSON'S RATIOS, AND THERMAL COEFFICIENTS OF EXPANSION

The material properties provided in the tables should be treated as being nominal values that may be rough estimates. In the case of thermal expansion, which is generally not linear with temperature, the α values should be considered as average values over particular temperature ranges.

Material	Modulus of Elasticity, E		Poisson's Ratio, v	Thermal Coefficient of Expansion, α	
	$\times 10^{6} \mathrm{psi}^{a}$	GPa		$\times 10^{-6} /{ }^{\circ} \mathrm{C}^{b}$	$\times 10^{-6} /{ }^{\circ} \mathrm{F}^{b}$
ABS plastic, unfilled	0.2-0.4	1.4-2.8	-	33-72	60-130
Acrylic, cast $\mathrm{Al}_{2} \mathrm{O}_{3}$ Alumina, fired Aluminum, Alloy 2024-T4 Aluminum, Alloy 7075-T6	$\begin{gathered} 0.35-0.45 \\ 55 \\ 40 \\ 10.6 \\ 10.4 \end{gathered}$	$\begin{gathered} 2.4-3.1 \\ 380 \\ 275 \\ 73 \\ 72 \end{gathered}$	$\begin{array}{r} \quad- \\ 0.26 \\ 0.32 \\ 0.32 \end{array}$	$\begin{gathered} 27-50 \\ 4.4 \\ 3.0 \\ 12.9 \\ 12.9 \end{gathered}$	$\begin{gathered} 50-90 \\ 8 \\ 5.4 \\ 23.2 \\ 23.2 \end{gathered}$
BeO Beryllium Beryllium-copper " 25 " Boron-epoxy composite Orthotropic Representative Brass-30-70 Bronze—Phosphor (10\%)	45 40-44 19 $\begin{gathered} E_{1}=40^{c} \\ E_{2}=4^{d} \end{gathered}$ 16 16	$\begin{gathered} 311 \\ 275-305 \\ 131 \\ \\ 275 \\ 27.5 \\ 110 \\ 110 \end{gathered}$	$\begin{aligned} & - \\ & 0.024-0.05 \\ & 0.28-0.30 \\ & 0.25\left(v_{1,2}^{c, d}\right) \\ & 0.33 \\ & 0.31 \end{aligned}$	$\begin{gathered} 5.6 \\ 6.4 \\ 9.3 \\ 5 \\ \\ 11.1 \\ 10.2 \end{gathered}$	10 11.5 16.7 9 20 18.4
Concrete Copper	$\begin{gathered} 3-6 \\ 17.8 \end{gathered}$	$\begin{aligned} & 20-40 \\ & 123 \end{aligned}$	$\begin{aligned} & 0.1-0.3 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 10 \\ & 16.5 \end{aligned}$
Duraluminum	10.5	72.4	0.33	-	-
Epoxies, unfilled	0.3-0.45	2-3	-	17-33	30-60
Fiberglass-epoxy composite Orthotropic Typical	$\begin{gathered} E_{1}=8^{c} \\ E_{2}=2.7^{d} \end{gathered}$	$\begin{aligned} & 55 \\ & 19 \end{aligned}$	$0.25\left(\nu_{1,2}^{c, d}\right)$	Varies with	position
Glass, soda-lime Graphite	$\begin{gathered} 10 \\ 0.3-2.4 \end{gathered}$	$\begin{gathered} 70 \\ 2-17 \end{gathered}$	${ }^{0.21}$	$\begin{aligned} & 5.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 5.4 \end{aligned}$
Hastelloy, C-276	24.5-29.8	169-205	0.3	6.3	11.3
Inconel, wrought Inconel-X Invar, annealed condition Iron, gray cast Iron, malleable	$\begin{gathered} 31 \\ 31 \\ 21 \\ 13-14 \\ 25-28 \end{gathered}$	$\begin{gathered} 214 \\ 214 \\ 145 \\ 90-96 \\ 172-193 \end{gathered}$	0.26 \qquad \qquad 0.17	$\begin{gathered} 7.0 \\ 6.7-7.8 \\ 0.7-0.8 \\ 6.0-6.7 \\ 5.9-7.1 \end{gathered}$	$\begin{gathered} 13.0 \\ 12-14 \\ 1.3-1.4 \\ 10.8-12.1 \\ 10.6-12.8 \end{gathered}$

TABLE 4-3 (continued) MODULI OF ELASTICITY, POISSON'S RATIOS, AND THERMAL COEFFICIENTS OF EXPANSION

Material	Modulus of Elasticity, E		Poisson's Ratio, v	Thermal Coefficient of Expansion, α	
	$\times 10^{6} \mathrm{psi}^{\text {a }}$	GPa		$\times 10^{-6} /{ }^{\circ} \mathrm{C}^{b}$	$\times 10^{-6} /{ }^{\circ} \mathrm{F}^{b}$
Kevlar	19.4	134	-	-	-
Lead	2	14	0.4-0.45	16.3	29.3
Magnesium, AZ-31B MgO Molybdenum Monel, Alloy 400 Mullite $\left(\mathrm{Al}_{6} \mathrm{Si}_{2} \mathrm{O}_{13}\right)$ Mylar	$\begin{gathered} 6.5 \\ 30 \\ 47-50 \\ 26 \\ 21 \\ 0.55-0.80 \end{gathered}$	$\begin{gathered} 45 \\ 207 \\ 325-345 \\ 179 \\ 145 \\ 3.8-5.5 \end{gathered}$	$\begin{gathered} 0.35 \\ 0.36 \\ 0.33 \\ 0.32 \\ - \\ 0.38 \end{gathered}$	$\begin{gathered} 14.5 \\ 5 \\ 2.7 \\ 7.5-7.8 \\ 2.8 \\ 9.4 \end{gathered}$	$\begin{gathered} 26.1 \\ 9 \\ 4.9 \\ 13.5-14.0 \\ 5 \\ 17 \end{gathered}$
Nickel-A Ni-Span-C Nylon 6/6, unmodified	$\begin{gathered} 30 \\ 27.7 \\ 0.16-0.41 \end{gathered}$	$\begin{aligned} & 207 \\ & 191 \\ & 1.1-2.8 \end{aligned}$	$0 . \overline{33}$	$\begin{gathered} 6.6-7.4 \\ 4.2 \\ 44 \end{gathered}$	$\begin{gathered} 12-13 \\ 7.6 \\ 80 \end{gathered}$
Phenolics (representative) Polycarbonate Polyethylene Polypropylene, unmodified Polyurethane Polyvinyl chloride, rigid Porcelain (high-alumina ceramic)	$\begin{gathered} 0.4-0.5 \\ 0.3-0.38 \\ 1-2 \\ 0.16-0.23 \\ \\ 0.01-0.1 \\ 0.42-0.52 \\ 32-56 \end{gathered}$	$\begin{gathered} 2.7-3.4 \\ 2.0-2.6 \\ 7-14 \\ 1.1-1.6 \\ \\ 0.07-0.7 \\ 2.9-3.6 \\ 221-386 \end{gathered}$	$\begin{gathered} - \\ - \\ - \\ - \\ 0.26-0.34 \\ 0.2-0.21 \end{gathered}$	$\begin{gathered} 14-33 \\ 37 \\ 60-70 \\ 32-57 \\ - \\ 28-33 \\ 3.3 \end{gathered}$	$\begin{gathered} 25-60 \\ 67 \\ 108-126 \\ 58-102 \\ - \\ 50-60 \\ 6.0 \end{gathered}$
Quartz, fused	10.5	72.5	-	0.28	0.50
Rene-41 Rubber, neoprene	$\begin{array}{r} 29.9-31.9 \\ \text { Va } \\ \text { with col } \end{array}$	206-220 ition	$\begin{aligned} & 0.31 \\ & 0.5 \end{aligned}$	$\begin{gathered} 6.63 \\ 340 \end{gathered}$	$\begin{aligned} & 11.9 \\ & 612 \end{aligned}$
SiC $\mathrm{Si}_{3} \mathrm{~N}_{4}$ SiO_{2} (fused) Spinel $\left(\mathrm{MgAl}_{2} \mathrm{O}_{4}\right)$ Steel, 1008/1018 Steel, 4130/4340 Steel, 304 (stainless) Steel, 310 (stainless)	60 44 10 36 30 30 28 29-30	$\begin{gathered} 414 \\ 304 \\ 69 \\ 284 \\ 207 \\ 207 \\ 193 \\ 200-207 \end{gathered}$	$\begin{gathered} - \\ - \\ 0.25 \\ - \\ 0.285 \\ 0.28-0.29 \\ 0.25 \\ 0.32 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.8 \\ & 0.5 \\ & 5 \\ & 6.7 \\ & 6.3 \\ & 9.6 \\ & 8.0 \end{aligned}$	$\begin{gathered} 4.5 \\ 3.2 \\ 0.9 \\ 9 \\ 12.0 \\ 11.3 \\ 17.3 \\ 14.4 \end{gathered}$

TABLE 4-3 (continued) MODULI OF ELASTICITY, POISSON'S RATIOS, AND THERMMAL COEFFICIENTS OF EXPANSION

Material	Modulus of Elasticity, E		Poisson's Ratio, v	Thermal Coefficient of Expansion, α	
	$\times 10^{6} \mathrm{psi}^{a}$	GPa		$\times 10^{-6} /{ }^{\circ} \mathrm{C}^{b}$	$\times 10^{-6} /{ }^{\circ} \mathrm{F}^{b}$
Teflon, TFE TiC Titanium, $6 \mathrm{Al}-4 \mathrm{~V}$ Titanium, pure Titanium, silicate Tungsten Tungsten-carbide cermet	$\begin{gathered} 0.038-0.065 \\ 67 \\ 16.5 \\ 15.1 \\ 9.8 \\ 50 \\ 61.6-94.3 \end{gathered}$	$\begin{gathered} 0.26-0.45 \\ 462 \\ 115 \\ 104 \\ 68 \\ 345 \\ 425-650 \end{gathered}$	$\begin{gathered} - \\ \hline-.34 \\ 0.34 \\ 0.17 \\ 0.28 \\ - \end{gathered}$	$\begin{aligned} & 55 \\ & 4 \\ & 4.9 \\ & 4.8 \\ & 0.0(\pm 0.017) \\ & 2.4-2.6 \\ & 2.5-3.0 \end{aligned}$	$\begin{aligned} & 99 \\ & 7.2 \\ & 8.8 \\ & 8.6 \\ & 0.0(\pm 0.03) \\ & 4.3-4.7 \\ & 4.5-5.4 \end{aligned}$
Vanadium Vinyl chloride, rigid	$\begin{gathered} 18-20 \\ 0.3-0.5 \end{gathered}$	$\begin{gathered} 124-138 \\ 2-3.5 \end{gathered}$	$\stackrel{-}{0.28-0.34}$	$\begin{aligned} & 4.6 \\ & 28-56 \end{aligned}$	$\begin{aligned} & 8.3 \\ & 50-100 \end{aligned}$
Wood, structural	1-2	7-14	-	1-3	2-5
Zircaloy-2 Zirconium	$\begin{gathered} 11 \\ 13.7-14.0 \end{gathered}$	$\begin{gathered} 76 \\ 95-96.5 \end{gathered}$	$\begin{aligned} & 0.37-0.41 \\ & 0.37-0.41 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.6 \end{aligned}$

${ }^{a}$ For psi, multiply tabulated values by 10^{6}. For example, if the entry is 40 , this corresponds to $40 \times 10^{6} \mathrm{psi}$. An entry of $0.2-0.4$ means that the values of E range from 0.2×10^{6} psi to 0.4×10^{6} psi.
${ }^{b}$ For α, multiply tabulated value by 10^{-6}. For example, for "Aluminum, Alloy 2024-T4," the α values are $12.9 \times$ $10^{-6} /{ }^{\circ} \mathrm{C}$ and $23.2 \times 10^{-6} /{ }^{\circ} \mathrm{F}$.
${ }^{c} E_{1}, \nu_{1}$ properties in fiber direction.
${ }^{d} E_{2}, \nu_{2}$ properties in 90° to fiber direction.

| TABLE 4-4 | HARDNESS TESTING ${ }^{\text {a }}$ | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{a}$ From Ref. [4.33], with permission.

TABLE 4-5 ROCKWELL HARDNESS SCALES ${ }^{a}$

Scale Symbol	Penetrator	Major Load kgf (N)	Dial Figures	Typical Applications of Scales
A	Diamond	60 (588)	Black	Cemented carbides, thin steel, and shallow case-hardened steel
B	$\frac{1}{16}$-in. (1.588-mm) ball	100 (981)	Red	Copper alloys, soft steels, aluminum alloys, malleable iron, etc.
C	Diamond	150 (1471)	Black	Steel, hard cast irons, pearlitic malleable iron, titanium, deep case-hardened steel, and other materials harder than B100
D	Diamond	100 (981)	Black	Thin steel and medium case-hardened steel pearlitic malleable iron
E	$\frac{1}{8}$-in. (3.175-mm) ball	100 (981)	Red	Cast iron, aluminum and magnesium alloys, bearing metals
F	$\frac{1}{16}$-in. (1.588-mm) ball	60 (588)	Red	Annealed copper alloys thin soft sheet metals
G	$\frac{1}{16}$-in. (1.588-mm) ball	150 (1471)	Red	Malleable irons, copper-nickel-zinc and cupronickel alloys; upper limit G92 to avoid possible flattening of ball
H	$\frac{1}{8}$-in. ($3.175-\mathrm{mm}$) ball	60 (588)	Red	Aluminum, zinc, lead
K	$\frac{1}{8}$-in. $(3.175-\mathrm{mm})$ ball	150 (1471)	Red	Bearing metals and other very soft or thin materials; use smallest ball and heaviest load that does not give anvil effect
L	$\overline{4}^{-\mathrm{in}}$. (6.350-mm) ball	60 (588)	Red	
M	$\frac{1}{4}$-in. $(6.350-\mathrm{mm})$ ball	100 (981)	Red	
P	$\frac{1}{4}-\mathrm{in}$. ($6.350-\mathrm{mm}$) ball	150 (1471)	Red	
R	$\frac{1}{2}$-in. ($12.70-\mathrm{mm}$) ball	60 (588)	Red	
S	$\frac{1}{2}$-in. ($12.70-\mathrm{mm}$) ball	100 (981)	Red	
V	$\frac{1}{2}$-in. (12.70-mm) ball	150 (1471)	Red	

${ }^{a}$ From Annual Book of ASTM Standards [4.1]. Copyright ASTM. Printed with permission.

TABLE 4-6 CREEP STRENGTHS OF SELECTED METALLIC ALLOYSa ${ }^{a}$

Material	Creep Strength (psi)	Conditions
Ductile cast iron 60-40-18	4,000	$10^{-4} \%$ strain per hour at $1000^{\circ} \mathrm{F}$
Iron superalloys $16-25-6$	19,000	$10^{-4} \%$ strain per hour at $1200^{\circ} \mathrm{F}$
$(25 \% \mathrm{Ni}, 16 \% \mathrm{Cr}, 6 \% \mathrm{Mo})$		
Type 302 stainless wrought	17,000	1% strain in 1000 h at $1000^{\circ} \mathrm{F}$
Type 316 stainless wrought	25,000	1% strain in 1000 h at $1000^{\circ} \mathrm{F}$
Type 430 stainless wrought	8,500	1% strain in $10,000 \mathrm{~h}$ at $1000^{\circ} \mathrm{F}$
Type 410 stainless wrought	9,200	1% strain in $10,000 \mathrm{~h}$ at $1000^{\circ} \mathrm{F}$
Magnesium wrought, AZ31B-H24	1,500	0.5% strain in 100 h at $300^{\circ} \mathrm{F}$

${ }^{a}$ Data collected from Ref. [4.14].

TABLE 4-7 CONSTANTS IN MANSON-HAFERD FORMULA ${ }^{a}$

Material	Creep or Rupture	T_{a}	$\log _{10} t_{a}$
25-20 stainless steel	Rupture	100	14
18-8 stainless steel	Rupture	100	15
S-590 alloy	Rupture	0	21
DM steel	Rupture	100	22
Inconel X	Rupture	100	24
Nimonic 80	Rupture or 0.2 or 0.1%	100	17
	plastic strain		

[^4]TABLE 4-8 PROPERTIES OF PURE METALS AT ABOUT $20^{\circ} \mathrm{C}^{a}$

Metal	Symbol	Structure ${ }^{\text {b }}$	LatticeConstant$\left(\times 10^{-12} \mathrm{~m}\right)^{c}$		$\begin{gathered} \text { Atomic } \\ \text { Radius } \\ \left(\times 10^{-12} \mathrm{~m}\right)^{c} \end{gathered}$	Density		Melting Point		Elastic Modulus (GPa)	Shear Modulus (GPa)
			a	c		$\mathrm{kg} / \mathrm{m}^{3}$	kip-s ${ }^{2} / \mathrm{ft}^{4}{ }^{\text {d }}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
Aluminum	Al	fcc	405	-	143	2700	5.239×10^{-3}	660	1220	62	24
Chromium	Cr	bcc	288	-	125	7190	13.951×10^{-3}	1875	3407	248	95
Copper	Cu	fcc	362	-	128	8960	17.385×10^{-3}	1083	1981	110	42
Gold	Au	fcc	408	-	144	19300	37.448×10^{-3}	1063	1945	80	31
Iron	Fe	bcc	287	-	124	7870	15.270×10^{-3}	1538	2800	196	76
Lead	Pb	fcc	495	-	175	11400	22.120×10^{-3}	327	621	14	5
Magnesium	Mg	hcp	321	521	160	1740	3.376×10^{-3}	650	1202	44	17
Molybdenum	Mo	bcc	315	-	136	10200	19.791×10^{-3}	2610	4730	324	125
Nickel	Ni	fcc	352	-	125	8900	17.269×10^{-3}	1453	2647	207	80
Platinum	Pt	fcc	393	-	139	21400	41.523×10^{-3}	1769	3217	73	28
Silver	Ag	fcc	409	-	144	10500	20.373×10^{-3}	961	1761	76	29
Tin	Sn	bct	583	318	-	7300	14.164×10^{-3}	232	449	43	17
Titanium	Ti	hcp	295	468	-	4510	8.751×10^{-3}	1668	3035	116	45
Tungsten	W	bcc	316	-	137	19300	37.448×10^{-3}	3410	6170	345	133
Vanadium	V	bcc	304	-	132	6100	11.836×10^{-3}	1900	3450	131	50
Zinc	Zn	hcp	266	495	133	7130	13.834×10^{-3}	420	787	-	-

TABLE 4-8 (continued) PROPERTIES OF PURE METALS AT ABOUT $20^{\circ}{ }^{\circ}{ }^{a}$

${ }^{a}$ From Ref. [4.35]. Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.
$b_{\text {fcc, face-centered-cubic; bcc, body-centered-cubic; hcp, hexagonal close-packed; bct, body-centered-tetragonal. }}$
${ }^{c}$ Multiply tabulated value by 10^{-12}. Equivalently, the tabulated values are given in pm .
$d_{\text {slug } / \mathrm{ft}^{3}}$.

TABLE 4-9 SELECTED ASTM SPECIFICATIONS INCORPORATING AISI-SAE DESIGNATIONS ${ }^{a}$

A29	Carbon and alloy steel bars, hot rolled and cold finished, generic
A108	Standard-quality cold-finished carbon steel bars
A295	High carbon-chromium ball and roller bearing steel
A304	Alloy steel bars having hardenability requirements
A322	Hot-rolled alloy steel bars
A331	Cold-finished alloy steel bars
A434	Hot-rolled or cold-finished quenched and tempered alloy steel bars
A505	Hot-rolled and cold-rolled alloy steel sheet and strip, generic
A506	Regular-quality hot-rolled and cold-rolled alloy steel sheet and strip
A507	Drawing quality hot-rolled and cold-rolled alloy steel sheet and strip
A510	Carbon steel wire rods and coarse round wire, generic
A534	Carburizing steels for antifriction bearings
A575	Merchant-quality hot-rolled carbon steel bars
A576	Special-quality hot-rolled carbon steel bars
A646	Premium-quality alloy steel blooms and billets for aircraft and aerospace
	forgings
A659	Commercial-quality hot-rolled carbon steel sheet and strip
A682	Cold-rolled spring-quality carbon steel strip, generic
A684	Untempered spring-quality cold-rolled soft carbon steel strip
A689	Carbon and alloy steel bars for springs
A711	Carbon and alloy steel blooms, billets and slabs for forging
A713	High-carbon spring steel wire for heat-treated components

${ }^{a}$ From Metals Handbook [4.12], with permission of ASM International.

TABLE 4-10 SELECTED ASTM GENERIC SPECIFICATIONS

A6 Rolled steel structural plate, shapes, sheet piling and bars, generic
A20 Steel plate for pressure vessels, generic
A29 Carbon and alloy steel bars, hot rolled and cold finished, generic
A505 Alloy steel sheet and strip, hot rolled and cold rolled, generic
A510 Carbon steel wire rod and coarse round wire, generic
A568 Carbon and HSLA, hot-rolled and cold-rolled steel sheet and hot-rolled strip, generic
A646 Premium-quality alloy steel blooms and billets for aircraft and aerospace forgings
A711 Carbon and alloy steel blooms, billets, and slabs for forging

TABLE 4-11 MECHANICAL PROPERTIES OF SELECTED CARBON STEELS IN HOT-ROLLED, NORMALIZED, AND ANNEALED CONDITION ${ }^{\text {a }}$

AISI Number	Treatment	Austenitizing Temperature		Tensile Strength		Yield Strength		Elongation (\%)	Reduction in Area (\%)	Brinell Hardness	Izod Impact Strength	
		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	MPa	ksi	MPa	ksi				J	ft-lb
1015	As rolled	-	-	420.6	61.0	313.7	45.5	39.0	61.0	126	110.5	81.5
	Normalized	925	1700	424.0	61.5	324.1	47.0	37.0	69.6	121	115.5	85.2
	Annealed	870	1600	386.1	56.0	284.4	41.3	37.0	69.7	111	115.0	84.8
1020	As rolled	-	-	448.2	65.0	330.9	48.0	36.0	59.0	143	86.8	64.0
	Normalized	870	1600	441.3	64.0	346.5	50.3	35.8	67.9	131	117.7	86.8
	Annealed	870	1600	394.7	57.3	294.8	42.8	36.5	66.0	111	123.4	91.0
1030	As rolled	-	-	551.6	80.0	344.7	50.0	32.0	57.0	179	74.6	55.0
	Normalized	925	1700	520.6	75.5	344.7	50.0	32.0	60.8	149	93.6	69.0
	Annealed	845	1550	463.7	67.3	341.3	49.5	31.2	57.9	126	69.4	51.2
1040	As rolled	-	-	620.5	90.0	413.7	60.0	25.0	50.0	201	48.8	36.0
	Normalized	900	1650	589.5	85.5	374.0	54.3	28.0	54.9	170	65.1	48.0
	Annealed	790	1450	518.8	75.3	353.4	51.3	30.2	57.2	149	44.3	32.7
1050	As rolled	-	-	723.9	105.0	413.7	60.0	20.0	40.0	229	31.2	23.0
	Normalized	900	1650	748.1	108.5	427.5	62.0	20.0	39.4	217	27.1	20.0
	Annealed	790	1450	636.0	92.3	365.4	53.0	23.7	39.9	187	16.9	12.5
1060	As rolled	-	-	813.6	118.0	482.6	70.0	17.0	34.0	241	17.6	13.0
	Normalized	900	1650	775.7	112.5	420.6	61.0	18.0	37.2	229	13.2	9.7
	Annealed	790	1450	625.7	90.8	372.3	54.0	22.5	38.2	179	11.3	8.3
1080	As rolled	-	-	965.3	140.0	586.1	85.0	12.0	17.0	293	6.8	5.0
	Normalized	900	1650	1010.1	146.5	524.0	76.0	11.0	20.6	293	6.8	5.0
	Annealed	790	1450	615.4	89.3	375.8	54.5	24.7	45.0	174	6.1	4.5

$\begin{aligned} & \vec{D} \\ & \text { 弟 } \\ & \text { 首 } \end{aligned}$	1117	As rolled	-	-	486.8	70.6	305.4	44.3	33.0	63.0	143	81.3	60.0
		Normalized	900	1650	467.1	67.8	303.4	44.0	33.5	63.8	137	85.1	62.8
		Annealed	855	1575	429.5	62.3	279.2	40.5	32.8	58.0	121	93.6	69.0
	1137	As rolled	-	-	627.4	91.0	379.2	55.0	28.0	61.0	192	82.7	61.0
		Normalized	900	1650	668.8	97.0	396.4	57.5	22.5	48.5	197	63.7	47.0
		Annealed	790	1450	584.7	84.8	344.7	50.0	26.8	53.9	174	49.9	36.8
	1141	As rolled	-	-	675.7	98.0	358.5	52.0	22.0	38.0	192	11.1	8.2
		Normalized	900	1650	706.7	102.5	405.4	58.8	22.7	55.5	201	52.6	38.8
		Annealed	815	1500	598.5	86.8	353.0	51.2	25.5	49.3	163	34.3	25.3

${ }^{a}$ From Metals Handbook [4.36], with permission of ASM International.

TABLE 4-12 MECHANICAL PROPERTIES OF SELECTED ALLOY STEELS IN HOT-ROLLED AND ANNEALED CONDITION ${ }^{a}$

ANSI Number ${ }^{b}$	Treatment	Austenitizing Temperature		Tensile Strength		Yield Strength		Elongation (\%)	Reduction in Area (\%)	Brinell Hardness	Izod Impact Strength	
		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	MPa	ksi	MPa	ksi				J	ft-lb
1340	Normalized	870	1600	836.3	121.3	558.5	81.0	22.0	62.9	248	92.5	68.2
	Annealed	800	1475	703.3	102.0	436.4	63.3	25.5	57.3	207	70.5	52.0
3140	Normalized	870	1600	891.5	129.3	599.8	87.0	19.7	57.3	262	53.6	39.5
	Annealed	815	1500	689.5	100.0	422.6	61.3	24.5	50.8	197	46.4	34.2
4130	Normalized	870	1600	668.8	97.0	436.4	63.3	25.5	59.5	197	86.4	63.7
	Annealed	865	1585	560.5	81.3	360.6	52.3	28.2	55.6	156	61.7	45.5
4150	Normalized	870	1600	1154.9	167.5	734.3	106.5	11.7	30.8	321	11.5	8.5
	Annealed	815	1500	729.5	105.8	379.2	55.0	20.2	40.2	197	24.7	18.2
4340	Normalized	870	1600	1279.0	185.5	861.8	125.0	12.2	36.3	363	15.9	11.7
	Annealed	810	1490	744.6	108.0	472.3	68.5	22.0	49.9	217	51.1	37.7
4620	Normalized	900	1650	574.3	83.3	366.1	53.1	29.0	66.7	174	132.9	98.0
	Annealed	855	1575	512.3	74.3	372.3	54.0	31.3	60.3	149	93.6	69.0
4820	Normalized	860	1580	755.0	109.5	484.7	70.3	24.0	59.2	229	109.8	81.0
	Annealed	815	1500	681.2	98.8	464.0	67.3	22.3	58.8	197	92.9	68.5
5140	Normalized	870	1600	792.9	115.0	472.3	68.5	22.7	59.2	229	38.0	28.0
	Annealed	830	1525	572.3	83.0	293.0	42.5	28.6	57.3	167	40.7	30.0
5150	Normalized	870	1600	870.8	126.3	529.5	76.8	20.7	58.7	255	31.5	23.2
	Annealed	825	1520	675.7	98.0	357.1	51.8	22.0	43.7	197	25.1	18.5

$\begin{aligned} & \text { II } \\ & \text { 菏 } \end{aligned}$	5160	Normalized Annealed	$\begin{aligned} & 855 \\ & 815 \end{aligned}$	$\begin{aligned} & 1575 \\ & 1495 \end{aligned}$	$\begin{aligned} & 957.0 \\ & 722.6 \end{aligned}$	$\begin{aligned} & 138.8 \\ & 104.8 \end{aligned}$	$\begin{aligned} & 530.9 \\ & 275.8 \end{aligned}$	$\begin{aligned} & 77.0 \\ & 40.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 17.2 \end{aligned}$	$\begin{aligned} & 44.8 \\ & 30.6 \end{aligned}$	$\begin{aligned} & 269 \\ & 197 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 10.0 \end{aligned}$	8.0 7.4
+	6150	Normalized	870	1600	939.8	136.3	615.7	89.3	21.8	61.0	269	35.5	26.2
$\stackrel{\rightharpoonup}{\mathrm{N}}$		Annealed	815	1500	667.4	96.8	412.3	59.8	23.0	48.4	197	27.4	20.2
	8620	Normalized	915	1675	632.9	91.8	357.1	51.8	26.3	59.7	183	99.7	73.5
		Annealed	870	1600	536.4	77.8	385.4	55.9	31.3	62.1	149	112.2	82.8
	8650	Normalized	870	1600	1023.9	148.5	688.1	99.8	14.0	40.4	302	13.6	10.0
		Annealed	795	1465	715.7	103.8	386.1	56.0	22.5	46.4	212	29.4	21.7
	8740	Normalized	870	1600	929.4	134.8	606.7	88.0	16.0	47.9	269	17.6	13.0
		Annealed	815	1500	695.0	100.8	415.8	60.3	22.2	46.4	201	40.0	29.5
	9310	Normalized	890	1630	906.7	131.5	570.9	82.8	18.8	58.1	269	119.3	88.0
		Annealed	845	1550	820.5	119.0	439.9	63.8	17.3	42.1	241	78.6	58.0

${ }^{a}$ From Metals Handbook [4.36], with permission of ASM International.
${ }^{b}$ All grades are fine grained. Heat-treated specimens were oil quenched unless otherwise indicated.

TABLE 4-13 MECHANICAL PROPERTIES OF SELECTED STAINLESS STEELS ${ }^{a}$

AISI/UNS						
Grade	Condition	Tensile Strength (ksi)	Yield Strength (ksi)	Elongation $(\%$ in 2 in.)	Reduction of Area $(\%)$	Maximum Brinell
Hardness						

[^5]
TABLE 4-14 MECHANICAL PROPERTIES OF SELECTED CAST IRONS ${ }^{a}$

Gray Iron

ASTM Class	Tensile Strength		Torsional Shear Strength		Compressive Strength		Reversed Bending Fatigue Limit		Transverse Load on Test Bar B ${ }^{b}$		Brinell Hardness
	MPa	ksi	MPa	ksi	MPa	ksi	MPa	ksi	kg	lb	
20	152	22	179	26	572	83	69	10	839	1850	156
25	179	26	220	32	669	97	79	11.5	987	2175	174
30	214	31	276	40	752	109	97	14	1145	2525	210
35	252	36.5	334	48.5	855	124	110	16	1293	2850	212
40	293	42.5	393	57	965	140	128	18.5	1440	3175	235
50	362	52.5	503	73	1130	164	148	21.5	1638	3600	262
60	431	62.5	610	88.5	1293	187.5	169	24.5	1678	3700	302

Ductile Iron

Specification Number	Grade or Class	Brinell Hardness ${ }^{c}$	Minimum Tensile Strength ${ }^{d}$		Minimum Yield Strength ${ }^{d}$		Minimum Elongation ${ }^{d}$ (\%)
			MPa	ksi	MPa	ksi	
$\begin{array}{r} \text { ASTM A395-76, } \\ \text { ASME SA395 } \end{array}$	60-40-18	143-187	414	60	276	40	18
ASTM A476-70, ${ }^{e}$ SAE AMS5316	80-60-03	201 min.	552	80	414	60	3
ASTM A536-72,	60-40-18	-	414	60	276	40	18
MIL-I-11466B(MR)	65-45-12	-	448	65	310	45	12
	80-55-06	-	552	80	379	55	6
	100-70-03	-	689	100	483	70	3
	120-90-02	-	827	120	621	90	2
SAE J434c	D4018	170 max.	414	60	276	40	18
	D4512	156-217	448	65	310	45	12
	D5506	187-255	552	80	379	55	6
	D7003	241-302	689	100	483	70	3
	DQ \& T	e	f	f	f	f	f
MIL-I-24137 (Ships)	Class A	190 max.	414	60	310	45	15
	Class B	190 max.	379	55	207	30	7
	Class C	175 max.	345	50	172	25	20

TABLE 4-14 (continued)	MECHANICAL PROPERTIES OF SELECTED CAST IRONS ${ }^{\text {a }}$						
Specification Number	Grade or Class	Tensile Strength		Yield Strength		Brinell Hardness	Elongation ${ }^{8}$ (\%)
		MPa	ksi	MPa	ksi		
Malleable Iron							
Ferritic							
ASTM A47, A338,	32510	345	50	224	32	156 max.	10
ANSI G48.1; FED QQ-I-666c	35018	365	53	241	35	156 max.	18
ASTM A197		276	40	207	30	156 max.	5
Pearlitic and martensitic							
ASTM A220;	40010	414	60	276	40	149-197	10
ANSI G48.2;	45008	448	65	310	45	156-197	8
MIL-I-11444B	45006	448	65	310	45	156-207	6
	50005	483	70	345	50	179-229	5
	60004	552	80	414	60	197-241	4
	70003	586	85	483	70	217-269	3
	80002	655	95	552	80	241-285	2
	90001	724	105	621	90	269-321	1
Automotive							
ASTM A602;	M3210 ${ }^{h}$	345	50	224	32	156 max.	10
SAE J158	M4504 ${ }^{i}$	448	65	310	45	163-217	4
	M5003 ${ }^{\text {i }}$	517	75	345	50	187-241	3
	M5503 ${ }^{\text {j }}$	517	75	379	55	187-241	3
	M7002 ${ }^{j}$	621	90	483	70	229-269	2
	M8501 ${ }^{j}$	724	105	586	85	269-302	1

[^6]
TABLE 4-15 DESIGNATION OF WROUGHT ALUMINUM ALLOYS ${ }^{a}$

Alloying Element	Designation
Aluminum, $99.00 \% ~ m i n i m u m ~$ and greater	$1 x x x$
Aluminum alloys grouped by	
major alloying element(s)	
Copper	$2 x x x$
Manganese	$3 x x x$
Silicon	$4 x x x$
Magnesium	$5 x x x$
Magnesium and silicon	$6 x x x$
Zinc	$7 x x x$
Other elements	$8 x x x$
Unused series	$9 x x x$

${ }^{a}$ From Metals Handbook [4.36], with permission of ASM International.

TABLE 4-16 BASIC TEMPER DESIGNATION FOR ALUMINUM ${ }^{a}$

Temper Designation	Process
F	As fabricated
O	Annealed
H	Strain hardened (wrought
	products only)
W	Solution heat treated
T	Heat treated to produce stable
	tempers other than F, O, or H

[^7]
TABLE 4-17 DESIGNATION OF CAST ALUMINUM ALLOYS ${ }^{\text {a }}$

Major Alloying Element	Designation
Aluminum, $\geq 99.00 \%$	$1 x x . x$
Aluminum alloys grouped by	
\quad major alloying element(s):	$2 x x . x$
Copper	$3 x x . x$
Silicon, with added copper	
and/or magnesium	$4 x x . x$
Silicon	$5 x x x . x$
Magnesium	$7 x x \cdot x$
Zinc	$8 x x . x$
Tin	$9 x x . x$
Other elements	$6 x x \cdot x$

${ }^{a}$ From Metals Handbook [4.36], with permission of ASM International.

TABLE 4-18 MECHANICAL PROPERTIES OF SELECTED NON-HEAT-TREATABLE ALUMINUM ALLOYS ${ }^{a}$

Alloy	Temper ${ }^{\text {b }}$	Tensile Strength		Yield Strength ${ }^{c}$		$\underset{(\%)}{\text { Elongation }^{d}}$	Brinell Hardness ${ }^{e}$	Shear Strength		Fatigue Limit f	
		MPa	ksi	MPa	ksi			MPa	ksi	MPa	ksi
1100	O	90	13	35	5	35	23	60	9	35	5
	H14	125	18	115	17	9	32	75	11	50	7
	H18	165	24	150	22	5	44	90	13	60	9
3003	O	110	16	40	6	30	28	75	11	50	7
	H14	150	22	145	21	8	40	95	14	60	9
	H18	200	29	185	27	4	55	110	16	70	10
3004	O	180	26	70	10	20	45	110	16	95	14
	H34	240	35	200	29	9	63	125	8	105	15
	H38	285	41	250	36	5	77	145	21	110	16
	H19	295	43	285	41	2	-	-	-	-	-
3104	H19	290	42	260	38	4	-	-	-	-	-
3005	O	130	19	55	8	25	-	-	-	-	-
	H14	180	26	165	24	7	-	-	-	-	-
	H18	240	35	225	32	4	-	-	-	-	-
3105	O	115	17	55	8	24	-	85	12	-	-
	H25	180	26	160	23	8	-	105	15	-	-
	H18	215	31	195	28	3	-	115	17	-	-
5005	O	125	18	40	6	25	28	75	11	-	-
	H34	160	23	140	20	8	41	95	14	-	-
	H38	200	29	185	27	5	55	110	16	-	-
5050	O	145	21	55	8	24	36	105	15	85	12
	H34	190	28	165	24	8	53	125	18	90	13
	H38	220	32	200	29	6	63	140	20	95	14
5252	O	180	26	85	12	23	46	115	17	-	-
	H25	235	34	170	25	11	68	145	21	-	-
	H28	285	41	240	35	5	75	160	23	-	-
5154	O	240	35	115	17	27	58	150	22	115	17
	H34	290	42	230	33	13	73	165	24	130	19
	H38	330	48	270	39	10	80	195	28	145	21
	H112	240	35	115	17	25	63	-	-	115	17
5454	O	250	36	115	17	22	62	160	23	-	-
	H34	305	44	240	35	10	81	180	26	-	-
	H111	260	38	180	26	14	70	160	23	-	-
	H112	250	36	125	18	18	62	160	23	-	-

TABLE 4-18 (continued) ALUMINUM ALLOYS ${ }^{\text {a }}$			MECHANICAL PROPERTIES OF SELECTED NON-HEAT-TREATABLE								
5056	O	290	42	150	22	35	65	180	26	140	20
	H18	435	63	405	59	10	105	235	34	150	22
	H38	310	60	345	50	15	100	220	32	150	22
5657	O	110	16	40	6	25	28	75	11	-	-
	H25	160	23	140	20	12	40	95	14	-	-
	H28	195	28	165	24	7	50	105	15	-	-
5082	H19	395	57	370	54	4	-	-	-	-	-
5182	O	275	40	130	19	21	-	-	-	-	-
	H19	420	61	395	57	4	-	-	-	-	-
5086	O	260	38	115	17	22	-	160	23	-	-
	H34	325	47	255	37	10	-	185	27	-	-
	H112	270	39	130	19	14	-	-	-	-	-
	H116	290	42	205	30	12	-	-	-	-	-
7072	O	70	10	-	-	15	-	-	-	-	-
	H113	75	11	-	-	15	-	-	-	-	-
8001	O	110	16	40	6	30	-	-	-	-	-
	H18	200	29	185	27	4	-	-	-	-	-
8280	O	115	17	50	7	28	-	-	-	-	-
	H18	220	32	205	30	4	-	-	-	-	-

${ }^{a}$ From Metals Handbook [4.36], with permission of ASM International.
${ }^{b}$ See Table 4-16 for temper designations.
${ }^{c}$ At 0.2% offset.
${ }^{d}$ In 50 mm or 2 in .
${ }^{e} 500-\mathrm{kg}$ load, $10-\mathrm{mm}$ ball, 30 s .
$f_{\text {Based on } 500 \text { million cycles using an R. R. Moore-type rotating-beam machine. }}^{\text {B }}$.

TABLE 4-19 NOMINAL COMPOSITIONS AND TYPICAL ROOM TEMPERATURE MECHANICAL PROPERTIES OF MAGNESIUM ALLOYS ${ }^{a}$

Alloy	Composition						Tensile Strength		Yield Strength						Elongation in 50 mm or 2 in. (\%)	Shear Strength		Brinell Hardness ${ }^{c}$		
							Tensile	Compressive		Bearing										
	Al	$\mathrm{Mn}^{\text {b }}$	Th	Zn	Zr	Other			MPa	ksi	MPa	ksi	MPa	ksi		MPa	ksi		MPa	ksi
Sand and Permanent Mold Castings																				
AM100A-T61	10.0	0.1	-	-	-	-	275	40	150	22	150	22	-	-	1	-	-	69		
AZ63A-T6	6.0	0.15	-	3.0	-	-	275	40	130	19	130	19	360	52	5	145	21	73		
AZ81A-T4	7.6	0.13	-	0.7	-	-	275	40	83	12	83	12	305	44	15	125	18	55		
AZ91C-T6	8.7	0.13	-	0.7	-	-	275	40	195	21	145	21	360	52	6	145	21	66		
AZ92A-T6	9.0	0.10	-	2.0	-	-	275	40	150	22	150	22	450	65	3	150	22	84		
EZ33A-T5	-	-	-	2.7	0.6	$3.3 \mathrm{RE}^{\text {d }}$	160	23	110	16	110	16	275	40	2	145	21	50		
HK31A-T6	-	-	3.3	-	0.7	-	220	32	105	15	105	15	275	40	8	145	21	55		
HZ32A-T5	-	-	3.3	2.1	0.7	-	185	27	90	13	90	13	255	37	4	140	20	57		
K1A-F	-	-	-	-	0.7	-	180	26	55	8	-	-	125	18	1	55	8	-		
QE22A-T6	-	-	-	-	0.7	$2.5 \mathrm{Ag}, 2.1 \mathrm{Di}^{e}$	260	38	195	28	195	28	-	-	3	-	-	80		
QH21A-T6	-	-	60	-	0.7	$2.5 \mathrm{Ag}, 1.0 \mathrm{Di}^{e}$	275	40	205	30	-	-	-	-	4	-	-	-		
ZE41A-T5	-	-	-	4.2	0.7	$1.2 \mathrm{RE}^{d}$	205	30	140	20	140	20	350	51	3.5	160	23	62		
ZE63A-T6	-	-	-	5.8	0.7	$2.6 \mathrm{RE}^{\text {d }}$	300	44	190	28	195	28	-	-	10	-	-	60-85		
ZH62A-T5	-	-	1.8	5.7	0.7	-	240	35	170	25	170	25	340	49	4	165	24	70		
ZK51A-T5	-	-	-	4.6	0.7	-	205	30	165	24	165	24	325	47	3.5	160	23	65		
ZK61A-T5	-	-	-	6.0	0.7	-	310	45	185	27	185	27	-	-	-	170	25	68		
ZK61A-T6	-	-	-	6.0	0.7	-	310	45	195	28	195	28	-	-	10	180	26	70		
Die Castings																				
AM60A-F	6.0	0.13	-	-	-	-	205	30	115	17	115	17	-	-	6	-	-	-		
AS41A-F ${ }^{f}$	4.3	0.35	-	-	-	1.0 Si	220	32	150	22	150	22	-	-	4	-	-	-		
$\begin{aligned} & \text { AZ91A } \\ & \text { and B-F } \end{aligned}$	9.0	0.13	-	0.7	-	-	230	33	150	22	165	24	-	-	3	140	20	63		

Alloy	Composition						Tensile Strength		Yield Strength						Elongation in 50 mm or 2 in. (\%)	Shear Strength		Brinell Hardness ${ }^{c}$		
							Tensile	Compressive		Bearing										
	Al	$\mathrm{Mn}^{\text {b }}$	Th	Zn	Zr	Other			MPa	ksi	MPa	ksi	MPa	ksi		MPa	ksi		MPa	ksi
Extruded Bars and Shapes																				
AZ10A-F	1.2	0.2	-	0.4	-	-	240	35	145	21	69	10	-	-	10	-	-	-		
AZ21X1-F ${ }^{f}$	1.8	0.02	-	1.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
$\begin{aligned} & \text { AZ31 B } \\ & \text { and C-F } h \end{aligned}$	3.0	-	-	1.0	-	-	260	38	200	29	97	14	230	33	15	130	19	49		
AZ61A-F	6.5	-	-	1.0	-	-	310	45	230	33	130	19	285	41	16	140	20	60		
AZ80A-T5	8.5	-	-	0.5	-	-	380	55	275	40	240	35	-	-	7	165	24	82		
HM31A-F	-	1.2	3.0	-	-	-	290	42	230	33	185	27	345	50	10	150	22	-		
M1A-F	-	1.2	-	-	-	-	255	37	180	26	83	12	195	28	12	125	18	44		
ZK21A-F	-	-	-	2.3	$0.45^{\text {b }}$	-	260	38	195	28	135	20	-	-	4	-	-	-		
ZK40A-T5	-	-	-	4.0	$0.45{ }^{\text {b }}$	-	276	40	255	37	140	20	-	-	4	-	-	-		
ZK60A-T5	-	-	-	5.5	$0.45^{\text {b }}$	-	365	53	305	44	250	36	405	59	11	180	26	88		
Sheet and Plate																				
AZ31B-H24	3.0	-	-	1.0	-	-	290	42	220	32	180	26	325	47	15	160	23	73		
HK31A-H24	-	-	3.0	-	0.6	-	255	33	200	29	160	23	285	41	9	140	20	68		
HM21A-T8	-	0.6	2.0	-	-	-	235	34	170	25	130	19	270	39	11	125	18	-		

${ }^{a}$ From Metals Handbook [4.36], with permission of ASM International.
${ }^{b}$ Minimum.
${ }^{c} 500-\mathrm{kg}$ load; $10-\mathrm{mm}$ ball.
${ }^{d}$ Rare earth.
${ }^{e}$ Didymium
$f_{\text {For battery applications. }}$
${ }^{g} \mathrm{~A}$ and B are identical except that 0.30% max residual Cu is allowable in AZ91B.
${ }^{h}$ Properties of B and C are the same except that AZ 31 C contains $0.15 \% \mathrm{~min}$. $\mathrm{Mn}, 0.1 \% \max . \mathrm{Cu}$, and $0.03 \% \mathrm{max} . \mathrm{Ni}$.

TABLE 4-20 RANGES OF MECHANICAL PROPERTIES FOR SELECTED NONFERROUS ALLOYS ${ }^{a}$

Metals and Their Alloys	Tensile Strength (ksi)	Yield Strength (ksi)	Elongation in 2 in . (\%)	Brinell Hardness
Titanium				
Heat treated	145-240	135-220	1-12	-
Annealed	60-170	40-150	-	-
Nickel				
Annealed and age hardened	130-190	90-120	10-25	-
Cast, annealed, and aged	30-145	-	1-45 cast	-
Annealed	50-120	12-65	1-4	300-380
Copper				
Hard	50-55	45	-	194
Annealed	32-35	10	35-45	40
Zinc				
Cast	25-47.6	-	1-10	-
Corrosionresistant	21-46	-	28	60-80
Heatresistant	19.5-42	-	10-65	51-61
Tin	2.8-8.7	1.3 annealed, 2-6 corrosionresistant	35 cold rolled, 55 cast	7 annealed
Lead				
Rolled	2.4-4.7	0.8-1.6	43-51	5.9-9.5
Extruded	2-3.3	-	48-75	5.1-12.4

${ }^{a}$ Data collected from Ref. [4.14].

TABLE 4-21 GLASS TRANSITION TEMPERATURE FOR SELECTED PLASTICS

Thermoplastics	$T_{g}\left({ }^{\circ} \mathrm{C}\right)$	Thermosets	$T_{g}\left({ }^{\circ} \mathrm{C}\right)$
Acrylonitrile-butadiene-	80	Alkyds, glass filled	200
styrene, glass filled		Epoxides	150-250
Polyamides, 30% glass filled	60	Epoxides, glass filled	150-250
Polycarbonate, 30\% glass filled	150	Melamines, glass filled	200
Polyethylene		Phenolics, glass filled	200-300
Low density	-20	Polybutadienes, glass filled	200
High density		Polyesters, glass filled	200
Polyethylene terephthalate	67	Polyimides, glass filled	350
Polymethylmethacrylate	100	Silicones, glass filled	300
Poly-4-methylpentene-1	55	Ureas	80
Polyoxymethylene	-13	Urethanes, solid	100
Polyphenyleneoxide, glass filled	180		
Polyphenylenesulfide, 40\% glass filled	150		
Polypropylene, glass filled	0		
Polystyrene	100		
Polysulfone, 30\% glass filled	200		
Polytetrafluoroethylene	120		
Polyvinylchloride	80		

${ }^{a}$ From Ref. [4.35]. Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.

TABLE 4-22	COMMONLY USED ABBREVIATIONS FOR ENGINEERING
PLASTICS	
ABS	Acrylonitrile-butadiene-styrene terpolymer
ACPES	Acrylonitrile-chlorinated polyethylene-styrene terpolymer
BR	Butadiene rubber
CPE	Chlorinated polyethylene
CPVC	Chlorinated poly(vinyl chloride)
ECTFE	Ethylene chlorotrifluoroethylene copolymer
EPD	Ethylene-propylene-diene terpolymer
EPM	Ethylene-propylene copolymer
ETFE	Ethylene tetrafluoroethylene copolymer
EVA	Ethylene-vinyl acetate copolymer
FEP	Fluorinated ethylene propylene
HDPE	High-density polyethylene

TABLE 4-22 (continued)	COMMONLY USED ABBREVIATIONS FOR ENGINEERING
PLASTICS	

[^8]TABLE 4-23 TYPICAL PROPERTIES OF PLASTICS USED FOR MOLDING AND EXTRUSION ${ }^{\text {a }}$

	ATSM Test Method	Polyethylene		Polypropylene
		Low Density	High Density	
1. Specific gravity ${ }^{b}$	D792	0.91-0.925	0.94-0.965	0.900-0.910
2. Tensile modulus $\left(\times 10^{+5} \mathrm{psi}\right)^{c}$	D638	0.14-0.38	0.6-1.8	1.6-2.25
3. Compressive modulus $\left(\times 10^{+5} \mathrm{psi}\right)$	D695	-	-	1.5-3.0
4. Flexural modulus $\left(\times 10^{+5} \mathrm{psi}\right)$	D790	0.08-0.6	1.0-2.6	1.7-2.5
5. Tensile strength $\left(\times 10^{+3} \mathrm{psi}\right)$	D638	0.6-2.3	3.1-5.5	4.5-6.0
6. Elongation at break (\%)	D638	90-800	20-130	100-600
7. Compressive strength $\left(\times 10^{+3} \mathrm{psi}\right)$	D695	2.7-3.6	12-18	5.5-8.0
8. Flexural yield strength $\left(\times 10^{+3} \mathrm{psi}\right)$	D790	-	1.0	6-8
9. Impact strength, notched Izod (ft-lb/in.)	D256	No break	0.5-20	0.4-1.0
10. Hardness, Rockwell	D785	$\begin{aligned} & \text { D40-51 } \\ & \text { (Shore) } \end{aligned}$	$\begin{aligned} & \text { D60-70 } \\ & \text { (Shore) } \end{aligned}$	R80-102

TABLE 4-23 (continued) TYPICAL PROPERTIES OF PLASTICS USED FOR MOLDING AND EXTRUSION ${ }^{\text {a }}$

TABLE 4-23 (continued) TYPICAL PROPERTIES OF PLASTICS USED FOR MOLDING AND EXTRUSION ${ }^{a}$

	ATSMTestMethod	Cellulose Acetate	Cellulose AcetateButyrate	Fluoropolymers	
				$-\mathrm{CF}_{2}-\mathrm{CF}_{2}$	$-\mathrm{CF}_{2}-\mathrm{CFCl}-$
1. Specific gravity ${ }^{b}$	D792	1.22-1.34	1.15-1.22	2.14-2.20	2.1-2.2
2. Tensile modulus $\left(\times 10^{+5} \mathrm{psi}\right)^{c}$	D638	0.65-4.0	0.5-2.0	0.58	1.5-3.0
3. Compressive modulus $\left(\times 10^{+5} \mathrm{psi}\right)$	D695	-	-	-	-
4. Flexural modulus $\left(\times 10^{+5} \mathrm{psi}\right)$	D790	-	-	-	-
5. Tensile strength $\left(\times 10^{+3} \mathrm{psi}\right)$	D638	1.9-9.0	2.6-6.9	$2-5$	4.5-6.0
6. Elongation (\%) at break	D638	6-70	40-88	200-400	80-250
7. Compressive strength $\left(\times 10^{+3} \mathrm{psi}\right)$	D695	3-8	2.1-7.5	1.7	4.6-7.4
8. Flexural yield strength $\left(\times 10^{+3} \mathrm{psi}\right)$	D790	2-16	1.8-9.3	-	7.4-9.3
9. Impact strength, notched Izod, (ft-lb/in.)	D256	1-7.8	1-11	3.0	2.5-2.7
10. Hardness, Rockwell	D785	R34-125	R31-116	$\begin{aligned} & \text { D50-55 } \\ & \text { (Shore) } \end{aligned}$	R75-95

${ }^{a}$ From Ref. [4.37], pp. 518-525. Reprinted by courtesy of Marcel Dekker.
${ }^{b}$ Specific gravity is defined as the ratio of the mass in air per unit volume of an impermeable portion of the material at $23^{\circ} \mathrm{C}$ to the mass in air of an equal volume of gas-free distilled water at the same temperature.
${ }^{c}$ For psi, multiply tabulated values by 10^{+5}.

TABLE 4-24 TYPICAL ROOM TEMPERATURE MECHANICAL PROPERTIES OF CERAMICS AND GLASSES ${ }^{a, b}$

	Melting Point $\left({ }^{\circ} \mathrm{C}\right)$	Tensile or Bending Strength, σ (MPa)	Young's Modulus, E (GPa)	Coefficient of Thermal Expansion $\times 10^{-6}\left({ }^{\circ} \mathrm{C}^{-1}\right)^{c}$
Alumina ($\mathrm{Al}_{2} \mathrm{O}_{3}$)	2050	300 (700 whisker)	308	8
Magnesia (MgO)	2850	100	315	14.8
Silicon carbide (SiC)	2300 (decomposes)	200	350	4.5
Silicon nitride ($\mathrm{Si}_{3} \mathrm{~N}_{4}$)	1900 (sublimes)	600 (1400 whisker)	320	2.5
Titanium carbide (TiC), Ni/Mo binder	3250	200	350	7
Tungsten carbide (WC), Co binder	2620	350	700	1
Common bulk glass	Fuses at 1600	70 (up to 4000 filaments)	70	10
Pyroceram glass ceramic	Fuses at 1600	190	126	10
Concrete, reinforced		20	35	7
Carbon graphite	3600 (sublimes)	30	6	3

${ }^{a}$ From Ref. [4.35]. Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.
b^{b} There is much more variation in properties of these types of solids than metals, variations occurring with production methods. Properties also vary with temperature and rate of loading.
${ }^{c}$ Multiply tabulated values by 10^{-6}.

TABLE 4-25 TYPICAL ROOM TEMPERATURE STRENGTHS OF CERAMIC MATERIALS ${ }^{a}$

Material	Bending Strength $(\mathrm{MOR})^{b}$		Tensile Strength	
	MPa	ksi	MPa	ksi
Sapphire (single-crystal, $\mathrm{Al}_{2} \mathrm{O}_{3}$)	620	90	-	-
$\begin{aligned} & \mathrm{Al}_{2} \mathrm{O}_{3} \\ & (0-2 \% \text { porosity }) \end{aligned}$	350-580	50-80	200-310	30-45
Sintered $\mathrm{Al}_{2} \mathrm{O}_{3}$ ($<5 \%$ porosity)	200-350	30-50	-	-
Alumina porcelain ($90-95 \% \mathrm{Al}_{2} \mathrm{O}_{3}$)	275-350	40-50	172-240	25-35
Sintered BeO (3.5\% porosity)	172-275	25-40	90-133	13-20
Sintered MgO ($<5 \%$ porosity)	100	15	-	-
Sintered stabilized ZrO_{2} ($<5 \%$ porosity)	138-240	20-35	138	20
Sintered mullite ($<5 \%$ porosity)	175	25	100	15
Sintered spinel ($<5 \%$ porosity)	83-220	12-32	-	19
Hot-pressed $\mathrm{Si}_{3} \mathrm{~N}_{4}$ ($<1 \%$ porosity)	620-965	90-140	350-580	50-80
Sintered $\mathrm{Si}_{3} \mathrm{~N}_{4}$ ($\sim 5 \%$ porosity)	414-580	60-80	-	-
Reaction-bonded $\mathrm{Si}_{3} \mathrm{~N}_{4}$ (15-25\% porosity)	200-350	30-50	100-200	15-30
Hot-pressed SiC ($<1 \%$ porosity)	621-825	90-120	-	-
Sintered SiC ($\sim 2 \%$ porosity)	450-520	65-75	-	-
$\begin{aligned} & \text { Reaction-sintered SiC } \\ & \quad(10-15 \% \text { free Si) } \end{aligned}$	240-450	35-65	-	-
Bonded SiC ($\sim 20 \%$ porosity)	14	2	-	-
Fused SiO_{2}	110	16	69	10
Vycor or pyrex glass	69	10	-	-
Glass-ceramic	245	10-35	-	-
Machinable glass-ceramic	100	15	-	-

TABLE 4-25 (continued) TYP	TYPICAL ROOM TEMPERATURE STRENGTHS OF CERAMIC MATERIALS ${ }^{\text {a }}$			
Hot-pressed BN ($<5 \%$ porosity)	48-100	7-15	-	-
Hot-pressed $\mathrm{B}_{4} \mathrm{C}$ ($<5 \%$ porosity)	310-350	45-50	-	-
Hot-pressed TiC ($<2 \%$ porosity)	275-450	40-65	240-275	35-40
Sintered WC (2\% porosity)	790-825	115-120	-	-
Mullite porcelain	69	10	-	-
Steatite porcelain	138	20	-	-
Fire-clay brick	5.2	0.75	-	-
Magnesite brick	28	4	-	-
Insulating firebrick (80-85\% porosity)	0.28	0.04	-	-
$2600^{\circ} \mathrm{F}$ insulating firebrick (75\% porosity)	1.4	0.2	-	-
$3000^{\circ} \mathrm{F}$ insulating firebrick (60\% porosity)	2	0.3	-	-
Graphite (grade ATJ)	28	4	12	1.8

[^9]TABLE 4-26 PROPERTIES OF HUMAN BONE ${ }^{\text {a }}$

		Elastic	Tensile	Compressive	Percentage	Percentage
Type of	Density	Modulus	Strength $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	(GPa)	(MPa)	Strength (MPa)
Elongation	Contraction Human Bone	$1700-2000$	$5-35$	$55-200$	$106-224$	$0.5-4.9$
Cortical b	$100-1000$	$0.001-9.8$	$0.9-5.4$	$0.1-310$	$0.9-3.5$	$1.7-2.7$
Cancellous					$1.1-13.4$	

${ }^{a}$ Adapted from Ref. [4.29], where sources of the data are given.
${ }^{b}$ Parallel to the axis of the long bone

TABLE 4-27 MATERIAL CONSTANTS OF HUMAN FEMUR CORTICAL BONE ${ }^{a}$

Type of Elastic Model	E_{x} (GPa)	E_{y} (GPa)	E_{z} (GPa)	$G_{x y}$ (GPa)	$G_{x z}$ (GPa)	$G_{y z}$ (GPa)	$v_{x y}$	$v_{x z}$	$v_{y z}$	$v_{y x}$	$v_{z x}$	$v_{z y}$
Transverse isotropic	11.5	11.5	17.0	3.6	3.3	3.3	0.58	0.31	0.31	0.58	0.46	0.46
Orthotropic	12.0	13.4	20.0	4.53	5.61	6.23	0.376	0.222	0.235	0.422	0.371	0.350

[^10]
TABLE 4-28 PROPERTIES OF HUMAN ARTICULAR CARTILAGE ${ }^{a}$

$\begin{aligned} & \text { Density } \\ & \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{aligned}$	Coefficient of Friction for Synovial Joint	Tensile Strength ${ }^{b}$ -Ultimate(MPa)	Percentage Elongation ${ }^{c}$ -Ultimate-	Tensile Modulus ${ }^{b, d}$ (MPa)	Indentation Stiffness ${ }^{e}$ (MPa)	Poisson's Ratio
1300	0.005-0.04	2-40	60-120	3-224	4.8-8.4	0-0.4

${ }^{a}$ Adapted from Ref. [4.29], where sources of the data are given.
${ }^{b}$ Superficial and middepth cartilage layers of the human femoral head and talus. Loaded parallel to the predominant alignment of the collagen fibers in the superficial layer.
${ }^{c}$ Bovine cartilage from the superficial, middepth, and deep zone layers. Loaded at angles to the axis of split-line patterns of $0,45^{\circ}$, and 90°.
${ }^{d}$ Slope of stress-strain curve at Lagrangian stresses of 1 and 10 MPa .
${ }^{e}$ In vivo tests of arthroscopy patients.

TABLE 4-29 PROPERTIES OF HUMAN LIGAMENTS AND TENDONS ${ }^{a}$

	Tensile Strength -Ultimate- (MPa)	Percentage Elongation -Ultimate-	Tensile Modulus (MPa)
Ligament	$7.4-52.7$	$5-44$	$65.3-1060$
Tendon, patellar	$17-78$	$14-31$	$239-660$

${ }^{a}$ Adapted from Ref. [4.29], where sources of the data are given.

TABLE 4-30 INFLUENCE OF ANATOMIC LOCATION ON THE TENSILE MODULUS OF HUMAN MENISCUS ${ }^{a}$

Anatomical Location	Modulus, $E(\mathrm{MPa})$
Medial anterior	159.6
Medial central	93.2
Medial posterior	110.2
Lateral anterior	159.1
Lateral central	228.8
Lateral posterior	294.1

[^11]
TABLE 4-31 INFLUENCE OF AGE ON ULTIMATE TENSILE STRENGTH OF VARIOUS TISSUES ${ }^{a, b}$

	Age (years)							
Tissue	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$	
Femoral cortical bone	93	100	98	91	76	70	70	
Costal cartilage	102	100	93	80	56	33	29	
Muscle tissue	127	100	87	73	67	60	60	
Calcaneal tendinous tissue	100	100	100	100	100	95	78	
Skin	100	100	154	154	140	127	107	

${ }^{a}$ Adapted from Ref. [4.29].
${ }^{b}$ Entries are the percentage of the highest ultimate tensile strength.

TABLE 4-32 PROPERTIES OF VERTEBRAL CANCELLOUS BONE SPECIMENS FROM SEVERAL SPECIES ${ }^{a}$

	Human	Dog	Pig	Cow	Sheep
Volumetric bone material density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	178	340	373	449	437
Compressive strength, ultimate (MPa)	1.21	6.12	2.40	5.67	13.22

${ }^{a}$ Adapted from Ref. [4.29].

TABLE 4-33 PROPERTIES OF METALLIC BIOMATERIALS ${ }^{a}$

		$\begin{gathered} \text { Modulus, } \\ E \\ (\mathrm{GPa}) \end{gathered}$	Yield Strength (MPa)	Characteristics	Applications
Ti-6Al-4V	Annealed Pure Ti	127	830-896	Inert, questionable	Total hip and
		120	470	wear properties, strength-to-weight ratio high, elastic modulus similar to that of bone	knee stems
$\begin{aligned} & \mathrm{Co}-\mathrm{Cr}-\mathrm{Mo} \\ & \text { ASTM F-75 } \end{aligned}$	Cast/annealed Wrought/annealed	200	450-492	Good wear properties	Hip stems, dental
		230	390		implants, surfaces in hips and knees
AISI-316LVM stainless Tantalum	Annealed 30% Cold worked Cold worked	210	211-280	Low cost	Suture, bone screws
		230	750-1160		and plates
		190	345	Chemically inert	Suture, transdermal implant testing

${ }^{a}$ See Ref. [4.28] for more properties as well as sources for the data.

TABLE 4-34 MATERIAL PROPERTIES OF POLYMERS ${ }^{\text {a }}$
\(\left.$$
\begin{array}{lcccccc}\hline & \begin{array}{c}\text { Modulus } \\
(\mathrm{GPa})\end{array} & \begin{array}{c}\text { Strength } \\
\text { Yield- } \\
\text { (MPa) }\end{array} & \begin{array}{c}\text { Strength } \\
\text { (Ultimate- } \\
(\mathrm{MPa})\end{array} & \begin{array}{c}T_{\text {glass }} \\
\left({ }^{\circ} \mathrm{C}\right)\end{array}
$$ \& \begin{array}{c}Maximum

Strain

(\%)\end{array} \& Applications\end{array}\right]\)| Thermosets |
| :--- |

UHMWPE						
Molded	-	21	34	-	300	Articular bearing surfaces
Machined extruded	1.24	21-28	34-47	-	200-250	
Degradable Polymers ${ }^{\text {b }}$						
Polyglycolic acid	8.4	-	890	$36(230)^{c}$	30	Suture, nerve guidance
PGA						channels, chondrocyte scaffolds
Poly-L-lactic acid PLLA	8.5	-	900	$56(170)^{c}$	25	Suture, stents, bone plates, screws
Polyglactine910	8.6	-	850	40 (200) ${ }^{\text {c }}$	24	Skin regeneration
Polydioxanone	8.6	-	850	<20 (106) ${ }^{\text {c }}$	35	Monofilament suture

${ }^{a}$ See Ref. [4.2] for more properties as well as sources for the data.
${ }^{b}$ High degree of crystallinity.
${ }^{c}$ Values in parentheses represent melting temperature (${ }^{\circ} \mathrm{C}$).

TABLE 4-35 STIFFNESS-BASED DESIGN FOR MINIMUM MASS ${ }^{a}$

Member	Prescribed Design Constraints	Design Variable	To Minimize the Mass, Maximize the Quantity
Extension bar	Stiffness, length	Cross-sectional area	E / ρ^{*}
Bar in torsion	Stiffness, length, shape	Cross-sectional area	$G^{1 / 2} / \rho^{*}$
	Stiffness, length, outer radius	Wall thickness	G / ρ^{*}
Beam	Stiffness, length, wall-thickness	Outer radius	$G^{1 / 3} / \rho^{*}$
	Stiffness, length, shape	Cross-sectional area	$E^{1 / 2} / \rho^{*}$
	Stiffness, length, height	Width	E / ρ^{*}
Column	Stiffness, length, width	Height	$E^{1 / 3} / \rho^{*}$
Plate (loaded in bending)	Buckling load, length, shape	Cross-sectional area	$E^{1 / 2 / \rho^{*}}$
Plate (compressed in plane, buckling failure)	Suckling load, length and width	Thickness	$E^{1 / 3} / \rho^{*}$
Cylinder with internal pressure	Displacement, pressure and radius	Wall thickness	$E^{1 / 3} / \rho^{*}$
Spherical shell with internal pressure	Displacement, pressure and radius	Wall thickness	E / ρ^{*}

[^12]
TABLE 4-36 STRENGTH-BASED DESIGN FOR MINIMUM MASS ${ }^{a}$

Member	Prescribed Design Constraints	Design Variable	To Minimize the Mass, Maximize the Quantity b
Extension bar	Stiffness, length	Cross-sectional area	σ_{f} / ρ^{*}
Bar in torsion	Stiffness, length, shape	Cross-sectional area	$\sigma_{f}^{2 / 3} / \rho^{*}$
	Stiffness, length, outer radius	Wall thickness	σ_{f} / ρ^{*}
	Stiffness, length, wall thickness	Outer radius	$\sigma_{f}^{1 / 2 / \rho^{*}}$
Beam	Stiffness, length, shape	Cross-sectional area	$\sigma_{f}^{2 / 3 / \rho^{*}}$
	Stiffness, length, height	Width	σ_{f} / ρ^{*}
Column	Stiffness, length, width	Height	$\sigma_{f}^{1 / 2} / \rho^{*}$
Plate (loaded in bending)	buckling load, length, shape	Cross-sectional area	σ_{f} / ρ^{*}
Plate (compressed in plane, buckling failure)	Buckling load, length and width	Thickness	$\sigma_{f}^{1 / 2} / \rho^{*}$
Cylinder with internal pressure	Stiffness, length, width	Thickness	$\sigma_{f}^{1 / 2 / \rho^{*}}$
Spherical shell with internal pressure	Displacement, pressure and radius	Wall thickness	σ_{f} / ρ^{*}
			σ_{f} / ρ^{*}

${ }^{a}$ Adapted from Ref. [4.32].
${ }^{b}$ For design for infinite fatigue life, replace σ_{f} by the endurance limit σ_{e}.

C H A P T E R

Experimental Stress Analysis

5.1 Notation 235
5.2 Introduction 236
5.3 Electrical Resistance Strain Gage 237
5.4 Brittle Coating 244
5.5 Photoelasticity 245
References 245
Tables 247

Practical problems sometimes are so complicated that there is reluctance to use simple formulas for the calculation of strains and stresses. Then experimental and numerical techniques can be helpful, with experimental methods useful both for treating complete engineering problems and for verifying the correctness of analytical or computational analyses. Since stress cannot usually be measured directly, most experimental methods serve to measure strains, making the title of this chapter somewhat of a misnomer. Introductory information on the use of strain gages, brittle coatings, and some other means of experimental analysis is provided.

5.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F for force, V for voltage, Ω for resistance, and T for time.
b Width of tensile specimen (L)
E Young's modulus (F / L^{2})
E_{l} Magnitude of electric field vector ($F /$ charge)
E_{V} Output voltage (V)
f Frequency (cycles/T)
F Force (F)
I Current (amps)
P_{g} Power dissipated by strain gage $(F L / T)$
R Resistance of uniform conductor of length L, cross-sectional area A, and specific resistance $\rho, R=\rho L / A(\Omega)$

```
            SA Sensitivity of material of gage wire
            Sc}\mathrm{ Circuit sensitivity (V)
            Sg Gage factor
u,v,w Displacement components (L)
    V Applied voltage (V)
    Shear strain
    \DeltaE Voltage fluctuation (V)
        \varepsilon Unit extension or strain (L/L)
        \varepsilont}\mathrm{ Threshold strain of brittle coating (L/L)
        A Angle to principal direction
        v Poisson's ratio
        Specific resistance
        \sigma Stress (F/L L
    \sigma},\mp@subsup{\sigma}{2}{}\mathrm{ Principal stresses (F/L L
    \sigmauc Ultimate compressive strength (F/L L
    \sigmaut Ultimate tensile strength (F/L'L
    \Omega Resistance unit (volts/ampere or ohms)
```


5.2 INTRODUCTION

To improve on the simple use of a micrometer to find the changes in length of a specimen after it is loaded, methods such as the Moire technique, interferometric strain gages, electric strain gages, brittle coatings, photoelasticity, x-ray diffraction, holographs, and laser speckle interferometry are employed.

A Moire pattern is defined as a visual pattern produced by the superposition of two regular motifs that geometrically interfere. These motifs are parallel lines, rectangular arrays of dots, concentric circles, or radial lines. Moire patterns are used to measure displacements, rotations, curvature, and strain.

Interferometric gages measure the change in grating pitch deposited at a desired area of specimen in terms of optical interference.

Holographics and laser speckle interferometry are relatively recent and important developments in experimental mechanics. They permit the extension of interferometry measurements of diffuse objects.

X-ray diffraction can be used to determine changes in interatomic distances. This can be very useful in analyzing stress concentration and residual stress.

Analogies are important in experimental studies. For example, they use correspondences between governing differential equations of torsion and membrane film or between differential equations of solid mechanics and electromagnetics.

The majority of current applications in experimental stress analysis utilize electric strain gages. Only a brief introduction of electric strain gage and brittle coating methodologies is presented in this chapter. The bases of other methods are beyond the scope of this book.

Since the 1950s, experimental stress analysis technology has developed rapidly. Developments continue in high-precision instrumentation and online computer processing of experimental data in real time. Online computers can control hundreds of strain gages and process all the data automatically. This can reduce both the time and cost. Holography and laser speckle techniques are very effective experimental methods and often involve huge amounts of data processing, which can now be handled by computers. Most experimental methods can be categorized as mechanical, electrical, or optical methods. The introduction of the basic principles here of electric strain gages will be helpful in understanding some of the new methods.

5.3 ELECTRICAL RESISTANCE STRAIN GAGE

The electrical resistance strain gage is the most frequently used device in experimental stress analysis. The gages are also used as sensors in transducers for measuring load, torque, pressure, and acceleration. The electrical resistance strain gage operates on the principle discovered by Lord Kelvin in 1856 that the electrical resistance of metal wire varies with strain. The fractional change in resistance (R) per unit extension (ε) is known as the sensitivity $\left(S_{A}\right)$ of the metal or alloy of which the wire is made:

$$
\begin{equation*}
S_{A}=\frac{\Delta R / R}{\varepsilon}=1+2 v+\frac{\Delta \rho \rho}{\varepsilon} \tag{5.1}
\end{equation*}
$$

where ρ is the specific resistance.
The sensitivities of typical strain gage alloys are listed in Table 5-1. The advance or constantan alloys are widely used because the sensitivity varies little over a wide range of temperature and strains (even in the plastic region). The high sensitivity and high fatigue strength of the isoelastic alloy give it advantages in dynamic applications. The sensitivity of isoelastic gages changes with both temperature and strain, however.

The most common constructions of the modern strain gage are the bonded wire and bonded foil types. The foil gage is produced by etching a metal foil into a grid pattern. The metal foil strain gage is the most widely used gage for both generalpurpose stress analysis and transducer applications. To facilitate handling, the wire or foil grid is mounted on or encapsulated in a paper or epoxy carrier or backing. The manufacturer's identifying code for a gage usually gives such information as backing type, alloy, length, and resistances. Foil gage lengths typically vary from 0.008 in . $(0.20 \mathrm{~mm})$ to 4 in . $(102 \mathrm{~mm})$ and resistances are from 120 to 350Ω. Gages with lengths greater than 0.060 in . $(1.52 \mathrm{~mm})$ are also available with a resistance of 1000Ω. The manufacturer specifies the gage factor $\left(S_{g}\right)$, which is defined as

$$
\begin{equation*}
S_{g}=(\Delta R / R) \varepsilon_{a} \tag{5.2}
\end{equation*}
$$

where ε_{a} is the uniform normal strain along the axial direction of the gage. The resistance change in the definition of S_{g} includes effects due to transverse extensions
(shear strains are negligible in measuring S_{g}). Manufacturers' literature usually supplies values for the transverse sensitivity of gages and formulas for deriving true axial extension from the apparent extension indicated by the gage.

Backings are usually made of paper or glass-fiber-reinforced epoxy. The latter is applicable to moderate temperatures up to $750^{\circ} \mathrm{F}\left(400^{\circ} \mathrm{C}\right)$ or if special precautions are taken, to even higher temperatures. Another type of gage is the weldable strain gage, which is suitable for application within the range -320 to $1200^{\circ} \mathrm{F}$ (-200 to $650^{\circ} \mathrm{C}$) or for outdoor installation in inclement weather. See Ref. [5.1] for further information.

Several popular gage configurations are shown in Fig. 5-1. A rosette is the combination of two or three gages in one assembly. If nothing is known beforehand about the strain field, a three-element rosette is required for finding the elements of the small strain tensor. If the principal directions are known beforehand, a two-element

Figure 5-1: Examples of strain gage configurations: (a) uniaxial foil; (b) two-element 90° "tee" rosette; $(c) 60^{\circ}$ rosette; (d) three-element 45° stacked rosette; $(e) 45^{\circ}$ rosette; (f) uniaxial wire; (g) uniaxial wire, with ribbon leads. (Courtesy of the Micro-Measurements Division of Measurement Group, Inc., Raleigh, NC.)
90° rosette suffices to measure the principal strains. In some cases, such as uniaxial extension, bending, or torsion of rods, only one gage is necessary to find the strain.

The strain measurements are made by bonding the gage to the surface of the specimen under test and by sensing voltage changes that occur when the resistance of the strained gage changes. The application of the gage to the specimen surface is a critical step in the measurement process, and gage manufacturers provide detailed instructions for preparation of the specimen surface, bonding the gage to the surface, and making electrical connections. Among the many adhesives used for applying the gage to the surface, methyl-2-cyanoacrylate, epoxy, polyimide, and several ceramics are very common. Upon completion of the installation, it is desirable to inspect the adequacy of the bonds. To test the relative completeness of the bond cure, the resistance between the gage grid and the specimen can be measured. This follows because the resistance of the adhesive layer increases as the adhesive cures. The typical resistance across the adhesive layer for strain gage installation is on the order of 10,000 M Ω [5.1].

Two basic circuits are used to measure the voltage changes across the resistance gages: the Wheatstone bridge and the potentiometer. The Wheatstone bridge is applied in both static and dynamic experiments, but the potentiometer is suitable only for dynamic signals.

The circuit of a basic Wheatstone bridge, where voltage fluctuation ΔE is to be measured in order to determine the strain, is sketched schematically in Fig. 5-2. The applied voltage V is constant. For circuit elements in parallel with the source voltage,

$$
\begin{equation*}
I_{1}\left(R_{1}+R_{2}\right)=V, \quad I_{2}\left(R_{3}+R_{4}\right)=V \tag{5.3}
\end{equation*}
$$

The voltage difference across $B D, E_{V}$ (or $V_{B D}$), is

$$
\begin{equation*}
E_{V}=V_{B D}=V_{B C}-V_{D C}=I_{1} R_{2}-I_{2} R_{3} \tag{5.4}
\end{equation*}
$$

where $V_{B C}$ and $V_{D C}$ are the voltage differences across $B C$ and $D C$, respectively.
Using Eq. (5.3) in (5.4) gives

$$
\begin{equation*}
E_{V}=-\frac{R_{1} R_{3}-R_{2} R_{4}}{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)} V \tag{5.5}
\end{equation*}
$$

Figure 5-2: Basic Wheatstone bridge.

The bridge is balanced when $E_{V}=0$, or $R_{1} R_{3}=R_{2} R_{4}$. In the simplest cases, one resistance, say R_{1}, will be the strain gage. If R_{1} changes by an amount ΔR_{1} due to strain, the corresponding voltage fluctuation ΔE is calculated as

$$
\begin{align*}
\Delta E & =-\frac{\left(R_{1}+\Delta R_{1}\right) R_{3}-R_{2} R_{4}}{\left(R_{1}+\Delta R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)} V+\frac{R_{1} R_{3}-R_{2} R_{4}}{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)} V \\
& =\frac{-R_{3} \Delta R_{1} V}{\left(R_{1}+R_{2}\right)\left(R_{3}+R_{4}\right)} \tag{5.6}
\end{align*}
$$

where the products in the denominator of ΔR_{1} with R_{3} and R_{4} have been neglected and the relation $R_{1} R_{3}=R_{2} R_{4}$ has been used. (The neglected terms are small up to a strain of about 0.05.) Substituting $R_{3}=R_{2} R_{4} / R_{1}$ in Eq. (5.6) gives

$$
\begin{align*}
\Delta E & =-\frac{\left(R_{2} R_{4} / R_{1}\right) \Delta R_{1} V}{\left(R_{1}+R_{2}\right)\left(1+R_{2} / R_{1}\right) R_{4}}=-\frac{\left(R_{2} / R_{1}\right)\left(\Delta R_{1} / R_{1}\right)}{\left(R_{2} / R_{1}+1\right)^{2}} V \\
& =-\frac{r}{(1+r)^{2}} \frac{\Delta R_{1}}{R_{1}} V \tag{5.7}
\end{align*}
$$

where $r=R_{2} / R_{1}$ and $r /(1+r)^{2}$ is the circuit efficiency. The sensitivity of the circuit is the voltage change per unit extension:

$$
\begin{equation*}
S_{c}=\left|\frac{\Delta E}{\varepsilon_{a}}\right|=\frac{1}{\varepsilon_{a}} \frac{r}{(1+r)^{2}} \frac{\Delta R_{1}}{R_{1}} V \tag{5.8}
\end{equation*}
$$

Substituting Eq. (5.2) in (5.8) gives

$$
\begin{equation*}
S_{c}=\frac{r}{(1+r)^{2}} V S_{g} \tag{5.9}
\end{equation*}
$$

Equation (5.9) shows that the circuit sensitivity depends on the static voltage V, the gage factor S_{g}, and the ratio R_{2} / R_{1}. The circuit efficiency is a maximum for $R_{2} / R_{1}=1$. Equation (5.9) is valid if the bridge voltage V is fixed and independent of the gage current. The power dissipated by the gage is

$$
\begin{equation*}
P_{g}=I_{g}^{2} R_{g} \tag{5.10}
\end{equation*}
$$

Substituting Eq. (5.10) in (5.3) with $I_{1}=I_{g}$ and $R_{1}=R_{g}$ gives

$$
\begin{equation*}
V=\sqrt{P_{g} / R_{g}}\left(R_{g}+R_{2}\right)=\sqrt{P_{g} / R_{g}} R_{g}(1+r)=(1+r) \sqrt{P_{g} R_{g}} \tag{5.11}
\end{equation*}
$$

Using Eq. (5.11) in (5.9) to eliminate V yields

$$
\begin{equation*}
S_{c}=r S_{g} \sqrt{P_{g} R_{g}} /(1+r) \tag{5.12}
\end{equation*}
$$

The term $S_{g} \sqrt{P_{g} R_{g}}$ is fixed by the gage selection. Maximum power dissipation is part of the information supplied by gage manufacturers. The term $r /(1+r)$ is determined by the design of the bridge circuit.

Figure 5-2 shows the Wheatstone circuit in its basic configuration. The discussion above is restricted to the simple case of one gage resistance in the bridge. The bridge is balanced before strains are applied to the gage in the bridge. Therefore, the voltage E is initially zero, and the strain-induced voltage ΔE can be measured directly. Since in many cases the strain gage installation is subjected to temperature change during the testing period, the effects of temperature must be eliminated. Often, the Wheatstone bridge can be designed to nullify the temperature effects. Table 5-2 lists some common Wheatstone bridges in use today. The gage used to measure the strain is the active strain gage, whereas the dummy gage is mounted on a small block of material identical to that of the specimen and is exposed to the same thermal environment as the active gage. It can be shown that all but circuit 1 in Table 5-2 are temperature compensated if all the active gages in the circuit are also subject to the same thermal environment and mounted on the same material. Commercially available strain indicators have a much more complicated circuitry than shown in Table 5-2, and they give direct readout of strain.

Proper calibration of a strain gage measuring system is important. A strainmeasuring system usually consists of a strain gage, a Wheatstone (or potentiometer) circuit, a power supply, circuit completion resistors, a signal amplifier, and a recording instrument. Each element contributes to overall system sensitivity. If circuit sensitivity S_{c} is known, the strain $\left|\varepsilon_{a}\right|$ can be calculated using [Eq. (5.8)] $\left|\varepsilon_{a}\right|=S_{c}|\Delta E|$. A single calibration for the complete system can be achieved by shunting a fixed resistor R_{c} across one arm (e.g., R_{2}) of the Wheatstone bridge (shown in Fig. 5-3) so that the readings from the recording instrument can be related directly to the strains that induce them. If the bridge is initially balanced, it can be shown that

$$
\begin{equation*}
\varepsilon_{c}=R_{2} / S_{g}\left(R_{2}+R_{c}\right) \tag{5.13}
\end{equation*}
$$

where ε_{c} is the calibration strain that produces the same voltage output (ΔE) from the bridge as the calibration resistor R_{c} as it is placed in parallel with R_{2}. Thus, if

Figure 5-3: Typical strain-measuring system.

Figure 5-4: Potentiometer circuit.
the output of the recording instrument is h_{c} while the switch s is closed with R_{c} and the strain-induced output is h while the switch s is open, the strain is associated with output h can be calculated numerically as

$$
\begin{equation*}
\varepsilon=\left(h / h_{c}\right) \varepsilon_{c} \tag{5.14}
\end{equation*}
$$

This is the principle of shunt calibration. It provides an accurate and direct method for calibrating the complete system without considering the number of components in the system.

The potentiometer circuit sketched in Fig. 5-4 can be utilized to measure dynamic strains. The gage is $R_{1}\left(R_{1}=R_{g}\right)$ in the figure. The circuit has the same sensitivity as the Wheatstone bridge,

$$
\begin{equation*}
S_{c}=r S_{g} \sqrt{P_{g} R_{g}} /(1+r) \tag{5.15}
\end{equation*}
$$

and a linear range of strain of up to 0.02-0.1, depending on the value of $r=R_{2} / R_{1}$. The circuit is useful for dynamic strain measurement only because the large static voltage E must be filtered out.

In this section, only the rudiments of strain gage technology have been discussed. In practice, other complications must be considered, such as humidity, transverse sensitivity, gage heating due to electric power dissipation, stability for long-term measurement, distortion of transient strain pulses, cyclic loading, and the effect of recording instruments on the data. Many gages, which are self-temperature compensated to some extent, may also nullify temperature effects. Discussion of these refinements to strain measurement is available in Ref. [5.1] and in the technical literature of manufacturers of strain gages.

Example 5.1 Delta Rosette The delta rosette utilizes three gages separated by 120°, as shown in Fig. 5-5. Gage 1 is parallel to the x direction, gage 2 is 120° counterclockwise from the x direction, and gage 3 is 240° counterclockwise. If extensions of $\varepsilon_{g 1}=250 \times 10^{-6} \mathrm{in}$./in., $\varepsilon_{g 2}=150 \times 10^{-6} \mathrm{in} . / \mathrm{in}$., and $\varepsilon_{g 3}=400 \times 10^{-6} \mathrm{in} . / \mathrm{in}$. are measured, compute the components of the strain tensor, the principal strains, and the principal stresses. Neglect the transverse sensitivity of the gages and assume that the strained specimen has $E=30 \times 10^{6} \mathrm{psi}, \nu=0.3$.

Figure 5-5: Delta rosette.

Substitution of the appropriate extensions and angles into Eq. (3.38) results in three equations for the unknowns $\varepsilon_{x}, \varepsilon_{y}$, and $\gamma_{x y}$. Thus,

$$
\begin{align*}
& 250 \times 10^{-6}=\varepsilon_{x} \\
& 150 \times 10^{-6}=\varepsilon_{x} \cos ^{2}\left(120^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(120^{\circ}\right)+\gamma_{x y} \sin \left(120^{\circ}\right) \cos \left(120^{\circ}\right) \tag{1}\\
& 400 \times 10^{-6}=\varepsilon_{x} \cos ^{2}\left(240^{\circ}\right)+\varepsilon_{y} \sin ^{2}\left(240^{\circ}\right)+\gamma_{x y} \sin \left(240^{\circ}\right) \cos \left(240^{\circ}\right)
\end{align*}
$$

or

$$
\begin{array}{r}
8.75 \times 10^{-5}=0.75 \varepsilon_{y}-0.433 \gamma_{x y} \\
3.375 \times 10^{-4}=0.75 \varepsilon_{y}+0.433 \gamma_{x y} \tag{2}
\end{array}
$$

The solutions to these equations are

$$
\begin{equation*}
\gamma_{x y}=2.8868 \times 10^{-4}, \quad \varepsilon_{y}=2.8333 \times 10^{-4}, \quad \varepsilon_{x}=2.50 \times 10^{-4} \tag{3}
\end{equation*}
$$

The principal strains follow from formulas for strains similar to the principal-stress formulas of Eq. (3.13),

$$
\left.\left.\left.\begin{array}{rl}
\varepsilon_{1} \\
\varepsilon_{2}
\end{array}\right\}=\frac{1}{2}\left(\varepsilon_{x}+\varepsilon_{y}\right) \pm \frac{1}{2} \sqrt{\left(\varepsilon_{x}-\varepsilon_{y}\right)^{2}+\gamma_{x y}^{2}}\right)=10^{-4}+2.8333 \times 10^{-4}\right) .
$$

We find

$$
\varepsilon_{1}=4.1196 \times 10^{-4}, \quad \varepsilon_{2}=1.2137 \times 10^{-4}
$$

From Hooke's law (Chapter 3), the principal stresses are

$$
\sigma_{1}=\frac{E}{1-v^{2}}\left(\varepsilon_{1}+\nu \varepsilon_{2}\right), \quad \sigma_{2}=\frac{E}{1-v^{2}}\left(\varepsilon_{2}+\nu \varepsilon_{1}\right)
$$

Thus,

$$
\begin{aligned}
& \sigma_{1}=\frac{30 \times 10^{6}}{1-0.3^{2}}\left[4.1196 \times 10^{-4}+(0.3)\left(1.2137 \times 10^{-4}\right)\right]=14,781.5 \mathrm{psi} \\
& \sigma_{2}=\frac{30 \times 10^{6}}{1-0.3^{2}}\left[1.2137 \times 10^{-4}+(0.3)\left(4.1196 \times 10^{-4}\right)\right]=8076 \mathrm{psi}
\end{aligned}
$$

A summary of the equations used to determine principal strains, principal stresses, and their directions for common types of rosettes is given in Table 5-3.

5.4 BRITTLE COATING

The brittle-coating technique provides a simple and direct approach for experimental stress analysis when high precision is not necessary. In the brittle-coating method of stress analysis, a prototype of the part under study is coated with a thin layer of material that exhibits brittle fracture. The specimen is then loaded, and when the stresses in the coating reach a certain state, a pattern of cracks is formed in the coating.

After each application of the load, the coating is examined, and the crack patterns associated with each load application are noted. The loading process is continued until the crack pattern covers the region of interest or until the part is stressed to the maximum permissible level. The brittle-coating test method is usually nondestructive, but the load must be kept below the level that would cause yield or fracture in the prototype.

Before coating, the surface of the specimen is lightly sanded and a reflective undercoat is applied to facilitate crack observation. The coating is sprayed to as near a uniform thickness as possible. The coating may exhibit both flammability and toxicity, so suitable precautions against these dangers must be taken.

The surface coating is assumed to undergo the same strain as the specimen surface. The cracks in the coating form and propagate perpendicular to the tensile principal stresses. The cracks that form normal to principal stresses are called isostatics. The line enclosing a cracked area that forms during a load application is called an isoentatic. This line is a boundary between a cracked and an uncracked region and hence is a line along which the principal stress is constant. One set of cracks will form in a field in which there is one tensile principal stress, and two will form if there are two unequal tensile principal stresses. In a uniaxial or biaxial compressive stress field the coating will not crack, but it may flake and peel off. If two equal tensile principal stresses act on the coating, the crack pattern will be random in nature. The formation of a random pattern is called crazing. The isostatics and isoentatics formed during two applications of a biaxial stress field are shown in Fig. 5-6. Reference [5.2] describes brittle coating technology in more detail.

Figure 5-6: Crack patterns in a brittle coating.

5.5 PHOTOELASTICITY

The velocity of light depends on the medium in which the light is traveling. The index of refraction of a material is the ratio of the velocity of light in a vacuum to that in the material. Some materials exhibit the property of double refraction, or birefringence. In these materials the index of refraction depends on the orientation of the electric vector with respect to the material specimen it is traversing. Some materials that are not normally birefringent become so when they are stressed. The phenomenon, which was discovered by Brewster in 1816, is the basis for the photoelastic measurement of stress. Patterns observed when a polarized light passes through a transparent material can be related to principal stresses. Hence transparent models are made to study stress levels for a particular mechanical configuration under various applied loads. An introduction to the mechanics and application of photoelasticity is provided in the first edition of this book. Since the use of photoelasticity is declining, the subject will not be treated further here.

REFERENCES

5.1. Dally, J. W., and Riley, W. F., Experimental Stress Analysis, 3rd ed., McGraw-Hill, New York, 1991.
5.2. Kobayashi, S. (Ed.), Handbook on Experimental Mechanics, Prentice Hall, Englewood Cliffs, NJ, 1987.

Tables

5-1 Strain Sensitivity S_{A} for Common Strain Gage Alloys
5-2 Characteristics of Selected Common Wheatstone Bridges
5-3 Principal Strains and Stresses for Various Types of Rosettes

TABLE 5-1 STRAIN SENSITIVITY S_{A} FOR COMIMON STRAIN GAGE ALLOYS

Material	Composition $(\%)$	S_{A}
Advance or constantan	$45 \mathrm{Ni}, 55 \mathrm{Cu}$	2.1
Nichrome V	$80 \mathrm{Ni}, 20 \mathrm{Cr}$	2.2
Isoelastic	$36 \mathrm{Ni}, 8 \mathrm{Cr}, 0.5 \mathrm{Mo}, 55.5 \mathrm{Fe}$	3.6
Karma	$74 \mathrm{Ni}, 20 \mathrm{Cr}, 3 \mathrm{Al}, 3 \mathrm{Fe}$	2.0
Armour D	$70 \mathrm{Fe}, 20 \mathrm{Cr}, 10 \mathrm{Al}$	2.0
Platinum alloy	$95 \mathrm{Pt}, 5 \mathrm{Ir}$	5.1
Alloy 479	$92 \mathrm{Pt}, 8 \mathrm{~W}$	4.1

TABLE 5-2 CHARACTERISTICS OF SELECTED COMMON WHEATSTONE BRIDGES ${ }^{a}$

	4. Four active gages	$\begin{aligned} & \frac{V}{4 R_{g}}\left(\Delta R_{1}-\Delta R_{2}\right. \\ & \left.+\Delta R_{3}-\Delta R_{4}\right) \end{aligned}$	$\begin{aligned} & S_{c}=V S_{g} \\ & S_{c}=2 S_{g} \sqrt{P_{g} R_{g}} \end{aligned}$	$\begin{aligned} & \frac{V}{4 R_{g}}\left(\Delta R_{1}-\Delta R_{2}+\Delta R_{3}-\Delta R_{4}\right) \\ & \text { when } \begin{aligned} \Delta R_{1} & =\Delta R_{3} \\ & =-\Delta R_{2}=-\Delta R_{4} \\ \Delta E & =\frac{\Delta R_{1} V}{R_{g}} \end{aligned} \end{aligned}$	$\begin{aligned} & S_{c}=V S_{g} \\ & S_{c}=2 S_{g} \sqrt{P_{g} R_{g}} \end{aligned}$
	5. Active gages in arms R_{1} and R_{4}	$\frac{r V\left(\Delta R_{1}-\Delta R_{4}\right)}{(1+r)^{2} R_{g}}$	$\begin{aligned} S_{c} & =\frac{2 r}{(1+r)^{2}} V S_{g} \\ S_{c} & =\frac{2 r}{1+r} S_{g} \sqrt{P_{g} R_{g}} \end{aligned}$	$\begin{array}{r} l \frac{V}{4 R_{g}}\left(\Delta R_{1}-\Delta R_{4}\right) \\ \text { when } \quad \Delta R_{1}=-\Delta R_{4} \\ \Delta E=\frac{\Delta R_{1} V}{2 R_{g}} \end{array}$	$\begin{aligned} & S_{c}=\frac{1}{2} V S_{g} \\ & S_{c}=S_{g} \sqrt{P_{g} R_{g}} \end{aligned}$

${ }^{a} r=R_{2} / R_{1}$. All the circuits except circuit 1 are temperature compensated.

TABLE 5-3 PRINCIPAL STRAINS AND STRESSES FOR VARIOUS TYPES OF ROSETTES ${ }^{a}$

Rosette	Principal Strains ($\varepsilon_{1}, \varepsilon_{2}$) and Principal Stresses (σ_{1}, σ_{2})	Principal Angle
1. Rectangular, three-element	$\begin{aligned} & \varepsilon_{1,2}=\frac{1}{2}\left(\varepsilon_{A}+\varepsilon_{C}\right) \pm \frac{1}{2} \sqrt{\left(\varepsilon_{A}-\varepsilon_{C}\right)^{2}+\left(2 \varepsilon_{B}-\varepsilon_{A}-\varepsilon_{C}\right)^{2}} \\ & \sigma_{1,2}=\frac{E}{2}\left[\frac{\varepsilon_{A}+\varepsilon_{C}}{1-v} \pm \frac{1}{1+v} \sqrt{\left(\varepsilon_{A}-\varepsilon_{C}\right)^{2}+\left(2 \varepsilon_{B}-\varepsilon_{A}-\varepsilon_{C}\right)^{2}}\right] \end{aligned}$	$\begin{aligned} \tan 2 \theta_{1} & =\frac{2 \varepsilon_{B}-\varepsilon_{A}-\varepsilon_{C}}{\varepsilon_{A}-\varepsilon_{C}} \\ \varepsilon_{B} & >\frac{1}{2}\left(\varepsilon_{A}+\varepsilon_{C}\right) \\ \text { for } \quad 0 & <\theta_{1}<90^{\circ} \end{aligned}$
2. Delta	$\begin{aligned} \varepsilon_{1,2} & =\frac{\varepsilon_{A}+\varepsilon_{B}+\varepsilon_{C}}{3} \pm \frac{\sqrt{2}}{3} \sqrt{\left(\varepsilon_{A}-\varepsilon_{B}\right)^{2}+\left(\varepsilon_{B}-\varepsilon_{C}\right)^{2}+\left(\varepsilon_{C}-\varepsilon_{A}\right)^{2}} \\ \sigma_{1,2} & =\frac{E}{3}\left[\frac{\varepsilon_{A}+\varepsilon_{B}+\varepsilon_{C}}{1-v} \pm \frac{\sqrt{2}}{1+v} \sqrt{\left(\varepsilon_{A}-\varepsilon_{B}\right)^{2}+\left(\varepsilon_{B}-\varepsilon_{C}\right)^{2}+\left(\varepsilon_{C}-\varepsilon_{A}\right)^{2}}\right] \end{aligned}$	$\begin{aligned} \tan 2 \theta_{1} & =\frac{\sqrt{3}\left(\varepsilon_{C}-\varepsilon_{B}\right)}{2 \varepsilon_{A}-\left(\varepsilon_{B}+\varepsilon_{C}\right)} \\ \varepsilon_{C} & <\varepsilon_{B} \\ \text { for } \quad 0 & <\theta_{1}<90^{\circ} \end{aligned}$

3. Rectangular, four-element	$\begin{aligned} \varepsilon_{1,2} & =\frac{1}{4}\left(\varepsilon_{A}+\varepsilon_{B}+\varepsilon_{C}+\varepsilon_{D}\right) \pm \frac{1}{2} \sqrt{\left(\varepsilon_{A}-\varepsilon_{C}\right)^{2}+\left(\varepsilon_{B}-\varepsilon_{D}\right)^{2}} \\ \sigma_{1,2} & =\frac{E}{2}\left[\frac{\varepsilon_{A}+\varepsilon_{B}+\varepsilon_{C}+\varepsilon_{D}}{2(1-v)} \pm \frac{1}{1+v} \sqrt{\left(\varepsilon_{A}-\varepsilon_{C}\right)^{2}+\left(\varepsilon_{B}-\varepsilon_{D}\right)^{2}}\right] \end{aligned}$	$\begin{aligned} \tan 2 \theta_{1} & =\frac{\varepsilon_{B}-\varepsilon_{D}}{\varepsilon_{A}-\varepsilon_{C}} \\ \varepsilon_{B} & >\varepsilon_{D} \\ \text { for } \quad 0 & <\theta_{1}<90^{\circ} \end{aligned}$
4. T-delta	$\begin{aligned} & \varepsilon_{1,2}=\frac{1}{2}\left(\varepsilon_{A}+\varepsilon_{D}\right) \pm \frac{1}{2} \sqrt{\left(\varepsilon_{A}-\varepsilon_{D}\right)^{2}+\frac{4}{3}\left(\varepsilon_{C}-\varepsilon_{B}\right)^{2}} \\ & \sigma_{1,2}=\frac{E}{2}\left[\frac{\left(\varepsilon_{A}+\varepsilon_{D}\right.}{1-v} \pm \frac{1}{1+v} \sqrt{\left(\varepsilon_{A}-\varepsilon_{D}\right)^{2}+\frac{4}{3}\left(\varepsilon_{C}-\varepsilon_{B}\right)^{2}}\right] \end{aligned}$	$\begin{aligned} \tan 2 \theta_{1} & =\frac{2\left(\varepsilon_{C}-\varepsilon_{B}\right)}{\sqrt{3}\left(\varepsilon_{A}-\varepsilon_{D}\right)} \\ \varepsilon_{C} & >\varepsilon_{B} \\ \text { for } 0 & <\theta_{1}<90^{\circ} \end{aligned}$

${ }^{a}$ See Chapter 3 for a discussion of principal stresses. $\varepsilon_{A}, \varepsilon_{B}, \varepsilon_{C}$, and ε_{D} are the principal strains in directions A, B, C, and D.

C H A P T ER

Stress Concentration

6.1 Notation 255
6.2 Stress Concentration Factors 256
6.3 Effective Stress Concentration Factors 259
Neuber's Rule 261
6.4 Designing to Minimize Stress Concentration 265
References 271
Tables 273

Mathematical analysis and experimental measurement show that in a loaded structural member, near changes in the section, distributions of stress occur in which the peak stress reaches much larger magnitudes than does the average stress over the section. This increase in peak stress near holes, grooves, notches, sharp corners, cracks, and other changes in section is called stress concentration. The section variation that causes the stress concentration is referred to as a stress raiser. Although an extensive collection of stress concentration factors is tabulated in this chapter, a much larger collection is provided in Ref. [6.1].

6.1 NOTATION

The units for some of the definitions are given in parentheses, using L for length and F for force.
K_{ε} Effective strain concentration factor
K_{f} Effective stress concentration factor for cyclic loading, fatigue notch factor
K_{i} Effective stress concentration factor for impact loads
K_{σ} Effective stress concentration factor
K_{t} Theoretical stress concentration factor in elastic range, $=\sigma_{\max } / \sigma_{\text {nom }}$
q Notch sensitivity index
q_{f} Notch sensitivity index for cyclic loading
q_{i} Notch sensitivity index for impact loading
r Notch radius (L)
$\varepsilon_{\text {nom }}$ Nominal strain (L / L)
$\sigma_{\text {nom }}$ Nominal stress $\left(F / L^{2}\right)$ of notched member; for example, for an extension member, $\sigma_{\text {nom }}$ is usually taken to be the axial load divided by the crosssectional area measured at the notch (i.e., area taken remotely from notch minus area corresponding to notch). In practice, the definition of the reference stress $\sigma_{\text {nom }}$ depends on the problem at hand. In Table 6-1 the reference stress is defined for each particular stress concentration factor.

6.2 STRESS CONCENTRATION FACTORS

Figure 6-1 shows a large plate that contains a small circular hole. For an applied uniaxial tension the stress field is found from linear elasticity theory [6.2]. In polar coordinates the azimuthal component of stress at point P is given as

$$
\begin{equation*}
\sigma_{\theta}=\frac{1}{2} \sigma\left[1+\left(r^{2} / \rho^{2}\right)\right]-\frac{1}{2} \sigma\left[1+3\left(r^{4} / \rho^{4}\right)\right] \cos 2 \theta \tag{6.1}
\end{equation*}
$$

The maximum stress occurs at the sides of the hole where $\rho=r$ and $\theta=\frac{1}{2} \pi$ or $\theta=\frac{3}{2} \pi$. At the hole sides,

$$
\sigma_{\theta}=3 \sigma
$$

The peak stress is three times the uniform stress σ.
To account for the peak in stress near a stress raiser, the stress concentration factor or theoretical stress concentration factor is defined as the ratio of the calculated peak stress to the nominal stress that would exist in the member if the distribution of stress

Figure 6-1: Infinite plate with a small circular hole.
remained uniform; that is,

$$
\begin{equation*}
K_{t}=\frac{\sigma_{\max }}{\sigma_{\mathrm{nom}}} \tag{6.2}
\end{equation*}
$$

The nominal stress is found using basic strength-of-materials formulas, and the calculations can be based on the properties of the net cross section at the stress raiser. Sometimes the overall section is used in computing the nominal stress.

If σ is chosen as the nominal stress for the case shown in Fig. 6-1, the stress concentration factor is

$$
K_{t}=\sigma_{\max } / \sigma_{\mathrm{nom}}=3
$$

The effect of the stress raiser is to change only the distribution of stress. Equilibrium requirements dictate that the average stress on the section be the same in the case of stress concentration as it would be if there were a uniform stress distribution. Stress concentration results not only in unusually high stresses near the stress raiser but also in unusually low stresses in the remainder of the section.

When more than one load acts on a notched member (e.g., combined tension, torsion, and bending) the nominal stress due to each load is multiplied by the stress concentration factor corresponding to each load, and the resultant stresses are found by superposition. However, when bending and axial loads act simultaneously, superposition can be applied only when bending moments due to the interaction of axial force and bending deflections are negligible compared to bending moments due to applied loads.

The stress concentration factors for a variety of member configurations and load types are shown in Table 6-1. A general discussion of stress concentration factors and factor values for many special cases are contained in the literature (e.g., [6.1]).

Example 6.1 Circular Shaft with a Groove The circular shaft shown in Fig. 6-2 is girdled by a U -shaped groove, with $h=10.5 \mathrm{~mm}$ deep. The radius of the groove root $r=7 \mathrm{~mm}$, and the bar diameter away from the notch $D=70 \mathrm{~mm}$. A bend-

Figure 6-2: Circular shaft with a U-groove.
ing moment of $1.0 \mathrm{kN} \cdot \mathrm{m}$ and a twisting moment of $2.5 \mathrm{kN} \cdot \mathrm{m}$ act on the bar. The maximum shear stress at the root of the notch is to be calculated.

The stress concentration factor for bending is found from part I in Table 6-1, case 7b. Substitute

$$
\begin{equation*}
2 h / D=\frac{21}{70}=0.3, \quad h / r=10.5 / 7=1.5 \tag{1}
\end{equation*}
$$

into the expression given for K_{t} :

$$
\begin{equation*}
K_{t}=C_{1}+C_{2}(2 h / D)+C_{3}(2 h / D)^{2}+C_{4}(2 h / D)^{3} \tag{2}
\end{equation*}
$$

Since $0.25 \leq h / r=1.5<2.0$, we find, for elastic bending,

$$
C_{1}=0.594+2.958 \sqrt{h / r}-0.520 h / r
$$

with C_{2}, C_{3}, and C_{4} given by analogous formulas in case I-7b of Table 6-1. These constants are computed as

$$
C_{1}=3.44, \quad C_{2}=-8.45, \quad C_{3}=11.38, \quad C_{4}=-5.40
$$

It follows that for elastic bending

$$
\begin{equation*}
K_{t}=3.44-8.45(0.3)+11.38(0.3)^{2}-5.40(0.3)^{3}=1.78 \tag{3}
\end{equation*}
$$

The tensile bending stress $\sigma_{\text {nom }}$ is obtained from Eq. (3.56a) as $M d / 2 I$ and at the notch root the stress is

$$
\begin{equation*}
\sigma=K_{t} \frac{M d}{2 I}=\frac{(1.78)\left(1.0 \times 10^{3} \mathrm{~N}-\mathrm{m}\right)(0.049 \mathrm{~m})(64)}{2 \pi(0.049)^{4} \mathrm{~m}^{4}}=154.1 \mathrm{MPa} \tag{4}
\end{equation*}
$$

The formulas from Table 6-1, part I, case 7c, for the elastic torsional load give $K_{t}=1.41$. The nominal twisting stress at the base of the groove is [Eq. (3.48)]

$$
\begin{equation*}
\tau=\frac{K_{t} T d / 2}{J}=\frac{K_{t} T d(32)}{2 \pi d^{4}}=\frac{(1.41)\left(2.5 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}\right) 16}{\pi(0.049)^{3}}=152.6 \mathrm{MPa} \tag{5}
\end{equation*}
$$

The maximum shear stress at the base of the groove is one-half the difference of the maximum and minimum principal stresses (Chapter 3). The maximum principal stress is

$$
\sigma_{\max }=\frac{1}{2} \sigma+\frac{1}{2} \sqrt{\sigma^{2}+4 \tau^{2}}=\frac{1}{2}(154.1)+\frac{1}{2} \sqrt{154.1^{2}+4(152.6)^{2}}=248.0 \mathrm{MPa}
$$

and the minimum principal stress is

$$
\sigma_{\min }=\frac{1}{2} \sigma-\frac{1}{2} \sqrt{\sigma^{2}+4 \tau^{2}}=\frac{1}{2}(154.1)-\frac{1}{2} \sqrt{154.1^{2}+4(152.6)^{2}}=-93.9 \mathrm{MPa}
$$

Thus, the maximum shear stress is

$$
\begin{equation*}
\tau_{\max }=\frac{1}{2}\left(\sigma_{\max }-\sigma_{\min }\right)=\frac{1}{2}(248.0+93.9)=171.0 \mathrm{MPa} \tag{6}
\end{equation*}
$$

6.3 EFFECTIVE STRESS CONCENTRATION FACTORS

In theory, the peak stress near a stress raiser would be K_{t} times larger than the nominal stress at the notched cross section. However, K_{t} is an ideal value based on linear elastic behavior and depends only on the proportions of the dimensions of the stress raiser and the notched part. For example, in case 2a, part I, Table 6-1, if h, D, and r were all multiplied by a common factor $n>0$, the value of K_{t} would remain the same. In practice, a number of phenomena may act to mitigate the effects of stress concentration. Local plastic deformation, residual stress, notch radius, part size, temperature, material characteristics (e.g., grain size, work-hardening behavior), and load type (static, cyclic, or impact) may influence the extent to which the peak notch stress approaches the theoretical value of $K_{t} \sigma_{\text {nom }}$.

To deal with the various phenomena that influence stress concentration, the concepts of effective stress concentration factor and notch sensitivity have been introduced. The effective stress concentration factor is obtained experimentally.

The effective stress concentration factor of a specimen is defined to be the ratio of the stress calculated for the load at which structural damage is initiated in the specimen free of the stress raiser to the nominal stress corresponding to the load at which damage starts in the sample with the stress raiser. It is assumed that damage in the actual structure occurs when the maximum stress attains the same value in both cases. Similar to Eq. (6.2):

$$
\begin{equation*}
K_{\sigma}=\sigma_{\max } / \sigma_{\mathrm{nom}} \tag{6.3}
\end{equation*}
$$

The factor K_{σ} is now the effective stress concentration factor as determined by the experimental study of the specimen. See Ref. [6.1] for a more detailed discussion of K_{σ}.

For fatigue loading, the definition of experimentally determined effective stress concentration is

$$
\begin{equation*}
K_{f}=\frac{\text { fatigue strength without notch }}{\text { fatigue strength with notch }} \tag{6.4}
\end{equation*}
$$

Factors determined by Eq. (6.4) should be regarded more as strength reduction factors than as quantities that correspond to an actual stress in the body. The fatigue strength (limit) is the maximum amplitude of fully reversed cyclic stress that a specimen can withstand for a given number of load cycles. For static conditions the stress at rupture is computed using strength-of-materials elastic formulas even though yielding may occur before rupture. If the tests are under bending or torsion
loads, extreme fiber stress is used in the definition of K_{σ} and the stresses are computed using the formulas $\sigma=M c / I$ and $\tau=\operatorname{Tr} / J$ (Chapter 3).

No suitable experimental definition of the effective stress concentration factor in impact exists. Impact tests such as the Charpy or Izod tests (Chapter 4) measure the energy absorbed during the rupture of a notched specimen and do not yield information on stress levels.

When experimental information for a given member or load condition does not exist, the notch sensitivity index q provides a means of estimating the effects of stress concentration on strength. Effective stress concentration factors, which are less than the theoretical factor, are related to K_{t} by the equations

$$
\begin{align*}
& K_{\sigma}=1+q\left(K_{t}-1\right) \tag{6.5}\\
& K_{f}=1+q_{f}\left(K_{t}-1\right) \tag{6.6}
\end{align*}
$$

A similar equation could be shown for impact loads using q_{i} as the notch sensitivity index. Often an explicit expression for the notch sensitivity index is given [e.g., $\left.q_{f}=\left(K_{f}-1\right) /\left(K_{t}-1\right)\right]$. The notch sensitivity index can vary from 0 for complete insensitivity to notches to 1 for the full theoretical effect. Typical values of q are shown in Fig. 6-3.

Notch sensitivity in fatigue decreases as the notch radius decreases and as the grain size increases. A larger part will generally have greater notch sensitivity than a smaller part with proportionally similar dimensions. This variation is known as the scale effect. Larger notch radii result in lower stress gradients near the notch, and more material is subjected to higher stresses. Notch sensitivity in fatigue is therefore

Figure 6-3: Fatigue notch sensitivity index.
increased. Because of the low sensitivity of small notch radii, the extremely high theoretical stress concentration factors predicted for very sharp notches and scratches are not actually realized. The notch sensitivity of quenched and tempered steels is higher than that of lower-strength, coarser-grained alloys. As a consequence, for notched members the strength advantage of high-grade steels over other materials may be lost.

Under static loading, notch sensitivity values are recommended [6.3] as $q=0$ for ductile materials and q between 0.15 and 0.25 for hard, brittle metals. The notch insensitivity of ductile materials is caused by local plastic deformation at the notch tip. Under conditions that inhibit plastic slip, the notch sensitivity of a ductile metal may increase. Very low temperatures and high temperatures that cause viscous creep are two service conditions that may increase the notch sensitivity of some ductile metals. The notch sensitivity of cast iron is low for static loads ($q \approx 0$) because of the presence of internal stress raisers in the form of material inhomogeneities. These internal stress raisers weaken the material to such an extent that external notches have limited additional effect.

When a notched structural member is subjected to impact loads, the notch sensitivity may increase because the short duration of the load application does not permit the mitigating process of local slip to occur. Also, the small sections at stress raisers decrease the capacity of a member to absorb impact energy. For impact loads, values of notch sensitivity are recommended such as [6.3] q_{i} between 0.4 and 0.6 for ductile metals, $q_{i}=1$ for hard, brittle materials, and $q_{i}=0.5$ for cast irons. Reference [6.1] recommends using the full theoretical factor for brittle metals (including cast irons) for both static and impact loads because of the possibility of accidental shock loads being applied to a member during handling. The utilization of fracture mechanics to predict the brittle fracture of a flawed member under static, impact, and cyclic loads is treated in Chapter 7.

Neuber's Rule

Consider the stretched plate of Fig. 6-4. For nonlinear material behavior (Fig. 6-5), where local plastic deformation can occur near the hole, the previous stress concentration formulas may not apply. Neuber [6.4] established a rule that is useful beyond the elastic limit relating the effective stress and strain concentration factors to the theoretical stress concentration factor. Neuber's rule contends that the formula

$$
\begin{equation*}
K_{\sigma} K_{\varepsilon}=K_{t}^{2} \tag{6.7}
\end{equation*}
$$

applies to the three factors. This relation states that K_{t} is the geometric mean of K_{σ} and K_{ε} [i.e., $K_{t}=\left(K_{\sigma} K_{\varepsilon}\right)^{1 / 2}$]. Often, for fatigue, K_{f} replaces K_{t}. From the definition of effective stress concentration, $K_{\sigma}=\sigma_{\max } / \sigma_{\text {nom }}$. Also, $K_{\varepsilon}=\varepsilon_{\max } / \varepsilon_{\text {nom }}$ defines the effective strain concentration factor, where $\varepsilon_{\max }$ is the strain obtained from the material law (perhaps nonlinear) for the stress level $\sigma_{\text {max }}$. Using these relations in Eq. (6.7) yields

$$
\begin{equation*}
\sigma_{\max } \varepsilon_{\max }=K_{t}^{2} \sigma_{\mathrm{nom}} \varepsilon_{\mathrm{nom}} \tag{6.8}
\end{equation*}
$$

Figure 6-4: Tensile member with a hole.

Usually, K_{t} and $\sigma_{\text {nom }}$ are known, and $\varepsilon_{\text {nom }}$ can be found from the stress-strain curve for the material. Equation (6.8) therefore becomes

$$
\begin{equation*}
\sigma_{\max } \varepsilon_{\max }=C \tag{6.9}
\end{equation*}
$$

where C is a known constant. Solving Eq. (6.9) simultaneously with the stress-strain relation, the values of maximum stress and strain are found, and the true (effective) stress concentration factor K_{σ} can then be determined. In this procedure the appropriate stress-strain curve must be known.

Neuber's rule was derived specifically for sharp notches in prismatic bars subjected to two-dimensional shear, but the rule has been applied as a useful approxima-

Figure 6-5: Stress-strain diagram for material of the tensile member of Fig. 6-4.
tion in other cases, especially those in which plane stress conditions exist. The rule has been shown to give poor results for circumferential grooves in shafts under axial tension [6.5].

Example 6.2 Tensile Member with a Circular Hole The member shown in Fig. 6-4 is subjected to an axial tensile load of 64 kN . The material from which the member is constructed has the stress-strain diagram of Fig. 6-5 for static tensile loading.

From Table 6-1, part II, case 2a, the theoretical stress concentration factor is computed using $d / D=\frac{20}{100}$, as

$$
\begin{equation*}
K_{t}=3.0-3.140\left(\frac{20}{100}\right)+3.667\left(\frac{20}{100}\right)^{2}-1.527\left(\frac{20}{100}\right)^{3}=2.51 \tag{1}
\end{equation*}
$$

The nominal stress is found using the net cross-sectional area:

$$
\begin{equation*}
\sigma_{\mathrm{nom}}=\frac{P}{(D-d) t}=\frac{64}{(100-20) 8}\left(\frac{10^{3}}{10^{-6}}\right)=100 \mathrm{MPa} \tag{2}
\end{equation*}
$$

Based on elastic behavior, the peak stress $\sigma_{\max }$ at the edge of the hole would be

$$
\begin{equation*}
\sigma_{\max }=K_{t} \sigma_{\mathrm{nom}}=(2.51)(100)=251 \mathrm{MPa} \tag{3}
\end{equation*}
$$

This stress value, however, exceeds the yield point of the material. The actual peak stress and strain at the hole edge are found by using Neuber's rule. The nominal strain is read from the stress-strain curve; at $\sigma_{\text {nom }}=100 \mathrm{MPa}$, the strain is $\varepsilon_{\text {nom }}=$ 5×10^{-4}. The point ($\sigma_{\text {nom }}, \varepsilon_{\text {nom }}$) is point A in Fig. 6-5. Neuber's rule gives

$$
\begin{equation*}
\sigma_{\max } \varepsilon_{\max }=K_{t}^{2} \sigma_{\mathrm{nom}} \varepsilon_{\mathrm{nom}}=(2.51)^{2}(100)\left(5 \times 10^{-4}\right)=0.315 \mathrm{MPa} \tag{4}
\end{equation*}
$$

The intersection of the curve $\sigma_{\max } \varepsilon_{\max }=0.315$ with the stress-strain curve (point B in Fig. 6-5) yields a peak stress of $\sigma_{\max }=243 \mathrm{MPa}$ and a peak strain of 13×10^{-4}. The effective stress concentration factor is

$$
\begin{equation*}
K_{\sigma}=\sigma_{\max } / \sigma_{\mathrm{nom}}=243 / 100=2.43 \tag{5}
\end{equation*}
$$

The effective strain concentration factor is

$$
\begin{equation*}
K_{\varepsilon}=\frac{13 \times 10^{-4}}{5 \times 10^{-4}}=2.6 \tag{6}
\end{equation*}
$$

In the local strain approach to fatigue analysis, fatigue life is correlated with the strain history of a point, and knowledge of the true level of strain at the point is necessary. Neuber's rule enables the estimation of local strain levels without using complicated elastic-plastic finite-element analyses.

(a)

(b)

(c)

Figure 6-6: Reducing the effect of the stress concentration of notches and holes: (a) Notch shapes arranged in order of their effect on the stress concentration decreasing as you move from left to right and top to bottom; (b) asymmetric notch shapes, arranged in the same way as in $(a) ;(c)$ holes, arranged in the same way as in (a).

6.4 DESIGNING TO MINIMIZE STRESS CONCENTRATION

A qualitative discussion of techniques for avoiding the detrimental effects of stress concentration is given by Leyer [6.6]. As a general rule, force should be transmitted from point to point as smoothly as possible. The lines connecting the force transmission path are sometimes called the force (or stress) flow, although it is arguable if force flow has a scientifically based definition. Sharp transitions in the direction of the force flow should be removed by smoothing contours and rounding notch roots. When stress raisers are necessitated by functional requirements, the raisers should be placed in regions of low nominal stress if possible. Figure 6-6 depicts forms of notches and holes in the order in which they cause stress concentration. Figure 6-7 shows how direction of stress flow affects the extent to which a notch causes stress concentration. The configuration in Fig. 6-7b has higher stress levels because of the sharp change in the direction of force flow.

When notches are necessary, removal of material near the notch can alleviate stress concentration effects. Figures 6-8 to 6-13 demonstrate instances where removal of material improves the strength of the member.

A type of stress concentration called an interface notch is commonly produced when parts are joined by welding. Figure 6-14 shows examples of interface notches and one way of mitigating the effect. The surfaces where the mating plates touch without weld metal filling, form what is, in effect, a sharp crack that causes stress concentration. Stress concentration also results from poor welding techniques that create small cracks in the weld material or burn pits in the base material.

Figure 6-7: Two parts with the same shape (step in cross section) but differing stress flow patterns can give totally different notch effects and widely differing stress levels at the corner step: (a) stress flow is smooth; (b) sharp change in the stress flow direction causes high stress.

(a)

(b)

Figure 6-8: Guiding the lines of stress by means of notches that are not functionally essential is a useful method of reducing the detrimental effects of notches that cannot be avoided. These are termed relief notches. It is assumed here that the bearing surface of the step of (a) is needed functionally. Adding a notch as in (b) can reduce the hazardous effects of the corner of (a).

Figure 6-9: Relief notch where screw thread meets cylindrical body of bolt; (a) considerable stress concentration can occur at the step interface; (b) use of a smoother interface leads to relief of stress concentration.

(a)

(b)

(c)

Figure 6-10: Alleviation of stress concentration by removal of material, a process that sometimes is relatively easy to machine. (a) It is assumed that a notch of the sort shown occurs. In both cases (b) and (c), the notch is retained and the stress concentration reduced.

(a)

(b)

(c)

Figure 6-11: Reduce the stress concentration in the stepped shaft of (a) by including material such as shown in (b). If this sort of modification is not possible, the undercut shoulder of (c) can help.

(a)

(b)

Figure 6-12: Removal of material can reduce stress concentration, for example, in bars with collars and holes. (a) The bar on the right with the narrowed collar will lead to reduced stress concentration relative to the bar on the left. (b) Grooves near a hole can reduce the stress concentration around the hole.

Figure 6-13: Nut designs. These are most important under fatigue loading. From Ref. [6.1], with permission. (a) Standard bolt and nut combination. The force flow near the top of the nut is sparse, but in area D the stress flow density is very high. (b) Nut with a lip. The force flow on the inner side of the lip is in the same direction as in the bolt and the force flow is more evenly distributed for the whole nut than for case (a). The peak stress is relieved. (c) "Force flow" is not reversed at all. Thus fatigue strength here is significantly higher than for the other cases.

(a)

(b)

Figure 6-14: The typical welding joints of (a) can be improved by boring out corners as shown in (b).

REFERENCES

6.1. Pilkey, W. D., Peterson's Stress Concentration Factors, Wiley, New York, 1997.
6.2. Timoshenko, S. P., and Goodier, J. N., Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970.
6.3. Maleev, V. L., and Hartman, J. B., Machine Design, 3rd ed., International Textbook Co., Scranton, PA, 1954.
6.4. Neuber, H., "Theory of Stress Concentration for Shear Strained Prismatic Bodies with Nonlinear Stress-Strain Law," J. Appl. Mech., Vol. 28, Ser. E, No. 4., 1961, pp. 544-550.
6.5. Fuchs, H. O., "Discussion: Nominal Stress or Local Strain Approaches to Cumulative Damage," in Fatigue under Complex Loading, Society of Automotive Engineers, Warrendale, PA, 1977, pp. 203-207.
6.6. Leyer, A., Maschinenkonstruktionslehre, Birkhäuser Verlag, Basel, Switzerland: English language edition. Machine Design, Blackie \& Son, London, 1974.
6.7. Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M., Advanced Mechanics of Materials, 5th ed., Wiley, New York, 1993.
6.8. Juvinall, R. C., Stress, Strain, and Strength, McGraw-Hill, New York, 1967.
6.9. Hooke, C. J., "Numerical Solution of Plane Elastostatic Problems by Point Matching," J. Strain Anal., Vol. 3, 1968, pp. 109-115.
6.10. Liebowitz, H., Vandervelt, H., and Sanford, R. J., "Stress Concentrations Due to Sharp Notches," Exp. Mech., Vol. 7, 1967.
6.11. Neuber, H., Theory of Notch Stresses, Office of Technical Services, U.S. Department of Commerce, Washington, DC, 1961.
6.12. Atsumi, "Stress Concentrations in a Strip under Tension and Containing an Infinite Row of Semicircular Notches," Q. J. Mech. Appl. Math., Vol. 11, Pt. 4, 1958.
6.13. Durelli, A. J., Lake, R. L., and Phillips, E., "Stress Concentrations Produced by Multiple Semicircular Notches in Infinite Plates under Uniaxial State of Stress," Proc. SESA, Vol. 10, No. 1, 1952.
6.14. Matthews, G. J., and Hooke, C. J., "Solution of Axisymmetric Torsion Problems by Point Matching," J. Strain Anal., Vol. 6, 1971, pp. 124-134.
6.15. Howland, R. C. J., "On the Stresses in the Neighborhood of a Circular Hole in a Strip under Tension," Philos. Trans. Roy. Soc. Lond. A, Vol. 229, 1929/1930.
6.16. Jones, N., and Hozos, D., "A Study of the Stress around Elliptical Holes in Flat Plates," Trans. ASME, J. Eng. Ind., Vol. 93, Ser. B, 1971.
6.17. Seika, M., and Ishii, M., "Photoelastic Investigation of the Maximum Stress in a Plate with a Reinforced Circular Hole under Uniaxial Tension," Trans. ASME, J. Appl. Mech., Vol. 86, Ser. E, 1964, pp. 701-703.
6.18. Seika, M., and Amano, A., "The Maximum Stress in a Wide Plate with a Reinforced Circular Hole under Uniaxial Tension: Effects of a Boss with Fillet," Trans. ASME, J. Appl. Mech., Vol. 89, Ser. E, 1967, pp. 232-234.
(1. Notches and Grooves
Stress Concentration Factors
I. Noles
II. Fillets
II. Miscellaneous Elements
IV.

	Notation		
K_{t}	Theoretical stress concentration factor in elastic range	$\sigma_{\text {nom }}$	Nominal normal stress defined for each case $\left(F / L^{2}\right)$
σ	Applied stress $\left(F / L^{2}\right)$		$\sigma_{\max }$
Maximum normal stress at stress raiser $\left(F / L^{2}\right)$			
P	Applied axial force (F)	$\tau_{\text {nom }}$	Nominal shear stress defined for each
M	Applied moment $(F L)$		case $\left(F / L^{2}\right)$

Refer to figures for the geometries of the specimens.

I. Notches and Grooves		
Type of Stress Raiser	Loading Condition	Stress Concentration Factor
1. Elliptical or U-shaped notch in semi-infinite plate	a. Uniaxial tension	$\begin{aligned} & \sigma_{\max }=\sigma_{A}=K_{t} \sigma \\ & K_{t}=0.855+2.21 \sqrt{h / r} \quad \text { for } 1 \leq h / r \leq 361 \end{aligned}$
$\rightarrow t k$ Elliptical notch U-shaped notch $\rightarrow t_{t} k$	b. Transverse bending	Elliptical notch only, $v=0.3$ and when $h / t \rightarrow \infty$, $\begin{aligned} \sigma_{\max } & =\sigma_{A}=K_{t} \sigma, \sigma=6 m / t^{2} \\ K_{t} & =0.998+0.790 \sqrt{h / r} \quad \text { for } 0 \leq h / r \leq 7 \end{aligned}$

	2. Opposite single U-shaped notches in finite-width plate	a. Axial tension		$\begin{aligned} & =\sigma_{A}=K_{t} \sigma_{\text {nom }}, \quad \sigma_{\text {nom }}= \\ & =C_{1}+C_{2} \frac{2 h}{D}+C_{3}\left(\frac{2 h}{D}\right)^{2}+C \\ & 0.1 \leq h / r<2.0 \\ & \hline 0.955+2.169 \sqrt{h / r}-0.081 h / r \\ & -1.557-4.046 \sqrt{h / r}+1.032 h / r \\ & 4.013+0.424 \sqrt{h / r}-0.748 h / r \\ & -2.461+1.538 \sqrt{h / r}-0.236 h / r \\ & \text { emicircular notch }(h / r=1.0) \\ & =3.065-3.472\left(\frac{2 h}{D}\right)+1.009 \end{aligned}$	$\begin{aligned} & P / t d \\ & \left(\frac{2 h}{D}\right)^{3} \\ & \quad 2.0 \leq h / r \leq 50.0 \\ & \hline 1.037+1.991 \sqrt{h / r}+0.002 h / r \\ & -1.886-2.181 \sqrt{h / r}-0.048 h / r \\ & 0.649+1.086 \sqrt{h / r}+0.142 h / r \\ & 1.218-0.922 \sqrt{h / r}-0.086 h / r \\ & \left(\frac{2 h}{D}\right)^{2}+0.405\left(\frac{2 h}{D}\right)^{3} \end{aligned}$
$\begin{aligned} & \pi \\ & 0 \\ & \stackrel{1}{2} \\ & \stackrel{0}{0} \end{aligned}$		b. In-plane bending		$\begin{aligned} & =\sigma_{A}=K_{t} \sigma_{\text {nom }}, \quad \sigma_{\text {nom }}= \\ & =C_{1}+C_{2} \frac{2 h}{D}+C_{3}\left(\frac{2 h}{D}\right)^{2}+C \\ & 0.1 \leq h / r<2.0 \\ & \hline 1.024+2.092 \sqrt{h / r}-0.051 h / r \\ & -0.630-7.194 \sqrt{h / r}+1.288 h / r \\ & 2.117+8.574 \sqrt{h / r}-2.160 h / r \\ & -1.420-3.494 \sqrt{h / r}+0.932 h / r \\ & \text { emicircular notch }(h / r=1.0) \\ & =3.065-6.637\left(\frac{2 h}{D}\right)+8.229 \end{aligned}$	$\begin{aligned} & 6 M / d^{2} t \\ & \left(\frac{2 h}{D}\right)^{3} \\ & 2.0 \leq h / r \leq 50.0 \\ & \hline 1.113+1.957 \sqrt{h / r} \\ & -2.579-4.017 \sqrt{h / r}-0.013 h / r \\ & 4.100+3.922 \sqrt{h / r}+0.083 h / r \\ & -1.528-1.893 \sqrt{h / r}-0.066 h / r \\ & \left(\frac{2 h}{D}\right)^{2}-3.636\left(\frac{2 h}{D}\right)^{3} \\ & \hline \end{aligned}$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

		c. Transverse bending

	b. In-plane bending		$\begin{array}{r} =\sigma_{A}=K_{t} \sigma_{\text {nom }}, \quad \sigma_{\text {nom }}= \\ =C_{1}+C_{2}\left(\frac{h}{D}\right)+C_{3}\left(\frac{h}{D}\right)^{2}+C \\ 0.5 \leq h / r \leq 2.0 \\ 1.795+1.481 h / r-0.211(h / r)^{2} \\ -3.544-3.677 h / r+0.578(h / r)^{2} \\ 5.459+3.691 h / r-0.565(h / r)^{2} \\ -2.678-1.531 h / r+0.205(h / r)^{2} \\ \text { emicircular notch }(h / r=1.0) \\ =3.065-6.643\left(\frac{h}{D}\right)+0.205(\end{array}$	$\begin{aligned} & 6 M / t d^{2} \\ & \begin{array}{l} \left(\frac{h}{D}\right)^{3} \\ \quad 2.0 \leq h / r \leq 20.0 \\ \hline 2.966+0.502 h / r-0.009(h / r)^{2} \\ -6.475-1.126 h / r+0.019(h / r)^{2} \\ 8.023+1.253 h / r-0.020(h / r)^{2} \\ -3.572-0.634 h / r+0.010(h / r)^{2} \\ \left.\frac{h}{D}\right)^{2}-4.004\left(\frac{h}{D}\right)^{3} \\ \hline \end{array} \\ & \hline \end{aligned}$
4. Multiple opposite semicircular notches in finite-width plate	Axial tension		$\begin{array}{r} =K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=P / t d \\ =C_{1}+C_{2}\left(\frac{2 r}{L}\right)+C_{3}\left(\frac{2 r}{L}\right)^{2}+ \\ 2 r / D \leq 0.4, \\ \hline 3.1055-3.4287\left(\frac{2 r}{D}\right)+0.8 \\ -1.4370+10.5053\left(\frac{2 r}{D}\right)-8 . \\ -1.6753-14.0851\left(\frac{2 r}{D}\right)+43 \\ 1.7207+5.7974\left(\frac{2 r}{D}\right)-27 . \end{array}$	$\begin{aligned} & C_{4}\left(\frac{2 r}{L}\right)^{3} \\ & \leq 2 r / L \leq 1.0 \\ & 22\left(\frac{2 r}{D}\right)^{2} \\ & 547\left(\frac{2 r}{D}\right)^{2}-19.6273\left(\frac{2 r}{D}\right)^{3} \\ & 6575\left(\frac{2 r}{D}\right)^{2} \\ & 463\left(\frac{2 r}{D}\right)^{2}+6.0444\left(\frac{2 r}{D}\right)^{3} \end{aligned}$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves
5.
Opposite single V-shaped
notches in finite-width plate
6.

Single V-shaped notch on one side

$$
\begin{aligned}
& \sigma_{\max }=\sigma_{A}=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=6 M / t d^{2} \\
& \text { For } \alpha \leq 90^{\circ}, \\
& K_{t}=K_{t u} \\
& \text { For } 90^{\circ}<\alpha \leq 150^{\circ} \text { and } 0.5 \leq h / r \leq 4.0, \\
& K_{t}=1.11 K_{t u}-\left[-0.0159+0.2243\left(\frac{\alpha}{150}\right)-0.4293\left(\frac{\alpha}{150}\right)^{2}\right. \\
& \left.\quad+0.3609\left(\frac{\alpha}{150}\right)^{3}\right] K_{t u}^{2}
\end{aligned}
$$

$K_{t u}$ is the stress concentration factor for U notch, case 3 b , and α is notch angle in degrees.

> 7.
> U-shaped circumferential groove in circular shaft

$\sigma_{\max }=\sigma_{A}=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=4 P / \pi d^{2}$
$K_{t}=C_{1}+C_{2} \frac{2 h}{D}+C_{3}\left(\frac{2 h}{D}\right)^{2}+C_{4}\left(\frac{2 h}{D}\right)^{3}$

	$0.1 \leq h / r<2.0$	$2.0 \leq h / r \leq 50.0$
C_{1}	$0.89+2.208 \sqrt{h / r}-0.094 h / r$	$1.037+1.967 \sqrt{h / r}+0.002 h / r$
C_{2}	$-0.923-6.678 \sqrt{h / r}+1.638 h / r$	$-2.679-2.980 \sqrt{h / r}-0.053 h / r$
C_{3}	$2.893+6.448 \sqrt{h / r}-2.516 h / r$	$3.090+2.124 \sqrt{h / r}+0.165 h / r$
C_{4}	$-1.912-1.944 \sqrt{h / r}+0.963 h / r$	$-0.424-1.153 \sqrt{h / r}-0.106 h / r$

for semicircular groove $(h / r=1.0)$
$K_{t}=3.004-5.963\left(\frac{2 h}{D}\right)+6.836\left(\frac{2 h}{D}\right)^{2}-2.893\left(\frac{2 h}{D}\right)^{3}$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

$\boldsymbol{M} \quad$| $\sigma_{\max }=\sigma_{A}=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=32 M / \pi d^{3}$ |
| :--- |
| $K_{t}=C_{1}+C_{2} \frac{2 h}{D}+C_{3}\left(\frac{2 h}{D}\right)^{2}+C_{4}\left(\frac{2 h}{D}\right)^{3}$ |
| |

for semicircular groove $(h / r=1.0)$
$K_{t}=3.032-7.431\left(\frac{2 h}{D}\right)+10.390\left(\frac{2 h}{D}\right)^{2}-5.009\left(\frac{2 h}{D}\right)^{3}$

$\tau_{\text {max }}=\tau_{A}=K_{t} \tau_{\text {nom }}, \quad \tau_{\text {nom }}=16 T / \pi d^{3}$
$K_{t}=C_{1}+C_{2} \frac{2 h}{D}+C_{3}\left(\frac{2 h}{D}\right)^{2}+C_{4}\left(\frac{2 h}{D}\right)^{3}$

	$0.25 \leq h / r<2.0$	$2.0 \leq h / r \leq 50.0$
C_{1}	$0.966+1.056 \sqrt{h / r}-0.022 h / r$	$1.089+0.924 \sqrt{h / r}+0.018 h / r$
C_{2}	$-0.192-4.037 \sqrt{h / r}+0.674 h / r$	$-1.504-2.141 \sqrt{h / r}-0.047 h / r$
C_{3}	$0.808+5.321 \sqrt{h / r}-1.231 h / r$	$2.486+2.289 \sqrt{h / r}+0.091 h / r$
C_{4}	$-0.567-2.364 \sqrt{h / r}+0.566 h / r$	$-1.056-1.104 \sqrt{h / r}-0.059 h / r$

	8. Large circumferential groove in circular shaft				
\%				$\begin{aligned} & =\sigma_{A}=K_{t} \sigma_{\text {nom }}, \\ & =C_{1}+C_{2}(r / d)+ \\ & 0.3 \leq r / d \leq 1.0, \\ & \hline-39.58+73.22(\\ & -9.477+29.41 \\ & 82.46-166.96 \end{aligned}$	$\sigma_{\text {nom }}=32 M / \pi d$ $/ d)^{2}$ $1.005 \leq D / d<$ $d)-32.46(D / d)^{2}$ $d)-20.13(D / d)$ $d)+84.58(D / d)$
		c. Torsion		$\begin{gathered} =\tau_{A}=K_{t} \tau_{\mathrm{nom}}, \\ =C_{1}+C_{2}(r / d)+ \\ 0.3 \leq r / d \leq 1, \\ \hline-35.16+67.57(\\ 79.13-148.37 \\ -50.34+94.67(\end{gathered}$	$\begin{aligned} & \tau_{\text {nom }}=16 T / \pi d^{3} \\ & r / d)^{2} \\ & 1.005 \leq D / d<1 . \\ & \text { l) }-31.28(D / d)^{2} \\ & (d)+69.09(D / d) \\ & \text { l) }-44.26(D / d)^{2} \end{aligned}$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves		
9. V-shaped groove in circular shaft	Torsion	$\tau_{\text {max }}=\tau_{A}=K_{t} \tau_{\text {nom }}, \quad \tau_{\text {nom }}=16 T / \pi d^{3}$ $K_{t u}=$ stress concentration factor for U-shaped groove ($\alpha=0$), case 7c where α is in degrees. For $0^{\circ} \leq \alpha \leq 90^{\circ}, K_{t}$ is independent of r / d; for $90^{\circ} \leq \alpha \leq 125^{\circ}, K_{t}$ is applicable only if $r / d \leq 0.01$

II. Holes		
Type of Stress Raiser	Loading Condition	Stress Concentration Factor
1. Single circular hole in infinite plate	a. In-plane normal stress	(1) Uniaxial tension $\left(\sigma_{2}=0\right)$ $\begin{aligned} & \sigma_{\max }=K_{t} \sigma_{1} \\ & \sigma_{A}=3 \sigma_{1} \text { or } K_{t}=3 \\ & \sigma_{B}=-\sigma_{1} \text { or } K_{t}=-1 \end{aligned}$ (2) Biaxial tension $K_{t}=3-\sigma_{2} / \sigma_{1}$ for $-1 \leq \sigma_{2} / \sigma_{1} \leq 1$ For $\sigma_{2}=\sigma_{1}, \sigma_{A}=\sigma_{B}=2 \sigma_{1}$ or $\bar{K}_{t}=2$ For $\sigma_{2}=-\sigma_{1}$ (pure shear stress), $\sigma_{A}=-\sigma_{B}=4 \sigma_{1} \text { or } K_{t}=4$
	b. Transverse bending	$\sigma_{\text {max }}=K_{t} \sigma, \quad \sigma=6 m / t^{2}, \quad v=0.3$ (1) Simple bending ($m_{1}=m, m_{2}=0$) For $0 \leq d / t \leq 7.0, \sigma_{\max }=\sigma_{A}$ $K_{t}=3.000-0.947 \sqrt{d / t}+0.192 d / t$ (2) Cylindrical bending $\left(m_{1}=m, m_{2}=\nu m\right)$ For $0 \leq d / t \leq 7.0, \sigma_{\max }=\sigma_{A}$ $K_{t}=2.700-0.647 \sqrt{d / t}+0.129 d / t$ (3) Isotropic bending $\left(m_{1}=m_{2}=m\right), \sigma_{\max }=\sigma_{A}$ $K_{t}=2($ independent of $d / t)$
	c. Twisting moment (see preceding figure and definitions)	$\begin{aligned} & \sigma_{\max }=K_{t} \sigma, \quad \sigma=6 m / t^{2} \\ & m_{1}=m, \quad m_{2}=-m, \quad v=0.3 \end{aligned}$ For $0 \leq d / t \leq 7.0$, $K_{t}=4.000-1.772 \sqrt{d / t}+0.341 d / t$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

5. Single row of circular holes in infinite plate	a. Uniaxial tension normal to row of holes $\left(\sigma_{1}=0, \sigma_{2}=\sigma\right)$	$\begin{aligned} & \sigma_{\max }=\sigma_{B}=K_{t} \sigma \\ & K_{t}=3.0000-0.9916\left(\frac{d}{L}\right)-2.5899\left(\frac{d}{L}\right)^{2}+2.2613\left(\frac{d}{L}\right)^{3} \\ & \text { for } 0 \leq d / L \leq 1 \end{aligned}$
	b. Uniaxial tension parallel to row of holes $\left(\sigma_{1}=\sigma, \sigma_{2}=0\right)$	$\begin{aligned} & \sigma_{\max }=\sigma_{A}=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=\sigma /(1-d / L) \\ & K_{t}=3.000-3.095\left(\frac{d}{L}\right)+0.309\left(\frac{d}{L}\right)^{2}+0.786\left(\frac{d}{L}\right)^{3} \\ & \text { for } 0 \leq d / L \leq 1 \end{aligned}$
	c. Biaxial tension ($\sigma_{1}=\sigma_{2}=\sigma$)	$\begin{aligned} & \sigma_{\max }=\sigma_{A}=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=\sigma /(1-d / L) \\ & K_{t}=2.000-1.597\left(\frac{d}{L}\right)+0.934\left(\frac{d}{L}\right)^{2}-0.337\left(\frac{d}{L}\right)^{3} \\ & \text { for } 0 \leq d / L \leq 1 \end{aligned}$

d. Transverse bending ($v=0.3$)	Bending about y axis: $\sigma_{\text {max }}=K_{t} \sigma_{\text {nom }}, \quad \sigma_{\text {nom }}=6 m / t^{2}$ for $0 \leq d / L \leq 1$ (1) Simple bending $\left(m_{1}=m, m_{2}=0\right)$ $K_{t}=1.787-0.060\left(\frac{d}{L}\right)-0.785\left(\frac{d}{L}\right)^{2}+0.217\left(\frac{d}{L}\right)^{3}$ (2) Cylindrical bending $\left(m_{1}=m, m_{2}=v m\right)$ $K_{t}=1.850-0.030\left(\frac{d}{L}\right)-0.994\left(\frac{d}{L}\right)^{2}+0.389\left(\frac{d}{L}\right)^{3}$ Bending about x axis: $\sigma_{\text {max }}=K_{t} \sigma_{\text {nom }}, \quad \sigma_{\text {nom }}=6 m / t^{2}(1-d / L)$ for $0 \leq d / L \leq 1$ (1) Simple bending $\left(m_{1}=m, m_{2}=0\right)$ $K_{t}=1.788-1.729\left(\frac{d}{L}\right)+1.094\left(\frac{d}{L}\right)^{2}-0.111\left(\frac{d}{L}\right)^{3}$ (2) Cylindrical bending $\left(m_{1}=m, m_{2}=v m\right)$ $K_{t}=1.849-1.741\left(\frac{d}{L}\right)+0.875\left(\frac{d}{L}\right)^{2}+0.081\left(\frac{d}{L}\right)^{3}$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

6. Single elliptical hole in infinite plate $r=\frac{a^{2}}{b}$	a. In-plane normal stress	(1) Uniaxial tension $\left(\sigma_{1}=\sigma, \sigma_{2}=0\right)$: $\begin{aligned} & \sigma_{A}=K_{t} \sigma \\ & K_{t}=1+\frac{2 a}{b}=1+2 \sqrt{\frac{a}{r}} \text { for } 0<a / b<10 \\ & \text { and } \sigma_{B}=-\sigma \end{aligned}$ (2) Biaxial tension: For $-1 \leq \sigma_{2} / \sigma_{1} \leq 1$ and $0.25 \leq a / b \leq 4$, $\begin{array}{ll} \sigma_{A}=K_{t A} \sigma_{1}, & K_{t A}=1+\frac{2 a}{b}-\frac{\sigma_{2}}{\sigma_{1}} \\ \sigma_{B}=K_{t B} \sigma_{1}, & K_{t B}=\frac{\sigma_{2}}{\sigma_{1}}\left(1+\frac{2 b}{a}\right)-1 \end{array}$ For $\sigma_{1}=\sigma_{2}$, $K_{t A}=2 a / b, \quad K_{t B}=2 b / a$	
	b. Transverse bending	(1) (2) (3)	$\begin{aligned} & \max =K_{t} \sigma, \quad \sigma=6 m / t^{2}, v=0.3 \\ & \operatorname{r~} 2 a / t>5 \text { and } 0.2 \leq a / b<5 \end{aligned}$ Simple bending ($m_{1}=m, m_{2}=0$) $K_{t}=1+\frac{2(1+v)(a / b)}{3+v} \text { for } 2 a / t>5$ Cylindrical bending ($m_{1}=m, m_{2}=v m$) $K_{t}=\frac{(1+v)[2(a / b)+3-v]}{3+v}$ Isotropic bending ($m_{1}=m_{2}=m$) $K_{t}=2 \text { (constant) }$

	7. Single elliptical hole in finite-width plate	a. Axial tension	$\begin{aligned} & \left.\begin{array}{l} \sigma_{\max }=\sigma_{A}=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=\sigma /(1-2 a / D) \\ K_{t}=C_{1}+C_{2} \frac{2 a}{D}+C_{3}\left(\frac{2 a}{D}\right)^{2}+C_{4}\left(\frac{2 a}{D}\right)^{3} \\ \\ \\ \hline C_{1} \\ C_{2} \\ C_{3} \\ C_{4} \\ C_{4} \\ \hline \end{array} \right\rvert\, .0 .109-0.486+0.188 \sqrt{a / b}+2.086 a / b-5.513 \sqrt{a / b}-2.588 a / b \\ & \hline \end{aligned}$	
		b. In-plane bending	$\begin{aligned} & \sigma_{\max }=\sigma_{A}=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=12 M a /\left(D^{3}-8 a^{3}\right) t \\ & K_{t}=C_{1}+C_{2}\left(\frac{2 a}{D}\right)+C_{3}\left(\frac{2 a}{D}\right)^{2} \end{aligned}$ $0.4 \leq 2 a / D \leq 1.0, \quad 1.0 \leq a / b \leq 2.0$ C_{1} $1.509+0.336(a / b)+0.155(a / b)^{2}$ C_{2} $-0.416+0.445(a / b)-0.029(a / b)^{2}$ C_{3} $0.878-0.736(a / b)-0.142(a / b)^{2}$ for $2 a / D \leq 0.4, \sigma_{\max }=\sigma_{B}=6 M / D^{2} t$	

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

8. Eccentric elliptical hole in finite-width plate	Axial tension	Stress on section $A B$ is $\sigma_{\mathrm{nom}}=\frac{\sqrt{1-a / c}}{1-a / c} \frac{1-c / D}{1-(c / D)\left[2-\sqrt{1-(a / c)^{2}}\right]}$ and $\begin{aligned} \sigma_{\max } & =K_{t} \sigma_{\mathrm{nom}} \\ K_{t} & =C_{1}+C_{2} \frac{a}{c}+C_{3}\left(\frac{a}{c}\right)^{2}+C_{4}\left(\frac{a}{c}\right)^{3} \end{aligned}$ for $1.0 \leq a / b \leq 8.0$ and $0 \leq a / c \leq 1$ Expressions for C_{1}, C_{2}, C_{3}, and C_{4} from case 7 a can be used.
9. Infinite row of elliptical holes in infinite-width plate	Uniaxial tension	$\sigma_{\max }=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=\sigma /(1-2 a / L)$ For $0 \leq 2 a / L \leq 0.7$ and $1 \leq a / b \leq 10$, $K_{t}=\left[1.002-1.016\left(\frac{2 a}{L}\right)+0.253\left(\frac{2 a}{L}\right)^{2}\right]\left(1+\frac{2 a}{b}\right)$

10. Circular hole with opposite semicircular lobes in finite-width plate	Axial tension	$\sigma_{\max }=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=\sigma /(1-2 b / D)$ For $0 \leq 2 b / D \leq 1$, $K_{t}=K_{t 0}\left[1-\frac{2 b}{D}+\left(\frac{6}{K_{t 0}}-1\right)\left(\frac{b}{D}\right)^{2}+\left(1-\frac{4}{K_{t 0}}\right)\left(\frac{b}{D}\right)^{3}\right]$ where for $0.2<r / R \leq 4.0$, $K_{t 0}=\frac{\sigma_{\max }}{\sigma}=2.2889+\frac{1.6355}{\sqrt{r / R}}-\frac{0.0157}{r / R}$ For infinitely wide plate, $K_{t}=K_{t 0}$.
11. Rectangular hole with rounded corners in infinite-width plate	Uniaxial tension	

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

12. Slot having semicircular ends	a. Axial tension $a_{\mathrm{eq}}=\sqrt{r b}$ where $a_{\text {eq }}$ is width of equivalent ellipse	If the openings such as two holes connected by a slit or an ovaloid are enveloped by an ellipse with the same $2 b$ and r,
		K_{t} can be approximated by using an equivalent ellipse having the same dimensions $2 b$ and r. See cases $6 a$ and 8 .
	b. In-plane bending $a_{\mathrm{eq}}=\sqrt{r b}$	Use an equivalent ellipse. See case 6b.
13. Equilateral triangular hole with round corners in infinite-width plate	a. Uniaxial tension $\left(\sigma_{1}=\sigma, \sigma_{2}=0\right)$	$\begin{aligned} & \sigma_{\max }=K_{t} \sigma \\ & \text { For } 0.25 \leq r / R \leq 0.75 \\ & K_{t}=6.191-7.215(r / R)+5.492(r / R)^{2} \end{aligned}$
$\uparrow \uparrow \uparrow \sigma_{2}^{\sigma_{2}} \uparrow \uparrow \uparrow$	b. Biaxial tension $\left(\sigma_{1}=\sigma, \sigma_{2}=\sigma / 2\right)$	$\begin{aligned} & \sigma_{\max }=K_{t} \sigma \\ & \text { For } 0.25 \leq r / R \leq 0.75 \\ & K_{t}=6.364-8.885(r / R)+6.494(r / R)^{2} \end{aligned}$
	c. Biaxial tension $\left(\sigma_{1}=\sigma_{2}=\sigma\right)$	$\begin{aligned} & \sigma_{\max }=K_{t} \sigma \\ & \text { For } 0.25 \leq r / R \leq 0.75 \\ & K_{t}=7.067-11.099(r / R)+7.394(r / R)^{2} \end{aligned}$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

15.

Transverse circular hole in
round bar or tube

| | $\sigma_{\max }=\sigma_{A}=K_{t} \tau_{\text {nom }}, \quad \tau_{\text {nom }}=16 T D / \pi\left(D^{4}-d^{4}\right)$ |
| :--- | :--- | :--- |
| $K_{t}=C_{1}+C_{2} \frac{2 r}{D}+C_{3}\left(\frac{2 r}{D}\right)^{2}+C_{4}\left(\frac{2 r}{D}\right)^{3}$ | |

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Fillets

III. Fillets

Type of Stress Raiser	Loading Conditions	Stress Concentration Factor
1. Opposite shoulder fillets in stepped flat bar	a. Axial tension	$\begin{aligned} & \sigma_{\max }=K_{t} \sigma_{\text {nom }}, \quad \sigma_{\text {nom }}=P / t d \\ & K_{t}=C_{1}+C_{2} \frac{2 h}{D}+C_{3}\left(\frac{2 h}{D}\right)^{2}+C_{4}\left(\frac{2 h}{D}\right)^{3} \\ & \text { where } \frac{L}{D}>-1.89\left(\frac{r}{d}-0.15\right)+5.5 \\ & \quad 0.1 \leq h / r \leq 2.0 \\ & \hline \end{aligned}$
	b. In-plane bending	$\begin{aligned} & \sigma_{\max }=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=6 M / t d^{2} \\ & K_{t}=C_{1}+C_{2} \frac{2 h}{D}+C_{3}\left(\frac{2 h}{D}\right)^{2}+C_{4}\left(\frac{2 h}{D}\right)^{3} \end{aligned}$ where $\frac{L}{D}>-2.05\left(\frac{r}{d}-0.025\right)+2.0$

	2. Shoulder fillet in stepped circular shaft	a. Axial tension	σ_{m} K_{t} C_{1} C_{2} C_{3} C_{4}	$\begin{gathered} =K_{t} \sigma_{\text {nom }}, \quad \sigma_{\text {nom }}=4 P, \\ =C_{1}+C_{2} \frac{2 h}{D}+C_{3}\left(\frac{2 h}{D}\right)^{2}+ \\ 0.1 \leq h / r \leq 2.0 \\ \hline 0.926+1.157 \sqrt{h / r}-0.099 h / r \\ 0.012-3.036 \sqrt{h / r}+0.961 h / r \\ -0.302+3.977 \sqrt{h / r}-1.744 h / r \\ 0.365-2.098 \sqrt{h / r}+0.878 h / r \end{gathered}$	$\begin{aligned} & d^{2} \\ & \left(\frac{2 h}{D}\right)^{3} \\ & \quad 2.0 \leq h / r \leq 20.0 \\ & \hline 1.200+0.860 \sqrt{h / r}-0.022 h / r \\ & -1.805-0.346 \sqrt{h / r}-0.038 h / r \\ & 2.198-0.486 \sqrt{h / r}+0.165 h / r \\ & -0.593-0.028 \sqrt{h / r}-0.106 h / r \end{aligned}$
		b. Bending		$\begin{gathered} =K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=32 \lambda \\ =C_{1}+C_{2} \frac{2 h}{D}+C_{3}\left(\frac{2 h}{D}\right)^{2}+ \\ 0.1 \leq h / r \leq 2.0 \end{gathered}$	$\begin{aligned} & \pi d^{3} \\ & \left(\frac{2 h}{D}\right)^{3} \end{aligned}$ $2.0 \leq h / r \leq 20.0$
			C_{1} C_{2} C_{3} C_{4}	$\begin{array}{r} 0.947+1.206 \sqrt{h / r}-0.131 h / r \\ 0.022-3.405 \sqrt{h / r}+0.915 h / r \\ 0.869+1.777 \sqrt{h / r}-0.555 h / r \\ -0.810+0.422 \sqrt{h / r}-0.260 h / r \end{array}$	$\begin{array}{r} 1.232+0.832 \sqrt{h / r}-0.008 h / r \\ -3.813+0.968 \sqrt{h / r}-0.260 h / r \\ 7.423-4.868 \sqrt{h / r}+0.869 h / r \\ -3.839+3.070 \sqrt{h / r}-0.600 h / r \end{array}$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Fillets

c. Torsion	$\begin{aligned} & \tau_{\max }=K_{t} \tau_{\mathrm{nom}}, \quad \tau_{\mathrm{nom}}=16 T / \pi d^{3} \\ & K_{t}=C_{1}+C_{2} \frac{2 h}{D}+C_{3}\left(\frac{2 h}{D}\right)^{2}+C_{4}\left(\frac{2 h}{D}\right)^{3} \end{aligned}$	
		$0.25 \leq h / r \leq 4.0$
	C_{1}	$0.905+0.783 \sqrt{h / r}-0.075 h / r$
	C_{2}	$-0.437-1.969 \sqrt{h / r}+0.553 h / r$
	C_{3}	$1.557+1.073 \sqrt{h / r}-0.578 h / r$
	C_{4}	$-1.061+0.171 \sqrt{h / r}+0.086 h / r$

IV. Miscellaneous Elements

Type of Stress Raiser	Loading Conditions	Stress Concentration Factor
1. Round shaft with semicircular end key seat	a. Bending	$\begin{aligned} & \sigma_{\max }=K_{t} \sigma, \quad \sigma=32 M / \pi D^{3} \\ & b=\frac{1}{4} D, \quad h=\frac{1}{8} D, \quad \alpha=10^{\circ}, \quad \beta=15^{\circ} \end{aligned}$ (1) At location A on surface: $K_{t A}=1.6$ (2) At location B at end of keyway: $\begin{aligned} & K_{t B}=1.426+0.1643\left(\frac{0.1}{r / D}\right)-0.0019\left(\frac{0.1}{r / D}\right)^{2} \\ & \text { where } 0.005 \leq r / D \leq 0.04 \\ & D \leq 6.5 \mathrm{in} . \\ & h / D=0.125 \end{aligned}$ For $D>6.5$ in., it is suggested that the $K_{t B}$ values for $r / D=0.0208$ be used.
	b. Torsion	$h=\frac{1}{8} D, \quad b=D / r, \quad \alpha=15^{\circ}, \quad \beta=50^{\circ}$ (1) At location A on surface: $K_{t A}=\sigma_{\max } / \tau \simeq 3.4, \quad \tau=16 T / \pi D^{3}$ (2) At location B in fillet: $\begin{aligned} & K_{t B}=\sigma_{\max } / \tau \\ & \quad=1.953+0.1434\left(\frac{0.1}{r / D}\right)-0.0021\left(\frac{0.1}{r / D}\right)^{2} \\ & \text { for } 0.005 \leq r / D \leq 0.07 \end{aligned}$

TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Miscellaneous Elements

2. Splined shaft	a. Torsion	For an eight-tooth spline $K_{t S}=\tau_{\max } / \tau, \quad \tau=16 T / \pi D^{3}$ For $0.01 \leq r / D \leq 0.04$ $K_{t S}=6.083-14.775\left(\frac{10 r}{D}\right)+18.250\left(\frac{10 r}{D}\right)^{2}$
3. Gear teeth	Bending plus some compression A and C are points of tangency of inscribed parabola $A B C$ with tooth profile $\begin{aligned} b= & \text { tooth width normal to } \\ & \text { plane of figure } \\ r_{f}= & \text { minimum radius of tooth } \\ & \text { fillet } \\ W= & \text { load per unit length of } \\ & \text { tooth face } \\ \phi= & \text { angle between load } W \\ & \text { and normal to tooth face } \end{aligned}$	Maximum stress occurs at fillet on tension side at base of tooth $\sigma_{\max }=K_{t} \sigma_{\mathrm{nom}}, \quad \sigma_{\mathrm{nom}}=\frac{6 W h}{b t^{2}}-\frac{W}{b t} \tan \phi$ For 14.5° pressure angle, $K_{t}=0.22+\left(\frac{t}{r_{f}}\right)^{0.2}\left(\frac{t}{h}\right)^{0.4}$ For 20° pressure angle, $K_{t}=0.18+\left(\frac{t}{r_{f}}\right)^{0.15}\left(\frac{t}{h}\right)^{0.45}$

4.	For position A,$K_{t A}=\frac{\sigma_{\max }-P / t d}{6 P e / t d^{2}}$			
U-shaped member				
	For position B, $K_{t B}=\frac{\sigma_{\max }}{P L c_{B} / I_{B}}$ where $I_{B} / c_{B}=$ section modulus at section in question (section $B B^{\prime}$)			
$\begin{aligned} \text { where } \theta & =20^{\circ} \\ e & =L+r+d / 2\end{aligned} \quad \begin{aligned} & \\ & \end{aligned}$				
	$\begin{aligned} & \frac{e}{r}=\frac{e}{h}=\frac{e}{d} \\ & 1.5 \leq \frac{e}{r} \leq 4.5 \end{aligned}$	$\begin{aligned} & K_{t A}=0.194+1.267\left(\frac{e}{r}\right)-0.455\left(\frac{e}{r}\right)^{2}+0.050\left(\frac{e}{r}\right)^{3} \\ & K_{t B}=4.141-2.760\left(\frac{e}{r}\right)+0.838\left(\frac{e}{r}\right)^{2}-0.082\left(\frac{e}{r}\right)^{3} \end{aligned}$		
	$\begin{aligned} & \frac{e}{2 r}=\frac{e}{2 h}=\frac{e}{d} \\ & 1.0 \leq \frac{e}{2 r} \leq 2.5 \end{aligned}$	$\begin{aligned} & K_{t A}=0.800+1.147\left(\frac{e}{2 r}\right)-0.580\left(\frac{e}{2 r}\right)^{2}+0.093\left(\frac{e}{2 r}\right)^{3} \\ & K_{t B}=7.890-11.107\left(\frac{e}{2 r}\right)+6.020\left(\frac{e}{2 r}\right)^{2}-1.053\left(\frac{e}{2 r}\right)^{3} \end{aligned}$		

$\frac{d}{r}=\frac{d}{h}$	When $a=3 r$,
$0.75 \leq \frac{d}{r} \leq 2.0$	$K_{t A}=1.143+0.074\left(\frac{d}{r}\right)+0.026\left(\frac{d}{r}\right)^{3}$
	$K_{t B}=1.276$
	When $a=r$,
	$K_{t A}=0.714+1.237\left(\frac{d}{r}\right)-0.891\left(\frac{d}{r}\right)^{2}+0.239\left(\frac{d}{r}\right)^{3}$
	$K_{t B}=1.374$
$\frac{d}{r}=\frac{h}{r}$ $1.0 \leq \frac{d}{r} \leq 7.0$	For $a=3 r$,
	$K_{t A}=0.982+0.303\left(\frac{d}{r}\right)-0.017\left(\frac{d}{r}\right)^{2}$
	$K_{t B}=1.020+0.235\left(\frac{d}{r}\right)-0.015\left(\frac{d}{r}\right)^{2}$
	For $a=r$,
	$K_{t A}=1.010+0.281\left(\frac{d}{r}\right)-0.012\left(\frac{d}{r}\right)^{2}$
	$K_{t B}=0.200+1.374\left(\frac{d}{r}\right)-0.412\left(\frac{d}{r}\right)^{2}+0.037\left(\frac{d}{r}\right)^{3}$

${ }^{a}$ Much of this material is based on Ref. [6.1].

C H A P T E R
 7

Fracture Mechanics and Fatigue

7.1 Notation 308
7.2 Linear Elastic Fracture Mechanics and Applications 309
General Design by Linear Elastic Fracture Mechanics 315
7.3 Energy Analysis of Fracture 326
7.4 J Integral 327
7.5 Fatigue Fracture 329
7.6 Traditional $S-N$ Curve Approach to Fatigue 330
Stress Concentration 331
Nonzero Mean Load 331
Load with Varying Amplitude 334
Effects of Load, Size, Surface, and Environment 336
Load 336
Size 336
Surface and Environment 337
Stress Concentration with a Nonzero Mean Load 338
7.7 Fracture Mechanics Approach to Fatigue 340
7.8 Combined Approach 344
References 345
Tables 349

Discontinuities (sharp corners, grooves, surface nicks, and voids in welds) and material imperfections (flaws, cracks) are present in almost all engineering structures even though the structure may have been "inspected" during fabrication. However, increasing demands for optimum design and the resulting conservation of material require that structures be designed with smaller safety margins. The discipline of fracture mechanics helps meet the needs of accurately estimating the strength of cracked structures. In general, fracture mechanics deals with the conditions under which a load-bearing body can fail due to enlargement of a dominant crack contained in the body.

The tendency of a structural member to fracture depends on the temperature, the microstructure of the material, the presence of corrosive agents, the thickness of the material, and the types of loading-static, impact, or cyclic-and construction practice-welded, casted, riveted and bolted, and so on. Material fracture under static
loading with chemically active substances present is known as stress corrosion; fracture under cyclic load is referred to as fatigue, and fracture with both cyclic loading and the presence of active substances is called corrosion fatigue. In this chapter we review briefly the theory of fracture mechanics and fatigue. These theories can be used in the design of structures to avoid brittle fracture. More extensive and detailed treatments of fracture, stress corrosion, and corrosion fatigue may be found in the literature (e.g., [7.1-7.3]).

7.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and F for force.
a Flaw size, usually length or half-length of flaw; also, $2 a$ is the major axis of an ellipse (L)
a_{c} Critical flaw size (L)
a_{T} Flaw size at rate transition point of crack growth (L)
A Crack growth rate under unit fluctuation of stress intensity factor ($L /$ cycle)
b Width of plate; also, $2 b$ is the minor axis of an ellipse (L)
C Constant that depends on the shape and size of the flaw and specimen
E Young's modulus (F / L^{2})
$E^{\prime} E$ for plane stress; $E /\left(1-v^{2}\right)$ for plane strain
G Energy release rate (F / L)
J The J integral ($F L / L$)
K Stress intensity factor $\left(F / L^{3 / 2}\right)$
ΔK Range of stress intensity factor $\left(F / L^{3 / 2}\right)$
K_{c} Critical stress intensity factor for plane stress $\left(F / L^{3 / 2}\right)$
K_{f} Fatigue strength reduction factor
K_{I} Stress intensity factor for plane strain, mode I deformation $\left(F / L^{3 / 2}\right)$
$K_{\text {Ic }}$ Critical stress intensity factor for plane strain, mode I deformation, also called fracture toughness or notch toughness ($F / L^{3 / 2}$)
K_{Id} Critical stress intensity factor for dynamic (impact) loading and plane strain conditions of maximum constraint $\left(F / L^{3 / 2}\right)$
$K_{\text {II }}$ Mode II stress intensity factor $\left(F / L^{3 / 2}\right)$
$K_{\text {III }}$ Mode III stress intensity factor $\left(F / L^{3 / 2}\right)$
K_{t} Theoretical stress concentration factor
K_{T} Transition stress intensity factor for zero to tension loading ($F / L^{3 / 2}$)
ΔK_{T} Fluctuation of stress intensity factor at which transition of rate of crack growth occurs ($F / L^{3 / 2}$)
$\Delta K_{\text {th }}$ Threshold fluctuation of stress intensity factor below which cracks do not grow $\left(F / L^{3 / 2}\right)$
N Number of load cycles
N_{f} Fatigue life, number of cycles to failure (cycles)
q Notch sensitivity index
r Radius of curvature of notch (L)
r_{p} True length of crack-tip plastic zone (L)
r_{p}^{*} Apparent distance in crack-tip plastic zone (L)
R Crack growth resistance (F / L)
t Specimen thickness (L)
α Material constant used in computing notch sensitivity (L)
σ Nominal stress $\left(F / L^{2}\right)$
σ_{a} Alternating stress level of the applied load $\left(F / L^{2}\right)$
σ_{e} Endurance limit $\left(F / L^{2}\right)$
σ_{f} Fatigue strength $\left(F / L^{2}\right)$
σ_{m} Mean stress level of the applied load $\left(F / L^{2}\right)$
σ_{u} Ultimate tensile strength $\left(F / L^{2}\right)$
$\sigma_{y s}$ Yield strength $\left(F / L^{2}\right)$

7.2 LINEAR ELASTIC FRACTURE MECHANICS AND APPLICATIONS

Linear elastic mechanics has become a practical analytical tool for studying structural fracture where the inelastic deformation surrounding a crack tip is small. Fracture mechanics deals with the conditions under which cracks form and grow. As a consequence, fracture mechanics can be used in structural design to determine acceptable stress levels, acceptable defect sizes, and material properties for certain working conditions. Linear elastic fracture mechanics is based on an analytical procedure that relates the stress field in the vicinity of the crack tip to the nominal stress of the structure; to the size, shape, and orientation of the crack; and to the material properties of the structure.

Equation (6.1) describes the distribution of stresses near a circular hole in an infinite plane under uniaxial tension. This formula was used to calculate the stress concentration factor. In a similar fashion, consider an elliptical hole of major axis $2 a$ and minor axis $2 b$, as shown in Fig. 7-1a. If $a \gg b$, the elliptical hole becomes a crack of length $2 a$ (Fig. 7-1b). The stress formulas near the crack tip $(r \ll a)$ can be shown to be [7.4]

$$
\begin{align*}
\sigma_{x} & =\sigma \frac{\sqrt{a}}{\sqrt{2 r}} \cos \frac{\theta}{2}\left(1-\sin \frac{\theta}{2} \sin \frac{3 \theta}{2}\right), \quad \sigma_{y}=\sigma \frac{\sqrt{a}}{\sqrt{2 r}} \cos \frac{\theta}{2}\left(1+\sin \frac{\theta}{2} \sin \frac{3 \theta}{2}\right) \\
\tau_{x y} & =\sigma \frac{\sqrt{a}}{\sqrt{2 r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3 \theta}{2} \tag{7.1}
\end{align*}
$$

where r and θ are shown in Fig. 7-1 b.

Figure 7-1: (a) Elliptical hole in an infinite plate; $(b) a \gg b$.

The stress σ_{y} near the crack tip with $\theta=0$ becomes

$$
\begin{equation*}
\sigma_{y}=\sigma \sqrt{a} / \sqrt{2 r} \tag{7.2}
\end{equation*}
$$

It is clear that at the crack tip $(r=0)$ the stress is singular since $\sigma_{y} \rightarrow \infty$ as $r \rightarrow 0$. Because of this singularity, the usual stress concentration approach is inappropriate for this problem. Alternatively, the quantity $\sigma_{y} \sqrt{2 r}$ is introduced, since this factor remains finite as $r \rightarrow 0$. More specifically, a factor π is introduced to this quantity, so that a new factor is defined,

$$
\begin{equation*}
K=\sigma_{y} \sqrt{2 \pi r}=(\sigma \sqrt{a} / \sqrt{2 r}) \sqrt{2 \pi r}=\sigma \sqrt{\pi a} \tag{7.3}
\end{equation*}
$$

In a more general form, K is taken to be

$$
\begin{equation*}
K=C \sigma \sqrt{\pi a} \tag{7.4}
\end{equation*}
$$

The quantity K is called the stress intensity factor (with units MPa $\cdot \sqrt{\mathrm{m}}$, or ksi- $\sqrt{\mathrm{in}}$.). The stress σ is the nominal stress, a is the flaw size, and C is a constant that depends on the shape and size of the flaw and specimen.

It is important to determine the stress intensity factor for the specific geometry and loading involved to assess the safety factor for a solid.

Three types of crack propagation are recognized: opening, sliding, and tearing (Fig. 7-2). These types are called modes I, II, and III, respectively. A flaw may propagate in a particular mode or in a combination of these modes.

Figure 7-2: Three modes of crack propagation: (a) I, opening; (b) II, sliding; (c) III, tearing.

The stress intensity factors of Eq. (7.4) corresponding to the three modes represent the most general loading environment. Formulas for stress intensity factors for various loading and crack shapes are listed in Table 7-1.

When the combination of nominal stress and crack size attains a value such that the stress intensity factor K reaches a critical magnitude K_{c} that is material dependent, unstable crack propagation occurs. The critical stress intensity factor K_{c} for each mode of propagation is regarded as a material constant that depends, more or less, on temperature, plate thickness, and loading rate. The concept of the critical stress intensity factor as a material property originated with Irwin. Earlier investigators, particularly Griffith, reasoned that unstable crack propagation occurs when the elastic energy released during the formation of a unit area of crack surface exceeds the energy required to form that amount of surface. In dealing with ductile metals the energy necessary to perform plastic work at the crack tip is much more important than the surface energy [7.5]. The critical stress intensity factor of a material is also referred to as its fracture toughness.

The relationship between the stress intensity factor and the fracture toughness is similar to that between tensile stress and tensile strength, that is,

$$
\begin{equation*}
K \leq K_{c} \tag{7.5}
\end{equation*}
$$

where K_{c} is the critical value (fracture toughness) that depends on the degrees of triaxial constraint at the crack tip. For mode I deformation under plane strain (small
crack-tip plastic deformation), the critical value for fracture is designated $K_{\mathrm{II} c}$, which has units of MPa $\cdot \sqrt{\mathrm{m}}$ (or ksi- $\sqrt{\mathrm{in} \text {. }}$). This inherent material property is measured under precisely defined procedures prescribed by the American Society for Testing and Materials (ASTM) standard E399. A useful relation between the plane strain fracture toughness $K_{\mathrm{I} c}$ and the somewhat greater value of K_{c} is the semiempirical equation [7.6]

$$
\begin{equation*}
K_{c}=K_{\mathrm{I} c}\left[1+\frac{1.4}{t^{2}}\left(\frac{K_{\mathrm{I} c}}{\sigma_{y s}}\right)^{4}\right]^{1 / 2} \tag{7.6}
\end{equation*}
$$

where t is the plate thickness and $\sigma_{y s}$ is the yield stress of the material. This formula can be used to estimate the plane stress fracture toughness if the plane strain value is known or to obtain the plane strain fracture toughness from a K_{c} obtained from specimen testing. For dynamic (impact) loading and plane strain conditions, the critical stress intensity factor is designated $K_{\mathrm{I} d}$. All of these values are also affected by temperature.

For mode I crack propagation, Eqs. (7.4) and (7.5) can be rewritten as

$$
\begin{align*}
& K_{\mathrm{I}}=C \sigma \sqrt{\pi a} \tag{7.7}\\
& K_{\mathrm{I}} \leq K_{\mathrm{I} c} \tag{7.8}
\end{align*}
$$

where K_{I} is the stress intensity factor for mode I deformation under plane strain.
These equations indicate that the crack size a, stress level σ, and fracture toughness $K_{\text {I } c}$ are the primary factors that control the susceptibility of a structure to brittle fracture. It is also apparent that the single parameter K (or K_{I}) is enough to represent the stress condition in the vicinity of the crack tip. When the stress intensity factor reaches the value of the fracture toughness, failure occurs.

For steel the resistance of a material to fracture decreases as the temperature decreases and as the loading rate increases. The fracture toughness of some structural materials, such as aluminum, titanium, and some high-strength steels, changes only slightly with temperature. It is interesting that the fracture toughness decreases as the yield stress of the material increases. Depending on the service conditions, a material may fracture elastically with little plastic deformation. A particular temperature that is different for different steels is customarily used to define the transition from ductile to brittle behavior. This is known as the ductile-brittle transition temperature and as the nil-ductility transition temperature (NDT) (see Chapter 4). The transition temperature of a material increases markedly with loading rate and with the grain size of the material. Because of the difficulty involved in obtaining fracture toughness data directly, a number of formulas relating Charpy values (Chapter 4) and fracture toughness $K_{\mathrm{I} c}$ of steels have been developed. One of these is

$$
\begin{equation*}
\left(\frac{K_{\mathrm{I} c}}{\sigma_{y s}}\right)^{2}=5\left(\frac{\mathrm{CVN}}{\sigma_{y s}}-0.05\right) \tag{7.9}
\end{equation*}
$$

which is based on results obtained on 11 steels having yield strengths $\sigma_{y s}$ ranging from 110 to 246 ksi. Here CVN is the Charpy energy at a temperature above the
transition temperature in $\mathrm{ft}-\mathrm{lb}, \sigma_{y s}$ is in ksi , and K_{Ic} is in ksi- $\sqrt{\mathrm{in}}$. In SI units [7.7]

$$
\begin{equation*}
\left(\frac{K_{\mathrm{I} c}}{\sigma_{y s}}\right)^{2}=0.18\left(\frac{\mathrm{CVN}}{\sigma_{y s}}-0.05\right) \tag{7.10}
\end{equation*}
$$

When two or more loads act to produce the same mode of crack propagation, the respective stress intensity factors may be added to determine if the total is under the critical value. If a crack propagates in more than one mode simultaneously, the concept of critical stress intensity factor cannot be applied directly. To deal with multimode problems, Sih [7.7] has based a theory of unstable crack propagation on a material property named the critical strain energy density factor. This theory predicts the direction of flaw propagation as well as the critical flaw size.

In most practical applications of the theory of fracture mechanics, the analysis is limited to mode I propagation only. The critical stress intensity factor for mode I deformation is shown in Table 7-2 for several materials. The specimen orientation letters refer to the relationships between the crack propagation direction in the specimen and the rolling direction of the plate. The letters $\mathrm{L}-\mathrm{T}$ mean that the crack is perpendicular to the longitudinal (rolling) direction and parallel to the width (transverse) direction. The reverse of $\mathrm{L}-\mathrm{T}$ conditions is designated $\mathrm{T}-\mathrm{L}$. The letters $\mathrm{S}-\mathrm{L}$ mean that the crack is perpendicular to the thickness and parallel to the rolling direction. Other combinations ($\mathrm{L}-\mathrm{S}, \mathrm{T}-\mathrm{S}$, and $\mathrm{S}-\mathrm{T}$) are possible. An analogous code exists for round bar material, with the directions being longitudinal, radial, and circumferential (L-R-C).

The analysis above is based on linear elastic fracture mechanics, assuming a stress singularity exists at the tip of the crack [Eq. (7.2)]. However, in reality, in a small region near the tip, plastic deformation probably occurs, and since the stresses are limited by yielding, a stress singularity does not occur.

Suppose that the crack in the plate of finite width of Fig. 7-3a is under mode I loading. Near the crack tip where a plastic zone spreads, two zones can be identified. In the first zone, on the free surface, $\sigma_{z}=0$ so that the plane stress state exists. However, in the second zone, the strain in the z direction (parallel to the crack front) is constrained and the plane strain state exists. If the size of the plastic zone (in the x or y directions) is large and on the order of the plate thickness, the crack can be modeled as being in the plane stress state. If the size of the plastic zone is much smaller than the plate thickness, the second zone will dominate and the crack can be considered as being in the state of plane strain.

The size of the crack tip plastic zone in either plane stress or plane strain may be estimated by using the von Mises yield relation [Eq. (3.71)] along with Eqs. (7.1). The shape of the plastic zone can be expressed in terms of the boundary parameters r_{p}^{*} and θ (Fig. 7-3b and c). For mode I deformation and a plane stress state, the relationship between r_{p}^{*} and θ is

$$
\begin{equation*}
r_{p}^{*}=\cos ^{2} \frac{\theta}{2}\left(1+3 \sin ^{2} \frac{\theta}{2}\right)\left(\frac{1}{2 \pi}\right)\left(\frac{K_{\mathrm{I}}}{\sigma_{y s}}\right)^{2} \tag{7.11a}
\end{equation*}
$$

Figure 7-3: Plastic zone shape for mode I loading: (a) plastic zone at the tip of the crack; (b) plane strain state; (c) plane stress state.

At $\theta=0$,

$$
\begin{equation*}
r_{p}^{*}=\frac{1}{2 \pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{y s}}\right)^{2} \tag{7.11b}
\end{equation*}
$$

A common formula assumed for plane strain is [7.4]

$$
\begin{equation*}
r_{p}^{*}=\frac{1}{6 \pi}\left(\frac{K_{\mathrm{I}}}{\sigma_{y s}}\right)^{2} \tag{7.12}
\end{equation*}
$$

The plasticity at the crack tip results in a redistribution of stresses. For equilibrium to be maintained, the full width of the plastic zone r_{p} will be twice the value of r_{p}^{*}. These results are approximate because the influence of some effects is ignored.

If r_{p}^{*} is small relative to the planar dimensions, including crack size a, that is,

$$
\begin{equation*}
r_{p}^{*} \ll a, t, b-a \tag{7.13}
\end{equation*}
$$

the preceding linear elastic theory-based formulas tend to be reasonably accurate. In Eq. (7.13), b is the width of a specimen of thickness t containing a crack of size a.

The existence of a plastic zone implies that the center of coordinates (r, θ) for the elastic field advances ahead of the real crack tip into the zone of plasticity. The correction for the effective crack size is often utilized in determination of the stress intensity factor K. Define

$$
\begin{equation*}
a_{\mathrm{eff}}=a+r_{p}^{*} \tag{7.14}
\end{equation*}
$$

where $a_{\text {eff }}$ is an effective crack length. Use of $a_{\text {eff }}$ to replace a in Eqs. (7.4) to calculate the stress intensity factor is called the Irwin correction [7.8]. For example, K_{I} of a tension strip of infinite width with a centrally located crack (case 1 of Table 7-1, $b \gg a)$ is

$$
\begin{equation*}
K_{\mathrm{I}}=\sigma \sqrt{\pi a} \tag{7.15}
\end{equation*}
$$

After introducing $a_{\text {eff }}$, this becomes

$$
\begin{equation*}
K_{\mathrm{I}}=\sigma \sqrt{\pi\left(a+r_{p}^{*}\right)} \tag{7.16}
\end{equation*}
$$

where r_{p}^{*} is shown in Eqs. (7.11).
Although the results tend to be quite satisfactory for r_{p}^{*} small relative to a and the other planar dimensions, for the purpose of examining trends, sometimes the effective crack size correction is utilized for large-scale yield even though r_{p}^{*} fails to pass the dimension constraints.

One method of comparing the resistance to fracture is to evaluate the crack toughness performance using $K_{\mathrm{I} c} / \sigma_{y s}$. The larger this ratio, the better the resistance to fracture.

General Design by Linear Elastic Fracture Mechanics

In traditional methods, designs are based on the allowable stresses, which are usually related to a limiting strength, such as the yield strength of a tensile specimen. Such an approach applies to structures without cracklike flaws and discontinuities. In the presence of stress concentrations or discontinuities, it is assumed that the structural materials will yield locally and redistribute the load to neighboring areas. The recent development of fracture mechanics has established an analytical tool for the design of fracture-resistant structures. This fracture mechanics design refers to selection of materials and allowable stress levels based on the fact that cracklike flaws may exist or may be initiated under cyclic loads or stress corrosion and that some level of notch toughness is desirable.

In fracture mechanics design, it is assumed that the designer has the following information available:

1. Type of structure, overall and member dimensions
2. Stress and stress fluctuating range, potential crack growth locations in the structure (e.g., welds, holes, discontinuities)
3. Structural performance design criteria (e.g., minimum cost, maximum resistance to fracture, specified design life, working maximum loading rate)

Based on this general information, the designer can incorporate $K_{\text {Ic }}$ or $K_{\text {Id }}$ values at the service condition (temperature and loading rate) in the fracture mechanics design.

To understand the fundamentals of fracture mechanics design, consider the case where possible crack extension in mode I has occurred by fatigue, stress corrosion, or corrosion fatigue. Combining Eqs. (7.4) and (7.5) gives the maximum flaw size a structural member can tolerate at a particular stress level,

$$
\begin{equation*}
a=\frac{1}{\pi}\left(\frac{K_{c}}{C \sigma}\right)^{2} \tag{7.17}
\end{equation*}
$$

After determining the values of the K_{c} and $\sigma_{y s}$ at the service temperature and loading rate for the material of the structure and selecting the most probable type of flaw (or crack) that will exist in the member in question and the corresponding equation for K to obtain C, the designer can calculate with Eq. (7.17) the minimal unstable size of flaw at various possible stress levels. Therefore, the designer has to control three factors (σ, K_{c}, and a) in a fracture mechanics design. All other factors, such as temperature, loading rate, and residual stresses, affect only these three primary factors.

Once the critical flaw size has been found, quality control procedures may be established to ensure that no flaws of a critical size exist in the structure. On the other hand, if the service loads and the minimum detectable flaw size are specified, Eq. (7.17) may be used to select a material that will yield a critical flaw size greater than the minimum size of a detectable flaw. Or if the materials and minimum detectable flaw size are fixed, Eq. (7.17) enables the specification of service loads that result in a critical flaw size greater than the minimum size of a detectable flaw. The following section contains several examples of the application of Eqs. (7.4) and (7.17) to fracture computations.

Example 7.1 Embedded Crack A sharp penny-shaped crack of diameter 2.5 cm is completely embedded in a solid. The applied stress is normal to the area of the embedded crack. Catastrophic failure occurs when a stress of 500 MPa is applied. Find the fracture toughness of the material if plane strain conditions exist at the crack perimeter.

The stress intensity factor formula of case 17 of Table 7-1 applies. For this circular crack, $c=a$:

$$
K_{\mathrm{I}}=(2 / \pi) \sigma \sqrt{\pi a}
$$

Since failure occurred at $\sigma_{c}=500 \mathrm{MPa}$,

$$
\begin{align*}
K_{\mathrm{I} c} & =(2 / \pi) \sigma_{c} \sqrt{\pi a}=(2 / \pi)(500 \mathrm{MPa}) \sqrt{\pi \times 0.0125 \mathrm{~m}} \\
& =63.1 \mathrm{MPa} \cdot \sqrt{\mathrm{~m}} \tag{1}
\end{align*}
$$

where the crack size a is one-half of the diameter.

Example 7.2 Titanium Alloy A titanium alloy Ti-6 Al-4 V can be heat treated to give the following mechanical properties:

$$
\begin{equation*}
K_{\mathrm{I} c}=115.4 \mathrm{MPa} \cdot \sqrt{\mathrm{~m}}, \quad \sigma_{y s}=910 \mathrm{MPa} \tag{1}
\end{equation*}
$$

If the applied stress is $0.75 \sigma_{y s}$, find the dimensions of the largest stable internal elliptical flaw for $a / 2 c=0.2$, where a and c are shown in case 17 of Table 7-1.

The fracture of an elliptical crack is characterized in case 17 . For $a / 2 c=0.2$, we find $k^{2}=1-a^{2} / c^{2}=0.84$ or $k=0.9165$.

From a mathematical handbook containing elliptic integrals,

$$
\begin{equation*}
E(0.9165)=\int_{0}^{\pi / 2} \sqrt{1-0.9165^{2} \sin ^{2} \phi} d \phi=1.150 \tag{2}
\end{equation*}
$$

At $\theta= \pm \frac{1}{2} \pi$,

$$
\begin{equation*}
K_{\mathrm{I}}=\sigma \sqrt{\pi a} / E(0.9165)=\sigma \sqrt{\pi a} / 1.150 \tag{3}
\end{equation*}
$$

For $K_{\mathrm{I} c}=115.4 \mathrm{MPa} \cdot \sqrt{\mathrm{m}}$,

$$
K_{\mathrm{I}}=\sigma \sqrt{\pi a} / 1.150 \leq K_{\mathrm{I} c}=115.4 \mathrm{MPa} \cdot \sqrt{\mathrm{~m}}
$$

and with $\sigma=\sigma_{y s}=910 \mathrm{MPa}$,

$$
\begin{equation*}
a_{\max }=\left(115.4 \times 1.15 / 0.75 \sigma_{y s}\right)^{2} / \pi=1.204 \mathrm{~cm} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
c=a /(2 \times 0.2)=1.204 / 0.4=3.01 \mathrm{~cm} \tag{5}
\end{equation*}
$$

This defines the largest stable elliptical flaw according to linear elastic fracture mechanics.

To account for the effect of the plastic zone for plane strain, use Eq. (7.12) and $K_{\mathrm{I}} \leq K_{\mathrm{I} c}=115.4 \mathrm{MPa} \cdot \sqrt{\mathrm{m}}$:

$$
\begin{equation*}
r_{p}^{*}=\frac{1}{6 \pi}\left(\frac{115.4}{910}\right)^{2}=0.853 \mathrm{~mm} \tag{6}
\end{equation*}
$$

From (4) and Eq. (7.14),

$$
\begin{equation*}
a_{\max }+r_{p}^{*}=1.204 \mathrm{~cm} \tag{7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
a_{\max }=1.204-0.0853=1.11 \mathrm{~cm} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
c=1.11 /(2 \times 0.2)=2.775 \mathrm{~cm} \tag{9}
\end{equation*}
$$

By comparison of (5) and (8), it follows that if the effect of the plastic zone is considered, the largest stable elliptical flaw will be smaller than the case in which r_{p}^{*} is not considered.

Example 7.3 Longitudinal Crack in a Cylindrical Tube A long circular cylindrical tube must withstand an internal pressure of $p=10 \mathrm{MPa}$ (1450 psi). The tube has an inside radius of $r=250 \mathrm{~mm}$ and a wall thickness of $t=12 \mathrm{~mm}$; it is constructed of AISI 4340 steel alloy that is heat treated to have a critical stress intensity factor of $59 \mathrm{MPa} \cdot \sqrt{\mathrm{m}}(53.7 \mathrm{ksi}-\sqrt{\mathrm{in} .})$, a tensile yield strength of 1503 MPa (218 ksi), and an ultimate tensile strength of 1827 MPa (265 ksi).

To find the minimum size of a longitudinal crack (Fig. 7-4) that will propagate unstably, the tube wall is regarded as a wide sheet in uniform tension, and the equadion shown in case 1 of Table 7-1 is applied for $a / b \rightarrow 0$. The stress intensity factor is

$$
K_{\mathrm{I}}=\sigma \sqrt{\pi a} F(0)
$$

Since $F(0)=1$, in case 1 of Table 7-1,

$$
\begin{equation*}
K_{\mathrm{I}}=\sigma \sqrt{\pi a} \tag{1}
\end{equation*}
$$

where the cylinder hoop stress is

$$
\begin{equation*}
\sigma=p r / t \tag{2}
\end{equation*}
$$

Figure 7-4: Longitudinal crack in a pressurized cylinder.

Then

$$
\begin{equation*}
K_{\mathrm{I}}=(p r / t) \sqrt{\pi a} \tag{3}
\end{equation*}
$$

which, with K_{I} set equal to $K_{I C}$, gives the critical crack size, $a=a_{c}$,

$$
\begin{align*}
a_{c} & =\left(K_{\mathrm{I} c} t / p r\right)^{2} / \pi=\left\{\left[59 \times 10^{6}(0.012)\right] /\left[10 \times 10^{6}(0.25)\right]\right\}^{2} / \pi \\
& =25.5 \mathrm{~mm} \quad(1.004 \mathrm{in} .) \tag{4}
\end{align*}
$$

The next step should be to use the crack tip plastic zone relations of Eqs. (7.12) and (7.13) to check if the linear elastic formulas above can provide a solution of reasonable accuracy. For this material the quantity [Eq. (7.12)]

$$
r_{p}^{*}=(1 / 6 \pi)\left(K_{\mathrm{I} c} / \sigma_{y s}\right)^{2}=0.0817 \mathrm{~mm}
$$

is much less than t and a; consequently, the crack half length and material thickness both meet the condition for a plane strain distribution at the leading edge of the crack [Eq. (7.13)].

If a crack of length $2 a=8 \mathrm{~mm}$ is assumed to exist in the tube, the internal pressure that would cause unstable propagation can be computed. From (3), the critical pressure $p=p_{c}$ would be

$$
\begin{align*}
p_{c} & =t K_{\mathrm{I} c}[\sqrt{1 /(\pi a)}] / r=(0.012)\left(59 \times 10^{6}\right)[\sqrt{1 /(\pi \times 0.004)}] / 0.250 \\
& =25.3 \mathrm{MPa} \quad(3668 \mathrm{psi}) \tag{5}
\end{align*}
$$

By the maximum principal stress criterion of failure (Section 3.15), brittle fracture of the unflawed tube would occur when the circumferential stress equals the ultimate tensile strength of the material. The pressure at fracture would be

$$
\begin{equation*}
p_{u}=\sigma_{u}(t / r)=(1827)(12 / 250)=87.7 \mathrm{MPa} \tag{6}
\end{equation*}
$$

We see from (5) and (6) that the 8 -mm crack reduces the failure pressure by 71.2%.
The Tresca maximum shear stress yielding criterion [Eq. (3.70)] takes the form $\sigma_{\max }-\sigma_{\min }=p_{y} r / t-\left(-p_{y}\right)=\sigma_{y s}$. Thus, general yielding of the tube occurs when the relation

$$
\begin{equation*}
p_{y}=\sigma_{y s} /[(r / t)+1] \tag{7}
\end{equation*}
$$

is satisfied, in which the pressure at the inner wall has been included. This effect is small compared to r / t and could be ignored. For our cylinder

$$
\begin{equation*}
p_{y}=1503 /[(250 / 12)+1]=68.8 \mathrm{MPa} \tag{8}
\end{equation*}
$$

From (5) and (8), it is seen that the $8-\mathrm{mm}$ crack causes fracture failure at a pressure that is 63.2% lower than this yield point pressure.

Sih [7.7] presents a solution to a cylindrical tube problem in which the crack is oriented arbitrarily with respect to the longitudinal direction. The arbitrary orientation produces simultaneous propagation of the crack in two modes, and the critical strain energy density factor is used instead of the critical stress intensity factor to predict fracture failure.

Example 7.4 Bar Subjected to Axial Force and Bending Moment A long bar with a $10-\mathrm{mm}$ edge crack is subjected to a concentrated force, as shown in Fig. 7-5. The bar is made of 7079-T651 aluminum alloy, which has a critical stress intensity factor of $26 \mathrm{MPa} \cdot \sqrt{\mathrm{m}}(23.7 \mathrm{ksi}-\sqrt{\mathrm{in}}$. $)$, a tensile yield strength of $502 \mathrm{MPa}(72.8 \mathrm{ksi})$, and an ultimate tensile strength of $569 \mathrm{MPa}(82.5 \mathrm{ksi})$. Stresses due to both axial force and bending moment act on the crack, but because both forces lead to mode I propagation, the two effects are additive. Let σ_{T} be the tensile stress due to the axial force and σ_{B} the stress due to bending.

Use of the stress intensity factor equations listed in cases 7 and 8 of Table 7-1 results in

$$
\begin{equation*}
K_{\mathrm{I}}=\sigma_{T} \sqrt{\pi a} C_{T}+\sigma_{B} \sqrt{\pi a} C_{B} \tag{1}
\end{equation*}
$$

in which C_{T} and C_{B} depend on $F(a / b)$. From $a=10 \mathrm{~mm}, a / b=0.1$, and case 7 of Table 7-1,

$$
\begin{aligned}
C_{T}=F(0.1)= & \sqrt{\frac{2}{\pi \times 0.1} \tan \frac{0.1 \pi}{2}} \\
& \times \frac{0.752+2.02 \times 0.1+0.37[1-\sin (0.1 \pi / 2)]^{3}}{\cos (0.1 \pi / 2)} \\
= & 1.196
\end{aligned}
$$

From case 8 of Table 7-1,

$$
\begin{aligned}
C_{B} & =F(0.1)=\sqrt{\frac{2}{\pi \times 0.1} \tan \frac{0.1 \pi}{2}} \times \frac{0.923+0.199[1-\sin (0.1 \pi / 2)]^{4}}{\cos (0.1 \pi / 2)} \\
& =1.041
\end{aligned}
$$

Figure 7-5: Bar in tension and bending with an edge crack.

According to the standard strength of material formulas for a rectangular cross section,

$$
\begin{equation*}
\sigma_{T}=P / b t \tag{2a}
\end{equation*}
$$

At the outer fiber, $\sigma_{B}=M(b / 2) / I$ with $I=\frac{1}{12} b^{3} t$ and $M=P h$. Thus,

$$
\begin{equation*}
\sigma_{B}=(6 P h)\left(t b^{2}\right) \tag{2b}
\end{equation*}
$$

Then, from (1),

$$
\begin{equation*}
K_{\mathrm{I}}=(P / b t) \sqrt{\pi a}(1.196)+\left(6 P h / t b^{2}\right) \sqrt{\pi a}(1.041) \tag{3}
\end{equation*}
$$

so that the critical force $P=P_{c}$ is calculated as

$$
\begin{align*}
P_{c}= & \left(K_{\mathrm{Ic}} b t / \sqrt{\pi a}\right)[1.196+6 h(1.041) / b]^{-1} \\
= & {\left[\left(26 \times 10^{6}\right)(0.1)(0.015) / \sqrt{(0.01) \pi}\right] } \tag{4}\\
& \times[1.196+6(0.03) \times 1.041 / 0.1]^{-1} \\
= & 71,677 \mathrm{~N}
\end{align*}
$$

At fracture failure the nominal stress at the outer edge of the bar is found from $\sigma_{T}+\sigma_{B}$ of (2) to be $134 \mathrm{MPa}(19.4 \mathrm{ksi})$, which is much lower than the $502-\mathrm{MPa}$ yield strength of the material.

Use Eqs. (7.12) and (7.13) to check that the use of linear elastic formulas is appropriate. For this alloy the quantity $r_{p}^{*}=(1 / 6 \pi)\left(K_{\mathrm{I} c} / \sigma_{y s}\right)^{2}=0.142 \mathrm{~mm}$ and the condition for plane strain is satisfied for both a and t.

Because the stress intensity factor equations contain the parametric functions C_{T} and C_{B}, the solution for a critical crack size given a known force would require an iterative procedure.

Example 7.5 Traditional and Fracture Mechanics Design of a High-Strength, Thin-Walled Cylinder This example demonstrates the use of fracture mechanics concepts to select materials and to compare the results with those obtained by a traditional design where a flaw is ignored.

Suppose that a thin-walled cylinder with diameter $D=0.75 \mathrm{~m}$ is required to withstand an internal pressure $p=34.5 \mathrm{MPa}$ and the wall thickness t must be at least 1.26 cm , as shown in Fig. 7-6. For the traditional design in which the flaw is ignored, assume a factor of safety of 2.0 against yielding. For fracture mechanics design, which involves the maximum possible flaw size, and a design stress intensity of $K_{\mathrm{I}}=K_{\mathrm{I} c}$, assume a factor of safety of 2.0 against fracture. If the weight of the cylindrical vessel is to be considered, select a steel from those available that meets

Figure 7-6: Example 7.5: fracture mechanics design for a thin-walled cylinder.
the performance requirements while corresponding to minimal weight. Suppose that the following steels are available for this design:

Steel	Yield Strength, $\sigma_{y s}(\mathrm{MPa})$	Assumed $K_{\text {Ic }}$ Value $(\mathrm{MPa} \cdot \sqrt{\mathrm{m}})$
A	1794	88
B	1516	120
C	1240	154
D	1240	240
E	965	285
F	758	185

The traditional design analysis will be discussed first. Here the flaw is ignored, and the procedure is direct. Since for the cylinder the maximum normal stress is the hoop stress $\sigma=p r / t=p D / 2 t$ and for design stress $\sigma=\frac{1}{2} \sigma_{y s}$, the corresponding thickness is

$$
\begin{equation*}
t=\frac{p D}{2 \sigma}=\frac{p D}{\sigma_{y s}} \tag{1}
\end{equation*}
$$

Thus the estimated weight per meter for each steel is

$$
\begin{equation*}
A \gamma=\pi D t 7835.9 \quad \mathrm{~kg} / \mathrm{m} \tag{2}
\end{equation*}
$$

where A is the area of the cross section of the cylinder and $\gamma=7835.9 \mathrm{~kg} / \mathrm{m}^{3}$ is the density for steel. From (1) and (2), for steel D, where $\sigma_{y s}=1240 \mathrm{MPa}$,

$$
\begin{aligned}
t & =\frac{p D}{\sigma_{y s}}=\frac{(34.5)(0.75)}{1240}=0.0209 \mathrm{~m}=2.09 \mathrm{~cm} \\
A & =\pi D t=(3.14)(0.75)(0.0209)=0.049 \mathrm{~m}^{2} \\
A \gamma & =(0.049)(7835.9)=386 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

The values for the other available steels are calculated similarly and are found to be as follows:

Steel	Yield Strength, $\sigma_{y s}(\mathrm{MPa})$	Design Stress, $\frac{1}{2} \sigma_{y s}(\mathrm{MPa})$	Wall Thickness, $t(\mathrm{~m})$	Unit Weight, $(\mathrm{kg} / \mathrm{m})$
A	1794	897	0.0144	266
B	1516	758	0.0171	316
C	1240	620	0.0209	386
D	1240	620	0.0209	386
E	965	483	0.0268	495
F	758	379	0.0341	629

These results show that, as expected, use of a higher strength steel corresponds to a reduction in weight. However, if fracture is considered, the following design will show that the overall safety and reliability of the vessel may be decreased by increasing the yield strength.

Consider the fracture mechanics design method. At first, the maximum possible flaw size in the cylinder wall should be estimated based on fabrication and inspection. Here we assume that a surface flaw of depth 1.26 cm and an $a / 2 c$ ratio of 0.25 is possible (Fig. 7-6).

For a surface flaw, the relation among K_{I}, σ, and a from case 18 of Table $7-1$ is

$$
\begin{equation*}
K_{\mathrm{I}}=\sigma \sqrt{\pi a / E(k)^{2}} f(\theta) F\left(\frac{a}{t}, \frac{a}{c}, \frac{c}{b}\right) \tag{3}
\end{equation*}
$$

Since maximum K_{I} occurs at $\theta=\frac{1}{2} \pi$ and $f\left(\frac{1}{2} \pi\right)=1$,

$$
\begin{equation*}
K_{\mathrm{I}}=\sigma \sqrt{\pi a / E(k)^{2}} F\left(\frac{a}{t}, \frac{a}{c}, \frac{c}{b}\right) \tag{4}
\end{equation*}
$$

From $k^{2}=1-a^{2} / c^{2}=1.0-0.25=0.75$ and a mathematical handbook,

$$
\begin{equation*}
E(k)=E(\sqrt{0.75})=E(0.866)=1.211 \tag{5}
\end{equation*}
$$

Use the formulas for $F(a / t, a / c, c / b)$ from case 18 of Table $7-1$ with $c / b \rightarrow 0$:

$$
\begin{align*}
F= & (1.13-0.05)+\left(\sqrt{1.211^{2} \times 2}-(1.13-0.05)\right)\left(\frac{a}{t}\right)^{\sqrt{\pi}} \\
& +\sqrt{1.211^{2} \times 2}\left(\sqrt{\frac{1}{4} \pi}-1\right)\left(\frac{a}{t}\right)^{2 \sqrt{\pi}} \\
= & 1.08+0.6327\left(\frac{a}{t}\right)^{\sqrt{\pi}}-0.1948\left(\frac{a}{t}\right)^{2 \sqrt{\pi}} \tag{6}
\end{align*}
$$

Begin with $a / t=0.5$:

$$
\begin{equation*}
F \approx 1.08+0.6327 \times 0.5^{\sqrt{\pi}}-0.1948 \times 0.5^{2 \sqrt{\pi}}=1.249 \tag{7}
\end{equation*}
$$

For crack size $a=0.0126 \mathrm{~m}$, choose steel D with $\sigma_{y s}=1240 \mathrm{MPa}$ and $K_{\mathrm{I} c}=$ $240 \mathrm{MPa} \cdot \sqrt{\mathrm{m}}$. Consider plasticity at the crack tip and introduce the safety factor of 2 against fracture (i.e., $K_{\mathrm{I}}=\frac{1}{2} K_{\mathrm{I} c}$). Equation (7.12) gives

$$
\begin{align*}
r_{p}^{*}= & \frac{1}{6 \pi}\left(\frac{\frac{1}{2} K_{\mathrm{I} c}}{\sigma_{y s}}\right)^{2}=\frac{1}{6 \pi}\left(\frac{240}{2 \times 1240}\right)^{2}=4.968 \times 10^{-4} \mathrm{~m} \tag{8}\\
K_{\mathrm{I}}= & \frac{\sigma \sqrt{\pi\left(a+r_{p}^{*}\right)}}{E(k)} F=\frac{\sqrt{\pi} \times \sqrt{0.0126+0.00049}}{1.211} \\
& \times 1.249 \sigma=0.2092 \sigma \tag{9}
\end{align*}
$$

where σ is now the design stress. From $K_{\mathrm{I}}=\frac{1}{2} K_{\mathrm{Ic}}$ and (9),

$$
\begin{equation*}
\sigma=\frac{K_{\mathrm{I} c}}{2 \times 0.2092}=\frac{120}{0.2092}=573.6 \mathrm{MPa} \tag{10}
\end{equation*}
$$

Since $\sigma=p D / 2 t$,

$$
\begin{equation*}
t=\frac{p D}{2 \sigma}=\frac{34.5 \times 0.75}{2 \times 573.6}=0.02255 \mathrm{~m} \tag{11}
\end{equation*}
$$

Based on the thickness of 0.02255 m , return to (6) for a second iteration:

$$
\begin{align*}
a / t & =0.0126 / 0.02255=0.5588 \tag{12}\\
F & =1.08+0.6327 \times 0.5588^{\sqrt{\pi}}-0.1948 \times 0.5588^{2 \sqrt{\pi}}=1.280 \tag{13}\\
K_{\mathrm{I}} & =\frac{\sqrt{\pi} \sqrt{0.01309}}{1.211} \times 1.28 \sigma=0.2145 \sigma \tag{14}\\
\sigma & =\frac{120}{0.2145}=559.5 \mathrm{MPa} \tag{15}\\
t & =\frac{34.5 \times 0.75}{2 \times 559.5}=0.02312 \mathrm{~m}=2.31 \mathrm{~cm} \tag{16}
\end{align*}
$$

Since the values of the thickness t in (11) and (16) are not very close, a third iteration might be in order. Let $t=0.02312 \mathrm{~m}$. Then

$$
\begin{align*}
a / t & =0.0126 / 0.0231=0.5455 \tag{17}\\
F & =1.273 \tag{18}
\end{align*}
$$

$$
\begin{align*}
K_{\mathrm{I}} & =0.2132 \sigma \tag{19}\\
\sigma & =562.88 \mathrm{MPa} \tag{20}\\
t & =0.022298 \mathrm{~m}=2.23 \mathrm{~cm} \tag{21}
\end{align*}
$$

It can be seen that the thickness values of (21) and (16) are quite close to each other. A fourth iteration does not lead to further change:

$$
\begin{aligned}
a / t & =0.5478 \\
K_{\mathrm{I}} & =0.2135 \sigma \\
\sigma & =562.007 \mathrm{MPa} \\
t & =2.30 \mathrm{~cm}
\end{aligned}
$$

This numerical procedure is readily programmed for computer selection. In a manner similar to that described above, the wall thickness for the remaining steels in this example were computed, and the results by fracture mechanics based design are as follows:

Steel	Yield Strength, $\sigma_{y s}(\mathrm{MPa})$	Design Stress, σ (MPa)	$\begin{gathered} \text { Assumed } \\ K_{\mathrm{I} c} \\ (\mathrm{MPa} \cdot \sqrt{\mathrm{~m}}) \end{gathered}$	Design Value $K_{\mathrm{I} c}(\mathrm{MPa} \cdot \sqrt{\mathrm{~m}})$	Thickness, t (m)	Unit Weight (kg/m)	$\sigma / \sigma_{y s}$
A	1794	237.7	88	44	0.0544	1004	0.13
B	1516	315.8	120	60	0.0410	757	0.21
C	1240	393.4	154	77	0.0329	607	0.32
D	1240	562.1	240	120	0.0230	425	0.45
E	965	648.6	285	142.5	0.0199	367	0.67
F	758	458.0	185	92.5	0.0282	521	0.60

If, on the premise of satisfactory performance, the least weight is the first consideration, then steel E is the choice. While for the traditional design analysis, it can be seen above that steel A, with the highest yield strength, should be the choice.

It is of interest to note from the results in this table that on the basis of equivalent resistance to fracture in the presence of a $1.26-\mathrm{cm}$-deep surface flaw, there would be an obvious saving of weight by using a lower strength, tougher steel than steel A . The results show that neither the factor of safety $\left(\sigma_{y s} / \sigma\right)$ nor the weight of a structure is necessarily related to the yield strength of the structural material. In fact, the cylinder made of the highest-strength steel actually weighs the most. Further analysis of the results indicates that for the two lowest-strength steels (E and F), yielding is the most likely mode of failure, and the factor of safety against fracture will be greater than 2.0.

7.3 ENERGY ANALYSIS OF FRACTURE

Work performed during elastic deformation is stored as strain energy U and released upon unloading. The strain energy density U_{0} is defined as the strain energy per unit volume and can be expressed as

$$
\begin{equation*}
U_{0}=U / \mathrm{Vol}=\frac{1}{2}\left(\sigma_{x} \varepsilon_{x}+\sigma_{y} \varepsilon_{y}+\sigma_{z} \varepsilon_{z}+\tau_{y z} \gamma_{y z}+\tau_{z x} \gamma_{z x}+\tau_{x y} \gamma_{x y}\right) \tag{7.18}
\end{equation*}
$$

During fracture, a crack needs energy to propagate, which forms the work of fracture W_{f}. If the crack size is a, fracture over a distance $d a$ would need a small quantity of energy $d W_{f}$ that must come from either a decrease of internal strain energy U or the work W_{e} due to applied loading. For the crack $d a$, the work done by the applied load is $d W_{e}$, and the change in strain energy is $d U$. The energy equation would be

$$
\begin{equation*}
\frac{d}{d a}\left(W_{e}-U-W_{f}\right)=0 \tag{7.19}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d}{d a}\left(W_{e}-U\right)=\frac{d W_{f}}{d a} \tag{7.20}
\end{equation*}
$$

This represents a useful criterion of fracture. Fracture will propagate a crack $d a$ if enough work is released to permit $d W_{f}$ to occur. Let

$$
G=\frac{d}{d a}\left(W_{e}-U\right), \quad R=\frac{d W_{f}}{d a}
$$

so that

$$
\begin{equation*}
G \geq R \tag{7.21}
\end{equation*}
$$

where G is the energy release rate and R is the critical value of G, called the crack growth resistance.

Equation (7.21) is the criterion for the energy balance approach to fracture, which is known as the Griffith-Orowan-Irwin theory [7.8]. Fracture will occur according to Eq. (7.21) when the energy release rate G is sufficient to approach the critical value R at incipient crack extension. Crack propagation can be stable or unstable. If

$$
\begin{equation*}
\frac{d G}{d a} \geq \frac{d R}{d a} \tag{7.22}
\end{equation*}
$$

then unstable fracture occurs.
Equation (7.22) provides a criterion to judge unstable crack propagation from the standpoint of energy. It is possible to show a relationship between crack extension force G and the stress intensity factor K_{I}. For elastic bodies, including small-scale yielding, the relationship

$$
\begin{equation*}
G_{\mathrm{I}}=K_{\mathrm{I}}^{2} / E^{\prime} \tag{7.23}
\end{equation*}
$$

holds, where

$$
E^{\prime}= \begin{cases}E & \text { for plane stress } \\ E /\left(1-v^{2}\right) & \text { for plane strain }\end{cases}
$$

In a similar fashion $G_{\text {II }}$ is expressed in terms of $K_{\text {II }}$ as

$$
\begin{equation*}
G_{\mathrm{II}}=K_{\mathrm{II}}^{2} / E^{\prime} \tag{7.24}
\end{equation*}
$$

When all three modes of crack deformation are present, this becomes

$$
\begin{equation*}
G=\frac{1}{E^{\prime}}\left(K_{\mathrm{I}}^{2}+K_{\mathrm{II}}^{2}\right)+\frac{1+v}{E^{\prime}} K_{\mathrm{III}}^{2} \tag{7.25}
\end{equation*}
$$

where $K_{\mathrm{I}}, K_{\text {II }}$, and $K_{\text {III }}$ are the stress intensity factors for modes I, II, and III, respectively.

7.4 J INTEGRAL

The quantities G and K describe the stress near the crack tip when the plastic zone is relatively small and the theory of elastic fracture mechanics applies. To determine the energy release rate for a specimen in which the plastic deformation must be considered, Rice introduced a contour integral J taken about the crack tip [7.10]:

$$
\begin{equation*}
J=\int_{\Gamma}\left(\left(U_{0} d y\right)-\bar{p} \frac{\partial \bar{u}}{\partial x} d s\right) \tag{7.26}
\end{equation*}
$$

where Γ denotes the arbitrary contour enclosing the crack tip. Also, U_{0} is the strain energy density [Eq. (7.18)], \bar{p} is the tension vector (external surface load) on Γ normal to the contour, \bar{u} is the displacement vector at the location of \bar{p} in the x direction, and $d s$ is the infinitesimal arc length shown in Fig. 7-7. Typical units of J are MN/m.

The J integral vanishes along any closed contour. In Fig. 7-8, the contour $\Gamma_{2}+$ $B D+\left(-\Gamma_{1}\right)+C A$ forms a closed path so that J along this contour equals zero (i.e., $J_{\Gamma_{2}}+J_{B D}+J_{\left(-\Gamma_{1}\right)}+J_{C A}=0$). The quantities \bar{p} and $d y$ are equal to zero on segments $B D$ and $C A$. Hence, $J_{B D}=J_{C A}=0$ and J along Γ_{1} is the same as J

Figure 7-7: Parameter of the the J integral.

Figure 7-8: Two contours about a crack tip.
along Γ_{2}. It is concluded that J is path independent. When the contour Γ encircles the crack tip, the J integral equals the energy release rate (i.e., $J=G$).

Denote $J_{c}=R$, where J_{c} is the critical value of the J integral. Then Eq. (7.21) appears as

$$
\begin{equation*}
J \geq J_{c} \tag{7.27a}
\end{equation*}
$$

or for mode I deformation,

$$
\begin{equation*}
J \geq J_{\mathrm{IC}} \tag{7.27b}
\end{equation*}
$$

where $J_{\text {II }}$, the plane strain value of J at initiation of crack growth, can be determined by ASTM standard E1820. Then Eq. (7.22) becomes

$$
\begin{equation*}
\frac{d J}{d a} \geq \frac{d J_{c}}{d a} \tag{7.28}
\end{equation*}
$$

Equations (7.27) and (7.28) are valid for nonlinear elastic materials. For an elasticplastic material, the J integral is uniquely defined outside the plastic region. It approximates the energy release rate for crack propagation.

When the yielding at the crack tip is limited to "small scale," Eqs. (7.23)-(7.25) can be written as

$$
\begin{align*}
J_{\mathrm{I}} & =G_{\mathrm{I}}=K_{\mathrm{I}}^{2} / E^{\prime} \tag{7.29a}\\
J_{\mathrm{II}} & =G_{\mathrm{II}}=K_{\mathrm{II}}^{2} / E^{\prime} \tag{7.29b}\\
J & =G=\frac{1}{E^{\prime}}\left(K_{\mathrm{I}}^{2}+K_{\mathrm{II}}^{2}\right)+\frac{1+v}{E^{\prime}} K_{\mathrm{III}}^{2} \tag{7.29c}
\end{align*}
$$

When K_{I}, for example, attains its critical value, J and G must also reach their critical values J_{c} and R. Equation (7.29a) implies that

$$
\begin{equation*}
J_{c}=R=K_{\mathrm{Ic}}^{2} / E^{\prime} \tag{7.30}
\end{equation*}
$$

In addition to the stress intensity factor and the J-integral fracture criteria (an energy method), other criteria, such as the R-curve method and crack-opening dis-
placement (COD) have been developed [7.1, 7.2]. Recall that the J integral, the energy release rate G, and the intensity factor K_{I} are related. Moreover, there is a relationship between these parameters and a quantity called the crack-tip opening displacement δ_{t}. All four are equivalent fracture parameters for small-scale yielding. It can be shown that

$$
\begin{equation*}
J=G=K_{\mathrm{I}}^{2} / E^{\prime}=\sigma_{y s} \delta_{t} \tag{7.31}
\end{equation*}
$$

where $\sigma_{y s}$ is the yield stress. When one of the four attains its critical value, the others must reach their critical values simultaneously.

Often the J integral is evaluated numerically using the finite-element method [7.11, 7.12]. Some general-purpose programs (e.g., [7.13, 7.14]) provide J-integral evaluations. The implementation procedure and applications tend to vary from program to program.

7.5 FATIGUE FRACTURE

Although disastrous consequences may result from the fracture failure of a statically loaded structure, this type of failure is not common. A far more common mode of failure is the fracture of a structural member that has been subjected to many cycles of a fluctuating load. Failure occurs even though the load amplitude may be much less than the static yield strength of the material. This form of fracture is known as fatigue fracture, or simply fatigue. Fatigue here refers to a progressive failure of a material after many cycles of load. A form of failure known as low-cycle fatigue also occurs in which the strains are much larger than those in high-cycle fatigue.

The behavior of a material under cyclic load is influenced by many factors, but of prime importance are the amplitude of the load and the presence in the material of regions of stress concentration. The fatigue characteristics of a material are also affected by the type of loading (bending, torsion, tension, or a combination of the three); the specimen size, shape, and surface roughness; the load waveform (nonzero mean load or variations in load amplitude); and the presence of chemically active agents. Moreover, when apparently identical specimens are tested under identical conditions, significant variations often occur in the fatigue behavior of the specimens. These variations probably occur because the distributions of material microstructural properties, such as the number of crack initiation sites and grain size, change from specimen to specimen. Weibull [7.15] developed a statistical representation for fatigue data. McClintock has shown that if extraneous scattered data are eliminated, the variation in measured fatigue life is no greater than that in other measured mechanical properties [7.16].

Because of the uncertainty involved in predicting the fatigue behavior of a material, safety factors ranging from 1.3 to 4 are incorporated into the design of cyclically loaded members. The magnitude of the factor is chosen on the basis of the consequences of fatigue failure and the number of imponderables involved in the problem.

Two approaches may be taken in designing to prevent fatigue failure. One method is based on graphs ($S-N$ curves) that record the number of load cycles necessary to cause failure of a test specimen at various levels of reversed stress amplitude, and the second method utilizes the concepts of linear elastic fracture mechanics.

7.6 TRADITIONAL S-N CURVE APPROACH TO FATIGUE

In the $S-N$ curve approach to fatigue, highly polished, geometrically perfect specimens of a material are tested under cyclic load, and the number of cycles to failure for each level of load is shown on a graph called an $S-N$ curve, as in Fig. 7-9. On a plot of \log stress versus log life the curves are nearly linear. Tables 7-3 and 7-4 list several sets of $S-N$ curves. A similar relationship exists for low-cycle fatigue (LCF) except that the log plastic strain amplitude is used instead of the log stress. The $f a$ tigue strength of a material is defined as the maximum amplitude of cyclic stress a specimen will withstand for a given number of cycles; an $S-N$ curve is therefore the locus of fatigue strengths of a material over a range of cycle lives. For ferrous metals a stress amplitude exists at or below which a specimen will endure an indefinitely large number of load reversals: this level of reversed or alternating stress $\left(\sigma_{a}\right)$ is known as the endurance limit. Although endurance limits are not truly characteristic of most nonferrous metals, limits for these materials are often stated for an arbitrarily chosen large number of cycles, usually 10 million to 500 million. The endurance ratio of a material is defined as the ratio of the endurance limit to the ultimate tensile strength. Ranges of endurance ratios for alloys of some metals are listed in Table 7-5.

The structural member under consideration and its operating conditions will often differ in important ways from the test specimen and test conditions for which the $S-N$ curve was developed. In this case various empirical formulas and indices have

Figure 7-9: $S-N$ curve for a typical steel under bending loads.
been advanced as a means of adjusting the test data to account for the differences. A region of stress concentration in the member, a nonzero mean value of the cyclic load, and a variation in the load amplitude are factors for which standard $S-N$ curves must frequently be adjusted.

Stress Concentration

A stress raiser in a structural member will increase the stress at the point of maximum concentration (Chapter 6). If an $S-N$ curve shows the fatigue strengths of an unnotched specimen, those strengths are divided by K_{f} [effective stress concentration factor defined in Eq. (6.4)] to find the values for a notched specimen. The variation of K_{f} with the number of load cycles can be accounted for by evaluating K_{f} at two points, say, 10^{3} and 10^{6} cycles, and joining the points with a straight line on a $\log -\log S-N$ curve. A more conservative approach is the application of K_{f} chosen for 10^{6} cycles to all lower numbers of cycles. Here K_{f} is related to K_{t} (the theoretical stress concentration factor) by the equation

$$
\begin{equation*}
q_{f}=\left(K_{f}-1\right) /\left(K_{t}-1\right) \tag{7.32}
\end{equation*}
$$

where q_{f} is the notch sensitivity index of the specimen [Eq. (6.6)]. For holes and for notches with nearly parallel flanks, q_{f} may be estimated by the Neuber equation in the form [7.18]

$$
\begin{equation*}
q_{f}=1 /\left[1+(\alpha / r)^{1 / 2}\right] \tag{7.33}
\end{equation*}
$$

where $\sqrt{\alpha}$ is a material constant (Neuber constant) and r is the radius of curvature of the notch. Values of $\sqrt{\alpha}$ for aluminum and steel are shown in Fig. 7-10.

The fatigue analysis of notched members can also be performed by a method known as the local strain approach. In this technique, Neuber's equation [Eq. (7.33)] is used to find the strain history at the notch root from the nominal stress and strain. The local notch strain history is then assumed to result in the same fatigue life as occurs when an unnotched uniaxially loaded specimen is subjected to the same history. An extensive discussion of the local strain technique is available elsewhere [7.59].

Nonzero Mean Load

The equations of Gerber and of Goodman are empirical formulas that have been proposed for use in adjusting fatigue strengths for the effects of a nonzero mean load:

$$
\begin{align*}
\left(\sigma_{a} / \sigma_{f}\right)+\left(\sigma_{m} / \sigma_{u}\right) & =1 \quad \text { (Goodman) } \tag{7.34}\\
\left(\sigma_{a} / \sigma_{f}\right)+\left(\sigma_{m} / \sigma_{u}\right)^{2}=1 & (\text { Gerber }) \tag{7.35}
\end{align*}
$$

where σ_{a} is the alternating stress level (i.e., amplitude of applied load), σ_{f} is the fatigue strength with zero mean load, σ_{m} is the mean stress level (i.e., mean value of the actual load), and σ_{u} is the tensile strength of the material.

Figure 7-10: Neuber constants for various steel and aluminum alloys. In the case of torsion, for steel use a Neuber constant with σ_{u} that is 20 ksi higher than the actual value.

As seen in Fig. 7-11, the applied alternating stress σ_{a} is superimposed on an applied static or mean stress σ_{m}. Because σ_{f} is defined for a given number of cycles or loadings, Eqs. (7.34) and (7.35) also correspond to a particular number of cycles. A typical Goodman diagram that is a plot of Eq. (7.34) is shown in Fig. 7-12. If $\sigma_{y s}$ is used instead of σ_{u}, this is referred to as a Soderberg diagram. Equation (7.34) is the equation of the straight line connecting the intercept of the vertical axis (i.e., the fatigue strength σ_{f} corresponding to $\sigma_{m}=0$) with the intercept of the horizontal axis (i.e., the static tensile strength σ_{u}, which corresponds to $\sigma_{a}=0$). In fact, in practice

Figure 7-11: Fatigue stress definitions.

Figure 7-12: Typical Goodman and Gerber fatigue diagrams.
the Goodman diagram is often constructed by passing a straight line through these two intercepts.

Goodman's equation usually gives good to conservative results, and it is used widely in the United States. Gerber's formula allows higher stresses than those of Goodman's and applies especially to ductile materials [7.21]. The equations apply for tensile loads because compressive mean loads usually do not affect fatigue strength. The fatigue strengths of torsion members are not usually affected by a nonzero mean load unless a region of stress concentration is present in the part. Goodman's equation and Gerber's equation both permit the peak load stress to exceed the material yield point. Usually, the peak load should be kept below the yield point. By solving the equation

$$
\begin{equation*}
\sigma_{\max }=\sigma_{a}+\sigma_{m}=\sigma_{y s} \tag{7.36}
\end{equation*}
$$

simultaneously with Eq. (7.34) or (7.35), the amplitude at which the peak applied stress equals the yield stress can be found. This process may be carried out either algebraically or graphically. For Goodman's equation, it follows from Eq. (7.36) that the peak load stress equals the yield stress when the mean stress is at the level

$$
\begin{equation*}
\sigma_{m y}=\sigma_{u}\left(\sigma_{f}-\sigma_{y s}\right) /\left(\sigma_{f}-\sigma_{u}\right) \tag{7.37a}
\end{equation*}
$$

and when the alternating stress is

$$
\begin{equation*}
\sigma_{a y}=\sigma_{f}\left(\sigma_{y s}-\sigma_{u}\right) /\left(\sigma_{f}-\sigma_{u}\right) \tag{7.37b}
\end{equation*}
$$

Equation (7.37a) is found by setting $\sigma_{m}=\sigma_{m y}$ in Eqs. (7.36) and (7.34) and substituting $\sigma_{a}=\sigma_{y s}-\sigma_{m y}$ in Eq. (7.34). Equation (7.37b) follows from Eqs. (7.36) and (7.34) using $\sigma_{a}=\sigma_{a y}$. When the mean tensile stress equals or exceeds $\sigma_{m y}$, the permissible amplitude of the cyclic load should be below

$$
\sigma_{a}=\sigma_{y s}-\sigma_{m}
$$

to avoid plastic deformation. An additional, more complex mean stress rule has been proposed by Kececioglu et al. [7.22].

Load with Varying Amplitude

Fackler [7.23] has complied a summary of 20 approaches to predicting fatigue life when the applied load has a varying amplitude. These approaches are measures of cumulative damage. He presents three methods as being fundamental: the Palmgren-Langer-Miner rule [7.24, 7.25], the Corten-Dolan rule [7.26], and Shanley's method [7.27]. Here, only fully reversed loading is considered. Mean stress effects can be included by replacing cycles that have a nonzero mean load with an equivalent fully reversed load [7.28].

The Palmgren-Langer-Miner rule gives results that range from good to extremely inaccurate. This rule states that fatigue failure occurs when

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{n_{k}}{N_{k}}=1.0 \tag{7.38}
\end{equation*}
$$

is satisfied. Here m is the number of different stress levels $\sigma_{a k}$ of applied load, n_{k} is the actual number of load cycles applied at stress $\sigma_{a k}$, and N_{k} is the fatigue life (i.e., number of cycles to failure at constant load applied at stress level $\sigma_{a k}$).

Failure is anticipated if the summation is equal to or greater than 1. According to Eq. (7.38) the fatigue life is given by

$$
\begin{equation*}
N_{f}=\frac{1.0}{\sum_{k=1}^{m}\left(\gamma_{k} / N_{k}\right)} \tag{7.39}
\end{equation*}
$$

where γ_{k} is the relative frequency of occurrence of load level $\sigma_{a k}$ [i.e., γ_{k} is the ratio of the number of cycles at $\sigma_{a k}$ to the total number of cycles $\left(\gamma_{k}=n_{k} / N_{f}\right)$]. If γ_{k} is given by a probability distribution, then N_{f} is the expected life. The Palmgren-Langer-Miner rule gives its best results if the differences between the various levels of load are small and if the different amplitudes are applied randomly instead of in a strictly increasing or decreasing sequence. The rule is based on the assumptions that fatigue damage accumulates linearly and that the amount of damage is independent of the order in which the various load levels are applied; both of these assumptions are evidently invalid. Of the two effects, the dependence of fatigue damage on the order of load application appears to be more important than nonlinear damage accumulation [7.15]. Freudenthal [7.29] has proposed to include load-level interaction effects in the Palmgren-Langer-Miner rule by introducing load-dependent weighting factors W_{k}. These factors reduce the expected fatigue life of stress level $\sigma_{a k}$ by an amount that depends on the magnitude of the previously applied load:

$$
\begin{equation*}
N_{f}=\frac{1.0}{\sum_{k=1}^{m}\left(W_{k} \gamma_{k} / N_{k}\right)} \quad\left(W_{k} \geq 1.0\right) \tag{7.40}
\end{equation*}
$$

An empirical approach to improving the accuracy of the Palmgren-Langer-Miner rule is the replacement of 1.0 in Eq. (7.38) by a quantity that might range from 0.5 to 2.5 and depends on the variation of the load and on the form of the part under test.

The Corten-Dolan theory results in a nonlinear law that takes into account the load history. According to this theory, the expected fatigue life N_{f} is calculated as

$$
\begin{equation*}
N_{f}=\frac{N_{h}}{\sum_{k=1}^{m} \gamma_{k}\left(\sigma_{a k} / \sigma_{h}\right)^{d}} \tag{7.41}
\end{equation*}
$$

where N_{h} is the life if all cycles were applied at the highest load level σ_{h}, σ_{h} is the stress amplitude of the highest load level, and d is the experimentally determined constant. The Corten-Dolan rule is also expressible in the form

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{n_{k}}{N_{h}\left(\sigma_{a k} / \sigma_{h}\right)^{d}}=1.0 \tag{7.42}
\end{equation*}
$$

A lack of knowledge of the value of d for many materials has limited the usefulness of this rule.

The Shanley 2x method is the third theory that Fackler advances as a basic approach to cumulative damage. In this theory, a constant stress level is found that will produce fatigue damage equivalent to that produced by a variable-amplitude load

$$
\begin{equation*}
\sigma_{\mathrm{eq}}=\left[\frac{\sum_{k=1}^{m} n_{k}\left(\sigma_{a k}\right)^{2 x}}{\sum_{k=1}^{m} n_{k}}\right]^{1 / 2 x} \tag{7.43}
\end{equation*}
$$

The constant $-1 / x$ is the slope of the logarithmic $S-N$ curve. Once $\sigma_{\text {eq }}$ is found, an equivalent cycle life $N_{\text {eq }}$ is read from the $S-N$ curve. Then Shanley's hypothesis takes the form

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{n_{k} N_{\mathrm{eq}}}{N_{k}^{2}}=1.0 \tag{7.44}
\end{equation*}
$$

Bogdanoff and Kozin [7.30] have described a stochastic approach to cumulative damage that treats the process as a Markov chain. The model takes into account variability in manufacturing standards, duty cycles, inspection standards, and failure states. Application of the model requires knowledge of the various probabilities of occurrence of different initial states, levels of damage, and so on.

The fatigue analysis of members subjected to complex load histories requires an efficient cycle counting procedure that can be implemented on a computer. Dowling [7.31] reviews a number of counting techniques. The rainflow and range pair methods [7.30] are recommended as being superior to the other approaches.

The methods of fracture mechanics have also been applied to the problem of fatigue under variable load [7.2]. To compute the number of cycles necessary for a crack to reach critical size, a statistic of the load spectrum, such as the root-meansquare (rms) fluctuation of the stress intensity factor, is substituted in the crack propagation formula Eq. (7.50).

Effects of Load, Size, Surface, and Environment

As mentioned previously, the load type; the size, shape, and surface finish of the test specimen; and the presence of chemically active substances can greatly influence the behavior of a cyclically loaded structural member. A brief summary of the effects of these factors is given in subsequent paragraphs.

Load If $\sigma_{e B}$ is the endurance limit of a specimen in bending, the limit for perfectly aligned axial loading will be about $0.9 \sigma_{e B}$; for torsional loads the limits will be $0.58 \sigma_{e B}$ for a ductile material and about $0.85 \sigma_{e B}$ for brittle metals. When combined bending, tensile, and torsional loads act on a member, the assumption is sometimes made that the same relation exists between endurance limits as exists between static failure loads. If σ_{f} is the fatigue strength of a material under uniaxial load, applying the distortion energy failure criterion results in

$$
\begin{equation*}
\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}-\left(\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{3} \sigma_{1}\right)=\sigma_{f}^{2} \tag{7.45}
\end{equation*}
$$

as the fatigue failure relation for a triaxial stress state. The stresses σ_{1}, σ_{2}, and σ_{3} are the amplitudes of the principal stress at any point in the body. Similar relations exist for other static load failure theories, such as the maximum shear stress criterion or the maximum normal stress rule. These approaches do not generally apply to cases in which nonzero mean stress is present. In addition, such effects as are caused by variations in size, surface, and configuration must be considered in choosing σ_{f}.

Hashin [7.34] proposes a quadratic polynomial in stress space to represent the locus of all stress states with the same fatigue life. This relation takes the form

$$
\begin{equation*}
\left(I_{1} / \sigma_{u}\right)^{2}-\left(I_{2} / \tau_{u}\right)^{2}=1 \tag{7.46}
\end{equation*}
$$

for completely reversed cyclic loading. The invariants of the stress tensor I_{1} and I_{2} [Eq. (3.19b)] are defined as

$$
\begin{align*}
& I_{1}=\sigma_{x}+\sigma_{y}+\sigma_{z} \tag{7.47a}\\
& I_{2}=\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{z}+\sigma_{z} \sigma_{x}-\tau_{x y}^{2}-\tau_{y z}^{2}-\tau_{x z}^{2} \tag{7.47b}
\end{align*}
$$

The stresses of σ_{u} and τ_{u} are the fatigue strengths of the material in tension and torsion, respectively. For the most complicated cases of combined loads with different phases, different frequencies, varying amplitudes, and nonzero mean stresses, no general methods of analysis appear to be available.

Size By increasing the diameter of the specimen, the fatigue limit in bending is eventually reduced to the level for axial loads. This reduction in strength occurs be-
cause the stress gradient in the bent specimen decreases as the radius increases at constant outer fiber stress; greater volumes of material are consequently subjected to higher stresses in the larger specimens. Further reductions in endurance limits occur with increased size because the likelihood of imperfections in the surface and microstructure of the material increases with size. The shape of a member also influences fatigue life because of stress concentrations introduced by sharp corners.

Surface and Environment Because a rough surface is a form of stress raiser, surface finish can have a marked influence on fatigue life. The effect of surface finish on the endurance limit of steels is shown in Fig. 7-13. Treatments that alter the physical properties of a surface or introduce superficial residual stresses also affect the fatigue behavior of a material. The effects of shot peening and cold rolling on the endurance limits of some steels are given in Ref. [7.17]. Case-hardening treatments, such as nitriding, carburizing, and flame hardening, also improve the fatigue life of steels. Some electroplated surfaces, however, such as nickel or chromium, have an

Figure 7-13: The endurance limit of steel can depend on the surface finish.
adverse influence on fatigue strength (Table 7-6). The decrease in fatigue strengths associated with these platings is thought to be related to the creation of superficial tensile stresses.

The problem of corrosion fatigue is complex, and it must be dealt with on the basis of tests of each combination of material and environment. The effect of well water and salt water on the endurance limits of various metals is shown in Tables 7-7 and 7-8. The action of the cyclic stress in destroying protective surface films and of the corrosive agent in producing surface pits and reaction products leads to reciprocal aggravation of both corrosion and fatigue of the metal. Fatigue can also be induced by the relative motion of two surfaces in contact; this form of failure is known as fretting fatigue.

The fatigue strengths of metals generally increase as temperatures decrease; however, the notch sensitivity and tendency to brittle fracture of some metals greatly increase at low temperatures. At higher temperatures fatigue lives generally decrease, but the analysis is complicated by the presence of the creep mechanism of failure as well as fatigue [7.36]. In the higher temperatures of the creep range, creep may increase the notch sensitivity of materials that are insensitive at lower temperatures.

Stress Concentration with a Nonzero Mean Load

When the effect of stress concentration is combined with that of an alternating applied load that has a nonzero mean value, the following procedure is recommended: For brittle materials, apply the fatigue strength reduction factor to both the alternating and mean values of the applied nominal stress. Goodman's formula for brittle material becomes

$$
\begin{equation*}
K_{f}\left[\left(\sigma_{a} / \sigma_{f}\right)+\left(\sigma_{m} / \sigma_{u}\right)\right]=1 \tag{7.48}
\end{equation*}
$$

For a ductile material, apply the fatigue strength reduction factor to the alternating component of stress only. Goodman's formula for a ductile material becomes

$$
\begin{equation*}
\left(K_{f} \sigma_{a} / \sigma_{f}\right)+\left(\sigma_{m} / \sigma_{u}\right)=1 \tag{7.49}
\end{equation*}
$$

For torsion members with notches, the same formulas are used, but torsional stresses and factors are substituted for the tensile values.

Example 7.6 Fatigue Analysis of a Beam The bar shown in Fig. 7-14 must withstand 1 million cycles of an applied bending moment that varies sinusoidally from 300 to $2000 \mathrm{~N} \cdot \mathrm{~m}$. The member is fabricated from an alloy steel that has an ultimate strength of $932 \mathrm{MPa}(135 \mathrm{ksi})$ and a yield strength of $869 \mathrm{MPa}(126 \mathrm{ksi})$.

The fatigue strength is taken from Table 7-3. The approximate relation $\mathrm{HB}=$ $\sigma_{u} / 500$, where HB is the Brinell hardness number and σ_{u} is in psi, can be used to help identify the type of steel. For this case, $\mathrm{HB}=135\left(10^{3}\right) / 500=270$, so that the section "Hardness of Steel: 269-285 HB" of Table 7-3 can be employed, which applies for $\sigma_{m}=0$. For machined samples made from this material, the curve is $S=10^{2.535-0.147 \log N}$, so that the fatigue strength is 45 ksi for 1 million cycles.

Figure 7-14: U-notched bar subjected to fluctuating bending moment: depth, 4 mm ; notch radius, 3 mm .

To ensure a reliable operating life for the part, the operating stress should be safely below the fatigue strength of the material. The factor of safety is computed after modifying the $S-N$ curve data for the effects of the notch in the bar and the nonzero mean value of the load.

For the notch shown in Fig. 7-14, Table 6-1, case 3b, gives $K_{t}=3.0$. The notch sensitivity index of the material is provided by Eq. (7.30)

$$
\begin{equation*}
q_{f}=1 /\left[1+(\alpha / r)^{1 / 2}\right]=1 /[1+(0.04 / 0.34)]=0.9 \tag{1}
\end{equation*}
$$

where $r=3 \mathrm{~mm}$ (0.118 in .) and $\sqrt{r}=0.34 \sqrt{\text { in }}$. Also, from Fig. 7-10 for $\sigma_{u}=$ $135 \mathrm{ksi}, \sqrt{\alpha}=0.04 \sqrt{\text { in }}$. From Eq. (7.29),

$$
\begin{equation*}
K_{f}=1+(3.0-1.0) 0.9=2.8 \tag{2}
\end{equation*}
$$

The second deviation of the operating conditions of the member from those of a conventional fatigue test is that the mean value of the applied load differs from zero. Goodman's equation is applied as follows for a brittle material [Eq. (7.45)]:

$$
\begin{equation*}
K_{f}\left[\left(\sigma_{a} / \sigma_{f}\right)+\left(\sigma_{m} / \sigma_{u}\right)\right]=1.0 \tag{3}
\end{equation*}
$$

From Fig. 7-11, $\sigma_{\text {min }}=\sigma_{m}-\sigma_{a}$, where $\sigma_{\min }$ is the minimum value of the applied nominal stress. Thus, (3) becomes

$$
\frac{\sigma_{a}}{\sigma_{f}}+\frac{\sigma_{\min }+\sigma_{a}}{\sigma_{u}}=\frac{1}{K_{f}}
$$

or

$$
\begin{equation*}
\sigma_{a}=\frac{1 / K_{f}-\sigma_{\min } / \sigma_{u}}{1 / \sigma_{f}+1 / \sigma_{u}} \tag{4}
\end{equation*}
$$

The minimum bending moment is $300 \mathrm{~N} \cdot \mathrm{~m}$. The resulting outer fiber stress would be

$$
\begin{equation*}
\sigma_{\min }=\frac{M h}{2 I}=\frac{6 M}{t h^{2}}=6\left[(300) / 0.015(0.096)^{2}\right]=13 \mathrm{MPa} \tag{5}
\end{equation*}
$$

where the height of the beam at the notch is taken as $h=b-a=100-4=96 \mathrm{~mm}$. Thus, the nominal stress amplitude has been computed at the notch. From (4)

$$
\begin{equation*}
\sigma_{a}=[(1 / 2.8)-(13 / 932)] /[(1 / 310)+(1 / 932)]=79.8 \mathrm{MPa} \tag{6}
\end{equation*}
$$

The allowable mean stress level is

$$
\begin{equation*}
\sigma_{m}=\sigma_{\min }+\sigma_{a}=13+79.8=92.8 \mathrm{MPa} \tag{7}
\end{equation*}
$$

and the peak stress is

$$
\sigma_{\max }=\sigma_{m}+\sigma_{a}=92.8+79.8=172.6 \mathrm{MPa}
$$

The bending moment corresponding to $\sigma_{\max }$ is

$$
\begin{equation*}
M_{\max }=\frac{1}{6} t h^{2} \sigma_{\max }=\frac{1}{6}(0.015)(0.096)^{2}\left(172.6 \times 10^{6}\right)=3976.6 \mathrm{~N} \cdot \mathrm{~m} \tag{8}
\end{equation*}
$$

The peak moment of the applied load is $2000 \mathrm{~N} \cdot \mathrm{~m}$; therefore, a safety factor of $(3976.6 / 2000)=1.99$ exists to ensure the reliable service life of the part.

The actual peak stress in the material at the point of maximum stress concentration is

$$
\begin{equation*}
\left(\sigma_{a}\right)_{\max }=K_{f}\left(\sigma_{\max }\right)=K_{f}\left(\sigma_{a}+\sigma_{m}\right)=2.8(172.6)=483.8 \mathrm{MPa} \tag{9}
\end{equation*}
$$

which is far below the yield point of the material. With ductile materials residual stresses at the notch reduce σ_{m}, and the actual peak stress may be computed as $\left(\sigma_{a}\right)_{\max }=K_{f} \sigma_{a}+\sigma_{m}$.

7.7 FRACTURE MECHANICS APPROACH TO FATIGUE

A fracture mechanics-based method for the prediction of fatigue is summarized in the literature [7.1]-[7.3]. In this approach the number of load cycles necessary for a material flaw of subcritical size to grow to critical size is calculated by integration of an empirical differential equation of the form

$$
\begin{equation*}
\frac{d a}{d N}=A(\Delta K)^{n} \tag{7.50}
\end{equation*}
$$

where $d a / d N$ is the fatigue crack growth rate, a is the flaw size, N is the number of load cycles, ΔK is the range of the stress intensity factor during a cycle, and A, n are constants that depend on the material of construction.

The values of A and n for several classes of steels are listed in Table 7-9. Values of the constants for some additional materials are shown in Table 7-10 in metric units.

Depending on the magnitude of the fluctuation of the stress intensity factor, the rate of fatigue crack propagation exhibits three types of behavior called region I, II, and III behavior, respectively. In region I the fluctuation of the stress intensity factor is less than a threshold value, $\Delta K_{\text {th }}$, and subcritical size flaws do not propagate. In region II the crack propagation rate is governed by Eq. (7.50). In region III the fluctuation of the stress intensity factor exceeds a transition value, ΔK_{T}, and propagation occurs at a higher rate than that predicted by Eq. (7.50). For a loading fluctuating from zero to a tensile value, the transition value of the stress intensity factor is given by

$$
\begin{equation*}
K_{T}=0.04 \sqrt{E \sigma_{g}} \tag{7.51}
\end{equation*}
$$

where K_{T} is the transition stress intensity factor ($\mathrm{ksi}-\sqrt{\mathrm{in}}$.), E is Young's modulus (ksi), and σ_{g} is the mean value of the tensile strength and yield strength (ksi). For this case of zero to tension loading, ΔK_{T} reduces to K_{T}.

For the three classes of steel listed in Table 7-9, the threshold stress intensity fluctuation $\Delta K_{\text {th }}$ is about $5.5 \mathrm{ksi}-\sqrt{\mathrm{in}}$. or less; the threshold point depends on the ratio of minimum to maximum applied stress. Provided that the fluctuation in the stress intensity factor is such that region II propagation occurs, Eq. (7.50) can be used to compute the number of load cycles necessary for a flaw to propagate to a given size. This capability is a significant improvement over computations based on $S-N$ curves because a large part of the life shown on an $S-N$ curve is related to crack initiation. When a crack of significant size already exists in the material, the actual fatigue life of the specimen will be much shorter than that predicted by the $S-N$ curve.

The fatigue crack propagation formula for ferrite-pearlite steels often employed for railroad rails is given as

$$
\begin{equation*}
\frac{d a}{d N}=1.68 \times 10^{-10}(\Delta K)^{3.3} \tag{7.52}
\end{equation*}
$$

where ΔK is in ksi- $\sqrt{\text { in. }}$ and $d a / d N$ is in in./cycle. Barsom and Imhof [7.39] present data showing that this formula is applicable to rail carbon steels as well.

Example 7.7 Fatigue Analysis of a Plate with a Crack A large flat plate made of 304 stainless steel is subjected to a fluctuating tensile (in-plane) load of $0-15 \mathrm{ksi}$. The properties of the steel are

$$
\begin{equation*}
\sigma_{u}=85 \mathrm{ksi}, \quad \sigma_{y s}=40 \mathrm{ksi}, \quad K_{c}=85 \mathrm{ksi}-\sqrt{\mathrm{in} .}, \quad E=28 \times 10^{3} \mathrm{ksi} \tag{1}
\end{equation*}
$$

If a $0.125-\mathrm{in} .-l o n g$ ($2 a_{0}=0.125 \mathrm{in}$.) through-thickness crack oriented normal to the load is assumed to exist in the plate, the number of load cycles necessary for crack growth through region II can be computed by using Eq. (7.50).

From Eq. (7.51) the transition stress intensity factor is

$$
\begin{equation*}
K_{T}=0.04\left[\left(28 \times 10^{3}\right)(40+85) /(2)\right]^{1 / 2}=53 \mathrm{ksi}-\sqrt{\mathrm{in}} . \tag{2}
\end{equation*}
$$

Because $K_{T}<K_{c}$, only the number of cycles to the higher-growth-rate region III can be computed with Eq. (7.47). If $K_{c}<K_{T}$, the complete life to critical size can be found.

For a very large plate, K_{I} can be taken from Table $7-1$, case $1, a / b=0$ (i.e., $K_{\mathrm{I}}=\sigma \sqrt{\pi a}$). This relationship can be used to find the point-of-transition (region II to III) crack length $2 a_{T}$ by using $K_{\mathrm{I}}=K_{T}$. For our case with a nominal stress $\sigma=15 \mathrm{ksi}$,

$$
\begin{equation*}
a_{T}=(1 / \pi)\left(K_{\mathrm{I}} / \sigma\right)^{2}=(1 / \pi)(53 / 15)^{2}=3.97 \mathrm{in} . \tag{3}
\end{equation*}
$$

This same relationship provides the critical crack size $2 a_{c}$ if K_{I} is set equal to K_{c},

$$
\begin{equation*}
2 a_{c}=(2 / \pi)(85 / 15)^{2}=20.44 \mathrm{in} . \quad \text { or } \quad a_{c}=10.22 \mathrm{in} . \tag{4}
\end{equation*}
$$

Equation (7.50) may be integrated directly or approximated by a finite sum; in this problem analytical integration is possible. First, we use

$$
\begin{equation*}
\Delta K=\left(\sigma_{\max }-\sigma_{\min }\right) \sqrt{\pi a}=\sigma_{\max } \sqrt{\pi a} \quad \text { since } \sigma_{\min }=0 \tag{5}
\end{equation*}
$$

Then, from Table 7-9 for austenitic steel, we find that $A=3.0 \times 10^{-10}$ and $n=3.25$. Thus,

$$
\begin{equation*}
\frac{d a}{d N}=3.0 \times 10^{-10}(\Delta K)^{3.25} \tag{6}
\end{equation*}
$$

Rewrite Eq. (7.47) in the form

$$
\begin{equation*}
d N=\frac{d a}{A(\Delta K)^{n}} \tag{7}
\end{equation*}
$$

From this relationship, we can compute N_{T}, the number of cycles to the beginning of the higher growth rate. Thus, N_{T} is the number of cycles to reach region III. With $a_{0}=0.125 / 2$ and $a_{T}=3.97$,

$$
\begin{align*}
N_{T} & =\int_{a_{0}}^{a_{T}} \frac{d a}{A\left(\sigma_{\max } \sqrt{\pi}\right)^{n} a^{n / 2}}=\frac{1}{A\left(\sigma_{\max } \sqrt{\pi}\right)^{n}\left(-\frac{1}{2} n+1\right)}\left[\frac{1}{a_{T}^{(n / 2)-1}}-\frac{1}{a_{0}^{(n / 2)-1}}\right] \\
& =\frac{1}{3.0\left(10^{-10}\right)(15 \sqrt{\pi})^{3.25}(-0.625)}\left[\frac{1}{(3.97)^{0.625}}-\frac{1}{(0.0625)^{0.625}}\right] \\
& =124,978(5.657-0.422)=654,260 \text { cycles } \tag{8}
\end{align*}
$$

If growth to failure continued through region III at the rate given by Eq. (7.50), the life would be given by the integral above with a_{c} substituted for a_{T}. We find that

$$
\begin{equation*}
N_{f}=124,978\left[5.657-(10.22)^{-0.625}\right]=677,764 \text { cycles } \tag{9}
\end{equation*}
$$

When the final crack size is much greater than the initial length of the crack, the cycle life is almost totally dependent on the initial size. It follows from (8) and (9) that if region II behavior continued beyond a length of $2 a_{T}=7.94$ in., the number of cycles necessary for the last $20.44-7.94=12.5 \mathrm{in}$. of growth would be roughly 3.6% of the number for the initial $7.94-0.125=7.82 \mathrm{in}$. Actually, the failure life would be less than 677,764 cycles because the higher growth rate of region III would occur after the crack length reached the transition point.

Example 7.8 Fatigue Analysis of a Cylinder with a Flaw A hollow thinwalled cylinder is subjected to fluctuations in internal pressure that range from 30 to 36 MPa . The cylinder is fabricated from DTD 687A aluminum alloy, which has a yield strength of 495 MPa and a fracture toughness of $22 \mathrm{MPa} \cdot \sqrt{\mathrm{m}}$. The inner diameter of the tube is 15 cm , and the wall thickness is 1.5 cm . A thumbnail semicircular flaw of initial radius 5 mm exists in the tube wall with the plane of the crack normal to the hoop stress (see Fig. 7-15). If the threshold fluctuation in stress intensity $K_{\text {th }}$ for this alloy is $1.1 \mathrm{MPa} \cdot \sqrt{\mathrm{m}}$, will the $5-\mathrm{mm}$-deep flaw propagate under the given load? What is the smallest flaw that would propagate? Assuming that region II growth occurs up to the critical point, compute the number of load cycles that will cause unstable crack growth.

For $\theta=\frac{1}{2} \pi$, where K_{I} will be a maximum, we find that $a / c=1$ and $c / b \rightarrow 0$. The stress intensity factor for a semicircular surface flaw can be calculated from case 18 of Table 7-1. Then $k^{2}=1-a^{2} / c^{2}=0$ and $E(0)=f(\pi / 2)=1, F=$ $F(a / t, a / c, c / b)=F(a / t, 1,0)$. Thus,

$$
\begin{equation*}
K_{\mathrm{I}}=\sigma \sqrt{\pi a / E(k)^{2}} f(\theta) F=1.1035 \times \frac{2}{\pi} \sigma \sqrt{\pi a}=\frac{2.207}{\sqrt{\pi}} \sigma \sqrt{a} \tag{1}
\end{equation*}
$$

Figure 7-15: Cylinder with a thumbnail semicircular flaw.

For this flaw and fluctuating loading, the range of the stress intensity factor is

$$
\begin{equation*}
\Delta K_{\mathrm{I}}=(2.207 / \sqrt{\pi}) \sqrt{a}\left(\sigma_{\max }-\sigma_{\min }\right) \tag{2}
\end{equation*}
$$

The hoop stress formula for a cylinder gives

$$
\begin{align*}
\sigma_{\max } & =p_{\max } r / t=(36 \mathrm{MPa}) 15 \mathrm{~cm} /(2 \times 1.5 \mathrm{~cm})=180 \mathrm{MPa} \\
\sigma_{\min } & =p_{\min } r / t=(30 \mathrm{MPa}) 15 \mathrm{~cm} /(2 \times 1.5 \mathrm{~cm})=150 \mathrm{MPa} \tag{3}
\end{align*}
$$

To find the smallest flaw that will propagate, solve (2) for a using $\Delta K_{\mathrm{I}}=\Delta K_{\text {th }}=$ 1.1:

$$
\begin{equation*}
a=\left\{\Delta K_{\mathrm{th}} /\left[\left(\sigma_{\max }-\sigma_{\min }\right)(2.207 / \sqrt{\pi})\right]\right\}^{2}=0.00087 \mathrm{~m} \quad \text { or } \quad a=0.87 \mathrm{~mm} \tag{4}
\end{equation*}
$$

Thus, the smallest flaw that will propagate is $a=0.87 \mathrm{~mm}$, and we conclude that the $5-\mathrm{mm}$ flaw will propagate under the given load.

The conclusion above can be reached with a different procedure. Begin by computing ΔK_{I} corresponding to $a=5 \mathrm{~mm}$. From (2)

$$
\begin{equation*}
\Delta K_{\mathrm{I}}=(2.207 / \sqrt{\pi}) \sqrt{0.005 \mathrm{~m}}(180-150) \mathrm{MPa}=2.64 \mathrm{MPa} \cdot \sqrt{\mathrm{~m}} \tag{5}
\end{equation*}
$$

Since $\Delta K_{\mathrm{I}}>\Delta K_{\text {th }}=1.1 \mathrm{MPa} \cdot \sqrt{\mathrm{m}}$, the flaw will propagate.
To compute the number of load cycles to unstable crack growth, use Eq. (7.51). Table 7-10, for $R^{*}=150 / 180=0.83$, lists $n=4.8$ and $A=1.68 \times 10^{-10}$. The initial crack size is $a_{0}=0.005 \mathrm{~m}$. To find a_{c}, use (1), with $K_{\mathrm{I}}=K_{\mathrm{Ic}}$ and $\sigma=\sigma_{\max }$:

$$
a_{c}=(\pi / 4.87)\left(K_{\mathrm{Ic}} / \sigma_{\max }\right)^{2}=(\pi / 4.87)(22 \mathrm{MPa} \cdot \sqrt{\mathrm{~m}} / 180 \mathrm{MPa})^{2}=0.0096 \mathrm{~m}
$$

Express Eq. (7.51) as $d N=d a /\left[A(\Delta K)^{n}\right]$ and integrate using $\Delta K=\Delta K_{\mathrm{I}}$ of (2):

$$
N=\int_{a_{0}}^{a_{c}} \frac{d a}{A(2.207 / \sqrt{\pi})^{n}(a)^{n / 2}(\Delta \sigma)^{n}}=120,227 \text { cycles }
$$

where $\Delta \sigma=\sigma_{\max }-\sigma_{\min }$ and $n=4.8$.

7.8 COMBINED APPROACH

The fatigue failure of a structural member is a two-step process of crack initiation followed by propagation to critical size. Fracture mechanics methods can be applied to the propagation phase of the problem. Other techniques, such as the local strain approach, can be used to deal with the initiation phase of fatigue failure. A method for handling crack initiation problems is presented elsewhere [7.46].

REFERENCES

7.1. Kanninen, M. F., and Popelar, C. H., Advanced Fracture Mechanics, Oxford University Press, New York, 1985.
7.2. Rolfe, S. T., and Barsom, J. M., Fracture and Fatigue Control in Structures, 3rd ed., ButterworthHeineman, Woburn, MA, 1999.
7.3. Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley, New York, 1995.
7.4. Tada, H., Paris, P. C., and Irwin, G. R., The Stress Analysis of Cracks Handbook, 3rd ed., ASME Press, New York, 2000.
7.5. Griffith, A. A., "The Phenomena of Rupture and Flow in Solids," Roy. Soc. Lond., Vol. A-221, 1920.
7.6. Irwin, G. R., "Fracture Mode Transition for a Crack Traversing a Plate," J. Basic Eng., Vol. 82, 1960, pp. 417-425.
7.7. Sih, G. C., Handbook of Stress Intensity Factors for Researchers and Engineers, Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem, PA, 1973.
7.8. Gangloff, R. P., "The Fracture Mechanics of Engineering Materials," class notes, University of Virginia, Charlottesville, VA, 1990.
7.9. Buch, A., Fatigue Strength Calculation Methods, Trans Tech Publications, Aedermannsdorf, Switzerland, 1988.
7.10. Rice, J. R., "A Path Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks," J. Appl. Mech., Vol. 35, 1968, pp. 379-386.
7.11. Henshell, R. D., and Shaw, K. G., "Crack-Tip Finite Elements Are Unnecessary," Int. J. Numer. Methods Eng., Vol. 9, 1975, pp. 496-507.
7.12. Barsoum, R. S., "On the Use of Isoparametric Finite Elements in Linear Elastic Fracture Mechanics," Int. J. Numer. Methods Eng., Vol. 10, 1976, pp. 25-37.
7.13. ABAQUS Theory Manual, Version 4.8. Hibbitt, Karlsson \& Sorenson, Providence, RI, 1989.
7.14. Parks, D. M., "The Virtual Crack Extension Method for Nonlinear Material Behavior," Comput. Methods Appl. Mech. Eng., Vol. 12, 1977, pp. 353-364.
7.15. Weibull, W., "A Statistical Representation of Fatigue Failures in Solids," Roy. Inst. Tech. Trans., Stockholm, 1949.
7.16. McClintock, F. A., "A Criterion for Minimum Scatter in Fatigue Testing," Trans. ASME, J. Appl. Mech., Vol. 22, 1955, pp. 427-431.
7.17. Lipson, C., and Juvinall, R. C., Handbook of Stress and Strength, Macmillan, New York, 1963.
7.18. Neuber, H., Theory of Notch Stresses, J.W. Edwards, Ann Arbor, MI 1946.
7.19. Juvinall, R. C., Stress, Strain, and Strength, McGraw-Hill, New York, 1967.
7.20. Wetzel, R. M. (Ed.), Fatigue under Complex Loading: Analyses and Experiments, Society of Automotive Engineers, Warrendale, PA, 1977.
7.21. Freudenthal, A. M., "Fatigue," in Encyclopedia of Physics, Springer-Verlag, Berlin, 1958, pp. 591-613.
7.22. Kececioglu, D. B., Chester, L. B., and Dodge, T. M., "Combined Bending-Torsion Fatigue Reliability of AISI 4340 Steel Shafting with $K=2.34$," Trans. ASME, J. Eng. Ind., Vol. 97, No. 2, 1975, pp. 748-758.
7.23. Fackler, W. C., Equivalence Techniques for Vibration Testing, Shock and Vibration Information Analysis Center, U.S. Department of Defense, Washington, DC, 1972.
7.24. Palmgren, A. Z., "Die Lebensdauer von Kugellagern," Z. Ver. Dtsch. Ing., Vol. 68, No. 339, 1924.
7.25. Miner, M. A., "Cumulative Damage in Fatigue," Trans. ASME, J. Appl. Mech., Vol. 12, 1945, pp. A159-A164.
7.26. Dolan, T., and Corten, H., "Progressive Damage Due to Repeated Loading," in Fatigue of Aircraft Structures, Proc. WADC-TR-59-507, Wright Air Development Center, Wright-Patterson AFB, OH, August 1959.
7.27. Shanley, F. R., A Theory of Fatigue Based on Unbonding During Reversed Slip, Rand Corporation Report P-350, November 1952.
7.28. Morrow, J., "Fatigue Properties of Metals," in Fatigue Design Handbook, Society of Automotive Engineers, Warrendale, PA, 1968, Sec. 3.2.
7.29. Freudenthal, A. M., Fatigue of Materials and Structures under Random Loading, Report WADC-TR-59-676, Wright Air Development Center, Wright-Patterson AFB, OH, March 1961.
7.30. Bogdanoff, J. L., and Kozin, F., Probabilistic Models of Cumulative Damage, Wiley, New York, 1985.
7.31. Dowling, N. E., "Fatigue Failure Predictions for Complicated Stress-Strain Histories," J. Mater., Vol. 7, No. 1, 1972, pp. 71-87.
7.32. Annual Book of ASTM Standards, Vol. 03.01, American Society for Testing and Materials, Philadelphia, 1993.
7.33. McMillan, J. C., and Pelloux, R. M. M., Fatigue Crack Propagation under Program and Random Loads, ASTM STP 415, American Society for Testing and Materials, Philadelphia, 1967.
7.34. Hashin, Z., Fatigue Failure Criteria for Combined Cyclic Stress, Naval Air Systems Command, Contract N00014-78-C-0544, Technical Report 2, Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, March 1979.
7.35. McAdam, D. F., Jr., "Corrosion Fatigue of Non-ferrous Metals," Proc. ASTM, Vol. 27, No. 2, 1927, p. 102.
7.36. Carden, A. E., McEvily, A. J., and Wells, C. H. (Eds.), Fatigue at Elevated Temperatures, ASTM STP 520, American Society for Testing and Materials, Philadelphia, 1972.
7.37. Pilkey, W. D., Peterson's Stress Concentration Factors, Wiley, New York, 1997.
7.38. Pook, L. P., "Analysis and Application of Fatigue Crack Growth Data," in A General Introduction to Fracture Mechanics, Mechanical Engineering Publications, New York, 1978, pp. 114-135.
7.39. Barsom, J. M., and Imhof, E. J., Jr., Fatigue and Fracture Behavior of Carbon Steel Rails, Rail Research Vol. 5, Report R-301, Association of American Railroads, Chicago, March 1978.
7.40. Bradt, R. C., Hasselman, D. P. H., and Lange, E. F. (Eds.), Fracture Mechanics of Ceramics, Vol. 2, Plenum Press, New York, 1974, p. 469.
7.41. Ingelstrom, N., and Nordberg, H., Engineering Fracture Mechanics, Vol. 6, Pergamon Press, New York, 1974, p. 597.
7.42. Schmidt, R. A., Closed Loop, Vol. 5, November 1975, p. 3.
7.43. Marshall, G. P., and Williams, J. G., "The Correlation of Fracture Data for PMMA," J. Mater. Sci., Vol. 8, 1973, pp. 138-140.
7.44. Marshall, G. P., Culver, L. E., and Williams, J. G., "Fracture Phenomena in Polystyrene," Int. J. Fract., Vol. 9, No. 3, 1973, pp. 295-309.
7.45. Rodon, J. C., "Influence of the Dynamic Stress Intensity Factor on Cyclic Crack Propagation in Polymers," J. Appl. Polym. Sci., Vol. 17, 1973, pp. 3515-3528.
7.46. Irwin, G. R., "Analysis of Stresses and Strains near the End of a Crack Traversing a Plate," Trans. ASME, J. Appl. Mech., Vol. 24, 1957, pp. 361-364.
7.47. Brown, W. F., Jr., (Ed.), Review of Developments in Plane Strain Fracture Toughness Testing, ASTM STP 463, American Society for Testing and Materials, Philadelphia, 1970.
7.48. Paris, C. P., and Sih, G. C., "Stress Analysis of Cracks," in Fracture Toughness Testing and Its Applications, ASTM STP 381, American Society for Testing and Materials, Philadelphia, 1965.
7.49. Brown, W. F., Jr., and Srawley, J. E., Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM STP 410, American Society for Testing and Materials, Philadelphia, 1966.
7.50. Forman, R. G., and Kobayashi, A. S., "On the Axial Rigidity of a Perforated Strip and the Strain Energy Release Rate in a Centrally Notched Strip Subjected to Uniaxial Tension," J. Basic Eng., Vol. 86, 1964, pp. 693-699.
7.51. Gross, B., and Srawley, J. E., Stress Intensity Factors for Single-Edge-Notch Specimens in Bending or Combined Bending and Tension by Boundary Collocation of a Stress Function, Technical Note D-2603, NASA, January 1965.
7.52. Irwin, G. R., "Crack Extension Force for a Part-through Crack in a Plate," Trans. ASME, J. Appl. Mech., Vol. 29, No. 4, 1962, pp. 651-654.
7.53. Neuman, J. C., Jr., An Improved Method of Collocation for the Stress Analysis of Cracked Plates with Various Shaped Boundaries, NASA Technical Note D-6376, August 1971.
7.54. McAdam, D. J., Jr., "Corrosion Fatigue of Metals as Affected by Chemical Composition, Heat Treatment, and Cold Working," Trans. ASST, Vol. 11, 1927, p. 355.
7.55. Novak, S. R., and Barsom, J. M., "AISI Project 168-Toughness Criteria for Structural Steels: Brittle-Fracture ($K_{\text {IIc }}$) Behavior of Cracks Emanating from Notches," Proceedings of the 9th National Symposium on Fracture Mechanics, University of Pittsburgh, August 25-27, 1975.
7.56. Matsuishi, M., and Endo, T., "Fatigue of Metals Subjected to Varying Stress," Japan Society of Mechanical Engineers, Fukuoka, Japan, March 1968.
7.57. Van Dyke, G. M., "Statistical Load Data Processing," Proceedings of the 6th ICAF Symposium, Miami, FL, May 1971.
7.58. Dowling, N. E., "Fatigue at Notches and the Local Strain and Fracture Mechanics Approaches," in Fracture Mechanics, ed. C. W. Smith, ASTM STP 677, American Society for Testing and Materials, Philadelphia, 1979, pp. 247-273.
7.59. Metals Handbook, Vol. 10, Failure Analysis and Prevention, 8th ed., American Society for Metals, Metals Park, OH, 1975.

7

Tables

7-1 Stress Intensity Factors 350
7-2 Strength and Fracture Toughness Data for Selected Materials 360
7-3 $S-N$ Curves for Some Steels 363
7-4 $S-N$ Curves for Aluminum under Completely Reversed Bending 364
7-5 Fatigue Endurance Ratio σ_{e} / σ_{u} and Maximum Fatigue Limit $\left(\sigma_{e}\right)_{\max }$ for Various Classes of Engineering Materials 365
7-6 Surface Treatments That Increase or Decrease Fatigue Strength 365
7-7 Corrosion Fatigue Limits of Selected Steels 366
7-8 Corrosion Fatigue Limits of Selected Nonferrous Metals 366
7-9 Parameters of Fatigue Crack Propagation Equation $d a / d n=A(\Delta K)^{n}$ for Three Classes of Steel 367
7-10 Fatigue Crack Growth Data for Various Materials 368

TABLE 7-1 STRESS INTENSITY FACTORS

Notation
$K_{\mathrm{I}}=$ mode I stress intensity factor $\left(F / L^{3 / 2}\right)$
$K_{\text {II }}=$ mode II stress intensity factor $\left(F / L^{3 / 2}\right)$
$K_{\text {III }}=$ mode III stress intensity factor $\left(F / L^{3 / 2}\right)$
$\sigma=$ tensile stress, under opening mode of loading $\left(F / L^{2}\right)$
$\tau=$ shear stress, under shearing mode of loading $\left(F / L^{2}\right)$
$\tau_{\text {III }}=$ shear stress, under tearing mode of loading which is in out-of-plane direction $\left(F / L^{2}\right)$

Intensity Factor

Case	Intensity Factor
1. Finite-width plate with center crack, tension loading	$\begin{aligned} K_{\mathrm{I}} & =\sigma \sqrt{\pi a} F(a / b) \\ F(a / b) & =\left[1-0.1(a / b)^{2}+0.96\left(\frac{a}{b}\right)^{4}\right] \sqrt{\sec \frac{\pi a}{b}} \\ \text { For } a & \ll b, \quad F(a / b) \approx 1 \end{aligned}$

	2. Finite-width plate with center crack, mode II crack propagation (shear load along crack)	$\begin{aligned} K_{\mathrm{II}} & =\tau \sqrt{\pi a} F(a / b) \\ F(a / b) & =\left[1-0.1\left(\frac{a}{b}\right)^{2}+0.96\left(\frac{a}{b}\right)^{4}\right] \sqrt{\sec \frac{\pi a}{b}} \end{aligned}$
	3. Finite-width plate with center crack, mode III crack propagation (out-of-plane shear loading)	$K_{\mathrm{III}}=\tau_{\mathrm{III}} \sqrt{\pi a} \sqrt{\frac{b}{\pi a} \tan \frac{\pi a}{b}}$
¢	4. Finite-width plate with doubleedge crack, tension loading	$\begin{aligned} K_{\mathrm{I}}= & \sigma \sqrt{\pi a} F(a / b) \\ F(a / b)= & \left(1+0.122 \cos ^{4} \frac{\pi a}{b}\right) \sqrt{\frac{b}{\pi a} \tan \frac{\pi a}{b}} \\ & \text { For } a \ll b, F(a / b) \approx 1.1 \end{aligned}$

TABLE 7-1 (continued) STRESS INTENSITY FACTORS

Case	Intensity Factor
5. Finite-width plate with double-edge cracks, mode II crack propagation	$K_{\mathrm{II}}=\tau \sqrt{\pi a} F(a / b)$ $F(a / b)$ is the same as in case 4 .
6. Finite-width plate with double-edge cracks, mode III crack propagation	$K_{\mathrm{III}}=\tau_{\mathrm{III}} \sqrt{\pi a} \sqrt{\frac{b}{\pi a} \tan \frac{\pi a}{b}}$

	7. Plate with single-edge crack, tension loading	$\begin{aligned} K_{\mathrm{I}} & =\sigma \sqrt{\pi a} F(a / b) \\ F(a / b) & =\sqrt{\frac{2 b}{\pi a} \tan \frac{\pi a}{2 b}} \frac{0.752+2.02(a / b)+0.37[1-\sin (\pi a / 2 b)]^{3}}{\cos (\pi a / 2 b)} \\ \text { For } a & \ll b, F(a / b) \approx 1.1 \end{aligned}$
	8. Plate with single-edge crack bending load M with units $(F \cdot L / L)$	$\begin{aligned} \sigma & =\frac{6 M}{b^{2}} \\ K_{\mathrm{I}} & =\sigma \sqrt{\pi a} F(a / b) \\ F(a / b) & =\sqrt{\frac{2 b}{\pi a} \tan \frac{\pi a}{2 b}} \frac{0.923+0.199[1-\sin (\pi a / 2 b)]^{4}}{\cos (\pi a / 2 b)} \end{aligned}$

TABLE 7-1 (continued) STRESS INTENSITY FACTORS

Case	Intensity Factor
9. Beam with crack, three-point bending P with units (F / L)	$\begin{aligned} \sigma & =\frac{6 M}{b^{2}}, M=\frac{P L}{4} \\ K_{\mathrm{I}} & =\sigma \sqrt{\pi a} F(a / b) \end{aligned}$ For $L / b=4, \beta=a / b$ $F(a / b)=\frac{1}{\sqrt{\pi}} \frac{1.99-\beta(1-\beta)\left(2.15-3.93 \beta+2.7 \beta^{2}\right)}{(1+2 \beta)(1-\beta)^{3 / 2}}$ For $L / b=8$, $F(a / b)=1.106-1.552(a / b)+7.71(a / b)^{2}-13.53(a / b)^{3}$
10. Shaft with crack, tension loading P with units (F)	$\begin{aligned} K_{\mathrm{I}} & =\sigma_{\text {net }} \sqrt{\pi a} F_{1}(a / b) \\ \sigma_{\text {net }} & =\frac{P}{\pi a^{2}} \\ F_{1}(a / b) & =\sqrt{1-\frac{2 a}{b}} G(a / b) \\ G(a / b) & =\frac{1}{2}\left[1+\frac{1}{2} \frac{2 a}{b}+\frac{3}{8}\left(\frac{2 a}{b}\right)^{2}-0.363\left(\frac{2 a}{b}\right)^{3}+0.731\left(\frac{2 a}{b}\right)^{4}\right] \end{aligned}$

	11. Shaft with crack, bending load	$\begin{aligned} K_{\mathrm{I}_{A}} & =\sigma_{N} \sqrt{\pi a} F_{1}(a / b) \\ \sigma_{N} & =\frac{4 M}{\pi a^{3}} \\ F_{1}(a / b) & =\sqrt{1-\frac{2 a}{b}} G(a / b) \\ G(a / b) & =\frac{3}{8}\left[1+\frac{1}{2} \frac{2 a}{b}+\frac{3}{8}\left(\frac{2 a}{b}\right)^{2}+\frac{5}{16}\left(\frac{2 a}{b}\right)^{3}+\frac{35}{128}\left(\frac{2 a}{b}\right)^{4}+0.537\left(\frac{2 a}{b}\right)^{5}\right] \end{aligned}$
	12. Shaft with crack, torsional load	$\begin{aligned} K_{\mathrm{III}} & =\tau_{N} \sqrt{\pi a} F_{1}(a / b) \\ \tau_{N} & =\frac{2 T}{\pi a^{3}} \\ F_{1}(a / b) & =\sqrt{1-\frac{2 a}{b}} G(a / b) \\ G(a / b) & =\frac{3}{8}\left[1+\frac{1}{2} \frac{2 a}{b}+\frac{3}{8}\left(\frac{2 a}{b}\right)^{2}+\frac{5}{16}\left(\frac{2 a}{b}\right)^{3}+\frac{35}{128}\left(\frac{2 a}{b}\right)^{4}+0.208\left(\frac{2 a}{b}\right)^{5}\right] \end{aligned}$

Case	Intensity Factor
13. Shaft with internal circular crack, tension loading	$\begin{aligned} K_{\mathrm{I}} & =\sigma_{\text {net }} \sqrt{\pi a} F_{1}(a / b) \\ \sigma_{\text {net }} & =\frac{P}{\pi\left[\left(b^{2} / 4\right)-a^{2}\right]} \\ F_{1}(a / b) & =\sqrt{1-\frac{2 a}{b}} G(a / b) \\ G(a / b) & =\frac{2}{\pi}\left[1+\frac{1}{2} \frac{2 a}{b}-\frac{5}{8}\left(\frac{2 a}{b}\right)^{2}+0.421\left(\frac{2 a}{b}\right)^{3}\right] \end{aligned}$
14. Shaft with internal circular crack, bending loading	$\begin{aligned} K_{\mathrm{I}_{A}} & =\sigma_{N} \sqrt{\pi a} F_{1}(a / b) \\ \sigma_{N} & =\frac{4 M a}{\pi\left[\left(b^{4} / 16\right)-a^{4}\right]} \\ F_{1}(a / b) & =\sqrt{1-\frac{2 a}{b}} G(a / b) \\ G(a / b) & =\frac{4}{3 \pi}\left[1+\frac{1}{2} \frac{2 a}{b}+\frac{3}{8}\left(\frac{2 a}{b}\right)^{2}+\frac{5}{16}\left(\frac{2 a}{b}\right)^{3}-\frac{93}{128}\left(\frac{2 a}{b}\right)^{4}+0.483\left(\frac{2 a}{b}\right)^{5}\right] \end{aligned}$

	15. Shaft with internal circular crack, torsional load	$\begin{aligned} K_{\mathrm{III}} & =\tau_{N} \sqrt{\pi a} F_{1}(a / b) \\ \tau_{N} & =\frac{2 T a}{\pi\left[\left(b^{4} / 16\right)-a^{4}\right]} \\ F_{1}(a / b) & =\sqrt{1-\frac{2 a}{b}} G(a / b) \\ G(a / b) & =\frac{4}{3 \pi}\left[1+\frac{1}{2} \frac{2 a}{b}+\frac{3}{8}\left(\frac{2 a}{b}\right)^{2}+\frac{5}{16}\left(\frac{2 a}{b}\right)^{3}-\frac{93}{128}\left(\frac{2 a}{b}\right)^{4}+0.038\left(\frac{2 a}{b}\right)^{5}\right] \end{aligned}$
	16. Semi-infinite body with semicircular crack, tension loading σ	$\begin{aligned} K_{\mathrm{I}_{A}} & =\frac{2}{\pi} \sigma \sqrt{\pi a} F(\theta) \\ F(\theta) & =1.211-0.186 \sqrt{\sin \theta} \quad\left(10^{\circ}<\theta<170^{\circ}\right) \end{aligned}$

TABLE 7-1 (continued) STRESS INTENSITY FACTORS

Case	Intensity Factor
17. Infinite body with internal elliptical crack, tension loading x, y plane	$\begin{aligned} K_{\mathrm{I}_{A}} & =\frac{\sigma \sqrt{\pi a}}{E(k)}\left(\sin ^{2} \theta+\frac{a^{2}}{c^{2}} \cos ^{2} \theta\right)^{1 / 4} \\ K_{\mathrm{I}, \max } & =K_{\mathrm{I}}\left(\theta= \pm \frac{1}{2} \pi\right)=\frac{\sigma \sqrt{\pi a}}{E(k)} \\ K_{\mathrm{I}}(c=a) & =\frac{2 \sigma}{\pi} \sqrt{\pi a} \\ K_{\mathrm{I}}(c \rightarrow \infty) & =\sigma \sqrt{\pi a} \\ E(k) & =\int_{0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} \phi} d \phi \end{aligned}$ (Elliptic integral available in mathematical handbooks) $k^{2}=1-a^{2} / c^{2}$

18.

Semielliptical surface crack in finite plane, tension loading

Back Face

Front Face
Section A-A
$K=\sigma \sqrt{\pi a / E(k)^{2}} f(\theta) F\left(\frac{a}{t}, \frac{a}{c}, \frac{c}{b}\right)$
where
$f(\theta)=\left(\sin ^{2} \theta+\frac{a^{2}}{c^{2}} \cos ^{2} \theta\right)^{0.25}$
$F=\left\{\left(1.13-0.1 \frac{a}{c}\right)+\left[\sqrt{E(k)^{2} \frac{c}{a}}-\left(1.13-0.1 \frac{a}{c}\right)\right]\left(\frac{a}{t}\right)^{\sqrt{\pi}}\right.$
$\left.+\sqrt{E(k)^{2} \frac{c}{a}}\left(\sqrt{\frac{\pi}{4}}-1\right)\left(\frac{a}{t}\right)^{2 \sqrt{\pi}}\right\} \sqrt{\sec \left(\frac{\pi c}{b} \sqrt{\frac{a}{t}}\right)}$
$E(k)=\int_{0}^{\pi / 2} \sqrt{1-k^{2} \sin ^{2} \phi} d \phi$
(Elliptic integral available in mathematical handbooks)

$$
k^{2}=1-a^{2} / c^{2}
$$

TABLE 7-2 STRENGTH AND FRACTURE TOUGHNESS DATA FOR SELECTED MATERIALS ${ }^{a}$

Alloy	$\begin{array}{c}\text { Material } \\ \text { Supply }\end{array}$	$\begin{array}{c}\text { Specimen } \\ \text { Orientation }\end{array}$	$\begin{array}{c}\text { Test Temperature } \\ \left({ }^{\circ} \mathrm{C}\right)\end{array}$	$\begin{array}{c}\sigma_{y s} \\ (\mathrm{MPa})\end{array}$	$\begin{array}{c}K_{\mathrm{I} c} \\ (\mathrm{MPa} \cdot \sqrt{\mathrm{m})}\end{array}$
		Aluminum Alloys			

TABLE 7-2 (continued) STRENGTH AND FRACTURE TOUGHNESS DATA FOR SELECTED MATERIALS ${ }^{a}$

Ferrous Alloys					
$4330 \mathrm{~V}\left(275^{\circ} \mathrm{C}\right.$ temper)	Forging	L-T	21	1400	86-94
$4330 \mathrm{~V}\left(425^{\circ} \mathrm{C}\right.$ temper)	Forging	L-T	21	1315	103-110
4340(205 ${ }^{\circ} \mathrm{C}$ temper)	Forging	L-T	21	1580-1660	44-66
$4340\left(260^{\circ} \mathrm{C}\right.$ temper)	Plate	L-T	21	1495-1640	50-63
$4340\left(425^{\circ} \mathrm{C}\right.$ temper)	Forging	L-T	21	1360-1455	79-91
D6AC ($540^{\circ} \mathrm{C}$ temper)	Plate	L-T	21	1495	102
D6AC ($540{ }^{\circ} \mathrm{C}$ temper)	Plate	L-T	-54	1570	62
9-4-20(550 ${ }^{\circ} \mathrm{C}$ temper)	Plate	L-T	21	1280-1310	132-154
$18 \mathrm{Ni}(200)\left(480^{\circ} \mathrm{C} 6 \mathrm{~h}\right)$	Plate	L-T	21	1450	110
$18 \mathrm{Ni}(250)\left(480^{\circ} \mathrm{C} 6 \mathrm{~h}\right)$	Plate	L-T	21	1785	88-97
$18 \mathrm{Ni}(300)\left(480^{\circ} \mathrm{C}\right)$	Plate	L-T	21	1905	50-64
$18 \mathrm{Ni}(300)\left(480^{\circ} \mathrm{C} 6 \mathrm{~h}\right)$	Forging	L-T	21	1930	83-105
AFC77(425 ${ }^{\circ} \mathrm{C}$ temper)	Forging	L-T	24	1530	79
Titanium Alloys					
Ti-6 Al-4V	(Mill anneal plate)	L-T	23	875	123
Ti-6 Al-4V	(Mill anneal plate)	T-L	23	820	106
Ti-6 Al-4V	(Recrystallize anneal plate)	L-T	22	815-835	85-107
Ti-6 Al-4V	(Recrystallize anneal plate)	T-L	22	825	77-116
Ceramics ${ }^{\text {b }}$					
Mortar		-	-	-	0.13-1.3
Concrete		-	-	-	0.23-1.43
$\mathrm{Al}_{2} \mathrm{O}_{3}$		-	-	-	3-5.3
SiC		-	-	-	3.4
$\mathrm{Si}_{3} \mathrm{~N}_{4}$		-	-	-	4.2-5.2
Soda-lime silicate glass		-	-	-	0.7-0.8
Electrical porcelain ceramics		-	-	-	1.03-1.25
WC(2.5-3 $\mu \mathrm{m}$)-3 wt \% Co		-	-	-	10.6
WC($2.5-3 \mu \mathrm{~m}$) - $9 \mathrm{wt} \% \mathrm{Co}$		-	-	-	12.8
$\mathrm{WC}(2.5-3.3 \mu \mathrm{~m})-15 \mathrm{wt} \% \mathrm{Co}^{c}$		-	-	-	16.5-18
Indiana limestone ${ }^{d}$		-	-	-	0.99

TABLE 7-2 (continued) STRENGTH AND FRACTURE TOUGHNESS DATA FOR SELECTED MATERIALS ${ }^{a}$

Polymers

PMMA e	-	-	-	$0.8-1.75^{f}$
PS g	-	-	-	$0.8-1.1^{f}$
Polycarbonate h	-	-	-	$2.75-3.3^{f}$

${ }^{a}$ Unless noted otherwise, from Ref. [7.3], with permission. Symbols: $\sigma_{y s}$, yield strength $\left(F / L^{2}\right) ; K_{\text {I }}$, critical stress intensity factor for mode I deformation $\left(F / L^{3 / 2}\right) ; \mathrm{L}-\mathrm{T}$, crack is perpendicular to longitudinal direction and parallel to transverse direction; T-L, crack is perpendicular to transverse direction and parallel to longitudinal direction; S-L, crack is perpendicular to thickness and parallel to rolling direction.
${ }^{b}$ From Bradt et al. [7.40].
${ }^{c}$ From Ingelstrom and Nordberg [7.41].
${ }^{d}$ From Schmidt [7.42].
${ }^{e}$ From Marshall and Williams [7.43].
${ }^{f} K_{\mathrm{I} C}$ is a function of crack speed.
${ }^{g}$ From Marshall et al. [7.44].
${ }^{h}$ From Rodon [7.45].

TABLE 7-3 S-N CURVES FOR SOME STEELS

Notation

S is completely reversed stress, or fatigue strength (ksi), N is cycles to failure,
$S=10^{a+b \log N}$ or $\log S=a+b \log N$ where $10^{3} \leq N \leq 10^{6}$.

Load Type	Process	Coefficient a	Coefficient b

Hardness of Steel: 160-187 HB

Bending	Polished	2.105	-0.082
	Ground	2.159	-0.0999
	Machined	2.231	-0.124
	Hot rolled	2.321	-0.154
	Forged	2.430	-0.190
Axial	Polished	2.195	-0.112
	Ground	2.240	-0.127
	Machined	2.309	-0.150
	Hot rolled	2.369	-0.170
	Forged	2.550	-0.230
Torsional	Polished	2.192	-0.138
	Ground	2.258	-0.160
	Machined	2.309	-0.177
	Hot rolled	2.399	-0.207
	Forged	2.555	-0.259

Hardness of Steel: 269-285 HB

Bending	Polished	2.336	-0.086
	Ground	2.378	-0.100
	Machined	2.535	-0.147
	Hot rolled	2.648	-0.190
	Forged	2.828	-0.250
Axial	Polished	2.351	-0.099
	Ground	2.387	-0.111
	Machined	2.474	-0.140
	Hot rolled	2.669	-0.205
	Forged	2.804	-0.250
Torsional	Polished	2.402	-0.134
	Ground	2.459	-0.153
	Machined	2.564	-0.188
	Hot rolled	2.720	-0.240
	Forged	2.900	-0.300

TABLE 7-4 $S-N$ CURVES FOR ALUMINUM UNDER COMPLETELY REVERSED BENDING

Notation
S is completely reversed stress, or fatigue strength (ksi);
N is cycles to failure;
$S=10^{a+b \log N}$ or $\log S=a+b \log N$ where $10^{5} \leq N \leq 5 \times 10^{8}$.

Type of Aluminum			Coefficient a	Coefficient b
Wrought	1100	O	1.179	-0.05518
	1100	H12	1.391	-0.070
	1100	H 14	1.394	-0.063
	1100	H16	1.471	-0.065
	1100	H18	1.627	-0.0794
	3003	O	1.306	-0.053
	3003	H 12	1.545	-0.0738
	3003	H14	1.542	-0.0675
	3003	H16	1.56	-0.066
	3003	H18	1.649	-0.074
	2014	T4	2.036	-0.091
	2014	T6	2.076	-0.1036
	2017	T4	2.053	-0.085
Cast	142	T21	1.65	-0.0949
	142	T61	1.706	-0.081
	195	T4	1.964	-0.125
	220	T4	1.864	-0.117
	319	F	1.656	-0.0754
	355	$T 51$	1.75	-0.104
	355	T6	1.708	-0.0814
	356	T51	1.876	-0.115
	356	T6	1.846	-0.0972

TABLE 7-5 FATIGUE ENDURANCE RATIO σ_{e} / σ_{u} AND MAXIMUM FATIGUE LIMIT $\left(\sigma_{e}\right)_{\max }$ FOR VARIOUS CLASSES OF ENGINEERING MATERIALS ${ }^{a}$

Notation $\sigma_{e}=$ $=$ $\sigma_{u}=$ fatigue endurance limit $\left(F / L^{2}\right)$		
Material	σ_{e} / σ_{u}	$\left(\sigma_{e}\right)_{\max }(\mathrm{MPa})$
Steels	$0.35-0.60$	784.5
Cast irons	$0.30-0.50$	196.1
Al alloys	$0.25-0.50$	196.1
Mg alloys	$0.30-0.50$	147.1
Cu alloys	$0.25-0.50$	245.2
Ni alloys	$0.30-0.50$	392.3

${ }^{a}$ From Ref. [7.9], with permission.

TABLE 7-6 SURFACE TREATMENTS THAT INCREASE OR DECREASE FATIGUE STRENGTH ${ }^{a}$

Treatment	Fatigue Limit Increase (\%)	Material
Shot peening and rolling of specimen without stress concentration	$10-30$	Steels and Al alloys
Shot peening and rolling of specimen with stress concentration	>50	Steels and Al alloys
Carburizing	>30	Steels for carburizing Nitriding of specimen without stress concentration
Nitriding of specimen with stress concentration	$10-30$	Steels for nitriding
Induction and flame hardening	>50	Steels for nitriding
	>30	Steels
Treatment	Fatigue Limit	
Decrease $(\%)$	>30	Spring steels Decarburizing Chromium and nickel plating
Al clad	>30	Steels $S_{u} \geq 981$ MPa Heldigh
	$15-35$	Special steels and alloys alloys

[^13]TABLE 7-7 CORROSION FATIGUE LIMITS OF SELECTED STEELS ${ }^{\text {a,b }}$

Composition (\%)			Condition	Tensile Strength (ksi)	Fatigue Limit in Air (ksi)	Corrosion Fatigue Limit (ksi)		
			Well			Salt		
C	Ni	Cr				Water	Water	
0.11	-	-		Annealed	46	25	16	
0.14	-	-	Quenched	70	36	23		
0.26	-	-	Quenched, drawn	85	39	23		
0.11	-	11.8	Annealed	80	41	34	14	
0.13	-	13.4	Quenched, drawn	91	59	40	13	
0.16	8.2	17.3	Quenched, drawn	125	50	50	25	
0.38	15.9	16.0	Annealed	126	64	51		
0.24	22.1	6.0	Normalized	85	-	-	15	

${ }^{a}$ Data from Refs. [7.19] and [7.54]
${ }^{b}$ These steels are loaded at 1450 cycles $/ \mathrm{min}$. for $\geq 10^{7}$ cycles.

TABLE 7-8 CORROSION FATIGUE LIMITS OF SELECTED NONFERROUS METALS ${ }^{a, b}$

Composition (\%)				Condition	Tensile Strength (ksi)	Fatigue Limit in Air (ksi)	Corrosion-Fatigue Strength (ksi)		
				Well			Salt		
Ni	Cu	Al	Mn				Water	Water	
99	-	-	-		Annealed, $600^{\circ} \mathrm{F}$	78	33.0	23.0	21.5
99	-	-	-	Annealed, $1400^{\circ} \mathrm{F}$	132	51.0	26.0	22.0	
68	30	-	-	Annealed, $800^{\circ} \mathrm{F}$	82	36.5	26.0	28.0	
68	30	-	-	Annealed, $1400^{\circ} \mathrm{F}$	127	51.5	26.0	29.0	
48	48	-	-	Cold rolled	78	31.5	22.0	25.0	
48	48	-	-	Annealed, $1400^{\circ} \mathrm{F}$	86	36.5	22.0	26.0	
21	78	-	-	Annealed, $400^{\circ} \mathrm{F}$	47	19.0	18.0	18.0	
21	78	-	-	Annealed, $1400^{\circ} \mathrm{F}$	62	25.5	21.5	23.5	
	100	-	-	Annealed, $250{ }^{\circ} \mathrm{F}$	31	9.5	10.0	10.0	
	100	-	-	Annealed, $1200^{\circ} \mathrm{F}$	47	16.5	17.5	17.5	
		99	-	Annealed	13	5.9	-	2.1	
		99	-	Half hard temper	16	7.3	-	3.0	
		99	-	Hard temper	21	8.4	5.0	3.0	
		98	1.2	Annealed	17	6.8	3.2	-	
		98	1.2	Half hard temper	24	10.1	5.5	4.0	
		98	1.2	Hard temper	30	10.7	5.5	4.0	
	4	94	-	Annealed	33	13.5	7.5	6.7	
	4	94	-	Tempered	69	17.0	8.0	7.0	

${ }^{a}$ From Ref. [7.35]. Copyright ASTM, reprinted with permission.
${ }^{b}$ These metals are stressed for $20,000,000$ cycles at 1450 cyles $/ \mathrm{min}$.

TABLE 7-9 PARAMETERS OF FATIGUE CRACK PROPAGATION EQUATION $d a / d n=A(\Delta K)^{n}$ FOR THREE CLASSES OF STEEL

Notation a $=$ half-length of flaw (in.) N $=$ number of load cycles ΔK $=$ range of stress intensity factor during a cycle (ksi- $\sqrt{\mathrm{in} .}$.) $d a / d N$ $=$ fatigue crack growth rate (in./cycle)						
	Range of Mechanical Properties			Parameter		
Class	Yield Strength, $\sigma_{y s}$ (ksi)	Tensile Strength, σ_{u} (ksi)	Strain-Hardening Exponent, ${ }^{a} \alpha^{\prime}$	$\begin{gathered} A \\ \left.[\text { in./cycle/(ksi- } \sqrt{\text { in. }})^{n}\right] \end{gathered}$	n	
Austenitic, stainless	$30<\sigma_{y s}<50$	$75<\sigma_{u}<95$	$\alpha^{\prime}>0.3$	3.0×10^{-10}	3.25	
Ferrite, pearlite		$30<\sigma_{y s}<80$	$50<\sigma_{u}<110$	$\begin{gathered} \alpha^{\prime}>0.15, \\ \alpha^{\prime}<0.3 \end{gathered}$	3.6×10^{-10}	3.0
Martensitic		$\sigma_{y s}>70$	$\sigma_{u}>90$	$\alpha^{\prime}<0.15$	0.66×10^{-8}	2.25

${ }^{a}$ Beyond the yield point, the plot of true stress σ_{t} vs. true strain ε_{t} for many materials is given as $\sigma_{t}=\beta \varepsilon_{t}^{\alpha^{\prime}}$, where α^{\prime} is the strain-hardening exponent and β is a constant called the strength coefficient. By definition, $\sigma_{t}=$ force/(instantaneous area) and $\varepsilon_{t}=\ln$ (instantaneous length/initial length).

TABLE 7-10 FATIGUE CRACK GROWTH DATA FOR VARIOUS MATERIALS ${ }^{a}$

Notation

Fatigue crack propagation equation is $d a / d N=A(\Delta K)^{n}$, where $a=$ half length of flaw (m)
$N=$ number of load cycles
$\Delta K=$ range of stress intensity factor during cycle $(\mathrm{MPa} \cdot \sqrt{\mathrm{m}})$
$d a / d N=$ fatigue crack growth rate $(\mathrm{m} /$ cycle $)$
R^{*} is ratio of minimum to maximum stress in the load cycle.

Material	Tensile Strength ($\mathrm{MN} / \mathrm{m}^{2}$)	$\begin{gathered} 0.1 \text { or } \\ 0.2 \% \\ \text { Proof } \\ \text { Stress } \\ \left(\mathrm{MN} / \mathrm{m}^{2}\right) \end{gathered}$	R^{*}	n	$A\left[\frac{\mathrm{~m} / \mathrm{cycle}}{(\mathrm{MPa} \cdot \sqrt{\mathrm{m}})^{n}}\right]$
Mild steel	325	230	0.06-0.74	3.3	2.43×10^{-12}
Cold-rolled mild steel	695	655	0.07-0.43	4.2	2.51×10^{-13}
			0.54-0.76	5.5	3.68×10^{-14}
			0.75-0.92	6.4	2.62×10^{-14}
18/8 austenitic steel	665	195-255	0.33-0.43	3.1	3.33×10^{-12}
Aluminum	125-155	95-125	0.14-0.87	2.9	4.56×10^{-11}
5\% Mg-aluminum alloy	310	180	0.20-0.69	2.7	2.81×10^{-10}
HS30W aluminum alloy ${ }^{b}$	265	180	0.20-0.71	2.6	1.88×10^{-10}
HS30WP aluminum	310	245-280	0.25-0.43	3.9	2.41×10^{-11}
alloy b			0.50-0.78	4.1	4.33×10^{-11}
L71 aluminum alloy ${ }^{c}$	480	415	0.14-0.46	3.7	3.92×10^{-11}
L73 aluminum alloy ${ }^{\text {c }}$	435	370	0.50-0.88	4.4	3.82×10^{-11}
DTD 687 aluminum alloy ${ }^{d}$	540	495	0.20-0.45	3.7	1.26×10^{-10}
			0.50-0.78	4.2	8.47×10^{-11}
			0.82-0.94	4.8	1.68×10^{-10}
ZW1 magnesium alloy ${ }^{e}$	250	165	0	3.35	1.23×10^{-9}
AM503 magnesium alloy ${ }^{f}$	200	107	0.5	3.35	3.47×10^{-9}
			0.67	3.35	4.23×10^{-9}
			0.78	3.35	6.57×10^{-9}
Copper	215-310	26-513	0.07-0.82	3.9	3.38×10^{-12}
Titanium	555	440	0.08-0.94	4.4	6.89×10^{-12}
5\% Al-titanium alloy	835	735	0.17-0.86	3.8	9.56×10^{-12}
15\% Mo-titanium alloy	1160	995	0.28-0.71	3.5	2.14×10^{-11}
			0.81-0.94	4.4	1.17×10^{-11}

[^14]
C H A P T E R

8

Joints

8.1 Notation 369
8.2 Riveted and Bolted Joints 371
Joint Failure Mode under Shear Loading 373
Boiler Joints 377
Bolted Joints in Machine Design 377
8.3 Load Analysis of Fastener Groups 379
8.4 Design of Riveted and Bolted Connections 382
8.5 Welded Joints and Connections 390
Types of Welded Joints and Typical Drawing Symbols 390
Analysis of Welded Joints 392
References 395
Tables 397

Joints consist of separate structural elements joined with fasteners or welds. Useful formulas and tables for the analysis and design of joints are provided in this chapter. Most commonly used in engineering structures and machines are riveted, bolted, and welded connections. Figure 8-1 illustrates these three types of joints.

8.1 NOTATION

The units for each definition are given in parentheses, using L for length and F for force.

A Cross-sectional area $\left(L^{2}\right)$
A_{b} Nominal bearing area, bolt cross-sectional area $\left(L^{2}\right)$
A_{e} Effective net area (L^{2})
A_{g} Cross-sectional gross area $\left(L^{2}\right)$
A_{n} Net sectional area (L^{2})

(a)

(b)

(c)

Figure 8-1: Common joints: (a) bolted; (b) riveted; (c) welded.
A_{w} Weld area (L^{2})
d Nominal or major diameter of fastener (rivet or bolt) (L)
E Elastic modulus (Young's modulus) $\left(F / L^{2}\right)$
f_{r} Nominal resultant stress in weld $\left(F / L^{2}\right)$
F_{i} Initial tensile force (F)
g Transverse spacing (gage) (L)
k Stiffness constant (F / L)
ℓ Distance (L)
M Moment ($F L$)
P Applied load (F)
P_{e} External tensile load (F)
P_{T} Total load-carrying capacity (F)
s Longitudinal spacing, pitch (L)
t Plate thickness (L)
T Torque or twisting moment ($F L$)
w Leg size of fillet weld (L)
σ_{p} Allowable bearing stress $\left(F / L^{2}\right)$
$\sigma_{t w}$ Allowable tensile stress $\left(F / L^{2}\right)$
σ_{u} Ultimate tensile strength $\left(F / L^{2}\right)$
$\sigma_{w a}$ Allowable strength of particular type of weld (F / L)
$\sigma_{y s}$ Yield strength $\left(F / L^{2}\right)$
τ Shear stress $\left(F / L^{2}\right)$
τ_{w} Allowable shear stress $\left(F / L^{2}\right)$

8.2 RIVETED AND BOLTED JOINTS

When joints are used for connecting members of structures such as building frames, trusses, or cranes, they are generally referred to as connections. Here we will not distinguish between these two terms.

Much of the material in this section deals with steel and conforms to the specifications of the American Institute of Steel Construction (AISC) as provided in Ref. [8.1], using "Allowable Steel Design." However, the steel construction community is replacing the design methodology of Ref. [8.1] with the "Load and Resistance Factor Design" (LRFD) design approach of Ref. [8.2]. Allowable stress design is the traditional procedure which begins with the identification of an allowable stress, which is obtained by dividing either the yield stress $\sigma_{y s}$ or the ultimate stress σ_{u} by a factor of safety. Thus, a typical allowable stress would be $0.6 \sigma_{u}$. Then, a structural member is designed by choosing cross-sectional properties such that the maximum stress, as determined using elastic strength of materials relations, does not exceed the allowable stress. Load and resistance factor design is quite different. In this procedure, the structural member is selected so that its resistance, multiplied by a resistance factor, is not less than the service load combination, multiplied by load factors. This procedure permits differing reliabilities in the prediction of the load and member resistance to be taken into account.

Rivets in connections are usually made from a soft grade of steel that does not become brittle when heated and hammered with a pneumatic riveting gun. They are manufactured with one formed head and are installed in holes that are $\frac{1}{16}$ in. larger in diameter than the nominal diameter of the rivet. When installing a rivet, its head end is held tightly against the pieces being joined while the opposite end is hammered until another, similar head is formed. Steel rivets, as used in most connections, are usually heated to a cherry-red color (approximately $1800^{\circ} \mathrm{F}$) and can then be more easily driven. As the rivets cool, they shrink and squeeze the joined parts together. Copper and aluminum rivets used in aircraft engineering are generally driven cold.

The AISC mandates that rivets must conform to the American Society for Testing and Materials (ASTM) provisions "Standard Specifications for Structural Rivets" [8.3]. The size of rivets used in general steel construction ranges in diameter from $\frac{5}{8}$ to $1 \frac{1}{2}$ in. in $\frac{1}{8}$-in. increments.

Riveted joints are either lap or butt joints (Fig. 8-2). The lap joint has two plates that are lapped over each other and fastened together by one or more rows of rivets or fasteners. In the case of a butt joint, the edges of two plates are butted together and the plates are connected by cover plates.

A bolt is a threaded fastener with a head and a nut that screws on to the end without the head (Fig. 8-1a). The bolts most commonly used in steel construction are unfinished bolts (also called ordinary or common bolts) and high-strength bolts. Unfinished bolts are used primarily in light structures subjected to static loads. Unfinished bolts must conform to the specifications for low-carbon steel externally and internally threaded fasteners, ASTM A307 [8.3].

High-strength bolts are made from medium-carbon, heat-treated, or alloy steel and have tensile strengths several times greater than those of unfinished bolts. Spec-

Figure 8-2: Rivet joints: (a) lap; (b) butt.
ifications of the AISC state that high-strength bolts must conform to "Specifications for Structural Joints Using ASTM A325 or A490 Bolts" [8.3].

Owing to better performance and economy compared to riveted joints, highstrength bolting has become the leading technique used for connecting structures in the field. In general, three types of connections are made of high-strength bolts:

1. The friction (F) connection, in which slip between the connected parts cannot be tolerated and must be resisted by a high clamping force
2. The bearing (N) connection, with threads included in the shear plane (Fig. 8-3a)
3. The bearing (X) connection, with threads excluded from the shear plane (Fig. 8-3b)

The allowable stresses recommended by the AISC Manual of Steel Construction [8.1] are given in Table 8-1. Generally, these stresses are based on the results of a large number of laboratory tests in which the ultimate strength of the rivets is determined. Division of the ultimate strength by a suitable factor of safety gives the allowable stresses.

Figure 8-3: Bearing connections of high-strength bolts: (a) type N bolt, with threads included in the shear plane; (b) type X bolt, with threads excluded from the shear plane.

Joint Failure Mode under Shear Loading

Four modes of failure for joints are normally considered.
(a) Shearing of the fastener (bolt or rivet) in either single (one-sided) or double (two-sided) shear, depending on the type of joint (Fig. 8-4a): To prevent shear failure of the fastener, the number of fasteners should be determined to limit the maximum shear stress in the critical fastener to the allowable stress listed in Table 8-1. The average shearing stress in a fastener (Fig. 8-4a) is

$$
\begin{equation*}
\tau=P_{s} / A=4 P_{s} / \pi d^{2} \tag{8.1}
\end{equation*}
$$

where P_{S} is the load acting on the fastener's cross section subject to shear and A and d are the area and diameter, respectively, of the bolt or rivet cross section. For single shear $P_{s}=P$ and for double shear joints (Fig. 8-4a)

$$
P_{S}=\frac{1}{2} P
$$

(b) Compression or bearing, that is, the crushing of either the fastener or the plate in front of it (Fig. 8-4b): To assure that no compression or bearing occurs due to the crushing force of the fasteners on the material, the minimum number of fasteners is determined.

The bearing is assumed to be uniformly distributed over an area $A=t d$ so that the bearing stress σ_{br} is

$$
\begin{equation*}
\sigma_{\mathrm{br}}=P / t d \tag{8.2}
\end{equation*}
$$

where P is the load, t is the thickness, and d is the diameter of the shaft of the fastener, as shown in Fig. 8-4b.

The specifications of AISC recommend the allowable bearing stress σ_{p}, using a factor of safety of 2, to be [8.4]

$$
\begin{equation*}
\sigma_{p}=\frac{1}{2} \sigma_{u}(s / d-0.50) \leq 1.50 \sigma_{u} \tag{8.3}
\end{equation*}
$$

where s is the distance between the centers of two fasteners in the direction of the stress and σ_{u} is the ultimate strength of the material.
(c) Tension or tearing when a plate tears apart along some line of least resistance (Fig. 8-4c): To prevent this failure in steel, the connected parts should be designed so that the tensile stress is less than $0.6 \sigma_{y s}$ of the gross area A_{g} and less than $0.5 \sigma_{u}$ on the effective net area (specifications of AISC), where the gross area A_{g} of a member is defined as the product of the thickness and the gross width of the member as measured normal to the tensile force σ (Fig. 8-5). The net area A_{n} of the plate is the product of the net width and the member thickness, and the net width is determined by deducting from the gross width the sum of all hole widths in the section cut. To compute the net width, the width of a fastener (rivet or bolt) hole is taken as $\frac{1}{16} \mathrm{in}$. larger than the actual width of the hole. Moreover, the actual hole diameter is $\frac{1}{16}$ in. larger than the nominal fastener size d. Thus, for each hole, a value of fastener

(c)

(d)

End tearing
(e)

Figure 8-4: Failure modes of joints.

Figure 8-5: Gross area A_{g} and net width W_{n}.
diameter $\frac{1}{16}+\frac{1}{16}=\frac{1}{8} \mathrm{in}$. should be used to calculate the net width and net area. For section 1-1 in Fig. 8-5 with two holes, for example, the net width W_{n} is

$$
W_{n}=b-N\left(d+\frac{1}{8}\right)=b-2\left(d+\frac{1}{8}\right)
$$

where N is the number of holes and

$$
A_{n}=t W_{n}=t\left[b-2\left(d+\frac{1}{8}\right)\right], \quad A_{g}=t b
$$

Holes are sometimes arranged in a zigzag pattern, as in Fig. 8-6. Then the net width is taken as the gross width minus the diameter of all the holes in a chain (line of failure), plus for each "out-of-line" space (i.e., each diagonal) in the chain, the value

$$
\begin{equation*}
s^{2} / 4 g \tag{8.4a}
\end{equation*}
$$

where s is the pitch (longitudinal spacing) in inches (Fig. 8-6) and g is the gage (transverse spacing) in inches. For example, for the chain (possible line of failure) of $A B G H I$ (or the section of $A B G H I$) shown in Fig. 8-6a, where only one diagonal is in the chain, the net width is

$$
\begin{equation*}
W_{n}=b-3\left(d+\frac{1}{8}\right)+s^{2} / 4 g \tag{8.4b}
\end{equation*}
$$

Figure 8-6: Zigzag pattern of holes: (a) chain ABGHI; (b) chain $A B G C D$.
and the net width for section $A B G C D$ (Fig. 8-6b), where two diagonals are in the chain, is

$$
\begin{equation*}
W_{n}=b-3\left(d+\frac{1}{8}\right)+s^{2} / 4 g+s^{2} / 4 g \tag{8.4c}
\end{equation*}
$$

For all possible chains, the critical net section is the chain that has the least net width.
If the tensile force is transmitted by fasteners (rivets or bolts) through some, but not all, of the segments of the cross section, an effective net area A_{e} must be computed [8.2]. This is to account for the effect of shear stress concentration in the vicinity of connections or for the shear lag for the portion of the section distant from the connections. The effective net area is defined by

$$
\begin{equation*}
A_{e}=U A_{n} \tag{8.5}
\end{equation*}
$$

where U is a reduction factor assumed to be 1.0 unless otherwise determined. Values of U recommended by AISC are listed in Table 8-2. The tensile stress can be obtained from

$$
\begin{align*}
\sigma_{g} & =P_{T} / A_{g} \tag{8.6a}\\
\sigma_{n} & =P_{T} / A_{n} \tag{8.6b}
\end{align*}
$$

or

$$
\begin{equation*}
\sigma_{e}=P_{T} / A_{e} \tag{8.6c}
\end{equation*}
$$

where σ_{g}, σ_{n}, and σ_{e} are the tensile stresses based on the gross, net, and effective areas, respectively, and P_{T} is the total load on the connection member.
(d) End failure, including end shearing and end tearing (Figs. 8-4d and e): In the case of failure including shearing on the area $x t$ (Fig. 8-4d), the shear stresses are

$$
\begin{equation*}
\tau=P / 2 x t \tag{8.7}
\end{equation*}
$$

where P is the load acting at the hole, t is the thickness of the plate, and x is as shown in Fig. 8-4d.

In actuality, the stress is probably more complicated. The AISC [8.1] recommends an experimentally determined formula. To prevent the failure mode of end tearing or shearing, the minimum edge distance e from the center of a fastener hole to the edge (Fig. 8-4e) in the direction of the force shall be greater than $2 P / t \sigma_{u}$, that is,

$$
\begin{equation*}
e \geq 2 P / t \sigma_{u} \tag{8.8}
\end{equation*}
$$

where σ_{u} is the ultimate tensile strength. Table 8-3 gives some recommended e values. These edge distances depend on the joint type, the plate thickness, and the type of fastener.

The analyses above are based on the assumption that the stresses in fasteners or connecting members are uniform. This is not always true. When the stress is below
the elastic limit, the true stresses are not necessarily equal to the average stress. Stress concentration may occur. Before the ultimate strength is reached, however, the material yields and stresses are redistributed so that they tend to approach uniform values. Because of plastic yielding of the material and because allowable stresses are obtained from tests on specimens similar to the actual structure, it is possible that this assumption corresponds to an acceptable approximation.

The four modes of failure analysis are suitable for riveted joints and N, X-type bolted joints. The only difference is in their corresponding allowable stresses for shearing and bearing (Table 8-1). For F-type connections, the design is based on the assumption that if the connection fails, the bolts will fail in shear alone, and the bearing stress of the fasteners on the connected parts need not be considered. Nevertheless, the bearing must be considered in the event the friction bolts slip and must resist bearing [8.1]. Formulas for the four modes of failure are summarized in Table 8-4.

Boiler Joints

When a riveted joint is to remain airtight under pressure, it is sometimes called a boiler joint. Special consideration is given to the analysis and design of this type of joint. The Boiler Code of the American Society of Mechanical Engineers gives the ultimate strength of boiler steel to be used for boilers and tanks and also recommends a factor of safety of 3.5 . The efficiency of a riveted boiler joint is the ratio of the strength of the joint to the strength in tension of the unpunched plate.

Bolted Joints in Machine Design

In machine design, friction-type high-strength bolting is most commonly utilized. A bolt is tightened to develop a minimum initial tension in the bolt shank equal to about 70% of the tensile strength of the bolt. In this case, no interface slip occurs at allowable loads so that the bolts are not actually stressed in shear and are not in bearing. A discussion follows of the analysis of friction-type high-strength bolting used in machine design in which the tensile load of the bolt must be considered.

The tightening load is created in a bolt by exerting an initial torque on the nut or on the head of the bolt. For a torqued-up bolt, the tensile force in the bolt due to the torque can be approximated as [8.5]

$$
\begin{equation*}
T=c d F_{i} \tag{8.9}
\end{equation*}
$$

where T is the tightening torque, c is a constant depending on the lubrication present, d is a nominal outside diameter of the shank of the bolt, and F_{i} is the initial tightening load in the bolt. When the threads of the bolt are well cleaned and dried, choose $c=0.20$.

It is important to understand that when a load in the bolt shank direction is applied to a bolted connection over and above the tightening load, special consideration must be given to the behavior of the connection, which changes the allowable external load

Figure 8-7: Inner force for a bolted joint under tension.
significantly. In the absence of an external load, the tensile force in the bolt is equal to the compressive force on the connected members. The external load will act to stretch the bolt beyond its initial length (Fig. 8-7). Thus, the resulting effect, which depends on the relative stiffness of the bolt and the connected members, is that only a part of the applied external load is carried by the bolt. The final tensile force F_{b} in the bolt and compressive force F_{c} in connected members can be obtained using [8.6]

$$
\begin{align*}
F_{b} & =F_{i}+k_{b} P_{e} /\left(k_{b}+k_{c}\right) \tag{8.10}\\
F_{c} & =F_{i}-k_{c} P_{e} /\left(k_{b}+k_{c}\right) \tag{8.11}
\end{align*}
$$

where F_{i} is the initial tensile force in the bolt, k_{b} and k_{c} are the stiffnesses of the bolt and the connected members, respectively (Fig. 8-7), and P_{e} is the external load.

Since the external loading $\left(P_{e}\right)$ is shared by the bolt and the connected members according to their relative stiffness $\left(k_{c} / k_{b}\right)$, stiffness is usually given in the form of the ratio $k_{r}=k_{c} / k_{b}$, where k_{r} is the stiffness ratio. For simple extension or compression, the stiffnesses are

$$
\begin{align*}
k_{b} & =A_{b} E_{b} / L_{b} \tag{8.12}\\
k_{c} & =A_{c} E_{c} / L_{c} \tag{8.13}
\end{align*}
$$

where A_{b}, E_{b}, and L_{b} are the cross-sectional area, modulus of elasticity, and length of the bolt, respectively. The quantities A_{c}, E_{c}, and L_{c} are for the connected members.

Figure 8-8: Concentrically loaded connections.

8.3 LOAD ANALYSIS OF FASTENER GROUPS

A riveted or bolted joint may be subjected to a variety of forces. When the line of action of the resultant force that is to be resisted by the joint passes through the centroid c of the fastener group (Fig. 8-8), the joint is said to be concentrically loaded. Otherwise, the joint is said to be eccentrically loaded (Fig. 8-9a). For a concentrically loaded connection, the load is assumed to be uniformly distributed among the fasteners. For an eccentrically loaded connection, the force may be replaced by an equal force at the centroid and a moment equal in magnitude to the force times its eccentricity. In this case, each fastener in the group is assumed to resist the force at the centroid uniformly and to resist the moment in proportion to its respective distance to the centroid of the fastener group.

Normally, the conditions of equilibrium, along with the assumptions above, permit the most significant forces in each fastener to be computed. In riveted and bolted connections the centroid of the fastener, which is sometimes referred to as the center of resistance, is of importance in the analysis and design. The location of the centroid can be found by using the method described in Chapter 2. But in most cases all fasteners of a group have the same cross-sectional area and are arranged in a symmetrical pattern; consequently, the location of the centroid can be readily determined by simple observation, as should be evident in Figs. 8-8 and 8-9.

Example 8.1 Eccentrically Loaded Connection To illustrate the determination of fastener forces, consider the simple rivet group of the four symmetrically located rivets of Fig. 8-9a. It is assumed that each rivet takes $\frac{1}{4} P$ of the load (Fig. 8-9b). Also, a moment of magnitude $P L$ is generated at the centroid of the rivet areas. This moment is resisted by the moment due to the rivet forces (see Fig. 8-9b). This force in each rivet is F. Because the moments are in equilibrium,

$$
\begin{equation*}
P L-4 F \ell=0 \tag{1}
\end{equation*}
$$

Figure 8-9: Eccentric loading. Positive moment M and coordinate system are shown in (c).

Hence

$$
\begin{equation*}
F=P L / 4 \ell \tag{2}
\end{equation*}
$$

The total force on each rivet is the vector sum of $\frac{1}{4} P$ and F. In Fig. 8-9, it can be seen that the maximum resultant force occurs in the rivet closest to the eccentric load P, that is,

$$
\begin{equation*}
F_{\max }=F+\frac{1}{4} P=(P / 4 \ell)(\ell+L) \tag{3}
\end{equation*}
$$

There is another general, related method to find the moment-resisting forces F on each fastener. If the center of rotation of the eccentric moment $P L$ is assumed to be the centroid of the fastener group, each fastener force F_{j} will be perpendicular to a line joining the fastener and the centroid c, and the magnitude of the force will be proportional to its distance ℓ_{j} from c. Therefore,

$$
\begin{equation*}
F_{j}=k \ell_{j} \tag{4}
\end{equation*}
$$

where F_{j} is the force on fastener j due to eccentric loading and k is a constant for the fastener group.

From the equilibrium condition, $\sum M_{c}=0$. For the connections shown in Fig. 8-9a,

$$
\begin{equation*}
P L=F_{1} \ell_{1}+F_{2} \ell_{2}+F_{3} \ell_{3}+F_{4} \ell_{4} \tag{5}
\end{equation*}
$$

where $F_{1}, F_{2}, F_{3}, F_{4}$ are the moment-resisting forces on rivet $1,2,3,4$, respectively, and $\ell_{1}, \ell_{2}, \ell_{3}, \ell_{4}$ are the distances from each rivet to the centroid c.

From (4) and (5),

$$
\begin{equation*}
P L=k\left(\ell_{1}^{2}+\ell_{2}^{2}+\ell_{3}^{2}+\ell_{4}^{2}\right)=k \sum_{j=1}^{4} \ell_{j}^{2} \tag{6}
\end{equation*}
$$

so that

$$
\begin{equation*}
k=\frac{P L}{\sum_{j=1}^{4} \ell_{j}^{2}} \tag{7}
\end{equation*}
$$

Thus, F_{j} in (4) can be obtained by use of k of (7). From Fig. 8-9a,

$$
\begin{equation*}
k=P L / 4 \ell^{2} \tag{8}
\end{equation*}
$$

which can be substituted into (4) to give

$$
\begin{equation*}
F_{1}=F_{2}=F_{3}=F_{4}=F=P L / 4 \ell \tag{9}
\end{equation*}
$$

This is, of course, the same as (2).

In more general terms Eq. (7) of Example 8.1 would be written

$$
\begin{equation*}
k=\frac{P L}{\sum_{j=1}^{n} \ell_{j}^{2}} \tag{8.14}
\end{equation*}
$$

where L is the eccentric distance of load P, n is the number of fasteners in a connection, and k is the proportional constant of the fastener group under load P. It is often convenient to use the components F_{x} and F_{z} of force F in vectorial summation with the direct force P / n. The formulas are

$$
\begin{equation*}
k=\frac{M}{\sum_{j=1}^{n}\left(\ell_{x j}^{2}+\ell_{z j}^{2}\right)} \tag{8.15}
\end{equation*}
$$

where $M=P L, L=\sqrt{L_{x}^{2}+L_{z}^{2}}$, and $\ell_{j}=\sqrt{\ell_{x j}^{2}+\ell_{z j}^{2}}$ and for coordinate system $x z$, as shown in Fig. 8-9c,

$$
\begin{align*}
F_{x j} & =\frac{-M \ell_{z j}}{\sum_{j=1}^{n}\left(\ell_{x j}^{2}+\ell_{z j}^{2}\right)} \tag{8.16a}\\
F_{z j} & =\frac{M \ell_{x j}}{\sum_{j=1}^{n}\left(\ell_{x j}^{2}+\ell_{z j}^{2}\right)} \tag{8.16b}
\end{align*}
$$

Therefore, the components $F_{R x j}$ and $F_{R z j}$ of the resultant force $F_{R j}$ on the fastener j are

$$
\begin{align*}
& F_{R x j}=\frac{P_{x}}{n}+\frac{-M \ell_{z j}}{\sum_{j=1}^{n} \ell_{x j}^{2}+\sum_{j=1}^{n} \ell_{z j}^{2}} \tag{8.17a}\\
& F_{R z j}=\frac{P_{z}}{n}+\frac{M \ell_{x j}}{\sum_{j=1}^{n} \ell_{x j}^{2}+\sum_{j=1}^{n} \ell_{z j}^{2}} \tag{8.17b}
\end{align*}
$$

and

$$
\begin{equation*}
F_{R j}=\sqrt{F_{R x j}^{2}+F_{R z j}^{2}} \tag{8.17c}
\end{equation*}
$$

8.4 DESIGN OF RIVETED AND BOLTED CONNECTIONS

Based on the considerations and analysis described above, design of a riveted or bolted joint under a given load involves

1. Determining the type of the joint and number of fasteners
2. Using predetermined allowable stresses in order to find the required area in shear, bearing, and tension for the fasteners and plates (connected parts) to be used

Example 8.2 Load Capacity for a Member in Tension A bolted connection consists of a $4 \times 4 \times \frac{1}{2}$ angle with three bolts of diameter $\frac{3}{4}$ in. and a strong plate B, as shown in Fig. 8-10. Determine the tension resistance capacity of the angle. Assume that the angle is made of American Iron and Steel Institute (AISI) 1015 steel.

Figure 8-10: Example 8.2.

The gross area of the $4 \times 4 \times \frac{1}{2}$ angle is

$$
\begin{equation*}
A_{g}=3.75 \mathrm{in}^{2} \tag{1}
\end{equation*}
$$

From failure mode 3 of Table 8-4,

$$
\begin{equation*}
A_{n}=t\left[b-\left(d+\frac{1}{8}\right)\right]=A_{g}-\left(d+\frac{1}{8}\right) t=3.75-\left(\frac{3}{4}+\frac{1}{8}\right)\left(\frac{1}{2}\right)=3.31 \mathrm{in}^{2} \tag{2}
\end{equation*}
$$

For 1015 steel, from Table 4-9,

$$
\begin{equation*}
\sigma_{y s}=45.5 \mathrm{ksi}, \quad \sigma_{u}=61.0 \mathrm{ksi} \tag{3}
\end{equation*}
$$

and $A_{e}=U A_{n}=0.85 \cdot 3.31=2.81 \mathrm{in}^{2}(U=0.85$ from Table 8-2 $)$.
As mentioned in Section 8.2, to prevent failure of the angle, the tensile stress should be less than $0.6 \sigma_{y s}$ on the gross area A_{g} and less than $0.5 \sigma_{u}$ on the effective net area A_{e}, that is,

$$
\begin{equation*}
P / A_{g} \leq 0.6 \sigma_{y s} \quad \text { and } \quad P / A_{e} \leq 0.5 \sigma_{u} \tag{4}
\end{equation*}
$$

From (4)

$$
\begin{equation*}
P \leq 0.6 \sigma_{y s} A_{g}=(0.6)(45.5)(3.75)=102.38 \mathrm{kips} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
P \leq 0.5 \sigma_{u} A_{e}=(0.5)(61.0)(2.81)=85.71 \mathrm{kips} \tag{6}
\end{equation*}
$$

The tension resistance capacity P is the smaller value of these two: $P=85.71 \mathrm{kips}$.

Example 8.3 Load Capacity of a Riveted Connection A riveted lap connection consists of two $\frac{3}{4} \times 12$ in. plates of A36 steel and $\frac{7}{8}$-in.-diameter A502 grade 1 rivets, as shown in Fig. 8-11. Determine the maximum tensile load P that can be resisted by the connection.

The rivets may fail in shear or bearing or the plate may fail in tension or bearing. Any failure will mean the failure of the connection. Thus, each condition must be considered to determine the critical condition and the load capacity of the connection.
(a) Shear failure of the rivet: The corresponding total force P_{T} is calculated as

$$
\begin{equation*}
P_{T}=\tau_{w} A N \tag{1}
\end{equation*}
$$

where τ_{w} is the allowable shear stress of the rivet, A the cross-sectional area of each rivet, and N the number of the rivets in the connection.

Figure 8-11: Example 8.3.

For A502 grade 1 rivets, Table 8 - 1 provides $\tau_{w}=17.5 \mathrm{ksi}$. Since

$$
A=\frac{1}{4} \pi d^{2}=\frac{1}{4}(3.14)\left(\frac{7}{8} \mathrm{in} .\right)^{2}=0.601 \mathrm{in}^{2} \quad \text { and } \quad N=9
$$

it follows from (1) that

$$
\begin{equation*}
P_{T}=(17.5)(0.601)(9)=94.66 \mathrm{kips} \tag{2}
\end{equation*}
$$

(b) Bearing and end failure:

$$
\begin{equation*}
P_{T}=\sigma_{p} A_{b} N \tag{3}
\end{equation*}
$$

where σ_{p} is the allowable bearing stress of the plate and A_{b} is the bearing area of each rivet: $A_{b}=d t$ (d is rivet diameter and t is thickness of the plate).

From Eq. (8.3) the allowable bearing stress σ_{p} is calculated as

$$
\begin{equation*}
\sigma_{p}=\frac{1}{2} \sigma_{u}(s / d-0.5) \leq 1.5 \sigma_{u} \quad \text { between two fasteners } \tag{4}
\end{equation*}
$$

For A36 steel, $\sigma_{u}=58.0 \mathrm{ksi}$,

$$
\sigma_{p}=\left(\frac{58}{2}\right)\left(\frac{3}{7 / 8}-0.5\right)=84.9 \mathrm{ksi} \leq(1.5)(58)=87.0 \mathrm{ksi}
$$

From (3)

$$
\begin{equation*}
P_{T}=84.9\left(\frac{7}{8}\right)\left(\frac{3}{4}\right) 9=501.44 \mathrm{kips} \tag{5}
\end{equation*}
$$

For the fasteners near the end, from Eq. (8.8),

$$
P=\frac{1}{2} \sigma_{u} t e=\left(\frac{58}{2}\right)\left(\frac{3}{4}\right) 2=43.5 \mathrm{kips}
$$

If it is assumed that all of the fasteners can cause tearing,

$$
\begin{equation*}
P_{T}=P N=391.5 \mathrm{kips} \tag{6}
\end{equation*}
$$

Select the smaller value from (5) and (6), $P_{T}=391.5 \mathrm{kips}$.
(c) Tensile capacity: On the gross cross-sectional area, the allowable tensile stress $\sigma_{t w}$ is [from failure mode (c) in Section 8.2 with $\sigma_{y s}=36.0 \mathrm{ksi}$ for A36 steel]

$$
\sigma_{t w}=0.6 \sigma_{y s}=(0.6)(36.0)=21.6 \mathrm{ksi}
$$

Since $A_{g}=\left(\frac{3}{4} \mathrm{in}.\right)(12 \mathrm{in})=.9 \mathrm{in}^{2}$, the tensile capacity of the gross area is

$$
\begin{equation*}
P_{T}=\sigma_{t w} A_{g}=(21.6)(9)=194.4 \mathrm{kips} \tag{7}
\end{equation*}
$$

On the effective net area

$$
\begin{aligned}
U & =1.0 \\
\sigma_{t w} & =0.5 \sigma_{u}=(0.5)(58)=29.0 \mathrm{ksi} \quad \text { [failure mode (c) in Section 8.2] } \\
A_{n} & =\left[12-3\left(\frac{7}{8}+\frac{1}{8}\right)\right]\left(\frac{3}{4}\right)=6.75 \mathrm{in}^{2} \\
A_{e} & =A_{n} U=(6.75)(1.0)=6.75 \mathrm{in}^{2} \quad[\text { Eq. (8.5)] }
\end{aligned}
$$

Therefore, the tensile capacity of the plate for the effective net area is

$$
\begin{equation*}
P_{T}=\sigma_{t w} A_{e}=(29.0)(6.75)=195.75 \mathrm{kips} \tag{8}
\end{equation*}
$$

Maximum load capacity of the connection in Fig. 8-11 is the least value of P_{T} given in (2) and (5)-(8), that is,

$$
\begin{equation*}
P_{\max }=\left(P_{T}\right)_{\text {shear }}=94.66 \mathrm{kips} \tag{9}
\end{equation*}
$$

Example 8.4 Bolted Connection with Bolts in Double Shear and in Zigzag Patterns Determine the maximum value of P that the bolted connection in Fig. 8-12 can carry using 1-in.-diameter A307 bolts. Use (Table 8-1) $\tau_{w}=10.0$ ksi for bolts and $\sigma_{u}=58.0 \mathrm{ksi}$ and $\sigma_{y s}=36.67 \mathrm{ksi}$ for plates. Use a procedure similar to those in Example 8.3 to investigate the critical condition in each failure mode.
(a) P_{T} by shear resistance of the bolts: Since the bolts are in double shear (two cross sections are subjected to shear), the total load by shear is

$$
\begin{equation*}
P_{T}=2 \tau_{w} A N=(2)(10.0)\left[\left(\frac{1}{4} \pi\right)\left(1^{2}\right)\right](6)=94.2 \mathrm{kips} \tag{1}
\end{equation*}
$$

(b) P_{T} by bearing resistance of the plate: It can be seen that bearing on the $\frac{3}{4}$-in. plate is more critical than on two $\frac{1}{2}$-in. plates:

$$
P_{T}=\sigma_{p} d t N
$$

Figure 8-12: Example 8.4.
where σ_{p} is the allowable bearing stress, d the diameter of the bolt, and $t=\frac{3}{4}$ in. the thickness of the plate. For the bolts inside the plates, from Eq. (8.3),

$$
\sigma_{p}=\frac{1}{2} \sigma_{u}\left(s / d_{b}-0.5\right)=\frac{1}{2} \sigma_{u}(4 / 1.0-0.5)=1.75 \sigma_{u}
$$

However, the condition $\sigma_{p} \leq 1.5 \sigma_{u}$ should be met, so $\sigma_{p}=1.5 \sigma_{u}=1.5(58)=$ 87.0 ksi:

$$
\begin{equation*}
P_{T}=\sigma_{p} d t N=(87.0)(1.0)\left(\frac{3}{4}\right)(6)=391.5 \mathrm{kips} \tag{2}
\end{equation*}
$$

For the bolts near the end, from Eq. (8.8),

$$
\begin{align*}
P & =\frac{1}{2} \sigma_{u} t e=\left(\frac{58}{2}\right)\left(\frac{3}{4}\right) 2=43.5 \mathrm{kips} \tag{3}\\
P_{T} & =43.5(6)=261.0 \mathrm{kips}
\end{align*}
$$

(c) P_{T} by tension of the plate:

Cross section $A B C D: \quad W_{n}=11-2\left(1.0+\frac{1}{8}\right)=8.75$ in.
Cross section EFGHI: $\quad W_{n}=11-3\left(1.0+\frac{1}{8}\right)+2\left(\frac{2^{2}}{4 \times 3.5}\right)=8.20 \mathrm{in}$.
It is seen that all other section lengths are between the values of W_{n} of (4) and (5). The least value is $W_{n}=8.20 \mathrm{in}$. The maximum tensile load on the gross area is

$$
\begin{equation*}
P_{T}=0.6 \sigma_{y s} A_{g}=(22.0)\left(\frac{3}{4}\right)(11)=181.5 \mathrm{kips} \tag{6}
\end{equation*}
$$

and on the effective net area

$$
\begin{equation*}
P_{T}=0.5 \sigma_{u} A_{e}=(29.0)\left[(1.0)\left(\frac{3}{4}\right)(8.20)\right]=178.35 \mathrm{kips} \tag{7}
\end{equation*}
$$

Comparison of the values of P_{T} in the cases above indicates that (1) governs the connection, that is,

$$
P_{\max }=94.2 \mathrm{kips}
$$

Example 8.5 Analysis of Eccentrically Loaded Riveted Joints The riveted joint shown in Fig. 8-13a is loaded with 10 kips at a distance of 8 in. from a vertical axis passing through the centroid c of the rivet group that fastens the plate to a column flange. Find the required rivet diameter for an allowable shear stress of $11,000 \mathrm{psi}$. Assume that shear failure is the critical condition and all rivets have the same diameter.

Figure 8-13: Eccentrically loaded riveted joint: (a) riveted joint; (b) free-body diagram of a plate; (c) rivet forces.

Because of the symmetrical arrangement of the rivets, the centroid c of the rivet group can be located by observation. The load P generates a moment of $P L=$ 80 kip-in. about the centroid (Fig. 8-13b), so that force $P=10 \mathrm{kips}$ ($P_{x}=0$, $\left.P_{z}=10 \mathrm{kips}\right)$ at the centroid is being resisted equally by all six rivets, and a twisting moment is resisted by the twisting forces of the rivets.

From the dimensions given,

$$
\begin{equation*}
\sum_{j=1}^{6}\left(\ell_{x j}^{2}+\ell_{z j}^{2}\right)=4\left(4^{2}+5^{2}\right)+2\left(5^{2}+0^{2}\right)=214 \mathrm{in}^{2} \tag{1}
\end{equation*}
$$

where $\ell_{x j}$ and $\ell_{z j}$ are the coordinates of rivet j. Therefore, from Eqs. (8.16), the components of the twisting forces on rivet 1 are

$$
\begin{align*}
& F_{x 1}=\frac{-M \ell_{z 1}}{\sum_{j=1}^{6}\left(\ell_{x j}^{2}+\ell_{z j}^{2}\right)}=\frac{-80(-4)}{214}=+1.495 \mathrm{kips} \tag{2}\\
& F_{z 1}=\frac{M \ell_{x 1}}{\sum_{j=1}^{6}\left(\ell_{x j}^{2}+\ell_{z j}^{2}\right)}=\frac{80(-5)}{214}=-1.869 \mathrm{kips} \tag{3}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& F_{x 3}=-F_{x 4}=F_{x 6}=-F_{x 1}=-1.495 \mathrm{kips} \tag{4}\\
& F_{z 3}=-F_{z 4}=-F_{z 6}=F_{z 1}=-1.869 \mathrm{kips} \tag{5}\\
& F_{x 2}=F_{x 5}=0 \quad \text { and } \quad F_{z 2}=-F_{z 5}=1.869 \mathrm{kips} \tag{6}
\end{align*}
$$

From Eqs. (8.17), the resultant force on rivet 1 is

$$
\begin{align*}
F_{R 1} & =\left[\left(P_{x} / n+F_{x 1}\right)^{2}+\left(P_{z} / n+F_{z 1}\right)^{2}\right]^{1 / 2} \\
& =\left[\left(\frac{0}{6}+1.495\right)^{2}+\left(\frac{10}{6}-1.869\right)^{2}\right]^{1 / 2}=1.51 \mathrm{kips} \tag{7}
\end{align*}
$$

In a similar fashion, for rivets, 4,5 , and 2 ,

$$
\begin{equation*}
F_{R 4}=3.84 \mathrm{kips}, \quad F_{R 5}=3.54 \mathrm{kips}, \quad F_{R 2}=0.2 \mathrm{kips} \tag{8}
\end{equation*}
$$

Also from Fig. 8-13c, it can be seen that

$$
\begin{equation*}
F_{R 3}=F_{R 1}, \quad F_{R 6}=F_{R 4} \tag{9}
\end{equation*}
$$

Thus, the maximum value of the shear force F_{R} on the rivet is $F_{R 4}$ or $F_{R 6}$. The size of the rivets has to be determined for a shear force of 3.84 kips.

Assume that the rivet is in single shear with the given allowable shear stress of $\tau_{w}=11 \mathrm{ksi}$, and the shear failure is the critical condition. Since $\left(\frac{1}{4} \pi d^{2}\right) \tau_{w}=3.84$,
the rivet diameter d is calculated as

$$
\begin{equation*}
d=\sqrt{(3.84)(4) /\left(\pi \tau_{w}\right)}=0.67 \mathrm{in} . \quad \text { or } \quad d=17 \mathrm{~mm} \tag{10}
\end{equation*}
$$

Example 8.6 Torque Necessary to Draw Up a Nut in Machine Design A set of two bolts is to be used to provide a clamping force of 6000 lb between two bolted parts (Fig. 8-14). The joint is also subjected to an additional external load of 5000 lb . Assume that (1) the forces are shared equally between the two bolts, (2) the stiffness of the bolted parts is three times that of the bolt [i.e., $k_{c}=3 k_{b}$ in Eqs. (8.10) and (8.11)], and (3) each bolt is stressed to 75% of its proof strength. Find the tensile force in the bolts and the necessary tightening torque for the nuts.

For the given conditions, the initial clamping load F_{i} on each bolt is $6000 / 2=$ 3000 lb , and the external load on each is $5000 / 2=2500 \mathrm{lb}$. Then from Eq. (8.10), the final tensile force in one of the bolts is

$$
\begin{equation*}
F_{b}=F_{i}+\frac{k_{b}}{k_{b}+k_{c}} P_{e}=3000+\frac{k_{b}}{k_{b}+3 k_{b}}(2500)=3625 \mathrm{lb} \tag{1}
\end{equation*}
$$

while, from Eq. (8.11), the compressive force is

$$
\begin{equation*}
F_{c}=F_{i}-\frac{k_{c}}{k_{b}+k_{c}} P_{e}=3000-\frac{3 k_{b}}{k_{b}+3 k_{b}}(2500)=1125 \mathrm{lb} \tag{2}
\end{equation*}
$$

Thus, the compressive force in the bolted parts F_{c} is greater than zero, which indicates that the joint is still tight.

If a bolt made from Society of Automotive Engineers (SAE) grade 4 steel (Table 8-5) is chosen, it will have a proof strength of 65,000 psi. Then the allowable tensile stress of the bolt is $\sigma_{w}=(0.75)(65,000)=48,750 \mathrm{psi}$ and the required tensile stress area for the bolt is

$$
\begin{equation*}
A_{t}=\frac{F_{b}}{\sigma_{t w}}=\frac{3625 \mathrm{lb}}{48,750 \mathrm{lb} / \mathrm{in}^{2}}=0.0744 \mathrm{in}^{2} \tag{3}
\end{equation*}
$$

Figure 8-14: Bolt connection for Example 8.6.

From Table $8-6$ it can be seen that the $\frac{3}{8}, 16$ UNC thread has the required tensile stress area, since $A_{t}=0.785(0.3750-0.9743 / n)^{2}=0.07745 \mathrm{in}^{2}$ is larger than A_{t} of (3). Thus, the necessary torque required would be, from Eq. (8.9),

$$
\begin{equation*}
T=0.2 d F_{i}=(0.20)(0.3750)(3000)=225 \mathrm{lb} / \mathrm{in} \tag{4}
\end{equation*}
$$

References such as [8.6] can be consulted for more detailed discussions of the design of connections.

8.5 WELDED JOINTS AND CONNECTIONS

In contrast to bolted and riveted joints, welded joints do not necessarily require an overlap in plates, thus affording more flexibility in design. Also, welded joints are usually lighter and are particularly advantageous in that they provide continuity between connected parts.

Types of Welded Joints and Typical Drawing Symbols

There are various types of welded joints, but the two main types are fillet and butt welds, shown in Fig. 8-15. The butt weld is usually loaded in tension, the strength of which is based on the net cross-sectional area of the thinner of the two plates being joined. If the joint is properly made with the appropriate welding metal, the joint will be stronger than the parent metal. A fillet weld subjected to shear stress would tend to fail along the shortest dimension of the weld, which is referred to as the throat of the weld, shown in Figs. 8-16 and 8-17. In most cases the legs are of equal length, since welds with legs of different lengths are less efficient than those with equal legs.

Other types of welded joints are plug welds, slot welds, and spot welds, as shown in Fig. 8-15. Plug welds are made by punching holes into one of the two plates to be welded and then filling the holes with weld metal, which fuses into both plates. Slot welds can be used when other types of welded joints are not suitable and to provide additional strength to a fillet joint. Spot welds, which are used extensively in the fabrication of sheet metal parts, are a quick and simple way to fasten light pieces together at intervals along a seam.

Welded joints are often used with various edge preparations, some of which have been qualified by the American Welding Society (AWS) [8.7]. The choice of joint type often directly affects the cost of welding. Thus, the choice is not always dominated by the design function.

The symbols representing the type of weld to be applied to a particular joint are shown in Table 8-7. These symbols, which have been standardized and adopted by the AWS, quickly indicate the exact welding details established for each joint to satisfy all necessary conditions of material strength and service. The symbols may be broken down into basic elements and combinations can be formed if desired.

(a) Fillet

(b) Fillet

(c) Butt

(d) Fillet

(e) Butt

(b) Spot

Figure 8-15: Types of welds.

Figure 8-16: Notation for fillet welds.

Figure 8-17: Stress distribution in side fillet welds. (c) Damage usually occurs along the throat of a weld.

Analysis of Welded Joints

For butt welds, as mentioned previously, the weld is stronger than the base metals and no further analysis is required. However, the fillet welded joint needs to be analyzed to guarantee it is strong enough to sustain the applied loading. Four basic types of loading are considered here: direct tension or compression, direct vertical shear, bending, and twisting. The area of the fillet weld is calculated using leg size w, throat width t (Fig. 8-16b), and welded seam length L_{w}. Usually, leg size w and throat width t are related, depending on the form of the welded joint. Table 8-8 gives the relationship between w and the plate thickness. Table 8-9 gives the allowable shear stresses and forces on welds.

The cross section along the welded seam, the width of which equals the throat width t, is called the effective cross section. The stress in the effective cross section should be less than the allowable stress.

The analysis of welded joints involves the following steps:

1. Draw the effective cross section of the welded connection. It is a narrow area along the weld seam width t. In the case of Fig. $8-16 b, t=0.707 w$. For example, in Fig. 8-18 the area enclosed by dashed lines represents the effective cross section of a [-shaped weld.
2. Let the centroid of the effective section be the origin and set up an orthogonal reference system x, y, z. If the normal stress is to be considered, select z, y axes as principal axes. The area and moments of inertia of the effective cross section of weld can be obtained by using Eqs. (2.1), (2.4), and (2.11); that is,

Figure 8-18: Stress components on a weld area.

$$
A_{w}=\int d A, \quad I_{y}=\int z^{2} d A, \quad I_{z}=\int y^{2} d A, \quad J_{x}=\int\left(z^{2}+y^{2}\right) d A
$$

Some geometric properties of the welded connections are provided in Table 8-10.
3. Find the forces and moments that act on the welded connection. The positive directions of forces P_{x}, P_{y}, P_{z} and moments M_{x}, M_{y}, M_{z} are indicated in Fig. 8-18.
4. At any point of the connection, the stress on the weld due to a single component of load can be obtained from Eqs. (3.41), (3.46), (3.47), and (3.55). These stresses are summarized in Table 8-11.
5. Determine the resultant nominal stress and the load force per unit length of weld. The nominal resultant stress f_{r} is the vector sum of stress components (Fig. 8-18):

$$
\begin{equation*}
f_{r}=\sqrt{f_{x}^{2}+f_{y}^{2}+f_{z}^{2}}=\sqrt{\left(f_{x}^{\prime}+f_{x}^{\prime \prime}\right)^{2}+\left(f_{y}^{\prime}+f_{y}^{\prime \prime}\right)^{2}+\left(f_{z}^{\prime}+f_{z}^{\prime \prime}\right)^{2}} \tag{8.18}
\end{equation*}
$$

The resultant force per unit length is $q_{r}=t f_{r}$.
It is assumed that all loads acting on a fillet weld are shear forces independent of their actual direction and the critical section is always the throat of the weld. The nominal stress f_{r} should be less than the allowable shear stress of the welding material (Table 8-9) to avoid failure.

The stress distribution within a fillet weld is complex, due to such factors as eccentricity of the applied load, shape of the fillet, and notch effect of the root. However, the same conditions exist in the actual fillet welds tested and have been recorded as a unit force per unit length of weld as in Table 8-9.

An alternative solution to this problem is to calculate the principal stresses and the maximum shear stresses using the formulas of Chapter 3 instead of determining f_{r} and q_{r} and to check if the weld is strong enough by applying a failure theory discussed in Chapter 3. However, this method is more time consuming.

Example 8.7 Weld Joint Determine the size of the required fillet weld for the bracket shown in Fig. 8-19, which carries a vertical load of 6000 lb .

Choose a [-shaped weld pattern. The weld will be subjected to direct vertical shear and twisting caused by the eccentric load P. Using case 5 of Table $8-10$ gives the geometric properties of the weld treated as a line:

$$
\begin{aligned}
A_{w} & =(2 b+d) t=[(2)(5)+8] t=18 t \mathrm{in}^{2} \\
J_{x} & =\frac{(2 b+d)^{3} t}{12}-\frac{b^{2}(b+d)^{2} t}{2 b+d} \\
& =\frac{(18)^{3} t}{12}-\frac{(25)(13)^{2} t}{18}=251.3 t \mathrm{in}^{4} \\
\bar{y} & =\frac{b^{2}}{2 b+d}=\frac{5^{2}}{18}=1.39 \mathrm{in} .
\end{aligned}
$$

Substitute these geometric properties into the proper formulas from Table 8-11 according to the types of loading to find the various forces on the weld.

The stress due to vertical shear is

$$
\begin{equation*}
f_{z}^{\prime}=\frac{P_{z}}{A_{w}}=\frac{P}{A_{w}}=\frac{6000}{18 t}=\frac{333.3}{t} \quad \mathrm{lb} / \mathrm{in}^{2} \tag{1}
\end{equation*}
$$

The twisting moment is

$$
\begin{align*}
T & =M_{x}=-P L=-P[6+(5-\bar{y})]=-(6000)(6+5-1.39) \\
& =-57,660 \mathrm{lb} / \mathrm{in} \tag{2}
\end{align*}
$$

Figure 8-19: Weld joint for Example 8.7. Point c is the centroid of the weld pattern.

The moment M_{x} causes a force to be exerted on the weld that is perpendicular to a radial line from the centroid of the weld pattern to the point of interest. The maximum combined stresses occur at point G (Fig. 8-19):

$$
\begin{align*}
& f_{y}^{\prime \prime}=-\frac{M_{x}}{J_{x}} z_{G}=-\frac{(-57,660)(-4)}{251.3 t}=-\frac{918}{t} \quad \mathrm{lb} / \mathrm{in}^{2} \\
& f_{z}^{\prime \prime}=\frac{M_{x}}{J_{x}} y_{G}=\frac{(-57,660)(-5+1.39)}{251.3 t}=\frac{828}{t} \quad \mathrm{lb} / \mathrm{in}^{2} \tag{3}
\end{align*}
$$

Superimpose the stress components,

$$
\begin{align*}
& f_{x}=0 \tag{4}\\
& f_{y}=0+f_{y}^{\prime \prime}=-\frac{918}{t} \quad \mathrm{lb} / \mathrm{in}^{2} \tag{5}\\
& f_{z}=f_{z}^{\prime}+f_{z}^{\prime \prime}=\frac{333.3+828}{t}=\frac{1161.3}{t} \quad \mathrm{lb} / \mathrm{in}^{2} \tag{6}
\end{align*}
$$

so that the nominal resultant stress becomes

$$
\begin{align*}
& f_{r}=\frac{\sqrt{(-918)^{2}+1161.3^{2}}}{t}=\frac{1480}{t} \quad \mathrm{lb} / \mathrm{in}^{2} \tag{7}\\
& q_{r}=f_{r} t=1480 \mathrm{lb} / \mathrm{in} . \tag{8}
\end{align*}
$$

From (7) and (8) it is clear that for welded connections with uniform size, q_{r} can be computed by considering $t=1$.

Suppose that the base metals of the welded joints are ASTM A36 steel. From Table 8-9, if an E60 electrode is chosen for the welding, the allowable shear stress is $13,600 \mathrm{psi}$ so that $f_{r}=1480 / t \leq 13,600 \mathrm{psi}$. Then the throat width is $t \geq$ $1480 / 13,600 \mathrm{in}$. Finally, the required leg size of the fillet weld connecting the bracket is

$$
w=\frac{t}{0.707}=\frac{1480}{13,600 \times 0.707}=0.154 \mathrm{in} .
$$

Note that if the base-metal parts are thick plates, the leg size obtained above should be specified according to Table 8-8.

REFERENCES

8.1. Manual of Steel Construction, Allowable Stress Design, 9th ed., American Institute of Steel Construction, Chicago, 1989.
8.2. Manual of Steel Construction, Load and Resistance Factor Design,, 3rd ed., American Institute of Steel Construction, Chicago, 2001.
8.3. Annual Book of ASTM Standards, Vol. 15.08, American Society for Testing and Materials, Philadelphia, 1986.
8.4. Amon, R., Knoblock, B., and Mazumder, A., Steel Design for Engineers and Architects, Van Nostrand Reinhold, New York, 1982.
8.5. Mott, R. L., Machine Elements in Mechanical Design, Charles E. Merrill, Columbus, OH, 1985.
8.6. Gaylord, E. H., Gaylord, C. N., and Stallmeyer, J. E., Steel Structures, 3rd ed., McGraw-Hill, New York, 1992.
8.7. Blodgett, O. W., Design of Welded Structures, James F. Lincoln Arc Welding Foundation, Cleveland, OH, 1966.

Tables

8-1 Allowable Stresses (Shearing and Bearing Capacities) in Rivets and Bolts (ksi)398
8-2 Reduction Coefficient U 400
8-3 Minimum Distance from Center of Standard Hole to Edge of Connected Part 400
8-4 Modes of Failure of Riveted and Bolted Joints 401
8-5 SAE Grades of Steels for Bolts 403
8-6 American Standard Thread Dimensions 404
8-7 Typical AWS Drafting Symbols for Welded Joints 405
8-8 Minimum Weld Sizes for Thick Plates 408
8-9 Allowable Shear Stresses and Forces on Welds 408
8-10 Geometric Properties of Weld Seams 409
8-11 Formulas for Determining Stresses in Welded Joints 412

TABLE 8-1 ALLOWABLE STRESSES (SHEARING AND BEARING CAPACITIES) IN RIVETS AND BOLTS (ksi) ${ }^{a}$

Description of Fasteners	Allowable Tension, ${ }^{b} \sigma_{\text {tw }}$	Allowable Shear, ${ }^{b} \tau_{w}$				
		Slip-Critical Connections ${ }^{c, d}$				Bearing Connections ${ }^{d}$
			Oversized and Short-Slotted Holes	Long-Slotted Holes		
		Standard-Size Holes		Transverse ${ }^{e}$ Load	Parallel ${ }^{e}$ Load	
A502, grade 1, hot-driven rivets	$23.0{ }^{\text {f }}$	-	-	-	-	$17.5{ }^{\text {g }}$
A502, grades 2 and 3, hot-driven rivets	$29.0{ }^{f}$	-	-	-	-	$22.0{ }^{\text {g }}$
A307 bolts	$20.0{ }^{\text {f }}$	-	-	-	-	$10.0^{8, h}$
Threaded parts meeting the requirements of Secs. A3.1 and A3.4 and A449 bolts meeting the requirements of Sec. A3.4, when threads are not excluded from shear planes	$0.33 \sigma_{u}^{f, i, j}$	-	-	-	-	$0.17 \sigma_{u}{ }^{j}$
Threaded parts meeting the	$0.33 \sigma_{u}^{f, j}$	-	-	-	-	$0.22 \sigma_{u}{ }^{j}$

A325 bolts, when threads are not						
excluded from shear planes A325 bolts, when threads are excluded from shear planes	44.0^{k}	17.0	15.0	12.0	10.0	21.0^{g}
A490 bolts, when threads are not excluded from shear planes	44.0^{k}	54.0^{k}	17.0	15.0	12.0	10.0

${ }^{a}$ From Ref. [8.1] with permission. Citations in this table (e.g., Sec. A3.4) are from this reference.
${ }^{b}$ See Sec. A5.2.
${ }^{c}$ Class A (slip coefficient 0.33). Clean mill scale and blast-cleaned surfaces with class A coatings. When specified by the designer, the allowable shear stress, τ_{w}, for slip-critical connections having special faying surface conditions may be increased to the applicable value given in the RCSC Specification.
${ }^{d}$ For limitations on use of oversized and slotted holes, see Sec. J3.2.
${ }^{e}$ Direction of load application relative to long axis of slot.
${ }^{f}$ Static loading only.
${ }^{g}$ When bearing-type connections used to splice tension members have a fastener pattern whose length, measured parallel to the line of force, exceeds 50 in., tabulated values shall be reduced by 20%.
${ }^{h}$ Threads permitted in shear planes.
${ }^{i}$ The tensile capacity of the threaded portion of an upset rod, based on the cross-sectional area at its major thread diameter, A_{b}, shall be larger than the nominal body area of the rod before upsetting times $0.60 \sigma_{y s}$.
${ }^{j}$ See Table 2, Numerical Values Section, for values for specific ASTM steel specifications.
${ }^{k}$ For A325 and A490 bolts subject to tensile fatigue loading, see Appendix K4.3.

TABLE 8-2 REDUCTION COEFFICIENT Ua

Shape, ${ }^{b}$ Number of Fasteners per
${ }^{a}$ Adapted from AISC [8.1].
${ }^{b} b_{f}$, flange width; h, member depth.

TABLE 8-3 MINIMUM DISTANCE FROM CENTER OF STANDARD HOLE TO EDGE OF CONNECTED PART ${ }^{a}$

Nominal Rivet or Bolt Diameter (in.)	At Sheared Edges (in.)	Shapes, Bars, Gas-Cut or Saw-Cut Edges ${ }^{b}$ (in.)
$\frac{1}{2}$	$\frac{7}{8}$	$\frac{3}{4}$
$\frac{5}{8}$	$1 \frac{1}{8}$	$\frac{7}{8}$
$\frac{3}{4}$	$1 \frac{1}{4}$	1
$\frac{7}{8}$	$1 \frac{1}{2}^{c}$	$1 \frac{1}{8}$
1	$1 \frac{3}{4}^{c}$	$1 \frac{1}{4}$
$1 \frac{1}{8}$	2	$1 \frac{1}{2}$
$1 \frac{1}{4}$	$2 \frac{1}{4}$	$1 \frac{5}{8}$
Over $1 \frac{1}{4}$	$1 \frac{3}{4} \times$ diameter	$1 \frac{1}{4} \times$ diameter

[^15]
TABLE 8-4 MODES OF FAILURE OF RIVETED AND BOLTED JOINTS

Notation

$A=$ cross-sectional area of rivets or bolts
$A_{e}=$ effective area
$A_{n}=$ net sectional area
$A_{g}=$ gross area
$U=$ reduction factor (Table 8-2)
$\sigma_{e}=$ effective stress
$\sigma_{g}=$ stress based on gross area
$P=$ applied force
$d=$ diameter of rivets or bolts
$t=$ thickness of plate
$W_{n}=$ net width
$\sigma_{\mathrm{br}}=$ bearing stress
$\sigma_{u}=$ ultimate tensile strength
$\tau=$ shear stress

Mode of Failure	Connection	Strength Formula
1. Fastener shearing	a. Single shear	$\tau=\frac{P}{A}=\frac{4 P}{\pi d^{2}}$
	b. Double shear	$\tau=\frac{P}{2 A}=\frac{2 P}{\pi d^{2}}$
2. Bearing		$\sigma_{\mathrm{br}}=\frac{P}{t d}$

TABLE 8-4 (continued) MODES OF FAILURE OF RIVETED AND BOLTED JOINTS

3.
Tension
or tearing
End
4. Straight with no stagger

TABLE 8-5 SAE GRADES OF STEELS FOR BOLTS

Grade Number	$\begin{aligned} & \text { Bolt Size } \\ & \text { (in.) } \end{aligned}$	Tensile Strength (ksi)	Yield Strength (ksi)	Proof Strength ${ }^{a}$ (ksi)	Head Marking
1	$\frac{1}{4}-1 \frac{1}{2}$	60	36	33	None
2	$\frac{1}{4}-\frac{3}{4}$	74	57	55	None
	Over $\frac{3}{4}-1 \frac{1}{2}$	60	36	33	-
4	$\frac{1}{4}-1 \frac{1}{2}$	115	100	65	None
5	$\frac{1}{4}-1$	120	92	85	\sum
	Over 1-1 $\frac{1}{2}$	105	81	74	
	Over $\frac{1}{2}-3$	90	58	55	
5.2	$\frac{1}{4}-1$	120	92	85	0
7	$\frac{1}{4}-1 \frac{1}{2}$	133	115	105	θ
8	$\frac{1}{4}-1 \frac{1}{2}$	150	130	120	E

[^16]TABLE 8-6 AMERICAN STANDARD THREAD DIMENSIONS ${ }^{a}$

Size	Basic Major Diameter (in.)	Threads per Inch ${ }^{b}$		
		Coarse Threads UNC	Fine Threads UNF	Extra Fine UNEF
0	0.0600	-	80	
1	0.0730	64	72	
2	0.0860	56	64	
3	0.0990	48	56	
4	0.1120	40	48	
5	0.1250	40	44	
6	0.1380	32	40	
8	0.1640	32	36	
10	0.1900	24	32	
12	0.2160	24	28	32
$\frac{1}{4}$	0.2500	20	28	32
$\frac{5}{16}$	0.3125	18	24	32
$\frac{3}{8}$	0.3750	16	24	32
$\frac{7}{16}$	0.4375	14	20	28
$\frac{1}{2}$	0.5000	13	20	28
$\frac{9}{16}$	0.5625	12	18	24
$\frac{5}{8}$	0.6250	11	18	24
$\frac{3}{4}$	0.7500	10	16	20
$\frac{7}{8}$	0.8750	9	14	20
1	1.000	8	12	20
$1 \frac{1}{8}$	1.125	7	12	18
$1 \frac{1}{4}$	1.250	7	12	18
$1 \frac{3}{8}$	1.375	6	12	18
$1 \frac{1}{2}$	1.500	6	12	18
$1 \frac{3}{4}$	1.750	5	-	18
2	2.000	$4 \frac{1}{2}$	-	-

${ }^{a}$ The tensile stress area A_{t} is given by

$$
A_{t}=0.785\left(d-\frac{0.9743}{n}\right)^{2}
$$

where d is the basic major diameter and n is the number of threads per inch.
${ }^{b}$ UNC, unified coarse; UNF, unified fine; UNEF, unified extrafine. The smaller American Standard threads use a number designation from 0 to 12 . The larger sizes use fractional inch designations.

Single fillet

Closed square butt joint ($\frac{1}{8}$-in. penetration both sides)

Double V-groove

Single V-groove (complete penetration; welded both sides)

Closed square butt joint (complete penetration both sides)

Double U-groove

Outside single bevel corner joint, fillet weld

Open square-grooved corner joint, fillet weld

Double-fillet corner joint

Single-V-corner joint, fillet weld

Single-U corner joint, fillet weld

Double J-groove (full penetration)

Open square butt joint ($\frac{1}{8}$-in. root opening; complete penetration both sides)

Double V-groove (Full penetration)

Double fillet; 2-in. welds on 5 -in. centers opposite increments

${ }^{a}$ Dimensions of figures are given in inches.

TABLE 8-8 MINIMUM WELD SIZES FOR THICK PLATES

	Plate Thickness			Minimum Leg Size (w) for Fillet Weld	
	mm		mm		
in.	≤ 12.7	$\frac{3}{16}$	4.76		
$\leq \frac{1}{2}$	$>12.7-19.1$	$\frac{1}{4}$	6.35		
$>\frac{1}{2}-\frac{3}{4}$	$>19.1-38.1$	$\frac{5}{16}$	7.94		
$>\frac{3}{4}-1 \frac{1}{2}$	$>38.1-57.2$	$\frac{3}{8}$	9.53		
$>1 \frac{1}{2}-2 \frac{1}{4}$	$>57.2-152.4$	$\frac{1}{2}$	12.70		
$>2 \frac{1}{4}-6$	>152.4	$\frac{5}{8}$	15.88		
>6					

TABLE 8-9 ALLOWABLE SHEAR STRESSES AND FORCES ON WELDS

| | | Allowable
 Shear Stress | | |
| :---: | :---: | :---: | :---: | :---: | | Allowable Force |
| :---: |
| per Inch of Leg |
| Base-Metal |

TABLE 8-10 GEOMETRIC PROPERTIES OF WELD SEAMS

Notation

$$
\begin{aligned}
M & =\text { applied bending moment } \\
J_{x} & =\text { polar moment of inertia } \\
T & =\text { twisting moment } \\
Z_{\text {ew }} & =\text { elastic section modulus } \\
& \text { of the weld seam } \\
t & =\text { width }(=1)
\end{aligned}
$$

Dimensions of Weld Bending
2.

$A_{w}=2 d$

$A_{w}=2 b$
b

$Z_{\text {ew }}=\frac{1}{3} d^{2}$

$J_{x}=\frac{\left(3 b^{2}+d^{2}\right) d}{6}$

$Z_{\text {ew }}=b d$

$J_{x}=\frac{1}{6}\left(b^{3}+3 b d^{2}\right)$

TABLE 8-10 (continued) GEOMETRIC PROPERTIES OF WELD SEAMS
4.

5.

$A_{w}=d+2 b$
$y_{c}=\frac{b^{2}}{2 b+d}$

$$
J_{x}=\frac{1}{12}(2 b+d)^{3}-\frac{b^{2}(b+d)^{2}}{(2 b+d)}
$$

$A_{w}=b+2 d$
$z_{c}=\frac{d^{2}}{b+2 d}$

$$
Z_{\mathrm{ew}}=b d+\frac{1}{6} d^{2}
$$

At top: $Z_{\text {ew }}=\frac{1}{3}\left(2 b d+d^{2}\right)$

$\begin{aligned} z_{c} & =\frac{d^{2}}{2(b+d)} \\ A_{w} & =b+d\end{aligned}$
$\begin{aligned} z_{c} & =\frac{d^{2}}{2(b+d)} \\ A_{w} & =b+d\end{aligned}$
At bottom: $Z_{\text {ew }}=\frac{d^{2}(2 b+d)}{3(b+d)}$

$$
\begin{aligned}
J_{x}= & \frac{1}{12}(b+2 d)^{3} \\
& -\frac{d^{2}(b+d)^{2}}{(b+2 d)}
\end{aligned}
$$

At top: $Z_{\text {ew }}=\frac{1}{6}\left(4 b d+d^{2}\right)$
At bottom: $Z_{\text {ew }}=\frac{(4 b+d) d^{2}}{6(2 b+d)}$

$J_{x}=\frac{d^{3}(4 b+d)+b^{3}(b+d)}{12(b+d)}$

TABLE 8-10 (continued) GEOMETRIC PROPERTIES OF WELD SEAMS

9.

$A_{w}=2 d+2 b$
$Z_{\text {ew }}=b d+\frac{1}{3} d^{2}$
$J_{x}=\frac{1}{6}\left(b^{3}+3 b d^{2}+d^{3}\right)$

$A_{w}=\pi d$

$Z_{\text {ew }}=\frac{1}{4} \pi d^{2}$

$J_{x}=\frac{1}{4} \pi d^{3}$

TABLE 8-11 FORMULAS FOR DETERMINING STRESSES IN WELDED JOINTS

Notation

$f_{x}^{\prime}, f_{y}^{\prime}, f_{z}^{\prime}=$ stress components of x, y, z direction due to external forces (Fig. 8-18)
$f_{x}^{\prime \prime}, f_{y}^{\prime \prime}, f_{z}^{\prime \prime}=$ stress components of x, y, z direction due to external moments
$f_{x}, f_{y}, f_{z}=$ algebraic sum of stress components in x, y, z direction
$f_{r}=$ nominal resultant stress
$q_{r}=$ resultant force per unit length
$A_{w}=$ effective welded area
$I_{y}, I_{z}=$ moments of inertia of welded area
$J_{x}=$ polar moment of inertia
$P_{x}, P_{y}, P_{z}=$ applied forces in x, y, z direction
$M_{x}=T, M_{y}, M_{z}=$ applied moments in x, y, z direction
$\tau_{w}=$ allowable shear stress
$t=$ effective throat dimension
Stress due to forces: $f_{x}^{\prime}=P_{x} / A_{w} \quad f_{y}^{\prime}=P_{y} / A_{w} \quad f_{z}^{\prime}=P_{z} / A_{w}$
Stress due to moments: $\quad f_{x}^{\prime \prime}=\frac{M_{y}}{I_{y}} z-\frac{M_{z}}{I_{z}} y \quad f_{y}^{\prime \prime}=-\frac{M_{x}}{J_{x}} z \quad f_{z}^{\prime \prime}=\frac{M_{x}}{J_{x}} y$
Sum of stress components: $\quad f_{x}=f_{x}^{\prime}+f_{x}^{\prime \prime} \quad f_{y}=f_{y}^{\prime}+f_{y}^{\prime \prime} \quad f_{z}=f_{z}^{\prime}+f_{z}^{\prime \prime}$
Nominal resultant stress: $\quad f_{r}=\sqrt{f_{x}^{2}+f_{y}^{2}+f_{z}^{2}}$
Resultant force per unit of length: $\quad q_{r}=t f_{r}$
Design criterion: $\quad f_{r} \leq \tau_{w}$

C H A P T E R

Contact Stresses

9.1 Notation 414
9.2 Hertzian Contact Stresses 415
Two Bodies in Point Contact 415
Two Bodies in Line Contact 429
Contact Stress with Friction 430
9.3 Contact Fatigue 432
9.4 Rolling Contact 432
9.5 Non-Hertzian Contact Stress 432
9.6 Nanotechnology: Scanning Probe Microscopy 433
Hertz Model 433
Sneddon's Model 434
Derjaguin-Muller-Toporov Theory (DMT) 434
Johnson-Kendall-Roberts Theory (JKR) 434
Maugis-Dugdale Model 434
References 434
Tables 437

In most problems of stress analysis, the stress field is found within a solid body without regard for local effects caused by the application of the load; however, when two solid bodies with curved surfaces are forced together, consideration must be given to the special stress field created near the contact area. Gears and rollingelement bearings are two notable examples of machine parts in which contact stresses are of great importance in determining the operating life.

Contact problems are classified as counterformal if the dimensions of the area of contact are small compared to the radii of curvature of the contacting surfaces near the region of contact. If the dimensions of the contact area are not small with respect to the radii of curvature of the contacting surfaces, the problem is classified as conformal. A counterformal problem is called Hertzian if the contacting surfaces can be approximated by quadratic functions in the region of contact. If the quadratic approximation is invalid, the problem is non-Hertzian. All conformal problems are non-Hertzian.

The following discussion presents an outline of the analysis of Hertzian contact stresses when two bodies with arbitrarily curved surfaces are pressed together. Charts
and figures are included for use in solving various Hertzian problems. Rolling contact problems, contact stresses with friction, and the fatigue behavior of bodies subjected to repeated applications of contact loading are briefly described.

9.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and F for force.

```
            a Semimajor axis of contact ellipse (L)
    A,B Coefficients in equation for locus of contacting points initially sepa-
        rated by the same distance ( }\mp@subsup{L}{}{-1}\mathrm{ )
    Ac
    b Semiminor axis of contact ellipse (L)
    d Rigid distance of approach of contacting bodies (L); also total elastic
        deformation at origin
    E Modulus of elasticity (F/L'L)
    f Friction coefficient
    F Force (F)
    k Ratio of major to minor axis of contact ellipse, = b/a
    p Pressure (F/L L
    q Line-distributed load (F/L)
R and R' Minimum and maximum radii of curvature for contacting surfaces (L)
    zs Distance below center of contact ellipse where maximum shear stress
        occurs (L)
    0 Angle between planes containing principal radii of curvature for con-
        tacting bodies
    v Poisson's ratio
    \sigma
    \sigmays}\mathrm{ Yield strength in tension (F/L')
\tau}\mp@subsup{\tau}{\mathrm{ max }}{}\mathrm{ Maximum shear stress (F/L2)
    1,2 Subscripts designating bodies 1 and 2
```

Geometric Characteristics of Surfaces Consider a surface $F(x, y, z)=0$ (Fig. 9-1). At any point on the surface, the normal to the surface is $\operatorname{grad}(F)$. Let a plane pass through the length of the surface normal at point O, creating a normal section. The intersection of this plane with the surface is a curve in the normal section of the surface at point O. An infinite number of normal sections may be taken through any point on the surface. The following theorem holds [9.1]: At any point of a surface, two normal sections exist for which the radii of curvature are a minimum and a maximum; the planes that each contain one of these normal sections are

Figure 9-1: Geometric characteristics of surface.
perpendicular. The following terminology is adopted here: the normal sections that have either a minimum or a maximum radius of curvature are called the principal normal sections of the surface at the point. The minimum and maximum radii of curvature are called the principal radii of curvature of normal sections at the point. The tangents to the curvatures in the principal normal sections at point O are called the principal directions, and the planes that create the principal normal sections are called the principal planes of curvature. Equations for computing the principal radii of curvature and principal directions at a point of a surface are presented in any treatise dealing with differential geometry (e.g., [9.1]).

9.2 HERTZIAN CONTACT STRESSES

The first successful analysis of contact stresses is attributed to Hertz [9.2]. This analysis gave the dimensions of the contact area and the pressure distribution over that area. These quantities permit the computation of the displacements and stresses in the neighborhood of the region of contact. Belajev [9.3] and Thomas and Hoersch [9.4] performed important calculations of the stress fields in contacting solids. Discussions of the analysis of contact stresses can be found in the literature (e.g., [9.5, 9.6]). Tabulations of formulas applicable to special cases of contacting bodies can be found in such references as [9.7] and [9.8].

Two Bodies in Point Contact

Figure 9-2a shows sections of two solid bodies with curved surfaces that are in contact. Before a force is applied to press the bodies together, they touch at one point only. When a force F is applied, elastic compression occurs near the initial point of contact, and a flat area of contact is formed. This area is tangent to the undeformed surfaces of the two solids and is perpendicular to the line of action of the force F. The curvature of a surface is characterized at any point by the maximum and minimum values of the radii of curvature R^{\prime} and R. The two planes are orthogonal and contain R^{\prime} and R and the surface normal. A radius of curvature of the surface of a body is

Figure 9-2: Two elastic solids in contact: (a) contact configuration; (b) before loading; (c) after loading, $x y$ axes coincide with major and minor axes of elliptical contact area (hatched area); (d) displacement of contacting points M_{1} and M_{2} and rigid distance of approach $d=d_{1}+d_{2}$.
taken to be positive at a point if the corresponding center of curvature lies within the solid body; otherwise, the radius is negative. Quantities with the subscript 1 refer to the top body of Fig. 9-2a and those with the subscript 2 refer to the bottom solid. The two solids are assumed to be elastic, isotropic, and homogeneous; also, the contacting surfaces are smooth and free of frictional or adhesive forces. The four principal radii of curvature of the two surfaces at the point of contact are large compared to the dimensions of the contact area, and plastic deformation is ignored.

The coordinate system (x, y, z) is aligned such that the $x y$ plane lies tangent to the undeformed surfaces at the initial point of contact and such that the z axis coincides with the line of action of the force F. Before deformation, suppose that the surfaces of the two bodies are approximately quadratic near the point of contact:

$$
\begin{align*}
& z_{1}=A_{1} x^{2}+B_{1} y^{2}+C_{1} x y \tag{9.1}\\
& z_{2}=A_{2} x^{2}+B_{2} y^{2}+C_{2} x y \tag{9.2}
\end{align*}
$$

where z_{1} and z_{2} are the perpendicular distances from the tangent plane to any point on the surfaces of body 1 and body 2 near the point of contact, respectively, in the z direction (Fig. 9-2b). After deformation, two points that come into contact will have moved a distance

$$
\begin{equation*}
z_{1}+z_{2}=\left(A_{1}+A_{2}\right) x^{2}+\left(B_{1}+B_{2}\right) y^{2}+\left(C_{1}+C_{2}\right) x y \tag{9.3a}
\end{equation*}
$$

Under the assumption that each pair of contacting points was initially on opposite ends of a line parallel to the z axis, all points with the same value of $z_{1}+z_{2}$ lie on an ellipse, and the perimeter of the contact area is elliptical. To eliminate the cross term in Eq. (9.3a), the x, y coordinates may be rotated to coincide with the major and minor axes of the elliptical contact area (Fig. 9-2c). Thus, Eq. (9.3a) can be rewritten as

$$
\begin{equation*}
z_{1}+z_{2}=A x^{2}+B y^{2} \tag{9.3b}
\end{equation*}
$$

where $A=A_{1}+A_{2}$ and $B=B_{1}+B_{2}$.
Far from the contact area, material points of the two bodies are unaffected by elastic compressive deformation. These two regions will approach each other by a constant distance d. This distance is a net rigid-body displacement of the two regions. Let w_{1} and w_{2} denote the local elastic displacements of points on the contacting surfaces. Take w_{1} and w_{2} as positive for compressive displacements (i.e., for displacements into the original configuration of the solid on the surface of which the point lies). The displacement of contacting points is given by

$$
\begin{equation*}
d-\left(w_{1}+w_{2}\right)=z_{1}+z_{2}=A x^{2}+B y^{2} \tag{9.4}
\end{equation*}
$$

where $d=d_{1}+d_{2}$ (Fig. 9-2d). This d is referred to as the rigid approach of two bodies. From geometric considerations [9.9] the constants A and B are functions of the four principal radii of curvature of the two undeformed surfaces and of the orientation of the principal planes of curvature of body 1 with respect to those of body 2 (Fig. 9-2c):

$$
\begin{align*}
A= & \frac{1}{4}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{1}^{\prime}}+\frac{1}{R_{2}^{\prime}}\right)-\frac{1}{4}\left\{\left[\left(\frac{1}{R_{1}}-\frac{1}{R_{1}^{\prime}}\right)+\left(\frac{1}{R_{2}}-\frac{1}{R_{2}^{\prime}}\right)\right]^{2}\right. \\
& \left.-\left[4\left(\frac{1}{R_{1}}-\frac{1}{R_{1}^{\prime}}\right)\left(\frac{1}{R_{2}}-\frac{1}{R_{2}^{\prime}}\right) \sin ^{2} \theta\right]\right\}^{1 / 2} \tag{9.5}
\end{align*}
$$

$$
\begin{align*}
B= & \frac{1}{4}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{1}^{\prime}}+\frac{1}{R_{2}^{\prime}}\right)+\frac{1}{4}\left\{\left[\left(\frac{1}{R_{1}}-\frac{1}{R_{1}^{\prime}}\right)+\left(\frac{1}{R_{2}}-\frac{1}{R_{2}^{\prime}}\right)\right]^{2}\right. \\
& \left.-\left[4\left(\frac{1}{R_{1}}-\frac{1}{R_{1}^{\prime}}\right)\left(\frac{1}{R_{2}}-\frac{1}{R_{2}^{\prime}}\right) \sin ^{2} \theta\right]\right\}^{1 / 2} \tag{9.6}
\end{align*}
$$

where θ is the angle between the planes of maximum (or minimum) curvature of the two contacting bodies (Fig. 9-2c). The displacements w_{1} and w_{2} are found by superposition using Boussinesq's solution [9.8] for a semi-infinite body subjected to a concentrated normal force at the boundary surface (the x, y plane). This approach neglects the curvature of the surfaces outside of the contact area:

$$
\begin{equation*}
w_{1}+w_{2}=\left(\frac{1-v_{1}^{2}}{\pi E_{1}}+\frac{1-v_{2}^{2}}{\pi E_{2}}\right) \iint_{A_{c}} \frac{p d A_{c}}{r}=d-A x^{2}-B y^{2} \tag{9.7}
\end{equation*}
$$

In Eq. (9.7), $p d A_{c}$ is considered to be a point force acting at a point $\left(x^{\prime}, y^{\prime}\right)$ in the contact area. The variables w_{1} and w_{2} are elastic compressive deformations at a point (x, y) in the contact area. The variable r is the distance between $\left(x^{\prime}, y^{\prime}\right)$ and (x, y). Boussinesq's solution for the displacement $d w_{1}$ at (x, y) due to a point force $p d A_{c}$ at $\left(x^{\prime}, y^{\prime}\right)$ is

$$
d w_{1}=\frac{1-v_{1}^{2}}{\pi E_{1}} \frac{p d A_{c}}{r}=\frac{1-v_{1}^{2}}{\pi E_{1}} \frac{p\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}}
$$

Of course, $d w_{2}$ is given by a similar equation.
To find the total displacement caused by the pressure p over the contact area, the elemental displacements are superimposed by integrating over the contact area A_{c} as shown in Eq. (9.7). Hertz found that Eq. (9.7) is satisfied if $p(x, y)$ is given by

$$
\begin{equation*}
p=p_{0} \sqrt{1-\left(x^{2} / a^{2}\right)-\left(y^{2} / b^{2}\right)} \tag{9.8}
\end{equation*}
$$

in which a is the semiminor axis and b the semimajor axis of the contact ellipse (Fig. 9-2c). The distribution of pressure is semiellipsoidal with a maximum pressure p_{0} at the center of the contact area:

$$
\begin{equation*}
p_{0}=3 F / 2 \pi a b \tag{9.9}
\end{equation*}
$$

It is apparent that the maximum pressure is 1.5 times the average pressure $[F /(\pi a b)]$. In general, the determination of the axes of the contact ellipse and of the distance of approach involves the evaluation of elliptic integrals [9.9].

Reference [9.9] contains compiled graphs for computing the quantities of interest in a contact problem. Figures 9-3 and 9-4 plot coefficients used in determining these quantities for values of B / A from 1 to 10,000 . The quantity C_{b} is used to compute b from the equation

Figure 9-3: Coefficients for bodies in contact. From [9.9], with permission.

$$
\begin{equation*}
b=C_{b}(F \Delta)^{1 / 3} \tag{9.10a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\left(\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}}\right) \frac{1}{A+B}=\gamma \frac{1}{A+B} \tag{9.10b}
\end{equation*}
$$

where

$$
\gamma=\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}}
$$

Define the quantity k to be the ratio of the minor to major axes of the contact ellipse

$$
\begin{equation*}
k=b / a \tag{9.10c}
\end{equation*}
$$

Once k and b are known $a=b / k$ can be obtained. The displacement d is found by using the quantity C_{d} :

$$
\begin{equation*}
d=C_{d}(F / \pi)(A+B) /(b / \Delta) \tag{9.11}
\end{equation*}
$$

Figure 9-4: Coefficients for bodies in contact. From [9.9], with permission.

From knowledge of the dimensions of the contact area and the pressure distribution over it, Thomas and Hoersch [9.4] derived expressions for the principal stresses along the z axis within the contacting solids. These formulas involve the evaluation of elliptic integrals. For any value of B / A, Fig. 9-3 or 9-4 can be used to compute the maximum compressive stress $\left(\sigma_{c}\right)_{\text {max }}$ that occurs at the origin, the maximum shear stress $\tau_{\text {max }}$ that occurs within the bodies, the maximum octahedral shear stress $\left(\tau_{\text {oct }}\right)_{\max }$, and the distance Z_{s} from the contact area at which the maximum shear
stresses occur. The curves are strictly accurate when $v=0.25$, but the dependence of these quantities on v is weak:

$$
\begin{align*}
\sigma_{c} & =\left(\sigma_{c}\right)_{\max }=-C_{\sigma}(b / \Delta) \tag{9.12}\\
\tau_{\max } & =C_{\tau}(b / \Delta) \tag{9.13}\\
\tau_{\mathrm{oct}} & =\left(\tau_{\mathrm{oct}}\right)_{\max }=C_{\mathrm{oct}}(b / \Delta) \tag{9.14}\\
Z_{s} & =C_{z} b \tag{9.15}
\end{align*}
$$

The formulas above are summarized in Table 9-1. Sometimes the values of coefficients $C_{\sigma}, C_{\tau}, C_{b}$, and so on. are difficult to read from Figs. 9-3 and 9-4. This problem can be avoided by using Table 9-2 for contact stress analyses. The coefficients $n_{a}, n_{b}, n_{c}, n_{d}$, which appear in Table 9-2, can be taken from Table 9-3. The formulas used to calculate Table 9-3 are given in Table 9-4.

In many cases of practical interest, surface roughness, local yielding, friction, lubrication, thermal effects, and residual stresses will result in conditions that invalidate the Hertzian analysis. Consequently, the stresses computed according to Hertz's analysis must often be regarded as guidelines that are correlated with experimental failure tests to find allowable stress limits.

The following section contains several examples of the computation of Hertzian contact stresses. Formulas pertinent to a number of special cases are listed in Table 9-2. In addition, Table 9-2 also provides some solutions of problems for contact stresses when the surfaces are not curved.

Example 9.1 Wheel on a Rail A steel wheel of radius 45 cm rests on a steel rail that has a radius of curvature of 35 cm (Fig. 9-5). The wheel supports a load of 40000 N . To find the dimensions of the contact area, the maximum stresses in the

Figure 9-5: Wheel on rail for Example 9.1 (crossed cylinders).
contact region, and the distance below the contact surface at which the maximum shear stress and octahedral shear stress occur, the constants A and B must first be evaluated. Denoting the wheel as body 1 and the railhead as body 2 , the principal radii of curvature are $R_{1}=45 \mathrm{~cm}, R_{1}^{\prime}=\infty, R_{2}=35 \mathrm{~cm}$, and $R_{2}^{\prime}=\infty$. The angle between the principal planes of the two bodies is 90°. The physical constants of steel are $E=200 \mathrm{GPa}, \nu=0.29$.

From Eqs. (9.5) and (9.6),

$$
\begin{align*}
A & =\frac{1}{4}\left(\frac{1}{0.45}+\frac{1}{0.35}\right)-\frac{1}{4}\left[\left(\frac{1}{0.45}+\frac{1}{0.35}\right)^{2}-4\left(\frac{1}{0.45}\right)\left(\frac{1}{0.35}\right)\right]^{1 / 2} \\
& =1.2698-0.1587=1.111 \mathrm{~m}^{-1} \tag{1}\\
B & =1.2698+0.1587=1.428 \mathrm{~m}^{-1} \tag{2}\\
B / A & =1.428 / 1.111=1.285 \tag{3}
\end{align*}
$$

When both bodies have the same physical properties, Eq. (9.10b) becomes

$$
\begin{equation*}
\Delta=\frac{2\left(1-v^{2}\right)}{E(A+B)}=\frac{2\left[1-(0.29)^{2}\right]}{\left(2.0 \times 10^{11}\right)(1.111+1.428)}=3.607 \times 10^{-12} \mathrm{~m}^{3} / \mathrm{N} \tag{4}
\end{equation*}
$$

From knowledge of B / A, the constants for use in determining stresses and lengths are read from Fig. 9-3, $C_{b}=0.84, k=0.85, C_{\sigma}=0.69, C_{\tau}=0.22, C_{\text {oct }}=$ $0.21, C_{z}=0.5, C_{d}=2.2$. The semiminor axis of the contact ellipse is given by [Eq. (9.10a)]

$$
\begin{align*}
b & =C_{b}(F \Delta)^{1 / 3}=0.84\left[(40000)\left(3.607 \times 10^{-12}\right)\right]^{1 / 3} \\
& =0.00441 \mathrm{~m}=4.41 \mathrm{~mm} \tag{5}
\end{align*}
$$

The semimajor axis of the contact ellipse is [Eq. (9.10c)]

$$
\begin{equation*}
a=b / k=0.00441 / 0.85=0.00519 \mathrm{~m}=5.19 \mathrm{~mm} \tag{6}
\end{equation*}
$$

The compressive stress at the center of the contact ellipse (i.e., the maximum principal stress) becomes [Eq. (9.12)]

$$
\begin{equation*}
\sigma_{c}=-C_{\sigma}(b / \Delta)=-0.69\left(0.00441 / 3.607 \times 10^{-12}\right)=-843.6 \mathrm{MPa} \tag{7}
\end{equation*}
$$

The maximum shear stress is [Eq. (9.13)]

$$
\begin{equation*}
\tau_{\max }=C_{\tau}(b / \Delta)=269.0 \mathrm{MPa} \tag{8}
\end{equation*}
$$

The maximum octahedral shear stress is given by [Eq. (9.14)]

$$
\begin{equation*}
\tau_{\text {oct }}=C_{\text {oct }}(b / \Delta)=256.8 \mathrm{MPa} \tag{9}
\end{equation*}
$$

The distance below the center of the contact area at which the two maximum shear stresses occur is found to be [Eq. (9.15)]

$$
\begin{equation*}
Z_{s}=C_{z} b=0.5(0.00441)=0.002205 \mathrm{~m}=2.205 \mathrm{~mm} \tag{10}
\end{equation*}
$$

Finally, the rigid approach of the two bodies becomes [Eq. (9.11)]

$$
\begin{align*}
d & =C_{d} \frac{F}{\pi} \frac{A+B}{b / \Delta}=(2.2)\left(4.0 \times 10^{4}\right) \frac{1}{\pi} \frac{1.111+1.428}{(0.00441) /\left(3.607 \times 10^{-12}\right)} \\
& =0.0582 \mathrm{~mm} \tag{11}
\end{align*}
$$

This problem also can be solved by using the formulas of Table 9-2. This is a contact stress problem of cylinders crossed at right angles. The formulas in case 2 d apply. Then

$$
\begin{align*}
\gamma & =2 \frac{1-v^{2}}{E}=2 \frac{1-0.29^{2}}{2 \times 10^{11}}=9.159 \times 10^{-12} \mathrm{~m}^{2} / \mathrm{N} \\
K & =\frac{D_{1} D_{2}}{D_{1}+D_{2}}=\frac{0.90 \times 0.70}{0.90+0.70}=0.3938 \mathrm{~m} \\
B & =1 / D_{2}=1 / 0.70=1.429 \mathrm{~m}^{-1} \tag{12}\\
A & =1 / D_{1}=1 / 0.90=1.111 \mathrm{~m}^{-1} \\
A / B & =0.70 / 0.90=0.7778
\end{align*}
$$

From Table 9-3,

$$
\begin{equation*}
n_{a}=1.089, \quad n_{b}=0.9212, \quad n_{c}=0.9964, \quad n_{d}=0.9964 \tag{13}
\end{equation*}
$$

The semimajor axis of the contact ellipse is

$$
\begin{align*}
a & =0.909 n_{a}(F K \gamma)^{1 / 3} \\
& =0.909(1.089)\left[40000(0.3938) 9.159 \times 10^{-12}\right]^{1 / 3} \\
& =5.192 \times 10^{-3} \mathrm{~m}=5.192 \mathrm{~mm} \tag{14}
\end{align*}
$$

while the semiminor axis is

$$
\begin{align*}
b & =0.909 n_{a}(F K \gamma)^{1 / 3} \\
& =0.909(0.9212)\left[40000(0.3938) 9.159 \times 10^{-12}\right]^{1 / 3} \\
& =4.39 \times 10^{-3} \mathrm{~m}=4.39 \mathrm{~mm} \tag{15}
\end{align*}
$$

The maximum compressive stress becomes

$$
\begin{align*}
\sigma_{c} & =0.579 n_{c}\left[F /\left(K^{2} \gamma^{2}\right)\right]^{1 / 3} \\
& =0.579 \times 0.9964\left(\frac{40000}{0.3938^{2} \times 9.159^{2} \times 10^{-24}}\right)^{1 / 3}=838.8 \mathrm{MPa} \tag{16}
\end{align*}
$$

The rigid approach of the two bodies is given as

$$
\begin{align*}
d & =0.825 n_{d}\left(F^{2} \gamma^{2} / K\right)^{1 / 3} \\
& =0.825(0.9964)\left(\frac{40000^{2} \times 9.159^{2} \times 10^{-24}}{0.3938}\right)^{1 / 3} \\
& =0.05742 \mathrm{~mm} \tag{17}
\end{align*}
$$

Example 9.2 Ball Bearing At the contact region of the ball bearing system shown in Fig. 9-6, find the maximum principal stress, the maximum shearing stress, the maximum octahedral shearing stress, the dimensions of the area of contact, and the distance from the point of contact to the point along the force direction where the stresses occur. Assume that $E=200 \mathrm{GN} / \mathrm{m}^{2}$ and $v=0.3$.

Figure 9-6: \quad Single-row ball bearing system: $r=20 \mathrm{~mm} ; d_{0}=38 \mathrm{~mm} ; c$ denotes the center of curvature for r.

The radii of concern are given in Fig. 9-6 as

$$
\begin{array}{ll}
R_{1}=\frac{1}{2} d_{0}=19 \mathrm{~mm}, & R_{1}^{\prime}=\frac{1}{2} d_{0}=19 \mathrm{~mm} \\
R_{2}=-r=-20 \mathrm{~mm}, & R_{2}^{\prime}=\frac{1}{2} D=100 \mathrm{~mm}
\end{array}
$$

From Eqs. (9.5) and (9.6),

$$
\begin{align*}
A= & \frac{1}{4}\left(\frac{1}{0.019}-\frac{1}{0.020}+\frac{1}{0.019}+\frac{1}{0.100}\right) \\
& -\frac{1}{4}\left\{\left[\left(\frac{1}{0.019}-\frac{1}{0.019}\right)+\left(-\frac{1}{0.020}-\frac{1}{0.100}\right)\right]^{2}\right. \\
& \left.-4\left(\frac{1}{0.019}-\frac{1}{0.019}\right)\left(-\frac{1}{0.020}-\frac{1}{0.100}\right) \sin ^{2}(0)\right\}^{1 / 2}=1.316 \mathrm{~m}^{-1} \tag{1}
\end{align*}
$$

$$
\begin{equation*}
B=31.32 \mathrm{~m}^{-1} \tag{2}
\end{equation*}
$$

Then

$$
\begin{align*}
B / A & =23.78 \tag{3}\\
\Delta & =\frac{2}{A+B} \frac{1-v^{2}}{E}=\frac{2\left(1-0.3^{2}\right)}{(31.32+1.316)\left(200 \times 10^{9}\right)} \\
& =2.79 \times 10^{-13} \mathrm{~m}^{3} / \mathrm{N} \tag{4}
\end{align*}
$$

From Fig. 9-3, the coefficients are found. The variables of interest are then computed using the appropriate formulas:

$$
\begin{align*}
k & =0.13, \quad C_{\mathrm{oct}}=0.27, \quad C_{\tau}=0.3 \\
C_{b} & =0.394, \quad C_{\sigma}=1.0, \quad C_{z}=0.8 \\
b & =C_{b}(F \Delta)^{1 / 3}=0.394\left[(4500)\left(2.79 \times 10^{-13}\right)\right]^{1 / 3}=4.250 \times 10^{-4} \mathrm{~m} \\
& =0.425 \mathrm{~mm} \\
a & =4.250 \times 10^{-4} / 0.13=3.269 \times 10^{-3} \mathrm{~m}=3.269 \mathrm{~mm} \tag{5}\\
b / \Delta & =4.250 \times 10^{-4} /\left(2.79 \times 10^{-13}\right)=1523 \mathrm{MPa} \\
\sigma_{c} & =-C_{\sigma}(b / \Delta)=(-1.0)(1523)=-1523 \mathrm{MPa} \\
\tau_{\max } & =C_{\tau}(b / \Delta)=0.3(1523)=456.9 \mathrm{MPa} \\
\tau_{\mathrm{oct}} & =C_{\mathrm{oct}}(b / \Delta)=(0.27)(1523)=411.2 \mathrm{MPa} \\
Z_{s} & =C_{z} b=(0.8)\left(4.250 \times 10^{-4}\right)=3.40 \times 10^{-4} \mathrm{~m}=0.34 \mathrm{~mm}
\end{align*}
$$

Alternatively, use the formulas of case 1e of Table 9-2:

$$
\begin{align*}
\gamma & =2 \frac{1-v^{2}}{E}=2 \frac{1-0.3^{2}}{2 \times 10^{11}}=0.91 \times 10^{-11} \mathrm{~m}^{2} / \mathrm{N} \\
K & =\frac{1}{2 / R_{1}-1 / R_{2}+1 / R_{3}}=\frac{1}{2 / 0.019-1 / 0.02-1 / 0.10}=0.01532 \\
A & =\frac{1}{2}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=\frac{1}{2}\left(\frac{1}{0.019}-\frac{1}{0.020}\right)=1.316 \mathrm{~m}^{-1} \tag{6}\\
B & =\frac{1}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{3}}\right)=\frac{1}{2}\left(\frac{1}{0.019}+\frac{1}{0.1}\right)=31.32 \mathrm{~m}^{-1} \\
A / B & =0.04202
\end{align*}
$$

From Table 9-3,

$$
\begin{equation*}
n_{a}=3.385, \quad n_{b}=0.4390, \quad n_{c}=0.6729, \quad n_{d}=0.6469 \tag{7}
\end{equation*}
$$

The semimajor axis of the contact ellipse is given by

$$
\begin{align*}
a=1.145 n_{a}(F K \gamma)^{1 / 3} & =1.145 \times 3.385 \times\left[4500\left(0.91 \times 10^{-11}\right) 0.01532\right]^{1 / 3} \\
& =3.31 \times 10^{-3} \mathrm{~m}=3.31 \mathrm{~mm} \tag{8}
\end{align*}
$$

and the semiminor axis is

$$
\begin{equation*}
b=1.145 n_{b}(F K \gamma)^{1 / 3}=0.4303 \mathrm{~mm} \tag{9}
\end{equation*}
$$

Furthermore, the maximum compressive stress is

$$
\begin{equation*}
\sigma_{c}=0.365 n_{c}\left[F /\left(K^{2} \gamma^{2}\right)\right]^{1 / 3}=1508 \mathrm{MPa} \tag{10}
\end{equation*}
$$

and the rigid approach of the two bodies becomes

$$
\begin{equation*}
d=0.655 n_{d}\left(F^{2} \gamma^{2} / K\right)^{1 / 3}=0.02027 \mathrm{~mm} \tag{11}
\end{equation*}
$$

Example 9.3 Wheel-Rail Analyses Consider again the wheel and rail shown in Fig. 9-5. In Example 9.1, the maximum octahedral shear stress was found to be 256.8 MPa and to be located 0.22 cm below the initial contact point. Suppose now that the rail steel has a tensile yield strength of 413.8 MPa .

1. Determine whether yielding occurs in the rail according to the maximum octahedral shear stress yield theory (equivalent to the von Mises-Hencky theory).

The octahedral shear stress at yield is [Eq. (3.24b)]

$$
\begin{equation*}
\left(\tau_{\text {oct }}\right)_{y s}=\frac{1}{3}\left(2 \sigma_{y s}^{2}\right)^{1 / 2}=\frac{1}{3} \sqrt{2} \sigma_{y s}=\frac{1}{3} \sqrt{2}(413.8 \mathrm{MPa})=195.07 \mathrm{MPa} \tag{1}
\end{equation*}
$$

Since the maximum octahedral shear stress computed by elastic theory exceeds the yield value, yielding does occur in the rail.
2. Find to what value the load must be reduced so that the computed maximum octahedral shear stress equals the yield point value. From Eqs. (9.14) and (9.10a),

$$
\tau_{\text {oct }}=C_{\text {oct }}(b / \Delta), \quad b=C_{b}(F \Delta)^{1 / 3}
$$

Hence

$$
\begin{gather*}
\tau_{\mathrm{oct}}=C_{\mathrm{oct}} C_{b}(F \Delta)^{1 / 3} / \Delta, \quad\left(\tau_{\mathrm{oct}}\right)^{3}=\left(C_{\mathrm{oct}} C_{b} / \Delta\right)^{3} \Delta F=F\left(C_{\mathrm{oct}} C_{b}\right)^{3} / \Delta^{2} \\
F=\left[\Delta^{2} /\left(C_{\mathrm{oct}} C_{b}\right)^{3}\right]\left(\tau_{\mathrm{oct}}\right)^{3} \tag{2}
\end{gather*}
$$

Since $C_{\text {oct }}, C_{b}$, and Δ do not depend on F, the yield load $F_{y s}$ is calculated as

$$
\begin{equation*}
F_{y s}=\frac{\left(3.607 \times 10^{-12}\right)^{2}\left(195.07 \times 10^{6}\right)^{3}}{(0.2)^{3}(0.84)^{3}}=20367 \mathrm{~N} \tag{3}
\end{equation*}
$$

Therefore, to reduce the maximum octahedral shear stress to the yield value, the applied load of 40000 N must virtually be halved.
3. Suppose that the wheel-rail combination must be operated with a safety factor of 2 (i.e., the maximum octahedral shear stress must be one-half the value that causes yield). Compute the maximum value the load may take under this restriction.

Since maximum octahedral shear stress varies directly as the cube root of the applied load, to halve the stress, the load must decrease by a factor of $\left(\frac{1}{2}\right)^{3}$, or $\frac{1}{8}$. Since a load of 20367 N corresponds to a maximum octahedral shear stress exactly at the yield point, the force

$$
\begin{equation*}
F_{2}=\frac{1}{8} 20367 \mathrm{~N}=2545.9 \mathrm{~N} \tag{4}
\end{equation*}
$$

would result in the maximum octahedral shear stress being one-half the yield value.
4. Suppose that the operating load must be 20367 N. Find by what common factor the radii R_{1} and R_{2} must be increased in order that the maximum octahedral shear stress be one-half the value that causes yielding.

The stress $\tau_{\text {oct }}$ in terms of the load F is given by (2). With A and B defined by Eqs. (9.5) and (9.6), changing R_{1} and R_{2} by the same factor does not affect B / A, so $C_{\text {oct }}$ and C_{b} of Figs. 9-3 and 9-4 remain constant. Similarly, γ depends only on E and v so that Δ of Eq. (9.10b) changes only as a result of $A+B$. Let τ, A, B, R_{1}, R_{2} be the values of variables under conditions described in question 2 and $\tau_{\text {oct }}^{*}, A^{*}, B^{*}, R_{1}^{*}, R_{2}^{*}$ be the conditions with R_{1} and R_{2} altered by a factor, say λ. We require that

$$
\tau_{\mathrm{oct}}^{*}=\frac{1}{2} \tau_{\mathrm{oct},} \quad R_{1}^{*}=\lambda R_{1}, \quad R_{2}^{*}=\lambda R_{2}
$$

From Eqs. (9.5) and (9.6),

$$
\begin{aligned}
A+B & =\frac{1}{4}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)+\frac{1}{4}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{1}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \\
A^{*}+B^{*} & =\frac{1}{2}\left(\frac{1}{R_{1}^{*}}+\frac{1}{R_{2}^{*}}\right)=\frac{1}{2 \lambda}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
\end{aligned}
$$

and from (2),

$$
\begin{equation*}
\tau_{\mathrm{oct}}^{3}=F\left(c_{G} c_{b}\right)^{3} / \Delta^{2}, \quad \tau_{\mathrm{oct}}^{* 3}=F\left(c_{G} c_{b}\right)^{3} / \Delta^{* 2} \tag{5}
\end{equation*}
$$

Then

$$
\frac{\tau_{\mathrm{oct}}^{3}}{\tau_{\mathrm{oct}}^{* 3}}=\frac{\Delta^{* 2}}{\Delta^{2}}=\frac{\left[\gamma /\left(A^{*}+B^{*}\right)\right]^{2}}{[\gamma /(A+B)]^{2}}=\frac{(A+B)^{2}}{\left(A^{*}+B^{*}\right)^{2}}=\frac{\frac{1}{4}\left(1 / R_{1}+1 / R_{2}\right)^{2}}{\left(1 / 4 \lambda^{2}\right)\left(1 / R_{1}+1 / R_{2}\right)^{2}}
$$

Thus,

$$
\begin{equation*}
\tau_{\mathrm{oct}}^{3} / \tau_{\mathrm{oct}}^{* 3}=\lambda^{2} \quad \text { or } \quad \tau_{\mathrm{oct}}^{*}=\tau_{\mathrm{oct}} / \lambda^{2 / 3} \tag{6}
\end{equation*}
$$

Since

$$
\tau_{\mathrm{oct}}^{*}=\frac{1}{2} \tau_{\mathrm{oct}}
$$

it follows that

$$
\begin{equation*}
2^{3} \tau_{\mathrm{oct}}^{3} / \tau_{\mathrm{oct}}^{3}=\lambda^{2} \quad \text { or } \quad \lambda=\sqrt{8} \tag{7}
\end{equation*}
$$

To check, we find

$$
\begin{aligned}
R_{1}^{*} & =\sqrt{8}(45)=127.28 \mathrm{~cm}, \quad R_{2}^{*}=\sqrt{8}(35)=98.995 \mathrm{~cm} \\
(A+B)^{*} & =\frac{1}{2}\left(\frac{1}{1.2728}+\frac{1}{0.98995}\right)=0.8979 \mathrm{~m}^{-1} \\
\Delta^{*} & =\frac{2\left[1-(.29)^{2}\right]}{\left(2 \times 10^{11}\right)(0.8979)}=1.020 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{N} \\
\tau^{* 3} & =\frac{(20367)(0.2)^{3}(0.84)^{3}}{\left(1.02 \times 10^{-11}\right)^{2}}=9.282 \times 10^{23}\left(\mathrm{~N} / \mathrm{m}^{2}\right)^{3} \\
\tau_{\mathrm{oct}}^{*} & =9.755 \times 10^{7} \mathrm{~Pa} \quad \text { or } \quad 97.55 \mathrm{MPa}
\end{aligned}
$$

Since the yield value of maximum octahedral shear is 195.07 MPa and 97.55 is one-half of the yield value, increasing R_{1} and R_{2} by a factor of $\sqrt{8}$ decreases the maximum octahedral shear stress by one-half.
5. Suppose that the operating load is fixed at 20367 N and that the rail and wheel radii are fixed at 35 and 45 cm , respectively. Find by what factor the tensile strength of the steel must be increased to make the maximum octahedral shear stress one-half the yield point value.

Since E and v of steel are essentially constant for steels of all strengths and $A+B$ is determined by the fixed radii of rail and wheel, the quantity Δ in Eq. (9.10b) is a fixed value. Therefore, from (5), the maximum octahedral shear stress would remain at 195.07 MPa for all steels. Because tensile yield strength and octahedral shear stress at yield are directly proportional, doubling the tensile strength would result in the maximum octahedral shear stress being one-half the value that causes yield. From (1), the strength of the steel would be increased to

$$
\begin{equation*}
\sigma_{y s}=(3 / \sqrt{2})\left(\tau_{\text {oct }}\right)_{y s}=(3 / \sqrt{2})(2 \times 195.07)=827.6 \mathrm{MPa} \tag{8}
\end{equation*}
$$

6. Determine for which of the three quantities (load, radii of curvature, or steel strength) would a change be most effective in producing a system with an acceptable value of maximum octahedral shear stress.

Reducing the load is most ineffective in reducing the maximum octahedral shear stress because, from (2), the stress varies directly as the cube root of the load. When the radii of curvature are increased in constant proportion, the maximum octahedral shear stress varies inversely as the two-thirds power of the radii factor λ [see (6)]; hence changing the radii is more effective than changing the load. However, if large reductions in stress are required, it is doubtful that the necessarily large changes in radii ($\lambda=\sqrt{8}=2.83$-fold increase for a halving of the shear stress) would be feasible. It appears from the previous question that increasing the tensile strength of the material of construction is the most effective alternative when the stress is significantly higher than an acceptable level.

Two Bodies in Line Contact

Two bodies in contact along a straight line before loading are said to be in line contact. For instance, a line contact occurs when a circular cylinder rests on a plane or when a small circular cylinder rests inside a larger hollow cylinder. In these line contact cases, Eqs. (9.5) and (9.6) become

$$
A=0, \quad B=\frac{1}{2}\left(1 / R_{1}+1 / R_{2}\right)
$$

and

$$
\begin{equation*}
B / A=\infty \tag{9.16}
\end{equation*}
$$

It can be shown that in this case, the quantity k in Eq. (9.10c) approaches zero. When a distributed load q (force/length) is applied, the area of contact is a long narrow rectangle of width $2 b$ in the x direction and a length $2 a$ in the y direction.

The maximum principal stresses occurring at the surface of contact are [9.9]

$$
\begin{equation*}
\sigma_{x}=-b / \Delta, \quad \sigma_{y}=-2 \nu(b / \Delta), \quad \sigma_{z}=-b / \Delta \tag{9.17a}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\sigma_{\max }=-b / \Delta \tag{9.17b}
\end{equation*}
$$

where

$$
\begin{align*}
b & =\sqrt{2 q \Delta / \pi} \tag{9.18a}\\
\Delta & =\frac{1}{1 /\left(2 R_{1}\right)+1 /\left(2 R_{2}\right)}\left(\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}}\right) \tag{9.18b}
\end{align*}
$$

The maximum shear stress is

$$
\begin{equation*}
\tau_{\max }=0.300(b / \Delta) \tag{9.19}
\end{equation*}
$$

at the depth $Z_{s} / b=0.7861$.
The maximum octahedral shear stress occurs at the same point as the maximum shear. The value is

$$
\begin{equation*}
\tau_{\mathrm{oct}}=0.27(b / \Delta) \tag{9.20}
\end{equation*}
$$

For the case of line contact, Eqs. (9.12)-(9.15) still apply. The coefficients C_{σ}, C_{τ}, $C_{\text {oct }}, C_{z}$ can also be found from Figs. 9-3 and 9-4 by selecting values of B / A greater than 50 .

Contact Stress with Friction

For the case of two cylinders with longitudinal axes parallel, Smith and Liu [9.11] examined the modification of the contact stress field caused by the presence of surface friction. Mindlin [9.12] showed that the tangential stresses have the same distribution over the contact areas as have the normal stresses. For impending sliding motion, the tangential stresses are linearly related to the normal stresses by a coefficient of friction. The total stress field is the resultant of the field due to normal surface stresses plus the field due to tangential surface stresses. The degree to which tangential surface stresses change the distribution caused by normal surface stresses depends on the magnitude of the coefficient of friction. The changes in the maximum contact stresses with the coefficient of friction are provided in Table 9-5.

The presence of friction may lead to changes from a compressive stress to a stress that varies from tensile to compressive over the area of contact. The creation of tensile stresses in the contact zone is thought to contribute to fatigue failure of bodies subject to cyclic contact stresses. Smith and Liu found in addition that if the coeffi-
cient of friction was 0.1 or greater, the point of maximum shear stress occurs on the contact surface rather than below it.

Example 9.4 Contact Stress in Cylinders with Friction Consider two steel cylinders each 80 mm in diameter and 150 mm long mounted on parallel shafts and loaded by a force $F=80 \mathrm{kN}$ (Fig. 9-7). The two cylinders ($E=200 \mathrm{GPa}$ and $v=0.29$) are rotated at slightly different speeds so that the cylinder surfaces slide across each other. If the coefficient of sliding friction is $\mu=\frac{1}{3}$, determine the maximum compressive principal stress σ_{c}, the maximum shear stress $\tau_{\max }$, and the maximum octahedral shear stress $\tau_{\text {oct }}$.

The value of the required quantities are obtained from Table $9-5$ for $\mu=\frac{1}{3}$,

$$
\begin{align*}
\left(\sigma_{c}\right)_{\max } & =-1.40(b / \Delta) \tag{1}\\
\tau_{\max } & =0.435(b / \Delta) \tag{2}\\
\tau_{\text {oct }} & =0.368(b / \Delta) \tag{3}
\end{align*}
$$

where b and Δ are given by Eqs. (9.18a) and (9.18b) with with $q=F / \ell$:

$$
\begin{align*}
\Delta & =2 R \frac{1-v^{2}}{E}=\frac{2(0.040)\left(1-0.29^{2}\right)}{200 \times 10^{9}}=3.664 \times 10^{-13} \mathrm{~m}^{3} / \mathrm{N} \tag{4}\\
b & =\left(\frac{2 F \Delta}{\ell \pi}\right)^{1 / 2}=\sqrt{\frac{2\left(80 \times 10^{3}\right)\left(3.664 \times 10^{-13}\right)}{0.150 \pi}}=0.3527 \times 10^{-3} \mathrm{~m} \\
& =0.3527 \mathrm{~mm} \tag{5}\\
b / \Delta & =962.6 \mathrm{MPa} \tag{6}
\end{align*}
$$

Figure 9-7: Example 9.4.

Substitution of these values into (1), (2), and (3) leads to

$$
\begin{align*}
\left(\sigma_{c}\right)_{\max } & =-1.40 \times 962.6=-1347.6 \mathrm{MPa} \\
\tau_{\max } & =0.435 \times 962.6=418.7 \mathrm{MPa} \\
\tau_{\text {oct }} & =0.368 \times 962.6=354.2 \mathrm{MPa} \tag{7}
\end{align*}
$$

It can be seen from Table 9-5 that the friction force with $\mu=\frac{1}{3}$ increases the maximum compressive principal stress by 40%, the maximum shear stress by 45%, and the maximum octahedral shear stress by 35% relative to the case with $\mu=0$.

9.3 CONTACT FATIGUE

A machine part subjected to contact stresses usually fails after a large number of load applications. The failure mode is that of crack initiation followed by propagation until the part fractures or until pits are formed by material flaking away. Buckingham measured the surface fatigue strengths of materials subjected to contact loads [9.13]. His results showed that hardened steel rollers did not have a fatigue limit for contact loading. Cast materials, however, did show a fatigue limit for contact loads.

9.4 ROLLING CONTACT

When two bodies roll over each other, the area of contact will in general be divided into a region of slip and a region of adhesion. In the region of slip the tangential force is related to the normal force by a coefficient of friction. Under conditions of free rolling no region of slip exists, and surface friction dissipates no energy. If gross sliding occurs, no region of adhesion exists.

When both regions are present, the motion is termed creep, creep ratio, or creepage. The creepage is resolved into three components: longitudinal, lateral, and spin. Spin creepage occurs when a relative angular velocity about an axis normal to the contact zone exists between the two contacting bodies. Longitudinal and lateral creepage occurs when a relative circumferential velocity without gross sliding exists between the contacting bodies. The forces and moments transmitted between two contacting bodies due to creepage are very important in wheel-rail contact problems. Vermeulen and Johnson [9.14] suggested a nonlinear law that does not account for spin creepage. Kalker has proposed a linear law relating creepage to the transmitted forces and moments as well as nonlinear creep laws [9.15].

9.5 NON-HERTZIAN CONTACT STRESS

The simplest non-Hertzian contact problem is the case in which all conditions for Hertzian contact are met except that the surfaces cannot be approximated as a
second-degree polynomial near the point of contact. Singh and Paul [9.16] have described a numerical procedure for solving this type of problem. In this method a suitable contact area is first proposed; then the corresponding applied load, pressure distribution, and rigid approach are found.

A general treatment of the interfacial responses of contact problems as nonlinear phenomena is formulated using finite element approximations in Laursen [9.21].

9.6 NANOTECHNOLOGY: SCANNING PROBE MICROSCOPY

Technology has been rapidly evolving to smaller and smaller scales. This has led to "nanotechnology," so named because the scale of research and development is on the order of one-billionth of a meter $\left(10^{-9} \mathrm{~m}\right)$. The goals of nanotechnology include both scaling down current materials to the nanolevel and the construction of materials atom by atom. In the past, the progress of nanotechnology has been limited because tools for such small-scale research did not exist. However, with the advent of scanning probe instruments, attaining the goals of nanotechnology is becoming realizable.

One example of a scanning probe instrument is an atomic force microscope (AFM). Atomic force microscopy is useful technology for the study of surface force exertions. The AFM consists of a cantilevered beam with a probe, or tip, attached to the end. The tip is run across a surface and deflects as it interacts with the surface. With the help of a surface scan by a piezoactuator, the cantilever deflection may be measured leading to the surface topography.

To understand what an AFM accomplishes, consider the following example. When you move your finger across different surfaces, each one exerts a different force on your finger. As a result, you can differentiate between wood and steel or between silk and rubber. For example, when you run your finger over silk, you experience very little resistance and your finger slides easily across the surface. However, when you rub your finger across rubber, you experience a much larger resistance. Similarly, an AFM measures forces that the sampled surface exerts on the scanning tip, only on a much smaller scale than your finger.

In addition to atomic force microscopes, other scanning probe instruments include scanning tunneling microscopes and magnetic force microscopes. With scanning tunneling microscopy, electrical currents between the probe and surface can be measured. Magnetic force microscopy uses a magnetic tip to test the magnetic properties of the sampled surface.

A summary of some contact theories used in conjunction with the AFM is provided in Ref. [9.22]. The tip-sample interactions can be modeled by a variety of models that are appropriate for certain materials and environments.

Hertz Model

The Hertz contact model is not appropriate for some AFM experiments, since the model is designed for high loads or low surface forces. It is assumed that there are
no surface or adhesion forces. The AFM tip would be a smooth elastic sphere, and the contact surface is rigid and flat. In practice, for most cases the AFM tip is stiffer than the contact surface and the Hertz model is not suitable for calculating deformations if the tip is assumed to be rigid.

Sneddon's Model

If the contact surface is softer than the tip, Sneddon's model may be appropriate. In this case, the tip is rigid and the contact surface is elastic. Also, there are no surface or adhesion forces. It is possible, when no surface forces are present to combine the Hertz and Sneddon models to compute the deformation of the tip and the contact surface.

Derjaguin-Muller-Toporov Theory (DMT)

This model permits surface forces, yet restricts the tip-contact surface geometry to be Hertzian. This leads to finite stresses at the contact periphery, although non-Hertzian deformation there is neglected. As a result the contact area may be underestimated. The area of contact, based on including forces acting between two bodies outside the contact region, increases under an applied positive force and decreases for a negative force.

Johnson-Kendall-Roberts Theory (JKR)

This model is suitable for a highly adhesive tip-surface system with low stiffness and large tip radii. There is a nonzero contact area for a zero load. During unloading a neck can be formed between the tip and the contact surface. The predicted surface forces may be quite low. Shortcomings of this approach include the predictions of infinite stresses at the edge of the contact area. With this theory the attractive forces act over a very small range.

Maugis-Dugdale Model

This model is appropriate for hard or soft materials and for contact surfaces with high or low energies. Adhesion is treated as traction over an annular region around the contact area. This model effectively bridges the DMT and JKR models by introducing a parameter λ that compares the relative magnitude of the elastic deformation at pull-off forces and the effective range of the surface force.

REFERENCES

[^17]9.3. Belajev, N. M., Memoirs on the Theory of Structures, Petrograd, 1924.
9.4. Thomas, H. R., and Hoersch, V. A., Stress Due to the Pressure of One Elastic Solid upon Another, University of Illinois Engineering Experimental Station Bulletin, 212, 1930.
9.5. Love, A. E. H., Mathematical Theory of Elasticity, Dover, New York, 1927.
9.6. Timoshenko, S. P., and Goodier, J. N., Theory of Elasticity, 3rd ed., McGraw-Hill, New York, 1970.
9.7. Lipson, C., and Juvinall, R. C., Handbook of Stress and Strength, Macmillan, New York, 1970.
9.8. Boussinesq, J., Application des Potentiels a l'étude de l'équilibre et du mouvement des solides elastiques, Gauthier-Villars, Paris, 1885.
9.9. Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M., Advanced Mechanics of Materials, 5th ed., Wiley, New York, 1993.
9.10. Alexander, B., Handbook of Mechanics, Materials, and Structures, Wiley, New York, 1985.
9.11. Smith, J. O., and Liu, C. K., "Stresses Due to Tangential and Normal Loads on an Elastic Solid with Application to Some Contact Stress Problems, " J. Appl. Mech., Vol. 20, No. 2, 1953, pp. 157-165.
9.12. Mindlin, R. D., "Compliance of Elastic Bodies in Contact, " J. Appl. Mech., Vol. 71, 1949, pp. 259268.
9.13. Buckingham, E., Analytical Mechanics of Gears, McGraw-Hill, New York, 1949.
9.14. Vermeulen, P. J., and Johnson, K. L., "Contact of Nonspherical Elastic Bodies Transmitting Tangential Forces, " J. Appl. Mech., Vol. 31, 1964, pp. 338-340.
9.15. Kalker, J. J., "On the Rolling Contact between Two Elastic Bodies in the Presence of Dry Friction," Ph.D. dissertation, Delft University of Technology, 1967.
9.16. Singh, K. P., and Paul, B., "Numerical Solution of Non-Hertzian Contact Problems, " J. Appl. Mech., Vol. 41, 1974, pp. 484-490.
9.17. Lubkin, J. L., "Contact Problems, " in Handbook for Engineering Mechanics, ed. Flugge, W., McGraw-Hill, New York, 1962.
9.18. Paul, B., and Hashemi, J., An Improved Numerical Method for Counter Formal Contact Stress Problems, Report FRA-ORD-78-26, U.S. Department of Transportation, Washington, DC, July 1977.
9.19. Johnson, K. L., Contact Mechanics, Cambridge University Press, New York, 1985.
9.20. Ruditzin, M. W., Artemov, P., and Luboshytz, M., Handbook for Strength of Materials, BSSR Government Publishing House, Minsk, Russia, 1970.
9.21. Laursen, T. A., Computational Contact and Impact Mechanics, Springer, New York, 2002.
9.22. Cappella, B., and Dietler, G. "Force-Distance Curves by Atomic Force Microscopy," Surface Sci. Rep., Vol. 34, 1999, pp. 1-104.

Tables

9-1 Summary of General Formulas for Contact Stresses 438
9-2 Formulas for Contact Stresses, Dimensions, and Contact Areas, and Rigid-Body Approaches 439
9-3 Parameters for Use with Formulas of Table 9-2 446
9-4 Equations for the Parameters of Table 9-3 448
9-5 Contact Stresses between Two Long Cylindrical Bodies in Line Contact Sliding against Each Other 449

TABLE 9-1 SUMMARY OF GENERAL FORMULAS FOR CONTACT STRESSES

Notation

$R_{i}, R_{i}^{\prime}=$ minimum and maximum radii of curvature of two contacting surfaces $i=1,2$
$F=$ applied force
$\theta=$ angle between planes containing principal radii of curvature

$$
\begin{aligned}
A= & \frac{1}{4}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{1}^{\prime}}+\frac{1}{R_{2}^{\prime}}\right) \\
& -\frac{1}{4}\left\{\left[\left(\frac{1}{R_{1}}-\frac{1}{R_{1}^{\prime}}\right)+\left(\frac{1}{R_{2}}-\frac{1}{R_{2}^{\prime}}\right)\right]^{2}-4\left(\frac{1}{R_{1}}-\frac{1}{R_{1}^{\prime}}\right)\left(\frac{1}{R_{2}}-\frac{1}{R_{2}^{\prime}}\right) \sin ^{2} \theta\right\}^{1 / 2} \\
B= & \frac{1}{4}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{1}^{\prime}}+\frac{1}{R_{2}^{\prime}}\right) \\
& +\frac{1}{4}\left\{\left[\left(\frac{1}{R_{1}}-\frac{1}{R_{1}^{\prime}}\right)+\left(\frac{1}{R_{2}}-\frac{1}{R_{2}^{\prime}}\right)\right]^{2}-4\left(\frac{1}{R_{1}}-\frac{1}{R_{1}^{\prime}}\right)\left(\frac{1}{R_{2}}-\frac{1}{R_{2}^{\prime}}\right) \sin ^{2} \theta\right\}^{1 / 2}
\end{aligned}
$$

Compute B / A and obtain coefficients $C_{b}, k, C_{\sigma}, C_{\tau}, C_{\text {oct }}, C_{z}, C_{d}$ from plots of Figs. 9-3 or 9-4. Then

$$
\gamma=\frac{1-v_{1}^{2}}{E_{1}}+\frac{1-v_{2}^{2}}{E_{2}} \quad \Delta=\gamma \frac{1}{A+B}
$$

Formulas for Stresses and Deformation
Semiminor axis:

$$
b=C_{b}(F \Delta)^{1 / 3}
$$

Semimajor axis:

$$
a=b / k
$$

Maximum compressive stress:

$$
\left(\sigma_{c}\right)_{\max }=-C_{\sigma}(b / \Delta)
$$

Maximum shear stress:

$$
\tau_{\max }=C_{\tau}(b / \Delta)
$$

Maximum octahedral shear stress:

$$
\left(\tau_{\mathrm{oct}}\right)_{\max }=C_{\mathrm{oct}}(b / \Delta)
$$

Distance from contact area to location of maximum shear stress:

$$
Z_{s}=C_{z} b
$$

Distance of approach of contacting bodies:

$$
d=C_{d} \frac{F}{\pi} \frac{A+B}{b / \Delta}
$$

TABLE 9-2 FORMULAS FOR CONTACT STRESSES, DIMENSIONS, AND CONTACT AREAS, AND RIGID-BODY APPROACHES ${ }^{a}$

$$
\begin{gathered}
\text { Notation } \\
\gamma=\left(1-v_{1}^{2}\right) / E_{1}+\left(1-v_{2}^{2}\right) / E_{2}
\end{gathered}
$$

$a, b=$ semimajor axis and semiminor axis of contact ellipse, respectively
$d=$ rigid distance of approach of contacting bodies or surface deformation
$E_{i}=$ modulus of elasticity of object $i, i=1$ or 2
$F=$ force
$p=$ pressure
$q=$ distributed line load
$\sigma_{c}=$ maximum compressive stress of contact area, $=\left(\sigma_{c}\right)_{\max }$
$\nu_{i}=$ Poisson's ratio of object $i, i=1$ or 2
$\tau=$ shear stress

Case	Formulas
Spheres	

1a.
Sphere on sphere
$K=\frac{D_{1} D_{2}}{D_{1}+D_{2}}$

$$
\begin{aligned}
a & =b=0.721(F K \gamma)^{1 / 3} \\
\sigma_{c} & =0.918\left[F /\left(K^{2} \gamma^{2}\right)\right]^{1 / 3} \\
d & =1.040\left(F^{2} \gamma^{2} / K\right)^{1 / 3}
\end{aligned}
$$

TABLE 9-2 (continued) FORMULAS FOR CONTACT STRESSES, DIMENSIONS, AND CONTACT AREAS, AND RIGID-BODY APPROACHESa

Case	Formulas
1b. Sphere on flat plate	$\begin{aligned} a & =b=0.721(F K \gamma)^{1 / 3} \\ \sigma_{c} & =0.918\left[F /\left(K^{2} \gamma^{2}\right)\right]^{1 / 3} \\ d & =1.040\left(F^{2} \gamma^{2} / K\right)^{1 / 3} \end{aligned}$
1c. Sphere in spherical socket	$\begin{aligned} a & =b=0.721(F K \gamma)^{1 / 3} \\ \sigma_{c} & =0.918\left[F /\left(K^{2} \gamma^{2}\right)\right]^{1 / 3} \\ d & =1.040\left(F^{2} \gamma^{2} / K\right)^{1 / 3} \end{aligned}$

	1d. Sphere on a cylinder	$\begin{aligned} a & =0.9088 n_{a}(F K \gamma)^{1 / 3} \\ b & =0.9088 n_{b}(F K \gamma)^{1 / 3} \\ \sigma_{c} & \left.=0.579 n_{c} F /\left(K^{2} \gamma^{2}\right)\right]^{1 / 3} \\ d & =0.825 n_{d}\left(F^{2} \gamma^{2} / K\right)^{1 / 3} \\ A & =\frac{1}{D_{1}} \quad B=\frac{1}{D_{1}}+\frac{1}{D_{2}} \quad K=\frac{D_{1} D_{2}}{2 D_{2}+D_{1}} \end{aligned}$
	1e. Sphere in circular race	$\begin{aligned} a & =1.145 n_{a}(F K \gamma)^{1 / 3} \\ b & =1.145 n_{b}(F K \gamma)^{1 / 3} \\ \sigma_{c} & =0.365 n_{c}\left[F /\left(K^{2} \gamma^{2}\right)\right]^{1 / 3} \\ d & =0.655 n_{d}\left(F^{2} \gamma^{2} / K\right)^{1 / 3} \\ K & =\frac{1}{R_{1}} \frac{1}{R_{2}}+\frac{1}{R_{3}} \end{aligned} A=\frac{1}{2}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \quad B=\frac{1}{2}\left(\frac{1}{R_{1}}+\frac{1}{R_{3}}\right) \quad\left\{\begin{array}{l} \end{array}\right.$
$\%$	1f. Sphere in cylindrical race	$\begin{aligned} a & =1.145 n_{a}(F K \gamma)^{1 / 3} \\ b & =1.145 n_{b}(F K \gamma)^{1 / 3} \\ \sigma_{c} & =0.365 n_{c}\left[F /\left(K^{2} \gamma^{2}\right)\right]^{1 / 3} \\ d & =0.655 n_{d}\left(F^{2} \gamma^{2} / K\right)^{1 / 3} \\ K & =\frac{R_{1} R_{2}}{2 R_{2}-R_{1}} \quad A=\frac{1}{2}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \quad B=\frac{1}{2 R_{1}} \end{aligned}$

TABLE 9-2 (continued) FORMULAS FOR CONTACT STRESSES, DIMENSIONS, AND CONTACT AREAS, AND RIGID-BODY APPROACHES ${ }^{\text {a }}$	
Case	Formulas
Cylinders(Contact area is rectangular $(2 b \times \ell)$ in cases 2a, 2b, and 2c)	
2a. Cylinder on cylinder (axes parallel)	$\begin{aligned} & b=0.798(q K \gamma)^{1 / 2} \quad \sigma_{c}=0.798[q /(K \gamma)]^{1 / 2} \\ & d=\frac{2 q}{\pi}\left[\frac{1-v_{1}^{2}}{E_{1}}\left(\ln \frac{D_{1}}{b}+0.407\right)+\frac{1-v_{2}^{2}}{E_{2}}\left(\ln \frac{D_{2}}{b}+0.407\right)\right] \\ & K=D_{1} D_{2} /\left(D_{1}+D_{2}\right) \end{aligned}$
2b. Cylinder on flat plate	$\begin{aligned} b & =0.798(q K \gamma)^{1 / 2} \\ \sigma_{c} & =0.798[q /(K \gamma)]^{1 / 2} \\ K & =D_{1} \end{aligned}$
2c. Cylinder in cylindrical socket $q=\frac{F}{l}$	$\begin{aligned} b & =0.798(q K \gamma)^{1 / 2} \quad \text { when } \quad E_{1}=E_{2} \text { and } \nu_{1}=v_{2}=0.3 \\ \sigma_{c} & =0.798[q /(K \gamma)]^{1 / 2} \\ K & =\frac{D_{1} D_{2}}{D_{2}-D_{1}} \quad d=1.82 \frac{q}{E}(1-\ln b) \end{aligned}$

2d.
Cylinders crossed at right angles

$$
\begin{aligned}
a & =0.909 n_{a}(F K \gamma)^{1 / 3} \\
b & =0.909 n_{b}(F K \gamma)^{1 / 3} \\
\sigma_{c} & =0.579 n_{c}\left[F /\left(K^{2} \gamma^{2}\right)\right]^{1 / 3} \\
d & =0.825 n_{d}\left(F^{2} \gamma^{2} / K\right)^{1 / 3} \\
K & =\frac{D_{1} D_{2}}{D_{1}+D_{2}} \quad A=\frac{1}{D_{2}} \quad B=\frac{1}{D_{1}}
\end{aligned}
$$

Barrels

3.	$a=1.145 n_{a}(F K \gamma)^{1 / 3}$
Barrel in a circular race	$b=1.145 n_{b}(F K \gamma)^{1 / 3}$
	$\sigma_{c}=0.365 n_{c}\left[F /\left(K^{2} \gamma^{2}\right)\right]^{1 / 3}$

Other Contact Areas

4a.

Rigid knife edge on surface of semi-infinite plate line load q

$\sigma_{c}=\sigma_{r}=\frac{2 q}{\pi r} \cos (\alpha+\theta)$
$\sigma_{\theta}=\tau_{r \theta}=0$

TABLE 9-2 (continued) FORMULAS FOR CONTACT STRESSES, DIMENSIONS, AND CONTACT AREAS, AND RIGID-BODY APPROACHES ${ }^{a}$

Case	Formulas
4b. Concentrated force on surface of semi-infinite body	At an elemental area perpendicular to z axis of any point Q, the resultant stress is $\frac{3 F \cos ^{2} \theta}{2 \pi r^{2}}$
4c. Uniform pressure p over length ℓ on surface of semi-infinite body	At surface point O_{1} outside loaded area $d=\frac{2 p}{\pi E}\left[\left(\ell+x_{1}\right) \ln \frac{c}{\ell+x_{1}}-x_{1} \ln \frac{d}{x_{1}}\right]+p \ell \frac{1-v}{\pi E}$ At surface point O_{2} underneath loaded area $d=\frac{2 p}{\pi E}\left[\left(\ell-x_{2}\right) \ln \frac{c}{\ell-x_{2}}+x_{2} \ln \frac{d}{x_{2}}\right]+p \ell \frac{1-v}{\pi E}$ where $d=$ displacement relative to a remote point distance c from edge of loaded area At any point Q $\sigma_{c}=\frac{p}{\pi}(\alpha+\sin \alpha)$
4d. Rigid cylindrical die of radius r on surface of semi-infinite body	$d=F\left(1-v^{2}\right) / 2 R E$ At any point Q on surface of contact $\sigma_{c}=\frac{F}{2 \pi R \sqrt{R^{2}-r^{2}}}$ $\left(\sigma_{c}\right)_{\max }=\infty \quad$ at edge $\quad\left(\sigma_{c}\right)_{\min }=F / 2 \pi R^{2} \quad$ at center

4 e. Uniform pressure p over circular area of radius R on surface of semi-infinite body	$\begin{aligned} & d_{\max }=\frac{2 p R\left(1-v^{2}\right)}{E} \quad \text { at center, } \quad d=\frac{4 p R\left(1-v^{2}\right)}{\pi E} \quad \text { on the circle } \\ & \tau_{\max }=\frac{p}{2}\left[\frac{1-2 v}{2}+\frac{2}{9}(1+v) \sqrt{2(1+v)}\right] \end{aligned}$ at point $R \sqrt{2(1+v) /(7-2 v)}$ below center of loaded area
4f. Uniform pressure p over square area of sides $2 b$ on surface of semi-infinite body	$\begin{aligned} d_{\max } & =\frac{2.24 p b\left(1-v^{2}\right)}{E} \quad \text { at center } \quad d=\frac{1.12 p b\left(1-v^{2}\right)}{E} \quad \text { at corners } \\ d_{\mathrm{ave}} & =\frac{1.90 p b\left(1-v^{2}\right)}{E} \end{aligned}$

${ }^{a}$ All diameters and radii are positive in formulas given. Values of n_{a}, n_{b}, n_{c}, and n_{d} are given in Table 9-3. Most of these formulas are adapted from Ref. [9.20].

TABLE 9-3 PARAMETERS FOR USE WITH FORMULAS OF TABLE 9-2

A / B	n_{a}	n_{b}	n_{c}	n_{d}
1.000000	1.000000	1.000000	1.000000	1.000000
.965467	1.013103	.987137	.999929	.999952
.928475	1.025571	.975376	.999684	.999714
.893098	1.038886	.963238	.999306	.999279
.851780	1.055557	.948729	.998565	.998574
.805934	1.075967	.931815	.997404	.997442
.767671	1.094070	.917565	.996134	.996124
.727379	1.114909	.901981	.994404	.994407
.699686	1.130480	.890831	.992984	.992988
.640487	1.166370	.866782	.989130	.989123
.594383	1.198061	.847158	.985274	.985223
.546919	1.234696	.826174	.980321	.980224
.514760	1.262333	.811413	.976303	.976163
.465921	1.309532	.788097	.968956	.968738
.416913	1.364990	.763293	.959796	.959415
.384311	1.407560	.745894	.952481	.951928
.351726	1.455592	.727797	.943952	.943170
.335659	1.481904	.718443	.939264	.938324
.319620	1.510007	.708906	.934183	.933087
.303612	1.540072	.699179	.928689	.927396
.287810	1.57253	.689231	.922811	.921331
.272153	1.606769	.679051	.916524	.914773
.264330	1.625029	.673890	.913167	.911272
.256632	1.643925	.668646	.909749	.907690
.241289	1.684020	.658001	.902457	.900066
.233648	1.705308	.652595	.898573	.895998
.226114	1.727405	.647099	.894613	.891797
.218611	1.750463	.641548	.890467	.887432
.211182	1.774490	.635922	.886181	.882914
.203782	1.799603	.630236	.881699	.878199
.196453	1.825817	.624468	.877067	.873296
.189191	1.853208	.618615	.872278	.868186
.182010	1.881858	.612675	.867328	.862885
.174887	1.911914	.606661	.862155	.857378
.167809	1.943479	.600570	.856755	.851609
.153928	2.011419	.588084	.845392	.839398
.147127	2.048051	.581680	.839412	.832932
.140401	2.086717	.575179	.833169	.826193
.133739	2.127590	.568576	.826653	.819118
.120723	2.216622	.555000	.812859	.804111
.114362	2.265238	.548013	.805555	.796099
.08093	2.316993	.540894	.797927	.787713
.095880	2.43163	.526202	.781687	.769785
.084137	2.562196	.510823	.764043	.750170
.078432	2.635404	.502862	.754578	.739598
	.			

TABLE 9-3 (continued) PARAMETERS FOR USE WITH FORMULAS OF TABLE 9-2

A / B	n_{a}	n_{b}	n_{c}	n_{d}
.067433	2.800291	.486269	.734380	.716896
.056978	2.996047	.468688	.712143	.691708
.047131	3.232638	.449900	.687586	.663652
.043365	3.341996	.442004	.676968	.651460
.039714	3.461481	.433842	.665896	.638702
.036174	3.592781	.425404	.654286	.625283
.034451	3.663353	.421060	.648302	.618329
.031090	3.816109	.412142	.635818	.603838
.029457	3.898845	.407545	.629345	.596298
.026283	4.079175	.398062	.615852	.580534
.024745	4.177734	.393165	.608814	.572309
.023243	4.282607	.388149	.601581	.563839
.021771	4.394598	.383020	.594100	.555076
.020340	4.514196	.377744	.586438	.546068
.017583	4.780675	.366775	.570311	.527108
.016262	4.929675	.361046	.561848	.517130
.014980	5.091023	.355138	.553092	.506793
.013737	5.266621	.349046	.543983	.496048
.012536	5.458381	.342741	.534527	.484885
.011377	5.668799	.336203	.524695	.473265
.010261	5.901168	.329419	.514415	.461124
.009191	6.159118	.322351	.503678	.448458
.008168	6.447475	.314966	.492433	.435174
.007192	6.772417	.307225	.480617	.421232
.006266	7.142177	.299092	.468127	.406537
.005391	7.567233	.290498	.454903	.391004
.004570	8.062065	.281372	.440832	.374507
.003805	8.647017	.271621	.425766	.356910

TABLE 9-4 EQUATIONS FOR THE PARAMETERS OF TABLE 9-3

Definitions ${ }^{a}$

$$
\begin{aligned}
E(e) & =\int_{0}^{\pi / 2} \sqrt{1-e^{2} \sin ^{2} \phi} d \phi \\
K(e) & =\int_{0}^{\pi} \frac{d \phi}{\sqrt{1-e^{2} \sin ^{2} \phi}} \\
e & =\sqrt{1-(b / a)^{2}} \quad k=b / a
\end{aligned}
$$

Equations
$\frac{A}{B}=\frac{K(e)-E(e)}{\left(1 / k^{2}\right) E(e)-K(e)}$
$n_{a}=\frac{1}{k}\left(\frac{2 k E(e)}{\pi}\right)^{1 / 3} \quad n_{b}=\left(\frac{2 k E(e)}{\pi}\right)^{1 / 3}$
$n_{c}=\frac{1}{E(e)}\left(\frac{\pi^{2} k E(e)}{4}\right)^{1 / 3} \quad n_{d}=\frac{K(e)}{[E(e)]^{1 / 3}}\left(\frac{2 k}{\pi}\right)^{2 / 3}$
${ }^{a}$ Elliptic integrals $E(e)$ and $K(e)$ are tabulated and readily available in mathematical handbooks. Quantities a and b are semimajor and semiminor axes of the contact ellipse, respectively.

TABLE 9-5 CONTACT STRESSES BETWEEN TWO LONG CYLINDRICAL BODIES IN LINE CONTACT SLIDING AGAINST EACH OTHER ${ }^{a}$

Notation$\begin{aligned} 2 b & =\text { width of contact area, Eq. }(9.18 \mathrm{a}) \\ \mu & =\text { friction coefficient } \\ \Delta & =\text { see Eq. }(9.18 \mathrm{~b}) \\ q & =\text { distributed (line) load }(F / L) \end{aligned}$				
Maximum Stress	$\mu=0$	$\mu=\frac{1}{12}$	$\mu=\frac{1}{6}$	$\mu=\frac{1}{3}$
Maximum tensile principal stress, occurs near the surface at $x=-b$	0	$\frac{2}{12} \frac{b}{\Delta}$	$\frac{2}{6} \frac{b}{\Delta}$	$\frac{2}{3} \frac{b}{\Delta}$
Maximum compressive principal stress, occurs near the surface between $x=0$ and $x=0.3 b$	$-\frac{b}{\Delta}$	$-1.09 \frac{b}{\Delta}$	$-1.19 \frac{b}{\Delta}$	$-1.40 \frac{b}{\Delta}$
Maximum shear stress (occurs at the surface for $\mu \geq \frac{1}{10}$)	$0.300 \frac{b}{\Delta}$	$0.308 \frac{b}{\Delta}$	$0.339 \frac{b}{\Delta}$	$0.435 \frac{b}{\Delta}$
Maximum octahedral shear stress (occurs at the surface for $\mu \geq \frac{1}{10}$)	$0.272 \frac{b}{\Delta}$	$0.265 \frac{b}{\Delta}$	$0.277 \frac{b}{\Delta}$	$0.368 \frac{b}{\Delta}$

[^18]
C H A P T E R
 10

Dynamic Loading

10.1 Notation 452
10.2 Classification and Source of Dynamic Loadings 453
10.3 Vibration Fundamentals 453
Simple Kinematics 453
Harmonic Motion 454
Single-Degree-of-Freedom System 456
General Equation of Motion 456
Free Vibration without Damping 456
Free Vibration with Viscous Damping 457
Forced Vibration without Damping 458
Forced Vibration with Viscous Damping 460
Damping 463
Damping in Structures 464
10.4 Natural Frequencies 465
Approximate Formulas 467
Rayleigh's Formula 467
Dunkerley's Formula 468
10.5 Viscoelastic Elements 471
10.6 Human Body Vibrations 471
10.7 Impact Formulas 472
10.8 Energy-Absorbing Characteristics of Structures 474
10.9 Dynamic Behavior of Materials 479
10.10 Increasing the Dynamic Strength of Structures and Minimizing Dynamic Effects 481
Geometric Configuration 481
Material Properties 481
Loading 481
References 482
Tables 483

Dynamic loading usually results in higher displacements and stresses than the same load would if it were applied very slowly. Most of the following chapters include formulas for natural frequencies as well as structural matrices that are used, as discussed in Appendix III, in the calculation of dynamic responses of structural members and mechanical systems. This chapter includes formulas that are useful in the dynamic design of mechanical systems subject to vibration or impact loading. Also, some fundamentals of vibration engineering are summarized, including formulas for natural frequencies and spring constants for simple systems. The following chapters on particular structural members have tables with formulations for dynamic responses, in particular for natural frequencies.

10.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F for force, and T for time.

A Cross-sectional area $\left(L^{2}\right)$
B Energy coefficient
c Damping coefficient $(F T / L)$ or distance from centroid of section to its outermost fiber (L)
c_{c} Critical damping coefficient, $c_{c}=2 \sqrt{k m}=2 m \omega_{n}(F T / L)$
E Modulus of elasticity $\left(F / L^{2}\right)$
f Frequency of vibration $(1 / T)$
g Gravitational acceleration, $g=32.16 \mathrm{ft} / \mathrm{s}^{2}$ or $386 \mathrm{in} . / \mathrm{s}^{2}$ or $980 \mathrm{~cm} / \mathrm{s}^{2}$ or $9.80 \mathrm{~m} / \mathrm{s}^{2}$
G Shear modulus of elasticity $\left(F / L^{2}\right)$
h Height of falling body (L)
I Moment of inertia of cross section $\left(L^{4}\right)$
$I_{p i}$ polar mass moment of inertia of concentrated mass at point $i\left(M L^{2}\right)$
k Spring constant or stiffness (F / L)
k_{t} Torsional stiffness ($F L / \mathrm{rad}$)
L Length of member (L)
m, M_{i} Concentrated mass (M)
n Impact factor
P Dynamic force (F)
R Modulus of resilience of material $\left(F / L^{2}\right)$
R_{u} Modulus of toughness $\left(F / L^{2}\right)$
T Transmissibility or kinetic energy or torsional moment or period
U Strain energy (FL)
U_{m} Allowable energy absorbed in member or structure ($F L$)
V Potential energy ($F L$)
W Weight of member or structure (F)
x Displacement (L)
\dot{x} Velocity $=v,(L / T)$
\ddot{x} Acceleration $=a,\left(L / T^{2}\right)$
$x_{\text {st }}$ Static displacement (L)
δ Logarithmic decrement or dynamic displacement of structure
δ_{s} Static displacement of a system or deflection of beam with some weights not considered (L)
$\delta_{\text {st }}$ Static displacement or deflection of a beam with all weights considered (L)
ζ Fraction of critical damping, $=c / c_{c}$
θ Phase angle (rad)
v Poisson's ratio
ρ Mass per unit length, $=\rho^{*} A(M / L)$
ρ^{*} Mass per unit volume $\left(M / L^{3}\right)$
$\sigma_{y s}$ Yield stress $\left(F / L^{2}\right)$
ψ Phase angle (rad)
ω Angular frequency (rad/s)
ω_{d} Damped natural frequency ($\mathrm{rad} / \mathrm{s}$)
ω_{n} Natural frequency ($\mathrm{rad} / \mathrm{s}$)

10.2 CLASSIFICATION AND SOURCE OF DYNAMIC LOADINGS

Loads are often classified as static or dynamic loadings on the basis of the loading rate. In general, if the time of load application is greater than about three times the natural period of vibration of a structure, the loading can be specified as being static. If the time of load application is less than about half the natural period of vibration, the structure is considered to be loaded in impact or shock (i.e., the loading is dynamic). Another type of dynamic loading is called inertial loading, which is the resisting force that must be overcome in order to cause a structure to change its velocity.

10.3 VIBRATION FUNDAMENTALS

Simple Kinematics

Formulas for the kinematics of a body involve the acceleration, velocity v, and displacement x as functions of time, without referring to the force causing the motion. The formulas for free fall and constant acceleration motion are as follows:

	Free Fall	Constant Acceleration
Displacement	$x=\frac{g t^{2}}{2}=\frac{v t}{2}=\frac{v^{2}}{2 g}$	$x=v_{0} t+\frac{n g t^{2}}{2}=\frac{\left(v+v_{0}\right) t}{2}=\frac{v^{2}-v_{0}^{2}}{2 n g}$
	x is the height of	
free fall		
Time	$t=\frac{v}{g}=\left(\frac{2 x}{g}\right)^{1 / 2}$	$t=\frac{v-v_{0}}{n g}=\frac{\left(v_{0}^{2}+2 n g x\right)^{1 / 2}-v_{0}}{n g}$
Velocity	$v=g t=(2 g x)^{1 / 2}$	$v=v_{0}+n g t=\left(v_{0}^{2}+2 n g x\right)^{1 / 2}$
Acceleration	g	$n g$

Here v_{0} is the initial velocity and $n g$ is the constant acceleration, with n a prescribed number.

Harmonic Motion

Vibration in general is a periodic motion. Periodic motions can be expressed as a sum of harmonic motions. A body in simple, undamped harmonic motion moves with a

Figure 10-1a: Relationship between frequency f and the amplitudes of displacement x_{0}, velocity v_{0}, and acceleration a_{0} in SI units. $1 \mathrm{~Hz}=1$ cycle $/ \mathrm{s} ; 1 g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
displacement x,

$$
\begin{equation*}
x=x_{0} \sin \omega t=x_{0} \sin 2 \pi f t \tag{10.1}
\end{equation*}
$$

where x_{0} is the amplitude of the displacement, ω the angular frequency in radians per second, and f the frequency in cycles per second. The period $T=1 / f=2 \pi / \omega$. The velocity $v=\dot{x}$ and acceleration $a=\dot{v}=\ddot{x}$ are given by

$$
\begin{align*}
& v=\dot{x}=x_{0} \omega \cos \omega t=x_{0}(2 \pi f) \cos 2 \pi f t=v_{0} \cos \omega t \\
& a=\ddot{x}=-x_{0} \omega^{2} \sin \omega t=-x_{0}(2 \pi f)^{2} \sin 2 \pi f t=a_{0} \sin \omega t \tag{10.2}
\end{align*}
$$

where v_{0} and a_{0} are the velocity and acceleration amplitudes, respectively. Figure 10-1 exhibits the relationships between the amplitudes x_{0}, v_{0}, and a_{0} as functions of frequency. SI units are adopted in Fig. 10-1a and U.S. Customary units in Fig. 101 b . If two quantities of x_{0}, v_{0}, a_{0}, and f (frequency) are known, the other two can be found from Fig. 10-1. For example, a harmonic motion with $x_{0}=0.0001 \mathrm{~m}$ and $f=50 \mathrm{~Hz}$ corresponds to point A in Fig. 10-1a. It follows from this figure that the velocity amplitude v_{0} is approximately $0.032 \mathrm{~m} / \mathrm{s}$ and the acceleration amplitude a_{0} is about $1.02 \mathrm{~g}\left(9.9 \mathrm{~m} / \mathrm{s}^{2}\right)$.

Figure 10-1b: Relationship between frequency f and the amplitudes of displacement x_{0}, velocity v_{0}, and acceleration a_{0} in U.S. Customary units. $1 \mathrm{~Hz}=1$ cycle $/ \mathrm{s} ; 1 g=386 \mathrm{in} . / \mathrm{s}^{2}$.

Figure 10-2: Translational single-degree-of-freedom system.

Single-Degree-of-Freedom System

A mass m, spring k, and damper c translational motion system is shown in Fig. 10-2. The viscous damper c, which dissipates energy, is not considered to be a very accurate representation of the actual damping in most physical systems. Analogous quantities for a rotational system are shown in Table 10-1.

General Equation of Motion For the system of Fig. 10-2,

$$
\begin{equation*}
m \ddot{x}+c \dot{x}+k x=P \tag{10.3}
\end{equation*}
$$

Free Vibration without Damping For a system oscillating without applied loading and damping,

$$
\begin{equation*}
m \ddot{x}+k x=0 \tag{10.4}
\end{equation*}
$$

The solution is

$$
\begin{equation*}
x=C_{1} \sin \sqrt{k / m} t+C_{2} \cos \sqrt{k / m} t=C_{3} \sin \left(\omega_{n} t+\theta\right) \tag{10.5}
\end{equation*}
$$

where $C_{3}=\sqrt{C_{1}^{2}+C_{2}^{2}}$ and the phase angle $\theta=\tan ^{-1}\left(C_{2} / C_{1}\right)$.
The natural frequency is

$$
\omega_{n}=\sqrt{k / m} \quad(\mathrm{rad} / \mathrm{s})
$$

or

$$
\begin{align*}
f_{n} & =\frac{1}{T}=\frac{\omega_{n}}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \\
& =\frac{1}{2 \pi} \sqrt{\frac{k g}{W}}=\frac{1}{2 \pi} \sqrt{\frac{g}{\delta_{\mathrm{st}}}} \quad(\text { cycles/s) } \tag{10.6}
\end{align*}
$$

where the weight $W=m g$ and the static displacement $\delta_{\mathrm{st}}=W / k$.

Free Vibration with Viscous Damping Including damping, the equation of motion for the free vibration is

$$
\begin{equation*}
m \ddot{x}+c \dot{x}+k x=0 \tag{10.7}
\end{equation*}
$$

The solution depends on whether c is equal to, greater than, or less than the critical damping coefficient c_{c}, where

$$
c_{c}=2 \sqrt{k m}=2 m \omega_{n}
$$

The ratio $\zeta=c / c_{c}$ is known as the fraction of critical damping or the percentage of damping if it is written as a percentage.

If $c=c_{c}(\zeta=1)$, the case of critical damping, there is no oscillation and the solution is

$$
\begin{equation*}
x=\left(C_{1}+C_{2} t\right) e^{-c t / 2 m} \tag{10.8}
\end{equation*}
$$

If $c / c_{c}=\zeta>1$, the system is overdamped, so that the mass does not oscillate but returns to its equilibrium position. The solution is

$$
\begin{equation*}
x=e^{-c t / 2 m}\left(C_{1} e^{\omega_{n} \sqrt{\zeta^{2}-1} t}+C_{2} e^{-\omega_{n} \sqrt{\zeta^{2}-1} t}\right) \tag{10.9}
\end{equation*}
$$

If $c / c_{c}<1$, the system is underdamped. The solution is

$$
\begin{align*}
x & =e^{-c t / 2 m}\left(C_{1} \sin \omega_{d} t+C_{2} \cos \omega_{d} t\right) \\
& =C_{3} e^{-c t / 2 m} \sin \left(\omega_{d} t+\theta\right) \tag{10.10}
\end{align*}
$$

where $C_{3}=\left(C_{1}^{2}+C_{2}^{2}\right)^{1 / 2}$ and $\theta=\tan ^{-1}\left(C_{2} / C_{1}\right)$ is the phase angle. Thus, after being disturbed, an underdamped system oscillates with a continuously decreasing amplitude, with the damped natural frequency ω_{d} that is related to the undamped natural frequency by (Fig. 10-3)

$$
\begin{equation*}
\omega_{d}=\sqrt{k / m-c^{2} / 4 m^{2}}=\omega_{n}\left(1-\zeta^{2}\right)^{1 / 2} \tag{10.11}
\end{equation*}
$$

With each cycle the amplitude of an underdamped system decreases. The logarithmic decrement δ is the natural logarithm of the ratio of the amplitudes of two successive cycles:

$$
\begin{equation*}
\delta=\ln \frac{x_{i}}{x_{i+1}}\left(\text { or } \quad \frac{x_{i+1}}{x_{i}}=e^{-\delta}\right)=\frac{\pi c}{m \omega_{d}}=\frac{2 \pi \zeta}{\left(1-\zeta^{2}\right)^{1 / 2}} \tag{10.12}
\end{equation*}
$$

For ζ less than about 0.1,

$$
\begin{equation*}
\delta \approx 2 \pi \zeta \tag{10.13}
\end{equation*}
$$

Figure 10-3: Damped natural frequency as it varies with critical damping.

Forced Vibration without Damping For the sinusoidal force $P=P_{0} \sin \omega t$, the governing equation for an undamped system is

$$
\begin{equation*}
m \ddot{x}+k x=P_{0} \sin \omega t \tag{10.14}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
x=C_{1} \sin \omega_{n} t+C_{2} \cos \omega_{n} t+\frac{P_{0} / k}{1-\omega^{2} / \omega_{n}^{2}} \sin \omega t \tag{10.15}
\end{equation*}
$$

where $\omega_{n}=\sqrt{k / m}$. The first two terms describe oscillation at the undamped natural frequency ω_{n}. The coefficient C_{2} is the initial displacement, and the coefficient C_{1} in terms of the initial velocity is

$$
\begin{equation*}
C_{1}=\frac{v_{0}}{\omega_{n}}-\frac{\omega P_{0} / \omega_{n} k}{1-\omega^{2} / \omega_{n}^{2}} \tag{10.16}
\end{equation*}
$$

The third term gives the steady-state oscillation

$$
\begin{equation*}
x=\frac{P_{0} / k}{1-\omega^{2} / \omega_{n}^{2}} \sin \omega t \tag{10.17}
\end{equation*}
$$

or in terms of the peak displacement (amplitude) x_{0},

$$
\begin{equation*}
\frac{x_{0}}{x_{\mathrm{st}}}=\frac{1}{1-\omega^{2} / \omega_{n}^{2}}=\text { magnification factor } \tag{10.18}
\end{equation*}
$$

where $x_{\text {st }}=P_{0} / k$ is the static displacement due to force P_{0}. The magnification factor is plotted in Fig. 10-4. When $\omega / \omega_{n}<1$, the force and motion are in phase and the magnification factor is positive. When $\omega / \omega_{n}>1$, the force and motion are out of

Figure 10-4: Magnification factor and transmissibility for an undamped system.
phase and the magnification is negative. The dashed line indicates the absolute value of the curve for $\omega / \omega_{n}>1$. When $\omega=\omega_{n}$, resonance occurs and the amplitude increases steadily with time.

Force transmissibility is defined as $T=P_{t} / P$, where $P_{t}=k x$, with x of Eq. (10.17). Then

$$
\begin{equation*}
T=\frac{1}{1-\omega^{2} / \omega_{n}^{2}} \tag{10.19}
\end{equation*}
$$

which equals x_{0} / x_{st}.
If the base or foundation of the system moves as $u=u_{0} \sin \omega t$ and the applied force is zero, the governing equation is

$$
\begin{equation*}
m \ddot{x}=-k\left(x-u_{0} \sin \omega t\right) \tag{10.20}
\end{equation*}
$$

where x is the displacement of the mass in absolute coordinates.
The solution is the same as Eq. (10.15), with P_{0} / k replaced by u_{0}. The motion transmissibility is

$$
\begin{equation*}
\frac{x_{0}}{u_{0}}=\frac{1}{1-\omega^{2} / \omega_{n}^{2}}=T \tag{10.21}
\end{equation*}
$$

the same value as the force transmissibility.

Forced Vibration with Viscous Damping For the steady-state loading $P=$ $P_{0} \sin \omega t$, the equation of motion for a system with viscous damping is

$$
\begin{equation*}
m \ddot{x}+c \dot{x}+k x=P_{0} \sin \omega t \tag{10.22}
\end{equation*}
$$

The solution is

$$
\begin{align*}
x= & e^{-c t / 2 m}\left(C_{1} \sin \omega_{d} t+C_{2} \cos \omega_{d} t\right) \\
& +\frac{\left(P_{0} / k\right) \sin (\omega t-\theta)}{\sqrt{\left(1-\omega^{2} / \omega_{n}^{2}\right)^{2}+\left(2 \zeta \omega / \omega_{n}\right)^{2}}} \tag{10.23}
\end{align*}
$$

with

$$
\theta=\tan ^{-1} \frac{2 \zeta \omega / \omega_{n}}{1-\omega^{2} / \omega_{n}^{2}}
$$

which is plotted in Fig. 10-5. The term of Eq. (10.23) involving C_{1} and C_{2} decays due to damping, leaving the steady-state motion of amplitude

$$
\begin{equation*}
x_{0}=\frac{P_{0} / k}{\sqrt{\left(1-\omega^{2} / \omega_{n}^{2}\right)^{2}+\left(2 \zeta \omega / \omega_{n}\right)^{2}}} \tag{10.24}
\end{equation*}
$$

where P_{0} / k is the static displacement x_{st} due to force P_{0}.

Figure 10-5: Phase angle θ as a function of ω / ω_{n} and ζ.

Figure 10-6: Magnification factor for a damped system. Maximum magnification factor occurs at $\omega / \omega_{n}=\sqrt{1-2 \zeta^{2}}$.

The magnification factor is the ratio x_{0} / x_{st}, which is plotted in Fig. 10-6. Force transmissibility T is obtained from

$$
\begin{equation*}
\frac{P_{t}}{P_{0}}=\frac{\text { force transmitted to foundation }}{\text { applied force amplitude }}=\frac{c \dot{x}+k x}{P_{0}}=T \sin (\omega t-\psi) \tag{10.25a}
\end{equation*}
$$

where

$$
\begin{align*}
T & =\sqrt{\frac{1+\left(2 \zeta \omega / \omega_{n}\right)^{2}}{\left(1-\omega^{2} / \omega_{n}^{2}\right)^{2}+\left(2 \zeta \omega / \omega_{n}\right)^{2}}} \tag{10.25b}\\
\psi & =\tan ^{-1} \frac{2 \zeta\left(\omega / \omega_{n}\right)^{3}}{1-\omega^{2} / \omega_{n}^{2}+4 \zeta^{2} \omega^{2} / \omega_{n}^{2}} \tag{10.25c}
\end{align*}
$$

The transmissibility T and phase angle ψ are shown in Figs. 10-7 and 10-8.
In the case of displacement $u(t)$ applied to the base (foundation), the equation of motion is

$$
\begin{equation*}
m \ddot{x}+c(\dot{x}-\dot{u})+k(x-u)=0 \tag{10.26}
\end{equation*}
$$

Figure 10-7: Force and motion transmissibility of a viscously damped system.

Figure 10-8: Phase angle ψ of force or motion transmission of a viscously damped system.

For $u=u_{0} \sin \omega t$, the steady-state response is

$$
\begin{equation*}
x=T u_{0} \sin (\omega t-\psi) \tag{10.27}
\end{equation*}
$$

where T and ψ are defined in Eqs. (10.25b) and (10.25c). The motion transmissibility T is thus given in

$$
\begin{align*}
\frac{x}{u_{0}} & =\frac{\text { displacement of mass }}{\text { applied displacement (amplitude) or base }} \\
& =T \sin (\omega t-\psi) \tag{10.28}
\end{align*}
$$

Figures 10-7 and 10-8 illustrate this transmissibility. Note that the transmissibility is less than 1 when the excitation frequency is greater than $\sqrt{2}$ times the natural frequency.

A resonant frequency is the frequency at which a peak response occurs. The resonant frequencies of interest, all of which differ from the damped natural frequency $\omega_{d}=\omega_{n}\left(1-\zeta^{2}\right)^{1 / 2}$, are

Response	Resonant Frequency
Displacement	$\omega_{n}\left(1-2 \zeta^{2}\right)^{1 / 2}$
Velocity	ω_{n}
Acceleration	$\omega_{n} /\left(1-2 \zeta^{2}\right)^{1 / 2}$

For the percentage of damping in most physical systems, the differences in resonant frequencies are negligible.

Some damping coefficients are listed in Table 10-2.

Damping The amount of damping is measured by a quality factor Q, the magnification factor for velocity response at the undamped natural frequency:

$$
\begin{equation*}
Q=1 / 2 \zeta \tag{10.30}
\end{equation*}
$$

The same Q is often taken to be the magnification factor for displacement or acceleration, although these responses are slightly higher by the factor $1 /\left(1-\zeta^{2}\right)^{1 / 2}$. One refers to high- Q or low- Q systems.

The quality factor Q can be approximated from the sharpness or width of a response curve in the vicinity of a resonant frequency. Designate the width of a response curve as the frequency increment $\Delta \omega$ measured at the half-power point (i.e., peak response $/ \sqrt{2}$), as shown in Fig. 10-9. Then for $\zeta<0.1, Q$ can be approximated by

$$
\begin{equation*}
Q \approx \omega_{n} / \Delta \omega \tag{10.31}
\end{equation*}
$$

Figure 10-9: Velocity magnification factor showing the bandwidth at the half-power point.

Damping in Structures

Damping can significantly affect the dynamic response of a structure. For example, for 1% damping (damping factor $\zeta=c / c_{c}=0.01$) the peak response is approximately 50% that for zero damping. This decrease in response due to damping occurs in all structures and is a function of the material and the type of construction. The amount of damping also depends on the level of stress in the member, typically measured by how high the stresses in a structural component are relative to the yield stress for the material [10.1, 10.2].

	Nominal Stress level in Structural Component (\% damping)	Stress at Yield in Structural Component (\% damping)
Steel		
\quad Welded	$2-3$	$5-7$
Bolted	$5-7$	$10-15$
Riveted	$5-7$	$10-15$
Concrete		
\quad Prestressed	$2-3$	$5-7$
\quad Reinforced	$2-3$	$7-10$
Wood		
\quad Bolted	$5-7$	$10-15$
Nailed	$5-7$	$15-20$

The percent damping typically found in various structures is listed in Table 11-18.

10.4 NATURAL FREQUENCIES

The natural frequencies for various structural members and mechanical systems are listed throughout this book. For more complex structures, the structural matrices provided in most of the chapters are available for computing the natural frequencies. Table 10-3 contains natural frequencies for a few commonly occurring simple systems. Chapters with formulas for structural members also contain tables for natural frequencies. For example, see Chapter 16 for formulas for natural frequencies for rings and curved bars. Also, Tables 11-12 to 11-16 contain natural frequency formulas for a variety of beams, including tapered sections. Table 11-17 lists vibration data for multistory buildings.

It was shown in Section 10.3 that the fundamental natural frequency ω_{n} can be obtained using $\omega_{n}=\sqrt{k / m}$ if the mass m and spring constant k are known. For a rigid mass supported by massless elastic members, the spring constant is the force at the attachment point of the mass due to a unit displacement at this attachment point. Tables $10-4$ and $10-5$ provide spring constants of some structural members and systems. These can be used to develop models of structures and machines as single-degree-of-freedom systems and then to apply

$$
\begin{equation*}
\omega_{n}=\sqrt{k / m} \tag{10.32}
\end{equation*}
$$

to find the fundamental frequency. In the case of torsional systems

$$
\begin{equation*}
\omega_{n}=\sqrt{k_{t} / I_{p i}} \tag{10.33}
\end{equation*}
$$

where k_{t} is the torsional stiffness (load per radian) and $I_{p i}$ is the polar mass moment of inertia. The bending rotation stiffness k_{θ} of Table 10-4 is handled similar to the torsional stiffness k_{t}. Mass for use in Eq. (10.32) and mass moment of inertia for Eq. (10.33) are provided in Table 10-6.

Example 10.1 Single Mass Beam System Find the natural frequency for bending motion of the single mass beam system of Fig. 10-10. Treat the beam as being massless.

The single degree of freedom is chosen to be the deflection of the beam at the point mass. The spring constant is given by case 8 in Table 10-4 as

$$
\begin{equation*}
k=3 E I L / a^{2} b^{2} \tag{1}
\end{equation*}
$$

Figure 10-10: Example 10.1: single mass beam system.

The natural frequency for bending motion of the single mass beam system is

$$
\begin{equation*}
\omega_{n}=\sqrt{\frac{k}{m}}=\sqrt{\frac{k}{M_{1}}}=\frac{1}{a b} \sqrt{\frac{3 E I L}{M_{1}}} \tag{2}
\end{equation*}
$$

If the mass is at the center of the beam, (i.e., $a=b$), the natural frequency will be

$$
\begin{equation*}
\omega_{n}=\frac{4}{L^{2}} \sqrt{\frac{3 E I L}{M_{1}}}=\sqrt{\frac{48 E I}{L^{3} M_{1}}} \tag{3}
\end{equation*}
$$

Example 10.2 Mass Beam System with Flexible Supports Find the natural frequency of the system of Fig. 10-11.

Figure 10-11: Example 10.2: mass beam system with flexible supports.

The method used here is similar to that of Example 10.1. The spring constant of the beam remains

$$
\begin{equation*}
k_{b}=3 E I L /\left(a^{2} b^{2}\right) \tag{1}
\end{equation*}
$$

The spring constants of the flexible supports are k_{1} and k_{2}. The equivalent spring constant k_{s} of the beam support system is from case 3 of Table 10-4:

$$
\begin{equation*}
k_{s}=\frac{(a+b)^{2}}{a^{2} / k_{2}+b^{2} / k_{1}} \tag{2}
\end{equation*}
$$

From case 1 of Table 10-4, the equivalent stiffness of the entire system, which is arranged in series, is

$$
\begin{equation*}
k=k_{b} k_{s} /\left(k_{b}+k_{s}\right) \tag{3}
\end{equation*}
$$

Therefore, the natural frequency of the mass beam system with flexible supports is

$$
\begin{equation*}
\omega_{n}=\sqrt{k / m}=\sqrt{k_{b} k_{s} / M_{1}\left(k_{b}+k_{s}\right)} \tag{4}
\end{equation*}
$$

Approximate Formulas

Two approximate methods for calculating the fundamental natural frequency are presented in this section. Rayleigh's method provides an approximation that approaches the correct natural frequency from above and Dunkerley's method approaches from below.

Rayleigh's Formula Rayleigh's formula can be derived by setting the maximum potential energy of a system equal to the maximum kinetic energy of the system vibrating at the fundamental natural frequency. Suppose that a system is discretized as lumped masses connected by flexible elements (e.g., springs). For example, a beam could be modeled with concentrated masses connected by beam elements as shown in Fig. 10-12. The static displacement $\delta_{\text {sti }}$ at the i th node is found from an analysis of the system with weights W_{i}. In the case of the beam of Fig. 10-12, $\delta_{\mathrm{st} i}$ is the deflection of the i th weight obtained from an analysis of the static response of the beam with all the weights attached. The maximum potential energy would be

$$
\begin{equation*}
V_{\max }=\frac{1}{2} \sum_{i=1}^{p} W_{i} \delta_{\mathrm{st} i}=\frac{g}{2} \sum_{i=1}^{p} M_{i} \delta_{\mathrm{st} i} \tag{10.34}
\end{equation*}
$$

where M_{i} is the mass of weight W_{i}.
If the beam oscillates sinusoidally at the natural frequency ω_{n}, the maximum velocity of the i th mass is $\omega_{n} \delta_{\text {st } i}$ and the maximum kinetic energy is

$$
\begin{equation*}
T_{\max }=\frac{\omega_{n}^{2}}{2} \sum_{i=1}^{p} M_{i} \delta_{\mathrm{sti}}^{2} \tag{10.35}
\end{equation*}
$$

If Eq. (10.34) is set equal to Eq. (10.35), the fundamental natural frequency can be expressed as the formula

$$
\begin{equation*}
\omega_{n}=\sqrt{\frac{g \sum_{i=1}^{p} M_{i} \delta_{\mathrm{st} i}}{\sum_{i=1}^{p} M_{i} \delta_{\mathrm{st} i}^{2}}} \tag{10.36}
\end{equation*}
$$

Figure 10-12: Lumped mass model of a beam.

Dunkerley's Formula A formula that provides an approximate natural frequency that is below the actual value, is derived in many vibration textbooks. This is Dunkerley's formula, which takes the form

$$
\begin{equation*}
\frac{1}{\omega_{n}^{2}}=\frac{1}{\omega_{0}^{2}}+\frac{1}{\omega_{1}^{2}}+\frac{1}{\omega_{2}^{2}}+\cdots \tag{10.37}
\end{equation*}
$$

where ω_{0} is the fundamental natural frequency of the system with distributed mass when all lumped masses are set to zero. Also, ω_{i} is the natural frequency of the system if all but the i th, $i=1,2,3, \ldots$, mass has been set equal to zero. Often, $\omega_{i}, i=1,2,3, \ldots$, are obtainable by simple inspection, or by using Table 10-3.

Example 10.3 Natural Frequencies of a Two-Story Building: A Shear Building Estimate the lowest natural frequency for the lateral motion of the two-story building in Fig. 10-13a. Use Dunkerley's method.

(a)

(b)

(c) Configuration for computing ω_{1} for Dunkerley's method
(d) Configuration for computing ω_{2} for Dunkerley's method

Figure 10-13: Two-story building model.

Assume that the damping is small and negligible. Furthermore, to establish a feasible model, assume that (1) the mass of the building is concentrated at the floors; (2) the floors or floor slabs are rigid whereas the two columns are flexible; (3) the joints between the floor slabs and the columns are fixed against rotation; and (4) the axial forces in the columns can be ignored. Because of the second assumption, lateral deflection is the result of column flexure, and the third assumption means that the columns should be treated as fixed-fixed beams, and the final assumption implies that the floors remain horizontal during the motion. Such a model of a building is referred to as a shear building since its motion can be shown to resemble the response of a cantilever beam loaded with shear forces.

The building can be idealized as a series of columns attached to masses as shown in Fig. 10-13 b. The spring constant for a uniform beam with both ends fixed is (Table 10-4, case 7)

$$
\begin{equation*}
k=\frac{12 E I}{L^{3}} \tag{1}
\end{equation*}
$$

where I is the total moment inertia for all of the columns. For this example, let $W_{1}=W_{2}=W, I_{1}=2 I_{2}$, and $L_{1}=L_{2}=L$. Then $k_{1}=2\left(12 E I / L^{3}\right)$ and $k_{2}=12 E I / L^{3}$. The exact natural frequencies of this two mass model are

$$
\begin{align*}
& \left(\omega^{2}\right)_{1 \text { st frequency }}=0.586\left(\frac{12 E I g}{W L^{3}}\right) \\
& \left(\omega^{2}\right)_{2 \text { nd frequency }}=3.414\left(\frac{12 E I g}{W L^{3}}\right) \tag{2}
\end{align*}
$$

For a single-degree-of-freedom system of mass m and stiffness $k, \omega^{2}=\sqrt{k / m}$. For the two-story building,

$$
\begin{align*}
& \omega_{1}^{2}=\frac{k_{1}}{m_{1}}=\frac{k_{1}}{W_{1} / g} \quad \text { (Fig. 10-13c) } \\
& \omega_{2}^{2}=\frac{k_{1} k_{2}}{\left(k_{1}+k_{2}\right) m_{2}}=\frac{k_{1} k_{2}}{\left(k_{1}+k_{2}\right) W_{2} / g} \tag{3}
\end{align*}
$$

where k_{2} is taken from case 1 , Table 10-5. Dunkerley's method yields

$$
\begin{equation*}
\frac{1}{\omega_{n}^{2}}=\frac{m}{k_{1}}+\frac{k_{1} k_{2}}{\left(k_{1}+k_{2}\right) m_{2}} \tag{4}
\end{equation*}
$$

For the case of $k_{1}=2 k_{2}=2 k, m_{1}=m_{2}=m=W / g$,

$$
\begin{equation*}
\omega_{n}^{2}=0.5\left(\frac{12 E I g}{W L^{3}}\right) \tag{5}
\end{equation*}
$$

Note that this approximation is below the first natural frequency of (2).

Example 10.4 Upper and Lower Bounds for a Fundamental Frequency Find approximations above and below the fundamental natural frequency of the beam of Fig. 10-14. This example will illustrate how simple static measurements can be used to approximate the frequency. Neglect the weight of the beam segments.

Suppose that the following static measurements are taken:

		Deflection, $\delta_{\text {sti }}$ (in.)	
Location	Static Weight (lb)	Due to Individual Weight	Due to All Weights Applied Simultaneously
1	1000	0.04	0.08
2	5000	0.12	0.25
3	2000	0.08	0.16

To compute an upper bound, use Rayleigh's method. From Eq. (10.36),

$$
\begin{equation*}
\omega_{n}^{2}=\frac{\sum W_{i} \delta_{\mathrm{st} i}}{\sum m_{i} \delta_{\mathrm{st} i}^{2}} \tag{1}
\end{equation*}
$$

where $\delta_{\text {sti }}$ is the deflection at the i th location due to all of the weights applied simultaneously. From Eq. (10.36),

$$
\begin{equation*}
\omega_{n}^{2}=\frac{1000(0.08)+5000(0.25)+2000(0.16)}{\frac{1}{386}\left[1000(0.08)^{2}+5000(0.25)^{2}+2000(0.16)^{2}\right]}=1720.98 \tag{2}
\end{equation*}
$$

or $\omega_{n} \simeq 41.48 \mathrm{rad} / \mathrm{s}$ is an upper bound estimate.
Use Dunkerley's method to find the lower bound. The deflections along the beam due to the weights applied singly at location i are $\delta_{s i}$. Then

$$
\begin{equation*}
\omega_{i}^{2}=\frac{k_{i}}{m_{i}}=\frac{W_{i} / \delta_{s i}}{W_{i} / g}=\frac{g}{\delta_{s i}} \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\omega_{1}^{2}=\frac{g}{0.04}, \quad \omega_{2}^{2}=\frac{g}{0.12}, \quad \omega_{3}^{2}=\frac{g}{0.08} \tag{4}
\end{equation*}
$$

Figure 10-14: Beam for Example 10.4

Therefore,

$$
\begin{equation*}
\frac{1}{\omega_{n}^{2}}=\frac{1}{g}(0.04+0.12+0.08)=\frac{0.24}{g}=1608.33 \quad \text { or } \quad \omega_{n} \approx 40.10 \mathrm{rad} / \mathrm{s} \tag{5}
\end{equation*}
$$

We conclude that the first natural frequency is bounded as

$$
\begin{equation*}
40.10<\omega_{n}<41.48 \tag{6}
\end{equation*}
$$

10.5 VISCOELASTIC ELEMENTS

Linear viscoelastic models are formed of linear springs and linear viscous dashpots, with no masses. For a linear spring,

$$
\begin{equation*}
\sigma=R \epsilon \tag{10.38}
\end{equation*}
$$

where R is understood to be the stiffness, spring constant, or modulus of elasticity. For the linear viscous dashpot,

$$
\begin{equation*}
\sigma=\eta \frac{d \epsilon}{d t}=\eta \dot{\epsilon} \tag{10.39}
\end{equation*}
$$

where η is the coefficient of viscosity. Some standard viscoelastic elements are listed in Table 10-7.

10.6 HUMAN BODY VIBRATIONS

The human body can be considered to be a viscoelastic mechanical system, and as such, a human possesses natural frequencies and attendant resonant responses. ISO standards prescribe techniques for determining whole-body vibrations and for measuring and predicting accompanying health effects [10.3]. The natural frequencies found in the biomechanics literature vary a great deal, primarily because human subjects vary so much. Also, there is the problem of inaccessibility of many body parts. Usually, shake table investigations provide the whole-body vibration characteristics, while models are utilized to study body parts. Ranges of natural frequencies for the whole body and body parts are listed in Table 10-8. Even these rather broad ranges of values should be treated as being approximate, since the dynamic behavior of internal organs depends on many factors.

Vibrations can have adverse effects on humans. Sometimes this is due to activating a resonant frequency in a body part. References [10.4] and [10.5] discuss the vibration frequency effects on a human. This ranges from vibrations between 0.2 and 0.6 Hz causing motion discomfort to vibrations above 1000 Hz being able to damage human tissue. The cardiovascular system can be damaged by vibrations in the 5 to

500 Hz range. Other vibration effects include:

Decline in quality of work	0.7 to 30 Hz
Adverse effect on vision	0.8 to 50 Hz
Trouble breathing	1.0 to 4 Hz
Hand and foot coordination problems	2 to 3 Hz
Chest pain	3 to 10 Hz

10.7 IMPACT FORMULAS

The excessively complex mathematics required for accurate analytical solutions of dynamic problems, the lack of precise knowledge of the properties of even conventional engineering materials, and the difficulties in adequately defining a complicated physical structure make it impractical in many cases to give a solution using a rigorous theory of dynamics. Therefore, approximate methods can be quite useful in engineering design. One method is to treat a dynamic load as a static load and to estimate the maximum static force and then to obtain the dynamic response by applying an "impact factor" to the static response.

The dynamic responses of simple elastic beam models subjected to impact loading are given in Table 10-9. These responses are found with an energy balance. The potential energy of the falling body changes into kinetic energy when it reaches the beam, and then the kinetic energy is absorbed by the beam when the body comes to rest. It is assumed that there is no energy loss associated with the local plastic deformation occurring at the point of impact or at the supports. Energy is thus conserved within the system. The material behaves elastically.

The formulas of Table 10-9 apply to the beam of Fig. 10-15, whose weight $\left(W_{b}\right)$ is considered to be concentrated at one location. Let δ_{s} be the initial deflection of the beam under its own weight and δ be the maximum total deflection of the beam after the impact of the body of weight W. The constant k represents the stiffness of the beam referenced to the point of contact of the falling body. The total maximum force P experienced by the beam is (case 1, Table 10-9)

$$
\begin{equation*}
P=\left(W+W_{b}\right)+\sqrt{W^{2}+2 W\left(W_{b}+k h\right)} \tag{10.41}
\end{equation*}
$$

Figure 10-15: Beam of weight W_{b} and body of weight W.

If the body W is suddenly applied to the beam from zero height, $h+\delta_{s}=0$ and, from Eq. (10.41), $2 W\left(W_{b}+k h\right)=2 W k\left(\delta_{s}+h\right)=0$. Then the maximum impact force would be

$$
\begin{equation*}
P=\left(W+W_{b}\right)+W=2 W+W_{b} \tag{10.42}
\end{equation*}
$$

The effect of the beam's inertia can be seen from Eq. (10.42). If the weight W_{b} of the beam is negligible, $W_{b} \approx 0$,

$$
\begin{equation*}
P=2 W \tag{10.43}
\end{equation*}
$$

So, this is why it is common to apply an impact factor of 2 to a static response to obtain dynamic effects.

In general, the impact factor n is defined as the dynamic force divided by the static load; that is,

$$
n=P /\left(W+W_{b}\right)
$$

where it is assumed that the weight of the beam is not negligible. From Eq. (10.42),

$$
\begin{equation*}
n=\frac{P}{W+W_{b}}=\frac{2 W+W_{b}}{W+W_{b}}=1+\frac{1}{1+W_{b} / W} \tag{10.44}
\end{equation*}
$$

The impact factor n decreases as the weight of the beam W_{b} increases (Fig. 10-16), because some of the energy of the falling weight is absorbed by the inertia of the beam.

The dynamic deflection in terms of the static load deflection is (Table 10-9)

$$
\begin{equation*}
\delta=\delta_{\mathrm{st}}+\sqrt{\delta_{\mathrm{st}}^{2}+2 h\left(\delta_{\mathrm{st}}-\delta_{s}\right)-\delta_{s}^{2}} \tag{10.45}
\end{equation*}
$$

where

$$
\delta=\frac{P}{k}, \quad \delta_{s}=\frac{W_{b}}{k}, \quad \delta_{\mathrm{st}}=\frac{W_{b}+W}{k}=\delta_{s}+\frac{W}{k}
$$

Figure 10-16: Effect of beam mass on the impact factor.

If $h+\delta_{s}=0$, Eq. (10.45) becomes

$$
\begin{equation*}
\delta=\delta_{\mathrm{st}}+\sqrt{\delta_{\mathrm{st}}^{2}+\delta_{S}\left(\delta_{s}-2 \delta_{\mathrm{st}}\right)} \tag{10.46}
\end{equation*}
$$

Thus, when $W_{b} / W \approx 0, \delta_{s} \approx 0$ and, as expected, $\delta=2 \delta_{\text {st }}$, while if

$$
\begin{equation*}
\frac{W}{W_{b}} \approx 0 \tag{10.47}
\end{equation*}
$$

we have

$$
\begin{equation*}
\delta=\delta_{s} \tag{10.48}
\end{equation*}
$$

In reality, the mass of the supporting structure is distributed over the beam, and thus only a portion of its mass is effective in reducing the dynamic deflection δ and the impact factor n. It has been shown [10.8] that the portion of the mass of the structure to be used is:

1. For a simply supported beam with concentrated weight at the midpoint,

$$
\begin{equation*}
W_{e}=0.486 W_{m} \tag{10.49}
\end{equation*}
$$

2. For a cantilever beam with a concentrated weight at the free end,

$$
\begin{equation*}
W_{e}=0.236 W_{m} \tag{10.50}
\end{equation*}
$$

where W_{m} is the total weight of the beam and W_{e} is the equivalent concentrated weight.

10.8 ENERGY-ABSORBING CHARACTERISTICS OF STRUCTURES

The strain energy for the bending of a beam is given by

$$
\begin{equation*}
U=\int_{0}^{L} \frac{M^{2}}{2 E I} d x \tag{10.51a}
\end{equation*}
$$

Consider a beam of length L and constant I for which M is constant. Then with $\sigma=M c / I$ (Chapter 3),

$$
\begin{equation*}
U=\sigma^{2} I L / 2 E c^{2} \tag{10.51b}
\end{equation*}
$$

The quantity c is the distance from the centroidal (neutral) axis of the beam to the outermost fiber. Equation (10.51b) can be extended to include other cases, including nonconstant M, by expressing it as

$$
\begin{equation*}
U=B \sigma^{2} I L / E c^{2} \tag{10.52}
\end{equation*}
$$

where B is a coefficient to account for particular boundary conditions and types of loading. Increasing the stress in the beam will increase its strain energy. Assume that σ is limited by the material's yield stress $\sigma_{y s}$. As the stress σ reaches its maximum value $\sigma_{y s}$, the strain energy becomes

$$
\begin{equation*}
U_{m}=B \sigma_{y s}^{2} I L / E c^{2} \tag{10.53}
\end{equation*}
$$

where U_{m} is the maximum allowable energy, or energy that can be absorbed elastically by the member in bending. The strain energy U in the beam exceeding the maximum allowable energy U_{m} can be chosen as a criterion of failure. In general, the potential and kinetic energy $V+T$ of the dynamic loads are converted into the internal energy of the beam and become the strain energy U. Thus,

$$
\begin{equation*}
U=V+T \tag{10.54}
\end{equation*}
$$

As with the relationship between stress σ and allowable stress $\sigma_{y s}$ in a static stress analysis, the design condition in a dynamic analysis with this energy approach is that

$$
\begin{equation*}
U_{\text {design }} \leq U_{m} \tag{10.55}
\end{equation*}
$$

Table 10-10 lists the specific formulas of Eq. (10.53) for some common member and load conditions. It is of interest to note that for all of the beams, the energyabsorbing capacity or maximum allowable energy U_{m} depends on the section property I / c^{2}. Denote this section property as

$$
\begin{equation*}
N=I / c^{2} \tag{10.56}
\end{equation*}
$$

For a rectangular cross section of height h and width $b, N=\left(\frac{1}{12} b h^{3}\right) /\left(\frac{1}{2} h\right)^{2}=$ $\frac{1}{3} b h=\frac{1}{3} A$, the section property depends only on the area of the cross section. Therefore, if the cross-sectional area is fixed, increasing the depth of a cross section will increase the section's static strength (by reducing its maximum stress, e.g.; $\sigma_{\max }=M c / I=6 M / A h$ for a rectangle) but with little or no increase in the energyabsorbing capacity indicated by Eq. (10.53).

Equation (10.53) also indicates that to obtain maximum energy-absorbing capacity for a member, we should design the member so that its maximum volume is subjected to the maximum allowable stress. For example, for a beam of rectangular section $\left(I / c^{2}=\frac{1}{3} b h\right)$ for which the entire volume is stressed to $\sigma_{y s}$, Eq. (10.53) becomes

$$
\begin{equation*}
U_{m}=B \frac{b h L \sigma_{y s}^{2}}{3 E}=\frac{B \sigma_{y s}^{2}}{3 E} V \tag{10.57}
\end{equation*}
$$

where $V=b h L$ is the volume of the beam with constant cross section. It is evident that U_{m} as defined in Eq. (10.57) is the maximum value of the allowable energy

Figure 10-17: Axial impact.

Figure 10-18: Constant-stress beam.
absorbed in the beam. When only a portion of the beam volume V is subject to the maximum allowable stress $\sigma_{y s}$, the allowable energy absorbed will be less than U_{m} of Eq. (10.57). Generally speaking, the energy-absorbing capacity will reach its highest value if this maximum allowable stress is uniform throughout the member. In the case of a member in axial tension (Fig. 10-17), a constant cross section throughout the member implies that the stress will be uniformly distributed over the entire volume. For impact loading, this corresponds to a configuration of the maximum energyabsorbing capacity (i.e., it can withstand the maximum dynamic loading).

For a beam, a constant bending stress along its entire length can sometimes be obtained by choosing a variable depth (Fig. 10-18). In this case, for a central concentrated force, the outermost fiber is stressed to about the same maximum value for the entire length of the member. The energy-absorbing capacity of the beam in Fig. 10-18 (case 9 of Table 10-10) is doubled compared to that in case 1 of Table 10-10.

For a static load, increasing the length of the beam will increase the bending moment M, with a corresponding increase in the beam stress ($\sigma=M c / I$). For an impact load, Eq. (10.53) shows that increasing the length of the beam will increase its maximum allowable energy. Thus, for the two beams in Fig. 10-19, it follows from Eq. (10.52) that the peak dynamic stresses for the two cases are related by $\sigma_{1}=(1 / \sqrt{2}) \sigma_{2}$.

Since N is proportional to the area of a section, not the shape, it can be concluded that the two beams of Fig. 10-20 have the same dynamic properties. However, their static stress characteristics determined by $\sigma=M c / I$ are distinctly different. Also, it is interesting to observe that the two tensile rods of Fig. 10-21 have the same strength under static loading. However, the rod in (b), with a uniform cross section, can absorb more energy and withstand a greater impact load.

The strain energy U in Eq. (10.51a) can be calculated directly from the external force by taking the beam as an elastic spring with the stiffness given by case 8 of

Figure 10-19: Dynamic characteristics of beams with identical cross sections: (a) case 1 with length L; (b) case 2 with length $2 L$.

Figure 10-20: Two identical rectangular beams with different orientations.

Figure 10-21: Stresses in rods.

Table 10-4 for simply supported ends. For other kinds of structures, similar reasoning can be used.

Example 10.5 Impact Force Suppose that a car has a bumper formed of an elastic beam and two springs as shown in Fig. 10-22. The car hits a tree at the center of the bumper with a speed v. Analyze the impact force on the bumper, neglecting the mass of the bumper. This impact force is the force transmitted to the car as a result of the crash.

First consider the deformation of the bumper (i.e., the displacement of the beam and the springs, under the impact load P), as shown in Fig. 10-22b. Let k_{r} and k_{b} be the stiffness coefficients of each spring and the beam, which can be obtained from case 1 of Table 10-4 for the spring and case 8 of Table 10-4 for the beam, if its ends are simply supported. Let δ_{r} and δ_{b} be the deformations of each spring and the beam center. Assume that the tree is strong enough to withstand the impact.

Let W_{c} be the car's weight. Then the kinetic energy of the car immediately before impact is

$$
\begin{equation*}
T=\left(W_{c} / 2 g\right) v^{2} \tag{1}
\end{equation*}
$$

The strain energy for the linear elastic deformation is given by

$$
\begin{align*}
U & =U_{\mathrm{spr}}+U_{\mathrm{bm}}=2\left(\frac{1}{2} k_{r} \delta_{r}^{2}\right)+\frac{1}{2} k_{b} \delta_{b}^{2} \tag{2}\\
& =k_{r}\left(P / 2 k_{r}\right)^{2}+\frac{1}{2} k_{b}\left(P / k_{b}\right)^{2} \\
& =\frac{1}{2} P^{2}\left(1 / 2 k_{r}+1 / k_{b}\right) \tag{3}
\end{align*}
$$

or by using case 4 of Table 10-5 to get the equivalent stiffness of the beam and spring system:

Figure 10-22: Example 10.5: (a) car and tree; (b) bumper composed of two springs and a beam.

$$
U=\frac{1}{2} P \delta=\frac{P}{2} \frac{P}{k}=\frac{P^{2}}{2}\left(\frac{1}{k_{b}}+\frac{1}{k_{r}+k_{r}}\right)=\frac{P^{2}}{2}\left(\frac{1}{2 k_{r}}+\frac{1}{k_{b}}\right)
$$

where

$$
\delta=\frac{P}{k}
$$

Set the strain energy U of the bumper equal to the kinetic energy of the moving car when it hits the tree. Use of (1) and (3) yields

$$
\frac{W_{c}}{2 g} v^{2}=\frac{P^{2}}{2}\left(\frac{1}{2 k_{r}}+\frac{1}{k_{b}}\right)
$$

Thus,

$$
\begin{equation*}
P^{2}=\frac{W_{c} v^{2} / g}{1 / 2 k_{r}+1 / k_{b}} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
P=\left(\frac{W_{c} v^{2} / g}{1 / 2 k_{r}+1 / k_{b}}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

Let $k=\left(1 / 2 k_{r}+1 / k_{b}\right)^{-1}$. Then

$$
\begin{equation*}
P=\left(k W_{c} v^{2} / g\right)^{1 / 2} \tag{6}
\end{equation*}
$$

where k is the bumper's stiffness coefficient.
Equation (6) indicates that the higher the bumper's stiffness, the greater the impact force. Of course, if the front end of a car is too flexible, intrusion into the passenger compartment may be a problem. Therefore, judicious selection of the stiffness of car components such as the bumper system is very important for reducing the effects of impact loading.

10.9 DYNAMIC BEHAVIOR OF MATERIALS

In most cases, the mechanical properties of materials under impact or shock loading differ from those under static loading. For example, the static stress-strain relation for iron is quite different from its dynamic material relation. The yield and ultimate strengths of materials tend to increase with increasing rate of strain, although there is little corresponding effect on a material's resistance to fracture. The effect of strain rate on high-strength steel is much greater than that on low-strength steels. For example, in terms of ultimate strength, a high strain rate increases the strength of SAE

4130 steel from 80,000 psi for static loading to over 400,000 psi for dynamic loading [10.9], whereas for SAE 4140 steel the increase is from 134,800 psi for static loading to about 150,000 psi for dynamic loading [10.10]. For annealed copper the increase is from 20,900 psi to $36,700 \mathrm{psi}$, while for brass the increase in strength due to increased strain rate is from 39,000 psi to 310,000 psi. Also, it has been shown that 2024 annealed aluminum increases from $65,000 \mathrm{psi}$ to $69,000 \mathrm{psi}$, while magnesium alloy varies from 44,000 to 51,000 psi. Most of these data are taken from tests with impact velocities greater than $200 \mathrm{ft} / \mathrm{sec}$.

Because of the complexity of the analysis required and the rather inadequate knowledge of dynamic behavior of materials, energy methods similar to those of this chapter are commonly used to determine the dynamic behavior. An example is the notched-bar impact test method (Chapter 4), in which a notch is placed in a standard specimen and the maximum energy absorbed is recorded as a measure of the dynamic characteristic of the material. The results of the notched-bar impact test are considered to be of limited value and can be misleading because the standard test conditions are far from the conditions faced in practice.

The notch effect on energy absorption can also be analyzed using the formulas of Table 10-10. For the tensile members shown in Fig. 10-23a, and b, assume that the notch induces a stress concentration of twice the average stress (Fig. 10-23d). Then the average peak stress in the member will be reduced by $\frac{1}{2}$ and (case 4, Table 10-10) the energy absorbed (Fig. 10-23f) will be one-fourth of the energy absorbed if no notch were present (Fig. 10-23e).

Figure 10-23: Notch effect on energy-absorbing capacity of a tensile member: (a) tensile member, uniform cross section; (b) tensile member with notch; (c) stress diagram for (a); (d) stress diagram for $(b) ;(e, f)$ energy diagrams. (From Ref. [10.8], with permission.)

10.10 INCREASING THE DYNAMIC STRENGTH OF STRUCTURES AND MINIMIZING DYNAMIC EFFECTS

It follows from the discussions above that increasing the energy-absorbing capacity of a structure amounts to improving the dynamic strength. The basic rules outlined below are useful in designing for dynamic load.

Geometric Configuration

1. For a given structure, have as much of the structure as possible stressed to the working stress level.
2. Reduce the dynamic stress in tension by increasing the volume $(A L)$ and that in bending by increasing the value of I / c^{2}.
3. Remember that an increase in the length of a beam will increase the static stress but will decrease the stress due to dynamic loading. For a tensile member of uniform cross section, an increase in length will not change the static stress but will decrease the stress due to a dynamic load.
4. Avoid abrupt changes in section area and internal inhomogeneousness to minimize stress concentration.
5. Design for maximum flexibility in the vicinity of the point of impact to increase the energy-absorbing capacity.

Material Properties

1. Select material with a high modulus of resilience R, the energy storage capacity per unit volume, and good notch toughness. The material should be ductile enough to relieve the stress plastically in areas of high stress concentration.
2. If repeated dynamic loads are expected, choose a material with high fatigue strength.
3. For low-temperature service, the material should have a low nil ductility transition temperature (NDT). Refer to Chapter 4.
4. If possible, arrange for a metal for which the direction of hot rolling is in line with the dynamic load.

Loading

1. For dynamic forces due to inertia, decrease the mass of the structure while maintaining proper rigidity for its particular use. In bending, a beam that is lightweight and has sufficient moment of inertia should be used.
2. For impact, minimize the impacting speed and the mass of impacting bodies, if possible.
3. To lower the acceleration of a structure and hence to reduce possible inertial forces caused by the rapid movement of a structure due to explosive energy, earthquakes, and so on, employ flexible supports.

REFERENCES

10.1. Newmark, N. M., and Hall, W. J., "Dynamic Behavior of Reinforced and Prestressed Concrete Buildings under Horizontal Loads and the Design of Joints," Proceedings of the 8th Congress, International Association for Bridge and Structural Engineering, New York, 1968.
10.2. Newmark, N. M., and Hall, W. J., "Seismic Design Criteria for Nuclear Reactor Facilities," Proceedings of the 4th World Conference on Earthquake Engineering, Santiago, Chile, 1969.
10.3. Griffen, M. J., "A Comparison of Standardized Methods for Predicting the Hazards of WholeBody Vibration and Repeated Shocks," J. Shock Vibrat., Vol. 215, No. 4, 1998, pp. 883-914.
10.4. Frolov, K. V., and Furman, F. A., Applied Theory of Vibration Isolation Systems, Hemisphere, Washington, DC, 1990.
10.5. Sachse, R., Pavic, A., and Reynolds, P. "Human-Structure Dynamic Interaction in Civil Engineering Dynamics: A Literature Review," Shock Vibrat. Dig., Vol. 35, No. 1, 2003, pp. 3-18.
10.6. Duarte, M. L. M. and Filho, L. E., "Perception Threshold's Experimental Evaluation of a Population Subject to Sinusoidal Vibration," Proceedings of the 10th International Symposium on Dynamic Problems of Mechanics, ed. Kurka, P. R. G., and Fluery, A. T., Brazilian Society of Engineering and Mechanical Sciences, Ubatuba, Brazil, 2003.
10.7. von Gierke, H. E., and Brammer, A. J., "Effects of Shock and Vibration on Humans," in Shock and Vibration Handbook, 4th ed., McGraw-Hill, New York, 1998.
10.8. Blodgett, O. W., Design of Welded Structures, James F. Lincoln Arc Welding Foundation, Cleveland, $\mathrm{OH}, 1982$.
10.9. Skewman, P. G., and Zackay, V. F., Response of Metals to High Velocity Deformation, Interscience, New York, 1961.
10.10. Kornhauser, M., Structural Effects of Impact, Spartan Books, New York, 1964.
10.11. Schiff, D., Dynamic Analysis and Failure Modes of Simple Structures, Wiley, New York, 1990.

10

Tables

10-1 Analogous Quantities in Translational and Rotational Systems 484
10-2 Damping Coefficients 485
10-3 Frequencies of Common Systems 487
10-4 Stiffness of Common Members 498
10-5 Formulas for Equivalent Stiffness of Combination of Springs
10-6 Mass and Mass Moments of Inertia512
10-7 Viscoelastic Elements 514
10-8 Natural Frequencies of the Human Body 515
10-9 Impact Effect of Weight Dropped on Elastic Member 516
10-10 Formulas for Energy-Absorbing Capacity of Common Load-Member Conditions 517

TABLE 10-1 ANALOGOUS QUANTITIES IN TRANSLATIONAL AND ROTATIONAL SYSTEMS

Translational Quantities

TABLE 10-2 DAMPING COEFFICIENTS

Notation

$\begin{aligned} \mu= & \text { viscosity of fluid }\left(F T / L^{2}\right) \\ & \text { where } T \text { is time } \end{aligned}$	$\begin{gathered} c_{\mathrm{eq}}=\text { equivalent damping coefficient } \\ (F T / L) \end{gathered}$
$c=$ damping coefficient ($F T / L$)	$k=$ stiffness coefficient (F / L)
$c_{t}=\underset{(F L T / \mathrm{rad})}{\text { torsional damping coefficient }}$	$\begin{aligned} & \eta=\text { loss factor or structural damping } \\ & v=\text { velocity }(L / T) \end{aligned}$
	$\begin{aligned} & \omega=\underset{(\operatorname{ang} / T)}{\text { and frequency of vibration }} \end{aligned}$

Damper	Damping Coefficients
$\mathbf{1 .}$	$c=\frac{8 \mu l A^{2}}{\pi r^{4}}$
Dashpot, flow past hole in	where piston, viscous damping
	$i=$ area of piston $l=$ radius of hole

3.

Torsional damper, viscous damping

$c_{t}=2 \pi \mu\left(\frac{r_{2}^{3} b}{h_{2}}+\frac{1}{2} \frac{r_{2}^{4}-r_{1}^{4}}{h_{1}}\right)$

TABLE 10-3 FREQUENCIES OF COMMON SYSTEMS ${ }^{a}$

$$	
System	Natural Frequency ω_{n}
Extension Systems	
1.	$\sqrt{\frac{k}{m}}$
2. Mass suspended by spring with mass	$\sqrt{\frac{k}{m+m_{s} / 3}}$

TABLE 10-3 (continued)	QUENCIES OF COMMIN S SYSTEMS ${ }^{\text {a }}$
System	Natural Frequency ω_{n}
	$\sqrt{2 k / m}$
4.	$\left(\frac{1}{2}\left[\frac{k_{1}}{m_{1}}+\frac{k_{2}}{m_{2}}\left(1+\frac{m_{2}}{m_{1}}\right) \pm \sqrt{\left[\frac{k_{1}}{m_{1}}+\frac{k_{2}}{m_{2}}\left(1+\frac{m_{2}}{m_{1}}\right)\right]^{2}-\frac{4 k_{1} k_{2}}{m_{1} m_{2}}}\right]\right)^{1 / 2}$
5. m_{2} 空 m_{1}	$\sqrt{\frac{k\left(m_{1}+m_{2}\right)}{m_{1} m_{2}}}$
6. Rigid bar with mass	$\frac{a}{b} \sqrt{\frac{k}{m}}$

TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMS ${ }^{a}$

System	Natural Frequency ω_{n}
10. Torsion of shaft with mass and lumped mass	$\sqrt{\frac{k_{t}}{I_{p 1}+\frac{1}{3} I_{p 2}}}$
$I_{p 2}=$ total polar mass moment of inertia of the shaft	
11. Torsional system $\xi_{1}^{k_{t 1}} I_{p 1}=I_{p 2}$	$\left(\frac{1}{2}\left[\frac{k_{t 1}}{I_{p 1}}+\frac{k_{t 2}}{I_{p 2}}\left(1+\frac{I_{p 2}}{I_{p 1}}\right) \pm \sqrt{\left[\frac{k_{t 1}}{I_{p 1}}+\frac{k_{t 2}}{I_{p 2}}\left(1+\frac{I_{p 2}}{I_{p 1}}\right)\right]^{2}-\frac{4 k_{t 1} k_{t 2}}{I_{p 1} I_{p 2}}}\right]\right)^{1 / 2}$
12. Torsional system	$\sqrt{\frac{k_{t}\left(I_{p 1}+I_{p 2}\right)}{I_{p 1} I_{p 2}}}$
13. Torsional system $\begin{array}{lllll} I_{p 1} & k_{t 1} & I_{p 2} & k_{t 2} & I_{p 3} \\ \hline \end{array}$	$\sqrt{\frac{1}{2}\left[C \pm \sqrt{C^{2}-\frac{4 k_{t 1} k_{t 2}}{I_{p 1} I_{p 2} I_{p 3}}\left(I_{p 1}+I_{p 2}+I_{p 3}\right)}\right]}$, where $C=\frac{k_{t 1}}{I_{p 1}}+\frac{k_{t 2}}{I_{p 3}}+\frac{k_{t 1}+k_{t 2}}{I_{p 2}}$

	14. Torsion of geared system with massless gears	$\sqrt{\frac{k_{t 1} k_{t 2}\left(I_{p 1}+n^{2} I_{p 2}\right)}{I_{p 1} I_{p 2}\left(n^{2} k_{t 2}+k_{t 1}\right)}}$	$n=\frac{\text { rotor } 2 \text { speed }}{\text { rotor } 1 \text { speed }}$
$\frac{\stackrel{\rightharpoonup}{9}}{\stackrel{\circ}{\circ}} .$			Lumped Mass
0 0 0 0 0 0 0 0 0 0	15. Beam fixed-free Set $m_{b}=0$ if beam is massless	$\sqrt{\frac{3 E I}{L^{3}\left(M_{1}+0.23 m_{b}\right)}}$	
$\frac{\stackrel{0}{\#}}{\stackrel{\omega}{n}}$	16. Beam pinned-pinned Set $m_{b}=0$ if beam is massless	$\sqrt{\frac{48 E I}{L^{3}\left(M_{1}+0.5 m_{b}\right)}}$	

TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMS ${ }^{a}$

System	Natural Frequency ω_{n}
17. Beam fixed-fixed Set $m_{b}=0$ if beam is massless	$13.86 \sqrt{\frac{E I}{L^{3}\left(M_{1}+0.375 m_{b}\right)}}$
	$\frac{1}{a b} \sqrt{\frac{3 E I L}{M_{1}}}$
19. Beam fixed-fixed	$\frac{1}{a b} \sqrt{\frac{3 E I L^{3}}{M_{1} a b}}$

$$
\omega_{n}=\frac{\lambda^{2}}{L^{2}} \sqrt{\frac{E I}{\rho}}
$$

Mode shape for the first five modes are sketched.
Nodes are located as proportion of length L measured from left.

System	Natural Frequency λ				
20. Pinned-pinned	$\lambda^{2}=9.87 \text { तोा }$				
21. Fixed-pinned	$\lambda^{2}=15.4$		$\underbrace{0.384}_{\lambda^{2}=104}$		
22. Fixed-fixed	$\lambda^{2}=22.4$				$\begin{gathered} 0.4090 .773 \\ \lambda^{2}=298 \end{gathered}$
23. Free-free		$0.1320 .5000 .868$			$\lambda^{0}=298$
24. Fixed-free	$\lambda^{2}=3.52$				
25. Pinned-free					

TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMS ${ }^{\text {a }}$						
Plates						
$\begin{aligned} a & =\text { diameter of circular plate, length of side of square plate } \\ h & =\text { thickness of plate } \\ \omega_{n} & =\lambda \sqrt{\frac{E h^{2}}{\rho^{*} a^{4}\left(1-v^{2}\right)}} \end{aligned}$						
System	Value of λ for Modes 1-6					
	1	2	3	4	5	6
26. Simply supported	5.75	16.10	29.61	34.36		
27. Clamped	11.76	24.54	40.27	45.92	58.93	70.22
28. Free	6.07	10.53	14.19	23.80	40.88	44.68
29. Clamped at center, symmetric modes	4.35	24.26	70.39	138.85	230.8	344.3
30. Simply supported	5.70	14.26	22.82	28.52	37.08	48.49

TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMS ${ }^{a}$

TABLE 10-3 (continued) FREQUENCIES OF COMMI ${ }^{\text {a }}$ SYSTEMS ${ }^{\text {a }}$	
System	Natural Frequency ω_{n}
Various Systems	
37. Simple pendulum	$\omega_{n}=\sqrt{\frac{g}{L}}$
38. Compound pendulum $r=$ radius of gyration about axis of support	$\omega_{n}=\sqrt{\frac{a g}{r^{2}}}$
39. Transverse motion of massless string $H=\text { tensile force in string }$	$\omega_{n}=2 \sqrt{\frac{H}{M_{1} L}}$
40. Pneumatic system $p=$ pressure at each end of cylinder $S=$ area of piston $m=$ mass of piston $V_{0}=$ volume of each end of cylinder	$\omega_{n}=\sqrt{\frac{2 p S^{2}}{m V_{0}}}$

TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMS ${ }^{\text {a }}$	
System	Natural Frequency ω_{n}
Various Systems	
41. U-tube with liquid	$\omega_{n}=\sqrt{\frac{2 g}{S}}$
42. Plank on rotating cylinders (speed ω) $\mu=$ coefficient of friction between plank and drum	$\omega_{n}=\sqrt{\frac{2 \mu g}{a}}$
43. Tanks with connecting conduit $S_{1}=$ area of tank 1 $S_{2}=$ area of tank 2 $S_{0}=$ area of conduit	$\omega_{n}=\sqrt{\frac{g\left(1+S_{1} / S_{2}\right)}{h\left(1+S_{1} / S_{2}\right)+\ell\left(S_{1} / S_{0}\right)}}$
44. Cylinder (c) or sphere (s) in cylindrical track $\begin{aligned} R_{t} & =\text { radius of track } \\ R_{C(s)} & =\text { radius of cylinder (sphere) } \end{aligned}$	Cylinder: $\omega_{n}=\sqrt{\frac{2 g}{3\left(R_{t}-R_{c}\right)}}$ Sphere: $\omega_{n}=\sqrt{\frac{5 g}{7\left(R_{t}-R_{s}\right)}}$

[^19]
TABLE 10-4 STIFFNESS OF COMMON MEMBERS

Notation

$k=$	spring constant or stiffness, which is		$J=$ torsional constant
	defined as the ratio of the applied force	G	$=$ shear modulus of elasticity
	to the corresponding displacement	I	$=$ moment of inertia
$k_{t}=$	torsional stiffness	E	$=$ elastic modulus
k_{θ}	$=$ rotational stiffness	N	$=$ effective number of turns of spring
$L=$	length		

Member	Stiffness Formula of Member
Elastic Members	

1.	For circular cross section:

Extension of helical spring

$k=\frac{G d^{4}}{8 N D^{3}}$
For rectangular cross section:

$$
\begin{aligned}
k= & \frac{G h b^{3} \eta}{N D^{3}} \\
\eta= & -0.57556+1.231(h / b)^{1 / 2}-0.5688(h / b) \\
& +0.09336(h / b)^{3 / 2}
\end{aligned}
$$

where
$d=$ wire diameter
$D=$ coil diameter
$k_{t}=\frac{E d^{4}}{64 N D}$
Torsion of spring

where
$d=$ diameter of spring wire
$D=$ diameter of spring

3. Extension bar	$k=\frac{E A}{L}$ where $A=\text { cross-sectional area }$
4. Torsion bar	$\begin{aligned} k_{t} & =\frac{G J}{L} \\ J & =\text { torsional constant } \end{aligned}$ For hollow circular section:

$T=$ Torque

$J=\frac{\pi}{32}\left(d_{o}^{4}-d_{i}^{4}\right)$
For rectangular cross section:
$J=\left(b h^{3} / 3\right)\left(1-0.63 h / b+0.052 h^{5} / b^{5}\right)$

TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

Member	Stiffness Formula of Member
$\mathbf{5 .}$	$k_{\theta}=\frac{M}{\theta}=\frac{E d^{4}}{64 N D} \frac{2}{1+E / 2 G}=\frac{2}{2+v} \frac{E d^{4}}{64 N D}$
Bending rotation of spring	

where
$k_{\theta}=$ rotational spring constant
$d=$ diameter of spring wire
$\theta=$ slope of deflection

7.	$k=\frac{3 E I L^{3}}{a^{3} b^{3}}$

For $a=b: \quad k=\frac{192 E I}{L^{3}}$
For one end displaced vertically relative to the other end, with $P=0$:
$k=\frac{12 E I}{L^{3}}$
$k=\frac{3 E I L}{a^{2} b^{2}}$
Simply supported beam
$k=\frac{3 E I}{L^{3}}$
7.
Fixed-fixed beam

For $a=b=\frac{1}{2} L: \quad k=\frac{48 E I}{L^{3}}$

9.	Point A clamped: (shown)	where
Torsional spring	$k_{t}=\frac{E I}{L}$	$\phi=$ angle of twist
	Point A hinged:	$k_{t}=T / \phi$
$\left((\underset{\sim}{x})^{T}\right.$	$k_{t}=\frac{0.8 E I}{L}$	$T=\text { torque }$
	L	$L=$ length of spiral $I=$ area moment of

TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

Member	Stiffness Formula of Member
$\mathbf{1 0 .}$	$k=\frac{H(a+b)}{a b}$
Transverse motion of string	where

$H=$ tensile force in string

	$H=$ tensile force in string
11.	Bending (shown):
Tapered bar of circular crosssection	$k=\frac{\pi E d_{1} d_{2}}{4 L}$
UR ${ }^{P}$	Axially loaded:
	$k=\underline{\pi E d_{1} d_{2}}$
${ }_{2}$	$k=\frac{4 L}{}$
$\xrightarrow{+}$	Torsion:

12.

Fixed-hinged beam

13.

Fixed-guided beam

14.

Beam with in-span support,
hinged end

Torsion:
$k_{\theta}=\frac{3 \pi}{32} \frac{d_{1}^{4} G}{L\left[d_{1} / d_{2}+\left(d_{1} / d_{2}\right)^{2}+\left(d_{1} / d_{2}\right)^{3}\right]}$
$k=\frac{12 E I L^{3}}{a^{3} b^{2}(3 L+b)}$
For $a=\frac{1}{2} L: \quad k=\frac{768 E I}{7 L^{3}}$
For one end displaced vertically relative to the other end, with $P=0$:
$k=\frac{3 E I}{L^{3}}$
$k=\frac{3 E I}{b^{2}(a+b)}$
$k=\frac{12 E I}{L^{3}}$
Bending (shown):

$$
k=\frac{\pi E d_{1} d_{2}}{4 L}
$$

Axially loaded:

$$
k=\frac{\pi E d_{1} d_{2}}{4 L}
$$

TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

Member	Stiffness Formula of Member
15. Rotation of a fixed-free beam M	$k_{\theta}=\frac{E I}{L}$
Beam with in-span support, fixed end	$\frac{1}{k}=\frac{b^{2}(a+b)[1-a / 4(a+b)]}{3 E I}$

17.

Beam with embedded curved end
18.

Beam with both curved ends embedded
19.
N-beam support

$k=\frac{6 E I}{k_{1} L^{3}}$
$k_{1}=2+6 \pi\left(\frac{R}{L}\right)+24\left(\frac{R}{L}\right)^{2}+3 \pi\left(\frac{R}{L}\right)^{3}$

$$
\begin{aligned}
& k=\frac{24(3+\pi R / L) E I}{k_{2} L^{3}} \\
& k_{2}=3+12.57\left(\frac{R}{L}\right)+24\left(\frac{R}{L}\right)^{2} \\
& +26\left(\frac{R}{L}\right)^{3}+11.22\left(\frac{R}{L}\right)^{4} \\
& k=\frac{12 E}{L^{3}} \sum_{i=1}^{N} I_{i} \\
& \text { Parallel planes at ends }
\end{aligned}
$$

TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

21.

Rotation of a pinned-pinned beam

$k_{\theta}=\frac{3 E I L}{L^{2}-3 a b}$
For $a=\frac{1}{2} L: \quad k_{\theta}=\frac{12 E I}{L}$
For $a=L: \quad k_{\theta}=\frac{3 E I}{L}$
where
$k_{\theta}=M /$ slope at $x=a$
22.

Rotation of a clampedclamped beam

23.

Rotation of a clamped-pinned beam

24.

Circular ring

$k=\frac{P}{\Delta D}=\frac{54.03 E I}{D^{3}}$
where ΔD is the change in diameter in the direction of P

25. Circular membrane	$k=\frac{2 \pi H}{\ln \left(r_{o} / r_{i}\right)}$ where $H=\text { in-plane tension per unit circumference }$
26. Circular plate, simply supported boundary	$\begin{aligned} k & =\frac{16 \pi D}{r_{o}^{2}}\left(\frac{1+v}{3+v}\right) \quad \text { where } \\ h & =\text { thickness of plate } \\ v & =\text { Poisson's ratio } \\ D & =E h^{3} /\left[12\left(1-v^{2}\right)\right] \end{aligned}$
27. Circular plate, fixed boundary	$\begin{aligned} k & =\frac{16 \pi D}{r_{o}^{2}} \\ D & =E h^{3} /\left[12\left(1-v^{2}\right)\right] \end{aligned}$
28. Square plate, all edges simply supported	$\begin{aligned} k & =86.1 \frac{D}{L^{2}} \\ D & =E h^{3} /\left[12\left(1-v^{2}\right)\right] \end{aligned}$
29. Rectangular plate, all edges simply supported	$\begin{aligned} k & =59.2\left(1+0.462 / \beta^{4}\right) \frac{D}{L_{y}^{2}} \\ \beta & =L / L_{y}>1 \\ D & =E h^{3} /\left[12\left(1-v^{2}\right)\right] \end{aligned}$

TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

30.	$k=D \frac{\alpha}{L_{y}^{2}}$
Rectangular plate, all edges	

clamped

L / L_{y}	4	2	1
α	167	147	192

$D=E h^{3} /\left[12\left(1-v^{2}\right)\right]$
31.

Equilateral triangle, all edges
simply supported
$k=\frac{175}{L^{2}} D$
$D=E h^{3} /\left[12\left(1-v^{2}\right)\right]$

32.

Rectangular frame, fixed ends, vertical load

33.

Rectangular frame, fixed ends, horizontal load

$$
\begin{aligned}
k & =\frac{48 E I_{1}}{L^{3}} \frac{2 \alpha+4}{2 \alpha+7} \\
\alpha & =\frac{h I_{1}}{L I_{2}}
\end{aligned}
$$

$k=\frac{24 E I_{2}}{h^{3}} \frac{6 \alpha+1}{6 \alpha+4}$
$\alpha=\frac{h I_{1}}{L I_{2}}$

TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS
 out-of-plane load

TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

Rubber Members ${ }^{a}$				
37. Rectangular block of r load applied over entir				
Young's Modulus, E (psi)	Shear Modulus, G (psi)	Bulk Modulus, K (psi)	Numerical Factor, c	
130	43	142,000	0.93	
168	53	142,000	0.89	
213	64	142,000	0.85	
256	76	142,000	0.80	
310	90	146,000	0.73	
460	115	154,000	0.64	
630	150	163,000	0.57	
830	195	171,000	0.54	
1040	245	180,000	0.53	
1340	317	189,000	0.52	
38. Long rubber strip compressed on surface normal to its length				

TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

39. Rectangular section rubber ring	$k=\frac{4}{3} E \pi D(b / h)\left[1+c b^{2} /\left(4 h^{2}\right)\right]$ where
- $\boldsymbol{J}^{\boldsymbol{F}}$	$D=\text { mean diameter of ring }$
	$b=$ radial width of section
$\underset{i}{\rightarrow} \underset{b}{\rightarrow}$	$h=$ thickness of section
$\underset{\leftarrow}{b_{K}^{K}} \longrightarrow$	$E=$ Young's modulus
	$c=$ a numerical factor; see case 37
40.	$k=3.95 E D(\delta / d)^{1 / 2}$
Circular section rubber ring	where
${ }^{F} 8$	$E=$ Young's modulus
	$D=$ mean diameter of ring
${ }^{1}$ (ed ${ }^{\text {cma }}$	$\delta=$ displacement due to compression
$\pi \underset{\sim}{\leftarrow} \longrightarrow$	$d=$ diameter of section
41.	$k=G A / h$
Solid rubber block in shear	where
$\stackrel{L}{ } \rightarrow$ (${ }^{\text {L }}$	$G=$ shear modulus
	$A=$ cross-sectional area of block parallel to direction of shear
42.	$k_{t}=T / \phi$
Annulus of rubber bonded to two	$=\pi G\left(r_{1}^{4}-r_{o}^{4}\right) /(2 h)+\pi G \phi^{2}\left(r_{1}^{6}-r_{o}^{6}\right) / 9 h^{3}$

where

$$
\begin{aligned}
& T=\text { torque } \\
& G=\text { shear modulus } \\
& r_{o}=\text { inner radius of annulus } \\
& r_{1}=\text { outer radius of annulus } \\
& h=\text { thickness of disk } \\
& \phi=\text { angular rotational displacement (rad) } \\
& k_{t}=T / \phi \\
& =\pi G L /\left(1 / D_{0}^{2}-1 / D_{1}^{2}\right) \\
& \text { where } \\
& T=\text { torque } \\
& \phi=\text { angular rotational displacement (rad) } \\
& G=\text { shear modulus } \\
& L=\text { length of bush mounting } \\
& D_{0}=\text { inner diameter } \\
& D_{1}=\text { outer diameter }
\end{aligned}
$$

TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

44. Rubber bu axial load	mounting under	$k=\frac{2.73 G L / \log _{10}\left(D_{1} / D_{0}\right)}{1+\alpha\left(D_{1} / L\right)^{2}}$ where
$\begin{aligned} & T \downarrow \square \\ & D_{1} D_{0} \\ & \downarrow \frac{1}{L} \\ & \end{aligned}$		$\begin{aligned} G & =\text { shear modulus } \\ L & =\text { length of bush mounting } \\ D_{0} & =\text { inner diameter } \\ D_{1} & =\text { outer diameter } \\ \alpha & =\text { axial stiffness constant } \end{aligned}$
$\begin{gathered} \text { Diameter } \\ \text { Ratio } \\ D_{1} / D_{0} \end{gathered}$	Axial Stiffness Constant α	
1.05	0.0001	
1.10	0.0005	
1.25	0.0025	
1.50	0.0068	
1.75	0.0111	
2	0.0148	
3	0.0244	
4	0.0289	
5	0.0309	
7	0.0321	
10	0.0315	
20	0.0282	
100	0.0204	
1000	0.0135	

[^20]
TABLE 10-5 FORMULAS FOR EQUIVALENT STIFFNESS OF COMBINATION OF SPRINGS

Notation

Spring Combination	Stiffness Formulas for System
1.	$\begin{aligned} \frac{1}{k} & =\frac{1}{k_{1}}+\frac{1}{k_{2}} \\ k & =\frac{k_{1} k_{2}}{k_{1}+k_{2}} \end{aligned}$

3.

$k=\frac{(a+b)^{2}}{a^{2} / k_{2}+b^{2} / k_{1}}$
4.

$$
5
$$

$$
\begin{aligned}
& \frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}+k_{3}} \\
& k=\frac{k_{1}\left(k_{2}+k_{3}\right)}{k_{1}+k_{2}+k_{3}} \\
& k=n k_{1}=\frac{n \times 192 E I}{L^{3}}
\end{aligned}
$$

where
$n=$ number of plate springs
Assume no friction between springs

TABLE 10-5 (continued) FORMULAS FOR EQUIVALENT STIFFNESS OF COMBINATION OF SPRINGS

Spring Combination	Stiffness Formulas for System
$\mathbf{6 .}$	$k_{H}=\sum_{i} k_{i} \cos ^{2} \alpha_{i}$ $k_{V}=\sum_{i} k_{i} \sin ^{2} \alpha_{i}$ where
$k_{H}=$ horizontal stiffness	
$k_{V}=$ vertical stiffness	

TABLE 10-6 MASS AND MASS MOMENTS OF INERTIA

Notation

$$
\begin{aligned}
m, M_{1} & =\operatorname{mass}(M) \\
m_{\mathrm{eq}} & =\text { equivalent mass }(M)
\end{aligned}
$$

$I_{p i}=$ polar mass moment of inertia of concentrated mass at point $i\left(M L^{2}\right)$
$I_{\text {eq }}=$ equivalent polar mass moment of inertia $\left(M L^{2}\right)$
$m_{b}=$ mass of beam
$\omega_{n}=\sqrt{k / m}$ or $\omega_{n}=\sqrt{k_{t} / I_{p i}}$

Mass	Moments of Inertia
1. Mass moment of inertia of disk about axis of rotation	$I_{p i}=\frac{1}{2} m a^{2}$ where $m=\text { mass of disk }$
2. Mass moment of inertia of bar about mass center	$I_{p i}=\frac{1}{12} m_{b} L^{2}$

3.	$I_{p A}=I_{p G}+m L^{2}$

Parallel axis theorem

where
$I_{p G}=$ mass moment at mass center G
$I_{p A}=$ mass moment at point A

TABLE 10-6 (continued) MASS AND MASS MOMENTS OF INERTIA

4. Equivalent mass of geared system	$I_{\mathrm{eq}}=\sum_{i=1}^{n_{a}}\left(\frac{\Omega_{i}}{\Omega_{1}}\right)^{2} \sum_{j=1}^{n_{i}} I_{i j} \quad$ (about axle 1)
	$n_{i}=$ number of gears of i th axle $n_{a}=$ number of axles (for configuration shown, $\left.n_{a}=3\right)$ $\frac{\Omega_{i}}{\Omega_{1}}=\text { rotational speed ratio of axle } i \text { to axle } 1$
$\begin{aligned} I_{i j}= & \text { mass moment of the } j \text { th } \\ & \text { gear of the } i \text { th axle } \end{aligned}$	
	$I_{\text {eq }}=I_{g}+m a^{2} \quad$ (about gear axis)
Equivalent mass for rack and gear	$m_{\mathrm{eq}}=m+I_{g} / a^{2} \quad$ (rack) where
$I_{8} a^{1} a^{1}$	$\begin{aligned} & I_{g}=\text { mass moment of gear } \\ & m=\text { mass of rack } \end{aligned}$
6.	$m_{\text {eq }}=M_{1}+\frac{1}{3} m_{s}$
Linear spring with mass	where
M_{1}	$m_{s}=$ mass of spring
$\frac{m_{s} \sum}{\ll}$	
7.	$m_{\text {eq }}=0.49 m_{b}+M_{1}$
Beam with mass and lumped mass at midspan	
$\frac{8}{m_{b} \text { הTITIT }}$	
8.	$m_{\text {eq }}=0.24 m_{b}+M_{1}$
Beam with mass and lumped mass on end	

TABLE 10-7 VISCOELASTIC ELEMENTS

$\dot{\sigma}=\frac{d \sigma}{d t} \quad \ddot{\sigma}=\frac{d^{2} \sigma}{d t^{2}} \quad \dot{\epsilon}=$	$\frac{d \epsilon}{d t} \quad \ddot{\epsilon}=\frac{d^{2} \epsilon}{d t^{2}}$
Model	Differential Equation of Motion
1. Elastic solid (Hooke)	$\sigma=R \epsilon$
2. Maxwell	$\sigma+\frac{\eta}{R} \dot{\sigma}=\eta \dot{\epsilon}$
3. Kelvin	$\sigma=R \epsilon+\eta \dot{\epsilon}$
4. Three-parameter element	$\sigma+R_{1} \dot{\sigma}=R_{2} \epsilon+\eta \dot{\epsilon}$
5. Four-parameter element (Burgers)	$\begin{aligned} \sigma+\left(\frac{\eta_{1}}{R_{1}}\right. & \left.+\frac{\eta_{1}}{R_{2}}+\frac{\eta_{2}}{R_{2}}\right) \dot{\sigma}+\frac{\eta_{1} \eta_{2}}{R_{1} R_{2}} \ddot{\sigma} \\ & =\eta_{1} \dot{\epsilon}+\frac{\eta_{1} \eta_{2}}{R_{2}} \ddot{\epsilon} \end{aligned}$

TABLE 10-8 NATURAL FREQUENCIES OF THE HUMAN BODY ${ }^{\text {a }}$

Organ	Natural Frequency (Hz)
Whole body, vertical	
\quad Sitting	$4-6$
\quad Standing	$6-15$
Head	$8-40$
Eyes	$12-17$
Face and jaws	$4-27$
Throat	$6-27$
Chest	$2-12$
Lungs	$4-8$
Abdomen	$4-12$
Lumbar part of spinal	$4-14$
\quad column	
Shoulders	$4-8$
Hands, feet	$2-8$

${ }^{a}$ Data from Refs. [10.4] to [10.7].

TABLE 10-9 IMPACT EFFECT OF WEIGHT DROPPED ON ELASTIC MEMBER

Notation $W=$ weight of body being dropped $W_{b}=$ weight of elastic member, here a beam $h=$ height from which weight is dropped $k=$ stiffness (spring constant) of beam referenced to point of contact of falling body $v=$ velocity of body at instant of impact $\delta_{s t}=$ static displacement of member due to weight of body and member $\delta_{s}=$ static displacement of member due only to weight of member			
Case	Weight of Member Taken into Account	Body Suddenly Applied from Zero Height	Body Applied from Zero Height and Weight of Member Neglected
1. Maximum force P experienced by member	$\begin{gathered} W+W_{b}+\sqrt{W_{b}^{2}+2 W\left(W_{b}+k h\right)} \\ \quad=W+W_{b}+\sqrt{W^{2}+W k v^{2} / g} \end{gathered}$	$2 W+W_{b}$	$2 W$
2. Maximum displacement δ of member after impact of body	$\begin{aligned} & \delta_{s t}+\sqrt{\delta_{s t}^{2}+2 h\left(\delta_{s t}-\delta_{s}\right)-\delta_{s}^{2}} \\ & =\delta_{s t}+\sqrt{\left(\delta_{s t}-\delta_{s}\right)^{2}+v^{2}\left(\delta_{s t}-\delta_{s}\right) / g} \end{aligned}$	$\delta_{s t}+\sqrt{\delta_{s t}^{2}+\delta_{s}\left(\delta_{s}-2 \delta_{s t}\right)}$	$\begin{aligned} & 2 \delta_{s t} \\ & \delta_{s t} \text { due only to weight of body } \end{aligned}$

TABLE 10-10 FORMULAS FOR ENERGY-ABSORBING CAPACITY OF COMMON LOAD-MEMBER CONDITIONS ${ }^{a}$

$r=$ radius of gyration of cross-sectional area $I=$ moment of inertia $E=$ modulus of elasticity $G=$ shear modulus of elasticity $c=$ distance from neutral axis to outer fiber $A=$ cross-sectional area $\sigma_{y s}=$ yield stress $L=$ length of member	
Conditions	Energy-Absorbing Capacity
1. Simply supported beam, concentrated load, uniform section	$U_{m}=\frac{\sigma_{y s}^{2} I L}{6 E c^{2}}=\frac{\sigma_{y s}^{2} A L}{6 E}\left(\frac{r}{c}\right)^{2}$
2. Fixed-fixed beam	$U_{m}=\frac{\sigma_{y s}^{2} I L}{6 E c^{2}}=\frac{\sigma_{y s}^{2} A L}{6 E}\left(\frac{r}{c}\right)^{2}$
3. Cantilevered beam	$U_{m}=\frac{\sigma_{y s}^{2} I L}{6 E c^{2}}=\frac{\sigma_{y s}^{2} A L}{6 E}\left(\frac{r}{c}\right)^{2}$
4. Axial tension 1)	$U_{m}=\frac{\sigma_{y s}^{2} A L}{2 E}$

TABLE 10-10 (continued) FORMULAS FOR ENERGY-ABSORBING CAPACITY OF COMMON LOAD-MEMBER CONDITIONS ${ }^{a}$

Conditions	Energy-Absorbing Capacity
5. Torsion	$U_{m}=\frac{\sigma_{y s}^{2}\left(D^{2}+D_{1}^{2}\right) A L}{4 G D^{2}}$
6. Simply supported beam with uniform load	$U_{m}=\frac{4 \sigma_{y s}^{2} I L}{15 E c^{2}}=\frac{4 \sigma_{y s}^{2} A L}{15 E}\left(\frac{r}{c}\right)^{2}$
7. Fixed-fixed beam	$U_{m}=\frac{\sigma_{y s}^{2} I L}{10 E c^{2}}=\frac{\sigma_{y s}^{2} A L}{10 E}\left(\frac{r}{c}\right)^{2}$
8. Cantilevered beam	$U_{m}=\frac{\sigma_{y s}^{2} I L}{10 E c^{2}}=\frac{\sigma_{y s}^{2} A L}{10 E}\left(\frac{r}{c}\right)^{2}$
9. Beam of variable cross section so that $\sigma=$ constant	$U_{m}=\frac{\sigma_{y s}^{2} I L}{3 E c^{2}}$
10. Torsion	$U_{m}=\frac{\sigma_{y s}^{2} J L}{2 G t_{\max }^{2}}$ where $J=\text { torsional constant }$

${ }^{a}$ From Ref. [10.8], with permission.

Beams and Columns

11.1 Notation 520
11.2 Sign Convention 521
11.3 Stresses 522
Normal Stress 522
Shear Stress 523
11.4 Simple Beams 523
Tabulated Formulas 524
Formulas for Beams with Arbitrary Loading 526
11.5 Beams with Axial Forces on Elastic Foundations 528
11.6 Plastic Design 531
11.7 Buckling Loads and Columns 531
Columns 534
Short Bars with Eccentric Loading 535
11.8 Natural Frequencies and Mode Shapes 535
11.9 General Beams 536
Transfer Matrices 536
11.10 Stiffness and Mass Matrices 539
Stiffness Matrix 539
Geometric Stiffness Matrix 542
Mass Matrix 542
References 542
Tables 544

Formulas for the analysis and design of beams and columns are provided in this chapter. These members can be loaded statically with transverse mechanical or thermal loading. Also included are formulas for plastic design, buckling loads, natural frequencies, and the accompanying mode shapes.

Furthermore, this chapter contains tables of generalized transfer and stiffness matrices that can be utilized for the study of structural systems formed of beam members (e.g., for the analysis of frames). Computer programs using these matrices for
the static, stability, and dynamic response of arbitrary beams have been prepared to accompany this book.

Most of the formulas are based on the technical (Euler-Bernoulli) theory of beams. For this theory it is assumed that plane cross sections remain plane, stress is proportional to strain, bending is in a principal plane, and the slope of the deformed beam is always much less than 1 .

11.1 NOTATION

The units for most of the definitions are given in parentheses using L for length, F for force, M for mass, and T for time.

```
\(a_{h_{i}}\) Location of the \(i\) th plastic hinge
A Area ( \(L^{2}\) )
\(A_{s}\) Equivalent shear area, where \(\alpha_{s}\) is shear correction factor (Table 2-4); also called shear-adjusted area, \(=A / \alpha_{s}\)
\(c_{1}\) Magnitude of applied distributed moment, uniform in \(x\) direction ( \(F L / L\) )
\(c_{a}\) Initial magnitude of linearly varying distributed moment ( \(F L / L\) )
\(c_{b}\) Final magnitude of linearly varying distributed moment ( \(F L / L\) )
\(C\) Concentrated applied moment ( \(F L\) )
\(C_{c}\) Concentrated collapse moment
\(E\) Young's modulus of elasticity of material \(\left(F / L^{2}\right)\)
\(G\) Shear modulus of elasticity \(\left(F / L^{2}\right)\)
\(I=I_{y}\) Moment of inertia taken about neutral axis (centroidal axis) \(\left(L^{4}\right)\)
\(I, I_{y}, I_{z}, I_{x}, I_{y z}\) Moments of inertia ( \(L^{4}\) )
\(k\) Winkler (elastic) foundation modulus \(\left(F / L^{2}\right)\)
\(k^{*}\) Rotary foundation modulus ( \(F L / L\) )
\(K K L\) is effective column length
\(\ell\) Length of element ( \(L\) )
\(L\) Length of beam ( \(L\) )
\(m_{b}\) Mass of beam (M)
\(M\) Bending moment at any section ( \(F L\) )
\(M_{i}\) Lumped mass ( \(M\) )
\(M_{p}\) Fully plastic bending moment, \(=\sigma_{y s} Z_{p}(F L)\)
\(M_{T}\) Thermal moment, \(=\int_{A} E \alpha T z d A(F L)\)
\(p_{c}\) Uniformly distributed collapse load ( \(F\) )
\(p_{z}\) Transverse, distributed force intensity, \(=p(F / L)\)
\(p_{1}\) Magnitude of distributed force, uniform in \(x\) direction \((F / L)\)
\(p_{1}, p_{a}\) Initial magnitude of linearly varying distributed force \((F / L)\)
```

p_{2}, p_{b} Final magnitude of linearly varying distributed force (F / L)
P Axial force (F)
P_{T} Thermal axial force, $=\int_{A} E \alpha T d A(F)$
r Radius of gyration of cross-sectional area about y axis; for buckling, r is minimum radius of gyration, $=r_{y}$
T Temperature change (degree), temperature rise with respect to reference temperature, $=T(x, z)$
V Shear force at any section (F)
w Transverse deflection (L)
W Concentrated force (F)
W_{c} Concentrated collapse load (F)
x, y, z Right-handed coordinate system
z Vertical coordinate from neutral axis (L)
Z_{p} Plastic modulus of cross section $\left(L^{3}\right)$
α Coefficient of thermal expansion ($L / L \cdot$ degree)
α_{s} Shear correction coefficient or shear deflection constant (Table 2-4)
θ Angle or slope of deflection curve (rad)
λ Slenderness ratio of column, $=K L / r$
ρ Mass per unit length $(M / L)\left(F T^{2} / L^{2}\right)$
σ Normal, bending stress $\left(F / L^{2}\right)$
τ Transverse shear stress $\left(F / L^{2}\right)$
ω Natural frequency (rad/T)

11.2 SIGN CONVENTION

Positive deflection w and positive slope θ are shown in Fig. 11-1. Positive internal bending moments M and positive internal shear forces V on the right face of a cut are illustrated in Fig. 11-2. For applied loading, the formulas provide solutions for the loading illustrated. Loadings applied in the opposite direction require the sign of the loading to be reversed in the formulas.

Figure 11-1: Positive displacement w and slope θ.

Figure 11-2: Positive bending moment M, shear force V, and axial force P.

11.3 STRESSES

The tables in this chapter give the deflection, slope, bending moment, and shear force along a beam. The normal and shear stresses on a face of the cross section can be computed using the following formulas. Refer to Chapter 15 for more complete and more accurate stress formulas.

Normal Stress

The flexural, normal, or bending stress σ resulting from bending is

$$
\sigma=M z / I
$$

where z is the vertical coordinate measured from the neutral axis. As shown in Fig. 11-3, positive z in Eq. (11.1) is taken as downward. For stresses above the neutral axis, use a negative z. Of course, the sign of stress σ also depends on the sign of the moment M taken from the tables. The moment of inertia I is given by [Eq. (2.4a)]:

$$
I=I_{y}=\int_{A} z^{2} d A
$$

where A is the cross-sectional area. See Table 2-1 for values of I for particular crosssectional shapes.

Figure 11-3: Cross section.

Figure 11-4: Definitions for shear stress.

If a compressive axial force P and temperature change T are present, then

$$
\begin{equation*}
\sigma=E \alpha T-P / A+M z / I \tag{11.3}
\end{equation*}
$$

where M includes both mechanical and thermal $\left(M_{T}\right)$ effects. Substitute P for $-P$ if the axial force is tensile.

Shear Stress

The average shear stress τ at any point along a width of a cross section (e.g., line 1-2 of Fig. 11-4), is

$$
\begin{equation*}
\tau=V Q / I b \tag{11.4}
\end{equation*}
$$

where b is the width at the location where the stress is being computed and [Eq. (2.19a)]

$$
\begin{equation*}
Q=\int_{A_{0}} z d A \tag{11.5}
\end{equation*}
$$

This integral of Eq. (11.5) is taken over the area A_{0} that lies between the position at which the shear stress is desired $\left(z_{0}\right)$ and the outer fiber of the cross section. This area is shown hatched in Fig. 11-4. The quantity Q is the first moment of the area between z_{0} and the outer fiber. For some common cross sections, formulas for Q are provided in Table 2-3.

11.4 SIMPLE BEAMS

The governing equations for the bending of a uniform Euler-Bernoulli beam are

$$
E I \frac{d^{4} w}{d x^{4}}=p_{z}=p
$$

$$
\begin{align*}
E I \frac{d^{3} w}{d x^{3}} & =-V \\
E I \frac{d^{2} w}{d x^{2}} & =-M \tag{11.6}\\
\frac{d w}{d x} & =-\theta
\end{align*}
$$

These relations conform to sign convention 1 presented in Appendix II. They can be solved giving the deflection, slope, bending moment, and shear force as functions of the coordinate x.

Tabulated Formulas

The deflection, slope, bending moment, and shear force for uniform beams with commonly occurring end conditions and loadings are provided in Table 11-1. Included are some critical values (e.g., the peak bending moment).

Example 11.1 Simple Beam A beam with the left end fixed and the right end simply supported is shown in Fig. 11-5a. For this beam, $E=200 \mathrm{GN} / \mathrm{m}^{2}$ and $I=144 \mathrm{~cm}^{4}$.

The beam of Fig. 11-5 corresponds to case 11 of Table 11-1. To use the formulas of case 11 , it is necessary to replace the variables x, a, b of case 11 by $L-x, b, a_{1}$ of Fig. 11-5a, respectively.

(b)

(c)

Figure 11-5: \quad Simple beam model for Example 11.1: (a) model; (b) free-body diagram; (c) notation for matrix method solutions.

It follows from the formulas of case 11 that the shear and moment at the fixed end are (Fig. 11-5b)

$$
\begin{align*}
R_{2} & =W-R_{1}=W-\frac{W}{2} \frac{3 a_{1}^{2} L-a_{1}^{3}}{L^{3}}=21.5 \mathrm{kN} \tag{1}\\
M_{2} & =\frac{W b a_{1}}{2 L^{2}}(b+L)=9.91 \mathrm{kN} \cdot \mathrm{~m}
\end{align*}
$$

The reaction at the simply supported end is

$$
\begin{equation*}
R_{1}=W-R_{2}=13.5 \mathrm{kN} \tag{2}
\end{equation*}
$$

The deflections to the right side of the load of Fig. 11-5a are

$$
\begin{equation*}
w=-\frac{1}{6 E I}\left\{R_{1}\left[(L-x)^{3}-3 L^{2}(L-x)\right]+3 W a_{1}^{2}(L-x)\right\} \tag{3}
\end{equation*}
$$

and to the left of the applied force W are

$$
\begin{equation*}
w=-\frac{1}{6 E I}\left\{R_{1}\left[(L-x)^{3}-3 L^{2}(L-x)\right]+W\left[3 a_{1}^{2}(L-x)-(L-x-b)^{3}\right]\right\} \tag{4}
\end{equation*}
$$

Since b (Fig. 11-5a) $>0.414 L=0.6624 \mathrm{~m}$, the maximum deflection from case 11 is

$$
\begin{equation*}
w_{\max }=\frac{W b a_{1}^{2} \sqrt{b /(2 L+b)}}{6 E I}=4.865 \mathrm{~mm} \tag{5}
\end{equation*}
$$

at $x=L-L \sqrt{1-2 L /\left(3 L-a_{1}\right)}=0.92 \mathrm{~m}$.
Furthermore, the bending moments along the beam are

$$
\begin{align*}
M & =R_{1}(L-x) & & \left(\text { for } x>a_{1}\right) \tag{6}\\
M & =R_{1}(L-x)-W(L-x-b) & & \\
& =R_{1}(L-x)-W\left(a_{1}-x\right) & & \left(\text { for } x \leq a_{1}\right) \tag{7}
\end{align*}
$$

The maximum moment occurs at $x=0$ and is of magnitude

$$
\begin{equation*}
M_{\max }=M_{2}=9.91 \mathrm{kN} \cdot \mathrm{~m} \tag{8}
\end{equation*}
$$

The slope at the simply supported end is

$$
\begin{equation*}
\theta_{L}=\theta_{1}=\frac{W}{4 E I}\left(\frac{a_{1}^{3}}{L}-a_{1}^{2}\right)=0.01077 \mathrm{rad} \tag{9}
\end{equation*}
$$

The maximum shear force is equal to R_{2}, which occurs for $x<a_{1}$.

Formulas for Beams with Arbitrary Loading

If sufficient information about your uniform, single-span beams cannot be found in Table 11-1, use Table 11-2. Table 11-2 is intended to provide the deflection, slope, bending moment, and shear force of uniform beams under arbitrary applied loading with any end conditions.

Part A in Table 11-2 lists equations for the responses. The functions F_{w}, F_{θ}, F_{V}, F_{M} are taken from part B in Table 11-2 by adding the appropriate terms for each load applied to the beam. The initial parameters w_{0}, θ_{0}, V_{0}, and M_{0}, which are values of w, θ, V, and M at the left end $(x=0)$ of the beam, are evaluated using the entry in part C in Table 11-2 for the appropriate beam end conditions. In using this table, no distinction is made between statically determinate and indeterminate beams.

These general formulas are readily programmed for computer solution.
Example 11.2 Simple Beam The simple beam of Example 11.1 can also be analyzed using the formulas of Table 11-2. This is a statically indeterminate beam. The statically indeterminate nature of the problem does not affect the methodology associated with this table.

The boundary conditions for this fixed, simply supported beam (Fig. 11-5a) are

$$
\begin{equation*}
w_{x=0}=w_{0}=0, \quad \theta_{x=0}=\theta_{0}=0, \quad w_{x=L}=M_{x=L}=0 \tag{1}
\end{equation*}
$$

The deflection w, slope θ, shear V, and moment M are readily obtained using part A in Table 11-2. Since $w_{0}=\theta_{0}=0$,

$$
\begin{align*}
& w=-V_{0} \frac{x^{3}}{3 E I}-M_{0} \frac{x^{2}}{2 E I}+F_{w}(x) \tag{2a}\\
& \theta=V_{0} \frac{x^{2}}{2 E I}+M_{0} \frac{x}{E I}+F_{\theta}(x) \tag{2b}\\
& V=V_{0}+ \tag{2c}\\
& M=F_{V}(x) \tag{2d}\\
& V_{0} x \quad M_{0}+\quad F_{M}(x)
\end{align*}
$$

The loading functions F_{w}, F_{θ}, F_{V}, and F_{M} for the applied concentrated force at $x=a=0.9 \mathrm{~m}$ are (Table 11-2, part B)

$$
\begin{align*}
& F_{w}(x)=35<x-0.9>^{3} /(3!E I) \\
& F_{\theta}(x)=-35<x-0.9>^{2} / 2 E I \tag{3}\\
& F_{V}(x)=-35<x-0.9>^{0} \\
& F_{M}(x)=-35<x-0.9>
\end{align*}
$$

where

$$
<x-a>^{n}=\left\{\begin{array}{ll}
0 & \text { if } x<a \\
(x-a)^{n} & \text { if } x \geq a
\end{array} \quad<x-a>^{0}= \begin{cases}0 & \text { if } x<a \\
1 & \text { if } x \geq a\end{cases}\right.
$$

To find V_{0} and M_{0}, enter part C in Table 11-2 for a beam with a fixed left end (row 2) and a pinned right end (column 1):

$$
\begin{align*}
V_{0} & =-3 E I F_{w \mid x=L} / L^{3}-3 F_{M \mid x=L} /(2 L) \\
M_{0} & =3 E I F_{w \mid x=L} / L^{2}+F_{M \mid x=L} / 2 \tag{4}
\end{align*}
$$

Substitution of F_{w} and F_{M} with $x=L$ from (3) into (4) gives

$$
\begin{equation*}
M_{0}=-9.91 \mathrm{kN} \cdot \mathrm{~m}, \quad V_{0}=21.5 \mathrm{kN} \tag{5}
\end{equation*}
$$

which are the same values found in Example 11.1 since $V_{0}=R_{2}$ and $M_{0}=-M_{2}$. The responses along the beam of Fig. 11-5 as represented by (2) are now known completely.

Example 11.3 Simply Supported Beam The single-span simply supported beam of Fig. 11-6 is readily analyzed with the formulas of Table 11-2. Let $E I=$ $1.1 \times 10^{12} \mathrm{lb}_{\mathrm{in}}{ }^{2}$.

Since the left end is hinged, $w_{x=0}=w_{0}=0, M_{x=0}=M_{0}=0$. If the tensile axial force is ignored (see Example 11.4 for the solution when the effects of the axial forces are included), the deflection w, slope θ, shear force V, and moment M are given by (Table 11-2, part A)

$$
\begin{equation*}
w=-\theta_{0} x-V_{0} \frac{x^{3}}{3 E I}+F_{w} \tag{1a}
\end{equation*}
$$

Figure 11-6: Simply supported beam: (a) beam; (b) model.

$$
\begin{align*}
\theta & =\theta_{0}+V_{0} \frac{x^{2}}{2 E I}+F_{\theta} \tag{1b}\\
V & =V_{0}+F_{V} \tag{1c}\\
M & =V_{0} x+F_{M} \tag{1d}
\end{align*}
$$

The loading functions F_{w}, F_{θ}, F_{V}, and F_{M} for the concentrated applied moments and forces are taken from part B in Table 11-2, with the use of superposition in the case of more than one applied loading. For example,

$$
\begin{align*}
F_{w}(x)= & \frac{102,000\left(x^{2}\right)}{2 E I}+\frac{3335<x-21.5>^{3}}{3 E I}+\frac{8417<x-39.9>^{3}}{3 E I} \\
& +\frac{8417<x-53.1>^{3}}{3 E I}+\frac{3335<x-71.5>^{3}}{3 E I}-\frac{102,000<x-93>^{2}}{2 E I} \tag{2}
\end{align*}
$$

The boundary conditions $w_{x=L}=0, M_{x=L}=0$ are used to identify θ_{0} and V_{0} in (1). From part C in Table 11-2,

$$
\begin{align*}
& \theta_{0}=\frac{1}{L} \bar{F}_{w}+\frac{1}{6 E I} \bar{F}_{M}=\frac{1}{L} F_{w \mid x=L}+\frac{L}{6 E I} F_{M \mid x=L}=-0.6124 \times 10^{-5} \mathrm{rad} \tag{3}\\
& V_{0}=-\frac{1}{L} \bar{F}_{M}=-\frac{1}{L} F_{M \mid x=L}=0.1175 \times 10^{5} \mathrm{lb}
\end{align*}
$$

This completes the solution. The variables w, θ, V, and M are given by (1) everywhere along the beam. It will be shown in Example 11.4 that the tensile force has little influence on the results.

11.5 BEAMS WITH AXIAL FORCES ON ELASTIC FOUNDATIONS

The governing equations for a uniform beam with a compressive axial force P and resting on an elastic (Winkler) foundation of modulus k are as follows. Without shear deformation,

$$
\begin{align*}
E I \frac{d^{4} w}{d x^{4}}+P \frac{d^{2} w}{d x^{2}}+k w & =p \\
E I \frac{d^{3} w}{d x^{3}}+P \frac{d w}{d x} & =-V \tag{11.7a}\\
E I \frac{d^{2} w}{d x^{2}} & =-M \\
\frac{d w}{d x} & =-\theta
\end{align*}
$$

With shear deformation,

$$
\begin{align*}
\frac{d w}{d x} & =-\theta+\frac{V \alpha_{s}}{G A} \\
\frac{d \theta}{d x} & =\frac{M}{E I} \tag{11.7b}\\
\frac{d V}{d x} & =-p_{z}+k w \\
\frac{d M}{d x} & =V-P \theta
\end{align*}
$$

where A / α_{s} is the equivalent shear area A_{s} and α_{s} is the shear correction factor (shear deflection constant) given in Table 2-4. For a beam with a tensile axial load, replace P by $-P$.

The formulas of the response of this type of beam are provided in Table 11-3, part A. The parameters $\lambda, \zeta, \eta, e_{0}, e_{1}, e_{2}, e_{3}$, and e_{4} are defined in Table 11-3, part B.

The F_{w}, F_{θ}, F_{V}, and F_{M} in the responses of Table 11-3, part A, are loading functions given in part C . If there are several loads on a beam, the $F_{w}, F_{\theta}, F_{V}, F_{M}$ functions are obtained by adding the terms given in part C of Table 11-3 for each load. Use the definition

$$
e_{i}<x-a>= \begin{cases}0 & \text { if } x<a \tag{11.8}\\ e_{i}(x-a) & \text { if } x \geq a\end{cases}
$$

For example, suppose that $e_{1}=\cosh \alpha x$ in Table 11-3, part B. Then

$$
e_{1}<x-a>= \begin{cases}0 & \text { if } x<a \\ \cosh \alpha(x-a) & \text { if } x \geq a\end{cases}
$$

Also, if $e_{1}=1$,

$$
e_{1}<x-a>=<x-a>^{0}= \begin{cases}0 & \text { if } x<a \tag{11.9}\\ 1 & \text { if } x \geq a\end{cases}
$$

The initial values $w_{0}, \theta_{0}, V_{0}, M_{0}$ of the responses of Table 11-3, part A, are provided in Table 11-3, part D.

Example 11.4 Simply Supported Beam Consider again the beam of Example 11.3. This time take the tensile axial load of 4080 lb (Fig. 11-6) into account but do not include shear deformation effects.

From Table 11-3, part B, for a beam with tensile axial load,

$$
\begin{align*}
\lambda & =0, \quad \alpha^{2}=P / E I=\zeta, \quad \eta=0 \\
e_{0} & =\alpha \sinh \alpha x, \quad e_{1}=\cosh \alpha x, \quad e_{2}=(\sinh \alpha x) / \alpha \tag{1}\\
e_{3} & =(\cosh \alpha x-1) / \alpha^{2}, \quad e_{4}=(\sinh \alpha x-\alpha x) / \alpha^{3}
\end{align*}
$$

The end conditions are still

$$
\begin{equation*}
w_{0}=0, \quad M_{0}=0, \quad w_{x=L}=0, M_{x=L}=0 \tag{2}
\end{equation*}
$$

According to Table 11-3, part A, the deflection, slope, shear force, and bending moment are

$$
\begin{align*}
w & =-\theta_{0} e_{2}-V_{0} e_{4} / E I+F_{w} \\
\theta & =\theta_{0} e_{1}+V_{0} e_{3} / E I+F_{\theta} \\
V & =-\theta_{0} \lambda E I e_{3}+V_{0}\left(e_{1}+\zeta e_{3}\right)+F_{V} \tag{3}\\
M & =\theta_{0} E I e_{0}+V_{0} e_{2}+F_{M}
\end{align*}
$$

The loading functions for the applied concentrated forces and moments are taken from Table 11-3, part C. As an example, it is seen that F_{w} becomes

$$
\begin{align*}
F_{w}(x)= & \frac{102,000 e_{3}(x)}{E I}+\frac{3335 e_{4}<x-21.5>}{E I}+\frac{8417 e_{4}<x-39.9>}{E I} \tag{4}\\
& +\frac{8417 e_{4}<x-53.1>}{E I}+\frac{3335 e_{4}<x-71.5>}{E I}-\frac{102,000 e_{3}<x-93>}{E I}
\end{align*}
$$

Recall how the singularity functions are handled. For example,

$$
\begin{align*}
e_{3}(x) & =e_{3}=(\cosh \alpha x-1) / \alpha^{2} \\
e_{3}<x-93> & = \begin{cases}0 & \text { if } x<93 \\
{[\cosh \alpha(x-93)-1] / \alpha^{2}} & \text { if } x \geq 93\end{cases} \tag{5}\\
e_{4}<x-21.5> & = \begin{cases}0 & \text { if } x<21.5 \\
{[\sinh \alpha(x-21.5)-\alpha(x-21.5)] / \alpha^{3}} & \text { if } x \geq 21.5\end{cases}
\end{align*}
$$

From Table 11-3, part D, the simply supported end conditions give

$$
\begin{align*}
\theta_{0} & =\frac{-\bar{e}_{2} \bar{F}_{w}-\left(\bar{e}_{4} / E I\right) \bar{F}_{M}}{\nabla}=\frac{\left[-e_{2} F_{w}-\left(e_{4} / E I\right) F_{M}\right]_{x=L}}{\nabla} \\
V_{0} & =\frac{E I \bar{e}_{0} \bar{F}_{w}+\bar{e}_{2} \bar{F}_{M}}{\nabla}=\frac{\left(E I e_{0} F_{w}+e_{2} F_{M}\right)_{x=L}}{\nabla} \tag{6}\\
\nabla & =\frac{\bar{e}_{0} \bar{e}_{4}}{E I}-\bar{e}_{2}^{2}=\left(\frac{e_{0} e_{4}}{E I}-e_{2}^{2}\right)_{x=L}
\end{align*}
$$

Substitution of the appropriate values for this beam gives

$$
\begin{equation*}
\theta_{0}=-0.6124 \times 10^{-5} \mathrm{rad}, \quad V_{0}=11,752 \mathrm{lb} \tag{7}
\end{equation*}
$$

Note that the results are virtually the same as in Example 11.3. Hence, the effect of the axial force on w, θ, V, and M is negligible.

11.6 PLASTIC DESIGN

The stresses of Section 11.3 are based on linear elastic assumptions and a design assumes that the structure is in the pure elastic state and that the yield stress of the outer fiber of the beam cross sections determines the maximum load that the beam can carry. An alternative and often more realistic technique is to utilize plastic, or ultimate strength, design, which is based on the assumption that a beam collapses only when all fibers on a critical cross section reach a plastic state. The corresponding load, the collapse load, at this moment is considered to be the maximum load that the structure can carry.

The plastic collapse process can be illustrated by a clamped-clamped beam carrying a uniform load p_{1}. The moment diagram of the beam is shown in Fig. 11-7a. At three cross sections, the bending moment has peak values. Let p_{1} be sufficiently large that yielding begins at the upper fiber on cross sections 1 and 3 . As the load p_{1} increases, assume that the stress distribution on these cross sections will be of the form of Fig. 11-7b. Continue increasing the load to p_{1}^{\prime}, the level at which cross sections 1 and 3 become completely plastic. Since this completely plastic state functions like a hinge, it is referred to as a plastic hinge. The beam with its two plastic hinges becomes similar to a simply supported beam (Fig. 11-7c). More load can be added until cross section 2 becomes fully plastic and the beam appears as in Fig. 11-7d. At this point the beam can collapse; consequently, the load $p_{1}^{\prime \prime}$ is treated as the critical or collapse load. The critical load is much larger than that determined from an elastic design.

The bending moment that causes a completely plastic state on a cross section is called the plastic moment and is expressed as $M_{p}=\sigma_{y s} Z_{p}$, where $\sigma_{y s}$ is the yielding stress of the material and Z_{p} is the plastic modulus of the cross section (Chapter 2).

The object of plastic design is to find the location of the plastic hinges and to determine the collapse load. Table 11-4 gives these quantities for several loads and boundary conditions. The maximum load and the location of the plastic hinge for the cases that do not appear in this table can be determined from the methods provided in many textbooks, such as Ref. [11.24].

11.7 BUCKLING LOADS AND COLUMNS

A slender column subject to an axial load may assume a state of large lateral deflection even if no significant lateral loads are applied. This condition occurs because of the existence of an unstable equilibrium state above a certain level of axial load called the elastic buckling load, also known as the critical load. It is given by the formula (Euler's formula)

Beam under load \boldsymbol{P}_{1}

(b)

Stress distributions on cross sections 1, 2 and 3

Stress distributions on cross sections 1, 2 and 3
(c)

Stress distributions on cross sections 1, 2 and 3
(d)

Figure 11-7: Collapse process of a beam with uniform load: (a) beam with uniform load p_{1}; (b) form of stress distribution when p_{1} increases (it is assumed that the material is perfectly plastic as a fiber reaches its yield stress); (c) beam as cross sections 1 and 3 become completely plastic; (d) beam as cross sections 1,2 , and 3 become completely plastic.

$$
\begin{equation*}
P_{\mathrm{cr}}=\pi^{2} E I / L^{2} \tag{11.10}
\end{equation*}
$$

for a pinned-pinned beam. The critical load can also be written as a critical stress by defining the slenderness ratio $\lambda=K L / r$, in which $K L$ is the effective column length that varies with the end conditions and $r=\sqrt{I / A}$ is the radius of gyration (Chapter 2) of the beam cross section about the centroidal axis for which the radius of gyration is a minimum:

$$
\begin{equation*}
\sigma_{\mathrm{cr}}=\pi^{2} E / \lambda^{2} \tag{11.11}
\end{equation*}
$$

The appropriate expression for the critical load is shown in Tables 11-5 to 11-9 for a variety of column configurations. These include ordinary columns (Table 11-5), columns with flexible end supports (Table 11-6), columns with in-span axial loads (Table 11-7), columns with in-span supports (Table 11-8), and tapered columns (Table 11-9).

The buckling of complicated beams or beam structures (e.g., frames) can be determined, as explained in Appendix III, using the transfer and stiffness matrices of Sections 11.9 and 11.10. Use of the transfer matrix and corresponding generalized dynamic stiffness matrix leads to a determinant search for the buckling loads. If the geometric stiffness matrix is utilized, the buckling load can be computed as the solution to a classical eigenvalue problem.

Example 11.5 Buckling of a Cantilever Beam with a Flexibly Supported End A cantilever beam with the linear spring at the free end is shown in Fig. 11-8. For this beam, $E=200 \mathrm{GN} / \mathrm{m}^{2}$ and $I=5245 \mathrm{~cm}^{4}$. Find the critical axial load.

Figure 11-8: Cantilever beam with a linear spring.

This beam corresponds to case 1 of Table 11-6 with no rotational resistance (i.e., $k_{1}=0$). From Fig. 11-8, the elastic spring constant k has the value $1.166 \mathrm{MN} / \mathrm{m}$. Also, it follows from the formulas of the table that

$$
\begin{equation*}
c=\frac{k L^{3}}{E I}=3.0 \tag{1}
\end{equation*}
$$

and $c_{1}=0$. Furthermore,

$$
\begin{equation*}
\frac{c(m-\sin m)-m^{3}}{c(1-\cos m)}=\tan m \tag{2}
\end{equation*}
$$

It follows from (2) that $m=2.203$. Hence, the critical load $P_{\text {cr }}$ is calculated as

$$
\begin{align*}
P_{\text {cr }} & =m^{2} \frac{E I}{L^{2}}=(2.203)^{2} \frac{\left(200 \times 10^{9}\right)\left(5.245 \times 10^{-5}\right)}{3^{2}} \\
& =5.65 \mathrm{MN} \tag{3}
\end{align*}
$$

Of course, methods using transfer or stiffness matrices lead to the same result.

Columns

The Euler buckling load given by Eq. (11.10) is strictly accurate for a perfectly straight slender column subject to a centered axial load. It is assumed that before the load reaches the critical value, the deflection of the column is small. When there are some imperfections or deviations, such as the column not being slender or perfectly straight or the load being applied eccentrically, the justification for the use of Euler's equation is questionable. In these cases, large deformations may develop or the material may behave inelastically before the column buckles. Generally, for columns with large slenderness ratios and small load eccentricities, Euler's equation is still applicable. Aluminum and mild steel columns usually buckle elastically at slenderness ratios of about 100 or more, but this behavior depends on the imperfections in the load-column system. Some aluminum alloys tempered to high yield strength buckle elastically at slenderness ratios as low as 60 . Inelastic buckling tends to occur as the slenderness ratios decrease and the imperfections in column straightness and load eccentricity increase.

In the case of inelastic buckling, the axial compressive stress P / A is greater than the proportional limit before the column buckles. The determination of P_{cr} for perfectly straight columns is closely related to the elastic modulus after the yield point. The slope of the stress-strain relationship $d \sigma / d \epsilon$ from Fig. 11-9 no longer equals the elastic modulus E. Two theories for handling this modulus are pertinent.

The tangent modulus theory proposed by Engesser in 1889 describes a modulus E_{t} [11.3]. The tangent modulus E_{t} is defined as $d \sigma / d \epsilon$, the slope of the stress-strain curve above the proportional limit. Unlike the elastic modulus, the tangent modulus is not constant but, rather, is a function of applied stress. Substitute E_{t} for E in Euler's formula, giving $P_{\mathrm{cr}}=\pi^{2} E_{t} I / L^{2}$ for a pinned-pinned beam.

A second theory, the double modulus theory or reduced modulus theory, assumes that the axial force remains constant during the onset of buckling [11.3]. The resulting deformation of the beam causes strain reversal on the convex side while the strain on the concave side will continue to increase. It would appear that the material laws (moduli) relating the increments of stress and strain for the two sides should be different. The convex side is chosen to be represented by the elastic modulus E

Figure 11-9: Stress-strain relation and moduli.
and the concave to the tangent modulus E_{t}. This results in a value for $P_{\text {cr }}$ that depends on both E and E_{t}. This yields the equation for the reduced modulus load $P_{\text {cr }}=\pi^{2} E_{r} I / L^{2}$, where E_{r} is a function of both E_{t} and E. This load is the greatest load the column can bear and still remain straight. The modulus E_{r} is a function of both cross-sectional and material properties. See Refs. [11.3] and [11.19] for more details of these two theories.

For the columns that are not straight and loaded eccentrically, it is difficult to derive the buckling load. However, for cases of imperfections in the alignment of the loading, approximate formulas have been proposed that are empirically adjusted to conform to test results. The maximum stresses P / A according to some of these formulas are given in Table 11-10.

In practice, columns with very large slenderness ratios are of limited value because only very small axial loads can be supported. Euler's formula is often applicable for somewhat smaller values of the slenderness ratio. For very small slenderness ratios, a column behaves essentially as a block in compression and the critical stress would be the compressive strength of the material (e.g., the yield stress). The region between the compression block and slenderness ratios for which Euler's formula is useful is referred to as the intermediate range. A number of empirical formulas for various materials (steel, aluminum alloys, and timber) have been proposed to cover the intermediate range. These formulas can be found in construction manuals, such as Ref. [11.25].

Short Bars with Eccentric Loading

For very short bars subjected to eccentric axial loading, buckling will not occur, and the stresses can be determined from the theory of strength of materials. For materials that do not withstand tension, the compressive load cannot be applied outside the kern of the cross section; otherwise, tensile stress will develop on the cross section. The kerns are shown in Table 11-11 for various shapes of cross sections. The method of obtaining the formulas in this table can be found in basic strength of material texts.

11.8 NATURAL FREQUENCIES AND MODE SHAPES

The natural frequencies ω_{i} (radians per second) or f_{i} (hertz), $i=1,2, \ldots$, for the bending vibrations for uniform Euler-Bernoulli beams are presented in Table 11-12. The frequency equations for beams, including shear deformation and rotary inertia, are provided in Table 11-13. The roots $\omega_{i}, i=1,2, \ldots$, of these equations are the natural frequencies.

Table 11-14 provides frequencies for beams modeled with lumped masses. The fundamental natural frequencies for several continuous beams are tabulated in Table 11-15 and for tapered beams in Table 11-16.

Some approximate formulas for the period of vibration of buildings are given in Table 11-17. Damping information for various structures is provided in Table 11-18. Most of these results are based on observations of the response of actual structures.

The natural frequencies and mode shapes for beams more complicated than those presented in these tables can be computed using the transfer matrix and displacement methods of Appendix III. Frequencies are found using the transfer matrix and corresponding generalized dynamic stiffness matrix of Section 11.9 with a determinant frequency search, whereas the solution to a generalized eigenvalue problem will yield the frequencies if a stiffness matrix (other than a dynamic stiffness matrix) and a mass matrix are employed.

Example 11.6 Vibration of a Continuous Beam A multispan uniform beam with rigid in-span supports and one end free with the other end pinned is shown in Fig. 11-10. For this beam, $E=200 \mathrm{GN} / \mathrm{m}^{2}, I=144 \mathrm{~cm}^{4}$, and ρ (mass per unit length) $=19.97 \mathrm{~kg} / \mathrm{m}$. The fundamental natural frequency can be obtained by using Table 11-15, case 2 . For three spans, $\lambda_{1}=1.536$. Then

Figure 11-10: Multispan beam with rigid in-span supports.

The same result can be generated using the matrix methods discussed in the following sections.

11.9 GENERAL BEAMS

Most of the formulas provided thus far apply to single-span beams. For more general beams (e.g., those with multiple-span, variable cross-sectional properties, inspan supports), it is advisable to use the transfer matrix method or the displacement (stiffness) method outlined in Appendix III. These are efficient methods that can be programmed with ease.

Transfer Matrices

A few transfer matrices are tabulated in Tables 11-19 to 11-22. They are used to find the static response, buckling load, or natural frequencies as indicated in Appendix III. The transfer matrix in Table 11-22 is for a very general beam element that can be employed to take into account such effects as foundations, axial forces, and inertia.

The notation for the transfer matrix for beam element i is

$$
\mathbf{U}^{i}=\left[\begin{array}{ccccc}
U_{w w} & U_{w \theta} & U_{w V} & U_{w M} & \bar{F}_{w} \tag{11.12}\\
U_{\theta w} & U_{\theta \theta} & U_{\theta V} & U_{\theta M} & \bar{F}_{\theta} \\
U_{V w} & U_{V \theta} & U_{V V} & U_{V M} & \bar{F}_{V} \\
U_{M w} & U_{M \theta} & U_{M V} & U_{M M} & \bar{F}_{M} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The structural matrices here are based on the governing equations for the bending of a Timoshenko beam:

$$
\begin{align*}
\frac{\partial w}{\partial x} & =-\theta+\frac{V}{G A_{s}} \tag{11.13a}\\
\frac{\partial \theta}{\partial x} & =\frac{M}{E I}+\frac{M_{T}}{E I} \tag{11.13b}\\
\frac{\partial V}{\partial x} & =k w+\rho \frac{\partial^{2} w}{\partial t^{2}}-p_{z}(x, t) \tag{11.13c}\\
\frac{\partial M}{\partial x} & =V+\left(k^{*}-P\right) \theta+\rho r_{y}^{2} \frac{\partial^{2} \theta}{\partial t^{2}}-c(x, t) \tag{11.13d}
\end{align*}
$$

The applied distributed force and moment are indicated by $p_{z}(x, t)$ and $c(x, t)$, respectively. A Timoshenko beam includes the effects of shear deformation and rotary inertia as well as bending. The governing equations are reduced to those for a Rayleigh beam (bending, rotary inertia) by setting $1 / G A_{s}$ equal to zero, for a shear beam (bending, shear deformation) by making

$$
\rho r_{y}^{2} \frac{\partial^{2} \theta}{\partial t^{2}}
$$

equal to zero, and for a Euler-Bernoulli beam (bending) by putting

$$
\frac{1}{G A_{s}}
$$

and

$$
\rho r_{y}^{2} \frac{\partial^{2} \theta}{\partial t^{2}}
$$

equal to zero. Equations (11.13) apply to beams with a compressive axial force P. Replace P by $-P$ if the axial force is tensile.

Example 11.7 Simple Beam Return to the simple beam of Examples 11.1 and 11.2. The same problem can be solved using transfer matrices. See the no-
tation in Fig. 11-5c. Follow the procedure explained in Appendix III. In transfer matrix form the response at the right end is given by

$$
\begin{equation*}
\mathbf{z}_{x=L}=\mathbf{U}^{2} \mathbf{U}_{b} \mathbf{U}^{1} \mathbf{z}_{0} \tag{1}
\end{equation*}
$$

where \mathbf{z} is the state vector

$$
\mathbf{z}=\left[\begin{array}{c}
w \tag{2}\\
\theta \\
V \\
M \\
1
\end{array}\right]
$$

From Tables 11-19 and 11-21, the extended transfer matrices for the case $1 / G A_{s}=0$ are given by

$$
\begin{align*}
\mathbf{U}^{1} & =\left[\begin{array}{ccccc}
1 & -a_{1} & -a_{1}^{3} / 6 E I & -a_{1}^{2} / 2 E I & 0 \\
0 & 1 & a_{1}^{2} / 2 E I & a_{1} / E I & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & a_{1} & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \tag{3}\\
\mathbf{U}_{b} & =\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -W \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \tag{4}\\
\mathbf{U}^{2} & =\left[\begin{array}{ccccc}
1 & -b & -b^{3} / 6 E I & -b^{2} / 2 E I & 0 \\
0 & 1 & b^{2} / 2 E I & b / E I & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & b & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \quad b=L-a_{1} \tag{5}
\end{align*}
$$

Carry out the matrix multiplications indicated in (1) using the matrices of (3), (4), and (5). This results in

$$
\begin{equation*}
\mathbf{z}_{x=L}=\mathbf{U z}_{0} \tag{6}
\end{equation*}
$$

where $\mathbf{U}=\mathbf{U}^{2} \mathbf{U}_{b} \mathbf{U}^{1}$ is the global transfer matrix

$$
\mathbf{U}=\left[\begin{array}{ccccc}
1 & -L & -L^{3} / 6 E I & -L^{2} / 2 E I & b^{3} W / 6 E I \tag{7}\\
0 & 1 & L^{2} / 2 E I & L / E I & -b^{2} W / 2 E I \\
0 & 0 & 1 & 0 & -W \\
0 & 0 & L & 1 & -b W \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Apply the boundary conditions to (6):

$$
\left[\begin{array}{c}
w=0 \tag{8}\\
\theta \\
V \\
M=0 \\
1
\end{array}\right]_{x=L}=\mathbf{U}\left[\begin{array}{c}
w=0 \\
\theta=0 \\
V \\
M \\
1
\end{array}\right]_{x=0}
$$

This leads to

$$
\begin{align*}
& w_{x}=L=0 \tag{9}\\
&=-\frac{L^{3} V_{0}}{6 E I}-\frac{L^{2} M_{0}}{2 E I}+\frac{b^{3} W}{6 E I} \\
& M_{x=L}=0=L V_{0}+M_{0}-b W
\end{align*}
$$

From (9),

$$
\begin{align*}
V_{0} & =\frac{1}{2} W\left[3 b / L-(b / L)^{3}\right] \tag{10}\\
M_{0} & =b W-L V_{0}
\end{align*}
$$

Use $W=35 \mathrm{kN}, L=1.6 \mathrm{~m}, b=L-a_{1}=0.7 \mathrm{~m}$, and again we find that $V_{0}=21.5 \mathrm{kN}$ and $M_{0}=-9.91 \mathrm{kN} \cdot \mathrm{m}$. The shear force at the simple support is

$$
\begin{equation*}
V_{x=L}=V_{0}-W=-13.5 \mathrm{kN} \tag{11}
\end{equation*}
$$

Computer-generated results are shown in Fig. 11-11.

Figure 11-11: Computer-generated response of the beam for Example 11.7.

11.10 STIFFNESS AND MASS MATRICES

Stiffness Matrix

Tables 11-19 to 11-22 contain stiffness matrices for beams. Use of these matrices in static, stability, and dynamic analyses is explained in Appendix III. Textbooks covering standard structural mechanics, such as Ref. [11.23], can also be consulted.

The matrices in this section follow sign convention 2 of Appendix II. This is in contrast to most of the formulas and transfer matrices appearing earlier in this chapter, which are based on sign convention 1 of Appendix II. The sign convention is illustrated in each table.

All of these stiffness matrices for the i th element are of the form $\mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i}$, where

$$
\mathbf{p}^{i}=\left[\begin{array}{c}
V_{a} \tag{11.14}\\
M_{a} \\
V_{b} \\
M_{b}
\end{array}\right]^{i}, \quad \mathbf{v}^{i}=\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
w_{b} \\
\theta_{b}
\end{array}\right]^{i}, \quad \quad \overline{\mathbf{p}}^{i}=\left[\begin{array}{c}
V_{a}^{0} \\
M_{a}^{0} \\
V_{b}^{0} \\
M_{b}^{0}
\end{array}\right]^{i}
$$

The format for the stiffness matrix of a plane beam element with bending deformation is

$$
\mathbf{k}^{i}=\left[\begin{array}{llll}
k_{11} & k_{12} & k_{13} & k_{14} \tag{11.15}\\
k_{21} & k_{22} & k_{23} & k_{24} \\
k_{31} & k_{32} & k_{33} & k_{34} \\
k_{41} & k_{42} & k_{43} & k_{44}
\end{array}\right]
$$

As explained in Appendix II, the stiffness matrices can be derived in numerous ways, including by rearranging transfer matrices.

Example 11.8 Simple Beam Use the displacement method to find the response of the simple beam of Fig. 11-5c.

Although there is no technical reason to use more than one element, as stiffness matrices for statically loaded beams are exact, we choose to discretize the beam into two elements. For each element, the stiffness matrix is given in Table 11-19.

$$
\mathbf{k}^{i}=\left[\begin{array}{cccc}
12 & -6 \ell_{i} & -12 & -6 \ell_{i} \tag{1}\\
-6 \ell_{i} & 4 \ell_{i}^{2} & 6 \ell_{i} & 2 \ell_{i}^{2} \\
-12 & 6 \ell_{i} & 12 & 6 \ell_{i} \\
-6 \ell_{i} & 2 \ell_{i}^{2} & 6 \ell_{i} & 4 \ell_{i}^{2}
\end{array}\right] \frac{E_{i} I_{i}}{\ell_{i}^{3}}=\left[\begin{array}{cc}
\mathbf{k}_{a a}^{i} & \mathbf{k}_{a b}^{i} \\
\mathbf{k}_{b a}^{i} & \mathbf{k}_{b b}^{i}
\end{array}\right]
$$

where ℓ_{i}, I_{i}, and E_{i} are the length, moment of inertia, and modulus of elasticity of beam element i, respectively. For this beam $\ell_{1}=0.9 \mathrm{~m}, \ell_{2}=0.7 \mathrm{~m}, E_{1}=E_{2}=$ $200 \mathrm{GN} / \mathrm{m}^{2}$, and $I_{1}=I_{2}=144 \mathrm{~cm}^{4}$.

Follow the procedure provided in Appendix III in which the global stiffness matrix is assembled using the element stiffness matrices:

$$
\mathbf{k}^{1}=\left[\begin{array}{ll}
\mathbf{k}_{a a}^{1} & \mathbf{k}_{a b}^{1} \tag{2}\\
\mathbf{k}_{b a}^{1} & \mathbf{k}_{b b}^{1}
\end{array}\right]=395061.73\left[\begin{array}{cccc}
12 & -5.4 & -12 & -5.4 \\
-5.4 & 3.24 & 5.4 & 1.62 \\
-12 & 5.4 & 12 & 5.4 \\
-5.4 & 1.62 & 5.4 & 3.24
\end{array}\right]
$$

$$
\mathbf{k}^{2}=\left[\begin{array}{ll}
\mathbf{k}_{b b}^{2} & \mathbf{k}_{b c}^{2} \tag{3}\\
\mathbf{k}_{c b}^{2} & \mathbf{k}_{c c}^{2}
\end{array}\right]=839650.15\left[\begin{array}{cccc}
12 & -4.2 & -12 & -4.2 \\
-4.2 & 1.96 & 4.2 & 0.98 \\
-12 & 4.2 & 12 & 4.2 \\
-4.2 & 0.98 & 4.2 & 1.96
\end{array}\right]
$$

The global stiffness matrix is

$$
\begin{align*}
\mathbf{K} & =\left[\begin{array}{ccc}
\mathbf{k}_{a a}^{1} & \mathbf{k}_{a b}^{1} & \mathbf{0} \\
\mathbf{k}_{b a}^{1} & \mathbf{k}_{b b}^{1}+\mathbf{k}_{b b}^{2} & \mathbf{k}_{b c}^{2} \\
\mathbf{0} & \mathbf{k}_{c b}^{2} & \mathbf{k}_{c c}^{2}
\end{array}\right] \\
& =395061.73\left[\right] \tag{4}
\end{align*}
$$

The forces and deformations are related by

$$
\begin{equation*}
\overline{\mathbf{P}}=\mathbf{K} \mathbf{V} \tag{5}
\end{equation*}
$$

where, with the displacement boundary conditions $w_{a}=\theta_{a}=w_{c}=0$,

$$
\mathbf{V}=\left[\begin{array}{c}
w_{a} \tag{6}\\
\theta_{a} \\
w_{b} \\
\theta_{b} \\
w_{c} \\
\theta_{c}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
w_{b} \\
\theta_{b} \\
0 \\
\theta_{c}
\end{array}\right]
$$

and

$$
\left.\overline{\mathbf{P}}=\left[\begin{array}{c}
V_{a} \tag{7}\\
M_{a} \\
V_{b} \\
M_{b} \\
V_{c} \\
M_{c}
\end{array}\right]=\left[\begin{array}{cc}
V_{a} \\
M_{a}
\end{array}\right\} \begin{array}{cc}
\text { (unknown } \\
\text { reactions) } \\
W & \\
0 & \\
V_{c} & \text { (unknown } \\
0 & \text { reaction) }
\end{array}\right]
$$

Remove the columns in (4) corresponding to the displacements that are zero [see (6)] and ignore the rows in (4) corresponding to the unknown reactions [see (7)]. Then

$$
395061.73\left[\begin{array}{rrr}
37.5044 & -3.5265 & -8.9265 \tag{8}\\
-3.5265 & 7.4057 & 2.0828 \\
-8.9265 & 2.0828 & 4.1657
\end{array}\right]\left[\begin{array}{c}
w_{b} \\
\theta_{b} \\
\theta_{c}
\end{array}\right]=\left[\begin{array}{c}
W \\
0 \\
0
\end{array}\right]
$$

For $W=35 \mathrm{kN}$, the solution of this set of equations gives

$$
\begin{align*}
w_{b} & =4.8576 \mathrm{~mm} \\
\theta_{b} & =-7.1490 \times 10^{-4} \mathrm{rad} \tag{9}\\
\theta_{c} & =0.01077 \mathrm{rad}
\end{align*}
$$

Place these values in (5) and solve for the reactions,

$$
\begin{align*}
V_{a} & =-21.5 \mathrm{kN}=-V_{0} \\
M_{a} & =9.91 \mathrm{kN} \cdot \mathrm{~m}=-M_{0} \tag{10}\\
V_{c} & =-13.5 \mathrm{kN}=V_{x=L}
\end{align*}
$$

As expected, these are the same results obtained with the other methods employed in earlier examples for the same problem.

Table 11-22 provides the generalized dynamic stiffness matrix, which includes many effects, such as foundations, inertias, and axial forces. In addition to incorporation in static analyses, this stiffness matrix is useful in setting up global frequency equation determinants that can be employed for the determination of exact natural frequencies and buckling loads along with the corresponding mode shapes.

Geometric Stiffness Matrix

The traditional geometric stiffness matrix for the buckling of simple beams is provided in Table 11-23.

Mass Matrix

The mass matrices contained in Tables 11-24 and 11-25 are the customary lumpedmass and consistent-mass matrices. See Appendix III for the use of mass matrices in dynamic analyses. The format for these mass matrices for a beam element is

$$
\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \tag{11.16}\\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right]
$$

REFERENCES

11.1. Euler, L., "Des Curvie Elasticis," Lausanne and Geneva, 1744; translated and annotated by Oldfather, W. A., Ellis, C. A., and Brown, D. M., Isis, No. 58, Vol. XX, 1, 1933.
11.2. Column Research Committee of Japan, Handbook of Structural Stability, Corona Publishing, Tokyo, 1971.
11.3. Boresi, A. P., Sidebottom, O. M., and Schmidt, R. J., Advanced Mechanics of Materials, 5th ed., Wiley, New York, 1993.
11.4. Blevins, R. D., Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, New York, 1979.
11.5. Culver, C. G., The Influence of Shear Deformations and Rotary Inertia on the Natural Frequencies of Beams, Marine Engineering Laboratory Technical Memorandum 4/66, 1966.
11.6. Shaker, F. J., Effect of Axial Load on Mode Shapes and Frequencies of Beams, Lewis Research Center Report NASA-TN-8109, December 1975.
11.7. Ratzersdorfer, J., Die Knickfestigkeit von Staben und Stabwerken, Springer, Vienna, 1936.
11.8. Nakagawa, Y., "Effect of the End Fixity on the Buckling of the Column," Trans. Jpn. Soc. Mech. Eng., Vol. 4, No. 14, 1938.
11.9. Bleich, F., Theories und Berechnung der eisernen Brücken, Springer, Vienna, 1936.
11.10. Moyar, G. J., Pilkey, W. D., and Pilkey, B. F. (Eds.), Track Train Dynamics and Design: Advanced Techniques, Pergamon, New York, 1977.
11.11. Nagakawa, K., "Vibrational Characteristics of Reinforced Concrete Buildings Existing in Japan," Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo and Kyoto, Japan, 1960.
11.12. Blume, J. A., and Binder, R. W., "Records of a Modern Multistory Office Building during Construction," Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo and Kyoto, Japan, 1960.
11.13. Housner, G. W., and Brody, G. A., "Natural Periods of Vibration of Buildings," J. Eng. Mech. Div., ASCE, Vol. 89, No. EM4, 1963, pp. 31-65.
11.14. Sachs, P., Wind Forces in Engineering, 2nd ed., Pergamon, Elmsford, NY, 1978.
11.15. Adams, O. E., Jr., and Gilbert, W. D., Seismic Resistance Criteria, HN-65931, July 8, 1960.
11.16. Abbett, R. W. (Ed.), "Earthquake and Earthquake-Resistant Design," in American Civil Engineering Practice, Vol. III, Wiley, New York, 1957, pp. 34-02 to 34-23.
11.17. Tsui, E. Y. W., "Aseismic Design of Structures by Rigidity Criterion," J. Struct. Div., ASCE, Vol. 85, No. ST2, 1959, pp. 81-106.
11.18. Selberg, A., "Damping Effects on Suspension Bridges," Int. Assoc. Bridge Struct. Eng., Vol. 10, 1970.
11.19. Chen, W. F., and Lui, E. M., Structural Stability: Theory and Implementations, Elsevier, New York, 1987.
11.20. Esling, F. K., "A Problem Relating to Railway-Bridge Piers of Masonry or Brickwork," Proc. Inst. Civil Eng., Vol. 165, 1905-1906, pp. 219-230.
11.21. Ruditzin, M. W., Artemov, P., and Luboshytz, M., Handbook for Strength of Materials, BSSR Government Publishing House, Minsk, Russia, 1958.
11.22. Schiff, D., Dynamic Analysis and Failure Modes of Simple Structures, Wiley, New York, 1990.
11.23. Wunderlich, W., and Pilkey, W. D., Structural Mechanics: Computational and Variational Methods, 2nd ed., CRC Press, Boca Raton, FL, 2003.
11.24. Cook, R. D., and Young, W. C., Advanced Mechanics of Materials, Macmillan, New York, 1985.
11.25. Manual of Steel Construction, Allowable Stress Design, 9th ed., American Institute of Steel Construction, Chicago, 1989.

11

Tables

11-1 Uniform Beams 546
11-2 Part A: Simple Beams with Arbitrary Loadings: General Response Expressions 556
11-2 Part B: Simple Beams with Arbitrary Loadings: Loading Functions 557
11-2 Part C: Simple Beams with Arbitrary Loading: Initial Parameters 558
11-3 Part A: Beams with Axial Forces and Elastic Foundations: General Response Expressions 560
11-3 Part B: Beams with Axial Forces and Elastic Foundations: Loading Functions 562
11-3 Part C: Beams with Axial Forces and Elastic Foundations: Initial Parameters 564
11-4 Collapse Loads for Beams 572
11-5 Elastic Buckling Loads and Mode Shapes for Axially Loaded Columns with Ideal End Conditions 578
11-6 Elastic Buckling Loads for an Axially Loaded Column with Elastically Restrained End Conditions 579
11-7 Elastic Buckling Load for Columns with In-Span Axial Loads 581
11-8 Buckling Loads for Columns with In-Span Supports 583
11-9 Buckling Loads for Tapered Columns 587
11-10 Formulas for Maximum Stress in Imperfect Columns 589
11-11 Formulas for Kerns of Short Columns Loaded Eccentrically 590
11-12 Natural Frequencies and Mode Shapes for Uniform Beams 593
11-13 Frequency Equations for Uniform Beams 596
11-14 Natural Frequencies for Beams with Concentrated Masses 599
11-15 Fundamental Natural Frequency by Number of Spans of Multispan Beams with Rigid In-Span Supports 600
11-16 Fundamental Natural Frequencies of Tapered Beams 601
11-17 Formulas for Approximate Periods of Vibration of Buildings 602
11-18 Damping of Structures 603
11-19 Transfer and Stiffness Matrices for a Beam Element with Bending and Shear Deformation 604
11-20 Transfer and Stiffness Matrices for Beam Element with Variable Moment of Inertia 606
11-21 Point Matrices for Concentrated Occurrences 610
11-22 Transfer and Stiffness Matrices for a General Beam Segment
11-23 Geometric Stiffness Matrix (Consistent)
11-24 Lumped Mass Matrices
11-25 Consistent Mass Matrix and General Mass Matrix

TABLE 11-1 UNIFORM BEAMS

Positive deflection w, slope θ, moment M, and shear force V

The positive directions of the reactions ($R_{1}, R_{2}, M_{1}, M_{2}$) are shown in the figures for each case. Coordinate x is measured from the left-hand end for all entries in this table.

Type of Beam	Reactions	Deflection at Any Point x
1.	$\begin{aligned} R_{1} & =W \\ M_{1} & =W a \end{aligned}$	For $x<a$, $\frac{W}{6 E I}\left(-x^{3}+3 x^{2} a\right)$ For $x \geq a$, $\frac{W}{6 E I}\left(3 a^{2} x-a^{3}\right)$
2.	$\begin{aligned} R_{1} & =p_{1} L \\ M_{1} & =\frac{1}{2} p_{1} L^{2} \end{aligned}$	$\frac{p_{1} x^{2}}{24 E I}\left(x^{2}+6 L^{2}-4 L x\right)$
3.	$\begin{aligned} R_{1} & =\frac{1}{2} p L \\ M_{1} & =\frac{1}{6} p L^{2} \end{aligned}$	$\frac{p x^{2}}{120 L E I}\left(10 L^{3}-10 L^{2} x+5 L x^{2}-x^{3}\right)$
4.	$\begin{aligned} R_{1} & =\frac{1}{2} p L \\ M_{1} & =\frac{1}{3} p L^{2} \end{aligned}$	$\frac{p x^{2}}{120 L E I}\left(20 L^{3}-10 L^{2} x+x^{3}\right)$
5.	$\begin{aligned} R_{1} & =0 \\ M_{1} & =M^{*} \end{aligned}$	For $x<a$, $\frac{x^{2} M^{*}}{2 E I}$ For $x \geq a$, $\frac{M^{*} a}{2 E I}(2 x-a)$

Maximum Deflection	Moment at Any Point x	Maximum Moment	Important Slope	Maximum Shear Force
$\begin{aligned} & \frac{W a^{2}(3 L-a)}{6 E I} \\ & \text { at } x=L \end{aligned}$	$\begin{aligned} & \text { For } x<a, \\ & -W(a-x) \\ & \text { For } x \geq a \text {, } \\ & 0 \end{aligned}$	$\begin{aligned} W a & =M_{1} \\ \text { at } x & =0 \end{aligned}$	$\begin{aligned} \theta_{\max } & =\frac{W a^{2}}{2 E I} \\ \text { at } x & =L \end{aligned}$	W at $x<a$
$\begin{aligned} & \frac{p_{1} L^{4}}{8 E I} \\ & \text { at } x=L \end{aligned}$	$-\frac{1}{2} p_{1}\left(L^{2}-2 L x+x^{2}\right)$	$\begin{aligned} & \frac{1}{2} p_{1} L^{2}=M_{1} \\ & \text { at } x=0 \end{aligned}$	$\theta_{\text {max }}=\frac{p_{1} L^{3}}{6 E I}$	$p_{1} L$ at $x=0$
$\begin{aligned} & \frac{p L^{4}}{30 E I} \\ & \text { at } x=L \end{aligned}$	$\begin{array}{r} -\frac{p}{6 L}\left(L^{3}-3 L^{2} x\right. \\ \left.+3 L x^{2}-x^{3}\right) \end{array}$	$\begin{aligned} & \frac{1}{6} p L^{2}=M_{1} \\ & \text { at } x=0 \end{aligned}$	$\begin{aligned} \theta_{\max } & =\frac{p L^{3}}{24 E I} \\ \text { at } x & =L \end{aligned}$	$\frac{1}{2} p L$ at $x=0$
$\frac{11 p L^{4}}{120 E I}$ $\text { at } x=L$	$-\frac{p}{6 L}\left(2 L^{3}-3 L^{2} x+x^{3}\right)$	$\begin{aligned} & \frac{1}{3} p L^{2}=M_{1} \\ & \text { at } x=0 \end{aligned}$	$\begin{aligned} \theta_{\max } & =\frac{p L^{3}}{8 E I} \\ \text { at } x & =L \end{aligned}$	$\begin{aligned} & \frac{1}{2} p L \\ & \text { at } x=0 \end{aligned}$
$\begin{aligned} & \frac{M^{*} a}{2 E I}(2 L-a) \\ & \text { at } x=L \end{aligned}$	$\begin{aligned} & \text { For } x<a \text {, } \\ & -M^{*} \\ & \text { For } x \geq a \text {, } \\ & 0 \end{aligned}$	M^{*} at all $x<a$	$\begin{aligned} \theta_{\max } & =\frac{M^{*} a}{E I} \\ \text { at } x & =L \end{aligned}$	0

TABLE 11-1 (continued) UNIFORM BEAMS			
Type of Beam	Reactions	Deflection at Any Point x	Maximum Deflection
6.	$\begin{aligned} R_{1} & =\frac{W b}{L} \\ R_{2} & =\frac{W a}{L} \end{aligned}$	For $x<a$, $\begin{aligned} & \frac{W b}{6 L E I}\left[-x^{3}\right. \\ & \left.\quad+\left(L^{2}-b^{2}\right) x\right] \end{aligned}$ For $x \geq a$, $\begin{aligned} & \frac{W a}{6 L E I}\left[-(L-x)^{3}\right. \\ & \left.\quad+\left(L^{2}-a^{2}\right)(L-x)\right] \end{aligned}$	$\begin{aligned} & \text { When } a>\frac{L}{2} \\ & \frac{W b\left(L^{2}-b^{2}\right)^{3 / 2}}{9 \sqrt{3} L E I} \\ & \text { at } x=\sqrt{\frac{1}{3}\left(L^{2}-b^{2}\right)} \end{aligned}$
7.	$\begin{aligned} & R_{1}=\frac{1}{2} p_{1} L \\ & R_{2}=\frac{1}{2} p_{1} L \end{aligned}$	$\begin{aligned} & \frac{p_{1} x}{24 E I}\left(L^{3}-2 L x^{2}\right. \\ & \left.+x^{3}\right) \end{aligned}$	$\begin{aligned} & \frac{5 p_{1} L^{4}}{384 E I} \\ & \text { at } x=\frac{1}{2} L \end{aligned}$
8.	$\begin{aligned} & R_{1}=\frac{1}{6} p L \\ & R_{2}=\frac{1}{3} p L \end{aligned}$	$\begin{aligned} & \frac{p x}{360 L E I} \times\left(3 x^{4}\right. \\ & \left.\quad-10 L^{2} x^{2}+7 L^{4}\right) \end{aligned}$	$\begin{aligned} & \frac{0.00652 p L^{4}}{E I} \\ & \text { at } x=0.519 L \end{aligned}$
9.	$\begin{aligned} & R_{1}=\frac{M^{*}}{L} \\ & R_{2}=\frac{M^{*}}{L} \end{aligned}$	$\frac{M^{*} L x}{6 E I}\left(1-\frac{x^{2}}{L^{2}}\right)$	$\begin{aligned} & \frac{M^{*} L^{2}}{9 \sqrt{3} E I} \\ & \text { at } x=\frac{L}{\sqrt{3}} \end{aligned}$
10.	$\begin{aligned} & R_{1}=\frac{M^{*}}{L} \\ & R_{2}=\frac{M^{*}}{L} \end{aligned}$	For $x<a$, $\begin{aligned} & -\frac{M^{*}}{6 E I L}\left(6 a x L-3 a^{2} x\right. \\ & \left.-2 L^{2} x-x^{3}\right) \\ & \text { For } x \geq a, \\ & -\frac{M^{*}}{6 E I L}\left(3 a^{2} L+3 x^{2} L\right. \\ & \left.-x^{3}-2 L^{2} x-3 a^{2} x\right) \end{aligned}$	Maximum Deflection occurs at $x=x_{1}$ and/or $\begin{aligned} & x=x_{2}, \\ & x_{1}=\left(2 a L-a^{2}\right. \\ &\left.-\frac{2}{3} L^{2}\right)^{1 / 2} \\ & x_{2}= L-\left(\frac{1}{3} L^{2}\right. \\ &\left.-a^{2}\right)^{1 / 2} \end{aligned}$

TABLE 11-1 (continued) UNIFORM BEAMS

Moment at Any Point x	Maximum Moment	Important Slope	Maximum Shear Force
For $x<a$, $\frac{W b x}{L}$ For $x \geq a$, $\frac{W a}{L}(L-x)$	$\frac{W a b}{L}$ at $x=a$	$\begin{aligned} & \theta_{1}=\frac{W a b}{6 L E I}(2 L-a) \\ & \theta_{2}=\frac{W a b}{6 L E I}(2 L-b) \end{aligned}$	$\begin{aligned} & \text { If } a>b, \\ & \frac{W a}{L} \text { at } x>a \\ & \text { If } a<b, \\ & \frac{W b}{L} \quad \text { at } x<a \end{aligned}$
$\frac{1}{2} p_{1} L\left(x-\frac{x^{2}}{L}\right)$	$\begin{aligned} & \frac{1}{8} p_{1} L^{2} \\ & \text { at } x=\frac{1}{2} L \end{aligned}$	$\begin{aligned} \theta_{1} & =\theta_{2} \\ & =\frac{p_{1} L^{3}}{24 E I} \end{aligned}$	$\begin{aligned} & \frac{1}{2} p_{1} L \\ & \text { at } x=0, L \end{aligned}$
$-\frac{1}{6} p L\left(\frac{x^{3}}{L^{2}}-x\right)$	$\begin{aligned} & 0.064 p L^{2} \\ & \text { at } x=\frac{1}{3} \sqrt{3} L \end{aligned}$	$\begin{aligned} & \theta_{1}=\frac{7}{360} \frac{p L^{3}}{E I} \\ & \theta_{2}=\frac{1}{45} \frac{p L^{3}}{E I} \end{aligned}$	$\begin{aligned} & \frac{1}{3} p L \\ & \text { at } x=L \end{aligned}$
$\frac{M^{*} x}{L}$	$\begin{aligned} & M^{*} \\ & \text { at } x=L \end{aligned}$	$\begin{aligned} \theta_{1} & =\frac{M^{*} L}{6 E I} \\ \theta_{2} & =\frac{M^{*} L}{3 E I} \end{aligned}$	$\begin{aligned} & \frac{M^{*}}{L} \\ & \text { at all } x \end{aligned}$
For $x<a$, $\begin{aligned} & -\frac{M^{*} x}{L} \\ & \text { For } x>a, \\ & \frac{M^{*}(L-x)}{L} \end{aligned}$	$\begin{aligned} & -R_{1} a \\ & \text { at } x=a^{-} \\ & R_{1}(L-a) \\ & \text { at } x=a^{+} \end{aligned}$	$\begin{aligned} & \theta_{1}=-\frac{M^{*}}{6 E I L} \\ & \times\left(2 L^{2}-6 a L+3 a^{2}\right) \\ & \theta_{2}= \frac{M^{*}}{6 E I L}\left(L^{2}-3 a^{2}\right) \\ & \frac{M^{*}}{3 E I L} \times\left(3 a L-3 a^{2}-L^{2}\right) \\ & \text { at } x= a \end{aligned}$	$\frac{M^{*}}{L_{\text {at all } x}}$

TABLE 11-1 (continued) UNIFORM BEAMS

Type of Beam	Reactions	Deflection at Any Point x	Maximum Deflection
11.	$\begin{aligned} R_{1} & =\frac{W}{2} \frac{3 b^{2} L-b^{3}}{L^{3}} \\ R_{2} & =W-R_{1} \\ M_{2} & =\frac{W a b}{2 L^{2}}(a+L) \end{aligned}$	For $x<a$, $\begin{aligned} & -\frac{W a(L-x)^{2}}{12 E I L^{3}} \\ & \times\left(2 L a^{2}-3 L^{2} x\right. \\ & \left.+a^{2} x\right) \\ & +\frac{W(a-x)^{3}}{6 E I} \end{aligned}$ For $x \geq a$, $\begin{aligned} & -\frac{W a(L-x)^{2}}{12 E I L^{3}} \\ & \times\left(2 L a^{2}-3 L^{2} x\right. \\ & \left.+a^{2} x\right) \end{aligned}$	If $a>0.414 L$, $\frac{W a b^{2} \sqrt{a /(2 L+a)}}{6 E I}$ at $x=L$ $\times \sqrt{1-\frac{2 L}{3 L-b}}$ If $a<0.414 L$, $\frac{W a\left(L^{2}-a^{2}\right)^{3}}{3 E I\left(3 L^{2}-a^{2}\right)^{2}}$ at $x=\frac{L\left(L^{2}+a^{2}\right)}{3 L^{2}-a^{2}}$ If $a=0.414 L$, $\frac{0.0098 W L^{3}}{E I}$ at $x=a$ (peak possible deflection)
12.	$\begin{aligned} R_{1} & =\frac{3}{8} p_{1} L \\ R_{2} & =\frac{5}{8} p_{1} L \\ M_{2} & =\frac{1}{8} p_{1} L^{2} \end{aligned}$	$\begin{aligned} & -\frac{p_{1}}{48 E I}\left(3 L x^{3}\right. \\ & \left.-2 x^{4}-L^{3} x\right) \end{aligned}$	$\begin{aligned} & \frac{0.0054 p_{1} L^{4}}{E I} \\ & \text { at } x=0.4215 L \end{aligned}$
13.	$\begin{aligned} R_{1} & =\frac{1}{10} p L \\ R_{2} & =\frac{2}{5} p L \\ M_{2} & =\frac{1}{15} p L^{2} \end{aligned}$	$\begin{aligned} & -\frac{p}{120 E I L} \\ & \times\left(2 L^{2} x^{3}\right. \\ & \left.-L^{4} x-x^{5}\right) \end{aligned}$	$\begin{aligned} & \frac{0.00238 p L^{4}}{E I} \\ & \text { at } x=\frac{L}{\sqrt{5}} \end{aligned}$
14.	$\begin{aligned} R_{1} & =\frac{11}{40} p L \\ R_{2} & =\frac{9}{40} p L \\ M_{2} & =\frac{7}{120} p L^{2} \end{aligned}$	$\begin{aligned} & -\frac{p}{240 E I L} \\ & \times\left(11 L^{2} x^{3}\right. \\ & -3 L^{4} x-10 x^{4} L \\ & \left.+2 x^{5}\right) \end{aligned}$	$\begin{aligned} & \frac{0.00304 L^{4}}{E I} \\ & \text { at } x=0.402 L \end{aligned}$

TABLE 11-1 (continued) UNIFORM BEAMS

Moment at Any Point x	Maximum Moment	Important Slope	Maximum Shear Force
For $x<a$, $R_{1} x$ For $x \geq a$, $R_{1} x-W(x-a)$	$\begin{aligned} M_{2} & =\frac{W a b}{2 L^{2}}(L+a) \\ \text { at } x & =L \end{aligned}$	$\theta_{1}=-\frac{W}{4 E I}\left(\frac{b^{3}}{L}-b^{2}\right)$	$\begin{aligned} & \text { If } a>0.348 L, \\ & R_{2} \\ & \text { at } x>a \\ & \text { If } a<0.348 L, \\ & R_{1} \\ & \text { at } x<a \end{aligned}$
$-p_{1} L\left(\frac{1}{2} \frac{x^{2}}{L}-\frac{3}{8} x\right)$	$\begin{aligned} & M=\frac{9}{128} p_{1} L^{2} \\ & \text { at } x=\frac{3}{8} L \\ & M=\frac{1}{8} p_{1} L^{2}=M_{2} \\ & \text { at } x=L \end{aligned}$	$\theta_{1}=\frac{p_{1} L^{3}}{48 E I}$	$\begin{aligned} & \frac{5}{8} p_{1} L \\ & \text { at } x=L \end{aligned}$
$-\frac{1}{2} p L\left(\frac{x^{3}}{3 L^{2}}-\frac{x}{5}\right)$	$\begin{aligned} & M=0.03 p L^{2} \\ & \text { at } x=0.4474 L \\ & +M=M_{2} \\ & \text { at } x=L \end{aligned}$	$\theta_{1}=\frac{p L^{3}}{120 E I}$	$\begin{aligned} & \frac{2}{5} p L \\ & \text { at } x=L \end{aligned}$
$\begin{aligned} & -\frac{1}{2} p L\left(\frac{x^{2}}{L}-\frac{11}{20} x\right. \\ & \left.-\frac{1}{3} \frac{x^{3}}{L^{2}}\right) \end{aligned}$	$\begin{aligned} & M=0.0423 p L^{2} \\ & \text { at } x=0.3292 L \\ & M=\frac{7}{120} p L^{2}=M_{2} \\ & \text { at } x=L \end{aligned}$	$\theta_{1}=\frac{p L^{3}}{80 E I}$	$\begin{aligned} & \frac{11}{40} p L \\ & \text { at } x=0 \end{aligned}$

TABLE 11-1 (continued) UNIFORM BEAMS

Type of Beam	Reactions	Deflection at Any Point x	Maximum Deflection
15.	$\begin{aligned} & R_{1}=\frac{3 M^{*}}{2 L} \frac{L^{2}-a^{2}}{L^{2}} \\ & R_{2}=\frac{3 M^{*}}{2 L} \frac{L^{2}-a^{2}}{L^{2}} \\ & M_{2}=\frac{M^{*}}{2}\left(1-\frac{3 a^{2}}{L^{2}}\right) \end{aligned}$	For $x<a$, $\begin{aligned} & -\frac{M^{*}}{E I}\left[\frac{L^{2}-a^{2}}{4 L^{3}}\right. \\ & \left(3 L^{2} x-x^{3}\right) \\ & -(L-a) x] \end{aligned}$ For $x \geq a$, $\begin{aligned} & -\frac{M^{*}}{E I}\left[\frac{L^{2}-a^{2}}{4 L^{3}}\right. \\ & \left(3 L^{2} x-x^{3}\right) \\ & \left.-L x+\frac{x^{2}+a^{2}}{2}\right] \end{aligned}$	Maximum deflection occurs at $x=x_{1}$ and/or $x=x_{2}$ At $\begin{aligned} & x_{1}=L \sqrt{\frac{3 a-L}{3(L+a)}}, \\ & \frac{M^{*}}{6 E I} \\ & \times \frac{(a-L)(3 a-L)^{3 / 2}}{[3(L+a)]^{1 / 2}} \\ & \text { At } \\ & x_{2}=L \frac{L^{2}+3 a^{2}}{3\left(L^{2}-a^{2}\right)}, \\ & -\frac{M^{*}}{27 E I} \frac{\left(3 a^{2}-L^{2}\right)^{3}}{\left(a^{2}-L^{2}\right)^{2}} \end{aligned}$
16.	$\begin{aligned} R_{1} & =\frac{W b^{2}}{L^{3}}(3 a+b) \\ R_{2} & =\frac{W a^{2}}{L^{3}}(3 b+a) \\ M_{1} & =\frac{W a b^{2}}{L^{2}} \\ M_{2} & =\frac{W a^{2} b}{L^{2}} \end{aligned}$	For $x<a$, $\begin{aligned} & -\frac{W b^{2} x^{2}}{6 L^{3} E I}(3 a x+b x \\ & -3 a L) \end{aligned}$ For $x \geq a$, $\begin{aligned} & -\frac{W a^{2}(L-x)^{2}}{6 L^{3} E I} \\ & \times[(3 b+a)(L-x) \\ & -3 b L] \end{aligned}$	$\begin{aligned} & \text { If } a \geq b, \\ & \frac{2 W}{3 E I} \frac{a^{3} b^{2}}{(3 a+b)^{2}} \\ & \text { at } x=\frac{2 a L}{3 a+b} \\ & \text { If } a<b, \\ & \frac{2 W}{3 E I} \frac{a^{2} b^{3}}{(3 b+a)^{2}} \\ & \text { at } x=\frac{L^{2}}{a+3 b} \end{aligned}$

TABLE 11-1 (continued) UNIFORM BEAMS

Moment at Any Point x	Maximum Moment	Maximum Important Slope	Shear Force
$\begin{aligned} & \text { For } x<a, \\ & -R_{1} x \end{aligned}$ For $x \geq a$, $-R_{1} x+M^{*}$	$\begin{aligned} & M=M^{*}\left[1-\frac{3 a\left(L^{2}-a^{2}\right)}{2 L^{3}}\right] \\ & \text { at } x=a^{+} \\ & +M=M_{2} \text { at } x=L \\ & \text { when } a<0.257 L \\ & M=-R_{1} a \text { at } x=a^{-} \\ & \text {when } a>0.257 L \end{aligned}$	$\begin{aligned} & \theta_{1}=\frac{M^{*}}{E I}\left(a-\frac{L}{4}\right. \\ & \left.-\frac{3 a^{2}}{4 L}\right) \end{aligned}$	$\frac{3 M^{*}}{2 L} \frac{L^{2}-a^{2}}{L^{2}}$
For $x<a$, $\begin{aligned} & -\frac{W a b^{2}}{L^{2}}+R_{1} x \\ & \text { For } x \geq a, \\ & -\frac{W a b^{2}}{L^{2}}+R_{1} x \\ & -W(x-a) \end{aligned}$	$\begin{aligned} & -M=\frac{W a b^{2}}{L^{2}}-R_{1} a \\ & \text { at } x=a \\ & +M=M_{1} \text { at } x=0 \\ & +M=M_{2} \text { at } x=L \end{aligned}$		$\begin{aligned} & \text { If } a>b, \\ & R_{2} \\ & \text { at } x>a \\ & \text { If } a<b, \\ & R_{1} \\ & \text { at } x<a \end{aligned}$

TABLE 11-1 (continued) UNIFORM BEAMS

Type of Beam	Reactions	Deflection at Any Point x
$\mathbf{1 7 .}$	$R_{1}=\frac{1}{2} p_{1} L$ $R_{2}=\frac{1}{2} p_{1} L$ $M_{1}=\frac{1}{12} p_{1} L^{2}$ $M_{2}=\frac{1}{12} p_{1} L^{2}$	$-\frac{p_{1} x^{2}}{24 E I}\left(2 L x-L^{2}-x^{2}\right)$

TABLE 11-1 (continued) UNIFORM BEAMS

Maximum deflection	Moment at Any Point x	Maximum Moment	Maximum Shear force
$\begin{aligned} & \frac{p_{1} L^{4}}{384 E I} \\ & \text { at } x=\frac{1}{2} L \end{aligned}$	$-\frac{p_{1} L}{2}\left(\frac{x^{2}}{L}+\frac{L}{6}-x\right)$	$\begin{aligned} & M=\frac{1}{24} p_{1} L^{2} \\ & \text { at } x=\frac{1}{2} L \\ & +M=\frac{1}{12} p_{1} L^{2} \\ & \text { at } x=0, L \end{aligned}$	$\begin{aligned} & \frac{1}{2} p_{1} L \\ & \text { at } x=0, L \end{aligned}$
$\begin{aligned} & \frac{0.001308 p L^{4}}{E I} \\ & \text { at } x=0.525 L \end{aligned}$	$\begin{aligned} & -\frac{p L}{2}\left(\frac{L}{15}+\frac{x^{3}}{3 L^{2}}\right. \\ & \left.-\frac{3}{10} x\right) \end{aligned}$	$\begin{aligned} & M=0.0215 p L^{2} \\ & \text { at } x=0.548 L \\ & +M=\frac{1}{20} p L^{2}=M_{2} \\ & \text { at } x=L \end{aligned}$	$\frac{7}{20} p L$ at $x=L$
If $a>\frac{1}{3} L$, peak deflection at $x=\left(1-\frac{L}{3 a}\right) L,$ If $a<\frac{2}{3} L$ peak deflection at $\begin{aligned} x= & \frac{L}{3} \times(1 \\ & \left.+\frac{a}{L-a}\right) \end{aligned}$	For $x<a$, $M_{1}-R_{1} x$ For $x \geq a$, $M_{1}-R_{1} x+M^{*}$	$\begin{aligned} & M=M^{*}\left(\frac{4 a}{L}-\frac{9 a^{2}}{L^{2}}+\frac{6 a^{3}}{L^{3}}\right) \\ & \text { at } x=a^{+} \\ & +M=M^{*}\left(\frac{4 a}{L}-\frac{9 a^{2}}{L^{2}}\right. \\ & \left.+\frac{6 a^{3}}{L^{3}}-1\right) \\ & \text { at } x=a^{-} \end{aligned}$	R_{1}

TABLE 11-2 PART A: SIMPLE BEAMS WITH ARBITRARY LOADINGS: GENERAL RESPONSE EXPRESSIONS

Response

Deflection $\quad w=w_{0}-\theta_{0} x-V_{0} \frac{x^{3}}{3!E I}-M_{0} \frac{x^{2}}{2 E I}+F_{w}$
2.

Slope

$$
\theta=\theta_{0}+V_{0} \frac{x^{2}}{2 E I}+M_{0} \frac{x}{E I}+F_{\theta}
$$

3.

Shear force
$V=V_{0}+F_{V}$
4.

Bending moment
$M=M_{0}+V_{0} x+F_{M}$

TABLE 11-2 PART B: SIMPLE BEAMS WITH ARBITRARY LOADINGS: LOADING FUNCTIONS ${ }^{a}$

$F_{W}(x)$	$\frac{W<x-a>^{3}}{3!E I}$	$\frac{p_{1}}{4!E I}\left(<x-a_{1}>^{4}-<x-a_{2}>^{4}\right)$	$\begin{aligned} & \frac{p_{2}-p_{1}}{5!E I\left(a_{2}-a_{1}\right)}\left(<x-a_{1}>^{5}-<x-a_{2}>^{5}\right) \\ & +\frac{1}{4!E I}\left(p_{1}<x-a_{1}>^{4}-p_{2}<x-a_{2}>^{4}\right) \end{aligned}$	$\frac{C<x-a>^{2}}{2 E I}$	$\frac{1}{E I} \int_{a_{1}}^{x} d x \int^{x} d x \int^{x} d x \int^{x} p d x$
$F_{\theta}(x)$	$-\frac{W<x-a>^{2}}{2 E I}$	$-\frac{p_{1}}{3!E I}\left(<x-a_{1}>^{3}-<x-a_{2}>^{3}\right)$	$\begin{gathered} -\frac{p_{2}-p_{1}}{4!E I\left(a_{2}-a_{1}\right)}\left(<x-a_{1}>^{4}-<x-a_{2}>^{4}\right) \\ -\frac{1}{3!E I}\left(p_{1}<x-a_{1}>^{3}-p_{2}<x-a_{2}>^{3}\right) \end{gathered}$	$-\frac{C<x-a>}{E I}$	$-\frac{1}{E I} \int_{a_{1}}^{x} d x \int^{x} d x \int^{x} p d x$
$F_{V}(x)$	$-W<x-a>^{0}$	$-p_{1}\left(<x-a_{1}><x-a_{2}>\right)$	$\begin{aligned} & -\frac{p_{2}-p_{1}}{2\left(a_{2}-a_{1}\right)}\left(<x-a_{1}>^{2}-<x-a_{2}>^{2}\right) \\ & -p_{1}<x-a_{1}>+p_{2}<x-a_{2}> \end{aligned}$	0	$-\int_{a_{1}}^{x} p d x$
$F_{M}(x)$	$-W<x-a>$	$-\frac{1}{2} p_{1}\left(<x-a_{1}>^{2}-<x-a_{2}>^{2}\right)$	$\begin{aligned} & -\frac{p_{2}-p_{1}}{3!\left(a_{2}-a_{1}\right)}\left(<x-a_{1}>^{3}-<x-a_{2}>^{3}\right) \\ & -\frac{1}{2}\left(p_{1}<x-a_{1}>^{2}-p_{2}<x-a_{2}>^{2}\right) \end{aligned}$	$-C<x-a>0$	$-\int_{a_{1}}^{x} d x \int^{x} p d x$

${ }^{a}$ By definition:

$$
\begin{gathered}
<x-a>^{n} \\
n \geq 1
\end{gathered}=\left\{\begin{array}{ll}
0 & \text { if } x<a \\
(x-a)^{n} & \text { if } x \geq a
\end{array} \quad<x-a>^{0}= \begin{cases}0 & \text { if } x<a \\
1 & \text { if } x \geq a\end{cases}\right.
$$

TABLE 11-2 PART C: SIMPLE BEAMS WITH ARBITRARY LOADING: INITIAL PARAMETERS ${ }^{a}$

	1. Pinned, hinged, or on rollers	2. Fixed	3. Free	4. Guided	5. Partially fixed
1. Pinned, hinged, or on rollers $W_{0}=0, \quad M_{0}=0$	$\begin{aligned} \theta_{0}= & \frac{1}{L} \bar{F}_{w} \\ & +\frac{L}{6 E I} \bar{F}_{M} \\ V_{0}= & -\frac{1}{L} \bar{F}_{M} \end{aligned}$	$\begin{aligned} \theta_{0}= & \frac{3}{2 L} \bar{F}_{w} \\ & +\frac{1}{2} \bar{F}_{\theta} \\ V_{0}= & -\frac{3 E I}{L^{3}} \bar{F}_{w} \\ & -\frac{3 E I}{L^{2}} \bar{F}_{\theta} \end{aligned}$	Subject to rigid body motion; therefore, kinematically unstable	$\begin{aligned} & \theta_{0}=\frac{L^{2}}{2 E I} \bar{F}_{V}-\bar{F}_{\theta} \\ & V_{0}=-\bar{F}_{V} \end{aligned}$	$\begin{aligned} & \theta_{0}=\frac{A_{1} \bar{F}_{w}-A_{2} L / 6 E I}{A_{3}} \\ & V_{0}=\frac{\left(k_{2}^{*} / L^{2}\right) F_{w}+A_{2} / L}{A_{3}} \end{aligned}$
2. Fixed $W_{0}=0, \quad \theta_{0}=0$	$\begin{aligned} V_{0}= & -\frac{3 E I}{L^{3}} \bar{F}_{w} \\ & -\frac{3}{2 L} \bar{F}_{M} \\ M_{0}= & \frac{3 E I}{L^{2}} \bar{F}_{w} \\ & +\frac{1}{2} \bar{F}_{M} \end{aligned}$	$\begin{aligned} V_{0}= & -\frac{12 E I}{L^{3}} \bar{F}_{w} \\ & -\frac{6 E I}{L^{2}} \bar{F}_{\theta} \\ M_{0}= & \frac{6 E I}{L^{2}} \bar{F}_{w} \\ & +\frac{2 E I}{L} \bar{F}_{\theta} \end{aligned}$	$\begin{aligned} V_{0} & =-\bar{F}_{V} \\ M_{0} & =L \bar{F}_{V}-\bar{F}_{M} \end{aligned}$	$\begin{aligned} V_{0} & =-\bar{F}_{V} \\ M_{0} & =-\frac{E I}{L} \bar{F}_{\theta}+\frac{1}{2} L \bar{F}_{V} \end{aligned}$	$\begin{aligned} V_{0} & =\frac{-\left(3 E I A_{5} / L^{3}\right) \bar{F}_{w}+3 A_{2} / 2 L}{A_{4}} \\ M_{0} & =\frac{\left(3 E I / L^{2}\right) A_{6} \bar{F}_{w}-\frac{1}{2} A_{2}}{A_{4}} \end{aligned}$
3. Free \square $V_{0}=0, \quad M_{0}=0$	Subject to rigid body motion; therefore, kinematically unstable	$\begin{aligned} w_{0} & =-\bar{F}_{w}-L \bar{F}_{\theta} \\ \theta_{0} & =-\bar{F}_{\theta} \end{aligned}$	Subject to rigid body motion; therefore, kinematically unstable	Subject to rigid body motion; therefore, kinematically unstable	$\begin{aligned} w_{0} & =-\bar{F}_{w}-A_{2} \frac{L}{k_{2}^{*}} \\ \theta_{0} & =-A_{2} \frac{1}{k_{2}^{*}} \end{aligned}$

	4. Guided $\theta_{0}=0, \quad V_{0}=0$	$\begin{aligned} w_{0} & =-\bar{F}_{w}-\frac{L^{2}}{2 E I} \bar{F}_{M} \\ M_{0} & =-\bar{F}_{M} \end{aligned}$	$\begin{aligned} w_{0} & =-\bar{F}_{w}-\frac{1}{2} L \bar{F}_{\theta} \\ M_{0} & =-\frac{E I}{L} \bar{F}_{\theta} \end{aligned}$	Subject to rigid body motion; therefore, kinematically unstable	Subject to rigid body motion; therefore, kinematically unstable	$\begin{aligned} w_{0} & =\frac{-A_{6} \bar{F}_{w}+\left(L^{2} / 2 E I\right) A_{2}}{A_{6}} \\ M_{0} & =A_{2} / A_{6} \end{aligned}$
	5. Partially fixed $W_{0}=0, \quad M_{0}=k_{1}^{*} \theta_{0}$	$\begin{aligned} \theta_{0} & =\frac{(1 / L) \bar{F}_{w}+(L / 6 E I) \bar{F}_{M}}{A_{7}} \\ V_{0} & =\frac{\left(k_{1}^{*} / L^{2}\right) \bar{F}_{w}+A_{8} \bar{F}_{M}}{A_{7}} \end{aligned}$	$\begin{aligned} & \theta_{0}=\frac{(3 / 2 L) \bar{F}_{w}+\frac{1}{2} \bar{F}_{\theta}}{A_{9}} \\ & V_{0}=\frac{-\left(A_{11} \bar{F}_{w}+(3 E I / L) A_{8} \bar{F}_{\theta}\right)}{A_{9}} \end{aligned}$	$\begin{aligned} & \theta_{0}=\frac{1}{k_{1}^{*}} \\ & \times\left(\bar{F}_{M}-L \bar{F}_{V}\right) \\ & V_{0}=-\bar{F}_{V} \end{aligned}$	$\begin{aligned} & \theta_{0}=\frac{-\bar{F}_{\theta}+\left(L^{2} / 2 E I\right) \bar{F}_{V}}{A_{10}} \\ & V_{0}=-\bar{F}_{V} \end{aligned}$	$\begin{aligned} \theta_{0} & =\frac{\left(A_{5} / L\right) \bar{F}_{w}-L A_{2} / 6 E I}{A_{13}} \\ V_{0} & =\frac{A_{12} \bar{F}_{w}+A_{2} A_{8}}{A_{13}} \end{aligned}$

${ }^{a}$ Although the response due to static loading cannot be determined for a kinematically unstable beam, the natural frequencies and buckling load can be calculated. Note: $\bar{F}_{w}=\left.F_{w}\right|_{x=L}, \bar{F}_{\theta}=\left.F_{\theta}\right|_{x=L}, \bar{F}_{V}=\left.F_{V}\right|_{x=L}, \bar{F}_{M}=\left.F_{M}\right|_{x=L}$

$$
\begin{array}{llll}
A_{1}=\frac{1}{L}-\frac{k_{2}^{*}}{2 E I} & A_{4}=1-\frac{k_{2}^{*} L}{4 E I} & A_{7}=1+\frac{k_{1}^{*} L}{3 E I} & A_{10}=1+\frac{k_{1}^{*} L}{E I} \\
A_{2}=k_{2}^{*} \bar{F}_{\theta}-\bar{F}_{M} & A_{5}=1-\frac{k_{2}^{*} L}{2 E I} & A_{8}=\frac{1}{L}+\frac{k_{1}^{*}}{2 E I} & A_{11}=\frac{3 E I}{L^{3}}+\frac{3 k_{1}^{*}}{L^{2}} \\
A_{3}=1-\frac{k_{2}^{*} L}{3 E I} & A_{6}=1-\frac{k_{2}^{*} L}{E I} & A_{9}=1+\frac{k_{1}^{*} L}{4 E I} &
\end{array}
$$

TABLE 11-3 PART A: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: GENERAL RESPONSE EXPRESSIONS

Notation

```
\(E=\) modulus of elasticity
\(P=\) axial force
\(A_{s}=\) equivalent shear area, \(=A / \alpha_{s}\)
    \(x\) is measured from the left end \(\quad L=\) length of beam
```


Set $\frac{1}{G A_{s}}=0$ for beams without shear deformation effects.
Response
1.

Deflection

$$
w=w_{0}\left(e_{1}+\zeta e_{3}\right)-\theta_{0} e_{2}-V_{0}\left(\frac{e_{4}}{E I}-\frac{e_{2}+\zeta e_{4}}{G A_{s}}\right)-M_{0} \frac{e_{3}}{E I}+F_{w}
$$

2.

Slope

$$
\theta=w_{0} \lambda e_{4}+\theta_{0}\left(e_{1}-\eta e_{3}\right)+V_{0} \frac{e_{3}}{E I}+M_{0} \frac{e_{2}-\eta e_{4}}{E I}+F_{\theta}
$$

3.

$$
V=w_{0} \lambda E I\left(e_{2}+\zeta e_{4}\right)-\theta_{0} \lambda E I e_{3}+V_{0}\left(e_{1}+\zeta e_{3}\right)-M_{0} \lambda e_{4}+F_{V}
$$

Shear force
4.
$M=w_{0} \lambda E I e_{3}+\theta_{0} E I\left(e_{0}-\eta e_{2}\right)+V_{0} e_{2}+M_{0}\left(e_{1}-\eta e_{3}\right)+F_{M}$
Bending moment

Values of e_{i}				
Ordinary Beam	Beam with Compressive Axial Force P	Beam with Tensile Axial Force P	Beam on Elastic Foundation, k, with Shear Deformation Effects ${ }^{a}$$\lambda=k / E I, \zeta=0, \eta=k \alpha_{s} / G A=k / G A_{s}$	
Shear Deformation			$\lambda \geq \frac{1}{4} \eta^{2}$	$\lambda<\frac{1}{4} \eta^{2}$
$\zeta=\lambda=\eta=0$	$\begin{gathered} \lambda=0, \eta=0, \\ \alpha^{2}=P / E I=\zeta \end{gathered}$	$\begin{aligned} & \lambda=0, \eta=0, \\ & \alpha^{2}=P / E I, \zeta=\alpha^{2} \end{aligned}$	$a^{2}=\frac{1}{2} \sqrt{\lambda}+\frac{1}{4} \eta \quad b^{2}=\frac{1}{2} \sqrt{\lambda}-\frac{1}{4} \eta$	$\begin{aligned} & a^{2}=\frac{1}{2} \eta+\sqrt{\frac{1}{4} \eta^{2}-\lambda} \\ & b^{2}=\frac{1}{2} \eta-\sqrt{\frac{1}{4} \eta^{2}-\lambda} \quad g=a^{2}-b^{2} \end{aligned}$
$e_{0}=0$	$e_{0}=-\alpha \sin \alpha x$	$e_{0}=\alpha \sinh \alpha x$	$e_{0}=-\lambda e_{4}+\eta e_{2}$	$e_{0}=-\frac{1}{g}\left(b^{3} \sinh b x-a^{3} \sinh a x\right)$
$e_{1}=1$	$e_{1}=\cos \alpha x$	$e_{1}=\cosh \alpha x$	$\begin{aligned} e_{1}= & \cosh a x \cos b x \\ & +\frac{\eta}{4 a b} \sinh a x \sin b x \end{aligned}$	$e_{1}=-\frac{1}{g}\left(b^{2} \cosh b x-a^{2} \cosh a x\right)$
$e_{2}=x$	$e_{2}=\frac{1}{\alpha} \sin \alpha x$	$e_{2}=\frac{1}{\alpha} \sinh \alpha x$	$\begin{aligned} e_{2}= & \frac{1}{2 a b} \times(a \cosh a x \sin b x \\ & +b \sinh a x \cos b x) \end{aligned}$	$e_{2}=-\frac{1}{g}(b \sinh b x-a \sinh a x)$
$e_{3}=\frac{1}{2} x^{2}$	$e_{3}=\frac{1}{\alpha^{2}}(1-\cos \alpha x)$	$e_{3}=\frac{1}{\alpha^{2}}(\cosh \alpha x-1)$	$e_{3}=\frac{1}{2 a b} \sinh a x \sin b x$	$e_{3}=\frac{1}{g}(\cosh a x-\cosh b x)$
$e_{4}=\frac{1}{6} x^{3}$	$e_{4}=\frac{1}{\alpha^{3}}(\alpha x-\sin \alpha x)$	$e_{4}=\frac{1}{\alpha^{3}}(\sinh \alpha x-\alpha x)$	$\begin{aligned} e_{4}= & \frac{1}{2\left(a^{2}+b^{2}\right)}\left(\frac{1}{b} \cosh a x \sin b x\right. \\ & \left.-\frac{1}{a} \sinh a x \cos b x\right) \end{aligned}$	$e_{4}=\frac{1}{g}\left(\frac{1}{a} \sinh a x-\frac{1}{b} \sinh b x\right)$
$e_{5}=\frac{1}{24} x^{4}$	$\begin{aligned} e_{5}= & \frac{1}{\alpha^{4}}\left(\frac{\alpha^{2} x^{2}}{2}\right. \\ & +\cos \alpha x-1) \end{aligned}$	$\begin{aligned} e_{5}= & \frac{1}{\alpha^{4}}\left(-\frac{\alpha^{2} x^{2}}{2}\right. \\ & +\cosh \alpha x-1) \end{aligned}$	$e_{5}=\frac{1}{\lambda}\left(1-e_{1}+\eta e_{3}\right)$	$\begin{aligned} e_{5}= & -\frac{1}{g}\left(\frac{1}{b^{2}} \cosh b x\right. \\ & \left.-\frac{1}{a^{2}} \cosh a x\right)+\frac{1}{\lambda} \end{aligned}$
$e_{6}=\frac{1}{120} x^{5}$	$\begin{aligned} e_{6}= & \frac{1}{\alpha^{5}}\left(\frac{\alpha^{3} x^{3}}{6}\right. \\ & +\sin \alpha x-\alpha x) \end{aligned}$	$\begin{aligned} e_{6}= & \frac{1}{\alpha^{5}}\left(-\frac{\alpha^{3} x^{3}}{6}\right. \\ & +\sinh \alpha x-\alpha x) \end{aligned}$	$e_{6}=\frac{1}{\lambda}\left(x-e_{2}+\eta e_{4}\right)$	$\begin{aligned} e_{6}= & -\frac{1}{g}\left(\frac{1}{b^{3}} \sinh b x\right. \\ & \left.-\frac{1}{a^{3}} \sinh a x\right)+\frac{x}{\lambda} \end{aligned}$

[^21]
TABLE 11-3 PART B: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: LOADING FUNCTIONS

By definition:
Also, if $e_{i}=1$, then
$e_{i}<x-a>=\left\{\begin{array}{ll}0 & \text { if } x<a \\ e_{i}(x-a) & \text { if } x \geq a\end{array} \quad e_{i}<x-a>=<x-a>^{0}= \begin{cases}0 & \text { if } x<a \\ 1 & \text { if } x \geq a\end{cases}\right.$

	$\underset{a \rightarrow}{{ }_{a}^{W}}$	
$F_{w}(x)$	$\begin{aligned} & W\left(\frac{e_{4}<x-a>}{E I}\right. \\ & \left.-\frac{e_{2}<x-a>+\zeta e_{4}<x-a>}{G A_{s}}\right) \end{aligned}$	$\begin{aligned} & p_{1}\left(\frac{e_{5}<x-a_{1}>-e_{5}<x-a_{2}>}{E I}\right. \\ & \left.-\frac{e_{3}<x-a_{1}>+\zeta e_{5}<x-a_{1}>-e_{3}<x-a_{2}>-\zeta e_{5}<x-a_{2}>}{G A_{s}}\right) \end{aligned}$
$F_{\theta}(x)$	$-W \frac{e_{3}<x-a>}{E I}$	$-p_{1} \frac{e_{4}<x-a_{1}>-e_{4}<x-a_{2}>}{E I}$
$F_{V}(x)$	$\begin{aligned} & -W\left(e_{1}<x-a>\right. \\ & \left.+\zeta e_{3}<x-a>\right) \end{aligned}$	$\begin{aligned} & -p_{1}\left[\left(e_{2}<x-a_{1}>-e_{2}<x-a_{2}>\right)\right. \\ & \left.-\zeta\left(e_{4}<x-a_{1}>-e_{4}<x-a_{2}>\right)\right] \end{aligned}$
$F_{M}(x)$	$-W e_{2}<x-a>$	$-p_{1}\left(e_{3}<x-a_{1}>-e_{3}<x-a_{2}>\right)$

TABLE 11-3 (continued) PART B: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: LOADING FUNCTIONS
For example:
if $e_{i}=\cos \alpha x$, then $e_{i}<x-a>=\cos \alpha<x-a>= \begin{cases}0 & \text { if } x<a \\ \cos \alpha(x-a) & \text { if } x \geq a\end{cases}$

	$\underset{-a \rightarrow}{c}$
$\begin{aligned} & \frac{p_{2}-p_{1}}{a_{2}-a_{1}}\left[\frac{e_{6}<x-a_{1}>-e_{6}<x-a_{2}>}{E I}\right. \\ & \left.-\frac{e_{4}<x-a_{1}>+\zeta e_{6}<x-a_{1}>-e_{4}<x-a_{2}>-\zeta e_{6}<x-a_{2}>}{G A_{s}}\right] \\ & +\frac{1}{E I}\left(p_{1} e_{5}<x-a_{1}>-p_{2} e_{5}<x-a_{2}>\right) \\ & -\frac{1}{G A_{s}}\left[p_{1}\left(e_{3}<x-a_{1}>+\zeta e_{5}<x-a_{1}>\right)\right. \\ & \left.-p_{2}\left(e_{3}<x-a_{2}>+\zeta e_{5}<x-a_{2}>\right)\right] \end{aligned}$	$C \frac{e_{3}<x-a>}{E I}$
$\begin{aligned} & -\frac{p_{2}-p_{1}}{a_{2}-a_{1}} \frac{e_{5}<x-a_{1}>-e_{5}<x-a_{2}>}{E I} \\ & +\frac{1}{E I}\left(p_{2} e_{4}<x-a_{2}>-p_{1} e_{4}<x-a_{1}>\right) \end{aligned}$	$-C \frac{\left.e_{2}\langle x-a\rangle-\eta e_{4}<x-a\right\rangle}{E I}$
$\begin{aligned} & -\frac{p_{2}-p_{1}}{a_{2}-a_{1}}\left(e_{3}<x-a_{1}>+\zeta e_{5}<x-a_{1}>-e_{3}<x-a_{2}>\right. \\ & \left.-\zeta e_{5}<x-a_{2}>\right)+p_{2}\left(e_{2}<x-a_{2}>+\zeta e_{4}<x-a_{2}>\right) \\ & -p_{1}\left(e_{2}<x-a_{1}>-\zeta e_{4}<x-a_{1}>+2 \zeta e_{4}<x-a_{2}>\right) \end{aligned}$	$C \lambda e_{4}<x-a>$
$\begin{aligned} & -\frac{p_{2}-p_{1}}{a_{2}-a_{1}}\left(e_{4}<x-a_{1}>-e_{4}<x-a_{2}>\right) \\ & +p_{2} e_{3}<x-a_{2}>-p_{1} e_{3}<x-a_{1}> \end{aligned}$	$\begin{aligned} & -C\left(e_{1}<x-a>-\eta e_{3}\right. \\ & <x-a>) \end{aligned}$

TABLE 11-3 PART C: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: INITIAL PARAMETERS

	3. Free or infiniteto the leftFree: $\stackrel{\leftrightarrow}{\boldsymbol{x}}$ $\begin{array}{l}M_{0}=0, \\ V_{0}=0\end{array}$ Infinite to the left All loadings, changes in cross-sectional properties, etc., must be placed between $x=0$ and $x=L$	$\begin{aligned} w_{0} & =\left[\bar{F}_{M} \bar{e}_{2} / E I-\left(\bar{e}_{0}-\eta \bar{e}_{2}\right) \bar{F}_{w}\right] / \nabla \\ \theta_{0} & =\left[\lambda \bar{e}_{3} \bar{F}_{w}-\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) \bar{F}_{M} / E I\right] / \nabla \\ \nabla & =\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)\left(\bar{e}_{0}-\eta \bar{e}_{2}\right)+\lambda \bar{e}_{2} \bar{e}_{3} \end{aligned}$	$\begin{aligned} w_{0} & =-\left[\left(\bar{e}_{1}-\eta \bar{e}_{3}\right) \bar{F}_{w}+\bar{e}_{2} \bar{F}_{\theta}\right] / \nabla \\ \theta_{0} & =\left[\lambda \bar{e}_{4} \bar{F}_{w}-\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) \bar{F}_{\theta}\right] / \nabla \\ \nabla & =\lambda \bar{e}_{2} \bar{e}_{4}+\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)\left(\bar{e}_{1}-\eta \bar{e}_{3}\right) \end{aligned}$
$\begin{aligned} & \stackrel{D}{\mathbb{D}} \\ & \frac{\mathbf{N}}{\omega} \end{aligned}$	4. Guided $\theta_{0}=0, \quad V_{0}=0$	$\begin{aligned} w_{0} & =\left[-\left(\bar{e}_{1}-\eta \bar{e}_{3}\right) \bar{F}_{w}-\left(\bar{e}_{3} / E I\right) \bar{F}_{M}\right] / \nabla \\ M_{0} & =\left[\lambda E I \bar{e}_{3} \bar{F}_{w}-\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) \bar{F}_{M}\right] / \nabla \\ \nabla & =\left(\bar{e}_{1}-\eta \bar{e}_{3}\right)\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)+\lambda \bar{e}_{3}^{2} \end{aligned}$	$\begin{aligned} w_{0} & =\left[-\left(\bar{e}_{2}-\eta \bar{e}_{4}\right) \bar{F}_{w}-\bar{e}_{3} \bar{F}_{\theta}\right] / \nabla \\ M_{0} & =\left[\lambda E I \bar{e}_{4} \bar{F}_{w}-E I\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) \bar{F}_{\theta}\right] / \nabla \\ \nabla & =\left(\bar{e}_{2}-\eta \bar{e}_{4}\right)\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)+\lambda \bar{e}_{3} \bar{e}_{4} \end{aligned}$
	5. Partially fixed $w_{0}=0, M_{0}=k_{1}^{*} \theta_{0}$	$\begin{aligned} \theta_{0} & =\left\{-\bar{e}_{2} \bar{F}_{w}-\bar{F}_{M}\left[\bar{e}_{4}-\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) / G A_{s}\right] / E I\right\} / \nabla \\ V_{0} & =\left(A_{1} \bar{F}_{w}+A_{2} \bar{F}_{M}\right) / \nabla \\ \nabla & =A_{1}\left[\bar{e}_{4}-\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) / G A_{s}\right] / E I-A_{2} \bar{e}_{2} \end{aligned}$	$\begin{aligned} \theta_{0}= & \left\{-\left(\bar{e}_{3} / E I\right) \bar{F}_{w}\right. \\ & \left.-\bar{F}_{\theta}\left[\bar{e}_{4}-\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) / G A_{s}\right] / E I\right\} / \nabla \\ V_{0}= & \left(A_{3} \bar{F}_{w}+A_{2} \bar{F}_{\theta}\right) / \nabla \\ \nabla= & A_{3}\left[\bar{e}_{4}-\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) / G A_{s}\right] / E I \\ & -A_{2} \bar{e}_{3} / E I \end{aligned}$

TABLE 11-3 (continued) PART C: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: INITIAL PARAMETERS

Right End	3. Free
1. Pinned, hinged, or on rollers	$\begin{aligned} \theta_{0} & =\left\{-\left[\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) / E I\right] \bar{F}_{M}+\left(\bar{e}_{2} / E I\right) \bar{F}_{V}\right\} / \nabla \\ V_{0} & =\left[-\lambda \bar{\lambda}_{3} \bar{F}_{M}-\left(\bar{e}_{0}-\eta \bar{e}_{2}\right) \bar{F}_{V}\right] / \nabla \\ \nabla & =\left(\bar{e}_{0}-\eta \bar{e}_{2}\right)\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)+\lambda \bar{e}_{2} \bar{e}_{3} \end{aligned}$
2. Fixed	$\begin{aligned} V_{0} & =\left[-\lambda \bar{e}_{4} \bar{F}_{M}-\left(\bar{e}_{1}-\eta \bar{e}_{3}\right) \bar{F}_{V}\right] / \nabla \\ M_{0} & =\left[-\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) \bar{F}_{M}+\bar{e}_{2} \bar{F}_{V}\right] / \nabla \\ \nabla & =\left(\bar{e}_{1}-\eta \bar{e}_{3}\right)\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)+\lambda \bar{e}_{2} \bar{e}_{4} \end{aligned}$

	3. Free or infinite to the left Infinite to the left All loadings, changes in crosssectional properties, etc., must be placed between $x=0$ and $x=L$	$\begin{aligned} w_{0} & =\left[\bar{F}_{M} \bar{e}_{3} / E I+\bar{F}_{V}\left(\bar{e}_{0}-\eta \bar{e}_{2}\right) /(\lambda E I)\right] / \nabla \\ \theta_{0} & =\left\{\left[\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) / E I\right] \bar{F}_{M}+\left(\bar{e}_{3} / E I\right) \bar{F}_{V}\right\} / \nabla \\ \nabla & =-\lambda \bar{e}_{3}^{2}-\left(\bar{e}_{0}-\eta \bar{e}_{2}\right)\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) \end{aligned}$
$\begin{aligned} & \overline{\mathrm{D}} \\ & \overrightarrow{3} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \hline \end{aligned}$	4. Guided \square $\theta_{0}=0, V_{0}=0$	$\begin{aligned} w_{0} & =\left\{\left(\bar{e}_{4} / E I\right) \bar{F}_{M}-\left[\left(\bar{e}_{1}-\eta \bar{e}_{3}\right) /(\lambda E I)\right] \bar{F}_{V}\right\} / \nabla \\ M_{0} & =\left[\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) \bar{F}_{M}-\bar{e}_{3} \bar{F}_{V}\right] / \nabla \\ \nabla & =-\lambda \bar{e}_{4} \bar{e}_{3}-\left(\bar{e}_{1}-\eta \bar{e}_{3}\right)\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) \end{aligned}$
	5. Partially fixed $w_{0}=0, M_{0}=k_{1}^{*} \theta_{0}$	$\begin{aligned} \theta_{0} & =\left[-\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) \bar{F}_{M}+\bar{e}_{2} \bar{F}_{V}\right] / \nabla \\ V_{0} & =\left[-\lambda A_{4} \bar{F}_{M}-\left(k_{1}^{*} \bar{e}_{1}+E I \bar{e}_{0}\right) \bar{F}_{V}\right] / \nabla \\ \nabla & =\left(k_{1}^{*} \bar{e}_{1}+E I \bar{e}_{0}\right)\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)+\lambda A_{4} \bar{e}_{2} \end{aligned}$

TABLE 11-3 (continued) PART C: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: INITIAL PARAMETERS

	4. Guided
1. Pinned, hinged, or on rollers	$\begin{aligned} \theta_{0} & =\left[-\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) \bar{F}_{\theta}+\left(\bar{e}_{3} / E I\right) \bar{F}_{V}\right] / \nabla \\ V_{0} & =\left[-\lambda E I \bar{e}_{3} \bar{F}_{\theta}-\left(\bar{e}_{1}-\eta \bar{e}_{3}\right) \bar{F}_{V}\right] / \nabla \\ \nabla & =\left(\bar{e}_{1}-\eta \bar{e}_{3}\right)\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)+\lambda \bar{e}_{3}^{2} \end{aligned}$
2. Fixed \qquad	$\begin{aligned} V_{0} & =\left[-\lambda E I \bar{e}_{4} \bar{F}_{\theta}-\left(\bar{e}_{2}-\eta \bar{e}_{4}\right) \bar{F}_{V}\right] / \nabla \\ M_{0} & =\left[-\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) E I \bar{F}_{\theta}+\bar{e}_{3} \bar{F}_{V}\right] / \nabla \\ \nabla & =\left(\bar{e}_{2}-\eta \bar{e}_{4}\right)\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)+\lambda \bar{e}_{4} \bar{e}_{3} \end{aligned}$

	3. Free or infinite Free: to the left Infinite to the left All loadings, changes in crosssectional properties, etc., must be placed between $x=0$ and $x=L$	$\begin{aligned} w_{0} & =\left\{\bar{e}_{3} \bar{F}_{\theta}+\left[\left(\bar{e}_{1}-\eta \bar{e}_{3}\right) /(\lambda E I)\right] \bar{F}_{V}\right\} / \nabla \\ \theta_{0} & =\left[\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) \bar{F}_{\theta}-\left(\bar{e}_{4} / E I\right) \bar{F}_{V}\right] / \nabla \\ \nabla & =-\lambda \bar{e}_{3} \bar{e}_{4}-\left(\bar{e}_{1}-\eta \bar{e}_{3}\right)\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) \end{aligned}$
	4. Guided 缐	$\begin{aligned} w_{0} & =\left\{\bar{e}_{2} F_{\theta}+\left[\left(\bar{e}_{2}-\eta \bar{e}_{4}\right) /(\lambda E I)\right] \overline{F_{V}}\right\} / \nabla \\ M_{0} & =\left[E I\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) \bar{F}_{\theta}-\bar{e}_{4} \bar{F}_{V}\right] / \nabla \\ \nabla & =-\lambda \bar{e}_{4}^{2}-\left(\bar{e}_{2}-\eta \bar{e}_{4}\right)\left(\bar{e}_{2}+\zeta \bar{e}_{4}\right) \end{aligned}$
	5. Partially fixed	$\begin{aligned} \theta_{0} & =\left[-\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) \bar{F}_{\theta}+\left(\bar{e}_{3} / E I\right) \bar{F}_{V}\right] / \nabla \\ V_{0} & =\left(-\lambda A_{4} \bar{F}_{\theta}-A_{3} \bar{F}_{V}\right) / \nabla \\ \nabla & =A_{3}\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)+\lambda A_{4} \bar{e}_{3} / E I \end{aligned}$

TABLE 11-3 (continued) PART C: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: INITIAL PARAMETERS

| Left |
| :--- | :--- |
| End |

	3. Free or infinite Free: to the left Infinite to the left All loadings, changes in cross-sectional properties, etc., must be placed between $x=0$ and $x=L$	$\begin{aligned} w_{0} & =\left(-A_{6} \bar{F}_{w}+A_{9} \bar{e}_{2}\right) / \nabla \\ \theta_{0} & =\left[\lambda A_{8} \bar{F}_{w}-A_{9}\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)\right] / \nabla \\ \nabla & =A_{6}\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)+A_{8} \bar{e}_{2} \end{aligned}$
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{N}} \\ & \frac{\stackrel{\rightharpoonup}{\oplus}}{\stackrel{1}{\omega}} \end{aligned}$	4. Guided	$\begin{aligned} w_{0} & =\left(A_{7} \bar{F}_{w}+A_{9} \bar{e}_{3}\right) / \nabla \\ M_{0} & =\left[\lambda E I A_{8} \bar{F}_{w}+E I A_{9}\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right)\right] / \nabla \\ \nabla & =\lambda A_{8} \bar{e}_{3}-A_{7}\left(\bar{e}_{1}+\zeta \bar{e}_{3}\right) \end{aligned}$
	5. Partially fixed	$\begin{aligned} \theta_{0} & =\left\{A_{5} \bar{F}_{w}+A_{9}\left[\bar{e}_{4}-\left(\bar{e}_{1}+\zeta \bar{e}_{4}\right) E I / G A_{s}\right]\right\} / \nabla \\ V_{0} & =\left[E I\left(A_{1}-k_{2}^{*} A_{3}\right) \bar{F}_{w}-E I A_{2} A_{9}\right] / \nabla \\ \nabla & =A_{2} A_{5}+\left(A_{1}-k_{2}^{*} A_{3}\right)\left[\bar{e}_{4}-\left(\bar{e}_{1}+\zeta \bar{e}_{4}\right) E I / G A_{s}\right] \end{aligned}$

TABLE 11-4 COLLAPSE LOADS FOR BEAMS

Notation
$M_{p}=$ full plastic bending moment, where Z_{p} (plastic section modulus)
is taken from Table 2-2 and σ_{ys} is the yield stress of material, $=\sigma_{\mathrm{ys}} Z_{p}$
$W_{c}, C_{c}, p_{c}=$ collapse loads
$a_{h_{i}}=$ location of i th plastic hinge
$\varepsilon=$ short length along axis of beam
$L=$ length of beam

Boundary Conditions and Loading	Collapse Loads	Plastic Hinge Locations
1. Fixed-fixed	$W_{c}=\frac{2 M_{p} L}{a(L-a)}$	$a_{h_{1}}=0, a_{h_{2}}=a, a_{h_{3}}=L$
2. Simply supportedsimply supported	$W_{c}=\frac{M_{p} L}{a(L-a)}$	$a_{h_{1}}=a$

	3. Simply supported-fixed	$W_{c}=\frac{M_{p}(L+a)}{a(L-a)}$	$a_{h_{1}}=a, a_{h_{2}}=L$
	4. Free-fixed	$W_{c}=\frac{M_{p}}{L-a}$	$a_{h_{1}}=L$
	5. Guided-fixed	$W_{c}=\frac{2 M_{p}}{L-a}$	$0 \leq a_{h_{1}} \leq a, a_{h_{2}}=L$

TABLE 11-4 (continued) COLLAPSE LOADS FOR BEAMS		
Boundary Conditions and Loading	Collapse Loads	Plastic Hinge Locations
6. Guided-simply supported	$W_{c}=\frac{M_{p}}{L-a}$	$0 \leq a_{h_{1}} \leq a$
7. Fixed-fixed	$C_{c}=2 M_{p}$	$\begin{aligned} & a_{h_{1}}=a-\varepsilon, a_{h_{2}}=a+\varepsilon \\ & \text { For } 0<a<\frac{1}{2} L, a_{h_{3}}=L \\ & \text { For } \frac{1}{2} L<a<L, a_{h_{3}}=0 \\ & \text { For } a=\frac{1}{2} L, 0<a_{h_{1}}, a_{h_{2}}<\frac{1}{2} L \\ & \frac{1}{2} L<a_{h_{3}}<L \end{aligned}$
8. Simply supportedsimply supported	For $\begin{aligned} & 0 \leq a \leq \frac{1}{2} L, C_{c}=\frac{M_{p} L}{L-a} \\ & \frac{1}{2} L \leq a \leq L, C_{c}=\frac{M_{p} L}{a} \\ & a=\frac{1}{2} L, C_{c}=2 M_{p} \end{aligned}$	For $\begin{aligned} & 0 \leq a \leq \frac{1}{2} L, a_{h_{1}}=a+\varepsilon \\ & \frac{1}{2} L \leq a \leq L, a_{h_{1}}=a-\varepsilon \\ & a=\frac{1}{2} L, a_{h_{1}}=a+\varepsilon, a_{h_{2}}=a-\varepsilon \end{aligned}$

	9. Simply supported-fixed	$\begin{aligned} & \text { For } \frac{1}{3} L \leq a \leq L, \\ & C_{c}=2 M_{p} \\ & \text { For } 0 \leq a \leq \frac{1}{3} L, \\ & C_{c}=\frac{M_{p}(L+a)}{L-a} \end{aligned}$	$\begin{aligned} \text { For } \frac{1}{3} L \leq a \leq L, a_{h_{1}} & =a-\varepsilon \\ a_{h_{2}} & =a+\varepsilon \\ \text { For } 0 \leq a \leq \frac{1}{3} L, a_{h_{1}} & =a+\varepsilon \\ a_{h_{2}} & =L \end{aligned}$
	10. Free-fixed	$C_{c}=M_{p}$	$a<a_{h_{1}}<L$
	11. Guided-fixed	$C_{c}=2 M_{p}$	$0 \leq a_{h_{1}} \leq a, a \leq a_{h_{2}} \leq L$

TABLE 11-4 (continued)	COLLAPSE LOADS FOR BEAMS	
Boundary Conditions and Loading	Collapse Loads	Plastic Hinge Locations
12. Guided-simply supported	$C_{c}=M_{p}$	$0 \leq a_{h_{1}} \leq a$
13. Fixed-fixed	$p_{c}=\frac{16 M_{p} L^{2}}{a_{1}^{4}+a_{2}^{4}-4 a_{1}^{2} L^{2}+4 a_{1}^{2} a_{2} L-2 a_{1}^{2} a_{2}^{2}+4 a_{2}^{2} L^{2}-4 a_{2}^{3} L}$	$\begin{aligned} & a_{h_{1}}=0, a_{h_{2}}=\frac{a_{1}^{2}+2 a_{2} L-a_{2}^{2}}{2 L} \\ & a_{h_{3}}=L \end{aligned}$
14. Simply supportedsimply supported	$p_{c}=\frac{8 M_{p} L^{2}}{a_{1}^{4}+a_{2}^{4}+4 a_{2}^{2} L^{2}-4 a_{1}^{2} L^{2}+4 a_{1}^{2} a_{2} L-2 a_{1}^{2} a_{2}^{2}-4 a_{2}^{3} L}$	$a_{h_{1}}=\frac{a_{1}^{2}+2 a_{2} L-a_{2}^{2}}{2 L}$

	$p_{c}=\frac{2 M_{p}\left(L+a_{h_{1}}\right)}{L a_{h_{1}}^{2}-a_{1}^{2}\left(L-a_{h_{1}}\right)+2 L a_{h_{1}}\left(a_{2}-a_{h_{1}}\right)-a_{2}^{2} a_{h_{1}}}$	$\begin{aligned} & a_{h_{1}}=\left[\left(L^{2}-a_{2}^{2}\right)+2\left(a_{2} L+a_{1}^{2}\right)\right]^{1 / 2}-L \\ & a_{h_{2}}=L \end{aligned}$
16. Free-fixed	$p_{c}=\frac{2 M_{p}}{a_{1}^{2}+2 L a_{2}-2 L a_{1}-a_{2}^{2}}$	$a_{h_{1}}=L$
17. Guided-fixed	$p_{c}=\frac{4 M_{p}}{a_{1}^{2}-2 a_{1} L+2 a_{2} L-a_{2}^{2}}$	$a_{h_{1}}=a_{1}, a_{h_{2}}=L$
18. Guided-simply supported	$p_{c}=\frac{2 M_{p}}{\left(a_{2}-a_{1}\right)\left(2 L-a_{2}-a_{1}\right)}$	$0 \leq a_{h_{1}} \leq a_{1}$

TABLE 11-5 ELASTIC BUCKLING LOADS AND MODE SHAPES FOR AXIALLY LOADED COLUMNS WITH IDEAL END CONDITIONS

Notation

$$
\begin{aligned}
E & =\text { modulus of elasticity } \\
I & =\text { moment of inertia } \\
L & =\text { length of column } \\
P_{\text {cr }} & =\text { buckling load }
\end{aligned}
$$

TABLE 11-6 ELASTIC BUCKLING LOADS FOR AN AXIALLY LOADED COLUMN WITH ELASTICALLY RESTRAINED END CONDITIONS

End Conditions	Critical Load
1. Upper end is elastically restrained, lower end is fixed.	$P_{\mathrm{cr}}=m^{2} \frac{E I}{L^{2}}$ Find m by solving $\begin{aligned} & \frac{c(m-\sin m)-m^{3}}{c(1-\cos m)}=\frac{m \sin m+c_{1}(1-\cos m)}{m \cos m+c_{1} \sin m} \\ & \text { where } c=\frac{k L^{3}}{E I} \quad c_{1}=\frac{k_{1} L}{E I} \end{aligned}$

Spring constants are
$k=\frac{V_{L}}{w_{L}} \quad k_{1}=\frac{M_{L}}{\theta_{L}}$

TABLE 11-6 (continued) ELASTIC BUCKLING LOADS FOR AN AXIALLY LOADED COLUMN WITH ELASTICALLY RESTRAINED END CONDITIONS

End Conditions	Critical Load
2.	$P_{\text {cr }}=m^{2} \frac{E I}{L^{2}}$
Both ends restrained	

For the upper end:
$k_{L}=V_{L} / w_{L}$
$k_{1}=M_{L} / \theta_{L}$
For the lower end:
$k_{0}=V_{0} / w_{0}$
$k_{2}=M_{0} / \theta_{0}$

Find m by solving

$$
\begin{aligned}
& \frac{m-\sin m+m^{3}(1+\alpha) / c_{L}}{1-\cos m+\beta m^{2} / c_{1}-\beta m^{4}(1+\alpha) /\left(c_{1} c_{L}\right)} \\
& =\frac{\left(m / c_{1}\right) \sin m+1-\cos m}{\left(m / c_{1}\right)(\beta+\cos m)+\sin m}
\end{aligned}
$$

where
$c_{L}=\frac{k_{L} L^{3}}{E I}$
$c_{1}=\frac{k_{1} L}{E I} \quad \frac{k_{L}}{k_{0}}=\alpha \quad \frac{k_{1}}{k_{2}}=\beta$

TABLE 11-7 ELASTIC BUCKLING LOAD FOR

 COLUMNS WITH IN-SPAN AXIAL LOADS| Notation$\begin{aligned} \left(P+p_{x} L\right)_{\mathrm{cr}} & =\eta \frac{E I}{L^{2}} \\ p_{x} & =\operatorname{uniformly~distributed~axial~} \\ & \operatorname{load}(F / L) \end{aligned}$ | |
| :---: | :---: |
| End Condition | η |
| 1.
 Pinned-pinned | $\frac{16.7 p_{x} L}{p_{x} L+1.36 P}+9.87$ |
| 2.
 Pinned-fixed
 | $\frac{40.6\left(p_{x} L\right)^{1.35}}{\left(p_{x} L\right)^{1.35}+2.6 P^{1.35}}+19.74$ |
| 3.
 Fixed-pinned | $\frac{24.5\left(p_{x} L\right)^{1.35}}{\left(p_{x} L\right)^{1.35}+1.68 P^{1.35}}+19.74$ |

TABLE 11-7 (continued) ELASTIC BUCKLING LOAD FOR COLUMNS WITH IN-SPAN AXIAL LOADS	
End Condition	η
4. Fixed-fixed 	$\frac{46.1\left(p_{x} L\right)^{1.35}}{\left(p_{x} L\right)^{1.35}+2.4 P^{1.35}}+39.48$
5. Free-fixed	$\frac{5.38\left(p_{x} L\right)^{1.35}}{\left(p_{x} L\right)^{1.35}+2.7 P^{1.35}}+2.47$

TABLE 11-8 BUCKLING LOADS FOR COLUMNS WITH IN-SPAN SUPPORTS

End Conditions	Restrictions	$\eta=C_{1}+C_{2} \frac{b}{L}+C_{3}\left(\frac{b}{L}\right)^{2}$
3. Pinned-pinned	$\begin{aligned} & 0 \leq \frac{b}{L} \leq 0.4 \\ & 0.5 \leq \frac{b}{L} \leq 1.0 \end{aligned}$	$\begin{array}{lll} C_{1}=20.15514 & C_{2}=27.79714 & C_{3}=34.85716 \\ C_{1}=63.08144 & C_{2}=-48.77858 & C_{3}=5.50000 \end{array}$
4. Clamped-pinned	$\begin{aligned} & 0 \leq \frac{b}{L} \leq 0.3 \\ & 0.4 \leq \frac{b}{L} \leq 1.0 \end{aligned}$	$\begin{array}{lll} C_{1}=39.44701 & C_{2}=56.31997 & C_{3}=29.00003 \\ C_{1}=109.70282 & C_{2}=-149.23325 & C_{3}=59.52375 \end{array}$

		$\begin{aligned} & 0 \leq \frac{b}{L} \leq 0.6 \\ & 0.7 \leq \frac{b}{L} \leq 1.0 \end{aligned}$	$\begin{aligned} & C_{1}=2.55579 \\ & C_{1}=-17.17765 \end{aligned}$	$\begin{aligned} & C_{2}=1.31893 \\ & C_{2}=43.67535 \end{aligned}$	$\begin{aligned} & C_{3}=12.62499 \\ & C_{3}=-6.25020 \end{aligned}$
	6. Guided-clamped	$\begin{aligned} & 0 \leq \frac{b}{L} \leq 0.6 \\ & 0.7 \leq \frac{b}{L} \leq 1.0 \end{aligned}$	$\begin{aligned} & C_{1}=10.01666 \\ & C_{1}=-31.24563 \end{aligned}$	$\begin{aligned} & C_{2}=9.72857 \\ & C_{2}=151.40530 \end{aligned}$	$\begin{aligned} & C_{3}=38.47618 \\ & C_{3}=-80.75015 \end{aligned}$
	7. Pinned-clamped	$\begin{aligned} & 0 \leq \frac{b}{L} \leq 0.6 \\ & 0.7 \leq \frac{b}{L} \leq 1.0 \end{aligned}$	$\begin{aligned} & C_{1}=19.99333 \\ & C_{1}=124.76723 \end{aligned}$	$\begin{aligned} & C_{2}=30.18574 \\ & C_{2}=-114.32053 \end{aligned}$	$\begin{aligned} & C_{3}=59.52375 \\ & C_{3}=29.00031 \end{aligned}$

TABLE 11-8 (continued) BUCKLING LOADS FOR COLUMNS WITH IN-SPAN SUPPORTS

8.	$0 \leq \frac{b}{L} \leq 0.4$	$C_{1}=39.38744$	$C_{2}=61.88135$	$C_{3}=70.07159$
Clamped-clamped ${ }^{P} \downarrow$	$0.5 \leq \frac{b}{L} \leq 1.0$	$C_{1}=128.82428$	$C_{2}=-96.99966$	$C_{3}=6.80359$

TABLE 11-9 BUCKLING LOADS FOR TAPERED COLUMNS

$$
\begin{aligned}
P_{\text {cr }} & =\eta \frac{E I}{L^{2}} \\
I_{0}, I_{x}, I & =\text { motation } \\
x & =\text { coordinate of inertia }\left(L^{4}\right) \\
a & =\text { length of taper, beginning at virtual vertex } \\
\frac{1}{2}(L-\ell) & =\text { length of taper }
\end{aligned}
$$

Boundary Conditions	Taper	Restrictions	$\eta=C_{1}+C_{2}\left(I_{0} / I\right)+C_{3}\left(I_{0} / I\right)^{2}$
1. Simply supportedsimply supported	$I_{x}=I(x / a)$	$\begin{aligned} & 0.1 \leq I_{0} / I \leq 0.8 \\ & 0.0 \leq a / L \leq 0.8 \end{aligned}$	$\begin{aligned} & C_{1}=5.930731+7.494147(a / L)-3.20702(a / L)^{2} \\ & C_{2}=5.376184-7.29300(a / L)+0.62360(a / L)^{2} \\ & C_{3}=-1.50574-0.39881(a / L)+2.93134(a / L)^{2} \end{aligned}$
2. Fixed-fixed	$I_{x}=I(x / a)$	$\begin{aligned} & 0.2 \leq I_{0} / I \leq 0.8 \\ & 0.0 \leq a / L \leq 0.8 \end{aligned}$	$\begin{aligned} & C_{1}=14.26143+3.89573(a / L)+10.14281(a / L)^{2} \\ & C_{2}=33.71884+4.71145(a / L)-16.21420(a / L)^{2} \\ & C_{3}=-9.02855-9.71431(a / L)+7.14275(a / L)^{2} \end{aligned}$
3. Simply supportedsimply supported	$I_{x}=I(x / a)^{2}$	$\begin{aligned} & 0.1 \leq I_{0} / I \leq 0.8 \\ & 0.0 \leq a / L \leq 0.8 \end{aligned}$	$\begin{aligned} & C_{1}=4.48594+9.27104(a / L)-3.17469(a / L)^{2} \\ & C_{2}=9.54820-12.13186(a / L)+0.15266(a / L)^{2} \\ & C_{3}=-4.59559+2.96185(a / L)+3.60045(a / L)^{2} \end{aligned}$

TABLE 11-9 (continued) BUCKLING LOADS FOR TAPERED COLUMNS

Boundary Conditions	Taper	Restrictions	$\eta=C_{1}+C_{2}\left(I_{0} / I\right)+C_{3}\left(I_{0} / I\right)^{2}$
4. Fixed-fixed	$I_{x}=I(x / a)^{2}$	$\begin{aligned} & 0.2 \leq I_{0} / I \leq 0.8 \\ & 0.0 \leq a / L \leq 0.8 \end{aligned}$	$\begin{aligned} & C_{1}=11.71678+10.39221(a / L)+1.99100(a / L)^{2} \\ & C_{2}=40.10596-15.17206(a / L)+9.39316(a / L)^{2} \\ & C_{3}=-13.13751+5.31273(a / L)-12.50024(a / L)^{2} \end{aligned}$
5. Simply supportedsimply supported	$I_{x}=I(x / a)^{3}$	$\begin{aligned} & 0.1 \leq I_{0} / I \leq 0.8 \\ & 0.0 \leq a / L \leq 0.8 \end{aligned}$	$\begin{aligned} & C_{1}=3.95433+9.71412(a / L)-2.91616(a / L)^{2} \\ & C_{2}=11.17553-13.09159(a / L)-1.11514(a / L)^{2} \\ & C_{3}=-5.78722+3.53687(a / L)+4.64377(a / L)^{2} \end{aligned}$
6. Fixed-fixed	$I_{x}=I(x / a)^{3}$	$\begin{aligned} & 0.2 \leq I_{0} / I \leq 0.8 \\ & 0.0 \leq a / L \leq 0.8 \end{aligned}$	$\begin{aligned} & C_{1}=10.88200+12.03998(a / L)+0.00004(a / L)^{2} \\ & C_{2}=42.20943-19.96425(a / L)+15.39278(a / L)^{2} \\ & C_{3}=-14.5500+9.39996(a / L)-17.49989(a / L)^{2} \end{aligned}$
7. Simply supportedsimply supported	$I_{x}=I(x / a)^{4}$	$\begin{aligned} & 0.1 \leq I_{0} / I \leq 0.8 \\ & 0.0 \leq a / L \leq 0.8 \end{aligned}$	$\begin{aligned} & C_{1}=3.68757+9.69379(a / L)-2.45495(a / L)^{2} \\ & C_{2}=11.90928-12.34295(a / L)-3.26411(a / L)^{2} \\ & C_{3}=-6.30219+2.60257(a / L)+6.67416(a / L)^{2} \end{aligned}$
8. Fixed-fixed	$I_{x}=I(x / a)^{4}$	$\begin{aligned} & 0.2 \leq I_{0} / I \leq 0.8 \\ & 0.0 \leq a / L \leq 0.8 \end{aligned}$	$\begin{aligned} & C_{1}=10.45043+12.80821(a / L)-0.85714(a / L)^{2} \\ & C_{2}=43.28855-21.81049(a / L)+17.41934(a / L)^{2} \\ & C_{3}=-15.17141+9.83910(a / L)-18.08010(a / L)^{2} \end{aligned}$

TABLE 11-10 FORMULAS FOR MAXIMUM STRESS IN IMPERFECT COLUMNS

Notation

A	$=$ area
C	$= \begin{cases}1 & \text { for simply supported ends } \\ 4 & \text { for fixed ends }\end{cases}$
c	$=$ distance between outermost fiber and neutral axis
E	$=$ modulus of elasticity
e	$=$ eccentricity
$K L$	$=$ effective length of column

$L=$ length of column
$P=$ maximum axial force
$r=$ least radius of gyration
$\alpha=$ constant
$\lambda=$ eccentricity ratio
$\sigma_{y s}=$ yield stress
$\sigma=$ ultimate stress

Formula	Explanation

1.

Secant formula:

$$
\begin{aligned}
& \sigma=\frac{\sigma_{y s}}{1+\lambda \sec \left(\frac{K L}{2 r} \sqrt{\frac{P}{A E}}\right)} \\
& \text { with }
\end{aligned}
$$

$\lambda=e c / r^{2}$
2.

Rankine formula:
$\frac{P}{A}=\frac{\sigma}{1+\varphi\left(\frac{L}{r}\right)^{2}}$
3.

Simple polynomial formula:

$$
\frac{P}{A}=\sigma-\alpha\left(\frac{L}{r}\right)^{n}
$$

The factor φ can be calculated from $\varphi=\sigma / C \pi^{2} E$. But more often σ and φ are adjusted empirically to make P / A agree with the test data in the range of most L / r values.

This is an empirical equation. For most steels, $n=2$, and for cast irons and many aluminum alloys, $n=1$. The factor α is determined experimentally. When $n=2, \sigma$ is the yield stress and α makes the parabola that the equation defines as intersecting tangent to the Euler curve for a long column. When $n=1, \sigma$ is the maximum stress at failure and α is determined experimentally to make the straight line that the equation defines as tangent to the Euler curve.
4.

Exponential formula:
$\beta \leq 1.5: \quad \frac{P}{A}=0.658 \beta^{2} \sigma_{y s}$
$\beta>1.5: \quad \frac{P}{A}=0.877 \beta^{-2} \sigma_{y s}$ with
$\beta=\frac{K L}{r \pi}\left(\frac{\sigma_{y s}}{E}\right)^{1 / 2}$

TABLE 11-11 FORMULAS FOR KERNS OF SHORT COLUMNS LOADED ECCENTRICALLY

Notation

$$
\begin{aligned}
y_{1}, z_{1}, r, r_{\min }= & \text { dimensions of kerns, shown in the shaded areas } \\
\operatorname{kern}= & \text { area in which compressive axial force is applied to produce } \\
& \text { no tensile stress on cross section }
\end{aligned}
$$

Kern (Shaded) of Cross Section	Expressions for $y_{1}, z_{1}, r, r_{\text {min }}$
$\mathbf{1 .}$	
Solid square	

2.

Solid rectangle

Solid isosceles triangle

$$
\begin{aligned}
& y_{1}=\frac{1}{6} b \quad z_{1}=\frac{1}{6} h \\
& y_{2}=\frac{1}{3} b \quad z_{2}=\frac{1}{3} h \\
& r_{\min }=\frac{b h}{6 \sqrt{b^{2}+h^{2}}} \\
& \\
& y_{1}=\frac{1}{8} b \quad z_{1}=\frac{1}{12} h \\
& y_{2}=\frac{1}{6} h
\end{aligned}
$$

TABLE 11-11 (continued) FORMULAS FOR KERNS OF SHORT COLUMNS LOADED ECCENTRICALLY

Kern (Shaded) of Cross Section	Expressions for $y_{1}, z_{1}, r, r_{\text {min }}$
4.	$y_{1}=\frac{1}{6} \frac{h b^{3}-h_{1} b_{1}^{3}}{b\left(b h-b_{1} h_{1}\right)}$
Hollow rectangle	$z_{1}=\frac{1}{6} \frac{b h^{3}-b_{1} h_{1}^{3}}{h\left(b h-b_{1} h_{1}\right)}$

(

TABLE 11-11 (continued)FORMULAS FOR KERNS OF SHORT COLUMNS LOADED ECCENTRICALLY Kern (Shaded) of Cross Section 7. Hollow circle

TABLE 11-12 NATURAL FREQUENCIES AND MODE SHAPES FOR UNIFORM BEAMS

Notation

$\begin{aligned} E & =\text { modulus of elasticity } & \rho=\text { mass per unit length } \\ I & =\text { moment of inertia } & L=\text { length of the beam }\end{aligned}$
Natural frequency: $\omega_{i}(\mathrm{rad} / \mathrm{s})=\frac{\lambda_{i}^{2}}{L^{2}}\left(\frac{E I}{\rho}\right)^{1 / 2} \quad f_{i}(\mathrm{~Hz})=\frac{\lambda_{i}^{2}}{2 \pi L^{2}}\left(\frac{E I}{\rho}\right)^{1 / 2}$

Boundary Conditions	$\lambda_{i}, i=1,2,3, \ldots$	Mode Shapes	$\beta_{i}, i=1,2,3, \ldots$
1. Pinned-pinned	$i \pi$	$\sin \frac{i \pi x}{L}$	
2. Fixed-pinned	$\begin{array}{r} 3.92660231 \\ 7.06858275 \\ 10.21017612 \\ 13.35176878 \\ 16.49336143 \\ (4 i+1) \pi / 4, \quad i>5 \end{array}$	$\cosh \frac{\lambda_{i} x}{L}-\cos \frac{\lambda_{i} x}{L}-\beta_{i}\left(\sinh \frac{\lambda_{i} x}{L}-\sin \frac{\lambda_{i} x}{L}\right)$	$\frac{\cosh \lambda_{i}-\cos \lambda_{i}}{\sinh \lambda_{i}-\sin \lambda_{i}}$
3. Fixed-fixed 方 W $\stackrel{\leftrightarrow}{\longrightarrow} \boldsymbol{L}$	$\begin{array}{r} 4.73004074 \\ 7.85320462 \\ 10.99560790 \\ 14.13716550 \\ 17.27875970 \\ (2 i+1) \pi / 2, \quad i>5 \end{array}$	$\cosh \frac{\lambda_{i} x}{L}-\cos \frac{\lambda_{i} x}{L}-\beta_{i}\left(\sinh \frac{\lambda_{i} x}{L}-\sin \frac{\lambda_{i} x}{L}\right)$	$\frac{\cosh \lambda_{i}-\cos \lambda_{i}}{\sinh \lambda_{i}-\sin \lambda_{i}}$

TABLE 11-12 (continued)	NATURAL FREQUENCIES AND MODE SHAPES FOR UNIFORM BEAMS		
	$\lambda_{i}, i=1,2,3, \ldots$	Mode Shapes	$\beta_{i}, i=1,2,3, \ldots$
4. $\stackrel{\text { Free-free }}{\stackrel{\rightharpoonup}{\rightleftarrows} \boldsymbol{L} \longrightarrow}$	$\begin{array}{r} 4.73004074 \\ 7.85320462 \\ 10.99560780 \\ 14.13716550 \\ 17.27875970 \\ (2 i+1) \pi / 2, \quad i>5 \end{array}$	$\cosh \frac{\lambda_{i} x}{L}+\cos \frac{\lambda_{i} x}{L}-\beta_{i}\left(\sinh \frac{\lambda_{i} x}{L}+\sin \frac{\lambda_{i} x}{L}\right)$	$\frac{\cosh \lambda_{i}-\cos \lambda_{i}}{\sinh \lambda_{i}-\sin \lambda_{i}}$
	$\begin{array}{r} 2.36502037 \\ 5.49780392 \\ 8.63937983 \\ 11.78097245 \\ 14.92256510 \\ (4 i-1) \pi / 4, \quad i>5 \end{array}$	$\cosh \frac{\lambda_{i} x}{L}+\cos \frac{\lambda_{i} x}{L}-\beta_{i}\left(\sinh \frac{\lambda_{i} x}{L}+\sin \frac{\lambda_{i} x}{L}\right)$	$\frac{\sinh \lambda_{i}-\sin \lambda_{i}}{\cosh \lambda_{i}+\cos \lambda_{i}}$
6. Fixed-free	$\begin{array}{r} 1.87510407 \\ 4.69409113 \\ 7.85475744 \\ 10.99554073 \\ 14.13716839 \\ (2 i-1) \pi / 2, \quad i>5 \end{array}$	$\cosh \frac{\lambda_{i} x}{L}-\cos \frac{\lambda_{i} x}{L}-\beta_{i}\left(\sinh \frac{\lambda_{i} x}{L}-\sin \frac{\lambda_{i} x}{L}\right)$	Same as free-guided

		$\begin{array}{r} \hline 3.92660231 \\ 7.06858275 \\ 10.21017612 \\ 13.35176878 \\ 16.49336143 \\ (4 i+1) \pi / 4, \quad i>5 \end{array}$	$\cosh \frac{\lambda_{i} x}{L}+\cos \frac{\lambda_{i} x}{L}-\beta_{i}\left(\sinh \frac{\lambda_{i} x}{L}+\sin \frac{\lambda_{i} x}{L}\right)$	Same as free-free
	8. Fixed-guided	$\begin{array}{r} 2.36502037 \\ 5.49780392 \\ 8.63937983 \\ 11.78097245 \\ 14.92256510 \\ (4 i-1) \pi / 4, \quad i>5 \end{array}$	$\cosh \frac{\lambda_{i} x}{L}-\cos \frac{\lambda_{i} x}{L}-\beta_{i}\left(\sinh \frac{\lambda_{i} x}{L}-\sin \frac{\lambda_{i} x}{L}\right)$	Same as free-guided
	9. Guided-pinned	$(2 i-1) \pi / 2$	$\cos \frac{(2 i-1) \pi x}{2 L}$	
	10. Guided-guided	$i \pi$	$\cos \frac{i \pi x}{L}$	

TABLE 11-13 FREQUENCY EQUATIONS FOR UNIFORM BEAMS

Notation $E=$ modulus of elasticity $G=$ shear modulus of elasticity $I=$ moment of inertia $A_{s}=$ equivalent shear area		
End Conditions	Bending (Euler-Bernoulli Beam)	Bending and Shear Deformation (Shear Beam)
1. Hinged-hinged	$\omega_{n}^{2} \frac{\rho}{E I}-\frac{n^{4} \pi^{4}}{L^{4}}=0$	$\begin{aligned} & \omega_{n}^{2}\left(\frac{\rho}{E I}+\frac{\rho}{G A_{s}} \frac{n^{2} \pi^{2}}{L^{2}}\right)-\frac{n^{4} \pi^{4}}{L^{4}}=0 \\ & \text { Pure shear: } \quad \sin \left(\omega_{n} L \sqrt{\frac{\rho}{G A_{s}}}\right)=0 \end{aligned}$
2. Free-free or fixed-fixed	$\cosh \beta_{1} L \cos \beta_{1} L-1=0$	$\begin{aligned} & \cosh \beta_{1} L \cos \beta_{2} L \\ & +\frac{1}{2} c_{1} \sinh \beta_{1} L \sin \beta_{2} L-1=0 \end{aligned}$ Pure shear: same as hinged-hinged
3. Fixed-hinged	$\tanh \beta_{1} L-\tan \beta_{1} L=0$	$\begin{aligned} & \cosh \beta_{1} L \sin \beta_{2} L \\ & \quad+c_{5} \sinh \beta_{1} L \cos \beta_{2} L=0 \end{aligned}$ Pure shear: same as hinged-hinged
4. Fixed-free	$\cosh \beta_{1} L \cos \beta_{1} L+1=0$	$\begin{aligned} & \text { cosh } \beta_{1} L \cos \beta_{2} L \\ & \quad+c_{2} c_{3} \sinh \beta_{1} L \sin \beta_{2} L-2 c_{3}=0 \\ & \text { Pure shear: } \quad \cos \left(\omega_{n} L \sqrt{\frac{\rho}{G A_{s}}}\right)=0 \end{aligned}$

$\rho=$ mass per unit length
$r_{y}=$ radius of gyration about y axis
$L=$ length of beam

Bending and Rotary Inertia (Rayleigh Beam)	Bending, Shear Deformation, and Rotary Inertia (Timoshenko Beam)
$\omega_{n}^{2}\left(\frac{\rho}{E I}+\frac{\rho r_{y}^{2}}{E I} \frac{n^{2} \pi^{2}}{L^{2}}\right)-\frac{n^{4} \pi^{4}}{L^{4}}=0$	$\omega_{n}^{4} r_{y}^{2}-\left(\frac{n^{2} \pi^{2}}{L^{2}} \frac{E I}{\rho}+\frac{n^{2} \pi^{2}}{L^{2}} r_{y}^{2} \frac{A_{s} G}{\rho}+\frac{A_{s} G}{\rho}\right) \omega_{n}^{2}$ $+\frac{n^{4} \pi^{4}}{L^{4}} \frac{G A_{s} E I}{\rho^{2}}=0$
$\cosh \beta_{1} L \cos \beta_{2} L-1$ $+\frac{1}{2} c_{2} \sinh \beta_{2} L \sin \beta_{2} L=0$	$\cosh \beta_{1} L \cos \beta_{2} L-1+\frac{1}{2} c_{1} \sinh \beta_{1} L \sin \beta_{2} L=0$
$\cosh \beta_{1} L \sin \beta_{2} L$ β_{2} $\sinh \beta_{1} L \cos \beta_{2} L=0$	$\cosh \beta_{1} L \sin \beta_{2} L+c_{5} \sinh \beta_{1} L \cos \beta_{2} L=0$ $\cosh \beta_{1} L \cos \beta_{2} L$ $+\frac{1}{2} c_{2} \sinh \beta_{1} L \sin \beta_{2} L$ $+\frac{1}{2} c_{4}=0$

$$
n=1,2, \ldots
$$

Euler-Bernoulli Beam

$$
\beta_{1}^{2}=\beta_{2}^{2}=\sqrt{\frac{\rho \omega_{n}^{2}}{E I}}
$$

Rayleigh Beam

$$
\beta_{1}^{2}=\frac{1}{2}\left[\frac{-\rho \omega_{n}^{2} r_{y}^{2}}{E I}+\sqrt{\left(\frac{\rho \omega_{n}^{2} r_{y}^{2}}{E I}\right)^{2}+\frac{4 \rho \omega_{n}^{2}}{E I}}\right]
$$

$$
\beta_{2}^{2}=\frac{1}{2}\left[\frac{\rho \omega_{n}^{2} r_{y}^{2}}{E I}+\sqrt{\left(\frac{\rho \omega_{n}^{2} r_{y}^{2}}{E I}\right)^{2}+\frac{4 \rho \omega_{n}^{2}}{E I}}\right]
$$

$$
c_{1}=\frac{\beta_{2}}{\beta_{1}} \frac{\rho \omega_{n}^{2} \mp A_{s} G \beta_{2}^{2}}{\rho \omega_{n}^{2} \pm A_{s} G \beta_{1}^{2}}-\frac{\beta_{1}}{\beta_{2}} \frac{\rho \omega_{n}^{2} \pm A_{s} G \beta_{1}^{2}}{\rho \omega_{n}^{2} \mp A_{s} G \beta_{2}^{2}}
$$

(upper sign for free-free, lower for fixed-fixed.)

$$
c_{2}=\frac{\beta_{2}}{\beta_{1}}-\frac{\beta_{1}}{\beta_{2}}
$$

$$
c_{3}=\frac{\left(\rho \omega_{n}^{2}-A_{s} G \beta_{2}^{2}\right)\left(\rho \omega_{n}^{2}+A_{s} G \beta_{1}^{2}\right)}{\left(\rho \omega_{n}^{2}+A_{s} G \beta_{1}^{2}\right)^{2}+\left(\rho \omega_{n}^{2}-A_{s} G \beta_{2}^{2}\right)^{2}}
$$

$$
c_{4}=\left(\frac{\beta_{1}}{\beta_{2}}\right)^{2}+\left(\frac{\beta_{2}}{\beta_{1}}\right)^{2}
$$

$$
c_{5}=\frac{\beta_{1}}{\beta_{2}} \frac{\rho \omega_{n}^{2}-A_{s} G \beta_{2}^{2}}{\rho \omega_{n}^{2}+A_{s} G \beta_{1}^{2}}
$$

Timoshenko Beam

$$
\begin{aligned}
& \beta_{1}^{2}=\frac{1}{2}\left[-\frac{\rho \omega_{n}^{2}}{G A_{s}}+\sqrt{\left(\frac{\rho \omega_{n}^{2}}{G A_{s}}\right)^{2}+\frac{4 \rho \omega_{n}^{2}}{E I}}\right] \quad \beta_{1}^{2}=\frac{1}{2}\left\{-\rho \omega_{n}^{2}\left(\frac{1}{G A_{s}}+\frac{r_{y}^{2}}{E I}\right)+\sqrt{\left[\rho \omega_{n}^{2}\left(\frac{1}{G A_{s}}+\frac{r_{y}^{2}}{E I}\right)\right]^{2}+\frac{4 \rho \omega_{n}^{2}}{E I}\left(1-\frac{\rho \omega_{n}^{2} r_{y}^{2}}{G A_{s}}\right)}\right\} \\
& \beta_{2}^{2}=\frac{1}{2}\left[\frac{\rho \omega_{n}^{2}}{G A_{s}}+\sqrt{\left(\frac{\rho \omega_{n}^{2}}{G A_{s}}\right)^{2}+\frac{4 \rho \omega_{n}^{2}}{E I}}\right] \quad \beta_{2}^{2}=\frac{1}{2}\left\{\rho \omega_{n}^{2}\left(\frac{1}{G A_{s}}+\frac{r_{y}^{2}}{E I}\right)+\sqrt{\left[\rho \omega_{n}^{2}\left(\frac{1}{G A_{s}}+\frac{r_{y}^{2}}{E I}\right)\right]^{2}+\frac{4 \rho \omega_{n}^{2}}{E I}\left(1-\frac{\rho \omega_{n}^{2} r_{y}^{2}}{G A_{s}}\right)}\right\}
\end{aligned}
$$

TABLE 11-14 NATURAL FREQUENCIES FOR BEAMS WITH CONCENTRATED MASSES

Notation

$$
\begin{aligned}
m_{b} & =\text { total mass of beam } \quad E=\text { modulus of elasticity } \\
M_{i} & =\text { concentrated mass } \\
L & =\text { length of beam }
\end{aligned}
$$

See Tables 10-2 and 17-1 for additional cases.

Description	Fundamental Natural Frequency (Hz)
1. Center mass, pinned-pinned beam	$\frac{2}{\pi}\left[\frac{3 E I}{L^{3}\left(M_{i}+0.4857 m_{b}\right)}\right]^{1 / 2}$
2. End mass, cantilever beam	$\frac{1}{2 \pi}\left[\frac{3 E I}{L^{3}\left(M_{i}+0.2357 m_{b}\right)}\right]^{1 / 2}$
3. End masses, free-free beam	$\frac{\pi}{2}\left\{\frac{E I}{L^{3} m_{b}}\left[1+\frac{5.45}{1-77.4\left(M_{i} / m_{b}\right)^{2}}\right]\right\}^{1 / 2}$
4. Off-center mass, pinned-pinned beam 	$\begin{aligned} & \frac{1}{2 \pi}\left\{\frac{3 E I(a+b)}{a^{2} b^{2}\left[M_{i}+(\alpha+\beta) m_{b}\right]}\right\}^{1 / 2} \\ \alpha= & \frac{a}{a+b}\left[\frac{(2 b+a)^{2}}{12 b^{2}}+\frac{a^{2}}{28 b^{2}}-\frac{a(2 b+a)}{10 b^{2}}\right] \\ \beta= & \frac{b}{a+b}\left[\frac{(2 a+b)^{2}}{12 a^{2}}+\frac{b^{2}}{28 a^{2}}-\frac{b(2 a+b)}{10 a^{2}}\right] \end{aligned}$
5. Center mass, clamped-	$\frac{4}{\pi}\left[\frac{3 E I}{L^{3}\left(M_{i}+0.37 m_{b}\right)}\right]^{1 / 2}$

TABLE 11-14 (continued)	NATURAL FREQUENCIES FOR BEAMS WITH CONCENTRATED MASSES
Description	Fundamental Natural Frequency (Hz)
6. Off-center mass, clamped-clamped beam	$\begin{aligned} & \frac{4}{\pi}\left\{\frac{3 E I L^{3}}{a^{3} b^{3}\left[M_{i}+(\alpha+\beta) m_{b}\right]}\right\}^{1 / 2} \\ \alpha= & \frac{a}{a+b}\left[\frac{(3 a+b)^{2}}{28 b^{2}}+\frac{9(a+b)^{2}}{20 b^{2}}-\frac{(a+b)(3 a+b)}{4 b^{2}}\right] \\ \beta= & \frac{b}{a+b}\left[\frac{(3 b+a)^{2}}{28 a^{2}}+\frac{9(a+b)^{2}}{20 a^{2}}-\frac{(a+b)(3 b+a)}{4 a^{2}}\right] \end{aligned}$

TABLE 11-15 FUNDAMENTAL NATURAL FREQUENCY BY NUMBER OF SPANS OF MULTISPAN BEAMS WITH RIGID IN-SPAN SUPPORTS ${ }^{\text {a }}$

Notation										
Fundame $E=$	natur odulus		$\frac{\omega_{1}(\mathrm{ra}}{\mathrm{H}}$	$\begin{aligned} & l \\ & \mathrm{l})=\frac{\lambda^{2}}{\ell^{2}} \\ & \text { momen } \\ & \ell \rightarrow 1 \end{aligned}$	$\begin{aligned} & \left(\frac{E I}{\rho}\right)^{1} \\ & \text { of inerti } \end{aligned}$			$\frac{\lambda_{1}}{\pi \ell^{2}}$ unit len	$\left.\frac{I}{1 / 2}\right)^{1 / 2}$	
	Number of Spans									
Boundary Conditions	1	2	3	4	5	6	7	8	9	10
	λ_{1}									
1. Free-free	4.730	1.875	1.412	1.506	1.530	1.537	1.538	1.539	1.539	1.539
2. Free-pinned	3.927	1.505	1.536	1.539	1.539	1.539	1.539	1.539	1.539	1.539
3. Pinned-pinned	3.142	3.142	3.142	3.142	3.142	3.142	3.142	3.142	3.142	3.142
4. Fixed-free	1.875	1.570	1.541	1.539	1.539	1.539	1.539	1.539	1.539	1.539
5. Fixed-pinned	3.927	3.393	3.261	3.210	3.186	3.173	3.164	3.159	3.156	3.153
6. Fixed-fixed	4.730	3.927	3.557	3.393	3.310	3.260	3.230	3.210	3.196	3.186

[^22]
TABLE 11-16 FUNDAMENTAL NATURAL FREQUENCIES OF TAPERED

 BEAMS
Notation

$$
\begin{aligned}
\omega_{1} & =\frac{\lambda h_{a}}{L^{2}} \sqrt{E / \rho^{*}} \quad(\mathrm{rad} / \mathrm{s}) \\
f_{1} & =\frac{\lambda h_{a}}{2 \pi L^{2}} \sqrt{E / \rho^{*}} \quad(\mathrm{~Hz})
\end{aligned}
$$

Elevation: direction of vibration \downarrow Plan: vibration perpendicular to plane of paper

		λ			
Boundary Conditions		$\alpha=2$	$\alpha=3$	$\alpha=4$	$\alpha=10$
1. Fixed-fixed	$\beta=1$	4.713	4.041	3.670	2.853
2. Fixed-simply supported	$\beta=1$	3.551	3.182	2.972	2.502
3. Fixed-free	$\beta=1$	1.104	1.162	1.206	1.337
4. Simply supported-fixed	$\beta=1$	2.937	2.361	2.046	1.382
5. Simply supported-simply	$\beta=1$	2.057	1.732	1.544	1.122
\quad supported					
6. Simply supported-free	$\beta=1$	3.608	3.310	3.183	2.993
7. Free-fixed	$\beta=1$	0.473	0.304	0.224	0.0818
8. Free-simply supported	$\beta=1$	2.973	2.425	2.127	1.487
9. Fixed-free	$\lambda=C_{1}+C_{2} \beta+C_{3} \beta^{2}$				
$1 \leq \alpha \leq 5$	$C_{1}=0.66592+0.10686 \alpha-0.00886 \alpha^{2}$				
$1 \leq \beta \leq 5$	$C_{2}=0.28430+0.00161 \alpha-0.00004 \alpha^{2}$				
	$C_{3}=-0.02546-0.00008 \alpha-0.00001 \alpha^{2}$				

TABLE 11-17 FORMULAS FOR APPROXIMATE PERIODS OF VIBRATION OF BUILDINGS

Notation		
$\text { Period }=\frac{1}{\text { frequency }(\text { cycles } / \mathrm{s})}=\frac{2 \pi}{\text { frequency }(\mathrm{rad} / \mathrm{s})}$		
$N=$ number of stories		
	Fundamental	
Type of Building	Natural Period (s)	Refs.
1. Reinforced concrete	0.07-0.09N	[11.11]
2. Rigid frame	0.1 N	[11.12]
3. Space frame	$0.5 \sqrt{N}-0.4$	[11.13]
4. Low- and medium-height	~ 0.1	[11.14]
5. Tall	$\sim 1-10$	[11.14]

TABLE 11-18 DAMPING OF STRUCTURES ${ }^{a}$

Structure	Damping (\%)	Refs.	
1. Welded steel structure without fireproofing	$0.5-2$	$[11.15],[11.16]$	
2. Riveted steel structure without fireproofing	$2-3$	$[11.15],[11.16]$	
3. Steel frames	$3-6$	$[11.17]$	
4. Concrete buildings	$7-14$	$[11.17]$	
5. Brick walls	>14	$[11.17]$	
6. Masonry structures	$15-40$	$[11.15],[11.16]$	
7. Fluid containers, ground supported	0.5	$[11.15],[11.16]$	
Elevated Water Tanks			
Bridges			
8. Riveted	5	$[11.18]$	
9. Welded	2	$[11.18]$	
10. With concrete decks	$1.1-2.5(\mathrm{~V}){ }^{b}$	-	
11. With steel decks	$0.78-2.86(\mathrm{~T})^{c}$	-	
12. With timber decks	$0.32-0.78$		
	for (V) and (T)	-	

Chimneys or Towers
13. Bolted or riveted: open lattice
14. Bolted or riveted: unlined, closed, circular
15. Bolted or riveted: lined, closed, circular
16. Welded: unlined, closed, circular
17. Welded: lined, closed, circular
18. Reinforced concrete: unlined, closed, circular

$0.32-2.86$	$[11.14]$
$0.32-1.59$	$[11.14]$
$0.48-1.43$	$[11.14]$
$0.16-1.9$	-
$0.48-0.96$	-
$0.96-1.9$	-

[^23]TABLE 11-19 TRANSFER AND STIFFNESS MATRICES FOR A BEAM ELEMENT WITH BENDING AND SHEAR DEFORMATION

Notation

$E=$ modulus of elasticity	$i=i$ th element
$\ell=$ length of element	$I=$ moment of inertia
$r_{y}=$ radius of gyration about y axis	$G=$ shear modulus of elasticity
$A_{s}=$ equivalent shear area	$v=$ Poisson's ratio
$A=$ area	

Transfer Matrix (Sign Convention 1)

Set $1 / G A_{s}=0$ if shear deformation is not to be considered.
$\left[\begin{array}{c|c|c|c|c}1 & -\ell & -\frac{\ell^{3}}{6 E I}+\frac{\ell}{G A_{s}} & -\frac{\ell^{2}}{2 E I} & \bar{F}_{w} \\ \hline 0 & 1 & \frac{\ell^{2}}{2 E I} & \frac{\ell}{E I} & \bar{F}_{\theta} \\ \hline 0 & 0 & 1 & 0 & \bar{F}_{V} \\ \hline 0 & 0 & \ell & 1 & \bar{F}_{M} \\ \hline 0 & 0 & 0 & 0 & 1\end{array}\right]$

Stiffness Matrices (Sign Convention 2)

1. Effects of shear deformation neglected
a. $\begin{aligned} {\left[\begin{array}{c}V_{a} \\ M_{a} / \ell \\ V_{b} \\ M_{b} / \ell\end{array}\right] } & =\frac{E I}{\ell^{3}}\left[\begin{array}{cccc}12 & -6 & -12 & -6 \\ -6 & 4 & 6 & 2 \\ -12 & 6 & 12 & 6 \\ -6 & 2 & 6 & 4\end{array}\right]\left[\begin{array}{c}w_{a} \\ \theta_{a} \ell \\ w_{b} \\ \theta_{b} \ell\end{array}\right]-\overline{\mathbf{p}}^{i} \\ \mathbf{p}^{i} & =\mathbf{k}^{i} \quad \mathbf{v}^{i}-\overline{\mathbf{p}}^{i}\end{aligned}$
b. $\begin{aligned} {\left[\begin{array}{c}V_{a} \\ M_{a} \\ V_{b} \\ M_{b}\end{array}\right] } & =\left[\begin{array}{cccc}12 E I / \ell^{3} & -6 E I / \ell^{2} & -12 E I / \ell^{3} & -6 E I / \ell^{2} \\ -6 E I / \ell^{2} & 4 E I / \ell & 6 E I / \ell^{2} & 2 E I / \ell \\ -12 E I / \ell^{3} & 6 E I / \ell^{2} & 12 E I / \ell^{3} & 6 E I / \ell^{2} \\ -6 E I / \ell^{2} & 2 E I / \ell & 6 E I / \ell^{2} & 4 E I / \ell\end{array}\right]\left[\begin{array}{c}w_{a} \\ \theta_{a} \\ w_{b} \\ \theta_{b}\end{array}\right]-\overline{\mathbf{p}}^{i} \\ \mathbf{p}^{i} & =\mathbf{k}^{i}-\overline{\mathbf{p}}^{i}\end{aligned}$

TABLE 11-20 TRANSFER AND STIFFNESS MATRICES FOR BEAM ELEMENT WITH VARIABLE MOMENT OF INERTIA

Notation		
Transfer Matrix (Sign Convention 1)	Stiffness Matrix (Sign Convention 2)	
$\left[\begin{array}{c\|c\|c\|c\|c}1 & -\ell & U_{w V} & U_{w M} & \bar{F}_{w} \\ \hline 0 & 1 & U_{\theta V} & U_{\theta M} & \bar{F}_{\theta} \\ \hline 0 & 0 & 1 & 0 & \bar{F}_{V} \\ \hline 0 & 0 & \ell & 1 & \bar{F}_{M} \\ \hline 0 & 0 & 0 & 0 & 1\end{array}\right] \quad\left[\begin{array}{c}w_{a} \\ \theta_{a} \\ V_{a} \\ M_{a} \\ 1\end{array}\right]$	$\left.\begin{array}{rl} {\left[\begin{array}{c} V_{a} \\ M_{a} \\ V_{b} \\ M_{b} \end{array}\right]} & =\left[\begin{array}{llll} k_{11} & k_{12} & k_{13} & k_{14} \\ k_{21} & k_{22} & k_{23} & k_{24} \\ k_{31} & k_{32} & k_{33} & k_{34} \\ k_{41} & k_{42} & k_{43} & k_{44} \end{array}\right]\left[\begin{array}{c} w_{a} \\ \theta_{a} \\ w_{b} \\ \theta_{b} \end{array}\right]-\overline{\mathbf{p}}^{i} \\ \mathbf{p}^{i} \end{array}\right]-\mathbf{v}^{i} \mathbf{v}^{i} .$	$\begin{aligned} k_{14} & =U_{w M} / \Delta \\ k_{24} & =-U_{w V} / \Delta \\ k_{i j} & =k_{j i}(i, j=1,2,3,4) \end{aligned}$

	$n=1$	$n=2$	$n=3$	$n>3$
$U_{w M}$	$\begin{aligned} & \frac{\alpha_{1} \alpha_{2}-c_{2} \ell}{E I_{i} c_{2}^{2}} \\ & c_{2}^{2} \ell^{2}+2 c_{1} \alpha_{1}-2 c_{1} c_{2} \ell \end{aligned}$	$\begin{aligned} & \frac{c_{2} \ell-c_{1} \alpha_{2}}{E I_{i} c_{1} c_{2}^{2}} \\ & 2 c_{2} \ell-\left(c_{1}+\alpha_{1}\right) \alpha_{2} \end{aligned}$	$\begin{aligned} & -\frac{\ell^{2}}{2 E I_{i} c_{1}^{2} \alpha_{1}} \\ & c_{2}^{2} \ell^{2}-2 c_{1} c_{2} \ell+2 c_{1} \alpha_{1} \alpha_{2} \end{aligned}$	$\begin{aligned} & \frac{\alpha_{1}^{n-2}\left[\alpha_{1}+(n-1) c_{2} \ell\right]-c_{1}^{n-1}}{(n-1)(n-2) E I_{i} c_{1}^{n-1} c_{2}^{2} \alpha_{1}^{n-2}} \\ & c_{1}^{n-2}\left[2 c_{1}-(n-1) c_{2} \ell\right]-\alpha_{1}^{n-2}\left[2 c_{1}+(n-3) c_{2} \ell\right] \end{aligned}$
$U_{w V}$	$2 E I_{i} c_{2}^{3}$	$E I_{i} c_{2}^{3}$	$\frac{2 E I_{i} c_{1} c_{2}^{3} \alpha_{1}}{}$	$(n-1)(n-2)(n-3) E I_{i} c_{1}^{n-2} c_{2}^{3} \alpha_{1}^{n-2}$
$U_{\theta M}$	$\frac{\alpha_{2}}{F I \cdot c_{n}}$	$\frac{\ell}{E I_{1} \alpha_{1}}$	$\frac{2 c_{1} \ell-c_{2} \ell^{2}}{2 E I_{1}^{2}{ }^{2}}$	$\frac{c_{1}^{n-1}-\alpha_{1}^{n-1}}{}$
	$\overline{E I_{i} c_{2}}$	$\overline{E I_{i} c_{1} \alpha_{1}}$	$2 E I_{i} c_{1}^{2} \alpha_{1}^{2}$	$\overline{(n-1) E I_{i} c_{1}^{n-1} c_{2} \alpha_{1}^{n-1}}$
$U_{\theta V}$	$c_{1} \alpha_{2}-c_{2} \ell$	$\underline{c_{2} \ell-\alpha_{1} \alpha_{2}}$	ℓ^{2}	$\underline{\alpha_{1}^{n-1}-(n-1) c_{1}^{n-2} \alpha_{1}+(n-2) c_{1}^{n-1}}$
	$E I_{i} c_{2}^{2}$	$E I_{i} c_{2}^{2} \alpha_{1}$	$\overline{2 E I_{i} c_{1} \alpha_{1}^{2}}$	$(n-1)(n-2) E I_{i} c_{1}^{n-2} c_{2}^{2} \alpha_{1}^{n-1}$

TABLE 11-20 (continued) TRANSFER AND STIFFNESS MATRICES FOR BEAM ELEMENT WITH VARIABLE MOMENT OF INERTIA

Loading functions:
$\bar{F}_{M}=-\frac{1}{6} \ell^{2}\left(2 p_{a}+p_{b}\right), \quad \bar{F}_{V}=-\frac{1}{2} \ell\left(p_{a}+p_{b}\right)$

	\bar{F}_{w}
$n=1$	$\begin{aligned} & \frac{1}{2 E I_{i} c_{2}^{5}}\left[p_{a}\left(-\frac{1}{4} c_{2}^{4} \ell^{3}+\frac{8}{9} c_{1} c_{2}^{3} \ell^{2}-\frac{1}{6} c_{1}^{2} c_{2}^{2} \ell-\frac{1}{3} c_{1}^{3} c_{2}+c_{1} c_{2} \alpha_{1}^{2} \alpha_{2}+\frac{c_{1} \alpha_{1}^{3} \alpha_{2}}{3 \ell}\right)\right. \\ & \left.\quad+p_{b}\left(-\frac{1}{12} c_{2}^{4} \ell^{3}+\frac{11}{18} c_{1} c_{2}^{3} \ell^{2}-\frac{5}{6} c_{1}^{2} c_{2}^{2} \ell+\frac{1}{3} c_{1}^{3} c_{2}-\frac{c_{1} \alpha_{1}^{3} \alpha_{2}}{3 \ell}\right)\right] \end{aligned}$
$n=2$	$\begin{aligned} & \frac{1}{E I_{i} c_{2}}\left\{p_{a}\left[-\frac{7}{9} c_{2}^{3} \ell^{2}+\frac{1}{3} c_{1} c_{2}^{2} \ell+\frac{2}{3} c_{1}^{2} c_{2}-\left(c_{1}+\frac{1}{2} \alpha_{1}\right) c_{2} \alpha_{1} \alpha_{2}-\frac{1}{6 \ell}\left(3 c_{1}+\alpha_{1}\right) \alpha_{1}^{2} \alpha_{2}\right]\right. \\ & \left.\quad+p_{b}\left[-\frac{17}{36} c_{2}^{3} \ell^{2}+\frac{7}{6} c_{1} c_{2}^{2} \ell-\frac{2}{3} c_{1}^{2} c_{2}+\frac{\left(3 c_{1}+\alpha_{1}\right) \alpha_{1}^{2} \alpha_{2}}{6 \ell}\right]\right\} \end{aligned}$
$n=3$	$\begin{aligned} & \frac{1}{2 E I_{i} c_{1} c_{2}^{5}}\left\{p_{a}\left[\frac{1}{3} c_{2}^{3} \ell^{2}-c_{1} c_{2}^{2} \ell-2 c_{1}^{2} c_{2}+\left(c_{1}^{2}+2 c_{1} \alpha_{1}\right) c_{2} \alpha_{2}+\frac{c_{1}\left(c_{1}+\alpha_{1}\right) \alpha_{1} \alpha_{2}}{\ell}\right]\right. \\ & \left.\quad+p_{b}\left[\frac{1}{6} c_{2}^{3} \ell^{2}-2 c_{1} c_{2}^{2} \ell+2 c_{1}^{2} c_{2}-\frac{c_{1}}{\ell}\left(c_{1}+\alpha_{1}\right) \alpha_{1} \alpha_{2}\right]\right\} \end{aligned}$
$n=4$	$\begin{aligned} & \frac{1}{6 E I_{i} c_{1}^{2} c_{2}^{5}}\left\{p_{a}\left[\frac{1}{3} c_{2}^{3} \ell^{2}+\left(c_{1}+\frac{1}{\alpha_{1}}\right) c_{2}^{2} \ell+4 c_{1}^{2} c_{2}-3 c_{1}^{2} c_{2} \alpha_{2}-\frac{\left(c_{1}+3 \alpha_{1}\right) c_{1}^{2} \alpha_{2}}{\ell}\right]\right. \\ & \left.\quad+p_{b}\left[\frac{1}{6} c_{2}^{3} \ell^{2}+c_{1} c_{2}^{2} \ell-4 c_{1}^{2} c_{2}+\frac{\left(c_{1}+3 \alpha_{1}\right) c_{1}^{2 s} \alpha_{2}}{\ell}\right]\right\} \end{aligned}$
$n=5$	$\begin{aligned} & \frac{p_{a}}{(n-1)(n-2)(n-3) E I_{i} c_{1}^{n-2} c_{2}^{4}}\left[\frac{n-3}{2} c_{2}^{2} \ell^{2}+2 c_{1} c_{2} \ell+\frac{c_{1}^{2}\left(c_{1}^{n-3}-\alpha_{1}^{n-3}\right)}{\alpha_{1}^{n-3}}-\frac{(n-1)\left(c_{1}^{n-4}-\alpha_{1}^{n-4}\right) c_{1}^{2}}{(n-4) \alpha_{1}^{n-4}}\right] \\ & \quad+\frac{p_{b}-p_{a}}{24 E I_{i} c_{1}^{3} c_{2}^{5}}\left[\frac{1}{3} c_{2}^{3} \ell^{2}+c_{1} c_{2}^{2} \ell+\frac{\left(c_{1}+3 \alpha_{1}\right) c_{1}^{2} c_{2}}{\alpha_{1}}-\frac{4 c_{1}^{3} \alpha_{2}}{\ell}\right] \end{aligned}$
$n \geq 6$	This entry consists of two terms, one multiplied by p_{a} and one by $p_{b}-p_{a}$. For the p_{a} term, use the \bar{F}_{w} entry above in the $n=5$ row. The $p_{b}-p_{a}$ term follows. $\begin{gathered} \frac{p_{b}-p_{a}}{(n-1)(n-2)(n-3) E I_{i} c_{1}^{n-2} c_{2}^{5}}\left[\frac{n-3}{6} c_{2}^{3} \ell^{2}+c_{1} c_{2}^{2} \ell-\frac{n-1}{n-5} \frac{\left(c_{1}^{n-5}-\alpha_{1}^{n-5}\right) c_{1}^{3}}{\ell \alpha_{1}^{n-5}}\right. \\ \left.+\frac{(n-3) c_{1}+(n-1) \alpha_{1}}{n-4} \frac{\left(c_{1}^{n-4}-\alpha_{1}^{n-4}\right) c_{1}^{2}}{\ell \alpha_{1}^{n-4}}-\frac{\left(c_{1}^{n-3}-\alpha_{1}^{n-3}\right) c_{1}^{2}}{\ell \alpha_{1}^{n-3}}\right] \end{gathered}$

TABLE 11-20 (continued) TRANSFER AND STIFFNESS MATRICES FOR BEAM ELEMENT WITH VARIABLE MOMENT OF INERTIA

This entry consists of two terms, one multiplied by p_{a} and one by $p_{b}-p_{a}$. For the p_{a} term, use the \bar{F}_{θ} entry above in the $n=4$ row. The $p_{b}-p_{a}$ term follows.

$$
\begin{aligned}
& \frac{p_{b}-p_{a}}{(n-1)(n-2) E I_{i} c_{1}^{n-2} c_{2}^{4}}\left[-\frac{1}{2} c_{2}^{2} \ell+\frac{(n-1)\left(c_{1}^{n-4}-\alpha_{1}^{n-4}\right) c_{1}^{2}}{\ell(n-4) \alpha_{1}^{n-4}}-\frac{(n-2) c_{1}+(n-1) \alpha_{1}}{n-3} \frac{\left(c_{1}^{n-3}-\alpha_{1}^{n-3}\right) c_{1}}{\ell \alpha_{1}^{n-3}}\right. \\
& \left.\quad+\frac{\left(c_{1}^{n-2}-\alpha_{1}^{n-2}\right) c_{1}}{\ell \alpha_{1}^{n-3}}\right]
\end{aligned}
$$

For the p_{a} term, use the \bar{F}_{θ} entry above in the $n=4$ row. For the $p_{b}-p_{a}$ term, use the \bar{F}_{θ} entry above in the $n=5$ row.

TABLE 11-21 POINT MATRICES FOR CONCENTRATED OCCURRENCES ${ }^{a}$

Case	Transfer Matrix (Sign Convention 1)			Stiffness Matrix (Sign Convenction 2)

${ }^{a}$ Units: $k_{1}, k_{2}, k_{3}, k_{4}$ are force/length (F / L).

TABLE 11-22 TRANSFER AND STIFFNESS MATRICES FOR A GENERAL BEAM SEGMENT

	Notation		
$\lambda=\left(k-\rho \omega^{2}\right) / E I$	$\eta=\left(k-\rho \omega^{2}\right) / G A_{s}$	$\zeta=\left(P-k^{*}+\rho r_{y}^{2} \omega^{2}\right) / E I$	
$\xi=E I / G A_{s}$	$k=$ elastic foundation modulus	$\rho=$ mass per unit length	
$k^{*}=$ rotary foundation modulus	$\omega=$ natural frequency	$E=$ elastic modulus	
$\ell=$ element length	$I=$ moment of inertia	$P=$ axial force, compressive;	- ℓ
$G=$ shear modulus of elasticity	$r_{y}=$ radius of gyration	replace by $-P$ for tensile	
$A_{s}=$ equivalent shear area, A / α_{s}	$\alpha_{s}=$ shear correction factor (Table 2-4)	axial force	
To use these matrices, follow the			
1. Calculate the three parameter	η. If shear deformation is not to be cons	, set $1 / G A_{s}=0$.	$M_{T a}$
2. Compare the magnitude of thes given below.	rameters and look up the appropriate e_{i}	the definitions for e_{i}	
3. Substitute these expressions in	atrices below.		

Transfer Matrix (Sign Convention 1) Positive forces and displacements are shown.						Stiffness Matrix (Sign Convention 2) Positive forces and displacements are shown.
$e_{1}+\zeta e_{3}$	$-e_{2}$	$-e_{4} / E I$ $+\left(e_{2}+\zeta e_{4}\right) / G A_{s}$	$-e_{3} / E I$	$\mid \bar{F}_{w}$	w_{a}	$\left[\begin{array}{l}V_{a}\end{array}\right]\left[\begin{array}{llll}k_{11} & k_{12} & k_{13} & k_{14}\end{array}\right]\left[\begin{array}{c}w_{a}\end{array}\right.$
λe_{4}	$e_{1}-\eta e_{3}$	$e_{3} / E I$	$\left(e_{2}-\eta e_{4}\right) / E I$	\bar{F}_{θ}	θ_{a}	$M_{a}=\left[\begin{array}{llll}k_{21} & k_{22} & k_{23} & k_{24}\end{array}\right]\left[\begin{array}{c}\theta_{a}\end{array}\right]-\overline{\mathbf{p}}^{i}$
$\lambda E I\left(e_{2}+\zeta e_{4}\right)$	$-\lambda E I e_{3}$	$e_{1}+\zeta e_{3}$	$-\lambda e_{4}$	\bar{F}_{V}	V_{a}	$\left[\begin{array}{c} V_{b} \\ M_{b} \end{array}\right]=\left[\begin{array}{llll} k_{31} & k_{32} & k_{33} & k_{34} \\ k_{41} & k_{42} & k_{43} & k_{44} \end{array}\right]\left[\begin{array}{c} w_{b} \\ \theta_{b} \end{array}\right]$
$\lambda E I e_{3}$	$E I\left(e_{0}-\eta e_{2}\right)$	e_{2}	$e_{1}-\eta e_{3}$	\bar{F}_{M}	M_{a}	$\mathbf{p}^{i}=\mathbf{k}^{i} \quad \mathbf{v}^{i}-\overline{\mathbf{p}}^{i}$
0	0	$\mathbf{U}^{i}{ }^{0}$	0	1	$\left[\begin{array}{c}1 \\ \mathbf{z}_{a}\end{array}\right.$	

$$
\begin{aligned}
\bar{F}_{w}= & {\left[p_{a}\left(e_{5}-e_{6} / \ell\right)+p_{b} e_{6} / \ell+c_{a}\left(e_{4}-e_{5} / \ell\right)+c_{b} e_{5} / \ell-M_{T a}\left(e_{3}-e_{4} / \ell\right)\right.} \\
& \left.-M_{T b} e_{4} / \ell\right] / E I-\left[p_{a}\left\{e_{3}+\zeta e_{5}-\left(e_{4}+\zeta e_{6}\right) / \ell\right\}+p_{b}\left(e_{4}+\zeta e_{6}\right) / \ell\right] / G A_{S} \\
\bar{F}_{\theta}= & {\left[p_{a}\left(-e_{4}+e_{5} / \ell\right)-p_{b} e_{5} / \ell+c_{a}\left\{-e_{3}+\eta e_{5}+\left(e_{4}-\eta e_{6}\right) / \ell\right\}\right.} \\
& -c_{b}\left(e_{4}-\eta e_{6}\right) / \ell+M_{T a}\left\{\left(e_{2}-\eta e_{4}\right)-\left(e_{3}-\eta e_{5}\right) / \ell\right\} \\
& \left.+M_{T b}\left(e_{3}-\eta e_{5}\right) / \ell\right] / E I \\
\bar{F}_{V}= & p_{a}\left\{-\left(e_{2}+\zeta e_{4}\right)+\left(e_{3}+\zeta e_{5}\right) / \ell\right\}-p_{b}\left(e_{3}+\zeta e_{5}\right) / \ell \\
& \left.+\lambda\left[c_{a}\left(e_{5}-e_{6} / \ell\right)+c_{b} e_{6} / \ell+M_{T a}\left(-e_{4}+c_{5} / \ell\right)-M_{T b} e_{5} / \ell\right)\right] \\
\bar{F}_{M}= & p_{a}\left(-e_{3}+e_{4} / \ell\right)-p_{b} e_{4} / \ell+c_{a}\left[\left(-e_{2}+e_{3} / \ell\right)+\eta\left(e_{4}-e_{5} / \ell\right)\right] \\
& -c_{b}\left(e_{3}-\eta e_{5}\right) / \ell+M_{T a}\left[\left(e_{1}-1-e_{2} / \ell\right)+\eta\left(-e_{3}+e_{4} / \ell\right)\right] \\
& +M_{T b}\left(e_{2}-\ell-\eta e_{4}\right) / \ell
\end{aligned}
$$

$$
\begin{aligned}
& k_{11}= {\left[\left(e_{2}-\eta e_{4}\right)\left(e_{1}+\zeta e_{3}\right)+\lambda e_{3} e_{4}\right] E I / \Delta } \\
& k_{12}= {\left[e_{3}\left(e_{1}-\eta e_{3}\right)-e_{2}\left(e_{2}-\eta e_{4}\right)\right] E I / \Delta } \\
& k_{13}=-\left(e_{2}-\eta e_{4}\right) E I / \Delta \\
& k_{14}=-e_{3} E I / \Delta \\
& k_{21}= k_{12} \\
& k_{22}=\left\{-\left(e_{1}-\eta e_{3}\right)\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right]+e_{2} e_{3}\right\} E I / \Delta \\
& k_{23}= e_{3} E I / \Delta=-e_{14} \\
& k_{24}= {\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right] E I / \Delta } \\
& k_{31}= k_{13}, k_{41}=k_{14}, k_{42}=k_{24}, \\
& k_{32}= k_{23}, k_{43}=k_{34} \\
& k_{33}= {\left[\left(e_{1}+\zeta e_{3}\right)\left(e_{2}-\eta e_{4}\right)+\lambda e_{3} e_{4}\right] E I / \Delta=k_{11} } \\
& k_{34}=\left\{\left(e_{1}+\zeta e_{3}\right) e_{3}+\lambda e_{4}\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right]\right\} E I / \Delta \\
& k_{44}=\left\{e_{2} e_{3}-\left(e_{1}-\eta e_{3}\right)\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right]\right\} E I / \Delta=k_{22} \\
& \Delta= e_{3}^{2}-\left(e_{2}-\eta e_{4}\right)\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right] \\
& {\left[\begin{array}{l}
V_{a}^{0} \\
\bar{p}^{i}= \\
M_{a}^{0} \\
V_{b}^{0} \\
\\
\left.M_{b}^{0}\right] \\
V_{a}^{0}=
\end{array}\right.} \\
& M_{a}^{0}= {\left[\left(e_{2}-\eta e_{3}\right) \bar{F}_{w}+\left[e_{4}-\xi\left(e_{3}+\zeta e_{4}\right)\right] \bar{F}_{\theta}\right\} E I / \Delta } \\
& V_{b}^{0}=-\bar{F}_{V}+\left\{\left[\left(e_{1}+\zeta e_{3}\right)\left(e_{2}-\eta e_{4}\right)+\lambda e_{3} e_{4}\right] \bar{F}_{w}\right. \\
&+\left[\left(e_{1}+\zeta e_{3}\right) e_{3}\right. \\
&\left.\left.+\lambda e_{4}\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right]\right] \bar{F}_{\theta}\right\} E I / \Delta \\
& M_{b}^{0}=-\bar{F}_{M}+\left\{\left[\left(e_{1}+\zeta e_{3}\right) e_{3}+\xi e_{4}\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right]\right] \bar{F}_{w}\right. \\
&\left.+\left[e_{2} e_{3}-\left(e_{1}-\eta e_{3}\right)\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right]\right] \bar{F}_{\theta}\right\} E I / \Delta \\
& \hline
\end{aligned}
$$

Definitions for $e_{i}(i=0,1,2, \ldots, 6)$

	$\begin{aligned} & 1 . \\ & \lambda<0 \end{aligned}$	$\lambda=0, \lambda-\zeta \eta=0$		$\lambda>0, \lambda-\zeta \eta>0$		
		$\begin{aligned} & \mathbf{2 .} \\ & \zeta=\eta=0 \end{aligned}$	3. $\eta=0, \zeta \neq 0$	4. $\lambda-\zeta \eta=\frac{1}{4}(\zeta-\eta)^{2}$	5. $\begin{aligned} & \lambda-\zeta \eta<\frac{1}{4}(\zeta-\eta)^{2}, \\ & \zeta-\eta \neq 0 \end{aligned}$	6. $\lambda-\zeta \eta>\frac{1}{4}(\zeta-\eta)^{2}$
e_{0}	$\frac{1}{g}\left(d^{3} C-q^{3} D\right)$	0	$-\zeta B$	$-\frac{\zeta-\eta}{4}(3 C+A \ell)$	$-\frac{1}{g}\left(q^{3} D-d^{3} C\right)$	$-(\lambda-\zeta \eta) e_{4}-(\zeta-\eta) e_{2}$
e_{1}	$\frac{1}{g}\left(d^{2} A+q^{2} B\right)$	1	A	$\frac{1}{2}(2 A-B \ell)$	$\frac{p}{g}\left(q^{2} B-d^{2} A\right)$	$A B-\frac{q^{2}-d^{2}}{2 d q} C D$
e_{2}	$\frac{1}{g}(d C+q D)$	ℓ	B	$\frac{1}{2}(C+A \ell)$	$\frac{p}{g}(q D-d C)$	$\frac{1}{2 d q}(d A D+q B C)$
e_{3}	$\frac{1}{g}(A-B)$	$\frac{\ell^{2}}{2}$	$\frac{1}{\zeta}(1-A)$	$\frac{C \ell}{2}$	$\frac{1}{g}(A-B)$	$\frac{1}{2 d q} C D$
e_{4}	$\frac{1}{g}\left(\frac{C}{d}-\frac{D}{q}\right)$	$\frac{\ell^{3}}{6}$	$\frac{1}{\zeta}(\ell-B)$	$\frac{1}{(\zeta-\eta)}(C-A \ell)$	$\frac{1}{g}\left(\frac{C}{d}-\frac{D}{q}\right)$	$\frac{1}{2\left(d^{2}+q^{2}\right)}\left(\frac{A D}{q}-\frac{B C}{d}\right)$
e_{5}	$\begin{aligned} & \frac{1}{g}\left(\frac{A}{d^{2}}+\frac{B}{q^{2}}\right) \\ & -\frac{1}{d^{2} q^{2}} \end{aligned}$	$\frac{\ell^{4}}{24}$	$\frac{1}{\zeta}\left(\frac{\ell^{2}}{2}-e_{3}\right)$	$\begin{aligned} & \frac{2}{(\zeta-\eta)^{2}} \\ & \times(-2 A-B \ell+2) \end{aligned}$	$\frac{p}{g}\left(\frac{B}{q^{2}}-\frac{A}{d^{2}}\right)+\frac{1}{d^{2} q^{2}}$	$\frac{1-e_{1}}{\lambda-\zeta \eta}-\frac{\zeta-\eta}{\lambda-\zeta \eta} e_{3}$
e_{6}	$\begin{aligned} & \frac{1}{g}\left(\frac{C}{d^{3}}+\frac{D}{q^{3}}\right) \\ & -\frac{\ell}{d^{2} q^{2}} \end{aligned}$	$\frac{\ell^{5}}{120}$	$\frac{1}{\zeta}\left(\frac{\ell^{3}}{6}-e_{4}\right)$	$\begin{aligned} & \frac{2}{(\zeta-\eta)^{2}} \\ & \times(-3 C+A \ell+2 \ell) \end{aligned}$	$\frac{p}{g}\left(\frac{D}{q^{3}}-\frac{C}{d^{3}}\right)+\frac{\ell}{d^{2} q^{2}}$	$\frac{\ell-e_{2}}{\lambda-\zeta \eta}-\frac{\zeta-\eta}{\lambda-\zeta \eta} e_{4}$

Definitions for A, B, C, D, g, d, q

$\lambda<0$	$\lambda=0, \lambda-\zeta \eta=0$	$\lambda>0, \lambda-\zeta \eta>0$		
		$\lambda-\zeta \eta=\frac{1}{4}(\zeta-\eta)^{2}$	$\lambda-\zeta \eta<\frac{1}{4}(\zeta-\eta)^{2}, \zeta-\eta \neq 0$	$\lambda-\zeta \eta>\frac{1}{4}(\zeta-\eta)^{2}$
1. $\begin{aligned} & A=\cosh d \ell \\ & B=\cos q \ell \\ & C=\sinh d \ell \\ & D=\sin q \ell \\ & g=d^{2}+q^{2} \end{aligned}$	2. $\begin{aligned} & \zeta>0: \alpha^{2}=\zeta \\ & A=\cos \alpha \ell \\ & B=(\sin \alpha \ell) / \alpha \end{aligned}$	4. $\begin{aligned} & \zeta-\eta>0: \beta^{2}=\frac{1}{2}(\zeta-\eta) \\ & A=\cos \beta \ell, B=\beta \sin \beta \ell \\ & C=(\sin \beta \ell) / \beta \end{aligned}$	6. $\begin{aligned} & \zeta-\eta>0: g=q^{2}-d^{2}, p=1 \\ & A=\cos d \ell, B=\cos q \ell \\ & C=\sin d \ell, D=\sin q \ell \\ & d^{2}=\frac{1}{2}(\zeta-\eta)-\sqrt{\frac{1}{4}(\zeta+\eta)^{2}-\lambda} \\ & q^{2}=\frac{1}{2}(\zeta-\eta)+\sqrt{\frac{1}{4}(\zeta+\eta)^{2}-\lambda} \end{aligned}$	8. $\begin{aligned} & A=\cosh d \ell, B=\cos q \ell \\ & C=\sinh d \ell D=\sin q \ell \\ & d^{2}=\frac{1}{2} \sqrt{\lambda-\zeta \eta}-\frac{1}{4}(\zeta-\eta) \\ & q^{2}=\frac{1}{2} \sqrt{\lambda-\zeta \eta}+\frac{1}{4}(\zeta-\eta) \end{aligned}$
$\begin{aligned} d^{2}= & \sqrt{\beta^{4}+\frac{1}{4}(\zeta+\eta)^{2}} \\ & -\frac{1}{2}(\zeta-\eta) \\ q^{2}= & \sqrt{\beta^{4}+\frac{1}{4}(\zeta+\eta)^{2}} \\ & +\frac{1}{2}(\zeta-\eta) \\ \beta^{4}= & -\lambda \end{aligned}$	3. $\begin{aligned} & \zeta<0: \alpha^{2}=-\zeta \\ & A=\cosh \alpha \ell \\ & B=(\sinh \alpha \ell) / \alpha \end{aligned}$	5. $\begin{aligned} & \zeta-\eta<0: \beta^{2}=-\frac{1}{2}(\zeta-\eta) \\ & A=\cosh \beta \ell, B=-\beta \sinh \beta \ell \\ & C=(\sinh \beta \ell) / \beta \end{aligned}$	7. $\begin{aligned} & \zeta-\eta<0: g=d^{2}-q^{2}, p=-1 \\ & A=\cosh d \ell, B=\cosh q \ell \\ & C=\sinh d \ell, D=\sinh q \ell \\ & d^{2}=-\frac{1}{2}(\zeta-\eta)+\sqrt{\frac{1}{4}(\zeta+\eta)^{2}-\lambda} \\ & q^{2}=-\frac{1}{2}(\zeta-\eta)-\sqrt{\frac{1}{4}(\zeta+\eta)^{2}-\lambda} \end{aligned}$	

TABLE 11-23 GEOMETRIC STIFFNESS MATRIX (CONSISTENT)

Sign Convention 2

$$
\left[\begin{array}{cccc}
6 /(5 \ell) & -1 / 10 & -6 /(5 \ell) & -1 / 10 \\
-1 / 10 & 2 \ell / 15 & 1 / 10 & -\ell / 30 \\
-6 /(5 \ell) & 1 / 10 & 6 /(5 \ell) & 1 / 10 \\
-1 / 10 & -1 \ell / 30 & 1 / 10 & 2 \ell / 15
\end{array}\right]\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
w_{b} \\
\theta_{b}
\end{array}\right]
$$

TABLE 11-24 LUMPED MASS MATRICES

Notation

$m_{a}, m_{b}=$ lumped masses at points a and b
$I_{T a}, I_{T b}=$ lumped rotary inertia of mass at points a and b
$\rho=$ mass per unit length
$\ell=$ length of element
$r_{y}=$ radius of gyration about y axis
$x=$ axial coordinate measured from the left end of the element

Sign Convention 2
(a) Mass Lumped at One Point

If rotary inertia is to be included, $I_{T a}=\Delta a \rho r_{y}^{2}$.
(b) Mass Lumped at Two Endpoints

$$
\begin{array}{r}
{\left[\begin{array}{cccc}
m_{a} & 0 & 0 & 0 \\
0 & I_{T a} & 0 & 0 \\
0 & 0 & m_{b} & 0 \\
0 & 0 & 0 & I_{T b}
\end{array}\right]} \\
\\
\mathbf{m}^{i}
\end{array}
$$

Set $I_{T a}=I_{T b}=0$ if the rotary inertia of the mass is to be ignored.

TABLE 11-24 (continued) LUMPED MASS MATRICES

Inertial Properties of Lumped Mass Matrix				
Mass Distribution	m_{a}	m_{b}	$I_{T a}$	$I_{T b}$
1. Uniformly distributed ρ	$\frac{1}{2} \rho \ell$	$\frac{1}{2} \rho \ell$	$\frac{1}{24} \rho \ell^{3}+\frac{1}{2}\left(\rho \ell r_{y}^{2}\right)$	$\frac{1}{24} \rho \ell^{3}+\frac{1}{2} \rho \ell r_{y}^{2}$
2. Linearly distributed	$\frac{1}{6} \rho_{0} \ell$	$\frac{1}{3} \rho_{0} \ell$	$\frac{4}{81} \rho_{0} \ell^{3}+\frac{1}{6} \rho_{0} \ell r_{y}^{2}$	$\frac{1}{108} \rho_{0} \ell^{3}+\frac{1}{3} \rho_{0} \ell r_{y}^{2}$
3. Arbitrarily distributed	$\frac{\ell-x_{0}}{\ell} \int_{0}^{\ell} \rho(x) d x$	$\frac{x_{0}}{\ell} \int_{0}^{\ell} \rho(x) d x$	$I_{T a}=\int_{0}^{x_{0}} x^{2} \rho(x) d x+r_{y}^{2} m_{a}$	$I_{T b}=\int_{x_{0}}^{\ell}(\ell-x)^{2} \rho(x) d x+r_{y}^{2} m_{b}$

${ }^{a}$ For arbitrary mass distribution, the mass center can be calculated by

$$
x_{0}=\frac{\int_{0}^{\ell} x \rho d x}{\int_{0}^{\ell} \rho d x}
$$

TABLE 11-25 CONSISTENT MASS MATRIX AND GENERAL MASS MATRIX

Notation

$\rho=$ mass per unit length
$\ell=$ length of element
$r_{y}=$ radius of gyration about y axis

Sign Convention 2

$\mathbf{m}^{i}=\frac{\rho \ell}{420}\left[\begin{array}{cccc}w_{a} & \theta_{a} & w_{b} & \theta_{b} \\ 156 & -22 \ell & 54 & 13 \ell \\ -22 \ell & 4 \ell^{2} & -13 \ell & -3 \ell^{2} \\ 54 & -13 \ell & 156 & 22 \ell \\ 13 \ell & -3 \ell^{2} & 22 \ell & 4 \ell^{2}\end{array}\right]$
$+\frac{\rho \ell}{30}\left(\frac{r_{y}}{\ell}\right)^{2}\left[\begin{array}{cccc}w_{a} & \theta_{a} & w_{b} & \theta_{b} \\ 36 & -3 \ell & -36 & -3 \ell \\ -3 \ell & 4 \ell^{2} & 3 \ell & -\ell^{2} \\ -36 & 3 \ell & 36 & 3 \ell \\ -3 \ell & -\ell^{2} & 3 \ell & 4 \ell^{2}\end{array}\right]$ Add to \mathbf{m}^{i} of (a).

(c) General Mass Matrix

$$
\mathbf{m}^{i}=\int_{0}^{\ell} \rho \mathbf{\Lambda} \mathbf{\Lambda}^{T} d x, \quad \mathbf{\Lambda}=\left[\begin{array}{c}
H_{1} \\
H_{2} \\
H_{3} \\
H_{4}
\end{array}\right]
$$

where H_{j} are the components of the displacement shape function

$$
w(x)=H_{1} w_{a}+H_{2} \theta_{a}+H_{3} w_{b}+H_{4} \theta_{b}
$$

If, for constant ρ, the static responses

$$
\begin{array}{ll}
H_{1}=1-3(x / \ell)^{2}+2(x / \ell)^{3}, & H_{2}=\ell\left[-x / \ell+2(x / \ell)^{2}-(x / \ell)^{3}\right], \\
H_{3}=3(x / \ell)^{2}-2(x / \ell)^{3}, & H_{4}=-\left(x^{2} / \ell\right)(x / \ell-1)
\end{array}
$$

are employed, \mathbf{m}^{i} is the consistent mass matrix of case (a) with rotary inertia ignored. If other shape functions $\boldsymbol{\Lambda}$ are used, other mass matrices will be found. In particular, more exact (e.g., frequency-dependent shape functions) will lead to more exact mass matrices.

CHAPTER
 12

Torsion and Extension of Bars

12.1 Notation 619
Torsion 620
Extension 621
12.2 Sign Conventions 621
12.3 Stresses 622
Torsional Stresses 622
Hollow Thin-Walled Cross Sections 622
Thin-Walled Open Sections 624
Specific Stress Formulas 624
Extensional Stress 625
12.4 Simple Bars 625
Torsion 625
Extension 626
Tabulated Formulas 626
12.5 Natural Frequencies 626
12.6 General Bars 627
References 631
Tables 633

Formulas for the analysis and design of bars subjected to torsion or extension are given in this chapter. The bars undergoing torsion, strictly speaking, must have circular cross sections, although the formulas can and are frequently utilized for other shapes. For thin-walled cross sections, the formulas for Chapter 14 give more accurate answers than those of this chapter. Here the bars cannot be restrained against warping. Detailed derivations of the formulas here can be found in Pilkey [12.1], along with computer programs for the difficult calculations.

12.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F for force, and M for mass.

Torsion

The formulas of this chapter that apply for bars subjected to torsion utilize the following notation. As noted in subsequent sections, with a change in notation the formulas also apply for the extension of bars.

A Area of cross section $\left(L^{2}\right)$
A^{*} Enclosed area of thin-walled section $\left(L^{2}\right)$
G Shear modulus of elasticity $\left(F / L^{2}\right)$
I_{p} Polar mass moment of inertia per unit length of bar $(M L)$; for hollow circular section $I_{p}=\frac{1}{2} \rho\left(r_{\text {outer }}^{2}+r_{\text {inner }}^{2}\right)$, where r is the radius measured from bar axis, $I_{p}=\rho^{*} I_{x}=\rho r_{p}^{2}$
$I_{p i}$ Polar mass moment of inertia of concentrated mass at point $i\left(M L^{2}\right)$; to calculate, use $I_{p i}=\Delta a \rho r_{p}^{2}$, where Δa is the length of shaft lumped at point i
I_{x} Polar moment of inertia, $r_{p}^{2} A\left(L^{4}\right)$
J Torsional constant $\left(L^{4}\right)$; for circular cross section, J is polar moment of inertia I_{x} of cross-sectional area with respect to axis x of bar
k Torsional spring constant ($F L$)
k_{t} Elastic foundation modulus ($F L / L$)
L Length of bar (L)
ℓ Length of element (L)
m_{x} Distributed torque ($F L / L$)
$m_{x 1}$ Magnitude of distributed torque that is uniform in x direction $(F L / L)$
$m_{x a}, m_{x b}$ Initial and final magnitudes, respectively, of linearly varying distributed torque ($F L / L$)
q Shear flow (F / L)
r_{p} Polar radius of gyration (L) (i.e., radius of gyration of cross-sectional area with respect to axis x of bar)
t Thickness, thin-walled section (L)
T Twisting moment, torque ($F L$)
T_{1}, T_{i} Applied torque, concentrated ($F L$)
ρ Mass per unit length of bar, $\rho^{*}=\rho / A(M / L)$
ρ^{*} Mass per unit volume $\left(M / L^{3}\right)$
τ Torsional shear stress $\left(F / L^{2}\right)$
ϕ Angle of twist, rotation (rad)
ω Natural frequency (rad/T)

Extension

The torsion formulas apply as well for extension of bars if the following notation adjustments are abided by:

Extension	Torsion
u	ϕ
P	T
E	G
A	J
ρ	ρr_{p}^{2}
p_{x}	m_{x}
k_{x}	k_{t}
M_{i}	$I_{p i}$

A summary of the notation for the extension of bars follows:

```
            A Cross-sectional area ( }\mp@subsup{L}{}{2}\mathrm{ )
            E Young's modulus (F/L2)
            k Spring constant (F/L)
            kx Elastic foundation modulus (F/L')
            Mi Concentrated mass (M)
            px Applied distributed axial force (F/L)
            px1 Magnitude of applied uniform axial force in x direction (F/L)
pxa, pxb}\mathrm{ Initial and final magnitudes, respectively, of linearly varying distributed
        axial force (F/L)
        P Axial force (F)
        P
        T Change in temperature (degrees) (i.e., temperature rise with respect to
                reference temperature)
            u Axial displacement (L)
            \alpha Coefficient of thermal expansion (L/L\cdotdegree)
            \rho Mass per unit length (M/L)
    \rho*}\mathrm{ Mass per unit volume (M/L L
    \sigma, \sigmax}\mathrm{ Axial stress (F/L')
    \omega Natural frequency (rad/T)
```


12.2 SIGN CONVENTIONS

Positive displacements and forces are illustrated in the various tables of this chapter.

12.3 STRESSES

The tables of this chapter give the torque along a bar for torsion and the axial force for extensions. These variables can be placed in the formulas of this section to find the stresses.

Torsional Stresses

The shear stress τ due to torsion takes the form

$$
\begin{equation*}
\tau=\operatorname{Tr} / J \tag{12.1}
\end{equation*}
$$

where r is the radial distance from the central longitudinal axis (x). This formula applies to either solid or hollow cross sections. For circular cross sections $J=I_{x}$, where I_{x} is the polar moment of inertia of the cross section about the central axis of a shaft. In this case, J is given by [Eq. (2.10)]

$$
\begin{equation*}
J=J_{x}=I_{x}=\int_{A} r^{2} d A=\int_{A}\left(z^{2}+y^{2}\right) d A=I_{y}+I_{z} \tag{12.2}
\end{equation*}
$$

where A is the cross-sectional area. Figure 12-1a shows the cross-sectional distribution of this stress.

Hollow Thin-Walled Cross Sections

The torsional stress in a hollow thin-walled shaft is given as in Chapter 3 by (Fig. 12-1b)

Figure 12-1: Stress patterns on various cross sections: (a) solid section; (b) thin-walled closed section; (c) thin-walled open section.

$$
\begin{equation*}
\tau=\frac{q}{t}=\frac{T}{2 A^{*} t} \tag{12.3}
\end{equation*}
$$

where q is the shear flow and A^{*} is the area enclosed by the middle line of the wall. In deriving this formula, it is assumed that the shear stress is uniformly distributed through the thickness t.

The formula of Eq. (12.3) applies for variable wall thickness; that is, $q=T / 2 A^{*}$ is the shear flow irrespective of wall thickness. The maximum shear stress would occur where the wall thickness is thinnest. Then $\tau_{\max }=q / t_{\min }$.

Table 12-1 provides formulas for various cross-sectional shapes, including multicell cross sections.

Example 12.1 Stresses and Angle of Twist of a Thin-Walled Section with Four
Cells Calculate the shear flows and the rate of angle of twist for the multicell box section of Fig. 2-15 if a torque of 200,000 in.-lb is applied. Also, $G=3.8 \times 10^{6} \mathrm{psi}$. The same box section was treated in Example 2.5 to find the torsional constant.

To find the shear flows, use the formulas of case 6, Table 12-1. The enclosed areas of the cells are $A_{1}^{*}=A_{2}^{*}=A_{3}^{*}=A_{4}^{*}=2(3)=6 \mathrm{in}^{2}$. The torque formula of case 6 , Table 12-1 is

$$
\begin{equation*}
T=2 \sum_{i=1}^{M} q_{i} A_{i}^{*}=2\left(q_{1} 6+q_{2} 6+q_{3} 6+q_{4} 6\right) \tag{1}
\end{equation*}
$$

and the equations for $d \phi / d x$ are set up for each cell. For cell $1, i=1$,

$$
\begin{align*}
\frac{d \phi}{d x} & =\frac{1}{2 A_{1}^{*} G}\left[q_{1} \oint_{1} \frac{d s}{t}-q_{2} \oint_{12} \frac{d s}{t}-q_{3} \oint_{13} \frac{d s}{t}\right] \\
& =\frac{1}{2 A_{1}^{*} G}\left[q_{1} \frac{S_{1}}{t}-q_{2} \frac{S_{12}}{t}-q_{3} \frac{S_{13}}{t}\right] \tag{2}\\
& =\frac{1}{2 A_{1}^{*} G}\left[q_{1}\left(\frac{2(3)}{0.2}+\frac{2(2)}{0.2}\right)-q_{2} \frac{2}{0.2}-q_{3} \frac{3}{0.2}\right]
\end{align*}
$$

where S_{i} is the total length of the middle line of the wall of the cross section and $S_{i k}$ is the length of the common segments between cells i and k. For cells 2,3 , and 4,

$$
\begin{align*}
\frac{d \phi}{d x} & =\frac{1}{2 A_{2}^{*} G}\left[q_{2} \frac{10}{0.2}-q_{1} \frac{2}{0.2}-q_{4} \frac{3}{0.2}\right] \tag{3}\\
\frac{d \phi}{d x} & =\frac{1}{2 A_{3}^{*} G}\left[q_{3} \frac{10}{0.2}-q_{1} \frac{3}{0.2}-q_{4} \frac{2}{0.2}\right] \tag{4}\\
\frac{d \phi}{d x} & =\frac{1}{2 A_{4}^{*} G}\left[q_{4} \frac{10}{0.2}-q_{2} \frac{3}{0.2}-q_{3} \frac{2}{0.2}\right] \tag{5}
\end{align*}
$$

Solve the five equations (1), (2), (3), (4), and (5) for the five unknowns $d \phi / d x, q_{1}$, q_{2}, q_{3}, q_{4} with $T=200,000 \mathrm{in}$.-lb. This yields

$$
\begin{align*}
\frac{d \phi}{d x} & 0.0028 \mathrm{rad} / \mathrm{in} \tag{6a}\\
q_{1} & =q_{2}=q_{3}=q_{4}=4166.67 \mathrm{lb} / \mathrm{in} \tag{6b}
\end{align*}
$$

Thin-Walled Open Sections

The torsional stress in a thin-walled open section appears to vary linearly across the thickness of a cross section. It acts parallel to the edges as shown in Fig. 12-1c. The stresses on the two edges of the thin wall are equal in magnitude and opposite in direction. Along the edges, where the maximum stresses occur,

$$
\begin{equation*}
\tau=T t / J \tag{12.4}
\end{equation*}
$$

where t is the thickness at the location the stress is being calculated. For this thinwalled section, the torsional constant, which is a geometric property, is given by Eq. (2.24b):

$$
\begin{equation*}
J=\frac{\alpha}{3} \sum_{i=1}^{M} b_{i} t_{i}^{3} \tag{12.5}
\end{equation*}
$$

where α is a shape factor (case 10 in Table 12-1 or in Table 2-5) and M is the number of straight or curved segments of thickness t_{i} and width or height b_{i} that make up the section. Use $\alpha=1$ if no information on α is available.

Specific Stress Formulas

Table 12-1 gives values of torsional shear stress on a variety of cross-sectional shapes. These values are provided at some important points. The stress distribution on the entire cross section can be obtained by using a computer program of the sort available in Pilkey [12.1] or on the web site for this book.

The distribution of the stress can also be viewed using the membrane analogy, which reflects that the governing equation for the torsion problem closely resembles the equilibrium equation of a flat membrane in the shape of the cross section subjected to a lateral pressure. The membrane lies in the $y z$ plane. The shear stress in any direction is proportional to the slope of the membrane in the direction perpendicular to the shear stress, and the torque carried by the cross section is proportional to twice the volume under the membrane. From this analogy it can be reasoned that the peak stresses are found at the boundaries of the thicker portions of the cross section. For thin-walled open cross sections, the shape of the membrane over the wall thickness is parabolic, so the maximum shear stress is on the boundary in the direction of the wall contour. On the middle line of the wall, the shear stress is zero. At the reentrant corners (i.e., the interior corners where the thin-walled segments are
connected), stress concentration may develop. See Table 6-1 for an indication of the stress that may occur at these corners.

The membrane analogy can also be used to compare the torsional constant of different cross sections. Since the torque that the cross section carries is proportional to twice the volume under the membrane, it is apparent that those cross-sectional shapes with smaller volumes under the membrane are stiffer. This follows because in terms of the effect on $\phi(=T L / G J)$, a smaller volume, and hence a smaller T, corresponds to a larger J. Generally, for a cross section of a given area, the closer the shape is to being circular, the stiffer it is and the higher the value of J. Solid cross sections are stiffer than thin-walled cross sections, and thin branches attached to the solid part have little effect on the torsional rigidity. For the same r value [Eq. (12.1)], a higher J gives smaller shear stresses.

Extensional Stress

The normal or axial stress in a bar subjected to extension or compression is given by Eq. (3.41):

$$
\begin{equation*}
\sigma=P / A=\sigma_{x} \tag{12.6}
\end{equation*}
$$

This stress is distributed uniformly over the cross section.

12.4 SIMPLE BARS

Torsion

For a single uniform shaft element of length L, the most commonly used formula for the angle of twist is

$$
\begin{equation*}
\phi=T L / G J \tag{12.7}
\end{equation*}
$$

where the torsional constant J can be taken from Table 2-5 for various shapes.
For a thin-walled hollow (closed) section, Eq. (12.7) is used with

$$
\begin{equation*}
J=\frac{4 A^{* 2}}{\oint \frac{1}{t} d s}=\frac{4 A^{* 2}}{\int_{0}^{S} \frac{1}{t} d s} \tag{12.8a}
\end{equation*}
$$

when s is the perimeter coordinate and S is the total length of the middle line of the wall. If the thickness t is constant,

$$
\begin{equation*}
J=4 A^{* 2} t / S \tag{12.8b}
\end{equation*}
$$

so that

$$
\begin{equation*}
\phi=\frac{T L S}{4 A^{* 2} G t}=\frac{\tau S}{2 A^{*} G} \tag{12.9a}
\end{equation*}
$$

For a hollow section with a perimeter formed of lengths $S_{i}(i=1,2, \ldots)$ with thicknesses $t_{i}(i=1,2, \ldots)$ and moduli $G_{i}(i=1,2, \ldots)$,

$$
\begin{equation*}
\phi=\frac{T L}{4 A^{* 2}}\left(\frac{S_{1}}{t_{1} G_{1}}+\frac{S_{2}}{t_{2} G_{2}}+\ldots\right) \tag{12.9b}
\end{equation*}
$$

The governing differential equations for the torsion of a uniform bar are [12.1]

$$
\begin{equation*}
G J \frac{d^{2} \phi}{d x^{2}}-k_{t} \phi=-m_{x}, \quad G J \frac{d \phi}{d x}=T \tag{12.10}
\end{equation*}
$$

Extension

For a uniform bar the governing equations for a bar undergoing extension are [12.1]

$$
\begin{equation*}
A E \frac{d^{2} u}{d x^{2}}-k_{x} u=-p_{x}, \quad A E \frac{d u}{d x}=P+\alpha A E \Delta T \tag{12.11}
\end{equation*}
$$

These relations can be solved for the displacements and the forces as functions of the coordinate x.

Tabulated Formulas

The angle of twist and torque for the torsion of uniform members with various applied loadings and end conditions are provided in Table 12-2. The same table gives the axial displacement and force for the extension of a bar.

Table 12-2, part A, lists equations for the responses. The loading functions are taken from Table 12-2, part B, by adding the appropriate terms for each load applied to the member. The initial parameters are evaluated using the entry in Table 12-2, part C , for the appropriate end conditions of the member.

12.5 NATURAL FREQUENCIES

The natural frequencies $\omega_{i}, i=1,2, \ldots$, and mode shapes for torsion and extension of uniform bars are presented in Tables 12-3 and 12-4. Table 12-5 gives polar mass moments of inertia for lumped masses.

Example 12.2 Natural Frequencies of Torsional Vibration Find the first three torsional natural frequencies of a uniform shaft with a torsional spring at the left end and an unconstrained (free) right end.

From Table 12-3, the natural frequencies are given by

$$
\begin{equation*}
\omega_{i}=\left(\lambda_{i} / L\right) \sqrt{G J / \rho^{*} I_{x}} \quad \mathrm{rad} / \mathrm{s} \tag{1}
\end{equation*}
$$

where λ_{i} are the roots of the equation (case 4) $\lambda_{i} \tan \lambda_{i}=k L / G J$. Let $E=$ $210 \mathrm{GN} / \mathrm{m}^{2}, \rho^{*}=7850 \mathrm{~kg} / \mathrm{m}^{3}, L=1 \mathrm{~m}, v=0.3$, and $k=1 \mathrm{GN} \cdot \mathrm{m} / \mathrm{rad}$ for a shaft 0.1 m in diameter:

$$
\begin{gather*}
G=\frac{E}{2(1+v)}=\frac{2.1 \times 10^{11}}{2(1+0.3)}=0.8077 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2} \tag{2}\\
\frac{k L}{G J}=\frac{10^{9} \times 1 \times 32}{0.8077 \times 10^{11}(\pi) 0.1^{4}}=1.261 \times 10^{3} \\
\lambda_{i} \tan \lambda_{i}=1.261 \times 10^{3} \tag{3}
\end{gather*}
$$

The lowest values for λ_{i} for which (3) holds are

$$
\lambda_{1}=1.56955, \quad \lambda_{2}=4.70865, \quad \lambda_{3}=7.84776
$$

Finally, the natural frequencies of the first three modes are as follows:

	Natural Frequency	
Mode	$\omega_{i}(\mathrm{rad} / \mathrm{s})$	f_{i}
1	5034.60	801.28
2	15103.81	2403.85
3	25173.06	4006.42

12.6 GENERAL BARS

The formulas of Table 12-2 apply to uniform bars. For more general members (e.g., those with variable-section properties), it is advisable to use the displacement method or the transfer matrix procedure, which are explained technically in Appendixes II and III.

Several transfer and stiffness matrices are tabulated in Tables 12-6 to 12-9. Mass matrices for use in a displacement method analysis are given in Tables 12-10 and 12-11. The torsional responses are based on the governing equations [Eqs. (12.1)]

$$
\begin{align*}
\frac{\partial \phi}{\partial x} & =\frac{T}{G J} \tag{12.12a}\\
\frac{\partial T}{\partial x} & =k_{t} \phi+\rho r_{p}^{2} \frac{\partial^{2} \phi}{\partial t^{2}}-m_{x}(x, t) \tag{12.12b}
\end{align*}
$$

For extension, replace ϕ by u, T by $P, G J$ by $E A, k_{t}$ by $k_{x}, \rho r_{p}^{2}$ by ρ, and m_{x} by p_{x}.
Example 12.3 Torsional System with a Branch Consider the gear-branched system of Fig. 12-2, where $m=2$ is the speed ratio between gears 4 and 2 .

Figure 12-2: Branched torsional system.

Treat the gears as lumped masses. Discretize the system into three elements as shown in Fig. 12-3. Each element is composed of a bar with lumped masses attached at the ends. Hence, the mass matrices can be formed as the summation of cases 3 and 4 of Table 12-10. For gear 2, half of the mass is attached to element 1 and another half to element 2.

For element 1, the consistent mass matrix for the bar is (Table 12-10, case 4)

$$
\mathbf{m}_{\mathrm{bar}}^{1}=\left[\begin{array}{cc}
\frac{2.4}{3} & \frac{2.4}{6} \\
\frac{2.4}{6} & \frac{2.4}{3}
\end{array}\right]
$$

and the lumped mass matrix is (Table 12-10, case 3)

$$
\mathbf{m}_{\text {lumped }}^{1}=\left[\begin{array}{rr}
10 & 0 \\
0 & 12
\end{array}\right]
$$

Element	$\frac{G J}{\ell}(\mathrm{~N} \cdot \mathrm{~m})$	$I_{p} \ell\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
1	30000	2.4
2	50000	1.5
3	100000	1.2

Figure 12-3: Three elements composing system of Fig. 12-2.

The mass matrix for the whole element is

$$
\mathbf{m}^{1}=\mathbf{m}_{\text {bar }}^{1}+\mathbf{m}_{\text {lumped }}^{1}=\left[\begin{array}{cc}
10+\frac{2.4}{3} & \frac{2.4}{6} \\
\frac{2.4}{6} & 12+\frac{2.4}{3}
\end{array}\right]
$$

Similarly, the other mass matrices are

$$
\mathbf{m}^{2}=\left[\begin{array}{cc}
12+\frac{1.5}{3} & \frac{1.5}{6} \\
\frac{1.5}{6} & 5+\frac{1.5}{3}
\end{array}\right], \quad \mathbf{m}^{3}=\left[\begin{array}{cc}
10+\frac{1.2}{3} & \frac{1.2}{6} \\
\frac{1.2}{6} & 5+\frac{1.2}{3}
\end{array}\right]
$$

The stiffness matrices are (Table 12-6, case 1)

$$
\mathbf{k}^{1}=10^{4}\left[\begin{array}{rr}
3 & -3 \tag{1}\\
-3 & 3
\end{array}\right], \quad \mathbf{k}^{2}=10^{4}\left[\begin{array}{rr}
5 & -5 \\
-5 & 5
\end{array}\right], \quad \mathbf{k}^{3}=10^{4}\left[\begin{array}{rr}
10 & -10 \\
-10 & 10
\end{array}\right]
$$

Note that the angles of twist ϕ_{2} and ϕ_{4} are related and so are the moments T_{2} and T_{4}. For element 3,

$$
\begin{equation*}
\mathbf{p}^{3}=\left[\mathbf{k}^{3}-\omega^{2} \mathbf{m}^{3}\right] \mathbf{v}^{3} \tag{2}
\end{equation*}
$$

in which

$$
\mathbf{p}^{3}=\left[\begin{array}{l}
T_{4} \\
T_{5}
\end{array}\right] \quad \text { and } \quad \mathbf{v}^{3}=\left[\begin{array}{l}
\phi_{4} \\
\phi_{5}
\end{array}\right]
$$

Since the speed ratio of gears 2 and 4 is m,

$$
\phi_{4}=-m \phi_{2}
$$

and

$$
T_{4}=-\frac{1}{m} T_{2}
$$

Then \mathbf{p}^{3} and \mathbf{v}^{3} become

$$
\mathbf{p}^{3}=\left[\begin{array}{cc}
-1 / m & 0 \tag{3}\\
0 & 1
\end{array}\right]\left[\begin{array}{l}
T_{2} \\
T_{5}
\end{array}\right]=\left(\boldsymbol{\tau}^{T}\right)^{-1} \mathbf{p}_{\text {new }}^{3}, \quad \mathbf{v}^{3}=\left[\begin{array}{cc}
-m & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\phi_{2} \\
\phi_{5}
\end{array}\right]=\boldsymbol{\tau} \mathbf{v}_{\text {new }}^{3}
$$

where

$$
\tau=\left[\begin{array}{cc}
-m & 0 \\
0 & 1
\end{array}\right]
$$

Substitution of (3) into (2) gives

$$
\mathbf{p}_{\text {new }}^{3}=\left[\boldsymbol{\tau}^{T} \mathbf{k}^{3} \boldsymbol{\tau}-\omega^{2} \boldsymbol{\tau}^{T} \mathbf{m}^{3} \boldsymbol{\tau}\right] \mathbf{v}_{\text {new }}^{3}=\left[\mathbf{k}_{\text {new }}^{3}-\omega^{2} \mathbf{m}_{\text {new }}^{3}\right] \mathbf{v}_{\text {new }}^{3}
$$

with

$$
\begin{align*}
& \mathbf{k}_{\text {new }}^{3}=10^{4}\left[\begin{array}{cc}
10 m^{2} & 10 m \\
10 m & 10
\end{array}\right]=10^{4}\left[\begin{array}{ll}
40 & 20 \\
20 & 10
\end{array}\right] \\
& \mathbf{m}_{\text {new }}^{3}=\left[\begin{array}{cc}
\left(10+\frac{1.2}{3}\right) m^{2} & -\frac{1.2}{6} m \\
-\frac{1.2}{6} m & 5+\frac{1.2}{3}
\end{array}\right]=\left[\begin{array}{rr}
41.6 & -0.4 \\
-0.4 & 5.4
\end{array}\right] \tag{4}
\end{align*}
$$

Define the vector of degrees of freedom:

$$
\boldsymbol{\phi}=\left[\begin{array}{llll}
\phi_{1} & \phi_{2} & \phi_{3} & \phi_{5} \tag{5}
\end{array}\right]
$$

and expand each element matrix into the global nodal numbering system:

$$
\begin{array}{rlrl}
\mathbf{m}^{1}=\left[\begin{array}{cccc}
10.8 & 0.4 & 0 & 0 \\
0.4 & 12.8 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], & \mathbf{m}^{2} & =\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 12.5 & 0.25 & 0 \\
0 & 0.25 & 5.4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathbf{k}^{1}=10^{4}\left[\begin{array}{rrrrr}
3 & -3 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], & \mathbf{m}^{3} & =\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 41.6 & 0 & -0.4 \\
0 & 0 & 0 & 0 \\
0 & -0.4 & 0 & 5.4
\end{array}\right] \\
\mathbf{k}^{2}=10^{4}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 5 & -5 & 0 \\
0 & -5 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \tag{7}\\
& {\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 40 & 0 & 20 \\
0 & 0 & 0 & 0 \\
0 & 20 & 0 & 10
\end{array}\right]}
\end{array}
$$

The global mass and stiffness matrices are obtained by adding (6) and (7):

$$
\mathbf{M}=\left[\begin{array}{cccc}
10.8 & 0.4 & 0 & 0 \tag{8}\\
0.4 & 66.9 & 0.25 & -0.4 \\
0 & 0.25 & 5.4 & 0 \\
0 & -0.4 & 0 & 5.4
\end{array}\right], \quad \mathbf{K}=\left[\begin{array}{rrrr}
3 & -3 & 0 & 0 \\
-3 & 48 & -5 & 20 \\
0 & -5 & 5 & 0 \\
0 & 20 & 0 & 10
\end{array}\right]
$$

The natural frequencies and mode shapes for the branched system are found by solving the eigenvalue problem

$$
\begin{equation*}
\mathbf{K} \boldsymbol{\phi}=\omega^{2} \mathbf{M} \boldsymbol{\phi} \tag{9}
\end{equation*}
$$

Some results, in radians per second, are
$\omega_{1} \approx 0 \quad$ (rigid-body mode) $, \quad \omega_{2}=55.58, \quad \omega_{3}=98.74, \quad \omega_{4}=159.54$

REFERENCES

12.1. Pilkey, W. D., Analysis and Design of Elastic Beams, Wiley, New York, 2002.
12.2. Darwish, I. A., and Johnston, B. G., "Torsion of Structural Shapes," J. Struct. Div., ASCE, Vol. 91, No. ST1, 1965, pp. 203-227.
12.3. Isakower, R. I., "The Shaft Book," U.S. Army ARRADCOM MISD User's Manual 80-5, March 1980.

12

Tables

12-1 Important Torsional Stress Values on Various Cross-Sectional Shapes 634
12-2 Uniform Bars with Arbitrary Loading 643
12-3 Natural Frequencies and Mode Shapes for Torsion of Uniform Bars 645
12-4 Natural Frequencies and Mode Shapes for Extension of Uniform Bars 648
12-5 Polar Mass Moments of Inertia for Concentrated Masses
12-6 Structural Matrices for Torsion of Bars 653
12-7 Selected Transfer Matrices for Torsion 655
12-8 Structural Matrices for Extension of Bars 656
12-9 Selected Transfer Matrices for Extension 658
12-10 Mass Matrices for Bars in Torsion 659
12-11 Mass Matrices for Bars in Extension 660

TABLE 12-1 IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS CROSS-SECTIONAL SHAPES

	Notation $\begin{aligned} T & =\text { torque, twisting moment } \\ J & =\text { torsional constant } \end{aligned}$
$\underline{\text { Cross-Sectional Shape }}$	Torsional Stress Values
	Thick Noncircular Sections
1. Ellipse	$\begin{aligned} & \tau_{\max }=\tau_{A}=\frac{16 T}{\pi a b^{2}} \\ & a>b \end{aligned}$
2. Hollow ellipse	$\begin{aligned} & \tau_{\max }=\tau_{A}=\frac{16 T}{\pi a b^{2}\left(1-k^{4}\right)} \\ & a>b \\ & \text { where } \\ & k=a_{i} / a=b_{i} / b \end{aligned}$
3. Equilateral triangle	$\begin{aligned} \tau_{\max } & =\tau_{A} \\ & =\frac{20 T}{a^{3}} \end{aligned}$
4. Square	$\tau_{\max }=\tau_{A}=\frac{4.81 T}{a^{3}}$
5. Rectangle	$\tau_{\max }=\tau_{A}=\frac{3 T}{a b^{2}\left(1-0.630 \frac{b}{a}+0.250 \frac{b^{2}}{a^{2}}\right)}$

TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS
CROSS-SECTIONAL SHAPES
Cross-Sectional Shape

TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS CROSS-SECTIONAL SHAPES

Cross-Sectional Shape	
$\mathbf{8 .}$	
Hollow	

Thin-Walled Open Sections

$$
\tau_{\max }^{i}=\frac{T t_{i}}{J}
$$

where $t_{i}=$ thickness of segment $i, \quad \tau_{\max }^{i}=$ maximum shear stress in segment i

Cross-Sectional Shape	Torsional Stress Values
10.	$J=\frac{\alpha}{3} \sum_{i=1}^{M} b_{i} t_{i}^{3}$
Any open section	
where M is the number of the straight or curved segments	
of thickness t_{i} and width or height b_{i} comprising the	
section. Set $\alpha=1$ except as designated otherwise.	

TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS CROSS-SECTIONAL SHAPES

Cross-Sectional Shape	Torsional Stress Values
11.	$J=\frac{b t^{3}}{3}$
12.	$J=\frac{1}{3} \alpha\left(b_{1} t_{1}^{3}+b_{2} t_{2}^{3}+h t_{w}^{3}\right)$

Set $\alpha=1$ unless specified otherwise. See case 10.

13.	$\tau_{\max }=\frac{T K t_{f}}{J}=\tau_{A} \quad$ See Table 2-5, case 13 for J.

For $0 \leq t_{w} / t_{f} \leq 1.0$,
$K=C_{1}+C_{2}\left(t_{w} / t_{f}\right)+C_{3}\left(t_{w} / t_{f}\right)^{2}$

	For $0 \leq r / t_{f} \leq 1.0$
C_{1}	$1.00124+0.05540\left(r / t_{f}\right)+0.05540\left(r / t_{f}\right)^{2}$
C_{2}	$0.00401+0.12065\left(r / t_{f}\right)+0.05280\left(r / t_{f}\right)^{2}$
C_{3}	$0.13890+0.11549\left(r / t_{f}\right)-0.15337\left(r / t_{f}\right)^{2}$

Ref. [12.2]

14.	$\tau_{\max }=\tau_{A}=\frac{T K t_{2}}{J} \quad$ See Table 2-5, case 14 for J.

$r=$ radius of fillet
For $0 \leq t_{w} / t_{2} \leq 1.0$,
$K=C_{1}+C_{2}\left(t_{w} / t_{2}\right)+C_{3}\left(t_{w} / t_{2}\right)^{2}$

	For $0 \leq r / t_{2} \leq 1.0$
C_{1}	$0.92424+0.05486\left(r / t_{2}\right)+0.04533\left(r / t_{2}\right)^{2}$
C_{2}	$0.06852+0.01174\left(r / t_{2}\right)+0.13874\left(r / t_{2}\right)^{2}$
C_{3}	$0.16321+0.03151\left(r / t_{2}\right)-0.10696\left(r / t_{2}\right)^{2}$

Ref. [12.2]

TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS CROSS-SECTIONAL SHAPES

Cross-Sectional Shape	Torsional Stress Values
15. 	$\begin{aligned} & \tau_{\max }=\tau_{A}=\frac{T K t}{J} \quad \text { See Table 2-5, case } 15 \text { for } J . \\ & K=3.73-9.264\left(\frac{r}{t}\right)+10.24\left(\frac{r}{t}\right)^{2} \\ & 0.1 \leq \frac{r}{t} \leq 0.3 \\ & K=1.7261-0.1800\left(\frac{r}{t}\right)+0.09761\left(\frac{r}{t}\right)^{2} \\ & 0.3 \leq \frac{r}{t} \leq 2.0 \end{aligned}$ Ref. [12.3]

Other Shapes

16.	T Kt
	$\tau_{\max }=\tau_{A}=\bar{J}$ For $0.2 \leq \frac{r}{t} \leq 1.5$, $K=3.736-6.206\left(\frac{r}{t}\right)+5.182\left(\frac{r}{t}\right)^{2}-1.487\left(\frac{r}{t}\right)^{3}$ Ref. [12.3]
17.	$\tau_{\max }=\tau_{A}=T K / r^{3}$ For $0.1 \leq b / r \leq 0.5$, $K=C_{1}+C_{2}(\bar{b} / r)+C_{3}(b / r)^{2}+C_{4}(b / r)^{3}$
	For $0.5 \leq a / b \leq 2.0$ C_{1} $0.8040+0.5667(a / b)-0.7522(a / b)^{2}+0.2277(a / b)^{3}$ C_{2} $3.955-10.116(a / b)+9.670(a / b)^{2}-2.715(a / b)^{3}$ C_{3} $-6.831+19.717(a / b)-22.226(a / b)^{2}+7.176(a / b)^{3}$ C_{4} $2.126+0.8590(a / b)+13.468(a / b)^{2}-6.542(a / b)^{3}$ Ref. [12.3]

TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS CROSS-SECTIONAL SHAPES

| Torsional Stress Values |
| :--- | :--- | :--- |

TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS CROSS-SECTIONAL SHAPES

Cross-Sectional Shape	Torsional Stress Values
21.	
22.	$\tau_{\max }=\tau_{A}=T K / r^{3}$ For $0.1 \leq b / r \leq 0.5$,$K=C_{1}+C_{2}(\bar{b} / r)+C_{3}(b / r)^{2}+C_{4}(b / r)^{3}$ For $0.2 \leq a / b \leq 2.0$ C_{1} $0.604248+0.107977(a / b)-0.108329(a / b)^{2}+0.029090(a / b)^{3}$ C_{2} $0.441822-1.474396(a / b)+1.537202(a / b)^{2}-0.406942(a / b)^{3}$ C_{3} $-1.556588+5.486226(a / b)-6.406379(a / b)^{2}+1.555353(a / b)^{3}$ C_{4} $1.850184-6.684652(a / b)+6.467717(a / b)^{2}-1.359464(a / b)^{3}$ Ref. [12.3]
23.	$\begin{aligned} & \begin{array}{l} \tau_{\max }=\tau_{A}=T K / r^{3} \\ \text { For } 0.1 \leq a / r \leq 0.5, \\ K=0.650320+7.648135(a / r)-30.943539(a / r)^{2} \\ \quad+57.049957(a / r)^{3} \\ \text { Ref. [12.3] } \end{array} \\ & \hline \end{aligned}$
24.	$\tau_{\max }=\tau_{j}=T K / r^{3} \quad j=A \text { or } B$ For $0.1 \leq a / b \leq 0.8$, At A : $\begin{aligned} K= & -0.245866+0.622510(b / a)-0.021154(b / a)^{2} \\ & +0.000204(b / a)^{3} \end{aligned}$ At B : $\begin{aligned} K= & 0.327176+0.257521(b / a)-0.033676(b / a)^{2} \\ & +0.001221(b / a)^{3} \end{aligned}$ Ref. [12.3]

TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS CROSS-SECTIONAL SHAPES

Cross-Sectional	Torsional Stress Values
Shape	$\tau_{\max }=\tau_{A}=T K / r^{3}$ For $0.1 \leq b / r \leq 0.5, ~$ $K=C_{1}+C_{2}(b / r)+C_{3}(b / r)^{2}+C_{4}(b / r)^{3}$ 25.

TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS CROSS-SECTIONAL SHAPES

Cross-Sectional Shape	Torsional Stress Values
29.	$\begin{aligned} & \tau_{\max }=\tau_{A}=T K / r^{3} \\ & \text { For } 0.1 \leq a / r \leq 0.5 \\ & K=1.025961+1.180013(a / r)-2.788884(a / r)^{2} \\ & \quad+3.708282(a / r)^{3} \end{aligned}$ Ref. [12.3]
30.	$\begin{aligned} & \begin{array}{l} \tau_{\max }=\tau_{A}=T K / r^{3} \\ \text { For } 0.1 \leq a / r \leq 0.5 \\ K= \\ \quad 1.005380+1.543949(a / r)-2.954627(a / r)^{2} \\ \quad+7.058312(a / r)^{3} \\ \text { Ref. [12.3] } \end{array} \end{aligned}$

TABLE 12-2 UNIFORM BARS WITH ARBITRARY LOADING

TORSION: $F_{\phi}(x), F_{T}(x)$

	Concentrated Torque	Uniformly Distributed Torque
$\begin{aligned} & F_{\phi}(x) \\ & F_{T}(x) \end{aligned}$	$\begin{aligned} & \frac{-T_{1}<x-a>}{G J} \\ & -T_{1}<x-a>^{0} \end{aligned}$	$\begin{aligned} - & \frac{m_{x 1}}{2 G J}\left(<x-a_{1}>^{2}-<x-a_{2}>^{2}\right) \\ & -m_{x 1}\left(<x-a_{1}>-<x-a_{2}>\right) \end{aligned}$

TABLE 12-2 (continued) UNIFORM BARS WITH ARBITRARY LOADING

EXTENSION: $F_{u}(x), F_{P}(x)$ where $\alpha=$ Thermal expansion coefficient

		Uniformly Distributed Force	Temperature Change ΔT
$F_{u}(x)$	$-\frac{P_{1}<x-a>}{E A}$	$-\frac{p_{x_{1}}}{2 E A}\left(<x-a_{1}>^{2}-<x-a_{2}>^{2}\right)$	$\alpha \Delta T x$
$F_{P}(x)$	$-P_{1}<x-a>0$	$-p_{x 1}\left(<x-a_{1}>-<x-a_{2}>\right)$	0

C. Initial Parameters

$\bar{F}_{\phi}=\left.F_{\phi}\right\|_{x=L} \quad \bar{F}_{T}=\left.F_{T}\right\|_{x=L} \quad \bar{F}_{u}=\left.F_{u}\right\|_{x=L} \quad \bar{F}_{P}=\left.F_{P}\right\|_{x=L}$			
Right End			

TABLE 12-3 NATURAL FREQUENCIES AND MODE SHAPES FOR TORSION OF UNIFORM BARS

Notation		
$\left.\begin{array}{rlrl} J & =\text { torsional constant } & I_{p} & =\begin{array}{l} \text { polar mass moment of inertia } \\ I_{x} \end{array}=\text { polar moment of inertia } \\ L & =\text { length of bar length } \end{array}\right)$		
Boundary Conditions	λ_{i}	Mode Shapes, $\xi=x / L$
1. Free-free	$\lambda_{i}=\pi, 2 \pi, 3 \pi, \ldots$	$\cos \lambda_{i} \xi$
2. Clamped-free	$\lambda_{i}=\frac{1}{2}(2 i-1) \pi$	$\sin \lambda_{i} \xi$
3. Clamped-clamped	$\lambda_{i}=\pi, 2 \pi, 3 \pi, \ldots$	$\sin \lambda_{i} \xi$
4. Spring-free	$\lambda_{i} \tan \lambda_{i}=\frac{k L}{G J}$	$\cot \lambda_{i} \cos \lambda_{i} \xi+\sin \lambda_{i} \xi$
5. Clamped-spring	$\lambda_{i}=-\frac{k L}{G J} \tan \lambda_{i}$	$\sin \lambda_{i} \xi$

TABLE 12-3 (continued) NATURAL FREQUENCIES AND MODE SHAPES FOR TORSION OF UNIFORM BARS

Boundary Conditions	λ_{i}	Mode Shapes, $\xi=x / L$
6. Spring-spring	$\begin{aligned} & \lambda_{i}^{2}-K_{1} \frac{\lambda_{i}(1+\alpha)}{\tan \lambda_{i}}-\alpha K_{1}^{2}=0 \\ & K_{1}=\frac{k_{1} L}{G J} \quad K_{2}=\frac{k_{2} L}{G J} \\ & \alpha=\frac{k_{2}}{k_{1}} \end{aligned}$	$\sin \lambda_{i} \xi+\frac{\lambda_{i}}{K_{1}} \cos \lambda_{i} \xi$
7. Free with mass	$\begin{aligned} \lambda_{i} & =-I_{1} \tan \lambda_{i} \\ I_{1} & =\frac{\rho L J}{I_{p 1}} \end{aligned}$	$\cos \lambda_{i} \xi$
8. Clamped with mass	$\begin{aligned} \lambda_{i} & =I_{1} \cot \lambda_{i} \\ I_{1} & =\frac{\rho L J}{I_{p 1}} \end{aligned}$	$\sin \lambda_{i} \xi$
9. Spring with mass	$\begin{aligned} & \lambda_{i}^{2}+I_{1} \lambda_{i}(1+\alpha) \tan \lambda_{i}-\alpha I_{1}^{2}=0 \\ & \alpha=\frac{K}{I_{1}} \quad K=\frac{k L}{G J} \quad I_{1}=\frac{\rho L J}{I_{p 1}} \end{aligned}$	$\sin \lambda_{i} \xi+\frac{\lambda_{i}}{K} \cos \lambda_{i} \xi$
10. Free with spring and mass	$\begin{aligned} & \lambda_{i}^{2}+I_{1} \lambda_{i} \tan \lambda_{i}-\alpha I_{1}^{2}=0 \\ & I_{1}=\frac{\rho L J}{I_{p 1}} \\ & \alpha=\frac{K}{I_{1}} \quad K=\frac{k L}{G J} \end{aligned}$	$\cos \lambda_{i} \xi$
11. Fixed-mass with spring	$\begin{aligned} & \lambda_{i}^{2}-I_{1} \frac{\lambda_{i}}{\tan \lambda_{i}}-\alpha I_{1}^{2}=0 \\ & I_{1}=\frac{\rho L J}{I_{p 1}} \\ & \alpha=\frac{K}{I_{1}} \quad K=\frac{k L}{G J} \end{aligned}$	$\sin \lambda_{i} \xi$

TABLE 12-3 (continued) NATURAL FREQUENCIES AND MODE SHAPES FOR TORSION OF UNIFORM BARS

Boundary Conditions	λ_{i}	Mode Shapes, $\xi=x / L$
12. Masses at both ends	$\begin{aligned} & \lambda_{i}^{2}-I_{p 1} \lambda_{i} \frac{1+\alpha}{\tan \lambda_{i}}-I_{p 1}^{2} \alpha=0 \\ & \alpha=\frac{I_{p 2}}{I_{p 1}} \end{aligned}$	$\sin \lambda_{i} \xi-\frac{I_{p 1}}{\lambda_{i}} \cos \lambda_{i} \xi$
13.	$\begin{aligned} & \frac{\lambda_{i}^{4}}{I_{1} I_{2}}-\frac{\lambda_{i}^{3}\left(I_{1}+I_{2}\right) \cot \lambda_{i}}{I_{1} I_{2}} \\ & \quad-\lambda_{i}^{2}\left(1+\frac{K_{1}}{I_{2}}+\frac{K_{2}}{I_{1}}\right) \\ & \quad+\lambda_{i}\left(K_{1}+K_{2}\right) \cot \lambda_{i} \\ & \quad+K_{1} K_{2}=0 \\ & K_{1}= \\ & =\frac{k_{1} L}{G I_{p}} K_{2}=\frac{k_{2} L}{G I_{p}} \\ & I_{1}=\frac{I_{p} L}{I_{p 1}} \quad I_{2}=\frac{I_{p} L}{I_{p 2}} \end{aligned}$	$\begin{aligned} & \cos \lambda_{i} \xi+\delta \sin \lambda_{i} \xi \\ & \delta=\lambda_{i} /\left(K_{1}-\lambda_{i}^{2} / I_{1}\right) \end{aligned}$

TABLE 12-4 NATURAL FREQUENCIES AND MODE SHAPES FOR EXTENSION OF UNIFORM BARS

Notation		
$\begin{array}{cc} \rho^{*}=\text { mass per unit volume } & L=\text { length of bar } \\ E=\text { modulus of elasticity } & A=\text { cross-sectional area } \\ \text { Natural frequencies: } & \omega_{i}(\mathrm{rad} / \mathrm{s})=\frac{\lambda_{i}}{L}\left(\frac{E}{\rho^{*}}\right)^{1 / 2} \\ f_{i}(\mathrm{~Hz})=\frac{\omega_{i}}{2 \pi}, & i=1,2,3, \ldots \end{array}$		
Boundary Conditions	λ_{i}	Mode Shapes, $\xi=x / L$
1.	$\lambda_{i}=i \pi$	$\cos \lambda_{i} \xi$
2. Clamped-free	$\lambda_{i}=\frac{1}{2} \pi(2 i-1)$	$\sin \lambda_{i} \xi$
3. Clamped-clamped	$\lambda_{i}=i \pi$	$\sin \lambda_{i} \xi$
4. Spring-free	$\lambda_{i} \tan \lambda_{i}=\frac{k L}{A E}$	$\cot \lambda_{i} \cos \lambda_{i} \xi+\sin \lambda_{i} \xi$

TABLE 12-4 (continued) NATURAL FREQUENCIES AND MODE SHAPES FOR EXTENSION OF UNIFORM BARS

Boundary Conditions	λ_{i}	Mode Shapes, $\xi=x / L$
5. Spring-clamped	$\lambda_{i}=-\frac{k L}{E A} \tan \lambda_{i}$	$\sin \lambda_{i} \xi$
6. Clamped-mass	$\lambda_{i} \tan \lambda_{i}=\frac{\rho^{*} A L}{M_{1}}$	$\sin \lambda_{i} \xi$
7.	$\frac{1}{\lambda_{i}} \tan \lambda_{i}=-\frac{M_{1}}{\rho^{*} A L}$	$\cos \lambda_{i} \xi$
8.	$\begin{aligned} & \lambda_{i}^{2}+I_{1} \lambda_{i}(1+\alpha) \tan \lambda_{i}-\alpha I_{1}^{2}=0 \\ & \alpha=\frac{K}{I_{1}} \quad K=\frac{k L}{E A} \quad I_{1}=\frac{\rho L A}{M_{1}} \end{aligned}$	$\sin \lambda_{i} \xi+\frac{\lambda_{i}}{K} \cos \lambda_{i} \xi$

TABLE 12-5 POLAR MASS MOMENTS OF INERTIA FOR CONCENTRATED MASSES

Notation $\rho=$ mass per unit length $\rho^{*}=$ mass per unit volume $M=$ total mass of concentrated mass	
Mass Shape	Polar Mass Moment of Inertia $I_{p i}\left(M L^{2}\right)$ about x Axis
1. Disk: hollow circular cylinder	$\frac{1}{2} \rho h\left(r_{\text {outer }}^{2}+r_{\text {inner }}^{2}\right)$
2. Solid circular cylinder	$\frac{1}{2} \pi h \rho^{*} r^{4}=\frac{1}{2} \rho h r^{2}$
3. Rectangular prism	Three cases: 1. x passes through center of gravity (as shown) $(M / 12)\left(a^{2}+b^{2}\right)$ 2. x coincides with $A-A$ $(M / 12)\left(a^{2}+4 b^{2}\right)$ 3. x coincides with $B-B$ $(M / 3)\left(a^{2}+b^{2}\right)$

TABLE 12-5 (continued) POLAR MASS MOMENTS OF INERTIA FOR CONCENTRATED MASSES
Mass Shape

TABLE 12-5 (continued) POLAR MASS MOMENTS OF INERTIA FOR CONCENTRATED MASSES

Mass Shape
P.

TABLE 12-6 STRUCTURAL MATRICES FOR TORSION OF BARS

Notation $J=$ torsional constant $G=$ shear modulus of elasticity $\ell=$ length of element			
Case (ith Element)		Linearly Varying Distributed Applied Torque	
1. Simple static bar	$\left.\left[\begin{array}{c\|c\|c}1 & \ell & \bar{F}_{\phi} \\ \hline \text { GJ } & \\ \hline 0 & 1 & \bar{F}_{T} \\ \hline 0 & 0 & 1\end{array}\right] \begin{array}{c}\phi_{a} \\ T_{a} \\ 1\end{array}\right]$	$\begin{aligned} & \bar{F}_{\phi}=-\frac{1}{G J}\left(m_{a} \frac{\ell^{2}}{3}+m_{b} \frac{\ell^{2}}{6}\right) \\ & \bar{F}_{T}=-m_{a} \frac{\ell}{2}-m_{b} \frac{\ell}{2} \end{aligned}$	$\begin{array}{lc} \mathbf{k}^{i}=\left[\begin{array}{cc} \frac{G J}{\ell} & -\frac{G J}{\ell} \\ -\frac{G J}{\ell} & \frac{G J}{\ell} \end{array}\right] \quad \mathbf{v}^{i}=\left[\begin{array}{l} \phi_{a} \\ \phi_{b} \end{array}\right] \\ \overline{\mathbf{p}}^{i}=\left[\begin{array}{c} -\frac{G J}{\ell} \bar{F}_{\phi} \\ -\bar{F}_{T}+\frac{G J}{\ell} \bar{F}_{\phi} \end{array}\right] \quad \mathbf{p}^{i}=\left[\begin{array}{l} T_{a} \\ T_{b} \end{array}\right] \end{array}$

TABLE 12-6 (continued) STRUCTURAL MATRICES FOR TORSION OF BARS

2. On elastic foundation $\beta^{2}=k_{t} / G J$	$\left[\begin{array}{c\|c\|c}\cosh \beta \ell & \frac{\sinh \beta \ell}{G J \beta} & \bar{F}_{\phi} \\ \hline G J \beta \sinh \beta \ell & \cosh \beta \ell & \bar{F}_{T} \\ \hline 0 & 0 & 1\end{array}\right]$	$\begin{aligned} \bar{F}_{\phi}= & -\frac{m_{a}}{G J}\left(\frac{-1+\cosh \beta \ell}{\beta^{2}}-\frac{-\beta \ell+\sinh \beta \ell}{\beta^{3} \ell}\right) \\ & -\frac{m_{b}}{G J}\left(\frac{-\beta \ell+\sinh \beta \ell}{\beta^{3} \ell}\right) \\ \bar{F}_{T}= & -m_{a}\left(\frac{\sinh \beta \ell}{\beta}-\frac{-1+\cosh \beta \ell}{\beta^{2} \ell}\right) \\ & -m_{b}\left(\frac{-1+\cosh \beta \ell}{\beta^{2} \ell}\right) \end{aligned}$	$\begin{aligned} & \mathbf{k}^{i}=\left[\begin{array}{cc} G J \beta \frac{\cosh \beta \ell}{\sinh \beta \ell} & -\frac{G J \beta}{\sinh \beta \ell} \\ -\frac{G J \beta}{\sinh \beta \ell} & G J \beta \frac{\cosh \beta \ell}{\sinh \beta \ell} \end{array}\right] \\ & \overline{\mathbf{p}}^{i}=\left[\begin{array}{c} -\frac{G J \beta}{\sinh \beta \ell} \bar{F}_{\phi} \\ -\bar{F}_{T}+\frac{\cosh \beta \ell}{\sinh \beta \ell} G J \beta \bar{F}_{\phi} \end{array}\right] \end{aligned}$
3. With mass and foundation $\begin{aligned} \beta^{2} & =\left(\omega^{2} \rho r_{p}^{2}-k_{t}\right) / G J \\ & =\left(\omega^{2} I_{p}-k_{t}\right) / G J \end{aligned}$ $\rho=$ mass/length If $\beta^{2}<0$, use the formulas of case 2 with $\begin{aligned} & \beta^{2}= \\ & \left(k_{t}-\omega^{2} I_{p}\right) / G J \end{aligned}$	$\left[\begin{array}{c\|c\|c}\cos \beta \ell & \frac{\sin \beta \ell}{G J \beta} & \bar{F}_{\phi} \\ \hline-G J \beta \sin \beta \ell & \cos \beta \ell & \bar{F}_{T} \\ \hline 0 & 0 & 1\end{array}\right]$	$\begin{aligned} \bar{F}_{\phi}= & -\frac{m_{a}}{G J}\left(\frac{1-\cos \beta \ell}{\beta^{2}}-\frac{\beta \ell-\sin \beta \ell}{\beta^{3} \ell}\right) \\ & -\frac{m_{b}}{G J}\left(\frac{\beta \ell-\sin \beta \ell}{\beta^{3} \ell}\right) \\ \bar{F}_{T}= & -m_{a}\left(\frac{\sin \beta \ell}{\beta}-\frac{1-\cos \beta \ell}{\beta^{2} \ell}\right) \\ & -m_{b}\left(\frac{1-\cos \beta \ell}{\beta^{2} \ell}\right) \end{aligned}$	Dynamic stiffness matrix $\begin{aligned} & \mathbf{k}^{i}=\left[\begin{array}{cc} G J \beta \frac{\cos \beta \ell}{\sin \beta \ell} & -\frac{G J \beta}{\sin \beta \ell} \\ -\frac{G J \beta}{\sin \beta \ell} & G J \beta \frac{\cos \beta \ell}{\sin \beta \ell} \end{array}\right] \\ & \overline{\mathbf{p}}^{i}=\left[\begin{array}{c} -\frac{G J \beta}{\sin \beta \ell} \bar{F}_{\phi} \\ -\bar{F}_{T}+\frac{\cos \beta \ell}{\sin \beta \ell} G J \beta \bar{F}_{\phi} \end{array}\right] \end{aligned}$

TABLE 12-7 SELECTED TRANSFER MATRICES FOR TORSION

Notation

```
\(I_{p i}=\) polar mass moment of inertia \(\quad k_{t}=\) elastic foundation modulus
    at point \(i \quad \omega=\) natural frequency
    \(T_{i}=\) applied torque \(\quad r_{p}=\) polar radius of gyration
    \(k_{b}=\) torsional spring constant \({ }^{a}\)
        of branch system ( \(F L\) )
```

Case	Transfer Matrix ${ }^{a}$
1. Point matrix	$\left[\begin{array}{ccc} 1 & 1 / k & 0 \\ k_{b}-I_{p i} \omega^{2} & 1 & -T_{i} \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{c} \phi \\ T \\ 1 \end{array}\right]$
2. Rigid bar	$\mathbf{U}^{i}=\left[\begin{array}{ccc}1 & 0 & 0 \\ \ell\left(k_{t}-\rho r_{p}^{2} \omega^{2}\right) & 1 & -\frac{1}{2} \ell\left(m_{a}+m_{b}\right) \\ 0 & 0 & 1\end{array}\right]$

${ }^{a}$ The spring constant k can be considered to be equivalent to $G J / \ell$ of Table 12-6, case 1. In the case of a coil spring, $k=E d^{4} / 32 N D$, where $E=$ Young's modulus, $d=$ spring wire diameter, $D=$ mean coil diameter, and $N=$ number of coils.

TABLE 12-8 STRUCTURAL MATRICES FOR EXTENSION OF BARS

Notation $A=$ cross-sectional area $E=$ modulus of elasticity $\ell=$ length of element $\alpha=$ thermal expansion coefficient			
Case (ith Element)	Transfer Matrices $\mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{a}$	Linearly Varying Distributed Axial Force	Stiffness Matrices $\mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i}$
1. Simple static bar	$\left.\begin{array}{c\|c\|c} {\left[\begin{array}{c\|c} 1 & \frac{\ell}{A E} \\ & \bar{F}_{u} \\ \hline 0 & 1 \\ \hline 0 & 0 \\ & \bar{F}_{P} \\ \hline \end{array}\right]} \end{array}\right] \begin{gathered} \mathbf{U}^{i} \\ {\left[\begin{array}{c} u_{a} \\ P_{a} \\ 1 \end{array}\right]} \end{gathered}$	$\begin{aligned} & \bar{F}_{u}=-p_{a} \frac{\ell^{2}}{3 A E}-p_{b} \frac{\ell^{2}}{6 A E}+\alpha \ell \Delta T \\ & \bar{F}_{P}=-p_{a} \frac{\ell}{2}-p_{b} \frac{\ell}{2} \end{aligned}$	$\begin{aligned} & \mathbf{k}^{i}=\left[\begin{array}{cc} \frac{A E}{\ell} & -\frac{A E}{\ell} \\ -\frac{A E}{\ell} & \frac{A E}{\ell} \end{array}\right] \quad \mathbf{v}^{i}=\left[\begin{array}{l} u_{a} \\ u_{b} \end{array}\right] \\ & \overline{\mathbf{p}}^{i}=\left[\begin{array}{l} -\frac{A E}{\ell} \bar{F}_{u} \\ -\bar{F}_{P}+\frac{A E}{\ell} \bar{F}_{u} \end{array}\right] \quad \mathbf{p}^{i}=\left[\begin{array}{l} p_{a} \\ p_{b} \end{array}\right] \end{aligned}$

| ¢ | 2.
 On elastic foundation k_{x} $\beta^{2}=k_{x} / A E$ | $\left[\frac{\cosh \beta \ell}{\text { AE } \beta \sinh \beta \ell}\right.$ 0 | $\frac{\sinh \beta \ell}{A E \beta}$
 $\cosh \beta \ell$
 0 | \|c|c| $\left.\begin{array}{c}\bar{F}_{u} \\ \hline \bar{F}_{P} \\ \hline 1\end{array}\right]$ | $\begin{aligned} \bar{F}_{u}= & -\frac{p_{a}}{A E}\left(\frac{-1+\cosh \beta \ell}{\beta^{2}}-\frac{-\beta \ell+\sinh \beta \ell}{\beta^{3} \ell}\right) \\ & -\frac{p_{b}}{A E} \frac{-\beta \ell+\sinh \beta \ell}{\beta^{3} \ell}+\alpha \Delta T \frac{\sinh \beta \ell}{\beta} \\ \bar{F}_{P}= & -p_{a}\left(\frac{\sinh \beta \ell}{\beta}-\frac{-1+\cosh \beta \ell}{\beta^{2} \ell}\right) \\ & -p_{b} \frac{-1+\cosh \beta \ell}{\beta^{2} \ell}-A E \alpha \Delta T(1-\cosh \beta \ell) \end{aligned}$ | $\begin{aligned} & \mathbf{k}^{i}=\left[\begin{array}{cc} A E \beta \frac{\cosh \beta \ell}{\sinh \beta \ell} & -\frac{A E \beta}{\sinh \beta \ell} \\ -\frac{A E \beta}{\sinh \beta \ell} & A E \beta \frac{\cosh \beta \ell}{\sinh \beta \ell} \end{array}\right] \\ & \overline{\mathbf{p}}^{i}=\left[\begin{array}{c} -\frac{A E \beta}{\sinh \beta \ell} \bar{F}_{u} \\ -\bar{F}_{p}+\frac{\cosh \beta \ell}{\sinh \beta \ell} A E \beta \bar{F}_{u} \end{array}\right] \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 3.
 With mass and foundation $\begin{aligned} & \rho=\text { mass/length } \\ & \beta^{2}=\left(\rho \omega^{2}-k_{x}\right) / A E \end{aligned}$
 If $\beta^{2}<0$, use case 2
 with $\beta^{2}=\left(k_{x}-\rho \omega^{2}\right) / A E$ | | $\frac{\sin \beta \ell}{A E \beta}$
 $\cos \beta \ell$
 0 | $\left.\begin{array}{c}\bar{F}_{u} \\ \hline \bar{F}_{P} \\ 1\end{array}\right]$ | $\begin{aligned} \bar{F}_{u}= & -\frac{p_{a}}{A E}\left(\frac{1-\cos \beta \ell}{\beta^{2}}-\frac{\beta \ell-\sin \beta \ell}{\beta^{3} \ell}\right) \\ & -\frac{p_{b}}{A E} \frac{\beta \ell-\sin \beta \ell}{\beta^{3} \ell}+\alpha \Delta T \frac{\sin \beta \ell}{\beta} \\ \bar{F}_{p}= & -p_{a}\left(\frac{\sin \beta \ell}{\beta}-\frac{1-\cos \beta \ell}{\beta^{2} \ell}\right) \\ & -p_{b} \frac{1-\cos \beta \ell}{\beta^{2} \ell}-A E \alpha \Delta T(1-\cos \beta \ell) \end{aligned}$ | Dynamic stiffness matrix $\begin{aligned} & \mathbf{k}^{i}=\left[\begin{array}{cc} A E \beta \frac{\cos \beta \ell}{\sin \beta \ell} & -\frac{A E \beta}{\sin \beta \ell} \\ -\frac{A E \beta}{\sin \beta \ell} & A E \beta \frac{\cos \beta \ell}{\sin \beta \ell} \end{array}\right] \\ & \overline{\mathbf{p}}^{i}=\left[\begin{array}{c} -\frac{A E \beta}{\sin \beta \ell} \bar{F}_{u} \\ -\bar{F}_{P}+A E \beta \frac{\cos \beta \ell}{\sin \beta \ell} \bar{F}_{u} \end{array}\right] \end{aligned}$ |

TABLE 12-9 SELECTED TRANSFER MATRICES FOR EXTENSION

Notation

$k_{b}=$ spring constant ${ }^{a}$ of branch system (F/L) $\quad P_{i}=$ applied concentrated axial force
$k_{x}=$ elastic foundation modulus $\quad \omega=$ natural frequency
$M_{i}=$ concentrated mass $\quad \rho=$ mass per unit length

Case	Transfer Matrix
1. Point matrix	$\mathbf{U}_{i}=\left[\begin{array}{c\|c\|c}1 & 1 / k & 0 \\ \hline k_{b}-M_{i} \omega^{2} & 1 & -P_{i} \\ \hline 0 & 0 & 1\end{array}\right]$
2. Rigid bar	$\mathbf{U}^{i}=\left[\begin{array}{c\|c\|c}1 & 0 & 0 \\ \hline \ell\left(k_{x}-\rho \omega^{2}\right) & 1 & -\frac{1}{2} \ell\left(p_{a}+p_{b}\right) \\ \hline 0 & 0 & 1\end{array}\right]$

${ }^{a}$ The spring constant k can be considered to be equivalent to $E A / \ell$ of Table 12-8, case 1 . In the case of springs in parallel $k=k_{1}+k_{2}$. In the case of a coil spring $k=E d^{4} / 8 N D^{3}$, where $E=$ Young's modulus, $d=$ spring wire diameter, $D=$ mean coil diameter, and $N=$ number of coils. Other equivalent spring constants are given in Table 10-3.

TABLE 12-10 MASS MATRICES FOR BARS IN TORSION

Notation

$I_{p i}=$ polar mass moment of inertia of concentrated mass at point i
$I_{p}=$ polar mass moment of inertia per unit length

Bars in Torsion	Mass Matrix \mathbf{m}^{i}
1. Lumped mass model for distributed mass moment of inertia I_{p}	$\frac{I_{p} \ell}{2}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
2. Lumped mass single-point model for distributed mass moment of inertia I_{p}	1×1 mass matrix $I_{p} \ell$
3. Lumped mass matrix for two concentrated masses	$\left[\begin{array}{cc}I_{p a} & 0 \\ 0 & I_{p b}\end{array}\right]$
4. Consistent mass matrix	$-\frac{I_{p} \ell}{6}\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
5. General mass matrix	$\begin{aligned} & \mathbf{m}^{i}=\int_{0}^{\ell} \frac{J}{A} \rho \boldsymbol{\Lambda} \mathbf{\Lambda}^{T} d x \quad \boldsymbol{\Lambda}=\left[\begin{array}{c} H_{1} \\ H_{2} \end{array}\right] \\ & \text { with the disnlacement shane function } \end{aligned}$ with the displacement shape function $\phi(x)=H_{1} \varphi_{a}+H_{2} \varphi_{b}$. If for constant J the static response $H_{1}=1-x / \ell$, $H_{2}=x / \ell$ is employed, \mathbf{m}^{i} is the consistent mass matrix of case 4 .

TABLE 12-11 MASS MATRICES FOR BARS IN EXTENSION

C H A P T E R

Frames

13.1 Notation 662
Notation for Gridworks 662
13.2 Frames 663
Formulas 663
Buckling Loads 666
Natural Frequencies 666
Plastic Design 666
13.3 Gridworks 667
Static Loading 668
Buckling Loads 670
Natural Frequencies 671
General Grillages 672
13.4 Matrix Methods 672
Transfer Matrix Method 673
Stiffness and Mass Matrices 673
Stability Analysis 673
References 674
Tables 675

Structures formed of bars that are rigidly connected are referred to as frames, while those of bars that are pin connected are trusses. Analytically, trusses are treated as being a special case of frames. For the frames of this chapter, it is assumed that there is no interaction between axial, torsional, and flexural deformations (i.e., the responses are based on uncoupled extension, torsion, and bending theory).

Formulas are provided for several simple frame configurations with simple loadings. Also, structural matrices required for more complicated frames are listed. Many commercially available general-purpose structural analysis computer programs can be used to analyze complicated frames.

Entries in most of the tables of this chapter give salient values of reactions, forces, and moments. Also, a moment diagram is shown. This moment can be used to calculate the bending stresses using the technical beam theory flexural stress formula. Formulas for buckling loads and natural frequencies are tabulated.

Special attention is given to gridworks, which are flat networks of beams with transverse loading. Collapse loads are provided for plastic design.

13.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F for force, M for mass, and T for time.
$e=h / L$, where h is the length of the vertical members and L is the length of the horizontal members
E Modulus of elasticity of material $\left(F / L^{2}\right)$
H Horizontal reaction; H_{A} is horizontal reaction at location $A(F)$
I Moment of inertia of member about its neutral axis $\left(L^{4}\right)$
I_{h} Moment of inertia of horizontal members $\left(L^{4}\right)$
I_{v} Moment of inertia of vertical members $\left(L^{4}\right)$
I_{x} Polar moment of inertia, $=r_{p}^{2} A\left(L^{4}\right)$
J Torsional constant (L^{4})
L Length of member (L)
M Bending moment ($L F$); a bending moment is taken as positive when it causes tension on the inner side of the frame and compression on the outer side; opposing bending moments are taken to be negative
p Applied distributed loading (F / L)
R Vertical reaction; R_{A} is vertical reaction at location $A(F)$
$\tilde{u}, \tilde{v}, \tilde{w}$ Displacements in x, y, and z directions, respectively
u_{X}, u_{Y}, u_{Z} Displacements in X, Y, and Z directions, respectively
v Displacement; $v_{A x}$ is displacement at location A in the x (horizontal) direction; other displacements defined similarly (L)
x, y, z Local coordinates
X, Y, Z Global coordinates
$\beta=I_{h}$ (horizontal beam) $/ I_{v}$ (vertical member)
$\theta=\theta_{y}$ Rotation angle of cross section about y axis
θ_{z} Rotation angle of cross section about z axis
ω Natural frequency

Notation for Gridworks

g, s Index for girders and stiffeners, respectively
I_{g}, I_{s} Moments of inertia of girders and stiffeners, respectively $\left(L^{4}\right)$
L_{g}, L_{s} Length of girders and stiffeners, respectively (L)
n_{g}, n_{s} Total number of girders and stiffeners, respectively
p_{s} Loading intensity along s th stiffener (F / L)
P_{g}, P_{s} Axial forces in girders and stiffeners, respectively (F)

$$
\begin{aligned}
w_{g}, \theta_{g}, M_{g}, V_{g} & \text { Deflection, slope, bending moment, and shear force of } g \text { th girder } \\
W_{s g} & \text { Concentrated force at intersection } x_{s}, y_{g}(F) \\
\rho_{g}, \rho_{s} & \text { Mass per unit length of girders and stiffeners, respectively }(M / L, \\
& \left.F T^{2} / L^{2}\right)
\end{aligned}
$$

13.2 FRAMES

Formulas

Tables 13-1 to 13-3 provide formulas for the static response of simple frameworks. More complicated loading configurations can be obtained by superimposing the formulas for cases given in the tables. This is illustrated in Example 13.5. Formulas for frames of more complicated geometries are to be found in standard references (e.g., [13.1, 13.2]). Readily available structural analysis computer programs can be used to find the forces and displacements as well as buckling loads and natural frequencies in frameworks of any complexity.

Example 13.1 Statically Determinate Frame with Concentrated Force The frame of Fig. 13-1 is hinged at the lower end of the left-hand member and is roller supported at the lower end of the right-hand member.

Figure 13-1: Statically determinate frame.

From case 1 of Table 13-1,

$$
R_{A}=R_{B}=\frac{1}{2} W=5000 \mathrm{lb}, \quad M_{\max }=\frac{1}{4} W L=45,000 \mathrm{ft}-\mathrm{lb}
$$

Example 13.2 Statically Indeterminate Frame with Concentrated Force Suppose for the frame of Fig. 13-1 that the lower end of the right-hand member is hinged (no roller). Then the frame is statically indeterminate, so that case 1 of Table 13-2 applies. Use $a=\frac{1}{2} L=108$ in., $e=h / L=\frac{8}{18}=0.444, \beta=I_{h} / I_{v}=\frac{719}{1890}=0.380$. From Table 13-2,

$$
\begin{aligned}
H_{A} & =H_{B}=\frac{3 W a}{2 h L} \frac{L-a}{2 \beta e+3}=2528 \mathrm{lb} \\
R_{A} & =R_{B}=\frac{1}{2} W=5000 \mathrm{lb} \\
M_{C} & =M_{D}=\frac{3 W a}{2 L} \frac{L-a}{2 \beta e+3}=242,700 \mathrm{in.} . \mathrm{lb} \\
M_{K} & =\frac{W a(L-a)}{2 L} \frac{4 \beta e+3}{2 \beta e+3}=297,300 \mathrm{in.} . \mathrm{lb}
\end{aligned}
$$

The moment diagram is sketched in case 1 of Table 13-2.

Example 13.3 Frame with Fixed Legs If the lower ends of the legs of the frame of Fig. 13-1 are fixed, the reactions and moment distribution can be calculated using case 6 of Table 13-2. As in Example 13.2, $a=108 \mathrm{in}$., $e=0.444$, and $\beta=0.380$. The reactions are

$$
\begin{aligned}
R_{A} & =R_{B}=\frac{1}{2} W=5000 \mathrm{lb} \\
H_{A} & =H_{B}=3 W L /[8 h(\beta e+2)]=3891 \mathrm{lb} \\
M_{A} & =M_{B}=W L /[8(\beta e+2)]=H_{A} h / 3=124,497 \mathrm{in} .-\mathrm{lb} \\
M_{C} & =M_{D}=W L /[4(\beta e+2)]=2 M_{A}=248,995 \mathrm{in} .-\mathrm{lb} \\
M_{K} & =\frac{W L}{4} \frac{\beta e+1}{\beta e+2}=291,005 \mathrm{in} . \mathrm{lb}
\end{aligned}
$$

Case 6 of Table 13-2 illustrates the moment distribution.

Example 13.4 Laterally Loaded Frame Suppose that the vertical load is removed from the frame of Example 13.2 and replaced by a lateral load acting at half height, as shown in Fig. 13-2.

Figure 13-2: Statically indeterminate frame of Example 13.4. The dimensions and section properties are given in Fig. 13-1.

Use the formulas of case 3 of Table 13-2 with $W=8000 \mathrm{lb}, h=96 \mathrm{in}$., $a=$ $\frac{1}{2} h=48$ in., $\beta=0.380$, and $L=216 \mathrm{in}$. Define a constant

$$
A=a \beta(2 h-a) /[h(2 h \beta+3 L)]=0.0379494
$$

Then we find that

$$
\begin{aligned}
R_{A} & =R_{B}=W(h-a) / L=1778 \mathrm{lb} \\
H_{A} & =(W / 2 h)[h+a-(h-a) A]=5924 \mathrm{lb} \\
H_{B} & =[W(h-a) / 2 h](1+A)=2076 \mathrm{lb} \\
M_{C} & =H_{B} h=199,296 \mathrm{in} .-\mathrm{lb} \\
M_{D} & =\frac{1}{2} W(h-a)(1-A)=184,714 \mathrm{in} .-\mathrm{lb} \\
M_{K} & =(h-a) H_{A}=284,352 \mathrm{in} .-\mathrm{lb}
\end{aligned}
$$

The moment diagram is given in Table 13-2, case 3.

Example 13.5 Superposition of Solutions for a Frame with Several Loadings

 Suppose that the frame of Fig. 13-2 is subjected to the loads of Examples 13.2 and 13.4 simultaneously. This configuration is shown in Fig. 13-3.

Figure 13-3: Frame of Fig. 13-2 with horizontal and vertical loading.

Since these frame formulas are based on linear theory, superposition holds. See cases 1 and 3 of Table 13-2 for the directions of the reactions. Superposition gives, for the frame of Fig. 13-3,

$$
\begin{array}{rlrl}
H_{A} & =5924-2528 & =3396 \mathrm{lb}, & \\
H_{B}=2076+2528 & =4604 \mathrm{lb} \\
R_{A} & =5000-1778=3222 \mathrm{lb}, & R_{B}=5000+1778=6778 \mathrm{lb}
\end{array}
$$

The directions of these reactions are shown in Fig. 13-3.

The moment diagram can be obtained by superimposing the moment diagrams of cases 1 and 3, Table 13-2, with due regard being given to the signs of the moments. Alternatively, the moment diagram can be calculated using the applied loading and the computed reactions. Thus,

$$
\begin{aligned}
M_{C} & =H_{B} h=441,984 \mathrm{in} .-\mathrm{lb} \\
M_{K_{1}} & =-H_{B} h+\frac{1}{2} R_{B} L=+290,040 \mathrm{in} .-\mathrm{lb} \\
M_{K_{2}} & =H_{A} \times 48=163,008 \mathrm{in} .-\mathrm{lb} \\
M_{D} & =W_{2} \times 48-H_{A} h=57,984 \mathrm{in.} . \mathrm{lb}
\end{aligned}
$$

Figure 13-4: Moment diagram for frame of Fig. 13-3.

The combined moment diagram is illustrated in Fig. 13-4.

Buckling Loads

The buckling loads for some frames are given in Table 13-4. Reference [13.3] provides more cases. Methods for obtaining buckling loads of simple frames are described in Ref. [13.4]. For more complicated frames, use the matrix methods given in Section 13.4.

Natural Frequencies

Table 13-5 provides the fundamental natural frequencies for some simple framework configurations. The computational methods of Section 13.4 can be used to obtain the natural frequencies for more general frames.

Plastic Design

As in the case of beams, the concept of plastic design can be applied to frames. The primary objective of the design is to find the collapse load and the location of the plastic hinges. Normally, these plastic designs are restricted to proportional loading such that all loads acting on a frame remain in fixed proportion as their
magnitudes are varied. The common factor that multiplies all loads as they vary in fixed proportion is called the load factor. The procedure for finding the load factor is as follows [13.5]:

1. Find the locations of the plastic hinges in each component of the frame using the same method as for beams.
2. Form possible failure modes called mechanisms by different combinations of plastic hinges. The number of hinges in each mechanism is equal to the number of redundancies plus 1 .
3. Calculate the collapse load factor for each mechanism.
4. Calculate the moments in the frame for each collapse load factor to determine the correct load factor. The true load factor should be such that the moment in the frame due to this load should not exceed the plastic moment M_{p}.

In addition to the collapse load factors that can be determined, a safe-load region can be established. Table 13-6 shows safe-load regions for several frameworks. In Table 13-6, a combination of forces applied on the frame define a point on the $x y$ plane. When this point falls inside the safe region, no collapse occurs. When the point falls on the boundary of the region, collapse occurs and the collapse mode is identified by the location on the boundary, as indicated by the figures in Table 13-6. Loadings leading to points outside the region correspond to a collapsed framework. In fact, an attempt to increase the applied loads beyond that necessary to reach the boundary results in further movements of the plastic hinges without an increase in the collapse loads. See Ref. [13.5] for techniques for calculating the safe-load region.

13.3 GRIDWORKS

A special case of frames is a gridwork, or grillage, which is a network of beams rigidly connected at the intersections, loaded transversely. That is, a gridwork is a network of closely spaced beams with out-of-plane loading. It may be of any shape and the network of beams may intersect at any angle. These beams need not be uniform.

The gridworks treated here are plane structures (Fig. 13-5), with the beams lying in one direction called girders and those lying in the perpendicular direction called stiffeners. Either set of gridwork beams can be selected to be the girders. In practice, the wider spaced and heavier set is usually designated as girders, whereas the closer spaced and lighter beams are stiffeners. For a uniform gridwork, the girders are identical in size, end conditions, and spacing. However, the set of stiffeners may differ from the set of girders, although the stiffeners are identical to each other. The treatment here is adapted from Ref [13.6].

For the formulas here, the cross section of the beams may be open or closed, although torsional rigidity is not taken into account. For closed cross sections this may lead to an error of up to 5%. Stresses in the girders and stiffeners can be calculated using the formulas for beams in Chapter 11.

Figure 13-5: Typical gridwork.

For gridworks not covered by the formulas here, use can be made of a framework computer program. The structural matrices, including transfer, stiffness, and mass matrices, for a grillage are provided in Section 13.4. The sign convention of the transfer matrix method for displacements and forces for the beams of Chapter 11 apply to the gridwork beams here.

Static Loading

The deflection, slope, bending moment, and shear force of the g th girder of the gridwork are given in Table 13-7. The ends of both the girders and stiffeners are simply supported. Table 13-8 provides the parameters K_{j} for particular loadings. Sufficient accuracy is usually achieved if only M terms, where $M \ll \infty$, are included in the formulas for Tables 13-7 and 13-8; that is,

$$
\sum_{j=1}^{\infty}=\sum_{j=1}^{M}
$$

Example 13.6 Deflection of a Gridwork with Uniform Force The grillage of Fig. 13-6 is loaded with a uniform force of 10 psi. Use the formulas of Tables 13-7 and 13-8 to find the deflections at the intersections of the beams. Assume that the axial forces in both the girders and stiffeners are zero.

As indicated in case 3 , Table 13-8, only a single term is needed in the summation of the formulas of Table 13-7. It is reasonable to assume that the loading intensity along either of the stiffeners will be $p_{s}=(10 \mathrm{psi}) L_{g} /\left(n_{s}+1\right)=10\left(\frac{100}{3}\right)=$ $333.33 \mathrm{lb} / \mathrm{in}$. Use one term of case 1, Table 13-7:

$$
\begin{equation*}
w_{g}=\sin \frac{\pi g}{n_{g}+1} K_{1} \sin \frac{\pi x}{L_{g}}=K_{1} \sin \frac{\pi g}{3} \sin \frac{\pi x}{100} \tag{1}
\end{equation*}
$$

where from case 3 of Table 13-8, since $P_{g}=P_{s}=0$,

$$
\begin{aligned}
& I_{s}=I_{g}=100 \mathrm{in}^{4}{ }^{4}, E=3 \times 10^{7} \mathrm{psi} \\
& L_{s}=L_{g}=100 \mathrm{in.} .
\end{aligned}
$$

Figure 13-6: Grillage for Examples 13.6-13.8.

$$
\begin{equation*}
K_{1}=\frac{\frac{4 L_{s}^{4}}{E I_{s} \pi^{5}} \sum_{s=1}^{2} p_{s} \sin \frac{\pi s}{3}}{\frac{3}{2}+\frac{3}{2}}=\frac{\frac{4 L_{s}^{4} p_{s}}{E I_{s} \pi^{5}}(\sqrt{3} / 2+\sqrt{3} / 2)}{\frac{3}{2}+\frac{3}{2}}=\frac{4 L_{s}^{4} p_{s}}{E I_{s} \pi^{5}} \frac{\sqrt{3}}{3} \tag{2}
\end{equation*}
$$

Then

$$
\begin{align*}
\left.w_{1}\right|_{x=L_{g} / 3} & =\left.w_{2}\right|_{x=L_{g} / 3}=\left.w_{1}\right|_{x=2 L_{g} / 3}=\left.w_{2}\right|_{x=2 L_{g} / 3} \\
& =\frac{4 L_{s}^{4} p_{s}}{E I_{s} \pi^{5}} \frac{\sqrt{3}}{3} \sin \frac{\pi}{3} \sin \frac{\pi}{3}=0.062886 \mathrm{in} . \tag{3}
\end{align*}
$$

Example 13.7 Moment in a Gridwork with Uniform Force and Axial Loads Find the maximum bending moment in the grillage of Fig. 13-6. The grillage is loaded with a transverse uniform force of 10 psi. In addition, the girders are subject to compressive axial forces of 5000 lb .

The bending moments in the girders are given by case 3 , Table 13-7. As noted in case 3 of Table 13-8, only one term in case 3, Table 13-7, is required. Thus

$$
\begin{equation*}
M_{g}=E I_{g} \sin \frac{\pi g}{n_{g}+1} K_{1} \frac{\pi^{2}}{L_{g}^{2}} \sin \frac{\pi x}{L_{g}} \tag{1}
\end{equation*}
$$

The coefficient K_{1} is taken from case 3, Table 13-8. Use the data $L_{s}=L_{g}=$ 100 in ., $E=3 \times 10^{7} \mathrm{psi}, I_{s}=I_{g}=100 \mathrm{in}^{4}, P_{s}=0, P_{g}=5000 \mathrm{lb}, n_{s}=2, n_{g}=2$, $p_{s}=333.33 \mathrm{lb} / \mathrm{in}$ (Example 13.6).

$$
\begin{gather*}
P_{e}=\frac{\pi^{2}\left(3 \times 10^{7}\right) 100}{100^{2}}=2,960,881=P_{c}, \quad \frac{P_{g}}{P_{c}}=1.69 \times 10^{-3} \tag{2}\\
K_{1}=\frac{\frac{4 L_{s}^{4} p_{s}}{E I_{s} \pi^{5}} \sum_{s=1}^{2} \sin \frac{\pi s}{3}}{\frac{3}{2}(0.99831)+\frac{3}{2}}=\frac{4 L_{s}^{4} p_{s}}{E I_{s} \pi^{5}}(0.57784) \tag{3}
\end{gather*}
$$

It follows from symmetry that the maximum moment occurs at $x=\frac{1}{2} L_{g}$. Then, for $g=1$,

$$
\begin{equation*}
M_{1, \max }=\left.M_{g}\right|_{x=L_{g} / 2}=E I_{g} \sin \left(\frac{\pi}{3}\right) \frac{4 L_{s}^{4} p_{s}}{E I_{s} \pi^{5}}(0.57784) \frac{\pi^{2}}{L_{g}^{2}}=215,190 \mathrm{in} .-\mathrm{lb} \tag{4}
\end{equation*}
$$

Example 13.8 Deflections Due to Concentrated Forces Consider again the grillage of Fig. 13-6. Assume that there are no distributed or in-plane axial forces. Suppose that concentrated forces of $10,000 \mathrm{lb}$ act at each intersection.

With equal concentrated forces, sufficient accuracy is usually achieved with one term of the formulas of Table 13-7:

$$
\begin{equation*}
w_{g}=K_{1} \sin \frac{\pi g}{3} \sin \frac{\pi x}{100} \tag{1}
\end{equation*}
$$

with (case 1 of Table 13-8)

$$
\begin{equation*}
K_{1}=\frac{\frac{2 L_{s}^{3}}{E I_{s} \pi^{4}} \times 10,000 \sum_{s=1}^{2} \sum_{g=1}^{2} \sin \frac{\pi g}{3} \sin \frac{\pi s}{3}}{\frac{3}{2}+\frac{3}{2}}=\frac{2 L_{s}^{3}}{E I_{s} \pi^{4}} \times 10,000 \tag{2}
\end{equation*}
$$

Substitute (2) into (1):

$$
\begin{equation*}
\left.w_{1}\right|_{x=L_{g} / 3}=\left.w_{2}\right|_{x=L_{g} / 3}=\left.w_{1}\right|_{x=2 L_{g} / 3}=\left.w_{2}\right|_{x=2 L_{g} / 3}=0.0514 \mathrm{in} . \tag{3}
\end{equation*}
$$

Buckling Loads

The buckling or critical axial loads in the girders of uniform gridworks are given in Tables 13-9 and 13-10. That is, these are formulas for $P_{g}=P_{\mathrm{cr}}$. The formulas that apply for girders and stiffeners with fixed or simply supported ends are accurate for gridworks with more than five stiffeners. In some cases, the formulas will be sufficiently accurate for as few as three stiffeners.

Example 13.9 Buckling Loads Compute the critical axial forces in the girders of the gridwork of Fig. 13-7 if the girders can be simply supported or fixed. The stiffeners are simply supported. Suppose that $I_{g}=I_{s}$ and $L_{g}=L_{s}=L$. From Fig. 13-7, $n_{g}=3$ and $n_{s}=12$.

The girder buckling loads $P_{\text {cr }}$ are given by the formulas of Table 13-9 for girders with fixed or simply supported ends. These formulas involve the constant C_{1}, which is taken from Table 13-10 according to the stiffener end conditions. To use Table 13-9, first calculate D_{1}. For simply supported stiffeners and $n_{g}=3$, the constant C_{1} is given as 0.041089 in Table 13-10. Thus,

$$
D_{3}=\sqrt{C_{1} L_{g} L_{s}^{3} I_{g} /\left[I_{s}\left(n_{s}+1\right)\right]}=\sqrt{C_{1} L^{4} / 13}=L^{2} \sqrt{C_{1} / 13}
$$

Figure 13-7: Example 13.9.
and

$$
\begin{aligned}
D_{1} & =0.0866 L_{g}^{2} / D_{3}=0.0866 \sqrt{13 / C_{1}}=1.54 \\
D_{2} & =0.202 L_{g}^{2} / D_{3}=3.5930
\end{aligned}
$$

Since $D_{1}>1$, cases 2 and 4 in Table 13-9 are used. These give $P_{\text {cr }}=D_{2} P_{e}=$ $3.5930 P_{e}$ for simply supported girders and $P_{\text {cr }}=6.5930 P_{e}$ for fixed girders.

Natural Frequencies

Designate the natural frequencies of a gridwork as $\omega_{m n}$, where the subscript m indicates the number of mode-shape half waves in the y (stiffener) direction and n indicates the number of half waves in the x (girder) direction. Figure 13-8 illustrates typical mode shapes associated with $\omega_{m n}$.

For a uniform grillage with simply supported stiffeners, the lower natural frequencies (radians per time) are given by

$$
\begin{equation*}
\omega_{m n}^{2}=\frac{E I_{s} L_{g}\left(\frac{\pi m}{L_{s}}\right)^{4}+E I_{g} \frac{n_{g}+1}{C_{n} L_{g}^{3}}-P_{s}\left(\frac{m \pi}{L_{s}}\right)^{2} L_{g}}{\rho_{s} L_{s}+\rho_{g} L_{g}} \tag{13.1}
\end{equation*}
$$

where n_{g} is the number of girders; I_{g}, I_{s} are the moments of inertia of girders and stiffeners, respectively; L_{g}, L_{s} are the length of girders and stiffeners, respectively; ρ_{g}, ρ_{s} are the mass per unit length of girders and stiffeners, respectively $\left(M / L, F T^{2} / L^{2}\right)$; and E is the modulus of elasticity. The stiffener axial force P_{s}

Figure 13-8: Mode shapes corresponding to frequencies $\omega_{m n}$.
is simply set equal to zero if the stiffeners are not subject to axial forces. The parameter C_{n} is given in Table 13-11 for girders with fixed or simply supported ends. Recall that either set of grillage beams can be selected to be the girders.

If each of the girders is subjected to an axial force P_{g}, Eq. (13.1) still provides the natural frequencies if C_{n} is replaced by

$$
\begin{equation*}
C_{n} \frac{P_{e}}{P_{e}-P_{g}} \tag{13.2}
\end{equation*}
$$

where $P_{e}=\pi^{2} E I_{g} / L_{g}^{2}$.
Example 13.10 Natural Frequencies of a Simply Supported Gridwork Find the lower natural frequencies of a 3×3 grillage for which all beam ends are simply supported. For this grillage, $n_{g}=n_{s}=3, I_{g}=I_{s}=100 \mathrm{in}^{4}, \rho_{g}=\rho_{s}=$ $1 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in}^{2}, L_{g}=L_{s}=100 \mathrm{in}$., and $E=3 \times 10^{7} \mathrm{psi}$. There are no axial forces (i.e., $P_{s}=0, P_{g}=0$). From Eq. (13.1),

$$
\begin{equation*}
\omega_{m n}^{2}=\frac{\left(3 \times 10^{7}\right) 100\left[m^{4} \pi^{4}+(3+1) / C_{n}\right] / 100^{3}}{2 \times 100}=15\left(m^{4} \pi^{4}+\frac{4}{C_{n}}\right) \tag{1}
\end{equation*}
$$

To calculate $\omega_{11}, \omega_{21}, \omega_{12}$, and ω_{22}, enter Table 13-11 for $n_{s}=3$ and find $C_{1}=$ 0.041089 and $C_{2}=0.0026042$. Use (1):

$$
\begin{align*}
& \omega_{11}^{2}=15\left(\pi^{4}+4 / C_{1}\right)=2921.37 \quad \text { or } \quad \omega_{11}=54 \mathrm{rad} / \mathrm{s} \\
& \omega_{21}^{2}=15\left(16 \pi^{4}+4 / C_{1}\right)=24,838.347 \quad \text { or } \quad \omega_{21}=157.6 \mathrm{rad} / \mathrm{s} \\
& \omega_{12}^{2}=15\left(\pi^{4}+4 / C_{2}\right)=24,500.831 \quad \text { or } \quad \omega_{12}=156.5 \mathrm{rad} / \mathrm{s} \tag{2}\\
& \omega_{22}^{2}=15\left(16 \pi^{4}+4 / C_{2}\right)=46,417.89 \quad \text { or } \quad \omega_{22}=215 \mathrm{rad} / \mathrm{s}
\end{align*}
$$

Other frequencies can be calculated in a similar fashion.

General Grillages

The formulas for uniform gridworks are provided in this section. Since gridworks are a special case of frameworks, use a computer program for the analysis of frames to find the response of complicated grillages. The structural matrices for grillages are listed in Section 13.4 under plane frames with out-of-plane loading.

13.4 MATRIX METHODS

Frames and trusses (both generally referred to as frames) can be considered as assemblages of beams and bars. As a consequence, they can be analyzed using the matrix methods (transfer and displacement) of Appendix III. The displacement method
can be employed to obtain the nodal responses, while the displacements and forces between the nodes along the members can be obtained using the transfer matrix method. Such references as [13.7]-[13.10] contain frame analysis formulations.

Frames are often classified as being plane (two-dimensional) and spatial (threedimensional) in engineering practice.

Transfer Matrix Method

The transfer matrices provided in Chapters 11 and 12 can be combined to obtain the transfer matrices for the analysis of frames or frame members. See Appendixes II and III.

Stiffness and Mass Matrices

In general, the analysis of plane frames requires the inclusion of the axial effects (extension or torsion) as well as bending in the stiffness matrix. As discussed in Appendix III, the analysis also requires a transformation of many variables from local to global coordinates. Then the global system matrix can be assembled. For dynamic problems, the mass matrices can be treated similarly to establish the system mass matrix. The nodal displacements are found by introducing the boundary conditions and solving resulting equations. See the examples in Appendix III.

The stiffness matrices for plane and space trusses and frames are presented in Tables 13-12 to 13-15. Mass matrices for frames are listed in Tables 13-16 and 13-17. All of these matrices use sign convention 2 of Appendix II. Use a frame analysis to analyze a truss for dynamic responses. Stiffness matrices for more complex members can be constructed from the general stiffness matrices of Chapter 11. For example, it is possible to introduce a 4×4 beam stiffness matrix that includes the effect of an axial force on bending. Also, if thin-walled cross sections are of concern, the 4×4 structural matrices of Chapter 14 can replace the 2×2 torsional matrices of this chapter.

Stability Analysis

The stiffness matrices listed in the tables of this chapter do not include the interactions between bending and axial forces. However, in some analyses (e.g., a stability analysis), this interaction must be considered in that the bending moment caused by the axial forces must be included. To do so, introduce the stiffness matrix of Table 11-22 with $P \neq 0$. The buckling loading can be obtained using a determinant search after the global stiffness matrix is assembled and the boundary conditions applied. The details of this instability procedure follow.

1. Perform a static analysis of the frame using the stiffness matrices given in Tables 13-12 to 13-15 to determine the axial forces in each element resulting from a given load.
2. Use element stiffness matrices, such as that given in Table 11-22, that include the effects of bending and the axial force interaction.
3. Assemble the element matrices to form the global stiffness matrix, and impose the boundary conditions on the global matrix using the procedure described in Appendix III.
4. Let all internal axial forces remain in the same fixed proportions to each other throughout the search for the critical applied load. These fixed proportions are determined in step 1. Introduce a single load factor λ that holds for global structural matrices that model the entire structure. This λ is a common factor that multiplies all loads as they vary in fixed proportion.
5. Let the determinant of the global stiffness matrix be zero and determine λ, usually employing a numerical search technique. This λ is the critical load factor.

For examples, see Ref. [13.11].

The stability analysis can also be conducted approximately, but efficiently, by employing the geometric stiffness matrix given in Table 11-23 and using the displacement method of Appendix III.

REFERENCES

13.1. Leontovich, V., Frames and Arches, McGraw-Hill, New York, 1959.

13.2. Kleinlogel, A., Rigid Frame Formulas, Frederick Ungar, New York, 1952.
13.3. Column Research Committee of Japan, Handbook of Structural Stability, Corona Publishing, Tokyo, 1971.
13.4. Timoshenko, S., Theory of Elastic Stability, McGraw-Hill, New York, 1936.
13.5. Baker, J., and Heyman, J., Plastic Design of Frames, Cambridge University Press, London, 1969.
13.6. Pilkey, W. D., and Chang, P. Y., Modern Formulas for Statics and Dynamics, McGraw-Hill, New York, 1978.
13.7. Weaver, W., and Johnston, P. R., Structural Dynamics by Finite Elements, Prentice-Hall, Englewood Cliffs, NJ, 1987.
13.8. Paz, M., Structural Dynamics, Van Nostrand Reinhold, New York, 1980.
13.9. Ross, C. T. F., Finite Element Methods in Structural Mechanics, Ellis Horwood, Chichester, West Sussex, England, 1985.
13.10. Pilkey, W. D., and Okada, Y., Matrix Methods in Mechanical Vibration, Corona Publishing, Tokyo, 1989.
13.11. Wunderlich, W., and Pilkey, W. D., Structural Mechanics: Variational and Computational Methods, 2nd ed., CRC Press, Boca Raton, FL, 2003.
13.12. Schiff, D., Dynamic Analysis and Failure Modes of Simple Structures, Wiley, New York, 1990.
13.13. Blevins, R. D., Formulas for Natural Frequency and Mode Shape, Van Nostrand, New York, 1979.

1 3

Tables

13-1 Statically Determinate Rectangular Single-Bay Frames of Constant Cross Section 676
13-2 Statically Indeterminate Rectangular Frames 681
13-3 Nonrectangular Single-Bay Frames 687
13-4 Buckling Loads for Frames 699
13-5 Fundamental Natural Frequencies of Frames 702
13-6 Safe-Load Regions 715
13-7 Uniform Gridworks 718
13-8 Parameters K_{j} of Table 13-7 for the Static Response of Gridworks 719
13-9 Critical Axial Loads in Girders 720
13-10 Values of C_{1} of Table 13-9 for Stability 721
13-11 Values of Natural Frequency Parameters C_{n} of Eqs. (13.1) and (13.2) 722
13-12 Stiffness Matrix for Plane Trusses 723
13-13 Stiffness Matrix for Space Trusses 724
13-14 Stiffness Matrices for Plane Frames 725
13-15 Stiffness Matrix for Bar in Space 727
13-16 Mass Matrices for Plane Frames 729
13-17 Mass Matrices for Space Frames 731

TABLE 13-1 STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF CONSTANT CROSS SECTION

The direction of the reaction forces are shown in the figures of the configurations. The signs of the moments are shown in the moment diagrams. A bending moment is indicated as positive when it causes tension on the inner side of the frame and compression on the outer side. Opposing moments are negative. The formulas in the table give the magnitudes of these quantities. The horizontal and vertical coordinate axes are x and y, respectively. $v_{j k}$ is the displacement of point j in the k direction. θ_{j} is the slope at j.

Configuration	Moment Diagram	Important Values
1.		$\begin{aligned} & H_{A}=0 \\ & R_{A}=R_{B}=\frac{1}{2} W \\ & v_{B x}=\frac{W h L^{2}}{8 E I} \\ & M_{\max }=\frac{1}{4} W L \quad \text { at point } K \end{aligned}$
2.		$\begin{aligned} & H_{A}=W \quad R_{A}=R_{B}=W \frac{h}{L} \\ & v_{B x}=\frac{W h^{2}}{6 E I}(3 L+2 h) \\ & v_{C y}=0 \quad v_{C x}=\frac{W h^{2}}{3 E I}(L+h) \\ & M_{\max }=W h \quad \text { at point } D \end{aligned}$
3.		$\begin{aligned} & H_{A}=W \quad R_{A}=R_{B}=0 \\ & v_{B x}=\frac{W h^{2}}{3 E I}(3 L+2 h) \\ & M_{\max }=W h \end{aligned}$
4.		$\begin{aligned} & H_{A}=0 \quad R_{A}=R_{B}=\frac{M_{0}}{L} \\ & v_{B x}=\frac{M_{0} h L}{2 E I} \\ & M_{\max }=M_{0} \quad \text { at point } C \end{aligned}$

TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF CONSTANT CROSS SECTION

Configuration	Moment Diagram	Important Values
5.		$\begin{aligned} & H_{A}=0 \quad R_{A}=R_{B}=\frac{M_{0}}{L} \\ & \theta_{K}=\frac{M_{0} L}{12 E I} \\ & M_{\max }=\frac{1}{2} M_{0} \quad \text { at point } K \end{aligned}$
6.		$\begin{aligned} & H_{A}=0 \quad R_{A}=R_{B}=\frac{1}{2} p_{1} L \\ & v_{b x}=\frac{p_{1} h L^{3}}{12 E I} \\ & M_{\max }=\frac{1}{8} p_{1} L^{2} \quad \text { at } x=\frac{1}{2} L \end{aligned}$
7.		$\begin{aligned} & H_{A}=p_{1} h \quad R_{A}=R_{B}=\frac{p_{1} h^{2}}{2 L} \\ & v_{B x}=\frac{p_{1} h^{3}}{24 E I}(6 L+5 h) \\ & M_{\max }=\frac{1}{2} p_{1} h^{2} \quad \text { at point } D \end{aligned}$
8.		$\begin{aligned} & H_{A}=p_{1} h \quad R_{A}=R_{B}=\frac{p_{1} h^{2}}{2 L} \\ & v_{B x}=\frac{p_{1} h^{3}}{24 E I}(18 L+11 h) \\ & M_{\max }=p_{1} h^{2} \quad \text { at point } D \end{aligned}$

TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF CONSTANT CROSS SECTION

Configuration	Moment Diagram	Important Values
9.		$\begin{aligned} & H_{A}=W \quad R_{A}=0 \quad M_{A}=0 \\ & v_{D x}=\frac{W h^{2}}{3 E I}(3 L+4 h) \\ & v_{D y}=-\frac{W h L}{2 E I}(L+h) \\ & M_{\max }=W h \quad \text { at points } B, C \end{aligned}$
10.		$\begin{aligned} & H_{A}=0 \quad R_{A}=W \quad M_{A}=W L \\ & v_{D x}=-\frac{W h L}{2 E I}(L+2 h) \\ & v_{D y}=\frac{W L^{2}}{3 E I}(L+3 h) \\ & M_{\max }=W L \end{aligned}$
11.		$\begin{aligned} & H_{A}=W \quad R_{A}=0 \quad M_{A}=W h \\ & v_{D x}=-\frac{W h^{3}}{2 E I} \quad v_{D y}=\frac{W L h^{2}}{2 E I} \\ & v_{C x}=\frac{W h^{3}}{3 E I} \quad v_{C y}=\frac{W L h^{2}}{2 E I} \\ & M_{\max }=W h \quad \text { at point } A \end{aligned}$
12.		$\begin{aligned} & H_{A}=0 \quad R_{A}=0 \quad M_{A}=M_{0} \\ & v_{D x}=\frac{M_{0} h}{E I}(L+3 h) \\ & v_{D y}=-\frac{M_{0} L}{2 E I}(L+2 h) \\ & \theta_{D}=\frac{M_{0}}{E I}(L+2 h) \quad M_{\max }=M_{0} \end{aligned}$
13.		$\begin{aligned} & H_{A}=0 \quad R_{A}=p_{1} L \\ & M_{A}=\frac{1}{2} p_{1} L^{2} \\ & v_{D x}=-\frac{p_{1} L^{2} h}{6 E I}(L+3 h) \\ & v_{D y}=\frac{p_{1} L^{3}}{8 E I}(L+4 h) \\ & M_{\max }=\frac{1}{2} p_{1} L^{2} \end{aligned}$

TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF CONSTANT CROSS SECTION

Configuration	Moment Diagram	Important Values
$\mathbf{1 4 .}$		$H_{A}=0 \quad R_{A}=W \quad M_{A}=W L$

TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF CONSTANT CROSS SECTION

Configuration	Moment Diagram	Important Values
18.		Free-end relative displacement $\begin{aligned} & v=v_{A x}-v_{B x}=\frac{W a^{2}}{3 E I}(2 a+3 L) \\ & M_{\max }=W a \end{aligned}$
19.		Free-end relative displacement $\begin{aligned} & v=v_{A x}-v_{B x}=\frac{M_{0} a}{E I}(a+L) \\ & M_{\max }=M_{0} \end{aligned}$
20.		Free-end relative displacement $\begin{aligned} & v=v_{A x}-v_{B x}=\frac{p_{1} a^{3}}{4 E I}(a+2 L) \\ & M_{\max }=\frac{1}{2} p_{1} a^{2} \end{aligned}$

TABLE 13-2 STATICALLY INDETERMINATE RECTANGULAR FRAMES

The directions of the reaction forces are shown in the figures of the configurations. The signs of moments are shown in the moment diagrams. A bending moment is indicated as positive when it causes tension on the inner side of the member and compression on the outer side. Opposing moments are negative. The formulas in the table give the magnitudes of the forces and moments.

Definitions

$$
\begin{aligned}
& e=h / L \\
& \beta=I_{h}(\text { horizontal beam }) / I_{v}(\text { vertical members })
\end{aligned}
$$

Configuration	Moment Diagram	Important Values
1.		$\begin{aligned} & R_{A}=W \frac{L-a}{L} \quad R_{B}=W \frac{a}{L} \\ & H_{A}=H_{B}=\frac{3 W a}{2 h L} \frac{L-a}{2 \beta e+3} \\ & M_{C}=M_{D}=\frac{3 W a}{2 L} \frac{L-a}{2 \beta e+3} \\ & M_{K}=\frac{W a(L-a)}{2 L} \frac{4 \beta e+3}{2 \beta e+3} \end{aligned}$
2.		$\begin{aligned} & R_{A}=R_{B}=W \frac{h}{L} \\ & H_{A}=H_{B}=\frac{1}{2} W \\ & M_{C}=M_{D}=\frac{1}{2} W h \end{aligned}$

TABLE 13-2 (continued)	STATICALLY INDETERMINATE RECTANGULAR FRAMES	
Configuration	Moment Diagram	Important Values
3.		$\begin{aligned} R_{A}= & R_{B}=W \frac{h-a}{L} \\ H_{A}= & \frac{W}{2 h}\left[h+a-(h-a) \frac{a \beta(2 h-a)}{h(2 h \beta+3 L)}\right] \\ H_{B}= & \frac{W(h-a)}{2 h}\left[1+\frac{a \beta(2 h-a)}{h(2 h \beta+3 L)}\right] \\ M_{C}= & \frac{1}{2} W(h-a)\left[1+\frac{a \beta(2 h-a)}{h(2 h \beta+3 L)}\right] \\ M_{D}= & \frac{1}{2} W(h-a)\left[1-\frac{a \beta(2 h-a)}{h(2 h \beta+3 L)}\right] \\ M_{K}= & \frac{W(h-a)}{2 h} \\ & \times\left[h+a-(h-a) \frac{a \beta(2 h-a)}{h(2 h \beta+3 L)}\right] \end{aligned}$
4.		$\begin{aligned} & R_{A}=R_{B}=\frac{1}{2} p_{1} L \\ & H_{A}=H_{B}=\frac{p_{1} L}{4 e(2 \beta e+3)} \\ & M_{C}=M_{D}=\frac{p_{1} L^{2}}{4(2 \beta e+3)} \\ & M_{K}=\frac{p_{1} L^{2}}{8} \frac{2 \beta e+1}{2 \beta e+3} \end{aligned}$
5.		$\begin{aligned} & R_{A}=R_{B}=\frac{p_{1} h^{2}}{2 L} \\ & H_{A}=\frac{p_{1} h}{8} \frac{11 \beta e+18}{2 \beta e+3} \\ & H_{B}=\frac{p_{1} h}{8} \frac{5 \beta e+6}{2 \beta e+3} \\ & M_{C}=\frac{p_{1} h^{2}}{8} \frac{5 \beta e+6}{2 \beta e+3} \\ & M_{D}=\frac{3 p_{1} h^{2}}{8} \frac{\beta e+2}{2 \beta e+3} \end{aligned}$

TABLE 13-2 (continued)	STATICALLY INDETERMINATE RECTANGULAR FRAMES	
Configuration	Moment Diagram	Important Values
6.		$\begin{aligned} & R_{A}=R_{B}=\frac{1}{2} W \\ & H_{A}=H_{B}=\frac{3 W L}{8 h(\beta e+2)} \\ & M_{A}=M_{B}=\frac{W L}{8(\beta e+2)} \\ & M_{C}=M_{D}=\frac{W L}{4(\beta e+2)} \\ & M_{K}=\frac{W L}{4} \frac{\beta e+1}{\beta e+2} \end{aligned}$
7.		$\begin{aligned} & R_{A}=R_{B}=\frac{1}{2} p_{1} L \\ & H_{A}=H_{B}=\frac{p_{1} L^{2}}{4 h(\beta e+2)} \\ & M_{A}=M_{B}=\frac{p_{1} L^{2}}{12(\beta e+2)} \\ & M_{C}=M_{D}=\frac{p_{1} L^{2}}{6(\beta e+2)} \\ & M_{K}=\frac{p_{1} L^{2}(3 \beta e+2)}{24(\beta e+2)} \end{aligned}$
8.		$\begin{aligned} & R_{A}=R_{B}=p_{1} h \frac{\beta e^{2}}{6 \beta e+1} \\ & H_{A}=\frac{p_{1} h}{4}\left[\frac{8 \beta e+17}{2(\beta e+2)}-\frac{4 \beta e+3}{6 \beta e+1}\right] \\ & H_{B}=\frac{p_{1} h}{4}\left[\frac{4 \beta e+3}{6 \beta e+1}-\frac{1}{2(\beta e+2)}\right] \\ & M_{A}=\frac{p_{1} h^{2}}{4}\left[\frac{4 \beta e+1}{6 \beta e+1}+\frac{\beta e+3}{6(\beta e+2)}\right] \\ & M_{B}=\frac{p_{1} h^{2}}{4}\left[\frac{4 \beta e+1}{6 \beta e+1}-\frac{\beta e+3}{6(\beta e+2)}\right] \\ & M_{C}=p_{1} h^{2} \frac{\beta e}{4}\left[\frac{2}{6 \beta e+1}+\frac{1}{6(\beta e+2)}\right] \\ & M_{D}=p_{1} h^{2} \frac{\beta e}{4}\left[\frac{6}{6 \beta e+1}+\frac{1}{6(\beta e+2)}\right] \end{aligned}$

TABLE 13-2 (continued)	STATICALLY INDETERMIINATE RECTANGULAR FRAMES	
Configuration	Moment Diagram	Important Values
9.		$\begin{aligned} R_{A} & =\frac{W a\left[L^{2}(2 \beta e+3)-a^{2}\right]}{2 L^{3}(\beta e+1)} \\ R_{B} & =W-R_{A} \\ H_{A} & =H_{B}=\frac{W a\left(L^{2}-a^{2}\right)}{2 h L^{2}(\beta e+1)} \\ M_{C} & =\frac{W a\left(L^{2}-a^{2}\right)}{2 L^{2}(\beta e+1)} \\ M_{D} & =\frac{a}{L}\left[W(L-a)-M_{C}\right] \end{aligned}$
10.		$\begin{aligned} & R_{A}=\frac{p_{1} L}{8} \frac{4 \beta e+5}{\beta e+1} \\ & R_{B}=\frac{p_{1} L}{8} \frac{4 \beta e+3}{\beta e+1} \\ & H_{A}=H_{B}=\frac{p_{1} L^{2}}{8 h(\beta e+1)} \\ & M_{C}=\frac{p_{1} L^{2}}{8(\beta e+1)} \end{aligned}$
11.		$\begin{aligned} & R_{A}=\frac{W a}{L}\left(1+\frac{2}{L^{2}} \frac{L^{2}-a^{2}}{3 \beta e+4}\right) \\ & R_{B}=\frac{W(L-a)}{L}\left(1-\frac{2 a}{L^{2}} \frac{L+a}{3 \beta e+4}\right) \\ & H_{A}=H_{B}=\frac{3 W a}{h L^{2}} \frac{L^{2}-a^{2}}{3 \beta e+4} \\ & M_{A}=\frac{W a}{L^{2}} \frac{L^{2}-a^{2}}{3 \beta e+4} \\ & M_{C}=\frac{2 W a}{L^{2}} \frac{L^{2}-a^{2}}{3 \beta e+4} \\ & M_{D}=\frac{W a(L-a)}{L}\left(1-\frac{2 a}{L^{2}} \frac{L+a}{3 \beta e+4}\right) \end{aligned}$

TABLE 13-2 (continued)	STATICALLY INDETERMINATE RECTANGULAR FRAMES	
Configuration	Moment Diagram	Important Values
$\mathbf{1 2 .}$		$R_{A}=R_{B}=\frac{3 W a(h-a)^{2}}{h L^{2}} \frac{\beta}{3 \beta e+4}$

TABLE 13-2 (continued)	STATICALLY INDETERMINATE RECTANGULAR FRAMES	
Configuration	Moment Diagram	Important Values
15.		$\begin{aligned} R_{A}= & \frac{W a^{2}}{2 L^{3}(\beta e+1)} \\ & \times[\beta e(3 L-a)+2(3 L-2 a)] \\ R_{B}= & W-R_{A} \\ H_{A}= & H_{B}=\frac{3 W a^{2}}{2 h L^{2}} \frac{L-a}{\beta e+1} \\ M_{A}= & \frac{W a^{2}}{2 L^{2}} \frac{L-a}{\beta e+1} \\ M_{B}= & \frac{W a(L-a)}{2 L^{2}} \\ & \times\left[\frac{\beta e(2 L-a)+2(L-a)}{\beta e+1}\right] \\ M_{C}= & \frac{W a^{2}}{L^{2}} \frac{L-a}{\beta e+1} \\ M_{D} & =R_{B} a-M_{B} \end{aligned}$
16.		$\begin{aligned} & R_{A}=\frac{1}{8} p_{1} L \frac{3 \beta e+4}{\beta e+1} \\ & R_{B}=\frac{1}{8} p_{1} L \frac{5 \beta e+4}{\beta e+1} \\ & H_{A}=H_{B}=\frac{p_{1} L^{2}}{8 h(\beta e+1)} \\ & M_{A}=\frac{p_{1} L^{2}}{24(\beta e+1)} \\ & M_{B}=\frac{1}{24} p_{1} L^{2} \frac{3 \beta e+2}{\beta e+1} \\ & M_{C}=\frac{p_{1} L^{2}}{12(\beta e+1)} \end{aligned}$

TABLE 13-3 NONRECTANGULAR SINGLE-BAY FRAMES

The direction of the reaction forces are shown in the figures of the configurations. The signs of moments are shown in the moment diagrams. A bending moment is indicated as positive when it causes tension on the inner side of the member and compression on the outer side. Opposing moments are negative. The formulas in the table give the magnitudes of these quantities.

Symmetrical Gable Frames

$$
\begin{aligned}
& k=\frac{I_{1} a}{I_{2} h} \phi=\frac{f}{h} \quad \alpha=\left(3+3 \phi+\phi^{2}+\frac{1}{k}\right) \\
& \gamma=\frac{3(1-k \phi)}{2\left(1+k \phi^{2}\right)} \quad \lambda=\frac{6(1+k)}{1+k \phi^{2}} \quad \eta=12[2+2 k-\gamma(1-k \phi)]
\end{aligned}
$$

| Configuration | Moment Diagram | Important Values |
| :--- | :--- | :--- | :--- |
| 1. | | |

TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES		
Configuration	Moment Diagram	Important Values
3.		$\begin{aligned} H_{A} & =H_{B}=\frac{p_{1} L^{2}}{8 \alpha h}(8+5 \phi) \\ R_{A} & =R_{B}=\frac{1}{2} p_{1} L \\ M_{E} & =M_{C}=H_{B} h \\ M_{D} & =\frac{1}{8} p_{1} L^{2}-H_{B} h(1+\phi) \end{aligned}$
4.		$\begin{aligned} W= & p_{1}(f+h) \\ H_{B}= & \frac{p_{1} h}{4 \alpha}\left(12+\frac{8 \phi}{k}+30 \phi\right. \\ & \left.+20 \phi^{2}+5 \phi^{3}+\frac{5}{k}\right) \\ H_{A}= & W-H_{B} \\ R_{A}= & R_{B}=\frac{p_{1}(h+f)^{2}}{2 L} \\ M_{E}= & H_{A} h-\frac{1}{2} p_{1} h^{2} \\ M_{C}= & -H_{B} h \\ M_{D}= & -\frac{1}{4} p_{1}(h+f)^{2} \\ & +H_{B} h(1+\phi) \end{aligned}$
5.		$\begin{aligned} & H_{A}=H_{B}=\frac{W L k}{\eta h}(3 \gamma+\lambda \phi) \\ & R_{A}=R_{B}=\frac{1}{2} W \\ & M_{E}=M_{C}=\frac{W L k}{\eta}(3+2 \gamma \phi) \\ & M_{A}=M_{B}=-M_{E}+H_{A} h \\ & M_{D}=-M_{E}+\frac{1}{4} W L-H_{B} f \end{aligned}$

TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration

Symmetrical Arched Frames

$$
\begin{array}{cl}
k=\frac{I_{1} L}{I_{2} h} & \phi=\frac{f}{h} \quad \alpha=8\left[1+k\left(1.5+2 \phi+0.8 \phi^{2}\right)\right] \\
\beta=\frac{1.5-k \phi}{1+0.8 k \phi^{2}} & \gamma=\frac{3+1.5 k}{1+0.8 k \phi^{2}} \quad \eta=12(2+k)-4 \beta(3-2 k \phi)
\end{array}
$$

Configuration	Moment Diagram	Important Values
9.		$\begin{aligned} H_{A} & =H_{B}=\frac{W L k}{\alpha h} \frac{6+5 \phi}{4} \\ R_{A} & =R_{B}=\frac{1}{2} W \\ M_{E} & =M_{C}=H_{A} h \\ M_{D} & =\frac{1}{4} W L-H_{A}(h+f) \end{aligned}$
10.		$\begin{aligned} e & =\frac{4}{\alpha}(1+1.5 k+k \phi) \\ H_{B} & =W e \quad H_{A}=W-H_{B} \\ R_{A} & =R_{B}=\frac{W h}{L} \\ M_{E} & =h\left(W-H_{B}\right) \\ M_{C} & =H_{B} h \end{aligned}$
11.		$\begin{aligned} H_{A} & =H_{B}=\frac{p_{1} L^{2} k}{\alpha h}\left(1+\frac{4}{5} \phi\right) \\ R_{A} & =R_{B}=\frac{1}{2} p_{1} L \\ M_{E} & =M_{C}=H_{A} h \\ M_{D} & =\frac{1}{8} p_{1} L^{2}-H_{A}(f+h) \end{aligned}$

TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES		
Configuration	Moment Diagram	Important Values
12.		$\begin{aligned} e & =4(1+1.5 k+k \phi) / \alpha \\ H_{B} & =\frac{p_{1} h}{2 \alpha}(1+\alpha e) \\ H_{A} & =p_{1} h-H_{B} \\ R_{A} & =R_{B}=\frac{p_{1} h^{2}}{2 L} \\ M_{E} & =\frac{1}{2} p_{1} h^{2}-H_{B} h \\ M_{C} & =H_{B} h \end{aligned}$
13.		$\begin{aligned} & H_{A}=H_{B}=\frac{W L k}{\eta h} \frac{6 \beta+5 \gamma \phi}{4} \\ & R_{A}=R_{B}=\frac{1}{2} W \\ & M_{E}=M_{C}=\frac{W L k}{\eta} \frac{6+5 \beta \phi}{4} \\ & M_{A}=M_{B}=-M_{E}+H_{A} h \\ & M_{D}=\frac{1}{4} W L-M_{E}-H_{A} f \end{aligned}$
14.		$\begin{aligned} H_{B}= & \frac{2 W}{\eta}(2 \gamma-3 \beta) \\ H_{A}= & W-H_{B} \\ R_{A}= & R_{B}=\frac{3 W h}{(6+k) L} \\ M_{E}= & \frac{W h}{\eta}(6-4 \beta) \\ & +\frac{3 W h}{2(6+k)} \\ M_{C}= & \frac{W h}{\eta}(6-4 \beta) \\ & +\frac{3 W h}{2(6+k)} \\ M_{A}= & h\left(W-H_{B}\right)-M_{E} \\ M_{B}= & -M_{C}+H_{B} h \end{aligned}$

TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES		
Configuration	Moment Diagram	Important Values
15.		$\begin{aligned} H_{A} & =H_{B} \\ & =\frac{p_{1} L^{2} k}{5 \eta h}(5 \beta+4 \gamma \phi) \\ R_{A} & =R_{B}=\frac{1}{2} p_{1} L \\ M_{E} & =M_{C} \\ & =\frac{p_{1} L^{2} k}{5 \eta}(5+4 \beta \phi) \\ M_{A} & =M_{B}=-M_{E}+H_{A} h \\ M_{D} & =\frac{1}{8} p_{1} L^{2}-M_{E}-H_{B} f \end{aligned}$
16.		$\begin{aligned} H_{B}= & \frac{p_{1} h}{2 \eta}(3 \gamma-4 \beta) \\ H_{A}= & p_{1} h-H_{B} \\ R_{A}= & R_{B}=\frac{p_{1} h^{2}}{(6+k) L} \\ M_{E}= & \frac{p_{1} h^{2}}{2 \eta}(4-3 \beta) \\ & +\frac{p_{1} h^{2}}{2(6+k)} \\ M_{C}= & -\frac{p_{1} h^{2}}{2 \eta}(4-3 \beta) \\ & +\frac{p_{1} h^{2}}{2(6+k)} \\ M_{A}= & -M_{E}-H_{B} h+\frac{1}{2} p_{1} h^{2} \\ M_{B}= & -M_{C}+H_{B} h \end{aligned}$

$$
\begin{aligned}
& k_{1}=\frac{I_{3} a}{I_{1} e} \quad k_{2}=\frac{I_{3} d}{I_{2} e} \quad B_{0}=\frac{2 a}{h}\left(k_{1}+1\right)+1 \quad C_{0}=\frac{a}{h}+2+3 k_{2} \\
& N_{0}=\frac{a B_{0}}{h}+C_{0} \quad C_{1}=\frac{b}{a}\left(2+3 k_{2}\right) \quad C_{2}=1+\frac{h}{a}\left(2+3 k_{2}\right) \\
& C_{3}=1+\frac{d}{L}\left(2+k_{2}\right) \quad R=\frac{b}{a} C_{2}-k_{1} \quad N_{1}=k_{3} k_{4}-R^{2} \\
& \beta=3 k_{1}+2+\frac{d}{L} \quad N_{2}=3 k_{1}+\beta+\frac{d}{L} C_{3} \quad k_{3}=2\left(k_{1}+1\right)+\frac{h}{a}\left(1+C_{2}\right) \\
& K_{4}=2 k_{1}+\frac{b}{a} C_{1}
\end{aligned}
$$

Configuration	Moment Diagram	Important Values
17.		$\begin{aligned} X & =\frac{W c C_{0}+\left(\frac{3}{4} W d\right) k_{2}}{2 N_{0}} \\ H_{A} & =H_{B}=\frac{X}{h} \\ R_{A} & =R_{B}=\frac{1}{2} W \\ M_{E} & =M_{D}=\frac{1}{2} W c-X \\ M_{F} & =M_{C}=\frac{a}{h} X \\ M_{K} & =\frac{1}{4} W d+M_{E} \end{aligned}$
18.		$\begin{aligned} X & =\frac{p_{1} d c C_{0}+\frac{1}{2} p_{1} d^{2} k_{2}}{2 N_{0}} \\ H_{A} & =H_{B}=\frac{X}{h} \\ R_{A} & =R_{B}=\frac{1}{2} p_{1} d \\ M_{E} & =M_{D}=\frac{1}{2} p_{1} d c-X \\ M_{F} & =M_{C}=\frac{a}{h} X \\ M_{K} & =\frac{1}{8} p_{1} d^{2}+M_{E} \end{aligned}$

TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration	Moment Diagram	Important Values
19.		$\begin{aligned} X & =\frac{W a\left(B_{0}+C_{0}\right)}{2 N_{0}} \\ H_{B} & =\frac{X}{h} \quad H_{A}=W-H_{B} \\ R_{A} & =R_{B}=\frac{W a}{L} \\ M_{F} & =W a-\frac{a}{h} X \\ M_{C} & =\frac{a}{h} X \\ M_{E} & =\left(1-\frac{c}{L}\right) W a-X \\ M_{D} & =\frac{c}{L} W a-X \end{aligned}$
20.		$\begin{aligned} X & =\frac{p_{1} a^{2}\left[2\left(B_{0}+C_{0}\right)+\frac{a}{h} k_{1}\right]}{8 N_{0}} \\ H_{B} & =\frac{X}{h} \quad H_{A}=p_{1} a-H_{B} \\ R_{A} & =R_{B}=\frac{p_{1} a^{2}}{2 L} \\ M_{F} & =\frac{1}{2} p_{1} a^{2}-\frac{a}{h} X \\ M_{C} & =\frac{a}{h} X \\ M_{E} & =R_{B}(L-c)-X \\ M_{D} & =X-R_{B} c \end{aligned}$

TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES		
Configuration	Moment Diagram	Important Values
21.		$\begin{aligned} B_{1}=W c C_{1}+\frac{3 b}{4 a} W d k_{2} \\ B_{2}=W c C_{2}+\frac{3 h}{4 a} W d k_{2} \\ X_{1}=\frac{B_{1} k_{3}-B_{2} R}{2 N_{1}} \\ X_{2}=\frac{B_{2} k_{4}-B_{1} R}{2 N_{1}} \\ H_{A}=H_{B}=\frac{1}{a}\left(X_{1}+X_{2}\right) \\ R_{A}=R_{B}=\frac{1}{2} W \\ M_{A}=M_{B}=X_{1} \\ M_{F}=M_{C}=X_{2} \\ M_{E}=M_{D}=\frac{1}{2} W c-\frac{b}{a} X_{1} \\ \quad-\frac{h}{a} X_{2} \\ M_{K}=\frac{1}{4} W d+M_{E} \end{aligned}$
22.		$\begin{aligned} & B_{1}= p_{1} d c C_{1}+\frac{p_{1} d^{2} b}{2 a} k_{2} \\ & B_{2}= p_{1} d c C_{2}+\frac{p_{1} d^{2} h}{2 a} k_{2} \\ & X_{1}=\frac{B_{1} k_{3}-B_{2} R}{2 N_{1}} \\ & X_{2}=\frac{B_{2} k_{4}-B_{1} R}{2 N_{1}} \\ & H_{A}=H_{B}=\frac{1}{a}\left(X_{1}+X_{2}\right) \\ & R_{A}=R_{B}=\frac{1}{2} p_{1} d \\ & M_{A}=M_{B}=X_{1} \\ & M_{F}=M_{C}=X_{2} \\ & M_{E}=M_{D}=\frac{1}{2} p_{1} d c-\frac{b}{a} X_{1} \\ & \quad-\frac{h}{a} X_{2} \\ & M_{K}=\frac{1}{8} p_{1} d^{2}+M_{E} \end{aligned}$

TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES
Configuration

TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration	Moment Diagram	Important Values
24.		$\begin{aligned} B_{1}= & \frac{p_{1} a b}{2} C_{1}+\frac{p_{1} a^{2}}{4} k_{1} \\ B_{2}= & \frac{p_{1} a b}{2} C_{2}-\frac{p_{1} a^{2}}{4} k_{1} \\ B_{3}= & \frac{p_{1} a^{2}}{2}\left(\beta+\frac{d}{L} C_{3}+k_{1}\right) \\ X_{1}= & \frac{B_{1} k_{3}-B_{2} R}{2 N_{1}} \\ X_{2}= & \frac{B_{2} k_{4}-B_{1} R}{2 N_{1}} \\ X_{3}= & \frac{B_{3}}{2 N_{2}} \\ H_{B}= & \frac{p_{1} a}{4}-\frac{X_{1}+X_{2}}{a} \\ H_{A}= & p_{1} a-H_{B} \\ R_{A}= & R_{B}=\frac{2}{L}\left(\frac{p_{1} a^{2}}{4}-X_{3}\right) \\ M_{A}= & X_{1}+X_{3} \\ M_{B}= & -X_{1}+X_{3} \\ M_{F}= & X_{2}+\left(\frac{p_{1} a^{2}}{4}-X_{3}\right) \\ & +\frac{d}{L}\left(\frac{p_{1} a^{2}}{4}-X_{3}\right) \\ M_{C}= & X_{2}-\left(\frac{p_{1} a^{2}}{4}-X_{3}\right) \\ M_{D}= & \frac{p_{1} a b}{4}-\frac{b}{a} X_{1}-\frac{h}{a} X_{2} \\ M_{E}= & -\frac{p_{1} a b}{4}+\frac{b}{a} X_{1} \\ & \left.-X_{3}\right) \end{aligned}$

TABLE 13-4 BUCKLING LOADS FOR FRAMES

$$
\begin{aligned}
& \text { Notation } \\
& E=\text { modulus of elasticity } \\
& I=\text { moment of inertia } \\
& I_{h}, I_{v}=\text { moments of inertia of horizontal and vertical members } \\
& A=\text { area of cross section } \\
& A_{h}=\text { area of the cross section of horizontal member } \\
& A_{v i}=\text { area of the cross section of } i \text { th (from left to right) vertical member; } \\
& A_{v i}=A_{v} \text { if all vertical members are identical } \\
& L=\text { width of frame } \\
& h=\text { height of frame } \\
& P_{\text {cr }}=\text { buckling load; unless specified otherwise, } P_{\text {cr }}=\pi^{2} E I_{v} /(\alpha h)^{2} \\
& \alpha=\text { constant given in table } \\
& k=\frac{I_{v} L}{I_{h} h} \quad n=\frac{P_{1}+P}{2 P} \quad m= \begin{cases}\frac{4 I_{v}}{L^{2} A_{v}} & \text { for cases } 1 \text { and } 2 \\
\frac{I_{v}}{L^{2}}\left(\frac{1}{A_{v 1}}+\frac{1}{A_{v 2}}\right) & \text { for cases 3, 4, 5, and 6 } \\
\frac{4 E I_{h}}{L} & \text { for cases 7 and } 8\end{cases} \\
& \zeta(\eta)=\frac{3}{\eta}\left(\frac{1}{\sin 2 \eta}-\frac{1}{2 \eta}\right) \quad \beta(\eta)=\frac{3}{2 \eta}\left(\frac{1}{2 \eta}-\frac{1}{\tan 2 \eta}\right) \quad \eta=\frac{h}{2} \sqrt{\frac{P}{E I_{v}}}
\end{aligned}
$$

For the cases where two forces P_{1} and P are applied, the ratio n is predetermined. Calculate α and then find $P_{\text {cr }}$. Then $P_{1 \mathrm{cr}}$ can be calculated using $P_{1 \mathrm{cr}}=(2 n-1) P_{\mathrm{cr}}$.

Configuration	Buckling Loads
1.	$\begin{aligned} & \alpha=\sqrt{n} \cdot \sqrt{1+0.35 k+2.1 m-0.017(k+6 m)^{2}} \\ & m \leq 0.2 \quad n \leq 1 \quad k \leq 10 \end{aligned}$
2.	$\begin{aligned} & \alpha=\sqrt{n} \cdot \sqrt{4+1.4 k+8.4 m+0.2(k+6 m)^{2}} \\ & n \leq 1 \quad k \leq 10 \quad m \leq 0.2 \end{aligned}$

TABLE 13-4 (continued)	BUCKLING LOADS FOR FRAMES
Configuration	Buckling Loads
3.	$\alpha=\sqrt{1+0.7 k+2.1 m-0.068(k+3 m)^{2}}$
4.	$\begin{aligned} & \alpha=\sqrt{(0.14+1.72 n)\left[1+0.7 k+2.1 m-0.068(k+3 m)^{2}\right]} \\ & n \leq 1.5 \end{aligned}$
5.	$\alpha=\sqrt{4+2.8 k+8.4 m+0.08(k+3 m)^{2}}$
	$\begin{aligned} & \alpha=\sqrt{(0.04+1.92 n)\left[4+2.8 k+8.4 m+0.08(k+3 m)^{2}\right]} \\ & n \geq 1.5 \end{aligned}$
7.	$P_{\text {cr }}$ is determined by solving $\frac{1}{m}+\frac{L \beta(\eta)}{3 E I_{v}}=0$ Ref. [13.4]

TABLE 13-4 (continued) BUCKLING LOADS FOR FRAMES

Configuration	Buckling Loads
	$P_{\text {cr }}$ is determined by solving $\left[\frac{3 E I_{v}}{m L}+\beta(\eta)\right] \beta(\eta)=\frac{1}{4}[\zeta(\eta)]^{2}$ Ref. [13.4]
	$\alpha=0.558 \pi$
	$\alpha=0.623 \pi$
11.	$\alpha=0.701 \pi$
	$\alpha=0.9 \pi$
13.	$\alpha=0.627 \pi$

TABLE 13-5 FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Notation

$E_{h}, E_{v}=$ moduli of elasticity of horizontal and vertical beams
$G=$ shear modulus of elasticity
$E=$ modulus of elasticity
$I_{h}, I_{v}=$ moments of inertia of horizontal and vertical beams
$J_{v}=$ torsional constant of vertical beams
$\rho_{i}=$ mass per unit length of vertical beams; $\rho_{i}=\rho_{v}$, all vertical beams are identical
$\rho_{h}=$ mass per unit length of horizontal beam
$W=$ total weight of frame
$f=\frac{\lambda^{2}}{2 \pi h^{2}}\left(\frac{E_{v} I_{v}}{\rho_{v}}\right)^{1 / 2} \quad \mathrm{~Hz}$ (cycles/s) for cases $1,2,3$, and 4

Configuration 1. First symmetric in-plane mode, pinned E_{h}, I_{h}, P_{h} Mode shape $\begin{aligned} & c_{1}=\frac{L}{h}\left(\frac{E_{v} I_{v}}{E_{h} I_{h}} \frac{\rho_{h}}{\rho_{v}}\right)^{1 / 4} \\ & c_{2}=\left(\frac{\rho_{h}}{\rho_{v}}\right)^{1 / 4}\left(\frac{E_{h} I_{h}}{E_{v} I_{v}}\right)^{3 / 4} \end{aligned}$	Natural Frequency	
	$\begin{aligned} & \lambda=a_{1}+a_{2} \sqrt{c_{2}}+a_{3}\left(\sqrt{c_{2}}\right)^{2}+a_{4}\left(\sqrt{c_{2}}\right)^{3}+a_{5}\left(\sqrt{c_{2}}\right)^{4} \\ & 0.1 \leq c_{2} \leq 10.0 \quad 1.5<c_{1} \leq 10.0 \\ & \begin{array}{\|l\|l} \hline a_{1} & 0.05881+3.7774\left(\frac{1}{c_{1}}\right)+4.4214\left(\frac{1}{c_{1}}\right)^{2}-4.5495\left(\frac{1}{c_{1}}\right)^{3} \\ \hline a_{2} & 0.06772-0.08744\left(\frac{1}{c_{1}}\right)+1.8371\left(\frac{1}{c_{1}}\right)^{2}-16.9061\left(\frac{1}{c_{1}}\right)^{3}+15.9685\left(\frac{1}{c_{1}}\right)^{4} \end{array} \end{aligned}$	
	a_{3}	$0.1265-2.1961\left(\frac{1}{c_{1}}\right)+6.139\left(\frac{1}{c_{1}}\right)^{2}-3.07026\left(\frac{1}{c_{1}}\right)^{3}$
	a_{4}	$-0.04549+0.7259\left(\frac{1}{c_{1}}\right)-1.4984\left(\frac{1}{c_{1}}\right)^{2}+0.4223\left(\frac{1}{c_{1}}\right)^{3}$
	a_{5}	$0.00545-0.08128\left(\frac{1}{c_{1}}\right)+0.1277\left(\frac{1}{c_{1}}\right)^{2}+0.00154\left(\frac{1}{c_{1}}\right)^{3}$
	0.1	$c_{2} \leq 10.0 \quad 0.1 \leq c_{1} \leq 1.5$
	a_{1}	$2.9505+0.01426 c_{1}+0.3933 c_{1}^{2}-0.1953 c_{1}^{3}$
	a_{2}	$2.09517-5.5922 c_{1}+5.7203 c_{1}^{2}-2.2752 c_{1}^{3}$
	a_{3}	$-1.6907+6.8916 c_{1}-8.2798 c_{1}^{2}+3.09981 c_{1}^{3}$
	a_{4}	$0.5590-2.6368 c_{1}+3.3057 c_{1}^{2}-1.2275 c_{1}^{3}$
	a_{5}	$-0.06605+0.3357 c_{1}-0.4296 c_{1}^{2}+0.1592 c_{1}^{3}$

TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration		Natural Frequency
2.	$\lambda=a_{1}+a_{2} \sqrt{c_{2}}+a_{3}\left(\sqrt{c_{2}}\right)^{2}+a_{4}\left(\sqrt{c_{2}}\right)^{3}$	
First symmetric in-plane mode,	$0.1 \leq c_{2} \leq 10.0 \quad 1.2<c_{1} \leq 10.0$	
clamped E_{h}, I_{h}, p_{h}	a_{1}	$18.33-23.028 \sqrt{c_{1}}+11.843\left(\sqrt{c_{1}}\right)^{2}-2.8164\left(\sqrt{c_{1}}\right)^{3}+0.25598\left(\sqrt{c_{1}}\right)^{4}$
E_{v}, I_{v}, ρ_{v}	a_{2}	$-6.951+8.992 \sqrt{c_{1}}-4.364\left(\sqrt{c_{1}}\right)^{2}+0.9325\left(\sqrt{c_{1}}\right)^{3}-0.07345\left(\sqrt{c_{1}}\right)^{4}$
	a_{3}	$3.728-5.64 \sqrt{c_{1}}+3.169\left(\sqrt{c_{1}}\right)^{2}-0.7878\left(\sqrt{c_{1}}\right)^{3}+0.07319\left(\sqrt{c_{1}}\right)^{4}$
$\underset{\leftarrow}{\text { 䧺 }}$	a_{4}	$-0.5991+0.9657 \sqrt{c_{1}}-0.5712\left(\sqrt{c_{1}}\right)^{2}+0.1485\left(\sqrt{c_{1}}\right)^{3}-0.01437\left(\sqrt{c_{1}}\right)^{4}$

Mode shape

$c_{1}=\frac{L}{h}\left(\frac{E_{v} I_{v}}{E_{h} I_{h}} \frac{\rho_{h}}{\rho_{v}}\right)^{1 / 4}$
$c_{2}=\left(\frac{\rho_{h}}{\rho_{v}}\right)^{1 / 4}\left(\frac{E_{h} I_{h}}{E_{v} I_{v}}\right)^{3 / 4}$
$0.1 \leq c_{2} \leq 10.0 \quad 1.2 \geq c_{1} \geq 0.1$

a_{1}	$2.1037+13.649 \sqrt{c_{1}}-37.686\left(\sqrt{c_{1}}\right)^{2}+42.2\left(\sqrt{c_{1}}\right)^{3}-16.218\left(\sqrt{c_{1}}\right)^{4}$
a_{2}	$1.8503-3.4236 \sqrt{c_{1}}+4.852\left(\sqrt{c_{1}}\right)^{2}-3.5313\left(\sqrt{c_{1}}\right)^{3}-0.34975\left(\sqrt{c_{1}}\right)^{4}$
a_{3}	$0.0647-5.8812 \sqrt{c_{1}}+19.008\left(\sqrt{c_{1}}\right)^{2}-21.873\left(\sqrt{c_{1}}\right)^{3}+8.8495\left(\sqrt{c_{1}}\right)^{4}$
a_{4}	$-0.06883+1.3714 \sqrt{c_{1}}-4.2867\left(\sqrt{c_{1}}\right)^{2}+4.8985\left(\sqrt{c_{1}}\right)^{3}-1.931\left(\sqrt{c_{1}}\right)^{4}$

$$
c_{2}=0.75, \text { set } a_{5}=0
$$

a_{1}	$0.7608+0.7983 \sqrt{\frac{h}{L}}-0.2993\left(\sqrt{\frac{h}{L}}\right)^{2}+0.03833\left(\sqrt{\frac{h}{L}}\right)^{3}$
a_{2}	$-1.09597+1.8224 \sqrt{\frac{h}{L}}-1.1311\left(\sqrt{\frac{h}{L}}\right)^{2}+0.3092\left(\sqrt{\frac{h}{L}}\right)^{3}-0.03122\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{3}	$0.4930-1.1224 \sqrt{\frac{h}{L}}+0.8202\left(\sqrt{\frac{h}{L}}\right)^{2}-0.2500\left(\sqrt{\frac{h}{L}}\right)^{3}+0.02730\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{4}	$-0.06778+0.1709 \sqrt{\frac{h}{L}}-0.1329\left(\sqrt{\frac{h}{L}}\right)^{2}+0.04220\left(\sqrt{\frac{h}{L}}\right)^{3}-0.004738\left(\sqrt{\frac{h}{L}}\right)^{4}$

$c_{2}=1.5$, set $a_{5}=0$

a_{1}	$0.8222+1.1944 \sqrt{\frac{h}{L}}-0.8201\left(\sqrt{\frac{h}{L}}\right)^{2}+0.2544\left(\sqrt{\frac{h}{L}}\right)^{3}-0.02879\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{2}	$-1.3211+2.3536 \sqrt{\frac{h}{L}}-1.5610\left(\sqrt{\frac{h}{L}}\right)^{2}+0.4528\left(\sqrt{\frac{h}{L}}\right)^{3}-0.0481\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{3}	$0.5721-1.3439 \sqrt{\frac{h}{L}}+1.0166\left(\sqrt{\frac{h}{L}}\right)^{2}-0.3193\left(\sqrt{\frac{h}{L}}\right)^{3}+0.03571\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{4}	$-0.07699+0.1987 \sqrt{\frac{h}{L}}-0.1587\left(\sqrt{\frac{h}{L}}\right)^{2}+0.05152\left(\sqrt{\frac{h}{L}}\right)^{3}-0.005889\left(\sqrt{\frac{h}{L}}\right)^{4}$

$c_{2}=3.0$

a_{1}	$1.2461+0.3113 \sqrt{\frac{h}{L}}-0.09981\left(\sqrt{\frac{h}{L}}\right)^{2}+0.007269\left(\sqrt{\frac{h}{L}}\right)^{3}+0.0009349\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{2}	$-2.002781+4.6441 \sqrt{\frac{h}{L}}-3.7526\left(\sqrt{\frac{h}{L}}\right)^{2}+1.2573\left(\sqrt{\frac{h}{L}}\right)^{3}-0.1480\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{3}	$1.1303-3.3717 \sqrt{\frac{h}{L}}+3.01029\left(\sqrt{\frac{h}{L}}\right)^{2}-1.06090\left(\sqrt{\frac{h}{L}}\right)^{3}+0.1286\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{4}	$-0.2818+0.9551 \sqrt{\frac{h}{L}}-0.9064\left(\sqrt{\frac{h}{L}}\right)^{2}+0.3304\left(\sqrt{\frac{h}{L}}\right)^{3}-0.04087\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{5}	$0.02631-0.09744 \sqrt{\frac{h}{L}}+0.09638\left(\sqrt{\frac{h}{L}}\right)^{2}-0.03596\left(\sqrt{\frac{h}{L}}\right)^{3}+0.004509\left(\sqrt{\frac{h}{L}}\right)^{4}$

TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration	Natural Frequency	
	$c_{2}=6.0$	
	a_{1}	$1.4901-0.03882 \sqrt{\frac{h}{L}}+0.1021\left(\sqrt{\frac{h}{L}}\right)^{2}-0.04520\left(\sqrt{\frac{h}{L}}\right)^{3}+0.005995\left(\sqrt{\frac{h}{L}}\right)^{4}$
	a_{2}	$-1.9893+4.5893 \sqrt{\frac{h}{L}}-3.6732\left(\sqrt{\frac{h}{L}}\right)^{2}+1.2198\left(\sqrt{\frac{h}{L}}\right)^{3}-0.1426\left(\sqrt{\frac{h}{L}}\right)^{4}$
	a_{3}	$1.01408-3.06477 \sqrt{\frac{h}{L}}+2.7202\left(\sqrt{\frac{h}{L}}\right)^{2}-0.9512\left(\sqrt{\frac{h}{L}}\right)^{3}+0.1145\left(\sqrt{\frac{h}{L}}\right)^{4}$
	a_{4}	$-0.2289+0.8108 \sqrt{\frac{h}{L}}-0.7698\left(\sqrt{\frac{h}{L}}\right)^{2}+0.2790\left(\sqrt{\frac{h}{L}}\right)^{3}-0.03429\left(\sqrt{\frac{h}{L}}\right)^{4}$
	a_{5}	$0.01929-0.0778 \sqrt{\frac{h}{L}}+0.0776\left(\sqrt{\frac{h}{L}}\right)^{2}-0.02886\left(\sqrt{\frac{h}{L}}\right)^{3}+0.003601\left(\sqrt{\frac{h}{L}}\right)^{4}$

$c_{2}=12.0$

a_{1}	$1.7059-0.4443 \sqrt{\frac{h}{L}}+0.4067\left(\sqrt{\frac{h}{L}}\right)^{2}-0.1448\left(\sqrt{\frac{h}{L}}\right)^{3}+0.01784\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{2}	$-1.9940+4.6785 \sqrt{\frac{h}{L}}-3.8064\left(\sqrt{\frac{h}{L}}\right)^{2}+1.2804\left(\sqrt{\frac{h}{L}}\right)^{3}-0.1511\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{3}	$0.9691-3.03021 \sqrt{\frac{h}{L}}+2.7507\left(\sqrt{\frac{h}{L}}\right)^{2}-0.9771\left(\sqrt{\frac{h}{L}}\right)^{3}+0.1189\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{4}	$-0.2119+0.7952 \sqrt{\frac{h}{L}}-0.7783\left(\sqrt{\frac{h}{L}}\right)^{2}+0.2876\left(\sqrt{\frac{h}{L}}\right)^{3}-0.03583\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{5}	$0.0174083-0.07637 \sqrt{\frac{h}{L}}+0.07910\left(\sqrt{\frac{h}{L}}\right)^{2}-0.03009\left(\sqrt{\frac{h}{L}}\right)^{3}+0.0038131\left(\sqrt{\frac{h}{L}}\right)^{4}$

TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

$$
\begin{aligned}
& c_{2}=0.75 \\
& \begin{array}{|l|l|}
\hline a_{1} & 0.6517+2.3508 \sqrt{\frac{h}{L}}-1.4862\left(\sqrt{\frac{h}{L}}\right)^{2}+0.4412\left(\sqrt{\frac{h}{L}}\right)^{3}-0.04870\left(\sqrt{\frac{h}{L}}\right)^{4} \\
a_{2} & -1.0348+1.2196 \sqrt{\frac{h}{L}}-0.4609\left(\sqrt{\frac{h}{L}}\right)^{2}+0.05260\left(\sqrt{\frac{h}{L}}\right)^{3}+0.001087\left(\sqrt{\frac{h}{L}}\right)^{4} \\
\hline a_{3} & 0.5720-1.01757 \sqrt{\frac{h}{L}}+0.6004\left(\sqrt{\frac{h}{L}}\right)^{2}-0.14999\left(\sqrt{\frac{h}{L}}\right)^{3} 0.01366\left(\sqrt{\frac{h}{L}}\right)^{4} \\
a_{4} & -0.09659+0.1992 \sqrt{\frac{h}{L}}-0.1351\left(\sqrt{\frac{h}{L}}\right)^{2}+0.03858\left(\sqrt{\frac{h}{L}}\right)^{3}-0.003989\left(\sqrt{\frac{h}{L}}\right)^{4} \\
\hline a_{1} & 0.8888+2.4200 \sqrt{\frac{h}{L}}-1.6779\left(\sqrt{\frac{h}{L}}\right)^{2}+0.5212\left(\sqrt{\frac{h}{L}}\right)^{3}-0.05889\left(\sqrt{\frac{h}{L}}\right)^{4} \\
\hline c_{2}=1.5 \\
\hline a_{2} & -1.311+1.8646 \sqrt{\frac{h}{L}}-0.9713\left(\sqrt{\frac{h}{L}}\right)^{2}+0.2194\left(\sqrt{\frac{h}{L}}\right)^{3}-0.01811\left(\sqrt{\frac{h}{L}}\right)^{4} \\
\hline a_{4} & -0.1146+0.2476 \sqrt{\frac{h}{L}}-0.1776\left(\sqrt{\frac{h}{L}}\right)^{2}+0.05346\left(\sqrt{\frac{h}{L}}\right)^{3}-0.005787\left(\sqrt{\frac{h}{L}}\right)^{4} \\
\hline a_{3} & 0.6995-1.3471 \sqrt{\frac{h}{L}}+0.8811\left(\sqrt{\frac{h}{L}}\right)^{2}-0.2464\left(\sqrt{\frac{h}{L}}\right)^{3}+0.02515\left(\sqrt{\frac{h}{L}}\right)^{4} \\
\hline
\end{array}
\end{aligned}
$$

$c_{2}=3.0$

a_{1}	$1.2508+2.09185 \sqrt{\frac{h}{L}}-1.5600\left(\sqrt{\frac{h}{L}}\right)^{2}+0.5042\left(\sqrt{\frac{h}{L}}\right)^{3}-0.05829\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{2}	$-1.5471+2.4771 \sqrt{\frac{h}{L}}-1.4901\left(\sqrt{\frac{h}{L}}\right)^{2}+0.3968\left(\sqrt{\frac{h}{L}}\right)^{3}-0.03920\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{3}	$0.7925-1.6060 \sqrt{\frac{h}{L}}+1.1121\left(\sqrt{\frac{h}{L}}\right)^{2}-0.3282\left(\sqrt{\frac{h}{L}}\right)^{3}+0.03510\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{4}	$-0.1253+0.2790 \sqrt{\frac{h}{L}}-0.2066\left(\sqrt{\frac{h}{L}}\right)^{2}+0.06396\left(\sqrt{\frac{h}{L}}\right)^{3}-0.007083\left(\sqrt{\frac{h}{L}}\right)^{4}$

$c_{2}=6.0$

a_{1}	$1.6631+1.4804 \sqrt{\frac{h}{L}}-1.1766\left(\sqrt{\frac{h}{L}}\right)^{2}+0.39396\left(\sqrt{\frac{h}{L}}\right)^{3}-0.04649\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{2}	$-1.6468+2.7901 \sqrt{\frac{h}{L}}-1.7805\left(\sqrt{\frac{h}{L}}\right)^{2}+0.5016\left(\sqrt{\frac{h}{L}}\right)^{3}-0.05210\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{3}	$0.8142-1.6929 \sqrt{\frac{h}{L}}+1.2020\left(\sqrt{\frac{h}{L}}\right)^{2}-0.3626\left(\sqrt{\frac{h}{L}}\right)^{3}+0.03949\left(\sqrt{\frac{h}{L}}\right)^{4}$
a_{4}	$-0.1237+0.2797 \sqrt{\frac{h}{L}}-0.2098\left(\sqrt{\frac{h}{L}}\right)^{2}+0.06565\left(\sqrt{\frac{h}{L}}\right)^{3}-0.0073295\left(\sqrt{\frac{h}{L}}\right)^{4}$

Configuration	Natural Frequency			
$\mathbf{6 .}$	Approximate formula $f=\frac{1}{2 \pi}\left[\frac{12 \sum E_{i} I_{i}}{h^{3}\left(M_{h}+0.37 \sum M_{i}\right)}\right]^{1 / 2}$	Hz	Ref. [13.13]	
Rigid beam supported	$M_{h}=$ Mass of the top beam			
by n slender legs,	$M_{i}=$ Mass of the i th vertical beam			
in-plane mode				

TABLE 13-6 SAFE-LOAD REGIONS

The combination of loadings describes a region on the $x y$ plane. If a prescribed loading defines a point inside the safe region, no collapse occurs. If a point falls on the boundary, collapse occurs according to the collapse mode indicated. Fully plastic bending moment is defined as $M_{p}=\sigma_{y s} Z_{p}$, where Z_{p} is the plastic section modulus taken from Table 2-2 and $\sigma_{y s}$ is the yield stress of the material.
Frame and Loading

TABLE 13-6 (continued)	SAFE-LOAD REGIONS
Frame and Loading	Safe Load Region
4.	Mode 1: $x=3$ Mode 2: $y=16$ Mode 3: $2 x+y-4 \sqrt{y}-2=0$ $\begin{aligned} & x=\frac{W_{H} h}{M_{p}} \\ & y=\frac{p_{V} L^{2}}{M_{p}} \end{aligned}$
5.	Mode 1: $x=4$ Mode 2: $y=16$ Mode 3: $2 x+y-4 \sqrt{y}-4=0$ $\begin{aligned} & x=\frac{W_{H} h}{M_{p}} \\ & y=\frac{p_{V} L^{2}}{M_{p}} \end{aligned}$
6.	$\begin{aligned} & \text { Mode 1: } y=8 \\ & \text { Mode 2: } 2 x+y=10 \\ & x=\frac{W_{H} h}{M_{p}} \\ & y=\frac{W_{V} L}{M_{p}} \end{aligned}$
7.	$\begin{aligned} & \text { Modes 1-4: } x+y=8 \\ & x=\frac{W_{H} h}{M_{p}} \\ & y=\frac{W_{V} L}{M_{p}} \end{aligned}$

TABLE 13-6 (continued) SAFE-LOAD REGIONS		
Frame and Loading	Safe Load Region	
8.		Mode 1: $x=4$ Mode 2: $y=18 \sqrt{3}$ Mode 3: $y-6 x+12$ $\begin{aligned} & +(9 x-36) \sqrt{\frac{3 y}{y-6 x+12}}=0 \\ x= & \frac{W_{H} h}{M_{p}} \\ y= & \frac{p_{0} L^{2}}{M_{p}} \end{aligned}$
9.		$\begin{aligned} & \text { Mode 1: } x=3 \\ & \text { Mode 2: } y=18 \sqrt{3} \\ & \text { Mode 3: }(y-6 x-6)^{3} \\ & \quad-(27-9 x)^{2} 3 y=0 \\ & x=\frac{W_{H} h}{M_{p}} \\ & y=\frac{p_{0} L^{2}}{M_{p}} \end{aligned}$

TABLE 13-7 UNIFORM GRIDWORKS ${ }^{\text {a }}$

Notation

The ends of both the girders and stiffeners are simply supported.
Girders: beams that lie parallel to the x axis.
Stiffeners: beams that lie parallel to the y axis.
$n_{g}, n_{s}=$ total number of girders and stiffeners, respectively
$g, s=$ index for girders and stiffeners, respectively
$w_{g}, \theta_{g}, M_{g}, V_{g}=$ deflection, slope, bending moment, and shear force of g th girder
$I_{g}, I_{s}=$ moments of inertia of girders and stiffeners, respectively. All girders have the same I_{g} and all stiffeners have the same I_{s}.
$L_{g}, L_{s}=$ length of girders and stiffeners, respectively. All girders have the same L_{g} and all stiffeners have the same L_{s}.
$M=$ number of terms chosen by user to be included in summation

$$
\left\langle x-x_{s}\right\rangle^{0}= \begin{cases}0 & \text { if } x<x_{s} \\ 1 & \text { if } x \geq x_{s}\end{cases}
$$

$K_{j}=$ Take from Table 13-8.

	Response
1. Deflection $w_{g}=\sin \frac{\pi g}{n_{g}+1} \sum_{j=1}^{\infty} K_{j} \sin \frac{j \pi x}{L_{g}}$ 2. $\theta_{g}=-\sin \frac{\pi g}{n_{g}+1} \sum_{j=1}^{\infty} K_{j} \frac{j \pi}{L_{g}} \cos \frac{j \pi x}{L_{g}}$ Slope $M_{g}=E I_{g} \sin \frac{\pi g}{n_{g}+1} \sum_{j=1}^{\infty} K_{j}\left(\frac{j \pi}{L_{g}}\right)^{2} \sin \frac{j \pi x}{L_{g}}$ 3. Bending moment $V_{g}=E I_{g} \sin \frac{\pi g}{n_{g}+1} \sum_{j=1}^{\infty} K_{j}$ 4. Shear force $\times\left[\left(\frac{j \pi}{L_{g}}\right)^{3} \cos \frac{j \pi x}{L_{g}}+\frac{\pi^{4} I_{s}}{\left(n_{g}+1\right) L_{s}^{3} I_{g}} \sum_{s=1}^{M}\left\langle x-x_{s}\right\rangle^{0} \sin \frac{j \pi x_{s}}{L_{g}}\right]$	

${ }^{a}$ From Ref. [13.6].

TABLE 13-8 PARAMETERS K_{j} OF TABLE 13-7 FOR THE STATIC RESPONSE OF GRIDWORKS

Notation

$P_{g}, P_{s}=$ axial forces in girders and stiffeners, respectively (all girders have the same P_{g} and all stiffeners have the same P_{s})
$p_{s}=$ loading intensity along the s th stiffener (F / L)
$W_{s g}=$ concentrated force at intersection x_{s}, y_{g}

$$
P_{e}=\frac{\pi^{2} E I_{s}}{L_{s}^{2}} \quad P_{c}=\frac{\pi^{2} E I_{g}}{L_{g}^{2}}
$$

Loading	K_{j}
1. For concentrated loads $W_{s g}$ at x_{s}, y_{g}	$\frac{2 L_{s}^{3}}{E I_{s} \pi^{4}} \frac{P_{e}}{P_{e}-P_{s}} \sum_{s=1}^{n_{s}} \sum_{g=1}^{n_{g}} W_{s g} \sin \frac{\pi g}{n_{g}+1} \sin \frac{j \pi s}{n_{s}+1}$
2. $\left.\frac{L_{s}}{L_{g}}\right)^{3} \frac{I_{g}}{I_{s}}\left(1-\frac{P_{g}}{j P_{c}}\right)+\frac{n_{s}+1}{2}$	
For uniform force p_{s} along s th stiffener	$\frac{4 L_{s}^{4}}{E I_{s} \pi^{5}} \frac{P_{e}}{P_{e}-P_{s}} \sum_{s=1}^{n_{s}} p_{s} \sin \frac{j \pi s}{n_{s}+1}$

3.

If uniform force p_{S} is same for all stiffeners

Only the first term $(j=1)$ in the equations of Table 13-7 is required:

$$
K_{1}=\frac{\frac{4 L_{s}^{4}}{E I_{s} \pi^{5}} \frac{P_{e}}{P_{e}-P_{s}} \sum_{s=1}^{n_{s}} p_{s} \sin \frac{\pi s}{n_{s}+1}}{\frac{n_{g}+1}{2}\left(\frac{L_{s}}{L_{g}}\right)^{3} \frac{I_{g}}{I_{s}}\left(1-\frac{P_{g}}{P_{c}}\right)+\frac{n_{s}+1}{2}}
$$

TABLE 13-9 CRITICAL AXIAL LOADS IN GIRDERSa

Notation

$$
\begin{aligned}
n_{s} & =\text { number of stiffeners } \\
L_{g}, L_{s} & =\text { length of girders and stiffeners, respectively } \\
E & =\text { modulus of elasticity } \\
I_{g}, I_{s} & =\text { moments of inertia of girders and stiffeners, respectively } \\
P_{\mathrm{cr}} & =\text { unstable value of } P_{g}, \text { axial force in girders }
\end{aligned}
$$

The length, moment of inertia, and axial force do not vary from girder to girder.
The lengths and moments of inertia of the stiffeners also do not vary from each other.

$$
\begin{gathered}
D_{1}=\frac{0.0866 L_{g}^{2}}{D_{3}} \quad D_{2}=\frac{0.202 L_{g}^{2}}{D_{3}} \quad D_{3}=\sqrt{\frac{C_{1} L_{g} L_{s}^{3} I_{g}}{I_{s}\left(n_{s}+1\right)}} \\
P_{e}=\frac{\pi^{2} E I_{g}}{L_{g}^{2}}
\end{gathered}
$$

Take C_{1} from Table 13-10.

End Conditions of Girders	Case	D_{1}	$P_{\text {cr }}$
Simply supported	$\mathbf{1}$	≤ 1	$\left(1+D_{1}\right) P_{e}$
	$\mathbf{2}$	>1	$D_{2} P_{e}$
Fixed	$\mathbf{3}$	≤ 1	$\left(4+D_{1}\right) P_{e}$
	$\mathbf{4}$	>1	$\left(3+D_{2}\right) P_{e}$

[^24]
TABLE 13-10 VALUES OF C_{1} OF TABLE 13-9 FOR STABILITYa

Number of Girders, n_{g}	End Conditions of Stiffeners, C_{1}	
	Simply Supported	Fixed
1	0.020833	0.0052083
2	0.030864	0.0061728
3	0.041089	0.0080419
4	0.051342	0.010009
5	0.061603	0.011997
6	0.071866	0.013990
7	0.082131	0.015986
8	0.092396	0.017982
9	0.10266	0.019979
10	0.11293	0.021976

${ }^{a}$ For simply supported stiffeners the formula

$$
C_{1}=\frac{n_{g}+1}{\pi^{4}}\left(1+\sum_{j=1}^{\infty}\left\{\left[2 j\left(n_{g}+1\right)+1\right]^{-4}+\left[2 j\left(n_{g}+1\right)-1\right]^{-4}\right\}\right)
$$

applies for any n_{g}.

TABLE 13-11 VALUES OF NATURAL FREQUENCY PARAMETERS $\boldsymbol{C}_{\boldsymbol{n}}$ OF EQS. (13.1) AND (13.2)

Girders with Fixed Ends

1	0.0052083						
2	0.0061728	0.0011431					
3	0.0080419	0.0011393	0.00042165				
4	0.010009	0.0013459	0.00039075	0.00020078			
5	0.011997	0.0015917	0.00043081	0.00018009	0.00011111		
6	0.013990	0.0018480	0.00048904	0.00018923	0.000098217	0.000067910	
7	0.015986	0.0021078	0.00055303	0.00020779	0.000099794	0.000059682	0.000044545
8	0.017982	0.0023691	0.00061925	0.00022977	0.00010668	0.000059226	0.000039097
9	0.019970	0.0026311	0.00068645	0.00025320	0.00011572	0.000061961	0.000038155
10	0.021976	0.0028934	0.00075415	0.00027732	0.00012573	0.000066109	0.000039232

TABLE 13-12 STIFFNESS MATRIX FOR PLANE TRUSSES

Notation

$$
\begin{aligned}
E & =\text { modulus of elasticity } \\
A & =\text { area of the cross section } \\
\ell & =\text { length of element } \\
x X & =\text { angle between } x \text { and } X \text { axes } \\
x Z & =\text { angle between } x \text { and } Z \text { axes }
\end{aligned}
$$

Right-handed global $X Y Z$ and local $x y z$ coordinate systems are employed. The identity $\cos ^{2} x X+\cos ^{2} x Z=1$ is useful.

The relationships of this table should be used for the static analysis of trusses. For dynamic analyses of trusses, use the frame formulas.

$$
\begin{aligned}
& \text { LOCAL COORDINATES } \\
& {\left[\begin{array}{c}
\tilde{N}_{a} \\
\tilde{N}_{b}
\end{array}\right]^{i}=\frac{E A}{\ell}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
\tilde{u}_{a} \\
\tilde{u}_{b}
\end{array}\right]^{i}} \\
& \tilde{\mathbf{p}}^{i}=\quad \tilde{\mathbf{k}}^{i} \\
& \tilde{\mathbf{v}}^{i}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\mathbf{p}}^{i}=\left[\begin{array}{l}
\tilde{N}_{x a} \\
\tilde{N}_{x b}
\end{array}\right]^{i}=\left[\begin{array}{c}
\tilde{N}_{a} \\
\tilde{N}_{b}
\end{array}\right]^{i} \\
& \tilde{\mathbf{v}}^{i}=\left[\begin{array}{c}
\tilde{u}_{x a} \\
\tilde{u}_{x b}
\end{array}\right]^{i}=\left[\begin{array}{c}
\tilde{u}_{a} \\
\tilde{u}_{b}
\end{array}\right]^{i}
\end{aligned}
$$

GLOBAL COORDINATES

$$
\mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}
$$

$$
\mathbf{v}^{i}=\left[\begin{array}{l}
u_{X a} \\
u_{Z a} \\
u_{X b} \\
u_{Z b}
\end{array}\right]^{i} \quad \mathbf{p}^{i}=\left[\begin{array}{c}
F_{X a} \\
F_{Z a} \\
F_{X b} \\
F_{Z b}
\end{array}\right]^{i}
$$

$$
\mathbf{k}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{k}}^{i} \mathbf{T}^{i}=\frac{E A}{\ell}\left[\begin{array}{rr}
\mathbf{A} & -\mathbf{A} \\
-\mathbf{A} & \mathbf{A}
\end{array}\right]
$$

Global Coordinates

Global \mathbf{v}^{i} and p^{i}
$\mathbf{T}^{i}=\left[\begin{array}{cccc}\cos x X & \cos x Z & 0 & 0 \\ 0 & 0 & \cos x X & \cos x Z\end{array}\right] \quad \mathbf{A}=\left[\begin{array}{cc}\cos ^{2} x X & \cos x X \cos x Z \\ \cos x X \cos x Z & \cos ^{2} x Z\end{array}\right]$

TABLE 13-13 STIFFNESS MATRIX FOR SPACE TRUSSES

Notation

$$
\begin{aligned}
E & =\text { modulus of elasticity } \\
\ell & =\text { length of element } \\
A & =\text { area of cross section } \\
x X & =\text { angle between } x \text { axis and } X \text { axis, and so on. }
\end{aligned}
$$

The relationships of this table should be used for the static analysis of trusses. For dynamic analyses of trusses, use the frame formulas. See Table 13-12 for coordinate system and other definitions.

LOCAL COORDINATES

$$
\begin{aligned}
{\left[\begin{array}{c}
\tilde{N}_{a} \\
\tilde{N}_{b}
\end{array}\right]^{i} } & =\frac{E A}{\ell}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
\tilde{u}_{a} \\
\tilde{u}_{b}
\end{array}\right]^{i} \\
\tilde{\mathbf{p}}^{i} & =\tilde{\mathbf{k}}^{i}
\end{aligned} \tilde{\mathbf{v}}^{i}
$$

GLOBAL COORDINATES

$$
\begin{aligned}
& \mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i} \\
& \mathbf{v}^{i}=\left[\begin{array}{l}
u_{X a} \\
u_{Y a} \\
u_{Z a} \\
u_{X b} \\
u_{Y b} \\
u_{Z b}
\end{array}\right]^{i}=\left[\begin{array}{l}
u_{a} \\
v_{a} \\
w_{a} \\
u_{b} \\
v_{b} \\
w_{b}
\end{array}\right]^{i} \quad \mathbf{p}^{i}=\left[\begin{array}{l}
F_{X a} \\
F_{Y a} \\
F_{Z a} \\
F_{X b} \\
F_{Y b} \\
F_{Z b}
\end{array}\right]^{i} \\
& \mathbf{k}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{k}}^{i} \mathbf{T}^{i} \\
& \mathbf{T}^{i}=\left[\begin{array}{cccccc}
\cos x X & \cos x Y & \cos x Z & 0 & 0 & 0 \\
0 & 0 & 0 & \cos x X & \cos x Y & \cos x Z
\end{array}\right]
\end{aligned}
$$

TABLE 13-14 STIFFNESS MATRICES FOR PLANE FRAMES

Notation

$E=$ modulus of elasticity
$I, I_{z}=$ moments of inertia about local y and z axes

$$
I_{z}=\int_{A} y^{2} d A \quad I=\int_{A} z^{2} d A
$$

$\ell=$ length of element
$G=$ shear modulus of elasticity
$J=$ torsional constant
$A=$ area of cross section

Frame lies in the $X Y$ plane
$x X=$ angle between x and X axis; and so on, for $x Z, z X$, and $z Z$

Right-handed global $X Y Z$ and local $x y z$ coordinate systems are employed. The identities $\cos ^{2} x X+\cos ^{2} x Z=1$ and $\cos ^{2} z X+\cos ^{2} z Z=1$ are useful. Bending is modeled using Euler-Bernoulli beams.
In-Plane Loading
(Bending and Extension)

TABLE 13-14 (continued) STIFFNESS MATRICES FOR PLANE FRAMES

GLOBAL COORDINATES

$\mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}$
$\mathbf{v}^{i}=\left[\begin{array}{llllll}u_{X a} & u_{Z a} & \theta_{a} & u_{X b} & u_{Z b} & \theta_{b}\end{array}\right]^{T}$
$\mathbf{p}^{i}=\left[\begin{array}{llllll}F_{X a} & F_{Z a} & M_{a} & F_{X b} & F_{Z b} & M_{b}\end{array}\right]^{T}$
$\mathbf{k}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{k}}^{i} \mathbf{T}^{i}$

Global \mathbf{v}^{i} and \mathbf{p}^{i}
$\mathbf{T}^{i}=\left[\begin{array}{cccccc}\cos x X & \cos x Z & 0 & 0 & 0 & 0 \\ \cos z X & \cos z Z & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos x X & \cos x Z & 0 \\ 0 & 0 & 0 & \sin z X & \cos z Z & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
GLOBAL COORDINATES
$\mathbf{p}^{i}=\mathbf{k}^{i}+\mathbf{v}^{i}$
$\mathbf{v}^{i}=\left[\begin{array}{llllll}\theta_{X a} & u_{Y a} & \theta_{Z a} & \theta_{X b} & u_{Y b} & \theta_{Z b}\end{array}\right]^{T}$
$\mathbf{p}^{i}=\left[\begin{array}{llllll}M_{X a} & F_{Y a} & M_{Z a} & M_{X b} & F_{Y b} & M_{Z b}\end{array}\right]^{T}$
$\mathbf{k}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{k}} \mathbf{T}^{i}$

Global \mathbf{v}^{i} and \mathbf{p}^{i}
$\mathbf{T}^{i}=\left[\begin{array}{cccccc}\cos x X & 0 & \cos x Z & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \cos z X & 0 & \cos z Z & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos x X & 0 & \cos x Z \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \cos z X & 0 & \cos z Z\end{array}\right]$

TABLE 13-15 STIFFNESS MATRIX FOR BAR IN SPACE

Notation												
$E=$ modulus of elasticity									$G=$ shear modulus of elasticity			
$I, I_{z}=$ moments of inertia about y and z axes									$A=$ area of cross section			
$I_{z}=\int_{A} y^{2} d A \quad I_{y}=I=\int_{A} z^{2} d A$									$J=$ $\ell=$	orsiona	constan element	
$x X=$ angle between x and X axes; similarly for $x Y$,												
The identities $\cos ^{2} j X+\cos ^{2} j Y+\cos ^{2} j Z=1, j=x, y, z$ are useful.												
DISPLACEMENTS AND FORCES												
LOCAL COORDINATES $\quad \tilde{\mathbf{p}}^{i}=\tilde{\mathbf{k}}^{i} \tilde{\mathbf{v}}^{i}$												
$\tilde{\mathbf{v}}^{i}=\left[\begin{array}{cccccccccccc} \tilde{u}_{a} & \tilde{v}_{a} & \tilde{w}_{a} & \tilde{\phi}_{a} & \tilde{\theta}_{y a} & \tilde{\theta}_{z a} & \tilde{u}_{b} & \tilde{v}_{b} & \tilde{w}_{b} & \tilde{\phi}_{b} & \tilde{\theta}_{y b} & \tilde{\theta}_{z b} \end{array}\right]^{T}$												
$\tilde{\mathbf{p}}^{i}=\left[\tilde{N}_{a}\right.$		$\tilde{V}_{z a} \quad \tilde{T}_{a}$	$\tilde{M}_{y a} \quad \tilde{M}_{z a}$	\tilde{N}_{b}	$\tilde{y}_{y b} \quad \tilde{V}_{z b}$	$\tilde{T}_{b} \quad \tilde{M}_{y b}$	$\left.\tilde{M}_{z b}\right]^{T}$					
$\tilde{\mathbf{k}}^{i}=$	$\Gamma E A / \ell$											7
	0	$12 E I_{z} / \ell^{3}$					Symme					
	0	0	$12 E I_{y} / \ell^{3}$									
	0	0	0	$G J / \ell$								
	0	${ }_{0}^{0}$	$-6 E I_{y} / \ell^{2}$	0	$4 E I_{y} / \ell$							
	0	$6 E I_{z} / \ell^{2}$	0	0	0	$4 E I_{z} / \ell$						
	$-E A / \ell$	0	0	0	0	0						
	0	$-12 E I_{z} / \ell^{3}$	0	0	0	$-6 E I_{z} / \ell^{2}$	0	$12 E I_{z} / \ell^{3}$				
	0	0	$-12 E I_{y} / \ell^{3}$	0	$6 E I_{y} / \ell^{2}$	0	0	0	$12 E I_{y} / \ell^{3}$			
	0	0	0	$-G J / \ell$	0	0	0	0	0	$G J / \ell$		
	0	0	$-6 E I_{y} / \ell^{2}$	0	$2 E I_{y} / \ell$	0	0	0	$6 E I_{y} / \ell^{2}$	0	$4 E I_{y} / \ell$	
		$6 E I_{z} / \ell^{2}$	0	0	0	$2 E I_{z} / \ell$	0	$-6 E I_{z} / \ell^{2}$				$\left.4 E I_{z} / \ell\right]$

TABLE 13-15 (continued) STIFFNESS MATRIX FOR BAR IN SPACE

$$
\begin{aligned}
& \text { GLOBAL COORDINATES } \\
& \mathbf{v}^{i}=\left[\begin{array}{llllllllllll}
u_{X a} & u_{Y a}=\mathbf{k}^{i} \mathbf{v}^{i} \\
\mathbf{p}^{i} & =\left[\begin{array}{lllllllllll}
F_{X a} & u_{Y a} & \theta_{X a} & \theta_{Y a} & \theta_{Z a} & u_{X b} & u_{Y b} & u_{Z b} & \theta_{X b} & \theta_{Y b} & \theta_{Z b}
\end{array}\right]^{T} \\
\mathbf{k}^{i} & =\mathbf{T}^{i T} \tilde{\mathbf{k}}^{i} \mathbf{T}^{i} \\
\boldsymbol{\tau}_{0} & =\left[\begin{array}{lllllllll}
\cos x X & \cos x Y & \cos x Z \\
\cos y X & \cos y Y & \cos y Z \\
\cos z X & \cos z Y & \cos z Z
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

$$
\mathbf{T}^{i}=\left[\begin{array}{llllll}
\boldsymbol{\tau}_{0} & & & & & \\
& & \boldsymbol{\tau}_{0} & & 0 & \\
& 0 & & \boldsymbol{\tau}_{0} & & \\
& & & & & \boldsymbol{\tau}_{0}
\end{array}\right]
$$

POSITIVE FORCES AND DISPLACEMENTS

TABLE 13-16 MASS MATRICES FOR PLANE FRAMES

Notation

$$
\begin{aligned}
\rho= & \text { mass per unit length } \\
I_{x}= & \text { polar moment of inertia, } I_{x}=J_{x} \\
I_{x x j}, I_{y y j}, I_{z z j}= & \text { rotary inertia of lumped mass at point } j \\
& \text { about the } x, y, z \text { axes, respectively } \\
A= & \text { area of cross section }
\end{aligned}
$$

$$
\begin{aligned}
r_{y}, r_{z} & =\text { radius of gyration about } y \text { and } z \text { axes } \\
r_{y} & =\sqrt{I_{y} / A}, r_{z}=\sqrt{I_{z} / A}
\end{aligned}
$$

$I_{y}, I_{z}=$ moments of inertia about y and z axes
$\ell=$ length of element

See Table 13-14 for coordinate systems, displacement vectors, and force vectors.

Mass Lumped at Both Ends of Element

LOCAL COORDINATES

$$
\begin{aligned}
\tilde{\mathbf{m}}^{i} & =\frac{\rho \ell}{2}\left[\right] \\
& =\left[\begin{array}{llllll}
m_{a} & & & & & \\
& m_{a} & & & \\
& & I_{y y a} & & & \\
& & & m_{b} & & \\
& & & & m_{b} & \\
& & & & & I_{y y b}
\end{array}\right]
\end{aligned}
$$

Set $I_{y y a}=I_{y y b}=0$ if rotary inertia is neglected.

$$
\begin{aligned}
& \text { LOCAL COORDINATES } \\
& \qquad \begin{array}{cl}
\tilde{\mathbf{m}}^{i} & =\frac{\rho \ell}{2}\left[\begin{array}{cccccc}
I_{x} / A & & & \text { symmetric } \\
0 & 1 & & & \\
0 & 0 & \frac{\ell^{2}}{12}+r_{z}^{2} & & \\
0 & 0 & 0 & I_{x} / A & \\
0 & 0 & 0 & 0 & 1 & \\
0 & 0 & 0 & 0 & 0 & \frac{\ell^{2}}{12}+r_{z}^{2}
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
I_{x x a} & & & & & \\
& m_{a} & & & & \\
& & I_{z z a} & & & \\
& & & I_{x x b} & & \\
& & & & m_{b} & \\
&
\end{array}\right]
\end{array} .
\end{aligned}
$$

Set $I_{z z a}=I_{z z b}=0$ if rotary inertia is neglected.

In-Plane Loading (Bending and Extension) Out-of-Plane Loading (Bending and Torsion)

Mass Lumped at Point a

Use only the a components of the force and displacement vectors.

Consistent Mass Matrices for Uniform Beams

$$
\tilde{\mathbf{m}}^{i}=\frac{\rho \ell}{420}\left[\begin{array}{ccccc}
140 & & & & \\
0 & 156 & & \text { symmetric } \\
0 & -22 \ell & 4 \ell^{2} & & \\
70 & 0 & 0 & 140 & \\
0 & 54 & -13 \ell & 0 & 156 \\
0 & 13 \ell & -3 \ell^{2} & 0 & 22 \ell \\
0 & 4 \ell^{2}
\end{array}\right] \quad \tilde{\mathbf{m}}^{i}=\frac{\rho \ell}{420}\left[\begin{array}{ccccc}
14 I_{x} / A & & & \\
0 & 156 & & \text { symmetric } \\
0 & 22 \ell & 4 \ell^{2} & & \\
70 I_{x} / A & 0 & 0 & 140 I_{x} / A & \\
0 & 54 & 13 \ell & 0 & 156 \\
0 & -13 \ell & -3 \ell^{2} & 0 & -22 \ell
\end{array}\right]
$$

$$
+\frac{\rho A \ell}{30}\left(\frac{r_{y}}{\ell}\right)^{2}\left[\begin{array}{cccccc}
0 & & & \\
0 & 36 & \text { symmetric } & \\
0 & -3 \ell & 4 \ell^{2} & & & \\
0 & 0 & 0 & 0 & & \\
0 & -36 & 3 \ell & 0 & 36 & \\
0 & -3 \ell & -\ell^{2} & 0 & 3 \ell & 4 \ell^{2}
\end{array}\right]
$$

$$
+\frac{\rho A \ell}{30}\left(\frac{r_{z}}{\ell}\right)^{2}\left[\right]
$$

GLOBAL COORDINATES
$\mathbf{m}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{m}}^{i} \mathbf{T}^{i}$, where \mathbf{T}^{i} is as given in Table 13-14.
GLOBAL COORDINATES
$\mathbf{m}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{m}}^{i} \mathbf{T}^{i}$, where \mathbf{T}^{i} is as given in Table 13-14.

TABLE 13-17 MASS MATRICES FOR SPACE FRAMES

Notation

$\rho=$	mass per unit length
$I_{x}=$	polar moment of inertia, $I_{x}=J_{x}$
$I_{x x j}, I_{y y j}, I_{z z j}=$	rotary inertia of lumped mass
	at point j about the x, y, z
	axes, respectively

$$
\begin{aligned}
r_{y}, r_{z}= & \text { radius of gyration about } y \\
& \text { and } z \text { axes }
\end{aligned}
$$

$$
\begin{aligned}
r_{y}= & \sqrt{I_{y} / A}, r_{z}=\sqrt{I_{z} / A} \\
I_{y}, I_{z}= & \text { moments of inertia about } y \\
& \text { and } z \text { axes }
\end{aligned}
$$

$A=$ area of cross section

See Table 13-15 for coordinate systems, force vector, and displacement vector definitions. Formulas for $m_{j}, I_{x x j}, I_{y y j}, I_{z z j}$ are defined in Table 13-16.

Mass Lumped at Both Ends of Element

$$
\begin{aligned}
& \tilde{\mathbf{m}}^{i}=\frac{\rho l}{2}\left[\begin{array}{ccccccccccc}
1 & & & & & & & & & & \\
0 & 1 & & & & & & & & & \\
0 & 0 & 1 & & & & & & & & \\
0 & 0 & 0 & I_{x} / A & & & & \ell^{2} \\
0 & 0 & 0 & 0 & & & & r_{z}^{2} & & & \\
12
\end{array}\right] \\
& =\left[\begin{array}{lllllllllll}
m_{a} & & & & & & & & & & \\
& m_{a} & & & & & & & & & \\
& & m_{a} & & & & & & & & \\
\\
& & & I_{x x a} & & & & & & & \\
\\
& & & & I_{y y a} & & & & & \\
& & & & & I_{z z a} & & & & & \\
& & & & & & m_{b} & & & & \\
& & & & & & & m_{b} & & & \\
& & & & & & & & m_{b} & & \\
& & & & & & & & & I_{x x b} & \\
& & & & & & & & & & I_{y y b} \\
\\
& & & & & & & & & & \\
& \\
& & & & & & & & & & \\
z z b
\end{array}\right]
\end{aligned}
$$

TABLE 13-17 (continued) MASS MATRICES FOR SPACE FRAMES
Mass Lumped at Point a

Use only the a components of the force and displacement vectors.

Consistent Mass for Uniform Space Bars

$$
\begin{aligned}
& \tilde{\mathbf{m}}^{i}=\frac{\rho \ell}{420}\left[\begin{array}{cccccccccccc}
140 & & & & & & & & & & & \\
0 & 156 & & & & & & & & & & \\
0 & 0 & 156 & & 0 & 140 I_{x} / A & & & & & & \\
0 & \\
0 & 0 & 0 & -22 \ell & 0 & 4 \ell^{2} & & & & & & \\
0 & 0 & 0 & 0 & 4 \ell^{2} & & & & & & \\
0 & 22 \ell & 0 & 0 & 0 & 0 & 0 & 140 & & & & \\
70 & 0 & 0 & 0 & 0 & & 13 \ell & 0 & 156 & & & \\
0 & 54 & 0 & 0 & 0 & & \\
0 & 0 & 54 & 0 & -13 \ell & 0 & 0 & 0 & 156 & & & \\
0 & 0 & 0 & 70 I_{x} / A & 0 & 0 & 0 & 0 & 0 & 140 I_{x} / A & & \\
0 & 0 & 13 \ell & 0 & -3 \ell^{2} & 0 & 0 & 0 & 22 \ell & 0 & 4 \ell^{2} & \\
0 & -13 \ell & 0 & 0 & 0 & -3 \ell^{2} & 0 & -22 \ell & 0 & 0 & 0 & 4 \ell^{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { (rotary inertia) }
\end{aligned}
$$

GLOBAL COORDINATES

$\mathbf{m}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{m}}^{i} \mathbf{T}^{i}$, where \mathbf{T}^{i} is as given in Table 13-15.

C H A P TER

4

Torsion of Thin-Walled Beams

14.1 Notation 733
14.2 Sign Convention and Definitions 735
14.3 Stresses 736
Normal Warping Stress 736
Shear Warping Stress 737
14.4 Twisting of Thin-Walled Beams 738
Formulas for Beams with Arbitrary Loading 738
14.5 Buckling Loads 741
14.6 Natural Frequencies 741
14.7 General Beams 742
References 745
Tables 747

The torsion of beams having noncircular cross sections and in particular thin-walled beams are treated in this chapter. A thin-walled beam is made from thin plates joined along their edges. If restrained warping occurs, it is essential to employ the formulas of this chapter rather than simple torsion formulas. The term warping is defined as the out-of-plane distortion of the cross section of a beam in the direction of the beam's longitudinal axis. Restrained warping will be significant during the twisting of a thin-walled beam when the applied twisting moment or the boundary conditions create an internal twisting moment that varies along the beam axis. For example, this situation occurs if the in-span conditions prevent cross sections from warping freely. The shear stresses and strains in a thin-walled beam tend to be higher than those in a beam of solid cross section.

Software to perform analyses of thin-walled beams is available from the web site for this book. This includes a program that computes cross-sectional properties and stresses for a cross section of arbitrary shape. This software is based on theory described in Ref. [14.1].

14.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F for force, M for mass, and T for time.

A Cross-sectional area $\left(L^{2}\right)$
b_{x} Distributed bimoment (FL)
B Bimoment, warping moment $\left(F L^{2}\right)$
$C^{2}=G J / E \Gamma\left(1 / L^{2}\right)$
$C_{P}\left\{\begin{aligned}= & \left(I_{y}+I_{z}\right) / A \text { if shear center and centroid coincide } \\ = & \left(I_{y}+I_{z}\right) / A+\left(z_{S} / I_{y}\right) \int_{A} z\left(y^{2}+z^{2}\right) d A \\ & +\left(y_{S} / I_{z}\right) \int_{A} y\left(y^{2}+z^{2}\right) d A-\left(y_{S}^{2}+z_{S}^{2}\right) \text { if shear } \\ & \text { center and centroid do not coincide } \\ & \text { and the axial force passes through shear center }\end{aligned}\right.$
E Modulus of elasticity $\left(F / L^{2}\right)$
$E \Gamma$ Warping rigidity $\left(F L^{4}\right)$
G Shear modulus of elasticity $\left(F / L^{2}\right)$
$G J$ Torsional rigidity ($F L^{2}$)
$I_{p i}$ Polar mass moment of inertia of concentrated mass at location $i\left(M L^{2}\right)$; can be computed as $I_{p i}=\Delta a \rho r_{p}^{2}$, where Δa is length of shaft lumped at location i
I_{y} Moment of inertia of cross section about y axis, $=I\left(L^{4}\right)$
I_{z} Moment of inertia of cross section about z axis $\left(L^{4}\right)$
J Torsional constant $\left(L^{4}\right)$; for circular cross sections, J is the polar moment of inertia (I_{x}) of the cross-sectional area with respect to centroidal axis of bar
k_{t} Elastic foundation modulus ($F L / L$)
L Length of beam (L)
m_{x} Distributed torque, twisting moment intensity ($F L / L$)
$m_{x 0}$ Initial magnitude of linearly varying distributed torque ($F L / L$)
$m_{x 1}$ Magnitude of torque that is uniformly distributed in x direction ($F L / L$)
$m_{x \ell}$ Final magnitude of linearly varying distributed torque ($F L / L$)
M, M_{z} Bending moments about y and z axes ($F L$)
P Compressive axial force passing through shear center; replace P by $-P$ for tensile axial forces (F)
Q_{ω} First sectorial moment (L^{4})
r_{p} Polar radius of gyration [i.e., r_{p} is radius of gyration of cross-sectional area about the longitudinal (x) axis of beam $(L)]$
r_{S} Perpendicular distance from shear center to tangent of centerline of wall profile (L)
s Arc length measured from outer edge of wall profile (L)
S Shear center
t Wall thickness (L)

```
            \(T\) Total twisting moment, torque ( \(F L\) )
            \(T_{t}\) Torque due to pure torsion ( \(F L\) )
            \(T_{\omega}\) Warping torque ( \(F L\) )
            \(v, w\) Displacements in \(y\) and \(z\) directions
\(V_{y}, V\) Shear forces in \(y\) and \(z\) directions
\(y_{S}, z_{S}\) Distance along \(y, z\) directions between shear center and centroid ( \(L\) )
            \(\Gamma\) Warping constant \(\left(L^{6}\right)\)
    \(\theta, \theta_{z}\) Rotations about \(y\) and \(z\) axes
            \(\rho\) Mass per unit length ( \(M / L, F T^{2} / L^{2}\) )
            \(\sigma_{\omega}\) Normal stress caused by warping, or normal warping stress \(\left(F / L^{2}\right)\)
            \(\tau_{\omega}\) Shear stress caused by warping, or shear warping stress \(\left(F / L^{2}\right)\)
            \(\phi\) Angle of twist, rotation (rad)
\(\phi_{a}, \phi_{b}\) Angles of twist at points \(a\) and \(b\)
            \(\psi\) Rate of change of angle of twist \(\phi\) with respect to \(x\) axis ( \(\mathrm{rad} / L\) )
            \(\omega\) Warping \(\left(L^{2}\right)\) of cross section with respect to plane of average warping
            or principal sectorial coordinate with respect to shear center; also, natural
        frequency ( \(\mathrm{rad} / T\) )
    \(\omega_{S}\) Sectorial coordinate with respect to shear center \(S\left(L^{2}\right)\)
```


14.2 SIGN CONVENTION AND DEFINITIONS

For the torsion of thin-walled beams, where restrained warping may be important, the response variables are ϕ, the angle of twist; ψ, the rate of change of ϕ with respect to the x axis; B, the bimoment; T, the torsional torque, and T_{ω}, the warping torque. A bimoment can be considered to be two equal and opposite moments M_{c} acting about the same axis and separated from one another (Fig. 14-1). Its value is the product of the moment and the separation distance. The effect of a bimoment is to warp cross sections and twist the beam. Positive twisting displacements and moments are illustrated as part of the tables of this chapter.

Figure 14-1: Bimoment B due to a twisting moment T. A positive angle of twist ϕ is also illustrated.

Figure 14-2: Normal warping stress σ_{ω} and shear warping stress in an I-beam cross section.

14.3 STRESSES

The response formulas of this chapter give the internal bimoment and warping torque along a beam. The normal and shear warping stresses (σ_{ω} and τ_{ω}) on a face of the cross section (Fig. 14-2) can be computed using the formulas of this section. For thin-walled open sections, the normal and shear stresses due to restrained warping or nonuniform torsion should be taken into account, as they are often higher than the nonwarping stresses. Analytical and numerical procedures for the calculation of warping sectional properties and stresses are described in Chapters 2, 12, and 15.

Normal Warping Stress

The normal stress σ_{x} caused by warping is

$$
\begin{equation*}
\sigma_{x}=\sigma_{\omega}=B \omega / \Gamma \tag{14.1}
\end{equation*}
$$

This stress acts perpendicular to the surface of the cross section (Fig. 14-2). It is assumed to be constant through the thickness of the thin-walled section. The quantity ω is the principal sectorial coordinate, defined as $\omega=\omega_{S}-\omega_{0}$, where

$$
\begin{gather*}
\omega_{0}=\frac{1}{A} \int_{A} \omega_{S} d A=\frac{1}{A} \int_{A} \omega_{S} t d s \tag{14.2a}\\
\omega_{S}= \begin{cases}\int_{0}^{s} r_{S} d s & \text { for open cross sections } \\
\int_{0}^{s} r_{S} d s-\frac{\oint r_{S} d s}{\oint(1 / t) d s} \int_{0}^{s} \frac{1}{t} d s & \text { for closed cross sections }\end{cases} \tag{14.2b}
\end{gather*}
$$

The integration \int_{0}^{s} in Eq. (14.2b) is taken from the free edge to the point at which the stress σ_{x} is desired. The symbol \oint indicates that the integration is taken completely around the closed section. See Chapters 2 and 15 for the computation of ω. The
bimoment is defined by

$$
\begin{equation*}
B=\int_{A} \sigma_{x} \omega d A \tag{14.3a}
\end{equation*}
$$

The torsional moment can cause warping (longitudinal displacement) of the cross section. Consequently, the longitudinal displacement of the cross section caused by axial forces on the cross section may result in a twist of the beam. Thus, a bimoment may develop. In this case, the bimoment is expressed as

$$
\begin{equation*}
B=\sum P_{i} \omega_{i} \tag{14.3b}
\end{equation*}
$$

where P_{i} is a concentrated longitudinal axial load in the cross section where B is sought and ω_{i} is the corresponding principal sectorial coordinate at the location where P_{i} is applied. Here \sum indicates summation of all the $P_{i} \omega_{i}$ for the cross section under consideration.

The warping constant Γ is defined as

$$
\Gamma= \begin{cases}\int_{A} \omega^{2} d A & \text { for open cross sections } \tag{14.4}\\ \int_{A} \omega^{2} d A-\frac{\oint r_{S} d s}{\oint(1 / t) d s} \oint\left(Q_{\omega} / t\right) d s & \text { for closed cross sections }\end{cases}
$$

and can be found in Table 2-6 for some common cross sections.

Shear Warping Stress

The shear stress τ due to warping is

$$
\tau_{\omega}= \begin{cases}\frac{T_{\omega} Q_{\omega}}{t \Gamma} & \text { for open cross sections } \tag{14.5}\\ \frac{T_{\omega}}{t \Gamma}\left[Q_{\omega}-\frac{\oint\left(Q_{\omega} / t\right) d s}{\oint(1 / t) d s}\right] & \text { for closed cross sections }\end{cases}
$$

This stress acts parallel to the edges of the cross section (Fig. 14-2). Like the normal warping stress, the shear warping stress is assumed to be constant through the thickness of the thin-walled section. The quantity

$$
\begin{equation*}
Q_{\omega}=\int_{A_{0}} \omega d A=\int_{0}^{s_{0}} \omega t d s \tag{14.6}
\end{equation*}
$$

is the first sectorial moment (Chapter 2). For an open cross section, the area A_{0} lies between the position $\left(s_{0}\right)$ at which the stress is desired and the outer fiber of the cross section. For a closed section, the integration of Eq. (14.6) should be taken as though the section were open at an arbitrary point. This point then replaces the outer fiber.

14.4 TWISTING OF THIN-WALLED BEAMS

The governing equations for the twisting of a thin-walled beam are

$$
\begin{align*}
E \Gamma \frac{d^{4} \phi}{d x^{4}}-G J \frac{d^{2} \phi}{d x^{2}} & =m_{x} \\
E \Gamma \frac{d^{3} \phi}{d x^{3}}-G J \frac{d \phi}{d x} & =-T \tag{14.7}\\
E \Gamma \frac{d^{2} \phi}{d x^{2}} & =-B \\
\frac{d \phi}{d x} & =-\psi
\end{align*}
$$

These relations can be solved giving the angle of twist ϕ, rate of angle of twist ψ, bimoment B, and total torque T as functions of the coordinate x. The warping torque T_{ω} and pure torsion torque T_{t} can be calculated from $T_{\omega}=-E \Gamma d^{3} \phi / d x^{3}$ and $T_{t}=G J d \phi / d x$. The total torque is $T=T_{\omega}+T_{t}$.

Formulas for Beams with Arbitrary Loading

The angle twist, bimoment, torsional moment, and warping torque of beams under arbitrary loading with any end conditions are provided in Table 14-1.

Table 14-1, part A, lists equations for the responses. The functions $F_{\phi}, F_{\psi}, F_{B}$, and F_{T} are taken from Table 14-1, part B, by adding the appropriate terms for each load applied to the beam. The initial parameters $\phi_{0}, \psi_{0}, B_{0}$, and T_{0}, which are values of ϕ, ψ, B, and T at the left end $(x=0)$ of the beam, are evaluated using the entry in Table 14-1, part C, for the appropriate beam end conditions.

The end conditions for the twisting of a thin-walled beam are frequently referred to as simply supported, fixed, free, and guided. An end is said to be simply supported or pinned if the cross section at the end is allowed to warp freely but is prevented from rotation. The angle of twist ϕ and the bimoment B are taken as being zero at the simply supported end. If the rotation and the warping of an end cross section are completely constrained, the end is said to be fixed. At a fixed end the angle of twist ϕ and the rate of angle of twist ψ are zero. If neither the rotation nor the warping is restrained, the end is considered to be free. For free ends the bimoment B and the total twisting moment T are zero. A guided end twists but does not warp. For a guided end the rate of angle of twist ψ and the torque T are zero.

Example 14.1 Response and Stresses of an I-Beam Calculate the displacements, moments, and stresses of the clamped-free I-beam of Fig. 14-3 under uniform twisting moment m_{x}.

The cross sectional properties of the beam are obtained from Tables 2-5 and 2-6

Figure 14-3: Cantilevered I-beam: (a) beam characteristics; (b) warping function.

$$
\begin{equation*}
J=\frac{1.29}{3} \sum_{i=1}^{3} b_{i} t_{i}^{3}=12.9 \mathrm{in}^{4}, \quad \Gamma=\frac{1}{24} b^{3} h^{2} t=4166.667 \mathrm{in}^{6} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
C=(G J / E \Gamma)^{1 / 2}=3.49 \times 10^{-2} \mathrm{in}^{-1} \tag{2}
\end{equation*}
$$

The loading functions are taken from Table 14-1, part B:

$$
\begin{align*}
F_{\phi}(x) & =\frac{m_{x}}{C^{2} G J}\left(\cosh C x-1-\frac{1}{2} C^{2} x^{2}\right) \\
& =5.394 \times 10^{-4}\left(\cosh C x-1-\frac{1}{2} C^{2} x^{2}\right) \\
F_{\psi}(x) & =\frac{m_{x}}{C G J}(C x-\sinh C x)=1.88 \times 10^{-5}(C x-\sinh C x) \tag{3}\\
F_{B}(x) & =-\frac{m_{x}}{C^{2}}(\cosh C x-1)=-82,118(\cosh C x-1) \\
F_{T}(x) & =-m_{x} x=-100 x
\end{align*}
$$

The four initial parameters are based on the formulas of Table 14-1, part C:

$$
\begin{align*}
\phi_{0} & =\psi_{0}=0 \\
B_{0} & =\frac{\bar{F}_{T}}{C} \tanh C L-\frac{\bar{F}_{B}}{\cosh C L}=-\frac{m_{x} L}{C} \tanh C L+\frac{m_{x}}{C^{2}} \frac{\cosh C L-1}{\cosh C L} \tag{4}\\
& =-208,902.85 \mathrm{lb}-\mathrm{in}^{2} \\
T_{0} & =10,000 \mathrm{lb}-\mathrm{in} .
\end{align*}
$$

Then the responses are (Table 14-1, part A)

$$
\begin{align*}
\phi & =B_{0} \frac{1-\cosh C x}{G J}+T_{0} \frac{C x-\sinh C x}{C G J}+F_{\phi}(x) \\
\psi & =B_{0} \frac{\sinh C x}{C E \Gamma}-T_{0} \frac{1-\cosh C x}{G J}+F_{\psi}(x) \\
B & =B_{0} \cosh C x+T_{0} \frac{\sinh C x}{C}+F_{B}(x) \tag{5}\\
T & =T_{0}+F_{T}(x) \\
T_{\omega} & =B_{0} C \sinh C x+T_{0} \cosh C x+F_{T}(x)+G J F_{\psi}(x)
\end{align*}
$$

At particular locations along the beam $(20,40,60,80)$, values for these responses are as follows:

	20 in.$$	40 in.$$	60 in.$$	80 in.$$
$\phi(\mathrm{rad})$	2.442×10^{-4}	7.195×10^{-4}	0.0012	0.001597
$\psi(\mathrm{rad} / \mathrm{in})$.	-2.064×10^{-5}	-2.509×10^{-5}	-2.228×10^{-5}	-1.744×10^{-5}
B (lb-in $)$	$-66,077$	1577	28,380	27,931
T (lb-in.)	8000	6000	4000	2000
T_{ω} (lb-in.)	4857.8	2180.05	608.24	-655.01

With B known, the cross-sectional stresses can be calculated. Consider the cross section at $x=60$. From case 2 of Table 2-7, along the top flange the warping function ω is linearly distributed and is zero at the middle. At point A (Fig. 14-3b),

$$
\begin{equation*}
\omega=\left.\frac{1}{2} h\left(\frac{1}{2} b-\xi\right)\right|_{\xi=2}=15 \mathrm{in}^{2} \tag{6}
\end{equation*}
$$

From Eq. (14.6),

$$
\begin{equation*}
Q_{\omega A}=\int_{0}^{2} \frac{1}{2} h\left(\frac{1}{2} b-\xi\right) d \xi=40 \mathrm{in}^{4} \tag{7}
\end{equation*}
$$

The stresses at point A are [Eqs. (14.1) and (14.5)]

$$
\begin{align*}
\sigma_{\omega} & =\frac{B \omega}{\Gamma}=\frac{28,380(15)}{4166.667}=102.2 \mathrm{lb} / \mathrm{in}^{2} \\
\tau_{\omega} & =\frac{T_{\omega} Q_{\omega}}{t \Gamma}=\frac{608.24(40)}{4166.667}=5.84 \mathrm{lb} / \mathrm{in}^{2} \tag{8}
\end{align*}
$$

For this cross section, the maximum normal stress is found at the tips of the flanges and the maximum shear stresses are at the intersections of the flanges and the web. Note that the normal stress vanishes in the web.

14.5 BUCKLING LOADS

A thin-walled beam can buckle in a bending mode as presented in Chapter 11. At certain levels of axial force P, it can also undergo torsional instability. The critical axial force for torsional buckling of uniform bars with axial forces passing through the shear center is given by

$$
\begin{equation*}
P_{\mathrm{cr}}=\frac{1}{C_{p}}\left(\frac{C_{1} \pi^{2}}{L^{2}} E \Gamma+G J\right) \tag{14.8}
\end{equation*}
$$

where

$$
C_{1}= \begin{cases}\frac{1}{4} & \text { fixed-free ends } \\ 1 & \text { simply supported at both ends } \\ 2.045 & \text { fixed-simply supported ends } \\ 4 & \text { fixed at both ends }\end{cases}
$$

For bars with axial forces located at the eccentricity e_{y}, e_{z} from the centroid, critical loads are provided in Table 14-2. The formulas in the table are based on the solution of the differential equations [14.2]

$$
\begin{equation*}
E I_{z} v^{i v}=q_{y}, \quad E I w^{i v}=q_{z}, \quad E I_{\omega} \phi^{i v}-G J \phi^{\prime \prime}=m_{x} \tag{14.9}
\end{equation*}
$$

where

$$
\begin{align*}
q_{y} & =-P v^{\prime \prime}-\left(z_{S} P+M_{y}\right) \phi^{\prime \prime}, \quad q_{z}=-P w^{\prime \prime}+\left(y_{S} P-M_{z}\right) \phi^{\prime \prime} \tag{14.10}\\
m_{x} & =-\left(y_{S} P+M_{y}\right) v^{\prime \prime}+\left(y_{S} P-M_{z}\right) w^{\prime \prime}+\left(-r^{2} P+2 \beta_{z} M_{y}-2 \beta_{y} M_{z}\right) \phi^{\prime \prime}
\end{align*}
$$

These loadings are obtained from the projections of the stress of the unbuckled state in the y and z directions when the beam is undergoing buckling deformations. In Eqs. (14.10), β_{y}, β_{z}, and r^{2} are called stability parameters and are expressed as

$$
\begin{align*}
\beta_{y} & =\int_{A} y\left(y^{2}+z^{2}\right) d A / 2 I_{z}-y_{S}, \quad \beta_{z}=\int_{A} z\left(y^{2}+z^{2}\right) d A / 2 I-z_{S} \tag{14.11}\\
r^{2} & =\frac{I+I_{z}}{A}+y_{S}^{2}+z_{S}^{2}
\end{align*}
$$

Thin-walled beams are also susceptible to local buckling.

14.6 NATURAL FREQUENCIES

Values of the fundamental natural torsional frequencies of uniform, open-section, thin-walled beams can be taken from Fig. 14-4 for various end conditions. For these plots, the shear center must coincide with the centroid. Table 14-3 provides the fre-

Definition:

$$
\begin{aligned}
& \beta=\left(\left\{-G J+\left[(G J)^{2}+4 E \Gamma \rho r_{p}^{2} \omega^{2}\right]^{1 / 2}\right\} / 2 E \Gamma\right)^{1 / 2} \\
& \omega=\text { fundamental natural frequency }
\end{aligned}
$$

Figure 14-4: Value of frequency parameter βL for first mode vibration of a thin-walled beam under torsion. Shear center and centroid coincide. To use this figure, enter the figure at the appropriate k, read βL from the plots, and calculate the first natural frequency ω_{1} from the definition of β. (From [14.3], with permission.)
quency equations for a variety of uniform thin-walled beams. These can be solved iteratively for the natural frequencies.

14.7 GENERAL BEAMS

The formulas provided thus far apply to single-span thin-walled beams. For more general beam systems (e.g., those with multiple spans) it is advisable to use the displacement method or the transfer matrix procedure of Appendix III. The transfer, stiffness, and mass matrices can be employed to find the static response, buckling load, or natural frequencies.

For thin-walled beams where the centroid and shear center coincide, the transfer, stiffness, and mass matrices can be obtained from those of Chapter 11 with the change of notation of Table 14-4. The point matrices of Table 14-5 can be used to incorporate point occurrences in the solution. The notation for the transfer, stiffness, and mass matrices for the twisting of the thin-walled beam is

$$
\begin{align*}
& {\left[\begin{array}{c}
\phi_{b} \\
\psi_{b} \\
B_{b} \\
T_{b} \\
1
\end{array}\right]=\mathbf{U}^{i}\left[\begin{array}{c}
\phi_{a} \\
\psi_{a} \\
B_{a} \\
T_{a} \\
1
\end{array}\right], \quad\left[\begin{array}{c}
T_{a} \\
B_{a} \\
T_{b} \\
B_{b}
\end{array}\right]=\mathbf{k}^{i}\left[\begin{array}{l}
\phi_{a} \\
\psi_{a} \\
\phi_{b} \\
\psi_{b}
\end{array}\right]+\left[\begin{array}{c}
T_{a}^{0} \\
B_{a}^{0} \\
T_{b}^{0} \\
B_{b}^{0}
\end{array}\right](14.12)} \tag{14.12}\\
& \mathbf{U}^{i}=\left[\begin{array}{ccccc}
U_{\phi \phi} & U_{\phi \psi} & U_{\phi B} & U_{\phi T} & F_{\phi} \\
U_{\psi \phi} & U_{\psi \psi} & U_{\psi B} & U_{\psi T} & F_{\psi} \\
U_{B \phi} & U_{B \psi} & U_{B B} & U_{B T} & F_{B} \\
U_{T \phi} & U_{T \psi} & U_{T B} & U_{T T} & F_{T} \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{k}^{i}=\left[\begin{array}{llll}
k_{11} & k_{12} & k_{13} & k_{14} \\
k_{21} & k_{22} & k_{23} & k_{24} \\
k_{31} & k_{32} & k_{33} & k_{34} \\
k_{41} & k_{42} & k_{43} & k_{44}
\end{array}\right]
\end{align*}
$$

(a)

(b)

Figure 14-5: \quad Sign conventions for (a) transfer matrices (sign convention 1) and (b) stiffness matrices (sign convention 2).

The sign convention for the angle of twist and moment for transfer matrices is shown in Fig. 14-5a. Figure 14-5b gives the sign convention for stiffness and mass matrices.

The responses that these matrices represent are based on the governing equations for a thin-walled beam under torsion:

$$
\begin{align*}
\frac{\partial \phi}{\partial x} & =-\psi \tag{14.13a}\\
\frac{\partial \psi}{\partial x} & =\frac{B}{E \Gamma} \tag{14.13b}\\
\frac{\partial B}{\partial x} & =T+\left(G J-C_{p} P\right) \psi=T_{\omega} \tag{14.13c}\\
\frac{\partial T}{\partial x} & =k_{t} \phi+\rho r_{p}^{2} \frac{\partial^{2} \phi}{\partial t^{2}}-m_{x}(x, t) \tag{14.13d}
\end{align*}
$$

These governing equations apply to thin-walled beams of either constant or variable cross section with the centroid and shear center coinciding with a compressive force P ($-P$ for tension) passing through the shear center of the cross section of the element.

For thin-walled beams with arbitrary cross sections (i.e., the centroid and the shear center do not coincide) (Fig. 14-6), the static deformation as well as the dynamic responses are coupled for torsion and bending. These are referred to as

Figure 14-6: Thin-walled beam for which centroid c and shear center S do not coincide.
torsional-flexural responses. In these cases, the static/dynamic responses and buckling loads can be obtained from the stiffness, mass, and geometric stiffness matrices of Tables 14-6 and 14-7. The element variables corresponding to these matrices are (Fig. 14-7)

$$
\mathbf{v}^{i}=\left[\begin{array}{llllllllllll}
v_{a} & \theta_{z a} & v_{b} & \theta_{z b} & w_{a} & \theta_{a} & w_{b} & \theta_{b} & \phi_{a} & \psi_{a} & \phi_{a} & \psi_{b} \tag{14.14a}
\end{array}\right]^{T}
$$

(a) Bending in the $x y$ plane

(b) Bending in the $x z$ plane

(c) Torsion

Figure 14-7: Element variables of a thin-walled beam element under torsional-flexural deformation: (a) bending in the $x y$ plane; (b) bending in the $x z$ plane; (c) torsion and warping.
and the forces are

$$
\mathbf{p}^{i}=\left[\begin{array}{llllllllllll}
V_{y a} & M_{z a} & V_{y b} & M_{z b} & V_{a} & M_{a} & V_{b} & M_{b} & T_{a} & B_{a} & T_{b} & B_{b} \tag{14.14b}
\end{array}\right]^{T}
$$

The sign convention for v, θ_{z}, w, and θ as well as for V_{y}, M_{z}, V, and M are the same as that in Chapter 13, and the sign convention for ϕ and T is given in Fig. 14-5b.

The stiffness matrix and loading vector in Table 14-6 give exact results for static response and approximate results for dynamic and stability analyses.

REFERENCES

14.1. Pilkey, W. D., Analysis of Elastic Beams: Computational Methods, Wiley, New York, 2002.
14.2. Vlasov, V. Z., Thin-Walled Elastic Beams, Israel Program for Scientific Translation, Jerusalem, 1961.
14.3. Gere, J. M., "Torsional Vibrations of Beams of Thin-Walled Open Section," Trans. ASME, J. Appl. Mech., Vol. 76, 1954, pp. 381-387.
14.4. Krajcinovic, D., "A Consistent Discrete Elements Technique for Thin-Walled Assemblages," Int. J. Solids Struct., Vol. 5, 1969, pp. 639-662.

Tables

14-1 Part A: Twisting of Thin-Walled Beams with Arbitrary Loadings: General Response Expressions 748
14-1 Part B: Twisting of Thin-Walled Beams with Arbitrary Loading: Loading Functions 749
14-1 Part C: Twisting of Thin-Walled Beams with Arbitrary Loading: Initial Parameters 751
14-2 Critical Elastic Flexural-Torsional Loads for Thin-Walled Columns 753
14-3 Frequency Equations for Torsional Vibration of Beams of Thin-Walled Open Section with Shear Center Coinciding with Centroid 755
14-4 Change of Notation Necessary for Table 11-22 to Be Used for Twisting of Thin-Walled Beams 756
14-5 Point Matrices for Concentrated Occurrences 757
14-6 Stiffness and Mass Matrices for Torsional-Flexural Deformation of Thin-Walled Beams 758
14-7 Consistent Geometric Stiffness Matrix for Torsional-Flexural Deformation of Thin-Walled Beams 760

TABLE 14-1 PART A: TWISTING OF THIN-WALLED BEAMS WITH ARBITRARY LOADINGS: GENERAL RESPONSE EXPRESSIONS

Definitions

$$
\begin{aligned}
& C=\sqrt{G J / E \Gamma} \\
& \bar{F}_{\Psi}=\left.F_{\Psi}\right|_{x=L} \\
& \bar{F}_{T}=\left.F_{T}\right|_{x=L} \\
& <x-a>^{n}= \begin{cases}0 & (x-a)^{n}\end{cases} \\
& <x-a>^{0}= \begin{cases}0 & \text { if } x<a \\
1 & \text { if } x \geq a\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
\bar{F}_{\phi} & =\left.F_{\phi}\right|_{x=L} \\
\bar{F}_{B} & =\left.F_{B}\right|_{x=L}
\end{aligned}
$$

$$
<x-a>^{n}=\left\{\begin{array}{ll}
0 & \text { if } x<a \\
(x-a)^{n} & \text { if } x \geq a
\end{array} \quad\right. \text { Positive angle of twist }
$$ ϕ and torque T are shown in Fig. 14-1.

Also, by definition:
$\cosh C<x-a>=\left\{\begin{array}{ll}0 & \text { if } x<a \\ \cosh C(x-a) & \text { if } x \geq a\end{array}\right.$ etc.

Response

1. Angle of twist

$$
\begin{aligned}
\phi= & \phi_{0}-\Psi_{0} \frac{\sinh C_{x}}{C}+T_{0} \frac{C x-\sinh C x}{C G J} \\
& +B_{0} \frac{1-\cosh C x}{G J}+F_{\phi}(x)
\end{aligned}
$$

2. Rate of angle of twist

$$
\begin{aligned}
\Psi= & \Psi_{0} \cosh C x-T_{0} \frac{1-\cosh C x}{G J}+B_{0} \frac{\sinh C x}{C E \Gamma} \\
& +F_{\Psi}(x)
\end{aligned}
$$

3. Total twisting moment
$T=T_{0}+F_{T}(x)$
4. Bimoment

$$
\begin{aligned}
B= & \Psi_{0} C E \Gamma \sinh C x+T_{0} \frac{\sinh C x}{C}+B_{0} \cosh C x \\
& +F_{B}(x)
\end{aligned}
$$

5. Warping torque

$$
\begin{aligned}
T_{\omega}= & \Psi_{0} G J \cosh C x+T_{0} \cosh C x+B_{0} C \sinh C x \\
& +F_{T}(x)+G J F_{\psi}(x)
\end{aligned}
$$

TABLE 14-1 PART B: TWISTING OF THIN-WALLED BEAMS WITH ARBITRARY LOADING: LOADING FUNCTIONS

TABLE 14-1 (continued) PART B: TWISTING OF THIN-WALLED BEAMS WITH ARBITRARY LOADING: LOADING FUNCTIONS

	Concentrated Bimoment	
$F_{\phi}(x)$	$\frac{B_{1}}{G J}\left(-<x-a>^{0}+\cosh C<x-a>\right)$	$\begin{aligned} & \frac{m_{x 0}}{C^{2} G J}\left(\cosh C<x-a_{1}>-<x-a_{1}>^{0}\right. \\ - & C^{2} \frac{<x-a_{1}>^{2}}{2}-\cosh C<x-a_{2}> \\ + & \left.<x-a_{2}>^{0}+C^{2} \frac{<x-a_{2}>^{2}}{2}\right) \\ + & \frac{m_{x \ell}-m_{x 0}}{E \Gamma\left(a_{2}-a_{1}\right)}\left(\frac{1}{C} \sinh C<x-a_{1}>\right. \\ - & <x-a_{1}>-C^{2} \frac{<x-a_{1}>^{2}}{6} \\ - & \frac{1}{C} \sinh C<x-a_{2}>+<x-a_{2}> \\ + & \left.C^{2} \frac{<x-a_{2}>^{2}}{6}\right) \end{aligned}$
$F_{\psi}(x)$	$-\frac{B_{1}}{C E \Gamma} \sinh C<x-a>$	$\begin{aligned} & \frac{m_{x 0}}{C G J}\left(C<x-a_{1}>-\sinh C<x-a_{1}>\right. \\ - & \left.C<x-a_{2}>+\sinh C<x-a_{2}>\right) \\ - & \frac{m_{x \ell}-m_{x 0}}{C J G\left(a_{2}-a_{1}\right)}\left(\frac{1}{C} \cosh C<x-a_{1}>\right. \\ - & \frac{<x-a_{1}>^{0}}{C}-\frac{C}{2}<x-a_{1}>^{2} \\ - & \frac{1}{C} \cosh C<x-a_{2}> \\ + & \left.\frac{<x-a_{2}>^{0}}{C}+\frac{C}{2}<x-a_{2}>^{2}\right) \end{aligned}$
$F_{T}(x)$	0	$\begin{aligned} & -m_{x 0}\left(<x-a_{1}>-<x-a_{2}>\right) \\ & -\frac{m_{x \ell}-m_{x 0}}{2\left(a_{2}-a_{1}\right)}\left(<x-a_{1}>^{2}-<x-a_{2}>^{2}\right) \end{aligned}$
$F_{B}(x)$	$-B_{1} \cosh C<x-a>$	$\begin{aligned} & -\frac{m_{x 0}}{C^{2}}\left(\cosh C<x-a_{1}>-<x-a_{1}>^{0}\right. \\ & \left.-\cosh C<x-a_{2}>+<x-a_{2}>^{0}\right) \\ & +\frac{m_{x \ell}-m_{x 0}}{a_{2}-a_{1}}\left(<x-a_{1}>-\frac{1}{C} \sinh C<x-a_{1}\right. \\ & \left.-<x-a_{2}>+\frac{1}{C} \sinh C<x-a_{2}>\right) \end{aligned}$

TABLE 14-1 PART C: TWISTING OF THIN-WALLED BEAMS WITH ARBITRARY LOADING: INITIAL PARAMETERS

	1. Warps but does not twist (pinned or simply supported)	2. No warp and no twist (fixed)	3. Warps and twists (free)	4. Twists but does not warp (guided)
1. Warps but does not twist (pinned or simply supported)	$\begin{aligned} \psi_{0}= & \frac{\bar{F}_{B}}{G J L}\left(-1+\frac{C L}{\sinh C L}\right) \\ & +\frac{\bar{F}_{\phi}}{L} \\ T_{0}= & -\frac{1}{L}\left(G J \bar{F}_{\phi}+\bar{F}_{B}\right) \end{aligned}$	$\begin{aligned} \psi_{0}= & \frac{1}{\nabla}\left[(C L-\sinh C L) \bar{F}_{\psi}\right. \\ & \left.-C(\cosh C L-1) \bar{F}_{\phi}\right] \\ T_{0}= & \frac{G J}{\nabla}\left(\bar{F}_{\phi} C \cosh C L\right. \\ & \left.+\bar{F}_{\psi} \sinh C L\right) \\ \nabla= & \sinh C L-C L \cosh C L \end{aligned}$	$\begin{aligned} \psi_{0} & =\frac{1}{G J}\left(\bar{F}_{T}-\frac{C \bar{F}_{B}}{\sinh C L}\right) \\ T_{0} & =-\bar{F}_{T} \end{aligned}$	$\begin{aligned} \psi_{0}= & \frac{-1}{\cosh C L} \\ & \times\left[\frac{\bar{F}_{T}}{G J}(1-\cosh C L)\right. \\ & \left.+\bar{F}_{\psi}\right] \\ T_{0}= & -\bar{F}_{T} \end{aligned}$
2. No warp and no twist (fixed)	$\begin{aligned} B_{0}= & \frac{1}{\nabla}\left[(C L-\sinh C L) \bar{F}_{B}\right. \\ & \left.-G J \bar{F}_{\phi} \sinh C L\right] \\ T_{0}= & \bar{F}_{\phi} E \Gamma C^{3} \cosh C L \\ & -C(1-\cosh C L) \bar{F}_{B} \\ \nabla= & \sinh C L-C L \cosh C L \end{aligned}$	$\begin{aligned} B_{0}= & \frac{1}{\nabla}\left[E \Gamma C(C L-\sinh C L) \bar{F}_{\psi}\right. \\ & \left.-G J(\cosh C L-1) \bar{F}_{\phi}\right] \\ T_{0}= & \frac{1}{\nabla}\left[G J C \bar{F}_{\phi} \sinh C L\right. \\ & \left.-G J(1-\cosh C L) \bar{F}_{\psi}\right] \\ \nabla= & \cosh C L \end{aligned}$	$\begin{aligned} B_{0}= & \frac{\bar{F}_{T}}{C} \tanh C L \\ & -\frac{\bar{F}_{B}}{\cosh C L} \\ T_{0}= & -\bar{F}_{T} \end{aligned}$	$\begin{aligned} B_{0}= & \frac{-1}{\sinh C L} \\ & \times\left[\frac{\bar{F}_{T}}{C}(1-\cosh C L)\right. \\ & \left.+C E \Gamma \bar{F}_{\phi}\right] \\ T_{0}= & -\bar{F}_{T} \end{aligned}$

TABLE 14-1 (continued) PART C: TWISTING OF THIN-WALLED BEAMS WITH ARBITRARY LOADING: INITIAL PARAMETERS

	1. Warps but does not twist (pinned or simply supported)	2. No warp and no twist (fixed)	3. Warps and twists (free)	4. Twists but does not warp (guided)
3. Warps and twists (free) $\begin{aligned} & B_{0}=0, \\ & T_{0}=T_{t 0}+T_{\omega 0}=0 \end{aligned}$	$\begin{aligned} \phi_{0} & =\frac{C L+\sinh C L}{G J \sinh C L} \bar{F}_{B}-\bar{F}_{\phi} \\ \psi_{0} & =-\frac{2 C \bar{F}_{B}}{G J \sinh C L} \end{aligned}$	$\begin{aligned} \phi_{0} & =-\frac{\bar{F}_{\psi} \sinh C L}{C(1+\cosh C L)}(1-C L)-\bar{F}_{\phi} \\ \psi_{0} & =\frac{-2 \bar{F}_{\psi}}{1+\cosh C L} \end{aligned}$	Kinematically unstable	Kinematically unstable
4. Twists but does not warp (guided) $\begin{aligned} \psi_{0} & =0 \\ T_{0} & =T_{t 0}+T_{\omega 0}=0 \end{aligned}$	$\begin{aligned} \phi_{0} & =\frac{\bar{F}_{B}}{G J} \frac{1-\cosh C L}{\cosh C L}-\bar{F}_{\phi} \\ B_{0} & =\frac{-\bar{F}_{B}}{\cosh C L} \end{aligned}$	$\begin{aligned} \phi_{0} & =\frac{\bar{F}_{\psi}}{C} \frac{1-\cosh C L}{\sinh C L}-\bar{F}_{\phi} \\ B_{0} & =\frac{-\bar{F}_{\psi} C E \Gamma}{\sinh C L} \end{aligned}$	Kinematically unstable	Kinematically unstable

TABLE 14-2 CRITICAL ELASTIC FLEXURAL-TORSIONAL LOADS FOR THIN-WALLED COLUMNS

Notation
$\lambda=n \pi / L, n=1,2, \ldots$, is modal number of buckled mode
$e_{y}, e_{z}=$ eccentricities of applied axial force from y and z axes
$y_{S}, z_{S}=y$ and z coordinates of shear center
$\beta_{y}, \beta_{z}, r=$ elastic flexural-torsional parameters for thin-walled beams
$\beta_{y}=\frac{U_{z}}{2 I_{z}}-y_{S}$
$\beta_{z}=\frac{U_{y}}{2 I}-z_{S}$
$r^{2}=\frac{I+I_{z}}{A}+y_{S}^{2}+z_{S}^{2}$
$U_{z}=\int_{A} y^{3} d A+\int_{A} z^{2} y d A$
$U_{y}=\int_{A} z^{3} d A+\int_{A} y^{2} z d A$
$M_{y}, M_{z}=$ bending moments about y and z axes due to eccentricity of applied axial force P
$M_{y}=P e_{z}$
$M_{z}=-P e_{y}$
$I, I_{z}=$ moments of inertia about y and z axes
$J=$ torsional constant
$E=$ modulus of elasticity
$G=$ shear modulus of elasticity
$c=$ centroid
$S=$ shear center
The critical buckling loads are determined from the equation

$$
\left|\begin{array}{ccc}
B_{11} & 0 & B_{13} \\
0 & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33}
\end{array}\right|=0
$$

TABLE 14-2 (continued) CRITICAL ELASTIC FLEXURAL-TORSIONAL LOADS FOR THIN-WALLED COLUMNS

Configuration	Parameters in Buckling Equation
1. Pinned-pinned or guided-guided or pinned-guided	$\begin{array}{lc} \hline B_{11}=E I_{z} \lambda^{2}-P & B_{31}=-\left(M_{y}+z_{S} P\right) \\ B_{13}=-\left(M_{y}+z_{S} P\right) & B_{32}=-\left(M_{z}-y_{S} P\right) \\ B_{22}=E I \lambda^{2}-P & B_{33}=E \Gamma \lambda^{2}-\left(r^{2} P+2 \beta_{y} M_{z}\right. \\ B_{23}=-\left(M_{z}-y_{S} P\right) & \left.-2 \beta_{z} M_{y}-G J\right) \end{array}$
2. Fixed-fixed	$\begin{array}{lc} B_{11}=4 E I_{z} \lambda^{2}-P & B_{31}=-\left(M_{y}+z_{S} P\right) \\ B_{13}=-\left(M_{y}+z_{S} P\right) & B_{32}=-\left(M_{z}-y_{S} P\right) \\ B_{22}=4 E I \lambda^{2}-P & B_{33}=4 E \Gamma \lambda^{2}-\left(r^{2} P+2 \beta_{y} M_{z}\right. \\ B_{23}=-\left(M_{z}-y_{S} P\right) & \left.\quad-2 \beta_{z} M_{y}-G J\right) \end{array}$
3. Pinned-fixed	$\begin{array}{ll} B_{11}=\frac{1}{4} E I_{z} \lambda^{2}-P & B_{31}=-\left(M_{y}+z_{S} P\right) \\ B_{13}=-\left(M_{y}+z_{S} P\right) & B_{32}=-\left(M_{z}-y_{S} P\right) \\ B_{22}=E I \lambda^{2}-P & B_{33}=\frac{1}{4} E \Gamma \lambda^{2}-\left(r^{2} P+2 \beta_{y} M_{z}\right) \\ B_{23}=-\left(M_{z}-y_{S} P\right) & \end{array}$

TABLE 14-3 FREQUENCY EQUATIONS FOR TORSIONAL VIBRATION OF BEAMS OF THIN-WALLED OPEN SECTION WITH SHEAR CENTER COINCIDING WITH CENTROIDa

Notation

E	$=$ modulus of elasticity
G	$=$ shear modulus of elasticity
L	$=$ length of beam
r_{p}	$=$ polar radius of gyration

$\alpha=\sqrt{\frac{G J+\sqrt{(G J)^{2}+4 E \Gamma \rho r_{p}^{2} \omega_{n}^{2}}}{2 E \Gamma}} \quad \beta=\sqrt{\frac{-G J+\sqrt{(G J)^{2}+4 E \Gamma \rho r_{p}^{2} \omega_{n}^{2}}}{2 E \Gamma}}$
\(\left.$$
\begin{array}{l|l}\hline \text { End Conditions } & \text { Frequency Equation } \\
\hline \text { 1. Pinned-pinned } & \begin{array}{c}\sin \beta L=0 \quad \omega_{n}=\frac{n \pi}{L^{2}} \sqrt{\frac{n^{2} \pi^{2} E \Gamma+L^{2} G J}{\rho r_{p}^{2}}}\end{array} \\
\hline \text { 2. Fixed-fixed } & \begin{array}{c}2(\alpha L)(\beta L)[1-\cosh (\alpha L) \cos (\beta L)]+\left[(\alpha L)^{2}\right. \\
\left.-(\beta L)^{2}\right] \sinh (\alpha L) \sin (\beta L)=0\end{array} \\
\hline \text { 3. Fixed-pinned } & (\beta L) \tanh (\alpha L)=(\alpha L) \tan (\beta L) \\
\hline \text { 4. Fixed-free } & \begin{array}{c}\frac{(\alpha L)^{4}+(\beta L)^{4}}{(\alpha L)^{2}(\beta L)^{2}}(\cosh (\alpha L) \cos (\beta L) \\
+\frac{(\alpha L)^{2}-(\beta L)^{2}}{(\alpha L)(\beta L)} \sinh (\alpha L) \sin (\beta L)+2=0\end{array}
$$

\hline 5. Pinned-free \& (\alpha L)^{3} \tanh (\alpha L)=(\beta L)^{3} \tan (\beta L)\end{array}\right]\)| $\left[(\alpha L)^{6}-(\beta L)^{6}\right] \sinh (\alpha L) \sin (\beta L)$ |
| :---: |
| 6. Free-free |

${ }^{a}$ Adapted from Ref. [14.3].

TABLE 14-4 CHANGE OF NOTATION NECESSARY FOR TABLE 11-22 TO BE USED FOR TWISTING OF THIN-WALLED BEAMS

Bending of Beams	Twisting of Thin-Walled Beams
w	ϕ
θ	ψ
M	B
V	T
p_{a}	$m_{x 0}$
p_{b}	$m_{x \ell}$
$\frac{1}{G A_{s}}$	0
$\lambda=\left(k-\rho \omega^{2}\right) / E I$	$\lambda=\left(k_{t}-\rho r_{p}^{2} \omega^{2}\right) / E \Gamma$
$\eta=\left(k-\rho \omega^{2}\right) / G A_{s}$	$\eta=0$
$\zeta=\left(P+\rho r_{y}^{2} \omega^{2}-k^{*}\right) / E I$	$\zeta=\left(C_{P} P-G J\right) / E \Gamma$

TABLE 14-5 POINT MATRICES FOR CONCENTRATED OCCURRENCES

Case	Transfer Matrices (Sign Convention 1)	Stiffness Matrices (Sign Convention 2)
1. Concentrated applied torque		Traditionally, these applied loads are implemented as nodal conditions.
2. Concentrated applied moments equivalent to bimoment B_{i}		
3. Concentrated mass	$\mathbf{U}_{i}=\left[\begin{array}{cccc\|c}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ k_{t i}-I_{p i} \omega^{2} & 0 & 0 & 1 \mid c \\ -\frac{-}{-}- & - \\ 0 & - & - & - \\ 0 & 0 & 0 & 1\end{array}\right]$	$T_{a}=-\omega^{2} I_{p i} \phi_{a}$
4. Torsional spring		$T_{a}=k_{t i} \phi_{a}$

TABLE 14-6 STIFFNESS AND MASS MATRICES FOR TORSIONAL-FLEXURAL DEFORMATION OF THIN-WALLED BEAMS

$E=$ modulus of elasticity
$J=$ torsional constant
$\ell=$ length of element
$\alpha=\ell \sqrt{G J / E \Gamma}=C \ell$
$r_{p}=$ polar radius of gyration

$y_{S}, z_{S}=$ distance between shear center and centroid
$I_{y}=I, I_{z}=$ moments of inertia about y and z axes
$G=$ shear modulus of elasticity
$\Gamma=$ warping constant

Notation
$D=2(1-\cosh \alpha)+\alpha \sinh \alpha$
$m_{x}=$ distributed torque
$\phi=$ angle of twist; rotation about x axis
$\psi=d \phi / d x$

The centroid and shear center of the cross section do not necessarily coincide. Refer to Ref. [14.4] for a discussion of coupled torsion and bending of beams.

The matrices $\mathbf{k}_{y y}^{i}, \mathbf{k}_{z z}^{i}, \mathbf{m}_{y y}^{i}$, and $\mathbf{m}_{z z}^{i}$ in this table can be obtained from the matrices in Tables 11-18 and 11-24. $\mathbf{k}_{z z}^{i}$ and $\mathbf{m}_{z z}^{i}$ are the same as the stiffness and mass matrices in those two tables. $\mathbf{k}_{y y}^{i}$ and $\mathbf{m}_{y y}^{i}$ are obtained by replacing I and I_{z}, r_{y} by r_{z}, and changing the signs of the elements in rows 2 and 4 of the matrices in those tables and then changing the signs of the elements in columns 2 and 4 of the resulting matrices. The same matrices can be obtained from the stiffness and mass matrices for bars in Chapter 13.

The element displacement and force vectors corresponding to the stiffness and mass matrices of this table are [Eq. 14.14]

$$
\left.\begin{array}{rl}
\mathbf{v}^{i} & =\left[\begin{array}{llllllllllll}
v_{a} & \theta_{z a} & v_{b} & \theta_{z b} & w_{a} & \theta_{a} & w_{b} & \theta_{b} & \phi_{a} & \psi_{a} & \phi_{b} & \psi_{b}
\end{array}\right]^{T} \\
\mathbf{p}^{i} & =\left[\begin{array}{lllllllll}
V_{y a} & M_{z a} & V_{y b} & M_{z b} & V_{a} & M_{a} & V_{b} & M_{b} & T_{a}
\end{array} B_{a}\right. \\
T_{b} & B_{b}
\end{array}\right]^{T}
$$

See Fig. 14-7 for the sign convention for the displacements and forces.

Stiffness Matrix

$$
\mathbf{k}^{i}=\left[\begin{array}{ccc}
\mathbf{k}_{y y}^{i} & 0 & 0 \\
0 & \mathbf{k}_{z z}^{i} & 0 \\
0 & 0 & \mathbf{k}_{\phi \phi}^{i}
\end{array}\right]
$$

$\mathbf{k}_{y y}^{i}$ and $\mathbf{k}_{z z}^{i}$ are stiffness matrices for bending and can be obtained from Table 11-19.
$\mathbf{k}_{\phi \phi}^{i}=\frac{E \Gamma}{D \ell^{3}}\left[\begin{array}{cccc}\alpha^{3} \sinh \alpha & -\alpha^{2}(1-\cosh \alpha) \ell & \alpha^{3} \sinh \alpha & -\alpha^{2}(1-\cosh \alpha) \ell \\ & \alpha(\alpha \cosh \alpha-\sinh \alpha) \ell^{2} & -\alpha^{2}(\cosh \alpha-1) \ell & \alpha(\sinh \alpha-\alpha) \ell^{2} \\ \text { symmetric } & & \alpha^{3} \sinh \alpha & -\alpha^{2}(\cosh \alpha-1) \ell \\ \text { sy } & & \alpha(\alpha \cosh \alpha-\sinh \alpha) \ell^{2}\end{array}\right]$
The loading vectors corresponding to $\mathbf{k}_{y y}^{i}$ and $\mathbf{k}_{z z}^{i}$ are given in Table 11-19. The loading vector for $\mathbf{k}_{\phi \phi}^{i}$ is $\bar{p}_{i}=\int_{0}^{\ell} \gamma_{i}(x) m_{x}(x) d x, i=1,2,3,4$, with

$$
\begin{aligned}
\gamma_{1}(x)= & -\frac{1}{D}[(1-\cosh \alpha) \cosh C x+\sinh \alpha \sinh C x-C x \sinh \alpha+1-\cosh \alpha+\alpha \sinh \alpha] \\
\gamma_{2}(x)= & \frac{1}{\alpha D}[(\alpha \cosh \alpha-\sinh \alpha) \cosh C x+(\cosh \alpha-1-\alpha \sinh \alpha) \sinh C x \\
& +C x(\cosh \alpha-1)+\sinh \alpha-\alpha \cosh \alpha] \\
\gamma_{3}(x)= & -\frac{1}{D}[(\cosh \alpha-1) \cosh C x-\sinh \alpha \sinh C x+C x \sinh \alpha+(1-\cosh \alpha)] \\
\gamma_{4}(x)= & \frac{1}{\alpha D}[(\sinh \alpha-\alpha) \cosh C x+(1-\cosh \alpha) \sinh C x+C x+C x(\cosh \alpha-1)+\alpha-\sinh \alpha]
\end{aligned}
$$

TABLE 14-6 (continued) STIFFNESS AND MASS MATRICES FOR TORSIONAL-FLEXURAL DEFORMATION OF THIN-WALLED BEAMS

Mass Matrix

$$
\mathbf{m}^{i}=\left[\begin{array}{ccc}
m_{y y}^{i} & 0 & m_{y \phi}^{i} \\
0 & m_{z z}^{i} & m_{z \phi}^{i} \\
m_{y \phi}^{i} & m_{z \phi}^{i} & m_{\phi \phi}^{i}
\end{array}\right]
$$

$\mathbf{m}_{y y}^{i}$ and $\mathbf{m}_{z z}^{i}$ are consistent mass matrices for bending and can be obtained from Table 11-25:

$$
\mathbf{m}_{y \phi}^{i}=2 \rho z_{S} \overline{\mathbf{m}} \quad \mathbf{m}_{z \phi}^{i}=-2 \rho y_{S} \overline{\mathbf{m}} \quad \mathbf{m}_{\phi \phi}^{i}=\rho r_{p}^{2} \tilde{\mathbf{m}}
$$

The elements in $\overline{\mathbf{m}}$ and $\tilde{\mathbf{m}}$:

$$
\begin{aligned}
& \bar{m}_{11}=\bar{m}_{33}=-\frac{1}{D \alpha^{4}}\left[\left(12 \alpha-\alpha^{3}+0.35 \alpha^{5}\right) \sinh \alpha+\left(24+0.5 \alpha^{4}\right)(1-\cosh \alpha)\right] \\
& \bar{m}_{21}=-\bar{m}_{23}=-\frac{\ell}{D \alpha^{4}}\left[\left(6 \alpha-0.05 \alpha^{5}\right) \sinh \alpha+\left(12+\alpha^{2}+0.083 \alpha^{4}\right)(1-\cosh \alpha)\right] \\
& \bar{m}_{31}=\bar{m}_{13}=-\frac{\ell}{D \alpha^{4}}\left[\left(-12 \alpha+\alpha^{3}+0.15 \alpha^{5}\right) \sinh \alpha+\left(-24+0.5 \alpha^{4}\right)(1-\cosh \alpha)\right] \\
& \bar{m}_{41}=-\bar{m}_{43}=\frac{\ell}{D \alpha^{4}}\left[\left(-6 \alpha+0.033 \alpha^{5}\right) \sinh \alpha+\left(-12-\alpha^{2}+0.083 \alpha^{4}\right)(1-\cosh \alpha)\right] \\
& \bar{m}_{12}=-\bar{m}_{34}=-\frac{\ell}{D \alpha^{4}}\left[\left(-6 \alpha+1.5 \alpha^{3}\right) \sinh \alpha+\left(12-\alpha^{2}-0.35 \alpha^{4}\right) \cosh \alpha-12+\alpha^{2}-0.15 \alpha^{4}\right] \\
& \bar{m}_{22}=\bar{m}_{44}=-\frac{\ell^{2}}{D \alpha^{4}}\left[\left(5 \alpha-0.083 \alpha^{3}\right) \sinh \alpha-\left(8+\alpha^{2}-0.05 \alpha^{4}\right) \cosh \alpha+8+0.033 \alpha^{4}\right] \\
& \bar{m}_{32}=-\bar{m}_{14}=\frac{\ell}{D \alpha^{4}}\left[\left(6 \alpha+0.5 \alpha^{3}\right) \sinh \alpha-\left(12+\alpha^{2}+0.15 \alpha^{4}\right) \cosh \alpha+12+\alpha^{2}-0.35 \alpha^{4}\right] \\
& \bar{m}_{42}=\bar{m}_{24}=-\frac{\ell^{2}}{D \alpha^{4}}\left[\left(\alpha+0.083 \alpha^{3}\right) \sinh \alpha-(4+0.033) \cosh \alpha+4+\alpha^{2}-0.05 \alpha^{4}\right] \\
& \tilde{m}_{11}=\tilde{m}_{33}=\frac{1}{D^{2} \alpha}\left[\left(-5 \sinh \alpha+2 \alpha-\alpha \cosh \alpha+\alpha^{2} \sinh \alpha\right)(1-\cosh \alpha)+\left(0.33 \alpha^{3}-2 \alpha\right) \sinh ^{2} \alpha\right] \\
& \tilde{m}_{12}=-\frac{\ell}{D^{2} \alpha^{2}}\left[\left(3.5 \alpha \sinh \alpha-0.5 \alpha^{2}\right)(1-\cosh \alpha)+2 \alpha^{2} \sinh ^{2} \alpha-0.1667 \alpha^{3} \sinh \alpha(1+2 \cosh \alpha)\right] \\
& \tilde{m}_{13}=0.5 \ell^{2}-\tilde{m}_{11} \\
& \tilde{m}_{14}=\frac{-\ell}{D^{2} \alpha^{2}}\left[-\left(8+2.5 \alpha \sinh \alpha+0.5 \alpha^{2}\right)(1-\cosh \alpha)-4 \sinh ^{2} \alpha\right. \\
& \left.+0.1667 \sinh \alpha(2+\cosh \alpha)-\alpha^{2} \sinh ^{2} \alpha\right] \\
& \tilde{m}_{22}=\tilde{m}_{44}=\frac{\ell^{2}}{D^{2} \alpha^{3}}\left[(3 \alpha+3 \sinh \alpha)(1-\cosh \alpha)+0.1667 \alpha^{3}(7+2 \cosh \alpha)\right. \\
& \left.-\alpha^{2} \sinh \alpha(2+2.5 \cosh \alpha)\left(6 \alpha+0.1667 \alpha^{3} \sinh ^{2} \alpha\right)\right] \\
& \tilde{m}_{23}=\frac{-\ell}{D \alpha^{2}}\left[\left(2-0.5 \alpha^{2}\right)(1-\cosh \alpha)+\alpha(2+\sinh \alpha-\alpha \cosh \alpha)\right]-\tilde{m}_{12} \\
& \tilde{m}_{24}=\frac{\ell^{2}}{D^{2} \alpha^{3}}\left[\left(5 \alpha+0.667 \alpha^{3}-3 \sinh \alpha\right)(1-\cosh \alpha)-0.5 \alpha^{3} \cosh \alpha\right. \\
& \left.+\alpha^{2} \sinh \alpha(3.5+\cosh \alpha)-\alpha^{3}-(2 \alpha+0.1667) \sinh ^{2} \alpha\right] \\
& \tilde{m}_{34}=\frac{-\ell}{D \alpha^{2}}\left[-\left(2+0.5 \alpha^{2}\right)(1-\cosh \alpha)+\alpha(\alpha-2 \sinh \alpha)\right]-\tilde{m}_{14}
\end{aligned}
$$

All the $\bar{m}_{i j}$ and $\tilde{m}_{i j}$ that are not specified here are zero.

TABLE 14-7 CONSISTENT GEOMETRIC STIFFNESS MATRIX FOR TORSIONAL-FLEXURAL DEFORMATION OF THIN-WALLED BEAMS ${ }^{\text {a }}$

Notation
$\beta_{y}, \beta_{z}, r^{2}=$ elastic flexural-torsional parameters for thin-walled beams (see Table 14-2)
$e_{y}, e_{z}=$ eccentricities of the applied force, measured from y and z axes

$$
\begin{aligned}
\alpha & =\ell \sqrt{G J / E \Gamma} \\
D & =2(1-\cosh \alpha)+\alpha \sinh \alpha \\
\ell & =\text { length of element }
\end{aligned}
$$

See Table 14-6 for definitions of other quantities in these matrices, including the displacement and force vectors.
The matrices $\mathbf{k}_{y y G}^{i}$ and $\mathbf{k}_{z z G}^{i}$ in this table can be obtained from Table 11-23. $\mathbf{k}_{y y G}^{i}$ is the same as the matrix given in Table 11-22.
$\mathbf{k}_{z z G}^{i}$ is obtained by changing the signs of the elements in rows 2 and 4 of the geometric stiffness matrix in Table 11-23 and then changing the signs of the elements of columns 2 and 4 of the resulting matrix.

$$
\mathbf{k}_{G}^{i}=\left[\begin{array}{ccc}
\mathbf{k}_{y y G}^{i} & \mathbf{0} & \mathbf{k}_{y \phi G}^{i} \\
\mathbf{0} & \mathbf{k}_{z z G}^{i} & \mathbf{k}_{z \phi G}^{i} \\
\mathbf{k}_{y \phi G}^{i} & \mathbf{k}_{z \phi G}^{i} & \mathbf{k}_{\phi \phi G}^{i}
\end{array}\right]
$$

$$
\begin{aligned}
\mathbf{g}_{G} & =-2\left[\begin{array}{llll}
g_{11} & g_{12} & g_{13} & g_{14} \\
g_{21} & g_{22} & g_{23} & g_{24} \\
g_{31} & g_{32} & g_{33} & g_{34} \\
g_{41} & g_{42} & g_{43} & g_{44}
\end{array}\right] \\
\mathbf{k}_{y \phi G}^{i} & =2\left(z_{S}+e_{z}\right) \mathbf{g}_{G}
\end{aligned}
$$

$\mathbf{k}_{z \phi G}^{i}=-2\left(y_{S}+e_{y}\right) \mathbf{g}_{G}$

$$
\begin{aligned}
\mathbf{g}_{G}^{\phi} & =\left[\begin{array}{cccc}
g_{11}^{\phi} & g_{12}^{\phi} & g_{13}^{\phi} & g_{14}^{\phi} \\
g_{21}^{\phi} & g_{22}^{\phi} & g_{23}^{\phi} & g_{24}^{\phi} \\
g_{31}^{\phi} & g_{32}^{\phi} & g_{33}^{\phi} & g_{34}^{\phi} \\
g_{41}^{\phi} & g_{42}^{\phi} & g_{43}^{\phi} & g_{44}^{\phi}
\end{array}\right] \\
\mathbf{k}_{\phi \phi G}^{i} & =\left(r^{2}-2 \beta_{y} e_{y}-2 \beta_{z} e_{z}\right) \mathbf{g}_{G}^{\phi}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
g_{11}=-g_{31}=-g_{13}=g_{33}=\frac{12}{\ell \alpha^{2}}\left\{1-\frac{\alpha^{3}}{12[\alpha-2 \tanh (0.5 \alpha)]}\right. \\
g_{21}=g_{41}=-g_{23}=-g_{43}=g_{12}=-g_{32}=g_{14}=-g_{34} \\
=\frac{6}{\alpha^{2}}\left\{1+\frac{\alpha^{2}}{12}-\frac{\alpha^{3}}{12[\alpha-2 \tanh (0.5 \alpha)]}\right\} \\
g_{22}=g_{44}=-\frac{4 \ell}{\alpha^{2}}\left[-1+\frac{\alpha}{4 D}(\alpha \cosh \alpha-\sinh \alpha)\right] \\
g_{42}=g_{24}=-\frac{2 \ell}{\alpha^{2}}\left[-1+\frac{\alpha}{2 D}(\alpha-\sinh \alpha)\right]
\end{array}
\end{aligned} \begin{gathered}
g_{11}^{\phi}=-g_{13}^{\phi}=g_{33}^{\phi}=\frac{\alpha}{D^{2} \ell}\left[(1-\cosh \alpha)(3 \sinh \alpha-\alpha)+\alpha \sinh ^{2} \alpha\right] \\
g_{12}^{\phi}=-\frac{1}{D^{2}}\left[\left(4+\frac{\alpha^{2}}{2}+\frac{\alpha}{2} \sinh \alpha\right)(1-\cosh \alpha)+2 \sinh ^{2} \alpha\right] \\
g_{22}^{\phi}=g_{44}^{\phi}=\frac{\ell}{\alpha D^{2}}[(\cosh \alpha-1)(\sinh \alpha+\alpha) \\
\\
\left.\quad+\alpha \sinh \alpha(\alpha-2 \sinh \alpha)-\frac{\alpha^{2}}{2}(\alpha-\sinh \alpha \cosh \alpha)\right] \\
g_{24}^{\phi}=\frac{\ell}{\alpha D^{2}}[(\sinh \alpha-3 \alpha)(1-\cosh \alpha) \\
\left.\quad+\frac{\alpha^{2}}{2}(\alpha \cosh \alpha-3 \sinh \alpha)\right] \\
g_{34}^{\phi}=-g_{14}^{\phi}=-g_{12}^{\phi} \\
g_{23}^{\phi}=-g_{12}^{\phi}
\end{gathered}
$$

${ }^{a}$ Adapted from Ref. [14.4]. All $g_{i j}$ and $g_{i j}^{\phi}$ that are not specified are zero.

C H A P T E R

15

Cross-Sectional Stresses: Combined Stresses

15.1 Notation 764
15.2 Sign Convention 764
15.3 Warping Properties 765
Integration Method 766
Piecewise Integration Method 767
15.4 Normal Stresses 777
Neutral Axis 777
15.5 Shear Stresses 782
Shear Center 783
15.6 Combined Normal and Shear Stresses 788
15.7 Finite Element Analysis 794
References 795
Tables 797

Formulas for the stress analysis of bars are presented here. The stresses can result from combinations of bending, extensional, and torsional loadings. In the earlier chapters, stresses due to these loadings were considered separately. In the case of bending, unsymmetrical bending is treated; thus, it is no longer necessary to consider only symmetrical cross sections bent in the plane of symmetry. Most of the formulas encompass composite materials.

All of the stresses can now be reliably computed for arbitrary cross-sectional shapes using computer programs based on finite element methodology. See Ref. [15.1] for finite element formulations and software. Some finite element formulations are provided here.

15.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and F for force.

```
            \(A_{i}\) Area of a segment composed of material \(i\) in composite bar \(\left(L^{2}\right)\)
            \(E_{r}\) Reference modulus \(\left(F / L^{2}\right)\)
\(I_{\omega y}, I_{\omega z}\) Sectorial products of inertia \(\left(L^{5}\right)\)
    \(Q_{\omega}^{(i)}\) First sectorial moment for element \(i\left(L^{4}\right)\)
    \(Q_{\omega j}\) First sectorial moment at node \(j\left(L^{4}\right)\)
\(Q_{y}, Q_{z}\) First moments of area \(\left(L^{3}\right)\)
            \(T\) Temperature change (degrees)
    \(y_{c}, z_{c}\) Coordinates of geometric centroid ( \(L\) )
    \(\alpha_{y}, \alpha_{z}\) Shear correction coefficients
        \(\alpha\) Coefficient of thermal expansion \((L / L \cdot \mathrm{deg})\)
    \(\prod\) Potential energy ( \(F L\) )
    \(\tau_{b}\) Bending shear stress \(\left(F / L^{2}\right)\)
    \(\tau_{t}\) Torsional shear stress \(\left(F / L^{2}\right)\)
    \(\tau_{\omega}\) Warping shear stress \(\left(F / L^{2}\right)\)
    \(\omega\) Principal sectorial coordinate, warping function \(\left(L^{2}\right)\)
    \(\omega^{(i)}\) Principal sectorial coordinate for element \(i\left(L^{2}\right)\)
    \(\omega_{j}\) Principal sectorial coordinate at node \(j\left(L^{2}\right)\)
    \(\omega_{P}^{(i)}\) Sectorial coordinate for element \(i\) with respect to a point (or pole) \(P\);
        usually, \(P\) is shear center \(S\), which results in \(\omega_{S}\), or geometric centroid
        \(c\), which leads to \(\omega_{c}\left(L^{2}\right)\)
    \(\omega_{P j}\) Sectorial coordinate at node \(j\left(L^{2}\right)\)
    * Superscript indicating a property of a composite bar
```


15.2 SIGN CONVENTION

It is essential in using the formulas that a particular sign convention be employed. The right-handed Cartesian coordinates of Fig. 15-1 are used throughout. The coordinate directions shown are defined to be positive. The exposed internal face whose outward normal points along the positive direction of the x axis is defined to be positive (Fig. 15-1 a), while the other opposing face is known as the negative face (Fig. 15-1b). The internal force and moment components shown in Fig. 15-1 a are defined to be positive because they are acting on a positive face with their vectors in the positive coordinate directions. Also, internal forces and moments acting on a negative face are positive if their vectors are in the negative coordinate directions.

(a)

(b)

Figure 15-1: \quad Sign convention for internal forces: (a) positive internal forces on left face of a cut; (b) positive internal forces on right face of a cut.

Thus, the forces and moments on the negative face of Fig. 15-1b are positive. Unless defined otherwise, applied forces and moments are positive if their vectors are in the direction of a positive coordinate axis.

15.3 WARPING PROPERTIES

The geometric properties of plane areas associated with warping are discussed in Chapter 2. Some of these properties are essential for the use of the formulas for normal and shear stresses that are provided in the tables of this chapter. The determination of these important properties, which are tabulated in Chapter 2, will be illustrated in this section.

In all calculations for the sectorial coordinates (e.g., ω_{S} and ω_{c}) a special sign convention must be employed. Integration or summations are positive if their paths are counterclockwise with respect to a pole (usually, the shear center or geometric centroid). Clockwise paths should be assigned a negative sign. This sign convention does not apply during the calculation of other warping characteristics.

Example 15.1 Calculation of Geometric Warping Characteristics for an ISection Derive expressions for the sectorial coordinate ω_{S} for the thin-walled wide-flange section shown in Fig. 15-2.

Figure 15-2: Example 15.1; node numbers represented by 1, 2, 3, 4, 5, 6 and element numbers by (1), (2), (3), (4), (5).

The direct integration method will be carried out first, followed by the piecewise integration method, to show how to handle the formulas of case 21 of Table 2-6 and case 1 of Table 2-7.

For the thin-walled wide-flange section, the shear center and the centroid are both located at the center of the web.

Integration Method

Let node 1 be the origin of the coordinate s (Fig. 15-2a) and let $\omega_{S 1}=0$. From Eq. (2.30b), we calculate

$$
\begin{array}{ll}
\omega_{S}^{(1)}(s)=(-) \int_{0}^{s} \frac{h}{2} d \xi=-\frac{h s}{2}, & \omega_{S 2}=\omega_{S}^{(1)}\left(\frac{b}{2}\right)=-\frac{b h}{4} \\
\omega_{S}^{(2)}(s)=\omega_{S 2}+(-) \int_{b / 2}^{s} \frac{h}{2} d \xi=-\frac{h s}{2}-\frac{b h}{4}, & \omega_{S 3}=\omega_{S}^{(2)}(b)=-\frac{b h}{2}
\end{array}
$$

$$
\begin{aligned}
\omega_{S}^{(3)}(s) & =\omega_{S 2}+\int_{b / 2}^{s}(0) d \xi=-\frac{b h}{4}, & \omega_{S 4}=\omega_{S}^{(3)}\left(\frac{b}{2}+h\right)=-\frac{b h}{4} \\
a \omega_{S}^{(4)}(s) & =\omega_{S 4}+(-) \int_{b / 2+h}^{s} \frac{h}{2} d \xi=-\frac{h s}{2}-\frac{b h}{4}, & \omega_{S 5}=\omega_{S}^{(4)}(b+h)=-\frac{b h}{2} \\
\omega_{S}^{(5)}(s) & =\omega_{S 4}+\int_{b / 2+h}^{s} \frac{h}{2} d \xi=\frac{h s}{2}-\frac{b h}{4}, & \omega_{S 6}=\omega_{S}^{(5)}(b+h)=0
\end{aligned}
$$

Note that the integration is performed along the wall profile from the origin of s to the desired point. Also, the sign convention for integration must be applied carefully.

If node 5 were to be chosen as the origin of the coordinate s (Fig. 15-2b), then the values of $\omega_{S}^{(i)}(s)$ could be calculated in a similar manner. Let $\omega_{S 5}=0$:

$$
\begin{array}{ll}
\omega_{S}^{(2)}(s)=\int_{0}^{s} \frac{h}{2} d \xi=\frac{h s}{2}, & \omega_{S 4}=\omega_{S}^{(2)}\left(\frac{b}{2}\right)=\frac{b h}{4} \\
\omega_{S}^{(1)}(s)=\omega_{S 4}+\int_{b / 2}^{s} \frac{h}{2} d \xi=\frac{h s}{2}, & \omega_{S 6}=\omega_{S}^{(1)}(b)=\frac{b h}{2} \\
\omega_{S}^{(3)}(s)=\omega_{S 4}+\int_{b / 2}^{s}(0) d \xi=\frac{b h}{4}, & \omega_{S 2}=\omega_{S}^{(3)}\left(\frac{b}{2}+h\right)=\frac{b h}{4} \\
\omega_{S}^{(5)}(s)=\omega_{S 2}+\int_{(b / 2)+h}^{s} \frac{h}{2} d \xi=\frac{h}{2}(s-h), & \omega_{S 1}=\omega_{S}^{(5)}(b+h)=\frac{b h}{2} \\
\omega_{S}^{(4)}(s)=\omega_{S 2}+(-) \int_{b / 2+h}^{s} \frac{h}{2} d \xi=\frac{h}{2}(b+h-s), & \omega_{S 3}=\omega_{S}^{(4)}(b+h)=0
\end{array}
$$

The values of $\omega_{S}^{(i)}$ and $\omega_{S j}$ depend on the choice of the origin of s. This is due to the fact that the sectorial coordinate $\omega_{S}^{(i)}$ or $\omega_{S j}$ is the relative warping between the initial points of $s(s=0)$ and the final point of integration involved in the expression for $\omega_{S}^{(i)}$ or $\omega_{S j}$.

Piecewise Integration Method

The formula for $\omega_{S j}$ is given in Eq. (2.30b) and Table 2-7.

$$
\omega_{S j}=\int_{0}^{S_{j}} r_{S} d s=\sum_{i}(\pm) r_{S i} b_{i}
$$

The notation in this formula, which can be used to find ω_{S} at any node j, deserves special attention. The subscript i refers to the i th element. The signs (\pm) in the paren-

Figure 15-3: Cross-sectional notation system. The tangential coordinate s, which is measured along the centerline of the wall profile, is positive if the direction is counterclockwise with respect to the pole P (P can be c or S).
theses indicate a counterclockwise (+) or clockwise (-) direction for coordinate s with respect to the shear center S. The symbol \sum_{i} means a summation along a line of elements. Begin at an outer element and sum until reaching the point j, where the value of $\omega_{S j}$ is desired. The summation on i does not always involve a numerically increasing sequence of i values. Also, the initial value of i need not always be 1 . The summation sequence follows the path of conventional integration along the wall profile, as with the direct integration method mentioned above. If ω_{S} is to be calculated at node j in Fig. 15-3, begin the summation at element 1 and continue until reaching node j, but do not include elements that are not along the primary path (i.e., elements such as 4 and 5 are not to be included in the summation).

In Fig. 15-2 a and b two alternative paths of summation (integration) are indicated by the arrows parallel to the wall profile. The node and element numbers may be assigned arbitrarily, but it is recommended that they be assigned with increasing numbers along the flow of the arrows (path of summation). The directions of the arrows are determined by choosing any free edge of the wall profile as the initial point (e.g., note 1 in case a and node 5 in case b). The main path of summation is established, such as path $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$ in case a and path $5 \rightarrow 4 \rightarrow 2 \rightarrow 1$ in case b. Any intermediate branch elements (e.g., $2 \rightarrow 3$ in case a and $4 \rightarrow 6$ in case b), have outward paths of summation.

The signs in parentheses in Fig. 15-2 indicate counterclockwise (+) or clockwise $(-)$ paths of summation with respect to shear center S. If $\omega_{c j}$ is sought, the clockwise or counterclockwise paths are considered with respect to the centroid.

To establish a systematic calculation for complicated cross sections, it is recommended that a table such as the following be set up:

In calculating $r_{S i} b_{i}$, the notation for i of Fig. 15-3 is employed. The sign in parentheses is chosen according to the direction of summation with respect to the pole (e.g., the shear center for Fig. 15-2). For example, in the case of Fig. 15-3, moving along element 1 in the s direction is counterclockwise with respect to the pole P. Hence, the sign in parentheses for $r_{P i} b_{i}\left(=r_{P 1} b_{1}\right)$ would be positive.

Example 15.2 Calculation of Warping-Related Constants for a Z-Section Derive expressions for the principal sectorial coordinate ω, the shear center location e_{y}, e_{z}, the first sectorial moment Q_{ω}, and the warping constant Γ for the thin-walled Z-section shown in Fig. 15-4. The use of the direct integration method will be demonstrated first, followed by the piecewise integration method.

Figure 15-4: Arrows along the wall profile show the directions of summation. Signs depend on the direction of integration.

Direct Integration Method

Begin by computing the location of the shear center, which for this simple cross section is known at the outset to coincide with the centroid. See Section 2.11.

Step 1: Calculate ω_{c} (with respect to the geometric centroid). The first step is to find the sectorial coordinate ω_{c}. Choose node 1 as the origin of the coordinate s and let $\omega_{c 1}=0$. We calculate ω_{c} by using Eq. (2.24a) as follows:

$$
\begin{array}{ll}
\omega_{c}^{(1)}(s)=(-) \int_{0}^{s} \frac{h}{2} d \xi=-\frac{h s}{2}, & \omega_{c 2}=\omega_{c}^{(1)}(b)=-\frac{b h}{2} \\
\omega_{c}^{(2)}(s)=\omega_{c 2}+\int_{b}^{s}(0) d \xi=-\frac{b h}{2}, & \omega_{c 3}=\omega_{c}^{(2)}(b+h)=-\frac{b h}{2} \\
\omega_{c}^{(3)}(s)=\omega_{c 3}+\int_{b+h}^{s} \frac{h}{2} d \xi=\frac{h}{2}(s-2 b-h), & \omega_{c 4}=\omega_{c}^{(3)}(2 b+h)=0
\end{array}
$$

Step 2: Calculate the remaining constants in the shear center location relation. The formulas for the shear center coordinates y_{S} and z_{S} are given by Eq. (2.29). Using $\omega_{c}(s)$ computed in step 1 and Eq. (2.28), we calculate $I_{\omega y}$ and $I_{\omega z}$ as follows:

$$
\begin{aligned}
I_{\omega y}= & \int_{0}^{b} \omega_{c}^{(1)}(s)\left(-\frac{h}{2}\right) t_{f} d s+\int_{b}^{b+h} \omega_{c}^{(2)}(s)\left(b+\frac{h}{2}-s\right) t_{w} d s \\
& +\int_{b+h}^{2 b+h} \omega_{c}^{(3)}(s)\left(\frac{h}{2}\right) t_{f} d s \\
= & \frac{h^{2}}{4} \int_{0}^{b} s t_{f} d s-\frac{b h}{2} \int_{b}^{b+h}\left(b+\frac{h}{2}-s\right) t_{w} d s \\
& +\frac{h^{2}}{4} \int_{b+h}^{2 b+h}(s-2 b-h) t_{f} d s \\
= & \frac{b^{2} h^{2}}{8} t_{f}-0-\frac{b^{2} h^{2}}{8} t_{f}=0 \\
I_{\omega z}= & \int_{0}^{b} \omega_{c}^{(1)}(s)(b-s) t_{f} d s+\int_{b}^{b+h} \omega_{c}^{(2)}(s)(0) t_{w} d s \\
& +\int_{b+h}^{2 b+h} \omega_{c}^{(3)}(s)(b+h-s) t_{f} d s \\
= & -\frac{h}{2} \int_{0}^{b} s(b-s) t_{f} d s+0+\frac{h}{2} \int_{b+h}^{2 b+h}(s-2 b-h)(b+h-s) t_{f} d s \\
= & -\frac{b^{3} h}{12} t_{f}+\frac{b^{3} h}{12} t_{f}=0
\end{aligned}
$$

Substitution of $I_{\omega y}=I_{\omega z}=0$ into expressions for y_{S} and z_{S} [Eq. (2.29)] yields $y_{S}=z_{S}=0$. This shows that the geometric centroid and the shear center are at the same point.

To find the principal sectorial coordinate ω and the warping constant Γ, we proceed with the following steps.

Step 3: Calculate ω_{S} (with respect to the shear center). This involves repeating the calculation of step 1 using the shear center as a pole. However, for this example, the shear center and centroid are at the same location $\left(y_{S}=z_{S}=0\right)$. Hence $\omega_{S}^{(i)}(s)=$ $\omega_{c}^{(i)}(s)$. That is, $\omega_{S}^{(1)}(s)=-\frac{1}{2} h s, \omega_{S}^{(2)}(s)=-\frac{1}{2} b h, \omega_{S}^{(3)}(s)=-\frac{1}{2} h(s-2 b-h)$, and $\omega_{S 1}=0, \omega_{S 2}=-\frac{1}{2} b h, \omega_{S 3}=-\frac{1}{2} b h$, and $\omega_{S 4}=0$.

Step 4: Calculate the principal sectorial coordinate. According to Eq. (2.25b), the principal sectorial coordinate ω is given by $\omega=\omega_{S}-\omega_{0}$. The sectorial coordinate ω_{S} has been calculated in step 3. For ω_{0} we find [Eq. (2.25c)] that
$\omega_{0}=\frac{1}{A} \int_{A} \omega_{S} d A=\frac{1}{A}\left[\int_{0}^{b} \omega_{S}^{(1)} t_{f} d s+\int_{b}^{b+h} \omega_{S}^{(2)} t_{w} d s+\int_{b+h}^{2 b+h} \omega_{S}^{(3)} t_{f} d s\right]$

$$
\begin{aligned}
& =\frac{1}{2 b t_{f}+h t_{w}}\left(-\frac{h t_{f}}{2} \int_{0}^{b} s d s-\frac{b h t_{w}}{2} \int_{b}^{b+h} d s+\frac{h t_{f}}{2} \int_{b+h}^{2 b+h}(s-2 b-h) d s\right) \\
& =\frac{1}{2 b t_{f}+h t_{w}}\left(-\frac{b^{2} h t_{f}}{4}-\frac{b h^{2} t_{w}}{2}-\frac{b^{2} h t_{f}}{4}\right) \\
& =-\frac{b h\left(h t_{w}+b t_{f}\right)}{2\left(2 b t_{f}+h t_{w}\right)}
\end{aligned}
$$

Hence,

$$
\begin{array}{ll}
\omega^{(1)}=\omega_{S}^{(1)}-\omega_{0}=-\frac{h s}{2}+\frac{b h\left(h t_{w}+b t_{f}\right)}{2\left(2 b t_{f}+h t_{w}\right)} & (0 \leq s \leq b) \\
\omega^{(2)}=\omega_{S}^{(2)}-\omega_{0}=-\frac{b^{2} h t_{f}}{2\left(2 b t_{f}+h t_{w}\right)} & (b \leq s \leq b+h) \\
\omega^{(3)}=\omega_{S}^{(3)}-\omega_{0}=\frac{-h(2 b+h-s)}{2}+\frac{b h\left(h t_{w}+b t_{f}\right)}{2\left(2 b t_{f}+h t_{w}\right)} & (b+h \leq s \leq 2 b+h)
\end{array}
$$

Step 5: Calculate the warping constant Γ. The formula for warping constant Γ is given by Eq. (2.33) using ω as calculated in step 4. It is found that

$$
\begin{aligned}
\Gamma= & \int_{0}^{b}\left(\omega^{(1)}\right)^{2} t_{f} d s+\int_{b}^{b+h}\left(\omega^{(2)}\right)^{2} t_{w} d s+\int_{b+h}^{2 b+h}\left(\omega^{(3)}\right)^{2} t_{f} d s \\
= & \int_{0}^{b}\left(\frac{h s}{2}+\omega_{0}\right)^{2} t_{f} d s+\int_{b}^{b+h}\left(\frac{b h}{2}+\omega_{0}\right)^{2} t_{w} d s \\
& +\int_{b+h}^{2 b+h}\left[\frac{h(2 b+h-s)}{2}+\omega_{0}\right]^{2} t_{f} d s \\
= & \frac{b^{3} h^{2} t_{f}}{12} \frac{b t_{f}+2 h t_{w}}{2 b t_{f}+h t_{w}}
\end{aligned}
$$

Step 6: Calculate the first sectorial moment Q_{ω}. Use the formula for Q_{ω} of Eq. (2.31a). The value of the principal sectorial coordinate ω calculated in step 4 can be inserted in the formula for Q_{ω}. Then for the upper flange,

$$
\begin{aligned}
Q_{\omega}^{(1)} & =\int_{0}^{s} \omega^{(1)} t_{f} d \xi=\int_{0}^{s}\left(-\frac{h \xi}{2}-\omega_{0}\right) t_{f} d \xi \\
& =\left(-\frac{h s^{2}}{4}-\omega_{0} s\right) t_{f} \quad(0 \leq s \leq b) \\
Q_{\omega 2} & =Q_{\omega}^{(1)} \text { at node } 2=\left(-\frac{b^{2} h}{4}-\omega_{0} b\right) t_{f}
\end{aligned}
$$

$$
\begin{aligned}
Q_{\omega}^{(2)}= & Q_{\omega 2}+\int_{b}^{s} \omega^{(2)} t_{w} d \xi=-\left(\frac{b^{2} h}{4}+\omega_{0} b\right) t_{f}+\int_{b}^{s}\left(-\frac{b h}{2}-\omega_{0}\right) t_{w} d \xi \\
= & -\frac{b^{2} h t_{f} t_{w}}{2\left(2 b t_{f}+h t_{w}\right)}\left(s-b-\frac{h}{2}\right) \quad(b \leq s \leq b+h) \\
Q_{\omega 3}= & Q_{\omega}^{(2)} \text { at node } 3=-\frac{b^{2} h^{2} t_{f} t_{w}}{4\left(2 b t_{f}+h t_{w}\right)} \\
Q_{\omega}^{(3)}= & Q_{\omega 3}+\int_{b+h}^{2 b+h} \omega^{(3)} t_{f} d \xi=-\frac{b^{2} h^{2} t_{f} t_{w}}{4\left(2 b t_{f}+h t_{w}\right)} \\
& +\int_{b+h}^{s}\left[-\frac{h(2 b+h-\xi)}{2}-\omega_{0}\right] t_{f} d \xi \\
= & {\left[\left(-\frac{h^{2}}{2}-b h-\omega_{0}\right) s+\frac{h s^{2}}{4}\right] t_{f}-\frac{b^{2} h^{2} t_{f} t_{w}}{4\left(2 b t_{f}+h t_{w}\right)} } \\
& +t_{f}\left[\left(\frac{h^{2}}{2}+b h+\omega_{0}\right)(b+h)-\frac{h(b+h)^{2}}{4}\right] \quad(b+h \leq s \leq 2 b+h) \\
Q_{\omega 4}= & Q_{\omega}^{(3)} \text { at node } 4=0
\end{aligned}
$$

These expressions for Q_{ω} are ready for use in computing the shear stress of Table 15-2.

Piecewise Integration Method

This method proves to be useful in calculating the sectorial properties and warping characteristics for thin-walled beams with complicated cross sections formed of straight elements. The integration is then reduced to a summation. It should be emphasized that the sequence of summation for sectorial coordinates follows direct integration and must adhere to the same sign convention. All of the calculations for the sectorial properties and warping characteristics for the Z-section will be repeated to demonstrate use of the formulas in this method. We begin, as before, by computing the location of the shear center.

Step 1: Calculate $\omega_{c i}$ (with respect to the geometric centroid).

Node	Element	$r_{c i}$	b_{i}	$r_{c i} b_{i}$	$(\pm) \omega_{c i}=\sum_{i}(\pm) r_{c i} b_{i}$
1	(1)	$\frac{1}{2} h$	b	$(-) \frac{1}{2} b h$	0
2	(2)	0	h	0	
3	$\frac{1}{2} h$	b	$\frac{1}{2} b h$	$-\frac{1}{2} b h$	
4	(3)				
0					

Step 2: Calculate the remaining constants in the shear center location relations. The formulas for the shear center y_{S} and z_{S} are taken from case 21 of Table 2-6 as

$$
y_{S}=\frac{I_{z} I_{\omega y}-I_{y z} I_{\omega z}}{I_{y} I_{z}-I_{y z}^{2}}, \quad z_{S}=-\frac{I_{y} I_{\omega z}-I_{y z} I_{\omega y}}{I_{y} I_{z}-I_{y z}^{2}}
$$

where

$$
\begin{aligned}
& I_{\omega y}=\int_{A} \omega_{c} z d A=\frac{1}{3} \sum_{i=1}^{M}\left(\omega_{c p} z_{p}+\omega_{c q} z_{q}\right) t_{i} b_{i}+\frac{1}{6} \sum_{i=1}^{M}\left(\omega_{c p} z_{q}+\omega_{c q} z_{p}\right) t_{i} b_{i} \\
& I_{\omega z}=\int_{A} \omega_{c} y d A=\frac{1}{3} \sum_{i=1}^{M}\left(\omega_{c p} y_{p}+\omega_{c q} y_{q}\right) t_{i} b_{i}+\frac{1}{6} \sum_{i=1}^{M}\left(\omega_{c p} y_{q}+\omega_{c q} y_{p}\right) t_{i} b_{i}
\end{aligned}
$$

M is the total number of elements. The quantities $\omega_{c p},\left(y_{p}, z_{p}\right)$ and $\omega_{c q},\left(y_{q}, z_{q}\right)$ are the sectorial areas and coordinates of the two ends of element i. For example, the first end (p) of element 2 of Fig. 15-4 is node 2 and the second end (q) is node 3 in the node sequence. So for element $2, \omega_{c p}=\omega_{c 2}$ and $\omega_{c q}=\omega_{c 3}$.

Element	Node		Coordinate				b_{i}	t_{i}	From Step 1	
	p	q	y_{p}	z_{p}	y_{q}	z_{q}			$\omega_{c p}$	$\omega_{c q}$
(1)	1	2	b	$-\frac{1}{2} h$	0	$-\frac{1}{2} h$	b	t_{f}	0	$-\frac{1}{2} b h$
(2)	2	3	0	$-\frac{1}{2} h$	0	$\frac{1}{2} h$	h	t_{w}	$-\frac{1}{2} b h$	$-\frac{1}{2} b h$
(3)	3	4	0	$\frac{1}{2} h$	$-b$	$\frac{1}{2} h$	b	t_{f}	$-\frac{1}{2} b h$	0

In expanded form, $I_{\omega y}$ and $I_{\omega z}$ appear as

$$
\begin{aligned}
I_{\omega y}= & \frac{1}{3}[\underbrace{\left(\omega_{c 1} z_{1}+\omega_{c 2} z_{2}\right) t_{1} b_{1}}_{\text {Element } 1}+\underbrace{\left(\omega_{c 2} z_{2}+\omega_{c 3} z_{3}\right) t_{2} b_{2}}_{\text {Element } 2}+\underbrace{\left(\omega_{c 3} 3 z_{3}+\omega_{c 4} z_{4}\right) t_{3} b_{3}}_{\text {Element } 3}] \\
& +\frac{1}{6}[\underbrace{\left(\omega_{c 1} z_{2}+\omega_{c 2} z_{1}\right) t_{1} b_{1}}_{\text {Element } 1}+\underbrace{\left(\omega_{c 2} z_{3}+\omega_{c 3} z_{2}\right) t_{2} b_{2}}_{\text {Element } 2}+\underbrace{\left(\omega_{c 3} z_{4}+\omega_{c 4} z_{3}\right) t_{3} b_{3}}_{\text {Element } 3}] \\
I_{\omega z}= & \frac{1}{3}[\underbrace{\left(\omega_{c 1} y_{1}+\omega_{c 2} y_{2}\right) t_{1} b_{1}}_{\text {Element } 1}+\underbrace{\left(\omega_{c 2} y_{2}+\omega_{c 3} y_{3}\right) t_{2} b_{2}}_{\text {Element 2 }}+\underbrace{\left(\omega_{c 3} y_{3}+\omega_{c 4} y_{4}\right) t_{3} b_{3}}_{\text {Element } 3}] \\
& +\frac{1}{6}[\underbrace{\left(\omega_{c 1} y_{2}+\omega_{c 2} y_{1}\right) t_{1} b_{1}}_{\text {Element } 1}+\underbrace{\left(\omega_{c 2} y_{3}+\omega_{c 3} y_{2}\right) t_{2} b_{2}}_{\text {Element } 2}+\underbrace{\left(\omega_{c 3} y_{4}+\omega_{c 4} y_{3}\right) t_{3} b_{3}}_{\text {Element } 3}]
\end{aligned}
$$

Substitution of the appropriate values from the table above gives $I_{\omega y}=I_{\omega z}=0$. The formulas for y_{S} and z_{S} then provide $y_{S}=z_{S}=0$.

To find the principal sectorial coordinates ω and warping constant Γ, we proceed with the following steps.

Step 3: Calculate $\omega_{S i}$ (with respect to the shear center). This involves repeating the tabular circulation of step 1 using $r_{S i}$ instead of $r_{c i}$. However, for this example, the shear center and centroid are at the same location $\left(y_{S}=z_{S}=0\right)$. Hence, $r_{S i}=r_{c i}$, which gives $\omega_{S j}=\omega_{c j}$. That is, $\omega_{S 1}=0, \omega_{S 2}=-\frac{1}{2} b h, \omega_{S 3}=-\frac{1}{2} b h, \omega_{S 4}=0$.

Step 4: Evaluate the remaining constants in the expressions for the principal coordinates. From Eq. (2.31c) and case 1 of Table 2-7, the expression ω_{0} is given by

$$
\omega_{0}=\frac{1}{A} \int_{A} \omega_{S} d A=\frac{1}{A}\left[\frac{1}{2} \sum_{i=1}^{M}\left(\omega_{S p}+\omega_{S q}\right) t_{i} b_{i}\right]
$$

In expanded form, noting, for example, that for element $2, \omega_{S p}=\omega_{S 2}$ and $\omega_{S q}=$ $\omega_{S 3}$,

$$
\omega_{0}=\frac{1}{A} \frac{1}{2}[\underbrace{\left(\omega_{S 1}+\omega_{S 2}\right) t_{1} b_{1}}_{\text {Element } 1}+\underbrace{\left(\omega_{S 2}+\omega_{S 3}\right) t_{2} b_{2}}_{\text {Element } 2}+\underbrace{\left(\omega_{S 3}+\omega_{S 4}\right) t_{3} b_{3}}_{\text {Element } 3}]
$$

with $A=2 b t_{f}+h t_{w}$. Substitution of the values of $\omega_{S j}$ from step 3 into the expression for ω_{0} leads to

$$
\omega_{0}=-\frac{b h\left(t_{f} b+t_{w} h\right)}{2\left(2 b t_{f}+h t_{w}\right)}
$$

Then using the notation ω_{j} to represent ω at node $j, \omega_{j}=\omega_{S j}-\omega_{0}$,

$$
\begin{aligned}
& \omega_{1}=\omega_{S 1}-\omega_{0}=\frac{b h\left(h t_{w}+b t_{f}\right)}{2\left(2 b t_{f}+h t_{w}\right)}=\omega_{4} \\
& \omega_{2}=\omega_{S 2}-\omega_{0}=-\frac{b^{2} h t_{f}}{2\left(2 b t_{f}+h t_{w}\right)}=\omega_{3}
\end{aligned}
$$

The value of the principal sectorial coordinate ω between the two nodes of any element varies linearly and can be expressed in terms of the nodal values ω_{p}, ω_{q}. For example, for element 1 (Fig. 15-5), ω between nodes 1 and 2 is found to be

Figure 15-5: Variation of ω along an element.

$$
\begin{aligned}
\omega^{(1)}=\omega \text { in element } 1 & =\frac{\left(b^{2} h t_{f}+b h^{2} t_{w}\right)-\left(2 b h t_{f}+h^{2} t_{w}\right) s}{2\left(2 b t_{f}+h t_{w}\right)} \\
& =-\frac{h s}{2}+\frac{b h\left(h t_{w}+b t_{f}\right)}{2\left(2 b t_{f}+h t_{w}\right)} \quad(0 \leq s \leq b)
\end{aligned}
$$

The expressions for ω_{j} or $\omega^{(1)}$ calculated above can be inserted in Table 15-1 for computation of the normal stress.

Step 5: Calculate the warping constant Γ. The formula for warping constant Γ is given in Eq. (2.33) and case 21, Table 2-6:

$$
\Gamma=\int_{A} \omega^{2} d A=\frac{1}{3} \sum_{i=1}^{M}\left(\omega_{p}^{2}+\omega_{p} \omega_{q}+\omega_{q}^{2}\right) t_{i} b_{i}
$$

where ω_{p} and ω_{q} are the principal sectorial coordinates at the ends of element i. This can be expanded as

$$
\Gamma=\frac{1}{3}[\underbrace{\left(\omega_{1}^{2}+\omega_{1} \omega_{2}+\omega_{2}^{2}\right) t_{1} b_{1}}_{\text {Element } 1}+\underbrace{\left(\omega_{2}^{2}+\omega_{2} \omega_{3}+\omega_{3}^{2}\right) t_{2} b_{2}}_{\text {Element } 2}+\underbrace{\left(\omega_{3}^{2}+\omega_{3} \omega_{4}+\omega_{4}^{2}\right) t_{3} b_{3}}_{\text {Element } 3}]
$$

Substitution of the values of ω_{j} calculated in step 4 and $t_{1}=t_{f}=t_{3}, b_{1}=b=b_{3}$, $t_{2}=t_{w}$, and $b_{2}=h$ yields

$$
\Gamma=\frac{b^{3} h^{2} t_{f}}{12} \frac{b t_{f}+2 h t_{w}}{2 b t_{f}+h t_{w}}
$$

Step 6: Calculate the first sectorial moment Q_{ω}. The formula for Q_{ω} is given in Eq. (2.31a). The value of the principal sectorial coordinate ω calculated in step 4 can be inserted into the expression for Q_{ω}. Then for the upper flange,

$$
Q_{\omega}^{(1)}=\int_{0}^{s} \omega^{(1)} t_{f} d s=\int_{0}^{s}\left[-\frac{h s}{2}+\frac{b h\left(h t_{w}+b t_{f}\right)}{2\left(2 b t_{f}+h t_{w}\right)}\right] t_{f} d s
$$

The integration leads to

$$
Q_{\omega}^{(1)}=\left[-\frac{h s^{2}}{4}+\frac{b h\left(h t_{w}+b t_{f}\right)}{2\left(2 b t_{f}+h t_{w}\right)} s\right] t_{f} \quad(0 \leq s \leq b)
$$

A similar calculation yields

$$
Q_{\omega}^{(2)}=-\frac{b^{2} h t_{f} t_{w}}{2\left(2 b t_{f}+h t_{w}\right)}\left(s-b-\frac{h}{2}\right) \quad(b \leq s \leq b+h)
$$

These expressions for Q_{ω} are ready for use in computing the shear stress of Table 15-2.

15.4 NORMAL STRESSES

Formulas for normal stresses on the face of a cross section are given in Table 15-1. These formulas are based on the following assumptions:

1. The Euler-Bernoulli assumption, regarding the axial and flexural modes of deformations, that a cross-sectional plane normal to the centroidal axis (or the modulus-weighted centroidal axis in the case of a composite beam) remains plane after deformation
2. The sectorial concept (see Chapter 2), regarding the restrained warping mode of deformation, that the shear center is used as a pole

Neutral Axis

The neutral axis is, by definition, a line through the cross section along which the normal stress is zero. To find the equation of this line for the general case of bending, set $\sigma=0$ in case 1 of Table 15-1:

$$
\begin{equation*}
z=\frac{M_{z} I_{y}^{*}+M_{y} I_{y z}^{*}}{M_{y} I_{z}^{*}+M_{z} I_{y z}^{*}} y \tag{15.1}
\end{equation*}
$$

where the axial force \bar{P}, thermal effects, and bimoment B have been neglected. The neutral axis defined by Eq. (15.1) passes through the centroid. It is the line about which the "plane section" rotates. The neutral axis is not, in general, perpendicular to the plane of the resultant internal moment, nor does it usually coincide with either of the principal axes of inertia. An exception is the case of simple bending using case 5 of Table 15-1, in which the largest stress occurs at the point most removed from the neutral axis.

Example 15.3 Normal Stresses in a Composite Beam Find the normal stresses at points A and B on the composite cross section shown in Fig. 15-6. The section is subjected to a bending moment $M=10 \mathrm{kN} \cdot \mathrm{m}$ in the direction shown. Also locate the neutral axis.

The stresses are found using the formula of case 1 of Table $15-1$ with B, \bar{P}, and T equal to zero. First, the location of modulus-weighted centroid of the cross section must be found.

The desired centroid can be located in the y_{0}, z_{0} reference frame using Eq. (2.41b). The modulus-weighted area A^{*} is given by Eq. (2.41a). Choose $E_{r}=100 \mathrm{GN} / \mathrm{m}^{2}$.

Figure 15-6: Example 15.3.

Then we find that

$$
\begin{align*}
& y_{c}^{*}=\frac{\sum \bar{y}_{0 i} A_{i}^{*}}{A^{*}}=4.94 \mathrm{~cm}, \\
& z_{c}^{*}=\frac{\sum \bar{z}_{0 i} A_{i}^{*}}{A^{*}}=9.31 \mathrm{~cm} \tag{1}
\end{align*}
$$

The moments of inertia of the cross section about the centroidal y, z axes are [Eqs. (2.44)]

$$
\begin{align*}
I_{y}^{*} & =\sum_{i=1}^{5} \frac{E_{i}}{E_{r}}\left(\bar{I}_{y_{i}}+\bar{z}_{i}^{2} A_{i}\right)=7028.52 \mathrm{~cm}^{4} \\
I_{z}^{*} & =\sum_{i=1}^{5} \frac{E_{i}}{E_{r}}\left(\bar{I}_{z_{i}}+\bar{y}_{i}^{2} A_{i}\right)=1723.27 \mathrm{~cm}^{4} \tag{2}\\
I_{y z}^{*} & =\sum_{i=1}^{5} \frac{E_{i}}{E_{r}}\left(\bar{I}_{y_{i} z_{i}}+\bar{y}_{i} \bar{z}_{i} A_{i}\right)=-590.23 \mathrm{~cm}^{4}
\end{align*}
$$

The bending moments about the y, z axes are

$$
\begin{align*}
\bar{M}_{y} & =M_{y}=M \cos 15^{\circ}=9.659 \mathrm{kN} \cdot \mathrm{~m}, \\
\bar{M}_{z}=M_{z} & =M \sin 15^{\circ}=2.588 \mathrm{kN} \cdot \mathrm{~m} \tag{3}
\end{align*}
$$

Then, from case 1 of Table 15-1,

$$
\begin{align*}
\sigma & =\frac{E}{E_{r}}\left(\frac{\bar{M}_{y} I_{z}^{*}+\bar{M}_{z} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}} z-\frac{\bar{M}_{z} I_{y}^{*}+\bar{M}_{y} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}} y\right) \\
& =\frac{E}{100}(0.001285 z-0.001062 y) \tag{4}
\end{align*}
$$

with E in giganewtons per meter squared and y, z in centimeters.
At point $A, y=5.06 \mathrm{~cm}, z=-9.31 \mathrm{~cm}, E=E_{2}=200 \mathrm{GN} / \mathrm{m}^{2}$, and (4) yields

$$
\begin{equation*}
\sigma=2[0.001285(-9.31)-0.001062(5.06)]=-0.0347 \mathrm{GN} / \mathrm{m}^{2} \tag{5}
\end{equation*}
$$

At point B of material 5, $y=0.06 \mathrm{~cm}, z=3.69 \mathrm{~cm}, E=E_{5}=120 \mathrm{GN} / \mathrm{m}^{2}$, and $\sigma=1.2[0.001285(3.69)-0.001062(0.06)]=0.0056 \mathrm{GN} / \mathrm{m}^{2}$.

The position of the neutral axis is obtained by setting $\sigma=0 \mathrm{in}$ (4). This leads to

$$
\begin{equation*}
\tan \phi=\frac{z}{y}=\frac{0.001062}{0.001285}=0.8265 \quad \text { or } \quad \phi=39.57^{\circ} \tag{6}
\end{equation*}
$$

Example 15.4 Thin-Walled Composite Section with Stringers and Thermal

 Loading Find the bending stresses in the longitudinal stringers of the simplified representation of an aircraft wing shown in Fig. 15-7. The section is subjected to bending moment $M_{y}=5 \times 10^{5} \mathrm{in}$. lb . Columns 2, 3, 4, 5, and 6 of Fig. 15-8 indicate geometric and material properties of the section along with the applied thermal loading. Assume that $\alpha=1.2 \times 10^{-5} \mathrm{in} . / \mathrm{in} .-^{\circ} \mathrm{F}$.Typically, flight structures of this sort are comprised of thin metal skins connecting longitudinal stringers. It is often assumed that the skin panels do not resist bending. The moments of inertia are then based on the areas of the stringers, not including the area of the skins.

Figure 15-7: Example 15.4.

1	2	3	4	5	6	7	8	9	10	11	12
䂞	$\begin{gathered} A_{i} \\ \text { in }^{2} \end{gathered}$	$\begin{gathered} \bar{y}_{o i} \\ \text { in } \end{gathered}$	$\overline{\bar{z}_{o i}}$ in	$\begin{aligned} & \hline T_{i} \\ & { }^{\circ} \mathrm{F} \end{aligned}$	$\begin{gathered} E_{i} \\ 10^{6} \mathrm{psi} \end{gathered}$	E_{i} / E_{r}	$\begin{gathered} A_{i}^{*} \\ \text { in }^{2} \\ 2 \times 7^{a} \end{gathered}$	$\begin{gathered} \bar{y}_{o i} A_{i}^{*} \\ \text { in }^{3} \\ 3 \times 8 \end{gathered}$	$\begin{gathered} \bar{z}_{o i} A_{i}^{*} \\ \text { in }^{3} \\ 4 \times 8 \end{gathered}$	$\begin{gathered} \bar{y}_{i} \\ \text { in } \\ 3-13.68 \end{gathered}$	$\begin{gathered} \hline \bar{z}_{i} \\ \text { in } \\ 4-3.24 \\ \hline \end{gathered}$
1	1.5	0	0	180	9.2	0.92	1.38	0	0	-13.68	-3.24
2	0.8	6	0	230	10.0	1.00	0.80	4.80	0	-7.68	-3.24
3	0.8	12	0	230	10.0	1.00	0.80	9.60	0	-1.68	-3.24
4	0.8	18	0	230	10.0	1.00	0.80	14.40	0	4.32	-3.24
5	2.0	24	0	205	9.5	0.95	1.90	45.60	0	10.32	-3.24
6	1.2	24	4	180	10.3	1.03	1.24	29.76	4.96	10.32	0.76
7	2.0	24	8	205	9.5	0.95	1.90	45.60	15.20	10.32	4.76
8	1.0	18	7	330	10.1	1.01	1.01	18.18	7.07	4.32	3.76
9	1.0	12	6	330	10.1	1.01	1.01	12.12	6.06	-1.68	2.76
10	1.0	6	5	330	10.1	1.01	1.01	6.06	5.05	-7.68	1.76
11	1.2	0	4	180	9.5	0.95	1.14	0	4.56	-13.68	0.76
12	0.6	0	2	130	10.2	1.02	0.612	0	1.24	-13.68	-1.24
\sum							13.60	186.12	44.14		

	13	14	15	16	17	18	19	20	21	22
$\stackrel{0}{\tilde{E}}_{i}$	$\begin{gathered} \bar{y}_{i}^{2} A_{i}^{*} \\ \text { in }^{4} \\ 11^{2} \times 8 \end{gathered}$	$\begin{gathered} \bar{z}_{i}^{2} A_{i}^{*} \\ \text { in }^{4} \\ \\ 12^{2} \times 8 \end{gathered}$	$\begin{gathered} \bar{y}_{i} \bar{z}_{i} A_{i}^{*} \\ \text { in }^{4} \\ \\ 11 \times 12 \times 8 \end{gathered}$	$\begin{gathered} \left(E \alpha T A^{*}\right)_{i} \\ 10^{3} \mathrm{lb} \\ 6 \times \alpha \times 5 \times 8 \end{gathered}$	$\begin{gathered} \left(E \alpha T \bar{y} A^{*}\right)_{i} \\ 10^{3} \mathrm{in}-\mathrm{lb} \\ \\ 11 \times 16 \end{gathered}$	$\begin{gathered} \left(E \alpha T \bar{z} A^{*}\right)_{i} \\ 10^{3} \mathrm{in}-\mathrm{lb} \\ \\ 12 \times 16 \end{gathered}$	$\begin{gathered} C_{2} \bar{y}_{i} \\ 10^{3} \mathrm{psi} \end{gathered}$	$\begin{gathered} C_{3} \bar{z}_{i} \\ 10^{3} \mathrm{psi} \end{gathered}$	$\begin{aligned} & E_{r} A T_{i} \\ & 10^{3} \mathrm{psi} \end{aligned}$	$\begin{gathered} \sigma \\ 10^{3} \mathrm{psi} \\ 7 \times\left(C_{1}-19\right. \\ +20-21) \end{gathered}$
1	258.26	14.49	61.17	27.42	-407.80	-96.58	-5.50	-16.50	21.60	-4.95
2	47.16	8.40	19.91	22.08	-169.57	-71.54	-3.09	-16.50	27.60	-13.79
3	2.26	8.40	4.35	22.08	-37.09	-71.54	-0.68	-16.50	27.60	-16.20
4	14.93	8.40	-11.20	22.08	95.39	-71.54	1.74	-16.50	27.60	-18.62
5	202.35	19.95	-63.53	44.40	482.36	-151.44	4.15	-16.50	24.60	-17.13
6	132.06	0.72	9.73	27.59	275.54	20.29	4.15	3.87	21.60	5.50
7	202.35	43.05	93.33	44.40	482.36	222.48	4.15	24.24	24.60	21.57
8	18.85	14.28	16.41	40.40	172.80	150.40	1.74	19.16	39.60	5.09
9	2.85	7.09	-4.68	40.40	-67.20	110.40	-0.68	14.05	39.60	2.37
10	59.57	3.13	-13.65	40.40	-307.20	70.40	-3.09	8.96	39.60	-0.33
11	213.34	0.66	-11.85	23.39	-336.80	18.71	-5.50	3.87	21.60	14.24
12	116.03	0.95	10.52	9.86	-130.64	-11.84	-5.50	-6.31	15.60	11.13
\sum	1270.01	130.12	110.51	370.40	52.15	118.20				

$a^{\text {The notation }} 2 \times 7$ indicates that the entry in column 2 is multiplied by the entry in column 7 to obtain the entry in column 8 .

Most of the calculations can be placed in tabular form, as shown in Fig. 15-8. Let $E_{r}=10^{7} \mathrm{psi}$. We find that

$$
\begin{aligned}
y_{c}^{*} & =\frac{\sum \bar{y}_{0 i} A_{i}^{*}}{A^{*}}=\frac{186.12}{13.61}=13.68 \mathrm{in} ., \quad z_{c}^{*}=\frac{\sum \bar{z}_{0 i} A_{i}^{*}}{A^{*}}=\frac{44.14}{13.61}=3.24 \mathrm{in} . \\
I_{y}^{*} & =\sum \bar{z}_{i}^{2} A_{i}^{*}=130.12 \mathrm{in}^{4}, \quad I_{z}^{*}=\sum \bar{y}_{i}^{2} A_{i}^{*}=1270.01 \mathrm{in}^{4}, \\
I_{y z}^{*} & =\sum \bar{y}_{i} \bar{z}_{i} A_{i}^{*}=110.51 \mathrm{in}^{4} \\
\bar{P} & =P+\int E \alpha T d A=0+\sum\left(E \alpha T A^{*}\right)_{i}=370.4 \times 10^{3} \mathrm{lb} \\
\bar{M}_{y} & =M_{y}+\int E \alpha T z d A=5 \times 10^{5}+\sum\left(E \alpha T z A^{*}\right)_{i}=618.2 \times 10^{3} \mathrm{in} .-\mathrm{lb} \\
\bar{M}_{z} & =M_{z}-\int E \alpha T y d A=0-\sum\left(E \alpha T y A^{*}\right)_{i}=-52.15 \times 10^{3} \mathrm{in} .-\mathrm{lb} \\
C_{1} & =\frac{\bar{P}}{A^{*}}=\frac{370.4 \times 10^{3}}{13.61}=27.22 \times 10^{3} \mathrm{psi} \\
C_{2} & =\frac{\bar{M}_{z} I_{y}^{*}+\bar{M}_{y} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}}=\frac{-52.15\left(10^{3}\right) 130.12+618.2(10)^{3} 110.51}{130.12(1270.01)-(110.51)^{2}} \\
& =0.402 \times 10^{3} \mathrm{lb} / \mathrm{in}^{3} \\
C_{3} & =\frac{\bar{M}_{y} I_{z}^{*}+\bar{M}_{z} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}}=\frac{618.2\left(10^{3}\right) 1270.01-52.15\left(10^{3}\right) 110.51}{130.12(1270.01)-(110.51)^{2}} \\
& =5.092 \times 10^{3} \mathrm{lb} / \mathrm{in}^{3}
\end{aligned}
$$

From case 1 of Table 15-1, the stresses are calculated using

$$
\begin{aligned}
\sigma_{i} & =\frac{E_{i}}{E_{r}}\left(C_{1}+C_{3} z_{i}-C_{2} y_{i}-E_{r} \alpha T_{i}\right) \\
& =\frac{E}{E_{r}}\left(27.22 \times 10^{3}+5.092 \times 10^{3} z_{i}-0.402 \times 10^{3} y_{i}-E_{r} \alpha T_{i}\right)
\end{aligned}
$$

The normal stress in each stringer is listed in the final column of Fig. 15-8.

15.5 SHEAR STRESSES

The formulas for the shear stress on the face of the cross section are listed in Table 15-2. For case 1 for a solid beam the stresses are positive if they point in the directions of the y or z coordinates. For the thin-walled section of case 2 the stresses are positive if they point in the direction of the positive s coordinate. Considerable
care must be exercised in applying these formulas. Especially delicate is the need to add the terms in cases 1 and 2 vectorially if the particular shear stresses (torsional, transverse, and restrained warping shear stresses) act in different directions. The y, z coordinates for case 3 are taken relative to axes passing through the centroid of the cross section. Case 3 provides the average shear stress along b, which is the width in any direction on a cross section (e.g., see b in Fig. 2-9).

Shear Center

Loading on a beam will usually produce combined bending and twisting. Some of the formulas of this chapter are based on the assumption that no twisting moment is developed. It is possible to locate a point in the cross-sectional plane through which the resultant forces must pass (sometimes in a particular direction) if there is to be no twisting. This point is called the shear center. Various definitions of shear centers are presented in Ref. [15.1]. Some lead to shear center formulas that are material dependent, while others are not functions of the material. Computational formulations as well as software for calculating shear centers for cross sections of arbitrary shape are given in [15.1]. Also, for software see the web site for this book. Traditional formulas for shear center locations are given in Chapter 2. For several specific cross sections, see Table 2-6.

It is possible to avoid the shear center formulas and to locate the shear center easily by balancing the internal shear forces V_{y}, V_{z} with the resultant of the shear stresses τ. This is accomplished by setting the summation of moments about any convenient point equal to zero. If the resultant of V_{y} and V_{z} as caused by external loading is not equal, opposite, and collinear to the resultant of the internal shear stresses, bending is accompanied by twisting of the beam.

The following characteristics of a shear center can be demonstrated:

1. The shear center for a section consisting of two intersecting rectangular elements is at the point of intersection.
2. The shear center for a section with one axis of symmetry lies on this axis.
3. The shear center for a section with two axes of symmetry is at the intersection of the two axes (i.e., at the centroid).

Example 15.5 Shear Center The shear center for a channel (Fig. 15-9) lies on the axis of symmetry (i.e., along the y axis). To find the shear center coordinate e along the y axis, we could use the formulas of Chapter 2 or simply sum moments about point 1 . The resultant forces in the section are designated F_{1} and F_{2}. Then

$$
\begin{equation*}
\sum M_{1}=0: \quad V_{z} e-F_{1} h=0 \tag{1}
\end{equation*}
$$

so that

$$
\begin{equation*}
e=\frac{F_{1} h}{V_{z}}=\frac{h}{V_{z}} \int_{2}^{3} q d s=\frac{h t}{V_{z}} \int_{2}^{3} \tau d s=\frac{h t}{V_{z}} \int_{2}^{3} \frac{Q_{y} V_{z}}{t I_{y}} d s=\frac{h}{I_{y}} \int_{2}^{3} Q_{y} d s \tag{2}
\end{equation*}
$$

(b)
(a)

Figure 15-9: Example 15.5.
where τ is given by case 3 of Table $15-2$ with $b=t, V_{y}=0$, and $I_{y z}=0$ (the section has an axis of symmetry). By definition of a first moment, $Q_{y}=\bar{y} A_{0}=(h / 2) t s$. From (2),

$$
\begin{equation*}
e=\frac{h}{I_{y}} \int_{2}^{3} \frac{h}{2} t s d s=\frac{t h^{2} a^{2}}{4 I_{y}} \tag{3}
\end{equation*}
$$

The channel in this example has the y axis as an axis of symmetry. If there were no axes of symmetry, special care would have to be taken. In particular, each term in (1) would contain either V_{z} or V_{y}. [Note that in this example F_{1} is written in terms of V_{z}; i.e., $F_{1}=V_{z} \int_{2}^{3}\left(Q_{y} / I_{y}\right) d s$.] The coordinates y_{S}, z_{S} of the shear center are found by equating the coefficients of V_{y} and V_{z} terms to zero. This yields two equations for the two unknowns y_{S} and z_{S}. This manipulation is equivalent to taking moments about a point in the section with V_{y} and V_{z} applied separately.

Example 15.6 Thin-Walled Composite Section with Stringers and Thermal
Loading Find the shear stress in the panels of the thin-walled section of Fig. 15-10.

Figure 15-10: Example 15.6.

Other than the lack of a web connecting stringers 3 and 4, this section has the same physical and material properties as the section in Example 15.4. The section is subjected to a downward vertical shear force of 1500 lb at the shear center in addition to an applied longitudinal thermal gradient $T_{i}^{\prime}=d T_{i} / d x=-1.2 \times 10^{-3} T_{i}\left({ }^{\circ} \mathrm{F} / \mathrm{in}\right.$.), where T_{i} is the temperature rise in the i th stringer (column 5 of Fig. 15-8).

Since the shear force passes through the shear center, torsional effects will be neglected. Also, warping effects are to be ignored. The shear stress τ or shear flow $q=\tau b$ will be calculated using case 1 of Table 15-2. As in the case of Example 15.4, the first area moments Q_{y}^{*}, Q_{z}^{*} are based on the areas of the stringers alone. The thin webs are ignored for this computation.

Most of the calculations are indicated in Fig. 15-11. Other necessary computations are

$$
\begin{align*}
\bar{P}^{\prime} & =\frac{d}{d x} \int E \alpha T d A=\sum_{i=1}^{12} E_{i} A_{i}^{*} \alpha T_{i}^{\prime}=-436.9 \mathrm{lb} / \mathrm{in} \\
\bar{M}_{z}^{\prime} & =-V_{y}-\frac{d}{d x} \int E \alpha T \bar{y} d A=-\sum_{i=1}^{12} E_{i} A_{i}^{*} \bar{y}_{i} \alpha T_{i}^{\prime}=70.36 \mathrm{lb} \tag{1}\\
\bar{M}_{y}^{\prime} & =V_{z}+\frac{d}{d x} \int E \alpha T \bar{z} d A=1500+\sum_{i=1}^{12} E_{i} A_{i}^{*} \bar{z}_{i} \alpha T_{i}^{\prime} \\
& =1500-150.34=1349.66 \mathrm{lb}
\end{align*}
$$

For tabulated calculations of the sort required here, it is convenient in case 2 of Table 15-2 to gather together those terms that remain constant for all points on the cross section. Thus, we write

$$
\begin{equation*}
q=-\frac{A_{0}^{*}}{A^{*}} \bar{P}^{\prime}+C_{2}^{\prime} Q_{z}^{*}-C_{3}^{\prime} Q_{y}^{*}+\int_{A_{0}} E(\alpha T)^{\prime} d A \tag{2}
\end{equation*}
$$

where

$$
C_{2}^{\prime}=\frac{\bar{M}_{z}^{\prime} I_{y}^{*}+\bar{M}_{y}^{\prime} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}} \quad \text { and } \quad C_{3}^{\prime}=\frac{\bar{M}_{y}^{\prime} I_{z}^{*}+\bar{M}_{z}^{\prime} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}}
$$

do not vary over a cross section. For our case,

$$
\begin{align*}
& C_{2}^{\prime}=\frac{\bar{M}_{z}^{\prime} I_{y}^{*}+\bar{M}_{y}^{\prime} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}}=\frac{70.36(130.12)+1349.66(110.51)}{130.12(1270.01)-(110.51)^{2}}=1.034 \mathrm{lb} / \mathrm{in}^{4} \tag{3}\\
& C_{3}^{\prime}=\frac{\bar{M}_{y}^{\prime} I_{z}^{*}+\bar{M}_{z}^{\prime} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}}=\frac{1349.66(1270.01+70.36(110.51)}{130.12(1270.01)-(110.51)^{2}}=11.251 \mathrm{lb} / \mathrm{in}^{4}
\end{align*}
$$

1	2	3	4	5	6	7	8	9	10
E䔍	\bar{y}_{i} in.	$\begin{aligned} & \bar{z}_{i} \\ & \text { in. } \end{aligned}$	$\begin{aligned} & A_{i}^{*} \\ & \text { in }^{2} \end{aligned}$	$\begin{gathered} \bar{y}_{i} A_{i}^{*} \\ \text { in }^{3} \\ 2 \times 4^{a} \end{gathered}$	$\begin{gathered} Q_{Z}^{*} \\ \text { in }^{3} \\ \sum 5 \end{gathered}$	$\begin{gathered} \bar{z}_{i} A_{i}^{*} \\ \text { in }^{3} \\ 3 \times 4 \end{gathered}$	$\begin{gathered} Q_{y}^{*} \\ \text { in }^{3} \\ \sum 7 \end{gathered}$	$\begin{gathered} A_{0}^{*} \\ \mathrm{in}^{2} \\ \sum 4 \end{gathered}$	$\begin{gathered} E_{i} A_{i}^{*} \\ 10^{6} \mathrm{lb} \end{gathered}$
	Fig. 15-8								
4	4.32	-3.24	0.80	3.46	3.46	-2.59	-2.59	0.80	8.0
5	10.32	-3.24	1.90	19.61	23.07	-6.16	-8.75	2.70	18.05
6	10.32	0.76	1.24	12.80	35.87	0.94	-7.81	3.94	12.77
7	10.32	4.76	1.90	19.61	55.48	9.04	1.23	5.84	18.05
8	4.32	3.76	1.01	4.36	59.84	3.80	5.03	6.85	10.2
9	-1.68	2.76	1.01	-1.70	58.14	2.79	7.82	7.86	10.2
10	-7.68	1.76	1.01	-7.76	50.38	1.78	9.60	8.87	10.2
11	-13.68	0.76	1.14	-15.60	34.78	0.87	10.47	10.01	10.83
12	-13.68	-1.24	0.612	-8.48	26.30	-0.77	9.70	10.63	6.24
1	-13.68	-3.24	1.38	-18.88	7.42	-4.47	5.23	12.01	12.67
2	-7.68	-3.24	0.80	-6.14	1.28	-2.59	2.64	12.81	8.0
3	-1.68	-3.24	0.80	-1.34	0.06	-2.59	0.05	13.61	8.0
\sum			13.60						

	11	12	13	14	15	16	17	18	19
	$\begin{gathered} \alpha T_{i}^{\prime} \\ 10^{-6} \\ \mathrm{in}^{-1} \end{gathered}$	$E_{i} A_{i}^{*} \alpha T_{i}^{\prime}$ lb/in	$E_{i} A_{i}^{*} \bar{y} \alpha T_{i}^{\prime}$ lb 2×12	$E_{i} A_{i}^{*} \bar{z} \alpha T_{i}^{\prime}$ lb 3×12	$\begin{aligned} & \frac{A_{0}^{*}}{A^{*}} \bar{P}^{\prime} \\ & \text { lb/in } \end{aligned}$	$\begin{gathered} C_{2}^{\prime} Q_{z}^{*} \\ \mathrm{lb} / \mathrm{in} \end{gathered}$	$\begin{gathered} C_{3}^{\prime} Q_{y}^{*} \\ \mathrm{lb} / \mathrm{in} \end{gathered}$	$\begin{gathered} \sum\left(E A^{*} \alpha T^{\prime}\right)_{i} \\ \sum 12 \end{gathered}$	$\begin{gathered} q \\ \text { lb/in } \\ -15+16 \\ -17+18 \end{gathered}$
4	-3.31	-26.48	-114.39	85.80	-25.7	3.58	-29.14	-26.48	31.94
5	-2.95	-53.25	-549.54	172.53	-86.74	23.85	-98.45	-79.73	129.2
6	-2.59	-33.07	-341.28	-25.13	-126.57	37.09	-87.87	-112.8	138.7
7	-2.95	-53.25	-549.54	-253.47	-187.61	57.37	13.84	-166.05	65.1
8	-4.75	-48.45	-209.30	-182.17	-220.06	61.87	56.59	-214.5	10.8
9	-4.75	-48.45	81.4	-133.72	-252.5	60.12	87.98	-262.95	-38.3
10	-4.75	-48.45	372.1	-85.27	-284.95	52.09	108.01	-311.4	-82.4
11	-2.59	-28.05	383.7	-21.32	-321.57	35.96	117.80	-339.45	-99.7
12	-1.87	-11.67	159.65	14.47	-341.49	27.19	109.13	-351.12	-91.3
1	-2.59	-32.82	448.98	106.34	-385.82	7.67	58.94	-383.94	-49.3
2	-3.31	-26.48	203.37	85.80	-411.5	1.32	29.70	-410.42	-27.3
3	-3.31	-26.48	44.49	85.80	-437.22	0.06	0.56	-436.9	-0.18
\sum		-436.90	-70.36	-150.34					

${ }^{a}$ The notation 2×4 indicates that the entry in column 2 is multiplied by the entry in column 4 to obtain the entry in column 5 .
Figure 15-11: Data for Example 15.6.

The final calculations for q are listed in column 19 of Fig 15-11. In passing over the third stringer, the shear flow should drop to zero. The value $0.18 \mathrm{lb} / \mathrm{in}$. shown is a result of round-off error accumulation.

15.6 COMBINED NORMAL AND SHEAR STRESSES

A complete cross-sectional stress analysis usually involves both normal and shear stresses. The following example illustrates such an analysis.

Example 15.7 Normal and Shear Stress Calculation Including Warping Stresses Determine the normal and shear stresses on the cross section of the cantilevered channel beam shown in Fig. 15-12a.

The eccentric force P is resolved into a force P applied through the shear center and a torque $T_{L}=P(\bar{y}+e)$ (Fig. 15-12b). The stresses due to P and T_{L} can be determined independently and then, for a point, superimposed to obtain the combined stress at the point.

The geometric properties required for normal stresses can be obtained from Table 2-1. Although many of the properties for warping-related stresses are listed in Table 2-7, we choose to detail most of the calculations here. Also, the properties needed for transverse shear are computed.

Cross-Sectional Properties

Select the origin of the s coordinate to be at the free edge of the lower flange (Fig. 15-12c). Then the sectorial coordinate with respect to the shear center is found to be [Eq. (2.30)]

$$
\begin{aligned}
& \omega_{S}=\int_{0}^{s} \frac{h}{2} d \xi=\frac{h}{2} s \quad \text { for } 0 \leq s \leq b \\
& \omega_{S}=\frac{h}{2} b+(-) \int_{0}^{s} e d \xi=\frac{b h}{2}-e(s-b) \quad \text { for } b \leq s \leq b+h \\
& \omega_{S}=\frac{b h}{2}-e(b+h-b)+\int_{b+h}^{s} \frac{h}{2} d \xi=\frac{h}{2}(s-2 e-h) \quad \text { for } b+h \leq s \leq 2 b+h
\end{aligned}
$$

From Eq. (2.31c),

$$
\begin{aligned}
\omega_{0}= & \frac{1}{A} \int_{0}^{2 b+h} \omega_{S} d A=\frac{1}{2 b t_{f}+h t_{w}}\left\{\int_{0}^{b} \frac{h}{2} s t_{f} d s+\int_{b}^{b+h}\left[\frac{b h}{2}-e(s-b)\right] t_{w} d s\right. \\
& \left.+\int_{b+h}^{2 b+h} \frac{h}{2}(s-2 e-h) t_{f} d s\right\}=\frac{h}{2}(b-e)
\end{aligned}
$$

(a)

(b)

(c)

Figure 15-12: Example 15.7.

It follows from Eq. (2.31a) that for $0 \leq s \leq b$,

$$
\begin{align*}
\omega & =\omega_{S}-\omega_{0}=\frac{1}{2} h s-\frac{1}{2} h(b-e)=\frac{1}{2} h(s-b+e) \\
Q_{\omega} & =\int_{0}^{s}\left(\omega_{S}-\omega_{0}\right) t_{f} d \xi=\frac{1}{2} h t_{f} s\left(\frac{1}{2} s-b+e\right) \tag{1}
\end{align*}
$$

for $b \leq s \leq b+h$,

$$
\begin{align*}
\omega & =\omega_{S}-\omega_{0}=e\left(\frac{1}{2} h-s+b\right) \\
Q_{\omega} & =\left(Q_{\omega}\right)_{s=b}+\int_{b}^{s}\left(\omega_{S}-\omega_{0}\right) t_{w} d \xi \tag{2}\\
& =\frac{1}{2} b h t_{f}\left(e-\frac{1}{2} b\right)-e t_{w}\left[\frac{1}{2}\left(s^{2}-b^{2}\right)-\left(b+\frac{1}{2} h\right)(s-b)\right]
\end{align*}
$$

and for $b+h \leq s \leq 2 b+h$,

$$
\begin{align*}
\omega & =\omega_{S}-\omega_{0}=\frac{h}{2}(s-e-h-b) \\
Q_{\omega} & =\left(Q_{\omega}\right)_{s=b+h}+\int_{b+h}^{s} \frac{h}{2}(\xi-e-h-b) t_{f} d \xi \tag{3}\\
& =\frac{b h t_{f}}{2}\left(e-\frac{b}{2}\right)-\frac{h t_{f}}{2}\left\{(b+e+h)(s-b-h)-\frac{1}{2}\left[s^{2}-(b+h)^{2}\right]\right\}
\end{align*}
$$

At point $1, s=\frac{1}{2} b$,

$$
\begin{equation*}
Q_{\omega 1}=\frac{1}{2} h t_{f}\left[\frac{1}{2} b\left(\frac{1}{4} b-b+e\right)\right]=\frac{1}{4} b h t_{f}\left(e-\frac{3}{4} b\right) \tag{4}
\end{equation*}
$$

At point $2, s=b$,

$$
\begin{equation*}
Q_{\omega 2}=\frac{1}{2} h t_{f} b\left(\frac{1}{2} b-b+e\right)=\frac{1}{4} b h t_{f}(2 e-b) \tag{5}
\end{equation*}
$$

At point $3, s=b+\frac{1}{2} h$,

$$
\begin{equation*}
Q_{\omega 3}=\frac{1}{4} b h t_{f}(2 e-b)-e t_{w}\left(-\frac{1}{8} h^{2}\right)=\frac{1}{4} b h t_{f}(2 e-b)+\frac{1}{8} e h^{2} t_{w} \tag{6}
\end{equation*}
$$

The warping constant is, from Eq. (2.33),

$$
\begin{aligned}
\Gamma= & \int_{0}^{2 b+h} \omega^{2} t d s=\int_{0}^{2 b+h}\left(\omega_{S}-\omega_{0}\right)^{2} t d s \\
= & \int_{0}^{b} \frac{h^{2}}{4}(s-b+e)^{2} t_{f} d s+\int_{b}^{b+h} e^{2}\left(\frac{h}{2}-s+b\right)^{2} t_{w} d s \\
& +\int_{b+h}^{2 b+h} \frac{h^{2}}{4}(s-e-h-b)^{2} t_{f} d s
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{h^{2} t_{f}}{6}\left(b^{3}-3 b^{2} e+3 b e^{2}\right)+\frac{e^{2} h^{3} t_{w}}{12} \\
& =\frac{h^{2}}{12}\left[2 t_{f}\left(b^{3}-3 b^{2} e\right)+e^{2}\left(6 t_{f} b+t_{w} h\right)\right]
\end{aligned}
$$

The shear center location e can be taken from case 8 of Table 2-6 as

$$
\begin{equation*}
e=\frac{3 b^{2} t_{f}}{6 t_{f} b+t_{w} h} \tag{7}
\end{equation*}
$$

Thus, we get

$$
\begin{equation*}
\Gamma=\frac{h^{2} b^{3} t_{f}}{12} \frac{3 t_{f} b+2 t_{w} h}{6 t_{f} b+t_{w} h} \tag{8}
\end{equation*}
$$

The first moments at points 1,2 , and 3 needed for shear stresses due to transverse forces are, from [Eq. (2.19a)],

$$
\begin{equation*}
\left(Q_{y}\right)_{1}=\frac{1}{4} b h t_{f}, \quad\left(Q_{y}\right)_{2}=\frac{1}{2} b h t_{f}, \quad\left(Q_{y}\right)_{3}=\frac{1}{2} b h t_{f}+\frac{1}{8} h^{2} t_{w} \tag{9}
\end{equation*}
$$

Internal Moments

The formulas of Chapter 14 are used to determine the internal bimoment and torque. We use the equations of Table 14-1, part A, with the loading functions for the concentrated torque at $x=L$ taken from Table 14-1, part B. The initial parameters are given in Table 14-1, part C. The initial parameters can also be computed by applying the end conditions of $\phi=\psi=0$ at $x=0$ and $B=T=0$ at $x=L$ to the equations of Table 14-1, part A:

$$
\begin{align*}
\phi & =\frac{T_{L}}{G J C}[(\cosh C x-1) \tanh C L-\sinh C x+C x] \\
B & =-\frac{T_{L}}{C}(\tanh C L \cosh C x-\sinh C x) \tag{10}\\
T_{\omega} & =-T_{L}(\tanh C L \sinh C x-\cosh C x)
\end{align*}
$$

where $C^{2}=G J / E \Gamma$.
At $x=0$:
(a) It can be demonstrated that T_{t} (pure torsional torque) $=0$ at $x=0$. Substitute the end condition $\psi=-d \phi / d x=0$ into $T_{t}=G J d \phi / d x$ (Section 14.4). Since $T_{t}=0$, it follows that $\tau_{t}=0$.
(b) The warping shear stress is given by $\tau_{\omega}=Q_{\omega} T_{\omega} / t \Gamma$, where t is the thickness of the wall. At points 1, 2, and 3 on the cross section

$$
\begin{equation*}
\tau_{\omega 1}=\frac{Q_{\omega 1} T_{L}}{t_{f} \Gamma}, \quad \tau_{\omega 2}=\frac{Q_{\omega 2} T_{L}}{t_{f} \Gamma}, \quad \tau_{\omega 3}=\frac{Q_{\omega 3} T_{L}}{t_{\omega} \Gamma} \tag{11}
\end{equation*}
$$

where $Q_{\omega 1}, Q_{\omega 2}$, and $Q_{\omega 3}$ are given by (4), (5), and (6).
(c) At $x=0, V_{z}=P$ and using case 4, Table 15-2 (with thickness $b=t$), the bending shear stress becomes

$$
\begin{equation*}
\tau=\tau_{b}=-\frac{V_{z} Q_{y}}{t I_{y}}=-\frac{P Q_{y}}{t I_{y}} \tag{12}
\end{equation*}
$$

The shear stress is positive in the direction of the positive s coordinate. At points 1 , 2, 3,

$$
\begin{equation*}
\tau_{b 1}=-\frac{P b h}{4 I_{y}}, \quad \tau_{b 2}=-\frac{P b h}{2 I_{y}}, \quad \tau_{b 3}=-\frac{P h}{t_{w} I_{y}}\left(\frac{1}{2} b t_{f}+\frac{1}{8} h t_{w}\right) \tag{13}
\end{equation*}
$$

(d) At $x=0, M_{y}=-P L$, and from case 5 of Table 15-1, the bending normal stress is given by

$$
\begin{equation*}
\sigma=\sigma_{b}=\frac{M_{y} z}{I_{y}}=-\frac{P L z}{I_{y}} \tag{14}
\end{equation*}
$$

At points 1, 2, 3 ,

$$
\begin{equation*}
\sigma_{b 1}=-\frac{P h L}{2 I_{y}}, \quad \sigma_{b 2}=-\frac{P h L}{2 I_{y}}, \quad \sigma_{b 3}=0 \tag{15}
\end{equation*}
$$

(e) Warping normal stress

$$
\begin{equation*}
\sigma_{\omega}=\frac{B \omega}{\Gamma}=-\frac{T_{L} \tanh C L}{C \Gamma} \omega \tag{16}
\end{equation*}
$$

where the principal sectorial coordinate ω for the lower flange and the web are given by (1) and (2). Then at points $1,2,3$,

$$
\begin{align*}
\sigma_{\omega 1} & =-\frac{T_{L} \tanh C L}{C \Gamma} \frac{h}{4}(2 e-b), \quad \sigma_{\omega 2}=-\frac{T_{L} \tanh C L}{C \Gamma} \frac{e h}{2} \\
\sigma_{\omega 3} & =-\frac{T_{L} \tanh C L}{C L}(0)=0 \tag{17}
\end{align*}
$$

At $x=L: \quad$ From (10) at $x=L$ we have the bimoment $B=0$, the warping torque $T_{\omega}=T_{L} / \cosh C L$, and the rate of angle of twist

$$
\begin{equation*}
-\psi=\phi^{\prime}=\frac{T_{L}}{G J}\left(1-\frac{1}{\cosh C L}\right) \tag{18}
\end{equation*}
$$

(a) From Eq. (14.7) and Table 15-2, the pure torsional stress at the edges of the wall is calculated as

$$
\begin{align*}
& T_{t}=G J \phi^{\prime}=T_{L}\left(1-\frac{1}{\cosh C L}\right) \\
& \tau_{t}=\frac{T_{t} t}{J}=\frac{t T_{L}}{J}\left(1-\frac{1}{\cosh C L}\right) \tag{19}
\end{align*}
$$

The pure torsional stress varies linearly across the thickness. It is a maximum at both edges and zero at the middle. The stresses on the two edges of the thin wall are equal in magnitude and opposite in direction.
(b) The warping shear stress is calculated as

$$
\begin{equation*}
\tau_{\omega}=\frac{Q_{\omega} T_{\omega}}{t \Gamma}=\frac{Q_{\omega} T_{L}}{t \Gamma \cosh C L} \tag{20}
\end{equation*}
$$

with Q_{ω} for points 1, 2, and 3 taken from (4), (5), and (6) and by using the appropriate wall thickness.
(c) Since the shear force V_{z} is constant along the beam length, the bending shear stress at $x=L$ is the same as at $x=0$.
(d) Since at $x=L, M_{y}=0$, the bending normal stress is $\sigma=0$.
(e) The warping normal stress is calculated as

$$
\begin{equation*}
\sigma=B \omega / \Gamma=0 \tag{21}
\end{equation*}
$$

Combined Results

The normal and shear stresses at points 1,2 , and 3 on the cross section are obtained as follows. At $x=0$:
(a) Normal stresses:

$$
\begin{align*}
& \sigma_{1}=\sigma_{b 1}+\sigma_{\omega 1}=-\frac{P h L}{2 I_{y}}-\frac{h(2 e-b)}{4} \frac{T_{L} \tanh C L}{C \Gamma} \\
& \sigma_{2}=\sigma_{b 2}+\sigma_{\omega 2}=-\frac{P h L}{2 I_{y}}-\frac{e h}{2} \frac{T_{L} \tanh C L}{C \Gamma} \tag{22}\\
& \sigma_{3}=\sigma_{b 3}+\sigma_{\omega 3}=0
\end{align*}
$$

(b) Shear stresses:

$$
\begin{align*}
& \tau_{1}=\tau_{t}+\tau_{b 1}+\tau_{\omega 1}=-\frac{P b h}{4 I_{y}}+\frac{Q_{\omega 1} T_{L}}{t_{f} \Gamma} \\
& \tau_{2}=\tau_{t}+\tau_{b 2}+\tau_{\omega 2}=-\frac{P b h}{2 I_{y}}+\frac{Q_{\omega 2} T_{L}}{t_{f} \Gamma} \tag{23}\\
& \tau_{3}=\tau_{t}+\tau_{b 3}+\tau_{\omega 3}=-\frac{P h}{t_{w} I_{y}}\left(\frac{b t_{f}}{2}+\frac{h t_{w}}{8}\right)+\frac{Q_{\omega 3} T_{L}}{t_{w} \Gamma}
\end{align*}
$$

At $x=L$:
(a) Normal stresses:

$$
\sigma_{1}=\sigma_{2}=\sigma_{3}=0
$$

(b) Shear stresses:

$$
\tau_{1}=\tau_{t}+\tau_{b}+\tau_{\omega}
$$

where τ_{b} and τ_{ω} are uniform through thickness t, τ_{t} varies linearly through thickness t and is in opposite directions on the two sides (i.e., $\tau_{t}= \pm t T_{L} / J$). The extreme shear stresses at points 1,2 , and 3 can be written as

$$
\begin{align*}
& \tau_{1}=\tau_{t}+\tau_{b 1}+\tau_{\omega 1}= \pm \frac{t T_{L}}{J}\left(1-\frac{1}{\cosh C L}\right)-\frac{P h b}{4 I_{y}}+\frac{T_{L} Q_{\omega 1}}{t_{f} \Gamma \cosh C L} \\
& \tau_{2}= \pm \frac{t T_{L}}{J}\left(1-\frac{1}{\cosh C L}\right)-\frac{P b h}{2 I_{y}}+\frac{T_{L} Q_{\omega 2}}{t_{f} \Gamma \cosh C L} \tag{24}\\
& \tau_{3}= \pm \frac{t T_{L}}{J}\left(1-\frac{1}{\cosh C L}\right)-\frac{P h}{t_{w} I_{y}}\left(\frac{b t_{f}}{2}+\frac{h t_{w}}{8}\right) \frac{T_{L} Q_{\omega 3}}{t_{w} \Gamma \cosh C L}
\end{align*}
$$

15.7 FINITE ELEMENT ANALYSIS

Characteristics such as normal stresses are readily found using the formulas presented in Table 15-1. The cross-sectional properties and stresses related to torsional moments and shear forces are often so difficult to calculate that they have to be computed with a numerical method, especially for sections of arbitrary shape. The most common technique for determining such properties and stresses is the finite element method. Commercial software packages using finite elements are now available to calculate all important cross-sectional properties and stresses [15.1].

For Saint-Venant torsion, the principle of virtual work leads to the integral expression

$$
\begin{equation*}
\int_{A}\left[\left(\frac{\partial}{\partial y} \delta \omega \frac{\partial \omega}{\partial y}+\frac{\partial}{\partial z} \delta \omega \frac{\partial \omega}{\partial z}\right)-\left(\frac{\partial}{\partial y} \delta \omega z+\frac{\partial}{\partial z} \delta \omega y\right)\right] d A=0 \tag{15.2}
\end{equation*}
$$

where $\omega(y, z)$ is a warping function distributed over the cross section with y, z coordinates. The finite element formulation begins with the approximation of the warping function over each element (i).

$$
\begin{equation*}
\omega(y, z)=\sum N_{i} \omega_{i}=\mathbf{N} \boldsymbol{\omega}^{e}=\boldsymbol{\omega}^{e T} \mathbf{N}^{T} \tag{15.3}
\end{equation*}
$$

where N_{i} are the shape functions, \mathbf{N} is a vector of the shape functions, ω_{i} are the nodal values of ω, and $\boldsymbol{\omega}^{e}=\left[\begin{array}{lllll}\omega_{1} & \omega_{2} & \omega_{3} & \cdots & \omega_{n_{b}}\end{array}\right]^{T}$ is a vector of nodal values of the warping function ω.

Equation (15.2) with the warping function of Eq. (15.3) leads to the element stiffness relationship

$$
\begin{equation*}
\mathbf{k}^{i} \boldsymbol{\omega}^{i}=\mathbf{p}^{i} \tag{15.4}
\end{equation*}
$$

where the stiffness matrix and loading vectors are given by

$$
\begin{equation*}
\mathbf{k}^{i}=\int_{A_{i}}\left(\frac{\partial \mathbf{N}^{T}}{\partial y} \frac{\partial \mathbf{N}}{\partial y}+\frac{\partial \mathbf{N}^{T}}{\partial z} \frac{\partial \mathbf{N}}{\partial z}\right) d A, \quad \mathbf{p}^{i}=\int_{A_{i}}\left(z \frac{\partial \mathbf{N}^{T}}{\partial y}-y \frac{\partial \mathbf{N}^{T}}{\partial z}\right) d A \tag{15.5}
\end{equation*}
$$

Assemble the element stiffness matrices and loading vectors to form a system of simultaneous linear equations that can be solved for the warping functions at the nodal points. The torsional constant and stresses can then be computed using

$$
\begin{align*}
J & =\int\left[z^{2}+y^{2}-\left(z \frac{\partial \omega}{\partial y}-y \frac{\partial \omega}{\partial z}\right)\right] d A \\
\tau_{x y} & =G \frac{d \phi}{d x}\left(\frac{\partial \omega}{\partial y}-z\right)=\frac{T}{J}\left(\frac{\partial \omega}{\partial y}-z\right) \tag{15.6}\\
\tau_{x z} & =G \frac{d \phi}{d x}\left(\frac{\partial \omega}{\partial z}+y\right)=\frac{T}{J}\left(\frac{\partial \omega}{\partial z}+y\right)
\end{align*}
$$

where T is the twisting moment and $d \phi / d x$ is the rate of angle of twist. See Ref. [15.1] for details. The warping constant Γ can also be computed using the warping function.

The shear stresses due to transverse shear loads can be treated with a finite element formulation. This shear problem can be based on the elasticity solution of a cantilever beam with the $x=0$ end fixed and the $x=L$ end free and loaded by transverse end (shear) force [15.2-15.6]. An appeal to Saint-Venant's principle permits these solutions to be applied to more general cases of loadings. More specifically, it is assumed that the shear stresses on a particular cross section of a beam depend only on the forces at that cross section provided that the cross section of interest is far enough away from any points of rapid variation in the shear force. The finite element solution is similiar to that for Saint-Venant torsion.

REFERENCES

15.1. Pilkey, W. D., Analysis and Design of Elastic Beams: Computational Methods, Wiley, New York, 2002.
15.2. Herrmann, L. R., "Elastic Torsional Analysis of Irregular Shapes," J. Eng. Mech. Div., ASCE, Vol. 91, 1965, pp. 11-19.
15.3. Mason, W. E., and Herrmann, L. R., "Elastic Shear Analysis of General Prismatic Beams," J. Eng. Mech. Div., ASCE, Vol. 94, 1968, pp. 965-983.
15.4. Chang, P. Y., Thasanatorn, C., and Pilkey, W. D., "Restrained Warping Stresses in Thin-Walled Open Sections," J. Struct. Div., ASCE, Vol. 101, 1975, pp. 2467-2472.
15.5. Pilkey, W. D., and Wunderlich, W., Structural Mechanics: Variational and Computational Methods, CRC Press, Boca Raton, FL, 1993.
15.6. Schramm, U., Kitis, L., Kang, W., and Pilkey, W. D., "On the Shear Deformation Coefficient in Beam Theory," Finite Elem. Anal. Des., Vol. 16, 1994.

Tables

15-1 Normal Stresses on Beam Cross Section
15-2 Shear Stresses on Beam Cross Section

TABLE 15-1 NORMAL STRESSES ON BEAM CROSS SECTION

Notation
$\sigma=$ normal stress
$E=$ modulus of elasticity
$A=$ area of cross section
$I=I_{y}, I_{z}=$ moments of inertia about y and z axes
$I_{y z}=$ product of inertia
$\Gamma=$ warping constant
$\alpha=$ thermal coefficient of expansion
$T=$ temperature change on cross section
$\omega=$ warping function
$B=$ bimoment $=\int_{A} \sigma \omega d A$
$P=$ axial force, positive in tension
$\bar{P}=P+P_{T}, \quad \bar{M}_{y}=M_{y}+M_{T y}, \quad \bar{M}_{z}=M_{z}+M_{T z}$
with
$P_{T}=\int E \alpha T d A, \quad M_{T y}=\int E \alpha T z d A, \quad M_{T z}=\int E \alpha T y d A$
$E_{r}=$ reference modulus of elasticity for composite section
$E_{r}=E$ for homogeneous material
$y, z=$ coordinates measured from centroid
$B \omega / \Gamma=$ applies only to thin-walled beams
Superscript asterisk indicates a property of a composite bar.
Ignore the $*$ for homogeneous material.

Case	Normal Stresses
1. General	$\sigma=\frac{E}{E_{r}}\left(\frac{\bar{P}}{A^{*}}+\frac{\bar{M}_{y} I_{z}^{*}+\bar{M}_{z} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}} z-\frac{\bar{M}_{z} I_{y}^{*}+\bar{M}_{y} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}} y-E_{r} \alpha T+\frac{B \omega}{\Gamma}\right)$
2. Homogeneous section without warping and thermal loading	$\sigma=\frac{P}{A}+\frac{M_{y} I_{z}+M_{z} I_{y z}}{I_{y} I_{z}-I_{y z}^{2}} z-\frac{M_{z} I_{y}+M_{y} I_{y z}}{I_{y} I_{z}-I_{y z}^{2}} y$
3. Unsymmetrical section with $M_{z}=0$ 4. Bending about principal axes$\sigma=\frac{P}{A}+\frac{M_{y}\left(I_{z} z-I_{y z} y\right)}{I_{y} I_{z}-I_{y z}^{2}}$	
5. Bending about single (y) principal axes	$\sigma=\frac{P}{A}+\frac{M_{y} z}{I_{y}}-\frac{M_{z} y}{I_{z}}$

TABLE 15-2 SHEAR STRESSES ON BEAM CROSS SECTION

Notation
$\tau=$ shear stress
$\tau_{t}=$ shear stress due to pure torsion
$A=$ area of cross section
$I_{y}=I, I_{z}=$ moments of inertia about y and z axes
$I_{y z}=$ product of inertia
$Q=Q_{y}, Q_{z}=$ first moments of inertia about y and z axes
$\Gamma=$ warping constant
$Q_{\omega}=$ first sectorial moment
$\alpha=$ thermal coefficient of expansion
$T=$ temperature change on cross section
$B=$ bimoment
$T_{t}=$ pure torsion torque
$T_{\omega}=$ warping torque
$V_{y}, V_{z}=V$, shear forces along y and z axes
$b=$ width of cross section at point where shear stress is calculated
$t=$ thickness of thin-walled cross section
$r=$ radial distance from the centroidal longitudinal axis

$$
\begin{aligned}
\bar{P}^{\prime} & =\frac{\partial}{\partial x}\left(P+P_{T}\right), \quad(\alpha T)^{\prime}=\frac{\partial}{\partial x}(\alpha T) \\
\bar{M}_{y}^{\prime} & =\frac{\partial}{\partial x}\left(M_{y}+M_{T y}\right), \quad \bar{M}_{z}^{\prime}=-\frac{\partial}{\partial x}\left(M_{z}+M_{T z}\right) \\
B^{\prime} & =\frac{\partial B}{\partial x}
\end{aligned}
$$

For beams with no axial force, rotary foundation, rotary inertia, and applied distributed moment:

$$
\begin{aligned}
\bar{M}_{y}^{\prime} & =V_{z}+\frac{\partial}{\partial x} M_{T y}, \quad \bar{M}_{z}^{\prime}=-V_{y}-\frac{\partial}{\partial x} M_{T z} \\
B^{\prime} & =T_{\omega} \\
A_{0} & =\text { area defined in Fig. 2-9 }
\end{aligned}
$$

For composite bars, $A_{0}^{*}=\int_{A_{0}} d A^{*}=\int_{A_{0}}\left(E / E_{r}\right) d A$.
Superscript asterisk indicates a property of a composite bar (see Section 2.12). See Chapter 2 for detailed definitions. Also, see definitions of Table 15-1.

TABLE 15-2 (continued) SHEAR STRESSES ON BEAM CROSS SECTION

Case	Shear Stresses
1.	$\tau=\tau_{t}+\frac{1}{b}\left[\frac{A_{0}^{*}}{A^{*}} \bar{P}^{\prime}+\frac{Q_{y}^{*} I_{z}^{*}-Q_{z}^{*} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}}\right.$
Solid beam cross section $\tau_{t}=\frac{T_{t} r}{J}$	$\left.-\frac{Q_{z}^{*} I_{y}^{*}-Q_{y}^{*} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}} \bar{M}_{z}^{\prime}+\int_{A_{0}} E(\alpha T)^{\prime} d A\right]$
2. Thin-walled open cross section $T_{t} t$ J	$\tau=\tau_{t}-\frac{1}{t}\left[\frac{A_{0}^{*}}{A^{*}} \bar{P}^{\prime}+\frac{Q_{y}^{*} I_{z}^{*}-Q_{z}^{*} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}} \bar{M}_{y}^{\prime}-\frac{Q_{z}^{*} I_{y}^{*}-Q_{y}^{*} I_{y z}^{*}}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}} \bar{M}_{z}^{\prime}\right.$
3. Homogeneous section with no torsion, no axial force, and no thermal loading	$\tau=\frac{1}{b}\left(\frac{Q_{y} I_{z}-Q_{z} I_{y z}}{I_{y} I_{z}-I_{y z}^{2}} V_{z}+\frac{Q_{z} I_{y}-Q_{y} I_{y z}}{I_{y} I_{z}-I_{y z}^{2}} V_{y}\right)$
4.	$\left.\tau=\frac{V Q}{\Gamma_{\omega}^{*}} B^{\prime}\right]$

Symmetric section, bending about single
(y) axis

C H A P T E R

Curved Bars

16.1 Notation 802
All Curved Bars 802
In-Plane Stress and Deformation 802
Out-of-Plane Stress and Deformation 803
16.2 In-Plane Stress and Deformation 804
Sign Convention 804
Stresses 805
Normal Stress 805
Circumferential Stresses for Thin-Flange Cross Sections 811
Shear Stress 814
Radial Stress 815
Simple Curved Bars 817
Tabulated Formulas 817
Formulas for Bars with Arbitrary Loading 817
Buckling Loads 817
Natural Frequencies 818
16.3 Out-of-Plane Stress and Deformation 818
Sign Convention 818
Stresses 818
Simple Curved Bars 818
Tabulated Formulas 819
Formulas for Bars with Arbitrary Loading 819
Buckling Loads 819
Natural Frequencies 819
16.4 General Bars 819
Rings 820
References 822
Tables 823

Formulas for static, stability, and dynamic responses of curved bars lying in a plane are treated in this chapter. The stresses and the equations of motion of in-plane and out-of-plane deformations are provided. The formulas of this chapter correspond to coupled extension and bending in the case of in-plane motion and coupled torsion and bending for out-of-plane motion.

The theory of deformations for circular curved bars is based on the classical theory of arches, which relies on the assumption that plane cross sections remain plane, stress is proportional to strain, rotations and translations are small, and the thickness of the bar must be small in comparison to the radius of curvature of the bar.

16.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F for force, M for mass, and T for time.

All Curved Bars

A Cross-sectional area $\left(L^{2}\right)$
A_{s} Equivalent shear area, $=A / \alpha_{s}\left(L^{2}\right)$
E Modulus of elasticity of material $\left(F / L^{2}\right)$
g Gravitational acceleration $\left(L / T^{2}\right)$
G Shear modulus of elasticity $\left(F / L^{2}\right)$
k Winkler (elastic) foundation modulus $\left(F / L^{2}\right)$
k^{*} Rotary foundation modulus ($F L / L$)
ℓ Length of segment along bar, span of structural matrix
L Length of bar (L)
m_{i} Concentrated mass (M)
R Radius of curvature of centroidal axis along bar (L)
t Time
T Change of temperature (degrees) (i.e., temperature rise with respect to reference temperature)
α Coefficient of thermal expansion [(L/L)/degree]
α_{s} Shear correction coefficient
ρ Mass per unit length $\left(M / L, F T^{2} / L^{2}\right)$
ω Natural frequency (rad / T)

In-Plane Stress and Deformation

Bars with a cross section symmetric about the plane of curvature are considered. The loadings and deformation lie in the same plane as the bar. The bar, which can be formed of straight or circular segments, undergoes extension and bending. In the case of straight segments, the formulas are essentially a combination of the bending formulas of Chapter 11 and the extension formulas of Chapter 12, so that such effects as shear deformation and rotary inertia can be taken into account.
c Applied bending moment intensity; positive if vector, according to righthand rule, is in positive y direction $(F L / L) ; c_{1}$ designates uniform moment
e Shift in location of neutral axis (L)
h Height (thickness) of cross section (L)
I^{*} Moment of inertia modified for curvature of bar, $=\int_{A}\left[z^{2} /(1-z / R)\right] d A$ (L^{4})
I Moment of inertia about centroidal y axis $\left(L^{4}\right)$
$I_{T i}$ Rotary inertia, transverse or diametrical mass moment of inertia of concentrated mass at station i; can be calculated as $I_{T i}=\Delta a \rho r_{y}^{2}$, where Δa is length of beam lumped at station $i\left(M L^{2}\right)$
k_{i}, k_{o} Correction factors for use of straight-beam formulas to calculate stresses in curved bars
k_{x} Extension elastic foundation modulus (F / L^{2})
ℓ_{b} Length of branch
M Bending moment at any section ($F L$)
M_{T} Thermal moment, $=\int_{A} E \alpha T z d A(F L)$
p Transverse loading intensity (F / L); p_{1} designates uniform load
p_{x} Distributed axial force, loading intensity $(F / L) ; p_{x 1}$ designates uniform force
P Axial force (F)
r Point on cross section measured from center of curvature (L)
r_{y} Radius of gyration of cross-sectional area about y axis (L)
u Axial displacement (L)
V Shear force at any section (F)
w Transverse displacement (L)
W Concentrated applied transverse force (F)
θ Slope of deflection curve (rad)
σ_{x} Circumferential stress on cross section of curved bars or normal stress, or fiber stress $\left(F / L^{2}\right)$
σ_{z} Radial stress $\left(F / L^{2}\right)$
τ Shear stress $\left(F / L^{2}\right)$

Out-of-Plane Stress and Deformation

In this part of the chapter, bars lying in a plane with torsional loading and deformation, along with out-of-plane transverse loading and bending deformation, are treated. The formulas are essentially a combination of the bending formulas of Chapter 11 and the torsion formulas of Chapter 12, with some adjustments for the curvature of the bar. This means that the limitations on the applicability of the torsional theory of that chapter apply here as well. For example, for both straight and circular segments the torsional effects of restraints against warping are not taken into account.
c_{z} Applied bending moment intensity, positive if vector according to righthand rule is in positive z direction $(F L / L)$: $c_{z 1}$ designates uniform moment
I_{p} Polar moment of inertia about x axis $\left(L^{4}\right)$
$I_{p i}$ Polar mass moment of inertia of concentrated mass at station i; can be calculated as $I_{p i}=\Delta a \rho r_{p}^{2}$, where Δa is length of beam lumped at station $i\left(M L^{2}\right)$
I_{z} Moment of inertia taken about neutral (z) axis $\left(L^{4}\right)$
J Torsional constant; for a circular cross section J is polar moment of inertia I_{x} of cross-sectional area with respect to axis of bar $\left(L^{4}\right)$
k_{t} Torsional elastic foundation modulus ($F L / L$)
m_{x} Distributed torque, twisting moment intensity $(F L / L) ; m_{x 1}$ is uniform torque
$M_{T z}$ Thermal moment, $=-\int_{A} E \alpha T y d A(F L)$
M_{z} Bending moment at any section ($F L$)
p_{y} Transverse loading intensity (F / L); $p_{y 1}$ designates uniform load
r_{p} Polar radius of gyration (L)
r_{z} Radius of gyration of cross-sectional area about z axis (L)
T Twisting moment, torque ($F L$); also, change of temperature
v Transverse displacement (L)
V_{y} Shear force at any section (F)
W_{y} Concentrated applied transverse force (F)
θ_{z} Slope of deflection curve (rad)
ϕ Angle of twist, rotation (rad)

16.2 IN-PLANE STRESS AND DEFORMATION

Sign Convention

Positive displacements u, w, and slope θ are shown in Fig. 16-1. Positive internal bending moment M and forces V, P on the right face of an element are also illustrated in Fig. 16-1. For applied loadings, the formulas provide solutions for the

Figure 16-1: Positive displacements, internal forces and moments, and applied loadings for in-plane motion.
loading illustrated. Loadings applied in the opposite direction require the sign of the loading to be reversed in the formulas.

Stresses

The tables of this chapter provide the internal axial force, bending moment, and shear force at any point along a bar. The normal and shear stresses on a face of the cross section can be calculated using the stress formulas given in this section.

Normal Stress During bending, the cross sections of a straight beam are assumed to remain plane, and the strains of compression and extension fibers equidistant from the centroid of the cross section are equal in magnitude so that the normal stress is distributed linearly on the cross section. For a curved beam, the cross sections are also assumed to remain plane when the beam is bent, but the strains at two points on opposite sides of and equidistant from the centroid are no longer equal in magnitude. Although the magnitude of the extension and compression of the fibers at these points are the same, the "original lengths" of the fibers are different. The normal stress distribution is no longer linear. Figure 16-2 shows the stress distribution on a cross section. Also, the neutral axis of the cross section does not coincide with the centroid but is shifted. For pure bending, the distance of neutral axis shift is [16.1]

$$
\begin{equation*}
e=R-A / A_{m}=R-r_{n}, \quad 0.6<R / h<8 \tag{16.1a}
\end{equation*}
$$

with

$$
\begin{equation*}
R=\frac{1}{A} \int_{A} r d A, \quad A_{m}=\int_{A} \frac{d A}{r} \tag{16.1b}
\end{equation*}
$$

where A is the cross-sectional area, R is the distance from the center of curvature to the centroid of the cross section, h is the height of the cross section along the direction of R, r_{n} is the distance from the center of curvature to the neutral axis, and r locates a point on the section measured from the center of curvature (Fig. 16-2). Analytical expressions for these quantities for common cross sections are given in

Figure 16-2: Normal stress distribution of a curved beam.

Table $16-1$. Note that e is a cross-sectional property and not related to the applied forces. Equations (16.1) are applicable for the range $0.6<R / h<8$. When $R / h<$ 0.6 , the stress values can have a large error. In cases where $R / h>8$ (i.e., for slender curved beams), round-off errors or small inconsistencies in treating a cross section of complicated shape may have a large effect on the calculated value of e. To avoid this, e can be computed using [16.1]:

$$
\begin{equation*}
e \simeq I / R A, \quad R / h>8 \tag{16.1c}
\end{equation*}
$$

where I is the moment of inertia about the centroidal axis.
If the tensile axial force P is applied,

$$
\begin{equation*}
e=R-\frac{A M}{A_{m} M+P\left(A-R A_{m}\right)}=R-r_{n} \tag{16.1d}
\end{equation*}
$$

where M is the bending moment about the y axis (Fig. 16-2).
The normal (circumferential) stress on the cross section is

$$
\begin{equation*}
\sigma_{x}=\frac{M z}{A e r}=\frac{M\left(r_{n}-r\right)}{A e r}=\frac{M\left(A-r A_{m}\right)}{A r\left(R A_{m}-A\right)} \tag{16.2a}
\end{equation*}
$$

where z is the distance from the neutral axis to the point of interest. When a tensile axial force P through the centroidal axis occurs on the cross section, the term P / A should be added to Eq. (16.2a):

$$
\begin{equation*}
\sigma_{x}=\frac{P}{A}+\frac{M z}{A e r} \tag{16.2b}
\end{equation*}
$$

The expression P / A implies that the normal stress due to P is taken to be constant over the cross section, an assumption that is usually reasonable considering that the stress due to P is normally much smaller than the stress due to M. Also, Eq. (16.2b) is more accurate for pure bending than for shear loading (Fig. 16-3). When the first term (P) is comparable in magnitude to the second term (M) or R / h is small, the error of using Eq. (16.2b) increases significantly.

(a)

(b)

Figure 16-3: (a) Pure bending and (b) shear loading of curved beams.

Cook [16.2] introduced two formulas for the circumferential stress σ_{x} to cope with these inaccuracies:

$$
\begin{equation*}
\sigma_{x}=\frac{M\left(r_{n}-r\right)}{A e r}+\frac{P}{A}\left[\frac{r_{n}}{r}+\frac{A e}{I}(r-R)\right] \tag{16.3a}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{x}=\frac{P r_{n}}{A r}+\frac{M z}{A e r} \tag{16.3b}
\end{equation*}
$$

Equation (16.3a) is more accurate than Eq. (16.3b) since the stress distribution expressed by Eq. (16.3b) does not satisfy the equilibrium condition on the cross section. Despite this, Eq. (16.3b) is preferred for its simplicity and adequate accuracy. Equations (16.2) and (16.3) are derived based on the assumptions that the shear and radial stresses vanish, so they are best suited for those parts of the cross section where these stresses are not significant. Also, for I- and T-section curved beams, use of Eqs. (16.2) and (16.3) may cause nonnegligible errors due to the distortion of the profile of the cross section. This problem will be considered later.

A comparison of Eqs. (16.2) and (16.3) with the straight-beam flexure formula ($\sigma=M z / I$) indicates that the straight-beam solution is significantly in error for small values of R / h and the error is not conservative. Generally, for curved beams, with $R / h>5.0$, the straight beam flexure formula can be used [16.3]. It can be shown that when $R / h \rightarrow \infty$, Eq. (16.2a) becomes $\sigma_{x}=M z / I$.

The normal stresses at the extreme fibers of the cross section can be calculated by using the formulas for the normal stress for straight beams multiplied by a factor. Thus the stress in the inside fiber (fiber $A B$ of Fig. 16-2) is

$$
\begin{equation*}
\sigma_{i}=k_{i}\left(\frac{P}{A}+\frac{M z_{i}}{I}\right) \tag{16.4a}
\end{equation*}
$$

while the stress in the outer fiber (fiber $C D$) is

$$
\begin{equation*}
\sigma_{o}=k_{o}\left(\frac{P}{A}-\frac{M z_{o}}{I}\right) \tag{16.4b}
\end{equation*}
$$

where z_{i}, z_{o} are the distances from the centroid to the inner and outer fibers. Table 16-1 gives values for k_{i} and k_{o}. These formulas give the same results at the inside and outside fibers as Eq. (16.2).

When the cross section of a curved beam is composed of two or more of the regular shapes listed in Table 16-1, the values of A, A_{m}, and R in Eq. (16.2) for the composite section are given as

$$
\begin{equation*}
A=\sum_{i=1}^{n} A_{i} \tag{16.5a}
\end{equation*}
$$

$$
\begin{align*}
A_{m} & =\sum_{i=1}^{n} A_{m i} \tag{16.5b}\\
R & =\frac{\sum_{i=1}^{n} R_{i} A_{i}}{\sum_{i=1}^{n} A_{i}} \tag{16.5c}
\end{align*}
$$

where n is the number of regular shapes that form the composite section.
The stress formulas are summarized in Table 16-2.

Example 16.1 Stress in a Curved Beam The curved beam in Fig. 16-4 has a circular cross section 50 mm in diameter. The inside radius r_{i} of the curved beam is 40 mm . Determine the stress at B when $F=20 \mathrm{kN}$.

The radius R is obtained from the geometry: $R=r_{i}+b=40+25=65 \mathrm{~mm}$. Values of A and A_{m} for the curved beam are calculated using the formulas in case 4 of Table $16-1$. For $2 b=50 \mathrm{~mm}$,

$$
\begin{align*}
A & =\pi b^{2}=(3.1416)(25)^{2}=1963.5 \mathrm{~mm}^{2} \\
A_{m} & =2 \pi\left(R-\sqrt{R^{2}-b^{2}}\right) \\
& =2(3.1416)\left(65-\sqrt{65^{2}-25^{2}}\right) \tag{1}\\
& =31.416 \mathrm{~mm} \\
e & =R-A / A_{m}=65-1963.5 / 31.416=2.5 \mathrm{~mm} \\
r_{n} & =R-e=65-2.5=62.5 \mathrm{~mm}
\end{align*}
$$

On the cross section $B C$, the axial force $P=-F=-20,000 \mathrm{~N}$ and the moment is calculated as

(a)

(b)

Figure 16-4: Example 16.1: (a) external loading; (b) free-body diagram.

$$
\begin{align*}
M & =-F R \\
& =-20,000 \times 65=-1,300,000 \\
& =-1300 \mathrm{~N} \cdot \mathrm{~m} \tag{2}
\end{align*}
$$

Therefore, the stress at B is, by Eq. (16.2) with $r=40 \mathrm{~mm}$,

$$
\begin{align*}
\left(\sigma_{x}\right)_{B} & =\frac{P}{A}+\frac{M\left(A-r A_{m}\right)}{\operatorname{Ar}\left(R A_{m}-A\right)} \\
& =-\frac{20,000}{1963.5}-\frac{1,300,000 \times[1963.5-(40)(31.416)]}{(1963.5)(40)[(65)(31.416)-(1963.5)]} \\
& =-159.15 \mathrm{MPa} \tag{3}
\end{align*}
$$

Example 16.2 Stress in a Crane Hook For a large number of manufactured crane hooks, section $B C$ is the critically stressed section (Fig. 16-5a). The crosssectional area can be closely modeled by a trapezoidal area A_{2}, with half of an ellipse A_{1}, and the area A_{3} contained by an arc of a circle. If the dimensions of the critical section are shown in Fig. 16-5b and the hook is subjected to an axial load $F=100 \mathrm{kN}$, determine the circumferential stresses at the inner and outer radii.

(a)

(b)

(c)

Figure 16-5: Example 16.2: crane hook.

The circumferential stresses σ_{x} are calculated using Eq. (16.2). The geometric property values A, R, and A_{m} of the cross sections are obtained using Eq. (16.1) and Table 16-1.

For the semiellipse area A_{1}, refer to case 10 in Table 16-1. For the geometry shown, $a=65.0+30.0=95.0 \mathrm{~mm}, 2 b=100.0, b=50.0 \mathrm{~mm}$, and $h=30.0 \mathrm{~mm}$. Then

$$
\begin{align*}
A_{1} & =\frac{1}{2} \pi b h=2356.2 \mathrm{~mm}^{2}, \quad R_{1}=a-\frac{4 h}{3 \pi}=82.3 \mathrm{~mm} \\
A_{m 1} & =2 b+\frac{\pi b}{h}\left(a-\sqrt{a^{2}-h^{2}}\right)-\frac{2 b}{h} \sqrt{a^{2}-h^{2}} \sin ^{-1} \frac{h}{a}=30.6 \mathrm{~mm} \tag{1}
\end{align*}
$$

For the trapezoidal area A_{2} use case 3 in Table 16-1. With

$$
\begin{aligned}
a & =65.0+30.0=95.0 \mathrm{~mm}, \quad c=95.0+60.0=155.0 \mathrm{~mm} \\
b_{1} & =100.0 \mathrm{~mm}, \quad b_{2}=60.0 \mathrm{~mm}
\end{aligned}
$$

we obtain

$$
\begin{align*}
A_{2} & =\frac{b_{1}+b_{2}}{2}(c-a)=4800.0 \mathrm{~mm}^{2} \\
R_{2} & =\frac{a\left(2 b_{1}+b_{2}\right)+c\left(b_{1}+2 b_{2}\right)}{3\left(b_{1}+b_{2}\right)}=122.5 \mathrm{~mm} \tag{2}\\
A_{m 2} & =\frac{b_{1} c-b_{2} a}{c-a} \ln \frac{c}{a}-b_{1}+b_{2}=39.95 \mathrm{~mm}
\end{align*}
$$

Case 8 of Table 16-1 corresponds to area A_{3}. From Fig. 16-5b,

$$
\begin{align*}
b^{2} & =30^{2}+(b-10)^{2} \quad \text { or } \quad b=50 \mathrm{~mm} \\
\theta & =\tan ^{-1} \frac{30}{b-10}=0.6435 \tag{3}
\end{align*}
$$

and $a=65.0+30.0+60.0-b \cos 0.6435=115.0 \mathrm{~mm}$. Thus,

$$
\begin{align*}
A_{3} & =b^{2} \theta-\frac{b^{2}}{2} \sin 2 \theta=408.75 \mathrm{~mm}^{2} \\
R_{3} & =a+\frac{4 b \sin ^{3} \theta}{3(2 \theta-\sin 2 \theta)}=159.04 \mathrm{~mm} \tag{4}\\
A_{m 3} & =2 a \theta-2 b \sin \theta-\pi \sqrt{a^{2}-b^{2}}+2 \sqrt{a^{2}-b^{2}} \sin ^{-1} \frac{b+a \cos \theta}{a+b \cos \theta} \\
& =2.57 \mathrm{~mm} \quad(\text { for } a>b)
\end{align*}
$$

From Eqs. (16.5), we have
$A=A_{1}+A_{2}+A_{3}=7564.95 \mathrm{~mm}^{2}, \quad A_{m}=A_{m 1}+A_{m 2}+A_{m 3}=73.12 \mathrm{~mm}$
$R=\frac{R_{1} A_{1}+R_{2} A_{2}+R_{3} A_{3}}{A}=111.95 \mathrm{~mm}$
As shown in Fig. 16-5c, the internal load on section $B C$ is $P=F$ and the moment is $M=F R$. The maximum tension and compression values of the circumferential stresses σ_{x} occur at points B and C, respectively.

For B and C, from the dimensions given in Fig. 16-5b,

$$
\begin{equation*}
r_{B}=65.0 \mathrm{~mm}, \quad r_{C}=65.0+30.0+60.0+10.0=165.0 \mathrm{~mm} \tag{6}
\end{equation*}
$$

Substitution of the appropriate values into Eq. (16.2) yields

$$
\begin{align*}
& \left(\sigma_{x}\right)_{B}=\frac{P}{A}+\frac{M\left(A-r_{B} A_{m}\right)}{A r_{B}\left(R A_{m}-A\right)}=103.13 \mathrm{MPa} \\
& \left(\sigma_{x}\right)_{C}=\frac{P}{A}+\underline{\underline{\underline{A r_{C}\left(R A_{m}-A\right)}}}=-51.8 \mathrm{MPa} \tag{7}
\end{align*}
$$

Circumferential Stresses for Thin-Flange Cross Sections Generally speaking, the cross sections of curved beams with thin flanges tend to distort when the beams are subjected to bending moments. Often, this is referred to as profile distortion. In the case shown in Fig. 16-6, the thin flanges are bent and tend to deflect radially as shown. As a consequence, the circumferential stress (normal stress) distribution is not constant along the flanges. The maximum stress occurs at the center of the inner flange (Fig. 16-7). Since the curved beam formula of Eq. (16.2) assumes that the normal stress is constant in the flange, corrections are required if the formula is to be used in the design of curved beams having thin-flange (e.g., I or T) cross sections. One approximate approach is to "correct" the curved beam physically to prevent the distortion of the cross section by welding radial stiffeners to the curved beams and then to use the curved beam formula. Another is Bleich's [16.3] method, which suggests that for the same bending moment the actual maximum circumferential stresses in the flanges with distortion for the I- or T-section curved

Figure 16-6: Distortion of an I-section curved beam.

Figure 16-7: Stress distribution in an I-section curved beam.
beam (Fig. 16-8a) may be calculated by applying Eq. (16.2) to an undistorted I- or T-section curved beam with reduced flange width (Fig. 16-8b).

The reduced flange width is obtained by multiplying the original width of the flange by the factor α given in Table 16-3. To use the table, calculate the ratio $f=$ $b_{p i}^{2} / \bar{r}_{i} t_{f i}$ using the dimensions for the i th flange of the original cross section, where $b_{p i}$ and $t_{f i}$ are as shown in Fig. 16-8a. Here \bar{r}_{i} is the radius of curvature to the center of the i th flange. The reduced widths of the flange (Fig. 16-8b) are given by

$$
\begin{align*}
b_{p i}^{\prime} & =\alpha b_{p i} \tag{16.6a}\\
b_{i}^{\prime} & =2 b_{p i}^{\prime}+t_{w} \tag{16.6b}
\end{align*}
$$

where α is obtained from Table 16-3 according to the computed value of $f, b_{p i}^{\prime}$ is the reduced width of the projecting part of each flange, b_{i}^{\prime} is the reduced width of each flange, and t_{w} is the thickness of the web. Use these new dimensions in the standard stress formulas to compute the peak circumferential stresses.

Figure 16-8: Bleich's method for the flanges of I- or T-sections: (a) original flange and web; (b) modified flange and web.

Due to the bending of the flanges (Fig. 16-6), stress component σ_{y} is developed. Bleich provided an approximate relation for σ_{y} in the inner flange, the flange that is closest to the center of the curvature:

$$
\begin{equation*}
\sigma_{y}=-\beta \bar{\sigma}_{x} \tag{16.7}
\end{equation*}
$$

where β is obtained from Table 16-3 for the computed ratio f and $\bar{\sigma}_{x}$ is the circumferential stress at midthickness of the flange at the junction, calculated based on the corrected cross section. The negative sign indicates that the sign of σ_{y} is opposite to that of $\bar{\sigma}_{x}$. The stress σ_{y} is assumed to be uniformly distributed in the flange.

The radial stress given later can be calculated using either the original or the modified cross section.

Example 16.3 Bleich Method for a T-Section Curved Beam A T-section curved beam has the cross section shown in Fig. 16-9a. The center of curvature of the curved beam lies 40 mm from the flange. If the curved beam is subjected to a positive bending moment $M=2.50 \mathrm{kN} \cdot \mathrm{m}$, determine (a) the stresses at points A and B and (b) the maximum shear stress in the curved beam. Use Bleich's method.

Figure 16-9: Example 16.3: (a) original section; (b) modified section.
(a) The width dimensions of the modified cross section (Fig. 16-9b) are calculated by Bleich's method. Since there is only one flange, the subscript i will be dropped. The coefficient f is calculated as

$$
f=\frac{b_{p}^{2}}{\bar{r} t_{f}}=\frac{[(40-10) / 2]^{2}}{(40+10 / 2)(10)}=0.5
$$

From Table 16-3 we obtain $\alpha=0.878$ and $\beta=1.238$. Thus, by Eqs. (16.6) the modified flange width is $b_{p}^{\prime}=\alpha b_{p}=(0.878)(15)=13.17 \mathrm{~mm}$ and $b^{\prime}=2 b_{p}^{\prime}+t_{w}=$ $2(13.17)+10=36.34 \mathrm{~mm}$ (Fig 16-9b).

The values of A, A_{m}, and R of the modified section are computed by Eqs. (16.5) and case 1 in Table 16-1:

$$
\begin{aligned}
A & =(36.34)(10)+(50)(10)=863.4 \mathrm{~mm}^{2} \\
R & =\frac{1}{863.4}[(36.34)(10)(45)+(50)(10)(75)]=62.37 \mathrm{~mm} \\
A_{m} & =(36.34)\left(\ln \frac{50}{40}\right)+(10)\left(\ln \frac{100}{50}\right)=15.04 \mathrm{~mm}
\end{aligned}
$$

At the inner radius of the modified section with $r=40 \mathrm{~mm}$ and $P=0$ (pure bending), Eq. (16.2) gives the stress

$$
\begin{align*}
\left(\sigma_{x}\right)_{i} & =\frac{M\left(A-r A_{m}\right)}{A r\left(R A_{m}-A\right)} \\
& =\frac{2.50[863.4-(40)(15.04)]}{(863.4)(40)[(62.37)(15.04)-863.4]}=253.9 \mathrm{MPa} \tag{1}
\end{align*}
$$

Similarly, at the outer radius of the modified section, with $r=100 \mathrm{~mm}$ and $P=0$,

$$
\begin{equation*}
\left(\sigma_{x}\right)_{o}=\frac{2.50[863.4-(100)(15.04)]}{(863.4)(100)[(62.37)(15.04)-863.4]}=-247.0 \mathrm{MPa} \tag{2}
\end{equation*}
$$

(b) Use Eq. (3.14) to compute the peak shear stress. The maximum principal stress occurs at the inner radius of the cross section and is given by [Eq. (3.13a)] $\sigma_{1}=\left(\sigma_{x}\right)_{i}=253.9 \mathrm{MPa}$, while the minimum principal stress [Eq. (3.13b)] at this point is obtained from Eq. (16.7):

$$
\begin{align*}
\sigma_{3} & =\sigma_{y}=-\beta \bar{\sigma}_{x}=-(1.238) \frac{2.50[863.4-(45)(15.04)]}{(863.4)(45)[(62.37)(15.04)-863.4]} \\
& =-199.1 \mathrm{MPa} \tag{3}
\end{align*}
$$

Thus, the maximum shearing stress in the curved beam is [Eq. (3.13)]

$$
\begin{equation*}
\tau_{\max }=\frac{1}{2}\left(\sigma_{1}-\sigma_{3}\right)=\frac{1}{2}[253.9-(-199.1)]=226.5 \mathrm{MPa} \tag{4}
\end{equation*}
$$

This stress can be used to evaluate the strength of the beam. It is different from the shear stress τ of the next section in that τ is the shear stress on the plane of the cross section while $\tau_{\text {max }}$ is the maximum shear stress occurring on a plane oriented at a particular angle (Fig. 3-10).

Shear Stress The average shear stress τ across a width of a cross section (e.g., line 1-2 of Fig. 11-4) is

$$
\begin{equation*}
\tau=\frac{V r_{n} Q}{b A e(R-z)^{2}} \tag{16.8}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=\int_{A^{\prime}} r d A \tag{16.9}
\end{equation*}
$$

The integration is taken over the area A^{\prime} that lies between the position at which the stress is desired and the inner fiber of the cross section nearest the center of curvature. The distance z is measured from the neutral axis.

Equation (16.8) is derived from the assumption that the shear stress is parallel to the shear force, and the shear stresses at points on an element perpendicular to the shear force are equal to the parallel shear stresses where the shear force is applied. Although there are some cases in practice that do not coincide with these assumptions, the assumptions tend to be good approximations and Eq. (16.8) can often be used without serious error. A comparison of the results of $\tau_{\max } / \tau_{\text {average }}$, with the exact elasticity solution for a rectangular cross section, shows that when $1.25 \leq R / h \leq 5.5$, the error of the value $\tau_{\max } / \tau_{\text {average }}$ does not exceed 1% [16.4].

Radial Stress Radial stress is usually not a major consideration for the design of the curved beams with solid cross sections because the magnitude of the radial stress is small compared to the circumferential stress. But for curved beams that have flanged cross sections with thin webs, the radial as well as circumferential stresses may be large at the junctions of the flanges and webs. As a consequence, the shear stress may also be large, and hence yielding may occur. A large radial stress in a thin web may also cause the web to buckle. In such cases, the radial stress cannot be neglected.

The radial stress is expressed by [16.3]

$$
\begin{equation*}
\sigma_{z}=\frac{1}{b r}\left[\frac{A^{\prime}}{A} P+\frac{A A_{m}^{\prime}-A^{\prime} A_{m}}{A\left(R A_{m}-A\right)} M\right] \tag{16.10a}
\end{equation*}
$$

where

$$
A_{m}^{\prime}=\int_{r_{0}}^{r} \frac{d A}{r} \quad \text { and } \quad A^{\prime}=\int_{r_{0}}^{r} d A
$$

with b, A^{\prime}, r_{0}, and r shown in Fig. 16-10. A moment M that tends to straighten the curved beam generates a tensile radial stress. This expression is obtained from the equilibrium of the beam segment in Fig. 16-10a, where the resultants F of σ_{x}, which takes the form of Eq. (16.2b) and is assumed to be constant along the beam segment, and T of σ_{z} form an equilibrium system.

If shear stresses τ [Eq. (16.8)] on the cross sections are considered and σ_{x} and τ are assumed to vary along the beam segment (Fig. 16-10b), the conditions of equilibrium for the beam segment result in an expression for the radial stress [16.5]:

$$
\begin{equation*}
\sigma_{z}=\frac{r_{n}}{\text { Aebr }}\left[(M-P R)\left(A_{m}^{\prime}-\frac{A^{\prime}}{r_{n}}\right)+\frac{P}{r}\left(R A^{\prime}-Q\right)\right] \tag{16.10b}
\end{equation*}
$$

Figure 16-10: Radial stresses: (a) equilibrium of a segment of a curved beam; (b) resultants.

Equation (16.10b) is more accurate than Eq. (16.10a). Equations (16.10) are reasonably accurate approximations for the radial stress σ_{z} in curved beams, although σ_{x} is derived with the assumption that the shear and radial stresses vanish. This is similar to the case of a straight beam where the normal stress is based on the assumption that a plane cross remains plane, which implies that the shear stresses vanish. Then the straight-beam shear stresses are obtained from the equilibrium of the resultants of the normal and shear stresses. A comparison of Eq. (16.10a) [16.3] for rectangular cross-sectional beams subjected to shear loading (Fig. 16-3) with a corresponding theory of elasticity solution indicates that Eq. (16.10a) is conservative, and it remains conservative to within 6% for values of $R / h>1.0$ even without considering the P term.

As in the case of the cross sections with thin flanges where the circumferential stresses on the cross sections should be corrected, expressions for the radial stress on the cross sections with thick flanges and thin webs should also be corrected since the flanges tend to rotate about their own neutral axes during deformation and larger radial and shear stress are developed. See Ref. [16.6] for a method of correction.

Simple Curved Bars

The response of curved bars can be obtained by solving the fundamental equations of motion in first-order form for the in-plane deformation of a circular bar [16.7]:

$$
\begin{align*}
\frac{\partial u}{\partial x} & =\frac{P}{A E}-\frac{M}{A R E}+\frac{w}{R}+\alpha T \\
\frac{\partial w}{\partial x} & =-\theta-\frac{u}{R}+\frac{V}{G A_{s}} \\
\frac{\partial \theta}{\partial x} & =\frac{M}{E I^{*}}+\frac{w}{R^{2}}+\frac{M_{T}}{E I^{*}} \\
\frac{\partial M}{\partial x} & =V+k^{*} \theta+\rho r_{y}^{2} \frac{\partial^{2} \theta}{\partial t^{2}}-c(x, t) \tag{16.11}\\
\frac{\partial V}{\partial x} & =k w-\frac{P}{R}+\rho \frac{\partial^{2} w}{\partial t^{2}}-p(x, t) \\
\frac{\partial P}{\partial x} & =k_{x} u+\frac{V}{R}+\rho \frac{\partial^{2} u}{\partial t^{2}}-p_{x}(x, t)
\end{align*}
$$

These relations conform to sign convention 1 of Appendix II. They can be solved for a variety of loading and end conditions.

Tabulated Formulas The extension, deflection, slope, bending moment, shear force, and axial force for uniform circular bars with various end conditions and loadings are provided in Table 16-4. The deflection formulas apply only to uniform beams with $R / z_{0} \geq 4$, where z_{0} is the distance from the centroid of the cross section to the outermost fiber. Included are some values at critical points. Table $16-5$ contains formulas for uniform circular rings. The formulas of Table 16-5 are based on the assumptions that (1) the radius of curvature is very large compared to the dimensions of the cross section, so that the deflection theory of straight bars is used in deriving these expressions; (2) the effect of axial and shear forces on the displacements is negligible; and (3) the deformations are small. Using superposition, these responses can be combined to cover more complicated applied loadings.

Formulas for Bars with Arbitrary Loading Part A of Table 16-6 provides the displacements, slope, moment, and force responses for uniform bars based on the solution of Eqs. (16.11) without consideration of shear deformation. The assumptions underlying Tables 16-4 and 16-5 are no longer involved. Loading functions needed by the formulas of Table 16-6, part A, are listed in part B of the table. For the boundary conditions in part C of the table, the initial parameters can be determined by the method provided in Appendix III.

Buckling Loads

Table 16-7 gives the buckling loads for several uniform circular arches and rings. Although all the loads are applied in the planes of the bars, some buckling modes are
out of plane (case 3). The formulas in this table apply to thin bars (i.e., the radius of gyration of the cross section is negligible compared to the radius of curvature of the bar). Reference [16.10] provides more cases of buckling forces for various structures and load types.

Natural Frequencies

The fundamental natural frequencies are given for arches in Table 16-8, while Table 16-9 provides natural frequencies for rings. Table 16-10 gives frequency information for various structures with curved members. In all of these tables, both in-plane and out-of-plane motion are considered.

16.3 OUT-OF-PLANE STRESS AND DEFORMATION

Sign Convention

Positive rotations ϕ, θ_{z}, displacement v, moments T, M_{z}, force V_{y}, and applied loads p_{y}, m_{x} are shown in Fig. 16-11. The formulas of this section provide responses for the loading illustrated. Loadings applied in the opposite direction require the sign of the loading to be reversed in the formulas.

Stresses

The tables of this chapter provide the internal moments and force along a bar. Once these variables are known, the bending and direct shear stresses can be calculated using the stress formulas in Chapter 11. The torsional shear stress is found from the formulas in Chapter 12.

Simple Curved Bars

The fundamental equations of motion in first-order form for out-of-plane deformation of a circular bar are

Figure 16-11: Positive rotations, displacements, internal moments and forces, and applied loadings for out-of-plane motion.

$$
\begin{align*}
\frac{\partial \phi}{\partial x} & =\frac{T}{G J}-\frac{\theta_{z}}{R} \\
\frac{\partial v}{\partial x} & =\theta_{z}+\frac{V_{y}}{G A_{s}} \\
\frac{\partial \theta_{z}}{\partial x} & =\frac{\phi}{R}+\frac{M_{z}}{E I_{z}}+\frac{M_{T_{z}}}{E I_{z}} \\
\frac{\partial M_{z}}{\partial x} & =-V_{y}+k^{*} \theta_{z}-\frac{T}{R}+\rho r_{z}^{2} \frac{\partial^{2} \theta_{z}}{\partial t^{2}}-c_{z}(x, t) \tag{16.12}\\
\frac{\partial V_{y}}{\partial x} & =k v+\rho \frac{\partial^{2} v}{\partial t^{2}}-p_{y}(x, t) \\
\frac{\partial T}{\partial x} & =\frac{M_{z}}{R}+k_{t} \phi+\rho r_{p}^{2} \frac{\partial^{2} \phi}{\partial t^{2}}-m_{x}(x, t)
\end{align*}
$$

These relations conform to sign convention 1 of Appendix II.
Tabulated Formulas The internal forces and displacements at the tips of some simple curved bars are given in Table 16-11.

Formulas for Bars with Arbitrary Loading If Table 16-11 does not provide sufficient information, use Table 16-12, which gives the rotation, deflection, moments, and shear force responses for uniform bars under more general applied loading with any end conditions.

Table 16-12, part A, lists equations for the responses. The functions $F_{\phi}, F_{v}, F_{\theta_{z}}$, $F_{M_{z}}, F_{V_{y}}, F_{T}$ are taken from Table 16-12, part B, by adding approximate terms for each load applied to the bar. The initial parameters $\phi_{0}, v_{0}, \theta_{z_{0}}, M_{z_{0}}, V_{y_{0}}, T_{0}$, which are values of $\phi, v, \theta_{z}, M_{z}, V_{y}, T$ at the left end $(x=0)$ of the bar, are evaluated for the end conditions shown in Table 16-12, part C, using the procedure outlined in Appendix III.

Buckling Loads

See Table 16-7 for the buckling loads of out-of-plane modes of some curved bars.

Natural Frequencies

Tables 16-8 to 16-10 give natural frequencies and mode shapes for various configurations of curved bars with out-of-plane motion.

16.4 GENERAL BARS

Most of the formulas provided thus far apply to single-span, uniform bars. For more general bars, it is advisable to use the displacement method or the transfer matrix
procedure, which are explained technically at the end of this book (Appendixes II and III).

Several transfer and stiffness matrices are tabulated in Tables 16-13 to 16-16. Mass matrices for use in a displacement method analysis are given in Table 16-17.

Frameworks containing curved elements are handled by using the stiffness matrices of this chapter, as appropriate, in conjunction with the stiffness matrices of the frame chapter (Chapter 13) and following the displacement method of analysis.

Rings

Rings are structural members that connect to themselves, a characteristic that requires special techniques to be employed in handling the boundaries. For the transfer matrix method, the initial parameters at a chosen point (say $x=0$) are equal to the state variables at the same point after moving around the loop (say $x=L$). That is, for the transfer matrix method, using extended matrices, including applied loading terms,

$$
\mathbf{z}_{0}=\mathbf{z}_{x=L} \quad \text { or } \quad \mathbf{z}_{0}=\mathbf{U} \mathbf{z}_{0}
$$

This gives

$$
\begin{equation*}
(\mathbf{U}-\mathbf{I}) \mathbf{z}_{0}=0 \tag{16.13}
\end{equation*}
$$

where \mathbf{I} is a 7×7 diagonal matrix. This expression can then be solved for \mathbf{z}_{0}. In most cases for a ring, the applied loadings are symmetric about some axis so that only half of the ring needs to be analyzed. Some of the variables at the ends of the half ring are known by inspection. For example, for the in-plane deformation of the ring of Fig. 16-12,

$$
u_{A}=\theta_{A}=0, \quad u_{B}=\theta_{B}=0
$$

Consider $x=0$ to be at A and $x=L$ to be at B. For this symmetric, in-plane deformation the remaining boundary conditions are $V_{A}=V_{B}=0$. Then the responses

Figure 16-12: Ring.

Figure 16-13: One-element model for analysis of a ring.
of the ring can be obtained by applying these end conditions to the equations of Table 16-13, part A.

It may be desirable to model a whole ring as a single element. If the displacement method is used for an analysis, the stiffness equations can be expressed as (Fig. 16-13)

$$
\left[\begin{array}{ll}
\mathbf{k}_{a a} & \mathbf{k}_{a b} \tag{16.14}\\
\mathbf{k}_{b a} & \mathbf{k}_{b b}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{a} \\
\mathbf{v}_{b}
\end{array}\right]=\left[\begin{array}{l}
\overline{\mathbf{p}}_{a} \\
\overline{\mathbf{p}}_{b}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{p}_{a} \\
\mathbf{p}_{b}
\end{array}\right]
$$

where $\overline{\mathbf{p}}$ and \mathbf{p} are the loading vectors due to the applied loads and internal loads, respectively. Since the ring is in equilibrium, $\mathbf{v}_{a}=\mathbf{v}_{b}$ and $\mathbf{p}_{a}=-\mathbf{p}_{b}$, Eq. (16.14) can be rearranged as

$$
\begin{equation*}
\left(\mathbf{k}_{a a}+\mathbf{k}_{a b}+\mathbf{k}_{b a}+\mathbf{k}_{b b}\right) \mathbf{v}_{a}=\overline{\mathbf{p}}_{a}+\overline{\mathbf{p}}_{b} \tag{16.15}
\end{equation*}
$$

to find the displacement \mathbf{v}_{a}. If more elements are used, the conventional displacement method should be employed.

In the case of a closed-loop bar, the eigenvalues are found with the transfer matrix method as the roots of the determinant

$$
\begin{equation*}
|\mathbf{U}-\mathbf{I}|=0 \tag{16.16}
\end{equation*}
$$

When the displacement method is used to find the natural frequencies of a ring formed of a single element, the first three natural frequencies can be found from

$$
\begin{equation*}
\mathbf{K}^{\prime}-\omega^{2} \mathbf{M}^{\prime}=0 \tag{16.17}
\end{equation*}
$$

where, from Eq. (16.15), $\mathbf{K}^{\prime}=\mathbf{k}_{a a}+\mathbf{k}_{a b}+\mathbf{k}_{b a}+\mathbf{k}_{b b}$ and similarly, $\mathbf{M}^{\prime}=\mathbf{m}_{a a}+$ $\mathbf{m}_{a b}+\mathbf{m}_{b a}+\mathbf{m}_{b b}$, where $\mathbf{k}_{i j}$ and $\mathbf{m}_{i j}$, are given in Tables 16-14 and 16-17 with $b=a$. Only three natural frequencies are computed because the number of degrees of freedom of Eq. (16.17) is 3. If more natural frequencies are required, the ring should be divided into elements and a standard eigensolution solver used to extract the eigenfunctions from

$$
\begin{equation*}
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \mathbf{V}=0 \tag{16.18}
\end{equation*}
$$

where \mathbf{K} and \mathbf{M} are the assembled mass and stiffness matrices.

REFERENCES

16.1. Cook, R. D., and Young, W. C., Advanced Mechanics of Materials, Macmillan, New York, 1985.
16.2. Cook, R. D., "Circumferential Stresses in Curved Beams," J. Appl. Mech., Vol. 59, No. 1, 1992, pp. 224-225.
16.3. Boresi, A. P., Schmidt, R. J., and Sidebottom, O. M., Advanced Mechanics of Materials, 5th ed., Wiley, New York, 1993.
16.4. Young, W. C., and Cook, R. D., "Radial Stress Formula for Curved Beams," ASME J. Vibrat. Acoust. Stress Reliab. Des., Vol. 111, No. 4, 1989, pp. 491-492.
16.5. Wang, T. S., "Shear Stresses in Curved Beams," Mach. Des., Vol. 39, No. 28, 1967, pp. 175-178.
16.6. Broughton, D. C., Clark, M. E., and Corten, H. T., "Tests and Theory of Elastic Stresses in Curved Beams Having I- and T-Sections," Proceedings of the Society of Experimental Stress Analysis, Vol. 8, No. 1, 1950.
16.7. Oden, J. T., and Ripperger, E. A., Mechanics of Elastic Structures, 2nd ed., McGraw-Hill, New York, 1981.
16.8. Hopkins, R. B., Design Analysis of Shafts and Beams, McGraw-Hill, New York, 1970.
16.9. Griffel, W., Handbook of Formulas for Stress and Strain, Frederick Ungar, New York, 1966.
16.10. Column Research Committee of Japan, Handbook of Structural Stability, Corona Publishing, Tokyo, 1971.
16.11. Blevins, R. D., Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, New York, 1979.
16.12. Lee, L. S. S., "Vibrations of an Intermediately Supported U-Bend Tube," ASME J. Eng. Ind., Vol. 97, 1975, pp. 23-32.
16.13. Davis, R., Henshell, R. D., and Warburton, G. B., "Constant Curvature Finite Element for InPlane Vibration," J. Sound Vibrat., Vol. 25, 1972, pp. 561-576.
16.14. Davis, R., Henshell, R. D., and Warburton, G. B., "Curved Beam Finite Elements for Coupled Bending and Torsional Vibration," Earthquake Eng. Struct. Dyn., Vol. 1, 1972, pp. 165-175.
16.15. Timoshenko, S., Theory of Elastic Stability, 2nd edition, McGraw-Hill, New York, 1961.
16.16. Huang, N. C., and Vehidi, G., "Dynamic Snap-Through of an Elastic Imperfect Simple Shallow Truss," Z. Angew. Math. Phys., Vol. 19, 1968, pp. 501-509.
16.17. Cheney, J. A., "Bending and Buckling of Thin Walled Open-Section Rings," Proc. ASCE (EM), Vol. 89, EM5, 1963, pp. 17-44.
16.18. Ratzersdorfer, J., "'Über die Stabilität' des Kreisringes in seiner Ebene," Z.d., Österreichischen Ingenieur und Architekten Vereines, 1938, pp. 141-148.
16.19. Pilkey, W. D., Analysis and Design of Elastic Beams: Computational Methods, Wiley, New York, 2002.

16

Tables

16-1 Some Geometric Properties of Cross Sections 824
16-2 Summary of In-Plane Loaded Curved Bar Stresses 830
16-3 Bleich's Correction Factors α and β for Calculating Effective Width and Lateral Bending Stress of I- or T-Sections 831
16-4 In-Plane Response of Uniform Circular Bars 832
16-5 In-Plane Response of Uniform Circular Rings 840
16-6 Part A: Static Response of Circular Curved Beams under In-Plane Loading: General Response Expressions 851
16-6 Part B: Static Response of Circular Curved Beams under In-Plane Loading: Loading Functions 852
16-6 Part C: Static Response of Circular Curved Beams under In-Plane Loading: In-Plane Boundary Conditions 854
16-7 Buckling Loads for Circular Arches and Rings 856
16-8 Fundamental Natural Frequency of Circular Arches 859
16-9 Natural Frequencies of Circular Rings 860
16-10 Natural Frequencies of Some Simple Structures Containing Curved Bars 861
16-11 Out-of-Plane Response of Uniform Circular Bars 864
16-12 Part A: Static Response of a Circular Beam under Out-of-Plane Loading: General Response Expressions 866
16-12 Part B: Static Response of Circular Beams under Out-of-Plane Loading: Loading Functions 867
16-12 Part C: Static Response of Circular Beams under Out-of-Plane Loading: Out-of-Plane Boundary Conditions 870
16-13 Part A: Transfer Matrices for Circular Segments: In-Plane Loading 872
16-13 Part B: Transfer Matrices for Circular Segments: Out-of-Plane Loading 875
16-14 Part A: Stiffness Matrices for Circular Segments: In-Plane Loading 878
16-14 Part B: Stiffness Matrices for Circular Segments: Out-of-Plane Loading 880
16-15 Part A: In-Plane Deformation: Point Matrices 882
16-15 Part B: In-Plane Deformation: Spring Constants 884
16-16 Part A: Out-of-Plane Deformation: Point Matrices 885
16-16 Part B: Out-of-Plane Deformation: Spring Constants 887
16-17 Consistent Mass Matrices for Circular Segments 889

TABLE 16-1 SOME GEOMETRIC PROPERTIES OF CROSS SECTIONS

Notation
$A=$ area of cross section
$R=$ radius of curvature of centroidal axis of cross section; values given are for circular bars, where R is constant, and can be considered to be reasonable approximations for many noncircular bars, where bar is modeled as being formed of short circular segments
$A_{m}=\int_{A}(1 / r) d A$
$e=R-A / A_{m}=$ shift of neutral axis from centroidal axis
$\sigma_{x}=M z /$ Aer $=$ normal stress on cross section [Eq. (16.2)]
$z=$ distance from neutral axis to point of interest on cross section
$r=$ distance from center of curvature to point of interest
$k_{i}, k_{o}=$ factors used to multiply straight beam stress formulas to calculate stress in extreme fibers of curved bars; $\sigma_{i}=k_{i}\left(P / A+M z_{i} / I\right)$,
$\sigma_{o}=k_{o}\left(P / A-M z_{o} / I\right)$, where i and o indicate extreme fibers on inner and outer sides
$z_{i}=$ distance from centroidal axis to extreme inner fiber
$z_{o}=$ distance from centroidal axis to extreme outer fiber
$P=$ tensile axial force applied at centroid; replace P by $-P$ if axial force is compressive
$M=$ bending moment about y axis
$I=$ moment of inertia about y centroidal axis

Case	A	A_{m}	R
1. Rectangle	$b(c-a)$	$b \ln \frac{c}{a}$	$\frac{1}{2}(a+c)$
2. Triangle 	$\frac{1}{2} b(c-a)$	$\frac{b c}{c-a} \ln \frac{c}{a}-b$	$\frac{1}{3}(2 a+c)$
3. Trapezoid	$\frac{1}{2}\left(b_{1}+b_{2}\right)(c-a)$	$\frac{b_{1} c-b_{2} a}{c-a} \ln \frac{c}{a}$	$\begin{aligned} & {\left[a\left(2 b_{1}+b_{2}\right)+c\left(b_{1}\right.\right.} \\ & \left.\left.\quad+2 b_{2}\right)\right] / 3\left(b_{1}+b_{2}\right) \end{aligned}$

k_{i}	k_{o}
$\frac{c-a}{6 e} \frac{c-a-2 e}{2 R-c+a}$	$\frac{c-a}{6 e} \frac{c-a+2 e}{2 R+c-a}$
$\frac{c-a}{6 e} \frac{c-a-3 e}{3 R-c+a}$	$\frac{c-a}{12 e} \frac{c-a+3 e}{3 R+c-a}$
$\frac{(c-a)\left(b_{1}+2 b_{2}\right)}{6 e\left(b_{1}+b_{2}\right)}$	$\frac{(c-a)\left(2 b_{1}+b_{2}\right)}{6 e\left(b_{1}+b_{2}\right)}$
$\times \frac{(c-a)\left(b_{1}+2 b_{2}\right)-3 e\left(b_{1}+b_{2}\right)}{3 R\left(b_{1}+b_{2}\right)-(c-a)\left(b_{1}+2 b_{2}\right)}$	$\times \frac{(c-a)\left(2 b_{1}+b_{2}\right)+3 e\left(b_{1}+b_{2}\right)}{3 R\left(b_{1}+b_{2}\right)+(c-a)\left(2 b_{1}+b_{2}\right)}$
$\times \frac{1+4 b_{2} / b_{1}+\left(b_{2} / b_{1}\right)}{\left(1+2 b_{2} / b_{1}\right)^{2}}$	$\times \frac{1+4 b_{2} / b_{1}+\left(b_{2} / b_{1}\right)^{2}}{\left(2+b_{2} / b_{1}\right)^{2}}$

TABLE 16-1 (continued) SOME GEOMETRIC PROPERTIES OF CROSS SECTIONS

Case	A	A_{m}
4. Circle	πb^{2}	$2 \pi\left(R-\sqrt{R^{2}-b^{2}}\right)$
5. Ellipse	$\pi b h$	$\frac{2 \pi b}{h}\left(R-\sqrt{R^{2}-h^{2}}\right)$
6. Hollow circle	$\pi\left(b_{1}^{2}-b_{2}^{2}\right)$	$2 \pi\left(\sqrt{R^{2}-b_{2}^{2}}-\sqrt{R^{2}-b_{1}^{2}}\right)$
7. Hollow ellipse	$\pi\left(b_{1} h_{1}-b_{2} h_{2}\right)$	$\begin{aligned} & 2 \pi\left(\frac{b_{1} R}{h_{1}}-\frac{b_{2} R}{h_{2}}-\frac{b_{1}}{h_{1}} \sqrt{R^{2}-h_{1}^{2}}\right. \\ & \left.+\frac{b_{2}}{h_{2}} \sqrt{R^{2}-h_{2}^{2}}\right) \end{aligned}$
8. Portion of circle	$b^{2} \theta-\frac{1}{2} b^{2} \sin 2 \theta$	For $a>b$, $\begin{aligned} & 2 a \theta-2 b \sin \theta-\pi \sqrt{a^{2}-b^{2}}+2 \sqrt{a^{2}-b^{2}} \\ & \quad \times \sin ^{-1} \frac{b+a \cos \theta}{a+b \cos \theta} \end{aligned}$ For $b>a$, $\begin{aligned} & 2 a \theta-2 b \sin \theta+2 \sqrt{b^{2}-a^{2}} \\ & \quad \times \ln \left[\frac{b+a \cos \theta}{a+b \cos \theta}+\frac{\sqrt{b^{2}-a^{2}} \sin \theta}{a+b \cos \theta}\right] \end{aligned}$

TABLE 16-1 (continued) SOME GEOMETRIC PROPERTIES OF CROSS SECTIONS

R	k_{i}	k_{o}
As shown in figure	$\frac{b}{4 e} \frac{b-e}{R-b}$	$\frac{b}{4 e} \frac{e+b}{R+b}$
As shown in figure	$\frac{h}{4 e} \frac{h-e}{R-h}$	$\frac{h}{4 e} \frac{e+h}{R+h}$
As shown in figure	$\frac{b_{1}}{4 e} \frac{b_{1}-e}{R-b_{1}}\left[1+\left(b_{2} / b_{1}\right)^{2}\right]$	$\begin{aligned} & \frac{b_{1}}{4 e} \frac{b_{1}+e}{R+b_{1}} \\ & \quad \times\left[1+\left(b_{2} / b_{1}\right)^{2}\right] \end{aligned}$
As shown in figure	$\frac{h_{1}}{4 e} \frac{h_{1}-e}{R-h_{1}} \times \frac{1-\left(b_{2} / b_{1}\right)\left(h_{2} / h_{1}\right)^{3}}{1-\left(b_{2} / b_{1}\right)\left(h_{2} / h_{1}\right)}$	$\begin{aligned} & \frac{h_{1}}{4 e} \frac{h_{1}+e}{R+h_{1}} \\ & \times \frac{1-\left(b_{2} / b_{1}\right)\left(h_{2} / h_{1}\right)^{3}}{1-\left(b_{2} / b_{1}\right)\left(h_{2} / h_{1}\right)} \end{aligned}$
$a+\frac{4 b \sin ^{3} \theta}{3(2 \theta-\sin 2 \theta)}$	$\begin{aligned} & \frac{I}{A d e} \frac{d-e}{R-d} \\ & d=\left\{\begin{array}{l} b\left(\frac{2 \sin ^{3} \theta}{3(\theta-\sin \theta \cos \theta)}-\cos \theta\right) \\ \theta \leq \frac{\pi}{4} \\ 0.2 R \theta^{2}\left(1-0.0619 \theta^{2}+0.0027 \theta^{4}\right) \\ \theta>\frac{\pi}{4} \end{array}\right. \end{aligned}$	$\frac{I}{A e} \frac{e+a+b-R}{(a+b-R)(a+b)}$

TABLE 16-1 (continued) SOME GEOMETRIC PROPERTIES OF CROSS SECTIONS

Case	A	A_{m}	R
9. Portion of circle	$b^{2} \theta-\frac{1}{2} b^{2} \sin 2 \theta$	$\begin{aligned} & 2 a \theta+2 b \sin \theta-\pi \sqrt{a^{2}-b^{2}} \\ & \quad-2 \sqrt{a^{2}-b^{2}} \\ & \quad \times \sin ^{-1} \frac{b-a \cos \theta}{a-b \cos \theta} \end{aligned}$	$a-\frac{4 b \sin ^{3} \theta}{3(2 \theta-\sin 2 \theta)}$
10. Solid semicircle or semiellipse 	$\frac{1}{2} \pi b h$	$\begin{array}{r} 2 b+\frac{\pi b}{h}\left(a-\sqrt{a^{2}-h^{2}}\right) \\ -\frac{2 b}{h} \sqrt{a^{2}-h^{2}} \sin ^{-1} \frac{h}{a} \end{array}$	$a-\frac{4 h}{3 \pi}$

TABLE 16-1 (continued) SOME GEOMETRIC PROPERTIES OF CROSS SECTIONS

k_{i}	k_{o}
$\frac{I(R-a+b-e)}{A e(R-a+b)(a-b)}$	$\frac{I(a-b \cos \theta-R-e)}{A e(a-b \cos \theta-R)(a-b \cos \theta)}$
$d=\frac{h(3 \pi-4)}{3 \pi}$	$d=\frac{h(3 \pi-4)}{3 \pi}$

TABLE 16-2 SUMMARY OF IN-PLANE LOADED CURVED BAR STRESSES

	$\begin{aligned} R= & \text { radius of curvature of centroidal axis } \\ A= & \text { cross-sectional area } \\ e= & \text { shift of neutral axis from centroidal axis } \\ = & R-r_{n}=R-A / A_{m} \\ r_{n}= & \text { radius of curvature of neutral axis along the bar } \\ M= & \text { bending moment about } y \text { axis } \\ V= & \text { shear force } \\ P= & \text { tensile axial force applied at centroid. } \\ & \text { Replace } P \text { by }-P \text { if axial force is compressive } \\ A_{m}= & \int_{A} \frac{d A}{r} \quad A_{m}^{\prime}=\int_{A^{\prime}} \frac{d A}{r} \quad Q=\int_{A^{\prime}} r d A \\ b= & \text { width of cross section where stresses } \\ & \text { are calculated } \\ A^{\prime}= & \text { area of part of cross section below } b \\ I= & \text { moment of inertia about centroidal } y \text { axis } \\ z= & \text { distance in } z \text { direction from centroid to point } \\ & \text { where stresses are calculated } \end{aligned}$	
Circumferential Stress σ_{x}		
General $\left(e=r-r_{n}=R-A / A_{m}\right)$	Slender Beams $[e=I /(R A)]$	With Thin Flanges
1. Most accurate $\begin{aligned} & \frac{P}{A}\left[\frac{r_{n}}{r}+\frac{A e}{I}(r-R)\right] \\ & \quad+\frac{M\left(r_{n}-r\right)}{A e r} \end{aligned}$ Ref. [16.2]	1. Most accurate $\begin{aligned} & \frac{P}{A}\left(\frac{r_{n}}{r}+\frac{r}{R}-1\right) \\ & \quad+\frac{M\left(r_{n}-r\right)}{A e r} \end{aligned}$ Ref. [16.2]	Calculate modified flange width using Eq. (16.6) and then calculate stress using formulas to left
2. More accurate than traditional but less accurate and easier to apply than case 1 $\frac{P r_{n}}{A r}+\frac{M\left(r_{n}-r\right)}{A e r}$ Ref. [16.2] 3. Traditional formula $\frac{P}{A}+\frac{M\left(r_{n}-r\right)}{A e r}$	2. Traditional formula $\frac{P}{A}+\frac{M\left(r_{n}-r\right)}{A e r}$	

TABLE 16-2 (continued) SUMMARY OF IN-PLANE LOADED CURVED BAR STRESSES

Radial Stress σ_{z}

1.

Most accurate
$\frac{r_{n}}{A e b r}\left[(M-P R)\left(A_{m}^{\prime}-\frac{A^{\prime}}{r_{n}}\right)\right]+\frac{P}{r}\left(R A^{\prime}-Q\right)$
Ref. [16.4]
2.

Traditional formula
$\frac{1}{b r}\left[\frac{A^{\prime}}{A} P+\frac{A A_{m}^{\prime}-A^{\prime} A_{m}}{A\left(R A_{m}-A\right)} M\right]$
1.
$\frac{V r_{n} Q}{b A e(R-z)^{2}}$

TABLE 16-3 BLEICH'S CORRECTION FACTORS α AND β FOR CALCULATING EFFECTIVE WIDTH AND LATERAL BENDING STRESS OF I- OR T-SECTIONS ${ }^{a}$

Notation

$b_{p i}, t_{f i}$, and \bar{r}_{i} are shown in Fig. 16-8 [16.3].		
$f=b_{p i}^{2} /\left(\bar{r}_{i} t_{f i}\right)$.		
$\alpha=C_{0}+C_{1} f+C_{2} f^{2}+C_{3} f^{3}+C_{4} f^{4}+C_{5} f^{5}$		
$\beta=D_{0}+D_{1} f+D_{2} f^{2}+D_{3} f^{3}+D_{4} f^{4}+D_{5} f^{5}$		
where C_{j} and D_{j} are taken from		
j	C_{j}	D_{j}
0	1.0934663695	-0.10845356
1	-0.5142515924	4.0551477436
2	0.1284598483	-3.306290153
3	-0.0112111533	1.2434264877
4	0	-0.219079535
5	0	0.0146197753

${ }^{a}$ From Ref [16.3], with permission.

TABLE 16-4 IN-PLANE RESPONSE OF UNIFORM CIRCULAR BARS

		Notation $\begin{aligned} u, w & =\text { displacements in } x \text { and } z \text { directions } \\ \theta & =\text { slope about } y \text { axis } \\ u_{X}, u_{Z} & =\text { displacements in } X \text { and } Z \text { directions } \\ E & =\text { modulus of elasticity } \\ M & =\text { bending moment } \\ V & =\text { shear force } \\ I & =\text { moment of inertia about the } \\ & \quad \text { centroidal } y \text { axis } \\ P & =\text { axial force } \\ R & =\text { radius of bar } \end{aligned}$
Case	Moments and Forces at Angle α	Displacements at Angle α $\left(u=u_{X} \sin \alpha+u_{Z} \cos \alpha, w=-u_{X} \cos \alpha+u_{Z} \sin \alpha\right)$
1. Radial load	$\begin{aligned} M & =W R \sin \alpha \\ P & =W \sin \alpha \\ V & =-W \cos \alpha \end{aligned}$	$\begin{aligned} u_{Z} & =-\frac{W R^{3}}{4 E I}\left(\cos 2 \psi-\cos 2 \alpha+4 \cos ^{2} \alpha-4 \cos \psi \cos \alpha\right) \\ u_{X} & =\frac{W R^{3}}{4 E I}[2(\psi-\alpha)+\sin 2 \alpha-\sin 2 \psi-4(\cos \alpha-\cos \psi) \sin \alpha] \\ \text { At } \alpha & =0 \\ u & =-\frac{W R^{3}}{4 E I}(\cos 2 \psi-4 \cos \psi+3) \\ w & =-\frac{W R^{3}}{4 E I}(2 \psi-\sin 2 \psi) \\ \theta & =\frac{W R^{2}}{E I}(1-\cos \psi) \end{aligned}$

2. Tangential load	$\begin{aligned} M & =-W R(1-\cos \alpha) \\ P & =W \cos \alpha \\ V & =W \sin \alpha \end{aligned}$	$\begin{aligned} u_{Z}= & \frac{W R^{3}}{4 E I}[4(\psi-\alpha) \cos \alpha-4(1+\cos \alpha)(\sin \psi-\sin \alpha) \\ & +2(\psi-\alpha)+\sin 2 \psi-\sin 2 \alpha] \\ u_{X}= & -\frac{W R^{3}}{4 E I}[4 \sin \alpha \sin \psi+4 \cos \alpha-4 \cos \psi \\ & -4(\psi-\alpha) \sin \alpha-4 \sin 2 \alpha+\cos 2 \psi-\cos 2 \alpha] \end{aligned}$ At $\alpha=0$, $\begin{aligned} u & =\frac{W R^{3}}{4 E I}(6 \psi+\sin 2 \psi-8 \sin \psi) \\ w & =\frac{W R^{3}}{4 E I}(\cos 2 \psi-4 \cos \psi+3) \\ \theta & =-\frac{W R^{2}}{E I}(\psi-\sin \psi) \end{aligned}$
3. End moment	$M=M^{*}$	$\begin{aligned} u_{Z} & =-\frac{M^{*} R^{2}}{E I}[(\psi-\alpha) \cos \alpha-\sin \psi+\sin \alpha] \\ u_{X} & =\frac{M^{*} R^{2}}{E I}(\cos \alpha+\alpha \sin \alpha-\cos \psi-\psi \sin \alpha) \\ \text { At } \alpha & =0 \\ u & =-\frac{M^{*} R^{2}}{E I}(\psi-\sin \psi) \\ w & =-\frac{M^{*} R^{2}}{E I}(1-\cos \psi) \\ \theta & =\frac{M^{*} R}{E I} \psi \end{aligned}$

TABLE 16-4 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR BARS		
Case	Moments and Forces at Angle α	Displacements at Angle α $\left(u=u_{X} \sin \alpha+u_{Z} \cos \alpha, w=-u_{X} \cos \alpha+u_{Z} \sin \alpha\right)$
4. Radial load guided end	$\begin{aligned} M & =W R \sin \alpha-M_{0} \\ P & =W \sin \alpha+\frac{M_{0} \cos \alpha}{R(1-\cos \alpha)} \\ V & =-W \sin \alpha+\frac{M_{0} \sin \alpha}{R(1-\cos \alpha)} \end{aligned}$ where $M_{0}=\frac{W R}{4} \frac{\cos 2 \psi-4 \cos \psi+3}{\psi-\sin \psi}$	$\begin{aligned} \text { At } \alpha & =0 \\ u & =0 \\ w & =-\frac{W R^{3}}{4 E I}\left[2 \psi-\sin 2 \psi+\frac{\cos 2 \psi-4 \cos \psi+3}{\psi-\sin \psi}(\cos \psi-1)\right] \\ \theta & =0 \end{aligned}$
5. Eccentric tangential load	$\begin{aligned} M & =-W[R(\cos \alpha-1)-a] \\ P & =W \cos \alpha \\ V & =W \sin \theta \end{aligned}$	$\begin{aligned} \text { At } \alpha & =0, \\ u & =\frac{W R^{2}}{4 E I}[2 \psi(3 R+2 a)-4(2 R+a) \sin \psi+R \sin 2 \psi] \\ w & =\frac{W R^{2}}{4 E I}[3 R+4 a-4(R+a) \cos \psi+R \cos 2 \psi] \\ \theta & =-\frac{W R}{E I}[\psi(R+a)-R \sin \psi] \end{aligned}$

6. Uniform vertical load	$\begin{aligned} M & =p R^{2}(\alpha \cos \alpha-\sin \alpha) \\ P & =p R \alpha \cos \alpha \\ V & =P R \alpha \sin \alpha \end{aligned}$	$\begin{aligned} u_{Z}= & \frac{p R^{4}}{8 E I}[3(\cos 2 \psi-\cos 2 \alpha)+16 \cos \alpha(\cos \alpha-\cos \psi) \\ & \left.+2\left(\psi^{2}-\alpha^{2}\right)-8 \psi \sin \psi \cos \alpha+2 \psi \sin 2 \psi+2 \alpha \sin 2 \alpha\right] \\ u_{X}= & -\frac{p R^{4}}{8 E I}[4(\psi-\alpha)+2 \psi \cos 2 \psi-2 \alpha \cos 2 \alpha-3 \sin 2 \psi \\ & -5 \sin 2 \alpha+8 \sin \alpha(2 \cos \psi+\psi \sin \psi-\alpha \sin \alpha)] \\ \text { At } \alpha= & 0 \\ u= & \frac{p R^{4}}{8 E I}\left(2 \psi \sin 2 \psi-8 \psi \sin \psi+3 \cos 2 \psi-16 \cos \psi+2 \psi^{2}+13\right) \\ w= & \frac{p R^{4}}{8 E I}(4 \psi+2 \psi \cos 2 \psi-3 \sin 2 \psi) \end{aligned}$
7. Uniform radial load	$\begin{aligned} M & =-p_{1} R^{2}(1-\cos \alpha) \\ P & =p_{1} R(\cos \alpha-1) \\ V & =p_{1} R \sin \alpha \end{aligned}$	$\begin{aligned} w= & \frac{p_{1} R^{4}}{E I}\left[1+\left(\frac{1}{2} \psi-\sin \psi-\frac{1}{4} \sin 2 \psi-\frac{1}{2} \alpha\right) \sin \alpha\right. \\ & \left.-\left(\cos \psi+\frac{1}{2} \sin ^{2} \psi\right) \cos \alpha\right] \end{aligned}$ If $\psi=180^{\circ}$, $w=\frac{p_{1} R^{4}}{E I}\left[1+\frac{1}{2}(\pi-\alpha) \sin \alpha+\cos \alpha\right]$ If $\psi=180^{\circ}$ and $\alpha=90^{\circ}$, $w=1.7854 \frac{p_{1} R^{4}}{E I}$

TABLE 16-4 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR BARS

Case	Moments and Forces at Angle α	Displacements at Angle α $\left(u=u_{X} \sin \alpha+u_{Z} \cos \alpha, w=-u_{X} \cos \alpha+u_{Z} \sin \alpha\right)$	
8. Split ring	$\begin{aligned} M & =W R(\cos \gamma-\cos \alpha) \\ P & =-W \cos \alpha \\ V & =-W \sin \alpha \end{aligned}$	$w=-\frac{W R^{3}}{E I}\left[\frac{1}{2}(\pi-\alpha) \sin \alpha+(1+\cos \alpha) \cos \gamma\right]$ At $\alpha=90^{\circ}$, $w=\frac{W R^{3}}{E I}\left(\frac{\pi}{4}+\cos \gamma\right)$ Total change in end gap: $\delta=\frac{W R^{3}}{E I}\left[(\pi-\gamma)\left(1+2 \cos ^{2} \gamma\right)+\frac{3}{2} \sin 2 \gamma\right]$	
9. Vertical load	$\begin{aligned} M & =W R(\cos \alpha-\cos \beta) \\ V & =W \sin \alpha \\ P & =W \cos \alpha \end{aligned}$	$\begin{aligned} \text { At } \alpha & =0, \\ u & =K_{u} \frac{W R^{3}}{E I} \times 10^{-4} \\ w & =K_{w} \frac{W R^{3}}{E I} \times 10^{-4} \\ K_{u} & =\left\{\begin{array}{l} -6.4935-0.517 \psi-0.3577 \psi^{2}+0.018 \psi^{3}-7.01 \times 10^{-5} \psi^{4} \\ -4.33+22.9 \psi-1.473 \psi^{2}+0.02815 \psi^{3}-9.82 \times 10^{-5} \psi^{4} \\ 6.11 \psi+0.05082 \psi^{2}-0.0177 \psi^{3}+3.72 \times 10^{-4} \psi^{4}-2.229 \\ \times 10^{-6} \psi^{5}+4.19 \times 10^{-9} \psi^{6} \\ -3.79-11.35 \psi+0.933 \psi^{2}-0.02346 \psi^{3}+2.163 \times 10^{-4} \psi^{4} \\ -6.0 \times 10^{-7} \psi^{5} \\ 31.66 \psi-2.366 \psi^{2}+0.062886 \psi^{3}-7.587 \times 10^{-4} \psi^{4} \\ +4.201 \times 10^{-6} \psi^{5}-8.573 \times 10^{-9} \phi^{6} \\ -34,500+396.67 \psi-1.111 \psi^{2} \end{array}\right. \end{aligned}$	$\begin{aligned} & \beta=0 \\ & \beta=30^{\circ} \\ & \beta=60^{\circ} \\ & \beta=90^{\circ} \\ & \beta=120^{\circ} \\ & \beta=150^{\circ} \end{aligned}$

$$
\begin{cases}21.1-21.96 \psi+1.11 \psi^{2}-0.027364 \psi^{3}+3.36 \times 10^{-4} \psi^{4} & \beta=0^{\circ} \\ \quad-9.43 \times 10^{-7} \psi^{5} & \\ 1.62+10.6 \psi-0.304 \psi^{2}-7.47 \times 10^{-3} \psi^{3}+1.976 & \beta=30^{\circ} \\ \times 10^{-4} \psi^{4}-6.0 \times 10^{-7} \psi^{5} & \beta=60^{\circ} \\ 15.15-19.0 \psi+0.896 \psi^{2}-0.0172 \psi^{3}+1.636 & \\ \times 10^{-4} \psi^{4}-3.43 \times 10^{-7} \psi^{5} & \beta=90^{\circ} \\ -8.117+1.63 \psi+0.247 \psi^{2}-0.01126 \psi^{3}+1.18 & \beta=120^{\circ} \\ \times 10^{-4} \psi^{4}-2.572 \times 10^{-7} \psi^{5} & \\ 34.6-34.2 \psi+1.414 \psi^{2}-0.0174 \psi^{3}+6.55 \times 10^{-5} \psi^{4} & \beta=150^{\circ} \\ -1.077+23.167 \psi-1.563 \psi^{2}+0.03664 \psi^{3}-3.84 \times 10^{-4} \psi^{4} \\ +1.83 \times 10^{-6} \psi^{5}-3.2 \times 10^{-9} \psi^{6} & \psi \leq 180^{\circ} \\ & \end{cases}
$$

TABLE 16-4 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR BARS

Case	Moments and Forces at Angle α	Displacements at Angle α $\left(u=u_{X} \sin \alpha+u_{Z} \cos \alpha, w=-u_{X} \cos \alpha+u_{Z} \sin \alpha\right)$	
10. Horizontal load	$\begin{aligned} M & =-W R(\sin \alpha-\sin \beta) \\ V & =W \cos \alpha \\ P & =-W \sin \alpha \end{aligned}$	$\begin{aligned} \text { At } \alpha & =0, \\ u & =K_{u} \frac{W R^{3}}{E I} \times 10^{-4} \\ w & =K_{w} \frac{W R^{3}}{E I} \times 10^{-4} \\ K_{u} & =\left\{\begin{array}{l} 32.46-48.2 \psi+2.19 \psi^{2}-7.23 \times 10^{-3} \psi^{3}-4.2 \times 10^{-6} \psi^{4} \\ -5.195+29.07 \psi-2.078 \psi^{2}+4.7517 \times 10^{-2} \psi^{3}-3.287 \\ \\ \times 10^{-4} \psi^{4}+7.2 \times 10^{-7} \psi^{5} \\ -31.472 \psi+2.592 \psi^{2}-7.72 \times 10^{-2} \psi^{3}+1.0284 \\ \\ \times 10^{-3} \psi^{4}-6.0271 \times 10^{-6} \psi^{5}+1.2669 \times 10^{-8} \psi^{6} \\ -21.33 \psi+1.593 \psi^{2}-4.228 \times 10^{-2} \psi^{3}+5.092 \\ \\ \times 10^{-4} \psi^{4}-2.812 \times 10^{-6} \psi^{5}+5.716 \times 10^{-9} \psi^{6} \\ -4.329+26.3 \psi-1.528 \psi^{2}+2.871 \times 10^{-2} \psi^{3}-2.114 \\ \\ \times 10^{-4} \psi^{4}+5.144 \times 10^{-7} \psi^{5} \\ -0.39083-39.0514 \psi+3.15292 \psi^{2}-9.186 \times 10^{-2} \psi^{3} \\ +1.20157 \times 10^{-3} \psi^{4}-6.96541 \times 10^{-6} \psi^{5}+1.45645 \\ \\ \times 10^{-8} \psi^{6} \end{array}\right. \end{aligned}$	$\begin{aligned} & \beta=0^{\circ} \\ & \beta=30^{\circ} \\ & \beta=60^{\circ} \\ & \beta=120^{\circ} \\ & \beta=90^{\circ} \\ & \beta=150^{\circ} \end{aligned}$

| |
| :--- | :--- | :--- |

TABLE 16-5 IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Notation
$\delta_{x}, \delta_{z}=$ change in horizontal and vertical diameters; increase is positive
$\Delta R=$ change in upper half of vertical diameter of ring, decrease is negative
$E=$ modulus of elasticity
$I=$ moment of inertia about the centroidal y axis
$M=$ bending moment
$P=$ axial tensile force
$V=$ shear force
$M_{1}, V_{1}, P_{1}, M_{2}, V_{2}, P_{2}=$ moments, shear forces, and axial forces at bottom and top, respectively
$R=$ radius of ring
$\rho^{*}=$ mass of liquid per unit volume
$e=$ shift of neutral axis from centroid
$g=$ gravitational acceleration

Case	$\delta_{x}, \delta_{z}, \Delta R, M, P, V$
1.	$\delta_{x}=0.137 W R^{3} / E I$ $\delta_{z}=$ $-0.149 W R^{3} / E I$ $\max (+M)=0.3183 W R$ at bottom $(\alpha=0)$ $\max (-M)=-0.1817 W R$ at side $\left(\alpha=\frac{1}{2} \pi\right)$ $P_{1}=0 \quad V_{1}=-\frac{1}{2} W$
2.	$\begin{aligned} \delta_{x} & =\left(K_{x} W R^{3} / E I\right) \times 10^{-6} \quad \delta_{z}=\left(K_{z} W R^{3} / E I\right) \times 10^{-5} \\ \Delta R & =\left(K_{R} W R^{3} / E I\right) \times 10^{-6} \quad M=K_{M} W R \times 10^{-5} \\ P & =K_{P} W \times 10^{-4} \quad V=K_{V} W \times 10^{-5} \\ K_{x} & =-37.72-11.137 \beta+4.3146 \beta^{2}-0.945 \beta^{3}+0.007735 \beta^{4} \\ K_{z} & =59.7-33.676 \beta+2.898 \beta^{2}+0.030688 \beta^{3}-0.00045 \beta^{4} \\ K_{R} & =-15.4174+9.0944 \beta-1.7172 \beta^{2}+0.35 \beta^{3}-0.00265 \beta^{4} \\ K_{M} & =96.3-42.8 \beta+2.619 \beta^{2}+0.1522 \beta^{3}-0.0014852 \beta^{4} \\ K_{P} & =-9988.79-5.328 \beta+1.8837 \beta^{2}+0.0064 \beta^{3}-0.000145 \beta^{4} \\ K_{V} & =155.337-94.085 \beta+8.89 \beta^{2}-0.29125 \beta^{3}+0.00149 \beta^{4} \\ & \quad 0 \leq \beta<90^{\circ} \end{aligned}$

TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case	$\delta_{x}, \delta_{z}, \Delta R, M, P, V$
3.	$\begin{aligned} \hline \delta_{x}= & \left(K_{x} M^{*} R^{2} / E I\right) \times 10^{-5} \quad \delta_{z}=\left(K_{z} M^{*} R^{2} / E I\right) \times 10^{-5} \\ \Delta R= & \left(K_{R} M^{*} R^{2} / E I\right) \times 10^{-6} \quad M=K_{M} M^{*} \times 10^{-5} \\ P= & \left(K_{P} M^{*} / R\right) \times 10^{-5} \quad V=\left(K_{V} M^{*} / R\right) \times 10^{-6} \\ K_{x}= & -9.65-628.15 \beta-0.55 \beta^{2}+0.1068 \beta^{3}-0.000255 \beta^{4} \\ K_{z}= & -10.3376+1115.77 \beta-15.62 \beta^{2}+0.011 \beta^{3}+0.000276 \beta^{4} \\ K_{R}= & 3.2423+2363.26 \beta+1.828 \beta^{2}-0.3414 \beta^{3}+0.000823 \beta^{4} \\ K_{M}= & -99979+1650.43 \beta+2.05254 \beta^{2}-0.3165 \beta^{3} \\ & +0.001760 \beta^{4} \\ K_{P}= & 19+1094 \beta+2.0747 \beta^{2}-0.3168 \beta^{3}+0.001763 \beta^{4} \\ K_{V}= & 1121.34-638.56 \beta+250.35 \beta^{2}-1.699 \beta^{3}-0.001563 \beta^{4} \\ & 0 \leq \beta<90^{\circ} \end{aligned}$
4.	$\begin{aligned} \delta_{x}= & -0.1366 W R^{3} / E I \quad \delta_{z}=0.1488 W R^{3} / E I \\ \Delta R= & 0.0554 W R^{3} / E I \\ \text { At } \alpha= & 0 \text { to } \alpha=\frac{1}{2} \pi, \\ M= & K_{M} W R \times 10^{-5} \quad P=K_{P} W \times 10^{-5} \quad V=K_{V} W \times 10^{-5} \\ K_{M}= & -49283.5+1490.52 \alpha+10.845 \alpha^{2}-0.4216 \alpha^{3} \\ & +0.002871 \alpha^{4}-0.0000060366 \alpha^{5} \leq \alpha<180^{\circ} \\ K_{P}= & \left\{\begin{array}{c} 31835.1+1741.02 \alpha-4.4 \alpha^{2}-0.103865 \alpha^{3} \\ +0.0003478 \alpha^{4} \\ 41025.3-180.548 \alpha-4.8662 \alpha^{2}+0.02014 \alpha^{3} \\ 90^{\circ} \leq \alpha<180^{\circ} \end{array}\right. \\ K_{V}= & \left\{\begin{array}{r} 99887.7-518.163 \alpha-17.57 \alpha^{2}-0.078 \alpha^{3} \\ 0 \leq \alpha<90^{\circ} \\ -29732.8+1500.6 \alpha-10.735 \alpha^{2}+0.0184 \alpha^{3} \\ 90^{\circ} \leq \alpha<180^{\circ} \end{array}\right. \end{aligned}$
5.	$\begin{aligned} & \hline \delta_{x}=\left(K_{x} W R^{3} / E I\right) \times 10^{-5} \quad \delta_{z}=\left(K_{z} W R^{3} / E I\right) \times 10^{-5} \\ & \Delta R=\left(K_{R} W R^{3} / E I\right) \times 10^{-5} \\ & \text { At } \alpha= \beta, \\ & M= K_{M} W R \times 10^{-5} \quad P=K_{P} W \times 10^{-5} \quad V=-K_{V} W \times 10^{-5} \\ & K_{x}=-13593.9-36.7665 \beta+8.83016 \beta^{2}-0.1004 \beta^{3} \\ &+0.0002787 \beta^{4} \\ & K_{z}= 14848.2+21.2347 \beta-11.9295 \beta^{2} \\ &+0.17515 \beta^{3}-0.000728 \beta^{4} \\ & K_{R}= 5525.18+12.155 \beta-3.169 \beta^{2}+0.03308 \beta^{3}-0.0000754 \beta^{4} \\ & K_{M}=-50172.6+1850.02 \beta-29.129 \beta^{2}+0.22465 \beta^{3} \\ &-0.000663 \beta^{4} \\ & K_{P}= 31657.9+103.53 \beta-24.26 \beta^{2}+0.315 \beta^{3}-0.00112 \beta^{4} \\ & K_{V}=-95.94+597.267 \beta-2.48 \beta^{2}-0.1856 \beta^{3}+0.00156 \beta^{4} \\ & 0 \leq \beta<90^{\circ} \end{aligned}$

TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS	
Case	$\delta_{x}, \delta_{z}, \Delta R, M, P, V$
6.	$\begin{aligned} & \delta_{x}=\left(K_{x} W R^{3} / E I\right) \times 10^{-5} \\ & \delta_{z}=\left(K_{z} W R^{3} / E I\right) \times 10^{-5} \\ & \Delta R=\left(K_{R} W R^{3} / E I\right) \times 10^{-5} \\ & \mathrm{At} \alpha= \beta \\ & M= K_{M} W R \times 10^{-5} \quad P=K_{P} W \times 10^{-5} \\ & V= K_{V} W \times 10^{-5} \\ & K_{x}=-66.0127+36.7665 \beta-8.83 \beta^{2}+0.100477 \beta^{3} \\ &-0.000279 \beta^{4} \\ & K_{z}= 31.75-21.2347 \beta+11.93 \beta^{2}-0.175 \beta^{3} \\ &+0.000728 \beta^{4} \\ & K_{R}= 43043-2068.6 \beta+41.97 \beta^{2}-0.3328 \beta^{3} \\ &+0.0008599 \beta^{4} \\ & K_{M}= 180.54-108.476 \beta+24.7 \beta^{2}-0.328 \beta^{3}+0.001 \beta^{4} \\ & K_{P}= 179.02+1638.54 \beta+19.8 \beta^{2}-0.41778 \beta^{3} \\ &+0.00146 \beta^{4} \\ & K_{V}= 99896.1+47.1116 \beta-18.235 \beta^{2}-0.1413 \beta^{3} \\ &+0.001762 \beta^{4} \\ & \end{aligned}$
7.	Radial displacement of each load point: $\left(K_{s} W R^{3} / 2 E I\right) \times 10^{-5} \quad$ (outward) Radial displacement at $\alpha=0,2 \beta, 4 \beta, \ldots$: $\left(K_{s}^{\prime} W R^{3} / 4 E I\right) \times 10^{-5} \quad$ (inward) At $\alpha=0,2 \beta, 4 \beta, \ldots: \quad \max (+M)=\frac{1}{2} K_{M} W R \times 10^{-5}$ At each load: $\quad \max (-M)=-\frac{1}{2} K_{M}^{\prime} W R \times 10^{-5}$ At $\alpha=0,2 \beta, 4 \beta, \ldots: \quad P=\frac{1}{2} K_{P} W \times 10^{-4}$ At each load: $\quad P=\frac{1}{2} K_{P}^{\prime} W \times 10^{-5}$ $\begin{aligned} & K_{s}=\left\{\begin{array}{c} -2112779.99+261138.9 \beta-14555.9 \beta^{2}+421.84 \beta^{3} \\ -6.5346 \beta^{4}+0.0512583 \beta^{5}-0.00015983 \beta^{6} \\ 0 \leq \beta<90^{\circ} \\ -436680.99+13990.1 \beta-164.09 \beta^{2}+0.8548 \beta^{3} \\ -0.001548 \beta^{4} \\ 90^{\circ} \leq \beta<180^{\circ} \end{array}\right. \\ & K_{s}^{\prime}=\left\{\begin{array}{c} 2112770-261425.99 \beta+14555.7 \beta^{2}-421.749 \beta^{3} \\ +6.53425 \beta^{4}-0.0512493 \beta^{5}+0.00015978 \beta^{6} \\ 0 \leq \beta<90^{\circ} \\ -379655000+19386100 \beta-407977 \beta^{2}+4529.78 \beta^{3} \\ -27.9914 \beta^{4}+0.0913129 \beta^{5}-0.000122919 \beta^{6} \\ 90^{\circ} \leq \beta<180^{\circ} \end{array}\right. \end{aligned}$

TABLE 16-5 (continued)	IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS
Case	$\delta_{x}, \delta_{z}, \Delta R, M, P, V$
7. Continued	$\begin{aligned} & K_{M}=\left\{\begin{array}{c} 57.9248+278.769 \beta+0.732387 \beta^{2}-0.00672 \beta^{3} \\ +0.000154986 \beta^{4} \\ 593102000-29371900 \beta+600602.9 \beta^{2}-6491.33 \beta^{3} \\ +39.118 \beta^{4}-0.124651 \beta^{5}+0.000164149 \beta^{6} \\ 90^{\circ} \leq \beta<180^{\circ} \end{array}\right. \\ & K_{M}^{\prime}=\left\{\begin{array}{c} -195.475+612.305 \beta-1.1217 \beta^{2}+0.0246 \beta^{3} \\ 0 \leq \beta<90^{\circ} \\ 593089000-29370999.9 \beta+600591 \beta^{2}-6491.21 \beta^{3} \\ +39.1173 \beta^{4}-0.124649 \beta^{5}+0.000164147 \beta^{6} \\ 90^{\circ} \leq \beta<180^{\circ} \end{array}\right. \\ & K_{P}=\left\{\begin{array}{c} 211277-25909.8 \beta+1455.57 \beta^{2}-42.1996 \beta^{3} \\ +0.65343 \beta^{4}-0.00512423 \beta^{5}+0.0000159778 \beta^{6} \\ 0 \leq \beta<90^{\circ} \\ 14589499-735481.9 \beta+15343.6 \beta^{2}-169.466 \beta^{3} \\ +1.04532 \beta^{4}-0.00341539 \beta^{5}+0.00000462055 \beta^{6} \\ 90^{\circ} \leq \beta<170^{\circ} \end{array}\right. \\ & K_{P}^{\prime}=\left\{\begin{array}{c} 2112750-259966.9 \beta+14555.3 \beta^{2}-421.999 \beta^{3} \\ +6.53388 \beta^{4}-0.051238 \beta^{5}+0.00015975 \beta^{6} \\ 0 \leq \beta<90^{\circ} \\ -145215000+7337399.9 \beta-153198 \beta^{2}+1692.69 \beta^{3} \\ -10.4435 \beta^{4}+0.0341276 \beta^{5}-0.0000461753 \beta^{6} \\ 90^{\circ} \leq \beta<170^{\circ} \end{array}\right. \end{aligned}$
8.	$\begin{aligned} & \delta_{x}=\left(K_{x} 2 p R^{4} / E I\right) \times 10^{-5} \quad \delta_{z}=\left(K_{z} 2 p R^{4} / E I\right) \times 10^{-5} \\ & \Delta R=\left(K_{R} p R^{4} / E I\right) \times 10^{-5} \quad M_{1}=K_{M} p R^{2} \times 10^{-5} \text { at bottom } \\ & \text { At } \alpha= \beta, \\ & P=-K_{P} p R \times 10^{-5} \quad V=-K_{V} p R \times 10^{-5} \\ & K_{x}= 31522.7-761.555 \beta+10.2634 \beta^{2}-0.057365 \beta^{3} \\ &+0.000124 \beta^{4} \\ & K_{z}=-26140.6+553.141 \beta-7.597 \beta^{2}+0.04243 \beta^{3} \\ &-0.00007107 \beta^{4} \\ & K_{R}=-25649.8+522.245 \beta-6.4062 \beta^{2}+0.03126 \beta^{3} \\ &-0.0000409 \beta^{4} \\ & K_{M}= 56051.4-686.78 \beta+18.98 \beta^{2}-0.15 \beta^{3}+0.0003169 \beta^{4} \\ & K_{P}=-363585.9+12617.9 \beta-107.08 \beta^{2}+0.26787 \beta^{3} \\ & K_{V}= 151482-10368.6 \beta+174.6 \beta^{2}-1.0304 \beta^{3}+0.001969 \beta^{4} \\ & 90^{\circ} \leq \beta<180^{\circ} \end{aligned}$

TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case	$\delta_{x}, \delta_{z}, \Delta R, M, P, V$
9.	$\begin{aligned} \delta_{x}= & -\left(K_{x} p R^{4} / E I\right) \times 10^{-5} \quad \delta_{z}=-\left(K_{z} p R^{4} / E I\right) \times 10^{-5} \\ M_{1}= & K_{M} p R^{2} \times 10^{-5} \text { at bottom } \\ \text { At } \alpha= & \beta, \\ P= & -K_{P} p R \times 10^{-5} \quad V=-K_{V} p R \times 10^{-5} \\ K_{x}= & 52.42-501.15 \beta+1.66645 \beta^{2}+0.06487 \beta^{3} \\ & -0.0004992 \beta^{4} \\ K_{z}= & -82.634+565.013 \beta-3.8146 \beta^{2}-0.0413 \beta^{3} \\ & +0.0004167 \beta^{4} \\ K_{M}= & -59.498+1149.25 \beta-18.9 \beta^{2}+0.1281 \beta^{3}-0.000281 \beta^{4} \\ K_{P}= & 178.8-100.5 \beta+39.367 \beta^{2}-0.2678 \beta^{3}-0.0002397 \beta^{4} \\ K_{V}= & 35.0613+1718.95 \beta+3.229 \beta^{2}-0.497 \beta^{3}+0.0027665 \beta^{4} \\ & 0 \leq \beta<90^{\circ} \end{aligned}$
10.	$\delta_{x}=0.1228 p_{1} R^{4} / E I \quad \delta_{z}=-0.1220 p_{1} R^{4} / E I$ At bottom $(\alpha=0)$, $\begin{array}{rlrlr} M_{1} & =0.305 p_{1} R^{2} & P_{1}=-0.0265 P_{1} R & & V_{1}=-0.5000 p_{1} R \\ \text { At } \alpha & =\pi / 2, & & \\ M & =-0.165 p_{1} R^{2} & P=-0.500 p_{1} R & & V=-0.0265 p_{1} R \\ \text { At } \alpha & =\pi, & & \\ M & =0.1914 p_{1} R^{2} & P=0.0265 p_{1} R & V=0 \end{array}$

$M_{1}=K_{M} p R^{2} \times 10^{-5} \quad$ at bottom
$P=K_{P} p R \times 10^{-5}$ at $\alpha=\beta \quad V=K_{V} p R \times 10^{-5} \quad$ at $\alpha=\beta$
$K_{M}=-162.73+21.46 \beta+0.97334 \beta^{2}-0.09627 \beta^{3}$
$+0.000879 \beta^{4}-0.00000223957 \beta^{5}$
$K_{P}=-96.97+116.72 \beta-11.45 \beta^{2}+0.34 \beta^{3}-0.0034138 \beta^{4}$ $+0.00000982 \beta^{5}$
$K_{V}=154.534-118.746 \beta+12.831 \beta^{2}-0.4956 \beta^{3}$ $+0.0082537 \beta^{4}-0.0000527838 \beta^{5}+0.00000011193 \beta^{6}$ $0 \leq \beta<180^{\circ}$

12.	$\delta_{x}=\left(K_{x} 2 p_{1} R^{4} / E I\right) \times 10^{-5}$	$\delta_{z}=\left(K_{z} 2 p_{1} R^{4} / E I\right) \times 10^{-5}$

$M_{1}=K_{M} p_{1} R^{2} \times 10^{-5} \quad$ at bottom
At $\alpha=\beta$,
$P=K_{P} p_{1} R \times 10^{-5} \quad V=K_{V} p_{1} R \times 10^{-5}$
$K_{x}=3.943-2.6611 \beta+0.275 \beta^{2}-0.026175 \beta^{3}$ $+0.0001559 \beta^{4}$
$K_{z}=23.748-10.215 \beta+0.702 \beta^{2}+0.013 \beta^{3}-0.0001038 \beta^{4}$
$K_{M}=32.28-5.0077 \beta-15.3897 \beta^{2}+0.10335 \beta^{3}$
$K_{P}=-21.797+8.691 \beta-15.9 \beta^{2}+0.08046 \beta^{3}+0.000021 \beta^{4}$
$K_{V}=24.8136-21.14 \beta+2.6929 \beta^{2}-0.39 \beta^{3}+0.0025 \beta^{4}$

$$
0 \leq \beta<90^{\circ}
$$

TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case	$\delta_{x}, \delta_{z}, \Delta R, M, P, V$
13.	$\delta_{x}=\left(K_{x} 2 p_{1} R^{4} / E I\right) \times 10^{-5} \quad \delta_{z}=\left(K_{z} p_{1} R^{4} / E I\right) \times 10^{-5}$
	$M_{1}=K_{M} p_{1} R^{2} \times 10^{-4}$ at bottom

At $\alpha=\beta$,

$$
\begin{aligned}
P= & K_{P} p_{1} R \times 10^{-5} \quad V=K_{V} p_{1} R \times 10^{-5} \\
K_{x}= & 22005.2+18.3033 \beta-15.9884 \beta^{2}+0.2397 \beta^{3}-0.00104 \beta^{4} \\
K_{z}= & -46067.4-292.218 \beta+52.942 \beta^{2}-0.93 \beta^{3}+0.006129 \beta^{4} \\
& -0.00001366 \beta^{5} \\
K_{M}= & 15435.3-655.64 \beta+9.7253 \beta^{2}-0.06153 \beta^{3}+0.0001345 \beta^{4} \\
K_{P}= & -47188.8-1164.71 \beta+152.709 \beta^{2}-2.1833 \beta^{3} \\
& +0.012524 \beta^{4}-0.0000267856 \beta^{5} \\
K_{V}= & 809.224+2108.65 \beta+51.143 \beta^{2}-2.7738 \beta^{3}+0.033555 \beta^{4} \\
& -0.000169 \beta^{5}+3.1099 \times 10^{-7} \beta^{6}
\end{aligned}
$$

$$
0 \leq \beta<180^{\circ}
$$

$$
\begin{array}{l|ll}
\hline 14 . & \delta_{x}=0.2146 g \rho^{*} R^{5} / E I & \delta_{z}=-0.2337 g \rho^{*} R^{5} / E I
\end{array}
$$

Unit length of pipe filled with liquid of mass density ρ^{*} and supported at base

$$
\Delta R=-0.0938 g \rho^{*} R^{5} / E I
$$

$$
\max (+M)=M_{1}=0.750 g \rho^{*} R^{3} / E I \quad \text { at bottom }
$$

$$
\max (-M)=0.321 g \rho^{*} R^{3} \quad \text { at } \alpha=75^{\circ}
$$

$$
M=K_{M} g \rho^{*} R^{3} \times 10^{-5} \quad P=K_{P} g \rho^{*} R^{2} \times 10^{-5}
$$

$$
V=K_{V} g \rho^{*} R^{2} \times 10^{-5}
$$

$$
K_{M}=\left\{\begin{array}{c}
12318 \alpha \quad \alpha<5^{\circ} \\
77375.6-3059.47 \alpha+22.126 \alpha^{2}+0.0112 \alpha^{3} \\
-0.000273 \alpha^{4} \quad 5^{\circ} \leq \alpha \leq 180^{\circ}
\end{array}\right.
$$

$$
K_{P}=126172-2978.5 \alpha+20.53 \alpha^{2}+0.02317 \alpha^{3}
$$

$$
-0.0003033 \alpha^{4}
$$

$$
K_{V}=-156315.9+1123.8 \alpha+32.9756 \alpha^{2}-0.322 \alpha^{3}
$$

$$
+0.0007267 \alpha^{4}
$$

$$
0 \leq \alpha<180^{\circ}
$$

TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case	$\delta_{x}, \delta_{z}, \Delta R, M, P, V$
15.	$\delta_{x}=\left(K_{x} g \rho^{*} R^{5} / E I\right) \times 10^{-5} \quad \delta_{z}=-\left(K_{z} g \rho^{*} R^{5} / E I\right) \times 10^{-5}$

Unit length of pipe filled with liquid of mass density ρ^{*} and supported symmetrically at two locations
$\Delta R=\left(K_{R} g \rho^{*} R^{5} /(2 E I)\right) \times 10^{-5}$
$M_{1}=K_{M} g \rho^{*} R^{3} \times 10^{-5}$
At $\alpha=\beta$,

$$
P=K_{P} g \rho^{*} R^{2} \times 10^{-5} \quad V=K_{V} g \rho^{*} R^{2} \times 10^{-5}
$$

$$
K_{x}=19949.5+466.516 \beta-35.2866 \beta^{2}+0.54487 \beta^{3}
$$

$$
-0.003048 \beta^{4}+0.00000466 \beta^{5}
$$

$$
K_{z}=23085.7+133.53 \beta-25.868 \beta^{2}+0.454537 \beta^{3}
$$

$$
-0.00299 \beta^{4}+0.000006647 \beta^{5}
$$

$$
K_{R}=-19293.2+9.0767 \beta+10.897 \beta^{2}-0.156025 \beta^{3}
$$

$$
+0.00064066 \beta^{4}
$$

$$
K_{M}=77219.7-3285.01 \beta+48.839 \beta^{2}-0.3098 \beta^{3}
$$

$$
+0.0006795 \beta^{4}
$$

$$
K_{P}=126224.9-537.37 \beta+66.636 \beta^{2}-1.0577 \beta^{3}
$$

$$
+0.006257 \beta^{4}-0.0000133084 \beta^{5}
$$

$$
K_{V}=-3730.44+2317.25 \beta-48.5 \beta^{2}+0.282 \beta^{3}
$$

$$
-0.0006166 \beta^{4}
$$

$$
0 \leq \beta<180^{\circ}
$$

$$
\overline{16 .}
$$

Bulkhead or supporting ring pipe, supported at sides and carrying a load W transferred by tangential shear S uniformly distributed as shown

$$
S=\frac{W}{\pi R} \sin \alpha
$$

$$
\begin{array}{rlrl}
\delta_{x} & =0 \quad \delta_{z}=0 & & \\
M & =K_{M} W R \times 10^{-5} & P & =K_{P} W \times 10^{-5} \\
V & =K_{V} W \times 10^{-5} & M_{1} & =-0.0113 W R \quad \text { at bottom }
\end{array}
$$

$$
\max (+M)=0.0146 W R \quad \text { at } \alpha=66.8^{\circ}
$$

$$
\max (-M)=-0.0146 W R \quad \text { at } \alpha=113.2^{\circ}
$$

$$
P_{1}=-0.0796 W \quad \text { at } \alpha=0
$$

$$
K_{M}=\left\{\begin{array}{c}
-7945.12-7.4386 \alpha+6.66845 \alpha^{2}-0.01605 \alpha^{3} \\
-0.00013 \alpha^{4} \quad 0 \leq \alpha<90^{\circ} \\
34331-2513.46 \alpha+30.603 \alpha^{2}-0.12524 \alpha^{3} \\
-0.000157083 \alpha^{4} \quad 90^{\circ} \leq \alpha \leq 180^{\circ}
\end{array}\right.
$$

$$
K_{P}=\left\{\begin{array}{c}
-1121.98-4.2428 \alpha+1.5515 \alpha^{2}-0.009163 \alpha^{3} \\
-0.0000669 \alpha^{4} \quad 0 \leq \alpha<90^{\circ} \\
75826.2-1913.05 \alpha+16.577 \alpha^{2}-0.058 \alpha^{3} \\
+0.00006837 \alpha^{4} \quad 90^{\circ} \leq \alpha \leq 180^{\circ}
\end{array}\right.
$$

$$
K_{V}=\left\{\begin{array}{c}
7.6305+134.445 \alpha+0.4064 \alpha^{2}-0.04848 \alpha^{3} \\
+0.0001825 \alpha^{4} \quad 90^{\circ} \leq \alpha<90^{\circ} \\
54993.9+210.22 \alpha+9.3176 \alpha^{2}-0.081 \alpha^{3} \\
+0.000179 \alpha^{4} \quad 90^{\circ} \leq \alpha<180^{\circ}
\end{array}\right.
$$

TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case	$\delta_{x}, \delta_{z}, \Delta R, M, P, V$
17.	$\delta_{x}=\left(K_{x} W R^{3} / E I\right) \times 10^{-5} \quad \delta_{z}=\left(K_{z} W R^{3} / E I\right) \times 10^{-5}$

$$
\text { At } \alpha=\beta
$$

$$
\begin{aligned}
M & =K_{M} W R \times 10^{-5} \quad P=K_{P} W \times 10^{-5} \\
V & =K_{V} W \times 10^{-5} \\
K_{x} & =6797.16+18.722 \beta-4.423 \beta^{2}+0.0502 \beta^{3}
\end{aligned}
$$

Same as case 16 except

$$
-0.0001388 \beta^{4}
$$

supported as shown
$S=\frac{W}{\pi R} \sin \alpha$
$K_{z}=-7423.29-10.27 \beta+5.947 \beta^{2}-0.0873 \beta^{3}$
$+0.0003627 \beta^{4}$
$K_{R}=-2977.03-5.925 \beta+1.579 \beta^{2}-0.01651 \beta^{3}$
$+0.0000378 \beta^{4}$
$K_{M}=23961.7-927.9 \beta+16.0202 \beta^{2}-0.11946 \beta^{3}$
$+0.0002517 \beta^{4}$
$K_{P}=-23776.8-56.0366 \beta+18.56 \beta^{2}-0.1682 \beta^{3}$
$+0.0003928 \beta^{4}$
$K_{V}=-39.96+433.994 \beta-0.8944 \beta^{2}-0.14 \beta^{3}$
$+0.000956 \beta^{4}$

	$0 \leq \beta<90^{\circ}$
18.	
$\qquad \boldsymbol{p}_{\boldsymbol{1}}$	$\delta_{x}=0.4292 \frac{p_{1} R^{4}}{E I} \quad \delta_{z}=-0.4674 \frac{p_{1} R^{4}}{E I}$
$M_{1}=1.5 p_{1} R^{2} \quad M_{2}=0.5 p_{1} R^{2}$	

$\max (+M)=1.5 p_{1} R^{2} \quad$ at bottom
$V_{2}=0 \quad P_{2}=\frac{1}{2} p_{1} R$

TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case	$\delta_{x}, \delta_{z}, \Delta R, M, P, V$
19	$\left(-p_{1} R^{4}\right.$

Radial pressure varies with $(\alpha-\beta)^{2}$ from 0 at $\alpha=\beta$ to p_{1} at $\alpha=\pi$

$$
\left\{\begin{array}{l}
0 \quad \alpha<\beta \\
\frac{p_{1}}{(\pi-\beta)^{2}}(\alpha-\beta)^{2} \\
\beta \leq \alpha \leq \pi
\end{array}\right.
$$

$W=4 p_{1} R$

$$
\times \frac{\pi-\beta-\sin \beta}{(\pi-\beta)^{2}}
$$

$$
\delta_{x}=\left\{\begin{array}{l}
\frac{-p_{1} R^{4}}{E I(\pi-\beta)^{2}}\left\{\beta^{2}(2-\sin \beta)\right. \\
+\beta(\sin \beta-3 \cos \beta-8.283)+7 \sin \beta+2.115 \\
\left.+\cos \beta-0.2122\left[(\pi-\beta)^{3}-6(\pi-\beta-\sin \beta)\right]\right\} \\
\beta \leq \frac{1}{2} \pi \\
\frac{-p_{1} R^{4}}{E I(\pi-\beta)^{2}}\{(2-\cos \beta)(\pi-\beta)-3 \sin \beta \\
\left.-0.2122\left[(\pi-\beta)^{3}-6(\pi-\beta-\sin \beta)\right]\right\} \\
\beta>\frac{1}{2} \pi
\end{array}\right.
$$

$$
\delta_{z}=\frac{p_{1} R^{4}}{E I(\pi-\beta)^{2}}\left\{4+4 \cos \beta-(\pi-\beta) \sin \beta-(\pi-\beta)^{2}\right.
$$

$$
\left.+0.2122\left[(\pi-\beta)^{3}-6(\pi-\beta-\sin \beta)\right]\right\}
$$

$$
M_{1}=\frac{-p_{1} R^{2}}{\pi(\pi-\beta)^{2}}[2 \beta(2-\cos \beta)+6(\sin \beta-\pi)
$$

$$
\left.+\pi(\pi+\beta)^{2}+2(\pi-\beta-\sin \beta)-\frac{1}{3}(\pi-\beta)^{3}\right]
$$

$$
M_{z}=\frac{-p_{1} R^{2}}{\pi(\pi-\beta)^{2}}[2(\pi-\beta)(2-\cos \beta)-6 \sin \beta
$$

$$
\left.+2(\pi-\beta-\sin \beta)-\frac{1}{3}(\pi-\beta)^{3}\right]
$$

$$
V_{2}=0
$$

$$
\max (+M) \text { occurs at angular position } \alpha_{1} \text { where } \alpha_{1}>\beta
$$

$$
\text { and } \alpha_{1}>108.6^{\circ} \text { and satisfies }\left(\alpha_{1}-\beta+\sin \beta \cos \alpha_{1}\right)
$$

$$
+(3 \sin \beta-2 \pi+2 \beta-\beta \cos \beta) \sin \alpha_{1}=0
$$

$$
\max (-M)=M_{1}
$$

TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case
$W=\quad g \rho^{*} R^{2}(\pi-\beta$
$\quad+\sin \beta \cos \beta)$

Unit length of pipe partially filled with liquid; $h=$ thickness of wall of pipe

$$
\delta_{x}=\left\{\begin{array}{l}
\frac{3 g \rho^{*} R^{5}\left(1-v^{2}\right)}{2 E h^{3} \pi} \\
\times\left\{\pi\left(\sin \beta \cos \beta+2 \pi-3 \beta+2 \beta \cos ^{2} \beta\right)\right. \\
+8 \pi\left(2 \cos \beta-\sin \beta \cos \beta-\frac{1}{2} \pi+\beta\right) \\
+8[(\pi-\beta)(1-2 \cos \beta)+\sin \beta \cos \beta-2 \sin \beta]\} \\
\beta \leq \frac{1}{2} \pi \\
\frac{3 g \rho^{*} R^{5}\left(1-v^{2}\right)}{2 E h^{3} \pi} \\
\times\left\{\pi\left[(\pi-\beta)\left(1+2 \cos ^{2} \beta\right)+3 \cos \beta \sin \beta\right]\right. \\
+8[(\pi-\beta)(1-2 \cos \beta)+\sin \beta \cos \beta-2 \sin \beta]\} \\
\quad \beta>\frac{1}{2} \pi
\end{array}\right.
$$

$$
\delta_{z}=\frac{3 g \rho^{*} R^{5}\left(1-v^{2}\right)}{2 E h^{3} \pi}\left\{\pi \left[\sin ^{2} \beta+(\pi-\beta)\right.\right.
$$

$$
\times(\pi-\beta-2 \sin \beta \cos \beta)]-4 \pi(1+\cos \beta)^{2}
$$

$$
-8[(\pi-\beta)(1-2 \cos \beta)+\sin \beta \cos \beta-2 \sin \beta]\}
$$

$$
M_{2}=\frac{g \rho^{*} R^{3}}{4 \pi}\left\{2 \theta \sin ^{2} \beta+3 \sin \beta \cos \beta-3 \beta+\pi+2 \pi \cos ^{2} \beta\right.
$$

$$
+2[\sin \beta \cos \beta-2 \sin \beta+(\pi-\beta)(1-2 \cos \beta)]\}
$$

$$
P_{2}=\frac{g \rho^{*} R^{2}}{4 \pi}\left[3 \sin \beta \cos \beta+(\pi-\beta)\left(1-2 \cos ^{2} \beta\right)\right]
$$

$$
V_{2}=0
$$

$$
\begin{array}{l|ll}
\hline \text { 21. } & \delta_{x}=\left(K_{x} p_{1} R^{4} / E I\right) \times 10^{-4} \quad \delta_{z}=\left(K_{z} p_{1} R^{4} / E I\right) \times 10^{-4}
\end{array}
$$

$$
\begin{aligned}
M_{1}= & K_{M_{1}} p_{1} R^{2} \times 10^{-4} \quad M_{2}=K_{M_{2}} p_{1} R^{2} \times 10^{-4} \\
P_{2}= & K_{P_{2}} p_{1} R \times 10^{-4} \\
K_{x}= & -831.109-2.65 \beta+0.162 \beta^{2}-7.37 \times 10^{-4} \beta^{3} \\
& +1.11 \times 10^{-7} \beta^{4} \\
K_{z}= & 831.546+2.137 \beta-0.144 \beta^{2}+5.83 \times 10^{-4} \beta^{3} \\
& +2.53 \times 10^{-7} \beta^{4} \\
K_{M_{1}}= & -1456.97-0.584 \beta+7.6986 \times 10^{-2} \beta^{2} \\
& +7.58257 \times 10^{-4} \beta^{3}-5.478 \times 10^{-6} \beta^{4} \\
K_{M_{2}}= & -1040.18-3.89612 \beta+0.288 \beta^{2} \\
& -2.036 \times 10^{-3} \beta^{3}+3.971 \times 10^{-6} \beta^{4} \\
K_{P_{2}}= & -3122.7-7.929 \beta+0.968856 \beta^{2} \\
& -8.173 \times 10^{-3} \beta^{3}+1.99 \times 10^{-5} \beta^{4} \\
& \quad 30^{\circ} \leq \beta \leq 120^{\circ}
\end{aligned}
$$

TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS	
Case	$\delta_{x}, \delta_{z}, \Delta R, M, P, V$
22.	$\left.\left.\begin{array}{rl} \hline \delta_{x}= & \left(K_{x} W R^{3} / E I\right) \times 10^{-4} \quad \delta_{z}=\left(K_{z} W R^{3} / E I\right) \times 10^{-4} \\ M_{1}= & K_{M} W R \times 10^{-4} \quad P_{2}=K_{P} W \times 10^{-4} \end{array}\right] \begin{array}{rl} \text { occurs at angular position } \alpha=\tan ^{-1}\left(-\pi / \sin ^{2} \beta\right) \\ \beta<106.3^{\circ} \end{array}\right] \begin{array}{ll} \max (+M)= & \beta \geq 106.3^{\circ} \\ \operatorname{coccurs} \text { at load } W \quad & \\ \max (-M)= & M_{1} \\ K_{x}= & -4053.2+81.547 \beta-0.8616 \beta^{2}+3.1913 \times 10^{-3} \beta^{3} \\ K_{z}= & 4269.8-88.72 \beta+0.9634 \beta^{2}-3.568 \times 10^{-3} \beta^{3} \\ K_{M}= & -6052-29.9945 \beta+1.565 \beta^{2}-1.795 \times 10^{-2} \beta^{3} \\ & +6.35 \times 10^{-5} \beta^{4} \\ K_{P}= & -801+66.6167 \beta-3.027 \beta^{2}+2.952 \times 10^{-2} \beta^{3} \\ & -8.2 \times 10^{-5} \beta^{4} \\ & 30^{\circ} \leq \beta \leq 150^{\circ} \end{array}$
23.	$\begin{aligned} \delta_{x}= & \left(K_{x} W R^{3} / E I\right) \times 10^{-4} \quad \delta_{z}=\left(K_{z} W R^{3} / E I\right) \times 10^{-4} \\ M_{1}= & K_{M_{1}} W R \times 10^{-4} \quad P_{2}=K_{P} W \times 10^{-4} \\ M_{2}= & K_{M_{2}} W R \times 10^{-4} \\ \max (+M)= & \begin{cases}M_{1} & \beta \leq 60^{\circ} \\ K_{M} W R \times 10^{-4} & \text { at load if } \beta>60^{\circ}\end{cases} \\ K_{x}= & 819+141.42 \beta-4.62 \beta^{2}+0.040574 \beta^{3} \\ & -1.0957 \times 10^{-4} \beta^{4} \\ K_{z}= & -2690-23.975 \beta+2.1817 \beta^{2}-0.0205463 \beta^{3} \\ & +5.36523 \times 10^{-5} \beta^{4} \\ K_{M_{1}}= & 5650+53.73 \beta-2.884 \beta^{2}+0.0168 \beta^{3} \\ & -1.852 \times 10^{-5} \beta^{4} \\ K_{P}= & 507.003-211.57 \beta+1.9037 \beta^{2}-9.383 \times 10^{-4} \beta^{3} \\ & -1.83 \times 10^{-5} \beta^{4} \\ K_{M_{2}}= & 6753-202.622 \beta+1.184 \beta^{2}+1.765 \times 10^{-3} \beta^{3} \\ & -1.852 \times 10^{-5} \beta^{4} \\ K_{M}= & 10578-496.41 \beta+9.175 \beta^{2}-0.06416 \beta^{3} \\ & +1.484 \times 10^{-4} \beta^{4} \end{aligned}$
	$30^{\circ} \leq \beta \leq 150^{\circ}$

TABLE 16-6 PART A: STATIC RESPONSE OF CIRCULAR CURVED BEAMS UNDER IN-PLANE LOADING: GENERAL RESPONSE EXPRESSIONS

Notation

$E=$ modulus of elasticity
$A=$ area of the cross section
$I^{*}=$ moment of inertia modified for curvature of bar, where z is measured from centroid of cross section
$=\int_{A}\left[z^{2} /(1-z / R)\right] d A$

Response

1. Extension:

$$
\begin{aligned}
u= & u_{0} \cos \alpha+w_{0} \sin \alpha+\theta_{0} R(\cos \alpha-1) \\
& +V_{0}\left[\frac{R}{2 E A} \alpha \sin \alpha-\frac{R^{3}}{2 E I^{*}}(2-2 \cos \alpha-\alpha \sin \alpha)\right]-M_{0} \frac{R^{2}}{E I^{*}}(\alpha-\sin \alpha) \\
& +P_{0}\left[\frac{R}{2 E A}(\alpha \cos \alpha+\sin \alpha)+\frac{R^{3}}{2 E I^{*}}(2 \alpha+\alpha \cos \alpha-3 \sin \alpha)\right]+F_{u}
\end{aligned}
$$

2. Deflection:

$$
\begin{aligned}
w= & -u_{0} \sin \alpha+w_{0} \cos \alpha-\theta_{0} R \sin \alpha+V_{0}\left(\frac{1}{E A}+\frac{R^{2}}{E I^{*}}\right) \\
& \times \frac{R(\sin \alpha-\alpha \cos \alpha)}{2}+M_{0} \frac{R^{2}}{E I^{*}}(\cos \alpha-1) \\
& +P_{0}\left[\frac{R}{2 E A} \alpha \sin \alpha-\frac{R^{3}}{2 E I^{*}}(2-2 \cos \alpha-\alpha \sin \alpha)\right]+F_{w}
\end{aligned}
$$

3. Slope: $\theta=\theta_{0}+\frac{V_{0} R^{2}(1-\cos \alpha)}{E I^{*}}+\frac{M_{0} R \alpha}{E I^{*}}-\frac{P_{0} R^{2}(\alpha-\sin \alpha)}{E I^{*}}+F_{\theta}$
4. Shear force: $V=V_{0} \cos \alpha-P_{0} \sin \alpha+F_{V}$
5. Bending moment: $M=V_{0} R \sin \alpha+M_{0}+P_{0} R(\cos \alpha-1)+F_{M}$
6. Axial force: $P=V_{0} \sin \alpha+P_{0} \cos \alpha+F_{P}$

Loading functions $F_{u}, F_{w}, F_{\theta}, F_{V}, F_{M}$, and F_{P} are defined in part B for a variety of applied loads.

To use these formulas, substitute the loading functions into the formulas above and calculate the initial parameters based on the boundary conditions in part C .

TABLE 16-6 PART B: STATIC RESPONSE OF CIRCULAR CURVED BEAMS UNDER IN-PLANE LOADING: LOADING FUNCTIONS

By definition:

$$
\begin{aligned}
<\alpha^{n} \sin \alpha> & = \begin{cases}0 & \alpha<\alpha_{1} \\
\left(\alpha-\alpha_{1}\right)^{n} \sin \left(\alpha-\alpha_{1}\right) & \alpha_{1} \leq \alpha<\alpha_{2} \\
\left(\alpha_{2}-\alpha_{1}\right)^{n} \sin \left(\alpha_{2}-\alpha_{1}\right) & \alpha_{2} \leq \alpha\end{cases} \\
<\alpha-\alpha_{1}>^{0} & = \begin{cases}0 & \alpha<\alpha_{1} \\
1 & \alpha \geq \alpha_{1}\end{cases} \\
<\alpha^{n}> & = \begin{cases}0 & \alpha<\alpha^{n} \cos \alpha> \\
\left(\alpha-\alpha_{1}\right)^{n} \cos \left(\alpha-\alpha_{1}\right) & \alpha_{1} \leq \alpha<\alpha_{2} \\
\left(\alpha_{2}-\alpha_{1}\right)^{n} \cos \left(\alpha_{2}-\alpha_{1}\right) & \alpha_{2} \leq \alpha\end{cases} \\
\left(\alpha-\alpha_{1}\right)^{n} & \alpha_{1} \leq \alpha<\alpha_{2} \\
\left(\alpha_{2}-\alpha_{1}\right)^{n} & \alpha_{2} \leq \alpha
\end{aligned} \quad\left\{\begin{array}{ll}
0 & \alpha<\alpha_{1} \\
\left(\alpha-\alpha_{1}\right) & \alpha \geq \alpha_{1}
\end{array}\right\}
$$

Concentrated Forces and Moments

Concentrated In-Plane Force	Concentrated Moment	
F_{u}	$-\frac{W R}{2 E A}<\alpha-\alpha_{1}>\sin \left(\alpha-\alpha_{1}\right)+\frac{W R^{3}}{E I^{*}}\left\{<\alpha-\alpha_{1}>^{0}\left[1-\cos \left(\alpha-\alpha_{1}\right)\right]\right.$	$\frac{R^{2} C}{E I^{*}}\left(<\alpha-\alpha_{1}>-\sin <\alpha-\alpha_{1}>\right)$
F_{w}	$\left.-\frac{1}{2}\left[<\alpha-\alpha_{1}>\sin \left(\alpha-\alpha_{1}\right)\right]\right\}$	$-\frac{R^{2} C}{E}\left(\frac{1}{E A}+\frac{R^{2}}{E I^{*}}\right) \times\left[\sin <\alpha-\alpha_{1}>-<\alpha-\alpha_{1}>\cos \left(\alpha-\alpha_{1}\right)\right]$
F_{θ}	$-\frac{W R^{2}}{E I^{*}}\left[<\alpha-\alpha_{1}>^{0}-<\alpha-\alpha_{1}>^{0} \cos \left(\alpha-\alpha_{1}\right)\right]$	$-\frac{R C}{E I^{*}}<\alpha-\alpha_{1}>$

F_{V}	$-W<\alpha-\alpha_{1}>^{0} \cos \left(\alpha-\alpha_{1}\right)$	0
F_{M}	$-W R \sin <\alpha-\alpha_{1}>$	$-C<\alpha-\alpha_{1}>^{0}$
F_{P}	$W \sin <\alpha-\alpha_{1}>$	0

Distributed Forces and Moments

For distributed forces and moments: $\overline{\mathbf{z}}^{i}=\mathbf{u}^{i} \mathbf{f}$, where $\overline{\mathbf{z}}^{i}=\left[\begin{array}{llllllllll}F_{u} & F_{w} & F_{\theta} & F_{V} & F_{M} & F_{P}\end{array}\right]^{T}, \mathbf{f}=\left[\begin{array}{llllll}f_{u} & f_{w} & f_{\theta} & f_{V} & f_{M} & f_{P}\end{array}\right]^{T}$, and \mathbf{u}^{i} is the upper left 6×6 submatrix of the extended transfer matrix for massless circular bars of Table $16-13$, part A, with $\psi=\alpha$.

	Uniformly Distributed In-Plane Force	Uniformly Distributed Moment
f_{u}	$-\frac{p_{1} R^{2}}{2}\left[\left(\frac{1}{E A}+\frac{R^{2}}{E I^{*}}\right) \times(-<\alpha \cos \alpha>+<\sin \alpha>)-\frac{2 R^{2}}{E I^{*}}<\alpha>\right]$	$\frac{c_{1} R^{3}}{E I^{*}}\left(\frac{1}{2}<\alpha^{2}>+<\cos \alpha>\right)$
f_{w}	$\frac{p_{1} R^{2}}{2}\left(\frac{1}{E A}+\frac{R^{2}}{E I^{*}}\right) \times\left(2<\alpha-\alpha_{1}>^{0}-<\alpha \sin \alpha>-2<\cos \alpha>\right)$	$\frac{c_{1} R^{3}}{E I^{*}}(<\alpha>-<\sin \alpha>)$
f_{θ}	$-\frac{p_{1} R^{3}}{E I^{*}}(<\alpha>-<\sin \alpha>)$	$\frac{c_{1} R^{2}}{2 E I^{*}}<\alpha^{2}>$
f_{V}	$p_{1} R<\sin \alpha>$	0
f_{M}	$p_{1} R^{2}<\cos \alpha>$	$R c_{1}<\alpha>$
f_{P}	$-p_{1} R<\cos \alpha>$	0

TABLE 16-6 PART C: STATIC RESPONSE OF CIRCULAR CURVED BEAMS UNDER IN-PLANE LOADING: IN-PLANE BOUNDARY CONDITIONS

Case	Boundary Conditions
1.	$u=w=\theta=0$
Clamped end	
Free end	$M=V=P=0$
2.	

3. $\quad u=w=M=0$

Pinned end

4.

Clamped-circumferentially guided end

Clamped-radially guided end

TABLE 16-7 BUCKLING LOADS FOR CIRCULAR ARCHES AND RINGS

Notation
All bars are uniform in cross section. Unless otherwise specified, the direction of uniform radial loading is not a function of the deformation of the bar.

$E=$ modulus of elasticity
$G=$ shear modulus of elasticity
$R=$ radius of curved beam
$A=$ area of cross section
$I, I_{z}=$ moments of inertia about y and z axes
$I_{y z}=$ product of inertia
$r_{p}=$ polar radius of gyration, I_{p} / A
$I_{p}=$ polar moment of inertia
$J=$ torsional constant
$\Gamma=$ warping constant
$z_{S}=z$ coordinate of shear center
$\alpha_{s}=$ shear correction factor
$n=$ buckling mode number

$$
D=\int_{A} E z^{2} d A \quad B=\int_{A} \alpha_{S} G d A \quad C=\int_{A} E d A \quad K_{s}=D / B R^{2}
$$

Case	Buckling Loads
1.	$p_{1, \mathrm{cr}}=\frac{E I}{R^{3}}\left(\frac{4 \pi^{2}}{\psi^{2}}-1\right)$
Hinged-hinged	
In-plane loading	
Ref. [16.15]	

TABLE 16-7 (continued) BUCKLING LOADS FOR CIRCULAR ARCHES AND RINGS

Case	Buckling Loads
3.	$M_{\text {cr }}$
Simply supported arch	$M_{\text {cr }}^{\prime}$

1. When $R \rightarrow \infty$

$$
M_{\mathrm{cr}}=\frac{\pi \sqrt{E I_{z} G J}}{L} \quad M_{\mathrm{cr}}^{\prime}=-\frac{\pi \sqrt{E I_{z} G J}}{L}
$$

where L is the length of the beam.
2. When $\psi=\pi$,

$$
M_{\mathrm{cr}}^{\prime}=0
$$

Ref. [16.15]
4. In-plane buckling of rings subject to uniform external pressure: The pressure is initially directed to the center of the ring. After buckling, the direction of the pressure can be in one of the three directions. p_{b} and p_{a} indicate the loads before and after buckling. Before buckling, $p_{1}=p_{b}$, and after buckling, p_{1} becomes p_{a}.

| a. Pressure acts perpendicular to |
| :--- | :--- |
| axis of ring section during |
| buckling |\quad| If $I_{y z}=0$ |
| :--- |
| $p_{1, \mathrm{cr}}=3 \frac{E I}{R^{3}}$ |
| Otherwise, |

Case \quad Buckling Loads
5. In-plane loading of rings: Circular rings subject to uniform pressure directed radially. The material can be nonuniform and shear deformation effects are considered. The load directions are the same as case 4. Ref. [16.18]

a. Force remains perpendicular to axis of ring section during buckling (see figure of case 4 a)	$p_{1, \mathrm{cr}}=\frac{3 D}{R^{3}} \frac{1}{1+4 K_{s}}$
b. Force remains parallel to its initial direction during buckling (see figure of case 4b)	$p_{1, \mathrm{cr}}=\frac{4 D}{R^{3}} \frac{1}{1+4 K_{s}}$
c. Force remains directed toward initial center of curvature during buckling and $K_{R}^{2} \ll 1$, (see figure of case 4 c)	$p_{1, \mathrm{cr}}=\frac{4.5 D}{R^{3}} \frac{1}{1+4 K_{s}} \quad K_{R}^{2}=\frac{D}{C R^{2}}$
6. Out-of-plane buckling of rings: Circular rings subject to uniform external pressure which acts perpendicular to ring axis and remains parallel to plane of initial curvature during buckling	$p_{1, \mathrm{cr}}=\frac{E I_{z}}{R^{3}} \frac{9}{4+E I_{z} / G J}$ When warping constant Γ should be considered $p_{1, \mathrm{cr}}=\frac{E I_{z}}{R^{3}} \frac{n^{2}\left(n^{2}-1\right)}{n^{4}+\left(E I_{z} / E \Gamma\right) R^{2}} \quad n \geq 2$ Ref. [16.16]

TABLE 16-8 FUNDAMENTAL NATURAL FREQUENCY OF CIRCULAR ARCHES ${ }^{a}$

	Notation $R=$ radius of arch $E=$ modulus of elasticity $G=$ shear modulus of elasticity $J=$ torsional constant $I, I_{z}=$ moments of inertia about y and z axes $v=$ Poisson's ratio $\rho=$ mass per unit length
Case	Fundamental Natural Frequency
1. Clamped-clamped In-plane bending	$\begin{aligned} & \frac{\lambda^{2}}{2 \pi(R \psi)^{2}}\left[\frac{1-2 \sigma^{2}(1-2 / \sigma \lambda)(\psi / \lambda)^{2}+(\psi / \lambda)^{4}}{1+5 \sigma^{2}(1-2 / \sigma \lambda)(\psi / \lambda)^{2}}\right]^{1 / 2}\left(\frac{E I}{\rho}\right)^{1 / 2} \\ & \lambda=7.8532 \quad \sigma=1.00078 \end{aligned}$
2. Clamped-clamped Out-of-plane flexure	$\begin{aligned} & \frac{\pi}{2(R \psi)^{2}}\left[\frac{3.586(\psi / \pi)^{2}+1.246 G J \beta / E I_{z}}{(\psi / \pi)^{2}+1.246 G J / E I_{z}}\right]^{1 / 2}\left(\frac{E I_{z}}{\rho}\right)^{1 / 2} \\ & 0<E I_{z} / G J<2 \quad \beta=(\psi / \pi)^{4}-2.492(\psi / \pi)^{2}+5.139 \end{aligned}$
3. Clamped-pinned Out-of-plane flexure	$\begin{aligned} & \frac{\pi}{2(R \psi)^{2}}\left[\frac{1.080(\psi / \pi)^{2}+1.166 G J \beta / E I_{z}}{(\psi / \pi)^{2}+1.166 G J / E I_{z}}\right]^{1 / 2}\left(\frac{E I_{z}}{\rho}\right)^{1 / 2} \\ & 0<E I_{z} / G J<2 \quad \beta=(\psi / \pi)^{4}-2.332(\psi / \pi)^{2}+2.440 \end{aligned}$

[^25]
TABLE 16-9 NATURAL FREQUENCIES OF CIRCULAR RINGS ${ }^{a}$

Notation
$R=$ radius of ring

$E=$ modulus of elasticity
$G=$ shear modulus of elasticity
$v=$ Poisson's ratio
$J=$ torsional constant
$I_{p}=$ polar moment of inertia
$I, I_{z}=$ moments of inertia about y and z axes
$\rho^{*}=$ mass per unit volume
$\rho=$ mass per unit length
The natural frequencies for extension tend to be higher than the frequencies for bending for thin rings.

Case	Natural Frequency $f_{i}(\mathrm{~Hz})$
1. Extension	$\begin{gathered} \frac{\left(1+i^{2}\right)^{1 / 2}}{2 \pi R}\left(\frac{E}{\rho^{*}}\right)^{1 / 2} \\ i=0,1,2,3, \ldots \end{gathered}$
2. Torsion for general cross sections	$\begin{gathered} \frac{1}{2 \pi R}\left(\frac{i^{2} G J+I_{z} E}{\rho I_{p}}\right)^{1 / 2} \\ i=0,1,2,3, \ldots \end{gathered}$
3. Torsion for circular cross sections	$\frac{\left(i^{2}+v+1\right)^{1 / 2}}{2 \pi R}\left(\frac{G}{\rho^{*}}\right)^{1 / 2}$
4. In-plane bending	$\begin{aligned} & \frac{i\left(i^{2}-1\right)}{2 \pi R^{2}\left(i^{2}+1\right)^{1 / 2}}\left(\frac{E I}{\rho}\right)^{1 / 2} \\ & i=1,2,3, \ldots \end{aligned}$
5. Out-of-plane flexure for general cross sections	$\begin{aligned} & \frac{i\left(i^{2}-1\right)}{2 \pi R^{2}}\left[\frac{E I_{z}}{\rho\left(i^{2}+E I_{z} / G J\right)}\right]^{1 / 2} \\ & \quad i=1,2,3, \ldots \end{aligned}$
6. Out-of-plane flexure for circular cross sections	$\begin{aligned} & \frac{i\left(i^{2}-1\right)}{2 \pi R^{2}\left(i^{2}+1+\nu\right)^{1 / 2}}\left(\frac{E I}{\rho}\right)^{1 / 2} \\ & i=1,2,3, \ldots \end{aligned}$

${ }^{a}$ See Ref. [16.11] for mode shapes.

TABLE 16-10 NATURAL FREQUENCIES OF SOME SIMPLE STRUCTURES CONTAINING CURVED BARS ${ }^{a}$

Notation
Boundary conditions at points A and B :
P-P: pinned-pinned
C-P: clamped-pinned
C-C: clamped-clamped
Natural frequencies $f_{i}(\mathrm{~Hz})$:

$$
\begin{aligned}
& \text { In-plane motion: } f_{i}=\frac{\lambda_{i}}{2 \pi R^{2}}\left(\frac{E I}{\rho}\right)^{1 / 2} \\
& \text { Out-of-plane motion: } f_{i}=\frac{\lambda_{i}}{2 \pi R^{2}}\left(\frac{E I_{z}}{\rho}\right)^{1 / 2}
\end{aligned}
$$

λ_{i} are defined below.

Case	Parameters λ_{i}	
1.		In-Plane Motion
	P-P	$\begin{aligned} & \lambda_{1}=23.0187-27.835 \gamma+77.106 \gamma^{2}-127.155 \gamma^{3}+92.67 \gamma^{4}-30.475 \gamma^{5}+3.702 \gamma^{6} \\ & \lambda_{2}= \begin{cases}43.9286-37.202 \gamma+74.1072 \gamma^{2}-83.33 \gamma^{3} & 0 \leq \gamma<0.8 \\ 93.0596-175.348 \gamma+142.188 \gamma^{2}-55.082 \gamma^{3}+8.286 \gamma^{4} & 0.8 \leq \gamma \leq 2.0\end{cases} \end{aligned}$
	C-P	$\begin{aligned} & \lambda_{1}=23.017-29.28 \gamma+86.0 \gamma^{2}-131.486 \gamma^{3}+84.51 \gamma^{4}-22.89 \gamma^{5}+1.98 \gamma^{6} \\ & \lambda_{2}= \begin{cases}43.957-37.32 \gamma+85.71 \gamma^{2}-93.75 \gamma^{3} & 0 \leq \gamma<0.8 \\ 54.13-58.31 \gamma+23.8 \gamma^{2}-3.47 \gamma^{3} & 0.8 \leq \gamma \leq 2.0\end{cases} \end{aligned}$
	C-C	$\begin{aligned} & \lambda_{1}=23.013-21.315 \gamma+47.424 \gamma^{2}-58.644 \gamma^{3}+28.523 \gamma^{4}-4.758 \gamma^{5} \\ & \lambda_{2}= \begin{cases}44.0286-33.4524 \gamma+80.3572 \gamma^{2}-83.3 \gamma^{3} & 0 \leq \gamma<0.8 \\ 80.369-99.1865 \gamma+44.643 \gamma^{2}-6.94 \gamma^{3} & 0.8 \leq \gamma \leq 2.0\end{cases} \end{aligned}$

TABLE 16-10 (continue	NATURAL FREQUENCIES OF SOME SIMPLE STRUCTURES CONTAINING CURVED BARS ${ }^{\text {a }}$	
	Out-of-Plane Motion	
	P-P	$\begin{aligned} & \lambda_{1}=9.5367-8.327 \gamma+8.426 \gamma^{2}-5.287 \gamma^{3}+1.138 \gamma^{4} \\ & \lambda_{2}=27.0483-32.5 \gamma+109.85 \gamma^{2}-212.817 \gamma^{3}+180.284 \gamma^{4}-69.854 \gamma^{5}+10.244 \gamma^{6} \end{aligned}$
	C-P	$\begin{aligned} & \lambda_{1}=9.5-8.736 \gamma+16.35 \gamma^{2}-23.57 \gamma^{3}+18.58 \gamma^{4}-7.46 \gamma^{5}+1.18 \gamma^{6} \\ & \lambda_{2}=27.032-29.7 \gamma+101.29 \gamma^{2}-191.78 \gamma^{3}+156.256 \gamma^{4}-57.769 \gamma^{5}+8.0423 \gamma^{6} \end{aligned}$
	$\mathrm{C}-\mathrm{C}$	$\begin{aligned} & \lambda_{1}=9.50375-7.24 \gamma+15.447 \gamma^{2}-29.65 \gamma^{3}+29.4 \gamma^{4}-13.67 \gamma^{5}+2.3616 \gamma^{6} \\ & \lambda_{2}=27.05-21.782 \gamma+54.744 \gamma^{2}-77.758 \gamma^{3}+41.8283 \gamma^{4}-7.64 \gamma^{5} \end{aligned}$
2.		In-Plane Motion
	P-P	$\begin{aligned} & \lambda_{1}=4.5-5.1125 \gamma+13.75 \gamma^{2}-17.74 \gamma^{3}+9.7656 \gamma^{4}-1.912 \gamma^{5} \\ & \lambda_{2}= \begin{cases}17.8-6.67 \gamma+10.3125 \gamma^{2}-9.1146 \gamma^{3} & 0 \leq \gamma<1.2 \\ 34.4-29.875 \gamma+7.1875 \gamma^{2} & 1.2 \leq \gamma \leq 2.0\end{cases} \end{aligned}$
	C-P	$\begin{aligned} & \lambda_{1}=4.5-5.375 \gamma+15.078 \gamma^{2}-19.954 \gamma^{3}+11.23 \gamma^{4}-2.238 \gamma^{5} \\ & \lambda_{2}= \begin{cases}17.8-7.417 \gamma+12.8125 \gamma^{2}-10.677 \gamma^{3} & 0 \leq \gamma<1.2 \\ 28.85-22.625 \gamma+5.0 \gamma^{2} & 1.2 \leq \gamma \leq 2.0\end{cases} \end{aligned}$
	$\mathrm{C}-\mathrm{C}$	$\begin{aligned} & \lambda_{1}=4.5-5.4875 \gamma+15.625 \gamma^{2}-20.8 \gamma^{3}-11.72 \gamma^{4}-2.319 \gamma^{5} \\ & \lambda_{2}= \begin{cases}17.8-6.417 \gamma+10.31 \gamma^{2}-7.552 \gamma^{3} & 0 \leq \gamma<1.2 \\ 36.65-27.825 \gamma+6.0 \gamma^{2} & 1.2 \leq \gamma \leq 2.0\end{cases} \end{aligned}$

	Out-of-Plane Motion	
	P-P	$\lambda_{1}=5.81-1.605 \gamma+0.0217 \gamma^{2}+0.5136 \gamma^{3}-0.244 \gamma^{4}$ $\lambda_{2}=9.33-2.936 \gamma-0.625 \gamma^{2}+4.65 \gamma^{3}-4.49 \gamma^{4}+1.1556 \gamma^{5}$
	C-P	$\lambda_{1}=5.784-1.727 \gamma+0.633 \gamma^{2}-0.2662 \gamma^{3}$ $\lambda_{2}=9.34-4.094 \gamma+6.625 \gamma^{2}-5.9 \gamma^{3}+1.49 \gamma^{4}$
	C-C	$\lambda_{1}=5.8-1.3664 \gamma-0.2973$ $\gamma^{2}+0.7849 \gamma^{3}-0.2848 \gamma^{4}$ $\lambda_{2}=9.3366-3.6 \gamma+4.8459 \gamma^{2}-3.4469 \gamma^{3}+0.675 \gamma^{4}$

${ }^{a}$ Based on the results of Ref. [16.12], with permission.

Notation

The boundary conditions are clamped-free.
$R=$ radius of arch
$E=$ modulus of elasticity
$G=$ shear modulus of elasticity
$J=$ torsional constant
$I_{z}=$ moment of inertia about z axis
$\bar{\lambda}=E I_{z} / G J$
$v, \phi, \theta_{z}=$ deflection, angle of rotation, and slope at free end of bar
$M_{z}, T=$ internal bending and twisting moments
$W_{y}, T_{1}, C_{z}=$ concentrated applied force, torque, and moment

Case	Internal Moments		Responses at Free End		
	M_{z}	T	v	ϕ	θ_{z}
1.	$-W_{y} R \sin \alpha$	$W_{y} R(1-\cos \alpha)$	$\begin{aligned} & -\frac{W_{y} R^{3}}{E I_{z}}\left(\frac{1+3 \lambda}{2} \psi\right. \\ & \left.+\frac{\lambda-1}{4} \sin 2 \psi-2 \lambda \sin \psi\right) \end{aligned}$	$\begin{aligned} & \frac{W_{y} R^{2}}{E I_{z}}\left[\frac{\lambda-1}{4} \sin 2 \psi\right. \\ & \left.+\frac{\lambda+1}{2} \psi-\lambda \sin \psi\right] \end{aligned}$	$\begin{aligned} & -\frac{W_{y} R^{2}}{E I_{z}}\left[\frac{\lambda-1}{2} \sin ^{2} \psi\right. \\ & +\lambda(1-\cos \psi)] \end{aligned}$
2.	$T_{1} \sin \alpha$	$T_{1} \cos \alpha$	$\begin{aligned} & \frac{T_{1} R^{2}}{E I_{z}}\left(\frac{\lambda-1}{4} \sin 2 \psi\right. \\ & \left.+\frac{\lambda+1}{2} \psi-\lambda \sin \psi\right) \end{aligned}$	$\begin{aligned} & \frac{T_{1} R}{E I_{z}}\left(\frac{1+\lambda}{2} \psi\right. \\ & \left.+\frac{\lambda-1}{4} \sin 2 \psi\right) \end{aligned}$	$-\frac{T_{1} R}{E I_{z}} \frac{\lambda-1}{2} \sin ^{2} \psi$

	3.	$C_{z} \cos \alpha$	$-_{z} \sin \alpha$	$\begin{aligned} & \frac{C_{z} R^{2}}{E I_{z}}\left[\frac{\lambda-1}{2} \sin ^{2} \psi\right. \\ & +\lambda(1-\cos \psi)] \end{aligned}$	$-\frac{C_{z} R}{E I_{z}} \frac{\lambda-1}{2} \sin ^{2} \psi$	$\frac{C_{z}}{E I_{z}}\left(\frac{\lambda+1}{2} \psi-\frac{\lambda-1}{4} \sin 2 \psi\right)$
		$\begin{aligned} & -p_{y} R^{2} \\ & \times(1-\cos \alpha) \end{aligned}$	$p_{y} R^{2}(\alpha-\sin \alpha)$	$\begin{aligned} & -\frac{p_{y} R^{4}}{E I_{z}}\left[(1-\cos \psi)^{2}\right. \\ & \left.+\lambda(\psi-\sin \psi)^{2}\right] \end{aligned}$	$\begin{aligned} & -\frac{p_{y} R^{3}}{E I_{z}} \\ & \times[(\lambda++1)(1-\cos \psi) \\ & -\frac{\gamma-1}{4}(1-\cos 2 \psi) \\ & -\lambda \psi \sin \psi] \end{aligned}$	$\begin{aligned} & -\frac{p_{y} R^{3}}{E I_{z}}\left[(\lambda+1)\left(\sin \psi-\frac{\psi}{2}\right)\right. \\ & \left.+\frac{\lambda-1}{4} \sin 2 \psi-\lambda \psi \cos \psi\right] \end{aligned}$

TABLE 16-12 PART A: STATIC RESPONSE OF A CIRCULAR BEAM UNDER OUT-OF-PLANE LOADING: GENERAL RESPONSE EXPRESSIONS

Notation

Response

1. Angle of twist: $\phi=\phi_{0} \cos \alpha+\theta_{z_{0}} \sin \alpha-V_{y_{0}} \lambda_{1} R^{2} \lambda_{2}+M_{z_{0}} 0.5 \lambda_{1} R \alpha \sin \alpha$

$$
+T_{0}\left(\frac{R}{G J} \lambda_{5}-\frac{R}{E I_{z}} \lambda_{2}\right)+F_{\phi}
$$

2. Deflection: $v=-\phi_{0} R(\cos \alpha-1)+v_{0}+\theta_{z_{0}} R \sin \alpha$

$$
\begin{aligned}
& +V_{y_{0}}\left(\frac{R^{3}}{G J} \lambda_{4}-\frac{R^{3}}{E I_{z}} \lambda_{2}\right) \\
& +M_{z_{0}}\left(\frac{R^{2} \alpha}{2 E I_{z}} \sin \alpha-\frac{R^{2}}{G J} \lambda_{3}\right) \\
& -T_{0} \lambda_{1} R^{2} \lambda_{2}+F_{v}
\end{aligned}
$$

3. Slope: $\theta_{z}=-\phi_{0} \sin \alpha+\theta_{z_{0}} \cos \alpha+V_{z_{0}}\left(\frac{R^{2}}{G J} \lambda_{3}-\frac{R^{2} \alpha}{2 E I_{z}} \sin \alpha\right)$

$$
+M_{z_{0}}\left(\frac{R}{E I_{z}} \lambda_{5}-\frac{R}{G J} \lambda_{2}\right)-T_{0} 0.5 \lambda_{1} R \alpha \sin \alpha+F_{\theta_{z}}
$$

4. Shear force: $V_{y}=V_{y_{0}}+F_{V_{y}}$
5. Bending moment: $M_{z}=-V_{y_{0}} R \sin \alpha+M_{z_{0}} \cos \alpha-T_{0} \sin \alpha+F_{M_{z}}$
6. Torque: $T=V_{y_{0}}(\cos \alpha-1)+M_{z_{0}} \sin \alpha+T_{0} \cos \alpha+F_{T}$

Loading functions $F_{\phi}, F_{v}, F_{\theta_{z}}, F_{V_{y}}, F_{M_{z}}$, and F_{T} are defined in part B for a variety of applied loads.

To use these formulas, substitute the loading functions into the formulas above and calculate the initial parameters based on the boundary conditions in part C. Use the methodology of Appendix III.

TABLE 16－12 PART B：STATIC RESPONSE OF CIRCULAR BEAMS UNDER OUT－OF－PLANE LOADING：LOADING FUNCTIONS

$$
\begin{aligned}
<\alpha^{n} \sin \alpha> & = \begin{cases}0 & \alpha<\alpha_{1} \\
\left(\alpha-\alpha_{1}\right)^{n} \sin \left(\alpha-\alpha_{1}\right) & \alpha_{1} \leq \alpha<\alpha_{2} \\
\left(\alpha_{2}-\alpha_{1}\right)^{n} \sin \left(\alpha_{2}-\alpha_{1}\right) & \alpha_{2} \leq \alpha\end{cases} \\
<\alpha-\alpha_{1}>^{0} & = \begin{cases}0 & \alpha<\alpha_{1} \cos \alpha> \\
1 & \alpha \geq \alpha_{1}\end{cases} \\
<\alpha^{n}> & = \begin{cases}0 & \alpha<\alpha_{1} \\
\left(\alpha-\alpha_{1}\right)^{n} \cos \left(\alpha-\alpha_{1}\right) & \alpha_{1} \leq \alpha<\alpha_{2} \\
\left(\alpha_{2}-\alpha_{1}\right)^{n} \cos \left(\alpha_{2}-\alpha_{1}\right) & \alpha_{2} \leq \alpha\end{cases} \\
\left(\alpha-\alpha_{1}\right)^{n} & \alpha_{1} \leq \alpha<\alpha_{2} \\
\left(\alpha_{2}-\alpha_{1}\right)^{n} & \alpha_{2} \leq \alpha
\end{aligned} \quad<\alpha-\alpha_{1}>=\left\{\begin{array}{ll}
0 & \alpha<\alpha_{1} \\
\left(\alpha-\alpha_{1}\right) & \alpha \geq \alpha_{1}
\end{array}\right\}
$$

Concentrated Forces and Moments

| Concentrated Vertical Load | Concentrated Torque | Concentrated Bending Moment |
| :--- | :--- | :--- | :--- |

Concentrated Forces and Moments

	Concentrated Vertical Load		Concentrated Bending Moment
F_{v}	$\begin{aligned} & -\frac{W_{y} R^{3}}{2}\left\{\frac { 1 } { G J } \left[2<\alpha-\alpha_{1}>\right.\right. \\ & \left.+<\alpha-\alpha_{1}>\cos \left(\alpha-\alpha_{1}\right)-3 \sin <\alpha-\alpha_{1}>\right] \\ & \left.-\frac{1}{E I_{z}}\left[\sin <\alpha-\alpha_{1}>-<\alpha-\alpha_{1}>\cos \left(\alpha-\alpha_{1}\right)\right]\right\} \end{aligned}$	$\begin{aligned} & \frac{1}{2} T_{1} \lambda_{1} R^{2}\left[\sin <\alpha-\alpha_{1}>\right. \\ & \left.-<\alpha-\alpha_{1}>\cos \left(\alpha-\alpha_{1}\right)\right] \end{aligned}$	$\begin{aligned} & -C_{z} R^{2}\left\{\frac{1}{2 E I_{z}} \sin <\alpha-\alpha_{1}>\right. \\ & +\frac{1}{G J}\left[<\alpha-\alpha_{1}>^{0}-<\alpha-\alpha_{1}>^{0} \cos \left(\alpha-\alpha_{1}\right)\right. \\ & \left.\left.-\frac{1}{2}<\alpha-\alpha_{1}>\sin \left(\alpha-\alpha_{1}\right)\right]\right\} \end{aligned}$
$F_{\theta_{z}}$	$\begin{aligned} & \frac{W_{y} R^{2}}{2}\left\{\frac{1}{E I_{z}}<\alpha-\alpha_{1}>\sin \left(\alpha-\alpha_{1}\right)\right. \\ & -\frac{1}{G J}\left[2<\alpha-\alpha_{1}>^{0}-2<\alpha-\alpha_{1}>^{0} \cos \left(\alpha-\alpha_{1}\right)\right. \\ & \left.\left.-<\alpha-\alpha_{1}>\sin \left(\alpha-\alpha_{1}\right)\right]\right\} \end{aligned}$	$\frac{1}{2} T_{1} \lambda_{1} R<\alpha-\alpha_{1}>\sin \left(\alpha-\alpha_{1}\right)$	$\begin{aligned} & -C_{z} R\left\{\frac { 1 } { E I _ { z } } \left[<\alpha-\alpha_{1}>\cos \left(\alpha-\alpha_{1}\right)\right.\right. \\ & \left.+\sin <\alpha-\alpha_{1}>\right]-\frac{1}{2 G J}\left[\sin <\alpha-\alpha_{1}>\right. \\ & \left.\left.-<\alpha-\alpha_{1}>\cos \left(\alpha-\alpha_{1}\right)\right]\right\} \end{aligned}$
$\underline{F_{V_{y}}}$	$-W_{y}$	0	0
$F_{M_{z}}$	$W_{y} R \sin <\alpha-\alpha_{1}>$	$T_{1} \sin <\alpha-\alpha_{1}>$	$-C_{z}<\alpha-\alpha_{1}>^{0} \cos \left(\alpha-\alpha_{1}\right)$
F_{T}	$W_{y} R\left(<\alpha-\alpha_{1}>^{0} \cos \left(\alpha-\alpha_{1}\right)-<\alpha-\alpha_{1}>^{0}\right)$	$-T_{1}<\alpha-\alpha_{1}>^{0} \cos \left(\alpha-\alpha_{1}\right)$	$-C_{z} \sin <\alpha-\alpha_{1}>$

Distributed Forces and Moments

For distributed forces and moments: $\overline{\mathbf{z}}^{i}=\mathbf{u}^{i} \mathbf{f}$, where $\overline{\mathbf{z}}^{i}=\left[\begin{array}{llllllllll}F_{\phi} & F_{v} & F_{\theta_{z}} & F_{V_{y}} & F_{M_{z}} & F_{T}\end{array}\right]^{T}, \mathbf{f}=\left[\begin{array}{llllll}f_{\phi} & f_{v} & f_{\theta_{z}} & f_{V_{y}} & f_{M_{z}} & f_{T}\end{array}\right]^{T}$, and \mathbf{u}^{i} is the upper left 6×6 submatrix of the extended transfer matrix for massless circular bars of Table 16-13, part B, with $\psi=\alpha$. The elements of \mathbf{f} are given below.

	Uniformly Distributed Transverse Force	Uniformly Distributed Moment	Uniformly Distributed Torque
f_{ϕ}	$\begin{aligned} & -\frac{p_{y 1} R^{3}}{2} \lambda_{1}\left(<\alpha-\alpha_{1}>^{0}-2<\cos \alpha>\right. \\ & -\langle\alpha \sin \alpha>) \end{aligned}$	$-\frac{c_{z 1} R^{2}}{2} \lambda_{1}(<\sin \alpha>-\langle\alpha \cos \alpha>)$	$\begin{aligned} & -\frac{m_{x 1} R^{2}}{2}\left[\lambda _ { 1 } \left(<\alpha-\alpha_{1}>^{0}-<\alpha \sin \alpha>\right.\right. \\ & \left.-<\cos \alpha>)+\left(\frac{1}{G J}-\frac{1}{E I_{z}}\right)<\cos \alpha>\right] \end{aligned}$
f_{v}	$\begin{aligned} & \frac{p_{y 1} R^{4}}{2}\left[\lambda _ { 1 } \left(\langle\alpha \sin \alpha\rangle+\langle\cos \alpha\rangle-\left\langle\alpha-\alpha_{1}>^{0}\right)\right.\right. \\ & \left.\left.-\left(\frac{1}{E I_{z}}+\frac{3}{G J}\right)<\cos \alpha>-\frac{2}{G J}<\alpha^{2}\right\rangle\right] \end{aligned}$	$\begin{aligned} & -\frac{c_{z 1} R^{3}}{2}\left[\lambda_{1}(<\sin \alpha>\right. \\ & -<\alpha \cos \alpha>)-\frac{2}{G J}(<\alpha> \\ & -<\sin \alpha>)] \end{aligned}$	$\begin{aligned} & \frac{1}{2} m_{x 1} \lambda_{1} R^{3}(<\alpha \sin \alpha>+2<\cos \alpha>) \\ & \left.-<\alpha-\alpha_{1}>^{0}\right) \end{aligned}$
$f_{\theta_{z}}$	$\begin{aligned} & -\frac{p_{y 1} R^{3}}{2}\left[\lambda_{1}(<\sin \alpha>-<\alpha \cos \alpha>)\right. \\ & \left.-\frac{2}{G J}(<\alpha>-<\sin \alpha>)\right] \end{aligned}$	$\begin{aligned} & \frac{c_{z 1} R^{3}}{2}\left[\lambda_{1}(<\alpha \sin \alpha>+\langle\cos \alpha>\right. \\ & -\left\langle\alpha-\alpha_{1}>^{0}\right)-\left(\frac{1}{E I_{z}}\right. \\ & \left.\left.-\frac{1}{G J}\right)<\cos \alpha>\right] \end{aligned}$	$\frac{1}{2} m_{x 1} \lambda_{1} R^{2}(<\sin \alpha>-<\alpha \cos \alpha>)$
$f_{V_{V_{y}}}$	$-p_{y 1} R<\alpha>$	0	0
$f_{M_{z}}$	$p_{y 1} R^{2}<\cos \alpha>$	$-R c_{z 1}<\sin \alpha>$	$-m_{x 1} R<\cos \alpha>$
f_{T}	$p_{y 1} R^{2}(<\alpha>-<\sin \alpha>)$	$-R c_{z 1}<\cos \alpha>$	$-m_{x 1} R<\sin \alpha>$

TABLE 16-12 PART C: STATIC RESPONSE OF CIRCULAR BEAMS UNDER
OUT-OF-PLANE LOADING: OUT-OF-PLANE BOUNDARY CONDITIONS

Case
$\mathbf{1}$
Clamped end

4.

Tangentially pinned-fixed end

TABLE 16-12 (continued) PA CIRCULAR BEAMS UNDER OUT OUT-OF-PLANE BOUNDARY C	T C: STATIC RESPONSE OF OF-PLANE LOADING: DITIONS
Case	Boundary Conditions
5. Radially pinned-free end	$M_{z}=\phi=V_{y}=0$
6. Radially pinned-fixed end	$M_{z}=\phi=v=0$
7. Free-fixed end	$T=M_{z}=v=$
8.	$\phi=\theta_{z}=V_{y}=0$

TABLE 16-13 PART A: TRANSFER MATRICES FOR CIRCULAR SEGMENTS: IN-PLANE LOADING

Bending and Extension

Notation

$R=$ radius of centroidal line of bar
$I^{*}=$ moment of inertia modified for
curvature of bar, $\int_{A}\left[z^{2} /(1-z / R)\right] d A$
$E=$ modulus of elasticity
$\rho=$ mass per unit length
$\omega=$ natural frequency
$p_{x}, p_{z}=$ distributed forces per unit length
$m=$ distributed moment per unit length
$u, w, \theta, V, M, P=$ extension, deflection, slope,
shear force, bending moment, and axial force

Definitions for λ_{i} :

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{G J}+\frac{1}{E I_{z}} \\
& \lambda_{2}=\frac{1}{2}(\sin \psi-\psi \cos \psi) \\
& \lambda_{3}=\frac{1}{2}(2-2 \cos \psi-\psi \cos \psi) \\
& \lambda_{4}=\frac{1}{2}(2 \psi+\psi \cos \psi-3 \sin \psi) \\
& \lambda_{5}=\frac{1}{2}(\psi \cos \psi+\sin \psi) \\
& \lambda_{6}=\frac{1}{2}(2-2 \cos \psi-\psi \sin \psi) \\
& \lambda_{7}=\frac{1}{2}(2 \psi+\psi \cos \psi-3 \sin \psi) \\
& \lambda_{8}=2 \sin \psi-\psi \cos \psi-\psi
\end{aligned}
$$

State variables: $\quad \mathbf{z}=\left[\begin{array}{lllllll}u & w & \theta & V & M & P & 1\end{array}\right]^{T}$

Transfer matrix: $\quad \mathbf{U}^{i}=\left\lvert\, \begin{array}{ccccccc}U_{V u} & U_{V w} & U_{V \theta} & U_{V V} & U_{V M} & U_{V P} & F_{V} \\ U_{M u} & U_{M w} & U_{M \theta} & U_{M V} & U_{M M} & U_{M P} & F_{M} \\ U_{P} & U_{P} & U_{P \theta} & U_{P} & U_{P} & U_{P P} & F^{2}\end{array}\right.$
$\left.\begin{array}{ccccccc}U_{P u} & U_{P w} & U_{P \theta} & U_{P V} & U_{P M} & U_{P P} & F_{P} \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Loading vector: $\quad \overline{\mathbf{z}}^{i}=\left[\begin{array}{llllll}F_{u} & F_{w} & F_{\theta} & F_{V} & F_{M} & F_{P}\end{array}\right]^{T} \quad \mathbf{f}^{i}=\left[\begin{array}{llllll}f_{u} & f_{w} & f_{\theta} & f_{V} & f_{M} & f_{P}\end{array}\right]^{T}$

Massless Circular Bars

Transfer matrix:
$\mathbf{U}^{i}=\left[\begin{array}{c|c|c|c|c|c|c}\cos \psi & \sin \psi & -R(1-\cos \psi) & U_{u V} & -\frac{R^{2}}{E I^{*}}(\psi-\sin \psi) & \frac{R}{E A} \lambda_{5}+\frac{R^{3}}{E I^{*}} \lambda_{4} & F_{u} \\ \hline-\sin \psi & \cos \psi & -R \sin \psi & \left(\frac{1}{E A}+\frac{R^{2}}{E I^{*}}\right) R \lambda_{2} & -\frac{R^{2}}{E I^{*}}(1-\cos \psi) & -U_{w P} & F_{w} \\ \hline 0 & 0 & 1 & \frac{R^{2}}{E I^{*}}(1-\cos \psi) & \frac{R}{E I^{*}} \psi & -\frac{R^{2}}{E I^{*}}(\psi-\sin \psi) & F_{\theta} \\ \hline 0 & 0 & 0 & \cos \psi & 0 & -\sin \psi & F_{V} \\ \hline 0 & 0 & 0 & R \sin \psi & 1 & -R(1-\cos \psi) & F_{M} \\ \hline 0 & 0 & 0 & \sin \psi & 0 & \cos \psi & F_{P} \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

$$
U_{u V}=U_{w P}=\frac{R}{2 A E} \psi \sin \psi-\frac{R^{3}}{E I^{* 2}} \lambda_{3}
$$

Loading vector: $\overline{\mathbf{z}}^{i}=\mathbf{u}^{i} \mathbf{f}$
\mathbf{u}^{i} is the upper left 6×6 submatrix of \mathbf{U}^{i}.

TABLE 16-13 (continued) PART A: TRANSFER MATRICES FOR CIRCULAR SEGMENTS: IN-PLANE LOADING

$$
\begin{aligned}
f_{u} & =-R^{2} \int_{0}^{\psi}\left[p_{x}\left(\frac{1}{E A} \lambda_{5}+\frac{1}{E I^{*}} R^{2} \lambda_{4}\right)+m \frac{R}{E I^{*}}(\beta-\sin \beta)-p_{z}\left(\frac{1}{2} \frac{1}{E A} \beta \sin \beta-\frac{1}{E I^{*}} R^{2} \lambda_{3}\right)\right] d \beta \\
f_{w} & =R^{2} \int_{0}^{\psi}\left[p_{x}\left(\frac{1}{2} \frac{\beta}{E A} \sin \beta-\frac{1}{E I^{*}} R^{2} \lambda_{3}\right)-m \frac{1}{E I^{*}} R(1-\cos \beta)-p_{z}\left(\frac{\beta}{E A}+\frac{1}{E I^{*}} R^{2}\right) \lambda_{2}\right] d \beta \\
f_{\theta} & =R^{2} \int_{0}^{\psi}\left[p_{x} \frac{1}{E I^{*}} R(\beta-\sin \beta)+m \frac{1}{E I^{*}} \beta+p_{z} \frac{1}{E I^{*}} R(1-\cos \beta)\right] d \beta \\
f_{V} & =R \int_{0}^{\psi}\left(p_{x} \sin \beta+p_{z} \cos \beta\right) d \beta \\
f_{M} & =R \int_{0}^{\psi}\left[-p_{x} R(1-\cos \beta)-m-p_{z} R \sin \beta\right] d \beta \\
f_{P} & =R \int_{0}^{\psi}\left(-p_{x} \cos \beta+p_{z} \sin \beta\right) d \beta
\end{aligned}
$$

Circular Bars with Mass
$\mathbf{U}^{i}=\left[\begin{array}{c|c|c|c|c|c|c}\cos \psi & \sin \psi & R(\cos \psi-1) & 0 & 0 & 0 & F_{u} \\ \hline-\sin \psi & \cos \psi & -R \sin \psi & 0 & 0 & 0 & F_{w} \\ \hline 0 & 0 & 1 & 0 & 0 & 0 & F_{\theta} \\ \hline \rho \omega^{2} R \psi \sin \psi & -\rho \omega^{2} R \psi \cos \psi & \rho \omega^{2} R^{2}(\psi \sin \psi+\cos \psi-1) & \cos \psi & 0 & -\sin \psi & F_{V} \\ \hline \rho \omega^{2} R^{2}(\sin \psi-\psi \cos \psi) & -\rho \omega^{2} R^{2}(\psi \sin \psi+\cos \psi-1) & -\rho \omega^{2} R r_{y}^{2} \psi+\rho \omega^{2} R^{3} \lambda_{8} & R \sin \psi & 1 & R(\cos \psi-1) & F_{M} \\ \hline-\rho \omega^{2} R \psi \cos \psi & -\rho \omega^{2} R \psi \sin \psi & \rho \omega^{2} R^{2}(\sin \psi-\psi \cos \psi) & \sin \psi & 0 & \cos \psi & F_{P} \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

The form of the loading vector is the same as that given above for a massless bar (i.e., $\overline{\mathbf{z}}^{i}=\mathbf{u}^{i} \mathbf{f}$, where \mathbf{u}^{i} is the upper left 6×6 submatrix of this \mathbf{U}^{i}).

TABLE 16-13 PART B: TRANSFER MATRICES FOR CIRCULAR SEGMENTS: OUT-OF-PLANE LOADING

Bending and Torsion

Notation
$I_{z}=$ moment of inertia about z axis
$p_{y}=$ distributed force per unit length
$m_{x}, m_{z}=$ distributed moments per unit length
$G=$ shear modulus of elasticity
$J=$ torsional constant
$\phi, v, \theta_{z}, V_{y}, M_{z}, T=$ angle of twist, deflection, slope, shear force,
bending moment, and torque
See Table 16-13, part A, for further notation.

State variables:

$$
\mathbf{z}=\left[\begin{array}{lllllll}
\phi & v & \theta_{z} & V_{y} & M_{z} & T & 1
\end{array}\right]^{T}
$$

Transfer matrix:

$$
\mathbf{U}^{i}=\left[\begin{array}{ccccccc}
U_{\phi \phi} & U_{\phi v} & U_{\phi \theta_{z}} & U_{\phi V_{y}} & U_{\phi M_{z}} & U_{\phi T} & F_{\phi} \\
U_{v \phi} & U_{v v} & U_{v \theta_{z}} & U_{v V_{y}} & U_{v M_{z}} & U_{v T} & F_{v} \\
U_{\theta_{z} \phi} & U_{\theta_{z} v} & U_{\theta_{z} \theta_{z}} & U_{\theta_{z} V_{y}} & U_{\theta_{z} M_{z}} & U_{\theta_{z} T} & F_{\theta_{z}} \\
U_{V_{y} \phi} & U_{V_{y} v} & U_{V_{y} \theta_{z}} & U_{V_{y} V_{y}} & U_{V_{y} M_{z}} & U_{V_{y} T} & F_{V_{y}} \\
U_{M_{z} \phi} & U_{M_{z} v} & U_{M_{z} \theta_{z}} & U_{M_{z} V_{y}} & U_{M_{z} M_{z}} & U_{M_{z} T} & F_{M_{z}} \\
U_{T \phi} & U_{T v} & U_{T \theta_{z}} & U_{T V_{y}} & U_{T M_{z}} & U_{T T} & F_{T} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Loading vector:

$$
\begin{aligned}
\overline{\mathbf{z}}^{i} & =\left[\begin{array}{llllll}
F_{\phi} & F_{v} & F_{\theta_{z}} & F_{V_{y}} & F_{M_{z}} & F_{T}
\end{array}\right]^{T} \\
\mathbf{f}^{i} & =\left[\begin{array}{llllll}
f_{\phi} & f_{v} & f_{\theta_{z}} & f_{V_{y}} & f_{M_{z}} & f_{T}
\end{array}\right]^{T}
\end{aligned}
$$

Transfer matrix:
$\mathbf{U}^{i}=\left[\begin{array}{c|c|c|c|c|c|c}\cos \psi & 0 & \sin \psi & -\lambda_{1} R^{2} \lambda_{2} & \frac{1}{2} \lambda_{1} R \psi \sin \psi & \frac{R}{G J} \lambda_{5}-\frac{R}{E I_{z}} \lambda_{2} & F_{\phi} \\ \hline R(\cos \psi-1) & 1 & R \sin \psi & -\frac{R^{3}}{E I_{z}} \lambda_{2}+\frac{R^{3}}{G J} \lambda_{4} & \frac{R^{2} \psi}{2 E I_{z}} \sin \psi-\frac{R^{3}}{G J} \lambda_{3} & -\lambda_{1} R^{2} \lambda_{2} & F_{v} \\ \hline-\sin \psi & 0 & \cos \psi & \frac{R^{2}}{G J} \lambda_{3}-\frac{R^{2} \psi}{2 E I_{z}} \sin \psi & \frac{R}{E I_{z}} \lambda_{5}-\frac{R}{G J} \lambda_{2} & -\frac{1}{2} \lambda_{1} R \psi \sin \psi & F_{\theta_{z}} \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & F_{V_{y}} \\ \hline 0 & 0 & 0 & -R \sin \psi & \cos \psi & -\sin \psi & F_{M_{z}} \\ \hline 0 & 0 & 0 & R(\cos \psi-1) & 0 & \sin \psi & 0 \\ \hline 0 & 0 & 0 & 0 & F_{T} \\ \hline 0 & & & 1\end{array}\right]$

Loading vector: $\overline{\mathbf{z}}^{i}=\mathbf{u}^{i} \mathbf{f}$
\mathbf{u}^{i} is the upper left 6×6 submatrix of \mathbf{U}^{i}.

$$
\begin{aligned}
f_{\phi} & =R^{2} \int_{0}^{\psi}\left[-p_{y} \lambda_{1} R \lambda_{2}-\frac{\lambda_{1}}{2} m_{z} \beta \sin \beta+m_{x}\left(\frac{1}{G J} \lambda_{5}-\frac{1}{E I_{z}} \lambda_{2}\right)\right] d \beta \\
f_{v} & =R^{3} \int_{0}^{\psi}\left[-p_{y} R\left(\frac{1}{E I_{z}} \lambda_{2}-\frac{1}{G J} \lambda_{4}\right)-m_{z}\left(\frac{1}{2 E I_{z}} \beta \sin \beta-\frac{1}{G J} \lambda_{3}\right)-m_{x} \lambda_{1} \lambda_{2}\right] d \beta \\
f_{\theta_{z}} & =R^{2} \int_{0}^{\psi}\left[-p_{y} R\left(\frac{1}{G J} \lambda_{3}-\frac{1}{2 E I_{z}} \beta \sin \beta\right)+m_{z}\left(\frac{1}{E I_{z}} \lambda_{5}-\frac{1}{G J} \lambda_{2}\right)+\frac{1}{2} m_{x} \lambda_{1} \beta \sin \beta\right] d \beta \\
f_{V_{y}} & =R \int_{0}^{\psi} p_{y} d \beta \\
f_{M_{z}} & =R \int_{0}^{\psi}\left(-p_{y} R \sin \beta-m_{z} \cos \beta-m_{x} \sin \beta\right) d \beta \\
f_{T} & =-R \int_{0}^{\psi}\left[p_{y} R(\cos \beta-1)-m_{z} \sin \beta+m_{z} \cos \beta\right] d \beta
\end{aligned}
$$

Circular Bars with Mass
$\mathbf{U}^{i}=\left[\begin{array}{c|c|c|c|c|c|c}\cos \psi & 0 & \sin \psi & 0 & 0 & 0 & F_{\phi} \\ \hline R(\cos \psi-1) & 1 & R \cos \psi & 0 & 0 & 0 & F_{v} \\ \hline-\sin \psi & 0 & \cos \psi & 0 & 0 & 0 & F_{\theta_{z}} \\ \hline \rho \omega^{2} R^{2}(\psi-\sin \psi) & -\rho \omega^{2} R \psi & -\rho \omega^{2} R^{2}(1-\cos \psi) & 1 & 0 & 0 & F_{V_{y}} \\ \hline U_{M_{z} \phi} & \rho \omega^{2} R^{2}(1-\cos \psi) & U_{M_{z} \theta_{z}} & -R \sin \psi & \cos \psi & -\sin \psi & F_{M_{z}} \\ \hline U_{T \phi} & \rho \omega^{2} R^{2}(\psi-\sin \psi) & U_{T \theta_{z}} & R(\cos \psi-1) & \sin \psi & \cos \psi & F_{T} \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

The form of the loading vector is the same as that given above for the massless bar (i.e., $\overline{\mathbf{z}}^{i}=\mathbf{u}^{i} \mathbf{f}$, where \mathbf{u}^{i} is the upper left 6×6 submatrix of this \mathbf{U}^{i}).

TABLE 16-14 PART A: STIFFNESS MATRICES FOR CIRCULAR SEGMENTS: IN-PLANE LOADING

Definitions for C_{i} :

$$
\begin{aligned}
C_{1} & =E A \frac{R-r_{n}}{r_{n}} \\
C_{3} & =\frac{E A}{r_{n}} \\
C_{5} & =1-C_{4}-C_{2} C_{3}\left(1+C_{4}\right) \\
C_{7} & =C_{3}\left(1+C_{4}\right) \\
C_{9} & =\int_{r_{i}}^{r_{0}}\left(r_{0}-r\right) r d A \\
C_{11} & =2 \frac{C_{9}}{C_{10}}-2 C_{8} \\
C_{13} & =2 C_{4} C_{8}-2 \frac{C_{5} C_{9}}{r_{n}} \\
C_{15} & =C_{4}^{2} C_{8}-\frac{C_{5}^{2} C_{10}}{r_{n}^{2}}
\end{aligned}
$$

For thin beams without shear deformation effects and rotary inertia

$$
C_{1}=E I / R^{2} \quad C_{2}=C_{9}=C_{10}=0 \quad r_{n}=R
$$

TABLE 16-14 (continued) PART A: STIFFNESS MATRICES FOR CIRCULAR SEGMENTS: IN-PLANE

 LOADINGNodal variables:

$$
\begin{gathered}
\tilde{\mathbf{v}}^{i}=\left[\begin{array}{llllll}
u_{\bar{x} a} & u_{\bar{z} a} & \theta_{a} & u_{\bar{x} b} & u_{\bar{z} b} & \theta_{b}
\end{array}\right]^{T} \quad \tilde{\mathbf{p}}^{i}=\left[\begin{array}{llllll}
F_{\bar{x} a} & F_{\bar{z} a} & M_{a} & F_{\bar{x} b} & F_{\bar{z} b} & M_{b}
\end{array}\right]^{T} \\
\tilde{\mathbf{p}}^{i}=\tilde{\mathbf{k}}^{i} \tilde{\mathbf{v}}^{i}
\end{gathered}
$$

Element stiffness matrices \mathbf{k}^{i} in the global coordinate system are obtained using $\mathbf{k}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{k}}^{i} \mathbf{T}^{i}$, where \mathbf{T}^{i} is the transformation matrix of Table 13-14 for in-plane loading.

Stiffness matrices:

TABLE 16-14 PART B: STIFFNESS MATRICES FOR CIRCULAR SEGMENTS: OUT-OF-PLANE LOADING

	J $=$ torsional constant I_{z} $=$ moment of inertia
about z axis	

See Table 16-14, part A, for further notation.
Definitions for C_{i} :

$$
\begin{array}{rlrl}
C_{1} & =1 / G A_{s} & & C_{2}=G I_{p} / R^{2} \\
C_{3} & =E I_{z} / R^{2} & C_{4} & =2 R C_{2} C_{3} /\left(C_{2}+C_{3}\right) \\
C_{5} & =2 C_{3} /\left(C_{2}+C_{3}\right) & C_{6}=\left(C_{2}-C_{3}\right) /\left(C_{2}+C_{3}\right) \\
C_{7} & =I_{z} / A & C_{8} & =I_{p} / A \\
C_{9} & =R^{2}+C_{7}+C_{8} & C_{10} & =R^{2}-C_{7}+C_{8} \\
C_{11} & =-C_{10} & C_{12}=C_{7}+C_{5} C_{8} \\
C_{13} & =C_{7}-C_{5} C_{8} & C_{14} & =C_{7}+C_{5}^{2} C_{8} \\
C_{15} & =C_{7}-C_{5}^{2} C_{8} & &
\end{array}
$$

Nodal variables:

$$
\begin{aligned}
\tilde{\mathbf{v}}^{i} & =\left[\begin{array}{llllll}
u_{\bar{y} a} & \theta_{\bar{x} a} & \theta_{\bar{z} a} & u_{\bar{y} b} & \theta_{\bar{x} b} & \theta_{\bar{z} b}
\end{array}\right]^{T} \\
\tilde{\mathbf{p}}^{i} & =\left[\begin{array}{llllll}
F_{\bar{y} a} & M_{\bar{x} a} & M_{\bar{z} a} & F_{\bar{y} b} & M_{\bar{x} b} & M_{\bar{z} b}
\end{array}\right]^{T} \quad \tilde{\mathbf{p}}^{i}=\tilde{\mathbf{k}}^{i} \tilde{\mathbf{v}}^{i}
\end{aligned}
$$

Element stiffness matrices \mathbf{k}^{i} in the global coordinate system are obtained using $\mathbf{k}^{i}=$ $\mathbf{T}^{i T} \tilde{\mathbf{k}}^{i} \mathbf{T}^{i}$, where \mathbf{T}^{i} is the transformation matrix of Table 13-14 for out-of-plane loading.

TABLE 16-14 (continued) PART B: STIFFNESS MATRICES FOR CIRCULAR SEGMENTS: OUT-OF-PLANE LOADING
Stiffness matrices:

TABLE 16-15 PART A: IN-PLANE DEFORMATION: POINT MATRICES

See part B for further notation.

Case	Transfer Matrix					Stiffness and Mass Matrices
1. Concentrated applied forces		$\left[\mathbf{I}_{6 \times 6}\right.$	$\left.\left\lvert\, \begin{array}{c}\mathbf{0}_{3 \times 1} \\ -W \\ C \\ -P_{i} \\ 1\end{array}\right.\right]$			Traditionally, these forces are taken as node forces.
2. Extension spring k_{u}, rotary spring k_{1}^{*}, and transverse elastic support k_{1}. See part B of this table and Table 11-20.		$\left[\begin{array}{l}\mathbf{I}_{3 \times 3} \\ \hline \\ \hline \mathbf{0}_{3 \times 3} \\ \hline\end{array}\right.$		$\begin{gathered} 1 / k_{u} \\ 0 \\ 0 \\ \hline \end{gathered}$	$\left.\mathrm{0}_{6 \times 1}{ }^{1}\right]$	$\begin{aligned} & {\left[\begin{array}{c} P_{a} \\ V_{a} \\ M_{a} \end{array}\right]=\mathbf{k}_{a a}\left[\begin{array}{c} u_{a} \\ w_{a} \\ \theta_{a} \end{array}\right]} \\ & \mathbf{k}_{a a}=\left[\begin{array}{ccc} k_{u} & 0 & 0 \\ 0 & k_{1} & 0 \\ 0 & 0 & k_{1}^{*} \end{array}\right] \end{aligned}$

TABLE 16-15 PART B: IN-PLANE DEFORMATION: SPRING CONSTANTS ${ }^{\text {a }}$							
	$\sum_{z} \sum_{i}$	$z_{k}^{k_{1}^{i}}$	$\sin _{k_{u}}$			$\sum_{c_{b}, E, L, A}$	$\prod_{e_{b}, E, I, A}$
$k_{M u}$	0	0	0	$-\frac{6 E I}{\ell_{b}^{2}}$	$-\frac{3 E I}{\ell_{b}^{2}}$	0	0
$k_{P u}$	0	0	k_{u}	$\frac{12 E I}{\ell_{b}^{3}}$	$\frac{3 E I}{\ell_{b}^{3}}$	$\frac{3 E I}{\ell_{b}^{3}}$	0
$k_{V u}$	k_{1}	0	0	$\frac{E A}{\ell_{b}}$	$\frac{E A}{\ell_{b}}$	$\frac{E A}{\ell_{b}}$	$\frac{E A}{\ell_{b}}$
$k_{M \theta}$	0	k_{1}^{*}	0	$\frac{4 E I}{\ell_{b}}$	$\frac{3 E I}{\ell_{b}}$	0	0
$k_{P \theta}$	0	0	0	$-\frac{6 E I}{\ell_{b}^{2}}$	$-\frac{3 E I}{\ell_{b}^{2}}$	0	0

${ }^{a}$ Units: k_{1}, k_{u} are in force/length; k_{1}^{*} is in force - length/rad. Circles in figures designate flexurally pinned ends.

TABLE 16-16 PART A: OUT-OF-PLANE DEFORMATION: POINT MATRICES

$$
\begin{aligned}
\rho & =\text { mass per unit length } \\
r_{p} & =\text { polar radius of gyration about } x \text { axis } \\
r_{z} & =\text { radius of gyration about } z \text { axis } \\
a_{i} & =\text { location of occurrence }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Notation } \\
& \mathbf{I}=\text { unit diagonal matrix } \\
& m_{i}=\Delta a \rho \\
& I_{p i}=\Delta a \rho r_{p}^{2} \\
& I_{z i}=\Delta a \rho r_{z}^{2} \\
& \mathbf{z}=\text { state vector }=\left[\begin{array}{lllllll}
\phi & v & \theta_{z} & V_{y} & M_{z} & T & 1
\end{array}\right]^{T}
\end{aligned}
$$

See part B for further notation.

TABLE 16-16 (continued) PART A: OUT-OF-PLANE DEFORMATION: POINT MATRICES

$$
\begin{aligned}
m_{i} & =\Delta a \rho \\
I_{p i} & =\Delta a \rho r_{p}^{2}
\end{aligned}
$$

The spring constants $k_{T \phi}, k_{T v}, k_{V_{y} \phi}, k_{V_{y} v}$, and $k_{M_{z}} \theta_{z}$ are defined in part B.

| TABLE 16-16 | PART B: OUT-OF-PLANE DEFORMATION: SPRING CONSTANTS ${ }^{a}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |

| TABLE 16-16 (continued) | PART B: OUT-OF-PLANE DEFORMATION: SPRING CONSTANTS ${ }^{\boldsymbol{a}}$ |
| :--- | :--- | :--- | :--- |

${ }^{a}$ Units: k_{1} is in force/length; k_{1}^{*} and k_{ϕ} are in force - length/rad. Circles on figures designate the flexural pinned end.

TABLE 16-17 CONSISTENT MASS MATRICES FOR CIRCULAR SEGMENTS

\[

\]

Element variables and the sign convention are the same as those in Table 16-14. \mathbf{S} and C_{i} are shown in Table 16-14.
\mathbf{H} is symmetric and the elements not shown in this table are zero.

TABLE 16-17 (continued) CONSISTENT MASS MATRICES FOR CIRCULAR SEGMENTS

Out-of-Plane Motion, $\mathbf{m}^{i}=\rho R \mathbf{S}^{T} \mathbf{H S}$

$$
\begin{aligned}
H_{11}= & R^{2} \beta \\
H_{21}= & R^{2} \sin \beta \\
H_{22}= & \frac{1}{2}\left(C_{9} \beta+C_{10} \sin \beta \cos \beta\right) \\
H_{33}= & \frac{1}{2}\left(C_{9} \beta+C_{11} \sin \beta \cos \beta\right) \\
H_{43}= & \frac{1}{8}\left(C_{10} \sin 2 \beta+2 C_{11} \beta \cos 2 \beta+4 C_{12} \beta+4 C_{13} \sin \beta \cos \beta\right) \\
H_{44}= & \frac{1}{24}\left[4 C_{9} \beta^{3}+6 C_{10} \beta^{2} \sin 2 \beta+12 C_{14} \beta+12 C_{15} \sin \beta \cos \beta\right. \\
& \left.+6\left(C_{10}+2 C_{13}\right) \beta \cos 2 \beta+3\left(C_{11}-2 C_{13}\right) \sin 2 \beta\right] \\
H_{53}= & R^{2}\left(1+C_{1} C_{2}\right)(\sin \beta-\beta \cos \beta)+C_{7} \sin \beta \\
H_{54}= & R^{2}\left(1+C_{1} C_{2}\right)\left(\beta^{2} \sin \beta+2 \beta \cos \beta-2 \sin \beta\right)+C_{7} \beta \cos \beta \\
H_{55}= & \left(1+C_{1} C_{2}\right)^{2} \beta^{3}\left(\frac{1}{3} R^{2}\right)+C_{7} \beta \\
H_{61}= & R^{2}(\sin \beta-\beta \cos \beta) \\
H_{62}= & \frac{1}{8} C_{10} \sin 2 \beta+\frac{1}{4} C_{11} \beta \cos 2 \beta-C_{12}\left(\frac{1}{2} \beta\right)+\frac{1}{2} C_{13}(\sin \beta \cos \beta) \\
H_{66}= & \frac{1}{24}\left[4 C_{9} \beta^{3}-6 C_{10} \beta^{2} \sin 2 \beta-12 C_{14} \beta+12 C_{15} \sin \beta \cos \beta\right. \\
& \left.-6\left(C_{10}+2 C_{13}\right) \beta \cos 2 \beta-3\left(C_{11}-2 C_{13}\right) \sin 2 \beta\right]
\end{aligned}
$$

C H A P T E R
 17

Rotors

17.1 Notation 892
17.2 Sign Convention 894
17.3 Bending Vibration 894
Whirling of a Single-Mass Rotor 894
Single-Mass Rotor on Elastic Supports 899
Coupled Systems 900
Uncoupled Systems 901
Uniform Rotating Shaft 904
Transfer Matrices 907
Rigid Disk 908
Uniform Shaft Element 908
Bearing and Seal Elements 909
Stiffness and Mass Matrices 911
Rigid Disk 911
Shaft Elements 912
Bearing Elements 914
Seal Elements 914
Assembly of Global Matrices 914
17.4 Torsional Vibration 920
17.5 Vibration of a Radial Beam 921
Bending Vibration 922
Natural Frequencies 922
Stiffness and Mass Matrices 922
Axial Vibration 923
Natural Frequencies and Mode Shapes 923
Transfer Matrices 924
Stiffness and Mass Matrices 924
References 925
Tables 927

In this chapter the critical speeds of a rotor and the response of a rotor to unbalanced forces are treated. The transient response of the rotor to loadings on the shaft or through the bearing systems is also considered. The formulas presented are for
shafts that are modeled primarily using the technical (Euler-Bernoulli) beam theory of shafts.

17.1 NOTATION

The notation in this chapter conforms to that normally employed in practice by engineers dealing with rotating-shaft systems. It differs somewhat from that used in the rest of this book. The units for most of the definitions are given in parentheses, using L for length, F for force, M for mass, and T for time.

A Cross-sectional area $\left(L^{2}\right)$
A_{s} Equivalent shear area, $=A / \alpha_{S}\left(L^{2}\right)$
c Coefficient of viscous damping ($F T / L$)
c_{c} Critical damping coefficient ($F T / L$)
$c_{y y}, c_{y z}, c_{z y}, c_{z z}$ Damping coefficients for bearing or seal system (FT/L) (Fig. 17-1)
$c_{y y}^{*}, c_{y z}^{*}, c_{z y}^{*}, c_{z z}^{*}$ Rotary damping coefficients for bearing or seal system ($F L T / \mathrm{rad}$)
$\bar{c}_{y y}, \bar{c}_{y z}, \bar{c}_{z y}, \bar{c}_{z z}$ Damping coefficients for pedestal of bearing or seal system (FT/L) (Fig. 17-1)
e Eccentricity arm for offset mass (L)
E Modulus of elasticity of material $\left(F / L^{2}\right)$
\mathbf{g}^{i} Gyroscopic matrix for i th element
G Shear modulus of elasticity $\left(F / L^{2}\right)$
I Moment of inertia of cross-sectional area about transverse neutral axes $\left(L^{4}\right)$
I_{p} Polar mass moment of inertia per unit length of shaft, $=\rho^{*} A r_{p}^{2}$ ($M L$); for hollow circular cross section $I_{p}=\frac{1}{2} \rho^{*} A\left(r_{o}^{2}+r_{i}^{2}\right)$
$I_{p i}$ Polar mass moment of inertia of concentrated mass at station i $\left(M L^{2}\right)$; can be calculated as $I_{p i}=\Delta a \rho^{*} A r_{p}^{2}$, where Δa is length of shaft lumped at station i; formulas for several configurations given in Table 12-5; for disk of concentrated mass M_{i}, $I_{p i}=\frac{1}{2} M_{i}\left(r_{o}^{2}+r_{i}^{2}\right)$
I_{T} Transverse or diametrical mass moment of inertia per unit length of shaft, $=\rho^{*} A r^{2}(M L)$; for hollow circular cross section $I_{T}=$ $\frac{1}{4} \rho^{*} A\left(r_{o}^{2}+r_{i}^{2}\right)$
$I_{T i}$ Transverse or diametrical mass moment of inertia of concentrated mass at station $i\left(M L^{2}\right)$; can be calculated as $I_{T i}=$ $\Delta a \rho^{*} A r^{2}$, where Δa is length of shaft lumped at station i; for hollow cylinder of length Δa and mass $M_{i}, I_{T i}=$ $\frac{1}{4} M_{i}\left(r_{o}^{2}+r_{i}^{2}\right)+\frac{1}{12} M_{i}(\Delta a)^{2}$; for disk of concentrated mass $M_{i}, I_{T i}=\frac{1}{4} M_{i}\left(r_{o}^{2}+r_{i}^{2}\right)$

```
\(\mathbf{k}^{i}\) Stiffness matrix for \(i\) th element
\(k_{y y}, k_{y z}, k_{z y}, k_{z z}\) Stiffness coefficients for bearing or seal system ( \(F / L\) ) (Fig. 17-1)
\(k_{y y}^{*}, k_{y z}^{*}, k_{z y}^{*}, k_{z z}^{*}\) Rotary stiffness coefficients for bearing system ( \(F L / \mathrm{rad}\) )
\(\bar{k}_{y y}, \bar{k}_{y z}, \bar{k}_{z y}, \bar{k}_{z z}\) Stiffness coefficients for pedestal of bearing or seal system ( \(F / L\) ) (Fig. 17-1)
\(\ell\) Length of element; span of transfer matrix \((L)\)
\(L\) Length of shaft ( \(L\) )
\(m_{b}\) Beam mass (shaft mass) ( \(M\) )
\(\mathbf{m}^{i}\) Mass matrix for \(i\) th element
\(\mathbf{m}_{T}^{i}\) Translation mass matrix for \(i\) th element
\(\mathbf{m}_{R}^{i}\) Rotational mass matrix for \(i\) th element
\(M_{i}\) Concentrated mass ( \(M\) )
\(M_{y}, M_{z}\) Bending moment components about \(y\) and \(z\) axes ( \(F L\) )
\(\mathbf{N}, N_{n}\) Shape functions
\(p_{y}, p_{z}\) Applied loading intensities in \(y\) and \(z\) directions \((F / L)\)
\(P\) Axial force; plus for compression, minus for tension \((F)\)
\(r\) Radius of gyration of cross-sectional area about \(y\) or \(z\) axis ( \(L\) )
\(r_{i}\) Inner radius of hollow circular cross section ( \(L\) )
\(r_{o}\) Outer radius of hollow circular cross section ( \(L\) )
\(r_{p}\) Polar radius of gyration of cross-sectional area about \(x\) axis \((L)\)
\(t\) Time ( \(T\) )
\(\mathbf{U}^{i}\) Field transfer matrix of \(i\) th element
\(\mathbf{U}_{i}\) Point transfer matrix at \(x=a_{i}\)
\(V_{y}, V_{z}\) Shear force components in \(y\) and \(z\) directions ( \(F\) )
\(w_{x}, w_{y}, w_{z}\) Displacements in \(x, y\), and \(z\) directions ( \(L\) )
\(w_{y b}, w_{z b}\) Bearing or seal displacements in \(y, z\) directions ( \(L\) )
\(x y z\) Fixed-reference coordinates
\(X Y Z\) Rotating-reference coordinates
\(X \eta \zeta\) Rotating fluted coordinates with \(\eta\) and \(\zeta\) as principal axes of inertia of sectional area of fluted shaft
\(\alpha_{s}\) Shear correction factor (Table 2-4)
\(\gamma_{n}\) Damping exponent of \(n\)th mode
\(\zeta\) Damping ratio for single-degree-of-freedom system, \(=c / c_{c}\)
\(\theta_{y}, \theta_{z}\) Slope components of displacement curves about \(y\) and \(z\) axes (rad)
\(\xi \eta Z\) Rotating-reference coordinates with \(\xi\) and \(\eta\) as principal axes of inertia of sectional area of radial beam
\(\rho\) Mass per unit length, \(=\rho^{*} A(M / L)\)
```

ρ^{*} Mass per unit volume $\left(M / L^{3}\right)$
ϕ_{n} Mode shapes
ω Whirl speed or natural frequency (rad / T)
ω_{c} Critical speed (rad/T)
ω_{d} Damped critical speed (rad / T)
ω_{n} Natural frequency of nth mode (rad / T)
Ω Spin or rotational speed (rad / T)
A single overdot refers to the first derivative with respect to time t.
A double overdot refers to the second derivative with respect to time t.
A single prime refers to the first derivative with respect to space coordinate.
A double prime refers to the second derivative with respect to space coordinate.

17.2 SIGN CONVENTION

Positive displacements, slopes, moments, shear forces, and applied loadings are indicated in Fig. 17-1. As with the notation, the sign convention for rotor systems conforms to that used in practice. See Fig. II-4.

17.3 BENDING VIBRATION

Whirling of a Single-Mass Rotor

The fundamentals of rotor whirl due to residual rotor unbalance can be characterized using the simple rotor shown in Fig. 17-2. This rotor system, referred to as a Jeffcott rotor, consists of a massless elastic shaft on which a single disk is mounted at midspan, with both ends simply supported. The rotor mass is concentrated at the center of gravity G of the disk at a distance e from the geometric center (centroid) S of the disk. The centerline $\overline{00}$ of the bearings intersects the plane of the disk at 0 , and the shaft center is off by a distance $0 S=w$.

The equations of motion for the centroid S of the disk in the y and z directions are

$$
\begin{align*}
M_{i} \ddot{w}_{y}+c \dot{w}_{y}+k w_{y} & =M_{i} e \Omega^{2} \cos \Omega t \tag{17.1}\\
M_{i} \ddot{w}_{z}+c \dot{w}_{z}+k w_{z} & =M_{i} e \Omega^{2} \sin \Omega t \tag{17.2}
\end{align*}
$$

where M_{i} is the disk mass, c is the damping coefficient, k is the shaft stiffness at midspan, and Ω is the shaft rotational speed. Combine these equations into the single

Figure 17-1: Notation and sign convention: (a) xz plane; (b) xy plane; (c, d) cross-sectional view; (e) positive forces, moments, and slopes for transfer matrices (sign convention $1 ; P>0$ for compression, $P<0$ for tension); (f) positive forces, moments, and slopes for stiffness, mass, and damping matrices (sign convention $2 ; P>0$ for tension, $P<0$ for compression).

(b)
(a)

(e)

Figure 17-2: Whirling of a simple rotor in two radially rigid bearings.
equation

$$
\begin{equation*}
M_{i} \ddot{w}+c \dot{w}+k w=M_{i} e \Omega^{2} e^{i \Omega t} \tag{17.3}
\end{equation*}
$$

where $w=w_{y}+i w_{z}$ is the whirl radius of the shaft geometric center, $i=\sqrt{-1}$. The solution consists of a complementary function (free whirl) and a particular solution (unbalance whirl). The unbalance whirl has the general form

$$
\begin{equation*}
w=w_{0} e^{i(\Omega t-\phi)} \tag{17.4}
\end{equation*}
$$

where w_{0} is the whirl radius amplitude and ϕ is the phase angle between the unbalance force $F=M_{i} e \Omega^{2}$ and the amplitude w_{0}. Substitution of Eq. (17.4) into Eq. (17.3) leads to the whirl amplitude and phase angle at the disk,

$$
\begin{align*}
w_{0} & =\frac{e \eta^{2}}{\left[\left(1-\eta^{2}\right)^{2}+(2 \zeta \eta)^{2}\right]^{1 / 2}} \tag{17.5}\\
\phi & =\tan ^{-1} \frac{2 \zeta \eta}{1-\eta^{2}} \tag{17.6}
\end{align*}
$$

where $\omega_{c}=\sqrt{k / M_{i}}$ is the undamped critical speed, $\eta=\Omega / \omega_{c}$ is the speed ratio, $\zeta=c / c_{c}$ is the damping ratio, and $c_{c}=2 M_{i} \omega_{c}=2 \sqrt{k M_{i}}$ is the critical damping.

The nondimensional whirl amplitude \bar{w}_{0} is given by

$$
\begin{equation*}
\bar{w}_{0}=\frac{w_{0}}{e}=\frac{\eta^{2}}{\left[\left(1-\eta^{2}\right)^{2}+(2 \zeta \eta)^{2}\right]^{1 / 2}} \tag{17.7a}
\end{equation*}
$$

and the maximum whirl amplitude occurs at

$$
\begin{equation*}
\eta=1 / \sqrt{1-2 \zeta^{2}} \approx 1+\zeta^{2} \tag{17.7b}
\end{equation*}
$$

For low damping ($\zeta<0.25$), the maximum whirl amplitude can be approximated by

$$
\begin{equation*}
\bar{w}_{0} \approx 1 / 2 \zeta \tag{17.8}
\end{equation*}
$$

Figure 17-2 shows several whirling configurations, and Fig. 17-3 shows the variation of whirl amplitude and phase angle with the speed and damping ratio.

The critical speeds ω_{c} for simple rotors with commonly occurring end conditions are provided in Table 17-1.

Example 17.1 Centrifugal Pump The disk of a single-stage centrifugal pump weighing 300 N is attached to the center of a $0.1-\mathrm{m}$-diameter steel shaft of length 1 m between the bearings. Neglect the effects of damping and find (a) the translational critical speed of the rotor, (b) the whirl amplitude at 1750 rpm if the eccentricity is $15 \mu \mathrm{~m}$, and (c) the force transmitted to the bearings at this speed.

Figure 17-3: Whirl amplitude and phase for a whirling rotor as a function of speed.

Assume that the shaft is simply supported at each end. The solution follows from the formulas of case 1 of Table 17-1.
(a) The translational critical speed is calculated as follows:

Disk mass:

$$
M_{i}=W / g=300 / 9.8=30.61 \mathrm{~kg}
$$

Shaft mass: $\quad m_{b}=\rho^{*} A L=7850 \pi\left(0.1^{2} / 4\right) 1=61.65 \mathrm{~kg}$
Critical speed: $\quad \omega_{c}=\left[\frac{48 E I}{L^{3}\left(M_{i}+0.49 m_{b}\right)}\right]^{1 / 2}=895.49 \mathrm{rad} / \mathrm{s}=8551 \mathrm{rpm}$
(b) From Eq. (17.7) the whirl amplitude at 1750 rpm is

$$
w_{0}=\frac{e \eta^{2}}{1-\eta^{2}}=\frac{15 \times 10^{-6}(1750 / 8551)^{2}}{1-(1750 / 8551)^{2}}=0.656 \times 10^{-6} \mathrm{~m}=0.656 \mu \mathrm{~m}
$$

(c) The force transmitted to the two bearings at 1750 rpm is equal to the centrifugal force $M_{i}\left(w_{0}+e\right) \Omega^{2}$ acting in an outward direction through G (Fig. 17-2c):

$$
\begin{aligned}
F & =M_{i}\left(w_{0}+e\right) \Omega^{2}=30.61\left(0.656 \times 10^{-6}+1.5 \times 10^{-5}\right)(2 \pi \cdot 1750 / 60)^{2} \\
& =16.1 \mathrm{~N}
\end{aligned}
$$

The critical speeds of vertical shafts having an attached mass at an intermediate point and various end constraints with consideration of the axial force owing to the weight of the mass are shown in Table 17-2. Gyroscopic effects of the shaft and the attached mass are ignored.

Single-Mass Rotor on Elastic Supports

For a one-mass flexible rotor on two identical anisotropic bearing (Fig. 17-4), the equations of motion of the mass and bearings are

$$
\begin{align*}
M_{i} \ddot{w}_{y}+k\left(w_{y}-w_{y b}\right) & =M_{i} e \Omega^{2} \cos \Omega t M_{i} \ddot{w}_{z}+k\left(w_{z}-w_{z b}\right) \\
& =M_{i} e \Omega^{2} \sin \Omega t \tag{17.9}\\
k\left(w_{y b}-w_{y}\right) & =-2 F_{y} k\left(w_{z b}-w_{z}\right)=-2 F_{z} \tag{17.10}
\end{align*}
$$

where k is the shaft stiffness, F_{y} and F_{z} are the reaction forces of the bearings, and the shaft damping is ignored.

Figure 17-4: Single mass flexible rotor on two identical anisotropic bearings.

Coupled Systems The bearing coefficients are denoted as

$$
\left[\begin{array}{l}
F_{y} \tag{17.11}\\
F_{z}
\end{array}\right]=\left[\begin{array}{ll}
k_{y y} & k_{y z} \\
k_{z y} & k_{z z}
\end{array}\right]\left[\begin{array}{c}
w_{y b} \\
w_{z b}
\end{array}\right]+\left[\begin{array}{ll}
c_{y y} & c_{y z} \\
c_{z y} & c_{z z}
\end{array}\right]\left[\begin{array}{c}
\dot{w}_{y b} \\
\dot{w}_{z b}
\end{array}\right]
$$

with $\dot{w}_{y b}=d w_{y b} / d t$ and $\dot{w}_{z b}=d w_{z b} / d t$.
Substitution of Eq. (17.11) into Eqs. (17.9) and (17.10) leads to the equation of motion

$$
\begin{equation*}
\mathbf{M} \ddot{\mathbf{w}}+\mathbf{C} \dot{\mathbf{w}}+\mathbf{K w}=\mathbf{F} \tag{17.12}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{M}=\left[\begin{array}{cccc}
M_{i} & 0 & 0 & 0 \\
0 & M_{i} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], & \mathbf{C}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 c_{y y} & 2 c_{y z} \\
0 & 0 & 2 c_{z y} & 2 c_{z z}
\end{array}\right], \\
\mathbf{K}=\left[\begin{array}{cccc}
k & 0 & -k & 0 \\
0 & k & 0 & -k \\
-k & 0 & k+2 k_{y y} & 2 k_{y z} \\
0 & -k & 2 k_{z y} & k+2 k_{z z}
\end{array}\right], & \mathbf{F}=M_{i} e \Omega^{2}\left[\begin{array}{c}
\cos \Omega t \\
\sin \Omega t \\
0 \\
0
\end{array}\right], \\
\mathbf{w}=\left[\begin{array}{llll}
w_{y} & w_{z} & w_{y b} & w_{z b}
\end{array}\right]^{T}, \quad \dot{\mathbf{w}}=\frac{d \mathbf{w}}{d t}, & \ddot{\mathbf{w}}=\frac{d^{2} \mathbf{w}}{d t^{2}}
\end{aligned}
$$

This equation can be solved for the critical speeds or for the response of the rotor to unbalance forces. For the latter case the solution for the motion of the mass can be of the form

$$
\left[\begin{array}{l}
w_{y}(t) \tag{17.13}\\
w_{z}(t)
\end{array}\right]=\left[\begin{array}{c}
w_{y}^{c} \\
w_{z}^{c}
\end{array}\right] \cos \Omega t+\left[\begin{array}{c}
w_{y}^{s} \\
w_{z}^{s}
\end{array}\right] \sin \Omega t
$$

and then

$$
\begin{align*}
w_{0}(t) & =w_{y}(t)+i w_{z}(t) \\
& =w_{y}^{c} \cos \Omega t+w_{y}^{s} \sin \Omega t+i\left(w_{z}^{c} \cos \Omega t+w_{z}^{s} \sin \Omega t\right) \\
& =w_{0}^{+} e^{i \Omega t}+w_{0}^{-} e^{-i \Omega t} \tag{17.14}
\end{align*}
$$

with

$$
w_{0}^{+}=\frac{1}{2}\left[\left(w_{y}^{c}+w_{z}^{s}\right)+i\left(w_{z}^{c}-w_{y}^{s}\right)\right], \quad w_{0}^{-}=\frac{1}{2}\left[\left(w_{y}^{c}-w_{z}^{s}\right)+i\left(w_{z}^{c}+w_{y}^{s}\right)\right]
$$

where w_{0}^{+}is the whirl radius of the forward precession component, which is in the same direction as the rotation of the rotor, while w_{0}^{-}is that of the backward precession component.

The maximum whirl radius is defined by the major semiaxis of elliptic whirl orbit of the geometric shaft center,

$$
\begin{align*}
w_{0, \max } & =\left|w_{0}^{+}\right|+\left|w_{0}^{-}\right| \tag{17.15}\\
& =\frac{1}{2}\left[\sqrt{\left(w_{y}^{c}+w_{z}^{s}\right)^{2}+\left(w_{z}^{c}-w_{y}^{s}\right)^{2}}+\sqrt{\left(w_{y}^{c}-w_{z}^{s}\right)^{2}+\left(w_{z}^{c}+w_{y}^{s}\right)^{2}}\right]
\end{align*}
$$

Uncoupled Systems Consider the symmetric bearings without cross-coupling terms. A force balance at the bearings gives

$$
\begin{equation*}
k\left(w_{y}-w_{y b}\right)=2\left(k_{b} w_{y b}+c_{b} \dot{w}_{y b}\right), \quad k\left(w_{z}-w_{z b}\right)=2\left(k_{b} w_{z b}+c_{b} \dot{w}_{z b}\right) \tag{17.16}
\end{equation*}
$$

where $k_{b}=k_{y y}=k_{z z}, c_{b}=c_{y y}=c_{z z}$. Insert Eq. (17.16) into Eqs. (17.9) and (17.10):

$$
\begin{gather*}
\mathbf{M}_{i} \ddot{w}_{y}+k\left(w_{y}-w_{y b}\right)=M_{i} e \Omega^{2} \cos \Omega t, \quad \mathbf{M}_{i} \ddot{w}_{z}+k\left(w_{z}-w_{z b}\right)=M_{i} e \Omega^{2} \sin \Omega t, \\
k\left(w_{y}-w_{y b}\right)=2\left(k_{b} w_{y b}+c_{b} \dot{w}_{y b}\right) \quad k\left(w_{z}-w_{z b}\right)=2\left(k_{b} w_{z b}+c_{b} \dot{w}_{z b}\right) \tag{17.17a}
\end{gather*}
$$

Combine these equations as

$$
\begin{equation*}
M_{i} \ddot{w}+k\left(w-w_{b}\right)=M_{i} e \Omega^{2} e^{i \Omega t}, \quad k\left(w-w_{b}\right)=2\left(k_{b} w_{b}+c_{b} \dot{w}_{b}\right) \tag{17.17b}
\end{equation*}
$$

where $w=w_{y}+i w_{z}$ and $w_{b}=w_{y b}+i w_{z b}$ are the whirl radii of the shaft geometric center and the bearing journal center, respectively.

The solution to Eq. (17.17b) is of the form

$$
\begin{equation*}
w=\bar{w} e^{i \Omega t}, \quad w_{b}=\bar{w}_{b} e^{i \Omega t} \tag{17.18}
\end{equation*}
$$

The equations can be rewritten as

$$
\begin{align*}
-M_{i} \Omega^{2} \bar{w}+k\left(\bar{w}-\bar{w}_{b}\right) & =M_{i} e \Omega^{2} \tag{17.19a}\\
k\left(\bar{w}-\bar{w}_{b}\right) & =2\left(k_{b}+i \Omega c_{b}\right) \bar{w}_{b} \tag{17.19b}
\end{align*}
$$

From Eq. (17.19b),

$$
\begin{equation*}
\bar{w}_{b}=\frac{k \bar{w}}{k+2 k_{b}+2 i \Omega c_{b}} \tag{17.20}
\end{equation*}
$$

Insert Eq. (17.20) into Eq. (17.19a) and rearrange terms,

$$
\begin{equation*}
\bar{w}=\frac{e \eta^{2}}{1-\eta^{2}} \frac{(1+\bar{K})+i \Omega c_{b} / k_{b}}{\left[1-\bar{K} \eta^{2} /\left(1-\eta^{2}\right)\right]+i\left(\Omega c_{b} / k_{b}\right)} \tag{17.21}
\end{equation*}
$$

where $\bar{K}=k / 2 k_{b}, \eta^{2}=\left(M_{i} / k\right) \Omega^{2}$.

The whirl radius at the geometric shaft center is found to be

$$
\begin{equation*}
w_{0}=|\bar{w}|=\left|\frac{e \eta^{2}}{1-\eta^{2}} \sqrt{\frac{(1+\bar{K})^{2}+\left(\Omega c_{b} / k_{b}\right)^{2}}{\left[1-\bar{K} \eta^{2} /\left(1-\eta^{2}\right)\right]^{2}+\left(\Omega c_{b} / k_{b}\right)^{2}}}\right| \tag{17.22}
\end{equation*}
$$

Substitution of Eq. (17.21) into Eq. (17.20) gives the shaft whirl radius at the bearings:

$$
\begin{equation*}
w_{0 b}=\left|\bar{w}_{b}\right|=\left|\frac{e \eta^{2}}{1-\eta^{2}} \frac{\bar{K}}{\sqrt{\left[1-\bar{K} \eta^{2} /\left(1-\eta^{2}\right)\right]^{2}+\left(\Omega c_{b} / k_{b}\right)^{2}}}\right| \tag{17.23}
\end{equation*}
$$

Example 17.2 Rotor with Flexible Supports Consider a midspan disk of weight $W=300 \mathrm{~N}$ and a steel shaft 0.1 m in diameter and 1 m in length between the bearings (Fig. 17-5). This rotor is assumed to operate with two identical isotropic end bearings. The coupled terms of bearing coefficients are ignored:

$$
k_{y z}=k_{z y}=0, \quad c_{y z}=c_{z y}=0
$$

Also,

$$
k_{y y}=k_{z z}=k_{b}=50 \mathrm{MN} / \mathrm{m}, \quad c_{y y}=c_{z z}=c_{b}=10 \mathrm{kN} \cdot \mathrm{~s} / \mathrm{m}
$$

Find (a) the system undamped critical speed, (b) the damped critical speed, (c) the maximum shaft whirl radius at the disk for an eccentricity of $15 \mu \mathrm{~m}$ at the disk, and (d) the maximum journal whirl radius.
(a) Undamped critical speed: Shaft stiffness (Table 10-3, case 8, for pinnedpinned supports) is calculated as

$$
\begin{equation*}
k_{s}=\frac{48 E I}{L^{3}}=\frac{48\left(2.07 \times 10^{11}\right) \pi\left(0.1^{4}\right)}{1^{3} \times 64}=4.877 \times 10^{7} \mathrm{~N} / \mathrm{m} \tag{1}
\end{equation*}
$$

The bearing stiffness is k_{b}, so the combined shaft bearing stiffness k is (Table 10-4, case 4)

$$
\begin{equation*}
\frac{1}{k}=\frac{1}{k_{s}}+\frac{1}{2 k_{b}}=\frac{1}{4.877 \times 10^{7}}+\frac{1}{1 \times 10^{8}} \tag{2}
\end{equation*}
$$

so that

$$
k=3.278 \times 10^{7} \mathrm{~N} / \mathrm{m}
$$

Figure 17-5: Example 17.2.

The disk mass and shaft mass are calculated as

$$
M_{i}=W / g=30.61 \mathrm{~kg} \quad \text { and } \quad m_{b}=\rho^{*} A L=7850 \pi\left(0.1^{2} / 4\right) \times 1=61.65 \mathrm{~kg}
$$

The critical speed follows from the formulas of case 1 of Table 17-1 by replacing shaft stiffness $48 E I / L^{3}$ in case 1 with k of (2),

$$
\begin{align*}
\omega_{c} & =\sqrt{\frac{k}{M_{i}+0.49 m_{b}}}=\sqrt{\frac{3.278 \times 10^{7}}{60.8185}}=734.15 \mathrm{rad} / \mathrm{s} \\
& =\frac{60}{2 \pi} \times 734.15 \mathrm{rpm} \\
& =7010.6 \mathrm{rpm} \tag{3}
\end{align*}
$$

(b) Damped critical speed: The total damping coefficient $c=2 c_{b}$. From the damping ratio $\zeta=c / c_{c}$ and $c_{c}=2 M_{i} \omega_{c}$ with M_{i} replaced by $M_{i}+0.49 m_{b}$:

$$
\begin{equation*}
\zeta=\frac{2 c_{b}}{2\left(M_{i}+0.49 m_{b}\right) \omega_{c}}=\frac{2(10)^{4}}{2(60.8185) 734.15}=0.2240 \tag{4}
\end{equation*}
$$

The shaft speed Ω at the maximum whirl amplitude is the damped critical speed ω_{d}. From Eq. (17.7b), the maximum whirl amplitude occurs at $\eta=\Omega / \omega_{c}=1+\zeta^{2}$. Then

$$
\begin{align*}
\omega_{d} & =\Omega=\omega_{c} \eta=\omega_{c}\left(1+\zeta^{2}\right)=7010.6\left(1+0.2240^{2}\right)=7362.4 \mathrm{rpm} \\
& =770.98 \mathrm{rad} / \mathrm{s} \tag{5}
\end{align*}
$$

(c) Maximum shaft whirl radius at disk: The maximum whirl motion produces the resonance $\left(\Omega=\omega_{d}\right)$. From Eq. (17.22),

$$
\begin{align*}
\bar{K} & =\frac{k_{s}}{2 k_{b}}=\frac{4.877 \times 10^{7}}{2\left(5 \times 10^{7}\right)}=0.4877, \quad \eta=\frac{\Omega}{\omega_{c}}=\frac{\omega_{d}}{\omega_{c}}=\frac{770.98}{734.15}=1.05 \tag{6}\\
\frac{w_{0}}{e} & =\left|\frac{\eta^{2}}{1-\eta^{2}}\left[\frac{(1+\bar{K})^{2}+\left(\omega_{d} c_{b} / k_{b}\right)^{2}}{\left[1-\bar{K} \eta^{2} /\left(1-\eta^{2}\right)\right]^{2}+\left(\omega_{d} c_{b} / k_{b}\right)^{2}}\right]^{1 / 2}\right| \\
& =\left|\frac{1.05^{2}}{1-1.05^{2}}\left\{\frac{(1+0.4877)^{2}+\left(770.98 \times 10^{4} /\left(5 \times 10^{7}\right)\right)^{2}}{\left[1-\frac{(0.4877) 1.05^{2}}{1-1.05^{2}}\right]^{2}+\left(\frac{770.98 \times 10^{4}}{5 \times 10^{7}}\right)^{2}}\right\}\right|=2.58 \tag{7}
\end{align*}
$$

and the maximum whirl radius is $w_{0}=2.58 e=3.87 \times 10^{-5} \mathrm{~m}=38.7 \mu \mathrm{~m}$.
(d) Maximum journal whirl radius: From Eq. (17.23), the dynamic magnification factor at the bearings is given by

$$
\begin{align*}
\frac{w_{0 b}}{e} & =\left|\frac{\eta^{2}}{1-\eta^{2}}\left[\frac{\bar{K}^{2}}{\left[1-\bar{K} \eta^{2} /\left(1-\eta^{2}\right)\right]^{2}+\left(\omega_{d} c_{b} / k_{b}\right)^{2}}\right]^{1 / 2}\right| \\
& =\left|\frac{1.05^{2}}{1-1.05^{2}}\left\{\frac{0.4877^{2}}{\left[1-\frac{(0.4877) 1.05^{2}}{1-1.05^{2}}\right]^{2}+\left(\frac{770.98 \times 10^{4}}{5 \times 10^{7}}\right)^{2}}\right\}^{1 / 2}\right|=0.84 \tag{8}
\end{align*}
$$

Then the maximum whirl radius is

$$
\begin{equation*}
w_{0 b}=0.84 e=1.26 \times 10^{-5} \mathrm{~m}=12.6 \mu \mathrm{~m} \tag{9}
\end{equation*}
$$

Uniform Rotating Shaft

In the Euler-Bernoulli shaft model the shear deformation effects are neglected, but the terms for the gyroscopic moment and the moment due to the inertia of rotation of the cross section are included [17.2]:

$$
\begin{equation*}
E I \frac{\partial^{4} w}{\partial x^{4}}+\rho^{*} A \frac{\partial^{2} w}{\partial t^{2}}-\rho^{*} I\left(\frac{\partial^{4} w}{\partial x^{2} \partial t^{2}}-i 2 \Omega \frac{\partial^{3} w}{\partial x^{2} \partial t}\right)=p(x, t) \tag{17.24}
\end{equation*}
$$

where $w=w_{y}+i w_{z}$ is the complex deflection and $p(x, t)$ is the external force. For a uniform shaft free from external forces, $p(x, t)=0$, Eq. (17.24) has a solution of the form

$$
\begin{equation*}
w(x, t)=\sum_{n=1}^{\infty} \phi_{n}(x) \eta_{n}(t)=\sum_{n=1}^{\infty} W_{n} e^{\left(\sqrt{s_{n}} x+i \omega_{n} t\right)} \tag{17.25}
\end{equation*}
$$

where W_{n} is the complex amplitude, s_{n} characterizes the mode shapes, and ω_{n} are the natural frequencies. This leads to the equation

$$
\begin{equation*}
E I s_{n}^{2}+\rho^{*} I\left(\omega_{n}^{2}-2 \Omega \omega_{n}\right) s_{n}-\rho^{*} A \omega_{n}^{2}=0 \tag{17.26}
\end{equation*}
$$

From Eq. (17.26),

$$
\begin{align*}
s_{n} & =-\frac{\rho^{*} I\left(\omega_{n}^{2}-2 \Omega \omega_{n}\right)}{2 E I} \pm\left[\left(\frac{\rho^{*} I\left(\omega_{n}^{2}-2 \Omega \omega_{n}\right)}{2 E I}\right)^{2}+\frac{\rho^{*} A \omega_{n}^{2}}{E I}\right]^{1 / 2}=\left\{\begin{array}{l}
p_{n}^{2} \\
-q_{n}^{2}
\end{array}\right. \\
\sqrt{s_{n}} & =\left\{\begin{array}{l}
p_{n} \\
i q_{n}
\end{array}\right. \tag{17.27}
\end{align*}
$$

The eigenfunctions $\phi_{n}(x)$ will take the form

$$
\begin{equation*}
\phi_{n}(x)=C_{1 n} \cosh p_{n} x+C_{2 n} \sinh p_{n} x+C_{3 n} \cos q_{n} x+C_{4 n} \sin q_{n} x \tag{17.28}
\end{equation*}
$$

where $C_{1 n}, C_{2 n}, C_{3 n}$, and $C_{4 n}$ are integration constants to be determined from the boundary conditions, while p_{n} and q_{n} are the two values of $\sqrt{s_{n}}$ satisfying Eq. (17.27).

The corresponding natural frequencies are determined from Eq. (17.26):

$$
\begin{align*}
& \omega_{c 1}=\frac{-\Omega \beta_{n}^{2}+\sqrt{\Omega^{2} \beta_{n}^{4}+\left(1-\beta_{n}^{2}\right) \omega_{0}^{2}}}{1-\beta_{n}^{2}} \tag{17.29}\\
& \omega_{c 2}=\frac{-\Omega \beta_{n}^{2}-\sqrt{\Omega^{2} \beta_{n}^{4}+\left(1-\beta_{n}^{2}\right) \omega_{0}^{2}}}{1-\beta_{n}^{2}}
\end{align*}
$$

where

$$
\begin{gathered}
\beta_{n}=\frac{\lambda_{n} r}{L}, \quad r^{2}=\frac{I}{A}, \quad \omega_{0}=\left(\frac{\lambda_{n}}{L}\right)^{2}\left(\frac{E I}{\rho^{*} A}\right)^{1 / 2}, \\
\lambda_{n}=p_{n} L, \quad \text { or } \quad \lambda_{n}=q_{n} L
\end{gathered}
$$

For a Rayleigh beam (gyroscopic effects are ignored)

$$
\begin{equation*}
\omega_{c 1}=\frac{\omega_{0}}{\sqrt{\left|1-\beta_{n}^{2}\right|}}, \quad \omega_{c 2}=-\frac{\omega_{0}}{\sqrt{\left|1-\beta_{n}^{2}\right|}} \tag{17.30}
\end{equation*}
$$

There are two natural frequencies, one always positive and the other negative. The positive and negative natural frequencies are known to be associated with the forward and backward precessions, respectively. The critical speeds, mode shapes, and frequency equations for uniform rotors with various end conditions are provided in Table 17-3.

Example 17.3 Cylindrical Rotor A uniform cylindrical rotor is supported in undamped flexible end bearings of identical stiffness k_{b} in all radial directions (Fig. 17-6).

Deduce the frequency equation, and calculate the critical speeds using the frequency equation. Ignore the effect of the inertia of rotation of the cross section.

Figure 17-6: Example 17.3.

For this case

$$
\begin{gathered}
k_{b}=1 \mathrm{GN} / \mathrm{m}, \quad L=1 \mathrm{~m}, \quad d=0.1 \mathrm{~m} \\
E=207 \mathrm{GN} / \mathrm{m}^{2}, \quad \rho^{*}=7854 \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

Refer to Fig. 17-1e in establishing the equations representing the boundary conditions. Use sign convention 1, Fig. 17-1e. The moments and shear forces on the boundaries are

$$
\begin{array}{lll}
x=0 ; & M(0)=0 & V(0)=k_{b} w(0, t) \\
x=L ; & M(L)=0 & V(L)=-k_{b} w(L, t) \tag{1}
\end{array}
$$

so

$$
\begin{array}{ll}
-E I \frac{\partial^{2} w(0, t)}{\partial x^{2}}=0 & -E I \frac{\partial^{3} w(0, t)}{\partial x^{3}}-k_{b} w(0, t)=0 \\
-E I \frac{\partial^{2} w(L, t)}{\partial x^{2}}=0 & -E I \frac{\partial^{3} w(L, t)}{\partial x^{3}}+k_{b} w(L, t)=0 \tag{2}
\end{array}
$$

If there is no gyroscopic moment and if the effect of the inertia of rotation of the cross section is ignored, Eq. (17.24) becomes

$$
\begin{equation*}
E I \frac{\partial^{4} w}{\partial x^{4}}+\rho^{*} A \frac{\partial^{2} w}{\partial t^{2}}=0 \tag{3}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
w(x, t)=\sum_{n=1}^{\infty} \phi_{n} e^{i \omega_{n} t} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi_{n}(x)=C_{1 n} \cosh p_{n} x+C_{2 n} \sinh p_{n} x+C_{3 n} \cos p_{n} x+C_{4 n} \sin p_{n} x \tag{5}
\end{equation*}
$$

where $p_{n}^{4}=\rho^{*} A \omega_{n}^{2} / E I$.
Use this general solution of (5) in conjunction with boundary conditions (2) to obtain the frequency determinant

$$
\left|\begin{array}{l:c}
\cos p_{n} L-\cosh p_{n} L+2 \bar{K} \sinh p_{n} L & \sin p_{n} L-\sinh p_{n} L \tag{6}\\
\hdashline-\sin p_{n} L-\sinh p_{n} L & \cos p_{n} L-\cosh p_{n} L \\
+\bar{K}\left(\cos p_{n} L+\cosh p_{n} L\right) & +\bar{K}\left(\sin p_{n} L+\sinh p_{n} L\right) \\
+2 \bar{K}\left(\cosh p_{n} L-\bar{K} \sinh p_{n} L\right) &
\end{array}\right|=0
$$

where

$$
\bar{K}=\frac{k_{b}}{E I p_{n}^{3}}=\frac{k_{b} L^{3}}{E I} \frac{1}{\left(p_{n} L\right)^{3}}=\frac{\bar{K}^{*}}{\left(p_{n} L\right)^{3}}
$$

and $\bar{K}^{*}=k_{b} L^{3} / E I$ expresses the ratio of the bearing stiffness to the shaft stiffness. This leads to the frequency equation

$$
\begin{array}{r}
\left(1-\cos p_{n} L \cosh p_{n} L\right)\left(p_{n} L\right)^{6}+2 \bar{K}^{*}\left(\cos p_{n} L \sinh p_{n} L\right. \\
\left.-\sin p_{n} L \cosh p_{n} L\right)\left(p_{n} L\right)^{3}+2 \bar{K}^{* 2} \sin p_{n} L \sinh p_{n} L=0 \tag{7}
\end{array}
$$

Alternatively, this relationship can be obtained from Table 17-3, case 11, by setting $\rho^{*} I=0$ (gyroscopic effects are ignored) in the equations for p_{n}^{2} and q_{n}^{2}.

For

$$
\bar{K}^{*}=\frac{k_{b} L^{3}}{E I}=\frac{1 \times 10^{9} \times 1^{3}}{\left(207 \times 10^{9}\right)\left(\pi \cdot 0.1^{4} / 64\right)}=984.1465
$$

the eigenvalues, as determined by a computer solution of the frequency equation (7), are

$$
\begin{equation*}
p_{1} L=3.111, \quad p_{2} L=6.033, \quad p_{3} L=8.553, \ldots \tag{8}
\end{equation*}
$$

From $p^{4}=\rho^{*} A \omega_{n}^{2} / E I$, the critical speeds are

$$
\begin{align*}
\omega_{c i} & =\frac{\left(p_{i} L\right)^{2}}{L^{2}}\left(\frac{E I}{\rho^{*} A}\right)^{1 / 2}=\frac{\left(p_{i} L\right)^{2}}{1^{2}}\left[\frac{\left(2.07 \times 10^{11}\right)\left(\pi \cdot 0.1^{4} / 64\right)}{(7854)\left(\pi \cdot 0.1^{2} / 4\right)}\right]^{1 / 2} \\
& =128.349\left(p_{i} L^{2}\right) \mathrm{rad} / \mathrm{s}=1225.6\left(p_{i} L\right)^{2} \mathrm{rpm} \tag{9}
\end{align*}
$$

so that

$$
\begin{aligned}
& \omega_{c 1}=1225.6\left(p_{1} L\right)^{2}=11,861.8 \mathrm{rpm} \\
& \omega_{c 2}=1225.6\left(p_{2} L\right)^{2}=44,608.3 \mathrm{rpm} \\
& \omega_{c 3}=1225.6\left(p_{3} L\right)^{2}=89,657.3 \mathrm{rpm}
\end{aligned}
$$

If the gyroscopic moment and the effects of the inertia of rotation of the cross section are to be considered, the eigenvalues and eigenfunctions of the rotor can be determined using a computational solution of the frequency equation of Table 17-3, case 11 .

Transfer Matrices

The transfer matrices for several commonly occurring rotor elements, for systems with constant rotating speeds, are provided in Tables 17-4 to 17-8. See Appendix III for the general theory of the transfer matrix method. Several methods for the numerical stabilization of transfer matrix calculations are discussed in Appendix III.

The Riccati transfer matrix method of Ref. [III.6] is used frequently in dealing with rotors. In the transfer matrix tables, the displacements, slopes, shear forces, and moments are expressed as

$$
\begin{align*}
w_{z} & =w_{z}^{c} \cos \Omega t+w_{z}^{s} \sin \Omega t & \theta_{y} & =\theta_{y}^{c} \cos \Omega t+\theta_{y}^{s} \sin \Omega t \\
V_{z} & =V_{z}^{c} \cos \Omega t+V_{z}^{s} \sin \Omega t & M_{y} & =M_{y}^{c} \cos \Omega t+M_{y}^{s} \sin \Omega t \tag{17.31}\\
w_{y} & =w_{y}^{c} \cos \Omega t+w_{y}^{s} \sin \Omega t & \theta_{z} & =\theta_{z}^{c} \cos \Omega t+\theta_{z}^{s} \sin \Omega t \\
V_{y} & =V_{y}^{c} \cos \Omega t+V_{y}^{s} \sin \Omega t & M_{z} & =M_{z}^{c} \cos \Omega t+M_{z}^{s} \sin \Omega t
\end{align*}
$$

where, for example, w_{z}^{c}, w_{z}^{s} are the cosine and sine terms, respectively, of w_{z}.
Rigid Disk From the equilibrium and compatibility conditions of a whirling disk,

$$
\begin{align*}
w_{z}^{R} & =w_{z}^{L}-\theta_{y}^{L} h \\
\theta_{y}^{R} & =\theta_{y}^{L} \\
V_{z}^{R} & =V_{z}^{L}+M_{i}\left(\ddot{w}_{z}^{L}-\frac{1}{2} \ddot{\theta}_{y}^{L} h\right) \tag{17.32}\\
M_{y}^{R} & =M_{y}^{L}+V_{z}^{L} h+M_{i}\left(\ddot{w}_{z}^{L}-\frac{1}{2} h \ddot{\theta}_{y}^{L}\right) \frac{1}{2} h+I_{T i} \ddot{\theta}_{y}+I_{p i} \Omega \dot{\theta}_{z}
\end{align*}
$$

The quantities $M_{i}, h, I_{T i}$, and $I_{p i}$ are the mass, thickness, diametrical, and polar mass moments of inertia of the disk, respectively. The superscripts L and R indicate the left and right sides of the disk. When the whirling speed Ω is constant, the transfer matrices are given in Table 17-4 for a rigid disk and for a concentrated mass.

Uniform Shaft Element The equation of motion for a Timoshenko shaft element is

$$
\begin{gather*}
\underbrace{E I \frac{\partial^{4} w}{\partial x^{4}}+\rho^{*} A \frac{\partial^{2} w}{\partial t^{2}}}_{\text {Euler-Bernoulli theory }}-\underbrace{\rho^{*} I\left[\frac{\partial^{4} w}{\partial x^{2} \partial t^{2}}\right.}_{\begin{array}{c}
\text { principal rotary } \\
\text { inertia term }
\end{array}}-\underbrace{\left.i 2 \Omega \frac{\partial^{3} w}{\partial x^{2} \partial t}\right]}_{\begin{array}{c}
\text { gyroscopic } \\
\text { moment term }
\end{array}} \\
-\underbrace{\frac{\rho^{*} E I \alpha_{s}}{G} \frac{\partial^{4} w}{\partial x^{2} \partial t^{2}}}_{\begin{array}{c}
\text { principal shear } \\
\text { deformation term }
\end{array}}+\underbrace{\frac{\left(\rho^{*}\right)^{2} I \alpha_{s}}{G}\left(\frac{\partial^{4} w}{\partial t^{4}}-i 2 \Omega \frac{\partial^{3} w}{\partial t^{3}}\right)}_{\begin{array}{c}
\text { combined rotary inertia } \\
\text { and shear deformation }
\end{array}}=0 \tag{17.33}
\end{gather*}
$$

where $w=w_{y}+i w_{z}$ is the complex deflection.
Assume that the shaft is whirling with a circular orbit, $w=w(x) e^{i \omega t}$. Then

$$
\begin{equation*}
w(x)=C_{1} \sinh p x+C_{2} \cosh p x+C_{3} \sin q x+C_{4} \cos q x \quad \text { for } \gamma \geq 0 \tag{17.34}
\end{equation*}
$$

where

$$
\begin{gathered}
p^{2}=\left|\sqrt{\beta^{2}+\gamma}-\beta\right|, \quad q^{2}=\left|\sqrt{\beta^{2}+\gamma}+\beta\right| \\
\beta=\frac{\omega^{2}}{2}\left[\frac{\rho^{*} \alpha_{s}}{G}+\frac{\rho^{*}}{E}\left(\frac{2 \Omega}{\omega}+1\right)\right], \\
\gamma=\omega^{2}\left[\frac{\rho^{*} A}{E I}-\frac{\rho^{*}}{E}\left(\frac{2 \Omega}{\omega}+1\right) \frac{\rho^{*} \omega^{2} \alpha_{s}}{G}\right]
\end{gathered}
$$

and constants $C_{i}(i=1,4)$ are coefficients depending on the boundary conditions. If $\gamma<0$, replace sinh and cosh with \sin and \cos, respectively. The transfer matrix for a uniform shaft with consideration of the effects of distributed mass and shear deformation is given in Table 17-5. Also, the transfer matrix for a uniform shaft section with static bow is given in this table. Table 17-6 shows the transfer matrix for a shaft element (shear and gyroscopic effects are ignored) with axial torque effects.

Bearing and Seal Elements The general gearings and seals are represented linearly by eight translational and eight rotary stiffness and damping coefficients. The bearing or seal forces and moments are

$$
\begin{align*}
{\left[\begin{array}{c}
V_{y} \\
V_{z}
\end{array}\right] } & =-\left[\begin{array}{ll}
k_{y y} & k_{y z} \\
k_{z y} & k_{z z}
\end{array}\right]\left[\begin{array}{c}
w_{y} \\
w_{z}
\end{array}\right]-\left[\begin{array}{ll}
c_{y y} & c_{y z} \\
c_{z y} & c_{z z}
\end{array}\right]\left[\begin{array}{c}
\dot{w}_{y} \\
\dot{w}_{z}
\end{array}\right] \\
{\left[\begin{array}{l}
M_{z} \\
M_{y}
\end{array}\right] } & =-\left[\begin{array}{cc}
k_{y y}^{*} & k_{y z}^{*} \\
k_{z y}^{*} & k_{z z}^{*}
\end{array}\right]\left[\begin{array}{c}
\theta_{z} \\
\theta_{y}
\end{array}\right]-\left[\begin{array}{cc}
c_{y y}^{*} & c_{y z}^{*} \\
c_{z y}^{*} & c_{z z}^{*}
\end{array}\right]\left[\begin{array}{c}
\dot{\theta}_{z} \\
\dot{\theta}_{y}
\end{array}\right] \tag{17.35a}
\end{align*}
$$

From equilibrium,

$$
\begin{align*}
V_{z}^{R} & =V_{z}^{L}+k_{z z} w_{z}+k_{z y} w_{y}+c_{z z} \dot{w}_{z}+c_{z y} \dot{w}_{y} \\
M_{y}^{R} & =M_{y}^{L}+k_{z z}^{*} \theta_{y}+k_{z y}^{*} \theta_{z}+c_{z z}^{*} \dot{\theta}_{y}+c_{z y}^{*} \dot{\theta}_{z} \\
V_{y}^{R} & =V_{y}^{L}+k_{y z} w_{z}+k_{y y} w_{y}+c_{y z} \dot{w}_{z}+c_{y y} \dot{w}_{y} \tag{17.35b}\\
M_{z}^{R} & =M_{z}^{L}+k_{y z}^{*} \theta_{y}+k_{y y}^{*} \theta_{z}+c_{y z}^{*} \dot{\theta}_{y}+c_{y y}^{*} \dot{\theta}_{z}
\end{align*}
$$

where V_{i}^{R}, V_{i}^{L} and $M_{i}^{R}, M_{i}^{L}(i=y, z)$ are the reaction forces and moments, respectively, to the right and left of the bearing or seal. The responses w_{i}, θ_{i} and $\dot{w}_{i}, \dot{\theta}_{i}$ are the relative displacements and slopes and corresponding velocities between the journal and the bearing (Fig. 17-1d).

The transfer (point) matrix for a general bearing or seal is given in Table 17-7. Normally, in a rotor dynamic analysis, only reaction forces are considered and the reaction moments are ignored. In such cases the eight rotary stiffness and damping coefficients (Fig. 17-1d) are set equal to zero. Formulations based on the eight trans-
lational stiffness and damping coefficients are given in the next section ("Stiffness and Mass Matrices"), about bearing and seal elements.

For an isotropic bearing ($k_{z z}=k_{y y}, c_{z z}=c_{y y}$), Table 17-7 is simplified as Table 17-8. This table includes the effect of a pedestal.

Example 17.4 Shaft on Isotropic Supports Consider the shaft of Fig. 17-7 that is rotating on isotropic supports.

The state vector is $\mathbf{z}=\left[\begin{array}{llll}w & \theta & V & M\end{array}\right]^{T}$. In terms of transfer matrices, the state vectors along the shaft are given by

$$
\begin{align*}
\mathbf{z} & =\mathbf{U}^{1} \mathbf{U}_{1} \mathbf{z}_{0} & & x<\ell \tag{1}\\
\mathbf{z} & =\mathbf{U}^{2} \mathbf{U}_{2} \mathbf{U}^{1} \mathbf{U}_{1} \mathbf{z}_{0} & & \ell<x<L \\
\mathbf{z}_{x=L} & =\mathbf{U}_{3} \mathbf{U}^{2} \mathbf{U}_{2} \mathbf{U}^{1} \mathbf{U}_{1} \mathbf{z}_{0} & & \\
& =\mathbf{U z}_{0} & & x=L \tag{2}
\end{align*}
$$

From Table 17-8, set $k=k_{b}, c=\bar{c}=0, M_{i}=0$, and $\bar{k} \rightarrow \infty$ (no bearing pedestal motion), and

$$
\begin{equation*}
z_{i}=\frac{k_{b} \bar{k}}{k_{b}+\bar{k}}=\frac{k_{b}}{k_{b} / \bar{k}+1} \rightarrow k_{b} \tag{3}
\end{equation*}
$$

Since $\bar{k} \longrightarrow \infty$, in the limit $z_{i}=k_{b}$. Then, from Table 17-8,

$$
\mathbf{U}_{3}=\mathbf{U}_{2}=\mathbf{U}_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{4}\\
0 & 1 & 0 & 0 \\
-k_{b} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

and $\mathbf{U}^{1}, \mathbf{U}^{2}$ are the transfer matrices from Table 17-5 for the uniform shaft segments. Because of the isotropic properties, $\mathbf{U}^{i}=\mathbf{T}_{s}$ of Table 17-5. Since the left and right ends are considered to be free,

$$
\left[\begin{array}{c}
V \tag{5}\\
M
\end{array}\right]_{x=0}=\left[\begin{array}{c}
V \\
M
\end{array}\right]_{x=L}=0
$$

Figure 17-7: Example 17.4.

Equation (2), with boundary conditions taken into account, can be written as

$$
\left[\begin{array}{c}
w \tag{6}\\
\theta \\
\hline V=0 \\
M=0
\end{array}\right]_{x=L}=\left\{\begin{array}{cc|cc}
\text { Cancel rows because } w_{x=L} \text { and } \theta_{x=L} \text { are unknown } \\
\bar{U}_{w w} & \bar{U}_{w \theta} & \bar{U}_{w V} & \bar{U}_{w M} \\
\bar{U}_{\theta w} & \bar{U}_{\theta \theta} & \bar{U}_{\theta V} & \bar{U}_{\theta M} \\
\hline \bar{U}_{V w} & \bar{U}_{V \theta} & \bar{U}_{V V} & \bar{U}_{V M} \\
\bar{U}_{M w} & \bar{U}_{M \theta} & \underbrace{\bar{U}_{M V}} & \bar{U}_{M M}
\end{array}\right]\left[\begin{array}{c}
w \\
\theta \\
\hline V=0 \\
M=0
\end{array}\right]_{x=0}
$$

Cancel columns because $M_{0}=V_{0}=0$
where $\bar{U}_{i j}=\left(U_{i j}\right)_{x=L}$ with $i, j=w, \theta, V, M$. Then (6) reduces to $0=\bar{U}_{V w} w_{0}+$ $\bar{U}_{V \theta} \theta_{0}$ and $0=\bar{U}_{M w} w_{0}+\bar{U}_{M \theta} \theta_{0}$. The determinant of these equations is

$$
\begin{equation*}
\nabla=\bar{U}_{M \theta} \bar{U}_{V w}-\bar{U}_{M w} \bar{U}_{V \theta} \tag{7}
\end{equation*}
$$

The natural frequencies of the rotor are the roots of $\nabla=0$. Since $\theta_{0}=-w_{0}\left(\bar{U}_{M w} / \bar{U}_{M \theta}\right)$, from (6) the initial parameters are

$$
\mathbf{z}_{0}=\left[\begin{array}{c}
w_{0} \tag{8}\\
-w_{0}\left(\bar{U}_{M w} / \bar{U}_{M \theta}\right) \\
0 \\
0
\end{array}\right]
$$

The mode shapes are found by inserting into (1) the natural frequencies and the initial parameters (8).

Stiffness and Mass Matrices

The rotor motion can be described with reference to the inertial frame $x y z$. The rotating reference $X Y Z$ is defined relative to the inertial reference system $x y z$ by a single rotation Ωt about X with Ω denoting the whirl speed. Let the translations (deflections) w_{y} and w_{z} in the y and z directions locate the elastic centerline and the small-angle rotations θ_{y} and θ_{z} about the y and z axes, respectively, orient the plane of the cross section. The definitions of positive shear forces, moments, deflections, and slopes are shown in Fig. 17-1f.

Rotors are almost always modeled by circular shaft elements each having four degrees of freedom at each end, with rigid masses and rigid or flexible disks attached to model turbine disks, pump impellers, gears, seals, couplings, and so on.

Rigid Disk The governing equations of motion for a rigid disk are [17.3]

$$
\begin{equation*}
\left(\mathbf{m}_{T}+\mathbf{M}_{R}\right) \ddot{\mathbf{v}}-\Omega \mathbf{g} \dot{\mathbf{v}}=\mathbf{p} \tag{17.36}
\end{equation*}
$$

with $\mathbf{v}=\left[\begin{array}{llll}w_{y} & w_{z} & \theta_{y} & \theta_{z}\end{array}\right]^{T}$, where $\mathbf{m}_{T}, \mathbf{m}_{R}$, and \mathbf{g} are provided in Table 17-4. The forcing term \mathbf{p} contains the effects of the mass unbalance and other external effects on the disk.

For the unbalance force

$$
\begin{align*}
\mathbf{p} & =M_{i} \Omega^{2}\left[\begin{array}{c}
\eta_{a} \\
\zeta_{a} \\
0 \\
0
\end{array}\right] \cos \Omega t+M_{i} \Omega^{2}\left[\begin{array}{c}
-\zeta_{a} \\
\eta_{a} \\
0 \\
0
\end{array}\right] \sin \Omega t \\
& =\mathbf{p}_{c} \cos \Omega t+\mathbf{p}_{s} \sin \Omega t \tag{17.37}
\end{align*}
$$

where M_{i} is the disk mass and $\left(\eta_{a}, \zeta_{a}\right)$ is the mass center eccentricity in the rotating coordinate system $X Y Z$ (see the figure in Table 17-4).

Shaft Elements For a uniform shaft element, the structural matrices can be obtained using the methodology for beam elements discussed in Appendix II. Use of the exact solution of the governing equation of a uniform shaft element as the shape function will lead to the "exact" dynamic force displacement relationship, the dynamic stiffness matrix. Alternatively, the deflection for an element can be taken to be the exact static response of a beam, leading to the consistent mass, stiffness, and gyroscopic matrices. For the latter case, with $\xi=x / \ell$ for an element of length ℓ, extending from $x=a$ to $x=b$,

$$
\left.\begin{array}{c}
{\left[\begin{array}{l}
w_{y}(\xi, t) \\
w_{z}(\xi, t)
\end{array}\right]=\mathbf{N}(\xi) \mathbf{v}(t)} \tag{17.38}\\
\mathbf{v}(t)=\left[\begin{array}{lllllll}
w_{y a} & w_{z a} & \theta_{y a} & \theta_{z a} & w_{y b} & w_{z b} & \theta_{y b}
\end{array} \theta_{z b}\right.
\end{array}\right]^{T} .
$$

The static shape function matrix $\mathbf{N}(\xi)$ is calculated as

$$
\mathbf{N}(\xi)=\left[\begin{array}{cccccccc}
N_{1} & 0 & 0 & N_{2} & N_{3} & 0 & 0 & N_{4} \tag{17.39}\\
0 & N_{1} & -N_{2} & 0 & 0 & N_{3} & -N_{4} & 0
\end{array}\right]
$$

where

$$
\begin{array}{ll}
N_{1}=1-3 \xi^{2}+2 \xi^{3}, \quad & N_{2}=\ell\left(\xi-2 \xi^{2}+\xi^{3}\right), \quad N_{3}=3 \xi^{2}-2 \xi^{3} \\
& N_{4}=\ell\left(-\xi^{2}+\xi^{3}\right) \tag{17.40}
\end{array}
$$

The rotations $\left(\theta_{y}, \theta_{z}\right)$ are related to the translations $\left(w_{y}, w_{z}\right)$ by

$$
\begin{equation*}
\theta_{y}=-\frac{\partial w_{z}}{\partial x}, \quad \theta_{z}=\frac{\partial w_{y}}{\partial x} \tag{17.41}
\end{equation*}
$$

Therefore, the rotations can be expressed as

$$
\left[\begin{array}{c}
\theta_{y}(\xi, t) \tag{17.42}\\
\theta_{z}(\xi, t)
\end{array}\right]=\overline{\mathbf{N}}(\xi) \mathbf{v}(t)
$$

where

$$
\begin{align*}
\overline{\mathbf{N}}(\xi) & =\left[\begin{array}{c}
\overline{\mathbf{N}}_{y}(\xi) \\
\overline{\mathbf{N}}_{z}(\xi)
\end{array}\right] \\
& =\left[\begin{array}{cccccccc}
0 & -\frac{\partial N_{1}}{\partial x} & \frac{\partial N_{2}}{\partial x} & 0 & 0 & -\frac{\partial N_{3}}{\partial x} & -\frac{\partial N_{4}}{\partial x} & 0 \\
\frac{\partial N_{1}}{\partial x} & 0 & 0 & \frac{\partial N_{2}}{\partial x} & \frac{\partial N_{3}}{\partial x} & 0 & 0 & \frac{\partial N_{4}}{\partial x}
\end{array}\right] \tag{17.43}
\end{align*}
$$

The governing equations of motion for a shaft element referred to the inertial reference frame are [17.3]

$$
\begin{equation*}
\left(\mathbf{m}_{T}+\mathbf{m}_{R}\right) \ddot{\mathbf{v}}-\Omega \mathbf{g} \dot{\mathbf{v}}+\mathbf{k v}=\mathbf{p} \tag{17.44}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{m}_{T} & =\int_{0}^{\ell} \rho^{*} A \mathbf{N}^{T} \mathbf{N} d x & & \text { (translational mass matrix) } \\
\mathbf{m}_{R} & =\int_{0}^{\ell} I_{T} \overline{\mathbf{N}}^{T} \overline{\mathbf{N}} d x & & \text { (rotary mass matrix) } \\
\mathbf{g} & =\int_{0}^{\ell} I_{p} \overline{\mathbf{N}}_{z}^{T} \overline{\mathbf{N}}_{y} d x-\int_{0}^{\ell} I_{p} \overline{\mathbf{N}}_{y}^{T} \overline{\mathbf{N}}_{z} d x & & \text { (gyroscopic matrix) } \\
\mathbf{k} & =\int_{0}^{\ell} E I \mathbf{N}^{\prime \prime T} \mathbf{N}^{\prime \prime} d x & & \text { (bending stiffness matrix) }
\end{aligned}
$$

and \mathbf{p} is the force vector including mass unbalance and other element external effects. For an element with distributed mass center eccentricity $(\eta(x), \zeta(x))$, the unbalance force is [17.3]

$$
\begin{align*}
\mathbf{p} & =\int_{0}^{\ell} \rho^{*} A \Omega^{2} \mathbf{N}^{T}\left(\left[\begin{array}{c}
\eta(\xi) \\
\zeta(\xi)
\end{array}\right] \cos \Omega t+\left[\begin{array}{c}
-\zeta(\xi) \\
\eta(\xi)
\end{array}\right] \sin \Omega t\right) d x \\
& =\mathbf{p}^{c} \cos \Omega t+\mathbf{p}^{s} \sin \Omega t \tag{17.45}
\end{align*}
$$

When the mass unbalance is distributed linearly, the mass center eccentricities are

$$
\begin{equation*}
\eta(\xi)=\eta_{a}(1-\xi)+\eta_{b} \xi, \quad \zeta(\xi)=\zeta_{a}(1-\xi)+\zeta_{b} \xi \tag{17.46}
\end{equation*}
$$

where $\left(\eta_{a}, \zeta_{a}\right)$ and $\left(\eta_{b}, \zeta_{b}\right)$ express the mass center eccentricity at $x=a$ and $x=b$, respectively. The element matrices, including the dynamic stiffness matrix, are given in Table 17-5. Table 17-6 shows the element matrices for the shaft with axial torque effects. The conical shaft element matrices are given in Table 17-9.

Table 17-10 shows the element matrices for helically fluted shaft elements. The mass and stiffness matrices for an annular elastic thin-disk element are given in Table 17-11. See Chapters 18 and 19 for the theory underlying thin disks.

Bearing Elements For aligned journal bearings, a general linearized mathematical model, now used in most rotor dynamic analyses, can be expressed by the eight spring and damping coefficients commonly employed to model the dynamic radial interaction force components between journal and bearings:

$$
\begin{align*}
{\left[\begin{array}{c}
F_{y} \\
F_{z}
\end{array}\right] } & =-\left[\begin{array}{cc}
k_{y y} & k_{y z} \\
k_{z y} & k_{z z}
\end{array}\right]\left[\begin{array}{c}
w_{y}^{*} \\
w_{z}^{*}
\end{array}\right]-\left[\begin{array}{cc}
c_{y y} & c_{y z} \\
c_{z y} & c_{z z}
\end{array}\right]\left[\begin{array}{c}
\dot{w}_{y}^{*} \\
\dot{w}_{z}^{*}
\end{array}\right] \\
& =-\mathbf{k v}^{b}-\mathbf{c v}^{b} \tag{17.47}
\end{align*}
$$

where $\left(F_{y}, F_{z}\right)$ are the dynamic radial force components, $\left(w_{y}^{*}, w_{z}^{*}\right)$ are the relative radial displacements references to the static equilibrium state, and $\left(\dot{w}_{y}^{*}, \dot{w}_{z}^{*}\right)$ are the relative radial velocities between the journal and bearing.

The elements of matrices \mathbf{k} and \mathbf{c} are given in Table 17-12 for a short journal bearing and for a typical type of tilting pad bearing. See Ref. [17.8] for further details.

Seal Elements High-performance pumps, compressors, and turbines (i.e., those with high rotating speeds and high pressures), sometimes yield nonsynchronous vibrations induced by noncontacting annular and labyrinth sections. For the vibration analysis of these machines the dynamic characteristics of the seals should be included.

The linearized model for the seal is similar to that for a journal bearing,

$$
\left[\begin{array}{l}
F_{y} \tag{17.48}\\
F_{z}
\end{array}\right]=-\mathbf{k} \mathbf{v}^{s}-\mathbf{c}^{s}
$$

where \mathbf{v}^{s} and $\dot{\mathbf{v}}^{s}$ are the relative displacement and velocity between journal and seal. The stiffness matrix \mathbf{k} and damping matrix \mathbf{c} are given in Table 17-12 for a short annular pressure seal, including the effect of elastic deformation. See Ref. [17.9] for further discussion of seal elements.

Assembly of Global Matrices As explained in Appendix III, the global (system) mass, gyroscopic, stiffness and damping matrices or dynamic stiffness matrix of a rotor system can be assembled by summation of element matrices according to the positions of shaft elements, rigid disks, bearings and seals, and so on. The global force vector can be obtained in the same manner.

The global mass and gyroscopic matrices are formed of contributions from the rigid disks and flexible shaft elements, while the global damping and stiffness matrices are formed from element matrices of shaft segments, bearings, seals and aerodynamic mechanisms which are commonly modeled with four spring and four damping coefficients.

Suppose that a rotor system is discretized into M elements, with $M+1$ nodes, along the axis of the rotor (Fig. 17-8a). Each node has 4 degrees of freedom w_{y}, w_{z}, θ_{y}, and θ_{z}. In general, the global displacement vector would be defined as

$$
\begin{align*}
& \mathbf{V}=\left[\begin{array}{lllllllllllll}
w_{y 1} & w_{z 1} & \theta_{y 1} & \theta_{z 1} & w_{y 2} & w_{z 2} & \theta_{y 2} & \theta_{z 2} & \cdots & w_{y i} & w_{z i} & \theta_{y i} & \theta_{z i}
\end{array}\right. \\
& \left.\cdots \quad w_{y, M+1} \quad w_{z, M+1} \quad \theta_{y, M+1} \quad \theta_{z, M+1}\right] \tag{17.49}
\end{align*}
$$

1
(2)
(2)

(a)

Figure 17-8: Rotor system and global matrices: (a) rotor system discretization; (b) assembly of global matrices.

The global matrices would be $4(M+1) \times 4(M+1)$ in dimension and the global force vector would be $4(M+1) \times 1$.

First, consider the contributions of the shaft elements to the global matrices. The left and right ends of shaft element $i(i=1,2, \ldots, M)$ correspond to the nodes i and $i+1$ of the rotor system, respectively. The left end of element i is the right end of element $i-1$. The nodal displacements of element $i, w_{y a}, w_{z a}, \theta_{y a}, \theta_{z a}, w_{y b}, w_{z b}$, $\theta_{y b}$, and $\theta_{z b}$ in Table 17-5 correspond to $w_{y i}, w_{z i}, \theta_{y i}, \theta_{z i}, w_{y, i+1}, w_{z, i+1}, \theta_{y, i+1}$, and $\theta_{z, i+1}$ in Eq. (17.49), which are the contributions to \mathbf{V} from $4(i-1)+1$ to $4 i+4$. The 8×8 element matrices of shaft element $i, \mathbf{m}_{T}+\mathbf{m}_{R}, \mathbf{g}$ and \mathbf{k} in Table 17-5, should be added to the global mass, gyroscopic, and stiffness matrices from row $4(i-1)+1$ to row $4 i+4$ and column $4(i-1)+1$ to column $4 i+4$, respectively. The 8×1 element force vector $\mathbf{p}^{c} \cos \Omega t+\mathbf{p}^{s} \sin \Omega t$ of Table 17-5 should be added to the global force vector from row $4(i-1)+1$ to row $4 i+4$ (Fig. 17-8b).

Next consider the contribution of rigid disks to the global mass and gyroscopic matrices. Suppose that there are M_{d} disks, with disk $j_{d}\left(j_{d}=1,2, \ldots, M_{d}\right)$ located at node i_{d} of the rotor system. Because the displacements and slopes w_{y}, w_{z}, θ_{y}, and θ_{z} in Table 17-4 for disk j_{d} corresponds to $w_{y i_{d}}, w_{z i_{d}}, \theta_{y i_{d}}$, and $\theta_{z i_{d}}$, which are the entries from $4\left(i_{d}-1\right)+1$ to $4\left(i_{d}-1\right)+4$, of the global displacement vector \mathbf{V} of Eq. (17.49), the 4×4 element matrices of the rigid disk, $\mathbf{m}_{T}+\mathbf{m}_{R}$ and \mathbf{g} in Table $17-4$ should be added to the global mass and gyroscopic matrices from row $4\left(i_{d}-1\right)+1$ to row $4\left(i_{d}-1\right)+4$ and from column $4\left(i_{d}-1\right)+1$ to column $4\left(i_{d}-\right.$ 1) +4 , respectively. The 4×1 force vector of the rigid disk, $\mathbf{p}^{c} \cos \Omega t+\mathbf{p}^{s} \sin \Omega t$ in Table 17-4, should be added to the global force vector from row $4\left(i_{d}-1\right)+1$ to row $4\left(i_{d}-1\right)+4$ (Fig. 17-8).

Finally, consider the contribution of bearings, seals, or other mechanisms modelled as eight spring and damping coefficients to global stiffness and damping matrices. From Eq. (17.47),

$$
\left[\begin{array}{c}
F_{y} \tag{17.50}\\
F_{z}
\end{array}\right]=-\mathbf{k} \mathbf{v}^{b}-\mathbf{c} \dot{\mathbf{v}}^{b}=-\mathbf{k}\left(\mathbf{v}^{j}-\mathbf{v}^{k}\right)-\mathbf{c}\left(\dot{\mathbf{v}}^{j}-\dot{\mathbf{v}}^{k}\right)=-\mathbf{k} \mathbf{v}^{j}-\dot{\mathbf{v}}^{j}+\mathbf{k} \mathbf{v}^{k}+\dot{\mathbf{v}}^{k}
$$

where $\mathbf{v}^{j}=\left[\begin{array}{ll}w_{y}^{j} & w_{z}^{j}\end{array}\right]^{T}$ is the displacement vector of the journal, which, generally, is the part of the rotor where the bearing or seal is located. The vector $\mathbf{v}^{k}=$ $\left[\begin{array}{ll}w_{y}^{k} & w_{z}^{k}\end{array}\right]^{T}$ is the displacement vector of the bearing or seal.

Suppose that there are M_{b} bearings or seals, one of which $j_{b}\left(j_{b}=1,2, \ldots, M_{b}\right)$ is at node i_{b}. Because the displacements w_{y}^{j} and w_{z}^{j} of the bearing j_{b} correspond to the displacement $w_{y i_{b}}$ and $w_{z i_{b}}$, which are the $4\left(i_{b}-1\right)+1$ and $4\left(i_{b}-1\right)+2$ entries of the global displacement vector \mathbf{V} [Eq. (17.49)]. The 2×2 stiffness and damping matrices \mathbf{k} and \mathbf{c} of the bearing in Eq. (17.50) or Table 17-12 should be added to the global stiffness and damping matrices, respectively, from row $4\left(i_{b}-1\right)+1$ to row $4\left(i_{b}-1\right)+2$ and from column $4\left(i_{b}-1\right)+1$ to $4\left(i_{b}-1\right)+2$. The vector $\mathbf{k} \mathbf{v}^{k}+\mathbf{c}^{k}$ in Eq. (17.50) can be added to the global force vector from row $4\left(i_{b}-1\right)+1$ to row $4\left(i_{b}-1\right)+2$ (Fig. 17-8).

Note that the global gyroscopic matrix multiplied by $-\Omega$ (Ω is the spin speed of the rotor) is the damping matrix [Eqs. (17.36) and (17.44)].

Example 17.5 Natural Frequencies: Complex Eigenvalue Analysis of a Pump

 System A pump rotor supported by two isotropic bearings is shown in Fig. 17-9. The elastic modulus is $210 \mathrm{GN} / \mathrm{m}^{2}$. The mass and mass moment of inertia of the impeller are 308.268 kg and $51.378 \mathrm{~kg} \cdot \mathrm{~m}^{2}$, respectively. The bearing characteristics are modeled with stiffness coefficients of $1000 \mathrm{GN} / \mathrm{m}$ and damping coefficients of $10 \mathrm{kN} \cdot \mathrm{s} / \mathrm{m}$.

Element no.	1	2	3	4
Length (m)	0.2	0.2	1.0	0.4
Diameter (m)	0.2	0.16	0.3	0.16

Figure 17-9: Rotor-bearing system of Example 17.5.
(a) Compute the first two natural frequencies.
(b) Compute the complex eigenvalues at a rotating speed of 1800 rpm .
(c) Compare the complex eigenvalues with the real eigenvalues (natural frequencies), which ignore the damping of the bearings.
(d) Graph the root loci of the first two modes as functions of rotating speed.

The rotor is modeled with the four shaft elements and one disk as shown in Fig. 17-9. The mass, gyroscopic, and stiffness matrices can be obtained from Tables 17-4 and 17-5.

For the shaft elements, these matrices (expressed as 4×4 submatrices) have dimension 8×8 (Table 17-5):

$$
\begin{align*}
\mathbf{m}^{i} & =\mathbf{m}_{T}^{i}+\mathbf{m}_{R}^{i}=\left[\begin{array}{ll}
\mathbf{m}_{11}^{i} & \mathbf{m}_{12}^{i} \\
\mathbf{m}_{21}^{i} & \mathbf{m}_{22}^{i}
\end{array}\right] \\
\mathbf{g}^{i} & =\left[\begin{array}{ll}
\mathbf{g}_{11}^{i} & \mathbf{g}_{12}^{i} \\
\mathbf{g}_{21}^{i} & \mathbf{g}_{22}^{i}
\end{array}\right] \tag{1}\\
\mathbf{k}^{i} & =\left[\begin{array}{ll}
\mathbf{k}_{11}^{i} & \mathbf{k}_{12}^{i} \\
\mathbf{k}_{21}^{i} & \mathbf{k}_{22}^{i}
\end{array}\right]
\end{align*}
$$

where $i=1,2,3,4$.
For the disk element, the 4×4 mass and gyroscopic matrices can be taken from Table 17-4,

$$
\mathbf{m}^{d}=\mathbf{m}_{T}^{d}+\mathbf{m}_{R}^{d}=\left[\begin{array}{cccc}
M_{i} & & & \tag{2}\\
& M_{i} & & \\
& & I_{T i} & \\
& & & I_{T i}
\end{array}\right], \quad \mathbf{g}^{d}=\left[\begin{array}{cccc}
0 & & & \\
& 0 & & \\
& & 0 & I_{p i} \\
& & -I_{p i} & 0
\end{array}\right]
$$

where $M_{i}, I_{T i}$, and $I_{p i}$ are the mass, translational, and polar mass moments of the disk, respectively. Here $I_{T i}=\frac{1}{2} I_{p i}$.

For the bearings, the stiffness and damping matrices have the forms [Eq. (17.47)]

$$
\mathbf{k}^{b}=\left[\begin{array}{cc}
k_{b} & 0 \tag{3}\\
0 & k_{b}
\end{array}\right], \quad \mathbf{c}^{b}=\left[\begin{array}{cc}
c_{b} & 0 \\
0 & c_{b}
\end{array}\right]
$$

where $k_{b}=1000 \mathrm{GN} / \mathrm{m}$ and $c_{b}=10 \mathrm{kN} \cdot \mathrm{s} / \mathrm{m}$. Define the global displacement vector
$\mathbf{V}=\left[\begin{array}{lllllllllllll}w_{y 1} & w_{z 1} & \theta_{y 1} & \theta_{z 1} & w_{y 2} & w_{z 2} & \theta_{y 2} & \theta_{z 2} & \cdots & w_{y 5} & w_{z 5} & \theta_{y 5} & \theta_{z 5}\end{array}\right]^{T}$
According to the order of the shaft elements and the position of the disk, the global mass matrix is assembled as

Here, for example, for the second shaft element with $i=2, \mathbf{m}^{i}=\mathbf{m}^{2}$ is added from row and column $4(i-1)+1=5$ to row and column $4 i+4=12$, respectively.

Because the disk is on the right side of shaft element 4, the position of the disk in the node sequence is $i_{d}=5$ and \mathbf{m}^{d} is added to \mathbf{M} from row and column $4\left(i_{d}-1\right)+1=$ 17 to row and column $4\left(i_{d}-1\right)+4=20$. Thus, the matrix \mathbf{m}^{d} is added to the position of \mathbf{m}_{22}^{4}. Remember that $\mathbf{m}_{p q}^{i}(i=1,2,3,4, p, q=1,2)$ are 4×4 matrices. If the disk is on the left side of element $4\left(i_{d}=4\right), \mathbf{m}^{d}$ should be added to the position of \mathbf{m}_{11}^{4}. The global gyroscopic matrix \mathbf{G} has the same form as \mathbf{M}, with $\mathbf{m}_{p q}^{i}$ and \mathbf{m}^{d} replaced by $\mathbf{g}_{p q}^{i}$ and $\mathbf{g}^{d}(i=1,2,3,4, p, q=1,2)$, respectively.

The global shaft stiffness matrix is assembled in the same fashion as \mathbf{M}.

$$
\mathbf{K}=\left[\begin{array}{ccc}
\mathbf{k}_{11}^{1} \cdots \mathbf{k}_{12}^{1} & & \tag{5}\\
\vdots & & \\
\mathbf{k}_{21}^{1} \cdots \mathbf{k}_{22}^{1}+\mathbf{k}_{11}^{2} \cdots \mathbf{k}_{12}^{2} & \\
\vdots & \vdots & \\
& \mathbf{k}_{21}^{2} & \mathbf{k}_{22}^{2}+\mathbf{k}_{11}^{3} \cdots \mathbf{k}_{12}^{3} \\
& \vdots & \\
& & \vdots \\
& & \mathbf{k}_{21}^{3} \cdots \cdots \cdots \cdots \mathbf{k}_{2}^{3}+\mathbf{k}_{11}^{4} \cdots \mathbf{k}_{12}^{4} \\
& & \\
& & \\
& & \\
& & \mathbf{k}_{21}^{4} \cdots \cdots \cdots \cdots \mathbf{k}_{22}^{4}
\end{array}\right]
$$

According to the position of the bearings, the global bearing stiffness matrix is assembled as

$$
\text { Col. } 9 \text { Col. } 10 \text { Col. } 13 \text { Col. } 14 \quad \text { (all other elements }=0 \text {) }
$$

and the global bearing damping matrix \mathbf{C}_{b} is obtained by replacing k_{b} with c_{b}.
For the first bearing, the position in the node sequence is $i_{b}=3$, so that \mathbf{k}^{b} or \mathbf{c}^{b} should be added to \mathbf{K}_{b} or \mathbf{C}_{b} from row and column $4\left(i_{b}-1\right)+1=9$ to row and column $4\left(i_{b}-1\right)+2=10$. For the second bearing, $i_{b}=4$, so \mathbf{k}^{b} and \mathbf{c}^{b} are added to \mathbf{K}_{b} and \mathbf{C}_{b} from row and column 13 to row and column 14, respectively.

The system equation is

$$
\begin{equation*}
\mathbf{M} \ddot{\mathbf{V}}+\left(\mathbf{C}_{b}-\Omega \mathbf{G}\right) \dot{\mathbf{V}}+\left(\mathbf{K}+\mathbf{K}_{b}\right) \mathbf{V}=0 \tag{7}
\end{equation*}
$$

Transform this equation to first-order state vector form,

$$
\begin{equation*}
\mathbf{B} \dot{\mathbf{w}}+\mathbf{A w}=0 \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{cc}
\mathbf{C}_{b}-\Omega \mathbf{G} & \mathbf{K}+\mathbf{K}_{b} \\
-\left(\mathbf{K}+\mathbf{K}_{b}\right) & \mathbf{0}
\end{array}\right] \\
\mathbf{B} & =\left[\begin{array}{cc}
\mathbf{M} & \mathbf{0} \\
\mathbf{0} & \mathbf{K}+\mathbf{K}_{b}
\end{array}\right]
\end{aligned}
$$

Figure 17-10: Critical speeds of the pump system (damping is ignored).

$$
\mathbf{w}=\left[\begin{array}{ll}
\dot{\mathbf{V}}^{T} & \mathbf{V}^{T}
\end{array}\right]^{T}
$$

For an assumed harmonic solution

$$
\begin{equation*}
\mathbf{w}=\mathbf{w}_{0} e^{\lambda t} \tag{9}
\end{equation*}
$$

where $\lambda=-\gamma_{n}+i \omega_{d}$, the associated eigenvalue problem is

$$
\begin{equation*}
(\mathbf{A}+\lambda \mathbf{B}) \mathbf{w}_{0}=\mathbf{0} \tag{10}
\end{equation*}
$$

By letting $\mathbf{C}_{b}=\mathbf{0}$, the critical speeds of the rotor system can be obtained. Otherwise, the complex eigenvalues can be computed. The results are shown in Figs. 17-10 to 17-12.

Further information on rotating-shaft systems can be found in Refs. [17.10][17.13].

17.4 TORSIONAL VIBRATION

Since the speed of rotation has little effect on the torsional vibration of a shaft, the formulas of Chapter 12 can be employed to study the torsional behavior of rotor systems. A useful reference for torsional vibrations is Ref. [17.14].

	Damped Critical Speed $\omega_{d}(\mathrm{rad} / \mathrm{s})$			Damped Exponent $\gamma_{n}\left(\mathrm{~s}^{-1}\right)$	
Mode	Forward (F)	Backward (B)		Forward (F)	Backward (B)
1	410.74	96.02		-5.18	-0.66
2	784.14	724.84		-9.32	-12.73
3	2168.80	2148.51		-30.08	-29.92

(a)

	Forward (F)			Backward (B)	
Mode	Undamped ω_{c}	Damped ω_{d}		Undamped ω_{c}	Damped ω_{d}
1	310.124	310.156		130.470	130.471
2	758.713	758.541		730.550	730.408
3	2164.39	2164.17		2153.14	2152.93

(b)

Figure 17-11: Partial results for Example 17.5: (a) complex eigenvalues at 1800 rpm ; (b) damped and undamped critical speeds ($\mathrm{rad} / \mathrm{s}$) at 1000 rpm .

Figure 17-12: Root loci of the damped rotor-bearing system.

17.5 VIBRATION OF A RADIAL BEAM

The dynamic characteristics of rotating blades are important in the design of rotating structural elements such as turbine blades, aircraft propellers, cooling fans, helicopter rotors, and satellite booms. A radial rotating beam mounted in the rim of a disk is usually taken as the mathematical model for these types of structures.

The model is a uniform beam of length L and with a hub of radius R_{0} rotating at a constant angular velocity of $\Omega(\mathrm{rad} / \mathrm{s})$ about the x axis (Fig. 17-13). Here, $x y z$ is a set of global fixed coordinate axes with the origin at the center of the hub, $X Y Z$ are

Figure 17-13: Coordinate system and geometry of a radial beam.
global rotating coordinate axes with the origin at the center of the rotating hub, and $\xi \eta Z$ are rotating coordinates with the origin at the center of the rotating hub, with ξ, η as the principal axes of inertia of the sectional area of the beam. The neutral axis of the beam is inclined to the plane of rotation at an angle Ψ. For $\Psi=0^{\circ}$, the bending motion of the beam in the ξZ plane becomes purely out of plane (flapping), and for $\psi=90^{\circ}$, the bending motion in the ξZ plane is purely in plane (lead-lag). The motion of the beam along the Z axis is called axial vibration.

Bending Vibration

Natural Frequencies Table 17-13 lists the natural frequencies of a beam of circular and square cross section at angle $\Psi=0^{\circ}$ or $\Psi=90^{\circ}$ with various boundary conditions.

Stiffness and Mass Matrices For vibrations in the direction perpendicular to the neutral axis of the beam (i.e., for motion in the ξ direction; Fig. 17-13), the
stiffness and mass matrices of the rotating beam element are defined as

$$
\begin{array}{ll}
\mathbf{k}_{B}=\ell \int_{0}^{1} E I \mathbf{N}^{\prime \prime T} \mathbf{N}^{\prime \prime} d \zeta & \text { (bending stiffness matrix) } \\
\mathbf{k}_{C}=\ell \int_{0}^{1} F_{C} \mathbf{N}^{\prime T} \mathbf{N}^{\prime} d \zeta & \text { (centrifugal stiffness matrix) } \tag{17.51}\\
\mathbf{m}_{T}=\ell \int_{0}^{1} \rho^{*} A \mathbf{N}^{T} \mathbf{N} d \zeta & \text { (translational mass matrix) } \\
\mathbf{m}_{R}=\ell \int_{0}^{1} I_{T} \mathbf{N}^{\prime T} \mathbf{N}^{\prime} d \zeta & \text { (rotary mass matrix) }
\end{array}
$$

where

$$
\mathbf{N}(\zeta)=\left[1-3 \zeta^{2}+2 \zeta^{3} \quad \ell\left(\zeta-2 \zeta^{2}+\zeta^{3}\right) \quad 3 \zeta^{2}-2 \zeta^{3} \quad \ell\left(-\zeta^{2}+\zeta^{3}\right)\right]
$$

with $\zeta=\tilde{Z} / \ell$, is the shape function matrix and ℓ is the length of the element. The centrifugal force F_{C} is given by

$$
\begin{equation*}
F_{C}=\rho^{*} A \Omega^{2} \ell^{2}\left[\frac{R_{0}}{\ell^{2}}\left(L-L^{\prime}\right)+\frac{1}{2 \ell^{2}}\left(L^{2}-L^{\prime 2}\right)-\frac{1}{\ell}\left(R_{0}+L^{\prime}\right) \zeta-\frac{1}{2} \zeta^{2}\right] \tag{17.52}
\end{equation*}
$$

with L equal to the length of the beam and L^{\prime} equal to the total length of elements before and not including the element under consideration. The mass and stiffness matrices are given in Table 17-14.

Axial Vibration

Natural Frequencies and Mode Shapes Since the formulas for axial vibrations are given in Chapter 12 on the extension of bars, only some problems that can occur for radial rotating bars are considered here.

The equation of motion is given by (Fig. 17-13)

$$
\begin{equation*}
-\rho^{*} A \frac{\partial^{2} w_{Z}}{\partial t^{2}}+\rho^{*} A \Omega^{2}\left(R_{0}+Z^{\prime}+w_{Z}\right)+E A \frac{\partial^{2} w_{Z}}{\partial Z^{\prime 2}}=0 \tag{17.53}
\end{equation*}
$$

The natural frequencies and mode shapes can be obtained from the boundary conditions. For example, from Table 12-4, case 2, for a clamped-free beam, the natural frequencies and mode shapes are

$$
\begin{align*}
\omega_{n}^{2} & =\frac{E}{\rho^{*}}\left(\frac{\lambda_{n}}{L}\right)^{2}-\Omega^{2} \tag{17.54}\\
\phi_{n} & =\sin \frac{\lambda_{n} Z^{\prime}}{L} \tag{17.55}
\end{align*}
$$

where

$$
\lambda_{n}=\frac{1}{2} \pi, \frac{3}{2} \pi, \ldots=\frac{1}{2} \pi(2 n-1), \quad n=1,2,3, \ldots
$$

Here, because of the rotating speed Ω, the formula for the natural frequency in Table 12-4 is changed to that shown in Eq. (17.54).

Transfer Matrices The fundamental equations of motion in first-order form for the axial vibration of a radial rotating bar (Fig. 17-13) are

$$
\begin{align*}
\frac{\partial w_{Z}}{\partial Z^{\prime}} & =\frac{P}{A E} \tag{17.56}\\
\frac{\partial P}{\partial Z^{\prime}} & =\rho^{*} A \frac{\partial^{2} w_{Z}}{\partial t^{2}}-\rho^{*} A \Omega^{2}\left(R_{0}+Z^{\prime}+w_{Z}\right)
\end{align*}
$$

In this case, the centrifugal force represents a distributed axial force.
The transfer matrices, including exact mass and lumped mass modeling, for a bar segment of length ℓ are provided in Table 17-15.

Stiffness and Mass Matrices The displacement of a typical point between the two ends of the element is

$$
\begin{equation*}
w_{Z}(\tilde{Z}, t)=\mathbf{N}(\zeta) \mathbf{v} \tag{17.57}
\end{equation*}
$$

where $\mathbf{v}=\left[\begin{array}{ll}w_{Z a} & w_{Z b}\end{array}\right]^{T}, \zeta=\tilde{Z} / \ell$, and $\mathbf{N}(\zeta)$ is the shape function matrix given by

$$
\begin{align*}
\mathbf{N}(\zeta) & =\left[\begin{array}{ll}
N_{1}(\zeta) & N_{2}(\zeta)
\end{array}\right] \\
N_{1}(\zeta) & =\cos \gamma \Omega \ell \zeta-\cot \gamma \Omega \ell \sin \gamma \Omega \ell \zeta \tag{17.58}\\
N_{2}(\zeta) & =\csc \gamma \Omega \ell \sin \gamma \Omega \ell \zeta
\end{align*}
$$

where $\gamma=\sqrt{\rho^{*} / E}$.
The equivalent mass and stiffness matrices for a radial rotating-bar element are

$$
\begin{array}{rlrl}
\mathbf{m} & =\ell \int_{0}^{1} \rho^{*} A \mathbf{N}^{T} \mathbf{N} d \zeta & & \text { (translational mass matrix) } \\
\mathbf{k}_{A}=\ell \int_{0}^{1} A E \mathbf{N}^{T} \mathbf{N}^{\prime} d \zeta & \text { (axial stiffness matrix) } \tag{17.59}\\
\mathbf{k}_{C}=\ell \int_{0}^{1} F_{C} \mathbf{N}^{T} \mathbf{N} d \zeta & \text { (centrifugal stiffness matrix) }
\end{array}
$$

where F_{C} is the centrifugal force defined by Eq. (17.52). The mass and stiffness matrices are given in Table 17-15.

REFERENCES

17.1. Saito, H., and Chonan, S., "Vibrations of Vertical Rods with an Attached Mass," J. Sound Vibrat., Vol. 84, No. 4, 1982, pp. 519-527.
17.2. Eshleman, R. L., and Eubanks, R. A., "On the Critical Speeds of a Continuous Rotor," Trans. ASME, J. Eng. Ind., Vol. 91, 1969, pp. 1180-1188.
17.3. Nelson, H. D., and McVaugh, J. M., "The Dynamics of Rotor-Bearing Systems Using Finite Elements," Trans. ASME, J. Eng. Ind., Vol. 98, 1976, pp. 593-600.
17.4. Zorzi, E. S., and Nelson, H. D., "The Dynamics of Rotor-Bearing Systems with Axial Torque-A Finite Element Approach," Trans. ASME, J. Mech. Des., Vol. 102, 1980, pp. 158-161.
17.5. Greenhill, L. M., Bickford, W. B., and Nelson, H. D., "A Conical Beam Finite Element for Rotor Dynamics Analysis," Trans. ASME, J. Vibrat. Acoust. Stress Reliab. Des., Vol. 107, 1985, pp. 421430.
17.6. Tekinalp, O., and Ulsoy, A. G., "Modelling and Finite Element Analysis of Drill Bit Vibrations," Proceedings of the ASME Vibration Conference on Mechanical Vibration and Noise, Montreal, Quebec, Canada, September 1989, pp. 61-68.
17.7. Kirkhope, J., and Wilson, G. J., "Vibration and Stress Analysis of Thin Rotating Discs Using Annular Finite Elements," J. Sound Vibrat., Vol. 44, No. 4, 1976, pp. 461-474.
17.8. Nicholas, J. C., Gunter, E. J., Jr., and Allaire, P. E., "Stiffness and Damping Coefficients for the Five-Pad Tilting Pad Bearings," Trans. Am. Soc. Lubrication Eng., Vol. 22, No. 2, 1979, pp. 113124.
17.9. Iwatsubo, T., and Yang, B. S., "The Effects of Elastic Deformation on Seal Dynamics," Trans. ASME, J. Vibrat. Acoust. Stress Reliab. Des., Vol. 110, 1988, pp. 59-64.
17.10. Pilkey, W. D., and Chang, P. Y., Modern Formulas for Statics and Dynamics, McGraw-Hill, New York, 1978.
17.11. Vance, J. M., Rotordynamics of Turbomachinery, Wiley, New York, 1988.
17.12. Ehrich, F. F., Handbook of Rotordynamics, McGraw-Hill, New York, 1992.
17.13. Smith, D. M., Journal Bearings in Turbomachinery, Chapman \& Hall, London, 1969.
17.14. Doughty, S., and Vafaee, G., "Transfer Matrix Eigensolutions for Damped Torsional Systems," Trans. ASME, J. Vibrat. Acoust. Stress Reliab. Des., Vol. 107, 1985, pp. 128-132.
17.15. Bauer, H. F., and Eidel, W., "Vibration of a Rotating Uniform Beam, Part II: Orientation Perpendicular to the Axis of Rotation," J. Sound Vibrat., Vol. 122, No. 2, 1988, pp. 357-375.
17.16. Hoa, S. V., "Vibration of a Rotating Beam with Tip Mass," J. Sound Vibrat., Vol. 67, No. 3, 1979, pp. 369-381.

17

Tables

17-1 Critical Speeds of Simple Horizontal Rotors 928
17-2 Critical Speeds of Simple Vertical Rotors 930
17-3 Critical Speeds and Mode Shapes for Uniform Rotors in Bending 933
17-4 Transfer, Mass, and Gyroscopic Matrices for Rigid Disk and Concentrated Mass 937
17-5 Transfer, Stiffness, Mass, and Gyroscopic Matrices for a Uniform Shaft Element in Bending 939
17-6 Transfer and Stiffness Matrices for a Uniform Shaft Element in Bending with Axial Torque 947
17-7 Transfer Matrix for Bearing or Seal Systems 949
17-8 Transfer Matrix for an Isotropic Bearing System 952
17-9 Mass, Gyroscopic, and Stiffness Matrices for a Conical Shaft Element in Bending 953
17-10 Mass, Gyroscopic, and Stiffness Matrices for a Helically Fluted Shaft Element in Bending 956
17-11 Mass and Stiffness Matrices for Annular Elastic Thin Disk Elements 960
17-12 Stiffness and Damping Matrices for Short Journal Bearing, Tilting Pad Bearing, and Annular Plain Seal Elements 963
17-13 Natural Frequencies of Vibration of a Radial Beam of Circular or Square Cross Section 967
17-14 Mass and Stiffness Matrices for Radial Beam Element 971
17-15 Transfer, Stiffness, and Mass Matrices for Axial Vibration of Radial Rotating Bar Element 973

TABLE 17-1 CRITICAL SPEEDS OF SIMPLE HORIZONTAL ROTORS

Notation

$\omega_{c j}$	$=$ critical speed $(j=1,2,3,4)$	$I_{p i}$	$=$ polar mass moment of inertia
M_{i}	$=$ concentrated mass		\quad concentrated mass
m_{b}	$=$ beam mass (shaft mass)		$=$ rotational speed
$I_{T i}$	$=$ transverse mass moment of inertia	I	$=$moment of inertia of cross- sectional area
E	$=$ modulus of elasticity		

See Table 11-14 for a free-free rotor.

Case	Critical Speed (rad/s)
1. enter mass, pinned-pinned supports$\omega_{c 1}=\left[\frac{48 E I}{L^{3}\left(M_{i}+0.49 m_{b}\right)}\right]^{1 / 2}$	

2.

Off-center mass, pinned-pinned supports

$$
\omega_{c 1}=\left\{\frac{3 E I L}{L_{1}^{2} L_{2}^{2}\left[M_{i}+(\alpha+\beta) m_{b}\right]}\right\}^{1 / 2}
$$

$$
\alpha=\frac{L_{1}}{L}\left[\frac{\left(2 L_{2}+L_{1}\right)^{2}}{12 L_{2}^{2}}+\frac{L_{1}^{2}}{28 L_{2}^{2}}-\frac{L_{1}\left(2 L_{2}+L_{1}\right)}{10 L_{2}^{2}} z\right]
$$

$$
\beta=\frac{L_{2}}{L}\left[\frac{\left(2 L_{1}+L_{2}\right)^{2}}{12 L_{1}^{2}}+\frac{L_{2}^{2}}{28 L_{1}^{2}}-\frac{L_{2}\left(2 L_{1}+L_{2}\right)}{10 L_{1}^{2}}\right]
$$

3.

Overhung rotor

4.	
Overhung rotor with linear spring $k \xi L \rightarrow(1-\xi) L \rightarrow$	$\omega_{c 1}=\left[\frac{E I / m_{b} L^{3}}{1 /(12.36236+3 \xi \bar{k})+\bar{m} /(3+\bar{k})}\right]^{1 / 2}$
	$\bar{m}=\frac{M_{I}}{m_{b}} \quad \bar{k}=\frac{k L^{3}}{E I}$

TABLE 17-1 (continued) CRITICAL SPEEDS OF SIMPLE HORIZONTAL ROTORS	
Case	Critical Speed (rad/s)
5. Center mass, clampedclamped supports	$\omega_{c 1}=\left[\frac{192 E I}{L^{3}\left(M_{i}+0.37 m_{b}\right)}\right]^{1 / 2}$
6. Off-center mass, clampedclamped supports	$\begin{aligned} \omega_{c 1} & =\left\{\frac{3 E I L^{3}}{L_{1}^{3} L_{2}^{3}\left[M_{i}+(\alpha+\beta) m_{b}\right]}\right\}^{1 / 2} \\ \alpha & =\frac{L_{1}}{L}\left[\frac{\left(3 L_{1}+L_{2}\right)^{2}}{28 L_{2}^{2}}+\frac{9 L^{2}}{20 L_{2}^{2}}-\frac{L\left(3 L_{1}+L_{2}\right)}{4 L_{2}^{2}}\right] \\ \beta & =\frac{L_{2}}{L}\left[\frac{\left(3 L_{2}+L_{1}\right)^{2}}{28 L_{1}^{2}}+\frac{9 L^{2}}{20 L_{1}^{2}}-\frac{L\left(3 L_{2}+L_{1}\right)}{4 L_{1}^{2}}\right] \end{aligned}$
7. Long rigid rotor, elastic supports	$\begin{aligned} & \omega_{c 1}=\omega_{c 2}=\sqrt{\frac{2 k}{M_{i}}} \\ & \omega_{c 3}=\frac{I_{p i}}{2 I_{T i}} \Omega+\sqrt{\frac{k L^{2}}{2 I_{T i}}+\left(\frac{I_{p i}}{2 I_{T i}} \Omega\right)^{2}} \\ & \omega_{c 4}=\frac{I_{p i}}{2 I_{T i}} \Omega-\sqrt{\frac{k L^{2}}{2 I_{T i}}+\left(\frac{I_{p i}}{2 I_{T i}} \Omega\right)^{2}} \end{aligned}$
8. Rigid rotor anisotropic bearing $\left(k_{y}<k_{z}\right)$	$\begin{aligned} & \omega_{c 1}=\left[\frac{2 k_{y}}{M_{i}}+\frac{k_{y}}{\Delta k}\left(\frac{2 c}{M_{i}}\right)^{2}\right]^{1 / 2} \\ & \omega_{c 2}=\left[\frac{2 k_{z}}{M_{i}}+\frac{k_{z}}{\Delta k}\left(\frac{2 c}{M_{i}}\right)^{2}\right]^{1 / 2} \end{aligned}$ where $\Delta k=k_{z}-k_{y}$

TABLE 17-2 CRITICAL SPEEDS OF SIMPLE VERTICAL ROTORSa

Notation
$A=$ section area
$A_{s}=$ equivalent shear area, $A_{s}=A / \alpha_{s}$
$\alpha_{s}=$ shear correction factor (Table 2-4)

$E=$ modulus of elasticity
$G=$ shear modulus of elasticity
$g=$ gravitational acceleration
$I=$ moment of inertia of crosssectional area of shaft
$I_{T i}=$ transverse mass moment of inertia of concentrated mass
$k_{x 1}, k_{x 2}=$ linear spring constants
$k_{y 1}^{*}, k_{y 2}^{*}=$ rotary spring constants
$M_{i}=$ mass of concentrated mass
$\omega_{c}=$ critical speed
$\rho^{*}=$ mass per unit volume of shaft
Gyroscopic effects of the rotor are not taken into account.
The critical speeds are the roots of the following determinant set equal to zero (the frequency equation):

0	1	0	1	0	0	0	0
a_{21}	a_{22}	a_{23}	a_{24}	0	0	0	0
a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	a_{36}	a_{37}	a_{38}
a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	a_{46}	a_{47}	a_{48}
a_{51}	a_{52}	a_{53}	a_{54}	a_{55}	a_{56}	a_{57}	a_{58}
a_{61}	a_{62}	a_{63}	a_{64}	a_{65}	a_{66}	a_{67}	a_{68}
0	0	0	0	a_{75}	a_{76}	a_{77}	a_{78}
0	0	0	0	a_{85}	a_{86}	a_{87}	a_{88}

$$
\begin{array}{rlrl}
a_{21}=\frac{k_{y 1}^{*} L}{E I} \gamma_{1} \quad a_{22}=\alpha_{1} \gamma_{1} & a_{23} & =\frac{k_{y 1}^{*} L}{E I} \delta_{1} \quad a_{24}=-\beta_{1} \delta_{1} \\
a_{31} & =\sin \left(\alpha_{1} \ell / L\right) & a_{32} & =\cos \left(\alpha_{1} \ell / L\right) \\
a_{33} & =\sinh \left(\beta_{1} \ell / L\right) & a_{33} & =\cosh \left(\beta_{1} \ell / L\right) \\
a_{35} & =-\sin \left(\alpha_{2} \ell / L\right) & a_{36} & =-\cos \left(\alpha_{2} \ell / L\right) \\
a_{37} & =-\sinh \left(\beta_{2} \ell / L\right) & a_{38} & =-\cosh \left(\beta_{2} \ell / L\right) \\
a_{41} & =\gamma_{1} a_{32} & a_{42} & =-\gamma_{1} a_{31} \\
a_{43} & =\delta_{1} a_{34} & a_{44} & =\delta_{1} a_{33} \\
a_{45} & =\gamma_{2} a_{36} & a_{46} & =-\gamma_{2} a_{35} \\
a_{47} & =\delta_{2} a_{38} & a_{48} & =\delta_{2} a_{37}
\end{array}
$$

TABLE 17-2 (continued) CRITICAL SPEEDS OF SIMPLE VERTICAL ROTORS ${ }^{a}$

$$
\begin{array}{cl}
a_{51}=\frac{M_{i} L}{G A_{s}} \omega_{c}^{2} a_{31}+\left[\left(1+\frac{P_{1}}{G A_{s}}\right) \gamma_{1}-\alpha_{1}\right] a_{32} \\
a_{52}=\frac{M_{i} L}{G A_{s}} \omega_{c}^{2} a_{32}-\left[\left(1+\frac{P_{1}}{G A_{s}}\right) \gamma_{1}+\alpha_{1}\right] a_{31} \\
a_{53}=\frac{M_{i} L}{G A_{s}} \omega_{c}^{2} a_{33}+\left[\left(1+\frac{P_{1}}{G A_{s}}\right) \gamma_{1}-\beta_{1}\right] a_{34} \\
a_{54}=\frac{M_{i} L}{G A_{s}} \omega_{c}^{2} a_{34}+\left[\left(1+\frac{P_{1}}{G A_{s}}\right) \gamma_{1}-\beta_{1}\right] a_{33} \\
a_{55}=\left(1-\frac{P_{2}}{G A_{s}}\right) a_{45}-\alpha_{2} a_{36} & a_{56}=\left(1-\frac{P_{2}}{G A_{s}}\right) a_{46}+\alpha_{2} a_{35} \\
a_{57}=\left(1-\frac{P_{2}}{G A_{s}}\right) a_{47}-\beta_{2} a_{38} & a_{58}=\left(1-\frac{P_{2}}{G A_{s}}\right) a_{48}-\beta_{2} a_{37} \\
a_{61}= & \frac{I_{T i} L}{E I} \omega_{c}^{2} a_{41}-\alpha_{1} a_{42} \\
a_{63}= & a_{62}=\frac{I_{T i} L}{E I} \omega_{c}^{2} a_{42}+\alpha_{1} a_{41} \\
a_{65}=-\omega_{c}^{2} a_{43}-\beta_{1} a_{44} & a_{64}=\frac{I_{T i} L}{E I} \omega_{c}^{2} a_{44}-\beta_{1} a_{43} \\
a_{67}=-\beta_{2} a_{48} & a_{66}=\alpha_{2} a_{45} \\
a_{75}=\sin \alpha_{2} & a_{68}=-\beta_{2} a_{47} \\
a_{77}= & a_{76}=\cos \alpha_{2} \\
a_{85}= & a_{78}=\cosh \beta_{2} \\
a_{y 2}^{*} L & a_{86}=-\frac{k_{y 2}^{*} L}{E I} \gamma_{2} a_{76}-\gamma_{2} \alpha_{25}-\gamma_{2} \alpha_{2} a_{76} \\
a_{87}=\frac{k_{y 2}^{*} L}{E I} \delta_{2} a_{78}+\delta_{2} \beta_{2} a_{77} & a_{88}=\frac{k_{y 2}^{*} L}{E I} \delta_{2} a_{77}+\delta_{2} \beta_{2} a_{78}
\end{array}
$$

where

$$
\begin{aligned}
\gamma_{j} & =\frac{\alpha_{j}^{2}-\rho^{*} A L^{2} \omega_{c}^{2} / G A_{s}}{\left(1+P / G A_{s}\right) \alpha_{j}} \quad(j=1,2) \\
\delta_{j} & =\frac{\beta_{j}^{2}+\rho^{*} A L^{2} \omega_{c}^{2} / G A_{s}}{\left(1+P / G A_{s}\right) \beta_{j}} \quad(j=1,2) \\
P_{1} & =M_{i} g\left[k_{x 1} k_{x 2}(L-\ell)+k_{x 1} E A\right] /\left[k_{x 1} k_{x 2} L+\left(k_{x 1}+k_{x 2}\right) E A\right] \\
P_{2} & =M_{i} g\left(k_{x 1} k_{x 2} \ell+k_{x 2} E A\right) /\left[k_{x 1} k_{x 2} L+\left(k_{x 1}+k_{x 2}\right) E A\right] \\
P & =\left\{\begin{aligned}
P_{1} & \text { for } j=1 \\
-P_{2} & \text { for } j=2
\end{aligned}\right.
\end{aligned}
$$

TABLE 17-2 (continued) CRITICAL SPEEDS OF SIMPLE VERTICAL ROTORS ${ }^{\text {a }}$

The constants α_{j} and $\beta_{j}(j=1,2)$ are determined by solving the following two equations simultaneously:

$$
\begin{aligned}
\alpha_{j}^{2}-\beta_{j}^{2} & =\left(\frac{1}{E A}+\frac{1}{G A_{s}}\right) \rho^{*} A L^{2} \omega_{c}^{2}+\left(1+\frac{P}{G A_{s}}\right) \frac{P L^{2}}{E I} \\
\alpha_{j}^{2} \beta_{j}^{2} & =\frac{\rho^{*} A L^{4}}{E I} \omega_{c}^{2}\left[\left(1+\frac{P}{G A_{s}}\right)-\frac{\rho^{*} I}{G A_{s}} \omega_{c}^{2}\right]
\end{aligned}
$$

In the following, the stiffness coefficients $k_{x 1}, \ldots, k_{y 2}^{*}$ for several special support conditions are listed.

	Case 1	Case $2^{\text {b }}$	Case $3^{\text {b }}$	Case 4	Case 5	Case 6
$k_{x 1}$	∞	∞	0	∞	∞	0
$k_{x 2}$	∞	0	∞	∞	0	∞
$k_{y 1}^{*}$	0	0	0	∞	∞	∞
$k_{y 2}^{*}$	0	0	0	∞	∞	∞

${ }^{a}$ Based on Ref. [17.1].
${ }^{b}$ Vertical (axial) motion permitted.

TABLE 17-3 CRITICAL SPEEDS AND MODE SHAPES FOR UNIFORM ROTORSa ${ }^{a}$ IN BENDING

Notation

$A=$ cross-sectional area
$E=$ modulus of elasticity
$I=$ moment of inertia of cross-sectional area
$n=$ mode number
$r=$ radius of gyration of cross-sectional area, $r^{2}=I / A$
$\omega_{c 1}=$ forward whirling critical speed (positive)
$\omega_{c 2}=$ backward whirling critical speed (negative)
$\rho^{*}=$ mass per unit volume
$\Omega=$ rotating speed
$\xi=x / L$

Critical speeds:

$$
\begin{aligned}
\omega_{c 1,2} & =\left[-\Omega \beta_{n}^{2} \pm \sqrt{\Omega^{2} \beta_{n}^{4}+\left(1-\beta_{n}^{2}\right) \omega_{0}^{2}}\right] /\left(1-\beta_{n}^{2}\right) \quad\left(\text { plus sign for } \omega_{c 1}, \text { minus sign for } \omega_{c 2}\right) \\
\beta_{n} & =\lambda_{n} r / L \quad \omega_{0}=\left(\frac{\lambda_{n}}{L}\right)^{2}\left(\frac{E I}{\rho^{*} A}\right)^{1 / 2}
\end{aligned}
$$

Boundary Conditions	Frequency Equation	Constant λ_{n}	Mode Shapes ϕ_{n}
1. Free-free	$\cosh \lambda \cos \lambda=1$	$\begin{aligned} \lambda_{1} & =4.7300 \\ \lambda_{2} & =7.8532 \\ \lambda_{3} & =10.9956 \\ & \vdots \end{aligned}$ For large n, $\lambda_{n} \approx \frac{1}{2}(2 n+1) \pi$	$\left(\cosh \lambda_{n} \xi+\cos \lambda_{n} \xi\right)-\frac{\cosh \lambda_{n}-\cos \lambda_{n}}{\sinh \lambda_{n}-\sin \lambda_{n}}\left(\sinh \lambda_{n} \xi+\sin \lambda_{n} \xi\right)$
2. Free-hinged	$\tan \lambda=\tanh \lambda$	$\begin{aligned} \lambda_{1} & =3.9266 \\ \lambda_{2} & =7.0686 \\ \lambda_{3} & =10.2102 \\ & \vdots \end{aligned}$ For large n, $\lambda_{n} \approx \frac{1}{4}(4 n+1) \pi$	$\left(\cosh \lambda_{n} \xi+\cos \lambda_{n} \xi\right)-\frac{\cosh \lambda_{n}+\cos \lambda_{n}}{\sinh \lambda_{n}+\sin \lambda_{n}}\left(\sinh \lambda_{n} \xi+\sin \lambda_{n} \xi\right)$

\| ©	TABLE 17-3 (continued) CRITICAL SPEEDS AND MODE SHAPES FOR UNIFORM ROTORS ${ }^{\text {a }}$ IN BENDING			
	Boundary Conditions	Frequency Equation	Constant λ_{n}	Mode Shapes ϕ_{n}
	3. Free-guided	$\tan \lambda=-\tanh \lambda$	$\begin{gathered} \lambda_{1}=2.3650 \\ \lambda_{2}=5.4978 \\ \lambda_{3}=8.6394 \\ \quad \vdots \\ \text { For large } n \\ \lambda_{n} \approx \frac{1}{4}(4 n-1) \pi \end{gathered}$	$\left(\cosh \lambda_{n} \xi+\cos \lambda_{n} \xi\right)-\frac{\sinh \lambda_{n}-\sin \lambda_{n}}{\cosh \lambda_{n}+\cos \lambda_{n}}\left(\sinh \lambda_{n} \xi+\sin \lambda_{n} \xi\right)$
0 0 0 0 0 0 0 0 0 0 0 3 3 0	4. Clamped-free	$\cosh \lambda \cos \lambda=-1$	$\begin{aligned} \lambda_{1} & =1.8751 \\ \lambda_{2} & =4.6941 \\ \lambda_{3} & =7.8541 \\ & \vdots \end{aligned}$ For large n, $\lambda_{n} \approx \frac{1}{2}(2 n-1) \pi$	$\left(\cosh \lambda_{n} \xi-\cos \lambda_{n} \xi\right)-\frac{\cosh \lambda_{n}+\cos \lambda_{n}}{\sinh \lambda_{n}+\sin \lambda_{n}}\left(\sinh \lambda_{n} \xi-\sin \lambda_{n} \xi\right)$
	5. Hinged-hinged	$\sin \lambda=0$	$\lambda_{n}=n \pi$	$\sin n \pi \xi$
	6. Hinged-guided	$\cos \lambda=0$	$\lambda_{n}=\frac{1}{2}(2 n-1) \pi$	$\sin \left[\frac{1}{2}(2 n-1) \pi \xi\right]$

	7. Guided-guided	$\sin \lambda=0$	$\lambda_{n}=n \pi$	$\cos n \pi \xi$
	8. Clamped-hinged	$\tan \lambda=\tanh \lambda$	$\begin{aligned} & \lambda_{1}=3.9266 \\ & \lambda_{2}=7.0686 \\ & \lambda_{3}=10.2102 \end{aligned}$ For large n, $\lambda_{n} \approx \frac{1}{4}(4 n+1) \pi$	$\left(\cosh \lambda_{n} \xi-\cos \lambda_{n} \xi\right)-\frac{\cosh \lambda_{n}-\cos \lambda_{n}}{\sinh \lambda_{n}-\sin \lambda_{n}}\left(\sinh \lambda_{n} \xi-\sin \lambda_{n} \xi\right)$
Ioł sədeys әpou	9. Clamped-guided	$\tan \lambda=-\tanh \lambda$	$\begin{aligned} & \lambda_{1}=2.3650 \\ & \lambda_{2}=5.4978 \\ & \lambda_{3}=8.6394 \end{aligned}$ For large n, $\lambda_{n} \approx \frac{1}{4}(4 n-1) \pi$	$\left(\cosh \lambda_{n} \xi-\cos \lambda_{n} \xi\right)-\frac{\sinh \lambda_{n}+\sin \lambda_{n}}{\cosh \lambda_{n}-\cos \lambda_{n}}\left(\sinh \lambda_{n} \xi-\sin \lambda_{n} \xi\right)$
	10. Clamped-clamped	$\cosh \lambda \cos \lambda=1$	$\begin{aligned} & \lambda_{1}=4.7300 \\ & \lambda_{2}=7.8532 \\ & \lambda_{3}=10.9956 \end{aligned}$ For large n, $\lambda_{n} \approx \frac{1}{2}(2 n+1) \pi$	$\left(\cosh \lambda_{n} \xi-\cos \lambda_{n} \xi\right)-\frac{\cosh \lambda_{n}-\cos \lambda_{n}}{\sinh \lambda_{n}-\sin \lambda_{n}}\left(\sinh \lambda_{n} \xi-\sin \lambda_{n} \xi\right)$

TABLE 17-3 (continued) CRITICAL SPEEDS AND MODE SHAPES FOR UNIFORM ROTORSª IN BENDING

11.

$$
\begin{array}{ll}
\lambda_{1 n}=p_{n} L, \quad \lambda_{2 n}=q_{n} L & \begin{array}{l}
\cosh \lambda_{1 n} \xi+C_{2 n}^{\prime} \sinh \lambda_{1 n} \xi+C_{3 n}^{\prime} \cos \lambda_{2 n} \xi+C_{4 n}^{\prime} \sin \lambda_{2 n} \xi \\
C_{2 n}^{\prime}, C_{3 n}^{\prime}, C_{4 n}^{\prime} \text { are constants that can be obtained by solving }
\end{array}
\end{array}
$$

$$
p_{n}^{2}=\left[\left(\frac{\rho^{*} I\left(\omega_{n}^{2}-2 \Omega \omega_{n}\right)}{2 E I}\right)^{2}+\frac{\rho^{*} A \omega_{n}^{2}}{E I}\right]^{1 / 2}
$$ the equation

$$
-\frac{\rho^{*} I\left(\omega_{n}^{2}-2 \Omega \omega_{n}\right)}{2 E I}
$$

$$
q_{n}^{2}=\left[\left(\frac{\rho^{*} I\left(\omega_{n}^{2}-2 \Omega \omega_{n}\right)}{2 E I}\right)^{2}+\frac{\rho^{*} A \omega_{n}^{2}}{E I}\right]^{1 / 2}
$$

$\mathbf{A}\left[\begin{array}{c}1 \\ C_{2 n}^{\prime} \\ C_{3 n}^{\prime} \\ C_{4 n}^{\prime}\end{array}\right]=0$

$$
+\frac{\rho^{*} I\left(\omega_{n}^{2}-2 \Omega \omega_{n}\right)}{2 E I}
$$

The frequency ω_{n} can be computed by solving $\operatorname{det} A=0$.
If $\omega_{n}>0$, it is the forward whirling critical speed. If $\omega_{n}<0$, it is the backward whirling critical speed.
${ }^{a}$ Rotors with circular cross-sectional area, hollow or solid.

TABLE 17-4 TRANSFER, MASS, AND GYROSCOPIC MATRICES FOR RIGID DISK AND CONCENTRATED MASS

Notation

$M_{i}=$ mass of rigid disk
$I_{p i}=$ polar mass moment of inertia of disk, $I_{p i}=\frac{1}{2} M_{i}\left(r_{o}^{2}+r_{i}^{2}\right)$,
where r_{i} and r_{o} are inner and outer radii of disk
$I_{T i}=$ transverse mass moment of inertia of disk,
$I_{T i}=\frac{1}{2} I_{p i}+\frac{1}{12} M_{i} h^{2}$
($h=0$ for concentrated mass)
$e=$ eccentricity of mass center coordinates in the rotating of rigid disk
$\left(\eta_{a}, \zeta_{a}\right)=$ mass center coordinates in the
rotating coordinate system $X Y Z$
$\omega=$ whirl speed of rotor (for unbalanced response, $\omega=\Omega$)
$\Omega=$ spin speed
$h=$ thickness of rigid disk

Superscripts: s, sine components; c, cosine components
Transfer Matrix (Sign Convention 1)

TABLE 17-4 (continued) TRANSFER, MASS, AND GYROSCOPIC MATRICES FOR RIGID DISK AND CONCENTRATED MASS

$$
\begin{aligned}
A_{1} & =-M_{i} \omega^{2} \\
A_{2} & =-I_{T i} \omega^{2}+\frac{1}{4} M_{i} \omega^{2} h^{2} \\
A_{3} & =\frac{1}{2} M_{i} \omega^{2} h \\
A_{4} & =I_{p i} \Omega \omega \\
B & =-M_{i} \Omega^{2} \eta_{a} \\
C & =-M_{i} \Omega^{2} \zeta_{a}
\end{aligned}
$$

For a concentrated mass, set h equal zero.
Mass and Gyroscopic Matrices (Sign Convention 2)
$\left(\mathbf{m}_{T}+\mathbf{m}_{R}\right) \ddot{\mathbf{v}}-\Omega \mathbf{g} \dot{\mathbf{v}}=\mathbf{p}$
with $\mathbf{v}=\left[\begin{array}{llll}w_{y} & w_{z} & \theta_{y} & \theta_{z}\end{array}\right]^{T} \quad \mathbf{p}=\left[\begin{array}{llll}V_{y} & V_{z} & M_{y} & M_{z}\end{array}\right]^{T}$
$\mathbf{m}_{T}=\left[\begin{array}{llll}M_{i} & & & \\ & M_{i} & & \\ & & 0 & \\ & & & 0\end{array}\right]$
$\mathbf{m}_{R}=\left[\begin{array}{llll}0 & & & \\ & 0 & & \\ & & I_{T i} & \\ & & & I_{T i}\end{array}\right]$

$\mathbf{g}=\left[\begin{array}{cccc}0 & & & \\ & 0 & & \\ & & 0 & I_{p i} \\ & & -I_{p i} & 0\end{array}\right]$
For the unbalance force
$\mathbf{p}=\mathbf{p}^{c} \cos \Omega t+\mathbf{p}^{s} \sin \Omega t$
$\mathbf{p}^{c}=M_{i} \Omega^{2}\left[\begin{array}{c}\eta_{a} \\ \zeta_{a} \\ 0 \\ 0\end{array}\right] \quad \mathbf{p}^{s}=M_{i} \Omega^{2}\left[\begin{array}{c}-\zeta_{a} \\ \eta_{a} \\ 0 \\ 0\end{array}\right]$

TABLE 17-5 TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A UNIFORM SHAFT ELEMENT IN BENDING ${ }^{a}$

Notation

$A=$ cross-sectional area
$E=$ modulus of elasticity
$I=$ moment of inertia of section area
$\ell=$ length of shaft element
$\Omega=$ spin speed
$r=$ radius of gyration of cross-sectional area about y or z axis
$G=$ shear modulus of elasticity
$\alpha_{s}=$ shear correction factor (Table 2-4)
$A_{s}=A / \alpha_{s}=$ equivalent shear area
$\rho^{*}=$ mass per unit volume
$\omega=$ whirl speed (for unbalanced response, $\omega=\Omega$)
$e=$ mass center eccentricity
$\left(\eta_{a}, \zeta_{a}\right),\left(\eta_{b}, \zeta_{b}\right)=$ mass center eccentricity at $x=a, x=b$ in the rotating coordinates $X Y Z$

The eccentricity is distributed linearly along the x axis; $\eta(\xi)=\eta_{a}(1-\xi)+\eta_{b} \xi$;

$$
\zeta(\xi)=\zeta_{a}(1-\xi)+\zeta_{b} \xi \quad(\xi=x / \ell)
$$

$$
\alpha=\sqrt{\beta^{2}+\gamma} \quad p^{2}=|\alpha-\beta| \quad q^{2}=|\alpha+\beta| \quad \varepsilon=\rho^{*} \omega^{2} / E \quad \sigma=E I / G A_{s}
$$

$$
\beta=\frac{1}{2} \omega^{2}\left[\frac{\rho^{*} \alpha_{s}}{G}+\frac{\rho^{*}}{E}\left(\frac{2 \Omega}{\omega}+1\right)\right] \quad \gamma=\omega^{2}\left[\frac{\rho^{*} A}{E I}-\frac{\rho^{*}}{E}\left(\frac{2 \Omega}{\omega}+1\right) \frac{\alpha_{s} \rho^{*} \omega^{2}}{G}\right]
$$

$$
\gamma \geq 0\left(\omega \leq \sqrt{\Omega^{2}+G A_{s} /\left(\rho^{*} I\right)}-\Omega\right)
$$

$c_{0}=\left(q^{2} \cosh p \ell+p^{2} \cos q \ell\right) /\left(p^{2}+q^{2}\right)$
$c_{1}=\left(q^{2} \sinh p \ell / p \ell+p^{2} \sin q \ell / q \ell\right) /\left(p^{2}+q^{2}\right)$
$c_{2}=(\cosh p \ell-\cos q \ell) /\left[\ell^{2}\left(p^{2}+q^{2}\right)\right]$
$c_{3}=(\sinh p \ell / p \ell-\sin q \ell / q \ell) /\left[\ell^{2}\left(p^{2}+q^{2}\right)\right]$
$e_{0}=\left(p^{3} \sinh p \ell-q^{3} \sin q \ell\right) /\left(p^{2}+q^{2}\right)$
$e_{1}=\left(p^{2} \cosh p \ell+q^{2} \cos q \ell\right) /\left(p^{2}+q^{2}\right)$
$e_{2}=(p \sinh p \ell+q \sin q \ell) /\left(p^{2}+q^{2}\right)$
$e_{3}=(\cosh p \ell-\cos q \ell) /\left(p^{2}+q^{2}\right)$
$e_{4}=(\sinh p \ell / p-\sin q \ell / q) /\left(p^{2}+q^{2}\right)$
$e_{5}=\left(\cosh p \ell / p^{2}+\cos q \ell / q^{2}\right) /\left(p^{2}+q^{2}\right)-\frac{1}{p^{2} q^{2}} \quad\left(\right.$ if $\gamma=0$, set $\left.e_{5}=0\right)$
$e_{6}=\left(\sinh p \ell / p^{3}+\sin q \ell / q^{3}\right) /\left(p^{2}+q^{2}\right)-\frac{\ell}{p^{2} q^{2}} \quad\left(\right.$ if $\gamma=0$, set $\left.e_{6}=0\right)$
Set $\sinh p \ell / p \ell=1$ if $p \ell=0$.

TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A UNIFORM SHAFT ELEMENT IN BENDING ${ }^{\text {a }}$

$$
\begin{aligned}
& \gamma<0\left(\omega>\sqrt{\Omega^{2}+G A_{s} /\left(\rho^{*} I\right)}-\Omega\right) \\
& c_{0}=\left(q^{2} \cos p \ell-p^{2} \cos q \ell\right) /\left(-p^{2}+q^{2}\right) \\
& c_{1}=\left(q^{2} \sin p \ell / p \ell-p^{2} \sin q \ell / q \ell\right) /\left(-p^{2}+q^{2}\right) \\
& c_{2}=(\cos p \ell-\cos q \ell) /\left[\ell^{2}\left(-p^{2}+q^{2}\right)\right] \\
& c_{3}=(\sin p \ell / p \ell-\sin q \ell / q \ell) /\left[\ell^{2}\left(-p^{2}+q^{2}\right)\right] \\
& e_{0}=\left(p^{3} \sin p \ell-q^{3} \sin q \ell\right) /\left(-p^{2}+q^{2}\right) \\
& e_{1}=\left(-p^{2} \cos p \ell+q^{2} \cos q \ell\right) /\left(-p^{2}+q^{2}\right) \\
& e_{2}=(-p \sin p \ell+q \sin q \ell) /\left(-p^{2}+q^{2}\right) \\
& e_{3}=(\cos p \ell-\cos q \ell) /\left(-p^{2}+q^{2}\right) \\
& e_{4}=(\sin p \ell / p-\sin q \ell / q] /\left(-p^{2}+q^{2}\right) \\
& e_{5}=\left(-\cos p \ell / p^{2}+\cos q \ell / q^{2}\right) /\left(-p^{2}+q^{2}\right)+\frac{1}{p^{2} q^{2}} \\
& e_{6}=\left(-\sin p \ell / p^{3}+\sin q \ell / q^{3}\right) /\left(-p^{2}+q^{2}\right)+\frac{\ell}{p^{2} q^{2}}
\end{aligned}
$$

Transfer Matrix: Shear Deformation Included (Sign Convention 1)

$$
\begin{aligned}
\mathbf{z}_{b} & =\mathbf{U}^{i} \mathbf{z}_{a} \\
\mathbf{z} & =\left[\begin{array}{lllllllllll}
w_{z}^{s} & \theta_{y}^{s} & V_{z}^{s} & M_{y}^{s} \mid w_{z}^{c} & \theta_{y}^{c} & V_{z}^{c} & M_{y}^{c} \mid w_{y}^{s} & \theta_{z}^{s} & V_{y}^{s} & M_{z}^{s} & w_{y}^{c} \\
\theta_{z}^{c} & V_{y}^{c} & M_{z}^{c} \mid 1
\end{array}\right]^{T}
\end{aligned}
$$

TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A UNIFORM SHAFT ELEMENT IN BENDING ${ }^{\text {a }}$

The gyroscopic coupling effects between the $x y$ and $x z$ planes are ignored.
$\mathbf{T}_{s}=[T]_{4 \times 4}$
\mathbf{T}_{s}^{*} is obtained by multiplying the 2 nd and 4 th rows of \mathbf{T}_{s} by -1 , then multiplying the 2nd and 4th columns of the resulting matrix by -1 .
$B=\left(v_{Y}\right)_{b}-\left(v_{Y}\right)_{a}$
$C=\left(v_{Z}\right)_{b}-\left(v_{Z}\right)_{a}$
$v_{b}=$ static bow at the right end of the segment
$v_{a}=$ static bow at the left end of the segment
The static bow defines the initial permanent deformation of the geometric shaft center relative to the line of centers of the bearing system at rotating coordinates $X Y Z$.

TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A UNIFORM SHAFT ELEMENT IN BENDING ${ }^{\text {a }}$

$$
\begin{aligned}
& T_{11}=c_{0}-c_{2} \frac{\rho^{*} \omega^{2} \alpha_{s} \ell^{2}}{G} \quad T_{21}=-c_{3} \frac{\rho^{*} \omega^{2} A \ell^{3}}{E I} \\
& T_{31}=-c_{1} \rho^{*} \omega^{2} A \ell+c_{3} \frac{\rho^{* 2} \omega^{4} \alpha_{s} \ell^{3}}{G} \quad T_{41}=-c_{2} \rho^{*} \omega^{2} A \ell^{2} \\
& T_{12}=-c_{1} \ell+c_{3}\left[\frac{\rho^{*} \omega^{2} \ell^{3}}{E}\left(\frac{2 \Omega}{\omega}+1\right)+\frac{\rho^{*} \omega^{2} \ell^{3} \alpha_{s}}{G}\right] \\
& T_{22}=c_{0}-c_{2}\left[\frac{\rho^{*} \omega^{2} \ell^{2}}{E}\left(\frac{2 \Omega}{\omega}+1\right)\right] \\
& T_{32}=c_{2} \rho^{*} \omega^{2} A \ell^{2} \\
& T_{42}=-c_{1} \rho^{*} \omega^{2} I \ell\left(\frac{2 \Omega}{\omega}+1\right)+c_{3}\left[\frac{\rho^{* 2} I \omega^{4} \ell^{3}}{E I}\left(\frac{2 \Omega}{\omega}+1\right)^{2}+\rho^{*} \omega^{2} A \ell^{3}\right] \\
& T_{13}= c_{1} \frac{\alpha_{s} \ell}{G A}+c_{3}\left(-\frac{\alpha_{s}^{2} \rho^{*} \omega^{2} \ell^{3}}{G^{2} A}-\frac{\ell^{3}}{E I}\right) \quad T_{23}=c_{2} \frac{\ell^{2}}{E I} \\
& T_{33}=c_{0}-c_{2} \frac{\rho^{*} \omega^{2} \alpha_{s} \ell^{2}}{G} \quad T_{43}=c_{1} \ell-c_{3}\left[\frac{\rho^{*} \omega^{2} \ell^{3}}{E}\left(\frac{2 \Omega}{\omega}+1\right)+\frac{\rho^{*} \omega^{2} \alpha_{s} \ell^{3}}{G}\right] \\
& T_{14}=-c_{2} \frac{\ell^{2}}{E I} \\
& T_{24}=c_{1} \frac{\ell}{E I}-c_{3} \frac{\rho^{*} \omega^{2} \ell^{3}}{E^{2} I}\left(\frac{2 \Omega}{\omega}+1\right) \\
& T_{34}=c_{3} \frac{\rho^{*} \omega^{2} A \ell^{3}}{E I} \quad T_{44}=c_{0}-c_{2} \frac{\rho^{*} \omega^{2} \ell^{3}}{E}\left(\frac{2 \Omega}{\omega}+1\right) \\
& \hline F_{w j}^{k}=\left[p_{a j}^{k}\left(e_{5}-e_{6} / \ell\right)+p_{b j}^{k} e_{6} / \ell\right] / E I \\
&+\left\{p_{a j}^{k}\left[e_{3}+\varepsilon e_{5}-\left(e_{4}+\varepsilon e_{6}\right) / \ell\right]+p_{b j}^{k}\left(e_{4}+\varepsilon e_{6}\right) / \ell\right\} / G A_{s} \\
& F_{\theta j}^{k}= {\left[p_{a j}^{k}\left(-e_{4}+e_{5} / \ell\right)-p_{b j}^{k} e_{5} / \ell\right) / E I } \\
& F_{V j}^{k}=p_{a j}^{k}\left[-\left(e_{2}+\varepsilon e_{4}\right)+\left(e_{3}+\varepsilon e_{5}\right) / \ell\right]-p_{b j}^{k}\left(e_{3}+\varepsilon e_{5}\right) / \ell \\
& F_{M j}^{k}=p_{a j}^{k}\left(-e_{3}+e_{4} / \ell\right)-p_{b j}^{k} e_{4} / \ell \\
&(k=s, c) \\
&(j=z, y)
\end{aligned}
$$

where

$$
\begin{array}{lc}
p_{a z}^{s}=\rho^{*} A \eta_{a} \Omega^{2} ; & p_{b z}^{s}=\rho^{*} A \eta_{b} \Omega^{2} \\
p_{a z}^{c}=\rho^{*} A \zeta_{a} \Omega^{2} ; & p_{b z}^{c}=\rho^{*} A \zeta_{b} \Omega^{2} \\
p_{a y}^{s}=-\rho^{*} A \zeta_{a} \Omega^{2} ; & p_{b y}^{s}=-\rho^{*} A \zeta_{b} \Omega^{2} \\
p_{a y}^{c}=\rho^{*} A \eta_{a} \Omega^{2} ; & p_{b y}^{c}=\rho^{*} A \eta_{b} \Omega^{2} \\
\hline
\end{array}
$$

TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A UNIFORM SHAFT ELEMENT IN BENDING ${ }^{a}$

Stiffness, Mass, Gyroscopic, and Dynamic Stiffness Matrices (Sign Convention 2)

1. The matrices here (e.g., the consistent mass matrices), are based on the static deflection (shape function) of the beam [Eq. (17.40)]. The governing equation is
$\begin{aligned} & \left(\mathbf{m}_{T}+\mathbf{m}_{R}\right) \ddot{\mathbf{v}}-\Omega \mathbf{g} \dot{\mathbf{v}}+\mathbf{k v}=\mathbf{p}^{c} \cos \Omega t+\mathbf{p}^{s} \sin \Omega t \\ \mathbf{v}= & {\left[\begin{array}{cccccccc}w_{y a} & w_{z a} & \theta_{y a} & \theta_{z a} & w_{y b} & w_{z b} & \theta_{y b} & \theta_{z b}\end{array}\right]^{T} } \\ \mathbf{p}= & {\left[\begin{array}{llllllll}V_{y a} & V_{z a} & M_{y a} & M_{z a} & V_{y b} & V_{z b} & M_{y b} & M_{z b}\end{array}\right]^{T} }\end{aligned}$

TRANSLATIONAL CONSISTENT MASS MATRIX

$\left.\mathbf{m}_{T}=\frac{\rho^{*} A \ell}{420}\left[\begin{array}{ccccccc}156 & & & & & & \\ 0 & 156 & & & & \text { symmetric } \\ 0 & -22 \ell & 4 \ell^{2} & & & & \\ 22 \ell & 0 & 0 & 4 \ell^{2} & & & \\ 54 & 0 & 0 & 13 \ell & 156 & & \\ 0 & 54 & -13 \ell & 0 & 0 & 156 & \\ 0 & 13 \ell & -3 \ell^{2} & 0 & 0 & 22 \ell & 4 \ell^{2} \\ -13 \ell & 0 & 0 & -3 \ell^{2} & -22 \ell & 0 & 0\end{array}\right] 4 \ell^{2}\right]$
ROTARY CONSISTENT MASS MATRIX
$\mathbf{m}_{R}=\frac{\rho^{*} A r^{2}}{30 \ell}\left[\begin{array}{cccccccc}36 & & & & & & & \text { symmetric } \\ 0 & 36 & & & & & & \\ 0 & -3 \ell & 4 \ell^{2} & & & & & \\ 3 \ell & 0 & 0 & 4 \ell^{2} & & & & \\ -36 & 0 & 0 & -3 \ell & 36 & & & \\ 0 & -36 & 3 \ell & 0 & 0 & 36 & & \\ 0 & -3 \ell & -\ell^{2} & 0 & 0 & 3 \ell & 4 \ell^{2} & \\ 3 \ell & 0 & 0 & -\ell^{2} & -3 \ell & 0 & 0 & 4 \ell^{2}\end{array}\right]$

TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A UNIFORM SHAFT ELEMENT IN BENDING ${ }^{\text {a }}$

GYROSCOPIC MATRIX
$\mathbf{g}=\frac{\rho^{*} A r^{2}}{15 \ell}\left[\begin{array}{cccccccc}0 & & & & & & & \\ 36 & 0 & & & \text { skew symmetric } & \\ -3 \ell & 0 & 0 & & & & & \\ 0 & -3 \ell & 4 \ell^{2} & 0 & & & & \\ 0 & 36 & -3 \ell & 0 & 0 & & & \\ -36 & 0 & 0 & -3 \ell & 36 & 0 & & \\ -3 \ell & 0 & 0 & \ell^{2} & 3 \ell & 0 & 0 & \\ 0 & -3 \ell & -\ell^{2} & 0 & 0 & 3 \ell & 4 \ell^{2} & 0\end{array}\right]$
STIFFNESS MATRIX
$\mathbf{k}=\frac{E I}{(1+\phi) \ell^{3}}\left[\begin{array}{ccccccc}12 & & & & & & \\ 0 & 12 & & & & & \text { symmetric } \\ 0 & -6 \ell & (4+\phi) \ell^{2} & & (4+\phi) \ell^{2} & & \\ 6 \ell & 0 & 0 & & & \\ -12 & 0 & 0 & -6 \ell & 12 & & \\ 0 & -12 & 6 \ell & 0 & 0 & 12 & \\ 0 & -6 \ell & (2-\phi) \ell^{2} & 0 & 0 & 6 \ell & (4+\phi) \ell^{2} \\ 6 \ell & 0 & 0 & (2-\phi) \ell^{2} & -6 \ell & 0 & 0\end{array}(4+\phi) \ell^{2}\right]$
$\phi=\frac{12 E I}{G A_{s} \ell^{2}}$
Set $\phi=0$ if shear deformation effects are to be neglected.
EQUIVALENT UNBALANCE FORCE VECTORS
$\mathbf{p}^{c}=\frac{\rho^{*} A \ell}{60} \Omega^{2}\left[\begin{array}{c}21 \eta_{a}+9 \eta_{b} \\ 21 \zeta_{a}+9 \zeta_{b} \\ -3 \zeta_{a} \ell-2 \zeta_{b} \ell \\ 3 \eta_{a} \ell+2 \eta_{b} \ell \\ 9 \eta_{a}+21 \eta_{b} \\ 9 \zeta_{a}+21 \zeta_{b} \\ 2 \zeta_{a} \ell+3 \zeta_{b} \ell \\ -2 \eta_{a} \ell-3 \eta_{b} \ell\end{array}\right], \quad \mathbf{p}^{s}=\frac{\rho^{*} A \ell}{60} \Omega^{2}\left[\begin{array}{c}-21 \zeta_{a}-9 \zeta_{b} \\ 21 \eta_{a}+9 \eta_{b} \\ -3 \eta_{a} \ell-2 \eta_{b} \ell \\ -3 \zeta_{a} \ell-2 \zeta_{b} \ell \\ -9 \zeta_{a}-21 \zeta_{b} \\ 9 \eta_{a}+21 \eta_{b} \\ 2 \eta_{a} \ell+3 \eta_{b} \ell \\ 2 \zeta_{a} \ell+3 \zeta_{b} \ell\end{array}\right]$

TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A

 UNIFORM SHAFT ELEMENT IN BENDING ${ }^{\text {a }}$2. The exact solution of the governing equation for the harmonic motion of a uniform shaft element is taken as the shape function. This gives the dynamic stiffness matrix $\mathbf{k}_{d y n}$. The governing equation is

$$
\begin{aligned}
& \mathbf{p}=\mathbf{k}_{d y n} \mathbf{v}-\overline{\mathbf{p}} \\
& \mathbf{p}=\left[\begin{array}{llllllll}
V_{y a} & V_{z a} & M_{y a} & M_{z a} & V_{y b} & V_{z b} & M_{y b} & M_{z b}
\end{array}\right]^{T} \\
& \mathbf{v}=\left[\begin{array}{llllllll}
w_{y a} & w_{z a} & \theta_{y a} & \theta_{z a} & w_{y b} & w_{z b} & \theta_{y b} & \theta_{z b}
\end{array}\right]^{T} \\
& \mathbf{k}_{\text {dyn }}=\left[\begin{array}{cccccccc}
k_{11} & & & & & & & \text { symmetric } \\
0 & k_{11} & & & & & & \\
0 & k_{21} & k_{22} & & & & & \\
k_{21} & 0 & 0 & k_{22} & & & & \\
k_{31} & 0 & 0 & k_{32} & k_{33} & & & \\
0 & k_{31} & k_{32} & 0 & 0 & k_{33} & & \\
0 & k_{41} & k_{42} & 0 & 0 & k_{43} & k_{44} & \\
k_{41} & 0 & 0 & k_{42} & k_{43} & 0 & 0 & k_{44}
\end{array}\right] \\
& \overline{\mathbf{p}}=\left[\begin{array}{llllllll}
\bar{p}_{1} & \bar{p}_{2} & \bar{p}_{3} & \bar{p}_{4} & \bar{p}_{5} & \bar{p}_{6} & \bar{p}_{7} & \bar{p}_{8}
\end{array}\right]^{T} \\
& k_{11}=\left[\left(e_{2}+2 \beta e_{4}\right)\left(e_{1}+\varepsilon e_{3}\right)-\gamma e_{3} e_{4}\right] E I / \Delta \\
& k_{21}=\left[e_{3}\left(e_{1}+2 \beta e_{3}\right)-e_{2}\left(e_{2}+2 \beta e_{4}\right)\right] E I / \Delta \\
& k_{31}=-\left(e_{2}+2 \beta e_{4}\right) E I / \Delta \\
& k_{41}=-e_{3} E I / \Delta=-k_{32} \\
& k_{22}=\left\{e_{2} e_{3}-\left(e_{1}+2 \beta e_{3}\right)\left[e_{4}-\sigma\left(e_{2}+\varepsilon e_{4}\right)\right]\right\} E I / \Delta \\
& k_{32}=e_{3} E I / \Delta \\
& k_{42}=\left[e_{4}-\sigma\left(e_{2}+\varepsilon e_{4}\right)\right] E I / \Delta \\
& k_{33}=\left[\left(e_{1}+\varepsilon e_{3}\right)\left(e_{2}+2 \beta e_{4}\right)-\gamma e_{3} e_{4}\right] E I / \Delta=k_{11} \\
& k_{43}=\left\{\left(e_{1}+\varepsilon e_{3}\right) e_{3}-\gamma e_{4}\left[e_{4}-\sigma\left(e_{2}+\varepsilon e_{4}\right)\right]\right\} E I / \Delta \\
& k_{44}=\left\{e_{2} e_{3}-\left(e_{1}+2 \beta e_{3}\right)\left[e_{4}-\sigma\left(e_{2}+\varepsilon e_{4}\right)\right]\right\} E I / \Delta=k_{22}
\end{aligned}
$$

TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A UNIFORM SHAFT ELEMENT IN BENDING ${ }^{a}$

```
\(\bar{p}_{1}=V_{a y}^{0} \quad \bar{p}_{5}=V_{b y}^{0}\)
\(\bar{p}_{2}=V_{a z}^{0} \quad \bar{p}_{6}=V_{b z}^{0}\)
\(\bar{p}_{3}=M_{a z}^{0} \quad \bar{p}_{7}=M_{b z}^{0}\)
\(\bar{p}_{4}=M_{a y}^{0} \quad \bar{p}_{8}=M_{b y}^{0}\)
\(V_{a j}^{0}=-\left[\left(e_{2}+2 \beta e_{4}\right) F_{w j}+e_{3} F_{\theta j}\right] E I / \Delta\)
\(M_{a j}^{0}=\left\{e_{3} F_{w j}+\left[e_{4}-\sigma\left(e_{2}+\varepsilon e_{4}\right)\right] F_{\theta j}\right\} E I / \Delta\)
    \(V_{b j}^{0}=-F_{V j}+\left\{\left[\left(e_{1}+\varepsilon e_{3}\right)\left(e_{2}+2 \beta e_{4}\right)-\gamma e_{3} e_{4}\right] F_{w j}\right.\)
        \(\left.+\left[\left(e_{1}+\varepsilon e_{3}\right) e_{3}-\gamma e_{4}\left[e_{4}-\sigma\left(e_{2}+\varepsilon e_{4}\right)\right]\right] F_{\theta j}\right\} E I / \Delta\)
\(M_{b j}^{0}=-F_{M j}+\left\{\left[\left(e_{1}+\varepsilon e_{3}\right) e_{3}+\sigma e_{4}\left[e_{4}-\sigma\left(e_{2}+\varepsilon e_{4}\right)\right]\right] F_{w j}\right.\)
    \(\left.+\left[e_{2} e_{3}-\left(e_{4}+2 \beta e_{3}\right)\left[e_{4}-\sigma\left(e_{2}+\varepsilon e_{4}\right)\right]\right] F_{\theta j}\right\} E I / \Delta\)
( \(j=y, z\) )
    \(\Delta=e_{3}^{2}-\left(e_{2}+2 \beta e_{4}\right)\left[e_{4}-\sigma\left(e_{2}+\varepsilon e_{4}\right)\right]\)
\(F_{w j}=\left[p_{a j}\left(e_{5}-e_{6} / \ell\right)+p_{b j} e_{6} / \ell\right) / E I\)
        \(+\left\{p_{a j}\left[e_{3}+\varepsilon e_{5}-\left(e_{4}+\varepsilon e_{6}\right) / \ell\right]+p_{b j}\left(e_{4}+\varepsilon e_{6}\right) / \ell\right\} / G A_{s}\)
\(F_{\theta j}=\left[p_{a j}\left(-e_{4}+e_{5} / \ell\right)-p_{b j} e_{5} / \ell\right) / E I\)
\(F_{V j}=\left[-\left(e_{2}+\varepsilon e_{4}\right)+\left(e_{3}+\varepsilon e_{5}\right)\right] / \ell-p_{b j}\left(e_{3}+\varepsilon e_{5}\right) / \ell\)
\(F_{M j}=p_{a j}\left(-e_{3}+e_{4} / \ell\right)-p_{b j} e_{4} / \ell\)
    ( \(j=y, z\) )
\(p_{a y}=\rho^{*} A \Omega^{2}\left(\eta_{a} \cos \Omega t-\zeta_{a} \sin \Omega t\right)\)
\(p_{b y}=\rho^{*} A \Omega^{2}\left(\eta_{b} \cos \Omega t-\zeta_{b} \sin \Omega t\right)\)
\(p_{a z}=\rho^{*} A \Omega^{2}\left(\zeta_{a} \cos \Omega t+\eta_{a} \sin \Omega t\right)\)
\(p_{b z}=\rho^{*} A \Omega^{2}\left(\zeta_{b} \cos \Omega t+\eta_{b} \sin \Omega t\right)\)
```

${ }^{a}$ Some of this table is based on Ref. [17.3].

TABLE 17-6 TRANSFER AND STIFFNESS MATRICES FOR A UNIFORM SHAFT ELEMENT IN BENDING WITH AXIAL TORQUE

Notation

Shear effects are ignored.
$E=$ modulus of elasticity
$\ell=$ length of shaft section
$\Omega=$ spin speed
$I=$ moment of inertia of cross-sectional area
$T=$ axial torque
Superscripts: s, sine components; c, cosine components
Transfer Matrix (Sign Convention 1)

In this transfer matrix, the shaft is considered as a massless Euler-Bernoulli beam without shear and gyroscopic effects.

	$\left[\begin{array}{cccc} 1 & \ell & A_{1} & A_{3} \\ & 1 & -A_{3} & A_{2} \\ & & & 1 \\ & & A_{7} & A_{8} \end{array}\right.$		$\begin{array}{ll} A_{4} & A_{6} \\ A_{6} & A_{5} \\ & \\ A_{9} & A_{10} \end{array}$	
$\mathbf{U}^{i}=$		$\begin{array}{cccc} 1 & \ell & A_{1} & A_{3} \\ & 1 & -A_{3} & A_{2} \\ & & 1 & \\ & & A_{7} & A_{8} \end{array}$		$\begin{array}{ll} A_{4} & A_{6} \\ A_{6} & A_{5} \\ & \\ A_{9} & A_{10} \end{array}$
	$\begin{array}{cc} -A_{4} & A_{6} \\ A_{6} & -A_{5} \\ & \\ A_{9} & -A_{10} \end{array}$		$\begin{array}{cccc} 1 & -\ell & A_{1} & -A_{3} \\ & 1 & A_{3} & A_{2} \\ & 1 & & \\ & & -A_{7} & A_{8} \end{array}$	
		$\begin{array}{cc} -A_{4} & A_{6} \\ A_{6} & -A_{5} \\ & \\ A_{9} & -A_{10} \end{array}$		$\begin{array}{ccc} 1-\ell & A_{1} & -A_{3} \\ & 1 & A_{3} \end{array} A_{2}\left(\begin{array}{lll} & 1 & \\ & & -A_{7} \end{array} A_{8}\right.$

$$
\begin{aligned}
& A_{1}=\beta(\beta T \sin \gamma-\ell) \quad A_{2}=\frac{1}{T} \sin \gamma \quad A_{3}=\beta(1-\cos \gamma) \\
& A_{4}=\frac{\ell^{2}}{2 T}-\beta^{2} T(1-\cos \gamma) \quad A_{5}=\frac{1}{T}(1-\cos \gamma) \quad A_{6}=\frac{\ell}{T}-\beta \sin \gamma
\end{aligned}
$$

$$
A_{7}=-\beta T \sin \gamma \quad A_{8}=\cos \gamma \quad A_{9}=\beta T(1-\cos \gamma) \quad A_{10}=\sin \gamma
$$

$$
\begin{aligned}
& \beta=E I / T^{2} \quad \gamma=T \ell / E I \\
& \mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{a} \\
& \mathbf{z}=\left[\begin{array}{llll}
w_{z}^{s} & \theta_{y}^{s} & V_{z}^{s} & M_{y}^{s} \\
w_{z}^{c} & \theta_{y}^{c} & V_{z}^{c} & M_{y}^{c} \\
w_{y}^{s} & \theta_{z}^{s} & V_{y}^{s} & \left.M_{z}^{s} \left\lvert\, \begin{array}{llll}
w_{y}^{c} & \theta_{z}^{c} & V_{y}^{c} & M_{z}^{c}
\end{array}\right.\right]^{T}, ~
\end{array}\right]^{T}
\end{aligned}
$$

TABLE 17-6 (continued) TRANSFER AND STIFFNESS MATRICES FOR A UNIFORM SHAFT ELEMENT IN BENDING WITH AXIAL TORQUE

Stiffness, Mass, and Gyroscopic Matrices (Sign Convention 2)

$$
\begin{aligned}
& \left(\mathbf{m}_{T}+\mathbf{m}_{R}\right) \ddot{\mathbf{v}}-\Omega \mathbf{g} \dot{\mathbf{v}}+\left(\mathbf{k}-\mathbf{k}_{T}\right) \mathbf{v}=\mathbf{p}=\mathbf{p}^{c} \cos \Omega t+\mathbf{p}^{s} \sin \Omega t \\
& \mathbf{v}=\left[\begin{array}{llllllll}
w_{y a} & w_{z a} & \theta_{y a} & \theta_{z a} & w_{y b} & w_{z b} & \theta_{y b} & \theta_{z b}
\end{array}\right]^{T} \\
& \mathbf{p}=\left[\begin{array}{llllllll}
V_{y a} & V_{z a} & M_{y a} & M_{z a} & V_{y b} & V_{z b} & M_{y b} & M_{z b}
\end{array}\right]^{T}
\end{aligned}
$$

The mass matrices $\mathbf{m}_{T}, \mathbf{m}_{R}$, gyroscopic matrix \mathbf{g}, stiffness matrix \mathbf{k}, and loading vectors $\mathbf{p}^{c}, \mathbf{p}^{s}$ can be taken from Table 17-5.
Axial torque incremental stiffness matrix:
$\mathbf{k}_{T}=T\left[\begin{array}{cccccccc}0 & 0 & 1 / \ell & 0 & 0 & 0 & -1 / \ell & 0 \\ 0 & 0 & 0 & 1 / \ell & 0 & 0 & 0 & -1 / \ell \\ 1 / \ell & 0 & 0 & -\frac{1}{2} & -1 / \ell & 0 & 0 & \frac{1}{2} \\ 0 & 1 / \ell & \frac{1}{2} & 0 & 0 & -1 / \ell & -\frac{1}{2} & 0 \\ 0 & 0 & -1 / \ell & 0 & 0 & 0 & 1 / \ell & 0 \\ 0 & 0 & 0 & -1 / \ell & 0 & 0 & 0 & 1 / \ell \\ -1 / \ell & 0 & 0 & -\frac{1}{2} & 1 / \ell & 0 & 0 & \frac{1}{2} \\ 0 & -1 / \ell & \frac{1}{2} & 0 & 0 & 1 / \ell & -\frac{1}{2} & 0\end{array}\right]$
The total stiffness matrix of the shaft element is the difference $\left(\mathbf{k}-\mathbf{k}_{T}\right)$ between the stiffness matrix obtained in Table 17-5 and the incremental stiffness matrix \mathbf{k}_{T}.
${ }^{a}$ Some of the table is from Ref. [17.4].

TABLE 17-7 TRANSFER MATRIX FOR BEARING OR SEAL SYSTEMS

Notation

$c_{i j}=$ damping coefficients for bearing or seal system $(i, j=y, z) \quad k_{i j}^{*}=$ rotary stiffness coefficients for bearing or seal system
$c_{i j}^{*}=$ rotary damping coefficients for bearing or seal system $\quad \omega=$ whirl frequency of journal bearing or seal system
$k_{i j}=$ stiffness coefficients for bearing or seal system
Superscripts: s, sine components; c, cosine components

All blanks indicate zeros.

TABLE 17-7 (continued)	TRANSFER MATRIX FOR BEARING OR SEAL SYSTEMS

$$
\begin{array}{ll}
\hline k_{z y}^{\prime}=\frac{1}{d_{1}^{2}+\omega^{2} d_{2}^{2}}\left(h_{5} d_{1}+\omega^{2} h_{6} d_{2}\right) & c_{z y}^{\prime}=\frac{1}{d_{1}^{2}+\omega^{2} d_{2}^{2}}\left(h_{6} d_{1}-h_{5} d_{2}\right) \\
k_{z z}^{\prime}=\frac{1}{d_{1}^{2}+\omega^{2} d_{2}^{2}}\left(h_{7} d_{1}+\omega^{2} h_{8} d_{2}\right) & c_{z z}^{\prime}=\frac{1}{d_{1}^{2}+\omega^{2} d_{2}^{2}}\left(h_{8} d_{1}-h_{7} d_{2}\right) \\
d_{1}=\left(e_{1} e_{4}-e_{3} e_{2}\right)-\omega^{2}\left(f_{1} f_{4}-f_{3} f_{2}\right) & d_{2}=\left(e_{1} f_{4}-e_{3} f_{2}\right)+\left(e_{4} f_{1}-e_{2} f_{3}\right) \\
h_{1}=\left(\bar{k}_{y} g_{1}+\bar{k}_{y z} g_{5}\right)-\omega^{2}\left(\bar{c}_{y y} g_{2}+\bar{c}_{y z} g_{6}\right) & h_{5}=\left(\bar{k}_{z y} g_{1}+\bar{k}_{z} g_{5}\right)-\omega^{2}\left(\bar{c}_{z y} g_{2}+\bar{c}_{z z} g_{6}\right) \\
h_{2}=\left(\bar{k}_{y} g_{2}+\bar{k}_{y z} g_{6}\right)+\left(\bar{c}_{y y} g_{1}+\bar{c}_{y z} g_{5}\right) & h_{6}=\left(\bar{k}_{z y} g_{2}+\bar{k}_{z} g_{6}\right)+\left(\bar{c}_{z y} g_{1}+\bar{c}_{z z} g_{5}\right) \\
h_{3}=\left(\bar{k}_{y} g_{3}+\bar{k}_{y z} g_{7}\right)-\omega^{2}\left(\bar{c}_{y y} g_{4}+\bar{c}_{y z} g_{8}\right) & h_{7}=\left(\bar{k}_{z y} g_{3}+\bar{k}_{z} g_{7}\right)-\omega^{2}\left(\bar{c}_{z y} g_{4}+\bar{c}_{z z} g_{8}\right) \\
h_{4}=\left(\bar{k}_{y} g_{4}+\bar{k}_{y z} g_{8}\right)+\left(\bar{c}_{y y} g_{3}+\bar{c}_{y z} g_{7}\right) & h_{8}=\left(\bar{k}_{z y} g_{4}+\bar{k}_{z} g_{8}\right)+\left(\bar{c}_{z y} g_{3}+\bar{c}_{z z} g_{7}\right) \\
\bar{k}_{y}=-\omega^{2} M_{y i}+\bar{k}_{y y} & \bar{k}_{z}=-\omega^{2} M_{z i}+\bar{k}_{z z} \\
g_{1}=\left(e_{4} k_{y y}-e_{2} k_{z y}\right)-\omega^{2}\left(f_{4} c_{y y}-f_{2} c_{z y}\right) & g_{5}=\left(-e_{3} k_{y y}+e_{1} k_{z y}\right)-\omega^{2}\left(-f_{3} c_{y y}+f_{1} c_{z y}\right) \\
g_{2}=\left(e_{4} c_{y y}-e_{2} c_{z y}\right)+\left(f_{4} k_{y y}-f_{2} k_{z y}\right) & g_{6}=\left(-e_{3} c_{y y}+e_{1} c_{z y}\right)+\left(-f_{3} k_{y y}+f_{1} k_{z y}\right) \\
g_{3}=\left(e_{4} k_{y z}-e_{2} k_{z z}\right)-\omega^{2}\left(f_{4} c_{y z}-f_{2} c_{z z}\right) & g_{7}=\left(-e_{3} k_{y z}+e_{1} k_{z z}\right)-\omega^{2}\left(-f_{3} c_{y z}+f_{1} c_{z z}\right) \\
g_{4}=\left(e_{4} c_{y z}-e_{2} c_{z z}\right)+\left(f_{4} k_{y z}-f_{2} k_{z z}\right) & g_{8}=\left(-e_{3} c_{y z}+e_{1} c_{z z}\right)+\left(-f_{3} k_{y z}+f_{1} k_{z z}\right) \\
f_{1}=\bar{c}_{y y}+c_{y y} & e_{1}=-\omega^{2} M_{y i}+\bar{k}_{y y}+k_{y y} \\
f_{2}=\bar{c}_{y z}+c_{y z} & e_{2}=\bar{k}_{y z}+k_{y z} \\
f_{3}=\bar{c}_{z y}+c_{z y} & e_{3}=\bar{k}_{z y}+k_{z y} \\
f_{4}=\bar{c}_{z z}+c_{z z} & e_{4}=-\omega^{2} M_{z i}+\bar{k}_{z z}+k_{z z}
\end{array}
$$

The values of $k_{y y}^{*^{\prime}}, k_{y z}^{*^{\prime}}, k_{z y}^{*^{\prime}}, k_{z z}^{*^{\prime}}, c_{y y}^{*^{\prime}}, c_{y z}^{*^{\prime}}, c_{z y}^{*^{\prime}}$, and $c_{z z}^{*^{\prime}}$ in \mathbf{U}_{i} are taken from this table by replacing the coefficients $k_{y y}, k_{y z}, \ldots, c_{y y}, c_{y z}$, \ldots in the formulas above with the corresponding rotary coefficients $k_{y y}^{*}, k_{y z}^{*}, \ldots, c_{y y}^{*}, c_{y z}^{*}, \ldots$, respectively.

TABLE 17-8 TRANSFER MATRIX FOR AN ISOTROPIC BEARING SYSTEM

Notation

$\Omega=$ spin speed of rotor
$\lambda_{n}=$ damping ratio
$s= \begin{cases}i \Omega & \text { for unbalanced response } \\ i \omega_{n} & \text { for undamped critical speed } \\ \lambda_{n}+i \omega_{n} & \text { for stability analysis or damped free vibration }\end{cases}$
$M_{i}=$ mass of bearing pedestal
$\omega_{n}=$ undamped critical speed

$$
\begin{aligned}
& k=k_{y y}=k_{z z}, \quad c=c_{y y}=c_{z z} \\
& \bar{k}=\bar{k}_{y y}=\bar{k}_{z z}, \quad \bar{c}=\bar{c}_{y y}=\bar{c}_{z z} \\
& M_{i}=M_{y i}=M_{z i}
\end{aligned}
$$

TABLE 17-9 MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A CONICAL SHAFT ELEMENT IN BENDING ${ }^{a}$

Notation
$A_{a}=$ cross-sectional area at left end of element, $=\pi\left(r_{o a}^{2}-r_{i a}^{2}\right)$
$I_{a}=$ mass moment of gyration at left end of element,

$$
=\rho^{*} A_{a}(\pi / 4)\left(r_{o a}^{4}-r_{i a}^{4}\right)
$$

$r_{a}^{2}=$ radius of gyration of mass moment at left end of element, $=I_{a} / A_{a}$
$r_{i}=$ inner radius of element at any $x,=r_{i a}[1+(\varepsilon-1) \xi]$
$r_{o}=$ outer radius of element at any $x,=r_{o a}[1+(\sigma-1) \xi]$
$\rho^{*}=$ mass per unit volume
$\Omega=$ spin speed
$\xi=x / \ell \quad \varepsilon=r_{i b} / r_{i a} \quad \sigma=r_{o b} / r_{o a}$
$e=$ eccentricity of mass center
$\left(\eta_{a}, \zeta_{a}\right),\left(\eta_{b}, \zeta_{b}\right)=$ mass center eccentricity at $x=a$ and $x=b$, respectively
Superscripts: s, sine component; c, cosine component

$$
\begin{aligned}
\alpha_{1} & =2\left[r_{o a}^{2}(\sigma-1)-r_{i a}^{2}(\varepsilon-1)\right] /\left(r_{o a}^{2}-r_{i a}^{2}\right) \\
\alpha_{2} & =\left[r_{o a}^{2}(\sigma-1)^{2}-r_{i a}^{2}(\varepsilon-1)^{2}\right] /\left(r_{o a}^{2}-r_{i a}^{2}\right) \\
\alpha & =\rho^{*} A_{a} \ell / 362,880 \\
\beta & =\rho^{*} I_{a} /(362,880 \ell) \\
\gamma & =E I_{a} /\left(5040 \ell^{3}\right) \\
m & =\rho^{*} A_{a} \Omega^{2} / 5040 \\
\delta_{1} & =4\left[r_{o a}^{4}(\sigma-1)-r_{i a}^{4}(\varepsilon-1)\right] /\left(r_{o a}^{4}-r_{i a}^{4}\right) \\
\delta_{2} & =6\left[r_{o a}^{4}(\sigma-1)^{2}-r_{i a}^{4}(\varepsilon-1)^{2}\right] /\left(r_{o a}^{4}-r_{i a}^{4}\right) \\
\delta_{3} & =4\left[r_{o a}^{4}(\sigma-1)^{3}-r_{i a}^{4}(\varepsilon-1)^{3}\right] /\left(r_{o a}^{4}-r_{i a}^{4}\right) \\
\delta_{4} & =\left[r_{o a}^{4}(\sigma-1)^{4}-r_{i a}^{4}(\varepsilon-1)^{4}\right] /\left(r_{o a}^{4}-r_{i a}^{4}\right)
\end{aligned}
$$

Coordinate System (Sign Convention 2)

TABLE 17-9 (continued) MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A CONICAL SHAFT ELEMENT IN BENDING ${ }^{\text {a }}$

Equations of Motion

$$
\left.\begin{array}{l}
\left(\mathbf{m}_{T}+\mathbf{m}_{R}\right) \ddot{\mathbf{v}}-\Omega \mathbf{g} \dot{\mathbf{v}}+\mathbf{k v}=\mathbf{p}^{c} \cos \Omega t+\mathbf{p}^{s} \sin \Omega t \\
\mathbf{v}=\left[\begin{array}{ccccccc}
w_{y a} & w_{z a} & \theta_{y a} & \theta_{z a} & w_{y b} & w_{z b} & \theta_{y b}
\end{array} \theta_{z b}\right.
\end{array}\right]^{T} .
$$

All matrices are of size 8×8, and any term not explicitly defined is zero. Since all of the matrices are either symmetric or skew symmetric, only the lower triangle is given, with the type of symmetry indicated for each matrix.

Element Matrices

TRANSLATIONAL CONSISTENT MASS MATRIX \mathbf{m}_{T} (SYMMETRIC)

```
m
m
m
m
m
m
m
m
m
m
```

ROTARY CONSISTENT MASS MATRIX \mathbf{m}_{R} (SYMMETRIC)

```
m
m
m
m}\mp@subsup{R}{R}{}(3,3)=\mp@subsup{m}{R}{}(4,4)=\beta\mp@subsup{\ell}{}{2}(48,684+12,096\mp@subsup{\delta}{1}{}+6192\mp@subsup{\delta}{2}{}+4752\mp@subsup{\delta}{3}{}+3456\mp@subsup{\delta}{4}{}
m}\mp@subsup{R}{R}{(7,3) = m
m}R(7,7)=\mp@subsup{m}{R}{}(8,8)=\beta\mp@subsup{\ell}{}{2}(48,384+36,288\mp@subsup{\delta}{1}{}+31,104\mp@subsup{\delta}{2}{}+28,080\mp@subsup{\delta}{3}{}+25,920\mp@subsup{\delta}{4}{}
m}\mp@subsup{R}{R}{(5,1)=\mp@subsup{m}{R}{}(6,2)=-\mp@subsup{m}{R}{}(5,5)=-\mp@subsup{m}{R}{}(6,6)=-\mp@subsup{m}{R}{}(1,1)
m
m
```

GYROSCOPIC MATRIX \mathbf{g} (SKEW SYMMETRIC)
$g(2,1)=\beta\left(870,912+435,456 \delta_{1}+248,832 \delta_{2}+155,520 \delta_{3}+103,680 \delta_{4}\right)$
$g(3,1)=-\beta \ell\left(72,576+72,576 \delta_{1}+51,840 \delta_{2}+36,288 \delta_{3}+25,920 \delta_{4}\right)$
$g(7,1)=-\beta \ell\left(72,576-20,736 \delta_{2}-25,920 \delta_{3}-25,920 \delta_{4}\right)$
$g(4,3)=\beta \ell^{2}\left(96,768+24,192 \delta_{1}+13,824 \delta_{2}+9504 \delta_{3}+6912 \delta_{4}\right)$
$g(8,3)=-\beta \ell^{2}\left(24,192+12,096 \delta_{1}+10,368 \delta_{2}+9504 \delta_{3}+8640 \delta_{4}\right)$
$g(8,7)=\beta \ell^{2}\left(96,768+72,576 \delta_{1}+62,208 \delta_{2}+56,160 \delta_{3}+51,840 \delta_{4}\right)$
$g(6,1)=-g(5,2)=-g(6,5)=-g(2,1)$
$g(4,2)=g(5,3)=g(6,4)=g(3,1)$
$g(8,2)=-g(7,5)=-g(8,6)=g(7,1)$
$g(7,4)=-g(8,3)$

TABLE 17-9 (continued) MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A CONICAL SHAFT ELEMENT IN BENDING ${ }^{\text {a }}$

```
STIFFNESS MATRIX k (SYMMETRIC)
```



```
k(4,1) = \gamma\ell(30,240+10,080\mp@subsup{\delta}{1}{}+7056\mp@subsup{\delta}{2}{}+6048\mp@subsup{\delta}{3}{}+5472\mp@subsup{\delta}{4}{})
```



```
k(5,1) =k(6,2) =-k(2,2) = -k(5,5) = -k(6,6) = -k(1,1)
k(3,2) =k(5,4) =-k(6,3) = -k(4,1)
k(7,2) =k(8,5) = -k(7, 6) = -k(8,1)
```

UNBALANCED FORCE VECTORS $\mathbf{p}^{c}, \mathbf{p}^{s}$
$p^{c}(1)=m \eta_{a}\left(1764+420 \alpha_{1}+156 \alpha_{2}\right)+m \eta_{b}\left(756+336 \alpha_{1}+156 \alpha_{2}\right)$
$p^{c}(2)=m \zeta_{a}\left(1764+420 \alpha_{1}+156 \alpha_{2}\right)+m \zeta_{b}\left(756+336 \alpha_{1}+156 \alpha_{2}\right)$
$p^{c}(3)=-m \ell \zeta_{a}\left(252+84 \alpha_{1}+36 \alpha_{2}\right)-m \ell \zeta_{b}\left(168+84 \alpha_{1}+48 \alpha_{2}\right)$
$p^{c}(4)=m \ell \eta_{a}\left(252+84 \alpha_{1}+36 \alpha_{2}\right)+m \ell \eta_{b}\left(168+84 \alpha_{1}+48 \alpha_{2}\right)$
$p^{c}(5)=m \eta_{a}\left(756+420 \alpha_{1}+264 \alpha_{2}\right)+m \eta_{b}\left(1764+1344 \alpha_{1}+1080 \alpha_{2}\right)$
$p^{c}(6)=m \zeta_{a}\left(756+420 \alpha_{1}+264 \alpha_{2}\right)+m \zeta_{b}\left(1764+1344 \alpha_{1}+1080 \alpha_{2}\right)$
$p^{c}(7)=m \ell \zeta_{a}\left(168+84 \alpha_{1}+48 \alpha_{2}\right)+m \ell \zeta_{b}\left(252+168 \alpha_{1}+120 \alpha_{2}\right)$
$p^{c}(8)=-m \ell \eta_{a}\left(168+84 \alpha_{1}+48 \alpha_{2}\right)-m \ell \eta_{b}\left(252+168 \alpha_{1}+120 \alpha_{2}\right)$
$p^{s}(1)=-p^{c}(2) \quad p^{s}(3)=-p^{c}(4)$
$p^{s}(2)=p^{c}(1) \quad p^{s}(4)=p^{c}(3)$
$p^{s}(5)=-p^{c}(6) \quad p^{s}(7)=-p^{c}(8)$
$p^{s}(6)=p^{c}(5) \quad p^{s}(8)=p^{c}(7)$

[^26]
TABLE 17-10 MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A HELICALLY FLUTED SHAFT ELEMENT IN BENDINGa

TRANSLATIONAL CONSISTENT MASS MATRIX \mathbf{m}_{T} :
$\mathbf{m}_{T}=\frac{\rho^{*} A \ell}{420}\left[\begin{array}{cccccccc}156 & & & & & & & \\ 0 & 156 & & & & & & \\ 0 & -22 \ell & 4 \ell^{2} & & & & & \\ 22 \ell & 0 & 0 & 4 \ell^{2} & & & & \\ 54 & 0 & 0 & 13 \ell & 156 & & & \\ 0 & 54 & -13 \ell & 0 & 0 & 156 & & \\ 0 & 13 \ell & -3 \ell^{2} & 0 & 0 & 22 \ell & 4 \ell^{2} & \\ -13 \ell & 0 & 0 & -3 \ell^{2} & -22 \ell & 0 & 0 & 4 \ell^{2}\end{array}\right]$

TABLE 17-10 (continued) MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A HELICALLY FLUTED SHAFT ELEMENT IN BENDING ${ }^{\text {a }}$

ROTARY CONSISTENT MASS MATRIX \mathbf{m}_{R} :
$\mathbf{m}_{R}=\frac{\rho^{*} A}{30 \ell}\left[\begin{array}{cccccccc}36 r_{1}^{2} & & & & & \text { symmetric } & & \\ 0 & 36 r_{2}^{2} & & & & & & \\ 0 & -3 \ell r_{2}^{2} & 4 \ell^{2} r_{2}^{2} & & & \\ 3 \ell r_{1}^{2} & 0 & 0 & 4 \ell^{2} r_{1}^{2} & & & & \\ -36 r_{1}^{2} & 0 & 0 & -3 \ell^{2} r_{1}^{2} & 36 r_{1}^{2} & & & \\ 0 & -36 r_{2}^{2} & 3 \ell r_{2}^{2} & 0 & 0 & 36 r_{2}^{2} & & \\ 0 & -3 \ell r_{2}^{2} & -\ell^{2} r_{2} & 0 & 0 & 3 \ell r_{2}^{2} & 4 \ell^{2} r_{2}^{2} & \\ 3 \ell r_{1}^{2} & 0 & 0 & -\ell^{2} r_{1}^{2} & -3 \ell r_{1}^{2} & 0 & 0 & 4 \ell^{2} r_{1}^{2}\end{array}\right]$
GYROSCOPIC MATRIX \mathbf{g} :
$\mathbf{g}=\frac{\rho^{*} A \ell}{210}\left[\begin{array}{cccccccc}0 & & & & & & & \text { skew symmetric } \\ 156 & 0 & & & \\ 22 \ell & 0 & 0 & & & & & \\ 0 & -22 \ell & -4 \ell^{2} & 0 & & & & \\ 0 & -54 & 13 \ell & 0 & 0 & & & \\ 54 & 0 & 0 & 13 \ell & 156 & 0 & & \\ -13 \ell & 0 & 0 & -3 \ell^{2} & -22 \ell & 0 & 0 & \\ 0 & 13 \ell & 3 \ell^{2} & 0 & 0 & 22 \ell & -4 \ell^{2} & 0\end{array}\right]$
STIFFNESS MATRIX \mathbf{k} :
$\mathbf{k}=\sum_{i=1}^{7} \mathbf{k}_{i}$, where $\mathbf{k}_{1}=-\Omega^{2} \mathbf{m}_{T}$
$\mathbf{k}_{2}=\frac{E}{\ell^{3}}\left[\begin{array}{cccccccc}12 I_{1} & & & & & & & \\ 0 & 12 I_{2} & & & & \text { symmetric } & & \\ 0 & -6 \ell I_{2} & 4 \ell^{2} I_{2} & & & & & \\ 6 \ell I_{1} & 0 & 0 & 4 \ell^{2} I_{1} & & & & \\ -12 I_{1} & 0 & 0 & -6 \ell I_{1} & 12 I_{1} & & & \\ 0 & -12 I_{2} & 6 \ell I_{2} & 0 & 0 & 12 I_{2} & & \\ 0 & -6 \ell I_{2} & 2 \ell^{2} I_{2} & 0 & 0 & 6 \ell I_{2} & 4 \ell^{2} I_{2} & \\ 6 \ell I_{1} & 0 & 0 & 2 \ell^{2} I_{1} & -6 \ell I_{1} & 0 & 0 & 4 \ell^{2} I_{1}\end{array}\right]$
$\mathbf{k}_{3}=\frac{2 E \beta_{0}}{\ell}\left[\begin{array}{cccccc}0 & & & & \text { symmetric } \\ 0 & 0 & & & \\ p & 0 & 0 & & \\ 0 & -p & -q & 0 & \\ 0 & 0 & -p & 0 & 0 & \\ 0 & 0 & 0 & p & 0 & 0\end{array}\right] \quad \begin{aligned} & \\ & \\ & 0\end{aligned}$

TABLE 17-10 (continued) MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A HELICALLY FLUTED SHAFT ELEMENT IN BENDING ${ }^{a}$

$$
\begin{aligned}
& \mathbf{k}_{4}=\left[\begin{array}{cccccccc}
36 c & & & & & & & \\
0 & 36 d & & & & & & \\
0 & -3 d \ell & 4 d \ell^{2} & & & & & \\
3 c \ell & 0 & 0 & 4 c \ell^{2} & & & & \\
-36 c & 0 & 0 & -3 c \ell & 36 c & & & \\
0 & -36 d & 3 d \ell & 0 & 0 & 36 d & & \\
0 & -3 d \ell & -d \ell^{2} & 0 & 0 & 3 d \ell & 4 d \ell^{2} & \\
3 c \ell & 0 & 0 & -c \ell^{2} & 3 c \ell & 0 & 0 & 4 c \ell^{2}
\end{array}\right] \\
& c=\frac{4 E I_{2} \beta_{0}^{2}+P_{x}}{30 \ell} \\
& d=\frac{4 E I_{1} \beta_{0}^{2}+P_{x}}{30 \ell} \\
& \mathbf{k}_{5}=\frac{E \beta_{0}^{2}}{15 \ell}\left[\begin{array}{cccccccc}
36 I_{1} & & & & & & & \\
0 & 36 I_{2} & & & & & & \\
0 & -18 \ell I_{2} & 4 \ell^{2} I_{2} & & & & & \\
18 \ell I_{1} & 0 & 0 & 12 \ell^{2} I_{1} & & & & \\
-36 I_{1} & 0 & 0 & -3 \ell I_{1} & 36 I_{1} & & & \\
0 & -36 I_{2} & 3 \ell I_{2} & 0 & 0 & 36 I_{2} & & \\
0 & -3 \ell I_{2} & -\ell^{2} I_{2} & 0 & 0 & 18 \ell I_{2} & 4 \ell^{2} I_{2} & \\
3 \ell I_{1} & 0 & 0 & -\ell^{2} I_{1} & -18 \ell I_{1} & 0 & 0 & 4 \ell^{2} I_{1}
\end{array}\right] \\
& \mathbf{k}_{6}=\frac{1}{60}\left[\begin{array}{cccccccc}
0 & & & & & \text { symmetric } & & \\
-30 p^{\prime} & 0 & & & & & & \\
3 q^{\prime} \ell & 0 & 0 & 0 & & & & \\
0 & -6 q^{\prime} \ell & 0 & 00 & & \\
0 & -30 q^{\prime} & -6 q^{\prime} \ell & 0 & 0 & & & \\
30 q^{\prime} & 0 & 0 & 6 q^{\prime} \ell & 30 p^{\prime} & 0 & & \\
-6 q^{\prime} \ell & 0 & 0 & -q^{\prime} \ell^{2} & 6 q^{\prime} \ell & 0 & 0 & \\
0 & 6 q^{\prime} \ell & q^{\prime} \ell^{2} & 0 & 0 & -6 q^{\prime} \ell & 0 & 0
\end{array}\right] \\
& p^{\prime}=2 E\left(I_{1}+I_{2}\right) \beta_{0}^{3}-P_{x} \beta_{0} \\
& q^{\prime}=2 E\left(I_{1}-I_{2}\right) \beta_{0}^{3}
\end{aligned}
$$

TABLE 17-10 (continued) MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A HELICALLY FLUTED SHAFT ELEMENT IN BENDING ${ }^{a}$
$\mathbf{k}_{7}=\frac{\ell}{420}\left[\begin{array}{ccccccc}156 c^{\prime} & & & & & & \\ 0 & 156 d^{\prime} & & & & & \\ 0 & -22 \ell d^{\prime} & 4 \ell^{2} d^{\prime} & & & & \\ 22 \ell c^{\prime} & 0 & 0 & 4 \ell^{2} c^{\prime} & & & \\ 54 c^{\prime} & 0 & 0 & 13 \ell c^{\prime} & 156 c^{\prime} & & \\ 0 & 54 d^{\prime} & -13 \ell d^{\prime} & 0 & 0 & 156 d^{\prime} & \\ 0 & 13 \ell d^{\prime} & -3 \ell^{2} d^{\prime} & 0 & 0 & 22 \ell d^{\prime} & 4 \ell^{2} d^{\prime} \\ -13 \ell c^{\prime} & 0 & 0 & -3 \ell^{2} c^{\prime} & -22 \ell c^{\prime} & 0 & 0 \\ \hline\end{array}\right]$
${ }^{a}$ Adapted from Ref. [17.6].

TABLE 17-11 MASS AND STIFFNESS MATRICES FOR ANNULAR ELASTIC THIN DISK ELEMENTS ${ }^{a}$

Notation

$C=$ constant expressing variation in radial stress; $C= \begin{cases}2 & \text { for } m=0 \\ 1 & \text { for } m \geq 1\end{cases}$
$E=$ modulus of elasticity
$h(r)=$ thickness
$m=$ number of nodal diameters (see Chapter 18 for more complete definition of m)
$r=$ radius
$\nu=$ Poisson's ratio
$\rho^{*}=$ mass per unit volume
$\Omega=$ spin speed
If linear thickness variation within the element is assumed,

$$
h(r)=\alpha+\beta r \quad \alpha=\frac{h_{a} r_{b}-h_{b} r_{a}}{r_{b}-r_{a}} \quad \beta=\frac{h_{b}-h_{a}}{r_{b}-r_{a}}
$$

Coordinate System

Equations of Motion
$\mathbf{m} \ddot{\mathbf{v}}+\left(\mathbf{k}_{B}+\mathbf{k}_{C}\right) \mathbf{v}=0 \quad$ with $\mathbf{v}=\left[\begin{array}{llll}w_{x a} & w_{x b} & \theta_{\phi a} & \theta_{\phi b}\end{array}\right]^{T}$
Element Matrices
MASS MATRIX \mathbf{m} :
$\mathbf{m}=\mathbf{B}^{T} \mathbf{m}_{d} \mathbf{B}$
where

$\mathbf{m}_{d}=\left[\right.$| Q_{1} | symmetric | | |
| :--- | :--- | :--- | :--- |
| Q_{2} | Q_{3} | | |
| Q_{3} | Q_{4} | Q_{5} | |
| Q_{4} | Q_{5} | Q_{6} | Q_{7} |\(] \quad \begin{gathered}

Q_{k}=C \pi \rho^{*} \int_{r_{a}}^{r_{b}} h(r) r^{k} d r

(k=1,2, ···, 7)\end{gathered}\)

TABLE 17-11 (continued) MASS AND STIFFNESS MATRICES FOR ANNULAR ELASTIC THIN DISK

 ELEMENTS ${ }^{\text {a }}$BENDING STIFFNESS MATRIX $\mathbf{k}_{B}: \mathbf{k}_{B}=\mathbf{B}^{T} \mathbf{k}_{b} \mathbf{B}$
where

$$
\begin{array}{rlr}
k_{b}(1,1) & =P_{-3}\left(m^{4}+2 m^{2}-2 v m^{2}\right) & k_{b}(2,3)=P_{0}\left(m^{4}-3 m^{2}-2 v m^{2}+2 v+2\right) \\
k_{b}(1,2)=P_{-2}\left(m^{4}-m^{2}\right) & k_{b}(2,4)=P_{1}\left(m^{4}-4 m^{2}-6 v m^{2}+6 v+3\right) \\
k_{b}(1,3)=P_{-1}\left(m^{4}-4 m^{2}\right) & k_{b}(3,3)=P_{1}\left(m^{4}-2 m^{2}-6 v m^{2}+8 v+8\right) \\
k_{b}(1,4)=P_{0}\left(m^{4}-7 m^{2}-2 v m^{2}\right) & k_{b}(3,4)=P_{2}\left(m^{4}-m^{2}-12 v m^{2}+18 v+18\right) \\
k_{b}(2,2)=P_{-1}\left(m^{4}-2 m^{2}+1\right) & k_{b}(4,4)=P_{3}\left(m^{4}+2 m^{2}-20 v m^{2}+36 v+45\right) \\
k_{b}(i, j) & =k_{b}(j, i) & i \text { and } j=1,2,3,4 \\
P_{k} & =\frac{C \pi E}{12\left(1-v^{2}\right)} \int_{r_{a}}^{r_{b}} h^{3}(r) r^{k} d r &
\end{array}
$$

CENTRIFUGAL STIFFNESS MATRIX $\mathbf{k}_{C}: \mathbf{k}_{C}=\mathbf{B}^{T} \mathbf{k}_{G} \mathbf{B}$
where

$$
\left.\left.\begin{array}{l}
\mathbf{k}_{G}=\left[\begin{array}{ccc}
m^{2} S_{-1} & \text { symmetric } \\
m^{2} S_{0} & R_{1}+m^{2} S_{1} & \\
m^{2} S_{1} & 2 R_{2}+m^{2} S_{2} & 4 R_{3}+m^{2} S_{3} \\
m^{2} S_{2} & 2 R_{3}+m^{2} S_{3} & 6 R_{4}+m^{2} S_{4}
\end{array} \quad 9 R_{5}+m^{2} S_{5}\right.
\end{array}\right]\right] \text { } \begin{aligned}
& R_{k}=C \pi \int_{r_{a}}^{r_{b}} r^{k} h(r) \sigma_{r}(r) d r \\
& \quad S_{k}=C \pi \int_{r_{a}}^{r_{b}} r^{k} h(r) \sigma_{\phi}(r) d r \\
& \sigma^{r}(r)=\frac{\sigma_{r a} r_{b}-\sigma_{r b} r_{a}}{r_{b}-r_{a}}+\frac{\sigma_{r b}-\sigma_{r a}}{r_{b}-r_{a}} r \\
& \sigma^{\phi}(r)=\frac{\sigma_{\phi a} r_{b}-\sigma_{\phi b} r_{a}}{r_{b}-r_{a}}+\frac{\sigma_{\phi b}-\sigma_{\phi a}}{r_{b}-r_{a}} r
\end{aligned}
$$

$\sigma_{r a}, \sigma_{\phi a}$, and $\sigma_{r b}, \sigma_{\phi b}$ are the radial and tangential stresses at the positions $r=r_{a}$ and $r=r_{b}$, respectively. These stresses can be calculated according to the dimensions and shape of the disk by using the formulas in Table 19-3.

TABLE 17-11 (continued) MASS AND STIFFNESS MATRICES FOR ANNULAR ELASTIC THIN DISK ELEMENTS ${ }^{\text {a }}$

$B(1,1)=r_{b}^{2}\left(r_{b}-3 r_{a}\right) /\left(r_{b}-r_{a}\right)^{3}$	$B(3,1)=-3\left(r_{a}+r_{b}\right) /\left(r_{b}-r_{a}\right)^{3}$
$B(1,2)=r_{a} r_{b}^{2} /\left(r_{b}-r_{a}\right)^{2}$	$B(3,2)=\left(r_{a}+2 r_{b}\right) /\left(r_{b}-r_{a}\right)^{2}$
$B(1,3)=r_{a}^{2}\left(3 r_{b}-r_{a}\right) /\left(r_{b}-r_{a}\right)^{3}$	$B(3,3)=3\left(r_{a}+r_{b}\right) /\left(r_{b}-r_{a}\right)^{3}$
$B(1,4)=r_{a}^{2} r_{b} /\left(r_{b}-r_{a}\right)^{2}$	$B(3,4)=\left(2 r_{a}+r_{b}\right) /\left(r_{b}-r_{a}\right)^{2}$
$B(2,1)=6 r_{a} r_{b} /\left(r_{b}-r_{a}\right)^{3}$	$B(4,1)=2 /\left(r_{b}-r_{a}\right)^{3}$
$B(2,2)=-r_{b}\left(2 r_{a}+r_{b}\right) /\left(r_{b}-r_{a}\right)^{2}$	$B(4,2)=-1 /\left(r_{b}-r_{a}\right)^{2}$
$B(2,3)=-6 r_{a} r_{b} /\left(r_{b}-r_{a}\right)^{3}$	$B(4,3)=-2 /\left(r_{b}-r_{a}\right)^{3}$
$B(2,4)=-r_{a}\left(r_{a}+2 r_{b}\right) /\left(r_{b}-r_{a}\right)^{2}$	$B(4,4)=-1 /\left(r_{b}-r_{a}\right)^{2}$

The global matrices of the whole disk can be assembled using these element matrices along the radial direction as in beam calculation problems. See Appendix III for details.

[^27]
TABLE 17-12 STIFFNESS AND DAMPING MATRICES FOR SHORT JOURNAL BEARING, TILTING PAD BEARING, AND ANNULAR PLAIN SEAL ELEMENTS ${ }^{\text {a }}$

	Notation
$\Omega=$ angular velocity of journal (spin speed)	
$F_{y}, F_{z}=$	bearing or seal forces in y and z directions, respectively
$w_{y}^{*}, w_{z}^{*}=$ relative displacements between journal	
and bearing pedestal or seal	
Bearing or seal force: $\quad \mathbf{F}$	$=-\mathbf{k v}-\mathbf{c} \dot{\mathbf{v}} \quad \mathbf{F}=\left[\begin{array}{ll}F_{y} & F_{z}\end{array}\right]^{T} \quad \mathbf{v}=\left[\begin{array}{ll}w_{y}^{*} & w_{z}^{*}\end{array}\right]^{T}$
Stiffness matrix: $\quad \mathbf{k}$	$=\left[\begin{array}{ll}k_{y y} & k_{y z} \\ k_{z y} & k_{z z}\end{array}\right] \quad$
Damping matrix: $\quad \mathbf{c}$	$=\left[\begin{array}{ll}c_{y y} & c_{y z} \\ c_{z y} & c_{z z}\end{array}\right]$
Bearings: $\quad 0_{j}$	$=$ center of journal
0_{b}	$=$ center of bearing
μ	$=$ lubricant viscosity
R	$=$ bearing radius
c	$=$ nominal bearing clearance, $=C / R$
D	$=$ bearing diameter, $=2 R$
C	$=$ bearing radial clearance (L)
ℓ	$=$ bearing width or length
e_{j}	$=$ journal eccentricity
S	$=$ Sommerfeld number
ε	$=$ nominal eccentricity, $=e_{j} / C$
\bar{W}	$=$ static load supported by bearing,
	$=\mu(30 \Omega / \pi) \ell(R / C)^{2} / S$
c_{0}	$=$ seal clearance before deformation (L)
p_{e}	$=$ seal outlet pressure of oil $\left(F / L^{2}\right)$
ℓ	$=$ seal width or length
p_{i}	$=$ seal inlet pressure of oil $\left(F / L^{2}\right)$
R	$=$ seal radius
λ	$=$ friction loss factor
v_{1}, v_{2}	$=$ Poisson's ratio of seal and shaft
ρ_{L}^{*}	$=$ fluid (oil) density $\left(M / L^{3}\right)$
γ	$=$ inlet loss factor (≈ 0.5)
E_{1}, E_{2}	$=$ Young's moduli of seal and shaft
c_{1}, c_{2}	$=$ seal inlet and outlet clearance
	after deformation (L)

TABLE 17-12 (continued) STIFFNESS AND DAMPING MATRICES FOR SHORT JOURNAL BEARING, TILTING PAD BEARING, AND ANNULAR PLAIN SEAL ELEMENTS ${ }^{a}$

Short Journal Bearing (π-film)

$$
k_{y y}=\frac{\bar{W}}{C} \frac{4\left[\pi^{2}\left(2-\varepsilon^{2}\right)+16 \varepsilon^{2}\right]}{\left[\pi^{2}\left(1-\varepsilon^{2}\right)+16 \varepsilon^{2}\right]^{3 / 2}}
$$

$$
k_{y z}=-\frac{\bar{W}}{C} \frac{\pi\left[\pi^{2}\left(1-\varepsilon^{2}\right)^{2}-16 \varepsilon^{4}\right]}{\varepsilon\left(1-\varepsilon^{2}\right)^{1 / 2}\left[\pi^{2}\left(1-\varepsilon^{2}\right)+16 \varepsilon^{2}\right]^{3 / 2}}
$$

$$
k_{z y}=\frac{\bar{W}}{C} \frac{\pi\left[\pi^{2}\left(1-\varepsilon^{2}\right)\left(1+2 \varepsilon^{2}\right)+32 \varepsilon^{2}\left(1+\varepsilon^{2}\right)\right]}{\varepsilon\left(1-\varepsilon^{2}\right)^{1 / 2}\left[\pi^{2}\left(1-\varepsilon^{2}\right)+16 \varepsilon^{2}\right]^{3 / 2}}
$$

$$
k_{z z}=\frac{\bar{W}}{C} \frac{4\left[\pi^{2}\left(1-\varepsilon^{2}\right)\left(1+2 \varepsilon^{2}\right)+32 \varepsilon^{2}\left(1+\varepsilon^{2}\right)\right]}{\left(1-\varepsilon^{2}\right)\left[\pi^{2}\left(1-\varepsilon^{2}\right)+16 \varepsilon^{2}\right]^{3 / 2}}
$$

$$
c_{y y}=\frac{\bar{W}}{\Omega C} \frac{2 \pi\left(1-\varepsilon^{2}\right)^{1 / 2}\left[\pi^{2}\left(1+2 \varepsilon^{2}\right)-16 \varepsilon^{2}\right]}{\varepsilon\left[\pi^{2}\left(1-\varepsilon^{2}\right)+16 \varepsilon^{2}\right]^{3 / 2}}
$$

$$
c_{y z}=c_{z y}=-\frac{\bar{W}}{\Omega C} \frac{8\left[\pi^{2}\left(1+2 \varepsilon^{2}\right)-16 \varepsilon^{2}\right]}{\left[\pi^{2}\left(1-\varepsilon^{2}\right)+16 \varepsilon^{2}\right]^{3 / 2}}
$$

$$
c_{z z}=\frac{\bar{W}}{\Omega C} \frac{2 \pi\left[\pi^{2}\left(1-\varepsilon^{2}\right)^{2}+48 \varepsilon^{2}\right]}{\varepsilon\left(1-\varepsilon^{2}\right)^{1 / 2}\left[\pi^{2}\left(1-\varepsilon^{2}\right)+16 \varepsilon^{2}\right]^{3 / 2}}
$$

$$
S=\frac{1}{(\ell / D)^{2}} \frac{1-\varepsilon^{2}}{\pi\left[\pi^{2}+\left(16-\pi^{2}\right) \varepsilon^{2}\right]^{1 / 2}}
$$

TABLE 17-12 (continued) STIFFNESS AND DAMPING MATRICES FOR SHORT JOURNAL BEARING, TILTING PAD BEARING, AND ANNULAR PLAIN SEAL ELEMENTS ${ }^{a}$

Tilting Pad Bearing ${ }^{b}$

$$
\begin{aligned}
& k_{y y}= \begin{cases}4.01 \frac{\bar{W}}{C} e^{-3.84 \varepsilon} & (\varepsilon>0.3) \\
\frac{\bar{W}}{C}(2.01-2.24 \varepsilon) & (\varepsilon \leq 0.3)\end{cases} \\
& k_{z z}=1.67 \frac{\bar{W}}{C} e^{2.47 \varepsilon} \\
& k_{y z}=k_{z y}=0
\end{aligned}
$$

$$
c_{y y}= \begin{cases}13.5 \frac{\bar{W}}{\Omega C}(1-\varepsilon)^{2.11} & (\varepsilon>0.3) \\ 35.0 \frac{\bar{W}}{\Omega C} e^{-6.34 \varepsilon} & (\varepsilon \leq 0.3)\end{cases}
$$

$$
c_{z z}=\frac{\bar{W}}{\Omega C}\left(30-83.2 \varepsilon+76.4 \varepsilon^{2}\right)
$$

$$
c_{y z}=c_{z y}=0
$$

$$
S=\frac{6.125}{\pi(\ell / D)^{2} e^{6.34 \varepsilon}}
$$

TABLE 17-12 (continued) STIFFNESS AND DAMPING MATRICES FOR SHORT JOURNAL beAring, tilting Pad bearing, AND ANNULAR PLAIN SEAL ELEMENTS ${ }^{a}$

where

$$
\begin{aligned}
& k_{y y}=-\frac{\pi}{\rho} R^{2}\left[(\delta+\lambda) d_{1}-\left(\frac{\rho_{L}^{*} \Omega}{m}\right)^{2} d_{2}\right] \\
& k_{y z}=-\frac{1}{2} \pi R \Omega m\left[(\delta+\lambda) d_{5}+d_{3}-d_{4}\right] \\
& k_{z y}=-k_{y z} \\
& k_{z z}= k_{y y} \\
& c_{y y}=-\pi R m\left[(\delta+\lambda) d_{5}+d_{3}-d_{4}\right] \\
& c_{y z}=-c_{z y}=-\rho_{L}^{*} \pi R \Omega d_{2} \\
& c_{z z}=c_{y y} \\
& m= c_{1}\left\{\frac{2 \rho_{L}^{*}\left(p_{i}-p_{e}\right)}{1+\gamma+(1-\lambda / \delta)\left[\left(c_{1} / c_{2}\right)^{2}-1\right]}\right\}^{1 / 2} \\
& d_{1}= \frac{\ell}{c_{1}^{2} c_{2}^{2}}\left(\frac{\ell}{2}-q_{1} \frac{c_{1}}{c_{2}}\right) \\
& d_{2}= \frac{\ell}{2 \delta^{2}}\left(c_{1}+c_{2}\right)+\frac{c_{1} c_{2}}{\delta^{3}} \log \frac{c_{2}}{c_{1}}+\frac{q_{1}}{\delta^{2}}\left(\delta \ell+c_{1} \log \frac{c_{2}}{c_{1}}\right) \\
& d_{3}= \frac{\ell^{2}}{2 c_{1} c_{2}}-\frac{2 \ell}{c_{1} \delta}-\frac{q_{1} \ell}{2 c_{1} c_{2}}\left(3+\frac{c_{1}}{c_{2}}\right) \\
& d_{4}= \frac{\ell^{2}}{c_{1} \delta^{2}}\left(c_{1}+c_{2}\right) \log \frac{c_{2}}{c_{1}}-\frac{q_{1}}{c_{1} \delta} \log \frac{c_{2}}{c_{1}} \\
& d_{5}= \frac{\left(c_{1}+c_{2}\right) \ell}{2 c_{1} c_{2} \delta^{2}}+\frac{1}{\delta^{3}} \log \frac{c_{2}}{c_{1}}-\frac{q_{1} \ell^{2}}{2 c_{1} c_{2}^{2}}
\end{aligned}
$$

When the effect of elastic deformation is ignored, set

$$
c_{1}=c_{2}=c \quad E_{1}=E_{2}=E \quad \nu_{1}=v_{2}=v
$$

[^28]
TABLE 17-13 NATURAL FREQUENCIES OF VIBRATION OF A RADIAL BEAM OF CIRCULAR OR SQUARE CROSS SECTION ${ }^{\text {a }}$

Notation

Vibration occurs in the plane and perpendicular to the plane of rotation.
$A=$ cross-sectional area
$I=$ moment of inertia of cross-sectional area about transverse neutral axis (ξ or η axes); for circular cross section $I=\frac{1}{4} \pi r^{4}$, for square cross section $I=\frac{1}{12} h^{4}$

$$
\begin{aligned}
E & =\text { modulus of elasticity } \\
R_{0} & =\text { hub radius } \\
\Omega & =\text { spin speed } \\
\omega_{c \xi} & =\text { natural frequency for motion in } \xi \text { direction } \\
\omega_{c \eta} & =\text { natural frequency for motion in } \eta \text { direction }
\end{aligned}
$$

Coordinate Systems

Critical Speeds

$$
\omega_{c \xi}^{2}=\alpha \frac{E I}{\rho^{*} A L^{4}}+\left\{\frac{\beta I}{A L^{2}}+\gamma\right\} \Omega^{2} \quad \omega_{c \eta}^{2}=\alpha \frac{E I}{\rho^{*} A L^{4}}+\left\{\frac{\beta I}{A L^{2}}+\gamma-1\right\} \Omega^{2}
$$

where α, β, and γ are given below.

Boundary Conditions	α	β	γ
1. Free-hinged	244.08363	$-152.552-457.657\left(\frac{R_{0}}{L}\right)-732.251\left(\frac{R_{0}}{L}\right)^{2}$	$-3.117-9.726\left(\frac{R_{0}}{L}\right)-11.784\left(\frac{R_{0}}{L}\right)^{2}$
2. Hinged-free	244.08363	$305.105+457.657\left(\frac{R_{0}}{L}\right)$	$6.609+9.726\left(\frac{R_{0}}{L}\right)$
3. Free-guided	31.30813	$4.989-38.160\left(\frac{R_{0}}{L}\right)-93.924\left(\frac{R_{0}}{L}\right)^{2}$	$-0.924-3.980\left(\frac{R_{0}}{L}\right)-3.206\left(\frac{R_{0}}{L}\right)^{2}$
4. Guided-free $\stackrel{\Omega}{4}$	31.30813	$43.149+38.160\left(\frac{R_{0}}{L}\right)$	$3.056+3.980\left(\frac{R_{0}}{L}\right)$
5. Hinged-hinged	π^{4}	$\frac{3}{4} \pi^{2}+\frac{\pi^{4}}{4}$	$-\frac{1}{4}+\frac{\pi^{2}}{12}$

	6. Hinged-guided	$\frac{\pi^{4}}{16}$	$\frac{21}{16} \pi^{2}+\frac{\pi^{4}}{64}+\frac{9}{8} \pi^{2}\left(\frac{R_{0}}{L}\right)$	$\frac{1}{4}+\frac{\pi^{2}}{48}+\frac{1}{2}\left(\frac{R_{0}}{L}\right)$
	7. Guided-hinged	$\frac{\pi^{4}}{16}$	$\frac{3}{16} \pi^{2}+\frac{\pi^{4}}{64}-\frac{9}{8} \pi^{2}\left(\frac{R_{0}}{L}\right)$	$-\frac{1}{4}+\frac{\pi^{2}}{48}-\frac{1}{2}\left(\frac{R_{0}}{L}\right)$
	8. Guided-guided	π^{4}	$\frac{21}{4} \pi^{2}+\frac{\pi^{4}}{4}$	$\frac{1}{4}+\frac{\pi^{2}}{12}$
	9. Clamped-free	$\frac{162}{13}$	$\frac{1620}{91}+\frac{405}{13}\left(\frac{R_{0}}{L}\right)$	$\frac{61}{52}+\frac{81}{52}\left(\frac{R_{0}}{L}\right)$
	10. Free-clamped	$\frac{162}{13}$	$-\frac{1215}{91}-\frac{405}{13}\left(\frac{R_{0}}{L}\right)-\frac{486}{13}\left(\frac{R_{0}}{L}\right)^{2}$	$-\frac{5}{13}-\frac{81}{52}\left(\frac{R_{0}}{L}\right)+\frac{135}{182}\left(\frac{R_{0}}{L}\right)^{2}$

11. Clamped-hinged	$\frac{4536}{19}$	$\frac{1620}{19}+\frac{1134}{19}\left(\frac{R_{0}}{L}\right)$	$\frac{1}{19}-\frac{27}{19}\left(\frac{R_{0}}{L}\right)$
12. Hinged-clamped	$\frac{4536}{19}$	$\frac{486}{19}-\frac{1134}{19}\left(\frac{R_{0}}{L}\right)$	$\frac{28}{19}+\frac{27}{19}\left(\frac{R_{0}}{L}\right)$
13. Clamped-guided	$\frac{63}{2}$	$\frac{1287}{32}+\frac{1323}{32}\left(\frac{R_{0}}{L}\right)$	$\frac{25}{64}+\frac{9}{64}\left(\frac{R_{0}}{L}\right)$
14. Guided-clamped	$\frac{63}{2}$	$-\frac{9}{8}-\frac{1323}{32}\left(\frac{R_{0}}{L}\right)$	$\frac{1}{4}-\frac{9}{64}\left(\frac{R_{0}}{L}\right)$
15. Clamped-clamped	504	90	1

TABLE 17-14 MASS AND STIFFNESS MATRICES FOR RADIAL BEAM ELEMENT ${ }^{\text {a }}$

Notation

Vibration is in the direction (ξ) perpendicular to the neutral axis of the beam.
$A=$ cross-sectional area
$\rho^{*}=$ mass per unit volume
$I=$ moment of inertia of section about η axis
$E=$ modulus of elasticity
$\Omega=$ rotational speed (spin speed of rotor)
$r=$ radius of gyration, $r^{2}=I / A$
Coordinate System (Sign Convention 2)

Equations of Motion
$\left(\mathbf{m}_{T}+\mathbf{m}_{R}\right) \ddot{\mathbf{v}}+\left(\mathbf{k}_{B}+\mathbf{k}_{C}-\Omega^{2} \sin \Psi \mathbf{m}_{T}\right) \mathbf{v}=0$
with $\mathbf{v}=\left[\begin{array}{llll}w_{\xi a} & \theta_{\eta a} & w_{\xi b} & \theta_{\eta b}\end{array}\right]^{T}, w_{\xi a}, \theta_{\eta a}$ and $w_{\xi b}, \theta_{\eta b}$ are the displacements and slopes at nodes a and b, respectively.

Element Matrices

TRANSLATIONAL CONSISTENT MASS MATRIX \mathbf{m}_{T} :

$$
\mathbf{m}_{T}=\frac{\rho^{*} A \ell}{420}\left[\right]
$$

ROTARY CONSISTENT MASS MATRIX \mathbf{m}_{R} :

$\mathbf{m}_{R}=\frac{\rho^{*} A r^{2}}{120 \ell}\left[\right.$| 36 | symmetric | | |
| :---: | :---: | :---: | :---: |
| 3ℓ | $4 \ell^{2}$ | | |
| -36 | -3ℓ | 36 | |
| 3ℓ | $-\ell^{2}$ | -3ℓ | $4 \ell^{2}$ |$]$

BENDING STIFFNESS MATRIX \mathbf{k}_{B} :

$\mathbf{k}_{B}=\frac{E I}{\ell^{3}}\left[\right.$| 12 | symmetric | | |
| :---: | :---: | :---: | :---: |
| 6ℓ | $4 \ell^{2}$ | | |
| -12 | -6ℓ | 12 | |
| 6ℓ | $2 \ell^{2}$ | -6ℓ | $4 \ell^{2}$ |$]$

TABLE 17-14 (continued) MASS AND STIFFNESS MATRICES FOR RADIAL BEAM ELEMENTa ${ }^{a}$

CENTRIFUGAL STIFFNESS MATRIX \mathbf{k}_{C} :
$\mathbf{k}_{C}=\mathbf{k}_{C 1}+\mathbf{k}_{C 2}+\mathbf{k}_{C 3}$
where

$$
\begin{aligned}
& \mathbf{k}_{C 1}=\frac{\rho^{*} A \ell \Omega^{2}}{30} C_{1}\left[\right] \\
& \mathbf{k}_{C 2}=\frac{\rho^{*} A \ell \Omega^{2}}{60} C_{2}\left[\begin{array}{clll}
36 & \text { symmetric } & \\
6 \ell & 2 \ell^{2} & & \\
-36 & -6 \ell & 36 & \\
0 & -\ell^{2} & 0 & 6 \ell^{2}
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{k}_{C 3}=\frac{\rho^{*} A \ell \Omega^{2}}{210} C_{3}\left[\right]
$$

$$
C_{1}=\frac{R_{0}}{\ell^{2}}\left(L-L^{\prime}\right)+\frac{1}{2 \ell^{2}}\left(L^{2}-L^{\prime 2}\right) \quad C_{2}=\frac{1}{\ell}\left(R_{0}+L^{\prime}\right) \quad C_{3}=-\frac{1}{2}
$$

${ }^{a}$ Based on Ref. [17.16].

TABLE 17-15 TRANSFER, STIFFNESS, AND MASS MATRICES FOR AXIAL VIBRATION OF RADIAL ROTATING BAR ELEMENT

Notation

$A=$ cross-sectional area
$\Omega=$ rotational speed
$R_{0}=$ hub radius
$E=$ modulus of elasticity
$\rho^{*}=$ mass per unit volume
$L=$ length of beam
$L^{\prime}=$ total length of elements before, not including the element under consideration

Transfer Matrix (Sign Convention 1)

$\omega=$ vibration frequency
$P=$ axial load
$\beta^{2}=\rho^{*}\left(\omega^{2}+\Omega^{2}\right) / E$
$\mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{a} \quad \mathbf{z}=\left[\begin{array}{lll}w_{Z} & P & 1\end{array}\right]^{T}$
EXACT TRANSFER MATRIX:
$\mathbf{U}^{i}=\left[\begin{array}{ccc}\cos \beta \ell & \sin \beta \ell / A E \beta & F_{w} \\ -A E \beta \sin \beta \ell & \cos \beta \ell & F_{P} \\ 0 & 0 & 1\end{array}\right]$
$F_{w}=-\frac{\rho^{*} \Omega^{2}}{E}\left[\left(R_{0}+L^{\prime}\right) \frac{1-\cos \beta \ell}{\beta^{2}}+\frac{\beta \ell-\sin \beta \ell}{\beta^{3}}\right]$
$F_{P}=-\rho^{*} A \Omega^{2}\left[\left(R_{0}+L^{\prime}\right) \frac{\sin \beta \ell}{\beta}+\frac{1-\cos \beta \ell}{\beta^{2}}\right]$
LUMPED MASS TRANSFER MATRIX (mass lumped at middle point of element of length ℓ):
$\mathbf{U}^{i}=\left[\begin{array}{ccc}1 & \ell / E A & F_{w} \\ -\rho^{*} A\left(\omega^{2}+\Omega^{2}\right) \ell & 1 & F_{P} \\ 0 & 0 & 1\end{array}\right]$
$F_{w}=0$
$F_{P}=-\rho^{*} A \Omega^{2}\left[R_{0}+L^{\prime}+\frac{1}{2} \ell\right] \ell$

TABLE 17-15 (continued) TRANSFER, STIFFNESS, AND MASS MATRICES FOR AXIAL VIBRATION OF RADIAL ROTATING BAR ELEMENT

Stiffness and Mass Matrices (Sign Convention 2)

$$
\begin{aligned}
\gamma^{2} & =\rho^{*} / E \\
\alpha & =\gamma \Omega \ell \\
\mathbf{m} \ddot{\mathbf{v}}+\left(\mathbf{k}_{A}+\mathbf{k}_{C}\right) \mathbf{v} & =0 \\
\mathbf{v} & =\left[\begin{array}{ll}
w_{Z a} & w_{Z b}
\end{array}\right]^{T} \quad \mathbf{p}=\left[\begin{array}{ll}
P_{a} & P_{b}
\end{array}\right]^{T}
\end{aligned}
$$

TRANSLATIONAL CONSISTENT MASS MATRIX \mathbf{m} :
$\mathbf{m}=\rho^{*} A\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]$
where
$m_{11}=\frac{\left(2 \sin ^{2} \alpha-1\right) \sin 2 \alpha-4 \cos \alpha \sin ^{3} \alpha+2 \alpha}{4 \alpha \sin ^{2} \alpha}$
$m_{12}=m_{21}=\frac{\cos \alpha \sin 2 \alpha+2 \sin ^{3} \alpha-2 \alpha \cos \alpha}{4 \alpha \sin ^{2} \alpha}$
$m_{22}=\frac{2 \alpha-\sin 2 \alpha}{4 \alpha \sin ^{2} \alpha}$
AXIAL STIFFNESS MATRIX \mathbf{k}_{A} :
$\mathbf{k}_{A}=A E \frac{\alpha^{2}}{\ell}\left[\begin{array}{ll}k_{a 11} & k_{a 12} \\ k_{a 21} & k_{a 22}\end{array}\right]$
where
$k_{a 11}=\frac{\left(1-2 \sin ^{2} \alpha\right) \sin 2 \alpha+4 \cos \alpha \sin ^{3} \alpha+2 \alpha}{4 \alpha \sin ^{2} \alpha}$
$k_{a 12}=k_{a 21}=-\frac{\cos \alpha \sin 2 \alpha+2 \sin ^{3} \alpha+2 \alpha \cos \alpha}{4 \alpha \sin ^{2} \alpha}$
$k_{a 22}=\frac{2 \alpha+\sin 2 \alpha}{4 \alpha \sin ^{2} \alpha}$

TABLE 17-15 (continued) TRANSFER, STIFFNESS, AND MASS MATRICES FOR AXIAL VIBRATION OF RADIAL ROTATING BAR ELEMENT

Stiffness and Mass Matrices (Sign Convention 2)

CENTRIFUGAL STIFFNESS MATRIX \mathbf{k}_{C} :
$\mathbf{k}_{c}=\rho^{*} A \Omega^{2} \ell^{3}\left(p \mathbf{m}-q \mathbf{d}-\frac{1}{2} \mathbf{e}\right)$
where $p=\frac{R_{0}}{\ell^{2}}\left(L-L^{\prime}\right)+\frac{1}{2 \ell^{2}}\left(L^{2}-L^{\prime 2}\right), \quad q=\frac{1}{\ell}\left(R_{0}+L^{\prime}\right)$
\mathbf{m} is the translational consistent mass matrix

$$
\begin{aligned}
\mathbf{d} & =\left[\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right] \\
d_{11} & =\frac{4\left(\alpha \sin ^{2} \alpha-\sin 2 \alpha-2 \alpha\right) \sin 2 \alpha+\left(2 \sin ^{2} \alpha+2 \alpha \sin 2 \alpha-1\right) \cos 2 \alpha-2 \sin ^{2} \alpha+2 \alpha^{2}+1}{8 \alpha^{2} \sin ^{2} \alpha} \\
d_{12} & =d_{21}=\frac{(\sin \alpha+2 \alpha \cos \alpha) \sin 2 \alpha+(\cos \alpha-2 \alpha \sin \alpha) \cos 2 \alpha-\left(1+2 \alpha^{2}\right) \cos \alpha}{8 \alpha^{2} \sin ^{2} \alpha} \\
d_{22} & =\frac{-2 \alpha \sin 2 \alpha-\cos 2 \alpha+2 \alpha^{2}+1}{8 \alpha^{2} \sin ^{2} \alpha} \\
\mathbf{e} & =\left[\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right] \\
e_{11} & =\frac{\left[6\left(2 \alpha^{2}-1\right) \sin ^{2} \alpha-6 \alpha \sin 2 \alpha-6 \alpha^{2}+3\right] \sin 2 \alpha+\left[12 \alpha \sin ^{2} \alpha+3\left(2 \alpha^{2}-1\right) \sin 2 \alpha-6 \alpha\right] \cos (2 \alpha)+3 \sin 2 \alpha+4 \alpha^{3}}{24 \alpha^{3} \sin ^{2} \alpha} \\
e_{12} & =e_{21}=\frac{\left[6 \alpha \sin \alpha+3\left(2 \alpha^{2}-1\right) \cos \alpha\right] \sin 2 \alpha+\left[3\left(1-2 \alpha^{2}\right) \sin \alpha+6 \alpha \cos \alpha\right] \cos 2 \alpha-3 \sin \alpha-4 \alpha^{3} \cos \alpha}{24 \alpha^{3} \sin ^{2} \alpha} \\
e_{22} & =\frac{3\left(1-2 \alpha^{2}\right) \sin 2 \alpha-6 \alpha \cos 2 \alpha+4 \alpha^{3}}{24 \alpha^{3} \sin ^{2} \alpha}
\end{aligned}
$$

Plates

18.1 Notation 978
All Plates 978
Circular Plates 979
Rectangular Plates 979
18.2 Circular Plates 980
Stresses 980
Simple Circular Plates 980
Complex Circular Plates 982
Tabulated Formulas 983
Formulas for Plates with Arbitrary Loading 984
Buckling Loads 985
Natural Frequencies 986
General Circular Plates 988
Transfer Matrices 989
Stiffness Matrices 989
Geometric Stiffness Matrices 990
Mass Matrices 990
Large Deflections of Circular Plates 990
18.3 Rectangular Plates 991
Stresses 991
Governing Differential Equations 991
Tabulated Formulas 993
Formulas for Plates with Arbitrary Loading 995
Buckling Loads 996
Local Buckling 997
Natural Frequencies 997
General Rectangular Plates 998
Transfer Matrices 999
Stiffness Matrices 999
Mass Matrices 1000
Large Deflections of Rectangular Plates 1000
Approximation Formulas 1000
18.4 Other Plates 1002
References 1002
Tables 1005

A plate is a flat structural member whose thickness is no larger than one-tenth of the length of the smallest lateral dimension. Most of the plate formulas presented here are based on the Kirchhoff-Love assumptions that the plate is thin; deflections and slopes are small; the plate material is linear, elastic, homogeneous, and isotropic; normal stresses transverse to the middle surface are negligible; and straight lines normal to the middle surface before deformation remain straight and normal to that surface after deformation. Some formulas for large deflections, nonuniform properties, and anisotropic and nonhomogeneous materials are provided. Other complications such as rotary inertia, shear deformation, and inelastic behavior are discussed in Refs. [18.1] and [18.2]. The sign convention for positive displacement, slopes, moments, and forces is shown in the figures and tables as appropriate.

18.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F for force, and T for time.

All Plates

C Applied concentrated moment per unit length (F)
D Flexural rigidity of a plate, $=E h^{3} /\left[12\left(1-v^{2}\right)\right](F L)$
E Young's modulus (F / L^{2})
h Plate thickness (L)
p, p_{s} Transverse applied load per unit area $\left(F / L^{2}\right)$
p_{1} Applied uniform transverse force per unit area $\left(F / L^{2}\right)$
t Time (T)
T Temperature change (degrees), temperature change with respect to reference temperature
w Transverse plate deflection (L)
W Applied concentrated force per unit length (F / L)
W_{T} Concentrated force applied at a point (F) or uniformly distributed force applied on a small area $\left(F / L^{2}\right)$
v Poisson's ratio
ρ Plate mass per unit area $\left(F T^{2} / L^{3}\right)$
∇^{2} Laplacian differential operator
∇^{4} Biharmonic differential operator

Circular Plates

a_{0} Inner radius of plate (L)
a_{L} Outer radius of plate (L)
$D_{r}, D_{\phi}, D_{r \phi}$ Flexural rigidities ($F L$)
M_{r}, M Bending moment per unit length on planes normal to radial (r axis) direction $(F L / L)$; the net internal forces and moments per unit length are referred to as stress resultants and are defined as in the "Notation" section of Chapter 20.
$M_{r \phi}$ Twisting moment per unit length on either an r or ϕ coordinate plane ($F L / L$)
M_{ϕ} Bending moment per unit length on planes normal to azimuthal (tangential, ϕ axis) direction ($F L / L$)
P Radial in-plane force per unit length (F / L)
Q_{r} Transverse shear force per unit length on planes normal to the r axis (F / L)
Q_{ϕ} Transverse shear force per unit length on planes normal to the ϕ axis (F / L)
r, ϕ, z Coordinates in a right-handed polar system
r_{r}, r_{ϕ} Radii of gyration of mass about radial and tangential axes; for isotropic, homogeneous material, set $r_{r}^{2}=r_{\phi}^{2}=\frac{1}{12} h^{2}$.
V_{r}, V Equivalent shear force per unit length on planes normal to the r axis (F/L)
V_{ϕ} Equivalent shear force per unit length on planes normal to the ϕ axis (F / L)
θ Slope about ϕ axis (rad)
The material constants are defined in Table 18-1 for isotropic, orthotropic, composite, and layered circular plates.

Rectangular Plates

$$
\begin{aligned}
D, D_{x}, D_{y} & \text { Plate flexural rigidities }(F L) \\
D_{x y} & \text { Torsional rigidity }(F L) \\
L, L_{y} & \text { Length of plate in } x \text { and } y \text { directions }(L) \\
M_{x} & \text { Bending moment per unit length parallel to } y \text { axis }(F L / L) \\
M_{x y} & \text { Twisting moment per unit length }(F L / L) \\
M_{y} & \text { Bending moment per unit length parallel to } x \text { axis }(F L / L) \\
P_{\text {cr }} & \text { Buckling load }(F / L) \\
P_{x} & \text { In-plane force per unit length acting in } x \text { direction }(F / L) \\
P_{x y} & \text { In-plane shear force per unit length acting on planes normal to } x \text { or } y \\
& \text { axis }(F / L) \\
P_{y} & \text { In-plane force per unit length acting in } y \text { direction }(F / L)
\end{aligned}
$$

Q_{x} Shear force per unit length on surfaces normal to x axis (F / L)
Q_{y} Shear force per unit length on surfaces normal to y axis (F / L)
V_{x} Equivalent shear force acting on planes normal to x axis (F / L)
V_{y} Equivalent shear force acting on planes normal to y axis (F / L)
$w_{m n}$ Deflection mode shape of plate in mode corresponding to $\omega_{m n}(L)$
x, y, z Right-handed system of coordinates
θ Slope of plate surface about line parallel to y axis (rad)
θ_{y} Slope of plate surface about line parallel to x axis (rad)
$\sigma_{\text {cr }}$ Buckling stress (F / L^{2})
σ_{x} Normal stress on surfaces perpendicular to x axis $\left(F / L^{2}\right)$
σ_{y} Normal stress on surfaces perpendicular to y axis $\left(F / L^{2}\right)$
$\omega_{m n}$ Natural frequency (rad / T)
The material constants are defined in Table 18-14 for isotropic, orthotropic, and stiffened rectangular plates.

18.2 CIRCULAR PLATES

Stresses

The tables of this chapter provide the deflection, slope, bending moment, and shear force. Once the internal moments and forces are known, the stresses can be determined with the formulas given in Table 18-2.

Simple Circular Plates

In polar coordinates, the governing equation of motion for an isotropic plate of uniform thickness and with no in-plane loading is

$$
\begin{equation*}
\nabla^{4} w=\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right)\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right) w=\frac{p}{D}-\frac{\rho}{D} \frac{\partial^{2} w}{\partial t^{2}} \tag{18.1}
\end{equation*}
$$

where

$$
\begin{align*}
\nabla^{4} & =\nabla^{2} \nabla^{2} \\
\nabla^{2} & =\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+\frac{1}{r} \frac{\partial}{\partial r} \tag{18.2}\\
D & =\frac{E h^{3}}{12\left(1-v^{2}\right)}
\end{align*}
$$

The expressions for the internal bending moments, twisting moment, and shear forces per unit length are

$$
\begin{align*}
M_{r} & =-D\left[\frac{\partial^{2} w}{\partial r^{2}}+v\left(\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \phi^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}\right)\right] \tag{18.3a}\\
M_{\phi} & =-D\left(\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \phi^{2}}+v \frac{\partial^{2} w}{\partial r^{2}}\right) \tag{18.3b}\\
M_{r \phi} & =-(1-v) D\left(\frac{1}{r} \frac{\partial^{2} w}{\partial r \partial \phi}-\frac{1}{r^{2}} \frac{\partial w}{\partial \phi}\right) \tag{18.3c}\\
Q_{r} & =-D \frac{\partial}{\partial r}\left(\nabla^{2} w\right) \tag{18.3d}\\
Q_{\phi} & =-D \frac{1}{r} \frac{\partial}{\partial \phi}\left(\nabla^{2} w\right) \tag{18.3e}\\
V_{r} & =Q_{r}+\frac{1}{r} \frac{\partial M_{r \phi}}{\partial \phi} \tag{18.3f}\\
V_{\phi} & =Q_{\phi}+\frac{\partial M_{r \phi}}{\partial r} \tag{18.3~g}
\end{align*}
$$

The equation of motion of Eq. (18.1) is solved readily for cases in which the loads and boundary conditions are rotationally symmetric (independent of ϕ). Then, with the interior term ignored, the governing equation of motion reduces to

$$
\begin{equation*}
\frac{d^{4} w}{d r^{4}}+\frac{2}{r} \frac{d^{3} w}{d r^{3}}-\frac{1}{r^{2}} \frac{d^{2} w}{d r^{2}}+\frac{1}{r^{3}} \frac{d w}{d r}=\frac{p}{D} \tag{18.4a}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla^{4} w=\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}\right)\left(\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}\right) w=\frac{p}{D} \tag{18.4b}
\end{equation*}
$$

The equations for the internal shear and moments are

$$
\begin{align*}
M_{r} & =-D\left(\frac{d^{2} w}{d r^{2}}+\frac{v}{r} \frac{\partial w}{d r}\right) \tag{18.5a}\\
M_{\phi} & =-D\left(v \frac{d^{2} w}{d r^{2}}+\frac{1}{r} \frac{d w}{d r}\right) \tag{18.5b}\\
M_{r \phi} & =0 \tag{18.5c}\\
Q_{r} & =V_{r}=-D\left(\frac{d^{3} w}{d r^{3}}+\frac{1}{r} \frac{d^{2} w}{d r^{2}}-\frac{1}{r^{2}} \frac{d w}{d r}\right) \tag{18.5d}\\
Q_{\phi} & =0 \tag{18.5e}
\end{align*}
$$

Figure 18-1: Positive displacement w, slope θ, moment M, shear force V, and applied loading.

With derivatives with respect to r arranged to appear on the left-hand side, the equations above in first-order form can be written as

$$
\begin{align*}
& \frac{d w}{d r}=-\theta \quad \frac{d \theta}{d r}=\frac{M}{D}-v \frac{\theta}{r} \\
& \frac{d V}{d r}=-\frac{V}{r}-p \tag{18.6}\\
& \frac{d M}{d r}=-(1-v) \frac{M}{r}+V+\frac{D\left(1-v^{2}\right) \theta}{r^{2}}
\end{align*}
$$

with $M=M_{r}$ and $V=V_{r}$. The convention for positive displacement, slopes, moments, and shear forces is shown in Fig. 18-1.

Complex Circular Plates

The first-order governing differential equations for complex circular plates in polar coordinates are

$$
\begin{aligned}
\frac{\partial w}{\partial r} & =-\theta \\
\frac{\partial \theta}{\partial r} & =\frac{M}{D_{r}}+v_{\phi}\left(\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \phi^{2}}-\frac{\theta}{r}\right)
\end{aligned}
$$

$$
\begin{align*}
\frac{\partial M}{\partial r}= & -\left(1-\frac{v_{r} D_{\phi}}{D_{r}}\right) \frac{M}{r}+V-\left[D_{\phi}\left(1-v_{r} v_{\phi}\right)+4 D_{r \phi}\right] \frac{1}{r^{3}} \frac{\partial^{2} w}{\partial \phi^{2}} \tag{18.7}\\
& +\frac{D_{\phi}\left(1-v_{r} v_{\phi}\right)}{r^{2}} \theta-\frac{4 D_{r \phi}}{r^{2}} \frac{\partial^{2} \theta}{\partial \phi^{2}}+\rho r_{\phi}^{2} \frac{\partial^{2} \phi}{\partial t^{2}} \\
\frac{\partial V}{\partial r}= & -\frac{V}{r}-\frac{v_{r} D_{\phi}}{r^{2} D_{r}} \frac{\partial^{2} M}{\partial \phi^{2}}+\frac{D_{\phi}}{r^{4}}\left(1-v_{r} v_{\phi}\right) \frac{\partial^{4} w}{\partial \phi^{4}}-\frac{4 D_{r \phi}}{r^{4}} \frac{\partial^{2} w}{\partial \phi^{2}} \\
& -\left[D_{\phi}\left(1-v_{r} v_{\phi}\right)+4 D_{r \phi}\right] \frac{1}{r^{3}} \frac{\partial^{2} \theta}{\partial \phi^{2}}-\frac{\rho r_{r}^{2}}{r^{2}} \frac{\partial^{4} w}{\partial t^{2} \partial \phi^{2}}+\rho \frac{\partial^{2} w}{\partial t^{2}}-p(r, \phi, t)
\end{align*}
$$

where $M=M_{r}, V=V_{r}$. The internal forces are

$$
\begin{align*}
& M_{\phi}=-D_{\phi}\left(\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \phi^{2}}+v_{r} \frac{\partial^{2} w}{\partial r^{2}}\right) \tag{18.8}\\
& M_{r \phi}=M_{\phi r}=2 D_{r \phi}\left(\frac{1}{r} \frac{\partial^{2} w}{\partial r \partial \phi}-\frac{1}{r^{2}} \frac{\partial w}{\partial \phi}\right)
\end{align*}
$$

Tabulated Formulas

Formulas for the deflections, moments, and shear forces for rather simple loadings are given in Table 18-3.

Example 18.1 Static Deflection of a Circular Plate Subjected to a Distributed Load A circular plate is subjected to a uniform load $p_{1}=26 \mathrm{lb} / \mathrm{in}^{2}$. At the center of the plate, compute the deflection, the radial and azimuthal bending moments per unit length, and the equivalent shear force per unit length acting on planes normal to the radius. Perform the computation for both (a) pinned and (b) fixed outer edges. Let $E=3.0 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}, h=1.0 \mathrm{in} ., v=0.3$, and $a_{L}=13.5 \mathrm{in}$.
(a) For a pinned outer edge, case 1 of Table 18-3 applies:

$$
\begin{equation*}
D=\frac{E h^{3}}{12\left(1-v^{2}\right)}=2.75 \times 10^{6} \mathrm{lb}-\mathrm{in} \tag{1}
\end{equation*}
$$

For the center of the plate, $\alpha=r / a_{L}=0$:

$$
\begin{align*}
w & =\frac{p_{1} a_{L}^{4}(5+v)}{64 D(1+v)} \\
& =\frac{(26)(13.5)^{4}(5+0.3)}{64\left(2.75 \times 10^{6}\right)(1+0.3)}=0.020 \mathrm{in} . \\
M_{r} & =\frac{p_{1} a_{L}^{2}}{16}(3+v)=\frac{(26)(13.5)^{2}}{16}(3+0.3)=977.3 \mathrm{in} .-\mathrm{lb} / \mathrm{in} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
M_{\phi} & =\frac{p_{1} a_{L}^{2}}{16}(3+v)=977.3 \mathrm{in.} . \mathrm{lb} / \mathrm{in} . \\
Q_{r} & =-\frac{p_{1} a_{L}}{2} \alpha=0.0
\end{aligned}
$$

(b) For clamped edges, case 9 of Table 18-3 applies. At the center of the plate

$$
\begin{align*}
\alpha & =\frac{r}{a_{L}}=0 \\
w & =\frac{(26)(13.5)^{4}(1)}{(64)\left(2.75 \times 10^{6}\right)}=0.00491 \mathrm{in} . \\
M_{r} & =\frac{(26)(13.5)^{2}}{16}(1+0.3)=385.0 \mathrm{in} .-\mathrm{lb} / \mathrm{in} . \tag{3}\\
M_{\phi} & =385.0 \mathrm{in} .-\mathrm{lb} / \mathrm{in} . \\
Q_{r} & =0
\end{align*}
$$

Formulas for Plates with Arbitrary Loading

Table 18-3 gives the responses of circular plates for some simple loadings and boundary conditions. For more complicated uniform plates, the formulas in Table 18-4 can be used to calculate the deflections, slopes, bending moments, and shear forces.

Part A of Table 18-4 lists equations for the responses. The functions F_{w}, F_{θ}, F_{V}, and F_{M} are taken from Table 18-4, part B, by adding the appropriate terms for each load applied to the plate. The initial parameters w_{0}, θ_{0}, V_{0}, and M_{0}, which are values of w, θ, V, and M at the inner edge $\left(r=a_{0}\right)$ of the plate, are evaluated using the entry in Table 18-4, part C, for the appropriate edge conditions.

These general formulas are readily programmed for computer solution.
Example 18.2 Plate with a Concentrated Ring Load Determine the deflection caused by a concentrated ring force in a plate fixed on the outer rim and rigidly supported at the center (Fig. 18-2).

Figure 18-2: Circular plate with a rigid center support.

From case 2 of Table 18-4, part A, the deflection is expressed by

$$
\begin{equation*}
w=-\frac{R}{8 \pi D} r^{2}(\ln r-1)+C_{1} \frac{r^{2}}{4}+F_{w} \tag{1}
\end{equation*}
$$

Table 18-4, part B, gives F_{w} for the concentrated ring force W :

$$
\begin{equation*}
F_{w}=<r-a>^{0} \frac{W a}{4 D}\left[\left(r^{2}+a^{2}\right) \ln \frac{r}{a}-\left(r^{2}-a^{2}\right)\right] \tag{2}
\end{equation*}
$$

According to Table 18-4, part C, the reaction R and constant C_{1} are given by

$$
\begin{align*}
R & =-\frac{16 \pi D}{a_{L}^{2}} \bar{F}_{w}-\frac{8 \pi D}{a_{L}} \bar{F}_{\theta} \\
C_{1} & =-\frac{8\left(\ln a_{L}-\frac{1}{2}\right)}{a_{L}^{2}} \bar{F}_{w}-\frac{4\left(\ln a_{L}-1\right)}{a_{L}} \bar{F}_{\theta} \tag{3}
\end{align*}
$$

Insertion of $\bar{F}_{w}=F_{w \mid r=a_{L}}$ and $\bar{F}_{\theta}=F_{\theta \mid r=a_{L}}$ from Table 18-4, part B, into (3) gives

$$
\begin{align*}
C_{1} & =\frac{W a}{D}\left(1-\beta^{2}+2 \beta^{2} \ln \beta\right)\left[\ln a+\left(1-\beta^{2}\right) \ln \beta\right] \tag{4}\\
R & =2 \pi W a\left(1-\beta^{2}+2 \beta^{2} \ln \beta\right)
\end{align*}
$$

where $\beta=a / a_{L}$. Substitution of (2) and (4) into (1) provides the expression for the deflection at any radius r.

Buckling Loads

When a circular plate is subjected to a static in-plane radial force (per unit length) P, the plate equation is

$$
\begin{equation*}
D \nabla^{4} w=P \nabla^{2} w \tag{18.9}
\end{equation*}
$$

in which the Laplacian operators are written in polar coordinates. For certain critical values of the in-plane load, the plate will buckle transversely even though transverse loads may not be present. A critical-load value is associated with each buckled mode shape.

Majumdar [18.3] studied the buckling of a circular plate clamped at the outer edge, free at the inner edge, and loaded with a uniform radial compressive force applied at the outside edge. It is shown that for small ratios of inner to outer radius, the plate buckles in a radially symmetric mode. When the ratio of the inner to outer radius exceeds a certain value, the minimum buckling load corresponds to buckling modes with nodes, which are the loci of points for which the displacements in the
buckling modes are zero, along a circumference. The number of nodes depends on the ratio of the inner and outer radii.

Formulas for the critical load of several circular plate configurations are listed in Table 18-5. These critical loads are compressive in-plane forces per unit length applied at the outer edge. The stress corresponding to the critical load should be less than the yield strength of the material of the plate in order for the buckling load to be valid.

Techniques for obtaining solutions to circular plate stability problems are discussed in Ref. [18.1].

Example 18.3 Critical In-Plane Loads of a Circular Plate Compute the critical in-plane compressive force for a circular plate with no center hole for both (a) pinned and (b) clamped outer edges if the buckled shape has neither nodal diameters nor circles. Let $E=3.0 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}, h=1.0 \mathrm{in}$., $v=0.3$, and $a_{L}=36 \mathrm{in}$., so that $D=E h^{3} /\left[12\left(1-v^{2}\right)\right]=2.75 \times 10^{6} \mathrm{lb}-\mathrm{in}$. Also, calculate the stress level corresponding to buckling to assure that the yield stress has not been reached.
(a) For pinned edges, from case 1 of Table 18-5,

$$
\begin{align*}
P_{\text {cr }} & =0.426 \pi^{2} \frac{D}{a_{L}^{2}}=0.426 \pi^{2}\left(2.75 \times 10^{6}\right) /(36)^{2} \tag{1}\\
& =0.89 \times 10^{4} \mathrm{lb} / \mathrm{in} .
\end{align*}
$$

The stress corresponding to the stress resultant $P_{\text {cr }}$ is given by

$$
\begin{equation*}
\sigma_{\mathrm{cr}}=P_{\mathrm{cr}} / h=0.89 \times 10^{4} / 1.0=8900 \mathrm{lb} / \mathrm{in}^{2} \tag{2}
\end{equation*}
$$

(b) For clamped edges, from case 2 of Table 18-5,

$$
\begin{gather*}
P_{\mathrm{cr}}=(1.49) \frac{\pi^{2} D}{a_{L}^{2}}=1.49 \pi^{2}\left(2.75 \times 10^{6}\right) /(36)^{2}=3.12 \times 10^{4} \mathrm{lb} / \mathrm{in} \tag{3}\\
\sigma_{\mathrm{cr}}=P_{\mathrm{cr}} / h=3.12 \times 10^{4} / 1.0=31,200 \mathrm{lb} / \mathrm{in}^{2} \tag{4}
\end{gather*}
$$

Natural Frequencies

The formulas for natural frequencies in a number of cases of uniform thickness circular plates are listed in Table 18-6. The nodes, which are the loci of points along which the mode shape displacements are zero, occur along diameters, numbered n, of the plate or along concentric circles, numbered s, centered at the plate center. A particular mode is chosen by specifying the number of nodal diameters and nodal concentric circles. It can be observed that the fundamental frequency does not always correspond to the smallest s and n. Also, except for certain small values of
s and n, the natural frequency increases as s increases for a fixed n, or vice versa. Thus, to determine the fundamental, the second, the third natural frequency, and so on, numerous combinations of s and n should be tested.

More complex cases can be treated using the transfer or stiffness matrices provided in other tables.

Example 18.4 Natural Frequencies of a Circular Plate For the plate of Example 18.1, compute the natural frequencies of the first two rotationally symmetric mode shapes $(n=0)$. Perform the computation for (a) free, (b) pinned, and (c) fixed outer edges. In all cases $D=2.75 \times 10^{6} \mathrm{lb}-\mathrm{in}$., $a_{L}=13.5 \mathrm{in}$., and $\rho=7.273 \times 10^{-4} \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in}^{3}$.
(a) Free outer boundary: Use case 1 of Table 18-6. For the case of rotational symmetry $n=0$ (no nodal diameters), and for the lowest frequency in case $1, s=1$ (one nodal circle). Thus,

$$
\begin{align*}
\left.\omega_{n s}\right|_{\substack{n=0 \\
s=1}} & =\omega_{01}=\frac{\lambda_{01}}{a_{L}^{2}} \sqrt{\frac{D}{\rho}} \tag{1}\\
\lambda_{01} & =8.892
\end{align*}
$$

so that

$$
\begin{equation*}
\omega_{01}=3000 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{01}=477.5 \mathrm{~Hz} \tag{2}
\end{equation*}
$$

For $s=2, \lambda_{02}=38.34$, so that the natural frequency corresponding to the second rotationally symmetric mode shape is

$$
\begin{equation*}
\left.\omega_{n s}\right|_{\substack{n=2 \\ s=0}}=\omega_{02}=\frac{\lambda_{02}}{a_{L}^{2}} \sqrt{\frac{D}{\rho}}=12,935.8 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{02}=2058.95 \mathrm{~Hz} \tag{3}
\end{equation*}
$$

Note that neither of these two frequencies is the fundamental frequency. For this problem, the fundamental frequency occurs at $s=0$ and $n=2$.

$$
\begin{equation*}
\left.\omega_{n s}\right|_{\substack{n=2 \\ s=0}}=\omega_{20}=\frac{\lambda_{20}}{a_{L}^{2}} \sqrt{\frac{D}{L}}=1857.32 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{20}=295.6 \mathrm{~Hz} \tag{4}
\end{equation*}
$$

(b) Pinned outer edge: From case 2 of Table 18-6, it is evident that the lowest frequency occurs for $n=0$ (no nodal diameters) and $s=0$ (no nodal circles). Then

$$
\begin{align*}
\omega_{00} & =\frac{\lambda_{00}}{a_{L}^{2}} \sqrt{\frac{D}{\rho}} \tag{5}\\
\lambda_{00} & =4.977
\end{align*}
$$

so that

$$
\begin{equation*}
\omega_{00}=1679 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{00}=267.3 \mathrm{~Hz} \tag{6}
\end{equation*}
$$

Also,

$$
\lambda_{01}=29.76
$$

and

$$
\begin{equation*}
\omega_{01}=1.004 \times 10^{4} \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{01}=1598 \mathrm{~Hz} \tag{7}
\end{equation*}
$$

Here ω_{00} is the fundamental frequency but ω_{01} is the fourth frequency.
(c) Fixed outer boundary: Use case 3 of Table 18-6. For the case that the mode shape contains no nodal diameter and no nodal circle,

$$
\begin{align*}
& \lambda_{00}=10.216 \\
& \omega_{00}=\left(\lambda_{00} / a_{L}^{2}\right) \sqrt{D / \rho}=3448 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{00}=548.8 \mathrm{~Hz} \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
\lambda_{01} & =39.771 \tag{9}\\
\omega_{01} & =13,419 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{01}=2135.6 \mathrm{~Hz}
\end{align*}
$$

The position of ω_{00} and ω_{01} in the natural frequency sequence is the same as that in case 2 above.

General Circular Plates

The problems of determining the static deflection, critical in-plane load, natural frequencies, mode shapes, and steady sinusoidal response of complicated circular plates can be solved using the displacement method or the transfer matrix method, which are explained in references on structural mechanics, as well as in Appendixes II and III. These approaches are well suited to computer implementation, and the techniques can be applied to circular plates without rotationally symmetric loads.

In the governing situations, the ϕ-dependence of state variables and of applied loads can be removed by expanding these quantities in a Fourier series. For the plate deflection this series is

$$
\begin{equation*}
w(r, \phi, t)=\sum_{m=0}^{\infty}\left[w_{m}^{c}(r, t) \cos m \phi+w_{m}^{s}(r, t) \sin m \phi\right] \tag{18.10}
\end{equation*}
$$

An analogous series representation is used for the remaining state variables and for the applied loads. After these series have been introduced into the equations governing the plate motion, the ϕ-dependence of all quantities is eliminated, and the equations are integrated as functions of r and t.

Transfer Matrices The transfer matrices are obtained from the solution of the differential equations derived by substituting the Fourier series expansion of the state variables in the form of Eq. (18.10) into Eq. (18.1), (18.6), or (18.7). These differential equations are functions of r and t only. Table 18-7 provides the transfer matrix for a variety of plates under general loadings. In using these matrices, the loadings must also be expanded in Fourier series in the form of Eq. (18.10). Together with the solutions for disks of Chapter 19, these matrices can be used to find the static response, buckling load, or natural frequencies for in-plane and transverse motion of circular plates. The methodology for using these matrices is detailed in Appendix III.

The notation for the transfer matrix for plate element i is

$$
\mathbf{U}^{i}=\left[\begin{array}{ccccc}
U_{w w} & U_{w \theta} & U_{w V} & U_{w M} & \bar{F}_{w} \tag{18.11}\\
U_{\theta w} & U_{\theta \theta} & U_{\theta V} & U_{\theta M} & \bar{F}_{\theta} \\
U_{V w} & U_{V \theta} & U_{V V} & U_{V M} & \bar{F}_{V} \\
U_{M w} & U_{M \theta} & U_{M V} & U_{M M} & \bar{F}_{M} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Table 18-9 provides some point transfer matrices for concentrated occurrences.
Stiffness Matrices Table 18-8 contains stiffness matrices and loading vectors. Use of these matrices in static, stability, and dynamic analyses is described in Appendix III.

For asymmetric bending of circular plates, displacement, force, and loading variables are the components of the Fourier expansion of the form of Eq. (18.10); that is, the vector of nodal displacements for an element is

$$
\mathbf{v}^{i}=\left[\begin{array}{llll}
w_{m a}^{j} & \theta_{m a}^{j} & w_{m b}^{j} & \theta_{m b}^{j} \tag{18.12}
\end{array}\right]^{T}
$$

and the element force is

$$
\mathbf{p}^{i}=\left[\begin{array}{llll}
V_{m a}^{j} & M_{m a}^{j} & V_{m b}^{j} & M_{m b}^{j} \tag{18.13}
\end{array}\right]^{T}, \quad m=0,1,2, \ldots, \quad j=s, c
$$

For simplicity, the subscript m and superscript j have been dropped in the tables. For example, $w_{m a}^{j}$ becomes w_{a} and $V_{m a}^{j}$ becomes V_{a}. The format for a stiffness matrix is

$$
\begin{align*}
{\left[\begin{array}{c}
V_{a} \\
M_{a} \\
V_{b} \\
M_{b}
\end{array}\right] } & =\left[\begin{array}{llll}
k_{11} & k_{12} & k_{13} & k_{14} \\
k_{21} & k_{22} & k_{23} & k_{24} \\
k_{31} & k_{32} & k_{33} & k_{34} \\
k_{41} & k_{42} & k_{43} & k_{44}
\end{array}\right]\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
w_{b} \\
\theta_{b}
\end{array}\right] \tag{18.14}\\
\mathbf{p}^{i} & =\left[\begin{array}{c}
V_{a}^{0} \\
M_{a}^{0} \\
V_{b}^{0} \\
M_{b}^{0}
\end{array}\right] \\
\mathbf{k}^{i} & \mathbf{v}^{i}-\overline{\mathbf{p}}^{i}
\end{align*}
$$

Table 18-9 provides some point stiffness matrices for concentrated occurrences.
Stiffness matrices for an infinite circular plate lying on an elastic foundation are presented in Table 18-10.

Geometric Stiffness Matrices The geometric stiffness matrices used for the buckling analyses of circular plates are provided in Table 18-11. The global geometric stiffness matrix \mathbf{K}_{G} of a circular plate can be assembled from the element geometric stiffness matrices \mathbf{k}_{G}^{i}. Values for the in-plane force P and the in-plane displacement u_{a} at radius $r=a$ used in \mathbf{k}_{G}^{i}, the stiffness matrix for element i, are often calculated through an in-plane analysis (i.e., a disk analysis for the prescribed in-plane loading pattern as in Chapter 19). The in-plane forces for a buckling analysis are assumed to remain proportional to the distribution of in-plane forces found from the disk analysis for the initial pattern of applied in-plane forces. The load factor λ is the constant of proportionality. The critical (buckling) load for the circular plate can be obtained as the solution to the eigenvalue problem

$$
\begin{equation*}
\left(\mathbf{K}-\lambda \mathbf{K}_{G}\right) \mathbf{V}=\mathbf{0} \tag{18.15}
\end{equation*}
$$

where \mathbf{K} and \mathbf{V} are the global stiffness matrix and displacement vector and λ is an eigenvalue, the lowest value of which is the ratio of the buckling load to an initial applied in-plane force used in the disk analysis.

Mass Matrices Consistent and lumped mass matrices are given in Table 18-12. The nodal variables are the same as those in the stiffness matrices. See Appendix III for the use of mass matrices in dynamic analyses.

Large Deflections of Circular Plates

In general, the analytical solutions to the governing equations for large deflections of thin plates are difficult to obtain. However, the deflection and stresses at some special points of interest can be approximated by the formulas given in Table 18-13. These formulas for large deflections apply for linear elastic materials.

Example 18.5 Circular Plate with Large Deflections A solid circular steel plate 0.2 in. thick and 30 in . in diameter is fixed along the outer edge for transverse motion and remains restrained against radial movement. Also, it is uniformly loaded with $p_{1}=6.5 \mathrm{lb} / \mathrm{in}^{2}$. Determine the maximum deflection and the maximum stress with $E=3 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}, \nu=0.3$.

From the given edge conditions, case 3 in Table 18-13 should be used to obtain the large-deflection solution:

$$
\begin{equation*}
\frac{p_{1} a^{4}}{E h^{4}}=\frac{6.5(30 / 2)^{4}}{3(10)^{7}(0.2)^{4}}=6.86=\frac{5.333}{1-v^{2}} \frac{w_{0}}{h}+0.857\left(\frac{w_{0}}{h}\right)^{3} \tag{1}
\end{equation*}
$$

This cubic relationship between the load and the deflection gives

$$
\frac{w_{0}}{h} \approx 1.0
$$

That is, the maximum deflection of the plate is

$$
\begin{equation*}
w_{\max }=w_{0}=h=0.2 \mathrm{in} . \tag{2}
\end{equation*}
$$

The stress at the center of the plate is

$$
\begin{align*}
\sigma_{r 0} & =\frac{3\left(10^{7}\right)(0.2)^{2}}{(30 / 2)^{2}}\left[\left(\frac{2}{1-0.3^{2}}\right)(1.0)+0.5(1.0)^{2}\right] \\
& =14.4 \times 10^{3} \mathrm{lb} / \mathrm{in}^{2} \tag{3}
\end{align*}
$$

and the stress at the edge becomes

$$
\begin{equation*}
\sigma_{\mathrm{ra}}=\frac{3\left(10^{7}\right)(0.2)^{2}}{(30 / 2)^{2}} \frac{4}{1-0.3^{2}}(1.0)=23.4 \times 10^{3} \mathrm{lb} / \mathrm{in}^{2} \tag{4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\sigma_{\max }=\sigma_{r a}=23.4 \times 10^{3} \mathrm{lb} / \mathrm{in}^{2} \tag{5}
\end{equation*}
$$

18.3 RECTANGULAR PLATES

Stresses

This section contains several tables of formulas for the deflection, slope, shear force, and bending moment for rectangular plates. Once the internal forces (i.e., bending moments, twisting moments, and transverse forces) are obtained from these formulas, the stresses can be calculated from the formulas in Table 18-14. The material properties are defined in Table 18-15.

Governing Differential Equations

The deflection of a simple plate (i.e., isotropic, uniform plate) is governed by a linear partial differential equation

$$
\begin{align*}
\nabla^{4} w & =\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y^{4}}=\frac{p}{D}-\frac{\rho}{D} \frac{\partial^{2} w}{\partial t^{2}} \\
\nabla^{4} & =\frac{\partial^{4}}{\partial x^{4}}+2 \frac{\partial^{4}}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4}}{\partial y^{4}}=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)^{2}=\nabla^{2} \nabla^{2} \tag{18.16}\\
D & =\frac{E h^{3}}{12\left(1-v^{2}\right)}
\end{align*}
$$

This equation does not take into the account the effects of in-plane loading, shear deformation, or rotary inertia.

The governing differential equation for anisotropic plates (Table 18-15) is

$$
\begin{equation*}
D_{x} \frac{\partial^{4} w}{\partial x^{4}}+2 B \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+D_{y} \frac{\partial^{4} w}{\partial y^{4}}=p-\rho \frac{\partial^{2} w}{\partial t^{2}} \tag{18.17}
\end{equation*}
$$

where

$$
B=\frac{1}{2}\left(D_{x} v_{y}+D_{y} v_{x}+4 D_{x y}\right)
$$

The normal stresses are related to the deflections by

$$
\begin{align*}
& \sigma_{x}=\frac{-E_{x} z}{1-v_{x} v_{y}}\left(\frac{\partial^{2} w}{\partial x^{2}}+v_{y} \frac{\partial^{2} w}{\partial y^{2}}\right) \tag{18.18}\\
& \sigma_{y}=\frac{-E_{y} z}{1-v_{x} v_{y}}\left(\frac{\partial^{2} w}{\partial y^{2}}+v_{x} \frac{\partial^{2} w}{\partial x^{2}}\right) \tag{18.19}
\end{align*}
$$

The bending and twisting moments per unit length are found from the deflection field through the equations

$$
\begin{align*}
M_{x} & =-D_{x}\left(\frac{\partial^{2} w}{\partial x^{2}}+v_{y} \frac{\partial^{2} w}{\partial y^{2}}\right) \tag{18.20}\\
M_{y} & =-D_{y}\left(\frac{\partial^{2} w}{\partial y^{2}}+v_{x} \frac{\partial^{2} w}{\partial x^{2}}\right) \tag{18.21}\\
M_{x y} & =2 D_{x y} \frac{\partial^{2} w}{\partial x \partial y}=-M_{y x} \tag{18.22}
\end{align*}
$$

The transverse shear forces per unit length are expressed as

$$
\begin{align*}
& Q_{x}=\frac{\partial M_{x}}{\partial x}+\frac{\partial M_{x y}}{\partial y} \tag{18.23a}\\
& Q_{y}=\frac{\partial M_{y}}{\partial y}-\frac{\partial M_{y x}}{\partial x} \tag{18.23b}
\end{align*}
$$

For simple plates,

$$
\begin{align*}
Q_{x} & =-D\left(\frac{\partial^{3} w}{\partial x^{3}}+\frac{\partial^{3} w}{\partial x \partial y^{2}}\right) \tag{18.24a}\\
Q_{y} & =-D\left(\frac{\partial^{3} w}{\partial y \partial x^{2}}+\frac{\partial^{3} w}{\partial y^{3}}\right) \tag{18.24b}
\end{align*}
$$

The equivalent shearing forces per unit length, which consist of the transverse shear forces plus the rate of change of the twisting moments, are

$$
\begin{align*}
& V_{x}=Q_{x}-\frac{\partial M_{x y}}{\partial y} \tag{18.25a}\\
& V_{y}=Q_{y}+\frac{\partial M_{x y}}{\partial x} \tag{18.25b}
\end{align*}
$$

For simple plates

$$
\begin{equation*}
V_{x}=-D\left[\frac{\partial^{3} w}{\partial x^{3}}+(2-v) \frac{\partial^{3} w}{\partial x \partial y^{2}}\right], \quad V_{y}=-D\left[\frac{\partial^{3} w}{\partial y^{3}}+(2-v) \frac{\partial^{3} w}{\partial x^{2} \partial y}\right] \tag{18.26}
\end{equation*}
$$

The signs of the quantities in Eqs. (18.16)-(18.26) correspond to sign convention 1 of Fig. 18-3.

Tabulated Formulas

Formulas for the deflection, internal moments, and forces for a variety of edge conditions and transverse loads are provided in Table 18-16.

(a)

(b)

Figure 18-3: Sign conventions for rectangular plates: (a) sign convention 1 (transfer matrices); (b) sign convention 2 (stiffness matrices).

Example 18.6 Uniform Pressure on a Steel Plate A uniform pressure $p_{1}=$ $26 \mathrm{lb} / \mathrm{in}^{2}$ acts on a square steel plate $24 \times 24 \times 1 \mathrm{in}$. For this plate, $E=3.0 \times$ $10^{7} \mathrm{lb} / \mathrm{in}^{2}, v=0.3, L=L_{y}=24 \mathrm{in}$., and $h=1 \mathrm{in}$.
(a) For four simply supported edges, compute the maximum deflection and bending moments per unit length.
(b) For four clamped edges, compute the deflection and bending moments per unit length at the plate center.
(c) For two opposite sides pinned and two opposite sides free, compute the deflection and the bending moments per unit length at the plate center.
(a) From case 1 of Table 18-16 for pinned edges, for $\beta=L / L_{y}=1.0$. The formula

$$
\begin{equation*}
w_{\max }=c_{1} p_{1} L^{4} / E h^{3} \quad \text { with } \quad c_{1}=0.0443 \tag{1}
\end{equation*}
$$

gives

$$
w_{\max }=0.01274 \mathrm{in}
$$

Also,

$$
\begin{equation*}
\left(M_{x}\right)_{\max }=\left(M_{y}\right)_{\max }=c_{2} p_{1} L^{2} \quad \text { with } \quad c_{2}=0.0479 \tag{2}
\end{equation*}
$$

leads to

$$
\left(M_{x}\right)_{\max }=\left(M_{y}\right)_{\max }=717.35 \mathrm{lb}-\mathrm{in} . / \mathrm{in} .
$$

(b) From case 10 of Table 18-16 for fixed edges, with $\alpha=L_{y} / L=1$ and $c_{1}=$ 0.0130,

$$
\begin{equation*}
w_{\text {center }}=c_{1} p_{1} L^{4} / E h^{3}=0.003738 \text { in. } \tag{3}
\end{equation*}
$$

and with $c_{2}=0.02235$ and $c_{3}=0.0225$,

$$
\begin{equation*}
\left(M_{x}\right)_{\text {center }}=\left(M_{y}\right)_{\text {center }}=c_{2} p_{1} L^{2}=334.71 \mathrm{lb}-\mathrm{in} . / \mathrm{in} \tag{4}
\end{equation*}
$$

(c) From case 11 of Table 18-16, with $\beta=L / L_{y}=1.0$, for pinned-free edges $c_{1}=0.01309$, and

$$
\begin{align*}
D & =E h^{3} /\left[12\left(1-v^{2}\right)\right] \\
& =\left(3.0 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}\right)\left(1.0 \mathrm{in}^{3}\right) /\left[12\left(1-(0.3)^{2}\right)\right] \tag{5}\\
& =2.747 \times 10^{6} \mathrm{lb}-\mathrm{in} .
\end{align*}
$$

Then

$$
\begin{equation*}
w_{\text {center }}=c_{1} p_{1} L^{4} / D=0.0411 \mathrm{in} \tag{6}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \left(M_{x}\right)_{\text {center }}=c_{3} p_{1} L^{2}=(0.0225)\left(26 \mathrm{lb} / \mathrm{in}^{2}\right)(24)^{2} \mathrm{in}^{2}=336.96 \mathrm{lb}-\mathrm{in} . / \mathrm{in} . \\
& \left(M_{y}\right)_{\text {center }}=c_{4} p_{1} L^{2}=(0.0271)\left(26 \mathrm{lb} / \mathrm{in}^{2}\right)(24)^{2} \mathrm{in}^{2}=405.8 \mathrm{lb}-\mathrm{in} . / \mathrm{in} . \tag{7}
\end{align*}
$$

Formulas for Plates with Arbitrary Loading

Responses of a plate with all four sides simply supported are given in Table 18-17. The parameters for various loadings are also provided in this table. These formulas are obtained by expanding the deflection w and loading p in the form

$$
\begin{align*}
& w=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} K_{m n} \sin \frac{n \pi x}{L} \sin \frac{m \pi y}{L_{y}} \tag{18.27}\\
& p=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{m n} \sin \frac{n \pi x}{L} \sin \frac{m \pi y}{L_{y}} \tag{18.28}
\end{align*}
$$

Substitute Eqs. (18.27) and (18.28) into the governing equation of Eq. (18.16) to obtain the expression for $K_{m n}$. Then the other responses are obtained from Eqs. (18.17)-(18.26). The convergence of the series in the formulas of Table 18-17 is usually fast for the case of distributed loads. The convergence, however, can be slow for concentrated and discontinuous loads.

Example 18.7 Response of a Simply Supported Plate Find the deflections of a simply supported rectangular plate subjected to a uniformly distributed load p_{1}. Determine the maximum moments and calculate the edge reactions. The lengths of the plate in the x and y directions are L and $L_{y}=2 L$, respectively.

First take the parameters $a_{m n}$ for the distributed load from case 1 of Table 18-17:

$$
\begin{equation*}
a_{m n}=\frac{16 p_{1}}{\pi^{2} m n}, \quad m, n \text { are odd integers } \tag{1}
\end{equation*}
$$

The constant $K_{m n}$ can then be determined from Table 18-17 as

$$
\begin{equation*}
K_{m n}=\frac{16 p_{1} / \pi^{2} m n}{D \pi^{4}\left(n^{2} / L^{2}+m^{2} / L_{y}^{2}\right)^{2}}=\frac{16 p_{1} L^{4}}{D \pi^{6} n m\left(n^{2}+m^{2} / 4\right)^{2}} \tag{2}
\end{equation*}
$$

Hence the deflection can be expressed as

$$
\begin{equation*}
w=\frac{16 p_{1} L^{4}}{D \pi^{6}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\sin (n \pi x / L) \sin (m \pi y / 2 L)}{n m\left(n^{2}+m^{2} / 4\right)^{2}}, \quad n, m=1,3,5, \ldots \tag{3}
\end{equation*}
$$

The maximum deflection occurs at the center, $x=\frac{1}{2} L, y=L$. From (3),

$$
\begin{equation*}
w_{\max } \approx \frac{16 p_{1} L^{4}}{D \pi^{6}}(0.640-0.032-0.004+0.004)=0.0101 p_{1} L^{4} / D \tag{4}
\end{equation*}
$$

Note that this deflection series converges rapidly so that the summation of two terms provides accuracy sufficient for practical purposes.

The maximum moments are found in a similar fashion. They too occur at $x=$ $\frac{1}{2} L, y=L$. Examination of the moment expression shows that they converge more slowly than the deflection series. At the center, four terms provide sufficient accuracy. More terms are required as the moments are computed closer to the edges.

The shear forces are V and V_{y} determined from responses of Table 18-17. The reactions at the edge can be found from the resulting expressions. For example, the reaction force along the $x=0$ edge is

$$
\begin{equation*}
V_{\mid x=0}=\frac{16 p_{1} L}{\pi^{3}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{n^{2}+(2-v)\left(m^{2} / 4\right)}{m\left(n^{2}+m^{2} / 4\right)^{2}} \sin \frac{m \pi y}{2 L}, \quad m, n=1,3,5, \ldots \tag{5}
\end{equation*}
$$

Buckling Loads

The buckling of a plate subjected to in-plane forces is analogous to elastic buckling of axially loaded slender columns. The differential equation of a statically loaded rectangular plane with in-plane forces is

$$
\begin{equation*}
D \nabla^{4} w=p+P_{x} \frac{\partial^{2} w}{\partial x^{2}}+P_{y} \frac{\partial^{2} w}{\partial y^{2}}+2 P_{x y} \frac{\partial^{2} w}{\partial x \partial y} \tag{18.29}
\end{equation*}
$$

where ∇^{4} is defined in Eq. (18.16) and P_{x}, P_{y}, and $P_{x y}$ are the in-plane forces per unit length. Positive forces are shown in Fig. 18-4. Buckling may occur due to inplane forces even if no transverse loads act. The expressions for the buckling loads for a variety of rectangular plates are shown in Table 18-18.

Figure 18-4: Positive in-plane forces per unit length P_{x}, P_{y}, and $P_{x y}$.

Example 18.8 Critical In-Plane Load of a Steel Plate Compute the critical inplane load acting parallel to the x direction for a plate with $L=L_{y}=30 \mathrm{in}$., $h=0.3, E=3 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}$, and $v=0.3$ when (a) all edges are simply supported and (b) two edges are simply supported and the edges at $x=0$ and $x=L$ are fixed.
(a) Use case 1 of Table 18-18:

$$
\begin{align*}
D & =\frac{E h^{3}}{12\left(1-v^{2}\right)}=7.42 \times 10^{4} \mathrm{lb}-\mathrm{in}, \quad \beta=L / L_{y}=1 \tag{1}\\
P_{\text {cr }} & =k P^{\prime}=(1+1)^{2} \frac{\pi^{2} D}{L_{y}^{2}} \\
& =\frac{4(3.14)^{2}}{30^{2}} \times 7.42 \times 10^{4}=3.252 \times 10^{3} \mathrm{lb} / \mathrm{in} \tag{2}
\end{align*}
$$

(b) From case 4 of Table 18-18, for $\alpha=L_{y} / L=1, k=6.788$,

$$
\begin{equation*}
P_{\text {cr }}=k P^{\prime}=\frac{k \pi^{2}}{L_{y}^{2}} D=5.518 \times 10^{3} \mathrm{lb} / \mathrm{in} \tag{3}
\end{equation*}
$$

Local Buckling Instability is usually considered to be either primary or local. For example, a tube in compression can fail (1) through primary buckling when it acts like a column and there is an occurrence of an inordinate deflection or (2) by local buckling when the wall collapses at a stress level less than that needed to cause column failure. Other shapes, such as I-beams, can fail by the lateral deflection of a compression flange as a column, the local wrinkling of thin flanges, or torsional instability. Many shapes can be considered as being formed of flat plate elements. It is the behavior of these flat elements that is treated in this chapter.

Natural Frequencies

The formulas for the natural frequencies of some rectangular plates are listed in Tables 18-19 and 18-20. Some mode shapes for a square plate are shown in Fig. 18-5. Additional data on frequencies and modes can be found in Ref. [18.2]. For complex boundary conditions, approximate methods are used to estimate natural frequencies and mode shapes. Some solution techniques are discussed in Appendix III and others are considered in Ref. [18.1].

Example 18.9 Natural Frequencies of a Steel Plate Compute the fundamental frequency for a square plate for (a) pinned edges, (b) fixed edges, and (3) two opposite edges pinned and two free. Assume that $L=L_{y}=24 \mathrm{in}$., the mass per unit area $\rho=7.253 \times 10^{-4} \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in}^{3}$, and $D=2.747 \times 10^{6} \mathrm{lb}-\mathrm{in}$.

For this plate $\beta=L / L_{y}=1$.

Figure 18-5: Mode shapes for a completely free square plate. The dashed lines indicate nodal lines for which the displacements in the mode shapes are zero. (From Ref. [18.2].)
(a) For pinned edges, use case 1 of Table 18-19 with $m=n=1$:

$$
\begin{align*}
\lambda_{11} & =\pi^{2}(1+1) \\
\omega_{11} & =\left(\lambda_{11} / L^{2}\right) \sqrt{D / \rho} \tag{1}\\
& =2109 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{11}=\omega_{11} / 2 \pi=335.6 \mathrm{~Hz}
\end{align*}
$$

(b) Take ω_{i} for all edges fixed from case 7 with $\beta=1$. Then $\lambda_{1}=36.0$ and

$$
\begin{equation*}
\omega_{1}=\left(\lambda_{1} / L^{2}\right) \sqrt{D / \rho}=3846.4 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{1}=612.2 \mathrm{~Hz} \tag{2}
\end{equation*}
$$

(c) Case 3, Table 18-19, provides the formula for two free edges and two pinned edges. For $\beta=1, \lambda_{11}=9.87$, and

$$
\begin{equation*}
\omega_{11}=\left(\lambda_{11} / L^{2}\right) \sqrt{D / \rho}=1054.5 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{11}=167.8 \mathrm{~Hz} \tag{3}
\end{equation*}
$$

General Rectangular Plates

The static and dynamic analysis of rectangular plates can also be performed with transfer matrices and stiffness matrices. For simply supported conditions at the $y=0$ and $y=L_{y}$ edges of the plate, the y dependence of the variables w, θ, V, and M can be expressed in a sine series of the form

$$
\left[\begin{array}{c}
w(x, y) \tag{18.30}\\
\theta(x, y) \\
V(x, y) \\
M(x, y)
\end{array}\right]=\sum_{m=1}^{\infty}\left[\begin{array}{c}
w_{m}(x) \\
\theta_{m}(x) \\
V_{m}(x) \\
M_{m}(x)
\end{array}\right] \sin \frac{m \pi y}{L_{y}}
$$

The loadings are also expanded in a sine series. The transfer matrix and displacement methods are used to find the x dependence of the state variables [i.e., $w_{m}(x), \theta_{m}(x)$, $V_{m}(x)$, and $\left.M_{m}(x)\right]$.

For the case of other boundary conditions at $y=0$ and $y=L_{y}$, a series expansion of the state variables w, θ, V, and M and the loadings such as $M_{T x}, M_{T y}$, and p in terms of the eigenfunctions of a vibrating beam with the same end conditions as the edges at $y=0$ and $y=L_{y}$ can be assumed:

$$
\left[\begin{array}{l}
w(x, y) \tag{18.31}\\
\theta(x, y) \\
V(x, y) \\
M(x, y)
\end{array}\right]=\sum_{m=1}^{\infty}\left[\begin{array}{c}
w_{m}(x) \\
\theta_{m}(x) \\
V_{m}(x) \\
M_{m}(x)
\end{array}\right] \phi_{m}(y)
$$

The functions $\phi_{m}(y)$ satisfy the boundary conditions and the orthogonality conditions but may not necessarily be the actual deflected shape of the plate along the y direction. However, the use of the eigenfunctions of a vibrating beam has been shown to produce accurate results.

The solution procedure using the transfer matrix and displacement method involves selecting a number of y positions at which the state variables $w(x, y), \theta(x, y)$, $V(x, y)$, and $M(x, y)$ are to be computed and the number of terms to be employed in the series expansion of Eqs. (18.30) and (18.31). For each term in the expansion, a set of displacement and force variables $w_{m}(x), \theta_{m}(x), V_{m}(x)$, and $M_{m}(x)$ is computed utilizing the standard transfer matrix or displacement method procedure. These solutions are summed as indicated in Eq. (18.30) and (18.31) to give the resultant state variables $w(x, y), \theta(x, y), V(x, y)$, and $M(x, y)$ for a static response. The remaining state variables $M_{y}, M_{x y}, Q_{y}$, and so on, can be found from the relationships given in Eqs. (18.20)-(18.23). Similar procedures apply for natural frequency, sinusoidal response, and stability calculations.

Transient dynamic responses can be included by using the techniques of Appendix III to compute $w_{m}(x, t), \theta_{m}(x, t), V_{m}(x, t)$, and $M_{m}(x, t)$. Then the left-hand sides of Eqs. (18.30) and (18.31) would contain $w(x, y, t), \theta(x, y, t), V(x, y, t)$, and $M(x, y, t)$.

Transfer Matrices Table 18-21 provides the transfer matrices for plates simply supported at $y=0$ and $y=L_{y}$. The displacements and forces $w_{m}(x), \theta_{m}(x), V_{m}(x)$, and $M_{m}(x)$ are computed using the matrices of Table 18-21, and the state variables $w(x, y), \theta(x, y), V(x, y)$, and $M(x, y)$ are taken from the expansion of Eq. (18.30). Transfer matrices for various point occurrences are presented in Table 18-22. A more general transfer matrix corresponding to the other boundary conditions is listed in Table 18-23.

Stiffness Matrices Table 18-21 provides the stiffness matrices for rectangular plates simply supported at both $y=0$ and $y=L_{y}$. Table 18-22 presents some stiffness matrices for several concentrated occurrences. Table 18-23 contains some stiffness matrices for a more general plate with arbitrary boundary conditions at $y=0$
and $y=L_{y}$. Note that mass is included in some of the matrices of Tables 18-21 and 18-23, and hence these matrices are dynamic stiffness matrices. Apart from the possible approximations for the y-direction expansions, these matrices use exact shape functions and give exact results in the static, dynamic, buckling analyses. See Appendixes II and III or Ref. [18.22].

Mass Matrices The consistent mass matrix for a rectangular plate simply supported at $y=0$ and $y=L_{y}$ is presented in Table 18-24. With this matrix, together with the stiffness matrix of Table 18-21, various types of dynamic analysis (described in Appendix III) can be performed.

Large Deflections of Rectangular Plates

In some applications of thin plates, the maximum deflection may be larger than half of the plate thickness $\left(w \geq \frac{1}{2} h\right)$. In such cases, the large-deflection theory of plates should be used. This theory assumes that the deflections are not small relative to the thickness h but are smaller than the remaining dimensions. The middle surface becomes strained and the corresponding stresses in it cannot be ignored. These stresses, termed diaphragm or membrane stresses, enable the plate to be stiffer than predicted by small-deflection theory. Furthermore, the square of the slope of the deflected surface is no longer negligible in comparison with unity.

Approximation Formulas For aspect ratios $\beta=L / L_{y} \geq 0.75$, formulas for approximating deflections and corresponding moments and in-plane forces are given below. The accuracy of these formulas decreases as β becomes smaller. Given the moments and in-plane forces, the stresses can be calculated using

$$
\begin{align*}
\sigma_{x} & =P_{x} / h+12 M_{x} z / h^{3} \\
\sigma_{y} & =P_{y} / h+12 M_{y} z / h^{3} \tag{18.32}\\
\tau_{x y} & =P_{x y} / h+12 M_{x y} z / h^{3}
\end{align*}
$$

1. Simply supported with uniformly distributed loading p_{1} with extension in x and y directions prevented. An approximate value for the maximum deflection $w_{\max }$ can be obtained from solution of the cubic equation [18.11]

$$
\begin{equation*}
\frac{16 p_{1} L^{4}}{\pi^{6} D}=w_{\max }\left(1+\beta^{2}\right)^{2}+\frac{3 w_{\max }^{3}}{4 h^{2}}\left[\left(3-v^{2}\right)\left(1+\beta^{4}\right)+4 \nu \beta^{2}\right] \tag{18.33}
\end{equation*}
$$

where $\beta=L / L_{y}$. Approximations to the bending moments and the tensile forces in the $x y$ plane at the center of the plate are given by

$$
\begin{align*}
& M_{x c}=\left(\pi^{2} D w_{\max } / L^{2}\right)\left(1+\nu \beta^{2}\right) \tag{18.34a}\\
& M_{y c}=\left(\pi^{2} D w_{\max } / L^{2}\right)\left(\beta^{2}+\nu\right) \tag{18.34b}
\end{align*}
$$

$$
\begin{align*}
& P_{x}=\left[\pi^{2} E h w_{\max }^{2} /\left[8\left(1-v^{2}\right) L^{2}\right]\right]\left[\left(2-v^{2}\right)+v \beta^{2}\right] \tag{18.34c}\\
& P_{y}=\left[\pi^{2} E h w_{\max }^{2} /\left[8\left(1-v^{2}\right) L^{2}\right]\right]\left[\left(2-v^{2}\right) \beta^{2}+v\right] \tag{18.34d}
\end{align*}
$$

2. Simply supported plate with uniformly distributed loading p_{1} with extension in x and y directions not prevented:

$$
\begin{gather*}
\frac{16 p_{1} L^{4}}{\pi^{6} D}=w_{\max }\left(1+\beta^{2}\right)^{2}+\frac{3.88 \beta^{2}\left(1-v^{2}\right) w_{\max }^{3}}{\left(\beta^{2}+0.6+1 / \beta^{2}\right) h^{2}} \tag{18.35}\\
M_{x c}=\left(\pi^{2} D w_{\max } / L^{2}\right)\left(1+\nu \beta^{2}\right) \tag{18.36a}\\
M_{y c}=\left(\pi^{2} D w_{\max } / L^{2}\right)\left(\beta^{2}+\nu\right) \tag{18.36b}\\
P_{x}=\frac{2.76 E h w_{\max }^{2}}{\left(\beta^{2}+0.6+1 / \beta^{2}\right) L^{2}} \tag{18.36c}\\
P_{y}=\frac{2.76 E h w_{\max }^{2}}{\left(\beta^{2}+0.6+1 / \beta^{2}\right) L_{y}^{2}} \tag{18.36d}
\end{gather*}
$$

Example 18.10 Rectangular Plate with Large Deflection A rectangular steel plate with $L=L_{y}=36 \mathrm{in} ., h=0.3 \mathrm{in}$., is subjected to a uniform load of $p_{1}=$ $10 \mathrm{lb} / \mathrm{in}^{2}$. Determine the maximum deflection and stress in the plate for the simply supported boundary conditions that allow rotation but no displacements at the edge. Also, $E=3 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}$, $v=0.316$.

We find that

$$
\begin{gather*}
D=\frac{E h^{3}}{12\left(1-v^{2}\right)}=7.5 \times 10^{4} \mathrm{in} \\
\beta=\frac{L}{L_{y}}=\frac{36}{36}=1 \tag{1}
\end{gather*}
$$

Substitution of these results into Eq. (18.33) yields

$$
\begin{equation*}
4 w_{\max }+58.867 w_{\max }^{3}=3.727 \tag{2}
\end{equation*}
$$

The solution to this equation is

$$
\begin{equation*}
w_{\max } \approx 0.342 \mathrm{in} \tag{3}
\end{equation*}
$$

The bending moments and tensile forces in the $x y$ plane at the center of the plate are, by Eqs. (18.34a) and (18.34c),

$$
\begin{align*}
M_{x c} & =\frac{7.5\left(10^{4}\right) \pi^{2}(0.342)}{(36)^{2}}(1+0.316 \times 1)=257.06 \mathrm{lb}-\mathrm{in} . / \mathrm{in} . \\
& =M_{y c} \tag{4}
\end{align*}
$$

$$
\begin{align*}
P_{x} & =P_{y}=\frac{\pi^{2}\left(3 \times 10^{7}\right)(0.30)\left(0.342^{2}\right)}{8\left(1-0.316^{2}\right)(36)^{2}}\left[\left(2-0.316^{2}\right)+0.316 \times 1\right] \\
& =0.2467 \times 10^{4} \mathrm{lb} / \mathrm{in} . \tag{5}
\end{align*}
$$

Use of Eqs. (18.32), with $z=\frac{1}{2} h$, gives

$$
\begin{equation*}
\sigma_{x}=\sigma_{y}=\frac{0.2467 \times 10^{4}}{0.30}+\frac{12(257.06)}{(0.30)^{2}(2)}=25,360.6 \mathrm{lb} / \mathrm{in}^{2} \tag{6}
\end{equation*}
$$

If we use the small-deflection theory to calculate the stresses (Table 18-16, case 1),

$$
\begin{aligned}
& w_{\max }=c_{1} \frac{p_{1} L^{4}}{E h^{3}}=0.0443 \frac{10 \times 36^{4}}{3 \times 10^{7}(0.3)^{3}}=0.92 \mathrm{in} . \\
& M_{\max }=c_{2} p_{1} L^{2}=0.0479(10)(36)^{2}=620.784 \mathrm{lb}-\mathrm{in} . / \mathrm{in} .
\end{aligned}
$$

The stresses $\sigma_{x}=\sigma_{y}=\sigma_{\text {max }}$ would be

$$
\begin{align*}
\sigma_{\max } & =\frac{12 M_{\max } h}{2 h^{3}}=\frac{6 M_{\max }}{h^{2}} \\
& =\frac{6(620.784)}{(0.3)^{2}}=41,385.6 \mathrm{lb} / \mathrm{in}^{2} \tag{7}
\end{align*}
$$

This value is about 1.6 times the stress obtained by the large-deflection theory (6). Therefore, caution must be taken in utilizing the small- or large-deflection theory to calculate the stresses in a plate.

18.4 OTHER PLATES

Responses, buckling loads, and natural frequencies of plates of various shapes are given in Tables 18-25 to 18-27.

REFERENCES

18.1. Szilard, R., Theory and Analysis of Plates, Prentice-Hall, Englewood Cliffs, NJ, 1974.
18.2. Leissa, A. W., Vibration of Plates, NASA SP-160, Washington, DC, 1969.
18.3. Majumdar, S., "Buckling of a Thin Annular Plate under Uniform Compression," AIAA J., Vol. 9, No. 9, 1971, pp. 1701-1707.
18.4. Column Research Committee of Japan, Handbook of Structural Stability, Corona Publishing, Tokyo, 1971.
18.5. Nadai, A., "Über das Ausbeulen von kreisformigen Platten," Z. Ver. Dtsch. Inq., Vol. 59, 1915, pp. 169-175.
18.6. Sezawa, K., "The Stability of Thin Plates," J. Soc. Naval Arch. Jpn., Vol. 38, 1926, pp. 79-108.
18.7. Iwato, S., Ban, T., and Suzuki, M., "The Approximate Calculation of the Buckling Load of a Thin Circular Plate," Memorial Number in Commemoration of the 50th Anniversary of Founding of JSME, Vol. 14, 1939, pp. 1-64.
18.8. Bryan, G. H., "On the Stability of a Plane Plate under Thrust in Its Own Plane with Application to the 'Buckling of the Side of a Ship,' " Proc. Lond. Math. Soc., Vol. 22, 1891, pp. 54-67.
18.9. Kerr, A. D., "On the Instability of Circular Plates," J. Aeronaut. Sci., Vol. 29, No. 4, 1962, pp. 486-487.
18.10. Han, S., and Pilkey, W. D., "Stiffness Matrices for the Static, Dynamic and Buckling Analysis of Circular Plates," Finite Elem. Anal. Des., Vol. 7, No. 1, 1990, pp. 27-50.
18.11. Bares, R., Tables for the Analysis of Plates, Slabs, and Diaphragms Based on the Elastic Theory, 2nd ed., Bauverlag, Wiesbaden, Germany, 1971 (German-English edition).
18.12. Timoshenko, S., and Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York, 1959.
18.13. Lekhnitskii, S. G., Anisotropic Plates, Gordon \& Breach, New York, 1968 (translated from the second Russian edition).
18.14. Prescott, J., Applied Elasticity, Longmans, Green, New York, 1924.
18.15. Blevins, R. D., Formulas for Natural Frequency and Mode Shape, Van Nostrand, New York, 1979.
18.16. Cook, I. T., and Parsons, H. W., "The Buckling of a Reinforced Circular Plate under Uniform Radial Thrust," Aeronaut. Q., Vol. 12, No. 4, 1961, pp. 337-342.
18.17. Cox, H. L., The Buckling of Thin Plates in Compression, Reports and Memoranda, Aeronautical Research Council, H.M. Stationery Office, No. 1554, 1933.
18.18. Timoshenko, S., "Einige stabilitäts Probleme der elastizitäts Theorie," Z. Math. Phys., Vol. 58, 1910, p. 337.
18.19. Woinowsky-Krieger, S., "Berechnung der ringsum frei aufliegenden Dreiecksplatten," Ing. Archiv., Vol. 4, 1933, pp. 254-262.
18.20. Wakasugi, S., "Buckling of Right Angled Isosceles Triangular Plates Simply Supported at the Boundaries," Trans. Jpn. Soc. Mech. Eng., Vol. 19, 1953, pp. 59-65.
18.21. Burchard, W., "Beulspannungen der quadratichen Platte mit Schrägsteife unter Druck bzw. Schub," Ing. Archiv, Vol. 8, 1937, pp. 332-348.
18.22. Wunderlich, W., and Pilkey, W., Mechanics of Structures: Variational and Computational Methods, 2nd ed., CRC Press, Boca Raton, FL, 2003.

18

Tables

18-1 Material Properties for Circular Plates 1007
18-2 Stresses of Circular Plates 1009
18-3 Deflections and Internal Forces for Circular Plates with Axially Symmetric Loads and Boundary Conditions 1010
18-4 Part A: Circular Plates with Arbitrary Loading: General Response Expressions

1018

18-4 Part B: Circular Plates with Arbitrary Loading: Loading Functions 1020
18-4 Part C: Circular Plates with Arbitrary Loading: Initial Parameters 1022
18-5 Critical In-Plane Forces for Circular Plates 1025
18-6 Natural Frequencies of Some Circular Plates and Membranes 1029
18-7 Transfer Matrices for Circular Plate Elements 1033
18-8 Stiffness Matrices for Circular Plate Elements 1042
18-9 Point Matrices for Concentrated Occurrences for Circular Plates 1047
18-10 Stiffness Matrices for Infinite Circular Plate Element with Elastic Foundation 1050
18-11 Geometric Stiffness Matrices for Circular Plates: Symmetric Case 1052
18-12 Mass Matrices for Circular Plate Elements in Bending 1054
18-13 Displacements and Stresses for Large Deflection of Uniformly Loaded Circular Plates 1059
18-14 Stresses of Rectangular Plates 1061
18-15 Material Properties for Rectangular Plates 1064
18-16 Deflections and Internal Forces of Rectangular Plates 1073
18-17 Response of Rectangular Plates with Four Sides Simply Supported 1085
18-18 Critical In-Plane Loads of Rectangular Plates 1088
18-19 Natural Frequencies of Isotropic Rectangular Plates and Membranes 1092
18-20 Natural Frequencies of Orthotropic Rectangular Plates 1095
18-21 Transfer and Stiffness Matrices for Rectangular Plate Segment Simply Supported on Two Opposite Edges 1098
18-22 Transfer and Stiffness Matrices for Point Occurrences for Rectangular Plate Segment Where Two Opposite Edges Are Simply Supported 1107
18-23 Transfer and Stiffness Matrices for a General Rectangular Plate Segment 1109

18-24	Consistent Mass Matrix for Rectangular Plate Element Simply
	Supported on Two Opposite Edges
$18-25$	Deflections and Internal Forces of Plates of Various Shapes

TABLE 18-1 MATERIAL PROPERTIES FOR CIRCULAR PLATES

Notation

$v_{r}, \nu_{\phi}=$ Poisson's ratio in r and ϕ directions; for isotropic materials, $v_{r}=v_{\phi}=v$
$E_{r}, E_{\phi}=$ modulus of elasticity in r and ϕ directions; for isotropic materials, $E_{r}=E_{\phi}=E$
$D_{r}, D_{\phi}, D_{r \phi}=$ flexural rigidities
$K_{r}, K_{\phi}=$ extensional rigidities in r and ϕ directions
$\alpha_{r}, \alpha_{\phi}=$ thermal expansion coefficients in r and ϕ directions
$h=$ thickness of plate
$G=$ shear modulus of elasticity, same value for isotropic and orthotropic materials

Plate	Constants
1. Homogeneous isotopic	$\begin{aligned} v_{r} & =v_{\phi}=v \\ D_{r} & =D_{\phi}=D=E h^{3} /\left[12\left(1-v^{2}\right)\right] \\ G & =E /[2(1+v)] \\ D_{r \phi} & =\frac{1}{2} D(1-v)=\frac{1}{12} G h^{3} \\ K_{r} & =K_{\phi}=K=E h /\left(1-v^{2}\right) \\ \alpha_{r} & =\alpha_{\phi}=\alpha \end{aligned}$
2. Homogeneous orthotropic	$\begin{aligned} D_{j} & =E_{j} h^{3} /\left[12\left(1-v_{r} v_{\phi}\right)\right] \quad j=r, \phi \\ K_{j} & =E_{j} h /\left(1-v_{r} v_{\phi}\right) \\ D_{r \phi} & =\frac{1}{12} G h^{3} \end{aligned}$
3. Continuously composite isotropic	$\begin{aligned} D_{r} & =D_{\phi}=D=\int_{-h / 2}^{h / 2} \frac{E z^{2}}{1-v^{2}} d z \\ D_{r \phi} & =\int_{-h / 2}^{h / 2} \frac{E z^{2}}{2(1+v)} d z \\ K_{r} & =K_{\phi}=K=\int_{-h / 2}^{h / 2} \frac{E}{1-v^{2}} d z \\ \alpha_{r} & =\alpha_{\phi}=\alpha \end{aligned}$
4. Continuously composite, orthotropic	$\begin{aligned} D_{j} & =\frac{1}{1-v_{r} v_{\phi}} \int_{-h / 2}^{h / 2} \frac{E_{j} z^{2}}{1-v_{r} v_{\phi}} d z \quad j=r, \phi \\ K_{j} & =\int_{-h / 2}^{h / 2} \frac{E_{j}}{1-v_{r} v_{\phi}} d z \\ D_{r \phi} & =\int_{-h / 2}^{h / 2} G z^{2} d z \end{aligned}$

TABLE 18-1 (continued)	MATERIAL PROPERTIES FOR CIRCULAR PLATES
Plate	Constants
L.	$D_{j}=2 \sum_{i}\left(\frac{E V_{j}}{1-v_{r} v_{\phi}}\right)_{i} \int_{\Delta h_{i}} z^{2} d z \quad j=r, \phi$
	$K_{j}=2 \sum_{i}\left(\frac{E_{j}}{1-v_{r} v_{\phi}}\right)_{i} \Delta h_{i}$
	$D_{r \phi}=2 \sum_{i}(G)_{i} \int_{\Delta h_{i}} z^{2} d z$ $\Delta h_{i}=$ thickness of i th layer The summation extends over half of the plate thickness.

TABLE 18-2 STRESSES OF CIRCULAR PLATES

Notation
$M_{r}, M_{\phi}=$ Bending moments per unit length
$M_{r \phi}=$ twisting moment per unit length
$P_{r}, P_{\phi}=$ in-plane forces per unit length
$T=$ temperature change
$\sigma_{r}=$ radial normal stress $\left(F / L^{2}\right)$
$\sigma_{\phi}=$ circumferential normal stress $\left(F / L^{2}\right)$
$\tau_{r \phi}=\operatorname{shear} \operatorname{stresses}\left(F / L^{2}\right)$
$v_{r}, v_{\phi}=$ Poisson's ratio in r and ϕ directions; for isotropic materials, $\nu_{r}=v_{\phi}=v$
$E_{r}, E_{\phi}=$ modulus of elasticity in r and ϕ directions; for isotropic materials, $E_{r}=E_{\phi}=E$
$D_{r}, D_{\phi}, D_{r \phi}=$ flexural rigidities
$K_{r}, K_{\phi}=$ extensional rigidities in r and ϕ directions
$\alpha_{r}, \alpha_{\phi}=$ thermal expansion coefficients in r and ϕ directions
$h=$ thickness of the plate
$G=$ shear modulus of elasticity, $G_{r \phi}=\frac{1}{12} h^{2} G$

Plate	Stresses
1. Homogeneous isotropic material	$\sigma_{r}=\frac{M_{r} z}{h^{3} / 12}, \quad \sigma_{\phi}=\frac{M_{\phi} z}{h^{3} / 12}, \quad \tau_{r \phi}=-\frac{z M_{r \phi}\left(1-v^{2}\right)}{h^{3} / 12}$
2.	$\sigma_{r}=\bar{E}_{r}\left[-\frac{\bar{P}}{K_{r}}+\frac{\bar{M}_{r} z}{D_{r}}-\left(\alpha_{r}+v_{\phi} \alpha_{\phi}\right) T\right]$
Other materials; defined in cases 2 and 3 of Table 18-1	$\sigma_{\phi}=\bar{E}_{\phi}\left[-\frac{\bar{P}_{\phi}}{K_{\phi}}+\frac{\bar{M}_{\phi} z}{D_{\phi}}-\left(\alpha_{\phi}+v_{r} \alpha_{r}\right) T\right]$
	$\tau_{r \phi}=-G_{r \phi} \frac{M_{r \phi} z}{D_{r \phi}}$

where

$$
\begin{aligned}
\bar{P} & =P_{r}+P_{T} \quad \bar{P}_{\phi}=P_{\phi}+P_{T \phi} \\
\bar{M}_{r} & =M_{r}+M_{T r} \quad \bar{M}_{\phi}=M_{\phi}+M_{T \phi} \\
P_{T} & =\int_{-h / 2}^{h / 2} \frac{E_{r}\left(\alpha_{r}+v_{\phi} \alpha_{\phi}\right)}{1-v_{r} v_{\phi}} T d z, \quad M_{T r}=\int_{-h / 2}^{h / 2} \frac{E_{r}\left(\alpha_{r}+v_{\phi} \alpha_{\phi}\right)}{1-v_{r} v_{\phi}} T z d z \\
P_{T \phi} & =\int_{-h / 2}^{h / 2} \frac{E_{\phi}\left(\alpha_{\phi}+v_{r} \alpha_{r}\right)}{1-v_{r} v_{\phi}} T d z, \quad M_{T \phi}=\int_{-h / 2}^{h / 2} \frac{E_{\phi}\left(\alpha_{\phi}+v_{r} \alpha_{r}\right)}{1-v_{r} v_{\phi}} T z d z \\
\bar{E}_{r} & =\frac{E_{r}}{1-v_{r} v_{\phi}} \quad \bar{E}_{\phi}=\frac{E_{\phi}}{1-v_{r} v_{\phi}}
\end{aligned}
$$

and \bar{P} and \bar{P}_{ϕ} are the in-plane compression forces. If the forces are tensile, replace \bar{P} and \bar{P}_{ϕ} by $-\bar{P}$ and $-\bar{P}_{\phi}$.

TABLE 18-3 DEFLECTIONS AND INTERNAL FORCES FOR CIRCULAR PLATES WITH AXIALLY SYMMETRIC LOADS AND BOUNDARY CONDITIONS

Notation

```
            \(w=\) deflection
\(M_{r}, M_{\phi}=\) bending moments per unit length
                                    \(e_{r}=\) transverse shear force per unit length
                                    \(v=\) Poisson's ratio
                                    \(a_{1}=\) radial location of loading
            \(r=\) radial coordinate
                        \(\beta=a_{1} / a_{L}\)
    \(a_{L}=\) radius of outer boundary
                                \(p, p_{1}=\operatorname{distributed}\) loading \(\left(F / L^{2}\right)\)
    \(\alpha=r / a_{L}\)
    \(D=E h^{3} /\left[12\left(1-v^{2}\right)\right]\)
```

Deflection and Internal Forces
Structural System and
Static Loading

$$
w=\frac{p_{1} a_{L}^{4}}{64 D}\left(\frac{5+v}{1+v}-\frac{6+2 v}{1+v} \alpha^{2}+\alpha^{4}\right)
$$

$$
M_{r}=\frac{1}{16} p_{1} a_{L}^{2}(3+\nu)\left(1-\alpha^{2}\right)
$$

$$
M_{\phi}=\frac{1}{16} p_{1} a_{L}^{2}\left[3+v-(1+3 v) \alpha^{2}\right]
$$

$$
Q_{r}=-\frac{1}{2} p_{1} a_{L} \alpha
$$

If $\alpha \leq \beta$,

$$
w=\frac{p_{1} a_{L}^{4}}{64 D(1+\nu)}\left(C_{1}-2 C_{2} \alpha^{2}\right)
$$

$$
M_{r}=M_{\phi}=\frac{1}{16} p_{1} a_{L}^{2} C_{2}, \quad Q_{r}=0
$$

where

$$
C_{1}=5+v-4(3+v) \beta^{2}+(7+3 v) \beta^{4}-4(1+v) \beta^{4} \ln \beta
$$

	$\begin{aligned} C_{2}= & 3+v-4 \beta^{2}+(1-v) \beta^{4}+4(1+v) \beta^{2} \ln \beta \\ \text { If } \alpha & \geq \beta \\ w= & \frac{p_{1} a_{L}^{4}}{32 D(1+v)}\left[(3+v)\left(1-2 \beta^{2}\right)-(1-v) \beta^{4}\right] \times\left(1-\alpha^{2}\right) \\ & -\frac{p_{1} a_{L}^{4}}{64 D}\left(1-\alpha^{4}+8 \alpha^{2} \beta^{2} \ln \alpha+4 \beta^{4} \ln \alpha\right) \\ M_{r}= & \frac{1}{16} p_{1} a_{L}^{2}\left[\left(3+v-\frac{1-v}{\alpha^{2}} \beta^{4}\right)\left(1-\alpha^{2}\right)+4(1+v) \beta^{2} \ln \alpha\right] \\ M_{\phi}= & \frac{1}{16} p_{1} a_{L}^{2}\left[\left(1+3 v+\frac{1-v}{\alpha^{2}} \beta^{4}\right)\left(1-\alpha^{2}\right)+4(1+v) \beta^{2} \ln \alpha+2(1-v)\left(1-\beta^{2}\right)^{2}\right] \\ Q_{r}= & -\frac{1}{2} p_{1} a_{1}\left(\alpha-\frac{\beta^{2}}{\alpha}\right) \end{aligned}$
3. $p=$ maximum value of distributed load	$\begin{aligned} w & =\frac{7 p a_{L}^{4}}{240(1+v) D}\left(1-\alpha^{2}\right)+\frac{p a_{L}^{4}}{14,400 D}\left(129-290 \alpha^{2}+225 \alpha^{4}-64 \alpha^{5}\right) \\ \left(M_{r}\right)_{\alpha=0} & =\left(M_{\phi}\right)_{\alpha=0}=\frac{1}{720} p a_{L}^{2}(71+29 v) \\ \left(Q_{r}\right)_{\alpha=1} & =-\frac{1}{6} p a_{L} \end{aligned}$
4.	$\begin{aligned} w & =\frac{p a_{L}^{4}}{24(1+v) D}\left(1-\alpha^{2}\right)+\frac{p a_{L}^{4}}{576 D}\left(7-15 \alpha^{2}+9 \alpha^{4}-\alpha^{6}\right) \\ M_{r} & =\frac{1}{96} p a_{L}^{2}\left[13+5 v-6(3+v) \alpha^{2}+(5+v) \alpha^{4}\right] \\ M_{\phi} & =\frac{1}{96} p a_{L}^{2}\left[13+5 v-6(1+3 v) \alpha^{2}+(1+5 v) \alpha^{4}\right] \\ Q_{r} & =-\frac{1}{6} p a_{L} \alpha\left(2-\alpha^{2}\right) \end{aligned}$

TABLE 18-3 (continued) DEFLECTIONS AND INTERNAL FORCES FOR CIRCULAR PLATES WITH AXIALLY SYMMIETRIC LOADS AND BOUNDARY CONDITIONS

Structural System and Static Loading	Deflection and Internal Forces
5. Concentrated force: Units of total load W_{T} : force	$\begin{aligned} w & =\frac{W_{T} a_{L}^{2}}{16 \pi D} \frac{(3+v)}{(1+v)}\left(1-\alpha^{2}\right)+\frac{W_{T} \alpha_{L}^{2}}{8 \pi D} \alpha^{2} \ln \alpha \\ M_{r} & =-\frac{W_{T}}{4 \pi}(1+v) \ln \alpha \\ M_{\phi} & =M_{r}+\frac{W_{T}}{4 \pi}(1-v) \\ Q_{r} & =-\frac{W_{T}}{2 \pi a_{L} \alpha} \end{aligned}$
6. Concentrated force applied on circle: Units of W : force/length	If $\alpha \leq \beta$, $\begin{aligned} w & =\frac{W a_{L}^{2} a_{1}}{8 D}\left(C_{1}-C_{2} \alpha^{2}\right) \\ M_{r} & =M_{\phi}=\frac{1}{4} W a_{1}(1+\nu) C_{2} \end{aligned}$ where $\begin{aligned} C_{1} & =\frac{3+v}{1+v}\left(1-\beta^{2}\right)+2 \beta^{2} \ln \beta \\ C_{2} & =\frac{1-v}{1+v}\left(1-\beta^{2}\right)+2 \ln \beta \\ Q_{r} & =0 \\ \text { If } \alpha & \geq \beta \\ w & =\frac{W a_{L}^{2} a_{1}}{8 D(1+v)}\left(C_{3}-C_{3} \alpha^{2}+2 \beta^{2} \ln \alpha+2 \alpha^{2} \ln \alpha\right) \end{aligned}$

TABLE 18-3 (continued) DEFLECTIONS AND INTERNAL FORCES FOR CIRCULAR PLATES WITH AXIALLY SYMMETRIC LOADS AND BOUNDARY CONDITIONS

Structural System and Static Loading	Deflection and Internal Forces
	$\begin{aligned} M_{r} & =-M_{\phi}=\frac{C}{2}(1-v)\left(1-\alpha^{2}\right) \frac{\beta^{2}}{\alpha^{2}} \\ Q_{r} & =0 \end{aligned}$
9.	$\begin{aligned} w & =\frac{p_{1} a_{L}^{4}}{64 D}\left(1-\alpha^{2}\right)^{2} \\ M_{r} & =\frac{1}{16} p_{1} a_{L}^{2}\left[1+v-(3+v) \alpha^{2}\right] \\ M_{\phi} & =\frac{1}{16} p_{1} a_{L}^{2}\left[1+v-(1+3 v) \alpha^{2}\right] \\ Q_{r} & =-\frac{1}{2} p_{1} a_{L} \alpha \end{aligned}$
10.	$\begin{aligned} w & =\frac{p a_{L}^{4}}{14,400 D}\left(129-290 \alpha^{2}+225 \alpha^{4}-64 \alpha^{5}\right) \\ \left(M_{r}\right)_{\alpha=0} & =\left(M_{\phi}\right)_{\alpha=0}=\frac{29 p a_{L}^{2}}{720}(1+\nu) \\ \left(Q_{r}\right)_{\alpha=1} & =-\frac{1}{6} p a_{L} \quad\left(M_{r}\right)_{\alpha=1}=\left(M_{\phi}\right)_{\alpha=1}=-\frac{7 p a_{L}^{2}}{120} \end{aligned}$
11. $p\left(1-a^{2}\right)$	$\begin{aligned} w & =\frac{p a_{L}^{4}}{576 D}\left(7-15 \alpha^{2}+9 \alpha^{4}-\alpha^{6}\right) \\ M_{r} & =\frac{1}{96} p a_{L}^{2}\left[5(1+v)-6(3+v) \alpha^{2}+(5+v) \alpha^{4}\right] \end{aligned}$

$$
\begin{aligned}
& \begin{array}{l|l}
& \begin{array}{c}
M_{\phi}=\frac{1}{96} p a_{L}^{2}\left[5(1+v)-6(1+3 v) \alpha^{2}+(1+5 v) \alpha^{4}\right] \\
\\
Q_{r}=-\frac{1}{4} p a_{L}\left(2 \alpha-\alpha^{3}\right)
\end{array} \\
\hline 12 &
\end{array} \\
& \text { 12. } \quad \text { If } \alpha \leq \beta \text {, } \\
& w=\frac{p_{1} a_{L}^{4}}{64 D}\left[C_{1}+2 C_{2}\left(1-\alpha^{2}\right)+\alpha^{4}\right] \\
& \text { where } \\
& C_{1}=4 \beta^{2}-5 \beta^{4}+8 \beta^{2} \ln \beta+4 \beta^{4} \ln \beta \\
& C_{2}=\beta^{2}\left(\beta^{2}-4 \ln \beta\right) \\
& M_{r}=\frac{p_{1} a_{L}^{2}}{16}\left[(1+\nu)\left(\beta^{4}-4 \beta^{2} \ln \beta\right)-(3+\nu) \alpha^{2}\right] \\
& M_{\phi}=\frac{p_{1} a_{L}^{2}}{16}\left[(1+v)\left(\beta^{4}-4 \beta^{2} \ln \beta\right)-(1+3 v) \alpha^{2}\right] \\
& Q_{r}=-\frac{p_{1} a_{1}}{2} \frac{\alpha}{\beta} \\
& \text { If } \alpha \geq \beta \text {, } \\
& w=\frac{p_{1} a_{L}^{2} a_{1}^{2}}{32 D}\left[2-2 \alpha^{2}+\beta^{2}\left(1-\alpha^{2}+2 \ln \alpha\right)+4 \alpha^{2} \ln \alpha\right] \\
& \left(M_{r}\right)_{\alpha=1}=-\frac{1}{8} p_{1} a_{1}^{2}\left(2-\beta^{2}\right) \\
& \left(M_{\phi}\right)_{\alpha=1}=v\left(M_{r}\right)_{\alpha=1} \\
& Q_{r}=-\frac{p_{1} a_{1}}{2} \frac{\beta}{\alpha}
\end{aligned}
$$

TABLE 18-3 (continued) DEFLECTIONS AND INTERNAL FORCES FOR CIRCULAR PLATES WITH AXIALLY SYMMIETRIC LOADS AND BOUNDARY CONDITIONS

Structural System and Static Loading	Deflection and Internal Forces
13.	If $\alpha \leq \beta$, $\begin{aligned} w & =\frac{W a_{L}^{2} a_{1}}{8 D}\left(C_{1}-C_{2} \alpha^{2}\right) \\ M_{r} & =M_{\phi}=\frac{1}{4} W a_{1}(1+v) C_{2} \\ Q_{r} & =0 \end{aligned}$ where $\begin{aligned} C_{1} & =\left(1-\beta^{2}\right)+2 \beta^{2} \ln \beta \\ C_{2} & =\left(\beta^{2}-1\right)-2 \ln \beta \\ \text { If } \alpha & \geq \beta \\ w & =\frac{W a_{L}^{2} a_{1}}{8 D}\left[\left(1+\beta^{2}\right)\left(1-\alpha^{2}\right)+2 \beta \ln \alpha+2 \alpha^{2} \ln \alpha\right] \\ \left(M_{r}\right)_{\alpha=1} & =-\frac{1}{2} W\left(1-\beta^{2}\right) \quad\left(M_{\phi}\right)_{\alpha=1}=v\left(M_{r}\right)_{\alpha=1} \\ Q_{r} & =-\frac{W_{T} \beta}{\alpha} \end{aligned}$

	14.	$\begin{aligned} \text { If } \alpha & \leq \beta, \\ w & =-\frac{C a_{L}^{2}}{4 D}\left[2 \beta^{2} \ln \beta+\left(1-\beta^{2}\right) \alpha^{2}\right] \\ M_{r} & =M_{\phi}=\frac{C}{2}(1+\nu)\left(1-\beta^{2}\right) \\ \text { If } \alpha & \geq \beta, \\ w & =-\frac{C a_{L}^{2}}{4 D} \beta^{2}\left(1-\alpha^{2}+2 \ln \alpha\right) \\ \left(M_{r}\right)_{\alpha=1} & =-C \beta^{2} \quad\left(M_{\phi}\right)_{\alpha=1}=-v C \beta^{2} \end{aligned}$

TABLE 18-4 PART A: CIRCULAR PLATES WITH ARBITRARY LOADING: GENERAL RESPONSE EXPRESSIONS

$$	
Plate ${ }^{a}$	Response Expressions
1. Plate without center hole	$\begin{aligned} & w=w_{0}-M_{0} \frac{r^{2}}{2 D(1+\nu)}+F_{w} \quad \theta=M_{0} \frac{r}{D(1+\nu)}+F_{\theta} \\ & V=F_{V} \quad M=M_{0}+F_{M} \end{aligned}$
2. Plate with rigid support at center	$\begin{aligned} w & =-\frac{R}{8 \pi D} r^{2}(\ln r-1)+C_{1} \frac{r^{2}}{4}+F_{w} \\ \theta & =\frac{R}{4 \pi D} r\left(\ln r-\frac{1}{2}\right)-C_{1} \frac{r}{2}+F_{\theta} \\ V & =\frac{R}{2 \pi r}+F_{V} \\ M & =\frac{R}{4 \pi}\left[(1+v) \ln r+\frac{1-v}{2}\right]-\frac{C_{1} D}{2}(1+v)+F_{M} \end{aligned}$

TABLE 18-4 (continued) PART A: CIRCULAR PLATES WITH ARBITRARY LOADING: GENERAL RESPONSE EXPRESSIONS

Plate	Response Expressions
3. Plate with center hole	$\begin{aligned} w= & w_{0}+\theta_{0}\left[-\frac{1}{2}(1+v) a_{0} \ln \frac{r}{a_{0}}-(1-v) \frac{r^{2}-a_{0}^{2}}{4 a_{0}}\right] \\ & +M_{0}\left(\frac{a_{0}^{2}}{2 D} \ln \frac{r}{a_{0}}-\frac{r^{2}-a_{0}^{2}}{4 D}\right) \\ & +V_{0} \frac{a_{0}}{4 D}\left[-\left(a_{0}^{2}+r^{2}\right) \ln \frac{r}{a_{0}}+\left(r^{2}-a_{0}^{2}\right)\right]+F_{w} \\ = & w_{0} U_{w w}+\theta_{0} U_{w \theta}+M_{0} U_{w M}+V_{0} U_{w V}+F_{w} \\ \theta= & \theta_{0}\left[(1+v) \frac{a_{0}}{2 r}+(1+v) \frac{r}{2 a_{0}}\right] \\ & +M_{0} \frac{1}{2 D r}\left(r^{2}-a_{0}^{2}\right) \\ & +V_{0}\left[\frac{a_{0} r}{2 D} \ln \frac{r}{a_{0}}-\frac{a_{0}}{4 D r}\left(r^{2}-a_{0}^{2}\right)\right]+F_{\theta} \\ = & \theta_{0} U_{\theta \theta}+M_{0} U_{\theta M}+V_{0} U_{\theta V}+F_{\theta} \end{aligned}$

Note that $U_{\theta w}=0$.

$$
V=V_{0} \frac{a_{0}}{r}+F_{V}=V_{0} U_{V V}+F_{V}
$$

Note that $U_{V w}=U_{V \theta}=U_{V M}=0$.

$$
\begin{aligned}
M= & \theta_{0}\left(1-v^{2}\right) \frac{D a_{0}}{2}\left(\frac{1}{a_{0}^{2}}-\frac{1}{r^{2}}\right)+M_{0}\left(\frac{1-v}{2} \frac{a_{0}^{2}}{r^{2}}+\frac{1+v}{2}\right) \\
& +V_{0} \frac{a_{0}}{2}\left[(1+v) \ln \frac{r}{a_{0}}+(1-v) \frac{r^{2}-a_{0}^{2}}{2 r^{2}}\right]+F_{M} \\
= & \theta_{0} U_{M \theta}+V_{0} U_{M V}+M_{0} U_{M M}+F_{M}
\end{aligned}
$$

Note that $U_{M w}=0$.
$U_{i j}$ are transfer matrix elements.

[^29]\[

Loading Functions F_{w}(r), F_{\theta}(r), F_{V}(r), F_{M}(r) \quad<r-a_{i}>^{0}= $$
\begin{cases}0 & \text { if } r<a_{i} \\ 1 & \text { if } r \geq a_{i}\end{cases}
$$
\]

	Concentrated Force (applied for plates with no center hole)	Concentrated Line Force	Uniform Loading	Ramp Loading $\begin{gathered} \substack{a_{1} \rightarrow a_{2} \rightarrow} \\ \Delta \ell=a_{2}-a_{1} \end{gathered}$	
$F_{w}(r)$	$\frac{W_{T}}{8 \pi D} r^{2}(\ln r-1)$	$\begin{aligned} & <r-a>^{0} \frac{W a}{4 D}\left[\left(r^{2}+a^{2}\right) \ln \frac{r}{a}\right. \\ & \left.-\left(r^{2}-a^{2}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{p_{1}}{8 D}\left[F_{w p_{1}}\left(r, a_{1}\right)\right. \\ - & \left.F_{w p_{1}}\left(r, a_{2}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{p_{2}}{D \Delta \ell}\left[F_{w p_{2}}\left(r, a_{1}\right)\right. \\ - & \left.F_{w p_{2}}\left(r, a_{2}\right)\right] \\ - & p_{2} F_{w p_{1}}\left(r, a_{2}\right) \end{aligned}$	$\begin{aligned} & -\frac{p_{2}}{D \Delta \ell}\left[F_{w p_{2}}\left(r, a_{1}\right)\right. \\ & \left.-F_{w p_{2}}\left(r, a_{2}\right)\right] \\ & +p_{2} F_{w p_{1}}\left(r, a_{1}\right) \end{aligned}$
$F_{\theta}(r)$	$-\frac{W_{T}}{4 \pi D} r\left(\ln r-\frac{1}{2}\right)$	$\begin{aligned} & -<r-a>^{0} \frac{W a}{2 D} \\ & \times\left[r \ln \frac{r}{a}-\frac{1}{2 r}\left(r^{2}-a^{2}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{p_{1}}{4 D}\left[F_{\theta p_{1}}\left(r, a_{1}\right)\right. \\ & \left.-F_{\theta p_{1}}\left(r, a_{2}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{p_{2}}{D \Delta \ell}\left[F_{\theta p_{2}}\left(r, a_{1}\right)\right. \\ & \left.-F_{\theta p_{2}}\left(r, a_{2}\right)\right] \\ & -p_{2} F_{\theta p_{1}}\left(r, a_{2}\right) \end{aligned}$	$\begin{aligned} & \frac{p_{2}}{D \Delta \ell}\left[F_{\theta p_{2}}\left(r, a_{1}\right)\right. \\ &\left.-F_{\theta p_{2}}\left(r, a_{2}\right)\right] \\ &+ p_{2} F_{\theta p_{1}}\left(r, a_{1}\right) \end{aligned}$
$F_{V}(r)$	$-\frac{W_{T}}{2 \pi r}$	$-\left\langle r-a>^{0} \frac{W a}{r}\right.$	$\begin{aligned} & -\frac{p_{1}}{2}\left[F_{V p_{1}}\left(r, a_{1}\right)\right. \\ & \left.-F_{V p_{1}}\left(r, a_{2}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{p_{2}}{\Delta \ell}\left[F_{V p_{2}}\left(r, a_{1}\right)\right. \\ & \left.-F_{V p_{2}}\left(r, a_{2}\right)\right] \\ & -p_{2} F_{V p_{1}}\left(r, a_{2}\right) \end{aligned}$	$\begin{aligned} & \frac{p_{2}}{\Delta \ell}\left[F_{V p_{2}}\left(r, a_{1}\right)\right. \\ - & \left.F_{V p_{2}}\left(r, a_{2}\right)\right] \\ + & p_{2} F_{V p_{1}}\left(r, a_{1}\right) \end{aligned}$
$F_{M}(r)$	$\begin{aligned} & -\frac{W_{T}}{4 \pi}[(1+v) \ln r \\ & \left.+\frac{1-v}{2}\right] \end{aligned}$	$\begin{aligned} & -\langle r-a\rangle^{0} \frac{W a}{2}\left[(1+v) \ln \frac{r}{a}\right. \\ & \left.+\frac{1-v}{2}\left(1-\frac{a^{2}}{r^{2}}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{p_{1}}{4}\left[F_{M p_{1}}\left(r, a_{1}\right)\right. \\ & \left.-F_{M p_{1}}\left(r, a_{2}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{p_{2}}{\Delta \ell}\left[F_{M p_{2}}\left(r, a_{1}\right)\right. \\ & \left.-F_{M p_{2}}\left(r, a_{2}\right)\right] \\ & -p_{2} F_{M p_{1}}\left(r, a_{2}\right) \end{aligned}$	$\begin{aligned} & \frac{p_{2}}{\Delta \ell}\left[F_{M p_{2}}\left(r, a_{1}\right)\right. \\ - & \left.F_{M p_{2}}\left(r, a_{2}\right)\right] \\ + & p_{2} F_{M p_{1}}\left(r, a_{1}\right) \end{aligned}$

TABLE 18-4 PART C: CIRCULAR PLATES WITH ARBITRARY LOADING: INITIAL PARAMETERS

Initial Parameters $w_{0}, \theta_{0}, V_{0}, M_{0}$				
Plates without Center Hole: $\bar{F}_{w}=\left.F_{w}\right\|_{r=a_{L}}, \bar{F}_{\theta}=\left.F_{\theta}\right\|_{r=a_{L}}, \bar{F}_{V}=\left.F_{V}\right\|_{r=a_{L}}, \bar{F}_{M}=\left.F_{M}\right\|_{r=a_{L}}$				
	Simply Supported	Fixed	Free $\stackrel{-a_{L} \rightarrow a_{L} \rightarrow}{ }$	Guided
1. No center support	$\begin{aligned} w_{0} & =-\frac{a_{L}^{2}}{2 D(1+v)} \bar{F}_{M}-\bar{F}_{w} \\ M_{0} & =-\bar{F}_{M} \end{aligned}$	$\begin{aligned} w_{0} & =-\frac{1}{2} a_{L} \bar{F}_{\theta}-\bar{F}_{w} \\ M_{0} & =-\frac{D(1+v)}{a_{L}} \bar{F}_{\theta} \end{aligned}$	Kinematically unstable	Kinematically unstable
2. Center support	$\begin{aligned} R= & -\frac{16(1+v) \pi D}{(3+v) a_{L}^{2}} \bar{F}_{w} \\ & -\frac{8 \pi}{3+v} \bar{F}_{M} \\ C_{1}= & \frac{8(1+v) \ln a_{L}+4(1-v)}{(3+v) a_{L}^{2}} \bar{F}_{w} \\ & +\frac{4\left(\ln a_{L}-1\right)}{D(3+v)} \bar{F}_{M} \end{aligned}$	$\begin{aligned} R= & -\frac{16 \pi D}{a_{L}^{2}} \bar{F}_{w} \\ & -\frac{8 \pi D}{a_{L}} \bar{F}_{\theta} \\ C_{1}= & -\frac{8\left(\ln a_{L}-\frac{1}{2}\right)}{a_{L}^{2}} \bar{F}_{w} \\ & -\frac{4\left(\ln a_{L}-1\right)}{a_{L}} \bar{F}_{\theta} \end{aligned}$	$\begin{aligned} R= & -2 \pi a_{L} \bar{F}_{V} \\ C_{1}= & \frac{2}{D(1+v)} \bar{F}_{M} \\ & -\frac{a_{L}}{D(1+\nu)}\left[(1+v) \ln a_{L}\right. \\ & \left.+\frac{1-v}{2}\right] \bar{F}_{V} \end{aligned}$	$\begin{aligned} R= & -2 \pi a_{L} \bar{F}_{V} \\ C_{1}= & -\frac{a_{L}}{D}\left(\ln a_{L}-\frac{1}{2}\right) \bar{F}_{V} \\ & +\frac{2}{a_{L}} \bar{F}_{\theta} \end{aligned}$

Plates with Center Hole: $\bar{F}_{w}=\left.F_{w}\right\|_{r=a_{L}}, \bar{F}_{\theta}=\left.F_{\theta}\right\|_{r=a_{L}}, \bar{F}_{V}=\left.F_{V}\right\|_{r=a_{L}}, \bar{F}_{M}=\left.F_{M}\right\|_{r=a_{L}}, \bar{U}_{i j}=\left.U_{i j}\right\|_{r=a_{L}}$				
	Simply Supported	Fixed	Free $\underset{L-a_{L} \rightarrow}{ }$	
1. Simply supported $\boldsymbol{w}_{0}=\mathbf{0}, \boldsymbol{M}_{0}=\mathbf{0}$	$\begin{aligned} \theta_{0} & =\left(\bar{F}_{M} \bar{U}_{w V}-\bar{F}_{w} \bar{U}_{M V}\right) / \nabla \\ V_{0} & =\left(\bar{F}_{w} \bar{U}_{M \theta}-\bar{F}_{M} \bar{U}_{w \theta}\right) / \nabla \\ \nabla & =\bar{U}_{w \theta} \bar{U}_{M V}-\bar{U}_{M \theta} \bar{U}_{w V} \end{aligned}$	$\begin{aligned} \theta_{0} & =\left(\bar{F}_{\theta} \bar{U}_{w V}-\bar{F}_{w} \bar{U}_{\theta V}\right) / \nabla \\ V_{0} & =\left(\bar{F}_{w} \bar{U}_{\theta \theta}-\bar{F}_{\theta} \bar{U}_{w \theta}\right) / \nabla \\ \nabla & =\bar{U}_{w \theta} \bar{U}_{\theta V}-\bar{U}_{\theta \theta} \bar{U}_{w V} \end{aligned}$	$\begin{aligned} \theta_{0} & =\left(\bar{F}_{V} \bar{U}_{M V}-\bar{F}_{M} \bar{U}_{V V}\right) / \nabla \\ V_{0} & =\left(\bar{F}_{M} \bar{U}_{V \theta}-\bar{F}_{V} \bar{U}_{M \theta}\right) / \nabla \\ \nabla & =\bar{U}_{M \theta} \bar{U}_{V V}-\bar{U}_{V \theta} \bar{U}_{M V} \end{aligned}$	$\begin{aligned} \theta_{0} & =\left(\bar{F}_{V} \bar{U}_{\theta V}-\bar{F}_{\theta} \bar{U}_{V V}\right) / \nabla \\ V_{0} & =\left(\bar{F}_{\theta} \bar{U}_{V \theta}-\bar{F}_{V} \bar{U}_{\theta \theta}\right) / \nabla \\ \nabla & =\bar{U}_{\theta \theta} \bar{U}_{V V}-\bar{U}_{\theta V} \bar{U}_{V \theta} \end{aligned}$
2. Fixed $\boldsymbol{w}_{0}=\mathbf{0}, \boldsymbol{\theta}_{0}=\mathbf{0}$	$\begin{aligned} M_{0} & =\left(\bar{F}_{M} \bar{U}_{w V}-\bar{F}_{w} \bar{U}_{M V}\right) / \nabla \\ V_{0} & =\left(\bar{F}_{w} \bar{U}_{M M}-\bar{F}_{M} \bar{U}_{w M}\right) / \nabla \\ \nabla & =\bar{U}_{w M} \bar{U}_{M V}-\bar{U}_{M M} \bar{U}_{w V} \end{aligned}$	$\begin{aligned} M_{0} & =\left(\bar{F}_{\theta} \bar{U}_{w V}-\bar{F}_{w} \bar{U}_{\theta V}\right) / \nabla \\ V_{0} & =\left(\bar{F}_{w} \bar{U}_{\theta M}-\bar{F}_{\theta} \bar{U}_{w M}\right) / \nabla \\ \nabla & =\bar{U}_{w M} \bar{U}_{\theta V}-\bar{U}_{\theta M} \bar{U}_{w V} \end{aligned}$	$\begin{aligned} M_{0} & =\left(\bar{F}_{V} \bar{U}_{M V}-\bar{F}_{M} \bar{U}_{V V}\right) / \nabla \\ V_{0} & =\left(\bar{F}_{M} \bar{U}_{V M}-\bar{F}_{V} \bar{U}_{M M}\right) / \nabla \\ \nabla & =\bar{U}_{M M} \bar{U}_{V V}-\bar{U}_{V M} \bar{U}_{M V} \end{aligned}$	$\begin{aligned} M_{0} & =\left(\bar{F}_{V} \bar{U}_{\theta V}-\bar{F}_{\theta} \bar{U}_{V V}\right) / \nabla \\ V_{0} & =\left(\bar{F}_{\theta} \bar{U}_{V M}-\bar{F}_{V} \bar{U}_{\theta M}\right) / \nabla \\ \nabla & =\bar{U}_{\theta M} \bar{U}_{V V}-\bar{U}_{\theta V} \bar{U}_{V M} \end{aligned}$
3. Free $\boldsymbol{M}_{0}=\mathbf{0}, \boldsymbol{V}_{0}=\mathbf{0}$	$\begin{aligned} w_{0} & =\left(\bar{F}_{M} \bar{U}_{w \theta}-\bar{F}_{w} \bar{U}_{M \theta}\right) / \nabla \\ \theta_{0} & =\left(\bar{F}_{w} \bar{U}_{M w}-\bar{F}_{M} \bar{U}_{w V}\right) / \nabla \\ \nabla & =\bar{U}_{w V} \bar{U}_{M \theta}-\bar{U}_{M w} \bar{U}_{w \theta} \end{aligned}$	$\begin{aligned} w_{0} & =\left(\bar{F}_{\theta} \bar{U}_{w \theta}-\bar{F}_{M} \bar{U}_{\theta \theta}\right) / \nabla \\ \theta_{0} & =\left(\bar{F}_{w} \bar{U}_{\theta w}-\bar{F}_{\theta} \bar{U}_{w w}\right) / \nabla \\ \nabla & =\bar{U}_{w w} \bar{U}_{\theta \theta}-\bar{U}_{\theta w} \bar{U}_{w \theta} \end{aligned}$	$\begin{aligned} w_{0} & =\left(\bar{F}_{V} \bar{U}_{M \theta}-\bar{F}_{M} \bar{U}_{V \theta}\right) / \nabla \\ \theta_{0} & =\left(\bar{F}_{M} \bar{U}_{V w}-\bar{F}_{V} \bar{U}_{M w}\right) / \nabla \\ \nabla & =\bar{U}_{M w} \bar{U}_{V \theta}-\bar{U}_{M \theta} \bar{U}_{V w} \end{aligned}$	$\begin{aligned} w_{0} & =\left(\bar{F}_{w} \bar{U}_{\theta \theta}-\bar{F}_{\theta} \bar{U}_{V \theta}\right) / \nabla \\ \theta_{0} & =\left(\bar{F}_{\theta} \bar{U}_{V w}-\bar{F}_{V} \bar{U}_{\theta w}\right) / \nabla \\ \nabla & =\bar{U}_{\theta w} \bar{U}_{V \theta}-\bar{U}_{\theta \theta} \bar{U}_{V w} \end{aligned}$

TABLE 18-4 (continued) PART C: CIRCULAR PLATES WITH ARBITRARY LOADING: INITIAL PARAMETERS

	Simply Supported	Fixed	Free $\mathcal{L} a_{L} \rightarrow \leftarrow a_{L} \rightarrow$	
4. Guided $\begin{gathered} \mid<a_{0}><a_{0} \gg \\ \theta_{0}=0, v_{0}=0 \end{gathered}$	$\begin{aligned} w_{0} & =\left(\bar{F}_{M} \bar{U}_{w M}-\bar{F}_{w} \bar{U}_{M M}\right) / \nabla \\ M_{0} & =\left(\bar{F}_{w} \bar{U}_{M w}-\bar{F}_{M} \bar{U}_{w w}\right) / \nabla \\ \nabla & =\bar{U}_{w w} \bar{U}_{M M}-\bar{U}_{M w} \bar{U}_{w M} \end{aligned}$	$\begin{aligned} w_{0} & =\left(\bar{F}_{\theta} \bar{U}_{w M}-\bar{F}_{w} \bar{U}_{\theta M}\right) / \nabla \\ M_{0} & =\left(\bar{F}_{w} \bar{U}_{\theta w}-\bar{F}_{\theta} \bar{U}_{w w}\right) / \nabla \\ \nabla & =\bar{U}_{w w} \bar{U}_{\theta M}-\bar{U}_{w M} \bar{U}_{\theta w} \end{aligned}$	$\begin{aligned} w_{0} & =\left(\bar{F}_{V} \bar{U}_{M M}-\bar{F}_{M} \bar{U}_{V M}\right) / \nabla \\ M_{0} & =\left(\bar{F}_{M} \bar{U}_{V w}-\bar{F}_{V} \bar{U}_{M w}\right) / \nabla \\ \nabla & =\bar{U}_{M w} \bar{U}_{V M}-\bar{U}_{M M} \bar{U}_{V w} \end{aligned}$	$\begin{aligned} w_{0} & =\left(\bar{F}_{V} \bar{U}_{\theta M}-\bar{F}_{\theta} \bar{U}_{V M}\right) / \nabla \\ M_{0} & =\left(\bar{F}_{\theta} \bar{U}_{V w}-\bar{F}_{V} \bar{U}_{\theta w}\right) / \nabla \\ \nabla & =\bar{U}_{\theta w} \bar{U}_{V M}-\bar{U}_{\theta M} \bar{U}_{V w} \end{aligned}$
5. Rigid insert with total load W_{T}	$\begin{aligned} w_{0}= & {\left[\frac { W _ { T } } { 2 \pi a _ { 0 } } \left(\bar{U}_{M M} \bar{U}_{w V}\right.\right.} \\ & \left.-\bar{U}_{w M} \bar{U}_{M V}\right)+\bar{U}_{w M} \bar{F}_{M} \\ & \left.-\bar{U}_{M M} \bar{F}_{w}\right] / \nabla \\ M_{0}= & {\left[\frac { W _ { T } } { 2 \pi a _ { 0 } } \left(\bar{U}_{w w} \bar{U}_{M V}\right.\right.} \\ & \left.-\bar{U}_{M w} \bar{U}_{w V}\right)+\bar{U}_{M w} \bar{F}_{V} \\ & \left.-\bar{U}_{w w} \bar{F}_{M}\right] / \nabla \\ V_{0}= & -W_{T} /\left(2 \pi a_{0}\right) \quad \theta_{0}=0 \\ \nabla= & \bar{U}_{w w} \bar{U}_{M M} \bar{U}_{M w} \bar{U}_{w M} \end{aligned}$	$\begin{aligned} w_{0}= & {\left[\frac { W _ { T } } { 2 \pi a _ { 0 } } \left(\bar{U}_{\theta M} \bar{U}_{w V}\right.\right.} \\ & \left.-\bar{U}_{w M} \bar{U}_{\theta V}\right) \\ & +\bar{U}_{w M} \bar{F}_{\theta} \\ & \left.-\bar{U}_{\theta M} \bar{F}_{w}\right] / \nabla \\ M_{0}=[& \frac{W_{T}}{2 \pi a_{0}}\left(\bar{U}_{w w} \bar{U}_{\theta V}\right. \\ & \left.-\bar{U}_{w V} \bar{U}_{\theta w}\right)+\bar{U}_{\theta w} \bar{F}_{w} \\ & \left.-\bar{U}_{w w} \bar{F}_{\theta}\right] / \nabla \\ V_{0}= & -W_{T} /\left(2 \pi a_{0}\right) \quad \theta_{0}=0 \\ \nabla= & \bar{U}_{w w} \bar{U}_{\theta M}-\bar{U}_{\theta w} \bar{U}_{w M} \end{aligned}$	$\begin{aligned} w_{0}= & {\left[\frac { W _ { T } } { 2 \pi a _ { 0 } } \left(\bar{U}_{M V} \bar{U}_{V M}\right.\right.} \\ & \left.-\bar{U}_{M M} \bar{U}_{V V}\right)+\bar{U}_{M M} \bar{F}_{V} \\ & \left.-\bar{U}_{V M} \bar{F}_{M}\right] / \nabla \\ M_{0}= & \frac{W_{T}}{2 \pi a_{0}}\left(\bar{U}_{M w} \bar{U}_{V V}\right. \\ & \left.-\bar{U}_{M V} \bar{U}_{V w}\right)+\bar{U}_{V w} \bar{F}_{M} \\ & \left.-\bar{U}_{M w} \bar{F}_{V}\right] / \nabla \\ V_{0}= & -W_{T} /\left(2 \pi a_{0}\right) \quad \theta_{0}=0 \\ \nabla= & \bar{U}_{M w} \bar{U}_{V M}-\bar{U}_{M M} \bar{U}_{V w} \end{aligned}$	$\begin{aligned} w_{0}= & {\left[\frac { W _ { T } } { 2 \pi a _ { 0 } } \left(\bar{U}_{\theta V} \bar{U}_{V M}\right.\right.} \\ & \left.-\bar{U}_{\theta M} \bar{U}_{V V}\right)+\bar{U}_{\theta M} \bar{F}_{V} \\ & \left.-\bar{U}_{V M} \bar{F}_{\theta}\right] / \nabla \\ M_{0}= & {\left[\frac { W _ { T } } { 2 \pi a _ { 0 } } \left(\bar{U}_{\theta w} \bar{U}_{V V}\right.\right.} \\ & \left.-\bar{U}_{\theta V} \bar{U}_{V w}\right)+\bar{U}_{V w} \bar{F}_{\theta} \\ & \left.-\bar{U}_{\theta w} \bar{F}_{w}\right] / \nabla \\ V_{0}= & -W_{T} /\left(2 \pi a_{0}\right) \quad \theta_{0}=0 \\ \nabla= & \bar{U}_{\theta w} \bar{U}_{V M}-\bar{U}_{\theta M} \bar{U}_{V w} \end{aligned}$

TABLE 18-5 CRITICAL IN-PLANE FORCES FOR CIRCULAR PLATES

> | Notation | |
| ---: | :--- |
| E | $=$ modulus of elasticity |
| v | $=$ Poisson's ratio |
| c | $=$ buckling coefficient |
| P_{cr} | $=$ buckling load (force per unit length) |

$$
\beta=a_{0} / a_{L} \quad P^{\prime}=\frac{\pi^{2} D}{a_{L}^{2}} \quad D=\frac{E h^{3}}{12\left(1-v^{2}\right)}
$$

Nodal circle or nodal diameter refer to the circle or diameter in the plane of the plate for which the displacement is zero in a buckling mode shape.

Conditions	Buckling Loads
1.	Applies for no nodal circles or nodal diameters present in the buckling mode shapes, $P_{\mathrm{cr}}=0.426 P^{\prime}$
Simply supported	

outer boundary

2.

Clamped outer boundary

1. Applies for no nodal circles or nodal diameters present in the buckling mode shapes, $P_{\text {cr }}=1.49 P^{\prime}$
2. Applies when nodal circles and/or nodal diameters are present in the buckling mode shapes, $P_{\text {cr }}=\eta \times 1.49 P^{\prime}$

Nodal circles and diameters are shown. The numbers on the dashed nodal circles refer to the percentage of a_{L} (e.g., $0.49 a_{L}$).

Refs. [18.5]-[18.8]

TABLE 18-5 (continued) CRITICAL IN-PLANE FORCES FOR CIRCULAR PLATES

Conditions	Results
3.	
Elastically restrained	
boundary	1. First mode

Elastically restrained edge:
$c=1.99421+0.4488381 \gamma+0.156167 \gamma^{2}-0.04576 \gamma^{3}$,
$0 \leq \gamma \leq 12$
Clamped edge: $c=3.832$
Simply supported edge: $c=2.049$
2. Second mode, where a nodal line exists as a diameter

Elastically restrained edge:
$c=3.618543+0.1795 \gamma+0.189377 \gamma^{2}-0.0433434 \gamma^{3}$,
$0 \leq \gamma \leq 12$
Clamped edge: $c=5.136$
Simply supported edge: $c=3.625$
Ref. [18.9]
$P_{\text {cr }}=c P^{\prime} \quad$ Symmetrical buckling
$c=\left\{\begin{aligned} 0.436 & -0.4387 \beta+1.35 \beta^{2}-5.72 \beta^{3}+6.67 \beta^{4} \\ 0 & \leq \beta<0.5 \\ -35.86 & +209.79 \beta-448.35 \beta^{2}+418.75 \beta^{3}-144.58 \beta^{4} \\ 0.5 & \leq \beta \leq 0.9\end{aligned}\right.$

Simply supported outer boundary, inner boundary free

TABLE 18-5 (continued) CRITICAL IN-PLANE FORCES FOR CIRCULAR PLATES

| Conditions | Results |
| :--- | :--- | :--- |
| $\mathbf{5 .}$ | $P_{\mathrm{cr}}=c P^{\prime} \quad$ Symmetrical buckling |
| Clamped outer | |
| boundary, inner | |
| boundary free | | outer boundary of plate of variable thickness

Average thickness $h=h_{1}\left(1-\beta^{2}+\frac{h_{0}}{h_{1}} \beta^{2}\right)$
For values of c, see table footnote a.
Refs. [18.4], [18.16]
7
7.

Clamped outer boundary of plate of variable thickness

$\begin{aligned} P_{\text {cr }} & =\frac{c E h^{3}}{12\left(1-v^{2}\right) a_{L}^{2}} \\ h & =h_{1}\left(1-\beta^{2}+\frac{h_{0}}{h_{1}} \beta^{2}\right)\end{aligned}$
For values of c, see table footnote b.
Refs. [18.4], [18.16]

TABLE 18-5 (continued) CRITICAL IN-PLANE FORCES FOR CIRCULAR PLATES

${ }^{a}$ For case 6, values of c (for a uniform plate, $c=4.28$) are:										
h_{0}	$\beta=0.03$	0.2	0.4	0.6	0.7	0.75	0.8	0.85	0.9	0.97
h_{1}										
0.3	4.27	3.71	3.05	2.72			3.13			
0.5	4.27	3.78	3.14	2.96			3.27			4.08
0.7	4.28	3.99	3.53	3.34			3.55		3.84	4.13
0.8									3.98	
0.9							4.03			
1.1	4.29	4.34	4.47	4.58	4.58		4.53		4.42	
1.3				5.01	5.07		4.96		4.67	4.40
1.5	4.29	4.39	4.70	5.17	5.35	5.36	5.29		4.88	4.47
1.6				5.15	5.41		5.41			
1.7				5.07	5.40	5.50	5.49	5.33		4.52
1.8				4.95	5.34	5.49	5.53	5.40		
1.9				4.79			5.54			
2.0	4.28	4.26	4.25	4.61	5.07	5.33	5.52	5.49	5.21	4.57
2.2								5.49		
2.5				3.60	4.01		4.89	5.33	5.33	
3.0	4.27	3.86	3.07	2.74	2.98		3.85	4.64	5.22	4.69

${ }^{b}$ For case 7, values of c (for a uniform plate, $c=14.68$) are:

h_{0}	$\beta=0.03$	0.1	0.2	0.3	0.4	0.45	0.5	0.55	0.6	0.7	0.8	0.9	0.97	
h_{1}														
0.3	14.58	13.71	12.04		5.47				3.82		4.65	6.88	11.05	
0.4				9.14										
0.5	14.59	13.84	12.42	11.69	11.27		10.36		9.48		9.61	11.12	13.28	
0.6					12.07							12.60	13.89	
0.7	14.64	14.21	13.24		12.63				13.21		13.25	13.66		
0.9	14.66	14.56	14.25	13.94				14.35	14.57	14.66	14.66			
1.1	14.68	14.77	15.00	15.39	15.37		15.16	15.00		14.43	14.45			
1.3				16.49	16.55	16.45	16.16	15.71			13.53			
1.4						16.94	16.88	16.58	16.06			12.96		
1.5	14.70	14.91	15.49	16.94	17.15	17.16	16.91	16.38		12.99	12.39			
1.6				16.93	17.19	17.28	17.12	16.60						
1.7				16.79	17.07	17.24	17.16							
1.8				16.54	16.83	17.04	17.05	16.72						
1.9					16.23		16.70	16.79						
2.0	14.69	14.83	15.13	15.85	16.07	16.27	16.40	16.32	14.85	12.03	10.09	11.32		
3.0	14.66	14.45	13.73	11.58		10.80		10.62	11.22	11.11	8.26	7.87		

TABLE 18-6 NATURAL FREQUENCIES OF SOME CIRCULAR PLATES AND MEMBRANES ${ }^{\text {a }}$

> | | Notation |
| :--- | :--- |
| $\nu=$ Poisson's ratio | $E=$ modulus of elasticity |
| $n=$ number of nodal diameters | $\rho=$ mass per unit area of the plate |
| $h=$ thickness of the plate | $s=$ number of nodal circles, not including the |
| $\beta=a_{0} / a_{L}$ | |
| | boundary circle when the boundary is constrained |
| | $D=$ flexural rigidity of the plate $=E h^{3} /\left[12\left(1-v^{2}\right)\right]$ |

Nodal circles and diameters refer to loci of points along which the mode shape displacements are zero.

$$
\omega_{n s}(\operatorname{rad} / T)=\frac{\lambda_{n s}}{a_{L}^{2}} \sqrt{\frac{D}{\rho}} \quad f_{n s}(\mathrm{~Hz})=\frac{\lambda_{n s}}{2 \pi a_{L}^{2}} \sqrt{\frac{D}{\rho}}
$$

The values of $\lambda_{n s}$ are independent of v except where indicated otherwise. All results are for the transverse vibration of plates unless indicated otherwise. For membranes, the natural frequencies for transverse vibrations are given by $f_{n s}(\mathrm{~Hz})=\frac{\lambda_{n s}}{2}\left(\frac{P}{\rho A}\right)^{1 / 2}$, where A is the area of the membrane and P is the tension per unit length.

Configuration and Boundary Conditions	$\lambda_{n s}$ for $v=0.25$				Constants
1. Free					

TABLE 18-6 (continued) NATURAL FREQUENCIES OF SOME CIRCULAR PLATES AND MEMBRANES ${ }^{a}$

2.	$\lambda_{n s}$ for $v=0.3$									
Simply supported $\longleftarrow 2 a_{L} \longrightarrow$	Σ_{s}^{n}	0	1	2						
$\triangle \triangle$	0	4.977	13.94	25.6						
\cdots	1	29.76	48.51	70.14						
	2	74.20	102.80	134.33						
$\left(\begin{array}{ll} i & 1 \\ i & i \end{array}\right)$	3	138.34	176.84	218.24						
3.			$\lambda_{n s}$					EMBRA		
Fixed								$\lambda_{n s}$		
$K-2 a_{L} \longrightarrow$	$s>$	0	1	2	3	$>n$	0	1	2	3
閶	0	10.216	21.26	34.88	51.04	s				
-	1	39.771	60.82	84.58	111.01	1	1.357	2.162	2.897	3.600
-	2	89.104	120.08	153.81	190.30	2	3.114	3.958	4.749	5.507
-	3	158.18	199.06	242.71	289.17	3	4.882	5.740	6.556	7.343
-	4	247.00	297.77	351.38	407.72	4	6.653	7.517	8.348	9.153
	5	355.57	416.20	479.65	545.97					

4.	Number of nodal circles $s=0 \quad$ MEMBRANE
Fixed both on outer and inner edge	$\begin{array}{ll} \lambda_{00}=28.944-49.5495 \beta+338.977 \beta^{2} & \text { For } a_{0} / a_{L}>1 / 2: \\ \lambda_{10}=26.537+2.40 \beta+222.672 \beta^{2} & \\ \lambda_{20}=41.8525-80.131 \beta+360.317 \beta^{2} & \frac{1}{\pi^{1 / 2}}\left[4 s^{2}\left(\frac{a_{L}-a_{0}}{a_{L}+a_{0}}\right)+n^{2} \pi^{2}\left(\frac{a_{L}+a_{0}}{a_{L}-a_{o}}\right)\right]^{1 / 2} \\ 0.1 \leq \beta \leq 0.6 & n=1,2,3, \ldots \quad s=0,1,2, \ldots \end{array}$
5.	$\lambda_{10}=4.4725-39.829 \beta+219.9576 \beta^{2}-417.08215 \beta^{3}+279.1661 \beta^{4}$
Fixed outer edge, simply supported inner edge	$\begin{aligned} & \lambda_{00}=4.8375-22.9475 \beta+114.5183 \beta^{2}-220.6284 \beta^{3}+154.0753 \beta^{4} \\ & \lambda_{20}=9.7589-74.3830 \beta+375.4257 \beta^{2}-701.6646 \beta^{3}+468.2281 \beta^{4} \\ & \lambda_{30}=18.4765-102.7286 \beta+510.7268 \beta^{2}-977.0797 \beta^{3}+661.4566 \beta^{4} \\ & \lambda_{01}=2.5633-1.4277 \frac{1}{1-\beta}+15.4673 \frac{1}{(1-\beta)^{2}} \\ & \lambda_{11}=13.8536-10.7728 \frac{1}{1-\beta}+18.05616 \frac{1}{(1-\beta)^{2}}-0.1757 \frac{1}{(1-\beta)^{3}} \\ & \lambda_{21}=38.9306-27.1254 \frac{1}{1-\beta}+21.9928 \frac{1}{(1-\beta)^{2}}-0.4260 \frac{1}{(1-\beta)^{3}} \\ & \lambda_{31}=71.7981-45.8024 \frac{1}{1-\beta}+26.2399 \frac{1}{(1-\beta)^{2}}-0.6898 \frac{1}{(1-\beta)^{3}} \\ & 0.1 \leq \beta \leq 0.9 \quad v=0.33 \end{aligned}$

TABLE 18-6 (continued) NATURAL FREQUENCIES OF SOME CIRCULAR PLATES AND MEMBRANES ${ }^{a}$

TABLE 18-7 TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTS ${ }^{a}$

Notation

The plate response is given by the Fourier series expansion of Eq. (18.10).
$w, \theta, V, M=$ deflection, slope, effective shear force per unit length, and bending $\quad E=$ modulus of elasticity
moment per unit length
$h=$ thickness of plate
$D=\frac{E h^{3}}{12\left(1-v^{2}\right)}$
$\varepsilon_{m}^{j}=$ parameters provided in this table for particular distributed loadings
Circular Plate Element with Center Hole

$$
\begin{aligned}
\frac{\Delta p}{\Delta \ell} & =\frac{p_{b}-p_{a}}{b-a} \quad \frac{\Delta c}{\Delta \ell}=\frac{c_{b}-c_{a}}{b-a} \quad q_{1}=p_{a}-a \frac{\Delta p}{\Delta \ell} \\
\gamma & =b / a \\
p_{a}, p_{b} & =\text { magnitude of applied distributed forces at } r=a \text { and } r=b\left(F / L^{2}\right) \\
c_{a}, c_{b} & =\text { magnitude of applied distributed moments at } r=a \text { and } r=b\left(F L / L^{2}\right)
\end{aligned}
$$

Transfer Matrices (Sign Convention 1)

The transfer matrix relations $\mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{a}+\overline{\mathbf{z}}^{i}$ are extended to include the loading vector $\overline{\mathbf{z}}^{i}$ in the basic matrices (Appendix II), so that

$$
\mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{a} \quad \mathbf{z}_{b}=\left[\begin{array}{lllll}
w_{b} & \theta_{b} & V_{b} & M_{b} & 1
\end{array}\right]^{T} \quad \mathbf{z}_{a}=\left[\begin{array}{lllll}
w_{a} & \theta_{a} & V_{a} & M_{a} & 1
\end{array}\right]^{T}
$$

$$
\begin{aligned}
& m=0 \text { (SYMMETRIC DEFORMATION) } \\
& \bar{F}_{w}=\varepsilon_{0}^{c}\left(\frac{p_{a}}{8 D} e_{11}+\frac{\Delta p}{\Delta \ell} \frac{1}{D} e_{12}+\frac{c_{a}}{4 D} e_{13}+\frac{\Delta c}{\Delta \ell} \frac{1}{4 D} e_{14}\right) \\
& \bar{F}_{\theta}=\varepsilon_{0}^{c}\left(-\frac{p_{a}}{4 D} e_{21}-\frac{\Delta p}{\Delta \ell} \frac{1}{D} e_{22}+\frac{c_{a}}{4 D} e_{23}+\frac{\Delta c}{\Delta \ell} \frac{1}{4 D} e_{14}\right) \\
& \bar{F}_{V}=\varepsilon_{0}^{c}\left(-\frac{p_{a}}{2} e_{31}-\frac{\Delta p}{\Delta \ell} e_{32}\right) \\
& e_{11}=\frac{b^{4}}{8}-\frac{5 a^{4}}{8}+\frac{a^{2} b^{2}}{2}-a^{2}\left(b^{2}+\frac{a^{2}}{2}\right) \ln \frac{b}{a} \\
& \bar{F}_{M}=-\varepsilon_{0}^{c}\left(-\frac{p_{a}}{4} e_{41}-\frac{\Delta p}{\Delta \ell} e_{42}+c_{a} e_{43}+\frac{\Delta c}{\Delta \ell} e_{44}\right) \\
& e_{12}=\frac{b^{5}}{225}-\frac{a b^{4}}{64}-\frac{a^{3} b^{2}}{144}+\frac{29 a^{5}}{1600}+\frac{a^{3}}{8}\left(\frac{b^{2}}{3}+\frac{a^{2}}{10}\right) \ln \frac{b}{a} \\
& e_{13}=-\frac{2 a^{3}}{3} \ln \frac{a}{b}+\frac{1}{9}\left(5 a^{3}+4 b^{3}-9 b^{2} a\right) \\
& e_{14}=\frac{b^{4}}{8}-\frac{4}{9} a b^{3}+\frac{a^{2} b^{2}}{2}-\frac{13}{72} a^{4}-\frac{1}{6} a^{4} \ln \frac{b}{a} \\
& e_{21}=\frac{b^{3}}{4}-\frac{a^{4}}{4 b}-a^{2} b \ln \frac{b}{a} \\
& e_{22}=\frac{b^{4}}{45}-\frac{a b^{3}}{16}+\frac{a^{3} b}{36}+\frac{a^{5}}{80 b}+\frac{a^{3} b}{12} \ln \frac{b}{a} \\
& e_{23}=-\left(\frac{4 b^{2}}{3}-2 a b+\frac{2 a^{3}}{3 b}\right) \\
& e_{24}=-\left(\frac{b^{3}}{2}-\frac{4}{3} a b^{2}+a^{2} b-\frac{a^{4}}{6 b}\right)
\end{aligned}
$$

$$
e_{41}=\frac{3+v}{4} b^{2}-a^{2}+\frac{1}{4 b^{2}}(1-v) a^{4}-(1+v) a^{2} \ln \frac{b}{a}
$$

$$
e_{43}=-\left(\frac{2+v}{3} b-\frac{1+v}{2} a-\frac{1-v}{6} \frac{a^{3}}{b^{2}}\right)
$$

$$
\begin{aligned}
& e_{32}=\frac{b^{2}}{3}-\frac{a b}{2}+\frac{a^{3}}{6 b} \\
& e_{42}=\frac{4+v}{45} b^{3}-\frac{3+v}{16} a b^{2}+\frac{4+v}{36} a^{3}-\frac{1-v}{80} \frac{a^{5}}{b^{2}}+\frac{1+v}{12} a^{3} \ln \frac{b}{a} \\
& e_{44}=-\left(\frac{3+v}{8} b^{2}-\frac{2+v}{3} a b+\frac{1+v}{4} a^{2}+\frac{1-v}{24} \frac{a^{4}}{b^{2}}\right)
\end{aligned}
$$

TABLE 18-7 (continued) TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTS ${ }^{a}$

```
\(m=1\) (ASYMMETRIC DEFORMATION)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\frac{(3-v) b}{4 a}-\frac{(1-v) b^{3}}{8 a^{3}}+\frac{(3+v) a}{8 b}\) & \(-\frac{(1+v) b}{4}-\frac{(1-v) b^{3}}{8 a^{2}}+\frac{(3+v) a^{2}}{8 b}\) & \(\frac{a^{2} b}{4 D} \ln \frac{b}{a}-\frac{1}{16 D b}\left(b^{4}-a^{4}\right)\) & \(-\frac{a b}{4 D} \ln \frac{b}{a}-\frac{\left(b^{2}-a^{2}\right)\left(b^{2}-3 a^{2}\right)}{16 D b a}\) & \(\bar{F}_{w}\) & \[
\left\lceil w_{a}\right]
\] \\
\hline \(-\frac{3-v}{4 a}+\frac{3(1-v) b^{2}}{8 a^{3}}+\frac{(3+v) a}{8 b^{2}}\) & \(\frac{1+v}{4}+\frac{3(1-v) b^{2}}{8 a^{2}}+\frac{(3+v) a^{2}}{8 b^{2}}\) & \(-\frac{a^{2}}{4 D} \ln \frac{b}{a}+\frac{\left(b^{2}-a^{2}\right)\left(3 b^{2}-a^{2}\right)}{16 D b^{2}}\) & \(-\frac{a}{4 D} \ln \frac{b}{a}+\frac{3\left(b^{4}-a^{4}\right)}{16 D a b^{2}}\) & \(\bar{F}_{\theta}\) & \[
\theta_{a}
\] \\
\hline \(\frac{D(3+v)(1-v)}{4} \frac{b^{4}-a^{4}}{a^{3} b^{4}}\) & \(\frac{D(3+v)(1-v)}{4} \frac{b^{4}-a^{4}}{a^{2} b^{4}}\) & \(\frac{3+v}{8}-\frac{(1-v) a^{4}}{8 b^{4}}+\frac{(3-v) a^{2}}{4 b^{2}}\) & \(\frac{3+v}{8 a}+\frac{3(1-v) a^{3}}{8 b^{4}}-\frac{(3-v) a}{4 b^{2}}\) & \(\bar{F}_{V}\) & \[
V_{a}
\] \\
\hline \(\frac{D(3+v)(1-v)}{4} \frac{b^{4}-a^{4}}{a^{3} b^{3}}\) & \(\frac{D(3+v)(1-v)}{4} \frac{b^{4}-a^{4}}{a^{2} b^{3}}\) & \(\frac{(3+v) b}{8}-\frac{(1-v) a^{4}}{8 b^{3}}-\frac{(1+v) a^{2}}{4 b}\) & \(\frac{(3+v) b}{8 a}+\frac{3(1-v) a^{3}}{8 b^{3}}+\frac{(1+v) a}{4 b}\) & \(\bar{F}_{M}\) & \[
M_{a}
\] \\
\hline 0 & 0 & \[
\mathbf{U}^{i}
\] & 0 & 1 & \[
L^{1}
\] \\
\hline
\end{tabular}
\[
\bar{F}_{w}=\varepsilon_{1}^{j}\left[\frac{a^{4} p_{a}}{4 D}\left(\frac{4 \gamma^{4}}{45}-\frac{\gamma^{3}}{4}+\frac{\gamma}{9}+\frac{1}{20 \gamma}+\frac{\gamma}{3} \ln \gamma\right)+\frac{a^{5}}{4 D} \frac{\Delta p}{\Delta \ell}\left(\frac{a^{5}}{48}-\frac{4 \gamma^{4}}{45}+\frac{\gamma^{3}}{8}-\frac{7 \gamma}{144}-\frac{1}{120 \gamma}-\frac{\gamma}{12} \ln \gamma\right)\right]
\]
\[
\bar{F}_{\theta}=\varepsilon_{1}^{j}\left[-\frac{a^{3} p_{a}}{4 D}\left(\frac{16 \gamma^{3}}{45}-\frac{3 \gamma^{2}}{4}+\frac{4}{9}-\frac{1}{20 \gamma^{2}}+\frac{1}{3} \ln \gamma\right)-\frac{a^{4}}{4 D} \frac{\Delta p}{\Delta \ell}\left(\frac{5 \gamma^{4}}{48}-\frac{16 \gamma^{3}}{45}+\frac{3 \gamma^{2}}{8}-\frac{19}{144}+\frac{1}{120 \gamma^{2}}-\frac{1}{12} \ln \gamma\right)\right]
\]
\[
\bar{F}_{V}=\varepsilon_{1}^{j}\left[-\frac{a p_{a}}{4}\left(\frac{4(9+v) \gamma}{15}-\frac{3+v}{2}-\frac{3-v}{3 \gamma^{2}}+\frac{1-v}{10 \gamma^{4}}\right)-\frac{a^{2}}{4} \frac{\Delta p}{\Delta \ell}\left(\frac{17+v}{12} \gamma^{2}-\frac{4(9+v)}{15} \gamma+\frac{3+v}{4}+\frac{3-v}{12 \gamma^{2}}-\frac{1-v}{60 \gamma^{4}}\right)\right]
\]
\[
\begin{aligned}
\bar{F}_{M} & =\varepsilon_{1}^{j}\left[-\frac{a^{2} p_{a}}{4}\left(\frac{4(4+v) \gamma^{2}}{15}-\frac{3+v}{2} \gamma-\frac{1+v}{3 \gamma}+\frac{1-v}{10 \gamma^{3}}\right)-\frac{a^{3}}{4} \frac{\Delta p}{\Delta \ell}\left(\frac{5+v}{12} \gamma^{3}-\frac{4(4+v)}{15} \gamma^{2}+\frac{3+v}{4} \gamma-\frac{1+v}{12 \gamma}-\frac{1-v}{60 \gamma^{3}}\right)\right] \\
\gamma & =b / a
\end{aligned}
\]
\[
j=c, s
\]
```

$$
\begin{aligned}
& m \geq 2 \\
& \mathbf{U}^{i}=\left[\begin{array}{cc}
\mathbf{H}(b) \mathbf{H}^{-1}(a) & \overline{\mathbf{z}}^{i} \\
\mathbf{0} & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{H}(b) \mathbf{H}^{-1}(a) & -\varepsilon_{m}^{j}\left[\mathbf{G}(b)-\mathbf{H}(b) \mathbf{H}^{-1}(a) \mathbf{G}(a)\right] \\
\mathbf{0} & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{H}(b) \mathbf{H}^{-1}(a) & -\varepsilon_{m}^{j} \mathbf{H}(b)[\mathbf{R}(b)-\mathbf{R}(a)] \\
\mathbf{0} & \mathbf{1}
\end{array}\right] \\
& \text { where } \mathbf{G}(r)=\mathbf{H}(r) \mathbf{R}(r)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{H}^{-1}(a)=\left[\begin{array}{cccc}
\frac{m(1-v)+4}{8} a^{-m} & \frac{(m+2)(1-v)-4}{8 m} a^{-m+1} & \frac{a^{-m+3}}{8 m(m-1) D} & \frac{m-2}{8 m(m-1) D} a^{-m+2} \\
-\frac{m(1-v)-4}{8} a^{m} & \frac{(m-2)(1-v)+4}{8 m} a^{m+1} & \frac{a^{m+3}}{8 m(m+1) D} & -\frac{m+2}{8 m(m+1) D} a^{m+2} \\
-\frac{m(1-v)}{8} a^{-m-2} & -\frac{1-v}{8} a^{-m-1} & -\frac{a^{-m+1}}{8 m(m+1) D} & -\frac{a^{-m}}{8(m+1) D} \\
\frac{m(1-v)}{8} a^{m-2} & -\frac{1-v}{8} a^{m-1} & -\frac{a^{m+1}}{8 m(m-1) D} & \frac{a^{m}}{8(m-1) D}
\end{array}\right] \\
& \begin{aligned}
\overline{\mathbf{z}}^{i} & =\left[\begin{array}{c}
\bar{F}_{w} \\
\bar{F}_{\theta} \\
\bar{F}_{V} \\
\bar{F}_{M}
\end{array}\right]=-\varepsilon_{m}^{j}\left[\mathbf{G}(b)-\mathbf{H}(b) \mathbf{H}^{-1}(a) \mathbf{G}(a)\right]=-\varepsilon_{m}^{j} \mathbf{H}(b)[\mathbf{R}(b)-\mathbf{R}(a)] \\
j & =c, s
\end{aligned}
\end{aligned}
$$

TABLE 18-7 (continued) TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTS ${ }^{a}$

$$
\begin{aligned}
& m=2 \quad q_{1}=p_{a}-a \frac{\Delta p}{\Delta \ell} \\
& m=3 \\
& \mathbf{R}(r)=\frac{1}{96 D}\left[\begin{array}{c}
r\left(2 q_{1}+r \frac{\Delta p}{\Delta \ell}\right) \\
r^{7}\left(\frac{1}{7} q_{1}+\frac{r}{8} \frac{\Delta p}{\Delta \ell}\right) \\
\frac{1}{r} q_{1}-\frac{\Delta p}{\Delta \ell} \ln r \\
-r^{5}\left(\frac{2}{5} q_{1}+\frac{r}{3} \frac{\Delta p}{\Delta \ell}\right)
\end{array}\right] \\
& m=4 \\
& \mathbf{R}(r)=\frac{1}{32 D}\left[\begin{array}{c}
\frac{1}{3}\left(q_{1} \ln r+\frac{\Delta p}{\Delta \ell} r\right) \\
\frac{r^{8}}{5}\left(\frac{1}{8} q_{1}+\frac{r}{9} \frac{\Delta p}{\Delta \ell}\right) \\
\frac{1}{5 r^{2}}\left(\frac{1}{2} q_{1}+\frac{\Delta p}{\Delta \ell} r\right) \\
-\frac{r^{6}}{3}\left(\frac{1}{6} q_{1}+\frac{r}{7} \frac{\Delta p}{\Delta \ell}\right)
\end{array}\right] \\
& m=5 \\
& m \geq 6 \\
& \mathbf{R}(r)=\frac{1}{80 D}\left[\begin{array}{c}
\frac{1}{2}\left(-\frac{1}{r} q_{1}+\frac{\Delta p}{\Delta \ell} \ln r\right) \\
\frac{1}{3} r^{9}\left(\frac{1}{9} q_{1}+\frac{r}{10} \frac{\Delta p}{\Delta \ell}\right) \\
\frac{1}{3 r^{3}}\left(\frac{1}{3} q_{1}+\frac{r}{2} \frac{\Delta p}{\Delta \ell}\right) \\
-\frac{1}{2} r^{7}\left(\frac{1}{7} q_{1}+\frac{r}{8} \frac{\Delta p}{\Delta \ell}\right)
\end{array}\right] \\
& \mathbf{R}(r)=\left[\begin{array}{l}
\alpha_{1} r^{4-m}\left(\frac{q_{1}}{4-m}+\frac{r}{5-m} \frac{\Delta p}{\Delta \ell}\right) \\
\alpha_{2} r^{4+m}\left(\frac{q_{1}}{4+m}+\frac{r}{5+m} \frac{\Delta p}{\Delta \ell}\right) \\
\alpha_{3} r^{2-m}\left(\frac{q_{1}}{2-m}+\frac{r}{3-m} \frac{\Delta p}{\Delta \ell}\right) \\
\alpha_{4} r^{2+m}\left(\frac{q_{1}}{2+m}+\frac{r}{3+m} \frac{\Delta p}{\Delta \ell}\right)
\end{array}\right] \\
& \alpha_{1}=\frac{1}{8 m(m-1) D} \quad \alpha_{2}=\frac{1}{8 m(m+1) D} \\
& \alpha_{3}=-\alpha_{2} \quad \alpha_{4}=-\alpha_{1}
\end{aligned}
$$

Circular Plate Element without Center Hole

Notation

$p=$ magnitude of applied distributed forces at r
$c=$ magnitude of applied distributed moments at r
$W_{T}=$ concentrated force (F)
$\frac{\Delta p}{\Delta \ell}=\frac{p_{b}-p_{0}}{b} \quad \frac{\Delta c}{\Delta \ell}=\frac{c_{b}-c_{0}}{b}$

Transfer Matrices (Sign Convention 1)

The \mathbf{U}^{i} in this table for $m \geq 1$ are not truly transfer matrices as the vector at radius $r=0$ contains arbitrary constants rather than state variables. However, the vector at other radii is the state vector. All operations remain the same as those for the transfer matrices.
$m=0$ (SYMMETRIC DEFORMATION)
$\left[\begin{array}{ccccc}1 & 0 & 0 & -\frac{b^{2}}{2 D(1+\nu)} & \bar{F}_{w} \\ 0 & 0 & 0 & \frac{b}{D(1+\nu)} & \bar{F}_{\theta} \\ 0 & 0 & 0 & 0 & \bar{F}_{V} \\ 0 & 0 & 0 & 1 & \bar{F}_{M} \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$

TABLE 18-7 (continued) TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTS ${ }^{a}$

$$
\begin{aligned}
\bar{F}_{w}= & \varepsilon_{0}^{c}\left(p_{0} \frac{b^{4}}{64 D}+\frac{\Delta p}{\Delta \ell} \frac{b^{5}}{225 D}+c_{0} \frac{b^{3}}{9 D}+\frac{\Delta c}{\Delta \ell} \frac{b^{4}}{32 D}\right)+\frac{W_{T}}{8 \pi D} b^{2}(\ln b-1) \\
\bar{F}_{\theta}= & -\varepsilon_{0}^{c}\left(-p_{0} \frac{b^{3}}{16 D}-\frac{\Delta p}{\Delta \ell} \frac{b^{4}}{45 D}-c_{0} \frac{b^{2}}{3 D}+\frac{\Delta c}{\Delta \ell} \frac{b^{3}}{8 D}\right)-\frac{W_{T}}{4 \pi D} b\left(\ln b-\frac{1}{2}\right) \\
\bar{F}_{V}= & \varepsilon_{0}^{c}\left(-p_{0} \frac{b}{2}-\frac{\Delta p}{\Delta \ell} \frac{b^{2}}{3}\right)-\frac{W_{T}}{2 \pi b} \\
\bar{F}_{M}= & -\varepsilon_{0}^{c}\left[-p_{0} \frac{b^{2}}{16}(3+v)-\frac{\Delta p}{\Delta \ell} \frac{b^{3}}{45}(4+v)-c_{0} b(2+v)-\frac{\Delta c}{\Delta \ell} \frac{b^{2}}{8}(3+v)\right] \\
& -\frac{W_{T}}{4 \pi}\left[(1+v) \ln b+\frac{1-v}{2}\right]
\end{aligned}
$$

$m=1$ (ASYMMETRIC DEFORMATION)

$$
\left[\begin{array}{ccccc}
0 & -b & -\frac{b^{3}}{2 D(3+v)} & 0 & \bar{F}_{w} \\
0 & 1 & \frac{3 b^{2}}{2 D(3+v)} & 0 & \bar{F}_{\theta} \\
0 & 0 & 1 & 0 & \bar{F}_{V} \\
0 & 0 & r & 0 & \bar{F}_{M} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\bar{F}_{w}, \bar{F}_{\theta}, \bar{F}_{V}$, and \bar{F}_{M} are the loading functions of the $m=1$ transfer matrix of this table, with $a=0$.

$$
m \geq 2
$$

$$
\left[\begin{array}{ccccc}
b^{m} & b^{m+2} & 0 & 0 & \bar{F}_{w} \\
-m b^{m-1} & -(m+2) b^{m+1} & 0 & 0 & \bar{F}_{\theta} \\
\operatorname{Dm}^{2}(m-1)(1-v) b^{m-3} & \operatorname{Dm}(1+m)[m(1-v)-4] b^{m-1} & 0 & 0 & \bar{F}_{V} \\
-\operatorname{Dm}(m-1)(1-v) b^{m-2} & D m(1+m)(m+2-v m+2 v) b^{m} & 0 & 0 & \bar{F}_{M} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$\bar{F}_{w}, \bar{F}_{\theta}, \bar{F}_{V}$, and \bar{F}_{M} are the corresponding loading functions of the $m \geq 2$ transfer matrix of this table, with $a=0$.

TABLE 18-7 (continued) TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTS ${ }^{a}$

$$
\text { Parameter } \varepsilon_{m}^{j} \text { in Loading Functions } \quad(j=c \text { or } s)
$$

Case	Parameter
1. Distributed load constant in ϕ direction	$\begin{aligned} \varepsilon_{0}^{c} & =1 \quad \varepsilon_{m}^{j}=0 \quad m>0 \\ c & =j, s \end{aligned}$
2. Distributed load constant in ϕ direction, covering $\phi=\phi_{1}$ to $\phi=\phi_{2}$	$\begin{array}{ll} \varepsilon_{0}^{c}=\left(\phi_{2}-\phi_{1}\right) / 2 \pi & \\ \varepsilon_{m}^{c}=\frac{1}{m \pi}\left(\sin m \phi_{2}-\sin m \phi_{1}\right) \quad m>0 \\ \varepsilon_{m}^{s}=-\frac{1}{m \pi}\left(\cos m \phi_{2}-\cos m \phi_{1}\right) \quad m>0 \end{array}$
3. Distributed load ramp in ϕ direction	$\begin{aligned} \varepsilon_{0}^{c} & =\frac{1}{4 \pi}\left(\phi_{2}-\phi_{1}\right)^{2} \\ \varepsilon_{m}^{c} & =\frac{1}{m \pi}\left[\left(\phi_{2}-\phi_{1}\right) \sin m \phi_{2}+\frac{1}{m}\left(\cos m \phi_{2}-\cos m \phi_{1}\right)\right] \\ m & >0 \\ \varepsilon_{m}^{s} & =\frac{1}{m \pi}\left[\left(\phi_{1}-\phi_{2}\right) \cos m \phi_{2}+\frac{1}{m}\left(\sin m \phi_{2}-\sin m \phi_{1}\right)\right] \\ m & >0 \end{aligned}$
4. Harmonic load $\cos \phi$	$\begin{array}{rlrl} \varepsilon_{0}^{c}=0 & & \varepsilon_{1}^{c}=1 & \\ \varepsilon_{m}^{c}=0 & m & >1 \varepsilon_{m}^{s}=0 \quad m>0 \end{array}$

${ }^{a}$ From Ref. [18.10].

TABLE 18-8 STIFFNESS MATRICES FOR CIRCULAR PLATE ELEMENTS

Circular Plate Element with Center Hole

Notation

The plate response is given by the Fourier series expansion of Eq. (18.10).
$w, \theta, V, M=$ deflection, slope, effective shear force per unit length, and bending moment per unit length
$E=$ modulus of elasticity
$h=$ thickness of plate
$\nu=$ Poisson's ratio
$\gamma=b / a$
$D=\frac{E h^{3}}{12\left(1-v^{2}\right)}$
$\varepsilon_{m}^{j}=$ parameters provided in Table 18-7 for particular distributed loads
$\bar{F}_{w}, \bar{F}_{\theta}, \bar{F}_{V}, \bar{F}_{M}=$ loading functions defined in Table 18-7
Stiffness Matrices (Sign Conversion 2)

$\mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}$
$\mathbf{p}^{i}=\left[\begin{array}{llll}V_{a} & M_{a} & V_{b} & M_{b}\end{array}\right]^{T}$
$\mathbf{v}^{i}=\left[\begin{array}{llll}w_{a} & \theta_{a} & w_{b} & \theta_{b}\end{array}\right]^{T}$
$\overline{\mathbf{p}}=\left[\begin{array}{llll}V_{a}^{0} & M_{a}^{0} & V_{b}^{0} & M_{b}^{0}\end{array}\right]^{T}$

TABLE 18-8 (continued) STIFFNESS MATRICES FOR CIRCULAR PLATE ELEMENTS

$$
\begin{aligned}
m & =0(\text { SYMMETRIC DEFORMATION }) \\
k_{11} & =\frac{16 \pi D}{a^{2} H_{0}}\left(\gamma^{2}-1\right) \quad k_{12}=-\frac{8 \pi D}{a H_{0}}\left(2 \gamma^{2} \ln \gamma-\gamma^{2}+1\right) \\
k_{22} & =2 \pi D\left[4 \gamma^{2}(1+v) \ln ^{2} \gamma+(1-v) \gamma^{4}+2 \gamma^{2}(1+v-4 \ln \gamma)-3-v\right] / H_{0} \\
k_{13} & =-k_{11} \quad k_{14}=-\frac{8 \pi D \gamma}{a H_{0}}\left(\gamma^{2}-1-2 \ln \gamma\right) \quad k_{23}=-k_{12} \\
k_{24} & =8 \pi D \gamma\left(\gamma^{2} \ln \gamma+\ln \gamma+1-\gamma^{2}\right) / H_{0} \quad k_{33}=k_{11} \quad k_{34}=-k_{14} \\
k_{44} & =2 \pi D\left[-4 \gamma^{2}(1+\nu) \ln ^{2} \gamma+(3+\nu) \gamma^{4}-2 \gamma^{2}(1+v+4 \ln \gamma)-1+\nu\right] / H_{0} \\
\gamma & =b / a \quad H_{0}=\left(\gamma^{2}-1\right)^{2}-4 \gamma^{2} \ln ^{2} \gamma \quad k_{i j}=k_{j i} \\
V_{a}^{0} & =k_{13} \bar{F}_{w}+k_{14} \bar{F}_{\theta} \quad M_{a}^{0}=k_{23} \bar{F}_{w}+k_{24} \bar{F}_{\theta} \\
V_{b}^{0} & =-2 \pi a \gamma \bar{F}_{V}+k_{33} \bar{F}_{w}+k_{34} \bar{F}_{\theta} \quad M_{b}^{0}=-2 \pi a \gamma \bar{F}_{M}+k_{43} \bar{F}_{w}+k_{44} \bar{F}_{\theta}
\end{aligned}
$$

$\bar{F}_{w}, \bar{F}_{\theta}, \bar{F}_{V}$, and \bar{F}_{M} are the loading functions of the $m=0$ transfer matrix of Table 18-7.

$$
\begin{aligned}
m & =1 \text { (ASYMMETRIC DEFORMATION) } \\
k_{11} & =\frac{4 \pi D \gamma}{a^{2} H_{1}}\left[\left(\gamma^{4}+3\right) \ln \gamma+6\left(\gamma^{2}-1\right)-v\left(\gamma^{4}-1\right) \ln \gamma+v\left(\gamma^{2}-1\right)^{2}\right] \\
k_{12} & =\frac{4 \pi D \gamma}{a H_{1}}\left[\left(\gamma^{4}+3\right) \ln \gamma-2 \gamma^{2}\left(\gamma^{2}-1\right)-v\left(\gamma^{4}-1\right) \ln \gamma+v\left(\gamma^{2}-1\right)^{2}\right] \\
k_{22} & =\frac{4 \pi D \gamma}{H_{1}}\left[\left(\gamma^{4}+3\right) \ln \gamma-2\left(\gamma^{2}-1\right)-v\left(\gamma^{4}-1\right) \ln \gamma+v\left(\gamma^{2}-1\right)^{2}\right] \\
k_{33} & =\frac{4 \pi D \gamma^{-1}}{a^{2} H_{1}}\left[6 \gamma^{2}\left(\gamma^{2}-1\right)+\left(3 \gamma^{4}+1\right) \ln \gamma+v\left(\gamma^{4}-1\right) \ln \gamma-v\left(\gamma^{2}-1\right)^{2}\right] \\
k_{34} & =-\frac{4 \pi D}{a H_{1}}\left[2\left(\gamma^{2}-1\right)-\left(3 \gamma^{4}+1\right) \ln \gamma-v\left(\gamma^{4}-1\right) \ln \gamma+v\left(\gamma^{2}-1\right)^{2}\right] \\
k_{44} & =\frac{4 \pi D \gamma}{H_{1}}\left[\left(3 \gamma^{4}+1\right) \ln \gamma-2 \gamma^{2}\left(\gamma^{2}-1\right)+v\left(\gamma^{4}-1\right) \ln \gamma-v\left(\gamma^{2}-1\right)^{2}\right] \\
k_{13} & =-\frac{4 \pi D}{a^{2} H_{1}}\left[3\left(\gamma^{4}-1\right)+4 \gamma^{2} \ln \gamma\right] \quad k_{14}=-\frac{4 \pi D \gamma}{a H_{1}}\left[4 \gamma^{2}(\ln \gamma-1)+\gamma^{4}+3\right] \\
k_{23} & =-\frac{4 \pi D}{a H_{1}}\left[4 \gamma^{2}(1+\ln \gamma)-3 \gamma^{4}-1\right] \quad k_{24}=\frac{4 \pi D \gamma}{H_{1}}\left(\gamma^{4}-1-4 \gamma^{2}+\ln \gamma\right) \\
H_{1} & =2 \gamma\left[\left(\gamma^{4}-1\right) \ln \gamma-\left(\gamma^{2}-1\right)^{2}\right] \quad \gamma=b / a \quad k_{i j}=k_{j i} \\
V_{a}^{0} & =\varepsilon_{1}^{j}\left(k_{13} \bar{F}_{w}+k_{14} \bar{F}_{\theta}\right) \quad M_{a}^{0}=\varepsilon_{1}^{j}\left(k_{23} \bar{F}_{w}+k_{24} \bar{F}_{\theta}\right) \quad j=c, s \\
V_{b}^{0} & =\varepsilon_{1}^{j}\left(-2 \pi b \bar{F}_{V}+k_{33} \bar{F}_{w}+k_{34} \bar{F}_{\theta}\right) \quad \\
M_{b}^{0} & =\varepsilon_{1}^{j}\left(-2 \pi b \bar{F}_{M}+k_{34} \bar{F}_{w}+k_{44} \bar{F}_{\theta}\right) \quad
\end{aligned}
$$

$\bar{F}_{w}, \bar{F}_{\theta}, \bar{F}_{V}$, and \bar{F}_{M} are the loading functions of the $m=1$ transfer matrix of Table 18-7.

TABLE 18-8 (continued) STIFFNESS MATRICES FOR CIRCULAR PLATE ELEMENTS

$$
\begin{aligned}
& m \geq 2 \\
& k_{11}=\frac{2 \pi D m^{2}}{a^{2} H_{m}}\left[4\left(\gamma^{2}-1\right)\left(m^{2}-2\right)+2 m \gamma^{2}\left(\gamma^{2 m}-\gamma^{-2 m}\right)-(1+v) \gamma^{2}\left(\gamma^{m}-\gamma^{-m}\right)^{2}-(1-v) m^{2}\left(\gamma^{2}-1\right)^{2}\right] \\
& k_{12}=-\frac{2 \pi D}{a H_{m}}\left[m^{2} \gamma^{2}\left(\gamma^{m}+\gamma^{-m}\right)^{2}+m^{4}(1-\nu)\left(\gamma^{2}-1\right)^{2}-4 m^{2}-2 m \gamma^{2}\left(\gamma^{2 m}-\gamma^{-2 m}\right)+v m^{2} \gamma^{2}\left(\gamma^{m}-\gamma^{-m}\right)^{2}\right] \\
& k_{22}=\frac{2 \pi D}{H_{m}}\left[2 m \gamma^{2}\left(\gamma^{2 m}-\gamma^{-2 m}\right)-m^{2}\left(\gamma^{2}-1\right)\left(\gamma^{2}+3\right)-(1+\nu) \gamma^{2}\left(\gamma^{m}-\gamma^{-m}\right)^{2}+m^{2} \nu\left(\gamma^{2}-1\right)^{2}\right] \\
& k_{13}=-\frac{4 \pi D m^{2}}{a^{2} H_{m}}\left[m\left(\gamma^{m}-\gamma^{-m}\right)\left(\gamma^{2}+1\right)+\left(\gamma^{m}+\gamma^{-m}\right)\left(\gamma^{2}-1\right)\left(m^{2}-2\right)\right] \\
& k_{23}=\frac{4 \pi D m}{a H_{m}}\left[\left(\gamma^{m}-\gamma^{-m}\right)\left[m^{2}\left(\gamma^{2}-1\right)-2 \gamma^{2}\right]+m\left(\gamma^{m}+\gamma^{-m}\right)\left(\gamma^{2}-1\right)\right] \\
& k_{33}=\frac{2 \pi D m^{2}}{a^{2} H_{m}}\left[(1+v)\left(\gamma^{m}-\gamma^{-m}\right)^{2}+2 m\left(\gamma^{2 m}-\gamma^{-2 m}\right)+\left(\gamma^{2}-1\right)\left(5 m^{2}-8-v m^{2}\right)-m^{2} \gamma^{-2}\left(\gamma^{2}-1\right)(1-v)\right] \\
& k_{14}=-\frac{4 \pi D m \gamma}{a H_{m}}\left[\left(\gamma^{m}-\gamma^{-m}\right)\left[m^{2}\left(\gamma^{2}-1\right)+2\right]-m\left(\gamma^{m}+\gamma^{-m}\right)\left(\gamma^{2}-1\right)\right] \\
& k_{24}=-\frac{4 \pi D m \gamma}{H_{m}}\left[\left(\gamma^{m}-\gamma^{-m}\right)\left(\gamma^{2}+1\right)-m\left(\gamma^{m}+\gamma^{-m}\right)\left(\gamma^{2}-1\right)\right] \\
& k_{34}=\frac{2 \pi D \gamma}{a H_{m}}\left[m^{4}\left(\gamma^{2}-1\right)^{2} \gamma^{-2}(1-v)+m^{2}(1+v)\left(\gamma^{m}-\gamma^{-m}\right)^{2}+2 m\left(\gamma^{2 m}-\gamma^{-2 m}\right)-4 m^{2}\left(\gamma^{2}-1\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& k_{44}=\frac{2 \pi D}{H_{m}}\left[2 m \gamma^{2}\left(\gamma^{2 m}-\gamma^{-2 m}\right)+\gamma^{2}(1+\nu)\left(\gamma^{m}-\gamma^{-m}\right)^{2}-m^{2}\left(\gamma^{2}-1\right)\left(3 \gamma^{2}+1\right)-v m^{2}\left(\gamma^{2}-1\right)^{2}\right] \\
& H_{m}=\left[\gamma^{2}\left(\gamma^{m}-\gamma^{-m}\right)^{2}-m^{2}\left(\gamma^{2}-1\right)^{2}\right] \quad \gamma=b / a \quad k_{i j}=k_{j i} \\
& V_{a}^{0}=\varepsilon_{m}^{j}\left(k_{13} \bar{F}_{w}+k_{14} \bar{F}_{\theta}\right) \quad M_{a}^{0}=\varepsilon_{m}^{j}\left(k_{23} \bar{F}_{w}+k_{24} \bar{F}_{\theta}\right) \\
& V_{b}^{0}=\varepsilon_{m}^{j}\left(-2 \pi b \bar{F}_{V}+k_{33} \bar{F}_{w}+k_{34} \bar{F}_{\theta}\right) \quad M_{b}^{0}=\varepsilon_{m}^{j}\left(-2 \pi b \bar{F}_{M}+k_{43} \bar{F}_{w}+k_{44} \bar{F}_{\theta}\right) \\
& j=c, s \\
& \bar{F}_{w}, \bar{F}_{\theta}, \bar{F}_{V}, \text { and } \bar{F}_{M} \text { are the loading functions of the } m \geq 2 \text { transfer matrix of Table 18-7. }
\end{aligned}
$$

TABLE 18-8 (continued) STIFFNESS MATRICES FOR CIRCULAR PLATE ELEMENTS

Circular Plate Element without Center Hole
Stiffness Matrices (Sign Convention 2)

$m=1$ (ASYMMETRIC DEFORMATION)

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{b} \\
M_{b}
\end{array}\right] }=\left[\begin{array}{cc}
\frac{2 \pi D(3+v)}{b^{2}} & \frac{2 \pi D(3+v)}{b} \\
\frac{2 \pi D(3+v)}{b} & 2 \pi D(3+v)
\end{array}\right]\left[\begin{array}{c}
w_{b} \\
\theta_{b}
\end{array}\right]-\left[\begin{array}{c}
V_{b}^{0} \\
M_{b}^{0}
\end{array}\right] \\
& \overline{\mathbf{p}}=-2 \pi b\left[\frac{\bar{F}^{i}}{\bar{F}_{M}}\right]+\mathbf{k}^{i}\left[\bar{F}_{w}\right. \\
&\left.\bar{F}_{\theta}\right]
\end{aligned}
$$

$$
m \geq 2
$$

$$
\left[\begin{array}{c}
V_{b} \\
M_{b}
\end{array}\right]=\left[\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right]\left[\begin{array}{c}
w_{b} \\
\theta_{b}
\end{array}\right]-\left[\begin{array}{c}
V_{b}^{0} \\
M_{b}^{0}
\end{array}\right]
$$

$$
\mathbf{k}^{i} \quad \overline{\mathbf{p}}
$$

$$
k_{11}=2 \pi D m^{2}(1+2 m+v) / b^{2}
$$

$$
k_{12}=k_{21}=2 \pi D m(2+m+m \nu) / b
$$

$$
k_{22}=2 \pi D(1+2 m+v)
$$

$$
\overline{\mathbf{p}}=-2 \pi b\left[\begin{array}{l}
\bar{F}_{V} \\
\bar{F}_{M}
\end{array}\right]+\mathbf{k}^{i}\left[\begin{array}{l}
\bar{F}_{w} \\
\bar{F}_{\theta}
\end{array}\right]
$$

${ }^{a}$ From Ref. [18.10].

TABLE 18-9 POINT MATRICES FOR CONCENTRATED OCCURRENCES FOR CIRCULAR PLATES

Notation
The plate response is given by the Fourier series expansion of Eq. (18.10). See Table 11-21 for values of k_{1}, k_{1}^{*}, \ldots for more complex spring systems, including those with masses.
$w, \theta, V, M=$ deflection, slope, effective shear force per unit length, and bending moment per unit length
$W_{m}^{j}, C_{m}^{j}=$ loading functions in transfer matrix
$j=c$ or s
$m=0,1,2, \ldots=$ identifies term in Fourier series expansions [Eq. (18.10)]
$\Omega=$ speed of rotation of rotating circular plate
$m_{i}=$ lumped mass or mass of ring per unit length
$r_{s}=$ radius of gyration of ring about circumferential axis
$r_{r}, r_{\phi}=$ radii of gyration of mass per unit length about radial and tangential axes, for homogeneous material set $r_{r}^{2}=r_{\phi}^{2}=\frac{1}{12} h^{2}$
$h=$ thickness of plate
$\omega=$ natural frequency
$I_{s}=$ area moment of inertia of ring about middle plane of plate
$E_{s}=$ modulus of elasticity of ring
Transfer matrix:

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
k_{1}-m_{i} \omega^{2}-m_{i} \omega^{2} m^{2} r_{r}^{2} & -m_{i} \Omega^{2} a_{i} & 1 & 0 & -W_{m}^{j} \\
0 & -m_{i} \omega^{2} r_{\phi}^{2}+k_{i}^{*} & 0 & 1 & C_{m}^{j} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Stiffness and Mass Matrices:
$\underline{\left[\begin{array}{c}V_{a} \\ M_{a}\end{array}\right]=\left[\begin{array}{ll}k_{11} & k_{12} \\ k_{21} & k_{22}\end{array}\right]\left[\begin{array}{c}w_{a} \\ \theta_{a}\end{array}\right] \quad\left[\begin{array}{c}V_{a} \\ M_{a}\end{array}\right]=-\omega^{2}\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]\left[\begin{array}{c}w_{a} \\ \theta_{a}\end{array}\right]}$

Case	Point Matrices
1.	TRANSFER MATRIX:
Concentrated force W_{T}	$W_{0}^{c}=W_{T} / 2 \pi a_{i}$ and $W_{0}^{s}=0$
(force)	$W_{m}^{c}=\left(W_{T} \cos m \phi_{1}\right) / \pi a_{i} \quad m>0$
	$W_{m}^{s}=\left(W_{T} \sin m \phi_{1}\right) / \pi a_{i} \quad m>0$

STIFFNESS AND MASS MATRICES:

Traditionally, this applied load is implemented as nodal conditions.

TABLE 18-9 (continued) POINT MATRICES FOR CONCENTRATED OCCURRENCES FOR CIRCULAR PLATES

Case	Point Matrices		
2.	TRANSFER MATRIX:		
Uniform line ring load W	$W_{0}^{c}=W \quad W_{0}^{s}=0 \quad W_{m}^{c}=W_{m}^{s}=0 \quad m>0$		

(force/length)

3.

Uniform line load W
(force/length in ϕ direction)

STIFFNESS MATRIX:
Traditionally, this applied load is implemented as nodal conditions.

TRANSFER MATRIX:
$W_{0}^{c}=W\left(\phi_{2}-\phi_{1}\right) / 2 \pi \quad W_{0}^{s}=0$
$W_{m}^{c}=W\left(\sin m \phi_{2}-\sin m \phi_{1}\right) / m \pi \quad m>0$
$W_{m}^{s}=-W\left(\cos m \phi_{2}-\cos m \phi_{1}\right) / m \pi \quad m>0$

STIFFNESS MATRIX:

Traditionally, this applied load is implemented as nodal conditions.
4.

Concentrated moment
C_{T} (force - length)

TRANSFER MATRIX:
$C_{0}^{c}=C_{T} / 2 \pi a_{i} \quad C_{0}^{s}=0$
$C_{m}^{c}=\left(C_{T} \cos m \phi_{1}\right) / \pi a_{i} \quad m>0$
$C_{m}^{s}=\left(C_{T} \sin m \phi_{1}\right) / \pi a_{i} \quad m>0$
STIFFNESS MATRIX:
Traditionally, this applied load is implemented as nodal conditions.

5.	TRANSFER MATRIX:

Line ring spring k_{1}
(force/length squared) ${ }^{a}$

6.

Rotary line ring spring $\left(\right.$ force - length/length) ${ }^{a}$

See transfer matrix under notation.
STIFFNESS MATRIX: $a=a_{i}$
$\left[\begin{array}{c}V_{a} \\ M_{a}\end{array}\right]=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}w_{a} \\ \theta_{a}\end{array}\right]$

TRANSFER MATRIX:
See transfer matrix under notation.
STIFFNESS MATRIX: $a=a_{i}$
$\left[\begin{array}{c}V_{a} \\ M_{a}\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & k_{1}^{*}\end{array}\right]\left[\begin{array}{c}w_{a} \\ \theta_{a}\end{array}\right]$

TABLE 18-9 (continued) POINT MATRICES FOR CONCENTRATED OCCURRENCES FOR CIRCULAR PLATES

Case	Point Matrices
7.	TRANSFER MATRIX:
Ring lumped mass m_{i}	See transfer matrix under notation.

(mass/length) ${ }^{a}$

MASS MATRIX: $a=a_{i}$
$\left[\begin{array}{c}V_{a} \\ M_{a}\end{array}\right]=-\omega^{2}\left[\begin{array}{cc}m_{i} & 0 \\ 0 & m_{i} r_{\phi}^{2}\end{array}\right]\left[\begin{array}{c}w_{a} \\ \theta_{a}\end{array}\right]$
$\rho=$ mass per unit area Rotary inertia terms contain r_{r}, r_{ϕ}.

Reinforcing ring must be symmetric in z direction symmetric in z directio
about middle plane of plate. ${ }^{a}$

TRANSFER MATRIX:

$$
\mathbf{U}_{i}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-m_{i} \omega^{2} & 0 & 1 & 0 & 0 \\
0 & E_{S} I_{s} / a_{i}^{2}-m_{i} r_{s}^{2} \omega^{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

STIFFNESS AND MASS MATRICES: $a=a_{i}$

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{a} \\
M_{a}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & E_{s} I_{s} / a_{i}^{2}
\end{array}\right]\left[\begin{array}{c}
w_{a} \\
\theta_{a}
\end{array}\right]} \\
& {\left[\begin{array}{c}
V_{a} \\
M_{a}
\end{array}\right]=-\omega^{2}\left[\begin{array}{cc}
m_{i} & 0 \\
0 & m_{i} r_{s}^{2}
\end{array}\right]\left[\begin{array}{c}
w_{a} \\
\theta_{a}
\end{array}\right]}
\end{aligned}
$$

[^30]
TABLE 18-10 STIFFNESS MATRICES FOR INFINITE CIRCULAR PLATE ELEMENT WITH ELASTIC FOUNDATION ${ }^{a}$

Notation

Use the stiffness matrix of this table for the outer infinite plate element. Use stiffness matrices of Table 18-8 for inner elements. Loadings should be placed on inner elements, represented by the loading vectors of Table 18-8. The plate response is given by the Fourier series expansion of Eq. (18.10).

$m=0,1,2, \ldots$, identifies term in Fourier series expansion

$E=$ modulus of elasticity
$\nu=$ Poisson's ratio
$D=$ plate rigidity,$=E h^{3} /\left[12\left(1-v^{2}\right)\right]$
$\operatorname{ker}_{m}, \operatorname{kei}_{m}=$ Kelvin functions of m th order
$V_{a}^{j}, M_{a}^{j}=$ shear force and bending moment
 per unit length along circumference at $r=a$
$w_{a}^{j}, \theta_{a}^{j}=$ deflection and slope at $r=a$
$j=c, s$
Stiffness Matrices

Infinite Circular Element with Center Hole on Elastic Foundation

$m=0$ (SYMMETRIC BENDING)

$$
\begin{aligned}
& {\left[\begin{array}{c}
V_{a} \\
M_{a}
\end{array}\right]=\left[\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right]\left[\begin{array}{c}
w_{a} \\
\theta_{a}
\end{array}\right] \quad w_{a}=w_{a}^{c}, \quad \theta_{a}=\theta_{a}^{c}, \quad M_{a}=M_{a}^{c}, \quad V_{a}=V_{a}^{c}} \\
& \quad \mathbf{k}_{a a}^{i} \\
& k_{11}=2 \pi a\left[b_{33}(a \lambda) e_{23}(a \lambda)-b_{34}(a \lambda) e_{23}(a \lambda)\right] / B_{0} \\
& k_{12}=k_{21}=2 \pi a\left[b_{33}(a \lambda) e_{14}(a \lambda)-b_{34}(a \lambda) e_{13}(a \lambda)\right] / B_{0} \\
& k_{22}=2 \pi a\left[b_{43}(a \lambda) e_{14}(a \lambda)-b_{44}(a \lambda) e_{13}(a \lambda)\right] / B_{0} \\
& B_{0}=e_{14}(a \lambda) e_{23}(a \lambda)-e_{13}(a \lambda) e_{24}(a \lambda) \\
& e_{13}=\operatorname{ker} x \quad e_{14}=\operatorname{kei} x \quad x=\lambda r \quad \lambda=(k / D)^{1 / 4} \\
& \text { where ker } x, \text { kei } x \text { are Kelvin functions of order } 0 .
\end{aligned}
$$

$e_{23}=\frac{\lambda}{\sqrt{2}}\left(\operatorname{ker}_{1} x+\operatorname{kei}_{1} x\right) \quad e_{24}=\frac{\lambda}{\sqrt{2}}\left(-\operatorname{ker}_{1} x+\operatorname{kei}_{1} x\right)$
$b_{33}=D \lambda^{2}\left[\frac{\lambda}{\sqrt{2}}\left(\operatorname{kei}_{1} x+\operatorname{ker}_{1} x\right)-\frac{2}{r} \operatorname{kei} x\right]$
$b_{34}=-\frac{D \lambda^{3}}{\sqrt{2}}\left(\operatorname{ker}_{1} x+\operatorname{kei}_{1} x\right)$
$b_{43}=D \lambda\left[\frac{1-v}{\sqrt{2} r}\left(\operatorname{ker}_{1} x+\operatorname{kei}_{1} x\right)-\lambda\right.$ kei $\left.x\right]$
$b_{44}=-D \lambda\left[\frac{1-v}{\sqrt{2} r}\left(\operatorname{ker}_{1} x-\operatorname{kei}_{1} x\right)+\lambda \operatorname{ker} x\right]$

TABLE 18-10 (continued) STIFFNESS MATRICES FOR INFINITE CIRCULAR PLATE ELEMENT WITH ELASTIC FOUNDATION ${ }^{a}$

Stiffness Matrices

$m \geq 1$ (ASYMMETRIC BENDING)
$\left[\begin{array}{c}V_{a}^{j} \\ M_{a}^{j}\end{array}\right]=\underset{k_{a a}^{k_{11}}}{\left[\begin{array}{ll}k_{12} \\ k_{21} & k_{22}\end{array}\right]^{i}} \underset{\mathbf{k}_{a}^{i}}{\left[\begin{array}{c}w_{a}^{j} \\ \theta_{a}^{j}\end{array}\right] \quad j=s, c}$
$k_{11}=2 \pi a\left[b_{33}(a \lambda) e_{24}(a \lambda)-b_{34}(a \lambda) e_{23}(a \lambda)\right] / B_{m}$
$k_{12}=k_{21}=2 \pi a\left[b_{33}(a \lambda) e_{14}(a \lambda)-b_{34}(a \lambda) e_{13}(a \lambda)\right] / B_{m}$
$k_{22}=2 \pi a\left[b_{43}(a \lambda) e_{14}(a \lambda)-b_{44}(a \lambda) e_{13}(a \lambda)\right] / B_{m}$
$B_{m}=e_{14}(a \lambda) e_{23}(a \lambda)-e_{13}(a \lambda) e_{24}(a \lambda)$
$e_{13}=\operatorname{ker}_{m} x \quad e_{14}=\operatorname{kei}_{m} x \quad x=\lambda r \quad \lambda=(k / D)^{1 / 4}$
$e_{23}=-\lambda\left[\frac{m}{x} \operatorname{ker}_{m} x+\frac{1}{\sqrt{2}}\left(\operatorname{ker}_{m-1} x+\operatorname{kei}_{m-1} x\right)\right]$
$e_{24}=-\lambda\left[\frac{m}{x} \operatorname{kei}_{m} x+\frac{1}{\sqrt{2}}\left(\operatorname{kei}_{m-1} x-\operatorname{ker}_{m-1} x\right)\right]$
$e_{33}=\lambda^{2} \frac{d}{d x} e_{23} \quad e_{34}=\lambda^{2} \frac{d}{d x} e_{24} \quad e_{43}=\lambda \frac{d}{d x} e_{33} \quad e_{44}=\lambda \frac{d}{d x} e_{34}$
$b_{33}=D\left[\frac{m^{2}(v-3)}{r^{3}} e_{13}+\frac{1+m^{2}(2-v)}{r^{2}} e_{23}-\frac{e_{33}}{r}-e_{43}\right]$
$b_{34}=D\left[\frac{m^{2}(\nu-3)}{r^{3}} e_{14}+\frac{1+m^{2}(2-v)}{r^{2}} e_{24}-\frac{e_{34}}{r}-e_{44}\right]$
$b_{43}=D\left(\frac{\nu m^{2}}{r^{2}} e_{13}-\frac{\nu}{r} e_{23}-e_{33}\right) \quad b_{44}=D\left(\frac{\nu m^{2}}{r^{2}} e_{14}-\frac{\nu}{r} e_{24}-e_{34}\right)$
${ }^{a}$ From Ref. [18.10].

TABLE 18-11 GEOMETRIC STIFFNESS MATRICES FOR CIRCULAR PLATES: SYMMETRIC CASE ${ }^{\text {a }}$

Notation
$w, \theta=$ deflection and slope $\quad \gamma=b / a$
$h=$ thickness of plate
$u_{a}=$ radial displacement at $r=a$; obtained from a disk analysis using the formulas of Chapter 19
Sign convention is the same as that for stiffness matrices in Table 18-8.

Case	Geometric Stiffness Matrices for Symmetric Bending ($m=0$)
1.	This matrix corresponds to a radial compressive force (per unit length) P in plane of plate; this in-plane force in an element is obtained from a disk Circular plate element with analysis (Chapter 19) of the entire disk subject to a system of prescribed applied in-plane loadings.

$\mathbf{k}_{G}^{i}=\left[\begin{array}{llll}g_{11} & g_{12} & g_{13} & g_{14} \\ g_{21} & g_{22} & g_{23} & g_{24} \\ g_{31} & g_{32} & g_{33} & g_{34} \\ g_{41} & g_{42} & g_{43} & g_{44}\end{array}\right] \quad \mathbf{v}^{i}=\left[\begin{array}{c}w_{a} \\ \theta_{a} \\ w_{b} \\ \theta_{b}\end{array}\right]$
$g_{i j}=g_{j i}=(-1)^{i+j} 2 \pi \sum_{k=1}^{4} \sum_{l=1}^{4} \alpha_{i k} \alpha_{j l} \zeta_{k l} \quad i, j=1,2,3,4$
where $\alpha_{i k}, \alpha_{j l}$ are given in Table 18-12 for $m=0$.
$\zeta_{k l}=\int_{a}^{b}\left[1-\left(1-\frac{a^{2}}{r^{2}}\right) C_{1}\right] \beta_{k}^{\prime}(r) \beta_{l}^{\prime}(r) r d r \quad k, l=1,2,3,4$
$\beta_{1}^{\prime}(r)=0 \quad \beta_{2}^{\prime}(r)=\frac{2 r}{a^{2}} \quad \beta_{3}^{\prime}(r)=\frac{1}{r}$
$\beta_{4}^{\prime}(r)=\frac{r}{a^{2}}\left(1+2 \ln \frac{r}{a}\right)$
$C_{1}=\frac{1-v}{2}+u_{a} \frac{E h}{2 a P} \quad \zeta_{k l}=\zeta_{l k}$
In explicit form:
$\begin{aligned} \zeta_{11}= & \zeta_{12}=\zeta_{13}=\zeta_{14}=0 \\ \zeta_{22}= & \left(\gamma^{2}-1\right)\left[1\left(\gamma^{2}+1\right)-C_{1}\left(\gamma^{2}-1\right)\right] \quad \gamma=b / a \\ \zeta_{23}= & \left(1-C_{1}\right)\left(\gamma^{2}-1\right)+2 C_{1} \ln \gamma \\ \zeta_{24}= & \left(1-C_{1}\right)\left[\gamma^{4}\left(\frac{1}{4}+\ln \gamma\right)-\frac{1}{4}\right]+2 C_{1} \gamma^{2} \ln \gamma \\ \zeta_{33}= & \left(1-C_{1}\right) \ln \gamma+\frac{1}{2} C_{1}\left(1-\gamma^{-2}\right) \\ \zeta_{34}= & \left(1-C_{1}\right) \gamma^{2} \ln \gamma+C_{1}(1+\ln \gamma) \ln \gamma \\ \zeta_{44}= & \left(1-C_{1}\right)\left[\gamma^{4}\left(\ln ^{2} \gamma+\frac{1}{2} \ln \gamma+\frac{1}{8}\right)-\frac{1}{8}\right] \\ & +C_{1}\left[\gamma^{2}\left(2 \ln ^{2} \gamma+\frac{1}{2}\right)-\frac{1}{2}\right]\end{aligned}$

TABLE 18-11 (continued) GEOMETRIC STIFFNESS MATRICES FOR CIRCULAR PLATES: SYMMETRIC CASE ${ }^{a}$

Case	Geometric Stiffness Matrices for Symmetric Bending $(m=0)$
2.	This matrix corresponds to an in-plane compressive force P_{a} (force/length) applied at $r=a$.
Circular plate without center hole	$\mathbf{k}_{G}^{i}=\left[\begin{array}{ccc}0 & 0 \\ 0 & \frac{1}{2} \pi a^{2}\end{array}\right] \quad \mathbf{v}^{i}=\left[\begin{array}{c}w_{a} \\ \theta_{a}\end{array}\right]$

[^31]
TABLE 18-12 MASS MATRICES FOR CIRCULAR PLATE ELEMENTS IN BENDING ${ }^{a}$

Notation

```
w,}0=\mathrm{ deflection and slope
    \rho= mass per unit area
    \gamma=b/a
    M = total mass of circular plate element with center hole
```

If the mass is distributed along a circumference from radius $r=r^{-}$to $r=r^{+}$, then $\left.M=\rho \pi\left[r^{+}\right)^{2}-\left(r^{-}\right)^{2}\right]$. The sign convention is the same as that for the stiffness matrices in Table 18-8.

Mass matrix:

$$
\mathbf{m}_{i}=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right] \quad \mathbf{v}^{i}=\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
w_{b} \\
\theta_{b}
\end{array}\right]
$$

Circular Plate with Center Hole, Consistent Mass

$m=0$ (SYMMETRIC DEFORMATION) $\quad \gamma=b / a$	
$m_{k j}$	$=(-1)^{k+j} 2 \pi \sum_{n=1}^{4} \sum_{l=1}^{4} \alpha_{k n} \alpha_{j l} \lambda_{n l}$
$\lambda_{n l}$	$=\int_{a}^{b} \rho \beta_{n}(r) \beta_{l}(r) r d r$
α_{11}	$=\gamma^{2}\left[\gamma^{2}-1+2 \ln \gamma-4 \ln ^{2} \gamma\right] / H_{0}$
α_{12}	$=\left(1-2 \gamma^{2} \ln \gamma-\gamma^{2}\right) / H_{0}$
α_{13}	$=\left(4 \gamma^{2} \ln \gamma\right) / H_{0}$
α_{14}	$=2\left(\gamma^{2}-1\right) / H_{0}$
α_{21}	$=(2 \gamma a \ln \gamma) / H_{0}$
α_{22}	$=-\alpha_{21} \quad \alpha_{23}=a \gamma^{2}\left(\gamma^{2}-1-2 \ln \gamma\right) / H_{0}$
α_{24}	$=a\left(2 \gamma^{2} \ln \gamma-\gamma^{2}+1\right) / H_{0}$
α_{31}	$=\alpha_{12} \quad \alpha_{32}=-\alpha_{12} \quad \alpha_{33}=-\alpha_{13} \quad \alpha_{34}=-\alpha_{14}$
α_{41}	$=\left[a \gamma\left(\gamma^{2}-1\right) \ln \gamma\right] / H_{0}$
α_{42}	$=-\alpha_{41} \quad \alpha_{43}=a \gamma\left(2 \gamma^{2} \ln \gamma-\gamma^{2}+1\right) / H_{0}$
α_{44}	$=a \gamma\left(\gamma^{2}-1-2 \ln \gamma\right) / H_{0}$
H_{0}	$=\left(\gamma^{2}-1\right)^{2}-4 \gamma^{2} \ln { }^{2} \gamma \quad \beta_{1}(r)=1, \quad \beta_{2}(r)=(r / a)^{2}$
$\beta_{3}(r)$	$=\ln (r / a) \quad \beta_{4}(r)=(r / a)^{2} \ln (r / a) \quad$

TABLE 18-12 (continued) MASS MATRICES FOR CIRCULAR PLATE ELEMENTS IN BENDING ${ }^{a}$

For uniform mass density ρ,
$\lambda_{11}=\rho a^{2}\left(\gamma^{2}-1\right) / 2 \quad \lambda_{21}=\rho a^{2}\left(\gamma^{4}-1\right) / 4 \quad \lambda_{22}=\rho a^{2}\left(\gamma^{6}-1\right) / 6$
$\lambda_{31}=\rho a^{2}\left[2 \gamma^{2} \ln \gamma-\left(\gamma^{2}-1\right)\right] / 4 \quad \lambda_{32}=\rho a^{2}\left[4 \gamma^{2} \ln \gamma-\left(\gamma^{4}-1\right)\right] / 16$
$\lambda_{33}=\rho a^{2}\left[2 \gamma^{2} \ln \gamma(\ln \gamma-1)+\left(\gamma^{2}-1\right)\right] / 4 \quad \lambda_{41}=\lambda_{32}$
$\lambda_{42}=\rho a^{2}\left[6 \gamma^{6} \ln \gamma-\left(\gamma^{6}-1\right)\right] / 36$
$\lambda_{43}=\rho a^{2}\left[4 \gamma^{4} \ln \gamma(2 \ln \gamma-1)+\left(\gamma^{4}-1\right)\right] / 32$
$\lambda_{44}=\rho a^{2}\left[6 \gamma^{6} \ln \gamma(3 \ln \gamma-1)+\left(\gamma^{6}-1\right)\right] / 108 \quad \lambda_{n l}=\lambda_{l n} \quad(n, l=1,2,3,4)$
$m \geq 1$ (ASYMMETRIC DEFORMATION)
$m_{k j}=(-1)^{k+j} \pi \sum_{n=1}^{4} \sum_{l=1}^{4} \alpha_{k n} \alpha_{j l} \lambda_{n l}$
$\lambda_{n l}=\int_{a}^{b} \rho r \beta_{n}(r) \beta_{l}(r) d r$
$m=1, \rho=$ CONST., $\lambda=b / a$
$\alpha_{11}=\gamma\left[2\left(\gamma^{4}-3\right) \ln \gamma-\left(\gamma^{2}-1\right)\left(\gamma^{2}-3\right)\right] / H_{1}$
$\alpha_{12}=\gamma^{3}\left[\gamma^{2}(2 \ln \gamma-3)+3\right] / H_{1}$
$\alpha_{13}=\gamma\left(\gamma^{2}+2 \ln \gamma-1\right) / H_{1}$
$\alpha_{14}=2 \gamma\left(3+\gamma^{2}\right)\left(1-\gamma^{2}\right) / H_{1}$
$\alpha_{21}=a \gamma\left[2+\left(\gamma^{4}+1\right)(2 \ln \gamma-1)\right] / H_{1}$
$\alpha_{22}=a \gamma^{3}\left[\gamma^{2}(1-2 \ln \gamma)-1\right] / H_{1}$
$\alpha_{23}=a \gamma\left(\gamma^{2}-2 \ln \gamma-1\right) / H_{1} \quad \alpha_{24}=-2 a \gamma\left(\gamma^{2}-1\right)^{2} / H_{1}$
$\alpha_{31}=\left[4 \gamma^{2}(1+\ln \gamma)-3 \gamma^{4}-1\right] / H_{1} \quad \alpha_{32}=\gamma^{2}\left(3 \gamma^{2}-3-2 \ln \gamma\right) / H_{1}$
$\alpha_{33}=\left[1-\gamma^{2}(1+2 \ln \gamma)\right] / H_{1} \quad \alpha_{34}=2\left(\gamma^{2}-1\right)\left(3 \gamma^{2}+1\right) / H_{1}$
$\alpha_{41}=a \gamma\left(\gamma^{4}-4 \gamma^{2} \ln \gamma-1\right) / H_{1} \quad \alpha_{42}=a \gamma^{3}\left(2 \ln \gamma+1-\gamma^{2}\right) / H_{1}$
$\alpha_{43}=a \gamma\left[\gamma^{2}(2 \ln \gamma-1)+1\right] / H_{1} \quad \alpha_{44}=-2 a \gamma\left(\gamma^{2}-1\right)^{2} / H_{1}=\alpha_{24}$
$H_{1}=4 \gamma\left[\left(\gamma^{4}-1\right) \ln \gamma-\left(\gamma^{2}-1\right)^{2}\right]$
$\beta_{1}(r)=r / a \quad \beta_{2}(r)=(r / a)^{-1} \quad \beta_{3}(r)=(r / a)^{3}$
$\beta_{4}(r)=(r / a) \ln (r / a)$
$\lambda_{11}=\rho a^{2}\left(\gamma^{4}-1\right) / 4 \quad \lambda_{22}=\rho a^{2} \ln \gamma$
$\lambda_{21}=\rho a^{2}\left(\gamma^{2}-1\right) / 2 \quad \lambda_{32}=\rho a^{2}\left(\gamma^{4}-1\right) / 4$
$\lambda_{31}=\rho a^{2}\left(\gamma^{6}-1\right) / 6 \quad \lambda_{42}=\rho a^{2}\left(2 \gamma^{2} \ln \gamma-\gamma^{2}+1\right) / 4$
$\lambda_{41}=\rho a^{2}\left(4 \gamma^{4} \ln \gamma-\gamma^{4}+1\right) / 16 \quad \lambda_{33}=\rho a^{2}\left(\gamma^{8}-1\right) / 8$
$\lambda_{43}=\rho a^{2}\left(6 \gamma^{6} \ln \gamma-\gamma^{6}+1\right) / 36$
$\lambda_{44}=\rho a^{2}\left(8 \gamma^{4} \ln ^{2} \gamma-4 \gamma^{4} \ln \gamma+\gamma^{4}-1\right) / 32$
$\lambda_{n l}=\lambda_{l n} \quad(n, l=1,2,3,4)$

```
\(m>1 ; \rho=\mathrm{CONST}\)
    \(\alpha_{11}=\gamma^{2}\left[m^{2}\left(1-\gamma^{2}\right)-(m+2)\left(1-\gamma^{-2 m}\right)\right] / H_{m}\)
    \(\alpha_{12}=\gamma^{2}\left[m^{2}\left(1-\gamma^{2}\right)+(m-2)\left(1-\gamma^{2 m}\right)\right] / H_{m}\)
    \(\alpha_{13}=m\left[(m-1)\left(\gamma^{2}-1\right)-\left(\gamma^{-2 m+2}-1\right)\right] / H_{m}\)
    \(\alpha_{14}=m\left[(m+1)\left(\gamma^{2}-1\right)+\left(\gamma^{2 m+2}-1\right)\right] / H_{m}\)
    \(\alpha_{21}=a \gamma^{2}\left[m\left(1-\gamma^{2}\right)+\left(1-\gamma^{-2 m}\right)\right] / H_{m}\)
    \(\alpha_{22}=a \gamma^{2}\left[m\left(\gamma^{2}-1\right)+\left(1-\gamma^{2 m}\right)\right] / H_{m}\)
    \(\alpha_{23}=a\left[m\left(\gamma^{2}-1\right)-\gamma^{2}\left(1-\gamma^{-2 m}\right)\right] / H_{m}\)
    \(\alpha_{24}=a\left[m\left(1-\gamma^{2}\right)+\gamma^{2}\left(\gamma^{2 m}-1\right)\right] / H_{m}\)
    \(\alpha_{31}=\gamma^{2}\left[m^{2} \gamma^{-m-2}\left(\gamma^{2}-1\right)+(m+2)\left(\gamma^{m}-\gamma^{-m}\right)\right] / H_{m}\)
    \(\alpha_{32}=\gamma^{2}\left[m^{2} \gamma^{m-2}\left(\gamma^{2}-1\right)+(m-2)\left(\gamma^{m}-\gamma^{-m}\right)\right] / H_{m}\)
    \(\alpha_{33}=m\left[(m-2) \gamma^{-m}\left(1-\gamma^{2}\right)-\left(\gamma^{m}-\gamma^{-m}\right)\right] / H_{m}\)
    \(\alpha_{34}=m\left[(m+2) \gamma^{m}\left(1-\gamma^{2}\right)-\left(\gamma^{m}-\gamma^{-m}\right)\right] / H_{m}\)
    \(\alpha_{41}=a \gamma^{2}\left[m \gamma^{-m-1}\left(\gamma^{2}-1\right)-\gamma\left(\gamma^{m}-\gamma^{-m}\right)\right] / H_{m}\)
    \(\alpha_{42}=a \gamma^{2}\left[m \gamma^{m-1}\left(1-\gamma^{2}\right)+\gamma\left(\gamma^{m}-\gamma^{-m}\right)\right] / H_{m}\)
    \(\alpha_{43}=a\left[m \gamma^{-m+1}\left(1-\gamma^{2}\right)+\gamma\left(\gamma^{m}-\gamma^{-m}\right)\right] / H_{m}\)
    \(\alpha_{44}=a\left[m \gamma^{m+1}\left(\gamma^{2}-1\right)-\gamma\left(\gamma^{m}-\gamma^{-m}\right)\right] / H_{m}\)
    \(H_{m}=2\left[\gamma^{2}\left(\gamma^{m}-\gamma^{-m}\right)^{2}-m^{2}\left(\gamma^{2}-1\right)^{2}\right]\)
\(\beta_{1}(r)=\left(\frac{r}{a}\right)^{m}\)
\(\beta_{2}(r)=\left(\frac{r}{a}\right)^{-m}\)
\(\beta_{3}(r)=\left(\frac{r}{a}\right)^{2+m}\)
\(\beta_{4}(r)=\left(\frac{r}{a}\right)^{2-m}\)
    \(\lambda_{11}=\rho a^{2}\left(\gamma^{2 m+2}-1\right) /(2 m+2)\)
    \(\lambda_{21}=\rho a^{2}\left(\gamma^{2}-1\right) / 2\)
    \(\lambda_{22}=\rho a^{2}\left(1-\gamma^{2-2 m}\right) /(2 m-2)\)
    \(\lambda_{31}=\rho a^{2}\left(\gamma^{2 m+4}-1\right) /(2 m+4)\)
    \(\lambda_{32}=\rho a^{2}\left(\gamma^{4}-1\right) / 4\)
    \(\lambda_{33}=\rho a^{2}\left(\gamma^{2 m+6}-1\right) /(2 m+6)\)
    \(\lambda_{41}=\rho a^{2}\left(\gamma^{4}-1\right) / 4\)
    \(\lambda_{42}=\rho a^{2}\left(1-\gamma^{4-2 m}\right) /(2 m-4) \quad(m \neq 2)\)
    \(\lambda_{42}=\rho a^{2} \ln \gamma \quad(m=2)\)
    \(\lambda_{43}=\rho a^{2}\left(\gamma^{6}-1\right) / 6\)
    \(\lambda_{44}=\rho a^{2}\left(1-\gamma^{6-2 m}\right) /(2 m-6) \quad(m \neq 3)\)
    \(\lambda_{44}=\rho a^{2} \ln \gamma \quad(m=3)\)
    \(\gamma=b / a \quad \lambda_{n l}=\lambda_{l n} \quad(n, l=1,2,3,4)\)
```



```
\(m=0\) (SYMMETRIC DEFORMATION)
\(\mathbf{m}^{i}=\left[\begin{array}{cc}\pi \rho b^{2} & \pi \rho b^{3} / 4 \\ \pi \rho b^{3} / 4 & \pi \rho b^{4} / 12\end{array}\right]\)
\(\mathbf{v}^{i}=\left[\begin{array}{l}w_{b} \\ \theta_{b}\end{array}\right]\)
\(m \geq 1\) (ASYMMETRIC DEFORMATION)
\(\mathbf{m}^{i}=\left[\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right]\)
    \(\mathbf{v}^{i}=\left[\begin{array}{l}w_{b} \\ \theta_{b}\end{array}\right]\)
\(m_{11}=\pi \rho b^{2}\left[(m+2)^{2} /(2 m+2)-m+m^{2} /(2 m+6)\right] / 4\)
\(m_{12}=m_{21}=-\pi \rho b^{3}[(m+1) /(m+2)-(m+2) /(2 m+2)-m /(2 m+6)] / 4\)
\(m_{22}=\pi \rho b^{4}[1 /(2 m+2)-2 /(2 m+4)+1 /(2 m+6)] / 4\)
```

Circular Plate with Center Hole, Lumped Mass
MASS LUMPED ALONG CIRCUMFERENCE AT $r=a$:
$\mathbf{m}^{i}=\left[\begin{array}{cccc}M & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

$\mathbf{v}^{i}=\left[\begin{array}{c}w_{a} \\ \theta_{a} \\ w_{b} \\ \theta_{b}\end{array}\right]$
MASS LUMPED ALONG CIRCUMFERENCE AT $r=b$:

$$
\begin{aligned}
\mathbf{m}^{i} & =\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & M & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathbf{v}^{i} & =\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
w_{b} \\
\theta_{b}
\end{array}\right]
\end{aligned}
$$

TABLE 18-12 (continued) MASS MATRICES FOR CIRCULAR PLATE ELEMENTS IN BENDINGa ${ }^{a}$
MASS LUMPED AT BOTH $r=a$ AND $r=b$:
$\mathbf{m}^{i}=\left[\begin{array}{cccc}\frac{1}{2} M & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} M & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$\mathbf{v}^{i}=\left[\begin{array}{c}w_{a} \\ \theta_{a} \\ w_{b} \\ \theta_{b}\end{array}\right]$

Circular Plate without Center Hole, Lumped Mass
MASS LUMPED AT $r=b:$
$\mathbf{m}^{i}=\left[\begin{array}{cc}M_{0} & 0 \\ 0 & 0\end{array}\right]$
$\mathbf{v}^{i}=\left[\begin{array}{c}w_{b} \\ \theta_{b}\end{array}\right]$
$M_{0}=\pi b^{2} \rho$

${ }^{a}$ From Ref. [18.10].

TABLE 18-13 DISPLACEMENTS AND STRESSES FOR LARGE DEFLECTION OF UNIFORMLY LOADED CIRCULAR PLATES

Notation
$E=$ modulus of elasticity
$v=$ Poisson's ratio
$h=$ thickness of plate
$a=$ radius of plate
$w_{0}=$ maximum deflection at center
$p_{1}=$ uniformly distributed load on plate

The stresses in this table are at the lower surface. To use this table, solve the relationship between load and deflection for w_{0} and then calculate the other responses.

Plates	Deflection and Stresses
1.	Relationship between load and deflection:
Simply supported outer edge with in-plane force [18.11]	$\frac{p_{1} a^{4}}{E h^{4}}=\frac{5.333}{1-v^{2}} \frac{w_{0}}{h}+\frac{2(23-9 \nu)}{21(1-v)}\left(\frac{w_{0}}{h}\right)^{3}$

Extensional radial stress at center:
$\left(\sigma_{r e}\right)_{0}=\frac{E h^{2}}{a^{2}} \frac{5-3 v}{6(1-v)}\left(\frac{w_{0}}{h}\right)^{2}$
Maximum stress in bending at center:
$\left(\sigma_{r b}\right)_{0}=\frac{E h^{2}}{a^{2}} \frac{2}{1-v}\left(\frac{w_{0}}{h}\right)$
Maximum total radial stress at center:
$\sigma_{r 0}=\left(\sigma_{r e}\right)_{0}+\left(\sigma_{r b}\right)_{0}$
Maximum total radial stress at outer boundary:
$\sigma_{r a}=\frac{E h^{2}}{a^{2}}\left[\frac{1}{3(1-v)}\left(\frac{w_{0}}{h}\right)^{2}+\frac{4}{1-v^{2}} \frac{w_{0}}{h}\right]$
Tensile in plane radial outer boundary reaction per unit length:

$$
P=\frac{1}{3(1-v)} \frac{E h^{3}}{a^{2}}\left(\frac{w_{0}}{h}\right)^{2}
$$

TABLE 18-13 (continued) DISPLACEMENTS AND STRESSES FOR LARGE DEFLECTION OF UNIFORMLY LOADED CIRCULAR PLATES

Plates	Deflection and Stresses
2.	Relationship between load and deflection:
Simply supported outer edge without in-plane force $[18.14]$ p_{1}	$\frac{p_{1} a^{4}}{E h^{4}}=\frac{1.016}{1-v} \frac{w_{0}}{h}+0.376\left(\frac{w_{0}}{h}\right)^{3}$

The radial displacement at the outer edge is not restrained. Hence the radial force P is zero.
3.

Fixed at outer edge with in-plane force [18.14]

The radial displacement at the outer edge is zero.

Relationship between load and deflection:

$$
\frac{p_{1} a^{4}}{E h^{4}}=\frac{5.333}{1-v^{2}} \frac{w_{0}}{h}+0.857\left(\frac{w_{0}}{h}\right)^{3}
$$

Maximum radial stress at center:

$$
\sigma_{r 0}=\frac{E h^{2}}{a^{2}}\left[\frac{2}{1-v^{2}} \frac{w_{0}}{h}+0.5\left(\frac{w_{0}}{h}\right)^{2}\right]
$$

Maximum radial stress at outer boundary:

$$
\sigma_{r a}=\frac{E h^{2}}{a^{2}}\left(\frac{4}{1-v^{2}} \frac{w_{0}}{h}\right)
$$

TABLE 18-14 STRESSES OF RECTANGULAR PLATES

Notation

$\begin{aligned} w & =\text { deflection } \\ \sigma_{x}, \sigma_{y} & =\text { normal str } \\ \tau_{x y} & =\text { shear stre } \\ E_{x}, E_{y} & =\text { modulus } \\ & E_{x}=E_{y} \\ v_{x}, v_{y}= & \text { Poisson's } \\ \alpha_{x}, \alpha_{y}= & \text { thermal ex } \\ P=P_{x}, P_{y}, P_{x y}= & \text { in-plane } \\ G= & \text { shear mod } \\ & \text { in } x \text { and } y \\ h= & \text { thickness } \\ M_{x}=M, M_{y}= & \text { bending } \mathrm{n} \\ & \text { to } x \text { and } \\ M_{x y} & =\text { twisting } \\ Q_{x}, Q_{y}= & \text { shear forc } \\ & x \text { and } y \text { a } \end{aligned}$	sses in x and y directions elasticity in x and y directions; for isotropic materials, E atio in x and y directions ansion coefficients in x and y directions ces (Fig. 18-4); P_{x} and P_{y} are in compression lus of elasticity; has the same value directions plate ments per unit length on surface normal axes ment per unit length per unit length on surfaces normal to s
Plates	Stresses
1. Isotropic or orthotropic with material properties that do not vary through depth of plate	$\begin{aligned} \sigma_{x} & =-\frac{P}{h}+\frac{M z}{h^{3} / 12} \quad \sigma_{y}=-\frac{P_{y}}{h}+\frac{M_{y} z}{h^{3} / 12} \\ \tau_{x y} & =\frac{P_{x y}}{h}-\frac{M_{x y} z}{h^{3} / 12} \\ \tau_{x z} & =\frac{3 Q_{x}}{2 h}\left[1-\left(\frac{z}{h / 2}\right)^{2}\right] \\ \tau_{y z} & =\frac{3 Q_{y}}{2 h}\left[1-\left(\frac{z}{h / 2}\right)^{2}\right] \end{aligned}$

TABLE 18-14 (continued) STRESSES OF RECTANGULAR PLATES

Plates	Stresses
2. Orthotropic with material properties that vary through depth of plate; variation must be symmetric about middle surface; in-plane force $P_{x y}$ ignored	$\begin{aligned} \sigma_{x}= & \frac{-E_{x} P}{\int_{-h / 2}^{h / 2} E_{x} d z}+\frac{E_{x} M z}{\int_{-h / 2}^{h / 2} E_{x} z^{2} d z} \\ \sigma_{y}= & \frac{-E_{y} P_{y}}{\int_{-h / 2}^{h / 2} E_{y} d z}+\frac{E_{y} M_{y} z}{\int_{-h / 2}^{h / 2} E_{y} z^{2} d z} \\ \tau_{x y}= & \frac{-G M_{x y} z}{\int_{-h / 2}^{h / 2} G z^{2} d z} \\ \tau_{x z}= & \frac{\partial}{\partial x}\left[\frac{\partial^{2} w}{\partial x^{2}} \int_{-h / 2}^{z} \frac{E_{x} z}{1-v_{x} v_{y}} d z\right. \\ & \left.+\frac{\partial^{2} w}{\partial y^{2}} \int_{-h / 2}^{z}\left(\frac{E_{x} v_{y}}{1-v_{x} v_{y}}+2 G\right) z d z\right] \\ \tau_{y z}= & \frac{\partial}{\partial y}\left[\frac{\partial^{2} w}{\partial x^{2}} \int_{-h / 2}^{z}\left(\frac{E_{x} v_{y}}{1-v_{x} v_{y}}+2 G\right) z d z\right. \\ & \left.\frac{\partial^{2} w}{\partial y^{2}} \int_{-h / 2}^{z} \frac{E_{y} z}{1-v_{x} v_{y}} d z\right] \end{aligned}$
3. Layered plate; stresses in m th layer given [18.13]	$\begin{aligned} \sigma_{x m} & =-z C_{x m}\left(\frac{\partial^{2} w}{\partial x^{2}}+v_{x m} \frac{\partial^{2} w}{\partial y^{2}}\right) \\ \sigma_{y m} & =-z C_{y m}\left(\frac{\partial^{2} w}{\partial y^{2}}+v_{y m} \frac{\partial^{2} w}{\partial x^{2}}\right) \\ \tau_{x y m} & =-2 z G_{m} \frac{\partial^{2} w}{\partial x \partial y} \end{aligned}$

For a symmetrically constructed plate, the other shear stresses for $m=1,2,3, \ldots, n+1$ (stresses are symmetrically distributed) are

$$
\begin{aligned}
\tau_{x z m}= & \frac{z^{2}}{2} \frac{\partial}{\partial x}\left[C_{x m} \frac{\partial^{2} w}{\partial x^{2}}+\left(C_{x m} v_{y m}+2 G_{m}\right) \frac{\partial^{2} w}{\partial y^{2}}\right] \\
& -\frac{h^{2}}{2} \frac{\partial}{\partial x}\left[C_{11 m} \frac{\partial^{2} w}{\partial x^{2}}+\left(C_{12 m}+2 C_{66 m}\right) \frac{\partial^{2} w}{\partial y^{2}}\right] \\
\tau_{y z m}= & \frac{z^{2}}{2} \frac{\partial}{\partial y}\left[\left(C_{x m} v_{y m}+2 G_{m}\right) \frac{\partial^{2} w}{\partial x^{2}}+C_{y m} \frac{\partial^{2} w}{\partial y^{2}}\right] \\
& \left.-\frac{h^{2}}{2} \frac{\partial}{\partial y}\left[C_{12 m}+2 C_{66 m}\right) \frac{\partial^{2} w}{\partial x^{2}}+C_{22 m} \frac{\partial^{2} w}{\partial y^{2}}\right]
\end{aligned}
$$

TABLE 18-14 (continued) STRESSES OF RECTANGULAR PLATES

Plates	Stresses
	$\begin{aligned} & C_{x m}=\frac{E_{x m}}{1-v_{x m} v_{y m}} \quad C_{y m}=\frac{E_{y m}}{1-v_{x m} v_{y m}} \\ & C_{11 m}= \begin{cases}C_{x 1} \quad m=1 \\ \frac{1}{h^{2}}\left[\sum_{k=1}^{m-1} C_{x k}\left(h_{k}^{2}-h_{k+1}^{2}\right)+C_{x m} h_{m}^{2}\right] & m \geq 2\end{cases} \\ & C_{12 m}= \begin{cases}C_{x 1} v_{y 1} \quad m=1 \\ \frac{1}{h^{2}}\left[\sum_{k=1}^{m-1} C_{x k} v_{y m}\left(h_{k}^{2}-h_{k+1}^{2}\right)+C_{x m} v_{y m} h_{m}^{2}\right] \\ C_{22 m} & = \begin{cases}C_{y 1} \quad m=1 \\ \frac{1}{h^{2}}\left[\sum_{k=1}^{m-1} C_{y k}\left(h_{k}^{2}-h_{k+1}^{2}\right)+C_{y m} h_{m}^{2}\right] & m \geq 2\end{cases} \\ C_{66 m}= \begin{cases}G_{1} \quad m=1 & m \geq 2 \\ \frac{1}{h^{2}}\left[\sum_{k=1}^{m-1} G_{k}\left(h_{k}^{2}-h_{k+1}^{2}\right)+G_{m} h_{m}^{2}\right]\end{cases} \end{cases} \end{aligned}$
4. Thermal loading	$\begin{aligned} \sigma_{x} & =\frac{M z}{h^{3} / 12}-\frac{E_{x}\left(\alpha_{x}+v_{y} \alpha_{y}\right)}{1-v_{x} v_{y}} T \\ \sigma_{y} & =\frac{M_{y} z}{h^{3} / 12}-\frac{E_{y}\left(\alpha_{y}+v_{x} \alpha_{x}\right)}{1-v_{x} v_{y}} T \end{aligned}$

TABLE 18-15 MATERIAL PROPERTIES FOR RECTANGULAR PLATES

Notation

Refer to Eqs. (18.16) through Eq. (18.19), especially Eq. (18.17).
$E_{x}, E_{y}=$ moduli of elasticity in x and y directions, for isotropic materials $E_{x}=E_{y}=E$
$h=$ thickness of plate
$D_{x}, D_{y}=$ flexural rigidities in x and y directions
$v_{x}, v_{y}=$ Poisson's ratios in x and y directions
$B=\frac{1}{2}\left(D_{x} v_{y}+D_{y} v_{x}+4 D_{x y}\right)$
$D_{x y}=$ torsional rigidity,$=\frac{1}{4}\left(2 B-D_{x} v_{y}-D_{y} v_{x}\right)$

	where $I_{s}=$ moment of inertia of stiffener taken about middle axis of cross section of plate $E_{S}=$ modulus of elasticity stiffeners
	Stiffeners on one side: $\begin{aligned} D_{x} & =\frac{E h^{3} d}{12\left[d-c+c(h / H)^{3}\right]} \quad D_{y}=\frac{E I_{s}}{d} \\ D_{x y} & =D_{x y}^{\prime}+\frac{G J}{2 d} \end{aligned}$ where $G J=$ torsional rigidity of a rib $D_{x y}^{\prime}=$ torsional rigidity of slab without ribs $I_{s}=$ moment of inertia of T section of width d about its neutral axis
4. Isotropic plate with equidistant stiffeners in two directions; axes of ribs are parallel to principal directions [18.12]	$\begin{aligned} & v_{x}=v_{y}=v \quad D_{x}=\frac{E h^{3}}{12\left(1-v^{2}\right)}+\frac{E_{1} I_{1}}{d_{1}} \\ & D_{y}=\frac{E h^{3}}{12\left(1-v^{2}\right)}+\frac{E_{2} I_{2}}{d_{2}} \quad D_{x y}=\frac{E h^{3}}{12\left(1-v^{2}\right)} \\ & \text { where } \\ & \qquad \begin{array}{l} I_{1}=\text { moment of inertia about plate's middle surface of stiffener in } x \text { direction } \\ E_{1}=\text { modulus of elasticity of this stiffener } \\ d_{1}=\text { spacing of these stiffeners } \end{array} \\ & I_{2}, E_{2}, d_{2}=\text { corresponding constants for stiffeners lying in } y \text { direction } \end{aligned}$

TABLE 18-15 (continued) MATERIAL PROPERTIES FOR RECTANGULAR PLATES

Plates	Constants
5. Corrugated plate [18.12] ${ }_{z}$ $\begin{aligned} & z=H \sin (\pi x / l) \\ & h=\text { thicknessof shect } \\ & s=\ell\left[1+\pi^{2} H^{2} /\left(4 \ell^{2}\right)\right] \end{aligned}$	$\begin{aligned} & v_{x}=v_{y}=v \quad D_{x}=\frac{\ell}{s} \frac{E h^{3}}{12\left(1-v^{2}\right)} \\ & D_{y}=E I \quad B=\frac{s}{\ell} \frac{E h^{3}}{12(1+v)} \end{aligned}$ where $I=$ mean moment of inertia in x, y plane per unit length $I=0.5 h H^{2}\left(1-0.81 / C_{1}\right) \quad C_{1}=1+2.5(H / 2 \ell)^{2}$
6. Open gridworks [18.1]	$\begin{aligned} v_{x} & =v_{y}=v \quad D_{x}=\frac{E I_{1}}{d_{1}} \quad D_{y}=\frac{E I_{2}}{d_{2}} \\ B & =\frac{G J_{1}}{2 d_{1}}+\frac{G J_{2}}{2 d_{2}} \quad D_{x y}=\sqrt{D_{x} D_{y}} \end{aligned}$ where $G J_{1}, G J_{2}=$ torsional rigidities of beams parallel to x and y axes $E I_{1}, E I_{2}=$ bending rigidities of beams parallel to x and y axes

Plates	Constants
9. Steel deck plate [18.1] with multiple stiffeners	$\begin{aligned} D_{x} & =\frac{E h^{3}}{12\left(1-v_{x} v_{y}\right)}+\frac{E h e_{x}^{2}}{\left(1-v_{x} v_{y}\right)}+\frac{E I_{x}}{d_{1}} \\ D_{y} & =\frac{E h^{3}}{12\left(1-v_{x} v_{y}\right)}+\frac{E h e_{y}^{2}}{\left(1-v_{x} v_{y}\right)}+\frac{E I_{y}}{d_{2}} \\ B & =\frac{E h^{3}}{12\left(1-v_{x} v_{y}\right)}+\frac{G}{6}\left(\frac{\sum_{i=1}^{M_{1}} H_{1 i} t_{1 i}^{3}}{d_{1}}+\frac{\sum_{i=1}^{M_{2}} H_{2 i} t_{2 i}^{3}}{d_{2}}\right) \end{aligned}$ where $I_{x}, I_{y}=$ moments of inertia of stiffeners with respect to neutral axes in x, y directions $e_{x}, e_{y}=$ distances from middle plane of plate to neutral axes of stiffeners $M_{1}\left(M_{2}\right)=$ number of segments (i.e., flanges and webs) of thickness $t_{1 i}\left(t_{2 i}\right)$ and length $H_{1 i}\left(H_{2 i}\right)$ comprising a single stiffener section in the $x(y)$ direction.
10. Composite (concrete-steel) slab	Use the formulas for a steel deck plate. First transform the concrete part of the slab into an equivalent steel plate.

11. Continuously composite, isotropic

$$
\begin{aligned}
& v_{x}=v_{y}=v \quad D_{x}=D_{y}=D \quad D_{x y}=\frac{1}{2}(1-v) D \\
& D=\frac{1}{1-v^{2}} \int_{-h / 2}^{h / 2} E z^{2} d z
\end{aligned}
$$

12. Continuously composite, orthotropic	$\begin{aligned} D_{x} & =\frac{1}{1-v_{x} v_{y}} \int_{-h / 2}^{h / 2} E_{x} z^{2} d z \\ D_{y} & =\frac{1}{1-v_{x} v_{y}} \int_{-h / 2}^{h / 2} E_{y} z^{2} d z \\ D_{y} & =\int_{-h / 2}^{h / 2} G z^{2} d z \end{aligned}$
13. Multiple isotropic layers [18.1]	$\begin{aligned} & v_{x}=v_{y}=v \quad D_{x}=D_{y}=D \quad D=\left(Q_{1} C-Q_{2}^{2}\right) / Q_{1} \\ & Q_{1}=\sum_{k=1} \frac{E_{k}}{1-v_{k}^{2}}\left(h_{k}-h_{k-1}\right) \\ & Q_{2}=\frac{1}{2} \sum_{k=1} \frac{E_{k}}{1-v_{k}^{2}}\left(h_{k}^{2}-h_{k-1}^{2}\right) \\ & C=\frac{1}{3} \sum_{k=1} \frac{E_{k}}{1-v_{k}^{2}}\left(h_{k}^{3}-h_{k-1}^{3}\right) \end{aligned}$
14. Symmetrically constructed with isotropic layers [18.13]	$\begin{aligned} & v_{x}=v_{y}=v \quad D_{x}=D_{y}=D \quad D_{x y}=\frac{1}{2}(1-v) D \\ & D=\frac{2}{3} \sum_{m=1}^{n+1} c_{m} \quad v=\frac{2}{3 D} \sum_{m=1}^{n+1} v_{m} c_{m} \\ & c_{m}=\frac{E_{m}\left(h_{m}^{3}-h_{m+1}^{3}\right)}{1-v_{m}^{2}} \quad \text { with } h_{n+2} \text { set equal to zero } \end{aligned}$ where E_{m}, v_{m} are Young's modulus and Poisson's ratio for m th layer This plate is constructed of an odd number of homogeneous layers symmetrically located about middle layer.

TABLE 18-15 (continued) MATERIAL PROPERTIES FOR RECTANGULAR PLATES

Plates	Constants
15. Symmetrically constructed with orthotropic layers [18.13]	$\begin{aligned} & v_{x}=\frac{2}{3 D_{y}} \sum_{m=1}^{n+1} c_{x m} v_{y m} \quad v_{y}=\frac{v_{x} D_{y}}{D_{x}} \\ & D_{x}=\frac{2}{3} \sum_{m=1}^{n+1} c_{x m} \quad D_{y}=\frac{2}{3} \sum_{m=1}^{n+1} c_{y m} \\ & D_{x y}=\frac{2}{3}\left[\sum_{m=1}^{n+1} G_{m}\left(h_{m}^{3}-h_{m+1}^{3}\right)\right] \\ & c_{x m}=\frac{E_{x m}\left(h_{m}^{3}-h_{m+1}^{3}\right)}{1-v_{x m} v_{y m}} \quad c_{y m}=\frac{E_{y m}\left(h_{m}^{3}-h_{m+1}^{3}\right)}{1-v_{x m} v_{y m}} \\ & \text { with } h_{n+2}=0 \\ & \text { where } E_{x m}, E_{y m}, v_{x m}, v_{y m}=\text { Young's moduli and Poisson's ratios of } m \text { th layer } \end{aligned}$

16.

Symmetrically constructed with identical orthotropic layers

The principal directions of adjacent layers are mutually perpendicular. That is, if the material properties in perpendicular directions are E_{1}, ν_{1} and E_{2}, ν_{2}, then for odd-numbered layers $(k=1,3,5, \ldots, 2 n+1)$
$E_{x k}=E_{1}, \quad \nu_{x k}=\nu_{1}$,
$E_{y k}=E_{2}, \quad \nu_{y k}=\nu_{2}$,
and for even-numbered layers
$(k=2,4,6, \ldots, 2 n)$
$E_{x k}=E_{2}, \quad \nu_{x k}=\nu_{2}$,
$E_{y k}=E_{1}, \quad v_{y k}=v_{1}$.
$v_{x}=\frac{2(2 n+1)^{3} \nu_{2}}{Q_{2}} \quad \nu_{2}=\frac{2(2 n+1)^{3} \nu_{2}}{Q_{1}}$
$D_{x}=\frac{E_{x} h^{3}}{12\left(1-v_{x} v_{y}\right)} \quad D_{y}=\frac{E_{y} h^{3}}{12\left(1-v_{x} v_{y}\right)}$
$D_{x y}=\frac{G h^{3}}{12}$
$E_{x}=\frac{E_{1}}{2(2 n+1)^{3}} \frac{1-v_{x} v_{y}}{1-v_{1} v_{2}} Q_{1}$
$E_{y}=\frac{E_{2}}{2(2 n+1)^{3}} \frac{1-v_{x} v_{y}}{\left(1-v_{1} v_{2}\right) E_{2} / E_{1}} Q_{2}$
$Q_{1}=(2 n+1)^{3}\left(1+E_{2} / E_{1}\right)+\left[3(2 n+1)^{2}-2\right]\left(1-E_{2} / E_{1}\right)$
$Q_{2}=(2 n+1)^{3}\left(1+E_{2} / E_{1}\right)-\left[3(2 n+1)^{2}-2\right]\left(1-E_{2} / E_{1}\right)$
TABLE 18-15 (continued) MATERIAL PROPERTIES FOR RECTANGULAR PLATES

Plates		Constants	
17.	$v_{x}=E^{\prime \prime} / E_{y}^{\prime}$	$v_{y}=E^{\prime \prime} / E_{x}^{\prime}$	$D_{x}=\frac{1}{12} E_{x}^{\prime} h^{3}$
Plywood [18.12]; x axis parallel to	$D_{y}=\frac{1}{12} E_{y}^{\prime} h^{3}$	$D_{x y}=\frac{1}{12} G h^{3}$	
face grain.			

face grain.

	E_{x}^{\prime}	E_{y}^{\prime}	$E^{\prime \prime}$	G
Maple, 5-ply	1.87	0.60	0.073	0.159
Afara, 3-ply	1.96	0.165	0.043	0.110
Gaboon (Okoume), 3-ply	1.28	0.11	0.014	0.085
Birch, 3-ply and 5-ply	2.00	0.167	0.077	0.17
Birch with Bakelite membranes	1.70	0.85	0.061	0.10

TABLE 18-16 DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

\quad Notation	
w	$=$ deflection
E	$=$ modulus of elasticity
$v=$	Poisson's ratio
$h=$	thickness of plate
$D=$	$E h^{3} /\left[12\left(1-v^{2}\right)\right]$
$W_{T}=$	concentrated loading (F)
$p_{1}=$	uniformly distributed loading $\left(F / L^{2}\right)$
$\alpha=$	L_{y} / L
$\beta=$	L / L_{y}
$M_{x}, M_{y}=$	bending moment per unit length
	on surface normal to x and y axes
$Q_{x}, Q_{y}=$	shear force per unit length on
	surfaces normal to x and y axes
$V_{x}, V_{y}=$	equivalent shear force per unit length
	acting on planes normal to x and y axes

$W_{T}=$ concentrated loading (F)
$p_{1}=$ uniformly distributed loading $\left(F / L^{2}\right)$
$\alpha=L y / L$
$M_{x}, M_{y}=$ bending moment per unit length
on surface normal to x and y axes
surfaces normal to x and y axes
acting on planes normal to x and y axes

$$
\begin{aligned}
w & =\frac{16 p_{1} L^{4}}{\pi^{6} D} \sum_{m} \sum_{n} \frac{\sin (n \pi x / L) \sin \left(m \pi y / L_{y}\right)}{m n\left(n^{2} / L^{2}+m^{2} / L_{y}^{2}\right)^{2}} \\
M_{x} & =\frac{16 p_{1} L^{2}}{\pi^{4}} \sum_{m} \sum_{n} \gamma_{1} \frac{\sin (n \pi x / L) \sin \left(m \pi y / L_{y}\right)}{m n\left(n^{2}+m^{2} / \alpha^{2}\right)^{2}} \\
M_{y} & =\frac{16 p_{1} L^{2}}{\pi^{4}} \sum_{m} \sum_{n} \gamma_{2} \frac{\sin (n \pi x / L) \sin \left(m \pi y / L_{y}\right)}{m n\left(n^{2}+m^{2} / \alpha^{2}\right)^{2}} \\
w_{\max } & =c_{1} \frac{p_{1} L^{4}}{E h^{3}}=w_{\text {center }} \\
\gamma_{1} & =\left(n^{2}+v m^{2} / \alpha^{2}\right), \quad \gamma_{2}=\left(m^{2} / \alpha^{2}+v n^{2}\right)
\end{aligned}
$$

TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading
Deflection and Internal Forces

$$
\begin{array}{rlrl}
\left(M_{x}\right)_{\max } & =c_{2} p_{1} L^{2} & & (\text { center }) \\
\left(M_{y}\right)_{\max } & =c_{3} p_{2} L^{2} & & \text { (center) } \\
\left(Q_{x}\right)_{\max } & =c_{4} p_{1} L & & (x=0, L \text { edges) } \\
\left(Q_{y}\right)_{\max } & =c_{5} p_{1} L_{y} & & \left(y=0, L_{y}\right. \text { edges) } \\
\left(V_{x}\right)_{\max } & =c_{6} p_{1} L & & \text { (lateral edge forces) } \\
\left(V_{y}\right)_{\max } & =c_{7} p_{1} L_{y} & & \text { (lateral edge forces) } \\
& R_{0} & =c_{8} p_{1} L L_{y} & \\
& \text { (corner forces) } \\
\text { CONSTANTS: } & & \\
m & =1,3,5, \ldots, \infty & n=1,3,5, \ldots, \infty \\
\nu & =0.3 & \\
c_{1} & =0.1421+0.08204 \beta-0.3985 \beta^{2}+0.219 \beta^{3} \\
c_{2} & =0.1247+0.05524 \beta-0.2762 \beta^{2}+0.1441 \beta^{3} \\
c_{3} & =0.03726-0.01504 \beta+0.1028 \beta^{2}-0.07756 \beta^{3} \\
c_{4} & =0.4967+0.1686 \beta-0.6849 \beta^{2}+0.3976 \beta^{3} \\
c_{5} & =-0.0007805+0.3679 \beta+0.04574 \beta^{2}-0.07488 \beta^{3} \\
c_{6} & =0.4983+0.02879 \beta+0.004425 \beta^{2}-0.1137 \beta^{3} \\
c_{7} & =-0.003591+0.5091 \beta+0.05874 \beta^{2}-0.1445 \beta^{3} \\
c_{8} & =-0.003545+0.1179 \beta-0.02755 \beta^{2}-0.02202 \beta^{3}
\end{array}
$$

2.

Simply supported on all edges, concentrated load

$$
w=\frac{4 W_{T}}{D \pi^{4} L L_{y}} \sum_{m} \sum_{n} \frac{\sin (n \pi a / L) \sin \left(m \pi b / L_{y}\right) \sin (n \pi x / L) \sin \left(m \pi y / L_{y}\right)}{\left(n^{2} / L^{2}+m^{2} / L_{y}^{2}\right)^{2}}
$$

$$
m=1,2,3, \ldots, ; n=1,2,3, \ldots
$$

or

$$
w=\frac{W_{T} L^{2}}{D \pi^{3}} \sum_{n=1}^{\infty}\left(1+\beta_{n} \operatorname{coth} \beta_{n}-\frac{\beta_{n} y_{1}}{L_{y}} \operatorname{coth} \frac{\beta_{n} y_{1}}{L_{y}}-\frac{\beta_{n} b_{1}}{L_{y}} \operatorname{coth} \frac{\beta_{n} b_{1}}{L_{y}}\right)
$$

$$
\times \frac{\sinh \frac{\beta_{n} b_{1}}{L_{y}} \sinh \frac{\beta_{n} y_{1}}{L_{y}} \sin \frac{n \pi a}{L} \sin \frac{m \pi x}{L}}{n^{3} \sinh \beta_{n}}
$$

If $y \geq b$, use $y_{1}=L_{y}-y$ and $b_{1}=b$
If $y<b$, use $y_{1}=y$ and $b_{1}=L_{y}-b$
$\beta_{n}=\frac{n \pi L_{y}}{L}$
$n=1,2,3, \ldots$
3.

Simply supported on all edges, uniform load on a small circle of radius r_{0} at center of plate

At center:
$\begin{aligned} w_{\max } & =k_{1} \frac{W_{T} L_{y}^{2}}{E h^{3}} \\ \sigma_{\max } & =\frac{3 W_{T}}{2 \pi h^{2}}\left[(1+v) \ln \frac{2 L_{y}}{\pi r_{e}}+k_{2}\right]\end{aligned}$
where

$$
\begin{aligned}
r_{e} & = \begin{cases}\sqrt{1.6 r_{0}^{2}+h^{2}}-0.675 h & r_{0}<0.5 h \\
r_{0} & r_{0}>0.5 h\end{cases} \\
W_{T} & =\text { total load on plate } \\
k_{1} & =0.1851+0.06342 \alpha-0.1643 \alpha^{2}+0.04232 \alpha^{3} \\
k_{2} & =0.9998+0.5195 \alpha-1.29 \alpha^{2}+0.2042 \alpha^{3}
\end{aligned}
$$

TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading	Deflection and Internal Forces
4. Three edges simply supported, one edge free, uniform load	$\begin{gathered} \left(M_{x}\right)_{x=L / 2}=c_{1} p_{1} L_{y}^{2} \\ y=L_{y} / 2 \\ \left(M_{y}\right)_{x=L / 2}=c_{2} p_{1} L_{y}^{2} \\ y=L_{y} / 2 \\ \left(M_{y}\right)_{x=0}^{x=L_{y} / 2} \\ y=c_{3} p_{1} L_{y}^{2} \\ v=0.15 \end{gathered}$ CONSTANTS:

5.

Three edges clamped, one edge free, uniform load

$$
\begin{aligned}
& \left(M_{x}\right)_{x=L / 2}^{x=L_{y} / 2} \mid=c_{1} p_{1} L_{y}^{2} \\
& \left(M_{y}\right)_{x=L / 2}=c_{2} p_{1} L_{y}^{2} \\
& y=L_{y} / 2 \\
& \left(M_{y}\right)_{\substack{x=0 \\
y=L_{y} / 2}}=c_{3} p_{1} L_{y}^{2} \\
& \left(M_{x}\right)_{\substack{x=L \\
y=L_{y} / 2}}=c_{4} p_{1} L^{2} \\
& \left(M_{y}\right)_{x=L / 2}=c_{5} p_{1} L_{y}^{2} \\
& \left(M_{y}\right)_{\substack{x=0 \\
y=0, L_{y}}}=c_{6} p_{1} L_{y}^{2} \\
& \nu=0.15 \\
& \text { CONSTANTS: } \\
& c_{1}=\left\{\begin{array}{lr}
-0.01247+0.05532 \alpha-0.04778 \alpha^{2}+0.01519 \alpha^{3}-0.001687 \alpha^{4} & 1.25<\alpha \leq 3.3 \\
-0.006967+0.01615 \alpha+0.01147 \alpha^{2}-0.01205 \alpha^{3} & 0.5 \leq \alpha \leq 1.25
\end{array}\right. \\
& c_{2}=0.05474-0.03243 \alpha+0.006359 \alpha^{2}-0.0003985 \alpha^{3} \quad 0.5 \leq \alpha \leq 3.3 \\
& c_{3}=0.03724+0.02528 \alpha-0.02263 \alpha^{2}+0.003719 \alpha^{3} \quad 0.5 \leq \alpha \leq 3.3 \\
& c_{4}=-0.006349+0.02708 \alpha-0.09165 \alpha^{2}+0.01488 \alpha^{3} \quad 0.5 \leq \alpha \leq 3.3 \\
& c_{5}=-0.1062+0.04391 \alpha-0.00235 \alpha^{2}-0.0007418 \alpha^{3} \quad 0.5 \leq \alpha \leq 3.3 \\
& c_{6}=-0.06827-0.04205 \alpha+0.02756 \alpha^{2}-0.003528 \alpha^{3} \quad 0.5 \leq \alpha \leq 3.3
\end{aligned}
$$

TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading
Deflection and Internal Forces
6.

Simply supported on all edges, linearly varying load

$$
\begin{aligned}
& \text { If } L / L_{y}<1.00, \\
& \begin{array}{c}
\left(M_{x}\right)_{x=L / 2} \\
y=L_{y} / 2
\end{array} \\
& \left(M_{1} p_{1} L^{2}\right. \\
& \left(M_{\max }=c_{2} p_{1} L^{2}\right. \\
& \left(M_{x=L / 2}=c_{3} p_{1} L^{2}\right. \\
& y=L_{y} / 2 \\
& \left(M_{y}\right)_{\max }=c_{4} p_{1} L^{2}
\end{aligned}
$$

If $L / L_{y} \geq 1.00$, replace $p_{1} L^{2}$ by $p_{1} L_{y}^{2}$.
$\nu=0.15$
CONSTANTS:
$c_{1}= \begin{cases}0.08438-0.06242 \beta-0.03592 \beta^{2}+0.03239 \beta^{3} & 0.5 \leq \beta \leq 1.0 \\ -0.003636+0.05639 \beta-0.04352 \beta^{2}+0.009206 \beta^{3} & 1.0<\beta \leq 2.0\end{cases}$
$c_{2}= \begin{cases}0.085096-0.0635 \beta-0.02495 \beta^{2}+0.02498 \beta^{3} & 0.5 \leq \beta \leq 1.0 \\ -0.01872+0.07831 \beta-0.04657 \beta^{2}+0.008649 \beta^{3} & 1.0<\beta \leq 2.0\end{cases}$
$c_{3}= \begin{cases}0.01873+0.07069 \beta-0.02985 \beta^{2}+0.003716 \beta^{3} & 0.5<\beta \leq 1.0 \\ -0.04394+0.08744 \beta-0.03008 \beta^{2}+0.004946 \beta^{3} & 1.0<\beta \leq 2.0\end{cases}$
$c_{4}= \begin{cases}0.01756-0.05004 \beta-0.1028 \beta^{2}+0.05186 \beta^{3} & 0.5 \leq \beta \leq 1.0 \\ -0.01646+0.02599 \beta+0.01385 \beta^{2}+0.004938 \beta^{3} & 1.0<\beta \leq 2.0\end{cases}$
7.

Two edges simply supported, two edges clamped, linearly varying load

$$
\begin{aligned}
& \text { If } \beta=L / L_{y}<1.00 \text {, } \\
& -\left(M_{y}\right)_{\text {max }}=c_{1} p_{1} L^{2} \\
& \left(M_{x}\right)_{x=L / 2}=c_{2} p_{1} L^{2} \\
& y=0, L_{y} \\
& \left(M_{x}\right)_{\text {max }}=c_{3} p_{1} L^{2} \\
& \left(M_{x}\right)_{x=L / 2}=c_{4} p_{1} L^{2} \\
& y=L_{y} / 2 \\
& \left(M_{y}\right)_{\text {max }}=c_{5} p_{1} L^{2} \\
& \left(M_{y}\right)_{\substack{x=L / 2 \\
y=L_{y} / 2}}=c_{6} p_{1} L^{2} \\
& \text { If } \beta \geq 1.00 \text {, replace } p_{1} L^{2} \text { by } p_{1} L_{y}^{2} \text {. } \\
& \nu=0.15 \\
& \text { CONSTANTS: } \\
& 0.5 \leq \beta \leq 1.0 \\
& c_{1}=-0.0947+0.09607 \beta-0.0758 \beta^{2}+0.03702 \beta^{3} \\
& c_{2}=-0.07833+0.01816 \beta+0.04384 \beta^{2}-0.01853 \beta^{3} \\
& c_{3}=0.147-0.3292 \beta+0.286 \beta^{2}-0.09076 \beta^{3} \\
& c_{4}=0.120-0.218 \beta+0.1254 \beta^{2}-0.01945 \beta^{3} \\
& c_{5}=-0.04249+0.196 \beta-0.2114 \beta^{2}+0.07222 \beta^{3} \\
& c_{6}=-0.04249+0.196 \beta-0.2114 \beta^{2}+0.07222 \beta^{3} \\
& 1.0<\beta \leq 2.0 \\
& c_{1}=-0.001352-0.04739 \beta+0.01262 \beta^{2}-0.001445 \beta^{3} \\
& c_{2}=0.01942-0.09533 \beta+0.04973 \beta^{2}-0.008762 \beta^{3} \\
& c_{3}=-0.005903+0.04346 \beta-0.03065 \beta^{2}+0.00615 \beta^{3} \\
& c_{4}=0.02255-0.01713 \beta+0.001814 \beta^{2}+0.0006693 \beta^{3} \\
& c_{5}=-0.0156+0.04088 \beta-0.01164 \beta^{2}+0.00638 \beta^{3} \\
& c_{6}=-0.02249+0.06271 \beta-0.03123 \beta^{2}+0.005338 \beta^{3}
\end{aligned}
$$

TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading	Deflection and Internal Forces
8. Clamped on all edges, linearly on varying load	$\begin{aligned} & \text { If } \beta=L / L_{y}<1.00, \\ & \left(M_{x}\right)_{x=0}=c_{1} p_{1} L^{2} \\ & y=L_{y} / 2 \\ & \left(M_{x}\right)_{x=L}=c_{2} p_{1} L^{2} \\ & y=L_{y} / 2 \\ & -\left(M_{y}\right)_{\max }=c_{3} p_{1} L^{2} \\ & \left(M_{y}\right)_{x=L / 2}=c_{4} p_{1} L^{2} \\ & y=0, L_{y} \\ & \left(M_{x}\right)_{\max }=c_{5} p_{1} L^{2} \\ & \left(M_{x}\right)_{x=L / 2}=c_{6} p_{1} L^{2} \\ & y=L_{y} / 2 \\ & \left(M_{y}\right)_{\max }=c_{7} p_{1} L^{2} \\ & \left(M_{y}\right)_{x=L / 2}=c_{8} p_{1} L^{2} \\ & y=L_{y} / 2 \end{aligned}$ If $\beta \geq 1.00$, replace $p_{1} L$ by $p_{1} L_{y}^{2}$. $v=0.15$

$$
\begin{aligned}
& \text { CONSTANTS: } \\
& 0.5 \leq \beta \leq 1.0 \\
& c_{1}=-0.03596-0.08083 \beta+0.1319 \beta^{2}-0.04816 \beta^{3} \\
& c_{2}=-0.01030-0.116 \beta+0.1791 \beta^{2}-0.07038 \beta^{3} \\
& c_{3}=-0.02636-0.004588 \beta-0.009978 \beta^{2}+0.01388 \beta^{3} \\
& c_{4}=-0.02993+0.01295 \beta-0.02866 \beta^{2}+0.02036 \beta^{3} \\
& c_{5}=0.0261-0.00459 \beta-0.01879 \beta^{2}+0.007399 \beta^{3} \\
& c_{6}=0.01218+0.05503 \beta-0.09913 \beta^{2}+0.04073 \beta^{3} \\
& c_{7}=0.03321-0.1267 \beta+0.1792 \beta^{2}-0.07687 \beta^{3} \\
& c_{8}=-0.005465+0.003079 \beta+0.03526 \beta^{2}-0.02409 \beta^{3} \\
& 1.0<\beta \leq 2.0 \\
& c_{1}=0.02841-0.1064 \beta+0.0549 \beta^{2}-0.01001 \beta^{3} \\
& c_{2}=0.005924-0.05511 \beta+0.03986 \beta^{2}-0.00827 \beta^{3} \\
& c_{3}=0.03386-0.08143 \beta+0.02145 \beta^{2}-0.0008475 \beta^{3} \\
& c_{4}=0.04529-0.1128 \beta+0.04949 \beta^{2}-0.007329 \beta^{3} \\
& c_{5}=-0.00482+0.03546 \beta-0.02663 \beta^{2}+0.006204 \beta^{3} \\
& c_{6}=-0.00233+0.03325 \beta-0.02862 \beta^{2}+0.006528 \beta^{3} \\
& c_{7}=-0.01682+0.02965 \beta-0.002959 \beta^{2}-0.001043 \beta^{3} \\
& c_{8}=-0.03277+0.06381 \beta-0.02579 \beta^{2}+0.003542 \beta^{3}
\end{aligned}
$$

TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading	Deflection and Internal Forces
9. Two edges simply supported, two edges flexibly supported, uniform loading	$\begin{aligned} & w_{\max }=c_{1} \frac{p_{1} L^{4}}{D}=w_{\text {center }} \\ &\left(M_{x}\right)_{\max }=c_{2} p_{1} L^{2} \quad \text { (center) } \\ &\left(M_{y}\right)_{\max }=c_{3} p_{1} L^{2} \quad \text { (center) } \\ & v=0.3 \\ & E I=\text { stiffness of edge beam supports } \\ & \text { CONSTANTS: } \\ & c_{1}=0.004037+0.003975 \frac{1}{1+\eta}-0.003862 \frac{1}{(1+\eta)^{2}}+0.008931 \frac{1}{(1+\eta)^{3}} \\ & c_{2}= 0.04756+0.0356 \frac{1}{1+\eta}-0.05788 \frac{1}{(1+\eta)^{2}}+0.1001 \frac{1}{(1+\eta)^{3}} \\ & c_{3}=0.04759-0.00504 \frac{1}{1+\eta}-0.05026 \frac{1}{(1+\eta)^{2}}+0.03471 \frac{1}{(1+\eta)^{3}} \\ & \eta=\frac{E I}{L D} \geq 0 \end{aligned}$

10.

Clamped on all edges uniform loading

$$
\begin{array}{rlr}
w_{\max }=c_{1} \frac{p_{1} L^{4}}{E h^{3}} & =w_{\text {center }} & \\
\left(M_{x}\right)_{x=0} & =c_{2} p_{1} L^{2} & \left(M_{y}\right)_{x=0}=c_{3} p_{1} L^{2} \\
y=0 \\
\left(M_{x}\right)_{x=L / 2} & =-c_{4} p_{1} L^{2} & \left(M_{y}\right)_{x=0}^{x=0} \\
y=0 & =-c_{5} p_{1} L^{2}
\end{array}
$$

$$
v=0.3
$$

CONSTANTS:
$1.0 \leq \alpha \leq 2.0$
$c_{1}=-0.06479+0.1327 \alpha-0.0665 \alpha^{2}+0.01162 \alpha^{3}$
$c_{2}=-0.07859+0.1748 \alpha-0.09038 \alpha^{2}+0.01652 \alpha^{3}$
$c_{3}=0.0009449+0.04083 \alpha-0.0212 \alpha^{2}+0.001949 \alpha^{3}$
$c_{4}=-0.03425+0.1083 \alpha-0.02085 \alpha^{2}-0.002018 \alpha^{3}$
$c_{5}=0.4247+0.002192 \alpha+0.01065 \alpha^{2}-0.003921 \alpha^{3}$
11.

Two edges simply supported, two edges free, uniform loading

$$
\begin{aligned}
&(w)_{x=L / 2}=c_{1} p_{1} L^{4} / D \\
& y=L_{y} / 2 \\
&(w)_{x=L / 2}=c_{2} p_{1} L^{4} / D \\
& y=0, L_{y} \\
&\left(M_{x}\right)_{x=L / 2}==c_{3} p_{1} L^{2} \\
& y=L_{y} / 2 \\
&\left(M_{y}\right)_{x=L / 2}==c_{4} p_{1} L^{2} \\
& y=L_{y} / 2 \\
&\left(M_{x}\right)_{x=L / 2}==c_{5} p_{1} L^{2} \\
& y=0, L_{y}
\end{aligned}
$$

TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading	Deflection and Internal Forces
	CONSTANTS:
	$0 \leq \beta \leq 2.0$
	$c_{1}=0.01302-0.0007094 \beta+0.001017 \beta^{2}-0.0002372 \beta^{3}$
	$c_{2}=0.01522+0.0000742 \beta-0.0001711 \beta^{2}-0.000033 \beta^{3}$
	$c_{3}=0.125-0.003249 \beta+0.0002489 \beta^{2}+0.0005003 \beta^{3}$
	$c_{4}=0.0375+0.01038 \beta-0.02955 \beta^{2}+0.008767 \beta^{3}$
	$c_{5}=0.133+0.0006847 \beta-0.001652 \beta^{2}-0.0002326 \beta^{3}$

TABLE 18-17 RESPONSE OF RECTANGULAR PLATES WITH FOUR SIDES SIMPLY SUPPORTED

Notation

$$
w=\text { deflection }
$$

$\theta, \theta_{y}=$ slopes about lines parallel to y and x directions
$M, M_{y}, M_{x y}=$ bending moments per unit length on planes normal to x and y directions and twisting moment per unit length
$V, V_{y}=$ equivalent shear forces per unit length acting on planes normal to x and y axes
$L, L_{y}=$ length of plate in x and y directions
$h=$ thickness of plate
$E=$ modulus of elasticity
$v=$ Poisson's ratio

$$
D=\frac{E h^{3}}{12\left(1-v^{2}\right)} \quad K_{m n}=\frac{a_{m n}}{D \pi^{4}\left[\left(n^{2} / L^{2}\right)+\left(m^{2} / L_{y}^{2}\right)\right]^{2}} \quad n, m=1,2,3, \ldots
$$

The parameters $a_{m n}$ are given for various loadings.
General Response Expressions

1. Deflection: $\quad w=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} K_{m n} \sin \frac{n \pi x}{L} \sin \frac{m \pi y}{L_{y}}$
2. Slopes:

$$
\begin{aligned}
\theta & =-\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} K_{m n} \frac{n \pi}{L} \cos \frac{n \pi x}{L} \sin \frac{m \pi y}{L_{y}} \\
\theta_{y} & =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} K_{m n} \frac{m \pi}{L_{y}} \sin \frac{n \pi x}{L} \cos \frac{m \pi y}{L_{y}}
\end{aligned}
$$

3. Bending moments:

$$
\begin{aligned}
M & =\pi^{2} D \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} K_{m n}\left[\left(\frac{n}{L}\right)^{2}+v\left(\frac{m}{L_{y}}\right)^{2}\right] \sin \frac{n \pi x}{L} \sin \frac{m \pi y}{L_{y}} \\
M_{y} & =\pi^{2} D \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} K_{m n}\left[\left(\frac{m}{L_{y}}\right)^{2}+v\left(\frac{n}{L}\right)^{2}\right] \sin \frac{n \pi x}{L} \sin \frac{m \pi y}{L_{y}}
\end{aligned}
$$

4. Twisting moment:

$$
M_{x y}=\pi^{2} D(1-v) \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} K_{m n} \frac{m n}{L_{y} L} \cos \frac{n \pi x}{L} \cos \frac{m \pi y}{L_{y}}
$$

5. Shear forces: $\quad V=\pi^{3} D \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} K_{m n}$

$$
\begin{aligned}
& \times\left[\left(\frac{n}{L}\right)^{3}+(2-v) \frac{n}{L}\left(\frac{m}{L_{y}}\right)^{2}\right] \cos \frac{n \pi x}{L} \sin \frac{m \pi y}{L_{y}} \\
V_{y}= & \pi^{3} D \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} K_{m n} \\
& \times\left[\left(\frac{m}{L_{y}}\right)^{3}+(2-v) \frac{m}{L_{y}}\left(\frac{n}{L}\right)^{2}\right] \sin \frac{n \pi x}{L} \cos \frac{m \pi y}{L_{y}}
\end{aligned}
$$

TABLE 18-17 (continued) RESPONSE OF RECTANGULAR PLATES WITH FOUR SIDES SIMPLY SUPPORTED

Parameters $a_{m n}$ for Various Loadings	
Loading	Parameter
1. Uniform load p_{1} over whole plate	$a_{m n}=\frac{16 p_{1}}{\pi^{2} m n} \quad n, m=1,3,5, \ldots$
2. Linearly varying load	$a_{m n}=(-1)^{n} \frac{8 L}{m n \pi} \frac{\Delta p}{\Delta \ell} \quad \begin{aligned} m & =1,3,5, \ldots \\ n & =1,2,3,4,5, \ldots \end{aligned}$
3. Uniform rectangular load	$\begin{aligned} a_{m n}= & \frac{4 p_{1}}{m n \pi^{2}}\left(\cos \frac{n \pi a_{1}}{L}-\cos \frac{n \pi a_{2}}{L}\right) \\ & \times\left(\cos \frac{m \pi b_{1}}{L_{y}}-\cos \frac{m \pi b_{2}}{L_{y}}\right) \end{aligned}$
4.	$\begin{aligned} a_{m n}= & \frac{4}{n m \pi^{2}} \frac{\Delta p}{\Delta \ell}\left(\cos \frac{m \pi b_{1}}{L_{y}}-\cos \frac{m \pi b_{2}}{L_{y}}\right) \\ & \times\left[\left(a_{1}-a_{2}\right) \cos \frac{n \pi a_{2}}{L}+\frac{L}{m \pi}\left(\sin \frac{n \pi a_{2}}{L}-\sin \frac{n \pi a_{1}}{L}\right)\right] \end{aligned}$
5. Line force W (force/length)	$\begin{aligned} a_{m n} & =\frac{8}{\pi L m} \sin \frac{n \pi a}{L} \\ m & =1,3,5, \ldots \\ n & =1,2,3, \ldots \end{aligned}$

If this line load begins at $y=b_{1}$ and ends at $y=b_{2}$, then for $a_{m n}$, use

$$
\begin{aligned}
\frac{4 W}{m \pi L} & \sin \frac{n \pi a}{L}\left(\cos \frac{m \pi b_{1}}{L_{y}}-\cos \frac{m \pi b_{2}}{L_{y}}\right) \\
a_{m n}= & \frac{4 W}{L L_{y}}\left[\frac{L_{y}}{m \pi}\left(\sin \frac{n \pi a_{1}}{L}+\sin \frac{n \pi a_{2}}{L}\right)\right. \\
& \times\left(\cos \frac{m \pi b_{1}}{L_{y}}-\cos \frac{m \pi b_{2}}{L_{y}}\right) \\
& +\frac{L}{n \pi}\left(\cos \frac{n \pi a_{1}}{L}-\cos \frac{n \pi a_{2}}{L}\right) \\
& \left.\times\left(\sin \frac{m \pi b_{1}}{L_{y}}+\sin \frac{m \pi b_{2}}{L_{y}}\right)\right]
\end{aligned}
$$

TABLE 18-17 (continued) RESPONSE OF RECTANGULAR PLATES WITH FOUR SIDES SIMPLY SUPPORTED

Loading	Parameter
7. Line force W	$\begin{aligned} a_{m n}= & \frac{2 W}{L L_{y} c_{3}}\left\{\left[\sin \left(c_{3} b_{2}-\frac{n \pi c_{1}}{L}\right)-\sin \left(c_{3} b_{1}-\frac{n \pi c_{1}}{L}\right)\right]\right. \\ & \left.-\left[\sin \left(c_{4} b_{2}+\frac{n \pi c_{1}}{L}\right)-\sin \left(c_{4} b_{1}+\frac{n \pi c_{1}}{L}\right)\right]\right\} \\ c_{3}= & \frac{m \pi L-n \pi c_{2} L_{y}}{L L_{y}} \quad c_{4}=\frac{m \pi L+n \pi c_{2} L_{y}}{L L_{y}} \end{aligned}$
8. $\underset{a \rightarrow c}{W_{T} \downarrow b}$	$a_{m n}=\frac{4 W_{T}}{L L_{y}} \sin \frac{n \pi a}{L} \sin \frac{m \pi b}{L_{y}}$
9.	$a_{m n}=\frac{4 W_{T}}{L L_{y}}\left(\sin \frac{n \pi a_{1}}{L}+\sin \frac{n \pi a_{2}}{L}\right)\left(\sin \frac{m \pi b_{1}}{L_{y}}+\sin \frac{m \pi b_{2}}{L_{y}}\right)$
10. Line moment (force - length/length)	$a_{m n}=-\frac{4 n C}{m L^{2}} \cos \frac{n \pi a}{L}\left(\cos \frac{m \pi b_{1}}{L_{y}}-\cos \frac{m \pi b_{2}}{L_{y}}\right)$

11. Concentrated moment (force - length)	$a_{m n}=-\frac{4 n C_{T}}{L^{2} L_{y}} \cos \frac{n \pi a}{L} \sin \frac{m \pi b}{L_{y}}$
12.	$a_{m n}=\frac{4 \pi C_{T}}{L L_{y}} \frac{\left(\frac{c_{2} m}{L_{y}} \cos \frac{m \pi b}{L_{y}} \sin \frac{n \pi a}{L}+\frac{n}{L} \sin \frac{m \pi b}{L_{y}} \cos \frac{n \pi a}{L}\right)}{\left(1+c_{2}^{2}\right)^{1 / 2}}$
13.	$a_{m n}=\frac{4}{L L_{y}} \int_{0}^{L} \int_{0}^{L_{y}} p_{z}(x, y) \sin \frac{n \pi x}{L} \sin \frac{m \pi y}{L_{y}} d x d y$

TABLE 18-18 CRITICAL IN-PLANE LOADS OF RECTANGULAR PLATES

Notation

$$
\begin{aligned}
& E=\text { modulus of elasticity } \\
& h=\text { thickness of plate } \\
& k=\text { buckling coefficient } \\
& v=\text { Poisson's ratio } \\
& L, L_{y}=\text { length of plate in } x \text { and } y \text { directions } \\
&\left(W_{T}\right)_{\mathrm{cr}}=\text { concentrated buckling loads }(F) \\
& \sigma_{\mathrm{cr}}=\text { normal stress at buckling }\left(F / L^{2}\right) ; \text { for } \sigma_{\mathrm{cr}} \text { to be applicable, } \sigma_{\mathrm{cr}}<\sigma_{y s} \\
& \quad \text { (yield strength) } \\
& P_{\mathrm{cr}}=\text { buckling load, }=h \sigma_{\mathrm{cr}}(F / L) \\
&\left(P_{x y}\right)_{\mathrm{cr}}=\text { in-plane shear buckling load }(F / L) \\
& \text { Half wave refers to half of a complete cycle of a sinusoidal curve. For example, } \\
& \sin (n \pi x / L) \sin \left(m \pi y / L_{y}\right)\left(0 \leq x \leq L, 0 \leq y \leq L_{y}\right) \text { defines } n=1,2, \ldots \text { and } \\
& m=1,2, \ldots \text { half waves in } x \text { and } y \text { directions. } \\
& \qquad P^{\prime}=\frac{\pi^{2} D}{L_{y}^{2}} \\
& \qquad D=\frac{E h^{3}}{12\left(1-v^{2}\right)} \quad \beta=\frac{L}{L_{y}} \quad \alpha=\frac{L_{y}}{L}
\end{aligned}
$$

D_{x}, D_{y}, and B are given in Table 18-14.

Conditions	Buckling Loads
1. All edges simply supported	$\begin{aligned} P_{\mathrm{cr}} & =k P^{\prime} \\ k & =\left(\frac{\beta}{m}+\frac{m}{\beta}\right)^{2} \end{aligned}$ where $\begin{aligned} & m=1(\text { for } \beta \leq \sqrt{2}) \\ & m=2(\text { for } \sqrt{2} \leq \beta \leq \sqrt{6}) \\ & m=3(\text { for } \sqrt{6} \leq \beta \leq \sqrt{12}) \\ & m=4(\text { for } \sqrt{12} \leq \beta \leq \sqrt{20}) \end{aligned}$ For $\beta>4, k \simeq 4.00$. Ref. [18.8]
2. All edges clamped才——	$\begin{aligned} P_{\text {cr }} & =k P^{\prime} \\ k & =\frac{4}{3}\left(\frac{4 \beta^{2}}{n^{2}+1}+2+\frac{3 n^{2} \beta^{2}}{4} \frac{1+6 / n^{2}+1 / n^{4}}{1+1 / n^{2}}\right) \end{aligned}$

where n is the number of half waves
Ref. [18.17]

TABLE 18-18 (continued)	CRITICAL IN-PLANE LOADS OF RECTANGULAR PLATES
Conditions	Buckling Loads
3.	FOR ISOTROPIC PLATE:
Two edges clamped, two	
edges simply supported	$P_{\text {cr }}=k P^{\prime}$
	$k=\frac{4}{3}\left(\frac{4 L^{2}}{n^{2} L_{y}^{2}}+2+\frac{3 n^{2} L_{y}^{2}}{4 L^{2}}\right)$

TABLE 18-18 (continued) CRITICAL IN-PLANE LOADS OF RECTANGULAR PLATES

Conditions	Buckling Loads
7.	$P_{\mathrm{cr}}=k P^{\prime}$
One edge free, one edge	$k=4.561-4.851 \beta+2.315 \beta^{2}-0.3423 \beta^{3}$
clamped, and two edges	$1.0 \leq \beta \leq 2.5$
simply supported	

Approximate formulas:

$L / L_{y}=\beta \leq 1.64 \quad k=0.559+\frac{1}{\beta^{2}}+0.13 \beta^{2}$
$\beta>1.64 \quad k=1.28$
$k_{\min }=1.28$ at $\beta=1.635$
8.

All edges simply supported

$\left(W_{T}\right)_{\mathrm{cr}}=\frac{\pi^{2} D}{2 L_{y}}\left[\beta^{3} \sum_{m=1,3,5, \ldots} \frac{1}{\left(\beta+m^{2}\right)^{2}}\right]^{-1}$
For $\beta>2: \quad\left(W_{T}\right)_{\mathrm{cr}} \approx \frac{\pi E h^{3}}{3\left(1-v^{2}\right) L_{y}}$
Ref. [18.18]
9.

Two clamped, two edges simply supported
$\left(W_{T}\right)_{\mathrm{cr}}=\frac{\pi^{2} D}{2 L_{y}}\left\{\left(2 \beta^{3}\right) \sum_{m=1,3,5, \ldots} \frac{1}{\left[(2 \beta)^{2}+m^{2}\right]^{2}}\right\}^{-1}$

For $\beta \geqq 2: \quad\left(W_{T}\right)_{\mathrm{cr}} \approx \frac{2 \pi E h^{3}}{3\left(1-v^{2}\right) L_{y}}$
Ref. [18.18]
10.

All edges simply supported
11.

All edges clamped

$P_{x y}=P_{y x}$
$\left(P_{x y}\right)_{\mathrm{cr}}=k P^{\prime}$

$$
k=6.393-3.249 \alpha+6.67 \alpha^{2}-0.09172 \alpha^{3}
$$

$$
0.33 \leq \alpha \leq 3
$$

Exact solution:
$k=5.348+2.299 \alpha-1.8406 \alpha^{2}+3.544 \alpha^{3} \quad \alpha \leq 1$
$\left(P_{x y}\right)_{\mathrm{cr}}=k P^{\prime}$

$$
k=8.942+30.89 \alpha^{1 / 2}-75.36 \alpha+50.20 \alpha^{3 / 2}
$$

$$
0.4 \leq \alpha \leq 2.5
$$

Exact solution:
For $\beta \rightarrow \infty \quad k=8.98$

TABLE 18-18 (continued) CRITICAL IN-PLANE LOADS OF RECTANGULAR PLATES

Conditions	Buckling Loads
12. Two edges clamped, two edges simply supported	$\begin{aligned} \left(P_{x y}\right)_{\mathrm{cr}}= & k P^{\prime} \\ k= & 8.905+3.674 \alpha-4.499 \alpha^{2}+5.090 \alpha^{3}-0.7569 \alpha^{4} \\ & \alpha \leq 3 \end{aligned}$
13. All edges simply supported The in-plane forces are assumed to remain proportional to each	$\left(P_{y}\right)_{\mathrm{cr}}=k P^{\prime}$ ISOTROPIC PLATE: $k=\frac{\left(m+n^{2} / m \beta^{2}\right)^{2}}{1+\left(P_{x} / P_{y}\right)(n / \beta m)^{2}}$ ORTHOTROPIC PLATE: $\begin{aligned} k & =\frac{\sqrt{D_{y} / D_{x}} m^{2}+2 B n^{2} /\left(\beta^{2} \sqrt{D_{x} D_{y}}\right)+\sqrt{D_{x} / D_{y}}\left(n^{2} / \beta^{2} m\right)^{2}}{1+\lambda(n / \beta m)^{2}} \\ P^{\prime} & =\frac{\pi^{2} \sqrt{D_{x} D_{y}}}{L_{y}^{2}} \\ \lambda & =P_{x} / P_{y} \end{aligned}$

TABLE 18-19 NATURAL FREQUENCIES OF ISOTROPIC RECTANGULAR PLATES AND MEMBRANES ${ }^{\text {a }}$

Notation

$E=$ modulus of elasticity
$h=$ thickness of plate
$\rho=$ mass per unit area
$\beta=L / L y$
$\nu=$ Poisson's ratio
$L, L_{y}=$ length of plate in x and y directions

$$
D=\frac{E h^{3}}{12\left(1-v^{2}\right)}
$$

The natural frequencies in this table are defined in two ways:

1. $\omega_{n m}=\frac{\lambda_{n m}}{L^{2}} \sqrt{\frac{D}{\rho}} \mathrm{rad} / \mathrm{s}$
where n and $m(n, m=1,2,3, \ldots)$ are the numbers of half waves in the mode shapes in the x and y directions; ω_{11} is the fundamental frequency.
2. $\omega_{i}=\frac{\lambda_{i}}{L^{2}} \sqrt{\frac{D}{\rho}} \quad \mathrm{rad} / \mathrm{s}$
where $i(i=1,2,3, \ldots)$ is the number of the natural frequency; for the fundamental frequency, $i=1$.
$f_{n m}(\mathrm{~Hz})=\frac{\omega_{n m}}{2 \pi} \quad$ and $\quad f_{i}(\mathrm{~Hz})=\frac{\omega_{i}}{2 \pi}$
The values of $\lambda_{n m}$ or λ_{i} are independent of v except where specifically indicated.

Configuration and Boundary Conditions	Natural Frequencies
1. All edges simply supported	$\begin{aligned} \lambda_{n m} & =\pi^{2}\left(n^{2}+\beta^{2} m^{2}\right) \\ m, n & =1,2,3, \ldots \end{aligned}$ First mode is ω_{11}; second is ω_{12}, etc.
2. Three edges simply supported, one edge	$\begin{aligned} \lambda_{11}= & 6.238+16.07 \beta-21.2 \beta^{2}+15.51 \beta^{3}-5.3936 \beta^{4} \\ & +0.8995 \beta^{5}-0.0576 \beta^{6} \quad 0.5 \leq \beta \leq 5.0 \\ v= & 0.25 \end{aligned}$

TABLE 18-19 (continued) MEMBRANES ${ }^{a}$	NATURAL FREQUENCIES OF ISOTROPIC RECTANGULAR PLATES AND
Configuration and Boundary Conditions	Natural Frequencies
3. Two edges simply supported, two edges free	$\begin{aligned} \lambda_{11}= & 9.87(\beta=1) \\ \lambda_{21}= & 8.54+4.31 \beta+3.952 \beta^{2}-0.6751 \beta^{3} \\ & 0.5 \leq \beta \leq 2.0 \\ \lambda_{12}= & 39.48(\beta=1) \\ \lambda_{22}= & 39.2-0.273 \beta+9.123 \beta^{2}-1.3256 \beta^{3} \\ & 0.5 \leq \beta \leq 2.0 \\ v= & 0.3 \end{aligned}$
4. One edge built in, other edges simply supported	$\begin{aligned} \lambda_{11}= & \beta^{2}\left(50.4-41.85 \beta+17.65 \beta^{2}-2.5 \beta^{3}\right) \\ & 1 \leq \beta \leq 3 \\ \lambda_{12}= & 51.7(\beta=1) \\ \lambda_{21}= & 58.7(\beta=1) \\ \lambda_{22}= & 86.12(\beta=1) \end{aligned}$
5. Two opposite edges clamped, other edges simply supported	$\begin{aligned} \lambda_{11}= & \beta^{2}\left(122.0-188.567 \beta+121.2 \beta^{2}-25.73 \beta^{3}\right) \\ \lambda_{21}= & \beta^{2}\left(159.4-181.2 \beta+115.4 \beta^{2}-24.4 \beta^{3}\right) \\ \lambda_{31}= & \beta^{2}\left(219.6-180.7 \beta+114.2 \beta^{2}-24.0 \beta^{3}\right) \\ \lambda_{12}= & \beta^{2}\left(463.9-820.167 \beta+520.8 \beta^{2}-109.73 \beta^{3}\right) \\ & 0.5 \leq \beta \leq 2.0 \end{aligned}$
6. Three edges clamped, one edge simply supported	APPROXIMATE: $\begin{aligned} \lambda_{1} & =22.4+0.85 \beta+4.85 \beta^{2}+3.7 \beta^{3} \\ \beta & \leq 2 \end{aligned}$

TABLE 18-19 (continued) MEMBRANES ${ }^{\boldsymbol{a}}$
NATURAL FREQUENCIES OF ISOTROPIC RECTANGULAR PLATES AND Configuration and Boundary Conditions
7.
All edges clamped
Natural Frequencies
:---
$\lambda_{2}=\beta^{2}\left(107.2-51.9 \beta+21.5 \beta^{2}-3.0 \beta^{3}\right)$
$\lambda_{3}=\beta^{2}\left(262.7-241.3 \beta+102.1 \beta^{2}-14.47 \beta^{3}\right)$
$1.0 \leq \beta \leq 3.0$
MEMBRANES:

[^32]$D_{x}, D_{y}, D_{x y}=$ flexural rigidities defined in Table 18
$L, L_{y}=$ length of plate in x and y directions
$\rho=$ mass per unit area
$\alpha=L_{y} / L$
$\gamma_{0}=n \pi \quad \gamma_{1}=(n+1 / 4) \pi \quad \gamma_{2}=(n+1 / 2) \pi$
$\gamma_{3}=m \pi \quad \gamma_{4}=(m+1 / 4) \pi \quad \gamma_{5}=(m+1 / 2) \pi$
$n, m=$ number of half waves in the mode shapes in the x, y directions $(n, m=1,2,3, \ldots)$
Natural frequencies:
$$
\omega_{n m}=\frac{1}{L_{y}^{2}} \sqrt{\frac{1}{\rho}\left[D_{x}\left(\alpha k_{1}\right)^{4}+2 D_{x y} \alpha^{2} k_{3}+D_{y}\left(k_{2}\right)^{4}\right]}
$$

Except for the case of all four sides simply supported, the values of k_{1}, k_{2}, and k_{3} are approximate.

Configuration and Boundary Conditions	k_{1}	k_{2}	k_{3}	Conditions
1.	4.730	4.730	151.3	$n=1, m=1$
All edges clamped	4.730	γ_{5}	$12.30 \gamma_{5}\left(\gamma_{5}-2\right)$	$n=1, m=2,3,4, \ldots$
*	γ_{2}	4.730	$12.30 \gamma_{2}\left(\gamma_{2}-2\right)$	$n=2,3,4, \ldots, m=1$
	γ_{2}	γ_{5}	$\gamma_{2} \gamma_{5}\left(\gamma_{2}-2\right)\left(\gamma_{5}-2\right)$	$n=2,3,4, \ldots, m=2,3,4, \ldots$
$L \longrightarrow$				

TABLE 18-20 (continued) NATURAL FREQUENCIES OF ORTHOTROPIC RECTANGULAR PLATES ${ }^{\text {a }}$				
Configuration and Boundary Conditions	k_{1}	k_{2}	k_{3}	Conditions
2. Three edges clamped, one edge simply supported	$\begin{aligned} & 4.730 \\ & \gamma_{2} \end{aligned}$	$\begin{aligned} & \gamma_{4} \\ & \gamma_{4} \end{aligned}$	$\begin{aligned} & 12.30 \gamma_{4}\left(\gamma_{4}-1\right) \\ & \gamma_{2} \gamma_{4}\left(\gamma_{2}-2\right)\left(\gamma_{4}-1\right) \end{aligned}$	$\begin{aligned} & n=1,2,3, \ldots, m=1 \\ & n=1,2,3, \ldots, m=2,3,4, \ldots \end{aligned}$
3. Two opposite edges clamped, other edges simply supported	$\begin{aligned} & 4.730 \\ & \gamma_{2} \end{aligned}$	$\begin{aligned} & \gamma_{3} \\ & \gamma_{3} \end{aligned}$	$\begin{aligned} & 12.30 \gamma_{3}^{2} \\ & \gamma_{2} \gamma_{3}^{2}\left(\gamma_{2}-2\right) \end{aligned}$	$\begin{aligned} & n=1, m=1,2,3, \ldots \\ & n=2,3,4, \ldots, m=1,2,3, \ldots \end{aligned}$

	γ_{1}	γ_{4}	$\gamma_{1} \gamma_{4}\left(\gamma_{1}-1\right)\left(\gamma_{4}-1\right)$	$n=1,2,3, \ldots$
Two consecutive edges clamped, other edges simply supported				$m=1,2,3, \ldots$
5. One edge clamped, other edges simply supported	γ_{1}	γ_{3}	$\gamma_{1} \gamma_{3}^{2}\left(\gamma_{1}-1\right)$	$\begin{aligned} & n=1,2,3, \ldots \\ & m=1,2,3, \ldots \end{aligned}$
6. All edges simply supported	γ_{0}	γ_{3}	$\gamma_{0}^{2} \gamma_{3}^{2}$	$\begin{aligned} & n=1,2,3, \\ & m=1,2,3, \end{aligned}$

${ }^{a}$ Adapted from Ref. [18.2].

TABLE 18-21 TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

Notation

Simple supports are at $y=0$ and $y=L_{y}$.
Element extends from $x=a$ to $x=b$.
$w=$ deflection
$\theta=$ slope about y axis

$E=$ modulus of elasticity
$\ell=$ length of element in x direction, span of matrices
$L_{y}=$ length of element in y direction
$\varepsilon_{m}=$ constant that accounts for variation of distributed loads in y direction

$\nu=$ Poisson's ratio
$h=$ thickness of plate
$\rho=$ mass per unit area
$P_{y}=$ compressive in-plane force per unit length in y direction

$\omega=$ natural frequency (rad/s)
$M=$ bending moment per unit length, about y axis
$V=$ equivalent shear force per unit length, in z direction
$M_{T}(x)=\int_{-h / 2}^{h / 2} \frac{E \alpha}{1-v} T(x, z) z d z$
$M_{T_{a}}=\int_{-h / 2}^{h / 2} \frac{E \alpha}{1-v} T(a, z) z d z$
$M_{T_{b}}=\int_{-h / 2}^{h / 2} \frac{E \alpha}{1-v} T(b, z) z d z$
$T=$ change in temperature
$D=E h^{3} /\left[12\left(1-v^{2}\right)\right]$
$\beta=m \pi / L_{y}$
$d^{2}\left(q^{2}\right)=\left\{\begin{array}{cl}\beta \sqrt{P_{y} / D}+(-) \beta^{2} & \text { for static response with } P_{y} \\ \omega \sqrt{\rho / D}+(-) \beta^{2} & \text { for vibration }\end{array}\right.$
$\zeta=\nu \beta^{2}$
$\lambda=\left\{\begin{array}{cl}\beta \sqrt{P_{y} / D} & \text { for static response with } P_{y} \\ \omega \sqrt{\rho / D} & \text { for vibration }\end{array}\right.$
$\eta_{1}\left(\eta_{2}\right)=\left\{\begin{array}{cl}\beta \sqrt{P_{y} / D}-(+)(1-v) \beta^{2} & \text { for static response with } P_{y} \\ \omega \sqrt{\rho / D}-(+)(1-v) \beta^{2} & \text { for vibration }\end{array}\right.$

TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES
$\left.\left.\begin{array}{rl}c_{h} & = \begin{cases}\cosh \beta \ell & \text { for massless isotropic segment } \\ \cosh d \ell & \text { for isotropic plate segment } \\ \text { with mass or in-plane force }\end{cases} \\ c & =\cos q \ell\end{array} \quad \begin{array}{ll}\sinh \beta \ell & \text { for massless isotropic segment }\end{array}\right\} \begin{array}{ll}\sinh d \ell & \text { for isotropic plate segment } \\ \text { with mass or in-plane force }\end{array}\right]$
$\varepsilon_{m}=$ constant that accounts for variation of distributed loads in y direction. Values of ε_{m} are given below.

Loading (Force or Moment) Distribution in y Direction	Constant ε_{m}
1. Distributed load constant in y direction	$\begin{aligned} \varepsilon_{m} & =\frac{2}{m \pi}\left(\cos \frac{m \pi b_{1}}{L_{y}}-\cos \frac{m \pi b_{2}}{L_{y}}\right) \\ \text { If } b_{1} & =0, b_{2}=L_{y}: \\ \varepsilon_{m} & =\frac{2}{m \pi}(1-\cos m \pi) \\ & = \begin{cases}4 / m \pi & \text { if } m=1,3,5,7, \ldots \\ 0 & \text { if } m=2,4,6,8, \ldots\end{cases} \end{aligned}$
2. Distributed load ramp in y direction	$\begin{aligned} \varepsilon_{m}= & \frac{2}{m^{2} \pi^{2}}\left[-\ell_{y} m \pi \cos \frac{m \pi b_{2}}{L_{y}}\right. \\ & \left.+L_{y}\left(\sin \frac{m \pi b_{2}}{L_{y}}-\sin \frac{m \pi b_{1}}{L_{y}}\right)\right] \end{aligned}$
3. Sinusoidal load in y	$\begin{array}{rl} \varepsilon_{1} & =1 \\ \varepsilon_{m}=0 & m>1 \end{array}$

TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE

 SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGESFor static response of plate with in-plane compressive force P_{y}
$d^{2}=\frac{m \pi}{L_{y}} \sqrt{\frac{P_{y}}{D}}+\left(\frac{m \pi}{L_{y}}\right)^{2} \quad q^{2}=\frac{m \pi}{L_{y}} \sqrt{\frac{P_{y}}{D}}-\left(\frac{m \pi}{L_{y}}\right)^{2}$
$\lambda=\frac{m \pi}{L_{y}} \sqrt{\frac{P_{y}}{D}} \quad \eta_{1}=\frac{m \pi}{L_{y}} \sqrt{\frac{P_{y}}{D}}-(1-\nu)\left(\frac{m \pi}{L_{y}}\right)^{2}$
$\eta_{2}=\frac{m \pi}{L_{y}} \sqrt{\frac{P_{y}}{D}}+(1-v)\left(\frac{m \pi}{L_{y}}\right)^{2} \quad \zeta=v\left(\frac{m \pi}{L_{y}}\right)^{2}$
For vibrating plate:

$$
\begin{aligned}
& d^{2}=\sqrt{\frac{\rho}{D}} \omega+\left(\frac{m \pi}{L_{y}}\right)^{2} \quad q^{2}=\sqrt{\frac{\rho}{D}} \omega-\left(\frac{m \pi}{L_{y}}\right)^{2} \\
& \lambda=\sqrt{\frac{\rho}{D}} \omega \quad \eta_{1}=\sqrt{\frac{\rho}{D}} \omega-(1-v)\left(\frac{m \pi}{L_{y}}\right)^{2} \\
& \eta_{2}=\sqrt{\frac{\rho}{D}} \omega+(1-v)\left(\frac{m \pi}{L_{y}}\right)^{2} \quad \zeta=v\left(\frac{m \pi}{L_{y}}\right)^{2}
\end{aligned}
$$

The variables at x, y are given by
$\left[\begin{array}{l}w(x, y) \\ \theta(x, y) \\ V(x, y) \\ M(x, y)\end{array}\right]=\sum_{m=1}^{\infty}\left[\begin{array}{c}w_{m}(x) \\ \theta_{m}(x) \\ V_{m}(x) \\ M_{m}(x)\end{array}\right] \sin \frac{m \pi y}{L_{y}}$
where $w_{m}(x), \theta_{m}(x), V_{m}(x), M_{m}(x)$ are computed using the matrices of this table and the methodology of Appendix III.

TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE

 SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGESTransfer Matrix (Sign Convention 1):
The transfer matrix method can be used to compute $w_{m}(x), \theta_{m}\left(x, V_{m}(x), M_{m}(x)\right.$ for each m. To simplify the notation, the subscript m will be dropped.

$$
\begin{aligned}
& {\left[\begin{array}{c}
w_{b} \\
\theta_{b} \\
V_{b} \\
M_{b} \\
1
\end{array}\right]=\left[\begin{array}{ccccc}
U_{w w} & U_{w \theta} & U_{w V} & U_{w M} & \bar{F}_{w} \\
U_{\theta w} & U_{\theta \theta} & U_{\theta V} & U_{\theta M} & \bar{F}_{\theta} \\
U_{V w} & U_{V \theta} & U_{V V} & U_{V M} & \bar{F}_{V} \\
U_{M w} & U_{M \theta} & U_{M V} & U_{M M} & \bar{F}_{M} \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
V_{a} \\
M_{a} \\
1
\end{array}\right]} \\
& \mathbf{z}_{b}=\quad \mathbf{U}^{i} \quad \mathbf{z}_{a}
\end{aligned}
$$

Stiffness Matrix (Sign Convention 2):
The responses $w_{m}(x), \theta_{m}(x), V_{m}(x), M_{m}(x)$ can be computed for each m using the displacement method. To simplify the notation, the subscript m will be dropped from w_{m}, θ_{m}, V_{m}, and M_{m}.

i th element

$$
\begin{aligned}
{\left[\begin{array}{c}
V_{a} \\
M_{a} \\
V_{b} \\
M_{b}
\end{array}\right] } & =\left[\begin{array}{llll}
k_{11} & k_{12} & k_{13} & k_{14} \\
k_{21} & k_{22} & k_{23} & k_{24} \\
k_{31} & k_{32} & k_{33} & k_{34} \\
k_{41} & k_{42} & k_{43} & k_{44}
\end{array}\right]
\end{aligned} \begin{gathered}
{\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
w_{b} \\
\theta_{b}
\end{array}\right]}
\end{gathered}+\left[\begin{array}{c}
V_{a}^{0} \\
M_{a}^{0} \\
V_{b}^{0} \\
M_{b}^{0}
\end{array}\right]
$$

TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

Matrices
Massless, Isotropic Segment

TRANSFER MATRIX:

$$
\begin{aligned}
U_{w w} & =-\frac{\beta}{2}(1-v) \ell s_{h}+c_{h} & U_{V w} & =\frac{D \beta^{4}}{2}\left[\left(3-2 v-v^{2}\right) \frac{s_{h}}{\beta}-(1-v)^{2} \ell c_{h}\right] \\
U_{w \theta} & =-\frac{1}{2}\left[(1+v) \frac{s_{h}}{\beta}+(1-v) \ell c_{h}\right] & U_{V \theta} & =-\frac{D \beta^{3}}{2}(1-v)^{2} \ell s_{h} \\
U_{w V} & =\frac{1}{2 D \beta^{2}}\left(\frac{s_{h}}{\beta}-\ell c_{h}\right) & U_{V V} & =-\frac{\beta}{2}(1-v) \ell s_{h}+c_{h} \\
U_{w M} & =-\frac{\ell s_{h}}{2 D \beta} & U_{V M} & =\frac{\beta^{2}}{2}\left[(1+v) \frac{s_{h}}{\beta}-(1-v) \ell c_{h}\right] \\
U_{\theta w} & =-\frac{\beta^{2}}{2}\left[(1+v) \frac{s_{h}}{\beta}-(1-v) \ell c_{h}\right] & U_{M w} & =\frac{D}{2} \beta^{3}(1-v)^{2} \ell s_{h} \\
U_{\theta \theta} & =\frac{\beta}{2}(1-v) \ell s_{h}+c_{h} & U_{M \theta} & =\frac{D \beta^{2}}{2}\left[\left(3-2 v-v^{2}\right) \frac{s_{h}}{\beta}+(1-v)^{2} \ell c_{h}\right] \\
U_{\theta V} & =\frac{\ell}{2 D \beta} s_{h} & U_{M V} & =\frac{1}{2}\left[(1+v) \frac{s_{h}}{\beta}+(1-v) \ell c_{h}\right] \\
U_{\theta M} & =\frac{1}{2 D}\left(\frac{s_{h}}{\beta}+\ell c_{h}\right) & U_{M M} & =\frac{1}{2} \beta(1-v) \ell s_{h}+c_{h}
\end{aligned}
$$

LOADING FUNCTIONS:

$$
\begin{aligned}
\bar{F}_{w}= & \frac{\varepsilon_{m}}{2 D \beta^{4}}\left[p_{a}\left(\beta \ell s_{h}-2 c_{h}+2\right)+\frac{p_{b}-p_{a}}{\ell}\left(-\frac{3}{\beta} s_{h}+\ell c_{h}+2 \ell\right)\right. \\
& -c_{a} \beta^{2}\left(\frac{s_{h}}{\beta}-\ell c_{h}\right)+\frac{c_{b}-c_{a}}{\ell}\left(\beta \ell s_{h}-2 c_{h}+2\right) \\
& \left.-2 M_{T_{a}} \beta^{2}\left(-\frac{\beta \ell}{2} s_{h}-2+2 c_{h}\right)-\frac{1}{\ell}\left(M_{T_{b}}-M_{T_{a}}\right) 2 \beta\left(2 s_{h}-2 \beta \ell-\beta \ell c_{h}\right)\right] \\
\bar{F}_{\theta}= & \frac{\varepsilon_{m}}{2 D \beta^{4}}\left[p_{a} \beta^{2}\left(\frac{s_{h}}{\beta}-\ell c_{h}\right)-\frac{p_{b}-p_{a}}{\ell}\left(\beta \ell s_{h}-2 c_{h}+2\right)-c_{a} \beta^{3} \ell s_{h}\right. \\
& +\frac{c_{b}-c_{a}}{\ell} \beta^{2}\left(\frac{s_{h}}{\beta}-\ell c_{h}\right)-M_{T_{a}} 2 \beta^{3}\left(\frac{3}{2} s_{h}-\frac{\beta \ell}{2} c_{h}\right) \\
& \left.-\frac{M_{T_{b}}-M_{T_{a}}}{\ell} 2 \beta^{4}\left(2 c_{h}-2-\frac{\beta \ell}{2} s_{h}\right)\right]
\end{aligned}
$$

TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

$$
\begin{aligned}
\bar{F}_{V}= & \varepsilon_{m}\left[p_{a}\left(\frac{1-v}{2} \ell c_{h}-\frac{3-v}{2 \beta} s_{h}\right)+\frac{p_{b}-p_{a}}{\ell}\left(\frac{1-v}{2 \beta} \ell s_{h}-\frac{2-v}{\beta^{2}} c_{h}+\frac{2-v}{\beta^{2}}\right)\right. \\
& +c_{a}\left(\frac{1-v}{2} \beta \ell s_{h}-c_{h}+1\right)-\frac{c_{b}-c_{a}}{\ell}\left(\frac{3-v}{2} \frac{s_{h}}{\beta}-\frac{1-v}{2} \ell c_{h}-\ell\right) \\
& \left.-M_{T_{a}} 2(1-v) \beta s_{h}-\frac{1}{\ell}\left(M_{T_{b}}-M_{T_{a}}\right) 2(1-v)\left(c_{h}-1\right)\right] \\
\bar{F}_{M}= & \frac{\varepsilon_{m}}{\beta^{2}}\left[-p_{a}\left(\frac{1-v}{2} \beta \ell s_{h}+v c_{h}-v\right)+\frac{p_{b}-p_{a}}{\ell}\left(\frac{1-3 v}{2} \frac{s_{h}}{\beta}-\frac{1-v}{2} \ell c_{h}+v \ell\right)\right. \\
& -c_{a} \beta^{2}\left(\frac{1+v}{2} \frac{s_{h}}{\beta}+\frac{1-v}{2} \ell c_{h}\right)-\frac{c_{b}-c_{a}}{\ell}\left(\frac{1-v}{2} \beta \ell s_{h}+v c_{h}-v\right) \\
& \left.-M_{T_{a}} \beta^{2}(1-v)\left(\frac{\beta \ell s_{h}}{2}+2-2 c_{h}\right)-\frac{1}{\ell}\left(M_{T_{b}}-M_{T_{a}}\right) \beta^{2}(1-v)\left(2 \ell-\frac{2}{\beta} s_{h}\right)\right]
\end{aligned}
$$

STIFFNESS MATRIX:

$$
\begin{aligned}
k_{11} & =-2 D \beta^{3}\left(\ell \beta+c_{h} s_{h}\right) / H_{s} \\
k_{21} & =D \beta^{2}\left[(1+v) \ell^{2} \beta^{2}+\left(1-v+2 \ell^{2} \beta^{2} v\right) s_{h}^{2}\right] / H_{s} \\
k_{22} & =2 D \beta\left(\ell \beta-c_{h} s_{h}\right) / H_{s} \\
k_{31} & =2 D \beta^{3}\left(s_{h}+\ell \beta c_{h}\right) / H_{s} \\
k_{32} & =-2 D \ell \beta^{3} s_{h} / H_{s} \\
k_{33} & =k_{11} \\
k_{41} & =-k_{32} \\
k_{42} & =-2 D \beta\left(\ell \beta c_{h}-s_{h}\right) / H_{s} \\
k_{43} & =-D \beta^{2}\left[(1-v) \ell^{2} \beta^{2}+(1+v) s_{h}^{2}\right] / H_{s} \\
k_{44} & =k_{22} \quad \text { This matrix is symmetric. } \\
H_{s} & =\ell^{2} \beta^{2}-s h^{2} \\
k_{i j} & =k_{j i} \\
V_{a}^{0} & =\left(U_{\theta M} \bar{F}_{w}-U_{w M} \bar{F}_{\theta}\right) / \Delta_{0} \\
M_{a}^{0} & =\left(-U_{\theta V} \bar{F}_{w}+U_{w V} \bar{F}_{\theta}\right) / \Delta_{0} \\
V_{b}^{0} & =\bar{F}_{V}-\left[\left(U_{V V} U_{\theta M}+U_{V M} U_{\theta V}\right) \bar{F}_{w}-\left(U_{V M} U_{w V}-U_{V V} U_{w M}\right) \bar{F}_{\theta}\right] / \Delta_{0} \\
M_{b}^{0} & =\bar{F}_{M}-\left[\left(U_{M V} U_{\theta M}+U_{M M} U_{\theta V}\right) \bar{F}_{w}-\left(U_{M M} U_{w V}-U_{M V} U_{w M}\right) \bar{F}_{\theta}\right] / \Delta_{0} \\
\Delta_{0} & =U_{w V} U_{\theta M}-U_{\theta V} U_{w M}
\end{aligned}
$$

TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

Matrices
Isotropic Plate Segment with Mass or In-Plane Force

TRANSFER MATRIX:

$$
\left[\begin{array}{ccccc}
\frac{1}{2 \lambda}\left(\eta_{1} c_{h}+\eta_{2} c\right) & -\frac{1}{2 \lambda}\left(\frac{\eta_{2}}{d} s_{h}+\frac{\eta_{1}}{q} s\right) & -\frac{1}{2 \lambda D}\left(\frac{s_{h}}{d}-\frac{s}{q}\right) & -\frac{1}{2 \lambda D}\left(c_{h}-c\right) & \bar{F}_{w} \\
-\frac{1}{2 \lambda}\left(\eta_{1} s_{h} d-\eta_{2} q s\right) & \frac{1}{2 \lambda}\left(\eta_{2} c_{h}+\eta_{1} c\right) & \frac{1}{2 \lambda D}\left(c_{h}-c\right) & \frac{1}{2 \lambda D}\left(d s_{h}+q s\right) & \bar{F}_{\theta} \\
-\frac{D}{2 \lambda}\left(\eta_{1}^{2} d s_{h}+\eta_{2}^{2} q s\right) & \frac{D}{2 \lambda} \eta_{1} \eta_{2}\left(c_{h}-c\right) & \frac{1}{2 \lambda}\left(\eta_{1} c_{h}+\eta_{2} c\right) & \frac{1}{2 \lambda}\left(\eta_{1} d s_{h}-\eta_{2} q s\right) & \bar{F}_{V} \\
-\frac{D}{2 \lambda} \eta_{1} \eta_{2}\left(c_{h}-c\right) & \frac{D}{2 \lambda}\left(\frac{\eta_{2}^{2}}{d} s_{h}-\frac{\eta_{1}^{2}}{q} s\right) & \frac{1}{2 \lambda}\left(\frac{\eta_{2}}{d} s_{h}+\frac{\eta_{1}}{d} s\right) & \frac{1}{2 \lambda}\left(\eta_{2} c_{h}+\eta_{1} c\right) & \bar{F}_{M} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
\bar{F}_{w}= & \frac{\varepsilon_{m}}{2 \lambda D}\left\{p_{a}\left(\frac{c_{h}}{d^{2}}+\frac{c}{q^{2}}-\frac{2}{d^{2}} \frac{\lambda}{q^{2}}\right)+\frac{p_{b}-p_{a}}{\ell}\left(\frac{s_{h}}{d^{3}}+\frac{s}{q^{3}}-\frac{2}{d^{2}} \frac{\lambda \ell}{q^{2}}\right)+c_{a}\left(\frac{s_{h}}{d}-\frac{s}{q}\right)\right. \\
& +\frac{c_{b}-c_{a}}{\ell}\left(\frac{c_{h}}{d^{2}}+\frac{c}{q^{2}}-\frac{2}{d^{2}} \frac{\lambda}{q^{2}}\right)-M_{T_{a}}\left[\eta_{2} \frac{c_{h}-1}{d^{2}}+\eta_{1} \frac{1-c}{q^{2}}\right. \\
& \left.+(1-v)\left(\frac{m \pi}{L_{y}}\right)^{2}\left(\frac{c_{h}-1}{d^{2}}-\frac{1-c}{q^{2}}\right)\right] \\
& -\frac{M_{T_{b}}-M_{T_{a}}}{\ell}\left[\eta_{2} \frac{s_{h}-d \ell}{d^{3}}+\eta_{1} \frac{q \ell+s_{h}}{q^{3}}\right. \\
& \left.\left.+(1-v)\left(\frac{m \pi}{L_{y}}\right)^{2}\left(\frac{s_{h}-d \ell}{d^{3}}-\frac{q \ell+s_{h}}{q^{3}}\right)\right]\right\}
\end{aligned}
$$

TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

$$
\begin{aligned}
& \bar{F}_{\theta}=\frac{-\varepsilon_{m}}{2 \lambda D}\left\{p_{a}\left(\frac{s_{h}}{d}-\frac{s}{q}\right)+\frac{p_{b}-p_{a}}{\ell}\left(\frac{c_{h}}{d^{2}}+\frac{c}{q^{2}}-\frac{2 \lambda}{d^{2} q^{2}}\right)\right. \\
& +c_{a}\left(c_{h}-c\right)+\frac{c_{b}-c_{a}}{\ell}\left(\frac{s_{h}}{d}-\frac{s}{q}\right) \\
& -M_{T_{a}}\left[\eta_{2} \frac{s_{h}}{d}-\eta_{1} \frac{s}{q}+(1-v)\left(\frac{m \pi}{L_{y}^{2}}\right)^{2}\left(\frac{s_{h}}{d}+\frac{s}{q}\right)\right] \\
& -\frac{M_{T_{b}}-M_{T_{a}}}{\ell}\left[\eta_{2} \frac{c_{h}-1}{d^{2}}-\eta_{1} \frac{c-1}{q^{2}}\right. \\
& \left.\left.+(1-v)\left(\frac{m \pi}{L_{y}}\right)^{2}\left(\frac{c_{h}-1}{d^{2}}-\frac{c-1}{q^{2}}\right)\right]\right\} \\
& \bar{F}_{V}=\frac{-\varepsilon_{m}}{2 \lambda}\left\{p_{a}\left(\frac{\eta_{2}}{d} s_{h}+\frac{\eta_{1}}{q} s\right)+\frac{p_{b}-p_{a}}{\ell}\left(\frac{\eta_{1}}{d^{2}} c_{h}-\frac{\eta_{2}}{q^{2}} c+\frac{d^{4}-q^{4}-2 \lambda s}{d^{2} q^{2}}\right)\right. \\
& +c_{a}\left(\eta_{1} c_{h}+\eta_{2} c-2 \lambda\right)+\frac{c_{b}-c_{a}}{\ell}\left(\frac{\eta_{1}}{d} s_{h}+\frac{\eta_{2}}{q} s-2 \lambda \ell\right) \\
& -M_{T_{a}}\left[\eta_{1} \eta_{2}\left(\frac{s_{h}}{d}-\frac{s}{q}\right)+(1-v)\left(\frac{m \pi}{L_{y}^{2}}\right)\left(\eta_{1} \frac{s_{h}}{d}-\eta_{s} \frac{s}{q}\right)\right] \\
& -\frac{M_{T_{b}}-M_{T_{a}}}{\ell}\left[\eta_{1} \eta_{2}\left(\frac{c_{h}-1}{d^{2}}+\frac{c-1}{q^{2}}\right)\right. \\
& \left.\left.+(1-v)\left(\frac{m \pi}{L_{y}}\right)^{2}\left(\eta_{1} \frac{c_{h}-1}{d^{2}}+\eta_{2} \frac{1-c}{q^{2}}\right)\right]\right\} \\
& \bar{F}_{M}=\frac{-\varepsilon_{m}}{2 \lambda}\left\{p_{a}\left(\frac{\eta_{2}}{d^{2}} c_{h}-\frac{\eta_{1}}{q^{2}} c+\frac{2 \lambda \zeta}{d^{2} q^{2}}\right)+\frac{p_{b}-p_{a}}{\ell}\left(\frac{\eta_{2}}{d^{3}} s_{h}-\frac{\eta_{1}}{q^{3}} s+\frac{2 \lambda \zeta \ell}{d^{2} q^{2}}\right)\right. \\
& +c_{a}\left(\frac{\eta_{2}}{d} s_{h}+\frac{\eta_{1}}{q} s\right)+\frac{c_{b}-c_{a}}{\ell}\left(\frac{\eta_{2}}{d^{2}} c_{h}-\frac{\eta_{1}}{q^{2}} c+\frac{2 \lambda \zeta}{d^{2} q^{2}}\right) \\
& -M_{T_{a}}\left[\eta_{2}^{2} \frac{c_{h}-1}{d^{2}}+\eta_{1}^{2} \frac{c-1}{q^{2}}+(1-v)\left(\frac{m \pi}{L_{y}^{2}}\right)^{2}\left(\eta_{2} \frac{c_{h}-1}{d^{2}}-\eta_{1} \frac{c-1}{q^{2}}\right)\right] \\
& -\frac{M_{T_{b}}-M_{T_{a}}}{\ell}\left[\eta_{2}^{2} \frac{s_{h}-d \ell}{d^{3}}+\eta_{1}^{2} \frac{s-q \ell}{q^{3}}\right. \\
& \left.\left.+(1-v)\left(\frac{m \pi}{L_{y}}\right)^{2}\left(\eta_{2} \frac{s_{h}-d \ell}{d^{2}}-\eta_{1} \frac{s_{h}-q \ell}{q^{3}}\right)\right]\right\}
\end{aligned}
$$

TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

STIFFNESS MATRIX:

$$
\begin{aligned}
& H_{0}=2\left(1-c_{h} c\right) \\
& k_{11}=\left(\eta_{1}+\eta_{2}\right)\left(d s_{h} c+q c_{h} s\right) D / H_{0} \\
& k_{12}=\left[\left(\eta_{2}-\eta_{1}\right)\left(1-c_{h} c\right)-\left(d^{2} \eta_{1}+q^{2} \eta_{2}\right) \frac{s_{h} s}{d q}\right] D / H_{0} \\
& k_{13}=-2 \lambda\left(d s_{h}+q s\right) D / H_{0} \\
& k_{14}=2 \lambda\left(c-c_{h}\right) D / H_{0} \\
& k_{21}=k_{12} \\
& k_{22}=\left(\eta_{1}+\eta_{2}\right)\left(\frac{c_{h} s}{q}-\frac{c s_{h}}{d}\right) D / H_{0} \\
& k_{23}=2 \lambda\left(c_{h}-c\right) D / H_{0} \\
& k_{24}=2 \lambda\left(\frac{s_{h}}{d}-\frac{s}{q}\right) D / H_{0} \\
& k_{31}=k_{13} \quad k_{32}=k_{23} \\
& k_{33}=\left(\eta_{1}+\eta_{2}\right)\left(d s_{h} c+q c_{h} s\right) D / H_{0} \\
& k_{34}=\left[\left(\eta_{2}-\eta_{1}\right)\left(-1+c_{h} c\right)+\frac{s_{h} s}{d q}\left(d^{2} \eta_{1}+q^{2} \eta_{2}\right)\right] D / H_{0} \\
& k_{41}=k_{14} \quad k_{42}=k_{24} \quad k_{43}=k_{34} \\
& k_{44}=\left(\eta_{1}+\eta_{2}\right)\left(\frac{s}{q} c_{h}-\frac{c}{d} s_{h}\right) D / H_{0} \\
& V_{a}^{0}=2 \lambda D\left[\left(d s_{h}+q s\right) \bar{F}_{w}+\left(c_{h}-c\right) \bar{F}_{\theta}\right] / H_{0} \\
& M_{a}^{0}=-2 \lambda D\left[\left(c_{h}-c\right) \bar{F}_{w}+\left(\frac{s_{h}}{d}-\frac{s}{q}\right) \bar{F}_{\theta}\right] / H_{0} \\
& V_{b}^{0}=\bar{F}_{V}-D\left\{\left(\eta_{1}+\eta_{2}\right)\left(d c s_{h}+q s c_{h}\right) \bar{F}_{w}\right. \\
& \left.+\left[\left(\eta_{2}-\eta_{1}\right)\left(c c_{h}-1\right)+\frac{s s_{h}}{a q}\left(d^{2} \eta_{1}+q^{2} \eta_{2}\right)\right] \bar{F}_{\theta}\right\} / H_{0} \\
& M_{b}^{0}=\bar{F}_{M}-D\left\{\left[\left(\eta_{2}-\eta_{1}\right)\left(c c_{h}-1\right)+\frac{s s_{h}}{d q}\left(d^{2} \eta_{1}+q^{2} \eta_{2}\right)\right] \bar{F}_{w}\right. \\
& \left.+\left(\eta_{1}+\eta_{2}\right)\left(\frac{s c_{h}}{q}-\frac{c s_{h}}{d}\right) \bar{F}_{\theta}\right\} / H_{0}
\end{aligned}
$$

TABLE 18-22 TRANSFER AND STIFFNESS MATRICES FOR POINT OCCURRENCES FOR RECTANGULAR PLATE SEGMENT WHERE TWO OPPOSITE EDGES ARE SIMPLY SUPPORTED

4.

Line moment C (force - length/length in y direction)

$M_{m}=\frac{2 C}{m \pi}\left(\cos \frac{m \pi b_{1}}{L_{y}}-\cos \frac{m \pi b_{2}}{L_{y}}\right)$

TABLE 18-22 (continued) TRANSFER AND STIFFNESS MATRICES FOR POINT OCCURRENCES FOR RECTANGULAR PLATE SEGMENT WHERE TWO OPPOSITE EDGES ARE SIMPLY SUPPORTED

Case	Matrices
$\mathbf{5 .}$	
Jump in deflection w_{1} (length) and change in slope α (radians)	

$w_{m}=\frac{2 w_{1}}{m \pi}(1-\cos m \pi)$
$\alpha_{m}=\frac{2 \alpha}{m \pi}(1-\cos m \pi)$
6.

Linear and rotary hinges k_{2}, k_{2}^{*}

7.

Springs: k_{1} (force/length squared) and k_{1}^{*} (force - length/length squared). Values of k_{1}, k_{1}^{*} can be taken from Table 11-21 for various spring, flexible support combinations; for example, line spring k_{1}.

8.

Line lumped mass M_{i} (mass/length in y direction)

STIFFNESS MATRIX FOR CASE 7:
$\left[\begin{array}{c}V_{a} \\ M_{a}\end{array}\right]=\left[\begin{array}{cc}k_{1} & 0 \\ 0 & k_{1}^{*}\end{array}\right]\left[\begin{array}{c}w_{a} \\ \theta_{a}\end{array}\right]$

STIFFNESS MATRIX FOR CASE 8:
$\left[\begin{array}{c}V_{a} \\ M_{a}\end{array}\right]=-\omega^{2}\left[\begin{array}{cc}M_{i} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{c}w_{a} \\ \theta_{a}\end{array}\right]$

TABLE 18-23 TRANSFER AND STIFFNESS MATRICES FOR A GENERAL RECTANGULAR PLATE SEGMENT

Notation

$$
\begin{aligned}
w & =\text { deflection } \\
\theta & =\text { slope about } y \text { axis } \\
\ell & =\text { length of element in the } x \text { direction } \\
P, P_{y} & =\text { compressive forces per unit length in } x \text { and } y \text { directions } \\
M & =\text { bending moment per unit length, about } y \text { axis } \\
V & =\text { equivalent shear force per unit length, in } z \text { direction } \\
D_{x}, D_{y}, D_{x y} & =\text { defined in Table 18-14 } \\
\rho & =\text { mass per unit area } \\
\omega & =\text { natural frequency } \\
k & =\text { modulus of elastic foundation }\left(F / L^{3}\right) \\
\eta_{m} & = \begin{cases}\text { simply-simply supported } & m \pi \\
\text { fixed-simply supported } & (4 m+1) \pi / 4 \\
\text { fixed-fixed } & (2 m+1) \pi / 2\end{cases}
\end{aligned}
$$

These supports are at $y=0$ and $y=L_{y}$:

$$
L_{y}=\text { length of plate in } y \text { direction }
$$

$$
v_{x}, v_{y}=\text { Poisson's ratio in } x \text { and } y \text { directions }
$$

$$
B=\frac{1}{2}\left(D_{x} v_{y}+D_{y} v_{x}+4 D_{x y}\right)
$$

$$
\beta_{m}=\eta_{m} / L_{y}
$$

$$
\lambda_{m}=\frac{1}{D_{x}}\left\{D_{y} \beta_{m}^{4}\left[1+v_{x} v_{y}\left(\varphi_{m}^{2}-1\right)\right]+\beta_{m}^{2} \varphi_{m} P_{y}-\rho \omega^{2}+k_{y}\right\}
$$

$$
\alpha_{1_{m}}=-v_{y} \beta_{m}^{2} \varphi_{m}
$$

$$
\alpha_{3_{m}}=-\frac{P}{D_{x}}-\left(1-\frac{v_{x} D_{y}}{D_{x}}\right) \beta_{m}^{2} \varphi_{m}
$$

$$
\zeta_{m}=\frac{1}{D_{x}}\left(P-2 B \beta_{m}^{2} \varphi_{m}\right)
$$

$$
\alpha_{2_{m}}=-\left(\frac{4 D_{x y}}{D_{x}}+v_{y}\right) \beta_{m}^{2} \varphi_{m}
$$

$\varphi_{m}=$ modal constant defined below

	Boundary Conditions		Values of $\varphi_{m}, m=1,2,3, \ldots, \infty$			
Case	$y=0$	$y=L_{y}$	φ_{1}	φ_{2}	φ_{3}	$\varphi_{m}(m \geq 4)$
1	Simply supported	Simply supported	1	1	1	1
2	Simply supported	Fixed	$\frac{2.9317}{\eta_{1}}$	$\frac{6.0686}{\eta_{2}}$	$\frac{9.2095}{\eta_{3}}$	$\frac{\eta_{m}-1}{\eta_{m}}$
3	Fixed	Fixed	$\frac{2.6009}{\eta_{1}}$	$\frac{5.8634}{\eta_{2}}$	$\frac{8.9984}{\eta_{3}}$	$\frac{\eta_{m}-2}{\eta_{m}}$

TABLE 18-23 (continued) TRANSFER AND STIFFNESS MATRICES FOR A GENERAL

 RECTANGULAR PLATE SEGMENTTo use this table to obtain a matrix for a particular element, follow the steps:

1. Evaluate the desired number of terms of β_{m} and φ_{m} with the boundary conditions at $y=0$ and $y=L_{y}$ considered.
2. Calculate the parameters $\lambda_{m}, \zeta_{m}, \alpha_{1_{m}}, \alpha_{2_{m}}, \alpha_{3_{m}}$.
3. Look up the appropriate e_{i} functions in this table.
4. Substitute these e_{i} expressions into the matrices below.
5. According to the distribution of the loading in the y direction, insert ε_{m} of this table into the loading functions of this table.
6. Use the matrices of this table and the techniques of Appendix III to compute $w_{m}(x)$, $\theta_{m}(x), V_{m}(x)$, and $M_{m}(x)$ and calculate $w(x, y), \theta(x, y), V(x, y)$, and $M(x, y)$ from

$$
\left[\begin{array}{c}
w(x, y) \\
\theta(x, y) \\
V(x, y) \\
M(x, y)
\end{array}\right]=\sum_{m=1}^{\infty}\left[\begin{array}{c}
w_{m}(x) \\
\theta_{m}(x) \\
V_{m}(x) \\
M_{m}(x)
\end{array}\right] \varphi_{m}(y)
$$

To simplify the notation in this table, the subscript m will be dropped from w_{m}, θ_{m}, V_{m}, and M_{m}. The quantity of $\varphi_{m}(y)$ is given by

Case	Boundary Conditions		
	$y=0$	$y=L_{y}$	$\varphi_{m}(y)$
1	Simply supported	Simply supported	$\sin \beta_{m} y$
2	Simply supported	Fixed	$\cosh \beta_{m} y-\cos \beta_{m} y+E_{m}\left(\sinh \beta_{m} y-\sin \beta_{m} y\right)$
3	Fixed	Fixed	$\cosh \beta_{m} y-\cos \beta_{m} y-E_{m}\left(\sinh \beta_{m} y-\sin \beta_{m} y\right)$
$E_{m}=\left(\cosh \eta_{m}-\cos \eta_{m}\right) /\left(\sinh \eta_{m}-\sin \eta_{m}\right)$			

Matrices
Transfer Matrix (Sign Convention 1)

TABLE 18-23 (continued) TRANSFER AND STIFFNESS MATRICES FOR A GENERAL RECTANGULAR PLATE SEGMENT

```
\(U_{w w}=e_{1}+\left(\zeta_{m}+\alpha_{1 m}\right) e_{3} \quad U_{\theta w}=-e_{0}-\left(\zeta_{m}+\alpha_{1 m}\right) e_{2}\)
    \(U_{w \theta}=-e_{2}-\left(\zeta_{m}+\alpha_{2 m}\right) e_{4} \quad U_{\theta \theta}=e_{1}+\left(\zeta_{m}+\alpha_{2 m}\right) e_{3}\)
\(U_{w V}=-e_{4} / D_{x} \quad U_{\theta V}=e_{3} / D_{x}\)
\(U_{w M}=-e_{3} / D_{x} \quad U_{\theta M}=e_{2} / D_{x}\)
\(U_{V w}=D_{x}\left[\left(\lambda_{m}+\alpha_{1 m} \alpha_{2 m}+\alpha_{1 m} \zeta_{m}\right) e_{2}-\lambda_{m}\left(\alpha_{2 m}-\alpha_{1 m}\right) e_{4}\right]\)
\(U_{V \theta}=-D_{x}\left[\lambda_{m}+\alpha_{2 m}\left(\zeta_{m}+\alpha_{2 m}\right)\right] e_{3}\)
\(U_{V V}=e_{1}-\alpha_{2 m} e_{3}\)
\(U_{V M}=e_{0}-\alpha_{2 m} e_{2}\)
\(U_{M w}=D_{x}\left[\lambda_{m}+\alpha_{1 m}\left(\zeta_{m}+\alpha_{1 m}\right)\right] e_{3}\)
\(U_{M \theta}=D_{x}\left[e_{0}-\left(\alpha_{1 m}-\zeta_{m}-\alpha_{2 m}\right) e_{2}-\alpha_{1 m}\left(\zeta_{m}+\alpha_{2 m}\right) e_{4}\right]\)
\(U_{M V}=e_{2}-\alpha_{1 m} e_{4}\)
\(U_{M M}=e_{1}-\alpha_{1 m} e_{3}\)
```

Stiffness Matrix (Sign Convention 2)

Constants for the Matrices					
Column	1	2	3	4	5
	$\lambda_{m}<0$	$\lambda_{m}=0$	$\lambda_{m}>0$		
			$\lambda_{m}=\frac{1}{4} \zeta_{m}^{2}$	$\lambda_{m}<\frac{1}{4} \zeta_{m}^{2}$	$\lambda_{m}>\frac{1}{4} \zeta_{m}^{2}$
e_{0}	$\frac{1}{g}\left(d^{3} s_{h}-q^{3} s\right)$	$-\zeta_{m} \delta$	$-\frac{\zeta_{m}}{4}\left(3 \delta_{2}+c \ell\right)$	$-\frac{1}{g}\left(q^{3} \delta_{2}-d^{3} s_{1}\right)$	$-\lambda_{m} e_{4}-\zeta_{m} e_{2}$
e_{1}	$\frac{1}{g}\left(d^{2} c_{h}+q^{2} c\right)$	c	$\frac{1}{2}\left(2 c-\delta_{1} \ell\right)$	$\frac{p}{g}\left(q^{2} \delta-d^{2} c\right)$	$c_{h} c-\frac{q^{2}-d^{2}}{2 d q} s_{h} s$
e_{2}	$\frac{1}{g}\left(d s_{h}+q s\right)$	δ	$\frac{1}{2}\left(\delta_{2}+c \ell\right)$	$\frac{p}{g}\left(q s_{2}-d s_{1}\right)$	$\frac{1}{2 d q}\left(d c_{h} s+q c s_{h}\right)$
e_{3}	$\frac{1}{g}\left(c_{h}-c\right)$	$\frac{1}{\zeta_{m}}(1-c)$	$\frac{\delta_{2} \ell}{2}$	$\frac{1}{g}(c-s)$	$\frac{1}{2 d q} s_{h} s$
e_{4}	$\frac{1}{g}\left(\frac{s_{h}}{d}-\frac{s}{q}\right)$	$\frac{1}{\zeta_{m}}(\ell-\delta)$	$\frac{1}{\zeta_{m}}\left(\delta_{2}-c \ell\right)$	$\frac{1}{g}\left(\frac{s_{1}}{d}-\frac{s_{2}}{q}\right)$	$\begin{aligned} & \frac{1}{2\left(d^{2}+q^{2}\right)} \\ & \times\left(\frac{c_{h} s}{q}-\frac{c s_{h}}{d}\right) \end{aligned}$
e_{5}	$\frac{1}{g}\left(\frac{c_{h}}{d^{2}}+\frac{c}{q^{2}}\right)-\frac{1}{d^{2} q^{2}}$	$\frac{1}{\zeta_{m}}\left(\frac{\ell^{2}}{2}-e_{3}\right)$	$\frac{2}{\zeta_{m}^{2}}\left(-2 c-\delta_{1} \ell+2\right)$	$\frac{p}{g}\left(\frac{\delta}{q^{2}}-\frac{c}{d^{2}}\right)+\frac{1}{d^{2} q^{2}}$	$\frac{1-e_{1}}{\lambda_{m}}-\frac{\zeta_{m}}{\lambda_{m}} e_{3}$
e_{6}	$\frac{1}{g}\left(\frac{s_{h}}{d^{3}}+\frac{s}{q^{3}}\right)-\frac{\ell}{d^{2} q^{2}}$	$\frac{1}{\zeta_{m}}\left(\frac{\ell^{2}}{6}-e_{4}\right)$	$\frac{2}{\zeta_{m}^{2}}\left(-3 \delta_{2}+c \ell+2 \ell\right)$	$\frac{p}{g}\left(\frac{s_{2}}{q^{3}}-\frac{s_{1}}{d^{3}}\right)+\frac{1}{d^{2} q^{2}}$	$\frac{\ell-e_{2}}{\lambda_{m}}-\frac{\zeta_{m}}{\lambda_{m}} e_{1}$

Columns $1,2, \ldots$ below are to be used with columns $1,2, \ldots$, respectively, above.

Column	1	$2 \mathrm{a} \quad \zeta_{m}>0:$	3a $\quad \zeta_{m}>0$:	$4 \mathrm{a} \quad \zeta_{m}>0:$	5
	$\begin{aligned} c_{h} & =\cosh d \ell \\ c & =\cos q \ell \\ s_{h} & =\sinh d \ell \\ s & =\sin q \ell \\ g & =d^{2}+q^{2} \\ d^{2} & =\sqrt{\beta_{m}^{4}+\frac{1}{4} \zeta_{m}^{2}}-\frac{1}{2} \zeta_{m} \\ q^{2} & =\sqrt{\beta_{m}^{4}+\frac{1}{4} \zeta_{m}^{2}}+\frac{1}{2} \zeta_{m} \\ \beta_{m}^{4} & =-\lambda_{m} \end{aligned}$	$\begin{aligned} \alpha^{2} & =\zeta_{m} \\ c & =\cos \alpha \ell \\ \delta & =\frac{\sin \alpha \ell}{\alpha} \end{aligned}$ $\begin{aligned} & 2 \mathrm{~b} \quad \zeta_{m}<0: \\ & \begin{array}{c} \alpha^{2} \end{array}=-\zeta_{m} \\ & c=\cosh \alpha \ell \\ & \delta=\frac{\sinh \alpha \ell}{\alpha} \end{aligned}$	$\begin{aligned} \beta_{m}^{2} & =-\frac{1}{2} \zeta_{m} \\ c & =\cos \beta_{m} \ell \\ \delta_{1} & =\beta_{m} \sin \beta_{m} \ell \\ \delta_{2} & =\frac{\sin \beta_{m} \ell}{\beta_{m}} \end{aligned}$ $\begin{aligned} & 3 \mathrm{~b} \quad \zeta_{m}<0: \\ & \hline \beta_{m}^{2}=-\frac{1}{2} \zeta_{m} \\ & c=\cosh \beta_{m} \ell \\ & \delta_{1}=-\beta_{m} \sinh \beta_{m} \ell \\ & \delta_{2}=\frac{\sinh \beta_{m} \ell}{\beta_{m}} \end{aligned}$	$\begin{aligned} g & =q^{2}-d^{2} \quad p=1 \\ c & =\cos d \ell \\ \delta & =\cos q \ell \\ s_{1} & =\sin d \ell \\ s_{2} & =\sin q \ell \\ d^{2} & =\frac{1}{2} \zeta_{m}-\sqrt{\frac{1}{4} \zeta_{m}^{2}-\lambda_{m}} \\ q^{2} & =\frac{1}{2} \zeta_{m}+\sqrt{\frac{1}{4} \zeta_{m}^{2}-\lambda_{m}} \end{aligned}$ 4b $\quad \zeta_{m}<0$: $\begin{aligned} p & =-1 \\ g & =q^{2}-d^{2} \\ c & =\cosh d \ell, \delta=\cosh q \ell \\ s_{1} & =\sinh d \ell, s_{2}=\sinh q \ell \\ d^{2} & =-\frac{1}{2} \zeta_{m}+\sqrt{\frac{1}{4} \zeta_{m}^{2}-\lambda_{m}} \\ q^{2} & =-\frac{1}{2} \zeta_{m}-\sqrt{\frac{1}{4} \zeta_{m}^{2}-\lambda_{m}} \end{aligned}$	$\begin{aligned} c_{h} & =\cosh d \ell \\ c & =\cos q \ell \\ s_{h} & =\sinh d \ell \\ s & =\sin q \ell \\ d^{2} & =\frac{1}{2} \sqrt{\lambda_{m}}-\frac{1}{4} \zeta_{m} \\ q^{2} & =\frac{1}{2} \sqrt{\lambda_{m}}+\frac{1}{4} \zeta_{m} \end{aligned}$

Notation

$$
\bar{e}_{j}=\left.e_{j}\right|_{\ell=\ell-a_{1}} \quad \hat{e}_{j}=\left.e_{j}\right|_{\ell=\ell-a_{2}} \quad \Delta e_{j}=\bar{e}_{j}-\hat{e}_{j} \quad \frac{\Delta p}{\Delta \ell}=\frac{p_{a_{2}}-p_{a_{1}}}{a_{2}-a_{1}} \quad \frac{\Delta c}{\Delta \ell}=\frac{c_{a_{2}}-c_{a_{1}}}{a_{2}-a_{1}}
$$

Loading	\bar{F}_{w}	\bar{F}_{θ}	\bar{F}_{V}	\bar{F}_{M}
1.	$\frac{\varepsilon_{m}}{D_{x}} W_{T} \bar{e}_{4}$	$\frac{\varepsilon_{m}}{D_{x}} W_{T} \bar{e}_{3}$	$\varepsilon_{m} W_{T}\left[\alpha_{2 m} \bar{e}_{3}-\bar{e}_{1}\right]$	$\varepsilon_{m} W_{T}\left[\alpha_{1 m} \bar{e}_{4}-\bar{e}_{2}\right]$
2.	$\frac{\varepsilon_{m}}{D_{x}} C \bar{e}_{3}$	$\frac{\varepsilon_{m}}{D_{x}} C \bar{e}_{2}$	$\varepsilon_{m} C\left[\alpha_{2 m} \bar{e}_{2}-\bar{e}_{0}\right]$	$\varepsilon_{m} C\left[\alpha_{1 m} \bar{e}_{3}-\bar{e}_{1}\right]$
3.	$\begin{aligned} & \frac{\varepsilon_{m}}{D_{x}}\left[p_{a_{1}} \bar{e}_{5}-p_{a_{2}} \hat{e}_{5}\right. \\ + & \left.\frac{\Delta p}{\Delta \ell} \Delta e_{6}\right] \\ + & \frac{\varepsilon_{m}}{D_{x}}\left[c_{a} \bar{e}_{4}-c_{b} \hat{e}_{4}\right. \\ + & \left.\frac{\Delta c}{\Delta \ell} \Delta e_{5}\right] \end{aligned}$	$\begin{aligned} & \frac{\varepsilon_{m}}{D_{x}}\left[p_{a_{1}} \hat{e}_{4}-p_{a_{1}} \bar{e}_{4}\right. \\ & \left.-\frac{\Delta p}{\Delta \ell} \Delta e_{5}\right] \\ & +\frac{\varepsilon_{m}}{D_{x}}\left[c_{a_{2}} \hat{e}_{3}-c_{a_{1}} \bar{e}_{3}\right. \\ & \left.-\frac{\Delta c}{\Delta \ell} \Delta e_{4}\right] \end{aligned}$	$\begin{aligned} & \varepsilon_{m}\left\{p_{a_{1}}\left(\alpha_{2 m} \bar{e}_{4}-\bar{e}_{2}\right)\right. \\ & -p_{a_{2}}\left(\alpha_{2 m} \hat{e}_{4}-\hat{e}_{2}\right) \\ & \left.+\frac{\Delta p}{\Delta \ell}\left(\alpha_{2 m} \Delta e_{5}-\Delta e_{3}\right)\right\} \\ & +\varepsilon_{m}\left\{c_{a_{1}}\left(\alpha_{2 m} \bar{e}_{3}-\bar{e}_{1}+1\right)\right. \\ & +\frac{\Delta c}{\Delta \ell}\left(\alpha_{2 m} \Delta e_{4}-\Delta e_{2}\right. \\ & \left.+\alpha_{2 m}-\alpha_{1 m}\right) \\ & \left.-c_{a_{2}}\left(\alpha_{2 m} \hat{e}_{3}-\hat{e}_{1}\right)\right\} \end{aligned}$	$\begin{aligned} & \varepsilon_{m}\left\{p_{a_{1}}\left(\alpha_{1 m} \bar{e}_{5}-\bar{e}_{3}\right)\right. \\ & -p_{a_{2}}\left(\alpha_{1 m} \hat{e}_{5}-\hat{\bar{e}}_{3}\right) \\ & +\frac{\Delta p}{\Delta \ell}\left(\alpha_{1 m} \Delta e_{6}-\Delta e_{4}\right) \\ & +\varepsilon_{m}\left\{c_{a_{1}}\left(\alpha_{1 m} \bar{e}_{4}-\bar{e}_{2}\right)\right. \\ & -c_{a_{2}}\left(\alpha_{1 m} \hat{e}_{4}-\hat{e}_{2}\right) \\ & \left.\quad+\frac{\Delta c}{\Delta \ell}\left(\alpha_{1 m} \Delta e_{5}-\Delta e_{3}\right)\right\} \end{aligned}$

$\begin{aligned} y_{k} & =\frac{1}{2}\left(b_{1}+b_{2}\right) \\ c_{1} & =c_{2}=c_{3}= \\ c_{1} & =c_{3}=1, \\ E_{m} & =\left(\cosh \eta_{m}-\right. \end{aligned}$	Notation $\begin{aligned} & \Delta y=\frac{1}{2}\left(b_{2}-b_{1}\right) \\ & c_{4}=1 \text { for simply supported at } y=0 \text { and } y=L_{y} \end{aligned}$ $c_{2}=c_{4}=E_{m} \quad$ for fixed at $y=0$ and simply supported or fixed at $y=L_{y}$ $\left.\operatorname{os} \eta_{m}\right) /\left(\sinh \eta_{m}-\sin \eta_{m}\right)$
Loading	Constant, ε_{m}
1.	$\frac{2}{L_{y}}\left(c_{1} \cosh \beta_{m} b_{w}-c_{2} \cos \beta_{m} b_{w}-c_{3} \sinh \beta_{m} b_{w}+c_{4} \sin \beta_{m} b_{w}\right)$
2.	$\frac{2}{L_{y}}\left(c_{1} \cosh \beta_{m} b_{c}-c_{2} \cos \beta_{m} b_{c}-c_{3} \sinh \beta_{m} b_{c}+c_{4} \sin \beta_{m} b_{c}\right)$
3. Line force W and moment C	$\frac{4}{\eta_{m}}\left[\left(c_{1} \cosh \beta_{m} y_{k}-c_{2} \sinh \beta_{m} y_{k}\right) \sinh \beta_{m} \Delta y-\left(c_{3} \cos \beta_{m} y_{k}-c_{4} \sin \beta_{m} y_{k}\right) \sin \beta_{m} \Delta y\right]$

TABLE 18-24 CONSISTENT MASS MATRIX FOR RECTANGULAR PLATE ELEMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

Notation

$\rho=$ mass per unit area
$\ell, L_{y}=$ length of element in x and y directions
$\alpha=\ell m \pi$
$s_{h}=\sinh \beta \ell$
$H_{m}=\alpha^{2}-L_{y}^{2} s_{h}^{2}$
$\beta=m \pi / L_{y}$
$c_{h}=\cosh \beta \ell$
Element variables:
$\mathbf{v}^{i}=\left[\begin{array}{llll}w_{a} & \theta_{a} & w_{b} & \theta_{b}\end{array}\right]^{T}$

Mass Matrix

$$
\begin{aligned}
\mathbf{m}^{i}= & {\left[\begin{array}{lll}
m_{11} & \text { symmetric } \\
m_{21} & m_{22} & \\
m_{31} & m_{32} & m_{33} \\
m_{41} & m_{42} & m_{43} \\
m_{44}
\end{array}\right] } \\
m_{11}= & \frac{-\ell \rho}{12 \alpha}\left[2 \alpha^{5}-5 \alpha^{3} L_{y}^{3}\left(1+2 c_{h}^{2}\right)+15 \alpha L_{y}^{4} s_{h}^{2}-\alpha^{2} c_{h} s_{h} L_{y}\left(15 L_{y}^{2}+2 \alpha^{2}\right)\right. \\
& \left.+15 L_{y}^{5} c_{h} s_{h}^{3}\right] / H_{m} \\
m_{21}= & -\frac{L_{y} \ell^{2} \rho}{6 \alpha^{2}}\left[\alpha^{4} L_{y}\left(2+c_{h}^{2}\right)\left(1+v s_{h}^{2}\right)-3 \alpha^{2} L_{y}^{3} s_{h}^{2}-3 L_{y}^{3} s_{h}^{4}\left(2 \alpha^{2} v+L_{y}^{2}\right)+3 \alpha^{3}\left(\alpha^{2} v\right.\right. \\
& \left.\left.+L_{y}^{2}\right) c_{h} s_{h}\right] / H_{m} \\
m_{22}= & \frac{L_{y}^{2} \ell^{3} \rho}{12 \alpha^{2}}\left\{2 \alpha^{5}+L_{y}\left[\alpha^{2}\left(2 \alpha^{2}-9 L_{y}^{2}\right)-3 L_{y}^{4} s_{h}^{2}\right] c_{h} s_{h}+\alpha^{3} L_{y}^{2}\left(1+2 c_{h}^{2}\right)+9 \alpha L_{y}^{4} s_{h}^{2}\right\} / H_{m} \\
m_{31}= & -\frac{\ell \rho}{12 \alpha}\left\{L_{y} s_{h}\left[2 \alpha^{4}+3 \alpha^{2} L_{y}^{2}\left(3+2 c_{h}^{2}\right)-15 L_{y}^{4} s_{h}^{2}\right]+\alpha c_{h}\left[\alpha^{4}+\alpha^{2} L_{y}^{2}\left(14+c_{h}^{2}\right)\right.\right. \\
& \left.\left.-15 L_{y}^{4} c_{h}^{2}\right]\right\} / H_{m} \\
m_{32}= & -m_{41} \\
m_{33}= & m_{11} \\
m_{41}= & -\frac{\ell^{2} \rho}{12 \alpha}\left\{\alpha^{2} L_{y} s_{h}\left[\alpha^{2}+L_{y}^{2}\left(8+c_{h}^{2}\right)\right]-15 L_{y}^{5} s_{h}^{3}+3 \alpha L_{y}^{2} c_{h}\left(\alpha^{2}+L_{y}^{2} s_{h}^{2}\right)\right\} / H_{m} \\
m_{42}= & \frac{L_{y}^{2} \ell^{3} \rho}{12 \alpha^{3}}\left\{3 L_{y}^{5} s_{h}^{3}+\alpha^{2} L_{y}\left(4 \alpha^{2}+9 L_{y}^{2}\right) s_{h}+\alpha\left[\alpha^{2} L_{y}^{2}\left(c_{h}^{2}-4\right)+\alpha^{4}-9 L_{y}^{4} s_{h}^{2}\right] c_{h}\right\} / H_{m} \\
m_{43}= & \frac{L_{y}^{2} \ell^{2} \rho}{6 \alpha^{2}}\left[-3 \alpha^{2} L_{y}^{2} s_{h}^{2}+\alpha^{4}\left(2+c_{h}^{2}\right)-3 L_{y}^{4} s_{h}^{4}+3 \alpha^{3} L_{y} c_{y} s_{h}\right] / H_{m} \\
m_{44}= & m_{22}
\end{aligned}
$$

TABLE 18-25 DEFLECTIONS AND INTERNAL FORCES OF PLATES OF VARIOUS SHAPES

Notation

$$
\begin{aligned}
w & =\text { deflection } \\
M_{r}, M_{\phi}, M_{x}, M_{y} & =\text { moments per unit length } \\
Q_{r} & =\text { shear force per unit length } \\
E & =\text { modulus of elasticity } \\
\nu & =\text { Poisson's ratio } \\
h & =\text { thickness of plate } \\
r & =\text { radial coordinate } \\
p_{1} & =\text { distributed applied force per area } \\
D & =\frac{E h^{3}}{12\left(1-v^{2}\right)}
\end{aligned}
$$

Case	Deflection and Internal Forces
1. Simply supported semicircular plate	$\begin{aligned} w= & \frac{p_{1} a_{L}^{4}}{D} \sum_{m=1,3,5, \ldots}\left\{\frac{4 r^{4}}{a_{L}^{4}} \frac{1}{m \pi\left(16-m^{2}\right)\left(4-m^{2}\right)}\right. \\ & +\frac{r^{m}}{a_{L}^{m}} \frac{m+5+v}{m \pi\left(16-m^{2}\right)(2+m)\left[m+\frac{1}{2}(1+v)\right]} \end{aligned}$
	$\begin{aligned} & \left.\quad-\frac{r^{m+2}}{a_{L}^{m+2}} \frac{m+3+v}{m \pi(4+m)\left(4-m^{2}\right)\left[m+\frac{1}{2}(1+v)\right]}\right\} \sin m \varphi \\ & M_{r}=c_{1} p_{1} a_{L}^{2} \quad M_{\phi}=c_{2} p_{1} a_{L}^{2} \end{aligned}$

CONSTANTS: $v=0.3$

$$
\begin{aligned}
c_{1} & =-0.045+0.2122\left(\frac{r}{a_{L}}\right)-0.0392\left(\frac{r}{a_{L}}\right)^{2}-0.128\left(\frac{r}{a_{L}}\right)^{3} \\
c_{2} & =0.022+0.0484\left(\frac{r}{a_{L}}\right)-0.0264\left(\frac{r}{a_{L}}\right)^{2}-0.0352\left(\frac{r}{a_{L}}\right)^{3} \\
0.25 & \leq \frac{r}{a_{L}} \leq 1 \\
w_{2} & =0.002021 \frac{p_{1} a_{L}^{4}}{D} \text { at point } 2 \\
\left(M_{r}\right)_{\max } & =0.069 p_{1} a_{L}^{2} \text { at point } 1 \\
\left(M_{\phi}\right)_{2} & =-0.019 p_{1} a_{L}^{2} \\
\left(M_{r}\right)_{3} & =0.06 p_{1} a_{L}^{2} \\
\left(Q_{r}\right)_{1} & =-0.497 p_{1} a_{L} \\
\left(Q_{r}\right)_{3} & =-0.380 p_{1} a_{L} \\
v & =0.3
\end{aligned}
$$

2.

Fixed semicircular plate

TABLE 18-25 (continued) DEFLECTIONS AND INTERNAL FORCES OF PLATES OF VARIOUS SHAPES

Case	Deflection and Internal Forces
3.	$M_{\max }=c_{i} \frac{p_{1} a^{2}}{6}$
Wedge plate	

, Case (i) | Boundary Conditions |
| :--- |
| 1 |
| 2 |
| 3 |

CONSTANTS:

Only the boundary

$$
\begin{aligned}
\beta & =b / a \\
c_{1} & =0.8939-0.2013 \beta+0.01312 \beta^{2}+0.006661 \beta^{3}
\end{aligned}
$$

$$
0.8 \leq \beta \leq 2.5
$$

$$
c_{2}= \begin{cases}9.0967-44.5356 \beta+85.997 \beta^{2}-79.4533 \beta^{3} \\ +35.4362 \beta^{4}-6.1197 \beta^{5} & 0.6 \leq \beta \leq 1.75 \\ c_{1} \quad 1.75<\beta \leq 2.5 & \end{cases}
$$

$$
c_{3}=0.04652+0.8334 \beta-0.3994 \beta^{2}+0.0602 \beta^{3}
$$

$$
0.8 \leq \beta \leq 2.5
$$

4.	$w=\frac{p_{1} r^{4}}{64 D}\left(1+\frac{\cos 4 \phi-4 \cos \theta \cos 2 \phi}{2 \cos ^{2} \theta+1}\right)$

放 $\downarrow \downarrow \downarrow p_{1}$

$$
-\frac{3 p_{1}}{16} r^{2}\left(1+\frac{\cos 4 \phi-4 \cos \theta \cos 2 \phi}{2 \cos ^{2} \theta+1}\right)
$$

$$
M_{\phi}=\frac{-p_{1} r^{2}}{16}\left(1-\frac{3 \cos 4 \phi}{2 \cos ^{2} \theta+1}\right)
$$

Clamped on straight edges, free on curved boundary

$$
M_{r}=\frac{-p_{1}}{16} r^{2} v\left(1-\frac{3 \cos 4 \phi}{2 \cos ^{2} \theta+1}\right)
$$

$$
-\frac{3 p_{1} r^{2}}{16} v\left(1+\frac{\cos 4 \phi-4 \cos \theta \cos 2 \phi}{2 \cos ^{2} \theta+1}\right)
$$

$$
Q_{r}=\frac{-p_{1} r}{2}\left(1+\frac{3 \cos \theta \cos 2 \phi}{2 \cos ^{2} \theta+1}\right)
$$

TABLE 18-25 (continued) DEFLECTIONS AND INTERNAL FORCES OF PLATES OF VARIOUS SHAPES

Case	Deflection and Internal Forces
5. Simply supported ellipse with distributed load Equivalent Rectangular Plate Ref. [18.12]	$\begin{aligned} & \left(w_{\max }\right)_{\text {center }} \simeq \frac{(0.146 \alpha-0.1) p_{1} b^{4}}{\alpha E h^{3}} \\ & \left(\sigma_{\max }\right)_{\mathrm{center}}= \pm \frac{0.3125(2 \alpha-1) p_{1} b^{2}}{\alpha h^{2}} \\ & M_{x}=c_{1} \frac{p_{1} b^{2}}{r} \quad M_{y}=c_{2} \frac{p_{1} b^{2}}{4} \\ & v=0.3 \end{aligned}$ CONSTANTS: $\begin{aligned} \alpha & =a / b \quad 1.0 \leq \alpha \leq 2.0 \\ c_{1} & =-0.1565+0.7066 \alpha-0.4263 \alpha^{2}+0.0823 \alpha^{3} \\ c_{2} & =-0.2882+0.720 \alpha-0.258 \alpha^{2}+0.03241 \alpha^{3} \end{aligned}$ Alternatively, use of an equivalent rectangular plate may give acceptable approximation.
6. Simply supported ellipse with concentrated force Equivalent Rectangular Plate	For small d only: $w_{\text {center }}=\frac{W_{T} b^{2}}{E h^{3}}\left(0.6957+0.2818 \beta-0.422 \beta^{2}\right)$ where $\begin{aligned} & v=0.3 \\ & \beta=\frac{b}{a} \end{aligned}$ Alternatively, use of an equivalent rectangular plate may give acceptable approximation.

TABLE 18-25 (continued) DEFLECTIONS AND INTERNAL FORCES OF PLATES OF VARIOUS SHAPES

Ref. [18.12]

$W_{0}=$	$\frac{\text { Deflection and Internal Forces }}{D\left(\frac{24}{a^{4}}+\frac{24}{b^{4}}+\frac{16}{a^{2} b^{2}}\right)}$
$w=$	$W_{0}\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{2}$
$M_{x}=$	$-4 W_{0} D\left[\left(\frac{v}{a^{2} b^{2}}+\frac{3}{a^{4}}\right) x^{2}\right.$
	$\left.+\left(\frac{1}{a^{2} b^{2}}+\frac{3 v}{b^{4}}\right) y^{2}-\left(\frac{v}{b^{2}}+\frac{1}{a^{2}}\right)\right]$
	$\left.+\left(\frac{1}{a^{2} b^{2}}+\frac{3 v}{a^{4}}\right) x^{2}-\left(\frac{v}{a^{2}}+\frac{1}{b^{2}}\right)\right]$
$M_{0}=$	$-4 W_{0} D\left[\left(\frac{v}{a^{2} b^{2}}+\frac{3}{b^{4}}\right) y^{2}\right.$
	$24 D\left(\frac{5}{a^{4}}+\frac{1}{b^{4}}+\frac{2}{a^{2} b^{2}}\right) a$
$w=$	$W_{0} x\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{2}$
$M_{x}=$	$-4 W_{0} D x\left[\left(\frac{3}{a^{2}}-\frac{5}{a^{4}} x^{2}-\frac{3}{a^{2} b^{2}} y^{2}\right)\right.$
	$\left.+v\left(\frac{1}{b^{2}}-\frac{x^{2}}{a^{2} b^{2}}-\frac{3 y^{2}}{b^{4}}\right)\right]$
$M_{y}=$	$4 W_{0} D x\left[\left(\frac{1}{b^{2}}-\frac{x^{2}}{a^{2} b^{2}}-\frac{3}{b^{4}} y^{2}\right)\right.$
	$\left.+v\left(\frac{3}{a^{2}}-\frac{5}{a^{4}} x^{2}-\frac{3}{a^{2} b^{2}} y^{2}\right)\right]$

TABLE 18-25 (continued) DEFLECTIONS AND INTERNAL FORCES OF PLATES OF VARIOUS SHAPES

Case	Deflection and Internal Forces
9. Parallelogram plate, simply supported	$\begin{aligned} & w_{\text {center }}=c_{1} p_{1} L_{y}^{4} / E h^{3} \\ &\left(M_{x}\right)_{\text {center }}=c_{2} p_{1} L_{y}^{2} \\ &\left(M_{y}\right)_{\text {center }}=c_{3} p_{1} L_{y}^{2} \\ & v=0.3 \end{aligned}$ CONSTANTS:$L=2 L_{y}$$\phi$ c_{1} c_{2} c_{3} 0^{0} 0.1096 0.0461 0.1020 30^{0} 0.1059 0.0485 0.0990 45^{0} 0.0989 0.0489 0.0940 60^{0} 0.0718 0.0531 0.0764 75^{0} 0.0097 0.0370 0.0113
10. Triangular plate	$\begin{aligned} & w_{\max }=c_{1} \frac{p_{1} a^{4}}{E h^{3}} \\ &\left(M_{x}\right)_{\max }=c_{2} p_{1} a^{2} \\ &\left(M_{y}\right)_{\max }=c_{3} p_{1} a^{2} \\ & v=0.3 \end{aligned}$ CONSTANTS:

Simply supported along $y=0$ edge, other two edges clamped.
Ref. [18.12]
11.

Triangular plate

$w_{\text {max }}=c_{1} \frac{p_{1} a^{4}}{E h^{3}}$
$\left(M_{x}\right)_{\text {max }}=c_{2} p_{1} a^{2}$
$\left(M_{y}\right)_{\text {max }}=c_{3} p_{1} a^{2}$
$v=0.3$
CONSTANTS:

Load	A	B	C
c_{1}	0.00195	0.00063	0.00131
c_{2}	0.00885	0.00356	0.00533
c_{3}	0.00806	0.00379	0.00583

TABLE 18-26 BUCKLING LOADS FOR PLATES OF VARIOUS SHAPES

Notation
$E=$ modulus of elasticity
$h=$ thickness of plate
$\nu=$ Poisson's ratio
$D=\frac{E h^{3}}{12(1-v)^{2}}$
$P_{\mathrm{cr}}=$ in-plane normal buckling load per unit length
$\left(P_{x y}\right)_{\mathrm{cr}}=$ buckling shear force per unit length

$$
P^{\prime}=\frac{E \pi^{2} h}{12\left(1-v^{2}\right)}\left(\frac{h}{a}\right)^{2}
$$

$P=$ uniformly distributed compressive in-plane load per unit length
$P_{x y}=$ uniformly distributed shear force per unit length

Case	
1.	$P_{\text {cr }}=4.00 P^{\prime}$
Simply supported equilateral	
triangular plate with uniform	
pressure	Refs. [18.4], [18.19]
2.	
Simply supported right-angled isosceles triangular plate with	Refs. [18.4], [18.20]

3.

Simply supported right-angled isosceles triangular plate
$P_{\text {cr }}=9.11 P^{\prime}$
Ref. [18.21]

TABLE 18-26 (continued)	BUCKLING LOADS FOR PLATES OF VARIOUS SHAPES
Case	Buckling Load
4. Simply supported parallelogram	$\begin{aligned} & P_{\mathrm{cr}}= k \frac{\pi^{2} D}{L^{2}} \\ & k=\beta^{2}\left(\phi_{k} / \sin ^{3} \gamma\right) \\ & \text { When } \beta=L / L_{y}=1, \\ & \phi_{k}= 2.15+0.004556 \gamma+6.667 \times 10^{-4} \gamma^{2} \\ &-5.432 \times 10^{-6} \gamma^{3} \\ & 45^{\circ} \leq \gamma \leq 90^{\circ} \end{aligned}$
5. Clamped rhomboidal plate, under uniform pressure perpendicular to sides in plane of plate	$\begin{aligned} P_{\mathrm{cr}} & =k \frac{\pi^{2} D}{L^{2}} \\ k & =9.85-0.281 \gamma+3.1267 \times 10^{-3} \gamma^{2}-1.175 \times 10^{-5} \gamma^{3} \\ 45^{\circ} & \leq \gamma \leq 90^{\circ} \end{aligned}$
6. Parallelogram plate, all edges simply supported $P_{x y}=P_{y x}$	$\begin{aligned} \left(P_{x y}\right)_{\mathrm{cr}} & =k \frac{\pi^{2} D}{L_{y}^{2}} \\ k & =\frac{\psi}{4 \beta \sin ^{3} \gamma} \\ \beta & =L / L_{y} \end{aligned}$ When $\beta=1$, $\begin{aligned} \psi= & 122.51+0.223 \gamma-0.03055 \gamma^{2}+2.472 \times 10^{-4} \gamma^{3} \\ & -5.75 \times 10^{-7} \gamma^{4} \end{aligned}$ When $\beta=2$, $\begin{aligned} \psi= & 126.27+1.44 \gamma-0.0548 \gamma^{2}+4.257 \times 10^{-4} \gamma^{3} \\ & -1.046 \times 10^{-6} \gamma^{4} \\ 45^{\circ} \leq & \gamma \leq 135^{\circ} \end{aligned}$

TABLE 18-27 NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS SHAPES ${ }^{a}$

\quad Notation
$E=$ modulus of elasticity
$h=$ thickness of plate
$\nu=$ Poisson's ratio
$\rho=$ mass per unit area
$\alpha=L_{y} / L$
$\beta=L / L_{y}$

Natural frequencies (Hz):

$$
f_{i}=\frac{\lambda_{i}}{2 \pi L^{2}}\left[\frac{E h^{3}}{12 \rho\left(1-v^{2}\right)}\right]^{1 / 2}
$$

The values of $\lambda_{i}(i=$ mode number $)$ are independent of v except where specially indicated.
All results are for the transverse vibration of plates unless otherwise indicated. For membranes the natural frequencies are for transverse vibrations.
$A=$ area of membrane
$P=$ tension per unit length

Case	Parameter λ_{i}
1. Simply supported rhombus	$\begin{aligned} \lambda_{1} & =132.24-3.725 \gamma+0.0418 \gamma^{2}-1.59 \times 10^{-4} \gamma^{3} \\ \lambda_{2} & =206.15-5.314 \gamma+0.0584 \gamma^{2}-2.08 \times 10^{-4} \gamma^{3} \\ \lambda_{3} & =-1937.6+87.3 \gamma-1.241 \gamma^{2}+5.737 \times 10^{-3} \gamma^{3} \\ \lambda_{4} & =448.9-14.204 \gamma+0.182 \gamma^{2}-7.73 \times 10^{-4} \gamma^{3} \\ \lambda_{5} & =-2.1+8.93 \gamma-0.1688 \gamma^{2}+9.1 \times 10^{-4} \gamma^{3} \\ \lambda_{6} & =1005.06-36.6 \gamma+0.5056 \gamma^{2}-2.34 \times 10^{-3} \gamma^{3} \\ 45^{\circ} & \leq \gamma \leq 90^{\circ} \end{aligned}$
2. Simply supported parallelogram	$\begin{aligned} \beta & =1 / 2, \quad 45^{\circ} \leq \gamma \leq 70^{\circ} \\ \lambda_{1} & =71.062-1.525 \gamma+0.01009 \gamma^{2} \\ \lambda_{2} & =87.352-1.746 \gamma+0.01149 \gamma^{2} \\ \beta & =1 / 3, \quad 45^{\circ} \leq \gamma \leq 70^{\circ} \\ \lambda_{1} & =67.47-1.469 \gamma+0.009733 \gamma^{2} \\ \lambda_{2} & =73.736-1.544 \gamma+0.01021 \gamma^{2} \\ \beta & =2 / 3, \quad 45^{\circ} \leq \gamma \leq 90^{\circ} \\ \lambda_{1} & =101.038-2.8904 \gamma+0.03264 \gamma^{2}-1.24889 \times 10^{-4} \gamma^{3} \\ \lambda_{2} & =137.212-3.6264 \gamma+0.040565 \gamma^{2}-1.5363 \times 10^{-4} \gamma^{3} \end{aligned}$

TABLE 18-27 (continued) NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS SHAPES ${ }^{a}$

Case	Parameter λ_{i}
3.	$\begin{aligned} \lambda_{1}= & 345.31-15.5 \gamma+0.2965 \gamma^{2}-2.63 \times 10^{-3} \gamma^{3}+8.98 \\ & \times 10^{-6} \gamma^{4} \end{aligned}$
supported, simply supported, simply supported rhombus	$\begin{aligned} \lambda_{2}= & 461.18-19.63 \gamma+0.3713 \gamma^{2}-3.256 \times 10^{-3} \gamma^{3} \\ & +1.1 \times 10^{-5} \gamma^{4} \end{aligned}$
	$\begin{aligned} \lambda_{3}= & 139.43+5.884 \gamma-0.2564 \gamma^{2}+3.106 \times 10^{-3} \gamma^{3} \\ & -1.2164 \times 10^{-5} \gamma^{4} \end{aligned}$
	$\lambda_{4}=3443.2622-1163.3586 \gamma^{1 / 2}+134.4698 \gamma-5.1802 \gamma^{3 / 2}$
	$\lambda_{5}=845.5009-177.752 \gamma^{1 / 2}+13.6238 \gamma-0.3341 \gamma^{3 / 2}$
$\stackrel{L}{\leftarrow} \rightarrow$	$\begin{aligned} \lambda_{6}= & 740.78-14.71 \gamma-0.0845 \gamma^{2}+4.3 \times 10^{-3} \gamma^{3} \\ & -2.67 \times 10^{-5} \gamma^{4} \end{aligned}$

	$40^{\circ} \leq \gamma \leq 90^{\circ}$
4.	$\lambda_{1}=410.53-18.48 \gamma+0.3554 \gamma^{2}-3.17 \times 10^{-3} \gamma^{3}$

Clamped-simply supported, clampedsimply supported rhombus

$\lambda_{1}=410.53-18.48 \gamma+0.3554 \gamma^{2}-3.17 \times 10^{-3} \gamma^{3}$ $+1.089 \times 10^{-5} \gamma^{4}$
$\lambda_{2}=538.72-23.53 \gamma+0.454 \gamma^{2}-4.056 \times 10^{-3} \gamma^{3}$ $+1.39 \times 10^{-5} \gamma^{4}$
$\lambda_{3}=486.22-17.147 \gamma+0.3196 \gamma^{2}-3.117 \times 10^{-3} \gamma^{3}$ $+1.234 \times 10^{-5} \gamma^{4}$
$\lambda_{4}=1251.43-57.33 \gamma+1.0705 \gamma^{2}-8.917 \times 10^{-3} \gamma^{3}$
$+2.793 \times 10^{-5} \gamma^{4}$
$\lambda_{5}=786.41-33.80 \gamma+0.7296 \gamma^{2}-7.56 \times 10^{-3} \gamma^{3}$ $+2.987 \times 10^{-5} \gamma^{4}$
$\lambda_{6}=1134.6-40.13 \gamma+0.5387 \gamma^{2}-2.41 \times 10^{-3} \gamma^{3}$
$40^{\circ} \leq \gamma \leq 90^{\circ}$
$\beta=2 / 3 \quad 45^{\circ} \leq \gamma \leq 90^{\circ}$
$\lambda_{1}=327.06-13.84 \gamma+0.2514 \gamma^{2}-2.126 \times 10^{-3} \gamma^{3}$ $+6.965 \times 10^{-6} \gamma^{4}$
$\lambda_{2}=349.6-14.22 \gamma+0.2554 \gamma^{2}-2.1414 \times 10^{-3} \gamma^{3}$ $+6.98 \times 10^{-6} \gamma^{4}$
$\lambda_{3}=405.6-15.97 \gamma+0.288 \gamma^{2}-2.42 \times 10^{-3} \gamma^{3}$ $+7.9 \times 10^{-6} \gamma^{4}$
$\beta=\frac{1}{2}$
$\lambda_{1}=129.6-2.52763 \gamma+0.01506 \gamma^{2}$
$\lambda_{2}=207.8099-5.9092 \gamma+0.06589 \gamma^{2}-0.0002479 \gamma^{3}$
$\lambda_{3}=227.31-6.2092 \gamma+0.06913 \gamma^{2}-0.0002598 \gamma^{3}$

TABLE 18-27 (continued) NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS SHAPES ${ }^{a}$

Case
$\mathbf{6 .}$
Clamped-simply
supported, simply
supported-clamped
rhombus

TABLE 18-27 (continued) NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS SHAPES ${ }^{\text {a }}$

Case	Parameter λ_{i}
9. Clamped rhombus	$\begin{aligned} \lambda_{1} & =264.064-7.6 \gamma+0.086 \gamma^{2}-3.295 \times 10^{-4} \gamma^{3} \\ \lambda_{2} & =386.36-10.92 \gamma+0.1262 \gamma^{2}-4.84 \times 10^{-4} \gamma^{3} \\ \lambda_{3} & =469.58-11.184 \gamma+0.105 \gamma^{2}-3.3 \times 10^{-4} \gamma^{3} \\ \lambda_{4} & =696.52-22.1 \gamma+0.278 \gamma^{2}-1.17 \times 10^{-3} \gamma^{3} \\ \lambda_{5} & =167.84+5.1263 \gamma-0.1352 \gamma^{2}+8.2 \times 10^{-4} \gamma^{3} \\ \lambda_{6} & =1381.06-49.76 \gamma+0.6778 \gamma^{2}-3.1 \times 10^{-3} \gamma^{3} \\ 45^{\circ} & \leq \gamma \leq 90^{\circ} \end{aligned}$
10. Simply supported isosceles triangle	$\begin{aligned} \hline \lambda_{1}= & 10.18+22.34 \beta+13.32 \beta^{2} & & \text { MEMBRANE } \\ \lambda_{2}= & 8.51+54.53 \beta+69.36 \beta^{2} & & \text { All edges supported. } \\ & -29.5 \beta^{3} & & P=\text { tension on all edges. } \end{aligned}$
	$\begin{array}{rlrl} \lambda_{3}= & 96.85-201.1 \beta+318.786 \beta^{2} & & f_{1}(\mathrm{~Hz})=\frac{\lambda_{1}}{2}\left(\frac{P}{\rho A}\right)^{1 / 2} \\ & -93.53 \beta^{3} & & \\ \lambda_{4}= & 14.436+78.54 \beta+159.24 \beta^{2} & \lambda_{1}= & 4.0609-7.3317 \sqrt{\alpha} \\ & -74.6 \beta^{3} & & +7.9241 \alpha \\ \lambda_{5}= & 18.81+140.97 \beta+40.3 \beta^{2} & & -3.8893 \alpha^{3 / 2} \\ 0.5 \leq \beta \leq 1.5 & & +0.7603 \alpha^{2} \end{array}$

$0.35 \leq \alpha \leq 2.0$
A $=\frac{1}{2} L L_{y}$
11.

Simply supported asymmetric triangle

$\lambda_{i}\left(=\lambda_{1}\right)$ for fundamental mode:

β	$\gamma=0^{\circ}$	$\gamma=10^{\circ}$	$\gamma=20^{\circ}$	$\gamma=30^{\circ}$	$\gamma=45^{\circ}$
0.5	24.69	24.78	25.06	25.64	27.78
1.0	45.85	46.28	47.71	50.57	60.22
1.5	73.66	74.64	77.85	84.21	105.1

12.

Clamped-free-free
$\lambda_{1}=7.178-0.0297 \beta+3.665 \times 10^{-4} \beta^{2}+2.3335 \times 10^{-4} \beta^{3}$
isosceles triangle
$\lambda_{2}=30.92-0.145 \beta+0.025 \beta^{2}-1.44 \times 10^{-3} \beta^{3}$

$\lambda_{3}=36.88+21.5 \beta+2.94 \beta^{2}-0.19 \beta^{3}$
$\lambda_{4}=44.49+100.653 \beta+3.9 \beta^{2}-0.253 \beta^{3}$
$\nu=0.30 \quad 1 \leq \beta \leq 7$

TABLE 18-27 (continued) NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS SHAPES ${ }^{a}$

Case	Parameter λ_{i}
13. Clamped-free-free right triangle	$\begin{array}{ll} \lambda_{1}=4.7223+0.691 \beta & \\ \begin{array}{l} -0.05433 \beta^{2} \end{array} & \text { MEMBRANE } \\ \lambda_{2}=20.07+3.148 \beta & \text { All edges supported. } \\ \nu=0.2413 \beta^{2} & P=\text { tension on all edges } \\ \nu \quad 2 \leq \beta \leq 7 & \\ & f_{n m}(\mathrm{~Hz})=\frac{\lambda_{n m}}{2}\left(\frac{P}{\rho A}\right)^{1 / 2} \\ & \lambda_{n m}=\left(\frac{m^{2}+n^{2}}{2}\right)^{1 / 2} \\ & n, m=1,2,3, \ldots \\ & L=L_{y}, A=\frac{1}{2} L^{2} \end{array}$
14. Simply supported symmetric trapezoid	$\begin{aligned} & \lambda_{1} \text { for fundamental mode: } \quad 0 \leq \alpha \leq 1.0 \\ & d / L=0.5 \\ & \lambda_{1}=98.7375-136.5055 \alpha+140.0249 \alpha^{2}-52.9631 \alpha^{3} \\ & d / L=2 / 3 \\ & \lambda_{1}=69.7416-87.4303 \alpha+71.751 \alpha^{2}-21.9561 \alpha^{3} \\ & d / L=1.0 \\ & \lambda_{1}=45.8944-45.3731 \alpha+19.9653 \alpha^{2}-0.706 \alpha^{3} \\ & d / L=1.5 \\ & \lambda_{1}=32.7435-24.014 \alpha+1.4861 \alpha^{2}+4.0509 \alpha^{3} \end{aligned}$
15. Simply supported unsymmetric trapezoid	$\begin{aligned} & \lambda_{1} \text { for fundamental mode: } \quad 10^{\circ} \leq \gamma \leq 45^{\circ} \\ & d / L=0.5, \quad \alpha=0.4 \\ & \lambda_{1}=62.3913+0.1493 \gamma-0.006487 \gamma^{2}+0.0001848 \gamma^{3} \\ & d / L=0.5, \quad \alpha=0.8 \\ & \lambda_{1}=52.5236+0.06484 \gamma-0.002564 \gamma^{2}+0.0000844 \gamma^{3} \\ & d / L=1.0, \quad \alpha=0.4 \\ & \lambda_{1}=30.1211+0.1341 \gamma-0.004489 \gamma^{2}+0.0001865 \gamma^{3} \\ & d / L=1.0, \quad \alpha=0.8 \\ & \lambda_{1}=21.5645+0.1095 \gamma-0.004355 \gamma^{2}+0.0001459 \gamma^{3} \end{aligned}$

TABLE 18-27 (continued) NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS SHAPES ${ }^{\text {a }}$

[^33]
C H A P T E R
 19

Thick Shells and Disks

19.1 Definitions and Notation 1131
Thick Cylinders 1132
Thick Spherical Shells 1133
Disks 1133
19.2 Stresses 1133
Thick Cylinders 1134
Thick Spherical Shells 1134
Nonpressurized Rotating Disk of Constant Thickness 1135
Solid Disk (No Center Hole) 1135
Disk with Central Hole 1135
19.3 Design of Cylinders with Internal Pressure 1137
19.4 Simple Shells and Disks 1141
Thick Cylinders 1141
Thick Spherical Shells 1144
Disks 1145
19.5 Natural Frequencies 1146
19.6 General Shells and Disks 1146
References 1150
Tables 1151

Formulas for the displacements, stresses, and free vibration characteristics of thickwalled cylinders, thick spheres, and disks are provided in this chapter. These formulas are based on the linear theory of elasticity. The loading and responses are axially symmetric for cylinders and disks and spherically symmetric for spheres.

19.1 DEFINITIONS AND NOTATION

If the wall thickness of a shell of revolution is more than about one-tenth the radius, the shell is usually called a thick shell [e.g., a thick-walled cylinder (or thick cylinder)]. The units for the notation are given in parentheses for each definition, using L for length, F for force, M for mass, and T for time.

Thick Cylinders

The formulas presented in this chapter for thick cylinders are applicable for sections some distance from the ends of the cylinder. In other words, the effects of end constraints are negligible. The applied loading as well as the resulting displacements and stresses are axially symmetric. The solution is based on generalized plane strain models for which the strain ε_{z} in the axial direction is a constant.

```
    a},\mp@code{,}\mp@subsup{a}{L}{}\mathrm{ Radii of inner and outer surfaces (L)
    E Modulus of elasticity (F/L')
    G=E/[2(1+v] Shear modulus of elasticity, Lamé coefficient (F/L')
    Mi Concentrated cylindrical mass (i.e., mass is lumped as thin cylindrical
                shell) (M/L'L
    N Axial force (F)
    p Applied radial pressure (F/L'); applied pressure in positive radial
        (increasing r) direction taken to be positive
    pa}0,\mp@subsup{p}{b}{0}\mathrm{ Loading components for stiffness equation at r=a and r=b(F/L)
    pr Radial loading intensity (F/L)
        itive r direction
po, pa, p
    p1 Applied internal pressure (F/L'L), positive as shown in Fig. 19-1
    p2 Applied external pressure ( F/L L})\mathrm{ , positive as shown in Fig. 19-1
    r,\phi Radial, circumferential coordinates
        t Time (T)
        T Change in temperature (degrees) (i.e., temperature rise or loss with
        respect to reference temperature)
    T1 Magnitude of temperature change, uniform in }r\mathrm{ direction
    u Radial displacement (L)
u
```


Figure 19-1: Cylinder.
α Coefficient of thermal expansion ($L / L \cdot$ degree)
$\lambda=E v /[(1+\nu)(1-2 \nu)]$, Lamé coefficient $\left(F / L^{2}\right)$
ν Poisson's ratio
ρ^{*} Mass per unit volume $\left(M / L^{3}\right)$
$\sigma=\sigma_{r}$ Radial stress $\left(F / L^{2}\right)$
σ_{z} Axial stress, positive in tension $\left(F / L^{2}\right)$
σ_{ϕ} Circumferential (tangential) stress $\left(F / L^{2}\right)$
ω Natural frequency (rad / T)
Ω Angular velocity of rotation (rad / T)

Thick Spherical Shells

The notation that differs from that for cylinders is defined here.
M_{i} Concentrated spherical mass $\left(M / L^{2}\right)$; lumped as thin spherical shell
p_{a}^{0}, p_{b}^{0} Loading components for stiffness equation at $r=a$ and $r=b(F)$ p_{0}, p_{a}, p_{b} Radial forces at $r=0, r=a$, and $r=b(F)$

Disks

The formulas for disks are based on plane stress models for which the axial normal stress is zero, as are axially oriented shear stresses. The notation that differs from that for cylinders and spheres is defined here.
h Thickness of disk (L)
M_{i} Concentrated ring mass (M / L)
p_{a}^{0}, p_{b}^{0} Loading components for stiffness equation at $r=a$ and $r=b(F)$
p_{r} Radial loading density; positive if its direction is along positive r direction (F / L^{2})
p_{0}, p_{a}, p_{b} Radial forces for stiffness equation at $r=0, r=a$, and $r=b(F)$
P Internal radial force per unit circumferential length (normal force per unit length on r face $),=\sigma_{r} h(F / L)$
P_{0}, P_{a}, P_{b} Radial forces per unit circumferential length at $r=0, r=a$, and $r=b(F / L)$
P_{ϕ} Circumferential force per unit radial length, $=\sigma_{\phi} h(F / L)$

19.2 STRESSES

The stress formulas for thick cylinders and spheres under uniform pressure on the inner and outer circumferential surfaces are given in this section. Also, the stresses in a rotating disk are listed. The positive stresses σ_{r} and σ_{ϕ} are as in Fig. 19-2.

Figure 19-2: Positive radial displacement u and stresses $\sigma_{r}, \sigma_{\phi}$.

Thick Cylinders

For a cylinder with both inner and outer pressures,

$$
\begin{align*}
& \sigma_{r}=\frac{p_{1} a_{0}^{2}}{a_{L}^{2}-a_{0}^{2}}\left(1-\frac{a_{L}^{2}}{r^{2}}\right)-\frac{p_{2} a_{L}^{2}}{a_{L}^{2}-a_{0}^{2}}\left(1-\frac{a_{0}^{2}}{r^{2}}\right) \tag{19.1a}\\
& \sigma_{\phi}=\frac{p_{1} a_{0}^{2}}{a_{L}^{2}-a_{0}^{2}}\left(1+\frac{a_{L}^{2}}{r^{2}}\right)-\frac{p_{2} a_{L}^{2}}{a_{L}^{2}-a_{0}^{2}}\left(1+\frac{a_{0}^{2}}{r^{2}}\right) \tag{19.1b}
\end{align*}
$$

Figure 19-3 shows the relative magnitude of σ_{ϕ} and σ_{r} under inner and outer pressure. If only the loading p_{1} is applied on the inner circumferential surface of the cylinder, the maximum σ_{ϕ} and σ_{r} both occur at the inner surface, where σ_{ϕ} is $\left[1+\left(a_{L} / a_{0}\right)^{2}\right] /\left[1-\left(a_{L} / a_{0}\right)^{2}\right]$ times σ_{r}. Also if only p_{2} is applied on the outer surface, the maximum σ_{ϕ} occurs at the inner surface while the maximum σ_{r} occurs at the outer surface. The ratio of σ_{ϕ} to σ_{r} at $r=a_{L}$ is $\left[\left(a_{L} / a_{0}\right)^{2}+1\right] /\left[\left(a_{L} / a_{0}\right)^{2}-1\right]$. For thick cylinders with an applied axial force N, positive in tension, axial stress σ_{z} may develop. This stress can be expressed as

$$
\begin{equation*}
\sigma_{z}=N /\left[\pi\left(a_{L}^{2}-a_{0}^{2}\right)\right]=\mathrm{const} \tag{19.1c}
\end{equation*}
$$

Thick Spherical Shells

The stress formulas for thick spheres are

$$
\begin{align*}
\sigma_{r} & =\frac{p_{1} a_{0}^{3}}{a_{L}^{3}-a_{0}^{3}}\left(1-\frac{a_{L}^{3}}{r^{3}}\right)-\frac{p_{2} a_{L}^{3}}{a_{L}^{3}-a_{0}^{3}}\left(1-\frac{a_{0}^{3}}{r^{3}}\right) \tag{19.2a}\\
\sigma_{\phi} & =\frac{p_{1} a_{0}^{3}}{a_{L}^{3}-a_{0}^{3}}\left(1+\frac{a_{L}^{3}}{2 r^{3}}\right)-\frac{p_{2} a_{L}^{3}}{a_{L}^{3}-a_{0}^{3}}\left(1+\frac{a_{0}^{3}}{2 r^{3}}\right) \tag{19.2b}
\end{align*}
$$

Figure 19-3: Stresses σ_{r} and σ_{ϕ} in thick-walled cylinders under (a) internal and (b) external pressure.

Nonpressurized Rotating Disk of Constant Thickness

Solid Disk (No Center Hole)

$$
\begin{align*}
& \sigma_{r}=\frac{3+v}{8} \rho^{*} \Omega^{2} a_{L}^{2}\left(1-\frac{r^{2}}{a_{L}^{2}}\right) \tag{19.3a}\\
& \sigma_{\phi}=\frac{3+v}{8} \rho^{*} \Omega^{2} a_{L}^{2}\left(1-\frac{1+3 v}{3+v} \frac{r^{2}}{a_{L}^{2}}\right) \tag{19.3b}
\end{align*}
$$

Disk with Central Hole

$$
\begin{align*}
& \sigma_{r}=\frac{3+v}{8} \rho^{*} \Omega^{2}\left(a_{L}^{2}+a_{0}^{2}-\frac{a_{0}^{2} a_{L}^{2}}{r^{2}}-r^{2}\right) \tag{19.4a}\\
& \sigma_{\phi}=\frac{3+v}{8} \rho^{*} \Omega^{2}\left(a_{L}^{2}+a_{0}^{2}+\frac{a_{L}^{2} a_{0}^{2}}{r^{2}}-\frac{1+3 v}{3+v} r^{2}\right) \tag{19.4b}
\end{align*}
$$

The maximum value of σ_{r} occurs at $r=\sqrt{a_{0} a_{L}}$ and is

$$
\begin{equation*}
\sigma_{r, \max }=\frac{1}{8}(3+v) \rho^{*} \Omega^{2}\left(a_{L}-a_{0}\right)^{2} \tag{19.5}
\end{equation*}
$$

The maximum σ_{r} is always less than the maximum value of σ_{ϕ} regardless of the ratio a_{L} / a_{0}.

Equations (19.3) and (19.4) are illustrated in Fig. 19-4. Comparison of Eqs. (19.3) and (19.4) shows that the peak stresses in a disk with a hole are always greater than those in a disk without a hole. A small central hole, even a pinhole, doubles the peak normal stress σ_{ϕ} over the case of no hole. This can be seen by setting $r=a_{0}$ in Eqs. (19.4) and letting a_{0} approach zero. The resulting σ_{ϕ} is twice that given by Eq. (19.3).

Note that these formulas apply for thin disks only, where the plane stress assumption holds.

Figure 19-4: Stresses σ_{r} and σ_{ϕ} in rotating disks of constant thickness: (a) solid disk; (b) disk with a center hole.

Example 19.1 Cylinder Design A long cylinder without an applied axial force is to have an inner radius of 40 mm and carry an internal pressure of 82 MPa with a safety factor of 2 . Determine the outside radius according to the Tresca theory of failure (yield). Also, find the principal stresses at $r=a_{0}$. For this material, $\sigma_{y s}=$ 500 MPa .

From Eqs. (19.1a) and (19.1b), the largest circumferential and radial stresses occur on the inner surface of this cylinder. Also, at this point, the maximum principal stress is σ_{ϕ} and the minimum is σ_{r}. From Eq. (3.22b),

$$
\begin{equation*}
\tau_{\max }=\frac{1}{2}\left(\sigma_{\max }-\sigma_{\min }\right)=\frac{1}{2}\left(\sigma_{\phi}-\sigma_{r}\right)=\frac{1}{2} \frac{2 p_{1} a_{L}^{2}}{a_{L}^{2}-a_{0}^{2}}=\frac{p_{1} a_{L}^{2}}{a_{L}^{2}-a_{0}^{2}} \tag{1}
\end{equation*}
$$

The maximum allowable shear stress in tension is

$$
\begin{equation*}
\tau_{\max }=\frac{1}{2} \sigma_{y s}=250 \mathrm{MPa} \tag{2}
\end{equation*}
$$

The Tresca theory of failure leads to

$$
\begin{equation*}
p_{1} a_{L}^{2} /\left(a_{L}^{2}-a_{0}^{2}\right)=250 \tag{3}
\end{equation*}
$$

With the factor of safety of $2, p_{1}=2 \times 82=164 \mathrm{MPa}$. Then, with $a_{0}=40 \mathrm{~mm}$, (3) yields

$$
\begin{equation*}
a_{L}=\left(\frac{250}{250-164}\right)^{1 / 2}(40)=68.20 \mathrm{~mm} \tag{4}
\end{equation*}
$$

The principal stresses at $r=a_{0}$ under the working pressure $p_{1}=82 \mathrm{MPa}$ are, from Eqs. (19.1a)-(19.1c),

$$
\begin{align*}
\sigma_{\left.\phi\right|_{r=a_{0}}} & =\sigma_{1}=\frac{(82)(40)^{2}}{68.20^{2}-40^{2}}\left(1+\frac{68.20^{2}}{40^{2}}\right)=168 \mathrm{MPa} \\
\sigma_{\left.z\right|_{r=a_{0}}} & =\sigma_{2}=0 \tag{5}\\
\sigma_{\left.r\right|_{r=a_{0}}} & =\sigma_{3}=-82 \mathrm{MPa}
\end{align*}
$$

19.3 DESIGN OF CYLINDERS WITH INTERNAL PRESSURE

A frequently occurring design problem occurs for cylinders subject to internal pressure $\left(p_{1}\right)$ only. For this kind of loading, the maximum values of σ_{r} and σ_{ϕ} occur at the inner circumferential surface of the cylinder. From Eqs. (19.1) and Fig. (19-3a), $\left|\sigma_{r}\right|=p_{1}$ and σ_{ϕ} varies with the thickness of the cylinder (Fig. 19-5). Controlling the maximum value of σ_{ϕ} is the major concern of the design. Let $t=a_{L}-a_{0}$ and

Figure 19-5: Stress σ_{ϕ} at $r=a_{0}$ of a cylinder due to internal pressure only.
$p_{2}=0$. Then the expression for σ_{ϕ} at $r=a_{0}$ is

$$
\begin{equation*}
\sigma_{\left.\phi\right|_{r=a_{0}}}=\frac{1+\left(1+t / a_{0}\right)^{2}}{\left(t / a_{0}\right)\left(2+t / a_{0}\right)} p_{1} \tag{19.6}
\end{equation*}
$$

which can be shown to be equal to the value given in Fig. 19-3a. It can be seen from this expression that this stress approaches p_{1} as the ratio t / a_{0} approaches infinity, as shown in Fig. 19-5. Therefore, if the allowable stress of the cylinder is $\sigma_{y s}$, the internal pressure p_{1} must never exceed $\sigma_{y s}$ no matter how thick (t) the wall is made. To overcome this limitation, the cylinder can be prestressed to generate a state of initial compression (i.e., residual stress) at and near the inner surface. There are two common methods to produce residual stresses in cylinders. One is to press the cylinder from the inner surface until it deforms plastically to some distance in the radial direction. This procedure is called autofrettage or self-hooping. Another is to make a composite cylinder by shrink fitting one or more jackets over a cylinder.

For two shrink-fit cylinders of the same material (Fig. 19-6a) subjected to internal pressure p_{1}, a logical residual stress distribution would be one that results in the composite cylinder failing simultaneously at the inner radii of the inner and the outer cylinders. To achieve this, take two cylinders with outer and inner radii c and $c-\Delta$ (or $c+\Delta$ and c). Preheat the outer cylinder (or cool the inner one) and make them fit. Then at room temperature, stresses will develop at the inner and outer surfaces of the cylinders. After p_{1} is applied, an interface pressure p_{c} is developed between the inner and outer cylinders (Fig. 19-6b). The pressure p_{c} and the radius c should be determined such that the maximum shear stresses from a theory of failure (e.g., Tresca) are minimized. Reference [19.1] presents a solution for this problem. Let the two maximum shear stresses have the same magnitude at the inner radii of the inner and the outer cylinders. This maximum shear stress is expressed as

$$
\begin{equation*}
\tau_{\max }=p_{1} a_{L} /\left[2\left(a_{L}-a_{0}\right)\right] \tag{19.7}
\end{equation*}
$$

With a_{0} and $\tau_{\text {max }}$ known, a_{L} can be determined from this relationship. The expressions for p_{c} and c from the Tresca theory are then found as

(c)

Figure 19-6: Stress distribution in composite cylinders: (a) composite configuration; (b) initial stress distribution due to shrink-fit contact pressure at interface $r=c$; (c) combined stress distribution due to shrink-fit and internal pressure (dashed lines represent stresses due to p_{1} alone).

$$
\begin{gather*}
p_{c}=p_{1}\left(a_{L}-a_{0}\right) /\left[2\left(a_{L}+a_{0}\right)\right] \tag{19.8}\\
c=\sqrt{a_{L} a_{0}} \tag{19.9}
\end{gather*}
$$

After p_{c} and c are computed, the outer radius $r_{\text {out }}$ of the inner cylinder and the inner radius r_{in}. of the outer cylinder can then be determined as

$$
r_{\mathrm{out}}=c \quad r_{\mathrm{in} .}=c-\Delta \quad(\text { outer cylinder should be heated })
$$

or

$$
r_{\mathrm{out}}=c+\Delta \quad r_{\mathrm{in} .}=c \quad(\text { inner cylinder should be cooled })
$$

with

$$
\begin{equation*}
\Delta=\frac{2 c^{3} p_{c}}{E} \frac{a_{L}^{2}-a_{0}^{2}}{\left(a_{L}^{2}-c^{2}\right)\left(c^{2}-a_{0}^{2}\right)} \tag{19.10a}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta=p_{1} \sqrt{a_{L} a_{0}} / E \tag{19.10b}
\end{equation*}
$$

The temperature change T needed to heat the outer cylinder (or to cool the inner cylinder) in order to fit the cylinders together is

$$
\begin{equation*}
T=\frac{\Delta}{c \alpha}=\frac{p_{1}}{\alpha E} \tag{19.11}
\end{equation*}
$$

Example 19.2 Composite Cylinder If the cylinder in Example 19.1 is composite with the inner and outer cylinders as shown in Fig. 19-6, determine the outer radius of the composite cylinder under the design pressure 164 MPa , the required contact pressure p_{c}, the radius c of the interface, and the circumferential stresses at $r=a_{0}=40 \mathrm{~mm}$ and at $r=c$ under the working pressure 82 MPa . The inner and outer cylinders are made from steel with $E=200 \mathrm{GPa}, \alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, and the allowable $\tau_{\text {max }}$ at 250 MPa .

With $a_{0}=40 \mathrm{~mm}$ and a design pressure of 164 MPa , the outer radius of the composite cylinder is obtained from [Eq. (19.7)]

$$
\begin{equation*}
\tau_{\max }=250=164 a_{L} / 2\left(a_{L}-40\right) \tag{1}
\end{equation*}
$$

as $a_{L}=59.52 \mathrm{~mm}$. The required contact pressure is, from Eq. (19.8),

$$
\begin{equation*}
p_{c}=\frac{164(59.52-40)}{2(59.52+40)}=16.08 \mathrm{MPa} \tag{2}
\end{equation*}
$$

From Eq. (19.9), the radius of the interface is

$$
\begin{equation*}
c=\sqrt{40(59.52)}=48.79 \mathrm{~mm} \tag{3}
\end{equation*}
$$

The circumferential stress at $r=a_{0}$ is due to the working pressure $p_{1}=82 \mathrm{MPa}$ and the contact pressure p_{c}.

The state of stress under combined internal working pressure and shrink-fit loading is shown in Fig. 19-6c. From Eq. (19.1b), for the inner radius of the inner cylinder,

$$
\begin{align*}
\sigma_{\left.\phi\right|_{r=a_{0}}} & =-p_{c} \frac{2 c^{2}}{c^{2}-a_{0}^{2}}+p_{1} \frac{a_{0}^{2}+a_{L}^{2}}{a_{L}^{2}-a_{0}^{2}} \\
& =-p_{c} \frac{2}{1-\left(a_{0} / c\right)^{2}}+p_{1} \frac{1+\left(a_{L} / a_{0}\right)^{2}}{\left(a_{L} / a_{0}\right)^{2}-1} \\
& =-\frac{2(16.08)}{1-(40 / 48.79)^{2}}+82 \frac{1+(59.52 / 40)^{2}}{(59.52 / 40)^{2}-1} \\
& =-98.09+217.07=118.98 \mathrm{MPa} \tag{4}
\end{align*}
$$

At the inner radius of the outer cylinder,

$$
\begin{equation*}
\sigma_{\left.\phi\right|_{r=c}}=p_{c} \frac{a_{L}^{2}+c^{2}}{a_{L}^{2}-c^{2}}+\frac{p_{1} a_{0}^{2}}{a_{L}^{2}-a_{0}^{2}}\left(1+\frac{a_{L}^{2}}{c^{2}}\right)=250.0 \mathrm{MPa} \tag{5}
\end{equation*}
$$

The required interference Δ in radius at room temperature is, from Eq. (19.10),

$$
\begin{equation*}
\Delta=p_{1} \sqrt{a_{0} a_{L}} / E \tag{6}
\end{equation*}
$$

For the design pressure $p_{1}=164 \mathrm{MPa}$,

$$
\begin{equation*}
\Delta=164 \sqrt{40(59.52)} / 200\left(10^{3}\right)=0.04 \mathrm{~mm} \tag{7}
\end{equation*}
$$

For steel with $\alpha=12(10)^{-6} /{ }^{\circ} \mathrm{C}$, the temperature change T needed is, by Eq. (19.11),

$$
\begin{equation*}
T=164 /\left[12(10)^{-6}(200)(10)^{3}\right]=68.33^{\circ} \mathrm{C} \tag{8}
\end{equation*}
$$

It is interesting to note that the weight of the cylinder in this example is less than that in Example 19.1, since the area of the cross sections are, respectively,

$$
\begin{align*}
& A_{2}=\pi\left(59.52^{2}-40^{2}\right)=6099.86 \mathrm{~mm}^{2} \tag{9}\\
& A_{1}=\pi\left(68.20^{2}-40^{2}\right)=9580.89 \mathrm{~mm}^{2} \tag{10}
\end{align*}
$$

This is an $\left(A_{1}-A_{2}\right) / A_{1}=36.3 \%$ reduction in weight per unit axial length of the cylinder. In fact, the reduction will be greater if the design pressure is higher.

19.4 SIMPLE SHELLS AND DISKS

Thick Cylinders

The governing equations for the radial displacement and stresses in a thick cylinder are given by

$$
\begin{gather*}
\frac{d^{2} u}{d r^{2}}+\frac{1}{r} \frac{d u}{d r}-\frac{u}{r^{2}}=-\frac{1}{\lambda+2 G} p_{r}+\frac{3 \lambda+2 G}{\lambda+2 G} \alpha \frac{d T}{d r} \tag{19.12a}\\
(\lambda+2 G) \frac{d u}{d r}+\frac{\lambda}{r} u-(3 \lambda+2 G) \alpha T=\sigma_{r} \tag{19.12b}
\end{gather*}
$$

The radial displacement and stress for a cylinder are provided in Table 19-1, along with the tangential and axial stresses σ_{ϕ} and σ_{z}. Part A of the table lists formulas for the radial displacements and stresses. The loading functions are taken from part B
of Table 19-1 by adding the appropriate terms for each applied load. The initial parameters are provided in part C of the table for particular inner and outer surface conditions.

Example 19.3 Thick Cylinder with Internal Pressure Calculate the displacement and stresses of a thick cylinder of inner and outer radii $a_{0}=10 \mathrm{in}$. and $a_{L}=20 \mathrm{in}$. The cylinder is subjected to internal uniform pressure $p_{1}=100 \mathrm{lb} / \mathrm{in}^{2}$. The material constants are $E=3 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}, v=0.3, G=E /[2(1+v)]=$ $1.1538 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}$, and $\lambda=E v /[(1+\nu)(1-2 \nu)]=1.730 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}$.

The response of the cylinder can be calculated from the formulas in Table 19-1. First find the initial parameters u_{0} and σ_{0}. Both the inner and outer circumferential boundaries of the cylinder cross section are free, so that, from Table 19-1, part C,

$$
\begin{align*}
\sigma_{0} & =0 \tag{1}\\
u_{0} & =-\frac{\bar{F}_{\sigma}}{[G /(1-v)]\left[\left(a_{L}^{2}-a_{0}^{2}\right) /\left(a_{0} a_{L}^{2}\right)\right]} \tag{2}
\end{align*}
$$

From Table 19-1, part B, if the radial pressure is applied at $a_{1}=a_{0}$, the loading functions, with $<r-a_{0}>^{0}=1$ for $r \geq a_{0}$, are

$$
\begin{align*}
F_{u}(r) & =-\frac{p_{1} v}{2(1-v) \lambda} \frac{r^{2}-a_{0}^{2}}{r} \tag{3}\\
F_{\sigma}(r) & =-\frac{p_{1}}{1-v}\left[\frac{1}{2}+\frac{G v}{\lambda}\left(\frac{a_{0}}{r}\right)^{2}\right] \tag{4}
\end{align*}
$$

Then

$$
\begin{equation*}
\bar{F}_{\sigma}=F_{\left.\sigma\right|_{r=a_{L}}}=-\frac{p_{1}}{1-v}\left[\frac{1}{2}+\frac{G v}{\lambda}\left(\frac{a_{0}}{a_{L}}\right)^{2}\right]=-78.57 \tag{5}
\end{equation*}
$$

Substitute (5) into (2) to find $u_{0}=6.36 \times 10^{-5} \mathrm{in}$.
The displacement u and stresses $\sigma_{r}, \sigma_{\phi}$, and σ_{z} are then found from part A of Table 19-1 to be

$$
\begin{align*}
u & =\frac{u_{0}\left[(G v / \lambda)\left(r / a_{0}\right)+a_{0} / 2 r\right]}{1-v}-\frac{p_{1} v}{2(1-v) \lambda} \frac{r^{2}-a_{0}^{2}}{r} \tag{6a}\\
\sigma_{r} & =\frac{u_{0} G\left(r^{2}-a_{0}^{2}\right)}{(1-v) a_{0} r^{2}}-\frac{p_{1}}{1-v}\left[\frac{1}{2}+\frac{G v}{\lambda}\left(\frac{a_{0}}{r}\right)^{2}\right] \tag{6b}\\
\sigma_{\phi} & =\frac{4 G(\lambda+G)}{\lambda+2 G} \frac{u}{r}+\frac{\lambda}{\lambda+2 G} \sigma_{r} \tag{6c}\\
\sigma_{z} & =\frac{2 \lambda G}{\lambda+2 G} \frac{u}{r}+\frac{\lambda}{\lambda+2 G} \sigma_{r} \tag{6d}
\end{align*}
$$

Substitution of the numerical values of λ, G, v, and u_{0} into (6) leads to the following responses:

r	u	σ_{r}	σ_{ϕ}	σ_{z}
10	6.36×10^{-5}	-100.0	166.667	20
12	5.508×10^{-5}	-59.26	125.926	20
14	4.936×10^{-5}	-34.69	101.36	20
16	4.536×10^{-5}	-18.75	85.42	20
18	4.25×10^{-5}	-7.82	74.486	20
20	4.04×10^{-5}	0	66.667	20

The values of σ_{r} and σ_{ϕ} are the same as the stress values obtained from Eqs. (19.1a) and (19.1b). Note that no axial force is involved in this example, but the axial stress σ_{z} does not vanish. This is because the formulas in Table 19-1 are based on the plane strain assumption of $\varepsilon_{z}=0$ (i.e, either the cylinder is very long or the ends of the cylinder are constrained). This contrasts to the situation for Eq. (19.1c), which is based on the generalized plane strain assumption of $\varepsilon_{z}=$ const. Equation (19.1c) describes the axial stress in the cylinder when the ends of the cylinder are free.

Example 19.4 Thermally Loaded Cylinder Find the stress and displacements in a thermally loaded cylinder with zero tractions on the inner and outer boundaries. The temperature change along the radial direction for a cylinder with temperature changes $T_{a_{0}}, T_{a_{L}}$ on the inner $\left(a_{0}\right)$ and outer $\left(a_{L}\right)$ surfaces is [19.2]

$$
\begin{equation*}
T(r)=\frac{T_{a_{0}} \ln \left(a_{L} / r\right)-T_{a_{L}} \ln \left(a_{0} / r\right)}{\ln \left(a_{L} / a_{0}\right)} \tag{1}
\end{equation*}
$$

For isotropic material, the radial stress and displacement are given by cases 1 and 2 of Table 19-1, part A, as

$$
\begin{align*}
u & =\frac{u_{0}\left[(G v / \lambda)\left(r / a_{0}\right)+a_{0} / 2 r\right]}{1-v}+\frac{\sigma_{0} v\left[\left(r^{2}-a_{0}^{2}\right) / r\right]}{2(1-v) \lambda}+F_{u} \tag{2}\\
\sigma_{r} & =\frac{u_{0} G\left(r^{2}-a_{0}^{2}\right)}{(1-v) a_{0} r^{2}}+\frac{\sigma_{0}\left[\frac{1}{2}+(G v / \lambda)\left(a_{0} / r\right)^{2}\right]}{1-v}+F_{\sigma} \tag{3}
\end{align*}
$$

From Table 19-1, part B, the loading functions for an arbitrary temperature change T are

$$
\begin{equation*}
F_{u}(r)=\frac{1+v}{1-v} \frac{\alpha}{r} \int_{a_{0}}^{r} T(\xi) \xi d \xi \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
F_{\sigma}(r)=-\frac{E}{1-v} \frac{\alpha}{r^{2}} \int_{a_{0}}^{r} T(\xi) \xi d \xi \tag{5}
\end{equation*}
$$

The inner and outer boundaries are free, so that from Table 19-1, part C, the initial parameters are $\sigma_{0}=0$ and

$$
\begin{align*}
u_{0} & =-\frac{F_{\left.\sigma\right|_{r=a_{L}}}}{[G /(1-v)]\left[\left(a_{L}^{2}-a_{0}^{2}\right) /\left(a_{0} a_{L}^{2}\right)\right]}=\frac{[E /(1-v)]\left(\alpha / \alpha_{L}^{2}\right) \int_{a_{0}}^{a_{L}} T(\xi) \xi d \xi}{[G /(1-v)]\left[\left(a_{L}^{2}-a_{0}^{2}\right) /\left(a_{0} a_{L}^{2}\right)\right]} \\
& =\frac{a_{0} E \alpha \int_{a_{0}}^{a_{L}} T(\xi) \xi d \xi}{G\left(a_{L}^{2}-a_{0}^{2}\right)} \tag{6}
\end{align*}
$$

To complete the solution, calculate the integrals containing the temperature change,

$$
\begin{align*}
\int_{a_{0}}^{r} T(\xi) \xi d \xi & =\int_{a_{0}}^{r} \frac{\left[T_{a_{0}} \ln \left(a_{L} / \xi\right)-T_{a_{L}} \ln \left(a_{0} / \xi\right)\right] \xi}{\ln \left(a_{L} / a_{0}\right)} d \xi \\
& =\frac{1}{4} r^{2} \frac{T_{a_{0}}-T_{a_{L}}}{\ln \left(a_{L} / a_{0}\right)}+\frac{1}{2} r^{2} T(r)+\frac{1}{4}\left(T_{a_{L}}-T_{a_{0}}\right) a_{0}^{2}-\frac{1}{2} T_{a_{0}} a_{0}^{2} \ln \frac{a_{L}}{a_{0}} \tag{7}
\end{align*}
$$

Then

$$
\begin{align*}
\int_{a_{0}}^{a_{L}} T(\xi) \xi d \xi= & \frac{1}{4} a_{L}^{2} \frac{T_{a_{0}}-T_{a_{L}}}{\ln \left(a_{L} / a_{0}\right)}+\frac{1}{2} a_{L}^{2} \frac{T_{a_{L}}}{\ln \left(a_{L} / a_{0}\right)} \\
& +\frac{1}{4}\left(T_{a_{L}}-T_{a_{0}}\right) a_{0}^{2}-\frac{1}{2} T_{a_{0}} a_{0}^{2} \ln \frac{a_{L}}{a_{0}} \tag{8}
\end{align*}
$$

Equations (7) and (8) placed in (4), (5), and (6) complete the response represented by the displacement of (2) and the stress of (3).

Thick Spherical Shells

The governing equations for the radial displacement and stresses are given by

$$
\begin{gather*}
\frac{d^{2} u}{d r^{2}}+\frac{2}{r} \frac{d u}{d r}-2 \frac{u}{r^{2}}=-\frac{1}{\lambda+2 G} p_{r}+\frac{3 \lambda+2 G}{\lambda+2 G} \alpha \frac{d T}{d r} \tag{19.13a}\\
(\lambda+2 G) \frac{d u}{d r}+\frac{2 \lambda}{r} u-(3 \lambda+2 G) \alpha T=\sigma_{r} \tag{19.13b}
\end{gather*}
$$

Formulas for the radial displacement and radial stress as well as the tangential stress are given in Table 19-2, part A. The loading functions and initial parameters are provided in parts B and C of the table.

Disks

The governing equations for the radial displacement and stresses in terms of the applied loadings are given by

$$
\begin{gather*}
\frac{d^{2} u}{d r^{2}}+\frac{1}{r} \frac{d u}{d r}-\frac{1}{r^{2}} u=-\frac{1-v^{2}}{E h} p_{r}+(1+v) \alpha \frac{d T}{d r} \tag{19.14a}\\
\frac{E h}{1-v^{2}} \frac{d u}{d r}+\frac{v E h}{1-v^{2}} \frac{u}{r}-\frac{E h \alpha}{1-v} T=P \tag{19.14b}
\end{gather*}
$$

where $P=h \sigma_{r}$. Table 19-3 provides formulas for the radial displacement, radial force per circumferential length, and tangential force per circumferential length of disks or constant thickness.

Example 19.5 Rotating Disk with Internal Pressure Find the displacement and internal forces in a disk of constant thickness rotating at angular velocity Ω and subject to an internal pressure p_{1} (force per length) on the inner periphery at $r=a_{0}$.

The radial displacement and force are given by cases 1 and 2 of Table 19-3, part A, as

$$
\begin{align*}
u & =u_{0} \frac{r}{a_{0}}\left(1-\frac{1+v}{2} \frac{r^{2}-a_{0}^{2}}{r^{2}}\right)+P_{0} \frac{1-v^{2}}{2 E h} \frac{r^{2}-a_{0}^{2}}{r}+F_{u} \tag{1}\\
P & =u_{0} \frac{E h}{2 a_{0} r^{2}}\left(r^{2}-a_{0}^{2}\right)+P_{0}\left(1-\frac{1-v}{2} \frac{r^{2}-a_{0}^{2}}{r^{2}}\right)+F_{P} \tag{2}
\end{align*}
$$

From part B of Table 19-3, the loading functions for the centrifugal loading and internal pressure ($p_{1}=P^{*}$ at $r=a_{0}$ and $<r-a_{0}>^{0}=1$ for $r \geq a_{0}$) are given by

$$
\begin{align*}
F_{u}= & -\frac{p_{1}}{E h} \frac{1-v}{2} \frac{r^{2}-a_{0}^{2}}{r}-\frac{\left(r^{2}-a_{0}^{2}\right)^{2}}{r} \frac{1-v^{2}}{8} \frac{\rho^{*} \Omega^{2}}{E} \tag{3}\\
F_{P}= & -p_{1}\left(1-\frac{1-v}{2} \frac{r^{2}-a_{0}^{2}}{r^{2}}\right) \\
& -\left(r^{2}-a_{0}^{2}\right) \frac{\rho^{*} \Omega^{2} h}{4}\left[(1+v)+\frac{1-v}{2} \frac{\left(r^{2}+a_{0}^{2}\right)}{r^{2}}\right] \tag{4}
\end{align*}
$$

The initial parameters of (1) and (2) are provided in Table 19-3, part C. The boundaries are taken to be free-free. The inner boundary is treated as being free since the pressure is accounted for as a loading and not as a boundary condition. From Table 19-3, part C,

$$
\begin{align*}
P_{0}= & 0 \tag{5}\\
u_{0}= & -\frac{2 F_{P \mid r=a_{L} a_{0} a_{L}^{2}}^{E h\left(a_{L}^{2}-a_{0}^{2}\right)}=\frac{2 p_{1} a_{0} a_{L}^{2}\left[1-(1-v)\left(a_{L}^{2}-a_{0}^{2}\right) / 2 a_{L}^{2}\right]}{E h\left(a_{L}^{2}-a_{0}^{2}\right)}}{} \\
& +\frac{a_{0} a_{L}^{2}}{E} \frac{\rho^{*} \Omega^{2}}{2}\left[(1+v)+\frac{1-v}{2} \frac{a_{L}^{2}+a_{0}^{2}}{a_{L}^{2}}\right] \tag{6}
\end{align*}
$$

With (3), (4), (5), and (6), Eqs. (1) and (2) now provide the radial displacement and force throughout the disk. The tangential force is given by case 3 of Table 19-3, part A, using the u and P found above.

19.5 NATURAL FREQUENCIES

The natural frequencies for simple thick cylinders, spheres, and disks are presented in Table 19-4. For more complicated cases, use the procedures given in Appendix III and the transfer, stiffness, and mass matrices in Tables 19-5 to 19-9 to compute the natural frequencies.

19.6 GENERAL SHELLS AND DISKS

The formulas of Tables 19-1 to 19-3 apply to rather simple shells and disks. For more general members (e.g., those formed of several members), it is advisable to use the displacement method or the transfer matrix procedure, which are explained technically at the end of this book (Appendixes II and III).

Several transfer and stiffness matrices are tabulated in Tables 19-4 to 19-7. Mass matrices for use in a displacement method analysis are given in Tables 19-8 and 19-9. These responses are based on Eqs. (19.12)-(19.14), as appropriate. For dynamic problems, substitute $p_{r}-\rho^{*} \partial^{2} u / \partial t^{2}$ for p_{r} in Eqs. (19.12) and (19.13) for cylinders and shells and $p_{r}-h \rho^{*} \partial^{2} u / \partial t^{2}$ for p_{r} in Eq. (19.14) for disks.

Example 19.6 Disk of Hyperbolic Profile A steel disk of hyperbolic profile is loosely attached to a rigid post as shown in Fig. 19-7. The configuration rotates at frequency Ω. Find the radial stress distribution in the disk.

Figure 19-7: Example 19.6.

The transfer matrix of Table 19-7, case 3, applies to this problem. For this disk $n=1, h_{k}=h_{a} a=15, E=3 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}, v=0.3, n_{1}=1.75$, and $n_{2}=-0.75$. The stress is given by

$$
\begin{equation*}
\sigma=\frac{P}{h}=\frac{u_{0} U_{P u}}{h}+\frac{P_{0} U_{P P}}{h}+\frac{F_{P}}{h} \tag{1}
\end{equation*}
$$

where, from Table 19-7 with $a=3$ in.,

$$
\begin{align*}
U_{P u}= & \frac{E h_{k}\left(n_{1}+v\right)\left(n_{2}+v\right)}{\left(1-v^{2}\right)\left(b^{n+1}\right)\left(n_{2}-n_{1}\right)}\left[\left(\frac{b}{a}\right)^{n_{1}}-\left(\frac{b}{a}\right)^{n_{2}}\right] \\
= & 182.5 \times 10^{6} \times \frac{1}{b^{2}}\left[\left(\frac{b}{3}\right)^{1.75}-\left(\frac{b}{3}\right)^{-0.75}\right] \\
F_{P}= & -\frac{\rho^{*} \Omega^{2} h_{k} b^{2-n}}{8-(3+v) n}\{(3+v) \tag{2}\\
& \left.-\frac{1}{n_{2}-n_{1}}\left[\left(n_{1}+v\right)\left(n_{2}-3\right)\left(\frac{b}{a}\right)^{n_{1}-3}-\left(n_{2}+v\right)\left(n_{1}-3\right)\left(\frac{b}{a}\right)^{n_{2}-3}\right]\right\} \\
= & -3.19 \rho^{*} \Omega^{2} b\left[3.3-3.075\left(\frac{b}{3}\right)^{-1.25}-0.225\left(\frac{b}{3}\right)^{-3.75}\right]
\end{align*}
$$

It is not necessary to look up $U_{P P}$ since P_{0} of Eq. (1) is zero as a result of the loose fit at the inner boundary. Also, at the outer circumference, where $r=b=15 \mathrm{in}$., the force P is zero. Thus, for free-free conditions, with $P_{r=3} \mathrm{in}$. $=0$ and $P_{r=b=15 \mathrm{in} \text {. }=}$ 0 , the initial parameters are

$$
\begin{equation*}
P_{0}=0 \quad u_{0}=-\bar{F}_{P} / U_{P u \mid b=15} \tag{3}
\end{equation*}
$$

The expression for u_{0} is obtained by setting $P_{r=b=15 \mathrm{in} .}=0$ in (1). Also, $\bar{F}_{P}=$ $\left(F_{P}\right)_{b=15}$. Substitution of $b=15 \mathrm{in}$. into (2) gives

$$
\begin{equation*}
U_{P u \mid b=15}=13.32 \times 10^{6} \quad \bar{F}_{P}=-138.2 \rho^{*} \Omega^{2} \tag{4}
\end{equation*}
$$

Equations (3) and (4) lead to $u_{0}=1.04 \times 10^{-5} \rho^{*} \Omega^{2}$. If this value of u_{0} is placed in (1), we find that

$$
\begin{equation*}
\sigma=\left(-10.527 b+316.27 b^{-0.25}-4282.33 b^{-2.75}\right)\left(\rho^{*} \Omega^{2} / h\right) \tag{5}
\end{equation*}
$$

This expression applies for any solution if b is replaced by r so that the radial stress in the disk is completely defined by (5).

Example 19.7 Shrink-Fit Disk-Shaft System A disk-shaft system (Fig. 19-8a) can be used to illustrate both the solution to a complicated disk problem and the treatment of shrink fit.

Figure 19-8: Example 19.7.

Suppose that the shaft can be modeled as a solid (holeless) disk of thickness equal to that $\left(h_{1}\right)$ of the outer disk where it is connected to the shaft (Fig. 19-8b). The outer disk, which possesses a variable thickness, will be handled as a succession of disks, each with a constant thickness (Fig. 19-8c). Assume that the disk is to be shrink fit to the shaft.

Expressions for the displacements and forces in the shaft can be treated separately and then the results are joined with the disk response to account for shrink-fit results. Let c be the inner radius of the disk and the outer radius of the shaft after shrinking. In the case of the shaft, the responses are taken from case 4 of Table 19-7 as

$$
\begin{align*}
& u_{\mid r=c}=P_{0} U_{u P \mid r=c}+F_{u \mid r=c}=P_{0} \frac{c}{E h_{1}}(1-v)-\left(1-v^{2}\right) \frac{\rho^{*} \Omega^{2} c^{3}}{8 E} \tag{1a}\\
& P_{\mid r=c}=P_{0} U_{P P \mid r=c}+F_{P \mid r=c}=P_{0}-(3+v) \frac{\rho^{*} h_{1} \Omega^{2} c^{2}}{8} \tag{1b}
\end{align*}
$$

For the disk of variable cross section which is treated as a succession of disks of constant thickness, the overall transfer matrix \mathbf{U} can be developed as

$$
\begin{equation*}
\mathbf{U}=\mathbf{U}^{1} \mathbf{U}^{2} \mathbf{U}^{3} \cdots \mathbf{U}^{n} \tag{2}
\end{equation*}
$$

where \mathbf{U}^{i} is the transfer matrix for the i th disk of constant thickness. The expression for \mathbf{U}^{i} is taken from case 1, Table 19-7, with $a=a_{i-1}, b=a_{i}$ as

$$
\left.\mathbf{U}^{i}=\left[\begin{array}{c:c:c}
\frac{a_{i}}{a_{i-1}}\left(1-\frac{1+v}{2} \frac{a_{i}^{2}-a_{i-1}^{2}}{a_{i}^{2}}\right) & \frac{1-v^{2}}{2 E h_{i}} \frac{a_{i}^{2}-a_{i-1}^{2}}{a_{i}} & -\frac{\left(a_{i}^{2}-a_{i-1}^{2}\right)^{2}}{a_{i}} \frac{1-v^{2}}{8} \frac{\rho^{*} \Omega^{2}}{E} \tag{3}\\
\hdashline \frac{E h_{i}}{2 a_{i-1} a_{i}^{2}}\left(a_{i}^{2}-a_{i-1}^{2}\right) & 1-\frac{1-v}{2} \frac{a_{i}^{2}-a_{i-1}^{2}}{a_{i}^{2}} & -\frac{\left(a_{i}^{2}-a_{i-1}^{2}\right) \rho^{*} \Omega^{2} h_{i}}{4}\left[(1+v)+\frac{1-v}{2} \frac{a_{i}^{2}+a_{i-1}^{2}}{a_{i}^{2}}\right.
\end{array}\right]\right]\left[\begin{array}{ccc}
\hdashline 0 & 0 & 1
\end{array}\right]
$$

where $i=1,2, \ldots, n$.
In nonmatrix form, the displacement and force at $r=a_{L}$ are

$$
\begin{align*}
& u_{\mid r=a_{L}}=u_{c} U_{u u}\left(a_{L}, c\right)+P_{c} U_{u P}\left(a_{L}, c\right)+F_{u}\left(a_{L}, c\right) \tag{4a}\\
& P_{\mid r=a_{L}}=u_{c} U_{P u}\left(a_{L}, c\right)+P_{c} U_{P P}\left(a_{L}, c\right)+F_{P}\left(a_{L}, c\right) \tag{4b}
\end{align*}
$$

where $U_{j k}\left(a_{L}, c\right)$ are components of the overall transfer matrix from $r=c$ to $r=$ a_{L}.

Generation of a solution requires knowledge of initial parameters P_{0} of (1) and u_{c}, P_{c} of (4). In the case of a shrink-fit problem, the interaction between the shaft and the disk provides the condition necessary to evaluate the initial parameters. Suppose that r_{s} is the outer radius of the shaft before shrinking and r_{D} is the inner radius of the disk before shrinking. Also let $u_{D \mid r=c}$ be the displacement of the inner radius of the disk upon shrink fitting and $u_{s \mid r=c}$ the displacement of the outer radius of the shaft after shrinking. The shrink-fit deformation, or shrinkage, is

$$
\begin{equation*}
\Delta_{\mathrm{sf}}=r_{s}-r_{D}=u_{D \mid r=c}-u_{s \mid r=c} \tag{5}
\end{equation*}
$$

The shaft displacement $u_{s \mid r=c}$ is found in terms of $P_{\mid r=c}=P_{c}$ by eliminating P_{0} from (1a) and (1b):

$$
\begin{equation*}
u_{s \mid r=c}=\frac{P_{c}-F_{P \mid r=c}}{U_{P P \mid r=c}} U_{u P \mid r=c}+F_{u \mid r=c} \tag{6}
\end{equation*}
$$

The disk displacement $u_{D \mid r=c}$ is given by (4b) as a function of P_{c},

$$
\begin{equation*}
u_{D \mid r=c}=\frac{P_{\mid r=a_{L}}-F_{P}\left(a_{L}, c\right)}{U_{P u}\left(a_{L}, c\right)}-P_{c} \frac{U_{P P}\left(a_{L}, c\right)}{U_{P u}\left(a_{L}, c\right)} \tag{7}
\end{equation*}
$$

Substitution of (6) and (7) into (5) provides a relationship sufficient to solve a variety of shrink-fit problems. For example, for a prescribed shrinkage $\Delta_{\text {sf }}$, the pressure P_{c} between the shaft and disk can be computed from (5). Or the shrinkage $\Delta_{\text {sf }}$ necessary to achieve an interaction pressure P_{c} can be calculated. In each case, a specified external pressure on the disk can be included. In problems involving cylinders, it is common to include the effect of an internal pressure on an inner cylinder. With either $\Delta_{\text {sf }}$ or P_{c} given, it is possible to calculate all displacements and stresses in the shaft and disk.

REFERENCES

19.1. Cook, R. D., and Young, W. C., Advanced Mechanics of Materials, Macmillan, New York, 1985.
19.2. Zudans, Z., Yen, T. C., and Steigelmann, W. H., Thermal Stress Techniques, American Elsevier, New York, 1965.

19

Tables

19-1 Part A: Thick Cylinders: General Response Expressions 1152
19-1 Part B: Thick Cylinders: Loading Functions 1153
19-1 Part C: Thick Cylinders: Initial Parameters 1154
19-2 Part A: Spheres: General Response Expressions 1155
19-2 Part B: Spheres: Loading Functions 1156
19-2 Part C: Spheres: Initial Parameters 1157
19-3 Part A: Disks: General Response Expressions 1158
19-3 Part B: Disks: Loading Functions 1159
19-3 Part C: Disks: Initial Parameters 1160
19-4 Natural Frequencies for Thick Shells and Disks 1161
19-5 Transfer and Stiffness Matrices for Cylinders 1165
19-6 Transfer and Stiffness Matrices for Spheres 1170
19-7 Transfer and Stiffness Matrices for Disks 1175
19-8 Point Matrices of Cylinders, Spheres, and Disks 1181
19-9 Mass Matrices for Cylinders, Spheres, and Disks 1183

TABLE 19-1 PART A: THICK CYLINDERS: GENERAL RESPONSE EXPRESSIONS

Notation
$a_{0}=$ radius of inner boundary
$G=$ shear modulus of elasticity
$v=$ Poisson's ratio
$\lambda=$ Lamé coefficient
$\alpha=$ coefficient of thermal expansion
$T=$ change of temperature along length of wall thickness

$\sigma_{0}=\sigma_{r \mid r=a_{0}} \quad u_{0}=u_{\mid r=a_{0}}$
The formulas in this table are based on the plane strain assumption of $\varepsilon_{z}=0$.

Response

1. $\quad u=\frac{u_{0}\left[(G v / \lambda)\left(r / a_{0}\right)+a_{0} / 2 r\right]}{1-v}+\frac{\sigma_{0} v\left(r^{2}-a_{0}^{2}\right)}{2(1-v) \lambda r}+F_{u}$
2.

Radial stress:
$\sigma_{r}=\frac{u_{0} G\left(r^{2}-a_{0}^{2}\right)}{(1-v) a_{0} r^{2}}+\frac{\sigma_{0}\left[\frac{1}{2}+(G \nu / \lambda)\left(a_{0} / r\right)^{2}\right]}{1-v}+F_{\sigma}$
3.

Tangential stress:
$\sigma_{\phi}=\frac{4 G(\lambda+G)}{\lambda+2 G} \frac{u}{r}+\frac{\lambda}{\lambda+2 G} \sigma_{r}-\frac{E \alpha T}{1-v}$
4.

Axial stress:

$$
\sigma_{z}=\frac{2 \lambda G}{\lambda+2 G} \frac{u}{r}+\frac{\lambda}{\lambda+2 G} \sigma_{r}-\frac{E \alpha T}{1-v}
$$

TABLE 19-1 PART B: THICK CYLINDERS: LOADING FUNCTIONS

$$
\begin{aligned}
& \quad \text { Notation } \\
E & =\text { modulus of elasticity } \\
\nu & =\text { Poisson's ratio } \\
\rho^{*} & =\text { mass per unit volume } \\
\Omega & =\text { angular velocity of rotation } \\
\alpha & =\text { coefficient of thermal expansion } \\
<r-a_{1}>^{0} & = \begin{cases}0 & \text { if } r<a_{1} \\
1 & \text { if } r \geq a_{1}\end{cases}
\end{aligned}
$$

$\left.\begin{array}{l|c|c}\hline & F_{u}(r) & F_{\sigma}(r) \\ \hline \begin{array}{l}\text { Radial pressure } \\ \text { applied at } r=a_{1} \\ \text { (force/length }{ }^{2} \text {) }\end{array} & -\frac{p v}{2(1-v) \lambda} & \times \frac{r^{2}-a_{1}^{2}}{r}<r-a_{1}>^{0}\end{array} \quad \times\left[\frac{p}{1-v}+\frac{G v}{\lambda}\left(\frac{a_{1}}{r}\right)^{2}\right]<r-a_{1}>^{0}\right]$

TABLE 19-1 PART C: THICK CYLINDERS: INITIAL PARAMETERS

$\begin{aligned} v & =\text { Poisson's ratio } \\ \lambda & =\text { Lamé coefficient } \\ G & =\text { shear modulus of elasticity } \\ a_{L} & =\text { radius of outer surface of cylinder } \\ \bar{F}_{u} & =F_{u \mid r=a_{L}} \quad \bar{F}_{\sigma}=F_{\sigma \mid r=a_{L}} \end{aligned}$		
1. Fixed $u_{0}=0$	$\begin{aligned} \sigma_{0} & =-\frac{\bar{F}_{u}}{\nabla} \\ \nabla & =\frac{v}{2(1-v) \lambda} \frac{a_{L}^{2}-a_{0}^{2}}{a_{L}} \end{aligned}$	$\begin{aligned} \sigma_{0} & =-\frac{\bar{F}_{\sigma}}{\nabla} \\ \nabla & =\frac{1}{1-v}\left[\frac{1}{2}+\frac{G v}{\lambda}\left(\frac{a_{0}}{a_{L}}\right)^{2}\right] \end{aligned}$
2. Free $\sigma_{0}=0$	$\begin{aligned} u_{0} & =-\frac{\bar{F}_{u}}{\nabla} \\ \nabla & =\frac{1}{1-v}\left(\frac{G v}{\lambda} \frac{a_{L}}{a_{0}}+\frac{a_{0}}{2 a_{L}}\right) \end{aligned}$	$\begin{aligned} u_{0} & =-\frac{\bar{F}_{\sigma}}{\nabla} \\ \nabla & =\frac{G}{1-v} \frac{a_{L}^{2}-a_{0}^{2}}{a_{0} a_{L}^{2}} \end{aligned}$

TABLE 19-2 PART A: SPHERES: GENERAL RESPONSE EXPRESSIONS

Notation

$$
\begin{aligned}
a_{0} & =\text { radius of inner boundary } \\
G & =\text { shear modulus of elasticity } \\
\lambda & =\text { Lamé coefficient } \\
\alpha & =\text { coefficient of thermal expansion } \\
T & =\text { change of temperature } \\
& \text { in radial direction } \\
\sigma_{0} & =\sigma_{r \mid r=a_{0} \quad u_{0}=u_{\mid r=a_{0}}}
\end{aligned}
$$

Response
Displacement: $u=u_{0} \frac{4 G r^{3}+(3 \lambda+2 G) a_{0}^{3}}{3(\lambda+2 G) a_{0} r^{2}}+\sigma_{0} \frac{a_{0}}{3(\lambda+2 G)}\left(\frac{r}{a_{0}}-\frac{a_{0}^{2}}{r^{2}}\right)+F_{u}$
2.

Radial
stress:

$$
\sigma_{r}=u_{0} \frac{4 G(3 \lambda+2 G)}{3(\lambda+2 G) a_{0} r^{3}}\left(r^{3}-a_{0}^{3}\right)+\sigma_{0} \frac{3 \lambda+2 G+4 G a_{0}^{3} / r^{3}}{3(\lambda+2 G)}+F_{\sigma}
$$

3.

Tangential
stress:

$$
\sigma_{\phi}=2 G \frac{2+3 \lambda}{2 G+\lambda} \frac{u}{r}+\frac{\lambda}{2 G+\lambda} \sigma_{r}-\frac{2 G(3 \lambda+2 G)}{2 G+\lambda} \alpha T
$$

TABLE 19-2 PART B: SPHERES: LOADING FUNCTIONS

Notation $\lambda=$ Lamé coefficient $G=$ shear modulus of elasticity $\alpha=$ coefficient of thermal expansion $<r-a_{1}>^{0}= \begin{cases}0 & \text { if } r<a_{1} \\ 1 & \text { if } r \geq a_{1}\end{cases}$		
	$F_{u}(r)$	$F_{\sigma}(r)$
1. Radial pressure applied at $r=a_{1}$ (force/length ${ }^{2}$)	$\begin{aligned} & -\frac{p a_{1}}{3(\lambda+2 G)}\left(\frac{r}{a_{1}}-\frac{a_{1}^{2}}{r^{2}}\right) \\ & \quad \times<r-a_{1}>^{0} \end{aligned}$	$-p \frac{3 \lambda+2 G+4 G a_{1}^{3} / r^{3}}{3(\lambda+2 G)}<r-a_{1}>^{0}$
2. Constant temperature change T_{1} (independent of r)	$\frac{3 \lambda+2 G}{3(\lambda+2 G)} \frac{\left(r^{3}-a_{0}^{3}\right)}{r^{2}} \alpha T_{1}$	$-\frac{4 G(3 \lambda+2 G)}{3(\lambda+2 G)} \frac{\left(r^{3}-a_{0}^{3}\right)}{r^{3}} \alpha T_{1}$
3. Arbitrary temperature change $T(r)$	$\frac{3 \lambda+2 G}{\lambda+2 G} \frac{\alpha}{r^{2}} \int_{a_{0}}^{r} T(\xi) \xi^{2} d \xi$	$\frac{-4 G \alpha}{r^{3}} \frac{3 \lambda+2 G}{\lambda+2 G} \int_{a_{0}}^{r} T(\xi) \xi^{2} d \xi$

TABLE 19-2 PART C: SPHERES: INITIAL PARAMETERS

Notation $a_{L}=$ radius of outer boundary $\lambda=$ Lamé coefficient $G=$ shear modulus of elasticity $\bar{F}_{u}=F_{u \mid r=a_{L}} \quad \bar{F}_{\sigma}=F_{\sigma \mid r=a_{L}}$		
1. Fixed $u_{0}=0$	$\begin{aligned} \sigma_{0} & =-\frac{\bar{F}_{u}}{\nabla} \\ \nabla & =\frac{a_{0}}{3(\lambda+2 G)}\left(\frac{a_{L}}{a_{0}}-\frac{a_{0}^{2}}{a_{L}^{2}}\right) \end{aligned}$	$\begin{aligned} \sigma_{0} & =-\frac{\bar{F}_{\sigma}}{\nabla} \\ \nabla & =\frac{3 \lambda+2 G+4 G a_{0}^{3} / a_{L}^{3}}{3(\lambda+2 G)} \end{aligned}$
2. Free $\sigma_{0}=0$	$\begin{aligned} u_{0} & =-\frac{\bar{F}_{u}}{\nabla} \\ \nabla & =\frac{4 G a_{L}^{3}+(3 \lambda+2 G) a_{0}^{3}}{3(\lambda+2 G) a_{0} a_{L}^{2}} \end{aligned}$	$\begin{aligned} u_{0} & =-\frac{\bar{F}_{\sigma}}{\nabla} \\ \nabla & =\frac{4 G(3 \lambda+2 G)\left(a_{L}^{3}-a_{0}^{3}\right)}{3(\lambda+2 G) a_{L}^{3} a_{0}} \end{aligned}$

TABLE 19-3 PART A: DISKS: GENERAL RESPONSE EXPRESSIONS

\quad Notation	
a_{0}	$=$ radius of inner boundary
E	$=$ modulus of elasticity
ν	$=$ Poisson's ratio
α	$=$ coefficient of thermal expansion
T	$=$ change of temperature
	in radial direction
h	$=$ thickness of disk
$\sigma_{r}, \sigma_{\phi}$	$=$ radial and circumferential stresses,
	respectively
P_{0}	$=P_{\mid r=a} \quad u_{0}=u_{\mid r=a_{0}}$
P	$=$ radial force per circumferential length
P_{ϕ}	$=$ tangential force per circumferential length
P	$=h \sigma_{r} \quad P_{\phi}=h \sigma_{\phi}$

Response

1. Displacement: $u=u_{0} \frac{r}{a_{0}}\left(1-\frac{1+v}{2} \frac{r^{2}-a_{0}^{2}}{r^{2}}\right)+P_{0} \frac{1-v^{2}}{2 E h} \frac{r^{2}-a_{0}^{2}}{r}+F_{u}$
2. \quad Radial force: $\quad P=u_{0} \frac{E h}{2 a_{0} r^{2}}\left(r^{2}-a_{0}^{2}\right)+P_{0}\left(1-\frac{1-v}{2} \frac{r^{2}-a_{0}^{2}}{r^{2}}\right)+F_{P}$
3.

Tangential force: $\quad P_{\phi}=\frac{E h}{r} u+\nu P-E h \alpha T$

TABLE 19-3 PART B: DISKS: LOADING FUNCTIONS

Notation

$$
\begin{aligned}
E & =\text { modulus of elasticity } \\
v & =\text { Poisson's ratio } \\
G & =\text { shear modulus of elasticity } \\
h & =\text { thickness of disk } \\
\rho^{*} & =\text { mass per unit volume } \\
\Omega & =\text { angular velocity of rotation } \\
<r-a_{1}>^{0} & = \begin{cases}0 & \text { if } r<a_{1} \\
1 & \text { if } r \geq a_{1}\end{cases}
\end{aligned}
$$

	$F_{u}(r)$	$F_{P}(r)$
1. Radial force P^{*} per unit circumferential length applied at $r=a_{1}$	$-\frac{P^{*}}{E h} \frac{1-v^{2}}{2} \frac{r^{2}-a_{1}^{2}}{r}<r-a_{1}>^{0}$	$-P^{*}\left(1-\frac{1-v}{2} \frac{r^{2}-a_{1}^{2}}{r^{2}}\right)<r-a_{1}>^{0}$
2. Constant temperature change T_{1} (independent of r)	$\frac{r^{2}-a_{0}^{2}}{2 r}(1+v) \alpha T_{1}$	$-h \frac{r^{2}-a_{0}^{2}}{2 r^{2}} E \alpha T_{1}$
3. Centrifugal loading due to rotation of disk at angular velocity Ω	$-\frac{\left(r^{2}-a_{0}^{2}\right)^{2}}{r} \frac{1-v^{2}}{8} \frac{\rho^{*} \Omega^{2}}{E}$	$\begin{aligned} & -\left(r^{2}-a_{0}^{2}\right) \frac{\rho^{*} \Omega^{2} h}{4} \\ & \times\left[(1+v)+\frac{1-v}{2} \frac{r^{2}+a_{0}^{2}}{r^{2}}\right] \end{aligned}$
4. Arbitrary temperature change $T(r)$	$\frac{1+\nu}{r} \alpha \int_{a_{0}}^{r} \xi T(\xi) d \xi$	$-\frac{h E \alpha}{r^{2}} \int_{a_{0}}^{r} \xi T(\xi) d \xi$

TABLE 19-3 PART C: DISKS: INITIAL PARAMETERS

$\begin{aligned} E & =\text { modulus of elasticity } \\ v & =\text { Poisson's ratio } \\ h & =\text { thickness of disk } \\ a_{L} & =\text { radius of outer surface } \\ \bar{F}_{u} & =F_{u \mid r=a_{L}} \quad \bar{F}_{P}=F_{P \mid r=a_{L}} \end{aligned}$		
1. Fixed $u_{0}=0$	$\begin{aligned} P_{0} & =-\frac{\bar{F}_{u}}{\nabla} \\ \nabla & =\frac{1-v^{2}}{2 E h} \frac{a_{L}^{2}-a_{0}^{2}}{a_{L}} \end{aligned}$	$\begin{aligned} P_{0} & =-\frac{\bar{F}_{P}}{\nabla} \\ \nabla & =1-\frac{1-v}{2} \frac{a_{L}^{2}-a_{0}^{2}}{a_{L}^{2}} \end{aligned}$
2. Free $P_{0}=0$	$\begin{aligned} u_{0} & =-\frac{\bar{F}_{u}}{\nabla} \\ \nabla & =\frac{a_{L}}{a_{0}}\left(1-\frac{1+v}{2} \frac{a_{L}^{2}-a_{0}^{2}}{a_{L}^{2}}\right) \end{aligned}$	$\begin{aligned} u_{0} & =-\frac{\bar{F}_{P}}{\nabla} \\ \nabla & =\frac{E h}{2 a_{0} a_{L}^{2}}\left(a_{L}^{2}-a_{0}^{2}\right) \end{aligned}$

TABLE 19-4 NATURAL FREQUENCIES FOR THICK SHELLS AND DISKS

> | Notation | |
| ---: | :--- |
| E | $=$ modulus of elasticity |
| G | $=$ shear modulus of elasticity |
| ρ^{*} | $=$ mass per unit volume |
| ω_{n} | $=n$th natural frequency |
| ν | $=$ Poisson's ratio |
| λ | $=E v /[(1+\nu)(1-2 v)]=$ Lamé coefficient |
| a_{0}, a_{L} | $=$ inner and outer radii |
| λ_{n} | $=$ frequency parameter |

$\omega_{n}^{2}= \begin{cases}\lambda_{n}^{2} \frac{\lambda+2 G}{\rho^{*} a_{L}^{2}} & \text { (isotropic thick cylinders and spheres) } \\ \lambda_{n}^{2} \frac{c_{11}}{\rho^{*} a_{L}^{2}} E & \text { (anisotropic cylinder of case 3) } \\ \lambda_{n}^{2} \frac{E}{\rho^{*}\left(1-v^{2}\right) a_{L}^{2}} & \text { (disks) }\end{cases}$
$\alpha=\frac{a_{L}}{a_{0}}$
$c_{11}, c_{12}, c_{13}, c_{22}, c_{23}=$ elastic constants for anisotropic material [Eq. (4.2)]
$v=0.3$ for all formulas in this table.

Configuration	Frequency Parameters
1. Cylinder segment, free inner and outer surfaces	$\begin{aligned} & \lambda_{1}=0.337629+0.703004 \alpha-0.15434 \alpha^{2}+0.017533 \alpha^{3} \\ & \lambda_{2}=3.383514+\frac{3.021092}{\alpha-1}+\frac{0.021578}{(\alpha-1)^{2}}-\frac{0.0011806}{(\alpha-1)^{3}} \\ & \lambda_{3}=6.398913+\frac{6.22643}{\alpha-1}+\frac{0.010095}{(\alpha-1)^{2}}-\frac{0.000550699}{(\alpha-1)^{3}} \\ & 1.1 \leq \alpha \leq 2.0 \end{aligned}$
2. Cylinder without center hole, free	$\begin{aligned} & \lambda_{1}=2.125748 \\ & \lambda_{2}=5.41389 \\ & \lambda_{3}=8.5870 \end{aligned}$

outer surface

TABLE 19-4 (continued) NATURAL FREQUENCIES FOR THICK SHELLS AND DISKS

Configuration	Frequency Parameters		
3.	Fundamental frequency parameter:		
Anisotropic cylinder	$\lambda_{1}=0.4423+0.2049 \gamma-0.0237 \gamma^{2}+0.0017 \gamma^{3}$	$\eta=0.1$	
without center hole,	$\lambda_{1}=0.9421+0.4587 \gamma-0.05199 \gamma^{2}+0.00377 \gamma^{3}$	$\eta=0.5$	
free outer surface	$\lambda_{1}=1.2575+0.644 \gamma-0.07038 \gamma^{2}+0.0049926 \gamma^{3}$	$\eta=1.0$	
$\boldsymbol{a}_{\mathbf{L}_{+}}$	$\lambda_{1}=1.6013+0.8791 \gamma-0.08693 \gamma^{2}+0.005831 \gamma^{3}$	$\eta=2.0$	
	$\lambda_{1}=1.9914+1.1814 \gamma-0.08385 \gamma^{2}+0.0049185 \gamma^{3}$	$\eta=5.0$	
	$\gamma=c_{22} / c_{11} \quad \eta=\left(c_{22} / c_{11}\right)^{1 / 2}+c_{12} / c_{11}$		

4.

Spherical segment, free inner and outer surfaces

$\lambda_{1}=0.626+0.9725 \alpha-0.1375 \alpha^{2}-1.32453 \alpha^{3}$
$\lambda_{2}=4.01637+\frac{2.45702}{\alpha-1}+\frac{0.210243}{(\alpha-1)^{2}}-\frac{0.021077}{(\alpha-1)^{3}}$
$\lambda_{3}=6.69786+\frac{5.964807}{\alpha-1}+\frac{0.096849}{(\alpha-1)^{2}}-\frac{0.0096571}{(\alpha-1)^{3}}$
$1.2 \leq \alpha \leq 2.0$
$\lambda_{1}=2.67021$
$\lambda_{2}=6.091989$
Spherical segment without center hole,
$\lambda_{3}=9.300894$
free outer surface

6.

Disk ring, free inner and outer boundaries

$\lambda_{1}=0.34598+0.7691 \alpha-0.1804 \alpha^{2}+0.020096 \alpha^{3}$
$\lambda_{2}=3.5347+\frac{2.8678}{\alpha-1}+\frac{0.07512}{(\alpha-1)^{2}}-\frac{0.0069235}{(\alpha-1)^{3}}$
$\lambda_{3}=6.4717+\frac{6.15398}{\alpha-1}+\frac{0.03511}{(\alpha-1)^{2}}-\frac{0.003218}{(\alpha-1)^{3}}$
$1.2 \leq \alpha \leq 2.0$

TABLE 19-4 (continued)	NATURAL FREQUENCIES FOR THICK SHELLS AND DISKS
Configuration	Frequency Parameters
D. Disk without center hole, free outer boundary	$\lambda_{1}=2.04885$
$\lambda_{2}=5.38936$	
$\lambda_{3}=8.57816$	

TABLE 19-4 (continued)	NATURAL FREQUENCIES FOR THICK SHELLS AND DISKS
Configuration	Frequency Parameters
11. Spherical segment, free inner surface and fixed outer surface	$\begin{aligned} \lambda_{1}= & 7.26960-\frac{6.84825}{\alpha-1} \\ & \quad+\frac{3.991179}{(\alpha-1)^{2}}-\frac{0.68994}{(\alpha-1)^{3}}+\frac{0.036929}{(\alpha-1)^{4}} \\ \lambda_{2}= & 5.0054713+\frac{4.47794}{\alpha-1}+\frac{0.056356}{(\alpha-1)^{2}}-\frac{0.0035934}{(\alpha-1)^{3}} \\ \lambda_{3}= & 8.070949+\frac{7.60964}{\alpha-1}+\frac{0.062880}{(\alpha-1)^{2}}-\frac{0.0040676}{(\alpha-1)^{3}} \end{aligned}$
12. Disk ring, fixed inner boundary and free outer boundary	$\begin{aligned} & \lambda_{1}=1.70971+\frac{1.45025}{\alpha-1}+\frac{0.020784}{(\alpha-1)^{2}}-\frac{0.0011170}{(\alpha-1)^{3}} \\ & \lambda_{2}=4.79584+\frac{4.64898}{\alpha-1}+\frac{0.011415}{(\alpha-1)^{2}}-\frac{0.00062540}{(\alpha-1)^{3}} \\ & \lambda_{3}=7.90695+\frac{7.81390}{\alpha-1}+\frac{0.0072626}{(\alpha-1)^{2}}-\frac{0.00039914}{(\alpha-1)^{3}} \end{aligned}$
13. Disk ring, free inner boundary and fixed outer boundary	$\begin{aligned} & \lambda_{1}=2.33085+\frac{1.24567}{\alpha-1}+\frac{0.058895}{(\alpha-1)^{2}}-\frac{0.0032348}{(\alpha-1)^{3}} \\ & \lambda_{2}=4.96403+\frac{4.60411}{\alpha-1}+\frac{0.019722}{(\alpha-1)^{2}}-\frac{0.0010864}{(\alpha-1)^{3}} \\ & \lambda_{3}=8.0032775+\frac{7.79008}{\alpha-1}+\frac{0.011628}{(\alpha-1)^{2}}-\frac{0.00064035}{(\alpha-1)^{3}} \end{aligned}$
14. Disk without center hole,	$\begin{aligned} & \lambda_{1}=3.8317 \\ & \lambda_{2}=7.0156 \\ & \lambda_{3}=10.1735 \end{aligned}$

TABLE 19-5 TRANSFER AND STIFFNESS MATRICES FOR CYLINDERS

Notation

$$
\begin{aligned}
& E=\text { modulus of elasticity } \\
& \nu=\text { Poisson's ratio } \\
& \rho^{*}=\text { mass per unit volume } \\
& T(r)=\text { arbitrary temperature change; in expressions for } \bar{F}_{u} \text { and } \bar{F}_{\sigma} \\
& \text { set } T(\xi)=0 \text { if only constant temperature change is present } \\
& p_{r}(r)=\text { arbitrary loading intensity in } r \text { direction }\left(F / L^{3}\right) \\
& G=\text { shear modulus of elasticity } \\
& \lambda=\text { Lamé constant } \\
& T_{1}=\text { constant temperature change } \\
& u_{0}, u_{a}, u_{b}=\text { radial displacements at } r=0, a, b \\
& \sigma_{0}, \sigma_{a}, \sigma_{b}=\text { radial stresses at } r=0, a, b\left(F / L^{2}\right) \\
& p_{0}, p_{a}=2 \pi a \sigma_{a}, p_{b}=2 \pi b \sigma_{b}=\text { radial forces (stress resultants) } \\
& \text { at } r=0, a, b(F / L) \\
& p_{a}^{0}, p_{b}^{0}=\text { loading components for stiffness equation at } r=a, b(F / L) \\
& \bar{F}_{u}=F_{u \mid r=b} \quad \bar{F}_{\sigma}=F_{\sigma \mid r=b} \\
& \Omega=\text { angular velocity of rotation that leads to centrifugal loading force } \\
& e_{1}=e_{3}(a) J_{\gamma}(\beta a)-e_{2}(a) Y_{\gamma}(\beta a) \\
& e_{2}(r)=\left\{\begin{array}{lc}
\frac{\lambda+2 G}{r}\left[\frac{2(\lambda+G)}{\lambda+2 G} J_{1}(\beta r)-\beta r J_{2}(\beta r)\right] & \text { isotropic material } \\
\frac{c_{11}}{r}\left[\left(\gamma+\frac{c_{12}}{c_{11}}\right) J_{\gamma}(\beta r)-\beta r J_{\gamma+1}(\beta r)\right] & \text { anisotropic material }
\end{array}\right. \\
& e_{3}(r)= \begin{cases}\frac{\lambda+2 G}{r}\left[\frac{2(\lambda+G)}{\lambda+2 G} Y_{1}(\beta r)-\beta r Y_{2}(\beta r)\right] & \text { isotropic material } \\
\frac{c_{11}}{r}\left[\left(\gamma+\frac{c_{12}}{c_{11}}\right) Y_{\gamma}(\beta r)-\beta r Y_{\gamma+1}(\beta r)\right] & \text { anisotropic material }\end{cases}
\end{aligned}
$$

$J_{\gamma}(\beta r)$ and $Y_{\gamma}(\beta r)$ are Bessel functions of order γ of the first and second kind, respectively.

$$
\gamma= \begin{cases}1 & \text { isotropic material } \\ \left(c_{22} / c_{11}\right)^{1 / 2} & \text { anisotropic material [Eq. (4.2)]. }\end{cases}
$$

TABLE 19-5 (continued) TRANSFER AND STIFFNESS MATRICES FOR CYLINDERS

Matrices				
	Transfer Matrices			Stiffness Matrices
Case	$\begin{aligned} \mathbf{z}_{b} & =\mathbf{U}^{i} \mathbf{z}_{a} \\ \mathbf{z}_{b} & =\left[\begin{array}{lll} u_{b} & \sigma_{b} & 1 \end{array}\right]^{T} \\ \mathbf{z}_{a} & =\left[\begin{array}{lll} u_{a} & \sigma_{a} & 1 \end{array}\right]^{T} \\ \mathbf{U}^{i} & =\left[\begin{array}{ccc} U_{u u} & U_{u \sigma} & \bar{F}_{u} \\ U_{\sigma u} & U_{\sigma \sigma} & \bar{F}_{\sigma} \\ 0 & 0 & 1 \end{array}\right] \end{aligned}$			$\begin{aligned} \mathbf{p}^{i} & =\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i} \\ \mathbf{p}^{i} & =\left[\begin{array}{ll} p_{a} & p_{b} \end{array}\right]^{T} \\ \mathbf{v}^{i} & =\left[\begin{array}{ll} u_{a} & u_{b} \end{array}\right]^{T} \\ \overline{\mathbf{p}}^{i} & =\left[\begin{array}{ll} p_{a}^{0} & p_{b}^{0} \end{array}\right]^{T}, \mathbf{p}_{\mathbf{b}} \\ \mathbf{k}^{i}, \mathbf{p}_{\boldsymbol{a}} & =\left[\begin{array}{cc} k_{11} & k_{12} \\ k_{21} & k_{22} \end{array}\right]^{T} \end{aligned}$
1. Massless cylinder, with center hole	$\left[\begin{array}{c}\frac{1}{1-v}\left(\frac{G v b}{\lambda a}+\frac{a}{2 b}\right) \\ \frac{G}{1-v} \frac{b^{2}-a^{2}}{a b^{2}} \\ 0\end{array}\right.$	$\begin{aligned} & \frac{v}{2(1-v) \lambda} \frac{b^{2}-a^{2}}{b} \\ & \frac{1}{1-v}\left[\frac{1}{2}+\frac{G v}{\lambda}\left(\frac{a}{b}\right)^{2}\right] \\ & \mathbf{U}^{i} \end{aligned}$	$\left.\begin{array}{c} \bar{F}_{u} \\ \bar{F}_{\sigma} \\ 1 \end{array}\right] \quad \underset{\mathbf{z}_{a}}{\left[\begin{array}{c} u_{a} \\ \sigma_{a} \\ 1 \end{array}\right]}$	$\begin{aligned} k_{11} & =2 \pi\left(2 G \nu \beta_{0}^{2}+\lambda\right) / H_{0} \\ k_{12} & =k_{21}=-4 \pi \lambda(1-v) \beta_{0} / H_{0} \\ k_{22} & =2 \pi\left(2 G v+\lambda \beta_{0}^{2}\right) / H_{0} \\ H_{0} & =v\left(\beta_{0}^{2}-1\right) \\ \beta_{0} & =b / a \\ p_{a}^{0} & =k_{12} \bar{F}_{u} \\ p_{b}^{0} & =-2 \pi b \bar{F}_{\sigma}+k_{22} \bar{F}_{u} \end{aligned}$

	2. Cylinder with center hole and mass	$\begin{aligned} U_{u u} & =\frac{1}{e_{1}}\left[e_{3}(a) J_{\gamma}(\beta b)-e_{2}(a) Y_{\gamma}(\beta b)\right] \\ U_{u \sigma} & =\frac{1}{e_{1}}\left[J_{\gamma}(\beta a) Y_{\gamma}(\beta b)-Y_{\gamma}(\beta a) J_{\gamma}(\beta b)\right] \\ U_{\sigma u} & =\frac{1}{e_{1}}\left[e_{3}(a) e_{2}(b)-e_{2}(a) e_{3}(b)\right] \\ U_{\sigma \sigma} & =\frac{1}{e_{1}}\left[J_{\gamma}(\beta a) e_{3}(b)-Y_{\gamma}(\beta a) e_{2}(b)\right] \end{aligned}$		$\begin{aligned} k_{11} & =2 \pi a\left[e_{3}(a) J_{\gamma}(\beta b)-e_{2}(a) Y_{\gamma}(\beta b)\right] / H_{2} \\ k_{12} & =k_{21}=-2 \pi a e_{1} / H_{2} \\ k_{22} & =2 \pi b\left[e_{3}(b) J \gamma(\beta a)-e_{2}(b) Y_{\gamma}(\beta a)\right] / H_{2} \\ H_{2} & =J_{\gamma}(\beta a) Y_{\gamma}(\beta b)-Y_{\gamma}(\beta a) J_{\gamma}(\beta b) \\ p_{a}^{0} & =k_{12} \bar{F}_{u} \quad p_{b}^{0}=-2 \pi b \bar{F}_{\sigma}+k_{22} \bar{F}_{u} \end{aligned}$
	3. Massless cylinder without center hole			$\begin{aligned} \mathbf{p}^{i} & =\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i} \end{aligned} \mathbf{p}^{i}=\left[\begin{array}{ll} p_{0} & p_{b} \end{array}\right]^{T} \quad \overline{\mathbf{p}}^{i}=\left[\begin{array}{ll} 0 & p_{b}^{0} \end{array}\right]^{T}, ~\left(\mathbf{v}^{i}=\left[\begin{array}{ll} u_{0} & u_{b} \end{array}\right]^{T} .\right.$
	4. Cylinder without center hole including mass	$\begin{aligned} & \mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{0} \\ & \mathbf{z}_{0}=\left[\begin{array}{lll} u_{0} & \sigma_{0} & 1 \end{array}\right]^{T} \\ & {\left[\begin{array}{ccc} 0 & \frac{J_{1}(\beta b)}{(\lambda+G) \beta} & \bar{F}_{u} \\ 0 & \frac{\lambda+2 G}{\beta(\lambda+G) b}\left[\begin{array}{cc} \frac{2(\lambda+G)}{\lambda+2 G} J_{1}(\beta b)-\beta b J_{2}(\beta b) \end{array}\right] & \bar{F}_{\sigma} \\ 0 & 0 & 1 \end{array}\right]} \end{aligned}$	$\left[\begin{array}{c} {\left[\begin{array}{c} u_{0} \\ \sigma_{0} \\ 1 \end{array}\right]} \\ \mathbf{z}_{0} \end{array}\right.$	$\begin{aligned} \mathbf{p}^{i}= & \mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i} \quad \mathbf{p}^{i}=\left[\begin{array}{ll} p_{0} & p_{b} \end{array}\right]^{T} \quad \overline{\mathbf{p}}^{i}=\left[\begin{array}{ll} 0 & p_{b}^{0} \end{array}\right]^{T} \\ \mathbf{v}^{i}= & {\left[\begin{array}{ll} u_{0} & u_{b} \end{array}\right]^{T} } \\ \mathbf{k}^{i}= & {\left[\begin{array}{cc} 0 & 0 \\ 0 & k_{22} \end{array}\right] } \\ k_{22}= & \frac{2 \pi(\lambda+2 G)}{J_{1}(\beta b)} \\ & \times\left[\frac{2(\lambda+G)}{\lambda+2 G} J_{1}(\beta b)-\beta b J_{2}(\beta b)\right] \\ p_{b}^{0}= & -2 \pi b \bar{F}_{\sigma}+k_{22} \bar{F}_{u} \end{aligned}$

TABLE 19-5 (continu	d) TRANSFER AND STIFFNESS MATRICES FOR CYLINDERS
Loading Vectors	
Case	Loading Vectors
1. Massless cylinder with center hole	$\begin{aligned} \bar{F}_{u}= & \frac{b^{2}-a^{2}}{2 b} \frac{1+v}{1-v} \alpha T_{1}+\frac{1+v}{1-v} \frac{\alpha}{b} \int_{a}^{b} \xi T(\xi) d \xi \\ & -\frac{\rho^{*} \Omega^{2}}{8} \frac{\left(b^{2}-a^{2}\right)^{2}}{b} \frac{(1+v)(1-2 v)}{E(1-v)} \\ & -\frac{(1+v)(1-2 v)}{E(1-v)} \frac{1}{b} \int_{a}^{b} \eta\left[\int_{a}^{\eta} p_{r}(\xi) d \xi d \eta\right] \\ \bar{F}_{\sigma}= & -\frac{b^{2}-a^{2}}{2 b^{2}} \frac{\alpha E}{1-v} T_{1}-\frac{E}{1-v} \frac{\alpha}{b^{2}} \int_{a}^{b} \xi T(\xi) d \xi \\ & -\left(b^{2}-a^{2}\right) \frac{\rho^{*} \Omega^{2}}{4}\left(2-\frac{1-2 v}{1-v} \frac{b^{2}-a^{2}}{2 b^{2}}\right) \\ & +\frac{1-2 v}{1-v} \frac{1}{b^{2}} \int_{a}^{b} \eta\left[\int_{a}^{\eta} p_{r}(\xi) d \xi\right] d \eta-\int_{a}^{b} p_{r}(\xi) d \xi \end{aligned}$
2. Cylinder with center hole and mass	$\begin{aligned} & \bar{F}_{u}=-\int_{a}^{b} p_{r}(\xi) U_{u \sigma}(\xi, a) d \xi \\ & \bar{F}_{\sigma}=-\int_{a}^{b} p_{r}(\xi) U_{\sigma \sigma}(\xi, a) d \xi \end{aligned}$ $U_{u \sigma}(\xi, a)$ and $U_{\sigma \sigma}(\xi, a)$ are obtained by replacing b with ξ in $U_{u \sigma}$ and $U_{\sigma \sigma}$ of case 2 of the transfer matrices.

TABLE 19-5 (continued)	TRANSFER AND STIFFNESS MATRICES FOR CYLINDERS
Case	Loading Vectors
3. Massless cylinder without center hole	$\begin{aligned} \bar{F}_{u}= & (1+v) b \alpha T_{1}+\frac{1+v}{1-v} \frac{\alpha}{b} \int_{0}^{b} \xi T(\xi) d \xi \\ & +\frac{\alpha b E v T_{\mid r=0}}{2 \lambda(1-v)}-\frac{\rho^{*} \Omega^{2} b^{3}}{8} \frac{(1+v)(1+2 v)}{E(1-v)} \\ & -\frac{(1+v)(1-2 v)}{E(1-v) b} \int_{0}^{b} \eta\left[\int_{0}^{\eta} p_{r}(\xi) d \xi\right] d \eta \\ \bar{F}_{\sigma}= & -\frac{E}{1-v} \frac{\alpha}{b^{2}} \int_{0}^{b} \xi T(\xi) d \xi \\ & +\frac{\alpha E T_{\mid r=0}^{2(1-v)}-\frac{\rho^{*} \Omega^{2} b^{2}}{8} \frac{(3-2 v)}{1-v}}{} \\ & +\frac{1-2 v}{1-v} \frac{1}{b^{2}} \int_{0}^{b} \eta\left[\int_{0}^{\eta} p_{r}(\xi) d \xi\right] d \eta-\int_{0}^{b} p_{r}(\xi) d \xi \end{aligned}$
4. Cylinder without center hole, including mass	$\begin{aligned} & \bar{F}_{u}=-\int_{0}^{b} p_{r}(\xi) U_{u \sigma}(\xi) d \xi \\ & \bar{F}_{\sigma}=-\int_{0}^{b} p_{r}(\xi) U_{\sigma \sigma}(\xi) d \xi \end{aligned}$ $U_{u \sigma}(\xi)$ and $U_{\sigma \sigma}(\xi)$ are obtained by replacing b with ξ in $U_{u \sigma}$ and $U_{\sigma \sigma}$ of case 4 of the transfer matrices.

TABLE 19-6 TRANSFER AND STIFFNESS MATRICES FOR SPHERES

Notation

$E=$ modulus of elasticity
$v=$ Poisson's ratio
$\rho^{*}=$ mass per unit volume
$T(r)=$ arbitrary temperature change; in expressions for \bar{F}_{u} and \bar{F}_{σ} set $T(\xi)=0$ if only a constant temperature change is present.
$p_{r}(r)=$ arbitrary loading intensity in r direction $\left(F / L^{3}\right)$
$G=$ shear modulus of elasticity
$\lambda=$ Lamé constant
$T_{1}=$ constant temperature change
$\Omega=$ angular velocity of rotation that leads to centrifugal loading force
$u_{0}, u_{a}, u_{b}=$ radial displacements at $r=0, a, b$
$\sigma_{0}, \sigma_{a}, \sigma_{b}=$ radial stresses at $r=0, a, b$
$p_{0}, p_{a}=4 \pi a^{2} \sigma_{a}, p_{b}=4 \pi b^{2} \sigma_{b}=$ total radial forces at $r=0, a, b$
$p_{a}^{0}, p_{b}^{0}=$ loading components for stiffness equation at $r=a, b$

$\beta^{2}=\left\{\rho^{*} \Omega^{2} / c_{11} \quad\right.$ anisotropic $\left.\quad\right\} \quad$ natural frequencies ω_{i}
$e_{1}=e_{3}(a) \frac{J_{\gamma}(\beta a)}{\sqrt{\beta a}}-e_{2}(a) \frac{Y_{\gamma}(\beta a)}{\sqrt{\beta a}}$
$e_{2}(r)= \begin{cases}\frac{\beta(\lambda+2 G)}{(\beta r)^{3 / 2}}\left[\frac{2(\lambda+G)}{\lambda+2 G} J_{3 / 2}(\beta r)-\beta r J_{5 / 2}(\beta r)\right] & \text { isotropic material } \\ \frac{\beta c_{11}}{(\beta r)^{3 / 2}}\left[\left(\gamma-\frac{1}{2}+\frac{2 c_{12}}{c_{11}}\right) J_{\gamma}(\beta r)-\beta r J_{\gamma+1}(\beta r)\right] & \text { anisotropic } \\ \text { material }\end{cases}$
$e_{3}(r)= \begin{cases}\frac{\beta(\lambda+2 G)}{(\beta r)^{3 / 2}}\left[\frac{2(\lambda+G)}{\lambda+2 G} Y_{3 / 2}(\beta r)-\beta r Y_{5 / 2}(\beta r)\right] & \text { isotropic material } \\ \frac{\beta c_{11}}{(\beta r)^{3 / 2}}\left[\left(\gamma-\frac{1}{2}+\frac{2 c_{12}}{c_{11}}\right) Y_{\gamma}(\beta r)-\beta r Y_{\gamma+1}(\beta r)\right] & \text { anisotropic } \\ \text { material }\end{cases}$
$J_{\gamma}(\beta r)$ and $Y_{\gamma}(\beta r)$ are Bessel functions of order γ of the first and second kind, respectively.

$$
\gamma= \begin{cases}\frac{3}{2} & \text { isotropic material } \\ \frac{1}{2}\left[\frac{8\left(c_{22}+c_{23}-c_{12}\right)}{c_{11}}+1\right]^{1 / 2} & \text { anisotropic material [Eq. (4.2)] }\end{cases}
$$

1LIt

TABLE 19-6 (continued) TRANSFER AND STIFFNESS MATRICES FOR SPHERES

Matrices		
	Transfer Matrices	Stiffness Matrices
Case	$\begin{aligned} \mathbf{z}_{b} & =\mathbf{U}^{i} \mathbf{z}_{a} \\ \mathbf{z}_{b} & =\left[\begin{array}{lll} u_{b} & \sigma_{b} & 1 \end{array}\right]^{T} \\ \mathbf{z}_{a} & =\left[\begin{array}{lll} u_{a} & \sigma_{a} & 1 \end{array}\right]^{T} \\ \mathbf{U}^{i} & =\left[\begin{array}{ccc} U_{u u} & U_{u \sigma} & \bar{F}_{u} \\ U_{\sigma u} & U_{\sigma \sigma} & \bar{F}_{\sigma} \\ 0 & 0 & 1 \end{array}\right] \end{aligned}$	$\begin{aligned} \mathbf{p}^{i} & =\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i} \\ \mathbf{p}^{i} & =\left[\begin{array}{ll} p_{a} & p_{b} \end{array}\right]^{T} \\ \mathbf{v}^{i} & =\left[\begin{array}{ll} u_{a} & u_{b} \end{array}\right]^{T} \\ \overline{\mathbf{p}}^{i} & =\left[\begin{array}{ll} p_{a}^{0} & p_{b}^{0} \end{array}\right]^{T} \\ \mathbf{k}^{i} & =\left[\begin{array}{ll} k_{11} & k_{12} \\ k_{21} & k_{22} \end{array}\right] \quad \text { u्a }, \boldsymbol{p}_{\boldsymbol{b}} \end{aligned}$
1. Massless spherical segment	$\left[\begin{array}{ccc} \frac{4 G b^{3}+(3 \lambda+2 G) a^{3}}{3(\lambda+2 G) a b^{2}} & \frac{a}{3(\lambda+2 G)}\left(\frac{b}{a}-\frac{a^{2}}{b^{2}}\right) & \bar{F}_{u} \\ \frac{4 G(3 \lambda+2 G)\left(b^{3}-a^{3}\right)}{3 a b^{3}(\lambda+2 G)} & \frac{3 \lambda+2 G+4 G a^{3} / b^{3}}{3(\lambda+2 G)} & \bar{F}_{\sigma} \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{c} u_{a} \\ \\ \mathbf{U}^{i} \end{array}\right]$	$\begin{aligned} k_{11} & =4 \pi a\left[3 \lambda+2\left(2 \beta_{0}^{3}+1\right) G\right] / H_{0} \\ k_{21} & =k_{12}=-12 \pi a \beta_{0}^{2}(\lambda+2 G) / H_{0} \\ k_{22} & =4 \pi b\left[4 G+\beta_{0}^{3}(2 G+3 \lambda)\right] / H_{0} \\ p_{a}^{0} & =k_{12} \bar{F}_{u} \\ p_{b}^{0} & =-4 \pi b^{2} \bar{F}_{\sigma}+k_{22} \bar{F}_{u} \\ \beta_{0} & =b / a \\ H_{0} & =\beta_{0}^{3}-1 \end{aligned}$
2. Spherical segment with mass (with center hole)	$\begin{aligned} U_{u u} & =\frac{1}{e_{1} \sqrt{\beta b}}\left[e_{3}(a) J_{\gamma}(\beta b)-e_{2}(a) Y_{\gamma}(\beta b)\right] \\ U_{u \sigma} & =\frac{1}{e_{1} \beta \sqrt{a b}}\left[J_{\gamma}(\beta a) Y_{\gamma}(\beta b)-Y_{\gamma}(\beta a) J_{\gamma}(\beta b)\right] \\ U_{\sigma u} & =\frac{1}{e_{1}}\left[e_{3}(a) e_{2}(b)-e_{2}(a) e_{3}(b)\right] \\ U_{\sigma \sigma} & =\frac{1}{e_{1} \sqrt{\beta a}}\left[e_{3}(b) J_{\gamma}(\beta a)-e_{2}(b) Y_{\gamma}(\beta a)\right] \end{aligned}$	$\begin{aligned} k_{11} & =4 \pi a^{2} \sqrt{\beta a}\left[e_{3}(a) J_{\gamma}(\beta b)-e_{2}(a) Y_{\gamma}(\beta b)\right] / H_{3} \\ k_{12} & =k_{21}=-4 \pi a^{2} e_{1} \beta \sqrt{b a} / H_{3} \\ k_{22} & =4 \pi b^{2} \sqrt{\beta b}\left[e_{3}(b) J_{\gamma}(\beta a)-e_{2}(b) Y_{\gamma}(\beta a)\right] / H_{3} \\ H_{3} & =J_{\gamma}(\beta a) Y_{\gamma}(\beta b)-Y_{\gamma}(\beta a) J_{\gamma}(\beta b) \\ p_{a}^{0} & =k_{12} \bar{F}_{u} \quad p_{b}^{0}=-4 \pi b^{2} \bar{F}_{\sigma}+k_{22} \bar{F}_{u} \end{aligned}$

TABLE 19-6 (continued) TRANSFER AND STIFFNESS MATRICES FOR SPHERES

3. Massless spherical segment without center hole	$\begin{aligned} & \mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{0} \\ & \mathbf{z}_{0}=\left[\begin{array}{lll} u_{0} & \sigma_{0} & 1 \end{array}\right]^{T} \\ & {\left[\begin{array}{ccc} 0 & \frac{b}{3 \lambda+2 G} & \bar{F}_{u} \\ 0 & 1 & \bar{F}_{\sigma} \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{c} u_{0} \\ \sigma_{0} \\ 1 \end{array}\right]} \\ & \\ & \\ & \mathbf{U}^{i} \end{aligned}$	$\begin{aligned} & \mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i} \\ & \mathbf{p}^{i}=\left[\begin{array}{cc} p_{0} & p_{b} \end{array}\right]^{T} \quad \mathbf{v}^{i}=\left[\begin{array}{ll} u_{0} & u_{b} \end{array}\right]^{T} \\ & \overline{\mathbf{p}}^{i}=\left[\begin{array}{cc} 0 & p_{b}^{0} \end{array}\right]^{T} \\ & \mathbf{k}^{i}=\left[\begin{array}{cc} 0 & 0 \\ 0 & k_{22} \end{array}\right] \\ & k_{22}=4 \pi b(3 \lambda+2 G) \\ & p_{b}^{0}=-4 \pi b^{2} \bar{F}_{\sigma}+k_{22} \bar{F}_{u} \end{aligned}$
4. Spherical segment without center hole including mass	$\begin{aligned} \mathbf{z}_{b}= & \mathbf{U}^{i} \mathbf{z}_{0} \\ \mathbf{z}_{0}= & {\left[\begin{array}{ll} u_{0} & \sigma_{0} \\ 1 \end{array}\right]^{T} } \\ U_{u \sigma}= & \frac{3 \sqrt{\pi}}{\sqrt{2}(3 \lambda+2 G)} \frac{J_{3 / 2}(\beta b)}{\beta^{3 / 2} b^{1 / 2}} \\ U_{\sigma \sigma}= & \frac{3(\lambda+2 G) \sqrt{\pi}}{\sqrt{2}(3 \lambda+2 G)(\beta b)^{3 / 2}} \\ & \times\left[\frac{3 \lambda+2 G}{\lambda+2 G} J_{3 / 2}(\beta b)-\beta b J_{5 / 2}(\beta b)\right] \\ U_{u u}= & U_{\sigma u}=0 \end{aligned}$	$\begin{aligned} & \mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i} \\ & \mathbf{p}^{i}=\left[\begin{array}{ll} p_{0} & p_{b} \end{array}\right]^{T} \quad \mathbf{v}^{i}=\left[\begin{array}{ll} u_{0} & u_{b} \end{array}\right]^{T} \\ & \overline{\mathbf{p}}^{i}=\left[\begin{array}{cc} 0 & p_{b}^{0} \end{array}\right]^{T} \\ & \mathbf{k}^{i}=\left[\begin{array}{cc} 0 & 0 \\ 0 & k_{22} \end{array}\right] \\ & k_{22}=4 \pi b\left[\frac{3 \lambda+2 G}{b}-\frac{(\lambda+2 G) \beta b}{J_{3 / 2}(\beta b)} J_{5 / 2}(\beta b)\right] \\ & p_{b}^{0}=-4 \pi b^{2} \bar{F}_{\sigma}+k_{22} \bar{F}_{u} \end{aligned}$

TABLE 19-6 (continued) TRANSFER AND STIFFNESS MATRICES FOR SPHERES
Loading Vectors

Case	Loading Vectors
1. Massless spherical segment	$\begin{aligned} \bar{F}_{u}= & \frac{3 \lambda+2 G}{3(\lambda+2 G)} \frac{b^{3}-a^{3}}{b^{2}} \alpha T_{1} \\ & +\frac{3 \lambda+2 G}{\lambda+2 G} \frac{\alpha}{b^{2}} \int_{a}^{b} \xi^{2} T(\xi) d \xi \\ & -\frac{1}{b^{2}(\lambda+2 G)} \int_{a}^{b} \eta^{2}\left[\int_{a}^{\eta} p_{r}(\xi) d \xi\right] d \eta \\ \bar{F}_{\sigma}= & -\frac{4 G(3 \lambda+2 G)}{3(\lambda+2 G)} \frac{b^{3}-a^{3}}{b^{3}} \alpha T_{1} \\ & -\frac{4 G(3 \lambda+2 G)}{\lambda+2 G} \frac{\alpha}{b^{3}} \int_{a}^{b} \xi^{2} T(\xi) d \xi \\ & +\frac{4 G}{b^{3}(\lambda+2 G)} \int_{a}^{b} \eta^{2}\left[\int_{a}^{\eta} p_{r}(\xi) d \xi\right] d \eta \\ & -\int_{a}^{b} p_{r}(\xi) d \xi \end{aligned}$
2. Spherical segment with mass (with center hole)	$\begin{aligned} & \bar{F}_{u}=-\int_{a}^{b} p_{r}(\xi) U_{u \sigma}(\xi, a) d \xi \\ & \bar{F}_{\sigma}=-\int_{a}^{b} p_{r}(\xi) U_{\sigma \sigma}(\xi, a) d \xi \end{aligned}$ $U_{u \sigma}(\xi, a)$ and $U_{\sigma \sigma}(\xi, a)$ are obtained by replacing b with ξ in $U_{u \sigma}$ and $U_{\sigma \sigma}$ of case 2 of the transfer matrices.

TABLE 19-6 (continued)	TRANSFER AND STIFFNESS MATRICES FOR SPHERES
Case	Loading Vectors
3. Massless spherical segment without center hole	$\begin{aligned} \bar{F}_{u}= & b \alpha T_{1}+\frac{3 \lambda+2 G}{\lambda+2 G} \frac{\alpha}{b^{2}} \int_{0}^{b} \xi^{2} T(\xi) d \xi \\ & +\frac{4 G \alpha b}{3(\lambda+2 G)} T_{r=0} \\ & +\frac{1}{3(\lambda+2 G)}\left(\frac{1}{b^{2}} \int_{0}^{b} p_{r} \xi^{3} d \xi-b \int_{0}^{b} p_{r} d \xi\right) \\ \bar{F}_{\sigma}= & -\frac{4 G(3 \lambda+2 G)}{\lambda+2 G} \frac{\alpha}{b^{3}} \int_{0}^{b} \xi^{2} T(\xi) d \xi \\ & +\frac{4 G(3 \lambda+2 G) \alpha}{3(\lambda+2 G)} T_{r=0} \\ & -\frac{1}{3(\lambda+2 G)}\left[\frac{4 G}{b^{3}} \int_{0}^{b} p_{r} \xi^{3} d \xi\right. \\ & \left.+(3 \lambda+2 G) \int_{0}^{b} p_{r} d \xi\right] \end{aligned}$
4. Spherical segment without center hole, including mass	$\begin{aligned} & \bar{F}_{u}=-\int_{0}^{b} p_{r}(\xi) U_{u \sigma}(\xi) d \xi \\ & \bar{F}_{\sigma}=-\int_{0}^{b} p_{r}(\xi) U_{\sigma \sigma}(\xi) d \xi \end{aligned}$ $U_{u \sigma}(\xi)$ and $U_{\sigma \sigma}(\xi)$ are obtained by replacing b with ξ in $U_{u \sigma}$ and $U_{\sigma \sigma}$ of case 4 of the transfer matrices.

TABLE 19-7 TRANSFER AND STIFFNESS MATRICES FOR DISKS

Notation

```
            \(E=\) modulus of elasticity
            \(\nu=\) Poisson's ratio
            \(\rho^{*}=\) mass per unit volume
            \(T(r)=\) arbitrary temperature change; in expressions for \(\bar{F}_{u}\) and \(\bar{F}_{P}\), set \(T(\xi)=0\)
            if only a constant temperature change is present
            \(p_{r}(r)=\) arbitrary loading intensity in \(r\) direction \(\left(F / L^{2}\right)\)
            \(G=\) shear modulus of elasticity
            \(\lambda=\) Lamé constant
            \(T_{1}=\) constant temperature change
            \(\Omega=\) angular velocity of rotation that leads
                to centrifugal loading force
            \(h=\) thickness
\(u_{0}, u_{a}, u_{b}=\) radial displacements at \(r=0, a, b\)
\(P_{0}, P_{a}, P_{b}=\) radial forces per unit length at \(r=0, a, b\)
    \(p_{0}, p_{a}=2 \pi a P_{a}, p_{b}=2 \pi b P_{b}=\) total radial forces at \(r=0, a, b\)
    \(p_{a}^{0}, p_{b}^{0}=\) loading components for stiffness equation at \(r=a, b\)
        \(\beta^{2}=\rho^{*} \Omega^{2}\left(1-v^{2}\right) / E\)
        \(e_{1}=e_{3}(a) J_{1}(\beta a)-e_{2}(a) Y_{1}(\beta a)\)
    \(e_{2}(r)=\frac{1}{r} \frac{E h}{1-v^{2}}\left[(1+v) J_{1}(\beta r)-\beta r J_{2}(\beta r)\right]\)
    \(e_{3}(r)=\frac{1}{r} \frac{E h}{1-v^{2}}\left[(1+v) Y_{1}(\beta r)-\beta r Y_{2}(\beta r)\right]\)
```

$J_{1}(\beta r)$ and $J_{2}(\beta r)$ are Bessel functions of the first kind of order 1 and 2, respectively. $Y_{1}(\beta r)$ and $Y_{2}(\beta r)$ are Bessel functions of the second kind of order 1 and 2, respectively.

Matrices		
	Transfer Matrices	Stiffness matrices
Case	$\begin{aligned} \mathbf{z}_{b} & =\mathbf{U}^{i} \mathbf{z}_{a} \\ \mathbf{z}_{b} & =\left[\begin{array}{lll} u_{b} & P_{b} & 1 \end{array}\right]^{T} \\ \mathbf{z}_{a} & =\left[\begin{array}{lll} u_{a} & P_{a} & 1 \end{array}\right]^{T} \\ \mathbf{U}^{i} & =\left[\begin{array}{ccc} U_{u u} & U_{u P} & \bar{F}_{u} \\ U_{P u} & U_{P P} & \bar{F}_{P} \\ 0 & 0 & 1 \end{array}\right] \end{aligned}$	$\left.\begin{array}{l} \mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i} \\ \mathbf{p}^{i}=\left[\begin{array}{ll} p_{a} & p_{b} \end{array}\right]^{T} \\ \mathbf{v}^{i} \\ \overline{\mathbf{p}}^{i} \\ =\left[\begin{array}{ll} u_{a} & u_{b} \end{array}\right]^{T} \\ p_{a}^{0} \\ \mathbf{k}_{b}^{0} \end{array}\right]^{T}=\left[\begin{array}{ll} k_{11} & k_{12} \\ k_{21} & k_{22} \end{array}\right]_{\mathbf{u}_{\boldsymbol{a}}, \boldsymbol{p}_{\boldsymbol{a}}, \boldsymbol{a}}^{\boldsymbol{u}_{\boldsymbol{b}}, \mathbf{P}_{\mathbf{b}}}$ Element i
1. Annular element without mass	$\left[\begin{array}{ccc}\frac{b}{a}\left[\begin{array}{cc}\left.1-\frac{1+v}{2} \frac{b^{2}-a^{2}}{b^{2}}\right] & \frac{1}{E h} \frac{1-v^{2}}{2} \frac{b^{2}-a^{2}}{b} \\ \bar{F}_{u} \\ \frac{E h}{2 a b^{2}}\left(b^{2}-a^{2}\right) & 1-\frac{1-v}{2} \frac{b^{2}-a^{2}}{b^{2}} \\ 0 & \bar{F}_{P} \\ 0 & 0\end{array}\right.\end{array}\right]$	$\begin{aligned} k_{11} & =2 \pi E h\left[\beta_{0}^{2}(1-v)+(1+v)\right] / H \\ k_{12} & =k_{21}=-4 \pi E h \beta_{0} / H \\ k_{22} & =2 \pi\left[\beta_{0}^{2}(1+v)+(1-v)\right] / H \\ H & =\left(1-v^{2}\right)\left(\beta_{0}^{2}-1\right) \\ p_{a}^{0} & =k_{12} \bar{F}_{u} \\ p_{b}^{0} & =-2 \pi b \bar{F}_{P}+k_{22} \bar{F}_{u} \\ \beta_{0} & =b / a \end{aligned}$

	2. Annular element with mass	$\begin{aligned} U_{u u} & =\frac{1}{e_{1}}\left[e_{3}(a) J_{1}(\beta b)-e_{2}(a) Y_{1}(\beta b)\right] \\ U_{u P} & =\frac{1}{e_{1}}\left[J_{1}(\beta a) Y_{1}(\beta b)-Y_{1}(\beta a) J_{1}(\beta b)\right] \\ U_{P u} & =\frac{1}{e_{1}}\left[e_{3}(a) e_{2}(b)-e_{2}(a) e_{3}(b)\right] \\ U_{P P} & =\frac{1}{e_{1}}\left[J_{1}(\beta a) e_{3}(b)-Y_{1}(\beta a) e_{2}(b)\right] \end{aligned}$	$\begin{aligned} k_{11} & =2 \pi a\left[e_{3}(a) J_{1}(\beta b)-e_{2}(a) Y_{1}(\beta b)\right] / H_{4} \\ k_{12} & =k_{21}=-2 \pi a e_{1} / H_{4} \\ k_{22} & =2 \pi b\left[J_{1}(\beta a) e_{3}(b)-Y_{1}(\beta a) e_{2}(b)\right] / H_{4} \\ H_{4} & =J_{1}(\beta a) Y_{1}(\beta b)-Y_{1}(\beta a) J_{1}(\beta b) \\ p_{a}^{0} & =k_{12} \bar{F}_{u} \quad p_{b}^{0}=-2 \pi b \bar{F}_{P}+k_{22} \bar{F}_{u} \end{aligned}$
	3. Disk of variable thickness $h=h_{k} / r^{n}$ h_{k} is a reference thickness $h_{k}=h_{a} a^{n}$ Hyperbolic profile	$\begin{aligned} n_{1} & =\frac{n}{2}+\sqrt{\frac{n^{2}}{4}+v n+1} \\ n_{2} & =\frac{n}{2}-\sqrt{\frac{n^{2}}{4}+v n+1} \\ U_{u u} & =\frac{1}{n_{2}-n_{1}}\left[\left(n_{2}+v\right)\left(\frac{b}{a}\right)^{n_{1}}-\left(n_{1}+v\right)\left(\frac{b}{a}\right)^{n_{2}}\right] \\ U_{u P} & =\frac{b^{n}\left(1-v^{2}\right) a}{h_{k} E\left(n_{2}-n_{1}\right)}\left[\left(\frac{a}{b}\right)^{n_{1}}-\left(\frac{a}{b}\right)^{n_{2}}\right] \\ U_{P u} & =\frac{E h_{k}\left(n_{1}+v\right)\left(n_{2}+v\right)}{\left(1-v^{2}\right)\left(b^{n+1}\right)\left(n_{2}-n_{1}\right)}\left[\left(\frac{b}{a}\right)^{n_{1}}-\left(\frac{b}{a}\right)^{n_{2}}\right] \\ U_{P P} & =\frac{a}{b} \frac{1}{n_{2}-n_{1}}\left[\left(n_{2}+v\right)\left(\frac{a}{b}\right)^{n_{1}}-\left(n_{1}+v\right)\left(\frac{a}{b}\right)^{n_{2}}\right] \end{aligned}$	$\begin{aligned} k_{11}= & 2 \pi a h_{k} E\left[\left(n_{2}+v\right) \beta_{0}^{n_{1}}+\left(n_{1}+v\right) \beta_{0}^{n_{2}}\right] / H_{4} \\ k_{21}= & k_{12}=-2 \pi a h_{k} E E\left(n_{2}-n_{1}\right) / H_{4} \\ k_{22}= & 2 \pi b h_{k} E \beta_{0}^{-1}\left[\left(n_{2}+v\right) \beta_{0}^{-n_{1}}\right. \\ & \left.-\left(n_{1}+v\right) \beta_{0}^{-n_{2}}\right] / H_{4} \\ H_{4}= & h^{n}\left(1-v^{2}\right) a\left(\beta_{0}^{-n_{1}}-\beta_{0}^{-n_{2}}\right) \\ p_{a}^{0}= & k_{12} \bar{F}_{u} \\ p_{b}^{0}= & -2 \pi b \bar{F}_{P}+k_{22} \bar{F}_{u} \\ \beta_{0}= & b / a \end{aligned}$

Case	Transfer Matrices	Stiffness Matrices
4. Massless disk element without center hole	$\begin{aligned} & \mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{0} \\ & \mathbf{z}_{0}=\left[\begin{array}{lll} u_{0} & P_{0} & 1 \end{array}\right]^{T} \\ & {\left[\begin{array}{ccc} 0 & \frac{b}{E h}(1-v) & \bar{F}_{u} \\ 0 & 1 & \bar{F}_{P} \\ 0 & 0 & 0 \end{array}\right]\left[\begin{array}{c} u_{0} \\ P_{0} \\ 1 \end{array}\right]} \end{aligned}$	$\begin{aligned} & \mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i} \\ & \mathbf{p}^{i}=\left[\begin{array}{ll} p_{0} & p_{b} \end{array}\right]^{T} \quad \mathbf{v}^{i}=\left[\begin{array}{ll} u_{0} & u_{b} \end{array}\right]^{T} \\ & \overline{\mathbf{p}}^{i}=\left[\begin{array}{cc} 0 & p_{b}^{0} \end{array}\right]^{T} \\ & \mathbf{k}^{i}=\left[\begin{array}{cc} 0 & 0 \\ 0 & k_{22} \end{array}\right] \\ & k_{22}=2 \pi E h /(1-v) \\ & p_{b}^{0}=-2 \pi b \bar{F}_{P}+k_{22} \bar{F}_{u} \end{aligned}$
5. Disk element without center hole, including mass	$\begin{aligned} & \mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{0} \\ & \mathbf{z}_{0}=\left[\begin{array}{lll} u_{0} & P_{0} & 1 \end{array}\right]^{T} \\ & {\left[\begin{array}{ccc} 0 & \frac{2 J_{1}(\beta b)}{\beta E h}(1-v) & \bar{F}_{u} \\ 0 & \frac{2}{\beta(1+v) b} & {\left[(1+v) J_{1}(\beta b)-\beta b J_{2}(\beta b)\right]} \end{array} \bar{F}_{P}\right.} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i} \\ & \mathbf{p}^{i}=\left[\begin{array}{ll} p_{0} & p_{b} \end{array}\right]^{T} \quad \mathbf{v}^{i}=\left[\begin{array}{ll} u_{0} & u_{b} \end{array}\right]^{T} \\ & \overline{\mathbf{p}}^{i}=\left[\begin{array}{ll} 0 & p_{b}^{0} \end{array}\right]^{T} \quad \mathbf{k}^{i}=\left[\begin{array}{cc} 0 & 0 \\ 0 & k_{22} \end{array}\right] \\ & k_{22}=2 \pi E h\left\{\left[(1+v) J_{1}(\beta b)\right.\right. \\ & p_{b}^{0}=-2 \pi b \bar{F}_{P}+k_{22} \bar{F}_{u} \end{aligned}$

TABLE 19-7 (continued) TRANSFER AND STIFFNESS MATRICES FOR DISKS

Loading Vectors

Case	Loading Vectors
1. Annular element without mass	$\begin{aligned} \bar{F}_{u}= & \frac{b^{2}-a^{2}}{2 b}(1+v) \alpha T_{1}+\frac{1+v}{b} \alpha \int_{a}^{b} \xi T(\xi) d \xi \\ & -\frac{\left(b^{2}-a^{2}\right)^{2}}{b} \frac{1-v^{2}}{8} \frac{\rho^{*} \Omega^{2}}{E} \\ & -\frac{1-v^{2}}{E h} \int_{a}^{b}\left[\eta \int_{a}^{\eta} p_{r}(\xi) d \xi\right] d \eta \\ \bar{F}_{P}= & -\frac{h\left(b^{2}-a^{2}\right)}{2 b^{2}} E \alpha T_{1}-\frac{h E \alpha}{b^{2}} \int_{a}^{b} \xi T(\xi) d \xi \\ & -\left(b^{2}-a^{2}\right) \frac{\rho^{*} \Omega^{2} h}{4}\left[(1+v)+\frac{1-v}{2} \frac{\left(b^{2}+a^{2}\right)}{b^{2}}\right] \\ & +\frac{1-v}{b^{2}} \int_{a}^{b} \eta\left[\int_{a}^{\eta} p_{r}(\xi) d \xi\right] d \eta-\int_{a}^{b} p_{r}(\xi) d \xi \end{aligned}$
2. Annular element with mass	$\begin{aligned} & \bar{F}_{u}=-\int_{a}^{b} p_{r}(\xi) U_{u P}(\xi, a) d \xi \\ & \bar{F}_{P}=-\int_{a}^{b} p_{r}(\xi) U_{P P}(\xi, a) d \xi \end{aligned}$ $U_{u P}(\xi, a)$ and $U_{P P}(\xi, a)$ are obtained by replacing b with ξ in $U_{u P}$ and $U_{P P}$ of case 2 of the transfer matrices.
3. Disk of variable thickness $h=h_{k} / r^{n}$ h_{k} is a reference thickness $h_{k}=h_{a} a^{n}$ Hyberbolic profile	$\begin{aligned} \bar{F}_{u}= & \frac{b^{3} \Omega^{2} \rho^{*}}{E}\left[\frac{v^{2}-1}{8-(3+v) n}\right] \\ & \times\left\{1-\frac{1}{n_{2}-n_{1}}\left[\left(n_{2}-3\right)\left(\frac{b}{a}\right)^{n_{1}-3}-\left(n_{1}-3\right)\left(\frac{b}{a}\right)^{n_{2}-3}\right]\right\} \\ \bar{F}_{P}= & -\frac{\rho^{*} \Omega^{2} h_{k} b^{2-n}}{8-(3+v) n}\left\{(3+v)-\frac{1}{n_{2}-n_{1}}\right. \\ & \left.\times\left[\left(n_{1}+v\right)\left(n_{2}-3\right)\left(\frac{b}{a}\right)^{n_{1}-3}-\left(n_{2}+v\right)\left(n_{1}-3\right)\left(\frac{b}{a}\right)^{n_{2}-3}\right]\right\} \end{aligned}$

TABLE 19-7 (continued) TRANSFER AND STIFFNESS MATRICES FOR DISKS

Vectors	
Case	Loading Vectors
4. Massless disk element without center hole	$\begin{aligned} \bar{F}_{u}= & b \alpha T_{1}+(1+v) \frac{\alpha}{b} \int_{0}^{b} \xi T(\xi) d \xi \\ & +\left.b \alpha \frac{1-v}{2} T\right\|_{r=0}-\left(1-v^{2}\right) \frac{\rho^{*} \Omega^{2} b^{3}}{8 E} \\ & -\frac{1-v^{2}}{E h b} \int_{0}^{b}\left[\eta \int_{0}^{\eta} p_{r}(\xi) d \xi\right] d \eta \\ \bar{F}_{P}= & -\frac{h E \alpha}{b^{2}} \int_{0}^{b} \xi T(\xi) d \xi+\left.\frac{h \alpha}{2} E T\right\|_{r=0} \\ & -(3+v) \frac{\rho^{*} h \Omega^{2} b^{2}}{8}+\frac{1-v}{b^{2}} \int_{0}^{b} r\left[\int_{0}^{b} p_{r}(r) d r\right] d r \\ & -\int_{0}^{b} p_{r}(r) d r \end{aligned}$
5. Disk element without center hole, including mass	$\begin{aligned} & \bar{F}_{u}=-\int_{0}^{b} p_{r}(\xi) U_{u P}(\xi) d \xi \\ & \bar{F}_{P}=-\int_{0}^{b} p_{r}(\xi) U_{P P}(\xi) d \xi \end{aligned}$ $U_{u P}(\xi)$ and $U_{P P}(\xi)$ are obtained by replacing b with ξ in $U_{u P}$ and $U_{P P}$ of case 5 of the transfer matrices.

TABLE 19-8 POINT MATRICES OF CYLINDERS, SPHERES, AND DISKS

Notation

$\rho^{*}=$ mass per unit volume
$\omega=$ natural frequency
$a=$ radial coordinate of point
$h=$ thickness of a disk
$M_{i}=$ mass per unit circumferential length or area
For cylinders: $\quad M_{i}=\frac{\left(a^{+}\right)^{2}-\left(a^{-}\right)^{2}}{2 a} \rho^{*}=\Delta a \rho^{*}$ and $p_{a}=2 \pi a \sigma_{a}$ For spheres: $\quad M_{i}=\frac{\left(a^{+}\right)^{3}-\left(a^{-}\right)^{3}}{3 a^{2}} \rho^{*}=\Delta a \rho^{*}$ and $p_{a}=4 \pi a^{2} \sigma_{a}$ For disks: $\quad M_{i}=\frac{\left(a^{+}\right)^{2}-\left(a^{-}\right)^{2}}{2 a} h \rho^{*}=\Delta a h \rho^{*}$ and $p_{a}=2 \pi a P_{a}$

Case	Transfer Matrices $\mathbf{z}_{a}^{+}=\mathbf{U}_{i} \mathbf{z}_{a}^{-}$	Stiffness Matrix and Loading Vector ${ }^{a}$ $p_{a}=k_{a} u_{a}-p_{a}^{0}$
1. Pressure (radial force per unit circumferential length or area) applied at $r=a$	CYLINDERS: $\left[\begin{array}{cc:c} 1 & 0 & 0 \\ 0 & 1 & -p \\ \hdashline 0 & 0 & 1 \end{array}\right]\left[\begin{array}{c} u_{a} \\ \sigma_{a} \\ 1 \end{array}\right]$	$p_{a}^{0}=-p$ Often, these pressures are incorporated in the displacement method
	SPHERES: $\begin{aligned} & {\left[\begin{array}{cc:c} 1 & 0 & 0 \\ 0 & 1 & -p \\ \hdashline 0 & 0 & 1 \end{array}\right]} \end{aligned} \frac{\left[\begin{array}{c} u_{a} \\ \sigma_{a} \\ 1 \end{array}\right]}{\mathbf{z}_{a}}$	

TABLE 19-8 (continued)	POINT MATRICES OF CYLINDERS, SPHERES, AND DISKS	
Case	$\mathbf{z}_{a}^{+}=\mathbf{U}_{i} \mathbf{z}_{a}^{-}$	Stiffness and Mass Matrices $p_{a}=\left(k_{a}-\omega^{2} m_{a}\right) u_{a}$
2. Concentrated mass and elastic support $\Delta a=a^{+}-a^{-}$ For disks	CYLINDERS: $\left[\begin{array}{cc:c} 1 & 0 & 0 \\ -M_{i} \omega^{2} & 1 & 0 \\ \hdashline 0 & 0 & 1 \end{array}\right] \underset{\mathbf{U}_{i}}{\left[\begin{array}{c} u_{a} \\ \sigma_{a} \\ 1 \end{array}\right]}$	$m_{a}=M_{i}$ The lumped mass can be incorporated as a nodal condition.
	SPHERES: $\left[\begin{array}{cc:c} 1 & 0 & 0 \\ -M_{i} \omega^{2} & 1 & 0 \\ \hdashline 0 & 0 & 1 \end{array}\right] \underset{\mathbf{U}_{i}}{\left[\begin{array}{c} u_{a} \\ \sigma_{a} \\ 1 \end{array}\right]}$	$m_{a}=M_{i}$
	DISKS: $\left[\begin{array}{cc:c} 1 & 0 & 0 \\ k-M_{i} \omega^{2} & 1 & 0 \\ \hdashline 0 & 0 & 1 \end{array}\right]\left[\begin{array}{c} {\left[\begin{array}{c} u_{a} \\ P_{a} \\ 1 \end{array}\right]} \\ \\ \\ \\ \mathbf{U}_{i} \end{array}\right.$	$m_{a}=M_{i}, k_{a}=k$

[^34]
TABLE 19-9 MASS MATRICES FOR CYLINDERS, SPHERES, AND DISKS

Notation	
$\underset{\mathbf{m}^{i}}{\left[\begin{array}{ll} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right]} \underset{\mathbf{v}^{i}}{\left[\begin{array}{l} u_{a} \\ u_{b} \end{array}\right]}$	
$\rho^{*}=$ mass per unit	lume $\quad \beta_{0}=b / a \quad h=$ thickness of disk
Case	Mass Matrices
1. Thick cylinder with center hole (consistent mass)	$\begin{aligned} m_{11}= & \pi a^{2} \rho^{*}\left[\beta_{0}^{2}\left(4 \beta_{0}^{2} \ln \beta_{0}-3 \beta_{0}^{2}+4\right)\right. \\ & -1] / 2\left(\beta_{0}^{2}-1\right)^{2} \\ m_{12}= & m_{21}=\pi a^{2} \rho^{*} \beta_{0}\left[\beta_{0}^{4}-4 \beta_{0}^{2} \ln \beta_{0}\right. \\ & -1] / 2\left(\beta_{0}^{2}-1\right)^{2} \\ m_{22}= & \pi a^{2} \rho^{*} \beta_{0}^{2}\left[\beta_{0}^{4}-4 \beta_{0}^{2}+4 \ln \beta_{0}+3\right] / 2\left(\beta_{0}^{2}-1\right)^{2} \end{aligned}$
2. Thick sphere element (consistent mass)	$\begin{aligned} m_{11}= & 4 \pi \rho^{*} a^{3}\left[5 \beta_{0}^{4}+\beta_{0}^{3}-3 \beta_{0}^{2}-2 \beta_{0}-1\right] / 5\left[\beta_{0}^{4}\right. \\ & \left.+2 \beta_{0}^{3}+3 \beta_{0}^{2}+2 \beta_{0}+1\right] \\ m_{12}= & m_{21}=6 \pi \rho^{*} a^{3} \beta_{0}^{2}\left[\beta_{0}^{3}+2 \beta_{0}^{2}-2 \beta_{0}-3\right] / 5 B \\ m_{22}= & 4 \pi \rho^{*} a^{3} \beta_{0}^{3}\left[\beta_{0}^{4}+2 \beta_{0}^{3}+3 \beta_{0}^{2}-\beta_{0}-5\right] / 5 B \\ B= & \beta_{0}^{4}+2 \beta_{0}^{3}+3 \beta_{0}^{2}+2 \beta_{0}+1 \end{aligned}$
3. Disk element with center hole (consistent mass)	$\begin{aligned} m_{11}= & \pi h \rho^{*} a^{2}\left[\beta_{0}^{2}\left(4 \beta_{0}^{2} \ln \beta_{0}-3 \beta_{0}^{2}+4\right)\right. \\ & -1] / 2\left(\beta_{0}^{2}-1\right)^{2} \\ m_{12}= & m_{21}=\pi h \rho^{*} a^{2} \beta_{0}\left[\beta_{0}^{4}-4 \beta_{0}^{2} \ln \beta_{0}\right. \\ & -1] / 2\left(\beta_{0}^{2}-1\right)^{2} \\ m_{22}= & \pi h \rho^{*} a^{2} \beta_{0}^{2}\left[\beta_{0}^{4}-4 \beta_{0}^{2}+4 \ln \beta_{0}\right. \\ & +3] / 2\left(\beta_{0}^{2}-1\right)^{2} \end{aligned}$
4. Thick cylinder without center hole (lumped mass)	$\begin{array}{cc} {\left[\begin{array}{cc} 0 & 0 \\ 0 & \frac{1}{2} \pi b^{2} \rho^{*} \end{array}\right]} & \underset{\mathbf{m}^{i}}{\left[\begin{array}{l} u_{0} \\ u_{b} \end{array}\right]} \\ \mathbf{v}^{i} \end{array}$

TABLE 19-9 (continued)	MASS MATRICES FOR CYLINDERS, SPHERES, AND DISKS
Case	Mass Matrices
$\mathbf{5 .}$	$\left[\begin{array}{lll}0 & 0 \\ 0 & \frac{4}{5} \pi b^{3} \rho^{*}\end{array}\right]\left[\begin{array}{l}u_{0} \\ u_{b} \\ u_{b}\end{array}\right]$
Sphere (lumped mass)	
\mathbf{v}^{i}	

C H A P T E R

Thin Shells

20.1 Definitions 1185
Notation 1186
20.2 Membrane Shells of Revolution 1188
20.3 Shells of Revolution with Bending 1191
20.4 Multiple-Segment Shells of Revolution 1197
20.5 Other Shells 1204
20.6 Stability 1205
20.7 Natural Frequencies 1208
Circular Cylindrical Shells 1208
Conical Shells 1214
Spherical Shells 1216
References 1216
Tables 1219

A shell is a three-dimensional body bounded by two curved surfaces. Most of the formulas here apply to shells of revolution, a special but commonly occurring shell. To generate a thin shell of revolution, a plane that passes longitudinally through a polar axis is rotated about that axis; two lines in the plane that lie close to each other and are called generators of the shell form the inner and outer surfaces of the shell as the generating plane is rotated.

Formulas for membrane shells and shells with bending are provided in this chapter. In the case of a membrane shell, the shell's middle surface is free of bending and twisting moments as well as transverse shear forces. In many shell problems the presence of moments and shear forces is necessary to accept the type of loading and to satisfy the shell boundary conditions. This need has led to bending shell theory, which is a more comprehensive theory. When the term bending is used, it often applies to a shell with both membrane and bending deformations.

20.1 DEFINITIONS

The middle surface of a shell is the surface that is everywhere equidistant between the inner and outer surfaces. The mechanical state of the shell is specified by the

Figure 20-1: Coordinates specifying points on a shell of revolution.
values of certain stress resultants that act on the middle surface. A meridian of the shell is formed by the intersection of the generating plane and the middle surface. A parallel (azimuth) of the shell is the intersection of a plane perpendicular to the polar axis with the middle surface. The principal radii of curvature of the middle surface are the radii of curvature of the meridians and parallels R_{ϕ} and R_{θ}, respectively. The coordinates that specify a point on the surface of the shell are shown in Fig. 20-1. The radius R_{θ} is the distance to the polar axis along the shell normal at the surface point. The angle θ is the angle between any arbitrary reference line and the radius of the parallel that passes through the point. The angle ϕ is the angle between the polar axis and R_{ϕ}. An additional coordinate system is defined in the shell surface; x is tangent to the meridian, y is tangent to the parallel, and z coincides with the surface normal. The positive directions of the x, y, z coordinates are shown in Fig. 20-1.

Notation

The units for most of the definitions are given in parentheses, using L for length, F for force, M for mass, and T for time.
B Extensional rigidity of shell surface (F / L)
D Flexural rigidity of shell surface ($F L$)
E Young's modulus $\left(F / L^{2}\right)$
f Natural frequency of a shell, $=\omega / 2 \pi(\mathrm{~Hz})$
h Thickness of shell wall (L)
H Horizontal force per unit length on a shell edge (F / L)
L, ℓ Shell length (L)
m Number of longitudinal nodes in a given mode of vibration
M Bending moment per unit length on a shell edge ($F L / L$)
M_{x} Bending moment per unit length on shell edge, in plane perpendicular to x axis $(F L / L)$
M_{θ} Bending moment per unit length on meridional planes ($F L / L$)
M_{ϕ} Bending moment per unit length on parallel planes ($F L / L$); the moments and forces per unit length for shells are referred to as stress resultants; in the case of M_{ϕ}, this stress resultant is defined as $M_{\phi}=\int_{-h / 2}^{h / 2} \sigma_{\phi} z d z$.
n Number of circumferential nodes in given mode of vibration
N_{x}, N_{y} Normal forces in x and y directions (F / L)
$N_{x y}$ In-plane shear force per unit length (F / L)
N_{θ} Normal force per unit length in azimuthal (parallel) direction, which is normal to the meridional direction (F / L)
N_{ϕ} Normal force per unit length in the meridional direction (F / L); this stress resultant is defined as $N_{\phi}=\int_{-h / 2}^{h / 2} \sigma_{\phi} d z$; the other forces per unit length are defined similarly
$N_{\phi \theta}, N_{\theta \phi}$ In-plane shear forces per unit length (F / L)
p_{x}, p_{y}, p_{z} Components of loads applied to shell surface $\left(F / L^{2}\right)$
p_{1} Applied uniform load on an area $\left(F / L^{2}\right)$
p_{2} Uniform vertical load on a projected area $\left(F / L^{2}\right)$
P Applied axial force (F)
q Dead weight of shell $\left(F / L^{2}\right)$
Q Transverse shear force per unit length on a parallel-plane shell edge supplied by shear diagram
Q_{θ} Transverse shear force per unit length on meridional planes (F / L)
Q_{ϕ} Transverse shear force per unit length on parallel planes (F / L)
r Radius of a parallel circle, $=R_{\theta} \sin \phi(L)$
R Radius of a circular cylinder or sphere (L)
R_{θ}, θ, ϕ Coordinates that locate a point on middle surface of a shell
R_{ϕ} Radius of curvature of meridian at a point (L)
s, ξ Nondimensional length coordinate of a cylindrical or conical shell, $s=x / L$
t Time (T)
u, v, w Displacements of a point in middle surface in x, y, z directions, respectively (L)
W Lantern loading, load per unit length on shell edge (F / L)
x, y, z Coordinate system in surface of a shell
β Rotation of tangent to meridian during deflection (degrees)
ΔR Displacement in direction of radius of a parallel (L)
$\varepsilon_{\phi}, \varepsilon_{\theta}$ Strains in meridional and parallel directions in middle surface (L / L)
$\kappa=h^{2} / 12 R^{2}$

$$
\left.\begin{array}{l}
v \text { Poisson's ratio } \\
\rho^{*} \text { Mass per unit volume of a shell }\left(F T^{2} / L^{4}\right) \\
\rho_{w} \text { Specific weight of liquid }\left(F / L^{3}\right) \\
\sigma_{i} \text { Component of normal stress in } i \text { direction }\left(F / L^{2}\right) \\
\sigma_{\phi}, \sigma_{\theta} \\
\begin{array}{l}
\text { Normal stresses in meridional and azimuthal (parallel) directions } \\
\left(F / L^{2}\right)
\end{array} \\
\omega \text { Natural (circular) frequency of a shell }(\mathrm{rad} / T) \\
\Omega^{2} \text { Frequency parameter, }=\rho^{*}\left(1-v^{2}\right) R^{2} \omega^{2} / E \\
\Omega_{p} \text { Frequency parameter for cylindrical shells }
\end{array}\right\} \begin{array}{ll}
a & \text { for axial modes } \\
t & \text { for torsional modes } \\
a t & \text { for coupled axial-radial modes } \\
r t & \text { for coupled radial-torsional modes }
\end{array}
$$

Subscripts

C Cylinder
D Dome

20.2 MEMBRANE SHELLS OF REVOLUTION

The membrane hypothesis produces the simplest and most readily solvable system of shell equations. If the wall of the shell is thin and there are no abrupt changes in thickness, slope, or curvature and if the loading is uniformly distributed or smoothly varying and symmetric, the bending responses can be very small and can be neglected. Hence it can be assumed that the shell's middle surface is free of bending moments, twisting moments, and transverse shear forces. The stress resultants that are assumed to be present are the in-plane normal and shear forces per unit length of shell surface. These membrane forces are depicted in Fig. 20-2. Because there

Figure 20-2: Membrane forces acting on a shell element.
are four stress resultants to be found and four equilibrium conditions to satisfy, the membrane shell problem is statically determinate. Since the membrane forces cannot produce moments about the x and y axes, the conditions $\sum M_{x}=0$ and $\sum M_{y}=0$ are automatically satisfied. The remaining equilibrium equations are

$$
\sum M_{z}=0, \quad \sum F_{x}=\sum F_{y}=\sum F_{z}=0
$$

Applying the equilibrium conditions to a shell element produces the four equations for the static deformation of a membrane shell [20.1]:

$$
\begin{gather*}
N_{\phi \theta}=N_{\theta \phi} \tag{20.1a}\\
\frac{\partial}{\partial \phi}\left(N_{\phi} R_{\theta} \sin \phi\right)+\frac{\partial N_{\phi \theta}}{\partial \theta} R_{\phi}-N_{\theta} R_{\phi} \cos \phi+p_{x} R_{\phi} R_{\theta} \sin \phi=0 \tag{20.1b}\\
\frac{\partial N_{\theta}}{\partial \theta} R_{\phi}+\frac{\partial}{\partial \phi}\left(N_{\phi \theta} R_{\theta} \sin \phi\right)+N_{\phi \theta} R_{\phi} \cos \phi+p_{y} R_{\phi} R_{\theta} \sin \phi=0 \tag{20.1c}\\
N_{\phi} R_{\theta}+N_{\theta} R_{\phi}+p_{z} R_{\phi} R_{\theta}=0 \tag{20.1d}
\end{gather*}
$$

Because the bending stresses are zero, the normal stresses are simply

$$
\begin{align*}
\sigma_{\phi} & =N_{\phi} / h \tag{20.2}\\
\sigma_{\theta} & =N_{\theta} / h \tag{20.3}
\end{align*}
$$

From considerations of the nature of the deformation, Hooke's law, and the definition of a stress resultant, the equations for the strains in terms of stress resultants are found to be

$$
\begin{align*}
\varepsilon_{\phi} & =\left(N_{\phi}-v N_{\theta}\right) / E h \tag{20.4a}\\
\varepsilon_{\theta} & =\left(N_{\theta}-v N_{\phi}\right) / E h \tag{20.4b}
\end{align*}
$$

The membrane theory of shells is not strictly applicable to cases in which boundary conditions and loading conditions cannot be countered by in-plane forces. See Figs. 20-3 and 20-4. Figure 20-4 shows a situation in which the membrane theory is inapplicable; however, approximate methods are available for treating such cases without invoking the full bending theory of shells. Also, in most cases in which

Figure 20-3: Boundary condition that membrane theory satisfies.

Figure 20-4: Loading condition incompatible with membrane theory.
significant bending stresses occur, the stresses are confined to small regions of the shell near the boundaries. Tables 20-1 to 20-5 present formulas for the stresses and deformation for membrane shells with several types of loads.

Example 20.1 Membrane Analysis of a Hemispherical Shell Subjected to a Uniformly Distributed Load Suppose that a uniformly distributed vertical load (case 2, Table 20-1, part A) $p_{2}=40$ psi acts on a hemispherical dome. Compute the maximum values of the membrane forces, the corresponding shell stresses, and the displacement at the base. The shell is constructed of steel with $h=2 \mathrm{in}$. and $R=30 \mathrm{ft}$.

Take a differential area $d A$ on the middle surface of the shell. The projection of $d A$ on the horizontal plane is $d A \cos \phi$. The total load on this differential area is then

$$
\begin{equation*}
P=p_{2} d A \cos \phi \tag{1}
\end{equation*}
$$

The load on the unit area of the shell surface is

$$
\begin{equation*}
P / d A=p_{2} \cos \phi \tag{2}
\end{equation*}
$$

The components of this load in the x, y, and z directions are

$$
\begin{equation*}
p_{x}=p_{2} \cos \phi \sin \phi, \quad p_{y}=0, \quad p_{z}=p_{2} \cos ^{2} \phi \tag{3}
\end{equation*}
$$

This confirms case 2 of Table 20-1, part A. From case 2 of Table 20-1, part B,

$$
\begin{equation*}
N_{\phi}=-\frac{1}{2} p_{2} R, \quad N_{\theta}=-\left(\frac{1}{2} p_{2} R\right) \cos 2 \phi \tag{4}
\end{equation*}
$$

At $\phi=90^{\circ}$,

$$
\begin{align*}
& N_{\phi}=-\frac{1}{2}\left(p_{2} R\right)=-N_{\theta, \max }=-\frac{1}{2}[(40)(30) \times 12]=-7200 \mathrm{lb} / \mathrm{in} . \\
& \sigma_{\phi}=-\sigma_{\theta, \max }=\frac{N_{\theta, \max }}{h}=-\frac{7200 \mathrm{lb} / \mathrm{in} .}{2 \mathrm{in} .}=-3600 \mathrm{lb} / \mathrm{in}^{2} \tag{5}
\end{align*}
$$

At the base of the shell,

$$
\begin{align*}
& \Delta R\left(\phi=90^{\circ}\right)=\frac{R^{2} p_{2}}{E h} \frac{1+v}{2}=\frac{(30 \times 12)^{2}(40)(1+0.3)}{\left(3 \times 10^{7}\right)(2)(2)}=0.05616 \mathrm{in} . \tag{6}\\
& \beta\left(\phi=90^{\circ}\right)=0
\end{align*}
$$

Example 20.2 Membrane Analysis of a Cylinder Filled with Water A cylinder 20 ft high with a radius of 3 ft is filled with water. The specific weight ρ_{w} of water is $62.4 \mathrm{lb} / \mathrm{ft}^{3}$. The other constants are $E=3 \times 10^{7} \mathrm{psi}$ and $h=2 \mathrm{in}$. Compute the stress resultants and displacement at the base.

The load of this problem corresponds to case 1 of Table 20-3 with $\lambda_{p}=0$. The horizontal water pressure is distributed linearly along the x direction with $p_{z}=$ $-p_{0}(1-\xi), \xi=x / L$, and

$$
p_{0}=L \rho_{w}=(20 \mathrm{ft})\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right)=1248 \mathrm{lb} / \mathrm{ft}^{2}=8.6667 \mathrm{lb} / \mathrm{in}^{2}
$$

where L is the height of the cylinder. Then at the base $(\xi=0)$

$$
\begin{aligned}
N_{\theta} & =p_{0} R=\left(1248 \mathrm{lb} / \mathrm{ft}^{2}\right)(3 \mathrm{ft})=3744 \mathrm{lb} / \mathrm{ft}=312 \mathrm{lb} / \mathrm{in} \\
w & =-\frac{p_{0} R^{2}}{E h}=-\frac{1}{\left(3 \times 10^{7}\right)(2)}\left[(8.6667)(3 \times 12)^{2}\right]=-1.872 \times 10^{-4} \mathrm{in} .
\end{aligned}
$$

The displacement u is zero at the base where $\xi=0$. The azimuthal normal stress at $\xi=0$ is

$$
\sigma_{\theta}=N_{\theta} / h=312 / 2=156 \mathrm{lb} / \mathrm{in}^{2}
$$

20.3 SHELLS OF REVOLUTION WITH BENDING

There are a variety of formulations for shells of revolution with bending. Usually, 10 stress resultants are considered to act on a shell element. Membrane stress resultants remain as shown in Fig. 20-2, while non-membrane stress resultants are depicted in Fig. 20-5. The same system of coordinates is used for the bending theory as was used for the membrane shells. The forces shown in Fig. 20-5 are positive. Because there are 10 stress resultants and only six equilibrium equations, in contrast to the membrane shell, the problem of the bending of a shell is statically indeterminate.

If the loads are axisymmetric, the response quantities do not vary with the θ coordinate. In addition, axial symmetry dictates that the twisting moments, in-plane shear forces, and the transverse shear forces on the meridional planes are zero:

$$
\begin{equation*}
M_{\theta \phi}=M_{\phi \theta}=0, \quad N_{\phi \theta}=N_{\theta \phi}=0, \quad Q_{\theta}=0 \tag{20.5}
\end{equation*}
$$

Figure 20-5: Stress resultants for bending theory of shells: (a) transverse shear forces per unit length; (b) bending and twisting moments per unit length. Positive forces and moments are shown.

Application of the laws of equilibrium to a differential shell element yields the following three equations in five unknowns [20.1]:

$$
\begin{align*}
\frac{d}{d \phi}\left(N_{\phi} R_{\theta} \sin \phi\right)-N_{\theta} R_{\phi} \cos \phi-Q_{\phi} R_{\theta} \sin \phi+p_{x} R_{\phi} R_{\theta} \sin \phi & =0 \tag{20.6a}\\
N_{\phi} R_{\theta} \sin \phi+N_{\theta} R_{\phi} \sin \phi+\frac{d}{d \phi}\left(Q_{\phi} R_{\theta} \sin \phi\right)+p_{z} R_{\phi} R_{\theta} \sin \phi & =0 \tag{20.6b}\\
\frac{d}{d \phi}\left(M_{\phi} R_{\theta} \sin \phi\right)-Q_{\phi} R_{\phi} R_{\theta} \sin \phi+M_{\theta} R_{\phi} \cos \phi & =0 \tag{20.6c}
\end{align*}
$$

By considering the deformation of the shell, three additional variables $\left(\varepsilon_{\theta}, \varepsilon_{\phi}, \beta\right)$ are introduced and five additional equations are obtained [20.1]:

$$
\begin{align*}
\beta & =\left(\varepsilon_{\phi}-\varepsilon_{\theta}\right) \cot \phi-\frac{R_{\theta}}{R_{\phi}} \frac{d \varepsilon_{\theta}}{d \phi} \tag{20.7a}\\
N_{\phi} & =B\left(\varepsilon_{\phi}+v \varepsilon_{\theta}\right) \tag{20.7b}\\
N_{\theta} & =B\left(\varepsilon_{\theta}+v \varepsilon_{\phi}\right) \tag{20.7c}\\
M_{\phi} & =-D\left(\chi_{\phi}+v \chi_{\theta}\right) \tag{20.7d}\\
M_{\theta} & =D\left(\chi_{\theta}+v \chi_{\phi}\right) \tag{20.7e}
\end{align*}
$$

in which

$$
\begin{align*}
\chi_{\phi} & =\frac{1}{R_{\phi}} \frac{d \beta}{d \phi} \tag{20.7f}\\
\chi_{\theta} & =\frac{\beta \cot \phi}{R_{\theta}} \tag{20.7~g}\\
B & =\frac{E h}{1-v^{2}} \quad \text { (extensional rigidity) } \tag{20.7h}\\
D & =\frac{E h^{3}}{12\left(1-v^{2}\right)} \quad \text { (flexural rigidity) } \tag{20.7i}
\end{align*}
$$

This final set of eight equations in eight unknowns forms the equations of motion for the static axisymmetric deformation of a bending shell. The normal stresses are given in terms of the stress resultants as

$$
\begin{align*}
\sigma_{\phi} & =\frac{N_{\phi}}{h}+\frac{M_{\phi}}{h^{3} / 12} z \tag{20.8a}\\
\sigma_{\theta} & =\frac{N_{\theta}}{h}-\frac{M_{\theta}}{h^{3} / 12} z \tag{20.8b}
\end{align*}
$$

where z is measured from the middle surface.
Although the eight relations of Eqs. (20.6) and (20.7) are sufficient to solve the problem of a shell with bending, the process of solution is so complicated that approximate methods are commonly employed. One approximate technique, which is to be utilized for part of this chapter, is the force method [20.1, 20.2]. In this method, the edge forces on a shell are treated separately from the applied loadings (e.g., dead weight and normal pressure). Begin with a membrane analysis of the shell with the applied loads (without the boundary forces) and the membrane boundary conditions. This is followed by a bending analysis with the edge forces as the loads. The boundary conditions for this analysis are consistent with the assumptions of the membrane theory (i.e., the boundaries are free to displace and rotate in the manner necessary to satisfy the membrane hypothesis). The edge displacements of these two analyses are calculated, with the displacements of the bending analysis expressed in terms of the unknown edge forces. Neither of the displacements from these two analyses is compatible with the actual boundary conditions of the shell, so they are superimposed to satisfy the actual displacement boundary conditions. The resulting relationships are conditions that can be solved for the heretofore unknown edge forces. Once the edge forces are determined, the complete solution of the shell can be obtained by the superposition of the membrane and bending analysis results.

For a circular cylindrical shell with axially symmetric loading, the governing differential equations are the same as those for a beam on an elastic foundation of modulus k and with axial force P [Eq. (11.7)]. Hence, simple cylinder problems can be solved using the beam formulas. To do this, substitute the shell parameters

Beam on an Elastic Foundation
with Axial Force
(Table 11-3 with $\alpha_{s} / G A=0$)

$w(L)$
θ (rad)
$M(F L)$
$V(F)$
$E I\left(F L^{2}\right)$
$P(F)$
$k\left(F / L^{2}\right)$
$p(F / L)$

Circular Cylindrical Shell with Axisymmetric Load $D=E h^{2} /\left[12\left(1-v^{2}\right)\right]$

$w(L)$
slope (rad)
$M(F L / L)$
$V(F / L)$
$D(F L)$
$N_{x}(F / L)$
$E h / R^{2}\left(F / L^{3}\right)$
$p_{1}-v N_{x} / R\left(F / L^{2}\right)$

Figure 20-6: Equivalence of a circular cylindrical shell with an axisymmetric load and a beam on an elastic foundation.

$$
\begin{equation*}
\frac{E h}{R^{2}} \quad \text { and } \quad D=\frac{E h^{3}}{12\left(1-v^{2}\right)} \tag{20.9}
\end{equation*}
$$

in Table 11-3 for k and $E I$, respectively, and set $\alpha_{s} / G A=0$. Here R is the radius of the cylinder and h is the wall thickness. The deflection, slope, shear force, and moments of the cylinder along the x axis are given in Table 11-3, part A, with loadings of Table 11-3, part B, and the boundary conditions of Table 11-3, part C. This equivalence is illustrated in Fig. 20-6.

Responses for bending shells of revolution, which are subject to edge loads, are listed in Tables 20-6 to 20-8. Definitions of the $\bar{F}_{i}, F_{i}(\xi)$ factors are contained in Table 20-9.

Example 20.3 Hemispherical Shell under Uniform External Pressure The hemispherical shell shown in Fig. 20-7a is subjected to a uniform radial pressure of 100 psi . For this shell, the edges are built in, $R=10 \mathrm{ft}, h=3.0 \mathrm{in}$., $E=3 \times 10^{7} \mathrm{psi}$, and $v=0.3$. Use the force method to compute the responses at $\phi=15^{\circ}$.

The shell can be treated (Fig. 20-7b) as the superposition of a simply supported membrane shell under uniform normal pressure of case 1 of Table 20-1, part B, and a shell with bending deformation with forces and moments at the lower edge of cases 1 and 2 of Table 20-6. The first step of the computation is to determine the reaction forces H and M. These can be determined from the geometric conditions that the displacement and rotation at the lower edges are zero:

(a)

(b)

Figure 20-7: Hemispherical shell with external pressure: (a) hemisphere under uniform radial pressure; (b) superposition of solutions.

$$
\begin{align*}
\Delta R & =\Delta R^{m}+\Delta R^{b}=0 \tag{1}\\
\beta & =\beta^{m}+\beta^{b}=0 \tag{2}
\end{align*}
$$

where the superscripts m and b stand for membrane and bending, respectively. From case 1 of Table 20-1, part B, and cases 1 and 2 of Table 20-6, at $\phi=90^{\circ}$,

$$
\begin{align*}
\Delta R^{m} & =-\frac{p_{1}}{2} \frac{R^{2}}{E h}(1-v) \tag{3}\\
\Delta R^{b} & =-\frac{2 R k}{E h} H+\frac{2 k^{2}}{E h} M \tag{4}\\
\beta^{m} & =0 \tag{5}\\
\beta^{b} & =\frac{2 k^{2}}{E h} H-\frac{4 k^{3}}{E h R} M \tag{6}
\end{align*}
$$

Substitute Eqs. (3)-(6) into (1) and (2) to form

$$
\begin{align*}
\Delta R & =-\frac{p_{1}}{2} \frac{R^{2}}{E h}(1-v)-\frac{2 R k}{E h} H+\frac{2 k^{2}}{E h} M=0 \tag{7}\\
\beta & =\frac{2 k^{2}}{E h} H-\frac{4 k^{3}}{E h R} M=0 \tag{8}
\end{align*}
$$

Solve these equations to find that

$$
\begin{align*}
M & =-p_{1} R^{2}(1-v) / 4 k^{2} \tag{9}\\
H & =2 k M / R \tag{10}
\end{align*}
$$

With M and H known, the responses can be found from Tables 20-1 and 20-6 with $\phi=15^{\circ}$ and $\alpha=\frac{1}{2} \pi-\phi=75^{\circ}$ as

$$
\begin{aligned}
\left.\Delta R\right|_{\phi=15^{\circ}} & =\left.\Delta R^{m}\right|_{\phi=15^{\circ}}+\left.\Delta R^{b}\right|_{\phi=15^{\circ}} \\
& =-\frac{p_{1}}{2} \frac{R^{2}}{E h}(1-v) \sin 15^{\circ}
\end{aligned}
$$

$$
\begin{align*}
&-\frac{H}{E h} \mathrm{Re}^{-k \alpha}\left[2 k \sin 15^{\circ} \cos k \alpha-\sqrt{2} v \cos 15^{\circ} \cos \left(k \alpha+\frac{1}{4} \pi\right)\right] \\
&+\frac{2 M k}{E h} e^{-k \alpha}\left[\sqrt{2} k \sin 15^{\circ} \cos \left(k \alpha+\frac{1}{4} \pi\right)+v \cos 15^{\circ} \sin k \alpha\right] \\
&=-1.449 \times 10^{-3} \mathrm{in} . \tag{11}\\
&\left.\beta\right|_{\phi=15^{\circ}}= \beta^{m}+\beta^{b} \\
&= 0+\frac{H}{E h}\left[2 \sqrt{2} k^{2} e^{-k \alpha} \sin \left(k \alpha+\frac{1}{4} \pi\right)\right]-\frac{M}{E h}\left(\frac{4 k^{3}}{R} e^{-k \alpha} \cos k \alpha\right) \\
&= 1.701 \times 10^{-8} \mathrm{rad} \tag{12}\\
&\left.Q_{\phi}\right|_{\phi=15^{\circ}}= \sqrt{2} H e^{-k \alpha} \cos \left(k \alpha+\frac{1}{4} \pi\right)+\frac{2 k M}{R} e^{-k \alpha} \sin k \alpha \\
&= 4.2791 \times 10^{-3} \mathrm{lb} / \mathrm{in} . \tag{13}\\
&\left.N_{\phi}^{m}\right|_{\phi=15^{\circ}}=\left.N_{\theta}^{m}\right|_{\phi=15^{\circ}}=-\frac{1}{2} R p_{1}=-6000 \mathrm{lb} / \mathrm{in} . \\
&\left.N_{\phi}^{b}\right|_{\phi=15^{\circ}=}=-Q_{\phi} \cot 15^{\circ}=-1.59 \times 10^{-2} \mathrm{lb} / \mathrm{in} . \\
&\left.N_{\theta}^{b}\right|_{\phi=15^{\circ}}=-2 H k e^{-k \alpha} \cos k \alpha+2 \sqrt{2} M \frac{k^{2}}{R} e^{-k \alpha} \cos \left(k \alpha+\frac{1}{4} \pi\right) \\
&=-0.1289 \mathrm{lb} / \mathrm{in} . \\
&\left.N_{\phi}\right|_{\phi=15^{\circ}}=\left.N_{\phi}^{m}\right|_{\phi=15^{\circ}}+\left.N_{\phi}^{b}\right|_{\phi=15^{\circ}}=-6000.0159 \mathrm{lb} / \mathrm{in} . \tag{14}\\
&\left.N_{\theta}\right|_{\phi=15^{\circ}}=\left.N_{\theta}^{m}\right|_{\phi=15^{\circ}}+\left.N_{\theta}^{b}\right|_{\phi=15^{\circ}}=-6000.1289 \mathrm{lb} / \mathrm{in} . \tag{15}\\
& M_{\phi}=-H \frac{R}{k} e^{-k \alpha} \sin k \alpha+\sqrt{2} M e^{-k \alpha} \sin \left(k \alpha+\frac{1}{4} \pi\right) \\
&=-5.39 \times 10^{-2} \mathrm{lb}-\mathrm{in} . / \mathrm{in} . \tag{16}\\
&\left.M_{\theta}\right|_{\phi=15^{\circ}}= H \frac{R}{k^{2} \sqrt{2}} e^{-k \alpha} \cot 15^{\circ} \sin \left(k \alpha+\frac{1}{4} \pi\right)+v M_{\phi} \\
&= 5.21 \times 10^{-2 \alpha} \cot 15^{\circ} \cos k \alpha \\
& \mathrm{in} . / \mathrm{in} . \tag{17}
\end{align*}
$$

The stresses at the outer surface ($z=-0.5 h$) are [Eq. (20.8)]

$$
\begin{align*}
\left.\sigma_{\phi}\right|_{\phi=15^{\circ}} & =\frac{N_{\phi}}{h}+\frac{M_{\phi}}{h^{3} / 12} z=-1999.96 \mathrm{psi} \tag{18}\\
\left.\sigma_{\theta}\right|_{\phi=15^{\circ}} & =\frac{N_{\theta}}{h}-\frac{M_{\theta}}{h^{3} / 12} z=-2000.0078 \mathrm{psi} \tag{19}
\end{align*}
$$

It can be seen that the internal forces due to bending are relatively small, so that the effect of bending for this load on this shell can be neglected.

20.4 MULTIPLE-SEGMENT SHELLS OF REVOLUTION

Shells can often be modeled as a succession of simple shell elements. A cylindrical shell with spherical bulkheads is an example. Multiple-segment shells of revolution are to be considered here.

The force method, which was discussed in Section 20.3, can be applied to multiple-segment shells. They are analyzed by combining the relations that must apply at the junctions of the shell with the knowledge of the influence coefficients that relate the deformations at the junctions with the forces and moments that act on the shell edges. This method involves the following steps:

1. Divide the shell into separate segments and solve the membrane problem for the applied loading for each segment to obtain the displacements and rotations at the connecting lines for each pair of segments. The calculated displacements and rotations are not compatible for adjacent segments at the common connection lines. Hence correction forces (usually, H and M) at these edges are needed to hold them together.
2. Calculate the displacements and rotations at the common connection lines due to unit correction forces ($H=1$ and $M=1$) only.
3. For each segment establish relationships between the actual displacements and rotations at the edges and the correction forces and membrane responses. For example, for the segment in Fig. 20-8, the displacements and rotations are

$$
\left[\begin{array}{c}
\beta_{1} \tag{20.10}\\
\Delta R_{1} \\
\beta_{2} \\
\Delta R_{2}
\end{array}\right]=\mathbf{f}\left[\begin{array}{c}
M_{1} \\
H_{1} \\
M_{2} \\
H_{2}
\end{array}\right]+\left[\begin{array}{c}
\beta_{1}^{0} \\
\Delta R_{1}^{0} \\
\beta_{2}^{0} \\
\Delta R_{2}^{0}
\end{array}\right]
$$

(a)

(b)

Figure 20-8: Single segment of a multiple-segment shell: (a) shell segment for membrane analysis to find $\beta_{i}^{0}, \Delta R_{i}^{0}, i=1,2$, in Eq. (20.10); (b) shell segment for bending analysis to find the elements in Eq. (20.11).
where $\beta_{i}, \Delta R_{i}, i=1,2$, are actual rotations and displacements at edges 1 and $2 ; H_{i}, M_{i}, i=1,2$, are correction forces and moments at edges 1 and 2 ; $\beta_{i}^{0}, \Delta R_{i}^{0}, i=1,2$, are rotations and displacements at edges 1 and 2 from the membrane analysis of the shell segment with applied loading; and

$$
\mathbf{f}=\left[\begin{array}{cccc}
\beta_{1}^{M_{1}} & \beta_{1}^{H_{1}} & \beta_{1}^{M_{2}} & \beta_{1}^{H_{2}} \tag{20.11}\\
\Delta R_{1}^{M_{1}} & \Delta R_{1}^{H_{1}} & \Delta R_{1}^{M_{2}} & \Delta R_{1}^{H_{2}} \\
\beta_{2}^{M_{1}} & \beta_{2}^{H_{1}} & \beta_{2}^{M_{2}} & \beta_{2}^{H_{2}} \\
\Delta R_{2}^{M_{1}} & \Delta R_{2}^{H_{1}} & \Delta R_{2}^{M_{2}} & \Delta R_{2}^{H_{2}}
\end{array}\right]
$$

is the flexibility matrix. The elements in the flexibility matrix are the deformations at edge 1 or 2 (as indicated by the subscripts) due to the unit loadings $M=1$ and $H=1$ at these edges. For example, $\beta_{1}^{M_{2}}$ is the rotation at edge 1 due to the unit moment at edge 2. These elements are also called influence or flexibility coefficients.
4. Establish the equilibrium and compatibility equations at each connection line.
5. Use the conditions in step 4 to form a set of algebraic equations with as many unknowns (deformations and correction forces) as there are equations. To do so, utilize the equations of step 3 [Eq. (20.10)] for the array of segments composing the shell.
6. Solve the equations to find the unknowns and find the responses at the points of interest.

The formulas in Tables 20-10 and the equations for membrane deformations and influence coefficients in Tables 20-11 to 20-13 provide the information necessary to apply this method. Table 20-10, part A, gives relations [Eq. (20.10)] for the deformations of the edges of the shell segments, and Table 20-10, part B, lists the equilibrium and compatibility equations at the edges. The influence coefficients are found in Tables 20-11 to 20-13. For the sign convention of the correction forces as shown in the figures of Table 20-10, part A, positive moments cause tension in the inner shell surface. Positive horizontal forces cause tension in the inner shell surface at the upper edge and compression in the inner shell surface at the lower edge.

For a shell segment greater than a certain length, the deformation at one edge of the segment is not significantly affected by edge loads that act on the opposite edge. For a cylinder, when $k L>4$, where $k=\left[3\left(1-v^{2}\right)\right]^{1 / 4} / \sqrt{R h}$, or $L \geq 3.1 \sqrt{R h}$, the influence of the correction force at one edge on the other edge is usually negligible. These cases are much simpler than those in which edge forces and moments exert a measurable effect on the deformations of the other edge. This will be illustrated in the following example.

Example 20.4 Cylindrical Shell with a Spherical Dome The steel shell shown in Fig. 20-9a is subjected to an internal pressure of $p_{1}=300 \mathrm{psi}$. The constants of the shell are R_{C} (cylinder) $=1.5 \mathrm{ft}, R_{D}($ dome $)=3.0 \mathrm{ft}, \phi_{1}=30^{\circ}, L=5 \mathrm{ft}$, $h=1$ in., $v=0.3$, and $E=3 \times 10^{7}$ psi.

(a)

(b)

Figure 20-9: Cylinder with a spherical dome subject to internal pressure: (a) configuration of Example 20.4; (b) edge loads acting on segments.

The following notation is used for the actual and membrane deformations:
$\beta_{D i}=$ actual rotation of dome at junction i due to applied load and edge correction forces
$\beta_{D i}^{0}=$ rotation of dome at junction i due to applied load from membrane analysis
Similar notation applies for other responses: $\beta_{C i}, \Delta R_{D i}, \Delta R_{C i}, \beta_{C i}^{0}, \Delta R_{D i}^{0}, \Delta R_{C i}^{0}$, and so on, where subscript C identifies the cylinder.

For the influence coefficients:

$$
\begin{aligned}
\beta_{D i}^{M_{j}}= & \text { rotation of dome at junction } i \text { caused by unit moment at junction } j \\
\Delta R_{D i}^{M j}= & \text { horizontal displacement of dome at junction } i \text { caused by unit moment } \\
& \text { at junction } j
\end{aligned}
$$

This pattern applies for the remainder of the influence coefficients $\beta_{D i}^{H_{j}}, \Delta R_{D i}^{H_{j}}, \beta_{C i}^{M_{j}}$, $\Delta R_{C i}^{M_{j}}, \beta_{C i}^{H_{j}}, \Delta R_{C i}^{H_{j}}$, in which H denotes a unit horizontal load and C refers to the cylinder.

Proceed as follows to solve this shell problem:

Step 1: Divide the entire shell into two segments, a dome and a cylinder. The segments and junctions as well as the edge loads that act on each segment are shown in Fig. 20-9b. Calculate the deformations at the edges of the dome and cylinder due to the applied loads through a membrane analysis.

The formulas for the membrane deformations of the dome are read from Table 20-11, part A, case 4:

$$
\begin{align*}
\beta_{D 1}^{0} & =0 \\
\Delta R_{D 1}^{0} & =-\frac{R_{D}^{2}\left(-p_{1}\right)}{2 E h}(1-v) \sin \phi_{1}=2.268 \times 10^{-3} \mathrm{in} \tag{1}
\end{align*}
$$

For the cylinder, membrane deformations are from Table 20-13, part A, case 1:

$$
\begin{align*}
\beta_{C 1}^{0} & =0 \\
\Delta R_{C 1}^{0} & =\frac{R_{C}^{2} p_{1}}{E h}=3.24 \times 10^{-3} \mathrm{in} \tag{2}
\end{align*}
$$

It is seen that at the connection edge between the dome and cylinder, the displacements are not compatible. There is a gap

$$
\begin{equation*}
\Delta=\Delta R_{D 1}^{0}-\Delta R_{C 1}^{0}=-9.72 \times 10^{-4} \mathrm{in} \tag{3}
\end{equation*}
$$

between the dome and the cylinder.
The membrane deformations at the lower edge of the cylinder can also be found from case 1 of Table 20-13, part A, to be

$$
\begin{align*}
\beta_{C 2}^{0} & =0 \\
\Delta R_{C 2} & =\frac{p_{1} R_{C}^{2}}{E h}=3.24 \times 10^{-3} \tag{4}
\end{align*}
$$

It is evident that $\Delta R_{C 2}$ is not compatible with the clamped boundary condition.
For the deformations to be compatible at the connection lines, correction forces of M and H (Fig. 20-9b) at the edges are needed.

Step 2: Calculate the deformations at the edges of the dome and cylinder due to unit correction forces (i.e., calculate the influence coefficients).

The rotation of the dome lower edge due to the unit edge moment is found in case 6 of Table 20-11, part C:

$$
\begin{equation*}
\beta_{D 1}^{M_{1}}=-\frac{4 k_{D}^{3}}{E h R_{D}} \tag{5}
\end{equation*}
$$

From Table 20-11, for the sphere, $k=k_{D}=\left[3\left(1-v^{2}\right)\left(R_{D} / h\right)^{2}\right]^{1 / 4}=7.712$, so that

$$
\beta_{D 1}^{M_{1}}=-1.699 \times 10^{-6}
$$

Also, from the same table,

$$
\begin{align*}
\beta_{D 1}^{H_{1}} & =\frac{2 k_{D}^{2}}{E h} \sin \phi_{1}=1.9825 \times 10^{-6} \\
\Delta R_{D 1}^{M_{1}} & =\frac{2 k_{D}^{2}}{E h} \sin \phi_{1}=1.9825 \times 10^{-6} \mathrm{in} . \tag{6}
\end{align*}
$$

$$
\Delta R_{D 1}^{H_{1}}=-\frac{R_{D}}{E h} \sin \phi_{1}\left(2 k_{D} \sin \phi_{1}-v \cos \phi_{1}\right)=-4.4713 \times 10^{-6} \mathrm{in} .
$$

For the cylinder, if $k L>4$ the influence of the edge forces of one edge on the deformations on other edge of the cylinder being treated is usually negligible. From Table 20-13,

$$
\begin{equation*}
k=k_{C}=\left[3\left(1-v^{2}\right)\right]^{1 / 4} / \sqrt{R_{C} h}=0.303 \mathrm{in}^{-1} \tag{7}
\end{equation*}
$$

and $k L=18.18$. To verify the weakness of the effect of the opposing edge, several of the influence coefficients will be computed using Table 20-13, part B. The influence coefficients that connect opposite cylinder edges are $\Delta R_{C 1}^{H_{2}}$ and $\beta_{C 1}^{H_{2}}$. The influence coefficient $\Delta R_{C 1}^{H_{2}}$ is the horizontal displacement of the cylinder at junction $1(C 1)$ caused by a unit horizontal force at junction $2\left(\mathrm{H}_{2}\right)$. It is obtained from Table 20-13, part B, case 1 (corresponding to $H_{i}=H_{2}$) and column 3 (corresponding to $j=C 1$). This gives

$$
\begin{equation*}
\Delta R_{C 1}^{H_{2}}=\frac{2 R_{C}^{2} k}{E h} \frac{\bar{F}_{9}}{\bar{F}_{1}} \tag{8a}
\end{equation*}
$$

Similarly, from case 1, column 4,

$$
\begin{equation*}
\beta_{C 1}^{H_{2}}=\frac{2 R_{C}^{2} k^{2}}{E h} \frac{2 \bar{F}_{8}}{\bar{F}_{1}} \tag{8b}
\end{equation*}
$$

where \bar{F}_{1}, \bar{F}_{8}, and \bar{F}_{9} are read from Table 20-9:

$$
\begin{aligned}
& \bar{F}_{1}=\sinh ^{2} k L-\sin ^{2} k L=1.545 \times 10^{15} \\
& \bar{F}_{8}=\sinh k L \sin k L=1.226 \times 10^{7} \\
& \bar{F}_{9}=\cosh k L \sin k L-\sinh k L \cos k L=-2.508 \times 10^{7}
\end{aligned}
$$

The ratios $\bar{F}_{9} / \bar{F}_{1}$ and $\bar{F}_{8} / \bar{F}_{1}$ are of the order 10^{-8}, which makes the influence coefficients in (8) very small. Thus, the influence of loads at one edge on the deformations at the other is negligible. Hence, only the coefficients for the influence of the unit forces on their own edges need to be calculated.

Table 20-13, part B, lists the influence coefficients:

$$
\begin{align*}
\beta_{C 1}^{H_{1}^{\prime}} & =\beta_{C_{2}}^{H_{2}}=\frac{2 R_{C}^{2} k_{C}^{2}}{E h} \frac{\bar{F}_{2}}{\bar{F}_{1}}=1.983 \times 10^{-6} \\
\Delta R_{C 1}^{H_{1}^{\prime}} & =-\Delta R_{C 2}^{H_{2}}=\frac{2 R_{C}^{2} k_{C}}{E h} \frac{\bar{F}_{4}}{\bar{F}_{1}}=6.5448 \times 10^{-6} \mathrm{in} . \tag{9}\\
\beta_{C 1}^{M_{1}^{\prime}} & =-\beta_{C 2}^{M_{2}}=\frac{2 R_{C}^{2} k_{C}^{3}}{E h} 2 \frac{\bar{F}_{3}}{\bar{F}_{1}}=1.202 \times 10^{-6}
\end{align*}
$$

$$
\Delta R_{C 1}^{M_{1}^{\prime}}=\Delta R_{C 2}^{M_{2}}=\frac{2 R_{C}^{2} k_{C}^{2}}{E h} \frac{\bar{F}_{2}}{\bar{F}_{1}}=1.983 \times 10^{-6} \mathrm{in}
$$

where, from Table 20-9,

$$
\begin{array}{lll}
\bar{F}_{2}=\sinh ^{2} k_{C} L+\sin ^{2} k_{C} L=1.545 \times 10^{15}, \quad \bar{F}_{2} / \bar{F}_{1}=1 \\
\bar{F}_{3}=\sinh k_{C} L \cosh k_{C} L+\sin k_{C} L \cos k_{C} L=1.545 \times 10^{15}, & \bar{F}_{3} / \bar{F}_{1}=1 \\
\bar{F}_{4}=\sinh k_{C} L \cosh k_{C} L-\sin k_{C} L \cos k_{C} L=1.545 \times 10^{15}, & \bar{F}_{4} / \bar{F}_{1}=1
\end{array}
$$

Step 3: Find the expressions of the actual deformations at the edges for each segment.

The actual deformations of the dome at junction 1 are (case 2 of Table 20-10, part A)

$$
\begin{align*}
{\left[\begin{array}{c}
\beta_{D 1} \\
\Delta R_{D 1}
\end{array}\right] } & =\mathbf{f}_{D}\left[\begin{array}{c}
M_{1} \\
H_{1}
\end{array}\right]+\left[\begin{array}{c}
\beta_{D 1}^{0} \\
\Delta R_{D 1}^{0}
\end{array}\right]=\left[\begin{array}{cc}
\beta_{D 1}^{M_{1}} & \beta_{D 1}^{H_{1}} \\
\Delta R_{D 1}^{M_{1}} & \Delta R_{D 1}^{H_{1}}
\end{array}\right]\left[\begin{array}{c}
M_{1} \\
H_{1}
\end{array}\right]+\left[\begin{array}{c}
\beta_{D 1}^{0} \\
\Delta R_{D 1}^{0}
\end{array}\right] \tag{10}\\
\mathbf{v}_{D 1} & =\mathbf{f}_{D} \mathbf{p}_{D 1}+\mathbf{v}_{D 1}^{0}
\end{align*}
$$

where

$$
\mathbf{v}_{D 1}=\left[\begin{array}{ll}
\beta_{D 1} & \Delta R_{D 1}
\end{array}\right]^{T}, \quad \mathbf{p}_{D 1}=\left[\begin{array}{ll}
M_{1} & H_{1}
\end{array}\right]^{T}, \quad \mathbf{v}_{D 1}^{0}=\left[\begin{array}{ll}
\beta_{D 1}^{0} & \Delta R_{D 1}^{0}
\end{array}\right]^{T}
$$

The deformations of the cylinder at its two edges are (case 1 of Table 20-10, part A)

$$
\left[\begin{array}{c}
\beta_{C 1} \tag{11}\\
\Delta R_{C 1} \\
\beta_{C 2} \\
\Delta R_{C 2}
\end{array}\right]=\mathbf{f}_{C}\left[\begin{array}{c}
M_{1}^{\prime} \\
H_{1}^{\prime} \\
M_{2} \\
H_{2}
\end{array}\right]+\left[\begin{array}{c}
\beta_{C 1}^{0} \\
\Delta R_{C 1}^{0} \\
\beta_{C 2}^{0} \\
\Delta R_{C 2}^{0}
\end{array}\right]
$$

or

$$
\left[\begin{array}{l}
\mathbf{v}_{C 1} \\
\mathbf{v}_{C 2}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{f}_{C 11} & \mathbf{f}_{C 12} \\
\mathbf{f}_{C 21} & \mathbf{f}_{C 22}
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{C 1} \\
\mathbf{p}_{C 2}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{v}_{C 1}^{0} \\
\mathbf{v}_{C 2}^{0}
\end{array}\right]
$$

where

$$
\begin{array}{ll}
\mathbf{v}_{C 1}=\left[\begin{array}{ll}
\beta_{C 1} & \Delta R_{C 1}
\end{array}\right]^{T}, & \mathbf{v}_{C 2}=\left[\begin{array}{ll}
\beta_{C 2} & \Delta R_{C 2}
\end{array}\right]^{T} \\
\mathbf{p}_{C 1}=\left[\begin{array}{ll}
M_{1}^{\prime} & H_{1}^{\prime}
\end{array}\right]^{T}, & \mathbf{p}_{C 2}=\left[\begin{array}{ll}
M_{2} & H_{2}
\end{array}\right]^{T} \\
\mathbf{f}_{C 11}=\left[\begin{array}{cc}
\beta_{C 1}^{M_{1}^{\prime}} & \beta_{C 1}^{H_{1}^{\prime}} \\
\Delta R_{C 1}^{M_{1}^{\prime}} & \Delta R_{C 1}^{H_{1}^{\prime}}
\end{array}\right], & \mathbf{f}_{C 12}=\left[\begin{array}{cc}
\beta_{C 1}^{M_{2}} & \beta_{C 1}^{H_{2}} \\
\Delta R_{C 1}^{M_{2}} & \Delta R_{C 1}^{H_{2}}
\end{array}\right]
\end{array}
$$

$$
\mathbf{f}_{C 21}=\left[\begin{array}{cc}
\beta_{C 2}^{M_{1}^{\prime}} & \beta_{C 2}^{H_{1}^{\prime}} \\
\Delta R_{C 2}^{M_{1}^{\prime}} & \Delta R_{C 2}^{H_{1}^{\prime}}
\end{array}\right], \quad \mathbf{f}_{C 22}=\left[\begin{array}{cc}
\beta_{C 2}^{M_{2}} & \beta_{C 2}^{H_{2}} \\
\Delta R_{C 2}^{M_{2}} & \Delta R_{C 2}^{H_{2}}
\end{array}\right]
$$

Step 4: Establish the equilibrium and compatibility equations at the junctions.
At junction 1, the equilibrium and compatibility equations are (case 1 of Table 20-10, part B)

$$
\begin{equation*}
\mathbf{p}_{D 1}=-\mathbf{p}_{C 1}, \quad \mathbf{v}_{D 1}=\mathbf{v}_{C 1} \tag{12}
\end{equation*}
$$

At junction 2 (case 3 of Table 20-10, part B)

$$
\begin{equation*}
\mathbf{v}_{C 2}=\mathbf{0} \tag{13}
\end{equation*}
$$

Step 5: Form the algebraic equations for the unknown correction forces. Rearrange (10) and (11) using the conditions of (12) and (13) to obtain

$$
\begin{align*}
\mathbf{v}_{C 1}+\mathbf{f}_{D} \mathbf{p}_{C 1} & =\mathbf{v}_{D 1}^{0} \tag{14a}\\
\mathbf{v}_{C 1}-\mathbf{f}_{C 11} \mathbf{p}_{C 1}-\mathbf{f}_{C 12} \mathbf{p}_{C 2} & =\mathbf{v}_{C 1}^{0} \tag{14b}\\
-\mathbf{f}_{C 21} \mathbf{p}_{C 1}-\mathbf{f}_{C 22} \mathbf{p}_{C 2} & =\mathbf{v}_{C 2}^{0} \tag{14c}
\end{align*}
$$

This is a set of linear algebraic equations with unknowns $\mathbf{v}_{C 1}, \mathbf{p}_{C 1}$, and $\mathbf{p}_{C 2}$. Note that there are six equations for six unknowns.

As mentioned earlier, the influence of the forces on one end of the cylinder on the deformations of the other end can be ignored. This condition leads to $\mathbf{f}_{C 12}=$ $\mathbf{f}_{C 21}=\mathbf{0}$. The omission of the coupling between edges separates the problem into one set of two equations for M_{1} and H_{1} and another set of two equations for M_{2} and H_{2}. Subtract (14b) from (14a) to find that

$$
\begin{equation*}
\left(\mathbf{f}_{D}+\mathbf{f}_{C 11}\right) \mathbf{p}_{C 1}=\mathbf{v}_{D 1}^{0}-\mathbf{v}_{C 1}^{0} \tag{15}
\end{equation*}
$$

that is,

$$
\begin{gathered}
\left(\beta_{D 1}^{M_{1}}+\beta_{C 1}^{M_{1}^{\prime}}\right) M_{1}+\left(\beta_{D 1}^{H_{1}}+\beta_{C 1}^{H_{1}^{\prime}}\right) H_{1}=\beta_{D 1}^{0}-\beta_{C 1}^{0} \\
\left(\Delta R_{D 1}^{M_{1}}+\Delta R_{C 1}^{M_{1}^{\prime}}\right) M_{1}+\left(\Delta R_{D 1}^{H_{1}}+\Delta R_{C 1}^{H_{1}^{\prime}}\right) H_{1}=\Delta R_{D 1}^{0}-\Delta R_{C 1}^{0}
\end{gathered}
$$

or

$$
\begin{align*}
& \left(-4.97 \times 10^{-7}\right) M_{1}+\left(3.966 \times 10^{-6}\right) H_{1}=0 \\
& \left(3.966 \times 10^{-6}\right) M_{1}+\left(2.0735 \times 10^{-6}\right) H_{1}=-9.72 \times 10^{-4} \tag{16}
\end{align*}
$$

and (14c) becomes

$$
\mathbf{f}_{C 22} \mathbf{p}_{C 2}=-\mathbf{v}_{C 2}^{0}
$$

or

$$
\beta_{C 2}^{M_{2}} M_{2}+\beta_{C 2}^{H_{2}} H_{2}=-\beta_{C 2}^{0}, \quad \Delta R_{C 2}^{M_{2}} M_{2}+\Delta R_{C 2}^{H_{2}} H_{2}=-\Delta R_{C 2}^{0}
$$

or

$$
\begin{align*}
\left(-1.202 \times 10^{-6}\right) M_{2}+\left(1.9831 \times 10^{-6}\right) H_{2} & =0 \\
\left(1.9831 \times 10^{-6}\right) M_{2}+\left(-6.5448 \times 10^{-6}\right) H_{2} & =-3.24 \times 10^{-3} \tag{17}
\end{align*}
$$

Step 6: Solve the linear equations to find the correction forces. Equations (16) and (17) yield

$$
\begin{equation*}
M_{1}=-230.0 \mathrm{lb}-\mathrm{in} . / \mathrm{in} ., \quad H_{1}=-28.82 \mathrm{lb} / \mathrm{in} . \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2}=990.1 \mathrm{lb}-\mathrm{in} . / \mathrm{in} ., \quad H_{2}=1633.9 \mathrm{lb} / \mathrm{in} . \tag{19}
\end{equation*}
$$

20.5 OTHER SHELLS

In previous sections, responses of shells of revolution were presented. In this section, membrane responses of other types of shells will be given. Table 20-14 gives the stress resultants for some membrane shells.

Note that in the figure of case 2 of Table 20-14, the two dashed lines are parabolas, one of which opens downward and another upward. The shell is formed by sliding the parabola in the $y 0 z$ plane along the parabola in the $x 0 z$ plane, or vice versa. The boundaries of the shell are all parabolas.

Such cases as the cylindrical shells in cases 3-7 of Table 20-14 are said to have shear diaphragms at the ends $\left(x= \pm \frac{1}{2} L\right)$. For these boundaries, the radial and circumferential displacements, the force in the axial direction, and the moment about the tangent of the circumferential wall contour are all zero at the boundary. These conditions can be closely approximated in physical applications by rigidly attaching a thin, flat, cover plate at each end. The plate would have considerable stiffness in its own plane such that the displacements v and w are restrained. However, the plate, by virtue of its thinness, would have very little stiffness in the x direction transverse to its plane. Consequently, a plate generates a negligible longitudinal membrane force N_{x} in the shell as the shell deforms (Fig. 20-10). Also, corresponding to $M_{x}=0$ is the condition that there is no restraint against rotation about the circumferential boundary. The name shear diaphragm reflects the capability of the plate to supply shearing forces $N_{x \theta}$ and Q_{x} to the shell. The shear diaphragm boundary condition is often called simply supported. The term simply supported is borrowed from linear beam and plate theory. However, the shear diaphragm explanation is usually considered to be more appropriate for shell theory [20.6].

Figure 20-10: Boundary forces for a cylindrical shell.

20.6 STABILITY

When thin shells are subject to axial compression, torsion, bending, lateral pressure, or a combination of these loads, elastic buckling of the shell wall can occur for certain critical values of the applied loads. Unlike columns and thin plates for which the buckling loads from classical small-deflection theory are considered to be reasonably realistic, the buckling loads for some types of shells may be much less than the load predicted by the theory. Sources of this deviation of buckling loads may be from the dependence of the buckling loads on the deviations from the nominal shape of the structure or on the local edge conditions. In many cases empirical formulas are used to predict the buckling loads. Table 20-15 presents formulas for the recommended design-allowable buckling loads for spheres, truncated cones, and cylindrical shells.

The simply supported boundary condition is defined in Section 20.5. If the shell is under bending deformation, in addition to N_{x}, the shear diaphragm generates negligible bending moment M_{x}. Also, the shear diaphragm supplies shear force Q_{x} together with $N_{x \theta}$ (Fig. 20-10). Many additional cases of buckling loads are provided in Ref. [20.5].

Example 20.5 Axial Compression of a Simply Supported Circular Cylindrical Shell Compute the theoretical and empirical critical axial loads for a simply supported cylindrical shell with the properties $L=0.6096 \mathrm{~m}, R=0.198 \mathrm{~m}$, $h=0.39624 \mathrm{~mm}, E=207 \mathrm{GPa}$, and $v=0.3$. These give $R / h=500$ and $D=E h^{3} / 12\left(1-v^{2}\right)=1.179 \mathrm{~N} \cdot \mathrm{~m}$. From Table 20-15 for cylindrical shells,

$$
\begin{align*}
Z & =L^{2}\left(1-v^{2}\right)^{1 / 2} / R h \\
& =(0.6096)^{2}\left(1-0.3^{2}\right)^{1 / 2} /\left[(0.198)\left(3.9624 \times 10^{-4}\right)\right]=4515.7 \tag{1}
\end{align*}
$$

Then, case 9 gives K theoretical value of 3.503 and K empirical of 3.059 for $R / h=$ 500. Then,

$$
\begin{array}{ll}
K_{c}=3187 & \text { for the theoretical formula } \\
K_{c}=1145 & \text { for the empirical formula } \tag{2}
\end{array}
$$

Thus, the critical loads are found to be as follows:

Theoretical formula:

$$
\begin{align*}
\sigma_{\mathrm{cr}} & =K_{c} \frac{\pi^{2} D}{L^{2} h}=3187 \times \frac{\pi^{2} \times 1.179}{0.6096^{2} \times 3.9624 \times 10^{-4}} \\
& =2.517 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}=251.7 \mathrm{MPa} \tag{3}\\
N_{x, \mathrm{cr}} & =\sigma_{\mathrm{cr}} h=2.517 \times 10^{8} \times 3.9624 \times 10^{-4}=99.734 \mathrm{~N} / \mathrm{m}
\end{align*}
$$

Empirical formula:

$$
\begin{align*}
\sigma_{\mathrm{cr}} & =K_{c} \frac{\pi^{2} D}{L^{2} h}=1331 \times \frac{\pi^{2} \times 1.179}{0.6096^{2} \times 3.9624 \times 10^{-4}} \\
& =1.05 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}=105.1 \mathrm{MPa} \tag{4}\\
N_{x, \mathrm{cr}} & =\sigma_{\mathrm{cr}} h=1.051 \times 10^{8} \times 3.9624 \times 10^{-4}=41645 \mathrm{~N} / \mathrm{m}
\end{align*}
$$

In this case the theoretical buckling load is 2.38 times as large as the value of the empirical load. More credence is usually given to results based on the empirical formula.

Example 20.6 Simply Supported Circular Cylindrical Shell Subjected to Axial Compressive Load and Internal Pressure Suppose that a simply supported cylindrical shell of Example 20.5 is subjected to an internal pressure of 6.895 MPa in addition to an axial load. Compute the critical value of the axial load.

Case 10 of Table 20-15 provides the critical axial load.

$$
\begin{align*}
\frac{R}{h}= & 500, \bar{p}=\frac{p_{1}}{E(R / h)^{2}}=\frac{6.895 \times 10^{6}}{\left(2.07 \times 10^{11}\right) 500^{2}}=1.333 \times 10^{-10} \\
K_{c}= & 0.2786 \\
\sigma_{\mathrm{cr}}= & K_{c}(E h / R)=(0.2786)\left(2.07 \times 10^{11}\right) / 500=115.4 \mathrm{MPa} \tag{1}\\
P_{\mathrm{cr}}= & \sigma_{\mathrm{cr}}(2 \pi R h)+p_{1} \pi R^{2}=\left(115.4 \times 10^{6}\right)(2 \pi)(0.198)\left(3.9624 \times 10^{-4}\right) \\
& +\left(6.895 \times 10^{6}\right)\left(0.198^{2}\right)(\pi) \\
= & 919 \mathrm{MN} \tag{2}\\
N_{x, \mathrm{cr}}= & P_{\mathrm{cr}} / 2 \pi R \\
= & 9.19 \times 10^{5} /(2 \pi)(0.198)=738704 \mathrm{~N} / \mathrm{m} \tag{3}
\end{align*}
$$

The effect of the internal pressure is to increase the critical axial load by a factor of $738704 / 41645=17.7$ over the empirical load with no internal pressure.

Example 20.7 Simply Supported Truncated Conical Shell under Axial Compression Compute the compressive axial load for axisymmetric and asymmetric buckling for a truncated cone, simply supported at both ends, that has the properties (see figure in case 3, Table 20-15)

$$
\begin{array}{lll}
h=0.0156 \text { in., } & \alpha=30^{\circ}, & E=3 \times 10^{7} \mathrm{psi}, \quad v=0.3 \\
& x_{1}=1 \mathrm{ft}, & x_{2}=3 \mathrm{ft}
\end{array}
$$

The geometry of the figure shows that $r_{1}=x_{1} \sin \alpha=0.5 \mathrm{ft}$. From case 3 in Table 20-15, the axial load for axisymmetric buckling is found to be

$$
\begin{align*}
\left(P_{\text {cr }}\right)_{\text {axisymmetric }} & =2 E h^{2} \pi \cos ^{2} \alpha / \sqrt{3\left(1-v^{2}\right)} \\
& =2\left(3 \times 10^{7}\right)(0.0156)^{2} \pi \cos ^{2}\left(30^{\circ}\right) / \sqrt{3\left(1-0.3^{2}\right)}=20,822 \mathrm{lb} \tag{1}
\end{align*}
$$

Also, from case 3 of Table 20-15, the minimum axial load for asymmetric buckling is $P_{\mathrm{cr}}=\sigma_{\mathrm{cr}} \pi x_{1} h \sin 2 \alpha$, with

$$
\begin{equation*}
\sigma_{\mathrm{cr}}=\sigma_{\mathrm{cr}, A}\left(\frac{1}{2} \frac{1+x_{1} / x_{2}}{1-x_{1} / x_{2}} \log \frac{x_{2}}{x_{1}}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{\mathrm{cr}, A}=E \frac{h}{r_{1}} \frac{1}{\sqrt{3\left(1-v^{2}\right)}} \cos \alpha=23,603.2 \mathrm{lb} / \mathrm{in}^{2} \tag{3}
\end{equation*}
$$

Then, from (2), $\sigma_{\mathrm{cr}}=16,304.15 \mathrm{lb} / \mathrm{in}^{2}$. Finally,

$$
\begin{equation*}
\left(P_{\mathrm{cr}}\right)_{\text {asymmetric }}=\sigma_{\mathrm{cr}}\left(\pi x_{1} h \sin 2 \alpha\right)=8303.95 \mathrm{lb} \tag{4}
\end{equation*}
$$

Example 20.8 Complete Spherical Shell under External Pressure Compute the empirical critical values of the external pressure for a sphere for which

$$
R=3 \mathrm{ft}, \quad h=0.0156 \text { in. }, \quad E=3 \times 10^{7} \mathrm{psi}, \quad v=0.3
$$

From case 1 of Table 20-15, the empirical buckling pressure is

$$
\begin{equation*}
p_{1, \mathrm{cr}}=\frac{(0.8) E}{\sqrt{1-v^{2}}}\left(\frac{h}{R}\right)^{2}=4.725 \mathrm{lb} / \mathrm{in}^{2} \tag{1}
\end{equation*}
$$

20.7 NATURAL FREQUENCIES

For the dynamics of shells, the governing equations of motion are a set of partial differential equations, including derivatives with respect to time. Since many simplifications can be invoked, numerous forms of governing equations of motion for shells have been derived.

Leissa [20.6] discusses several different equations of motion of thin shells. All of these small displacement theories utilize the Love-Kirchhoff hypothesis that:

1. The shell is thin (i.e., $h / R \ll 1$).
2. The problem is linear, which allows all calculations to be referred to the original configuration of the shell.
3. Transverse stresses normal to the middle surface are negligible.
4. Straight lines initially normal to the middle surface remain normal to that surface after deformation, and they undergo no extension.

Residual stresses, anisotropy, variable thickness, shear deformation, rotary inertia, nonlinearities, and the influence of the external environment are ignored.

References [20.7] and [20.8] are representative of the literature providing approximate frequencies for shells.

Circular Cylindrical Shells

The simplest set of equations for the bending of a cylindrical shell is probably that of Donnell-Mushtari [20.6, 20.9]. With respect to the coordinates shown in Fig. 20-11, these equations of motion are

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial s^{2}}-\frac{1-v}{2} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{1+v}{2} \frac{\partial^{2} v}{\partial s} \partial \theta \\
&-v \frac{\partial w}{\partial s}=\rho^{*} \frac{\left(1-v^{2}\right) R^{2}}{E} \frac{\partial^{2} u}{\partial t^{2}} \tag{20.12}\\
&-\frac{1+v}{2} \frac{\partial^{2} u}{\partial s \partial \theta}-\frac{1-v}{2} \frac{\partial^{2} v}{\partial s^{2}}+\frac{\partial^{2} v}{\partial \theta^{2}}+\frac{\partial w}{\partial \theta}=-\rho^{*} \frac{\left(1-v^{2}\right) R^{2}}{E} \frac{\partial^{2} v}{\partial t^{2}} \\
& v \frac{\partial u}{\partial s}+\frac{\partial v}{\partial \theta}-w-\kappa \nabla^{4} w=\rho^{*}\left(1-v^{2}\right) \frac{R^{2}}{E} \frac{\partial^{2} w}{\partial t^{2}} \\
& s=x / R
\end{align*}
$$

where $\kappa=h^{2} / 12 R^{2}$. When the term containing κ is ignored, these equations reduce to those for membrane shells. Modifications to Eqs. (20.12) for other theories are presented in Ref. [20.6]. The discussion here will be limited to the theory of DonnellMushtari and that of Flügge [20.9], which involves a modified version of Eqs. (20.12) [20.6].

Tables 20-16 (membrane) and 20-17 (bending) give the natural frequencies of cylindrical shells under various end conditions. The basic assumption for the mode shapes u, v, and w in the x, y, and z directions are that they are formed of n and m

Figure 20-11: Coordinates for a cylindrical shell.
half waves in the circumferential and longitudinal directions, that is,

$$
\begin{align*}
u & =A \cos \lambda s \cos n \theta \cos \omega t, \quad v=B \sin \lambda s \sin n \theta \cos \omega t \tag{20.13}\\
w & =C \sin \lambda s \cos n \theta \cos \omega t
\end{align*}
$$

where A, B, and C are constants and $\lambda=m \pi R / L$. Substitution of the assumed shapes into the governing equations of motion of Eq. (20.12) yields the equations for the natural frequencies and mode shapes.

The cylindrical shell of infinite length is rather simple to analyze. It is assumed that the wavelength in the x direction is infinitely long (i.e., the mode shapes are independent of x), and hence the terms containing λ in Eqs. (20.13) are removed. For this shell, the axial motion is independent of the radial and torsional displacements. The shell only vibrates radially and torsionally. Three natural frequencies exist for each n. For $n=0$, the three modes are independent, but otherwise, the radial and torsional modes are coupled. For very large n, the radial and torsional modes tend to become independent again.

For the case of simply supported shells, the end conditions are such that the v, w displacements as well as the force N_{x} in the longitudinal direction and the moment M_{x} (Fig. 20-11) in the circumferential direction are zero. These boundary conditions correspond to the shear diaphragm discussed in Section 20.5.

Note that in case 2 of Tables 20-16 and 20-17, the cubic equation for the frequency parameter $\Omega^{2}\left[=\rho^{*}\left(1-v^{2}\right) R^{2} \omega^{2} / E\right]$ will have three roots for fixed values of n and $\lambda(=m \pi R / L)$. Thus a shell of a given length may vibrate in any of three distinct modes, each with the same number of circumferential and longitudinal waves, and each with its own distinct frequency. The modes associated with each frequency can be classified as primarily radial (or flexural), longitudinal (or axial), or circumferential (or torsional). The lowest frequency is usually associated with a motion that is primarily radial.

Unlike most of the other structural members, such as beams and bars, the fundamental frequency of circular cylindrical shells is not always associated with the smallest numbers for n and m. Also, the frequency does not necessarily increase monotonically with increasing values of the number of half waves m and n in

Figure 20-12: Variation of the frequency parameter Ω for a cylinder. (From [20.6].)

Eq. (20.13). Figure 20-12 shows the relationship between the frequency parameter Ω and the indices n and m for a fixed ratio R / h. It is seen that for a particular value of the number of circumferential waves n, the smaller the m, the smaller the Ω, so the fundamental frequency always occurs for $m=1$. With $m=1$, the index number n that is associated with the fundamental frequency strongly depends on the value L / R. In Fig. 20-13, which shows the fundamental frequency in terms of length-toradius ratio L / R and the index number n, for $L / R=5$, the fundamental frequency corresponds to $m=1$ and $n=5$, while for $L / R=1$, the fundamental frequency corresponds to $n=11$. Thus, for a specific thin cylinder, numerous n should be scrutinized to determine which one is associated with the fundamental frequency.

Example 20.9 Natural Frequencies of an Infinite Membrane Cylinder Compute the natural frequencies at $n=0,1,2,3,4$ for an infinitely long circular cylindrical membrane. For this shell $R=0.762 \mathrm{~m}, L \rightarrow \infty, v=0.3, \rho^{*}=7747.6 \mathrm{~kg} / \mathrm{m}^{3}$, and $E=207 \mathrm{GPa}$.

The frequency parameter Ω^{2} is taken from Table 20-16, part A, case 1 , and then the frequency is obtained using

$$
\begin{equation*}
\omega^{2}=E \Omega^{2} /\left[\rho^{*}\left(1-v^{2}\right) R^{2}\right] \tag{1}
\end{equation*}
$$

Figure 20-13: Fundamental frequency parameter Ω for various L / R ratios of a cylinder with $R / h=500$ and $m=1$. (From [20.6].)

For $n=0$, case 1 of Table 20-16 gives

$$
\begin{aligned}
& \Omega_{a}^{2}=0, \quad \Omega_{r t}^{2}=1 \\
& \omega_{r t}^{2}=\frac{E \Omega_{r t}^{2}}{\rho^{*}\left(1-v^{2}\right) R^{2}}=\frac{\left(2.07 \times 10^{11}\right) \Omega_{r t}^{2}}{(7747.6)\left(1-0.3^{2}\right)(0.762)^{2}}=5.056 \times 10^{7}
\end{aligned}
$$

Then

$$
\begin{equation*}
\omega_{r t}=7110.6 \mathrm{rad} / \mathrm{s} \quad \text { and } \quad f_{r t}=\omega_{r t} / 2 \pi=1131.68 \mathrm{~Hz} \tag{2}
\end{equation*}
$$

Similarly, for $n=1$,
$\Omega_{a}^{2}=\frac{1}{2}(1-0.3)(1)^{2}=0.35, \quad \omega_{a}^{2}=1.7696 \times 10^{7}, \quad$ or $\quad \omega_{a}=4206.66 \mathrm{rad} / \mathrm{s}$
and

$$
\begin{equation*}
f_{a}=669.51 \tag{3}
\end{equation*}
$$

Note that the lowest frequency is not associated with $n=0$. Also, for $n=1$,

$$
\begin{gathered}
\Omega_{r t}^{2}=\left(1+1^{2}\right)=2 \\
\omega_{r t}^{2}=1.0112 \times 10^{8} \quad \text { or } \quad \omega_{r t}=10055.8 \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

and

$$
\begin{equation*}
f_{r t}=1600.43 \mathrm{~Hz} \tag{4}
\end{equation*}
$$

Continue the computation for $n=2,3,4$:

n	$f_{r t}(H z)$	$f_{a}(H z)$
2	2529.54	1338.51
3	3577.31	2007.76
4	4664.24	2677.02

Example 20.10 Radial (Bending)-Torsional Frequencies of an Infinite Cylinder with Bending Compute the radial-torsional natural frequencies of an infinitely long circular cylindrical shell of $R=30 \mathrm{in}$., $\rho^{*}=72.5 \times 10^{-5} \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}^{4}, h=$ 3.16 in., $E=3 \times 10^{7} \mathrm{psi}$, and $v=0.3$ using the bending formulas for $n=$ $0,1,2,3,4$.

From Table 20-17,

$$
\kappa=h^{2} / 12 R^{2}=9.25 \times 10^{-4}
$$

The natural frequencies $\omega_{r t}$ are obtained from

$$
\omega_{r t}^{2}=\frac{E \Omega_{r t}^{2}}{\rho^{*}\left(1-v^{2}\right) R^{2}}
$$

where the formulas for $\Omega_{r t}$ are taken from case 1 of Table 20-17. With $f_{r t}=\omega_{r t} / 2 \pi$:

$f_{r t}(\mathrm{~Hz})$		
n	Donnell-Mushtari	Flügge
0	0.0	0.0
	1131.3	1131.3
1	24.3	29.8
	1600.1	1599.96
2	123.18	130.67
	2530.37	2529.99
3	294.12	302.22
	3578.74	3578.07
4	535.14	543.52
	4666.21	4665.24

For each n there are two natural frequencies that correspond to the minus and plus signs in the equations for $\Omega_{r t}$ in case 1 of Table 20-17, part A. The higher values of these two frequencies for $n=0, \ldots, 4$ do not differ significantly from those
values computed using the membrane theory. This is because κ is very small for this example, and the terms κn^{4} and κn^{6} in case 1 of Table 20-17, part A, are negligible for small n. For large n, the difference between the two theories increases.

Example 20.11 Simply Supported (by Shear Diaphragms) Circular Cylindrical Membrane Suppose that the membrane shell treated in Example 20.9 has a length of 9.144 m . Compute the frequencies associated with the axisymmetric mode ($n=0$) if $m=1$.

The parameter λ of Table 20-16, part A, is

$$
\lambda=m \pi R / L=\pi \times 0.762 / 9.144=0.2618
$$

From case 2 of Table 20-16, part A, for torsional motion with $n=0$,

$$
\begin{equation*}
\Omega_{t}^{2}=\frac{1}{2}(1-v) \lambda^{2}=0.024 \tag{1}
\end{equation*}
$$

and with $\omega_{t}^{2}=E \Omega_{t}^{2} /\left[\rho^{*}\left(1-v^{2}\right) R^{2}\right]$,

$$
\begin{equation*}
\omega_{t}^{2}=1.212 \times 10^{6} \quad \text { or } \quad f_{t}=175.2 \mathrm{~Hz} \tag{2}
\end{equation*}
$$

For axial-radial modes with $n=0$,

$$
\Omega_{a r}^{2}=\frac{1}{2}\left(\left[1+(0.2618)^{2}\right] \pm\left\{\left[1-(0.2618)^{2}\right]^{2}+4(0.3)^{2}(0.2618)^{2}\right\}^{1 / 2}\right)
$$

so that $\Omega_{a r}^{2}=0.0620$ and 1.0066. Then, from $\omega_{a r}^{2}=E \Omega_{a r}^{2} /\left[\rho^{*}\left(1-v^{2}\right) R^{2}\right]$,

$$
\omega_{a r}^{2}=\left(5.056 \times 10^{7}\right)(0.0620)=3.135 \times 10^{6}
$$

and

$$
\omega_{a r}^{2}=\left(5.056 \times 10^{7}\right)(1.0066)=5.085 \times 10^{7}
$$

Thus,

$$
\begin{equation*}
f_{a r}=281.8 \mathrm{~Hz} \text { and } \quad 1134.9 \mathrm{~Hz} \tag{3}
\end{equation*}
$$

The two frequencies given here correspond to the minus and plus signs of the equation in case 2 of Table 20-16, part A, for the frequency parameter $\Omega_{a r}^{2}$ at $n=0$. In this case two distinct frequencies have the same coupled axial-radial mode shapes.

Example 20.12 Simply Supported Cylindrical Shell with Bending Repeat the frequency computation of Example 20.11 using the bending formulas for $n=0$ and $m=1$.

From case 2 of Table 20-17, part A, it is seen that the torsional mode with $f_{t}=$ 175.2 Hz is the same as it was under the membrane hypothesis in Example 20.11.

For coupled axial-radial modes, with $\kappa=h^{2} / 12 R^{2}=92.5 \times 10^{-5}$, the relations of case 2 of Table 20-17, part A, lead to identical results for the Flügge and DonnellMushtari theories. These are

$$
\begin{array}{lc}
f_{a r}=281.5 \mathrm{~Hz} & \text { corresponds to minus sign } \\
f_{a r}=1134.7 \mathrm{~Hz} \quad \text { corresponds to plus sign }
\end{array}
$$

Thus, for $n=0$, the bending theory yields results essentially the same as those obtained in Example 20.11 for the membrane case of coupled axial-radial motion.

Conical Shells

The coordinates used to describe the conical shell are shown in Fig. 20-14. The term conical refers here to a right circular cone that may be truncated. Information for computing the natural frequencies of cones and conical frustums is presented in Table 20-18. It should be noted that the lowest frequency of the shell does not necessarily occur for $n=0$.

Example 20.13 Frequencies of Axisymmetric Modes for a Complete Conical Shell with a Clamped Base Compute the frequencies of the first three axisymmetric modes of a conical shell with a clamped base and $h=0.125 \mathrm{in} .=3.175 \times$ $10^{-3} \mathrm{~m}, R=4.0 \mathrm{in} .=0.1016 \mathrm{~m}, \alpha=30^{\circ}, v=0.3, E=3 \times 10^{7} \mathrm{psi}=$ $2.07 \times 10^{11} \mathrm{~Pa}$, and $\rho^{*}=725.4 \times 10^{-6} \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in}^{4}=7752 \mathrm{~kg} / \mathrm{m}^{3}$.

Figure 20-14: Coordinates for a conical shell.

From case 2 of Table 20-18,

$$
\begin{equation*}
\eta=\frac{12\left(1-v^{2}\right)}{\tan ^{4} \alpha}\left(\frac{R}{h}\right)^{2}=\frac{12\left(1-0.3^{2}\right)}{\tan ^{4}\left(30^{\circ}\right)}\left(\frac{0.1016}{3.175 \times 10^{-3}}\right)^{2}=100,638.7 \tag{1}
\end{equation*}
$$

For $j=1$, it is seen from case 2 that $\Omega_{1} \approx 1.796(\eta=100,638.7 \approx 100,000)$. Finally,

$$
\begin{equation*}
f_{1}=\frac{\Omega_{1}}{2 \pi R}\left(\frac{E}{\rho^{*}}\right)^{1 / 2}=\frac{1.796}{(2)(\pi)(0.1016)}\left(\frac{2.07 \times 10^{11}}{7752}\right)^{1 / 2}=14,538.2 \mathrm{~Hz} \tag{2}
\end{equation*}
$$

Similarly, if $j=2, \Omega_{2} \approx 2.429$ and

$$
\begin{equation*}
f_{2}=\frac{\Omega_{2}}{2 \pi R}\left(\frac{E}{\rho^{*}}\right)^{1 / 2}=\frac{\Omega_{2}}{\Omega_{1}} f_{1}=\frac{2.429}{1.796}(14,538.2)=19,662.2 \mathrm{~Hz} \tag{3}
\end{equation*}
$$

Also, for $j=3, \Omega_{3} \approx 3.447$ and

$$
\begin{equation*}
f_{3}=\frac{\Omega_{3}}{\Omega_{1}} f_{1}=\frac{3.447}{1.796}(14,538.2)=27,902.7 \mathrm{~Hz} \tag{4}
\end{equation*}
$$

Example 20.14 Conical Shell with a Free Boundary Assume that the shell treated in Example 20.13 has a free base and compute the frequencies for the first three axisymmetric modes.

From case 1 of Table 20-18 the estimated frequency parameters are $\Omega_{1} \approx 1.251$, $\Omega_{2} \approx 1.981$, and $\Omega_{3} \approx 2.906$. Use

$$
\begin{equation*}
f_{i}=\frac{\Omega_{i}}{2 \pi R_{2}}\left(\frac{E}{\rho^{*}}\right)^{1 / 2}=\Omega_{i} \frac{1}{2 \pi(0.1016)}\left(\frac{2.07 \times 10^{11}}{7752}\right)^{1 / 2}=8094.8 \Omega_{i} \tag{1}
\end{equation*}
$$

to find

$$
\begin{align*}
& f_{1}=(1.251)(8094.8)=10,126.59 \mathrm{~Hz} \tag{2}\\
& f_{2}=(1.997)(8094.8)=16,165.32 \mathrm{~Hz} \tag{3}\\
& f_{3}=(2.906)(8094.8)=23,523.49 \mathrm{~Hz} \tag{4}
\end{align*}
$$

Example 20.15 Lowest Frequency of the Axisymmetric Mode of a ClampedFree Conical Frustum Compute the lowest frequency of the axisymmetric mode of a clamped-free conical frustum for which $\alpha=75.49^{\circ}, h=0.03125 \mathrm{in} ., R_{1}=$ 0.4 in., $R_{2}=1.0$ in., $E=1.04 \times 10^{7} \mathrm{psi}, \rho^{*}=259.2 \times 10^{-6} \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in}^{4}$, and $v=0.33$.

First calculate γ of case 6 of Table 20-18 as

$$
\begin{equation*}
\gamma=\frac{12\left(1-v^{2}\right)\left(R_{2} / h\right)^{2}}{\tan ^{4} \alpha}=\frac{12\left(1-0.33^{2}\right)(1 / 0.03125)^{2}}{\tan ^{4}\left(75.49^{\circ}\right)}=49.124 \tag{1}
\end{equation*}
$$

Since $R_{1} / R_{2}=0.4$ and $\eta=\log \gamma=1.69$, case 6 gives $\Omega^{2}=2.473$, so that

$$
\begin{equation*}
f_{1}=\frac{\sqrt{2.473}}{2 \pi(1)}\left(\frac{1.04 \times 10^{7}}{259.2 \times 10^{-6}}\right)^{1 / 2}=50.134 \times 10^{3} \mathrm{~Hz} \tag{2}
\end{equation*}
$$

Spherical Shells

The frequencies of several spherical shells or shell segments are found using the formulas in Table 20-19.

Example 20.16 Spherical Membrane Shell Compute the fundamental radial frequency for a spherical membrane shell with $R=30 \mathrm{ft}, h=2 \mathrm{in}$., $E=3 \times 10^{7} \mathrm{psi}$, $v=0.3$, and $\rho^{*}=75.5 \times 10^{-5} \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in}^{4}$. From case 1 of Table 20-19, the frequency parameter for membrane theory is

$$
\Omega_{r}^{2}=\frac{2(1+v)}{1+h^{2} / 12 R^{2}}
$$

so that the natural frequency is given as

$$
\begin{align*}
f_{1} & =\frac{1}{2 \pi R}\left[\frac{\Omega_{r}^{2} E}{\rho^{*}\left(1-v^{2}\right)}\right]^{1 / 2} \\
& =\left[2(1+v) /\left(1+h^{2} / 12 R^{2}\right)\right]^{1 / 2} \frac{1}{2 \pi R}\left[\frac{E}{\rho^{*}\left(1-v^{2}\right)}\right]^{1 / 2}=149.0 \mathrm{~Hz} \tag{1}
\end{align*}
$$

REFERENCES

20.1. Baker, E. H., Kovalevsky, L., and Rish, F. L., Structural Analysis of Shells, Krieger, Malabar, FL, 1986.
20.2. Baker, E. H., Capelli, A. P., Kovalevsky, L., Rish, F. L., and Verette, R. M., Shell Analysis Manual, NASA CR-912, Washington, DC, 1968.
20.3. Kelkar, V. S., and Sewell, R. T., Fundamentals of the Analysis and Design of Shell Structures, Prentice Hall, Englewood Cliffs, NJ, 1987.
20.4. Ramaswamy, G. S., Design and Construction of Concrete Shell Roofs, McGraw-Hill, New York, 1968.
20.5. Column Research Committee of Japan, Handbook of Structural Stability, Corona Publishing, Tokyo, 1971.
20.6. Leissa, A. W., Vibration of Shells, NASA SP-288, Washington, DC, 1973.
20.7. Bräutigam, C., and Schnell, W., "Free Vibrations of Hyperboloidal Shells," in Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology, A.A. Balkema, Rotterdam, The Netherlands, 1987, pp. 445-450.
20.8. Schnell, W., and Schwarte, J., "Eigenfrequenzen von Kreiszylinderschales nach der Halbbiegetheorie," Z. Flugwiss. Weltraumforsch., Vol. 13, 1989, pp. 320-325.
20.9. Flügge, W., Stresses in Shells, Springer-Verlag, Berlin, 1960.
20.10. Hu, W. C. L., Gormley, J. F., and Lindholm, U. S., "An Experimental Study and Inextensional Analysis of Free-Free Conical Shells," Int. J. Mech. Sci., Vol. 9, 1967, pp. 123-135.
20.11. Blevins, R. D., Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, New York, 1979.
20.12. Reynolds, T. E. A Survey of Research on the Stability of Hydrostatically-Loaded Shell Structures Conducted at the David Taylor Model Basin, NASA TND-1510, 1962, pp. 551-560.
20.13. Seide, P., "Axisymmetrical Buckling of Circular Cones under Axial Compression," J. Appl. Mech., 1956, pp. 625-628.

20

Tables

20-1 Membrane Spherical Shells 1220
20-2 Membrane Conical Shell 1228
20-3 Membrane Cylindrical Shells 1237
20-4 Membrane Toroidal Shells 1240
20-5 Various Membrane Shells of Revolution1246
20-6 Spherical Shells with Axially Symmetric Loading: Bending Theory 1249
20-7 Conical Shells with Axially Symmetric Loading: Bending Theory 1253
20-8 Cylindrical Shells with Axially Symmetric Loading: Bending Theory 1257
20-9 Factors for Use in Tables 20-6 to 20-8 1260
20-10 Relations for Multiple-Segment Shells of Revolution 1261
20-11 Membrane Edge Deformations and Influence Coefficients for Spherical Elements 1263
20-12 Membrane Edge Deformations and Influence Coefficients for Conical Shell Elements 1273
20-13 Membrane Edge Deformations and Influence Coefficients for Cylindrical Shell Elements 1282
20-14 Stress Resultants of Membrane Shells of Various Shapes 1288
20-15 Critical Loads for Various Shells of Revolution 1292
20-16 Natural Frequencies of Membrane Circular Cylindrical Shells 1301
20-17 Natural Frequencies of Circular Cylindrical Shells with Bending 1305
20-18 Natural Frequencies of Conical Shells with Bending 1310
20-19 Natural Frequencies of Spherical Shells 1317

TABLE 20-1 MEMBRANE SPHERICAL SHELLS ${ }^{a}$

Notation

$E=$ modulus of elasticity
$\rho_{w}=$ specific weight of liquid
$h=$ thickness of shell
$\phi_{1}, \phi_{2}=$ angle ϕ corresponding to lower and upper edges
$q=$ dead weight
$\nabla=$ surface of liquid
$v=$ Poisson's ratio
$R=$ radius of shell
$\phi=$ meridional angle of point of interest
$p_{1}=$ applied uniform pressure

$p_{2}=$ uniformly distributed loading on projected area
$d=$ distance from surface of liquid to top or bottom of shell
$N_{\phi}, N_{\theta}=$ normal forces per unit length (stress resultants) in meridional and circumferential (parallel) directions
$p_{x}, p_{y}, p_{z}=$ components of applied load in meridional, circumferential (parallel) and normal directions
$\beta=$ rotation of tangent to meridian during deformation
$\Delta R=$ displacement in direction of radius of curvature of a parallel
The stresses are defined as
$\sigma_{\phi}=N_{\phi} / h \quad \sigma_{\theta}=N_{\theta} / h$
Membrane forces are positive if causing tension in the shell.

Part A. Loadings	
Case	Components
1. 	$\begin{aligned} & p_{x}=q \sin \phi \\ & p_{y}=0 \\ & p_{z}=q \cos \phi \end{aligned}$

TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLS ${ }^{\text {a }}$
Part A. Loadings

Case	\quad Components
2.	$p_{x}=p_{2} \cos \phi \sin \phi$
Uniformly distributed loading	$p_{y}=0$
on projected area (snow load)	$p_{z}=p_{2} \cos ^{2} \phi$

For reversed spherical shell, d is the distance from the surface of the liquid to the apex of the reversed shell, and $p_{z}=\rho_{w}[d-R(1-\cos \phi)]$.
$p_{x}=p_{y}=0 \quad p_{z}=p_{1}$
Uniform loading in z direction (pressurization)

5.

Lantern loading W, load per unit length on upper shell edge

$p_{x}=p_{y}=p_{z}=0$

TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLS ${ }^{\text {a }}$
Part B. Stress Resultants, Deformations, and Rotations

1. Simply supported spherical cap

Internal Forces	Deformations
DEAD-WEIGHT LOADING:	$\Delta R=\frac{R^{2} q}{E h} \sin \phi[-\cos \phi$
$N_{\phi}=-\frac{R q}{1+\cos \phi}$	$\left.+\frac{1+v}{\sin ^{2} \phi}(1-\cos \phi)\right]$
$N_{\theta}=-R q\left(\cos \phi-\frac{1}{1+\cos \phi}\right)$	$\beta=-\frac{R q}{E h}(2+v) \sin \phi$
	$\Delta R=\frac{R^{2} p_{2}}{E h} \sin \phi\left(-\cos ^{2} \phi+\frac{1+v}{2}\right)$
UNIFORM LOADING ON PROJECTED AREA:	$\beta=-\frac{R p_{2}}{E h}(3+v) \sin \phi \cos \phi$
$N_{\phi}=-\frac{1}{2} p_{2} R$	
$N_{\theta}=-\frac{1}{2} p_{2} R \cos 2 \phi$	

HYDROSTATIC PRESSURE LOADING:
$N_{\phi}=-\frac{\rho_{w} R^{2}}{6}\left(-1+3 \frac{d}{R}-\frac{2 \cos ^{2} \phi}{1+\cos \phi}\right)$
$\Delta R=-\frac{\rho_{w} R^{3}}{6 E h} \sin \phi\left[3\left(1+\frac{d}{R}\right)(1-v)\right.$
$N_{\theta}=-\frac{\rho_{w} R^{2}}{6}\left(-1+3 \frac{d}{R}-\frac{4 \cos ^{2} \phi-6}{1+\cos \phi}\right)$ $\left.-6 \cos \phi-\frac{2(1+\nu)}{\sin ^{2} \phi}\left(\cos ^{3} \phi-1\right)\right]$ $\beta=\frac{\rho_{w} R^{2}}{E h} \sin \phi$

NORMAL UNIFORM LOADING:
$N_{\phi}=-\frac{1}{2} R p_{1}$
$N_{\theta}=-\frac{1}{2} R p_{1}$

$$
\Delta R=-\frac{R^{2} p_{1}}{2 E h}(1-v) \sin \phi
$$

$$
\beta=0
$$

TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLS ${ }^{\text {a }}$
Part B. Stress Resultants, Deformations, and Rotations
2. Reversed, simply supported

Internal Forces	Deformations
DEAD-WEIGHT LOADING:	$\Delta R=-\frac{R^{2} q}{E h} \sin \phi[-\cos \phi$
$N_{\phi}=\frac{R q}{1+\cos \phi}$	$\left.+\frac{1+v}{\sin ^{2} \phi}(1-\cos \phi)\right]$
$N_{\theta}=R q\left(\cos \phi-\frac{1}{1+\cos \phi}\right)$	$\beta=-\frac{R q}{E h}(2+v) \sin \phi$

UNIFORM LOADING ON PROJECTED AREA:
$N_{\phi}=\frac{1}{2} p_{2} R$

$$
\Delta R=-\frac{R^{2} p_{2}}{E h} \sin \phi\left(\frac{1+v}{2}-\cos ^{2} \phi\right)
$$

$$
\beta=-\frac{R p_{2}}{E h}(3+v) \sin \phi \cos \phi
$$

HYDROSTATIC PRESSURE LOADING:

$N_{\phi}=-\frac{\rho_{w} R^{2}}{6}\left(-1-3 \frac{d}{R}-\frac{2 \cos ^{2} \phi}{1+\cos \phi}\right)$
$\Delta R=-\frac{\rho_{w} R^{3}}{6 E h} \sin \phi\left[3\left(1-\frac{d}{R}\right)(1-v)\right.$
$N_{\theta}=\frac{\rho_{w} R^{2}}{6}\left(1+3 \frac{d}{R}+\frac{4 \cos ^{2} \phi-6}{1+\cos \phi}\right)$
$\left.-6 \cos \phi-\frac{2(1+\nu)}{\sin ^{2} \phi}\left(\cos ^{3} \phi-1\right)\right]$
$\beta=-\frac{\rho_{w} R^{2}}{E h} \sin \phi$
NORMAL UNIFORM LOADING:
$N_{\phi}=\frac{1}{2} R p_{1}$
$\begin{aligned} \Delta R & =\frac{R^{2} p_{1}}{2 E h}(1-v) \sin \phi \\ \beta & =0\end{aligned}$
$N_{\theta}=\frac{1}{2} R p_{1}$

$$
\beta=0
$$

3. Simply supported, open spherical shell

Internal Forces	Deformations
DEAD-WEIGHT LOADING: $\begin{aligned} N_{\phi}= & -\frac{R q}{\sin ^{2} \phi}\left(\cos \phi_{2}-\cos \phi\right) \\ N_{\theta}= & -R q[\cos \phi \\ & \left.-\frac{1}{\sin ^{2} \phi}\left(\cos \phi_{2}-\cos \phi\right)\right] \end{aligned}$	$\begin{aligned} \Delta R= & \frac{R^{2} q}{E h} \sin \phi[-\cos \phi \\ & \left.+\frac{1+v}{\sin ^{2} \phi}\left(\cos \phi_{2}-\cos \phi\right)\right] \\ \beta= & -\frac{R q}{E h}(2+v) \sin \phi \end{aligned}$
UNIFORM LOAD ON PROJECTED AREAS: $\begin{aligned} & N_{\phi}=-\frac{p_{2} R}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right) \\ & N_{\theta}=-\frac{p_{2} R}{2}\left(2 \cos ^{2} \phi-1+\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right) \end{aligned}$	$\begin{aligned} \Delta R= & \frac{R^{2} p_{2}}{E h} \sin \phi\left[-\cos ^{2} \phi\right. \\ & \left.+\frac{1+v}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)\right] \\ \beta= & -\frac{R p_{2}}{E h}(3+v) \sin \phi \cos \phi \end{aligned}$
HYDROSTATIC PRESSURE LOADING: $\begin{aligned} N_{\phi}= & -\frac{\rho_{w} R^{2}}{6}\left[3\left(1+\frac{d}{R}\right)\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)\right. \\ & \left.-2 \frac{\cos ^{3} \phi_{2}-\cos ^{3} \phi}{\sin ^{2} \phi}\right] \\ N_{\theta}= & -\frac{\rho_{w} R^{2}}{6}\left[3\left(1+\frac{d}{R}\right)\left(1+\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)\right. \\ & \left.+\frac{2\left(2 \cos ^{3} \phi+\cos ^{3} \phi_{2}\right)-6 \cos \phi}{\sin ^{2} \phi}\right] \end{aligned}$	$\begin{aligned} \Delta R= & -\frac{\rho_{w} R^{3}}{6 E h} \sin \phi\left\{3\left(1+\frac{d}{R}\right)[1-v\right. \\ & \left.+(1+v) \frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right]-6 \cos \phi \\ & \left.+2(1+v) \frac{\cos ^{3} \phi_{2}-\cos ^{3} \phi}{\sin ^{2} \phi}\right\} \\ \beta= & \frac{\rho_{w} R^{2}}{E h} \sin \phi \end{aligned}$

UNIFORM NORMAL LOADING:	$\Delta R=-\frac{R^{2} p_{1}}{E h} \sin \phi[1$
$N_{\phi}=-\frac{R p_{1}}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)$	$\left.-\frac{1+v}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)\right]$
$N_{\theta}=-\frac{R p_{1}}{2}\left(1+\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)$	$\beta=0$
LANTERN LOADING:	$\Delta R=\frac{W R}{E h}(1+v) \frac{\sin \phi_{2}}{\sin \phi}$
$N_{\phi}=-\frac{W \sin \phi_{2}}{\sin ^{2} \phi}$	$\beta=0$
$N_{\theta}=\frac{W \sin ^{2} \phi_{2}}{\sin ^{2} \phi}$	

4. Reversed, simply supported, open spherical shell

Internal Forces	Deformations
DEAD-WEIGHT LOADING: $\begin{aligned} N_{\phi}= & \frac{R q}{\sin ^{2} \phi}\left(\cos \phi_{2}-\cos \phi\right) \\ N_{\theta}= & R q\left[\cos \phi-\frac{1}{\sin ^{2} \phi}\left(\cos \phi_{2}\right.\right. \\ & -\cos \phi)] \end{aligned}$	$\begin{aligned} \Delta R= & -\frac{R^{2} q}{E h} \sin \phi[-\cos \phi \\ & \left.+\frac{1+v}{\sin ^{2} \phi}\left(\cos \phi_{2}-\cos \phi\right)\right] \\ \beta= & -\frac{R q}{E h}(2+v) \sin \phi \end{aligned}$
UNIFORM LOAD ON PROJECTED AREAS: $\begin{aligned} & N_{\phi}=\frac{p_{2} R}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right) \\ & N_{\theta}=\frac{p_{2} R}{2}\left(2 \cos ^{2} \phi-1+\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right) \end{aligned}$	$\begin{aligned} \Delta R= & -\frac{R^{2} p_{2}}{E h} \sin \phi\left[-\cos ^{2} \phi\right. \\ & \left.+\frac{1+v}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)\right] \\ \beta= & -\frac{R p_{2}}{E h}(3+v) \sin \phi \cos \phi \end{aligned}$

TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLS ${ }^{\text {a }}$
HYDROSTATIC PRESSURE LOADING:

$$
\begin{aligned}
& N_{\phi}=-\frac{\rho_{w} R^{2}}{6}\left[3\left(1-\frac{d}{R}\right)\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)\right] \Delta R=-\frac{\rho_{w} R^{3}}{6 E h} \sin \phi\left\{3\left(1-\frac{d}{R}\right)[1-v\right. \\
& \left.-\frac{2\left(\cos ^{3} \phi_{2}-\cos ^{3} \phi\right)}{\sin ^{2} \phi}\right] \\
& N_{\theta}=-\frac{\rho_{w} R^{2}}{6}\left[3\left(1-\frac{d}{R}\right)\left(1+\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)\right. \\
& \left.+(1+v) \frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right]-6 \cos \phi \\
& \left.+2(1+v) \frac{\cos ^{3} \phi_{2}-\cos ^{3} \phi}{\sin ^{2} \phi}\right\} \\
& \beta=-\frac{\rho_{w} R^{2}}{E h} \sin \phi
\end{aligned}
$$

UNIFORM NORMAL LOADING:
$N_{\phi}=\frac{R p_{1}}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)$
$\Delta R=\frac{R^{2} p_{1}}{E h} \sin \phi[1$
$\left.-\frac{1+v}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi}\right)\right]$

$$
\beta=0
$$

LANTERN LOADING:
$N_{\phi}=\frac{W \sin \phi_{2}}{\sin ^{2} \phi}$
$\Delta R=-\frac{W R(1+v)}{E h} \frac{\sin \phi_{2}}{\sin \phi}$
$N_{\theta}=-\frac{W \sin \phi_{2}}{\sin ^{2} \phi}$
$\beta=0$
5. External liquid over portion of simply supported shell

Internal Forces	Deformations
LOADING:	
$p_{z}=\rho_{w}(R-R \cos \phi-d)$.	
FOR POINTS ABOVE THE LIQUID LEVEL:	
$N_{\phi}=N_{\theta}=0$	
FOR POINTS BELOW THE LIQUID LEVEL:	
$N_{\phi}=-\rho_{w} \frac{R^{2}}{6}\left\{\frac{d}{R}\left[\frac{1}{\sin ^{2} \phi} \frac{d}{R}\left(3-\frac{d}{R}\right)-3\right]\right.$	
$\left.\quad+1-\frac{2 \cos ^{2} \phi}{1+\cos \phi}\right\}$	
$N_{\theta}=-\rho_{w} R^{2}\left(1-\cos \phi-\frac{d}{R}\right)-N_{\phi}$	

6. Internal liquid filling portion of simply supported shell

$$
\phi^{\prime}=180^{\circ}-\phi
$$

LOADING:

$p_{z}=-\rho_{w}\left(R-R \cos \phi^{\prime}-d\right)$.
FOR POINTS ABOVE THE LIQUID LEVEL:
$N_{\phi}=\rho_{w} \frac{d^{2}}{6}\left(3-\frac{d}{R}\right) \frac{1}{\sin ^{2} \phi^{\prime}}$
$N_{\theta}=-\rho_{w} \frac{d^{2}}{6}\left(3-\frac{d}{R}\right) \frac{1}{\sin ^{2} \phi^{\prime}}$
FOR POINTS BELOW THE LIQUID LEVEL:
$N_{\phi}=\rho_{w} \frac{R^{2}}{6}\left(3 \frac{d}{R}-1+\frac{2 \cos ^{2} \phi^{\prime}}{1+\cos \phi^{\prime}}\right)$
$N_{\theta}=\rho_{w} R^{2}\left(\frac{d}{R}-1+\cos \phi^{\prime}\right)-N_{\phi}$
${ }^{a}$ Adapted from Ref. [20.2].

TABLE 20-2 MEMBRANE CONICAL SHELL ${ }^{a}$

Notation

$$
\begin{aligned}
E= & \text { modulus of elasticity } \\
v= & \text { Poisson's ratio } \\
h= & \text { thickness of shell } \\
\rho_{w}= & \text { specific weight of liquid } \\
\nabla= & \text { surface of liquid } \\
d= & \text { distance from surface of liquid to } \\
& \text { vertex of shell } \\
q= & \text { weight of shell per unit area } \\
p_{1}= & \text { applied uniform pressure } \\
p_{2}= & \text { uniformly distributed loading } \\
& \text { on projected area } \\
p_{x}, p_{y}, p_{z}= & \text { components of applied force } \\
& \text { on shell } \\
\Delta R= & \text { horizontal displacement of shell } \\
\beta= & \text { rotation of tangent of meridian } \\
N_{\phi}, N_{\theta}= & \text { normal forces per unit length (stress } \\
& \text { resultants) in meridional and } \\
& \text { circumferential (parallel) directions }
\end{aligned}
$$

Loading and internal forces

Deformations

Part A. Loadings			
Case	Components		
$\mathbf{1}$.	$p_{x}=0$		
Uniform normal pressure p_{1}	$p_{y}=0$		
$p_{z}=p_{1}$			

TABLE 20-2 (continued) MEMBRANE CONICAL SHELL ${ }^{\text {a }}$
Part A. Loadings

3.

Uniformly distributed loading over the base

4.

Dead-weight loading

$p_{x}=q \sin \alpha_{0}$
$p_{y}=0$
$p_{z}=q \cos \alpha_{0}$
$q=$ weight of shell per unit area

TABLE 20-2 (continued) MEMBRANE CONICAL SHELL ${ }^{a}$

Part A. Loadings		
Case		
$\mathbf{5 .}$		
Hydrostatic pressure over portion of shell		

TABLE 20-2 (continued) MEMBRANE CONICAL SHELL ${ }^{\text {a }}$
Part B. Stress Resultants, Deformations, and Rotations

1. Closed conical shell (supported)

Internal Forces	Deformations
DEAD-WEIGHT LOADING: $\begin{aligned} & N_{\theta}=-\frac{q x \cos ^{2} \alpha_{0}}{\sin \alpha_{0}} \\ & N_{x}=-\frac{1}{x}\left(\frac{q x^{2}}{2 \sin \alpha_{0}}\right) \end{aligned}$	$\begin{aligned} \Delta R & =-\frac{x^{2}}{E h} q \cot \alpha_{0}\left(\cos ^{2} \alpha_{0}-\frac{v}{2}\right) \\ \beta & =\frac{q x \cos \alpha_{0}}{E h \sin ^{2} \alpha_{0}}\left[(2+v) \cos ^{2} \alpha_{0}-\frac{1}{2}-v\right] \end{aligned}$
UNIFORM LOADING ON PROJECTED AREA: $\begin{aligned} & N_{\theta}=-p_{2} \frac{\cos ^{3} \alpha_{0}}{\sin \alpha_{0}} x \\ & N_{x}=-p_{2} \frac{x}{2} \cot \alpha_{0} \end{aligned}$	$\begin{aligned} \Delta R & =-p_{2} \frac{x^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0}\left(\cos ^{2} \alpha_{0}-\frac{v}{2}\right) \\ \beta & =\frac{p_{2} x}{E h} \cot ^{2} \alpha_{0}\left[(2+v) \cos ^{2} \alpha_{0}-v-\frac{1}{2}\right] \end{aligned}$
UNIFORM NORMAL LOADING: $\begin{aligned} & N_{\theta}=-p_{1} x \cot \alpha_{0} \\ & N_{x}=-p_{1} \frac{x}{2} \cot \alpha_{0} \end{aligned}$	$\begin{aligned} \Delta R & =-p_{1} \frac{x^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0}\left(1-\frac{v}{2}\right) \\ \beta & =\frac{3}{2} \frac{p_{1} x}{E h} \cot ^{2} \alpha_{0} \end{aligned}$
HYDROSTATIC PRESSURE LOADING: $\begin{aligned} & N_{\theta}=-\rho_{w} x \cos \alpha_{0}\left(\frac{d}{\sin \alpha_{0}}+x\right) \\ & N_{x}=-\rho_{w} x \cos \alpha_{0}\left(\frac{d}{2 \sin \alpha_{0}}+\frac{x}{3}\right) \end{aligned}$	$\begin{aligned} \Delta R= & \frac{\rho_{w} x^{2}}{E h} \cos ^{2} \alpha_{0}\left[\frac{d}{\sin \alpha_{0}}\left(\frac{v}{2}-1\right)\right. \\ & \left.+x\left(\frac{v}{3}-1\right)\right] \\ \beta= & \frac{\rho_{w} x^{2}}{E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}}\left(\frac{3}{2} \frac{d}{\sin \alpha_{0}}+\frac{8}{3} x\right) \end{aligned}$

HYDROSTATIC PRESSURE OVER PORTION OF SHELL:
$N_{\theta}= \begin{cases}0 & \text { for points above } \nabla \\ -\rho_{w} x\left(x \cos \alpha_{0}-d \cot \alpha_{0}\right) & \text { for points below } \nabla\end{cases}$
$N_{x}= \begin{cases}0 & \text { for points above } \nabla \\ -\frac{\rho_{w}}{6 x}\left[\frac{\cos \alpha_{0}}{\sin ^{3} \alpha_{0}} d^{3}+x^{2}\left(2 x \cos \alpha_{0}-3 d \cot \alpha_{0}\right)\right] & \text { for points below } \nabla\end{cases}$

TABLE 20-2 (continued) MEMBRANE CONICAL SHELL ${ }^{\text {a }}$
Part B. Stress Resultants, Deformations, and Rotations
2. Closed conical shell (hanging)

Internal Forces	Deformations
DEAD-WEIGHT LOADING:	$\Delta R=\frac{q x^{2}}{E h} \cot \alpha_{0}\left(\cos ^{2} \alpha_{0}-\frac{v}{2}\right)$
$N_{\theta}=q \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}} x$	$\beta=\frac{q x \cos \alpha_{0}}{E h \sin ^{2} \alpha_{0}}\left[(2+v) \cos ^{2} \alpha_{0}-\frac{1}{2}-v\right]$
$N_{x}=\frac{q}{2 \sin \alpha_{0}} x$	

UNIFORM LOADING ON PROJECTED AREA:
$N_{\theta}=p_{2} x \frac{\cos ^{3} \alpha_{0}}{\sin \alpha_{0}}$
$\Delta R=p_{2} \frac{x^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0}\left(\cos ^{2} \alpha_{0}-\frac{\nu}{2}\right)$
$\beta=\frac{p_{2} x}{E h} \cot ^{2} \alpha_{0}\left[(2+v) \cos ^{2} \alpha_{0}-v-\frac{1}{2}\right]$
$N_{x}=p_{2} \frac{x}{2} \cot \alpha_{0}$
UNIFORM NORMAL PRESSURE:
$N_{\theta}=-p x \cot \alpha_{0}$
$N_{x}=-p_{1} \frac{x}{2} \cot \alpha_{0}$
$\Delta R=-p_{1} \frac{x^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0}\left(1-\frac{v}{2}\right)$
$\beta=-\frac{3}{2} \frac{p_{1} x}{E h} \cot ^{2} \alpha_{0}$
HYDROSTATIC PRESSURE LOADING:
$N_{\theta}=-\rho_{w} x \cos \alpha_{0}\left(x-\frac{d}{\sin \alpha_{0}}\right)$
$N_{x}=-\rho_{w} x \cos \alpha_{0}\left(\frac{x}{3}-\frac{d}{2 \sin \alpha_{0}}\right)$

$$
\begin{aligned}
\Delta R= & \frac{\rho_{w} x^{2}}{E h} \cos ^{2} \alpha_{0}\left[x\left(\frac{v}{3}-1\right)\right. \\
& \left.-\frac{d}{\sin \alpha_{0}}\left(\frac{v}{2}-1\right)\right] \\
\beta= & \frac{\rho_{w} x}{E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}}\left(-\frac{8}{3} x+\frac{3}{2} \frac{d}{\sin \alpha_{0}}\right)
\end{aligned}
$$

HYDROSTATIC PRESSURE OVER PORTION OF SHELL:
$N_{\theta}= \begin{cases}0 & \text { for points above } \nabla \\ \rho_{w} x\left(d \cot \alpha_{0}-x \cos \alpha_{0}\right) & \text { for points below } \nabla\end{cases}$
$N_{x}= \begin{cases}\frac{\rho_{w} d^{3}}{6 x} \frac{\cos \alpha_{0}}{\sin ^{3} \alpha_{0}} & \text { for points above } \nabla \\ \frac{\rho_{w} x}{2}\left(3 d \cot \alpha_{0}-2 x \cos \alpha_{0}\right) & \text { for points below } \nabla\end{cases}$

TABLE 20-2 (continued) MEMBRANE CONICAL SHELL ${ }^{\text {a }}$
Part B. Stress Resultants, Deformations, and Rotations
3. Open conical shell (supported)

Internal Forces	Deformations
DEAD-WEIGHT LOADING: $\begin{aligned} & N_{\theta}=-q \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}} x \\ & N_{x}=-\frac{q x}{2 \sin \alpha_{0}}\left[1-\left(\frac{x_{1}}{x}\right)^{2}\right] \end{aligned}$	$\begin{aligned} \Delta R= & -\frac{q x^{2}}{2 E h} \cot \alpha_{0}\left\{2 \cos ^{2} \alpha_{0}-v[1\right. \\ & \left.\left.-\left(\frac{x_{1}}{x}\right)^{2}\right]\right\} \\ \beta= & \frac{q x \cos \alpha_{0}}{2 E h \sin ^{2} \alpha_{0}}\left[2(2+v) \cos ^{2} \alpha_{0}-1\right. \\ & \left.+\left(\frac{x_{1}}{x}\right)^{2}-2 v\right] \end{aligned}$
UNIFORM LOADING ON PROJECTED AREA: $\begin{aligned} & N_{\theta}=-\frac{p_{2} x \cos ^{3} \alpha_{0}}{\sin \alpha_{0}} \\ & N_{x}=-\frac{1}{2} p_{2} x\left[1-\left(\frac{x_{1}}{x}\right)^{2}\right] \cot \alpha_{0} \end{aligned}$	$\begin{aligned} \Delta R= & -\frac{p_{2} x^{2}}{2 E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}}\left\{2 \cos ^{2} \alpha_{0}-v[1\right. \\ & \left.\left.-\left(\frac{x_{1}}{x_{2}}\right)^{2}\right]\right\} \\ \beta= & \frac{p_{2} x}{2 E h} \cot ^{2} \alpha_{0}\left[2(2+v) \cos ^{2} \alpha_{0}-2 v\right. \\ & \left.+\left(\frac{x_{1}}{x}\right)^{2}-1\right] \end{aligned}$
UNIFORM NORMAL PRESSURE: $\begin{aligned} & N_{\theta}=-p_{1} x \cot \alpha_{0} \\ & N_{x}=-\frac{p_{1}}{2} x \cot \alpha_{0}\left[1-\left(\frac{x_{1}}{x}\right)^{2}\right] \end{aligned}$	$\begin{aligned} \Delta R= & -\frac{p_{1}}{E h} x^{2} \cos \alpha_{0} \cot \alpha_{0}\left\{1-\frac{v}{2}[1\right. \\ & \left.\left.-\left(\frac{x_{1}}{x}\right)^{2}\right]\right\} \\ \beta= & \frac{p_{1} x}{2 E h} \cot ^{2} \alpha_{0}\left[3+\left(\frac{x_{1}}{x}\right)^{2}\right] \end{aligned}$

TABLE 20-2 (continued) MEMBRANE CONICAL SHELL ${ }^{a}$

Internal Forces	Deformations
EQUALLY DISTRIBUTED LOADING ALONG OPENING EDGE (LANTERN LOAD): $\begin{aligned} & N_{\theta}=0 \\ & N_{x}=-\frac{W}{\sin \alpha_{0}} \frac{x_{1}}{x} \end{aligned}$	$\begin{aligned} \Delta R & =-\frac{\nu W x_{1} \cot \alpha_{0}}{E h} \\ \beta & =-\frac{W}{E h} \frac{x_{1}}{x} \frac{\cot \alpha_{0}}{\sin \alpha_{0}} \end{aligned}$
HYDROSTATIC PRESSURE LOADING: $\begin{aligned} N_{\theta}= & -\rho_{w} x \cos \alpha_{0}\left(\frac{d}{\sin \alpha_{0}}+x\right) \\ N_{x}= & -\rho_{w} x \cos \alpha_{0}\left\{\frac{d}{2 \sin \alpha_{0}}[1\right. \\ & \left.\left.-\left(\frac{x_{1}}{x}\right)^{2}\right]+\frac{x}{3}\left[1-\left(\frac{x_{1}}{x}\right)^{3}\right]\right\} \end{aligned}$	$\begin{aligned} \Delta R= & \frac{\rho_{w} x^{2}}{E h} \cos ^{2} \alpha_{0}\left\{v \left[\frac{d}{2 \sin \alpha_{0}}\left[1-\left(\frac{x_{1}}{x}\right)^{2}\right]\right.\right. \\ & \left.\left.+\frac{x}{3}\left[1-\left(\frac{x_{1}}{x}\right)^{3}\right]\right]-\frac{d}{\sin \alpha_{0}}-x\right\} \\ \beta= & \frac{\rho_{w} x}{E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}}\left\{\frac{d}{2 \sin \alpha_{0}}\left[3+\left(\frac{x_{1}}{x}\right)^{2}\right]\right. \\ & \left.+\frac{x}{3}\left[8+\left(\frac{x_{1}}{x}\right)^{3}\right]\right\} \end{aligned}$

TABLE 20-2 (continued) MEMBRANE CONICAL SHELL ${ }^{\text {a }}$
Part B. Stress Resultants, Deformations, and Rotations
4. Open conical shell (hanging)

Internal Forces	Deformations
DEAD-WEIGHT LOADING: $\begin{aligned} & N_{\theta}=q \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}} x \\ & N_{x}=\frac{q x}{2 \sin \alpha_{0}}\left[1-\left(\frac{x_{1}}{x}\right)^{2}\right] \end{aligned}$	$\begin{aligned} \Delta R= & \frac{q x^{2} \cot \alpha_{0}}{2 E h}\left\{2 \cos ^{2} \alpha_{0}-v\left[1-\left(\frac{x_{1}}{x}\right)^{2}\right]\right\} \\ \beta= & \frac{q x \cos \alpha_{0}}{2 E h \sin ^{2} \alpha_{0}}\left[2(2+v) \cos ^{2} \alpha_{0}-1\right. \\ & \left.+\left(\frac{x_{1}}{x}\right)^{2}-2 v\right] \end{aligned}$
UNIFORM LOADING ON PROJECTED AREA: $\begin{aligned} & N_{\theta}=\frac{p_{2} x \cos ^{3} \alpha_{0}}{\sin \alpha_{0}} \\ & N_{x}=\frac{1}{2} p_{2} x\left[1-\left(\frac{x_{1}}{x}\right)^{2}\right] \cot \alpha_{0} \end{aligned}$	$\begin{aligned} \Delta R= & \frac{p_{2} x^{2}}{2 E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}}\left\{2 \cos ^{2} \alpha_{0}-v[1\right. \\ & \left.\left.-\left(\frac{x_{1}}{x}\right)^{2}\right]\right\} \\ \beta= & \frac{p_{2} x^{2}}{2 E h} \cot ^{2} \alpha_{0}\left[2(2+v) \cos ^{2} \alpha_{0}-2 v\right. \\ & \left.+\left(\frac{x_{1}}{x}\right)^{2}-1\right] \end{aligned}$
UNIFORM NORMAL PRESSURE: $\begin{aligned} & N_{\theta}=-p_{1} x \cot \alpha_{0} \\ & N_{x}=-\frac{p_{1}}{2} x \cot \alpha_{0}\left[1-\left(\frac{x_{1}}{x}\right)^{2}\right] \end{aligned}$	$\begin{aligned} \Delta R= & -\frac{p_{1} x^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0}\left\{1-\frac{v}{2}[1\right. \\ & \left.\left.-\left(\frac{x_{1}}{x}\right)^{2}\right]\right\} \\ \beta= & -\frac{p_{1} x}{2 E h} \cot ^{2} \alpha_{0}\left[3+\left(\frac{x_{1}}{x}\right)^{2}\right] \end{aligned}$

TABLE 20-2 (continued) MEMBRANE CONICAL SHELL ${ }^{\text {a }}$

Internal Forces	Deformations
EQUALLY DISTRIBUTED LOADING ALONG OPENING EDGE (LANTERN LOAD):	$\Delta R=-v \frac{W x_{1}}{E h} \cot \alpha_{0} \quad \beta=-\frac{W}{E h} \frac{x_{1}}{x} \frac{\cot \alpha_{0}}{\sin \alpha_{0}}$
$N_{\theta}=0 \quad N_{x}=\frac{W}{\sin \alpha_{0}} \frac{x_{1}}{x}$	
HYDROSTATIC PRESSURE LOADING:	$\Delta R=\frac{\rho_{w} x^{2}}{E h} \cos ^{2} \alpha_{0}\left\{\nu\left[\frac{x}{3}\left[1-\left(\frac{x_{1}}{x}\right)^{3}\right]\right.\right.$
$N_{\theta}=-\rho_{w} x \cos \alpha_{0}\left(x-\frac{d}{\sin \alpha_{0}}\right)$	$\left.\left.-\frac{d}{2 \sin \alpha_{0}}\left[1-\left(\frac{x_{1}}{x}\right)^{2}\right]\right]+\frac{d}{\sin \alpha_{0}}-x\right\}$
$N_{x}=-\rho_{w} x \cos \alpha_{0}\left\{\frac{x}{3}\left[1-\left(\frac{x_{1}}{x}\right)^{3}\right]\right.$	$\beta=\frac{\rho_{w} x}{E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}}\left\{\frac{d}{2 \sin \alpha_{0}}\left[3+\left(\frac{x_{1}}{x}\right)^{2}\right]\right.$
$\left.\quad-\frac{d}{2 \sin \alpha_{0}}\left[1-\left(\frac{x_{1}}{x}\right)^{2}\right]\right\}$	$\left.-\frac{x}{3}\left[8+\left(\frac{x_{1}}{x}\right)^{3}\right]\right\}$

${ }^{a}$ Adapted from Ref. [20.2].

TABLE 20-3 MEMBRANE CYLINDRICAL SHELLS ${ }^{a}$

Notation

$$
\begin{aligned}
E & =\text { modulus of elasticity } \\
R & =\text { radius of cylinder } \\
\lambda_{p}, \alpha, \beta, \lambda_{p i}, \alpha_{i} & =\text { constants } \\
\xi & =x / L \\
\nu & =\text { Poisson's ratio } \\
h & =\text { thickness of shell } \\
L & =\text { length of cylinder } \\
u, v, w & =\text { displacement in } x, y, \text { and } z \text { directions } \\
N_{x}, N_{\theta} & =\text { normal forces per unit length (stress resultants) } \\
& \text { in } x \text { and circumferential (parallel) directions } \\
N_{x \theta}= & =\text { shear forces per unit length (stress resultants) } \\
& \text { with respect to } x \text { and circumferential directions }
\end{aligned}
$$

The boundaries of the shell are free to deflect normal to the shell middle surface and to rotate.

Linear loading: $\quad p_{z}=-p_{0}\left(1+\lambda_{p}-\xi\right)$

Trigonometric loading: $\quad p_{z}=-p_{0}\left(\sin \alpha \xi+\lambda_{p} \cos \beta \xi\right)$

$$
\begin{aligned}
\text { Exponential loading: } & p_{z}=-p_{0} \sum_{i} \lambda_{p i} e^{-\alpha_{i} \xi} \\
\text { Dead-weight loading: } & p_{x}=-p_{0}(1-\xi) \\
\text { Periodical loading: } & p_{z}=-p_{0} \sum_{i} \lambda_{p i} \cos \alpha_{i} \theta
\end{aligned}
$$

TABLE 20-3 (continued) MEMBRANE CYLINDRICAL SHELLS ${ }^{a}$

Case	Internal Forces	Deformations
1.		
Cylindrical shell under linear loading	$N_{\theta}=p_{0}\left(1+\lambda_{p}-\xi\right) R$	$u=\frac{1}{E h}\left[-v p_{0} R L \xi\left(1+\lambda_{p}-\frac{1}{2} \xi\right)\right]$
$w=-\frac{1}{E h}\left[p_{0} R^{2}\left(1+\lambda_{p}-\xi\right)\right]$		

TABLE 20-3 (continued) MEMBRRANE CYLINDRICAL SHELLS ${ }^{a}$

Case	Internal Forces	Deformations
4. Linearly varying loading in x direction $p_{x}=-p_{0}(1-\xi)$	$N_{x}=-p_{0} L\left(\frac{1}{2}-\xi+\frac{1}{2} \xi^{2}\right)$	$\begin{aligned} & u=-\frac{1}{E h}\left[p_{0} L^{2} \xi\left(\frac{1}{2}-\frac{1}{2} \xi+\frac{1}{6} \xi^{2}\right)\right] \\ & w=\frac{1}{E h} v p_{0} R L\left(-\frac{1}{2}+\xi-\frac{1}{2} \xi^{2}\right) \end{aligned}$
5. Cylindrical shell under circumferential loading Loads reacted at lower base	$N_{x \theta}=p_{y} L(1-\xi)$	$v=\frac{1}{E h}\left[2(1+v) p_{y} L^{2}\left(\xi-\frac{1}{2} \xi^{2}\right)\right]$

[^35]
TABLE 20-4 MEMBRANE TOROIDAL SHELLS ${ }^{\text {a }}$

E	Nodulus of elasticity
ρ_{w}	$=$ specific weight of liquid
h	$=$ thickness of shell
ϕ_{1}, ϕ_{2}	$=$ meridional angle of lower
	and upper edge
q	$=$ dead weight
p_{1}	$=$ applied uniform pressure
p_{2}	$=$ uniformly distributed loading
v	on projected area
R	$=$ radisson's ratio
ϕ	$=$ meridional angle of point of interest
$\Delta R, v$	$=$ horizontal and vertical displacements
β	$=$ rotation of tangent at meridian
∇	$=$ surface of liquid
W	$=$ lantern loading
d	$=$ distance from center of curvature of meridian
N_{ϕ}, N_{θ}	$=$ to surface of liquid
	(stress ferce per unitants) in length
	and circumferentional (parallel) directions

The shells in this table are formed by rotating a circle (or a segment of a circle) around an axis; b is the distance from the axis to the center of the circle.

See Table 20-1, part A, for definitions of the loadings.

Part A. Stress Resultants, Deformations, and Rotations for Toroidal Shells

Case	Internal Forces	
1.		
Toroidal shell with internal pressure	$N_{\phi}=\frac{p_{1} R}{2}\left(\frac{2 b+R \sin \phi}{b+R \sin \phi}\right)$ $N_{\theta}=\frac{p_{1} R}{2}$	$\Delta R=\frac{p_{1} R^{2}}{2 E h}\left[\frac{b}{R}(1-2 v)+(1-v) \sin \phi\right]$

TABLE 20－4（continued）MEMBRANE TOROIDAL SHELLS ${ }^{\text {a }}$

$$
\begin{aligned}
& \begin{array}{l|l|}
\substack{\text { 3. } \\
\text { Toroidal segment } \\
\leftarrow b \longrightarrow} & N_{\phi}=\frac{p_{1} R}{2}\left(\frac{b}{R \sin \phi}-1\right)
\end{array} \Delta R=\frac{p_{1} R^{2}}{2 E h}\left[-\frac{b}{R}(1-2 v)+(1-v) \sin \phi-\frac{b^{2}(1+v)}{R^{2} \sin \phi}+\frac{b^{3}}{R^{3} \sin \phi}\right] \\
& \xrightarrow[\infty]{N_{\phi}} \underset{\sim}{\sim} \\
& \left.-\frac{b^{2}}{R^{2}}\left(1-\frac{b}{3 R}\right) \frac{\cot \phi}{\sin ^{2} \phi}-\frac{b^{2}}{2 R^{2}}(1+2 \nu) \ln \left(\tan \frac{\phi}{2}\right)\right] \\
& \text { Approximate useful } \\
& \beta=-\frac{p_{1} R \cot \phi}{2 E h \sin \phi}\left[\frac{b}{R}\left(\frac{2 b}{R \sin \phi}+1\right)\left(\frac{b}{R \sin \phi}-1\right)\right]
\end{aligned}
$$

Part B. Stress Resultants for Toroidal Domes

1. Pointed dome

Loading Condition	N_{ϕ}	N_{θ}
DEAD-WEIGHT LOADING:	$-q R \frac{c_{0}-c-\left(\phi-\phi_{0}\right) s_{0}}{\left(s-s_{0}\right) s}$	$-q \frac{R}{\sin ^{2} \phi}\left[\left(\phi-\phi_{0}\right) \sin \phi_{0}-\left(\cos \phi_{0}-\cos \phi\right)\right.$
$p_{x}=q \sin \phi$	$s=\sin \phi, s_{0}=\sin \phi_{0}$, $p_{z}=q \cos \phi$	 $c=\cos \phi, c_{0}=\cos \phi_{0}$
UNIFORMLY DISTRIBUTED VERTICAL LOADING ON PROJECTED AREA:	$-p_{2} \frac{R}{2}\left(1-\frac{\sin ^{2} \phi_{0}}{\sin ^{2} \phi}\right)$	$-p_{2} \frac{R}{2}(\cos 2 \phi+2 \sin \phi \sin \phi]$
$p_{x}=p_{2} \sin \phi \cos \phi$		
$p_{z}=p_{2} \cos ^{2} \phi$		

2. Toroid surface

Loading Condition	N_{ϕ}	N_{θ}
DEAD-WEIGHT LOADING:	$-q R \frac{1-\cos \phi+\phi \sin \phi_{0}}{\sin \phi\left(\sin \phi+\sin \phi_{0}\right)}$	$-q R\left[\cos \phi-\frac{1-\cos \phi}{\sin ^{2} \phi}+\sin \phi_{0}\left(\cot \phi-\frac{\phi}{\sin ^{2} \phi}\right)\right]$
$p_{x}=q \sin \phi$		
$p_{z}=q \cos \phi$		

TABLE 20-4 (continued) MEMBRANE TOROIDAL SHELLS ${ }^{\text {a }}$

UNIFORMLY DISTRIBUTED VERTICAL LOADING ON PROJECTED AREA: $p_{x}=p_{2} \sin \phi \cos \phi$ $p_{z}=p_{2} \cos ^{2} \phi$

7 8 0 0 0 \vdots	HYDROSTATIC PRESSURE LOADING: $p_{z}=\rho_{w}(d-R \cos \phi)$	$\begin{aligned} & -\frac{\rho_{w} R}{(b+R \sin \phi) \sin \phi}\left[-b d\left(\sin \phi_{0}-\sin \phi\right)\right. \\ & +\frac{R d}{2}\left(\cos ^{2} \phi_{0}-\cos ^{2} \phi\right) \\ & +\frac{b R}{2}\left(\sin \phi_{0} \cos \phi_{0}-\sin \phi \cos \phi-\phi+\phi_{0}\right) \\ & \left.-\frac{R^{2}}{3}\left(\cos ^{3} \phi_{0}-\cos ^{3} \phi\right)\right] \end{aligned}$ For $\phi_{0}=-\phi_{1},{ }^{b}$ $\begin{aligned} & -\frac{\rho_{w} R}{(b+R \sin \phi) \sin \phi}\left[b d \sin \phi+\frac{R d}{2} \sin ^{2} \phi\right. \\ & -\frac{b R}{2}(\sin \phi \cos \phi+\phi) \\ & \left.-\frac{R^{2}}{3}\left(1-\cos ^{3} \phi\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{\rho_{w}}{\sin ^{2} \phi}[(d-R \cos \phi)(b+R \sin \phi) \sin \phi \\ & +b d\left(\sin \phi_{0}-\sin \phi\right)-\frac{R d}{2}\left(\cos ^{2} \phi_{0}-\cos ^{2} \phi\right) \\ & -\frac{b R}{2}\left(\sin \phi_{0} \cos \phi_{0}-\sin \phi \cos \phi-\phi+\phi_{0}\right) \\ & \left.+\frac{R^{2}}{3}\left(\cos ^{3} \phi_{0}-\cos ^{3} \phi\right)\right] \end{aligned}$ For $\phi_{0}=-\phi_{1},{ }^{b}$ $\begin{aligned} & -\frac{\rho_{w}}{\sin ^{2} \phi}\left[\frac{R d}{2} \sin ^{2} \phi-\frac{b R}{2}(\sin \phi \cos \phi-\phi)\right. \\ & \left.-R^{2}\left(\cos \phi \sin ^{2} \phi-\frac{1-\cos ^{3} \phi}{3}\right)\right] \end{aligned}$

${ }^{a}$ Adapted from Ref. [20.2].
${ }^{b}$ Symmetrical cross section.

TABLE 20-5 VARIOUS MEMBRANE SHELLS OF REVOLUTION ${ }^{a}$

Notation	
$R=$	radius of curvature of meridian
	at a point
$\phi=$	meridional angle of point of interest
ρ_{w}	$=$ specific weight of liquid
$p_{1}=$	applied uniformly distributed load
$p_{2}=$	uniformly distributed loading
	on projected area
$q=$	dead weight
$r_{0}=$	radius of curvature at vertex
$\phi_{0}=$	meridional angle of apex
$x_{0}=$	radius of top opening
$\nabla=$	surface of liquid
$d=$	distance from surface
	of liquid to vertex of shell
$p_{x}, p_{y}, p_{z}=$	components of applied load in x (meridional),
	y (parallel), and z (normal) directions
$N_{\phi}, N_{\theta}=$	membrane forces per unit length
	(positive if carrying tension in wall)

See Table 20-1, part A, for definitions of loadings.

1. Parabola		
Loading Condition	N_{ϕ}	N_{θ}
DEAD-WEIGHT LOADING: $\begin{aligned} p_{x} & =q \sin \phi \\ p_{z} & =q \cos \phi \end{aligned}$	$-q \frac{r_{0}\left(1-\cos ^{3} \phi\right)}{3 \sin ^{2} \phi \cos ^{2} \phi}$	$-q \frac{r_{0}\left(2-3 \cos ^{2} \phi+\cos ^{3} \phi\right)}{3 \sin ^{2} \phi}$
UNIFORMLY DISTRIBUTED VERTICAL LOADING ON THE PROJECTED AREA: $\begin{aligned} p_{x} & =p_{2} \sin \phi \cos \phi \\ p_{z} & =p_{2} \cos ^{2} \phi \end{aligned}$	$-p_{2} \frac{r_{0}}{2} \frac{1}{\cos \phi}$	$-p_{2} \frac{r_{0}}{2} \cos \phi$
UNIFORM NORMAL LOADING: $p_{z}=p_{1}$	$-p_{1} \frac{r_{0}}{2} \frac{1}{\cos \phi}$	$-p_{1} \frac{r_{0}}{2} \frac{1+\sin ^{2} \phi}{\cos \phi}$

TABLE 20-5 (continued) VARIOUS MEMBRANE SHELLS OF REVOLUTION ${ }^{a}$

Loading Condition	N_{ϕ}	N_{θ}
HYDROSTATIC PRESSURE LOADING:	$-\rho_{w} \frac{r_{0}}{2}(d$	$-\rho_{w} \frac{r_{0}}{2}\left[d\left(2 \tan ^{2} \phi+1\right)\right.$
$\begin{aligned} & p_{z}=\rho_{w}\left(d+\frac{r_{0}}{2} \tan ^{2} \phi\right) \\ & =\quad \nabla v \\ & =-d \end{aligned}$	$\left.+\frac{r_{0}}{4} \tan ^{2} \phi\right) \frac{1}{\cos \phi}$	$\begin{aligned} & +r_{0} \tan ^{2} \phi\left(\tan ^{2} \phi\right. \\ & \left.\left.+\frac{3}{4}\right)\right] \cos \phi \end{aligned}$

2. Cycloid

DEAD-WEIGHT LOADING:
$p_{x}=q \sin \phi$
$p_{z}=q \cos \phi$
$-2 q r_{0} \frac{\phi s+c-\frac{1}{3} c^{3}-\frac{2}{3}}{(2 \phi+\sin 2 \phi) \sin \phi}$
$s=\sin \phi, c=\cos \phi$
$-q r_{0}\left(\frac{1}{3} \frac{1-\cos ^{3} \phi}{\sin ^{2} \phi \cos \phi}\right.$
$\left.-\frac{\phi}{2} \tan \phi-\frac{1}{2} \sin ^{2} \phi\right)$
$-p_{2} \frac{r_{0}}{16} \frac{2 \phi+\sin 2 \phi}{\sin \phi}$
$\times\left(4 \cos ^{2} \phi-\frac{2 \phi}{\sin 2 \phi}-1\right)$
3. Modified elliptical shell

Equation of meridian: $\quad x_{2}=-\int \frac{x_{1}^{3} d x_{1}}{\sqrt{\left(1-x_{1}^{2}\right)\left(x_{1}^{2}-a_{1}\right)\left(x_{1}^{2}-a_{2}\right)}}$
where

$$
\begin{aligned}
a_{1} & =\frac{1}{2}\left(\sqrt{1-\frac{4 x_{0}^{2}}{1-x_{0}^{2}}}-1\right) \quad a_{2}=-\frac{1}{2}\left(\sqrt{1+\frac{4 x_{0}^{2}}{1-x_{0}^{2}}}+1\right) \\
m & =\left(1-x_{1}^{2}\right)\left(x_{1}^{2}-a_{1}\right)\left(x_{1}^{2}-a_{2}\right) \quad n=1+\frac{x_{1}^{6}}{m}
\end{aligned}
$$

TABLE 20-5 (continued) VARIOUS MEMBRANE SHELLS OF REVOLUTION ${ }^{a}$

Loading Condition	N_{ϕ}	N_{θ}
UNIFORM NORMAL LOADING: $\frac{a p_{1} n^{1 / 2} m^{1 / 2}}{2 x_{1}^{2}}$ $p_{z}=p_{1}$ $N_{\phi}\left(2-\frac{x_{1}}{n}\right)$ For the bottom edge, $\frac{1}{2} p_{1} a$ $N_{\phi}\left(2-\frac{x_{1}}{n}\right)$		

4. Pointed shell Solution is not valid at apex. $m=1-\frac{\sin \phi_{0}}{\sin \phi}$
UNIFORM NORMAL LOADING: $p_{z}=p_{1}$

${ }^{a}$ Adapted from Ref. [20.2].

Notation

$$
v=\text { Poisson's ratio }
$$

$h=$ thickness of shell
$\beta=$ angle of rotation
$M=$ applied moment per unit length

$\phi_{1}, \phi_{2}=$ meridional angles of lower and upper edges
$F_{i}(\alpha), \bar{F}_{i}=$ factors defined in Table 20-9
$Q_{\phi}=$ shear force per unit length
$R=$ radius of shell
$\Delta R=$ horizontal displacement
$H=$ applied horizontal force per unit length
$\phi=$ meridional angle of point of interest
$M_{\phi}, M_{\theta}=$ moments per unit length
$N_{\phi}, N_{\theta}=$ membrane forces per unit length
$\alpha=\phi_{1}-\phi \quad \alpha_{0}=\phi_{1}-\phi_{2} \quad k=\left[3\left(1-v^{2}\right)(R / h)^{2}\right]^{1 / 4}$

Case	Internal Forces	Deformations
1. Spherical cap subject to edge horizontal load	$\begin{aligned} Q_{\phi}= & H\left[\sqrt{2} e^{-k \alpha} \sin \phi_{1} \cos \left(k \alpha+\frac{1}{4} \pi\right)\right] \\ N_{\phi}= & -Q_{\phi} \cot \phi \\ N_{\theta}= & -H\left(2 k e^{-k \alpha} \sin \phi_{1} \cos k \alpha\right) \\ M_{\phi}= & -H\left(\frac{R}{k} e^{-k \alpha} \sin \phi_{1} \sin k \alpha\right) \\ M_{\theta}= & H\left[\frac{R}{k^{2} \sqrt{2}} e^{-k \alpha} \sin \phi_{1} \cot \phi \sin (k \alpha\right. \\ & \left.\left.+\frac{1}{4} \pi\right)\right]+\nu M_{\phi} \end{aligned}$	$\begin{aligned} E h \beta= & H\left[2 \sqrt{2} k^{2} e^{-k \alpha} \sin \phi_{1} \sin \left(k \alpha+\frac{1}{4} \pi\right)\right] \\ E h(\Delta R)= & -H R e^{-k \alpha} \sin \phi_{1}[2 k \sin \phi \cos k \alpha \\ & \left.-\sqrt{2} v \cos \phi \cos \left(k \alpha+\frac{1}{4} \pi\right)\right] \end{aligned}$ For $\alpha=0$ and $\phi=\phi_{1}$: $\begin{aligned} E h \beta & =H\left(2 k^{2} \sin \phi_{1}\right) \\ E h(\Delta R) & =-H\left[R \sin \phi_{1}\left(2 k \sin \phi_{1}-v \cos \phi_{1}\right)\right] \end{aligned}$ For $\phi_{1}=90^{\circ}$: $\begin{aligned} E h \beta & =2 k^{2} H \\ E h(\Delta R) & =-2 R k H \end{aligned}$

TABLE 20-6 (continued) SPHERICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa ${ }^{a}$

2.

Spherical cap subject to edge moment

$$
\begin{aligned}
Q_{\phi} & =M\left(\frac{2 k}{R} e^{-k \alpha} \sin k \alpha\right) \\
N_{\phi} & =-Q_{\phi} \cot \phi \\
N_{\theta} & =M\left[2 \sqrt{2} \frac{k^{2}}{R} e^{-k \alpha} \cos \left(k \alpha+\frac{1}{4} \pi\right)\right] \\
M_{\phi} & =M\left[\sqrt{2} e^{-k \alpha} \sin \left(k \alpha+\frac{1}{4} \pi\right)\right] \\
M_{\theta} & =M\left(\frac{1}{k} e^{-k \alpha} \cot \phi \cos k \alpha\right)+\nu M_{\phi}
\end{aligned}
$$

$$
E h \beta=-M\left(\frac{4 k^{3}}{R} e^{-k \alpha} \cos k \alpha\right)
$$

$$
E h \Delta R=M R \sin \phi\left(N_{\theta}-v N_{\phi}\right)
$$

$$
\begin{aligned}
= & 2 M k e^{-k \alpha}\left[\sqrt{2} k \sin \phi \cos \left(k \alpha+\frac{1}{4} \pi\right)\right. \\
& +v \cos \phi \sin k \alpha]
\end{aligned}
$$

For $\alpha=0$ and $\phi=\phi_{1}$:

$$
E h \beta=-M\left(\frac{4 k^{3}}{R}\right) \quad E h(\Delta R)=M\left(2 k^{2} \sin \phi_{1}\right)
$$

$$
\text { For } \phi_{1}=90^{\circ} \text { : }
$$

$$
E h \beta=-M \frac{4 k^{3}}{R} \quad E h(\Delta R)=2 M k^{2}
$$

$$
\Delta R=H \frac{R k}{E h} \sin \phi \sin \phi_{1}\left[-F_{9}(\alpha)-2 \frac{\bar{F}_{4}}{\bar{F}_{1}} F_{7}(\alpha)\right.
$$

$$
\left.+\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{10}(\alpha)\right]
$$

$$
\beta=H \frac{2 k^{2}}{E h} \sin \phi_{1}\left[-F_{8}(\alpha)-\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{9}(\alpha)+\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{7}(\alpha)\right]
$$

Boundary conditions:

$$
\begin{aligned}
\alpha & =0\left(\phi=\phi_{1}\right) \quad M_{\phi}=0 \\
H & =-Q_{\phi} \sin \phi_{1}-N_{\phi} \cos \phi_{1} \\
\alpha & =\alpha_{0}\left(\phi=\phi_{2}\right) \\
M_{\phi} & =0 \quad Q_{\phi}=0
\end{aligned}
$$

$$
\begin{aligned}
N_{\phi}= & -H \sin \phi_{1} \cot \phi\left[F_{7}(\alpha)-\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{10}(\alpha)+\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{8}(\alpha)\right] \\
N_{\theta}= & H k \sin \phi_{1}\left[-F_{9}(\alpha)-2 \frac{\bar{F}_{4}}{\bar{F}_{1}} F_{7}(\alpha)+\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{10}(\alpha)\right] \\
Q_{\phi}= & -H \sin \phi_{1}\left[F_{7}(\alpha)-\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{10}(\alpha)+\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{8}(\alpha)\right] \\
M_{\phi}= & H \frac{R}{2 k} \sin \phi_{1}\left[-F_{10}(\alpha)+2 \frac{\bar{F}_{4}}{\bar{F}_{1}} F_{8}(\alpha)-\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{9}(\alpha)\right] \\
M_{\theta}= & -H \frac{R}{2 k} \sin \phi_{1}\left\{-\left[\frac{\cot \phi}{k} F_{8}(\alpha)-v F_{10}(\alpha)\right]\right. \\
& +\frac{\bar{F}_{4}}{\bar{F}_{1}}\left[\frac{\cot \phi}{k} F_{9}(\alpha)-2 v F_{8}(\alpha)\right] \\
& \left.+\frac{\bar{F}_{2}}{\bar{F}_{1}}\left[\frac{\cot \phi}{k} F_{7}(\alpha)+v F_{9}(\alpha)\right]\right\}
\end{aligned}
$$

TABLE 20-6 (continued) SPHERICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

$$
\begin{aligned}
& \hline \text { Boundary conditions: } \\
& \alpha=0 \quad M_{\phi}=-M \\
& Q_{\phi}=0 \\
& \alpha=\alpha_{0} \\
& M_{\phi}=0 \quad Q_{\phi}=0
\end{aligned}
$$

$$
\begin{aligned}
M_{\phi}= & -M\left[\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{13}(\alpha)-\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{14}(\alpha)+\frac{\bar{F}_{3}}{\bar{F}_{1}} F_{9}(\alpha)\right] \\
M_{\theta}= & M\left\{\frac{\bar{F}_{6}}{\bar{F}_{1}}\left[\frac{\cot \phi}{k} F_{16}(\alpha)-v F_{13}(\alpha)\right]\right. \\
& -\frac{\bar{F}_{5}}{\bar{F}_{1}}\left[\frac{\cot \phi}{k} F_{15}(\alpha)-v F_{14}(\alpha)\right] \\
& \left.-\frac{\bar{F}_{3}}{\bar{F}_{1}}\left[\frac{\cot \phi}{k} F_{7}(\alpha)+v F_{9}(\alpha)\right]\right\}
\end{aligned}
$$

6.

Open spherical shell with top moment

Boundary conditions:
$\alpha=0\left(\phi=\phi_{1}\right)$
$M_{\phi}=0 \quad Q_{\phi}=0$
$\alpha=\alpha_{0}\left(\phi=\phi_{2}\right)$
$M_{\phi}=M \quad Q_{\phi}=0$

$$
\begin{aligned}
N_{\phi}= & M \frac{2 k}{R} \cot \phi\left[\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{10}(\alpha)-\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{8}(\alpha)\right] \\
N_{\theta}= & M \frac{2 k^{2}}{R}\left[-2 \frac{\bar{F}_{8}}{\bar{F}_{1}} F_{7}(\alpha)+\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{10}(\alpha)\right] \\
Q_{\phi}= & -M \frac{2 k}{R}\left[-\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{10}(\alpha)+\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{8}(\alpha)\right] \\
M_{\phi}= & M\left[2\left[\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{8}(\alpha)-\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{9}(\alpha)\right]\right. \\
M_{\theta}= & -M\left\{\frac{\bar{F}_{8}}{\bar{F}_{1}}\left[\frac{\cot \phi}{k} F_{9}(\alpha)-v 2 F_{8}(\alpha)\right]\right. \\
& \left.+\frac{\bar{F}_{10}}{\bar{F}_{1}}\left[\frac{\cot \phi}{k} F_{7}(\alpha)+v F_{9}(\alpha)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta R=M \frac{2 k^{2}}{E h} \sin \phi\left[-2 \frac{\bar{F}_{8}}{\bar{F}_{1}} F_{7}(\alpha)+\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{10}(\alpha)\right] \\
& \beta=M \frac{4 k^{3}}{E h R}\left[\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{9}(\alpha)+\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{7}(\alpha)\right]
\end{aligned}
$$

$$
I_{\phi}=M \quad Q_{\phi}=0
$$

TABLE 20-7 CONICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

Notation
$E=$ modulus of elasticity
$h=$ thickness of shell
$R=$ distance from point of interest to shell axis
$\Delta R=$ horizontal displacement at ϕ
$H=$ applied horizontal force per unit length
$F_{i}(\xi), \bar{F}_{i}=$ factors defined in Table 20-9
$v=$ Poisson's ratio
$\phi=$ angle between normal of shell and axis
$R_{0}=$ radius of base circle
$\beta=$ rotation of meridian
$M=$ applied moment per unit length
$\alpha=$ coefficient that locates section of interest (this is not related to the angle α_{0} shown in the figure)
$k= \begin{cases}\ell\left[3\left(1-v^{2}\right)\right]^{1 / 4} /\left(\sqrt{R_{0} h} \sin \phi\right) & \text { for conical cap } \\ {\left[3\left(1-v^{2}\right)\right]^{1 / 4} /\left(h x_{m} \cot \alpha_{0}\right)^{1 / 2}} & \text { for open conical shell }\end{cases}$

$=\frac{E h^{3}}{12\left(1-v^{2}\right)} \quad x_{m}=L-\frac{\bar{L}}{2} \quad \xi=\frac{\bar{x}}{\bar{L}}$

TABLE 20-7 (continued) CONICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa ${ }^{\text {a }}$

Case	Internal Forces	Deformations
1. Conical shell with horizontal load	$\begin{aligned} N_{\phi} & =-H\left[\sqrt{2} \cos \phi e^{-k \alpha} \cos \left(k \alpha+\frac{1}{4} \pi\right)\right] \\ N_{\theta} & =-H\left(\frac{2 R k \sin ^{2} \phi}{\ell} e^{-k \alpha} \cos k \alpha\right) \\ M_{\phi} & =-H \frac{\ell}{k} e^{-k \alpha} \sin k \alpha \\ M_{\theta} & =\frac{H \ell^{2}}{\sqrt{2} R k^{2}} \frac{\cot \phi}{\sin \phi} e^{-k \alpha} \sin \left(k \alpha+\frac{1}{4} \pi\right)-v M_{\phi} \\ Q_{x} & =H \sqrt{2} \sin \phi e^{-k \alpha} \cos \left(k \alpha+\frac{1}{4} \pi\right) \end{aligned}$	$\begin{aligned} \Delta R & =\frac{-H \ell^{3} e^{-k \alpha}}{2 D k^{3} \sin \phi}\left[\cos k \alpha-v \frac{\ell}{\sqrt{2} R k} \frac{\cot \phi}{\sin \phi} \cos \left(k \alpha+\frac{1}{4} \pi\right)\right] \\ \beta & =\frac{H \ell^{2} e^{-k \alpha} \sin \left(k \alpha+\frac{1}{4} \pi\right)}{\sqrt{2} D k^{2} \sin \phi} \end{aligned}$ For $\alpha=0$: $\begin{aligned} \Delta R & =\frac{-H \ell^{3}}{2 D k^{3} \sin \phi}\left(1-\frac{\nu \ell \cot \phi}{2 R k \sin \phi}\right) \\ \beta & =\frac{H \ell^{2}}{2 D k^{2} \sin \phi} \end{aligned}$
2. Conical shell with moment at lower edge	$\begin{aligned} & N_{\phi}=M\left(\frac{2 k \cos \phi}{\ell} e^{-k \alpha} \sin k \alpha\right) \\ & N_{\theta}=-M\left[\frac{2 \sqrt{2} R k^{2} \sin ^{2} \phi}{\ell^{2}} e^{-k \alpha} \cos \left(k \alpha+\frac{1}{4} \pi\right)\right. \\ & M_{\phi}=M\left[\sqrt{2} e^{-k \alpha} \sin \left(k \alpha+\frac{1}{4} \pi\right)\right] \\ & M_{\theta}=-M \frac{\ell \cot \phi e^{-k \alpha} \cos k \alpha}{R k \sin \phi}-v M_{\phi} \\ & Q_{x}=M\left(\frac{2 k \sin \phi}{\ell} e^{-k \alpha} \sin k \alpha\right) \end{aligned}$	$\begin{aligned} \Delta R= & M \frac{\ell^{3} e^{-k \alpha}}{2 D k^{2} \sin \phi}\left[\sqrt{2} \cos \left(k \alpha+\frac{1}{4} \pi\right)\right. \\ & \left.+v \frac{\ell}{R} \frac{\cos \phi \sin k \alpha}{k \sin ^{2} \phi}\right] \\ \beta= & -M \frac{\ell e^{-k \alpha} \cos k \alpha}{D k \sin \phi} \end{aligned}$ For $\alpha=0$: $\begin{aligned} \Delta R & =\frac{M \ell^{2}}{2 D k^{2} \sin \phi} \\ \beta & =\frac{-M \ell}{D k \sin \phi} \end{aligned}$

1 0 0 1 0 0 \vdots 0 0 0 0 0 0 0	3. Open conical shell with upper edge load	$\begin{aligned} & N_{x}=-H \cos \alpha_{0}\left[F_{7}(\xi)-\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{10}(\xi)+\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{8}(\xi)\right] \\ & N_{\theta}=H x_{m} k \cos \alpha_{0}\left[F_{9}(\xi)+\frac{2 \bar{F}_{4}}{\bar{F}_{1}} F_{7}(\xi)-\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{10}(\xi)\right. \\ & M_{x}=H \frac{\sin \alpha_{0}}{2 k}\left[F_{10}(\xi)-\frac{2 \bar{F}_{4}}{\bar{F}_{1}} F_{8}(\xi)+\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{9}(\xi)\right] \\ & Q_{x}=-H \sin \alpha_{0}\left[F_{7}(\xi)-\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{10}(\xi)+\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{8}(\xi)\right] \end{aligned}$	$\begin{aligned} & \Delta R=H \frac{\sin ^{2} \alpha_{0}}{4 D k^{3}}\left[F_{9}(\xi)+\frac{2 \bar{F}_{4}}{\bar{F}_{1}} F_{7}(\xi)-\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ & \beta=H \frac{\sin \alpha_{0}}{2 D k^{2}}\left[-F_{8}(\xi)+\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{9}(\xi)+\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{7}(\xi)\right] \end{aligned}$
	4. Open conical shell with lower edge load	$\begin{aligned} & N_{x}=-H \cos \alpha_{0}\left[-\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{10}(\xi)+\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{8}(\xi)\right] \\ & N_{\theta}=-2 H x_{m} k \cos \alpha_{0}\left[-\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{7}(\xi)+\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ & M_{x}=-H \frac{\sin \alpha_{0}}{k}\left[\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{8}(\xi)-\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{9}(\xi)\right] \\ & Q_{x}=-H \sin \alpha_{0}\left[-\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{10}(\xi)+\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{8}(\xi)\right] \end{aligned}$	$\begin{aligned} & \Delta R=-H \frac{\sin ^{2} \alpha_{0}}{2 D k^{3}}\left[-\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{7}(\xi)+\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ & \beta=H \frac{\sin \alpha_{0}}{2 D k^{2}}\left[\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{9}(\xi)+\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{7}(\xi)\right] \end{aligned}$

TABLE 20-7 (continued) CONICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa ${ }^{\text {a }}$

5. Open conical shell with upper edge moment	$\begin{aligned} & N_{x}=M 2 k \cot \alpha_{0}\left[\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{15}(\xi)+\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{16}(\xi)-\frac{\bar{F}_{3}}{\bar{F}_{1}} F_{8}(\xi)\right] \\ & N_{\theta}=M 2 k^{2} x_{m} \cot \alpha_{0}\left[\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{14}(\xi)+\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{13}(\xi)-\frac{\bar{F}_{3}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ & M_{x}=M\left[\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{13}(\xi)-\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{14}(\xi)+\frac{\bar{F}_{3}}{\bar{F}_{1}} F_{9}(\xi)\right] \\ & Q_{x}=M 2 k\left[\left[\bar{F}_{6} \bar{F}_{15}(\xi)+\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{16}(\xi)-\frac{\bar{F}_{3}}{\bar{F}_{1}} F_{8}(\xi)\right]\right. \end{aligned}$	$\begin{aligned} \Delta R & =M \frac{\sin \alpha_{0}}{2 D k^{2}}\left[\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{14}(\xi)+\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{13}(\xi)-\frac{\bar{F}_{3}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ \beta & =-\frac{M}{D k}\left[\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{16}(\xi)-\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{15}(\xi)-\frac{\bar{F}_{3}}{\bar{F}_{1}} F_{7}(\xi)\right] \end{aligned}$
6. Open conical shell with lower edge moment	$\begin{aligned} & N_{x}=-M 2 k \cot \alpha_{0}\left[\frac{\bar{F}_{8}}{\bar{F}_{2}} F_{10}(\xi)-\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{8}(\xi)\right] \\ & N_{\theta}=-M 2 k^{2} x_{m} \cot \alpha_{0}\left[\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{7}(\xi)-\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ & M_{x}=M\left[\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{8}(\xi)-\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{9}(\xi)\right] \\ & Q_{x}=-M 2 k\left[\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{10}(\xi)-\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{8}(\xi)\right] \end{aligned}$	$\begin{aligned} \Delta R & =-M \frac{\sin \alpha_{0}}{2 D k^{2}}\left[\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{7}(\xi)-\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ \beta & =-M \frac{1}{D k}\left[\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{9}(\xi)+\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{7}(\xi)\right] \end{aligned}$

TABLE 20-8 CYLINDRICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa ${ }^{a}$

Notation		
$F_{i}(\xi$ N M_{ϕ} $k=$	$E=$ modulus of elasticity $h=$ thickness of shell $L=$ length of shell $\beta=$ angle of rotation along shell $M=$ applied moment per unit length $v=$ Poisson's ratio $R=$ radius of shell $\Delta R=$ horizontal displacement along shell $H=$ applied horizontal force per unit length $\bar{F}_{i}=$ factors defined in Table 20-9 $N_{\theta}=$ normal forces per unit length (stress resultants) in axial and circumferential (parallel) directions $M_{\theta}=$ moments per unit length about circumferential and longitudinal (x) axes $Q_{x}=$ transverse shear force per unit length, in plane perpendicular to x axis $\left[3\left(1-v^{2}\right)\right]^{1 / 4} / \sqrt{R h} \quad D=\frac{E h^{3}}{12\left(1-v^{2}\right)} \quad \lambda=\frac{x}{L}$	
Case	Internal Forces	Deformations
1. Long cylindrical shell with upper edge load	$\begin{aligned} & N_{x}=0 \\ & N_{\theta}=-H \frac{2 R k}{L} e^{-k \lambda} \cos k \lambda \\ & M_{x}=H \frac{L}{k} e^{-k \lambda} \sin k \lambda \\ & M_{\theta}=\nu M_{x} \\ & Q_{x}=H \sqrt{2} e^{-k \lambda} \cos \left(k \lambda+\frac{1}{4} \pi\right) \end{aligned}$	$\begin{aligned} \beta & =H \frac{L^{2}}{\sqrt{2} k^{2} D} e^{-k \lambda} \sin \left(k \lambda+\frac{1}{4} \pi\right) \\ \Delta R & =-\frac{R}{E h}\left(N_{\theta}-v N_{x}\right)=H \frac{L^{3}}{2 D k^{3}} e^{-k \lambda} \cos k \lambda \end{aligned}$ For the case $\lambda=0$: $\begin{aligned} \beta & =H L^{2} / 2 k^{2} D \\ \Delta R & =H L^{3} / 2 k^{3} D \end{aligned}$

TABLE 20-8 (continued) CYLINDRICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

Case	Internal Forces	Deformations
2. Long cylindrical shell with upper edge moment	$\begin{aligned} N_{x} & =0 \\ N_{\theta} & =-M \frac{2 \sqrt{2} R k^{2}}{L^{2}} e^{-k \lambda} \cos \left(k \lambda+\frac{1}{4} \pi\right) \\ M_{x} & =M\left[\sqrt{2} e^{-k \lambda} \sin \left(k \lambda+\frac{1}{4} \pi\right)\right] \\ M_{\theta} & =v M_{x} \\ Q_{x} & =-M \frac{2 k}{L} e^{-k \lambda} \sin k \lambda \end{aligned}$	$\begin{aligned} \beta & =M\left(\frac{L}{D k} e^{-k \lambda} \cos k \lambda\right) \\ \Delta R & =-\frac{R}{E h}\left(N_{\theta}-v N_{x}\right) \\ & =M\left[\frac{L^{2}}{\sqrt{2} D k^{2}} e^{-k \lambda} \cos \left(k \lambda+\frac{1}{4} \pi\right)\right] \end{aligned}$ For the case $\lambda=0$: $\begin{aligned} \beta & =M(L / D k) \\ \Delta R & =M\left(L^{2} / 2 D k^{2}\right) \end{aligned}$
3. Cylindrical shell with upper edge load	$\begin{aligned} & N_{\theta}=H 2 k R\left[-\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{7}(\xi)+\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ & M_{x}=\frac{H}{k}\left[\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{8}(\xi)-\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{9}(\xi)\right] \\ & Q_{x}=-H\left[\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{10}(\xi)-\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{8}(\xi)\right] \end{aligned}$	$\begin{aligned} \Delta R & =\frac{H}{2 D k^{3}}\left[-\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{7}(\xi)+\frac{\bar{F}_{8}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ \beta & =\frac{H}{2 D k^{2}}\left[\frac{\bar{F}_{9}}{\bar{F}_{1}} F_{9}(\xi)+\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{7}(\xi)\right] \end{aligned}$
4. Cylindrical shell with lower edge load	$\begin{aligned} & N_{\theta}=-H 2 k R\left[\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{7}(\xi)-\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{15}(\xi)-\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{16}(\xi)\right. \\ & M_{x}=\frac{-H}{k}\left[-\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{8}(\xi)-\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{16}(\xi)+\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{15}(\xi)\right] \\ & Q_{x}=-H\left[\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{10}(\xi)+\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{13}(\xi)-\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{14}(\xi)\right] \end{aligned}$	$\begin{aligned} \Delta R & =\frac{-H}{2 D k^{3}}\left[\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{7}(\xi)-\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{15}(\xi)-\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{16}(\xi)\right. \\ \beta & =\frac{H}{2 D k^{2}}\left[\frac{\bar{F}_{4}}{\bar{F}_{1}} F_{9}(\xi)+\frac{\bar{F}_{5}}{\bar{F}_{1}} F_{14}(\xi)+\frac{\bar{F}_{6}}{\bar{F}_{1}} F_{13}(\xi)\right. \end{aligned}$

5. Cylindrical shell with upper edge moment	$\begin{aligned} & N_{\theta}=M 2 k^{2} R\left[-\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{7}(\xi)+\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ & M_{x}=M\left[\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{8}(\xi)-\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{9}(\xi)\right] \\ & Q_{x}=-M k\left[\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{10}(\xi)-\frac{2 \bar{F}_{10}}{\bar{F}_{1}} F_{8}(\xi)\right] \end{aligned}$	$\begin{aligned} \Delta R & =\frac{M}{2 D k^{2}}\left[-\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{7}(\xi)+\frac{\bar{F}_{10}}{\bar{F}_{1}} F_{10}(\xi)\right] \\ \beta & =\frac{M}{2 D k}\left[\frac{2 \bar{F}_{8}}{\bar{F}_{1}} F_{9}(\xi)+\frac{2 \bar{F}_{10}}{\bar{F}_{1}} F_{7}(\xi)\right] \end{aligned}$
6. Cylindrical shell with lower edge moment	$\begin{aligned} & N_{\theta}=-M 2 k^{2} R\left[-\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{7}(\xi)+\frac{\bar{F}_{3}}{\bar{F}_{1}} F_{10}(\xi)-F_{8}(\xi)\right. \\ & M_{x}=-M\left[\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{8}(\xi)-\frac{\bar{F}_{3}}{\bar{F}_{1}} F_{9}(\xi)-F_{7}(\xi)\right] \\ & Q_{x}=k M\left[\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{10}(\xi)-\frac{2 \bar{F}_{3}}{\bar{F}_{1}} F_{8}(\xi)+F_{8}(\xi)\right] \end{aligned}$	$\begin{aligned} \Delta R & =\frac{-M}{2 D k^{2}}\left[-\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{7}(\xi)+\frac{\bar{F}_{3}}{\bar{F}_{1}} F_{10}(\xi)-F_{8}(\xi)\right] \\ \beta & =\frac{-M}{2 D k}\left[\frac{\bar{F}_{2}}{\bar{F}_{1}} F_{9}(\xi)+\frac{2 \bar{F}_{3}}{\bar{F}_{1}} F_{7}(\xi)-F_{10}(\xi)\right] \end{aligned}$

${ }^{a}$ Adapted from Ref. [20.2].

TABLE 20-9 FACTORS FOR USE IN TABLES 20-6 TO 20-8 ${ }^{\text {a }}$

Notation

$$
h=\text { thickness of shell }
$$

$\nu=$ Poisson's ratio
For cylindrical shells:

$$
\begin{aligned}
k & =\left[3\left(1-v^{2}\right)\right]^{1 / 4} / \sqrt{R h} \\
x i & =x / L
\end{aligned}
$$

For conical shells:

$$
\left.\begin{array}{rl}
k & =\left\{\begin{array}{l}
\ell\left[3\left(1-v^{2}\right)\right]^{1 / 4} /\left(\sqrt{R_{0} h} \sin \phi\right) \\
{\left[3\left(1-v^{2}\right)\right]^{1 / 4} /\left(h x_{m} \cot \alpha_{0}\right)^{1 / 2}}
\end{array}\right. \text { for conical cap } \\
\text { for open conical shell }
\end{array}\right\} \begin{array}{ll}
\xi / L & \text { for conical cap } \\
\bar{x} / \bar{L} & \text { for open conical shell } \\
x_{m} & =L-\frac{1}{2} \bar{L}
\end{array}
$$

For spherical shells:
$k=\left[3\left(1-v^{2}\right)(R / h)^{2}\right]^{1 / 4}$
Replace L by α_{0} :
$\xi=\alpha / \alpha_{0}$

i	$F_{i}(\xi)$	\bar{F}_{i}

1^{b}	$\sinh ^{2} k L \xi-\sin ^{2} k L \xi$	$\sinh ^{2} k L-\sin ^{2} k L$
2	$\sinh ^{2} k L \xi+\sin ^{2} k L \xi$	$\sinh ^{2} k L+\sin ^{2} k L$
3	$\sinh k L \xi \cosh k L \xi+\sin k L \xi \cos k L \xi$	$\sinh k L \cosh k L+\sin k L \cos k L$
4	$\sinh k L \xi \cosh k L \xi-\sin k L \xi \cos k L \xi$	$\sinh k L \cosh k L-\sin k L \cos k L$
5	$\sin ^{2} k L \xi$	$\sin ^{2} k L$
6	$\sinh ^{2} k L \xi$	$\sinh ^{2} k L$
7	$\cosh k L \xi \cos k L \xi$	$\cosh k L \cos k L$
8	$\sinh k L \xi \sin k L \xi$	$\sinh k L \sin k L$
9	$\cosh k L \xi \sin k L \xi-\sinh k L \xi \cos k L \xi$	$\cosh k L \sin k L-\sinh k L \cos k L$
10	$\cosh k L \xi \sin k L \xi+\sinh k L \xi \cos k L \xi$	$\cosh k L \sin k L+\sinh k L \cos k L$
11	$\sin k L \xi \cos k L \xi$	$\sin k L \cos k L$
12	$\sinh k L \xi \cosh k L \xi$	$\sinh k L \cosh k L$
13	$\cosh k L \xi \cos k L \xi-\sinh k L \xi \sin k L \xi$	$\cosh k L \cos k L-\sinh k L \sin k L$
14	$\cosh k L \xi \cos k L \xi+\sinh k L \xi \sin k L \xi$	$\cosh k L \cos k L+\sinh k L \sin k L$
15	$\cosh k L \xi \sin k L \xi$	$\cosh k L \sin k L$
16	$\sinh k L \xi \cos k L \xi$	$\sinh k L \cos k L$
17^{c}	$\exp (-k L \xi \cos k L \xi)$	$\exp (-k L \cos k L)$
18	$\exp (-k L \xi \sin k L \xi)$	$\exp (-k L \sin k L)$
19	$\exp [-k L \xi(\cos k L \xi+\sin k L \xi)]$	$\exp [-k L(\cos k L+\sin k L)]$
20	$\exp [-k L \xi(\cos k L \xi-\sin k L \xi)]$	$\exp [-k L(\cos k L-\sin k L)]$

${ }^{a}$ From Ref. [20.2].
${ }^{b}$ For sphere: $F_{1}(\alpha)=\sinh ^{2} k \alpha_{0}\left(\alpha / \alpha_{0}\right)-\sin ^{2} k \alpha_{0}\left(\alpha / \alpha_{0}\right)=\sinh ^{2} k \alpha-\sin ^{2} k \alpha$.
${ }^{c} \exp (\beta)=e^{\beta}$.

TABLE 20-10 RELATIONS FOR MULTIPLE-SEGMENT SHELLS OF REVOLUTION ${ }^{\text {a }}$

$\mathbf{f}=$	flexibility matrix \quad Notation
$\beta_{i}^{f}, \Delta R_{i}^{f}=$	influence coefficients; rotation and displacement at edge i
	due to force $f\left(i=1,2, f=M_{1}, H_{1}, M_{2}, H_{2}\right)$
$\beta_{i}^{0}, \Delta R_{i}^{0}=$	rotation and displacement at edge i obtained from membrane analysis of
	segment with actual applied load $(i=1,2)$
$\beta_{i}, \Delta R_{i}=$	rotation and displacement at edge i from membrane solution
	and correction forces

Part A. Equations for Deformation of Shell Segments

Geometry	Equation	Flexibility Matrix \mathbf{f}
1. Two-edged segment	$\left[\begin{array}{l}\beta_{1} \\ \Delta R_{1} \\ \beta_{2} \\ \Delta R_{2}\end{array}\right]=\mathbf{f}\left[\begin{array}{l}M_{1} \\ H_{1} \\ M_{2} \\ H_{2}\end{array}\right]+\left[\begin{array}{l}\beta_{1}^{0} \\ \Delta R_{1}^{0} \\ \beta_{2}^{0} \\ \Delta R_{2}^{0}\end{array}\right]$	$\left[\begin{array}{llll}\beta_{1}^{M_{1}} & \beta_{1}^{H_{1}} & \beta_{1}^{M_{2}} & \beta_{1}^{H_{2}} \\ \Delta R_{1}^{M_{1}} & \Delta R_{1}^{H_{1}} & \Delta R_{1}^{M_{2}} & \Delta R_{1}^{H_{2}} \\ \beta_{2}^{M_{1}} & \beta_{2}^{H_{1}} & \beta_{2}^{M_{2}} & \beta_{2}^{H_{2}} \\ \Delta R_{2}^{M_{1}} & \Delta R_{2}^{H_{1}} & \Delta R_{2}^{M_{2}} & \Delta R_{2}^{H_{2}}\end{array}\right]$
2. Segments with one edge	FOR UPPER SEGMENT: $\left[\begin{array}{l} \beta_{1} \\ \Delta R_{1} \end{array}\right]=\mathbf{f}\left[\begin{array}{l} M_{1} \\ H_{1} \end{array}\right]+\left[\begin{array}{l} \beta_{1}^{0} \\ \Delta R_{1}^{0} \end{array}\right]$ FOR LOWER SEGMENT: $\left[\begin{array}{l} \beta_{2} \\ \Delta R_{2} \end{array}\right]=\mathbf{f}\left[\begin{array}{l} M_{2} \\ H_{2} \end{array}\right]+\left[\begin{array}{l} \beta_{2}^{0} \\ \Delta R_{2}^{0} \end{array}\right]$	$\begin{aligned} & {\left[\begin{array}{ll} \beta_{1}^{M_{1}} & \beta_{1}^{H_{1}} \\ \Delta R_{1}^{M_{1}} & \Delta R_{1}^{H_{1}} \end{array}\right]} \\ & {\left[\begin{array}{ll} \beta_{2}^{M_{2}} & \beta_{2}^{H_{2}} \\ \Delta R_{2}^{M_{2}} & \Delta R_{2}^{H_{2}} \end{array}\right]} \end{aligned}$

TABLE 20-10 (continued) RELATIONS FOR MULTIPLE-SEGMENT SHELLS OF REVOLUTION ${ }^{\text {a }}$	
Part B. Compatibility and Equilibrium Equations at Junctions	
Junction	Equations
1. Junction of two shell elements (1) (3)	$\left[\begin{array}{l}M_{2} \\ H_{2} \\ \beta_{2} \\ \Delta R_{2}\end{array}\right]-\left[\begin{array}{c}M_{2}^{\prime} \\ H_{2}^{\prime} \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \beta_{2}^{\prime} \\ \Delta R_{2}^{\prime}\end{array}\right]$
2. Junction of three shell elements	$\left[\begin{array}{l}M_{2} \\ H_{2} \\ \beta_{2} \\ \beta_{2} \\ \Delta R_{2} \\ \Delta R_{2}\end{array}\right]-\left[\begin{array}{c}M_{2}^{\prime} \\ H_{2}^{\prime} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]-\left[\begin{array}{c}M_{2}^{\prime \prime} \\ H_{2}^{\prime \prime} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \beta_{2}^{\prime} \\ \beta_{2}^{\prime \prime} \\ \Delta R_{2}^{\prime} \\ \Delta R_{2}^{\prime \prime}\end{array}\right]$
3. Fixed edge	$\beta_{1}=0 \quad \Delta R_{1}=0$
4. Pinned edge (1)	$M_{1}=0 \quad \Delta R_{1}=0$
5. Sliding edge	$M_{1}=0 \quad H_{1}=0$

[^36]
TABLE 20-11 MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR SPHERICAL ELEMENTS ${ }^{\text {a }}$

Notation
$E=$ modulus of elasticity
$v=$ Poisson's ratio
$R=$ radius of shell
$h=$ thickness of shell
$\Delta R_{i}, \Delta R_{j}=$ horizontal displacements at i, j edges (rad), positive in same direction as in figures.

$\beta_{i}, \beta_{j}=$ angles of rotation of meridional tangents at i, j edges
$H_{i}, H_{j}=$ horizontal forces per unit length on i, j edges
$M_{i}, M_{j}=$ moments per unit length on i, j edges
$\phi_{i}, \phi_{2}=$ meridional angles of lower and upper edges
$\bar{F}_{i}=$ factors defined in Table 20-9
$\rho_{w}=$ specific weight of liquid $\left(F / L^{3}\right)$
$W=$ lantern loading (see Table 20-1, part A, for definition)
$\Delta R_{i}^{0}, \beta_{i}^{0}=$ membrane deformations at edge i due to applied loads
$\Delta R_{i}^{f}, \beta_{i}^{f}=$ influence coefficients, that is, deformations at edge i due to unit force $f\left(f=M_{i}, H_{i}, M_{j}, H_{j}\right)$
$k=\left[3\left(1-v^{2}\right)(R / h)^{2}\right]^{1 / 4}$
Positive moments cause tension in the inner shell surface.
Positive horizontal forces cause tension in the inner shell surface at the upper edge and compression in the inner shell surface at the lower edge.
The deformations in each case (column) in the table are due to the applied loading shown on the left.

Part A. Membrane Deformations of Spherical Caps		
	Edge Deformation	
Loading Condition		
1. Dead-weight loading	$\frac{R^{2} q}{E h} \sin \phi_{1}\left(-\cos \phi_{1}+\frac{1+v}{1+\cos \phi_{1}}\right)$	$-\frac{R q}{E h}(2+v) \sin \phi_{1}$

TABLE 20-11 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR SPHERICAL ELEMENTS ${ }^{a}$

Part A. Membrane Deformations of Spherical Caps		
	Edge Deformation	
Loading Condition		准
2. Uniform vertical external pressure on projected area	$\frac{R^{2} p_{2}}{E h} \sin \phi_{1}\left(-\cos ^{2} \phi_{1}+\frac{1+v}{2}\right)$	$-\frac{R p_{2}}{E h}(3+v) \sin \phi_{1} \cos \phi_{1}$
3. Hydrostatic loading	$\begin{aligned} & -\frac{\rho_{w} R^{3}}{6 E h} \sin \phi_{1}\left[6\left(1-\cos \phi_{1}\right)\right. \\ & \left.-(1+v)\left(1-2 \frac{\cos ^{2} \phi_{1}}{1+\cos \phi_{1}}\right)\right] \end{aligned}$	$\frac{\rho_{w} R^{2}}{E h} \sin \phi_{1}$
4. Uniform normal external pressure	$-\frac{R^{2} p_{1}}{2 E h}(1-v) \sin \phi_{1}$	0

TABLE 20-11 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR SPHERICAL ELEMENTS ${ }^{a}$

Part A. Membrane Deformations of Spherical Caps

TABLE 20-11 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR SPHERICAL ELEMENTS ${ }^{a}$
Part B. Membrane Deformations of Spherical Segments

Loading Condition	Edge Deformation			
				$\mathcal{F}_{i}^{\beta_{j}^{0}{ }^{(i)}{ }_{j}^{\beta_{j}^{0}}}$
1. Dead-weight loading	$\begin{aligned} & \frac{R q}{E h} \sin \phi_{1}\left[-\cos \phi_{1}\right. \\ + & \frac{1+v}{\sin ^{2} \phi_{1}}\left(-\cos \phi_{1}\right. \\ + & \left.\left.\cos \phi_{2}\right)\right] \end{aligned}$	$-\frac{R q}{E h}(2+v) \sin \phi_{1}$	$-\frac{R^{2} q}{E h} \sin \phi_{2} \cos \phi_{2}$	$-\frac{R q}{E h}(2+v) \sin \phi_{2}$
2. Uniform vertical pressure on projected area	$\begin{array}{r} \frac{R^{2} p_{2}}{E h} \sin \phi_{1}\left[-\cos ^{2} \phi_{1}\right. \\ + \\ \left.\frac{1+v}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi_{1}}\right)\right] \end{array}$	$-\frac{R p_{2}}{E h}(3+v) \sin \phi_{1} \cos \phi_{1}$	$-\frac{R^{2} p_{2}}{E h} \sin \phi_{2} \cos ^{2} \phi_{2}$	$-\frac{R p_{2}}{E h}(3+v) \sin \phi_{2} \cos \phi_{2}$

Loading Condition	Edge Deformation			
	$\stackrel{\Delta R_{i}^{0}}{\stackrel{(i)}{(i)} \xrightarrow[\rightarrow]{\leftrightarrows R_{i}^{0}}}$	$\sqrt[\beta_{i}^{0}]{\text { (i) }}$	$\overbrace{i}^{\Delta R_{j}^{0}} \frac{\text { (i) }}{\text { (i) }})_{i}^{\Delta R_{i}^{0}}$	$\underbrace{\beta_{i}^{0} \overbrace{i}^{(1)}}_{(i)}{ }_{i}^{\beta_{i}^{0}}$
3. Hydrostatic loading	$\begin{aligned} & -\frac{\rho_{w} R^{3}}{E h} \sin \phi_{1}\left\{\cos \phi_{2}-\cos \phi_{1}\right. \\ & -\frac{1+\nu}{6}\left[3 \cos \phi_{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi_{1}}\right)\right] \\ & \left.-2 \frac{\cos ^{3} \phi_{2}-\cos ^{3} \phi_{1}}{\sin ^{2} \phi_{1}}\right\} \end{aligned}$	$\frac{\rho_{w} R^{2}}{E h} \sin \phi_{1}$	0	$\frac{\rho_{w} R^{2}}{E h} \sin \phi_{2}$
4. Uniform normal load	$\begin{aligned} & -\frac{R^{2} p_{1}}{E h} \sin \phi_{1}\left[1-\frac{1+v}{2}(1\right. \\ & \left.\left.-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi_{1}}\right)\right] \end{aligned}$	0	$-\frac{R^{2} p_{1}}{E h} \sin \phi_{2}$	0
5.	$\frac{W R}{E h}(1+\nu) \frac{\sin \phi_{2}}{\sin \phi_{1}}$	0	$\frac{W R}{E h}(1+\nu)$	0

Loading Condition	Edge Deformation			
6. Dead-weight loading	$\begin{aligned} & -\frac{R^{2} q}{E h} \sin \phi_{1}\left[-\cos \phi_{1}\right. \\ & +\frac{1+v}{\sin ^{2} \phi_{1}}\left(-\cos \phi_{1}\right. \\ & \left.\left.+\cos \phi_{2}\right)\right] \end{aligned}$	$-\frac{R q}{E h}(2+v) \sin \phi_{1}$	$\frac{R^{2} q}{E h} \sin \phi_{2} \cos \phi_{2}$	$-\frac{R q}{E h}(2+\nu) \sin \phi_{2}$
7. Uniform vertical load on projected area	$\begin{aligned} & \frac{R^{2} p_{2}}{E h} \sin \phi_{1}\left[-\cos ^{2} \phi_{1}\right. \\ + & \left.\frac{1+v}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi_{1}}\right)\right] \end{aligned}$	$\begin{array}{r} -\frac{R p_{2}}{E h}(3+v) \\ \sin \phi_{1} \cos \phi_{1} \end{array}$	$\frac{R^{2} p_{2}}{E h} \sin \phi_{2} \cos ^{2} \phi_{2}$	$\begin{array}{r} -\frac{R p_{2}}{E h}(3+v) \\ \sin \phi_{2} \cos \phi_{2} \end{array}$

Loading Condition		(i)		
8. Hydrostatic load	$\begin{aligned} & +\frac{\rho_{w} R^{3}}{6 E h}(1+v) \sin \phi_{2} \\ & \cdot\left[3 \cos \phi_{1}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin ^{2} \phi_{1}}\right)\right. \\ & \left.-2 \frac{\cos ^{3} \phi_{2}-\cos ^{3} \phi_{1}}{\sin ^{2} \phi_{1}}\right] \end{aligned}$	$-\frac{\rho_{w} R^{2}}{E h} \sin \phi_{1}$	$\begin{aligned} & \frac{\rho_{w} R^{3}}{E h} \sin \phi_{2}\left(\cos \phi_{1}\right. \\ & \left.-\cos \phi_{2}\right) \end{aligned}$	$\frac{\rho_{w} R^{2}}{E h} \sin \phi_{2}$
9. Uniform normal pressure	$\begin{aligned} & \frac{R^{2} p_{1}}{E h} \sin \phi_{1}[1 \\ & \left.-\frac{1+v}{2}\left(1-\frac{\sin ^{2} \phi_{2}}{\sin \phi_{1}}\right)\right] \end{aligned}$	0	$\frac{R^{2} p_{1}}{E h} \sin \phi_{2}$	0
10. Lantern load	$-\frac{W R}{E h}(1+\nu) \frac{\sin \phi_{2}}{\sin \phi_{1}}$	0	$-\frac{W R}{E h}(1+v)$	0

TABLE 20-11 (continued) MEMBRRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR SPHERICAL ELEMENTS				
Part C. Influence Coefficients (Bending Deformations at Edges) of Spherical Shells				
	Edge Deformation			
Load Condition			(i)	
1.	$-\frac{2 R k}{E h} \sin ^{2} \phi_{1} \frac{\bar{F}_{4}}{\bar{F}_{1}}$	$\frac{2 k^{2}}{E h} \sin \phi_{1} \frac{\bar{F}_{2}}{\bar{F}_{1}}$	$\frac{2 R k}{E h} \sin \phi_{1} \sin \phi_{2} \frac{\bar{F}_{9}}{\bar{F}_{1}}$	$\frac{2 k^{2}}{E h} \sin \phi_{1} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$
2.	$\frac{2 k^{2}}{E h} \sin \phi_{1} \frac{\bar{F}_{2}}{\bar{F}_{1}}$	$-\frac{2 k^{3}}{E h R} \frac{2 \bar{F}_{3}}{\bar{F}_{1}}$	$-\frac{2 k^{2}}{E h} \sin \phi_{2} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$	$-\frac{2 k^{3}}{E h R} \frac{2 \bar{F}_{10}}{\bar{F}_{1}}$

3.	Edge Deformation			
	$-\frac{2 R k}{E h} \sin \phi_{1} \sin \phi_{2} \frac{\bar{F}_{9}}{\bar{F}_{1}}$	$\frac{2 k^{2}}{E h} \sin \phi_{2} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$	$\frac{2 R k}{E h} \sin ^{2} \phi_{2} \frac{\bar{F}_{4}}{\bar{F}_{1}}$	$\frac{2 k^{2}}{E h} \sin \phi_{2} \frac{\bar{F}_{2}}{\bar{F}_{1}}$
4.	$-\frac{2 k^{2}}{E h} \sin \phi_{1} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$	$-\frac{2 k^{3}}{E h R} \frac{2 \bar{F}_{10}}{\bar{F}_{1}}$	$\frac{2 k^{2}}{E h} \sin \phi_{2} \frac{\bar{F}_{2}}{\bar{F}_{1}}$	$\frac{2 k^{3}}{E h R} \frac{2 \bar{F}_{3}}{\bar{F}_{1}}$

TABLE 20-11 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR SPHERICAL ELEMENTS ${ }^{a}$
Part C. Influence Coefficients (Bending Deformations at Edges) of Spherical Shells

Shell Geometry and Loading Condition	Edge Deformation	
5. $f=H_{i}$	$\begin{aligned} & -\frac{R}{E h} \sin \phi_{1}\left(2 k \sin \phi_{1}\right. \\ & \left.-v \cos \phi_{1}\right) \end{aligned}$	$\frac{2 k^{2}}{E h} \sin \phi_{1}$
6. $f=M_{i}$	$\frac{2 k^{2}}{E h} \sin \phi_{1}$	$-\frac{4 k^{3}}{E h R}$

${ }^{a}$ Adapted from Ref. [20.2].

TABLE 20-12 MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CONICAL SHELL ELEMENTSª

Notation

$E=$ modulus of elasticity
$v=$ Poisson's ratio
$h=$ thickness of shell
$\rho_{w}=$ specific weight of liquid
$\Delta R_{i}, \Delta R_{j}=$ horizontal displacements at i, j edges
$\beta_{i}, \beta_{j}=$ angles of rotation of meridional tangents at i, j edges (rad), positive in same direction as in figures
$\Delta R_{i}^{0}, \beta_{i}^{0}=$ membrane deformations at edge i due to applied loads
$\Delta R_{i}^{f}, \beta_{i}^{f}=$ influence coefficients, that is, deformations at edge i
 due to force $f\left(f=M_{i}, H_{i}, M_{j}, H_{j}\right)$
$H_{i}, H_{j}=$ horizontal forces per unit length on i, j edges
$M_{i}, M_{j}=$ moments per unit length on i, j edges
$\overline{F_{i}}=$ factors defined in Table 20-9
$p_{1}=$ applied uniform pressure
$p_{2}=$ uniformly distributed loading on projected area
$q=$ dead weight
$W=$ lantern load; see Table 20-2, part A, for definition
$k=\left[3\left(1-v^{2}\right)\right]^{1 / 4} /\left(h x_{m} \cot \alpha\right)^{1 / 2} \quad$ for open conical shell
$D=\frac{E h^{3}}{12\left(1-v^{2}\right)}$

$$
x_{m}=L-\frac{1}{2} \bar{L}
$$

Positive edge moments cause tension in the inner shell surface. Positive horizontal edge forces cause tension in the inner shell surface at the upper edge and compression in the inner shell surface at the lower edge. The deformations in each case (columns) in the table are due to the applied loading shown on the left.

Part A. Membrane Deformations of Conical Shells

Loading Condition	Edge Deformation	
1. Dead-weight loading	$-\frac{q x_{2}^{2}}{E h} \cot \alpha_{0}\left(\cos ^{2} \alpha_{0}-\frac{v}{2}\right)$	$\begin{aligned} & \frac{q x_{2}}{E h} \frac{\cos \alpha_{0}}{\sin ^{2} \alpha_{0}}\left[(2+v) \cos ^{2} \alpha_{0}\right. \\ & \left.-\frac{1}{2}-v\right] \end{aligned}$

TABLE 20-12 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CONICAL SHELL ELEMENTS ${ }^{a}$

Part A. Membrane Deformations of Conical Shells		
	Edge Deformation	
Loading Condition		
2. Uniform vertical load on projected area	$\begin{aligned} & -\frac{p_{2} x_{2}^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0}\left(\cos ^{2} \alpha_{0}\right. \\ & \left.-\frac{v}{2}\right) \end{aligned}$	$\begin{aligned} & \quad \frac{p_{2} x_{2}}{E h} \cot ^{2} \alpha_{0}\left[(2+v) \cos ^{2} \alpha_{0}\right. \\ & \left.-\frac{1}{2}-v\right] \end{aligned}$
3. Hydrostatic load	$\begin{aligned} & \frac{\rho_{w} x_{2}^{2}}{E h} \cos ^{2} \alpha_{0}\left[\frac{d}{\sin \alpha_{0}}\left(\frac{v}{2}-1\right)\right. \\ + & \left.x_{2}\left(\frac{v}{3}-1\right)\right] \end{aligned}$	$\frac{\rho_{w} x_{2}}{E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}}\left(\frac{3}{2} \frac{d}{\sin \alpha_{0}}+\frac{8}{3} x_{2}\right)$
4. Uniform normal pressure	$-\frac{p_{1} x_{2}^{2}}{E h}\left(1-\frac{v}{2}\right) \cos \alpha_{0} \cot \alpha_{0}$	$\frac{p_{1} x_{2}}{E h} \frac{3}{2} \cot ^{2} \alpha_{0}$

TABLE 20-12 (continued) MEMBRAANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CONICAL SHELL ELEMENTS ${ }^{a}$

Part A. Membrane Deformations of Conical Shells

Loading Condition	Edge Deformation	
5. Dead-weight loading	$\frac{q x_{2}^{2}}{E h} \cot \alpha_{0}\left(\cos ^{2} \alpha_{0}-\frac{v}{2}\right)$	$\begin{aligned} & \quad \frac{q x_{2}}{E h} \frac{\cos \alpha_{0}}{\sin ^{2} \alpha_{0}}\left[(2+v) \cos ^{2} \alpha_{0}\right. \\ & \left.-\frac{1}{2}-v\right] \end{aligned}$
6. Uniform vertical load on projected area	$\begin{aligned} & \quad \frac{p_{2} x_{2}^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0}\left(\cos ^{2} \alpha_{0}\right. \\ & \left.-\frac{v}{2}\right) \end{aligned}$	$\begin{aligned} & \quad \frac{p_{2} x_{2}}{E h} \cot ^{2} \alpha_{0}\left[(2+v) \cos ^{2} \alpha_{0}\right. \\ & \left.-\frac{1}{2}-v\right] \end{aligned}$
7. Hydrostatic load	$\begin{aligned} & -\frac{\rho_{w} x_{2}^{2}}{E h} \cos ^{2} \alpha_{0}\left[\frac{d}{\sin \alpha_{0}}\left(\frac{v}{2}-1\right)\right. \\ & \left.-x_{2}\left(\frac{v}{3}-1\right)\right] \end{aligned}$	$\frac{\rho_{w} x_{2}}{E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}}\left(\frac{3}{2} \frac{d}{\sin \alpha_{0}}-\frac{8}{3} x_{2}\right)$
8. Uniform normal pressure	$\frac{p_{1} x_{2}^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0}\left(1-\frac{v}{2}\right)$	$\frac{p_{1} x_{2}}{E h} \frac{3}{2} \cot ^{2} \alpha_{0}$

TABLE 20-12 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CONICAL SHELL ELEMENTS ${ }^{a}$

Part B. Membrane Deformations of Truncated Cones				
	Edge Deformation			
Loading Condition				
1. Dead-weight loading	$\begin{aligned} & -\frac{q x_{2}^{2}}{E h} \cot \alpha_{0}\left[2 \cos ^{2} \alpha_{0}\right. \\ & \left.-v\left(1-\frac{x_{1}^{2}}{x_{2}^{2}}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{q x_{2}}{E h} \frac{\cos \alpha_{0}}{2 \sin ^{2} \alpha_{0}} \\ \times & {\left[2(2+v) \cos ^{2} \alpha_{0}\right.} \\ - & \left.1-2 v-\left(\frac{x_{1}}{x_{2}}\right)^{2}\right] \end{aligned}$	$-\frac{q x_{1}^{2}}{E h} \frac{\cos ^{3} \alpha_{0}}{2 \sin \alpha_{0}}$	$\frac{q x_{1}}{E h} \frac{\cos \alpha_{0}}{\sin ^{2} \alpha_{0}}\left[(2+\nu) \cos ^{2} \alpha_{0}-\nu\right]$
2. Uniform vertical load on projected area	$\begin{aligned} & -\frac{p_{2} x_{2}^{2}}{E h} \frac{\cos ^{2} \alpha_{0}}{2 \sin \alpha_{0}}\left[2 \cos ^{2} \alpha_{0}\right. \\ & \left.-v\left(1-\frac{x_{1}^{2}}{x_{2}^{2}}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{p_{2} x_{2}}{E h} \frac{\cot ^{2} \alpha_{0}}{2} \\ \times & {\left[2(2+v) \cos ^{2} \alpha_{0}\right.} \\ - & \left.1-2 v+\left(\frac{x_{1}}{x_{2}}\right)^{2}\right] \end{aligned}$	$-\frac{p_{2} x_{1}^{2}}{E h} \frac{\cos ^{4} \alpha_{0}}{\sin \alpha_{0}}$	$\frac{p_{2} x_{1}}{E h} \cot ^{2} \alpha_{0}\left[(2+v) \cos ^{2} \alpha_{0}-v\right]$

3. Hydrostatic load	Edge Deformation			
	$\begin{aligned} & \frac{\rho_{w} x_{2}^{2}}{E h} \cos ^{2} \alpha_{0} \\ \times & \left\{v \left[\frac{d}{2 \sin \alpha_{0}}\left(1-\frac{x_{1}^{2}}{x_{2}^{2}}\right)\right.\right. \\ + & \left.\frac{x_{2}}{3}\left(1-\frac{x_{1}^{3}}{x_{2}^{3}}\right)\right] \\ - & \left.\frac{d}{\sin \alpha_{0}}-x_{2}\right\} \end{aligned}$	$\begin{aligned} & \frac{\rho_{w} x_{2}}{E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}} \\ & \times {\left[\frac{d}{2 \sin \alpha_{0}}\left(3+\frac{x_{1}^{2}}{x_{2}^{2}}\right)\right.} \\ &\left.+\frac{x_{2}}{3}\left(8+\frac{x_{1}^{3}}{x_{2}^{3}}\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{\rho_{w} x_{1}^{2}}{E h} \cos ^{2} \alpha_{0}\left(\frac{d}{\sin \alpha_{0}}\right. \\ & \left.+x_{1}\right) \end{aligned}$	$\begin{aligned} & \quad \frac{\rho_{w} x_{1}}{E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}}\left(\frac{2 d}{\sin \alpha_{0}}\right. \\ & \left.+3 x_{1}\right) \end{aligned}$
4. Uniform vertical load	$\begin{aligned} & -\frac{p_{1} x_{2}^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0} \\ & \times\left[1-\frac{v}{2}\left(1-\frac{x_{1}^{2}}{x_{2}^{2}}\right)\right] \end{aligned}$	$\begin{aligned} & \quad \frac{p_{1} x_{2}}{E h} \frac{\cos ^{2} \alpha_{0}}{2}[3 \\ & \left.+\left(\frac{x_{1}}{x_{2}}\right)^{2}\right] \end{aligned}$	$-\frac{p_{1} x_{1}^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0}$	$2 \frac{p_{1} x_{1}}{E h} \cot ^{2} \alpha_{0}$
5. Lantern load	$\frac{W}{E h} x_{1} v \cot \alpha_{0}$	$\frac{W}{E h} \frac{x_{1} \cot \alpha_{0}}{x_{2} \sin \alpha_{0}}$	$\frac{W}{E h}{ }_{1} v \cot \alpha_{0}$	$-\frac{W}{E h} \frac{\cot \alpha_{0}}{\sin \alpha_{0}}$

TABLE 20-12 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CONICAL SHELL ELEMENTS ${ }^{a}$
Part B. Membrane Deformations of Truncated Cones

	Edge Deformation			
Loading Condition				
6. Dead-weight load	$\begin{aligned} & \frac{q x_{2}^{2}}{E h} \frac{\cot \alpha_{0}}{2}\left[2 \cos ^{2} \alpha_{0}\right. \\ - & \left.v\left(1-\frac{x_{1}^{2}}{x_{2}^{2}}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{q x_{2}}{E h} \frac{\cos \alpha_{0}}{2 \sin ^{2} \alpha_{0}} \\ \times & {\left[2(2+v) \cos ^{2} \alpha_{0}\right.} \\ - & \left.1-2 v+\left(\frac{x_{1}}{x_{2}}\right)^{2}\right] \end{aligned}$	$\frac{q x_{1}^{2}}{E h} \frac{\cos ^{3} \alpha_{0}}{\sin \alpha_{0}}$	$\begin{array}{r} \quad \frac{q x_{1}}{E h} \frac{\cos \alpha_{0}}{\sin ^{2} \alpha_{0}}[(2 \\ \left.+v) \cos ^{2} \alpha-v\right] \end{array}$
7. Uniform vertical load on projected area	$\begin{aligned} & \frac{p_{2} x_{2}^{2}}{E h} \frac{\cos ^{2} \alpha_{0}}{2 \sin \alpha_{0}}\left[2 \cos ^{2} \alpha_{0}\right. \\ - & \left.v\left(1-\frac{x_{1}^{2}}{x_{2}^{2}}\right)\right] \end{aligned}$	$\begin{aligned} & \frac{p_{2} x_{2}}{E h} \frac{\cot ^{2} \alpha_{0}}{2} \\ \times & {\left[2(2+v) \cos ^{2} \alpha_{0}\right.} \\ - & \left.1-2 v+\left(\frac{x_{1}}{x_{2}}\right)^{2}\right] \end{aligned}$	$\frac{p_{2} x_{1}^{2}}{E h} \frac{\cos ^{4} \alpha_{0}}{\sin \alpha_{0}}$	$\begin{array}{r} \quad \frac{p_{2} x_{1}}{E h} \cot ^{2} \alpha_{0}[(2 \\ \left.+v) \cos ^{2} \alpha_{0}-v\right] \end{array}$

	Edge Deformation			
8. Hydrostatic load	$\begin{aligned} & \frac{\rho_{w} x_{2}^{2}}{E h} \cos ^{2} \alpha_{0}\left\{v \left[\frac{x_{2}}{3}(1\right.\right. \\ - & \left.\frac{x_{1}^{3}}{x_{2}^{3}}\right)-\frac{d}{2 \sin \alpha_{0}}(1 \\ - & \left.\left.\left.\frac{x_{1}^{2}}{x_{2}^{2}}\right)\right]+\frac{d}{\sin \alpha_{0}}-x_{2}\right\} \end{aligned}$	$\begin{aligned} & \frac{\rho_{w} x_{2}}{E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}} \\ \times & {\left[\frac{d}{2 \sin \alpha_{0}}\left(3+\frac{x_{1}^{2}}{x_{2}^{2}}\right)\right.} \\ - & \left.\frac{x_{2}}{3}\left(8+\frac{x_{1}^{3}}{x_{2}^{3}}\right)\right] \end{aligned}$	$\begin{aligned} & \quad \frac{\rho_{w} x_{1}^{2}}{E h} \cos ^{2} \alpha_{0}\left(\frac{d}{\sin \alpha_{0}}\right. \\ & \left.-x_{1}\right) \end{aligned}$	$\begin{aligned} & \frac{\rho_{w} x_{1}}{E h} \frac{\cos ^{2} \alpha_{0}}{\sin \alpha_{0}}\left(\frac{2 d}{\sin \alpha_{0}}\right. \\ & \left.-3 x_{1}\right) \end{aligned}$
9. Uniform normal pressure	$\begin{aligned} & \frac{p_{1} x_{2}^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0} \\ \times & {\left[1-\frac{v}{2}\left(1-\frac{x_{1}^{2}}{x_{2}^{2}}\right)\right] } \end{aligned}$	$\begin{aligned} & \frac{p_{1} x_{2}}{E h} \frac{\cot ^{2} \alpha_{0}}{2}[3 \\ + & \left.\left(\frac{x_{1}}{x_{2}}\right)^{2}\right] \end{aligned}$	$\frac{p_{1} x_{1}^{2}}{E h} \cos \alpha_{0} \cot \alpha_{0}$	$\frac{p_{1} x_{1}}{E h} 2 \cot ^{2} \alpha_{0}$
10. Lantern load	$-\frac{W}{E h} x_{1} v \cot \alpha_{0}$	$-\frac{W}{E h} \frac{x_{1} \cot \alpha_{0}}{x_{2} \sin \alpha_{0}}$	$-\frac{W}{E h} x_{1} v \cot \alpha_{0}$	$-\frac{W}{E h} \frac{\cot \alpha_{0}}{\sin \alpha_{0}}$

TABLE 20-12 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CONICAL SHELL ELEMENTS ${ }^{a}$
Part C. Influence Coefficients (Bending Deformation) of Truncated Cones

Loading Condition	Edge Deformation			
1.	$-\frac{\sin ^{2} \alpha_{0}}{2 D k^{3}} \frac{\bar{F}_{4}}{\bar{F}_{1}}$	$\frac{\sin \alpha_{0}}{2 D k^{2}} \frac{\bar{F}_{2}}{\bar{F}_{1}}$	$\frac{\sin ^{2} \alpha_{0}}{2 D k^{3}} \frac{\bar{F}_{9}}{\bar{F}_{1}}$	$\frac{\sin \alpha_{0}}{2 D k^{2}} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$
2.	$\frac{\sin \alpha_{0}}{2 D k^{2}} \frac{\bar{F}_{2}}{\bar{F}_{1}}$	$-\frac{1}{2 D k} \frac{2 \bar{F}_{3}}{\bar{F}_{1}}$	$-\frac{\sin \alpha_{0}}{2 D k^{2}} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$	$-\frac{1}{2 D k} \frac{2 \bar{F}_{10}}{\bar{F}_{1}}$

$\begin{aligned} & \text {-1 } \\ & \text { o } \\ & \text { m } \\ & \text { m } \\ & \text { N } \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$		Edge Deformation			
	3.	$-\frac{\sin ^{2} \alpha_{0}}{2 D k^{3}} \bar{F}_{9} \bar{F}_{1}$	$\frac{\sin \alpha_{0}}{2 D k^{2}} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$	$\frac{\sin ^{2} \alpha_{0}}{2 D k^{3}} \frac{\bar{F}_{4}}{\bar{F}_{1}}$	$\frac{\sin \alpha_{0}}{2 D k^{2}} \frac{\bar{F}_{2}}{\bar{F}_{1}}$
	4. (i)	$-\frac{\sin \alpha_{0}}{2 D k^{2}} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$	$\frac{1}{2 D k} \frac{2 \bar{F}_{10}}{\bar{F}_{1}}$	$\frac{\sin \alpha_{0}}{2 D k^{2}} \frac{\bar{F}_{2}}{\bar{F}_{1}}$	$\frac{1}{2 D k} \frac{2 \bar{F}_{3}}{\bar{F}_{1}}$

${ }^{a}$ Adapted from Ref. [20.2].

TABLE 20-13 MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CYLINDRICAL SHELL ELEMENTS ${ }^{\text {a }}$

Notation

```
\(E=\) modulus of elasticity
\(v=\) Poisson's ratio
\(h=\) thickness of shell
\(R=\) radius of shell
\(L=\) length of shell
\(\Delta R_{i}, \Delta R_{j}=\) horizontal displacements at \(i, j\) edges,
            positive in same direction as in figures
        \(\beta_{i}, \beta_{j}=\) angles of rotation of meridional tangents at \(i, j\) edges (rad)
    \(\Delta R_{i}^{0}, \beta_{i}^{0}=\) membrane deformations at edge \(i\) due
            to applied loads
\(\Delta R_{i}^{f}, \beta_{i}^{f}=\) influence coefficients, that is,
            deformations at edge \(i\) due to force \(f\left(f=M_{i}, H_{i}, M_{j}, H_{j}\right)\)
        \(H_{i}, H_{j}=\) horizontal forces per unit length on \(i, j\) edges
    \(M_{i}, M_{j}=\) moments per unit length on \(i, j\) edges
            \(\bar{F}_{i}=\) factors defined in Table 20-9
            \(k=\left[3\left(1-v^{2}\right)\right]^{1 / 4} / \sqrt{R h}\)
```

Deformations in each case (column) of the table are due to the applied loading on the left.
Positive edge moments cause tension in the inner shell surface.
Positive edge horizontal forces cause tension in the inner shell surface at the upper edge and compression in the inner shell surface at the lower edge.
A. Membrane Deformations

TABLE 20-13 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CYLINDRICAL SHELL ELEMENTS ${ }^{a}$

3. (i) $p(\xi)=p_{0} \sin \alpha \xi$	$\begin{aligned} & \frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}}[\sin \alpha \\ & -\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{\alpha}{k L} \frac{\bar{F}_{9}}{\bar{F}_{1}}-\frac{\bar{F}_{2}}{\bar{F}_{1}} \sin \alpha\right. \\ & \left.\left.+\frac{\alpha}{k L} \frac{\bar{F}_{4}}{\bar{F}_{1}} \cos \alpha\right)\right] \end{aligned}$	$\begin{aligned} & \frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}} k\left[\frac{\alpha}{k L} \cos \alpha\right. \\ & +\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{2 \bar{F}_{3}}{\bar{F}_{1}} \sin \alpha-\frac{\alpha}{k L} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}\right. \\ & \left.\left.-\frac{\alpha}{k L} \frac{\bar{F}_{2}}{\bar{F}_{1}} \cos \alpha\right)\right] \end{aligned}$	$\begin{aligned} & \frac{p_{0} R^{2}}{E h} \frac{\alpha^{2}}{2(k L)^{2}} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}} \\ & \times\left(\frac{\alpha}{k L} \frac{\bar{F}_{4}}{\bar{F}_{1}}-\frac{2 \bar{F}_{8}}{\bar{F}_{1}} \sin \alpha\right. \\ & \left.+\frac{\alpha}{k L} \frac{\bar{F}_{9}}{\bar{F}_{1}} \cos \alpha\right) \end{aligned}$	$\begin{aligned} & \frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}} k\left[\frac{\alpha}{k L}\right. \\ & -\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{\alpha}{k L} \frac{\bar{F}_{2}}{\bar{F}_{1}}-\frac{2 \bar{F}_{10}}{\bar{F}_{1}} \sin \alpha\right. \\ & \left.\left.+\frac{\alpha}{k L} \frac{\bar{F}_{8}}{\bar{F}_{1}} \cos \alpha\right)\right] \end{aligned}$
4. $p(\xi)=p_{0} \cos \alpha \xi$	$\begin{aligned} & \frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}}[\cos \alpha \\ & -\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{2 \bar{F}_{8}}{\bar{F}_{1}}-\frac{\bar{F}_{3}}{\bar{F}_{1}} \cos \alpha\right. \\ & \left.\left.-\frac{\alpha}{k L} \frac{\bar{F}_{4}}{\bar{F}_{1}} \sin \alpha\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}} k\left[\frac{\alpha}{k L} \sin \alpha\right. \\ & +\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{2 \bar{F}_{10}}{\bar{F}_{1}}-\frac{2 \bar{F}_{3}}{\bar{F}_{1}} \cos \alpha\right. \\ & \left.\left.-\frac{\alpha}{k L} \frac{\bar{F}_{2}}{\bar{F}_{1}} \sin \alpha\right)\right] \end{aligned}$	$\begin{aligned} & \frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}}[1 \\ & +\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{\bar{F}_{2}}{\bar{F}_{1}}-\frac{2 \bar{F}_{8}}{\bar{F}_{1}} \cos \alpha\right. \\ & \left.\left.-\frac{\alpha}{k L} \frac{\bar{F}_{9}}{\bar{F}_{1}} \sin \alpha\right)\right] \end{aligned}$	$\begin{aligned} & -\frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}} k \frac{\alpha^{2}}{2(k L)^{2}} \\ & \times\left(\frac{2 \bar{F}_{3}}{\bar{F}_{1}}-\frac{2 \bar{F}_{10}}{\bar{F}_{1}} \cos \alpha\right. \\ & \left.-\frac{\alpha}{k L} \frac{2 \bar{F}_{8}}{\bar{F}_{1}} \sin \alpha\right) \end{aligned}$
5. $p(\xi)=p_{0} e^{-\alpha \xi}$	$\begin{aligned} & \frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}}\left[e^{-\alpha}\right. \\ & +\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{2 \bar{F}_{8}}{\bar{F}_{1}}-\frac{\alpha}{k L} \frac{\bar{F}_{9}}{\bar{F}_{1}}\right) \\ & -\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{\bar{F}_{2}}{\bar{F}_{1}}\right. \\ & \left.\left.+\frac{\alpha}{k L} \frac{\bar{F}_{4}}{\bar{F}_{1}}\right) e^{-\alpha}\right] \end{aligned}$	$\begin{aligned} & -\frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}} k\left[\frac{\alpha}{k L} e^{-\alpha}\right. \\ & -\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{2 \bar{F}_{10}}{\bar{F}_{1}}-\frac{\alpha}{k L} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}\right) \\ & +\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{2 \bar{F}_{3}}{\bar{F}_{1}}\right. \\ & \left.\left.+\frac{\alpha}{k L} \frac{\bar{F}_{2}}{\bar{F}_{1}}\right) e^{-\alpha}\right] \end{aligned}$	$\begin{aligned} & \frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}}[1 \\ & -\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{\bar{F}_{2}}{\bar{F}_{1}}-\frac{\alpha}{k L} \frac{\bar{F}_{4}}{\bar{F}_{1}}\right) \\ & +\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{2 \bar{F}_{8}}{\bar{F}_{1}}\right. \\ & \left.\left.+\frac{\alpha}{k L} \frac{\bar{F}_{9}}{\bar{F}_{1}}\right) e^{-\alpha}\right] \end{aligned}$	$\begin{aligned} & -\frac{p_{0} R^{2}}{E h} \frac{4(k L)^{4}}{\alpha^{4}+4(k L)^{4}} k\left[\frac{\alpha}{k L}\right. \\ & -\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{2 \bar{F}_{3}}{\bar{F}_{1}}-\frac{\alpha}{k L} \frac{\bar{F}_{2}}{\bar{F}_{1}}\right) \\ & +\frac{\alpha^{2}}{2(k L)^{2}}\left(\frac{2 \bar{F}_{10}}{\bar{F}_{1}}\right. \\ & \left.\left.+\frac{\alpha}{k L} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}\right) e^{-\alpha}\right] \end{aligned}$

B. Influence Coefficients (Bending Deformations)

	Edge Deformation			
Loading Condition				
1.	$-\frac{2 R^{2} k}{E h} \bar{F}_{4}$	$\frac{2 R^{2} k^{2}}{E h} \frac{\bar{F}_{2}}{\bar{F}_{1}}$	$\frac{2 R^{2} k}{E h} \frac{\bar{F}_{9}}{\bar{F}_{1}}$	$\frac{2 R^{2} k^{2}}{E h} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$
2.	$\frac{2 R^{2} k^{2}}{E h} \frac{\bar{F}_{2}}{\bar{F}_{1}}$	$-\frac{2 R^{2} k^{3}}{E h} \frac{2 \bar{F}_{3}}{\bar{F}_{1}}$	$-\frac{2 R^{2} k^{2}}{E h} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$	$-\frac{2 R^{2} k^{3}}{E h} \frac{2 \bar{F}_{10}}{\bar{F}_{1}}$

TABLE 20-13 (continued)	MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CYLINDRICAL SHELL ELEMENTS ${ }^{\text {a }}$				
3.	$-\frac{2 R^{2} k}{E h} \frac{\bar{F}_{9}}{\bar{F}_{1}}$	$\frac{2 R^{2} k^{2}}{E h} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$	$\frac{2 R^{2} k}{E h} \frac{\bar{F}_{4}}{\bar{F}_{1}}$		$\frac{2 R^{2} k^{2}}{E h} \frac{\bar{F}_{2}}{\bar{F}_{1}}$
4. $f=M_{j}$	$-\frac{2 R^{2} k^{2}}{E h} \frac{2 \bar{F}_{8}}{\bar{F}_{1}}$	$\frac{2 R^{2} k^{3}}{E h} \frac{2 \bar{F}_{10}}{\bar{F}_{1}}$	$\frac{2 R^{2} k^{2}}{E h} \frac{\bar{F}_{2}}{\bar{F}_{1}}$		$\frac{2 R^{2} k^{3}}{E h} \frac{2 \bar{F}_{3}}{\bar{F}_{1}}$
Loading Condition				$\beta_{j}^{\beta_{j}^{f} \mathbb{T}^{(j)} \nabla^{\beta}{ }_{j}^{f}}$	
5.	$\frac{R^{2} k^{2}}{E h} \frac{2 \bar{F}_{2}}{\bar{F}_{1}+2}$			$\frac{R^{2} k^{3}}{E h} \frac{4 \bar{F}_{3}}{\bar{F}_{1}+2}$	

	6.	$\frac{R^{2} k}{E h} \frac{2 \bar{F}_{4}}{\bar{F}_{1}+2}$	$\frac{R^{2} k^{2}}{E h} \frac{2 \bar{F}_{2}}{\bar{F}_{1}+2}$
	7. $f=M_{j}$	$\frac{R^{2} k^{2}}{E h} \frac{2 \bar{F}_{3}}{\bar{F}_{4}}$	$\frac{R^{2} k^{3}}{E h} \frac{4\left(\bar{F}_{1}+1\right)}{\bar{F}_{4}}$
	8. $f=H_{j}$	$\frac{R^{2} k}{E h} \frac{2 \bar{F}_{2}}{\bar{F}_{4}}$	$\frac{R^{2} k^{2}}{E h} \frac{2 \bar{F}_{3}}{\bar{F}_{4}}$

${ }^{a}$ From Ref. [20.2].

TABLE 20-14 STRESS RESULTANTS OF MEMBRANE SHELLS OF VARIOUS SHAPES

Boundary conditions for the cylindrical membrane shells (cases 3-7) are equivalent to being simply supported (shear diaphragms) at $x= \pm \frac{1}{2} L$. Normally, the development of these membrane solutions for stress resultants requires that only the force boundary conditions be invoked. The boundary conditions must be compatible with the conditions of equilibrium.
See Table 20-1, part A, for the definitions of applied loads.

Description	Stress Resultants
1. Elliptic paraboloid shell under uniform vertical load p_{2} Shell geometry: $\begin{aligned} & z=x^{2} / 2 h_{1}+y^{2} / 2 h_{2} \\ & h_{1}=a^{2} / 8 h_{x} \\ & h_{2}=b^{2} / 8 h_{y} \end{aligned}$ Boundary conditions: $\begin{array}{ll} N_{x}=0 & \text { at } x= \pm \frac{1}{2} a \\ N_{y}=0 & \text { at } y= \pm \frac{1}{2} b \end{array}$	$\begin{aligned} & N_{x}= \frac{h_{2}}{h_{1}} \sqrt{\frac{h_{1}^{2}+x^{2}}{h_{2}^{2}+y^{2}} \frac{4 p_{2} h_{1}}{\pi} \sum_{n=1,3, \ldots .}^{\infty}(-1)^{(n+1) / 2} \frac{1}{n}[1} \\ &\left.-\frac{\cosh \lambda_{n} x}{\cosh \left(\lambda_{n} a / 2\right)}\right] \cos \frac{n \pi y}{b} \\ & N_{y}= \\ & \quad h_{3} \frac{4 p_{2} h_{2}}{\pi} \sum_{n=1,3, \ldots}^{\infty}(-1)^{(n+1) / 2} \frac{1}{n} \frac{\cosh \lambda_{n} x}{\cosh \left(\lambda_{n} a / 2\right)} \cos \frac{n \pi y}{b} \\ & N_{x y}= \\ & \frac{4 p_{2}}{\pi} \sqrt{h_{1} h_{2}} \sum_{n=1,3, \ldots(1)^{(n+1) / 2} \frac{1}{n} \frac{\sinh \lambda_{n} x}{\sinh \left(\lambda_{n} a / 2\right)} \sin \frac{n \pi y}{b}}^{h_{3}=} \frac{h_{1}}{h_{2}} \sqrt{\frac{h_{2}^{2}+y^{2}}{h_{1}^{2}+x^{2}}} \end{aligned}$ Ref. [20.3]

TABLE 20-14 (continued) STRESS RESULTANTS OF MEMBRANE SHELLS OF VARIOUS SHAPES

Description	Stress Resultants
2.	$N_{x}=\frac{h_{2}}{h_{1}} \sqrt{\frac{h_{1}^{2}+x^{2}}{h_{2}^{2}+y^{2}} \frac{4 p_{2} h_{1}}{\pi} \sum_{n=1,3, \ldots}^{\infty}(-1)^{(n+1) / 2} \frac{1}{n}[1}$Hyperbolic paraboloid shell with generating parabolas as boundaries and under uniform vertical load p_{2}
	$\left.-\frac{\cosh \lambda_{n} x}{\cosh \left(\lambda_{n} a / 2\right)}\right] \cos \frac{n \pi y}{b}$
l	

Shell geometry:
$z=x^{2} / 2 h_{1}-y^{2} / 2 h_{2}$
$h_{1}=a^{2} / 8 h_{y}$,
$h_{2}=b^{2} / 8 h_{y}$
Boundary conditions:
free at $x= \pm \frac{1}{2} a$ and $y= \pm \frac{1}{2} b$
3.

Cylindrical shell with semielliptic cross section

Boundary condition: simply supported at $x= \pm \frac{1}{2} L$

DEAD WEIGHT:
$N_{\theta}=-q\left[\frac{a^{2} b^{2} \cos \alpha}{\left(a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha\right)^{3 / 2}}\right]$ $N_{x \theta}=-q x\left[2+\frac{3\left(a^{2}-b^{2}\right) \cos ^{2} \alpha}{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}\right] \sin \alpha$
$N_{x}=-\frac{q}{2}\left(\frac{L^{2}}{4}-x^{2}\right)\left[\frac{2 a b}{k^{3}}\right.$

$$
\left.+\frac{3\left(a^{2}-b^{2}\right)}{a b k}\left(\cos ^{2} \alpha-\frac{2 k^{2}}{b^{2}} \sin ^{2} \alpha\right)\right] \cos \alpha
$$

where $k=\frac{a b}{\left(a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha\right)^{1 / 2}}$
TABLE 20-14 (continued) STRESS RESULTANTS OF MEMBRANE SHELLS OF VARIOUS SHAPES

Description	Stress Resultants
	UNIFORMLY DISTRIBUTED LOADING ON PROJECTED AREA (SNOW LOAD): $\begin{aligned} N_{\theta} & =-p_{2} \frac{a^{2} b^{2} \cos ^{2} \alpha}{\left(a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha\right)^{3 / 2}} \\ N_{x \theta} & =-3 p_{2} x \frac{a^{2} \sin \alpha \cos \alpha}{a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha} \\ N_{x} & =-\frac{3}{2} p_{2}\left(\frac{L^{2}}{4}-x^{2}\right) \frac{-a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha}{b^{2}\left(a^{2} \sin ^{2} \alpha+b^{2} \cos ^{2} \alpha\right)^{1 / 2}} \end{aligned}$ Ref. [20.4]
4. Cylindrical shell with circular cross section	DEAD WEIGHT: $\begin{aligned} N_{\theta} & =-q R \cos \alpha \\ N_{x \theta} & =-2 q x \sin \alpha \\ N_{x} & =-\frac{q}{R}\left(\frac{L^{2}}{4}-x^{2}\right) \cos \alpha \end{aligned}$

SNOW LOAD:
$N_{\theta}=-p_{2} R \cos ^{2} \alpha$
Boundary condition:
simply supported
at $x= \pm \frac{1}{2} L$

$$
N_{x \theta}=-1.5 p_{2} x \sin 2 \alpha
$$

$N_{x}=-1.5 \frac{p_{2}}{R}\left(\frac{L^{2}}{4}-x^{2}\right) \cos 2 \alpha$
Ref. [20.4]
5.

Cylindrical shell with catenary cross section

Geometry of shell: $z=a \cosh (y / a)$
where a is a constant that is the distance from the vertex of the catenary to the x axis.
Boundary condition:
simply supported at $x= \pm \frac{1}{2} L$

DEAD WEIGHT:

$$
\begin{aligned}
& N_{\theta}=-\frac{q a}{\cos \alpha} \\
& N_{x \theta}=N_{x}=0 \\
& \text { SNOW LOAD: } \\
& N_{\theta}=-p_{2} a \\
& N_{x \theta}=-0.5 p_{2} x \sin 2 \alpha \\
& N_{x}=-0.5 \frac{p_{2}}{a}\left(\frac{L^{2}}{4}-x^{2}\right) \cos 2 \alpha \cos ^{2} \alpha
\end{aligned}
$$

Ref. [20.4]

TABLE 20-14 (continued) STRESS RESULTANTS OF MEMBRANE SHELLS OF VARIOUS SHAPES

Boundary conditions: simply supported at $x= \pm \frac{1}{2} L$

7.

Cylindrical shells with parabolic cross section

Geometry of shell: $y^{2}=4 a z \quad a=$ const Boundary conditions: simply supported at $x= \pm \frac{1}{2} L$

$$
y=a(\beta-\pi-\sin \beta) \quad R_{0}=4 a
$$

$z=a(1+\cos \beta) \quad 0 \leq \beta \leq 2 \pi$
DEAD WEIGHT:
$N_{\theta}=-q R_{0} \cos ^{2} \alpha$
$N_{x \theta}=-3 q x \sin \alpha$
$N_{x}=-\frac{3}{2} \frac{q}{R_{0}}\left(\frac{L^{2}}{4}-x^{2}\right)$
SNOW LOAD:
$N_{\theta}=-p_{2} R_{0} \cos ^{2} \alpha$
$N_{x \theta}=-2 p_{2} x \sin \alpha \cos \alpha$
$N_{x}=-2 \frac{p_{2}}{R_{0}}\left(\frac{L^{2}}{4}-x^{2}\right) \frac{\cos ^{2} \alpha-\sin ^{2} \alpha}{\cos \alpha}$
Ref. [20.4]

DEAD WEIGHT:

$$
\begin{aligned}
N_{\theta} & =-\frac{q R_{0}}{\cos ^{2} \alpha} \\
N_{x \theta} & =q x \sin \alpha \\
N_{x} & =0.5 \frac{q}{R_{0}}\left(\frac{L^{2}}{4}-x^{2}\right) \cos ^{4} \alpha
\end{aligned}
$$

SNOW LOAD:
$N_{\theta}=-\frac{p_{2} R_{0}}{\cos \alpha}$
$N_{x \theta}=N_{x}=0$
where
$R_{0}=2 a$
Ref. [20.4]

TABLE 20-15 CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION

Notation
$E=$ modulus of elasticity
$v=$ Poisson's ratio
$h=$ thickness of shell
$L=$ length of shell along generator
$b=$ width of panel in circumferential direction
$R=$ radii of cylinders and panels
$R_{e}=$ constant given in various cases for cones
$p_{1}=$ uniform pressure (F / L^{2})
$p_{\text {cr }}=$ critical pressure at buckling $\left(F / L^{2}\right)$
$P_{\text {cr }}=$ critical concentrated force at buckling (F / L)
$\sigma_{\text {cr }}=$ stress at buckling; for truncated cones, stress at small end
$\tau_{\text {cr }}=$ shear stress at buckling; for truncated cones, shear stress at small end

$$
D=E h^{3} / 12\left(1-v^{2}\right)
$$

Unless otherwise specified,

$$
Z= \begin{cases}\frac{L^{2}}{R_{e} h}\left(1-v^{2}\right)^{1 / 2} & \text { for conical shells (for case 5, use } L_{e} \text { instead of } L \text {) } \\ \frac{L^{2}}{R h}\left(1-v^{2}\right)^{1 / 2} & \text { for cylindrical shells } \\ \frac{b^{2}}{R h}\left(1-v^{2}\right)^{1 / 2} & \text { for panels }\end{cases}
$$

For a simply supported (shear diaphragm) boundary condition, the radial and circumferential displacements are zero, the force in the axial direction and the moment about the tangent of the circumferential wall contour are zero, and there is no restraint against translation in the axial direction and rotation about the circumferential boundary.
Unless otherwise specified, the boundary conditions of the shells are simply supported.

Description	Critical Load
1.	Empirical buckling formula:
Spherical shell	$p_{1, \mathrm{cr}=\frac{0.80 E}{\sqrt{1-v^{2}}}\left(\frac{h}{R}\right)^{2}}^{\text {with external pressure } p_{1}}$

TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION	
Description	Critical Load
2. Clamped spherical cap with external pressure p_{1}	$\begin{aligned} & p_{1}, \text { cr }=\left(0.14+\frac{3.2}{\lambda^{2}}\right) K_{c} \\ & \text { where } K_{c}=\frac{2}{\left[3\left(1-v^{2}\right)\right]^{1 / 2}} E\left(\frac{h}{R}\right)^{2} \\ & \qquad \lambda=\left[12\left(1-v^{2}\right)\right]^{1 / 4}\left(\frac{R}{h}\right)^{1 / 2} 2 \sin \frac{\phi}{2} \end{aligned}$ Ref. [20.2]
3. Truncated conical shell subjected to concentrated axial compression force Boundary condition: simply supported at upper and lower edges	For axisymmetrical buckling: $P_{\mathrm{cr}}=K_{c} \cos ^{2} \alpha$ where $K_{c}=\frac{2 E h^{2} \pi}{\sqrt{3\left(1-v^{2}\right)}}$ For asymmetric buckling: $P_{\mathrm{cr}}=\sigma_{\mathrm{cr}} \cdot \pi x_{1} h \sin 2 \alpha$ where $\sigma_{\mathrm{cr}}=\frac{E h \cos \alpha}{r_{1} \sqrt{3\left(1-v^{2}\right)}} \sqrt{\frac{1}{2} \frac{1+x_{1} / x_{2}}{1-x_{1} / x_{2}} \log \frac{x_{2}}{x_{1}}}$ Ref. [20.13]
4. Truncated conical shell with concentrated force and internal pressure p_{1}	$P_{\mathrm{cr}}=2 \pi R_{e} \sigma_{\mathrm{cr}} h \cos ^{2} \alpha+\pi R_{e}^{2} p_{1} \cos ^{2} \alpha \quad\left(\alpha<75^{\circ}\right)$ where $\begin{aligned} R_{e}= & \frac{R_{1}}{\cos \alpha} \quad \sigma_{\mathrm{cr}}=\left(\gamma K_{c}+K_{b}\right) \frac{E h}{R_{e}} \\ K_{c}= & \frac{1}{\left[3\left(1-v^{2}\right)\right]^{1 / 2}} \\ \gamma= & 6.1424+5.9264 \log \eta_{1}-4.3154 \log ^{2} \eta_{1} \\ & +0.6357 \log ^{3} \eta_{1} \end{aligned}$

TABLE 20-15 (continued)	CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION
Description	Critical Load
	$\begin{aligned} K_{b}= & 10^{K} \\ K= & -0.6869+0.1846 \log \eta_{2}-0.1452 \log ^{2} \eta_{2} \\ & +0.030019 \log ^{3} \eta_{2} \end{aligned}$ where $\eta_{1}=\frac{R_{e}}{h} \quad \eta_{2}=\frac{p_{1}}{E}\left(\frac{R_{e}}{h}\right)^{2}$ This formula is valid for $R_{e} / h>700$ $Z>25$ for simply supported edges $Z>80$ for clamped edges Ref. [20.2]
5. Truncated conical shell with torsional moment (Force •Length)	$T_{\mathrm{cr}}=2 \pi R_{1}^{2} h \tau_{\mathrm{cr}} \quad\left(\alpha<60^{\circ}\right)$ where $\begin{aligned} \tau_{\text {cr }}= & \frac{R_{e}^{2}}{R_{1}^{2}} K_{c} \frac{E h}{R_{e} Z^{1 / 4}} \\ Z= & \frac{L_{e}^{2}}{R_{e} h}\left(1-v^{2}\right)^{1 / 2} \\ R_{e}= & \left\{1+\left(\frac{1+R_{2} / R_{1}}{2}\right)^{1 / 2}\right. \\ & \left.-\left(\frac{1+R_{2} / R_{1}}{2}\right)^{-1 / 2}\right\} R_{1} \cos \alpha \\ K_{c}= & 0.4218+83.1595 \eta^{-1}-13,710.7197 \eta^{-2} \\ & +810,673.75 \eta^{-3} \\ \eta= & \frac{R_{e}}{h} \end{aligned}$ This formula is valid for $Z>100$ for simply supported edges and clamped edges Ref. [20.2]

TABLE 20-15 (continued)	CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION
Description	Critical Load
6. Truncated conical shell with bending moment	$M_{\mathrm{cr}}=\pi R_{1}^{2} \sigma_{\mathrm{cr}} h \cos \alpha \quad\left(\alpha<60^{\circ}\right)$ where $\begin{aligned} \sigma_{\mathrm{cr}}= & \gamma K_{c} \frac{E h}{R_{e}} \quad R_{e}=\frac{R_{1}}{\cos \alpha} \quad K_{c}=\frac{1}{\left[3\left(1-v^{2}\right)\right]^{1 / 2}} \\ \gamma= & 15.9069-14.7607 \log \eta+11.1455 \log ^{2} \eta \\ & -3.9906 \log ^{3} \eta+0.4778 \log ^{4} \eta \\ \eta= & R_{e} / h \end{aligned}$ This formula is valid for $Z>20$ for simply supported edges $Z>80$ for clamped edges Ref. [20.2]
7. Truncated conical shell with bending moment and internal pressure	$M_{\mathrm{cr}}=\pi R_{1}^{2} h \sigma_{\mathrm{cr}} \cos \alpha \quad\left(\alpha<60^{\circ}\right)$ where $\begin{aligned} \sigma_{\mathrm{cr}} & =\left(\gamma K_{c}+K_{b}\right) \frac{E h}{R_{e}} \quad\left(\frac{R_{e}}{h}>500\right) \\ R_{e} & =\frac{R_{1}}{\cos \alpha} \quad \gamma=\frac{1}{\left[3\left(1-v^{2}\right)\right]^{1 / 2}} \end{aligned}$ K_{c} is taken from case 6. $\begin{aligned} K_{b}= & \begin{cases}10^{K_{1}} & 0.01 \leq \eta<0.2 \\ 10^{K_{2}} & 0.2 \leq \eta \leq 10\end{cases} \\ K_{1}= & -0.4166+0.1882 \log \eta-0.03687 \log ^{2} \eta \\ & -0.01516 \log ^{3} \eta \\ K_{2}= & -0.1376+0.8051 \log \eta+0.1946 \log ^{2} \eta \\ & -0.1374 \log ^{3} \eta \\ \eta= & \frac{p_{1}}{E}\left(\frac{R_{e}}{h}\right)^{2} \end{aligned}$ This formula is valid for $Z>20$ for simply supported edges $Z>80$ for clamped edges Ref. [20.2]

TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION	
Description	Critical Load
8. Truncated conical shell with external pressure	$\left(p_{1}\right)_{\mathrm{cr}}=\frac{\sigma_{\mathrm{cr}} h \cos \alpha}{R_{2}} \quad\left(\alpha<75^{\circ}\right)$ where $\begin{aligned} R_{e} & =\frac{R_{1}+R_{2}}{2 \cos \alpha} \\ \sigma_{\mathrm{cr}} & =K_{c} \frac{\pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{h}{L}\right)^{2} \frac{R_{2}}{R_{e} \cos \alpha} \\ K_{c} & =10^{-0.186+0.535 \log Z} \end{aligned}$ This formula is for simply supported edges and is conservative for clamped edges. Ref. [20.2]
9. Cylindrical shell axial compression	$\begin{aligned} & \sigma_{\mathrm{cr}}=K_{c} \frac{\pi^{2} D}{L^{2} h} \quad \text { where } K_{c}=10^{K}, \quad Z=\frac{L^{2}}{R h} \sqrt{1-v^{2}} \\ & \text { For simply supported edges } \\ & K= \begin{cases}\text { Empirical design curves: } \\ 0.03967+0.3788 \log Z+0.1301 \log ^{2} Z & \\ \quad-0.01108 \log ^{3} Z & (R / h=3000) \\ 0.03839+0.4002 \log Z+0.142 \log ^{2} Z & \\ -0.01422 \log ^{3} Z & (R / h=2000) \\ 0.03345+0.4701 \log Z+0.1298 \log ^{2} Z & \\ -0.01229 \log ^{3} Z & (R / h=1000) \\ 0.03909+0.5159 \log Z+0.1366 \log ^{2} Z & \\ \quad-0.01414 \log ^{3} Z & \\ \text { Theoretical: } & \\ 0.01920+0.7378 \log Z+0.1206 \log ^{2} Z & \\ -0.01686 \log ^{3} Z & \end{cases} \end{aligned}$

TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION	
Description	Critical Load
	$\begin{aligned} & \text { For clamped edges } \\ & K= \begin{cases}\text { Empirical design curves: } \\ 0.6046+0.02859 \log Z+0.1935 \log ^{2} Z & \\ \quad-0.01388 \log ^{3} Z & (R / h=3000) \\ 0.6078-0.002595 \log Z+0.2260 \log ^{2} Z & \\ \quad-0.01884 \log ^{3} Z & (R / h=2000) \\ 0.6128-0.05537 \log Z+0.2816 \log ^{2} Z & \\ \quad-0.02637 \log ^{3} Z & (R / h=1000) \\ 0.6148-0.1096 \log Z+0.3535 \log ^{2} Z & \\ \quad-0.03833 \log ^{3} Z & (R / h=500) \\ \text { Theoretical: } & \\ 0.5900-0.03724 \log Z+0.4361 \log ^{2} Z & \\ \quad-0.05646 \log ^{3} Z & \\ \hline\end{cases} \end{aligned}$
10. Clamped cylindrical shell axial compression and internal pressure	$\begin{aligned} & P_{\mathrm{cr}}=\pi R\left(2 h \sigma_{\mathrm{cr}}+p_{1} R\right) \\ & \text { where } \\ & \sigma_{\mathrm{cr}}=K_{c} E h / R \\ & K_{c}=\left\{\begin{array}{cc} 0.09988+0.1235 \sqrt{\bar{p}}+0.004858 \bar{p} \\ -0.001976(\sqrt{\bar{p}})^{3} \\ 0.1630+0.0947 \sqrt{\bar{p}}+0.0118 \bar{p} \\ -0.00267(\sqrt{\bar{p}})^{3} & (R / h \rightarrow \infty) \\ 0.1874+0.1339 \sqrt{\bar{p}}-0.006912 \bar{p} \\ -0.0007018(\sqrt{\bar{p}})^{3} & (R / h=2000) \\ 0.2462+0.1316 \sqrt{\bar{p}}-0.01203 \bar{p} \\ -0.00005(\sqrt{\bar{p}})^{3} & (R / h=1333) \\ 0.2786+0.1277 \sqrt{\bar{p}}-0.01156 \bar{p} \\ -0.0001997(\sqrt{\bar{p}})^{3} & (R / h=800) \\ 0.3295+0.1165 \sqrt{\bar{p}}-0.01187 \bar{p} \\ -0.0000728(\sqrt{\bar{p}})^{3} & (R / h=500) \\ p_{1} & (R / h=400) \\ \bar{p}=\frac{1}{E(R / h)^{2}} \end{array}\right. \end{aligned}$

TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION	
Description	Critical Load
11. Cylindrical shell with torsional moment at ends	$T_{\mathrm{cr}}=2 \pi R^{2} K_{c} \frac{E h^{2}}{R Z^{1 / 4}}$ where $\begin{aligned} K_{c}= & 0.4233+79.9779 \eta^{-1}-12,759.6621 \eta^{-2} \\ & +755,633.25 \eta^{-3} \\ \eta= & R / h \end{aligned}$ This formula is valid for $\begin{aligned} & Z<78(R / h)^{2}\left(1-v^{2}\right) \\ & Z>100 \text { for simply supported edges } \\ & Z>100 \text { for clamped edges } \end{aligned}$ Ref. [20.2]
12. Cylindrical shell with torsional moments at ends and internal pressure	$T_{\mathrm{cr}}=2 \pi R^{2} h^{2}\left(K_{c} \frac{E}{R Z^{1 / 4}}+K_{b} \frac{E}{R}\right)$ where K_{c} is defined in case 11 $\begin{aligned} K_{b}= & 10^{K} \\ K= & -0.1318+0.8758 \log \eta+0.07645 \log ^{2} \eta \\ & +0.01314 \log ^{4} \eta \\ \eta= & \frac{p_{1}}{E}\left(\frac{R}{h}\right)^{2} \end{aligned}$ The formula in this case is valid under the same conditions as for case 11. Ref. [20.2]
13. Cylindrical shell with bending moment at ends	$M_{\mathrm{cr}}=\pi R^{2} \sigma_{\mathrm{cr}} h$ where $\begin{aligned} \sigma_{\mathrm{cr}} & =\gamma K_{c} \frac{E h}{R} \\ \gamma= & \frac{1}{\left[3\left(1-v^{2}\right)\right]^{1 / 2}} \\ K_{c}= & 15.3914-13.8791 \log \eta+10.6439 \log ^{2} \eta \\ & -3.8693 \log ^{3} \eta+0.4669 \log ^{4} \eta \\ \eta= & R / h \end{aligned}$ Ref. [20.2]

TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION	
Description	Critical Load
14. Cylindrical shell with bending moment and internal pressure	$M_{\mathrm{cr}}=\pi R^{2} \sigma_{\mathrm{cr}} h \quad(R / h>500)$ where $\sigma_{\mathrm{cr}}=\left(\gamma K_{c}+K_{b}\right) \frac{E h}{R}$ γ and K_{c} are defined in case 13 $K_{b}=10^{K}$ $\begin{aligned} & K=\left\{\begin{array}{l} -0.866-0.926 \log \eta \\ -0.869 \log ^{2} \eta-0.2073 \log ^{3} \eta \\ -0.1377+0.8275 \log \eta \\ +0.1908 \log ^{2} \eta-0.1383 \log ^{3} \eta \end{array}\right\} \quad 0.01 \leq \eta<0.2 \\ & \eta=\frac{p_{1}}{E}\left(\frac{R}{h}\right)^{2} \end{aligned}$ Ref. [20.2]
15. Cylindrical shell with external pressure	$p_{1}, \mathrm{cr}=\sigma_{\mathrm{cr}} h / R$ where $\begin{aligned} \sigma_{\mathrm{cr}}= & K_{c} \frac{\pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{h}{L}\right)^{2} \\ K_{c}= & 10^{K} \\ K= & 0.6337-0.1455 \log Z+0.1977 \log ^{2} Z \\ & -0.01915 \log ^{3} Z \end{aligned}$ Ref. [20.2]
16. Curved panel with axial compression	$p_{1, \mathrm{cr}}=K_{c} \frac{E h}{R} \quad(a / b>0.5)$ where $\begin{aligned} K_{c}= & 0.22195+29.7611 \eta^{-1}-2322.08667 \eta^{-2} \\ & +65,832.1484 \eta^{-3} \\ \eta= & R / h \end{aligned}$ This formula is valid for $Z>30$ for simply supported edges $Z>50$ for clamped edges Ref. [20.2]

TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION	
Description	Critical Load
17. Cylindrical panel with shear forces $\tau\left(F / L^{2}\right)$	$\begin{aligned} & \tau_{\text {cr }}=K_{c} \frac{\pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{h}{b}\right)^{2} \quad(a>b) \\ & \text { where } K_{c}=10^{K} \\ & K=\left\{\begin{array}{cl} 0.7171-0.2427 \log Z+0.2613 \log ^{2} Z \\ -0.02906 \log ^{3} Z & (a / b \rightarrow \infty) \\ 0.7545-0.3151 \log Z+0.3261 \log ^{2} Z & \\ -0.03461 \log ^{3} Z & (a / b=3.0) \\ 0.8056-0.3378 \log Z+0.35 \log ^{2} Z \\ -0.03825 \log ^{3} Z & (a / b=2.0) \\ 0.8653-0.3246 \log Z+0.3336 \log ^{2} Z & (a / b=1.5) \\ -0.03492 \log ^{3} Z & (a / b=1.0) \end{array}\right. \\ & \text { Ref. [20.2] } \begin{array}{l} 0.9643-0.2683 \log Z+0.2949 \log ^{2} Z \\ -0.02898 \log ^{3} Z \end{array} \end{aligned}$
18. Curved panel subject to bending at ends	$\sigma_{\mathrm{cr}}=K_{c} \frac{\pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{h}{b}\right)^{2}$ where $K_{c}=10^{K}$ For simply supported edges $K=\left\{\begin{array}{cc} 1.3838+0.0672 \log Z-0.04973 \log ^{2} Z \\ +0.04021 \log ^{3} Z & (R / h=2000) \\ 1.387+0.01058 \log Z-0.01525 \log ^{2} Z \\ +0.04497 \log ^{3} Z & (R / h=1000) \\ 1.395-0.2141 \log Z+0.1874 \log ^{2} Z \\ +0.01432 \log ^{3} Z & (R / h=500) \end{array}\right.$ For clamped edges $K=\left\{\begin{array}{c} 1.667+0.1819 \log Z-0.2028 \log ^{2} Z \\ +0.06786 \log ^{3} Z \\ 1.6705+0.1575 \log Z-0.2131 \log ^{2} Z \\ +0.084 \log ^{3} Z \end{array}\right.$ Ref. [20.2]

TABLE 20-16 NATURAL FREQUENCIES OF MEMBRANE CIRCULAR CYLINDRICAL SHELLS ${ }^{a}$

Notation		
$\begin{aligned} E & =\text { modulus of elasticity } \\ \rho^{*} & =\text { mass per unit volume }\end{aligned} \quad$ Examples of longitudinal mode patterns $\quad \begin{gathered}\text { Example of circuferential } \\ \text { mode pattern }\end{gathered}$		
$h=$ thickness of shell $\nu=$ Poisson's ratio		
$L=$ length of cylinder		
$\Omega=$ frequency parameter		
$C_{1}=$ constant given in part B		
$n=$ number of waves in mode shapes		
in circumferential direct		
$m=$ number of half waves in mode shapes		
$m_{1}=$ number of circumferential nodal circles $\quad m_{1}=\mathbf{2}$ for free - free case		
in mode shapes along longitudinal direction; nodal circles are circles that have zero		
displacements in the mode shapes		
$\Omega_{a}, \Omega_{r t}=$ frequency parameters for axial and coupled		
$\Omega_{t}, \Omega_{a r}=$ frequency parameters for torsional and coupled $\quad m_{1}=2$ for clamped - free case		

The simply supported boundary condition is defined in Section 20.5 (shear diaphragm).
$\omega^{2}=\frac{E \Omega^{2}}{\rho^{*}\left(1-v^{2}\right) R^{2}} \quad$ where $\Omega^{2}=\Omega^{2}$ or Ω_{a}^{2} or $\Omega_{r t}^{2}$ or $\Omega_{a r}^{2}$, as appropriate
$\eta=\frac{R}{n L} \quad \lambda=\frac{m \pi R}{L}$
Unless specified otherwise, the vibration modes are general responses (i.e., they do not pertain to axial, radial, or torsional modes in particular).
Cases 3-6 give lower bounds for the frequency parameters.
Part A. Frequencies

Case	Frequency Parameter Ω
1.	Axial modes: $\Omega_{a}^{2}=\frac{1}{2}(1-v) n^{2}$

Coupled radial-torsional modes: $\Omega_{r t}^{2}=1+n^{2}$
For the coupled radial-torsional modes, for each n there is a rigid body mode such that $\Omega_{r t}^{2}=0$.

TABLE 20-16 (continued) NATURAL FREQUENCIES OF MEMBRANE CIRCULAR CYLINDRICAL SHELLS ${ }^{a}$

Case	Frequency Parameter Ω
2. Simply supported (shear diaphragms)	In general, Ω^{2} is taken from the polynomial $\Omega^{6}-K_{2} \Omega^{4}+K_{1} \Omega^{2}-K_{0}=0$ with $\begin{aligned} & K_{0}=\frac{1}{2}(1-v)\left[\left(1-v^{2}\right) \lambda^{4}\right] \\ & K_{1}=\frac{1}{2}(1-v)\left[(3+2 v) \lambda^{2}+n^{2}+\left(n^{2}+\lambda^{2}\right)^{2}\right] \\ & K_{2}=1+\frac{1}{2}(3-v)\left(n^{2}+\lambda^{2}\right) \end{aligned}$ For $n=0$ $\Omega_{t}^{2}=\frac{1}{2}(1-v) \lambda^{2}$ for the torsional modes and $\Omega_{a r}^{2}=\frac{1}{2}\left\{\left(1+\lambda^{2}\right) \pm\left[\left(1-\lambda^{2}\right)^{2}+4 \nu^{2} \lambda^{2}\right]^{1 / 2}\right\}$ for coupled axial-radial modes.
3. Clamped-clamped	$\Omega^{2}=\left(1-v^{2}\right) C_{1}$ C_{1} is given in part B.
4. Clamped-simply supported	$\Omega^{2}=\left(1-v^{2}\right) C_{1}$ C_{1} is given in part B.
5. Clamped-free	$\Omega^{2}=\left(1-v^{2}\right) C_{1}$ C_{1} is given in part B.
6. Free-free	$\Omega^{2}=\left(1-v^{2}\right) C_{1}$ C_{1} is given in part B.

TABLE 20-16 (continued) NATURAL FREQUENCIES OF MEMBRANE CIRCULAR CYLINDRICAL SHELLS ${ }^{a}$

		Part B. Values of C_{1} in Part A
Clamped-Free		
0	$0.1 \leq \eta \leq 0.5$	$0.00092+0.002226 \eta-0.4103 \eta^{2}+4.5762 \eta^{3}-4.6157 \eta^{4}$
	$0.035 \leq \eta<0.1$	$-0.0001156+0.008336 \eta-0.2215 \eta^{2}+2.6565 \eta^{3}$
	$0.02 \leq \eta<0.035$	$-0.0000021+0.0005052 \eta-0.03834 \eta^{2}+1.15745 \eta^{3}$
1	$0.08 \leq \eta \leq 0.5$	$0.060995-1.855 \eta+18.704 \eta^{2}-36.66 \eta^{3}+23.329 \eta^{4}$
	$0.027 \leq \eta<0.08$	$0.0004134-0.013664 \eta-0.70137 \eta^{2}+37.08687 \eta^{3}$
	$0.02 \leq \eta<0.027$	$0.0004057-0.046776 \eta+1.51436 \eta^{2}$
2	$0.08 \leq \eta \leq 0.5$	$-0.075256+0.10096 \eta+28.599 \eta^{2}-93.341 \eta^{3}+86.742 \eta^{4}$
	$0.02 \leq \eta<0.08$	$0.0018112-0.15584 \eta+1.7872 \eta^{2}+146.712 \eta^{3}$
3	$0.08 \leq \eta \leq 0.5$	$-0.43498+9.2468443 \eta-22.2211 \eta^{2}+18.4197 \eta^{3}$
	$0.027 \leq \eta<0.08$	$0.01085-0.80057 \eta+8.04 \eta^{2}+692.4 \eta^{3}-4262.9 \eta^{4}$
	$0.02 \leq \eta<0.027$	$-0.0001266+0.071225 \eta-10.3095 \eta^{2}+615.065 \eta^{3}$
4	$0.07 \leq \eta \leq 0.5$	$-0.3339+9.929 \eta-25.77 \eta^{2}+22.202 \eta^{3}$
	$0.02 \leq \eta<0.07$	$0.007042-0.5893 \eta-5.747 \eta^{2}+1838.4 \eta^{3}-14,025 \eta^{4}$
Free-Free		
2	$0.08 \leq \eta \leq 0.5$	$0.18343-5.233 \eta+48.646 \eta^{2}-118.47 \eta^{3}+94.264 \eta^{4}$
	$0.02 \leq \eta<0.08$	$-0.0004718+0.057847 \eta-2.609 \eta^{2}+52.783 \eta^{3}+71.018 \eta^{4}$
3	$0.08 \leq \eta \leq 0.5$	$-0.24301+3.2871 \eta+14.394 \eta^{2}-68.137 \eta^{3}+70.793 \eta^{4}$
	$0.02 \leq \eta<0.08$	$-0.0042972+0.565 \eta-28.073 \eta^{2}+649.04 \eta^{3}-2551.1 \eta^{4}$
4	$0.08 \leq \eta \leq 0.5$	$-0.4655+10.45823 \eta-27.1505 \eta^{2}+23.7978 \eta^{3}$
	$0.02 \leq \eta<0.08$	$0.000248+0.27803 \eta-34.487 \eta^{2}+1439.1 \eta^{3}-8039 \eta^{4}$

${ }^{a}$ Adapted from Ref. [20.6].

TABLE 20-17 NATURAL FREQUENCIES OF CIRCULAR CYLINDRICAL SHELLS WITH BENDING ${ }^{a}$

Notation
$E=$ modulus of elasticity
$\rho^{*}=$ mass per unit volume
$h=$ thickness of shell
$D_{1}=$ constant given in this table, part B
$C_{1}=$ constant given in Table 20-16, part B
$\omega=$ natural frequency
$\Omega=$ frequency parameter
$\Omega_{a}, \Omega_{r t}, \Omega_{t}, \Omega_{a t}=$ see definitions of Table 20-16
$v=$ Poisson's ratio
$R=$ radius of cylinder
$L=$ length of cylinder
$n=$ number of waves in mode shapes in circumferential direction
$m=$ number of half waves in mode shapes in longitudinal direction
$m_{1}=$ number of circumferential nodal circles in mode shapes along longitudinal direction; nodal circles are circles that have zero displacements in mode shapes (see figures with Table 20-16 notation)

$$
\begin{aligned}
\omega^{2} & =\frac{E \Omega^{2}}{\rho^{*}\left(1-v^{2}\right) R^{2}} \quad \text { where } \Omega^{2}=\Omega^{2} \text { or } \Omega_{a}^{2} \text { or } \Omega_{r t}^{2} \text { or } \Omega_{t}^{2} \\
\eta & =\frac{R}{n L} \quad \lambda=\frac{m \pi R}{L} \quad \kappa=\frac{h^{2}}{12 R^{2}}
\end{aligned}
$$

Unless specified otherwise, the vibration modes are general responses (i.e., they do not pertain to axial, radial, or torsional modes in particular).
Cases 4-7 give lower bounds for the frequency parameters.

Part A. Frequencies

FROM FLÜGGE THEORY:
Axial modes:
$\Omega_{a}^{2}=\frac{1}{2}(1-v) n^{2}$
Coupled radial-torsional modes:
$\Omega_{r t}^{2}=\frac{1}{2}\left\{\left(1+n^{2}+\kappa n^{4}\right) \mp\left[\left(1+n^{2}\right)^{2}-2 \kappa n^{6}\right]^{1 / 2}\right\}$

TABLE 20-17 (continued) NATURAL FREQUENCIES OF CIRCULAR CYLINDRICAL SHELLS WITH BENDING ${ }^{\text {a }}$

Case	Frequency Parameter Ω

2.

Simply supported (shear diaphragms)

In general, Ω^{2} is taken from the polynomial
$\Omega^{6}-K_{2} \Omega^{4}+K_{1} \Omega^{2}-K_{0}=0$
The coefficients K_{0}, K_{1}, and K_{2} are:
FROM DONNELL-MUSHTARI THEORY:

$$
\begin{aligned}
K_{0}= & \frac{1}{2}(1-v)\left[\left(1-v^{2}\right) \lambda^{4}+\kappa\left(n^{2}+\lambda^{2}\right)^{4}\right] \\
K_{1}= & \frac{1}{2}(1-v)\left[(3+2 v) \lambda^{2}+n^{2}+\left(n^{2}+\lambda^{2}\right)^{2}\right. \\
& \left.+\frac{3-v}{1-v} \kappa\left(n^{2}+\lambda^{2}\right)^{3}\right] \\
K_{2}= & 1+\frac{1}{2}(3-v)\left(n^{2}+\lambda^{2}\right)+\kappa\left(n^{2}+\lambda^{2}\right)^{2}
\end{aligned}
$$

FROM FLÜGGE THEORY:

$$
\begin{aligned}
& K_{0}=\frac{1}{2}(1-v)\left[\left(1-v^{2}\right) \lambda^{4}+\kappa\left(n^{2}+\lambda^{2}\right)^{4}\right]+\kappa \Delta K_{0} \\
& \Delta K_{0}= \frac{1}{2}(1-v)\left[2(2-v) \lambda^{2} n^{2}+n^{4}-2 v \lambda^{6}-6 \lambda^{4} n^{2}\right. \\
&-2(4-v) \lambda^{2} n^{4}-2 n^{6}
\end{aligned}
$$

K_{1} and K_{2} are the same as in Donnell-Mushtari theory.
For $n=0$:
FROM DONNELL-MUSHTARI THEORY:

$$
\Omega_{t}^{2}=\frac{1}{2}(1-v) \lambda^{2}
$$

Coupled axial-radial modes:

$$
\begin{aligned}
\Omega_{a r}^{2} & =\left\{\left(1+\lambda^{2}+\kappa \lambda^{4}\right)\right. \\
& \left.\mp\left[\left(1-\lambda^{2}\right)^{2}+2 \lambda^{2}\left(2 \nu^{2}+\kappa \lambda^{2}-\kappa \lambda^{4}\right)\right]^{1 / 2}\right\}
\end{aligned}
$$

FROM FLÜGGE THEORY:

$$
\begin{aligned}
& \Omega_{t}^{2}=\frac{1}{2}(1-v) \lambda^{2} \\
& \Omega_{a r}^{2}=\frac{1}{2}\left\{\left[1+\lambda^{2}+\kappa \lambda^{4}\right] \mp\left[\left(1+\lambda^{2}\right)^{2}+4 \nu^{2} \lambda^{2}-2 \kappa \lambda^{6}\right]^{1 / 2}\right\}
\end{aligned}
$$

3.

Approximations for simply supported cylindrical shell

1. Neglect the tangential inertia
(not accurate for $n=1$)
$\Omega^{2}=\frac{K_{0}+\kappa \Delta K_{0}}{[(1-v) / 2]\left(\lambda^{2}+n^{2}\right)^{2}}$
in which K_{0} and ΔK_{0} are as defined in case 2.

TABLE 20-17 (continued) NATURAL FREQUENCIES OF CIRCULAR CYLINDRICAL SHELLS WITH BENDING ${ }^{a}$

Case	Frequency Parameter Ω
	2. Assume that $\lambda^{2} \ll n^{2}$. (The circumferential wavelength is small relative to the axial wavelength.) The constants in case 2 now become $\begin{aligned} & K_{0}=\frac{1}{2}(1-v)\left[\left(1-v^{2}\right) \lambda^{4}+\kappa n^{8}\right] \\ & K_{1}=\frac{1}{2}\left[(1-v) n^{2}\left(n^{2}+1\right)+(3-v) \kappa n^{6}\right] \\ & K_{2}=1+\frac{1}{2}(3-v) n^{2}+\kappa n^{4} \end{aligned}$ The modification for the Flügge theory is $\Delta K_{0}=\frac{1}{2}(1-v) n^{4}\left(1-2 n^{2}\right)$ 3. Combination of approximations 1 and 2 leads for given (n, λ) to $\Omega^{2}=\frac{\left(1-v^{2}\right) \lambda^{4}}{\left(n^{2}-\lambda^{2}\right)^{2}}+\kappa\left(n^{2}-\lambda^{2}\right)^{2}$ 4. Neglect Ω^{6} and Ω^{4} in the equation of case 2 : $\Omega^{2}=\frac{K_{0}+\kappa \Delta K_{0}}{K_{1}}$ in which K_{0}, K_{1}, and ΔK_{0} are given in case 2 .
4. Clamped-clamped	$\Omega^{2}=\left(1-v^{2}\right) C_{1}+\kappa n^{4} D_{1}^{2}$ C_{1} is given in Table 20-16, part B, and D_{1} is given in this table, part B.
5. Clamped-simply supported	$\Omega^{2}=\left(1-v^{2}\right) C_{1}+\kappa n^{4} D_{1}^{2}$ C_{1} is given in Table 20-16, part B , and D_{1} is given in this table, part B.
6. Clamped-free	$\Omega^{2}=\left(1-v^{2}\right) C_{1}+\kappa n^{4} D_{1}^{2}$ C_{1} is given in Table 20-16, part B , and D_{1} is given in this table, part B.
7. Free-free	$\Omega^{2}=\left(1-v^{2}\right) C_{1}+\kappa n^{4} D_{1}^{2}$ C_{1} is given in Table 20-16, part B, and D_{1} is given in this table, part B.

TABLE 20-17 (continued) NATURAL FREQUENCIES OF CIRCULAR CYLINDRICAL SHELLS WITH BENDING ${ }^{a}$

	Part B. Values of D_{1} in Part A	
m	$\eta=R / n L$	D_{1}
		Clamped-Clamped
1	$0.08 \leq \eta \leq 0.5$	$1.1026-2.22216 \eta+25.3243 \eta^{2}-0.9368 \eta^{3}$
	$0.02 \leq \eta<0.08$	$0.9967+0.2264 \eta+4.7564 \eta^{2}+64.967 \eta^{3}$
2	$0.08 \leq \eta \leq 0.5$	$1.1176-3.0116 \eta+70.4188 \eta^{2}-8.2918 \eta^{3}$
	$0.02 \leq \eta<0.08$	$0.9988+0.078665 \eta+38.21754 \eta^{2}+119.6485 \eta^{3}$
3	$0.08 \leq \eta \leq 0.5$	$1.0147-1.3757 \eta+123.966 \eta^{2}-2.146 \eta^{3}$
	$0.02 \leq \eta<0.08$	$1.0029-0.2573 \eta+97.6849 \eta^{2}+152.3918 \eta^{3}$
4	$0.08 \leq \eta \leq 0.5$	$0.9364-0.1667 \eta+198.895 \eta^{2}+1.7888 \eta^{3}$
	$0.02 \leq \eta<0.08$	$1.1055-8.3424 \eta+355.4656 \eta^{2}-979.03424 \eta^{3}$
5	$0.08 \leq \eta \leq 0.5$	$9.085-238.8638 \eta+2817.9036 \eta^{2}-11,918.832 \eta^{3}$
		$+25,521.979 \eta^{4}-19,963.1504 \eta^{5}$
	$0.02 \leq \eta<0.08$	$1.0121-1.3277 \eta+294.845 \eta^{2}+79.63435 \eta^{3}$

Clamped-Simply Supported

0	$\begin{aligned} & 0.08 \leq \eta \leq 0.5 \\ & 0.02 \leq \eta<0.08 \end{aligned}$	$\begin{aligned} & 1.0953-1.83523 \eta+20.696 \eta^{2}-5.6876 \eta^{3} \\ & 0.98544+0.7798 \eta-4.61999 \eta^{2}+101.65366 \eta^{3} \end{aligned}$
1	$0.08 \leq \eta \leq 0.5$	$1.06957-1.8352 \eta+55.9259 \eta^{2}-6.4323 \eta^{3}$
	$0.02 \leq \eta<0.08$	$0.9648+3.09396 \eta-42.9602 \eta^{2}+663.6377 \eta^{3}$
2	$0.08 \leq \eta \leq 0.5$	$0.9798-0.3857 \eta+104.6534 \eta^{2}$
	$0.02 \leq \eta<0.08$	$0.9950+0.31014 \eta+83.92687 \eta^{2}+129.6919 \eta^{3}$
3	$0.08 \leq \eta \leq 0.5$	$2.0005-17.6278 \eta+260.8745 \eta^{2}-103.5345 \eta^{3}$
	$0.02 \leq \eta<0.08$	$0.9995-0.2958 \eta+172.6369 \eta^{2}+30.4299 \eta^{3}$
4	$0.08 \leq \eta \leq 0.5$	$1.3992-6.9458 \eta+299.01544 \eta^{2}-30.2670 \eta^{3}$
	$0.02 \leq \eta<0.08$	$2.32243-175.344 \eta+8953.7051 \eta^{2}-201,717.40625 \eta^{3}$
		$+2,190,977.5 \eta^{4}-8,950,106 \eta^{5}$

TABLE 20-17 (continued) NATURAL FREQUENCIES OF CIRCULAR CYLINDRICAL SHELLS WITH BENDING ${ }^{a}$

		Clamped-Free
0	$0.08 \leq \eta \leq 0.5$	$0.993996+0.0221 \eta+1.8443 \eta^{2}+0.054795 \eta^{3}$
	$0.02 \leq \eta<0.08$	$1.003234-0.22555 \eta+3.7473 \eta^{2}-2.1798 \eta^{3}$
1	$0.08 \leq \eta \leq 0.5$	$0.9567+0.8161 \eta+16.36077 \eta^{2}+0.9839 \eta^{3}$
	$0.02 \leq \eta<0.08$	$0.99833+0.04249 \eta+19.4784 \eta^{2}+6.6541 \eta^{3}$
2	$0.08 \leq \eta \leq 0.5$	$1.0087+0.26014 \eta+54.2387 \eta^{2}$
	$0.02 \leq \eta<0.08$	$0.9072+7.1194 \eta-100.8743 \eta^{2}+1019.1997 \eta^{3}$
3	$0.08 \leq \eta \leq 0.5$	$1.0206+0.10173 \eta+110.7527 \eta^{2}$
	$0.02 \leq \eta<0.08$	$0.999521-0.03371 \eta+119.5925 \eta^{2}-55.66833 \eta^{3}$
4	$0.08 \leq \eta \leq 0.5$	$1.01137+0.080428 \eta+186.8723 \eta^{2}$
	$0.02 \leq \eta<0.08$	$0.9932+0.4689 \eta+185.9586 \eta^{2}$
		Free-Free
0	$0.08 \leq \eta \leq 0.5$	$0.9754+0.2547 \eta+7.5513 \eta^{2}-5.8221 \eta^{3}$
	$0.02 \leq \eta<0.08$	$0.99117+0.44896 \eta-4.610324 \eta^{2}+87.0146 \eta^{3}$
1	$0.08 \leq \eta \leq 0.5$	$0.8894+2.4549 \eta+20.2022 \eta^{2}+0.018356 \eta^{3}$
	$0.02 \leq \eta<0.08$	$0.9828+1.0068 \eta+15.86037 \eta^{2}+102.00745 \eta^{3}$
2	$0.08 \leq \eta \leq 0.05$	$0.8703+3.5628 \eta+53.1368 \eta^{2}+7.2333 \eta^{3}$
	$0.02 \leq \eta<0.08$	$0.9849+0.8886 \eta+67.5611 \eta^{2}+23.1573 \eta^{3}$
3	$0.08 \leq \eta \leq 0.05$	$0.6701+7.8683 \eta+85.67425 \eta^{2}+52.2036 \eta^{3}$
	$0.02 \leq \eta<0.08$	$0.9950+0.0677115 \eta+156.3289 \eta^{2}-205.7957 \eta^{3}$
4	$0.08 \leq \eta \leq 0.05$	$1.08086+0.9024 \eta+198.6602 \eta^{2}$
	$0.02 \leq \eta<0.08$	$0.98223+1.1859 \eta+216.1208 \eta^{2}-106.05356 \eta^{3}$

${ }^{a}$ Adapted from Ref. [20.6].

TABLE 20-18 NATURAL FREQUENCIES OF CONICAL SHELLS WITH BENDING ${ }^{a}$

Notation
$E=$ modulus of elasticity
$h=$ thickness of shell
$s=$ distance from apex
$\Omega, \Omega_{j}, \Omega_{n}=$ frequency parameters
$R=$ radius of cone base
$J_{1}=$ Bessel function of first kind
$Y_{1}=$ Bessel function of second kind
$\nu=$ Poisson's ratio
$n=$ number of circumferential waves in mode shapes (see figures with Table 20-16 notation)
$\rho^{*}=$ mass per unit volume
$\alpha=$ half angle of cone
$j=$ number of root characteristic equation for specific mode (i.e., for a specific n); this means that there are several distinct natural frequencies corresponding to a fixed n
$\omega=$ natural frequency ($\mathrm{rad} / \mathrm{s}$)

1. Complete cone with free base

Natural
Frequency (ω)

Frequency Parameter
$\frac{\Omega_{j}}{R}\left(\frac{E}{\rho^{*}}\right)^{1 / 2}$

$$
\left.\begin{array}{rl}
\eta & =12\left(1-v^{2}\right)(R / h)^{2} / \tan ^{4} \alpha \quad \text { with } \nu=0.3 \\
\Omega_{1} & =\left\{\begin{array}{lr}
3.2003+81.0593 \eta^{-1} & 0.1 \leq \eta \leq 6 \\
1.4362-3.7517(\log \eta)^{-1}+17.861(\log \eta)^{-2}-4.3278(\log \eta)^{-3} & 8
\end{array}\right) \\
1.0598-1.9098(\log \eta)^{-1}+14.6899(\log \eta)^{-2}-1.8035(\log \eta)^{-3} & 800<\eta \leq 100,000
\end{array}\right\}
$$

2. Complete cone with clamped base

Natural frequency (ω)	Frequency Parameter	
$\frac{\Omega_{j}}{R}\left(\frac{E}{\rho^{*}}\right)^{1 / 2}$	Axisymmetric Mode $\quad(n=0)$$\begin{array}{rlrl} \eta & =12\left(1-v^{2}\right)(R / h)^{2} / \tan ^{4} \alpha & \text { with } v=0.3 & \\ \Omega_{1} & =\left\{\begin{array}{lr} 5.90356+104.38289 \eta^{-1} & 0.1 \end{array} \leq \eta \leq 40\right. \\ -0.29463+8.39616(\log \eta)^{-1}+11.2915(\log \eta)^{-2}-5.0101(\log \eta)^{-3} & 60 & \leq \eta \leq 100,000 \end{array} ~ ل$	
	$\Omega_{2}=\left\{\begin{array}{l} 19,665.967-43,630.3125 \eta^{-1}+36,566.6133 \eta^{-2} \\ -12,819.2305 \eta^{-3}+1903.352 \eta^{-4}-94.385 \eta^{-5} \\ 66.963-398.13(\log \eta)^{-1}+775.51(\log \eta)^{-2} \\ -320.38(\log \eta)^{-3}+43.05(\log \eta)^{-4} \\ -1.577+31.5281(\log \eta)^{-1}-126.1601(\log \eta)^{-2}+343.7357(\log \eta)^{-3} \end{array}\right.$	$\begin{aligned} 0.1 & \leq \eta \leq 1 \\ 2 & \leq \eta \leq 600 \\ 600 & <\eta \leq 100,000 \end{aligned}$
	$\Omega_{3}=\left\{\begin{array}{l} 14.0355+7939.58398 \eta^{-1} \\ -9.51032+161.3258(\log \eta)^{-1}-859.5827(\log \eta)^{-2}+1885.0045(\log \eta)^{-3} \end{array}\right.$	$\begin{aligned} 0.1 & \leq \eta<400 \\ 400 & \leq \eta<100,000 \end{aligned}$
	$\Omega_{4}=\left\{\begin{array}{l} 18.5415+25,022.31445 \eta^{-1} \\ -43.1926+664.6763(\log \eta)^{-1}-3464.3162(\log \eta)^{-2}+6677.5742(\log \eta)^{-3} \end{array}\right.$	$\begin{aligned} 0.1 & \leq \eta \leq 800 \\ 1000 & \leq \eta \leq 100,000 \end{aligned}$

TABLE 20-18 (continued) NATURAL FREQUENCIES OF CONICAL SHELLS WITH BENDING ${ }^{a}$
3. Frustum of cone (open conical shell) with simply supported edges

Natural Frequency (ω)	Frequency Parameter	
$\frac{\Omega}{L}\left[\frac{E}{\rho^{*}\left(1-v^{2}\right)}\right]^{1 / 2}$	$\begin{aligned} & \quad \text { Lowest Mode for } v=0.3 \\ & h / R_{2}=0.03 \quad \beta=90^{\circ}-\alpha \\ & \Omega=0.16498+0.01997 \beta-0.000256 \beta^{2} \\ & \quad+0.000001525 \beta^{3} \\ & h / R_{2}=0.01 \\ & \Omega=0.04757+0.021399 \beta-0.0008059 \beta^{2} \\ & \quad+0.000020133 \beta^{3}-0.0000002478 \beta^{4} \\ & \quad+0.0000000011634 \beta^{5} \\ & h / R_{2}=0.005 \\ & \Omega=0.03094+0.016305 \beta-0.0006938 \beta^{2} \\ & \quad+0.00001935 \beta^{3}-0.0000002575 \beta^{4} \\ & \quad+0.0000000012755 \beta^{5} \\ & h / R_{2}=0.001 \\ & \Omega= \\ & \quad 0.0089055+0.009064 \beta-0.00042673 \beta^{2} \\ & \quad+0.00001244 \beta^{3}-0.0000001694 \beta^{4} \\ & \quad-0.0000000008554 \beta^{5} \end{aligned}$	$15^{\circ} \leq \beta \leq 85^{\circ}$ $5^{\circ} \leq \beta \leq 87^{\circ}$ $3^{\circ} \leq \beta \leq 87^{\circ}$ $3^{\circ} \leq \beta \leq 87^{\circ}$

TABLE 20-18 (continued) NATURAL FREQUENCIES OF CONICAL SHELLS WITH BENDING ${ }^{a}$

4. Frustum of cone (open conical shell) with clamped edges

Natural Frequency (ω)	Frequency Parameter
$\begin{aligned} & \frac{\Omega_{j}}{S_{1}}\left[\frac{E}{2(1+\nu) \rho^{*}}\right]^{1 / 2} \\ & S_{1}=R_{1} / \sin \alpha \\ & \text { Solution also } \\ & \text { applicable to } \\ & \text { annular disks: } \\ & \alpha=90^{\circ} \end{aligned}$	$\begin{aligned} & \text { Axisymmetric Torsional Mode } \\ \eta & =R_{2} / R_{1} \quad 1.0 \leq \eta \leq 50 \\ \bar{\Omega}_{1} & =3.0909+0.06098 \eta-0.001923 \eta^{2}+0.000019652 \eta^{3} \\ \bar{\Omega}_{2} & =6.23083+0.046874 \eta-0.00125 \eta^{2}+0.000011594 \eta^{3} \\ \bar{\Omega}_{3} & =9.38016+0.036212 \eta-0.0008112 \eta^{2}+0.000006657 \eta^{3} \\ \bar{\Omega}_{4} & =12.52926+0.028825 \eta-0.000545 \eta^{2}+0.000003902 \eta^{3} \\ \Omega_{5} & =15.6766+0.02366 \eta-0.000374482 \eta^{2} \\ & \quad+0.000002283 \eta^{3} \\ \Omega_{j} & =\frac{\bar{\Omega}_{j}}{\eta-1} \end{aligned}$ Ω_{j} is independent of α and is the solution of $J_{1}(\Omega) Y_{1}(\eta \Omega)=J_{1}(\eta \Omega) Y_{1}(\Omega)$. j indicates the j th root of the equation.

5. Frustum of cone (open conical shell) with free edges

$\frac{\Omega_{n}}{R_{2}}\left[\frac{E}{\rho^{*}\left(1-v^{2}\right)}\right]^{1 / 2} \quad$ For one half wave in the mode shape along L
$\frac{h^{2}}{12 R_{2}^{2}} \frac{n\left(n^{2}-1\right)}{\left(n^{2}+\cos ^{2} \alpha\right)^{1 / 2}}\left[1+\frac{6\left(1-R_{1} / R_{2}\right)}{n-2} \sin \frac{3 \alpha}{2}\right]$
$n=2,3,4, \ldots \quad \alpha<60^{\circ}$
See Ref. [20.10] for other modes.

TABLE 20-18 (continued) NATURAL FREQUENCIES OF CONICAL SHELLS WITH BENDING ${ }^{a}$

6. Frustum of cone (open conical shell) with clamped-free edges (upper edge clamped)

Natural Frequency (ω)	Frequency Parameter
$\frac{\Omega}{R_{2}}\left(\frac{E}{\rho^{*}}\right)^{1 / 2}$	For Lowest Axisymmetric Mode for $v=0.3$

TABLE 20-18 (continued)	NATURAL FREQUENCIES OF CONICAL SHELLS WITH BENDING ${ }^{\text {a }}$	
Natural Frequency (ω)	Frequency Parameter	
		$\begin{aligned} &-1 \leq \eta<2 \\ & 2 \leq \eta \leq 3.5 \\ &-1 \leq \eta<2.25 \\ & 2.25 \leq \eta \leq 3.5 \\ &-1 \leq \eta<2.5 \\ & 2.5 \leq \eta \leq 3.25 \\ &-1 \leq \eta \leq 3 \end{aligned}$

${ }^{a}$ Adapted from Ref. [20.6].

TABLE 20-19 NATURAL FREQUENCIES OF SPHERICAL SHELLS ${ }^{a}$

Notation

$$
\begin{aligned}
E= & \text { modulus of elasticity } \\
\rho^{*} & =\text { mass per unit volume } \\
h= & \text { thickness of shell } \\
\omega= & \text { natural frequency } \\
i, j= & \text { integer indices, } i, j=0,1,2, \ldots \\
v= & \text { Poisson's ratio } \\
R= & \text { radius of sphere or spherical segment } \\
\Omega^{2}= & \text { frequency parameter } \\
\Omega_{r}, \Omega_{t}, \Omega_{r t}= & \text { frequency parameters for radial, torsional, and coupled } \\
& \text { radial-torsional modes, respectively } \\
\left(\omega_{i j}\right)_{p}= & \text { natural frequency of plate in bending } \\
& \text { corresponding to projection of shell } \\
& \text { and with same boundary conditions as shell; } \\
& \left(\omega_{i j}\right)_{p} \text { can be obtained from Chapter 18 }
\end{aligned}
$$

Unless specified otherwise, the vibration modes are general responses (i.e., they do not pertain to torsional, radial, or tangential modes in particular).
$\omega^{2}=\frac{E \Omega^{2}}{\rho^{*}\left(1-v^{2}\right) R^{2}} \quad$ where $\Omega^{2}=\Omega^{2}$ or Ω_{r}^{2} or Ω_{t}^{2} or $\Omega_{r t}^{2}$ as appropriate.

$$
\kappa=\frac{h^{2}}{12 R^{2}} \quad \xi=1 / \kappa
$$

$k_{1}=1+\kappa \quad k_{r}=1+1.8 \kappa \quad r=i(i+1) \quad i=0,1,2, \ldots$

Case	Frequency Parameter
$\mathbf{1 .}$	
Complete spherical shells	FUNDAMENTAL RADIAL MODE Membrane analysis

$\Omega_{r}^{2}=\frac{2(1+\nu)}{1+h^{2} /\left(12 R^{2}\right)}$
Bending analysis (solve for Ω_{r}^{2}):
$2.4 \Omega_{r}^{6} k_{1}\left(k_{r} k_{1}-4 \kappa\right) /(1-v)$
$-\Omega_{r}^{4}\left\{\left(k_{r} k_{1}-4 \kappa\right)[r+4.8(1+v) /(1-v)]\right.$
$+k_{1}[\xi(1+3 \kappa)+3+1.8 \kappa$
$+4.8(1+1.4 \kappa)(r /(1-v)-1]\}$
$+\Omega_{r}^{2}\{4(1+v)(2-r)$
$+k_{r}[r(r-3-v)+4.4(1+\nu)(r-2)]$
$+k_{1}[2.4 r(r+4 v) /(1-v)+r(r+\xi+v)$
$+(1+3 v)(\xi-2.4)-(1-v)]\}$
$-(r-2)[r(r-2)+2.4(1+v)(r-1+v)$
$\left.+\left(1-v^{2}\right)(\xi+1)\right]=0$

TABLE 20-19 (continued)	NATURAL FREQUENCIES OF SPHERICAL SHELLS ${ }^{\text {a }}$
Case	Frequency Parameter
	TORSIONAL MODES $\Omega_{t}^{2}=\frac{(1-v)\left(i^{2}+i-2\right)}{2+5 h^{2} /\left(6 R^{2}\right)}$ RADIAL-TANGENTIAL MODES Membrane analysis: $\begin{aligned} \Omega_{\mathrm{rt}}^{2}= & \frac{1}{2}\left\{(i ^ { 2 } + i + 1 + 3 v) \mp \left[\left(i^{2}+i+1+3 v\right)^{2}\right.\right. \\ & \left.\left.-4\left(1-v^{2}\right)\left(i^{2}+i-2\right)\right]^{1 / 2}\right\} \end{aligned}$ Bending analysis (solve for Ω_{rt}^{2}): $\begin{aligned} & 4.8 \Omega_{\mathrm{rt}}^{4}\left(k_{r} k_{1}-4 \kappa\right) /(1-v)-2 \Omega_{\mathrm{rt}}^{2}[\xi(1+3 \kappa) \\ & \quad+3+1.8 \kappa+2.4(1+1.4 \kappa)(r-2)] \\ & \quad+(1-v)(r-2)[\xi+1+1.2(r-2)]=0 \end{aligned}$
2. Deep spherical shell segments	$\begin{aligned} \Omega^{2}= & \frac{\left(i^{2}-1\right)^{2} i^{2}\left(1-v^{2}\right)}{3(1+v)}\left(\frac{h}{R}\right)^{2} \frac{s_{1 i}}{s_{2 i}} \\ s_{1 i}= & \frac{1}{8}\left\{\frac{\left[\tan \left(\phi_{0} / 2\right)\right]^{2 i-2}}{n-1}+\frac{2\left[\tan \left(\phi_{0} / 2\right)\right]^{2 i}}{n}\right. \\ & \left.+\frac{\left[\tan \left(\phi_{0} / 2\right)\right]^{2 i+2}}{n+1}\right\} \\ s_{2 i}= & \int_{0}^{\phi_{0}}\left(\tan \frac{\phi_{0}}{2}\right)^{2 i}\left[(i+\cos \phi)^{2}\right. \\ & \left.+2(\sin \phi)^{2}\right] \sin \phi d \phi \end{aligned}$
3. Shallow spherical shell segments	$\Omega^{2}=\left[\left(\omega_{i j}\right)_{p}^{2}+\frac{E}{\rho^{*} R^{2}}\right]^{1 / 2} \frac{\rho^{*}\left(1-v^{2}\right) R^{2}}{E}$ For a segment to be shallow, the rise of the shell d must be less than about $\frac{1}{8}$ of the diameter D, which is the diameter of the smallest circle that contains the projection. The projection can have various shapes. If the segment is not shallow, use the formulas of case 2.

[^37]
Fundamental Mathematics

I. 1 Algebraic Operations 1321
Algebraic Laws 1321
Exponents 1321
Roots 1321
Logarithms 1321
Basic Relationships 1321
Rules for Calculation 1322
Common Logarithm 1322
Natural (Naperian) Logarithm 1322
Transformation from One Logarithm System to Another 1322
Series 1322
Arithmetic Series 1322
Geometric Series 1322
Infinite Geometric Series 1322
Binomial Series 1322
Binomial Theorem 1323
Binomial Coefficients 1323
I. 2 Complex Numbers 1323
Rules for Calculations 1324
I. 3 Plane Trigonometry 1324
Definitions 1324
Laws of Sines, Cosines, and Tangents 1325
Identities 1326
Equilateral Triangle 1328
Right Triangle 1328
Inverse Trigonometric Functions 1328
Definitions 1328
Identities 1329
Exponential Relations: Euler's Equation 1330
I. 4 Hyperbolic Functions 1330
Definitions 1330
Identities 1330
I. 5 Coordinate Systems 1331
Rectangular Coordinate System 1331
Direction Cosines 1333
Unit Vectors on a Boundary Curve 1333
Curvature Formulas 1335
Basic Formulas in Plane Analytic Geometry 1336
I. 6 Quadratic Equations 1338
I. 7 System of Linear Equations 1338
Determinants 1338
Expansion of Terms of Cofactors 1338
Sarrus Scheme for Evaluating a 3×3 Determinant 1339
Cramer's Rule 1339
I. 8 Differential and Integral Calculus 1340
Basic Operations 1340
Differentiation of Functions with Multiple Variables 1341
Integral Formulas 1341
Integral Theorems 1341
Integration-by-Parts Formula 1341
Green's Formula 1342
Gauss Integral Theorem (Divergence Theorem) 1342
I. 9 Laplace Transform 1343
I. 10 Representation of Functions by Series 1343
Taylor's Series for Single Variable 1343
Maclaurin's Series 1343
Taylor's Series for Two Variables 1344
Fourier Series 1344
Series Expansions of Some Common Functions 1345
I. 11 Matrix Algebra 1346
Definitions 1346
Singularity, Inverse, and Rank 1346
Laws 1347
Basic Operations 1347
Addition/Subtraction 1347
Multiplication of Two Matrices 1348
Inverse Matrix 1348
Determinants 1349
Eigenvalues and Eigenvectors 1349
I. 12 Numerical Methods 1351
Linear Interpolation Method to Solve $f(x)=0$ 1351
Newton's Method 1351
Zeros of a Polynomial 1352
Gauss Algorithm 1353
Numerical Integration 1354
Tables 1357

Frequently used mathematics formulas are provided in this appendix along with brief outlines of some useful solution procedures.

I. 1 ALGEBRAIC OPERATIONS

Algebraic Laws

$$
\begin{gather*}
\text { Commutative law: } x+y=y+x, \quad x y=y x \\
\text { Associative law: } x+(y+z)=(x+y)+z \\
 \tag{I.1}\\
x(y z)=(x y) z
\end{gather*}
$$

Distributive law: $z(x+y)=z x+z y$

Exponents

Here $a=$ basis and $n=$ exponent:

$$
\begin{aligned}
a^{n} & =a \cdot a \cdots a(n \text { times }) \\
a^{0} & =1 \quad \text { if } a \neq 0, \quad a^{n} \cdot b^{n}=(a b)^{n} \\
a^{m} \cdot a^{n} & =a^{m+n}, \quad a^{m} / a^{n}=a^{m-n} \\
\left(a^{m}\right)^{n} & =a^{m \cdot n}, \quad(a+b)^{2}=a^{2}+2 a b+b^{2} \\
a^{2}-b^{2} & =(a+b) \cdot(a-b), \quad(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

Roots

Here $n=$ exponent and $c=$ root:

$$
\begin{align*}
\sqrt[n]{a} & =c \\
\sqrt[n]{a} & =a^{1 / n}, \quad \sqrt[n]{a^{n}}=a, \quad \sqrt[n]{a^{m \cdot n}}=a^{m}, \quad \sqrt[n]{a \cdot b}=\sqrt[n]{a} \cdot \sqrt[n]{b} \\
\sqrt[n]{a / b} & =\frac{\sqrt[n]{a}}{\sqrt[n]{b}}, \quad \sqrt[n]{1 / a}=\frac{1}{\sqrt[n]{a}}=a^{-1 / n}, \quad \sqrt[n]{a^{m}}=a^{m / n} \tag{I.2}\\
\sqrt[n]{m \sqrt{a}} & =\sqrt[n \cdot m]{a}=\sqrt[m]{\sqrt[n]{a}} \\
\sqrt[m]{a} \cdot \sqrt[n]{a} & =a^{1 / m} \cdot a^{1 / n}=a^{1 / m+1 / n}=a^{(m+n) /(m \cdot n)}=\sqrt[m \cdot n]{a^{n+m}}
\end{align*}
$$

Logarithms

Basic Relationships Here $b=$ base, $a=$ number, and $c=$ logarithm:

$$
\begin{align*}
\log _{b} a & =c \\
\log _{b} a & =c \leftrightarrow b^{c}=a \tag{I.3}
\end{align*}
$$

$$
\begin{aligned}
& \log _{b} b=1\left(\text { because } b^{1}=b\right), \quad \log _{b} 1=0\left(\text { because } b^{0}=1\right) \\
& \log _{b} 0=-\infty\left(\text { because } \lim _{c \rightarrow-\infty} b^{c}=0\right)
\end{aligned}
$$

Rules for Calculation

$$
\begin{align*}
\log _{b}(c \cdot d) & =\log _{b} c+\log _{b} d, & & \log _{b} a^{n}=n \cdot \log _{b} a \\
\log _{b} \frac{c}{d} & =\log _{b} c-\log _{b} d, & & \log _{b} \sqrt[n]{a}=(1 / n) \log _{b} a \tag{I.4}
\end{align*}
$$

Common Logarithm Use a base of 10 .

Natural (Naperian) Logarithm

$$
\log _{e} a=\ln a \quad \text { where } e=\lim _{n \rightarrow \infty}(1+1 / n)^{n}=2.718281828 \ldots
$$

Transformation from One Logarithm System to Another

$$
\begin{equation*}
\log _{b} a=\frac{1}{\log _{c} b} \cdot \log _{c} a=\log _{b} c \cdot \log _{c} a \tag{I.5}
\end{equation*}
$$

Series

(See Section I. 9 for more formulas for series.)

Arithmetic Series

$$
a+(a+d)+(a+2 d)+\cdots+[a+(n-1) d]=\frac{1}{2} n[2 a+(n-1) \cdot d]
$$

Geometric Series

$$
a+a \cdot q+a \cdot q^{2}+\cdots+a \cdot q^{n-1}=a \cdot \frac{q^{n}-1}{q-1}, \quad q \neq 1
$$

Infinite Geometric Series

$$
\begin{gather*}
a+a \cdot q+a \cdot q^{2}+\cdots=\frac{a}{1-q} \quad \text { for }|q|<1 \\
\sum_{i=1}^{n} i=\frac{1}{2} n(n+1), \quad \sum_{i=1}^{n} i^{2}=\frac{1}{3} n(n+1)\left(n+\frac{1}{2}\right), \quad \sum_{i=1}^{n} i^{3}=\frac{1}{4} n^{2}(n+1)^{2} \tag{I.6}
\end{gather*}
$$

Binomial Series A binomial series is a polynomial expansion of the nth (n is a positive integer) power of the sum of two quantities.

Binomial Theorem

$$
\begin{align*}
(a \pm b)^{n}= & \binom{n}{0} a^{n} \pm\binom{ n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2} \pm\binom{ n}{3} a^{n-3} b^{3}+\cdots \tag{I.7a}\\
& +(\pm 1)^{n-1}\binom{n}{n-1} a^{1} b^{n-1}+(\pm 1)^{n} b^{n}, \quad n=1,2,3, \ldots
\end{align*}
$$

Binomial Coefficients

$$
\begin{aligned}
& \binom{n}{0}=1, \quad\binom{n}{1}=n, \quad\binom{n}{2}=\frac{n \cdot(n-1)}{2 \cdot 1}, \quad\binom{n}{3}=\frac{n(n-1)(n-2)}{3 \cdot 2 \cdot 1}, \ldots \\
& \binom{n}{n}=1, \quad\binom{n}{k}=\frac{n!}{k!(n-k)!}, \quad n!=n \cdot(n-1) \cdots 2 \cdot 1(n \text { factorial }) \\
& 0!=1, \quad\binom{n}{n-k}=\binom{n}{k}, \quad\binom{n}{n-1}=n
\end{aligned}
$$

If x, m are real numbers, k is an integer:

$$
\begin{equation*}
(1 \pm x)^{m}=1 \pm\binom{ m}{1} x+\binom{m}{2} x^{2} \pm\binom{ m}{3} x^{3}+\cdots \tag{I.7b}
\end{equation*}
$$

where

$$
\binom{m}{k}=\left\{\begin{array}{cc}
\frac{m(m-1) \cdots(m-k+1)}{k!} & \text { for } k>0 \\
1 & \text { for } k=0 \\
0 & \text { for } k<0
\end{array}\right.
$$

This series, for

$$
\left\{\begin{array}{ll}
m=0,1,2, \ldots & \text { (i.e., } m \text { is an integer) and } x \text { of any value is a finite series } \\
m \neq 0,1,2, \ldots & \text { (i.e., } m \text { is not an integer) and }|x|<1 \\
& \begin{array}{l}
\text { is an infinite } \\
\text { convergent series }
\end{array} \\
m \neq 0,1,2, \ldots & \text { (i.e., } m \text { is not an integer) and }|x|>1
\end{array} \begin{array}{l}
\text { is an infinite } \\
\text { divergent series }
\end{array}\right.
$$

I. 2 COMPLEX NUMBERS

Here $z=x+i y$, where $i=\sqrt{-1}, x=$ real number (real part), and $y=$ real number (iy is the imaginary part). The complex number is designated z, and $z=x+i y, \bar{z}=$ $x-i y$ are conjugate complex numbers.

A complex number may be represented as a vector in the $x y$ plane (complex plane z) as shown in Fig. I-1.

$|z|=$ Absolute Value (modulus) of the
\quad complex number
$\beta=$ Orientation of z

Figure I-1: Complex plane z.

Rules for Calculations

$$
\begin{gather*}
z_{1}+z_{2}=\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
z=x+i y=|z|(\cos \beta+i \sin \beta)=|z| e^{i \beta} \tag{I.8}\\
\bar{z}=x-i y=|z|(\cos \beta-i \sin \beta)=|z| e^{-i \beta} \\
z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+x_{2} y_{1}\right) \\
z^{n}=(x+i y)^{n}=[|z|(\cos \beta+i \sin \beta)]^{n}=|z|^{n} e^{i n \beta} \tag{I.9}\\
\bar{z}^{n}=(x-i y)^{n}=[|z|(\cos \beta-i \sin \beta)]^{n}=|z|^{n} e^{-i n \beta} \\
\sqrt[n]{z}=\sqrt[n]{x+i y}=\sqrt[n]{|z|}\left(\cos \frac{\beta+2 k \pi}{n}+i \sin \frac{\beta+2 k \pi}{n}\right)=\sqrt[n]{|z|} e^{i(\beta+2 k \pi) / n} \\
\text { for } k=0,1,2, \ldots, n-1
\end{gather*}
$$

I. 3 PLANE TRIGONOMETRY

Definitions

One degree equals $\frac{1}{360}$ of one complete rotation.
One hundred eighty degrees equals π radians.
One radian equals the angle at the center of a circle corresponding to an arc of length equal to the radius of the circle (Fig. I-2).
An acute angle is an angle between 0 and 90°.
An obtuse angle is an angle between 90° and 180°.
Acute angle α (Fig. I-3a):

$$
\begin{align*}
& \sin \alpha=a / c, \cos \alpha=b / c, \tan \alpha=a / b \\
& \cot \alpha=b / a, \sec \alpha=c / b, \csc \alpha=c / a \tag{I.10a}
\end{align*}
$$

Figure I-2: Radian.

Figure I-3: (a) Acute angle α, right triangle; (b) arbitrary angle α.

Arbitrary angle α (Fig. I-3b):

$$
\begin{align*}
\sin \alpha & =y / r, \cos \alpha=x / r, \tan \alpha=y / x \tag{I.10b}\\
\cot \alpha & =x / y, \sec \alpha=r / x, \csc \alpha=r / y
\end{align*}
$$

The graphs of the basic trigonometric functions are shown in Fig. I-4.

Laws of Sines, Cosines, and Tangents

Refer to Fig. I-5:
Law of sines: $\quad a / \sin \alpha=b / \sin \beta=c / \sin \gamma$
Law of cosines: $a^{2}=b^{2}+c^{2}-2 b c \cos \alpha$

$$
\begin{align*}
& b^{2}=a^{2}+c^{2}-2 a c \cos \beta \\
& c^{2}=a^{2}+b^{2}-2 a b \cos \gamma \tag{I.11}
\end{align*}
$$

$$
\text { Law of tangents: } \frac{a+b}{a-b}=\frac{\tan \frac{1}{2}(\alpha+\beta)}{\tan \frac{1}{2}(\alpha-\beta)}
$$

Figure I-4: Basic trigonometric functions.

Figure I-5: Arbitrary triangle.

Identities

$$
\begin{align*}
& \text { Area } A=\sqrt{s(s-a)(s-b)(s-c)} \quad \text { (Heron's formula) } \\
& s=\frac{1}{2}(a+b+c) \\
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
& \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
& \tan (a \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}, \tag{I.12}\\
& \cot (\alpha \pm \beta)=\frac{\cot \alpha \cot \beta \mp 1}{\cot \beta \pm \cot \alpha} \\
& \sin (\alpha+\beta) \sin (\alpha-\beta)=\cos ^{2} \beta-\cos ^{2} \alpha \\
& \cos (\alpha+\beta) \cos (\alpha-\beta)=\cos ^{2} \alpha-\sin ^{2} \beta \\
& \sin 2+\cos ^{2} \alpha=1 \\
& \sin 2 \alpha=2 \sin ^{2} \alpha \cos \alpha \\
& \cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=1-2 \sin ^{2} \alpha=2 \cos ^{2} \alpha-1
\end{align*}
$$

$$
\begin{align*}
& \tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}=\frac{2}{\cot \alpha-\tan \alpha} \tag{I.13a}\\
& \cot 2 \alpha=\frac{\cot ^{2} \alpha-1}{2 \cot \alpha}=\frac{\cot \alpha-\tan \alpha}{2} \\
& \sin \alpha=2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \\
& \cos \alpha=\cos ^{2} \frac{\alpha}{2}-\sin ^{2} \frac{\alpha}{2} \\
& =1-2 \sin ^{2} \frac{\alpha}{2}=2 \cos ^{2} \frac{\alpha}{2}-1 \tag{I.13b}\\
& \tan \alpha=\frac{2 \tan (\alpha / 2)}{1-\tan ^{2}(\alpha / 2)}=\frac{2}{\cot (\alpha / 2)-\tan (\alpha / 2)} \\
& \cot \alpha=\frac{\cot ^{2}(\alpha / 2)-1}{2 \cot (\alpha / 2)}=\frac{\cot (\alpha / 2)-\tan (\alpha / 2)}{2} \\
& \sin \alpha= \pm \sqrt{\frac{1-\cos 2 \alpha}{2}} \\
& \cos \alpha= \pm \sqrt{\frac{1+\cos 2 \alpha}{2}} \tag{I.13c}\\
& \tan \alpha= \pm \sqrt{\frac{1-\cos 2 \alpha}{1+\cos 2 \alpha}}=\frac{\sin 2 \alpha}{1+\cos 2 \alpha}=\frac{1-\cos 2 \alpha}{\sin 2 \alpha} \\
& \sin \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{2}} \\
& \cos \frac{\alpha}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}} \tag{I.13d}\\
& \tan \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}=\frac{1-\cos \alpha}{\sin \alpha}=\frac{\sin \alpha}{1+\cos \alpha} \\
& \sin \alpha+\sin \beta=2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
& \sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
& \cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \tag{I.14}\\
& \cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
& \sin ^{2} \alpha=\frac{1}{2}(1-\cos 2 \alpha), \quad \cos ^{2} \alpha=\frac{1}{2}(1+\cos 2 \alpha)
\end{align*}
$$

Figure I-6: (a) Equilateral triangle; (b) right triangle. The radius of the inscribed circle is r and of the circumscribed circle is R.

Equilateral Triangle (Fig. I-6a)

$$
\begin{align*}
\alpha & =\beta=\gamma=60^{\circ}, \quad a=b=c \\
\text { Area } & =\frac{1}{4} a^{2} \sqrt{3}, \quad r=\frac{1}{6} a \sqrt{3}, \quad R=\frac{1}{3} a \sqrt{3} \tag{I.15}\\
h & =\frac{1}{2} a \sqrt{3}
\end{align*}
$$

Right Triangle (Fig. I-6b)

$$
\begin{aligned}
& \alpha+\beta=\gamma=90^{\circ}, \quad c^{2}=a^{2}+b^{2} \quad(\text { Pythagorean formula) } a=\sqrt{(c+b)(c-b)} \\
& \text { Area }=\frac{1}{2} a b, \quad r=\frac{a b}{a+b+c}, \quad R=\frac{1}{2} c, \quad h=\frac{a b}{c}
\end{aligned}
$$

Let n be on the a side of c, and m on the b side. $m+n=c$

$$
\begin{equation*}
m=\frac{b^{2}}{c}, \quad n=\frac{a^{2}}{c} \tag{I.16}
\end{equation*}
$$

Inverse Trigonometric Functions

Definitions

Trigonometric Function Corresponding Inverse Principal Values

$$
\begin{array}{llc}
y=\sin \alpha & \alpha=\sin ^{-1} y=\arcsin y & -\frac{1}{2} \pi \leq \alpha \leq+\frac{1}{2} \pi \\
y=\cos \alpha & \alpha=\cos ^{-1} y=\arccos y & 0 \leq \alpha \leq \pi \tag{I.17}\\
y=\tan \alpha & \alpha=\tan ^{-1} y=\arctan y & -\frac{1}{2} \pi<\alpha<+\frac{1}{2} \pi \\
y=\cot \alpha & \alpha=\cot ^{-1} y=\operatorname{arccot} y & 0<\alpha<\pi
\end{array}
$$

Thus, α is the arc of an angle for which the trigonometric function is y.

Identities

$$
\begin{array}{ll}
\sin ^{-1} y+\cos ^{-1} y=\frac{1}{2} \pi, & \tan ^{-1} y+\cot ^{-1} y=\frac{1}{2} \pi \\
\sin ^{-1}(-y)=-\sin ^{-1} y, & \tan ^{-1}(-y)=-\tan ^{-1} y \tag{I.18}\\
\cos ^{-1}(-y)=\pi-\cos ^{-1} y, \cot ^{-1}(-y)=\pi-\cot ^{-1} y
\end{array}
$$

Graphs of the inverse trigonometric functions are shown in Fig. I-7. The solid lines in Fig. I-7 correspond to the principal values of the argument α. The dashed lines, which correspond to other values of the argument α, are based on the relationships

$$
\begin{align*}
& \sin (\alpha+2 k \pi)=\sin \alpha, \cos (\alpha+2 k \pi)=\cos \alpha \tag{I.19}\\
& \tan (\alpha+k \pi)=\tan \alpha, \cot (\alpha+k \pi)=\cot \alpha
\end{align*}
$$

where $k= \pm 0,1,2,3, \ldots$.

Figure I-7: Inverse trigonometric functions.

Exponential Relations: Euler's Equation

$$
\begin{align*}
e^{i \alpha} & =\cos \alpha+i \sin \alpha, & i & =\sqrt{-1} \\
\sin \alpha & =\frac{e^{i \alpha}-e^{-i \alpha}}{2 i}, & \cos \alpha & =\frac{e^{i \alpha}+e^{-i \alpha}}{2} \tag{I.20}
\end{align*}
$$

I. 4 HYPERBOLIC FUNCTIONS

Definitions

$$
\begin{align*}
& \text { Hyperbolic sine of } x=\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right) \\
& \text { Hyperbolic cosine of } x=\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
& \text { Hyperbolic tangent of } x=\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& \text { Hyperbolic cotangent of } x=\operatorname{coth} x=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} \tag{I.21}\\
& \text { Hyperbolic secant of } x=\operatorname{sech} x=\frac{2}{e^{x}+e^{-x}} \\
& \text { Hyperbolic cosecant of } x=\operatorname{csch} x=\frac{2}{e^{x}-e^{-x}}
\end{align*}
$$

The graphs of the hyperbolic functions are shown in Fig. I-8.

Identities

$$
\begin{gather*}
\cosh ^{2} x-\sinh ^{2} x=1, \quad \tanh x=\frac{\sinh x}{\cosh x} \\
\operatorname{sech} x \cosh x=1, \quad \tanh ^{2} x+\operatorname{sech}^{2} x=1 \\
\operatorname{coth} x=\frac{\cosh x}{\sinh x} \\
\operatorname{csch} x \sinh x=1, \quad \operatorname{coth}^{2} x-\operatorname{csch}^{2} x=1 \\
\tanh x \operatorname{coth} x=1, \quad \sinh (-x)=-\sinh x \tag{I.22}\\
\tanh (-x)=-\tanh x, \\
\cosh (-x)=\cosh x, \quad \operatorname{sech}(-x)=\operatorname{sech} x \\
\operatorname{coth}(-x)=-\operatorname{coth} x, \quad \operatorname{csch}(-x)=-\operatorname{csch} x \\
\sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y \\
\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y \\
e^{ \pm x}=\cosh x \pm \sinh x
\end{gather*}
$$

Figure I-8: Hyperbolic functions.

I. 5 COORDINATE SYSTEMS

Rectangular Coordinate System

The rectangular coordinates of a point P are x, y, z, the distances of P from the $y z, x z$, and $x y$ planes, respectively (Fig. I-9). If there are three points $P_{1}, P_{2}, P_{3}=$ $P_{1}\left(x_{1}, y_{1}, z_{1}\right), P_{2}\left(x_{2}, y_{2}, z_{2}\right), P_{3}\left(x_{3}, y_{3}, z_{3}\right)$, the following definitions are useful:

Distance between P_{1} and P_{2} is calculated as

$$
\begin{equation*}
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \tag{I.23}
\end{equation*}
$$

P_{1}, P_{2}, P_{3} are collinear if and only if

$$
\begin{equation*}
\frac{x_{2}-x_{1}}{x_{3}-x_{1}}=\frac{y_{2}-y_{1}}{y_{3}-y_{1}}=\frac{z_{2}-z_{1}}{z_{3}-z_{1}} \tag{I.24a}
\end{equation*}
$$

Figure I-9: Coordinates.
$P_{1}, P_{2}, P_{3}, P_{4}$ are coplanar if and only if a determinant vanishes; that is,

$$
\left|\begin{array}{llll}
x_{1} & y_{1} & z_{1} & 1 \tag{I.24b}\\
x_{2} & y_{2} & z_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1 \\
x_{4} & y_{4} & z_{4} & 1
\end{array}\right|=0
$$

If point P_{3} divides P_{1}, P_{2} as shown in Fig. I-10, P_{3} would have the coordinates

$$
\begin{equation*}
\frac{a x_{2}+b x_{1}}{a+b}, \frac{a y_{2}+b y_{1}}{a+b}, \frac{a z_{2}+b z_{1}}{a+b} \tag{I.25}
\end{equation*}
$$

In particular, when $a=b, P_{3}$ is the midpoint of $P_{1} P_{2}$ given by $\frac{1}{2}\left(x_{1}+x_{2}\right)$, $\frac{1}{2}\left(y_{1}+y_{2}\right), \frac{1}{2}\left(z_{1}+z_{2}\right)$.

The relationships between rectangular and other common coordinate systems are listed in Table I-1.

Figure I-10: Straight lines. Point P_{3} divides $P_{1} P_{2}$ into lengths a and b.

Figure I-11: Notation.

Direction Cosines

The three angles between a line $P_{1} P_{2}$ and the coordinate axes x, y, z are called the direction angles of the line, denoted α, β, and γ.

The direction cosines of line $P_{1} P_{2}$ are designated

$$
\begin{equation*}
n_{x}=\cos \alpha=\frac{x_{2}-x_{1}}{d}, \quad n_{y}=\cos \beta=\frac{y_{2}-y_{1}}{d}, \quad n_{z}=\cos \gamma=\frac{z_{2}-z_{1}}{d} \tag{I.26}
\end{equation*}
$$

where d is the length of the line (distance between P_{1} and P_{2}). Here x_{1}, y_{1}, z_{1} are the coordinates of P_{1} and x_{2}, y_{2}, z_{2} are those of P_{2}. The direction cosines for a line lying in the $x y$ plane are depicted in Fig. I-11.

Identity:

$$
\begin{equation*}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \tag{I.27}
\end{equation*}
$$

or

$$
n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=1
$$

Unit Vectors on a Boundary Curve

For a boundary curve lying in the $x y$ plane as shown in Fig. I-12a, the vector \mathbf{n} is the unit outward normal $\mathbf{n}=n_{x} \mathbf{i}+n_{y} \mathbf{j}$ and \mathbf{t} is the unit tangent vector $\mathbf{t}=t_{x} \mathbf{i}+t_{y} \mathbf{j}$, where \mathbf{i} and \mathbf{j} are unit vectors along the x and y axes. The quantity s, the coordinate along the arc of the boundary, increases in the counterclockwise sense. The unit tangent vector \mathbf{t} is directed along increasing s. Since \mathbf{n} and \mathbf{t} are unit vectors, $n_{x}^{2}+n_{y}^{2}=1$ and $t_{x}^{2}+t_{y}^{2}=1$. The components of \mathbf{n} are its direction cosines, that is, from Eq. (I.26) with $d=1$ or Fig. I-12b.

$$
\begin{equation*}
n_{x}=\cos \alpha \quad \text { and } \quad n_{y}=\cos \beta \tag{I.28}
\end{equation*}
$$

since, for example, $\cos \beta=n_{y} / \sqrt{n_{x}^{2}+n_{y}^{2}}=n_{y}$.

Figure I-12: Geometry of unit normal and tangential vectors: (a) normal and tangential unit vectors on the boundary; (b) components of the unit normal vector; (c) unit normal and tangential vectors; (d) differential components.

From Fig. I-12c,

$$
\begin{align*}
\cos \varphi & =n_{x}, & & \sin \varphi=n_{y} \\
\sin \varphi & =-t_{x}, & & \cos \varphi=t_{y} \tag{I.29}
\end{align*}
$$

so that

$$
\begin{equation*}
n_{x}=t_{y}, \quad n_{y}=-t_{x} \tag{I.30}
\end{equation*}
$$

and the unit outward normal is defined in terms of the components t_{x} and t_{y} of the unit tangent as

$$
\begin{equation*}
\mathbf{n}=t_{y} \mathbf{i}-t_{x} \mathbf{j}=\mathbf{t} \times \mathbf{k} \tag{I.31}
\end{equation*}
$$

From Fig. I-12d,

$$
\sin \varphi=-\frac{d x}{d s} \quad \text { and } \quad \cos \varphi=\frac{d y}{d s}
$$

Thus,

$$
\begin{equation*}
n_{x}=t_{y}=\frac{d y}{d s}, \quad n_{y}=-t_{x}=-\frac{d x}{d s} \tag{I.32}
\end{equation*}
$$

The vector \mathbf{r} to any point on the boundary (Fig. I-12a) is

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}
$$

Then

$$
\begin{equation*}
d \mathbf{r}=d x \mathbf{i}+d y \mathbf{j}=\frac{d \mathbf{r}}{d s} d s=\left(\frac{d x}{d s} \mathbf{i}+\frac{d y}{d s} \mathbf{j}\right) d s=\mathbf{t} d s \tag{I.33}
\end{equation*}
$$

Curvature Formulas

With respect to rectangular coordinates (Fig. I-13a), curvature κ is calculated as

$$
\begin{align*}
\kappa & =\lim _{\Delta s \rightarrow 0} \frac{\Delta \alpha}{\Delta s}=\frac{d \alpha}{d s}=\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{3 / 2}} \\
\text { where } \quad y & =y(x), \quad, \quad=\frac{d}{d x}, \quad \text { and } \quad \quad^{\prime \prime}=\frac{d^{2}}{d x^{2}} \tag{I.34}
\end{align*}
$$

With respect to polar coordinates (Fig. I-13b),

$$
\kappa=\frac{\rho^{2}+2 \rho^{\prime 2}-\rho \rho^{\prime \prime}}{\left(\rho^{2}+\rho^{\prime 2}\right)^{3 / 2}} \quad \text { where } \rho=\rho(\theta)
$$

(a)

(b)

Figure I-13: Curvatures.

Radius of curvature R is calculated as

$$
R=\frac{1}{|\kappa|}=\left|\frac{d s}{d \alpha}\right|
$$

With respect to rectangular coordinates,

$$
\begin{equation*}
R=\left|\frac{\left(1+y^{\prime 2}\right)^{3 / 2}}{y^{\prime \prime}}\right| \tag{I.35a}
\end{equation*}
$$

With respect to polar coordinates,

$$
\begin{equation*}
R=\left|\frac{\left(\rho^{2}+\rho^{\prime 2}\right)^{3 / 2}}{\rho^{2}+2 \rho^{\prime 2}-\rho \rho^{\prime \prime}}\right| \tag{I.35b}
\end{equation*}
$$

Basic Formulas in Plane Analytic Geometry

Area of a triangle with the vertices $P_{1}\left(x_{1}, y_{1}\right), P_{2}\left(x_{2}, y_{2}\right)$, and $P_{3}\left(x_{3}, y_{3}\right)$ (Fig. I-14):

$$
A=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \tag{I.36}\\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

Figure I-14: Triangle made of three points P_{1}, P_{2}, and P_{3}.

Distance between two points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ (Fig. I-11):

$$
\begin{align*}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
\tan \alpha & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{I.37}\\
\cos \alpha & =\frac{x_{2}-x_{1}}{d} \\
\cos \beta & =\frac{y_{2}-y_{1}}{d}
\end{align*}
$$

Equation of a line (Fig. I-11):

$$
\begin{equation*}
y=m x+b, \quad \text { slope of } P_{1} P_{2}, \quad m=\tan \alpha=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{I.38}
\end{equation*}
$$

Translation of coordinates (Fig. I-15a):

$$
\begin{array}{lll}
x=x^{\prime}+a & \text { or } & x^{\prime}=x-a \\
y=y^{\prime}+b & \text { or } & y^{\prime}=y-b \tag{I.39}
\end{array}
$$

Rotation (Fig. I-15b):

$$
x=x^{\prime} \cos \alpha-y^{\prime} \sin \alpha, \quad x^{\prime}=x \cos \alpha+y \sin \alpha
$$

or

$$
\begin{equation*}
y=x^{\prime} \sin \alpha+y^{\prime} \cos \alpha, \quad y^{\prime}=-x \sin \alpha+y \cos \alpha \tag{I.40}
\end{equation*}
$$

Translation and rotation (Fig. I-15c):

$$
x=x^{\prime} \cos \alpha-y^{\prime} \sin \alpha+a, \quad x^{\prime}=(x-a) \cos \alpha+(y-b) \sin \alpha
$$

or

$$
\begin{equation*}
y=x^{\prime} \sin \alpha+y^{\prime} \cos \alpha+b, \quad y^{\prime}=-(x-a) \sin \alpha+(y-b) \cos \alpha \tag{I.41}
\end{equation*}
$$

Figure I-15: (a) Translation; (b) rotation; (c) translation and rotation.

I. 6 QUADRATIC EQUATIONS

$$
\begin{align*}
A x^{2}+B x+C & =0, & x_{1,2} & =\frac{1}{2 A}\left(-B \pm \sqrt{B^{2}-4 A C}\right) \tag{I.42}\\
x^{2}+p x+q & =0, & x_{1,2} & =\frac{1}{2}\left(-p \pm \sqrt{p^{2}-4 q}\right)
\end{align*}
$$

I. 7 SYSTEM OF LINEAR EQUATIONS Determinants

$$
D=\left|a_{i k}\right|=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{I.43}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

where $i=$ row number and $k=$ column number. Here $a_{i k}$ indicates the element in the i th row and the k th column. An exchange of the columns and rows does not affect the value of the determinant:

$$
\left|a_{i k}\right|=\left|a_{k i}\right|
$$

An exchange of two rows or two columns changes the sign of the determinant. If all the elements of one row (column) are k times the corresponding elements of another row (column), then $D=0$. The addition of the elements of one row (column) to the elements of another row (column) does not change the value of the determinant.

The minor $D_{i k}$ of the element $a_{i k}$ is the determinant obtained from D by removing the i th row and the k th column from Eq. (I.43). The cofactor $A_{i k}$ of the element $a_{i k}$ is its minor multiplied by $(-1)^{i+k}$, or

$$
A_{i k}=(-1)^{i+k}\left|\begin{array}{cccccc}
a_{1,1} & \cdots & a_{1, k-1} & a_{1, k+1} & \cdots & a_{1, n} \tag{I.44}\\
\vdots & \cdots & \vdots & \vdots & \vdots & \vdots \\
a_{i-1,1} & \cdots & a_{i-1, k-1} & a_{i-1, k+1} & \cdots & a_{i-1, n} \\
a_{i+1,1} & \cdots & a_{i+1, k-1} & a_{i+1, k+1} & \cdots & a_{i+1, n} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{n, 1} & \cdots & a_{n, k-1} & a_{n, k+1} & \cdots & a_{n, n}
\end{array}\right|
$$

where $a_{1,1}=a_{11}, a_{1, n}=a_{1 n}, a_{n, n}=a_{n n}$, and so on.
Expansion of Terms of Cofactors A determinant can be represented in terms of the elements and cofactors of any row j or column j as follows:

$$
\begin{equation*}
D=\operatorname{det}\left(a_{i k}\right)=\left|a_{i k}\right|=\sum_{i=1}^{n} a_{i j} A_{i j}=\sum_{k=1}^{n} a_{j k} A_{j k} \quad(j=1,2,3, \ldots, n) \tag{I.45}
\end{equation*}
$$

For example,

$$
\begin{align*}
D & =\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12} \\
D & =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right) \\
& =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}-a_{13} a_{22} a_{31} \tag{I.46}
\end{align*}
$$

Sarrus Scheme for Evaluating a 3×3 Determinant The first two columns are written to the right of the determinant. The three-term products of the main diagonals are summed and the three-term products of the opposing diagonals are subtracted:

Cramer's Rule

Consider the system of linear equations

$$
\begin{gather*}
a_{11} \cdot x_{1}+a_{12} \cdot x_{2}+\cdots+a_{1 n} \cdot x_{n}=b_{1} \\
a_{21} \cdot x_{1}+a_{22} \cdot x_{2}+\cdots+a_{2 n} \cdot x_{n}=b_{2} \\
\vdots \tag{I.48a}\\
\vdots \\
a_{n 1} \cdot x_{1}+a_{n 2} \cdot x_{2}+\cdots+a_{n n} \cdot x_{n}=b_{n}
\end{gather*}
$$

The system of equations has a unique solution if $D=\left|a_{i k}\right| \neq 0$.
Cramer's rule provides a solution in the form

$$
\begin{equation*}
x_{1}=\frac{D_{1}}{D}, x_{2}=\frac{D_{2}}{D}, \ldots, x_{n}=\frac{D_{n}}{D} \tag{I.48b}
\end{equation*}
$$

with the determinants

$$
D_{1}=\left|\begin{array}{cccc}
b_{1} & a_{12} & \cdots & a_{1 n} \\
b_{2} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
b_{n} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

(first column of D is replaced by right side of system of equations)

$$
D_{2}=\left|\begin{array}{cccc}
a_{11} & b_{1} & \cdots & a_{1 n} \\
a_{21} & b_{2} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & b_{n} & \cdots & a_{n n}
\end{array}\right| \quad \text { (second column of } D \text { is replaced by }
$$

etc.

Example I. 1 Cramer's Rule Find the solution of the following equations:

$$
\begin{align*}
& 2.5 x_{1}-3.1 x_{2}=7.2 \tag{1}\\
& 1.5 x_{1}+4.2 x_{2}=5.0
\end{align*}
$$

From Eqs. (I.48b),

$$
\begin{align*}
D & =\left|\begin{array}{rr}
2.5 & -3.1 \\
1.5 & 4.2
\end{array}\right|=2.5 \times 4.2-(-3.1) \times 1.5=15.15 \\
D_{1} & =\left|\begin{array}{rr}
7.2 & -3.1 \\
5.0 & 4.2
\end{array}\right|=7.2 \times 4.2-(-3.1) \times 5.0=45.74 \tag{2}\\
D_{2} & =\left|\begin{array}{rr}
2.5 & 7.2 \\
1.5 & 5.0
\end{array}\right|=2.5 \times 5.0-7.2 \times 1.5=1.7
\end{align*}
$$

we obtain

$$
\begin{equation*}
x_{1}=\frac{D_{1}}{D}=3.01914, \quad x_{2}=\frac{D_{2}}{D}=0.1122 \tag{3}
\end{equation*}
$$

I. 8 DIFFERENTIAL AND INTEGRAL CALCULUS

Basic Operations

The derivative of the sum of two functions f and g equals the sum of derivatives:

$$
\begin{equation*}
(f+g)^{\prime}=f^{\prime}+g^{\prime} \tag{I.49a}
\end{equation*}
$$

where the superscript prime indicates a derivative. A constant a is factored out of the derivative,

$$
\begin{equation*}
(a f)^{\prime}=a\left(f^{\prime}\right) \tag{I.49b}
\end{equation*}
$$

For constants a and b and functions f and g there exist the following operations:

Addition of functions: $(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}$
Product of functions: $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
Division of functions: $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$
Function of a function: $\frac{d}{d x} f[g(x)]=\frac{d f(g)}{d g} \frac{d g(x)}{d x}$
(composite function)
Inverse function: If $y^{\prime}(x)$ exists, then $x^{\prime}(y)=1 / y^{\prime}(x)$
Refer to Table I-2 for differentiation formulas of common functions.

Differentiation of Functions with Multiple Variables

$$
\begin{equation*}
d f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\frac{\partial f}{\partial x_{1}}\right) d x_{1}+\left(\frac{\partial f}{\partial x_{2}}\right) d x_{2}+\cdots+\left(\frac{\partial f}{\partial x_{n}}\right) d x_{n} \tag{I.50a}
\end{equation*}
$$

If x_{2}, \ldots, x_{n} are functions of x_{1},

$$
\begin{equation*}
\frac{d f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{d x_{1}}=\frac{\partial f}{\partial x_{1}}+\frac{\partial f}{\partial x_{2}} \frac{d x_{2}}{d x_{1}}+\cdots+\frac{\partial f}{\partial x_{n}} \frac{d x_{n}}{d x_{1}} \tag{I.50b}
\end{equation*}
$$

The derivative $d f(x) / d x$ equal to zero at x_{0},

$$
\begin{equation*}
\left|\frac{d f}{d x}\right|_{x=x_{0}}=0 \tag{I.51a}
\end{equation*}
$$

is a necessary condition for f to have a stationary value at x_{0}. There are three possible types of such points: a minimum, a maximum, and a point of inflection. To learn which occurs at $x=x_{0}$:

$$
\left.\begin{array}{l}
\text { Minimum if } d^{2} f / d x^{2}>0 \tag{I.51b}\\
\text { Maximum if } d^{2} f / d x^{2}<0 \\
\text { Point inflection if } d^{2} f / d x^{2}=0
\end{array}\right\} \quad \text { evaluated at } x=x_{0}
$$

Integral Formulas

See Table I-3 for common integral formulas.

Integral Theorems

Integration-by-Parts Formula

$$
\begin{equation*}
\int_{a}^{b} u(x) v^{\prime}(x) d x=\left.u(x) v(x)\right|_{a} ^{b}-\int_{a}^{b} v(x) u^{\prime}(x) d x \tag{I.52a}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u \tag{I.52b}
\end{equation*}
$$

where $u^{\prime}(x)=d u / d x, v^{\prime}(x)=d v / d x$, and $u(x)$ and $v(x)$ must be differentiable for $a \leq x \leq b$.

Green's Formula

$$
\begin{equation*}
\oint_{C} P(x, y) d x+\oint_{C} Q(x, y) d y=\iint_{A}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y \tag{I.53}
\end{equation*}
$$

where C is the boundary of region A, \oint_{C} is the line integration along C, and P, Q, $\partial P / \partial y$, and $\partial Q / \partial x$ are continuous in the region A. Sometimes this is referred to as a Gauss integral theorem.

Based on Green's formula, the integration-by-parts formula for two-dimensional problems can be written as

$$
\begin{equation*}
\iint_{A} R \frac{\partial Q}{\partial x} d A=\oint_{C} Q R n_{x} d s-\iint_{A} Q \frac{\partial R}{\partial x} d A \tag{I.54}
\end{equation*}
$$

where $Q=Q(x, y), R=R(x, y)$, and $d A=d x d y$, a surface element. The quantity s is a coordinate along the contour of the cross section. Also, n_{x} is the direction cosine between the outward normal and the x axis.

Gauss Integral Theorem (Divergence Theorem)

$$
\begin{equation*}
\int_{V} \operatorname{div} \mathbf{v} d V=\int_{S} \mathbf{v} \cdot \mathbf{n} d S \tag{I.55a}
\end{equation*}
$$

where V is the volume enclosed by surface $S, \mathbf{v}=\left[\begin{array}{lll}v_{x} & v_{y} & v_{z}\end{array}\right]^{T}$ is an arbitrary vector differentiable in V with continuous partial derivatives, $\mathbf{n}=\left[\begin{array}{lll}n_{x} & n_{y} & n_{z}\end{array}\right]^{T}=$ $[\cos \alpha \cos \beta \cos \gamma]^{T}$ is a unit vector at a point on S and is the outward normal to S, and

$$
\begin{equation*}
\operatorname{div} \mathbf{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z} \tag{I.55b}
\end{equation*}
$$

is the divergence of \mathbf{v}. Also, α, β, and γ are the angles between the outward normal and the coordinates x, y, and z, and $\mathbf{v} \cdot \mathbf{n}$ represents the dot product $\mathbf{v} \cdot \mathbf{n}=v_{x} n_{x}+$ $v_{y} n_{y}+v_{z} n_{z}$. On S it is sufficient that the integral exists.

In expanded notation, Eq. (I.55a) becomes

$$
\begin{equation*}
\int_{V}\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{2}}{\partial z}\right) d V=\int_{S}\left(v_{x} n_{x}+v_{y} n_{y}+v_{z} n_{z}\right) d S \tag{I.55c}
\end{equation*}
$$

where $d V=d x d y d z$ in rectangular coordinates and $d S$ is a surface element area on S.

I. 9 LAPLACE TRANSFORM

The Laplace transform of a function $f(t)$, denoted by $\mathcal{L}\{f(t)\}$ or $F(s)$, is defined as

$$
\begin{equation*}
\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \tag{I.56}
\end{equation*}
$$

where $f(t)$ is defined for positive t, s is complex $s=x+i y$. Table I-4 gives several Laplace transform pairs, $f(t)$ and $F(s)$.

I. 10 REPRESENTATION OF FUNCTIONS BY SERIES

See Section I. 1 for some algebraic series.

Taylor's Series for Single Variable

If a function $f(x)$ is continuous and single-valued and has all derivatives on an interval including $x=x_{0}+h$, then

$$
\begin{equation*}
f\left(x_{0}+h\right)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!} h+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} h^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!} h^{n}+R_{n} \tag{I.57}
\end{equation*}
$$

where $f^{\prime}=d f / d x$,

$$
R_{n}=\frac{f^{(n+1)}\left(x_{0}+\theta h\right)}{(n+1)!} h^{n+1}, \quad 0<\theta<1
$$

Maclaurin's Series

The Taylor expansion for the special case $x_{0}=0$ and $h=x$ gives Maclaurin's series expansion:

$$
\begin{equation*}
f(x)=f(0)+\frac{x}{1!} f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\cdots+\frac{x^{n}}{n!} f^{(n)}(0)+R_{n} \tag{I.58}
\end{equation*}
$$

where

$$
R_{n}=\frac{x^{n+1}}{(n+1)!} f^{(n+1)}(\theta x), \quad 0<\theta<1
$$

Taylor's Series for Two Variables

Taylor's series for a function of two variables is

$$
\begin{align*}
f(x+a, y+b)= & f(x, y)+\frac{1}{1!} D_{1}[f(x, y)] \\
& +\frac{1}{2!} D_{2}[f(x, y)]+\cdots+\frac{1}{n!} D_{n}[f(x, y)]+R_{n} \tag{I.59}
\end{align*}
$$

where

$$
D_{n}[f(x, y)]=\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)^{n}[f(x, y)]=\sum_{i=1}^{n}\binom{n}{i} a^{n-i} b^{i} \frac{\partial^{n} f(x, y)}{\partial x^{n-i} \partial y^{i}}
$$

and

$$
R_{n}=\frac{1}{(n+1)!} D_{n+1}\left[f\left(x+\theta_{1} a, y+\theta_{2} b\right)\right] \quad 0<\theta_{1}<1, \quad 0<\theta_{2}<1
$$

Let $x=y=0$ in the equation above and $a=x, b=y$. Then

$$
\begin{equation*}
f(x, y)=f(0,0)+\frac{1}{1!} D_{1}[f(0,0)]+\frac{1}{2!} D_{2}[f(0,0)]+\cdots+\frac{1}{n!} D_{n}[f(0,0)]+R_{n} \tag{I.60}
\end{equation*}
$$

where

$$
\begin{array}{r}
D_{n}=\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)^{n} \quad \text { and } \quad R_{n}= \\
\frac{1}{(n+1)!} D_{n+1}\left[f\left(\theta_{1} x, \theta_{2} y\right)\right] \\
\\
0<\theta_{1}<1, \quad 0<\theta_{2}<1
\end{array}
$$

Fourier Series

Let $f(x)$ be a periodic function in the interval $[-\ell, \ell]$ and let $\int_{-\ell}^{\ell}|f(x)| d x$ exist. Then the Fourier series of the function $f(x)$ is

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{\ell} x+b_{n} \sin \frac{n \pi}{\ell} x\right) \tag{I.61}
\end{equation*}
$$

where

$$
\begin{aligned}
a_{n}=\frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos \frac{n \pi}{\ell} x d x & (n=0,1,2, \ldots) \\
b_{n} & =\frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin \frac{n \pi}{\ell} x d x
\end{aligned} \quad(n=1,2,3, \ldots)
$$

Series Expansions of Some Common Functions

The series expansion of functions can be obtained by using either the Taylor or Maclaurin theorems. Series expansions of some common functions are given here:

$$
\begin{align*}
& e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots \quad(-\infty<x<+\infty) \\
& a^{x}=1+x \ln a+\frac{(x \ln a)^{2}}{2!}+\frac{(x \ln a)^{3}}{3!}+\cdots \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \quad(-\infty<x<+\infty) \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \quad(-\infty<x<+\infty) \\
& \tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{9}}{2835}+\cdots \quad \quad\left(|x|<\frac{1}{2} \pi\right) \\
& \sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots \quad(-\infty<x<+\infty) \\
& \cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots \quad(-\infty<x<\infty) \tag{I.62}\\
& e^{\sin x}=1+x+\frac{x^{2}}{2!}-\frac{3 x^{4}}{4!}-\frac{8 x^{5}}{5!}-\frac{3 x^{6}}{6!}+\frac{56 x^{7}}{7!}+\cdots \\
& \ln x=2\left[\frac{x-1}{x+1}+\frac{1}{3}\left(\frac{x-1}{x+1}\right)^{3}+\frac{1}{5}\left(\frac{x-1}{x+1}\right)^{5}+\cdots\right] \quad(0.62) \\
& \ln x=\frac{x-1}{x}+\frac{1}{2}\left(\frac{x-1}{x}\right)^{2}+\frac{1}{3}\left(\frac{x-1}{x}\right)^{3}+\cdots \quad\left(x>\frac{1}{2}\right) \\
& \ln x=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\cdots \quad \quad(0<x \leq 2) \\
& \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots \quad(-1<x<+1) \\
&(1 \pm x)^{n}=1 \pm n x+\frac{n(n-1) x^{2}}{2!} \pm \frac{n(n-1)(n-2) x^{3}}{3!}+\cdots \quad(|x|<1, n>0) \\
&(1 \pm x)^{-n}=1 \mp n x+\frac{n(n+1) x^{2}}{2!} \mp \frac{n(n+1)(n+2) x^{3}}{3!}+\cdots \quad(|x|<1, n>0) \\
&(1+\infty)
\end{align*}
$$

I.11 MATRIX ALGEBRA

Definitions

A matrix is an array of elements consisting of m rows and n columns:

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{I.63}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

If $m=n$, the matrix is called a square matrix; otherwise, it is a rectangular matrix. The principal diagonal is the diagonal spanning between the upper left corner and the lower right corner.

The transpose of a matrix \mathbf{A}, denoted by \mathbf{A}^{T}, is the matrix with elements defined as

$$
a_{i j}^{T}=a_{j i}
$$

That is, the rows have become corresponding columns and the columns have become corresponding rows.

A symmetric square matrix is a matrix with the property $\mathbf{A}=\mathbf{A}^{T}$, or $a_{i j}=a_{j i}$.
A skew-symmetric (or antisymmetric) square matrix is a matrix with the property

$$
\mathbf{A}=-\mathbf{A}^{T}, \text { or } a_{i j}=-a_{j i}
$$

A lower triangular matrix has all elements equal to zero above the principal diagonal.
An upper triangular matrix has all zeros as elements below the principal diagonal.
A diagonal matrix has all elements equal to zero except those along the principal diagonal.
A null matrix is a matrix with all its elements equal to zero.
An identity matrix is a diagonal matrix with all its diagonal elements equal to 1 .
Singularity, Inverse, and Rank A matrix \mathbf{A} is singular if its determinant is zero, $|\mathbf{A}|=0$. Otherwise, it is nonsingular.

If \mathbf{A} is a square matrix and its determinant $|\mathbf{A}| \neq 0$ (nonsingular), the matrix \mathbf{A}^{-1} satisfying the relation $\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}$ is called an inverse matrix. The inverse matrix is unique.

The order of the largest nonzero determinant that can be obtained from the elements of a matrix is called the rank of the matrix. The trace of a square matrix \mathbf{A} is the sum of the diagonal elements:

$$
\operatorname{tr} \mathbf{A}=\sum_{i=1}^{n} a_{i i}
$$

Laws

$\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}, \quad \mathbf{A B} \neq \mathbf{B A}$,
$\mathbf{A}[\mathbf{B}+\mathbf{C}]=\mathbf{A B}+\mathbf{A C}, \quad[\mathbf{A}+\mathbf{B}] \mathbf{C}=\mathbf{A C}+\mathbf{B C}$
$\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}, \quad \mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}$,
$(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}, \quad(\mathbf{A}+\mathbf{B})^{-1}=\mathbf{A}^{-1}+\mathbf{B}^{-1}$
$(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}, \quad(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}, \quad\left(\mathbf{B}^{T}\right)^{T}=\mathbf{B}, \quad\left(\mathbf{B}^{-1}\right)^{-1}=\mathbf{B}$
$\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A}), \quad \operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{B C A})=\operatorname{tr}(\mathbf{C A B})$
$\mathbf{A I}=\mathbf{I} \mathbf{A}=\mathbf{A}, \quad$ where $\mathbf{I}=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right], \quad \mathbf{I}^{-1}=\mathbf{I}$
$a(\mathbf{A B})=(a \mathbf{A}) \mathbf{B}=\mathbf{A}(a \mathbf{B}), \quad a(\mathbf{A}+\mathbf{B})=a \mathbf{A}+a \mathbf{B}, \quad[0]=\left[\begin{array}{ccc}0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0\end{array}\right]$
$(a+b) \mathbf{A}=a \mathbf{A}+b \mathbf{A}, \quad a(b \mathbf{A})=(a b) \mathbf{A}$
where a, b are real numbers

$$
a \mathbf{A}=\mathbf{A} a \quad(a \cdot b \neq 0)
$$

If $\mathbf{A B}=0$, then \mathbf{A} and/or \mathbf{B} may or may not be zero.
Two square matrices \mathbf{A} and \mathbf{B} related by a transformation $\mathbf{A}=\mathbf{T}^{T} \mathbf{B T}$, where \mathbf{T} is nonsingular, are congruent. The congruent transformation has the property that if \mathbf{B} is symmetric, \mathbf{A} will be symmetric.

Basic Operations

Addition/Subtraction

$$
\mathbf{A}_{m n} \pm \mathbf{B}_{m n}=\left[a_{i j}\right] \pm\left[b_{i j}\right]=\left[\begin{array}{cccc}
a_{11} \pm b_{11} & a_{12} \pm b_{12} & \cdots & a_{i n} \pm b_{i n} \tag{I.65a}\\
\vdots & \vdots & & \vdots \\
a_{m 1} \pm b_{m 1} & a_{m 2} \pm b_{m 2} & \cdots & a_{m n} \pm b_{m n}
\end{array}\right]
$$

where $\mathbf{A}_{m n}$ and $\mathbf{B}_{m n}$ are matrices \mathbf{A} and \mathbf{B}, each consisting of m rows and n columns.

$$
\mathbf{A}_{m n}=\left[a_{i j}\right], \quad \mathbf{B}_{m n}=\left[b_{i j}\right]
$$

Multiplication of Two Matrices

$$
\mathbf{A}_{m n} \cdot \mathbf{B}_{n l}=\mathbf{C}_{m l}=\left[C_{i j}\right]
$$

where

$$
\begin{equation*}
C_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \quad(i=1,2, \ldots, m, j=1,2, \ldots, l) \tag{I.65b}
\end{equation*}
$$

Inverse Matrix

$$
\mathbf{A}^{-1}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{I.66}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]^{-1}=\frac{1}{|\mathbf{A}|}\left[\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{n 1} \\
A_{12} & A_{22} & \cdots & A_{n 2} \\
\vdots & \vdots & & \vdots \\
A_{1 n} & A_{2 n} & \cdots & A_{n n}
\end{array}\right]=\frac{\operatorname{adj} \mathbf{A}}{|\mathbf{A}|}
$$

where

$$
|\mathbf{A}|=\operatorname{det} \mathbf{A}, \quad A_{j k}=\text { cofactor of element } a_{j k} \quad[\text { Eq. (I.44) }]
$$

and the transpose of the matrix whose elements are $A_{j k}$ is called the adjoint matrix $\operatorname{adj} \mathbf{A}$.

Example I. 2 Inverse of a Matrix Determine the inverse matrix of

$$
\mathbf{A}=\left[\begin{array}{rr}
2.5 & -3.1 \\
1.5 & 4.2
\end{array}\right]
$$

First we find

$$
\begin{gathered}
A_{11}=(-1)^{1+1}|4.2|=4.2, \quad A_{21}=(-1)^{2+1}|-3.1|=-(-3.1)=3.1 \\
A_{12}=(-1)^{2+1}|1.5|=-1.5, \quad A_{22}=(-1)^{2+2}|2.5|=2.5 \\
|\mathbf{A}|=\left|\begin{array}{rr}
2.5 & -3.1 \\
1.5 & 4.2
\end{array}\right|=15.15
\end{gathered}
$$

From Eq. (I.66),

$$
\begin{align*}
\mathbf{A}^{-1} & =\frac{\operatorname{adj} \mathbf{A}}{|\mathbf{A}|}=\frac{1}{|\mathbf{A}|}\left[\begin{array}{ll}
A_{11} & A_{21} \\
A_{12} & A_{22}
\end{array}\right] \\
& =\frac{1}{15.15}\left[\begin{array}{rr}
4.2 & 3.1 \\
-1.5 & 2.5
\end{array}\right]=\left[\begin{array}{rr}
0.2772 & 0.2046 \\
-0.0990 & 0.1650
\end{array}\right] \tag{1}
\end{align*}
$$

The inverse matrix is often used to solve linear equations of the form

$$
\begin{gathered}
\mathbf{A x}=\mathbf{b} \\
\mathbf{A}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right], \quad|\mathbf{A}| \neq 0, \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] \text { (I.68) } \\
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
\end{gathered}
$$

Example I. 3 Solution of a System of Equations Solve the problem of Example I. 1 by computing the inverse matrix [i.e., use Eq. (I.68) and Eq. (1) of Example I.2].

From Example I.1,

$$
\mathbf{A}=\left[\begin{array}{rr}
2.5 & -3.1 \tag{1}\\
1.5 & 4.2
\end{array}\right]
$$

and from Example I.2,

$$
\mathbf{A}^{-1}=\left[\begin{array}{rr}
0.2772 & 0.2046 \tag{2}\\
-0.0990 & 0.1650
\end{array}\right]
$$

Then

$$
\begin{align*}
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =\mathbf{A}^{-1} \mathbf{b}=\left[\begin{array}{rr}
0.2772 & 0.2046 \\
-0.0990 & 0.1650
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] \\
& =\left[\begin{array}{rr}
0.2772 & 0.2046 \\
-0.0990 & 0.1650
\end{array}\right]\left[\begin{array}{l}
7.2 \\
5.0
\end{array}\right]=\left[\begin{array}{l}
3.01884 \\
0.1122
\end{array}\right] \tag{3}
\end{align*}
$$

Determinants

$\mathbf{A}=\mathbf{A}_{n n}$ matrix:

$$
\begin{gather*}
\left|\mathbf{A}^{T}\right|=|\mathbf{A}|, \quad\left|\mathbf{A}^{-1}\right|=\frac{1}{|\mathbf{A}|}, \quad|\mathbf{I}|=1 \\
|\mathbf{A B}|=|\mathbf{A}||\mathbf{B}|, \quad\left|\mathbf{A} \mathbf{B}^{-1}\right|=|\mathbf{A}| /|\mathbf{B}| \tag{I.69}\\
\left|\mathbf{A}^{-1} \mathbf{B}^{-1}\right|=1 /(|\mathbf{A}||\mathbf{B}|)
\end{gather*}
$$

Eigenvalues and Eigenvectors

If \mathbf{A} is a matrix of order n, the equation

$$
\begin{equation*}
|\mathbf{A}-\lambda \mathbf{I}|=0 \tag{I.70}
\end{equation*}
$$

is called the characteristic equation of the matrix \mathbf{A}, and it is a polynomial of degree n in λ. The roots of this equation are called the eigenvalues or characteristic values of \mathbf{A}.

Any vector \mathbf{x} satisfying $\mathbf{A x}=\lambda \mathbf{x}$ corresponding to the characteristic values λ is called a characteristic vector or eigenvector of \mathbf{A}. Often, the characteristic vector is normalized to have a unit length, $\mathbf{x}^{T} \mathbf{x}=1$.

Example I. 4 Eigenvalue Problem Determine the eigenvalues and their corresponding eigenvectors of the square matrix

$$
\mathbf{A}=\left[\begin{array}{ll}
-2 & 4 \tag{1}\\
-6 & 8
\end{array}\right]
$$

From $|\mathbf{A}-\lambda \mathbf{I}|=0$, the characteristic equation is

$$
\left|\begin{array}{cc}
-2-\lambda & 4 \tag{2}\\
-6 & 8-\lambda
\end{array}\right|=(-2-\lambda)(8-\lambda)-(4)(-6)=(\lambda-2)(\lambda-4)=0
$$

The eigenvalues are the solutions of this equation:

$$
\begin{equation*}
\lambda_{1}=2, \quad \lambda_{2}=4 \tag{3}
\end{equation*}
$$

Let the eigenvector be

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \tag{4}\\
x_{2}
\end{array}\right]
$$

Substitute λ_{1}, λ_{2} into the equation $\mathbf{A x}=\lambda \mathbf{x}$:

$$
\left[\begin{array}{ll}
-2 & 4 \tag{5}\\
-6 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\lambda\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

that is,

$$
\begin{align*}
& (-2-\lambda) x_{1}+4 x_{2}=0 \\
& -6 x_{1}+(8-\lambda) x_{2}=0 \tag{6}
\end{align*}
$$

For $\lambda=2$,

$$
\begin{align*}
& -4 x_{1}+4 x_{2}=0 \\
& -6 x_{1}+6 x_{2}=0 \tag{7}
\end{align*}
$$

It is clear that $x_{1}=x_{2}$ satisfies these two equations. There are an infinite number of solutions and an additional condition is necessary for the solutions to be unique. For example, if the eigenvectors are chosen such that $\mathbf{x}^{T} \mathbf{x}=1$,

$$
\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \tag{8}\\
x_{2}
\end{array}\right]=x_{1}^{2}+x_{2}^{2}=1
$$

Hence $x_{1}=x_{2}=\sqrt{2} / 2$, or

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \tag{9}\\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\sqrt{2} / 2 \\
\sqrt{2} / 2
\end{array}\right]
$$

Similarly, for $\lambda=4$, the eigenvector is

$$
\mathbf{x}=\underline{\underline{\left[\begin{array}{l}
x_{1} \tag{10}\\
x_{2}
\end{array}\right]}=\left[\begin{array}{l}
2 \sqrt{13} / 13 \\
3 \sqrt{13} / 13
\end{array}\right]}
$$

I. 12 NUMERICAL METHODS

Linear Interpolation Method to Solve $f(x)=0$

The roots of an algebraic equation are desired. If $f(x)$ is a continuous function and two values $x_{10}, x_{20}\left(x_{10}<x_{20}\right)$ are chosen such that $f\left(x_{10}\right)$ and $f\left(x_{20}\right)$ are of opposite sign (Fig. I-16), the line segment between $\left[x_{10}, f\left(x_{10}\right)\right]$ and $\left[x_{20}, f\left(x_{20}\right)\right]$ intersects the x axis at

$$
\begin{equation*}
x_{1}=\frac{x_{10} f\left(x_{20}\right)-x_{20} f\left(x_{10}\right)}{f\left(x_{20}\right)-f\left(x_{10}\right)} \tag{I.71}
\end{equation*}
$$

Next x_{1} is taken as x_{20}, and the same iteration is followed for x_{10} and x_{1} to find x_{2}, then x_{3}, and so on, until x_{n} is obtained close to the x_{n-1} value within the acceptable tolerance, which means that $x_{n} \approx x^{*}, f\left(x^{*}\right)=0$ (Fig. I-16).

Newton's Method

Assume that x_{0} is an approximate root of $f(x)=0$. Calculate a better approximation by means of

$$
\begin{equation*}
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \tag{I.72}
\end{equation*}
$$

Figure I-16: Linear interpolation.
where $f^{\prime}=d f / d x$, and then use x_{1} as x_{0} and repeat this process until a desired accuracy is achieved. The general form of Eq. (I.72) can be written as

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n=0,1,2, \ldots \tag{I.73}
\end{equation*}
$$

and $x_{n} \rightarrow x^{*}$. Note that Newton's method is used to find only the real roots of $f(x)=0$, not the complex roots.

Zeros of a Polynomial

A polynomial of degree n can be expressed as

$$
\begin{equation*}
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \tag{I.74}
\end{equation*}
$$

where $a_{n} \neq 0, a_{n-1}, \ldots, a_{0}$ are real or complex numbers and n is a positive integer.
Based on Newton's method, an iterative approximation for the location of a zero (i.e., the roots of the polynomial equation $f=0$), beginning with the approximate value x_{0}, can be obtained using

$$
\begin{equation*}
x_{i+1}=x_{i}-\frac{a_{n} x_{i}^{n}+a_{n-1} x_{i}^{n-1}+\cdots+a_{1} x_{i}+a_{0}}{n a_{n} x_{i}^{n-1}+(n-1) a_{n-1} x_{i}^{n-2}+\cdots+a_{1}}, \quad i=0,1,2, \ldots \tag{I.75}
\end{equation*}
$$

According to a fundamental theorem of algebra, Eq. (I.74) has exactly n zero locations (roots), which may be real, complex, and not necessarily distinct. Equation (I.75) is used for approximating real roots.

Example I. 5 Zeros of a Polynomial Find the location of a zero of $y=2 x^{3}-$ $3 x^{2}+x-1$.

From Eq. (I.75),

$$
\begin{equation*}
x_{i+1}=x_{i}-\frac{2 x_{i}^{3}-3 x_{i}^{2}+x_{i}-1}{6 x_{i}^{2}-6 x_{i}+1} \tag{1}
\end{equation*}
$$

Choose $x_{0}=2.0$. Then

$$
\begin{aligned}
& x_{1}=1.615385, x_{2}=1.440559, x_{3}=1.400239 \\
& x_{4}=1.398166, x_{5}=1.398161, x_{6}=1.398161
\end{aligned}
$$

Further iteration will not change the location significantly. Hence, it is concluded that the location of the zero is about 1.398161 . In this example, there is only one real root, but in other cases there may be more than one real root. These roots can be found using the same method by beginning with other approximate values. Complex roots cannot be found by using Eq. (I.75) or Newton's method.

Gauss Algorithm

Gauss elimination solves a system of linear equations [Eqs. (I.35a)] using the following method: Multiply the first equation of the system by the coefficient $-a_{21} / a_{11}$ and then add this equation to the second equation. The first coefficient of the second equation, denoted by a_{21}^{\prime}, is now zero. This process continues similarly with the other equations until $a_{31}^{\prime}, \ldots, a_{n 1}^{\prime}$ are zero. That is, the second equation and each following equation does not contain x_{1} since its coefficient is zero. Now begin with the second equation to eliminate the coefficient of x_{2} in the remaining equations. In short, for the nth equation in such a system, its first $n-1$ coefficients are zero after Gauss elimination. The end result is a system that takes the form

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\cdots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime} \\
& a_{33}^{\prime \prime} x_{3}+\cdots+a_{3 n}^{\prime \prime} x_{n}=b_{3}^{\prime \prime} \tag{I.76}\\
& \ddots \quad \vdots \quad \vdots \\
& a_{n n}^{(n-1)} x_{n}
\end{align*}=b_{n}^{(n-1)}
$$

Now solve the final equation for x_{n}, then the second to the last equation for x_{n-1}, and so on.

It can be seen that Gauss elimination contains two phases, forward elimination and backward substitution.

Example I. 6 Gauss Elimination Solve the following system of linear equations by Gauss elimination:

$$
\begin{align*}
5 x_{1}+2 x_{2}+3 x_{3}+2 x_{4} & =-1 \tag{1}\\
2 x_{1}+4 x_{2}+x_{3}-2 x_{4} & =5 \tag{2}\\
x_{1}-3 x_{2}+4 x_{3}+3 x_{4} & =4 \tag{3}\\
3 x_{1}+2 x_{2}+2 x_{3}+8 x_{4} & =-6 \tag{4}
\end{align*}
$$

First, we use forward elimination to transform (1) to (4) into the form of Eq. (I.76). The initial step is to eliminate the first unknown x_{1} from (2)-(4):

$$
\text { (2) }-(1) \times \frac{2}{5}: \quad \frac{16}{5} x_{2}-\frac{1}{5} x_{3}-\frac{14}{5} x_{4}=\frac{27}{5}
$$

or

$$
\begin{equation*}
16 x_{2}-x_{3}-14 x_{4}=27 \tag{5}
\end{equation*}
$$

where (2) - (1) $\times \frac{2}{5}$ means Eq. (2) minus Eq. (1) multiplied by $\frac{2}{5}$. Similarly,

$$
(3)-(1) \times \frac{1}{5}: \quad-\frac{17}{5} x_{2}+\frac{17}{5} x_{3}+\frac{13}{5} x_{4}=\frac{21}{5}
$$

or

$$
\begin{gathered}
-17 x_{2}+17 x_{3}+13 x_{4}=21 \\
(4)-(1) \times \frac{3}{5}: \quad \frac{4}{5} x_{2}+\frac{1}{5} x_{3}+\frac{34}{5} x_{4}=-\frac{27}{5}
\end{gathered}
$$

or

$$
\begin{equation*}
4 x_{2}+x_{3}+34 x_{4}=-27 \tag{7}
\end{equation*}
$$

It is seen that there are three unknowns in (5), (6), and (7). Keep (5) and eliminate unknown x_{2} from (6) and (7),

$$
(6)-(5) \times\left(-\frac{17}{16}\right): \quad \frac{255}{16} x_{3}-\frac{30}{16} x_{4}=\frac{795}{16}
$$

or

$$
\begin{gather*}
17 x_{3}-2 x_{4}=53 \tag{8}\\
(7)-(5) \times \frac{4}{16}: \quad \frac{5}{16} x_{3}+\frac{150}{16} x_{4}=-135
\end{gather*}
$$

or

$$
\begin{equation*}
x_{3}+30 x_{4}=-27 \tag{9}
\end{equation*}
$$

Finally, from (8) and (9), eliminate the unknown x_{3} in (9),

$$
\begin{equation*}
\text { (9) }-(8) \times \frac{1}{17}: \quad 512 x_{4}=-512 \tag{10}
\end{equation*}
$$

Consequently, (1), (5), (8), and (10) together lead to the form of Eq. (I.76):

$$
\begin{align*}
5 x_{1}+2 x_{2}+3 x_{3}+2 x_{4} & =-1 \\
16 x_{2}-x_{3}-14 x_{4} & =27 \\
17 x_{3}-2 x_{4} & =53 \tag{11}\\
512 x_{4} & =-512
\end{align*}
$$

Use back substitution to solve for the unknowns from (11). This gives $x_{4}=-1$, $x_{3}=3, x_{2}=1, x_{1}=-2$.

Numerical Integration

Trapezoidal rule (n is even or odd) (Fig. I-17): Define $h=\frac{b-a}{n}, y_{i}=f\left(x_{i}\right)$

$$
\begin{equation*}
\int_{a}^{b} y(x) d x=\int_{a}^{b} f(x) d x \approx \frac{1}{2} h\left(y_{0}+2 y_{1}+2 y_{2}+\cdots+2 y_{n-1}+y_{n}\right)+\varepsilon_{T} \tag{I.77}
\end{equation*}
$$

Figure I-17: Trapezoidal rule.

Figure I-18: Rectangular formula.

Truncation error:

$$
\varepsilon_{T} \approx-\frac{1}{12}\left[n h^{3} f^{\prime \prime}(\xi)\right], \quad a \leq \xi \leq b
$$

Rectangular formula (Fig. I-18): Define

$$
\begin{align*}
h & =\frac{b-a}{n}, \quad y_{i}=f\left(x_{i}\right), \quad x_{i}=a+\frac{1}{2}(2 i-1) h \\
\int_{a}^{b} y d x & \approx h\left(y_{1}+y_{2}+\cdots+y_{n}\right) \tag{I.78}
\end{align*}
$$

Simpson's rule [n is even] (Fig. I-19): Define $h=\frac{b-a}{n}$.

$$
\begin{align*}
\int_{a}^{b} y(x) d x= & \int_{a}^{b} f(x) d x \approx \frac{1}{3} h\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+4 y_{n-3}\right. \\
& \left.+2 y_{n-2}+4 y_{n-1}+y_{n}\right) \tag{I.79}
\end{align*}
$$

Figure I-19: Simpson's rule.

Tables

I-1 Relationships between Common Coordinate Systems 1358
I-2 Differentiation Formulas 1359
I-3 Integral Formulas 1361
I-4 Laplace Transform Pairs 1368

TABLE I-1 RELATIONSHIPS BETWEEN COMMON COORDINATE SYSTEMS

Translation: If the rectangular coordinate system (x, y, z) translates to a point $0^{\prime}(a, b, c)$ and forms a new rectangular coordinate system $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$, then

$$
x=x^{\prime}+a, \quad y=y^{\prime}+b, \quad z=z^{\prime}+c
$$

Rotation: If the new system $x^{\prime}, y^{\prime}, z^{\prime}$ rotates about the origin and has the following relationship with the old one:

New Axis	Direction Cosine with Old Axis		
	x	y	z
x^{\prime}	l_{1}	m_{1}	n_{1}
y^{\prime}	l_{2}	m_{2}	n_{2}
z^{\prime}	l_{3}	m_{3}	n_{3}

then

$$
\begin{aligned}
& x=l_{1} x^{\prime}+l_{2} y^{\prime}+l_{3} z^{\prime} \\
& y=m_{1} x^{\prime}+m_{2} y^{\prime}+m_{3} z^{\prime} \\
& z=n_{1} x^{\prime}+n_{2} y^{\prime}+n_{3} z^{\prime}
\end{aligned}
$$

A cylindrical coordinate system (r, θ, z) has the following relationship with the Cartesian (rectangular) coordinates (x, y, z) :

$$
\begin{array}{ll}
x=r \cos \theta, & r=\sqrt{x^{2}+y^{2}} \\
y=r \sin \theta, & \theta=\arctan (y / x) \\
z=z & z=z
\end{array}
$$

A spherical coordinate system (ρ, θ, ϕ) has the following relationship with the Cartesian (rectangular) coordinates (x, y, z) :

$$
\begin{aligned}
x & =\rho \cos \theta \sin \phi \\
y & =\rho \sin \theta \sin \phi \\
z & =\rho \cos \phi \\
\phi & =\arccos \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
\theta & =\arctan \frac{y}{x} \\
\rho^{2} & =x^{2}+y^{2}+z^{2}
\end{aligned}
$$

TABLE I-2 DIFFERENTIATION FORMULAS

$$
a=\text { constant } \neq 0
$$

$$
\begin{aligned}
& \frac{d a}{d x}=0, \quad d a=0, \quad \frac{d(x)}{d x}=1, \quad d(x)=d x \\
& \frac{d}{d x}(u+v-w)= \frac{d u}{d x}+\frac{d v}{d x}-\frac{d w}{d x}, \quad d(u+v-w)=d u+d v-d w \\
& \frac{d}{d x}(a v)= a \frac{d v}{d x}, \quad d(a v)=a d v \\
& \frac{d}{d x}(u v)= u \frac{d v}{d x}+v \frac{d u}{d x}, \quad d(u v)=u d v+v d u \\
& \frac{d}{d x}\left(v^{n}\right)= n v^{n-1} \frac{d v}{d x}, \quad \frac{d}{d x}\left(x^{n}\right)=n x^{n-1}, \quad d\left(v^{n}\right)=n v^{n-1} d v \\
& \frac{d}{d x}\left(\frac{u}{v}\right)= \frac{v(d u / d x)-u(d v / d x)}{v^{2}}, \quad d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}} \\
& \frac{d}{d x}\left(\frac{a}{v}\right)=-\frac{a(d v / d x)}{v^{2}}, \quad d\left(\frac{a}{v}\right)=-\frac{a d v}{v^{2}} \\
& \frac{d y}{d x}= \frac{d y}{d v} \frac{d v}{d x}, \quad \frac{d y}{d x}=\frac{1}{d x / d y}, \quad \frac{d y}{d x}=\frac{d y / d t}{d x / d t} \\
& \frac{d^{n}}{d x^{n}}(u v)= \frac{d^{n} u}{d x^{n}} v+n \frac{d^{n-1} u}{d x^{n-1}} \frac{d v}{d x}+\frac{n(n-1)}{2!} \frac{d^{n-2} u}{d x^{n-2}} \frac{d^{2} v}{d x^{2}} \\
&+\frac{n(n-1)(n-2)}{3!} \frac{d^{n-3} u}{d x^{n-3}} \frac{d^{3} v}{d x^{3}}+\cdots+u \frac{d^{n} v}{d x^{n}} \\
& \frac{d}{d x} \log _{a} u= \frac{1}{\ln a} \frac{1}{u} \frac{d u}{d x}, \quad \frac{d}{d x} \ln u=\frac{1}{u} \frac{d u}{d x} \\
& \frac{d}{d x}\left(a^{u}\right)=(\ln a) a^{u} \frac{d u}{d x}, \quad \frac{d}{d x}\left(e^{u}\right)=e^{u} \frac{d u}{d x} \\
& d \ln \left(v_{1} v_{2} \cdots v_{n}\right)= \frac{d v_{1}}{v_{1}}+\frac{\ln u) \frac{d v}{d x}+v v^{v-1}}{v_{2}}+\cdots+\frac{d v_{n}}{v_{n}} \\
& d x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}(\sin u)=\cos u \frac{d u}{d x}, \quad \frac{d}{d x}(\cos u)=-\sin u \frac{d u}{d x} \\
& \frac{d}{d x}(\tan u)=\sec ^{2} u \frac{d u}{d x}, \quad \frac{d}{d x}(\cot u)=-\csc ^{2} u \frac{d u}{d x} \\
& \frac{d}{d x}(\sec u)=\sec u \tan u \frac{d u}{d x}, \quad \frac{d}{d x}(\csc u)=-\csc u \cot u \frac{d u}{d x} \\
& \frac{d}{d x}(\sinh u)=\cosh u \frac{d u}{d x}, \quad \frac{d}{d x}(\cosh u)=\sinh u \frac{d u}{d x} \\
& \frac{d}{d x}(\tanh u)=\operatorname{sech}^{2} u \frac{d u}{d x}, \quad \frac{d}{d x}(\operatorname{coth} u)=-\operatorname{csch}^{2} u \frac{d u}{d x} \\
& \frac{d}{d x}(\operatorname{sech} u)=-\tanh u \operatorname{sech} u \frac{d u}{d x}, \quad \frac{d}{d x}(\operatorname{csch} u)=-\operatorname{coth} u \operatorname{csch} u \frac{d u}{d x} \\
& \frac{d}{d x}\left(\arcsin \frac{u}{a}\right)=\frac{1}{\sqrt{a^{2}-u^{2}}} \frac{d u}{d x}, \quad \frac{d}{d x}\left(\arccos \frac{u}{a}\right)=-\frac{1}{\sqrt{a^{2}-u^{2}}} \frac{d u}{d x} \\
& \frac{d}{d x}\left(\arctan \frac{u}{a}\right)=\frac{a}{a^{2}+u^{2}} \frac{d u}{d x}, \quad \frac{d}{d x}\left(\operatorname{arccot} \frac{u}{a}\right)=-\frac{a}{a^{2}+u^{2}} \frac{d u}{d x} \\
& \frac{d}{d x}\left(\operatorname{arcsec} \frac{u}{a}\right)=\frac{a}{|u| \sqrt{u^{2}-a^{2}}} \frac{d u}{d x}, \quad \frac{d}{d x}\left(\operatorname{arccsc} \frac{u}{a}\right)=-\frac{a}{|u| \sqrt{u^{2}-a^{2}}} \frac{d u}{d x} \\
& \frac{d}{d x}(\operatorname{arcsinh} u)=\frac{1}{\sqrt{1+u^{2}}} \frac{d u}{d x}, \\
& \frac{d}{d x}(\operatorname{arccosh} u)= \pm \frac{1}{\sqrt{u^{2}-1}} \frac{d u}{d x}, \quad u>1 \\
& \frac{d}{d x}(\operatorname{arctanh} u)=\frac{1}{1-u^{2}} \frac{d u}{d x}, \quad|u|<1 \\
& \frac{d}{d x}(\operatorname{arccoth} u)=\frac{1}{1-u^{2}} \frac{d u}{d x}, \quad|u|>1 \\
& \frac{d}{d x}(\operatorname{arcsech} u)= \pm \frac{1}{u \sqrt{1-u^{2}}} \frac{d u}{d x}, \quad 0<u<1 \\
& \frac{d}{d x}(\operatorname{arccsch} u)=-\frac{1}{|u| \sqrt{1+u^{2}}} \frac{d u}{d x}
\end{aligned}
$$

TABLE I-3 INTEGRAL FORMULAS

$a, b=\mathrm{constants}$

Elementary Forms

$$
\begin{aligned}
& \int a d x=a x \quad \int a f(x) d x=a \int f(x) d x \\
& \int \phi(y) d x=\int \frac{\phi(y)}{y^{\prime}} d y, \quad \text { where } y^{\prime}=\frac{d y}{d x} \\
& \int(u+v) d x=\int u d x+\int v d x, \quad \text { where } u \text { and } v \text { are any functions of } x \\
& \int u d v=u \int d v-\int v d u=u v-\int v d u \\
& \int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x \\
& \int x^{n} d x=\frac{x^{n+1}}{n+1} \quad \text { except when } n=-1 \\
& \int \frac{f^{\prime}(x) d x}{f(x)}=\ln f(x), \quad d f(x)=f^{\prime}(x) d x \\
& \int \frac{d x}{x}=\ln x \\
& \int \frac{f^{\prime}(x) d x}{2 \sqrt{f(x)}}=\sqrt{f(x)}, \quad d f(x)=f^{\prime}(x) d x \\
& \int e^{x} d x=e^{x}, \quad \int e^{a x} d x=e^{a x} / a \\
& \int b^{a x} d x=\frac{b^{a x}}{a \ln b} \quad(b>0) \\
& \int \ln x d x=x \ln x-x, \quad \int a^{x} \ln a d x=a^{x} \quad(a>0) \\
& \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a} \\
& \int \frac{d x}{a^{2}-x^{2}}=\left\{\begin{array}{l}
\frac{1}{a} \tanh ^{-1} \frac{x}{a} \\
\text { or } \\
\frac{1}{2 a} \ln \frac{a+x}{a-x}
\end{array} \quad\left(x^{2}<a^{2}\right)\right.
\end{aligned}
$$

TABLE I-3 (continued) INTEGRAL FORMULAS

$$
\begin{aligned}
& \int \frac{d x}{x^{2}-a^{2}}=\left\{\begin{array}{l}
-\frac{1}{a} \operatorname{coth}^{-1} \frac{x}{a} \\
\text { or } \\
\frac{1}{2 a} \ln \frac{x-a}{x+a} \quad\left(x^{2}>a^{2}\right)
\end{array}\right. \\
& \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{|a|} \quad(a>0) \\
& \int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left(x+\sqrt{x^{2} \pm a^{2}}\right) \\
& \int \frac{d x}{x \sqrt{x^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1} \frac{x}{a}+c \quad(a>0) \\
& \int \frac{d x}{x \sqrt{a^{2} \pm x^{2}}}=-\frac{1}{a} \ln \left(\frac{a+\sqrt{a^{2} \pm x^{2}}}{x}\right)
\end{aligned}
$$

Hyperbolic Functions

$$
\begin{aligned}
\int \sinh x d x & =\cosh x, \quad \int \cosh x d x=\sinh x \\
\int \tanh x d x & =\ln \cosh x, \quad \int \operatorname{coth} x d x=\ln \sinh x \\
\int \operatorname{sech} x d x & =\tan ^{-1}(\sinh x)=2 \tan ^{-1} e^{x} \\
\int \operatorname{csch} x d x & =\ln \tanh \frac{1}{2} x \\
\int \operatorname{sech}^{2} x d x & =\tanh x, \quad \int \operatorname{csch}^{2} x d x=-\operatorname{coth} x \\
\int \operatorname{sech} x \tanh x d x & =-\operatorname{sech} x \\
\int x \sinh x d x & =x \cosh x-\sinh x, \\
\int \sinh ^{-1} x d x & =x \sinh ^{-1} x-\sqrt{1+x^{2}}, \\
\int \cosh ^{-1} x d x & =x \cosh ^{-1} x-\sqrt{x^{2}-1} \\
\int \tanh ^{-1} x d x & =x \tanh ^{-1} x+\frac{1}{2} \ln \left(1-x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int \operatorname{coth}^{-1} x d x=x \operatorname{coth}^{-1} x+\frac{1}{2} \ln \left(x^{2}-1\right) \\
& \int \operatorname{sech}^{-1} x d x=x \operatorname{sech}^{-1} x+\sin ^{-1} x \\
& \int \operatorname{csch}^{-1} x d x=x \operatorname{csch}^{-1} x+\sinh ^{-1} x
\end{aligned}
$$

Trigonometric Functions

$$
\begin{aligned}
\int \sin x d x & =-\cos x \quad \int \cos x d x=\sin x \\
\int \sin ^{2} x d x & =\frac{1}{2} x-\frac{1}{2} \sin x \cos x=\frac{1}{2} x-\frac{1}{4} \sin 2 x \\
\int \cos ^{2} x d x & =\frac{1}{2} x+\frac{1}{2} \sin x \cos x=\frac{1}{2} x+\frac{1}{4} \sin 2 x \\
\int \sin ^{3} x d x & =-\frac{1}{3}\left(\sin ^{2} x+2\right) \cos x \\
\int \cos ^{3} x d x & =\frac{1}{3}\left(\cos ^{2} x+2\right) \sin x \\
\int \sin ^{n} x d x & =-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x \\
\int \cos ^{n} x d x & =\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x \\
\int \sin ^{m} x \cos ^{n} x d x & =\frac{\sin ^{m+1} x}{m+1} \\
\int \sin ^{2} x \cos ^{m} x d x & =-\frac{\cos ^{m+1} x}{m+1} \\
\int \sin ^{2} x \cos ^{2} x d x & =-\frac{1}{8}\left(\frac{1}{4} \sin 4 x-x\right) \\
\int \cos ^{m} x \sin ^{n} x d x & =\frac{\cos ^{m-1} x \sin n+1}{m+n}+\frac{m-1}{m+n} \int \cos ^{m-2} x \sin ^{n} x d x \\
& =-\frac{\sin ^{n-1} x \cos ^{m+1} x}{m+n}+\frac{n-1}{m+n} \int \cos ^{m} x \sin ^{n-2} x d x
\end{aligned}
$$

TABLE I-3 (continued) INTEGRAL FORMULAS

Exponential Functions

$$
\begin{aligned}
& \int e^{a x} d x=\frac{e^{a x}}{a} \quad \int a^{x} d x=\frac{a^{x}}{\ln a} \\
& \int x e^{a x} d x=\frac{e^{a x}}{a^{2}}(a x-1) \\
& \int x^{m} e^{a x} d x=\frac{x^{m} e^{a x}}{a}-\frac{m}{a} \int x^{m-1} e^{a x} d x \\
& \int \frac{e^{a x}}{x^{m}} d x=-\frac{1}{m-1} \frac{e^{a x}}{x^{m-1}}+\frac{a}{m-1} \int \frac{e^{a x}}{x^{m-1}} d x \\
& \int e^{x} \sin x d x=\frac{1}{2} e^{x}(\sin x-\cos x) \\
& \int e^{x} \cos x d x=\frac{1}{2} e^{x}(\sin x+\cos x) \\
& \int e^{a x} \sin b x d x=\frac{e^{a x}(a \sin b x-b \cos b x)}{a^{2}+b^{2}} \\
& \int e^{a x} \cos b x d x=\frac{e^{a x}(b \sin b x+a \cos b x)}{a^{2}+b^{2}} \\
& \int e^{a x} \cos ^{n} x d x=\frac{e^{a x} \cos ^{n-1} x(a \cos x+n \sin x)}{a^{2}+n^{2}}+\frac{n(n-1)}{a^{2}+n^{2}} \int e^{a x} \cos ^{n-2} x d x \\
& \int e^{a x} \sin ^{n} x d x=\frac{e^{a x} \sin ^{n-1} x(a \sin x-n \cos x)}{a^{2}+n^{2}}+\frac{n(n-1)}{a^{2}+n^{2}} \int e^{a x} \sin ^{n-2} x d x \\
& \int e^{x} \\
& \int x=\ln x+x+\frac{x^{2}}{2 \cdot 2!}+\frac{x^{3}}{3 \cdot 3!}+\frac{x^{4}}{4 \cdot 4!}+\cdots
\end{aligned}
$$

Logarithmic Functions

$$
\begin{aligned}
\int \ln x d x & =x \ln x-x \\
\int x^{n} \ln x d x & =x^{n+1}\left[\frac{\ln x}{n+1}-\frac{1}{(n+1)^{2}}\right] \\
\int x^{n}(\ln x)^{m} d x & =\frac{x^{n+1}}{n+1}(\ln x)^{m}-\frac{m}{n+1} \int x^{n}(\ln x)^{m-1} d x \\
\int \frac{(\ln x)^{n}}{x} d x & =\frac{1}{n+1}(\ln x)^{n+1}
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{d x}{x \ln x} & =\ln (\ln x) \\
\int \frac{d x}{x(\ln x)^{n}} & =-\frac{1}{(n-1)(\ln x)^{n-1}} \\
\int \frac{x^{n}}{(\ln x)^{m}} d x & =-\frac{x^{n+1}}{(m-1)(\ln x)^{m-1}}+\frac{n+1}{m-1} \int \frac{x^{n}}{(\ln x)^{m-1}} d x \\
\int e^{a x} \ln x d x & =\frac{e^{a x} \ln x}{a}-\frac{1}{a} \int \frac{e^{a x}}{x} d x
\end{aligned}
$$

Forms Containing $(a+b x)$

$$
\begin{aligned}
\int \frac{d x}{a+b x} & =\frac{1}{b} \ln (a+b x) \\
\int \frac{d x}{(a+b x)^{n}} & =\frac{1}{b(1-n)(a+b x)^{n-1} \quad \text { if } n \neq 1} \\
\int(a+b x)^{n} d x & =\frac{(a+b x)^{n+1}}{b(n+1)} \quad \text { if } n \neq 1 \\
\int \frac{x}{a+b x} d x & =\frac{1}{b^{2}}[a+b x-a \ln (a+b x)] \\
\int \frac{x^{2}}{a+b x} d x & =\frac{1}{b^{3}}\left[\frac{1}{2}(a+b x)^{2}-2 a(a+b x)+a^{2} \ln (a+b x)\right] \\
\int \frac{x}{(a+b x)^{2}} d x & =\frac{1}{b^{2}}\left[\ln (a+b x)+\frac{a}{a+b x}\right] \\
\int \frac{x^{2}}{(a+b x)^{2}} d x & =\frac{1}{b^{3}}\left[a+b x-2 a \ln (a+b x)-\frac{a^{2}}{a+b x}\right]
\end{aligned}
$$

Forms Containing $\left(x^{2}-a^{2}\right)^{1 / 2}$

$$
\begin{aligned}
\int\left(x^{2}-a^{2}\right)^{1 / 2} d x & =\frac{1}{2} x\left(x^{2}-a^{2}\right)^{1 / 2}-\frac{1}{2} a^{2} \ln \left[x+\left(x^{2}-a^{2}\right)^{1 / 2}\right] \\
\int x\left(x^{2}-a^{2}\right)^{1 / 2} d x & =\frac{1}{3}\left(x^{2}-a^{2}\right)^{3 / 2} \\
\int x^{2}\left(x^{2}-a^{2}\right)^{1 / 2} d x & =\frac{x}{8}\left(2 x^{2}-a^{2}\right)\left(x^{2}-a^{2}\right)^{1 / 2}-\frac{a^{4}}{8} \ln \left[x+\left(x^{2}-a^{2}\right)^{1 / 2}\right]
\end{aligned}
$$

TABLE I-3 (continued) INTEGRAL FORMULAS
Forms Containing $(a+b x)^{1 / 2}$

$$
\begin{aligned}
\int(a+b x)^{n / 2} d x & =\frac{2(a+b x)^{(n+2) / 2}}{b(n+2)} \\
\int x(a+b x)^{n / 2} d x & =\frac{2}{b^{2}}\left[\frac{(a+b x)^{(n+4) / 2}}{n+4}-\frac{a(a+b x)^{(n+2) / 2}}{n+2}\right] \\
\int x^{-1}(a+b x)^{n / 2} d x & =b \int(a+b x)^{(n-2) / 2} d x+a \int x^{-1}(a+b x)^{(n-2) / 2} d x
\end{aligned}
$$

Forms Containing $\left(a^{2}+x^{2}\right)^{1 / 2}$

$$
\begin{aligned}
\int\left(a^{2}+x^{2}\right)^{1 / 2} d x & =\frac{1}{2} x\left(a^{2}+x^{2}\right)^{1 / 2}+\frac{1}{2} a^{2} \ln \left[x+\left(a^{2}+x^{2}\right)^{1 / 2}\right] \\
\int x\left(a^{2}+x^{2}\right)^{1 / 2} d x & =\frac{1}{3}\left(a^{2}+x^{2}\right)^{3 / 2} \\
\int x^{2}\left(a^{2}+x^{2}\right)^{1 / 2} d x & =\frac{x}{8}\left(2 x^{2}+a^{2}\right)\left(a^{2}+x^{2}\right)^{1 / 2}-\frac{a^{4}}{8} \ln \left[x+\left(a^{2}+x^{2}\right)^{1 / 2}\right]
\end{aligned}
$$

Forms Containing $\left(a^{2}-x^{2}\right)^{1 / 2}$

$$
\begin{aligned}
\int\left(a^{2}-x^{2}\right)^{1 / 2} d x & =\frac{1}{2} x\left(a^{2}-x^{2}\right)^{1 / 2}+\frac{1}{2} a^{2} \sin ^{-1} \frac{x}{a} \\
\int x\left(a^{2}-x^{2}\right)^{1 / 2} d x & =-\frac{1}{3}\left(a^{2}-x^{2}\right)^{3 / 2} \\
\int x^{2}\left(a^{2}-x^{2}\right)^{1 / 2} d x & =\frac{x}{8}\left(2 x^{2}-a^{2}\right)\left(a^{2}-x^{2}\right)^{1 / 2}+\frac{a^{4}}{8} \sin ^{-1} \frac{x}{a}
\end{aligned}
$$

TABLE I-3 (continued) INTEGRAL FORMULAS
Forms Containing ($a+b x^{n}$)

$$
\begin{aligned}
\int \frac{d x}{a^{2}+x^{2}} & =\frac{1}{a} \tan ^{-1} \frac{x}{a}=\frac{1}{a} \sin ^{-1} \frac{x}{\left(a^{2}+x^{2}\right)^{1 / 2}} \\
\int \frac{d x}{x^{2}-a^{2}} & =\frac{1}{2 a} \ln \frac{x-a}{x+a} \quad \text { if } x^{2}>a^{2} \\
& =\frac{1}{2 a} \ln \frac{a-x}{a+x} \quad \text { if } x^{2}<a^{2} \\
\int \frac{d x}{a+b x^{2}} & =\frac{1}{\sqrt{a b}} \tan ^{-1}\left(x \sqrt{\frac{b}{a}}\right) \quad \text { if } a>0, b>0 \\
& =\frac{1}{2} \frac{1}{\sqrt{-a b}} \ln \frac{\sqrt{a}+x \sqrt{-b}}{\sqrt{a}-x \sqrt{-b}} \quad \text { if } a>0, b<0
\end{aligned}
$$

TABLE I-4 LAPLACE TRANSFORM PAIRS

Function $f(t)$
Laplace Transform $F(s)$
$\delta(t)$ (delta function)
1

1 or unit step function at $t=0$
t or unit ramp at $t=0$
$\frac{t^{n-1}}{(n-1)!} \quad n=1,2, \ldots$
$t^{n}, \quad n=1,2, \ldots$
$e^{-a t}$
$e^{a t}$
$\sin a t$
$\cos a t$
$t e^{a t}$
$\frac{1}{(n-1)!} t^{n-1} e^{-a t} \quad n=1,2, \ldots$
$\cosh a t$
$\sinh a t$
$t \sin a t$
$t \cos a t$
$\frac{1}{a^{2}}(1-\cos a t)$
$\frac{1}{a^{3}}(a t-\sin a t)$
$\frac{1}{2 a^{3}}(\sin a t-a t \cos a t)$
$\frac{1}{\left(1-a^{2}\right)^{1 / 2} \omega} e^{-a \omega t} \sin \left(1-a^{2}\right)^{1 / 2} \omega t$
$e^{-a \omega t}\left[\cos \left(1-a^{2}\right)^{1 / 2} \omega t+\frac{a}{\left(1-a^{2}\right)^{1 / 2}} \sin \left(1-a^{2}\right)^{1 / 2} \omega t\right]$

Structural Members

II. 1 Engineering Beam Theory: Differential Form of Governing Equations 1370
Geometric Relationships 1370
Material Laws 1372
Equations of Equilibrium 1373
Displacement Form of Governing Differential Equations 1374
Mixed Form of Governing Differential Equations 1376
Stress Formulas 1378
II. 2 Sign Convention for Beams 1378
II. 3 Solution of Governing Equations for a Beam Element 1380
First-Order Form of Governing Equations 1381
Two General Analytical Techniques 1383
Solution to First-Order Form of Equations 1384
Laplace Transform 1385
Effect of Applied Loading 1387
II. 4 Principle of Virtual Work: Integral Form of Governing Equations 1389
Virtual Work 1389
Statement of the Principle of Virtual Work 1390
II. 5 Stiffness Matrix 1391
Definition of Stiffness Matrices 1391
Determination of Stiffness Matrices 1393
Approximation-by-Trial Function 1395
Interpolation Functions 1395
Evaluation of Stiffness Matrix Using the Principle of Virtual Work 1397
Properties of Stiffness Matrices 1399
II. 6 Mass Matrices 1400
II. 7 Dynamic Stiffness Matrices 1402
II. 8 Geometric Stiffness Matrices 1402
References 1403

In this and the following appendix we outline structural analysis methodology. Many references, such as [II.1], are available to provide a more thorough background in structural mechanics. We begin with the study of structural members, with primary

geometry, the curvature of the deflection curve is given by

$$
\kappa=\frac{\partial \theta / \partial x}{\left(1+\theta^{2}\right)^{3 / 2}}
$$

or for θ small relative to unity,

$$
\begin{equation*}
\kappa=\frac{\partial \theta}{\partial x} \tag{II.1}
\end{equation*}
$$

where θ is the slope of the deflection curve.
It is assumed that in all cases the beam deforms as though it were undergoing pure bending (a constant moment along the beam). This contention (Bernoulli's or Navier's hypothesis) implies that cross sections of the beam remain plane under bending. This means that for a beam with variable cross-sectional properties or applied loading, it is assumed that a "flat" cross section remains flat as it deforms (Fig. II-1c), as it would for a uniform beam subjected only to a constant moment along the beam. See an elementary strength-of-materials text for a more detailed discussion of beam theory. For this deformation the axial displacement $u(x, z)$ of a point on a cross-sectional plane is (Fig. II-2)

$$
\begin{equation*}
u(x, z)=u_{0}(x)+z \theta(x) \tag{II.2}
\end{equation*}
$$

where u_{0} is the axial displacement of the centroidal x axis. Displacements in the positive coordinate directions are considered to be positive. Rotations (slopes) are positive if their vectors, according to the right-hand rule, lie in the positive coordinate direction. The shear strain $\gamma_{x z}$ is given as

$$
\begin{equation*}
\gamma_{x z}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}=\theta+\frac{\partial w}{\partial x}=\gamma \tag{II.3}
\end{equation*}
$$

For the cross sections to remain plane, it is necessary that this shear strain be zero (i.e., shear deformation effects are neglected). Then

Figure II-2: Element of a beam in bending.

$$
\begin{equation*}
\theta=-\frac{\partial w}{\partial x} \quad \text { or } \quad \kappa=-\frac{\partial^{2} w}{\partial x^{2}} \tag{II.4}
\end{equation*}
$$

This is the desired geometric relation for bending. The component w is the displacement of the beam axis (i.e., the deflection of the centerline of the beam).

Material Laws

The material law of the beam should reflect the assumption that the elongation and contraction of longitudinal fibers are the dominant deformations. It follows that the material should be assumed to be rigid in the z direction. This implies that there will be no contribution to the longitudinal strain ε_{x} by stresses in the z direction. Also, assume that $\sigma_{y}=0$, as the loading is in the $x z$ plane. Then the material law would simply be $\varepsilon_{x}=\sigma_{x} / E$ or $\sigma_{x}=E \varepsilon_{x}$. From Eq. (II.2), $u=u_{0}+z \theta$, so that

$$
\begin{equation*}
\varepsilon_{x}=\frac{\partial u}{\partial x}=\frac{\partial u_{0}}{\partial x}+z \frac{\partial \theta}{\partial x}=\frac{\partial u_{0}}{\partial x}+z \kappa \tag{II.5}
\end{equation*}
$$

The stress resultants or the net internal forces are the axial force P,

$$
\begin{equation*}
P=\int_{A} \sigma_{x} d A=\int_{A} E \varepsilon_{x} d A=\int_{A} E\left(\frac{\partial u_{0}}{\partial x}+z \kappa\right) d A=E A \frac{\partial u_{0}}{\partial x} \tag{II.6a}
\end{equation*}
$$

and the bending moment M,

$$
\begin{equation*}
M=\int_{A} \sigma_{x} z d A=\int_{A} E \varepsilon_{x} z d A=\int_{A} E\left(\frac{\partial u_{0}}{\partial x}+z \kappa\right) z d A=\kappa E \int_{A} z^{2} d A=\kappa E I \tag{II.6b}
\end{equation*}
$$

where I is the moment of inertia about the y axis. The integral $\int z d A$ is zero if z is measured from a centroidal axis of the beam's cross section.

If the shear deformation effects are to be taken into account, the material equation relating the shear strain and the net internal shear force should supplement Eqs. (II.6). Hooke's law for shear takes the form $\tau_{x z}=\tau=G \gamma$. Let $V=\tau_{\text {av }} A$ be the stress force relationship, where V is the shear force and A is the cross-sectional area. Select $\tau_{\mathrm{av}}=k_{s} \tau$, where k_{s} is a dimensionless shear form factor that depends on the cross-sectional shape and τ is the shear stress at the centroid of the cross section. Normally, the structural equations are expressed in terms of the shear correction factor $\alpha_{s}=1 / k_{s}$, where values of a_{s} are given in Table 2-4. Also, it is convenient to define a shear corrected area $A_{s}=k_{s} A=A / \alpha_{s}$. The material relationship becomes

$$
\begin{equation*}
V=G A_{s} \gamma \tag{II.7}
\end{equation*}
$$

Now θ is not the slope of the deflection curve but is an angle of rotation of the beam cross section that is not perpendicular to the beam axis.

Figure II-3: Undeformed beam element on which the conditions of equilibrium are based. Both net internal forces and applied loading shown here are positive.

Equations of Equilibrium

Figure II-3 illustrates a beam element with internal forces. The forces and moments shown in Fig. II-3 are positive, including the applied loads, which are positive if their corresponding vectors lie in positive coordinate directions.

The summation of forces in the vertical direction provides

$$
\begin{equation*}
-V+p_{z} d x+V+\frac{\partial V}{\partial x} d x=0 \quad \text { or } \quad \frac{\partial V}{\partial x}+p_{z}=0 \tag{II.8a}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\frac{\partial P}{\partial x}+p_{x}=0 \tag{II.8b}
\end{equation*}
$$

is the equilibrium relation for the axial (x) direction. Sum moments about the left end of the element,

$$
-M+M+\frac{\partial M}{\partial x} d x-d x\left(V+\frac{\partial V}{\partial x} d x\right)-\frac{1}{2} d x p_{z} d x=0
$$

or

$$
\frac{\partial M}{\partial x}-V-\frac{\partial V}{\partial x} d x-\frac{1}{2} p_{z} d x=0
$$

In the limit as $d x \rightarrow 0,(\partial V / \partial x) d x$ and $\frac{1}{2} p_{z} d x$ approach zero. Then

$$
\begin{equation*}
\frac{\partial M}{\partial x}-V=0 \tag{II.9a}
\end{equation*}
$$

The equilibrium condition of Eq. (II.9a) can also be expressed in stress components as

$$
\begin{equation*}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x z}}{\partial z}=0 \tag{II.9b}
\end{equation*}
$$

Eliminate the shear force V from Eqs. (II.8a) and (II.9a),

$$
\begin{equation*}
\frac{\partial^{2} M}{\partial x^{2}}+p_{z}=0 \tag{II.10}
\end{equation*}
$$

Displacement Form of Governing Differential Equations

The usual beam equations are the Euler-Bernoulli beam, in which the shear deformation has been neglected. Ignore the axial extension relationships and find, from Eqs. (II.1), (II.4), and (II.6b),

$$
\begin{equation*}
M=E I \kappa=E I \frac{\partial \theta}{\partial x}=-E I \frac{\partial^{2} w}{\partial x^{2}} \tag{II.11}
\end{equation*}
$$

Place this relationship in the equilibrium conditions, Eqs. (II.8a) and (II.9a),

$$
\begin{equation*}
V=\frac{\partial M}{\partial x}=-\frac{\partial}{\partial x} E I \frac{\partial^{2} w}{\partial x^{2}} \tag{II.12}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{\partial V}{\partial x}=\frac{\partial^{2}}{\partial x^{2}} E I \frac{\partial^{2} w}{\partial x^{2}}=p_{z} \tag{II.13}
\end{equation*}
$$

The complete set of governing differential equations is then

$$
\begin{gather*}
\frac{\partial^{2}}{\partial x^{2}} E I \frac{\partial^{2} w}{\partial x^{2}}=p_{z} \tag{II.14a}\\
V=-\frac{\partial}{\partial x} E I \frac{\partial^{2} w}{\partial x^{2}} \tag{II.14b}\\
M=-E I \frac{\partial^{2} w}{\partial x^{2}} \tag{II.14c}\\
\theta=-\frac{\partial w}{\partial x} \tag{II.14d}
\end{gather*}
$$

Other effects are readily included. To take mass into account and thereby to include dynamic effects, d'Alembert's principle is useful. Despite being objectionable to some, this principle, which is studied in elementary dynamics courses, permits the mass to be introduced and to be physically interpreted. If the transverse displacement of a beam is given by w, the velocity and acceleration will be

$$
\frac{\partial w}{\partial t}=\dot{w} \quad \text { and } \quad \frac{\partial^{2} w}{\partial t^{2}}=\ddot{w}
$$

The acceleration \ddot{w} produces the d'Alembert force,

$$
p_{z}=-\rho \ddot{w}
$$

where ρ is the mass per unit length along the beam. The minus sign indicates that the inertia force is in the direction opposite to the motion.

The governing equations with dynamics included appear as

$$
\begin{gather*}
\frac{\partial^{2}}{\partial x^{2}} E I \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial}{\partial x} P \frac{\partial w}{\partial x}+k w+\rho \frac{\partial^{2} w}{\partial t^{2}}=p_{z}(x, t) \tag{II.15a}\\
V=-\frac{\partial}{\partial x} E I \frac{\partial^{2} w}{\partial x^{2}}-P \frac{\partial w}{\partial x} \tag{II.15b}\\
M=-E I \frac{\partial^{2} w}{\partial x^{2}} \tag{II.15c}\\
\theta=-\frac{\partial w}{\partial x} \tag{II.15d}
\end{gather*}
$$

Also included here is the effect of a compressive axial force P (force) and a Winkler elastic foundation of modulus k (force per length squared).

Retention of shear deformation terms leads to a more general form of the displacement formulation equations. Substitute the strain-displacement relations of Eqs. (II.1) and (II.3) into the material law relations $V=G A_{s} \gamma$ and $M=$ EIк. Place the resulting force-displacement equations in the conditions of equilibrium to eliminate the force terms

$$
\begin{gather*}
p_{z}=-\frac{\partial}{\partial x}\left[G A_{s}\left(\frac{\partial w}{\partial x}+\theta\right)\right] \tag{II.16a}\\
0=-\frac{\partial}{\partial x}\left(E I \frac{\partial \theta}{\partial x}\right)+G A_{s} \frac{\partial w}{\partial x}+G A_{s} \theta \tag{II.16b}\\
V=G A_{s}\left(\frac{\partial w}{\partial x}+\theta\right) \tag{II.16c}\\
M=E I \frac{\partial \theta}{\partial x} \tag{II.16d}
\end{gather*}
$$

The inertia terms for dynamics is readily included in this relationship.
Even more effects can be included. Define the following, where the units are given in parentheses, with F for force, L for length, T for time, and M for mass:
c External or viscous damping coefficient ($F T / L^{2}, M / T L$)
\bar{c} Moment intensity, applied moment per unit length along beam $(F L / L)$
I_{T} Rotary inertia, transverse or diametrical mass moment of inertia per unit length, $=\rho r_{y}^{2}(M L)$
k Winkler (elastic) foundation modulus (F / L^{2})
k^{*} Rotary foundation modulus ($F L / L$)
M_{T} Thermal moment, $\int_{A} E \alpha T z d A(F L)$
r_{y} Radius of gyration, $r_{y}^{2}=I / A$
T Temperature change (degrees) (i.e., the temperature rise with respect to a reference temperature)
α Coefficient of thermal expansion $(L /(L \cdot$ degree $))$
The more complete governing equations of motion become

$$
\begin{gather*}
p_{z}(x, t)=-\frac{\partial}{\partial x}\left[G A_{s}\left(\frac{\partial w}{\partial x}+\theta\right)\right]+k w+c \frac{\partial w}{\partial t}+\rho \frac{\partial^{2} w}{\partial t^{2}} \tag{II.17a}\\
\bar{c}(x, t)=-\frac{\partial}{\partial x}\left(E I \frac{\partial \theta}{\partial x}\right)+G A_{s} \frac{\partial w}{\partial x}+\left(G A_{s}+k^{*}-P\right) \theta+\frac{\partial}{\partial x} M_{T}+\rho r_{y}^{2} \frac{\partial^{2} \theta}{\partial t^{2}} \tag{II.17b}
\end{gather*}
$$

$$
\begin{gather*}
V=G A_{s}\left(\frac{\partial w}{\partial x}+\theta\right) \tag{II.17c}\\
M=E I \frac{\partial \theta}{\partial x}-M_{T} \tag{II.17d}
\end{gather*}
$$

In addition to bending, this beam, called a Timoshenko beam, includes the effects of shear deformation and rotary inertia. The expressions are reduced to those for a Rayleigh beam (bending, rotary inertia) by setting $1 / G A_{s}=0$, for a shear beam (bending, shear deformation) by setting $\rho r_{y}^{2} \partial^{2} \theta / \partial t^{2}=0$, and for an Euler-Bernoulli beam (bending) by setting $1 / G A_{s}=0$ and $\rho r_{y}^{2} \partial^{2} \theta / \partial t^{2}=0$. Equations (II.17) are appropriate for a beam with a tensile axial force if P is replaced by $-P$. In their present form they apply to beams with a compressive axial force P.

Mixed Form of Governing Differential Equations

A frequently used form of the governing equations is a mixed form involving both forces and displacements. These relations are found in a straightforward fashion by eliminating the strain between strain-displacement and constitutive relationships. For an Euler-Bernoulli beam without inertia effects but including shear deformation, this leads to

$$
\begin{gather*}
\frac{\partial w}{\partial x}=-\theta+\frac{V}{G A_{s}} \tag{II.18a}\\
\frac{\partial \theta}{\partial x}=\frac{M}{E I} \tag{II.18b}
\end{gather*}
$$

Supplement these relationships with equilibrium conditions in the form

$$
\begin{gather*}
\frac{\partial V}{\partial x}=-p_{z} \tag{II.18c}\\
\frac{\partial M}{\partial x}=V \tag{II.18d}
\end{gather*}
$$

where the inertia terms are not included explicitly, or

$$
\begin{equation*}
\frac{\partial \mathbf{z}}{\partial x}=\mathbf{A} \mathbf{z}+\mathbf{P} \tag{II.19a}
\end{equation*}
$$

where

$$
\mathbf{z}=\left[\begin{array}{c}
w \\
\theta \\
V \\
M
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{cccc}
0 & -1 & \frac{1}{G A_{s}} & 0 \\
0 & 0 & 0 & \frac{1}{E I} \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \mathbf{P}=\left[\begin{array}{c}
0 \\
0 \\
-p_{z} \\
0
\end{array}\right]
$$

(II.19b)

Note that these mixed methods governing equations for a beam do not involve derivatives of geometric or material parameters, and all derivatives are of first order. Both of these characteristics contrast to the displacement governing equations (II.14) and (II.15). These characteristics can be advantageous when solving the equations. For example, numerical integration schemes often operate with first-order derivatives only and equations with higher-order derivatives must first be transformed to this form.

If the axial terms are included, Eq. (II.19a) would be defined as

$$
\mathbf{z}=\left[\begin{array}{c}
u_{0} \tag{II.20}\\
w \\
\theta \\
P \\
V \\
M
\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{cccccc}
0 & 0 & 0 & \frac{1}{E A} & 0 & 0 \\
0 & 0 & -1 & 0 & \frac{1}{G A_{s}} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{E I} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right], \quad \mathbf{P}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-p_{x} \\
-p_{z} \\
0
\end{array}\right]
$$

The Timoshenko beam equations in first-order form are

$$
\begin{gather*}
\frac{\partial w}{\partial x}=-\theta+\frac{V}{G A_{s}} \tag{II.21a}\\
\frac{\partial \theta}{\partial x}=\frac{M}{E I}+\frac{M_{T}}{E I} \tag{II.21b}\\
\frac{\partial V}{\partial x}=k w+c \frac{\partial w}{\partial t}+\rho \frac{\partial^{2} w}{\partial t^{2}}-p_{z}(x, t) \tag{II.21c}\\
\frac{\partial M}{\partial x}=V+\left(k^{*}-P\right) \theta+\rho r_{y}^{2} \frac{\partial^{2} \theta}{\partial t^{2}}-\bar{c}(x, t) \tag{II.21d}
\end{gather*}
$$

For harmonic motion (e.g., assume that all forces and displacements vary in time as $\sin \omega t$),

$$
\begin{gather*}
\frac{d w}{d x}=-\theta+\frac{V}{G A_{s}} \tag{II.22a}\\
\frac{d \theta}{d x}=\frac{M}{E I}+\frac{M_{T}}{E I} \tag{II.22b}\\
\frac{d V}{d x}=k w-\rho \omega^{2} w-p_{z}(x) \tag{II.22c}\\
\frac{d M}{d x}=V+\left(k^{*}-P\right) \theta-\rho r_{y}^{2} \omega^{2} \theta-\bar{c}(x) \tag{II.22d}
\end{gather*}
$$

where damping has been ignored. The variables w, θ, V, and M are functions of x only [i.e., $w=w(x), \theta=\theta(x), V=V(x)$, and $M=M(x)$], since it was assumed that the responses are harmonic in time [e.g., $w(x, t)=w(x) \sin \omega t$].

Stress Formulas

The governing equations are solved to provide the state variables w, θ, V, and M along the beam. With the moment M and shear force V known, the normal and shear stresses in the beam can be computed. Substitution of Eqs. (II.6a) and (II.6b) into $\sigma_{x}=E \varepsilon_{x}=E\left(\partial u_{0} / \partial x+z \partial \theta / \partial x\right)$ gives

$$
\begin{equation*}
\sigma_{x}=\frac{P}{A}+\frac{M z}{I} \tag{II.23}
\end{equation*}
$$

To find the shear stress $\tau_{x z}$, substitute $\sigma_{x}=M z / I$ into the conditions of equilibrium. This leads to $-\partial \tau_{x z} / \partial z=V z / I$. For a rectangular cross section of height h, suppose that the shear stresses are distributed uniformly across the width. Integrate $-\partial \tau_{x z} / \partial z=V z / I$ with respect to z from the level $z=z_{1}$ to $z=\frac{1}{2} h$, where z_{1} is the position where $\tau_{x z}$ is to be evaluated and $\frac{1}{2} h$ defines the top (or bottom) surface of the beam. Then

$$
-\left.\tau_{x z}\right|_{z_{1}} ^{h / 2}=\frac{V}{I} \int_{z_{1}}^{h / 2} z d z
$$

For the x direction on the upper or lower surfaces, $\tau_{x z}$ is zero at $z=\frac{1}{2} h$, and hence, for the shear stress $\tau_{x z}$ at z_{1},

$$
\begin{equation*}
\tau_{x z}=\frac{V}{I} \int_{z_{1}}^{h / 2} z d z=\frac{V}{2 I}\left(\frac{h^{2}}{4}-z_{1}^{2}\right) \tag{II.24}
\end{equation*}
$$

II. 2 SIGN CONVENTION FOR BEAMS

Traditionally, two distinct sign conventions are employed: one for analytical formulas and the other for computational solutions. The sign convention of Section II.1, which is frequently employed for formulas and structural members, where the distri-

Figure II-4: Sign convention for a beam element. (a) Sign convention 1: Positive forces, moments, slopes, and displacements are shown. Used for analytical formulas and structural members. (b) Sign convention 2: Forces and moments on both ends of the beam element are positive if they (their vectors) lie in the positive coordinate directions. Positive forces, moments, slopes, and displacements are shown. Positive deflection and slope are the same as for sign convention 1 . Sign convention 2 is convenient to use in the study of network structural systems using matrix methods.
bution of the internal bending moment and shear force are of concern, is illustrated in Fig. II-4a, sign convention 1.

The other sign convention is better suited for use in many matrix analyses of structures. This sign convention, which will be referred to as sign convention 2, is shown in Fig. II-4b. For this second convention, for both ends ($x=a$ and $x=b$) of the beam element, the forces and moments along the positive coordinate directions are considered to be positive. Comparing the ends of the beam elements in Fig. II- $4 a$ and b, the forces of the two sign conventions are related as follows:

Sign Convention	Sign Convention
1	2
V_{b}	V_{b}
M_{b}	M_{b}
P_{b}	P_{b}
V_{a}	$-V_{a}$
M_{a}	$-M_{a}$
P_{a}	$-P_{a}$

Since deflections and slopes remain the same according to both sign conventions, no special displacement transformation is required.

II. 3 SOLUTION OF GOVERNING EQUATIONS FOR A BEAM ELEMENT

We begin the study of the solution of the governing beam equations by employing simple integration for a simple Euler-Bernoulli beam. Integration of Eqs. (II.14) for constant EI leads to (sign convention 1)

$$
\begin{align*}
\int_{0}^{x} \frac{d^{2}}{d x^{2}} E I \frac{d^{2} w}{d x^{2}} d x & =\int_{0}^{x} p_{z}(\tau) d \tau \\
V & =-E I \frac{d^{3} w}{d x^{3}}=-C_{1}-\int_{0}^{x} p_{z}(\tau) d \tau \\
M & =-E I \frac{d^{2} w}{d x^{2}}=-C_{2}-C_{1} x-\iint_{0}^{x} p_{z}(\tau) d \tau \\
\theta & =-\frac{d w}{d x}=-\frac{C_{3}}{E I}-\frac{C_{2} x}{E I}-\frac{C_{1}}{E I} \frac{x^{2}}{2}-\iiint_{0}^{x} \frac{p_{z}(\tau)}{E I} d \tau \\
w & =\frac{C_{4}}{E I}+\frac{C_{3}}{E I} x+\frac{C_{2}}{E I} \frac{x^{2}}{2}+\frac{C_{1}}{E I} \frac{x^{3}}{3!}+\iiint \int_{0}^{x} \frac{p_{z}(\tau)}{E I} d \tau \tag{II.26}
\end{align*}
$$

A more useful form of the solution is obtained by expressing the arbitrary constants of integration C_{1}, C_{2}, C_{3}, and C_{4} in terms of physically meaning constants. We choose to replace C_{1}, C_{2}, C_{3}, and C_{4} by values of the displacements and forces at the left end of the beam element. That is, we wish to reorganize the constants of integration C_{1}, C_{2}, C_{3}, and C_{4} in terms of the variables at a (i.e., $w_{a}, \theta_{a}, V_{a}, M_{a}$). Suppose that $x=0$ corresponds to the left end a of the beam element. Let there be no loading at $x=0$ so that the integrals of p_{z} vanish at $x=0$. From Eq. (II.26) for $x=0$,

$$
\begin{align*}
& w_{a}=w_{x=0}=\frac{C_{4}}{E I}, \quad \theta_{a}=\theta_{x=0}=-\frac{C_{3}}{E I} \tag{II.27}\\
& M_{a}=M_{x=0}=-C_{2}, \quad V_{a}=V_{x=0}=-C_{1}
\end{align*}
$$

Use Eq. (II.27) to replace the constants C_{1}, C_{2}, C_{3}, and C_{4} in Eq. (II.26) by the state variables and set $x=\ell$:

$$
\begin{array}{ll}
w_{b}=w_{a}-\theta_{a} \ell-V_{a} \frac{\ell^{3}}{3!E I}-M_{a} \frac{\ell^{2}}{2 E I}+\iiint \int_{0}^{\ell} \frac{p_{z}(\tau)}{E I} d \tau \\
\theta_{b}= & \theta_{a}+V_{a} \frac{\ell^{2}}{2 E I}+M_{a} \frac{\ell}{E I}-\iiint_{0}^{\ell} \frac{p_{z}(\tau)}{E I} d \tau \\
V_{b}= & -\int_{0}^{\ell} p_{z}(\tau) d \tau \tag{II.28}\\
M_{b}=\quad V_{a} & V_{a} \ell+M_{a} \quad-\iint_{0}^{\ell} p_{z}(\tau) d \tau
\end{array}
$$

In matrix notation this appears as

$$
\begin{equation*}
\mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{a}+\overline{\mathbf{z}}^{i} \tag{II.29}
\end{equation*}
$$

where $\mathbf{z}=\left[\begin{array}{llll}w & \theta & V & M\end{array}\right]^{T}$,

$$
\begin{gather*}
\mathbf{U}^{i}=\mathbf{U}^{i}(\ell)=\left[\begin{array}{cccc}
1 & -\ell & -\frac{\ell^{3}}{6 E I} & -\frac{\ell^{2}}{2 E I} \\
0 & 1 & \frac{\ell^{2}}{2 E I} & \frac{\ell}{E I} \\
0 & 0 & 1 & 0 \\
0 & 0 & \ell & 1
\end{array}\right] \tag{II.30}\\
\overline{\mathbf{z}}^{i}=\left[\begin{array}{c}
\iiint \int_{0}^{\ell} \frac{p_{z}(\tau)}{E I} d \tau \\
\iiint_{0}^{\ell} \frac{p_{z}(\tau)}{E I} d \tau \\
\int_{0}^{\ell} p_{z}(\tau) d \tau \\
\iint_{0}^{\ell} p_{z}(\tau) d \tau
\end{array}\right]=\left[\begin{array}{c}
F_{w} \\
F_{\theta} \\
F_{V} \\
F_{M}
\end{array}\right] \tag{II.31}
\end{gather*}
$$

The matrix \mathbf{U}^{i}, which is sometimes denoted by $\mathbf{U}^{i}(\ell)=\mathbf{U}^{i}(b-a)$, is referred to as a transfer matrix since it "transfers" the variables, w, θ, V, and M from $x=a$ to $x=b$. The vector \mathbf{z} of displacements and forces is called the state vector as these variables fully describe the response, or "state," of the beam.

If the loading is ignored, the transfer matrix appears as

$$
\begin{gather*}
\left.\left[\begin{array}{c}
w \\
\theta \\
V \\
M
\end{array}\right]_{b}=\left[\begin{array}{cc:cc}
1 & -\ell & -\ell^{3} / 6 E I & -\ell^{2} / 2 E I \\
0 & 1 & \ell^{2} / 2 E I & \ell / E I \\
\hdashline 0 & 0 & 1 & 0 \\
0 & 0 & \ell & 1
\end{array}\right]\left[\begin{array}{c}
w \\
\theta \\
\mathbf{z}_{b}
\end{array}\right]\left[\begin{array}{c}
\mathbf{U}^{i}
\end{array}\right] \begin{array}{c}
\mathbf{z}_{\mathbf{a}} \\
M
\end{array}\right]_{a} \tag{II.32}
\end{gather*}
$$

It can be shown that the partitions of this relationship can be identified with the basic relations for a beam:

$$
\mathbf{U}^{i}=\left[\begin{array}{l:l}
\begin{array}{l}
\text { Geometry } \\
\text { (rigid-body }
\end{array} & \text { Material } \tag{II.33}\\
\text { displacements) } & \text { law } \\
\hdashline \begin{array}{l}
\text { (Influence of } \\
\text { springs, foundations, etc.) }
\end{array} & \text { Equilibrium }
\end{array}\right]
$$

First-Order Form of Governing Equations

A typical method of developing transfer matrices, which applies to both simple and difficult problems, is that of integration of first-order equations in the state variables.

Integration of Eqs. (II.19) gives

$$
\begin{equation*}
\mathbf{z}_{b}=\mathbf{U}^{i}\left[\mathbf{z}_{a}+\int_{a}^{b}\left(\mathbf{U}^{i}\right)^{-1} \mathbf{P} d \tau\right]=\mathbf{U}^{i} \mathbf{z}_{a}+\overline{\mathbf{z}}^{i} \tag{II.34}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\mathbf{z}}^{i}=\overline{\mathbf{z}}_{b}^{i}=\mathbf{U}^{i} \int_{0}^{\ell}\left[\mathbf{U}^{i}(\tau)\right]^{-1} \mathbf{P}(\tau) d \tau \tag{II.35}
\end{equation*}
$$

and for a constant coefficient matrix \mathbf{A},

$$
\begin{equation*}
\mathbf{U}^{i}=\mathbf{U}^{i}(b-a)=e^{\mathbf{A}(b-a)} \tag{II.36}
\end{equation*}
$$

with $b-a=\ell$. Substitution of Eq. (II.34) into Eq. (II.19) will verify Eq. (II.34). The exponential representation of the transfer matrix of Eq. (II.36) can be expanded in the series

$$
\begin{equation*}
\mathbf{U}^{i}=e^{\mathbf{A} \ell}=\mathbf{I}+\frac{\mathbf{A} \ell}{1!}+\frac{\mathbf{A}^{2} \ell^{2}}{2!}+\cdots=\sum_{s=0}^{\infty} \frac{\mathbf{A}^{s} \ell^{s}}{s!} \tag{II.37}
\end{equation*}
$$

where \mathbf{I} is the identity matrix, a square matrix with diagonal values of 1 as the only nonzero elements. This expansion lends itself well for numerical calculations for complicated members, as it is often possible to control the error. Analogous to the solution of a first-order scalar differential equation, the loading term would be of the form

$$
\begin{equation*}
\overline{\mathbf{z}}^{i}=e^{\mathbf{A}(b-a)} \int_{a}^{b} e^{-\mathbf{A}(x-a)} \mathbf{P} d x \tag{II.38}
\end{equation*}
$$

Since $\left[\mathbf{U}^{i}(x)\right]^{-1}=e^{-\mathbf{A} x}$, it follows that for constant \mathbf{A},

$$
\begin{equation*}
\left[\mathbf{U}^{i}(x)\right]^{-1}=\mathbf{U}^{i}(-x) \tag{II.39}
\end{equation*}
$$

This relationship can be useful when finding the loading vector $\overline{\mathbf{z}}^{i}$.

Example II. 1 Transfer Matrix for an Euler-Bernoulli Beam For the EulerBernoulli beam (no shear deformation), with the governing equations of Eq. (II.19), the transfer matrix is obtained from Eq. (II.37) using

$$
\mathbf{A}=\left[\begin{array}{rrcc}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 / E I \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
\mathbf{A}^{2} & =\left[\begin{array}{cccc}
0 & 0 & 0 & -1 / E I \\
0 & 0 & 1 / E I & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\mathbf{A}^{3} & =\left[\begin{array}{cccc}
0 & 0 & -1 / E I & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\mathbf{A}^{4}=\mathbf{0}
$$

Several methods for computing transfer matrices are treated in Refs. [II.1] and [II.2]. For example, the solution $e^{\mathbf{A} \ell}$ can be represented as a matrix polynomial using the Cayley-Hamilton theorem (i.e., the minimal polynomial), which requires knowledge of the eigenvalues of \mathbf{A}. The number of terms needed in an expansion of $e^{\mathbf{A} \ell}$ can be reduced by using Padé approximations.

For a nonconstant A, Picard iteration [II.2] and other methods are available. Numerical integration techniques, such as Runge-Kutta, are available to solve differential equations. Since state-space control methods often involve the solution of a system of first-order differential equations, the relevant control theory literature is a fruitful source of information on the calculation of transfer matrices.

Two General Analytical Techniques Two procedures suitable for finding the transfer matrices for general forms of the governing equations of motion are presented here, one based on the Cayley-Hamilton theorem mentioned above and the other on the Laplace transform.

We begin with first-order partial differential equations for the static and dynamic responses of a beam with axial load P, displacement foundation k, and rotary foundation k^{*} [Eqs. (II.22), with $\left.\bar{c}=M_{T}=0\right]$:

$$
\begin{equation*}
\frac{d \mathbf{z}}{d x}=\mathbf{z}^{\prime}=\mathbf{A} \mathbf{z}+\mathbf{P} \tag{II.40a}
\end{equation*}
$$

with

$$
\mathbf{A}=\left[\begin{array}{cccc}
0 & -1 & 1 / G A_{s} & 0 \tag{II.40b}\\
0 & 0 & 0 & 1 / E I \\
k-\rho \omega^{2} & 0 & 0 & 0 \\
0 & k^{*}-P-\rho r_{y}^{2} \omega^{2} & 1 & 0
\end{array}\right], \quad \mathbf{P}=\left[\begin{array}{c}
0 \\
0 \\
-p_{z} \\
0
\end{array}\right]
$$

It follows from Eq. (II.35) that the loading elements $\overline{\mathbf{z}}^{1}$ can be computed if the transfer matrix \mathbf{U}^{i} is available. Thus, it is necessary only to find \mathbf{U}^{i} in order to complete a solution and p_{z} can be set equal to zero in Eq. (II.40).

Solution to First-Order Form of Equations We wish to solve the homogeneous differential equations

$$
\frac{d \mathbf{z}}{d x}=\mathbf{A} \mathbf{z}
$$

The solution can be in the form [Eq. (II.37)]

$$
\mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{a}=e^{\mathbf{A} \ell} \mathbf{z}_{a}
$$

Since a function of a square matrix \mathbf{A} of order n is equal to a polynomial in \mathbf{A} of order $n-1$, the 4×4 matrix \mathbf{A} can be expanded as

$$
\begin{equation*}
e^{\mathbf{A} \ell}=c_{0} \mathbf{I}+c_{1} \mathbf{A} \ell+c_{2}(\mathbf{A} \ell)^{2}+c_{3}(\mathbf{A} \ell)^{3} \tag{II.41a}
\end{equation*}
$$

Because a matrix satisfies its own characteristic equation (the Cayley-Hamilton theorem), \mathbf{A} of Eq. (II.41a) can be replaced by its characteristic values λ_{i}. Then

$$
\begin{equation*}
e^{\lambda_{i} \ell}=c_{0}+c_{1} \lambda_{i} \ell+c_{2}\left(\lambda_{i} \ell\right)^{2}+c_{3}\left(\lambda_{i} \ell\right)^{3}, \quad i=1,2,3,4 \tag{II.41b}
\end{equation*}
$$

are four equations that can be solved for the functions c_{0}, c_{1}, c_{2}, and c_{3}. Place these values into Eq. (II.41a) to obtain the desired transfer matrix.

The characteristic values λ_{i} are found by solving the characteristic equation

$$
\left|\mathbf{I} \lambda_{i}-\mathbf{A}\right|=0
$$

For the A of Eq. (II.40b),

$$
\left|\mathbf{I} \lambda_{i}-\mathbf{A}\right|=\left|\begin{array}{cccc}
\lambda_{i} & 1 & -1 / G A_{s} & 0 \\
0 & \lambda_{i} & 0 & -1 / E I \\
-k+\rho \omega^{2} & 0 & \lambda_{i} & 0 \\
0 & -k^{*}+P+\rho r_{y}^{2} \omega^{2} & 1 & \lambda_{i}
\end{array}\right|=0
$$

This determinant has the roots $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}=\left(\pm n_{1}, \pm i n_{2}\right)$,

$$
n_{1,2}=\left\{\left[\frac{1}{4}(\zeta+\eta)^{2}-\lambda\right]^{1 / 2} \mp \frac{1}{2}(\zeta-\eta)\right\}^{1 / 2}
$$

where

$$
\begin{gathered}
\lambda=\left(k-\rho \omega^{2}\right) / E I, \quad \eta=\left(k-\rho \omega^{2}\right) / G A_{s} \\
\zeta=\left(P-k^{*}+\rho r_{y}^{2} \omega^{2}\right) / E I
\end{gathered}
$$

Substitution of these characteristic values into Eq. (II.41b) gives

$$
\begin{aligned}
e^{n_{1} \ell} & =c_{0}+c_{1} n_{1} \ell+c_{2}\left(n_{1} \ell\right)^{2}+c_{3}\left(n_{1} \ell\right)^{3} \\
e^{-n_{1} \ell} & =c_{0}-c_{1} n_{1} \ell+c_{2}\left(n_{1} \ell\right)^{2}-c_{3}\left(n_{1} \ell\right)^{3} \\
e^{i n_{2} \ell} & =c_{0}+i c_{1} n_{2} \ell-c_{2}\left(n_{2} \ell\right)^{2}-i c_{3}\left(n_{2} \ell\right)^{3} \\
e^{-i n_{2} \ell} & =c_{0}-i c_{1} n_{2} \ell-c_{2}\left(n_{2} \ell\right)^{2}+i c_{3}\left(n_{2} \ell\right)^{3}
\end{aligned}
$$

The constants $c_{0}, c_{1}, c_{2}, c_{3}$ from these four equations are

$$
\begin{aligned}
& c_{0}=\left(n_{2}^{2} \cosh n_{1} \ell+n_{1}^{2} \cos n_{2} \ell\right) /\left(n_{1}^{2}+n_{2}^{2}\right) \\
& c_{1}=\left[\left(n_{2}^{2} / n_{1}\right) \sinh n_{1} \ell+\left(n_{1}^{2} / n_{2}\right) \sin n_{2} \ell\right] /\left[\ell\left(n_{1}^{2}+n_{2}^{2}\right)\right] \\
& c_{2}=\left(\cosh n_{1} \ell-\cos n_{2} \ell\right) /\left[\ell^{2}\left(n_{1}^{2}+n_{2}^{2}\right)\right] \\
& c_{3}=\left[\left(1 / n_{1}\right) \sinh n_{1} \ell-\left(1 / n_{2}\right) \sin n_{2} \ell\right] /\left[\ell^{3}\left(n_{1}^{2}+n_{2}^{2}\right)\right]
\end{aligned}
$$

From Eq. (II.41a), the transfer matrix becomes

$$
\begin{align*}
& \mathbf{U}^{i}=c_{0} \mathbf{I}+c_{1}(\mathbf{A} \ell)+c_{2}(\mathbf{A} \ell)^{2}+c_{3}(\mathbf{A} \ell)^{3} \\
& =\left[\begin{array}{cccc}
c_{0}+\ell^{2} c_{2} \eta & -\ell c_{1}-\ell^{3} c_{3}(n-\zeta) & \left(c_{1} \ell+c_{3} \ell^{3} \eta\right) / k_{s} G A-c_{3} \ell^{3} / E I & -\ell^{2} c_{2} / E I \\
\lambda c_{3} \ell^{3} & c_{0}-\ell^{2} c_{2} \zeta & \ell^{2} c_{2} / E I & \left(\ell c_{1}-c_{3} 3^{3} \zeta\right) / E I \\
\lambda E I\left(\ell c_{1}+\eta \ell^{3} c_{3}\right) & -\lambda E I c_{2} \ell^{2} & c_{0}+c_{2} \ell^{2} \eta & -\ell^{3} c_{3} \lambda \\
\lambda E I c_{2} \ell^{2} & E I\left[-c_{1} \ell \zeta+c_{3} \ell^{3}\left(\zeta^{2}-\lambda\right)\right] & \ell c_{1}+c_{3} \ell^{3}(\eta-\zeta) & c_{0}-c_{2} \ell^{2} \zeta
\end{array}\right] \tag{II.42}
\end{align*}
$$

This transfer matrix is presented in Table 11-22, where the influence of inertia has been included.

Laplace Transform Another viable technique for deriving transfer matrices is to use the Laplace transform. Although this transform can be applied to the first-order equations of Eqs. (II.40), we choose to utilize a single fourth-order equation obtained from the homogeneous form of these equations:

$$
\begin{equation*}
\frac{d^{4} w}{d x^{4}}+(\zeta-\eta) \frac{d^{2} w}{d x^{2}}+(\lambda-\zeta \eta) w=0 \tag{II.43}
\end{equation*}
$$

where

$$
\begin{gathered}
\zeta=\left(P-k^{*}+\rho r_{y}^{2} \omega^{2}\right) / E I, \quad \eta=\left(k-\rho \omega^{2}\right) / G A_{s}, \\
\lambda=\left(k-\rho \omega^{2}\right) /(E I)
\end{gathered}
$$

The Laplace transform of Eq. (II.43) gives

$$
\begin{aligned}
w(s)\left[s^{4}+(\zeta-\eta) s^{2}+(\lambda-\zeta \eta)\right]= & s^{3} w(0)+s^{2} w^{\prime}(0)+s w^{\prime \prime}(0)+w^{\prime \prime \prime}(0) \\
& +(\zeta-\eta) w^{\prime}(0)+(\zeta-\eta) s w(0)
\end{aligned}
$$

where s is the transform variable. The inverse transform is

$$
\begin{aligned}
w(x)= & {\left[e_{1}(x)+(\zeta-\eta) e_{3}(x)\right] w(0)+\left[e_{2}(x)+(\zeta-\eta) e_{4}(x)\right] w^{\prime}(0) } \\
& +e_{3}(x) w^{\prime \prime}(0)+e_{4}(x) w^{\prime \prime \prime}(0)
\end{aligned}
$$

where

$$
\begin{equation*}
e_{i}(x)=L^{-1} \frac{s^{4-i}}{s^{4}(\zeta-\eta) s^{2}+\lambda-\zeta \eta} \tag{II.44a}
\end{equation*}
$$

L^{-1} indicating the inverse Laplace transform. Equation (II.44a) leads to several useful identities:

$$
\begin{array}{rlrl}
e_{i}(x) & =\frac{d}{d x} e_{i+1}(x), & i & =-2,-1,0,1,2,3 \\
e_{i+1}(x) & =\int_{0}^{x} e_{i}(u) d u, & i=4,5,6 \tag{II.44b}
\end{array}
$$

Arrange $w(x)$ and its three derivatives $w^{\prime}=d w / d x, w^{\prime \prime}=d^{2} w / d x^{2}$, and $w^{\prime \prime \prime}=$ $d^{3} w / d x^{3}$ as

$$
\begin{gather*}
{\left[\begin{array}{c}
w(x) \\
w^{\prime}(x) \\
w^{\prime \prime}(x) \\
w^{\prime \prime \prime}(x)
\end{array}\right]} \tag{II.45a}\\
\mathbf{w}(x)
\end{gather*}=\left[\begin{array}{cccc}
e_{1}+(\zeta-\eta) e_{3} & e_{2}+(\zeta-\eta) e_{4} & e_{3} & e_{4} \\
e_{0}+(\zeta-\eta) e_{2} & e_{1}+(\zeta-\eta) e_{3} & e_{2} & e_{3} \\
e_{-1}+(\zeta-\eta) e_{1} & e_{0}+(\zeta-\eta) e_{2} & e_{1} & e_{2} \\
e_{-2}+(\zeta-\eta) e_{0} & e_{-1}+(\zeta-\eta) e_{1} & e_{0} & e_{1}
\end{array}\right]\left[\begin{array}{c}
w(0) \\
w^{\prime}(0) \\
w^{\prime \prime}(0) \\
w^{\prime \prime \prime}(0)
\end{array}\right]
$$

By taking the derivatives $d^{2} w / d x^{2}$ and $d^{3} w / d x^{3}$ of $d w / d x=-\theta+V / G A_{s}$ of Eq. (II.40), form $\mathbf{w}(x)=\mathbf{R z}(x)$, which relates the deflection $w(x)$ and its derivatives to the state variables $\mathbf{z}(x)$. In this equation

$$
\mathbf{R}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{II.45b}\\
0 & -1 & 1 / G A_{s} & 0 \\
\eta & 0 & 0 & -1 / E I \\
0 & \zeta-\eta & -1 / E I+\eta / G A_{s} & 0
\end{array}\right]
$$

The transfer matrix is obtained from $\mathbf{z}(x)=\mathbf{R}^{-1} \mathbf{w}(x)$ and Eq. (II.45a):

$$
\mathbf{z}(x)=\mathbf{R}^{-1} \mathbf{Q}(x) \mathbf{w}(0)=\mathbf{R}^{-1} Q(x) \mathbf{R} \mathbf{z}(0)
$$

or

$$
\begin{equation*}
\mathbf{z}_{b}=\mathbf{R}^{-1} \mathbf{Q}(\ell) \mathbf{R} \mathbf{z}_{a}=\mathbf{U}^{i} \mathbf{z}_{a} \tag{II.46}
\end{equation*}
$$

This procedure readily leads to the general transfer matrix of Table 11-22.

Effect of Applied Loading

The influence of a prescribed loading \mathbf{P} can be incorporated in the response expressions using Eq. (II.35). It is apparent that this effect can be calculated if the transfer matrix for the element is known either analytically or numerically.

Example II. 2 Effect of a Linearly Varying Distributed Load Demonstrate the use of Eq. (II.35) to compute loading functions F_{w}, F_{θ}, F_{V}, and F_{M} for an EulerBernoulli beam segment of constant cross section and length ℓ loaded with a linearly increasing force described by $p_{z}=p_{0} x / \ell$.

Since [Eq. (II.39)] for a beam of constant cross section $\left[\mathbf{U}^{i}(x)\right]^{-1}=\mathbf{U}^{i}(-x)$,

$$
\begin{align*}
& \int_{0}^{\ell}\left(\mathbf{U}^{i}\right)^{-1} \mathbf{P} d x=\int_{0}^{\ell} \mathbf{U}^{i}(-x) \mathbf{P} d x \\
& \quad=\int_{0}^{\ell}\left[\begin{array}{cccc}
1 & x & \frac{x^{3}}{6 E I} & -\frac{x^{2}}{2 E I} \\
0 & 1 & \frac{x^{2}}{2 E I} & \frac{-x}{E I} \\
0 & 0 & 1 & 0 \\
0 & 0 & -x & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
-p_{0} x / \ell \\
0
\end{array}\right] d x=\int_{0}^{\ell} \frac{1}{\ell}\left[\begin{array}{c}
\frac{-p_{0} x^{4}}{6 E I} \\
\frac{-p_{0} x^{3}}{2 E I} \\
-p_{0} x \\
p_{0} x^{2}
\end{array}\right] d x \tag{1}
\end{align*}
$$

From Eq. (II.35) the vector $\overline{\mathbf{z}}^{i}=\left[\begin{array}{llll}F_{w} & F_{\theta} & F_{V} & F_{M}\end{array}\right]^{T}$ is given by

$$
\overline{\mathbf{z}}^{i}=\mathbf{U}^{i}(\ell) \int_{0}^{\ell}\left[\mathbf{U}^{i}(x)\right]^{-1} \mathbf{P} d x=p_{0}\left[\begin{array}{llll}
\frac{\ell^{4}}{120 E I} & -\frac{\ell^{3}}{24 E I} & -\frac{\ell}{2} & -\frac{\ell^{2}}{6} \tag{2}
\end{array}\right]^{T}
$$

which applies for $x=\ell$. For values of x less ℓ,

$$
\overline{\mathbf{z}}^{i}=\mathbf{U}^{i}(x) \int_{0}^{x}\left[\mathbf{U}^{i}(\tau)\right]^{-1} \mathbf{P}(\tau) d \tau=\frac{p_{0}}{\ell}\left[\begin{array}{llll}
\frac{x^{5}}{120 E I} & \frac{-x^{4}}{24 E I} & -\frac{x^{2}}{2} & -\frac{x^{3}}{6} \tag{3}
\end{array}\right]^{T}
$$

With $\mathbf{U}^{i}=e^{\mathbf{A} x}$ the loading vector $\overline{\mathbf{z}}^{i}$ can be written in the series form

$$
\begin{equation*}
\overline{\mathbf{z}}^{i}=\sum_{j=0}^{\infty} \frac{\mathbf{A}^{j} x^{(j+1)}}{(j+k+1)!}(k!) \mathbf{P} \tag{4}
\end{equation*}
$$

where $k=0$ for a uniform load, $k=1$ for a linearly varying load, and so on.

For the case of our linearly varying load,

$$
\begin{equation*}
\overline{\mathbf{z}}^{i}=\left(\frac{\mathbf{I} x}{2}+\frac{\mathbf{A} x^{2}}{3!}+\frac{\mathbf{A}^{2} x^{3}}{4!}+\frac{\mathbf{A}^{3} x^{4}}{5!}\right) \mathbf{P} \tag{5}
\end{equation*}
$$

since $\mathbf{A}^{j}=0$ for $j \geq 4$ and $\mathbf{A}^{0}=\mathbf{I}$, the unit diagonal matrix. At $x=\ell$, this expression leads to (2).

A technique for finding the effect of applied loading, that is particularly useful if the transfer matrix elements are known analytically, will be presented here.

It is useful to define a general notation for a transfer matrix:

$$
\begin{align*}
{\left[\begin{array}{c}
w \\
\theta \\
V \\
M
\end{array}\right]_{b} } & =\left[\begin{array}{cccc}
U_{w w} & U_{w \theta} & U_{w V} & U_{w M} \\
U_{\theta w} & U_{\theta \theta} & U_{\theta V} & U_{\theta M} \\
U_{V w} & U_{V \theta} & U_{V V} & U_{V M} \\
U_{M w} & U_{M \theta} & U_{M V} & U_{M M}
\end{array}\right]\left[\begin{array}{c}
w \\
\theta \\
V \\
M
\end{array}\right]_{a}+\left[\begin{array}{c}
F_{w} \\
F_{\theta} \\
F_{V} \\
F_{M}
\end{array}\right]_{\ell=b-a} \tag{II.47}\\
\mathbf{z}_{b}(\ell) & \mathbf{z}_{a}+\begin{array}{c}
\overline{\mathbf{z}}^{i}
\end{array}
\end{align*}
$$

where $U_{i j}$ represents a transfer matrix element and F_{w}, F_{θ}, F_{V}, and F_{M} are loading functions.

A transfer matrix is such that often the effect of various types of loading can be identified by observation. For example, it is apparent from the first row of Eq. (II.47) that the contribution of a shear force V at $x=a$ to the deflection w at $x=b$ is $V U_{w V}(\ell)$. Quite similar to a shear force at a point is an applied concentrated load. That is, the effect on the deflection at $x=b$ of a downward concentrated force W at $x=a$ would be expressed as $-W U_{w V}(\ell)$ in the case of sign convention 1 . It follows that the contribution of a concentrated force at $x=a$ to the other responses θ, V, and M is similar, so that the loading function vector becomes

$$
\left[\begin{array}{c}
F_{w} \tag{II.48}\\
F_{\theta} \\
F_{V} \\
F_{M}
\end{array}\right]=\left[\begin{array}{c}
-W U_{w V}(\ell) \\
-W U_{\theta V}(\ell) \\
-W U_{V V}(\ell) \\
-W U_{M V}(\ell)
\end{array}\right]
$$

Use of a Duhamel or convolution integral permits distributed applied loads $p_{z}(x)$ to be treated as [II.1, II.2]

$$
\begin{equation*}
F_{j}=\int_{0}^{\ell} p_{z}(x) U_{j V}(\ell-x) d x=-\int_{0}^{\ell} p_{z}(\ell-x) U_{j V}(x) d x \tag{II.49}
\end{equation*}
$$

with $j=w, \theta, V, M$.

Figure II-5: Beam with ramp loading.

Example II. 3 Loading Functions for a Linearly Varying Load Calculate the loading function component F_{w} for the linearly distributed applied load shown in Fig. II-5.

For this distributed load

$$
\begin{equation*}
p_{z}(x)=\frac{p_{0}}{L}(L-x) \tag{1}
\end{equation*}
$$

so that Eq. (II.49), with $\ell=L$, gives

$$
\begin{align*}
F_{w} & =-\int_{0}^{L} p_{z}(x) U_{w V}(L-x) d x \\
& =-\int_{0}^{L} \frac{p_{0}}{L}(L-x)\left[-\frac{(L-x)^{3}}{3!E I}\right] d x=\frac{p_{0} L^{4}}{30 E I} \tag{2}
\end{align*}
$$

II. 4 PRINCIPLE OF VIRTUAL WORK: INTEGRAL FORM OF GOVERNING EQUATIONS

Essential to the development of structural mechanics theory are the variational theorems, the principle of virtual work, and the principle of complementary virtual work. Here we summarize briefly the fundamentals of the principle of virtual work.

Virtual Work

It is useful to define the work done by the loads on a body during a small, admissible change in the displacements. An admissible or possible change is a displacement that varies continuously as a function of the coordinates and does not violate displacement boundary conditions. Although the actual displacements may be large, the change in the displacements must be small. Traditionally, these infinitesimal, admissible changes in displacements have been named virtual displacements. Virtual displacements are designated by δu_{i}, indicating that they correspond to a variation of a function as defined in the calculus of variations.

The definition of virtual work follows directly from the definition of ordinary work, which is the product of a force and the displacement of its point of application in the direction of the force. In the case of beams, the curvature κ is taken as the measure of bending strain and the bending moment M is the corresponding force. Then the internal virtual work (δW_{i}) due to bending of a beam would be

$$
\begin{equation*}
\delta W_{i}=-\int_{x} \delta \kappa M d x \tag{II.50}
\end{equation*}
$$

where $\delta \kappa$ represents the virtual strain and the negative sign is chosen to reflect that the work of the internal moment is the negative of that due to the bending stress. For a beam with no shear deformation considered, the curvature is given by [Eq. (II.4)] $\kappa=-\partial^{2} w / \partial x^{2}$ and the bending moment $M=\kappa E I$ [Eq. (II.6b)]. The internal virtual work would then be

$$
\begin{equation*}
\delta W_{i}=-\int_{x} \delta \kappa M d x=-\int_{x} \delta \kappa E I \kappa d x=-\int_{x}\left(\delta \frac{\partial^{2} w}{\partial x^{2}}\right) E I \frac{\partial^{2} w}{\partial x^{2}} d x \tag{II.51}
\end{equation*}
$$

For a beam segment from $x=a$ to $x=b$, the external virtual work $\left(\delta W_{e}\right)$ would be

$$
\begin{equation*}
\delta W_{e}=\int_{x} \delta w p_{z} d x+[M \delta \theta+V \delta w]_{a}^{b} \tag{II.52a}
\end{equation*}
$$

where δw is the virtual deflection, p_{z} is the applied loading intensity along the beam, and M, V are concentrated moments, shear forces on the ends a, b of the element,

$$
\begin{equation*}
[M \delta \theta+V \delta w]_{a}^{b}=(M \delta \theta)_{b}+(V \delta w)_{b}-(m \delta \theta)_{a}-(V \delta w)_{a} \tag{II.52b}
\end{equation*}
$$

Statement of the Principle of Virtual Work

The principle of virtual work for a solid can be derived from the equations of equilibrium, and vice versa. They are, in a sense, equivalent in that the principle of virtual work is a global (integral) form of the conditions of equilibrium. As shown in textbooks on structural mechanics, an integral form of the equations of equilibrium, with the help of integration by parts (or the divergence theorem if more than one dimension is involved), leads to the relationship

$$
\begin{equation*}
\delta W=\delta W_{i}+\delta W_{e}=0 \tag{II.53}
\end{equation*}
$$

which embodies the principle of virtual work.
The principle can be stated as follows: A deformable system is in equilibrium if the sum of the total external virtual work and the internal virtual work is zero for virtual displacements that satisfy the strain-displacement equations and displacement boundary conditions.

The fundamental unknowns for the principle of virtual work are displacements. Although stresses or forces often appear in equations representing the principle, these
variables should be considered as being expressed as functions of the displacements. Also, the variations are always taken on the displacements in the principle of virtual work. In fact, this principle is also known as the principle of virtual displacements.

In the case of a beam, with δW_{i} and δW_{e} given by Eqs. (II.51) and (II.52), respectively, the principle of virtual work [Eq. (II.53)] takes the form

$$
\begin{align*}
\delta W & =\delta W_{i}+\delta W_{e} \\
& =-\int_{a}^{b}\left(\delta \frac{\partial^{2} w}{\partial x^{2}}\right) E I \frac{\partial^{2} w}{\partial x^{2}} d x+\int_{a}^{b} \delta w p_{z} d x+[M \delta \theta+V \delta w]_{a}^{b}=0 \tag{II.54}
\end{align*}
$$

If dynamic effects are included, then this relationship, supplemented with $p_{z}=$ $-\rho \ddot{w}$, becomes

$$
\begin{align*}
\delta W= & -\int_{a}^{b} \delta w^{\prime \prime} E I w^{\prime \prime} d x+\int_{a}^{b} \delta w p_{z} d x \tag{II.55}\\
& -\int_{a}^{b} \delta w \rho \ddot{w} d x+[M \delta \theta+V \delta w]_{a}^{b}=0
\end{align*}
$$

where $\partial^{2} w / \partial x^{2}=w^{\prime \prime}$ has been employed.

II. 5 STIFFNESS MATRIX

Definition of Stiffness Matrices

For a beam element from $x=a$ to $x=b$, a stiffness matrix provides a relationship between the displacements at a and $b\left(w_{a}, \theta_{a}, w_{b}, \theta_{b}\right)$ to all the forces $\left(V_{a}, M_{a}, V_{b}, M_{b}\right)$. For the i th element, the stiffness matrix \mathbf{k}^{i} is defined as

$$
\begin{equation*}
\mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i} \tag{II.56}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{p}^{i}=\left[\begin{array}{c}
\mathbf{p}_{a} \\
\mathbf{p}_{b}
\end{array}\right]=\left[\begin{array}{c}
V_{a} \\
M_{a} \\
V_{b} \\
M_{b}
\end{array}\right], \quad \mathbf{v}^{i}=\left[\begin{array}{c}
\mathbf{v}_{a} \\
\mathbf{v}_{b}
\end{array}\right]=\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
w_{b} \\
\theta_{b}
\end{array}\right], \\
& \mathbf{k}^{i}=\left[\begin{array}{ll}
\mathbf{k}_{a a} & \mathbf{k}_{a b} \\
\mathbf{k}_{b a} & \mathbf{k}_{b b}
\end{array}\right]=\left[\begin{array}{llll}
k_{11} & k_{12} & k_{13} & k_{14} \\
k_{21} & k_{22} & k_{23} & k_{24} \\
k_{31} & k_{32} & k_{33} & k_{34} \\
k_{41} & k_{42} & k_{43} & k_{44}
\end{array}\right]
\end{aligned}
$$

The stiffness matrix is the most essential ingredient in the analysis of structural systems.

An important technique for finding a stiffness matrix for a structural member is simply to reorganize a transfer matrix to form the stiffness matrix. This is to be expected since both the transfer and stiffness matrices are relationships between the same eight variables $w_{a}, \theta_{a}, w_{b}, \theta_{b}, V_{a}, M_{a}, V_{b}, M_{b}$. Of course, there are numerous other methods for finding the stiffness matrix, some of which will be considered later in this section.

Sometimes, as was done for the transfer matrix, it is useful to include with the stiffness matrix a vector to account for applied loading. Normally, this vector would account for only the loading applied between the ends since end loadings are inserted using the vector \mathbf{p}^{i}. To derive a stiffness matrix with a loading vector appended, begin by writing a transfer matrix in the notation of sign convention 2 .

Consider first the rearrangement of the transfer matrix into a stiffness matrix. Begin by writing the transfer matrix in the partitioned form

$$
\begin{align*}
{\left[\begin{array}{l}
\mathbf{v}_{b} \\
\mathbf{p}_{b}
\end{array}\right] } & =\left[\begin{array}{ll}
\mathbf{U}_{v v} & \mathbf{U}_{v p} \\
\mathbf{U}_{p v} & \mathbf{U}_{p p}
\end{array}\right]\left[\begin{array}{l}
\mathbf{v}_{a} \\
\mathbf{p}_{a}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{F}_{v} \\
\mathbf{F}_{p}
\end{array}\right] \tag{II.57}\\
\mathbf{z}_{b} & =\mathbf{U}^{i} \quad \mathbf{z}_{a}+\overline{\mathbf{z}}^{i}
\end{align*}
$$

where

$$
\mathbf{F}_{v}=\left[\begin{array}{c}
F_{w} \\
F_{\theta}
\end{array}\right], \quad \mathbf{F}_{p}=\left[\begin{array}{c}
F_{V} \\
F_{M}
\end{array}\right]
$$

It is assumed here that sign convention 2 (Fig. II-4b) applies for the forces. From Eq. (II.57),

$$
\mathbf{p}_{b}=\mathbf{U}_{p v} \mathbf{v}_{a}+\mathbf{U}_{p p} \mathbf{p}_{a}+\mathbf{F}_{p}, \quad \mathbf{v}_{b}=\mathbf{U}_{v v} \mathbf{v}_{a}+\mathbf{U}_{v p} \mathbf{p}_{a}+\mathbf{F}_{v}
$$

It follows that

$$
\mathbf{p}_{a}=\mathbf{U}_{v p}^{-1} \mathbf{v}_{b}-\mathbf{U}_{v p}^{-1} \mathbf{U}_{v v} \mathbf{v}_{a}-\mathbf{U}_{v p}^{-1} \mathbf{F}_{v}
$$

and

$$
\begin{align*}
\mathbf{p}_{b} & =\mathbf{U}_{p v} \mathbf{v}_{a}+\mathbf{U}_{p p} \mathbf{p}_{a}+\mathbf{F}_{p} \\
& =\left(\mathbf{U}_{p v}-\mathbf{U}_{p p} \mathbf{U}_{v p}^{-1} \mathbf{U}_{v v}\right) \mathbf{v}_{a}+\mathbf{U}_{p p} \mathbf{U}_{v p}^{-1} \mathbf{v}_{b}+\mathbf{F}_{p}-\mathbf{U}_{p p} \mathbf{U}_{v p}^{-1} \mathbf{F}_{v} \tag{II.58}
\end{align*}
$$

In matrix form,

$$
\left[\begin{array}{l}
\mathbf{p}_{a} \tag{II.59}\\
\mathbf{p}_{b}
\end{array}\right]=\left[\begin{array}{c:c}
-\mathbf{U}_{v p}^{-1} \mathbf{U}_{v v} & \mathbf{U}_{v p}^{-1} \\
\hdashline \mathbf{U}_{p v}-\mathbf{U}_{p p} \mathbf{U}_{v p}^{-1} \mathbf{U}_{v v} & \mathbf{U}_{p p} \mathbf{U}_{v p}^{-1}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{a} \\
\mathbf{v}_{b}
\end{array}\right]+\left[\begin{array}{c}
-\mathbf{U}_{v p}^{-1} \mathbf{F}_{v} \\
\mathbf{F}_{p}-\mathbf{U}_{p p} \mathbf{U}_{v p}^{-1} \mathbf{F}_{v}
\end{array}\right]
$$

For a beam, Eq. (II.58) leads to the stiffness matrix

$$
\begin{align*}
{\left[\begin{array}{c}
V_{a} \\
M_{a} \\
V_{b} \\
M_{b}
\end{array}\right] } & =\left[\begin{array}{cc:cc}
\frac{12 E I}{\ell^{3}} & -\frac{6 E I}{\ell^{2}} & -\frac{12 E I}{\ell^{3}} & -\frac{6 E I}{\ell^{2}} \\
-\frac{6 E I}{\ell^{2}} & \frac{4 E I}{\ell} & \frac{6 E I}{\ell^{2}} & \frac{2 E I}{\ell} \\
\hdashline-\frac{12 E I}{\ell^{3}} & \frac{6 E I}{\ell^{2}} & \frac{12 E I}{\ell^{3}} & \frac{6 E I}{\ell^{2}} \\
-\frac{6 E I}{\ell^{2}} & \frac{2 E I}{\ell} & \frac{6 E I}{\ell^{2}} & \frac{4 E I}{\ell}
\end{array}\right]\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
w_{b} \\
\theta_{b}
\end{array}\right] \tag{II.61}\\
& =\left[\begin{array}{ll}
\mathbf{k}_{a a} & \mathbf{k}_{a b} \\
\mathbf{k}_{b a} & \mathbf{k}_{b b}
\end{array}\right] \mathbf{v}^{i} \\
\mathbf{p}^{i} & =\mathbf{k}^{i} \quad \mathbf{v}^{i}
\end{align*}
$$

It is evident from this relationship that a stiffness element $k_{i j}$ (e.g., $k_{11}=$ $12 E I / \ell^{3}$) is the force developed at coordinate i due to a unit displacement at coordinate j, with all other displacements equal to zero. These "coordinates" are usually called degrees of freedom (DOFs), which are normally defined as the independent coordinates (displacement components) necessary to fully describe the spatial position of a structure.

It is often helpful to scale the stiffness matrix of Eq. (II.61) as

$$
\begin{equation*}
 \tag{II.62}
\end{equation*}
$$

A very general stiffness matrix, including the effect of elastic foundations, inertia, and shear deformation, can now be obtained by inserting the general transfer matrix components of Table 11-22 in Eq. (II.60). This leads to the generalized dynamic stiffness matrix of Table 11-22.

Determination of Stiffness Matrices

In addition to the conversion of a transfer matrix into a stiffness matrix described above, other analysis techniques, such as the use of the unit load method or Castigliano's theorem, will also lead to the stiffness matrix. Many such methods are
described in standard textbooks on structural mechanics. The use of trial functions to derive a stiffness matrix is of special interest.

Before turning to the trial function approach, we will illustrate with a beam the direct evaluation of a stiffness matrix using the governing differential equations. This entails the application of unit displacements (deflection or rotation) at the ends of a beam element.

To compute $k_{i 1}, i=1,2,3,4$, corresponding to the first column of the stiffness matrix, use the configuration of Fig. II-6a. From Eq. (II.60) with $\overline{\mathbf{p}}_{i}=0$, the forces in this model with displacements $w_{a}=1, \theta_{a}=0, w_{b}=0$, and $\theta_{b}=0$ correspond to the stiffness coefficients

$$
k_{11}=V_{a}, \quad k_{21}=M_{a}, \quad k_{31}=V_{b}, \quad k_{41}=M_{b}
$$

The cantilevered beam of Fig. II-6b, which models the prescribed displacements, can be used to find V_{a}, M_{a}, V_{b}, and M_{b} based on the displacement conditions $w_{a}=1$ and $\theta_{1}=0$. For this beam, with sign convention $2, M=-M_{a}-V_{a} x$. Integrate $d^{2} w / d x^{2}=-M / E I$ to find that

$$
\begin{aligned}
\frac{d w}{d x} & =\frac{1}{E I}\left(M_{a} x+V_{a} \frac{x^{2}}{2}\right)+C_{1}=-\theta \\
w & =\frac{1}{E I}\left(M_{a} \frac{x^{2}}{2}+V_{a} \frac{x^{3}}{6}\right)+C_{1} x+C_{2}
\end{aligned}
$$

Use $\theta_{a}=0$ and $w_{b}=0$ to find that $C_{1}=0$ and $C_{2}=-M_{a} \ell^{2} / 2 E I-V_{a} \ell^{3} / 6 E I$. Then impose $\theta_{b}=0$ on the first equation and $w_{a}=1$ on the second, giving

$$
V_{a}=12 E I / \ell^{3}=k_{11}, \quad M_{a}=-6 E I / \ell^{2}=k_{21}
$$

(a)

(b)

Figure II-6: Beam element for computing the first column of the stiffness matrix: (a) configuration for computing $k_{i 1} ;(b)$ equivalent configuration.

From the conditions of equilibrium for the beam of Fig. II- $6 b$, the forces M_{b} and V_{b} can be evaluated:

$$
k_{31}=V_{b}=-V_{a}=-12 E I / \ell^{3}, \quad k_{41}=M_{b}=-V_{a} \ell-M_{a}=-6 E I / \ell^{2}
$$

The second, third, and fourth columns of the stiffness matrix are computed in a similar fashion.

Approximation-by-Trial Function

Interpolation Functions The stiffness matrices considered thus far are "exact" in the sense that the exact solution of the engineering beam theory has been placed in the form of a stiffness matrix. For structural elements other than beams, it is often not possible to establish an exact solution. In these cases a technique involving an assumed or trial series solution is employed to obtain an approximate solution. This is the approach for finding stiffness matrices for the finite-element method.

Assume that the deflection of a beam element can be approximated by the polynomial

$$
\begin{equation*}
w=C_{1}+C_{2} x+C_{3} x^{2}+C_{4} x^{3}+\cdots=\hat{w}_{1}+\hat{w}_{2} x+\hat{w}_{3} x^{2}+\hat{w}_{4} x^{3}+\cdots \tag{II.63a}
\end{equation*}
$$

where $C_{j}=\hat{w}_{j}, j=1,2, \ldots$ are unknown constants. This is a trial function, often referred to as a basis function. Express the first four terms as

$$
w=\left[\begin{array}{llll}
1 & x & x^{2} & x^{3}
\end{array}\right]\left[\begin{array}{c}
\hat{w}_{1} \tag{II.63b}\\
\hat{w}_{2} \\
\hat{w}_{3} \\
\hat{w}_{4}
\end{array}\right]=\mathbf{N}_{u} \hat{\mathbf{w}}=\hat{\mathbf{w}}^{T} \mathbf{N}_{u}^{T}
$$

where

$$
\mathbf{N}_{u}=\left[\begin{array}{llll}
1 & x & x^{2} & x^{3}
\end{array}\right]
$$

Rewrite the series as an interpolation function by expressing it in terms of the unknown displacements at the end of the beam element rather than in terms of the constants \hat{w}_{j}. To accomplish this, transform the vector of unknowns $\hat{\mathbf{w}}_{j}$ into the unknown nodal displacement vector for the i th element:

$$
\mathbf{v}^{i}=\left[\begin{array}{c}
w_{a} \\
\theta_{a}=-w_{a}^{\prime} \\
w_{b} \\
\theta_{b}=-w_{b}^{\prime}
\end{array}\right]
$$

The derivative of w is given by

$$
w^{\prime}=\mathbf{N}_{u}^{\prime} \hat{\mathbf{w}}=\hat{\mathbf{w}}^{T}\left(\mathbf{N}_{u}^{\prime}\right)^{T}
$$

where

$$
\mathbf{N}_{u}^{\prime}=\left[\begin{array}{llll}
0 & 1 & 2 x & 3 x^{2}
\end{array}\right]
$$

Evaluate w and $\theta=-w^{\prime}$ at $x=a$ and $x=b$:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
w_{b} \\
\theta_{b}
\end{array}\right]} & =\left[\begin{array}{c}
w(0) \\
-w^{\prime}(0) \\
w(\ell) \\
-w^{\prime}(\ell)
\end{array}\right]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
1 & \ell & \ell^{2} & \ell^{3} \\
0 & -1 & -2 \ell & -3 \ell^{2}
\end{array}\right]\left[\begin{array}{c}
\hat{w}_{1} \\
\mathbf{v}^{i}
\end{array}\right]=\begin{array}{cc}
{\left[\begin{array}{c}
\mathbf{N}_{u} \\
\hat{w}_{3} \\
\hat{w}_{4}
\end{array}\right]} \\
\hat{\mathbf{w}}
\end{array}
$$

It follows that

$$
\hat{\mathbf{w}}=\hat{\mathbf{N}}_{u}^{-1} \mathbf{v}^{i}=\mathbf{G} \mathbf{v}^{i}
$$

where

$$
\mathbf{G}=\hat{\mathbf{N}}_{u}^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
-3 / \ell^{2} & 2 / \ell & 3 / \ell^{2} & 1 / \ell \\
2 / \ell^{3} & -1 / \ell^{2} & -2 / \ell^{3} & -1 / \ell^{2}
\end{array}\right]
$$

Finally, the desired relationship between w and \mathbf{v}^{i} is

$$
\begin{equation*}
w=\mathbf{N}_{u} \hat{\mathbf{w}}=\mathbf{N}_{u} \mathbf{G} \mathbf{v}^{i}=\mathbf{N} \mathbf{v}^{i} \tag{II.64}
\end{equation*}
$$

where $\mathbf{N}=\mathbf{N}_{u} \mathbf{G}$. This expression is the interpolation form of the assumed series and is usually referred to as a shape function. If the normalized coordinate $\xi=x / \ell$ is introduced, \mathbf{v}^{i} can be redefined as in Eq. (II.62), and

$$
\begin{align*}
w & =\left[\begin{array}{llll}
1 & \xi & \xi^{2} & \xi^{3}
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
-3 & 2 & 3 & 1 \\
2 & -1 & -2 & -1
\end{array}\right]\left[\begin{array}{c}
w_{a} \\
\ell \theta_{a} \\
w_{b} \\
\ell \theta_{b}
\end{array}\right]=\mathbf{N} \mathbf{v}^{i} \tag{II.65a}\\
& \\
& \mathbf{v}_{u}
\end{align*}
$$

or

$$
\begin{align*}
= & \left(1-3 \xi^{2}+2 \xi^{3}\right) w_{a}+\left(-\xi+2 \xi^{2}-\xi^{3}\right) \theta_{a} \ell+\left(3 \xi^{2}-2 \xi^{3}\right) w_{b} \tag{II.65b}\\
& +\left(\xi^{2}-\xi^{3}\right) \theta_{b} \ell
\end{align*}
$$

The quantities in brackets are Hermitian polynomials, which are well-known tabulated functions. The polynomials of Eq. (II.64) or (II.65) can be used with the principle of virtual work to generate stiffness matrices.

Evaluation of Stiffness Matrix Using the Principle of Virtual Work The following procedure is quite general in that it can be used to derive stiffness matrices for any element. If axial, dynamic, and shear deformation effects are not taken into account, the principle of virtual work $\left(\delta W_{i}=-\delta W_{e}\right)$ for a beam appears as in Eq. (II.54):

$$
\begin{equation*}
\int_{a}^{b} \delta w^{\prime \prime} E I w^{\prime \prime} d x=\int_{a}^{b} \delta w p_{z} d x+[M \delta \theta+V \delta w]_{a}^{b} \tag{II.66}
\end{equation*}
$$

where $w^{\prime}=d w / d x$.
To find the element stiffness matrix, substitute the assumed polynomial for w in Eq. (II.66). First find the variational quantities δw and $\delta w^{\prime \prime}$ expressed in terms of the trial series. In Eq. (II.64) \mathbf{G} contains constant elements and \mathbf{N}_{u} is a function of the axial coordinate x. Thus,

$$
\delta w=\delta\left(\mathbf{N} \mathbf{v}^{i}\right)=\mathbf{N} \delta \mathbf{v}^{i}=\delta \mathbf{v}^{i T} \mathbf{N}^{T}
$$

where $\delta \mathbf{v}^{i T}$ are the virtual end displacements, and

$$
\begin{align*}
w^{\prime \prime} & =\mathbf{N}_{u}^{\prime \prime} \mathbf{G} \mathbf{v}^{i}=\mathbf{B}_{u} \mathbf{G} \mathbf{v}^{i}=\mathbf{N}^{\prime \prime} \mathbf{v}^{i}=\mathbf{B} \mathbf{v}^{i} \\
\delta w^{\prime \prime} & =\mathbf{B} \delta \mathbf{v}^{i}=\delta \mathbf{v}^{i T} \mathbf{B}^{T} \tag{II.67}
\end{align*}
$$

with $\mathbf{N}_{u}^{\prime \prime}=\mathbf{B}_{u}=\left[\begin{array}{llll}0 & 0 & 2 & 6 \xi\end{array}\right] / \ell^{2}, \mathbf{B}=\mathbf{B}_{u} \mathbf{G}$, and $\mathbf{B}=\mathbf{N}^{\prime \prime}$.
Substitute these expressions into Eq. (II.66):

$$
\begin{equation*}
\int_{a}^{b} \overbrace{\delta \mathbf{v}^{i T} \mathbf{B}^{T}}^{\delta w^{\prime \prime}} E I \overbrace{\mathbf{B} \mathbf{v}^{i}}^{w^{\prime \prime}} d x=\int_{a}^{b} \overbrace{\delta \mathbf{v}^{i T} \mathbf{N}^{T}}^{\delta w} p_{z} d x+\delta \mathbf{v}^{i T} \mathbf{p}^{i} \tag{II.68}
\end{equation*}
$$

where \mathbf{p}^{i} contains the applied loading M and V at the ends; that is,

$$
\left.\left.\begin{array}{r}
\mathbf{p}^{i}= \\
{\left[\begin{array}{c}
-V_{a} \\
-M_{a} \\
V_{b} \\
M_{b}
\end{array}\right]} \\
\text { Sign }
\end{array}\right]=\begin{array}{c}
V_{a} \\
M_{a} \\
V_{b} \\
M_{b}
\end{array}\right]
$$

Then

$$
\begin{equation*}
\delta \mathbf{v}^{i T}\left(\int_{a}^{b} \mathbf{B}^{T} E I \mathbf{B} d x \mathbf{v}-\int_{a}^{b} \mathbf{N}^{T} p_{z} d x-\mathbf{p}^{i}\right)=0 \tag{II.69}
\end{equation*}
$$

or since \mathbf{G} is not a function of x,

$$
\begin{equation*}
\delta \mathbf{v}^{i T}[\underbrace{\mathbf{G}^{T} \int_{a}^{b} \mathbf{B}_{u}^{T} E I \mathbf{B}_{u} d x \mathbf{G} \mathbf{v}^{i}}_{\mathbf{k}^{i}}-(\underbrace{\mathbf{G}^{T} \int_{a}^{b} \mathbf{N}_{u}^{T} p_{z} d x}_{\mathbf{v}^{i}}+\mathbf{p}^{i})]=0 \tag{II.70}
\end{equation*}
$$

or $\delta \mathbf{v}^{i T}\left(\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i}-\mathbf{p}^{i}\right)=0$, with

$$
\begin{equation*}
\overline{\mathbf{p}}^{i}=\int_{a}^{b} \mathbf{N}^{T} p_{z} d x=\mathbf{G}^{T} \int_{a}^{b} \mathbf{N}_{u}^{T} p_{z} d x=\ell \mathbf{G}^{T} \int_{0}^{1} \mathbf{N}_{u}^{T} p_{z}(\xi) d \xi \tag{II.71}
\end{equation*}
$$

Note that the stiffness matrix is given by

$$
\begin{equation*}
\mathbf{k}^{i}=\mathbf{G}^{T} \int_{a}^{b} \mathbf{B}_{u}^{T} E I \mathbf{B}_{u} d x \mathbf{G}=\int_{a}^{b} \mathbf{B}^{T} E I \mathbf{B} d x \tag{II.72}
\end{equation*}
$$

and for constant $E I$,

$$
\begin{equation*}
\mathbf{k}^{i}=E I \int_{a}^{b} \mathbf{B}^{T} \mathbf{B} d x \tag{II.73}
\end{equation*}
$$

Suppose that there is no applied distributed loading (i.e., $p_{z}=0$). Then $\overline{\mathbf{p}}^{i}=0$, and

$$
\begin{equation*}
\delta \mathbf{v}^{i T}\left(\mathbf{G}^{T} \int_{a}^{b} \mathbf{B}_{u}^{T} E I \mathbf{B}_{u} d x \mathbf{G} \mathbf{v}^{i}-\mathbf{p}^{i}\right)=0 \tag{II.74}
\end{equation*}
$$

Thus, for element i,

$$
\begin{equation*}
\delta \mathbf{v}^{i T}\left(\mathbf{k}^{i} \mathbf{v}^{i}-\mathbf{p}^{i}\right)=0 \quad \text { or } \quad \mathbf{k}^{i} \mathbf{v}^{i}=\mathbf{p}^{i} \tag{II.75}
\end{equation*}
$$

As expected, the principle of virtual work expresses the conditions of equilibrium $\left(\mathbf{k}^{i} \mathbf{v}^{i}=\mathbf{p}^{i}\right)$ between the forces $\mathbf{k}^{i} \mathbf{v}^{i}$ representing the element properties and the load vector \mathbf{p}^{i} representing the applied loads at the ends.

If element i is a portion of a structural system, this relationship represents the contribution of the i th element to the equilibrium of the whole system, expressed as the virtual work of the i th element that is a part of the virtual work of the whole structural system.

The evaluation of the stiffness matrix of Eq. (II.72) is readily carried out. Remember that $\mathbf{v}^{i}=\left[\begin{array}{llll}w_{a} & \ell \theta_{a} & w_{b} & \ell \theta_{b}\end{array}\right]^{T}, \mathbf{p}^{i}=\left[\begin{array}{llll}V_{a} & M_{a} / \ell & V_{b} & M_{b} / \ell\end{array}\right]^{T}$ and use $\mathbf{B}_{u}=\mathbf{N}_{u}^{\prime \prime}$ and $d x=\ell d \xi$. The integral in \mathbf{k}^{i} is integrated over 0 to 1 rather than a to b :

$$
\int_{0}^{1} \mathbf{B}_{u}^{T} E I \mathbf{B}_{u} \ell d \xi=\left[\begin{array}{cc:cc}
0 & 0 & 0 & 0 \tag{II.76}\\
0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 4 & 6 \\
0 & 0 & 6 & 12
\end{array}\right] \frac{E I}{\ell^{3}}
$$

Then \mathbf{k}^{i} of Eq. (II.72) becomes

$$
\mathbf{G}^{T} \int_{0}^{1} \mathbf{B}_{u}^{T} E I \mathbf{B}_{u} \ell d \xi \mathbf{G}=\underbrace{\left[\begin{array}{rr:rr}
12 & -6 & -12 & -6 \tag{II.77}\\
-6 & 4 & 6 & 2 \\
\hdashline-12 & 6 & 12 & 6 \\
-6 & 2 & 6 & 4
\end{array}\right]}_{\mathbf{k}^{i}} \frac{E I}{\ell^{3}}
$$

Observe that the use of the polynomial of Eq. (II.64) to represent w results in an exact [Eq. (II.62)], rather than an approximate, stiffness matrix. Use of a different polynomial can lead to a different stiffness matrix. Stiffness matrices for many elements are not exact.

The loading vector $\overline{\mathbf{p}}^{i}$ is evaluated using Eq. (II.71):

$$
\begin{align*}
\overline{\mathbf{p}}^{i} & =\ell \int_{0}^{1} \mathbf{N}^{T} p_{z}(\xi) d \xi \\
& =\ell \mathbf{G}^{T} \int_{0}^{1} \mathbf{N}_{u}^{T} p_{z}(\xi) d \xi=\ell \int_{0}^{1}\left[\begin{array}{c}
1-3 \xi^{2}+2 \xi^{3} \\
\left(-\xi+2 \xi^{2}-\xi^{3}\right) \ell \\
3 \xi^{2}-2 \xi^{3} \\
\left(\xi^{2}-\xi^{3}\right) \ell
\end{array}\right] p_{z}(\xi) d \xi \tag{II.78}
\end{align*}
$$

If p_{z} is a constant of magnitude p_{0},

$$
\overline{\mathbf{p}}^{i}=-p_{0} \ell\left[\begin{array}{c}
-\frac{1}{2} \tag{II.79}\\
\frac{1}{12} \ell \\
-\frac{1}{2} \\
-\frac{1}{12} \ell
\end{array}\right]
$$

For hydrostatic loading with p_{z} varying linearly from $\xi=0$ to $\xi=1$, where its magnitude is $p_{0}, p_{z}=p_{0} \xi$ and

$$
\overline{\mathbf{p}}^{i}=-\frac{p_{0} \ell}{60}\left[\begin{array}{c}
9 \tag{II.80}\\
-2 \ell \\
21 \\
3 \ell
\end{array}\right]
$$

Properties of Stiffness Matrices

It is not difficult to show that all stiffness matrices have several characteristics in common. Stiffness matrices are symmetric,

$$
\begin{equation*}
k_{i j}=k_{j i} \quad \text { and } \quad \mathbf{k}_{a b}=\mathbf{k}_{b a}^{T} \tag{II.81}
\end{equation*}
$$

Also, the diagonal elements of a stiffness matrix are positive.
A particularly interesting property can be observed by studying the stiffness matrix of Eq. (II.61). The sum of rows 1 and 3 is [$\left.\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]$. Thus, \mathbf{k}^{i} with a value
of zero for its determinant is singular. We say that rows 1 and 3 are linearly dependent, as are several other rows and columns such as columns 1 and 3. The application of the boundary conditions has the effect of rendering the stiffness matrix nonsingular. This is to say that after elimination of rigid-body motion, a stiffness matrix is positive definite.

II. 6 MASS MATRICES

The incorporation of mass in an analysis raises several interesting questions because some mass models lead to inefficient and even ineffective numerical solutions. In the case of a transfer matrix, the mass per length ρ can be retained in its distributed form. This leads to the transfer matrices of Chapter 11 (Table 11-22), in which ρ appears nonlinearly in transcendental expressions. If such transfer matrices are converted [Eq. (II.59)] to stiffness matrices, the results are called dynamic stiffness matrices. In such a case, as can be seen in Table 11-22, the mass continues to appear nonlinearly in transcendental terms. As will be shown in Appendix III, this nonlinear representation of mass, although it constitutes exact modeling, tends to be difficult to handle efficiently in a dynamic analysis.

One technique to avoid having ρ appear in transcendental functions is to employ lumped-mass modeling, in which the mass is considered to act at distinct points only. The mass distributed to each side of a point is considered to be concentrated at the point. The transfer matrix to take into account a lumped mass can be derived from a transfer matrix containing distributed mass ρ by going to the limit as $x \rightarrow 0$ and $\rho x \rightarrow m$, where m is the magnitude of the mass (units of mass). In addition, this point matrix can be found from the conditions of continuity and equilibrium of the mass. Thus, taking only translational motion into account (Fig. II-7), $w_{+}=w_{-}$, $\theta_{+}=\theta_{-}, M_{+}=M_{-}$, and $V_{+}=V_{-}-m \omega^{2} w_{j}$, where ω is the frequency of the mass motion. This leads to the transfer point matrix

$$
\mathbf{U}_{j}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{II.82}\\
0 & 1 & 0 & 0 \\
-m \omega^{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The subscript j indicates that the lumped mass occurs at point j.

Figure II-7: Concentrated mass.

In stiffness matrix form (with ω^{2} factored out) the lumped mass would be the diagonal matrix

$$
\mathbf{m}^{i}=\left[\begin{array}{cccc}
\frac{1}{2} m & 0 & 0 & 0 \tag{II.83}\\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} m & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Another approach for deriving a mass matrix, which is quite common in practice, is based on the principle of virtual work as expressed by Eq. (II.55):

$$
\begin{equation*}
\int_{a}^{b} \delta w^{\prime \prime} E I w^{\prime \prime} d x-\int_{a}^{b} \delta w p_{z} d x+\int_{a}^{b} \delta w \rho \ddot{w} d x-[M \delta \theta+V \delta w]_{a}^{b}=0 \tag{II.84}
\end{equation*}
$$

The third term on the left-hand side, which includes ρ, is of interest here. Recall from Eq. (II.64) that $w=\mathbf{N} \mathbf{v}^{i}$. Then $\ddot{w}=\mathbf{N} \ddot{\mathbf{v}}^{i}$. Since $\delta w=\delta \mathbf{v}^{i T} \mathbf{N}^{T}$, the third integral in Eq. (II.84) becomes

$$
\begin{equation*}
\delta \mathbf{v}^{i T} \int_{a}^{b} \rho \mathbf{N}^{T} \mathbf{N} d x \ddot{\mathbf{v}}^{i} \tag{II.85}
\end{equation*}
$$

The integral

$$
\begin{equation*}
\mathbf{m}^{i}=\int_{a}^{b} \rho \mathbf{N}^{T} \mathbf{N} d x \tag{II.86}
\end{equation*}
$$

defines a mass matrix that can be employed in the dynamic analysis of large systems.
If the same \mathbf{N} is chosen for Eq. (II.86) as is employed to compute the stiffness matrix \mathbf{k}^{i} of Eq. (II.72), the mass matrix \mathbf{m}^{i} is said to be consistent. Substitution of \mathbf{N} in Eq. (II.64) in the integral of Eq. (II.86) gives

$$
\mathbf{m}^{i}=\frac{\rho \ell}{420}\left[\begin{array}{rrrr}
156 & -22 \ell & 54 & 13 \ell \tag{II.87}\\
-22 \ell & 4 \ell^{2} & -13 \ell & -3 \ell^{2} \\
54 & -13 \ell & 156 & 22 \ell \\
13 \ell & -3 \ell^{2} & 22 \ell & 4 \ell^{2}
\end{array}\right]
$$

where it has been assumed that ρ is constant. The corresponding \mathbf{v}^{i} is defined as Eq. (II.61) (i.e., $\mathbf{v}^{i}=\left[\begin{array}{llll}w_{a} & \theta_{a} & w_{b} & \theta_{b}\end{array}\right]^{T}$). Note that this mass matrix contains only simple linear or quadratic expressions in ℓ and that ρ, the mass per length, has been extracted from the matrix. Although this mass matrix is not diagonal, it is symmetric and often leads to a computationally efficient dynamic solution.

A more exact mass matrix can be obtained by using a more exact \mathbf{N} in Eq. (II.85). Such an N can be taken from Table 11-22. Often, this results in ρ appearing inside the mass matrix in transcendental form and results in a less efficient, but more accurate, dynamic analysis.

II. 7 DYNAMIC STIFFNESS MATRICES

As mentioned above, transfer matrices such as those of Eq. (II.42) can contain the mass ρ without any approximations. This is referred to as "exact" mass modeling, which contrasts with the approximate lumped and consistent mass modeling. If such a transfer matrix is converted to a stiffness matrix, the resulting dynamic stiffness matrix $\mathbf{k}_{\mathrm{dyn}}^{i}$ provides exact modeling of the mass.

II. 8 GEOMETRIC STIFFNESS MATRICES

The treatment of the axial force P in a beam analysis is very similar to that of ρ, the mass per length. First, the axial force can be considered as being continuous, leading to the exact transfer and stiffness matrices of Table 11-22. These can be difficult to utilize numerically. Second, the axial force can be lumped at particular locations, providing a computationally attractive diagonal stiffness matrix.

Finally, the principle of virtual work can give a matrix for axial forces that is similar to the matrix of Section II. 7 for mass. If axial force is taken into account explicitly, the principle of virtual work of Eq. (II.54) would appear as

$$
\begin{equation*}
\int_{a}^{b} \delta w^{\prime \prime} E I w^{\prime \prime} d x-\int_{a}^{b} \delta w p_{z} d x-\int_{a}^{b} \delta w^{\prime} P w^{\prime} d x-[M \delta \theta+V \delta w]_{a}^{b}=0 \tag{II.88}
\end{equation*}
$$

where P is in compression. The third integral on the left-hand side leads to the stiffness matrix

$$
\begin{equation*}
\mathbf{k}_{G}^{i}=\int_{a}^{b} \mathbf{N}^{\prime T} \mathbf{N}^{\prime} d x=\mathbf{G}^{T} \int_{a}^{b} \mathbf{N}_{u}^{\prime T} \mathbf{N}_{u}^{\prime} d x \mathbf{G} \tag{II.89}
\end{equation*}
$$

called the geometric, differential, or stress stiffness matrix. As explained in Appendix III, this is a very useful matrix for studies of structural stability.

If the same displacement trial function is employed in forming \mathbf{k}_{G}^{i} that is used in deriving \mathbf{k}^{i}, the geometric stiffness matrix is said to be consistent. If \mathbf{N} of Eq. (II.64) is used,

$$
\mathbf{k}_{G}^{i}=\frac{1}{30 \ell}\left[\begin{array}{cccc}
36 & -3 \ell & -36 & -3 \ell \tag{II.90}\\
-3 \ell & 4 \ell^{2} & 3 \ell & -\ell^{2} \\
-36 & 3 \ell & 36 & 3 \ell \\
-3 \ell & -\ell^{2} & 3 \ell & 4 \ell^{2}
\end{array}\right]
$$

This symmetric matrix is the most commonly used geometric stiffness matrix.
More accurate, but computationally less favorable geometric stiffness matrices can be obtained by utilizing a more accurate \mathbf{N} such as that which can be taken from Table 11-22.

Also, \mathbf{k}^{i} and \mathbf{k}_{G}^{i} need not be based on the same displacement functions. Since only first-order derivatives of w appear in \mathbf{k}_{G}^{i} of Eq. (II.89), whereas second-order derivatives of w appear in the \mathbf{k}^{i} term [the first integral of Eq. (II.88)], a "simpler" displacement function is sometimes employed in forming \mathbf{k}_{G}^{i}.

REFERENCES

II.1. Wunderlich, W., and Pilkey, W. D., Mechanics of Structures: Variational and Computational Methods, 2nd ed., CRC Press, Boca Raton, FL, 2003.
II.2. Pestel, E., and Leckie, F., Matrix Methods in Elastomechanics, McGraw-Hill, New York, 1963.

Structural Systems

III. 1 Transfer Matrix Method 1406
Loading and In-Span Conditions 1408
Introduction of Boundary Conditions 1410
Stability 1417
Free Vibrations 1422
Steady-State Motion 1434
Indeterminate In-Span Conditions 1435
Increase in Number of Unknowns 1436
Progressive Elimination of Unknowns 1437
Numerical Difficulties 1438
Sources of Numerical Difficulties 1438
Corrective Measures 1439
In-Span State Variables as New Unknowns 1439
Use of a Displacement or Force Method 1440
Frontal Solution Procedure 1440
III. 2 General Structural Systems 1440
Coordinate Systems, Definitions, and Degrees of Freedom 1441
Nodal Variables 1442
Element Variables 1443
Coordinate Transformations 1444
III. 3 Displacement Method 1446
Displacement Method Based on the Principle of Virtual Work 1446
Direct Derivation of Global Displacement Equations 1450
System Stiffness Matrix Assembled by Summation 1451
Characteristics of Stiffness Matrices 1451
Incorporation of Boundary Conditions 1452
Reactions and Internal Forces, Stress Resultants, and Stresses 1452
Frames 1453
Element Coordinate Transformations 1453
Structures with Distributed Loads 1460
Special Intermediate Conditions 1466
III. 4 Force Method 1466
III. 5 Stability Based on the Displacement Method 1467
III. 6 Free Vibrations Based on the Displacement Method 1470
Mass Matrix 1471
Eigenvalue Problem 1471
Frequency-Dependent Stiffness and Mass Matrices 1477
III. 7 Transient Responses 1483
References 1485
Tables 1487

A structure will be considered to be composed of structural elements connected at nodes (joints). This structure is analyzed by assembling the characteristics of each element.

The first global analysis procedure to be considered is the transfer matrix method. This method is characterized by progressive matrix multiplications along a line system, resulting in a final matrix of size that does not depend on the number of elements in the structure.

A network structure such as a framework is normally treated using the force or displacement method. Unlike the transfer matrix method, the force and displacement methods lead to final system matrices that increase in size as the number of elements composing the system increases.

The force method (the flexibility, influence coefficient, or compatibility method) is based on the principle of complementary virtual work, which leads to global compatibility conditions and a system flexibility matrix relating redundant forces to applied loadings.

Computer-oriented structural analysis is dominated by the displacement method (the stiffness or equilibrium method). Most of this appendix is concerned with the displacement method, which is based on the principle of virtual work and leads to global equilibrium equations. These relations are solved for the nodal displacements as functions of applied forces. For structural systems the displacement method is normally considered to be simpler to automate than the force method.

Structural mechanics textbooks such as Ref. [II.1] contain detailed developments of the methods of analysis. This appendix provides a description of the most important techniques of structural analysis.

III. 1 TRANSFER MATRIX METHOD

The transfer matrix giving the state variables \mathbf{z} at point b in terms of the state variables at point a of a structure appears as

$$
\begin{equation*}
\mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{a}+\overline{\mathbf{z}}^{i} \tag{III.1}
\end{equation*}
$$

in which the transfer matrix \mathbf{U}^{i} for a beam element for sign convention 1 is given by [Eqs. (II.32)]

$$
\begin{gather*}
{\left[\begin{array}{c}
w \\
\theta \\
V \\
M
\end{array}\right]_{b}}
\end{gather*}=\left[\begin{array}{cccc}
1 & -\ell & -\ell^{3} / 6 E I & -\ell^{2} / 2 E I \tag{III.2}\\
0 & 1 & \ell^{2} / 2 E I & \ell / E I \\
0 & 0 & 1 & 0 \\
0 & 0 & \ell & 1
\end{array}\right]\left[\begin{array}{c}
w \\
\theta \\
V \\
M
\end{array}\right]_{a}+\left[\begin{array}{c}
\mathbf{z}_{b} \\
\mathbf{z}_{a}
\end{array}+\begin{array}{c}
{\left[\begin{array}{c}
F_{w} \\
F_{\theta} \\
F_{V} \\
F_{M}
\end{array}\right]_{\overline{\mathbf{z}}^{i}}^{[}}
\end{array}\right.
$$

Frequently, it is helpful to incorporate the loading terms in the transfer matrix by defining an extended state vector \mathbf{z} and an extended transfer matrix \mathbf{U}^{i} :

$$
\begin{gather*}
{\left[\begin{array}{c}
w \\
\theta \\
V \\
M \\
\hdashline 1
\end{array}\right]_{b}=\left[\begin{array}{cccc:c}
1 & -\ell & -\ell^{3} / 6 E I & -\ell^{2} / 2 E I & F_{w} \\
0 & 1 & \ell^{2} / 2 E I & \ell / E I & F_{\theta} \\
0 & 0 & 1 & 0 & F_{V} \\
0 & 0 & \ell & 1 & F_{M} \\
\hdashline 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
w \\
\theta \\
V \\
M \\
\hdashline 1
\end{array}\right]_{a}} \tag{III.3}\\
\left.\mathbf{z}_{b}=\begin{array}{c}
\mathbf{U}^{i}
\end{array}\right]
\end{gather*}
$$

The system of Fig. III-1 is formed of several beam elements with transfer matrices

$$
\begin{align*}
\mathbf{z}_{b} & =\mathbf{U}^{1} \mathbf{z}_{a} \tag{III.4a}\\
\mathbf{z}_{c} & =\mathbf{U}^{2} \mathbf{z}_{b} \tag{III.4b}\\
\mathbf{z}_{d} & =\mathbf{U}^{3} \mathbf{z}_{c} \tag{III.4c}\\
\mathbf{z}_{e} & =\mathbf{U}^{4} \mathbf{z}_{d} \tag{III.4d}
\end{align*}
$$

where \mathbf{z}_{i} is the state vector at location i. Each transfer matrix is given by Eq. (III.3) using the appropriate $E I, \ell$, and loading functions F_{j}. In Eqs. (III.4a)-(III.4d) the state vectors $\mathbf{z}_{b}, \mathbf{z}_{c}, \mathbf{z}_{d}$, and \mathbf{z}_{e} can be written in terms of the initial state vector \mathbf{z}_{a} by replacing \mathbf{z}_{b} in Eq. (III.4b) by \mathbf{z}_{b} of Eq. (III.4a), \mathbf{z}_{c} of Eq. (III.4c) by \mathbf{z}_{c} of Eq. (III.4b), and so on. Thus,

Figure III-1: System transfer matrix.

$$
\begin{align*}
& \mathbf{z}_{b}=\mathbf{U}^{1} \mathbf{z}_{a} \\
& \mathbf{z}_{c}=\mathbf{U}^{2} \mathbf{z}_{b}=\mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a} \tag{III.5}\\
& \mathbf{z}_{d}=\mathbf{U}^{3} \mathbf{z}_{c}=\mathbf{U}^{3} \mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a} \\
& \mathbf{z}_{e}=\mathbf{U}^{4} \mathbf{z}_{d}=\mathbf{U}^{4} \mathbf{U}^{3} \mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a}
\end{align*}
$$

It has been shown here that the state vector at any point along the beam is obtained by progressive multiplication of the transfer matrices for the elements from left to right up to that point. That is, at any point j,

$$
\begin{equation*}
\mathbf{z}_{j}=\mathbf{U}^{j} \mathbf{U}^{j-1} \cdots \mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a} \tag{III.6}
\end{equation*}
$$

For a system with a total of M elements,

$$
\begin{equation*}
\mathbf{z}_{x=L}=\mathbf{z}_{L}=\mathbf{U}^{M} \mathbf{U}^{M-1} \cdots \mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a}=\mathbf{U} \mathbf{z}_{a} \tag{III.7}
\end{equation*}
$$

where \mathbf{z}_{L} is the state vector at the right end and \mathbf{U} is the global, or overall, transfer matrix extending from the left to the right end of the system.

Two "sweeps" along the structure are needed to complete a transfer matrix solution. First the overall, or global, transfer matrix \mathbf{U} of Eq. (III.7) is established, normally using a computer program that calls up stored transfer matrices and performs the matrix multiplications of Eq. (III.7). For a beam the four boundary conditions are applied to Eq. (III.7), leading to equations for the four unknown state variables w_{a}, θ_{a}, V_{a}, and M_{a}. Thus, \mathbf{z}_{a} becomes known. Now, a second sweep along the system using Eq. (III.6) permits the responses w, θ, V, and M to be calculated and printed out along the beam. Between stations the responses are calculated by adjusting the x coordinate (ℓ) in the transfer matrix for that element. A later section introduces some techniques that provide greater computational economy in developing a complete transfer matrix solution.

The transfer matrix procedure is characterized by simplicity and systemization. It involves system matrices of dimension the same as that of the element matrices. It is a mixed method in that both force and displacement responses are computed simultaneously as the calculations proceed. The primary disadvantage of the transfer matrix method is that it is numerically sensitive, particularly when the boundaries are far enough apart to have little influence on each other. It is apparent that the transfer matrix method applies only to structural systems possessing a chainlike topology.

Loading and In-Span Conditions

The incorporation in the transfer matrix solution of the effects of such occurrences as springs, lumped masses, and supports requires special consideration. Formulas for the calculation of the loading functions for distributed applied loading were developed in Appendix II. The introduction of concentrated applied loadings will be treated here. One case, lumped masses, was considered in Appendix II.

Figure III-2: Beam segment showing M and V to each side of j for sign convention 1.

Suppose that a concentrated transverse force W is applied at point (node) j. Consider the short segment spanning j shown in Fig. III-2. The deflection w and slope θ will be continuous across j so that $w_{+}=w_{-}, \theta_{+}=\theta_{-}$. For an infinitesimally short element a summation of moments about j shows that the bending moment is also continuous, giving $M_{+}=M_{-}$. However, the condition of equilibrium for the vertical forces gives $V_{-}-W-V_{+}=0$ or $V_{+}=V_{-}-W$, which shows that the shear force changes by a magnitude W in moving across the load. In summary,

$$
\begin{align*}
{\left[\begin{array}{c}
w \\
\theta \\
V \\
M
\end{array}\right]_{j}^{+} } & =\left[\begin{array}{c}
w \\
\theta \\
V \\
M
\end{array}\right]_{j}^{-}+\left[\begin{array}{c}
0 \\
0 \\
-W \\
0
\end{array}\right]_{j} \tag{III.8a}\\
\mathbf{z}_{j}^{+} & =\mathbf{z}_{j}^{-}
\end{align*}
$$

or in a transfer matrix form,

Such a transfer matrix is referred to as a point matrix, while the transfer matrix for an element with distributed properties is called a field matrix.

Example III. 1 Spring The point matrix for an extension spring is rather simple to derive. The force in the spring of Fig. III-3 is proportional to the beam deflection w at j (i.e., the force is $k w_{j}$). Utilize the point matrix of Eq. (III.8) with $W=-k w_{j}$,

Figure III-3: Beam with spring.

Figure III-4: Point occurrences.
where the minus sign indicates that the force due to the spring is upward while W of Fig. III-2 is in the downward direction. The point matrix for the spring is given by

$$
\begin{align*}
{\left[\begin{array}{c}
w \\
\theta \\
V \\
M \\
1
\end{array}\right]_{j}^{+} } & =\left[\begin{array}{llllc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & k w_{j} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
w \\
\theta \\
V \\
M \\
1
\end{array}\right]_{j}^{-} \\
& =\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
k & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
w \\
\theta \\
V \\
M \\
1
\end{array}\right]_{j}^{-} \tag{1}
\end{align*}
$$

Point and field matrices are incorporated in the same manner in the progressive matrix multiplications of a transfer matrix solution. For the beam of Fig. III-4, for example, the state variable \mathbf{z}_{e} is given by

$$
\mathbf{z}_{x=L}=\mathbf{z}_{e}=\mathbf{U}^{4} \mathbf{U}_{d} \mathbf{U}^{3} \mathbf{U}^{2} \mathbf{U}_{b} \mathbf{U}^{1} \mathbf{z}_{a}
$$

Introduction of Boundary Conditions

Formulas for transfer matrices are provided throughout this book. Transfer matrix notation is summarized in Table III-1. A solution for a static problem begins with the modeling of the structural system in terms of elements that connect locations of point occurrences such as applied concentrated forces or jumps in cross-sectional area. Determine the section properties such as the element moments of inertia and calculate the field matrix for each element as well as the point matrices for the concentrated occurrences. Then form the global transfer matrix by multiplying progressively the transfer matrices from the left end to the right end of the system. Thus, for a system
with M elements, calculate \mathbf{U} of

$$
\begin{equation*}
\mathbf{z}_{x=L}=\mathbf{z}_{L}=\mathbf{U}^{M} \mathbf{U}^{M-1} \cdots \mathbf{U}_{k} \cdots \mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a}=\mathbf{U} \mathbf{z}_{a} \tag{III.9a}
\end{equation*}
$$

From this relationship evaluate the initial variables w_{a}, θ_{a}, V_{a}, and M_{a} of

$$
\mathbf{z}_{a}=\left[\begin{array}{c}
w \\
\theta \\
V \\
M \\
1
\end{array}\right]_{a}
$$

by applying the boundary conditions to Eq. (III.9a). In implementing this, eliminate the unnecessary rows and columns of Eq. (III.9a) and solve the remaining equations. The solution is completed by calculating the deflection, slope, shear force, and internal moment of all points of interest using

$$
\begin{equation*}
\mathbf{z}_{j}=\mathbf{U}^{\mathbf{j}} \mathbf{U}^{j-1} \cdots \mathbf{U}_{k} \cdots \mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a} \tag{III.9b}
\end{equation*}
$$

The responses can be computed between the ends of the elements by adjusting the x coordinate (ℓ) in the transfer matrix for that element.

The transfer matrix method is described in many texts, such as Refs. [III.1][III.3]. Techniques for improving the computational efficiency and the numerical stability of transfer matrix solutions are considered in the following sections.

Example III. 2 Beam with Linearly Varying Loading Since beam solutions are exact, the uniform beam of Fig. III-5 can be modeled with one element. We choose, however, to consider the beam as being modeled with two elements.

From Table 11-19, with shear deformation ignored, the transfer matrices for each element are

$$
\begin{gather*}
\mathbf{U}^{1}=\left[\begin{array}{cccc:c}
1 & -\ell & -\ell^{3} / 6 E I & -\ell^{2} / 2 E I & \left(4 p_{0}+\frac{1}{2} p_{0}\right) \ell^{4} / 120 E I \\
0 & 1 & \ell^{2} / 2 E I & \ell / E I & -\left(3 p_{0}+\frac{1}{2} p_{0}\right) \ell^{3} / 24 E I \\
0 & 0 & 1 & 0 & -\frac{1}{2}\left(p_{0}+\frac{1}{2} p_{0}\right) \ell \\
0 & 0 & \ell & 1 & -\frac{1}{6}\left(2 p_{0}+\frac{1}{2} p_{0}\right) \ell^{2} \\
\hdashline 0 & 0 & 0 & 0 & 1
\end{array}\right]_{\ell=\ell_{1}} \tag{1}\\
\mathbf{U}^{2}=\left[\begin{array}{cccc:c}
1 & -\ell & -\ell^{3} / 6 E I & -\ell^{2} / 2 E I & p_{0} \ell^{4} / 60 E I \\
0 & 1 & \ell^{2} / 2 E I & \ell / E I & -p_{0} \ell^{3} / 16 E I \\
0 & 0 & 1 & 0 & -\frac{1}{4} p_{0} \ell \\
0 & 0 & \ell & 1 & -\frac{1}{6} p_{0} \ell^{2} \\
\hdashline 0 & 0 & 0 & 0 & 1
\end{array}\right]_{\ell=\ell_{2}} \tag{2}
\end{gather*}
$$

The overall transfer matrix \mathbf{U} is calculated as

$$
\begin{equation*}
\mathbf{z}_{x=L}=\mathbf{z}_{c}=\mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a}=\mathbf{U} \mathbf{z}_{a} \tag{3}
\end{equation*}
$$

Figure III-5: Beam with linearly varying loading.

The vector \mathbf{z}_{a} of initial values is evaluated by applying the boundary conditions to (3). For beams, two of the four initial responses w_{a}, θ_{a}, V_{a}, and M_{a} are determined by observation. Thus, for the beam of Fig. III-5, it is evident that $w_{a}=0$ and $\theta_{a}=0$ since the left end is fixed. At the other end, which is simply supported, the conditions are $w_{x=L}=0$ and $M_{x=L}=0$. These conditions are applied to (3):

$$
\begin{gather*}
{\left[\begin{array}{c}
w=0 \\
\theta \\
V \\
M=0 \\
1
\end{array}\right]_{x=L}=\left[\begin{array}{c:ccc}
& U_{v W} & U_{v M} & F_{w} \\
\hdashline \mathbf{z}_{x=L} & =\left[\begin{array}{cccc}
\\
\hdashline & 0 & 0 & 1
\end{array}\right]_{x=L}\left[\begin{array}{c}
w=0 \\
\theta=0 \\
V \\
M \\
1
\end{array}\right]_{x=0}
\end{array} \mathbf{z}_{a}\right.} \tag{4}
\end{gather*}
$$

Cancel columns Ignore rows 2 and 3 1 and 2 since since $\theta_{x=L}$ and $V_{x=L}$ $w_{0}=\theta_{0}=0 \quad$ are unknown
where

$$
\begin{equation*}
\nabla=\left.\left(U_{w V} U_{M M}-U_{w M} U_{M V}\right)\right|_{x=L}=\bar{U}_{w V} \bar{U}_{M M}-\bar{U}_{w M} \bar{U}_{M V} \tag{8}
\end{equation*}
$$

The vector \mathbf{z}_{a} is fully determined now, since $w_{a}=0, \theta_{a}=0$, and M_{a}, V_{a} are given by (7). The variables w, θ, V, and M can be computed using Eq. (III.6) and can be printed out at selected locations. For example, the responses at nodes b and c are

$$
\begin{equation*}
\mathbf{z}_{b}=\mathbf{z}_{x=\ell_{1}}=\mathbf{U}^{1} \mathbf{z}_{a}, \quad \mathbf{z}_{c}=\mathbf{z}_{x=L}=\mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a}=\mathbf{U} \mathbf{z}_{a} \tag{9}
\end{equation*}
$$

Between the ends of elements, responses are computed by adjusting the coordinate in the appropriate transfer matrix. For example, if the responses are desired at the midpoint of the second element,

$$
\begin{equation*}
\mathbf{z}_{x=\ell_{1}+\frac{1}{2} \ell_{2}}=\mathbf{U}^{2}\left(\frac{1}{2} \ell_{2}\right) \mathbf{U}^{1}\left(\ell_{1}\right) \mathbf{z}_{a} \tag{10}
\end{equation*}
$$

Example III. 3 Beam on Flexible Supports The beam of Fig. III-6b is a freefree beam model with 10 extension springs and one concentrated force of the beam of Fig. III-6a.

(a)

$k_{a}=1.00775 \times 10^{6} \mathrm{lb} / \mathrm{in}$.
$k_{b}=k_{c}=k_{d}=2.706122 \times 10^{5} \mathrm{lb} / \mathrm{in}$.
$k_{e}=1.84408 \times 10^{6} \mathrm{lb} / \mathrm{in}$.
$I_{\text {average }}=1329$ in. ${ }^{4}$
(b)

Figure III-6: Beam on flexible supports: (a) half of a beam; (b) model of the beam in (a).

In transfer matrix form the response at the right end is given by

$$
\begin{equation*}
\mathbf{z}_{x=L}=\mathbf{U}_{k} \mathbf{U}^{10} \mathbf{U}_{j} \mathbf{U}^{9} \cdots \mathbf{U}^{6} \mathbf{U}_{f} \mathbf{U}^{5} \cdots \mathbf{U}^{2} \mathbf{U}_{b} \mathbf{U}^{1} \mathbf{U}_{a} \mathbf{z}_{x=0}=\mathbf{U} \mathbf{z}_{0} \tag{1}
\end{equation*}
$$

The transfer matrices are given by

$$
\begin{align*}
& \mathbf{U}^{i}=\left[\begin{array}{ccccc}
1 & -\ell & -\ell^{3} / 6 E I & -\ell^{2} / 2 E I & 0 \\
0 & 1 & \ell^{2} / 2 E I & \ell / E I & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & \ell & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad i=1,2, \ldots, 9,10 \tag{2}\\
& \mathbf{U}_{i}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
k_{i} & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad i=a, b, c, d, e, g, \ldots, k \quad \text { (Table 11-19) } \tag{3}\\
& \mathbf{U}_{f}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -W \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { (Table 11-21) } \\
& \text { (Table 11) }
\end{align*}
$$

The ends of the beam are free. Thus, the boundary conditions are $M_{x=0}=V_{x=0}=$ $M_{x=L}=V_{x=L}=0$. These are applied to (1), $\mathbf{z}_{x=L}=\mathbf{U} \mathbf{z}_{x=0}$, where matrices with an overbar are evaluated at $x=L$,

$$
\left[\begin{array}{c}
w \tag{5}\\
\theta \\
V=0 \\
M=0 \\
1
\end{array}\right]_{x=L}=\left[\begin{array}{cc:c:c}
\\
\hdashline \bar{U}_{V w} & \bar{U}_{V \theta} & \bar{F}_{w} \\
\bar{U}_{M w} & \bar{U}_{M \theta} & \bar{F}_{V} \\
0 & 0 & \bar{F}_{M} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
w \\
\theta \\
V=0 \\
M=0 \\
1
\end{array}\right]_{x=0}
$$

Cancel columns 3 and 4 because $V_{0}=M_{0}=0$
Ignore rows 1 and 2 because $w_{x=L}, \theta_{x=L}$ are unknown
where $U_{k j}$ and F_{k} are the elements of \mathbf{U} of (1), and $\bar{U}_{k j}=\left.U_{k j}\right|_{x=L}$ and $\bar{F}_{k}=\left.F_{k}\right|_{x=L}$. The equations $M_{x=L}=0$ and $V_{x=L}=0$ are used to compute the unknown initial parameters w_{0}, θ_{0}. Thus, from (5),

$$
V_{x=L}=0=w_{0} \bar{U}_{V w}+\theta_{0} \bar{U}_{V \theta}+\bar{F}_{V}, \quad M_{x=L}=0=w_{0} \bar{U}_{M w}+\theta_{0} \bar{U}_{M \theta}+\bar{F}_{M}
$$

so that

$$
\begin{align*}
w_{0} & =\left(-\bar{F}_{V} \bar{U}_{M \theta}+\bar{F}_{M} \bar{U}_{V \theta}\right) / \nabla, \quad \theta_{0}=\left(-\bar{F}_{M} \bar{U}_{V w}+\bar{F}_{V} \bar{U}_{M w}\right) / \nabla \tag{6}\\
\nabla & =\bar{U}_{V w} \bar{U}_{M \theta}-\bar{U}_{V \theta} \bar{U}_{M w}
\end{align*}
$$

Now that \mathbf{z}_{0} (i.e., w_{0}, θ_{0}, V_{0}, and M_{0}) is known, the state vector can be printed out along the beam; for example,

$$
\begin{equation*}
\mathbf{z}_{x=a_{2}}=\mathbf{U}^{1} \mathbf{U}_{a} \mathbf{z}_{0}, \quad \mathbf{z}_{x=a_{3}}=\mathbf{U}^{2} \mathbf{U}_{b} \mathbf{U}^{1} \mathbf{U}_{a} \mathbf{z}_{0} \tag{7}
\end{equation*}
$$

The reactions at the springs are found by monitoring the change in shear force across the springs or by forming the product of the beam deflections at the springs and the spring constants. The reactions are computed to be

$$
\begin{gather*}
R_{a}=34,230 \mathrm{lb}, \quad R_{b}=19,180 \mathrm{lb}, \quad R_{c}=27,560 \mathrm{lb} \\
R_{d}=36,330 \mathrm{lb}, \quad R_{e}=281,800 \mathrm{lb} \tag{8}
\end{gather*}
$$

The approach above permits the inclusion of a variable moment of inertia along the beam axis.

Example III. 4 Thermal Stress Analysis Suppose that a beam of rectangular cross section with the left end fixed and right end simply supported (Fig. III-7) is subjected to a change in temperature,

$$
\begin{equation*}
T=T(z)=T_{0} \frac{z}{h} \tag{1}
\end{equation*}
$$

where T_{0} is a known constant. The reaction R_{L} of Fig. III- 7 is produced by the temperature change imposed on the beam. Find the displacements and bending stresses due to this thermal loading. The thermal moment is given by

$$
\begin{equation*}
M_{T}=E \alpha \int_{A} T z d A=\frac{E \alpha T_{0}}{h} \int_{A} z^{2} d A=\frac{E I \alpha T_{0}}{h} \tag{2}
\end{equation*}
$$

Since the origin of the y, z axes is the centroid of the cross section, the thermal axial force is

$$
\begin{equation*}
P_{T}=E \alpha \int_{A} T d A=E \alpha T_{0} \frac{1}{h} \int_{A} z d A=0 \tag{3}
\end{equation*}
$$

Suppose that $E=200 \mathrm{GN} / \mathrm{m}^{2}, L=2 \mathrm{~m}, h=0.15 \mathrm{~m}, b=0.07 \mathrm{~m}, T_{0}=20^{\circ} \mathrm{C}$, and $\alpha=11 \times 10^{-6}\left(1 /{ }^{\circ} \mathrm{C}\right)$. Insertion of these values into (2) gives

Figure III-7: Beam subjected to transverse temperature change.

$$
\begin{equation*}
M_{T}=5.775 \mathrm{kN} \cdot \mathrm{~m} \tag{4}
\end{equation*}
$$

where $I=\frac{1}{12} b h^{3}$.
In transfer matrix notation the response takes the form

$$
\begin{equation*}
\mathbf{z}_{x}=\mathbf{U}^{1} \mathbf{z}_{0} \tag{5}
\end{equation*}
$$

with \mathbf{z} given by $\left[\begin{array}{lllll}w & \theta & V & M & 1\end{array}\right]^{T}$. The transfer matrix \mathbf{U}^{1} can be taken directly from Table 11-19. Alternatively, \mathbf{U}^{1} can be extracted from Table 11-22. In doing so, note that there is no elastic foundation $(k=0)$, no axial force $(P=0)$, no rotary foundation $\left(k^{*}=0\right)$, and mass and shear deformation are not to be considered ($\rho=0$ and $1 / G A_{s}=0$). Thus,

$$
\begin{equation*}
\lambda=\eta=\zeta=0 \tag{6}
\end{equation*}
$$

For this case, the e_{i} functions with $x=L$ are given by case 2 of the definitions for e_{i} in Table 11-22,

$$
\begin{align*}
& e_{0}=0, \quad e_{1}=1, \quad e_{2}=L, \quad e_{3}=\frac{1}{2} L^{2} \\
& e_{4}=\frac{1}{6} L^{3}, \quad e_{5}=\frac{1}{24} L^{4}, \quad e_{6}=\frac{1}{120} L^{5} \tag{7}
\end{align*}
$$

The loading column is formed using Table 11-22, with

$$
\begin{equation*}
M_{T a}=M_{T b}=M_{T}, \quad p_{a}=p_{b}=c_{a}=c_{b}=0 \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{F}_{w}=-M_{T} L^{2} / 2 E I, \quad \bar{F}_{\theta}=M_{T} L / E I, \quad \bar{F}_{V}=0, \quad \bar{F}_{M}=0 \tag{9}
\end{equation*}
$$

Substitution of e_{i} from (7) and the loading functions of (9) into the transfer matrix gives, at $x=L$,

$$
\left[\begin{array}{ccccc}
1 & -L & -L^{3} / 6 E I & -L^{2} / 2 E I & -M_{T} L^{2} / 2 E I \tag{10}\\
0 & 1 & L^{2} / 2 E I & L / E I & M_{T} L / E I \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & L & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Applied to (10), the boundary conditions $w_{x=0}=w_{x=L}=0, \theta_{x=0}=0$, and $M_{x=L}=0$ appear as

$$
\left[\begin{array}{c}
w=0 \tag{11}\\
\theta \\
V \\
M=0 \\
1
\end{array}\right]_{x=L}=\overline{\mathbf{U}}^{1}\left[\begin{array}{c}
w=0 \\
\theta=0 \\
V \\
M \\
1
\end{array}\right]_{x=0}
$$

LOCATION (m)	DEFLECTION (m)	SLOPE	MOMENT $(N \cdot m)$	SHEAR (N)
.00000	.00000	.00000	-8662.5	4331.3
.20000	$1.32000 \mathrm{E}-05$	$-1.24667 \mathrm{E}-04$	-7796.3	4331.3
.40000	$4.69333 E-05$	$-2.05333 \mathrm{E}-04$	-6930.0	4331.3
.60000	$9.24000 \mathrm{E}-05$	$-2.42000 \mathrm{E}-04$	-6063.8	4331.3
.80000	$1.40800 \mathrm{E}-04$	$-2.34667 \mathrm{E}-04$	-5197.5	4331.3
1.0000	$1.83333 E-04$	$-1.83333 \mathrm{E}-04$	-4331.3	4331.3
1.2000	$2.11200 \mathrm{E}-04$	$-8.80000 \mathrm{E}-05$	-3465.0	4331.3
1.4000	$2.15600 \mathrm{E}-04$	$5.13333 \mathrm{E}-05$	-2598.8	4331.3
1.6000	$1.87733 \mathrm{E}-04$	$2.34667 \mathrm{E}-04$	-1732.5	4331.3
1.8000	$1.18800 \mathrm{E}-04$	$4.62000 \mathrm{E}-04$	-866.25	4331.3
2.0000	.00000	$7.33333 \mathrm{E}-04$.00000	4331.3

Figure III-8: Response of a beam with thermal loading.

Solution of the equations $w_{x=L}=0$ and $M_{x=L}=0$ of (11) gives the initial conditions

$$
\begin{equation*}
V_{0}=3 M_{T} / 2 L=4331.3 \mathrm{~N}, \quad M_{0}=-\frac{3}{2} M_{T}=-8662.5 \mathrm{~N} \cdot \mathrm{~m} \tag{12}
\end{equation*}
$$

Equation (5) can be used to print out the responses along the beam by using the initial conditions of (12) and the transfer matrix of (10) with L replaced by x. The results are shown in Fig. III-8.

If an analytical expression is desired, Eq. (5) is readily shown to reduce to the deflection

$$
\begin{equation*}
w=\frac{M_{T}}{4 E I}\left(x^{2}-\frac{x^{3}}{L}\right)=\frac{\alpha T_{0}}{4 h}\left(x^{2}-\frac{x^{3}}{L}\right) \tag{13}
\end{equation*}
$$

and the internal moment is given by

$$
\begin{equation*}
M=\frac{3 M_{T}}{2}\left(\frac{x}{L}-1\right)=\frac{3 E I \alpha T_{0}}{2 h}\left(\frac{x}{L}-1\right) \tag{14}
\end{equation*}
$$

The normal stress due to this thermal loading is (Table 15-1, Case 1)

$$
\begin{equation*}
\sigma=-\alpha E T+\frac{M z}{I}=\frac{\alpha E T_{0} z}{2 h}\left(3 \frac{x}{L}-5\right) \tag{15}
\end{equation*}
$$

Stability

Structural members can reach a critical state that is quite different from the usual critical strength or stiffness levels set as criteria for structural failure. This state, referred to as instability or buckling, is the result of the ordinary equilibrium mode of deformation becoming unstable. The state of buckling is usually caused by an axial or in-plane force being of such value (the critical load) that the response (e.g., displacement) begins to increase inordinately as the load is increased slightly. The
governing equations of motion for a simple beam with a compressive axial force P are [Eq. (11.7a)], with $k=0$,

$$
\begin{gathered}
E I \frac{d^{4} w}{d x^{4}}+P \frac{d^{2} w}{d x^{2}}=p_{z} \\
V=-E I \frac{d^{3} w}{d x^{3}}-P \frac{d w}{d x}, \quad M=-E I \frac{d^{2} w}{d x^{2}}, \quad \theta=-\frac{d w}{d x}
\end{gathered}
$$

These relations, with $p_{z}=0$, can be solved in the transfer matrix form, giving

$$
\left[\begin{array}{c}
w \tag{III.10}\\
\theta \\
V \\
M
\end{array}\right]_{b}=\left[\begin{array}{cccc}
1 & -\frac{s}{\alpha} & \frac{\alpha \ell-s}{\alpha d E I} & \frac{1-c}{d E I} \\
0 & c & -\frac{1-c}{d E I} & \frac{s}{\alpha E I} \\
0 & 0 & 1 & 0 \\
0 & \frac{E I s d}{\alpha} & \frac{s}{\alpha} & c
\end{array}\right]\left[\begin{array}{c}
w \\
\mathbf{z}_{b}
\end{array}\right]^{[} \quad\left[\begin{array}{c}
\mathbf{U}^{i}
\end{array}\right]_{a}
$$

For a compressive axial force,

$$
\begin{equation*}
\alpha^{2}=P / E I, \quad s=\sin \alpha \ell, \quad c=\cos \alpha \ell, \quad d=-\alpha^{2} \tag{III.11}
\end{equation*}
$$

and for a tensile axial force,

$$
\begin{equation*}
\alpha^{2}=-P / E I, \quad s=\sinh \alpha \ell, \quad c=\cosh \alpha \ell, \quad d=\alpha^{2} \tag{III.12}
\end{equation*}
$$

This same transfer matrix is given in Table 11-22.
Buckling can be identified by determining the axial load for which expressions w, θ, V, M experience unrestrained growth. These expressions become large if the values of the initial parameters $w_{0}, \theta_{0}, V_{0}, M_{0}$ (or $w_{a}, \theta_{a}, V_{a}, M_{a}$) become large. Thus, the critical level of axial force is reached if the denominators of the $w_{a}, \theta_{a}, V_{a}, M_{a}$ expressions, obtained by application of the boundary conditions to Eq. (III.7), approach zero. In solving for w_{a}, θ_{a}, V_{a}, and M_{a}, it is found that these initial values increase inordinately in magnitude for specific values of the axial force. The lowest value is the critical or buckling load.

This sort of problem involving particular values of a parameter (here the axial force) is called an eigenvalue problem. These special discrete values are called characteristic values or eigenvalues, and the corresponding responses are characteristic functions, eigenfunctions, or mode shapes. The expression that leads to the critical values is called the characteristic equation. Eigenvalue problems also arise in the study of the dynamics of structural members, with the natural frequencies being the eigenvalues.

It should be understood that this classical approach to instability, which involves "unrestrained growth" of the response, is based on fundamental equations of motion that were derived for linearly elastic material and small deflections. Strictly speaking,
it is improper to think of truly large deflections. More accurate theories are required to describe large deflections.

Example III. 5 Buckling Load for a Fixed-Fixed Column Find the critical axial force for a uniform column of length L with fixed ends.

The transfer matrix $\mathbf{U}^{i}=\mathbf{U}$ for a uniform beam element with axial force P is given by Eq. (III.10). Since the column is fixed on both ends, the boundary conditions are

$$
\begin{equation*}
w_{x=a}=\theta_{x=a}=w_{x=L}=\theta_{x=L}=0 \tag{1}
\end{equation*}
$$

Applied to $\mathbf{z}_{L}=\mathbf{U} \mathbf{z}_{a}$, these conditions give

$$
\left[\begin{array}{c}
w=0 \tag{2}\\
\theta=0 \\
V \\
M
\end{array}\right]_{b}=\left[\begin{array}{c:cc}
& \bar{U}_{w V} & \bar{U}_{w M} \\
\hdashline & \bar{U}_{\theta V} & \bar{U}_{\theta M} \\
\hdashline
\end{array}\right]\left[\begin{array}{c}
w=0 \\
\theta=0 \\
V \\
M
\end{array}\right]_{a}
$$

or

$$
\begin{equation*}
0=V_{a} \bar{U}_{w V}+M_{a} \bar{U}_{w M}, \quad 0=V_{a} \bar{U}_{\theta V}+M_{a} \bar{U}_{\theta M} \tag{3}
\end{equation*}
$$

where $\bar{U}_{i j}=\left.U_{i j}\right|_{x=L}$.
The determinant of the equations on the right-hand side is

$$
\begin{equation*}
\nabla=\left(\bar{U}_{w V} \bar{U}_{\theta M}-\bar{U}_{w M} \bar{U}_{\theta V}\right)_{x=L} \tag{4}
\end{equation*}
$$

If these were not homogeneous relations and Cramer's rule were employed to solve these equations, the denominator of the responses would be a determinant, say ∇. See, for example, Eqs. (7) of Example III. 2 or Eqs. (6) of Example III.3. Inordinately large responses correspond to $\nabla=0$.

The buckling criterion (characteristic equation) of $\nabla=0$ can also be reasoned to be the condition for finding nontrivial solutions of a system of homogeneous equations.

Substitution of the appropriate transfer matrix elements of Eq. (III.10) in $\nabla=0$ gives

$$
\begin{equation*}
-\frac{(1-\cos \alpha L)^{2}}{P^{2}}-\frac{\sin ^{2} \alpha L}{P^{2}}+\frac{\alpha L}{P^{2}} \sin \alpha L=0 \tag{5}
\end{equation*}
$$

which for the meaningful case of $P \neq 0$ reduces to

$$
2-2 \cos \alpha L-\alpha L \sin \alpha L=0
$$

This expression is satisfied by

$$
\begin{equation*}
\alpha L=2 n \pi, \quad n=0,1,2, \ldots, \quad \alpha^{2}=P / E I \tag{6}
\end{equation*}
$$

The desired critical or buckling load is given by the lowest meaningful value of P in (6), that is, for $n=1$,

$$
\begin{equation*}
\left.P\right|_{\nabla=0}=\frac{4 \pi^{2} E I}{L^{2}}=P_{\mathrm{cr}} \tag{7}
\end{equation*}
$$

The value $n=0$ is ruled out as it implies that $P=0$, which is a trivial or meaningless case. Although ∇ assumes a value of zero for other values of $n(n=2,3, \ldots)$, the corresponding unstable loads P are of limited engineering interest since the column has essentially already failed.

An interesting characteristic of this theory of instability is that the critical axial load of a beam is the same regardless of the transverse loading on the bar because the loading does not affect the values of the determinant of the equations. For example, in Eqs. (7) of Example III. 2 or Eqs. (6) of Example III.3, the loading functions F_{w}, F_{θ}, F_{V}, and F_{M} appear only in the numerators of the initial-value expressions and not in ∇.

The stability of a member with abrupt in-span changes is treated in a fashion similar to that of the member of constant cross section. The characteristic equation is formed of the global, or overall, transfer matrix elements developed by the usual progressive multiplication of the transfer matrices of the various elements of the member.

It should be noted that the axial force in various elements of a member may be calculated by applying an equilibrium of forces in the axial direction. Thus, for the member of Fig. III-9,

$$
\begin{aligned}
P_{\text {element } 1} & =P_{0} \\
P_{\text {element } 2} & =P_{0}+P_{1} \\
& \vdots \\
P_{\text {element } j} & =P_{0}+P_{1}+\cdots+P_{j-1}
\end{aligned}
$$

As often as not, it is difficult, if not impossible, to find an analytical expression for P that satisfies the characteristic equation [e.g., $\nabla=0$ in Eq. (5) of Example III.5]. Thus, $P_{\text {cr }}$ is usually found by computationally searching for the lowest value of P (i.e., the root) for which $\nabla=0$. Typically, a computer program evaluates ∇ numerically for trial values of P in the search routine. The magnitude of P is increased

Figure III-9: Column of stepped cross section.
until ∇ changes sign. Then one of the many root-finding techniques is employed to close in on $P_{\text {cr }}$.

In the case of a member with a variable axial load (e.g., the beam of Fig. III-9) the ratio of the load applied at each element to a nominal value (e.g., P_{0}) is usually known. Then the nominal value leading to instability is sought by setting $\nabla=0$.

Example III. 6 Column of Variable Cross Section Find the buckling load for the stepped column of Fig. III-10.

The global transfer matrix is defined by

$$
\begin{equation*}
\mathbf{z}_{L}=\mathbf{U} \mathbf{z}_{a} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{U}=\mathbf{U}^{2} \mathbf{U}^{1} \tag{2}
\end{equation*}
$$

where \mathbf{U}^{1} is given by Eq. (III.10) with $\ell, E I$, and P replaced by $\ell_{1}, E I_{1}$, and P_{a}. The transfer matrix \mathbf{U}^{2} is given by Eq. (III.10) using $\ell_{2}, E I_{2}$, and $P_{a}+P_{b}$. Note that the axial force in element 2 is $P_{a}+P_{b}$, not just P_{b}.

The column is simply supported on both ends so that the boundary conditions are

$$
\begin{equation*}
w_{x=a}=M_{x=a}=w_{x=L}=M_{x=L}=0 \tag{3}
\end{equation*}
$$

These conditions applied to (1) appear as

$$
\left[\begin{array}{c}
w=0 \tag{4}\\
\theta \\
V \\
M=0
\end{array}\right]_{L}=\left[\begin{array}{ccc:}
{\left[\bar{U}_{w \theta}\right.} & \bar{U}_{w V} & \\
\hdashline \mathbf{z}_{L} & =\left[\begin{array}{c}
w=0 \\
\theta \\
V \\
M=0
\end{array}\right]_{a} \\
\bar{U}_{M \theta} & \bar{U}_{M V} & \mathbf{U}
\end{array}\right.
$$

or

$$
\begin{equation*}
0=\theta_{a} \bar{U}_{w \theta}+V_{a} \bar{U}_{w V}, \quad 0=\theta_{a} \bar{U}_{M \theta}+V_{a} \bar{U}_{M V} \tag{5}
\end{equation*}
$$

where $\bar{U}_{i j}=\left.U_{i j}\right|_{x=L}$.
The determinant (set equal to zero) of these homogeneous equations constitutes the characteristic equation. That is,

Figure III-10: Stepped column.

$$
\begin{equation*}
\nabla=\bar{U}_{w \theta} \bar{U}_{M V}-\bar{U}_{M \theta} \bar{U}_{w V}=0 \tag{6}
\end{equation*}
$$

leads to the buckling load.
Relation (6) becomes

$$
\begin{equation*}
\frac{1}{\alpha_{1}^{2}}-\frac{\alpha_{1}^{2} L E I_{1} P_{b}+\ell_{1}}{\alpha_{1} \tan \alpha_{1} \ell_{1}}-\frac{I_{1} / I_{2}}{\alpha_{2}^{2}}-\frac{\alpha_{2}^{2} L E I_{1} P_{b}-\ell_{2} I_{1} / I_{2}}{\alpha_{2} \tan \alpha_{2} \ell_{2}}=0 \tag{7}
\end{equation*}
$$

where

$$
\alpha_{1}^{2}=P_{a} / E I_{1}, \quad \alpha_{2}^{2}=\left(P_{a}+P_{b}\right) / E I_{2}
$$

Combinations of P_{a} and P_{b} that satisfy $\nabla=0$ define the conditions of instability. Normally, P_{a} and P_{b} are not independent. Typically, P_{b} is known to be proportional to P_{a} (i.e., $P_{b}=c P_{a}$, where c is a known constant). Then (6) is the characteristic equation for a single unknown, the lowest value of which is the buckling load.

As mentioned above, the buckling loads for complicated stepped columns must be found by a numerical search for the lowest root of $\nabla=0$. Typically, this process begins by evaluating ∇ for an estimated buckling load that is believed to be below the actual buckling load. Increase the estimate and repeat the evaluation of ∇. Continue the process until ∇ changes sign. The desired buckling load, which lies between the two previous estimates, is then found to a prescribed accuracy by utilizing a rootfinding scheme such as Newton-Raphson. Effective software for this calculation is readily available.

More information about eigenvalue problems is given in the following section on dynamics, in which the natural frequencies rather than the critical loads are the eigenvalues.

Free Vibrations

Special consideration must be given to structural problems when acceleration effects cannot be neglected. More specifically, problems in dynamics arise when the inertia of the acceleration of the structural mass must be taken into account. The response or solution that is sought will now be given by time-dependent state variables. Some terminology for the fundamentals of dynamics is provided in Chapter 10.

If a structural member possesses only a small amount of damping or if the dynamic response is desired for only a short period of time, an assumption of no damping may be imposed on the equations governing the motion. As an example, for an undamped Euler-Bernoulli beam, the equations of motion become

$$
\frac{\partial^{2}}{\partial x^{2}}\left(E I \frac{\partial^{2} w}{\partial x^{2}}\right)=-\rho \frac{\partial^{2} w}{\partial t^{2}}+p_{z}(x, t)
$$

$$
\begin{align*}
V(x, t) & =-\frac{\partial}{\partial x}\left(E I \frac{\partial^{2} w}{\partial x^{2}}\right) \quad \text { (higher-order form) } \\
M(x, t) & =-E I \frac{\partial^{2} w}{\partial x^{2}} \tag{III.13a}\\
\theta(x, t) & =-\frac{\partial w}{\partial x}
\end{align*}
$$

and

$$
\begin{align*}
\frac{\partial w}{\partial x} & =-\theta \\
\frac{\partial \theta}{\partial x} & =\frac{M}{E I} \\
\frac{\partial V}{\partial x} & =\rho \frac{\partial^{2} w}{\partial t^{2}}-p_{z}(x, t) \quad(\text { first-order form }) \tag{III.13b}\\
\frac{\partial M}{\partial x} & =V
\end{align*}
$$

where ρ is the mass per unit length and $w=w(x, t)$.
Even without the consideration of damping, these partial differential equations are difficult to solve. Indeed, no simple solution exists except for a few elementary structural dynamics problems. Numerical integration of the equations of motion is hazardous at best. Even if they are integrated successfully, no information is provided concerning the natural frequencies of the structure. Normal-mode theory, however, does involve the computation of the natural frequencies and appears to be the most logical approach for coupling with transfer matrix methodology. It will be examined in some detail here.

It is possible for a structure to respond in one of many so-called natural (normal, principal, characteristic, free) modes, that is, deformation configurations, which are characteristic of the member. Natural vibration occurs under the action of innate forces of the member and is not due to external impressed forces. Motion in a natural mode can be generated by imposing appropriate initial conditions of displacement and velocity. Normal-mode theory for structural response uses these natural mode shapes to construct a solution for a structure subject to any time-dependent loading, initial, boundary, and in-span conditions.

Elastic structures exhibit many natural modes; fortunately, usually, information on only a limited number of them is necessary to represent most dynamic responses. Apart from the use of natural modes and frequencies in the construction of the transient dynamic solution, the modal characteristics are valuable information in their own right. For example, if a member is excited by a harmonic loading function, the member will respond with a motion at the frequency of the loading function. If this loading frequency coincides with one of the natural frequencies of the system, large dangerous amplitudes may occur. This is the resonance condition.

Consider now the free motion of a beam. Free refers to the absence of externally applied loads. Set the loading function $p_{z}(x, t)$ equal to zero in the first of Eqs. (III.13a). Then

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}}\left(E I \frac{\partial^{2} w}{\partial x^{2}}\right)=-\rho \frac{\partial^{2} w}{\partial t^{2}} \tag{III.14}
\end{equation*}
$$

Assume that the variables can be separated in space (x) and time (t), giving

$$
\begin{equation*}
w(x, t)=w(x) q(t) \tag{III.15}
\end{equation*}
$$

where q is a function of time. Substitution of this expression into Eq. (III.14) yields

$$
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w(x)}{d x^{2}}\right) q(t)=-\rho w(x) \frac{d^{2}}{d t^{2}} q(t)
$$

or

$$
\frac{\left(d^{2} / d x^{2}\right) E I\left[d^{2} w(x) / d x^{2}\right]}{\rho w(x)}=-\frac{d^{2} q(t) / d t^{2}}{q(t)}
$$

For the left-hand side, which is a function only of x, to be equal to the right-hand side, which is dependent only on t, both sides must be equal to the same constant, say ω^{2}. Then

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}} E I \frac{d^{2} w}{d x^{2}}=\rho \omega^{2} w \tag{III.16}
\end{equation*}
$$

and

$$
\frac{d^{2} q(t)}{d t^{2}}+\omega^{2} q(t)=0
$$

The solution to this latter relation is given by

$$
\begin{equation*}
q(t)=A \sin \omega t+B \cos \omega t \tag{III.17}
\end{equation*}
$$

where A, B are constants. It is seen that ω is the frequency, in radians per unit of time, of the free motion. This is the undamped natural frequency of the beam.

The assumed value of $w(x, t)$ of Eq. (III.15) placed in Eqs. (III.13) leads to

$$
\begin{gather*}
\theta(x, t)=\theta(x) q(t), \quad V(x, t)=V(x) q(t), \tag{III.18}\\
M(x, t)=M(x) q(t)
\end{gather*}
$$

with

$$
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)=\rho \omega^{2} w
$$

$$
\begin{align*}
V(x) & =-\frac{d}{d x}\left(E I \frac{d^{2} w}{d x^{2}}\right) \quad \text { (higher-order form) } \\
M(x) & =-E I \frac{d^{2} w}{d x^{2}} \tag{III.19a}\\
\theta(x) & =-\frac{d w}{d x}
\end{align*}
$$

and

$$
\begin{align*}
\frac{d w}{d x} & =-\theta \\
\frac{d \theta}{d x} & =\frac{M}{E I} \quad(\text { first-order form) } \tag{III.19b}\\
\frac{d V}{d x} & =-\rho \omega^{2} w \\
\frac{d M}{d x} & =V
\end{align*}
$$

where $w=w(x)$.
These equations can be solved in the same fashion as the equations of motion for the static response of a beam. For a uniform beam, the transfer matrix solution to Eqs. (III.19) appears as

$$
\begin{align*}
& {\left[\begin{array}{l}
w \\
\theta \\
V \\
M
\end{array}\right]_{b}=\left[\begin{array}{cc}
\frac{\cosh \beta \ell+\cos \beta \ell}{2} & -\frac{\sinh \beta \ell+\sin \beta \ell}{2 \beta} \\
-\frac{\beta(\sinh \beta \ell-\sin \beta \ell)}{2} & \frac{\cosh \beta \ell+\cos \beta \ell}{2} \\
-\frac{E I \beta^{3}(\sinh \beta \ell+\sin \beta \ell)}{2} & \frac{E I \beta^{2}(\cosh \beta \ell-\cos \beta \ell)}{2} \\
-\frac{E I \beta^{2}}{2(\cosh \beta \ell-\cos \beta \ell)} & \frac{E I \beta}{2}(\sinh \beta \ell-\sin \beta \ell)
\end{array}\right.} \\
& \left.\begin{array}{cc}
-\frac{\sinh \beta \ell-\sin \beta \ell}{2 E I \beta^{3}} & -\frac{\cosh \beta \ell-\cos \beta \ell}{2 E I \beta^{2}} \\
\frac{\cosh \beta \ell-\cos \beta \ell}{2 E I \beta^{2}} & \frac{\sinh \beta \ell+\sin \beta \ell}{2 E I \beta} \\
\frac{\cosh \beta \ell+\cos \beta \ell}{2} & \frac{\beta}{2}(\sinh \beta \ell-\sin \beta \ell) \\
\frac{\sinh \beta \ell+\sin \beta \ell}{2 \beta} & \frac{\cosh \beta \ell+\cos \beta \ell}{2}
\end{array}\right]\left[\begin{array}{c}
w \\
\theta \\
V
\end{array}\right]_{a} \tag{III.20}
\end{align*}
$$

where $\beta^{4}=\rho \omega^{2} / E I$.

Equations (III.20) contain five unknowns, the four constants of integration w_{a}, θ_{a}, V_{a}, and $M_{a}\left(w_{0}, \theta_{0}, V_{0}\right.$, and $\left.M_{0}\right)$ and the undamped natural frequency ω. Recall that there are only four known conditions-the boundary conditions-available to apply to these equations to find the unknowns. Apparently, one quantity remains unknown in the study of free motion; however, it will be shown that motion generated by prescribed initial conditions or applied loading is fully determined. The study of free vibrations bears a close resemblance to the study of instability wherein the boundary conditions are applied to find the critical loading rather than the initial parameters, as in the case with static equilibrium problems. Both problems belong to the class of eigenvalue problems. Frequencies and mode shapes are referred to as eigenvalues and eigenfunctions, respectively.

Consider the case of a beam simply supported at both ends. The boundary conditions are $w_{x=0}=M_{x=0}=w_{x=L}=M_{x=L}=0$. These conditions applied to Eq. (II.47) with $a=0, b=L$, and with the loading terms set equal to zero, give

$$
\begin{gather*}
w_{0}=0, \quad M_{0}=0 \tag{III.21a}\\
w_{x=L}=\theta_{0} \bar{U}_{w \theta}+V_{0} \bar{U}_{w V}=0 \tag{III.21b}\\
M_{x=L}=\theta_{0} \bar{U}_{M \theta}+V_{0} \bar{U}_{M V}=0 \tag{III.21c}
\end{gather*}
$$

where $\bar{U}_{w \theta}, \bar{U}_{w V}, \bar{U}_{M \theta}$, and $\bar{U}_{M V}$ are $U_{w \theta}, U_{w V}, U_{M \theta}$, and $U_{M V}$, respectively, evaluated at $x=L$. Equations such as these are said to be homogeneous. Nontrivial solutions to these homogeneous equations exist when the determinant of the initial parameters goes to zero, that is, when

$$
\begin{align*}
\nabla=\left|\begin{array}{cc}
U_{w \theta} & U_{w V} \\
U_{M \theta} & U_{M V}
\end{array}\right|_{x=L} & =\left(U_{w \theta} U_{M V}-U_{M \theta} U_{w V}\right)_{x=L} \\
& =\bar{U}_{w \theta} \bar{U}_{M V}-\bar{U}_{M \theta} \bar{U}_{w V}=0 \tag{III.22}
\end{align*}
$$

Equation (III.22) is a function of the unknown frequency ω. The determinant ∇ can be zero for many different values of ω; these values are the desired natural frequencies of the system and are designated by $\omega_{n}, n=1,2, \ldots$.

Reference here to transfer matrix relations for static responses is informative in that a rough (nonrigorous) concept of the philosophy behind setting $\nabla=0$ is obtained. In the case of static equilibrium each initial parameter appears in the form [see e.g., Eqs. (7) of Example III. 2 or Eqs. (6) of Example III.3]

$$
\frac{\left[\begin{array}{c}
\text { loading } \\
\text { function }
\end{array}\right]\left[\begin{array}{c}
\text { transfer } \\
\text { matrix element }
\end{array}\right]-\left[\begin{array}{c}
\text { loading } \\
\text { function }
\end{array}\right]\left[\begin{array}{c}
\text { transfer } \\
\text { matrix element }
\end{array}\right]}{\nabla}
$$

Since the loading functions are zero by definition of free vibration, the numerator of this expression is zero. Then the only possibility for a nontrivial solution is for the denominator to be zero also. Thus, ∇ is set equal to zero.

It is noteworthy that it is not possible to determine both of the unknowns θ_{0}, V_{0} of Eq. (III.21). However, there is sufficient information to find the ratio θ_{0} / V_{0}. From Eq. (III.21b)

$$
\begin{equation*}
\theta_{0} / V_{0}=-\left(U_{w V} / U_{w \theta}\right)_{x=L} \tag{III.23}
\end{equation*}
$$

and from Eq. (III.21c),

$$
\begin{equation*}
\theta_{0} / V_{0}=-\left(U_{M V} / U_{M \theta}\right)_{x=L} \tag{III.24}
\end{equation*}
$$

Recall that the frequencies have been selected such that $\nabla=0$, or from Eq. (III.22),

$$
\begin{equation*}
\left(U_{w V} / U_{w \theta}\right)_{x=L}=\left(U_{M V} / U_{M \theta}\right)_{x=L} \tag{III.25}
\end{equation*}
$$

Thus the values of θ_{0} / V_{0} expressed by Eqs. (III.23) and (III.24) are equivalent.
Alternatively, the problem can be viewed from the standpoint of the four boundary conditions leading to the four relations $w_{0}=0, M_{0}=0$, and θ_{0} / V_{0} as given in Eq. (III.23) and θ_{0} / V_{0} of Eq. (III.24). Since the two expressions for θ_{0} / V_{0} must be equal, Eq. (III.25) [or equivalently, Eq. (III.22)] is again obtained as a condition that must be satisfied. Thus, application of the boundary conditions again leads to the condition $\nabla=0$.

As just observed, the ratio of the initial parameters can be determined but not the values of all of the initial parameters themselves. Thus, one of the initial parameters can be found in terms of the other. The latter initial parameter is chosen to remain as the only unknown of the problem. If θ_{0} is assumed to be the arbitrary constant of unknown magnitude, the initial parameters for this hinged-hinged beam appear as

$$
\begin{align*}
& w_{0}=0, \quad M_{0}=0, \quad \theta_{0}=\theta_{0} \\
& V_{0}=-\theta_{0}\left(U_{M \theta} / U_{M V}\right)_{x=L} \tag{III.26}
\end{align*}
$$

Formulas of this sort can be derived and tabulated for any set of boundary conditions.
In summary, it is seen that the four conditions $w_{x=0}=M_{x=0}=w_{x=L}=$ $M_{x=L}=0$ applied to the transfer matrix equations with five unknowns [Eqs. (II.47) with $a=0, b=L$, and $\overline{\mathbf{z}}^{i}=0$] result in a situation with one unknown remaining. That is, only the ratio of two of the parameters can be determined and not the values of the initial parameters themselves. Fortunately, this situation occurs only in the study of free motion because the specification of loading and initial conditions suffices to eliminate the unknown.

To obtain the undamped mode shapes, place the frequencies $\omega_{n}, n=1,2, \ldots$, and the expressions for the initial parameters [Eq. (III.26)] in the response expressions [Eq. (II.47)]:

$$
\begin{align*}
w_{n}(x) & =\theta_{0}\left[\left.U_{w \theta}\right|_{x}-\left.U_{w V}\right|_{x}\left(U_{M \theta} / U_{M V}\right)_{x=L}\right]_{\omega=\omega_{n}} \tag{III.27a}\\
\theta_{n}(x) & =\theta_{0}\left[\left.U_{\theta \theta}\right|_{x}-\left.U_{\theta V}\right|_{x}\left(U_{M \theta} / U_{M V}\right)_{x=L}\right]_{\omega=\omega_{n}} \tag{III.27b}
\end{align*}
$$

$$
\begin{align*}
V_{n}(x) & =\theta_{0}\left[\left.U_{V \theta}\right|_{x}-\left.U_{V V}\right|_{x}\left(U_{M \theta} / U_{M V}\right)_{x=L}\right]_{\omega=\omega_{n}} \tag{III.27c}\\
M_{n}(x) & =\theta_{0}\left[\left.U_{M \theta}\right|_{x}-\left.U_{M V}\right|_{x}\left(U_{M \theta} / U_{M V}\right)_{x=L}\right]_{\omega=\omega_{n}} \tag{III.27d}
\end{align*}
$$

where $\omega_{n}=\omega_{1}, \omega_{2}, \ldots$ These are really "shape" functions as they contain the unknown quantity or amplitude θ_{0}. Often, this amplitude is assigned a unit value.

Consider the simply supported beam of length L in more detail. Place the transfer matrix elements of Eqs. (III.20) in ∇ of Eq. (III.22):

$$
\begin{align*}
\nabla= & -\frac{\sinh \beta L+\sin \beta L}{2 \beta} \frac{\sinh \beta L+\sin \beta L}{2 \beta} \\
& +E I \beta \frac{\sinh \beta L-\sin \beta L}{2} \frac{\sinh \beta L-\sin \beta L}{2 E I \beta^{3}} \\
= & -\frac{\sinh \beta L \sin \beta L}{\beta^{2}}=0 \tag{III.28}
\end{align*}
$$

The values of β that make this expression equal to zero are desired. Other than $\beta=0$, it is clear that the zeros of the function $\sinh \beta L \sin \beta L$ are the zeros of $\sin \beta L$. This follows because $\sinh \beta L$ is not zero except at $\beta L=0$. Thus, $\sin \beta L=0$ or $\beta L=$ $n \pi, n=1,2, \ldots$. The notation is improved somewhat if ω and β are replaced by ω_{n} and β_{n}. Then $\beta_{n} L=n \pi$. Since $\beta_{n}^{4}=\rho \omega_{n}^{2} / E I$,

$$
\begin{equation*}
\omega_{n}=(n \pi) \frac{2 \sqrt{E I / \rho}}{L^{2}}, \quad n=1,2, \ldots \tag{III.29}
\end{equation*}
$$

That is,

$$
\omega_{1}=\frac{\pi^{2}}{L^{2}} \sqrt{\frac{E I}{\rho}}, \quad \omega_{2}=\frac{4 \pi^{2}}{L^{2}} \sqrt{\frac{E I}{\rho}}, \quad \text { etc. }
$$

These are the undamped natural frequencies for the uniform, simply supported beam. The deflection mode shape [Eq. (III.27a)] becomes

$$
\begin{align*}
w_{n}(x) & =\theta_{0}\left(-\frac{\sinh \beta_{n} x+\sin \beta_{n} x}{2 \beta_{n}}+\frac{\sinh \beta_{n} x-\sin \beta_{n} x}{2 \beta_{n}} \frac{\sinh \beta_{n} L-\sin \beta_{n} L}{\sinh \beta_{n} L+\sin \beta_{n} L}\right) \\
& =\left(-\frac{\theta_{0}}{\beta_{n}}\right) \sin \beta_{n} x \tag{III.30}
\end{align*}
$$

with $\omega_{n}^{2}=(n \pi / L)^{4} E I / \rho, n=1,2, \ldots$ This completes the determination of the undamped frequencies and the mode shapes for the uniform, simply supported beam. In the case of more complicated configurations (e.g., a beam of variable cross section), it is not always possible to obtain explicit expressions for the frequencies. Then the roots (frequencies or eigenvalues) of ∇, which are formed from the global transfer matrix elements, can be found computationally.

Example III. 7 Transfer Matrix Method for a Beam with Continuous Mass The natural frequencies of a uniform beam simply supported at the ends will be found using several methods in this appendix. For this beam let $L=80$ in., $E=$ $3 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2}, I=1.3333 \mathrm{in}^{4}$, and $\rho=2.912 \times 10^{-3} \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}^{2}$. Begin by considering the mass to be distributed continuously.

Suppose that the beam is modeled as two segments, as shown in Fig. III-11. Apart from the desire to illustrate the transfer matrix procedure, there is no reason that this uniform beam should be modeled with two elements. Of course, a single-element model is substantially simpler to utilize.

For the model of Fig. III-11,

$$
\begin{equation*}
\mathbf{z}_{c}=\mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a} \tag{1}
\end{equation*}
$$

where $\mathbf{U}^{2}=\mathbf{U}^{1}$, and from Eq. (III.20),

$$
\mathbf{U}^{1}=\mathbf{U}^{2}=\left[\begin{array}{cc}
\frac{1}{2}\left(C_{4}+C_{2}\right) & -\frac{1}{2 \beta}\left(C_{3}+C_{1}\right) \\
-\frac{1}{2} \beta\left(C_{3}-C_{1}\right) & \frac{1}{2}\left(C_{4}+C_{2}\right) \\
-\frac{1}{2} E I \beta^{3}\left(C_{3}+C_{1}\right) & \frac{1}{2} E I \beta^{2}\left(C_{4}-C_{2}\right) \\
-\frac{1}{2} E I \beta^{2}\left(C_{4}-C_{2}\right) & \frac{1}{2} E I \beta\left(C_{3}-C_{1}\right) \\
& -\frac{1}{2 E I \beta^{3}}\left(C_{3}-C_{1}\right) \tag{2}\\
\frac{1}{2 E I \beta^{2}}\left(C_{4}-C_{2}\right) & \frac{1}{2 E I \beta^{2}}\left(C_{4}-C_{2}\right) \\
\frac{1}{2}\left(C_{4}+C_{2}\right) & \frac{1}{2} \beta\left(C_{3}+C_{1}\right) \\
\frac{1}{2 \beta}\left(C_{3}+C_{1}\right) & \frac{1}{2}\left(C_{4}+C_{2}\right)
\end{array}\right]
$$

where

$$
\begin{gathered}
C_{1}=\sin \beta \ell, \quad C_{2}=\cos \beta \ell, \quad C_{3}=\sinh \beta \ell, \quad C_{4}=\cosh \beta \ell, \\
\beta^{4}=\rho \omega^{2} / E I
\end{gathered}
$$

Figure III-11: Two-element model of a uniform simply supported beam.

Then

$$
\mathbf{U}=\mathbf{U}^{2} \mathbf{U}^{1}=\left[\begin{array}{cccc}
\bar{U}_{w w} & \bar{U}_{w \theta} & \bar{U}_{w V} & \bar{U}_{w M} \tag{3}\\
\bar{U}_{\theta w} & \bar{U}_{\theta \theta} & \bar{U}_{\theta V} & \bar{U}_{\theta M} \\
\bar{U}_{V w} & \bar{U}_{V \theta} & \bar{U}_{V V} & \bar{U}_{V M} \\
\bar{U}_{M w} & \bar{U}_{M \theta} & \bar{U}_{M V} & \bar{U}_{M M}
\end{array}\right]
$$

where $\bar{U}_{i j}$ are the transfer matrix components evaluated at $x=L$.
Insert (3) and the simply supported boundary conditions $w_{a}=M_{a}=w_{c}=M_{c}=$ 0 into (1),

$$
\left[\begin{array}{c}
w=0 \tag{4}\\
\theta \\
V \\
M=0
\end{array}\right]_{c}=\left[\begin{array}{cccc}
\bar{U}_{w w} & \bar{U}_{w \theta} & \bar{U}_{w V} & \bar{U}_{w M} \\
\bar{U}_{\theta w} & \bar{U}_{\theta \theta} & \bar{U}_{\theta V} & \bar{U}_{\theta M} \\
\bar{U}_{V w} & \bar{U}_{V \theta} & \bar{U}_{V V} & \bar{U}_{V M} \\
\bar{U}_{M w} & \bar{U}_{M \theta} & \bar{U}_{M V} & \bar{U}_{M M}
\end{array}\right]\left[\begin{array}{c}
w=0 \\
\theta \\
V \\
M=0
\end{array}\right]_{a}
$$

The relations $w_{c}=0$ and $M_{c}=0$ appear as

$$
\begin{equation*}
\bar{U}_{w \theta} \theta_{a}+\bar{U}_{w V} V_{a}=0, \quad \bar{U}_{M \theta} \theta_{a}+\bar{U}_{M V} V_{a}=0 \tag{5}
\end{equation*}
$$

For a nontrivial solution for θ_{a} and V_{a}, the condition

$$
\nabla=\left[\begin{array}{cc}
\bar{U}_{w \theta} & \bar{U}_{w V} \tag{6}\\
\bar{U}_{M \theta} & \bar{U}_{M V}
\end{array}\right]=\bar{U}_{w \theta} \bar{U}_{M V}-\bar{U}_{w V} \bar{U}_{M \theta}=0
$$

must hold. From (2) and (3),

$$
\nabla=\frac{1}{\beta^{2}}\left(2 C_{3} C_{4}\right)\left(-2 C_{1} C_{2}\right)=0
$$

where

$$
\begin{equation*}
C_{3} C_{4}=\sinh \beta \ell \cosh \beta \ell, \quad C_{1} C_{2}=\sin \beta \ell \cos \beta \ell \tag{7}
\end{equation*}
$$

For a nontrivial solution of β, only $\sin \beta \ell \cos \beta \ell=0$ is possible. Because of the double-angle identities, Eqs. (I.13a), this leads to

$$
\begin{equation*}
\sin 2 \beta \ell=0 \tag{8}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\beta=n \pi / 2 \ell=n \pi / L, \quad n=1,2,3, \ldots \tag{9}
\end{equation*}
$$

Finally,

$$
\rho \omega^{2} / E I=(n \pi / 2 \ell)^{4}
$$

or

$$
\begin{equation*}
\omega_{n}=\sqrt{\frac{E I}{\rho}}\left(\frac{n \pi}{2 \ell}\right)^{2}=\sqrt{\frac{E I}{\rho}}\left(\frac{n \pi}{L}\right)^{2} \tag{10}
\end{equation*}
$$

which is the same expression in Eq. (III.29) for a single-element model.
For this beam

$$
\begin{align*}
& \omega_{1}=\sqrt{\frac{1.3333\left(3 \times 10^{7}\right)}{2.912 \times 10^{-3}}}\left(\frac{\pi}{2 \times 40}\right)^{2}=180.74 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f_{1}=\frac{\omega_{1}}{2 \pi}=28.767 \mathrm{~Hz} \\
& \omega_{2}=\sqrt{\frac{1.3333\left(3 \times 10^{7}\right)}{2.912 \times 10^{-3}}}\left(\frac{2 \pi}{2 \times 40}\right)^{2}=722.96 \mathrm{rad} / \mathrm{s}=115.066 \mathrm{~Hz} \tag{11}\\
& \omega_{3}=1626.66 \mathrm{rad} / \mathrm{s}=258.899 \mathrm{~Hz} \\
& \omega_{4}=2891.84 \mathrm{rad} / \mathrm{s}=460.264 \mathrm{~Hz}
\end{align*}
$$

Often, the difficulties in finding a solution, including the computational burden of identifying the frequencies, can be reduced if certain approximations are made in modeling the structure. One of the most popular models involves the discretization, or lumping, of physical parameters along the member. These lumped parameter models, which lead to solutions of widely varying degrees of accuracy, usually result in $\nabla=0$ being a polynomial expression for the frequency. Computationally the polynomial is a highly tractable form when roots are desired, especially when compared to the often unwieldy transcendental functions incurred in the distributed parameter representation. Discretization of parameters limits the degrees of freedom of motion. There will usually be only as many frequencies as there are "lumps." Naturally, care must be taken in forming the lumped parameter model of the structural member. Fortunately, the lower frequencies, which are normally those of greatest engineering concern, are usually found with adequate accuracy using a reasonable number of lumps in the lumped parameter model. A point matrix representing the most common of lumped parameter models-the lumped mass model-was derived in Section II.6, Eq. (II.82). Lumped mass matrices are given in Table 11-21.

In a lumped mass beam model a beam with distributed mass is replaced by point masses joined by massless beams (Fig. III-12). The global transfer matrix \mathbf{U} for a lumped mass model is pieced together in the familiar fashion:

$$
\begin{equation*}
\mathbf{z}_{x=L}=\mathbf{U}^{M+1} \mathbf{U}_{M} \mathbf{U}^{M} \cdots \mathbf{U}_{k} \mathbf{U}^{k} \cdots \mathbf{U}_{1} \mathbf{U}^{1} \mathbf{z}_{0}=\mathbf{U} \mathbf{z}_{0} \tag{III.31}
\end{equation*}
$$

where \mathbf{U}_{k} are the point matrices [Eq. (II.82)] and the \mathbf{U}^{k} are the field matrices for the massless beam segments [i.e., Eqs. (II.32)].

Figure III-12: Lumped mass modeling.

Example III. 8 Transfer Matrix Method for a Lumped Mass Beam Model
Suppose that the mass of the beam of Example III. 7 is lumped as shown in Fig. III-13. Find the natural frequencies using the transfer matrix method.

In transfer matrix form

$$
\begin{equation*}
\mathbf{z}_{L}=\mathbf{z}_{d}=\mathbf{U}^{3} \mathbf{U}_{c} \mathbf{U}^{2} \mathbf{U}_{b} \mathbf{U}^{1} \mathbf{z}_{a}=\mathbf{U} \mathbf{z}_{a} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{U}^{1}=\left[\begin{array}{cccc}
1 & -\ell_{1} & -\ell_{1}^{3} / 6 E I & -\ell_{1}^{2} / 2 E I \\
0 & 1 & \ell_{1}^{2} / 2 E I & \ell_{1} / E I \\
0 & 0 & 1 & 0 \\
0 & 0 & \ell_{1} & 1
\end{array}\right] \tag{2}\\
& \mathbf{U}^{2}=\left[\begin{array}{cccc}
1 & -2 \ell_{1} & -8 \ell_{1}^{3} / 6 E I & -4 \ell_{1}^{2} / 2 E I \\
0 & 1 & 4 \ell_{1}^{2} / 2 E I & 2 \ell_{1} / E I \\
0 & 0 & 1 & 0 \\
0 & 0 & 2 \ell_{1} & 1
\end{array}\right] \tag{3}\\
& \mathbf{U}^{3}=\mathbf{U}^{1} \tag{4}\\
& \mathbf{U}_{b}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-m_{1} \omega^{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{5}\\
& \mathbf{U}_{c} \tag{6}
\end{align*}
$$

$$
\begin{aligned}
& \ell_{1}=\ell_{3}=\frac{1}{2} \ell_{2}=20 \mathrm{in.} \\
& m_{1}=m_{2}=\left(\ell_{1}+\frac{1}{2} \ell_{2}\right) \rho=(20+20) \times 2.912 \times 10^{-3}=0.1165 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{in} .
\end{aligned}
$$

Figure III-13: Lumped mass model of the simply supported beam of Fig. III-11.

Substitution of the foregoing results into 1 gives

$$
\mathbf{U}=\mathbf{U}^{3} \mathbf{U}_{c} \mathbf{U}^{2} \mathbf{U}_{b} \mathbf{U}^{1}=\left[\begin{array}{cccc}
\bar{U}_{w w} & \bar{U}_{w \theta} & \bar{U}_{w V} & \bar{U}_{w M} \tag{7}\\
\bar{U}_{\theta w} & \bar{U}_{\theta \theta} & \bar{U}_{\theta V} & \bar{U}_{\theta M} \\
\bar{U}_{V w} & \bar{U}_{V \theta} & \bar{U}_{V V} & \bar{U}_{V M} \\
\bar{U}_{M w} & \bar{U}_{M \theta} & \bar{U}_{M V} & \bar{U}_{M M}
\end{array}\right]
$$

where $\bar{U}_{i j}=\left.U_{i j}\right|_{x=L}$ are components of \mathbf{U} evaluated at $x=L$ (i.e., at d).
Application of the boundary conditions $w_{a}=M_{a}=w_{d}=M_{d}=0$ to $\mathbf{z}_{d}=\mathbf{U} \mathbf{z}_{a}$ leads to the homogeneous relations

$$
\begin{align*}
\bar{U}_{w \theta} \theta_{a}+\bar{U}_{w V} V_{a} & =0 \\
\bar{U}_{M \theta} \theta_{a}+\bar{U}_{M V} V_{a} & =0 \tag{8}
\end{align*}
$$

For nontrivial solutions, the determinant of the coefficients θ_{a} and V_{a} must be zero; that is,

$$
\begin{equation*}
\nabla=\bar{U}_{w \theta} \bar{U}_{M V}-\bar{U}_{w V} \bar{U}_{M \theta}=0 \tag{9}
\end{equation*}
$$

From (7) it is found that

$$
\begin{align*}
& \bar{U}_{w \theta}=-4 \ell_{1}-\frac{\ell_{1}^{4}}{2 E I}\left(9 m_{1}+m_{2}\right) \omega^{2}-\frac{2 m_{1} m_{2} \ell_{1}^{7}}{9 E^{2} I^{2}} \omega^{4} \\
& \bar{U}_{M V}=4 \ell_{1}+\frac{\ell_{1}^{4}}{2 E I}\left(9 m_{2}+m_{1}\right) \omega^{2}+\frac{2 m_{1} m_{2} \ell_{1}^{7}}{9 E^{2} I^{2}} \omega^{4} \tag{10}\\
& \bar{U}_{w V}=-\frac{32 \ell_{1}^{3}}{3 E I}-\frac{3\left(m_{1}+m_{2}\right) \ell_{1}^{6}}{4 E^{2} I^{2}} \omega^{2}-\frac{1}{27} \frac{m_{1} m_{2} \ell_{1}^{9}}{E^{3} I^{3}} \omega^{4} \\
& \bar{U}_{M \theta}=3 \ell_{1}^{2}\left(m_{1}+m_{2}\right) \omega^{2}+\frac{4 m_{1} m_{2} \ell_{1}^{5}}{3 E I} \omega^{4}
\end{align*}
$$

Substitute the numerical values of $E, I, m_{1}=m_{2}$, and ℓ_{1} into (10). Then (9) becomes the frequency equation

$$
\begin{equation*}
\omega^{4}-\left(2.896 \times 10^{5}\right) \omega^{2}+0.82855 \times 10^{10}=0 \tag{11}
\end{equation*}
$$

The roots of this polynomial are

$$
\begin{equation*}
\omega_{1}=179.415 \mathrm{rad} / \mathrm{s}=28.555 \mathrm{~Hz}, \quad \omega_{2}=507.356 \mathrm{rad} / \mathrm{s}=80.748 \mathrm{~Hz} \tag{12}
\end{equation*}
$$

Note that the first natural frequency is quite close to the more precise results of Example III.7, although slightly lower. The "rule of thumb" is that one-half of the frequencies obtained using a lumped mass model should be considered as being suffi-
ciently accurate to be useful. Also, normally the lumped mass model provides values somewhat lower than the correct natural frequencies.

Note that the frequency equation of Eq. (11), Example III.8, is a polynomial in ω^{2}. It is of interest that the global transfer matrix \mathbf{U} and hence ∇ can always be expressed in terms of a polynomial in ω^{2} for lumped mass systems. Since the frequency equation is also a polynomial, the cumbersome determinant search technique for finding natural frequencies can be replaced by efficient, standard polynomial root-solving routines [III.2]. However, for large systems and higher frequencies, numerical instabilities may occur.

Responses due to arbitrary time-dependent applied loading or prescribed initial conditions are considered in Section III.7. In the following section we examine the response of a member to cyclic loading. After some time the initial displacement and velocity are of no concern and the member responds in a cyclic fashion. This is referred to as steady-state motion.

Steady-State Motion

Assume that an undamped beam is excited by a cyclic loading, in particular, by the harmonic loading $p_{z}(x, t)=p_{z}(x) \sin \Omega t$. Permit the motion to continue until the effect of any irregular starting (initial) conditions dies out. Then, all of the state variables of this elastic member will respond with the same harmonic motion. Thus,

$$
\begin{array}{ll}
w(x, t)=w(x) \sin \Omega t & \theta(x, t)=\theta(x) \sin \Omega t \\
V(x, t)=V(x) \sin \Omega t & M(x, t)=M(x) \sin \Omega t \tag{III.32}
\end{array}
$$

This is one form of steady-state motion. Unlike the response frequencies for free motion that are found from the condition $\nabla=0$, the frequency Ω of the loading and response is specified input information for the problem and as such is a known variable.

Substitution of Eqs. (III.32) in Eqs. (III.13) leads to

$$
\begin{align*}
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)-\rho \Omega^{2} w & =p_{z}(x) \\
V(x) & =-\frac{d}{d x}\left(E I \frac{d^{2} w}{d x^{2}}\right) \quad \text { (higher-order form) } \tag{III.33a}\\
M(x) & =-E I \frac{d^{2} w}{d x^{2}} \\
\theta(x) & =-\frac{d w}{d x}
\end{align*}
$$

and

$$
\begin{align*}
\frac{d w}{d x} & =-\theta \\
\frac{d \theta}{d x} & =\frac{M}{E I} \quad \text { (first-order form) } \\
\frac{d V}{d x}+\rho \Omega^{2} w & =-p_{z}(x) \tag{III.33b}\\
\frac{d M}{d x} & =V
\end{align*}
$$

The problem has been reduced to one of statics. Since the governing equations (III.33) with $p_{z}(x)=0$ are identical to those for the free motion of a beam [Eqs. (III.19)] if $\omega=\Omega$, the solution to Eqs. (III.33) is given by the transfer matrices tabulated in this book in the dynamic response sections. These transfer matrices (with $\omega=\Omega$) are then used in precisely the fashion employed in the static response problems. That is, the loading functions are developed, field changes taken into account, and initial parameters evaluated using the static response tables. Upon completion of the static solution to find $w(x), \theta(x), V(x)$, and $M(x)$, these variables are inserted in Eqs. (III.32) to give the full spatial and temporal solution [i.e., $w(x, t), \theta(x, t), V(x, t), M(x, t)]$.

It is noteworthy that this steady-state response can encompass any loading, inspan condition, change in cross section or material, and nonhomogeneous boundary condition that can be accounted for by a static solution.

If the forcing frequency Ω coincides with one of the natural frequencies, then, as in the case of free motion, the denominator (∇) in the initial parameter equations will be zero. This means that the initial parameters are indeterminate, as well they should be since physically this situation corresponds to a state of resonance response.

Indeterminate In-Span Conditions

Such in-span conditions as rigid supports and releases require special attention because, unlike the in-span concentrated force, spring, and mass considered earlier in this appendix, there is insufficient information available at the location of the condition to take it into account in the response expressions as the progressive matrix multiplications proceed across the condition. This becomes evident if a rigid support is considered to be an infinitely stiff spring. The reaction force R_{b} in the spring at x_{b} is proportional to the compression of the spring, i.e., $R_{b}=k w_{b}$, where k is the spring rate. This reaction becomes an unknown force at a rigid in-span support since then $R_{b}=k w_{b}=(k=\infty)\left(w_{b}=0\right)$. Unfortunately, the condition $w_{b}=0$ at x_{b} cannot be used to evaluate the unknown R_{b} as the transfer matrix multiplication moves across x_{b}. A condition such as this is sometimes referred to as being an in-span indeterminate. Other in-span indeterminates for beams are moment releases, shear releases, and angle guides, as shown in Fig. III-14. In each case, for each new unknown created there is a new condition to be satisfied.

In-Span Indeterminate Condition	Fixed State Variable ${ }^{a}$	Discontinuous State Variable ${ }^{\text {b }}$
1. Rigid Support	W	V
गीता,		
2. Moment Release, (Hinge) \qquad	M	θ
3. Shear Release	v	w
4. Angle Guide 	θ	M

Figure III-14: In-span indeterminate conditions.

Several methods are available for incorporating these in-span conditions into the solution.

Increase in Number of Unknowns One method for including these in-span conditions is simply to expand the initial state vector to introduce each new unknown as it occurs. For example, consider the portion of the beam shown in Fig. III-15a, where the left end of the beam is hinged and a rigid in-span support occurs at $x=x_{b}$. In this section, superscripts indicate the element involved and the subscripts denote locations. For the left-end conditions of $w_{a}=M_{a}=0$, the initial state vector can be

Figure III-15: Portion of beam with in-span rigid support: (a) zero deflection at support; (b) imposed deflection of magnitude \bar{w}_{b}.
written as

$$
\mathbf{z}_{a}=\left[\begin{array}{c}
0 \tag{III.34}\\
\theta_{a} \\
V_{a} \\
0
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
\theta_{a} \\
V_{a}
\end{array}\right]=\mathbf{V}_{a} \hat{\mathbf{z}}_{a}
$$

The state vector just to the left of node b would be

$$
\begin{align*}
\mathbf{z}_{b}^{-} & =\mathbf{U}^{1} \mathbf{V}_{a} \hat{\mathbf{z}}_{a}+\overline{\mathbf{z}}_{b}^{1}=\mathbf{V}_{b}^{1} \hat{\mathbf{z}}_{a}+\overline{\mathbf{z}}_{b}^{1} \\
& =\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22} \\
V_{31} & V_{32} \\
V_{41} & V_{42}
\end{array}\right] \hat{\mathbf{z}}_{a}+\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]_{b}=\left[\begin{array}{c}
0 \\
\theta \\
V \\
M
\end{array}\right]_{b} \tag{III.35}
\end{align*}
$$

where $\mathbf{V}_{b}^{1}=\mathbf{U}^{1} \mathbf{V}_{a}$. Just to the right of node b, upon inclusion of the effect of the unknown reaction of magnitude $R_{b}=\Delta V_{b}$, the state vector becomes

$$
\mathbf{z}_{b}^{+}=\left[\begin{array}{c}
0 \tag{III.36}\\
\theta \\
V \\
M
\end{array}\right]_{b}+\left[\begin{array}{c}
0 \\
0 \\
\Delta V_{b} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
V_{11} & V_{12} & 0 \\
V_{21} & V_{22} & 0 \\
V_{31} & V_{32} & 1 \\
V_{41} & V_{42} & 0
\end{array}\right]\left[\begin{array}{c}
\theta_{a} \\
V_{a} \\
\Delta V_{b}
\end{array}\right]+\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]_{b}
$$

This procedure can continue, adding a new unknown at each new in-span indeterminate. The unknown in-span variables and the two unknown initial state variables are obtained from the equations arising from the prescribed conditions at the in-span indeterminates [e.g., $w_{b}=0$ in Eq. (III.36)], as well as the two right-end boundary conditions.

Progressive Elimination of Unknowns Another feasible approach for the inclusion of in-span indeterminates is to proceed as just outlined but to eliminate an unknown each time an indeterminate condition occurs. This procedure is readily generalized and automated for use in a structural member analysis computer program.

To illustrate the progressive elimination of unknowns, consider the beam of Fig. III-15b, which is the same beam portion just treated with the support of $x=x_{b}$ lowered a height \bar{w}_{b}. This seemingly complicated constraint is included to illustrate that quite general conditions are readily taken into account. For this case, the condition of a prescribed displacement inserted in Eq. (III.35) can be employed to eliminate one of the initial state variables, either θ_{a} or V_{a}. That is, Eq. (III.35) would appear as

$$
\mathbf{z}_{b}^{-}=\mathbf{V}_{b}^{1} \hat{\mathbf{z}}_{a}+\overline{\mathbf{z}}_{b}^{1}=\left[\begin{array}{ll}
V_{11} & V_{12} \tag{III.37}\\
V_{21} & V_{22} \\
V_{31} & V_{32} \\
V_{41} & V_{42}
\end{array}\right]\left[\begin{array}{c}
\theta_{a} \\
V_{a}
\end{array}\right]+\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right]_{b}=\left[\begin{array}{c}
\bar{w}_{b} \\
\theta_{b} \\
V_{b} \\
M_{b}
\end{array}\right]
$$

and if we choose to eliminate V_{a}, the first equation in Eq. (III.37) gives

$$
\begin{equation*}
V_{a}=-\left(1 / V_{12}\right)\left(V_{11} \theta_{a}-\bar{w}_{b}+z_{1}\right) \tag{III.38}
\end{equation*}
$$

Substitute this into Eq. (III.37) to eliminate V_{a} and proceed beyond the support, introducing the new unknown reaction ΔV_{b} :

$$
\begin{align*}
\mathbf{z}_{b}^{+}=\left[\begin{array}{c}
0 \\
0 \\
\Delta V_{b} \\
0
\end{array}\right]+\mathbf{z}_{b}^{-}= & {\left[\begin{array}{cc}
V_{11}-V_{12} V_{11} / V_{12} & 0 \\
V_{21}-V_{22} V_{11} / V_{12} & 0 \\
V_{31}-V_{32} V_{11} / V_{12} & 1 \\
V_{41}-V_{42} V_{11} / V_{12} & 0
\end{array}\right]\left[\begin{array}{c}
\theta_{a} \\
\Delta V_{b}
\end{array}\right] } \\
& +\left[\begin{array}{c}
\bar{w}_{b} \\
\left(\bar{w}_{b}-z_{1}\right) V_{22} / V_{12}+z_{2} \\
\left(\bar{w}_{b}-z_{1}\right) V_{32} / V_{12}+z_{3} \\
\left(\bar{w}_{b}-z_{1}\right) V_{42} / V_{12}+z_{4}
\end{array}\right] \mathbf{V}_{b}^{2} \hat{\mathbf{z}}_{b}+\overline{\mathbf{z}}_{b}^{2} \tag{III.39}
\end{align*}
$$

Now to proceed to the next in-span indeterminate condition (or the right boundary, whichever occurs first) and utilize the new known condition to eliminate the unknown ΔV_{b}. This process continues until the right boundary is reached and the two current unknowns can be evaluated.

Numerical Difficulties

The transfer matrix method with its assembly of the overall transfer matrix by progressive multiplication of element matrices tends to encounter numerical difficulties. This is hardly surprising as an applied loading at one end of a chainlike structure may have little effect on the response at a distant end. The sources of the numerical problems and techniques for overcoming them are treated in depth in such references as [III.4] and [III.5].

Sources of Numerical Difficulties The accumulation of roundoff and truncation errors by the progressive multiplication of the form

$$
\begin{equation*}
\mathbf{z}_{j}=\mathbf{U}^{j} \cdots \mathbf{U}^{2} \mathbf{U}^{1} \mathbf{z}_{a}=\mathbf{U} \mathbf{z}_{a} \tag{III.40}
\end{equation*}
$$

is one source of numerical difficulties of the transfer matrix method. Rather than converging to \mathbf{z}_{j}, this expression can converge to the eigenvector (say $\tilde{\mathbf{z}}$) of the first eigenvalue of \mathbf{U}. This can occur if the vectors in \mathbf{U} become linearly dependent and, as a result, the determinant of the system of equations will approach the value zero. Even if \mathbf{z}_{a} is known precisely, the solution can converge to $\tilde{\mathbf{z}}$.

Another source of numerical difficulties occurs when the transfer matrix procedure involves the difference of large numbers. For computer calculations in which a limited number of digits are retained, this can lead to inaccuracies. This problem can arise, for example, if a very stiff spring is included in the model or if high natural frequencies are being calculated. Also, this difficulty can be anticipated if the effect of occurrences on one boundary is small on the other boundary so that the calculation for the determination of the initial conditions $\left(\mathbf{z}_{a}\right)$ can involve the difference between large numbers.

Corrective Measures The procedures to overcome the numerical difficulties inherent in the transfer matrix process are characterized by a division of the structural system into intervals and the application of a solution technique that avoids the numerical difficulties. This would appear to be counterproductive since it violates the fundamental "spirit" of the transfer matrix method and its sequence of matrix manipulations. However, this new subdivision solution can be more efficient as measured by operation counts than the usual transfer matrix procedure as well as leading to a sufficiently accurate solution. An effective technique to counter the numerical difficulties is the Ricatti transfer matrix method of Ref. [III.5]. Several other corrective methods are outlined here.

In-Span State Variables as New Unknowns Let the structural system be divided into subintervals as shown in Fig. III-16. These new intervals need not correspond to the elements originally employed in setting up the transfer matrix formulation. However, each interval should be chosen to be sufficiently small so as to assure that no numerical error is introduced in expressing a state vector at one station, say c, in terms of the state vector at the preceding station, say b, using transfer matrices. The in-span state variables of $\mathbf{z}_{b}, \mathbf{z}_{c}, \mathbf{z}_{d}, \ldots$ are then treated as unknowns.

Suppose that the overall transfer matrices between the new in-span stations b, c, d, \ldots, each of which may involve several progressive transfer matrix multiplications corresponding to the elements of the original model, are given by

$$
\begin{equation*}
\mathbf{z}_{b}=\mathbf{U}^{1} \mathbf{z}_{a}, \quad \mathbf{z}_{c}=\mathbf{U}^{2} \mathbf{z}_{b}, \quad \mathbf{z}_{d}=\mathbf{U}^{3} \mathbf{z}_{c}, \ldots \tag{III.41}
\end{equation*}
$$

To establish a system of equations with $\mathbf{z}_{a}, \mathbf{z}_{b}, \ldots$ as the unknowns, rewrite Eq. (III.41) as

$$
\begin{aligned}
& -\mathbf{U}^{1} \mathbf{z}_{a}+\mathbf{I}_{b} \quad=0 \\
& -\mathbf{U}^{2} \mathbf{z}_{b}+\mathbf{I} \mathbf{z}_{c} \quad=0 \\
& -\mathbf{U}^{3} \mathbf{z}_{c}+\mathbf{I} \mathbf{z}_{d}=0 \\
& \vdots
\end{aligned}
$$

Figure III-16: Division of a system into intervals.
or in matrix form

This relationship is readily modified to show the applied loadings. This set of equations can be solved for $\mathbf{z}_{a}, \mathbf{z}_{b}, \ldots$ using any reliable linear equation solver. Boundary and in-span conditions of any sort are readily incorporated into Eq. (III.43).

Use of a Displacement or Force Method One of the simplest procedures to overcome the numerical difficulties of the transfer matrix method is to convert the transfer matrices into stiffness or flexibility matrices, as explained in Appendix II, and then utilize the displacement or force method, as appropriate, to solve for the unknowns. The transfer matrices chosen can correspond in length to the original element models or to the other intervals (e.g., those of Fig. III-16). Boundary and in-span conditions are often easier to incorporate during the displacement or force method stage of the solution than during the development of the transfer matrices. The displacement and force methods are to be discussed in the following sections. Since, in practice, the displacement method is employed more than the force method for large systems and hence is the more familiar of the two, the displacement method is usually the best choice. After the displacements at the nodes are computed and the forces at the nodes are determined using the stiffness matrices, the transfer matrices can be used to print out the displacements and forces along the member. An operations count shows that the combined transfer matrix-displacement method is more efficient than the use of pure transfer matrices.

Frontal Solution Procedure One of the better solution procedures for solving the system of equations for a displacement method is the frontal approach, which is an element-by-element technique proceeding like a "wavefront" spreading over the system. This type of procedure can be formulated explicitly in terms of transfer matrix equations.

With a frontal transfer matrix approach the initial unknowns \mathbf{z}_{a} at the left end a are replaced by new unknowns at point b. This process is continued, from b to c, from c to d, and so on. This is a condensation procedure that can be considered as the progressive replacement of the structure by equivalent springs (Fig. III-17). See Ref. [III.1] for details.

III. 2 GENERAL STRUCTURAL SYSTEMS

The displacement method is the dominant technique currently in use for analyzing general structural systems. An alternative solution technique is the force method.

(Move initial unknowns from a to b)

Figure III-17: Frontal procedure for solving transfer matrix problems.

Although the transfer matrix method applies only for structures with a linelike geometry, the force and displacement methods are appropriate for any geometry. For the transfer matrix method the system matrix remains small regardless of the system complexity, while the force and displacement methods lead to large system matrices whose size depends on the complexity of the structure. We begin the study of the force and displacement methods by defining rather cumbersome notation. See Table III- 2 .

Coordinate Systems, Definitions, and Degrees of Freedom

Network structures are usually modeled as a finite number of elements connected at nodes. Only nodal variables such as forces and displacements will occur in the governing equations. This is said to be a spatially discretized model (Fig. III-18).

(a)

(b)

Figure III-18: Spatially discretized model with elements: (a) framework model with rod elements connected at nodes; (b) three-dimensional model with solid elements.

Figure III-19: Global coordinates X, Y, Z and nodal displacements and forces at nodes i and j.

The model may contain one-, two-, or three-dimensional elements, as required by the system. Such models are often called finite-element models, and the solution technology is called the finite-element method.

Nodal Variables The location of the nodes is described in a global coordinate system (X, Y, Z). At each node, nodal forces and displacements are defined (Fig. III-19). These system forces and displacements are the unknowns. After the nodal forces and displacements are calculated, the internal forces and displacements between the nodes of an element are computed.

The degrees of freedom (DOFs) of a node are the independent coordinates (displacements) essential for completely describing the motion of a node. For a general solid, each node can have six DOFs: three translations and three rotations. Three forces and three moments correspond to these DOFs. Thus, at each node of a solid the following displacements and forces occur:

U_{X}	U_{Y}	U_{Z}	three translations
Θ_{X}	Θ_{Y}	Θ_{Z}	three rotations
P_{X}	P_{Y}	P_{Z}	three forces
M_{X}	M_{Y}	M_{Z}	three moments

Systems forces and displacement are designated by capital letters. In general, in solid mechanics terminology, the terms forces and displacements include moments and rotations, respectively.

The forces and displacements at each node are written in vector form as

$$
\mathbf{P}_{j}=\left[\begin{array}{c}
P_{X} \tag{III.45}\\
P_{Y} \\
P_{Z} \\
M_{X} \\
M_{Y} \\
M_{Z}
\end{array}\right]_{j}, \quad \mathbf{V}_{j}=\left[\begin{array}{c}
U_{X} \\
U_{Y} \\
U_{Z} \\
\Theta_{X} \\
\Theta_{Y} \\
\Theta_{Z}
\end{array}\right]_{j}
$$

The subscript j designates the j th node. For the whole structure, the nodal forces \mathbf{P} and nodal displacements \mathbf{V} are assembled as

$$
\mathbf{P}=\left[\begin{array}{c}
\mathbf{P}_{1} \tag{III.46}\\
\mathbf{P}_{2} \\
\vdots \\
\mathbf{P}_{j} \\
\vdots \\
\mathbf{P}_{N}
\end{array}\right], \quad \mathbf{V}=\left[\begin{array}{c}
\mathbf{V}_{1} \\
\mathbf{V}_{2} \\
\vdots \\
\mathbf{V}_{j} \\
\vdots \\
\mathbf{V}_{N}
\end{array}\right]
$$

where N is the number of nodes.
Element Variables Consider element forces and displacements aligned with the system coordinates X, Y, Z. At nodes a and b of element i, element forces \mathbf{p}^{i} and corresponding displacements \mathbf{v}^{i} act (Fig. III-20):

$$
\mathbf{p}^{i}=\left[\begin{array}{c}
\mathbf{p}_{a}^{i} \tag{III.47}\\
\mathbf{p}_{b}^{i}
\end{array}\right]=\left[\begin{array}{c}
F_{X a}^{i} \\
F_{Y a}^{i} \\
F_{Z a}^{i} \\
F_{X b}^{i} \\
F_{Y b}^{i} \\
F_{Z b}^{i}
\end{array}\right], \quad \mathbf{v}^{i}=\left[\begin{array}{c}
\mathbf{v}_{a}^{i} \\
\mathbf{v}_{b}^{i}
\end{array}\right]=\left[\begin{array}{c}
u_{X a}^{i} \\
u_{Y a}^{i} \\
u_{Z a}^{i} \\
u_{X b}^{i} \\
u_{Y b}^{i} \\
u_{Z b}^{i}
\end{array}\right]
$$

Moments and rotations can be included in \mathbf{p}^{i} and \mathbf{v}^{i}, respectively.
The element stiffness matrix \mathbf{k}^{i} relates the element forces \mathbf{p}^{i} and element displacements \mathbf{v}^{i} :

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
\mathbf{p}_{a} \\
\mathbf{p}_{b}
\end{array}\right]^{i}} & =\left[\begin{array}{ll}
\mathbf{k}_{a a} & \mathbf{k}_{a b} \\
\mathbf{p}^{i}
\end{array} \mathbf{k}_{b a}\right. \tag{III.48}\\
\mathbf{k}_{b b}
\end{array}\right]^{i}\left[\begin{array}{c}
\mathbf{k}_{a} \\
\mathbf{k}^{i} \\
\mathbf{v}_{b}
\end{array} \mathbf{v}^{i} \mathbf{v}^{i}\right.
$$

In Eq. (III.48), the first subscript of the submatrices designates the node or location for which the equation is established, while the second subscript identifies the DOF "causing" or corresponding to the force.

In addition to the global reference frame X, Y, Z, a new coordinate system along with corresponding forces and displacements is defined. A local reference frame

Figure III-20: Some forces and displacements aligned with global coordinates X, Y, Z at ends a and b of element i. Moments and rotations could also have been shown.

Figure III-21: Local coordinate system, local forces, and local displacements of element i. Moments and rotations could also have been shown.
x, y, z is aligned in a natural direction along the element. The element forces, displacements, and stiffness matrix in the local element coordinate system appear as (Fig. III-21)

$$
\begin{align*}
{\left[\begin{array}{c}
\tilde{\mathbf{p}}_{a} \\
\tilde{\mathbf{p}}_{b}
\end{array}\right]^{i} } & =\left[\begin{array}{cc}
\tilde{\mathbf{k}}_{a a} & \tilde{\mathbf{k}}_{a b} \\
\tilde{\mathbf{k}}_{b a} & \tilde{\mathbf{k}}_{b b}
\end{array}\right]^{i}\left[\begin{array}{c}
\tilde{\mathbf{v}}_{a} \\
\tilde{\mathbf{v}}_{b}
\end{array}\right]^{i} \tag{III.49}\\
\tilde{\mathbf{k}}^{i} & \tilde{\mathbf{v}}^{i}
\end{align*}
$$

The local coordinate quantities are indicated with a tilde.
For a bar (Fig. III-21),

$$
\tilde{\mathbf{p}}^{i}=\left[\begin{array}{c}
\tilde{\mathbf{p}}_{a}^{i} \\
\tilde{\mathbf{p}}_{b}^{i}
\end{array}\right]=\left[\begin{array}{c}
\tilde{N}_{a} \\
\tilde{V}_{y a} \\
\tilde{V}_{z a} \\
\tilde{N}_{b} \\
\tilde{V}_{y b} \\
\tilde{V}_{z b}
\end{array}\right] \quad \tilde{\mathbf{v}}^{i}=\left[\begin{array}{c}
\tilde{\mathbf{v}}_{a} \\
\tilde{\mathbf{v}}_{b}
\end{array}\right]=\left[\begin{array}{c}
\tilde{u}_{a} \\
\tilde{w}_{y a} \\
\tilde{w}_{z a} \\
\tilde{u}_{b} \\
\tilde{w}_{y b} \\
\tilde{w}_{z b}
\end{array}\right]
$$

which could also include moments and rotations. In the notation of Table 13-15, $\tilde{w}_{y}=\tilde{v}$ and $\tilde{w}_{z}=\tilde{w}$.

Coordinate Transformations

All forces and displacements for the elements are referred to a common reference frame by transforming to the global coordinates the nodal forces and displacements expressed in the local coordinates.

To transform global to local coordinates in two dimensions, use (Fig. III-22)

$$
\begin{align*}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] } & =\left[\begin{array}{lll}
\cos x X & \cos x Y & \cos x Z \\
\cos y X & \cos y Y & \cos y Z \\
\cos z X & \cos z Y & \cos z Z
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \tag{III.50}
\end{align*}
$$

Figure III-22: Right-handed global (X, Y, Z) and local (x, y, z) coordinate systems. Positive angle α is shown. The vector corresponding to α is positive along the positive y direction.
where, for example, $x X$ is the angle between the x axis and the X axis. Forces and displacements transform in a similar fashion. Thus,

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
\tilde{\mathbf{p}}_{a} \\
\tilde{\mathbf{p}}_{b}
\end{array}\right]^{i}} & =\left[\begin{array}{cc}
\mathbf{T}_{a a}^{i} & \mathbf{0} \\
\tilde{\mathbf{p}}^{i} & \mathbf{T}_{b b}^{i}
\end{array}\right]
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{a} \tag{III.51}\\
\mathbf{p}_{b}
\end{array}\right]^{i} \quad \text { and } \quad \tilde{\mathbf{v}}^{i}=\mathbf{T}^{i} \mathbf{v}^{i}
$$

where the transformation matrix \mathbf{T}^{i} is defined by

$$
\mathbf{T}^{i}=\left[\begin{array}{ll}
\mathbf{T}_{a a} & \mathbf{T}_{a b} \\
\mathbf{T}_{b a} & \mathbf{T}_{b b}
\end{array}\right]^{i}
$$

with

$$
\begin{align*}
\mathbf{T}_{a a}^{i} & =\mathbf{T}_{b b}^{i}=\left[\begin{array}{ccc}
\cos x X & 0 & -\cos x Z \\
0 & 1 & 0 \\
\cos z X & 0 & \cos z Z
\end{array}\right]^{i} \\
& =\left[\begin{array}{ccc}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right]^{i}, \quad \mathbf{T}_{b a}^{i}=\mathbf{T}_{a b}^{i}=0 \tag{III.52}
\end{align*}
$$

with α (or $x X$), the angle between the (global) X coordinate and the (local) x coordinate. It is evident that $\mathbf{T}_{j j}^{i}, j=a$ or b of Eq. (III.52), satisfies

$$
\mathbf{T}_{j j}^{i T} \mathbf{T}_{j j}^{i}=\mathbf{I} \quad \text { also } \quad \mathbf{T}^{i T} \mathbf{T}^{i}=\mathbf{I}
$$

where the superscript T indicates a transpose and \mathbf{I} is the unit diagonal matrix. Since $\left(\mathbf{T}^{i}\right)^{-1} \mathbf{T}^{i}=\mathbf{I}$, it is observed that

$$
\begin{equation*}
\left(\mathbf{T}^{i}\right)^{-1}=\mathbf{T}^{i T} \tag{III.53}
\end{equation*}
$$

This relationship permits the transformation of forces and displacements from local to global coordinates to be written as

$$
\begin{align*}
{\left[\begin{array}{c}
\mathbf{p}_{a} \\
\mathbf{p}_{b}
\end{array}\right]^{i} } & =\left[\begin{array}{cc}
\mathbf{T}_{a a}^{i T} & \mathbf{0} \\
\mathbf{0} & \mathbf{T}_{b b}^{i T}
\end{array}\right]\left[\begin{array}{c}
\tilde{\mathbf{p}}_{a} \\
\tilde{\mathbf{p}}_{b}
\end{array}\right]^{i} \quad \text { and } \quad \mathbf{v}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{v}}^{i} \tag{III.54}\\
\mathbf{p}^{i} & \mathbf{T}^{i T}
\end{align*}
$$

It is essential that we are able to transform from one coordinate system to another. Observe that

$$
\mathbf{p}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{p}}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{k}}^{i} \tilde{\mathbf{v}}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{k}}^{i} \mathbf{T}^{i} \mathbf{v}^{i}
$$

Since $\mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}$, it is seen that the stiffness matrix transforms according to

$$
\begin{equation*}
\mathbf{k}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{k}}^{i} \mathbf{T}^{i} \tag{III.55}
\end{equation*}
$$

which is referred to as a congruent transformation. Under this transformation \mathbf{k}^{i} will be a symmetric matrix since $\tilde{\mathbf{k}}^{i}$ is symmetric.

III. 3 DISPLACEMENT METHOD

In practice, the displacement method is considered to be the "standard" method for the analysis of large structural systems. Although the displacement method can be formulated directly (direct stiffness method), it is normally considered to be a variationally based approach. It follows from the principle of virtual work. Since this principle is equivalent to the equations of equilibrium, the displacement method is also referred to as the equilibrium method.

Displacement Method Based on the Principle of Virtual Work

Suppose that the structure is modeled in terms of elements for which the responses are represented by forces and displacements at their ends. If there are M elements with internal end forces \mathbf{p}^{i} and displacements \mathbf{v}^{i} and applied end forces $\overline{\mathbf{p}}^{i}$ (including the effect of loads distributed along the element) and displacements $\overline{\mathbf{v}}^{i}$, the principle of virtual work (Appendix II), $\delta W_{i}+\delta W_{e}=0$, appears as

$$
\begin{align*}
-\sum_{i=1}^{M}\left(\delta W_{i}+\delta W_{e}\right)^{i} & =-\left(\delta W_{i}+\delta W_{e}\right) \\
& =\sum_{i=1}^{M} \delta \mathbf{v}^{i T} \mathbf{k}^{i} \mathbf{v}^{i}-\sum_{i=1}^{M} \delta \mathbf{v}^{i T} \mathbf{p}^{i} \\
& =\sum_{i=1}^{M} \delta \mathbf{v}^{i T}\left(\mathbf{k}^{i} \mathbf{v}^{i}-\mathbf{p}^{i}\right)=0 \tag{III.56}
\end{align*}
$$

where $\delta \mathbf{v}^{i}$ is a vector of virtual displacements and δW_{i} and δW_{e} are the internal and external virtual works, respectively. As explained in Appendix II, virtual displacements are small variations in the displacements that behave according to the principles of variational calculus. For our purposes, variations can be considered to behave like ordinary derivatives, although a virtual displacement does not represent a rate of change along a direction as does an ordinary derivative of a displacement.

Equation (III.56) represents the summation of internal and external virtual work down by the element forces at the nodes. Alternatively, this total virtual work can be expressed in terms of system responses \mathbf{P} and \mathbf{V}.

To ensure compatibility at the nodes, the end displacements of the various elements joined at each node must match the values of the displacements of the node. Assume that the local (element) end displacements $\tilde{\mathbf{v}}^{i}$ have been transformed to the directions of the global coordinate system (\mathbf{v}^{i}).

For the two-element, three-node structure of Fig. III-23, the nodal compatibility conditions take the form

$$
\begin{equation*}
\mathbf{v}_{a}^{1}=\mathbf{V}_{a} \quad \mathbf{v}_{b}^{1}=\mathbf{v}_{b}^{2}=\mathbf{V}_{b} \quad \mathbf{v}_{c}^{2}=\mathbf{V}_{c} \tag{III.57}
\end{equation*}
$$

which, in matrix notation, appear as

$$
\begin{align*}
{\left[\begin{array}{l}
\mathbf{v}^{1} \\
\mathbf{v}^{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{v}_{a}^{1} \\
\mathbf{v}_{b}^{1} \\
\mathbf{v}_{b}^{2} \\
\mathbf{v}_{c}^{2}
\end{array}\right] } & =\left[\begin{array}{c:c}
\mathbf{I} & \\
\hdashline & \mathbf{I} \\
\hdashline & \mathbf{I} \\
\hdashline & \\
\mathbf{v} & \mathbf{a}
\end{array}\right]
\end{align*}\left[\begin{array}{l}
\mathbf{V}_{a} \tag{III.58}\\
\mathbf{V}_{b} \\
\mathbf{V}_{c}
\end{array}\right]
$$

where I is the unit diagonal matrix. The Boolean matrix (containing null or unit values) a, known as the global kinematic, connectivity, locator, or incidence matrix, indicates which element is connected to which node. These compatibility conditions in essence transform a displacement vector \mathbf{v} containing some duplicate displacements (i.e., \mathbf{v}_{b}^{1} and \mathbf{v}_{b}^{2}), into a displacement vector \mathbf{V} with no redundant variables.

Write Eq. (III.56) in matrix rather than index summation form,

$$
\begin{equation*}
\sum_{i=1}^{M} \delta \mathbf{v}^{i T}\left(\mathbf{k}^{i} \mathbf{v}^{i}-\mathbf{p}^{i}\right)=\delta \mathbf{v}^{T}(\mathbf{k} \mathbf{v}-\mathbf{p})=0 \tag{III.59}
\end{equation*}
$$

Figure III-23: Three-node (a, b, c) two-element $(1,2)$ structure.
where

$$
\begin{align*}
& \mathbf{v}=\left[\begin{array}{c}
\mathbf{v}^{1} \\
\mathbf{v}^{2} \\
\vdots \\
\mathbf{v}^{M}
\end{array}\right] \text { is an unassembled displacement vector } \tag{III.60}\\
& \mathbf{p}=\left[\begin{array}{c}
\mathbf{p}^{1} \\
\mathbf{p}^{2} \\
\vdots \\
\mathbf{p}^{M}
\end{array}\right] \text { is an unassembled load vector } \tag{III.61}\\
& \mathbf{k}=\left[\begin{array}{llll}
\mathbf{k}^{1} & \\
& \mathbf{k}^{2} & \\
& & \ddots & \\
& & \mathbf{k}^{M}
\end{array}\right]=\operatorname{diag}\left[\mathbf{k}^{i}\right] \\
& \begin{array}{l}
\text { is an unassembled global } \\
\text { stiffness matrix }
\end{array}
\end{align*}
$$

Substitute $\mathbf{v}=\mathbf{a V}$ in Eq. (III.59) in order to write the principle of virtual work expression in terms of the system nodal displacements:

$$
\begin{equation*}
\delta \mathbf{v}^{T}(\mathbf{k} \mathbf{v}-\mathbf{p})=\delta \mathbf{V}^{T} \mathbf{a}^{T}(\mathbf{k} \mathbf{V} \mathbf{V}-\mathbf{p})=\delta \mathbf{V}^{T}\left(\mathbf{a}^{T} \mathbf{k a V}-\mathbf{a}^{T} \mathbf{p}\right)=0 \tag{III.62}
\end{equation*}
$$

The quantity

$$
\begin{equation*}
\mathbf{K}=\mathbf{a}^{T} \mathbf{k a} \tag{III.63}
\end{equation*}
$$

is defined as the "assembled" system stiffness matrix, and

$$
\begin{equation*}
\overline{\mathbf{P}}=\mathbf{a}^{T} \mathbf{p} \tag{III.64}
\end{equation*}
$$

is the assembled applied load vector. Thus, Eq. (III.62) becomes

$$
\delta \mathbf{V}^{T}(\mathbf{K} \mathbf{V}-\overline{\mathbf{P}})=0
$$

which implies that

$$
\begin{equation*}
\mathbf{K V}=\overline{\mathbf{P}} \tag{III.65}
\end{equation*}
$$

This is a set of algebraic equations for the unknown nodal displacements that represent the global statement of equilibrium. The matrices involved here are assembled in the sense that the duplications that occurred in \mathbf{v} [e.g., in Eq. (III.58), where $\mathbf{v}_{b}^{1}=\mathbf{v}_{b}^{2}$] were removed by introducing the compatibility conditions such that \mathbf{v} is replaced by aV. The system nodal displacements obtained from Eq. (III.65) can be used in computing forces, stresses, and other displacements.

The connectivity matrix a governs the assembly of the global stiffness matrix \mathbf{K}. However, the assembled matrix relationships $\mathbf{K}=\mathbf{a}^{T} \mathbf{k a}$ and $\overline{\mathbf{P}}=\overline{\mathbf{a}}^{T} \mathbf{p}$ are not of
great practical value, as this assembly is normally implemented as a superposition (i.e., an addition process).

The rationale underlying the assembly by summation is readily visualized using the two-element, three-node system of Fig. III-23. The stiffness matrix for element 1, which spans from a to b, can be written as [Eq. (III.48)]

$$
\mathbf{k}^{1}=\left[\begin{array}{ll}
\mathbf{k}_{a a} & \mathbf{k}_{a b} \tag{III.66}\\
\mathbf{k}_{b a} & \mathbf{k}_{b b}
\end{array}\right]
$$

where it is assumed that the necessary coordinate transformations have been implemented so that all variables and matrices are referred to the global coordinates. For element 2 , which begins at node b and ends at node c,

$$
\mathbf{k}^{2}=\left[\begin{array}{ll}
\mathbf{k}_{b b} & \mathbf{k}_{b c} \tag{III.67}\\
\mathbf{k}_{c b} & \mathbf{k}_{c c}
\end{array}\right]
$$

To obtain the global stiffness matrix \mathbf{K}, form $\mathbf{K}=\mathbf{a}^{T} \mathbf{k a}$:

$$
=\left[\begin{array}{c:c:c}
\mathbf{k}_{a a}^{1} & \mathbf{k}_{a b}^{1} & \tag{III.68}\\
\hdashline \mathbf{k}_{b a}^{1} & \mathbf{k}_{b b}^{1}+\mathbf{k}_{b b}^{2} & \mathbf{k}_{b c}^{2} \\
\hdashline & \mathbf{k}_{c b}^{2} & \mathbf{k}_{c c}^{2}
\end{array}\right]=\mathbf{K}
$$

It is evident from this matrix that the global stiffness matrix is assembled by summing element stiffness matrices of like subscripts. The unassembled stiffness matrix appears as

$$
\begin{aligned}
{\left[\begin{array}{l}
\mathbf{p}^{1} \\
\mathbf{p}_{2}
\end{array}\right] } & =\left[\begin{array}{c}
\mathbf{p}_{a}^{1} \\
\mathbf{p}_{b}^{1} \\
\mathbf{p}_{b}^{2} \\
\mathbf{p}_{c}^{2}
\end{array}\right]
\end{aligned}=\left[\begin{array}{ll}
{\left[\begin{array}{|c|}
\mathbf{k}^{1} \\
\\
\\
\\
\\
\mathbf{p} \\
\mathbf{k}^{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}^{1} \\
\mathbf{v}^{2}
\end{array}\right]=[\mathbf{k}]\left[\begin{array}{c}
\mathbf{v}_{a}^{1} \\
\mathbf{v}_{b}^{1} \\
\mathbf{v}_{b}^{2} \\
\mathbf{v}_{c}^{2}
\end{array}\right]} \\
\mathbf{k} & \mathbf{v}
\end{array}\right.
$$

whereas the assembled global stiffness matrix of Eq. (III.68) is

Apparently, all coefficients of \mathbf{K} either are taken directly from \mathbf{k}^{1} or \mathbf{k}^{2} or, as seen by the overlapping boxes, are the sum of certain \mathbf{k}^{1} and \mathbf{k}^{2} coefficients. The process of assembling the stiffness matrix \mathbf{K} by summation of those element stiffness matrix coefficients with identical subscripts, is written $\mathbf{K}_{i j}=\mathbf{k}_{i j}^{1}+\mathbf{k}_{i j}^{2}$. This summation process is made possible by carefully fitting the element stiffness matrix into the global nodal numbering system. This will be discussed in a later section.

Direct Derivation of Global Displacement Equations

The principle of virtual work leads to equations of equilibrium for displacements that satisfy compatibility requirements. The displacement relations of Eqs. (III.65) can be derived directly from the conditions of equilibrium. Return to the two-element, threenode system of Fig. III-23. At each node, sum all forces contributed by the elements joined at this node. These nodal equilibrium relations appear as

$$
\begin{aligned}
\mathbf{p}_{a}^{1} & =\overline{\mathbf{P}}_{a} \\
\mathbf{p}_{b}^{1}+\mathbf{p}_{b}^{2} & =\overline{\mathbf{P}}_{b} \\
\mathbf{p}_{c}^{2} & =\overline{\mathbf{P}}_{c}
\end{aligned}
$$

or

where \mathbf{b}^{*} is the global statics or equilibrium matrix. These relationships constitute the conditions of equilibrium between \mathbf{p} and $\overline{\mathbf{P}}$. The reciprocal relation is

$$
\begin{equation*}
\mathbf{p}=\mathbf{b} \overline{\mathbf{P}} \tag{III.72}
\end{equation*}
$$

Since \mathbf{b}^{*} is not necessarily a square matrix, in general, $\mathbf{b}^{*} \neq \mathbf{b}^{-1}$. However,

$$
\begin{equation*}
\mathbf{b}^{*} \mathbf{b}=\mathbf{I} \tag{III.73}
\end{equation*}
$$

whereas $\mathbf{b b}{ }^{*} \neq \mathbf{I}$. A comparison of Eqs. (III.59) and (III.71) indicates that ${ }^{\ddagger}$

$$
\begin{equation*}
\mathbf{b}^{*}=\mathbf{a}^{T} \tag{III.74}
\end{equation*}
$$

From Eqs. (III.71) and (III.74),

$$
\begin{equation*}
\mathbf{b}^{*} \mathbf{p}=\overline{\mathbf{P}}=\mathbf{a}^{T} \mathbf{p} \tag{III.75}
\end{equation*}
$$

[^38]Introduce into this relationship the set of unassembled stiffness equations,

$$
\begin{equation*}
\mathbf{p}=\mathbf{k} \mathbf{v} \tag{III.76}
\end{equation*}
$$

where $\mathbf{p}, \mathbf{k}, \mathbf{v}$ are defined in Eq. (III.61),

$$
\mathbf{a}^{T} \mathbf{k} \mathbf{v}=\overline{\mathbf{P}}
$$

Finally, from the nodal connectivity equations of Eq. (III.59),

$$
\begin{equation*}
\mathbf{a}^{T} \mathbf{k a V}=\overline{\mathbf{P}} \quad \text { or } \quad \mathbf{K V}=\overline{\mathbf{P}} \tag{III.77}
\end{equation*}
$$

which are the desired displacement equilibrium relations of Eqs. (III.65).

System Stiffness Matrix Assembled by Summation

Fundamental to the process of assembling a global stiffness matrix by summation is the proper identification of where an element fits into the system with its nodenumbering system. This can be accomplished with the aid of an incidence table that identifies each end of each element with a global node. For the two-bar-element, three-node system of Fig. III-23, the incidence table appears as follows:

Global Node Numbers Corresponding to Element End Numbers

Element	System Node Number Where Element Begins	System Node Number Where Element Ends
1	a	b
2	b	c

After the element ends are assigned to system nodes, the element stiffness coefficients are summed to provide the corresponding system stiffness coefficient. The formation of \mathbf{K} is equivalent to a loop summation calculation over all elements i,

$$
\begin{equation*}
\mathbf{K}_{j k} \leftarrow \mathbf{K}_{j k}+\mathbf{k}_{j k}^{i} \tag{III.78}
\end{equation*}
$$

where j and k are taken from the incidence table for each element i.
As is to be expected, a host of numerical schemes have been proposed for efficiently treating the matrices during the assembly process. Most of the procedures are concerned with how to avoid the need to fully develop all of the matrices.

Characteristics of Stiffness Matrices

Element and global stiffness matrices are symmetric. They are also positive definite. The symmetry property is useful since only terms on and to one side of the main

Figure III-24: Bandwidth. Typically, coefficients in the band are nonzero.
diagonal need to be utilized in a computer program. Several solution techniques for systems of linear equations can take advantage of the sparseness that tends to occur in stiffness matrices, especially if the nonzero terms occur close to the diagonal. This is a banded matrix. Proper choice of a numbering system for the degrees of freedom can lead to the nonzero terms being clustered close to the diagonal. Basically, to minimize the bandwidth (Fig. III-24), the degrees of freedom should be numbered such that the distance (difference between nodal numbers) from the main diagonal to the most remote nonzero term in a particular row of the stiffness matrix is minimized. Normally, consecutive numbering of nodes across the shorter dimension of a structure results in a small bandwidth.

There is a large literature (e.g., [III.6, III.7]) on efficient methods of retaining only the essential information in an analysis involving stiffness matrices. Methods have been developed (e.g., [III.7]-[III.10]) for the automatic renumbering of nodes so that the bandwidth is reduced.

Incorporation of Boundary Conditions

The boundary conditions can be introduced rather simply by ignoring those columns in \mathbf{K} of $\overline{\mathbf{P}}=\mathbf{K V}$ that correspond to zero (prescribed) displacements and ignoring those rows in $\overline{\mathbf{P}}=\mathbf{K V}$ for the corresponding unknown reactions. Proceed, then, to solve the remaining equations (a square matrix) for the unknown nodal displacements.

Several techniques are available whereby the boundary conditions are applied to the element stiffness matrices before they are assembled into global matrices (e.g., [III.6]).

Reactions and Internal Forces, Stress Resultants, and Stresses

The equations (rows) for reactions that are usually ignored as the system equations are solved can be reconstructed (after the rest of the equations are solved) and then utilized to calculate the reactions.

Element internal forces, stress resultants, or stress distributions are sometimes a bit difficult to calculate since only nodal displacements \mathbf{V} are determined directly in
a displacement method analysis. The element joint forces can be computed from

$$
\begin{equation*}
\mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i} \tag{III.79}
\end{equation*}
$$

if the displacement vector \mathbf{v}^{i} is available, perhaps from $\mathbf{v}=\mathbf{a V}$ [Eq. (III.58)]. Element forces and displacements in the local coordinate system are obtained using Eq. (III.51).

The distribution of response variables along a member (e.g., a beam or bar) can be computed using the transfer matrix method. Since the locally oriented displacements and forces are found by postprocessing the results of a global displacement analysis, the state vector is known at the ends of a member (or element). It is then a straightforward process to use transfer matrices to determine the distribution of these variables along a member.

Frames

To demonstrate the application of the displacement method, consider a frame or rigid frame, which is composed of beam elements in which bending and axial (extension and/or torsion) effects occur. The term frame sometimes includes pin-jointed trusses as well as rigid-jointed frames. Frame formulas are provided in Chapter 13.

Element Coordinate Transformations Consider two-dimensional frames with in-plane loading that lie in the $x z$ plane. Components of local and global forces and displacements in the local $x z$ and global $X Z$ coordinate systems are given in Fig. III-25. Transformation relations are also shown. As referred to the global coordinates, the forces and displacements at end a of the i th element of a plane frame can be represented as

$$
\mathbf{p}_{a}^{i}=\left[\begin{array}{c}
F_{X} \tag{III.80}\\
F_{Z} \\
M
\end{array}\right]_{a}^{i}, \quad \mathbf{v}_{a}^{i}=\left[\begin{array}{c}
u_{X} \\
u_{Z} \\
\theta
\end{array}\right]_{a}^{i}
$$

where $M_{a}^{i}=M_{Y a}^{i}$ and $\theta_{a}^{i}=\theta_{Y a}^{i}$. In terms of the local coordinates, the corresponding forces are designated as $\tilde{\mathbf{p}}_{a}^{i}$. The transformations from global to local coordinates follows from the geometry of Fig. III-25:

$$
\begin{aligned}
\tilde{N}_{a} & =F_{X a} \cos \alpha-F_{Z a} \sin \alpha=F_{X a} \cos x X+F_{Z a} \cos x Z \\
\tilde{V}_{a} & =F_{X a} \sin \alpha+F_{Z a} \cos \alpha=F_{X a} \cos z X+F_{Z a} \cos z Z \\
\tilde{M}_{a} & =M_{a}
\end{aligned}
$$

where, for example, $x X$ is the angle between the x axis and the X axis. In matrix notation, the local and global forces for end a of the i th element are related by

$$
\tilde{\mathbf{p}}_{a}^{i}=\mathbf{T}_{a a}^{i} \mathbf{p}_{a}^{i}
$$

(a)

$$
\tilde{p}^{i}=\left[\begin{array}{c}
\tilde{N}_{a} \\
\tilde{V}_{a} \\
\tilde{M}_{a} \\
\tilde{N}_{b} \\
\tilde{V}_{b} \\
\tilde{M}_{b}
\end{array}\right]^{i} \quad \tilde{v}^{i}=\left[\begin{array}{c}
\tilde{u}_{a} \\
\tilde{w}_{a} \\
\tilde{\boldsymbol{\theta}}_{a} \\
\tilde{u}_{b} \\
\tilde{w}_{b} \\
\tilde{\theta}_{b}
\end{array}\right]^{i}
$$

(b)

(d)
(c)

Figure III-25: Forces and displacements for a frame element. (a) Global coordinate system, nodal DOF, and system applied nodal loading. (b) Local coordinates, forces, and displacements on the ends of an element (sign convention 2). For right-handed global (X, Y, Z) and local (x, y, z) coordinate systems, the vector corresponding to a positive α is along the y axis. The angle α is measured from a global coordinate axis to the corresponding local coordinate axis. (c) Forces and displacements aligned along global coordinates on the ends of an element (sign convention 2). (d) Components of forces.
where

$$
\mathbf{T}_{a a}^{i}=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \tag{III.81}\\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]^{i}=\left[\begin{array}{ccc}
\cos x X & \cos x Z & 0 \\
\cos z X & \cos z Z & 0 \\
0 & 0 & 1
\end{array}\right]^{i}
$$

Displacements transform in the same fashion. These can be generalized as in Eq. (III.51).

The stiffness matrix in global coordinates [Eq. (III.55)] is represented as

$$
\mathbf{k}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{k}}^{i} \mathbf{T}^{i}=\left[\begin{array}{c|c}
\mathbf{k}_{j j}^{i} & \mathbf{k}_{j k}^{i} \tag{III.82}\\
\hline \mathbf{k}_{k j}^{i} & \mathbf{k}_{k k}^{i}
\end{array}\right]
$$

where

$$
\mathbf{T}^{i}=\left[\begin{array}{cc}
\mathbf{T}_{a a}^{i} & 0 \\
0 & \mathbf{T}_{b b}^{i}
\end{array}\right] \quad \text { with } \mathbf{T}_{a a}^{i}=\mathbf{T}_{b b}^{i} \text { given by Eq. (III.81) }
$$

$\mathbf{k}_{k j}^{i}$ are 3×3 matrices, and $\tilde{\mathbf{k}}^{i}$ is the element stiffness matrix of Eq. (II.61) with the addition of axial extension terms,

$$
\tilde{\mathbf{k}}^{i}=\left[\begin{array}{cccccc}
E A / \ell & 0 & 0 & -E A / \ell & 0 & 0 \tag{III.83}\\
0 & 12 E I / \ell^{3} & -6 E I / \ell^{2} & 0 & -12 E I / \ell^{3} & -6 E I / \ell^{2} \\
0 & -6 E I / \ell^{2} & 4 E I / \ell & 0 & 6 E I / \ell^{2} & 2 E I / \ell \\
-E A / \ell & 0 & 0 & E A / \ell & 0 & 0 \\
0 & -12 E I / \ell^{3} & 6 E I / \ell^{2} & 0 & 12 E I / \ell^{3} & 6 E I / \ell^{2} \\
0 & -6 E I / \ell^{2} & 2 E I / \ell & 0 & 6 E I / \ell^{2} & 4 E I / \ell
\end{array}\right]^{i}
$$

This stiffness matrix, which is referred to local coordinates, applies for frame elements with in-plane loading. Now that this is available, a displacement method frame analysis can proceed.

Example III. 9 Displacement Method for a Frame The simple two-dimensional frame of Fig. III-26a is idealized as shown in Fig. III-26b. Both legs are fixed and concentrated loadings are applied, as shown in Fig. III-27. All bars are made of

Figure III-26: Simple plane frame: (a) framework; (b) model with elements (bars) 1, 2, 3 and nodes (joints) a, b, c, d.

Figure III-27: Plane frame. Positive Y and y axes are directed out of the page.
steel with $E=200 \mathrm{GN} / \mathrm{m}^{2}$. For bars 1 and $2, I=2.056 \times 10^{-5} \mathrm{~m}^{4}$ and $A=$ $4.25 \times 10^{-3} \mathrm{~m}^{2}$. For bar $3, I=4.412 \times 10^{-5} \mathrm{~m}^{4}$ and $A=7.16 \times 10^{-3} \mathrm{~m}^{2}$.

Begin by correlating the element stiffness matrices with global node numbers. To assist in this process, prepare an incidence table:

Beam	System Node Number Where Beam Begins	System Node Number Where Beam Ends
1	a	b
2	b	c
3	c	d

The entries here are used to assign subscripts to the stiffness matrix elements corresponding to the global node numbers.

Transform the element stiffness matrix to global coordinates.

Element 1

Use $\ell=3.536 \mathrm{~m}, E I=4.112 \mathrm{MN} \cdot \mathrm{m}^{2}$, and $E A=850 \mathrm{MN}$. From Eq. (III.83),

$$
\tilde{\mathbf{k}}^{1}=\left[\begin{array}{rrrrrr}
240,416,300 & 0 & 0 & -240,416,300 & 0 & 0 \tag{1}\\
0 & 1,116,527 & -1,973,760 & 0 & -1,116,527 & -1,973,760 \\
0 & -1,973,760 & 4,652,197 & 0 & 1,973,760 & 2,326,099 \\
0 & 0 & 240,416,300 & 0 & 0 & 1,116,527 \\
-240,416,300 & 0 & 1,973,760 \\
0 & -1,16,527 & 1,973,760 & 0 & 1,973,760 & 4,652,197
\end{array}\right]
$$

For a global coordinate system $X Z$ placed at a in Fig. III-27, the angles between the local and global coordinates are $x^{1} X=45^{\circ}, x^{1} Z=135^{\circ}, z^{1} X=45^{\circ}$, and $z^{1} Z=45^{\circ}$. Alternatively, $\alpha=45^{\circ}$. From \mathbf{T}^{i} of Eq. (III.82)

$$
\mathbf{T}^{1}=\left[\begin{array}{rrrrrr}
0.70711 & -0.70711 & 0 & 0 & 0 & 0 \tag{2}\\
0.70711 & 0.70711 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.00000 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.70711 & -0.70711 & 0 \\
0 & 0 & 0 & 0.70711 & 0.70711 & 0 \\
0 & 0 & 0 & 0 & 0 & 1.00000
\end{array}\right]
$$

From Eq. (III.82), the element stiffness matrix in global coordinates is

$$
\begin{align*}
\mathbf{k}^{1} & =\mathbf{T}^{1 T} \tilde{\mathbf{k}}^{1} \mathbf{T}^{1} \\
& =\left[\begin{array}{rrrrrr}
120,766,400 & -119,649,900 & -1,395,659 & -120,766,400 & 119,649,900 & -1,395,659 \\
-119,649,900 & 120,766,400 & -1,395,659 & 119,649,900 & -120,766,400 & -1,395,659 \\
-1,395,659 & -1,395,659 & 4,652,197 & 1,395,659 & 1,395,659 & 2,326,099 \\
-120,766,400 & 119,649,900 & 1,395,659 & 120,766,400 & -119,649,900 & 1,395,659 \\
119,649,900 & -120,766,400 & 1,395,659 & -119,649,900 & 120,766,400 & 1,395,659 \\
-1,395,659 & -1,395,659 & 2,326,099 & 1,395,659 & 1,395,659 & 4,652,197
\end{array}\right] \\
& =\left[\begin{array}{r:l}
\mathbf{k}_{a a}^{1} & \mathbf{k}_{a b}^{1} \\
\hdashline- & -a b \\
\hdashline \mathbf{k}_{b a}^{1} & \mathbf{k}_{b b}^{1}
\end{array}\right] \tag{3}
\end{align*}
$$

where the subscripts have been taken from the incidence table.

Element 2

Since the local and global coordinates coincide for this case, $\mathbf{k}^{2}=\tilde{\mathbf{k}}^{2}$. Substitute $\ell=3.0 \mathrm{~m}, E I=4.112 \mathrm{MN} \cdot \mathrm{m}^{2}$, and $E A=850 \mathrm{MN}$ in Eq. (III.83):

$$
\begin{align*}
\mathbf{k}^{2} & =\left[\begin{array}{rrrrrr}
283,333,300 & 0 & 0 & -283,333,300 & 0 & 0 \\
0 & 1,827,556 & -2,741,333 & 0 & -1,827,556 & -2,741,333 \\
0 & -2,741,333 & 5,482,667 & 0 & 2,741,333 & 2,741,333 \\
-283,333,300 & 0 & 0 & 283,333,300 & 0 & 0 \\
0 & -1,827,556 & 2,741,333 & 0 & 1,827,556 & 2,741,333 \\
0 & -2,741,333 & 2,741,333 & 0 & 2,741,333 & 5,482,667
\end{array}\right] \\
& =\left[\begin{array}{r:l}
\mathbf{k}_{b b}^{2} & \mathbf{k}_{b c}^{2} \\
\hdashline \mathbf{k}_{c b}^{2} & \mathbf{k}_{c c}^{c}
\end{array}\right] \tag{4}
\end{align*}
$$

Element 3

For this case, use $\ell=2.5 \mathrm{~m}, E I=8.824 \mathrm{MN} \cdot \mathrm{m}^{2}$, and $E A=1432 \mathrm{MN}$ in Eq. (III.83). For a global coordinate system $X Z$ placed at point c, the angles between the local and global coordinates are $x^{3} X=90^{\circ}, x^{3} Z=0^{\circ}, z^{3} X=180^{\circ}, z^{3} Z=90^{\circ}$. Alternatively, $\alpha=-90^{\circ}$. From Eq. (III.82),

$$
\begin{align*}
& \mathbf{k}^{3}=\mathbf{T}^{3 T} \tilde{\mathbf{k}}^{3} \mathbf{T}^{3}=\left[\begin{array}{rrr}
6,776,832.0 & 42.7 & 8,471,040.0 \\
42.7 & 572,800,000.0 & -0.6 \\
8,471,040.0 & -0.6 & 14,118,400.0 \\
-6,776,832.0 & -42.7 & -8,471,040.0 \\
-42.7 & -572,800,000.0 & 0.6 \\
8,471,040.0 & -0.6 & 7,059,200.0
\end{array}\right. \\
& \left.\begin{array}{lll}
-6,776,832.0 & -42.7 & 8,471,040.0
\end{array}\right] \\
& \begin{array}{ccc}
-42.7 & -572,800,000.0 & -0.6
\end{array} \\
& -8,471,040.0 \quad 0.6 \quad 7,059,200.0 \\
& 6,776,832.0 \quad 42.7-8,471,040.0 \\
& 42.7 \quad 572,800,000.0 \quad 0.6 \\
& -8,471,040.0 \quad 0.6 \quad 14,118,400.0] \\
& =\left[\begin{array}{c:c}
\mathbf{k}_{c c}^{3} & \mathbf{k}_{c d}^{3} \\
\hdashline \mathbf{k}_{d c}^{3} & \mathbf{k}_{d d}^{3}
\end{array}\right] \tag{5}
\end{align*}
$$

Assemble the global stiffness matrix using

$$
\begin{equation*}
\overline{\mathbf{K}}_{j k}=\sum_{i=1}^{M} \mathbf{k}_{j k}^{i} \tag{6}
\end{equation*}
$$

where the summation is taken over all beam elements (M). It is clear that

$$
\begin{equation*}
\mathbf{K}_{j k}=\mathbf{k}_{j k}^{i}, \quad i=1,2,3 \tag{7}
\end{equation*}
$$

except for $\mathbf{K}_{b b}$ and $\mathbf{K}_{c c}$, which are given by

$$
\begin{equation*}
\mathbf{K}_{b b}=\mathbf{k}_{b b}^{1}+\mathbf{k}_{b b}^{2}, \quad \mathbf{K}_{c c}=\mathbf{k}_{c c}^{2}+\mathbf{k}_{c c}^{3} \tag{8}
\end{equation*}
$$

The assembled global stiffness matrix will appear as

(9)

Thus, $\mathbf{K V}=\overline{\mathbf{P}}$ has now been established, where

$$
\mathbf{V}=\left[\begin{array}{c}
U_{X a} \tag{10}\\
U_{Z a} \\
\Theta_{Y a} \\
U_{X b} \\
U_{Z b} \\
\Theta_{Y b} \\
U_{X c} \\
U_{Z c} \\
\Theta_{Y c} \\
U_{X d} \\
U_{Z d} \\
\Theta_{Y d}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
U_{X b} \\
U_{Z b} \\
\Theta_{Y b} \\
U_{X c} \\
U_{Z c} \\
\Theta_{Y c} \\
0 \\
0 \\
0
\end{array}\right], \quad \overline{\mathbf{P}}=\left[\begin{array}{c}
P_{X a} \\
P_{Z a} \\
M_{Y a} \\
P_{X b} \\
P_{Z b} \\
M_{Y b} \\
P_{X c} \\
P_{Z c} \\
M_{Y c} \\
P_{X d} \\
P_{Z d} \\
M_{Y d}
\end{array}\right]=\left[\begin{array}{c}
P_{X z}=? \\
P_{Z a}=? \\
M_{Y a}=? \\
0 \\
W_{Z} \\
0 \\
W_{X} \\
0 \\
0 \\
P_{X d}=? \\
P_{Z d}=? \\
M_{Y d}=?
\end{array}\right]
$$

The displacement boundary conditions and the applied forces are shown above. Question marks indicate reactions at the supports at a and d. Delete the columns corresponding to the zero displacements at the supports and ignore the rows corresponding to the reactions. This results in

$$
\begin{align*}
& {\left[\begin{array}{ccc}
.4041 \times 10^{9} & -.1196 \times 10^{9} & .1396 \times 10^{7} \\
-.1196 \times 10^{9} & .1226 \times 10^{9} & -.1346 \times 10^{7} \\
.1396 \times 10^{7} & -.1346 \times 10^{7} & .1013 \times 10^{8} \\
-.2833 \times 10^{9} & .0000 & .0000 \\
.0000 & -.1828 \times 10^{7} & .2741 \times 10^{7} \\
.0000 & .2741 \times 10^{7} & .2741 \times 10^{7} \\
-.2833 \times 10^{9} & .0000 & .0000 \\
.0000 & -.1828 \times 10^{7} & -.2741 \times 10^{7} \\
.0000 & .2741 \times 10^{7} & .2741 \times 10^{7} \\
.2901 \times 10^{9} & .4273 \times 10^{2} & .8471 \times 10^{7} \\
.4273 \times 10^{2} & .5746 \times 10^{9} & .2741 \times 10^{7} \\
.8471 \times 10^{7} & .2741 \times 10^{7} & .1960 \times 10^{8}
\end{array}\right]\left[\begin{array}{l}
U_{X b} \\
U_{Z b} \\
\Theta_{Y b} \\
U_{X c} \\
U_{Z c} \\
\Theta_{Y c}
\end{array}\right]} \\
& \quad=\left[\begin{array}{cc}
0 \\
0.015 \times 10^{6} \\
0 \\
0.012 \times 10^{6} \\
0 \\
0
\end{array}\right]
\end{align*}
$$

which yields the displacements

$$
\left[\begin{array}{c}
U_{X b} \tag{12}\\
U_{Z b} \\
\Theta_{Y b} \\
U_{X c} \\
U_{Z c} \\
\Theta_{Y c}
\end{array}\right]=\left[\begin{array}{c}
.29559 \times 10^{-2} \mathrm{~m} \\
.29900 \times 10^{-2} \mathrm{~m} \\
.22786 \times 10^{-3} \mathrm{rad} \\
.29543 \times 10^{-2} \mathrm{~m} \\
.12679 \times 10^{-4} \mathrm{~m} \\
-.89223 \times 10^{-3} \mathrm{rad}
\end{array}\right]
$$

The displacements at the nodes are given by (12). To find the reactions, return to $\mathbf{K V}=\overline{\mathbf{P}}$ using \mathbf{K} of (9), \mathbf{V} of (10) with the numerical values of (12), and $\overline{\mathbf{P}}$ of (10). This leads to the reactions (in global coordinates)

$$
\begin{align*}
P_{X a} & =.46260 \times 10^{3} \mathrm{~N}, & P_{X d}=-.12463 \times 10^{5} \mathrm{~N} \\
P_{Z a} & =-.77374 \times 10^{4} \mathrm{~N}, & P_{Z d}=-.72626 \times 10^{4} \mathrm{~N} \tag{13}\\
M_{Y a} & =.88286 \times 10^{4} \mathrm{~N}, & M_{Y d}=.18728 \times 10^{5} \mathrm{~N}
\end{align*}
$$

The responses in local coordinates on the ends of the elements require some extra effort. For example, to find the forces on the ends of an element, calculate the forces in global coordinates first and then transform these forces into the local coordinate system. The forces referred to global coordinates for element 1 :

$$
\begin{align*}
\mathbf{p}^{1} & =\left[\begin{array}{c}
F_{X a} \\
F_{Z a} \\
M_{a} \\
F_{X b} \\
F_{Z b} \\
M_{b}
\end{array}\right]=\mathbf{k}^{1} \mathbf{v}^{1}=\mathbf{k}^{1}\left[\begin{array}{c}
u_{X a} \\
u_{Z a} \\
\theta_{a} \\
u_{X b} \\
u_{Z b} \\
\theta_{b}
\end{array}\right] \\
& =\mathbf{k}^{1}\left[\begin{array}{c}
U_{X a} \\
U_{Z a} \\
\Theta_{Y a} \\
U_{X b} \\
U_{Z b} \\
\Theta_{Y b}
\end{array}\right]=[\text { matrix of Eq. (3) }]\left[\begin{array}{c}
0 \\
0 \\
0 \\
.29559 \times 10^{-2} \mathrm{~m} \\
.29900 \times 10^{-2} \mathrm{~m} \\
.22786 \times 10^{-3} \mathrm{rad}
\end{array}\right] \\
& =\left[\begin{array}{c}
.46260 \times 10^{3} \mathrm{~N} \\
-.77374 \times 10^{4} \mathrm{~N} \\
.88286 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m} \\
-.46260 \times 10^{3} \mathrm{~N} \\
.77374 \times 10^{4} \mathrm{~N} \\
.93586 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}
\end{array}\right] \tag{14}
\end{align*}
$$

Referred to local coordinates, element 1 forces are

$$
\tilde{\mathbf{p}}^{1}=\mathbf{T}^{1} \mathbf{p}^{1}=\left[\begin{array}{c}
\tilde{N}_{a} \tag{15}\\
\tilde{V}_{a} \\
\tilde{M}_{a} \\
\tilde{N}_{b} \\
\tilde{V}_{b} \\
\tilde{M}_{b}
\end{array}\right]=\left[\begin{array}{c}
.57983 \times 10^{4} \mathrm{~N} \\
-.51441 \times 10^{4} \mathrm{~N} \\
.88286 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m} \\
-.57983 \times 10^{4} \mathrm{~N} \\
.51441 \times 10^{4} \mathrm{~N} \\
.93586 \times 10^{4} \mathrm{~N} \cdot \mathrm{~m}
\end{array}\right]
$$

Structures with Distributed Loads

Concentrated loads applied between the ends of an element can be accommodated by adding new nodes, a practice that increases the size of the system of equations to be solved. An alternative is to include another loading vector in the stiffness equations. This addition of a new loading vector is particularly appropriate for distributed loads applied between the nodes. For a beam element this loading vector was considered in Section II.5. The additional loading vector for the global stiffness matrices will be treated here.

The element stiffness matrix, including the extra loading vector, appears as (Appendix II)

$$
\begin{equation*}
\mathbf{p}^{i}=\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i} \tag{III.84}
\end{equation*}
$$

Expressions for the components of the loading vector \mathbf{p}^{i} for a variety of types of loading are provided in the tables of Chapter 11. For example, for an Euler-Bernoulli beam element with a uniformly distributed load of magnitude p_{0} (Table 11-19),

$$
\overline{\mathbf{p}}^{i}=\left[\begin{array}{c}
V_{a}^{0} \tag{III.85}\\
M_{a}^{0} \\
V_{b}^{0} \\
M_{b}^{0}
\end{array}\right]=\frac{p_{0} \ell}{2}\left[\begin{array}{r}
1 \\
-\frac{1}{6} \\
1 \\
\frac{1}{6}
\end{array}\right]
$$

For displacements and forces referred to a local coordinate system,

$$
\begin{equation*}
\tilde{\mathbf{p}}^{i}=\tilde{\mathbf{k}}^{i} \overline{\mathbf{v}}^{i}-\tilde{\tilde{\mathbf{p}}}^{i} \tag{III.86}
\end{equation*}
$$

Transformation from local to global coordinates systems is implemented using

$$
\begin{equation*}
\mathbf{p}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{p}}^{i} \quad \mathbf{k}^{i}=\mathbf{T}^{i T} \mathbf{k}^{i} \mathbf{T}^{i} \quad \overline{\mathbf{p}}^{i}=\mathbf{T}^{i T} \tilde{\mathbf{p}}^{i} \tag{III.87}
\end{equation*}
$$

The global stiffness matrix is still assembled using

$$
\begin{equation*}
\mathbf{K}_{j k}=\sum_{i=1}^{M} \mathbf{k}_{j k}^{i} \tag{III.88a}
\end{equation*}
$$

where M is the number of elements. The new global loading vector is assembled as

$$
\begin{equation*}
\overline{\mathbf{P}}_{j}=\sum_{i=1}^{M} \overline{\mathbf{p}}_{j}^{i} \tag{III.88b}
\end{equation*}
$$

The \mathbf{P}_{j} for node j can be formed into $\overline{\mathbf{P}}$ for the whole system. This can be incorporated into $\overline{\mathbf{P}}$ of Eq. (III.77) or, alternatively, one can distinguish between nodal loading terms due to distributed loading and direct nodal loading. The system equilibrium equations now appear as

$$
\begin{equation*}
\mathbf{P}=\mathbf{K} \mathbf{V}-\overline{\mathbf{P}} \tag{III.89}
\end{equation*}
$$

where \mathbf{P} is a nodal vector containing direct nodal loads and $\overline{\mathbf{P}}$ is a nodal vector due to applied distributed loading.

Example III. 10 Beam with Linearly Varying Loading Consider the fixedsimply supported beam with linearly varying applied load of Fig. III-5. Although we choose to model the beam with two elements, the most logical model would contain a single element as the stiffness matrix for beams is exact and hence can span any length. The local and global coordinate systems coincide for this horizontal beam; consequently, there is no need to transform variables from local to global coordinates.

Table 11-19 can supply the element loading vectors $\overline{\mathbf{p}}^{i}$. In using the formulas of this table, note that for the first element the distributed load begins with a magnitude of p_{0} and ends with $\frac{1}{2} p_{0}$. For the second element the load begins with $\frac{1}{2} p_{0}$ and ends with a magnitude of zero.

An alternative approach for determining loading vectors is to utilize Eq. (II.71). To illustrate this, consider the linearly distributed load $p_{z}(\xi)$ of Fig. III-28:

$$
\begin{equation*}
p_{z}(\xi)=p_{a}+\left(p_{b}-p_{a}\right) \xi \tag{1}
\end{equation*}
$$

with $\xi=x / \ell$. Rewrite this as

$$
\begin{equation*}
p_{z}(\xi)=\mathbf{N}_{p} \mathbf{G}_{p} \overline{\mathbf{p}}_{p} \tag{2}
\end{equation*}
$$

Figure III-28: Linearly distributed load.
where

$$
\mathbf{N}_{p}=\left[\begin{array}{ll}
1 & \xi
\end{array}\right], \quad \mathbf{G}_{p}=\left[\begin{array}{rr}
1 & 0 \tag{3}\\
-1 & 1
\end{array}\right], \quad \overline{\mathbf{p}}_{p}=\left[\begin{array}{c}
p_{a} \\
p_{b}
\end{array}\right]
$$

From Eq. (II.71),

$$
\begin{equation*}
\overline{\mathbf{p}}^{i}=\mathbf{G}^{T} \int_{a}^{b} \mathbf{N}_{u}^{T} p_{z} d x=\mathbf{G}^{T} \int_{0}^{1} \mathbf{N}_{u}^{T} \mathbf{N}_{p} d \xi \ell \mathbf{G}_{p} \overline{\mathbf{p}}_{p} \tag{4}
\end{equation*}
$$

Take \mathbf{G} and \mathbf{N}_{u} from Eq. (II.65a). Then
and from (4),

$$
\begin{align*}
\mathbf{G}^{T} \int_{0}^{1} \mathbf{N}_{u}^{T} \mathbf{N}_{p} d \xi \ell \mathbf{G}_{p} \overline{\mathbf{p}}_{p}= & {\left[\begin{array}{rrrr}
1 & 0 & -3 & 2 \\
0 & -1 & 2 & -1 \\
0 & 0 & 3 & -2 \\
0 & 0 & 1 & -1
\end{array}\right] \ell\left[\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{5}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{G}_{p} & \\
1 & 0 \\
-1 & 1
\end{array}\right] } \\
& =\ell\left[\begin{array}{rrr}
\frac{7}{20} & \frac{3}{20} \\
-\frac{1}{20} & -\frac{1}{30} \\
\frac{3}{20} & \frac{7}{20} \\
\frac{1}{30} & \frac{1}{20}
\end{array}\right] \tag{6}
\end{align*}
$$

Finally,

$$
\overline{\mathbf{p}}^{i}=\ell\left[\begin{array}{rr}
\frac{7}{20} & \frac{3}{20} \tag{7}\\
-\frac{1}{20} & -\frac{1}{30} \\
\frac{3}{20} & \frac{7}{20} \\
\frac{1}{30} & \frac{1}{20}
\end{array}\right]\left[\begin{array}{l}
p_{a} \\
p_{b}
\end{array}\right]
$$

For our beam of Fig. III- 5 with $\ell=\ell_{1}=\ell_{2}=\frac{1}{2} L$, for element 1 , with $p_{a}=p_{0}$ and $p_{b}=\frac{1}{2} p_{0}$,

$$
\overline{\mathbf{p}}^{1}=\frac{p_{0} \ell}{120}\left[\begin{array}{r}
51 \tag{8}\\
-8 \\
39 \\
-7
\end{array}\right]=\left[\begin{array}{c}
\bar{p}_{a}^{1} \\
\bar{p}_{b}^{1}
\end{array}\right]
$$

For element 2, with $p_{a}=\frac{1}{2} p_{0}$ and $p_{b}=0$,

$$
\overline{\mathbf{p}}^{2}=\frac{p_{0} \ell}{120}\left[\begin{array}{r}
21 \tag{9}\\
-3 \\
9 \\
2
\end{array}\right]=\left[\begin{array}{c}
\bar{p}_{b}^{2} \\
\bar{p}_{c}^{2}
\end{array}\right]
$$

The global matrix can now be formed as

$$
\begin{equation*}
\mathbf{K V}-\overline{\mathbf{P}}=\mathbf{P} \tag{10}
\end{equation*}
$$

where

$$
\mathbf{V}=\left[\begin{array}{c}
w_{a} \tag{11}\\
\theta_{a} \ell \\
w_{b} \\
\theta_{b} \ell \\
w_{c} \\
\theta_{c} \ell
\end{array}\right]
$$

and from Eq. (II.62),

$$
\begin{aligned}
\mathbf{K} & =\left[\begin{array}{c|c|r}
\mathbf{k}_{a a}^{1} & \mathbf{k}_{a b}^{1} & 0 \\
\hline \mathbf{k}_{b a}^{1} & \mathbf{k}_{b b}^{1}+\mathbf{k}_{b b}^{2} & \mathbf{k}_{b c}^{2} \\
\hline 0 & \mathbf{k}_{c b}^{2} & \mathbf{k}_{c c}^{2}
\end{array}\right] \\
& =\frac{E I}{\ell^{3}}\left[\begin{array}{rrrrrr}
12 & -6 & -12 & -6 & 0 & 0 \\
-6 & 4 & 6 & 2 & 0 & 0 \\
-12 & 6 & 24 & 0 & -12 & -6 \\
-6 & 2 & 0 & 8 & 6 & 2 \\
0 & 0 & -12 & 6 & 12 & 6 \\
0 & 0 & -6 & 2 & 6 & 4
\end{array}\right]
\end{aligned}
$$

Assemble the global loading vector $\overline{\mathbf{P}}$ in the same manner as for the global stiffness matrix. It follows from Eq. (III.88b),

$$
\overline{\mathbf{P}}_{j}=\sum_{i} \overline{\mathbf{p}}_{j}^{i}
$$

that

$$
\overline{\mathbf{P}}=\left[\begin{array}{c}
\overline{\mathbf{P}}_{a} \tag{12}\\
\overline{\mathbf{P}}_{b} \\
\overline{\mathbf{P}}_{c}
\end{array}\right]=\left[\begin{array}{c}
\overline{\mathbf{p}}_{a}^{1} \\
\overline{\mathbf{p}}_{b}+\overline{\mathbf{p}}_{b}^{2} \\
\overline{\mathbf{p}}_{c}^{2}
\end{array}\right]=\frac{p_{0} \ell}{120}\left[\begin{array}{c}
51 \\
-8 \\
39+21 \\
7-3 \\
9 \\
2
\end{array}\right]=\frac{p_{0} \ell}{120}\left[\begin{array}{c}
51 \\
-8 \\
60 \\
4 \\
9 \\
2
\end{array}\right]
$$

The vector \mathbf{P} contains concentrated loads applied at the nodes as well as the unknown reactions. Since for this beam there are no loads applied at the nodes and the rows corresponding to the unknown reactions are not used in calculating the displacements \mathbf{V}, \mathbf{P} will be ignored and the system equations will appear as $\mathbf{K V}-\overline{\mathbf{P}}=\mathbf{0}$.

Introduction of the boundary conditions $w_{a}=\theta_{a}=w_{c}=0$ reduces $\mathbf{K V}=\overline{\mathbf{P}}$ to the nonsingular system of equations

$$
\frac{E I}{\ell^{3}}\left[\begin{array}{rrr}
24 & 0 & -6 \tag{13}\\
0 & 8 & 2 \\
-6 & 2 & 4
\end{array}\right]\left[\begin{array}{c}
w_{b} \\
\theta_{b} \ell \\
\theta_{c} \ell
\end{array}\right]=\frac{p_{0} \ell}{120}\left[\begin{array}{r}
60 \\
4 \\
2
\end{array}\right]
$$

which has the solution

$$
\left[\begin{array}{c}
w_{b} \tag{14}\\
\theta_{b} \\
\theta_{c}
\end{array}\right]=\frac{p_{0} \ell^{3}}{120 E I}\left[\begin{array}{c}
4.5 \ell \\
-1.5 \\
8.0
\end{array}\right]
$$

Since the vector of displacements \mathbf{V} has now been determined, the beam reactions can be computed using $\mathbf{K V}-\overline{\mathbf{P}}=\mathbf{P}$.

To calculate the forces at the ends of the elements, use

$$
\begin{equation*}
\mathbf{k}^{i} \mathbf{v}^{i}-\overline{\mathbf{p}}^{i}=\mathbf{p}^{i} \tag{15}
\end{equation*}
$$

For this horizontally oriented beam, the local displacements at the ends of the elements are equal to the node (global) displacements so that a coordinate transformation will not be necessary. Then, (15) leads to

$$
\begin{align*}
\mathbf{p}^{1}= & {\left[\begin{array}{c}
V_{a} \\
M_{a} \\
V_{b} \\
M_{b}
\end{array}\right]=\mathbf{k}^{1} \mathbf{v}^{1}-\overline{\mathbf{p}}^{1}=\frac{p_{0} \ell^{3}}{120 E I} \frac{E I}{\ell^{3}}\left[\begin{array}{cc}
-12 & -6 \ell \\
6 \ell & 2 \ell^{2} \\
12 & 6 \ell \\
6 \ell & 4 \ell^{2}
\end{array}\right]\left[\begin{array}{c}
4.5 \ell \\
-1.5
\end{array}\right] } \\
& -\frac{p_{0} \ell}{120}\left[\begin{array}{c}
51 \\
-8 \ell \\
39 \\
7 \ell
\end{array}\right]=\frac{p_{0} \ell}{120}\left[\begin{array}{c}
-96 \\
32 \ell \\
6 \\
14 \ell
\end{array}\right] \tag{16}\\
\mathbf{p}^{2}= & {\left[\begin{array}{c}
V_{b} \\
M_{b} \\
V_{c} \\
M_{c}
\end{array}\right]=\mathbf{k}^{2} \mathbf{v}^{2}-\overline{\mathbf{p}}^{2}=\frac{p_{0} \ell^{3}}{120 E I} \frac{E I}{\ell^{3}}\left[\begin{array}{ccc}
12 & -6 \ell & -6 \ell \\
-6 \ell & 4 \ell^{2} & 2 \ell^{2} \\
-12 & 6 \ell & 6 \ell \\
-6 \ell & 2 \ell^{2} & 4 \ell^{2}
\end{array}\right]\left[\begin{array}{c}
4.5 \ell \\
-1.5 \\
8.0
\end{array}\right] } \\
& -\frac{p_{0} \ell}{120}\left[\begin{array}{c}
21 \\
-3 \ell \\
9 \\
2 \ell
\end{array}\right]=\frac{p_{0} \ell}{120}\left[\begin{array}{c}
-6 \\
-14 \ell \\
-24 \\
0
\end{array}\right] \tag{17}
\end{align*}
$$

Although stiffness equations can be employed to find the variation of the responses (e.g., the deflection) along the beam, it is often simpler to use transfer matrices. Hence,

$$
\begin{array}{ll}
\mathbf{z}_{j}=\mathbf{U}^{1} \mathbf{z}_{a} & \text { for element 1 } \\
\mathbf{z}_{j}=\mathbf{U}^{2} \mathbf{z}_{b} & \text { for element 2 } \tag{19}
\end{array}
$$

The vectors \mathbf{z}_{a} and \mathbf{z}_{b} contain known displacements and forces at $x=a$ and $x=b$. With the transfer matrices \mathbf{U}^{1} and \mathbf{U}^{2} expressed in terms of the variable $x,(18)$ and (19) provide the desired responses. In the case of the deflection, with $\xi=x / L$,

$$
w(\xi)=\left\{\begin{array}{lll}
\frac{p_{0} \ell^{4}}{120 E I}\left(16 \xi_{1}^{2}-16 \xi_{1}^{3}+50 \xi_{1}^{4}-0.5 \xi_{1}^{5}\right) & \xi_{1}=2 \xi & 0 \leq x \leq L / 2 \tag{20}\\
\frac{p_{0} \ell^{4}}{120 E I}\left[4.5+1.5(2 \xi-1)-7(2 \xi-1)^{2}-(2 \xi-1)^{3}\right. & \\
\left.+2.5(2 \xi-1)^{4}-0.5(2 \xi-1)^{5}\right] & L / 2 \leq x \leq L
\end{array}\right.
$$

or, for any $\xi, w(\xi)=\left(p_{0} L^{4} / 120 E I\right)\left(4 \xi^{2}-8 \xi^{3}+5 \xi^{4}-\xi^{5}\right)$. These exact deflections, along with the bending moment and shear force, are plotted in Fig. III-29.

(a)

(b)

(c)

Figure III-29: Response of the beam of Fig. III-5 with linearly varying loading: (a) deflection; (b) bending moment; (c) shear force.

Special Intermediate Conditions

In-span conditions (e.g., hinges or supports) such as those illustrated in Fig. III-14 require special attention, as one response variable is constrained (usually, the value is zero) while a discontinuity (a reaction) in the complementary variable is generated. In general, this type of occurrence is more readily incorporated in the solution when using the displacement method than it is with the transfer matrix method. Normally, a global degree of freedom is constrained by these conditions. For example, a rigid support at a node completely restrains the displacement in the direction of a component of \mathbf{V}, and then the condition that must be imposed is a prescribed global displacement (usually zero). This is implemented simply by setting one displacement in \mathbf{V} equal to zero. See Ref. [III.1] for details.

III. 4 FORCE METHOD

Virtually all of the currently available general-purpose computer programs are based on the displacement method. The force method, although it is popular for hand calculations, is rarely the method of choice for solving large-scale problems [III.11]. The cause of the domination by the displacement method is that at the time when most of the general-purpose analysis computer programs were being developed, it was felt that the force method could not easily be automated for large-scale problems. The principle of complementary virtual work provides the basis of the force method. This principle is equivalent to the global form of the kinematic admissibility conditions (compatibility). As a consequence, the force method is sometimes referred to as the compatibility method as well as the flexibility or influence coefficient method.

The force method equations will not be derived here, but the derivation in a structural mechanics text such as Ref. [III.1] will usually follow closely the derivation of the displacement method equations. The similarity of the formulations of the displacement and force methods is symbolic of the dual nature of the two techniques. This same duality exists between the principle of virtual work and the principle of complementary virtual work. Whereas the displacement method and the principle of virtual work require kinematically admissible displacements (i.e., a must be formed) and provide equilibrium equations, the force method and the principle of complementary virtual work begin with equilibrium conditions (i.e., b must be formed) and lead to kinematic equations. This process is illustrated in Fig. III-30.

The force, displacement, and transfer matrix approaches are compared in Table III-3. In contrast to the displacement and force methods, as mentioned earlier the transfer matrix method does not involve the assembly of a system matrix for which the size increases with the degrees of freedom of the system. Moreover, the system matrix for the transfer matrix method is formed by progressive element matrix multiplications rather than superposition.

Figure III-30: System matrices for force and displacement methods.

III. 5 STABILITY BASED ON THE DISPLACEMENT METHOD

In the same fashion that the principle of virtual work of Eq. (II.66) leads to the equilibrium equations

$$
\mathbf{K V}=\overline{\mathbf{P}}
$$

the principle of virtual work, including an explicit in-plane force [e.g., Eq. (II.88)], provides the set of equations

$$
\begin{equation*}
\left(\mathbf{K}-\lambda \mathbf{K}_{G}\right) \mathbf{V}=\overline{\mathbf{P}} \tag{III.90}
\end{equation*}
$$

where \mathbf{K}_{G} is the system (global) geometric stiffness matrix that can be assembled from element matrices in the same manner as the system stiffness matrix \mathbf{K}. In an instability study of a structural system, the axial forces throughout the system must
be defined relative to each other. For example, the axial forces can remain fixed in magnitude relative to one another. Thus, if \mathbf{K}_{G} is the global geometric stiffness matrix for a reference level of axial forces, $\lambda \mathbf{K}_{G}$ corresponds to another level of axial forces, where λ is a scalar multiplier called the loadfactor. For a single member (e.g., a uniform column), λ is simply the axial force P.

For classical instability theory of linearly elastic structures, the applied loadings $\overline{\mathbf{P}}$ of Eq. (III.90) do not affect the buckling load of a structure. The buckling load is found by solving the homogeneous problem

$$
\begin{equation*}
\left(\mathbf{K}-\lambda \mathbf{K}_{G}\right) \mathbf{V}=0 \tag{III.91}
\end{equation*}
$$

The critical force problem represented by this relationship is in the form of a classical eigenvalue problem and can be solved efficiently with considerable reliability by using standard, readily available eigenvalue problem software. One of the least efficient methods for solving for the buckling load (yet necessary for certain types of $\left.\mathbf{K}_{G}\right)$ is to perform a critical value search of $\operatorname{det}\left(\mathbf{K}-\lambda \mathbf{K}_{G}\right)=0$.

Example III. 11 Stepped Column The stepped column of Fig. III-31 will be used to illustrate several of the techniques for computing buckling loads for a structural system. The boundary and in-span conditions are $w_{a}=w_{c}=w_{d}=0$ and $M_{a}=M_{d}=0$.

Transfer Matrix Method

Use the transfer matrix of Eq. (III.10) along with the methodology presented in Section III. 1 for incorporating the in-span support to develop a global transfer matrix. The boundary conditions applied to the global transfer matrix equations lead to the characteristic equation and the critical axial load of

$$
\begin{equation*}
P_{\mathrm{cr}}=7.064 \frac{E I}{\ell^{2}} \tag{1}
\end{equation*}
$$

Displacement Method

The goal here is to set up the eigenvalue problem in the form of Eq. (III.91). First establish the ordinary stiffness matrix \mathbf{K}. To do so, assemble element stiffness matrices $\mathbf{k}^{i}, i=1,2,3$, of Eq. (II.62):

Figure III-31: Stepped column.

$$
\left[\begin{array}{c}
V_{a} \tag{2}\\
M_{a} / \ell \\
V_{b} \\
M_{b} / \ell \\
V_{c} \\
M_{c} / \ell \\
V_{d} \\
M_{d} / \ell
\end{array}\right]=\frac{E I}{\ell^{3}}\left[\begin{array}{rrrrrrrr}
36 & -18 & -36 & -18 & 0 & 0 & 0 & 0 \\
-18 & 12 & 18 & 6 & 0 & 0 & 0 & 0 \\
-36 & 18 & 60 & 6 & -24 & -12 & 0 & 0 \\
-18 & 6 & 6 & 20 & 12 & 4 & 0 & 0 \\
0 & 0 & -24 & 12 & 36 & 6 & -12 & -6 \\
0 & 0 & -12 & 4 & 6 & 12 & 6 & 2 \\
0 & 0 & 0 & 0 & -12 & 6 & 12 & 6 \\
0 & 0 & 0 & 0 & -6 & 2 & 6 & 4
\end{array}\right]\left[\begin{array}{c}
w_{a} \\
\ell \theta_{a} \\
w_{b} \\
\ell \theta_{b} \\
w_{c} \\
\ell \theta_{c} \\
w_{d} \\
\ell \theta_{d}
\end{array}\right]
$$

Next the global geometric stiffness matrix should be assembled using the element geometric stiffness matrices \mathbf{k}_{G}^{i}. If the consistent geometric stiffness matrix of Eq. (II.90) is utilized, the global geometric stiffness matrix will be

$$
\mathbf{K}_{G}=\frac{1}{\ell}\left[\begin{array}{rrrrrrrr}
\frac{18}{15} & -\frac{1}{10} & -\frac{18}{15} & -\frac{1}{10} & 0 & 0 & 0 & 0 \tag{3}\\
-\frac{1}{10} & \frac{2}{15} & \frac{1}{10} & -\frac{1}{30} & 0 & 0 & 0 & 0 \\
-\frac{18}{15} & \frac{1}{10} & \frac{36}{15} & 0 & -\frac{18}{15} & -\frac{1}{10} & 0 & 0 \\
-\frac{1}{10} & -\frac{1}{30} & 0 & \frac{4}{15} & \frac{1}{10} & -\frac{1}{30} & 0 & 0 \\
0 & 0 & -\frac{18}{15} & \frac{1}{10} & \frac{36}{15} & 0 & -\frac{18}{15} & -\frac{1}{10} \\
0 & 0 & -\frac{1}{10} & -\frac{1}{30} & 0 & \frac{4}{15} & \frac{1}{10} & -\frac{1}{30} \\
0 & 0 & 0 & 0 & -\frac{18}{15} & \frac{1}{10} & \frac{18}{15} & \frac{1}{10} \\
0 & 0 & 0 & 0 & -\frac{1}{10} & -\frac{1}{30} & \frac{1}{10} & \frac{2}{15}
\end{array}\right]
$$

Apply the displacement boundary conditions and ignore the rows corresponding to the unknown reactions. Then the eigenvalue problem appears as

$$
\left\{\left[\begin{array}{rrrrr}
12 & 18 & 6 & 0 & 0 \tag{4}\\
18 & 60 & 6 & -12 & 0 \\
6 & 6 & 20 & 4 & 0 \\
0 & -12 & 4 & 12 & 2 \\
0 & 0 & 0 & 2 & 4
\end{array}\right]-\lambda\left[\begin{array}{rrrrr}
\frac{2}{15} & \frac{1}{10} & -\frac{1}{30} & 0 & 0 \\
\frac{1}{10} & \frac{12}{5} & 0 & -\frac{1}{10} & 0 \\
-\frac{1}{30} & 0 & \frac{4}{15} & -\frac{1}{30} & 0 \\
0 & -\frac{1}{10} & -\frac{1}{30} & \frac{4}{15} & -\frac{1}{30} \\
0 & 0 & 0 & -\frac{1}{30} & \frac{2}{15}
\end{array}\right]\right\} \mathbf{V}=0
$$

where

$$
\lambda=\frac{P \ell^{2}}{E I} \quad \text { and } \quad \mathbf{V}=\left[\begin{array}{c}
\ell \theta_{a} \\
w_{b} \\
\ell \theta_{b} \\
\ell \theta_{c} \\
\ell \theta_{d}
\end{array}\right]
$$

The solution of these equations, which constitute a generalized (linear) eigenvalue problem, provides a critical solution of magnitude

$$
\begin{equation*}
P_{\mathrm{cr}}=7.298\left(E I / \ell^{2}\right) \tag{5}
\end{equation*}
$$

This consistent matrix model leads to a result that is above the "exact" value of (1). Use of this type of geometric stiffness matrix always leads to a value above the correct eigenvalue.

III. 6 FREE VIBRATIONS BASED ON THE DISPLACEMENT METHOD

The governing equations $\mathbf{K V}=\overline{\mathbf{P}}$ for the nodal displacements of a system under static loading are now familiar. If dynamic effects are to be taken into account, then according to D'Alembert's principle, we simply assure that equilibrium of forces at the nodes includes the effect of inertia. Then the governing equations become

$$
\begin{equation*}
\mathbf{M} \ddot{\mathbf{V}}+\mathbf{K V}=\overline{\mathbf{P}} \tag{III.92}
\end{equation*}
$$

where \mathbf{M}, the global mass matrix, is assembled from element mass matrices \mathbf{m}^{i} in the same fashion that \mathbf{K} is obtained from \mathbf{k}^{i}. For example, \mathbf{M} can be assembled using the consistent mass element matrices \mathbf{m}^{i} of Eq. (II.87).

To study the free vibrations, set the applied loading $\overline{\mathbf{P}}$ to zero and assume that each displacement performs harmonic motion in phase with all other displacements. Thus, as explained in Section III. 1 in the discussion of free vibrations, assume that

$$
\begin{equation*}
\mathbf{V}(x, y, z, t)=\mathbf{V}(x, y, z) \sin \omega t \tag{III.93}
\end{equation*}
$$

so that Eq. (III.92) reduces to

$$
\begin{equation*}
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right) \mathbf{V}=\mathbf{0} \tag{III.94}
\end{equation*}
$$

or

$$
\begin{equation*}
(\mathbf{K}-\lambda \mathbf{M}) \mathbf{V}=\mathbf{0} \tag{III.95}
\end{equation*}
$$

where $\lambda=\omega^{2}$. Equation (III.95) represents a generalized eigenvalue problem.
The trivial solution of Eq. (III.95) would be $\mathbf{V}=\mathbf{0}$. If $\mathbf{V} \neq \mathbf{0}$, only particular values λ_{n} satisfy Eq. (III.95). These λ_{n} are the characteristics or eigenvalues of the problem, which correspond to the natural frequencies of the structure. The lowest value of λ_{n} is the fundamental natural frequency. To each λ_{n} corresponds an eigenvector \mathbf{V}_{n}, which defines the mode shape of the nth mode of motion for the structure. It is important to understand that \mathbf{V}_{n} defines the shape and not the magnitude of the motion. The eigenvalue problem is to extract from Eq. (III.95) the solution pairs λ_{n} and \mathbf{V}_{n}.

Mass Matrix

The most common element mass matrices are the consistent mass matrices \mathbf{m}^{i} of Eq. (II.87) and the lumped mass matrix of Eq. (II.83).

The lumped mass element matrix is diagonal, as is the corresponding assembled global matrix M. The lumped mass matrix is positive semidefinite when zeros occur on the diagonal, whereas the consistent mass (element and global) matrices are positive definite. The zeros on the diagonal can complicate certain numerical algorithms. It is clear that a lumped mass matrix would require less storage space than a consistent mass matrix. It is also more economical to form and to manipulate. Consistent mass matrices lead to eigenvalues that are higher than the exact value, whereas lumped mass matrices will usually approach the exact eigenvalues from below. See Ref. [III.6] for a succinct comparison of lumped and consistent mass matrices along with some interesting variations on these two types of mass modeling.

Eigenvalue Problem

The characteristic equation for the eigenvalue problem of Eq. (III.95) is

$$
\begin{equation*}
\operatorname{det}(\mathbf{K}-\lambda \mathbf{M})=0 \tag{III.96}
\end{equation*}
$$

in which the displacement boundary conditions have reduced the size of \mathbf{K} and \mathbf{M}. Equation (III.96) takes the form of a polynomial in λ, whose roots are the desired eigenvalues λ_{n}. However, irrespective of whether a numerical determinant search of Eq. (III.96) is implemented or the characteristic polynomial is formed and solved, use of $\operatorname{det}(\mathbf{K}-\lambda \mathbf{M})=0$ for problems of many degrees of freedom is normally found to be a cumbersome process that should be avoided. Normally, as indicated later in this subsection, a number of eigenvalue solution routines provide preferred solution methodology.

Example III. 12 Displacement Method for a Beam Using a Consistent Mass
Matrix Use the displacement method to find the natural frequencies of the beam of Fig. III-11 and Example III.7. The beam is modeled with two elements of equal length.

Begin by assembling the global stiffness and mass matrices. The notation is shown in Fig. III-11. The element stiffness matrix \mathbf{k}^{i} is given by Eq. (II.61), while the consistent mass matrix \mathbf{m}^{i} is given by Eq. (II.87):

$$
\begin{align*}
\mathbf{k}^{i} & =\frac{E I}{\ell^{3}}\left[\begin{array}{cccc}
12 & -6 \ell & -12 & -6 \ell \\
-6 \ell & 4 \ell^{2} & 6 \ell & 2 \ell^{2} \\
-12 & 6 \ell & 12 & 6 \ell \\
-6 \ell & 2 \ell^{2} & 6 \ell & 4 \ell^{2}
\end{array}\right], \quad i=1,2 \\
& =\left[\begin{array}{cc}
\mathbf{k}_{a a}^{1} & \mathbf{k}_{a b}^{1} \\
\mathbf{k}_{b a}^{1} & \mathbf{k}_{b b}^{1}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{k}_{b b}^{2} & \mathbf{k}_{b c}^{2} \\
\mathbf{k}_{c b}^{2} & \mathbf{k}_{c c}^{2}
\end{array}\right] \tag{1}
\end{align*}
$$

$$
\begin{align*}
\mathbf{m}^{i} & =\frac{\rho \ell}{420}\left[\begin{array}{cccc}
156 & -22 \ell & 54 & 13 \ell \\
-22 \ell & 4 \ell^{2} & -13 \ell & -3 \ell^{2} \\
54 & -13 \ell & 156 & 22 \ell \\
13 \ell & -3 \ell^{2} & 22 \ell & 4 \ell^{2}
\end{array}\right], \quad i=1,2 \\
& =\left[\begin{array}{cc}
\mathbf{m}_{a a}^{1} & \mathbf{m}_{a b}^{1} \\
\mathbf{m}_{b a}^{1} & \mathbf{m}_{b b}^{1}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{m}_{b b}^{2} & \mathbf{m}_{b c}^{2} \\
\mathbf{m}_{c b}^{2} & \mathbf{m}_{c c}^{2}
\end{array}\right] \tag{2}
\end{align*}
$$

The global stiffness matrix is assembled as

$$
\begin{align*}
\mathbf{K} & =\left[\begin{array}{ccc}
\mathbf{k}_{a a}^{1} & \mathbf{k}_{a b}^{1} & \mathbf{0} \\
\mathbf{k}_{b a}^{1} & \mathbf{k}_{b b}^{1}+\mathbf{k}_{b b}^{2} & \mathbf{k}_{b c}^{2} \\
\mathbf{0} & \mathbf{k}_{c b}^{2} & \mathbf{k}_{c c}^{2}
\end{array}\right] \\
& =\frac{E I}{\ell^{3}}\left[\begin{array}{cccccc}
12 & -6 \ell & -12 & -6 \ell & 0 & 0 \\
-6 \ell & 4 \ell^{2} & 6 \ell & 2 \ell^{2} & 0 & 0 \\
-12 & 6 \ell & 24 & 0 & -12 & -6 \ell \\
-6 \ell & 2 \ell^{2} & 0 & 8 \ell^{2} & 6 \ell & 2 \ell^{2} \\
0 & 0 & -12 & 6 \ell & 12 & 6 \ell \\
0 & 0 & -6 \ell & 2 \ell^{2} & 6 \ell & 4 \ell^{2}
\end{array}\right] \tag{3}
\end{align*}
$$

with the corresponding global displacement vector

$$
\mathbf{V}=\left[\begin{array}{llllll}
w_{a} & \theta_{a} & w_{b} & \theta_{b} & w_{c} & \theta_{c}
\end{array}\right]^{T}
$$

Similarly, the global mass matrix is

$$
\begin{align*}
\mathbf{M} & =\left[\begin{array}{ccc}
\mathbf{m}_{a a}^{1} & \mathbf{m}_{a b}^{1} & \mathbf{0} \\
\mathbf{m}_{b a}^{1} & \mathbf{m}_{b b}^{1}+\mathbf{m}_{b b}^{2} & \mathbf{m}_{b c}^{2} \\
\mathbf{0} & \mathbf{m}_{c b}^{2} & \mathbf{m}_{c c}^{2}
\end{array}\right] \\
& =\frac{\rho \ell}{420}\left[\begin{array}{cccccc}
156 & -22 \ell & 54 & 13 \ell & 0 & 0 \\
-22 \ell & 4 \ell^{2} & -13 \ell & -3 \ell^{2} & 0 & 0 \\
54 & -13 \ell & 312 & 0 & 54 & 13 \ell \\
13 \ell & -3 \ell^{2} & 0 & 8 \ell^{2} & -13 \ell & -3 \ell^{2} \\
0 & 0 & 54 & -13 \ell & 156 & 22 \ell \\
0 & 0 & 13 \ell & -3 \ell^{2} & 22 \ell & 4 \ell^{2}
\end{array}\right] \tag{4}
\end{align*}
$$

The frequencies can be determined by solving the generalized eigenvalue problem of Eq. (III.95). Equation (III.95) is first modified by applying the displacement boundary conditions to \mathbf{V} and ignoring the rows in $(\mathbf{K}-\lambda \mathbf{M}) \mathbf{V}=0$ corresponding to the unknown reactions.

Thus, with $w_{a}=w_{c}=0$,

$$
\mathbf{V}=\left[\begin{array}{llllll}
w_{a} & \theta_{a} & w_{b} & \theta_{b} & w_{c} & \theta_{c} \tag{5}
\end{array}\right]^{T}
$$

reduces to

$$
\left[\begin{array}{llll}
\theta_{a} & w_{b} & \theta_{b} & \theta_{c} \tag{6}
\end{array}\right]^{T}
$$

so that the columns in \mathbf{K} and \mathbf{M} corresponding to w_{a} and w_{c} can be canceled. Furthermore, ignore the rows for the reactions V_{a} and V_{c}, which are unknown. The eigenvalue problem becomes

$$
\begin{align*}
& \left\{\frac{E I}{\ell^{3}}\left[\begin{array}{cclc}
4 \ell^{2} & 6 \ell & 2 \ell^{2} & 0 \\
6 \ell & 24 & 0 & -6 \ell \\
2 \ell^{2} & 0 & 8 \ell^{2} & 2 \ell^{2} \\
0 & -6 \ell & 2 \ell^{2} & 4 \ell^{2}
\end{array}\right]\right. \\
& \left.-\lambda\left[\begin{array}{cccc}
4 \ell^{2} & -13 \ell & -3 \ell^{2} & 0 \\
-13 \ell & 312 & 0 & 13 \ell \\
-3 \ell^{2} & 0 & 8 \ell^{2} & -3 \ell^{2} \\
0 & 13 \ell & -3 \ell^{2} & 4 \ell^{2}
\end{array}\right] \frac{\rho \ell}{420}\right\}\left[\begin{array}{c}
\theta_{a} \\
w_{b} \\
\theta_{b} \\
\theta_{c}
\end{array}\right]=\mathbf{0} \tag{7}
\end{align*}
$$

Use of a classical eigenvalue solution procedure will lead to the desired frequencies. Computer software for eigenvalue problems is readily available.

An alternative technique for finding the frequencies is to establish the characteristic equation from the determinant of the coefficients of $(\mathbf{K}-\lambda \mathbf{M}) \mathbf{V}=0$. This can be implemented for problems of limited degrees of freedom. Let

$$
\begin{equation*}
\mathbf{K}=\omega^{2} \mathbf{M}=\left[D_{i j}\right], \quad i, j=1,2, \ldots, 6 \tag{8}
\end{equation*}
$$

and apply the displacement boundary conditions $\left(w_{a}=w_{c}=0\right)$. This leads to

$$
\left[\begin{array}{llllll}
D_{11} & D_{12} & D_{13} & D_{14} & D_{15} & D_{16} \tag{9}\\
D_{21} & D_{22} & D_{23} & D_{24} & D_{25} & D_{26} \\
D_{31} & D_{32} & D_{33} & D_{34} & D_{35} & D_{36} \\
D_{41} & D_{42} & D_{43} & D_{44} & D_{45} & D_{46} \\
D_{51} & D_{52} & D_{53} & D_{54} & D_{55} & D_{56} \\
D_{61} & D_{62} & D_{63} & D_{64} & D_{65} & D_{66}
\end{array}\right]\left[\begin{array}{c}
w_{a}=0 \\
\theta_{a} \\
w_{b} \\
\theta_{b} \\
w_{c}=0 \\
\theta_{c}
\end{array}\right]=\mathbf{0}
$$

The first and fifth equations (rows) correspond to unknown reactions. The remaining equations appear as

$$
\left[\begin{array}{llll}
D_{22} & D_{23} & D_{24} & D_{26} \tag{10}\\
D_{32} & D_{33} & D_{34} & D_{36} \\
D_{42} & D_{43} & D_{44} & D_{46} \\
D_{62} & D_{63} & D_{64} & D_{66}
\end{array}\right]\left[\begin{array}{c}
\theta_{a} \\
w_{b} \\
\theta_{b} \\
\theta_{c}
\end{array}\right]=\mathbf{0}
$$

The characteristic equation is obtained from the determinant of the coefficients of (10), that is,

$$
\nabla=\left[\begin{array}{llll}
D_{22} & D_{23} & D_{24} & D_{26} \tag{11}\\
D_{32} & D_{33} & D_{34} & D_{36} \\
D_{42} & D_{43} & D_{44} & D_{46} \\
D_{62} & D_{63} & D_{64} & D_{66}
\end{array}\right]=0
$$

This relationship can be obtained directly from (7).
Inset the numerical values

$$
\begin{align*}
& D_{22}=3.9999 \times 10^{6}-1.7752 \omega^{2} \\
& D_{32}=D_{23}=1.49996 \times 10^{5}+0.1442 \omega^{2} \\
& D_{33}=1.4999 \times 10^{4}-0.0865 \omega^{2} \\
& D_{42}=D_{24}=1.9999 \times 10^{6}+1.3314 \omega^{2} \\
& D_{43}=D_{34}=0 \tag{12}\\
& D_{44}=7.9998 \times 10^{6}+3.5505 \omega^{2} \\
& D_{62}=D_{26}=0 \\
& D_{36}=D_{63}=-1.49996 \times 10^{5}-0.1442 \omega^{2} \\
& D_{64}=D_{46}=D_{42} \\
& D_{66}=D_{22}
\end{align*}
$$

Substitution of (12) into (11) and use of factorization leads to two equations:

$$
\omega^{4}-41.0093 \times 10^{5} \omega^{2}+13.3967 \times 10^{10}=0
$$

and

$$
\begin{equation*}
\omega^{4}-14.1631 \times 10^{6} \omega^{2}+8.7036 \times 10^{12}=0 \tag{13}
\end{equation*}
$$

The roots of these equations are

$$
\begin{align*}
& \omega_{1}=181.48 \text { or } f_{1}=\omega_{1} / 2 \pi=28.88 \mathrm{~Hz} \\
& \omega_{2}=802.37 \text { or } f_{2}=127.70 \mathrm{~Hz} \tag{14}\\
& \omega_{3}=2016.92 \text { or } f_{3}=321.00 \mathrm{~Hz} \\
& \omega_{4}=3676.86 \text { or } f_{4}=585.19 \mathrm{~Hz}
\end{align*}
$$

Note that the consistent mass matrix leads to higher frequencies than the "exact" values of Example III.7. The approximation introduced in this example is the use of the consistent mass matrix, which is approximate. This contrasts with Example III.7,
where the exact mass was employed. To make the higher frequencies more accurate when consistent mass matrices are employed, more elements should be included in the model.

Example III. 13 Displacement Method for a Lumped Mass Model of a Beam Use the displacement method to find the natural frequencies of the beam of Fig. III-11 along with the lumped parameter idealization of Fig. III-32. Begin by assembling the global stiffness and mass matrices. From Eq. (II.83), for a lumped mass model of a beam element

$$
\mathbf{m}^{i}=\frac{\rho \ell}{2}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \tag{1}\\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad i=1,2
$$

so that the assembled mass matrix will be

$$
\mathbf{M}=\frac{\rho \ell}{2}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \tag{2}\\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1+1 & 0+0 & 0 & 0 \\
0 & 0 & 0+0 & 0+0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The global stiffness matrix is still given by Eq. (3) of Example III.12.
Apply the displacement boundary conditions to $(\mathbf{K}-\lambda \mathbf{M}) \mathbf{V}=0$ and ignore the rows corresponding to the unknown reactions. This leads to the linear eigenvalue problem

$$
\begin{aligned}
& m_{1}=m_{2}=\frac{1}{2} \rho \ell \\
& \ell=40 \mathrm{in} . \\
& \rho=2.912 \times 10^{-3} \mathrm{lb}^{2} \mathrm{~s}^{2} / \mathrm{in}^{2} . \\
& E=3 \times 10^{7} \mathrm{lb} / \mathrm{in}^{2} . \\
& I=1.3333 \mathrm{in} .
\end{aligned}
$$

Figure III-32: Lumped parameter model. Note that this model differs from that of Fig. III-13.

$$
\left\{\frac{E I}{\ell^{3}}\left[\begin{array}{cclc}
4 \ell^{2} & 6 \ell & 2 \ell^{2} & 0 \tag{3}\\
6 \ell & 24 & 0 & -6 \ell \\
2 \ell^{2} & 0 & 8 \ell^{2} & 2 \ell^{2} \\
0 & -6 \ell & 2 \ell^{2} & 4 \ell^{2}
\end{array}\right]-\lambda\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \frac{\rho \ell}{2}\right\}\left[\begin{array}{c}
\theta_{a} \\
w_{b} \\
\theta_{b} \\
\theta_{c}
\end{array}\right]=\mathbf{0}
$$

where $\lambda=\omega^{2}$. The frequencies can be found from this relationship using a standard eigenvalue solution procedure.

Alternatively, the characteristic equation can be established from the determinant of the system of equations. Let

$$
\begin{equation*}
\left(\mathbf{K}-\omega^{2} \mathbf{M}\right)=\left[H_{i j}\right], \quad i, j=1,2, \ldots, 6 \tag{4}
\end{equation*}
$$

Follow the procedure of Example III.12. This leads to

$$
\nabla=\left[\begin{array}{llll}
H_{22} & H_{23} & H_{24} & H_{26} \tag{5}\\
H_{32} & H_{33} & H_{34} & H_{36} \\
H_{42} & H_{43} & H_{44} & H_{46} \\
H_{62} & H_{63} & H_{64} & H_{66}
\end{array}\right]=0
$$

where

$$
\begin{align*}
& H_{22}=3.9999 \times 10^{6} \\
& H_{32}=H_{23}=1.49996 \times 10^{5} \\
& H_{33}=1.49996 \times 10^{4}-0.1165 \omega^{2} \\
& H_{42}=H_{24}=1.9999 \times 10^{6} \\
& H_{43}=H_{34}=0 \tag{6}\\
& H_{44}=7.9998 \times 10^{6} \\
& H_{62}=H_{26}=0 \\
& H_{63}=H_{36}=-1.49996 \times 10^{5} \\
& H_{64}=H_{46}=H_{42} \\
& H_{66}=H_{22}
\end{align*}
$$

With these numbers, (5) gives the fundamental natural frequency

$$
\begin{equation*}
\omega=179.408 \mathrm{rad} / \mathrm{s} \quad \text { or } \quad f=\omega / 2 \pi=28.55 \mathrm{~Hz} \tag{7}
\end{equation*}
$$

As is generally the case, the fundamental frequency derived using the lumped mass model is lower than the exact value of Example III.7.

There are a variety of effective and efficient algorithms, along with readily available software, that attack the eigenvalue problem of Eq. (III.95) directly without resorting to solving Eq. (III.96). Often, eigenvalue problem computer programs require that Eq. (III.95) be converted to the standard eigenvalue problem

$$
\begin{equation*}
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{Y}=\mathbf{0} \tag{III.97}
\end{equation*}
$$

where \mathbf{I} is the unit diagonal matrix, \mathbf{A} is symmetric, and \mathbf{Y} is the eigenvector. Eigenvalues λ that satisfy this relationship are said to be the eigenvalues of \mathbf{A}. To obtain the standard form, premultiply Eq. (III.95) by \mathbf{M}^{-1} :

$$
\begin{equation*}
\left(\mathbf{M}^{-1} \mathbf{K}-\lambda \mathbf{I}\right) \mathbf{V}=\mathbf{0} \tag{III.98}
\end{equation*}
$$

However, $\mathbf{M}^{-1} \mathbf{K}$ is in general not symmetric, so further manipulations are required to achieve a standard form. In particular, Choleski decomposition of \mathbf{M} or \mathbf{K} is performed, resulting in the standard form. Furthermore, since practical models often involve large mass matrices \mathbf{M}, it is desirable to avoid implementation of the inverse \mathbf{M}^{-1}. In fact, in some cases, for lumped mass models \mathbf{M}^{-1} does not exist. For in-depth discussions of these issues, see Ref. [III.6].

Consult a structural dynamics textbook for such popular eigenvalue solution routines as Jacobi, Householder, inverse iteration or power, subspace iteration, or Lanczo's method. Frequently, it is helpful to use condensation techniques (e.g., Guyan reduction) to reduce the number of degrees of freedom of a dynamics problem.

A zero eigenvalue λ_{i} should be obtained for each possible rigid-body motion of a structure that is not restrained. Since the mass can hold the structure together, a singular stiffness matrix \mathbf{K} is more palatable for a dynamic problem than for a static solution, although some operations may not be suitable. For a real, symmetric, and nonsingular \mathbf{K}, the rank of \mathbf{M} is equal to the number of nonzero independent eigenvalues of Eq. (III.95). It follows that for an \mathbf{M} formed using consistent mass element matrices, the number of frequencies available from an analysis is equal to the number of unrestrained nodal displacements.

Frequency-Dependent Stiffness and Mass Matrices

The mass matrices considered thus far are clearly approximate. In the case of the lumped mass matrix, a user-orchestrated physical discretization is imposed on the system. For the consistent mass matrix \mathbf{m}^{i}, the shape function \mathbf{N}, almost always a polynomial, that was employed to form the stiffness matrix for a static analysis is inserted in

$$
\begin{equation*}
\mathbf{m}^{i}=\int_{a}^{b} \rho \mathbf{N}^{T} \mathbf{N} d x \tag{III.99}
\end{equation*}
$$

The methodology and formulas of this book permit a much more general and exact approach, albeit a less efficient one. Some of the transfer matrices (e.g., those of

Table 11-22) contain distributed mass without approximation. If such a transfer matrix is converted to a stiffness matrix format using the transformation of Eq. (II.59), a dynamic stiffness matrix $\mathbf{k}_{\mathrm{dyn}}^{i}$ results. Table 11-22 contains such a matrix. The distributed mass in the dynamic stiffness matrix is modeled exactly and the resulting stiffness matrix is a function of the frequency. Suppose that the assembled global stiffness matrix is $\mathbf{K}_{\text {dyn }}$. The characteristic equation from which the natural frequencies can be computed can be written as

$$
\begin{equation*}
\operatorname{det} \mathbf{K}_{\mathrm{dyn}}(\omega)=0 \tag{III.100}
\end{equation*}
$$

where the boundary conditions have been applied and have resulted in a reduced $\mathbf{K}_{\text {dyn }}$. A numerical determinant search in which the determinant is evaluated for trial frequencies can be utilized to find the frequencies.

Example III. 14 Use of a Dynamic Stiffness Matrix for the Natural Frequencies of a Beam Use the dynamic stiffness matrix to find the natural frequencies of the beam of Fig. III-11. Since an exact mass model is to be employed, this beam can be treated as a single-element beam. We choose, however, to continue with the two-element model shown in Fig. III-11. Assuming the use of a long element does not lead to numerical instabilities, both models provide the same exact solution (frequencies and mode shapes).

The element stiffness relationship is

$$
\begin{gather*}
\mathbf{k}^{i} \mathbf{v}^{i}=\mathbf{p}^{i} \quad \text { where } i=1,2 \\
\mathbf{k}_{\mathrm{dyn}}^{i}=\mathbf{k}^{i}=\left[\begin{array}{cccc}
k_{11}^{i} & k_{12}^{i} & k_{13}^{i} & k_{14}^{i} \\
k_{21}^{i} & k_{22}^{i} & k_{23}^{i} & k_{24}^{i} \\
k_{31}^{i} & k_{32}^{i} & k_{33}^{i} & k_{34}^{i} \\
k_{41}^{i} & k_{42}^{i} & k_{43}^{i} & k_{44}^{i}
\end{array}\right], \quad \mathbf{v}^{i}=\left[\begin{array}{c}
w_{a} \\
\theta_{a} \\
w_{b} \\
\theta_{b}
\end{array}\right], \quad \mathbf{p}^{i}=\left[\begin{array}{c}
V_{a} \\
M_{a} \\
V_{b} \\
M_{b}
\end{array}\right] \tag{1}
\end{gather*}
$$

The stiffness elements for a dynamic stiffness matrix for a beam, which includes the effects of the mass, are given in Table 11-22:

$$
\begin{aligned}
& k_{11}^{i}=(E I / \Delta)\left[\left(e_{2}-\eta e_{4}\right)\left(e_{1}+\zeta e_{3}\right)+\lambda e_{3} e_{4}\right] \\
& k_{12}^{i}=(E I / \Delta)\left[e_{3}\left(e_{1}-\eta e_{3}\right)-e_{2}\left(e_{2}-\eta e_{4}\right)\right] \\
& k_{13}^{i}=-(E I / \Delta)\left(e_{2}-\eta e_{4}\right) \\
& k_{14}^{i}=-(E I / \Delta)\left(e_{3}\right) \\
& k_{21}^{i}=k_{12}^{i} \\
& k_{22}^{i}=(E I / \Delta)\left\{e_{3} e_{2}-\left(e_{1}-\eta e_{3}\right)\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
k_{23}^{i} & =(E I / \Delta)\left(e_{3}\right)=-k_{14}^{i} \\
k_{24}^{i} & =(E I / \Delta)\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right] \\
k_{31}^{i} & =k_{13}^{i} \tag{2}\\
k_{32}^{i} & =k_{23}^{i} \\
k_{33}^{i} & =(E I / \Delta)\left[\left(e_{1}+\zeta e_{3}\right)\left(e_{2}-\eta e_{4}\right)+\lambda e_{3} e_{4}\right]=k_{11}^{i} \\
k_{34}^{i} & =(E I / \Delta)\left\{\left(e_{1}+\zeta e_{3}\right) e_{3}+\lambda e_{4}\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right]\right\} \\
k_{41}^{i} & =k_{14}^{i} \\
k_{42}^{i} & =k_{24}^{i} \\
k_{43}^{i} & =k_{34}^{i} \\
k_{44}^{i} & =(E I / \Delta)\left\{e_{2} e_{3}-\left(e_{1}-\eta e_{3}\right)\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right]\right\}=k_{22}^{i} \\
\Delta & =e_{3}^{2}-\left(e_{2}-\eta e_{4}\right)\left[e_{4}-\xi\left(e_{2}+\zeta e_{4}\right)\right]
\end{align*}
$$

Also, from Table 11-22,

$$
\begin{align*}
& \lambda=\left(k-\rho \omega^{2}\right) / E I=-\rho \omega^{2} / E I<0 \\
& \eta=\left(k-\rho \omega^{2}\right) / G A_{s}=0 \quad \text { if shear deformation } \\
& \xi=E I / G A_{s}=0 \quad \text { is not included } \quad\left(1 / G A_{s}=0\right) \tag{3}\\
& \xi=\left(P-k^{*}+\rho r_{y}^{2} \omega^{2}\right) / E I=0
\end{align*}
$$

since $P=0, k^{*}=0$, and rotary effects are to be ignored. For $\lambda<0$, case 1 of the definitions for e_{i} in Table 11-22 provides

$$
\begin{array}{ll}
e_{1}=\left(d^{2} A+q^{2} B\right) / g & e_{2}=(d C+q D) / g \\
e_{3}=(A-B) / g & e_{4}=(C / d-D / q) / g \tag{4}
\end{array}
$$

in which the parameters are obtained from Table 11-22:

$$
\begin{align*}
d^{2} & =\sqrt{(\zeta+\eta)^{2} / 4-\lambda}-(\zeta-\eta) / 2=\sqrt{\rho / E I} \omega \\
q^{2} & =\sqrt{(\zeta+\eta)^{2} / 4-\lambda}+(\zeta+\eta) / 2=\sqrt{\rho / E I} \omega=d^{2} \\
g & =d^{2}+q^{2}=2 \sqrt{\rho / E I} \omega \tag{5}\\
A & =\cosh d \ell \quad B=\cos q \ell=\cos d \ell \\
C & =\sinh d \ell \quad D=\sin q \ell=\sin d \ell
\end{align*}
$$

Insertion of (5) into (4) gives

$$
e_{1}=\frac{1}{2}(\cosh d \ell+\cos d \ell)
$$

$$
\begin{align*}
& e_{2}=\frac{1}{2 \sqrt{\omega}}\left(\frac{E I}{\rho}\right)^{1 / 4}(\sinh d \ell+\sin d \ell) \tag{6}\\
& e_{3}=\frac{1}{2 \omega} \sqrt{\frac{E I}{\rho}}(\cosh d \ell-\cos d \ell) \\
& e_{4}=\frac{1}{2 \omega \sqrt{\omega}}\left(\frac{E I}{\rho}\right)^{3 / 4}(\sinh d \ell-\sin d \ell)
\end{align*}
$$

and

$$
\begin{aligned}
\Delta & =e_{3}^{2}-\left(e_{2}-0\right)\left(e_{4}-0\right) \\
& =e_{3}^{2}-e_{2} e_{4} \\
& =\frac{1}{2 \omega^{2}}\left(\frac{E I}{\rho}\right)(1-\cosh d \ell \cos d \ell)
\end{aligned}
$$

Substitution of (3) into (2) provides

$$
\begin{align*}
& k_{11}^{i}=(E I / \Delta)\left(e_{1} e_{2}+\lambda e_{3} e_{4}\right) \\
& k_{12}^{i}=(E I / \Delta)\left(e_{1} e_{3}-e_{2}^{2}\right) \\
& k_{13}^{i}=-(E I / \Delta) e_{2} \\
& k_{14}^{i}=-(E I / \Delta) e_{3} \\
& k_{21}^{i}=k_{12}^{i} \\
& k_{22}^{i}=(E I / \Delta)\left(e_{3} e_{2}-e_{1} e_{4}\right) \\
& k_{23}^{i}=(E I / \Delta) e_{3}=-k_{14}^{i} \\
& k_{24}^{i}=(E I / \Delta) e_{4} \tag{7}\\
& k_{31}^{i}=k_{13}^{i} \\
& k_{32}^{i}=k_{23}^{i} \\
& k_{33}^{i}=(E I / \Delta)\left(e_{1} e_{2}+\lambda e_{3} e_{4}\right)=k_{11}^{i} \\
& k_{34}^{i}=(E I / \Delta)\left(e_{1} e_{3}+\lambda e_{4}^{2}\right) \\
& k_{41}^{i}=k_{14}^{i} \\
& k_{42}^{i}=k_{24}^{i} \\
& k_{43}^{i}=k_{34}^{i} \\
& k_{44}^{i}=(E I / \Delta)\left(e_{3} e_{2}-e_{1} e_{4}\right)=k_{22}^{i}
\end{align*}
$$

The global dynamic stiffness matrix assembled for the two-element beam model appears as

$$
\mathbf{K}_{\mathrm{dyn}}=\left[\begin{array}{cccccc}
k_{11}^{1} & k_{12}^{1} & k_{13}^{1} & k_{14}^{1} & 0 & 0 \tag{8}\\
k_{21}^{1} & k_{22}^{1} & k_{23}^{1} & k_{24}^{1} & 0 & 0 \\
k_{31}^{1} & k_{32}^{1} & k_{33}^{1}+k_{11}^{2} & k_{34}^{1}+k_{12}^{2} & k_{13}^{2} & k_{14}^{2} \\
k_{41}^{1} & k_{42}^{1} & k_{43}^{1}+k_{21}^{2} & k_{44}^{1}+k_{22}^{2} & k_{23}^{2} & k_{24}^{2} \\
0 & 0 & k_{31}^{2} & k_{32}^{2} & k_{33}^{2} & k_{34}^{2} \\
0 & 0 & k_{41}^{2} & k_{42}^{2} & k_{43}^{2} & k_{44}^{2}
\end{array}\right]
$$

with the corresponding global displacement vector

$$
\mathbf{V}=\left[\begin{array}{llllll}
w_{a} & \theta_{a} & w_{b} & \theta_{b} & w_{c} & \theta_{c}
\end{array}\right]^{T}
$$

Introduce the displacement boundary conditions $w_{a}=w_{c}=0$ to eliminate columns 1 and 5 of (8) and delete the rows (1 and 5) for the reactions complementary to these prescribed displacements. The characteristic equation [Eq. (III.100)] now appears as

$$
\left|\begin{array}{cccc}
k_{22}^{1} & k_{23}^{1} & k_{24}^{1} & 0 \\
k_{32}^{1} & k_{33}^{1}+k_{11}^{2} & k_{34}^{1}+k_{12}^{2} & k_{14}^{2} \\
k_{42}^{1} & k_{43}^{1}+k_{21}^{2} & k_{44}^{1}+k_{22}^{2} & k_{24}^{2} \\
0 & k_{41}^{2} & k_{42}^{2} & k_{44}^{2}
\end{array}\right|=0
$$

A frequency search applied to this determinant relationship leads to the natural frequencies.

As expected, this dynamic stiffness matrix yields the same (exact) natural frequencies obtained in Example III.7. This is because no approximation such as the use of consistent or lumped mass modeling was made. The advantage of exact mass modeling permits a coarser mesh (i.e., fewer elements) to be employed in the model. The disadvantage is that the determinant search for frequencies can be a difficult, inefficient procedure, especially for complex systems.

As mentioned in Example III.14, a determinant search, such as would be required by Eq. (III.100), is often a numerically cumbersome, inefficient process that perhaps should be avoided. The inefficiency results from the need to calculate the value of the determinant for each trial value of the frequency. A detailed review of the problems associated with the use of the dynamic stiffness matrix is provided in Ref. [III.12]. The determinant search can be circumvented by creating an eigenvalue problem in which the structural matrices are not functions of the frequency parameter ω.

Typically, one begins by generating a frequency-dependent mass matrix in a manner similar to the formation of the dynamic stiffness matrix $\mathbf{k}_{\mathrm{dyn}}^{i}$. A frequency-
dependent mass matrix can be obtained by placing the exact (frequency-dependent) shape function \mathbf{N} in Eq. (III.99). The same exact mass matrix is available by differentiating the element dynamic stiffness matrix by the frequency parameter ω [III.13]:

$$
\begin{equation*}
\mathbf{m}^{i}=-\partial \mathbf{k}_{\mathrm{dyn}}^{i} / \partial \omega^{2} \tag{III.101}
\end{equation*}
$$

An economical alternative is to calculate a frequency-dependent "quasistatic" mass matrix \mathbf{m}^{i}, defined as

$$
\begin{equation*}
\tilde{\mathbf{m}}^{i}=\int_{V} \mathbf{N}_{0}^{T} \rho \mathbf{N} d V \tag{III.102}
\end{equation*}
$$

where \mathbf{N}_{0} is an element static shape function such as the \mathbf{N} given in Eq. (II.65).
Define an associated frequency-dependent stiffness matrix $\mathbf{k}^{i}(\omega)$ in terms of the dynamic stiffness matrix $\mathbf{k}_{\mathrm{dyn}}^{i}(\omega)$ and a frequency-dependent mass matrix $\mathbf{m}^{i}(\omega)$,

$$
\begin{equation*}
\mathbf{k}_{\mathrm{dyn}}^{i}(\omega)=\mathbf{k}^{i}(\omega)-\omega^{2} \mathbf{m}^{i}(\omega) \tag{III.103}
\end{equation*}
$$

The operations involved in forming $\mathbf{k}_{\mathrm{dyn}}^{i}, \mathbf{m}^{i}$, and \mathbf{k}^{i} can be performed using symbolic manipulation software.

Assemble the global matrices $\mathbf{M}(\omega)$ and $\mathbf{K}(\omega)$ using the element matrices $\mathbf{m}^{i}(\omega)$ and $\mathbf{k}^{i}(\omega)$, giving the eigenvalue problem

$$
\begin{equation*}
\left[\mathbf{K}(\omega)-\omega^{2} \mathbf{M}(\omega)\right] \mathbf{V}=\mathbf{0} \tag{III.104}
\end{equation*}
$$

A simple iterative solution of this problem usually converges rapidly to the exact eigenvalue solution:

$$
\begin{array}{rlr}
{\left[\mathbf{K}(0)-\omega^{2} \mathbf{M}(0)\right] \mathbf{V}=0 \rightarrow \omega=\omega_{1}^{0}, \omega_{2}^{0}, \omega_{3}^{0}, \ldots,} & \mathbf{v}=\mathbf{v}^{0} \\
{\left[\mathbf{K}\left(\omega_{1}^{0}\right)-\omega^{2} \mathbf{M}\left(\omega_{1}^{0}\right)\right] \mathbf{V}=0 \rightarrow \omega=\omega_{1}^{1}, \omega_{2}^{1}, \omega_{3}^{1}, \ldots,} & \mathbf{v}=\mathbf{v}^{1} \tag{III.105}\\
\vdots & & \\
{\left[\mathbf{K}\left(\omega_{1}^{j-1}\right)-\omega^{2} \mathbf{M}\left(\omega_{1}^{j-1}\right)\right] \mathbf{V}} & =0 \rightarrow \omega=\omega_{1}^{j}, \omega_{2}^{j}, \omega_{3}^{j}, \ldots, & \mathbf{v}=\mathbf{v}^{j}
\end{array}
$$

where superscript j designates the eigensolution of the j th iteration. The frequencies $\omega_{1}^{0}, \omega_{2}^{0}, \omega_{3}^{0}, \ldots$ are those that are obtained using a consistent mass matrix and the usual static stiffness matrix.

This approach, although less efficient than solving the generalized eigenvalue problem of Eqs. (III.95), is normally more efficient than the determinant search required to solve Eq. (III.100). This procedure, represented by Eqs. (III.105), has the advantage of being able to utilize readily available, reliable, standard eigenvalue solvers, which should result in an accurate set of frequencies and mode shapes. Furthermore, remember that the frequency-dependent mass and stiffness matrices permit a model to be employed with fewer (larger) elements than is possible with consistent or lumped mass matrices. Even more precise higher frequencies are obtained from

Eqs. (III.105) if \mathbf{K} and \mathbf{M} are evaluated at $\omega_{n}^{j-1}, n>1$, rather than at the lowest natural frequency ω_{1}^{j-1}.

More common than the use of the iterative procedure of Eq. (III.105) is the establishment of a quadratic, generalized eigenvalue problem using matrices expanded in series [III.14]. Expand the mass, stiffness, and dynamic stiffness matrices in Taylor series:

$$
\begin{align*}
\mathbf{m}^{i} & =\sum_{n=0}^{\infty} \mathbf{m}_{n} \omega^{2 n} \quad \text { or } \quad \tilde{\mathbf{m}}^{i}=\sum_{n=0}^{\infty} \tilde{\mathbf{m}}_{n} \omega^{2 n} \tag{III.106a}\\
\mathbf{k}^{i} & =\sum_{n=0}^{\infty} \mathbf{k}_{n} \omega^{2 n} \tag{III.106b}\\
\mathbf{k}_{\mathrm{dyn}}^{i} & =\sum_{n=0}^{\infty}\left(\mathbf{k}_{\mathrm{dyn}}\right)_{n} \omega^{2 n} \tag{III.106c}
\end{align*}
$$

From Eq. (III.103), define

$$
\begin{equation*}
\left(\mathbf{k}_{\mathrm{dyn}}\right)_{n}=\mathbf{k}_{n}-\mathbf{m}_{n-1}, \quad n \geq 1 \tag{III.107}
\end{equation*}
$$

A simple relationship between the series terms $\mathbf{m}_{0}, \mathbf{m}_{1}, \ldots$ and $\mathbf{k}_{1}, \mathbf{k}_{2}, \ldots$ is quite useful [III.14]:

$$
\begin{equation*}
(n+1) \mathbf{k}_{n+1}=n \mathbf{m}_{n}=n(n+1) \tilde{\mathbf{m}}_{n}=-n(n+1)\left(\mathbf{k}_{\mathrm{dyn}}\right)_{n+1}, \quad n \geq 1, \tag{III.108}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \left(\mathbf{k}_{\mathrm{dyn}}\right)_{0}=\mathbf{k}_{0} \quad(\text { traditional stiffness matrix }) \\
& \left(\mathbf{k}_{\mathrm{dyn}}\right)_{1}=-\mathbf{m}_{0} \quad(\text { traditional consistent mass matrix }) \tag{III.109}
\end{align*}
$$

and $\mathbf{k}_{1}=0$. Usually, enough terms in the series expansions are retained to create a quadratic eigenvalue problem. There is a sizable literature on the solution of higher-order eigenvalue problems, especially on the efficient solution of quadratic eigenvalue problems.

III. 7 TRANSIENT RESPONSES

The response of a structural system to prescribed time-dependent loading involves the solution of

$$
\begin{equation*}
\mathbf{M} \ddot{\mathbf{V}}+\mathbf{K} \mathbf{V}=\overline{\mathbf{P}} \tag{III.110}
\end{equation*}
$$

This is an ordinary differential equation in time that can be integrated directly. Textbooks on vibrations or structural dynamics describe a variety of time integration
techniques for solving Eq. (III.110). However, by far the most frequently used technique in practice is the modal superposition method, which employs the free vibration responses. Since the natural frequencies and mode shapes are often calculated at the offset of a dynamic analysis of a structural system, it is a relatively simple procedure to proceed to compute the transient response using modal superposition. This method will be described in brief here for use with structural systems. See Ref. [III.1] for the details on using modal superposition to find the response of structural members. Also, further information on this method is available in structural dynamics textbooks.

With modal superposition the solution to Eqs. (III.110) are expressed as a summation involving the eigenvectors \mathbf{V}_{n}. Actually, the solution is written in terms of normalized eigenvectors. One common method of normalizing the eigenvectors is to choose the unknown constants such that

$$
\begin{equation*}
\mathbf{V}_{j}^{T} \mathbf{M} \mathbf{V}_{j}=\mathbf{I} \tag{III.111}
\end{equation*}
$$

Arrange the newly normalized eigenvectors as columns in a matrix $\boldsymbol{\Phi}$. This is called the modal matrix and has the orthogonality properties

$$
\begin{equation*}
\boldsymbol{\Phi}^{T} \mathbf{M} \boldsymbol{\Phi}=\mathbf{I}, \quad \boldsymbol{\Phi}^{T} \mathbf{K} \boldsymbol{\Phi}=\boldsymbol{\omega}^{2} \tag{III.112}
\end{equation*}
$$

where \mathbf{I} is the unit diagonal matrix and $\boldsymbol{\omega}^{2}$ is a diagonal matrix of the squared natural frequencies, called the spectral matrix.

To find the solution to Eq. (III.110), express the displacements \mathbf{V} as the sum of the normal modes,

$$
\begin{equation*}
\mathbf{V}=\boldsymbol{\Phi} \mathbf{q} \tag{III.113}
\end{equation*}
$$

where \mathbf{q} is a vector of time-dependent modal amplitudes. The values of $\mathbf{q}(t)$ are found by substituting \mathbf{V} of Eq. (III.113) in Eq. (III.110) and premultiplying by $\boldsymbol{\Phi}^{T}$. It follows from Eqs. (III.112) that

$$
\begin{equation*}
\ddot{q}_{n}+\omega_{n}^{2} q_{n}=p_{n} \tag{III.114a}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{n}=\boldsymbol{\Phi}_{n}^{T} \overline{\mathbf{P}} \tag{III.114b}
\end{equation*}
$$

The vector $\boldsymbol{\Phi}_{n}$ is the nth column of $\boldsymbol{\Phi}$. Equation (III.114a) represents a set of uncoupled ordinary differential equations in time, with the solution

$$
\begin{equation*}
q_{n}(t)=q_{n}(0) \cos \omega_{n} t+\dot{q}_{n}(0) \frac{\sin \omega_{n} t}{\omega_{n}}+\int_{0}^{t} p_{n}(\tau) \frac{\sin \omega_{n}(t-\tau)}{\omega_{n}} d \tau \tag{III.115}
\end{equation*}
$$

where $p_{n}(t)$ is a known function of time. There are as many q_{n} equations as there are degrees of freedom. To find initial values of q_{n} and \dot{q}_{n} of Eq. (III.115), evaluate
$\mathbf{V}=\boldsymbol{\Phi} \mathbf{q}$ and $\dot{\mathbf{V}}=\boldsymbol{\Phi} \dot{\mathbf{q}}$ at $t=0$ and premultiply both sides by $\boldsymbol{\Phi}^{T} \mathbf{M}$. This gives

$$
\begin{align*}
\mathbf{q}(0) & =\boldsymbol{\Phi}^{T} \mathbf{M V}(0), & & \dot{\mathbf{q}}(0)=\boldsymbol{\Phi}^{T} \mathbf{M} \dot{\mathbf{V}}(0) \tag{III.116}\\
q_{n}(0) & =\boldsymbol{\Phi}_{n}^{T} \mathbf{M V}(0), & & \dot{q}_{n}(0)=\boldsymbol{\Phi}_{n}^{T} \mathbf{M} \dot{\mathbf{V}}(0) \tag{III.117}
\end{align*}
$$

This modal solution may appear to be computationally inefficient. However, $\boldsymbol{\Phi}$ is usually not difficult to form, as only a few modes may be needed for a sufficiently accurate solution. If m modes are employed, there are m columns in $\boldsymbol{\Phi}$ and only m solutions to Eq. (III.114) required. For a problem with multiple loading histories, the modal summation approach is particularly advantageous, as the second, third, and so on, loadings are handled very economically.

Treatises on structural dynamics contain considerable insight into making the modal superposition approach more efficient and accurate.

REFERENCES

III.1. Wunderlich, W., and Pilkey, W. D., Structural Mechanics: Variational and Computational Methods, 2nd ed., CRC Press, Boca Raton, FL, 2003.
III.2. Pilkey, W. D., and Okada, Y., Matrix Methods in Mechanical Vibrations, Corona Publishing, Tokyo, 1989.
III.3. Pestel, E., and Leckie, F., Matrix Methods in Elastomechanics, McGraw-Hill, New York, 1963.
III.4. Marguerre, V. K., and Uhrig, R., "Berechnung vielgliedriger Gelenkketten, I: Übertragungsverfahren und seine Grenzen," Z. Angew. Math. Mech., Vol. 44, 1964, pp. 1-21.
III.5. Horner, G. C., and Pilkey, W. D., "The Riccati Transfer Matrix Method," J. Mech. Des., Vol. 1, No. 2, 1978, pp. 297-302.
III.6. Cook, R. D., Malkus, D. S., Plesha, M. E., and Witt, R. J., Concepts and Applications of Finite Element Analysis, 4th ed., Wiley, New York, 2001.
III.7. Everstine, G. C., "A Comparison of Three Resequencing Algorithms for the Reduction of Matrix Profile and Wavefront," Int. J. Numer. Methods Eng., Vol. 14, No. 6, 1979, pp. 837858.
III.8. Gibbs, N. E., Poole, W. G., Jr., and Stockmeyer, P. K., "An Algorithm for Reducing the Bandwidth and Profile of a Sparse Matrix," SIAM J. Num. Anal., Vol. 13, No. 2, 1976, pp. 236-250.
III.9. George, A., and Liu, J. W., Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Englewood Cliffs, NJ, 1981.
III.10. Cuthill, E., and McKee, J., "Reducing the Bandwidth of Sparse Symmetric Matrices," Proceedings of the ACM National Conference, Association of Computing Machinery, New York, 1969.
III.11. Gallegher, R. H., "Finite Element Structural Analysis and Complementary Energy," Finite Elem. Anal. Des., Vol. 13, 1993, pp. 115-126.
III.12. Fergusson, N., and Pilkey, W. D., "The Dynamic Stiffness Method, A Survey of the Published Literature, Part I: DSM Elements," Shock Vibrat. Technol. Rev., Vol. 1, No. 7, 1991, pp. 4-13.
III.13. Richards, T. H., and Leung, Y. T., "An Accurate Method in Structural Vibration Analysis," J. Sound Vibrat., Vol. 55, No. 3, 1977, pp. 363-376.
III.14. Fergusson, N., and Pilkey, W. D., "Frequency-Dependent Element Mass Matrices," J. Appl. Mech., Vol. 59, 1992, pp. 136-139.

Tables

III-1 Notation for Transfer Matrix Method
III-2 Notation for Displacement and Force Methods
III-3 Comparison of Methods for Structural Analysis
1490

TABLE III-1 NOTATION FOR TRANSFER MATRIX METHOD

Symbol	Definition
\mathbf{U}^{i}	Transfer matrix for i th element (field) $\mathbf{z}_{b}=\mathbf{U}^{i} \mathbf{z}_{a}$ \mathbf{U}
Global or overall transfer matrix that spans several (M) elements, $\mathbf{U}=\mathbf{U}^{M} \mathbf{U}^{M-1} \cdots \mathbf{U}^{2} \mathbf{U}^{1}$	
\mathbf{U}_{k}	Point matrix to account for concentrated occurrence (e.g., a point force or discrete spring, at location $k)$
\mathbf{z}_{k}	State vector at location $k ;$ contains all displacement and force state variables
$\overline{\mathbf{z}}^{i}$	Applied loading function vector for i th element

TABLE III-2 NOTATION FOR DISPLACEMENT AND FORCE METHODS

Notation
Indices: Superscript for distributed quantity (e.g., an element index); subscript for point quantity (e.g., a node index). As an example, \mathbf{v}_{k}^{i} is the displacement \mathbf{v} of the i th element at the k th node.
Local coordinate system: Variables referred to a local coordinate system are indicated by a tilde (e.g., $\tilde{\mathbf{k}}^{i}$ is the local stiffness matrix of the i th element).
Prescribed (applied) variables will be indicated with a line over the letter (e.g., $\overline{\mathbf{P}}_{k}$ is the force applied at node k).

Symbol	Definition
V	Vector of global nodal displacements
P	Vector of global nodal forces
$\overline{\mathbf{V}}$	Applied global displacements
$\overline{\mathbf{P}}$	Applied global forces
\mathbf{v}^{i}	Vector of nodal displacements of i th element
\mathbf{p}^{i}	Vector of nodal forces of i th element
$\overline{\mathbf{v}}^{i}, \overline{\mathbf{p}}^{i}$	Element loading vectors
\mathbf{k}^{i}	Stiffness matrix of i th element
K	System (global) stiffness matrix
\mathbf{f}^{i}	Flexibility matrix of i th element
F	System flexibility matrix
a	Kinematic transformation (incident) matrix, $\mathbf{v}=\mathbf{a V}$
b	Static transformation matrix, $\mathbf{p}=\mathbf{b P}$
T^{i}	Transformation matrix (e.g., $\tilde{\mathbf{v}}^{i}=\mathbf{T}^{i} \mathbf{v}^{i}$)
$\mathbf{T}_{j j}^{i}, j=a, b$	Transformation matrix, element i, node j; $\mathbf{T}^{i}=\left[\begin{array}{c:c} \mathbf{T}_{a a} & \mathbf{0} \\ \hdashline \mathbf{0} & \mathbf{T}_{b b} \end{array}\right]^{i}$ for nodes a, b of element i

TABLE III-2 (continued)	NOTATION FOR DISPLACEMENT AND FORCE METHODS
\tilde{N}	Internal axial force in local coordinates
$\tilde{V}_{y}, \tilde{V}_{z}$ or \tilde{V}	Internal shear forces in local coordinates
$\tilde{T}=\tilde{M}_{x}, \tilde{M}=\tilde{M}_{y}, \tilde{M}_{z}$	Internal moments in local coordinates
$\tilde{u}=\tilde{u}_{x}$	Axial displacement in local coordinates
$\tilde{v}=\tilde{u}_{y}, \tilde{w}=\tilde{u}_{z}$	Transverse displacements in local coordinates
$\tilde{\phi}=\tilde{\theta}_{x}, \tilde{\theta}=\tilde{\theta}_{y}, \tilde{\theta}_{z}$	Rotations about x, z, and y axes in local coordinates
F_{X}, F_{Y}, F_{Z}	Forces on the ends of element in global X, Y,
	\quad and Z directions, respectively
u_{X}, u_{Y}, u_{Z}	Displacements on the ends of element in global X, Y,
$\theta_{X}, \theta_{Y}=\theta, \theta_{Z}$	and Z directions, respectively
	Rotations on the ends of element in global X, Y,
P_{X}, P_{Y}, P_{Z}	and Z directions, respectively
M_{X}, M_{Y}, M_{Z} or M	Nodal forces in global coordinates
U_{X}, U_{Y}, U_{Z}	Nodal moments in global coordinates
$\Theta_{X}, \Theta_{Y}, \Theta_{Z}$	Nodal displacements in global coordinates
$\bar{P}_{X}, \bar{P}_{Y}, \bar{P}_{Z}$	Nodal rotation in global coordinates X, Y,
$\bar{M}_{X}, \bar{M}_{Y}, \bar{M}_{Z}$	and Z directions, respectively
	Applied nodal loading forces in global coordinates
	Applied nodal moments in global coordinates X, Y,

For plane structure with in-plane loading:

$$
\tilde{\mathbf{p}}=\left[\begin{array}{c}
\tilde{N} \\
\tilde{V} \\
\tilde{M}
\end{array}\right], \quad \tilde{\mathbf{v}}=\left[\begin{array}{c}
\tilde{u} \\
\tilde{w} \\
\tilde{\theta}
\end{array}\right], \quad \mathbf{p}=\left[\begin{array}{c}
F_{X} \\
F_{Z} \\
M
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
u_{X} \\
u_{Z} \\
\theta
\end{array}\right]
$$

TABLE III-3 COMPARISON OF METHODS FOR STRUCTURAL ANALYSIS

	Method		
Analysis	Transfer Matrix	Displacement	Force
Unknowns in analysis	Displacement and force variables	Displacement variables	Force variables
Characterization of i th element	Transfer matrix \mathbf{U}^{i}	Stiffness matrix \mathbf{k}^{i}	Flexibility matrix
Matrix characterizing system	$\mathbf{U}=\prod_{i} \mathbf{U}^{i}$	$\mathbf{K}=\sum_{i} \mathbf{k}^{i}=\mathbf{a}^{T} \mathbf{k a}$	$\mathbf{F}=\mathbf{b}^{T} \mathbf{f b}$
Conditions fulfilled at outset of formulation	-	Compatibility	Equilibrium
System equations satisfy	Equilibrium and compatibility	Equilibrium	Compatibility

INDEX

Index Terms

Links

174206

211

193

This page has been reformatted by Knovel to provide easier navigation.

Index Terms	Links
Austempering	171
Austenite	170
Austenitic stainless steels	176
Autofrettage	1138
Autogenous	184
B	
Bainite	170
Banded matrix	1452
Bandwidth	1452
Bars:	
arbitrary loading	643
curved	801
extension	621
radial	973
stiffness matrix, space	727
tables	633
torsion	620
uniform	643
Beam segment:	
stiffness matrices	610
transfer matrices	610
Beams	519
approximate solutions, trial solutions	1395
arbitrary loading	526
Bernoulli's hypothesis	1371
buckling	531
collapse loads	572
concentrated masses	597
concentrated occurrences	608

This page has been reformatted by Knovel to provide easier navigation.

Index Terms	Links
Beams (Cont.):	
consistent mass matrix	1401
constant stress	476
curved	801
definition	1370
deflection	122
dynamic characteristics	476
dynamic stiffness matrices	1402
elastic foundations	528
Euler-Bernoulli	523
first order governing equation	1381
flexible end support	533
formulas	524
free vibrations	1422
frequencies	535
general formulas	260
geometric relationships	1370
geometric stiffness matrix	542
governing equations	1374
in-span conditions	1435
in-span supports	599
Laplace transform	1385
lumped mass	1431
mass matrix	542
material laws	1372
mode shapes	535
natural frequencies	535
Navier's hypothesis	1371
normal stresses	522
numerical difficulties	1438

Index Terms

Beams (Cont.):

pinned-pinned	532	
plastic design	531	
plastic hinge	531	
plastic moment	531	
point matrices	1400	
principle of virtual work	1389	
radial rotating	921	
Rayleigh	537	1376
shape functions	1396	
shear	537	1376
shear correction factor	1372	
shear form factor	1372	
shear stresses	523	799
sign convention	521	1378
stability	1417	
stiffness and mass matrices	533	
stiffness matrix	539	602
stresses	1378	
tables	544	
tabulated formulas	524	
tapered	599	
thin-walled	733	
Timoshenko	537	1376
torsion	733	
transfer matrices	533	536
transfer matrices, derivation	1381	
transfer matrix method	1406	
trial functions	1395	
uniform	546	

This page has been reformatted by Knovel to provide easier navigation.

Index Terms	Links	
Beams (Cont.):		
variable moments of inertia	604	
with axial forces and elastic foundations	560	
Bearings:		
journal	895	914
pedestal	895	
element	914	
plain seal	966	
tilting pad	965	
transfer matrices	949	
Bending:		
shells of revolution	1191	
unsymmetric	129	
Bernoulli's hypothesis	1371	
Bifurcation, theory	134	
Bimoment	735	737
Binomial coefficients	1323	
Binomial series	1322	
Binomial theorem	1323	
Bioengineering	181	
Biomaterials	181	183
ceramic	184	
composite	184	
inert	183	
interactive	183	
metallic	184	229
natural origin	184	
polymer	184	
replant	184	
viable	184	

Index Terms	Links
Biomechanical properties, factors influencing	183
Biomechanics	181
Birefringence	245
Bleich's correction factors	831
Bleich's method	811
Body-centered-cubic iron	170
Bolts	371
bearing capacities	398
minimum distance	400
SAE grade steels	403
shearing capacities	398
standard thread dimensions	404
common	371
effective net area	376
high-strength	371
load tightening	377
torqued-up	377
unfinished	371
Bone	181
human	226
vertebral	228
Boussinesq's solution	418
Bridges	601
Brinell hardness number	162
effect on fatigue	338
Brinell hardness test	163198
Brittle coatings	244
Buckling	$531 \quad 741$
arches	856
beams	1417

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Buckling (Cont.):
circular plates
columns
conical shells
curved bars
cylindrical shells
rectangular plates
shells of revolution
spherical shells
tapered columns
various shapes
Buckling loads
Buildings, natural period
Bulk modulus

C
Calculus 1340
integral
1341
multiple variables 1341
point of inflection
stationary value 1341
and1341
variational 1447

Capacity:
bearing, in joints384
load, in joints 384
tensile, in joints 385
Carbon steels
Cartilage, hyaline articular
Case-hardening, effect on fatigue 337

583

1205

1088

Index Terms	Links	
Cast irons	170	209
ductile	176	
gray	176	
malleable	177	
nodular	176	
white	176	
Cayley-Hamilton theorem	1383	
Cementite	170	
Center of gravity	19	
Centrifugal loading, cylinders	1153	
Centrifugal pump	897	
Centroid	18	46
composite area	19	
piecewise integration	38	
Centroidal principal bending axes	23	
Ceramic materials	224	
Ceramics	165	179
Cermets	179	
Charpy, energy	312	
Charpy, values	312	
Charpy impact test	159	260
Chimneys	601	
Choleski decomposition	1477	
Chromium steels	174	
Chromium-molybdenum steels	174	
Chromium-vanadium steels	174	
Circular plates	980	
arbitrary loading	984	1018
buckling	985	1025
concentrated loads	1047	

This page has been reformatted by Knovel to provide easier navigation.

Index Terms	$\underline{\text { Links }}$
Circular plates (Cont.):	
critical in-plane loads	986
distributed loads	1041
elastic foundations	1050
equations of motion	982
general loading	988
geometric stiffness matrices	990
infinite plate	1050
large deflections	990
layered	1008
mass matrices	990
material properties	1007
modulus of elasticity	1007
natural frequencies	986
orthothropic	1007
shear modulus	1007
static loading	983
stiffness matrices	989
stresses	1009
transfer matrices	889
Circumferential stresses, curved bars	831
Cofactors, determinants	1338
Cold working	170
Collapse load	531
beams	572
Collapse load factors	667
Collinear points	1331
Columns	519
buckling	578
double modulus theory	534

Index Terms	Links
Columns (Cont.):	
imperfect	587
in-span axial loads	581
mode shapes	519
mode shapes, under buckling	578
natural frequencies	519
reduced modulus theory	534
short	588
slenderness ratio	532
tables	544
tangent modulus theory	534
tapered	585
transfer matrix method	1418
Combined stresses	788
Commutative law	1321
Compatibility condition	112
Complex arithmetic	1324
Complex numbers	1323
Composite materials	180
Composite section	779
Composites, matrix	180
Concentrated occurrences, beams	608
Congruent transformation	1446
Conical shaft element, matrices	953
Conical shells:	
bending	1253
buckling	1207
membrane	1228
natural frequencies	1214
natural frequencies, with bending	1310

This page has been reformatted by Knovel to provide easier navigation.

Index Terms	Links
Connections:	
bearing	372
friction	372
joints	371
Consistent geometric stiffness matrix, for thin-walled beams	
Consistent mass matrix	616
Constant-stress beam	476
Contact:	
conformal	413
counterformal	413
rolling	432
Contact problems	413
non-Hertzian	432
Contact stresses:	
ball bearing	424
bodies in line contact	429
conformal	413
contact ellipse	418
counterformal	413
creep	432
Derjaguin-Muller-Toporov theory	434
fatigue	432
formulas for	438
friction	430
general formulas	438
Hertzian	413
Johnson-Kendall-Roberts theory	434
Maugis-Dugdale theory	434
maximum compressive	420

Index Terms

Connections:

Consistent geometric stiffness matrix, for thin-walled beams

Consistent mass matrix
Constant-stress beam 413
counterformal 4
rolling 432
Contact problems
ball bearing
bodies in line contact
1
conformal
contact ellipse 418
counterformal 413
creep 432

Derjaguin-Muller-Toporov theory 432
formulas for 438
friction 438
Hertzian 4

Johnson-Kendall-Roberts theory 434
Maugis-Dugdale theory 420

Index Terms

Contact stresses: (Cont.):
maximum octahedral 420
maximum shear 420
non-Hertzian
rigid approach of two bodies
Sneddon's model
tables
wheel on rail
Conversion factors
Coordinate systems
cylindrical
rectangular
rotations
spherical
translations

Links

Crack tip plasticity313

Index Terms	Links	
Cramer's rule	1339	
Crazing	244	
Creep	135	165
cumulative	167	
effect on fatigue	338	
rupture	165	
strength	165	200
Creepage	432	
Critical damping	457	
coefficient	457	
Critical loads	531	
conical shells	1293	
cylindrical shells	1296	
shells of revolution	1292	
spherical shells	1292	
Critical speeds:		
rotor	928	
vertical rotor	939	
Critical stress intensity factor	311	
Cross-sectional stresses	763	
Cummulative damage:		
Corten-Dolan rule	335	
Markov chain	335	
Palmgren-Langer-Miner rule	334	
Shanley's method	335	
stochastic approach	335	
Cumulative creep	167	
Curvature, principal radii	415	
Curvature formulas	1335	

165432

200

Index Terms	Links
Curved bars	801
arbitrary loading, in-plane	817
arbitrary loading, out-of-plane	819
bending	805
Bleich's correction factors	831
Bleich's method	811
buckling loads	819
buckling loads, in-plane	817
buckling loads, out-of-plane	819
circumferential stress, in-plane	830
circumferential stresses	807
circumferential stresses for thin-flanges	811
consistent mass matrices	889
equations of motion, in-plane	817
equations of motion, out-of-plane	819
general	819
general in-plane response expressions	851
general out-of-plane response expressions	866
geometric properties	824
in-plane boundary conditions	554
in-plane loaded	830
in-plane point matrices	882
in-plane response	832
in-plane spring constants	884
in-plane stiffness matrices	878
in-plane stress and deformation	802
in-plane transfer matrices	872
loading functions, out-of-plane	867
mass matrices	889
modified section	812

Index Terms	Links
Bleich's method (Cont.):	
natural frequencies	819
natural frequencies, in-plane	818
natural frequencies, out-of-plane	819
normal stress	805
out-of-plane boundary conditions	870
out-of-plane point matrices	885
out-of-plane response	864
out-of-plane spring constants	887
out-of-plane stiffness matrices	880
out-of-plane stress and deformation	803
out-of-plane transfer matrices	875
profile distortion	811
radial stress	815
response formulas	832
rings	820
shear stress	814
sign convention	804
stresses	805
tables	823
tabulated formulas	823
Cylinders:	
composite	1140
general response	1152
mass matrix	1183
natural frequencies	1146
point matrices	1181
rotating	1135
stiffness matrices	1165
stresses	124

Index Terms

Bleich's method (Cont.):
natural frequencies
natural frequencies, in-plane
natural frequencies, out-of-plane
normal stress
out-of-plane boundary conditions
out-of-plane point matrices
out-of-plane response
out-of-plane spring constants
out-of-plane stiffness matrices
out-of-plane stress and deformation
out-of-plane transfer matrices
profile distortion
radial stress
response formulas
rings
shear stress
sign convention
stresses
tables
tabulated formulas 823 Cylinders:
composite 1140
general response 1152
mass matrix 1183
natural frequencies $\quad 1146$
point matrices 1181
rotating 1135
stiffness matrices $\quad 1165$
stresses 124

818

831

831
818
818

This page has been reformatted by Knovel to provide easier navigation.

Index Terms	Links
Cylinders: (Cont.):	
tangential stresses	1134
thermally loaded	1143
thick	1132
transfer matrices	1165
Cylindrical shells:	
bending	1257
Flügge theory	1208
membrane	1237
natural frequencies	1208
natural frequencies, with bending	1305
simply supported	1302
stability	1205
Cylindrical vessel, internal pressure	139
D	
Damping	463
bridges	601
buildings	601
chimneys	601
in structures	464
tanks	601
towers	601
Damping coefficients	485
Degrees of freedom (DOF), network structures	1441
Derivative:	
formulas	1359
multiple variables	1341
partial	1341
Derjaguin-Muller-Toporov theory	434

thick 1132
transfer matrices 1165
Cylindrical shells:

Flügge theory 1208
membrane 1237
natural frequencies 1208
natural frequencies, with bending 1305
simply supported 1302
1205
139

D

Damping

Dejaguin-Muller-Toporov theory 434

Index Terms

Design:

dynamic loading	481
minimum weight	232
plastic	531
ultimate strength	531
Design loads, typical values	14
Determinant search	1478
Determinants	1338
Diagonal matrix	1346
Differential and integral calculus	1340
Differential stiffness matrix	1402
Differentiation formulas	1359
Direct stiffness method	1446
Direction angles	1333
Direction cosines	1333
Disks:	
central hole	1135
general response	1158
mass matrix	1183
natural frequencies	1146
point matrices	1181
radial stress	1135
solid	1135
stiffness matrices	1175
tangential stress	1135
transfer matrices	1175
Tresca theory	1137
Displacement method	1406
consistent mass matrix	1471
direct derivation	1450

This page has been reformatted by Knovel to provide easier navigation.
Index Terms
Links
Displacement method (Cont.):
distributed loads 1460
frames 1455
free vibrations 1470
notation 1488
stability 1467
Displacements, compatibility 1447
Distance, between points 1337
Distributive law 1321
Divergence theorem 1342
Double modulus theory 534
Drawing 171
Drop-weight test 160
Dunkerley's formula 468
Dynamic loading 451
Dynamic stiffness matrices 1402
natural frequencies 1478
Dynamic systems:
rotational quantities 484
translational quantities 484
Dynamic tear energy test 162
Dynamics, energy balance 472
Dynamics tables 483
E
Effective crack size 315
Eigenvalue problem 1418
Eigenvalues, pump system 917
Eigenvalues and eigenvectors 1349
Elastic foundation, beams resting on 528

Index Terms	Links
Elongation	156
Endurance limit	330
factors affecting	336
fatigue	365
Endurance ratio	330
Energy release rate, crack growth resistance	326
Energy-absorbing capacity	517
Equations of equilibrium, differential	109
Equations of motion:	
for beam	123
rectangular plates, no in-plane forces	991
Equilibirum:	
thermodynamic	170
diagram	170
Equivalent stiffness	498
spring systems	510
Equivalent stress	137
Euler-Bernoulli beam	523
Euler's equation	1330
Euler's formula	531
intermediate range	535
radius of gyration	532
Experimental stress analysis	235
Experimental stress, tables	247
Exponential relations	1330
Exponents	1321
Extended transfer matrix	1407
Extension of bars	621
mass matrices	660
mode shapes	648

This page has been reformatted by Knovel to provide easier navigation.
Index Terms
Links
Extension of bars (Cont.):
natural frequencies 648
sign convention 621
stiffness matrices 656
structural matrices 656
transfer matrices 656
uniform bars 643
FFailure134
cyclic stress with creep 169
Failure theories 134
applicability 139
Coulomb-Mohr theory 137
distortion 137
maximum distortion energy theory 137
Maxwell-Huber-Hencky-von Mises theory 137
Mohr's theory 137
octahedral shear stress theory 137
validity 138
von Mises theory 137Fasteners:center of resistance379
centroid 379
Fatigue308
corrosion 337
crack growth
crack growth rate367340
crack propagation 367
endurance ratio 365

Index Terms	Links
Fatigue (Cont.):	
factors affecting	336
fretting	338
Gerber's formula	331
Goodman's formula	331
limit	365
load cycles	340
local strain approach	331
low-cycle	329
Neuber constant	331
Neuber equation	331
Notch sensitivity index	331
$S-N$ curve approach	330
strength	365
Fatigue failure	344
Fatigue fracture	329
combined approach	344
Fatigue strength	330
carburizing	365
flame hardening	365
Gerber's formula	331
Goodman's diagram	331
Goodman's formula	331
induction	365
Neuber constant	331
Neuber equation	331
nitriding	365
shot peening	365
Soderberg diagram	332
Ferrite	170

Index Terms

336338331331365Fatigue fracture329344Fatigue strengthB30365365331331331365331331365shot peening332170

This page has been reformatted by Knovel to provide easier navigation.

Index Terms	Links
Fourier series	1344
Fracture:	
energy analysis	326
energy balance	326
fatigue	432
Griffith-Orowan-Irwin theory	326
plane strain	312
plane stress	312
strain-energy density	326
strength	360
toughness	360
unstable	326
Fracture criteria	329
Fracture mechanics	307
fatigue	340
flaw size	340
general design	315
J integral	327
linear elastic	309
Fracture mechanics and fatigue, tables	349
Fracture toughness	311
Fracture transition elastic	161
Fracture transition plastic	161
Frames	661
buckling loads	666
collapse	715
collapse loads	666
formulas	663
gridworks	667
load factor	667

This page has been reformatted by Knovel to provide easier navigation.

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Frequencies (Cont.):
torsion 626
uniform beams 594
Friction, effect on contact stress 430
Frontal solution procedure 1440
G
Gage factor 237
Gauss elimination 1353
Gauss integral 1342
General mass matrix 616
Geometric properties 17
tables 46
Geometric series 1322
Geometric stiffness matrices 1402
circular plate 1052
consistent 614
thin-walled beams 760
Gerber's formula 331
Girders 667
critical axial loads 720
stability 721
Glass 223
Glass transition temperature 178
218
Goodman's diagram331
Goodman's formula 331
brittle material 338
ductile material 338
Green's formula 1342

Index Terms	Links
Gridworks	667
buckling loads	670
frequencies	722
general grillages	672
girders	667
natural frequencies	671
simply supported	672
static loading	668
stiffeners	667
uniform	667
Griffith-Orowan-Irwin theory	326
Grillages	667
general	672
Grooves	307
Guest's theory	136
Guyan reduction	1477
H	
Half-power point	463
Hardenability	172
Hardening	172
Hardness:	
Brinell	163
Knoop	164
microhardness	164
Rockwell	163
Vicker's test	163
Hardness tests	162
Harmonic motion	454
Hermitian polynomials	1396

Index Terms	Links
Hertz model	433
Hertzian analysis	415
coefficients	419
Hertzian contact stresses	413
High-carbon steel	173
High-strength low-alloy steels	177
Hill's equation	182
Hinge, plastic	531
Holographs	236
Hooke's law	113
Horsepower	119
Householder method	1477
Human, natural frequencies	515
Human body vibrations	471
Hyperbolic functions	1330
derivatives	1360
identities	1330
integrals	1362
I	
Identity matrix	1346
Impact factor	472
Impact force	478
Impact formulas	472
Impact tests	159
Imperfect columns	587
In vitro	183
Incidence matrix	1447
Inertial loading	453
Infinite geometric series	1322

Index Terms	Links
Influence coefficient method	1406
Influence coefficients:	
conical shells	1273
cylindrical shells	1282
spherical caps	1263
Instability, torsional	441
Integral formulas	1341
Integration:	
by parts	1341
formulas	1361
Interferometric strain gages	236
Internal-friction theory	137
Interpolation function	1395
Inverse iteration method	1477
Inverse matrix	1346
Inverse trigonometric functions	1328
derivatives	1360
Inverse trigonometric identities	1329
Iron, cast	209
Irwin correction	315
Isoentatic	244
Isostatics	244
Isotropic material	152
Izod notched-bar impact test	159
Izod test	159
J	
J integral	327
Jacobi method	1477
Jeffcott rotor	894

Index Terms
Influence coefficient method
Influence coefficients:
conical shells 1273
cylindrical shells
spherical caps
Instability, torsional
Integral formulas

1341
1361
236
Internal-friction theory 137
Interpolation function 1477
Inverse matrix 1346

Index Terms

Johnson-Kendall-Roberts theory 434
Joints
bearing failure
boiler
bolted
compression or bearing
concentrically loaded
design
double shear failure
eccentrically loaded
end failure
fastener shearing
load factor
modes of failure
resistance factor
riveted
shearing
single shear failure
tables
tension or tearing
welded
Journal bearing, damping matrices

K

Kern
short columns
Knoop hardness test
Knoop microhardness test

Links

 164
402

Index Terms	Links
L	
Lam coefficient	145
Lanczo's method	1477
Laplace transform	1343
beams	1385
formulas	1368
Larson-Miller parameter	166
Laser speckle interferometry	236
Laws of sines and cosines	1325
Laws of tangents	1325
Life-fraction	167
Ligaments	182
Linear equations	1337
Gauss algorithm	1353
Linear interpolation	1351
Load factor 371	667
Loading:	
collapse	531
critical	531
dynamic	453
elastic buckling	531
inertial	453
static	453
Logarithmic decrement	457
Logarithms	1321
common	1322
natural (Naperian)	1322
Love-Kirchhoff hypothesis, shells of revolution	1208
Low cycle fatigue	329
Low-carbon steels	173

Index Terms
L14771343beams1385
formulas 1
Larson-Miller parameter236
or sines and cosines1325
Life-fraction1821337
Gauss algorithm1351
Load factor 667
Loading:critical531elastic buckling531static453
Logart1321
13221322
Low cycle fatigue173

154

Index Terms	Links
Lower critical temperature	170
Lumped mass matrices	614
bars	628
M	
Maclaurin's series	1343
Magnesium	178
alloys	215
Magnification factor	458
Manganese steels	173
Manson-Haferd formula	200
Manson-Haferd parameter	167
Martempering	171
Martensite	170
Mass	512
lumped, matrix	614
Mass matrices	1400
bars	628
circular plate	1054
consistent	614
cylinders	1183
disks	1183
frequency-dependent	1477
general	614
lumped	614
plane frames	729
radial beam	971
rectangular plate	1116
rotors	911
space frames	731

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Mass matrices (Cont.):
spheres 1183
stiffness matrices 938
thin-walled beams 759
torsion
659
Mass moments of inertia
Material index, material selection 185
Material law:
matrix
stress-strain relationships
113
Material selection 232
material index 185
process selection chart 188
Materials:
concrete slab 1067
damping properties
dynamic characteristics 479
lumped mass 614
mass, consistent 616
mass, extension 660
mass, general 616
mass, torsion 659
point 608
point, curved bars 882
stiffness 536
stiffness (consistent) 614
stiffness, curved bars 878
transfer 536
transfer, curved bars 872

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Matrix:

addition	1347
adjoint	1348
algebra	1346
anti-symmetric	1346
banded	1452
bandwidth	1452
basic operations	1347
characteristic equation	1350
characteristic values	1350
characteristic vectors	1350
congruent	1347
diagonal	1346
eigenvalues	1349
eigenvectors	1349
global kinematic	1447
identity	1346
incidence	1447
inverse	1346
lower triangular	1346
multiplication	1348
nonsingular	1346
null	1346
rank	1346
rectangular	1346
singular	1346
skew-symmetric	1346
square	1346
subtraction	1347
symmetric	1346

This page has been reformatted by Knovel to provide easier navigation.
Index Terms
Matrix: (Cont.):
systems of equations
trace
transpose
triangular
\quad upper triangular
Matrix algebra
Maugis-Dugdale theory
Maximum distortion energy theory
Maximum principal stress:
\quad maximum-stress failure theory
\quad Rankine failure theory
Maximum shear stress
bodies in line contact
Maximum-shear theory
Maximum-strain theory
\quad Saint-Venant failure theory
Maxwell-Huber-Hencky-von Mises theory
Mechanical properties, tables
Membrane analogy
Membrane hypothesis
Membrane shells
Membranes:
Mems
Meriscular
natural frequen

Index Terms

Microelectromechanical systems 184
Microhardness
Microscopy:
atomic force scanning probe

Mixed method
Modal superposition method
Mode I crack propagation
Mode shapes:
beams columns
uniform bars in extension 648
uniform bars in torsion
Modulus of dilation
Modulus of elasticity
volumetric
Modulus of resilience
Modulus of toughness
Modulus-weighted section properties
area
centroid
first moment
first sectorial moment
moments of inertia
warping constant
Mohr's circle
moments of inertia 24
stress
three dimensions 104
two-dimensional state of stress

164 433 1408 1484 311 535 578 156 156 43

Links

433

 135

Index Terms

Natural frequencies (Cont.):
Dunkerley's formula
dynamic stiffness matrices
eigenvalues 1418
gridworks
human body
membranes
plates, various shapes
pump
Rayleigh's formula
rectangular membranes
rectangular plates, orthotropic
rings
rotating beam
shells
spheres
spherical shells
structural members
thick shells 1146
triangular plates
uniform bars in extension
uniform bars in torsion
Natural logarithm 1322
Natural strain
Navier's hypothesis
Network structure 1406
Neuber constant
Neuber equation 331

Neuber's rule
Neutral axis468

722 967 1161 1317 626 1127 648 645 111 1371 331 261

Links

Index Terms	Links	
Neutral surface	120	
Newton's method	1351	
Nickel steels	174	
Nickel-chromium steels	174	
Nickel-molybdenum steels	176	
Nil-ductility transition temperature	160	312
Nonferrous alloys	217	
Nonferrous metals	177	
Normal strain	110	
Normal stresses	92	777
maximum	98	
minimum	98	
warping	736	
Normal vectors	1333	
Normalizing	172	
Normal-mode theory	1423	
Notch sensitivity index	260	331
scale effect	260	
Notched-bar impact tests	159	
Numerical difficulties, beams	1438	
Numerical integration:		
rectangular formula	1355	
Simpson's rule	1355	
trapezoidal rule	1354	
0		
Octahedral normal stress	106	
Octahedral planes	106	
Octahedral shear stress	106	427
bodies in line contact	449	

Index Terms	Links	
Octahedral shear stress theory	137	
Offset yield strength	156	
Orthotropic material	153	193
Overdamped	457	
P		
Palmgren-Langer-Miner rule	334	
Parallel-axis formulas	20	
Parallel, shell	1186	
Pearlite	170	
Photoelasticity	236	245
Photolithography	184	
Pipes, in-plane response	851	
Plane, trigonometry	1324	
Plane frames:		
mass matrices	729	
stiffness matrices	725	
Plastic hinge	531	
Plastic moment	531	
Plastics	178	
abbreviations	218	
molding and extrusion	220	
Plates	978	
arbitrary loading	1018	
buckling	996	1088
buckling, triangular shapes	1122	
circular	980	
composite	1068	
concrete slab	1067	
critical in-plane forces	1025	

This page has been reformatted by Knovel to provide easier navigation.
Index TermsPlates (Cont.):
critical in-plane loads
general rectangularKirchhoff-Love assumptionslarge deflectionlocal bucklingmaterial propertiesnatural frequenciesorthotropicrectangular platesstresses
tables 1005
transfer matrices 999
various shapes 1091
Point matrices 1409
thin-walled beams 757
Point matrix, beams 608
Poisson's ratioPolar moment of inertia11321
concentrated masses 650
Polymer, properties 230
Polynomial, zeroes 1352
Potentiometer 242
Power 119
Precipitation 172
Pressure vessels 124
Principal directions 415
Principal moments of inertia 23
Principal normal sections 415
Principal planes97885

Links

1117
 ```1117```

Index Terms

Principal radii of curvature 415
Principal sectorial area
Principal sectorial coordinate
Principal stresses
maximum
Principle of virtual displacements

Links

37
37
97
103

Principle of virtual work 1389
Process selection chart, material selection 188
Product of inertia
Profile distortion 811
Proof strength 389
Proportional limit 156

Pump:

centrifugal

897
natural frequencies 917
seal elements
914
Pure metals 201

Q

Quadratic equations 1338
Quadratic formula 1338
Quality factor 463
Quenching 171

R

Radial stresses, curved bars 831
Radius of curvature 1336
Radius of gyration
Euler's formula
532

Index Terms

Rankine failure theory:
maximum principal stress 135
maximum-stress theory
Rayleigh's formula
Recrystallization
Rectangular plates
approximate formulas
arbitrary loading
buckling
concentrated loads
corrugated
critical in-plane loads
deflections
forces
general
general response
governing equations 991
gridworks
isotropic
large deflection
layered
mass matrix
material properties
natural frequencies
orthotropic
plywood
sign convention
stiffeners
stiffness matrices
stresses

135 998 1073 1066

Links

 467 170 991 1000 995 996 1107 1066 1088 1073 1073 1061 1000 1062 1116 1064 1092 1061 1072 993 10641088 1 1061

1095
\square

$$
\square
$$

Index Terms

Rectangular plates (Cont.):
thermally loaded
transfer matrices
various shapes
Reduced modulus theory
Reduction of area
index of 245

Residual stress 110

Resilience, modulus 371

Resonance 463
Reuss-Voigt bounds 185

Rings 820
buckling loads 840 860 371
bearing capacity
bearing end failure
eccentrically loaded 387
minimum distance 400
shear failure 398
tensile capacity

Rockwell hardness scales 199

Rockwell hardness test 1321

Index Terms	Links
Rosette	238
delta	242
Rotating disks	1135
Rotor	891
axial vibration	923
bearing and seal elements	909
bearing elements	914
bending stiffness matrix	913
bending vibration	894
centrifugal stiffness matrix	923
concentrated mass	937
conical shaft	953
coupled systems	900
critical speeds	897
critical speeds, bending	933
disk element	911
gyroscopic matrices	913
helically fluted shaft	956
isotropic bearing	952
Jeffcott	894
mass matrices	911
mode shapes, bending	933
natural frequencies	923
radial beam element	967
radial rotating bar	924
rigid disk	937
rotary mass matrix	913
single-mass	899
stiffness matrices	911
tables	927

Index Terms	Links		
Rotor (Cont.):			
torsional vibration	920		
transfer matrices	907	924	937
translational mass matrix	913	923	
unbalanced forces	897		
uncoupled systems	901		
uniform shaft element	908		
whirl	894		
whirl radius	897		
Roundoff errors	1438		
S			
Saint-Venant torsion	794		
Sarrus scheme, determinant	1339		
Seal systems, transfer matrices	949		
Second moment of an area	19		
Section modulus	27	54	121
elastic	20		
plastic	20		
shape factor	20		
Section properties, modulus-weighted	41		
Sectorial area	36		
direct integration	36		
Sectorial linear moments	37		
Sectorial moment	737	772	
of inertia	37		
Sectorial products of inertia	765		
Sectorial properties	36		
Semimajor axis, Hertzian contact	418		
Semiminor axis, Hertzian contact	418		

Index Terms

Rotor (Cont.):
torsional vibration
transfer matrices
translational mass matrix
unbalanced forces
uncoupled systems
uniform shaft element
whirl
894 897 1438 S
$\begin{array}{lr}\text { Saint-Venant torsion } & 794 \\ \text { Sarrus scheme, determinant } & 1339\end{array}$
Seal systems, transfer matrices 949
Second moment of an area 19
Section modulus
elastic
plastic
shape factor 20

Section properties, modulus-weighted 4
Sectorial area
direct integration 3
Sectorial linear moments

Sectorial products of inertia 765
Sectorial properties

Index Terms	Links			
Sensitivity, strain gage	237	248		
Series	1322			
arithmetic	1322			
binomial	1322			
Fourier	1344			
geometric	1322			
Maclaurin	1343			
Taylor	1343			
Shaft element:				
gyroscopic matrices	939			
helically fluted	956			
mass matrices	939			
stiffness matrices	939			
Shafts:				
bending	127			
torsion	128			
Shanley's method	335			
Shape factor	20	28		
Shape functions	1396			
Shear beam	1376			
Shear building	468			
Shear center	38	77	735	766
open cross section	39			
Trefftz's definition	39			
Shear correction coefficients	736			
Shear correction factor	29	60	529	1372
Shear deflection constant	30	529		
Shear diagonal	98			
Shear diaphragm	1204			
Shear, direct	116			

Index Terms	Links		
Shear flow	34	133	623
Shear form factor	1372		
Shear modulus	145	154	
Shear strain	111		
Shear stress	92	121	131
average	109		
bending	792		
finite-element solution	794		
first moment of area	28		
maximum	100		
torsional	791		
Shell of revolution	125		
bending	1191		
thick	1131		
various shapes	1246		
Shells	1131	1185	
bending	1185	1191	
buckling	1205	1292	
conical	1214	1253	
cycloid	1247		
cylindrical	1132	1257	
disks	1135		
Donnell-Mushtari theory	1208		
elliptical	1247		
flexibility coefficients	1198		
flexibility matrix	1198		
force method	1193		
frequencies	1208		
hemispherical	1246		
influence coefficients	1198	1263	

This page has been reformatted by Knovel to provide easier navigation.
Index Terms
Links
Singularity functions 1
Slag 169
Slenderness ratio 532
$S-N$ curves 330
aluminum 364
steel 363
Sneddon's model 434
Soderberg diagram 332
Soft tissue:
cartilage 182
ligaments 182
muscle 182
tendons 182
Soft tissue mechanics 182
Spectral matrix 1484
Spheres:
general response 1155
mass matrix 1183
point matrices 1181
stiffness matrices 1170
stresses 1134
thick 1133
transfer matrices 1170
Spherical shells:
bending 1249
membrane 1220
natural frequencies 1317
Spheroidize annealing 172
Spring constants, curved bars 884

Index Terms	Links
Stability	1417
girders	721
parameters	741
Stainless steels	170
austenitic	176
cast	176
ferritic	176
martensitic	176
Static loading	453
Steady-state motion	1434
Steel	169
alloy	206
carbon	204
classifications	172
high-strength, low-alloy steel	170
SAE grades for bolts	403
S-N curves	363
specifications	203
stainless	208
tool	177
Stiffeners	667
Stiffness:	
bars	498
beams	499
equivalent	498
frames	504
plates	003
rubber members	506
Stiffness coefficient	115

Index Terms	Links
Stiffness matrices	539
banded	1452
bars	629
beams	1391
bending, rotor	939
by summation	1451
Castigliano's theorem	1393
characteristics	1451
circular plates	1042
consistent	1402
curved bars, in-plane	878
curved bars, out-of-plane	880
cylinders	1165
differential	1402
disks	1175
extension	656
frames	1453
geometric	1402
plane frames	725
plane trusses	723
properties	1399
radial beam	971
rectangular plates	1098
rotors	911
singular	1400
space trusses	724
spherical shells	1170
stability	1467
stress	1402
system	1451

Index Terms	Links	
Stiffness matrices (Cont.):		
thin-walled beams	758	
torsion	653	
unassembled	1447	
frequency-dependent	1477	
Stiffness method	1406	
Strain:		
definition	110	
engineering	114	155
natural	111	
normal	110	
plane	112	
shear	111	
true	111	
Strain energy	474	
Strain-energy density	326	
Strain gages	237	248
electrical resistance	237	
Strain hardening	156	
Strain rate	479	
Strain sensitivity	237	248
Strength, effect of impact loads	479	
engineering	114	155
Stress and strain, tables	143	
Stress concentration	255	310
alleviation	265	
fatigue	259	
fillets	298	
force flow	265	
holes	283	

This page has been reformatted by Knovel to provide easier navigation.

Index Terms	Links
Stress concentration (Cont.):	
interface notch	265
nonzero mean load	338
notch sensitivity	260
notches and grooves	274
reducing	265
relief notches	265
stress flow	265
Stress concentration factor:	
effective	259
tables	273
theoretical	256
Stress corrosion	308
Stress formulas	146
Stress intensity	137
Stress intensity factor	310
mode I	350
mode II	350
mode III	350
range	341
transition	341
Stress limitation curve	162
Stress resultants	108
Stress rupture	165
Stress tensor	93
Stresses:	
allowable	109
allowable, in bolts and rivets	398
arbitrary orientation, two-dimensional case	95
circumferential	124

relief notches265
effective 259theoretical256
Stress corrosion146
Stress intensity 137mode I350
mode IIrange
367
Stress limitation curve108
Stress rupture 165Stresses:
allowable398
arbitrary orientation, two-dimensional case124
This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Stresses: (Cont.):
combined 126
combined normal and shear 788
cross-sectional 763
curved bars 831
cylinder 124
deviator
engineering
extensional
Hertzian
107
hollow thin-walled cross sections 622
imperfect columns 587
initial 110
lockup 110
longitudinal 124
maximum principal, three dimensional 103
maximum shear, three dimensional 103
mean
membrane 124
meridional 125
non-Hertzian 432
oblique plane 102
octahedral 106
residual 110
shear 121
shells of revolution 125
sphere 124
tables 143

107

155

625
415

797
thin-walled open sections 624
three-dimensional systems 102

Index Terms

Stresses: (Cont.):
torsion of circular cross sections 635
torsion of thick noncircular sections 634
torsion of thin-walled cross sections 635
torsion of thin-walled open sections 636
torsional 622
warping 736
welds 408
working 110
Stress-strain curve:
nominal 158
true 158
Stress-strain relations 113
Structural member analysis 1369
Structural members, stiffness 498
Structural methods, comparison 1490
Structural systems 1405
Structure design, dynamic effects 481
Structures:
damping 601
network 1406
Subspace iteration method 1477
Surface finish, effect on fatigue life 337
T
Tangent, law of 1325
Tangent modulus theory 534
Tangential vectors 1333
Tanks 601
Tapered beams 599

Index Terms	Links
Tapered columns	585
Taylor's series	1343
two variables	1344
Tempering	171
Tendons	182
Tensile strength	156
Tensile test	154
Tension:	
normal stress	94
shear stress	94
Tensor, stress	93
Thermal expansion coefficients	195
Thin-walled beams	733
buckling	741
buckling loads	741
critical loads	753
frequency equations	741
geometric stiffness matrix	744
mass matrices	744
natural frequencies	741
natural torsional frequencies	741
point matrices	742
sign convention	735
stiffness matrices	742
tables	747
torsion	733
torsion, arbitrary loading	748
torsional loads	753
vibration	755

Index Terms

Thin-walled sections:
closed $\quad 32$
open
Tilting pad bearing, stiffness matrices
Timoshenko beam
Tissue, human
Tool steels
Toroidal shells, membrane
Torsion

Links

31

963

1376
circular cross sections
117
critical loads 753
mass matrices
multi-cell body 635
natural frequencies 626
stiffness matrices 653
stress 634
tabulated formulas 626
thin-walled beams 733
thin-walled noncircular tubes 118
thin-walled shafts 117
transfer matrices
vibration
Torsion of bars:
mode shapes
645
natural frequencies
Torsional buckling
Torsional constant
section
thin-walled

177

multicell

Index Terms	Links
Torsional stresses	634
various cross-sections	634
Torsional vibration	755
Toughness, modulus	156
Towers	601
Transfer matrices	536
beams	1381
circular plates	1033
curved bars, in-plane	872
curved bars, out-of-plane	873
cylinders	1165
disks	1175
extended	1407
extension	656
global	1408
in-span conditions	1408
overall	1408
plates	1033
radial beam	973
rectangular plates	1098
rotor bearing, isotropic	952
spherical shells	1170
torsion	653
Transfer matrix method	1406
normal-mode theory	1423
notation	1488
Transient responses	1483
Transmissibility:	
force	459
motion	463

Links

beams 1033 872 873 1165 1175 1407 656
global 1408
in-span conditions 1408 1033 973 1098 952 1170 653 1406 1423 1483

Transmissibility:
force 463

This page has been reformatted by Knovel to provide easier navigation.

Index Terms

Transversely isotropic
Transversely isotropic material

Links

 193Trapezoidal rule 1354
Trefftz's definition 39
Tresca's theory 136
Triangle:
area 1336
types 1328
Trigonometric functions 1325
integrals 1363
inverse 1328
Trigonometric identities 1326
inverse 1329
Trigonometry 1324
True strain 111
Truncation errors 1438
Trusses 661
plane 723
space 724
stiffness matrix 723

158

724
U
Underdamped 457
Uniform beams
Uniform gridwork 667
Unit vectors 1333
Unsymmetric bending 129
normal stress 129
shear stress 132
Upper critical temperature 170

Index Terms

V
Variational calculus 1447
Vibration fundamentals
Vibration:
effect on human body 471
forced 458
free 456
radial beam 921
rotor 920

Vickers hardness test
Viscoelastic elements
Viscoelasticity
von Mises:
yield
theory
neory

W

Warping
733
finite-element analysis
moment
properties
sectional properties
Warping constant
closed cross section
open cross section

737
Warping function
794
Warping properties:
direct integration method 766 piecewise integration method 767

Links

765

Index Terms
Links
Warping stress:
normal $7 3 6 \longdiv { 8 8 }$
shear 737
shear stress 788
Weibull distribution 185
Weight dropped 516
Welds:
butt 390
drafting symbols 405
effective cross section 392
fillets 390
notation 392
seams 409
stresses 408
thick plates 408
throat390
types391405
Wheatstone bridge239
412249
Whirl:
rotor 897
unbalanced897
Winkler foundation, beams resting on 528
Work hardening 156
Wrought iron 169
X
Xenogenous 184
X-ray diffraction 236

Index Terms

Links

Y

Yield theory:
maximum shear theory
136
maximum stress theory
135
von Mises theory
137
Yielding, extensive 134
Young's modulus
154156

This page has been reformatted by Knovel to provide easier navigation.

[^0]: ${ }^{a}$ Except when expressing area and volume. The prefixes c and d can also be used with properties of certain standard structural sections.

[^1]: ${ }^{\dagger}$ The cross-sectional properties of this chapter are discussed in detail in Ref. [2.1].

[^2]: ${ }^{a}$ The units are given in parentheses, using L for length and F for force.

[^3]: ${ }^{\dagger}$ Refer to the discussion of carbon steels in Section 4.7 for a description of a wrought material.

[^4]: ${ }^{a}$ From Ref. [4.34]. T_{a} is a material constant. t_{a} is the time in hours.

[^5]: ${ }^{a}$ From Metals Handbook [4.36], with permission of ASM International.
 ${ }^{b}$ Typical values.
 ${ }^{c} 20 \%$ elongation for thickness of 1.3 mm (0.050 in .) or less.

[^6]: ${ }^{a}$ From Metals Handbook [4.36], with permission of ASM International.
 ${ }^{b}$ Refer to ASTM A438.
 ${ }^{c}$ Measured at a predetermined location on casting.
 ${ }^{d}$ Determined using a standard specimen taken from a separately cast test block, as set forth in the applicable specification.
 ${ }^{e}$ Range specified by mutual agreement between producer and purchaser.
 f Value must be compatible with minimum hardness specified for production castings.
 ${ }^{g}$ Minimum in 50 mm or 2 in .
 ${ }^{h}$ Annealed.
 ${ }^{i}$ Air quenched and tempered.
 ${ }^{j}$ Liquid quenched and tempered.

[^7]: ${ }^{a}$ From Metals Handbook [4.36], with permission of ASM International.

[^8]: ${ }^{a}$ From Annual Book of ASTM Standards [4.15]. Copyright ASTM. Printed with permission.

[^9]: ${ }^{a}$ From Ref. [4.38], pp. 92-93. Reprinted by courtesy of Marcel Dekker.
 ${ }^{b}$ Bending strength is defined as the maximum tensile stress at failure (of a three-point loading specimen) and is often referred to as the modulus of rupture (MOR).

[^10]: ${ }^{a}$ Adapted from Ref. [4.29].

[^11]: ${ }^{a}$ Adapted from Ref. [4.29].

[^12]: ${ }^{a}$ Adapted from Ref. [4.32]

[^13]: ${ }^{a}$ From Ref. [7.9], with permission.

[^14]: ${ }^{a}$ Data adapted from Ref. [7.38]. Data for bronze, brass, nickel, monel, and inconel are provided in this reference.
 ${ }^{b} 1 \% \mathrm{Mg}, 1 \% \mathrm{Si}, 0.7 \% \mathrm{Mn}$.
 ${ }^{c} 4.5 \% \mathrm{Cu}$.
 ${ }^{d} 5.5 \% \mathrm{Zn}$.
 ${ }^{e} 0.5 \% \mathrm{Zr}$.
 $f^{1.5 \%} \mathrm{Mn}$.

[^15]: ${ }^{a}$ From AISC [8.1], with permission. For oversized or slotted holes, see Table J3.6 of AISC.
 ${ }^{b}$ All edge distances in this column may be reduced $\frac{1}{8}$ in. when the hole is at a point where stress does not exceed 25% of the maximum design strength in the element.
 ${ }^{c}$ These may be $1 \frac{1}{4} \mathrm{in}$. at the ends of beam connection angles.

[^16]: ${ }^{a}$ Defined as stress at which bolt will undergo permanent deformation: usually ranges between 0.90 and 0.95 times yield strength.

[^17]: 9.1. Smirnov, V. I., A Course of Higher Mathematics, Part II (translated by D. E. Brown), AddisonWesley, Reading, MA, 1964.
 9.2. Hertz, H., Miscellaneous Papers, Macmillan, New York, 1896.

[^18]: ${ }^{a}$ Adapted from [9.9], with permission.

[^19]: ${ }^{a}$ See also the following chapters, which deal with structural elements. Included in these chapters are tables of natural frequencies. For example, Tables 11-12 to 11-17 list formulas for natural frequencies of beams ranging from single-element beams to multistory buildings.

[^20]: ${ }^{a}$ From Schiff [10.11], with permission.

[^21]: $a_{\text {Note: }}$ If $\lambda=\frac{1}{4} \eta^{2}$, set $(\sin b x) / b=x$.

[^22]: ${ }^{a}$ Each span is a beam segment of length ℓ. A beam with one span has no in-span supports.

[^23]: ${ }^{a}$ Approximate percentage of critical damping of the fundamental mode of vibration is listed.
 ${ }^{b}(\mathrm{~V})=$ vertical damping.
 ${ }^{c}(\mathrm{~T})$ torsional damping.

[^24]: ${ }^{a}$ From Ref. [13.6].

[^25]: ${ }^{a}$ Adapted from Ref. [16.11].

[^26]: ${ }^{a}$ Adapted from Ref. [17.5].

[^27]: ${ }^{a}$ Adapted from Ref [17.7].

[^28]: ${ }^{a}$ Some of this table is based on Refs. [17.8] and [17.9].
 ${ }^{b}$ Five pads, zero preload, 54° pad arc length, 0.5 offset, $\ell / D<0.5$, and static load on bottom pad.

[^29]: ${ }^{a}$ Responses use the sign conventions in the figures. (Sign convention 1 of Appendix II).

[^30]: ${ }^{a}$ These matrices apply for $m=0$ (symmetric deformation).

[^31]: ${ }^{a}$ From Ref. [18.10].

[^32]: ${ }^{a}$ Adapted from Ref. [18.2].

[^33]: ${ }^{a}$ Adapted from Ref. [18.15].

[^34]: ${ }^{a}$ Traditionally stiffness and mass matrices for case 1 are implemented as nodal conditions.

[^35]: ${ }^{a}$ Adapted from Ref. [20.2].

[^36]: ${ }^{a}$ Adapted from Ref. [20.2].

[^37]: ${ }^{a}$ Adapted from Ref. [20.11].

[^38]: ${ }^{\ddagger}$ It is possible to show that $\mathbf{a}^{*}=\mathbf{b}^{T}$, with \mathbf{a}^{*} given by $\mathbf{V}=\mathbf{a}^{*} \mathbf{v}$. Also, $\mathbf{a a}^{*} \neq \mathbf{I}, \mathbf{a}^{*} \mathbf{a}=\mathbf{I}$.

