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To Larry and Debbie

If the facts don’t fit the theory, change the facts.
Albert Einstein
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In this era of computers, general-purpose structural analysis computer programs are
available to the engineer. However, many structures are configured so that they are
analyzed more accurately as structural members than as three-dimensional systems
using a general-purpose computer program. For example, because of the geometry
of a train freight car, with its relatively long length and its cross section, which is
symmetric about a longitudinal axis, the modeling problem can be reduced from
that of a three-dimensional structure to a one-dimensional longitudinal and a two-
dimensional cross-sectional analysis. These two uncoupled analyses can be treated as
structural member problems that can be solved with stress–strain formulas or simple
member analyses. It is the purpose of this book to provide in compact form the
formulas or the analysis procedure to treat such member problems.

This book should help meet the need for engineers to have simple, accurate, and
comprehensive formulas for stress analysis. The tables permit a problem to be mod-
eled realistically and to be solved accurately.

1.1 NOTATION

The notation used in the formulas is defined in each chapter. Certain symbols are
common to several chapters. Occasionally, singularity functions are employed to as-
sist in the concise expression of formulas,

< x − a>n =
{

0 if x < a
(x − a)n if x ≥ a

(1.1)
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2 INTRODUCTION

< x − a>0 =
{

0 if x < a
1 if x ≥ a

(1.2)

f < x − a> =
{

0 if x < a
f (x − a) if x ≥ a

(1.3)

where f (x − a) is a function of x − a.

1.2 CONVERSION FACTORS

Some useful conversion factors are provided in Table 1-1.

1.3 SIGN CONVENTIONS AND CONSISTENT UNITS

The sign conventions for the formulas are always evident in that the given formula
corresponds to the loading direction shown. An applied load in the opposite direction
requires that the load be given a negative sign in the formula.

No units are assigned to any variables in the formulas. Any consistent units can
be employed. Some examples of consistent units are listed in Table 1-2.

1.4 SI UNITS

The International System (SI) of units is described in Table 1-3, where useful prefixes
are provided. Some factors for conversion to SI units are shown in Table 1-4. Metric
conversions for some commonly occurring variables are given in Table 1-5 along
with some rounded-off figures that may be easy to remember. These are referred to
as recognition figures and can be useful in quick calculations. Table 1-6 is similar to
Table 1-5 but deals with conversions to the U.S. Customary System.

1.5 TYPICAL DESIGN LOADS AND STRESSES

Table 1-7 provides several typical design loads as well as values of material constants
and allowable stresses.
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TABLE 1-1 CONVERSION FACTORS
Multiply: By: To Obtain:

acre 0.4047 ha
acre 4047 m2

atm 29.92 inch of mercury (32◦F)
atm 101,300 N/m2 (Pa)
atm 14.70 lb/in2 (psi)
Btu/h 12.96 ft-lb/min
cm/s 1.969 ft/min
cm/s (cm/s2) 0.010 m/s (m/s2)
cm/s 0.6 m/min
cm/s (cm/s2) 0.0328 ft/s (ft/s2)
cm/s (cm/s2) 0.3937 in./s (in./s2)
cm/s2 0.00102 g
circular mil 0.7854 mil2

cm3/s 0.002119 ft3/min
cup 0.24 L (liter)
ft3/min 471.9 cm3/s
ft3/min 0.1247 gal/s
ft3/min 0.4719 L/s
ft3/s 448.8 gal/min
degree (degree/s) 0.01745 rad (rad/s)
degree 0.00273 rev
dyne 10−5 N
dyne 0.000002248 lb
fathom 1.829 m
ft 0.3048 m
foot of water (60◦F) 0.8843 inch of mercury (60◦F)
foot of water (60◦F) 2986 N/m2

foot of water (60◦F) 0.4331 lb/in2

ft/min 0.508 cm/s
ft/min 0.01136 mi/h
ft/s (ft/s2) 12 in./s (in./s2)
ft/s (ft/s2) 30.48 cm/s (cm/s2)
ft/s (ft/s2) 0.3048 m/s (m/s2)
ft/s2 0.0311 g
ft/s 1.097 km/h
ft/s 0.5925 knot
ft-lb/s 0.07716 Btu/min
ft-lb 1.356 N ·m
fluid ounce 29.57 mL
g (acceleration of gravity 32.16 ft/s2

at sea level)
g 386 in./s2

g 980 cm/s2

g 9.80 m/s2

4 TABLE 1-1 Conversion Factors



TABLE 1-1 (continued) CONVERSION FACTORS

Multiply: By: To Obtain:

gal 3.8 L
gallon of water (60◦F) 8.345 pound of water (60◦F)
gal/s 8.021 ft3/min
gal/s 227.1 L/min
g 980.7 dyne
g/cm3 9807 N/m3

g/cm2 98.07 N/m2

ha 2.471 acre
ha 104 m2

hp 1.014 hp (metric)
hp (metric) 0.9863 hp (horsepower)
Hz 1 cycle/s, rev/s
Hz 6.283 rad/s
Hz 360 degree/s
in. 0.0254 m
inch of mercury (32◦F) 0.03342 atm
inch of mercury (60◦F) 1.131 foot of water (60◦F)
inch of mercury (60◦F) 3376 N/m2

inch of mercury (60◦F) 0.4898 lb/in2

inch of water (60◦F) 0.03609 lb/in2

in./s (in./s2) 0.0833 ft/s (ft/s2)
in./s (in./s2) 2.540 cm/s (cm/s2)
in./s (in./s2) 0.0254 m/s (m/s2)
in./s2 0.00259 g (acceleration of gravity)
kg 9.807 N
kg 0.6852177 slug
km/h 0.9113 ft/s
knot 1.688 ft/s
knot 1.151 mi/h
L 2.1134 pint
L 1.0567 quart
L 0.2642 gal
L/min 0.004403 gal/s
mL 0.0338 fluid ounce
m 0.1988 rod
m/min 1.667 cm/s
m/s (m/s2) 3.28 ft/s (ft/s2)
m/s (m/s2) 39.37 in./s (in./s2)
m/s (m/s2) 100 cm/s (cm/s2)
m/s 2.2369 mi/h
m/s2 0.102 g (acceleration of gravity)
mil 0.001 in.
mil2 1.273 circular mil
mi/h 88.0 ft/min

TABLE 1-1 Conversion Factors 5



TABLE 1-1 (continued) CONVERSION FACTORS

Multiply: By: To Obtain:

mi/h 0.8690 knot
mi/h 0.477 m/s
N/m2 9.872× 10−6 atm
N/m2 3.349× 10−4 foot of water (60◦F)
oz (avoirdupois) 0.9115 oz (troy)
oz (troy) 1.097 oz (avoirdupois)
oz (troy) 0.06857 lb (avoirdupois)
pint 0.4732 L
lb 4.448 N
lb (mass) 0.4535 kg
lb (avoirdupois) 14.58 oz (troy)
lb (avoirdupois) 0.031081 slug
pound of water (60◦F) 0.01603 ft3

pound of water (60◦F) 0.1199 gal
lb/in2 0.06805 atm
lb/in2 2.309 foot of water (60◦F)
lb/in2 6895 N/m2

lb/in2 2.042 inch of mercury (60◦F)
lb/in2 27.71 inch of water (60◦F)
quart 0.9463 L
rad (rad/s) 57.30 degree (degree/s)
rad/s 0.1592 rev/s or Hz
rad/s 9.549 rpm
rev (revolution) 6.283 rad
rev/s or Hz (rev/s2) 6.283 rad/s (rad/s2)
rev/s or Hz 360 degree/s
rpm 0.1047 rad/s
rpm 6 degree/s
rod 5.029 m
slug 14.5939 kg
slug 32.1740 lb (avoirdupois)
T (◦C) T (◦F) = 9

5 T (◦C)+ 32 T (◦F)
ton 2000 lb
ton (metric) 1000 kg

6 TABLE 1-1 Conversion Factors



TABLE 1-2 CONSISTENT UNITS
International

U.S. Customary Old Metric Metric (SI)
Quantity (foot) (meter) (meter)

Length ft cm m
Force and weight, W lb kg N
Time s s s
Angle rad rad rad
Moment of inertia ft4 cm4 m4

Mass, = W/g lb-s2/ft (slug) kg-s2/cm kg
Area ft2 cm2 m2

Mass moment of lb-s2-ft kg-s2-cm kg ·m2

inertia
Moment lb-ft kg-cm N ·m
Volume ft3 cm3 m3

Mass density lb-s2/ft4 kg-s2/cm4 kg/m3

Stiffness of lb/ft kg/cm N/m
linear spring

Stiffness of lb-ft/rad kg-cm/rad N ·m/rad
rotary spring

Torque lb-ft kg-cm N ·m
Stiffness of lb-ft/rad kg-cm/rad N ·m/rad

torsional spring
Stress or pressure lb/ft2 kg/cm2 N/m2 (Pa)

TABLE 1-2 Consistent Units 7



TABLE 1-3 INTERNATIONAL SYSTEM (SI) OF UNITS
Quantity Name of Unit SI Symbol Unit Formula

Units Pertinent to Structural Mechanics

BASE
Length meter m
Mass kilogram kg
Time second s
Temperature kelvin K

DERIVED

Area square meter m2

Volume cubic meter m3

Force newton N kg ·m/s2

Stress, pressure pascal Pa N/m2

Work, energy joule J N ·m
Power watt W N ·m/s

SUPPLEMENTARY
Plane angle radian rad

Multiplication Exponential
Prefix Symbol Factor Form

Preferred Prefixes

tera T 1 000 000 000 000 1012

giga G 1 000 000 000 109

mega M 1 000 000 106

kilo k 1 000 103

milli m 0.001 10−3

micro µ 0.000 001 10−6

nano n 0.000 000 001 10−9

Not Recommended for Common Usea

hecto h 100 102

deka da 10 101

deci d 0.1 10−1

centi c 0.01 10−2

aExcept when expressing area and volume. The prefixes c and d can also be used with properties of certain
standard structural sections.

8 TABLE 1-3 International System (SI) of Units



TABLE 1-4 CONVERSION TO SI UNITS
Example: To convert from psi to pascal, multiply by 6.894 757 × 103. Then 1000 psi is
6.894 757 MPa.

To Convert from: To: Multiply by:

Acceleration

ft/s2 m/s2 0.3048
ft/s2 cm/s2 30.48
g m/s2 9.80
g cm/s2 980
in./s2 m/s2 0.0254
in./s2 cm/s2 2.540

Area

ft2 m2 9.290304× 10−2

in2 m2 6.451600× 10−4

Energy and Work

Btu J 1.055056× 103

cal J 4.186800
erg J 1.000000× 10−7

ft-lb J 1.355818
W-s J 1.000000

Energy/Area (Toughness)

erg/cm2 J/m2 1.000000× 10−3

ft-lb/in2 J/m2 2.101522× 103

in.-lb/in2 J/m2 1.751268× 102

Force

dyne N 1.000000× 10−5

kg N 9.806650
lb N 4.448222
poundal N 1.382550× 10−1

Length

Å m 1.000000× 10−10

ft m 3.048000× 10−1

in. m 2.540000× 10−2

mi (U.S. nautical) m 1.852000× 103

mi (U.S. statute) m 1.609344× 103

yd m 0.9144

TABLE 1-4 Conversion to SI Units 9



TABLE 1-4 (continued) CONVERSION TO SI UNITS

To Convert from: To: Multiply by:

Mass

grain kg 6.479891× 10−5

lb (mass) kg 4.535924× 10−1

slug kg 14.59390

Mass per Volume (Density)

g/cm3 kg/m3 1.000000× 103

lb (mass)/in3 kg/m3 2.767990× 104

slug/ft3 kg/m3 5.153788× 102

Power

Btu/h W 2.930711× 10−1

ft-lb/s W 1.355818
hp W 7.456999× 102

Pressure or Stress

atm (760 torr) Pa 1.013250× 105

bar Pa 1.000000× 105

centimeter of mercury (0◦C) Pa 1.33322× 103

centimeter of water (4◦C) Pa 98.0638
dyne/cm2 Pa 1.000000× 10−1

kg/cm2 Pa 9.806650× 104

kg/mm2 Pa 9.806650× 106

N/m2 Pa 1.000000
lb/in2 (psi) Pa 6.894757× 103

torr (mmHg, 0◦C) Pa 1.33322× 102

Temperature

degree Celsius (◦C) K (kelvin) T (K) = T (◦C)+ 273.15

degree Fahrenheit (◦F) K T (K) = T (◦F)+ 459.67

1.8
◦F ◦C T (◦C) = 5

9 T (◦F)− 32

Time

day s 8.640000× 104

hour s 3.600000× 103

year s 3.153600× 107

10 TABLE 1-4 Conversion to SI Units



TABLE 1-4 (continued) CONVERSION TO SI UNITS

To Convert from: To: Multiply by:

Velocity

ft/min m/s 5.080000× 10−3

ft/s m/s 0.3048
ft/s cm/s 30.48
in./s m/s 0.0254
in./s cm/s 2.540
km/h m/s 2.777778× 10−1

mi/h m/s 4.470400× 10−1

Viscosity

cP (centipoise) Pa · s 1.000000× 10−3

P (poise) Pa · s 1.000000× 10−1

lb-s/ft2 Pa · s 47.88026

Volume

barrel (oil, 42 U.S. gal) m3 1.589873× 10−1

fluid ounce m3 2.957353× 10−5

ft3 m3 2.831685× 10−2

gal (Imperial liquid) m3 4.546122× 10−3

gal (U.S. liquid) m3 3.785412× 10−3

in3 m3 1.638706× 10−5

L m3 1.000000× 10−3

Special Conversion

ksi-
√

in. MPa · √m 1.098843

TABLE 1-4 Conversion to SI Units 11



TABLE 1-5 COMMON CONVERSION FACTORS AND
SI RECOGNITION FIGURES

Units

U.S. International
Customary System System Suggested SI

(USCS) (SI) Recognition Figure

Length

1 in. 25.4 mm 25 mm
1 in. 2.54 cm 2.5 cm
10 in. 254 mm 250 mm
1 ft 0.3048 m 0.3 m
10 ft 3.048 m 3 m
1 mi 1609 m 1.6 km
1 yd 0.9144 m 0.9 m

Area

1 acre 4046.86 m2 4050 m2

1 acre 0.4047 ha 0.4 ha
1 ft2 0.09290 m2 0.1 m2

1 ha 104 m2 104 m2

1 in2 645.16 mm2 645 mm2

1 mi2 2.59 km2 2.6 km2

1 yd2 0.836 m2 0.85 m2

Temperature

32◦F 273 K 0◦C (270 K),
1K = 1◦C;
use of ◦C is
permissible in SI

Velocity

1 ft/min 0.00508 m/s 5 mm/s
1 mi/h 1.609 km/h 1.6 km/h

= 0.447 m/s 0.45 m/s
≈ 1/2 m/s

Power

1 hp (550 ft-lb/s) 745.7 W 0.75 kW
ft-lb/s 1.3558 W 1.4 W

Volume

1 ft3 0.0283 m3 0.03 m3

1 yd3 0.765 m3 0.8 m3

1 gal 0.003785 m3 0.004 m3

12 TABLE 1-5 Common Conversion Factors and SI Recognition Figures



TABLE 1-5 (continued) COMMON CONVERSION FACTORS AND SI RECOGNITION FIGURES

Units

U.S. International
Customary System System Suggested SI

(USCS) (SI) Recognition Figure

Pressure

1 psf 47.88 Pa 48 Pa
1 psi 6.894 kPa 6.9 kPa

Weight or Force

1 lb (force) 4.448 N 4.5 N
1 kip (1000 lb) 4.448 kN 4.5 kN

Line Loads

1000 lb/in. 175.13 kN/m 175 kN/m
1000 lb/ft 14.59 kN/m 15 kN/m

Mass

1 lb (mass) 0.4536 kg 0.5 kg
1 slug 14.5939 kg 15 kg
1 ton 907.185 kg 907 kg

Stress or Pressure

1 psi (lb/in2) 6.895 kN/m2 (kPa) 7 kN/m2

1000 psi (1 ksi) 6.895 MN/m2 (MPa) 7 MN/m2

1 psf 47.88 N/m2 (Pa) 48 N/m2

1 atm (760 torr) 1.01325× 105 Pa 105 Pa

TABLE 1-6 COMMON CONVERSION FACTORS AND U.S.
CUSTOMARY RECOGNITION FIGURES

Units

International U.S. Suggested
System Customary System U.S. Customary

(SI) (USCS) Recognition Figure

1 mm 0.03937 in. 0.04 in.
1 cm 0.3937 in. 0.4 in.
1 m 3.2808 ft 3.3 ft

= 1.0936 yd 1.1 yd
1 km 0.621371 mi 0.62 mi
1 m2 10.7639 ft2 10.8 ft2

1 m3 35.3147 ft3 35 ft3

1 km2 0.386102 mi2 0.4 mi2

= 247.105 acres 250 acres
= 100 ha 100 ha

1 m/s 2.23694 mi/h 2.25 mi/h

TABLE 1-6 Common Conversion Factors 13



TABLE 1-7 TYPICAL VALUES OF DESIGN LOADS, MATERIAL
PROPERTIES, AND ALLOWABLE STRESSES

U.S. Customary International
Quantity System (USCS) System (SI)

Design Loads

Wind pressure 30 lb/ft2 1.4 kN/m2 (kPa)
Snow

Moderate climate
Flat 20 lb/ft2 960 N/m2 (Pa)
45◦ slope 10 lb/ft2 480 N/m2 (Pa)

Cold Climate
Flat 40 lb/ft2 2 kN/m2 (kPa)
45◦ slope 10 lb/ft2 480 N/m2 (Pa)

Allowable Loads

Soil
Ordinary clay 2–3 tons/ft2 200–300 kPa

and sand mixture
Hard clay and firm 4–6 tons/ft2 400–600 kPa

coarse sand
Bedrock > 15 tons/ft2 > 1400 kPa
Wood, yellow pine 1600 psi 11 MPa
Concrete 1000 psi 7 MPa
Steel 20,000 psi 140 MPa

Moduli of Elasticity

Wood, yellow pine 1.6× 106 psi 11 GN/m2 (GPa)
Aluminum 10.1× 106 psi 70 GPa
Concrete 2× 106 psi 14 GPa
Steel 30× 106 psi 207 GPa

Weights

Steel 490 lb/ft3 76.98 kN/m3

Wood 40 lb/ft3 6.3 kN/m3

Concrete 150 lb/ft3 24 kN/m3

Water 62.4 lb/ft3 9.804 kN/m3

Aluminum 169.3 lb/ft3 26.60 kN/m3

Snow
Freshly fallen 5 lb/ft3 800 N/m3

Packed 12 lb/ft3 1.9 kN/m3

Wet 50 lb/ft3 7.9 kN/m3

Sand
Dry 100 lb/ft3 15.7 kN/m3

Wet 115 lb/ft3 18.1 kN/m3

14 TABLE 1-7 Typical Values of Design Loads



TABLE 1-7 (continued) TYPICAL VALUES OF DESIGN LOADS, MATERIAL PROPERTIES, AND
ALLOWABLE STRESSES

Density (Mass)

Water 0.9356× 10−4 lb-s2/in4 1000 kg/m3

Steel 7.3326× 10−4 lb-s2/in4 7835.9 kg/m3

Acceleration of Gravity (g)

32.174 ft/s2 (386.087 in./s2) 9.8066 m/s2

Coefficients of Friction

Iron on stone 0.5
Timber on stone 0.4
Timber on timber 0.3
Brick on brick 0.7

TABLE 1-7 Typical Values of Design Loads 15
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The geometric properties of a cross-sectional area are essential in the study of beams
and bars. A brief discussion of these properties along with tables of formulas are
provided in this chapter. Computer programs (Ref. [2.1] or the web site for this book)
are available to compute these properties for cross sections of arbitrary shape.

2.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and
F for force.

17



18 GEOMETRIC PROPERTIES OF PLANE AREAS

A Cross-sectional area (L2)
A0 Area defined in Fig. 2-9
A∗ Centerline-enclosed area (L2)

f = Z p/Ze Shape factor
I , Iy , Iz Moments of inertia of a cross section (L4)

Ixy Product of inertia (L4)
Iωy Sectorial linear moment about y axis (L5), = ∫A ωz dA

Iωz Sectorial linear moment about z axis (L5), = ∫A ωy dA

J Torsional constant (L4)
Jx Polar moment of inertia (L4), = Ix

qi Normalized shear flow (L2)
Qy , Qz First moment of area with respect to y and z axes, respectively (L3)

Qω Sectorial static moment (L4), = ∫A0
ω dA

rS(c) Perpendicular distance from the shear center (centroid) to the tan-
gent of the centerline of the wall profile (L)

ry , rz Radii of gyration (L)
s Coordinate along centerline of wall thickness (L)
S Designation of shear center; elastic section modulus
t Wall thickness (L)

T Torque, twisting moment (F L)
x , y, z Right-handed coordinate system
yc, zc Centroids of a cross section in yz plane (L)
yS, zS Shear center coordinates (L)

Ze Elastic section modulus (L3), = S
Z p Plastic section modulus (L3), = Z

αy , αz Shear correction factors in z, y directions
αs Shear correction factor
� Warping constant (sectorial moment of inertia) of a cross section

(L6), = ∫A ω
2 dA

ν Poisson’s ratio
φ Angle of twist (rad)
ω Sectorial area, principal sectorial coordinate

ωS(c) Sectorial area or sectorial coordinate with respect to shear center
(centroid) (L2), = ∫ s

0 rS(c) ds

2.2 CENTROIDS

Coordinates and notation† are given in Fig. 2-1, which displays “continuous” and
composite shapes. The composite shape is formed of two or more standard shapes,

†The cross-sectional properties of this chapter are discussed in detail in Ref. [2.1].



2.3 MOMENTS OF INERTIA 19

Figure 2-1: Coordinates and notation: (a) continuous shape; (b) composite shape.

such as rectangles, triangles, and circles, for which the geometric properties are read-
ily available.

The centroid of a plane area is that point in the plane about which the area is
equally distributed. It is often called the center of gravity of the area. For the area of
Fig. 2-1a the centroid is defined as

yc =
∫

A y dA∫
A dA

=
∫

A y dA

A
, zc =

∫
A z dA∫
A dA

=
∫

A z dA

A
(2.1)

where A = ∫A dA.
For a composite area formed of two standard shapes, such as the one in Fig. 2-1b,

the centroid is obtained using

yc = A1 y1 + A2 y2

A1 + A2
, zc = A1z1 + A2z2

A1 + A2
(2.2)

In general, for n standard shapes, the equations become

yc =
∑n

i=1 Ai yi∑n
i=1 Ai

, zc =
∑n

i=1 Ai zi∑n
i=1 Ai

(2.3)

where Ai (i = 1, 2, . . . , n) are the areas of identifiable simple areas and yi , zi are
the coordinates of the centroid of area Ai .

2.3 MOMENTS OF INERTIA

The moment of inertia of an area (second moment of an area) with respect to an axis
is the sum of the products obtained by multiplying each element of the area dA by
the square of its distance from the axis. For a section in the yz plane (Fig. 2-1a), the
moment of inertia is defined to be
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Iy =
∫

A
z2 dA about the y axis (2.4a)

Iz =
∫

A
y2 dA about the z axis (2.4b)

Section Moduli

For bending about the y axis, the elastic section modulus S = Ze is defined by

S = Ze = Iy

c
=
∫

A z2 dA

c
(2.5)

where c is the z distance from the centroidal (neutral) axis y to the outermost fiber.
The plastic section modulus Z = Z p is defined as the sum of statical moments of

the areas above and below the centroidal (neutral) axis y (Fig. 2-2),

Z p = −
∫

A1

z dA+
∫

A2

z dA (2.6)

where A1 and A2 are the areas above and below, respectively, the neutral axis.
For a given shape, the ratio of the plastic section modulus to the elastic section

modulus is called the shape factor f (i.e., f = Z p/Ze).
The product of inertia is defined as

Izy =
∫

A
zy dA (2.7)

In contrast to the moment of inertia, the product of inertia is not always positive. With
respect to rectangular axes, it is zero if either of the axes is an axis of symmetry.

For moments and products of inertia of composite shapes the parallel-axis for-
mulas are useful. These formulas relate the inertia properties of the areas about their

Figure 2-2: Notation for section moduli.
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Figure 2-3: Geometry for transformation of axes; c is centroid of cross section.

own centroidal axes to parallel axes. For the three moments of inertia, the formulas
are

Iy = Iy + Ad2
z , Iz = Iz + Ad2

y , Iyz = Iy z + Adydz (2.8)

It is important that the signs of the terms dy and dz be correct. Positive values are
shown in Fig. 2-3, where dy and dz are the coordinates of the centroid of the cross
section in the yz coordinates.

A complicated area can often be subdivided into component areas whose moments
of inertia are known. The moments of inertia of the original area are obtained by
adding the individual moments of inertia, each taken about the same reference axis.

If an area is completely irregular, the moment and product of inertia can be ob-
tained by evaluating the integrals numerically or by using a graphical technique.
However, most computer programs rely on the technique of subdividing a section
into standard shapes (e.g., rectangles), the more irregular the section, the finer the
subdivision network required.

The radius of gyration is the distance from a reference axis to a point at which the
entire area of a section may be considered to be concentrated and still have the same
moment of inertia as the original distributed area. Thus for the y and z axes, the radii
of gyration are given by

ry =
√

Iy/A, rz =
√

Iz/A (2.9)

It is customary to express the instability criterion for a beam with an axial load in
terms of one of the radii of gyration of the cross-sectional area.

2.4 POLAR MOMENT OF INERTIA

By definition, a polar axis is normal to the plane of reference (e.g., the x axis in
Fig. 2-4).
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Figure 2-4: Polar moment of inertia.

The moment of inertia of an area (Fig. 2-4) about a point 0 in its plane is termed
the polar moment of inertia of the area with respect to the point. It is designated by
the symbol Jx and defined by the integral

Jx =
∫

A
r2 dA = Ix (2.10)

where r is the distance of the area element dA from the point 0. Since r2 = z2 + y2,
it follows from Eqs. (2.4) that

Jx =
∫

A
(z2 + y2) dA = Iy + Iz (2.11)

With respect to a parallel axis, the polar moment of inertia is (Fig. 2-3)

Jx0 = Jxc + Ar2 (2.12)

where Jx0 and Jxc are the polar moments of inertia with respect to point 0 and the
centroid c, respectively.

2.5 PRINCIPAL MOMENTS OF INERTIA

Moments of inertia are tensor quantities that possess properties that vary with the
orientation θ (Fig. 2-5) of the reference axes. The angle θ is the angle of rotation
of the centroidal reference axes and expresses the change of reference axes from the
yz system to the y′z′ system. The y′, z′ coordinates expressed in terms of the y, z
coordinates are
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Figure 2-5: Geometry for rotation of axes.

y′ = y cos θ + z sin θ

z′ = −y sin θ + z cos θ
(2.13)

Then the area moments of inertia in the rotated coordinate system are

Iy′ =
∫

z′2 dA = Iz sin2 θ + Iy cos2 θ − 2Iyz sin θ cos θ

Iz′ =
∫

y′2 dA = Iz cos2 θ + Iy sin2 θ + 2Iyz sin θ cos θ (2.14)

Iy′z′ =
∫

y′z′dA = Iyz(cos2 θ − sin2 θ)+ (Iy − Iz) sin θ cos θ

Trigonometric identities 2 cos2 θ = 1 + cos 2θ, 2 sin2 θ = 1 − cos 2θ, and
2 sin θ cos θ = sin 2θ lead to an alternative form:

Iy′ = 1
2 (Iy + Iz)+ 1

2 (Iy − Iz) cos 2θ − Iyz sin 2θ

Iz′ = 1
2 (Iy + Iz)− 1

2 (Iy − Iz) cos 2θ + Iyz sin 2θ (2.15)

Iy′z′ = 1
2 (Iy − Iz) sin 2θ + Iyz cos 2θ

To identify the angle θ at which the moment of inertia Iy′ assumes its extreme value,
use Eq. (2.15) and set ∂ Iy′/∂θ equal to zero.

(Iy − Iz)(− sin 2θ)− 2Iyz cos 2θ = 0 or tan 2θp = 2Iyz

Iz − Iy
(2.16)

The angle θp identifies the centroidal principal bending axes. Also, the angle θp of
Eq. (2.16) corresponds to the rotation for which the product of inertia Iy′z′ is zero.
This can be shown by substituting Eq. (2.16) into Iy′z′ of Eq. (2.15). Equation (2.16)
determines two values of 2θ that are 180◦ apart, that is, two values of θ that are 90◦
apart. At these values, the moments of inertia Iy′ and Iz′ assume their maximum or
minimum possible values, that is, the principal moments of inertia I1 and I2. The
magnitudes of I1 and I2 can be obtained by substituting θ of Eq. (2.16) into the first
two of Eqs. (2.15).
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In summary:

1. The value of θ = θp defines the principal axes of inertia. At this orientation, Iy′
and Iz′ will assume maximum and minimum values. Also, at θ = θp, Iy′z′ = 0.

2. The principal moments of inertia have the values

Imax = 1
2 (Iz + Iy)+

√[
1
2 (Iy − Iz)

]2 + I 2
yz = I1 (2.17a)

Imin = 1
2 (Iz + Iy)−

√[
1
2 (Iy − Iz)

]2 + I 2
yz = I2 (2.17b)

An axis of symmetry will be a principal axis and an axis of a zero product of
inertia.

A useful relationship is

θp = tan−1 Iy − I1

Iyz
(2.18)

which defines the angle θ between the y axis and the axis belonging to the larger
principal moment of inertia. Since the angle between the smaller principal moment
of inertia and the y axis is θp + 90◦, the specification of θp of Eq. (2.18) is sufficient
to identify both principal axes.

2.6 MOHR’S CIRCLE FOR MOMENTS OF INERTIA

The effect of a rotation of axes on the moments and product of inertia can be repre-
sented graphically using a Mohr’s circle (Fig. 2-6) constructed in a manner similar
to that for Mohr’s circle of stress (Chapter 3).

The coordinates of a point on Mohr’s circle (Fig. 2-6) are to be interpreted as
representing the moment and the product of inertia of a plane area with respect to
the y axis (Fig. 2-5). The y axis is along the circle radius passing through the plotted
point Iy, Iyz . The angle θ is measured counterclockwise from the y axis. However,
the magnitudes of the angles on Mohr’s circle are double those in the physical plane.

Example 2.1 Centroid Determine the centroid of the area shown in Fig. 2-7.
This area is bounded by the y axis, the line y = b, and the parabola z2 = (h2/b)y.

To use Eq. (2.1), choose the element of area dA = z dy as shown in Fig. 2-7.
Along the parabola, y and z are related by z = h

√
y/b. Then

yc =
∫

A y(z dy)∫
A dA

=
∫ b

0 y3/2 dy∫ b
0 y1/2 dy

= 3

5
b (1)
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Figure 2-6: Mohr’s circle for moment of inertia of an area. This provides the moments of
inertia with respect to the yz system of Fig. 2-5 for an orientation of θ .

z

y
b

zc=   h
8
3

yc =   b
5
3

y

h z

dy

dA
z2=   y

b
h2

0

Figure 2-7: Example 2.1.

The formula zc =
∫

A z dA/
∫

A dA cannot be applied here because it is based on an
element dA whose centroid is at a distance z from the y axis (Fig. 2-1a). For the dA
employed here, the centroidal distance of dA from the y axis is z/2. Thus,

zc =
∫

A
1
2 z dA∫

A dA
=
∫ b

0
1
2 z(z dy)∫ b
0 z dy

= 3

8
h (2)

Other choices can be made for dA. For example, suppose that dA = dz dy; then

zc =
∫

A z dA∫
A dA

=
∫

A z dz dy
2
3 bh

= 3

2bh

∫ b

0

∫ z

0
z dz dy = 3

2bh

∫ b

0

z2

2
dy = 3

8
h (3)
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Figure 2-8: Example 2.2: (a) angle cross section; (b) centroids.

Example 2.2 Moments of Inertia Compute the moments of inertia about the
centroid, the angle of inclination of the principal axis, for the angle of Fig. 2-8a.

The centroid for the angle was computed and is shown in Fig. 2-8b. To compute
the moments of inertia, use the parallel-axis theorem to transfer the individual shape
inertias to the common reference axis of the angle’s centroidal axes (Fig. 2-8b).

Begin with the product of inertia. For shape D.

d D
z = −

(
3
4 + 1

2

)
= − 5

4 in., d D
y = 3

4 in. (1)

The negative sign occurs, since with respect to the reference axes yz, the z-directed
coordinate of cD is on the negative side of the z axis:

I D
yz = IyDzD + d D

z d D
y AD = 0+

(
− 5

4

) (
3
4

)
(4) = −3.75 in4

For shape B,

d B
z = 2− 3

4 = + 5
4 in., d B

y = − 3
4 in.

I B
yz = IyB zB + d B

z d B
y AB = 0+

(
5
4

) (
− 3

4

)
(4) = −3.75 in4

(2)

The product of inertia for the complete angle is then

Iyz = I D
yz + I B

yz = −3.75− 3.75 = −7.50 in4 (3)

The moments of inertia are computed in a similar fashion:

I D
y = IyD

+ (d D
z )

2 AD =
(

1
12

)
(4)(13)+

(
− 5

4

)2
(4) = 6.583 in4 (4)
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I D
z = IzD + (d D

z )
2 AD = 7.583 in4 (5)

I B
y = IyB

+ (d B
z )

2 AB =
(

1
12

)
(1)(43)+

(
5
4

)2
(4) = 11.583 in4 (6)

I B
z = IzB + (d B

y )
2 AB = 2.583 in4 (7)

For the entire angle,

Iy = I D
y + I B

y = 18.167 in4 (8)

Iz = I D
z + I B

z = 10.167 in4 (9)

The angle of inclination with respect to the centroidal axis is given by

tan 2θp = 2Iyz

Iz − Iy
= 2(−7.50)

10.167− 18.167
= 1.875

so that

2θp = 61.93◦ or θp = 30.96◦

Some properties of plane sections for commonly occurring shapes are listed in
Table 2-1.

Example 2.3 Section Moduli Find the elastic and plastic section moduli and
shape factor of a rectangular shape of width b and height h with respect to its hori-
zontal centroidal axis.

For a rectangle c = 1
2 h and (Table 2-1)

I = 1
12 bh3

so that the elastic section modulus becomes

S = Ze = I
c = 1

6 bh2 (1)

From Eq. (2.6), the plastic section modulus is given by

Z p = −
∫

A1

z dA+
∫

A2

z dA

= −
∫ 0

−h/2
zb dz +

∫ h/2

0
zb dz = 1

4
bh2 (2)
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The shape factor becomes

f = Z p

Ze
=

1
4 bh2

1
6 bh2

= 1.5 (3)

The section moduli for some selected cross sections are listed in Table 2-2.

2.7 FIRST MOMENT OF AREAS ASSOCIATED WITH
SHEAR STRESSES IN BEAMS

In calculating the shear stress in a beam caused by transverse loading, a first moment
Q with respect to the centroidal (neutral) axis of the beam is used. This first moment
is defined by

Q = Qy =
∫

A0

z dA = A0zc (2.19a)

where A0 (Fig. 2-9a) is the area of that part of the section between the position z1
at which the shear stress is to be calculated and the outer fiber and zc is the distance

Figure 2-9: First moment of area: (a) y axis is a centroidal axis; (b) z axis is a centroidal
axis.
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from the y centroidal axis of the section to the centroid of A0. The formulas for Q
for some sections are provided in Table 2-3.

Similarly, for loading in the y direction, the corresponding first moment of area is
given by (Fig. 2-9b)

Qz =
∫

A0

y dA = A0 yc (2.19b)

where yc is the distance from the z centroidal axis of the cross section to the centroid
of A0.

2.8 SHEAR CORRECTION FACTORS

Shear effects on deflection are often significant in the bending of short beams. These
effects can be described in terms of shear correction factors, which are rather difficult
to calculate. Accurate shear deformation coefficients depend on material properties
and on the dimensions of the cross section. For software to calculate the accurate
coefficients, see the web site for this book. This software is based on the theory
described in Ref. [2.1]. The shear deformation coefficient formulas in this book are
approximate and should be used with caution.

A common formula for shear correction factors is

αy = A

I 2
y

∫
A

(
Qy

b

)2

dA = αs (2.20a)

for loading in the z direction (Fig. 2-9a), where A is the cross-sectional area. The
quantities Iy and Qy are defined in Eqs. (2.4a) and (2.19a), respectively. Also, b is
as shown in Fig. 2-9a. In general, b may vary over the cross section.

In the same fashion, for a cross section loaded in the y direction (Fig. 2-9b) the
shear correction factor αz is defined as

αz = A

I 2
z

∫
A

(
Qz

b

)2

dA (2.20b)

The quantities Iz and Qz are given by Eqs. (2.4b) and (2.19b), respectively, and b is
shown in Fig. 2-9b.

The shear correction factor may be viewed as the ratio of the actual beam cross-
sectional area to the effective area resisting shear deformation. It can be seen from
Eqs. (2.20) that the shear correction factors are always greater than or equal to zero.

As mentioned, the relations [Eqs. (2.20)] for αy and αz are approximate. Some-
what more accurate determinations of shear correction factors can be made using the
theory of elasticity. For solid rectangular and circular cross sections this leads to

αrect = 12+ 11ν

10(1+ ν) , αcirc = 7+ 6ν

6(1+ ν) (2.21)
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In case of ν = 0.3, these equations give αrect = 1.18 and αcirc = 1.13. If Eqs. (2.20)
are used, the corresponding shear correction factors are αrect = 1.2 and αcirc = 1.11,
which differ little from the more precise values.

Approximate formulas for αs for various beam cross sections are listed in
Table 2-4. The computer programs available with this book (see the web site) can
calculate shear correction factors for shapes of arbitrary geometry. The inverse of the
shear correction factor, called the shear deflection constant, is often required as an
input in general-purpose finite-element analysis software. References [2.1] and [2.2]
discuss problems encountered in calculating and using shear correction factors.

Example 2.4 Shear Correction Factors Determine the shear correction factors
of the rectangular cross section of Fig. 2-10.

From Table 2-3, Qy = 1
2 b( 1

4 h2 − z2), where z1 is replaced by z, as shown in
Fig. 2-10. From Table 2-1, Iy = 1

12 bh3. Substitution of these values into Eq. (2.20a)
leads to

αy = αs = bh( 1
12 bh3

)2
∫ h/2

−h/2

[
1

2

(
1

4
h2 − z2

)]2

b dz = 6

5
(1)

By the same reasoning, it can be shown that the shear correction factor for loading
in the y direction is

αz = 6
5 (2)

y

z

dz

A0

z

h

b

Figure 2-10: Example 2.4.
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2.9 TORSIONAL CONSTANT

For a bar with circular cross section the torsional constant is the polar moment of
inertia of the section. For cross sections of arbitrary shapes, the torsional constant J
can be defined by the torsion formula,

J = T/Gφ′ (2.22)

where φ′ = dφ/dx with φ the angle of twist, T the torque, and G the shear modulus.
Accurate values of the torsional constant often require computational solutions. Con-
stants for cross sections of any shape can be obtained using the software available
with this book (see the web site).

Thin-Walled Sections

Thin-walled sections may be either open or closed. Such common structural shapes
as channels, angles, I-beams, and wide-flange sections are open thin-walled sections,
since the centerline of the wall does not form a closed curve. Closed sections have at
least one closed curve.

Although there is no clearly defined line of demarcation between thin-walled and
thick-walled sections, it is suggested that thin-walled theory may be applied with
reasonable accuracy to sections if

tmax/b ≤ 0.1 (2.23)

where tmax is the maximum thickness of the section and b is a typical cross-sectional
dimension.

The torsional constant for a thin-walled open section (Fig. 2-11) is J , approxi-
mated by

J = 1

3

∫
section

t3 ds (2.24a)

Figure 2-11: Thin-walled open section.
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Figure 2-12: Thin-walled closed section.

or for a section formed of M straight or curved segments of thickness ti and length bi :

J = α

3

M∑
i=1

bi t
3
i (2.24b)

where α is a shape factor. Use α = 1 if no information on α is available.
For closed, thin-walled sections (one cell only), as shown in Fig. 2-12, the tor-

sional constant of the cross section is given by

J = 4A∗2∫ ds
t

(2.25)

where
∫
(1/t) ds is the contour integral along the centerline s of a wall of thickness

t = t (s) and A∗ is the area enclosed by the centerline of the wall.
If the hollow cross section is composed of M parts, each with the constant wall

thickness ti and the length bi of the centerline, the integral leads to

∫
ds

t
=

M∑
i=1

bi

ti
(2.26a)

For the case of a constant wall thickness t of a section with a circumference of length
S, the integral becomes

∫
ds

t
= S

t
(2.26b)

A combination of the formulas for open and closed cross sections can be used to
approximate the torsional constant for a hollow tube with fins (Fig. 2-13). Thus,
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Figure 2-13: Fins on a hollow section.

J = 1

3

M∑
i=1

bi t
3
i +

4A∗2∫
(1/t) ds

(2.27)

for M fins.
Figure 2-14 shows a thin-walled cross section with multiple cells. In general,

these cells may be interconnected in any manner, and a cross section may consist of
M cells. It can be shown that the torsional constant of this type of cross section is
obtained by

J = 4
M∑

i=1

A∗i qi (2.28a)

1

T
2

3

M-1
M

qMqM-1

q1

q2

q3

Figure 2-14: Multicell wing section.
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where A∗i is the centerline-enclosed area of cell i and qi is a normalized shear flow
(with units of area) that can be determined from the following set of equations:

qi

∮
i

ds

t
−
∑

k

qk

∫
ik

ds

t (s)
= A∗i (2.28b)

where i = 1, 2, 3, . . . ,M and k refers to cells adjacent to the i th cell. The quantity
qi is the shear flow of Chapter 3 divided by 2G dφ

dx , where G and dφ
dx are defined in

Chapter 12.
Table 2-5 provides torsional constants for some cross sections, including the hol-

low sections discussed above.

Example 2.5 Torsional Constant of a Thin-Walled Section with Four Cells A
thin-walled section with four cells is shown in Fig. 2-15. Determine the torsional
constant using Eqs. (2.28).

2

3

1

4

t = 0.2 in

3 in.

2 in.

Figure 2-15: Example 2.5: thin-walled cross section of uniform wall thickness t = 0.2 in.

Use case 6 of Table 2-5, or Eqs. (2.28). From Fig. 2-15, the enclosed areas of the
cells are

A∗1 = A∗2 = A∗3 = A∗4 = 2(3) = 6 in2 (1)

For cell 1, i = 1.

qi

∮
i

ds

t (s)
= q1

(
2(3)

0.2
+ 2(2)

0.2

)
= 10

0.2
q1 (2)
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∑
k

qk

∫
ik

ds

t (s)
= q2

∫
12

ds

t
+ q3

∫
13

ds

t

= q2
S12

t
+ q3

S13

t
= q2

2

0.2
+ q3

3

0.2

(3)

where S12 is the length of the common segments between cells 1 and 2. The length
S13 is between cells 1 and 3. Therefore, for i = 1, Eq. (2.28b) leads to

q1
10

0.2
−
(

q2
2

0.2
+ q3

3

0.2

)
= 6 (4)

Similarly, for cells 2, 3, and 4, i = 2, 3, 4, Eq. (2.28b) yields

q2
10

0.2
−
(

q1
2

0.2
+ q4

3

0.2

)
= 6 (5)

q3
10

0.2
−
(

q1
3

0.2
+ q4

2

0.2

)
= 6 (6)

q4
10

0.2
−
(

q2
3

0.2
+ q3

2

0.2

)
= 6 (7)

respectively. Rearranging (4), (5), (6), and (7) into matrix format gives us




10 −2 −3 0
−2 10 0 −3
−3 0 10 −2

0 −3 −2 10






q1
q2
q3
q4


 =




1.2
1.2
1.2
1.2


 (8)

The solution of (8) is

q1 = q2 = q3 = q4 = 0.24 in2 (9)

Thus, the torsional constant of the cross section is, by Eq. (2.28a),

J = 4
4∑

i=1

Ai qi = 4(A1q1 + A2q2 + A3q3 + A4q4)

= 4(6)(0.24+ 0.24+ 0.24+ 0.24) = 23.04 in4

(10)
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2.10 SECTORIAL PROPERTIES

Sectorial properties of a cross section are useful in the study of restrained warping
torsion, although they tend to be difficult to compute (Chapter 15). Some of the
sectorial formulas for thin-walled cross sections are summarized below.

Sectorial Area

The sectorial area is given by

ωP =
∫ s

0
rP ds (2.29)

which is two times the shaded region in Fig. 2-16a. Point I is chosen as the origin
of variable s, which lies along the centerline of the cross section, point P is the pole
with respect to which ωP is defined, and rP is the distance between segment ds
and P . Point P can be chosen arbitrarily.

Sectorial area ωP is twice the area swept by P–0 as point 0 moves a distance
s along the centerline of the cross section from initial point I (Fig. 2-16a). Con-
sequently, the integration of Eq. (2.29) is reduced to the problem of finding the
double-shaded area, which is referred to as direct integration. Define increment dω as
positive when P–0 rotates in the counterclockwise direction. If the pole is at the cen-
troid or the shear center, the corresponding sectorial area is, respectively,

ωc =
∫ s

0
rc ds (2.30a)

ωS =
∫ s

0
rS ds (2.30b)

Figure 2-16: Sectorial properties: (a) sectorial area (sectorial coordinate); (b) first sectorial
moment.
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First Sectorial Moment

The first sectorial moment is defined by

Qω =
∫

A0

ω dA =
∫

A0

ωt ds (2.31a)

where A0 is shown in Fig. 2-16b and

ω = ωS − ω0 (2.31b)

ω0 = 1

A

∫
A
ωS dA (2.31c)

The quantity ωS is defined with the shear center as the pole [Eq. (2.30b)] and with
arbitrary initial point I . Note that ω0 is a constant that depends on ωS . This definition
of ω makes

∫
A
ω dA = 0 (2.31d)

This follows since
∫

A
ω dA =

∫
A
(ωs − ω0) dA =

∫
A
ωS dA− ω0 A = 0

Sectorial area ω as defined by Eq. (2.31b) is called the principal sectorial coordinate
or the principal sectorial area.

Sectorial Linear Moments

Define the sectorial linear moments

Iωy =
∫

A
ωP z dA, Iωz =

∫
A
ωP y dA (2.32)

where the integration is taken over the entire cross section A.

Warping Constant (Sectorial Moment of Inertia)

The warping constant is defined as

� =
∫

A
ω2 dA (2.33)

with the integration taken over the entire cross section A. See the web site for soft-
ware to calculate various constants, including the warping constant, for cross sections
of any shape.
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If the coordinates are set at the centroid, then

Iωy =
∫

A
ωcz dA, Iωz =

∫
A
ωc y dA (2.34)

The choice of initial point for the sectorial coordinates is arbitrary. A different choice
changes ω by a constant but leaves Iωz and Iωy unchanged.

For thin-walled sections consisting of straight elements, integration in the for-
mulas above can be performed in a piecewise manner, leading to the summation
formulas of Tables 2-6 and 2-7 and some parts of Table 2-5. These formulas give
the values of ωc, ωS , and Qω at each junction point (node), and the values along an
element between any two junction points can be found by linear interpolation. This
method is called piecewise integration. It reduces the task of performing the direct
integration to one of finding the length of the elements and perpendicular distance
rP from the pole to that element.

2.11 SHEAR CENTER FOR THIN-WALLED CROSS SECTIONS

To bend a beam without twisting, the plane of the applied forces must pass through
the shear center of every cross section of the beam. Thus, if the resultant shear force
on a cross section passes through the shear center, no torsion will occur. For a cross
section possessing two or more axes of symmetry (e.g., an I section) or antisymmetry
(e.g., a Z section), the shear center and the centroid coincide. However, for cross
sections with only one axis of symmetry, the shear center and the centroid do not
coincide, but the shear center falls on the axis of symmetry. For a cross section with
two intersecting flanges, the shear center is at the location of the intersection. The
location of the shear center is of great importance for a thin-walled open cross section
because of its lower torsional stiffness than that for a closed section. See Fig. 2-17
for examples of shear center locations.

(b) (c) 

S

S

(a)

cS y

z

c
c

Figure 2-17: Locations of shear centers: (a) one axis of symmetry; (b) two axes of symme-
try; (c) angle section. The centroid and shear center are denoted by c and S, respectively.
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Open Cross Sections

If the material of the cross section remains linearly elastic and the flexure formula
(Chapter 3) is valid, the shear center for thin-walled cross sections can be obtained
using [2.1, 2.3]

yS = 1

D
(Iz Iωy − Iyz Iωz) (2.35a)

zS = 1

D
(−Iy Iωz + Iyz Iωy) (2.35b)

with

D = Iy Iz − I 2
yz (2.36)

This definition of a shear center, which depends solely on the geometry of the
cross section, is referred to as Trefftz’s definition. Reference [2.1] provides a theory
of elasticity based definition that depends on the material properties.

In Eqs. (2.35), the origin of the yz coordinate system is at the centroid of the
cross section, yS and zS are distances from point P (pole) (Fig. 2-18). Point P can
be located arbitrarily for convenience of calculation. Normally, P is located at the
centroid of the cross section.

When the yz axes are principal axes (Iyz = 0), Eqs. (2.35) can be simplified as

yS = 1

Iy
Iωy (2.37a)

zS = − 1

Iz
Iωz (2.37b)

If the cross section has one axis of symmetry (Fig. 2-19) and if the load (Pz) is paral-
lel to the z axis and passes through the shear center S, Eqs. (2.31) can be simplified

Figure 2-18: Shear center for an open thin-walled section.
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Figure 2-19: Thin-walled open section with one axis (y) of symmetry.

further as

yS = 1

Iy
Iωy (2.38a)

zS = 0 (2.38b)

The shear centers for some common sections are given in Table 2-6.
For the shear center of closed sections, refer to Refs. [2.1] and [2.3].

Example 2.6 Shear Center Calculation Determine the shear center of the cross
section shown in Fig. 2-20a.

To simplify the calculation, choose pole P at one corner and initial point I at
another, as shown in Fig. 2-20b. This configuration makes rP = 0 for legs I –P and
P–k, so that ωP = 0. For leg I –J , rP = 2a. Then

ωP =
{−2as (leg I –J )

0 (legs I –P and P–k)
(1)

From Eqs. (2.32)

Iωy =
∫

A
ωP z dA =

∫
AI J

ωP z dA+
∫

AI P

ωP z dA+
∫

APk

ωP z dA

=
∫ a

0
(2as)at ds + 0+ 0 = a4t (2)

Iωz =
∫

A
ωP y dA =

∫ a

0
2as

(
s − 1

4
a

)
t ds + 0+ 0 = + 5

12
a4t (3)
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a

a

a

a

y

1
4

z

t

0 Iy=8_
3 a3t

Iz=_
1
_

2 a3t5

Iyz= ( )

(a) (b)

I

P k

a

a3
8

S

s

z

y

ω  = −2asP

J

Figure 2-20: Example 2.6.

From Eqs. (2.35) with Iyz = 0,

yS = Iωy

Iy
= +a4t

8
3 a3t

= +3

8
a (4)

zS = − Iωz

Iz
= −

5
12a4t
5

12 a3t
= −a (5)

This shear center S is indicated in Fig. 2-20b.

2.12 MODULUS-WEIGHTED PROPERTIES FOR
COMPOSITE SECTIONS

For members of nonhomogeneous material it is useful to introduce the concept of
modulus-weighted section properties. Define an increment of area as

dA∗ = E

Er
dA (2.39)

where Er is an arbitrary reference modulus that can be chosen to control the mag-
nitude of the numbers involved in the computation of modulus-weighted properties
and E assumes the value of the modulus of elasticity for the point of interest on the
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cross section. For a homogeneous member set Er = E so that this modulus-weighted
property will reduce to the ordinary geometric property of the section. The definition
of Eq. (2.39) leads to the other modulus-weighted definitions:

Area: A∗ =
∫

A
dA∗

Centroid: y∗c =
1

A∗

∫
A

y dA∗, z∗c =
1

A∗

∫
A

z dA∗

Moments of inertia: I ∗y =
∫

A
z2 dA∗, I ∗z =

∫
A

y2 dA∗

I ∗yz =
∫

A
yz dA∗ (2.40)

For the case of a composite section E can be piecewise constant, as shown in
Fig. 2-21. Then for this section formed of n materials:

Area: A∗i =
Ei

Er
Ai , A∗ =

n∑
i=1

A∗i =
n∑

i=1

Ei

Er
Ai (2.41a)

Centroid: y∗c =
∑n

i=1
Ei
Er

∫
Ai

y0i dAi∑n
i=1

Ei
Er

∫
Ai

dAi
= 1

A∗
n∑

i=1

y0i A∗i

z∗c =
∑n

i=1
Ei
Er

∫
Ai

z0i dAi∑n
i=1

Ei
Er

∫
Ai

dAi
= 1

A∗
n∑

i=1

z0i A∗i (2.41b)

Figure 2-21: Cross section of a composite beam.
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where y0i , z0i are the coordinates in the y0z0 system of the geometric centroid of the
area Ai of the i th element. The moments of inertia are calculated as follows:

I ∗y = I ∗y0
− z∗c

2 A∗, I ∗z = I ∗z0
− y∗c

2 A∗, I ∗yz = I ∗y0z0
− y∗c z∗c A∗ (2.42)

where I ∗y , I ∗z , I ∗yz are the modulus-weighted moments of inertia about the modulus-
weighted centroidal axes y, z and I ∗y0

, I ∗z0
, I ∗y0z0

are the modulus-weighted moments
of inertia about the reference y0z0 axes:

I ∗y0
=

n∑
i=1

Ei

Er
(I yi + z2

0i Ai ), I ∗z0
=

n∑
i=1

Ei

Er
(I zi + y2

0i Ai )

I ∗y0z0
=

n∑
i=1

Ei

Er
(I yi zi + y0i z0i Ai )

(2.43)

where I yi , I zi , I yi zi are the moments of inertia of area Ai about its own centroidal
axis. Also,

I ∗y =
n∑

i=1

Ei

Er
(I yi + z2

i Ai ), I ∗z =
n∑

i=1

Ei

Er
(I zi + y2

i Ai )

I ∗yz =
n∑

i=1

Ei

Er
(I yi zi + yi zi Ai )

(2.44)

where yi , zi are the coordinates in the centroidal yz system of the geometric centroid
of the area Ai of the i th element (Fig. 2-21).

The first moment is calculated as

Q∗y =
∫

A0

z dA∗ =
∫

A0

E

Er
z dA =

n0∑
i=1

zi A∗i

Q∗z =
∫

A0

y dA∗ =
∫

A0

E

Er
y dA =

n0∑
i=1

yi A∗i

(2.45)

where the summations using index n0 extend over the area A0 (Fig. 2-16b). The
warping constant is derived from

�∗ =
∫

A
ω2 dA∗ =

∫
A

E

Er
ω2 dA =

no∑
i=1

Ei

Er

∫
Ai

ω2 dA (2.46)

and the first sectorial moment from

Q∗ω =
∫

A0

ω dA∗ =
∫

A0

E

Er
ω dA =

n0∑
i=1

Ei

Er

∫
Ai

ω dA (2.47)
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where A0 is defined in Fig. 2-16b. The shear center is calculated as

yS = yP +
I ∗z I ∗ωy − I ∗yz I ∗ωz

I ∗y I ∗z − I ∗2yz
, zS = zP −

I ∗y I ∗ωz − I ∗yz I ∗ωy

I ∗y I ∗z − I ∗2yz
(2.48)

where yS, zS are indicated in Fig. 2-18 and I ∗ωy =
∫

A ωP z dA∗, I ∗ωz =
∫

A ωP y dA∗.
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TABLE 2-1 AREAS, CENTROIDS, MOMENTS OF INERTIA, AND RADII OF GYRATION OF COMMON CROSS
SECTIONS

Moments of Inertia and the Polar Moment
Area, Location of Inertia (Jx = Iy + Iz) with Transverse Radii of Gyration and

Shape of Section of Centroid (yc, zc) Respect to Centroidal Axial Axis the Polar Radius of Gyration rp = rx

1.
Rectangle

A = bh

yc = 1
2 b

zc = 1
2 h

I = Iy = 1
12 bh3

Iz = 1
12 hb3

Iy z = 0

Jx = 1
12 bh(b2 + h2)

ry = h/
√

12

rz = b/
√

12

rp =
√

1
12 (b

2 + h2)

2.
Triangle

A = 1
2 bh

yc = 1
3 (a + b)

zc = 1
3 h

I = Iy = 1
36 bh3

Iz = 1
36 bh(b2 − ab + a2)

Iy z = 1
72 bh2(2a − b)

Jx = 1
36 bh(h2 + b2 − ab + a2)

ry = h/
√

18

rz =
[ 1

18 (b
2 − ab + a2)

]1/2
rp =

√
1
18 (b

2 + h2 − ab + a2)

46
TA

B
L

E
2-1

A
reas,C

en
tro

id
s,M

o
m

en
ts

o
f

In
ertia,R

ad
ii



3.
Trapezoid A = 1

2 h(a + b)

yc = 1
2 a

zc = h

3

a + 2b

a + b

I = Iy = h3

36

a2 + 4ab + b2

a + b
Iz = 1

48 h(a + b)(a2 + b2)

Iy z = 0
Jx = Iy + Iz

ry = h(a2 + 4ab + b2)1/2√
18(a + b)

rz =
[

1
24 (a

2 + b2)
]1/2

rp = √Jx/A

4.
Circle

A = 1
4πd2

yc = 1
2 d

zc = 1
2 d

I = Iy = Iz = 1
64πd4

Iy z = 0

Jx = 1
32πd4

ry = rz = 1
4 d

rp = d/
√

8

5.
Annulus

A = 1
4π(d

2
o − d2

i )

yc = 1
2 do

zc = 1
2 do

I = Iy = Iz = 1
4π(r

4
o − r4

i )

Iy z = 0

Jx = 1
32π(d

4
o − d4

i )

ry = rz = 1
4 (d

2
o + d2

i )
1/2

rp =
√

1
8 (d

2
o + d2

i )
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TABLE 2-1 (continued) AREAS, CENTROIDS, MOMENTS OF INERTIA, AND RADII OF GYRATION OF COMMON CROSS SECTIONS

Moments of Inertia and the Polar Moment
Area, Location of Inertia (Jx = Iy + Iz) with Transverse Radii of Gyration and

Shape of Section of Centroid (yc, zc) Respect to Centroidal Axial Axis the Polar Radius of Gyration rp = rx

6.
Ellipse

A = πab

yc = a

zc = b

I = Iy = 1
4πab3

Iz = 1
4πba3

Iy z = 0

Jx = 1
4πab(b2 + a2)

ry = 1
2 b

rz = 1
2 a

rp =
√

1
4 (a

2 + b2)

7.
Semicircle

A = 1
2πr2

yc = r

zc = 4r/3π

I = Iy = 0.11r4

Iz = 0.393r4

Iy z = 0
Jx = 0.296r4

ry = 0.264r
rz = 1

2r
rp = 0.565r
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8.
Parallelogram

A = bd

yc = 1
2 (b + a)

zc = 1
2 d

Iy = 1
12 bd3

Iz = 1
12 bd(b2 + a2)

Iy z = − 1
12 abd2

ry = 0.2887d

rz = 0.2887
√

b2 + a2

9.
Diamond

A = 1
2 bd

yc = 1
2 b

zc = 1
2 d

Iy = 1
48 bd3

Iz = 1
48 db3

ry = 0.2041d

rz = 0.2041b
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TABLE 2-1 (continued) AREAS, CENTROIDS, MOMENTS OF INERTIA, AND RADII OF GYRATION OF COMMON CROSS SECTIONS

Moments of Inertia and the Polar Moment
Area, Location of Inertia (Jx = Iy + Iz) with Transverse Radii of Gyration and

Shape of Section of Centroid (yc, zc) Respect to Centroidal Axial Axis the Polar Radius of Gyration rp = rx

10.
Sector of solid circle

A = αR2

yc = R sinα

zc = R

(
1− 2 sinα

3α

)
Iy = R4

4

(
α + sinα cosα − 16 sin2 α

9α

)

Iz = R4

4
(α − sinα cosα)

ry = R

2

√
1+ sinα cosα

α
− 16 sin2 α

9α2

rz = R

2

√
1− sinα cosα

α

11.
Angle

B1 = b1 + 1
2 t

B2 = b2 + 1
2 t

c1 = b1 − 1
2 t

c2 = b2 − 1
2 t

A = t (b1 + b2)

yc = B2
1 + c2t

2(b1 + b2)

zc = B2
2 + c1t

2(b1 + b2)

Iy = 1
3 [t (B2 − z)3 + B1z3 − c1(z − t)3]

Iz = 1
3 [t (B1 − y)3 + B2y3 − c2(y − t)3]

Iy z = − 1
2 t[b1z(b1 − 2y)+ b2 y(b2 − 2z)]

ry =
√

Iy/A

rz = √Iz/A

rp = √Jx/A
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12.
I section

H1 = h + t f

H2 = h − t f

A = 2bt f + H2tw

yc = 1
2 b

zc = 1
2 H1

Iy = 1
12 [bH 3

1 − (b − tw)H 3
2 ]

Iz = 1
12 (H2t3

w + 2t f b3)

Iy z = 0, Jx = Iy + Iz

ry =
√

Iy/A

rz = √Iz/A

rp = √Jx/A

13.
Z section

H1 = h + t

B = b + 1
2 t

C = b − 1
2 t

A = t (h + 2b)

yc = b, zc = 1
2 (h + t)

Iy = 1
12 [B H 3

1 − C(H1 − 2t)3]
Iz = 1

12 [H1(B + C)3 − 2hC3 − 6B2hC]
Iy z = − 1

2 htb2

Jx = Iy + Iz

ry =
√

Iy/A

rz = √Iz/A

rp = √Jx/A
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TABLE 2-1 (continued) AREAS, CENTROIDS, MOMENTS OF INERTIA, AND RADII OF GYRATION OF COMMON CROSS SECTIONS

Moments of Inertia and the Polar Moment
Area, Location of Inertia (Jx = Iy + Iz) with Transverse Radii of Gyration and

Shape of Section of Centroid (yc, zc) Respect to Centroidal Axial Axis the Polar Radius of Gyration rp = rx

14.
Cross

A = ht1 + (b− t1)t2

yc = 1
2 b

zc = 1
2 h

Iy = 1
12 [t1h3 + (b − t1)t3

2 ]
Iz = 1

12 [t2b3 + (h − t2)t3
1 ]

Iy z = 0, Jx = Iy + Iz

ry =
√

Iy/A

rz = √Iz/A

rp = √Jx/A

15.
Channel

B = b + 1
2 tw

C = b − 1
2 tw

H1 = h + t f

D = h − t f

A = htw + 2bt f

yc = 2B2t f + Dt2
w

2B H1 − 2DC
zc = 1

2 (h + t f )

Iy = 1
12 (B H 3

1 − C D3)

Iz = 1
3 (2t f B3 + Dt3

w)− A(B − yc)
2

Iy z = 0, Jx = Iy + Iz

ry =
√

Iy/A

rz = √Iz/A

rp = √Jx/A
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16.
T section

H1 = h + 1
2 t f

C = b − tw
A = bt f + twD

yc = 1
2 b, D = h − 1

2 t f

zc =
H 2

1 tw + Ct2
f

2(bt f + Dtw)

Iy = 1
3 [tw(H1 − zc)

3 + bz3
c − C(zc − t f )

3]
Iz = 1

12 (b
3t f + Dt3

w)

Iy z = 0, Jx = Iy + Iz

ry =
√

Iy/A

rz = √Iz/A

rp = √Jx/A
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TABLE 2-2 SECTION MODULI ABOUT THE CENTROIDAL AXES
Case Elastic Section Modulus S = Ze Plastic Section Modulus Z = Z p Shape Factor f = Z p/Ze

1.
Rectangle

Zey = 1
6 bh2

Zez = 1
6 hb2

Z py = 1
4 bh2

Z pz = 1
4 hb2

fy = fz = 1.5

2.
Hollow rectangle Zey = 1

6

bh3 − bi h3
i

h

Zez = 1

6

hb3 − hi b3
i

b

Z py = 1
4 (bh2 − bi h2

i )

Z pz = 1
4 (hb2 − hi b2

i )

fy = 1.5
h(bh2 − bi h2

i )

bh3 − bi h3
i

fz = 1.5
b(hb2 − hi b2

i )

hb3 − hi b3
i
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3. Triangle Zey = 1
24 bh2

Zez = 1
24 hb2

Z py = 0.097bh2

Z pz = 1
12 hb2

fy = 2.33
fz = 2.0

4.
Diamond

Zey = 1
24 bh2

Zez = 1
24 hb2

Z py = 1
12 bh2

Z pz = 1
12 hb2

fy = fz = 2.0

5.
Circle

Zey = Zez = 1
4πr3 Z py = Z pz = 4

3r3 fy = fz = 1.698
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M
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TABLE 2-2 (continued) SECTION MODULI ABOUT THE CENTROIDAL AXES

6.
Hollow circle Zey = Zez = π

4

r4
o − r4

i

ro
Z py = Z pz = 4

3 (r
3
o − r3

i ) fy = fz = 1.698
ro(r3

o − r3
i )

r4
o − r4

i

7.
Ellipse

Zey = 1
4πba2

Zez = 1
4πab2

Z py = 4
3 ba2

Z pz = 4
3 ab2

fy = fz = 1.698

8.
Semicircle

Zey = 0.1908r3

Zez = 1
8πr3

Z py = 0.3540r3

Z pz = 2
3r3

fy = 1.856
fz = 1.698
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9.
T section Zey = Iy

h + t f − zc

Zez = Iz
1
2 b

where Iy, Iz = moments of
inertia of T section about
y, z axes (Table 2-1, case 16)

If twh ≤ bt f , then

Z py = h2tw
4
− b2t2

f

4tw
− bt f (h + t f )

2
Neutral axis y is distance 1

2 (bt f /tw + h)
from bottom

If twh > bt f , then

Z py = 1
4 t2

f b + 1
2 twh(t f + h − twh/2b)

Neutral axis y is 1
2 (twh/b + t f ) from

the top

Z pz = 1
4 (b

2t f + t2
wh)

fy = Z py(h + t f − zc)

Iy

fz = Z pzb

2Iz

10.
Channel

Zey = 2Iy

h

Zez = Iz

b + tw − yc

where Iy , Iz , and yc are given
in case 15 of Table 2-1

Z py = 1
4 h2tw + t f b(h − t f )

If 2t f b ≤ htw, then

Z pz = b2t f

2
− h2t2

w

8t f
+ htw(b + tw)

2

Neutral axis z is 1
2 (htw/2t f + b)

from left side
If 2t f b > htw, then

Z pz = 1
4 t2
wh + t f b(tw + b − t f b/h)

Neutral axis z is t f b/h + 1
2 tw

from right side

fy = Z pyh

2Iy

fz = Z pz(b + tw − yc)

Iz
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TABLE 2-2 (continued) SECTION MODULI ABOUT THE CENTROIDAL AXES

Case Elastic Section Modulus S = Ze Plastic Section Modulus Z = Z p Shape Factor f = Z p/Ze

11.
I section Zey = Iy

t f + h/2

Zez = 2Iz

b
where Iy , Iz are given

in case 12 of Table 2-1

Z py = 1
4 twh2 + bt f (h + t f )

Z pz = 1
2 b2t f + 1

4 t2
wh

fy = Z py(t f + 1
2 h)

Iy

fz = Z pzb

2Iz
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TABLE 2-3 FIRST MOMENT Q ASSOCIATED WITH SHEAR STRESS IN BEAMSa

Case Q = ∫A0
z dA = A0z Qmax

1. Rectangular section 1
2 b( 1

4 h2 − z2
1)

1
8 bh2 when z1 = 0

2. Circular section 2
3 (r

2 − z2
1)

3/2(
b = 2

√
r2 − z2

1

)
2
3r3 when z1 = 0

3. I-beam section 1
2 b( 1

4 h2 − 1
4 h2

1)+ 1
2 tw( 1

4 h2
1 − z2

1)

(z1 ≤ 1
2 h1)

1
8 bh2 − 1

8 h2
1(b − tw) when z1 = 0

aThe shear stress is to be calculated at z = z1.
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TABLE 2-4 APPROXIMATE SHEAR CORRECTION FACTORSa

Case Correction Factor αs

1. 12+ 11ν

10(1+ ν)

2. 7+ 6ν

6(1+ ν)

3. (7+ 6ν)(1+ j2)2 + (20+ 12ν) j2

6(1+ ν)(1+ j2)2
where j = ri

ro
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4. (40+ 37ν)b4 + (16+ 10ν)a2b2 + νa4

12(1+ ν)b2(3b2 + a2)

5. 1.305+ 1.273ν

1+ ν

6. 4+ 3ν

2(1+ ν)

7. 48+ 39ν

20(1+ ν)
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TABLE 2-4 (continued) APPROXIMATE SHEAR CORRECTION FACTORSa

Case Correction Factor αs

8. (12+ 72 j + 150 j2 + 90 j3)+ ν(11+ 66 j + 135 j2 + 90 j3)+ 30k2( j + j2)+ 5νk2(8 j + 9 j2)

10(1+ ν)(1+ 3 j)2

where j = 2bt f /htw, k = b/h

9. (12+ 72 j + 150 j2 + 90 j3)+ ν(11+ 66 j + 135 j2 + 90 j3)+ 10k2[(3+ ν) j + 3 j2]
10(1+ ν)(1+ 3 j)2

where j = bt1/ht , k = b/h

10. (12+ 96 j + 276 j2 + 192 j3)+ ν(11+ 88 j + 248 j2 + 216 j3)+ 30k2( j + j2)+ 10νk2(4 j + 5 j2 + j3)

10(1+ ν)(1+ 4 j)2

where j = bt f /htw, k = b/h

aThis table contains some traditional expressions for shear correction factors, following Cowper [2.4], with permission. More accurate values can be obtained using the
computational methods of Ref. [2.1]. For example, the more accurate shear correction factor for a rectangular section (case 1) varies with the thickness of the rectangle.
For software see the web site for this book.
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TABLE 2-5 TORSIONAL CONSTANT Ja

Shape Torsional Constant J

Thick Noncircular Sections

1.
Ellipse J = πa3b3

16(a2 + b2)

2.
Hollow ellipse J = πa3b3

16(a2 + b2)
(1− k4)

3.
Equilateral triangle J = a4

√
3

80
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TABLE 2-5 (continued) TORSIONAL CONSTANT Ja

4.
Square

J = 0.1406a4

5.
Rectangle J = ab3

3

(
1− 0.630

b

a
+ 0.052

b5

a5

)

Hollow, Closed Thin-Walled Sections

6.
Single cell

t
s

J = 4A∗2∫ S
0 [1/t (s)] ds

where
A∗ = area enclosed by middle line of wall

S = entire length of middle line of wall
For constant t

J = 4A∗2t

S
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Fins on hollow section

t1

b1

tM

bM

For M fins:

J = 1

3

M∑
i=1

bi t
3
i +

4A∗2∫ S
0 (1/t) ds

S = entire length of middle wall of the hollow cell

Multicell

t4

t1

1

2

4

q1

q2

q3

q4

3

For M cells:

J = 4
M∑

i=1

A∗i qi

where qi (normalized shear flows) are calculated
from the M equations

qi

∮
i

ds

t
−

m∑
k �= i
k = 1

qk

∫
ik

ds

t (s)
= A∗i

A∗i is the centerline-enclosed area of cell i

i = 1, 2, 3, . . . ,M cells
k identifies cells adjacent to the i th cell
The i th cell is adjoined by m cells
See Example 2.5
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TABLE 2-5 (continued) TORSIONAL CONSTANT Ja

Shape Torsional Constant J

Circular Cross Sections

7.
Solid

J = 1
2πr4

o = 1
32πd4

o

8.
Hollow

J = 1
2π(r

4
o − r4

i ) = 1
32π(d

4
o − d4

i )

9.
Very thin

J = 2πr3t
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Thin-walled Open Sections

10.
Any open section J = α

3

M∑
i=1

bi t
3
i

where M is number of straight or curved segments of thickness ti and width or height
bi composing the section; set α = 1 except as designated otherwise

11. J = 1
3 bt3
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TABLE 2-5 (continued) TORSIONAL CONSTANT Ja

Shape Torsional Constant J

12. J = 1
3 (b1t3

1 + b2t3
2 + ht3

w)

Structural Shapes

13. JI = 2
3 bt3

f + 1
3 (d − 2t f )t3

w + 2αD4 − 0.420t4
f

J⊥ = 1
3 bt3

f + 1
3 (d − t f )t3

w + αD4 − 0.210t4
f − 0.105t4

w

D = (t f + r)2 + tw(r + 1
4 tw)

2r + t f

where 0.5 ≤ tw/t f ≤ 1.0

α = C1 + C2(tw/t f )+ C3(tw/t f )
2

For 0.2 ≤ r/t f ≤ 1.0

C1 −0.06971+ 0.13153(r/t f )+ 0.27000(r/t f )
2 − 0.22813(r/t f )

3

C2 0.27835− 0.01878(r/t f )− 0.71207(r/t f )
2 + 0.57542(r/t f )

3

C3 −0.09684− 0.12082(r/t f )+ 0.54500(r/t f )
2 − 0.40060(r/t f )

3
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14. JI = 1
6 (b − tw)(t1 + t2)(t2

1 + t2
2 )+ 2

3 twt3
2 + 1

3 (d − 2t2)t3
w + 2αD4 − 4V t4

1

J⊥ = 1
12 (b − tw)(t1 + t2)(t2

1 + t2
2 )+ 1

3 twt3
2 + 1

3 (d − t2)t3
w + αD4 − 2V t4

1 − 0.105t4
w

D = (F + t2)2 + tw(r + 1
4 tw)

F + r + t2

F = rs

(√
1

s2
+ 1− 1− tw

2r

)

V = 0.10504+ 0.10000s + 0.08480s2 + 0.06746s3 + 0.05153s4

s = 2(t2 − t1)

b − tw
= slope of flange

where 0.5 ≤ tw/t2 ≤ 1.0

α = C1 + C2(tw/t2)+ C3(tw/t2)2

For 0.2 ≤ r/t2 ≤ 1.0

C1 −0.1033+ 0.3466(r/t2)− 0.3727(r/t2)2 + 0.1694(r/t2)3

C2 0.3062− 0.7656(r/t2)+ 1.3348(r/t2)2 − 0.6897(r/t2)3

C3 −0.1074+ 0.4167(r/t2)− 0.9049(r/t2)2 + 0.5002(r/t2)3
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TABLE 2-5 (continued) TORSIONAL CONSTANT Ja

Shape Torsional Constant J

15. J[ = J� = 2
3 bt3

f + 1
3 (d − 2t f )t3

w + 2αD4 − 0.420t4
f

J� = 1
3 bt3

f + 1
3 (d − t f )t3

w + αD4 − 0.210t4
f − 0.105t4

w

D = 2[(3r + tw + t f )−
√

2(2r + tw)(2r + t f )]
where 0.5 ≤ tw/t f ≤ 1.0,

α = C1 + C2(tw/t f )+ C3(tw/t f )
2

For 0.2 ≤ r/t f ≤ 1.0

C1 −0.11641+ 0.26445(r/t f )− 0.24677(r/t f )
2 + 0.12556(r/t f )

3

C2 0.34597− 0.53266(r/t f )+ 0.79741(r/t f )
2 − 0.40271(r/t f )

3

C3 −0.15063+ 0.31916(r/t f )− 0.57695(r/t f )
2 + 0.29625(r/t f )

3
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16. J[ = 1
6 (b − tw)(t1 + t2)(t2

1 + t2
2 )+ 2

3 twt3
2 + 1

3 (d − 2t2)t3
w + 2αD4 − 2V t4

1 − 0.210t4
2

J� = 1
12 (b − tw)(t1 + t2)(t2

1 + t2
2 )+ 1

3 twt3
2 + 1

3 (d − t2)t3
w + αD4 − V t4

1 + 0.105t4
2 − 0.105t4

w

D = 2[(3r + tw + M)−√2(2r + tw)(2r + M)]
M = t2 − r(s + 1−√1+ s2)

V = 0.10504+ 0.10000s + 0.08480s2 + 0.06746s3 + 0.05153s4

s = t2 − t1
b − tw

= slope of flange

where 0.6 ≤ tw/t2 ≤ 1.0,
α = C1 + C2(tw/t2)+ C3(tw/t2)2

For 0.2 < r/t2 < 1.0

C1 −0.10264− 0.44045(r/t2)+ 1.2413(r/t2)2 − 0.68518(r/t2)3

C2 0.24145+ 1.3046(r/t2)− 3.0311(r/t2)2 + 1.6659(r/t2)3

C3 −0.057158− 0.89368(r/t2)+ 1.8919(r/t2)2 − 1.0281(r/t2)3

Other Cross-Sectional Shapesb

17. J = 2Hr4
o

where for 0.1 ≤ ri/ro ≤ 0.6,
H = C1 + C2(ri/ro)+ C3(ri/ro)

2 + C4(ri/ro)
3

For 0.1 ≤ a/ri ≤ 1.0

C1 0.4419− 0.006649(a/ri )− 0.01237(a/ri )
2 + 0.008159(a/ri )

3

C2 −0.7992− 0.3159(a/ri )+ 0.1041(a/ri )
2 − 0.1180(a/ri )

3

C3 −0.05440+ 0.8918(a/ri )− 0.2037(a/ri )
2 + 0.2306(a/ri )

3

C4 0.4989− 0.6441(a/ri )+ 0.1295(a/ri )
2 − 0.1274(a/ri )

3
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TABLE 2-5 (continued) TORSIONAL CONSTANT Ja

Shape Torsional Constant J

18. J = 2Hr4

where for 0.1 ≤ b/r ≤ 0.5,
H = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.2 ≤ a/b ≤ 2.0

C1 0.8022− 0.05327(a/b)+ 0.05212(a/b)2 − 0.01372(a/b)3

C2 −0.2248+ 0.6236(a/b)− 0.6370(a/b)2 + 0.1612(a/b)3

C3 −0.08032− 3.609(a/b)+ 2.481(a/b)2 − 0.5339(a/b)3

C4 −0.2603+ 2.876(a/b)− 1.630(a/b)2 + 0.3355(a/b)3

19. J = 2Hr4

where for 0.1 ≤ b/r ≤ 0.5,

H = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.2 ≤ a/b ≤ 2.0

C1 0.7856− 0.01775(a/b)+ 0.03284(a/b)2 − 0.009474(a/b)3

C2 −0.1551+ 0.5930(a/b)− 0.7858(a/b)2 + 0.2038(a/b)3

C3 −1.124− 5.639(a/b)+ 3.938(a/b)2 − 0.8327(a/b)3

C4 0.5493+ 5.451(a/b)− 3.143(a/b)2 + 0.6367(a/b)3
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20. J = 2Hr4

where for 0.1 ≤ b/r ≤ 0.4,

H = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.2 ≤ a/b ≤ 1.5

C1 0.8934− 0.2590(a/b)+ 0.2014(a/b)2 − 0.0402(a/b)3

C2 −0.8812+ 1.204(a/b)− 0.1487(a/b)2 − 0.4083(a/b)3

C3 −1.923− 4.701(a/b)− 5.888(a/b)2 + 4.573(a/b)3

C4 3.210− 0.8764(a/b)+ 18.73(a/b)2 − 9.72(a/b)3

21. J = 2Hr4

where for 0.1 ≤ b/r ≤ 0.5,

H = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.3 ≤ a/b ≤ 1.2

C1 0.806441− 0.056737(a/b)+ 0.043005(a/b)2 − 0.012622(a/b)3

C2 −0.205211+ 0.474911(a/b)− 0.335661(a/b)2 + 0.122002(a/b)3

C3 0.531966− 1.049677(a/b)+ 1.015579(a/b)2 − 0.481095(a/b)3

C4 −0.483475+ 0.780521(a/b)+ 0.025257(a/b)2 + 0.715039(a/b)3

TA
B

L
E

2-5
To

rsio
n

alC
o

n
stan

t
J

73



TABLE 2-5 (continued) TORSIONAL CONSTANT Ja

Shape Torsional Constant J

22. J = 2Hr4

where for 0.1 ≤ b/r ≤ 0.5,

H = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.2 ≤ a/b ≤ 2.0

C1 0.820637− 0.087139(a/b)+ 0.061660(a/b)2 − 0.019378(a/b)3

C2 −0.321396+ 0.650230(a/b)− 0.391181(a/b)2 + 0.182355(a/b)3

C3 0.760392− 1.061566(a/b)+ 1.085027(a/b)2 − 0.799552(a/b)3

C4 −0.661936+ 0.541752(a/b)+ 0.872841(a/b)2 + 1.417918(a/b)3

23. J = 2Hr4

where for 0.1 ≤ b/r ≤ 0.5,

H = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.2 ≤ a/b ≤ 2.0

C1 0.893973− 0.313887(a/b)+ 0.269713(a/b)2 − 0.084344(a/b)3

C2 −0.943550+ 2.289479(a/b)− 1.565538(a/b)2 + 0.525646(a/b)3

C3 2.432108− 4.773638(a/b)+ 3.659461(a/b)2 − 1.768291(a/b)3

C4 −1.838383+ 1.733176(a/b)+ 2.880622(a/b)2 + 2.464264(a/b)3
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24. J = 2Hr4

where for 0 ≤ a/r ≤ 1.0,

H = 0.789153− 0.286497(a/r)− 1.000693(a/r)2 + 0.648931(a/r)3

25. J = 2Hr4

where for 0 ≤ a/r ≤ 0.6,

H = 0.786896− 0.632562(a/r)− 2.002225(a/r)2 + 1.998147(a/r)3

26. J = 2Hr4

where for 0 ≤ a/r ≤ 0.29289,

H = 0.781100− 0.620726(a/r)− 8.234127(a/r)2 + 15.313776(a/r)3

27. J = 2Hr4

where for 0.1 ≤ a/r ≤ 0.5,

H = 0.785940− 0.029096(a/r)− 1.391780(a/r)2 + 0.891659(a/r)3
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TABLE 2-5 (continued) TORSIONAL CONSTANT Ja

Shape Torsional Constant J

28. J = 2Hr4

where for 0.1 ≤ a/r ≤ 0.5,

H = 0.785300− 0.013430(a/r)− 3.069283(a/r)2 + 2.549998(a/r)3

29. J = 2Hr4

where for 0.1 ≤ a/r ≤ 0.5,

H = 0.798080− 0.197025(a/r)− 5.683568(a/r)2 + 6.666664(a/r)3

30. J = 2Hr4

where for 0.1 ≤ a/b ≤ 0.8,

H = 0.049447+ 0.043597(a/b)+ 4.698128(a/b)2 − 3.899720(a/b)3

aSee the web site for software to calculate accurately J of any cross-sectional shape.
bSee Ref. [2.5].
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TABLE 2-6 SHEAR CENTERS AND WARPING CONSTANTSa

Shape Location of Shear Center (S), e Warping Constant, �

1.
Sector of thin circle

2r

(π − θ)+ sin θ cos θ
[(π − θ) cos θ + sin θ]

For split tube (θ = 0) use e = 2r

Ref. [2.6]

tr5

3

{
2(π − θ)3 − 12 [(π − θ) cos θ + sin θ]2

(π − θ)+ sin θ cos θ

}

2.
Circle with different
properties

2r

π

(
1− C∗G

CG

)
sin θ

(
1− θ

π

)+ θ
π

C∗G
CG

θ
π

×
(
1− θ

π

) (
1− θ

tan θ

) (
1− C∗E

CE

)
+ C∗E

CE(
1− sin 2θ

2θ

) (
1− C∗E

CE

)
+ C∗E

CE

CE = Et, CG = Gt

Ref. [2.7]

Use computer program

3.
Semicircular section

8

15π

3+ 4ν

1+ ν r
Use computer program
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TABLE 2-6 (continued) SHEAR CENTERS AND WARPING CONSTANTSa

Shape Location of Shear Center (S), e Warping Constant, �

4.
−a

(
1+ b2 A

4Iz

)
+ 2h

IF

Iz

where

A = total area
IF = moment of inertia of each

lower flange with respect
to web axis

Iz, Iy = moments of inertia with
respect to z, y axes

Ref. [2.8]

b2

4

[
Iy + a2 A

(
1− b2 A

4Iz

)]

+ 2h2 IF − 2bdh2 AF + b2ah A
IF

Iz
− 4h2 I 2

F

Iz

where

AF = area of each lower flange
d = distance of centroid of lower flange

from the web axis

Ref. [2.8]

5.
Channel with unequal
flanges

zS = e − b2
1ht

6(Iy Iz − I 2
yz)

× [−3Iyz(h − e)+ Iy(2b1 − 3d)]

yS = d + b2
1ht

6(Iy Iz − I 2
yz)

× [−Iyz(2b1 − 3d)+ 3Iz(h − e)]

e = h2 + 2b1h

2h(b1 + b2)
, d = b2

1 + b2
2

2(h + b1 + b2)

Ref. [2.9]

Use computer program
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6. Thin-walled lipped angle b√
2

(3− 2α)α2

1+ 3(α − α2)+ α3

α = c

b
Ref. [2.6]

tb4c3(4b+ 3c)

6(b3 + 3cb2 − 3c2b + c3)

7. Thin-walled lipped channel t = const

b(3bh2 + 6ah2 − 8a3)

h3 + 6bh2 + 6ah2 + 8a3 − 12a2h
Ref. [2.9]

Use computer program

8. Channel 3t f b2

6bt f + htw

b3h2t f

12

2htw + 3bt f

htw + 6bt f
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TABLE 2-6 (continued) SHEAR CENTERS AND WARPING CONSTANTSa

Shape Location of Shear Center (S), e Warping Constant, �

9.
Thin-walled hat section

b(3bh2 + 6ah2 − 8a3)

h3 + 6bh2 + 6ah2 + 8a3 + 12a2h
Ref. [2.9]

Use computer program

10. I-beam t1b3
1h

t1b3
1 + t2b3

2
If b1 = b2 and t1 = t2, then e = 1

2 h

t1 = t2 = t

h2t

12

b3
1b3

2

b3
1 + b3

2
If b1 = b2, then � = 1

24 b3h2t

11.
I-beam with unsymmetric
flanges

3(b2 − b2
1)

twh/t f + 6(b + b1)
, b1 < b

Ref. [2.6]

Use computer program
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12.
Thin-walled U section

4r2 + 2b2 + 2πbr

4b + πr
Ref. [2.9]

Use computer program

13.
Tee

S lies at intersection of
centerlines of flange and web �2 =

t3
f b3

144
+ t3

wh3

36
Secondary warping.
See Ref. [2.11]

14.
Thin-walled fork section

3b2(h2
1 + h2

2)

h3
2 + 6b(h2

1 + h2
2)

Ref. [2.9]

Use computer program
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TABLE 2-6 (continued) SHEAR CENTERS AND WARPING CONSTANTSa

Shape Location of Shear Center (S), e Warping Constant, �

15.
Thin-walled bowl section

r
D + 12 bb1

r2 + 3π
(

b1
r

)2 − 4
(

b1
r

)3
b
r

3π + 12 b+b1
r + 4

(
b1
r

)2 (
3+ b1

r

)

where D = 12+ 6π
b + b1

r
+ 6

(
b

r

)2

Ref. [2.6]

Use computer program

16.
Unequal leg angle

S lies at intersection of centerlines �2 = 1
36 t3(b3

1 + b3
2)

If b1 = b2 = b, then �2 = 1
18 t3b3

Secondary warping.

See Ref. [2.11]

17.
Zee section

1
2 h

b3h2t f

12

bt f + 2htw
2bt f + htw
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18. 1
2 h h2 Iz

4
Ref. [2.11]

19.
Thin-walled lipped section

1
2 h tb2

6

D + (6h2 + 5bh)C + bh2 + 0.5b2h

h + 2b + 2c
where D = C2 + 2(h + 2b)C2

20. Use computer program t3
1 h3

36
+ t3

2 b3

36
+ πr4h2

4
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TABLE 2-6 (continued) SHEAR CENTERS AND WARPING CONSTANTSa

Shape Location of Shear Center (S), e Warping Constant, �

21.
Cross section formed of M
straight thin elements

rci is perpendicular distance
from centroid to tangent
of wall profile for the i th
element

ωp, ωq and ωcp, ωcq are the
principal sectorial coordinates
(warping functions) and
the sectorial coordinates
with respect to centroid c of
the p and q ends of element i
Ref. [2.10], printed with
permission.

yS = Iz Iωy − Iyz Iωz

Iy Iz − I 2
yz

zS = − Iy Iωz − Iyz Iωy

Iy Iz − I 2
yz

ωc =
∫ s

0 rc ds

Iωy =
∫

A ωcz dA

= 1

3

M∑
i=1

(ωcpz p + ωcq zq)ti bi

+ 1

6

M∑
i=1

(ωcpzq + ωcq z p)ti bi

Iωz =
∫

A ωc y dA

= 1

3

M∑
i=1

(ωcp yp + ωcq yq)ti bi

+ 1

6

M∑
i=1

(ωcp yq + ωcq yp)ti bi

∫
A
ω2 dA = 1

3

M∑
i=1

(ω2
p + ωpωq + ω2

q)ti bi

where ω j ( j = p or q)is taken from case 1
of Table 2-7

aWarping constants are with respect to the shear center. See the web site for software to calculate accurately the shear center and warping constant for any cross-sectional
shape.
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TABLE 2-7 SOME WARPING PROPERTIES
Shape Principal Sectorial Coordinate ω

1.
Cross section formed
of M straight thin
elements

Ref. [2.10], printed with
permission

ω (at point j)
= ω j = ωSj − ω0

ω0 = 1

A

[
1

2

M∑
i=1

(ωSp + ωSq)ti bi

]

A =
M∑

i=1

ti bi

ωSj =
∑

i

rSi bi

ωcj =
∑

i

rci bi

Linear distribution of ω

∑
i means the summation along a line of

elements. Begin at an outer element
and sum until reaching the point j ,
where the values of ωSj or ωcj are
desired.

ωSp and ωSq are the sectorial coordinates of the p
and q ends of element i .

ω0 is the average of sectorial coordinate
ωS for the whole section.

rSi and rci are the perpendicular distances from
the shear center and centroid to element
i , respectively.

See Chapter 15 for examples in using these formulas.
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TABLE 2-7 (continued) SOME WARPING PROPERTIES

Shape Principal Sectorial Coordinate ω

2. ω1 = b1h

2

1

1+
(

b1
b2

)3 t1
t2

ω2 = b2h

2

1

1+
(

b2
b1

)3 t2
t1

Qω1 =
b2

1ht1
8

1

1+
(

b1
b2

)3 t1
t2

Qω2 =
b2

2ht2
8

1

1+
(

b2
b1

)3 t2
t1

3.
ω1 = bh

2

3+ h
b

tw
t f

6+ h
b

tw
t f

ω2 = bh

2

1

2+ 1
3

( h
b

) tw
t f

Qω1 =
b2ht

4


3+ h

b
tw
t f

6+ h
b

tw
t f




2

Qω2 =
b2ht

4

1

1+ b
h

t f
tw

Qω3 =
−b2ht

8

1

1+ 6
( b

h

) t f
tw

a = b

2+ 1
3

( h
b

) tw
t f
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4.
ω1 = bh

2

t f
tw
+ h

b

2
t f
tw
+ h

b

ω2 = b2ht f

2(2bt f + htw)

Qω1 =
b2ht f

4

(
b
h + tw

t f

)2

(
2 b

h + tw
t f

)2

Qω2 =
bh2tw

4

1

2+ h
b

tw
t f

a = b

2+ h
b

tw
t f
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The concepts of stress and strain are essential to design as they characterize the me-
chanical properties of deformable solids. A brief introduction to the concepts along
with a discussion of theories of failure are provided in this chapter. Stress–strain
formulas are given for bars subjected to extension, torsion, and bending.

3.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and
F for force.

A Cross-sectional area (L2)
A0 Original area; shear-related area defined in Fig. 3-29 (L2)
A∗ Area enclosed by middle line of wall of closed thin-walled cross sec-

tion (L2)
b Width (L)
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c Distance from centroidal (neutral) axis of beam to outermost fiber (L)
E Modulus of elasticity, Young’s modulus (F/L2)
F Internal force (F)
G Shear modulus (F/L2)
I Moment of inertia of a member about its centroidal (neutral) axis (L4)
J Torsional constant; polar moment of inertia for circular cross sec-

tion (L4)
L Length of element, original length (L)

Ls Total length of middle line of wall of tube cross section (L)
M Bending moment (F L)
p Pressure (F/L2)

pz Distributed loading (F/L)
P Load or axial force (F)
q Shear flow (F/L)
Q First moment of area beyond level where shear stress is to be deter-

mined (L3)
R, r Radius (L)

S = Ze Section modulus of beam, S = I/c (L3)
t Wall thickness (L)

T Torque or twisting moment (F L)
u, v, w Displacements in xy, z directions (L)

V Shear force (F)
γ Shear strain
� Increment of length (L)
ε Normal strain
εt Natural strain or true strain
θ Angle (degree or radian)
ν Poisson’s ratio
σ Normal stress (F/L2)
σm Mean stress (F/L2)
σys Yield stress (F/L2)
τ Shear stress (F/L2)
φ Angular displacement (degree or radian)

3.2 DEFINITIONS AND TYPES OF STRESS

Normally, forces are considered to occur in two forms: surface forces and body
forces. Surface forces are forces distributed over the surface of the body, such as
hydrostatic pressure or the force exerted by one body on another. Body forces are
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Figure 3-1: Stress.

forces distributed throughout the volume of the body, such as gravitational forces,
magnetic forces, or inertial forces for a body in motion. Suppose that a solid is sub-
ject to external surface forces P1, P2, and P3 (Fig. 3-1). If the body were cut, a force
F would be required to maintain equilibrium. The intensity of this force (i.e., the
force per unit area) is defined to be the stress.

The force F will not necessarily be uniformly distributed over the cut. To define
the stress at some point Q in a cut perpendicular to the x axis (Fig. 3-1), suppose that
the resultant contribution of the internal force F on the area element �A at point Q
is �F , and let the components of �F along the x, y, z axes be �Fx , �Fy , �Fz .
Stress components are defined as

σx = lim
�A→0

�Fx

�A
, τxy = lim

�A→0

�Fy

�A
, τxz = lim

�A→0

�Fz

�A
(3.1)

where σx is the normal stress and τxy , τxz are the shear stresses. Normal stress is the
intensity of a force perpendicular to a cut while the shear stresses are parallel to the
plane of the element. Tensile stresses are those normal stresses pulling away from
the cut, while compressive stresses are those pushing against the cut.

3.3 STRESS COMPONENT ANALYSIS

Sign Convention

An element of infinitesimal dimensions isolated from a solid would expose the
stresses shown in Fig. 3-2. The face of an element whose outward normal is directed
along the positive direction of a coordinate axis is defined to be a positive face. A
negative face has its normal in the opposite direction. Stress components are positive
if when acting on a positive face, their corresponding force components are in the
positive coordinate direction. Also, stress components are said to be positive when
their force components act on a negative face in the negative coordinate direction.
Stress components not satisfying these conditions are considered as being negative.

These definitions mean that a normal stress component directed outward from the
plane on which it acts (i.e., tension) is positive, while a normal stress directed toward
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Figure 3-2: Stress components on an element.

the plane on which it acts (i.e., compression) is taken as being negative. Also, a shear
stress is positive if the outward normal of the plane on which it acts and the direction
of the stress are in coordinate directions of the same sign; otherwise it is negative.
The stress components of Fig. 3-2 are positive.

Stress Tensor

In Fig. 3-2, there are three normal stresses components σx , σy , σz , where the single
subscript is the axis along which the normal to the cut lies. There are also six shear
stress components τxy , τyx , τyz , τzy , τzx , τxz , where the first subscript denotes the
axis perpendicular to the plane on which the stress acts and the second provides the
direction of the stress component. For example, the shear stress τxy acts on a plane
normal to the x axis and in a direction parallel to the y axis.

The conditions of equilibrium dictate that shear stresses with the same subscripts
are equal:

τxy = τyx , τxz = τzx , τyz = τzy (3.2)

In matrix form, the stress components appear as


 σx τxy τxz

τyx σy τyz

τzx τzy σz


 (3.3)

This state of stress at a point is called a stress tensor. The stress tensor is a second-
order tensor quantity.

Plane Stress

In the case of plane stress, all stress components (the normal stress and two shear
stress components) associated with a given direction are zero. For example, for a
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thin plate in the yz plane, plane stress corresponds to the x-direction stress compo-
nents σx , τzx , τyx , being zero. For the case of plane stress, the state of stress can be
determined by three stress components. The stress for thin sheets is usually treated
as being in the state of plane stress.

Variation of Normal and Shear Stress in Tension

The bar in Fig. 3-3 is in simple tension. The stresses on planes normal to an axis of
the bar are considered to be uniformly distributed and are equal to P/A0 on cross
sections along the length, except near the applied load, where there may be stress
concentration (Chapter 6). Here A0 is the original cross-sectional area of the bar.
Consider the stress on an inclined face exposed by passing a plane through the bar at
an angle θ , as shown in Fig. 3-4.

Figure 3-3: Axially loaded bar.

Figure 3-4: Stress on a cross section.

The stress acting in the x direction on the inclined face is σax = P/(A0/ cos θ),
where A0/ cos θ is the inclined cross-sectional area. This stress can be resolved in
terms of the components σN and τ as though a force were being resolved since these
stresses all act on the same unit of area. These relationships are as follows:

normal stress = σN = P cos θ

A0/ cos θ
= P

A0
cos2 θ (3.4)

shear stress = τ = P sin θ

A0/ cos θ
= P

A0
sin θ cos θ (3.5)
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Figure 3-5: Variation of stress with the angle of a plane.

From Eqs. (3.4) and (3.5),

σN

P/A0
= σN

σa
= cos2 θ (3.6)

τ

P/A0
= τ

σa
= sin θ cos θ (3.7)

where σa is the axial tensile stress on the section normal to the x axis. Equations (3.6)
and (3.7) are plotted in Fig. 3-5. Note that the shear stress is a maximum at 45◦, as
shown at point M, and that it equals half the maximum tensile stress.

Stress at an Arbitrary Orientation for the Two-Dimensional Case

Consider an element removed from a body subjected to an arbitrary loading in the xy
plane (Fig. 3-6a). The stresses σx , σy , τxy will occur for the orientation of Fig. 3-6b.
Once the state of stress is determined for an element with a particular orientation
(such as σx , σy , τxy of Fig. 3-6b), the state of stress σx ′ , σy′ , and τx ′y′ at that location
for an element in any orientation (Fig. 3-6c, d) can be obtained using the following
transformation equations for plane stresses:

σx ′ = 1
2 (σx + σy)+ 1

2 (σx − σy) cos 2θ + τxy sin 2θ (3.8a)

σy′ = 1
2 (σx + σy)− 1

2 (σx − σy) cos 2θ − τxy sin 2θ (3.8b)

τx ′ y′ = − 1
2 (σx − σy) sin 2θ + τxy cos 2θ (3.8c)

Note that it can be found from the equations above that

σx ′ + σy′ = σx + σy (3.9)
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Figure 3-6: (a) Object under load; (b) element at point A; (c) element with diagonal at point
A, taken from (b); (d) element at point A [this can replace the element of (c)].

This shows that the sum of the normal stresses is an invariant quantity, independent
of the orientation of the element at the point in question.

Example 3.1 State of Stress The state of stress of an element loaded in the xy
plane is σx = 9000 psi, σy = 3000 psi, and τxy = 2000 psi, as shown in Fig. 3-7a.
Determine the stresses on the element rotated through an angle of 45◦.

The state of stress desired can be found by substituting the given values of stresses
σy , σy , τxy into Eqs. (3.8) with θ = 45◦. The results are σx ′ = 8000 psi, σy′ = 4000
psi, and τx ′ y′ = −3000 psi. This state of stress is shown in Fig. 3-7b.
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Figure 3-7: Two-dimensional state of stress.

Principal Stresses and Maximum Shear Stress for
the Two-Dimensional Case

The maximum value of σx ′ is found by differentiating Eq. (3.8a) with respect to θ :

dσx ′

dθ
= 0 = σx − σy

2
(−2 sin 2θ)+ 2τxy cos 2θ (3.10)

from which

tan 2θ1 = 2τxy/(σx − σy) (3.11)

Extreme values of normal stresses occur on the orientations θ = θ1 defined by
Eq. (3.11). The two values of θ1 are 90◦ apart and locate two perpendicular planes of
an element (Fig. 3-8). The maximum normal stress occurs on one of the planes while
the minimum normal stress occurs on the other.

Principal stresses are defined as the algebraically maximum and minimum values
of the normal stresses, and the planes on which they act are called principal planes

Figure 3-8: Orientation of principal planes.
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(Fig. 3-8). From Eq. (3.11), it follows that

sin 2θ1 = ±τxy√[
1
2 (σx − σy)

]2 + τ 2
xy

(3.12a)

cos 2θ1 = ± 1
2 (σx − σy)√[

1
2 (σx − σy)

]2 + τ 2
xy

(3.12b)

Substitution of Eqs. (3.12a) and (3.12b) into Eqs. (3.8a) and (3.8b) gives

Algebraic maximum normal stress: σ1 = 1
2 (σx + σy)

+
√

1
4

[
(σx − σy)2

]+ τ 2
xy (3.13a)

Algebraic minimum normal stress: σ2 = 1
2 (σx + σy)

−
√

1
4

[
(σx − σy)2

]+ τ 2
xy (3.13b)

Substitution of Eq. (3.11) into Eq. (3.8c) leads to τx ′y′ = 0. That is, the shear stress
is always zero on the principal planes.

The original stressed element can be used to determine which value of θ1 for
the orientation of principal planes corresponds to σ1 and which to σ2. Define the
diagonal of a stressed element that passes between the heads of the arrows for the
shear stresses as the shear diagonal. For example, if τxy is negative, it should be
drawn on the element shown in Fig. 3-9, forming the shear diagonal indicated. Then
the direction of σ1 lies in the 45◦ arc between the algebraically larger normal stress
and the shear diagonal.

To find the maximum shear stress, set dτx ′y′/dθ = 0 and find that

τmax =
√[

1
2 (σx − σy)

]2 + τ 2
xy = 1

2 (σ1 − σ2) (3.14)

x �x
�xy

y

�y

45˚

Shear
Diagonal

If �x > �y then �1 
lies somewhere in
this 45˚  arc.

Figure 3-9: Shear diagonal.
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Figure 3-10: Direction of maximum shear stress: (a) principal stresses; (b) direction of max-
imum shear stresses for the case of (a).

The corresponding values of θ are defined by

tan 2θ2 = − 1
2 (σx − σy)/τxy (3.15)

Comparison of Eqs. (3.15) and (3.11) shows that the planes of maximum shear
stresses lie 45◦ away from the planes of the principal stresses.

The fact that the shear diagonal of the element on which the maximum shear
stress occurs lies in the direction of the σ1 stress (Fig. 3-10) assists in determining
the proper directions of the maximum shear stresses.

On the planes of maximum shear stress, the normal stress is found by substituting
θ2 of Eq. (3.15) into Eqs. (3.8a) and (3.8b). The normal stress on each plane is

σ = 1
2 (σx + σy) (3.16)

Caution must be exercised in using Eq. (3.14) to calculate the maximum shear
stress. There is always a third principal stress, σ3, although it may be equal to zero.
When the three principal stresses are considered, as shown later, there are three cor-
responding shear stresses induced, one of which is the maximum stress.

Example 3.2 Principal Stresses For the element in Fig. 3-7a, find the principal
stresses and planes and the maximum shear stress.

The principal planes are located by using Eq. (3.11):

tan 2θ1 = 2τxy

σx − σy
= (2)(2000)

9000− 3000
= 0.667

or 2θ1 = 33.7◦ and 180◦ + 33.7◦ = 213.7◦. Hence θ1 is 16.8◦ and 106.9◦. Use of
Eqs. (3.13) gives σ1 = 9605.6 psi and σ2 = 2394.4 psi (Fig. 3-11a). The stress σ1 is
located according to the rule for using the shear diagonal.
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Figure 3-11: (a) Principal stress; (b) maximum shear stress.

The maximum shear stresses are located on planes identified by θ2 of Eq. (3.15).
Thus tan 2θ2 = −(9000 − 3000)/(2 × 2000) = −1.5, or θ2 is −28.2◦ and 61.8◦
(Fig. 3-11b). Note that θ2 can be directly located by the fact that the planes of maxi-
mum shear stress are always 45◦ from the principal planes.

From Eq. (3.14), we obtain τmax = 3605.6 psi. The corresponding normal stress
is, by Eq. (3.16), σ = 6000 psi (Fig. 3.11b).

If σ3 = 0, the actual maximum shear stress of the element is

τmax = (σ1 − σ3)/2 = 9605.6/2 = 4802.8 psi

Mohr’s Circle for a Two-Dimensional State of Stress

A graphical method for representing combined stresses is popularly known as Mohr’s
circle method. As illustrated in Fig. 3-12, the Cartesian coordinate axes represent the
normal and shear stresses so that the coordinates σ , τ of each point on the circumfer-
ence of a circle correspond to the state of stress at an orientation of a stressed element
at a point in a body.

Construction of Mohr’s Circle

For a known two-dimensional state of stress σx , σy , and τxy , Mohr’s circle is drawn
as follows:

1. On a horizontal axis lay off normal stresses with positive stresses to the right,
and on a vertical axis place the shear stresses with positive stresses downward.

2. Find the location of the center of the circle along the σ (horizontal) axis by
calculating 1

2 (σx + σy). Tensile stresses are positive; compressive stresses are
negative. Plot this point.

3. Plot the point σ = σx , τ = τxy . Since the positive τ axis is downward, plot a
positive τxy below the σ axis.
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Figure 3-12: Mohr’s circle for the two-dimensional stress of Fig. 3-6b. This provides the
stresses of Fig. 3-6d for an orientation of θ .

4. Connect, with a straight line, the center of the circle from step 2 with the point
plotted in step 3. This distance is the radius of Mohr’s circle. Using 1

2 (σx+σy)

on the horizontal axis as the center, draw a circle with the radius just calculated.
This is Mohr’s circle.

Use of Mohr’s Circle

Interpret the coordinates of a point on Mohr’s circle as representing the stress com-
ponents σx ′ and τx ′ y′ that act on a plane perpendicular to the x ′ axis (Fig. 3-6d). The
x axis is along the circle radius passing through the plotted point σx , τxy . The angle
θ is measured counterclockwise from the x axis. The magnitudes of the angles on
Mohr’s circle are double those in the physical plane. For example, the stresses σy′ ,
τx ′y′ , and the y′ axis are found on the circle 180◦ away from σx ′ , τx ′y′ and the x ′
axis. It should be noted that a special sign convention of shear stress is required to
interpret the τx ′y′ associated with σy′ . That is, positive shear stress is below the σ
axis for σx while positive shear stress corresponding to σy is above the σ axis. From
Mohr’s circle the following holds:

1. The intersections of the circle with the σ axis are the principal stresses σ1 and
σ2. These values and their angle of orientation θ relative to the x axis can be
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scaled from the diagram or computed from the geometry of the figure. The
shear stresses at these two points are zero.

2. The shear stress τmax occurs at the point of greatest ordinate on Mohr’s circle.
This point has coordinates 1

2 (σx + σy), τmax.

3. The normal and shear stresses on an arbitrary plane for which the normal
makes a counterclockwise angle θ with the x axis (Fig. 3-6d) are found by
measuring a counterclockwise angle 2θ on Mohr’s circle from the x axis and
then determining the coordinates σx ′, τx ′ y′ of the circle at this angle.

Stress Acting on an Arbitrary Plane in Three-Dimensional Systems

The stress components on planes that are perpendicular to the x, y, z axes are shown
in Fig. 3-13, where σN x , σN y , and σNz are stress components on an arbitrary oblique
plane P through point 0 of a member. (In the figure the plane P is shown slightly
removed from point 0.) The direction cosines of normal N with respect to xy, and z
are l, m, and n, respectively.

If the six stress components σx , σy , σz , τxy = τyx , τyz = τzy , τxz = τzx at point
0 are known, the stress components on any oblique plane defined by unit normal
N (l,m, n) can be computed using

σN x = lσx + mτyx + nτzx

σN y = lτxy + mσy + nτzy (3.17)

σNz = lτxz + mτyz + nσz

Normal and Shear Stress on an Oblique Plane

The normal stress σN on the plane P is the sum of the projection of the stress com-
ponents σN x , σN y , and σNz in the direction of normal N . Therefore,

σN = l2σx + m2σy + n2σz + 2mnτyz + 2lnτxz + 2lmτxy (3.18)

Figure 3-13: Stress components σN x , σN y , σNz on arbitrary plane having normal N .
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For a particular plane through point 0, σN reaches a maximum value called the max-
imum principal stress. This maximum value along with other principal stresses are
the solutions of

σ 3 − I1σ
2 + I2σ − I3 = 0 (3.19a)

where

I1 = σx + σy + σz

I2 =
∣∣∣∣σx τxy

τxy σy

∣∣∣∣+
∣∣∣∣σx τxz

τxz σz

∣∣∣∣+
∣∣∣∣σy τyz

τyz σz

∣∣∣∣
= σxσy + σxσz + σyσz − τ 2

xy − τ 2
xz − τ 2

yz (3.19b)

I3 =
∣∣∣∣∣∣
σx τxy τxz

τxy σy τyz

τxz τyz σz

∣∣∣∣∣∣
The quantities I1, I2, and I3 defined in Eq. (3.19b) are invariants of stress and must
have the same values for all choices of coordinate axes (x, y, z).

The three roots (σ1, σ2, σ3) of Eq. (3.19a) are the three principal stresses at
point 0. The directions of the planes corresponding to the principal stresses, called
the principal planes, can be obtained from the following linear homogeneous equa-
tions in l, m, and n by setting σ in turn equal to σ1, σ2, and σ3 and using the direction
cosine relationship l2 + m2 + n2 = 1:

l(σx − σ)+ mτxy + nτxz = 0, lτxz + mτyz + n(σz − σ) = 0 (3.20)

The magnitude of the shear stress τN on plane P is given by

τN =
√
σ 2

N x + σ 2
N y + σ 2

Nz − σ 2
N (3.21)

The maximum value of τN at a point in the body plays an important role in certain
theories of failure. This shear stress is zero on a principal plane.

Generally speaking, in any stressed body, there are always at least three planes on
which the shear stresses are zero; these planes are always mutually perpendicular,
and it is on these planes that the principal stresses act.

Maximum Shear Stress in Three-Dimensional Systems

Equations (3.13) and (3.14) deal with two-dimensional systems of stresses. In fact,
there are always three principal stresses σ1, σ2, σ3, where σ3 is the principal stress
in the third orthogonal direction. In this three-dimensional situation, three relative
maximum shear stresses exist:

τ1 = 1
2 (σ1 − σ2), τ2 = 1

2 (σ1 − σ3), τ3 = 1
2 (σ2 − σ3) (3.22a)
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from which the true maximum shear stress can be chosen. This maximum shear stress
would be

τmax = 1
2 (σmax − σmin) (3.22b)

This, of course, is the maximum value of τN of Eq. (3.21). The three relative maxi-
mum shear stresses lie on planes whose normals form 45◦ angles with the principal
stresses involved.

Usually, σ3 is small or zero in an assumed two-dimensional system of stresses.
Then if σ1 and σ2 are both positive (in tension), comparison of the magnitudes of the
shear stresses in Eqs. (3.22a) indicates that

τmax = 1
2 (σ1 − σ3) ≈ 1

2σ1 (3.23)

would be the true maximum shear stress.

Mohr’s Circle for Three Dimensions

Like Mohr’s circle for the two-dimensional state of stress, the three mutually perpen-
dicular principal stresses can be represented graphically. Figure 3-14 shows Mohr’s
circle representation of the triaxial state of stress defined by the three principal
stresses in Fig. 3-15. For any section in the σ1, σ2 plane (i.e., planes perpendicular to
plane 3) there corresponds a circle B A. In the σ2, σ3 plane (i.e., planes perpendicular
to plane 1) there is a circle C B, and for the σ3, σ1 plane there exists a circle C A.
From Fig. 3-14, σ1 = 0A, σ2 = 0B, σ3 = 0C , and τmax = radius C A = 1

2 (σ1− σ3).
It can be shown [3.1] that all possible stress conditions for the body fall within

the shaded area between the circles in Fig. 3-14.

Figure 3-14: Mohr’s circle for a three-dimensional state of stress.
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Figure 3-15: Triaxial state of stress.

Mohr’s circles for some common states of stress are given in Table 3-1.

Example 3.3 Mohr’s Circle For the state of stress shown in Fig. 3-16a, using
Mohr’s circle, determine graphically (a) the stress components on the element rotated
through an angle of 45◦, (b) the principal stresses and planes, and (c) the maximum
shear stresses.

First, find the center 0′ of Mohr’s circle on the σ axis by using σ = 1
2 (σx +σy) =

6000 psi, and plot the point Q with coordinates (σ, τ) = (σx , τxy) = (9000, 2000).
Then draw a circle with radius equal to the distance between these two points, 0′Q.
This is measured (or calculated) to be 3605.6 psi.

(a) The stress components on the element rotated through an angle of 45◦ are
represented on Mohr’s circle by rotating 0′Q counterclockwise 2θ = 2× 45 = 90◦.

Figure 3-16: Example of Mohr’s circle: (a) state of stress; (b) stress components on Mohr’s
circle.
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This identifies the x ′ axis. The intersection M of the x ′ axis (i.e., 0′M) with the circle
gives σx ′ = 8000 psi and τx ′y′ = −3000 psi. The σy′ stress, which is found 180◦
away from the x ′ axis (0′M), is 4000 psi. Refer to Fig. 3-16b.

(b) σ1 = 0C = 00′ + 0′C = 6000+ 3605.6 = 9605.6 psi, 2θ1 = 33.6◦
or θ1 = 16.8◦

σ2 = 0B = 00′ − 0′B = 6000− 3605.6 = 2394.4 psi

θ1 = 90◦ + 16.8◦ = 106.8◦

σ3 = 0
(c) For a section in the σ1, σ2 plane, the maximum shear stresses occur on the

vertical through the center of the circle (i.e., 0′P). We measure 0′P = τmax = 3605.6
psi and 2θ2 = 123.6◦ or θ2 = 61.8◦. But since σ3 = 0, the actual maximum shear
stress of the element is τmax = 1

2 (σ1 − σ3) = 4802.3 psi.

Octahedral Stress

Suppose that coordinate axes x, y, z are principal axes that are perpendicular to each
of the principal planes, respectively. In three dimensions there are eight planes (the
octahedral planes) that make equal angles with respect to the x, y, z directions; that
is, the absolute values of the direction cosines of the eight planes are equal, |l| =
|m| = |n| = 1

3

√
3. The normal and shear stress components associated with each

of these planes are called the octahedral normal stress σoct and the octahedral shear
stress τoct.

For this case Eqs. (3.17) and (3.18) become

σN x = 1
3

√
3σ1, σN y = 1

3

√
3σ2, σNz = 1

3

√
3σ3

and

σoct = σN = 1
3σ1 + 1

3σ2 + 1
3σ3 = 1

3 I1 (3.24a)

Substituting σN x , σN y , σNz , and σN into Eq. (3.21) yields

τoct = τN = 1
3

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2]1/2

= 1
3 (2I 2

1 − 6I2)
1/2 (3.24b)

In general, σx , σy , σz are not principal stresses and τxy , τyz , τzx are not zero. How-
ever, the quantities I1, I2, and I3 are invariant. The quantities σoct and τoct become

σoct = 1
3 I1 = 1

3 (σx + σy + σz) (3.25a)

τoct = 1
3 (2I 2

1 − 6I2)
1/2

= 1
3

[
(σx − σy)

2 + (σx − σz)
2 + (σy − σz)

2 + 6(τ 2
xy + τ 2

xz + τ 2
yz)

]1/2

(3.25b)
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Mean and Deviator Stress

The mean stress σm is defined by

σm = 1
3 (σx + σy + σz) = 1

3 (σ1 + σ2 + σ3) = 1
3 I1 (3.26)

It is often contended that yielding and plastic deformation of some metals are
basically independent of the applied normal mean stress σm . As a consequence, it is
useful to separate σm from the other stresses so that the stress tensor [Eq. (3.3)] is
expressed in terms of the mean and deviator stress

T = Tm + Td (3.27a)

where

T =

 σx τxy τxz
τyx σy τyz

τzx τzy σz


 ,

Tm =

σm 0 0

0 σm 0
0 0 σm




and

Td =



1
3 (2σx − σy − σz) τxy τxz

τxy
1
3 (2σy − σx − σz) τyz

τxz τyz
1
3 (2σz − σy − σx )




=

 Sx Sxy Sxz

Syx Sy Syz
Szx Szy Sz


 (3.27b)

The matrix Tm is referred to as the mean stress tensor and the matrix Td the
deviator stress tensor. The components Si j of Td are called the deviator stresses. For
stress tensor T , the invariants of stress, I1, I2, and I3, are defined in Eq. (3.19b).
Similarly, for tensors Tm, Td , the quantities I1m, I1d , I2m, I2d , and I3m, I3d can also
be defined. The stress invariants for principal axes x, y, z are as follows:

I1m = I1 = 3σm, I2m = 1
3 I 2

1 = 3σ 2
m, I3m = 1

27 I 3
1 = σ 3

m (for Tm) (3.28a)

I1d = 0
I2d = I2 − 1

3 I 2
1 =

(− 1
6

) [
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]

I3d = I3 − 1
3 I1 I2 + 2

27 I 3
1

= 1
27 (2σ1 − σ2 − σ3)(2σ2 − σ3 − σ1)(2σ3 − σ1 − σ2)




(for Td )

(3.28b)



108 STRESS AND STRAIN

The principal values of the deviator stresses are

S1 = σ1 − σm = 1
3 [(σ1 − σ3)+ (σ1 − σ2)]

S2 = σ2 − σm = 1
3 [(σ2 − σ3)+ (σ2 − σ1)] (3.29a)

S3 = σ3 − σm = 1
3 [(σ3 − σ1)+ (σ3 − σ2)]

It is apparent that

S1 + S2 + S3 = 0 (3.29b)

The deviator stresses are sometimes used in theories of failure and in the theory
of plasticity.

3.4 RELATIONSHIP BETWEEN STRESS AND INTERNAL FORCES

Both stress components and internal-force components are used to describe the state
of the internal action of a solid. They are related in the sense that the internal forces
are the resultant or total stresses. These are often referred to as stress resultants.
Comparison of Fig. 3-17a and b for a bar cut perpendicular to the x axis leads to the
following relationships:

Fx = P =
∫

A
σx dA (3.30a)

Vy =
∫

A
τxy dA (3.30b)

V = Vz =
∫

A
τxz dA (3.30c)

Mx = T =
∫

A
τxz y dA−

∫
A
τxyz dA (3.30d)

x

�x� xy

z

y

(b)

� xz

Figure 3-17: Internal forces and stresses.
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M = My =
∫

A
σx z dA (3.30e)

Mz = −
∫

A
σx y dA (3.30f)

Average Shear Stress

The force acting on a plane cut in a body is called a shear force. Often an approx-
imation for the stress acting on the plane is obtained by dividing the shear force by
the area over which it acts. Thus,

τ = force

area
= V

A
(3.31)

where τ is the shear stress, V the total force acting across and parallel to a cut plane,
and A the cross-sectional area for the cut. This approximation, which is based on the
assumption of a uniform distribution of stress, is called the average shear stress.

3.5 DIFFERENTIAL EQUATIONS OF EQUILIBRIUM

For equilibrium to exist throughout a solid for two-dimensional problems, the fol-
lowing differential equations must be satisfied:

∂σx

∂x
+ ∂τxy

∂y
+ px = 0,

∂τyx

∂x
+ ∂σy

∂y
+ py = 0 (3.32a)

In the case of three-dimensional stress, the equations above become

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ px = 0 (3.32b)

∂τyx

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ py = 0 (3.32c)

∂τzx

∂x
+ ∂τzy

∂y
+ ∂σz

∂z
+ pz = 0 (3.32d)

where px , py , and pz represent body forces per unit volume, such as those generated
by weight or magnetic effects.

3.6 ALLOWABLE STRESS

Either in analyzing an existing structure or in designing a new structure, it is very
important to know what constitutes a “safe” stress level. The ability of a member
to resist failure is limited to a certain level. A prescribed stress level that is not to
be exceeded when a member is subjected to the expected load is the allowable or
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working stress. The allowable stress is sometimes based on the stress level at the
transition between elastic and nonelastic material behavior (i.e., yield stress). It may
also be based on the occurrence of fracture (rupture) or the highest or ultimate stress
that can occur in a member. In most cases the allowable stress is calculated to be
lower than the yield or ultimate stress, the reduction being determined by a factor of
safety. Values of allowable stress are established by local and federal agencies and
by technical organizations such as the American Society of Mechanical Engineers
(ASME).

3.7 RESIDUAL STRESS

Residual stress (or lockup stress, initial stress) [3.3–3.7] is defined as that stress
that is internal or locked into a part or assembly even though the part or assembly
is free from external forces or thermal gradients. Such residual stress, whether in
an individual part or in an assembly of parts, can result from a mismatch or misfit
between adjacent regions of the same part or assembly.

It is often important to consider residual stresses in failure analysis and design,
although residual stresses tend to be difficult to visualize, measure, and calculate
[3.8]. Residual stresses are three-dimensional, self-balanced systems that need not
be harmful. In fact, it may be desirable to have high compressive residual stress at
the surface of parts subject to fatigue or stress corrosion.

3.8 DEFINITION OF STRAIN

Strain can be defined in terms of normal and shear strain. Normal strain is defined as
the change in length per unit length of a line segment in the direction under consid-
eration. Normal strain is a dimensionless quantity denoted by εi , where the subscript
i indicates the direction. Normal strain is taken as positive when the line segment
elongates and negative when the line segment contracts. For the member in Fig. 3-18
with uniaxial stress,

εx = 2�

2L
= �

L
= L f − L

L
, εy = −2�h

2h
= −�h

h
= h f − h

h
(3.33)

where 2L and 2h are the original dimensions and 2L f and 2h f are the postdeforma-
tion dimensions.

Shear strain is defined as the tangent of the change in angle of a right angle in
a member undergoing deformation. It is a dimensionless quantity. The symbol for
the strain is γi j , where the subscripts have meanings similar to the subscripts for
shear stress. For the small shear strains encountered in most engineering practice
(usually less than 0.001), the tangent of the change in angle is very nearly equal to
the angle change in radians. Positive shear strains are associated with positive shear
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Figure 3-18: Elongation of an element.

stresses (Fig. 3-19a); negative shear strains correspond to negative shear stresses
(Fig. 3-19b). Refer to the x ′, y′ axes of Fig. 3-18. If this member is lengthened and
thinned, A and B will move to new positions A′ and B ′. Angle A′0B ′ is now less
than 90◦. The tangent of the total change in angle is the shear strain.

Another useful definition of strain is the change in length divided by the instanta-
neous value of the length (rather than the original length):

εt =
∫ L f

L

d�

�
= ln

L f

L
(3.34)

where εt is referred to as the natural (or true) strain. The concept of true strain is
very useful in handling problems in plasticity and metal forming. For the very small
strains for which the equations of linear elasticity are valid, the two types of strains
(strain and true strain) give almost the same values.

Figure 3-19: Shear strain sign.
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3.9 RELATIONSHIP BETWEEN STRAIN AND DISPLACEMENT

In general, the state of strain at a point in a body is determined by six strains, εx ,
εy , εz , γyx , γxz , and γyz , arranged in the same fashion as stresses. These components
can be assembled into a strain tensor similar to the stress tensor.

If u, v, and w are three displacement components at a point in a body for the xy,
and z directions of coordinate axes, small strains are related to the displacements
through the geometric relationships

εx = ∂u

∂x
, γxy = ∂u

∂y
+ ∂v
∂x
= γyx

εy = ∂v

∂y
, γxz = ∂u

∂z
+ ∂w
∂x
= γzx (3.35)

εz = ∂w

∂z
, γyz = ∂v

∂z
+ ∂w
∂y
= γzy

In the case of plane strain (zero strains in the z direction, i.e., εz = γxz = γyz =
0), the foregoing equations become

εx = ∂u

∂x
, εy = ∂v

∂y
, γxy = ∂u

∂y
+ ∂v
∂x
= γyx (3.36)

It can be shown that to assure unique continuous displacements, the strains cannot
be independent. For example, the compatibility condition

∂2εx

∂y2
+ ∂

2εy

∂x2
= ∂2γxy

∂x∂y
(3.37)

must hold. That is, the three strains of Eq. (3.36) must satisfy Eq. (3.37) to assure
that the two displacements u, v are single valued and continuous.

3.10 ANALYSIS OF STRAIN

The strain components possess the same sort of tensor characteristics as the stress
components. Hence, strains follow the same rules as stresses when axes are rotated.
There are principal axes for strain, and a Mohr’s circle for strain can be used to
evaluate strain components at various orientations. The only difference is that the
vertical axis is 1

2γ rather than τ , which is used with Mohr’s circle of stress. Therefore,
the normal strain εN at a point in the direction of N that makes a counterclockwise
angle θN with the x axis is

εN = εx cos2 θN + εy sin2 θN + γxy sin θN cos θN (3.38)
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In strain measurement, the majority of problems are two-dimensional. The ex-
tensions (or normal strain) in one or more directions are the quantities most often
measured.

3.11 ELASTIC STRESS–STRAIN RELATIONS

Poisson’s Ratio

For a bar of elastic material having the same mechanical properties in all directions
and under a condition of uniaxial loading, measurements indicate that the lateral
compressive strain is a fixed fraction of the longitudinal extensional strain. This frac-
tion is known as Poisson’s ratio ν. In the case of the member of Fig. 3-18,

εy = −νεx (3.39)

Like the modulus of elasticity E of the following paragraph, Poisson’s ratio is
a material constant that can be determined experimentally. For metals it is usually
between 0.25 and 0.35. It can be as low as 0.1 for certain concretes and as high as
0.5 for rubber.

Hooke’s Law

The stresses and strains are related to each other by the properties of the material.
Equations of this nature are known as material laws or, in the case of elastic solids,
as Hooke’s law. For a three-dimensional state of stress and strain, Hooke’s law for
isotropic material appears as

εx = (1/E)[σx − ν(σy + σz)]
εy = (1/E)[σy − ν(σx + σz)]
εz = (1/E)[σz − ν(σx + σy)]
τi j = Gγi j (i, j = x, y, z; i �= j)

(3.40)

where E is the modulus of elasticity, ν is Poisson’s ratio, and G is the shear modu-
lus. The dimensions of G and E are force per unit area [e.g., lb/in2 or N/m2 (Pa)].
Typical values of E and ν for some materials are listed in Table 4-3. The bulk mod-
ulus K (also called volumetric modulus of elasticity, modulus of dilation, modulus
of volume expansion, or modulus of compressibility) is a material constant defined
as the ratio of the hydrostatic stress σ1 = σ2 = σ3 (shear stresses are zero) to the
volumetric strain (change in volume divided by the original volume). Of the many
different material constants (e.g., E , ν, G, and K ), only two are independent if the
material is isotropic. Table 3-2 lists the relationships between commonly used mate-
rial constants.
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Figure 3-20: Extension.

3.12 STRESS AND STRAIN IN SIMPLE CONFIGURATIONS

Direct Axial Loading (Extension and Compression)

A typical tension member is shown in Fig. 3-20. It is assumed that the force acts
uniformly over the cross section so that the stress at any point is

σx = P/A (3.41)

As a result of the force P , the bar elongates an amount�. In terms of strain εx along
the bar,

εx = �/L (3.42)

The quantities σx and εx are called engineering stress and strain since they are based
on the original dimensions of the bar.

Using Hooke’s law for the axial fibers, σx = Eεx , Eq. (3.41) becomes

εx = P/E A (3.43)

or

� = P L/AE (3.44)

Frequently, it is convenient to relate the extension of a bar to the extension of a
spring. If the force in the spring of Fig. 3-21a is linearly proportional to its displace-

Figure 3-21: Spring.
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ment (Fig. 3-21b), the constant of proportionality is the spring constant

k = P/� (3.45)

The constant k is also referred to as the stiffness coefficient. The reciprocal of the
stiffness coefficient, 1/k, is the flexibility coefficient.

Example 3.4 Elongation of a Bar A steel bar with a uniform cross section of
1000 mm2 is subject to the uniaxial forces shown in Fig. 3-22a. Calculate the total
elongation of the bar (E = 200 GN/m2).

(a)

100 kN

a b c d

(b)

30 kN 10 kN 60 kN

5 m4 m3 m

c d
60 kN10 kNFbc

Figure 3-22: Bar.

The entire bar is in equilibrium since the sum of the axial forces is zero. The
total elongation is determined by separating the bar into three sections, finding the
elongation of each, and adding these elongations. The conditions of equilibrium give
the internal force in each section. Thus, for Fig. 3-22b,

∑
FH = 0: −Fbc + 10 +

60 = 0 or the internal force Fbc = 70 kN in tension. Similar manipulations give
Fab = 100 kN, Fcd = 60 kN, both in tension. Then from Eq. (3.44),

� = �ab +�bc +�cd = 1

AE
[(F L)ab + (F L)bc + (F L)cd]

= (100 kN)(3 m)+ (70 kN)(4 m)+ (60 kN)(5 m)

(1000 mm2)(200 GN/m2)
(1)

= 4.4× 10−3 m = 4.4 mm

There are some differences between compression and tension. First, in compres-
sion, instability failure by buckling may occur depending on the geometry, especially
the length. Second, for ductile materials, there is no apparent ultimate strength in
compression.
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Figure 3-23: Examples of shear: (a) single shear; (b) double shear; (c) punch on a plate.

Direct Shear in Connections

Shear may be considered to be a process whereby parallel planes move relative to one
another. In direct shear, the shear stress can be calculated as an average stress. Some
examples of direct shear are shown in Fig. 3-23. For the configurations in Fig. 3-23a
and b, the shear stresses in the bolts of cross-sectional area A are

Single stress: τ = P

A
= P

πd2/4
= 4P

πd2
(3.46a)

Double stress: τ = P

2A
= P

2πd2/4
= 2P

πd2
(3.46b)

The direct shear in Fig. 3-23c occurs as a punch tries to penetrate a plate. If the punch
diameter is d and the plate thickness is t , the shear stress τ in the plate is

τ = P/A = P/(π dt) (3.46c)

Torsion

For a bar subject to an applied torque (Fig. 3-24), the torsional or shear stresses τ
on a cross section of circular shape, either solid or hollow, are linearly proportional
in magnitude to the distance r from the centroidal axis of the bar. This stress, which
acts normal to the radius, is given by

τ = Tr/J (3.47)
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Figure 3-24: Torsion.

where τ is the shear stress [force per unit area, psi or N/M2 (Pa)], T is the torque
or twisting moment (length × force, in.-lb or N · m), r is the radial distance from
longitudinal axis (length, in. or m), and J is the torsional constant (length to the
fourth power, in4 or mm4) of cross section; if the cross-sectional shape is circular,
J = Ix , the polar moment of inertia about the longitudinal axis.

It can be seen from Eq. (3.47) that the highest stresses occur in the outer edge
fibers:

τmax = Tr0/J (3.48)

where r0 is the radial distance to the outer boundary of the circular cross section.
The shear strain γ for any section of the bar is given by

γ = τ/G = Tr/G J (3.49)

In addition, since at any distance dx from the fixed end of the bar, γ = r dϕ/dx ,
Eq. (3.49) shows that

dφ

dx
= T/G J (3.50a)

which upon integration gives

φ = T L/G J (3.50b)

Torsion of Thin-Walled Shafts and Tubes of Circular Cross Sections
For the thin-walled circular section of Fig. 3-25, if the shear stress is assumed to
be uniformly distributed across the thickness, the equilibrium conditions give
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Figure 3-25: Thin-walled torsion.

T = 2πr2tτ, τ = T/2πr2t (3.51a)

where r is the radius to the midwall.
Since the torsional constant for a thin circular section is approximately J =

2πr3t , the shear stress can be written as

τ = Tr/J (3.51b)

Equation (3.51a) also follows directly from Eq. (3.47). The angle of twist of this
thin-walled circular section is still given by Eq. (3.50b).

Torsion of Thin-Walled Noncircular Tubes For thin-walled noncircular sec-
tions it is assumed that the wall thickness is small compared to the overall dimensions
of the cross section and that the stress is uniform through the wall thickness. Experi-
ments and comparisons with more exact analyses have shown this latter assumption
to be reasonable for most thin-walled sections in the elastic range.

The formulas for thin-walled tubes (Fig. 3-26) are

q = T/2A∗ (3.52a)

φ = T L

G J
or

dφ

dx
= T

G J
(3.52b)

q = τ t (3.52c)

where q is the shear flow, A∗ is the area enclosed by the middle line of the wall, and
J is the torsional constant.

For constant t , Eq. (3.52b) becomes

dφ

dx
= τ S

2A∗G
= T S

4A∗2Gt
(3.53)

where S is the total length of the middle line of the wall of the cross section.
Note that although the shear flow q from Eq. (3.52a) is constant around the wall,

the shear stress τ = q/t of Eq. (3.52c) can vary with t . The largest shear stress occurs
where the wall is thinnest, and vice versa. Also note that no distinction is made by
Eq. (3.52a) between different cross-sectional shapes. According to this formula, all
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Figure 3-26: Thin-walled tube.

cross-sectional geometries with the same enclosed area A∗ will experience the same
shear flow for the same torque T . Equations (3.52) and (3.53) are simple to apply
and quite accurate for thin-walled closed sections of arbitrary cross-sectional shape.
Chapters 2 and 12 provide formulas for various cross-sectional shapes, including
multicell thin-walled beams.

If the walls of the hollow shaft are very thin, the possibility of buckling should be
considered. Thus, a shaft safe from the standpoint of yield stress level may well be
unstable.

A Useful Relation between Power, Speed of Rotation, and Torque
Power is the measure of work developed per unit time. The work done by a torque
T during one revolution of a shaft is 2πT . For a shaft rotating at n revolutions per
minute (rpm), the work done per minute is 2πT n. In the U.S. Customary System,
the usual unit of power is foot-pounds per second. In engineering work, a larger unit
called horsepower (hp) is often used:

1 hp = 33,000 ft-lb/min (3.54a)

If T is in inch-pounds, the horsepower transmitted is

hp = 2πT n

12(33,000)
= T n

63,000
(3.54b)

For the International System (SI), the unit of power is the watt, W = N · m/s. If
T is in newton-meters,

W = 2πT n

60
(3.54c)
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Figure 3-27: Beam under loading.

Normal and Shear Stress of Beams

When a simple beam bends under vertical downward load, the top fibers shorten the
most and the bottom fibers lengthen the most (Fig. 3-27). Between the top and the
bottom fibers, there exists a layer or surface that remains neutral; neither tension nor
compression is generated in it, although it is curved like the rest of the layers. Hence,
this layer is called the neutral surface. It is assumed that the fiber deformations are
directly proportional to the distance from the neutral surface. This fundamental as-
sumption about the geometry of deformation of a beam is stated as follows: Plane
sections normal to the axis of a beam remain plane as the beam is bent.

The intersection of a cross-sectional plane with the neutral surface is called the
neutral axis (NA). For example, the y axis shown in Fig. 3-27 is the neutral axis of
the cross section. It can be shown that the neutral axis passes through the centroid of
the cross section.

Note the sign convention here. The bending moment M is positive when tensile
stress is on the bottom fiber or the center of curvature is above the beam. Positive z
is taken to be downward.

On a cross section of a linearly elastic beam having the z axis as a vertical axis
of symmetry, the normal stress σx = σ acting on a longitudinal fiber at a distance z
from the neutral axis is given by the flexure formula,

σ = Mz/I (3.55)

Here M is the net internal bending moment at the section and I is the moment of
inertia of the cross section about the neutral axis (y).

The stresses, like the deformations (and strains), vary linearly with the distance
from the neutral axis (Fig. 3-28). The stresses are tensile on one side of the neutral
axis and compressive (negative) on the other side. The maximum stress for a cross
section occurs at the outermost fibers of the beam and is given by

σmax = Mc/I (3.56a)

or

σmax = M/S (3.56b)
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Figure 3-28: Stress distribution on a cross section of a beam.

where c is the distance from the neutral axis to the outermost fiber. The quantity
S = I/c is called the section modulus, which is a geometric property of the cross
section (Chapter 2) and is a measure of the resistance to the development of bending
stress.

If a vertical plane is passed through a transversely loaded beam perpendicular to
the longitudinal axis, the vertical stresses acting along this plane are called shear
stresses. Equilibrium requires that the vertical shear stress τ at any point on the cross
section is numerically equal to the horizontal shear stress at the same point. These
shear stresses, as well as the normal stresses, are assumed to be uniform across the
width of the beam. However, the shear stress varies according to the shape of the
cross section, as shown in Fig. 3-29.

The shear stress τxz = τzx = τ at any point of a prescribed cross section is given
by

τ = V Q/I b (3.57a)

where V is the shear force at the section, Q is a first moment (Chapter 2) with respect
to the neutral axis of the area beyond the point at which the shear stress is desired,

Figure 3-29: Stress distribution on different cross-sectional shapes. A0 is the shaded area.
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I is the moment of inertia about the neutral axis, and b is the width of the section
measured at the level at which τ is being determined.

If the shear stress is to be determined at level z1 of a rectangle cross section, Q
must be calculated for the shaded area A0 of Fig. 3-29a. Equation (2.15a) gives

Q = A0zc = b
(1

2 h − z1
)[

z1 + 1
2

( 1
2 h − z1

)] = 1
2 b
(1

4 h2 − z2
1

)

From Eq. (3.57a), the desired stress is

τ = V

2I

(
h2

4
− z2

1

)
(3.57b)

and

τmax = V h2

8I
= 3

2

V

bh
= 3V

2A
(3.57c)

at the neutral axis (z1 = 0). This equation has been shown to be reasonably accurate
for widths equal to or less than the depth (b ≤ h), but for b > h, Eq. (3.57c)
should be used with caution. Accurate computational solutions have been developed
(Chapter 15).

For a wide-flange I-shaped structural steel, the maximum shear stress given by
Eq. (3.57a) is only slightly greater than the average stress obtained by dividing the
shear force by the area of the web.

A useful formula in the study of a beam formed of more than one layer (e.g., two
boards nailed together), is for the shear flow q. From Eq. (3.57a),

q = τb = V Q/I (3.57d)

This gives the horizontal shear force per unit length of beam that is transmitted be-
tween layers of the beam.

Deflection of Simple Beams

The sign convention for forces and displacements of a beam is shown in Fig. 3-30.
Applied forces and moments are positive if their vectors are in the direction of a
positive coordinate axis. Also, internal shear forces and bending moments acting

Figure 3-30: Positive applied loadings and internal forces.
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on a positive face are positive if their vectors are in positive coordinate directions.
The internal forces M, V and applied loads M1 (concentrated moment, force times
length), pz (loading intensity, force per length), and W (concentrated load, force)
shown in Fig. 3-30 are positive.

Positive deflection w is downward (i.e., in the positive coordinate z direction).
As shown in Fig. 3-30, θ (radians) is the angle between the axis and the tangent
to the curve at a point. Positive and negative θ , which like moments adhere to the
right-hand rule, are illustrated.

The basic differential equation relating the deflection w to the internal bending
moment M in a beam is

d2w

dx2
= − M

E I
(3.58a)

where x is the axial coordinate and E I is the flexural rigidity or bending modulus.
This relationship applies to a beam that is linearly elastic and where the cross section
is symmetric about the xz plane.

For small angles, θ ≈ tan θ = −dw/dx , that is,

dw

dx
= −θ (3.58b)

and Eq. (3.58a) appears as dθ/dx = M/E I . The equilibrium equations relate the
internal forces M and V and the applied loading density pz in the form dV/dx =
−pz , d M/dx = V . If these relations are gathered together,

dw

dx
= −θ, dθ

dx
= M

E I
,

d M

dx
= V,

dV

dx
= −pz (3.59)

These equations are called governing equations of motion for the bending of a beam.
This first-order form is convenient to handle numerically using a computer. Analyti-
cally, it is frequently easier to deal with the higher-order forms:

For Variable E I For Constant E I

θ = −dw

dx

M = −E I
d2w

dx2

V = d M

dx
= − d

dx

(
E I

d2w

dx2

)

pz = −dV

dx
= d2

dx2

(
E I

d2w

dx2

)

θ = −dw

dx

M = −E I
d2w

dx2

V = −E I
d3w

dx3

pz = E I
d4w

dx4

(3.60)

These relations are found by successive substitution of Eqs. (3.58) into each other.
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Figure 3-31: Cylinder.

Stress in Pressure Vessels

Thin-walled containers or shells loaded with gas or liquid pressure and having the
form of a surface of revolution, such as cylinders and spheres, are discussed in this
section.

Cylinder Stress On the wall of a thin-walled cylinder subjected to internal pres-
sure, two stresses in the plane of the wall are of prime interest (Fig. 3-31). These
stresses, a longitudinal stress σx parallel to the axis of revolution and a hoop or
circumferential or cylindrical stress σθ perpendicular to σx , are called membrane
stresses. If there are no abrupt changes in wall thickness and the wall is thin (thick-
ness less than about one-tenth the radius r), it can be assumed that the stresses are
uniformly distributed through the thickness of the wall and that no other significant
stresses occur. Application of the conditions of equilibrium suffices to determine
these membrane stresses (Chapter 20). For a cylinder with internal pressure p,

σθ = pr/t (3.61a)

If the ends of the cylinder are closed,

σx = pr/2t (3.61b)

The results for the circumferential stress are about 5% in error on the danger
side when the thickness is one-tenth the radius of the cylinder (t = 0.1r). Shells
of greater relative thickness should be analyzed according to bending shell theories
(Chapter 20).

Sphere Stress The stresses σ acting in the plane of the sphere wall are the same
in all directions under uniform internal pressure (Fig. 3-32):

σ = pr/2t (3.62)

It can be seen that they are one-half the magnitude of the circumferential stresses of
the cylinder. When the thickness equals one-fifth the radius of the sphere (t = 0.2r),
the thin-sphere formula gives values in error by about 2.5% on the danger side. If
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Figure 3-32: Sphere.

the thickness exceeds one-fifth the radius, more accurate formulas should be used
(Chapter 20).

Stress for Shells of Revolution A shell of revolution is formed by rotating
a plane curve, called the meridian, about an axis lying in the plane of the curve
(Fig. 3-33). The stresses on an element of a general membrane shell of revolution
(Fig. 3-34a) are related to the pressure p by

σφ/Rφ + σθ/Rθ = p/t (3.63)

Figure 3-33: Shell of revolution.



126 STRESS AND STRAIN

Figure 3-34: Stresses in a shell of revolution: (a) shell element; (b) meridional stress; (c)
circumferential stress.

where σφ is the meridional stress (psi, N/m2 or Pa) (Fig. 3-34b), Rφ is the radius of
curvature of the meridian, σθ is the hoop, ring, or circumferential stress (psi, N/m2)
(Fig. 3-34c), and Rθ is the radius of curvature of the section normal to the meridian
curve; that is, Rθ is the length of the normal between the surface and the axis of
revolution and originates at the shell axis and in general is not perpendicular to the
shell axis, whereas the center of curvature for Rφ in general will not lie on the shell
axis (see Fig. 3-34a).

3.13 COMBINED STRESSES

In the most general case, a body may be subjected to a variety of types of loadings,
such as a combination of tension, compression, twisting, and bending loads. In such
a case, it will be assumed that each load produces the stress that it would if it were
the only load acting on the body. As long as linearity prevails, the final stress is then
found by careful superposition of the several states of stress.

Frequently, there is little difficulty in identifying the individual states of stress
composing a combined stress problem. The appropriate stress formula developed
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in previous sections should be associated with each load. For example, in a bar sub-
jected simultaneously to tension and torsion loads, the axial normal stress component
is σx = P/A, where P is the tensile load and A is the cross-sectional area of the bar.
Also present is a shear stress due to the torque, τ = Tr/J , where T is the torque,
r the radius of the section, and J the polar moment of inertia. The case above leads
to one normal and one shear stress. Normal stresses (e.g., extension and bending
stresses), are directly additive, as are shear stresses if they act in the same direction.
If not, the methods in Section 3.3 are employed, usually to calculate the principal
stresses at a point.

Note that superposition is valid if the material is linearly elastic and if the effect
of one type of loading does not influence the internal force corresponding to other
loadings of interest.

Example 3.5 Bar under Combined Stresses Find the maximum shear stress on
the face of the shaft of circular cross section shown in Fig. 3-35.

At any axial location to the right of the 120 in.-lb torque (Fig. 3-35), we find the
internal forces to be V = 800 lb, T = 120 in.-lb, and M = 800x in.-lb. The shear
stresses are given by Eqs. (3.47) and (3.57a). From these formulas the peak torsional
stress occurs at the outer fibers, and the shear stress due to V is a maximum at the
diameter 1–2 in Fig. 3-35c, where Q is a maximum. The maximum combined shear
stress occurs at point 1, where the two peak shear stresses act in the same direction:

Figure 3-35: Bar under combined stresses.
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τmax = V Q

I b
+ Tr0

J
= V (πr2

0/2)(4r0/3π)

(πr4
0/4)2r0

+ Tr0

J
= 4V

3πr2
0

+ Tr0

J

= 4V

3A
+ T r0

J
= 4(800)

3(0.196)
+ 120(0.25)

0.00614
= 10,328 psi

(1)

where A = 1
4πd2 = 0.196 in2 and J = 1

32πd4 = 0.00614 in4. Note the bar also has
an axial normal stress due to bending.

Example 3.6 Eccentric Loads A cantilever beam is loaded by a force of 40 kN
applied 80 mm from the centroid (Fig. 3-36). Find the maximum normal stress for a
vertical cross section. Neglect the weight of the beam.

Figure 3-36: Eccentric load.

The eccentric load P = 40 kN is statically equivalent to the load P through the
centroid and the moment Pe = 40×80 mm·kN about a centroid axis. The combined
normal stress is

σ = − P

A
− Pez

I
= −40 kN

(200 mm)(50 mm)
− (40 kN)(80 mm)z

1
12 (50 mm)(200 mm)3

(1)

The peak bending stresses occur at the outer fibers where z = ±100 mm. Thus, at
the bottom fibers,

σ = −4.0− 9.6 = −13.6N/mm2 = −13.6MN/m2 (compression) (2)

At the top fibers,

σ = −4.0+ 9.6 = 5.6N/mm2 = 5.6MN/m2 (tension) (3)

Example 3.7 Combined Bending and Torsion of Shafts Show that when a
solid circular shaft of diameter d is subjected to a bending moment M and a torque
T , (a) the maximum principal stress is equal to 16(M+√M2 + T 2)/πd3 and (b) the
maximum shear stress is equal to 16

√
M2 + T 2/πd3.



3.14 UNSYMMETRIC BENDING 129

The maximum stresses, which occur at the outer fibers, are given by Eqs. (3.56a)
and (3.47) with J = 2I and r = z = c:

σ = Mc/I, τ = T c/J = T c/2I (1)

The maximum principal stress is derived using Eq. (3.13a):

σ1 = σ

2
+
√(σ

2

)2 + τ 2 = Mc

2I
+
√(

Mc

2I

)2

+
(

T c

2I

)2

= 16

πd3

(
M +√M2 + T 2

) (2)

where we have set c = 1
2 d. The peak shear stress is found from Eq. (3.14):

τmax =
√(σ

2

)2 + τ 2 = 16

πd3

√
M2 + T 2 (3)

For convenient reference, the basic stress formulas considered in this chapter for
simple configurations are given in Table 3-3. The basic deformation formulas are
given in Table 3-4.

3.14 UNSYMMETRIC BENDING

Normal Stress

The formula for normal stress in straight beams, σ = Mz/I , is applicable only if the
bending moment acts around one of the principal axes of inertia of the cross section.
That is, the bending stress theory developed thus far is appropriate for a symmetric
cross section bent in its plane of symmetry.

Consider the more general case of an unsymmetric cross section with positive
(tensile) axial P and bending moment components My = M and Mz . The formula

σ = P

A
+ My Iz + Mz Iyz

Iz Iy − I 2
yz

z − Mz Iy + My Iyz

Iz Iy − I 2
yz

y (3.64)

applies. The coordinates y, z are measured from axes passing through the centroid of
the cross section. The moments of inertia Iy = I, Iz, Iyz are taken about these axes.

Loading in One Plane If the bending moment Mz is zero, Eq. (3.64) reduces to
a formula applicable to an unsymmetric section loaded in a single plane:

σ = P/A + My(Izz − Iyz y)/(Iz Iy − I 2
yz) (3.65)

Principal Axes Suppose that y, z correspond to principal axes of inertia through
the centroid. Then Iyz = 0 and Eq. (3.64) becomes
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σ = P/A + Myz/Iy − Mz y/Iz (3.66)

where the bending moments have been resolved into components along the principal
axes.

Bending about a Single Axis Equation (3.64) reduces to the usual bending
stress formula of Eq. (3.55) if the bending moment acts around a single principal
axis of inertia through the centroid. We use Eq. (3.66) with

My = M, P = 0, Mz = 0, Iy = I

Then

σ = Mz/I

Example 3.8 Unsymmetric Bending Consider the beam section in Fig. 3-37a.
From the formulas of Chapter 2,

Iz = 1
12 th3, Iy = 1

3 th3, Iyz = 1
8 th3 (1)

To compute the bending stresses, use Eq. (3.65) with P = 0, My = M,

σ = My(Izz − Iyz y)

Iz Iy − I 2
yz

= M

th3

(
48

7
z − 72

7
y

)
(2)

which is plotted in Fig. 3-37b. The peak stresses occur at extreme fibers. At point
A, with z = y = 1

2 h, we find σA = −12M/7th2. At B, with z = 1
2 h and y = 0,

σB = 24M/7th2 (see Fig. 3-37b).

Figure 3-37: Example 3.8: unsymmetric bending.
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If formula 4 in Table 3-3, which does not take the lack of symmetry into account,
had been used, then

σA = σB =
(

Mz

Iy

)
z=h/2

=
1
2 Mh
1
3 th3

= 3M

2th2
(3)

Comparison of this with the correct values of σA and σB shows that errors of 188
and 56%, respectively, would occur.

Shear Stress

The familiar formula for shear stress in straight beams, τ = V Q/I b, applies to
symmetric sections in which the shear force V is along one of the principal axes
of inertia of the cross section. For an unsymmetric cross section with positive shear
forces Vz and Vy , the average shear stress is given by

τ = Iz Qy − Iyz Qz

b(Iz Iy − I 2
yz)

Vz + Iy Qz − Iyz Qy

b(Iz Iy − I 2
yz)

Vy (3.67)

where Qy and Qz are first moments of inertia of the area beyond the point at which
τ is calculated (Fig. 3-38). These first moments are defined by Eq. (2.15).

The coordinates y, z in Eq. (3.67) are referred to axes passing through the centroid
of the cross section. If the width b is chosen parallel to the y axis, Eq. (3.67) gives
the stress τzx . If b is parallel to the z axis, Eq. (3.67) corresponds to τxy . Moreover,
b can be chosen such that Eq. (3.67) gives the average shear stress in any direction.
This is accomplished by selecting b to be the section width at the point where the
stress is sought. This width is taken in a direction perpendicular to the desired stress.
If the shear stress along the line 1–2 of the section in Fig. 3-38 is to be computed, b

Figure 3-38: Shear stress.
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should be selected as indicated. This fixes area A0 and also establishes Qy and Qz .
Note that according to this formula, the average shear stress is constant along 1–2.
Hence, only when the actual shear stress is constant along 1–2 is the average shear
stress of Eq. (3.67) equal to the actual shear stress on b. Equation (3.67) is normally
considered to be reasonably accurate for thin-walled sections and somewhat less
accurate for thick sections. More accurate stresses are provided by the computer
program discussed in Chapter 15.

Equation (3.67) is usually employed to calculate the shear stress or shear flow in
thin-walled open sections. This relationship reduces to τ = V Q/I b if the loading is
in the xz plane (Vy = 0) and z and y are the principal axes of inertia (Iyz = 0).

Example 3.9 Shear Stress in Unsymmetric Bending Find the shear flow in the
beam section in Fig. 3-39a due to the shear force Vz .

Figure 3-39: Example 3.9.
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The shear flow is calculated from Eq. (3.67) using q = τb. The moments of
inertia are given by Eq. (1) of Example 3.8. Equation (3.67), with b = t , reduces to

τ = 48Qy − 72Qz

7t2h3
Vz (1)

The first moments Qy and Qz of Eq. (2.15) are taken about y, z coordinates passing
through the centroid. For a point in the flange between A and B (Fig. 3-39b),

Qz =
∫

A0

y dA = 1

2

(
1

2
h + y

)
A0

= 1

2

(
1

2
h + y

)
t

(
1

2
h − y

)
= 1

2
t

[(
1

2
h

)2

− y2

]
(2)

Qy =
∫

A0

z dA = 1

2
h A0 = 1

2
ht

(
1

2
h − y

)

From (1), the stress between A and B is given by

τ = 12

7th3

(
h

4

2

− 2hy + 3y2

)
Vz (3)

which is a parabola in y.
For a point in the web between C and B in Fig. 3-39c,

Qz =
∫

A0

y dA = h

4
A′1 + (0)A′2 =

h

4

(
t
h

2

)
= t

h2

8

Qy =
∫

A0

z dA = h

2
A′1 +

(
z + h/2− z

2

)
A′2 =

t

2

(
3h2

4
− z2

)
(4)

τ = 24

7th3

(
3

8
h2 − z2

)
Vz

where A′1 is the area of the lower flange and A′2 is the area of that portion of the web
beyond the point at which τ is calculated.

The distribution of shear stress is shown in Fig. 3-39a. The peak value of 9Vz/7ht
occurs at C, the centroid. If formula 5 in Table 3-3 were used to calculate the stress,
the maximum value would occur at C. Using (4) above,

τ = V Q

I b
= Vz Qy

Iyt
=

1
2 Vzt ( 3

4 h2 − z2)

( 1
3 th3)t

= 3

2th3

(
3

4
h2 − z2

)
Vz (5)
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and at z = 0, τmax = 9Vz/8ht . This is 12.5% in error relative to the more exact value
found using Eq. (3.67).

3.15 THEORIES OF FAILURE

Concept of Failure

Structural members and machine parts may fail to perform their intended functions
if excessive elastic deformation, yielding (plastic deformation), or fracture (break)
occurs. For a failure-safe design, the engineer must determine possible modes of
failure of the structural or machine system and then establish suitable failure criteria
that accurately predict the various modes of failure. The determination of modes of
failure [3.8] requires extensive knowledge of the response of material or a structural
system to loads. In particular, it may require a comprehensive stress analysis of the
system. The mode of failure depends on the type of material used and the manner of
loading (e.g., static, dynamic, and fatigue).

Two types of excessive elastic deformation result in structural failure:

1. Deformation satisfying the usual conditions of equilibrium, such as deflec-
tion of a beam or angle of twist of a shaft under gradually applied (static)
loads. The ability to resist such deformation is referred to as the stiffness of
a member. Furthermore, there can be excessive deformations associated with
the amplitudes of the vibration of a machine member.

2. Buckling or an inordinately large displacement under conditions of unstable
equilibrium that may occur in a slender column when the axial load exceeds the
Euler critical load, in a thin plate when the in-plane forces exceed the critical
load, or when the external pressure on a thin-walled shell exceeds a critical
value. This is a form of instability, referred to as bifurcation.

To ascertain if it will serve its purpose, a load-carrying solid must be investigated
from the standpoint of strength in addition to the possibility of the stiffness and
stability failures considered above. A discussion of strength-related failure follows.

Yielding failure is due to plastic deformation of a significant part of a member,
sometimes called extensive yielding to distinguish it from (localized) yielding of a
small part of a member. Yielding under room and elevated temperatures is discussed
in Chapter 4. Yielding occurs when the elastic limit (or yielding point) of the mate-
rial has been exceeded. As indicated in Chapter 4, in a ductile metal under conditions
of static loading at room temperature, yielding rarely results in fracture because of
the strain-hardening effect. For simple tensile loading, failure by excessive plastic
deformation is controlled by the yield strength of the metal. However, for more com-
plex loading conditions, the yield strength must be used with a suitable criterion, a
“theory of failure,” which is discussed later in this section. At temperatures signifi-
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cantly greater than room temperature, metals no longer exhibit significant hardening.
Instead, metals can deform continuously at constant stress levels in a time-dependent
yielding known as creep.

Members can fracture before failure defined by excessive elastic deformation or
yielding can occur. The mechanisms of this fracture include the following:

1. Rapid fracture of brittle materials

2. Fatigue of progressive fracture

3. Fracture of flawed members

4. Creep at elevated temperatures

Fatigue deserves special attention because the magnitude of the repetitive load
need not be high enough to cause static fracture (i.e., the stress may be relatively
low). But under lengthy vibratory loading, fatigue cracks can form. Fatigue fracture
is often ranked as the most serious type of fracture in machine design simply because
it can occur under normal operating conditions. Fracture and fatigue are discussed
in Chapter 7. Creep is discussed in Chapter 4. Failure theories for yield are treated
in the following subsections. By replacing the yield stress by another critical stress
level (e.g., the ultimate stress), these theories are often considered to be applicable
to failures other than yield.

Tensile tests provide the most commonly available information about the failure
level of a material. The problem arises when an attempt is made to relate these tensile
data to a combined stress situation. In some combined stress cases tests can be per-
formed to determine the yield stress. Usually, it is not convenient, or even possible, to
conduct a suitable model test; consequently, it is necessary to develop a relationship
between stress under complicated stress conditions and the behavior of a material in
simple tension or compression.

For the theories considered here, it is assumed that the tension or compression
critical stresses σys (yield stress) or σu (ultimate stress) are available as properties
found from simple material tests. In developing the various failure criteria, it is con-
venient to use the fact that any state of stress at a point can be reduced through a
rotation of coordinates to a state of stress involving only the principal stresses σ1,
σ2, and σ3. Often, these principal stresses are output by general-purpose structural
analysis programs. The same reasoning applies to strains.

Maximum-Stress Theory In the maximum-stress theory, or Rankine theory, the
maximum principal stress is taken as the criterion of failure. For the moment, fail-
ure is to be defined in terms of yielding, although the same theory applies if the
yield stress is replaced by another stress level, such as the ultimate stress. For the
maximum-stress theory, yield occurs at a point in the structure when one of the prin-
cipal stresses at this point, which is subjected to combined stresses, reaches the yield
strength in simple tension (σys) or compression for the material. According to this
theory, yielding is not affected by the level of the other principal stresses. Thus, for
material whose tension and compression properties are the same, the failure criterion
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Figure 3-40: Graphical representation of theories of failure in a two-dimensional state of
stress.

is defined as

σ1 = σys or |σ3| = σ ′ys (3.68)

where σys and σ ′ys are the yield stresses in simple tension and compression, respec-
tively. The principal stresses are so arranged that their algebraic values satisfy the
relation σ1 > σ2 > σ3.

Maximum-stress theory can readily be illustrated. For example, a graphical rep-
resentation in a two-dimensional state of stress is shown in Fig. 3-40. The locus of
failure points is the square ABC D.

Maximum-Strain Theory The maximum-strain theory, considered to be due to
Saint-Venant, postulates that a ductile material begins to yield when the maximum
extensional strain at a point reaches the yield strain in simple tension, or when the
minimum strain (shortening) equals the yield point strain in simple compression. By
means of Hooke’s laws, for σ1 > σ2 > σ3, this failure criterion is embodied in the
equations

σ1 − ν(σ2 + σ3) = σys, |σ3 − ν(σ1 + σ2)| = σ ′ys (3.69)

The maximum-strain theory is not considered to be reliable in many instances.

Maximum-Shear Theory The maximum-shear theory, or Tresca or Guest’s the-
ory, assumes that failure occurs in a body subjected to combined stresses when the
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maximum shear stress at a point [e.g., 1
2 (σ1− σ2)], reaches the value of shear failure

stress of the material in a simple tension test [e.g., 1
2σys]. Therefore, failure under

combined stresses is decided by the condition

σmax − σmin = σys (3.70a)

where σmax and σmin are the maximum and minimum principal stresses, respectively.
The term σmax − σmin can also be expressed as

max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) (3.70b)

The largest of these absolute values is sometimes referred to as the stress intensity.
This quantity is often computed by general-purpose analysis software.

It is important to note that for the case σ1 > σ2 > σ3, the failure criterion would
be

σ1 − σ3 = σys (3.70c)

A plot of this theory for a two-dimensional state of stress is given in Fig. 3-40.
The locus of failure points is the polygon AHECIFA.

von Mises Theory The von Mises theory, also called the Maxwell–Huber–
Hencky–von Mises theory, octahedral shear stress theory, and maximum distortion
energy theory, states that failure at a particular location occurs when the energy of
distortion reaches the same energy for failure in tension. That is, failure takes place
when the principal stresses are such that

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ1 − σ3)
2 = 2σ 2

ys (3.71a)

This relation holds regardless of the relative magnitude of σ1, σ2, and σ3.
The quantity

{ 1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2]}1/2 = σe (3.71b)

is often referred to as the equivalent stress. This is sometimes available as output of
general-purpose structural analysis software.

In a two-dimensional state of stress (σ3 = 0), Eq. (3.71a) becomes

σ 2
ys = σ 2

1 + σ 2
2 − σ1σ2 (3.72)

This relationship is plotted in Fig. 3-40.

Mohr’s Theory Mohr’s theory, also called Coulomb–Mohr theory or internal-
friction theory, is based on the results of the standard tension and compression tests,
which give the tensile and compressive strengths σys and σ ′ys . Two Mohr circles
for these experiments can be plotted on the same diagram. A pair of lines AB and
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Figure 3-41: Mohr’s theory of failure.

C D (Fig. 3-41) are drawn tangent to the two Mohr circles. Mohr’s theory states
that failure of an isotropic material, either by fracture or by the onset of yielding,
will occur at a point where the largest Mohr circle for this point (having diameter
σ1 − σ3, as in Fig. 3-41) touches a failure envelope. Any “interior” circle, such as
the dashed one in Fig. 3-41, represents a state of stress that is safe, while the solid
circle represents a state of stress that is in failure. It can be shown that failure occurs
when

σ1/σys + σ3/σ
′
ys ≥ 1 (3.73)

where σys > 0 and σ ′ys < 0 and the maximum and minimum principal stresses σ1
and σ3 carry their algebraic signs. In plane stress problems, if all normal stresses
are tensile, Eq. (3.73) coincides with the maximum-stress theory (σ1 ≥ σys). For
ductile materials, it is usually assumed that σys = −σ ′ys , so that Eq. (3.73) becomes
σ1 − σ3 ≥ σys .

Validity of Theories

The appropriate failure theory to be used in a given design situation depends on the
mode of failure. A theory that works for ductile failure may not be appropriate for
brittle failure. A single theory may not always apply to a given material because the
material may behave in a ductile fashion under some conditions and in a brittle fash-
ion under others (see Chapter 4). For the foregoing theories, the material is assumed
to be isotropic. These theories of failure pertain to material failure rather than to
structural failure by such modes as buckling or excessive elastic deformation.

A comparison has been made [3.2] of experimental yield stresses for several met-
als under biaxial stress conditions with some of the failure theories described above.
The results, which are for room temperature and slow loading, seem to indicate
somewhat better agreement with von Mises theory than with maximum-shear the-
ory.

Maximum-stress and maximum-strain theory are often applicable to brittle failure
of materials, so that σu often replaces σys in Eqs. (3.68) and (3.69). Maximum-strain
theory has been shown not to be reliable in many instances. Maximum-shear the-
ory is applied frequently in machine design for ductile materials where σys = σ ′ys .



3.16 APPLICATION OF FAILURE THEORIES 139

Maximum-shear theory has the advantage over von Mises theory that the stresses
appear in a linear fashion.

Mohr’s theory is generally used for brittle materials, which are much stronger in
compression than in tension (e.g., for cast iron).

3.16 APPLICATION OF FAILURE THEORIES

The following examples illustrate use of the failure theories discussed above.

Example 3.10 Internal Pressure of a Cylindrical Vessel A cylindrical pressure
vessel 80 in. in diameter and 1 in. thick is made of steel with a yield stress in tension
of 35,000 psi. Determine the internal pressure that will produce yielding by using the
von Mises theory of failure as the yield criterion.

From the stress formulas for thin-walled pressure vessels presented previously,
the principal stresses at any point in a cylinder (Fig. 3-31) will be the circumferential
stress σθ , the longitudinal stress σx , and the radial stress σr . Let σ1 = σθ , σ2 = σx ,
and σ3 = σr . Equations (3.61) give

σ1 = pr/t, σ2 = pr/2t (1)

The stress σr is small (0 ≤ σr ≤ p) relative to σθ and σx and is neglected; that is,

σ3 = 0 (2)

Substituting (1) and (2) in Eq. (3.71a) gives

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ1 − σ3)
2 = 2(σ 2

1 − σ1σ2 + σ 2
2 )

= 2
[( pr

t

)2 − pr

t

pr

2t
+
( pr

2t

)2
]
= 2σ 2

ys

Therefore,

p =
√

4

3

t2

r2
(σ 2

ys) =
2√
3

tσys

r
= 2√

3

(1)(35,000)

80/2
≈ 1010 psi (3)

According to von Mises theory, this p gives the pressure value that would initiate
yielding of the cylinder.

If the maximum-stress theory of failure [Eq. (3.68)] and the maximum-shear the-
ory [Eq. (3.70c)] are used, the internal pressure that will produce yielding in both
cases is

p = tσys

r
= 1(35,000)

80/2
= 875 psi (4)

In establishing this relationship, remember that σ3 = 0.
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The results in (3) and (4) indicate that in this case, using the maximum stress
theory and maximum shear theory is more conservative than using the von Mises
theory.

Example 3.11 Application of Tresca and von Mises Theories If the yield
strength of a material in a tensile test is σys = 140MN/m2, determine the largest
safe shear stress τ in a cylinder of the same material in torsion.

In the simple tension test, the state of stress is σ1 = σys = 140MN/m2, σ2 =
σ3 = 0. From Eq. (3.70a),

σmax − σmin = σ1 − 0 = σys (1)

For pure torsion of the cylinder τ = T r/J (Table 3-3). The principal stresses are,
by Eqs. (3.13),

σmax = σ1 = τ, σmin = σ2 = −τ, σ3 = 0 (2)

Therefore,

σmax − σmin = 2τ (3)

Use of the Tresca theory yields [see Eq. (3.70a)], from (1) and (3),

2τ = σys or τ = 1
2σys = 140

2 = 70MN/m2 (4)

If the von Mises theory is to be used, the equivalent stress σe in Eq. (3.71b) is
evaluated for the two states of stress. For simple tension

σe = 1√
2
(σ 2

ys + σ 2
ys)

1/2 = σys (5)

For torsion of the cylinder, from (2),

σe = 1√
2
(4τ 2 + τ 2 + τ 2)1/2 = √3 τ (6)

By the von Mises theory, equating (5) and (6), we have

√
3 τ = σys or τ = 0.577σys = 80.83MN/m2 (7)

Of course, the same result is obtained by applying Eq. (3.71a) directly.
The results in (4) and (7) indicate that for torsion of a cylinder, Tresca (maximum-

shear) theory is more conservative than von Mises theory.
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TABLE 3-1 MOHR’S CIRCLES FOR SOME COMMON STATES OF
STRESS
1.
Uniaxial compression
σx = σ3,
σ1 = σ2 = 0, so that

τmax = (σmax − σmin)/2 = σ3/2

2.
Uniaxial tension
σx = σ1,
σ2 = σ3 = 0, giving

τmax = (σmax − σmin)/2 = σ1/2

3.
Pure shear
σx = −σy = σ1 = −σ3,
σ2 = 0, so that

τmax = σ1

4.
Pure shear
τxy = τyx ,
σ2 = 0, so that

τmax = σ1

5.
Equal biaxial tension
σx = σy = σ1 = σ2, giving

τmax = σ1/2

6.
Equal biaxial compression
σx = σy = σ2 = σ3, so that

τmax = σ2/2

144 TABLE 3-1 Mohr’s Circles for Some Common States of Stress



7.
Equal triaxial compression
σx = σy = σz = σ1 = σ2 = σ3

TABLE 3-2 RELATIONSHIPS BETWEEN COMMONLY USED
MATERIAL CONSTANTSa

1. Shear modulus G (F/L2) G = E

2(1+ ν)
2. Lamé coefficient λ (F/L2) λ = Eν

(1+ ν)(1− 2ν)

3. Bulk modulus K (F/L2) K = E

3(1− 2ν)
where E = modulus of elasticity (F/L2)

ν = Poisson’s ratio

aThe units are given in parentheses, using L for length and F for force.

TABLE 3-2 Relationships between Material Constants 145



TABLE 3-3 BASIC STRESS FORMULAS
Bars of Linearly Elastic Material

1. Extension: σ = P/A
2. Torsion: τ = Tr/J (circular section)
3. Torsion: τ = T/2A∗t (closed, thin-walled section)
4. Bending: σ = Mz/I
5. Shear: τ = V Q/I b

where σ = normal axial stress = σx z = vertical coordinate from neutral axis
τ = shear stress I = moment of inertia about neutral axis
P = axial force J = torsional constant = polar moment
T = axial torque of inertia for circular cross section
V = vertical shear force = Vz b = width of cross section
M = bending moment r = radius

in vertical plane = My Q = first moment with respect to neutral
A = cross-sectional area axis of area beyond point at which

A∗ = enclosed area τ is calculated
t = wall thickness

Shells

6. Cylinder: σθ = pr/t, σx = pr/2t
7. Sphere: σ = pr/2t

where σθ = hoop stress in cylinder wall p = internal pressure
σx = longitudinal stress in cylinder wall t = wall thickness
σ = membrane stress in sphere wall r = radius

146 TABLE 3-3 Basic Stress Formulas



TABLE 3-4 BASIC DEFORMATION FORMULAS: BARS OF LINEARLY
ELASTIC MATERIALa

1. Extension: � = P L/AE
2. Torsion: φ = T L/G J

3. Bending:
d4w

dx4
= pz

E I
θ = −dw

dx
M = −E I

d2w

dx2
V = −E I

d3w

dx3

where A = original cross-sectional area (L2)

� = elongation (L)
E = modulus of elasticity (F/L2)

φ = angle of twist
G = shear modulus (F/L2)

J = torsional constant (L4)

L = original length (L)
I = moment of inertia about neutral axis (L4)

P = axial force (F)
pz = applied loading density (F/L)
T = torque (L F)
w = deflection (L)

aThe units are given in parentheses using L for length and F for force.
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Mechanical properties of materials are force–deformation (stress–strain) characteris-
tics of materials. The American Society for Testing and Materials (ASTM) publishes
annually standards on characteristics and performance of materials, products, and
systems. Section 3, Vol. 03.01 [4.1], of the ASTM standards applies to the physi-
cal, mechanical, and corrosion testing of metals; other volumes treat wood, plastic,
rubber, cement, and other materials. Some of the specifications establish uniform
standards for defining and measuring such material properties as tensile strength,
offset yield strength, nil-ductility temperature, and fatigue strength. Definitions of
terms relating to mechanical testing are provided in ASTM E6.

Examples of sources of values of material properties are The Metals Handbook,
the materials reference issue of Machine Design magazine, The Materials Selector
compiled by the publishers of Materials Engineering magazine, and the product lit-
erature available from the companies that supply engineering materials. These and
similar publications often include readable discussions of nomenclature, manufac-
turing processes, and the microstructural bases for the macroscopic behavior of ma-
terials. Texts on materials science [e.g., [4.2–4.4]] offer more detailed insight into
the atomic and molecular characteristics that account for the aggregate behavior of
materials.

This chapter covers the tensile test, hardness tests, and impact tests as well as
such mechanical properties as creep. Discussions of ferrous metals, some nonferrous
metals, plastics, ceramics, and composites are included.

Tables of values of mechanical properties of various materials are presented. Data
on material properties such as fracture toughness and fatigue strength are presented
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in Chapter 7. A discussion of important nonmetallic structural materials such as con-
crete, wood, and asphalt is available in several sources (e.g., [4.5]).

Several bioengineering materials are treated, including tables of human material
properties helpful in biomechanics and properties of implant materials.

Finally, selection of the most appropriate materials is discussed. Tables for pre-
scribed strength or stiffness for minimum weight design are included.

4.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, A
for area, and F for force.

A0 Initial undeformed cross-sectional area of tensile specimen (L2)

C Constant in creep extension equation

CL Constant in equation for Larson–Miller parameter

d Extension due to creep (L)

di Extension under i th condition of stress and temperature (L)

dT Total extension due to creep (L)

E Modulus of elasticity, Young’s modulus (F/L2)

F Applied force in tension test

G Shear modulus, Lamé constant (F/L2)

HB Brinell hardness number

HK Knoop hardness number

HR Rockwell hardness number

HV Vickers hardness number

K Bulk modulus (F/L2)

� Specimen length in tensile test

�0 Initial undeformed length of tensile specimen

L Length of member

m Mass

n Constant exponent in creep extension equation

PLM Larsen–Miller parameter

PMH Manson–Haferd parameter

R Modulus of resilience (F/L2)

t Time

ti Time under i th condition of stress and temperature

tki Initial time for the kth condition of stress and temperature

T Temperature

Ta, ta Constants in equation for Manson–Haferd parameter
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�i Time to failure under constant condition of i th stress and temperature

εe Engineering strain

εt True or natural strain

λ Lamé constant (F/L2)

ν Poisson’s ratio

ρ∗ Mass per unit volume

σa Amplitude of cyclic applied stress

σc Static creep strength

σe Endurance limit

σeng Engineering stress (F/A)

σ f Fatigue strength

σm Mean stress level of cyclic applied stress

σt True stress (F/A)

σys Yield stress (F/L2)

4.2 MATERIAL LAWS: STRESS–STRAIN RELATIONS

The stress–strain relations for isotropic materials are discussed in Chapter 3. An
isotropic material has identical mechanical, physical, thermal, and electrical proper-
ties in every direction. However, an anisotropic material exhibits direction-dependent
properties. An isotropic material may become anisotropic due to cold working and
forging. Composite materials usually are anisotropic.

For an isotropic material, the constitutive relation [or Hooke’s law, Eq. (3.40)] in
matrix notation can be expressed as




σx

σy
σz

τxy

τxz

τyz




= E

(1+ ν)(1− 2ν)




1− ν ν ν

ν 1− ν ν

ν ν 1− ν
0

0

1− 2ν

2
0 0

0
1− 2ν

2
0

0 0
1− 2ν

2







εx

εy
εz

γxy

γxz

γyz




σ = E ε

(4.1)

where the stresses are shown in Fig. 3-2.
In the most general case, for an anisotropic material all components in the matrix

of the constitutive law are nonzero, but the symmetry still holds.
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σx

σy

σz

τyz

τxz
τxy



=




c11 c12 c13 c̄14 c̄15 c̄16
c22 c23 c̄24 c̄25 c̄26

c33 c̄34 c̄35 c̄36
symmetric c44 c̄45 c̄46

c55 c̄56
c66







εx

εy

εz

γyz

γxz
γxy




(4.2)

There are 21 independent elastic constants in Eq. (4.2). The strains in terms of
stresses appear as




εx

εy
εz

γyz

γxz

γxy



=




a11 a12 a13 ā14 ā15 ā16
a22 a23 ā24 ā25 ā26

a33 ā34 ā35 ā36
symmetric a44 ā45 ā46

a55 ā56
a66







σx

σy
σz

τyz

τxz

τxy




(4.3)

A material whose properties vary in three orthogonal directions is called or-
thotropic. In this case, the barred quantities in Eqs. (4.2) and (4.3) are zero, so that
there are nine independent elasticity constants. The number of elastic coefficients
present in both two- and three-dimensional elastic bodies and the corresponding elas-
tic constant matrices are listed in Table 4-1.

The material constants in Eqs. (4.2) and (4.3) for orthotropic materials can be
identified by performing simple tensile and shear tests. A tensile test in the x direc-
tion provides

a11 = 1

Ex
, a21 = −νxy

Ex
, a31 = −νxz

Ex
(4.4a)

where Ex is the elasticity modulus in the x direction. The constants νxy and νxz are
Poisson’s ratios in the xy and xz planes, respectively. Similarly, tensile tests in the y
and z directions yield

a12 = −νyx

Ey
, a22 = 1

Ey
, a32 = −νyz

Ey
(4.4b)

a13 = −νzx

Ez
, a23 = −νzy

Ez
, a33 = 1

Ez
(4.4c)

Since ai j = a ji , it is seen that

νi j

Ei
= ν j i

E j
(i, j = x, y, z) (4.4d)

A shear test [4.6] can provide the remaining constants a44, a55, and a66:

a44 = 1

G yz
, a55 = 1

Gxz
, a66 = 1

G yx
= 1

Gxy
(4.4e)
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Materials having the same properties in one plane (e.g., y, z) and different prop-
erties in another direction perpendicular to the plane (e.g., x direction) are called
transversely isotropic. In this case, there are five independent elastic properties. In
Eqs. (4.4), for transversely isotropic materials,

Ey = Ez, Gxz = G yx , νyx = νzx ,
1

G yz
= 2

(
1

Ey
+ νyz

Ey

)

For elastic properties the same in all directions, an isotropic material, there are
only two independent material constants. Normally, the material laws are expressed
using two of the following constants: E (Young’s modulus), ν (Poisson’s ratio), G
(shear modulus), λ (Lamé constant), and K (bulk modulus). The relationships among
these material constants are shown in Table 4-2. Table 4-3 gives elastic moduli values
and Poisson’s ratios for some important engineering materials.

4.3 TENSILE TEST

The tensile test serves as the basis for determining several important mechanical
properties of materials. In this test, as described in ASTM E8, the yield strength, ten-
sile strength, elongation, and reduction in area of a material specimen are determined.
In addition, the modulus of elasticity, modulus of resilience, and modulus of tough-
ness of a material are found from the stress–strain curve measured during the tensile
test. (A different ASTM standard, E111, applies to the measurement of the modulus
of elasticity.) In the tensile test the specimen is loaded in uniaxial tension until the
specimen fractures. Standards for testing machines, specimen types, testing speed,
and determination of values of material properties are given in ASTM E8. A stan-
dard test specimen and a symbolic stress–strain curve are shown in Fig. 4-1a and b.
Precise specifications of the specimen are provided in Ref. [4.1]. Typical stress–strain

Figure 4-1: (a) Tensile test specimen; (b) conventional stress–strain diagram for a metal
with a yield point. [(a) From Ref. [4.1]. Copyright ASTM. Printed with permission.]
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Figure 4-2: Engineering stress–strain curves for various metals. (From Ref. [4.7]. Copyright
c© AIAA 1940. Used with permission.)

curves obtained from tensile tests are shown in Fig. 4-2 for various metals and alloys.
In these curves, stress (engineering) is defined as the applied force per unit original
undeformed cross-sectional area of the specimen,

σeng = F/A0 (4.5)

and strain is engineering strain,

εe = (�− �0)/�0 (4.6)

The stress–strain curve of a metal will depend on many factors, such as chemical
composition, heat treatment, prior plastic deformation, strain rate, and temperature.
Table 4-3 lists material properties of selected engineering materials.
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As Fig. 4-2 shows, metals differ from each other in the shape of the stress–
strain curve they produce under tensile testing; consequently, the definition of yield
strength depends on the shape of the stress–strain curve. When the point at which
plastic deformation begins is not clearly evident, the offset yield strength is em-
ployed. The construction used to find the offset yield strength of a material is shown
in Fig. 4-3, where σys is the offset yield strength and the offset is 0A, usually
taken as 0.1–0.2%. The offset yield strength is also known as the proof strength in
Great Britain, with offset values of 0.1–0.5%. In reporting a value of the offset yield
strength, the specified offset strain value is normally provided. Like yield strength,
the offset yield strength is utilized for design and specification purposes. Because of
the difficulty in determining the elastic limit, it is commonly replaced by the pro-
portional limit, which is the stress at which the stress–strain curve is out of linearity.
The modulus of elasticity, or Young’s modulus, E , a measure of the stiffness of the
material, is the slope of the curve below the proportional limit. The increase in load
that occurs in some materials after the yield strength is reached is known as strain
hardening or work hardening.

Poisson’s ratio ν is the absolute value of the ratio of the transverse strain to the
axial strain of a specimen under uniformly distributed axial stress below the elastic
limit. The specimen for a Poisson’s ratio tensile test is of rectangular cross section.

The tensile strength of the material is calculated by dividing the maximum applied
load by the initial undeformed cross-sectional area of the specimen. For medium- to
high-carbon steels, the tensile strength ranges from 45,000 to 140,000 psi. The tensile
strength for duraluminum is 18,000 psi, for copper is 34,000 psi, and for acrylic
polymer is 2000 psi. Elongation is the percentage increase in specimen length over
its initial length (the initial length is often marked on the specimen by two lines
2 in. apart). The reduction of area of a specimen is the maximum change in cross-
sectional area at fracture expressed as a percentage of the original cross-sectional
area. The modulus of resilience is the strain energy per unit volume absorbed up to
the elastic limit for a tensile test and equals the area under the elastic part of the
stress–strain curve. This quantity indicates how much energy a material can absorb
without deforming plastically. For medium- to high-carbon steels the modulus of

Figure 4-3: Determination of tensile yield strength by offset method.
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resilience varies from 33.7 to 320. The modulus of resilience for duraluminum is 17,
for copper is 5.3, and for acrylic polymer is 4.0. The modulus of toughness equals
the total area under the stress–strain curve and measures the capacity of the material
to absorb energy without fracturing.

Example 4.1 Modulus of Resilience Compare the moduli of resilience of the
American Iron and Steel Institute (AISI) 1020 carbon steel, extruded magnesium
AZ31B-F, and wrought† titanium alloy 5Al–2.5Sn. The mechanical properties are
E = 30×106 psi and σys = 48 ksi for the steel, E = 6.5×106 psi and σys = 24 ksi
for the magnesium alloy, and E = 16 × 106 psi and σys = 117 ksi for the titanium
alloy.

Modulus of resilience is defined as the area under the elastic portion of the stress–
strain curve. Let R be modulus of resilience. A reasonable approximation of R should
be

R = 1
2εσys = 1

2 (σ
2
ys/E)

High-energy-absorbing materials will have high strength σys and low stiffness (E):

Steel: R = 1
2 (48× 103)2/(30× 106) = 38.4

Magnesium: R = 1
2 (24× 103)2/(6.5× 106) = 44.3

Titanium: R = 1
2 (117× 103)2/(16× 106) = 427.8

Note that this titanium alloy can absorb an order of magnitude more energy than the
selected steel and magnesium alloys before plastic deformation is anticipated.

More precise data show that the modulus of resilience for steel can vary a great
deal. The following properties from Ref. [8.7], which include the moduli of tough-
ness, illustrate this.

Modulus Modulus
of Resilience of Toughness

Type of Steel (in-lb/in3) (in-lb/in3)

Mild 20.4 16,600
Medium carbon 33.7 16,300
High carbon 94.0 5,100
High strength 200 19,400

According to their ability to undergo plastic deformation under loading, materi-
als are identified as being ductile or brittle. In a brittle material, fracture can occur
suddenly because the yield strength and tensile strength are practically the same.
The elongation and reduction of area give an indication of the ductility of a material

†Refer to the discussion of carbon steels in Section 4.7 for a description of a wrought material.
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specimen, and the modulus of toughness shows the energy-dissipating capacities of
the material, but both ductility and capacity for energy absorption are influenced by
such factors as stress concentration, specimen size, temperature, and strain rate. A
normally ductile material such as mild steel will behave in a brittle manner under
conditions of low temperature, high strain rate, and severe notching. On the other
hand, normally brittle materials will behave ductily under high hydrostatic pressures
and temperatures. Therefore, assessment of the ductility and energy-absorbing ca-
pacity of a material must be made by taking into consideration the service conditions
of the final product.

The curves shown in Fig. 4-2 are plots of engineering stress and strain; that is,
stresses and strains are based on the undeformed dimensions of the specimen. Plots
of true stress against true strain give a more realistic depiction of material behavior
than do plots of engineering stress and strain. As mentioned in Chapter 3, true stress
σt is defined as the applied load F divided by the instantaneous cross-sectional area
A of the specimen at the time the load F is applied. True strain is defined by

εt =
∫ �

�0

d�

�
= ln

�

�0
(4.7)

If the material is incompressible and the distribution of strain along the gage length
is homogeneous, the true or natural stresses and strains are expressed in terms of the
engineering stresses and strains as follows:

εt = ln(1+ εe) (4.8)

σt = σeng(1+ εe) (4.9)

These equations apply only until the onset of necking. A comparison of the two types
of curves is shown in Fig. 4-4 for a low-carbon steel. In the true stress–true strain
curve (also known as a flow curve) the curve increases continuously up to fracture.

Figure 4-4: Comparison of the engineering (nominal) stress–strain curve with the true
stress–strain curve for mild steel.
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4.4 IMPACT TESTS

In Section 4.3 the modulus of toughness of a material was defined as the area under
the stress–strain curve obtained during the tensile test of a specimen of the material.
This modulus indicates how much energy the material can absorb in a uniaxial tensile
test without fracturing. However, ferritic steels and other metals with body-centered-
cubic crystallographic structures exhibit fracture behavior that cannot be deduced
from a simple tensile test. Under conditions of stress concentration, low temperature,
and high strain rates, these metals exhibit much less ductility than is indicated by
the tension test. Several tests have been developed to measure the relative ability
of materials to absorb energy under severe service conditions. Chief among these
tests are the notched-bar impact tests (Charpy and Izod), the drop-weight test for
nil-ductility temperature, and the dynamic tear energy test. Another appropriate test
is the crack arrest test.

Notched-Bar Tests

In Charpy (simply supported beam) and Izod (cantilever beam) tests, a notched ma-
terial specimen is struck by a pendulum falling from a fixed height (Fig. 4-5). The
energy lost by the pendulum in fracturing the specimen is the energy absorbed by
the specimen before it fractures. This fracture energy obtained by the Charpy test is
only a relative measure of energy and is difficult to use directly in design criteria.
The test may be performed over a range of temperatures to determine the tempera-
ture at which the fracture changes from ductile to brittle. The transition point may
be identified as occurring at a specified energy absorption, by a change in the ap-
pearance of the fracture surface, or by a specified amount of lateral contraction of
the broken bar at the root of the notch, which the specimen undergoes during testing.
The Charpy test apparatus is more suitable for testing over a range of temperatures
than is the Izod. The standard Charpy specimens are detailed elsewhere [4.1]. The
pendulum shape, the pendulum head velocity, the system friction, the height of the
drop, and other details about the test are specified in the ASTM E23 standards. The
Izod specimen is rarely used today.

Figure 4-5: Charpy impact test.
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Figure 4-6: Typical Charpy-V notch curves for structural steel A36. (Slow-bend refers to a
slow loading rate as compared with standard impact loading rates for CVN specimens.) (From
Ref. [4.9]. Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.)

The energy measured by these tests depends on specimen size, notch shape, and
testing conditions. The energy values are most useful in comparing the impact prop-
erties of different materials or of the same material under different conditions. Plane
strain fracture toughness (discussed in Chapter 7) may be measured for impact loads,
and this quantity can be used to establish a design stress in a finished product. Em-
pirical formulas have been proposed for computing values of plane strain fracture
toughness from Charpy energy values, but these formulas must be used with care
[4.1]. The results of Charpy tests are useful primarily in acceptance testing of ma-
terials when a correlation has been established between energy values and satisfac-
tory performance of a metal in the finished product. Typical Charpy-V notch (CVN)
curves for structural steels A36 are shown in Fig. 4-6. Note that the energy absorbed
decreases with decreasing temperatures, but for most cases the decrease does not oc-
cur sharply at a certain temperature. Normally, the material with the lowest transition
temperature is preferred.

Drop-Weight Test for the Nil-Ductility Temperature

The nil-ductility transition temperature (NDT) is defined as the maximum tempera-
ture at which brittle fracture occurs at a nominal stress equal to the yield point when
a “small” flaw exists in the specimen before loading.

The drop-weight test (DWT) has been developed especially for determining the
NDT. The procedure for the NDT test is specified in ASTM E208. In the test, a
weight is dropped onto the compression side of a simple beam specimen that has
been prepared with a crack in a weld bead on the tension surface. The brittle weld
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Figure 4-7: NDT test method.

bead is fractured at near yield-stress levels as a result of the falling weight. Because
the specimen is a three-point bending beam and the anvil under it (Fig. 4-7) restricts
the deflection of the specimen (DC ≤ DA), the stress on the tension face of the
specimen is limited to a value that does not exceed the yield strength of the specimen
material. Tests are conducted at various temperatures until the break and no-break
points are found for yield point loading. This establishes the NDT.

The NDT is also known as the transition temperature at which fracture is initi-
ated with essentially no prior plastic deformation. Below the NDT the probability of
ductile fracture is negligible. For larger flaws, fracture occurs at the NDT at nominal
stresses lower than the yield point. This behavior is shown in Fig. 4-8, which shows a
fracture analysis diagram for temperature, stress, and flaw size. Figure 4-8 also shows
the crack arrest temperature (CAT) curve; at stress–temperature points to the right
of the CAT curve, cracks will not propagate. The point labeled FTE in Fig. 4-8 is the
fracture transition elastic point, the highest temperature at which a crack propagates
in the elastic load range. Similarly, the fracture transition plastic (FTP) point is the
temperature at which the fracture stress equals the material ultimate tensile stress.

Figure 4-8: Fracture analysis diagram for temperature–stress–flaw size. Shown are initiation
curves, indicating fracture stresses for spectrum of flaw sizes. (From Ref. [4.1]. Copyright
ASTM. Printed with permission.)
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Figure 4-9: Dynamic tear energy test. (From [4.1]. Copyright ASTM. Printed with permis-
sion.)

Above this temperature the material behaves as if it were flaw free. Thus, a crack,
no matter how large, cannot propagate as an unstable fracture. The figure also shows
a stress limitation curve; static loads below this level will not cause crack propaga-
tion in the absence of a corrosive environment. The fracture analysis diagram has
been established as a reliable means of predicting the fracture behavior of finished
products under service conditions.

Dynamic Tear Energy Test

The dynamic tear test is similar to the Charpy test, but the dynamic tear test uses
a higher striking energy, a different size of specimen, and a sharper notch than the
Charpy test (see ASTM E604). It is in effect a giant Charpy test (see Fig. 4-9). The
dynamic tear test is used to measure energy absorption for crack progression that
travels rapidly. A longer crack propagation distance is used in the dynamic test than
in the Charpy. Use of the results of the dynamic test is similar to that of the Charpy.

4.5 HARDNESS TESTS

Hardness measures the resistance of a material to scratching, wear or abrasion, and
indentation. For a given material a correlation exists between hardness and tensile
strength; for example, the tensile strength of steel in psi is approximately 500 times
the Brinell hardness number of the material. This approximation can provide a quick
estimate of the tensile strength if the Brinell hardness number is available. The hard-
ness test also serves to grade similar materials. A number of hardness tests have been
developed, of which the best known are the Brinell, Rockwell, Vickers, and Knoop.

Various methods are used to measure the area of indentation, and some tests mea-
sure the increase in area associated with a load increment rather than beginning at
zero load (Table 4-4). Despite these differences, the basic principle for all tests is the
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application of a load to an indentor and the measurement of the size of the indenta-
tion.

Brinell Hardness Test

The test method for determining the Brinell hardness of metals is described in
ASTM E10. This standard provides the details for two general classes of tests: ref-
eree tests (or verification, laboratory tests), in which a high degree of accuracy is
required, and routine tests, for which a lower but adequate degree of accuracy is
acceptable. The Brinell hardness test consists of indenting the metal surface with a
10-mm-diameter steel ball at a load of 3000 kgf (29,400 N). Hardness tests often
involve the units grams-force (gf). For a soft surface, to avoid a deep impression, the
load is reduced to 1500 or 500 kgf (14,700 or 4900 N), and for very hard surfaces
a carbide ball is employed to minimize distortion of the indentor. Different Brinell
hardness numbers (BHN, or HB) may be obtained for a given material with different
loads on the ball. The time interval over which the load is applied can influence the
resulting hardness. The load is usually applied for 10 to 15 s in the standard test and
for 30 s for soft metals.

Example 4.2 Hardness Test An annealed aluminum alloy 7075-0 has a Brinell
hardness of 60. What is the diameter of the indentation produced in the alloy during
hardness testing?

For materials that are relatively soft such as aluminum, the test load is P =
500 kgf (4900 N). From the formula for Brinell hardness in Table 4-4, HB =
2P/{πD[D − (D2 − d2)1/2]} with D = 10 mm, we find d = 3.21 mm.

Vickers Hardness Test

The Vickers hardness number (HV) is defined as the load divided by the surface area
of the indentation (ASTM E92). In practice, this area is determined by microscopic
measurements of the length of the diagonals of the impression (Table 4-4). The test
can be conducted on very thin materials. The indentor is a squared-based diamond
pyramid with an angle of 136◦ (see Table 4-4). The load is varied over the range
1–120 kgf (9.8–1176 N) according to the behavior of the thickness of the material.
The HV test finds wide acceptance by researchers because it provides both accurate
measurement and a continuous scale of hardness. The HV varies from 5 for a soft
metal to 1300 (approximately 850 HB) for extremely hard metals.

Rockwell Hardness Test

The Rockwell hardness test is the most widely used hardness test in the United States,
due primarily to the convenience of a test involving a small indentation size. The
hardness number, which is related inversely to the depth of the indentation under
prescribed loading, may be read directly from a dial on the test apparatus. The stan-
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dard test methods for the Rockwell hardness of metallic materials are specified in
ASTM E18. This test has 15 scales, covering a rather complete spectrum of hardness
(Table 4-5). Each scale has a specific indentor and major load. Indentors are either a
steel ball of specified size or a spheroconical diamond point. An initial load (called
the minor load) of 10 kgf (98 N) is first applied that sets the indentor on the test
specimen and holds it in position. The dial is set to zero on the black-figure scale,
and the major load is applied. This major load is the total applied force. The depth
measurement of the indentor depends only on the increase in depth due to the load
increase from the minor to the major load. After the major load is applied and re-
moved, according to standard procedure, the reading of the pointer is taken on the
proper dial figures while the minor load is still in position. Rockwell hardness values
are determined according to one of the standard scales (Table 4-5), not by a number
alone. For example, 64 HRC means a hardness number of 64 on a Rockwell C scale.

Microhardness Test

The microhardness test is used to determine the hardness over very small areas or
for ascertaining the hardness of a delicate machine part. The test is accomplished
by forcing a diamond indentor of specific geometry under a test load of 1–1000 gf
(0.0098–9.8 N) into the surface of the test material and to measure the diagonal or
diagonals of indentation optically (ASTM E384-84). Usually, the Knoop hardness
number and the Vickers hardness number are used to represent microhardness.

Knoop hardness number (HK) is defined as the applied load P divided by the
unrecovered projected area Ap of the indentation:

HK = P/Ap = P/d2c = 14.229P/d2

where P is the load (kgf), d is the length of the long diagonal (mm), and c is a
manufacturer-supplied constant for each indentor.

Since the units normally used are grams-force and micrometers rather than
kilograms-force and millimeters, the equation for the Knoop hardness number can
be expressed conveniently as

HK = 14.229P1/d
2
1

where P1 is the load (gf) and d1 is the length of the long diagonal (µm).
The Vickers hardness number for microhardness is established using the same

indentor defined previously, with loads varying from 1 to 1000 gf. Similarly, it can
be expressed as

HV = 1854.4P1/d
2
1

where P1 is the load (gf) and d1 is the mean diagonal of the indentation (µm).
Tables for converting one hardness number to that found by a different method

are available in ASTM E140.
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4.6 CREEP

Creep is the occurrence of time-dependent strain in a loaded structural member, nor-
mally at elevated temperatures. In the case of metals, creep is thought to take place
as the result of the competing processes of annealing due to high temperature and
of work hardening caused by the load. Creep is variously attributed to grain bound-
ary sliding and separation, vacancy migration, and dislocation cross-slip and climb.
Creep deformation continues until the part fails because of either excessive deforma-
tion or creep rupture. The temperature must usually be at least 40% of the melting
point in kelvin for creep to occur in a metal. Little correlation exists between room
temperature mechanical properties and creep properties. Creep tests are conducted
by measuring deformation as a function of time when the load and temperature are
held constant. It is frequently not practical to conduct full-life creep tests; however,
creep tests should last a minimum of 10% of the expected life of the part under
test.

The standard practice for conducting creep, creep rupture, and stress rupture tests
of metallic materials is specified in ASTM E139. In the simplest creep test, a speci-
men is subjected to a constant uniaxial tension at constant temperature, and the strain
is measured as a function of time. The test may proceed for a fixed time, to a spec-
ified strain, or to creep rupture. The results of a typical creep test are depicted in
Fig. 4-10. The typical creep curve is divided into three stages: primary, secondary,
and tertiary. In the first stage, the creep strain rate diminishes. In the secondary stage
the strain rate is approximately constant; this constancy of strain rate is attributed
to a balance between the hardening and softening processes. In the final or tertiary
stage the strain rate increases until creep rupture occurs. Under severe conditions
of loading or temperature the material may strain to the rupture point without ex-
hibiting the secondary stage of creep behavior; this phenomenon is known as stress
rupture. Creep strength is the minimum constant nominal stress that will produce

Figure 4-10: Typical constant temperature–stress creep curve.
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Figure 4-11: Constant-temperature abbreviated creep test.

a given strain rate of secondary creep under specified temperature conditions. The
creep strengths of some metallic alloys are listed in Table 4-6.

A number of accelerated creep test procedures have been developed to shorten
the time necessary to conduct creep tests. In one such accelerated test, specimens are
tested at constant temperature, and strain is measured at various levels of constant
stress for a fixed time. An acceptable design stress is found by extrapolating the
curves to the desired life, as shown in Fig. 4-11. However, reliable extrapolation of
this type can be made only when no microstructural changes are anticipated that
would produce a change in the slope of the curve. Other accelerated test methods
may vary strain level or temperature and measure stress as a function of time.

Two procedures for determining time–temperature test conditions that are equiv-
alent for a given material and stress level are based on the Larsen–Miller parameter
and the Manson–Haferd parameter. The Larsen–Miller parameter is

PLM = (T + 460)(CL + log t) (4.10)

where T is the temperature in degrees Fahrenheit; CL is a constant, usually 20; and
t is the test time in hours to a failure condition (either rupture or a specific level of
strain).

Example 4.3 Accelerated Creep Test of a Steel Bar A bar made of 2.25Cr–
1Mo (2.25% chromium, 1% molybdenum) steel must withstand 10,000 h at 1000◦F
with a tensile load of 15 ksi. For the same material and loading, find the temperature
of an equivalent 24-h test.

From Eq. (4.10),

PLM = (1000◦F+ 460)(20+ log 104)

= 3.504× 104 (1)
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The equivalent temperature is found from Eq. (4.10):

3.504× 104 = (T + 460)(20+ log 24)

T = 3.504× 104

20+ log 24
− 460 = 1179◦F

The Manson–Haferd parameter is defined as

PMH = (T − Ta)/(log t − log ta) (4.11)

where Ta and ta are material constants and time is in hours. Values of these constants
are listed in Table 4-7 for several materials.

Cumulative Creep

Several methods are available for analyzing creep behavior when the levels of stress
and temperature vary with time. A linear law similar to the Palmgren–Miner fatigue
law (Chapter 7), has been suggested [4.10]. According to this approach, the creep
failure point will be reached when the equation

∑ ti
�i
= 1 (4.12)

is satisfied. The quantity ti is the time of exposure to the i th level of stress and
temperature;�i is the time to failure if the point were subjected only to the i th level
of stress and temperature.

In the life-fraction approach to cumulative creep, the total creep strain is written
as the sum of contributions from each level of stress and temperature:

εT = ε1 + ε2 + · · · + εn (4.13)

If a stress and temperature condition were applied from time zero to t1 f , strain ε1
could be read from a creep–time plot for stress σ1 and temperature T1. When stress
σ2 and temperature T2 act, the strain ε2 is found from a creep–time plot for σ2, T2
beginning at time t2i = t1 f �2/�1 and ending at time t2 f when a new condition
of stress and temperature is applied. The creep for condition 3 is read from a creep–
time curve for σ3, T3 beginning at t3i = t2 f �3/�2 and ending at time t3 f . This
procedure is repeated for all levels of stress and temperature. The method assumes
that creep for each new load condition begins at the same fraction of the total life
at the new load condition as was expended of the total lives under the previous load
conditions. Thus, the effect of σ2 and T2 is assumed to begin at time t2i , which is
taken from t2i/�2 = t1 f /�i .

Example 4.4 Cumulative Creep of a Tensile Specimen A metallic alloy has the
tensile creep properties shown in Fig. 4-12 at 1200◦F. If a tensile specimen is loaded
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Figure 4-12: Creep curves for the metal of Example 4.4.

at 1200◦F as

4000 psi for 5 h
3000 psi for 10 h
2000 psi for 20 h

and if the maximum tolerable creep strain is 0.004 in./in., determine if the specimen
will complete the load cycle without reaching the maximum strain.

First we apply the cumulative creep relation of Eq. (4.12). From Fig. 4-12 the time
to 0.004 in./in. strain at each load level is found to be

�1 = 12 h at 4000 psi

�2 = 26 h at 3000 psi

�3 = 53 h at 2000 psi

Summing the fractions of creep life at each load gives

5
12 + 10

26 + 20
53 = 1.18 > 1 (1)

We conclude that failure occurs before the end of the test. By the cumulative creep
law the part would reach the failure point at t = (1 − 5

12 − 10
26 )53 = 10.5 h of the

2000-load period or 25.5 h after the beginning of the test.
Consider the same problem using the life-fraction rule. At the end of the first 5 h

at 4000 psi the strain is taken from Fig. 4-12 to be ε1 = 0.0024. The starting time for
the second load is t2i = t1 f �2/�1 = 5 × 26/12 = 10.8 h. The strain at 3000 psi
between 10.8 and 20.8 h is read from Fig. 4-12 as ε2 = 0.0033− 0.0024 = 0.0009.
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The total strain after the second load period is ε1+ ε2 = 0.0024+0.0009 = 0.0033.
The beginning time for the 2000-psi reading is t3i = t2 f �3/�2 = 20.8× 53/26 =
42.4 h. The strain at 2000 psi between 42.4 and 62.4 h is from Fig. 4-12, ε3 =
0.0043 − 0.0035 = 0.0008. The total strain for all three loads is εT = 0.0024 +
0.0009 + 0.0008 = 0.0041. Therefore, both methods predict failure, but the life-
fraction method indicates the case is not as bad as the cumulative creep law shows.
The life-fraction method is regarded as being superior to other schemes for estimat-
ing cumulative creep.

Simultaneous Creep and Fatigue

When a structural member is subjected to fluctuating loads at high temperatures
(which may also fluctuate), the processes of creep and fatigue can occur simultane-
ously in the material. In an approach similar to the Goodman rule for fatigue (Chap-
ter 7), failure for cyclic stress under creep temperature conditions occurs when the
relation

σa/σ f + σm/σc ≥ 1 (4.14)

is satisfied, where σa is the amplitude of the fluctuating component of the load, σm

is the mean applied load, σ f is the fatigue strength of the material with σm = 0,
and σc is the static stress (σa = 0) that causes creep failure. A nonlinear version of
Eq. (4.14) is sometimes applied for higher temperatures:

(σa/σ f )
2 + (σm/σc)

2 ≥ 1 (4.15)

A number of methods have been proposed for dealing with combined creep and
low cycle fatigue. A summary of these approaches, particularly the strain range par-
tition method, is available elsewhere [4.11].

4.7 FERROUS METALS

The mechanical properties of metals and alloys depend in part on the characteristics
of the pure elements from which they are made. See Table 4-8 for some properties
of pure metals.

The ferrous metals consist of a group of iron alloys in which the principal alloy-
ing element is carbon. If the carbon content is at least 0.02% but not more than 2%
by weight, the alloy is called steel. Carbon steels are steels in which the levels of
manganese, silicon, and copper do not exceed 1.65, 0.60, and 0.60%, respectively,
and there is no minimum specification for other alloying elements except carbon.
Wrought iron is a very low carbon steel with slag inclusions. Slag results from the
union of limestone with impurities in iron ore during the manufacture of pig iron.
Alloy steels are steels in which the level of manganese, silicon, or copper exceeds
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the limits for carbon steels or in which other alloying elements are present in signif-
icant specified amounts. Stainless steel is an alloy steel that contains more than 10%
chromium, with or without other elements. In the United States it has been custom-
ary to include with stainless steels those alloys that contain as little as 4% chromium.
Cast irons contain more than 2% carbon and from 1 to 3% silicon. High-strength,
low-alloy steel is a low-carbon steel that has been strengthened by the addition of
manganese, cobalt, copper, vanadium, or titanium. Tool steels are high-alloy steels
designed to have uniform properties of high strength and wear resistance. In addi-
tion, a number of specialty steels have been developed to give very high strength
(e.g., maraging steels).

For a discussion of ferrous metals, several terms that describe the microstructure
of steel must be defined: ferrite, cementite or iron carbide, pearlite, bainite, austenite,
and martensite.

Ferrite is body-centered-cubic iron (α-iron) with a small amount of dissolved car-
bon. Ferrite is soft and ductile and gives steel good cold-working properties. Body-
centered-cubic iron has a crystallographic structure composed of an iron atom at each
of the eight corners of a cube plus one atom at the center of the cube. Cold work-
ing, which induces strain hardening, refers to mechanical deformation of a metal at
ambient temperatures or at temperatures no more than one-half the recrystallization
temperature. Recrystallization is a reversal of the effects of work hardening.

Cementite is iron carbide, Fe3C; it is very hard and brittle at room temperature.
Pearlite is a lamellar structure of ferrite and cementite.
Bainite is a structure of ferrite and cementite in which the cementite is present in

a needlelike form.
Austenite is a face-centered-cubic iron (γ -iron) with a maximum of 2% carbon

in solution. The temperature at which austenite begins to form is called the lower
critical temperature [1333.4◦F (723◦C) over most of the range of carbon content].
Face-centered-cubic iron has a crystallographic structure composed of iron atoms at
the corners of a cube and one atom at the center of each of the six cube faces. The
temperature at which the transformation to austenite is complete is called the upper
critical temperature. The upper critical temperature varies with carbon content.

Martensite is a supersaturated solution of carbon in iron. Generally, it is produced
by rapidly cooling steel from above the upper critical temperature. Martensite has a
body-centered-tetragonal crystal and is hard, strong, and brittle.

The microstructure of steel depends on the alloying content, the temperature, and
the thermal and mechanical processing. The equilibrium phase diagram for the iron–
carbon system is shown in Fig. 4-13. The regions of the diagram are labeled with the
forms of material that exist under the specified conditions of temperature and carbon
content. Below the lower critical temperature (723◦C), the microstructure is either
ferrite plus pearlite, or pearlite and cementite. Above the lower critical temperature,
austenite begins to form. Figure 4-13 represents the equilibrium situation; the actual
properties of steel depend on alloy content and time–temperature treatments. Here
equilibrium refers to thermodynamic equilibrium; that is, processes are done quasi-
statically so that large gradients of temperature and concentration do not occur. In
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Figure 4-13: Iron–carbon equilibrium diagram.

the following, terms that pertain to the heat treatment of steels (and in some cases,
other materials as well) are defined.

Quenching involves heating the steel to the austenitic range and then cooling it
rapidly, usually in water or oil or polymer solution, to form the martensite structure.
Steel must contain at least 0.25% carbon to justify the quenching treatment.

Tempering involves heating quenched martensite steel to various temperatures be-
low the lower critical temperature and cooling at a suitable rate to render the steel
tougher, more ductile, and softer. The term drawing is sometimes used as a synonym
for tempering.

Martempering is a process by which the steel is quenched to just above the tem-
perature at which martensite forms, retaining it in the quenching medium until its
temperature is uniform and then slowly cooling it through the martensite range. This
process reduces the amount of distortion below that which occurs during normal
quenching.

Austempering is similar to martempering except that the steel is held above the
martensite-forming temperature to form bainite; then the steel is slowly cooled.
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Annealing is a process carried out on wrought or cast metals to soften them and
improve ductility. Annealing of steel is usually done by heating the steel to near the
lower critical temperature [1100–1400◦F (593–760◦C)] and then slowly cooling it in
the furnace.

Normalizing is similar to annealing, but the steel is cooled at a higher rate in air
rather than in a furnace, and the maximum temperature is usually about 100◦F above
the upper critical temperature. Normalizing is used to refine the grain structure as
well as soften the material.

Spheroidize annealing produces the greatest softness by changing the shape of
carbides to spheroidal. In the process the steel is held just below the lower critical
temperature for an extended period of time.

Hardenability is the ease with which a uniform hardness can be attained through-
out a material. The maximum hardness a heat-treated steel can reach is governed
largely by its carbon content, and hardenability depends on other alloying elements
in addition to carbon.

Hardening refers to increasing the hardness by suitable treatment, usually involv-
ing heating and cooling. In practice, more specific terms should be used, such as
surface hardening, age hardening, or quench hardening. Surface or case hardening
treatments include carburizing, nitriding, flame hardening, and induction hardening.
Surface hardening produces a hard wear-resistant case and leaves the core tough and
ductile. The best known of a number of tests for hardenability is the Jominy end
quench test. In this test, a bar 1 in. in diameter and 4 in. long is heated above the
critical temperature; one end is then quenched in water and the other end in air. The
resulting hardness is measured along the bar length, and the hardness gradient is a
measure of the hardenability of the steel. Some alloys of steel can be strengthened
by precipitation or age hardening. In this process, the metal is held at a temperature
in which a second phase precipitates in a supersaturated matrix phase. The precip-
itated second phase creates pinning locations that interfere with dislocation motion
and so harden the material. Strain hardening techniques such as shot peening are also
used, especially to increase surface resistance of materials to fatigue. In shot peen-
ing, a stream of high-velocity metal pellets impinge on the surface of the material
and induce residual compressive stresses in the surface layer of the peened metal.

Steel Classification and Specifications
Steel can be classified on the basis of (1) chemical composition; (2) finishing meth-
ods, such as hot rolled or cold rolled; or (3) product form, such as bar, plate, sheet,
strip, tubing, or structural shape. Classification by product form is very common in
the steel industry.

Terms such as grade, type, and class are used to classify steel products. Grade is
utilized to indicate chemical compositions, type indicates the deoxidation practice,
and class describes some other attribute, such as strength level or surface smooth-
ness. But in the ASTM specifications, these terms are used somewhat interchange-
ably. A specification is a written statement of attributes that a steel must possess to
meet a particular application. A standard specification is a published document that
describes a product acceptable for a range of applications and that can be produced
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by many manufacturers. The most comprehensive and widely used standard specifi-
cations are those of ASTM.

Designation is the specific identification of each grade, type, or class of steel by
a number, letter, symbol, name, or suitable combination unique to a particular steel.
Chemical composition is the most widely used basis for designation followed by
mechanical property specifications. The most commonly used system of designation
in the United States is that of the SAE (Society of Automotive Engineers) and the
AISI (American Iron and Steel Institute). The AISI–SAE (or AISI) designations for
the compositions of carbon and alloy steels are normally incorporated into the ASTM
specifications for bars, wires, and billets for forging. Table 4-9 lists some of the
ASTM specifications that incorporate AISI–SAE designations for compositions of
the various grades of steel.

An ASTM specification consists of the letter A (for ferrous materials) and an ar-
bitrarily assigned number. Many of the ASTM specifications have been adopted by
the ASME (American Society of Mechanical Engineers) with little or no modifica-
tion. ASME uses the prefix S and the ASTM specifications (e.g., ASME SA-213 and
ASTM A213 are identical).

Several ASTM specifications, such as A29, contain the general requirements com-
mon to each member of a broad family of steel products. Such specifications are
referred to as generic specifications. Table 4-10 lists several of these generic speci-
fications, which usually must be supplemented by another specification describing a
specific mill for an intermediate fabricated product.

Carbon Steels

In general, low-carbon steels have a range of carbon from 0.06 to 0.25%, medium-
carbon steel from 0.25 to 0.55% carbon, and high-carbon steel above 0.55% carbon.
The AISI and SAE designate many classes of carbon steels:

10xx is plain carbon with 1% maximum manganese.
11xx is resulfurized steel.
12xx is resulfurized and rephosphorized.
15xx is plain carbon with 1–1.65% manganese.

Note that the numerical designation for these carbon steels begins with 1. The
second digit in some instances suggests a modification in the alloy. The xx refers
to the percentage of carbon present; for example, a structural steel AISI 1020 con-
tains 0.20% carbon. In addition to the four digits, there are various letter prefixes
and suffixes that provide additional information on a particular steel (e.g., prefix E
means steel made in an electric furnace). Plain carbon steels are cheaper than other
types of steel, and they are the most widely used. The relatively poor hardenability
of carbon steels prevents its use in many applications; the severe quenching required
in hardening causes residual stresses, distortion, and sometimes quenching cracks.
Manganese steel (13xx) that contains 1.75% manganese is also classed with the plain
carbon steels. Manganese improves the hot-working properties of steel, and the hard-
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ness of manganese steels increases greatly with cold work. Hot working is done at a
temperature at which recrystallization begins during or immediately after mechani-
cal forming. Metals formed by mechanical deformation are referred to as wrought;
examples of forming processes are rolling, extruding, and drawing. Metals formed
by solidification of liquid metal in a mold are called cast. Steel is resulfurized or
rephosphorized to improve machinability; these steels have poor weldability. Carbon
steels with lead or boron added will contain L or B, respectively, between the second
and third letters of the identifier. Boron increases the hardenability of steel without
reducing its ductility, and lead improves machinability. Carbon steels may variously
be described as cast, hot rolled, cold drawn, annealed, normalized, or quenched and
tempered. The mechanical properties of some carbon steels are listed in Table 4-11.
It should be noted that the material properties described in this book are associated
with both chemical composition and heat treatment or processing conditions. In each
table, the related heat treatment or processing conditions are given.

Alloy Steels

Alloys are added to steels to improve strength, hardenability, or some other proper-
ties, such as machinability or toughness. The AISI designation for alloys by broad
category is partly as follows:

Manganese steels
13xx

Nickel steels
23xx
25xx

Nickel–chromium steels
31xx
32xx
33xx
34xx

Molybdenum steels
40xx
44xx

Chromium–molybdenum steels
41xx

Nickel–molybdenum steels
46xx
48xx

Chromium steels
50xx
51xx
52xx

Chromium–vanadium steels
61xx
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For example, AISI 4140 has a nominal alloy content of 0.40% carbon, 0.80%
chromium, and 0.25% molybdenum. The last two digits of the designator give the
nominal carbon content of the alloy (percentage × 100). Additional categories of
alloy steels exist, and the full classification is described elsewhere [4.12]. Table 4-12
lists the mechanical properties of some alloy steels.

Stainless Steels

The dividing line between chromium as an alloying element in steel and chromium
as a corrosion inhibitor is about 10%. The stainless steels fall into five classes:
austenitic, ferritic, martensitic, precipitation hardening, and duplex stainless steels.
The AISI and UNS (Unified Numbering System) designations for stainless steels
are shown in Fig. 4-14. Table 4-13 lists the mechanical properties of some stainless
steels.

Figure 4-14: AISI and UNS designations for some stainless steels. (From Ref. [4.13]).
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AISI uses a three-digit system to identify wrought stainless steels. The first digit
indicates the classification by composition type. The 300 series is chromium–nickel
alloys; the 400 series is straight chromium alloys.

Austenitic stainless steels such as 304, which is 19% chromium and 10% nickel,
contain austenite, which the nickel and manganese present make stable at all temper-
atures. The austenitic stainless steels have good corrosion resistance and toughness.
Type 304 is used widely in the chemical processing industry. Type 301 is strength-
ened more by cold work than is 304; type 347 is recommended for welding applica-
tions.

Ferritic stainless steels are not as tough and corrosion resistant as the austenitic,
and they are difficult to harden by heat treatment or cold work. Typical applications
of ferritic stainless steels are kitchen utensils, automotive trim, and high-temperature
service. The chromium content ranges from 11.5% to about 28%.

Martensitic stainless steels have a high degree of hardenability but have lower
corrosion resistance than that of ferritic or austenitic grades. Martensitic stainless
steel is used when moderate corrosion resistance is needed along with high strength
and hardness. In this group, the chromium range is from about 11.5 to 18.0%.

Cast stainless steels have a separate designation system from the wrought alloys.
The most commonly used identification system is that of the Alloy Casting Insti-
tute. The ASTM provides information on the properties of cast stainless steel. Heat-
resistant types have an H in the identifier and corrosion-resistant types are denoted
by a C.

Cast Irons

Cast irons are alloys of iron that contain more than 2% carbon and from 1 to 3%
silicon. They are divided into four basic types: gray iron, white iron, ductile iron,
and malleable iron. Properties of some cast irons are listed in Table 4-14.

Gray iron contains flake graphite dispersed in the steel matrix. It is specified
by two class numbers (ASTM A48) that are related to the tensile strength in ksi.
Class 40, for example, has a minimum tensile strength of 40,000 psi. These specifi-
cations are based on test bars. In practice, the letters A, B, C, and S indicate the size
of the tensile specimen used in measuring the tensile strength. Gray iron is cheap,
is easy to cast and machine, and is wear resistant and has good vibration damping
qualities. The compressive strength of gray cast iron is much larger than its tensile
strength. The ductility of gray iron is very low, and it is difficult to weld and has fair
corrosion resistance.

White iron contains massive iron carbides and is hard and brittle. White iron can
be produced by rapidly cooling a casting containing gray or ductile iron. The white
iron is wear and abrasion resistant. By controlling the cooling rate, the cast part may
be produced with a white iron surface region and a core of gray or ductile iron that
is tough and machinable. The most common designation system used for white iron
is that of A27 of ASTM.

Ductile, or nodular, iron is alloyed with magnesium to produce spheroidal
graphite dispersed in the steel structure. This shape of graphite increases the ten-
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sile strength and greatly increases the ductility over that of gray iron. Ductile iron
is specified by three hyphenated numbers that give the minimum tensile strength,
yield strength, and elongation. Type 80-55-06, for example, has a minimum tensile
strength, yield strength, and elongation in 2 in. of 80,000 psi, 55,000 psi, and 6%,
respectively. The vibration damping capacity and thermal conductivity of ductile
iron is lower than that of gray iron. ASTM specification A536 covers some ductile
iron grades. There are additional ASTM specifications on special-purpose ductile
irons (A476, A716, A395, and A667) and on austenitic ductile irons (A439 and
A571).

Malleable iron is produced by heat-treating white iron to change the carbide
to clumplike graphite sometimes called temper carbon. Malleable iron is stronger
and more ductile than gray iron. Malleable iron has good impact and fatigue resis-
tance, wear resistance, and machinability. Malleable irons may be ferritic, pearlitic,
or martensitic in microstructure. The designation system in ASTM specifications
(A47) is a five-digit number corresponding to certain mechanical properties.

High-Strength, Low-Alloy Steels

High-strength, low-alloy (HSLA) steels are low-carbon steels with small amounts of
alloying elements added. These steels were developed primarily to replace plain low-
carbon steels by providing equivalent loading-carrying ability with a lower weight
of material. The HSLA steels have improved formability and weldability over con-
ventional low-alloy steels. The ASTM designation number followed by the strength
grade desired is used to specify these HSLA steels. The ASTM specifications A242
and A588 cover these steels as structural shapes. A typical designation is: steel,
ASTM A242, grade 70.

Tool Steels

Tool steels have high hardness and wear resistance, often even at elevated tempera-
tures. The AISI has established a classification system based primarily on use. The
seven broad categories of tool steels are as follows: (1) type W, water-hardening steel;
(2) type S, shock-resistant steels; (3) types O, A, and D, cold-working die and tool-
ing steels (type O is oil hardening and types A and D are air hardening); (4) type H,
hot-working steels; (5) types T and M, high-speed steels; (6) types L and F, low-alloy
and carbon tungsten specialty steels, respectively; and (7) types P, L, and F, special-
purpose steels (e.g., for molds and dies). Each type of tool steel has its particular
advantages and disadvantages, and selection must be made on that basis [4.14].

4.8 NONFERROUS METALS

Aluminum

Wrought aluminum alloys are specified by a four-digit number followed by a temper
designation. The first digit indicates the alloying element, as shown in Table 4-15.
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The letter H following the four-digit number indicates a strain-hardening process
with or without subsequent heat treatment. The letter T indicates heat treatment to
cause age hardening. The partial temper code is listed in Table 4-16. Cast aluminum
alloys have the same temper designation as wrought, but the designation numbering
system is as shown in Table 4-17. Cast alloys are not strain hardened. Table 4-18 lists
the mechanical properties of some wrought aluminum alloys.

Magnesium

Magnesium alloys are specified by two letters that designate the principal alloying
elements followed by numbers that specify the amounts of the two principal alloying
elements. The code AZ61 refers to a 6% aluminum, 1% zinc alloy of magnesium.
The code letters used to designate these alloys are as follows:

A—Aluminum Q—Silver
E—Rare earths S—Silicon
H—Thorium T—Tin
K—Zirconium Z—Zinc
M—Manganese

The temper designations for magnesium are identical to those for aluminum. Mag-
nesium is difficult to cold work, and these operations should be avoided if possible.
Table 4-19 lists the mechanical properties of some magnesium alloys.

Other Nonferrous Metals

Table 4-20 lists ranges of values of mechanical properties for several other nonfer-
rous metals.

4.9 PLASTICS

Most plastics are composed of macromolecules that are polymers. These polymers
are large molecules formed by joining together many smaller molecules. The me-
chanical behavior of plastics is quite different from that of metals. For example,
plastics can continue to deform even after an imposed stress is removed. Such time-
dependent behavior is termed viscoelasticity. Continued deformation with time can
limit stresses to values significantly lower than the short-term loading allowable
stresses. The designer should take the stress–time history phenomena of a plastics
part into account in addition to the factors considered for metals. A further chal-
lenge for a designer arises due to the temperature-dependent mechanical proper-
ties of most plastics. In the range between −50 and 150◦C, many plastics show
significant changes in material properties. A glass transition temperature (Tg) can
be identified when plastics change during cooling from a rubbery material to a
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brittle state. Normally, the highest-strength plastics are brittle at 20◦C. Glass tran-
sition temperatures for some plastics are listed in Table 4-21.

In addition to relative ease of molding and fabrication, many plastics offer a range
of important advantages in terms of high strength–weight ratio, toughness, corrosion
and abrasion resistance, low friction, and excellent electrical resistance. Thus many
plastics are now accepted as regular engineering materials and given the loose des-
ignation engineering plastics. ASTM [4.15] has established some standards for plas-
tics. Refer to the literature [4.16] for the significance and theoretical background of
the standard test for mechanical properties of plastics.

Since so many factors influence the behavior of plastics, mechanical properties
(such as moduli) quoted as a single value will be applicable only for the conditions
at which they are measured.

Table 4-22 lists the commonly used abbreviations for designating engineering
plastics. Some typical mechanical properties of plastics are given in Table 4-23. Pois-
son’s ratio for many brittle plastics (such as polystyrene, the acrylics, and the ther-
moset materials) is about 0.3. For the more flexible plasticized materials (e.g., cel-
lulose acetate), Poisson’s ratio is about 0.45. For rubber the value is 0.5. Poisson’s
ratio varies not only with the material itself but also with the magnitude of the strain
for a given material. The Poisson ratios mentioned here are for zero strain [4.15].

4.10 CERAMICS

Generally speaking, there is no clear-cut boundary that separates ceramics and met-
als. Rather, there are intermediate compounds that behave in some aspects like ce-
ramics and in others like metals [4.17]. In fact, ceramics are compounds of metals
and nonmetals, or simply, ceramics are inorganic and nonmetallic solids.

Ceramic materials have become increasingly important in modern industrial and
consumer technology. The traditional ceramic materials include clay products (china,
brick, tile, refractories, abrasives), cement, enamels, and glasses. Traditional ceram-
ics are brittle materials since they exhibit quite low ductility with an associated low
tensile strength. They are used for furnaces and linings of furnaces, where the ceram-
ics are often only lightly stressed, unless loading is consistently compressive. New
types of ceramics are being developed for such uses as gas turbines, jet engines,
sandblast nozzles, nuclear plants, and high-temperature heat exchangers for which a
service temperature of 1000◦C and higher may be required. The carbides, borides,
and nitrides of the transition elements [e.g., silicon (Si) and magnesium (Mg)] are
some examples of the new ceramics. Even at ordinary temperatures the new ceram-
ics are widely used for their hardness and wear resistance.

A few ceramics consist of crystalline phases surrounded by glassy binders. If the
ceramic content in such mixtures is reduced, hybrid materials with metallic alloys
strengthened by refractory particles, called cermets, are obtained. Tables 4-3, 4-24,
and 4-25 list some mechanical properties of ceramics.
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4.11 COMPOSITES

It has long been recognized that two or more materials judiciously combined can
perform differently and sometimes more efficiently than the materials by themselves.
Such combinations can occur on three different levels: a basic or elemental level
at which single molecules and crystal cells are formed; a microstructural level for
which crystals, phases, and compounds are formed; and a macrostructural level at
which matrices, particles, and fibers are considered.

In general, a composite material is composed of reinforcements (e.g., fibers, par-
ticles, laminae or layers, flakes, fillers) embedded in a matrix (e.g., metals, polymers,
ceramics). The constituents to hold the reinforcements together to form some useful
shape are referred to as a matrix. Based on the form of the reinforcements, composite
materials can be classified as follows:

1. Fiber composites, composed of continuous or chopped fibers
2. Particulate composites, composed of particles
3. Flake composites, composed of flat flakes
4. Laminar composites, composed of layers or lamina constituents
5. Filled or skeletal composites, composed of continuous skeletal matrix filled by

a second material

These five types of composites are illustrated in Fig. 4-15.

Figure 4-15: Types of composite materials.



4.12 BIOMECHANICS 181

See Ref. [4.18] for mechanical properties of some composite materials. For more
data and design theories for anisotropic materials, see Refs. [4.6] and [4.19].

The mechanical properties of a composite material are often direction dependent
(or anisotropic). ASTM provides numerous publications concerning the measure-
ments of composites [4.9].

4.12 BIOMECHANICS

Bioengineering involves both physical and life sciences. In particular, if the human
body is of concern, it is necessary to deal with a system that changes in response
to its environment. For example, the material properties can fluctuate due to factors
such as age. Also, the human body is able to adapt and heal itself. Furthermore, most
components of the human body cannot be tested independently (e.g., the heart is not
removable for testing). Some material properties in the areas of biomechanics and
biomaterials will be treated here. Biomechanics applies theories and experimental
methods of traditional mechanics to biological systems, focusing on forces acting
upon a biological system and the resulting effects.

Bone Tissue Mechanics

Bone is a hard tissue structure that acts as an anisotropic, nonhomogeneous, vis-
coelastic material. Normally, bone is placed in two categories: cortical and cancel-
lous bone (Table 4-26). Cortical bone is dense (1700–2000 kg/m3), structured, and
compact, with a modulus of elasticity ranging from 5 to 35 GPa. In tension (com-
pression), this bone has a strength of 55–200 MPa (106–225 MPa) and ultimate elon-
gation (contraction) of 0.5–4.9 (1.1–13.4) percent. Cortical bone forms the shaft of
long bones such as the femur and tibia. In contrast to cortical bone is cancellous
or trabecular bone, which comprises the irregularly shaped bones and the ends of
long bones, with a density ranging from 100 to 1000 kg/m3 and modulus of elas-
ticity of 0.001–9.8 GPa. In tension (compression) cancellous bone has a strength of
0.9–5.4 (0.1-310) MPa and ultimate elongation (contraction) of 0.9–3.5 (1.1–13.4)
percent. The properties of bones can vary greatly, due in part to modeling the bone
as a linearly elastic isotropic material. For common strain rates, it is often com-
mon to model the bone as a linearly elastic anisotropic material, either transverse
isotropic or orthotropic behavior. The equation for a linear elastic material can be
written as a stress–strain relationship from Eq. (4.2). For an orthotropic material, the
material matrices contain 12 components, nine of which are independent. Additional
simplification results from symmetry of a transverse isotropic model as discussed in
Section 4.2. Then

Ey = Ez, Gxz = G yx , νyx = νzx ,
1

G yz
= 2

(
1

Ey
+ νyz

Ey

)
(4.16)
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The values for material constants for a cortical bone from a human femur are
given in Table 4-27. Coordinate x is radial, y is circumferential, and the z axis is
parallel with the long bone axis. These data are taken from Ref. [4.20].

Soft Tissue Mechanics

Although most soft tissue structures in the body are nonhomogeneous, anisotropic,
and nonlinear viscoelastic, the fundamental equations are assumed to have homo-
geneity and linearity.

Variations of the Maxwell and Kelvin viscoelastic models (Chapter 10) are em-
ployed as linear approximations of the nonlinear response of biological materials.
See Ref. [4.21] for a theory based on linear viscoelasticity that incorporates nonlin-
ear stress–strain characteristics.

Cartilage The ends of articulating bones in human joints are usually covered
with a dense, connective tissue called hyaline articular cartilage. Cartilage, which
consists of a composite organic solid matrix swollen by water (75% by volume),
distributes loads on joints and reduces wear and friction due to movement. Vari-
ous properties of articular cartilage have been collected in several papers, including
Ref. [4.22], and are given in Table 4-28.

Muscle The human muscular system is composed of three types of muscles: car-
diac, smooth (involuntary), and skeletal (voluntary). Skeletal muscles control posture
and enable movement to the body’s parts. The force a skeletal muscle can apply is
a function of factors such as length at stimulation, velocity and duration of contrac-
tion, fatigue, temperature, and prestretching. Typical forces (per unit area) exerted by
a skeletal muscle range from 200 to 800 kN/m2. Hill’s equation is used for obtaining
more precise values, relating rate V of skeletal muscle contraction as a function of
isotonic force:

V = b(F0 − F)

F + a
or F = F0b − aV

b + V
(4.17)

where F0 is the force at V = 0 and F is the instantaneous force. The experimentally
evaluated constants a and b have units of force and velocity, respectively, and are
found from

K = a

F0
= b

Vmax
(4.18)

where the value of K usually ranges from 0.15 to 0.25 [4.23].

Ligaments and Tendons The connective tissues ligaments and tendons are
composed of collagen fibers that are typically subjected to tension loads. Tendons
connect muscles to bone and execute joint motion, in addition to storing energy. Lig-
aments differ in that they attach articulating bones across a joint in order to guide
joint movement, limit a joint’s range of motion, maintain joint congruency and aid
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in joint stability. Some properties of ligaments and tendons are listed in Table 4-29,
where the test specimens were loaded longitudinally.

Factors That Influence Properties

Many factors contribute to the variability observed in biomechanical properties, in-
cluding the lack of standards for testing biological materials. Some other factors are
discussed here.

Loading Rate High rates of loading tend to stiffen and strengthen biological ma-
terials. Furthermore, the loading rate can affect the patterns of failure of materials.

Anatomic Location As shown in Table 4-30, anatomical location can affect the
material properties of biological tissues. The data in this table are from Ref. [4.22].

Loading Mode Properties such as strength and strain are very sensitive to the
orientation of tissue structure with respect to loading direction.

Age Age is an important factor in the study of properties of biological materi-
als. Usually, ultimate strength tends to decrease with increasing age, as seen in
Table 4-31 [4.25] where bone, muscle, tendon, and cartilage experience decrease
in ultimate strength as age increases following maturity. In contrast, skin and teeth
experience increases.

Storage and Preservation Storage (cooling and freezing) and preservation
(embalming) of tissue is important because as the result of its complexity, biome-
chanical testing requires a significant amount of time to complete.

Humidity The influence of specimen moisture level is significant, as can be seen,
for example, by the Young’s modulus of skin, which at 25% humidity may be 1000
times greater than at 100% humidity [4.26].

Species Trying to apply results from an animal test to a human can be diffi-
cult because of physiologic and anatomical discrepancies. Table 4-32 (data from
Ref. [4.27]) illustrates some of the differences that can be observed in material prop-
erties between humans and animals.

4.13 BIOMATERIALS

Biomaterials are intended for use when direct contact with the internal tissues of
the body may be involved, such as occurs with a surgically implanted device. Both
the host and the implanted material must be studied carefully since foreign materials
are being placed within the chemically active environment of the body. Biomaterials
are classified into four categories according to the interaction with a host [4.28]. An
inert material triggers little host reaction. An interactive material is intended to elicit
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beneficial host response such as ingrowth. A viable biomaterial may include live
cells at implantation, which the host sees as normal tissue and are actively resorbed.
A replant material is native tissue, cultured in vitro (an artificial environment such
as a test tube) from cells taken earlier from an implant patient. A discussion of the
chemical and mechanical effects of interactions between implants and hosts is given
in Ref. [4.28].

Classes of Biomaterials

Metallic biomaterials are chosen often in biomedical applications because of their
high tensile strength. However, the high tensile strength also means high elastic mod-
ulus, which can cause the bone to stress shield. For example, a metallic implant may
be placed in parallel with a bone to reduce the stress in a portion of the bone. Due
to this reduction, the affected bone can atrophy since bone can remodel in response
to loading and resorb in areas of low stress. This may lead to a loosening of the im-
plant. Properties of some metallic biomaterials are given in Table 4-33. Corrosion
(galvanic, crevice, pitting, intergranular, and stress/fatigue) is another concern with
using metals in the human body.

Polymers are viscoelastic materials whose mechanical properties and host and
material responses depend on molecular weight, degree of cross-linking, tempera-
ture, and loading rate. It should be noted that data, as in Table 4-34, corresponding
to properties of polymers represent a general range of values. Properties of some
degradable materials are also shown in Table 4-34.

Ceramics are among the hardest and strongest materials in common use. Com-
posed mostly of inorganic compounds, ceramics exhibit unstable crack growth and
therefore low tensile strength. Ceramic biomaterials are classified into two cate-
gories: relatively inert and bioactive. Relatively inert ceramics have high compres-
sive strength and hardness to resist wear, while bioactive ceramics do not have high
strength values and are used to bond with host tissue.

Composite biomaterials are a combination of two or more materials to obtain a
biomaterial with desired properties. Use of composite biomaterials permits implants
to be constructed to conform to the stiffness of surrounding tissue.

Natural origin materials can be xenogenous, meaning obtained from other
species, or autogenous, obtained from the patient. Xenogenous materials from
nonhuman animals are commonly used in soft tissue replacement and have mechan-
ical properties very similar to human tissue but can cause immune system reaction
as a result of foreign proteins. Autogenous materials are used for bone and skin
relocation.

4.14 MICROELECTROMECHANICAL SYSTEMS (MEMS)

A new category of engineered microstructures and materials has resulted from the
field of microelectromechanical systems (MEMS). MEMS are two-dimensional
structures fabricated by deposition and photolithography techniques. Although no
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ASTM standards for the mechanical characterization of materials for MEMS exist
to date, considerable effort has been devoted in developing experimental techniques
to measure the elastic and failure properties of these materials. The most common
materials for MEMS include single crystal and polycrystalline silicon, amorphous
diamondlike carbon, silicon carbide, polyimide, aluminum, and gold; the choice
of which is used depends on the application. Among common experimental tech-
niques for the mechanical characterization of these materials are beam bending,
microtension tests, pressurized membrane deflection tests, and the use of reso-
nant structures [4.30]. The applied load is measured directly via load cells or it is
calculated using strength of materials equations after measuring the deflection of
microcantilever beams. Fields of strains can be measured directly via an atomic
force microscope (AFM) in combination with image correlation algorithms or via
interferometry at a point on the surface of a specimen. The elastic constants for
single crystal silicon are a function of the crystal direction, and range from 132 GPa
for Si [100] to 189 GPa for Si [111], while the tensile strength of Si averages 3 GPa.
The elastic properties of polycrystalline silicon can be bracketed via the Reuss-Voigt
bounds that range from 160–165 GPa. For polycrystalline silicon, the average elas-
tic modulus is 165 GPa and Poisson’s ratio is 0.22. On the other hand, the elastic
modulus of diamondlike carbon materials is several times higher, reaching 750 GPa,
with Poisson’s ratio equal to 0.16 and a tensile strength that exceeds 11 GPa [4.31].
The strength values of brittle MEMS materials follow the Weibull statistical dis-
tribution that supports scaling of the mechanical properties of MEMS materials
with the specimen volume, surface, or length, depending on the internal flaws, the
surface roughness, or the “machining” process used the prepare the specimens, re-
spectively. Due to this Weibull effect, smaller MEMS components have a higher
strength than their larger counterparts, which gives rise to very durable, submicron
scale microdevices.

4.15 MATERIAL SELECTION

This chapter has included various types of materials and their properties, ranging
from metals to composites, and methods for procedures such as hardness testing.
Using this information to formulate a design can be a tedious task. Fortunately,
tools are available that can simplify choosing the optimal material for the applica-
tion.

A material index is a material property or group of properties that describes how a
material will perform in service. This index is a key to maximizing the performance
of any component. A component or group of components serves a function, whether
it is to support a load safely, to absorb vibration, or to transport electricity. The de-
signer has an objective, such as minimizing weight, that is subject to constraints, such
as fixed dimensions or prescribed critical loads. These limiting parameters define the
boundaries necessary for choosing a material for the application. Performance can
be maximized by use of a material index corresponding to the function, objective,
and constraints of the design. Tables 4-35 and 4-36 provide commonly used indexes
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for stiffness and strength limited designs. See Ref. [4.32] for other indexes, such as
vibration-based design. The following example shows how a material index is de-
rived.

Example 4.5 Material Index for a Light, Stiff Beam A baseball bat can be
approximated as a beam where one end is fixed and the other is free. The bat must be
stiff so that there will be minimal deflection when it strikes a baseball. In addition,
the bat has to be light to obtain maximum swing speed and control. The first step in
determining the best material for constructing a baseball bat is to derive its material
index.

The bat functions as a beam. The objective is to select a material that minimizes
the weight. The constraints are the stiffness and length L.

The maximum deflection, wmax, of a cantilevered beam with the end loading W
(Table 11-1, case 1) is given by

wmax = W L3

3E I
(1)

where I = (π/4)r4 for a solid, round cross section of radius r . Substitute the value
of I into (1):

wmax = 4W L3

3Eπr4
(2)

Then solve for the free variable r , assuming that the cross section is of constant
radius along the length:

r2 =
(

4W L3

3Eπwmax

)1/2

(3)

The total mass of the bat is

m = πr2Lρ∗ (4)

where ρ∗ is the mass per unit volume. Substitute (3) into (4) and regroup terms

m =
(

4πW L

3wmax

)1/2

L2 ρ∗

E1/2
(5)

Notice that the final factor in (5) contains only material properties. For this beam,
the stiffness W/wmax, length L, and circular shape are prescribed. Thus, to minimize
the mass of the bat, minimize the term ρ∗/E1/2, or equivalently, maximize the in-
verse, E1/2/ρ∗. This value corresponds to Table 4-35 for a beam loaded in bending
with stiffness, length, and shape specified and section area free.
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Material indexes are not used solely to minimize mass of a component. In this
section we focus on minimal mass design because it is a common design goal. How-
ever, refer to Ashby [4.32] for methods to minimize cost, energy consumption, and
environmental impact.

To ease the use of the material indexes, a material selection chart can be intro-
duced. Material selection charts plot a property such as Young’s modulus, E , against
another, such as density, ρ∗. The range of property values that a group of materi-
als covers is also plotted on the chart. Once the boundaries for the design are set,
the material selection chart relating appropriate properties is used to eliminate those
materials that fall outside these boundaries and select the material that maximizes
performance. However, the information given in these charts is approximate, so the
data should be used primarily in rough calculations. The following example will help
clarify the process.

Example 4.6 Choice of Material for a Baseball Bat Return to the baseball bat
of Example 4.5, where the material index (M) for a beam was derived as

M = E1/2

ρ∗
(1)

Based on the constraints from Example 4.5, what material should be used to construct
the bat?

The relevant chart is that which plots Young’s modulus, E , against density, ρ∗, as
in Fig. 4-16. Notice that chart is plotted with log-log scales. From (1),

log E1/2 = logρ∗ + log M

or

1
2 log E = logρ∗ + log M

so that

log E = 2 logρ∗ + 2 log M

This is a set of straight lines on a chart of log E versus logρ∗ with slope 2 and
constant M, which are referred to as guide lines. On Fig. 4-16 shift the guide line
labeled E1/2/ρ∗ upward (dark line labeled M = E1/2/ρ∗), so that only a small
group of materials lies above it. These materials have the largest material index and
thus minimize the mass. From Fig. 4-16, the choices of materials is narrowed to
wood, CFRP, and ceramics. However, ceramics can be eliminated because they are
brittle and would fracture at impact. CFRP, an engineering composite, and wood are
the best choices for constructing a baseball bat.

Most bats used in major league baseball are made of white ash. The players gen-
erally use a bat weighing between 32 and 35 ounces, and to keep the bats in the
desired weight range while maintaining regulation size, wood is used. However,
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Figure 4-16: Materials for a baseball bat based on a strength-limited design at minimum
mass.

Little League and college baseball players use cheaper, more durable aluminum bats.
Aluminum bats are significantly lighter, allowing higher swing speeds. In addition,
aluminum bats store more energy, known to some as the trampoline effect, contribut-
ing to greater ball flight. Although these effects are acceptable at the Little League
and college level, the professional leagues use wood to ensure that batting is based
on skill level and strength rather than on technology, thus preserving the game’s tra-
ditions.

Another useful resource for identifying a material that satisfies a design goal is a
process selection chart. The most common of these charts can be found in Ref. [4.32].
Process selection charts can be used to determine the feasibility of subjecting a par-
ticular material, say ferrous metal, to a certain process, such as machining.
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Selection of the best material for a component is an integral step in design, mak-
ing material indices and selection charts quite useful. Comparing the data of several
candidate materials can identify the material that is superior for use in design. In an-
other case, a material currently in service could be replaced if an alternative material
has a significantly higher index.
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TABLE 4-1 MATERIAL LAW MATRICES
Number of Number of
Nonzero Independent

Material Coefficients Coefficients

Three-Dimensional Case

General anisotropic 36 21
One plane of symmetry 20 13
Orthotropic 12 9
Transversely isotropic 12 5
Isotropic 12 2

Two-Dimensional Case

General anisotropic 9 6
Transversely isotropic 5 4
Isotropic 5 2

General Anisotropic
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γyz
γxz
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=




a11 a12 a13 a14 a15 a16
a22 a23 a24 a25 a26

a33 a34 a35 a36
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One Plane (z = 0) of Symmetry
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Orthotropic
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TABLE 4-2 RELATIONSHIPS BETWEEN MATERIAL CONSTANTS FOR AN ISOTROPIC LINEAR ELASTIC SOLID
G, E G, K E, K G, ν E, ν K , ν λ,G

E —
9G K

3K + G
— 2G(1+ ν) — 3K (1− 2ν)
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G — —
3E K
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TABLE 4-3 MODULI OF ELASTICITY, POISSON’S RATIOS, AND THERMAL
COEFFICIENTS OF EXPANSION
The material properties provided in the tables should be treated as being nominal values that may be rough
estimates. In the case of thermal expansion, which is generally not linear with temperature, the α values should
be considered as average values over particular temperature ranges.

Modulus of
Elasticity, E

Thermal Coefficient
of Expansion, α

Material ×106 psia GPa
Poisson’s
Ratio, ν ×10−6/◦Cb ×10−6/◦Fb

ABS plastic, unfilled 0.2–0.4 1.4–2.8 — 33–72 60–130

Acrylic, cast 0.35–0.45 2.4–3.1 — 27–50 50–90

Al2O3 55 380 0.26 4.4 8
Alumina, fired 40 275 — 3.0 5.4

Aluminum, Alloy 2024-T4 10.6 73 0.32 12.9 23.2

Aluminum, Alloy 7075-T6 10.4 72 0.32 12.9 23.2

BeO 45 311 — 5.6 10
Beryllium 40–44 275–305 0.024–0.05 6.4 11.5
Beryllium–copper “25” 19 131 0.28–0.30 9.3 16.7
Boron–epoxy composite

Orthotropic E1 = 40c 275 0.25(νc,d
1,2 ) 5 9

Representative E2 = 4d 27.5

Brass—30–70 16 110 0.33 11.1 20

Bronze—Phosphor (10%) 16 110 0.31 10.2 18.4

Concrete 3–6 20–40 0.1–0.3 5.5 10

Copper 17.8 123 0.33 9.2 16.5

Duraluminum 10.5 72.4 0.33 — —

Epoxies, unfilled 0.3–0.45 2–3 — 17–33 30–60

Fiberglass–epoxy composite

Orthotropic E1 = 8c 55 0.25(νc,d
1,2 )

Typical E2 = 2.7d 19 Varies with composition

Glass, soda-lime 10 70 0.21 5.1 9.2
Graphite 0.3–2.4 2–17 — 3.0 5.4

Hastelloy, C-276 24.5–29.8 169–205 0.3 6.3 11.3

Inconel, wrought 31 214 — 7.0 13.0

Inconel-X 31 214 0.26 6.7–7.8 12–14
Invar, annealed condition 21 145 — 0.7–0.8 1.3–1.4
Iron, gray cast 13–14 90–96 — 6.0–6.7 10.8–12.1

Iron, malleable 25–28 172–193 0.17 5.9–7.1 10.6–12.8
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TABLE 4-3 (continued) MODULI OF ELASTICITY, POISSON’S RATIOS, AND THERMAL
COEFFICIENTS OF EXPANSION

Modulus of
Elasticity, E

Thermal Coefficient
of Expansion, α

Material ×106 psia GPa
Poisson’s
Ratio, ν ×10−6/◦Cb ×10−6/◦Fb

Kevlar 19.4 134 — — —

Lead 2 14 0.4–0.45 16.3 29.3

Magnesium, AZ-31B 6.5 45 0.35 14.5 26.1
MgO 30 207 0.36 5 9
Molybdenum 47–50 325–345 0.33 2.7 4.9
Monel, Alloy 400 26 179 0.32 7.5–7.8 13.5–14.0
Mullite (Al6Si2O13) 21 145 — 2.8 5
Mylar 0.55–0.80 3.8–5.5 0.38 9.4 17

Nickel-A 30 207 — 6.6–7.4 12–13
Ni-Span-C 27.7 191 0.33 4.2 7.6
Nylon 6/6, unmodified 0.16–0.41 1.1–2.8 — 44 80

Phenolics (representative) 0.4–0.5 2.7–3.4 — 14–33 25–60
Polycarbonate 0.3–0.38 2.0–2.6 — 37 67
Polyethylene 1–2 7–14 — 60–70 108–126
Polypropylene, 0.16–0.23 1.1–1.6 — 32–57 58–102

unmodified
Polyurethane 0.01–0.1 0.07–0.7 — — —
Polyvinyl chloride, rigid 0.42–0.52 2.9–3.6 0.26–0.34 28–33 50–60
Porcelain (high-alumina 32–56 221–386 0.2–0.21 3.3 6.0

ceramic)

Quartz, fused 10.5 72.5 — 0.28 0.50

Rene-41 29.9–31.9 206–220 0.31 6.63 11.9
Rubber, neoprene Varies

with composition
0.5 340 612

SiC 60 414 — 2.5 4.5
Si3N4 44 304 — 1.8 3.2
SiO2 (fused) 10 69 0.25 0.5 0.9
Spinel (MgAl2O4) 36 284 — 5 9
Steel, 1008/1018 30 207 0.285 6.7 12.0
Steel, 4130/4340 30 207 0.28–0.29 6.3 11.3
Steel, 304 (stainless) 28 193 0.25 9.6 17.3
Steel, 310 (stainless) 29–30 200–207 0.32 8.0 14.4
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TABLE 4-3 (continued) MODULI OF ELASTICITY, POISSON’S RATIOS, AND THERMAL
COEFFICIENTS OF EXPANSION

Modulus of
Elasticity, E

Thermal Coefficient
of Expansion, α

Material ×106 psia GPa
Poisson’s
Ratio, ν ×10−6/◦Cb ×10−6/◦Fb

Teflon, TFE 0.038–0.065 0.26–0.45 — 55 99
TiC 67 462 — 4 7.2
Titanium, 6 Al–4V 16.5 115 0.34 4.9 8.8
Titanium, pure 15.1 104 0.34 4.8 8.6
Titanium, silicate 9.8 68 0.17 0.0 (±0.017) 0.0 (±0.03)
Tungsten 50 345 0.28 2.4–2.6 4.3–4.7
Tungsten–carbide 61.6–94.3 425–650 — 2.5–3.0 4.5–5.4

cermet

Vanadium 18–20 124–138 — 4.6 8.3
Vinyl chloride, rigid 0.3–0.5 2–3.5 0.28–0.34 28–56 50–100

Wood, structural 1–2 7–14 — 1–3 2–5

Zircaloy-2 11 76 0.37–0.41 2.9 5.2
Zirconium 13.7–14.0 95–96.5 0.37–0.41 3.1 5.6

aFor psi, multiply tabulated values by 106. For example, if the entry is 40, this corresponds to 40× 106 psi. An
entry of 0.2–0.4 means that the values of E range from 0.2× 106 psi to 0.4× 106 psi.
bFor α, multiply tabulated value by 10−6. For example, for “Aluminum, Alloy 2024-T4,” the α values are 12.9×
10−6/◦C and 23.2× 10−6/◦F.
c E1, ν1 properties in fiber direction.
d E2, ν2 properties in 90◦ to fiber direction.
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TABLE 4-4 HARDNESS TESTINGa

Shape of Indentation

Side Top
Test Indentor View View Load

Formula for
Hardness Number

P (kgf), d and D (mm)

Brinell

10-mm sphere
of steel or
tungsten
carbide P HB = 2P

πD(D −√D2 − d2)

Vickers Diamond P HV = 1.8544P/d2
1

pyramid

Knoop Diamond P HK = 14.23P/d2

micro- pyramid
hardness

aFrom Ref. [4.33], with permission.
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TABLE 4-5 ROCKWELL HARDNESS SCALESa

Major
Scale Load Dial
Symbol Penetrator kgf (N) Figures Typical Applications of Scales

A Diamond 60 (588) Black Cemented carbides, thin
steel, and shallow
case-hardened steel

B 1
16 -in. (1.588-mm) ball 100 (981) Red Copper alloys, soft steels,

aluminum alloys,
malleable iron, etc.

C Diamond 150 (1471) Black Steel, hard cast irons,
pearlitic malleable iron,
titanium, deep case-hardened
steel, and other materials
harder than B100

D Diamond 100 (981) Black Thin steel and medium
case-hardened steel pearlitic
malleable iron

E 1
8 -in. (3.175-mm) ball 100 (981) Red Cast iron, aluminum and

magnesium alloys,
bearing metals

F 1
16 -in. (1.588-mm) ball 60 (588) Red Annealed copper alloys

thin soft sheet metals

G 1
16 -in. (1.588-mm) ball 150 (1471) Red Malleable irons, copper–

nickel–zinc and cupronickel
alloys; upper limit G92 to
avoid possible flattening of ball

H 1
8 -in. (3.175-mm) ball 60 (588) Red Aluminum, zinc, lead

K
L
M

P
R
S
V

1
8 -in. (3.175-mm) ball
1
4 -in. (6.350-mm) ball
1
4 -in. (6.350-mm) ball
1
4 -in. (6.350-mm) ball
1
2 -in. (12.70-mm) ball
1
2 -in. (12.70-mm) ball
1
2 -in. (12.70-mm) ball

150 (1471)
60 (588)

100 (981)
150 (1471)
60 (588)

100 (981)
150 (1471)

Red
Red
Red
Red
Red
Red
Red




Bearing metals and other very
soft or thin materials;
use smallest ball and
heaviest load that does not
give anvil effect

aFrom Annual Book of ASTM Standards [4.1]. Copyright ASTM. Printed with permission.
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TABLE 4-6 CREEP STRENGTHS OF SELECTED METALLIC ALLOYSa

Creep Strength
Material (psi) Conditions

Ductile cast iron 60–40–18 4,000 10−4% strain per hour at 1000◦F
Iron superalloys 16–25–6 19,000 10−4% strain per hour at 1200◦F

(25% Ni, 16% Cr, 6% Mo)
Type 302 stainless wrought 17,000 1% strain in 1000 h at 1000◦F
Type 316 stainless wrought 25,000 1% strain in 1000 h at 1000◦F
Type 430 stainless wrought 8,500 1% strain in 10,000 h at 1000◦F
Type 410 stainless wrought 9,200 1% strain in 10,000 h at 1000◦F
Magnesium wrought, AZ31B-H24 1,500 0.5% strain in 100 h at 300◦F
aData collected from Ref. [4.14].

TABLE 4-7 CONSTANTS IN MANSON–HAFERD FORMULAa

Material Creep or Rupture Ta log10 ta

25-20 stainless steel Rupture 100 14
18-8 stainless steel Rupture 100 15
S-590 alloy Rupture 0 21
DM steel Rupture 100 22
Inconel X Rupture 100 24
Nimonic 80 Rupture or 0.2 or 0.1% 100 17

plastic strain

aFrom Ref. [4.34]. Ta is a material constant. ta is the time in hours.
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TABLE 4-8 PROPERTIES OF PURE METALS AT ABOUT 20◦Ca

Lattice
Constant

(×10−12 m)c Density
Melting

Point

Metal Symbol Structureb a c

Atomic
Radius

(×10−12 m)c kg/m3 kip-s2/ft4 d ◦C ◦F

Elastic
Modulus

(GPa)

Shear
Modulus

(GPa)

Aluminum Al fcc 405 — 143 2 700 5.239× 10−3 660 1220 62 24
Chromium Cr bcc 288 — 125 7 190 13.951× 10−3 1875 3407 248 95
Copper Cu fcc 362 — 128 8 960 17.385× 10−3 1083 1981 110 42
Gold Au fcc 408 — 144 19 300 37.448× 10−3 1063 1945 80 31
Iron Fe bcc 287 — 124 7 870 15.270× 10−3 1538 2800 196 76
Lead Pb fcc 495 — 175 11 400 22.120× 10−3 327 621 14 5
Magnesium Mg hcp 321 521 160 1 740 3.376× 10−3 650 1202 44 17
Molybdenum Mo bcc 315 — 136 10 200 19.791× 10−3 2610 4730 324 125
Nickel Ni fcc 352 — 125 8 900 17.269× 10−3 1453 2647 207 80
Platinum Pt fcc 393 — 139 21 400 41.523× 10−3 1769 3217 73 28
Silver Ag fcc 409 — 144 10 500 20.373× 10−3 961 1761 76 29
Tin Sn bct 583 318 — 7 300 14.164× 10−3 232 449 43 17
Titanium Ti hcp 295 468 — 4 510 8.751× 10−3 1668 3035 116 45
Tungsten W bcc 316 — 137 19 300 37.448× 10−3 3410 6170 345 133
Vanadium V bcc 304 — 132 6 100 11.836× 10−3 1900 3450 131 50
Zinc Zn hcp 266 495 133 7 130 13.834× 10−3 420 787 — —
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TABLE 4-8 (continued) PROPERTIES OF PURE METALS AT ABOUT 20◦Ca

Lattice
Constant

(×10−12 m)c Density
Melting

Point

Metal Symbol Structureb a c

Atomic
Radius

(×10−12 m)c kg/m3 kip-s2/ft4 d ◦C ◦F

Elastic
Modulus

(GPa)

Shear
Modulus

(GPa)

aFrom Ref. [4.35]. Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.
bfcc, face-centered-cubic; bcc, body-centered-cubic; hcp, hexagonal close-packed; bct, body-centered-tetragonal.
cMultiply tabulated value by 10−12. Equivalently, the tabulated values are given in pm.
d slug/ft3.
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TABLE 4-9 SELECTED ASTM SPECIFICATIONS INCORPORATING
AISI–SAE DESIGNATIONSa

A29 Carbon and alloy steel bars, hot rolled and cold finished, generic
A108 Standard-quality cold-finished carbon steel bars
A295 High carbon–chromium ball and roller bearing steel
A304 Alloy steel bars having hardenability requirements
A322 Hot-rolled alloy steel bars
A331 Cold-finished alloy steel bars
A434 Hot-rolled or cold-finished quenched and tempered alloy steel bars
A505 Hot-rolled and cold-rolled alloy steel sheet and strip, generic
A506 Regular-quality hot-rolled and cold-rolled alloy steel sheet and strip
A507 Drawing quality hot-rolled and cold-rolled alloy steel sheet and strip
A510 Carbon steel wire rods and coarse round wire, generic
A534 Carburizing steels for antifriction bearings
A575 Merchant-quality hot-rolled carbon steel bars
A576 Special-quality hot-rolled carbon steel bars
A646 Premium-quality alloy steel blooms and billets for aircraft and aerospace

forgings
A659 Commercial-quality hot-rolled carbon steel sheet and strip
A682 Cold-rolled spring-quality carbon steel strip, generic
A684 Untempered spring-quality cold-rolled soft carbon steel strip
A689 Carbon and alloy steel bars for springs
A711 Carbon and alloy steel blooms, billets and slabs for forging
A713 High-carbon spring steel wire for heat-treated components

aFrom Metals Handbook [4.12], with permission of ASM International.

TABLE 4-10 SELECTED ASTM GENERIC SPECIFICATIONS
A6 Rolled steel structural plate, shapes, sheet piling and bars, generic
A20 Steel plate for pressure vessels, generic
A29 Carbon and alloy steel bars, hot rolled and cold finished, generic
A505 Alloy steel sheet and strip, hot rolled and cold rolled, generic
A510 Carbon steel wire rod and coarse round wire, generic
A568 Carbon and HSLA, hot-rolled and cold-rolled steel sheet and

hot-rolled strip, generic
A646 Premium-quality alloy steel blooms and billets for aircraft and aerospace

forgings
A711 Carbon and alloy steel blooms, billets, and slabs for forging
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TABLE 4-11 MECHANICAL PROPERTIES OF SELECTED CARBON STEELS IN HOT-ROLLED, NORMALIZED, AND
ANNEALED CONDITIONa

Austenitizing Tensile Yield Izod Impact
Temperature Strength Strength StrengthAISI

Number Treatment ◦C ◦F MPa ksi MPa ksi
Elongation

(%)

Reduction
in Area

(%)
Brinell

Hardness J ft-lb

1015 As rolled — — 420.6 61.0 313.7 45.5 39.0 61.0 126 110.5 81.5
Normalized 925 1700 424.0 61.5 324.1 47.0 37.0 69.6 121 115.5 85.2
Annealed 870 1600 386.1 56.0 284.4 41.3 37.0 69.7 111 115.0 84.8

1020 As rolled — — 448.2 65.0 330.9 48.0 36.0 59.0 143 86.8 64.0
Normalized 870 1600 441.3 64.0 346.5 50.3 35.8 67.9 131 117.7 86.8
Annealed 870 1600 394.7 57.3 294.8 42.8 36.5 66.0 111 123.4 91.0

1030 As rolled — — 551.6 80.0 344.7 50.0 32.0 57.0 179 74.6 55.0
Normalized 925 1700 520.6 75.5 344.7 50.0 32.0 60.8 149 93.6 69.0
Annealed 845 1550 463.7 67.3 341.3 49.5 31.2 57.9 126 69.4 51.2

1040 As rolled — — 620.5 90.0 413.7 60.0 25.0 50.0 201 48.8 36.0
Normalized 900 1650 589.5 85.5 374.0 54.3 28.0 54.9 170 65.1 48.0
Annealed 790 1450 518.8 75.3 353.4 51.3 30.2 57.2 149 44.3 32.7

1050 As rolled — — 723.9 105.0 413.7 60.0 20.0 40.0 229 31.2 23.0
Normalized 900 1650 748.1 108.5 427.5 62.0 20.0 39.4 217 27.1 20.0
Annealed 790 1450 636.0 92.3 365.4 53.0 23.7 39.9 187 16.9 12.5

1060 As rolled — — 813.6 118.0 482.6 70.0 17.0 34.0 241 17.6 13.0
Normalized 900 1650 775.7 112.5 420.6 61.0 18.0 37.2 229 13.2 9.7
Annealed 790 1450 625.7 90.8 372.3 54.0 22.5 38.2 179 11.3 8.3

1080 As rolled — — 965.3 140.0 586.1 85.0 12.0 17.0 293 6.8 5.0
Normalized 900 1650 1010.1 146.5 524.0 76.0 11.0 20.6 293 6.8 5.0
Annealed 790 1450 615.4 89.3 375.8 54.5 24.7 45.0 174 6.1 4.5
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1117 As rolled — — 486.8 70.6 305.4 44.3 33.0 63.0 143 81.3 60.0
Normalized 900 1650 467.1 67.8 303.4 44.0 33.5 63.8 137 85.1 62.8
Annealed 855 1575 429.5 62.3 279.2 40.5 32.8 58.0 121 93.6 69.0

1137 As rolled — — 627.4 91.0 379.2 55.0 28.0 61.0 192 82.7 61.0
Normalized 900 1650 668.8 97.0 396.4 57.5 22.5 48.5 197 63.7 47.0
Annealed 790 1450 584.7 84.8 344.7 50.0 26.8 53.9 174 49.9 36.8

1141 As rolled — — 675.7 98.0 358.5 52.0 22.0 38.0 192 11.1 8.2
Normalized 900 1650 706.7 102.5 405.4 58.8 22.7 55.5 201 52.6 38.8
Annealed 815 1500 598.5 86.8 353.0 51.2 25.5 49.3 163 34.3 25.3

aFrom Metals Handbook [4.36], with permission of ASM International.
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TABLE 4-12 MECHANICAL PROPERTIES OF SELECTED ALLOY STEELS IN HOT-ROLLED AND ANNEALED
CONDITIONa

Austenitizing Tensile Yield Izod Impact
Temperature Strength Strength StrengthANSI

Numberb Treatment ◦C ◦F MPa ksi MPa ksi
Elongation

(%)

Reduction
in Area

(%)
Brinell

Hardness J ft-lb

1340 Normalized 870 1600 836.3 121.3 558.5 81.0 22.0 62.9 248 92.5 68.2
Annealed 800 1475 703.3 102.0 436.4 63.3 25.5 57.3 207 70.5 52.0

3140 Normalized 870 1600 891.5 129.3 599.8 87.0 19.7 57.3 262 53.6 39.5
Annealed 815 1500 689.5 100.0 422.6 61.3 24.5 50.8 197 46.4 34.2

4130 Normalized 870 1600 668.8 97.0 436.4 63.3 25.5 59.5 197 86.4 63.7
Annealed 865 1585 560.5 81.3 360.6 52.3 28.2 55.6 156 61.7 45.5

4150 Normalized 870 1600 1154.9 167.5 734.3 106.5 11.7 30.8 321 11.5 8.5
Annealed 815 1500 729.5 105.8 379.2 55.0 20.2 40.2 197 24.7 18.2

4340 Normalized 870 1600 1279.0 185.5 861.8 125.0 12.2 36.3 363 15.9 11.7
Annealed 810 1490 744.6 108.0 472.3 68.5 22.0 49.9 217 51.1 37.7

4620 Normalized 900 1650 574.3 83.3 366.1 53.1 29.0 66.7 174 132.9 98.0
Annealed 855 1575 512.3 74.3 372.3 54.0 31.3 60.3 149 93.6 69.0

4820 Normalized 860 1580 755.0 109.5 484.7 70.3 24.0 59.2 229 109.8 81.0
Annealed 815 1500 681.2 98.8 464.0 67.3 22.3 58.8 197 92.9 68.5

5140 Normalized 870 1600 792.9 115.0 472.3 68.5 22.7 59.2 229 38.0 28.0
Annealed 830 1525 572.3 83.0 293.0 42.5 28.6 57.3 167 40.7 30.0

5150 Normalized 870 1600 870.8 126.3 529.5 76.8 20.7 58.7 255 31.5 23.2
Annealed 825 1520 675.7 98.0 357.1 51.8 22.0 43.7 197 25.1 18.5
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5160 Normalized 855 1575 957.0 138.8 530.9 77.0 17.5 44.8 269 10.8 8.0
Annealed 815 1495 722.6 104.8 275.8 40.0 17.2 30.6 197 10.0 7.4

6150 Normalized 870 1600 939.8 136.3 615.7 89.3 21.8 61.0 269 35.5 26.2
Annealed 815 1500 667.4 96.8 412.3 59.8 23.0 48.4 197 27.4 20.2

8620 Normalized 915 1675 632.9 91.8 357.1 51.8 26.3 59.7 183 99.7 73.5
Annealed 870 1600 536.4 77.8 385.4 55.9 31.3 62.1 149 112.2 82.8

8650 Normalized 870 1600 1023.9 148.5 688.1 99.8 14.0 40.4 302 13.6 10.0
Annealed 795 1465 715.7 103.8 386.1 56.0 22.5 46.4 212 29.4 21.7

8740 Normalized 870 1600 929.4 134.8 606.7 88.0 16.0 47.9 269 17.6 13.0
Annealed 815 1500 695.0 100.8 415.8 60.3 22.2 46.4 201 40.0 29.5

9310 Normalized 890 1630 906.7 131.5 570.9 82.8 18.8 58.1 269 119.3 88.0
Annealed 845 1550 820.5 119.0 439.9 63.8 17.3 42.1 241 78.6 58.0

aFrom Metals Handbook [4.36], with permission of ASM International.
bAll grades are fine grained. Heat-treated specimens were oil quenched unless otherwise indicated.
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TABLE 4-13 MECHANICAL PROPERTIES OF SELECTED STAINLESS
STEELSa

Tensile Yield Reduction Maximum
AISI/UNS Strength Strength Elongation of Area Brinell
Grade Condition (ksi) (ksi) (% in 2 in.) (%) Hardness

302/S30200 Annealed 75 30 40 — 88
303/S30300 Annealed 85b 35b 50b 55b —
304/S30400 Annealed 75 30 40 — 88
316/S31600 Annealed 75 30 40 — 95
347/S34700 Annealed 75 30 40 — 88
430/S43000 Annealed 65 30 22c — 88
446/S44600 Annealed 75 40 20 — 95
442/S44200 Annealed 75 40 20 — 95
410/S41000 — 65 30 22a — 95
440A/S44002 — 105b 60b 20b — 95b

aFrom Metals Handbook [4.36], with permission of ASM International.
bTypical values.
c20% elongation for thickness of 1.3 mm (0.050 in.) or less.
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TABLE 4-14 MECHANICAL PROPERTIES OF SELECTED CAST IRONSa

Gray Iron

Torsional Reversed Transverse
Tensile Shear Compressive Bending Load on Test

Strength Strength Strength Fatigue Limit Bar Bb
ASTM
Class MPa ksi MPa ksi MPa ksi MPa ksi kg lb

Brinell
Hardness

20 152 22 179 26 572 83 69 10 839 1850 156
25 179 26 220 32 669 97 79 11.5 987 2175 174
30 214 31 276 40 752 109 97 14 1145 2525 210
35 252 36.5 334 48.5 855 124 110 16 1293 2850 212
40 293 42.5 393 57 965 140 128 18.5 1440 3175 235
50 362 52.5 503 73 1130 164 148 21.5 1638 3600 262
60 431 62.5 610 88.5 1293 187.5 169 24.5 1678 3700 302

Ductile Iron

Minimum Minimum
Tensile Yield

Strengthd Strengthd
Specification
Number

Grade or
Class

Brinell
Hardnessc MPa ksi MPa ksi

Minimum
Elongationd

(%)

ASTM A395-76, 60-40-18 143–187 414 60 276 40 18
ASME SA395

ASTM A476–70,e 80-60-03 201 min. 552 80 414 60 3
SAE AMS5316

ASTM A536-72, 60-40-18 — 414 60 276 40 18
MIL-I-11466B(MR) 65-45-12 — 448 65 310 45 12

80-55-06 — 552 80 379 55 6
100-70-03 — 689 100 483 70 3
120-90-02 — 827 120 621 90 2

SAE J434c D4018 170 max. 414 60 276 40 18
D4512 156–217 448 65 310 45 12
D5506 187–255 552 80 379 55 6
D7003 241–302 689 100 483 70 3
DQ & T e f f f f f

MIL-I-24137 (Ships) Class A 190 max. 414 60 310 45 15
Class B 190 max. 379 55 207 30 7
Class C 175 max. 345 50 172 25 20
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TABLE 4-14 (continued) MECHANICAL PROPERTIES OF SELECTED CAST IRONSa

Tensile Yield
Strength StrengthSpecification

Number
Grade or

Class MPa ksi MPa ksi
Brinell

Hardness
Elongationg

(%)

Malleable Iron

Ferritic
ASTM A47, A338, 32510 345 50 224 32 156 max. 10
ANSI G48.1; 35018 365 53 241 35 156 max. 18
FED QQ-I-666c
ASTM A197 276 40 207 30 156 max. 5

Pearlitic and martensitic
ASTM A220; 40010 414 60 276 40 149–197 10
ANSI G48.2; 45008 448 65 310 45 156–197 8
MIL-I-11444B 45006 448 65 310 45 156–207 6

50005 483 70 345 50 179–229 5
60004 552 80 414 60 197–241 4
70003 586 85 483 70 217–269 3
80002 655 95 552 80 241–285 2
90001 724 105 621 90 269–321 1

Automotive
ASTM A602; M3210h 345 50 224 32 156 max. 10
SAE J158 M4504i 448 65 310 45 163–217 4

M5003i 517 75 345 50 187–241 3
M5503 j 517 75 379 55 187–241 3
M7002 j 621 90 483 70 229–269 2
M8501 j 724 105 586 85 269–302 1

aFrom Metals Handbook [4.36], with permission of ASM International.
bRefer to ASTM A438.
cMeasured at a predetermined location on casting.
d Determined using a standard specimen taken from a separately cast test block, as set forth in the applicable
specification.
eRange specified by mutual agreement between producer and purchaser.
f Value must be compatible with minimum hardness specified for production castings.
gMinimum in 50 mm or 2 in.
hAnnealed.
i Air quenched and tempered.
j Liquid quenched and tempered.
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TABLE 4-15 DESIGNATION OF WROUGHT
ALUMINUM ALLOYSa

Alloying Element Designation

Aluminum, 99.00% minimum 1xxx
and greater

Aluminum alloys grouped by
major alloying element(s)

Copper 2xxx
Manganese 3xxx
Silicon 4xxx
Magnesium 5xxx
Magnesium and silicon 6xxx
Zinc 7xxx
Other elements 8xxx

Unused series 9xxx

aFrom Metals Handbook [4.36], with permission of ASM Interna-
tional.

TABLE 4-16 BASIC TEMPER DESIGNATION
FOR ALUMINUMa

Temper
Designation Process

F As fabricated
O Annealed
H Strain hardened (wrought

products only)
W Solution heat treated
T Heat treated to produce stable

tempers other than F, O, or H

aFrom Metals Handbook [4.36], with permission of ASM Interna-
tional.
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TABLE 4-17 DESIGNATION OF CAST
ALUMINUM ALLOYSa

Major Alloying Element Designation

Aluminum, ≥ 99.00% 1xx .x
Aluminum alloys grouped by

major alloying element(s):
Copper 2xx .x
Silicon, with added copper 3xx .x
and/or magnesium
Silicon 4xx .x
Magnesium 5xx .x
Zinc 7xx .x
Tin 8xx .x
Other elements 9xx .x

Unused series 6xx .x

aFrom Metals Handbook [4.36], with permission of ASM Interna-
tional.
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TABLE 4-18 MECHANICAL PROPERTIES OF SELECTED
NON-HEAT-TREATABLE ALUMINUM ALLOYSa

Tensile Yield Shear Fatigue
Strength Strengthc Strength Limit f

Alloy Temperb MPa ksi MPa ksi
Elongationd

(%)
Brinell

Hardnesse MPa ksi MPa ksi

1100 O 90 13 35 5 35 23 60 9 35 5
H14 125 18 115 17 9 32 75 11 50 7
H18 165 24 150 22 5 44 90 13 60 9

3003 O 110 16 40 6 30 28 75 11 50 7
H14 150 22 145 21 8 40 95 14 60 9
H18 200 29 185 27 4 55 110 16 70 10

3004 O 180 26 70 10 20 45 110 16 95 14
H34 240 35 200 29 9 63 125 8 105 15
H38 285 41 250 36 5 77 145 21 110 16
H19 295 43 285 41 2 — — — — —

3104 H19 290 42 260 38 4 — — — — —
3005 O 130 19 55 8 25 — — — — —

H14 180 26 165 24 7 — — — — —
H18 240 35 225 32 4 — — — — —

3105 O 115 17 55 8 24 — 85 12 — —
H25 180 26 160 23 8 — 105 15 — —
H18 215 31 195 28 3 — 115 17 — —

5005 O 125 18 40 6 25 28 75 11 — —
H34 160 23 140 20 8 41 95 14 — —
H38 200 29 185 27 5 55 110 16 — —

5050 O 145 21 55 8 24 36 105 15 85 12
H34 190 28 165 24 8 53 125 18 90 13
H38 220 32 200 29 6 63 140 20 95 14

5252 O 180 26 85 12 23 46 115 17 — —
H25 235 34 170 25 11 68 145 21 — —
H28 285 41 240 35 5 75 160 23 — —

5154 O 240 35 115 17 27 58 150 22 115 17
H34 290 42 230 33 13 73 165 24 130 19
H38 330 48 270 39 10 80 195 28 145 21
H112 240 35 115 17 25 63 — — 115 17

5454 O 250 36 115 17 22 62 160 23 — —
H34 305 44 240 35 10 81 180 26 — —
H111 260 38 180 26 14 70 160 23 — —
H112 250 36 125 18 18 62 160 23 — —
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TABLE 4-18 (continued) MECHANICAL PROPERTIES OF SELECTED NON-HEAT-TREATABLE
ALUMINUM ALLOYSa

5056 O 290 42 150 22 35 65 180 26 140 20
H18 435 63 405 59 10 105 235 34 150 22
H38 310 60 345 50 15 100 220 32 150 22

5657 O 110 16 40 6 25 28 75 11 — —
H25 160 23 140 20 12 40 95 14 — —
H28 195 28 165 24 7 50 105 15 — —

5082 H19 395 57 370 54 4 — — — — —
5182 O 275 40 130 19 21 — — — — —

H19 420 61 395 57 4 — — — — —
5086 O 260 38 115 17 22 — 160 23 — —

H34 325 47 255 37 10 — 185 27 — —
H112 270 39 130 19 14 — — — — —
H116 290 42 205 30 12 — — — — —

7072 O 70 10 — — 15 — — — — —
H113 75 11 — — 15 — — — — —

8001 O 110 16 40 6 30 — — — — —
H18 200 29 185 27 4 — — — — —

8280 O 115 17 50 7 28 — — — — —
H18 220 32 205 30 4 — — — — —

aFrom Metals Handbook [4.36], with permission of ASM International.
bSee Table 4-16 for temper designations.
cAt 0.2% offset.
d In 50 mm or 2 in.
e500-kg load, 10-mm ball, 30 s.
f Based on 500 million cycles using an R. R. Moore–type rotating-beam machine.
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TABLE 4-19 NOMINAL COMPOSITIONS AND TYPICAL ROOM TEMPERATURE MECHANICAL PROPERTIES OF
MAGNESIUM ALLOYSa

Yield Strength

Tensile Shear
Composition Strength Tensile Compressive Bearing Strength

Alloy Al Mnb Th Zn Zr Other MPa ksi MPa ksi MPa ksi MPa ksi

Elonga-
tion in
50 mm
or 2 in.

(%) MPa ksi
Brinell

Hardnessc

Sand and Permanent Mold Castings

AM100A-T61 10.0 0.1 — — — — 275 40 150 22 150 22 — — 1 — — 69
AZ63A-T6 6.0 0.15 — 3.0 — — 275 40 130 19 130 19 360 52 5 145 21 73
AZ81A-T4 7.6 0.13 — 0.7 — — 275 40 83 12 83 12 305 44 15 125 18 55
AZ91C-T6 8.7 0.13 — 0.7 — — 275 40 195 21 145 21 360 52 6 145 21 66
AZ92A-T6 9.0 0.10 — 2.0 — — 275 40 150 22 150 22 450 65 3 150 22 84
EZ33A-T5 — — — 2.7 0.6 3.3 REd 160 23 110 16 110 16 275 40 2 145 21 50
HK31A-T6 — — 3.3 — 0.7 — 220 32 105 15 105 15 275 40 8 145 21 55
HZ32A-T5 — — 3.3 2.1 0.7 — 185 27 90 13 90 13 255 37 4 140 20 57
K1A-F — — — — 0.7 — 180 26 55 8 — — 125 18 1 55 8 —
QE22A-T6 — — — — 0.7 2.5 Ag, 2.1 Die 260 38 195 28 195 28 — — 3 — — 80
QH21A-T6 — — 60 — 0.7 2.5 Ag, 1.0 Die 275 40 205 30 — — — — 4 — — —
ZE41A-T5 — — — 4.2 0.7 1.2 REd 205 30 140 20 140 20 350 51 3.5 160 23 62
ZE63A-T6 — — — 5.8 0.7 2.6 REd 300 44 190 28 195 28 — — 10 — — 60–85
ZH62A-T5 — — 1.8 5.7 0.7 — 240 35 170 25 170 25 340 49 4 165 24 70
ZK51A-T5 — — — 4.6 0.7 — 205 30 165 24 165 24 325 47 3.5 160 23 65
ZK61A-T5 — — — 6.0 0.7 — 310 45 185 27 185 27 — — — 170 25 68
ZK61A-T6 — — — 6.0 0.7 — 310 45 195 28 195 28 — — 10 180 26 70

Die Castings

AM60A-F 6.0 0.13 — — — — 205 30 115 17 115 17 — — 6 — — —
AS41A-F f 4.3 0.35 — — — 1.0 Si 220 32 150 22 150 22 — — 4 — — —
AZ91A 9.0 0.13 — 0.7 — — 230 33 150 22 165 24 — — 3 140 20 63

and B-Fg
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TABLE 4-19 (continued) NOMINAL COMPOSITIONS AND TYPICAL ROOM TEMPERATURE MECHANICAL PROPERTIES OF MAGNESIUM ALLOYSa

Yield Strength

Tensile Shear
Composition Strength Tensile Compressive Bearing Strength

Alloy Al Mnb Th Zn Zr Other MPa ksi MPa ksi MPa ksi MPa ksi

Elonga-
tion in
50 mm
or 2 in.

(%) MPa ksi
Brinell

Hardnessc

Extruded Bars and Shapes

AZ10A-F 1.2 0.2 — 0.4 — — 240 35 145 21 69 10 — — 10 — — —
AZ21X1-F f 1.8 0.02 — 1.2 — — — — — — — — — — — — — —
AZ31 B 3.0 — — 1.0 — — 260 38 200 29 97 14 230 33 15 130 19 49

and C-Fh

AZ61A-F 6.5 — — 1.0 — — 310 45 230 33 130 19 285 41 16 140 20 60
AZ80A-T5 8.5 — — 0.5 — — 380 55 275 40 240 35 — — 7 165 24 82
HM31A-F — 1.2 3.0 — — — 290 42 230 33 185 27 345 50 10 150 22 —
M1A-F — 1.2 — — — — 255 37 180 26 83 12 195 28 12 125 18 44
ZK21A-F — — — 2.3 0.45b — 260 38 195 28 135 20 — — 4 — — —
ZK40A-T5 — — — 4.0 0.45b — 276 40 255 37 140 20 — — 4 — — —
ZK60A-T5 — — — 5.5 0.45b — 365 53 305 44 250 36 405 59 11 180 26 88

Sheet and Plate

AZ31B-H24 3.0 — — 1.0 — — 290 42 220 32 180 26 325 47 15 160 23 73
HK31A-H24 — — 3.0 — 0.6 — 255 33 200 29 160 23 285 41 9 140 20 68
HM21A-T8 — 0.6 2.0 — — — 235 34 170 25 130 19 270 39 11 125 18 —

aFrom Metals Handbook [4.36], with permission of ASM International.
bMinimum.
c500-kg load; 10-mm ball.
d Rare earth.
eDidymium.
f For battery applications.
gA and B are identical except that 0.30% max residual Cu is allowable in AZ91B.
hProperties of B and C are the same except that AZ31C contains 0.15% min. Mn, 0.1% max. Cu, and 0.03% max. Ni.
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TABLE 4-20 RANGES OF MECHANICAL PROPERTIES FOR SELECTED
NONFERROUS ALLOYSa

Tensile Yield
Metals and Strength Strength Elongation Brinell
Their Alloys (ksi) (ksi) in 2 in. (%) Hardness

Titanium
Heat treated 145–240 135–220 1–12 —
Annealed 60–170 40–150 — —

Nickel
Annealed and 130–190 90–120 10–25 —

age hardened
Cast, annealed, 30–145 — 1–45 cast —

and aged
Annealed 50–120 12–65 1–4 300–380

Copper
Hard 50–55 45 — 194
Annealed 32–35 10 35–45 40

Zinc
Cast 25–47.6 — 1–10 —
Corrosion- 21–46 — 28 60–80

resistant
Heat- 19.5–42 — 10–65 51–61

resistant
Tin 2.8–8.7 1.3 annealed,

2–6 corrosion-
resistant

35 cold rolled,
55 cast

7 annealed

Lead
Rolled 2.4–4.7 0.8–1.6 43–51 5.9–9.5
Extruded 2–3.3 — 48–75 5.1–12.4

aData collected from Ref. [4.14].
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TABLE 4-21 GLASS TRANSITION TEMPERATURE FOR SELECTED
PLASTICS
Thermoplastics Tg(

◦C) Thermosets Tg(
◦C)

Acrylonitrile–butadiene– 80 Alkyds, glass filled 200
styrene, glass filled Epoxides 150–250

Polyamides, 30% glass filled 60 Epoxides, glass filled 150–250
Polycarbonate, 30% glass filled 150 Melamines, glass filled 200
Polyethylene Phenolics, glass filled 200–300

Low density −20 Polybutadienes, glass filled 200
High density Polyesters, glass filled 200

Polyethylene terephthalate 67 Polyimides, glass filled 350
Polymethylmethacrylate 100 Silicones, glass filled 300
Poly-4-methylpentene-1 55 Ureas 80
Polyoxymethylene −13 Urethanes, solid 100
Polyphenyleneoxide, glass filled 180
Polyphenylenesulfide, 40% 150

glass filled
Polypropylene, glass filled 0
Polystyrene 100
Polysulfone, 30% glass filled 200
Polytetrafluoroethylene 120
Polyvinylchloride 80

aFrom Ref. [4.35]. Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.

TABLE 4-22 COMMONLY USED ABBREVIATIONS FOR ENGINEERING
PLASTICSa

ABS Acrylonitrile–butadiene–styrene terpolymer
ACPES Acrylonitrile-chlorinated polyethylene–styrene terpolymer
BR Butadiene rubber
CPE Chlorinated polyethylene
CPVC Chlorinated poly(vinyl chloride)
ECTFE Ethylene chlorotrifluoroethylene copolymer
EPD Ethylene–propylene–diene terpolymer
EPM Ethylene–propylene copolymer
ETFE Ethylene tetrafluoroethylene copolymer
EVA Ethylene–vinyl acetate copolymer
FEP Fluorinated ethylene propylene
HDPE High-density polyethylene
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TABLE 4-22 (continued) COMMONLY USED ABBREVIATIONS FOR ENGINEERING
PLASTICSa

HIPS High-impact polystyrene
LDPE Low-density polyethylene
LLDPE Linear low-density polyethylene
MF Melamine–formaldehyde resin
NBR Acrylonitrile–butadiene rubber (nitrile rubber)
PAN Polyacrylonitrile
PB Polybutadiene
PBT Poly(butylene terephthalate)
PC Polycarbonate
PE Polyethylene
PEG Polyethylene glycol
PET Poly(ethylene terephthalate)
PF Phenol–formaldehyde resin
PIB Polyisobutylene
PIR Polyisocyanurate foam
PMMA Poly(methyl methacrylate)
PP Polypropylene
PPG Polypropylene glycol
PPO Poly(phenylene oxide)
PPS Poly(phenylene sulfide)
PS Polystyrene
PTFE Polytetrafluoroethylene
PTMG Polytetramethylene glycol
PTMT Poly(tetramethylene terephthalate)
PUR Polyurethane
PVA Poly(vinyl acetate)
PVAL Poly(vinyl alcohol)
PVB Poly(vinyl butyral)
PVC Poly(vinyl chloride)
PVF Poly(vinyl formal)
RTV Room temperature vulcanizing silicone rubber
SAN Styrene–acrylonitrile copolymer
SBR Styrene–butadiene rubber
UF Urea–formaldehyde resin

aFrom Annual Book of ASTM Standards [4.15]. Copyright ASTM. Printed with permission.
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TABLE 4-23 TYPICAL PROPERTIES OF PLASTICS USED FOR MOLDING
AND EXTRUSIONa

PolyethyleneATSM Test
Method Low Density High Density Polypropylene

1. Specific gravityb D792 0.91–0.925 0.94–0.965 0.900–0.910
2. Tensile modulus D638 0.14–0.38 0.6–1.8 1.6–2.25

(×10+5 psi)c

3. Compressive modulus D695 — — 1.5–3.0
(×10+5 psi)

4. Flexural modulus D790 0.08–0.6 1.0–2.6 1.7–2.5
(×10+5 psi)

5. Tensile strength D638 0.6–2.3 3.1–5.5 4.5–6.0
(×10+3 psi)

6. Elongation at break (%) D638 90–800 20–130 100–600
7. Compressive strength D695 2.7–3.6 12–18 5.5–8.0

(×10+3 psi)
8. Flexural yield strength D790 — 1.0 6–8

(×10+3 psi)
9. Impact strength, notched D256 No break 0.5–20 0.4–1.0

Izod (ft-lb/in.)
10. Hardness, Rockwell D785 D40–51 D60–70 R80–102

(Shore) (Shore)
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TABLE 4-23 (continued) TYPICAL PROPERTIES OF PLASTICS USED FOR MOLDING AND
EXTRUSIONa

Polystyrene

ASTM Test General Impact Poly(methyl
Method Purpose Resistant methacrylate)

1. Specific gravityb D792 1.04–1.05 1.03–1.06 1.17–1.20
2. Tensile modulus D638 3.5–4.85 2.6–4.65 3.8

(×10+5 psi)c

3. Compressive modulus D695 — — 3.7–4.6
(×10+5 psi)

4. Flexural modulus D790 4.3–4.7 3.3–4.0 4.2–4.6
(×10+5 psi)

5. Tensile strength D638 5.3–7.9 3.2–4.9 7–11
(×10+3 psi)

6. Elongation at break (%) D638 1–2 13–50 2–10
7. Compressive strength D695 11.5–16 4–9 12–18

(×10+3 psi)
8. Flexural yield strength D790 8.7–14 5–12 13–19

(×10+3 psi)
9. Impact strength, notched D256 0.25–0.40 0.5–11 0.3–0.5

Izod (ft-lb/in.)
10. Hardness, Rockwell D785 M65–80 M20–80 M85–105

Poly(vinyl chloride)ATSM Test
Method Rigid Plasticized

ABS Medium
Impact

1. Specific gravityb D792 1.30–1.58 1.16–1.35 1.03–1.06
2. Tensile modulus D638 3.5–6 — 3–4

(×10+5 psi)c

3. Compressive modulus D695 — — 2.0–4.5
(×10+5 psi)

4. Flexural modulus D790 3–5 — 3.7–4.0
(×10+5 psi)

5. Tensile strength D638 6–7.5 1.5–3.5 6–7.5
(×10+3 psi)

6. Elongation at break (%) D638 2–80 200–450 5–25
7. Compressive strength D695 8–13 0.9–1.7 10.5–12.5

(×10+3 psi)
8. Flexural yield strength D790 10–16 — 11–13

(×10+3 psi)
9. Impact strength, notched D256 0.4–20 — 3–6

Izod (ft-lb/in.)
10. Hardness, Rockwell D785 D65–85 A40–100 R107–115

(Shore) (Shore)
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TABLE 4-23 (continued) TYPICAL PROPERTIES OF PLASTICS USED FOR MOLDING AND
EXTRUSIONa

FluoropolymersATSM
Test

Method
Cellulose
Acetate

Cellulose
Acetate–
Butyrate —CF2—CF2— —CF2—CFCl—

1. Specific gravityb D792 1.22–1.34 1.15–1.22 2.14–2.20 2.1–2.2
2. Tensile modulus D638 0.65–4.0 0.5–2.0 0.58 1.5–3.0

(×10+5 psi)c

3. Compressive D695 — — — —
modulus
(×10+5 psi)

4. Flexural modulus D790 — — — —
(×10+5 psi)

5. Tensile strength D638 1.9–9.0 2.6–6.9 2–5 4.5–6.0
(×10+3 psi)

6. Elongation (%) D638 6–70 40–88 200–400 80–250
at break

7. Compressive D695 3–8 2.1–7.5 1.7 4.6–7.4
strength
(×10+3 psi)

8. Flexural yield D790 2–16 1.8–9.3 — 7.4–9.3
strength
(×10+3 psi)

9. Impact strength, D256 1–7.8 1–11 3.0 2.5–2.7
notched Izod,
(ft-lb/in.)

10. Hardness, D785 R34–125 R31–116 D50–55 R75–95
Rockwell (Shore)

aFrom Ref. [4.37], pp. 518–525. Reprinted by courtesy of Marcel Dekker.
bSpecific gravity is defined as the ratio of the mass in air per unit volume of an impermeable portion of the
material at 23◦C to the mass in air of an equal volume of gas-free distilled water at the same temperature.
cFor psi, multiply tabulated values by 10+5.
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TABLE 4-24 TYPICAL ROOM TEMPERATURE MECHANICAL PROPERTIES OF CERAMICS AND GLASSESa,b

Coefficient
Young’s of Thermal

Tensile or Bending Modulus, Expansion
Melting Point(◦C) Strength, σ (MPa) E (GPa) ×10−6 (◦C−1)c

Alumina (Al2O3) 2050 300 (700 whisker) 308 8
Magnesia (MgO) 2850 100 315 14.8
Silicon carbide (SiC) 2300 (decomposes) 200 350 4.5
Silicon nitride (Si3N4) 1900 (sublimes) 600 (1400 whisker) 320 2.5
Titanium carbide (TiC), Ni/Mo binder 3250 200 350 7
Tungsten carbide (WC), Co binder 2620 350 700 1
Common bulk glass Fuses at 1600 70 (up to 4000 filaments) 70 10
Pyroceram glass ceramic Fuses at 1600 190 126 10
Concrete, reinforced 20 35 7
Carbon graphite 3600 (sublimes) 30 6 3

aFrom Ref. [4.35]. Reprinted by permission of Prentice Hall, Upper Saddle River, NJ.
bThere is much more variation in properties of these types of solids than metals, variations occurring with production methods. Properties also vary with temperature and
rate of loading.
cMultiply tabulated values by 10−6.
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TABLE 4-25 TYPICAL ROOM TEMPERATURE STRENGTHS OF CERAMIC
MATERIALSa

Bending Strength
(MOR)b Tensile Strength

Material MPa ksi MPa ksi

Sapphire 620 90 — —
(single-crystal, Al2O3)

Al2O3 350–580 50–80 200–310 30–45
(0–2% porosity)

Sintered Al2O3 200–350 30–50 — —
(< 5% porosity)

Alumina porcelain 275–350 40–50 172–240 25–35
(90–95% Al2O3)

Sintered BeO 172–275 25–40 90–133 13–20
(3.5% porosity)

Sintered MgO 100 15 — —
(< 5% porosity)

Sintered stabilized ZrO2 138–240 20–35 138 20
(< 5% porosity)

Sintered mullite 175 25 100 15
(< 5% porosity)

Sintered spinel 83–220 12–32 — 19
(< 5% porosity)

Hot-pressed Si3N4 620–965 90–140 350–580 50–80
(< 1% porosity)

Sintered Si3N4 414–580 60–80 — —
(∼ 5% porosity)

Reaction-bonded Si3N4 200–350 30–50 100–200 15–30
(15–25% porosity)

Hot-pressed SiC 621–825 90–120 — —
(< 1% porosity)

Sintered SiC 450–520 65–75 — —
(∼ 2% porosity)

Reaction-sintered SiC 240–450 35–65 — —
(10–15% free Si)

Bonded SiC 14 2 — —
(∼ 20% porosity)

Fused SiO2 110 16 69 10
Vycor or pyrex glass 69 10 — —
Glass–ceramic 245 10–35 — —
Machinable glass–ceramic 100 15 — —
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TABLE 4-25 (continued) TYPICAL ROOM TEMPERATURE STRENGTHS OF CERAMIC MATERIALSa

Hot-pressed BN 48–100 7–15 — —
(< 5% porosity)

Hot-pressed B4C 310–350 45–50 — —
(< 5% porosity)

Hot-pressed TiC 275–450 40–65 240–275 35–40
(< 2% porosity)

Sintered WC 790–825 115–120 — —
(2% porosity)

Mullite porcelain 69 10 — —
Steatite porcelain 138 20 — —
Fire-clay brick 5.2 0.75 — —
Magnesite brick 28 4 — —
Insulating firebrick 0.28 0.04 — —

(80–85% porosity)
2600◦F insulating firebrick 1.4 0.2 — —

(75% porosity)
3000◦F insulating firebrick 2 0.3 — —

(60% porosity)
Graphite (grade ATJ) 28 4 12 1.8

aFrom Ref. [4.38], pp. 92–93. Reprinted by courtesy of Marcel Dekker.
bBending strength is defined as the maximum tensile stress at failure (of a three-point loading specimen) and is
often referred to as the modulus of rupture (MOR).
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TABLE 4-26 PROPERTIES OF HUMAN BONEa

Elastic Tensile Compressive Percentage Percentage
Type of Density Modulus Strength Strength Elongation Contraction
Human Bone (kg/m3) (GPa) (MPa) (MPa) –Ultimate– –Ultimate–

Corticalb 1700–2000 5–35 55–200 106–224 0.5–4.9 1.7–2.7
Cancellous 100–1000 0.001–9.8 0.9–5.4 0.1–310 0.9–3.5 1.1–13.4

aAdapted from Ref. [4.29], where sources of the data are given.
bParallel to the axis of the long bone

TABLE 4-27 MATERIAL CONSTANTS OF HUMAN FEMUR CORTICAL BONEa

Ex Ey Ez Gxy Gxz G yz
Type of Elastic Model (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) νxy νxz νyz νyx νzx νzy

Transverse isotropic 11.5 11.5 17.0 3.6 3.3 3.3 0.58 0.31 0.31 0.58 0.46 0.46
Orthotropic 12.0 13.4 20.0 4.53 5.61 6.23 0.376 0.222 0.235 0.422 0.371 0.350

aAdapted from Ref. [4.29].
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TABLE 4-28 PROPERTIES OF HUMAN ARTICULAR CARTILAGEa

Coefficient of Tensile Strengthb Percentage Tensile Indentation
Density Friction for –Ultimate– Elongationc Modulusb,d Stiffnesse Poisson’s
(kg/m3) Synovial Joint (MPa) –Ultimate– (MPa) (MPa) Ratio

1300 0.005–0.04 2–40 60–120 3-224 4.8–8.4 0–0.4

aAdapted from Ref. [4.29], where sources of the data are given.
bSuperficial and middepth cartilage layers of the human femoral head and talus. Loaded parallel to the predomi-
nant alignment of the collagen fibers in the superficial layer.
cBovine cartilage from the superficial, middepth, and deep zone layers. Loaded at angles to the axis of split-line
patterns of 0, 45◦, and 90◦.
d Slope of stress–strain curve at Lagrangian stresses of 1 and 10 MPa.
eIn vivo tests of arthroscopy patients.

TABLE 4-29 PROPERTIES OF HUMAN LIGAMENTS AND TENDONSa

Tensile Strength Percentage Tensile
–Ultimate– Elongation Modulus

(MPa) –Ultimate– (MPa)

Ligament 7.4–52.7 5–44 65.3–1060
Tendon, patellar 17–78 14–31 239–660

aAdapted from Ref. [4.29], where sources of the data are given.

TABLE 4-30 INFLUENCE OF ANATOMIC
LOCATION ON THE TENSILE MODULUS OF
HUMAN MENISCUSa

Anatomical Location Modulus, E (MPa)

Medial anterior 159.6
Medial central 93.2
Medial posterior 110.2
Lateral anterior 159.1
Lateral central 228.8
Lateral posterior 294.1

aAdapted from Ref. [4.29].
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TABLE 4-31 INFLUENCE OF AGE ON ULTIMATE TENSILE STRENGTH OF
VARIOUS TISSUES a,b

Age (years)

Tissue 10–19 20–29 30–39 40–49 50–59 60–69 70–79

Femoral cortical bone 93 100 98 91 76 70 70
Costal cartilage 102 100 93 80 56 33 29
Muscle tissue 127 100 87 73 67 60 60
Calcaneal tendinous tissue 100 100 100 100 100 95 78
Skin 100 100 154 154 140 127 107

aAdapted from Ref. [4.29].
bEntries are the percentage of the highest ultimate tensile strength.

TABLE 4-32 PROPERTIES OF VERTEBRAL CANCELLOUS BONE
SPECIMENS FROM SEVERAL SPECIESa

Human Dog Pig Cow Sheep

Volumetric bone material density (kg/m3) 178 340 373 449 437
Compressive strength, ultimate (MPa) 1.21 6.12 2.40 5.67 13.22

aAdapted from Ref. [4.29].
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TABLE 4-33 PROPERTIES OF METALLIC BIOMATERIALSa

Modulus, Yield
E Strength

(GPa) (MPa) Characteristics Applications

Ti–6Al–4V Annealed 127 830–896 Inert, questionable Total hip and
Pure Ti 120 470 wear properties, knee stems

strength-to-weight
ratio high, elastic
modulus similar to
that of bone

Co–Cr–Mo, Cast/annealed 200 450–492 Good wear properties Hip stems, dental
ASTM F-75 Wrought/annealed 230 390 implants, surfaces

in hips and knees
AISI-316LVM Annealed 210 211–280 Low cost Suture, bone screws

stainless 30% Cold worked 230 750–1160 and plates
Tantalum Cold worked 190 345 Chemically inert Suture, transdermal

implant testing

aSee Ref. [4.28] for more properties as well as sources for the data.
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TABLE 4-34 MATERIAL PROPERTIES OF POLYMERSa

Strength Strength Maximum
Modulus –Yield– –Ultimate– Tglass Strain

(GPa) (MPa) (MPa) (◦C) (%) Applications

Thermosets

Polyethylene 2.41 62.06 150–250 — 70–130 Suture, tendons, vascular
terephthalate grafts, heart valves
(dacron,
polyester)

PMMA 2.4–3.1 15.8 9.7–32 — 2.4–5.4 Bone cement
Polyurethane 5.9 — 45 — 750 Coatings of implants
Silicone rubber Cosmetic, including

Heat vulcanized <1.4 — 5.9–8.3 — 350–600 breast implants
High performance 2.4 — 8.3–10.3 — 700

Thermoplastics

PMMA 2.4–3.1 — 50–75 105 2–10 Contact lenses, blood pump
Polypropylene 1.5 — 30–40 −12 50–500 Disposable syringe, suture,

artificial vascular grafts
Polyvinyl chloride 3.0 — 40–55 70–105 400 Blood and solution bags,

(PVC) rigid catheters, dialysis devices
Polysulfone 2.3–2.48 65–96 106 — 20–75 Hemodialysis, artificial

kidney circulatory assist,
composite matrix

Polytetra-
fluoroethylene

0.5–1.17 — 17–28 — 320–350 Catheter, artificial
vascular grafts

(Teflon)
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UHMWPE
Molded — 21 34 — 300 Articular bearing surfaces
Machined extruded 1.24 21–28 34–47 — 200–250

Degradable Polymersb

Polyglycolic acid 8.4 — 890 36 (230)c 30 Suture, nerve guidance

channels,
PGA chondrocyte scaffolds

Poly-L-lactic acid 8.5 — 900 56 (170)c 25 Suture, stents, bone
PLLA plates, screws

Polyglactine910 8.6 — 850 40 (200)c 24 Skin regeneration
Polydioxanone 8.6 — 850 <20 (106)c 35 Monofilament suture

aSee Ref. [4.2] for more properties as well as sources for the data.
bHigh degree of crystallinity.
cValues in parentheses represent melting temperature (◦C).
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TABLE 4-35 STIFFNESS-BASED DESIGN FOR MINIMUM MASSa

To Minimize the Mass,
Member Prescribed Design Constraints Design Variable Maximize the Quantity

Extension bar Stiffness, length Cross-sectional area E/ρ∗

Bar in torsion Stiffness, length, shape Cross-sectional area G1/2/ρ∗
Stiffness, length, outer radius Wall thickness G/ρ∗

Stiffness, length, wall-thickness Outer radius G1/3/ρ∗

Beam Stiffness, length, shape Cross-sectional area E1/2/ρ∗
Stiffness, length, height Width E/ρ∗

Stiffness, length, width Height E1/3/ρ∗

Column Buckling load, length, shape Cross-sectional area E1/2/ρ∗

Plate (loaded in bending) Stiffness, length, width Thickness E1/3/ρ∗

Plate (compressed in plane, buckling failure) Buckling load, length and width Thickness E1/3/ρ∗
Cylinder with internal pressure Displacement, pressure and radius Wall thickness E/ρ∗
Spherical shell with internal pressure Displacement, pressure and radius Wall thickness E/(1− ν)ρ∗
aAdapted from Ref. [4.32].
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TABLE 4-36 STRENGTH-BASED DESIGN FOR MINIMUM MASSa

To Minimize the Mass,
Member Prescribed Design Constraints Design Variable Maximize the Quantityb

Extension bar Stiffness, length Cross-sectional area σ f /ρ
∗

Bar in torsion Stiffness, length, shape Cross-sectional area σ
2/3
f /ρ∗

Stiffness, length, outer radius Wall thickness σ f /ρ
∗

Stiffness, length, wall thickness Outer radius σ
1/2
f /ρ∗

Beam Stiffness, length, shape Cross-sectional area σ
2/3
f /ρ∗

Stiffness, length, height Width σ f /ρ
∗

Stiffness, length, width Height σ
1/2
f /ρ∗

Column buckling load, length, shape Cross-sectional area σ f /ρ
∗

Plate (loaded in bending) Stiffness, length, width Thickness σ
1/2
f /ρ∗

Plate (compressed in plane, buckling failure) Buckling load, length and width Thickness σ
1/2
f /ρ∗

Cylinder with internal pressure Displacement, pressure and radius Wall thickness σ f /ρ
∗

Spherical shell with internal pressure Displacement, pressure and radius Wall thickness σ f /ρ
∗

aAdapted from Ref. [4.32].
bFor design for infinite fatigue life, replace σ f by the endurance limit σe .
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C H A P T E R 5
Experimental Stress Analysis

5.1 Notation 235
5.2 Introduction 236
5.3 Electrical Resistance Strain Gage 237
5.4 Brittle Coating 244
5.5 Photoelasticity 245

References 245
Tables 247

Practical problems sometimes are so complicated that there is reluctance to use
simple formulas for the calculation of strains and stresses. Then experimental and
numerical techniques can be helpful, with experimental methods useful both for
treating complete engineering problems and for verifying the correctness of ana-
lytical or computational analyses. Since stress cannot usually be measured directly,
most experimental methods serve to measure strains, making the title of this chapter
somewhat of a misnomer. Introductory information on the use of strain gages, brittle
coatings, and some other means of experimental analysis is provided.

5.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F
for force, V for voltage, � for resistance, and T for time.

b Width of tensile specimen (L)
E Young’s modulus (F/L2)
El Magnitude of electric field vector (F /charge)

EV Output voltage (V)
f Frequency (cycles/T )
F Force (F)
I Current (amps)

Pg Power dissipated by strain gage (F L/T )
R Resistance of uniform conductor of length L, cross-sectional area A, and

specific resistance ρ, R = ρL/A (�)

235



236 EXPERIMENTAL STRESS ANALYSIS

SA Sensitivity of material of gage wire
Sc Circuit sensitivity (V)
Sg Gage factor

u, v,w Displacement components (L)
V Applied voltage (V)
γ Shear strain

�E Voltage fluctuation (V)
ε Unit extension or strain (L/L)
εt Threshold strain of brittle coating (L/L)
θ Angle to principal direction
ν Poisson’s ratio
ρ Specific resistance
σ Stress (F/L2)

σ1, σ2 Principal stresses (F/L2)

σuc Ultimate compressive strength (F/L2)
σut Ultimate tensile strength (F/L2)
� Resistance unit (volts/ampere or ohms)

5.2 INTRODUCTION

To improve on the simple use of a micrometer to find the changes in length of a
specimen after it is loaded, methods such as the Moire technique, interferometric
strain gages, electric strain gages, brittle coatings, photoelasticity, x-ray diffraction,
holographs, and laser speckle interferometry are employed.

A Moire pattern is defined as a visual pattern produced by the superposition of
two regular motifs that geometrically interfere. These motifs are parallel lines, rect-
angular arrays of dots, concentric circles, or radial lines. Moire patterns are used to
measure displacements, rotations, curvature, and strain.

Interferometric gages measure the change in grating pitch deposited at a desired
area of specimen in terms of optical interference.

Holographics and laser speckle interferometry are relatively recent and important
developments in experimental mechanics. They permit the extension of interferom-
etry measurements of diffuse objects.

X-ray diffraction can be used to determine changes in interatomic distances. This
can be very useful in analyzing stress concentration and residual stress.

Analogies are important in experimental studies. For example, they use corre-
spondences between governing differential equations of torsion and membrane film
or between differential equations of solid mechanics and electromagnetics.

The majority of current applications in experimental stress analysis utilize elec-
tric strain gages. Only a brief introduction of electric strain gage and brittle coating
methodologies is presented in this chapter. The bases of other methods are beyond
the scope of this book.
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Since the 1950s, experimental stress analysis technology has developed rapidly.
Developments continue in high-precision instrumentation and online computer pro-
cessing of experimental data in real time. Online computers can control hundreds of
strain gages and process all the data automatically. This can reduce both the time and
cost. Holography and laser speckle techniques are very effective experimental meth-
ods and often involve huge amounts of data processing, which can now be handled
by computers. Most experimental methods can be categorized as mechanical, elec-
trical, or optical methods. The introduction of the basic principles here of electric
strain gages will be helpful in understanding some of the new methods.

5.3 ELECTRICAL RESISTANCE STRAIN GAGE

The electrical resistance strain gage is the most frequently used device in experimen-
tal stress analysis. The gages are also used as sensors in transducers for measuring
load, torque, pressure, and acceleration. The electrical resistance strain gage operates
on the principle discovered by Lord Kelvin in 1856 that the electrical resistance of
metal wire varies with strain. The fractional change in resistance (R) per unit exten-
sion (ε) is known as the sensitivity (SA) of the metal or alloy of which the wire is
made:

SA = �R/R

ε
= 1+ 2ν + �ρρ

ε
(5.1)

where ρ is the specific resistance.
The sensitivities of typical strain gage alloys are listed in Table 5-1. The advance

or constantan alloys are widely used because the sensitivity varies little over a wide
range of temperature and strains (even in the plastic region). The high sensitivity and
high fatigue strength of the isoelastic alloy give it advantages in dynamic applica-
tions. The sensitivity of isoelastic gages changes with both temperature and strain,
however.

The most common constructions of the modern strain gage are the bonded wire
and bonded foil types. The foil gage is produced by etching a metal foil into a grid
pattern. The metal foil strain gage is the most widely used gage for both general-
purpose stress analysis and transducer applications. To facilitate handling, the wire
or foil grid is mounted on or encapsulated in a paper or epoxy carrier or backing.
The manufacturer’s identifying code for a gage usually gives such information as
backing type, alloy, length, and resistances. Foil gage lengths typically vary from
0.008 in. (0.20 mm) to 4 in. (102 mm) and resistances are from 120 to 350�. Gages
with lengths greater than 0.060 in. (1.52 mm) are also available with a resistance of
1000 �. The manufacturer specifies the gage factor (Sg), which is defined as

Sg = (�R/R)εa (5.2)

where εa is the uniform normal strain along the axial direction of the gage. The re-
sistance change in the definition of Sg includes effects due to transverse extensions
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(shear strains are negligible in measuring Sg). Manufacturers’ literature usually sup-
plies values for the transverse sensitivity of gages and formulas for deriving true axial
extension from the apparent extension indicated by the gage.

Backings are usually made of paper or glass-fiber-reinforced epoxy. The latter is
applicable to moderate temperatures up to 750◦F (400◦C) or if special precautions
are taken, to even higher temperatures. Another type of gage is the weldable strain
gage, which is suitable for application within the range −320 to 1200◦F (−200 to
650◦C) or for outdoor installation in inclement weather. See Ref. [5.1] for further
information.

Several popular gage configurations are shown in Fig. 5-1. A rosette is the combi-
nation of two or three gages in one assembly. If nothing is known beforehand about
the strain field, a three-element rosette is required for finding the elements of the
small strain tensor. If the principal directions are known beforehand, a two-element

Figure 5-1: Examples of strain gage configurations: (a) uniaxial foil; (b) two-element 90◦
“tee” rosette; (c) 60◦ rosette; (d) three-element 45◦ stacked rosette; (e) 45◦ rosette; (f ) uniaxial
wire; (g) uniaxial wire, with ribbon leads. (Courtesy of the Micro-Measurements Division of
Measurement Group, Inc., Raleigh, NC.)
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90◦ rosette suffices to measure the principal strains. In some cases, such as uniaxial
extension, bending, or torsion of rods, only one gage is necessary to find the strain.

The strain measurements are made by bonding the gage to the surface of the spec-
imen under test and by sensing voltage changes that occur when the resistance of
the strained gage changes. The application of the gage to the specimen surface is a
critical step in the measurement process, and gage manufacturers provide detailed
instructions for preparation of the specimen surface, bonding the gage to the surface,
and making electrical connections. Among the many adhesives used for applying the
gage to the surface, methyl-2-cyanoacrylate, epoxy, polyimide, and several ceram-
ics are very common. Upon completion of the installation, it is desirable to inspect
the adequacy of the bonds. To test the relative completeness of the bond cure, the
resistance between the gage grid and the specimen can be measured. This follows
because the resistance of the adhesive layer increases as the adhesive cures. The typ-
ical resistance across the adhesive layer for strain gage installation is on the order of
10,000 M� [5.1].

Two basic circuits are used to measure the voltage changes across the resistance
gages: the Wheatstone bridge and the potentiometer. The Wheatstone bridge is ap-
plied in both static and dynamic experiments, but the potentiometer is suitable only
for dynamic signals.

The circuit of a basic Wheatstone bridge, where voltage fluctuation �E is to be
measured in order to determine the strain, is sketched schematically in Fig. 5-2. The
applied voltage V is constant. For circuit elements in parallel with the source voltage,

I1(R1 + R2) = V, I2(R3 + R4) = V (5.3)

The voltage difference across B D, EV (or VB D), is

EV = VB D = VBC − VDC = I1 R2 − I2 R3 (5.4)

where VBC and VDC are the voltage differences across BC and DC , respectively.
Using Eq. (5.3) in (5.4) gives

EV = − R1 R3 − R2 R4

(R1 + R2)(R3 + R4)
V (5.5)

Figure 5-2: Basic Wheatstone bridge.
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The bridge is balanced when EV = 0, or R1 R3 = R2 R4. In the simplest cases,
one resistance, say R1, will be the strain gage. If R1 changes by an amount�R1 due
to strain, the corresponding voltage fluctuation �E is calculated as

�E = − (R1 +�R1)R3 − R2 R4

(R1 +�R1 + R2)(R3 + R4)
V + R1 R3 − R2 R4

(R1 + R2)(R3 + R4)
V

= −R3�R1 V

(R1 + R2)(R3 + R4)
(5.6)

where the products in the denominator of �R1 with R3 and R4 have been neglected
and the relation R1 R3 = R2 R4 has been used. (The neglected terms are small up to
a strain of about 0.05.) Substituting R3 = R2 R4/R1 in Eq. (5.6) gives

�E = − (R2 R4/R1)�R1 V

(R1 + R2)(1+ R2/R1)R4
= − (R2/R1)(�R1/R1)

(R2/R1 + 1)2
V

= − r

(1+ r)2
�R1

R1
V (5.7)

where r = R2/R1 and r/(1+r)2 is the circuit efficiency. The sensitivity of the circuit
is the voltage change per unit extension:

Sc =
∣∣∣∣�E

εa

∣∣∣∣ = 1

εa

r

(1+ r)2
�R1

R1
V (5.8)

Substituting Eq. (5.2) in (5.8) gives

Sc = r

(1+ r)2
V Sg (5.9)

Equation (5.9) shows that the circuit sensitivity depends on the static voltage V ,
the gage factor Sg , and the ratio R2/R1. The circuit efficiency is a maximum for
R2/R1 = 1. Equation (5.9) is valid if the bridge voltage V is fixed and independent
of the gage current. The power dissipated by the gage is

Pg = I 2
g Rg (5.10)

Substituting Eq. (5.10) in (5.3) with I1 = Ig and R1 = Rg gives

V = √Pg/Rg(Rg + R2) =
√

Pg/Rg Rg(1+ r) = (1+ r)
√

Pg Rg (5.11)

Using Eq. (5.11) in (5.9) to eliminate V yields

Sc = r Sg
√

Pg Rg/(1+ r) (5.12)
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The term Sg
√

Pg Rg is fixed by the gage selection. Maximum power dissipation is
part of the information supplied by gage manufacturers. The term r/(1+ r) is deter-
mined by the design of the bridge circuit.

Figure 5-2 shows the Wheatstone circuit in its basic configuration. The discussion
above is restricted to the simple case of one gage resistance in the bridge. The bridge
is balanced before strains are applied to the gage in the bridge. Therefore, the voltage
E is initially zero, and the strain-induced voltage �E can be measured directly.
Since in many cases the strain gage installation is subjected to temperature change
during the testing period, the effects of temperature must be eliminated. Often, the
Wheatstone bridge can be designed to nullify the temperature effects. Table 5-2 lists
some common Wheatstone bridges in use today. The gage used to measure the strain
is the active strain gage, whereas the dummy gage is mounted on a small block
of material identical to that of the specimen and is exposed to the same thermal
environment as the active gage. It can be shown that all but circuit 1 in Table 5-2
are temperature compensated if all the active gages in the circuit are also subject
to the same thermal environment and mounted on the same material. Commercially
available strain indicators have a much more complicated circuitry than shown in
Table 5-2, and they give direct readout of strain.

Proper calibration of a strain gage measuring system is important. A strain-
measuring system usually consists of a strain gage, a Wheatstone (or potentiometer)
circuit, a power supply, circuit completion resistors, a signal amplifier, and a record-
ing instrument. Each element contributes to overall system sensitivity. If circuit sen-
sitivity Sc is known, the strain |εa | can be calculated using [Eq. (5.8)] |εa| = Sc|�E |.
A single calibration for the complete system can be achieved by shunting a fixed
resistor Rc across one arm (e.g., R2) of the Wheatstone bridge (shown in Fig. 5-3) so
that the readings from the recording instrument can be related directly to the strains
that induce them. If the bridge is initially balanced, it can be shown that

εc = R2/Sg(R2 + Rc) (5.13)

where εc is the calibration strain that produces the same voltage output (�E) from
the bridge as the calibration resistor Rc as it is placed in parallel with R2. Thus, if

Figure 5-3: Typical strain-measuring system.
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Figure 5-4: Potentiometer circuit.

the output of the recording instrument is hc while the switch s is closed with Rc and
the strain-induced output is h while the switch s is open, the strain is associated with
output h can be calculated numerically as

ε = (h/hc)εc (5.14)

This is the principle of shunt calibration. It provides an accurate and direct method
for calibrating the complete system without considering the number of components
in the system.

The potentiometer circuit sketched in Fig. 5-4 can be utilized to measure dynamic
strains. The gage is R1 (R1 = Rg) in the figure. The circuit has the same sensitivity
as the Wheatstone bridge,

Sc = r Sg
√

Pg Rg/(1+ r) (5.15)

and a linear range of strain of up to 0.02–0.1, depending on the value of r = R2/R1.
The circuit is useful for dynamic strain measurement only because the large static
voltage E must be filtered out.

In this section, only the rudiments of strain gage technology have been discussed.
In practice, other complications must be considered, such as humidity, transverse
sensitivity, gage heating due to electric power dissipation, stability for long-term
measurement, distortion of transient strain pulses, cyclic loading, and the effect of
recording instruments on the data. Many gages, which are self–temperature com-
pensated to some extent, may also nullify temperature effects. Discussion of these
refinements to strain measurement is available in Ref. [5.1] and in the technical lit-
erature of manufacturers of strain gages.

Example 5.1 Delta Rosette The delta rosette utilizes three gages separated by
120◦, as shown in Fig. 5-5. Gage 1 is parallel to the x direction, gage 2 is 120◦ coun-
terclockwise from the x direction, and gage 3 is 240◦ counterclockwise. If extensions
of εg1 = 250×10−6 in./in., εg2 = 150×10−6 in./in., and εg3 = 400×10−6 in./in.
are measured, compute the components of the strain tensor, the principal strains, and
the principal stresses. Neglect the transverse sensitivity of the gages and assume that
the strained specimen has E = 30× 106 psi, ν = 0.3.
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Figure 5-5: Delta rosette.

Substitution of the appropriate extensions and angles into Eq. (3.38) results in
three equations for the unknowns εx , εy , and γxy . Thus,

250× 10−6 = εx

150× 10−6 = εx cos2(120◦)+ εy sin2(120◦)+ γxy sin(120◦) cos(120◦) (1)

400× 10−6 = εx cos2(240◦)+ εy sin2(240◦)+ γxy sin(240◦) cos(240◦)

or

8.75× 10−5 = 0.75εy − 0.433γxy

3.375× 10−4 = 0.75εy + 0.433γxy
(2)

The solutions to these equations are

γxy = 2.8868× 10−4, εy = 2.8333× 10−4, εx = 2.50× 10−4 (3)

The principal strains follow from formulas for strains similar to the principal-stress
formulas of Eq. (3.13),

ε1
ε2

}
= 1

2 (εx + εy)± 1
2

√
(εx − εy)2 + γ 2

xy

= 1
2 (2.50× 10−4 + 2.8333× 10−4)

± 1
2

[
(2.50× 10−4 − 2.8333× 10−4)2 + (2.8868× 10−4)2

]1/2
We find

ε1 = 4.1196× 10−4, ε2 = 1.2137× 10−4

From Hooke’s law (Chapter 3), the principal stresses are

σ1 = E

1− ν2
(ε1 + νε2), σ2 = E

1− ν2
(ε2 + νε1)
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Thus,

σ1 = 30× 106

1− 0.32
[4.1196× 10−4 + (0.3)(1.2137× 10−4)] = 14,781.5 psi

σ2 = 30× 106

1− 0.32
[1.2137× 10−4 + (0.3)(4.1196× 10−4)] = 8076 psi

A summary of the equations used to determine principal strains, principal stresses,
and their directions for common types of rosettes is given in Table 5-3.

5.4 BRITTLE COATING

The brittle-coating technique provides a simple and direct approach for experimen-
tal stress analysis when high precision is not necessary. In the brittle-coating method
of stress analysis, a prototype of the part under study is coated with a thin layer of
material that exhibits brittle fracture. The specimen is then loaded, and when the
stresses in the coating reach a certain state, a pattern of cracks is formed in the coat-
ing.

After each application of the load, the coating is examined, and the crack patterns
associated with each load application are noted. The loading process is continued
until the crack pattern covers the region of interest or until the part is stressed to the
maximum permissible level. The brittle-coating test method is usually nondestruc-
tive, but the load must be kept below the level that would cause yield or fracture in
the prototype.

Before coating, the surface of the specimen is lightly sanded and a reflective un-
dercoat is applied to facilitate crack observation. The coating is sprayed to as near a
uniform thickness as possible. The coating may exhibit both flammability and toxic-
ity, so suitable precautions against these dangers must be taken.

The surface coating is assumed to undergo the same strain as the specimen sur-
face. The cracks in the coating form and propagate perpendicular to the tensile prin-
cipal stresses. The cracks that form normal to principal stresses are called isostatics.
The line enclosing a cracked area that forms during a load application is called an
isoentatic. This line is a boundary between a cracked and an uncracked region and
hence is a line along which the principal stress is constant. One set of cracks will
form in a field in which there is one tensile principal stress, and two will form if
there are two unequal tensile principal stresses. In a uniaxial or biaxial compressive
stress field the coating will not crack, but it may flake and peel off. If two equal ten-
sile principal stresses act on the coating, the crack pattern will be random in nature.
The formation of a random pattern is called crazing. The isostatics and isoentatics
formed during two applications of a biaxial stress field are shown in Fig. 5-6. Refer-
ence [5.2] describes brittle coating technology in more detail.
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Figure 5-6: Crack patterns in a brittle coating.

5.5 PHOTOELASTICITY

The velocity of light depends on the medium in which the light is traveling. The index
of refraction of a material is the ratio of the velocity of light in a vacuum to that in the
material. Some materials exhibit the property of double refraction, or birefringence.
In these materials the index of refraction depends on the orientation of the electric
vector with respect to the material specimen it is traversing. Some materials that
are not normally birefringent become so when they are stressed. The phenomenon,
which was discovered by Brewster in 1816, is the basis for the photoelastic measure-
ment of stress. Patterns observed when a polarized light passes through a transparent
material can be related to principal stresses. Hence transparent models are made to
study stress levels for a particular mechanical configuration under various applied
loads. An introduction to the mechanics and application of photoelasticity is pro-
vided in the first edition of this book. Since the use of photoelasticity is declining,
the subject will not be treated further here.
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TABLE 5-1 STRAIN SENSITIVITY SA FOR COMMON STRAIN GAGE
ALLOYS
Material Composition (%) SA

Advance or constantan 45 Ni, 55 Cu 2.1
Nichrome V 80 Ni, 20 Cr 2.2
Isoelastic 36 Ni, 8 Cr, 0.5 Mo, 55.5 Fe 3.6
Karma 74 Ni, 20 Cr, 3 Al, 3 Fe 2.0
Armour D 70 Fe, 20 Cr, 10 Al 2.0
Platinum alloy 95 Pt, 5 Ir 5.1
Alloy 479 92 Pt, 8 W 4.1

248 TABLE 5-1 Strain Sensitivity SA for Common Strain Gage Alloys



TABLE 5-2 CHARACTERISTICS OF SELECTED COMMON WHEATSTONE BRIDGESa

If R1 = R2 = R3 = R4 = Rg

Circuit
Output Voltage �E

Due to Strain ε
Circuit Sensitivity,

Sc �E Sc

1.
Single active gage in arm R1

r

(1+ r)2
�R1

Rg
V Sc = r SgV

(1+ r)2

Sc = r

1+ r
Sg
√

Pg Rg

�R1

4Rg
V

Sc = 1
4 SgV

Sc = 1
2 Sg

√
Pg Rg

2.
Active gage in arm R1,
dummy gage in R2

�R1

4Rg
V Sc = 1

4 SgV

Sc = 1
2 Sg

√
Pg Rg

�R1

4Rg
V

Sc = 1
4 SgV

Sc = 1
2 Sg

√
Pg Rg
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TABLE 5-2 (continued) CHARACTERISTICS OF SELECTED COMMON WHEATSTONE BRIDGESa

If R1 = R2 = R3 = R4 = Rg

Circuit
Output Voltage �E

Due to Strain ε
Circuit Sensitivity

Sc �E Sc

3.
Active gage in arm R1,
dummy gage in R4

r

(1+ r)2
�R1

Rg
V Sc = r

(1+ r)2
V Sg

Sc = r

1+ r
Sg
√

Pg Rg

�R1

4Rg
V Sc = 1

4 SgV

Sc = 1
2 Sg

√
Pg Rg

250
TA

B
L

E
5-2

C
h

aracteristics
o

f
W

h
eatsto

n
e

B
rid

g
es



4.
Four active gages

V

4Rg
(�R1 −�R2

+�R3 −�R4)

Sc = V Sg

Sc = 2Sg
√

Pg Rg

V

4Rg
(�R1 −�R2 +�R3 −�R4)

when �R1 = �R3

= −�R2 = −�R4

�E = �R1V

Rg

Sc = V Sg

Sc = 2Sg
√

Pg Rg

5.
Active gages in arms
R1 and R4

r V (�R1 −�R4)

(1+ r)2 Rg
Sc = 2r

(1+ r)2
V Sg

Sc = 2r

1+ r
Sg
√

Pg Rg

l
V

4Rg
(�R1 −�R4)

when �R1 = −�R4

�E = �R1V

2Rg

Sc = 1
2 V Sg

Sc = Sg
√

Pg Rg

ar = R2/R1. All the circuits except circuit 1 are temperature compensated.
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TABLE 5-3 PRINCIPAL STRAINS AND STRESSES FOR VARIOUS TYPES OF ROSETTESa

Principal Angle

Rosette Principal Strains (ε1, ε2) and Principal Stresses (σ1, σ2)

1.
Rectangular,
three-element

ε1,2 = 1
2 (εA + εC )± 1

2

√
(εA − εC )2 + (2εB − εA − εC )2

σ1,2 = E

2

[
εA + εC

1− ν ±
1

1+ ν
√
(εA − εC )2 + (2εB − εA − εC )2

] tan 2θ1 = 2εB − εA − εC

εA − εC

εB >
1
2 (εA + εC )

for 0 < θ1 < 90◦

2.
Delta ε1,2 = εA + εB + εC

3
±
√

2

3

√
(εA − εB)2 + (εB − εC )2 + (εC − εA)2

σ1,2 = E

3

[
εA + εB + εC

1− ν ±
√

2

1+ ν
√
(εA − εB)2 + (εB − εC )2 + (εC − εA)2

] tan 2θ1 =
√

3(εC − εB)

2εA − (εB + εC )

εC < εB

for 0 < θ1 < 90◦
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3.
Rectangular,
four-element

ε1,2 = 1
4 (εA + εB + εC + εD)± 1

2

√
(εA − εC )2 + (εB − εD)2

σ1,2 = E

2

[
εA + εB + εC + εD

2(1− ν) ± 1

1+ ν
√
(εA − εC )2 + (εB − εD)2

] tan 2θ1 = εB − εD

εA − εC
εB > εD

for 0 < θ1 < 90◦

4.
T–delta

ε1,2 = 1
2 (εA + εD)± 1

2

√
(εA − εD)2 + 4

3 (εC − εB)2

σ1,2 = E

2

[
(εA + εD

1− ν ± 1

1+ ν
√
(εA − εD)2 + 4

3
(εC − εB)2

] tan 2θ1 = 2(εC − εB)√
3(εA − εD)

εC > εB
for 0 < θ1 < 90◦

aSee Chapter 3 for a discussion of principal stresses. εA , εB , εC , and εD are the principal strains in directions A, B, C , and D.

TA
B

L
E

5-3
P

rin
cip

alS
train

s
an

d
S

tresses
fo

r
R

o
settes

253



C H A P T E R 6
Stress Concentration
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Mathematical analysis and experimental measurement show that in a loaded struc-
tural member, near changes in the section, distributions of stress occur in which the
peak stress reaches much larger magnitudes than does the average stress over the sec-
tion. This increase in peak stress near holes, grooves, notches, sharp corners, cracks,
and other changes in section is called stress concentration. The section variation
that causes the stress concentration is referred to as a stress raiser. Although an ex-
tensive collection of stress concentration factors is tabulated in this chapter, a much
larger collection is provided in Ref. [6.1].

6.1 NOTATION

The units for some of the definitions are given in parentheses, using L for length and
F for force.

Kε Effective strain concentration factor
K f Effective stress concentration factor for cyclic loading, fatigue notch factor

Ki Effective stress concentration factor for impact loads
Kσ Effective stress concentration factor
Kt Theoretical stress concentration factor in elastic range, = σmax/σnom

q Notch sensitivity index
q f Notch sensitivity index for cyclic loading
qi Notch sensitivity index for impact loading

r Notch radius (L)

255



256 STRESS CONCENTRATION

εnom Nominal strain (L/L)
σnom Nominal stress (F/L2) of notched member; for example, for an extension

member, σnom is usually taken to be the axial load divided by the cross-
sectional area measured at the notch (i.e., area taken remotely from notch
minus area corresponding to notch). In practice, the definition of the refer-
ence stress σnom depends on the problem at hand. In Table 6-1 the reference
stress is defined for each particular stress concentration factor.

6.2 STRESS CONCENTRATION FACTORS

Figure 6-1 shows a large plate that contains a small circular hole. For an applied
uniaxial tension the stress field is found from linear elasticity theory [6.2]. In polar
coordinates the azimuthal component of stress at point P is given as

σθ = 1
2σ
[
1+ (r2/ρ2)

]
− 1

2σ
[
1+ 3(r4/ρ4)

]
cos 2θ (6.1)

The maximum stress occurs at the sides of the hole where ρ = r and θ = 1
2π or

θ = 3
2π . At the hole sides,

σθ = 3σ

The peak stress is three times the uniform stress σ .
To account for the peak in stress near a stress raiser, the stress concentration factor

or theoretical stress concentration factor is defined as the ratio of the calculated peak
stress to the nominal stress that would exist in the member if the distribution of stress

Figure 6-1: Infinite plate with a small circular hole.
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remained uniform; that is,

Kt = σmax

σnom
(6.2)

The nominal stress is found using basic strength-of-materials formulas, and the cal-
culations can be based on the properties of the net cross section at the stress raiser.
Sometimes the overall section is used in computing the nominal stress.

If σ is chosen as the nominal stress for the case shown in Fig. 6-1, the stress
concentration factor is

Kt = σmax/σnom = 3

The effect of the stress raiser is to change only the distribution of stress. Equilib-
rium requirements dictate that the average stress on the section be the same in the
case of stress concentration as it would be if there were a uniform stress distribution.
Stress concentration results not only in unusually high stresses near the stress raiser
but also in unusually low stresses in the remainder of the section.

When more than one load acts on a notched member (e.g., combined tension, tor-
sion, and bending) the nominal stress due to each load is multiplied by the stress
concentration factor corresponding to each load, and the resultant stresses are found
by superposition. However, when bending and axial loads act simultaneously, super-
position can be applied only when bending moments due to the interaction of axial
force and bending deflections are negligible compared to bending moments due to
applied loads.

The stress concentration factors for a variety of member configurations and load
types are shown in Table 6-1. A general discussion of stress concentration factors
and factor values for many special cases are contained in the literature (e.g., [6.1]).

Example 6.1 Circular Shaft with a Groove The circular shaft shown in Fig. 6-2
is girdled by a U-shaped groove, with h = 10.5 mm deep. The radius of the groove
root r = 7 mm, and the bar diameter away from the notch D = 70 mm. A bend-

Figure 6-2: Circular shaft with a U-groove.
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ing moment of 1.0 kN·m and a twisting moment of 2.5 kN·m act on the bar. The
maximum shear stress at the root of the notch is to be calculated.

The stress concentration factor for bending is found from part I in Table 6-1,
case 7b. Substitute

2h/D = 21
70 = 0.3, h/r = 10.5/7 = 1.5 (1)

into the expression given for Kt :

Kt = C1 + C2(2h/D)+ C3(2h/D)2 + C4(2h/D)3 (2)

Since 0.25 ≤ h/r = 1.5 < 2.0, we find, for elastic bending,

C1 = 0.594+ 2.958
√

h/r − 0.520h/r

with C2, C3, and C4 given by analogous formulas in case I-7b of Table 6-1. These
constants are computed as

C1 = 3.44, C2 = −8.45, C3 = 11.38, C4 = −5.40

It follows that for elastic bending

Kt = 3.44− 8.45(0.3)+ 11.38(0.3)2 − 5.40(0.3)3 = 1.78 (3)

The tensile bending stress σnom is obtained from Eq. (3.56a) as Md/2I and at the
notch root the stress is

σ = Kt
Md

2I
= (1.78)(1.0× 103 N-m)(0.049 m)(64)

2π(0.049)4 m4
= 154.1 MPa (4)

The formulas from Table 6-1, part I, case 7c, for the elastic torsional load give
Kt = 1.41. The nominal twisting stress at the base of the groove is [Eq. (3.48)]

τ = Kt T d/2

J
= Kt T d(32)

2πd4
= (1.41)(2.5× 103 N ·m)16

π(0.049)3
= 152.6 MPa (5)

The maximum shear stress at the base of the groove is one-half the difference of
the maximum and minimum principal stresses (Chapter 3). The maximum principal
stress is

σmax = 1
2σ + 1

2

√
σ 2 + 4τ 2 = 1

2 (154.1)+ 1
2

√
154.12 + 4(152.6)2 = 248.0 MPa

and the minimum principal stress is

σmin = 1
2σ − 1

2

√
σ 2 + 4τ 2 = 1

2 (154.1)− 1
2

√
154.12 + 4(152.6)2 = −93.9 MPa
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Thus, the maximum shear stress is

τmax = 1
2 (σmax − σmin) = 1

2 (248.0+ 93.9) = 171.0 MPa (6)

6.3 EFFECTIVE STRESS CONCENTRATION FACTORS

In theory, the peak stress near a stress raiser would be Kt times larger than the nom-
inal stress at the notched cross section. However, Kt is an ideal value based on lin-
ear elastic behavior and depends only on the proportions of the dimensions of the
stress raiser and the notched part. For example, in case 2a, part I, Table 6-1, if h,
D, and r were all multiplied by a common factor n > 0, the value of Kt would
remain the same. In practice, a number of phenomena may act to mitigate the effects
of stress concentration. Local plastic deformation, residual stress, notch radius, part
size, temperature, material characteristics (e.g., grain size, work-hardening behav-
ior), and load type (static, cyclic, or impact) may influence the extent to which the
peak notch stress approaches the theoretical value of Kt σnom.

To deal with the various phenomena that influence stress concentration, the con-
cepts of effective stress concentration factor and notch sensitivity have been intro-
duced. The effective stress concentration factor is obtained experimentally.

The effective stress concentration factor of a specimen is defined to be the ratio
of the stress calculated for the load at which structural damage is initiated in the
specimen free of the stress raiser to the nominal stress corresponding to the load at
which damage starts in the sample with the stress raiser. It is assumed that damage in
the actual structure occurs when the maximum stress attains the same value in both
cases. Similar to Eq. (6.2):

Kσ = σmax/σnom (6.3)

The factor Kσ is now the effective stress concentration factor as determined by the
experimental study of the specimen. See Ref. [6.1] for a more detailed discussion
of Kσ .

For fatigue loading, the definition of experimentally determined effective stress
concentration is

K f = fatigue strength without notch

fatigue strength with notch
(6.4)

Factors determined by Eq. (6.4) should be regarded more as strength reduction fac-
tors than as quantities that correspond to an actual stress in the body. The fatigue
strength (limit) is the maximum amplitude of fully reversed cyclic stress that a
specimen can withstand for a given number of load cycles. For static conditions
the stress at rupture is computed using strength-of-materials elastic formulas even
though yielding may occur before rupture. If the tests are under bending or torsion
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loads, extreme fiber stress is used in the definition of Kσ and the stresses are com-
puted using the formulas σ = Mc/I and τ = T r/J (Chapter 3).

No suitable experimental definition of the effective stress concentration factor in
impact exists. Impact tests such as the Charpy or Izod tests (Chapter 4) measure the
energy absorbed during the rupture of a notched specimen and do not yield informa-
tion on stress levels.

When experimental information for a given member or load condition does not
exist, the notch sensitivity index q provides a means of estimating the effects of stress
concentration on strength. Effective stress concentration factors, which are less than
the theoretical factor, are related to Kt by the equations

Kσ = 1+ q(Kt − 1) (6.5)

K f = 1+ q f (Kt − 1) (6.6)

A similar equation could be shown for impact loads using qi as the notch sensitiv-
ity index. Often an explicit expression for the notch sensitivity index is given [e.g.,
q f = (K f − 1)/(Kt − 1)]. The notch sensitivity index can vary from 0 for complete
insensitivity to notches to 1 for the full theoretical effect. Typical values of q are
shown in Fig. 6-3.

Notch sensitivity in fatigue decreases as the notch radius decreases and as the
grain size increases. A larger part will generally have greater notch sensitivity than a
smaller part with proportionally similar dimensions. This variation is known as the
scale effect. Larger notch radii result in lower stress gradients near the notch, and
more material is subjected to higher stresses. Notch sensitivity in fatigue is therefore
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increased. Because of the low sensitivity of small notch radii, the extremely high the-
oretical stress concentration factors predicted for very sharp notches and scratches
are not actually realized. The notch sensitivity of quenched and tempered steels is
higher than that of lower-strength, coarser-grained alloys. As a consequence, for
notched members the strength advantage of high-grade steels over other materials
may be lost.

Under static loading, notch sensitivity values are recommended [6.3] as q = 0
for ductile materials and q between 0.15 and 0.25 for hard, brittle metals. The notch
insensitivity of ductile materials is caused by local plastic deformation at the notch
tip. Under conditions that inhibit plastic slip, the notch sensitivity of a ductile metal
may increase. Very low temperatures and high temperatures that cause viscous creep
are two service conditions that may increase the notch sensitivity of some ductile
metals. The notch sensitivity of cast iron is low for static loads (q ≈ 0) because of
the presence of internal stress raisers in the form of material inhomogeneities. These
internal stress raisers weaken the material to such an extent that external notches
have limited additional effect.

When a notched structural member is subjected to impact loads, the notch sensi-
tivity may increase because the short duration of the load application does not permit
the mitigating process of local slip to occur. Also, the small sections at stress raisers
decrease the capacity of a member to absorb impact energy. For impact loads, values
of notch sensitivity are recommended such as [6.3] qi between 0.4 and 0.6 for ductile
metals, qi = 1 for hard, brittle materials, and qi = 0.5 for cast irons. Reference [6.1]
recommends using the full theoretical factor for brittle metals (including cast irons)
for both static and impact loads because of the possibility of accidental shock loads
being applied to a member during handling. The utilization of fracture mechanics to
predict the brittle fracture of a flawed member under static, impact, and cyclic loads
is treated in Chapter 7.

Neuber’s Rule

Consider the stretched plate of Fig. 6-4. For nonlinear material behavior (Fig. 6-5),
where local plastic deformation can occur near the hole, the previous stress concen-
tration formulas may not apply. Neuber [6.4] established a rule that is useful beyond
the elastic limit relating the effective stress and strain concentration factors to the
theoretical stress concentration factor. Neuber’s rule contends that the formula

Kσ Kε = K 2
t (6.7)

applies to the three factors. This relation states that Kt is the geometric mean of Kσ
and Kε [i.e., Kt = (Kσ Kε)1/2]. Often, for fatigue, K f replaces Kt . From the def-
inition of effective stress concentration, Kσ = σmax/σnom. Also, Kε = εmax/εnom
defines the effective strain concentration factor, where εmax is the strain obtained
from the material law (perhaps nonlinear) for the stress level σmax. Using these rela-
tions in Eq. (6.7) yields

σmax εmax = K 2
t σnom εnom (6.8)
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Figure 6-4: Tensile member with a hole.

Usually, Kt and σnom are known, and εnom can be found from the stress–strain curve
for the material. Equation (6.8) therefore becomes

σmax εmax = C (6.9)

where C is a known constant. Solving Eq. (6.9) simultaneously with the stress–strain
relation, the values of maximum stress and strain are found, and the true (effective)
stress concentration factor Kσ can then be determined. In this procedure the appro-
priate stress–strain curve must be known.

Neuber’s rule was derived specifically for sharp notches in prismatic bars sub-
jected to two-dimensional shear, but the rule has been applied as a useful approxima-

Figure 6-5: Stress–strain diagram for material of the tensile member of Fig. 6-4.
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tion in other cases, especially those in which plane stress conditions exist. The rule
has been shown to give poor results for circumferential grooves in shafts under axial
tension [6.5].

Example 6.2 Tensile Member with a Circular Hole The member shown in
Fig. 6-4 is subjected to an axial tensile load of 64 kN. The material from which
the member is constructed has the stress–strain diagram of Fig. 6-5 for static tensile
loading.

From Table 6-1, part II, case 2a, the theoretical stress concentration factor is com-
puted using d/D = 20

100 , as

Kt = 3.0− 3.140

(
20

100

)
+ 3.667

(
20

100

)2

− 1.527

(
20

100

)3

= 2.51 (1)

The nominal stress is found using the net cross-sectional area:

σnom = P

(D − d)t
= 64

(100− 20)8

(
103

10−6

)
= 100 MPa (2)

Based on elastic behavior, the peak stress σmax at the edge of the hole would be

σmax = Kt σnom = (2.51)(100) = 251 MPa (3)

This stress value, however, exceeds the yield point of the material. The actual peak
stress and strain at the hole edge are found by using Neuber’s rule. The nominal
strain is read from the stress–strain curve; at σnom = 100 MPa, the strain is εnom =
5× 10−4. The point (σnom, εnom) is point A in Fig. 6-5. Neuber’s rule gives

σmax εmax = K 2
t σnomεnom = (2.51)2(100)(5× 10−4) = 0.315 MPa (4)

The intersection of the curve σmax εmax = 0.315 with the stress–strain curve (point B
in Fig. 6-5) yields a peak stress of σmax = 243 MPa and a peak strain of 13× 10−4.
The effective stress concentration factor is

Kσ = σmax/σnom = 243/100 = 2.43 (5)

The effective strain concentration factor is

Kε = 13× 10−4

5× 10−4
= 2.6 (6)

In the local strain approach to fatigue analysis, fatigue life is correlated with the
strain history of a point, and knowledge of the true level of strain at the point is
necessary. Neuber’s rule enables the estimation of local strain levels without using
complicated elastic–plastic finite-element analyses.
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(c)

(b)

(a)

Figure 6-6: Reducing the effect of the stress concentration of notches and holes: (a) Notch
shapes arranged in order of their effect on the stress concentration decreasing as you move
from left to right and top to bottom; (b) asymmetric notch shapes, arranged in the same way
as in (a); (c) holes, arranged in the same way as in (a).
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6.4 DESIGNING TO MINIMIZE STRESS CONCENTRATION

A qualitative discussion of techniques for avoiding the detrimental effects of stress
concentration is given by Leyer [6.6]. As a general rule, force should be transmitted
from point to point as smoothly as possible. The lines connecting the force transmis-
sion path are sometimes called the force (or stress) flow, although it is arguable if
force flow has a scientifically based definition. Sharp transitions in the direction of
the force flow should be removed by smoothing contours and rounding notch roots.
When stress raisers are necessitated by functional requirements, the raisers should
be placed in regions of low nominal stress if possible. Figure 6-6 depicts forms of
notches and holes in the order in which they cause stress concentration. Figure 6-7
shows how direction of stress flow affects the extent to which a notch causes stress
concentration. The configuration in Fig. 6-7b has higher stress levels because of the
sharp change in the direction of force flow.

When notches are necessary, removal of material near the notch can alleviate
stress concentration effects. Figures 6-8 to 6-13 demonstrate instances where re-
moval of material improves the strength of the member.

A type of stress concentration called an interface notch is commonly produced
when parts are joined by welding. Figure 6-14 shows examples of interface notches
and one way of mitigating the effect. The surfaces where the mating plates touch
without weld metal filling, form what is, in effect, a sharp crack that causes stress
concentration. Stress concentration also results from poor welding techniques that
create small cracks in the weld material or burn pits in the base material.

Figure 6-7: Two parts with the same shape (step in cross section) but differing stress flow
patterns can give totally different notch effects and widely differing stress levels at the corner
step: (a) stress flow is smooth; (b) sharp change in the stress flow direction causes high stress.
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(b)(a)

Figure 6-8: Guiding the lines of stress by means of notches that are not functionally essential
is a useful method of reducing the detrimental effects of notches that cannot be avoided. These
are termed relief notches. It is assumed here that the bearing surface of the step of (a) is needed
functionally. Adding a notch as in (b) can reduce the hazardous effects of the corner of (a).

Figure 6-9: Relief notch where screw thread meets cylindrical body of bolt; (a) considerable
stress concentration can occur at the step interface; (b) use of a smoother interface leads to
relief of stress concentration.
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(c)

(b)

(a)

Figure 6-10: Alleviation of stress concentration by removal of material, a process that some-
times is relatively easy to machine. (a) It is assumed that a notch of the sort shown occurs. In
both cases (b) and (c), the notch is retained and the stress concentration reduced.
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(c)

(b)

(a)

Figure 6-11: Reduce the stress concentration in the stepped shaft of (a) by including mate-
rial such as shown in (b). If this sort of modification is not possible, the undercut shoulder of
(c) can help.



6.4 DESIGNING TO MINIMIZE STRESS CONCENTRATION 269

(b)

(a)

Grooves
reduce
stress
concentration
due to hole

Hole Grooves

Figure 6-12: Removal of material can reduce stress concentration, for example, in bars with
collars and holes. (a) The bar on the right with the narrowed collar will lead to reduced stress
concentration relative to the bar on the left. (b) Grooves near a hole can reduce the stress
concentration around the hole.
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Figure 6-13: Nut designs. These are most important under fatigue loading. From Ref. [6.1],
with permission. (a) Standard bolt and nut combination. The force flow near the top of the nut
is sparse, but in area D the stress flow density is very high. (b) Nut with a lip. The force flow
on the inner side of the lip is in the same direction as in the bolt and the force flow is more
evenly distributed for the whole nut than for case (a). The peak stress is relieved. (c) “Force
flow” is not reversed at all. Thus fatigue strength here is significantly higher than for the other
cases.

(b)

(a)

Figure 6-14: The typical welding joints of (a) can be improved by boring out corners as
shown in (b).
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TABLE 6-1 STRESS CONCENTRATION FACTORSa

Notation
Kt Theoretical stress concentration factor σnom Nominal normal stress defined for each

in elastic range case (F/L2)
σ Applied stress (F/L2) σmax Maximum normal stress at stress raiser (F/L2)
P Applied axial force (F) τnom Nominal shear stress defined for each
M Applied moment (F L) case (F/L2)
m1,m2,m Applied moment per unit length (F L/L) τmax Maximum shear stress at stress raiser (F/L2)
T Applied torque (F L)

Refer to figures for the geometries of the specimens.

I. Notches and Grooves

Type of Stress Raiser Loading Condition Stress Concentration Factor

1.
Elliptical or U-shaped notch
in semi-infinite plate

a. Uniaxial tension σmax = σA = Ktσ

Kt = 0.855+ 2.21
√

h/r for 1 ≤ h/r ≤ 361

b. Transverse bending Elliptical notch only, ν = 0.3 and when h/t →∞,

σmax = σA = Ktσ, σ = 6m/t2

Kt = 0.998+ 0.790
√

h/r for 0 ≤ h/r ≤ 7

274
TA

B
L

E
6-1

S
tress

C
o

n
cen

tratio
n

Facto
rs



2.
Opposite single U-shaped
notches in finite-width plate

a. Axial tension σmax = σA = Ktσnom, σnom = P/td

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 50.0

C1 0.955+ 2.169
√

h/r − 0.081h/r 1.037+ 1.991
√

h/r + 0.002h/r

C2 −1.557− 4.046
√

h/r + 1.032h/r −1.886− 2.181
√

h/r − 0.048h/r

C3 4.013+ 0.424
√

h/r − 0.748h/r 0.649+ 1.086
√

h/r + 0.142h/r

C4 −2.461+ 1.538
√

h/r − 0.236h/r 1.218− 0.922
√

h/r − 0.086h/r

for semicircular notch (h/r = 1.0)

Kt = 3.065− 3.472
(

2h
D

)
+ 1.009

(
2h
D

)2 + 0.405
(

2h
D

)3

b. In-plane bending σmax = σA = Ktσnom, σnom = 6M/d2t

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 50.0

C1 1.024+ 2.092
√

h/r − 0.051h/r 1.113+ 1.957
√

h/r

C2 −0.630− 7.194
√

h/r + 1.288h/r −2.579− 4.017
√

h/r − 0.013h/r

C3 2.117+ 8.574
√

h/r − 2.160h/r 4.100+ 3.922
√

h/r + 0.083h/r

C4 −1.420− 3.494
√

h/r + 0.932h/r −1.528− 1.893
√

h/r − 0.066h/r

for semicircular notch (h/r = 1.0)

Kt = 3.065− 6.637
(

2h
D

)
+ 8.229

(
2h
D

)2 − 3.636
(

2h
D

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

c. Transverse bending σmax = σA = Ktσnom, σnom = 6M/t2d

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r ≤ 5.0 and h/t is large

C1 1.041+ 0.839
√

h/r + 0.014 h/r

C2 −1.239− 1.663
√

h/r + 0.118 h/r

C3 3.370− 0.758
√

h/r + 0.434 h/r

C4 −2.162+ 1.582
√

h/r − 0.606 h/r

for semicircular notch (h/r = 1.0)

Kt = 1.894− 2.784
(

2h
D

)
+ 3.046

(
2h
D

)2 − 1.186
(

2h
D

)3

3.
Single U-shaped notch on one
side in finite-width plate

a. Axial tension

AP P
d
2

σmax = σA = Ktσnom, σnom = P/td

Kt = C1 + C2
( h

D

)+ C3
( h

D

)2 + C4
( h

D

)3
0.5 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 20.0

C1 0.907+ 2.125
√

h/r + 0.023h/r 0.953+ 2.136
√

h/r − 0.005h/r

C2 0.710− 11.289
√

h/r + 1.708h/r −3.255− 6.281
√

h/r + 0.068h/r

C3 −0.672+ 18.754
√

h/r − 4.046h/r 8.203+ 6.893
√

h/r + 0.064h/r

C4 0.175− 9.759
√

h/r + 2.365h/r −4.851− 2.793
√

h/r − 0.128h/r

for semicircular notch (h/r = 1.0)

Kt = 3.065− 8.871
( h

D

)+ 14.036
( h

D

)2 − 7.219
( h

D

)3
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b. In-plane bending σmax = σA = Ktσnom, σnom = 6M/td2

Kt = C1 + C2
( h

D

)+ C3
( h

D

)2 + C4
( h

D

)3
0.5 ≤ h/r ≤ 2.0 2.0 ≤ h/r ≤ 20.0

C1 1.795+ 1.481h/r − 0.211(h/r)2 2.966+ 0.502h/r − 0.009(h/r)2

C2 −3.544− 3.677h/r + 0.578(h/r)2 −6.475− 1.126h/r + 0.019(h/r)2

C3 5.459+ 3.691h/r − 0.565(h/r)2 8.023+ 1.253h/r − 0.020(h/r)2

C4 −2.678− 1.531h/r + 0.205(h/r)2 −3.572− 0.634h/r + 0.010(h/r)2

for semicircular notch (h/r = 1.0)

Kt = 3.065− 6.643
( h

D

)+ 0.205
( h

D

)2 − 4.004
( h

D

)3
4.
Multiple opposite semicircular
notches in finite-width plate

Axial tension

t

σmax = Ktσnom, σnom = P/td

Kt = C1 + C2

(
2r
L

)
+ C3

(
2r
L

)2 + C4

(
2r
L

)3

2r/D ≤ 0.4, 0 ≤ 2r/L ≤ 1.0

C1 3.1055− 3.4287
( 2r

D

)+ 0.8522
( 2r

D

)2
C2 −1.4370+ 10.5053

( 2r
D

)− 8.7547
( 2r

D

)2 − 19.6273
(2r

D

)3
C3 −1.6753− 14.0851

( 2r
D

)+ 43.6575
( 2r

D

)2
C4 1.7207+ 5.7974

( 2r
D

)− 27.7463
( 2r

D

)2 + 6.0444
(2r

D

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

5.
Opposite single V-shaped
notches in finite-width plate

Axial tension σmax = σA = Ktσnom, σnom = P/td

For 2h/D = 0.398 and α < 90◦,
2h/D = 0.667 and α < 60◦:

Kt = Ktu

Ktu is the stress concentration factor for U-shaped notch and α
is notch angle in degrees. Otherwise,

Kt = C1 + C2
√

Ktu + C3 Ktu .

2h/D = 0.398, 90◦ ≤ α ≤ 150◦, 1.6 ≤ Ktu ≤ 3.5

C1 5.294− 0.1225α + 0.000523α2

C2 −5.0002+ 0.1171α − 0.000434α2

C3 1.423− 0.01197α − 0.000004α2

2h/D = 0.667, 60◦ ≤ α ≤ 150◦, 1.6 ≤ Ktu ≤ 2.8

C1 −10.01+ 0.1534α − 0.000647α2

C2 13.60− 0.2140α + 0.000973α2

C3 −3.781+ 0.07873α − 0.000392α2
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6.
Single V-shaped notch
on one side

In-plane bending σmax = σA = Ktσnom, σnom = 6M/td2

For α ≤ 90◦,
Kt = Ktu

For 90◦ < α ≤ 150◦ and 0.5 ≤ h/r ≤ 4.0,

Kt = 1.11Ktu −
[
−0.0159+ 0.2243

(
α

150

)− 0.4293
(
α

150

)2
+ 0.3609

(
α

150

)3]
K 2

tu

Ktu is the stress concentration factor for U notch, case 3b, and α
is notch angle in degrees.

7.
U-shaped circumferential
groove in circular shaft

a. Axial tension σmax = σA = Ktσnom, σnom = 4P/πd2

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 50.0

C1 0.89+ 2.208
√

h/r − 0.094h/r 1.037+ 1.967
√

h/r + 0.002h/r

C2 −0.923− 6.678
√

h/r + 1.638h/r −2.679− 2.980
√

h/r − 0.053h/r

C3 2.893+ 6.448
√

h/r − 2.516h/r 3.090+ 2.124
√

h/r + 0.165h/r

C4 −1.912− 1.944
√

h/r + 0.963h/r −0.424− 1.153
√

h/r − 0.106h/r

for semicircular groove (h/r = 1.0)

Kt = 3.004− 5.963
(

2h
D

)
+ 6.836

(
2h
D

)2 − 2.893
(

2h
D

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

b. Bending σmax = σA = Ktσnom, σnom = 32 M/πd3

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.25 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 50.0

C1 0.594+ 2.958
√

h/r − 0.520h/r 0.965+ 1.926
√

h/r

C2 0.422− 10.545
√

h/r + 2.692h/r −2.773− 4.414
√

h/r − 0.017h/r

C3 0.501+ 14.375
√

h/r − 4.486h/r 4.785+ 4.681
√

h/r + 0.096h/r

C4 −0.613− 6.573
√

h/r + 2.177h/r −1.995− 2.241
√

h/r − 0.074h/r

for semicircular groove (h/r = 1.0)

Kt = 3.032− 7.431
(

2h
D

)
+ 10.390

(
2h
D

)2 − 5.009
(

2h
D

)3

c. Torsion τmax = τA = Ktτnom, τnom = 16T/πd3

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.25 ≤ h/r < 2.0 2.0 ≤ h/r ≤ 50.0

C1 0.966+ 1.056
√

h/r − 0.022h/r 1.089+ 0.924
√

h/r + 0.018h/r

C2 −0.192− 4.037
√

h/r + 0.674h/r −1.504− 2.141
√

h/r − 0.047h/r

C3 0.808+ 5.321
√

h/r − 1.231h/r 2.486+ 2.289
√

h/r + 0.091h/r

C4 −0.567− 2.364
√

h/r + 0.566h/r −1.056− 1.104
√

h/r − 0.059h/r
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8.
Large circumferential groove
in circular shaft

a. Axial tension σmax = σA = Ktσnom, σnom = 4P/πd2

Kt = C1 + C2(r/d)+ C3(r/d)2

0.3 ≤ r/d ≤ 1.0, 1.005 ≤ D/d ≤ 1.10

C1 −81.39+ 153.10(D/d)− 70.49(D/d)2

C2 119.64− 221.81(D/d)+ 101.93(D/d)2

C3 −57.88+ 107.33(D/d)− 49.34(D/d)2

b. Bending σmax = σA = Ktσnom, σnom = 32M/πd3

Kt = C1 + C2(r/d)+ C3(r/d)2

0.3 ≤ r/d ≤ 1.0, 1.005 ≤ D/d < 1.10

C1 −39.58+ 73.22(D/d)− 32.46(D/d)2

C2 −9.477+ 29.41(D/d)− 20.13(D/d)2

C3 82.46− 166.96(D/d)+ 84.58(D/d)2

c. Torsion τmax = τA = Ktτnom, τnom = 16T/πd3

Kt = C1 + C2(r/d)+ C3(r/d)2

0.3 ≤ r/d ≤ 1, 1.005 ≤ D/d < 1.10

C1 −35.16+ 67.57(D/d)− 31.28(D/d)2

C2 79.13− 148.37(D/d)+ 69.09(D/d)2

C3 −50.34+ 94.67(D/d)− 44.26(D/d)2
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Notches and Grooves

9.
V-shaped groove in circular shaft

Torsion τmax = τA = Ktτnom, τnom = 16T/πd3

Ktu = stress concentration factor for U-shaped groove
(α = 0), case 7c

Kt = C1 + C2
√

Ktu + C3 Ktu

C1 0.2026
√
α − 0.06620α + 0.00281α

√
α

C2 −0.2226
√
α + 0.07814α − 0.002477α

√
α

C3 1+ 0.0298
√
α − 0.01485α − 0.000151α

√
α

where α is in degrees.
For 0◦ ≤ α ≤ 90◦, Kt is independent of r/d; for

90◦ ≤ α ≤ 125◦, Kt is applicable only if r/d ≤ 0.01.
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II. Holes

Type of Stress Raiser Loading Condition Stress Concentration Factor

1.
Single circular hole
in infinite plate

a. In-plane normal stress (1) Uniaxial tension (σ2 = 0)
σmax = Ktσ1
σA = 3σ1 or Kt = 3
σB = −σ1 or Kt = −1

(2) Biaxial tension
Kt = 3− σ2/σ1 for −1 ≤ σ2/σ1 ≤ 1
For σ2 = σ1, σA = σB = 2σ1 or Kt = 2
For σ2 = −σ1 (pure shear stress),
σA = −σB = 4σ1 or Kt = 4

b. Transverse bending σmax = Ktσ, σ = 6m/t2, ν = 0.3
(1) Simple bending (m1 = m, m2 = 0)

For 0 ≤ d/t ≤ 7.0, σmax = σA
Kt = 3.000− 0.947

√
d/t + 0.192d/t

(2) Cylindrical bending (m1 = m, m2 = νm)
For 0 ≤ d/t ≤ 7.0, σmax = σA
Kt = 2.700− 0.647

√
d/t + 0.129d/t

(3) Isotropic bending (m1 = m2 = m), σmax = σA
Kt = 2 (independent of d/t)

c. Twisting moment (see
preceding figure and
definitions)

σmax = Ktσ, σ = 6m/t2

m1 = m, m2 = −m, ν = 0.3
For 0 ≤ d/t ≤ 7.0,

Kt = 4.000− 1.772
√

d/t + 0.341d/t
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

2.
Central single circular hole
in finite-width plate

a. Axial tension σmax = σA = Ktσnom, σnom = P/[t (D − d)]
Kt = 3.000− 3.140(d/D)+ 3.667(d/D)2 − 1.527(d/D)3

for 0 ≤ d/D ≤ 1

b. In-plate bending (1) At edge of hole,
σmax = σA = Ktσnom, σnom = 6Md/(D3 − d3)t

Kt = 2 (independent of d/D)

(2) At edge of plate,
σmax = σB = Ktσnom, σnom = 6M D/(D3 − d3)t

Kt = 2d/D(α = 30◦)
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c. Transverse bending σmax = σA = Ktσnom, σnom = 6m D/(D − d)t2

For 0 ≤ d/D ≤ 0.3, ν = 0.3 and 1 ≤ d/t ≤ 7

(1) Simple bending (m1 = m, m2 = 0)

Kt =
[
1.793+ 0.131

d/t + 2.052
(d/t)2

− 1.019
(d/t)3

]

×
[
1− 1.04

( d
D

)+ 1.22
( d

D

)2]

(2) Cylindrical bending (m1 = m, m2 = νm)

Kt =
[
1.856+ 0.317

d/t + 0.942
(d/t)2

− 0.415
(d/t)3

]

×
[
1− 1.04

( d
D

)+ 1.22
( d

D

)2]

3.
Eccentric circular hole
in finite-width plane

a. Axial tension Stress on section AB is

σnom = σ
√

1−(d/2c)2

1−d/2c
1−c/D

1−(c/d)
[
2−
√

1−(d/2c)2
]

σmax = σB = Ktσnom

Kt = 3.000− 3.140
( d

2c

)+ 3.667
( d

2c

)2 − 1.527
( d

2c

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

b. In-plane bending σmax = max(σA, σB)

σB = KtBσnom, σnom = 6M/D2t

KtB = C1 + C2
c
e + C3

( c
e

)2
0 ≤ d/2c ≤ 0.5, 0 ≤ c/e ≤ 1.0

C1 3.000− 0.631(d/2c)+ 4.007(d/2c)2

C2 −5.083+ 4.067(d/2c)− 2.795(d/2c)2

C3 2.114− 1.682(d/2c)− 0.273(d/2c)2

σA = KtAσnom, σnom = 6M/D2t

KtA = C ′1 + C ′2
c
e + C ′3

( c
e

)2

C ′1 1.0286− 0.1638(d/2c)+ 2.702(d/2c)2

C ′2 −0.05863− 0.1335(d/2c)− 1.8747(d/2c)2

C ′3 0.18883− 0.89219(d/2c)+ 1.5189(d/2c)2

4.
Two equal circular holes
in infinite plate

a. Uniaxial tension parallel
to row of holes
(σ1 = σ, σ2 = 0)

σmax = Ktσ for 0 ≤ d/L ≤ 1

Kt = 3.000− 0.712
( d

L

)+ 0.271
( d

L

)2
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b. Uniaxial tension normal
to row of holes
(σ2 = σ, σ1 = 0)

σmax = σB = Ktσnom, σnom = σ
√

1−(d/L)2

1−d/L

Kt = 3.0000− 3.0018
( d

L

)+ 1.0099
( d

L

)2
for 0 ≤ d/L ≤ 1

c. Biaxial tension
(σ1 = σ2 = σ )

σmax = σB = Ktσnom, σnom = σ
√

1−(d/L)2

1−d/L

Kt = 2.000− 2.119
( d

L

)+ 2.493
( d

L

)2 − 1.372
( d

L

)3
for 0 ≤ d/L ≤ 1
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

5.
Single row of circular holes in
infinite plate

a. Uniaxial tension normal to
row of holes
(σ1 = 0, σ2 = σ )

σmax = σB = Ktσ

Kt = 3.0000− 0.9916
( d

L

)− 2.5899
( d

L

)2 + 2.2613
( d

L

)3
for 0 ≤ d/L ≤ 1

b. Uniaxial tension parallel to
row of holes
(σ1 = σ, σ2 = 0)

σmax = σA = Ktσnom, σnom = σ/(1− d/L)

Kt = 3.000− 3.095
( d

L

)+ 0.309
( d

L

)2 + 0.786
( d

L

)3
for 0 ≤ d/L ≤ 1

c. Biaxial tension
(σ1 = σ2 = σ )

σmax = σA = Ktσnom, σnom = σ/(1− d/L)

Kt = 2.000− 1.597
( d

L

)+ 0.934
( d

L

)2 − 0.337
( d

L

)3
for 0 ≤ d/L ≤ 1
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d. Transverse bending
(ν = 0.3)

Bending about y axis:
σmax = Ktσnom, σnom = 6m/t2 for 0 ≤ d/L ≤ 1

(1) Simple bending (m1 = m, m2 = 0)

Kt = 1.787− 0.060
( d

L

)− 0.785
( d

L

)2 + 0.217
( d

L

)3
(2) Cylindrical bending (m1 = m, m2 = νm)

Kt = 1.850− 0.030
( d

L

)− 0.994
( d

L

)2 + 0.389
( d

L

)3
Bending about x axis:

σmax = Ktσnom, σnom = 6m/t2(1− d/L)

for 0 ≤ d/L ≤ 1

(1) Simple bending (m1 = m, m2 = 0)

Kt = 1.788− 1.729
( d

L

)+ 1.094
( d

L

)2 − 0.111
( d

L

)3
(2) Cylindrical bending (m1 = m, m2 = νm)

Kt = 1.849− 1.741
( d

L

)+ 0.875
( d

L

)2 + 0.081
( d

L

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

6.
Single elliptical hole in
infinite plate

a. In-plane normal stress (1) Uniaxial tension (σ1 = σ, σ2 = 0):
σA = Ktσ

Kt = 1+ 2a
b = 1+ 2

√
a
r for 0 < a/b < 10

and σB = −σ
(2) Biaxial tension:

For −1 ≤ σ2/σ1 ≤ 1 and 0.25 ≤ a/b ≤ 4,

σA = Kt Aσ1, Kt A = 1+ 2a
b − σ2

σ1

σB = Kt Bσ1, Kt B = σ2
σ1

(
1+ 2b

a

)
− 1

For σ1 = σ2,

Kt A = 2a/b, Kt B = 2b/a

b. Transverse bending σmax = Ktσ, σ = 6m/t2, ν = 0.3
for 2a/t > 5 and 0.2 ≤ a/b < 5

(1) Simple bending (m1 = m, m2 = 0)

Kt = 1+ 2(1+ν)(a/b)
3+ν for 2a/t > 5

(2) Cylindrical bending (m1 = m, m2 = νm)

Kt = (1+ν)[2(a/b)+3−ν]
3+ν

(3) Isotropic bending (m1 = m2 = m)
Kt = 2 (constant)
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7.
Single elliptical hole in
finite-width plate

a. Axial tension σmax = σA = Ktσnom, σnom = σ/(1− 2a/D)

Kt = C1 + C2
2a
D + C3

(
2a
D

)2 + C4

(
2a
D

)3
,

1.0 ≤ a/b ≤ 8.0

C1 1.109− 0.188
√

a/b + 2.086a/b

C2 −0.486+ 0.213
√

a/b − 2.588a/b

C3 3.816− 5.510
√

a/b + 4.638a/b

C4 −2.438+ 5.485
√

a/b − 4.126a/b

b. In-plane bending σmax = σA = Ktσnom, σnom = 12Ma/(D3 − 8a3)t

Kt = C1 + C2

(
2a
D

)
+ C3

(
2a
D

)2

0.4 ≤ 2a/D ≤ 1.0, 1.0 ≤ a/b ≤ 2.0

C1 1.509+ 0.336(a/b)+ 0.155(a/b)2

C2 −0.416+ 0.445(a/b)− 0.029(a/b)2

C3 0.878− 0.736(a/b)− 0.142(a/b)2

for 2a/D ≤ 0.4, σmax = σB = 6M/D2t
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

8.
Eccentric elliptical hole in
finite-width plate

Axial tension Stress on section AB is

σnom =
√

1−a/c
1−a/c

1−c/D

1−(c/D)
[

2−
√

1−(a/c)2
]

and

σmax = Ktσnom

Kt = C1 + C2
a
c + C3

( a
c

)2 + C4
( a

c

)3
for 1.0 ≤ a/b ≤ 8.0 and 0 ≤ a/c ≤ 1
Expressions for C1, C2, C3, and C4 from case 7a can be used.

9.
Infinite row of elliptical holes
in infinite-width plate

Uniaxial tension σmax = Ktσnom, σnom = σ/(1− 2a/L)

For 0 ≤ 2a/L ≤ 0.7 and 1 ≤ a/b ≤ 10,

Kt =
[
1.002− 1.016

(
2a
L

)
+ 0.253

(
2a
L

)2 ] (
1+ 2a

b

)
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10.
Circular hole with opposite
semicircular lobes in
finite-width plate

Axial tension σmax = Ktσnom, σnom = σ/(1− 2b/D)

For 0 ≤ 2b/D ≤ 1,

Kt = Kt0

[
1− 2b

D +
(

6
Kt0
− 1

) ( b
D

)2 + (1− 4
Kt0

) ( b
D

)3 ]

where for 0.2 < r/R ≤ 4.0,

Kt0 = σmax
σ
= 2.2889+ 1.6355√

r/R
− 0.0157

r/R

For infinitely wide plate, Kt = Kt0.

11.
Rectangular hole with rounded
corners in infinite-width plate

Uniaxial tension σmax = Ktσ

Kt = C1 + C2
a
b + C3

( a
b

)2 + C4
(a

b

)3
0.05 ≤ r/2a ≤ 0.5, 0.2 ≤ a/b ≤ 1.0

C1 14.815− 22.308
√

r/2a + 16.298(r/2a)

C2 −11.201− 13.789
√

r/2a + 19.200(r/2a)

C3 0.2020+ 54.620
√

r/2a − 54.748(r/2a)

C4 3.232− 32.530
√

r/2a + 30.964(r/2a)
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

12.
Slot having semicircular ends

a. Axial tension aeq =
√

rb
where aeq is width of
equivalent ellipse

If the openings such as two holes connected by a slit or an
ovaloid are enveloped by an ellipse with the same 2b and r ,
Kt can be approximated by using an equivalent ellipse having
the same dimensions 2b and r . See cases 6a and 8.

b. In-plane bending
aeq =

√
rb

Use an equivalent ellipse. See case 6b.

13.
Equilateral triangular hole with
round corners in infinite-width
plate

a. Uniaxial tension σmax = Ktσ
(σ1 = σ, σ2 = 0) For 0.25 ≤ r/R ≤ 0.75

Kt = 6.191− 7.215(r/R)+ 5.492(r/R)2

b. Biaxial tension σmax = Ktσ
(σ1 = σ, σ2 = σ/2) For 0.25 ≤ r/R ≤ 0.75

Kt = 6.364− 8.885(r/R)+ 6.494(r/R)2

c. Biaxial tension σmax = Ktσ
(σ1 = σ2 = σ ) For 0.25 ≤ r/R ≤ 0.75

Kt = 7.067− 11.099(r/R)+ 7.394(r/R)2
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14.
Single symmetrically reinforced
circular hole in finite-width
plate in tension

a. Without fillet (r = 0) σmax = σA = Ktσ

where σmax = maximum mean stress for thickness sliced off to
plate thickness t . For b/t = 5.0,

Kt = C1 + C2

(
1

h/t

)
+ C3

(
1

h/t

)2

D/b ≥ 4.0, 1 ≤ h/t ≤ 5 and 0.3 ≤ a/b ≤ 0

C1 1.869+ 1.196(a/b)− 0.393(a/b)2

C2 −3.042+ 6.476(a/b)− 4.871(a/b)2

C3 4.036− 7.229(a/b)+ 5.180(a/b)2

b. With fillet (r �= 0) For r/t ≥ 0.6, 0.3 ≤ a/b ≤ 0.7, and h/t ≥ 3.0,

Kt = 3.000− 2.206
√

R + 0.948R − 0.142R
√

R

where R= cross-sectional area of added reinforcement

cross-sectional area of hole (without added reinforcement)

R = ( b
a − 1

) ( h
t − 1

)+ (4− π) r2

at

TA
B

L
E

6-1
S

tress
C

o
n

cen
tratio

n
Facto

rs
295



TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Holes

15.
Transverse circular hole in
round bar or tube

a. Axial tension σmax = σA = Ktσnom

where σnom = 4P
π(D2−d2)

Kt = C1 + C2
2r
D + C3

(
2r
D

)2

d/D ≤ 0.9, 2r/D ≤ 0.45

C1 3.000

C2 0.427− 6.770(d/D)+ 22.698(d/D)2 − 16.670(d/D)3

C3 11.357+ 15.665(d/D)− 60.929(d/D)2 + 41.501(d/D)3

b. Bending σmax = σA = Ktσnom

where σnom = 32M D
π(D4−d4)

Kt = C1 + C2
2r
D + C3

(
2r
D

)2 + C4

(
2r
D

)3

d/D ≤ 0.9, 2r/D ≤ 0.4

C1 3.000
C2 −6.250− 0.585(d/D)+ 3.115(d/D)2

C3 41.000− 1.071(d/D)− 6.746(d/D)2

C4 −45.000+ 1.389(d/D)+ 13.889(d/D)2
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c. Torsion σmax = σA = Ktτnom, τnom = 16T D/π(D4 − d4)

Kt = C1 + C2
2r
D + C3

(
2r
D

)2 + C4

(
2r
D

)3

2r/d ≤ 0.4, d/D ≤ 0.8

C1 4.000

C2 −6.055+ 3.184(d/D)− 3.461(d/D)2

C3 32.764− 30.121(d/D)+ 39.887(d/D)2

C4 −38.330+ 51.542
√

d/D − 27.483(d/D)

Maximum stress occurs inside hole on hole surface, near outer
surface of bar
Maximum shear stress concentration factor

Kt S = τmax/τnom = 1
2 Kt

16.
Round pin joint with closely
fitting pin in finite-width plate

Tension Nominal stress based on net section:
σmax = Ktaσna, σna = P/(D − d)h

Nominal stress based on bearing area:
σmax = Ktbσnb, σnb = P/dh

For 0.15 ≤ d/D ≤ 0.75, L/D ≥ 1.0,

Kta = 12.882− 52.714
( d

D

)+ 89.762
( d

D

)2 − 51.667
( d

D

)3
Ktb = 0.2880+ 8.820

( d
D

)− 23.196
( d

D

)2 + 29.167
( d

D

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Fillets

III. Fillets

Type of Stress Raiser Loading Conditions Stress Concentration Factor

1.
Opposite shoulder fillets in
stepped flat bar

a. Axial tension σmax = Ktσnom, σnom = P/td

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

where L
D > −1.89

( r
d − 0.15

)+ 5.5

0.1 ≤ h/r ≤ 2.0 2.0 ≤ h/r ≤ 20.0

C1 1.006+ 1.008
√

h/r − 0.044h/r 1.020+ 1.009
√

h/r − 0.048h/r

C2 −0.115− 0.584
√

h/r + 0.315h/r −0.065− 0.165
√

h/r − 0.007h/r

C3 0.245− 1.006
√

h/r − 0.257h/r −3.459+ 1.266
√

h/r − 0.016h/r

C4 −0.135+ 0.582
√

h/r − 0.017h/r 3.505− 2.109
√

h/r + 0.069h/r

For cases where L/D < −1.89(r/d − 0.15)+ 5.5, see Ref. [6.1].

b. In-plane bending σmax = Ktσnom, σnom = 6M/td2

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

where L
D > −2.05

( r
d − 0.025

)+ 2.0

0.1 ≤ h/r ≤ 2.0 2.0 ≤ h/r ≤ 20.0

C1 1.006+ 0.967
√

h/r + 0.013h/r 1.058+ 1.002
√

h/r − 0.038h/r

C2 −0.270− 2.372
√

h/r + 0.708h/r −3.652+ 1.639
√

h/r − 0.436h/r

C3 0.662+ 1.157
√

h/r − 0.908h/r 6.170− 5.687
√

h/r + 1.175h/r

C4 −0.405+ 0.249
√

h/r − 0.200h/r −2.558+ 3.046
√

h/r − 0.701h/r
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2.
Shoulder fillet in stepped
circular shaft

a. Axial tension σmax = Ktσnom, σnom = 4P/πd2

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r ≤ 2.0 2.0 ≤ h/r ≤ 20.0

C1 0.926+ 1.157
√

h/r − 0.099h/r 1.200+ 0.860
√

h/r − 0.022h/r

C2 0.012− 3.036
√

h/r + 0.961h/r −1.805− 0.346
√

h/r − 0.038h/r

C3 −0.302+ 3.977
√

h/r − 1.744h/r 2.198− 0.486
√

h/r + 0.165h/r

C4 0.365− 2.098
√

h/r + 0.878h/r −0.593− 0.028
√

h/r − 0.106h/r

b. Bending σmax = Ktσnom, σnom = 32M/πd3

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.1 ≤ h/r ≤ 2.0 2.0 ≤ h/r ≤ 20.0

C1 0.947+ 1.206
√

h/r − 0.131h/r 1.232+ 0.832
√

h/r − 0.008h/r

C2 0.022− 3.405
√

h/r + 0.915h/r −3.813+ 0.968
√

h/r − 0.260h/r

C3 0.869+ 1.777
√

h/r − 0.555h/r 7.423− 4.868
√

h/r + 0.869h/r

C4 −0.810+ 0.422
√

h/r − 0.260h/r −3.839+ 3.070
√

h/r − 0.600h/r
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Fillets

c. Torsion τmax = Ktτnom, τnom = 16T/πd3

Kt = C1 + C2
2h
D + C3

(
2h
D

)2 + C4

(
2h
D

)3

0.25 ≤ h/r ≤ 4.0

C1 0.905+ 0.783
√

h/r − 0.075h/r

C2 −0.437− 1.969
√

h/r + 0.553h/r

C3 1.557+ 1.073
√

h/r − 0.578h/r

C4 −1.061+ 0.171
√

h/r + 0.086h/r
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IV. Miscellaneous Elements

Type of Stress Raiser Loading Conditions Stress Concentration Factor

1.
Round shaft with semicircular
end key seat

a. Bending σmax = Ktσ, σ = 32M/πD3

b = 1
4 D, h = 1

8 D, α = 10◦, β = 15◦

(1) At location A on surface:
Kt A = 1.6

(2) At location B at end of keyway:

Kt B = 1.426+ 0.1643
(

0.1
r/D

)
− 0.0019

(
0.1

r/D

)2

where 0.005 ≤ r/D ≤ 0.04
D ≤ 6.5 in.
h/D = 0.125

For D > 6.5 in., it is suggested that the Kt B values for
r/D = 0.0208 be used.

b. Torsion h = 1
8 D, b = D/r, α = 15◦, β = 50◦

(1) At location A on surface:
Kt A = σmax/τ � 3.4, τ = 16T/πD3

(2) At location B in fillet:
Kt B = σmax/τ

= 1.953+ 0.1434
(

0.1
r/D

)
− 0.0021

(
0.1

r/D

)2

for 0.005 ≤ r/D ≤ 0.07
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Miscellaneous Elements

2.
Splined shaft

a. Torsion For an eight-tooth spline

Kt S = τmax/τ, τ = 16T/πD3

For 0.01 ≤ r/D ≤ 0.04

Kt S = 6.083− 14.775
(

10r
D

)
+ 18.250

(
10r
D

)2

3.
Gear teeth

Bending plus some
compression

A and C are points of
tangency of inscribed parabola
ABC with tooth profile

b = tooth width normal to
plane of figure

r f = minimum radius of tooth
fillet

W = load per unit length of
tooth face

φ = angle between load W
and normal to tooth face

Maximum stress occurs at fillet on tension side at base of tooth

σmax = Ktσnom, σnom = 6W h
bt2 − W

bt tanφ

For 14.5◦ pressure angle,

Kt = 0.22+
(

t
r f

)0.2 ( t
h

)0.4
For 20◦ pressure angle,

Kt = 0.18+
(

t
r f

)0.15 ( t
h

)0.45

302
TA

B
L

E
6-1

S
tress

C
o

n
cen

tratio
n

Facto
rs



4.
U-shaped member

where θ = 20◦
e = L + r + d/2

For position A,

Kt A = σmax−P/td
6Pe/td2

For position B,

Kt B = σmax
P LcB/IB

where IB/cB = section modulus at section in question (section B B ′)

(1) For square outer corners

e
r = e

h = e
d Kt A = 0.194+ 1.267

( e
r

)− 0.455
( e

r

)2 + 0.050
( e

r

)3
1.5 ≤ e

r ≤ 4.5 Kt B = 4.141− 2.760
( e

r

)+ 0.838
( e

r

)2 − 0.082
( e

r

)3
e

2r = e
2h = e

d Kt A = 0.800+ 1.147
( e

2r

)− 0.580
( e

2r

)2 + 0.093
( e

2r

)3
1.0 ≤ e

2r ≤ 2.5 Kt B = 7.890− 11.107
( e

2r

)+ 6.020
( e

2r

)2 − 1.053
( e

2r

)3
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TABLE 6-1 (continued) STRESS CONCENTRATION FACTORS: Miscellaneous Elements

d
r = d

h When a = 3r ,

0.75 ≤ d
r ≤ 2.0

Kt A = 1.143+ 0.074
( d

r

)+ 0.026
( d

r

)3
Kt B = 1.276

When a = r ,

Kt A = 0.714+ 1.237
( d

r

)− 0.891
( d

r

)2 + 0.239
( d

r

)3
Kt B = 1.374

d
r = h

r For a = 3r ,

1.0 ≤ d
r ≤ 7.0

Kt A = 0.982+ 0.303
( d

r

)− 0.017
( d

r

)2
Kt B = 1.020+ 0.235

( d
r

)− 0.015
( d

r

)2
For a = r ,

Kt A = 1.010+ 0.281
( d

r

)− 0.012
( d

r

)2
Kt B = 0.200+ 1.374

( d
r

)− 0.412
( d

r

)2 + 0.037
( d

r

)3
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(2) For rounded outer corners

R
r = R

d = R
h For a = 3r ,

2.0 ≤ R
r ≤ 2.75

Kt A = 48.959− 60.004
( R

r

)+ 24.933
( R

r

)2 − 3.427
( R

r

)3
Kt B = 79.769− 98.346

( R
r

)+ 40.806
( R

r

)2 − 5.610
( R

r

)3
For a = r ,

Kt A = 27.714− 31.859
( R

r

)+ 12.625
( R

r

)2 − 1.648
( R

r

)3
Kt B = 81.344− 99.133

( R
r

)+ 40.740
( R

r

)2 − 5.560
( R

r

)3
5.
Angles and box sections

Torsion (1) For angle section:

τmax = τA = Ktτ

Kt = 6.554− 16.077
√

r
t + 16.987

( r
t

)− 5.886
√

r
t

( r
t

)
where 0.1 ≤ r/t ≤ 1.4

(2) For box section:

τmax = τB = Ktτ

Kt = 3.962− 7.359
( r

t

)+ 6.801
( r

t

)2 − 2.153
( r

t

)3
where a is 15–20 times larger than t ,
0.2 ≤ r/t ≤ 1.4

aMuch of this material is based on Ref. [6.1].
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Discontinuities (sharp corners, grooves, surface nicks, and voids in welds) and ma-
terial imperfections (flaws, cracks) are present in almost all engineering structures
even though the structure may have been “inspected” during fabrication. However,
increasing demands for optimum design and the resulting conservation of material
require that structures be designed with smaller safety margins. The discipline of
fracture mechanics helps meet the needs of accurately estimating the strength of
cracked structures. In general, fracture mechanics deals with the conditions under
which a load-bearing body can fail due to enlargement of a dominant crack con-
tained in the body.

The tendency of a structural member to fracture depends on the temperature, the
microstructure of the material, the presence of corrosive agents, the thickness of
the material, and the types of loading—static, impact, or cyclic—and construction
practice—welded, casted, riveted and bolted, and so on. Material fracture under static

307
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loading with chemically active substances present is known as stress corrosion; frac-
ture under cyclic load is referred to as fatigue, and fracture with both cyclic loading
and the presence of active substances is called corrosion fatigue. In this chapter we
review briefly the theory of fracture mechanics and fatigue. These theories can be
used in the design of structures to avoid brittle fracture. More extensive and detailed
treatments of fracture, stress corrosion, and corrosion fatigue may be found in the
literature (e.g., [7.1–7.3]).

7.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and
F for force.

a Flaw size, usually length or half-length of flaw; also, 2a is the major axis
of an ellipse (L)

ac Critical flaw size (L)
aT Flaw size at rate transition point of crack growth (L)
A Crack growth rate under unit fluctuation of stress intensity factor (L/cycle)
b Width of plate; also, 2b is the minor axis of an ellipse (L)
C Constant that depends on the shape and size of the flaw and specimen
E Young’s modulus (F/L2)

E ′ E for plane stress; E/(1− ν2) for plane strain
G Energy release rate (F/L)
J The J integral (F L/L)
K Stress intensity factor (F/L3/2)

�K Range of stress intensity factor (F/L3/2)
Kc Critical stress intensity factor for plane stress (F/L3/2)
K f Fatigue strength reduction factor
KI Stress intensity factor for plane strain, mode I deformation (F/L3/2)

KIc Critical stress intensity factor for plane strain, mode I deformation, also
called fracture toughness or notch toughness (F/L3/2)

KId Critical stress intensity factor for dynamic (impact) loading and plane
strain conditions of maximum constraint (F/L3/2)

KII Mode II stress intensity factor (F/L3/2)
KIII Mode III stress intensity factor (F/L3/2)
Kt Theoretical stress concentration factor

KT Transition stress intensity factor for zero to tension loading (F/L3/2)
�KT Fluctuation of stress intensity factor at which transition of rate of crack

growth occurs (F/L3/2)
�Kth Threshold fluctuation of stress intensity factor below which cracks do not

grow (F/L3/2)
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N Number of load cycles

N f Fatigue life, number of cycles to failure (cycles)
q Notch sensitivity index
r Radius of curvature of notch (L)

rp True length of crack-tip plastic zone (L)
r∗p Apparent distance in crack-tip plastic zone (L)

R Crack growth resistance (F/L)
t Specimen thickness (L)

α Material constant used in computing notch sensitivity (L)
σ Nominal stress (F/L2)
σa Alternating stress level of the applied load (F/L2)

σe Endurance limit (F/L2)
σ f Fatigue strength (F/L2)

σm Mean stress level of the applied load (F/L2)
σu Ultimate tensile strength (F/L2)

σys Yield strength (F/L2)

7.2 LINEAR ELASTIC FRACTURE MECHANICS AND APPLICATIONS

Linear elastic mechanics has become a practical analytical tool for studying struc-
tural fracture where the inelastic deformation surrounding a crack tip is small. Frac-
ture mechanics deals with the conditions under which cracks form and grow. As
a consequence, fracture mechanics can be used in structural design to determine
acceptable stress levels, acceptable defect sizes, and material properties for certain
working conditions. Linear elastic fracture mechanics is based on an analytical pro-
cedure that relates the stress field in the vicinity of the crack tip to the nominal stress
of the structure; to the size, shape, and orientation of the crack; and to the material
properties of the structure.

Equation (6.1) describes the distribution of stresses near a circular hole in an
infinite plane under uniaxial tension. This formula was used to calculate the stress
concentration factor. In a similar fashion, consider an elliptical hole of major axis 2a
and minor axis 2b, as shown in Fig. 7-1a. If a � b, the elliptical hole becomes a
crack of length 2a (Fig. 7-1b). The stress formulas near the crack tip (r � a) can be
shown to be [7.4]

σx = σ
√

a√
2r

cos
θ

2

(
1− sin

θ

2
sin

3θ

2

)
, σy = σ

√
a√
2r

cos
θ

2

(
1+ sin

θ

2
sin

3θ

2

)

τxy = σ
√

a√
2r

sin
θ

2
cos

θ

2
cos

3θ

2
(7.1)

where r and θ are shown in Fig. 7-1b.
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Figure 7-1: (a) Elliptical hole in an infinite plate; (b) a � b.

The stress σy near the crack tip with θ = 0 becomes

σy = σ√a/
√

2r (7.2)

It is clear that at the crack tip (r = 0) the stress is singular since σy →∞ as r → 0.
Because of this singularity, the usual stress concentration approach is inappropriate
for this problem. Alternatively, the quantity σy

√
2r is introduced, since this factor

remains finite as r → 0. More specifically, a factor π is introduced to this quantity,
so that a new factor is defined,

K = σy
√

2πr = (σ√a/
√

2r)
√

2πr = σ√πa (7.3)

In a more general form, K is taken to be

K = Cσ
√
πa (7.4)

The quantity K is called the stress intensity factor (with units MPa · √m, or ksi-
√

in.).
The stress σ is the nominal stress, a is the flaw size, and C is a constant that depends
on the shape and size of the flaw and specimen.

It is important to determine the stress intensity factor for the specific geometry
and loading involved to assess the safety factor for a solid.

Three types of crack propagation are recognized: opening, sliding, and tearing
(Fig. 7-2). These types are called modes I, II, and III, respectively. A flaw may prop-
agate in a particular mode or in a combination of these modes.
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Figure 7-2: Three modes of crack propagation: (a) I, opening; (b) II, sliding; (c) III, tearing.

The stress intensity factors of Eq. (7.4) corresponding to the three modes repre-
sent the most general loading environment. Formulas for stress intensity factors for
various loading and crack shapes are listed in Table 7-1.

When the combination of nominal stress and crack size attains a value such that
the stress intensity factor K reaches a critical magnitude Kc that is material depen-
dent, unstable crack propagation occurs. The critical stress intensity factor Kc for
each mode of propagation is regarded as a material constant that depends, more or
less, on temperature, plate thickness, and loading rate. The concept of the critical
stress intensity factor as a material property originated with Irwin. Earlier investi-
gators, particularly Griffith, reasoned that unstable crack propagation occurs when
the elastic energy released during the formation of a unit area of crack surface ex-
ceeds the energy required to form that amount of surface. In dealing with ductile
metals the energy necessary to perform plastic work at the crack tip is much more
important than the surface energy [7.5]. The critical stress intensity factor of a mate-
rial is also referred to as its fracture toughness.

The relationship between the stress intensity factor and the fracture toughness is
similar to that between tensile stress and tensile strength, that is,

K ≤ Kc (7.5)

where Kc is the critical value (fracture toughness) that depends on the degrees of
triaxial constraint at the crack tip. For mode I deformation under plane strain (small



312 FRACTURE MECHANICS AND FATIGUE

crack-tip plastic deformation), the critical value for fracture is designated KIc, which
has units of MPa · √m (or ksi-

√
in.). This inherent material property is measured

under precisely defined procedures prescribed by the American Society for Testing
and Materials (ASTM) standard E399. A useful relation between the plane strain
fracture toughness KIc and the somewhat greater value of Kc is the semiempirical
equation [7.6]

Kc = KIc

[
1+ 1.4

t2

(
KIc

σys

)4
]1/2

(7.6)

where t is the plate thickness and σys is the yield stress of the material. This formula
can be used to estimate the plane stress fracture toughness if the plane strain value
is known or to obtain the plane strain fracture toughness from a Kc obtained from
specimen testing. For dynamic (impact) loading and plane strain conditions, the crit-
ical stress intensity factor is designated KId . All of these values are also affected by
temperature.

For mode I crack propagation, Eqs. (7.4) and (7.5) can be rewritten as

KI = Cσ
√
πa (7.7)

KI ≤ KIc (7.8)

where KI is the stress intensity factor for mode I deformation under plane strain.
These equations indicate that the crack size a, stress level σ , and fracture tough-

ness KIc are the primary factors that control the susceptibility of a structure to brittle
fracture. It is also apparent that the single parameter K (or KI) is enough to represent
the stress condition in the vicinity of the crack tip. When the stress intensity factor
reaches the value of the fracture toughness, failure occurs.

For steel the resistance of a material to fracture decreases as the temperature de-
creases and as the loading rate increases. The fracture toughness of some structural
materials, such as aluminum, titanium, and some high-strength steels, changes only
slightly with temperature. It is interesting that the fracture toughness decreases as the
yield stress of the material increases. Depending on the service conditions, a material
may fracture elastically with little plastic deformation. A particular temperature that
is different for different steels is customarily used to define the transition from duc-
tile to brittle behavior. This is known as the ductile–brittle transition temperature and
as the nil-ductility transition temperature (NDT) (see Chapter 4). The transition tem-
perature of a material increases markedly with loading rate and with the grain size
of the material. Because of the difficulty involved in obtaining fracture toughness
data directly, a number of formulas relating Charpy values (Chapter 4) and fracture
toughness KIc of steels have been developed. One of these is(

KIc

σys

)2

= 5
(

CVN

σys
− 0.05

)
(7.9)

which is based on results obtained on 11 steels having yield strengths σys ranging
from 110 to 246 ksi. Here CVN is the Charpy energy at a temperature above the
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transition temperature in ft-lb, σys is in ksi, and KIc is in ksi-
√

in. In SI units [7.7]

(
KIc

σys

)2

= 0.18

(
CVN

σys
− 0.05

)
(7.10)

When two or more loads act to produce the same mode of crack propagation, the
respective stress intensity factors may be added to determine if the total is under
the critical value. If a crack propagates in more than one mode simultaneously, the
concept of critical stress intensity factor cannot be applied directly. To deal with
multimode problems, Sih [7.7] has based a theory of unstable crack propagation on a
material property named the critical strain energy density factor. This theory predicts
the direction of flaw propagation as well as the critical flaw size.

In most practical applications of the theory of fracture mechanics, the analysis
is limited to mode I propagation only. The critical stress intensity factor for mode I
deformation is shown in Table 7-2 for several materials. The specimen orientation
letters refer to the relationships between the crack propagation direction in the spec-
imen and the rolling direction of the plate. The letters L–T mean that the crack is
perpendicular to the longitudinal (rolling) direction and parallel to the width (trans-
verse) direction. The reverse of L–T conditions is designated T–L. The letters S–L
mean that the crack is perpendicular to the thickness and parallel to the rolling di-
rection. Other combinations (L–S, T–S, and S–T) are possible. An analogous code
exists for round bar material, with the directions being longitudinal, radial, and cir-
cumferential (L–R–C).

The analysis above is based on linear elastic fracture mechanics, assuming a stress
singularity exists at the tip of the crack [Eq. (7.2)]. However, in reality, in a small
region near the tip, plastic deformation probably occurs, and since the stresses are
limited by yielding, a stress singularity does not occur.

Suppose that the crack in the plate of finite width of Fig. 7-3a is under mode I
loading. Near the crack tip where a plastic zone spreads, two zones can be identified.
In the first zone, on the free surface, σz = 0 so that the plane stress state exists.
However, in the second zone, the strain in the z direction (parallel to the crack front)
is constrained and the plane strain state exists. If the size of the plastic zone (in the
x or y directions) is large and on the order of the plate thickness, the crack can be
modeled as being in the plane stress state. If the size of the plastic zone is much
smaller than the plate thickness, the second zone will dominate and the crack can be
considered as being in the state of plane strain.

The size of the crack tip plastic zone in either plane stress or plane strain may be
estimated by using the von Mises yield relation [Eq. (3.71)] along with Eqs. (7.1).
The shape of the plastic zone can be expressed in terms of the boundary parameters
r∗p and θ (Fig. 7-3b and c). For mode I deformation and a plane stress state, the
relationship between r∗p and θ is

r∗p = cos2 θ

2

(
1+ 3 sin2 θ

2

)(
1

2π

)(
KI

σys

)2

(7.11a)
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Figure 7-3: Plastic zone shape for mode I loading: (a) plastic zone at the tip of the crack;
(b) plane strain state; (c) plane stress state.

At θ = 0,

r∗p =
1

2π

(
KI

σys

)2

(7.11b)

A common formula assumed for plane strain is [7.4]

r∗p =
1

6π

(
KI

σys

)2

(7.12)

The plasticity at the crack tip results in a redistribution of stresses. For equilib-
rium to be maintained, the full width of the plastic zone rp will be twice the value
of r∗p . These results are approximate because the influence of some effects is ig-
nored.

If r∗p is small relative to the planar dimensions, including crack size a, that is,

r∗p � a, t, b − a (7.13)
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the preceding linear elastic theory–based formulas tend to be reasonably accurate. In
Eq. (7.13), b is the width of a specimen of thickness t containing a crack of size a.

The existence of a plastic zone implies that the center of coordinates (r, θ) for
the elastic field advances ahead of the real crack tip into the zone of plasticity. The
correction for the effective crack size is often utilized in determination of the stress
intensity factor K . Define

aeff = a + r∗p (7.14)

where aeff is an effective crack length. Use of aeff to replace a in Eqs. (7.4) to cal-
culate the stress intensity factor is called the Irwin correction [7.8]. For example, KI
of a tension strip of infinite width with a centrally located crack (case 1 of Table 7-1,
b� a) is

KI = σ√πa (7.15)

After introducing aeff, this becomes

KI = σ
√
π(a + r∗p) (7.16)

where r∗p is shown in Eqs. (7.11).
Although the results tend to be quite satisfactory for r∗p small relative to a and

the other planar dimensions, for the purpose of examining trends, sometimes the
effective crack size correction is utilized for large-scale yield even though r∗p fails to
pass the dimension constraints.

One method of comparing the resistance to fracture is to evaluate the crack tough-
ness performance using KIc/σys . The larger this ratio, the better the resistance to
fracture.

General Design by Linear Elastic Fracture Mechanics

In traditional methods, designs are based on the allowable stresses, which are usually
related to a limiting strength, such as the yield strength of a tensile specimen. Such
an approach applies to structures without cracklike flaws and discontinuities. In the
presence of stress concentrations or discontinuities, it is assumed that the structural
materials will yield locally and redistribute the load to neighboring areas. The recent
development of fracture mechanics has established an analytical tool for the design
of fracture-resistant structures. This fracture mechanics design refers to selection of
materials and allowable stress levels based on the fact that cracklike flaws may exist
or may be initiated under cyclic loads or stress corrosion and that some level of notch
toughness is desirable.

In fracture mechanics design, it is assumed that the designer has the following
information available:
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1. Type of structure, overall and member dimensions

2. Stress and stress fluctuating range, potential crack growth locations in the
structure (e.g., welds, holes, discontinuities)

3. Structural performance design criteria (e.g., minimum cost, maximum resis-
tance to fracture, specified design life, working maximum loading rate)

Based on this general information, the designer can incorporate KIc or KId values at
the service condition (temperature and loading rate) in the fracture mechanics design.

To understand the fundamentals of fracture mechanics design, consider the case
where possible crack extension in mode I has occurred by fatigue, stress corrosion,
or corrosion fatigue. Combining Eqs. (7.4) and (7.5) gives the maximum flaw size a
structural member can tolerate at a particular stress level,

a = 1

π

(
Kc

Cσ

)2

(7.17)

After determining the values of the Kc and σys at the service temperature and loading
rate for the material of the structure and selecting the most probable type of flaw
(or crack) that will exist in the member in question and the corresponding equation
for K to obtain C , the designer can calculate with Eq. (7.17) the minimal unstable
size of flaw at various possible stress levels. Therefore, the designer has to control
three factors (σ , Kc, and a) in a fracture mechanics design. All other factors, such
as temperature, loading rate, and residual stresses, affect only these three primary
factors.

Once the critical flaw size has been found, quality control procedures may be
established to ensure that no flaws of a critical size exist in the structure. On the
other hand, if the service loads and the minimum detectable flaw size are speci-
fied, Eq. (7.17) may be used to select a material that will yield a critical flaw size
greater than the minimum size of a detectable flaw. Or if the materials and minimum
detectable flaw size are fixed, Eq. (7.17) enables the specification of service loads
that result in a critical flaw size greater than the minimum size of a detectable flaw.
The following section contains several examples of the application of Eqs. (7.4) and
(7.17) to fracture computations.

Example 7.1 Embedded Crack A sharp penny-shaped crack of diameter 2.5 cm
is completely embedded in a solid. The applied stress is normal to the area of the
embedded crack. Catastrophic failure occurs when a stress of 500 MPa is applied.
Find the fracture toughness of the material if plane strain conditions exist at the
crack perimeter.

The stress intensity factor formula of case 17 of Table 7-1 applies. For this circular
crack, c = a:

KI = (2/π)σ√πa
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Since failure occurred at σc = 500 MPa,

KIc = (2/π)σc
√
πa = (2/π)(500 MPa)

√
π × 0.0125 m

= 63.1 MPa · √m (1)

where the crack size a is one-half of the diameter.

Example 7.2 Titanium Alloy A titanium alloy Ti–6 Al–4 V can be heat treated
to give the following mechanical properties:

KIc = 115.4 MPa · √m, σys = 910 MPa (1)

If the applied stress is 0.75σys , find the dimensions of the largest stable internal
elliptical flaw for a/2c = 0.2, where a and c are shown in case 17 of Table 7-1.

The fracture of an elliptical crack is characterized in case 17. For a/2c = 0.2, we
find k2 = 1− a2/c2 = 0.84 or k = 0.9165.

From a mathematical handbook containing elliptic integrals,

E(0.9165) =
∫ π/2

0

√
1− 0.91652 sin2 φ dφ = 1.150 (2)

At θ = ± 1
2π ,

KI = σ√πa /E(0.9165) = σ√πa/1.150 (3)

For KIc = 115.4 MPa · √m,

KI = σ√πa /1.150 ≤ KIc = 115.4 MPa · √m

and with σ = σys = 910 MPa,

amax = (115.4× 1.15/0.75σys)
2/π = 1.204 cm (4)

and

c = a/(2× 0.2) = 1.204/0.4 = 3.01 cm (5)

This defines the largest stable elliptical flaw according to linear elastic fracture me-
chanics.

To account for the effect of the plastic zone for plane strain, use Eq. (7.12) and
KI ≤ KIc = 115.4 MPa · √m:

r∗p =
1

6π

(
115.4

910

)2

= 0.853 mm (6)
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From (4) and Eq. (7.14),

amax + r∗p = 1.204 cm (7)

Thus,

amax = 1.204− 0.0853 = 1.11 cm (8)

and

c = 1.11/(2× 0.2) = 2.775 cm (9)

By comparison of (5) and (8), it follows that if the effect of the plastic zone is con-
sidered, the largest stable elliptical flaw will be smaller than the case in which r∗p is
not considered.

Example 7.3 Longitudinal Crack in a Cylindrical Tube A long circular cylin-
drical tube must withstand an internal pressure of p = 10 MPa (1450 psi). The
tube has an inside radius of r = 250 mm and a wall thickness of t = 12 mm; it is
constructed of AISI 4340 steel alloy that is heat treated to have a critical stress in-
tensity factor of 59 MPa · √m (53.7 ksi-

√
in.), a tensile yield strength of 1503 MPa

(218 ksi), and an ultimate tensile strength of 1827 MPa (265 ksi).
To find the minimum size of a longitudinal crack (Fig. 7-4) that will propagate

unstably, the tube wall is regarded as a wide sheet in uniform tension, and the equa-
tion shown in case 1 of Table 7-1 is applied for a/b→ 0. The stress intensity factor
is

KI = σ√πa F(0)

Since F(0) = 1, in case 1 of Table 7-1,

KI = σ√πa (1)

where the cylinder hoop stress is

σ = pr/t (2)

Figure 7-4: Longitudinal crack in a pressurized cylinder.
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Then

KI = (pr/t)
√
πa (3)

which, with KI set equal to KIC , gives the critical crack size, a = ac,

ac = (KIct/pr)2/π = {[59× 106(0.012)]/[10× 106(0.25)]}2/π
= 25.5 mm (1.004 in.) (4)

The next step should be to use the crack tip plastic zone relations of Eqs. (7.12)
and (7.13) to check if the linear elastic formulas above can provide a solution of
reasonable accuracy. For this material the quantity [Eq. (7.12)]

r∗p = (1/6π)(KIc/σys)
2 = 0.0817 mm

is much less than t and a; consequently, the crack half length and material thickness
both meet the condition for a plane strain distribution at the leading edge of the crack
[Eq. (7.13)].

If a crack of length 2a = 8 mm is assumed to exist in the tube, the internal pres-
sure that would cause unstable propagation can be computed. From (3), the critical
pressure p = pc would be

pc = t KIc

[√
1/(πa)

]
/r = (0.012)(59× 106)

[√
1/(π × 0.004)

]
/0.250

= 25.3 MPa (3668 psi) (5)

By the maximum principal stress criterion of failure (Section 3.15), brittle fracture
of the unflawed tube would occur when the circumferential stress equals the ultimate
tensile strength of the material. The pressure at fracture would be

pu = σu(t/r) = (1827)(12/250) = 87.7 MPa (6)

We see from (5) and (6) that the 8-mm crack reduces the failure pressure by 71.2%.
The Tresca maximum shear stress yielding criterion [Eq. (3.70)] takes the form

σmax − σmin = pyr/t − (−py) = σys . Thus, general yielding of the tube occurs
when the relation

py = σys/[(r/t)+ 1] (7)

is satisfied, in which the pressure at the inner wall has been included. This effect is
small compared to r/t and could be ignored. For our cylinder

py = 1503/[(250/12)+ 1] = 68.8 MPa (8)

From (5) and (8), it is seen that the 8-mm crack causes fracture failure at a pressure
that is 63.2% lower than this yield point pressure.
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Sih [7.7] presents a solution to a cylindrical tube problem in which the crack is
oriented arbitrarily with respect to the longitudinal direction. The arbitrary orienta-
tion produces simultaneous propagation of the crack in two modes, and the critical
strain energy density factor is used instead of the critical stress intensity factor to
predict fracture failure.

Example 7.4 Bar Subjected to Axial Force and Bending Moment A long bar
with a 10-mm edge crack is subjected to a concentrated force, as shown in Fig. 7-5.
The bar is made of 7079-T651 aluminum alloy, which has a critical stress intensity
factor of 26 MPa · √m (23.7 ksi-

√
in.), a tensile yield strength of 502 MPa (72.8 ksi),

and an ultimate tensile strength of 569 MPa (82.5 ksi). Stresses due to both axial
force and bending moment act on the crack, but because both forces lead to mode I
propagation, the two effects are additive. Let σT be the tensile stress due to the axial
force and σB the stress due to bending.

Use of the stress intensity factor equations listed in cases 7 and 8 of Table 7-1
results in

KI = σT
√
πa CT + σB

√
πa CB (1)

in which CT and CB depend on F(a/b). From a = 10 mm, a/b = 0.1, and case 7
of Table 7-1,

CT = F(0.1) =
√

2

π × 0.1
tan

0.1π

2

× 0.752+ 2.02× 0.1+ 0.37[1− sin(0.1π/2)]3
cos(0.1π/2)

= 1.196

From case 8 of Table 7-1,

CB = F(0.1) =
√

2

π × 0.1
tan

0.1π

2
× 0.923+ 0.199[1− sin(0.1π/2)]4

cos(0.1π/2)

= 1.041

Figure 7-5: Bar in tension and bending with an edge crack.
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According to the standard strength of material formulas for a rectangular cross sec-
tion,

σT = P/bt (2a)

At the outer fiber, σB = M(b/2)/I with I = 1
12 b3t and M = Ph. Thus,

σB = (6Ph)(tb2) (2b)

Then, from (1),

KI = (P/bt)
√
πa (1.196)+ (6Ph/tb2)

√
πa (1.041) (3)

so that the critical force P = Pc is calculated as

Pc = (KIcbt/
√
πa )[1.196+ 6h(1.041)/b]−1

=
[
(26× 106)(0.1)(0.015)/

√
(0.01)π

]
(4)

× [1.196+ 6(0.03)× 1.041/0.1]−1

= 71,677 N

At fracture failure the nominal stress at the outer edge of the bar is found from
σT + σB of (2) to be 134 MPa (19.4 ksi), which is much lower than the 502-MPa
yield strength of the material.

Use Eqs. (7.12) and (7.13) to check that the use of linear elastic formulas is ap-
propriate. For this alloy the quantity r∗p = (1/6π)(KIc/σys)

2 = 0.142 mm and the
condition for plane strain is satisfied for both a and t .

Because the stress intensity factor equations contain the parametric functions CT

and CB , the solution for a critical crack size given a known force would require an
iterative procedure.

Example 7.5 Traditional and Fracture Mechanics Design of a High-Strength,
Thin-Walled Cylinder This example demonstrates the use of fracture mechanics
concepts to select materials and to compare the results with those obtained by a
traditional design where a flaw is ignored.

Suppose that a thin-walled cylinder with diameter D = 0.75 m is required to
withstand an internal pressure p = 34.5 MPa and the wall thickness t must be at
least 1.26 cm, as shown in Fig. 7-6. For the traditional design in which the flaw is
ignored, assume a factor of safety of 2.0 against yielding. For fracture mechanics
design, which involves the maximum possible flaw size, and a design stress intensity
of KI = KIc, assume a factor of safety of 2.0 against fracture. If the weight of the
cylindrical vessel is to be considered, select a steel from those available that meets
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Figure 7-6: Example 7.5: fracture mechanics design for a thin-walled cylinder.

the performance requirements while corresponding to minimal weight. Suppose that
the following steels are available for this design:

Yield Strength, Assumed KIc Value
Steel σys (MPa) (MPa · √m)

A 1794 88
B 1516 120
C 1240 154
D 1240 240
E 965 285
F 758 185

The traditional design analysis will be discussed first. Here the flaw is ignored,
and the procedure is direct. Since for the cylinder the maximum normal stress is the
hoop stress σ = pr/t = pD/2t and for design stress σ = 1

2σys , the corresponding
thickness is

t = pD

2σ
= pD

σys
(1)

Thus the estimated weight per meter for each steel is

Aγ = πDt 7835.9 kg/m (2)

where A is the area of the cross section of the cylinder and γ = 7835.9 kg/m3 is
the density for steel. From (1) and (2), for steel D, where σys = 1240 MPa,

t = pD

σys
= (34.5)(0.75)

1240
= 0.0209 m = 2.09 cm

A = πDt = (3.14)(0.75)(0.0209) = 0.049 m2

Aγ = (0.049)(7835.9) = 386 kg/m
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The values for the other available steels are calculated similarly and are found to be
as follows:

Yield Strength, Design Stress, Wall Thickness, Unit Weight,
Steel σys (MPa) 1

2σys (MPa) t (m) (kg/m)

A 1794 897 0.0144 266
B 1516 758 0.0171 316
C 1240 620 0.0209 386
D 1240 620 0.0209 386
E 965 483 0.0268 495
F 758 379 0.0341 629

These results show that, as expected, use of a higher strength steel corresponds
to a reduction in weight. However, if fracture is considered, the following design
will show that the overall safety and reliability of the vessel may be decreased by
increasing the yield strength.

Consider the fracture mechanics design method. At first, the maximum possible
flaw size in the cylinder wall should be estimated based on fabrication and inspection.
Here we assume that a surface flaw of depth 1.26 cm and an a/2c ratio of 0.25 is
possible (Fig. 7-6).

For a surface flaw, the relation among KI, σ , and a from case 18 of Table 7-1 is

KI = σ
√
πa/E(k)2 f (θ)F

(a

t
,

a

c
,

c

b

)
(3)

Since maximum KI occurs at θ = 1
2π and f ( 1

2π) = 1,

KI = σ
√
πa/E(k)2F

(a

t
,

a

c
,

c

b

)
(4)

From k2 = 1− a2/c2 = 1.0− 0.25 = 0.75 and a mathematical handbook,

E(k) = E(
√

0.75) = E(0.866) = 1.211 (5)

Use the formulas for F(a/t, a/c, c/b) from case 18 of Table 7-1 with c/b→ 0:

F = (1.13− 0.05)+
(√

1.2112 × 2− (1.13− 0.05)
)(a

t

)√π

+
√

1.2112 × 2

(√
1

4
π − 1

)(a

t

)2
√
π

= 1.08+ 0.6327
(a

t

)√π − 0.1948
(a

t

)2
√
π

(6)



324 FRACTURE MECHANICS AND FATIGUE

Begin with a/t = 0.5:

F ≈ 1.08+ 0.6327× 0.5
√
π − 0.1948× 0.52

√
π = 1.249 (7)

For crack size a = 0.0126 m, choose steel D with σys = 1240 MPa and KIc =
240 MPa · √m. Consider plasticity at the crack tip and introduce the safety factor of
2 against fracture (i.e., KI = 1

2 KIc). Equation (7.12) gives

r∗p =
1

6π

(
1
2 KIc

σys

)2

= 1

6π

(
240

2× 1240

)2

= 4.968× 10−4 m (8)

KI =
σ
√
π(a + r∗p)

E(k)
F =
√
π ×√0.0126+ 0.00049

1.211

× 1.249σ = 0.2092σ (9)

where σ is now the design stress. From KI = 1
2 KIc and (9),

σ = KIc

2× 0.2092
= 120

0.2092
= 573.6 MPa (10)

Since σ = pD/2t ,

t = pD

2σ
= 34.5× 0.75

2× 573.6
= 0.02255 m (11)

Based on the thickness of 0.02255 m, return to (6) for a second iteration:

a/t = 0.0126/0.02255 = 0.5588 (12)

F = 1.08+ 0.6327× 0.5588
√
π − 0.1948× 0.55882

√
π = 1.280 (13)

KI =
√
π
√

0.01309

1.211
× 1.28σ = 0.2145σ (14)

σ = 120

0.2145
= 559.5 MPa (15)

t = 34.5× 0.75

2× 559.5
= 0.02312 m = 2.31 cm (16)

Since the values of the thickness t in (11) and (16) are not very close, a third
iteration might be in order. Let t = 0.02312 m. Then

a/t = 0.0126/0.0231 = 0.5455 (17)

F = 1.273 (18)
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KI = 0.2132σ (19)

σ = 562.88 MPa (20)

t = 0.022298 m = 2.23 cm (21)

It can be seen that the thickness values of (21) and (16) are quite close to each other.
A fourth iteration does not lead to further change:

a/t = 0.5478

KI = 0.2135σ

σ = 562.007 MPa

t = 2.30 cm

This numerical procedure is readily programmed for computer selection. In a
manner similar to that described above, the wall thickness for the remaining steels in
this example were computed, and the results by fracture mechanics based design are
as follows:

Yield Design Assumed Unit
Strength, Stress, KIc Design Value Thickness, Weight

Steel σys (MPa) σ (MPa) (MPa · √m) KIc (MPa · √m) t (m) (kg/m) σ/σys

A 1794 237.7 88 44 0.0544 1004 0.13
B 1516 315.8 120 60 0.0410 757 0.21
C 1240 393.4 154 77 0.0329 607 0.32
D 1240 562.1 240 120 0.0230 425 0.45
E 965 648.6 285 142.5 0.0199 367 0.67
F 758 458.0 185 92.5 0.0282 521 0.60

If, on the premise of satisfactory performance, the least weight is the first consid-
eration, then steel E is the choice. While for the traditional design analysis, it can be
seen above that steel A, with the highest yield strength, should be the choice.

It is of interest to note from the results in this table that on the basis of equivalent
resistance to fracture in the presence of a 1.26-cm-deep surface flaw, there would be
an obvious saving of weight by using a lower strength, tougher steel than steel A. The
results show that neither the factor of safety (σys/σ) nor the weight of a structure is
necessarily related to the yield strength of the structural material. In fact, the cylinder
made of the highest-strength steel actually weighs the most. Further analysis of the
results indicates that for the two lowest-strength steels (E and F), yielding is the
most likely mode of failure, and the factor of safety against fracture will be greater
than 2.0.
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7.3 ENERGY ANALYSIS OF FRACTURE

Work performed during elastic deformation is stored as strain energy U and released
upon unloading. The strain energy density U0 is defined as the strain energy per unit
volume and can be expressed as

U0 = U/Vol = 1
2 (σxεx + σyεy + σzεz + τyzγyz + τzxγzx + τxyγxy) (7.18)

During fracture, a crack needs energy to propagate, which forms the work of fracture
W f . If the crack size is a, fracture over a distance da would need a small quantity
of energy dW f that must come from either a decrease of internal strain energy U or
the work We due to applied loading. For the crack da, the work done by the applied
load is dWe , and the change in strain energy is dU . The energy equation would be

d

da
(We −U −W f ) = 0 (7.19)

or

d

da
(We −U) = dW f

da
(7.20)

This represents a useful criterion of fracture. Fracture will propagate a crack da if
enough work is released to permit dW f to occur. Let

G = d

da
(We −U), R = dW f

da

so that

G ≥ R (7.21)

where G is the energy release rate and R is the critical value of G, called the crack
growth resistance.

Equation (7.21) is the criterion for the energy balance approach to fracture, which
is known as the Griffith–Orowan–Irwin theory [7.8]. Fracture will occur according to
Eq. (7.21) when the energy release rate G is sufficient to approach the critical value
R at incipient crack extension. Crack propagation can be stable or unstable. If

dG

da
≥ d R

da
(7.22)

then unstable fracture occurs.
Equation (7.22) provides a criterion to judge unstable crack propagation from the

standpoint of energy. It is possible to show a relationship between crack extension
force G and the stress intensity factor KI. For elastic bodies, including small-scale
yielding, the relationship

GI = K 2
I /E ′ (7.23)
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holds, where

E ′ =
{

E for plane stress

E/(1− ν2) for plane strain

In a similar fashion GII is expressed in terms of KII as

GII = K 2
II/E ′ (7.24)

When all three modes of crack deformation are present, this becomes

G = 1

E ′
(K 2

I + K 2
II)+

1+ ν
E ′

K 2
III (7.25)

where KI, KII, and KIII are the stress intensity factors for modes I, II, and III, respec-
tively.

7.4 J INTEGRAL

The quantities G and K describe the stress near the crack tip when the plastic zone
is relatively small and the theory of elastic fracture mechanics applies. To determine
the energy release rate for a specimen in which the plastic deformation must be
considered, Rice introduced a contour integral J taken about the crack tip [7.10]:

J =
∫
�

(
(U0 dy)− p̄

∂ū

∂x
ds

)
(7.26)

where � denotes the arbitrary contour enclosing the crack tip. Also, U0 is the strain
energy density [Eq. (7.18)], p̄ is the tension vector (external surface load) on � nor-
mal to the contour, ū is the displacement vector at the location of p̄ in the x direction,
and ds is the infinitesimal arc length shown in Fig. 7-7. Typical units of J are MN/m.

The J integral vanishes along any closed contour. In Fig. 7-8, the contour �2 +
B D + (−�1) + C A forms a closed path so that J along this contour equals zero
(i.e., J�2 + JB D + J(−�1) + JC A = 0). The quantities p̄ and dy are equal to zero on
segments B D and C A. Hence, JB D = JC A = 0 and J along �1 is the same as J

Figure 7-7: Parameter of the the J integral.
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Figure 7-8: Two contours about a crack tip.

along �2. It is concluded that J is path independent. When the contour � encircles
the crack tip, the J integral equals the energy release rate (i.e., J = G).

Denote Jc = R, where Jc is the critical value of the J integral. Then Eq. (7.21)
appears as

J ≥ Jc (7.27a)

or for mode I deformation,

J ≥ JIc (7.27b)

where JIc, the plane strain value of J at initiation of crack growth, can be determined
by ASTM standard E1820. Then Eq. (7.22) becomes

d J

da
≥ d Jc

da
(7.28)

Equations (7.27) and (7.28) are valid for nonlinear elastic materials. For an elastic–
plastic material, the J integral is uniquely defined outside the plastic region. It ap-
proximates the energy release rate for crack propagation.

When the yielding at the crack tip is limited to “small scale,” Eqs. (7.23)–(7.25)
can be written as

JI = GI = K 2
I /E ′ (7.29a)

JII = GII = K 2
II/E ′ (7.29b)

J = G = 1

E ′ (K
2
I + K 2

II)+
1+ ν

E ′ K 2
III (7.29c)

When KI, for example, attains its critical value, J and G must also reach their
critical values Jc and R. Equation (7.29a) implies that

Jc = R = K 2
Ic/E ′ (7.30)

In addition to the stress intensity factor and the J -integral fracture criteria (an
energy method), other criteria, such as the R-curve method and crack-opening dis-
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placement (COD) have been developed [7.1, 7.2]. Recall that the J integral, the
energy release rate G, and the intensity factor KI are related. Moreover, there is a
relationship between these parameters and a quantity called the crack-tip opening
displacement δt . All four are equivalent fracture parameters for small-scale yielding.
It can be shown that

J = G = K 2
I /E ′ = σysδt (7.31)

where σys is the yield stress. When one of the four attains its critical value, the others
must reach their critical values simultaneously.

Often the J integral is evaluated numerically using the finite-element method [7.11,
7.12]. Some general-purpose programs (e.g., [7.13, 7.14]) provide J -integral evalu-
ations. The implementation procedure and applications tend to vary from program
to program.

7.5 FATIGUE FRACTURE

Although disastrous consequences may result from the fracture failure of a statically
loaded structure, this type of failure is not common. A far more common mode of
failure is the fracture of a structural member that has been subjected to many cycles
of a fluctuating load. Failure occurs even though the load amplitude may be much
less than the static yield strength of the material. This form of fracture is known as
fatigue fracture, or simply fatigue. Fatigue here refers to a progressive failure of a
material after many cycles of load. A form of failure known as low-cycle fatigue also
occurs in which the strains are much larger than those in high-cycle fatigue.

The behavior of a material under cyclic load is influenced by many factors, but
of prime importance are the amplitude of the load and the presence in the material
of regions of stress concentration. The fatigue characteristics of a material are also
affected by the type of loading (bending, torsion, tension, or a combination of the
three); the specimen size, shape, and surface roughness; the load waveform (nonzero
mean load or variations in load amplitude); and the presence of chemically active
agents. Moreover, when apparently identical specimens are tested under identical
conditions, significant variations often occur in the fatigue behavior of the specimens.
These variations probably occur because the distributions of material microstructural
properties, such as the number of crack initiation sites and grain size, change from
specimen to specimen. Weibull [7.15] developed a statistical representation for fa-
tigue data. McClintock has shown that if extraneous scattered data are eliminated,
the variation in measured fatigue life is no greater than that in other measured me-
chanical properties [7.16].

Because of the uncertainty involved in predicting the fatigue behavior of a ma-
terial, safety factors ranging from 1.3 to 4 are incorporated into the design of cycli-
cally loaded members. The magnitude of the factor is chosen on the basis of the
consequences of fatigue failure and the number of imponderables involved in the
problem.
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Two approaches may be taken in designing to prevent fatigue failure. One method
is based on graphs (S–N curves) that record the number of load cycles necessary to
cause failure of a test specimen at various levels of reversed stress amplitude, and the
second method utilizes the concepts of linear elastic fracture mechanics.

7.6 TRADITIONAL S–N CURVE APPROACH TO FATIGUE

In the S–N curve approach to fatigue, highly polished, geometrically perfect speci-
mens of a material are tested under cyclic load, and the number of cycles to failure
for each level of load is shown on a graph called an S–N curve, as in Fig. 7-9. On a
plot of log stress versus log life the curves are nearly linear. Tables 7-3 and 7-4 list
several sets of S–N curves. A similar relationship exists for low-cycle fatigue (LCF)
except that the log plastic strain amplitude is used instead of the log stress. The fa-
tigue strength of a material is defined as the maximum amplitude of cyclic stress a
specimen will withstand for a given number of cycles; an S–N curve is therefore the
locus of fatigue strengths of a material over a range of cycle lives. For ferrous metals
a stress amplitude exists at or below which a specimen will endure an indefinitely
large number of load reversals: this level of reversed or alternating stress (σa) is
known as the endurance limit. Although endurance limits are not truly characteristic
of most nonferrous metals, limits for these materials are often stated for an arbitrar-
ily chosen large number of cycles, usually 10 million to 500 million. The endurance
ratio of a material is defined as the ratio of the endurance limit to the ultimate tensile
strength. Ranges of endurance ratios for alloys of some metals are listed in Table 7-5.

The structural member under consideration and its operating conditions will often
differ in important ways from the test specimen and test conditions for which the
S–N curve was developed. In this case various empirical formulas and indices have

Figure 7-9: S–N curve for a typical steel under bending loads.
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been advanced as a means of adjusting the test data to account for the differences.
A region of stress concentration in the member, a nonzero mean value of the cyclic
load, and a variation in the load amplitude are factors for which standard S–N curves
must frequently be adjusted.

Stress Concentration

A stress raiser in a structural member will increase the stress at the point of max-
imum concentration (Chapter 6). If an S–N curve shows the fatigue strengths of
an unnotched specimen, those strengths are divided by K f [effective stress concen-
tration factor defined in Eq. (6.4)] to find the values for a notched specimen. The
variation of K f with the number of load cycles can be accounted for by evaluating
K f at two points, say, 103 and 106 cycles, and joining the points with a straight line
on a log–log S–N curve. A more conservative approach is the application of K f

chosen for 106 cycles to all lower numbers of cycles. Here K f is related to Kt (the
theoretical stress concentration factor) by the equation

q f = (K f − 1)/(Kt − 1) (7.32)

where q f is the notch sensitivity index of the specimen [Eq. (6.6)]. For holes and for
notches with nearly parallel flanks, q f may be estimated by the Neuber equation in
the form [7.18]

q f = 1/
[
1+ (α/r)1/2

]
(7.33)

where
√
α is a material constant (Neuber constant) and r is the radius of curvature

of the notch. Values of
√
α for aluminum and steel are shown in Fig. 7-10.

The fatigue analysis of notched members can also be performed by a method
known as the local strain approach. In this technique, Neuber’s equation [Eq. (7.33)]
is used to find the strain history at the notch root from the nominal stress and strain.
The local notch strain history is then assumed to result in the same fatigue life as oc-
curs when an unnotched uniaxially loaded specimen is subjected to the same history.
An extensive discussion of the local strain technique is available elsewhere [7.59].

Nonzero Mean Load

The equations of Gerber and of Goodman are empirical formulas that have been
proposed for use in adjusting fatigue strengths for the effects of a nonzero mean
load:

(σa/σ f )+ (σm/σu) = 1 (Goodman) (7.34)

(σa/σ f )+ (σm/σu)
2 = 1 (Gerber) (7.35)

where σa is the alternating stress level (i.e., amplitude of applied load), σ f is the
fatigue strength with zero mean load, σm is the mean stress level (i.e., mean value of
the actual load), and σu is the tensile strength of the material.
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Figure 7-10: Neuber constants for various steel and aluminum alloys. In the case of torsion,
for steel use a Neuber constant with σu that is 20 ksi higher than the actual value.

As seen in Fig. 7-11, the applied alternating stress σa is superimposed on an ap-
plied static or mean stress σm . Because σ f is defined for a given number of cycles or
loadings, Eqs. (7.34) and (7.35) also correspond to a particular number of cycles. A
typical Goodman diagram that is a plot of Eq. (7.34) is shown in Fig. 7-12. If σys is
used instead of σu , this is referred to as a Soderberg diagram. Equation (7.34) is the
equation of the straight line connecting the intercept of the vertical axis (i.e., the fa-
tigue strength σ f corresponding to σm = 0) with the intercept of the horizontal axis
(i.e., the static tensile strength σu , which corresponds to σa = 0). In fact, in practice

σ

σmax

σmin

σm

σa

σmax = σm + σa σmin = σm – σa

Time

Figure 7-11: Fatigue stress definitions.
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Figure 7-12: Typical Goodman and Gerber fatigue diagrams.

the Goodman diagram is often constructed by passing a straight line through these
two intercepts.

Goodman’s equation usually gives good to conservative results, and it is used
widely in the United States. Gerber’s formula allows higher stresses than those of
Goodman’s and applies especially to ductile materials [7.21]. The equations apply for
tensile loads because compressive mean loads usually do not affect fatigue strength.
The fatigue strengths of torsion members are not usually affected by a nonzero mean
load unless a region of stress concentration is present in the part. Goodman’s equation
and Gerber’s equation both permit the peak load stress to exceed the material yield
point. Usually, the peak load should be kept below the yield point. By solving the
equation

σmax = σa + σm = σys (7.36)

simultaneously with Eq. (7.34) or (7.35), the amplitude at which the peak applied
stress equals the yield stress can be found. This process may be carried out either
algebraically or graphically. For Goodman’s equation, it follows from Eq. (7.36) that
the peak load stress equals the yield stress when the mean stress is at the level

σmy = σu(σ f − σys)/(σ f − σu) (7.37a)

and when the alternating stress is

σay = σ f (σys − σu)/(σ f − σu) (7.37b)

Equation (7.37a) is found by setting σm = σmy in Eqs. (7.36) and (7.34) and sub-
stituting σa = σys − σmy in Eq. (7.34). Equation (7.37b) follows from Eqs. (7.36)
and (7.34) using σa = σay . When the mean tensile stress equals or exceeds σmy , the
permissible amplitude of the cyclic load should be below

σa = σys − σm

to avoid plastic deformation. An additional, more complex mean stress rule has been
proposed by Kececioglu et al. [7.22].
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Load with Varying Amplitude

Fackler [7.23] has complied a summary of 20 approaches to predicting fatigue
life when the applied load has a varying amplitude. These approaches are mea-
sures of cumulative damage. He presents three methods as being fundamental: the
Palmgren–Langer–Miner rule [7.24, 7.25], the Corten–Dolan rule [7.26], and Shan-
ley’s method [7.27]. Here, only fully reversed loading is considered. Mean stress
effects can be included by replacing cycles that have a nonzero mean load with an
equivalent fully reversed load [7.28].

The Palmgren–Langer–Miner rule gives results that range from good to extremely
inaccurate. This rule states that fatigue failure occurs when

m∑
k=1

nk

Nk
= 1.0 (7.38)

is satisfied. Here m is the number of different stress levels σak of applied load, nk is
the actual number of load cycles applied at stress σak , and Nk is the fatigue life (i.e.,
number of cycles to failure at constant load applied at stress level σak).

Failure is anticipated if the summation is equal to or greater than 1. According to
Eq. (7.38) the fatigue life is given by

N f = 1.0
m∑

k=1
(γk/Nk)

(7.39)

where γk is the relative frequency of occurrence of load level σak [i.e., γk is the ratio
of the number of cycles at σak to the total number of cycles (γk = nk/N f )]. If γk
is given by a probability distribution, then N f is the expected life. The Palmgren–
Langer–Miner rule gives its best results if the differences between the various levels
of load are small and if the different amplitudes are applied randomly instead of in a
strictly increasing or decreasing sequence. The rule is based on the assumptions that
fatigue damage accumulates linearly and that the amount of damage is independent
of the order in which the various load levels are applied; both of these assumptions
are evidently invalid. Of the two effects, the dependence of fatigue damage on the
order of load application appears to be more important than nonlinear damage ac-
cumulation [7.15]. Freudenthal [7.29] has proposed to include load-level interaction
effects in the Palmgren–Langer–Miner rule by introducing load-dependent weight-
ing factors Wk . These factors reduce the expected fatigue life of stress level σak by
an amount that depends on the magnitude of the previously applied load:

N f = 1.0
m∑

k=1
(Wkγk/Nk)

(Wk ≥ 1.0) (7.40)
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An empirical approach to improving the accuracy of the Palmgren–Langer–Miner
rule is the replacement of 1.0 in Eq. (7.38) by a quantity that might range from 0.5
to 2.5 and depends on the variation of the load and on the form of the part under test.

The Corten–Dolan theory results in a nonlinear law that takes into account the
load history. According to this theory, the expected fatigue life N f is calculated as

N f = Nh
m∑

k=1
γk(σak/σh)d

(7.41)

where Nh is the life if all cycles were applied at the highest load level σh , σh is the
stress amplitude of the highest load level, and d is the experimentally determined
constant. The Corten–Dolan rule is also expressible in the form

m∑
k=1

nk

Nh(σak/σh)d
= 1.0 (7.42)

A lack of knowledge of the value of d for many materials has limited the usefulness
of this rule.

The Shanley 2x method is the third theory that Fackler advances as a basic ap-
proach to cumulative damage. In this theory, a constant stress level is found that will
produce fatigue damage equivalent to that produced by a variable-amplitude load

σeq =




m∑
k=1

nk(σak)
2x

m∑
k=1

nk




1/2x

(7.43)

The constant −1/x is the slope of the logarithmic S–N curve. Once σeq is found,
an equivalent cycle life Neq is read from the S–N curve. Then Shanley’s hypothesis
takes the form

m∑
k=1

nk Neq

N 2
k

= 1.0 (7.44)

Bogdanoff and Kozin [7.30] have described a stochastic approach to cumulative
damage that treats the process as a Markov chain. The model takes into account
variability in manufacturing standards, duty cycles, inspection standards, and failure
states. Application of the model requires knowledge of the various probabilities of
occurrence of different initial states, levels of damage, and so on.

The fatigue analysis of members subjected to complex load histories requires an
efficient cycle counting procedure that can be implemented on a computer. Dowl-
ing [7.31] reviews a number of counting techniques. The rainflow and range pair
methods [7.30] are recommended as being superior to the other approaches.
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The methods of fracture mechanics have also been applied to the problem of fa-
tigue under variable load [7.2]. To compute the number of cycles necessary for a
crack to reach critical size, a statistic of the load spectrum, such as the root-mean-
square (rms) fluctuation of the stress intensity factor, is substituted in the crack prop-
agation formula Eq. (7.50).

Effects of Load, Size, Surface, and Environment

As mentioned previously, the load type; the size, shape, and surface finish of the test
specimen; and the presence of chemically active substances can greatly influence the
behavior of a cyclically loaded structural member. A brief summary of the effects of
these factors is given in subsequent paragraphs.

Load If σeB is the endurance limit of a specimen in bending, the limit for perfectly
aligned axial loading will be about 0.9σeB ; for torsional loads the limits will be
0.58σeB for a ductile material and about 0.85σeB for brittle metals. When combined
bending, tensile, and torsional loads act on a member, the assumption is sometimes
made that the same relation exists between endurance limits as exists between static
failure loads. If σ f is the fatigue strength of a material under uniaxial load, applying
the distortion energy failure criterion results in

σ 2
1 + σ 2

2 + σ 2
3 − (σ1σ2 + σ2σ3 + σ3σ1) = σ 2

f (7.45)

as the fatigue failure relation for a triaxial stress state. The stresses σ1, σ2, and σ3 are
the amplitudes of the principal stress at any point in the body. Similar relations exist
for other static load failure theories, such as the maximum shear stress criterion or
the maximum normal stress rule. These approaches do not generally apply to cases
in which nonzero mean stress is present. In addition, such effects as are caused by
variations in size, surface, and configuration must be considered in choosing σ f .

Hashin [7.34] proposes a quadratic polynomial in stress space to represent the
locus of all stress states with the same fatigue life. This relation takes the form

(I1/σu)
2 − (I2/τu)

2 = 1 (7.46)

for completely reversed cyclic loading. The invariants of the stress tensor I1 and I2
[Eq. (3.19b)] are defined as

I1 = σx + σy + σz (7.47a)

I2 = σxσy + σyσz + σzσx − τ 2
xy − τ 2

yz − τ 2
xz (7.47b)

The stresses of σu and τu are the fatigue strengths of the material in tension and
torsion, respectively. For the most complicated cases of combined loads with differ-
ent phases, different frequencies, varying amplitudes, and nonzero mean stresses, no
general methods of analysis appear to be available.

Size By increasing the diameter of the specimen, the fatigue limit in bending is
eventually reduced to the level for axial loads. This reduction in strength occurs be-
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cause the stress gradient in the bent specimen decreases as the radius increases at
constant outer fiber stress; greater volumes of material are consequently subjected
to higher stresses in the larger specimens. Further reductions in endurance limits oc-
cur with increased size because the likelihood of imperfections in the surface and
microstructure of the material increases with size. The shape of a member also influ-
ences fatigue life because of stress concentrations introduced by sharp corners.

Surface and Environment Because a rough surface is a form of stress raiser,
surface finish can have a marked influence on fatigue life. The effect of surface fin-
ish on the endurance limit of steels is shown in Fig. 7-13. Treatments that alter the
physical properties of a surface or introduce superficial residual stresses also affect
the fatigue behavior of a material. The effects of shot peening and cold rolling on the
endurance limits of some steels are given in Ref. [7.17]. Case-hardening treatments,
such as nitriding, carburizing, and flame hardening, also improve the fatigue life of
steels. Some electroplated surfaces, however, such as nickel or chromium, have an
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adverse influence on fatigue strength (Table 7-6). The decrease in fatigue strengths
associated with these platings is thought to be related to the creation of superficial
tensile stresses.

The problem of corrosion fatigue is complex, and it must be dealt with on the
basis of tests of each combination of material and environment. The effect of well
water and salt water on the endurance limits of various metals is shown in Tables 7-7
and 7-8. The action of the cyclic stress in destroying protective surface films and of
the corrosive agent in producing surface pits and reaction products leads to reciprocal
aggravation of both corrosion and fatigue of the metal. Fatigue can also be induced
by the relative motion of two surfaces in contact; this form of failure is known as
fretting fatigue.

The fatigue strengths of metals generally increase as temperatures decrease; how-
ever, the notch sensitivity and tendency to brittle fracture of some metals greatly in-
crease at low temperatures. At higher temperatures fatigue lives generally decrease,
but the analysis is complicated by the presence of the creep mechanism of failure
as well as fatigue [7.36]. In the higher temperatures of the creep range, creep may
increase the notch sensitivity of materials that are insensitive at lower temperatures.

Stress Concentration with a Nonzero Mean Load

When the effect of stress concentration is combined with that of an alternating ap-
plied load that has a nonzero mean value, the following procedure is recommended:
For brittle materials, apply the fatigue strength reduction factor to both the alternat-
ing and mean values of the applied nominal stress. Goodman’s formula for brittle
material becomes

K f [(σa/σ f )+ (σm/σu)] = 1 (7.48)

For a ductile material, apply the fatigue strength reduction factor to the alternating
component of stress only. Goodman’s formula for a ductile material becomes

(K f σa/σ f )+ (σm/σu) = 1 (7.49)

For torsion members with notches, the same formulas are used, but torsional stresses
and factors are substituted for the tensile values.

Example 7.6 Fatigue Analysis of a Beam The bar shown in Fig. 7-14 must
withstand 1 million cycles of an applied bending moment that varies sinusoidally
from 300 to 2000 N ·m. The member is fabricated from an alloy steel that has an
ultimate strength of 932 MPa (135 ksi) and a yield strength of 869 MPa (126 ksi).

The fatigue strength is taken from Table 7-3. The approximate relation HB =
σu/500, where HB is the Brinell hardness number and σu is in psi, can be used to
help identify the type of steel. For this case, HB = 135(103)/500 = 270, so that
the section “Hardness of Steel: 269–285 HB” of Table 7-3 can be employed, which
applies for σm = 0. For machined samples made from this material, the curve is
S = 102.535−0.147 log N , so that the fatigue strength is 45 ksi for 1 million cycles.
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Figure 7-14: U-notched bar subjected to fluctuating bending moment: depth, 4 mm; notch
radius, 3 mm.

To ensure a reliable operating life for the part, the operating stress should be safely
below the fatigue strength of the material. The factor of safety is computed after
modifying the S–N curve data for the effects of the notch in the bar and the nonzero
mean value of the load.

For the notch shown in Fig. 7-14, Table 6-1, case 3b, gives Kt = 3.0. The notch
sensitivity index of the material is provided by Eq. (7.30)

q f = 1/
[
1+ (α/r)1/2

]
= 1/[1+ (0.04/0.34)] = 0.9 (1)

where r = 3 mm (0.118 in.) and
√

r = 0.34
√

in. Also, from Fig. 7-10 for σu =
135 ksi,

√
α = 0.04

√
in. From Eq. (7.29),

K f = 1+ (3.0− 1.0)0.9 = 2.8 (2)

The second deviation of the operating conditions of the member from those of a
conventional fatigue test is that the mean value of the applied load differs from zero.
Goodman’s equation is applied as follows for a brittle material [Eq. (7.45)]:

K f [(σa/σ f )+ (σm/σu)] = 1.0 (3)

From Fig. 7-11, σmin = σm − σa , where σmin is the minimum value of the applied
nominal stress. Thus, (3) becomes

σa

σ f
+ σmin + σa

σu
= 1

K f

or

σa = 1/K f − σmin/σu

1/σ f + 1/σu
(4)

The minimum bending moment is 300 N ·m. The resulting outer fiber stress would
be
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σmin = Mh

2I
= 6M

th2
= 6

[
(300)/0.015(0.096)2

]
= 13 MPa (5)

where the height of the beam at the notch is taken as h = b−a = 100−4 = 96 mm.
Thus, the nominal stress amplitude has been computed at the notch. From (4)

σa = [(1/2.8)− (13/932)]/[(1/310)+ (1/932)] = 79.8 MPa (6)

The allowable mean stress level is

σm = σmin + σa = 13+ 79.8 = 92.8 MPa (7)

and the peak stress is

σmax = σm + σa = 92.8+ 79.8 = 172.6 MPa

The bending moment corresponding to σmax is

Mmax = 1
6 th2σmax = 1

6 (0.015)(0.096)2(172.6× 106) = 3976.6 N ·m (8)

The peak moment of the applied load is 2000 N ·m; therefore, a safety factor of
(3976.6/2000) = 1.99 exists to ensure the reliable service life of the part.

The actual peak stress in the material at the point of maximum stress concentration
is

(σa)max = K f (σmax) = K f (σa + σm) = 2.8(172.6) = 483.8 MPa (9)

which is far below the yield point of the material. With ductile materials residual
stresses at the notch reduce σm , and the actual peak stress may be computed as
(σa)max = K f σa + σm .

7.7 FRACTURE MECHANICS APPROACH TO FATIGUE

A fracture mechanics–based method for the prediction of fatigue is summarized in
the literature [7.1]–[7.3]. In this approach the number of load cycles necessary for a
material flaw of subcritical size to grow to critical size is calculated by integration of
an empirical differential equation of the form

da

d N
= A(�K )n (7.50)

where da/d N is the fatigue crack growth rate, a is the flaw size, N is the number of
load cycles, �K is the range of the stress intensity factor during a cycle, and A, n
are constants that depend on the material of construction.
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The values of A and n for several classes of steels are listed in Table 7-9. Values of
the constants for some additional materials are shown in Table 7-10 in metric units.

Depending on the magnitude of the fluctuation of the stress intensity factor, the
rate of fatigue crack propagation exhibits three types of behavior called region I, II,
and III behavior, respectively. In region I the fluctuation of the stress intensity factor
is less than a threshold value, �Kth, and subcritical size flaws do not propagate. In
region II the crack propagation rate is governed by Eq. (7.50). In region III the fluctu-
ation of the stress intensity factor exceeds a transition value, �KT , and propagation
occurs at a higher rate than that predicted by Eq. (7.50). For a loading fluctuating
from zero to a tensile value, the transition value of the stress intensity factor is given
by

KT = 0.04
√

Eσg (7.51)

where KT is the transition stress intensity factor (ksi-
√

in.), E is Young’s modulus
(ksi), and σg is the mean value of the tensile strength and yield strength (ksi). For
this case of zero to tension loading, �KT reduces to KT .

For the three classes of steel listed in Table 7-9, the threshold stress intensity
fluctuation �Kth is about 5.5 ksi-

√
in. or less; the threshold point depends on the

ratio of minimum to maximum applied stress. Provided that the fluctuation in the
stress intensity factor is such that region II propagation occurs, Eq. (7.50) can be
used to compute the number of load cycles necessary for a flaw to propagate to a
given size. This capability is a significant improvement over computations based on
S–N curves because a large part of the life shown on an S–N curve is related to
crack initiation. When a crack of significant size already exists in the material, the
actual fatigue life of the specimen will be much shorter than that predicted by the
S–N curve.

The fatigue crack propagation formula for ferrite–pearlite steels often employed
for railroad rails is given as

da

d N
= 1.68× 10−10(�K )3.3 (7.52)

where�K is in ksi-
√

in. and da/d N is in in./cycle. Barsom and Imhof [7.39] present
data showing that this formula is applicable to rail carbon steels as well.

Example 7.7 Fatigue Analysis of a Plate with a Crack A large flat plate made
of 304 stainless steel is subjected to a fluctuating tensile (in-plane) load of 0–15 ksi.
The properties of the steel are

σu = 85 ksi, σys = 40 ksi, Kc = 85 ksi-
√

in., E = 28× 103 ksi (1)

If a 0.125-in.-long (2a0 = 0.125 in.) through-thickness crack oriented normal to the
load is assumed to exist in the plate, the number of load cycles necessary for crack
growth through region II can be computed by using Eq. (7.50).
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From Eq. (7.51) the transition stress intensity factor is

KT = 0.04[(28× 103)(40+ 85)/(2)]1/2 = 53 ksi-
√

in. (2)

Because KT < Kc, only the number of cycles to the higher-growth-rate region III
can be computed with Eq. (7.47). If Kc < KT , the complete life to critical size can
be found.

For a very large plate, KI can be taken from Table 7-1, case 1, a/b = 0 (i.e.,
KI = σ

√
πa). This relationship can be used to find the point-of-transition (region

II to III) crack length 2aT by using KI = KT . For our case with a nominal stress
σ = 15 ksi,

aT = (1/π)(KI/σ)
2 = (1/π)(53/15)2 = 3.97 in. (3)

This same relationship provides the critical crack size 2ac if KI is set equal to Kc,

2ac = (2/π)(85/15)2 = 20.44 in. or ac = 10.22 in. (4)

Equation (7.50) may be integrated directly or approximated by a finite sum; in
this problem analytical integration is possible. First, we use

�K = (σmax − σmin)
√
πa = σmax

√
πa since σmin = 0 (5)

Then, from Table 7-9 for austenitic steel, we find that A = 3.0×10−10 and n = 3.25.
Thus,

da

d N
= 3.0× 10−10(�K )3.25 (6)

Rewrite Eq. (7.47) in the form

d N = da

A(�K )n
(7)

From this relationship, we can compute NT , the number of cycles to the beginning
of the higher growth rate. Thus, NT is the number of cycles to reach region III. With
a0 = 0.125/2 and aT = 3.97,

NT =
∫ aT

a0

da

A(σmax
√
π)nan/2

= 1

A(σmax
√
π)n(− 1

2 n + 1)

[
1

a(n/2)−1
T

− 1

a(n/2)−1
0

]

= 1

3.0(10−10)(15
√
π)3.25(−0.625)

[
1

(3.97)0.625
− 1

(0.0625)0.625

]

= 124,978(5.657− 0.422) = 654,260 cycles (8)
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If growth to failure continued through region III at the rate given by Eq. (7.50), the
life would be given by the integral above with ac substituted for aT . We find that

N f = 124,978
[
5.657− (10.22)−0.625

]
= 677,764 cycles (9)

When the final crack size is much greater than the initial length of the crack, the
cycle life is almost totally dependent on the initial size. It follows from (8) and (9)
that if region II behavior continued beyond a length of 2aT = 7.94 in., the number
of cycles necessary for the last 20.44− 7.94 = 12.5 in. of growth would be roughly
3.6% of the number for the initial 7.94 − 0.125 = 7.82 in. Actually, the failure life
would be less than 677,764 cycles because the higher growth rate of region III would
occur after the crack length reached the transition point.

Example 7.8 Fatigue Analysis of a Cylinder with a Flaw A hollow thin-
walled cylinder is subjected to fluctuations in internal pressure that range from 30
to 36 MPa. The cylinder is fabricated from DTD 687A aluminum alloy, which has
a yield strength of 495 MPa and a fracture toughness of 22 MPa · √m. The inner
diameter of the tube is 15 cm, and the wall thickness is 1.5 cm. A thumbnail semi-
circular flaw of initial radius 5 mm exists in the tube wall with the plane of the crack
normal to the hoop stress (see Fig. 7-15). If the threshold fluctuation in stress inten-
sity Kth for this alloy is 1.1 MPa · √m, will the 5-mm-deep flaw propagate under the
given load? What is the smallest flaw that would propagate? Assuming that region
II growth occurs up to the critical point, compute the number of load cycles that will
cause unstable crack growth.

For θ = 1
2π , where KI will be a maximum, we find that a/c = 1 and c/b → 0.

The stress intensity factor for a semicircular surface flaw can be calculated from
case 18 of Table 7-1. Then k2 = 1 − a2/c2 = 0 and E(0) = f (π/2) = 1, F =
F(a/t, a/c, c/b) = F(a/t, 1, 0). Thus,

KI = σ
√
πa/E(k)2 f (θ)F = 1.1035× 2

π
σ
√
πa = 2.207√

π
σ
√

a (1)

Figure 7-15: Cylinder with a thumbnail semicircular flaw.
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For this flaw and fluctuating loading, the range of the stress intensity factor is

�KI =
(
2.207/

√
π
)√

a(σmax − σmin) (2)

The hoop stress formula for a cylinder gives

σmax = pmaxr/t = (36 MPa)15 cm/(2× 1.5 cm) = 180 MPa

σmin = pminr/t = (30 MPa)15 cm/(2× 1.5 cm) = 150 MPa
(3)

To find the smallest flaw that will propagate, solve (2) for a using �KI = �Kth =
1.1:

a = {
�Kth/

[
(σmax − σmin)

(
2.207/

√
π
)]}2 = 0.00087 m or a = 0.87 mm

(4)

Thus, the smallest flaw that will propagate is a = 0.87 mm, and we conclude that
the 5-mm flaw will propagate under the given load.

The conclusion above can be reached with a different procedure. Begin by com-
puting �KI corresponding to a = 5 mm. From (2)

�KI = (2.207/
√
π)
√

0.005 m(180− 150) MPa = 2.64 MPa · √m (5)

Since �KI > �Kth = 1.1 MPa · √m, the flaw will propagate.
To compute the number of load cycles to unstable crack growth, use Eq. (7.51).

Table 7-10, for R∗ = 150/180 = 0.83, lists n = 4.8 and A = 1.68 × 10−10. The
initial crack size is a0 = 0.005 m. To find ac, use (1), with KI = KIc and σ = σmax:

ac = (π/4.87)(KIc/σmax)
2 = (π/4.87)(22 MPa · √m/180 MPa)2 = 0.0096 m

Express Eq. (7.51) as d N = da/[A(�K )n] and integrate using �K = �KI of (2):

N =
∫ ac

a0

da

A(2.207/
√
π)n(a)n/2(�σ)n

= 120,227 cycles

where �σ = σmax − σmin and n = 4.8.

7.8 COMBINED APPROACH

The fatigue failure of a structural member is a two-step process of crack initiation
followed by propagation to critical size. Fracture mechanics methods can be applied
to the propagation phase of the problem. Other techniques, such as the local strain
approach, can be used to deal with the initiation phase of fatigue failure. A method
for handling crack initiation problems is presented elsewhere [7.46].
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TABLE 7-1 STRESS INTENSITY FACTORS
Notation

KI = mode I stress intensity factor (F/L3/2)

KII = mode II stress intensity factor (F/L3/2)

KIII = mode III stress intensity factor (F/L3/2)

σ = tensile stress, under opening mode of loading (F/L2)

τ = shear stress, under shearing mode of loading (F/L2)
τIII = shear stress, under tearing mode of loading

which is in out-of-plane direction (F/L2)

Case Intensity Factor

1.
Finite-width plate with center
crack, tension loading

KI = σ√πa F(a/b)

F(a/b) =
[
1− 0.1(a/b)2 + 0.96

( a
b

)4
]√

sec πa
b

For a� b, F(a/b) ≈ 1
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2.
Finite-width plate with center
crack, mode II crack propagation
(shear load along crack)

KII = τ√πa F(a/b)

F(a/b) =
[
1− 0.1

( a
b

)2 + 0.96
( a

b

)4
]√

sec πa
b

3.
Finite-width plate with center
crack, mode III crack propagation
(out-of-plane shear loading)

KIII = τIII
√
πa

√
b
πa tan πa

b

4.
Finite-width plate with double-
edge crack, tension loading

KI = σ√πa F(a/b)

F(a/b) = (
1+ 0.122 cos4 πa

b

)√ b
πa tan πa

b

For a � b, F(a/b) ≈ 1.1

TA
B

L
E

7-1
S

tress
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sity
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rs
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TABLE 7-1 (continued) STRESS INTENSITY FACTORS

Case Intensity Factor

5.
Finite-width plate with
double-edge cracks, mode
II crack propagation

KII = τ√πa F(a/b)

F(a/b) is the same as in case 4.

6.
Finite-width plate with
double-edge cracks, mode III
crack propagation

KIII = τIII
√
πa

√
b
πa tan πa

b
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7.
Plate with single-edge crack,
tension loading

KI = σ√πa F(a/b)

F(a/b) =
√

2b
πa tan πa

2b
0.752+2.02(a/b)+0.37[1−sin(πa/2b)]3

cos(πa/2b)

For a� b, F(a/b) ≈ 1.1

8.
Plate with single-edge crack
bending load M with
units (F · L/L)

σ = 6M
b2

KI = σ√πa F(a/b)

F(a/b) =
√

2b
πa tan πa

2b
0.923+0.199[1−sin(πa/2b)]4

cos(πa/2b)
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TABLE 7-1 (continued) STRESS INTENSITY FACTORS

Case Intensity Factor

9.
Beam with crack, three-point
bending P with units (F/L)

σ = 6M
b2 , M = P L

4

KI = σ√πa F(a/b)

For L/b = 4, β = a/b

F(a/b) = 1√
π

1.99−β(1−β)(2.15−3.93β+2.7β2)

(1+2β)(1−β)3/2
For L/b = 8,

F(a/b) = 1.106− 1.552(a/b)+ 7.71(a/b)2 − 13.53(a/b)3

10.
Shaft with crack, tension
loading P with units (F)

KI = σnet
√
πa F1(a/b)

σnet = P
πa2

F1(a/b) =
√

1− 2a
b G(a/b)

G(a/b) = 1
2

[
1+ 1

2
2a
b + 3

8

(
2a
b

)2 − 0.363
(

2a
b

)3 + 0.731
(

2a
b

)4
]
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11.
Shaft with crack, bending load

KIA = σN
√
πa F1(a/b)

σN = 4M
πa3

F1(a/b) =
√

1− 2a
b G(a/b)

G(a/b) = 3
8

[
1+ 1

2
2a
b + 3

8

(
2a
b

)2 + 5
16

(
2a
b

)3 + 35
128

(
2a
b

)4 + 0.537
(

2a
b

)5
]

12.
Shaft with crack, torsional load

KIII = τN
√
πa F1(a/b)

τN = 2T
πa3

F1(a/b) =
√

1− 2a
b G(a/b)

G(a/b) = 3
8

[
1+ 1

2
2a
b + 3

8

(
2a
b

)2 + 5
16

(
2a
b

)3 + 35
128

(
2a
b

)4 + 0.208
(

2a
b

)5
]
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TABLE 7-1 (continued) STRESS INTENSITY FACTORS

Case Intensity Factor

13.
Shaft with internal circular
crack, tension loading

KI = σnet
√
πa F1(a/b)

σnet = P
π[(b2/4)−a2]

F1(a/b) =
√

1− 2a
b G(a/b)

G(a/b) = 2
π

[
1+ 1

2
2a
b − 5

8

(
2a
b

)2 + 0.421
(

2a
b

)3
]

14.
Shaft with internal circular
crack, bending loading

KIA = σN
√
πa F1(a/b)

σN = 4Ma
π[(b4/16)−a4]

F1(a/b) =
√

1− 2a
b G(a/b)

G(a/b) = 4
3π

[
1+ 1

2
2a
b + 3

8

(
2a
b

)2 + 5
16

(
2a
b

)3 − 93
128

(
2a
b

)4 + 0.483
(

2a
b

)5
]
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15.
Shaft with internal circular
crack, torsional load

KIII = τN
√
πa F1(a/b)

τN = 2T a
π[(b4/16)−a4]

F1(a/b) =
√

1− 2a
b G(a/b)

G(a/b) = 4
3π

[
1+ 1

2
2a
b + 3

8

(
2a
b

)2 + 5
16

(
2a
b

)3 − 93
128

(
2a
b

)4 + 0.038
(

2a
b

)5
]

16.
Semi-infinite body with semi-
circular crack, tension loading

KIA = 2
π
σ
√
πa F(θ)

F(θ) = 1.211− 0.186
√

sin θ (10◦ < θ < 170◦)

TA
B

L
E
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TABLE 7-1 (continued) STRESS INTENSITY FACTORS

Case Intensity Factor

17.
Infinite body with internal
elliptical crack, tension loading

KIA = σ
√
πa

E(k)

(
sin2 θ + a2

c2 cos2 θ
)1/4

KI,max = KI(θ = ± 1
2π) = σ

√
πa

E(k)

KI(c = a) = 2σ
π

√
πa

KI(c→∞) = σ√πa

E(k) = ∫ π/2
0

√
1− k2 sin2 φ dφ

(Elliptic integral available in mathematical handbooks)

k2 = 1− a2/c2
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18.
Semielliptical surface crack
in finite plane, tension loading

K = σ√πa/E(k)2 f (θ)F
( a

t ,
a
c ,

c
b

)
where

f (θ) =
(

sin2 θ + a2

c2 cos2 θ
)0.25

F =
{(

1.13− 0.1 a
c

)+ [√
E(k)2 c

a −
(
1.13− 0.1 a

c

)] ( a
t

)√π

+
√

E(k)2 c
a

(√
π
4 − 1

) ( a
t

)2
√
π
}√

sec
(
πc
b

√
a
t

)

E(k) =
∫ π/2

0

√
1− k2 sin2 φ dφ

(Elliptic integral available in mathematical handbooks)

k2 = 1− a2/c2

TA
B

L
E
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TABLE 7-2 STRENGTH AND FRACTURE TOUGHNESS DATA FOR
SELECTED MATERIALSa

Material Specimen Test Temperature σys KIc
Alloy Supply Orientation (◦C) (MPa) (MPa · √m)

Aluminum Alloys

2014-T651 Plate L–T 21–32 435–470 23–27
2014-T651 Plate T–L 21–32 435–455 22–25
2014-T651 Plate S–L 24 380 20

2014-T6 Forging L–T 24 440 31
2014-T6 Forging T–L 24 435 18–21

2020-T651 Plate L–T 21–32 525–540 22–27
2020-T651 Plate T–L 21–32 530–540 19

2024-T351 Plate L–T 27–29 370–385 31–44
2024-T351 Plate T–L 27–29 305–340 30–37

2024-T851 Plate L–T 21–32 455 23–28
2024-T851 Plate T–L 21–32 440–455 21–24

2124-T851 Plate L–T 21–32 440–460 27–36
2124-T851 Plate T–L 21–32 450–460 24–30

2219-T851 Plate L–T 21–32 345–360 36–41
2219-T851 Plate T–L 21–32 340–345 28–38

7049-T73 Forging L–T 21–32 460–510 31–38
7049-T73 Forging T–L 21–32 460–470 21–27

7050-T73651 Plate L–T 21–32 460–510 33–41
7050-T73651 Plate T–L 21–32 450–510 29–38
7050-T73651 Plate S–L 21–32 430–440 25–28

7075-T651 Plate L–T 21–32 515–560 27–31
7075-T651 Plate T–L 21–32 510–530 25–28
7075-T651 Plate S–L 21–32 460–485 16–21

7075-T7351 Plate L–T 21–32 400–455 31–35
7075-T7351 Plate T–L 21–32 395–405 26–41

7475-T651 Plate T–L 21–32 505–515 33–37

7475-T7351 Plate T–L 21–32 395–420 39–44

7079-T651 Plate L–T 21–32 525–540 29–33
7079-T651 Plate T–L 21–32 505–510 24–28

7178-T651 Plate L–T 21–32 560 26–30
7178-T651 Plate T–L 21–32 540–560 22–26
7178-T651 Plate S–L 21–32 470 17
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TABLE 7-2 (continued) STRENGTH AND FRACTURE TOUGHNESS DATA FOR SELECTED
MATERIALSa

Ferrous Alloys

4330V(275◦C temper) Forging L–T 21 1400 86–94
4330V(425◦C temper) Forging L–T 21 1315 103–110
4340(205◦C temper) Forging L–T 21 1580–1660 44–66
4340(260◦C temper) Plate L–T 21 1495–1640 50–63
4340(425◦C temper) Forging L–T 21 1360–1455 79–91
D6AC(540◦C temper) Plate L–T 21 1495 102
D6AC(540◦C temper) Plate L–T −54 1570 62
9-4-20(550◦C temper) Plate L–T 21 1280–1310 132–154
18 Ni(200)(480◦C 6 h) Plate L–T 21 1450 110
18 Ni(250)(480◦C 6 h) Plate L–T 21 1785 88–97
18 Ni(300)(480◦C) Plate L–T 21 1905 50–64
18 Ni(300)(480◦C 6 h) Forging L–T 21 1930 83–105
AFC77(425◦C temper) Forging L–T 24 1530 79

Titanium Alloys

Ti–6 Al–4V (Mill anneal L–T 23 875 123
plate)

Ti–6 Al–4V (Mill anneal T–L 23 820 106
plate)

Ti–6 Al–4V (Recrystallize
anneal plate) L–T 22 815–835 85–107

Ti–6 Al–4V (Recrystallize T–L 22 825 77–116
anneal plate)

Ceramicsb

Mortar — — — 0.13–1.3
Concrete — — — 0.23–1.43
Al2O3 — — — 3–5.3
SiC — — — 3.4
Si3N4 — — — 4.2–5.2
Soda-lime silicate glass — — — 0.7–0.8
Electrical porcelain ceramics — — — 1.03–1.25
WC(2.5–3 µm)—3 wt % Co — — — 10.6
WC(2.5–3 µm)—9 wt % Co — — — 12.8
WC(2.5–3.3 µm)—15 wt % Coc — — — 16.5–18
Indiana limestoned — — — 0.99
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TABLE 7-2 (continued) STRENGTH AND FRACTURE TOUGHNESS DATA FOR SELECTED
MATERIALSa

Polymers

PMMAe — — — 0.8–1.75 f

PSg — — — 0.8–1.1 f

Polycarbonateh — — — 2.75–3.3 f

aUnless noted otherwise, from Ref. [7.3], with permission. Symbols: σys , yield strength (F/L2); KIc , critical
stress intensity factor for mode I deformation (F/L3/2); L–T, crack is perpendicular to longitudinal direction and
parallel to transverse direction; T–L, crack is perpendicular to transverse direction and parallel to longitudinal
direction; S–L, crack is perpendicular to thickness and parallel to rolling direction.
bFrom Bradt et al. [7.40].
cFrom Ingelstrom and Nordberg [7.41].
d From Schmidt [7.42].
eFrom Marshall and Williams [7.43].
f KIc is a function of crack speed.
gFrom Marshall et al. [7.44].
hFrom Rodon [7.45].
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TABLE 7-3 S–N CURVES FOR SOME STEELS
Notation

S is completely reversed stress, or fatigue strength (ksi),
N is cycles to failure,
S = 10a+b log N or log S = a + b log N where 103 ≤ N ≤ 106.

Load Type Process Coefficient a Coefficient b

Hardness of Steel: 160–187 HB

Bending Polished 2.105 −0.082
Ground 2.159 −0.0999
Machined 2.231 −0.124
Hot rolled 2.321 −0.154
Forged 2.430 −0.190

Axial Polished 2.195 −0.112
Ground 2.240 −0.127
Machined 2.309 −0.150
Hot rolled 2.369 −0.170
Forged 2.550 −0.230

Torsional Polished 2.192 −0.138
Ground 2.258 −0.160
Machined 2.309 −0.177
Hot rolled 2.399 −0.207
Forged 2.555 −0.259

Hardness of Steel: 269–285 HB

Bending Polished 2.336 −0.086
Ground 2.378 −0.100
Machined 2.535 −0.147
Hot rolled 2.648 −0.190
Forged 2.828 −0.250

Axial Polished 2.351 −0.099
Ground 2.387 −0.111
Machined 2.474 −0.140
Hot rolled 2.669 −0.205
Forged 2.804 −0.250

Torsional Polished 2.402 −0.134
Ground 2.459 −0.153
Machined 2.564 −0.188
Hot rolled 2.720 −0.240
Forged 2.900 −0.300
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TABLE 7-4 S–N CURVES FOR ALUMINUM UNDER COMPLETELY
REVERSED BENDING

Notation
S is completely reversed stress, or fatigue strength (ksi);
N is cycles to failure;
S = 10a+b log N or log S = a + b log N where 105 ≤ N ≤ 5× 108.

Type of Aluminum Coefficient a Coefficient b

Wrought 1100 O 1.179 −0.05518
1100 H12 1.391 −0.070
1100 H14 1.394 −0.063
1100 H16 1.471 −0.065
1100 H18 1.627 −0.0794
3003 O 1.306 −0.053
3003 H12 1.545 −0.0738
3003 H14 1.542 −0.0675
3003 H16 1.56 −0.066
3003 H18 1.649 −0.074
2014 T 4 2.036 −0.091
2014 T 6 2.076 −0.1036
2017 T 4 2.053 −0.085

Cast 142 T 21 1.65 −0.0949
142 T 61 1.706 −0.081
195 T 4 1.964 −0.125
220 T 4 1.864 −0.117
319 F 1.656 −0.0754
355 T 51 1.75 −0.104
355 T 6 1.708 −0.0814
356 T 51 1.876 −0.115
356 T 6 1.846 −0.0972
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TABLE 7-5 FATIGUE ENDURANCE RATIO
σe/σu AND MAXIMUM FATIGUE LIMIT
(σe)max FOR VARIOUS CLASSES OF
ENGINEERING MATERIALSa

Notation
σe = fatigue endurance limit (F/L2)

σu = ultimate tensile strength (F/L2)

Material σe/σu (σe)max (MPa)

Steels 0.35–0.60 784.5
Cast irons 0.30–0.50 196.1
Al alloys 0.25–0.50 196.1
Mg alloys 0.30–0.50 147.1
Cu alloys 0.25–0.50 245.2
Ni alloys 0.30–0.50 392.3

aFrom Ref. [7.9], with permission.

TABLE 7-6 SURFACE TREATMENTS THAT INCREASE OR DECREASE
FATIGUE STRENGTHa

Fatigue Limit
Treatment Increase (%) Material

Shot peening and rolling of specimen 10–30 Steels and Al alloys
without stress concentration

Shot peening and rolling of specimen > 50 Steels and Al alloys
with stress concentration

Carburizing > 30 Steels for carburizing
Nitriding of specimen without 10–30 Steels for nitriding

stress concentration
Nitriding of specimen with > 50 Steels for nitriding

stress concentration
Induction and flame hardening > 30 Steels

Fatigue Limit
Treatment Decrease (%) Material

Decarburizing > 30 Spring steels
Chromium and nickel plating > 30 Steels Su ≥ 981 MPa
Al clad 15–35 High-strength Al alloys
Welding > 30 Special steels and Al

alloys

a From Ref. [7.9], with permission.
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TABLE 7-7 CORROSION FATIGUE LIMITS OF SELECTED STEELSa,b

Corrosion Fatigue
Limit (ksi)

Composition (%)

C Ni Cr Condition

Tensile
Strength

(ksi)

Fatigue
Limit
in Air
(ksi)

Well
Water

Salt
Water

0.11 — — Annealed 46 25 16
0.14 — — Quenched 70 36 23
0.26 — — Quenched, drawn 85 39 23
0.11 — 11.8 Annealed 80 41 34 14
0.13 — 13.4 Quenched, drawn 91 59 4 0 13
0.16 8.2 17.3 Quenched, drawn 125 50 50 25
0.38 15.9 16.0 Annealed 126 64 51
0.24 22.1 6.0 Normalized 85 — — 15

aData from Refs. [7.19] and [7.54]
bThese steels are loaded at 1450 cycles/min. for ≥ 107 cycles.

TABLE 7-8 CORROSION FATIGUE LIMITS OF SELECTED NONFERROUS
METALSa,b

Corrosion-Fatigue
Strength (ksi)

Composition (%)

Ni Cu Al Mn Condition

Tensile
Strength

(ksi)

Fatigue
Limit in
Air (ksi)

Well
Water

Salt
Water

99 — — — Annealed, 600◦F 78 33.0 23.0 21.5
99 — — — Annealed, 1400◦F 132 51.0 26.0 22.0
68 30 — — Annealed, 800◦F 82 36.5 26.0 28.0
68 30 — — Annealed, 1400◦F 127 51.5 26.0 29.0
48 48 — — Cold rolled 78 31.5 22.0 25.0
48 48 — — Annealed, 1400◦F 86 36.5 22.0 26.0
21 78 — — Annealed, 400◦F 47 19.0 18.0 18.0
21 78 — — Annealed, 1400◦F 62 25.5 21.5 23.5

100 — — Annealed, 250◦F 31 9.5 10.0 10.0
100 — — Annealed, 1200◦F 47 16.5 17.5 17.5

99 — Annealed 13 5.9 — 2.1
99 — Half hard temper 16 7.3 — 3.0
99 — Hard temper 21 8.4 5.0 3.0
98 1.2 Annealed 17 6.8 3.2 —
98 1.2 Half hard temper 24 10.1 5.5 4.0
98 1.2 Hard temper 30 10.7 5.5 4.0

4 94 — Annealed 33 13.5 7.5 6.7
4 94 — Tempered 69 17.0 8.0 7.0

aFrom Ref. [7.35]. Copyright ASTM, reprinted with permission.
bThese metals are stressed for 20,000,000 cycles at 1450 cyles/min.
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TABLE 7-9 PARAMETERS OF FATIGUE CRACK PROPAGATION EQUATION da/dn = A(∆K)n FOR THREE
CLASSES OF STEEL

Notation
a = half-length of flaw (in.)
N = number of load cycles

�K = range of stress intensity factor during a cycle (ksi-
√

in.)
da/d N = fatigue crack growth rate (in./cycle)

Range of Mechanical Properties Parameter

Yield Strength, σys Tensile Strength, σu Strain-Hardening A
Class (ksi) (ksi) Exponent,a α′ [in./cycle/(ksi-

√
in.)n] n

Austenitic, 30 < σys < 50 75 < σu < 95 α′ > 0.3 3.0× 10−10 3.25
stainless

Ferrite, 30 < σys < 80 50 < σu < 110 α′ > 0.15, 3.6× 10−10 3.0
pearlite α′ < 0.3

Martensitic σys > 70 σu > 90 α′ < 0.15 0.66× 10−8 2.25

aBeyond the yield point, the plot of true stress σt vs. true strain εt for many materials is given as σt = βεα′t , where α′ is the strain-hardening exponent and β is a constant
called the strength coefficient. By definition, σt = force/(instantaneous area) and εt = ln (instantaneous length/initial length).
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TABLE 7-10 FATIGUE CRACK GROWTH DATA FOR VARIOUS MATERIALSa

Notation
Fatigue crack propagation equation is da/d N = A(�K )n,

where a = half length of flaw (m)
N = number of load cycles

�K = range of stress intensity factor during cycle (MPa · √m)
da/d N = fatigue crack growth rate (m/cycle)
R∗ is ratio of minimum to maximum stress in the load cycle.

0.1 or
0.2%

Tensile Proof
Strength Stress

Material (MN/m2) (MN/m2) R∗ n
A
[

m/cycle
(MPa·√m)n

]

Mild steel 325 230 0.06–0.74 3.3 2.43× 10−12

Cold-rolled mild steel 695 655 0.07–0.43 4.2 2.51× 10−13

0.54–0.76 5.5 3.68× 10−14

0.75–0.92 6.4 2.62× 10−14

18/8 austenitic steel 665 195–255 0.33–0.43 3.1 3.33× 10−12

Aluminum 125–155 95–125 0.14–0.87 2.9 4.56× 10−11

5% Mg–aluminum alloy 310 180 0.20–0.69 2.7 2.81× 10−10

HS30W aluminum alloyb 265 180 0.20–0.71 2.6 1.88× 10−10

HS30WP aluminum 310 245–280 0.25–0.43 3.9 2.41× 10−11

alloyb 0.50–0.78 4.1 4.33× 10−11

L71 aluminum alloyc 480 415 0.14–0.46 3.7 3.92× 10−11

L73 aluminum alloyc 435 370 0.50–0.88 4.4 3.82× 10−11

DTD 687 aluminum 540 495 0.20–0.45 3.7 1.26× 10−10

alloyd 0.50–0.78 4.2 8.47× 10−11

0.82–0.94 4.8 1.68× 10−10

ZW1 magnesium alloye 250 165 0 3.35 1.23× 10−9

AM503 magnesium 200 107 0.5 3.35 3.47× 10−9

alloy f 0.67 3.35 4.23× 10−9

0.78 3.35 6.57× 10−9

Copper 215–310 26–513 0.07–0.82 3.9 3.38× 10−12

Titanium 555 440 0.08–0.94 4.4 6.89× 10−12

5% Al-titanium alloy 835 735 0.17–0.86 3.8 9.56× 10−12

15% Mo-titanium alloy 1160 995 0.28–0.71 3.5 2.14× 10−11

0.81–0.94 4.4 1.17× 10−11

aData adapted from Ref. [7.38]. Data for bronze, brass, nickel, monel, and inconel are provided in this reference.
b1% Mg, 1% Si, 0.7% Mn.
c4.5% Cu.
d 5.5% Zn.
e0.5% Zr.
f 1.5% Mn.
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Joints consist of separate structural elements joined with fasteners or welds. Useful
formulas and tables for the analysis and design of joints are provided in this chapter.
Most commonly used in engineering structures and machines are riveted, bolted, and
welded connections. Figure 8-1 illustrates these three types of joints.

8.1 NOTATION

The units for each definition are given in parentheses, using L for length and F for
force.

A Cross-sectional area (L2)

Ab Nominal bearing area, bolt cross-sectional area (L2)

Ae Effective net area (L2)

Ag Cross-sectional gross area (L2)

An Net sectional area (L2)

369
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Figure 8-1: Common joints: (a) bolted; (b) riveted; (c) welded.

Aw Weld area (L2)

d Nominal or major diameter of fastener (rivet or bolt) (L)
E Elastic modulus (Young’s modulus) (F/L2)

fr Nominal resultant stress in weld (F/L2)

Fi Initial tensile force (F)
g Transverse spacing (gage) (L)
k Stiffness constant (F/L)

� Distance (L)
M Moment (F L)

P Applied load (F)
Pe External tensile load (F)
PT Total load-carrying capacity (F)

s Longitudinal spacing, pitch (L)
t Plate thickness (L)

T Torque or twisting moment (F L)

w Leg size of fillet weld (L)
σp Allowable bearing stress (F/L2)

σtw Allowable tensile stress (F/L2)

σu Ultimate tensile strength (F/L2)

σwa Allowable strength of particular type of weld (F/L)

σys Yield strength (F/L2)

τ Shear stress (F/L2)

τw Allowable shear stress (F/L2)
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8.2 RIVETED AND BOLTED JOINTS

When joints are used for connecting members of structures such as building frames,
trusses, or cranes, they are generally referred to as connections. Here we will not
distinguish between these two terms.

Much of the material in this section deals with steel and conforms to the spec-
ifications of the American Institute of Steel Construction (AISC) as provided in
Ref. [8.1], using “Allowable Steel Design.” However, the steel construction com-
munity is replacing the design methodology of Ref. [8.1] with the “Load and Re-
sistance Factor Design” (LRFD) design approach of Ref. [8.2]. Allowable stress
design is the traditional procedure which begins with the identification of an allow-
able stress, which is obtained by dividing either the yield stress σys or the ultimate
stress σu by a factor of safety. Thus, a typical allowable stress would be 0.6 σu . Then,
a structural member is designed by choosing cross-sectional properties such that the
maximum stress, as determined using elastic strength of materials relations, does not
exceed the allowable stress. Load and resistance factor design is quite different. In
this procedure, the structural member is selected so that its resistance, multiplied by
a resistance factor, is not less than the service load combination, multiplied by load
factors. This procedure permits differing reliabilities in the prediction of the load and
member resistance to be taken into account.

Rivets in connections are usually made from a soft grade of steel that does not
become brittle when heated and hammered with a pneumatic riveting gun. They are
manufactured with one formed head and are installed in holes that are 1

16 in. larger in
diameter than the nominal diameter of the rivet. When installing a rivet, its head end
is held tightly against the pieces being joined while the opposite end is hammered
until another, similar head is formed. Steel rivets, as used in most connections, are
usually heated to a cherry-red color (approximately 1800◦F) and can then be more
easily driven. As the rivets cool, they shrink and squeeze the joined parts together.
Copper and aluminum rivets used in aircraft engineering are generally driven cold.

The AISC mandates that rivets must conform to the American Society for Test-
ing and Materials (ASTM) provisions “Standard Specifications for Structural Riv-
ets” [8.3]. The size of rivets used in general steel construction ranges in diameter
from 5

8 to 1 1
2 in. in 1

8 -in. increments.
Riveted joints are either lap or butt joints (Fig. 8-2). The lap joint has two plates

that are lapped over each other and fastened together by one or more rows of rivets
or fasteners. In the case of a butt joint, the edges of two plates are butted together
and the plates are connected by cover plates.

A bolt is a threaded fastener with a head and a nut that screws on to the end
without the head (Fig. 8-1a). The bolts most commonly used in steel construction
are unfinished bolts (also called ordinary or common bolts) and high-strength bolts.
Unfinished bolts are used primarily in light structures subjected to static loads. Un-
finished bolts must conform to the specifications for low-carbon steel externally and
internally threaded fasteners, ASTM A307 [8.3].

High-strength bolts are made from medium-carbon, heat-treated, or alloy steel
and have tensile strengths several times greater than those of unfinished bolts. Spec-
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Figure 8-2: Rivet joints: (a) lap; (b) butt.

ifications of the AISC state that high-strength bolts must conform to “Specifications
for Structural Joints Using ASTM A325 or A490 Bolts” [8.3].

Owing to better performance and economy compared to riveted joints, high-
strength bolting has become the leading technique used for connecting structures in
the field. In general, three types of connections are made of high-strength bolts:

1. The friction (F) connection, in which slip between the connected parts cannot
be tolerated and must be resisted by a high clamping force

2. The bearing (N ) connection, with threads included in the shear plane (Fig.
8-3a)

3. The bearing (X) connection, with threads excluded from the shear plane
(Fig. 8-3b)

The allowable stresses recommended by the AISC Manual of Steel Construc-
tion [8.1] are given in Table 8-1. Generally, these stresses are based on the results
of a large number of laboratory tests in which the ultimate strength of the rivets is
determined. Division of the ultimate strength by a suitable factor of safety gives the
allowable stresses.

Figure 8-3: Bearing connections of high-strength bolts: (a) type N bolt, with threads in-
cluded in the shear plane; (b) type X bolt, with threads excluded from the shear plane.
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Joint Failure Mode under Shear Loading

Four modes of failure for joints are normally considered.
(a) Shearing of the fastener (bolt or rivet) in either single (one-sided) or double

(two-sided) shear, depending on the type of joint (Fig. 8-4a): To prevent shear failure
of the fastener, the number of fasteners should be determined to limit the maximum
shear stress in the critical fastener to the allowable stress listed in Table 8-1. The
average shearing stress in a fastener (Fig. 8-4a) is

τ = Ps/A = 4Ps/πd2 (8.1)

where Ps is the load acting on the fastener’s cross section subject to shear and A and
d are the area and diameter, respectively, of the bolt or rivet cross section. For single
shear Ps = P and for double shear joints (Fig. 8-4a)

Ps = 1
2 P

(b) Compression or bearing, that is, the crushing of either the fastener or the plate
in front of it (Fig. 8-4b): To assure that no compression or bearing occurs due to the
crushing force of the fasteners on the material, the minimum number of fasteners is
determined.

The bearing is assumed to be uniformly distributed over an area A = td so that
the bearing stress σbr is

σbr = P/td (8.2)

where P is the load, t is the thickness, and d is the diameter of the shaft of the
fastener, as shown in Fig. 8-4b.

The specifications of AISC recommend the allowable bearing stress σp, using a
factor of safety of 2, to be [8.4]

σp = 1
2σu(s/d − 0.50) ≤ 1.50σu (8.3)

where s is the distance between the centers of two fasteners in the direction of the
stress and σu is the ultimate strength of the material.

(c) Tension or tearing when a plate tears apart along some line of least resistance
(Fig. 8-4c): To prevent this failure in steel, the connected parts should be designed so
that the tensile stress is less than 0.6σys of the gross area Ag and less than 0.5σu on
the effective net area (specifications of AISC), where the gross area Ag of a member
is defined as the product of the thickness and the gross width of the member as
measured normal to the tensile force σ (Fig. 8-5). The net area An of the plate is the
product of the net width and the member thickness, and the net width is determined
by deducting from the gross width the sum of all hole widths in the section cut. To
compute the net width, the width of a fastener (rivet or bolt) hole is taken as 1

16 in.
larger than the actual width of the hole. Moreover, the actual hole diameter is 1

16
in. larger than the nominal fastener size d. Thus, for each hole, a value of fastener
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Figure 8-4: Failure modes of joints.
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Figure 8-5: Gross area Ag and net width Wn .

diameter 1
16 + 1

16 = 1
8 in. should be used to calculate the net width and net area. For

section 1-1 in Fig. 8-5 with two holes, for example, the net width Wn is

Wn = b − N
(
d + 1

8

) = b − 2
(
d + 1

8

)

where N is the number of holes and

An = tWn = t
[
b − 2

(
d + 1

8

)]
, Ag = tb

Holes are sometimes arranged in a zigzag pattern, as in Fig. 8-6. Then the net
width is taken as the gross width minus the diameter of all the holes in a chain (line
of failure), plus for each “out-of-line” space (i.e., each diagonal) in the chain, the
value

s2/4g (8.4a)

where s is the pitch (longitudinal spacing) in inches (Fig. 8-6) and g is the gage
(transverse spacing) in inches. For example, for the chain (possible line of failure) of
ABGHI (or the section of ABGHI) shown in Fig. 8-6a, where only one diagonal is in
the chain, the net width is

Wn = b − 3(d + 1
8 )+ s2/4g (8.4b)

(a)

bP Pg
g
g

g

A E

s
D I

F

B
G

C H

b g
g
g

g

A E

s
D I

F

B
G

C H

(b)

P P

Figure 8-6: Zigzag pattern of holes: (a) chain ABGHI; (b) chain ABGCD.
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and the net width for section ABGCD (Fig. 8-6b), where two diagonals are in the
chain, is

Wn = b − 3
(
d + 1

8

)+ s2/4g + s2/4g (8.4c)

For all possible chains, the critical net section is the chain that has the least net width.
If the tensile force is transmitted by fasteners (rivets or bolts) through some, but

not all, of the segments of the cross section, an effective net area Ae must be com-
puted [8.2]. This is to account for the effect of shear stress concentration in the vicin-
ity of connections or for the shear lag for the portion of the section distant from the
connections. The effective net area is defined by

Ae = U An (8.5)

where U is a reduction factor assumed to be 1.0 unless otherwise determined. Values
of U recommended by AISC are listed in Table 8-2. The tensile stress can be obtained
from

σg = PT /Ag (8.6a)

σn = PT /An (8.6b)

or

σe = PT /Ae (8.6c)

where σg, σn , and σe are the tensile stresses based on the gross, net, and effective
areas, respectively, and PT is the total load on the connection member.

(d) End failure, including end shearing and end tearing (Figs. 8-4d and e): In the
case of failure including shearing on the area xt (Fig. 8-4d), the shear stresses are

τ = P/2xt (8.7)

where P is the load acting at the hole, t is the thickness of the plate, and x is as
shown in Fig. 8-4d.

In actuality, the stress is probably more complicated. The AISC [8.1] recommends
an experimentally determined formula. To prevent the failure mode of end tearing or
shearing, the minimum edge distance e from the center of a fastener hole to the edge
(Fig. 8-4e) in the direction of the force shall be greater than 2P/tσu , that is,

e ≥ 2P/tσu (8.8)

where σu is the ultimate tensile strength. Table 8-3 gives some recommended e val-
ues. These edge distances depend on the joint type, the plate thickness, and the type
of fastener.

The analyses above are based on the assumption that the stresses in fasteners or
connecting members are uniform. This is not always true. When the stress is below
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the elastic limit, the true stresses are not necessarily equal to the average stress.
Stress concentration may occur. Before the ultimate strength is reached, however, the
material yields and stresses are redistributed so that they tend to approach uniform
values. Because of plastic yielding of the material and because allowable stresses are
obtained from tests on specimens similar to the actual structure, it is possible that
this assumption corresponds to an acceptable approximation.

The four modes of failure analysis are suitable for riveted joints and N , X-type
bolted joints. The only difference is in their corresponding allowable stresses for
shearing and bearing (Table 8-1). For F-type connections, the design is based on
the assumption that if the connection fails, the bolts will fail in shear alone, and
the bearing stress of the fasteners on the connected parts need not be considered.
Nevertheless, the bearing must be considered in the event the friction bolts slip and
must resist bearing [8.1]. Formulas for the four modes of failure are summarized in
Table 8-4.

Boiler Joints

When a riveted joint is to remain airtight under pressure, it is sometimes called a
boiler joint. Special consideration is given to the analysis and design of this type of
joint. The Boiler Code of the American Society of Mechanical Engineers gives the
ultimate strength of boiler steel to be used for boilers and tanks and also recommends
a factor of safety of 3.5. The efficiency of a riveted boiler joint is the ratio of the
strength of the joint to the strength in tension of the unpunched plate.

Bolted Joints in Machine Design

In machine design, friction-type high-strength bolting is most commonly utilized.
A bolt is tightened to develop a minimum initial tension in the bolt shank equal to
about 70% of the tensile strength of the bolt. In this case, no interface slip occurs
at allowable loads so that the bolts are not actually stressed in shear and are not in
bearing. A discussion follows of the analysis of friction-type high-strength bolting
used in machine design in which the tensile load of the bolt must be considered.

The tightening load is created in a bolt by exerting an initial torque on the nut or
on the head of the bolt. For a torqued-up bolt, the tensile force in the bolt due to the
torque can be approximated as [8.5]

T = cd Fi (8.9)

where T is the tightening torque, c is a constant depending on the lubrication present,
d is a nominal outside diameter of the shank of the bolt, and Fi is the initial tightening
load in the bolt. When the threads of the bolt are well cleaned and dried, choose
c = 0.20.

It is important to understand that when a load in the bolt shank direction is applied
to a bolted connection over and above the tightening load, special consideration must
be given to the behavior of the connection, which changes the allowable external load
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Figure 8-7: Inner force for a bolted joint under tension.

significantly. In the absence of an external load, the tensile force in the bolt is equal
to the compressive force on the connected members. The external load will act to
stretch the bolt beyond its initial length (Fig. 8-7). Thus, the resulting effect, which
depends on the relative stiffness of the bolt and the connected members, is that only
a part of the applied external load is carried by the bolt. The final tensile force Fb in
the bolt and compressive force Fc in connected members can be obtained using [8.6]

Fb = Fi + kb Pe/(kb + kc) (8.10)

Fc = Fi − kc Pe/(kb + kc) (8.11)

where Fi is the initial tensile force in the bolt, kb and kc are the stiffnesses of the bolt
and the connected members, respectively (Fig. 8-7), and Pe is the external load.

Since the external loading (Pe) is shared by the bolt and the connected members
according to their relative stiffness (kc/kb), stiffness is usually given in the form
of the ratio kr = kc/kb, where kr is the stiffness ratio. For simple extension or
compression, the stiffnesses are

kb = Ab Eb/Lb (8.12)

kc = Ac Ec/Lc (8.13)

where Ab, Eb, and Lb are the cross-sectional area, modulus of elasticity, and length
of the bolt, respectively. The quantities Ac, Ec, and Lc are for the connected mem-
bers.
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Figure 8-8: Concentrically loaded connections.

8.3 LOAD ANALYSIS OF FASTENER GROUPS

A riveted or bolted joint may be subjected to a variety of forces. When the line of
action of the resultant force that is to be resisted by the joint passes through the cen-
troid c of the fastener group (Fig. 8-8), the joint is said to be concentrically loaded.
Otherwise, the joint is said to be eccentrically loaded (Fig. 8-9a). For a concentri-
cally loaded connection, the load is assumed to be uniformly distributed among the
fasteners. For an eccentrically loaded connection, the force may be replaced by an
equal force at the centroid and a moment equal in magnitude to the force times its ec-
centricity. In this case, each fastener in the group is assumed to resist the force at the
centroid uniformly and to resist the moment in proportion to its respective distance
to the centroid of the fastener group.

Normally, the conditions of equilibrium, along with the assumptions above, per-
mit the most significant forces in each fastener to be computed. In riveted and bolted
connections the centroid of the fastener, which is sometimes referred to as the center
of resistance, is of importance in the analysis and design. The location of the cen-
troid can be found by using the method described in Chapter 2. But in most cases all
fasteners of a group have the same cross-sectional area and are arranged in a sym-
metrical pattern; consequently, the location of the centroid can be readily determined
by simple observation, as should be evident in Figs. 8-8 and 8-9.

Example 8.1 Eccentrically Loaded Connection To illustrate the determination
of fastener forces, consider the simple rivet group of the four symmetrically located
rivets of Fig. 8-9a. It is assumed that each rivet takes 1

4 P of the load (Fig. 8-9b).
Also, a moment of magnitude P L is generated at the centroid of the rivet areas. This
moment is resisted by the moment due to the rivet forces (see Fig. 8-9b). This force
in each rivet is F . Because the moments are in equilibrium,

P L − 4F� = 0 (1)
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Figure 8-9: Eccentric loading. Positive moment M and coordinate system are shown in (c).

Hence

F = P L/4� (2)

The total force on each rivet is the vector sum of 1
4 P and F . In Fig. 8-9, it can be seen

that the maximum resultant force occurs in the rivet closest to the eccentric load P ,
that is,

Fmax = F + 1
4 P = (P/4�)(�+ L) (3)

There is another general, related method to find the moment-resisting forces F on
each fastener. If the center of rotation of the eccentric moment P L is assumed to be
the centroid of the fastener group, each fastener force Fj will be perpendicular to a
line joining the fastener and the centroid c, and the magnitude of the force will be
proportional to its distance � j from c. Therefore,

Fj = k� j (4)

where Fj is the force on fastener j due to eccentric loading and k is a constant for
the fastener group.
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From the equilibrium condition,
∑

Mc = 0. For the connections shown in
Fig. 8-9a,

P L = F1�1 + F2�2 + F3�3 + F4�4 (5)

where F1, F2, F3, F4 are the moment-resisting forces on rivet 1, 2, 3, 4, respectively,
and �1, �2, �3, �4 are the distances from each rivet to the centroid c.

From (4) and (5),

P L = k(�2
1 + �2

2 + �2
3 + �2

4) = k
4∑

j=1

�2
j (6)

so that

k = P L
4∑

j=1
�2

j

(7)

Thus, Fj in (4) can be obtained by use of k of (7). From Fig. 8-9a,

k = P L/4�2 (8)

which can be substituted into (4) to give

F1 = F2 = F3 = F4 = F = P L/4� (9)

This is, of course, the same as (2).

In more general terms Eq. (7) of Example 8.1 would be written

k = P L
n∑

j=1
�2

j

(8.14)

where L is the eccentric distance of load P , n is the number of fasteners in a connec-
tion, and k is the proportional constant of the fastener group under load P . It is often
convenient to use the components Fx and Fz of force F in vectorial summation with
the direct force P/n. The formulas are

k = M
n∑

j=1
(�2

x j + �2
z j )

(8.15)

where M = P L, L =
√

L2
x + L2

z , and � j =
√
�2

x j + �2
z j and for coordinate system

xz, as shown in Fig. 8-9c,
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Fx j = −M�z j
n∑

j=1
(�2

x j + �2
z j )

(8.16a)

Fzj = M�x j
n∑

j=1
(�2

x j + �2
z j )

(8.16b)

Therefore, the components FRx j and FRzj of the resultant force FR j on the fastener j
are

FRx j = Px

n
+ −M�z j

n∑
j=1

�2
x j +

n∑
j=1

�2
z j

(8.17a)

FRzj = Pz

n
+ M�x j

n∑
j=1

�2
x j +

n∑
j=1

�2
z j

(8.17b)

and

FR j =
√

F2
Rx j + F2

Rz j (8.17c)

8.4 DESIGN OF RIVETED AND BOLTED CONNECTIONS

Based on the considerations and analysis described above, design of a riveted or
bolted joint under a given load involves

1. Determining the type of the joint and number of fasteners
2. Using predetermined allowable stresses in order to find the required area in

shear, bearing, and tension for the fasteners and plates (connected parts) to be
used

Example 8.2 Load Capacity for a Member in Tension A bolted connection
consists of a 4×4× 1

2 angle with three bolts of diameter 3
4 in. and a strong plate B, as

shown in Fig. 8-10. Determine the tension resistance capacity of the angle. Assume
that the angle is made of American Iron and Steel Institute (AISI) 1015 steel.

Figure 8-10: Example 8.2.
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The gross area of the 4× 4× 1
2 angle is

Ag = 3.75 in2 (1)

From failure mode 3 of Table 8-4,

An = t
[
b − (d + 1

8

)] = Ag −
(
d + 1

8

)
t = 3.75− ( 3

4 + 1
8

)( 1
2

) = 3.31 in2 (2)

For 1015 steel, from Table 4-9,

σys = 45.5 ksi, σu = 61.0 ksi (3)

and Ae = U An = 0.85 · 3.31 = 2.81 in2 (U = 0.85 from Table 8-2).
As mentioned in Section 8.2, to prevent failure of the angle, the tensile stress

should be less than 0.6σys on the gross area Ag and less than 0.5σu on the effective
net area Ae, that is,

P/Ag ≤ 0.6σys and P/Ae ≤ 0.5σu (4)

From (4)

P ≤ 0.6σys Ag = (0.6)(45.5)(3.75) = 102.38 kips (5)

and

P ≤ 0.5σu Ae = (0.5)(61.0)(2.81) = 85.71 kips (6)

The tension resistance capacity P is the smaller value of these two: P = 85.71 kips.

Example 8.3 Load Capacity of a Riveted Connection A riveted lap connection
consists of two 3

4×12 in. plates of A36 steel and 7
8 -in.-diameter A502 grade 1 rivets,

as shown in Fig. 8-11. Determine the maximum tensile load P that can be resisted
by the connection.

The rivets may fail in shear or bearing or the plate may fail in tension or bearing.
Any failure will mean the failure of the connection. Thus, each condition must be
considered to determine the critical condition and the load capacity of the connection.

(a) Shear failure of the rivet: The corresponding total force PT is calculated as

PT = τwAN (1)

where τw is the allowable shear stress of the rivet, A the cross-sectional area of each
rivet, and N the number of the rivets in the connection.
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Figure 8-11: Example 8.3.

For A502 grade 1 rivets, Table 8-1 provides τw = 17.5 ksi. Since

A = 1
4πd2 = 1

4 (3.14)
(7

8 in.
)2 = 0.601 in2 and N = 9

it follows from (1) that

PT = (17.5)(0.601)(9) = 94.66 kips (2)

(b) Bearing and end failure:

PT = σp Ab N (3)

where σp is the allowable bearing stress of the plate and Ab is the bearing area of
each rivet: Ab = dt (d is rivet diameter and t is thickness of the plate).

From Eq. (8.3) the allowable bearing stress σp is calculated as

σp = 1
2σu(s/d − 0.5) ≤ 1.5σu between two fasteners (4)

For A36 steel, σu = 58.0 ksi,

σp =
(

58

2

)(
3

7/8
− 0.5

)
= 84.9 ksi ≤ (1.5)(58) = 87.0 ksi

From (3)

PT = 84.9
( 7

8

)( 3
4

)
9 = 501.44 kips (5)

For the fasteners near the end, from Eq. (8.8),

P = 1
2σute = (58

2

)( 3
4

)
2 = 43.5 kips
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If it is assumed that all of the fasteners can cause tearing,

PT = P N = 391.5 kips (6)

Select the smaller value from (5) and (6), PT = 391.5 kips.
(c) Tensile capacity: On the gross cross-sectional area, the allowable tensile stress

σtw is [from failure mode (c) in Section 8.2 with σys = 36.0 ksi for A36 steel]

σtw = 0.6σys = (0.6)(36.0) = 21.6 ksi

Since Ag = ( 3
4 in.)(12 in.) = 9 in2, the tensile capacity of the gross area is

PT = σtwAg = (21.6)(9) = 194.4 kips (7)

On the effective net area

U = 1.0

σtw = 0.5σu = (0.5)(58) = 29.0 ksi [failure mode (c) in Section 8.2]

An =
[
12− 3

( 7
8 + 1

8

)]( 3
4

) = 6.75 in2

Ae = AnU = (6.75)(1.0) = 6.75 in2 [Eq. (8.5)]

Therefore, the tensile capacity of the plate for the effective net area is

PT = σtwAe = (29.0)(6.75) = 195.75 kips (8)

Maximum load capacity of the connection in Fig. 8-11 is the least value of PT

given in (2) and (5)–(8), that is,

Pmax = (PT )shear = 94.66 kips (9)

Example 8.4 Bolted Connection with Bolts in Double Shear and in Zigzag Pat-
terns Determine the maximum value of P that the bolted connection in Fig. 8-12
can carry using 1-in.-diameter A307 bolts. Use (Table 8-1) τw = 10.0 ksi for bolts
and σu = 58.0 ksi and σys = 36.67 ksi for plates. Use a procedure similar to those
in Example 8.3 to investigate the critical condition in each failure mode.

(a) PT by shear resistance of the bolts: Since the bolts are in double shear (two
cross sections are subjected to shear), the total load by shear is

PT = 2τwAN = (2)(10.0)
[( 1

4π
)
(12)

]
(6) = 94.2 kips (1)

(b) PT by bearing resistance of the plate: It can be seen that bearing on the 3
4 -in.

plate is more critical than on two 1
2 -in. plates:

PT = σpdt N



386 JOINTS

Figure 8-12: Example 8.4.

where σp is the allowable bearing stress, d the diameter of the bolt, and t = 3
4 in. the

thickness of the plate. For the bolts inside the plates, from Eq. (8.3),

σp = 1
2σu(s/db − 0.5) = 1

2σu(4/1.0− 0.5) = 1.75σu

However, the condition σp ≤ 1.5σu should be met, so σp = 1.5σu = 1.5(58) =
87.0 ksi:

PT = σpdt N = (87.0)(1.0)( 3
4)(6) = 391.5 kips (2)

For the bolts near the end, from Eq. (8.8),

P = 1
2σute = ( 58

2

)( 3
4

)
2 = 43.5 kips

PT = 43.5(6) = 261.0 kips
(3)

(c) PT by tension of the plate:

Cross section ABCD: Wn = 11− 2
(
1.0+ 1

8

) = 8.75 in. (4)

Cross section EFGHI: Wn = 11− 3
(
1.0+ 1

8

)+ 2

(
22

4× 3.5

)
= 8.20 in. (5)

It is seen that all other section lengths are between the values of Wn of (4) and (5).
The least value is Wn = 8.20 in. The maximum tensile load on the gross area is

PT = 0.6σys Ag = (22.0)
(3

4

)
(11) = 181.5 kips (6)

and on the effective net area

PT = 0.5σu Ae = (29.0)
[
(1.0)

(3
4

)
(8.20)

] = 178.35 kips (7)
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Comparison of the values of PT in the cases above indicates that (1) governs the
connection, that is,

Pmax = 94.2 kips

Example 8.5 Analysis of Eccentrically Loaded Riveted Joints The riveted
joint shown in Fig. 8-13a is loaded with 10 kips at a distance of 8 in. from a ver-
tical axis passing through the centroid c of the rivet group that fastens the plate to
a column flange. Find the required rivet diameter for an allowable shear stress of
11,000 psi. Assume that shear failure is the critical condition and all rivets have the
same diameter.

Figure 8-13: Eccentrically loaded riveted joint: (a) riveted joint; (b) free-body diagram of a
plate; (c) rivet forces.
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Because of the symmetrical arrangement of the rivets, the centroid c of the rivet
group can be located by observation. The load P generates a moment of P L =
80 kip-in. about the centroid (Fig. 8-13b), so that force P = 10 kips (Px = 0,
Pz = 10 kips) at the centroid is being resisted equally by all six rivets, and a twisting
moment is resisted by the twisting forces of the rivets.

From the dimensions given,

6∑
j=1

(�2
x j + �2

z j ) = 4(42 + 52)+ 2(52 + 02) = 214 in2 (1)

where �x j and �z j are the coordinates of rivet j . Therefore, from Eqs. (8.16), the
components of the twisting forces on rivet 1 are

Fx1 = −M�z1

6∑
j=1
(�2

x j + �2
z j )

= −80(−4)

214
= +1.495 kips (2)

Fz1 = M�x1

6∑
j=1
(�2

x j + �2
z j )

= 80(−5)

214
= −1.869 kips (3)

Similarly,

Fx3 = −Fx4 = Fx6 = −Fx1 = −1.495 kips (4)

Fz3 = −Fz4 = −Fz6 = Fz1 = −1.869 kips (5)

Fx2 = Fx5 = 0 and Fz2 = −Fz5 = 1.869 kips (6)

From Eqs. (8.17), the resultant force on rivet 1 is

FR1 =
[
(Px/n + Fx1)

2 + (Pz/n + Fz1)
2]1/2

= [( 0
6 + 1.495

)2 + ( 10
6 − 1.869

)2]1/2 = 1.51 kips (7)

In a similar fashion, for rivets, 4, 5, and 2,

FR4 = 3.84 kips, FR5 = 3.54 kips, FR2 = 0.2 kips (8)

Also from Fig. 8-13c, it can be seen that

FR3 = FR1, FR6 = FR4 (9)

Thus, the maximum value of the shear force FR on the rivet is FR4 or FR6. The size
of the rivets has to be determined for a shear force of 3.84 kips.

Assume that the rivet is in single shear with the given allowable shear stress of
τw = 11 ksi, and the shear failure is the critical condition. Since ( 1

4πd2)τw = 3.84,
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the rivet diameter d is calculated as

d = √(3.84)(4)/(πτw) = 0.67 in. or d = 17 mm (10)

Example 8.6 Torque Necessary to Draw Up a Nut in Machine Design A set
of two bolts is to be used to provide a clamping force of 6000 lb between two bolted
parts (Fig. 8-14). The joint is also subjected to an additional external load of 5000 lb.
Assume that (1) the forces are shared equally between the two bolts, (2) the stiffness
of the bolted parts is three times that of the bolt [i.e., kc = 3kb in Eqs. (8.10) and
(8.11)], and (3) each bolt is stressed to 75% of its proof strength. Find the tensile
force in the bolts and the necessary tightening torque for the nuts.

For the given conditions, the initial clamping load Fi on each bolt is 6000/2 =
3000 lb, and the external load on each is 5000/2 = 2500 lb. Then from Eq. (8.10),
the final tensile force in one of the bolts is

Fb = Fi + kb

kb + kc
Pe = 3000+ kb

kb + 3kb
(2500) = 3625 lb (1)

while, from Eq. (8.11), the compressive force is

Fc = Fi − kc

kb + kc
Pe = 3000− 3kb

kb + 3kb
(2500) = 1125 lb (2)

Thus, the compressive force in the bolted parts Fc is greater than zero, which indi-
cates that the joint is still tight.

If a bolt made from Society of Automotive Engineers (SAE) grade 4 steel
(Table 8-5) is chosen, it will have a proof strength of 65,000 psi. Then the al-
lowable tensile stress of the bolt is σw = (0.75)(65,000) = 48,750 psi and the
required tensile stress area for the bolt is

At = Fb

σtw
= 3625 lb

48,750 lb/in2
= 0.0744 in2 (3)

Figure 8-14: Bolt connection for Example 8.6.
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From Table 8-6 it can be seen that the 3
8 , 16 UNC thread has the required tensile

stress area, since At = 0.785(0.3750− 0.9743/n)2 = 0.07745 in2 is larger than At

of (3). Thus, the necessary torque required would be, from Eq. (8.9),

T = 0.2d Fi = (0.20)(0.3750)(3000) = 225 lb/in (4)

References such as [8.6] can be consulted for more detailed discussions of the
design of connections.

8.5 WELDED JOINTS AND CONNECTIONS

In contrast to bolted and riveted joints, welded joints do not necessarily require an
overlap in plates, thus affording more flexibility in design. Also, welded joints are
usually lighter and are particularly advantageous in that they provide continuity be-
tween connected parts.

Types of Welded Joints and Typical Drawing Symbols

There are various types of welded joints, but the two main types are fillet and butt
welds, shown in Fig. 8-15. The butt weld is usually loaded in tension, the strength of
which is based on the net cross-sectional area of the thinner of the two plates being
joined. If the joint is properly made with the appropriate welding metal, the joint will
be stronger than the parent metal. A fillet weld subjected to shear stress would tend
to fail along the shortest dimension of the weld, which is referred to as the throat of
the weld, shown in Figs. 8-16 and 8-17. In most cases the legs are of equal length,
since welds with legs of different lengths are less efficient than those with equal legs.

Other types of welded joints are plug welds, slot welds, and spot welds, as shown
in Fig. 8-15. Plug welds are made by punching holes into one of the two plates to
be welded and then filling the holes with weld metal, which fuses into both plates.
Slot welds can be used when other types of welded joints are not suitable and to
provide additional strength to a fillet joint. Spot welds, which are used extensively in
the fabrication of sheet metal parts, are a quick and simple way to fasten light pieces
together at intervals along a seam.

Welded joints are often used with various edge preparations, some of which have
been qualified by the American Welding Society (AWS) [8.7]. The choice of joint
type often directly affects the cost of welding. Thus, the choice is not always domi-
nated by the design function.

The symbols representing the type of weld to be applied to a particular joint are
shown in Table 8-7. These symbols, which have been standardized and adopted by
the AWS, quickly indicate the exact welding details established for each joint to
satisfy all necessary conditions of material strength and service. The symbols may
be broken down into basic elements and combinations can be formed if desired.
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Figure 8-15: Types of welds.
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Figure 8-16: Notation for fillet welds.

Figure 8-17: Stress distribution in side fillet welds. (c) Damage usually occurs along the
throat of a weld.

Analysis of Welded Joints

For butt welds, as mentioned previously, the weld is stronger than the base metals
and no further analysis is required. However, the fillet welded joint needs to be an-
alyzed to guarantee it is strong enough to sustain the applied loading. Four basic
types of loading are considered here: direct tension or compression, direct vertical
shear, bending, and twisting. The area of the fillet weld is calculated using leg size
w, throat width t (Fig. 8-16b), and welded seam length Lw . Usually, leg size w and
throat width t are related, depending on the form of the welded joint. Table 8-8 gives
the relationship between w and the plate thickness. Table 8-9 gives the allowable
shear stresses and forces on welds.

The cross section along the welded seam, the width of which equals the throat
width t , is called the effective cross section. The stress in the effective cross section
should be less than the allowable stress.

The analysis of welded joints involves the following steps:

1. Draw the effective cross section of the welded connection. It is a narrow area
along the weld seam width t . In the case of Fig. 8-16b, t = 0.707w. For
example, in Fig. 8-18 the area enclosed by dashed lines represents the effective
cross section of a [-shaped weld.

2. Let the centroid of the effective section be the origin and set up an orthogonal
reference system x, y, z. If the normal stress is to be considered, select z, y
axes as principal axes. The area and moments of inertia of the effective cross
section of weld can be obtained by using Eqs. (2.1), (2.4), and (2.11); that is,
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Figure 8-18: Stress components on a weld area.

Aw =
∫

dA, Iy =
∫

z2 dA, Iz =
∫

y2 dA, Jx =
∫
(z2 + y2) dA

Some geometric properties of the welded connections are provided in
Table 8-10.

3. Find the forces and moments that act on the welded connection. The positive
directions of forces Px , Py , Pz and moments Mx , My , Mz are indicated in
Fig. 8-18.

4. At any point of the connection, the stress on the weld due to a single component
of load can be obtained from Eqs. (3.41), (3.46), (3.47), and (3.55). These
stresses are summarized in Table 8-11.

5. Determine the resultant nominal stress and the load force per unit length of
weld. The nominal resultant stress fr is the vector sum of stress components
(Fig. 8-18):

fr =
√

f 2
x + f 2

y + f 2
z =

√
( f ′x + f ′′x )2 + ( f ′y + f ′′y )2 + ( f ′z + f ′′z )2 (8.18)

The resultant force per unit length is qr = t fr .

It is assumed that all loads acting on a fillet weld are shear forces independent
of their actual direction and the critical section is always the throat of the weld.
The nominal stress fr should be less than the allowable shear stress of the welding
material (Table 8-9) to avoid failure.

The stress distribution within a fillet weld is complex, due to such factors as eccen-
tricity of the applied load, shape of the fillet, and notch effect of the root. However,
the same conditions exist in the actual fillet welds tested and have been recorded as
a unit force per unit length of weld as in Table 8-9.
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An alternative solution to this problem is to calculate the principal stresses and
the maximum shear stresses using the formulas of Chapter 3 instead of determining
fr and qr and to check if the weld is strong enough by applying a failure theory
discussed in Chapter 3. However, this method is more time consuming.

Example 8.7 Weld Joint Determine the size of the required fillet weld for the
bracket shown in Fig. 8-19, which carries a vertical load of 6000 lb.

Choose a [-shaped weld pattern. The weld will be subjected to direct vertical shear
and twisting caused by the eccentric load P . Using case 5 of Table 8-10 gives the
geometric properties of the weld treated as a line:

Aw = (2b + d)t = [(2)(5)+ 8]t = 18t in2

Jx = (2b + d)3t

12
− b2(b + d)2t

2b + d

= (18)3t

12
− (25)(13)2t

18
= 251.3t in4

ȳ = b2

2b + d
= 52

18
= 1.39 in.

Substitute these geometric properties into the proper formulas from Table 8-11
according to the types of loading to find the various forces on the weld.

The stress due to vertical shear is

f ′z =
Pz

Aw
= P

Aw
= 6000

18t
= 333.3

t
lb/in2, (1)

The twisting moment is

T = Mx = −P L = −P[6+ (5− ȳ)] = −(6000)(6+ 5− 1.39)

= −57,660 lb/in (2)

Figure 8-19: Weld joint for Example 8.7. Point c is the centroid of the weld pattern.
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The moment Mx causes a force to be exerted on the weld that is perpendicular
to a radial line from the centroid of the weld pattern to the point of interest. The
maximum combined stresses occur at point G (Fig. 8-19):

f ′′y = −
Mx

Jx
zG = − (−57,660)(−4)

251.3t
= −918

t
lb/in2

f ′′z =
Mx

Jx
yG = (−57,660)(−5+ 1.39)

251.3t
= 828

t
lb/in2

(3)

Superimpose the stress components,

fx = 0 (4)

fy = 0+ f ′′y = −
918

t
lb/in2 (5)

fz = f ′z + f ′′z =
333.3+ 828

t
= 1161.3

t
lb/in2 (6)

so that the nominal resultant stress becomes

fr =
√
(−918)2 + 1161.32

t
= 1480

t
lb/in2 (7)

qr = fr t = 1480 lb/in. (8)

From (7) and (8) it is clear that for welded connections with uniform size, qr can be
computed by considering t = 1.

Suppose that the base metals of the welded joints are ASTM A36 steel. From
Table 8-9, if an E60 electrode is chosen for the welding, the allowable shear stress
is 13,600 psi so that fr = 1480/t ≤ 13,600 psi. Then the throat width is t ≥
1480/13,600 in. Finally, the required leg size of the fillet weld connecting the bracket
is

w = t

0.707
= 1480

13,600× 0.707
= 0.154 in.

Note that if the base-metal parts are thick plates, the leg size obtained above
should be specified according to Table 8-8.
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TABLE 8-1 ALLOWABLE STRESSES (SHEARING AND BEARING CAPACITIES) IN RIVETS AND BOLTS (ksi)a

Allowable Shear,b τw

Slip-Critical Connectionsc,d

Oversized and Long-Slotted Holes

Allowable Standard-Size Short-Slotted Transversee Parallele Bearing
Description of Fasteners Tension,b σtw Holes Holes Load Load Connectionsd

A502, grade 1, hot-driven rivets 23.0 f — — — — 17.5g

A502, grades 2 and 3, hot-driven 29.0 f — — — — 22.0g

rivets
A307 bolts 20.0 f — — — — 10.0g,h

Threaded parts meeting the 0.33σ f,i, j
u — — — — 0.17σu

j

requirements of Secs. A3.1
and A3.4 and A449 bolts
meeting the requirements of
Sec. A3.4, when threads are
not excluded from shear planes

Threaded parts meeting the 0.33σ f, j
u — — — — 0.22σu

j

requirements of Secs. A3.1
and A3.4 and A449 bolts
meeting the requirements of
Sec. A3.4 when threads are
excluded from shear planes

398
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A325 bolts, when threads are not 44.0k 17.0 15.0 12.0 10.0 21.0g

excluded from shear planes
A325 bolts, when threads are 44.0k 17.0 15.0 12.0 10.0 30.0g

excluded from shear planes
A490 bolts, when threads are not 54.0k 21.0 18.0 15.0 13.0 28.0g

excluded from shear planes
A490 bolts, when threads are 54.0k 21.0 18.0 15.0 13.0 40.0g

excluded from shear planes

aFrom Ref. [8.1] with permission. Citations in this table (e.g., Sec. A3.4) are from this reference.
bSee Sec. A5.2.
cClass A (slip coefficient 0.33). Clean mill scale and blast-cleaned surfaces with class A coatings. When specified by the designer, the allowable shear stress, τw , for
slip-critical connections having special faying surface conditions may be increased to the applicable value given in the RCSC Specification.
d For limitations on use of oversized and slotted holes, see Sec. J3.2.
eDirection of load application relative to long axis of slot.
f Static loading only.
gWhen bearing-type connections used to splice tension members have a fastener pattern whose length, measured parallel to the line of force, exceeds 50 in., tabulated
values shall be reduced by 20%.
hThreads permitted in shear planes.
i The tensile capacity of the threaded portion of an upset rod, based on the cross-sectional area at its major thread diameter, Ab, shall be larger than the nominal body area
of the rod before upsetting times 0.60σys .
j See Table 2, Numerical Values Section, for values for specific ASTM steel specifications.
kFor A325 and A490 bolts subject to tensile fatigue loading, see Appendix K4.3.
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TABLE 8-2 REDUCTION COEFFICIENT Ua

Shape,b

W
or
M

S

Number of Fasteners per
Line in Direction of Stress U

1. W, M, or S shapes where b f ≥ 2
3 h; 3 or more 0.90

tee sections from these shapes
2. W, M, or S shapes not meeting 3 or more 0.85

the foregoing and all other
shapes, including built-up sections

3. All members 2 0.75

aAdapted from AISC [8.1].
bb f , flange width; h, member depth.

TABLE 8-3 MINIMUM DISTANCE FROM CENTER OF STANDARD
HOLE TO EDGE OF CONNECTED PARTa

At Rolled Edges of Plates,
Nominal Rivet or At Sheared Shapes, Bars, Gas-Cut

Bolt Diameter (in.) Edges (in.) or Saw-Cut Edgesb (in.)

1
2

7
8

3
4

5
8 1 1

8
7
8

3
4 1 1

4 1
7
8 1 1

2
c

1 1
8

1 1 3
4

c
1 1

4

1 1
8 2 1 1

2

1 1
4 2 1

4 1 5
8

Over 1 1
4 1 3

4 × diameter 1 1
4 × diameter

aFrom AISC [8.1], with permission. For oversized or slotted holes, see Table J3.6 of AISC.
bAll edge distances in this column may be reduced 1

8 in. when the hole is at a point where stress does not
exceed 25% of the maximum design strength in the element.
cThese may be 1 1

4 in. at the ends of beam connection angles.

400 TABLE 8-3 Minimum Distance from Center of Standard Hole



TABLE 8-4 MODES OF FAILURE OF RIVETED AND BOLTED JOINTS
Notation

A = cross-sectional area of rivets or bolts P = applied force
Ae = effective area d = diameter of rivets or bolts
An = net sectional area t = thickness of plate
Ag = gross area Wn = net width
U = reduction factor (Table 8-2) σbr = bearing stress
σe = effective stress σu = ultimate tensile strength
σg = stress based on gross area τ = shear stress

Mode of
Failure Connection Strength Formula

1.
Fastener
shearing

a. Single shear τ = P

A
= 4P

πd2

b. Double shear τ = P

2A
= 2P

πd2

2.
Bearing σbr = P

td

TABLE 8-4 Modes of Failure of Riveted and Bolted Joints 401



TABLE 8-4 (continued) MODES OF FAILURE OF RIVETED AND BOLTED JOINTS

3.
Tension
or tearing

a. Straight with no stagger σg = P/Ag
σn = P/An
σe = P/Ae

where Ae = U An
An = tWn

Wn = b −�(d + 1
8

)
Ag = tb

b. Stagger σe = P/Ae, σg = P/Ag
where Ae = U An, Ag = tb

An = tWn

Wn (net width) = b −�(d + 1
8

)+� s2

4g

4.
End
failure

e ≥ 2P/tσu
or
τ = P/2xt

402 TABLE 8-4 Modes of Failure of Riveted and Bolted Joints



TABLE 8-5 SAE GRADES OF STEELS FOR BOLTS
Tensile Yield Proof

Grade Bolt Size Strength Strength Strengtha Head
Number (in.) (ksi) (ksi) (ksi) Marking

1 1
4 –1 1

2 60 36 33 None

2 1
4 – 3

4 74 57 55 None

Over 3
4 –1 1

2 60 36 33 —

4 1
4 –1 1

2 115 100 65 None

5 1
4 –1 120 92 85

Over 1–1 1
2 105 81 74

Over 1
2 –3 90 58 55

5.2 1
4 –1 120 92 85

7 1
4 –1 1

2 133 115 105

8 1
4 –1 1

2 150 130 120

aDefined as stress at which bolt will undergo permanent deformation: usually ranges between 0.90 and
0.95 times yield strength.

TABLE 8-5 SAE Grades of Steels for Bolts 403



TABLE 8-6 AMERICAN STANDARD THREAD DIMENSIONSa

Threads per Inchb

Basic Major Coarse Threads Fine Threads Extra Fine
Size Diameter (in.) UNC UNF UNEF

0 0.0600 — 80
1 0.0730 64 72
2 0.0860 56 64
3 0.0990 48 56
4 0.1120 40 48
5 0.1250 40 44
6 0.1380 32 40
8 0.1640 32 36

10 0.1900 24 32
12 0.2160 24 28 32

1
4 0.2500 20 28 32
5

16 0.3125 18 24 32
3
8 0.3750 16 24 32
7

16 0.4375 14 20 28
1
2 0.5000 13 20 28
9

16 0.5625 12 18 24
5
8 0.6250 11 18 24
3
4 0.7500 10 16 20
7
8 0.8750 9 14 20

1 1.000 8 12 20

1 1
8 1.125 7 12 18

1 1
4 1.250 7 12 18

1 3
8 1.375 6 12 18

1 1
2 1.500 6 12 18

1 3
4 1.750 5 — 18

2 2.000 4 1
2 — —

aThe tensile stress area At is given by

At = 0.785

(
d − 0.9743

n

)2

where d is the basic major diameter and n is the number of threads per inch.
bUNC, unified coarse; UNF, unified fine; UNEF, unified extrafine. The smaller American Standard threads
use a number designation from 0 to 12. The larger sizes use fractional inch designations.
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TABLE 8-7 TYPICAL AWS DRAFTING SYMBOLS FOR WELDED JOINTSa

60◦-Angle V-groove Double V-groove Double U-groove
( 3

32 -in. root opening)

Single fillet Single V-groove Outside single bevel
(complete penetration; corner joint, fillet
welded both sides) weld

Closed square butt joint Closed square butt joint Open square-grooved
( 1

8 -in. penetration both sides) (complete penetration both sides) corner joint, fillet weld
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TABLE 8-7 (continued) TYPICAL AWS DRAFTING SYMBOLS FOR WELDED JOINTSa

Double-bevel corner Single-V-corner joint, Single-U corner joint,
joint fillet weld fillet weld

Double-fillet corner joint Square-edge joint Double-fillet lap joint

Single-bevel T-joint Double-fillet, double-J Double J-groove
T-joint (full penetration)

406
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Plug weld Open square butt joint Double fillet; 2-in.
( 1

8 -in. root opening; welds on 5-in. centers
complete penetration opposite increments
both sides)

Double fillet, staggered Double V-groove Single U-groove (full penetration)
increments (Full penetration)

aDimensions of figures are given in inches.
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TABLE 8-8 MINIMUM WELD SIZES FOR THICK PLATES
Minimum Leg Size (w)

Plate Thickness for Fillet Weld

in. mm in. mm

≤ 1
2 ≤ 12.7 3

16 4.76

> 1
2 – 3

4 > 12.7–19.1 1
4 6.35

> 3
4 –1 1

2 > 19.1–38.1 5
16 7.94

> 1 1
2 –2 1

4 > 38.1–57.2 3
8 9.53

> 2 1
4 –6 > 57.2–152.4 1

2 12.70

> 6 > 152.4 5
8 15.88

TABLE 8-9 ALLOWABLE SHEAR STRESSES AND FORCES ON WELDS
Allowable Allowable Force

Base-Metal Shear Stress per Inch of Leg
ASTM Grade Electrode psi MPa (σwa (lb/in.)

Building-type structures
A36, A242, A441 E60 13,600 93.8 9,600
A36, A242, A441 E70 15,800 109 11,200

Bridge-type structures
A36 E60 12,400 85.5 8,800
A441, A242 E70 14,700 101 10,400

408 TABLE 8-9 Allowable Shear Stresses and Forces on Welds



TABLE 8-10 GEOMETRIC PROPERTIES OF WELD SEAMS
Notation

M = applied bending moment
Jx = polar moment of inertia
T = twisting moment

Zew = elastic section modulus
of the weld seam

t = width (= 1)

Dimensions of Weld Bending Torsion

1.

Aw = d Zew = 1
6 d2, M = Pa Jx = 1

12 d3, T = Pa

2.

Aw = 2d Zew = 1
3 d2 Jx = (3b2+d2)d

6

3.

Aw = 2b Zew = bd Jx = 1
6 (b

3 + 3bd2)

TABLE 8-10 Geometric Properties of Weld Seams 409



TABLE 8-10 (continued) GEOMETRIC PROPERTIES OF WELD SEAMS

4.

Aw = b + d

yc = b2

2(b+d)

zc = d2

2(b+d)

At top: Zew = 1
6 (4bd + d2)

At bottom: Zew = d2(4b+d)
6(2b+d) Jx = (b+d)4−6b2d2

12(b+d)

5.

Aw = d + 2b

yc = b2

2b+d Zew = bd + 1
6 d2 Jx = 1

12 (2b + d)3 − b2(b+d)2

(2b+d)

6.

Aw = b + 2d

zc = d2

b+2d

At top: Zew = 1
3 (2bd + d2)

At bottom: Zew = d2(2b+d)
3(b+d)

Jx = 1
12 (b + 2d)3

− d2(b+d)2

(b+2d)

7.

zc = d2

2(b+d)

Aw = b + d

At top: Zew = 1
6 (4bd + d2)

At bottom: Zew = (4b+d)d2

6(2b+d) Jx = d3(4b+d)+b3(b+d)
12(b+d)

410 TABLE 8-10 Geometric Properties of Weld Seams



TABLE 8-10 (continued) GEOMETRIC PROPERTIES OF WELD SEAMS

8.

Aw = 2b + 2d Zew = bd + 1
3 d2 Jx = 1

6 (b + d)3

9.

Aw = 2d + 2b Zew = bd + 1
3 d2 Jx = 1

6 (b
3 + 3bd2 + d3)

10.

Aw = πd Zew = 1
4πd2 Jx = 1

4πd3

TABLE 8-10 Geometric Properties of Weld Seams 411



TABLE 8-11 FORMULAS FOR DETERMINING STRESSES IN
WELDED JOINTS

Notation
f ′x , f ′y, f ′z = stress components of x, y, z direction due to external forces (Fig. 8-18)

f ′′x , f ′′y , f ′′z = stress components of x, y, z direction due to external moments
fx , fy, fz = algebraic sum of stress components in x, y, z direction

fr = nominal resultant stress
qr = resultant force per unit length

Aw = effective welded area
Iy, Iz = moments of inertia of welded area

Jx = polar moment of inertia
Px , Py, Pz = applied forces in x, y, z direction

Mx = T,My,Mz = applied moments in x, y, z direction
τw = allowable shear stress

t = effective throat dimension

Stress due to forces: f ′x = Px/Aw f ′y = Py/Aw f ′z = Pz/Aw

Stress due to moments: f ′′x =
My

Iy
z − Mz

Iz
y f ′′y = −

Mx

Jx
z f ′′z =

Mx

Jx
y

Sum of stress components: fx = f ′x + f ′′x fy = f ′y + f ′′y fz = f ′z + f ′′z

Nominal resultant stress: fr =
√

f 2
x + f 2

y + f 2
z

Resultant force per unit of length: qr = t fr

Design criterion: fr ≤ τw

412 TABLE 8-11 Determining Stresses in Welded Joints
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In most problems of stress analysis, the stress field is found within a solid body
without regard for local effects caused by the application of the load; however, when
two solid bodies with curved surfaces are forced together, consideration must be
given to the special stress field created near the contact area. Gears and rolling-
element bearings are two notable examples of machine parts in which contact stresses
are of great importance in determining the operating life.

Contact problems are classified as counterformal if the dimensions of the area
of contact are small compared to the radii of curvature of the contacting surfaces
near the region of contact. If the dimensions of the contact area are not small with
respect to the radii of curvature of the contacting surfaces, the problem is classified
as conformal. A counterformal problem is called Hertzian if the contacting surfaces
can be approximated by quadratic functions in the region of contact. If the quadratic
approximation is invalid, the problem is non-Hertzian. All conformal problems are
non-Hertzian.

The following discussion presents an outline of the analysis of Hertzian contact
stresses when two bodies with arbitrarily curved surfaces are pressed together. Charts

413



414 CONTACT STRESSES

and figures are included for use in solving various Hertzian problems. Rolling contact
problems, contact stresses with friction, and the fatigue behavior of bodies subjected
to repeated applications of contact loading are briefly described.

9.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and
F for force.

a Semimajor axis of contact ellipse (L)
A, B Coefficients in equation for locus of contacting points initially sepa-

rated by the same distance (L−1)

Ac Contact area (L2)

b Semiminor axis of contact ellipse (L)
d Rigid distance of approach of contacting bodies (L); also total elastic

deformation at origin
E Modulus of elasticity (F/L2)

f Friction coefficient
F Force (F)
k Ratio of major to minor axis of contact ellipse, = b/a

p Pressure (F/L2)

q Line-distributed load (F/L)

R and R′ Minimum and maximum radii of curvature for contacting surfaces (L)
zs Distance below center of contact ellipse where maximum shear stress

occurs (L)
θ Angle between planes containing principal radii of curvature for con-

tacting bodies
ν Poisson’s ratio
σc Maximum compressive stress (F/L2)

σys Yield strength in tension (F/L2)

τmax Maximum shear stress (F/L2)

1, 2 Subscripts designating bodies 1 and 2

Geometric Characteristics of Surfaces Consider a surface F(x, y, z) = 0
(Fig. 9-1). At any point on the surface, the normal to the surface is grad(F). Let a
plane pass through the length of the surface normal at point O, creating a normal
section. The intersection of this plane with the surface is a curve in the normal sec-
tion of the surface at point O. An infinite number of normal sections may be taken
through any point on the surface. The following theorem holds [9.1]: At any point
of a surface, two normal sections exist for which the radii of curvature are a mini-
mum and a maximum; the planes that each contain one of these normal sections are
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Figure 9-1: Geometric characteristics of surface.

perpendicular. The following terminology is adopted here: the normal sections that
have either a minimum or a maximum radius of curvature are called the principal
normal sections of the surface at the point. The minimum and maximum radii of
curvature are called the principal radii of curvature of normal sections at the point.
The tangents to the curvatures in the principal normal sections at point O are called
the principal directions, and the planes that create the principal normal sections are
called the principal planes of curvature. Equations for computing the principal radii
of curvature and principal directions at a point of a surface are presented in any trea-
tise dealing with differential geometry (e.g., [9.1]).

9.2 HERTZIAN CONTACT STRESSES

The first successful analysis of contact stresses is attributed to Hertz [9.2]. This anal-
ysis gave the dimensions of the contact area and the pressure distribution over that
area. These quantities permit the computation of the displacements and stresses in the
neighborhood of the region of contact. Belajev [9.3] and Thomas and Hoersch [9.4]
performed important calculations of the stress fields in contacting solids. Discussions
of the analysis of contact stresses can be found in the literature (e.g., [9.5, 9.6]). Tab-
ulations of formulas applicable to special cases of contacting bodies can be found in
such references as [9.7] and [9.8].

Two Bodies in Point Contact

Figure 9-2a shows sections of two solid bodies with curved surfaces that are in con-
tact. Before a force is applied to press the bodies together, they touch at one point
only. When a force F is applied, elastic compression occurs near the initial point of
contact, and a flat area of contact is formed. This area is tangent to the undeformed
surfaces of the two solids and is perpendicular to the line of action of the force F . The
curvature of a surface is characterized at any point by the maximum and minimum
values of the radii of curvature R′ and R. The two planes are orthogonal and contain
R′ and R and the surface normal. A radius of curvature of the surface of a body is
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Figure 9-2: Two elastic solids in contact: (a) contact configuration; (b) before loading;
(c) after loading, xy axes coincide with major and minor axes of elliptical contact area
(hatched area); (d) displacement of contacting points M1 and M2 and rigid distance of ap-
proach d = d1 + d2.

taken to be positive at a point if the corresponding center of curvature lies within the
solid body; otherwise, the radius is negative. Quantities with the subscript 1 refer to
the top body of Fig. 9-2a and those with the subscript 2 refer to the bottom solid. The
two solids are assumed to be elastic, isotropic, and homogeneous; also, the contact-
ing surfaces are smooth and free of frictional or adhesive forces. The four principal
radii of curvature of the two surfaces at the point of contact are large compared to
the dimensions of the contact area, and plastic deformation is ignored.
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The coordinate system (x, y, z) is aligned such that the xy plane lies tangent to the
undeformed surfaces at the initial point of contact and such that the z axis coincides
with the line of action of the force F . Before deformation, suppose that the surfaces
of the two bodies are approximately quadratic near the point of contact:

z1 = A1x2 + B1 y2 + C1xy (9.1)

z2 = A2x2 + B2 y2 + C2xy (9.2)

where z1 and z2 are the perpendicular distances from the tangent plane to any point
on the surfaces of body 1 and body 2 near the point of contact, respectively, in the z
direction (Fig. 9-2b). After deformation, two points that come into contact will have
moved a distance

z1 + z2 = (A1 + A2)x
2 + (B1 + B2)y

2 + (C1 + C2)xy (9.3a)

Under the assumption that each pair of contacting points was initially on opposite
ends of a line parallel to the z axis, all points with the same value of z1 + z2 lie on
an ellipse, and the perimeter of the contact area is elliptical. To eliminate the cross
term in Eq. (9.3a), the x, y coordinates may be rotated to coincide with the major and
minor axes of the elliptical contact area (Fig. 9-2c). Thus, Eq. (9.3a) can be rewritten
as

z1 + z2 = Ax2 + By2 (9.3b)

where A = A1 + A2 and B = B1 + B2.
Far from the contact area, material points of the two bodies are unaffected by

elastic compressive deformation. These two regions will approach each other by a
constant distance d. This distance is a net rigid-body displacement of the two re-
gions. Let w1 and w2 denote the local elastic displacements of points on the con-
tacting surfaces. Take w1 and w2 as positive for compressive displacements (i.e., for
displacements into the original configuration of the solid on the surface of which the
point lies). The displacement of contacting points is given by

d − (w1 +w2) = z1 + z2 = Ax2 + By2 (9.4)

where d = d1 + d2 (Fig. 9-2d). This d is referred to as the rigid approach of two
bodies. From geometric considerations [9.9] the constants A and B are functions
of the four principal radii of curvature of the two undeformed surfaces and of the
orientation of the principal planes of curvature of body 1 with respect to those of
body 2 (Fig. 9-2c):

A = 1

4

(
1

R1
+ 1

R2
+ 1

R′1
+ 1

R′2

)
− 1

4

{[(
1

R1
− 1

R′1

)
+
(

1

R2
− 1

R′2

)]2

−
[

4

(
1

R1
− 1

R′1

)(
1

R2
− 1

R′2

)
sin2 θ

]}1/2

(9.5)
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B = 1

4

(
1

R1
+ 1

R2
+ 1

R′1
+ 1

R′2

)
+ 1

4

{[(
1

R1
− 1

R′1

)
+
(

1

R2
− 1

R′2

)]2

−
[

4

(
1

R1
− 1

R′1

)(
1

R2
− 1

R′2

)
sin2 θ

]}1/2

(9.6)

where θ is the angle between the planes of maximum (or minimum) curvature of
the two contacting bodies (Fig. 9-2c). The displacements w1 and w2 are found by
superposition using Boussinesq’s solution [9.8] for a semi-infinite body subjected to
a concentrated normal force at the boundary surface (the x, y plane). This approach
neglects the curvature of the surfaces outside of the contact area:

w1 +w2 =
(

1− ν2
1

πE1
+ 1− ν2

2

πE2

)∫∫
Ac

p dAc

r
= d − Ax2 − By2 (9.7)

In Eq. (9.7), p dAc is considered to be a point force acting at a point (x ′, y′) in the
contact area. The variablesw1 andw2 are elastic compressive deformations at a point
(x, y) in the contact area. The variable r is the distance between (x ′, y′) and (x, y).
Boussinesq’s solution for the displacement dw1 at (x, y) due to a point force p dAc
at (x ′, y′) is

dw1 = 1− ν2
1

πE1

p dAc

r
= 1− ν2

1

πE1

p(x ′, y′) dx′ dy′√
(x − x ′)2 + (y − y′)2

Of course, dw2 is given by a similar equation.
To find the total displacement caused by the pressure p over the contact area, the

elemental displacements are superimposed by integrating over the contact area Ac as
shown in Eq. (9.7). Hertz found that Eq. (9.7) is satisfied if p(x, y) is given by

p = p0

√
1− (x2/a2)− (y2/b2) (9.8)

in which a is the semiminor axis and b the semimajor axis of the contact ellipse
(Fig. 9-2c). The distribution of pressure is semiellipsoidal with a maximum pres-
sure p0 at the center of the contact area:

p0 = 3F/2πab (9.9)

It is apparent that the maximum pressure is 1.5 times the average pressure [F/(πab)].
In general, the determination of the axes of the contact ellipse and of the distance of
approach involves the evaluation of elliptic integrals [9.9].

Reference [9.9] contains compiled graphs for computing the quantities of interest
in a contact problem. Figures 9-3 and 9-4 plot coefficients used in determining these
quantities for values of B/A from 1 to 10, 000. The quantity Cb is used to compute
b from the equation
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Figure 9-3: Coefficients for bodies in contact. From [9.9], with permission.

b = Cb(F�)
1/3 (9.10a)

where

� =
(

1− ν2
1

E1
+ 1− ν2

2

E2

)
1

A + B
= γ 1

A + B
(9.10b)

where

γ = 1− ν2
1

E1
+ 1− ν2

2

E2

Define the quantity k to be the ratio of the minor to major axes of the contact ellipse

k = b/a (9.10c)

Once k and b are known a = b/k can be obtained. The displacement d is found by
using the quantity Cd :

d = Cd(F/π)(A+ B)/(b/�) (9.11)
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Figure 9-4: Coefficients for bodies in contact. From [9.9], with permission.

From knowledge of the dimensions of the contact area and the pressure distribu-
tion over it, Thomas and Hoersch [9.4] derived expressions for the principal stresses
along the z axis within the contacting solids. These formulas involve the evaluation
of elliptic integrals. For any value of B/A, Fig. 9-3 or 9-4 can be used to compute
the maximum compressive stress (σc)max that occurs at the origin, the maximum
shear stress τmax that occurs within the bodies, the maximum octahedral shear stress
(τoct)max, and the distance Zs from the contact area at which the maximum shear
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stresses occur. The curves are strictly accurate when ν = 0.25, but the dependence
of these quantities on ν is weak:

σc = (σc)max = −Cσ (b/�) (9.12)

τmax = Cτ (b/�) (9.13)

τoct = (τoct)max = Coct(b/�) (9.14)

Zs = Czb (9.15)

The formulas above are summarized in Table 9-1. Sometimes the values of coeffi-
cients Cσ ,Cτ ,Cb, and so on. are difficult to read from Figs. 9-3 and 9-4. This prob-
lem can be avoided by using Table 9-2 for contact stress analyses. The coefficients
na, nb, nc, nd , which appear in Table 9-2, can be taken from Table 9-3. The formulas
used to calculate Table 9-3 are given in Table 9-4.

In many cases of practical interest, surface roughness, local yielding, friction,
lubrication, thermal effects, and residual stresses will result in conditions that invali-
date the Hertzian analysis. Consequently, the stresses computed according to Hertz’s
analysis must often be regarded as guidelines that are correlated with experimental
failure tests to find allowable stress limits.

The following section contains several examples of the computation of Hertzian
contact stresses. Formulas pertinent to a number of special cases are listed in
Table 9-2. In addition, Table 9-2 also provides some solutions of problems for
contact stresses when the surfaces are not curved.

Example 9.1 Wheel on a Rail A steel wheel of radius 45 cm rests on a steel
rail that has a radius of curvature of 35 cm (Fig. 9-5). The wheel supports a load of
40 000 N. To find the dimensions of the contact area, the maximum stresses in the

Figure 9-5: Wheel on rail for Example 9.1 (crossed cylinders).



422 CONTACT STRESSES

contact region, and the distance below the contact surface at which the maximum
shear stress and octahedral shear stress occur, the constants A and B must first be
evaluated. Denoting the wheel as body 1 and the railhead as body 2, the principal
radii of curvature are R1 = 45 cm, R′1 = ∞, R2 = 35 cm, and R′2 = ∞. The angle
between the principal planes of the two bodies is 90◦. The physical constants of steel
are E = 200 GPa, ν = 0.29.

From Eqs. (9.5) and (9.6),

A = 1

4

(
1

0.45
+ 1

0.35

)
− 1

4

[(
1

0.45
+ 1

0.35

)2

− 4
(

1

0.45

)(
1

0.35

)]1/2

= 1.2698− 0.1587 = 1.111 m−1 (1)

B = 1.2698+ 0.1587 = 1.428 m−1 (2)

B/A = 1.428/1.111 = 1.285 (3)

When both bodies have the same physical properties, Eq. (9.10b) becomes

� = 2(1− ν2)

E(A+ B)
= 2

[
1− (0.29)2

]
(2.0× 1011)(1.111+ 1.428)

= 3.607× 10−12 m3/N (4)

From knowledge of B/A, the constants for use in determining stresses and lengths
are read from Fig. 9-3, Cb = 0.84, k = 0.85, Cσ = 0.69, Cτ = 0.22, Coct =
0.21, Cz = 0.5, Cd = 2.2. The semiminor axis of the contact ellipse is given by
[Eq. (9.10a)]

b = Cb(F�)
1/3 = 0.84

[
(40 000)(3.607× 10−12)

]1/3

= 0.00441 m = 4.41 mm (5)

The semimajor axis of the contact ellipse is [Eq. (9.10c)]

a = b/k = 0.00441/0.85 = 0.00519 m = 5.19 mm (6)

The compressive stress at the center of the contact ellipse (i.e., the maximum princi-
pal stress) becomes [Eq. (9.12)]

σc = −Cσ (b/�) = −0.69(0.00441/3.607× 10−12) = −843.6 MPa (7)

The maximum shear stress is [Eq. (9.13)]

τmax = Cτ (b/�) = 269.0 MPa (8)

The maximum octahedral shear stress is given by [Eq. (9.14)]

τoct = Coct(b/�) = 256.8 MPa (9)
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The distance below the center of the contact area at which the two maximum shear
stresses occur is found to be [Eq. (9.15)]

Zs = Czb = 0.5(0.00441) = 0.002205 m = 2.205 mm (10)

Finally, the rigid approach of the two bodies becomes [Eq. (9.11)]

d = Cd
F

π

A + B

b/�
= (2.2)(4.0× 104)

1

π

1.111+ 1.428

(0.00441)/(3.607× 10−12)

= 0.0582 mm (11)

This problem also can be solved by using the formulas of Table 9-2. This is a
contact stress problem of cylinders crossed at right angles. The formulas in case 2d
apply. Then

γ = 2
1− ν2

E
= 2

1− 0.292

2× 1011
= 9.159× 10−12 m2/N

K = D1 D2

D1 + D2
= 0.90× 0.70

0.90+ 0.70
= 0.3938 m

B = 1/D2 = 1/0.70 = 1.429 m−1 (12)

A = 1/D1 = 1/0.90 = 1.111 m−1

A/B = 0.70/0.90 = 0.7778

From Table 9-3,

na = 1.089, nb = 0.9212, nc = 0.9964, nd = 0.9964 (13)

The semimajor axis of the contact ellipse is

a = 0.909na(F Kγ )1/3

= 0.909(1.089)
[
40 000(0.3938)9.159× 10−12

]1/3

= 5.192× 10−3 m = 5.192 mm (14)

while the semiminor axis is

b = 0.909na(F Kγ )1/3

= 0.909(0.9212)
[
40 000(0.3938)9.159× 10−12

]1/3

= 4.39× 10−3 m = 4.39 mm (15)
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The maximum compressive stress becomes

σc = 0.579nc

[
F/(K 2γ 2)

]1/3

= 0.579× 0.9964

(
40 000

0.39382 × 9.1592 × 10−24

)1/3

= 838.8 MPa (16)

The rigid approach of the two bodies is given as

d = 0.825nd(F
2γ 2/K )1/3

= 0.825(0.9964)

(
40 0002 × 9.1592 × 10−24

0.3938

)1/3

= 0.05742 mm (17)

Example 9.2 Ball Bearing At the contact region of the ball bearing system
shown in Fig. 9-6, find the maximum principal stress, the maximum shearing stress,
the maximum octahedral shearing stress, the dimensions of the area of contact,
and the distance from the point of contact to the point along the force direction
where the stresses occur. Assume that E = 200 GN/m2 and ν = 0.3.

Figure 9-6: Single-row ball bearing system: r = 20 mm; d0 = 38 mm; c denotes the center
of curvature for r .
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The radii of concern are given in Fig. 9-6 as

R1 = 1
2 d0 = 19 mm, R′1 = 1

2 d0 = 19 mm

R2 = −r = −20 mm, R′2 = 1
2 D = 100 mm

From Eqs. (9.5) and (9.6),

A = 1

4

(
1

0.019
− 1

0.020
+ 1

0.019
+ 1

0.100

)

− 1

4

{[(
1

0.019
− 1

0.019

)
+
(
− 1

0.020
− 1

0.100

)]2

− 4

(
1

0.019
− 1

0.019

)(
− 1

0.020
− 1

0.100

)
sin2(0)

}1/2

= 1.316 m−1 (1)

B = 31.32 m−1 (2)

Then

B/A = 23.78 (3)

� = 2

A + B

1− ν2

E
= 2(1− 0.32)

(31.32+ 1.316)(200× 109)

= 2.79× 10−13 m3/N (4)

From Fig. 9-3, the coefficients are found. The variables of interest are then computed
using the appropriate formulas:

k = 0.13, Coct = 0.27, Cτ = 0.3

Cb = 0.394, Cσ = 1.0, Cz = 0.8

b = Cb(F�)
1/3 = 0.394[(4500)(2.79× 10−13)]1/3 = 4.250× 10−4 m

= 0.425 mm

a = 4.250× 10−4/0.13 = 3.269× 10−3 m = 3.269 mm (5)

b/� = 4.250× 10−4/(2.79× 10−13) = 1523 MPa

σc = −Cσ (b/�) = (−1.0)(1523) = −1523 MPa

τmax = Cτ (b/�) = 0.3(1523) = 456.9 MPa

τoct = Coct(b/�) = (0.27)(1523) = 411.2 MPa

Zs = Czb = (0.8)(4.250× 10−4) = 3.40× 10−4 m = 0.34 mm
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Alternatively, use the formulas of case 1e of Table 9-2:

γ = 2
1− ν2

E
= 2

1− 0.32

2× 1011
= 0.91× 10−11 m2/N

K = 1

2/R1 − 1/R2 + 1/R3
= 1

2/0.019− 1/0.02− 1/0.10
= 0.01532

A = 1

2

(
1

R1
− 1

R2

)
= 1

2

(
1

0.019
− 1

0.020

)
= 1.316 m−1 (6)

B = 1

2

(
1

R1
+ 1

R3

)
= 1

2

(
1

0.019
+ 1

0.1

)
= 31.32 m−1

A/B = 0.04202

From Table 9-3,

na = 3.385, nb = 0.4390, nc = 0.6729, nd = 0.6469 (7)

The semimajor axis of the contact ellipse is given by

a = 1.145na(F Kγ )1/3 = 1.145× 3.385×
[
4500(0.91× 10−11)0.01532

]1/3

= 3.31× 10−3 m = 3.31 mm (8)

and the semiminor axis is

b = 1.145nb(F Kγ )1/3 = 0.4303 mm (9)

Furthermore, the maximum compressive stress is

σc = 0.365nc

[
F/(K 2γ 2)

]1/3 = 1508 MPa (10)

and the rigid approach of the two bodies becomes

d = 0.655nd(F
2γ 2/K )1/3 = 0.02027 mm (11)

Example 9.3 Wheel–Rail Analyses Consider again the wheel and rail shown in
Fig. 9-5. In Example 9.1, the maximum octahedral shear stress was found to be 256.8
MPa and to be located 0.22 cm below the initial contact point. Suppose now that the
rail steel has a tensile yield strength of 413.8 MPa.

1. Determine whether yielding occurs in the rail according to the maximum oc-
tahedral shear stress yield theory (equivalent to the von Mises–Hencky theory).



9.2 HERTZIAN CONTACT STRESSES 427

The octahedral shear stress at yield is [Eq. (3.24b)]

(τoct)ys = 1
3 (2σ

2
ys)

1/2 = 1
3

√
2 σys = 1

3

√
2(413.8 MPa) = 195.07 MPa (1)

Since the maximum octahedral shear stress computed by elastic theory exceeds the
yield value, yielding does occur in the rail.

2. Find to what value the load must be reduced so that the computed maximum
octahedral shear stress equals the yield point value. From Eqs. (9.14) and (9.10a),

τoct = Coct(b/�), b = Cb(F�)
1/3

Hence

τoct = CoctCb(F�)
1/3/�, (τoct)

3 = (CoctCb/�)
3�F = F(CoctCb)

3/�2

F =
[
�2/(CoctCb)

3
]
(τoct)

3
(2)

Since Coct, Cb, and � do not depend on F , the yield load Fys is calculated as

Fys = (3.607× 10−12)2(195.07× 106)3

(0.2)3(0.84)3
= 20 367 N (3)

Therefore, to reduce the maximum octahedral shear stress to the yield value, the
applied load of 40 000 N must virtually be halved.

3. Suppose that the wheel–rail combination must be operated with a safety factor
of 2 (i.e., the maximum octahedral shear stress must be one-half the value that causes
yield). Compute the maximum value the load may take under this restriction.

Since maximum octahedral shear stress varies directly as the cube root of the
applied load, to halve the stress, the load must decrease by a factor of ( 1

2 )
3, or 1

8 .
Since a load of 20 367 N corresponds to a maximum octahedral shear stress exactly
at the yield point, the force

F2 = 1
8 20 367 N = 2545.9 N (4)

would result in the maximum octahedral shear stress being one-half the yield value.
4. Suppose that the operating load must be 20 367 N. Find by what common

factor the radii R1 and R2 must be increased in order that the maximum octahedral
shear stress be one-half the value that causes yielding.

The stress τoct in terms of the load F is given by (2). With A and B defined
by Eqs. (9.5) and (9.6), changing R1 and R2 by the same factor does not affect
B/A, so Coct and Cb of Figs. 9-3 and 9-4 remain constant. Similarly, γ depends
only on E and ν so that � of Eq. (9.10b) changes only as a result of A + B. Let
τ, A, B, R1, R2 be the values of variables under conditions described in question 2
and τ∗oct, A∗, B∗, R∗1 , R∗2 be the conditions with R1 and R2 altered by a factor, say λ.
We require that

τ∗oct = 1
2τoct, R∗1 = λR1, R∗2 = λR2
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From Eqs. (9.5) and (9.6),

A + B = 1

4

(
1

R1
+ 1

R2

)
+ 1

4

(
1

R1
+ 1

R2

)
= 1

2

(
1

R1
+ 1

R2

)

A∗ + B∗ = 1

2

(
1

R∗1
+ 1

R∗2

)
= 1

2λ

(
1

R1
+ 1

R2

)

and from (2),

τ 3
oct = F(cGcb)

3/�2, τ∗3oct = F(cGcb)
3/�∗2 (5)

Then

τ 3
oct

τ∗3oct
= �∗2

�2
= [γ/(A

∗ + B∗)]2
[γ/(A+ B)]2 =

(A + B)2

(A∗ + B∗)2
=

1
4 (1/R1 + 1/R2)

2

(1/4λ2) (1/R1 + 1/R2)
2

Thus,

τ 3
oct/τ

∗3
oct = λ2 or τ∗oct = τoct/λ

2/3 (6)

Since

τ∗oct = 1
2τoct

it follows that

23τ 3
oct/τ

3
oct = λ2 or λ = √8 (7)

To check, we find

R∗1 =
√

8(45) = 127.28 cm, R∗2 =
√

8(35) = 98.995 cm

(A + B)∗ = 1

2

(
1

1.2728
+ 1

0.98995

)
= 0.8979 m−1

�∗ = 2
[
1− (.29)2

]
(2× 1011)(0.8979)

= 1.020× 10−11 m3/N

τ∗3 = (20 367)(0.2)3(0.84)3

(1.02× 10−11)2
= 9.282× 1023(N/m2)3

τ∗oct = 9.755× 107 Pa or 97.55 MPa

Since the yield value of maximum octahedral shear is 195.07 MPa and 97.55 is
one-half of the yield value, increasing R1 and R2 by a factor of

√
8 decreases the

maximum octahedral shear stress by one-half.
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5. Suppose that the operating load is fixed at 20 367 N and that the rail and wheel
radii are fixed at 35 and 45 cm, respectively. Find by what factor the tensile strength
of the steel must be increased to make the maximum octahedral shear stress one-half
the yield point value.

Since E and ν of steel are essentially constant for steels of all strengths and A+B
is determined by the fixed radii of rail and wheel, the quantity � in Eq. (9.10b) is a
fixed value. Therefore, from (5), the maximum octahedral shear stress would remain
at 195.07 MPa for all steels. Because tensile yield strength and octahedral shear
stress at yield are directly proportional, doubling the tensile strength would result
in the maximum octahedral shear stress being one-half the value that causes yield.
From (1), the strength of the steel would be increased to

σys = (3/
√

2)(τoct)ys = (3/
√

2)(2× 195.07) = 827.6 MPa (8)

6. Determine for which of the three quantities (load, radii of curvature, or steel
strength) would a change be most effective in producing a system with an acceptable
value of maximum octahedral shear stress.

Reducing the load is most ineffective in reducing the maximum octahedral shear
stress because, from (2), the stress varies directly as the cube root of the load. When
the radii of curvature are increased in constant proportion, the maximum octahedral
shear stress varies inversely as the two-thirds power of the radii factor λ [see (6)];
hence changing the radii is more effective than changing the load. However, if large
reductions in stress are required, it is doubtful that the necessarily large changes in
radii (λ = √8 = 2.83-fold increase for a halving of the shear stress) would be
feasible. It appears from the previous question that increasing the tensile strength
of the material of construction is the most effective alternative when the stress is
significantly higher than an acceptable level.

Two Bodies in Line Contact

Two bodies in contact along a straight line before loading are said to be in line con-
tact. For instance, a line contact occurs when a circular cylinder rests on a plane
or when a small circular cylinder rests inside a larger hollow cylinder. In these line
contact cases, Eqs. (9.5) and (9.6) become

A = 0, B = 1
2 (1/R1 + 1/R2)

and

B/A =∞ (9.16)

It can be shown that in this case, the quantity k in Eq. (9.10c) approaches zero. When
a distributed load q (force/length) is applied, the area of contact is a long narrow
rectangle of width 2b in the x direction and a length 2a in the y direction.
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The maximum principal stresses occurring at the surface of contact are [9.9]

σx = −b/�, σy = −2ν(b/�), σz = −b/� (9.17a)

Thus,

σmax = −b/� (9.17b)

where

b = √2q�/π (9.18a)

� = 1

1/(2R1)+ 1/(2R2)

(
1− ν2

1

E1
+ 1− ν2

2

E2

)
(9.18b)

The maximum shear stress is

τmax = 0.300(b/�) (9.19)

at the depth Zs/b = 0.7861.
The maximum octahedral shear stress occurs at the same point as the maximum

shear. The value is

τoct = 0.27(b/�) (9.20)

For the case of line contact, Eqs. (9.12)–(9.15) still apply. The coefficients Cσ , Cτ ,
Coct, Cz can also be found from Figs. 9-3 and 9-4 by selecting values of B/A greater
than 50.

Contact Stress with Friction

For the case of two cylinders with longitudinal axes parallel, Smith and Liu [9.11] ex-
amined the modification of the contact stress field caused by the presence of surface
friction. Mindlin [9.12] showed that the tangential stresses have the same distribution
over the contact areas as have the normal stresses. For impending sliding motion, the
tangential stresses are linearly related to the normal stresses by a coefficient of fric-
tion. The total stress field is the resultant of the field due to normal surface stresses
plus the field due to tangential surface stresses. The degree to which tangential sur-
face stresses change the distribution caused by normal surface stresses depends on
the magnitude of the coefficient of friction. The changes in the maximum contact
stresses with the coefficient of friction are provided in Table 9-5.

The presence of friction may lead to changes from a compressive stress to a stress
that varies from tensile to compressive over the area of contact. The creation of ten-
sile stresses in the contact zone is thought to contribute to fatigue failure of bodies
subject to cyclic contact stresses. Smith and Liu found in addition that if the coeffi-
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cient of friction was 0.1 or greater, the point of maximum shear stress occurs on the
contact surface rather than below it.

Example 9.4 Contact Stress in Cylinders with Friction Consider two steel
cylinders each 80 mm in diameter and 150 mm long mounted on parallel shafts
and loaded by a force F = 80 kN (Fig. 9-7). The two cylinders (E = 200 GPa
and ν = 0.29) are rotated at slightly different speeds so that the cylinder surfaces
slide across each other. If the coefficient of sliding friction is µ = 1

3 , determine the
maximum compressive principal stress σc, the maximum shear stress τmax, and the
maximum octahedral shear stress τoct.

The value of the required quantities are obtained from Table 9-5 for µ = 1
3 ,

(σc)max = −1.40(b/�) (1)

τmax = 0.435(b/�) (2)

τoct = 0.368(b/�) (3)

where b and � are given by Eqs. (9.18a) and (9.18b) with with q = F/�:

� = 2R
1− ν2

E
= 2(0.040)(1− 0.292)

200× 109
= 3.664× 10−13 m3/N (4)

b =
(

2F�

�π

)1/2

=
√

2(80× 103)(3.664× 10−13)

0.150π
= 0.3527× 10−3 m

= 0.3527 mm (5)

b/� = 962.6 MPa (6)

Figure 9-7: Example 9.4.
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Substitution of these values into (1), (2), and (3) leads to

(σc)max = −1.40× 962.6 = −1347.6 MPa

τmax = 0.435× 962.6 = 418.7 MPa,

τoct = 0.368× 962.6 = 354.2 MPa (7)

It can be seen from Table 9-5 that the friction force with µ = 1
3 increases the max-

imum compressive principal stress by 40%, the maximum shear stress by 45%, and
the maximum octahedral shear stress by 35% relative to the case with µ = 0.

9.3 CONTACT FATIGUE

A machine part subjected to contact stresses usually fails after a large number of
load applications. The failure mode is that of crack initiation followed by propagation
until the part fractures or until pits are formed by material flaking away. Buckingham
measured the surface fatigue strengths of materials subjected to contact loads [9.13].
His results showed that hardened steel rollers did not have a fatigue limit for contact
loading. Cast materials, however, did show a fatigue limit for contact loads.

9.4 ROLLING CONTACT

When two bodies roll over each other, the area of contact will in general be divided
into a region of slip and a region of adhesion. In the region of slip the tangential
force is related to the normal force by a coefficient of friction. Under conditions of
free rolling no region of slip exists, and surface friction dissipates no energy. If gross
sliding occurs, no region of adhesion exists.

When both regions are present, the motion is termed creep, creep ratio, or creep-
age. The creepage is resolved into three components: longitudinal, lateral, and spin.
Spin creepage occurs when a relative angular velocity about an axis normal to the
contact zone exists between the two contacting bodies. Longitudinal and lateral
creepage occurs when a relative circumferential velocity without gross sliding ex-
ists between the contacting bodies. The forces and moments transmitted between two
contacting bodies due to creepage are very important in wheel–rail contact problems.
Vermeulen and Johnson [9.14] suggested a nonlinear law that does not account for
spin creepage. Kalker has proposed a linear law relating creepage to the transmitted
forces and moments as well as nonlinear creep laws [9.15].

9.5 NON-HERTZIAN CONTACT STRESS

The simplest non-Hertzian contact problem is the case in which all conditions for
Hertzian contact are met except that the surfaces cannot be approximated as a
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second-degree polynomial near the point of contact. Singh and Paul [9.16] have
described a numerical procedure for solving this type of problem. In this method a
suitable contact area is first proposed; then the corresponding applied load, pressure
distribution, and rigid approach are found.

A general treatment of the interfacial responses of contact problems as nonlinear
phenomena is formulated using finite element approximations in Laursen [9.21].

9.6 NANOTECHNOLOGY: SCANNING PROBE MICROSCOPY

Technology has been rapidly evolving to smaller and smaller scales. This has led
to “nanotechnology,” so named because the scale of research and development is
on the order of one-billionth of a meter (10−9 m). The goals of nanotechnology
include both scaling down current materials to the nanolevel and the construction of
materials atom by atom. In the past, the progress of nanotechnology has been limited
because tools for such small-scale research did not exist. However, with the advent
of scanning probe instruments, attaining the goals of nanotechnology is becoming
realizable.

One example of a scanning probe instrument is an atomic force microscope
(AFM). Atomic force microscopy is useful technology for the study of surface force
exertions. The AFM consists of a cantilevered beam with a probe, or tip, attached to
the end. The tip is run across a surface and deflects as it interacts with the surface.
With the help of a surface scan by a piezoactuator, the cantilever deflection may be
measured leading to the surface topography.

To understand what an AFM accomplishes, consider the following example.
When you move your finger across different surfaces, each one exerts a different
force on your finger. As a result, you can differentiate between wood and steel or
between silk and rubber. For example, when you run your finger over silk, you expe-
rience very little resistance and your finger slides easily across the surface. However,
when you rub your finger across rubber, you experience a much larger resistance.
Similarly, an AFM measures forces that the sampled surface exerts on the scanning
tip, only on a much smaller scale than your finger.

In addition to atomic force microscopes, other scanning probe instruments in-
clude scanning tunneling microscopes and magnetic force microscopes. With scan-
ning tunneling microscopy, electrical currents between the probe and surface can
be measured. Magnetic force microscopy uses a magnetic tip to test the magnetic
properties of the sampled surface.

A summary of some contact theories used in conjunction with the AFM is pro-
vided in Ref. [9.22]. The tip-sample interactions can be modeled by a variety of
models that are appropriate for certain materials and environments.

Hertz Model

The Hertz contact model is not appropriate for some AFM experiments, since the
model is designed for high loads or low surface forces. It is assumed that there are
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no surface or adhesion forces. The AFM tip would be a smooth elastic sphere, and the
contact surface is rigid and flat. In practice, for most cases the AFM tip is stiffer than
the contact surface and the Hertz model is not suitable for calculating deformations
if the tip is assumed to be rigid.

Sneddon’s Model

If the contact surface is softer than the tip, Sneddon’s model may be appropriate. In
this case, the tip is rigid and the contact surface is elastic. Also, there are no surface
or adhesion forces. It is possible, when no surface forces are present to combine the
Hertz and Sneddon models to compute the deformation of the tip and the contact
surface.

Derjaguin-Muller-Toporov Theory (DMT)

This model permits surface forces, yet restricts the tip-contact surface geometry to be
Hertzian. This leads to finite stresses at the contact periphery, although non-Hertzian
deformation there is neglected. As a result the contact area may be underestimated.
The area of contact, based on including forces acting between two bodies outside the
contact region, increases under an applied positive force and decreases for a negative
force.

Johnson-Kendall-Roberts Theory (JKR)

This model is suitable for a highly adhesive tip-surface system with low stiffness and
large tip radii. There is a nonzero contact area for a zero load. During unloading a
neck can be formed between the tip and the contact surface. The predicted surface
forces may be quite low. Shortcomings of this approach include the predictions of
infinite stresses at the edge of the contact area. With this theory the attractive forces
act over a very small range.

Maugis-Dugdale Model

This model is appropriate for hard or soft materials and for contact surfaces with
high or low energies. Adhesion is treated as traction over an annular region around
the contact area. This model effectively bridges the DMT and JKR models by intro-
ducing a parameter λ that compares the relative magnitude of the elastic deformation
at pull-off forces and the effective range of the surface force.
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TABLE 9-1 SUMMARY OF GENERAL FORMULAS FOR CONTACT
STRESSES

Notation
Ri , R′i = minimum and maximum radii of curvature

of two contacting surfaces i = 1, 2
F = applied force
θ = angle between planes containing principal radii

of curvature

A = 1
4

(
1
R1
+ 1

R2
+ 1

R′1
+ 1

R′2

)

− 1
4

{[(
1
R1
− 1

R′1

)
+
(

1
R2
− 1

R′2

)]2 − 4
(

1
R1
− 1

R′1

) (
1
R2
− 1

R′2

)
sin2 θ

}1/2

B = 1
4

(
1
R1
+ 1

R2
+ 1

R′1
+ 1

R′2

)

+ 1
4

{[(
1
R1
− 1

R′1

)
+
(

1
R2
− 1

R′2

)]2 − 4
(

1
R1
− 1

R′1

) (
1
R2
− 1

R′2

)
sin2 θ

}1/2

Compute B/A and obtain coefficients Cb, k, Cσ , Cτ , Coct, Cz , Cd from plots of Figs. 9-3
or 9-4. Then

γ = 1−ν2
1

E1
+ 1−ν2

2
E2

� = γ 1
A+B

Formulas for Stresses and Deformation

Semiminor axis:

b = Cb(F�)1/3

Semimajor axis:

a = b/k

Maximum compressive stress:

(σc)max = −Cσ (b/�)

Maximum shear stress:

τmax = Cτ (b/�)

Maximum octahedral shear stress:

(τoct)max = Coct(b/�)

Distance from contact area to location of maximum shear stress:

Zs = Czb

Distance of approach of contacting bodies:

d = Cd
F
π

A+B
b/�
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TABLE 9-2 FORMULAS FOR CONTACT STRESSES, DIMENSIONS, AND CONTACT AREAS, AND RIGID-BODY
APPROACHESa

Notation

γ = (1− ν2
1)/E1 + (1− ν2

2)/E2

a, b = semimajor axis and semiminor axis of contact ellipse, respectively
d = rigid distance of approach of contacting bodies or surface deformation

Ei = modulus of elasticity of object i, i = 1 or 2
F = force
p = pressure
q = distributed line load
σc = maximum compressive stress of contact area, = (σc)max
νi = Poisson’s ratio of object i, i = 1 or 2
τ = shear stress

Case Formulas

Spheres

1a.
Sphere on sphere

K = D1 D2
D1+D2

a = b = 0.721(F Kγ )1/3

σc = 0.918[F/(K 2γ 2)]1/3
d = 1.040(F2γ 2/K )1/3
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TABLE 9-2 (continued) FORMULAS FOR CONTACT STRESSES, DIMENSIONS, AND CONTACT AREAS, AND RIGID-BODY APPROACHESa

Case Formulas

1b.
Sphere on flat plate

a = b = 0.721(F Kγ )1/3

σc = 0.918[F/(K 2γ 2)]1/3
d = 1.040(F2γ 2/K )1/3

1c.
Sphere in spherical socket

a = b = 0.721(F Kγ )1/3

σc = 0.918[F/(K 2γ 2)]1/3
d = 1.040(F2γ 2/K )1/3
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1d. Sphere on a cylinder a = 0.9088na(F Kγ )1/3

b = 0.9088nb(F Kγ )1/3

σc = 0.579nc[F/(K 2γ 2)]1/3
d = 0.825nd(F2γ 2/K )1/3

A = 1
D1

B = 1
D1
+ 1

D2
K = D1 D2

2D2+D1

1e. Sphere in circular race a = 1.145na(F Kγ )1/3

b = 1.145nb(F Kγ )1/3

σc = 0.365nc[F/(K 2γ 2)]1/3
d = 0.655nd(F2γ 2/K )1/3

K = 1
2

R1
− 1

R2
+ 1

R3

A = 1
2

(
1

R1
− 1

R2

)
B = 1

2

(
1
R1
+ 1

R3

)

1f. Sphere in cylindrical race a = 1.145na(F Kγ )1/3

b = 1.145nb(F Kγ )1/3

σc = 0.365nc[F/(K 2γ 2)]1/3
d = 0.655nd(F2γ 2/K )1/3

K = R1 R2
2R2−R1

A = 1
2

(
1

R1
− 1

R2

)
B = 1

2R1
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TABLE 9-2 (continued) FORMULAS FOR CONTACT STRESSES, DIMENSIONS, AND CONTACT AREAS, AND RIGID-BODY APPROACHESa

Case Formulas

Cylinders
(Contact area is rectangular (2b × �) in cases 2a, 2b, and 2c)

2a. Cylinder on cylinder (axes parallel) b = 0.798(q Kγ )1/2 σc = 0.798[q/(Kγ )]1/2

d = 2q
π

[
1−ν2

1
E1

(
ln D1

b + 0.407
)
+ 1−ν2

2
E2

(
ln D2

b + 0.407
)]

K = D1 D2/(D1 + D2)

2b. Cylinder on flat plate b = 0.798(q Kγ )1/2

σc = 0.798[q/(Kγ )]1/2
K = D1

2c. Cylinder in cylindrical socket b = 0.798(q Kγ )1/2 when E1 = E2 and ν1 = ν2 = 0.3

σc = 0.798[q/(Kγ )]1/2
K = D1 D2

D2−D1
d = 1.82 q

E (1− ln b)
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2d.
Cylinders crossed at right angles

a = 0.909na(F Kγ )1/3

b = 0.909nb(F Kγ )1/3

σc = 0.579nc[F/(K 2γ 2)]1/3
d = 0.825nd(F2γ 2/K )1/3

K = D1 D2
D1+D2

A = 1
D2

B = 1
D1

Barrels

3.
Barrel in a circular race

a = 1.145na(F Kγ )1/3

b = 1.145nb(F Kγ )1/3

σc = 0.365nc[F/(K 2γ 2)]1/3
d = 0.655nd(F2γ 2/K )1/3

K = 1
1

R1
+ 1

R2
+ 1

R3
− 1

R4

A = 1
2

( 1
R2
− 1

R4

)
B = 1

2

( 1
R1
+ 1

R3

)
Other Contact Areas

4a.
Rigid knife edge on surface of
semi-infinite plate line load q

σc = σr = 2q
πr cos(α + θ)

σθ = τrθ = 0

TA
B

L
E

9-2
F

o
rm

u
las

fo
r

C
o

n
tact

S
tresses

443



TABLE 9-2 (continued) FORMULAS FOR CONTACT STRESSES, DIMENSIONS, AND CONTACT AREAS, AND RIGID-BODY APPROACHESa

Case Formulas

4b.
Concentrated force on surface
of semi-infinite body

At an elemental area perpendicular to z axis of any point Q, the resultant stress is 3F cos2 θ

2πr2

4c.
Uniform pressure p over length �
on surface of semi-infinite body

At surface point O1 outside loaded area

d = 2p
πE

[
(�+ x1) ln c

�+x1
− x1 ln d

x1

]
+ p� 1−ν

πE

At surface point O2 underneath loaded area

d = 2p
πE

[
(�− x2) ln c

�−x2
+ x2 ln d

x2

]
+ p� 1−ν

πE

where d = displacement relative to a remote point distance c from edge of loaded area
At any point Q

σc = p
π
(α + sinα)

4d.
Rigid cylindrical die of radius r
on surface of semi-infinite body

d = F(1− ν2)/2RE
At any point Q on surface of contact
σc = F

2πR
√

R2−r2

(σc)max = ∞ at edge (σc)min = F/2πR2 at center
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4e.
Uniform pressure p over circular area of
radius R on surface of semi-infinite body

dmax = 2pR(1−ν2)
E at center, d = 4pR(1−ν2)

πE on the circle

τmax = p
2

[
1−2ν

2 + 2
9 (1+ ν)

√
2(1+ ν)

]
at point R

√
2(1+ ν)/(7− 2ν) below center of loaded area

4f.
Uniform pressure p over square area of
sides 2b on surface of semi-infinite body

dmax = 2.24pb(1−ν2)
E at center d = 1.12pb(1−ν2)

E at corners

dave = 1.90pb(1−ν2)
E

aAll diameters and radii are positive in formulas given. Values of na , nb , nc , and nd are given in Table 9-3. Most of these formulas are adapted from Ref. [9.20].
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TABLE 9-3 PARAMETERS FOR USE WITH FORMULAS OF TABLE 9-2
A/B na nb nc nd

1.000000 1.000000 1.000000 1.000000 1.000000
.965467 1.013103 .987137 .999929 .999952
.928475 1.025571 .975376 .999684 .999714
.893098 1.038886 .963238 .999306 .999279
.851780 1.055557 .948729 .998565 .998574
.805934 1.075967 .931815 .997404 .997442
.767671 1.094070 .917565 .996134 .996124
.727379 1.114909 .901981 .994404 .994407
.699686 1.130480 .890831 .992984 .992988
.640487 1.166370 .866782 .989130 .989123
.594383 1.198061 .847158 .985274 .985223
.546919 1.234696 .826174 .980321 .980224
.514760 1.262333 .811413 .976303 .976163
.465921 1.309532 .788097 .968956 .968738
.416913 1.364990 .763293 .959796 .959415
.384311 1.407560 .745894 .952481 .951928
.351726 1.455592 .727797 .943952 .943170
.335659 1.481904 .718443 .939264 .938324
.319620 1.510007 .708906 .934183 .933087
.303612 1.540072 .699179 .928689 .927396
.287810 1.572253 .689231 .922811 .921331
.272153 1.606769 .679051 .916524 .914773
.264330 1.625029 .673890 .913167 .911272
.256632 1.643925 .668646 .909749 .907690
.241289 1.684020 .658001 .902457 .900066
.233648 1.705308 .652595 .898573 .895998
.226114 1.727405 .647099 .894613 .891797
.218611 1.750463 .641548 .890467 .887432
.211182 1.774490 .635922 .886181 .882914
.203782 1.799603 .630236 .881699 .878199
.196453 1.825817 .624468 .877067 .873296
.189191 1.853208 .618615 .872278 .868186
.182010 1.881858 .612675 .867328 .862885
.174887 1.911914 .606661 .862155 .857378
.167809 1.943479 .600570 .856755 .851609
.153928 2.011419 .588084 .845392 .839398
.147127 2.048051 .581680 .839412 .832932
.140401 2.086717 .575179 .833169 .826193
.133739 2.127590 .568576 .826653 .819118
.120723 2.216622 .555000 .812859 .804111
.114362 2.265238 .548013 .805555 .796099
.108093 2.316993 .540894 .797927 .787713
.095880 2.431163 .526202 .781687 .769785
.084137 2.562196 .510823 .764043 .750170
.078432 2.635404 .502862 .754578 .739598
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TABLE 9-3 (continued) PARAMETERS FOR USE WITH FORMULAS OF TABLE 9-2

A/B na nb nc nd

.067433 2.800291 .486269 .734380 .716896

.056978 2.996047 .468688 .712143 .691708

.047131 3.232638 .449900 .687586 .663652

.043365 3.341996 .442004 .676968 .651460

.039714 3.461481 .433842 .665896 .638702

.036174 3.592781 .425404 .654286 .625283

.034451 3.663353 .421060 .648302 .618329

.031090 3.816109 .412142 .635818 .603838

.029457 3.898845 .407545 .629345 .596298

.026283 4.079175 .398062 .615852 .580534

.024745 4.177734 .393165 .608814 .572309

.023243 4.282607 .388149 .601581 .563839

.021771 4.394598 .383020 .594100 .555076

.020340 4.514196 .377744 .586438 .546068

.017583 4.780675 .366775 .570311 .527108

.016262 4.929675 .361046 .561848 .517130

.014980 5.091023 .355138 .553092 .506793

.013737 5.266621 .349046 .543983 .496048

.012536 5.458381 .342741 .534527 .484885

.011377 5.668799 .336203 .524695 .473265

.010261 5.901168 .329419 .514415 .461124

.009191 6.159118 .322351 .503678 .448458

.008168 6.447475 .314966 .492433 .435174

.007192 6.772417 .307225 .480617 .421232

.006266 7.142177 .299092 .468127 .406537

.005391 7.567233 .290498 .454903 .391004

.004570 8.062065 .281372 .440832 .374507

.003805 8.647017 .271621 .425766 .356910
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TABLE 9-4 EQUATIONS FOR THE
PARAMETERS OF TABLE 9-3

Definitionsa

E(e) =
∫ π/2

0

√
1− e2 sin2 φ dφ

K (e) =
∫ π

0

dφ√
1−e2 sin2 φ

e = √1− (b/a)2 k = b/a

Equations

A
B = K (e)−E(e)

(1/k2)E(e)−K (e)

na = 1
k

(
2kE(e)
π

)1/3
nb =

(
2kE(e)
π

)1/3

nc = 1
E(e)

(
π2kE(e)

4

)1/3
nd = K (e)

[E(e)]1/3
(

2k
π

)2/3

aElliptic integrals E(e) and K (e) are tabulated and readily available
in mathematical handbooks. Quantities a and b are semimajor and
semiminor axes of the contact ellipse, respectively.
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TABLE 9-5 CONTACT STRESSES BETWEEN TWO LONG CYLINDRICAL
BODIES IN LINE CONTACT SLIDING AGAINST EACH OTHERa

Notation

2b = width of contact area, Eq. (9.18a)
µ = friction coefficient
� = see Eq. (9.18b)
q = distributed (line) load (F/L)

Maximum Stress µ = 0 µ = 1
12 µ = 1

6 µ = 1
3

Maximum tensile principal
stress, occurs near the
surface at x = −b

0 2
12

b
�

2
6

b
�

2
3

b
�

Maximum compressive
principal stress, occurs
near the surface between
x = 0 and x = 0.3b

− b
�

−1.09 b
�

−1.19 b
�

−1.40 b
�

Maximum shear stress
(occurs at the surface
for µ ≥ 1

10 )
0.300 b

�
0.308 b

�
0.339 b

�
0.435 b

�

Maximum octahedral
shear stress (occurs at the
surface for µ ≥ 1

10 )
0.272 b

�
0.265 b

�
0.277 b

�
0.368 b

�

aAdapted from [9.9], with permission.
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452 DYNAMIC LOADING

Dynamic loading usually results in higher displacements and stresses than the same
load would if it were applied very slowly. Most of the following chapters include for-
mulas for natural frequencies as well as structural matrices that are used, as discussed
in Appendix III, in the calculation of dynamic responses of structural members and
mechanical systems. This chapter includes formulas that are useful in the dynamic
design of mechanical systems subject to vibration or impact loading. Also, some fun-
damentals of vibration engineering are summarized, including formulas for natural
frequencies and spring constants for simple systems. The following chapters on par-
ticular structural members have tables with formulations for dynamic responses, in
particular for natural frequencies.

10.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F
for force, and T for time.

A Cross-sectional area (L2)

B Energy coefficient

c Damping coefficient (FT/L) or distance from centroid of section to its
outermost fiber (L)

cc Critical damping coefficient, cc = 2
√

km = 2mωn(FT/L)

E Modulus of elasticity (F/L2)

f Frequency of vibration (1/T )

g Gravitational acceleration, g = 32.16 ft/s2 or 386 in./s2 or 980 cm/s2 or
9.80 m/s2

G Shear modulus of elasticity (F/L2)

h Height of falling body (L)

I Moment of inertia of cross section (L4)

Ipi polar mass moment of inertia of concentrated mass at point i (M L2)

k Spring constant or stiffness (F/L)

kt Torsional stiffness (F L/rad)

L Length of member (L)

m,Mi Concentrated mass (M)

n Impact factor

P Dynamic force (F)

R Modulus of resilience of material (F/L2)

Ru Modulus of toughness (F/L2)

T Transmissibility or kinetic energy or torsional moment or period

U Strain energy (F L)

Um Allowable energy absorbed in member or structure (F L)



10.3 VIBRATION FUNDAMENTALS 453

V Potential energy (F L)

W Weight of member or structure (F)

x Displacement (L)

ẋ Velocity = v, (L/T )

ẍ Acceleration = a, (L/T 2)

xst Static displacement (L)

δ Logarithmic decrement or dynamic displacement of structure

δs Static displacement of a system or deflection of beam with some weights
not considered (L)

δst Static displacement or deflection of a beam with all weights consid-
ered (L)

ζ Fraction of critical damping, = c/cc

θ Phase angle (rad)

ν Poisson’s ratio

ρ Mass per unit length, = ρ∗A(M/L)

ρ∗ Mass per unit volume (M/L3)

σys Yield stress (F/L2)

ψ Phase angle (rad)

ω Angular frequency (rad/s)

ωd Damped natural frequency (rad/s)

ωn Natural frequency (rad/s)

10.2 CLASSIFICATION AND SOURCE OF DYNAMIC LOADINGS

Loads are often classified as static or dynamic loadings on the basis of the loading
rate. In general, if the time of load application is greater than about three times
the natural period of vibration of a structure, the loading can be specified as being
static. If the time of load application is less than about half the natural period of
vibration, the structure is considered to be loaded in impact or shock (i.e., the loading
is dynamic). Another type of dynamic loading is called inertial loading, which is the
resisting force that must be overcome in order to cause a structure to change its
velocity.

10.3 VIBRATION FUNDAMENTALS

Simple Kinematics

Formulas for the kinematics of a body involve the acceleration, velocity v, and dis-
placement x as functions of time, without referring to the force causing the motion.
The formulas for free fall and constant acceleration motion are as follows:
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Free Fall Constant Acceleration

Displacement x = gt2

2
= vt

2
= v2

2g
x is the height of

free fall

x = v0t + ngt2

2
= (v + v0)t

2
= v2 − v2

0

2ng

Time t = v

g
=

(
2x

g

)1/2

t = v − v0

ng
= (v2

0 + 2ngx)1/2 − v0

ng

Velocity v = gt = (2gx)1/2 v = v0 + ngt = (v2
0 + 2ngx)1/2

Acceleration g ng

Here v0 is the initial velocity and ng is the constant acceleration, with n a prescribed
number.

Harmonic Motion

Vibration in general is a periodic motion. Periodic motions can be expressed as a sum
of harmonic motions. A body in simple, undamped harmonic motion moves with a

Figure 10-1a: Relationship between frequency f and the amplitudes of displacement x0,
velocity v0, and acceleration a0 in SI units. 1 Hz = 1 cycle/s; 1 g = 9.8 m/s2.
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displacement x ,

x = x0 sinωt = x0 sin 2π f t (10.1)

where x0 is the amplitude of the displacement, ω the angular frequency in radians
per second, and f the frequency in cycles per second. The period T = 1/ f = 2π/ω.
The velocity v = ẋ and acceleration a = v̇ = ẍ are given by

v = ẋ = x0ω cosωt = x0(2π f ) cos 2π f t = v0 cosωt

a = ẍ = −x0ω
2 sinωt = −x0(2π f )2 sin 2π f t = a0 sinωt

(10.2)

where v0 and a0 are the velocity and acceleration amplitudes, respectively. Fig-
ure 10-1 exhibits the relationships between the amplitudes x0, v0, and a0 as functions
of frequency. SI units are adopted in Fig. 10-1a and U.S. Customary units in Fig. 10-
1b. If two quantities of x0, v0, a0, and f (frequency) are known, the other two can
be found from Fig. 10-1. For example, a harmonic motion with x0 = 0.0001 m and
f = 50 Hz corresponds to point A in Fig. 10-1a. It follows from this figure that the
velocity amplitude v0 is approximately 0.032 m/s and the acceleration amplitude a0
is about 1.02 g (9.9 m/s2).

Figure 10-1b: Relationship between frequency f and the amplitudes of displacement x0,
velocity v0, and acceleration a0 in U.S. Customary units. 1 Hz= 1 cycle/s; 1 g = 386 in./s2.
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Figure 10-2: Translational single-degree-of-freedom system.

Single-Degree-of-Freedom System

A mass m, spring k, and damper c translational motion system is shown in Fig. 10-2.
The viscous damper c, which dissipates energy, is not considered to be a very ac-
curate representation of the actual damping in most physical systems. Analogous
quantities for a rotational system are shown in Table 10-1.

General Equation of Motion For the system of Fig. 10-2,

mẍ + cẋ + kx = P (10.3)

Free Vibration without Damping For a system oscillating without applied
loading and damping,

mẍ + kx = 0 (10.4)

The solution is

x = C1 sin
√

k/m t + C2 cos
√

k/m t = C3 sin(ωnt + θ) (10.5)

where C3 =
√

C2
1 + C2

2 and the phase angle θ = tan−1(C2/C1).
The natural frequency is

ωn =
√

k/m (rad/s)

or

fn = 1

T
= ωn

2π
= 1

2π

√
k

m

= 1

2π

√
kg

W
= 1

2π

√
g

δst
(cycles/s) (10.6)

where the weight W = mg and the static displacement δst = W/k.
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Free Vibration with Viscous Damping Including damping, the equation of
motion for the free vibration is

mẍ + cẋ + kx = 0 (10.7)

The solution depends on whether c is equal to, greater than, or less than the critical
damping coefficient cc, where

cc = 2
√

km = 2mωn

The ratio ζ = c/cc is known as the fraction of critical damping or the percentage of
damping if it is written as a percentage.

If c = cc (ζ = 1), the case of critical damping, there is no oscillation and the
solution is

x = (C1 + C2t)e−ct/2m (10.8)

If c/cc = ζ > 1, the system is overdamped, so that the mass does not oscillate
but returns to its equilibrium position. The solution is

x = e−ct/2m
(

C1eωn

√
ζ 2−1 t + C2e−ωn

√
ζ 2−1 t

)
(10.9)

If c/cc < 1, the system is underdamped. The solution is

x = e−ct/2m(C1 sinωd t + C2 cosωd t)

= C3e−ct/2m sin(ωd t + θ) (10.10)

where C3 = (C2
1 + C2

2 )
1/2 and θ = tan−1(C2/C1) is the phase angle. Thus, after

being disturbed, an underdamped system oscillates with a continuously decreasing
amplitude, with the damped natural frequency ωd that is related to the undamped
natural frequency by (Fig. 10-3)

ωd =
√

k/m − c2/4m2 = ωn(1− ζ 2)1/2 (10.11)

With each cycle the amplitude of an underdamped system decreases. The loga-
rithmic decrement δ is the natural logarithm of the ratio of the amplitudes of two
successive cycles:

δ = ln
xi

xi+1

(
or

xi+1

xi
= e−δ

)
= πc

mωd
= 2πζ

(1− ζ 2)1/2
(10.12)

For ζ less than about 0.1,

δ ≈ 2πζ (10.13)
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Figure 10-3: Damped natural frequency as it varies with critical damping.

Forced Vibration without Damping For the sinusoidal force P = P0 sinωt ,
the governing equation for an undamped system is

mẍ + kx = P0 sinωt (10.14)

with the solution

x = C1 sinωnt + C2 cosωnt + P0/k

1− ω2/ω2
n

sinωt (10.15)

where ωn = √k/m. The first two terms describe oscillation at the undamped natural
frequency ωn . The coefficient C2 is the initial displacement, and the coefficient C1
in terms of the initial velocity is

C1 = v0

ωn
− ωP0/ωnk

1− ω2/ω2
n

(10.16)

The third term gives the steady-state oscillation

x = P0/k

1− ω2/ω2
n

sinωt (10.17)

or in terms of the peak displacement (amplitude) x0,

x0

xst
= 1

1− ω2/ω2
n
= magnification factor (10.18)

where xst = P0/k is the static displacement due to force P0. The magnification factor
is plotted in Fig. 10-4. When ω/ωn < 1, the force and motion are in phase and the
magnification factor is positive. When ω/ωn > 1, the force and motion are out of
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Figure 10-4: Magnification factor and transmissibility for an undamped system.

phase and the magnification is negative. The dashed line indicates the absolute value
of the curve for ω/ωn > 1. When ω = ωn , resonance occurs and the amplitude
increases steadily with time.

Force transmissibility is defined as T = Pt/P , where Pt = kx , with x of
Eq. (10.17). Then

T = 1

1− ω2/ω2
n

(10.19)

which equals x0/xst.
If the base or foundation of the system moves as u = u0 sinωt and the applied

force is zero, the governing equation is

mẍ = −k(x − u0 sinωt) (10.20)

where x is the displacement of the mass in absolute coordinates.
The solution is the same as Eq. (10.15), with P0/k replaced by u0. The motion

transmissibility is

x0

u0
= 1

1− ω2/ω2
n
= T (10.21)

the same value as the force transmissibility.
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Forced Vibration with Viscous Damping For the steady-state loading P =
P0 sinωt , the equation of motion for a system with viscous damping is

mẍ + cẋ + kx = P0 sinωt (10.22)

The solution is

x = e−ct/2m(C1 sinωd t + C2 cosωd t)

+ (P0/k) sin(ωt − θ)√
(1− ω2/ω2

n)
2 + (2ζω/ωn)2

(10.23)

with

θ = tan−1 2ζω/ωn

1− ω2/ω2
n

which is plotted in Fig. 10-5. The term of Eq. (10.23) involving C1 and C2 decays
due to damping, leaving the steady-state motion of amplitude

x0 = P0/k√
(1− ω2/ω2

n)
2 + (2ζω/ωn)2

(10.24)

where P0/k is the static displacement xst due to force P0.

Figure 10-5: Phase angle θ as a function of ω/ωn and ζ .
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Figure 10-6: Magnification factor for a damped system. Maximum magnification factor oc-
curs at ω/ωn =

√
1− 2ζ 2.

The magnification factor is the ratio x0/xst, which is plotted in Fig. 10-6. Force
transmissibility T is obtained from

Pt

P0
= force transmitted to foundation

applied force amplitude
= cẋ + kx

P0
= T sin(ωt − ψ) (10.25a)

where

T =
√

1+ (2ζω/ωn)
2

(1− ω2/ω2
n)

2 + (2ζω/ωn)2
(10.25b)

ψ = tan−1 2ζ(ω/ωn)
3

1− ω2/ω2
n + 4ζ 2ω2/ω2

n
(10.25c)

The transmissibility T and phase angle ψ are shown in Figs. 10-7 and 10-8.
In the case of displacement u(t) applied to the base (foundation), the equation of

motion is

mẍ + c(ẋ − u̇)+ k(x − u) = 0 (10.26)
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Figure 10-7: Force and motion transmissibility of a viscously damped system.

Figure 10-8: Phase angle ψ of force or motion transmission of a viscously damped system.
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For u = u0 sinωt , the steady-state response is

x = T u0 sin(ωt − ψ) (10.27)

where T and ψ are defined in Eqs. (10.25b) and (10.25c). The motion transmissibil-
ity T is thus given in

x

u0
= displacement of mass

applied displacement (amplitude) or base

= T sin(ωt − ψ) (10.28)

Figures 10-7 and 10-8 illustrate this transmissibility. Note that the transmissibility
is less than 1 when the excitation frequency is greater than

√
2 times the natural

frequency.
A resonant frequency is the frequency at which a peak response occurs. The res-

onant frequencies of interest, all of which differ from the damped natural frequency
ωd = ωn(1− ζ 2)1/2, are

Response Resonant Frequency

Displacement ωn(1− 2ζ 2)1/2

Velocity ωn

Acceleration ωn/(1− 2ζ 2)1/2

(10.29)

For the percentage of damping in most physical systems, the differences in resonant
frequencies are negligible.

Some damping coefficients are listed in Table 10-2.

Damping The amount of damping is measured by a quality factor Q, the magni-
fication factor for velocity response at the undamped natural frequency:

Q = 1/2ζ (10.30)

The same Q is often taken to be the magnification factor for displacement or accel-
eration, although these responses are slightly higher by the factor 1/(1−ζ 2)1/2. One
refers to high-Q or low-Q systems.

The quality factor Q can be approximated from the sharpness or width of a re-
sponse curve in the vicinity of a resonant frequency. Designate the width of a re-
sponse curve as the frequency increment �ω measured at the half-power point (i.e.,
peak response/

√
2), as shown in Fig. 10-9. Then for ζ < 0.1, Q can be approximated

by

Q ≈ ωn/�ω (10.31)
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Figure 10-9: Velocity magnification factor showing the bandwidth at the half-power point.

Damping in Structures

Damping can significantly affect the dynamic response of a structure. For example,
for 1% damping (damping factor ζ = c/cc = 0.01) the peak response is approxi-
mately 50% that for zero damping. This decrease in response due to damping occurs
in all structures and is a function of the material and the type of construction. The
amount of damping also depends on the level of stress in the member, typically mea-
sured by how high the stresses in a structural component are relative to the yield
stress for the material [10.1, 10.2].

Nominal Stress level Stress at Yield
in Structural Component in Structural Component

(% damping) (% damping)

Steel
Welded 2–3 5–7
Bolted 5–7 10–15
Riveted 5–7 10–15

Concrete
Prestressed 2–3 5–7
Reinforced 2–3 7–10

Wood
Bolted 5–7 10–15
Nailed 5–7 15–20

The percent damping typically found in various structures is listed in Table 11-18.
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10.4 NATURAL FREQUENCIES

The natural frequencies for various structural members and mechanical systems are
listed throughout this book. For more complex structures, the structural matrices
provided in most of the chapters are available for computing the natural frequencies.
Table 10-3 contains natural frequencies for a few commonly occurring simple sys-
tems. Chapters with formulas for structural members also contain tables for natural
frequencies. For example, see Chapter 16 for formulas for natural frequencies for
rings and curved bars. Also, Tables 11-12 to 11-16 contain natural frequency formu-
las for a variety of beams, including tapered sections. Table 11-17 lists vibration data
for multistory buildings.

It was shown in Section 10.3 that the fundamental natural frequency ωn can be
obtained using ωn = √k/m if the mass m and spring constant k are known. For a
rigid mass supported by massless elastic members, the spring constant is the force
at the attachment point of the mass due to a unit displacement at this attachment
point. Tables 10-4 and 10-5 provide spring constants of some structural members
and systems. These can be used to develop models of structures and machines as
single-degree-of-freedom systems and then to apply

ωn =
√

k/m (10.32)

to find the fundamental frequency. In the case of torsional systems

ωn =
√

kt/Ipi (10.33)

where kt is the torsional stiffness (load per radian) and Ipi is the polar mass moment
of inertia. The bending rotation stiffness kθ of Table 10-4 is handled similar to the
torsional stiffness kt . Mass for use in Eq. (10.32) and mass moment of inertia for
Eq. (10.33) are provided in Table 10-6.

Example 10.1 Single Mass Beam System Find the natural frequency for bend-
ing motion of the single mass beam system of Fig. 10-10. Treat the beam as being
massless.

The single degree of freedom is chosen to be the deflection of the beam at the
point mass. The spring constant is given by case 8 in Table 10-4 as

k = 3E I L/a2b2 (1)

Figure 10-10: Example 10.1: single mass beam system.
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The natural frequency for bending motion of the single mass beam system is

ωn =
√

k

m
=

√
k

M1
= 1

ab

√
3E I L

M1
(2)

If the mass is at the center of the beam, (i.e., a = b), the natural frequency will be

ωn = 4

L2

√
3E I L

M1
=

√
48E I

L3 M1
(3)

Example 10.2 Mass Beam System with Flexible Supports Find the natural fre-
quency of the system of Fig. 10-11.

Figure 10-11: Example 10.2: mass beam system with flexible supports.

The method used here is similar to that of Example 10.1. The spring constant of
the beam remains

kb = 3E I L/(a2b2) (1)

The spring constants of the flexible supports are k1 and k2. The equivalent spring
constant ks of the beam support system is from case 3 of Table 10-4:

ks = (a + b)2

a2/k2 + b2/k1
(2)

From case 1 of Table 10-4, the equivalent stiffness of the entire system, which is
arranged in series, is

k = kbks/(kb + ks) (3)

Therefore, the natural frequency of the mass beam system with flexible supports is

ωn =
√

k/m = √
kbks/M1(kb + ks) (4)
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Approximate Formulas

Two approximate methods for calculating the fundamental natural frequency are pre-
sented in this section. Rayleigh’s method provides an approximation that approaches
the correct natural frequency from above and Dunkerley’s method approaches from
below.

Rayleigh’s Formula Rayleigh’s formula can be derived by setting the maximum
potential energy of a system equal to the maximum kinetic energy of the system
vibrating at the fundamental natural frequency. Suppose that a system is discretized
as lumped masses connected by flexible elements (e.g., springs). For example, a
beam could be modeled with concentrated masses connected by beam elements as
shown in Fig. 10-12. The static displacement δsti at the i th node is found from an
analysis of the system with weights Wi . In the case of the beam of Fig. 10-12, δsti
is the deflection of the i th weight obtained from an analysis of the static response of
the beam with all the weights attached. The maximum potential energy would be

Vmax = 1

2

p∑
i=1

Wiδsti = g

2

p∑
i=1

Miδsti (10.34)

where Mi is the mass of weight Wi .
If the beam oscillates sinusoidally at the natural frequency ωn , the maximum ve-

locity of the i th mass is ωnδsti and the maximum kinetic energy is

Tmax = ω2
n

2

p∑
i=1

Miδ
2
sti (10.35)

If Eq. (10.34) is set equal to Eq. (10.35), the fundamental natural frequency can be
expressed as the formula

ωn =

√√√√√√√√
g

p∑
i=1

Miδsti

p∑
i=1

Miδ
2
sti

(10.36)

W2 W3

�2 �3
�1 �p

WpW1 = gM1

Figure 10-12: Lumped mass model of a beam.
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Dunkerley’s Formula A formula that provides an approximate natural frequency
that is below the actual value, is derived in many vibration textbooks. This is Dunker-
ley’s formula, which takes the form

1

ω2
n
= 1

ω2
0

+ 1

ω2
1

+ 1

ω2
2

+ · · · (10.37)

where ω0 is the fundamental natural frequency of the system with distributed mass
when all lumped masses are set to zero. Also, ωi is the natural frequency of the
system if all but the i th, i = 1, 2, 3, . . . , mass has been set equal to zero. Often,
ωi , i = 1, 2, 3, . . . , are obtainable by simple inspection, or by using Table 10-3.

Example 10.3 Natural Frequencies of a Two-Story Building: A Shear Building
Estimate the lowest natural frequency for the lateral motion of the two-story building
in Fig. 10-13a. Use Dunkerley’s method.

(c) Configuration for computing �1 (d) Configuration for computing �2
for Dunkerley's method 

k1

W 1

k1

W 2

k2

(a) (b)

k1

W 2

k2

W 1

W 2

W 1

for Dunkerley's method

Figure 10-13: Two-story building model.
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Assume that the damping is small and negligible. Furthermore, to establish a fea-
sible model, assume that (1) the mass of the building is concentrated at the floors;
(2) the floors or floor slabs are rigid whereas the two columns are flexible; (3) the
joints between the floor slabs and the columns are fixed against rotation; and (4) the
axial forces in the columns can be ignored. Because of the second assumption, lat-
eral deflection is the result of column flexure, and the third assumption means that
the columns should be treated as fixed-fixed beams, and the final assumption implies
that the floors remain horizontal during the motion. Such a model of a building is re-
ferred to as a shear building since its motion can be shown to resemble the response
of a cantilever beam loaded with shear forces.

The building can be idealized as a series of columns attached to masses as shown
in Fig. 10-13b. The spring constant for a uniform beam with both ends fixed is
(Table 10-4, case 7)

k = 12E I

L3
(1)

where I is the total moment inertia for all of the columns. For this example, let
W1 = W2 = W , I1 = 2I2, and L1 = L2 = L. Then k1 = 2(12E I/L3) and
k2 = 12E I/L3. The exact natural frequencies of this two mass model are

(ω2)1st frequency = 0.586

(
12E I g

W L3

)

(ω2)2nd frequency = 3.414

(
12E I g

W L3

) (2)

For a single-degree-of-freedom system of mass m and stiffness k, ω2 = √k/m.
For the two-story building,

ω2
1 =

k1

m1
= k1

W1/g
(Fig. 10-13c)

ω2
2 =

k1k2

(k1 + k2)m2
= k1k2

(k1 + k2)W2/g
(Fig. 10-13d)

(3)

where k2 is taken from case 1, Table 10-5. Dunkerley’s method yields

1

ω2
n
= m

k1
+ k1k2

(k1 + k2)m2
(4)

For the case of k1 = 2k2 = 2k, m1 = m2 = m = W/g,

ω2
n = 0.5

(
12E I g

W L3

)
(5)

Note that this approximation is below the first natural frequency of (2).
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Example 10.4 Upper and Lower Bounds for a Fundamental Frequency Find
approximations above and below the fundamental natural frequency of the beam of
Fig. 10-14. This example will illustrate how simple static measurements can be used
to approximate the frequency. Neglect the weight of the beam segments.

Suppose that the following static measurements are taken:

Deflection, δsti (in.)

Static Due to Individual Due to All Weights
Location Weight (lb) Weight Applied Simultaneously

1 1000 0.04 0.08
2 5000 0.12 0.25
3 2000 0.08 0.16

To compute an upper bound, use Rayleigh’s method. From Eq. (10.36),

ω2
n =

∑
Wi δsti∑
miδ

2
sti

(1)

where δsti is the deflection at the i th location due to all of the weights applied simul-
taneously. From Eq. (10.36),

ω2
n =

1000(0.08)+ 5000(0.25)+ 2000(0.16)
1

386

[
1000(0.08)2 + 5000(0.25)2 + 2000(0.16)2

] = 1720.98 (2)

or ωn 
 41.48 rad/s is an upper bound estimate.
Use Dunkerley’s method to find the lower bound. The deflections along the beam

due to the weights applied singly at location i are δsi . Then

ω2
i =

ki

mi
= Wi/δsi

Wi/g
= g

δsi
(3)

so that

ω2
1 =

g

0.04
, ω2

2 =
g

0.12
, ω2

3 =
g

0.08
(4)

W 1 W 3

W 2

1
2

3

Figure 10-14: Beam for Example 10.4
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Therefore,

1

ω2
n
= 1

g
(0.04+ 0.12+ 0.08) = 0.24

g
= 1608.33 or ωn ≈ 40.10 rad/s (5)

We conclude that the first natural frequency is bounded as

40.10 < ωn < 41.48 (6)

10.5 VISCOELASTIC ELEMENTS

Linear viscoelastic models are formed of linear springs and linear viscous dashpots,
with no masses. For a linear spring,

σ = Rε (10.38)

where R is understood to be the stiffness, spring constant, or modulus of elasticity.
For the linear viscous dashpot,

σ = ηdε

dt
= ηε̇ (10.39)

where η is the coefficient of viscosity. Some standard viscoelastic elements are listed
in Table 10-7.

10.6 HUMAN BODY VIBRATIONS

The human body can be considered to be a viscoelastic mechanical system, and as
such, a human possesses natural frequencies and attendant resonant responses. ISO
standards prescribe techniques for determining whole-body vibrations and for mea-
suring and predicting accompanying health effects [10.3]. The natural frequencies
found in the biomechanics literature vary a great deal, primarily because human sub-
jects vary so much. Also, there is the problem of inaccessibility of many body parts.
Usually, shake table investigations provide the whole-body vibration characteristics,
while models are utilized to study body parts. Ranges of natural frequencies for the
whole body and body parts are listed in Table 10-8. Even these rather broad ranges
of values should be treated as being approximate, since the dynamic behavior of
internal organs depends on many factors.

Vibrations can have adverse effects on humans. Sometimes this is due to acti-
vating a resonant frequency in a body part. References [10.4] and [10.5] discuss the
vibration frequency effects on a human. This ranges from vibrations between 0.2 and
0.6 Hz causing motion discomfort to vibrations above 1000 Hz being able to damage
human tissue. The cardiovascular system can be damaged by vibrations in the 5 to
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500 Hz range. Other vibration effects include:

Decline in quality of work 0.7 to 30 Hz
Adverse effect on vision 0.8 to 50 Hz
Trouble breathing 1.0 to 4 Hz
Hand and foot coordination problems 2 to 3 Hz
Chest pain 3 to 10 Hz

(10.40)

10.7 IMPACT FORMULAS

The excessively complex mathematics required for accurate analytical solutions of
dynamic problems, the lack of precise knowledge of the properties of even conven-
tional engineering materials, and the difficulties in adequately defining a complicated
physical structure make it impractical in many cases to give a solution using a rig-
orous theory of dynamics. Therefore, approximate methods can be quite useful in
engineering design. One method is to treat a dynamic load as a static load and to
estimate the maximum static force and then to obtain the dynamic response by ap-
plying an “impact factor” to the static response.

The dynamic responses of simple elastic beam models subjected to impact load-
ing are given in Table 10-9. These responses are found with an energy balance. The
potential energy of the falling body changes into kinetic energy when it reaches the
beam, and then the kinetic energy is absorbed by the beam when the body comes to
rest. It is assumed that there is no energy loss associated with the local plastic defor-
mation occurring at the point of impact or at the supports. Energy is thus conserved
within the system. The material behaves elastically.

The formulas of Table 10-9 apply to the beam of Fig. 10-15, whose weight (Wb)
is considered to be concentrated at one location. Let δs be the initial deflection of
the beam under its own weight and δ be the maximum total deflection of the beam
after the impact of the body of weight W . The constant k represents the stiffness of
the beam referenced to the point of contact of the falling body. The total maximum
force P experienced by the beam is (case 1, Table 10-9)

P = (W +Wb)+
√

W 2 + 2W (Wb + kh) (10.41)

Figure 10-15: Beam of weight Wb and body of weight W .
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If the body W is suddenly applied to the beam from zero height, h + δs = 0 and,
from Eq. (10.41), 2W (Wb + kh) = 2Wk(δs + h) = 0. Then the maximum impact
force would be

P = (W +Wb)+W = 2W +Wb (10.42)

The effect of the beam’s inertia can be seen from Eq. (10.42). If the weight Wb of
the beam is negligible, Wb ≈ 0,

P = 2W (10.43)

So, this is why it is common to apply an impact factor of 2 to a static response to
obtain dynamic effects.

In general, the impact factor n is defined as the dynamic force divided by the
static load; that is,

n = P/(W +Wb)

where it is assumed that the weight of the beam is not negligible. From Eq. (10.42),

n = P

W +Wb
= 2W +Wb

W +Wb
= 1+ 1

1+Wb/W
(10.44)

The impact factor n decreases as the weight of the beam Wb increases (Fig. 10-16),
because some of the energy of the falling weight is absorbed by the inertia of the
beam.

The dynamic deflection in terms of the static load deflection is (Table 10-9)

δ = δst +
√
δ2

st + 2h(δst − δs)− δ2
s (10.45)

where

δ = P

k
, δs = Wb

k
, δst = Wb +W

k
= δs + W

k

Figure 10-16: Effect of beam mass on the impact factor.
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If h + δs = 0, Eq. (10.45) becomes

δ = δst +
√
δ2

st + δs(δs − 2δst) (10.46)

Thus, when Wb/W ≈ 0, δs ≈ 0 and, as expected, δ = 2δst, while if

W

Wb
≈ 0 (10.47)

we have

δ = δs (10.48)

In reality, the mass of the supporting structure is distributed over the beam, and
thus only a portion of its mass is effective in reducing the dynamic deflection δ and
the impact factor n. It has been shown [10.8] that the portion of the mass of the
structure to be used is:

1. For a simply supported beam with concentrated weight at the midpoint,

We = 0.486Wm (10.49)

2. For a cantilever beam with a concentrated weight at the free end,

We = 0.236Wm (10.50)

where Wm is the total weight of the beam and We is the equivalent concentrated
weight.

10.8 ENERGY-ABSORBING CHARACTERISTICS OF STRUCTURES

The strain energy for the bending of a beam is given by

U =
∫ L

0

M2

2E I
dx (10.51a)

Consider a beam of length L and constant I for which M is constant. Then with
σ = Mc/I (Chapter 3),

U = σ 2 I L/2Ec2 (10.51b)

The quantity c is the distance from the centroidal (neutral) axis of the beam to the
outermost fiber. Equation (10.51b) can be extended to include other cases, including
nonconstant M, by expressing it as

U = Bσ 2 I L/Ec2 (10.52)
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where B is a coefficient to account for particular boundary conditions and types of
loading. Increasing the stress in the beam will increase its strain energy. Assume that
σ is limited by the material’s yield stress σys . As the stress σ reaches its maximum
value σys , the strain energy becomes

Um = Bσ 2
ys I L/Ec2 (10.53)

where Um is the maximum allowable energy, or energy that can be absorbed elas-
tically by the member in bending. The strain energy U in the beam exceeding the
maximum allowable energy Um can be chosen as a criterion of failure. In general,
the potential and kinetic energy V + T of the dynamic loads are converted into the
internal energy of the beam and become the strain energy U . Thus,

U = V + T (10.54)

As with the relationship between stress σ and allowable stress σys in a static stress
analysis, the design condition in a dynamic analysis with this energy approach is that

Udesign ≤ Um (10.55)

Table 10-10 lists the specific formulas of Eq. (10.53) for some common member
and load conditions. It is of interest to note that for all of the beams, the energy-
absorbing capacity or maximum allowable energy Um depends on the section prop-
erty I/c2. Denote this section property as

N = I/c2 (10.56)

For a rectangular cross section of height h and width b, N = ( 1
12 bh3)/( 1

2 h)2 =
1
3 bh = 1

3 A, the section property depends only on the area of the cross section.
Therefore, if the cross-sectional area is fixed, increasing the depth of a cross sec-
tion will increase the section’s static strength (by reducing its maximum stress, e.g.;
σmax = Mc/I = 6M/Ah for a rectangle) but with little or no increase in the energy-
absorbing capacity indicated by Eq. (10.53).

Equation (10.53) also indicates that to obtain maximum energy-absorbing capac-
ity for a member, we should design the member so that its maximum volume is
subjected to the maximum allowable stress. For example, for a beam of rectangular
section (I/c2 = 1

3 bh) for which the entire volume is stressed to σys , Eq. (10.53)
becomes

Um = B
bhLσ 2

ys

3E
= Bσ 2

ys

3E
V (10.57)

where V = bhL is the volume of the beam with constant cross section. It is evident
that Um as defined in Eq. (10.57) is the maximum value of the allowable energy
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Figure 10-17: Axial impact.

Figure 10-18: Constant-stress beam.

absorbed in the beam. When only a portion of the beam volume V is subject to the
maximum allowable stress σys , the allowable energy absorbed will be less than Um of
Eq. (10.57). Generally speaking, the energy-absorbing capacity will reach its highest
value if this maximum allowable stress is uniform throughout the member. In the case
of a member in axial tension (Fig. 10-17), a constant cross section throughout the
member implies that the stress will be uniformly distributed over the entire volume.
For impact loading, this corresponds to a configuration of the maximum energy-
absorbing capacity (i.e., it can withstand the maximum dynamic loading).

For a beam, a constant bending stress along its entire length can sometimes be
obtained by choosing a variable depth (Fig. 10-18). In this case, for a central concen-
trated force, the outermost fiber is stressed to about the same maximum value for the
entire length of the member. The energy-absorbing capacity of the beam in Fig. 10-18
(case 9 of Table 10-10) is doubled compared to that in case 1 of Table 10-10.

For a static load, increasing the length of the beam will increase the bending
moment M, with a corresponding increase in the beam stress (σ = Mc/I ). For an
impact load, Eq. (10.53) shows that increasing the length of the beam will increase
its maximum allowable energy. Thus, for the two beams in Fig. 10-19, it follows
from Eq. (10.52) that the peak dynamic stresses for the two cases are related by
σ1 = (1/

√
2)σ2.

Since N is proportional to the area of a section, not the shape, it can be concluded
that the two beams of Fig. 10-20 have the same dynamic properties. However, their
static stress characteristics determined by σ = Mc/I are distinctly different. Also, it
is interesting to observe that the two tensile rods of Fig. 10-21 have the same strength
under static loading. However, the rod in (b), with a uniform cross section, can absorb
more energy and withstand a greater impact load.

The strain energy U in Eq. (10.51a) can be calculated directly from the external
force by taking the beam as an elastic spring with the stiffness given by case 8 of
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Figure 10-19: Dynamic characteristics of beams with identical cross sections: (a) case 1
with length L; (b) case 2 with length 2L.

Figure 10-20: Two identical rectangular beams with different orientations.

Figure 10-21: Stresses in rods.
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Table 10-4 for simply supported ends. For other kinds of structures, similar reasoning
can be used.

Example 10.5 Impact Force Suppose that a car has a bumper formed of an elas-
tic beam and two springs as shown in Fig. 10-22. The car hits a tree at the center of
the bumper with a speed v. Analyze the impact force on the bumper, neglecting the
mass of the bumper. This impact force is the force transmitted to the car as a result
of the crash.

First consider the deformation of the bumper (i.e., the displacement of the beam
and the springs, under the impact load P), as shown in Fig. 10-22b. Let kr and kb be
the stiffness coefficients of each spring and the beam, which can be obtained from
case 1 of Table 10-4 for the spring and case 8 of Table 10-4 for the beam, if its ends
are simply supported. Let δr and δb be the deformations of each spring and the beam
center. Assume that the tree is strong enough to withstand the impact.

Let Wc be the car’s weight. Then the kinetic energy of the car immediately before
impact is

T = (Wc/2g)v2 (1)

The strain energy for the linear elastic deformation is given by

U = Uspr +Ubm = 2( 1
2 krδ

2
r )+ 1

2 kbδ
2
b (2)

= kr (P/2kr )
2 + 1

2 kb(P/kb)
2

= 1
2 P2(1/2kr + 1/kb) (3)

or by using case 4 of Table 10-5 to get the equivalent stiffness of the beam and spring
system:

Figure 10-22: Example 10.5: (a) car and tree; (b) bumper composed of two springs and a
beam.



10.9 DYNAMIC BEHAVIOR OF MATERIALS 479

U = 1
2 Pδ = P

2

P

k
= P2

2

(
1

kb
+ 1

kr + kr

)
= P2

2

(
1

2kr
+ 1

kb

)

where

δ = P

k

Set the strain energy U of the bumper equal to the kinetic energy of the moving
car when it hits the tree. Use of (1) and (3) yields

Wc

2g
v2 = P2

2

(
1

2kr
+ 1

kb

)

Thus,

P2 = Wc v
2/g

1/2kr + 1/kb
(4)

or

P =
(

Wc v
2/g

1/2kr + 1/kb

)1/2

(5)

Let k = (1/2kr + 1/kb)
−1. Then

P = (kWcv
2/g)1/2 (6)

where k is the bumper’s stiffness coefficient.
Equation (6) indicates that the higher the bumper’s stiffness, the greater the impact

force. Of course, if the front end of a car is too flexible, intrusion into the passenger
compartment may be a problem. Therefore, judicious selection of the stiffness of car
components such as the bumper system is very important for reducing the effects of
impact loading.

10.9 DYNAMIC BEHAVIOR OF MATERIALS

In most cases, the mechanical properties of materials under impact or shock loading
differ from those under static loading. For example, the static stress–strain relation
for iron is quite different from its dynamic material relation. The yield and ultimate
strengths of materials tend to increase with increasing rate of strain, although there is
little corresponding effect on a material’s resistance to fracture. The effect of strain
rate on high-strength steel is much greater than that on low-strength steels. For ex-
ample, in terms of ultimate strength, a high strain rate increases the strength of SAE
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4130 steel from 80,000 psi for static loading to over 400,000 psi for dynamic loading
[10.9], whereas for SAE 4140 steel the increase is from 134,800 psi for static loading
to about 150,000 psi for dynamic loading [10.10]. For annealed copper the increase
is from 20,900 psi to 36,700 psi, while for brass the increase in strength due to in-
creased strain rate is from 39,000 psi to 310,000 psi. Also, it has been shown that
2024 annealed aluminum increases from 65,000 psi to 69,000 psi, while magnesium
alloy varies from 44,000 to 51,000 psi. Most of these data are taken from tests with
impact velocities greater than 200 ft/sec.

Because of the complexity of the analysis required and the rather inadequate
knowledge of dynamic behavior of materials, energy methods similar to those of
this chapter are commonly used to determine the dynamic behavior. An example is
the notched-bar impact test method (Chapter 4), in which a notch is placed in a stan-
dard specimen and the maximum energy absorbed is recorded as a measure of the
dynamic characteristic of the material. The results of the notched-bar impact test are
considered to be of limited value and can be misleading because the standard test
conditions are far from the conditions faced in practice.

The notch effect on energy absorption can also be analyzed using the formulas of
Table 10-10. For the tensile members shown in Fig. 10-23a, and b, assume that the
notch induces a stress concentration of twice the average stress (Fig. 10-23d). Then
the average peak stress in the member will be reduced by 1

2 and (case 4, Table 10-10)
the energy absorbed (Fig. 10-23f ) will be one-fourth of the energy absorbed if no
notch were present (Fig. 10-23e).

Figure 10-23: Notch effect on energy-absorbing capacity of a tensile member: (a) tensile
member, uniform cross section; (b) tensile member with notch; (c) stress diagram for (a);
(d) stress diagram for (b); (e, f ) energy diagrams. (From Ref. [10.8], with permission.)
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10.10 INCREASING THE DYNAMIC STRENGTH OF STRUCTURES
AND MINIMIZING DYNAMIC EFFECTS

It follows from the discussions above that increasing the energy-absorbing capacity
of a structure amounts to improving the dynamic strength. The basic rules outlined
below are useful in designing for dynamic load.

Geometric Configuration

1. For a given structure, have as much of the structure as possible stressed to the
working stress level.

2. Reduce the dynamic stress in tension by increasing the volume (AL) and that
in bending by increasing the value of I/c2.

3. Remember that an increase in the length of a beam will increase the static stress
but will decrease the stress due to dynamic loading. For a tensile member of
uniform cross section, an increase in length will not change the static stress but
will decrease the stress due to a dynamic load.

4. Avoid abrupt changes in section area and internal inhomogeneousness to min-
imize stress concentration.

5. Design for maximum flexibility in the vicinity of the point of impact to in-
crease the energy-absorbing capacity.

Material Properties

1. Select material with a high modulus of resilience R, the energy storage capac-
ity per unit volume, and good notch toughness. The material should be ductile
enough to relieve the stress plastically in areas of high stress concentration.

2. If repeated dynamic loads are expected, choose a material with high fatigue
strength.

3. For low-temperature service, the material should have a low nil ductility tran-
sition temperature (NDT). Refer to Chapter 4.

4. If possible, arrange for a metal for which the direction of hot rolling is in line
with the dynamic load.

Loading

1. For dynamic forces due to inertia, decrease the mass of the structure while
maintaining proper rigidity for its particular use. In bending, a beam that is
lightweight and has sufficient moment of inertia should be used.

2. For impact, minimize the impacting speed and the mass of impacting bodies,
if possible.

3. To lower the acceleration of a structure and hence to reduce possible inertial
forces caused by the rapid movement of a structure due to explosive energy,
earthquakes, and so on, employ flexible supports.
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TABLE 10-1 ANALOGOUS QUANTITIES IN TRANSLATIONAL AND
ROTATIONAL SYSTEMS

Translational Quantities Rotational Quantities

Displacement x (L) φ (rad)
Spring constant k (F/L) kt (F L/rad)
Damping constant c (F · s/L) ct (F L · s/rad)
Applied force P(t) (F) T (t) (F L)

Mass quantity m (M) Ipi (M L2) (mass polar moment of

m = ∫
V ρ
∗ dV inertia)

V = volume Ipi =
∫

V ρ
∗r2 dV

ρ∗ = mass per unit volume
Differential mẍ + cẋ + kx = P(t) r = radial distance from center of disk

equation Ipi φ̈ + ct φ̇ + ktφ = T (t)

484 TABLE 10-1 Analogous Quantities



TABLE 10-2 DAMPING COEFFICIENTS

Notation
µ = viscosity of fluid (FT/L2),

where T is time
c = damping coefficient (FT/L)

ct = torsional damping coefficient
(FLT/rad)

ceq = equivalent damping coefficient
(FT/L)

k = stiffness coefficient (F/L)
η = loss factor or structural damping
v = velocity (L/T )
ω = angular frequency of vibration

(rad/T )

Damper Damping Coefficients

1.
Dashpot, flow past hole in
piston, viscous damping

c = 8µl A2

πr4

where
A = area of piston
r = radius of hole
l = length of piston

2.
Shear damper, viscous
damping

c = µA/h
where

A = area of plate

3.
Torsional damper, viscous
damping

ct = 2πµ

(
r3

2 b

h2
+ 1

2

r4
2 − r4

1

h1

)

TABLE 10-2 Damping Coefficients 485



TABLE 10-2 (continued) DAMPING COEFFICIENTS

4.
Coulomb damper, dry
friction

ceq = 4F f /πωx0

where

F f = µ f W

and

µ f = friction coefficient
W = applied pressure force

5.
Material damping, viscoelastic
damping

ceq = ηk/ω

6.
Serial dampers

1

ceq
= 1

c1
+ 1

c2
+ · · ·

7.
Parallel dampers

ceq = c1 + c2 + · · ·

486 TABLE 10-2 Damping Coefficients



TABLE 10-3 FREQUENCIES OF COMMON SYSTEMSa

Notation
ωn = natural frequency

k = spring stiffness
Ipi = polar mass moment

of inertia of lumped mass
at point i

A = cross-sectional area
m,mi ,Mi = mass

ρ∗ = mass per unit volume
ρ = mass per unit length, = ρ∗A
E = modulus of elasticity
I = area moment of inertia
L = length

mb = total mass of beam
ν = Poisson’s ratio
g = acceleration of gravity

System Natural Frequency ωn

Extension Systems

1.
√

k

m

2.
Mass suspended by
spring with mass

ms = mass of spring

√
k

m + ms/3

TA
B

L
E

10-3
F

req
u

en
cies

o
f

C
o

m
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S
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TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMSa

System Natural Frequency ωn

3.
√

2k/m

4. 
1

2


 k1

m1
+ k2

m2

(
1+ m2

m1

)
±

√[
k1

m1
+ k2

m2

(
1+ m2

m1

)]2

− 4k1k2

m1m2






1/2

5.
√

k(m1 + m2)

m1m2

6.
Rigid bar with mass

a

b

√
k

m
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7.
Longitudinal vibration
of bar

π

L

√
E

ρ∗
Fundamental frequency

8.
Longitudinal vibration
of bar

π

2L

√
E

ρ∗
Fundamental frequency

Torsional Systems

9.
Torsion of massless
shaft, lumped mass

Mass can be model of
rigid rotating mass

√
kt

Ip1

TA
B

L
E
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TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMSa

System Natural Frequency ωn

10.
Torsion of shaft with
mass and lumped mass

Ip2 = total polar mass
moment of inertia of the
shaft

√
kt

Ip1 + 1
3 Ip2

11.
Torsional system


1

2


 kt1

Ip1
+ kt2

Ip2

(
1+ Ip2

Ip1

)
±

√[
kt1

Ip1
+ kt2

Ip2

(
1+ Ip2

Ip1

)]2

− 4kt1kt2

Ip1 Ip2






1/2

12.
Torsional system

√
kt(Ip1 + Ip2)

Ip1 Ip2

13.
Torsional system

√√√√1

2

[
C ±

√
C2 − 4kt1kt2

Ip1 Ip2 Ip3
(Ip1 + Ip2 + Ip3)

]
, where C = kt1

Ip1
+ kt2

Ip3
+ kt1 + kt2

Ip2
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14.
Torsion of geared system
with massless gears

√
kt1kt2(Ip1 + n2 Ip2)

Ip1 Ip2(n2kt2 + kt1)
n = rotor 2 speed

rotor 1 speed

Lumped Mass

15.
Beam fixed–free

Set mb = 0 if beam
is massless

√
3E I

L3(M1 + 0.23mb)

16.
Beam pinned–pinned

Set mb = 0 if beam
is massless

√
48E I

L3(M1 + 0.5mb)

TA
B

L
E

10-3
F

req
u

en
cies

o
f

C
o

m
m

o
n

S
ystem

s
491



TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMSa

System Natural Frequency ωn

17.
Beam fixed–fixed

Set mb = 0 if beam is
massless

13.86

√
E I

L3(M1 + 0.375mb)

18.
Beam pinned–pinned

1

ab

√
3E I L

M1

19.
Beam fixed–fixed

1

ab

√
3E I L3

M1ab
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Beam with Uniformly Distributed Mass

ωn = λ2

L2

√
E I

ρ

Mode shape for the first five modes are sketched.
Nodes are located as proportion of length L measured from left.

System Natural Frequency λ

20.
Pinned–pinned

21.
Fixed–pinned

22.
Fixed–fixed

23.
Free–free

24.
Fixed–free

25.
Pinned–free

TA
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TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMSa

Plates

a = diameter of circular plate, length of side of square plate
h = thickness of plate

ωn = λ
√

Eh2

ρ∗a4(1− ν2)

Value of λ for Modes 1–6

System 1 2 3 4 5 6

26.
Simply supported

5.75 16.10 29.61 34.36

27.
Clamped

11.76 24.54 40.27 45.92 58.93 70.22

28.
Free

6.07 10.53 14.19 23.80 40.88 44.68

29.
Clamped at center,
symmetric modes

4.35 24.26 70.39 138.85 230.8 344.3

30.
Simply supported

5.70 14.26 22.82 28.52 37.08 48.49

494 TABLE 10-3 Frequencies of Common Systems



TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMSa

Value of λ for Modes 1–6

System 1 2 3 4 5 6

31.
One edge clamped,
three edges simply
supported

6.83 14.94 16.95 24.89 28.99 32.71

32.
Two edges clamped,
two edges simply
supported

8.37 15.82 20.03 27.34 29.54 37.31

33.
Clamped

10.40 21.21 31.29 38.04 38.22 47.73

34.
Two edges clamped,
two edges free, ν = 0.3

2.01 6.96 7.74 13.89 18.25 19.00

35.
One edge clamped,
three edges free, ν = 0.3

1.01 2.47 6.14 7.85 8.98 15.67

36.
Free

4.07 5.94 6.91 10.39 17.80 18.85
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TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMSa

System Natural Frequency ωn

Various Systems

37.
Simple pendulum

ωn =
√

g

L

38.
Compound pendulum

r = radius of gyration about
axis of support

ωn =
√

ag

r2

39.
Transverse motion
of massless string

H = tensile force in string

ωn = 2

√
H

M1 L

40.
Pneumatic system

p = pressure at each end of cylinder
S = area of piston
m = mass of piston
V0 = volume of each end of cylinder

ωn =
√

2pS2

mV0

496 TABLE 10-3 Frequencies of Common Systems



TABLE 10-3 (continued) FREQUENCIES OF COMMON SYSTEMSa

System Natural Frequency ωn

Various Systems

41.
U-tube with liquid

ωn =
√

2g

S

42.
Plank on rotating cylinders
(speed ω)

µ = coefficient of friction
between plank and drum

ωn =
√

2µg

a

43.
Tanks with connecting conduit

S1 = area of tank 1
S2 = area of tank 2
S0 = area of conduit

ωn =
√

g(1+ S1/S2)

h(1+ S1/S2)+ �(S1/S0)

44.
Cylinder (c) or sphere (s) in
cylindrical track

Rt = radius of track
Rc(s) = radius of cylinder (sphere)

Cylinder:

ωn =
√

2g

3(Rt − Rc)
Sphere:

ωn =
√

5g

7(Rt − Rs)

aSee also the following chapters, which deal with structural elements. Included in these chapters are tables
of natural frequencies. For example, Tables 11-12 to 11-17 list formulas for natural frequencies of beams
ranging from single-element beams to multistory buildings.
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TABLE 10-4 STIFFNESS OF COMMON MEMBERS
Notation

k = spring constant or stiffness, which is
defined as the ratio of the applied force
to the corresponding displacement

kt = torsional stiffness
kθ = rotational stiffness
L = length

J = torsional constant
G = shear modulus of elasticity
I = moment of inertia
E = elastic modulus
N = effective number of turns of spring

Member Stiffness Formula of Member

Elastic Members

1.
Extension of helical spring

For circular cross section:

k = Gd4

8ND3

For rectangular cross section:

k = Ghb3η

ND3

η = −0.57556+ 1.231(h/b)1/2 − 0.5688(h/b)
+ 0.09336(h/b)3/2

where
d = wire diameter
D = coil diameter

2.
Torsion of spring kt = Ed4

64ND
where
d = diameter of spring wire
D = diameter of spring

3.
Extension bar k = E A

L
where
A = cross-sectional area

4.
Torsion bar kt = G J

L
J = torsional constant
For hollow circular section:

J = π

32

(
d4

o − d4
i

)
For rectangular cross section:

J = (bh3/3)(1− 0.63h/b + 0.052h5/b5)
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TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

Member Stiffness Formula of Member

5.
Bending rotation of spring

kθ = M

θ
= Ed4

64ND

2

1+ E/2G
= 2

2+ ν
Ed4

64ND
where
kθ = rotational spring constant
d = diameter of spring wire
θ = slope of deflection

6.
Cantilevered beam

k = 3E I

L3

7.
Fixed–fixed beam

k = 3E I L3

a3b3

For a = b: k = 192E I

L3

For one end displaced vertically relative to the
other end, with P = 0:

k = 12E I

L3

8.
Simply supported beam

k = 3E I L

a2b2

For a = b = 1
2 L: k = 48E I

L3

9.
Torsional spring

Point A clamped: (shown) where

kt = E I

L
φ = angle of twist

Point A hinged: kt = T/φ

kt = 0.8E I

L
T = torque
L = length of spiral
I = area moment of

inertia of cross
section of spring

TABLE 10-4 Stiffness of Common Members 499



TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

Member Stiffness Formula of Member

10.
Transverse motion of string k = H(a + b)

ab
where
H = tensile force in string

11.
Tapered bar of circular cross-
section

Bending (shown):

k = πEd1d2

4L
Axially loaded:

k = πEd1d2

4L
Torsion:

kθ = 3π

32

d4
1 G

L[d1/d2 + (d1/d2)2 + (d1/d2)3]
12.
Fixed–hinged beam

k = 12E I L3

a3b2(3L + b)

For a = 1
2 L: k = 768E I

7L3

For one end displaced vertically relative to the
other end, with P = 0:

k = 3E I

L3

13.
Fixed–guided beam

k = 12E I

L3

14.
Beam with in-span support,
hinged end

k = 3E I

b2(a + b)
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TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

Member Stiffness Formula of Member

15.
Rotation of a fixed–free beam kθ = E I

L

16.
Beam with in-span support,
fixed end

1

k
= b2(a + b)[1− a/4(a + b)]

3E I

17.
Beam with embedded
curved end

k = 6E I

k1L3

k1 = 2+ 6π

(
R

L

)
+ 24

(
R

L

)2

+ 3π

(
R

L

)3

18.
Beam with both curved ends
embedded

k = 24(3+ πR/L)E I

k2L3

k2 = 3+ 12.57
(

R

L

)
+ 24

(
R

L

)2

+ 26
(

R

L

)3

+ 11.22
(

R

L

)4

19.
N -beam support k = 12E

L3

N∑
i=1

Ii

Parallel planes at ends
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TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

20.
Rotation of rigid bar

kθ =
∑

i

ki �
2
i

21.
Rotation of a pinned–pinned
beam

kθ = 3EIL

L2 − 3ab

For a = 1
2 L: kθ = 12E I

L

For a = L: kθ = 3E I

L
where
kθ = M/slope at x = a

22.
Rotation of a clamped–
clamped beam

kθ = EIL3

ab(L2 − 3ab)

For a = 1
2 L: kθ = 16EI

L

23.
Rotation of a clamped–pinned
beam

a b
L

M

kθ = 4EIL3

b
[
4L3 − 3b(L + a)(L + b)

]
For a = 1

2 L: kθ = 64E I

5L

For a = L: kθ = 4E I

L

24.
Circular ring k = P

�D
= 54.03E I

D3

where �D is the change in diameter in the
direction of P
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TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

25.
Circular membrane k = 2πH

ln(ro/ri )

where
H = in-plane tension per unit circumference

26.
Circular plate, simply
supported boundary

k = 16πD

r2
o

(
1+ ν
3+ ν

)
where

h = thickness of plate
ν = Poisson’s ratio

D = Eh3/
[
12(1− ν2)

]

27.
Circular plate, fixed boundary k = 16πD

r2
o

D = Eh3/
[
12(1− ν2)

]

28.
Square plate, all edges
simply supported

L

L / 2

L

P

P

k = 86.1
D

L2

D = Eh3/
[
12(1− ν2)

]

29.
Rectangular plate, all edges
simply supported

L y

L / 2

L

P

P

k = 59.2(1+ 0.462/β4)
D

L2
y

β = L/L y > 1

D = Eh3/[12(1− ν2)]
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TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

30.
Rectangular plate, all edges
clamped

Ly

L /2

L

P

P

k = D
α

L2
y

L/L y 4 2 1

α 167 147 192

D = Eh3/[12(1− ν2)]

31.
Equilateral triangle, all edges
simply supported

L

L

P
P

k = 175

L2
D

D = Eh3/[12(1− ν2)]

32.
Rectangular frame, fixed
ends, vertical load

k = 48E I1

L3

2α + 4

2α + 7

α = hI1

L I2

33.
Rectangular frame, fixed
ends, horizontal load

k = 24E I2

h3

6α + 1

6α + 4

α = hI1

L I2
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TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

34.
Rectangular frame, pinned
ends, vertical load

k = 48E I1

L3

4(2α + 3)

8α + 3

α = hI1

L I2

35.
Rectangular frame, pinned
ends, horizontal load

k = 6E I2

h3

(
2α

2α + 1

)2

α = hI1

L I2

36.
Rectangular frame, fixed ends,
out-of-plane load

1

k
= L3

48E I1
+ h3

6E I2
− L4G J2

64E I1(2hE I1 + LG J2)
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TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

Rubber Membersa

37.
Rectangular block of rubber in compression,
load applied over entire top surface

Young’s Shear Bulk
Modulus, Modulus, Modulus, Numerical

E G K Factor,
(psi) (psi) (psi) c

130 43 142,000 0.93
168 53 142,000 0.89
213 64 142,000 0.85
256 76 142,000 0.80
310 90 146,000 0.73
460 115 154,000 0.64
630 150 163,000 0.57
830 195 171,000 0.54

1040 245 180,000 0.53
1340 317 189,000 0.52

k = Ec A/Rh
where

Ec = E(1+ 2cS2)

E = Young’s modulus
c = a numerical factor, function of

E or G
S = (loaded surface area)/(force-free

area, i.e., sides of block),
= Lb/[2h(L + b)]

L = length of block
b = width of block
h = thickness of block
A = cross-sectional area Lb
R = 1+ Ec/K
K = bulk modulus of compression

38.
Long rubber strip compressed on surface
normal to its length

k = 4bE(1+ cS2)/3h R
where

b = width of strip
S = b/2h
c = a numerical factor, function of

E or G; see case 37
E = Young’s modulus
h = thickness of strip
R = 1+ Ec/K
K = bulk modulus of compression;

see case 37
Ec = see case 37
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TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

39.
Rectangular section rubber ring

k = 4
3 EπD(b/h)

[
1+ cb2/(4h2)

]
where
D = mean diameter of ring
b = radial width of section
h = thickness of section
E = Young’s modulus
c = a numerical factor; see case 37

40.
Circular section rubber ring

k = 3.95E D(δ/d)1/2

where
E = Young’s modulus
D = mean diameter of ring
δ = displacement due to compression
d = diameter of section

41.
Solid rubber block in shear

k = G A/h

where
G = shear modulus
A = cross-sectional area of block

parallel to direction of shear

42.
Annulus of rubber bonded to two
end plates normal to axis of annulus

kt = T/φ

= πG(r4
1 − r4

o )/(2h)+ πGφ2(r6
1 − r6

o )/9h3

where
T = torque
G = shear modulus
ro = inner radius of annulus
r1 = outer radius of annulus
h = thickness of disk
φ = angular rotational displacement (rad)

43.
Rubber bush mounting under
torsional load

kt = T/φ

= πGL/(1/D2
0 − 1/D2

1)

where
T = torque
φ = angular rotational displacement (rad)
G = shear modulus
L = length of bush mounting

D0 = inner diameter
D1 = outer diameter
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TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

44.
Rubber bush mounting under
axial load

Diameter
Ratio Axial Stiffness

D1/D0 Constant α

1.05 0.0001
1.10 0.0005
1.25 0.0025
1.50 0.0068
1.75 0.0111
2 0.0148
3 0.0244
4 0.0289
5 0.0309
7 0.0321

10 0.0315
20 0.0282

100 0.0204
1000 0.0135

k = 2.73GL/ log10(D1/D0)

1+ α(D1/L)2

where
G = shear modulus
L = length of bush mounting

D0 = inner diameter
D1 = outer diameter
α = axial stiffness constant
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TABLE 10-4 (continued) STIFFNESS OF COMMON MEMBERS

45.
Rubber bush mounting under
radial load

Diameter Long Short
Ratio Bushes Bushes

D1/D0 βL βs

1.05 320,000 322
1.10 43,700 165
1.25 3,400 70
1.50 602 38
1.75 212 27
2 135 21
3 42 12.4
4 25 9.4
5 18.3 7.9
7 12.7 6.3

10 9.5 5.2
20 6.3 3.8

100 3.4 2.4
1000 2.1 1.5

k = βLG

where
G = shear modulus
L = length of bush mounting
β = βL for long bushes, βS for short bushes

aFrom Schiff [10.11], with permission.
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TABLE 10-5 FORMULAS FOR EQUIVALENT STIFFNESS OF
COMBINATION OF SPRINGS

Notation

k = equivalent spring constant or stiffness of the system

Spring Combination Stiffness Formulas for System

1. 1

k
= 1

k1
+ 1

k2

k = k1k2

k1 + k2

2. k = k1 + k2

3.
k = (a + b)2

a2/k2 + b2/k1

4. 1

k
= 1

k1
+ 1

k2 + k3

k = k1(k2 + k3)

k1 + k2 + k3

5.
k = nk1 = n × 192E I

L3

where
n = number of plate springs
Assume no friction between springs
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TABLE 10-5 (continued) FORMULAS FOR EQUIVALENT STIFFNESS OF COMBINATION OF
SPRINGS

Spring Combination Stiffness Formulas for System

6. kH =∑
i ki cos2 αi

kV =∑
i ki sin2 αi

where
kH = horizontal stiffness
kV = vertical stiffness
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TABLE 10-6 MASS AND MASS MOMENTS OF INERTIA
Notation

m,M1 = mass (M)
meq = equivalent mass (M)
Ipi = polar mass moment of inertia of concentrated mass at point i(M L2)

Ieq = equivalent polar mass moment of inertia (M L2)
mb = mass of beam
ωn = √k/m or ωn =

√
kt/Ipi

Mass Moments of Inertia

1.
Mass moment of inertia of
disk about axis of rotation

Ipi = 1
2 ma2

where
m = mass of disk

2.
Mass moment of inertia of bar
about mass center

Ipi = 1
12 mb L2

3.
Parallel axis theorem

Ip A = IpG + mL2

where
IpG = mass moment at mass center G

Ip A = mass moment at point A
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TABLE 10-6 (continued) MASS AND MASS MOMENTS OF INERTIA

4.
Equivalent mass of geared
system

Ii j = mass moment of the j th
gear of the i th axle

Ieq =
na∑

i=1

(
�i

�1

)2 ni∑
j=1

Ii j (about axle 1)

ni = number of gears of i th axle
na = number of axles (for configuration shown,

na = 3)
�i

�1
= rotational speed ratio of axle i to axle 1

5.
Equivalent mass for rack
and gear

Ieq = Ig + ma2 (about gear axis)

meq = m + Ig/a2 (rack)
where

Ig = mass moment of gear
m = mass of rack

6.
Linear spring with mass

meq = M1 + 1
3 ms

where
ms = mass of spring

7.
Beam with mass and lumped
mass at midspan

meq = 0.49mb + M1

8.
Beam with mass and lumped
mass on end

meq = 0.24mb + M1
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TABLE 10-7 VISCOELASTIC ELEMENTS

σ̇ = dσ

dt
σ̈ = d2σ

dt2
ε̇ = dε

dt
ε̈ = d2ε

dt2

Model Differential Equation of Motion

1. Elastic solid (Hooke)

R

σ = Rε

2. Maxwell

R η
σ + η

R
σ̇ = ηε̇

3. Kelvin

R

η
σ = Rε + ηε̇

4. Three-parameter element

R2

R1

η
σ + R1σ̇ = R2ε + ηε̇

5. Four-parameter element (Burgers)

2

R2

R1 1η

η
σ +

(
η1

R1
+ η1

R2
+ η2

R2

)
σ̇ + η1η2

R1 R2
σ̈

= η1ε̇ + η1η2

R2
ε̈
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TABLE 10-8 NATURAL FREQUENCIES OF
THE HUMAN BODYa

Organ Natural Frequency (Hz)

Whole body, vertical
Sitting 4–6
Standing 6–15

Head 8–40
Eyes 12–17
Face and jaws 4–27
Throat 6–27
Chest 2–12
Lungs 4–8
Abdomen 4–12
Lumbar part of spinal 4–14

column
Shoulders 4–8
Hands, feet 2–8

aData from Refs. [10.4] to [10.7].

TABLE 10-8 Natural Frequencies of the Human Body 515



TABLE 10-9 IMPACT EFFECT OF WEIGHT DROPPED ON ELASTIC MEMBER
Notation

W = weight of body being dropped
Wb = weight of elastic member, here a beam

h = height from which weight is dropped
k = stiffness (spring constant) of beam

referenced to point of contact of falling body
v = velocity of body at instant of impact
δst = static displacement of member due to weight

of body and member
δs = static displacement of member due only to weight of member

Body Applied from
Body Suddenly Applied Zero Height and

Case Weight of Member Taken into Account from Zero Height Weight of Member Neglected

1.
Maximum force P
experienced by member

W +Wb +
√

W 2
b + 2W (Wb + kh)

= W +Wb +
√

W 2 +Wkv2/g

2W +Wb 2W

2.
Maximum displacement
δ of member after
impact of body

δst +
√
δ2

st + 2h(δst − δs)− δ2
s

= δst +
√
(δst − δs)2 + v2(δst − δs)/g

δst +
√
δ2

st + δs(δs − 2δst ) 2δst

δst due only to weight of body
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TABLE 10-10 FORMULAS FOR ENERGY-ABSORBING CAPACITY OF
COMMON LOAD-MEMBER CONDITIONSa

r = radius of gyration of cross-sectional area
I = moment of inertia
E = modulus of elasticity
G = shear modulus of elasticity
c = distance from neutral axis to outer fiber
A = cross-sectional area

σys = yield stress
L = length of member

Conditions Energy-Absorbing Capacity

1.
Simply supported beam,
concentrated load,
uniform section

Um =
σ 2

ys I L

6Ec2
= σ 2

ys AL

6E

(r

c

)2

2.
Fixed–fixed beam Um =

σ 2
ys I L

6Ec2
= σ 2

ys AL

6E

(r

c

)2

3.
Cantilevered beam Um =

σ 2
ys I L

6Ec2
= σ 2

ys AL

6E

(r

c

)2

4.
Axial tension Um =

σ 2
ys AL

2E
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TABLE 10-10 (continued) FORMULAS FOR ENERGY-ABSORBING CAPACITY OF COMMON
LOAD-MEMBER CONDITIONSa

Conditions Energy-Absorbing Capacity

5.
Torsion Um =

σ 2
ys(D

2 + D2
1)AL

4G D2

6.
Simply supported beam
with uniform load

Um =
4σ 2

ys I L

15Ec2
= 4σ 2

ys AL

15E

(r

c

)2

7.
Fixed–fixed beam Um =

σ 2
ys I L

10Ec2
= σ 2

ys AL

10E

(r

c

)2

8.
Cantilevered beam Um =

σ 2
ys I L

10Ec2
= σ 2

ys AL

10E

(r

c

)2

9.
Beam of variable cross
section so that σ = constant

Um =
σ 2

ys I L

3Ec2

10.
Torsion Um =

σ 2
ys J L

2Gt2
max

where

J = torsional constant

aFrom Ref. [10.8], with permission.
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Formulas for the analysis and design of beams and columns are provided in this
chapter. These members can be loaded statically with transverse mechanical or ther-
mal loading. Also included are formulas for plastic design, buckling loads, natural
frequencies, and the accompanying mode shapes.

Furthermore, this chapter contains tables of generalized transfer and stiffness ma-
trices that can be utilized for the study of structural systems formed of beam mem-
bers (e.g., for the analysis of frames). Computer programs using these matrices for
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520 BEAMS AND COLUMNS

the static, stability, and dynamic response of arbitrary beams have been prepared to
accompany this book.

Most of the formulas are based on the technical (Euler–Bernoulli) theory of
beams. For this theory it is assumed that plane cross sections remain plane, stress is
proportional to strain, bending is in a principal plane, and the slope of the deformed
beam is always much less than 1.

11.1 NOTATION

The units for most of the definitions are given in parentheses using L for length, F
for force, M for mass, and T for time.

ahi Location of the i th plastic hinge
A Area (L2)

As Equivalent shear area, where αs is shear correction factor
(Table 2-4); also called shear-adjusted area, = A/αs

c1 Magnitude of applied distributed moment, uniform in x direction
(F L/L)

ca Initial magnitude of linearly varying distributed moment (F L/L)
cb Final magnitude of linearly varying distributed moment (F L/L)
C Concentrated applied moment (F L)

Cc Concentrated collapse moment
E Young’s modulus of elasticity of material (F/L2)
G Shear modulus of elasticity (F/L2)

I = Iy Moment of inertia taken about neutral axis (centroidal axis) (L4)
I, Iy, Iz, Ix , Iyz Moments of inertia (L4)

k Winkler (elastic) foundation modulus (F/L2)
k∗ Rotary foundation modulus (F L/L)
K K L is effective column length
� Length of element (L)
L Length of beam (L)

mb Mass of beam (M)
M Bending moment at any section (F L)
Mi Lumped mass (M)
Mp Fully plastic bending moment, = σys Z p (F L)
MT Thermal moment, = ∫A EαT z dA (F L)

pc Uniformly distributed collapse load (F)
pz Transverse, distributed force intensity, = p (F/L)
p1 Magnitude of distributed force, uniform in x direction (F/L)

p1, pa Initial magnitude of linearly varying distributed force (F/L)



11.2 SIGN CONVENTION 521

p2, pb Final magnitude of linearly varying distributed force (F/L)

P Axial force (F)

PT Thermal axial force, = ∫A EαT dA (F)

r Radius of gyration of cross-sectional area about y axis; for buck-
ling, r is minimum radius of gyration, = ry

T Temperature change (degree), temperature rise with respect to
reference temperature, = T (x, z)

V Shear force at any section (F)

w Transverse deflection (L)

W Concentrated force (F)

Wc Concentrated collapse load (F)

x, y, z Right-handed coordinate system

z Vertical coordinate from neutral axis (L)

Z p Plastic modulus of cross section (L3)

α Coefficient of thermal expansion (L/L · degree)

αs Shear correction coefficient or shear deflection constant (Table 2-4)

θ Angle or slope of deflection curve (rad)

λ Slenderness ratio of column, = K L/r

ρ Mass per unit length (M/L) (FT 2/L2)

σ Normal, bending stress (F/L2)

τ Transverse shear stress (F/L2)

ω Natural frequency (rad/T)

11.2 SIGN CONVENTION

Positive deflection w and positive slope θ are shown in Fig. 11-1. Positive internal
bending moments M and positive internal shear forces V on the right face of a cut
are illustrated in Fig. 11-2. For applied loading, the formulas provide solutions for
the loading illustrated. Loadings applied in the opposite direction require the sign of
the loading to be reversed in the formulas.

Figure 11-1: Positive displacement w and slope θ .
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Figure 11-2: Positive bending moment M , shear force V , and axial force P .

11.3 STRESSES

The tables in this chapter give the deflection, slope, bending moment, and shear force
along a beam. The normal and shear stresses on a face of the cross section can be
computed using the following formulas. Refer to Chapter 15 for more complete and
more accurate stress formulas.

Normal Stress

The flexural, normal, or bending stress σ resulting from bending is

σ = Mz/I (11.1)

where z is the vertical coordinate measured from the neutral axis. As shown in
Fig. 11-3, positive z in Eq. (11.1) is taken as downward. For stresses above the
neutral axis, use a negative z. Of course, the sign of stress σ also depends on the
sign of the moment M taken from the tables. The moment of inertia I is given by
[Eq. (2.4a)]:

I = Iy =
∫

A
z2 dA (11.2)

where A is the cross-sectional area. See Table 2-1 for values of I for particular cross-
sectional shapes.

Figure 11-3: Cross section.
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Figure 11-4: Definitions for shear stress.

If a compressive axial force P and temperature change T are present, then

σ = EαT − P/A + Mz/I (11.3)

where M includes both mechanical and thermal (MT ) effects. Substitute P for −P
if the axial force is tensile.

Shear Stress

The average shear stress τ at any point along a width of a cross section (e.g., line 1–2
of Fig. 11-4), is

τ = V Q/I b (11.4)

where b is the width at the location where the stress is being computed and
[Eq. (2.19a)]

Q =
∫

A0

z dA (11.5)

This integral of Eq. (11.5) is taken over the area A0 that lies between the position
at which the shear stress is desired (z0) and the outer fiber of the cross section. This
area is shown hatched in Fig. 11-4. The quantity Q is the first moment of the area
between z0 and the outer fiber. For some common cross sections, formulas for Q are
provided in Table 2-3.

11.4 SIMPLE BEAMS

The governing equations for the bending of a uniform Euler–Bernoulli beam are

E I
d4w

dx4
= pz = p
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E I
d3w

dx3
= −V

E I
d2w

dx2
= −M

dw

dx
= −θ

(11.6)

These relations conform to sign convention 1 presented in Appendix II. They can be
solved giving the deflection, slope, bending moment, and shear force as functions of
the coordinate x .

Tabulated Formulas

The deflection, slope, bending moment, and shear force for uniform beams with com-
monly occurring end conditions and loadings are provided in Table 11-1. Included
are some critical values (e.g., the peak bending moment).

Example 11.1 Simple Beam A beam with the left end fixed and the right end
simply supported is shown in Fig. 11-5a. For this beam, E = 200 GN/m2 and
I = 144 cm4.

The beam of Fig. 11-5 corresponds to case 11 of Table 11-1. To use the formulas
of case 11, it is necessary to replace the variables x , a, b of case 11 by L − x , b, a1
of Fig. 11-5a, respectively.

Figure 11-5: Simple beam model for Example 11.1: (a) model; (b) free-body diagram; (c)
notation for matrix method solutions.
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It follows from the formulas of case 11 that the shear and moment at the fixed end
are (Fig. 11-5b)

R2 = W − R1 = W − W

2

3a2
1 L − a3

1

L3
= 21.5 kN

M2 = Wba1

2L2
(b + L) = 9.91 kN ·m

(1)

The reaction at the simply supported end is

R1 = W − R2 = 13.5 kN (2)

The deflections to the right side of the load of Fig. 11-5a are

w = − 1

6E I
{R1[(L − x)3 − 3L2(L − x)] + 3Wa2

1(L − x)} (3)

and to the left of the applied force W are

w = − 1

6E I
{R1[(L − x)3 − 3L2(L − x)] +W [3a2

1(L − x)− (L − x − b)3]}
(4)

Since b (Fig. 11-5a) > 0.414L = 0.6624 m, the maximum deflection from case 11
is

wmax = Wba2
1

√
b/(2L + b)

6E I
= 4.865 mm (5)

at x = L − L
√

1− 2L/(3L − a1) = 0.92 m.
Furthermore, the bending moments along the beam are

M = R1(L − x) (for x > a1) (6)

M = R1(L − x)−W (L − x − b)

= R1(L − x)−W (a1 − x) (for x ≤ a1) (7)

The maximum moment occurs at x = 0 and is of magnitude

Mmax = M2 = 9.91 kN ·m (8)

The slope at the simply supported end is

θL = θ1 = W

4E I

(
a3

1

L
− a2

1

)
= 0.01077 rad (9)

The maximum shear force is equal to R2, which occurs for x < a1.
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Formulas for Beams with Arbitrary Loading

If sufficient information about your uniform, single-span beams cannot be found in
Table 11-1, use Table 11-2. Table 11-2 is intended to provide the deflection, slope,
bending moment, and shear force of uniform beams under arbitrary applied loading
with any end conditions.

Part A in Table 11-2 lists equations for the responses. The functions Fw, Fθ , FV ,
FM are taken from part B in Table 11-2 by adding the appropriate terms for each load
applied to the beam. The initial parameters w0, θ0, V0, and M0, which are values of
w, θ , V , and M at the left end (x = 0) of the beam, are evaluated using the entry in
part C in Table 11-2 for the appropriate beam end conditions. In using this table, no
distinction is made between statically determinate and indeterminate beams.

These general formulas are readily programmed for computer solution.

Example 11.2 Simple Beam The simple beam of Example 11.1 can also be an-
alyzed using the formulas of Table 11-2. This is a statically indeterminate beam.
The statically indeterminate nature of the problem does not affect the methodology
associated with this table.

The boundary conditions for this fixed, simply supported beam (Fig. 11-5a) are

wx=0 = w0 = 0, θx=0 = θ0 = 0, wx=L = Mx=L = 0 (1)

The deflectionw, slope θ , shear V , and moment M are readily obtained using part
A in Table 11-2. Since w0 = θ0 = 0,

w = −V0
x3

3E I
− M0

x2

2E I
+ Fw(x) (2a)

θ = V0
x2

2E I
+ M0

x

E I
+ Fθ (x) (2b)

V = V0 + FV (x) (2c)

M = V0x + M0 + FM(x) (2d)

The loading functions Fw, Fθ , FV , and FM for the applied concentrated force at
x = a = 0.9 m are (Table 11-2, part B)

Fw(x) = 35 < x − 0.9>3 /(3!E I )

Fθ (x) = −35 < x − 0.9>2 /2E I

FV (x) = −35 < x − 0.9>0

FM(x) = −35 < x − 0.9>

(3)

where

< x − a>n=
{

0 if x < a

(x − a)n if x ≥ a
< x − a>0=

{
0 if x < a

1 if x ≥ a
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To find V0 and M0, enter part C in Table 11-2 for a beam with a fixed left end (row 2)
and a pinned right end (column 1):

V0 = −3E I Fw|x=L/L3 − 3FM|x=L/(2L),

M0 = 3E I Fw|x=L/L2 + FM|x=L/2 (4)

Substitution of Fw and FM with x = L from (3) into (4) gives

M0 = −9.91 kN ·m, V0 = 21.5 kN (5)

which are the same values found in Example 11.1 since V0 = R2 and M0 = −M2.
The responses along the beam of Fig. 11-5 as represented by (2) are now known
completely.

Example 11.3 Simply Supported Beam The single-span simply supported
beam of Fig. 11-6 is readily analyzed with the formulas of Table 11-2. Let E I =
1.1× 1012 lb-in2.

Since the left end is hinged, wx=0 = w0 = 0, Mx=0 = M0 = 0. If the tensile
axial force is ignored (see Example 11.4 for the solution when the effects of the axial
forces are included), the deflection w, slope θ , shear force V , and moment M are
given by (Table 11-2, part A)

w = −θ0x − V0
x3

3E I
+ Fw (1a)

Figure 11-6: Simply supported beam: (a) beam; (b) model.
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θ = θ0 + V0
x2

2E I
+ Fθ (1b)

V = V0 + FV (1c)

M = V0x + FM (1d)

The loading functions Fw, Fθ , FV , and FM for the concentrated applied moments
and forces are taken from part B in Table 11-2, with the use of superposition in the
case of more than one applied loading. For example,

Fw(x) = 102,000(x2)

2E I
+ 3335 <x − 21.5>3

3E I
+ 8417 <x − 39.9>3

3E I

+ 8417 <x − 53.1>3

3E I
+ 3335 <x − 71.5>3

3E I
− 102,000 <x − 93>2

2E I
(2)

The boundary conditions wx=L = 0, Mx=L = 0 are used to identify θ0 and V0 in
(1). From part C in Table 11-2,

θ0 = 1

L
F̄w + 1

6E I
F̄M = 1

L
Fw|x=L + L

6E I
FM|x=L = −0.6124× 10−5 rad

V0 = − 1

L
F̄M = − 1

L
FM|x=L = 0.1175× 105 lb

(3)

This completes the solution. The variables w, θ , V , and M are given by (1) ev-
erywhere along the beam. It will be shown in Example 11.4 that the tensile force has
little influence on the results.

11.5 BEAMS WITH AXIAL FORCES ON ELASTIC FOUNDATIONS

The governing equations for a uniform beam with a compressive axial force P and
resting on an elastic (Winkler) foundation of modulus k are as follows. Without shear
deformation,

E I
d4w

dx4
+ P

d2w

dx2
+ kw = p

E I
d3w

dx3
+ P

dw

dx
= −V

E I
d2w

dx2
= −M

dw

dx
= −θ

(11.7a)
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With shear deformation,

dw

dx
= −θ + Vαs

G A

dθ

dx
= M

E I

dV

dx
= −pz + kw

d M

dx
= V − Pθ

(11.7b)

where A/αs is the equivalent shear area As and αs is the shear correction factor
(shear deflection constant) given in Table 2-4. For a beam with a tensile axial load,
replace P by −P .

The formulas of the response of this type of beam are provided in Table 11-3,
part A. The parameters λ, ζ , η, e0, e1, e2, e3, and e4 are defined in Table 11-3, part B.

The Fw, Fθ , FV , and FM in the responses of Table 11-3, part A, are loading
functions given in part C. If there are several loads on a beam, the Fw, Fθ , FV , FM

functions are obtained by adding the terms given in part C of Table 11-3 for each
load. Use the definition

ei < x − a>=
{

0 if x < a

ei (x − a) if x ≥ a
(11.8)

For example, suppose that e1 = coshαx in Table 11-3, part B. Then

e1 < x − a>=
{

0 if x < a

coshα(x − a) if x ≥ a

Also, if e1 = 1,

e1 < x − a>=< x − a>0=
{

0 if x < a

1 if x ≥ a
(11.9)

The initial values w0, θ0, V0, M0 of the responses of Table 11-3, part A, are provided
in Table 11-3, part D.

Example 11.4 Simply Supported Beam Consider again the beam of Example
11.3. This time take the tensile axial load of 4080 lb (Fig. 11-6) into account but do
not include shear deformation effects.

From Table 11-3, part B, for a beam with tensile axial load,

λ = 0, α2 = P/E I = ζ, η = 0

e0 = α sinhαx, e1 = coshαx, e2 = (sinhαx)/α (1)

e3 = (coshαx − 1)/α2, e4 = (sinhαx − αx)/α3
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The end conditions are still

w0 = 0, M0 = 0, wx=L = 0,Mx=L = 0 (2)

According to Table 11-3, part A, the deflection, slope, shear force, and bending mo-
ment are

w = −θ0e2 − V0e4/E I + Fw

θ = θ0e1 + V0e3/E I + Fθ

V = −θ0λE I e3 + V0(e1 + ζe3)+ FV

M = θ0 E I e0 + V0e2 + FM

(3)

The loading functions for the applied concentrated forces and moments are taken
from Table 11-3, part C. As an example, it is seen that Fw becomes

Fw(x) = 102,000e3(x)

E I
+ 3335e4 < x − 21.5>

E I
+ 8417e4 < x − 39.9>

E I
(4)

+ 8417e4 < x − 53.1>

E I
+ 3335e4 < x − 71.5>

E I
− 102,000e3 < x − 93>

E I

Recall how the singularity functions are handled. For example,

e3(x) = e3 = (coshαx − 1)/α2

e3 < x − 93> =
{

0 if x < 93

[coshα(x − 93)− 1] /α2 if x ≥ 93
(5)

e4 < x − 21.5> =
{

0 if x < 21.5

[sinhα(x − 21.5)− α(x − 21.5)] /α3 if x ≥ 21.5

From Table 11-3, part D, the simply supported end conditions give

θ0 = −ē2 F̄w − (ē4/E I )F̄M

∇ = [−e2 Fw − (e4/E I )FM ]x=L

∇
V0 = E I ē0 F̄w + ē2 F̄M

∇ = (E I e0 Fw + e2 FM )x=L

∇ (6)

∇ = ē0ē4

E I
− ē2

2 =
(e0e4

E I
− e2

2

)
x=L

Substitution of the appropriate values for this beam gives

θ0 = −0.6124× 10−5 rad, V0 = 11,752 lb (7)
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Note that the results are virtually the same as in Example 11.3. Hence, the effect of
the axial force on w, θ , V , and M is negligible.

11.6 PLASTIC DESIGN

The stresses of Section 11.3 are based on linear elastic assumptions and a design
assumes that the structure is in the pure elastic state and that the yield stress of the
outer fiber of the beam cross sections determines the maximum load that the beam
can carry. An alternative and often more realistic technique is to utilize plastic, or
ultimate strength, design, which is based on the assumption that a beam collapses
only when all fibers on a critical cross section reach a plastic state. The corresponding
load, the collapse load, at this moment is considered to be the maximum load that
the structure can carry.

The plastic collapse process can be illustrated by a clamped–clamped beam car-
rying a uniform load p1. The moment diagram of the beam is shown in Fig. 11-7a.
At three cross sections, the bending moment has peak values. Let p1 be sufficiently
large that yielding begins at the upper fiber on cross sections 1 and 3. As the load
p1 increases, assume that the stress distribution on these cross sections will be of the
form of Fig. 11-7b. Continue increasing the load to p′1, the level at which cross sec-
tions 1 and 3 become completely plastic. Since this completely plastic state functions
like a hinge, it is referred to as a plastic hinge. The beam with its two plastic hinges
becomes similar to a simply supported beam (Fig. 11-7c). More load can be added
until cross section 2 becomes fully plastic and the beam appears as in Fig. 11-7d. At
this point the beam can collapse; consequently, the load p′′1 is treated as the critical or
collapse load. The critical load is much larger than that determined from an elastic
design.

The bending moment that causes a completely plastic state on a cross section is
called the plastic moment and is expressed as Mp = σys Z p, where σys is the yielding
stress of the material and Z p is the plastic modulus of the cross section (Chapter 2).

The object of plastic design is to find the location of the plastic hinges and to
determine the collapse load. Table 11-4 gives these quantities for several loads and
boundary conditions. The maximum load and the location of the plastic hinge for the
cases that do not appear in this table can be determined from the methods provided
in many textbooks, such as Ref. [11.24].

11.7 BUCKLING LOADS AND COLUMNS

A slender column subject to an axial load may assume a state of large lateral deflec-
tion even if no significant lateral loads are applied. This condition occurs because
of the existence of an unstable equilibrium state above a certain level of axial load
called the elastic buckling load, also known as the critical load. It is given by the
formula (Euler’s formula)
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Figure 11-7: Collapse process of a beam with uniform load: (a) beam with uniform load p1;
(b) form of stress distribution when p1 increases (it is assumed that the material is perfectly
plastic as a fiber reaches its yield stress); (c) beam as cross sections 1 and 3 become completely
plastic; (d) beam as cross sections 1, 2, and 3 become completely plastic.

Pcr = π2 E I/L2 (11.10)

for a pinned–pinned beam. The critical load can also be written as a critical stress
by defining the slenderness ratio λ = K L/r , in which K L is the effective column
length that varies with the end conditions and r = √I/A is the radius of gyration
(Chapter 2) of the beam cross section about the centroidal axis for which the radius
of gyration is a minimum:

σcr = π2 E/λ2 (11.11)
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The appropriate expression for the critical load is shown in Tables 11-5 to 11-9 for
a variety of column configurations. These include ordinary columns (Table 11-5),
columns with flexible end supports (Table 11-6), columns with in-span axial loads
(Table 11-7), columns with in-span supports (Table 11-8), and tapered columns
(Table 11-9).

The buckling of complicated beams or beam structures (e.g., frames) can be de-
termined, as explained in Appendix III, using the transfer and stiffness matrices of
Sections 11.9 and 11.10. Use of the transfer matrix and corresponding generalized
dynamic stiffness matrix leads to a determinant search for the buckling loads. If the
geometric stiffness matrix is utilized, the buckling load can be computed as the so-
lution to a classical eigenvalue problem.

Example 11.5 Buckling of a Cantilever Beam with a Flexibly Supported End
A cantilever beam with the linear spring at the free end is shown in Fig. 11-8. For
this beam, E = 200 GN/m2 and I = 5245 cm4. Find the critical axial load.

Figure 11-8: Cantilever beam with a linear spring.

This beam corresponds to case 1 of Table 11-6 with no rotational resistance (i.e.,
k1 = 0). From Fig. 11-8, the elastic spring constant k has the value 1.166 MN/m.
Also, it follows from the formulas of the table that

c = kL3

E I
= 3.0 (1)

and c1 = 0. Furthermore,

c(m − sin m)− m3

c(1− cos m)
= tan m (2)

It follows from (2) that m = 2.203. Hence, the critical load Pcr is calculated as

Pcr = m2 E I

L2
= (2.203)2

(200× 109)(5.245× 10−5)

32

= 5.65 MN (3)

Of course, methods using transfer or stiffness matrices lead to the same result.
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Columns

The Euler buckling load given by Eq. (11.10) is strictly accurate for a perfectly
straight slender column subject to a centered axial load. It is assumed that before the
load reaches the critical value, the deflection of the column is small. When there are
some imperfections or deviations, such as the column not being slender or perfectly
straight or the load being applied eccentrically, the justification for the use of Euler’s
equation is questionable. In these cases, large deformations may develop or the ma-
terial may behave inelastically before the column buckles. Generally, for columns
with large slenderness ratios and small load eccentricities, Euler’s equation is still
applicable. Aluminum and mild steel columns usually buckle elastically at slender-
ness ratios of about 100 or more, but this behavior depends on the imperfections
in the load–column system. Some aluminum alloys tempered to high yield strength
buckle elastically at slenderness ratios as low as 60. Inelastic buckling tends to occur
as the slenderness ratios decrease and the imperfections in column straightness and
load eccentricity increase.

In the case of inelastic buckling, the axial compressive stress P/A is greater than
the proportional limit before the column buckles. The determination of Pcr for per-
fectly straight columns is closely related to the elastic modulus after the yield point.
The slope of the stress–strain relationship dσ/dε from Fig. 11-9 no longer equals the
elastic modulus E . Two theories for handling this modulus are pertinent.

The tangent modulus theory proposed by Engesser in 1889 describes a modulus
Et [11.3]. The tangent modulus Et is defined as dσ/dε, the slope of the stress–strain
curve above the proportional limit. Unlike the elastic modulus, the tangent modulus
is not constant but, rather, is a function of applied stress. Substitute Et for E in
Euler’s formula, giving Pcr = π2 Et I/L2 for a pinned–pinned beam.

A second theory, the double modulus theory or reduced modulus theory, assumes
that the axial force remains constant during the onset of buckling [11.3]. The re-
sulting deformation of the beam causes strain reversal on the convex side while the
strain on the concave side will continue to increase. It would appear that the material
laws (moduli) relating the increments of stress and strain for the two sides should
be different. The convex side is chosen to be represented by the elastic modulus E

Figure 11-9: Stress–strain relation and moduli.
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and the concave to the tangent modulus Et . This results in a value for Pcr that de-
pends on both E and Et . This yields the equation for the reduced modulus load
Pcr = π2 Er I/L2, where Er is a function of both Et and E . This load is the greatest
load the column can bear and still remain straight. The modulus Er is a function of
both cross-sectional and material properties. See Refs. [11.3] and [11.19] for more
details of these two theories.

For the columns that are not straight and loaded eccentrically, it is difficult to
derive the buckling load. However, for cases of imperfections in the alignment of
the loading, approximate formulas have been proposed that are empirically adjusted
to conform to test results. The maximum stresses P/A according to some of these
formulas are given in Table 11-10.

In practice, columns with very large slenderness ratios are of limited value be-
cause only very small axial loads can be supported. Euler’s formula is often appli-
cable for somewhat smaller values of the slenderness ratio. For very small slender-
ness ratios, a column behaves essentially as a block in compression and the critical
stress would be the compressive strength of the material (e.g., the yield stress). The
region between the compression block and slenderness ratios for which Euler’s for-
mula is useful is referred to as the intermediate range. A number of empirical formu-
las for various materials (steel, aluminum alloys, and timber) have been proposed to
cover the intermediate range. These formulas can be found in construction manuals,
such as Ref. [11.25].

Short Bars with Eccentric Loading

For very short bars subjected to eccentric axial loading, buckling will not occur, and
the stresses can be determined from the theory of strength of materials. For materials
that do not withstand tension, the compressive load cannot be applied outside the
kern of the cross section; otherwise, tensile stress will develop on the cross section.
The kerns are shown in Table 11-11 for various shapes of cross sections. The method
of obtaining the formulas in this table can be found in basic strength of material texts.

11.8 NATURAL FREQUENCIES AND MODE SHAPES

The natural frequencies ωi (radians per second) or fi (hertz), i = 1, 2, . . . , for the
bending vibrations for uniform Euler–Bernoulli beams are presented in Table 11-12.
The frequency equations for beams, including shear deformation and rotary inertia,
are provided in Table 11-13. The roots ωi , i = 1, 2, . . . , of these equations are the
natural frequencies.

Table 11-14 provides frequencies for beams modeled with lumped masses.
The fundamental natural frequencies for several continuous beams are tabulated
in Table 11-15 and for tapered beams in Table 11-16.

Some approximate formulas for the period of vibration of buildings are given in
Table 11-17. Damping information for various structures is provided in Table 11-18.
Most of these results are based on observations of the response of actual structures.
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The natural frequencies and mode shapes for beams more complicated than those
presented in these tables can be computed using the transfer matrix and displace-
ment methods of Appendix III. Frequencies are found using the transfer matrix and
corresponding generalized dynamic stiffness matrix of Section 11.9 with a determi-
nant frequency search, whereas the solution to a generalized eigenvalue problem will
yield the frequencies if a stiffness matrix (other than a dynamic stiffness matrix) and
a mass matrix are employed.

Example 11.6 Vibration of a Continuous Beam A multispan uniform beam
with rigid in-span supports and one end free with the other end pinned is shown
in Fig. 11-10. For this beam, E = 200 GN/m2, I = 144 cm4, and ρ (mass per unit
length) = 19.97 kg/m. The fundamental natural frequency can be obtained by using
Table 11-15, case 2. For three spans, λ1 = 1.536. Then

f1 = λ2
1(E I/ρ)1/2

2π�2
= 17.61 Hz (1)

Figure 11-10: Multispan beam with rigid in-span supports.

The same result can be generated using the matrix methods discussed in the fol-
lowing sections.

11.9 GENERAL BEAMS

Most of the formulas provided thus far apply to single-span beams. For more gen-
eral beams (e.g., those with multiple-span, variable cross-sectional properties, in-
span supports), it is advisable to use the transfer matrix method or the displacement
(stiffness) method outlined in Appendix III. These are efficient methods that can be
programmed with ease.

Transfer Matrices

A few transfer matrices are tabulated in Tables 11-19 to 11-22. They are used to
find the static response, buckling load, or natural frequencies as indicated in Ap-
pendix III. The transfer matrix in Table 11-22 is for a very general beam element
that can be employed to take into account such effects as foundations, axial forces,
and inertia.
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The notation for the transfer matrix for beam element i is

Ui =




Uww Uwθ UwV UwM F̄w
Uθw Uθθ UθV UθM F̄θ
UVw UV θ UV V UV M F̄V

UMw UMθ UMV UM M F̄M

0 0 0 0 1


 (11.12)

The structural matrices here are based on the governing equations for the bending
of a Timoshenko beam:

∂w

∂x
= −θ + V

G As
(11.13a)

∂θ

∂x
= M

E I
+ MT

E I
(11.13b)

∂V

∂x
= kw + ρ ∂

2w

∂t2
− pz(x, t) (11.13c)

∂M

∂x
= V + (k∗ − P)θ + ρr2

y
∂2θ

∂t2
− c(x, t) (11.13d)

The applied distributed force and moment are indicated by pz(x, t) and c(x, t), re-
spectively. A Timoshenko beam includes the effects of shear deformation and ro-
tary inertia as well as bending. The governing equations are reduced to those for a
Rayleigh beam (bending, rotary inertia) by setting 1/G As equal to zero, for a shear
beam (bending, shear deformation) by making

ρr2
y
∂2θ

∂t2

equal to zero, and for a Euler–Bernoulli beam (bending) by putting

1

G As

and

ρr2
y
∂2θ

∂t2

equal to zero. Equations (11.13) apply to beams with a compressive axial force P .
Replace P by −P if the axial force is tensile.

Example 11.7 Simple Beam Return to the simple beam of Examples 11.1
and 11.2. The same problem can be solved using transfer matrices. See the no-
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tation in Fig. 11-5c. Follow the procedure explained in Appendix III. In transfer
matrix form the response at the right end is given by

zx=L = U2UbU1z0 (1)

where z is the state vector

z =




w

θ

V
M
1


 (2)

From Tables 11-19 and 11-21, the extended transfer matrices for the case 1/G As = 0
are given by

U1 =




1 −a1 −a3
1/6E I −a2

1/2E I 0
0 1 a2

1/2E I a1/E I 0
0 0 1 0 0
0 0 a1 1 0
0 0 0 0 1


 (3)

Ub =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 −W
0 0 0 1 0
0 0 0 0 1


 (4)

U2 =




1 −b −b3/6E I −b2/2E I 0
0 1 b2/2E I b/E I 0
0 0 1 0 0
0 0 b 1 0
0 0 0 0 1


 , b = L − a1 (5)

Carry out the matrix multiplications indicated in (1) using the matrices of (3), (4),
and (5). This results in

zx=L = Uz0 (6)

where U = U2UbU1 is the global transfer matrix

U =




1 −L −L3/6E I −L2/2E I b3W/6E I
0 1 L2/2E I L/E I −b2W/2E I
0 0 1 0 −W
0 0 L 1 −bW
0 0 0 0 1


 (7)
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Apply the boundary conditions to (6):



w = 0
θ

V
M = 0

1




x=L

= U




w = 0
θ = 0

V
M
1




x=0

(8)

This leads to

wx = L = 0 = − L3V0

6E I
− L2 M0

2E I
+ b3W

6E I

Mx=L = 0 = LV0 + M0 − bW

(9)

From (9),

V0 = 1
2 W
[
3b/L − (b/L)3

]
M0 = bW − LV0

(10)

Use W = 35 kN, L = 1.6 m, b = L − a1 = 0.7 m, and again we find that
V0 = 21.5 kN and M0 = −9.91 kN ·m. The shear force at the simple support is

Vx=L = V0 −W = −13.5 kN (11)

Computer-generated results are shown in Fig. 11-11.

Figure 11-11: Computer-generated response of the beam for Example 11.7.

11.10 STIFFNESS AND MASS MATRICES

Stiffness Matrix

Tables 11-19 to 11-22 contain stiffness matrices for beams. Use of these matrices
in static, stability, and dynamic analyses is explained in Appendix III. Textbooks
covering standard structural mechanics, such as Ref. [11.23], can also be consulted.
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The matrices in this section follow sign convention 2 of Appendix II. This is
in contrast to most of the formulas and transfer matrices appearing earlier in this
chapter, which are based on sign convention 1 of Appendix II. The sign convention
is illustrated in each table.

All of these stiffness matrices for the i th element are of the form pi = ki vi − p̄i ,
where

pi =




Va

Ma

Vb

Mb




i

, vi =



wa

θa

wb

θb




i

, p̄i =




V 0
a

M0
a

V 0
b

M0
b




i

(11.14)

The format for the stiffness matrix of a plane beam element with bending deforma-
tion is

ki =




k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44


 (11.15)

As explained in Appendix II, the stiffness matrices can be derived in numerous ways,
including by rearranging transfer matrices.

Example 11.8 Simple Beam Use the displacement method to find the response
of the simple beam of Fig. 11-5c.

Although there is no technical reason to use more than one element, as stiffness
matrices for statically loaded beams are exact, we choose to discretize the beam into
two elements. For each element, the stiffness matrix is given in Table 11-19.

ki =




12 −6�i −12 −6�i

−6�i 4�2
i 6�i 2�2

i−12 6�i 12 6�i

−6�i 2�2
i 6�i 4�2

i


 Ei Ii

�3
i

=
[

ki
aa ki

ab
ki

ba ki
bb

]
(1)

where �i , Ii , and Ei are the length, moment of inertia, and modulus of elasticity of
beam element i , respectively. For this beam �1 = 0.9 m, �2 = 0.7 m, E1 = E2 =
200 GN/m2, and I1 = I2 = 144 cm4.

Follow the procedure provided in Appendix III in which the global stiffness ma-
trix is assembled using the element stiffness matrices:

k1 =
[

k1
aa k1

ab

k1
ba k1

bb

]
= 395 061.73




12 −5.4 −12 −5.4
−5.4 3.24 5.4 1.62
−12 5.4 12 5.4
−5.4 1.62 5.4 3.24


 (2)
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k2 =
[

k2
bb k2

bc
k2

cb k2
cc

]
= 839 650.15




12 −4.2 −12 −4.2
− 4.2 1.96 4.2 0.98
−12 4.2 12 4.2
− 4.2 0.98 4.2 1.96


 (3)

The global stiffness matrix is

K =

k1

aa k1
ab 0

k1
ba k1

bb + k2
bb k2

bc
0 k2

cb k2
cc




= 395 061.73




12 −5.4 −12 −5.4 0 0
−5.4 3.24 5.4 1.62 0 0
−12 5.4 37.5044 −3.5265 −25.5044 −8.9265
−5.4 1.62 −3.5265 7.4057 8.9265 2.0828

0 0 −25.5044 8.9265 25.5044 8.9265
0 0 −8.9265 2.0828 8.9265 4.1657




(4)

The forces and deformations are related by

P̄ = KV (5)

where, with the displacement boundary conditions wa = θa = wc = 0,

V =




wa

θa

wb

θb

wc
θc



=




0
0
wb

θb

0
θc




(6)

and

P̄ =




Va

Ma

Vb

Mb

Vc
Mc



=




Va

Ma

}

W
0
Vc
0

(unknown
reactions)

(unknown
reaction)




(7)

Remove the columns in (4) corresponding to the displacements that are zero [see
(6)] and ignore the rows in (4) corresponding to the unknown reactions [see (7)].
Then

395 061.73


 37.5044 −3.5265 −8.9265
−3.5265 7.4057 2.0828
−8.9265 2.0828 4.1657




wb

θb

θc


 =


W

0
0


 (8)
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For W = 35 kN, the solution of this set of equations gives

wb = 4.8576 mm

θb = −7.1490× 10−4 rad (9)

θc = 0.01077 rad

Place these values in (5) and solve for the reactions,

Va = −21.5 kN = −V0

Ma = 9.91 kN ·m = −M0 (10)

Vc = −13.5 kN = Vx=L

As expected, these are the same results obtained with the other methods employed
in earlier examples for the same problem.

Table 11-22 provides the generalized dynamic stiffness matrix, which includes
many effects, such as foundations, inertias, and axial forces. In addition to incorpo-
ration in static analyses, this stiffness matrix is useful in setting up global frequency
equation determinants that can be employed for the determination of exact natural
frequencies and buckling loads along with the corresponding mode shapes.

Geometric Stiffness Matrix

The traditional geometric stiffness matrix for the buckling of simple beams is pro-
vided in Table 11-23.

Mass Matrix

The mass matrices contained in Tables 11-24 and 11-25 are the customary lumped-
mass and consistent-mass matrices. See Appendix III for the use of mass matrices in
dynamic analyses. The format for these mass matrices for a beam element is




m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44


 (11.16)
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TABLE 11-1 UNIFORM BEAMS
Positive deflection w, slope θ , moment M, and shear force V

Notation

L = length of beam
E = modulus of elasticity
I = moment of inertia

The positive directions of the reactions (R1, R2, M1, M2) are shown in the figures for each
case. Coordinate x is measured from the left-hand end for all entries in this table.

Type of Beam Reactions Deflection at Any Point x

1. R1 = W
M1 = Wa

For x < a,
W

6E I
(−x3 + 3x2a)

For x ≥ a,

W

6E I
(3a2x − a3)

2. R1 = p1L
M1 = 1

2 p1L2 p1x2

24E I
(x2 + 6L2 − 4Lx)

3. R1 = 1
2 pL

M1 = 1
6 pL2

px2

120L E I
(10L3 − 10L2x + 5Lx2 − x3)

4. R1 = 1
2 pL

M1 = 1
3 pL2

px2

120L E I
(20L3 − 10L2x + x3)

5. R1 = 0
M1 = M∗

For x < a,

x2 M∗

2E I
For x ≥ a,

M∗a
2E I

(2x − a)
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TABLE 11-1 (continued) UNIFORM BEAMS

Maximum Moment at Maximum Important Maximum
Deflection Any Point x Moment Slope Shear Force

Wa2(3L − a)

6E I
at x = L

For x < a,

−W (a − x)

For x ≥ a,

0

Wa = M1

at x = 0
θmax = Wa2

2E I
at x = L

W

at x < a

p1L4

8E I
at x = L

− 1
2 p1(L2 − 2Lx + x2) 1

2 p1L2 = M1

at x = 0
θmax = p1L3

6E I

p1L

at x = 0

pL4

30E I
at x = L

− p

6L
(L3 − 3L2x

+ 3Lx2 − x3)

1
6 pL2 = M1

at x = 0

θmax = pL3

24E I
at x = L

1
2 pL

at x = 0

11pL4

120E I
at x = L

− p

6L
(2L3−3L2x+ x3) 1

3 pL2 = M1

at x = 0

θmax = pL3

8E I
at x = L

1
2 pL

at x = 0

M∗a
2E I

(2L − a)

at x = L

For x < a,

−M∗

For x ≥ a,

0

M∗
at all x < a

θmax = M∗a
E I

at x = L

0
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TABLE 11-1 (continued) UNIFORM BEAMS

Deflection at Maximum
Type of Beam Reactions Any Point x Deflection

6.
R1 = Wb

L

R2 = Wa

L

For x < a,

Wb

6L E I
[−x3

+(L2 − b2)x]
For x ≥ a,

Wa

6L E I
[−(L − x)3

+(L2 − a2)(L − x)]

When a >
L

2

Wb(L2 − b2)3/2

9
√

3L E I

at x =
√

1
3 (L

2 − b2)

7. R1 = 1
2 p1L

R2 = 1
2 p1L

p1x

24E I
(L3 − 2Lx2

+x3)

5p1L4

384E I

at x = 1
2 L

8. R1 = 1
6 pL

R2 = 1
3 pL

px

360L E I
× (3x4

−10L2x2 + 7L4)

0.00652pL4

E I

at x = 0.519L

9.
R1 = M∗

L

R2 = M∗

L

M∗Lx

6E I

(
1− x2

L2

)
M∗L2

9
√

3E I

at x = L√
3

10.
R1 = M∗

L

R2 = M∗

L

For x < a,

− M∗

6E I L
(6ax L − 3a2x

−2L2x − x3)

For x ≥ a,

− M∗

6E I L
(3a2L + 3x2L

−x3 − 2L2x − 3a2x)

Maximum
Deflection occurs
at x = x1 and/or
x = x2,

x1 =
(
2aL − a2

− 2
3 L2
)1/2

x2 = L − ( 1
3 L2

− a2
)1/2
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TABLE 11-1 (continued) UNIFORM BEAMS

Moment at Maximum Maximum
Any Point x Moment Important Slope Shear Force

For x < a,
Wbx

L
For x ≥ a,
Wa

L
(L − x)

Wab

L
at x = a

θ1 = Wab

6L E I
(2L − a)

θ2 = Wab

6L E I
(2L − b)

If a > b,
Wa

L
at x > a

If a < b,
Wb

L
at x < a

1

2
p1L

(
x − x2

L

)
1
8 p1L2

at x = 1
2 L

θ1 = θ2

= p1L3

24E I

1
2 p1L

at x = 0, L

−1

6
pL

(
x3

L2
−x

)
0.064pL2

at x = 1
3

√
3L

θ1 = 7

360

pL3

E I

θ2 = 1

45

pL3

E I

1
3 pL

at x = L

M∗x
L

M∗
at x = L

θ1 = M∗L
6E I

θ2 = M∗L
3E I

M∗

L
at all x

For x < a,

−M∗x
L

For x > a,
M∗(L − x)

L

−R1a

at x = a−
R1(L − a)

at x = a+

θ1 = − M∗

6E I L
× (2L2 − 6aL + 3a2)

θ2 = M∗

6E I L
(L2 − 3a2)

M∗

3E I L
× (3aL − 3a2 − L2)

at x = a

M∗

L
at all x
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TABLE 11-1 (continued) UNIFORM BEAMS

Deflection at Maximum
Type of Beam Reactions Any Point x Deflection

11.
R1 = W

2

3b2L − b3

L3

R2 = W − R1

M2 = Wab

2L2
(a + L)

For x < a,

−Wa(L − x)2

12E I L3

×(2La2 − 3L2x

+a2x)

+W (a − x)3

6E I

For x ≥ a,

−Wa(L − x)2

12E I L3

×(2La2 − 3L2x

+ a2x)

If a > 0.414L,

Wab2√a/(2L + a)

6E I
at x = L

×
√

1− 2L

3L − b
If a < 0.414L,

Wa(L2 − a2)3

3E I (3L2 − a2)2

at x = L(L2 + a2)

3L2 − a2

If a = 0.414L,

0.0098W L3

E I
at x = a (peak
possible deflection)

12.
R1 = 3

8 p1L

R2 = 5
8 p1L

M2 = 1
8 p1L2

− p1

48E I
(3Lx3

− 2x4 − L3x)

0.0054p1 L4

E I
at x = 0.4215L

13.
R1 = 1

10 pL

R2 = 2
5 pL

M2 = 1
15 pL2

− p

120E I L
×(2L2x3

− L4x − x5)

0.00238pL4

E I

at x = L√
5

14.
R1 = 11

40 pL

R2 = 9
40 pL

M2 = 7
120 pL2

− p

240E I L
×(11L2x3

− 3L4x − 10x4L

+ 2x5)

0.00304L4

E I
at x = 0.402L
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TABLE 11-1 (continued) UNIFORM BEAMS

Moment at Maximum Maximum
Any Point x Moment Important Slope Shear Force

For x < a,

R1x

For x ≥ a,

R1x −W (x − a)

M2 = Wab

2L2
(L + a)

at x = L

θ1 = − W

4E I

(
b3

L
− b2

)
If a > 0.348L ,

R2

at x > a

If a < 0.348L ,

R1

at x < a

−p1L

(
1

2

x2

L
− 3

8
x

)
M = 9

128 p1L2

at x = 3
8 L

M = 1
8 p1L2 = M2

at x = L

θ1 = p1L3

48E I

5
8 p1L

at x = L

− 1
2 pL

(
x3

3L2
− x

5

)
M = 0.03pL2

at x = 0.4474L

+M = M2

at x = L

θ1 = pL3

120E I

2
5 pL

at x = L

− 1
2 pL

(
x2

L
− 11

20
x

− 1

3

x3

L2

)
M = 0.0423pL2

at x = 0.3292L

M = 7
120 pL2 = M2

at x = L

θ1 = pL3

80E I

11
40 pL

at x = 0
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TABLE 11-1 (continued) UNIFORM BEAMS

Deflection at Maximum
Type of Beam Reactions Any Point x Deflection

15.
R1 = 3M∗

2L

L2 − a2

L2

R2 = 3M∗
2L

L2 − a2

L2

M2 = M∗
2

(
1− 3a2

L2

)

For x < a,

−M∗
E I

[
L2 − a2

4L3

(3L2x − x3)

−(L − a)x

]

For x ≥ a,

−M∗
E I

[
L2 − a2

4L3

(3L2x − x3)

−Lx + x2 + a2

2

]

Maximum deflection
occurs at x = x1
and/or x = x2

At

x1 = L

√
3a − L

3(L + a)
,

M∗
6E I

× (a − L)(3a − L)3/2

[3(L + a)]1/2
At

x2 = L
L2 + 3a2

3(L2 − a2)
,

− M∗
27E I

(3a2 − L2)3

(a2 − L2)2

16.
R1 = Wb2

L3
(3a + b)

R2 = Wa2

L3
(3b + a)

M1 = Wab2

L2

M2 = Wa2b

L2

For x < a,

−Wb2x2

6L3 E I
(3ax + bx

−3aL)

For x ≥ a,

−Wa2(L − x)2

6L3 E I
×[(3b + a)(L − x)

−3bL]

If a ≥ b,

2W

3E I

a3b2

(3a + b)2

at x = 2aL

3a + b

If a < b,

2W

3E I

a2b3

(3b + a)2

at x = L2

a + 3b
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TABLE 11-1 (continued) UNIFORM BEAMS

Moment at Maximum
Any Point x Maximum Moment Important Slope Shear Force

For x < a,

−R1x

For x ≥ a,

−R1x + M∗

M = M∗
[

1− 3a(L2 − a2)

2L3

]

at x = a+
+M = M2 at x = L

when a < 0.257L

M = −R1a at x = a−
when a > 0.257L

θ1 = M∗

E I

(
a − L

4

− 3a2

4L

)
3M∗

2L

L2 − a2

L2

For x < a,

−Wab2

L2
+ R1x

For x ≥ a,

−Wab2

L2
+ R1x

−W (x − a)

−M = Wab2

L2
− R1a

at x = a

+M = M1 at x = 0

+M = M2 at x = L

If a > b,
R2

at x > a

If a < b,

R1

at x < a
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TABLE 11-1 (continued) UNIFORM BEAMS

Type of Beam Reactions Deflection at Any Point x

17. R1 = 1
2 p1L

R2 = 1
2 p1L

M1 = 1
12 p1L2

M2 = 1
12 p1L2

− p1x2

24E I
(2Lx − L2 − x2)

18. R1 = 3
20 pL

R2 = 7
20 pL

M1 = 1
30 pL2

M2 = 1
20 pL2

− pL

120E I

×
(

3x3 − 2Lx2 − x5

L2

)

19.
R1 = 6M∗

L3
(aL − a2)

R2 = 6M∗

L3
(aL − a2)

M1 = M∗

L2
× (4La

− 3a2 − L2)

M2 = M∗

L2
× (2La − 3a2)

For x < a,

− 1

6E I
(3M1x2 − R1x3)

For x ≥ a,

− 1

6E I
[(M∗ + M1)× (3x2

− 6Lx + 3L2)

+ R1(3L2x − x3 − 2L3)]
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TABLE 11-1 (continued) UNIFORM BEAMS

Maximum Moment at Maximum
deflection Any Point x Maximum Moment Shear force

p1L4

384E I
at x = 1

2 L

− p1L

2

(
x2

L
+ L

6
− x

)
M = 1

24 p1L2

at x = 1
2 L

+M = 1
12 p1L2

at x = 0, L

1
2 p1L

at x = 0, L

0.001308pL4

E I
at x = 0.525L

− pL

2

(
L

15
+ x3

3L2

− 3

10
x

)
M = 0.0215pL2

at x = 0.548L

+M = 1
20 pL2 = M2

at x = L

7
20 pL

at x = L

If a > 1
3 L ,

peak deflection at

x =
(

1− L

3a

)
L ,

If a < 2
3 L

peak deflection at

x= L

3
×
(

1

+ a

L − a

)

For x < a,

M1 − R1x

For x ≥ a,

M1 − R1x + M∗

M = M∗
(

4a

L
− 9a2

L2
+ 6a3

L3

)

at x = a+

+M = M∗
(

4a

L
− 9a2

L2

+6a3

L3
− 1
)

at x = a−

R1
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TABLE 11-2 PART A: SIMPLE BEAMS WITH ARBITRARY LOADINGS:
GENERAL RESPONSE EXPRESSIONS

+V0

+V

+w+w0 M0

+M- 0

-

x
�

�

Notation

Fw = Fw|x=L Fθ = Fθ |x=L

FV = FV |x=L F M = FM |x=L
L = length of beam
E = modulus of elasticity
I = moment of inertia

Response

1.
Deflection w = w0 − θ0x − V0

x3

3!E I
− M0

x2

2E I
+ Fw

2.
Slope θ = θ0 + V0

x2

2E I
+ M0

x

E I
+ Fθ

3.
Shear force V = V0 + FV

4.
Bending moment M = M0 + V0x + FM
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TABLE 11-2 PART B: SIMPLE BEAMS WITH ARBITRARY LOADINGS: LOADING FUNCTIONSa

FW (x)
W <x − a>3

3!E I

p1

4!E I
(<x − a1>

4 − <x − a2>
4)

p2 − p1

5!E I (a2 − a1)
(<x − a1>

5 − <x − a2>
5)

+ 1

4!E I
(p1 <x − a1>

4 −p2 <x − a2>
4)

C <x − a>2

2E I

1

E I

∫ x
a1

dx
∫ x dx

∫ x dx
∫ x p dx

Fθ (x) −W <x − a>2

2E I
− p1

3!E I
(<x−a1>

3 − <x−a2>
3) − p2 − p1

4!E I (a2 − a1)
(<x − a1>

4 − <x − a2>
4)

− 1

3!E I
(p1 <x − a1>

3 −p2 <x − a2>
3)

−C <x − a>

E I
− 1

E I

∫ x
a1

dx
∫ x dx

∫ x p dx

FV (x) −W <x − a>0 −p1(<x − a1><x − a2>) − p2 − p1

2(a2 − a1)
(<x − a1>

2 − <x − a2>
2)

− p1 <x − a1> +p2 <x − a2>

0 − ∫ x
a1

p dx

FM (x) −W <x − a> − 1
2 p1(<x − a1>

2 − <x − a2>
2) − p2 − p1

3!(a2 − a1)
(<x − a1>

3 − <x − a2>
3)

− 1
2 (p1 <x − a1>

2 −p2 <x − a2>
2)

−C <x−a>0 − ∫ x
a1

dx
∫ x p dx

aBy definition:

<x − a>n

n ≥ 1
=
{

0 if x < a

(x − a)n if x ≥ a
<x − a>0=

{
0 if x < a

1 if x ≥ a
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TABLE 11-2 PART C: SIMPLE BEAMS WITH ARBITRARY LOADING: INITIAL PARAMETERSa

Right End
−→

� Left
End

1.

Pinned, hinged,
or on rollers

2.
Fixed

3.
Free

4.
Guided

5.
Partially fixed

1.

Pinned, hinged, or
on rollers

W0 = 0, M0 = 0

θ0 = 1

L
Fw

+ L

6E I
F M

V0 = − 1

L
F M

θ0 = 3

2L
Fw

+ 1
2 Fθ

V0 = −3E I

L3
Fw

− 3E I

L2
Fθ

Subject to rigid
body motion;
therefore,
kinematically
unstable

θ0 = L2

2E I
FV − Fθ

V0 = −FV

θ0 = A1 Fw − A2L/6E I

A3

V0 =
(k∗2/L2)Fw + A2/L

A3

2.

Fixed

W0 = 0, θ0 = 0

V0 = −3E I

L3
Fw

− 3

2L
F M

M0 = 3E I

L2
Fw

+ 1
2 F M

V0 = −12E I

L3
Fw

− 6E I

L2
Fθ

M0 = 6E I

L2
Fw

+ 2E I

L
Fθ

V0 = −FV

M0 = L FV − F M

V0 = −FV

M0 = − E I

L
Fθ + 1

2 L FV

V0 = −(3E I A5/L3)Fw + 3A2/2L

A4

M0 =
(3E I/L2)A6 Fw − 1

2 A2

A4

3.
Free

V0 = 0, M0 = 0

Subject to rigid
body motion;
therefore,
kinematically
unstable

w0 = −Fw − L Fθ

θ0 = −Fθ

Subject to rigid
body motion;
therefore,
kinematically
unstable

Subject to rigid
body motion;
therefore,
kinematically
unstable

w0 = −Fw − A2
L

k∗2

θ0 = −A2
1

k∗2
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4.

Guided

θ0 = 0, V0 = 0

w0 = −Fw − L2

2E I
F M

M0 = −F M

w0 = −Fw − 1
2 L Fθ

M0 = −
E I

L
Fθ

Subject to rigid
body motion;
therefore,
kinematically
unstable

Subject to rigid
body motion;
therefore,
kinematically
unstable

w0 =
−A6 Fw + (L2/2E I )A2

A6

M0 = A2/A6

5.
Partially fixed

W0 = 0, M0 = k∗1 θ0

θ0 =
(1/L)Fw + (L/6E I )F M

A7

V0 =
(k∗1/L2)Fw + A8 F M

A7

θ0 =
(3/2L)Fw + 1

2 Fθ
A9

V0 =
−(A11 Fw + (3E I/L)A8 Fθ )

A9

θ0 =
1

k∗1
×(F M − L F V )

V0 = −FV

θ0 =
−Fθ + (L2/2E I )FV

A10

V0 = −FV

θ0 =
(A5/L)Fw − L A2/6E I

A13

V0 = A12 Fw + A2 A8
A13

aAlthough the response due to static loading cannot be determined for a kinematically unstable beam, the natural frequencies and buckling load can be calculated.
Note: Fw = Fw|x=L , Fθ = Fθ |x=L , FV = FV |x=L , F M = FM |x=L

A1 = 1

L
− k∗2

2E I
A4 = 1− k∗2 L

4E I
A7 = 1+ k∗1 L

3E I
A10 = 1+ k∗1 L

E I
A12 =

k∗2 − k∗1
L2

+ k∗1 k∗2
E I L

A2 = k∗2 Fθ − F M A5 = 1− k∗2 L

2E I
A8 = 1

L
+ k∗1

2E I
A11 = 3E I

L3
+ 3k∗1

L2
A13 = 1+ 1

3

k∗1 L

E I
− 1

3

k∗2 L

E I
− k∗1 k∗2 L2

12(E I )2

A3 = 1− k∗2 L

3E I
A6 = 1− k∗2 L

E I
A9 = 1+ k∗1 L

4E I
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TABLE 11-3 PART A: BEAMS WITH AXIAL FORCES AND ELASTIC
FOUNDATIONS: GENERAL RESPONSE EXPRESSIONS

Notation
E = modulus of elasticity
P = axial force

As = equivalent shear area,= A/αs
x is measured from the left end

I = moment of inertia
αs = shear correction factor
k = elastic foundation modulus
L = length of beam

Set
1

G As
= 0 for beams without shear deformation effects.

Response

1.
Deflection

w = w0(e1 + ζe3)− θ0e2 − V0

(
e4

E I
− e2 + ζe4

G As

)
− M0

e3

E I
+ Fw

2.
Slope

θ = w0λe4 + θ0(e1 − ηe3)+ V0
e3

E I
+ M0

e2 − ηe4

E I
+ Fθ

3.
Shear force

V = w0λE I (e2 + ζe4)− θ0λE I e3 + V0(e1 + ζe3)− M0λe4 + FV

4.
Bending moment

M = w0λE I e3 + θ0 E I (e0 − ηe2)+ V0e2 + M0(e1 − ηe3)+ FM
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TABLE 11-3 (continued) PART A: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: GENERAL RESPONSE EXPRESSIONS

Values of ei

Beam on Elastic Foundation, k, with Shear Deformation Effectsa

λ = k/E I , ζ = 0, η = kαs/G A = k/G AsOrdinary Beam
with or without

Shear Deformation
Beam with Compressive

Axial Force P
Beam with Tensile

Axial Force P λ ≥ 1
4η

2 λ < 1
4η

2

ζ = λ = η = 0 λ = 0, η = 0, λ = 0, η = 0, a2 = 1
2

√
λ+ 1

4η b2 = 1
2

√
λ− 1

4η a2 = 1
2η +

√
1
4η

2 − λ
α2 = P/E I = ζ α2 = P/E I, ζ = α2 b2 = 1

2η −
√

1
4η

2 − λ g = a2 − b2

e0 = 0 e0 = −α sinαx e0 = α sinhαx e0 = −λe4 + ηe2 e0 = − 1

g
(b3 sinh bx − a3 sinh ax)

e1 = 1 e1 = cosαx e1 = coshαx e1 = cosh ax cos bx e1 = − 1

g
(b2 cosh bx − a2 cosh ax)

+ η

4ab
sinh ax sin bx

e2 = x e2 = 1

α
sinαx e2 = 1

α
sinhαx e2 = 1

2ab
× (a cosh ax sin bx e2 = − 1

g
(b sinh bx − a sinh ax)

+ b sinh ax cos bx)

e3 = 1
2 x2 e3 = 1

α2
(1− cosαx) e3 = 1

α2
(cosh αx − 1) e3 = 1

2ab
sinh ax sin bx e3 = 1

g
(cosh ax − cosh bx)

e4 = 1
6 x3 e4 = 1

α3
(αx − sinαx) e4 = 1

α3
(sinhαx−αx) e4 = 1

2(a2 + b2)

( 1

b
cosh ax sin bx e4 = 1

g

(
1

a
sinh ax − 1

b
sinh bx

)

− 1

a
sinh ax cos bx

)

e5 = 1
24 x4 e5 = 1

α4

(α2x2

2
e5 = 1

α4

(
− α

2x2

2
e5 = 1

λ
(1− e1 + ηe3) e5 = − 1

g

( 1

b2
cosh bx

+ cosαx − 1
)

+ coshαx − 1
)

− 1

a2
cosh ax

)
+ 1

λ

e6 = 1
120 x5 e6 = 1

α5

(α3x3

6
e6 = 1

α5

(
− α

3x3

6
e6 = 1

λ
(x − e2 + ηe4) e6 = − 1

g

( 1

b3
sinh bx

+ sinαx − αx
)

+ sinhαx − αx
)

− 1

a3
sinh ax

)
+ x

λ

aNote: If λ = 1
4η

2, set (sin bx)/b = x .
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TABLE 11-3 PART B: BEAMS WITH AXIAL FORCES AND ELASTIC
FOUNDATIONS: LOADING FUNCTIONS
By definition: Also, if ei = 1, then

ei <x − a>=
{

0 if x < a
ei (x − a) if x ≥ a

ei <x − a>=<x − a>0=
{

0 if x < a
1 if x ≥ a

Fw(x) W

(
e4 <x − a>

E I

− e2 <x − a> +ζe4 <x − a>

G As

) p1

(
e5 <x − a1> −e5 <x − a2>

E I

− e3 <x − a1> +ζe5 <x − a1> −e3 <x − a2> −ζe5 <x − a2>

G As

)

Fθ (x) −W
e3 <x − a>

E I
−p1

e4 <x − a1> −e4 <x − a2>

E I

FV (x) −W (e1 <x − a>
+ζe3 <x − a>)

−p1[(e2 <x − a1> −e2 <x − a2>)
−ζ(e4 <x − a1> −e4 <x − a2>)]

FM(x) −We2 <x − a> −p1(e3 <x − a1> −e3 <x − a2>)
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TABLE 11-3 (continued) PART B: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS:
LOADING FUNCTIONS

For example:

if ei = cosαx , then ei <x − a>= cosα <x − a>=
{

0 if x < a
cosα(x − a) if x ≥ a

p2 − p1

a2 − a1

[ e6 <x − a1> −e6 <x − a2>

E I

− e4 <x − a1> +ζe6 <x − a1> −e4 <x − a2> −ζe6 <x − a2>

G As

]

+ 1

E I
(p1e5 <x − a1> −p2e5 <x − a2>)

− 1

G As
[p1(e3 <x − a1> +ζe5 <x − a1>)

−p2(e3 <x − a2> +ζe5 <x − a2>)]

C
e3 <x − a>

E I

− p2 − p1

a2 − a1

e5 <x − a1> −e5 <x − a2>

E I

+ 1

E I
(p2e4 <x − a2> −p1e4 <x − a1>)

−C
e2 <x − a> −ηe4 <x − a>

E I

− p2 − p1

a2 − a1
(e3 <x − a1> +ζe5 <x − a1> −e3 <x − a2>

−ζe5 <x − a2>)+ p2(e2 <x − a2> +ζe4 <x − a2>)

−p1(e2 <x − a1> −ζe4 <x − a1> +2ζe4 <x − a2>)

Cλe4 <x − a>

− p2 − p1

a2 − a1
(e4 <x − a1> −e4 <x − a2>)

+p2e3 <x − a2> −p1e3 <x − a1>

− C(e1 <x − a> −ηe3
<x − a>)
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TABLE 11-3 PART C: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: INITIAL PARAMETERS
Fw = Fw|x=L

Fθ = Fθ |x=L

F V = FV |x=L

F M = FM|x=L

e1 = ei |x=L

i = 0, 1, . . . , 5
A1 = E I (e0 − ηe2)+ k∗1(e1 − ηe3)

A2 = e2 + k∗1e3/E I

A3 = e1 − ηe3 + k∗1(e2 − ηe4)/E I

A4 = E I e3 + k∗1e4

A5 = k∗2e3 − E I e2

A6 = E I (e0 − ηe2)− k∗2(e1 − ηe3)

A7 = k∗2(e2 − ηe4)− E I (e1 − ηe3)

A8 = E I e3 − k∗2e4

A9 = k∗2 Fθ − F M

e1 = ei |x=L

i = 0, 1, . . . , 5

Right End
−→

� Left
End

1.
Pinned, hinged, or on rollers

2.
Fixed or infinite to the right

Fixed

Infinite to the right

All loading, changes
in cross-sectional
properties, etc., must
be placed between
x = 0 and x = L

1.
Pinned, hinged,
or on rollers

θ0 = {−e2 Fw − [e4/E I − (e2 + ζe4)/G As ]F M }/∇
V0 = (E Ie0 Fw + e2 F M )/∇
∇ = e0[e4/E I − (e2 + ζe4)/G As ] − e2

2

θ0 = {−Fwe3/E I − Fθ [e4/E I − (e2 + ζe4)/G As ]}/∇
V0 = [e2 Fθ + (e1 − ηe3)Fw]/∇
∇ = (e1 − ηe3)[e4/E I − (e2 + ζe4)/G As ] − e2e3/E I

2.
Fixed

V0 = [F M e3/E I − Fw(e1 − ηe3)]/∇
M0 = {Fwe2 + F M [e4/E I + (e2 + ζe4)/G As ]}/∇
∇ = e2e3/E I − [e4/E I

− (e2 + ζe4)/G As ](e1 − ηe3)

V0 = [e3 Fθ − (e2 − ηe4)Fw]/∇
M0 = {e3 Fw − [e4/E I − (e2 + ζe4)/G As ]Fθ E I }/∇
∇ = e2

3 − (e2 − ηe4)[e4/E I − (e2 + ζe4)/G As ]

564
TA

B
L

E
11-3

P
art

C
:

In
itialP

aram
eters



3.
Free or infinite
to the left

Free:

M0 = 0,
V0 = 0

Infinite to the left

All loadings, changes in
cross-sectional properties,
etc., must be placed
between x = 0 and x = L

w0 = [F M e2/E I − (e0 − ηe2)Fw]/∇
θ0 = [λe3 Fw − (e1 + ζe3)F M/E I ]/∇
∇ = (e1 + ζe3)(e0 − ηe2)+ λe2e3

w0 = −[(e1 − ηe3)Fw + e2 Fθ ]/∇
θ0 = [λe4 Fw − (e1 + ζe3)Fθ ]/∇
∇ = λe2e4 + (e1 + ζe3)(e1 − ηe3)

4.
Guided

θ0 = 0, V0 = 0

w0 = [−(e1 − ηe3)Fw − (e3/E I )F M ]/∇
M0 = [λE I e3 Fw − (e1 + ζe3)F M ]/∇
∇ = (e1 − ηe3)(e1 + ζe3)+ λe2

3

w0 = [−(e2 − ηe4)Fw − e3 Fθ ]/∇
M0 = [λE I e4 Fw − E I (e1 + ζe3)Fθ ]/∇
∇ = (e2 − ηe4)(e1 + ζe3)+ λe3e4

5.
Partially fixed

w0 = 0, M0 = k∗1θ0

θ0 = {−e2 Fw − F M [e4 − (e2 + ζe4)/G As ]/E I }/∇
V0 = (A1 Fw + A2 F M )/∇
∇ = A1[e4 − (e2 + ζe4)/G As ]/E I − A2e2

θ0 = {−(e3/E I )Fw
− Fθ [e4 − (e2 + ζe4)/G As]/E I }/∇

V0 = (A3 Fw + A2 Fθ )/∇
∇ = A3[e4 − (e2 + ζe4)/G As]/E I

− A2e3/E I
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TABLE 11-3 (continued) PART C: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: INITIAL PARAMETERS

Right End
−→� Left

End

3.
Free

1.
Pinned, hinged, or on rollers

θ0 = {−[(e1 + ζe3)/E I ]F M + (e2/E I )FV }/∇
V0 = [−λe3 F M − (e0 − ηe2)F V ]/∇
∇ = (e0 − ηe2)(e1 + ζe3)+ λe2e3

2.
Fixed

V0 = [−λe4 F M − (e1 − ηe3)FV ]/∇
M0 = [−(e1 + ζe3)F M + e2 F V ]/∇
∇ = (e1 − ηe3)(e1 + ζe3)+ λe2e4
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3.
Free or infinite
to the left

Free:

M0 = 0, V0 = 0

Infinite to the left

All loadings, changes in cross-
sectional properties, etc., must be
placed between x = 0 and x = L

w0 = [F Me3/E I + F V (e0 − ηe2)/(λE I )]/∇
θ0 = {[(e2 + ζe4)/E I ]F M + (e3/E I )FV }/∇
∇ = −λe2

3 − (e0 − ηe2)(e2 + ζe4)

4.
Guided

θ0 = 0, V0 = 0

w0 = {(e4/E I )F M − [(e1 − ηe3)/(λE I )]FV }/∇
M0 = [(e2 + ζe4)F M − e3 F V ]/∇
∇ = −λe4e3 − (e1 − ηe3)(e2 + ζe4)

5.
Partially fixed

w0 = 0,M0 = k∗1θ0

θ0 = [−(e1 + ζe3)F M + e2 FV ]/∇
V0 = [−λA4 F M − (k∗1e1 + E I e0)FV ]/∇
∇ = (k∗1e1 + E I e0)(e1 + ζe3)+ λA4e2
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TABLE 11-3 (continued) PART C: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: INITIAL PARAMETERS

Right End
−→� Left

End

4.
Guided

1.
Pinned, hinged, or on rollers

θ0 = [−(e1 + ζe3)Fθ + (e3/E I )FV ]/∇
V0 = [−λE I e3 Fθ − (e1 − ηe3)FV ]/∇
∇ = (e1 − ηe3)(e1 + ζe3)+ λe2

3

2.
Fixed

V0 = [−λE I e4 Fθ − (e2 − ηe4)FV ]/∇
M0 = [−(e1 + ζe3)E I Fθ + e3 F V ]/∇
∇ = (e2 − ηe4)(e1 + ζe3)+ λe4e3
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3.
Free or infinite
to the left

Free:

Infinite to the left

All loadings, changes in cross-
sectional properties, etc., must be
placed between x = 0 and x = L

w0 = {e3 Fθ + [(e1 − ηe3)/(λE I )]FV }/∇
θ0 = [(e2 + ζe4)Fθ − (e4/E I )FV ]/∇
∇ = −λe3e4 − (e1 − ηe3)(e2 + ζe4)

4.
Guided

w0 = {e2 Fθ + [(e2 − ηe4)/(λE I )]FV }/∇
M0 = [E I (e2 + ζe4)Fθ − e4 FV ]/∇
∇ = −λe2

4 − (e2 − ηe4)(e2 + ζe4)

5.
Partially fixed

θ0 = [−(e1 + ζe3)Fθ + (e3/E I )FV ]/∇
V0 = (−λA4 Fθ − A3 FV )/∇
∇ = A3(e1 + ζe3)+ λA4e3/E I
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TABLE 11-3 (continued) PART C: BEAMS WITH AXIAL FORCES AND ELASTIC FOUNDATIONS: INITIAL PARAMETERS

Right End
−→� Left

End

5.
Partially fixed

1.
Pinned, hinged, or on rollers

θ0 = {A5 Fw + A9[e4 − (e2 + ζe4)E I/G As]}/∇
V0 = {E I A6 Fw + E I A9[e2 + (e2 + ζe4)E I/G As]}/∇
∇ = A5e2 + A6[e4 − (e2 + ζe4)E I/G As]

2.
Fixed

V0 = (−E I A7 Fw − E I A9e3)/∇
M0 = (E I A5 Fw + E I A9e4)/∇
∇ = A5e3 − A7[e4 − (e2 + ζe4)E I/G As]
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3.
Free or infinite
to the left

Free:

Infinite to the
left

All loadings, changes in
cross-sectional properties,
etc., must be placed between
x = 0 and x = L

w0 = (−A6 Fw + A9e2)/∇
θ0 = [λA8 Fw − A9(e1 + ζe3)]/∇
∇ = A6(e1 + ζe3)+ A8e2

4.
Guided

w0 = (A7 Fw + A9e3)/∇
M0 = [λE I A8 Fw + E I A9(e1 + ζe3)]/∇
∇ = λA8e3 − A7(e1 + ζe3)

5.
Partially fixed

θ0 = {A5 Fw + A9[e4 − (e1 + ζe4)E I/G As]}/∇
V0 = [E I (A1 − k∗2 A3)Fw − E I A2 A9]/∇
∇ = A2 A5 + (A1 − k∗2 A3)[e4 − (e1 + ζe4)E I/G As]

TA
B

L
E

11-3
P

art
C

:
In

itialP
aram

eters
571



TABLE 11-4 COLLAPSE LOADS FOR BEAMS
Notation

Mp = full plastic bending moment, where Z p (plastic section modulus)
is taken from Table 2-2 and σys is the yield stress of material, = σys Z p

Wc,Cc, pc = collapse loads
ahi = location of i th plastic hinge
ε = short length along axis of beam
L = length of beam

Boundary Conditions
and Loading Collapse Loads Plastic Hinge Locations

1.
Fixed–fixed Wc = 2Mp L

a(L − a)
ah1 = 0, ah2 = a, ah3 = L

2.
Simply supported–
simply supported

Wc = Mp L

a(L − a)
ah1 = a
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3.
Simply supported–fixed Wc = Mp(L + a)

a(L − a)
ah1 = a, ah2 = L

4.
Free–fixed Wc = Mp

L − a
ah1 = L

5.
Guided–fixed Wc = 2Mp

L − a
0 ≤ ah1 ≤ a, ah2 = L
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TABLE 11-4 (continued) COLLAPSE LOADS FOR BEAMS

Boundary Conditions
and Loading Collapse Loads Plastic Hinge Locations

6.
Guided–simply
supported

Wc = Mp

L − a
0 ≤ ah1 ≤ a

7.
Fixed–fixed

Cc = 2Mp ah1 = a − ε, ah2 = a + ε
For 0 < a < 1

2 L, ah3 = L

For 1
2 L < a < L, ah3 = 0

For a = 1
2 L, 0 < ah1 , ah2 <

1
2 L

1
2 L < ah3 < L

8.
Simply supported–
simply supported

For

0 ≤ a ≤ 1
2 L, Cc = Mp L

L − a

1
2 L ≤ a ≤ L, Cc = Mp L

a
a = 1

2 L, Cc = 2Mp

For

0 ≤ a ≤ 1
2 L, ah1 = a + ε

1
2 L ≤ a ≤ L, ah1 = a − ε
a = 1

2 L, ah1 = a + ε, ah2 = a − ε
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9.
Simply supported–fixed

For 1
3 L ≤ a ≤ L,

Cc = 2Mp

For 0 ≤ a ≤ 1
3 L,

Cc = Mp(L + a)

L − a

For 1
3 L ≤ a ≤ L, ah1 = a − ε

ah2 = a + ε
For 0 ≤ a ≤ 1

3 L, ah1 = a + ε
ah2 = L

10.
Free–fixed

Cc = Mp a < ah1 < L

11.
Guided–fixed

Cc = 2Mp 0 ≤ ah1 ≤ a, a ≤ ah2 ≤ L
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TABLE 11-4 (continued) COLLAPSE LOADS FOR BEAMS

Boundary Conditions
and Loading Collapse Loads Plastic Hinge Locations

12.
Guided–simply
supported

Cc = Mp 0 ≤ ah1 ≤ a

13.
Fixed–fixed pc = 16Mp L2

a4
1 + a4

2 − 4a2
1 L2 + 4a2

1a2L − 2a2
1a2

2 + 4a2
2 L2 − 4a3

2 L
ah1 = 0, ah2 =

a2
1 + 2a2L − a2

2

2L
ah3 = L

14.
Simply supported–
simply supported

pc = 8Mp L2

a4
1 + a4

2 + 4a2
2 L2 − 4a2

1 L2 + 4a2
1a2L − 2a2

1a2
2 − 4a3

2 L
ah1 =

a2
1 + 2a2L − a2

2

2L
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15. Simply
supported–fixed pc = 2Mp(L + ah1)

La2
h1
− a2

1(L − ah1)+ 2Lah1(a2 − ah1)− a2
2ah1

ah1 =
[
(L2 − a2

2)+ 2(a2L + a2
1)
]1/2 − L

ah2 = L

16. Free–fixed
pc = 2Mp

a2
1 + 2La2 − 2La1 − a2

2

ah1 = L

17. Guided–fixed
pc = 4Mp

a2
1 − 2a1L + 2a2 L − a2

2

ah1 = a1, ah2 = L

18. Guided–simply
supported pc = 2Mp

(a2 − a1)(2L − a2 − a1)
0 ≤ ah1 ≤ a1
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TABLE 11-5 ELASTIC BUCKLING LOADS AND MODE SHAPES FOR
AXIALLY LOADED COLUMNS WITH IDEAL END CONDITIONS

Notation
E = modulus of elasticity
I = moment of inertia
L = length of column

Pcr = buckling load

End Conditions Pcr Buckling Mode Shape

1.
Free–free

π2 E I

L2
sin

πx

L
2.
Free–guided

π2 E I

4L2
sin

πx

2L
3.
Clamped–free

π2 E I

4L2
1− cos

πx

2L
4.
Free–pinned

π2 E I

L2
sin

πx

L
5.
Pinned–pinned

π2 E I

L2
sin

πx

L
6.
Clamped–pinned

2.05π2 E I

L2

E I

k3

[
sin kx − kL cos kx + kL

(
1− x

L

)]
where k = 1.4318

π

L
7.
Clamped–clamped

4π2 E I

L2
1− cos

2πx

L
8.
Clamped–guided

π2 E I

L2
1− cos

πx

L
9.
Guided–pinned

π2 E I

4L2
cos

πx

2L
10.
Guided–guided

π2 E I

L2
cos

πx

L
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TABLE 11-6 ELASTIC BUCKLING LOADS FOR AN AXIALLY LOADED
COLUMN WITH ELASTICALLY RESTRAINED END CONDITIONS
End Conditions Critical Load

1.
Upper end is elastically
restrained, lower end is fixed.

Spring constants are

k = VL

wL
k1 = ML

θL

Pcr = m2 E I

L2

Find m by solving

c(m − sin m)− m3

c(1− cos m)
= m sin m + c1(1− cos m)

m cos m + c1 sin m

where c = kL3

E I
c1 = k1L

E I

TABLE 11-6 Elastic Buckling Loads 579



TABLE 11-6 (continued) ELASTIC BUCKLING LOADS FOR AN AXIALLY LOADED COLUMN
WITH ELASTICALLY RESTRAINED END CONDITIONS

End Conditions Critical Load

2.
Both ends restrained

For the upper end:
kL = VL/wL

k1 = ML/θL

For the lower end:
k0 = V0/w0

k2 = M0/θ0

Pcr = m2 E I

L2

Find m by solving

m − sin m + m3(1+ α)/cL

1− cos m + βm2/c1 − βm4(1+ α)/(c1cL)

= (m/c1) sin m + 1− cos m

(m/c1)(β + cos m)+ sin m

where

cL = kL L3

E I

c1 = k1L

E I

kL

k0
= α k1

k2
= β
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TABLE 11-7 ELASTIC BUCKLING LOAD FOR
COLUMNS WITH IN-SPAN AXIAL LOADS

Notation

(P + px L)cr = η E I

L2

px = uniformly distributed axial
load (F/L)

End Condition η

1.
Pinned–pinned

16.7px L

px L + 1.36P
+ 9.87

2.
Pinned–fixed

40.6(px L)1.35

(px L)1.35 + 2.6P1.35
+ 19.74

3.
Fixed–pinned

24.5(px L)1.35

(px L)1.35 + 1.68P1.35
+ 19.74

TABLE 11-7 Elastic Buckling Load for Columns 581



TABLE 11-7 (continued) ELASTIC BUCKLING LOAD FOR
COLUMNS WITH IN-SPAN AXIAL LOADS

End Condition η

4.
Fixed–fixed

46.1(px L)1.35

(px L)1.35 + 2.4P1.35
+ 39.48

5.
Free–fixed

5.38(px L)1.35

(px L)1.35 + 2.7P1.35
+ 2.47

582 TABLE 11-7 Elastic Buckling Load for Columns



TABLE 11-8 BUCKLING LOADS FOR COLUMNS WITH IN-SPAN SUPPORTS
Notation

Pcr = η E I

L2

End Conditions Restrictions η = C1 + C2
b

L
+ C3

(
b

L

)2

1.
Free–pinned

0 ≤ b

L
≤ 0.5

0.5 <
b

L
≤ 1

C1 = 2.4825 C2 = 2.6372 C3 = 6.4821

C1 = −4.7167 C2 = 25.432 C3 = −10.7286

2.
Guided–pinned

0 ≤ b

L
≤ 0.6

0.7 ≤ b

L
≤ 1.0

C1 = 9.68072 C2 = 17.11428 C3 = 6.21428

C1 = 33.50997 C2 = −22.84993 C3 = 9.4996
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TABLE 11-8 (continued) BUCKLING LOADS FOR COLUMNS WITH IN-SPAN SUPPORTS

End Conditions Restrictions η = C1 + C2
b

L
+ C3

(
b

L

)2

3.
Pinned–pinned

0 ≤ b

L
≤ 0.4

0.5 ≤ b

L
≤ 1.0

C1 = 20.15514 C2 = 27.79714 C3 = 34.85716

C1 = 63.08144 C2 = −48.77858 C3 = 5.50000

4.
Clamped–pinned

0 ≤ b

L
≤ 0.3

0.4 ≤ b

L
≤ 1.0

C1 = 39.44701 C2 = 56.31997 C3 = 29.00003

C1 = 109.70282 C2 = −149.23325 C3 = 59.52375
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5.
Free–clamped

0 ≤ b

L
≤ 0.6

0.7 ≤ b

L
≤ 1.0

C1 = 2.55579 C2 = 1.31893 C3 = 12.62499

C1 = −17.17765 C2 = 43.67535 C3 = −6.25020

6.
Guided–clamped

0 ≤ b

L
≤ 0.6

0.7 ≤ b

L
≤ 1.0

C1 = 10.01666 C2 = 9.72857 C3 = 38.47618

C1 = −31.24563 C2 = 151.40530 C3 = −80.75015

7.
Pinned–clamped

0 ≤ b

L
≤ 0.6

0.7 ≤ b

L
≤ 1.0

C1 = 19.99333 C2 = 30.18574 C3 = 59.52375

C1 = 124.76723 C2 = −114.32053 C3 = 29.00031
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TABLE 11-8 (continued) BUCKLING LOADS FOR COLUMNS WITH IN-SPAN SUPPORTS

8.
Clamped–clamped

0 ≤ b

L
≤ 0.4

0.5 ≤ b

L
≤ 1.0

C1 = 39.38744 C2 = 61.88135 C3 = 70.07159

C1 = 128.82428 C2 = −96.99966 C3 = 6.80359
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TABLE 11-9 BUCKLING LOADS FOR TAPERED COLUMNS
Notation

Pcr = η E I

L2

I0, Ix , I = moments of inertia (L4)
x = coordinate from virtual vertex (L)
a = length of taper, beginning at virtual vertex

1
2 (L − �) = length of taper

Boundary Conditions Taper Restrictions η = C1 + C2(I0/I )+ C3(I0/I )2

1.
Simply supported–
simply supported

Ix = I (x/a) 0.1 ≤ I0/I ≤ 0.8
0.0 ≤ a/L ≤ 0.8

C1 = 5.930731+ 7.494147(a/L)− 3.20702(a/L)2

C2 = 5.376184− 7.29300(a/L)+ 0.62360(a/L)2

C3 = −1.50574− 0.39881(a/L)+ 2.93134(a/L)2

2.
Fixed–fixed

Ix = I (x/a) 0.2 ≤ I0/I ≤ 0.8
0.0 ≤ a/L ≤ 0.8

C1 = 14.26143+ 3.89573(a/L)+ 10.14281(a/L)2

C2 = 33.71884+ 4.71145(a/L)− 16.21420(a/L)2

C3 = −9.02855− 9.71431(a/L)+ 7.14275(a/L)2

3.
Simply supported–
simply supported

Ix = I (x/a)2 0.1 ≤ I0/I ≤ 0.8
0.0 ≤ a/L ≤ 0.8

C1 = 4.48594+ 9.27104(a/L)− 3.17469(a/L)2

C2 = 9.54820− 12.13186(a/L)+ 0.15266(a/L)2

C3 = −4.59559+ 2.96185(a/L)+ 3.60045(a/L)2
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TABLE 11-9 (continued) BUCKLING LOADS FOR TAPERED COLUMNS

Boundary Conditions Taper Restrictions η = C1 + C2(I0/I )+ C3(I0/I )2

4.
Fixed–fixed

Ix = I (x/a)2 0.2 ≤ I0/I ≤ 0.8
0.0 ≤ a/L ≤ 0.8

C1 = 11.71678+ 10.39221(a/L)+ 1.99100(a/L)2

C2 = 40.10596− 15.17206(a/L)+ 9.39316(a/L)2

C3 = −13.13751+ 5.31273(a/L)− 12.50024(a/L)2

5.
Simply supported–
simply supported

Ix = I (x/a)3 0.1 ≤ I0/I ≤ 0.8
0.0 ≤ a/L ≤ 0.8

C1 = 3.95433+ 9.71412(a/L)− 2.91616(a/L)2

C2 = 11.17553− 13.09159(a/L)− 1.11514(a/L)2

C3 = −5.78722+ 3.53687(a/L)+ 4.64377(a/L)2

6.
Fixed–fixed

Ix = I (x/a)3 0.2 ≤ I0/I ≤ 0.8

0.0 ≤ a/L ≤ 0.8

C1 = 10.88200+ 12.03998(a/L)+ 0.00004(a/L)2

C2 = 42.20943− 19.96425(a/L)+ 15.39278(a/L)2

C3 = −14.5500+ 9.39996(a/L)− 17.49989(a/L)2

7.
Simply supported–
simply supported

Ix = I (x/a)4 0.1 ≤ I0/I ≤ 0.8
0.0 ≤ a/L ≤ 0.8

C1 = 3.68757+ 9.69379(a/L)− 2.45495(a/L)2

C2 = 11.90928− 12.34295(a/L)− 3.26411(a/L)2

C3 = −6.30219+ 2.60257(a/L)+ 6.67416(a/L)2

8.
Fixed–fixed

Ix = I (x/a)4 0.2 ≤ I0/I ≤ 0.8
0.0 ≤ a/L ≤ 0.8

C1 = 10.45043+ 12.80821(a/L)− 0.85714(a/L)2

C2 = 43.28855− 21.81049(a/L)+ 17.41934(a/L)2

C3 = −15.17141+ 9.83910(a/L)− 18.08010(a/L)2
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TABLE 11-10 FORMULAS FOR MAXIMUM STRESS IN IMPERFECT
COLUMNS

Notation
A = area

C =
{

1 for simply supported ends
4 for fixed ends

c = distance between outermost fiber and neutral axis
E = modulus of elasticity
e = eccentricity

KL = effective length of column

L = length of column
P = maximum axial force
r = least radius of gyration
α = constant
λ = eccentricity ratio

σys = yield stress
σ = ultimate stress

Formula Explanation

1.
Secant formula:

σ = σys

1+ λ sec

(
KL
2r

√
P

AE

)

with

λ = ec/r2

This formula allows direct calculation of maximum stress
for an eccentrically loaded column. The eccentricity fac-
tor λ is determined by conforming the equation to the ex-
perimental data.

2.
Rankine formula:
P

A
= σ

1+ ϕ ( L
r

)2

The factor ϕ can be calculated from ϕ = σ/Cπ2E . But
more often σ and ϕ are adjusted empirically to make P/A
agree with the test data in the range of most L/r values.

3.
Simple polynomial formula:
P

A
= σ − α

(
L

r

)n

This is an empirical equation. For most steels, n = 2,
and for cast irons and many aluminum alloys, n = 1. The
factor α is determined experimentally. When n = 2, σ is
the yield stress and α makes the parabola that the equation
defines as intersecting tangent to the Euler curve for a long
column. When n = 1, σ is the maximum stress at failure
and α is determined experimentally to make the straight
line that the equation defines as tangent to the Euler curve.

4.
Exponential formula:

β ≤1.5: P

A
= 0.658β2σys

β>1.5: P

A
= 0.877β−2σys

with

β = K L

rπ

(σys

E

)1/2

This formula was suggested by the American Institute
of Steel Construction and uses terms from the secant
formula.

TABLE 11-10 Formulas for Maximum Stress in Imperfect Columns 589



TABLE 11-11 FORMULAS FOR KERNS OF SHORT COLUMNS
LOADED ECCENTRICALLY

Notation
y1, z1, r, rmin = dimensions of kerns, shown in the shaded areas

kern = area in which compressive axial force is applied to produce
no tensile stress on cross section

Kern (Shaded) of Cross Section Expressions for y1, z1, r , rmin

1.
Solid square

y1 = z1 = 1
6 h

y2 = z2 = 1
3 h

rmin = 0.0589h

2.
Solid rectangle

2rmin
z1

z2y1

y2
z

y
h

b

y1 = 1
6 b z1 = 1

6 h

y2 = 1
3 b z2 = 1

3 h

rmin = bh

6
√

b2 + h2

3.
Solid isosceles triangle

y1 = 1
8 b z1 = 1

12 h

y2 = 1
6 h

590 TABLE 11-11 Formulas for Kerns of Short Columns



TABLE 11-11 (continued) FORMULAS FOR KERNS OF SHORT COLUMNS LOADED
ECCENTRICALLY

Kern (Shaded) of Cross Section Expressions for y1, z1, r , rmin

4.
Hollow rectangle

2rmin
z1

h1

y1

b1

z

y
h

b

y1 = 1

6

hb3 − h1b3
1

b(bh − b1h1)

z1 = 1

6

bh3 − b1h3
1

h(bh − b1h1)

when h = b, h1 = b1

rmin = 0.0589h

[
1+

(
h1

h

)2
]

5.
Solid octagon

rmin = 0.2256R

If the octagon is hollow,

rmin = 0.2256R

[
1+

(
R1

R

)2
]

R1 is the inside radius

6.
Solid circle

r = 1
8 d

TABLE 11-11 Formulas for Kerns of Short Columns 591



TABLE 11-11 (continued) FORMULAS FOR KERNS OF SHORT COLUMNS LOADED
ECCENTRICALLY

Kern (Shaded) of Cross Section Expressions for y1, z1, r , rmin

7.
Hollow circle r = 1

8λdo

[
1+

(
d

do

)2
]

8.
Thin-walled circle

r = 1
4 d
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TABLE 11-12 NATURAL FREQUENCIES AND MODE SHAPES FOR UNIFORM BEAMS
Notation

E = modulus of elasticity
I = moment of inertia

ρ = mass per unit length
L = length of the beam

Natural frequency: ωi (rad/s) = λ2
i

L2

(
E I

ρ

)1/2

fi (Hz) = λ2
i

2πL2

(
E I

ρ

)1/2

Boundary Conditions λi , i = 1, 2, 3, . . . Mode Shapes βi , i = 1, 2, 3, . . .

1.
Pinned–pinned

iπ sin
iπx

L

2.
Fixed–pinned

3.92660231
7.06858275

10.21017612
13.35176878
16.49336143
(4i + 1)π/4, i > 5

cosh
λi x

L
− cos

λi x

L
− βi

(
sinh

λi x

L
− sin

λi x

L

)
cosh λi − cos λi

sinhλi − sin λi

3.
Fixed–fixed

4.73004074
7.85320462

10.99560790
14.13716550
17.27875970
(2i + 1)π/2, i > 5

cosh
λi x

L
− cos

λi x

L
− βi

(
sinh

λi x

L
− sin

λi x

L

)
cosh λi − cos λi

sinhλi − sin λi
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TABLE 11-12 (continued) NATURAL FREQUENCIES AND MODE SHAPES FOR UNIFORM BEAMS

Boundary Conditions λi , i = 1, 2, 3, . . . Mode Shapes βi , i = 1, 2, 3, . . .

4.
Free–free

4.73004074
7.85320462

10.99560780
14.13716550
17.27875970
(2i + 1)π/2, i > 5

cosh
λi x

L
+ cos

λi x

L
− βi

(
sinh

λi x

L
+ sin

λi x

L

)
cosh λi − cosλi

sinh λi − sinλi

5.
Free–guided

2.36502037
5.49780392
8.63937983

11.78097245
14.92256510
(4i − 1)π/4, i > 5

cosh
λi x

L
+ cos

λi x

L
− βi

(
sinh

λi x

L
+ sin

λi x

L

)
sinh λi − sinλi

cosh λi + cosλi

6.
Fixed–free

1.87510407
4.69409113
7.85475744

10.99554073
14.13716839
(2i − 1)π/2, i > 5

cosh
λi x

L
− cos

λi x

L
− βi

(
sinh

λi x

L
− sin

λi x

L

)
Same as free–guided
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7.
Free–pinned

3.92660231
7.06858275

10.21017612
13.35176878
16.49336143
(4i + 1)π/4, i > 5

cosh
λi x

L
+ cos

λi x

L
− βi

(
sinh

λi x

L
+ sin

λi x

L

)
Same as free–free

8.
Fixed–guided

2.36502037
5.49780392
8.63937983

11.78097245
14.92256510
(4i − 1)π/4, i > 5

cosh
λi x

L
− cos

λi x

L
− βi

(
sinh

λi x

L
− sin

λi x

L

)
Same as free–guided

9.
Guided–pinned

(2i − 1)π/2 cos
(2i − 1)πx

2L

10.
Guided–guided

iπ cos
iπx

L
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TABLE 11-13 FREQUENCY EQUATIONS FOR UNIFORM BEAMS
Notation

E = modulus of elasticity
G = shear modulus of elasticity
I = moment of inertia

As = equivalent shear area

Bending Bending and Shear Deformation
End Conditions (Euler–Bernoulli Beam) (Shear Beam)

1.
Hinged–hinged

ω2
n
ρ

E I
− n4π4

L4
= 0 ω2

n

(
ρ

E I
+ ρ

G As

n2π2

L2

)
− n4π4

L4
= 0

Pure shear: sin
(
ωn L

√
ρ

G As

)
= 0

2.
Free–free or
fixed–fixed

coshβ1L cosβ1L − 1 = 0 coshβ1L cosβ2L

+ 1
2 c1 sinhβ1L sinβ2L − 1 = 0

Pure shear: same as hinged–hinged

3.
Fixed–hinged

tanhβ1L − tanβ1L = 0 coshβ1L sinβ2L

+ c5 sinhβ1L cosβ2L = 0

Pure shear: same as hinged–hinged

4.
Fixed–free

coshβ1L cosβ1L + 1 = 0 coshβ1L cosβ2L

+ c2c3 sinhβ1L sinβ2L − 2c3 = 0

Pure shear: cos
(
ωn L

√
ρ

G As

)
= 0
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TABLE 11-13 (continued) FREQUENCY EQUATIONS FOR UNIFORM BEAMS

ρ = mass per unit length
ry = radius of gyration about y axis
L = length of beam

Bending and Rotary Inertia Bending, Shear Deformation, and Rotary Inertia
(Rayleigh Beam) (Timoshenko Beam)

ω2
n

(
ρ

E I
+ ρr2

y

E I

n2π2

L2

)
− n4π4

L4
= 0 ω4

nr2
y −

(
n2π2

L2

E I

ρ
+ n2π2

L2
r2

y
As G

ρ
+ As G

ρ

)
ω2

n

+ n4π4

L4

G As E I

ρ2
= 0

coshβ1L cosβ2L − 1

+ 1
2 c2 sinhβ2L sinβ2L = 0

coshβ1L cosβ2L−1+ 1
2 c1 sinhβ1L sinβ2L = 0

coshβ1L sinβ2L

− β2

β1
sinhβ1L cosβ2L = 0

coshβ1L sinβ2L + c5 sinhβ1L cosβ2L = 0

coshβ1L cosβ2L

+ 1
2 c2 sinhβ1L sinβ2L

+ 1
2 c4 = 0

coshβ1L cosβ2L
+ c2c3 sinhβ1L sinβ2L − 2c3 = 0
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TABLE 11-13 (continued) FREQUENCY EQUATIONS FOR UNIFORM BEAMS

n = 1, 2, . . .

Euler–Bernoulli Beam Rayleigh Beam

β2
1 = β2

2 =
√
ρω2

n

E I
β2

1 =
1

2


−ρω2

nr2
y

E I
+
√(ρω2

nr2
y

E I

)2 + 4ρω2
n

E I




β2
2 =

1

2


ρω2

nr2
y

E I
+
√(ρω2

nr2
y

E I

)2 + 4ρω2
n

E I




c1 = β2

β1

ρω2
n ∓ As Gβ2

2

ρω2
n ± As Gβ2

1

− β1

β2

ρω2
n ± As Gβ2

1

ρω2
n ∓ As Gβ2

2

(upper sign for free–free, lower for fixed–fixed.)

c2 = β2

β1
− β1

β2

c3 = (ρω2
n − As Gβ2

2 )(ρω
2
n + As Gβ2

1 )

(ρω2
n + As Gβ2

1 )
2 + (ρω2

n − As Gβ2
2 )

2

c4 =
(
β1

β2

)2

+
(
β2

β1

)2

c5 = β1

β2

ρω2
n − As Gβ2

2

ρω2
n + As Gβ2

1

Shear Beam Timoshenko Beam

β2
1 =

1

2


− ρω2

n

G As
+
√√√√
(
ρω2

n

G As

)2

+ 4ρω2
n

E I




β2
2 =

1

2


 ρω2

n

G As
+
√√√√
(
ρω2

n

G As

)2

+ 4ρω2
n

E I




β2
1 =

1

2


−ρω2

n

(
1

G As
+ r2

y

E I

)
+
√√√√
[
ρω2

n

(
1

G As
+ r2

y

E I

)]2

+ 4ρω2
n

E I

(
1− ρω

2
nr2

y

G As

)


β2
2 =

1

2


ρω2

n

(
1

G As
+ r2

y

E I

)
+
√√√√
[
ρω2

n

(
1

G As
+ r2

y

E I

)]2

+ 4ρω2
n

E I

(
1− ρω

2
nr2

y

G As

)
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TABLE 11-14 NATURAL FREQUENCIES FOR BEAMS WITH
CONCENTRATED MASSES

Notation

mb = total mass of beam
Mi = concentrated mass

L = length of beam

E = modulus of elasticity
I = moment of inertia

See Tables 10-2 and 17-1 for additional cases.

Description Fundamental Natural Frequency (Hz)

1.
Center mass, pinned–pinned
beam

2

π

[
3E I

L3(Mi + 0.4857mb)

]1/2

2.
End mass, cantilever beam

1

2π

[
3E I

L3(Mi + 0.2357mb)

]1/2

3.
End masses, free–free beam

π

2

{
E I

L3mb

[
1+ 5.45

1− 77.4(Mi/mb)2

]}1/2

4.
Off-center mass,
pinned–pinned beam

1

2π

{
3E I (a + b)

a2b2[Mi + (α + β)mb]
}1/2

α = a

a + b

[
(2b+ a)2

12b2
+ a2

28b2
− a(2b + a)

10b2

]

β = b

a + b

[
(2a + b)2

12a2
+ b2

28a2
− b(2a + b)

10a2

]

5.
Center mass, clamped–
clamped beam

4

π

[
3E I

L3(Mi + 0.37mb)

]1/2
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TABLE 11-14 (continued) NATURAL FREQUENCIES FOR BEAMS WITH CONCENTRATED MASSES

Description Fundamental Natural Frequency (Hz)

6.
Off-center mass,
clamped–clamped beam

4

π

{
3E I L3

a3b3[Mi + (α + β)mb]

}1/2

α = a

a + b

[
(3a + b)2

28b2
+ 9(a + b)2

20b2
− (a + b)(3a + b)

4b2

]

β = b

a + b

[
(3b + a)2

28a2
+ 9(a + b)2

20a2
− (a + b)(3b+ a)

4a2

]

TABLE 11-15 FUNDAMENTAL NATURAL FREQUENCY BY NUMBER OF
SPANS OF MULTISPAN BEAMS WITH RIGID IN-SPAN SUPPORTSa

Notation

Fundamental natural frequency: ω1 (rad/s) = λ2
1

�2

(
E I

ρ

)1/2
f1 (Hz) = λ2

1

2π�2

(
E I

ρ

)1/2

E = modulus of elasticity I = moment of inertia ρ = mass per unit length

Number of Spans

1 2 3 4 5 6 7 8 9 10
Boundary
Conditions λ1

1. Free–free 4.730 1.875 1.412 1.506 1.530 1.537 1.538 1.539 1.539 1.539

2. Free–pinned 3.927 1.505 1.536 1.539 1.539 1.539 1.539 1.539 1.539 1.539

3. Pinned–pinned 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142

4. Fixed–free 1.875 1.570 1.541 1.539 1.539 1.539 1.539 1.539 1.539 1.539

5. Fixed–pinned 3.927 3.393 3.261 3.210 3.186 3.173 3.164 3.159 3.156 3.153

6. Fixed–fixed 4.730 3.927 3.557 3.393 3.310 3.260 3.230 3.210 3.196 3.186

aEach span is a beam segment of length �. A beam with one span has no in-span supports.
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TABLE 11-16 FUNDAMENTAL NATURAL FREQUENCIES OF TAPERED
BEAMS

Notation

ω1 = λha

L2

√
E/ρ∗ (rad/s)

f1 = λha

2πL2

√
E/ρ∗ (Hz)

E = modulus of elasticity
ρ∗ = mass per unit volume

Elevation: direction of vibration � Plan: vibration perpendicular to plane of paper

λ

Boundary Conditions α = 2 α = 3 α = 4 α = 10

1. Fixed–fixed β = 1 4.713 4.041 3.670 2.853
2. Fixed–simply supported β = 1 3.551 3.182 2.972 2.502
3. Fixed–free β = 1 1.104 1.162 1.206 1.337
4. Simply supported–fixed β = 1 2.937 2.361 2.046 1.382
5. Simply supported–simply β = 1 2.057 1.732 1.544 1.122

supported
6. Simply supported–free β = 1 3.608 3.310 3.183 2.993
7. Free–fixed β = 1 0.473 0.304 0.224 0.0818
8. Free–simply supported β = 1 2.973 2.425 2.127 1.487
9. Fixed–free

1 ≤ α ≤ 5
1 ≤ β ≤ 5

λ = C1 + C2β + C3β
2

C1 = 0.66592+ 0.10686α − 0.00886α2

C2 = 0.28430+ 0.00161α − 0.00004α2

C3 = −0.02546− 0.00008α − 0.00001α2
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TABLE 11-17 FORMULAS FOR APPROXIMATE PERIODS OF
VIBRATION OF BUILDINGS

Notation

Period = 1

frequency (cycles/s)
= 2π

frequency (rad/s)
N = number of stories

Fundamental
Type of Building Natural Period (s) Refs.

1. Reinforced concrete 0.07–0.09N [11.11]
2. Rigid frame 0.1N [11.12]

3. Space frame 0.5
√

N − 0.4 [11.13]
4. Low- and medium-height ∼ 0.1 [11.14]
5. Tall ∼ 1–10 [11.14]
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TABLE 11-18 DAMPING OF STRUCTURESa

Structure Damping (%) Refs.

1. Welded steel structure without fireproofing 0.5–2 [11.15], [11.16]
2. Riveted steel structure without fireproofing 2–3 [11.15], [11.16]
3. Steel frames 3–6 [11.17]
4. Concrete buildings 7–14 [11.17]
5. Brick walls > 14 [11.17]
6. Masonry structures 15–40 [11.15], [11.16]
7. Fluid containers, ground supported 0.5 [11.15], [11.16]

Elevated Water Tanks

8. Riveted 5 [11.18]
9. Welded 2 [11.18]

Bridges

[11.14], [11.19]
10. With concrete decks 1.1–2.5 (V)b —

0.78–2.86 (T)c

11. With steel decks 0.32–0.78 —
for (V) and (T)

12. With timber decks 1.59–3.5 (V) —
2.55–4.8 (T)

Chimneys or Towers

13. Bolted or riveted: open lattice 0.32–2.86 [11.14]
14. Bolted or riveted: unlined, closed, circular 0.32–1.59 [11.14]
15. Bolted or riveted: lined, closed, circular 0.48–1.43 [11.14]
16. Welded: unlined, closed, circular 0.16–1.9 —
17. Welded: lined, closed, circular 0.48–0.96 —
18. Reinforced concrete: unlined, closed, 0.96–1.9 —

circular

aApproximate percentage of critical damping of the fundamental mode of vibration is listed.
b(V) = vertical damping.
c(T) torsional damping.
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TABLE 11-19 TRANSFER AND STIFFNESS MATRICES FOR A BEAM ELEMENT WITH BENDING AND SHEAR
DEFORMATION

Notation

E = modulus of elasticity
� = length of element

ry = radius of gyration about y axis
As = equivalent shear area
A = area

i = i th element
I = moment of inertia

G = shear modulus of elasticity
ν = Poisson’s ratio

Transfer Matrix (Sign Convention 1) Stiffness Matrices (Sign Convention 2)

Set 1/G As = 0 if shear deformation is not to be
considered.


1 −� − �3

6E I
+ �

G As
− �2

2E I
Fw

0 1
�2

2E I

�

E I
Fθ

0 0 1 0 FV

0 0 � 1 F M

0 0 0 0 1







wa

θa

Va

Ma

1




Ui za

1. Effects of shear deformation neglected

a.




Va
Ma/�

Vb
Mb/�


 = E I

�3




12 −6 −12 −6
−6 4 6 2
−12 6 12 6
−6 2 6 4





wa
θa�
wb
θb�


−pi

pi = ki vi −pi

b.




Va

Ma
Vb
Mb


 =




12E I/�3 −6E I/�2 −12E I/�3 −6E I/�2

−6E I/�2 4E I/� 6E I/�2 2E I/�
−12E I/�3 6E I/�2 12E I/�3 6E I/�2

−6E I/�2 2E I/� 6E I/�2 4E I/�





wa

θa
wb
θb


−pi

pi = ki vi −pi
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p1

(
�4

24E I
− �2

2G As

)
pa

(
�4

30E I
− �2

3G As

)
+ pb

(
�4

120E I
− �2

6G As

)

−p1�
3

6E I
−(3pa + pb)

�3

24E I




Fw

Fθ

FV

F M




=
−p1� −(pa + pb)

�

2

− p1�
2

2
−(2pa + pb)

�2

6

2.

Effects of shear deformation included

α = 12E I/(G As�
2) = 24(1+ ν)A(ry/�)

2/As


Va

Ma

Vb

Mb




=




12E I

�3(1+ α) −
6E I

�2(1+ α)
−12E I

�3(1+ α)
−6E I

�2(1+ α)
−6E I

�2(1+ α)
(4+ α)E I

�(1+ α)
6E I

�2(1+ α)
(2− α)E I

�(1+ α)
−12E I

�3(1+ α)
6E I

�2(1+ α)
12E I

�2(1+ α)
6E I

�2(1+ α)
−6E I

�2(1+ α)
(2− α)E I

�(1+ α)
6E I

�2(1+ α)
(4+ α)E I

�(1+ α)







wa

θa

wb

θb




− pi

pi = ki vi − pi

Square cross
section with
thermal loading �T

W

(
�3

1
6E I
− �1

G As

)

−W�2
1

2E I

−W

−W�1

C�2
1

2E I

−C�1

E I

0

−C

(3ca + cb)
�3

24E I

−(2ca + cb)
�2

6E I

0

−(ca + cb)
�

2

E Iα�T

h�




0

1

0

−1




For Case 2 (or Case 1b if 1/G As = 0 in pi )

pi =




−(2Fw + �Fθ )/∇[
Fw

�

E I
+ 2Fθ

(
�2

6E I
− 1

G As

)]
E I/∇

−FV + (2Fw + �Fθ )/∇

−F M +
[

Fw
�

E I
+ 2Fθ

(
�2

3E I
+ 1

G As

)]
E I/∇




∇ = 2�

(
�2

12E I
+ 1

G As

)
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TABLE 11-20 TRANSFER AND STIFFNESS MATRICES FOR BEAM ELEMENT WITH VARIABLE MOMENT OF
INERTIA

Notation
I (x) = moment of inertia at x

Ii , c1, c2 = constants that define the variable cross section
E = modulus of elasticity
� = length of element
α1 = c1 − c2�
α2 = ln c1 − lnα1

Transfer Matrix (Sign Convention 1) Stiffness Matrix (Sign Convention 2)




1 −� UwV UwM Fw

0 1 UθV UθM Fθ

0 0 1 0 FV

0 0 � 1 F M

0 0 0 0 1







wa

θa

Va

Ma

1




Ui za




Va
Ma
Vb
Mb


 =




k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44





wa
θa
wb
θb


− pi

pi = ki vi − pi

pi =




k13 Fw + k14 Fθ
k23 Fw + k24 Fθ

−FV + k33 Fw + k34 Fθ
−F M + k43 Fw + k44 Fθ




k11 = UθM/� � = UwV UθM −UwMUθV k13 = −k11 k14 = UwM/�

k21 = −UθV /� k22 = (�UθV +UwV )/� k23 = −k21 k24 = −UwV /�

k33 = −k13 k34 = −k14 k44 = (UwV − �UwM )/� ki j = k ji (i, j = 1, 2, 3, 4)
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n = 1 n = 2 n = 3 n > 3

UwM
α1α2 − c2�

E Ii c2
2

c2�− c1α2

E Ii c1c2
2

− �2

2E Ii c2
1α1

αn−2
1 [α1 + (n − 1)c2�] − cn−1

1

(n − 1)(n − 2)E Ii c
n−1
1 c2

2α
n−2
1

UwV
c2

2�
2 + 2c1α1 − 2c1c2�

2E Ii c3
2

2c2�− (c1 + α1)α2

E Ii c3
2

c2
2�

2 − 2c1c2�+ 2c1α1α2

2E Ii c1c3
2α1

cn−2
1 [2c1 − (n − 1)c2�] − αn−2

1 [2c1 + (n − 3)c2�]
(n − 1)(n − 2)(n − 3)E Ii c

n−2
1 c3

2α
n−2
1

UθM
α2

E Ii c2

�

E Ii c1α1

2c1�− c2�
2

2E Ii c2
1α

2
1

cn−1
1 − αn−1

1

(n − 1)E Ii c
n−1
1 c2α

n−1
1

UθV
c1α2 − c2�

E Ii c2
2

c2�− α1α2

E Ii c2
2α1

�2

2E Ii c1α
2
1

αn−1
1 − (n − 1)cn−2

1 α1 + (n − 2)cn−1
1

(n − 1)(n − 2)E Ii c
n−2
1 c2

2α
n−1
1
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TABLE 11-20 (continued) TRANSFER AND STIFFNESS MATRICES FOR BEAM ELEMENT WITH
VARIABLE MOMENT OF INERTIA

Loading functions:

F M = − 1
6	

2(2pa + pb), F V = − 1
2	(pa + pb)

Fw

n = 1
1

2E Ii c5
2

[
pa

(
− 1

4 c4
2	

3 + 8
9 c1c3

2	
2 − 1

6 c2
1c2

2	− 1
3 c3

1c2 + c1c2α
2
1α2 + c1α

3
1α2

3	

)

+ pb

(
− 1

12 c4
2	

3 + 11
18 c1c3

2	
2 − 5

6 c2
1c2

2	+ 1
3 c3

1c2 − c1α
3
1α2

3	

)]

n = 2

1
E Ii c5

2

{
pa

[
− 7

9 c3
2	

2 + 1
3 c1c2

2	+ 2
3 c2

1c2 −
(
c1 + 1

2α1
)
c2α1α2 − 1

6	 (3c1 + α1)α
2
1α2

]

+ pb

[
− 17

36 c3
2	

2 + 7
6 c1c2

2	− 2
3 c2

1c2 + (3c1+α1)α
2
1α2

6	

]}

n = 3

1
2E Ii c1c5

2

{
pa

[
1
3 c3

2	
2 − c1c2

2	− 2c2
1c2 + (c2

1 + 2c1α1)c2α2 + c1(c1+α1)α1α2
	

]

+ pb

[
1
6 c3

2	
2 − 2c1c2

2	+ 2c2
1c2 − c1

	
(c1 + α1)α1α2

]}

n = 4

1
6E Ii c2

1c5
2

{
pa

[
1
3 c3

2	
2 + (c1 + 1

α1

)
c2

2	+ 4c2
1c2 − 3c2

1c2α2 − (c1+3α1)c2
1α2

	

]

+ pb

[
1
6 c3

2	
2 + c1c2

2	− 4c2
1c2 + (c1+3α1)c

2s
1 α2

	

]}

n = 5

pa

(n−1)(n−2)(n−3)E Ii c
n−2
1 c4

2

[
n−3

2 c2
2	

2 + 2c1c2	+ c2
1(c

n−3
1 −αn−3

1 )

αn−3
1

− (n−1)(cn−4
1 −αn−4

1 )c2
1

(n−4)αn−4
1

]

+ pb−pa

24E Ii c3
1c5

2

[
1
3 c3

2	
2 + c1c2

2	+ (c1+3α1)c2
1c2

α1
− 4c3

1α2
	

]

n ≥ 6 This entry consists of two terms, one multiplied by pa and one by pb − pa . For
the pa term, use the Fw entry above in the n = 5 row. The pb − pa term follows.

pb−pa

(n−1)(n−2)(n−3)E Ii c
n−2
1 c5

2

[
n−3

6 c3
2	

2 + c1c2
2	− n−1

n−5
(cn−5

1 −αn−5
1 )c3

1

	αn−5
1

+ (n−3)c1+(n−1)α1
n−4

(cn−4
1 −αn−4

1 )c2
1

	αn−4
1

− (cn−3
1 −αn−3

1 )c2
1

	αn−3
1

]
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TABLE 11-20 (continued) TRANSFER AND STIFFNESS MATRICES FOR BEAM ELEMENT WITH
VARIABLE MOMENT OF INERTIA

Fθ

1
2E Ii c4

2

[
pa

(
2
3 c3

2�
2 − 1

2 c1c2
2�+ 2c1c2α1α2 − c2

1c2 + c1α
2
1α2
�

)

+pb

(
1
3 c3

2�
2 − 3

2 c1c2
2�+ c2

1c2 − c1α
2
1α2
�

)]

1
2E Ii c4

2

{
pa

[
3
2 c2

2�− 2(c1 + α1)c2α2 + 3c1c2 − (2c1+α1)α1α2
�

]

+pb

[
5
2 c2

2�− 3c1c2 + (2c1+α1)α1α2
�

]}

1
2E Ii c1c4

2α1

{
pa

[
1
2 c3

2�
2 + 3

2 c1c2
2�− 3c2

1c2 + 2c1c2α1α2 + c1(c1+2α1)α1α2
�

]

+pb

[
1
2 c3

2�
2 − 7

2 c1c2
2�+ 3c2

1c2 − c1(c1+2α1)α1α2
�

]}

pa

(n−1)(n−2)E Ii c
n−2
1 c3

2

[
− c2�+ (n−1)(cn−3

1 −αn−3
1 )c1

(n−3)αn−3
1

− (cn−2
1 −αn−2

1 )c1

αn−2
1

]

+ pb−pa

6E Ii c2
1c4

2

(
− 1

2 c2
2�− 3c1c2 − c1c2

2�

α1
+ 3c2

1α2
�

)

This entry consists of two terms, one multiplied by pa and one by pb − pa . For the pa

term, use the Fθ entry above in the n = 4 row. The pb − pa term follows.

pb−pa

(n−1)(n−2)E Ii c
n−2
1 c4

2

[
− 1

2 c2
2�+ (n−1)(cn−4

1 −αn−4
1 )c2

1

�(n−4)αn−4
1

− (n−2)c1+(n−1)α1
n−3

(cn−3
1 −αn−3

1 )c1

�αn−3
1

+ (cn−2
1 −αn−2

1 )c1

�αn−3
1

]

For the pa term, use the Fθ entry above in the n = 4 row. For the pb − pa term, use the
Fθ entry above in the n = 5 row.
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TABLE 11-21 POINT MATRICES FOR CONCENTRATED OCCURRENCESa

Case Transfer Matrix (Sign Convention 1) Stiffness Matrix (Sign Convenction 2)

1.
Transverse force
and moment

2.
Abrupt change
in slope

3.
Abrupt change
in beam axis

4.
Linear hinge

5.
Rotary hinge

Ui =




1 0
1

k2
0 w1

0 1 0
1

k∗2
−α

0 0 1 0 −W

0 0 0 1 −C

0 0 0 0 1




Traditionally, these applied loads
are implemented as nodal conditions.
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6.
Concentrated mass

If rotary inertia is to be included,
IT i = �a ρr2

7.
Various flexible supports

See the following definitions:

Ui =




1 0 0 0 0

0 1 0 0 0

k1 − miω
2 0 1 0 0

0 k∗1 − IT iω
2 0 1 0

0 0 0 0 1




Mass matrix[
Va
Ma

]
= −ω2

[
mi 0
0 IT i

][
wa
θa

]

maa[
Va
Ma

]
=
[

k1 0
0 k∗1

][
wa
θa

]

kaa

Definitions for Case 7

k1

(F/L)
k1 0

k3k4

k3 + k4

E A

�b

E A

�b

E A

�b

E A

�b

uB(ai )

NB(ai )
− k3miω

2

k3 − miω2

k3(k4 − miω
2)

k3 + k4 − miω2

k∗1
(F L/rad) 0 k∗1 0

4E I

�b

3E I

�b
0 0

θB(ai )

MB(ai )
0 0

aUnits: k1, k2, k3, k4 are force/length (F/L).
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TABLE 11-22 TRANSFER AND STIFFNESS MATRICES FOR A GENERAL BEAM SEGMENT
Notation

λ = (k − ρω2)/E I
ξ = E I/G As

k∗ = rotary foundation modulus
� = element length

G = shear modulus of elasticity
As = equivalent shear area, A/αs

η = (k − ρω2)/G As
k = elastic foundation modulus
ω = natural frequency
I = moment of inertia

ry = radius of gyration
αs = shear correction factor (Table 2-4)

ζ = (P − k∗ + ρr2
yω

2)/E I
ρ = mass per unit length
E = elastic modulus
P = axial force, compressive;

replace by −P for tensile
axial force

pa

a

pb

b

cb
ca

a b

a b

MTb

MTa

To use these matrices, follow the steps:
1. Calculate the three parameters λ, ζ , η. If shear deformation is not to be considered, set 1/G As = 0.
2. Compare the magnitude of these parameters and look up the appropriate ei using the definitions for ei

given below.
3. Substitute these expressions in the matrices below.

Transfer Matrix (Sign Convention 1) Stiffness Matrix (Sign Convention 2)
Positive forces and displacements are shown. Positive forces and displacements are shown.




e1 + ζe3 −e2

−e4/E I
+ (e2 + ζe4)/G As −e3/E I Fw

λe4 e1 − ηe3 e3/E I (e2 − ηe4)/E I Fθ

λE I (e2 + ζe4) −λE I e3 e1 + ζe3 −λe4 F V

λE I e3 E I (e0 − ηe2) e2 e1 − ηe3 F M

0 0 0 0 1







wa

θa

Va

Ma

1




Ui za




Va
Ma
Vb
Mb


=



k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44





wa
θa
wb
θb


− pi

pi = ki vi − pi
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Fw = [pa(e5 − e6/�)+ pbe6/�+ ca(e4 − e5/�)+ cbe5/�− MT a(e3 − e4/�)

− MT be4/�]/E I − [pa{e3 + ζe5 − (e4 + ζe6)/�} + pb(e4 + ζe6)/�]/G As
Fθ = [pa(−e4 + e5/�)− pbe5/�+ ca{−e3 + ηe5 + (e4 − ηe6)/�}

− cb(e4 − ηe6)/�+ MT a{(e2 − ηe4)− (e3 − ηe5)/�}
+ MT b(e3 − ηe5)/�]/E I

FV = pa{−(e2 + ζe4)+ (e3 + ζe5)/�} − pb(e3 + ζe5)/�

+ λ[ca(e5 − e6/�)+ cbe6/�+ MT a(−e4 + c5/�)− MT be5/�)]
F M = pa(−e3 + e4/�)− pbe4/�+ ca[(−e2 + e3/�)+ η(e4 − e5/�)]

− cb(e3 − ηe5)/�+ MT a[(e1 − 1− e2/�)+ η(−e3 + e4/�)]
+ MT b(e2 − �− ηe4)/�

k11 = [(e2 − ηe4)(e1 + ζe3)+ λe3e4]E I/�
k12 = [e3(e1 − ηe3)− e2(e2 − ηe4)]E I/�
k13 = −(e2 − ηe4)E I/�
k14 = −e3 E I/�
k21 = k12
k22 = {−(e1 − ηe3)[e4 − ξ(e2 + ζe4)] + e2e3}E I/�
k23 = e3 E I/� = −k14
k24 = [e4 − ξ(e2 + ζe4)]E I/�
k31 = k13, k41 = k14, k42 = k24,

k32 = k23, k43 = k34
k33 = [(e1 + ζe3)(e2 − ηe4)+ λe3e4]E I/� = k11
k34 = {(e1 + ζe3)e3 + λe4[e4 − ξ(e2 + ζe4)]}E I/�
k44 = {e2e3 − (e1 − ηe3)[e4 − ξ(e2 + ζe4)]}E I/� = k22
� = e2

3 − (e2 − ηe4)[e4 − ξ(e2 + ζe4)]

pi =




V 0
a

M0
a

V 0
b

M0
b




V 0
a = −[(e2 − ηe4)Fw + e3 Fθ ]E I/�

M0
a = {e3 Fw + [e4 − ξ(e2 + ζe4)]Fθ }E I/�

V 0
b = −FV + {[(e1 + ζe3)(e2 − ηe4)+ λe3e4]Fw

+ [(e1 + ζe3)e3

+ λe4[e4 − ξ(e2 + ζe4)]]Fθ }E I/�
M0

b = −F M + {[(e1 + ζe3)e3 + ξe4[e4 − ξ(e2 + ζe4)]]Fw
+ [e2e3 − (e1 − ηe3)[e4 − ξ(e2 + ζe4)]]Fθ }E I/�
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TABLE 11-22 (continued) TRANSFER AND STIFFNESS MATRICES FOR A GENERAL BEAM SEGMENT

Definitions for ei (i = 0, 1, 2, . . . , 6)

λ = 0, λ− ζη = 0 λ > 0, λ− ζη > 0

1.
λ < 0

2.
ζ = η = 0

3.
η = 0, ζ �= 0

4.

λ− ζη = 1
4 (ζ − η)2

5. λ− ζη < 1
4 (ζ − η)2,

ζ − η �= 0

6.

λ− ζη > 1
4 (ζ − η)2

e0
1

g
(d3C − q3 D) 0 −ζ B −ζ − η

4
(3C + A�) −1

g
(q3 D − d3C) −(λ− ζη)e4 − (ζ − η)e2

e1
1

g
(d2 A + q2 B) 1 A

1

2
(2A − B�)

p

g
(q2 B − d2 A) AB − q2 − d2

2dq
C D

e2
1

g
(dC + q D) � B

1

2
(C + A�)

p

g
(q D − dC)

1

2dq
(d AD + q BC)

e3
1

g
(A − B)

�2

2

1

ζ
(1− A)

C�

2

1

g
(A − B)

1

2dq
C D

e4
1

g

(
C

d
− D

q

)
�3

6

1

ζ
(�− B)

1

(ζ − η)(C − A�)
1

g

(
C

d
− D

q

)
1

2(d2 + q2)

(
AD

q
− BC

d

)

e5
1

g

(
A

d2
+ B

q2

)
�4

24

1

ζ

(
�2

2
− e3

)
2

(ζ − η)2
p

g

(
B

q2
− A

d2

)
+ 1

d2q2

1− e1

λ− ζη −
ζ − η
λ− ζηe3

− 1

d2q2
×(−2A − B�+ 2)

e6
1

g

(
C

d3
+ D

q3

)
�5

120

1

ζ

(
�3

6
− e4

)
2

(ζ − η)2
p

g

(
D

q3
− C

d3

)
+ �

d2q2

�− e2

λ− ζη −
ζ − η
λ− ζηe4

− �

d2q2
×(−3C + A�+ 2�)
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Definitions for A, B, C, D, g, d, q

λ > 0, λ− ζη > 0

λ < 0 λ = 0, λ− ζη = 0 λ− ζη = 1
4 (ζ − η)2 λ− ζη < 1

4 (ζ − η)2, ζ − η �= 0 λ− ζη > 1
4 (ζ − η)2

1.
A = cosh d�
B = cos q�
C = sinh d�
D = sin q�
g = d2 + q2

2.
ζ > 0: α2 = ζ
A = cosα�
B = (sinα�)/α

4.
ζ − η > 0: β2 = 1

2 (ζ − η)
A = cosβ�, B = β sinβ�
C = (sinβ�)/β

6.
ζ − η > 0: g = q2 − d2, p = 1
A = cos d�, B = cos q�
C = sin d�, D = sin q�

d2 = 1
2 (ζ − η)−

√
1
4 (ζ + η)2 − λ

q2 = 1
2 (ζ − η)+

√
1
4 (ζ + η)2 − λ

8.
A = cosh d�, B = cos q�
C = sinh d�, D = sin q�
d2 = 1

2
√
λ− ζη − 1

4 (ζ − η)
q2 = 1

2
√
λ− ζη + 1

4 (ζ − η)

d2 =
√
β4 + 1

4 (ζ + η)2
− 1

2 (ζ − η)
q2 =

√
β4 + 1

4 (ζ + η)2
+ 1

2 (ζ − η)
β4 = −λ

3.
ζ < 0: α2 = −ζ
A = coshα�
B = (sinhα�)/α

5.
ζ − η < 0: β2 = − 1

2 (ζ − η)
A = coshβ�, B = −β sinhβ�
C = (sinhβ�)/β

7.
ζ − η < 0: g = d2 − q2, p = −1
A = cosh d�, B = cosh q�
C = sinh d�, D = sinh q�

d2 = − 1
2 (ζ − η)+

√
1
4 (ζ + η)2 − λ

q2 = − 1
2 (ζ − η)−

√
1
4 (ζ + η)2 − λ
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TABLE 11-23 GEOMETRIC STIFFNESS MATRIX (CONSISTENT)
Notation

� = length of element
ki

G = geometric stiffness matrix for i th element

Sign Convention 2


6/(5�) −1/10 −6/(5�) −1/10
−1/10 2�/15 1/10 −�/30
−6/(5�) 1/10 6/(5�) 1/10
−1/10 −1�/30 1/10 2�/15






wa
θa
wb
θb




ki
G vi

TABLE 11-24 LUMPED MASS MATRICES

Notation
ma,mb = lumped masses at points a and b

IT a, IT b = lumped rotary inertia of mass at points a and b
ρ = mass per unit length
� = length of element

ry = radius of gyration about y axis
x = axial coordinate measured from the left end

of the element

Sign Convention 2

(a) Mass Lumped at One Point

[
Va
Ma

]
= −ω2

[
ma 0
0 IT a

] [
wa
θa

]

If rotary inertia is to be included, IT a = �a ρr2
y .

(b) Mass Lumped at Two Endpoints



ma 0 0 0
0 IT a 0 0
0 0 mb 0
0 0 0 IT b





wa
θa
wb
θb




mi vi

Set IT a = IT b = 0 if the rotary inertia
of the mass is to be ignored.
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TABLE 11-24 (continued) LUMPED MASS MATRICES

Inertial Properties of Lumped Mass Matrix

Mass
Distribution ma mb IT a IT b

1.
Uniformly distributed ρ

1
2ρ�

1
2ρ�

1
24ρ�

3 + 1
2 (ρ�r

2
y )

1
24ρ�

3 + 1
2ρ�r

2
y

2.
Linearly distributed
ρ = xρ0/�

1
6ρ0�

1
3ρ0�

4
81ρ0�

3 + 1
6ρ0�r2

y
1

108ρ0�
3 + 1

3ρ0�r2
y

3.
Arbitrarily distributed
ρ = ρ(x)a

�− x0

�

∫ �
0 ρ(x) dx

x0

�

∫ �
0 ρ(x) dx IT a =

∫ x0
0 x2ρ(x) dx + r2

y ma IT b =
∫ �

x0
(�− x)2ρ(x) dx + r2

y mb

aFor arbitrary mass distribution, the mass center can be calculated by

x0 =
∫ �

0 xρ dx∫ �
0 ρ dx
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TABLE 11-25 CONSISTENT MASS MATRIX AND GENERAL MASS
MATRIX

Notation

ρ = mass per unit length
� = length of element

ry = radius of gyration about y axis

Sign Convention 2

(a) Without Rotary Inertia

mi = ρ�

420



wa θa wb θb
156 −22� 54 13�
−22� 4�2 −13� −3�2

54 −13� 156 22�
13� −3�2 22� 4�2




(b) With Rotary Inertia

+ρ�
30

(ry

�

)2


wa θa wb θb
36 −3� −36 −3�
−3� 4�2 3� −�2

−36 3� 36 3�
−3� −�2 3� 4�2


 Add to mi of (a).

(c) General Mass Matrix

mi = ∫ �0 ρ��T dx, � =



H1
H2
H3
H4




where Hj are the components of the displacement shape function

w(x) = H1wa + H2θa + H3wb + H4θb

If, for constant ρ, the static responses

H1 = 1− 3(x/�)2 + 2(x/�)3, H2 = �
[−x/�+ 2(x/�)2 − (x/�)3] ,

H3 = 3(x/�)2 − 2(x/�)3, H4 = −(x2/�)(x/�− 1)

are employed, mi is the consistent mass matrix of case (a) with rotary inertia ignored.
If other shape functions � are used, other mass matrices will be found. In particular,
more exact (e.g., frequency-dependent shape functions) will lead to more exact mass
matrices.
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Formulas for the analysis and design of bars subjected to torsion or extension are
given in this chapter. The bars undergoing torsion, strictly speaking, must have cir-
cular cross sections, although the formulas can and are frequently utilized for other
shapes. For thin-walled cross sections, the formulas for Chapter 14 give more accu-
rate answers than those of this chapter. Here the bars cannot be restrained against
warping. Detailed derivations of the formulas here can be found in Pilkey [12.1],
along with computer programs for the difficult calculations.

12.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F
for force, and M for mass.

619



620 TORSION AND EXTENSION OF BARS

Torsion

The formulas of this chapter that apply for bars subjected to torsion utilize the follow-
ing notation. As noted in subsequent sections, with a change in notation the formulas
also apply for the extension of bars.

A Area of cross section (L2)
A∗ Enclosed area of thin-walled section (L2)
G Shear modulus of elasticity (F/L2)
Ip Polar mass moment of inertia per unit length of bar (M L); for hol-

low circular section Ip = 1
2ρ(r

2
outer + r2

inner), where r is the radius
measured from bar axis, Ip = ρ∗ Ix = ρr2

p

Ipi Polar mass moment of inertia of concentrated mass at point i (M L2);
to calculate, use Ipi = �a ρr2

p, where�a is the length of shaft lumped
at point i

Ix Polar moment of inertia, r2
p A (L4)

J Torsional constant (L4); for circular cross section, J is polar moment
of inertia Ix of cross-sectional area with respect to axis x of bar

k Torsional spring constant (F L)
kt Elastic foundation modulus (F L/L)
L Length of bar (L)
� Length of element (L)

mx Distributed torque (F L/L)
mx1 Magnitude of distributed torque that is uniform in x direction (F L/L)

mxa,mxb Initial and final magnitudes, respectively, of linearly varying dis-
tributed torque (F L/L)

q Shear flow (F/L)
rp Polar radius of gyration (L) (i.e., radius of gyration of cross-sectional

area with respect to axis x of bar)
t Thickness, thin-walled section (L)

T Twisting moment, torque (F L)
T1, Ti Applied torque, concentrated (F L)

ρ Mass per unit length of bar, ρ∗ = ρ/A (M/L)
ρ∗ Mass per unit volume (M/L3)
τ Torsional shear stress (F/L2)
φ Angle of twist, rotation (rad)
ω Natural frequency (rad/T)



12.2 SIGN CONVENTIONS 621

Extension

The torsion formulas apply as well for extension of bars if the following notation
adjustments are abided by:

Extension Torsion

u φ

P T
E G
A J
ρ ρr2

p
px mx

kx kt

Mi Ipi

A summary of the notation for the extension of bars follows:

A Cross-sectional area (L2)
E Young’s modulus (F/L2)
k Spring constant (F/L)

kx Elastic foundation modulus (F/L2)
Mi Concentrated mass (M)
px Applied distributed axial force (F/L)

px1 Magnitude of applied uniform axial force in x direction (F/L)
pxa, pxb Initial and final magnitudes, respectively, of linearly varying distributed

axial force (F/L)
P Axial force (F)
Pi Applied concentrated axial force (F)
T Change in temperature (degrees) (i.e., temperature rise with respect to

reference temperature)
u Axial displacement (L)
α Coefficient of thermal expansion (L/L · degree)
ρ Mass per unit length (M/L)
ρ∗ Mass per unit volume (M/L3)

σ, σx Axial stress (F/L2)
ω Natural frequency (rad/T)

12.2 SIGN CONVENTIONS

Positive displacements and forces are illustrated in the various tables of this chapter.



622 TORSION AND EXTENSION OF BARS

12.3 STRESSES

The tables of this chapter give the torque along a bar for torsion and the axial force
for extensions. These variables can be placed in the formulas of this section to find
the stresses.

Torsional Stresses

The shear stress τ due to torsion takes the form

τ = Tr/J (12.1)

where r is the radial distance from the central longitudinal axis (x). This formula
applies to either solid or hollow cross sections. For circular cross sections J = Ix ,
where Ix is the polar moment of inertia of the cross section about the central axis of
a shaft. In this case, J is given by [Eq. (2.10)]

J = Jx = Ix =
∫

A
r2 dA =

∫
A
(z2 + y2) dA = Iy + Iz (12.2)

where A is the cross-sectional area. Figure 12-1a shows the cross-sectional distribu-
tion of this stress.

Hollow Thin-Walled Cross Sections

The torsional stress in a hollow thin-walled shaft is given as in Chapter 3 by
(Fig. 12-1b)

Figure 12-1: Stress patterns on various cross sections: (a) solid section; (b) thin-walled
closed section; (c) thin-walled open section.



12.3 STRESSES 623

τ = q

t
= T

2A∗t
(12.3)

where q is the shear flow and A∗ is the area enclosed by the middle line of the wall.
In deriving this formula, it is assumed that the shear stress is uniformly distributed
through the thickness t .

The formula of Eq. (12.3) applies for variable wall thickness; that is, q = T/2A∗
is the shear flow irrespective of wall thickness. The maximum shear stress would
occur where the wall thickness is thinnest. Then τmax = q/tmin.

Table 12-1 provides formulas for various cross-sectional shapes, including multi-
cell cross sections.

Example 12.1 Stresses and Angle of Twist of a Thin-Walled Section with Four
Cells Calculate the shear flows and the rate of angle of twist for the multicell box
section of Fig. 2-15 if a torque of 200,000 in.-lb is applied. Also, G = 3.8× 106 psi.
The same box section was treated in Example 2.5 to find the torsional constant.

To find the shear flows, use the formulas of case 6, Table 12-1. The enclosed areas
of the cells are A∗1 = A∗2 = A∗3 = A∗4 = 2(3) = 6 in2. The torque formula of case 6,
Table 12-1 is

T = 2
M∑

i=1

qi A∗i = 2(q16+ q26+ q36+ q46) (1)

and the equations for dφ/dx are set up for each cell. For cell 1, i = 1,

dφ

dx
= 1

2A∗1G

[
q1

∮
1

ds

t
− q2

∮
1 2

ds

t
− q3

∮
1 3

ds

t

]

= 1

2A∗1G

[
q1

S1

t
− q2

S12

t
− q3

S13

t

]
(2)

= 1

2A∗1G

[
q1

(
2(3)

0.2
+ 2(2)

0.2

)
− q2

2

0.2
− q3

3

0.2

]

where Si is the total length of the middle line of the wall of the cross section and Sik

is the length of the common segments between cells i and k. For cells 2, 3, and 4,

dφ

dx
= 1

2A∗2G

[
q2

10

0.2
− q1

2

0.2
− q4

3

0.2

]
(3)

dφ

dx
= 1

2A∗3G

[
q3

10

0.2
− q1

3

0.2
− q4

2

0.2

]
(4)

dφ

dx
= 1

2A∗4G

[
q4

10

0.2
− q2

3

0.2
− q3

2

0.2

]
(5)

Solve the five equations (1), (2), (3), (4), and (5) for the five unknowns dφ/dx , q1,
q2, q3, q4 with T = 200,000 in.-lb. This yields
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dφ

dx
0.0028 rad/in. (6a)

q1 = q2 = q3 = q4 = 4166.67 lb/in. (6b)

Thin-Walled Open Sections

The torsional stress in a thin-walled open section appears to vary linearly across the
thickness of a cross section. It acts parallel to the edges as shown in Fig. 12-1c. The
stresses on the two edges of the thin wall are equal in magnitude and opposite in
direction. Along the edges, where the maximum stresses occur,

τ = T t/J (12.4)

where t is the thickness at the location the stress is being calculated. For this thin-
walled section, the torsional constant, which is a geometric property, is given by
Eq. (2.24b):

J = α

3

M∑
i=1

bi t
3
i (12.5)

where α is a shape factor (case 10 in Table 12-1 or in Table 2-5) and M is the number
of straight or curved segments of thickness ti and width or height bi that make up the
section. Use α = 1 if no information on α is available.

Specific Stress Formulas

Table 12-1 gives values of torsional shear stress on a variety of cross-sectional
shapes. These values are provided at some important points. The stress distribution
on the entire cross section can be obtained by using a computer program of the sort
available in Pilkey [12.1] or on the web site for this book.

The distribution of the stress can also be viewed using the membrane analogy,
which reflects that the governing equation for the torsion problem closely resembles
the equilibrium equation of a flat membrane in the shape of the cross section sub-
jected to a lateral pressure. The membrane lies in the yz plane. The shear stress in
any direction is proportional to the slope of the membrane in the direction perpen-
dicular to the shear stress, and the torque carried by the cross section is proportional
to twice the volume under the membrane. From this analogy it can be reasoned that
the peak stresses are found at the boundaries of the thicker portions of the cross sec-
tion. For thin-walled open cross sections, the shape of the membrane over the wall
thickness is parabolic, so the maximum shear stress is on the boundary in the direc-
tion of the wall contour. On the middle line of the wall, the shear stress is zero. At
the reentrant corners (i.e., the interior corners where the thin-walled segments are
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connected), stress concentration may develop. See Table 6-1 for an indication of the
stress that may occur at these corners.

The membrane analogy can also be used to compare the torsional constant of
different cross sections. Since the torque that the cross section carries is proportional
to twice the volume under the membrane, it is apparent that those cross-sectional
shapes with smaller volumes under the membrane are stiffer. This follows because
in terms of the effect on φ (= T L/G J ), a smaller volume, and hence a smaller T ,
corresponds to a larger J . Generally, for a cross section of a given area, the closer the
shape is to being circular, the stiffer it is and the higher the value of J . Solid cross
sections are stiffer than thin-walled cross sections, and thin branches attached to the
solid part have little effect on the torsional rigidity. For the same r value [Eq. (12.1)],
a higher J gives smaller shear stresses.

Extensional Stress

The normal or axial stress in a bar subjected to extension or compression is given by
Eq. (3.41):

σ = P/A = σx (12.6)

This stress is distributed uniformly over the cross section.

12.4 SIMPLE BARS

Torsion

For a single uniform shaft element of length L, the most commonly used formula for
the angle of twist is

φ = T L/G J (12.7)

where the torsional constant J can be taken from Table 2-5 for various shapes.
For a thin-walled hollow (closed) section, Eq. ( 12.7) is used with

J = 4A∗2∮ 1
t ds
= 4A∗2∫ S

0
1
t ds

(12.8a)

when s is the perimeter coordinate and S is the total length of the middle line of the
wall. If the thickness t is constant,

J = 4A∗2t/S (12.8b)

so that

φ = T LS

4A∗2Gt
= τ S

2A∗G
(12.9a)
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For a hollow section with a perimeter formed of lengths Si (i = 1, 2, . . . ) with
thicknesses ti (i = 1, 2, . . . ) and moduli Gi (i = 1, 2, . . . ),

φ = T L

4A∗2

(
S1

t1G1
+ S2

t2G2
+ . . .

)
(12.9b)

The governing differential equations for the torsion of a uniform bar are [12.1]

G J
d2φ

dx2
− ktφ = −mx , G J

dφ

dx
= T (12.10)

Extension

For a uniform bar the governing equations for a bar undergoing extension are [12.1]

AE
d2u

dx2
− kx u = −px , AE

du

dx
= P + αAE �T (12.11)

These relations can be solved for the displacements and the forces as functions of the
coordinate x .

Tabulated Formulas

The angle of twist and torque for the torsion of uniform members with various ap-
plied loadings and end conditions are provided in Table 12-2. The same table gives
the axial displacement and force for the extension of a bar.

Table 12-2, part A, lists equations for the responses. The loading functions are
taken from Table 12-2, part B, by adding the appropriate terms for each load applied
to the member. The initial parameters are evaluated using the entry in Table 12-2,
part C, for the appropriate end conditions of the member.

12.5 NATURAL FREQUENCIES

The natural frequencies ωi , i = 1, 2, . . . , and mode shapes for torsion and extension
of uniform bars are presented in Tables 12-3 and 12-4. Table 12-5 gives polar mass
moments of inertia for lumped masses.

Example 12.2 Natural Frequencies of Torsional Vibration Find the first three
torsional natural frequencies of a uniform shaft with a torsional spring at the left end
and an unconstrained (free) right end.

From Table 12-3, the natural frequencies are given by

ωi = (λi/L)
√

G J/ρ∗ Ix rad/s (1)
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where λi are the roots of the equation (case 4) λi tanλi = kL/G J . Let E =
210 GN/m2, ρ∗ = 7850 kg/m3, L = 1 m, ν = 0.3, and k = 1 GN ·m/rad for a
shaft 0.1 m in diameter:

G = E

2(1+ ν) =
2.1× 1011

2(1+ 0.3)
= 0.8077× 1011 N/m2 (2)

kL

G J
= 109 × 1× 32

0.8077× 1011(π)0.14
= 1.261× 103

λi tanλi = 1.261× 103 (3)

The lowest values for λi for which (3) holds are

λ1 = 1.56955, λ2 = 4.70865, λ3 = 7.84776

Finally, the natural frequencies of the first three modes are as follows:

Natural Frequency

Mode ωi (rad/s) fi

1 5034.60 801.28
2 15 103.81 2403.85
3 25 173.06 4006.42

12.6 GENERAL BARS

The formulas of Table 12-2 apply to uniform bars. For more general members
(e.g., those with variable-section properties), it is advisable to use the displace-
ment method or the transfer matrix procedure, which are explained technically in
Appendixes II and III.

Several transfer and stiffness matrices are tabulated in Tables 12-6 to 12-9.
Mass matrices for use in a displacement method analysis are given in Tables 12-10
and 12-11. The torsional responses are based on the governing equations [Eqs.
(12.1)]

∂φ

∂x
= T

G J
(12.12a)

∂T

∂x
= ktφ + ρr2

p
∂2φ

∂t2
− mx (x, t) (12.12b)

For extension, replace φ by u, T by P , G J by E A, kt by kx , ρr2
p by ρ, and mx by px .

Example 12.3 Torsional System with a Branch Consider the gear-branched
system of Fig. 12-2, where m = 2 is the speed ratio between gears 4 and 2.
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Ipi kg ·m2

Ip1 10
Ip2 24
Ip3 5
Ip4 10
Ip5 5

Figure 12-2: Branched torsional system.

Treat the gears as lumped masses. Discretize the system into three elements as
shown in Fig. 12-3. Each element is composed of a bar with lumped masses attached
at the ends. Hence, the mass matrices can be formed as the summation of cases 3 and
4 of Table 12-10. For gear 2, half of the mass is attached to element 1 and another
half to element 2.

For element 1, the consistent mass matrix for the bar is (Table 12-10, case 4)

m1
bar =




2.4

3

2.4

6
2.4

6

2.4

3




and the lumped mass matrix is (Table 12-10, case 3)

m1
lumped =

[
10 0
0 12

]

Element
G J

�
(N ·m) Ip� (kg ·m2)

1 30000 2.4
2 50000 1.5
3 100000 1.2

Figure 12-3: Three elements composing system of Fig. 12-2.
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The mass matrix for the whole element is

m1 = m1
bar +m1

lumped =




10+ 2.4

3

2.4

6
2.4

6
12+ 2.4

3




Similarly, the other mass matrices are

m2 =




12+ 1.5

3

1.5

6
1.5

6
5+ 1.5

3


 , m3 =




10+ 1.2

3

1.2

6
1.2

6
5+ 1.2

3




The stiffness matrices are (Table 12-6, case 1)

k1 = 104
[

3 −3
−3 3

]
, k2 = 104

[
5 −5
−5 5

]
, k3 = 104

[
10 −10
−10 10

]

(1)

Note that the angles of twist φ2 and φ4 are related and so are the moments T2 and
T4. For element 3,

p3 = [k3 − ω2m3]v3 (2)

in which

p3 =
[

T4
T5

]
and v3 =

[
φ4
φ5

]

Since the speed ratio of gears 2 and 4 is m,

φ4 = −mφ2

and

T4 = − 1

m
T2

Then p3 and v3 become

p3 =
[−1/m 0

0 1

] [
T2
T5

]
= (�T )−1p3

new, v3 =
[−m 0

0 1

] [
φ2
φ5

]
= �v3

new (3)

where

τ =
[−m 0

0 1

]
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Substitution of (3) into (2) gives

p3
new = [�T k3� − ω2�T m3�]v3

new = [k3
new − ω2m3

new]v3
new

with

k3
new = 104

[
10m2 10m
10m 10

]
= 104

[
40 20
20 10

]

m3
new =




(
10+ 1.2

3

)
m2 −1.2

6
m

−1.2

6
m 5+ 1.2

3


 =

[
41.6 −0.4
−0.4 5.4

] (4)

Define the vector of degrees of freedom:

� = [φ1 φ2 φ3 φ5
]

(5)

and expand each element matrix into the global nodal numbering system:

m1 =




10.8 0.4 0 0
0.4 12.8 0 0
0 0 0 0
0 0 0 0


 , m2 =




0 0 0 0
0 12.5 0.25 0
0 0.25 5.4 0
0 0 0 0




m3 =




0 0 0 0
0 41.6 0 −0.4
0 0 0 0
0 −0.4 0 5.4




(6)

k1 = 104




3 −3 0 0
−3 3 0 0

0 0 0 0
0 0 0 0


 , k2 = 104




0 0 0 0
0 5 −5 0
0 −5 5 0
0 0 0 0




k3 = 104




0 0 0 0
0 40 0 20
0 0 0 0
0 20 0 10




(7)

The global mass and stiffness matrices are obtained by adding (6) and (7):

M =




10.8 0.4 0 0
0.4 66.9 0.25 −0.4
0 0.25 5.4 0
0 −0.4 0 5.4


 , K =




3 −3 0 0
−3 48 −5 20

0 −5 5 0
0 20 0 10


 (8)
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The natural frequencies and mode shapes for the branched system are found by
solving the eigenvalue problem

K� = ω2M� (9)

Some results, in radians per second, are

ω1 ≈ 0 (rigid-body mode), ω2 = 55.58, ω3 = 98.74, ω4 = 159.54
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TABLE 12-1 IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS
CROSS-SECTIONAL SHAPES

Notation

T = torque, twisting moment

J = torsional constant

Cross-Sectional Shape Torsional Stress Values

Thick Noncircular Sections

1.
Ellipse

τmax = τA = 16T

πab2

a > b

2.
Hollow ellipse

τmax = τA = 16T

πab2(1− k4)

a > b

where

k = ai/a = bi/b

3.
Equilateral triangle

τmax = τA

= 20T

a3

4.
Square τmax = τA = 4.81T

a3

5.
Rectangle

τmax = τA = 3T

ab2

(
1− 0.630

b

a
+ 0.250

b2

a2

)
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TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS
CROSS-SECTIONAL SHAPES

Cross-Sectional Shape Torsional Stress Values

Hollow (Closed) Thin-Walled Sections

6.
Single cell

t
s

τmax = T

2A∗t
at location of
minimum thickness t

A∗ = area enclosed by
the middle line of the wall

Multicell

t4

t1

1

2

4

q1

q2

q3

q4

3

For M cells:

Solve the M + 1 equations for
dφ

dx
and the shear flows

q1, q2, . . . , qM . By definition, for the i th cell, the shear

stress τi is equal to
qi

ti
.

T = 2
M∑

i=1

qi A∗i

dφ

dx
= 1

2A∗i G


qi

∮
i

ds

t
−

N∑
k=1
k 
=i

qk

∫
ik

ds

t (s)




where G is the shear modulus of elasticity
A∗i is the centerline-enclosed area of cell i

i = 1, 2, 3, . . . ,M cells
k identifies cells adjacent to the i th cell
The i th cell is bounded by N cells
See Examples 2.5 and 12.1.

Circular Cross Sections

7.
Solid

τmax = 2T

πr3
o
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TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS
CROSS-SECTIONAL SHAPES

Cross-Sectional Shape Torsional Stress Values

8.
Hollow

α = di

do

τmax = 2T

πr3
o (1− α4)

9.
Very thin

τmax = T

2πr2t

Thin-Walled Open Sections

τ i
max =

T ti
J

where ti = thickness of segment i , τ i
max = maximum shear stress in segment i

Cross-Sectional Shape Torsional Stress Values

10.
Any open section J = α

3

M∑
i=1

bi t
3
i

where M is the number of the straight or curved segments
of thickness ti and width or height bi comprising the
section. Set α = 1 except as designated otherwise.
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TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS
CROSS-SECTIONAL SHAPES

Cross-Sectional Shape Torsional Stress Values

11.
J = bt3

3

12.

Set α = 1 unless specified
otherwise. See case 10.

J = 1
3α(b1t3

1 + b2t3
2 + ht3

w)

13.
τmax = T K t f

J
= τA See Table 2-5, case 13 for J .

For 0 ≤ tw/t f ≤ 1.0,
K = C1 + C2(tw/t f )+ C3(tw/t f )

2

For 0 ≤ r/t f ≤ 1.0

C1 1.00124+ 0.05540(r/t f )+ 0.05540(r/t f )
2

C2 0.00401+ 0.12065(r/t f )+ 0.05280(r/t f )
2

C3 0.13890+ 0.11549(r/t f )− 0.15337(r/t f )
2

Ref. [12.2]

14.

r = radius of fillet

τmax = τA = T K t2
J

See Table 2-5, case 14 for J .

For 0 ≤ tw/t2 ≤ 1.0,
K = C1 + C2(tw/t2)+ C3(tw/t2)2

For 0 ≤ r/t2 ≤ 1.0

C1 0.92424+ 0.05486(r/t2)+ 0.04533(r/t2)2

C2 0.06852+ 0.01174(r/t2)+ 0.13874(r/t2)2

C3 0.16321+ 0.03151(r/t2)− 0.10696(r/t2)2

Ref. [12.2]
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TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS
CROSS-SECTIONAL SHAPES

Cross-Sectional Shape Torsional Stress Values

15.
τmax = τA = T K t

J
See Table 2-5, case 15 for J .

K = 3.73− 9.264
(r

t

)
+ 10.24

(r

t

)2

0.1 ≤ r

t
≤ 0.3

K = 1.7261− 0.1800
(r

t

)
+ 0.09761

(r

t

)2

0.3 ≤ r

t
≤ 2.0

Ref. [12.3]

Other Shapes

16.
τmax = τA = T K t

J

For 0.2 ≤ r

t
≤ 1.5,

K = 3.736− 6.206
(r

t

)
+ 5.182

(r

t

)2 − 1.487
(r

t

)3

Ref. [12.3]

17. τmax = τA = T K/r3

For 0.1 ≤ b/r ≤ 0.5,
K = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.5 ≤ a/b ≤ 2.0

C1 0.8040+ 0.5667(a/b)− 0.7522(a/b)2 + 0.2277(a/b)3

C2 3.955− 10.116(a/b)+ 9.670(a/b)2 − 2.715(a/b)3

C3 −6.831+ 19.717(a/b)− 22.226(a/b)2 + 7.176(a/b)3

C4 2.126+ 0.8590(a/b)+ 13.468(a/b)2 − 6.542(a/b)3

Ref. [12.3]
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TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS
CROSS-SECTIONAL SHAPES

Cross-Sectional Shape Torsional Stress Values

18. τmax = τA = T K/r3

For 0.2 ≤ b/r ≤ 0.4,
K = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.3 ≤ a/b ≤ 1.2

C1 1.923− 5.435(a/b)+ 7.183(a/b)2 − 2.939(a/b)3

C2 −13.63+ 86.26(a/b)− 117.4(a/b)2 + 47.96(a/b)3

C3 86.23− 459.88(a/b)+ 594.08(a/b)2 − 235.43(a/b)3

C4 −126.24+ 671.3(a/b)− 811.29(a/b)2 + 313.75(a/b)3

Ref. [12.3]

19.
τmax = τA = T K

r3
o

For 0.2 ≤ ri/r0 ≤ 0.6,
K = C1 + C2(ri/ro)+ C3(ri/ro)

2 + C4(ri/ro)
3

For 0.1 ≤ a/ri ≤ 1.0

C1 2.005− 0.5442(a/ri )+ 1.135(a/ri )
2 − 1.123(a/ri )

3

C2 2.739+ 7.664(a/ri )− 10.99(a/ri )
2 + 11.15(a/ri )

3

C3 −14.86− 22.52(a/ri )+ 35.12(a/ri )
2 − 34.16(a/ri )

3

C4 27.67+ 27.70(a/ri )− 42.81(a/ri )
2 + 41.69(a/ri )

3

Ref. [12.3]

20. τmax = τA = T K/r3

For 0.1 ≤ b/r ≤ 0.5,
K = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.3 ≤ a/b ≤ 2.0

C1 1.103− 0.1886(a/b)− 0.05643(a/b)2 + 0.03359(a/b)3

C2 3.042− 8.194(a/b)+ 6.508(a/b)2 − 1.556(a/b)3

C3 −7.027+ 17.65(a/b)− 11.88(a/b)2 + 2.596(a/b)3

C4 4.459− 6.721(a/b)+ 3.416(a/b)2 − 0.6402(a/b)3

Ref. [12.3]
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TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS
CROSS-SECTIONAL SHAPES

Cross-Sectional
Shape Torsional Stress Values

21. τmax = τA = T K/r3

For 0.1 ≤ b/r ≤ 0.5,
K = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.2 ≤ a/b ≤ 2.0

C1 0.642688− 0.023769(a/b)+ 0.036964(a/b)2 − 0.018478(a/b)3

C2 −0.111483+ 0.509322(a/b)− 0.728092(a/b)2 + 0.341498(a/b)3

C3 0.616841− 2.741024(a/b)+ 3.582741(a/b)2 − 1.706508(a/b)3

C4 −0.889778+ 4.072625(a/b)− 6.123450(a/b)2 + 2.675014(a/b)3

Ref. [12.3]

22. τmax = τA = T K/r3

For 0.1 ≤ b/r ≤ 0.5,
K = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.2 ≤ a/b ≤ 2.0

C1 0.604248+ 0.107977(a/b)− 0.108329(a/b)2 + 0.029090(a/b)3

C2 0.441822− 1.474396(a/b)+ 1.537202(a/b)2 − 0.406942(a/b)3

C3 −1.556588+ 5.486226(a/b)− 6.406379(a/b)2 + 1.555353(a/b)3

C4 1.850184− 6.684652(a/b)+ 6.467717(a/b)2 − 1.359464(a/b)3

Ref. [12.3]

23. τmax = τA = T K/r3

For 0.1 ≤ a/r ≤ 0.5,
K = 0.650320+ 7.648135(a/r)− 30.943539(a/r)2

+ 57.049957(a/r)3

Ref. [12.3]

24. τmax = τ j = T K/r3 j = A or B
For 0.1 ≤ a/b ≤ 0.8,
At A:
K = −0.245866+ 0.622510(b/a)− 0.021154(b/a)2

+ 0.000204(b/a)3

At B:
K = 0.327176+ 0.257521(b/a)− 0.033676(b/a)2

+ 0.001221(b/a)3

Ref. [12.3]
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TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS
CROSS-SECTIONAL SHAPES

Cross-Sectional
Shape Torsional Stress Values

25. τmax = τA = T K/r3

For 0.1 ≤ b/r ≤ 0.5,
K = C1 + C2(b/r)+ C3(b/r)2 + C4(b/r)3

For 0.2 ≤ a/b ≤ 2.0

C1 0.574531+ 0.241436(a/b)− 0.298341(a/b)2 + 0.108557(a/b)3

C2 0.695576− 2.766746(a/b)+ 3.589467(a/b)2 − 1.291860(a/b)3

C3 −2.435372+ 10.207893(a/b)− 14.264500(a/b)2 + 4.659470(a/b)3

C4 2.651900− 11.083944(a/b)+ 12.897306(a/b)2 − 2.957086(a/b)3

Ref. [12.3]

26. τmax = τA = T K/r3

For 0.1 ≤ a/r ≤ 1.0,
K = 0.623960+ 1.617474(a/r)− 2.605508(a/r)2

+ 3.239703(a/r)3

Ref. [12.3]

27. τmax = τA = T K/r3

For 0.1 ≤ a/r ≤ 0.5,
K = 0.6382+ 2.165(a/r)− 4.849(a/r)2 + 12.92(a/r)3

For 0.5 < a/r ≤ 0.8
K = −87.91+ 467.5(a/r)− 817.94(a/r)2 + 486.2(a/r)3

Ref. [12.3]

28. τmax = τ j = T K/b3 j = A or B
For 0.1 ≤ a/b ≤ 0.4,
At A:
K = 75.74442− 679.83777(a/b)+ 2136.45068(a/b)2

− 2242.53418(a/b)3

For 0.1 ≤ a/b ≤ 0.8,
At B:
K = 0.707437− 0.273233(b/a)+ 0.165791(b/a)2

− 0.005774(b/a)3

Ref. [12.3]
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TABLE 12-1 (continued) IMPORTANT TORSIONAL STRESS VALUES ON VARIOUS
CROSS-SECTIONAL SHAPES

Cross-Sectional Shape Torsional Stress Values

29. τmax = τA = T K/r3

For 0.1 ≤ a/r ≤ 0.5
K = 1.025961+ 1.180013(a/r)− 2.788884(a/r)2

+ 3.708282(a/r)3

Ref. [12.3]

30. τmax = τA = T K/r3

For 0.1 ≤ a/r ≤ 0.5
K = 1.005380+ 1.543949(a/r)− 2.954627(a/r)2

+ 7.058312(a/r)3

Ref. [12.3]
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TABLE 12-2 UNIFORM BARS WITH ARBITRARY LOADING
A. General Response Expressions

TORSION

Positive Angle of Twist φ and Torque T

Case Response

Angle of twist φ = φ0 + T0
x

G J
+ Fφ

Torque T = T0 + FT

EXTENSION

Positive Elongation u and Axial Force P

Case Response

Axial displacement u = u0 + P0
x

E A
+ Fu

Axial force P = P0 + FP

B. Loading Functions

<x − a>n=
{

0 if x < a
(x − a)n if x ≥ a

<x − a>0=
{

0 if x < a
1 if x ≥ a

TORSION: Fφ(x), FT (x)

Concentrated Torque Uniformly Distributed Torque

Fφ(x)
−T1 <x − a>

G J
− mx1

2G J
(<x − a1>

2 − <x − a2>
2)

FT (x) −T1 <x − a>0 −mx1(<x − a1> − <x − a2>)
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TABLE 12-2 (continued) UNIFORM BARS WITH ARBITRARY LOADING

EXTENSION: Fu(x), FP(x) where α = Thermal expansion coefficient

Point Force Uniformly Distributed Force Temperature Change �T

Fu(x) − P1 <x − a>

E A
− px1

2E A
(<x−a1>

2 − <x −a2>
2) α �T x

FP(x) −P1 <x −a>0 −px1(<x − a1> − <x − a2>) 0

C. Initial Parameters

F̄φ = Fφ|x=L F̄T = FT |x=L F̄u = Fu |x=L F̄P = FP |x=L

Right End
−→

−→

Left End

1.
Fixed

2.
Free

1.
Fixed Torsion: φ0 = 0, T0 = −G J

L
F̄φ

Extension: u0 = 0, P0 = − E A

L
F̄u

Torsion: φ0 = 0, T0 = −F̄T

Extension: u0 = 0, P0 = −F̄P

2.
Free

Torsion: T0 = 0, φ0 = −F̄φ

Extension: P0 = 0, u0 = −F̄u

Subject to rigid-body motion;
therefore, kinematically
unstable
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TABLE 12-3 NATURAL FREQUENCIES AND MODE SHAPES FOR TORSION
OF UNIFORM BARS

Notation

J = torsional constant Ip = polar mass moment of inertia
Ix = polar moment of inertia per unit length
L = length of bar Ipi = polar mass moment of inertia
G = shear modulus of elasticity of concentrated mass

Natural frequencies: ωi (rad/s) = λi

L

(
G J

ρ∗ Ix

)1/2

= λi

L

(
G J

Ip

)1/2

fi (Hz) = ωi

2π
, i = 1, 2, 3, . . .

Boundary Conditions λi Mode Shapes, ξ = x/L

1.
Free–free

λi = π, 2π, 3π, . . . cos λiξ

2.
Clamped–free

λi = 1
2 (2i − 1)π sin λiξ

3.
Clamped–clamped

λi = π, 2π, 3π, . . . sin λiξ

4.
Spring–free λi tanλi = kL

G J

cot λi cosλiξ + sinλiξ

5.
Clamped–spring λi = − kL

G J
tan λi

sin λiξ
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TABLE 12-3 (continued) NATURAL FREQUENCIES AND MODE SHAPES FOR TORSION OF
UNIFORM BARS

Boundary Conditions λi Mode Shapes, ξ = x/L

6.
Spring–spring λ2

i − K1
λi (1+ α)

tanλi
− αK 2

1 = 0

K1 = k1L

G J
K2 = k2L

G J

α = k2

k1

sinλiξ + λi

K1
cosλiξ

7.
Free with mass

λi = −I1 tanλi

I1 = ρL J

Ip1

cos λiξ

8.
Clamped with mass

λi = I1 cot λi

I1 = ρL J

Ip1

sinλiξ

9.
Spring with mass

λ2
i + I1λi (1+ α) tanλi − α I 2

1 = 0

α = K

I1
K = kL

G J
I1 = ρL J

Ip1

sinλiξ + λi

K
cos λiξ

10.
Free with spring
and mass

λ2
i + I1λi tanλi − α I 2

1 = 0

I1 = ρL J

Ip1

α = K

I1
K = kL

G J

cos λiξ

11.
Fixed–mass
with spring

λ2
i − I1

λi

tanλi
− α I 2

1 = 0

I1 = ρL J

Ip1

α = K

I1
K = kL

G J

sinλiξ
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TABLE 12-3 (continued) NATURAL FREQUENCIES AND MODE SHAPES FOR TORSION OF
UNIFORM BARS

Boundary Conditions λi Mode Shapes, ξ = x/L

12.
Masses at both ends λ2

i − Ip1λi
1+ α
tanλi

− I 2
p1α = 0

α = Ip2

Ip1

sinλi ξ − Ip1

λi
cos λiξ

13. λ4
i

I1 I2
− λ

3
i (I1 + I2) cot λi

I1 I2

− λ2
i

(
1+ K1

I2
+ K2

I1

)

+ λi (K1 + K2) cot λi

+ K1 K2 = 0

K1 = k1L

G Ip
K2 = k2L

G Ip

I1 = Ip L

Ip1
I2 = Ip L

Ip2

cos λiξ + δ sinλiξ

δ = λi/(K1 − λ2
i /I1)
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TABLE 12-4 NATURAL FREQUENCIES AND MODE SHAPES FOR
EXTENSION OF UNIFORM BARS

Notation

ρ∗ = mass per unit volume L = length of bar
E = modulus of elasticity A = cross-sectional area

Natural frequencies: ωi (rad/s) = λi

L

(
E

ρ∗

)1/2

fi (Hz) = ωi

2π
, i = 1, 2, 3, . . .

Boundary Conditions λi Mode Shapes, ξ = x/L

1.
Free–free

λi = iπ cos λiξ

2.
Clamped–free

λi = 1
2π(2i − 1) sin λiξ

3.
Clamped–clamped

λi = iπ sin λiξ

4.
Spring–free λi tanλi = kL

AE

cot λi cosλiξ + sinλiξ
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TABLE 12-4 (continued) NATURAL FREQUENCIES AND MODE SHAPES FOR EXTENSION OF
UNIFORM BARS

Boundary Conditions λi Mode Shapes, ξ = x/L

5.
Spring–clamped λi = − kL

E A
tanλi

sinλiξ

6.
Clamped–mass λi tanλi = ρ∗AL

M1

sinλiξ

7.
Free–mass

1

λi
tanλi = − M1

ρ∗AL

cosλiξ

8.
Spring–mass

λ2
i + I1λi (1+ α) tanλi − α I 2

1 = 0

α = K

I1
K = kL

E A
I1 = ρL A

M1

sinλiξ + λi

K
cos λiξ
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TABLE 12-5 POLAR MASS MOMENTS OF INERTIA FOR CONCENTRATED
MASSES

Notation

ρ = mass per unit length

ρ∗ = mass per unit volume

M = total mass of concentrated mass

Polar Mass Moment of Inertia Ipi (M L2)
Mass Shape about x Axis

1.
Disk: hollow circular cylinder

1
2ρh(r2

outer + r2
inner)

2.
Solid circular cylinder

1
2πhρ∗r4 = 1

2ρhr2

3.
Rectangular prism

Three cases:
1. x passes through center of gravity (as shown)
(M/12)(a2 + b2)

2. x coincides with A–A
(M/12)(a2 + 4b2)

3. x coincides with B–B
(M/3)(a2 + b2)
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TABLE 12-5 (continued) POLAR MASS MOMENTS OF INERTIA FOR CONCENTRATED MASSES

Polar Mass Moment of Inertia Ipi (M L2)
Mass Shape about x Axis

4.
Torus

1
64π

2ρ∗(router + rinner)[4(r2
outer − r2

inner)
2 + 3(router − rinner)

4]

5.
Cone

1
10πρ

∗r4h

6.
Sphere

8
15πρ

∗r5

7.
Hollow sphere

8
15πρ

∗(r5
outer − r5

inner)
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TABLE 12-5 (continued) POLAR MASS MOMENTS OF INERTIA FOR CONCENTRATED MASSES

Polar Mass Moment of Inertia Ipi (M L2)
Mass Shape about x Axis

8.
Ellipsoid

4
15πρ

∗abc(a2 + c2)

9.
Hemisphere

4
15πρ

∗r5

10.
Paraboloid of revolution

1
6πρ

∗ab4

11.
Right rectangular pyramid

1
60ρ
∗abc(c2 + a2)
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TABLE 12-6 STRUCTURAL MATRICES FOR TORSION OF BARS
Notation

J = torsional constant

G = shear modulus of elasticity

� = length of element

Case
(i th Element)

Transfer Matrices

zb = Ui za

Linearly Varying Distributed Applied Torque Stiffness Matrices

pi = ki vi − p̄i

1.
Simple static bar




1
�

G J
Fφ

0 1 FT

0 0 1





φa

Ta
1




UI za

Fφ = − 1

G J

(
ma

�2

3
+ mb

�2

6

)

FT = −ma
�

2
− mb

�

2

ki =




G J

�
−G J

�

−G J

�

G J

�


 vi =

[
φa

φb

]

p̄i =

 −G J

�
Fφ

−FT + G J

�
Fφ


 pi =

[
Ta
Tb

]

TA
B

L
E

12-6
S

tru
ctu

ralM
atrices

fo
r

To
rsio

n
o

f
B

ars
653



TABLE 12-6 (continued) STRUCTURAL MATRICES FOR TORSION OF BARS

2.
On elastic foundation

β2 = kt/G J




coshβ�
sinhβ�

G Jβ
Fφ

G Jβ sinhβ� coshβ� FT

0 0 1




Fφ = −ma

G J

(−1+ coshβ�

β2
− −β�+ sinhβ�

β3�

)

− mb

G J

(−β�+ sinhβ�

β3�

)

FT = −ma

(
sinhβ�

β
− −1+ coshβ�

β2�

)

−mb

(−1+ coshβ�

β2�

)

ki =




G Jβ
coshβ�

sinhβ�
− G Jβ

sinhβ�

− G Jβ

sinhβ�
G Jβ

coshβ�

sinhβ�




p̄i =




− G Jβ

sinhβ�
Fφ

−FT + coshβ�

sinhβ�
G JβFφ




3.
With mass and
foundation

β2 = (ω2ρr2
p − kt )/G J

= (ω2 Ip − kt )/G J

ρ = mass/length
If β2 < 0, use the
formulas of case 2 with
β2 =
(kt − ω2 Ip)/G J




cosβ�
sinβ�

G Jβ
Fφ

−G Jβ sinβ� cosβ� FT

0 0 1




Fφ = −ma

G J

(
1− cos β�

β2
− β�− sinβ�

β3�

)

− mb

G J

(
β�− sinβ�

β3�

)

FT = −ma

(
sinβ�

β
− 1− cosβ�

β2�

)

−mb

(
1− cosβ�

β2�

)

Dynamic stiffness matrix

ki =




G Jβ
cosβ�

sinβ�
− G Jβ

sinβ�

− G Jβ

sinβ�
G Jβ

cosβ�

sinβ�




p̄i =




− G Jβ

sinβ�
Fφ

−FT + cosβ�

sinβ�
G JβFφ
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TABLE 12-7 SELECTED TRANSFER MATRICES FOR TORSION
Notation

Ipi = polar mass moment of inertia kt = elastic foundation modulus
at point i ω = natural frequency

Ti = applied torque rp = polar radius of gyration
kb = torsional spring constanta

of branch system (F L)

Case Transfer Matrixa

1.
Point matrix


 1 1/k 0

kb − Ipiω
2 1 −Ti

0 0 1




φT

1




Ui zi

2.
Rigid bar Ui =


 1 0 0
�(kt − ρr2

pω
2) 1 − 1

2�(ma + mb)

0 0 1




aThe spring constant k can be considered to be equivalent to G J/� of Table 12-6, case 1.
In the case of a coil spring, k = Ed4/32N D, where E = Young’s modulus, d = spring
wire diameter, D = mean coil diameter, and N = number of coils.
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TABLE 12-8 STRUCTURAL MATRICES FOR EXTENSION OF BARS
Notation

A = cross-sectional area

E = modulus of elasticity

� = length of element

α = thermal expansion coefficient

Case
(i th Element)

Transfer Matrices

zb = Ui za

Linearly Varying Distributed Axial Force Stiffness Matrices

pi = ki vi − p̄i

1.
Simple static bar




1
�

AE
Fu

0 1 F P

0 0 1






ua

Pa
1




Ui za

Fu = −pa
�2

3AE
− pb

�2

6AE
+ α��T

F P = −pa
�

2
− pb

�

2

ki =




AE

�
− AE

�

− AE

�

AE

�


 vi =

[
ua
ub

]

p̄i =


− AE

�
Fu

−F P + AE

�
Fu


 pi =

[
pa
pb

]
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2.
On elastic foundation kx

β2 = kx/AE




coshβ�
sinhβ�

AEβ
Fu

AEβ sinhβ� coshβ� F P

0 0 1




Fu =− pa

AE

(−1+ coshβ�

β2
− −β�+ sinhβ�

β3�

)

− pb

AE

−β�+ sinhβ�

β3�
+ α �T

sinhβ�

β

F P =−pa

(
sinhβ�

β
− −1+ coshβ�

β2�

)

− pb
−1+ coshβ�

β2�
− AEα �T (1− coshβ�)

ki =




AEβ
coshβ�

sinhβ�
− AEβ

sinhβ�

− AEβ

sinhβ�
AEβ

coshβ�

sinhβ�




p̄i =




− AEβ

sinhβ�
Fu

−F p + coshβ�

sinhβ�
AEβFu




3.
With mass and
foundation

ρ = mass/length
β2 = (ρω2 − kx )/AE
If β2 < 0, use case 2
with β2 = (kx − ρω2)/AE




cos β�
sinβ�

AEβ
Fu

AEβ sinβ� cos β� F P

0 0 1




Fu =− pa

AE

(
1− cos β�

β2
− β�− sinβ�

β3�

)

− pb

AE

β�− sinβ�

β3�
+ α �T

sinβ�

β

F p =−pa

(
sinβ�

β
− 1− cos β�

β2�

)

− pb
1− cos β�

β2�
− AE α�T (1− cos β�)

Dynamic stiffness matrix

ki =




AEβ
cos β�

sinβ�
− AEβ

sinβ�

− AEβ

sinβ�
AEβ

cos β�

sinβ�




p̄i =




− AEβ

sinβ�
Fu

−F P + AEβ
cos β�

sinβ�
Fu
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TABLE 12-9 SELECTED TRANSFER MATRICES FOR EXTENSION
Notation

kb = spring constanta of branch system (F/L) Pi = applied concentrated axial force

kx = elastic foundation modulus ω = natural frequency

Mi = concentrated mass ρ = mass per unit length

Case Transfer Matrix

1.
Point matrix Ui =




1 1/k 0

kb − Miω
2 1 −Pi

0 0 1




2.
Rigid bar Ui =




1 0 0

�(kx − ρω2) 1 − 1
2�(pa + pb)

0 0 1




aThe spring constant k can be considered to be equivalent to E A/� of Table 12-8, case 1.
In the case of springs in parallel k = k1+ k2. In the case of a coil spring k = Ed4/8N D3,
where E = Young’s modulus, d = spring wire diameter, D = mean coil diameter, and
N = number of coils. Other equivalent spring constants are given in Table 10-3.
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TABLE 12-10 MASS MATRICES FOR BARS IN TORSION
Notation

Ipi = polar mass moment of inertia of concentrated mass
at point i

Ip = polar mass moment of inertia per unit length

Bars in Torsion Mass Matrix mi

1.
Lumped mass model for
distributed mass moment of inertia Ip

Ip�

2

[
1 0
0 1

]

2.
Lumped mass single-point model for
distributed mass moment of inertia Ip

1× 1 mass matrix
Ip�

3.
Lumped mass matrix for two
concentrated masses

[
Ipa 0
0 Ipb

]

4.
Consistent mass matrix − Ip�

6

[
2 1
1 2

]

5.
General mass matrix mi = ∫ �0 J

A
ρ��T dx � =

[
H1
H2

]

with the displacement shape function
φ(x) = H1ϕa + H2ϕb. If for constant
J the static response H1 = 1− x/�,
H2 = x/� is employed, mi is the
consistent mass matrix of case 4.
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TABLE 12-11 MASS MATRICES FOR BARS IN EXTENSION
Notation

ρ = mass per unit length

� = length of element

Bars in Extension Mass Matrix mi

1.
Lumped mass two-point
model for distributed mass

ρ�

2

[
1 0
0 1

]

2.
Lumped mass single-
point model for
distributed mass ρ

1× 1 mass matrix
ρ�

3.
Lumped mass matrix for
two concentrated masses

[
Ma 0
0 Mb

]

4.
Consistent mass matrix

ρ�

6

[
2 1
1 2

]

5.
General mass matrix mi = ∫ �0 ρ��T dx � =

[
H1
H2

]

with the displacement shape function
u(x) = H1ua + H2ub. If for constant
ρ the static response H1 = 1− x/�,
H2 = x/� is employed, mi is the
consistent mass matrix of case 4.
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Structures formed of bars that are rigidly connected are referred to as frames, while
those of bars that are pin connected are trusses. Analytically, trusses are treated as
being a special case of frames. For the frames of this chapter, it is assumed that
there is no interaction between axial, torsional, and flexural deformations (i.e., the
responses are based on uncoupled extension, torsion, and bending theory).

Formulas are provided for several simple frame configurations with simple load-
ings. Also, structural matrices required for more complicated frames are listed. Many
commercially available general-purpose structural analysis computer programs can
be used to analyze complicated frames.

Entries in most of the tables of this chapter give salient values of reactions, forces,
and moments. Also, a moment diagram is shown. This moment can be used to cal-
culate the bending stresses using the technical beam theory flexural stress formula.
Formulas for buckling loads and natural frequencies are tabulated.

Special attention is given to gridworks, which are flat networks of beams with
transverse loading. Collapse loads are provided for plastic design.
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662 FRAMES

13.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F
for force, M for mass, and T for time.

e = h/L, where h is the length of the vertical members and L is the
length of the horizontal members

E Modulus of elasticity of material (F/L2)

H Horizontal reaction; HA is horizontal reaction at location A (F)

I Moment of inertia of member about its neutral axis (L4)

Ih Moment of inertia of horizontal members (L4)

Iv Moment of inertia of vertical members (L4)

Ix Polar moment of inertia, = r2
p A (L4)

J Torsional constant (L4)

L Length of member (L)

M Bending moment (L F); a bending moment is taken as positive when
it causes tension on the inner side of the frame and compression on
the outer side; opposing bending moments are taken to be negative

p Applied distributed loading (F/L)

R Vertical reaction; RA is vertical reaction at location A (F)

ũ, ṽ, w̃ Displacements in x , y, and z directions, respectively

uX , uY , uZ Displacements in X , Y , and Z directions, respectively

v Displacement; vAx is displacement at location A in the x (horizontal)
direction; other displacements defined similarly (L)

x, y, z Local coordinates

X,Y, Z Global coordinates

β = Ih (horizontal beam)/Iv (vertical member)

θ = θy Rotation angle of cross section about y axis

θz Rotation angle of cross section about z axis

ω Natural frequency

Notation for Gridworks

g, s Index for girders and stiffeners, respectively

Ig, Is Moments of inertia of girders and stiffeners, respectively (L4)

Lg, Ls Length of girders and stiffeners, respectively (L)

ng, ns Total number of girders and stiffeners, respectively

ps Loading intensity along sth stiffener (F/L)

Pg, Ps Axial forces in girders and stiffeners, respectively (F)



13.2 FRAMES 663

wg, θg,Mg, Vg Deflection, slope, bending moment, and shear force of gth girder
Wsg Concentrated force at intersection xs, yg (F)

ρg, ρs Mass per unit length of girders and stiffeners, respectively (M/L,
FT 2/L2)

13.2 FRAMES

Formulas

Tables 13-1 to 13-3 provide formulas for the static response of simple frameworks.
More complicated loading configurations can be obtained by superimposing the for-
mulas for cases given in the tables. This is illustrated in Example 13.5. Formulas for
frames of more complicated geometries are to be found in standard references (e.g.,
[13.1, 13.2]). Readily available structural analysis computer programs can be used to
find the forces and displacements as well as buckling loads and natural frequencies
in frameworks of any complexity.

Example 13.1 Statically Determinate Frame with Concentrated Force The
frame of Fig. 13-1 is hinged at the lower end of the left-hand member and is roller
supported at the lower end of the right-hand member.

Figure 13-1: Statically determinate frame.

From case 1 of Table 13-1,

RA = RB = 1
2 W = 5000 lb, Mmax = 1

4 W L = 45,000 ft-lb

Example 13.2 Statically Indeterminate Frame with Concentrated Force Sup-
pose for the frame of Fig. 13-1 that the lower end of the right-hand member is hinged
(no roller). Then the frame is statically indeterminate, so that case 1 of Table 13-2 ap-
plies. Use a = 1

2 L = 108 in., e = h/L = 8
18 = 0.444, β = Ih/Iv = 719

1890 = 0.380.
From Table 13-2,
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HA = HB = 3Wa

2hL

L − a

2βe + 3
= 2528 lb

RA = RB = 1
2 W = 5000 lb

MC = MD = 3Wa

2L

L − a

2βe + 3
= 242,700 in.-lb

MK = Wa(L − a)

2L

4βe + 3

2βe + 3
= 297,300 in.-lb

The moment diagram is sketched in case 1 of Table 13-2.

Example 13.3 Frame with Fixed Legs If the lower ends of the legs of the frame
of Fig. 13-1 are fixed, the reactions and moment distribution can be calculated using
case 6 of Table 13-2. As in Example 13.2, a = 108 in., e = 0.444, and β = 0.380.
The reactions are

RA = RB = 1
2 W = 5000 lb

HA = HB = 3W L/[8h(βe + 2)] = 3891 lb

MA = MB = W L/[8(βe + 2)] = HAh/3 = 124,497 in.-lb

MC = MD = W L/[4(βe + 2)] = 2MA = 248,995 in.-lb

MK = W L

4

βe + 1

βe + 2
= 291,005 in.-lb

Case 6 of Table 13-2 illustrates the moment distribution.

Example 13.4 Laterally Loaded Frame Suppose that the vertical load is re-
moved from the frame of Example 13.2 and replaced by a lateral load acting at half
height, as shown in Fig. 13-2.

Figure 13-2: Statically indeterminate frame of Example 13.4. The dimensions and section
properties are given in Fig. 13-1.
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Use the formulas of case 3 of Table 13-2 with W = 8000 lb, h = 96 in., a =
1
2 h = 48 in., β = 0.380, and L = 216 in. Define a constant

A = aβ(2h − a)/[h(2hβ + 3L)] = 0.0379494

Then we find that

RA = RB = W (h − a)/L = 1778 lb

HA = (W/2h)[h + a − (h − a)A] = 5924 lb

HB = [W (h − a)/2h](1+ A) = 2076 lb

MC = HBh = 199,296 in.-lb

MD = 1
2 W (h − a)(1− A) = 184,714 in.-lb

MK = (h − a)HA = 284,352 in.-lb

The moment diagram is given in Table 13-2, case 3.

Example 13.5 Superposition of Solutions for a Frame with Several Loadings
Suppose that the frame of Fig. 13-2 is subjected to the loads of Examples 13.2 and
13.4 simultaneously. This configuration is shown in Fig. 13-3.

Figure 13-3: Frame of Fig. 13-2 with horizontal and vertical loading.

Since these frame formulas are based on linear theory, superposition holds. See
cases 1 and 3 of Table 13-2 for the directions of the reactions. Superposition gives,
for the frame of Fig. 13-3,

HA = 5924− 2528 = 3396 lb, HB = 2076+ 2528 = 4604 lb

RA = 5000− 1778 = 3222 lb, RB = 5000+ 1778 = 6778 lb

The directions of these reactions are shown in Fig. 13-3.
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The moment diagram can be obtained by superimposing the moment diagrams of
cases 1 and 3, Table 13-2, with due regard being given to the signs of the moments.
Alternatively, the moment diagram can be calculated using the applied loading and
the computed reactions. Thus,

MC = HBh = 441,984 in.-lb

MK1 = −HBh + 1
2 RB L = +290,040 in.-lb

MK2 = HA × 48 = 163,008 in.-lb

MD = W2 × 48− HAh = 57,984 in.-lb

Figure 13-4: Moment diagram for frame of Fig. 13-3.

The combined moment diagram is illustrated in Fig. 13-4.

Buckling Loads

The buckling loads for some frames are given in Table 13-4. Reference [13.3] pro-
vides more cases. Methods for obtaining buckling loads of simple frames are de-
scribed in Ref. [13.4]. For more complicated frames, use the matrix methods given
in Section 13.4.

Natural Frequencies

Table 13-5 provides the fundamental natural frequencies for some simple framework
configurations. The computational methods of Section 13.4 can be used to obtain the
natural frequencies for more general frames.

Plastic Design

As in the case of beams, the concept of plastic design can be applied to frames.
The primary objective of the design is to find the collapse load and the location
of the plastic hinges. Normally, these plastic designs are restricted to proportional
loading such that all loads acting on a frame remain in fixed proportion as their
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magnitudes are varied. The common factor that multiplies all loads as they vary in
fixed proportion is called the load factor. The procedure for finding the load factor
is as follows [13.5]:

1. Find the locations of the plastic hinges in each component of the frame using
the same method as for beams.

2. Form possible failure modes called mechanisms by different combinations of
plastic hinges. The number of hinges in each mechanism is equal to the number
of redundancies plus 1.

3. Calculate the collapse load factor for each mechanism.
4. Calculate the moments in the frame for each collapse load factor to determine

the correct load factor. The true load factor should be such that the moment in
the frame due to this load should not exceed the plastic moment Mp .

In addition to the collapse load factors that can be determined, a safe-load region
can be established. Table 13-6 shows safe-load regions for several frameworks. In
Table 13-6, a combination of forces applied on the frame define a point on the xy
plane. When this point falls inside the safe region, no collapse occurs. When the
point falls on the boundary of the region, collapse occurs and the collapse mode is
identified by the location on the boundary, as indicated by the figures in Table 13-6.
Loadings leading to points outside the region correspond to a collapsed framework.
In fact, an attempt to increase the applied loads beyond that necessary to reach the
boundary results in further movements of the plastic hinges without an increase in
the collapse loads. See Ref. [13.5] for techniques for calculating the safe-load region.

13.3 GRIDWORKS

A special case of frames is a gridwork, or grillage, which is a network of beams
rigidly connected at the intersections, loaded transversely. That is, a gridwork is a
network of closely spaced beams with out-of-plane loading. It may be of any shape
and the network of beams may intersect at any angle. These beams need not be
uniform.

The gridworks treated here are plane structures (Fig. 13-5), with the beams lying
in one direction called girders and those lying in the perpendicular direction called
stiffeners. Either set of gridwork beams can be selected to be the girders. In prac-
tice, the wider spaced and heavier set is usually designated as girders, whereas the
closer spaced and lighter beams are stiffeners. For a uniform gridwork, the girders
are identical in size, end conditions, and spacing. However, the set of stiffeners may
differ from the set of girders, although the stiffeners are identical to each other. The
treatment here is adapted from Ref [13.6].

For the formulas here, the cross section of the beams may be open or closed, al-
though torsional rigidity is not taken into account. For closed cross sections this may
lead to an error of up to 5%. Stresses in the girders and stiffeners can be calculated
using the formulas for beams in Chapter 11.
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Figure 13-5: Typical gridwork.

For gridworks not covered by the formulas here, use can be made of a framework
computer program. The structural matrices, including transfer, stiffness, and mass
matrices, for a grillage are provided in Section 13.4. The sign convention of the
transfer matrix method for displacements and forces for the beams of Chapter 11
apply to the gridwork beams here.

Static Loading

The deflection, slope, bending moment, and shear force of the gth girder of the grid-
work are given in Table 13-7. The ends of both the girders and stiffeners are simply
supported. Table 13-8 provides the parameters K j for particular loadings. Sufficient
accuracy is usually achieved if only M terms, where M � ∞, are included in the
formulas for Tables 13-7 and 13-8; that is,

∞∑
j=1

=
M∑

j=1

Example 13.6 Deflection of a Gridwork with Uniform Force The grillage of
Fig. 13-6 is loaded with a uniform force of 10 psi. Use the formulas of Tables 13-7
and 13-8 to find the deflections at the intersections of the beams. Assume that the
axial forces in both the girders and stiffeners are zero.

As indicated in case 3, Table 13-8, only a single term is needed in the summation
of the formulas of Table 13-7. It is reasonable to assume that the loading inten-
sity along either of the stiffeners will be ps = (10 psi)Lg/(ns + 1) = 10( 100

3 ) =
333.33 lb/in. Use one term of case 1, Table 13-7:

wg = sin
πg

ng + 1
K1 sin

πx

Lg
= K1 sin

πg

3
sin

πx

100
(1)

where from case 3 of Table 13-8, since Pg = Ps = 0,
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Figure 13-6: Grillage for Examples 13.6–13.8.

K1 =
4L4

s
E Isπ5

2∑
s=1

ps sin πs
3

3
2 + 3

2

=
4L4

s ps

E Isπ5 (
√

3/2+√3/2)

3
2 + 3

2

= 4L4
s ps

E Isπ5

√
3

3
(2)

Then

w1|x=Lg/3 = w2|x=Lg/3 = w1|x=2Lg/3 = w2|x=2Lg/3

= 4L4
s ps

E Isπ5

√
3

3
sin

π

3
sin

π

3
= 0.062886 in. (3)

Example 13.7 Moment in a Gridwork with Uniform Force and Axial Loads
Find the maximum bending moment in the grillage of Fig. 13-6. The grillage is
loaded with a transverse uniform force of 10 psi. In addition, the girders are subject
to compressive axial forces of 5000 lb.

The bending moments in the girders are given by case 3, Table 13-7. As noted in
case 3 of Table 13-8, only one term in case 3, Table 13-7, is required. Thus

Mg = E Ig sin
πg

ng + 1
K1
π2

L2
g

sin
πx

Lg
(1)

The coefficient K1 is taken from case 3, Table 13-8. Use the data Ls = Lg =
100 in., E = 3×107 psi, Is = Ig = 100 in4, Ps = 0, Pg = 5000 lb, ns = 2, ng = 2,
ps = 333.33 lb/in (Example 13.6).

Pe = π2(3× 107)100

1002
= 2,960,881 = Pc,

Pg

Pc
= 1.69× 10−3 (2)

K1 =
4L4

s ps

E Isπ5

2∑
s=1

sin πs
3

3
2 (0.99831)+ 3

2

= 4L4
s ps

E Isπ5
(0.57784) (3)
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It follows from symmetry that the maximum moment occurs at x = 1
2 Lg. Then,

for g = 1,

M1,max = Mg|x=Lg/2 = E Ig sin
(π

3

) 4L4
s ps

E Isπ5
(0.57784)

π2

L2
g
= 215,190 in.-lb (4)

Example 13.8 Deflections Due to Concentrated Forces Consider again the
grillage of Fig. 13-6. Assume that there are no distributed or in-plane axial forces.
Suppose that concentrated forces of 10,000 lb act at each intersection.

With equal concentrated forces, sufficient accuracy is usually achieved with one
term of the formulas of Table 13-7:

wg = K1 sin
πg

3
sin

πx

100
(1)

with (case 1 of Table 13-8)

K1 =
2L3

s
E Isπ4 × 10,000

2∑
s=1

2∑
g=1

sin πg
3 sin πs

3

3
2 + 3

2

= 2L3
s

E Isπ4
× 10,000 (2)

Substitute (2) into (1):

w1|x=Lg/3 = w2|x=Lg/3 = w1|x=2Lg/3 = w2|x=2Lg/3 = 0.0514 in. (3)

Buckling Loads

The buckling or critical axial loads in the girders of uniform gridworks are given
in Tables 13-9 and 13-10. That is, these are formulas for Pg = Pcr. The formulas
that apply for girders and stiffeners with fixed or simply supported ends are accurate
for gridworks with more than five stiffeners. In some cases, the formulas will be
sufficiently accurate for as few as three stiffeners.

Example 13.9 Buckling Loads Compute the critical axial forces in the girders
of the gridwork of Fig. 13-7 if the girders can be simply supported or fixed. The
stiffeners are simply supported. Suppose that Ig = Is and Lg = Ls = L. From
Fig. 13-7, ng = 3 and ns = 12.

The girder buckling loads Pcr are given by the formulas of Table 13-9 for gird-
ers with fixed or simply supported ends. These formulas involve the constant C1,
which is taken from Table 13-10 according to the stiffener end conditions. To use
Table 13-9, first calculate D1. For simply supported stiffeners and ng = 3, the con-
stant C1 is given as 0.041089 in Table 13-10. Thus,

D3 =
√

C1Lg L3
s Ig/[Is(ns + 1)] =

√
C1L4/13 = L2

√
C1/13
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Figure 13-7: Example 13.9.

and

D1 = 0.0866L2
g/D3 = 0.0866

√
13/C1 = 1.54

D2 = 0.202L2
g/D3 = 3.5930

Since D1 > 1, cases 2 and 4 in Table 13-9 are used. These give Pcr = D2 Pe =
3.5930Pe for simply supported girders and Pcr = 6.5930Pe for fixed girders.

Natural Frequencies

Designate the natural frequencies of a gridwork as ωmn , where the subscript m in-
dicates the number of mode-shape half waves in the y (stiffener) direction and n
indicates the number of half waves in the x (girder) direction. Figure 13-8 illustrates
typical mode shapes associated with ωmn .

For a uniform grillage with simply supported stiffeners, the lower natural frequen-
cies (radians per time) are given by

ω2
mn =

E Is Lg

(
πm
Ls

)4 + E Ig
ng+1
Cn L3

g
− Ps

(
mπ
Ls

)2
Lg

ρs Ls + ρg Lg
(13.1)

where ng is the number of girders; Ig, Is are the moments of inertia of girders
and stiffeners, respectively; Lg, Ls are the length of girders and stiffeners, respec-
tively; ρg, ρs are the mass per unit length of girders and stiffeners, respectively
(M/L , FT 2/L2); and E is the modulus of elasticity. The stiffener axial force Ps

Figure 13-8: Mode shapes corresponding to frequencies ωmn .
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is simply set equal to zero if the stiffeners are not subject to axial forces. The pa-
rameter Cn is given in Table 13-11 for girders with fixed or simply supported ends.
Recall that either set of grillage beams can be selected to be the girders.

If each of the girders is subjected to an axial force Pg , Eq. (13.1) still provides the
natural frequencies if Cn is replaced by

Cn
Pe

Pe − Pg
(13.2)

where Pe = π2 E Ig/L2
g.

Example 13.10 Natural Frequencies of a Simply Supported Gridwork Find
the lower natural frequencies of a 3× 3 grillage for which all beam ends are simply
supported. For this grillage, ng = ns = 3, Ig = Is = 100 in4, ρg = ρs =
1 lb-s2/in2, Lg = Ls = 100 in., and E = 3 × 107 psi. There are no axial forces
(i.e., Ps = 0, Pg = 0). From Eq. (13.1),

ω2
mn =

(3× 107)100[m4π4 + (3+ 1)/Cn]/1003

2× 100
= 15

(
m4π4 + 4

Cn

)
(1)

To calculate ω11, ω21, ω12, and ω22, enter Table 13-11 for ns = 3 and find C1 =
0.041089 and C2 = 0.0026042. Use (1):

ω2
11 = 15(π4 + 4/C1) = 2921.37 or ω11 = 54 rad/s

ω2
21 = 15(16π4 + 4/C1) = 24,838.347 or ω21 = 157.6 rad/s

ω2
12 = 15(π4 + 4/C2) = 24,500.831 or ω12 = 156.5 rad/s

ω2
22 = 15(16π4 + 4/C2) = 46,417.89 or ω22 = 215 rad/s

(2)

Other frequencies can be calculated in a similar fashion.

General Grillages

The formulas for uniform gridworks are provided in this section. Since gridworks
are a special case of frameworks, use a computer program for the analysis of frames
to find the response of complicated grillages. The structural matrices for grillages are
listed in Section 13.4 under plane frames with out-of-plane loading.

13.4 MATRIX METHODS

Frames and trusses (both generally referred to as frames) can be considered as as-
semblages of beams and bars. As a consequence, they can be analyzed using the ma-
trix methods (transfer and displacement) of Appendix III. The displacement method
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can be employed to obtain the nodal responses, while the displacements and forces
between the nodes along the members can be obtained using the transfer matrix
method. Such references as [13.7]–[13.10] contain frame analysis formulations.

Frames are often classified as being plane (two-dimensional) and spatial (three-
dimensional) in engineering practice.

Transfer Matrix Method

The transfer matrices provided in Chapters 11 and 12 can be combined to obtain the
transfer matrices for the analysis of frames or frame members. See Appendixes II
and III.

Stiffness and Mass Matrices

In general, the analysis of plane frames requires the inclusion of the axial effects
(extension or torsion) as well as bending in the stiffness matrix. As discussed in
Appendix III, the analysis also requires a transformation of many variables from local
to global coordinates. Then the global system matrix can be assembled. For dynamic
problems, the mass matrices can be treated similarly to establish the system mass
matrix. The nodal displacements are found by introducing the boundary conditions
and solving resulting equations. See the examples in Appendix III.

The stiffness matrices for plane and space trusses and frames are presented in
Tables 13-12 to 13-15. Mass matrices for frames are listed in Tables 13-16 and 13-17.
All of these matrices use sign convention 2 of Appendix II. Use a frame analysis to
analyze a truss for dynamic responses. Stiffness matrices for more complex members
can be constructed from the general stiffness matrices of Chapter 11. For example,
it is possible to introduce a 4× 4 beam stiffness matrix that includes the effect of an
axial force on bending. Also, if thin-walled cross sections are of concern, the 4 × 4
structural matrices of Chapter 14 can replace the 2 × 2 torsional matrices of this
chapter.

Stability Analysis

The stiffness matrices listed in the tables of this chapter do not include the interac-
tions between bending and axial forces. However, in some analyses (e.g., a stability
analysis), this interaction must be considered in that the bending moment caused
by the axial forces must be included. To do so, introduce the stiffness matrix of
Table 11-22 with P �= 0. The buckling loading can be obtained using a determinant
search after the global stiffness matrix is assembled and the boundary conditions
applied. The details of this instability procedure follow.

1. Perform a static analysis of the frame using the stiffness matrices given in
Tables 13-12 to 13-15 to determine the axial forces in each element resulting
from a given load.
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2. Use element stiffness matrices, such as that given in Table 11-22, that include
the effects of bending and the axial force interaction.

3. Assemble the element matrices to form the global stiffness matrix, and impose
the boundary conditions on the global matrix using the procedure described in
Appendix III.

4. Let all internal axial forces remain in the same fixed proportions to each other
throughout the search for the critical applied load. These fixed proportions are
determined in step 1. Introduce a single load factor λ that holds for global
structural matrices that model the entire structure. This λ is a common factor
that multiplies all loads as they vary in fixed proportion.

5. Let the determinant of the global stiffness matrix be zero and determine λ,
usually employing a numerical search technique. This λ is the critical load
factor.

For examples, see Ref. [13.11].

The stability analysis can also be conducted approximately, but efficiently, by
employing the geometric stiffness matrix given in Table 11-23 and using the dis-
placement method of Appendix III.
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TABLE 13-1 STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY
FRAMES OF CONSTANT CROSS SECTION
The direction of the reaction forces are shown in the figures of the configurations. The
signs of the moments are shown in the moment diagrams. A bending moment is indicated
as positive when it causes tension on the inner side of the frame and compression on the
outer side. Opposing moments are negative. The formulas in the table give the magnitudes
of these quantities. The horizontal and vertical coordinate axes are x and y, respectively.
v jk is the displacement of point j in the k direction. θ j is the slope at j .

Configuration Moment Diagram Important Values

1. HA = 0

RA = RB = 1
2 W

vBx = W hL2

8E I

Mmax = 1
4 W L at point K

2.
HA = W RA = RB = W

h

L

vBx = W h2

6E I
(3L + 2h)

vCy = 0 vCx = W h2

3E I
(L + h)

Mmax = W h at point D

3. HA = W RA = RB = 0

vBx = W h2

3E I
(3L + 2h)

Mmax = W h

4.
HA = 0 RA = RB = M0

L

vBx = M0hL

2E I

Mmax = M0 at point C
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TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF
CONSTANT CROSS SECTION

Configuration Moment Diagram Important Values

5.
HA = 0 RA = RB = M0

L

θK = M0 L

12E I

Mmax = 1
2 M0 at point K

6. HA = 0 RA = RB = 1
2 p1L

vbx = p1hL3

12E I

Mmax = 1
8 p1L2 at x = 1

2 L

7.
HA = p1h RA = RB = p1h2

2L

vBx = p1h3

24E I
(6L + 5h)

Mmax = 1
2 p1h2 at point D

8.
HA = p1h RA = RB = p1h2

2L

vBx = p1h3

24E I
(18L + 11h)

Mmax = p1h2 at point D
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TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF
CONSTANT CROSS SECTION

Configuration Moment Diagram Important Values

9. HA = W RA = 0 MA = 0

vDx = W h2

3E I
(3L + 4h)

vDy = −W hL

2E I
(L + h)

Mmax = W h at points B,C

10. HA = 0 RA = W MA = W L

vDx = −W hL

2E I
(L + 2h)

vDy = W L2

3E I
(L + 3h)

Mmax = W L

11. HA = W RA = 0 MA = W h

vDx = −W h3

2E I
vDy = W Lh2

2E I

vCx = W h3

3E I
vCy = W Lh2

2E I
Mmax = W h at point A

12. HA = 0 RA = 0 MA = M0

vDx = M0h

E I
(L + 3h)

vDy = −M0 L

2E I
(L + 2h)

θD = M0

E I
(L + 2h) Mmax = M0

13. HA = 0 RA = p1L

MA = 1
2 p1L2

vDx = − p1L2h

6E I
(L + 3h)

vDy = p1L3

8E I
(L + 4h)

Mmax = 1
2 p1L2
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TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF
CONSTANT CROSS SECTION

Configuration Moment Diagram Important Values

14. HA = 0 RA = W MA = W L

vCx = W Lh2

2E I

vCy = W L2

3E I
(L + 3h)

θC = W L

2E I
(L + 2h)

Mmax = W L

15. HA = W RA = 0 MA = W h

vCx = W h3

3E I

vCy = W h2L

2E I
Mmax = W h at point A

16. HA = 0 RA = 0 MA = M0

vCx = M0h2

2E I

vCy = M0L

2E I
(L + 2h)

θC = M0

E L
(L + h)

Mmax = M0

17. HA = 0 RA = p1L

MA = 1
2 p1L2

vCx = p1h2L2

4E I

vCy = p1L3

8E I
(L + 4h)

Mmax = 1
2 p1L2
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TABLE 13-1 (continued) STATICALLY DETERMINATE RECTANGULAR SINGLE-BAY FRAMES OF
CONSTANT CROSS SECTION

Configuration Moment Diagram Important Values

18. Free-end relative displacement

v = vAx − vBx = Wa2

3E I
(2a + 3L)

Mmax = Wa

19. Free-end relative displacement

v = vAx − vBx = M0a

E I
(a + L)

Mmax = M0

20. Free-end relative displacement

v = vAx − vBx = p1a3

4E I
(a + 2L)

Mmax = 1
2 p1a2
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TABLE 13-2 STATICALLY INDETERMINATE RECTANGULAR FRAMES
The directions of the reaction forces are shown in the figures of the configurations. The
signs of moments are shown in the moment diagrams. A bending moment is indicated as
positive when it causes tension on the inner side of the member and compression on the
outer side. Opposing moments are negative. The formulas in the table give the magnitudes
of the forces and moments.

Definitions
e = h/L

β = Ih (horizontal beam)/Iv (vertical members)

Configuration Moment Diagram Important Values

1.
RA = W

L − a

L
RB = W

a

L

HA = HB = 3Wa

2hL

L − a

2βe + 3

MC = MD = 3Wa

2L

L − a

2βe + 3

MK = Wa(L − a)

2L

4βe + 3

2βe + 3

2.
RA = RB = W

h

L

HA = HB = 1
2 W

MC = MD = 1
2 W h
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TABLE 13-2 (continued) STATICALLY INDETERMINATE RECTANGULAR FRAMES

Configuration Moment Diagram Important Values

3.
RA = RB = W

h − a

L

HA = W

2h

[
h + a − (h − a)

aβ(2h − a)

h(2hβ + 3L)

]

HB = W (h − a)

2h

[
1+ aβ(2h − a)

h(2hβ + 3L)

]

MC = 1
2 W (h − a)

[
1+ aβ(2h − a)

h(2hβ + 3L)

]

MD = 1
2 W (h − a)

[
1− aβ(2h − a)

h(2hβ + 3L)

]

MK = W (h − a)

2h

×
[

h + a − (h − a)
aβ(2h − a)

h(2hβ + 3L)

]

4. RA = RB = 1
2 p1L

HA = HB = p1L

4e(2βe + 3)

MC = MD = p1L2

4(2βe + 3)

MK = p1L2

8

2βe + 1

2βe + 3

5.
RA = RB = p1h2

2L

HA = p1h

8

11βe + 18

2βe + 3

HB = p1h

8

5βe + 6

2βe + 3

MC = p1h2

8

5βe + 6

2βe + 3

MD = 3p1h2

8

βe + 2

2βe + 3
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TABLE 13-2 (continued) STATICALLY INDETERMINATE RECTANGULAR FRAMES

Configuration Moment Diagram Important Values

6. RA = RB = 1
2 W

HA = HB = 3W L

8h(βe + 2)

MA = MB = W L

8(βe + 2)

MC = MD = W L

4(βe + 2)

MK = W L

4

βe + 1

βe + 2

7. RA = RB = 1
2 p1L

HA = HB = p1L2

4h(βe + 2)

MA = MB = p1L2

12(βe + 2)

MC = MD = p1L2

6(βe + 2)

MK = p1L2(3βe + 2)

24(βe + 2)

8.
RA = RB = p1h

βe2

6βe + 1

HA = p1h

4

[
8βe + 17

2(βe + 2)
− 4βe + 3

6βe + 1

]

HB = p1h

4

[
4βe + 3

6βe + 1
− 1

2(βe + 2)

]

MA = p1h2

4

[
4βe + 1

6βe + 1
+ βe + 3

6(βe + 2)

]

MB = p1h2

4

[
4βe + 1

6βe + 1
− βe + 3

6(βe + 2)

]

MC = p1h2βe

4

[
2

6βe + 1
+ 1

6(βe + 2)

]

MD = p1h2βe

4

[
6

6βe + 1
+ 1

6(βe + 2)

]
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TABLE 13-2 (continued) STATICALLY INDETERMINATE RECTANGULAR FRAMES

Configuration Moment Diagram Important Values

9.
RA = Wa[L2(2βe + 3)− a2]

2L3(βe + 1)

RB = W − RA

HA = HB = Wa(L2 − a2)

2hL2(βe + 1)

MC = Wa(L2 − a2)

2L2(βe + 1)

MD = a

L
[W (L − a)− MC ]

10. RA = p1L

8

4βe + 5

βe + 1

RB = p1L

8

4βe + 3

βe + 1

HA = HB = p1L2

8h(βe + 1)

MC =
p1L2

8(βe + 1)

11.
RA = Wa

L

(
1+ 2

L2

L2 − a2

3βe + 4

)

RB = W (L − a)

L

(
1− 2a

L2

L + a

3βe + 4

)

HA = HB = 3Wa

hL2

L2 − a2

3βe + 4

MA = Wa

L2

L2 − a2

3βe + 4

MC = 2Wa

L2

L2 − a2

3βe + 4

MD = Wa(L − a)

L

(
1− 2a

L2

L + a

3βe + 4

)
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TABLE 13-2 (continued) STATICALLY INDETERMINATE RECTANGULAR FRAMES

Configuration Moment Diagram Important Values

12.
RA = RB = 3Wa(h − a)2

hL2

β

3βe + 4

HA = Wa

h

[
1+ h − a

h2

3aβe + 2(h + a)

3βe + 4

− 3(h − a)2

hL

β

3βe + 4

]

HB = W − HA

MA = Wa(h − a)

h2

3aβe + 2(h + a)

3βe + 4

MC = 3Wa(h − a)2

hL

β

3βe + 4

MD = HA(h − a)− MA

13. RB = 3
2 p1L

βe + 1

3βe + 4

RA = 1
2 p1L

3βe + 5

3βe + 4

HA = HB = 3p1L2

4h(3βe + 4)

MA = p1L2

4(3βe + 4)

MC = p1L2

2(3βe + 4)

14.
RA = RB = 1

4 p1h
βe2

3βe + 4

HA = 1
2 p1h

3βe + 5

3βe + 4

HB = 3
2 p1h

βe + 1

3βe + 4

MA = 1
4 p1h2 βe + 2

3βe + 4

MC = 1
4 p1h2 βe

3βe + 4
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TABLE 13-2 (continued) STATICALLY INDETERMINATE RECTANGULAR FRAMES

Configuration Moment Diagram Important Values

15.
RA = Wa2

2L3(βe + 1)

× [βe(3L − a)+ 2(3L − 2a)]
RB = W − RA

HA = HB = 3Wa2

2hL2

L − a

βe + 1

MA = Wa2

2L2

L − a

βe + 1

MB = Wa(L − a)

2L2

×
[
βe(2L − a)+ 2(L − a)

βe + 1

]

MC = Wa2

L2

L − a

βe + 1

MD = RBa − MB

16.
RA = 1

8 p1L
3βe + 4

βe + 1

RB = 1
8 p1L

5βe + 4

βe + 1

HA = HB = p1L2

8h(βe + 1)

MA = p1L2

24(βe + 1)

MB = 1
24 p1L2 3βe + 2

βe + 1

MC = p1L2

12(βe + 1)
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TABLE 13-3 NONRECTANGULAR SINGLE-BAY FRAMES
The direction of the reaction forces are shown in the figures of the configurations. The
signs of moments are shown in the moment diagrams. A bending moment is indicated as
positive when it causes tension on the inner side of the member and compression on the
outer side. Opposing moments are negative. The formulas in the table give the magnitudes
of these quantities.

Symmetrical Gable Frames

k = I1a

I2h
φ = f

h
α =

(
3+ 3φ + φ2 + 1

k

)

γ = 3(1− kφ)

2(1+ kφ2)
λ = 6(1+ k)

1+ kφ2
η = 12[2+ 2k − γ (1− kφ)]

Configuration Moment Diagram Important Values

1.
HA = HB = W L(3+ 2φ)

2αh

RA = RB = 1
2 W

ME = MC = HBh

MD = 1
4 W L − HBh(1+ φ)

2.
HB = W

α

(
6+ 3φ + 2

k

)

HA = W − HB

RA = RB = W h

L
ME = h(W − HB)

MC = HBh

MD = HBh(1+ φ)− 1
2 W h
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

3.
HA = HB = p1L2

8αh
(8+ 5φ)

RA = RB = 1
2 p1L

ME = MC = HBh

MD = 1
8 p1L2 − HBh(1+ φ)

4. W = p1( f + h)

HB = p1h

4α

(
12+ 8φ

k
+ 30φ

+ 20φ2 + 5φ3 + 5

k

)

HA = W − HB

RA = RB = p1(h + f )2

2L

ME = HAh − 1
2 p1h2

MC = −HBh

MD = − 1
4 p1(h + f )2

+ HBh(1+ φ)
5.

HA = HB = W Lk

ηh
(3γ + λφ)

RA = RB = 1
2 W

ME = MC = W Lk

η
(3+ 2γφ)

MA = MB = −ME + HAh

MD = −ME + 1
4 W L − HB f
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

6.
HB = 2W

η
(λ− 3γ )

HA = W − HB

RA = RB = 3W h

2(3+ k)L

ME = 4W h

(
3− 2γ

2η

+ 3

16(3+ k)

)

MC = 4W H

(−3+ 2γ

2η

+ 3

16(3+ k)

)

MA = h(W − HB)− ME

MB = −MC + HBh

MD = HB f − 2W h

η
(3− 2γ )

7. S = 2+ 5
4γφ T = 2γ + 5

8λφ

HA = HB = p1L2T k

ηh

RA = RB = 1
2 p1L

MA = MB = p1L2k

η
(T − S)

ME = MC = p1L2Sk

η

MD = − p1L2Sk

η
+ 1

8 p1L2−HB f

For the left half of a girder,

Mx = (−ME + 1
4 p1Lx)

×
(

1− 2x

L

)
+ MD

2x

L
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

8. S = 6− 4γ − kφ(4+ 5
2γφ)

T = 2λ+ kφ(4γ + 5
4λφ)− 6γ

R = S f

h + f
+ h

h + f
(2− 3

2γ )

Q = 4h

h + f
+ f

h + f
(12− kφ)

W = p1( f + h)

HB = W

η(h + f )
(T f + 3

4λh − 2γ h)

HA = W − HB

RA = RB = W h

32(3+ k)L

×
(

4Q + 16(3+ k)
f

h + f
φ

)

ME = W h

(
R

η
+ Q

16(3+ k)

)

MC = −W h

(
R

η
− Q

16(3+ k)

)

MA = −ME − HBh + 1
2 W h

h + 2 f

h + f

MD = − 1
2 (ME − MC )+ HB f

− W f 2

4(h + f )

MB = −MC + HBh
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Symmetrical Arched Frames

k = I1L

I2h
φ = f

h
α = 8[1+ k(1.5+ 2φ + 0.8φ2)]

β = 1.5− kφ

1+ 0.8kφ2
γ = 3+ 1.5k

1+ 0.8kφ2
η = 12(2+ k)− 4β(3− 2kφ)

Configuration Moment Diagram Important Values

9.
HA = HB = W Lk

αh

6+ 5φ

4

RA = RB = 1
2 W

ME = MC = HAh

MD = 1
4 W L − HA(h + f )

10.
e = 4

α
(1+ 1.5k + kφ)

HB = We HA = W − HB

RA = RB = W h

L
ME = h(W − HB)

MC = HBh

11.
HA = HB = p1L2k

αh
(1+ 4

5φ)

RA = RB = 1
2 p1L

ME = MC = HAh

MD = 1
8 p1L2 − HA( f + h)

TABLE 13-3 Nonrectangular Single-Bay Frames 691



TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

12. e = 4(1+ 1.5k + kφ)/α

HB = p1h

2α
(1+ αe)

HA = p1h − HB

RA = RB = p1h2

2L

ME = 1
2 p1h2 − HBh

MC = HBh

13.
HA = HB = W Lk

ηh

6β + 5γφ

4

RA = RB = 1
2 W

ME = MC = W Lk

η

6+ 5βφ

4

MA = MB = −ME + HAh

MD = 1
4 W L − ME − HA f

14.
HB = 2W

η
(2γ − 3β)

HA = W − HB

RA = RB = 3W h

(6+ k)L

ME = W h

η
(6− 4β)

+ 3W h

2(6+ k)

MC = W h

η
(6− 4β)

+ 3W h

2(6+ k)

MA = h(W − HB)− ME

MB = −MC + HBh
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

15. HA = HB

= p1L2k

5ηh
(5β + 4γφ)

RA = RB = 1
2 p1L

ME = MC

= p1L2k

5η
(5+ 4βφ)

MA = MB = −ME + HAh

MD = 1
8 p1L2 − ME − HB f

16.
HB = p1h

2η
(3γ − 4β)

HA = p1h − HB

RA = RB = p1h2

(6+ k)L

ME = p1h2

2η
(4− 3β)

+ p1h2

2(6+ k)

MC = − p1h2

2η
(4− 3β)

+ p1h2

2(6+ k)

MA = −ME − HBh + 1
2 p1h2

MB = −MC + HBh
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Symmetrical Polygonal Frames

k1 = I3a

I1e
k2 = I3d

I2e
B0 = 2a

h
(k1 + 1)+ 1 C0 = a

h
+ 2+ 3k2

N0 = aB0

h
+ C0 C1 = b

a
(2+ 3k2) C2 = 1+ h

a
(2+ 3k2)

C3 = 1+ d

L
(2+ k2) R = b

a
C2 − k1 N1 = k3k4 − R2

β = 3k1 + 2+ d

L
N2 = 3k1 + β + d

L
C3 k3 = 2(k1 + 1)+ h

a
(1+ C2)

K4 = 2k1 + b

a
C1

Configuration Moment Diagram Important Values

17.
X = WcC0 + ( 3

4 Wd)k2

2N0

HA = HB = X

h

RA = RB = 1
2 W

ME = MD = 1
2 Wc − X

MF = MC = a

h
X

MK = 1
4 Wd + ME

18.
X = p1dcC0 + 1

2 p1d2k2

2N0

HA = HB = X

h

RA = RB = 1
2 p1d

ME = MD = 1
2 p1dc − X

MF = MC = a

h
X

MK = 1
8 p1d2 + ME
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

19.
X = Wa(B0 + C0)

2N0

HB = X

h
HA = W − HB

RA = RB = Wa

L

MF = Wa − a

h
X

MC = a

h
X

ME =
(

1− c

L

)
Wa − X

MD = c

L
Wa − X

20.

X =
p1a2

[
2(B0 + C0)+ a

h
k1

]
8N0

HB = X

h
HA = p1a − HB

RA = RB = p1a2

2L

MF = 1
2 p1a2 − a

h
X

MC = a

h
X

ME = RB(L − c)− X

MD = X − RBc
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

21.
B1 = WcC1 + 3b

4a
Wdk2

B2 = WcC2 + 3h

4a
Wdk2

X1 = B1k3 − B2 R

2N1

X2 = B2k4 − B1 R

2N1

HA = HB = 1

a
(X1 + X2)

RA = RB = 1
2 W

MA = MB = X1

MF = MC = X2

ME = MD = 1
2 Wc − b

a
X1

− h

a
X2

MK = 1
4 Wd + ME

22.
B1 = p1dcC1 + p1d2b

2a
k2

B2 = p1dcC2 + p1d2h

2a
k2

X1 = B1k3 − B2 R

2N1

X2 = B2k4 − B1 R

2N1

HA = HB = 1

a
(X1 + X2)

RA = RB = 1
2 p1d

MA = MB = X1

MF = MC = X2

ME = MD = 1
2 p1dc − b

a X1

− h

a
X2

MK = 1
8 p1d2 + ME
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

23. B1 = bC1W B2 = bC2W

B3 = Wa

(
β + d

L
C3

)

X1 = B1k3 − B2 R

2N1

X2 = B2k4 − B1 R

2N1

X3 = B3

2N2

HB = W

2
− X1 + X2

a

HA = W − HB

RA = RB = 2

L

(
Wa

2
− X3

)

MA = X1 + X3

MB = −X1 + X3

MF = X2 + Wa

2
− X3

MC = X2 − Wa

2
+ X3

ME = −Wb

2
+ b

a
X1 + h

a
X2

+ d

L

(
Wa

2
− X3

)

MD = Wb

2
− b

a
X1 − h

a
X2

+ d

L

(
Wa

2
− X3

)
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TABLE 13-3 (continued) NONRECTANGULAR SINGLE-BAY FRAMES

Configuration Moment Diagram Important Values

24.
B1 = p1ab

2
C1 + p1a2

4
k1

B2 = p1ab

2
C2 − p1a2

4
k1

B3 = p1a2

2

(
β + d

L
C3 + k1

)

X1 = B1k3 − B2 R

2N1

X2 = B2k4 − B1 R

2N1

X3 = B3

2N2

HB = p1a

4
− X1 + X2

a

HA = p1a − HB

RA = RB = 2

L

(
p1a2

4
− X3

)

MA = X1 + X3

MB = −X1 + X3

MF = X2 +
(

p1a2

4
− X3

)

MC = X2 −
(

p1a2

4
− X3

)

ME = − p1ab

4
+ b

a
X1

+ h

a
X2 + d

L

(
p1a2

4
− X3

)

MD = p1ab

4
− b

a
X1 − h

a
X2

+ d

L

(
p1a2

4
− X3

)
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TABLE 13-4 BUCKLING LOADS FOR FRAMES
Notation

E = modulus of elasticity
I = moment of inertia

Ih, Iv = moments of inertia of horizontal and vertical members
A = area of cross section

Ah = area of the cross section of horizontal member
Avi = area of the cross section of i th (from left to right) vertical member;

Avi = Av if all vertical members are identical
L = width of frame
h = height of frame

Pcr = buckling load; unless specified otherwise, Pcr = π2 E Iv/(αh)2

α = constant given in table

k = IvL

Ihh
n = P1 + P

2P
m =




4Iv
L2 Av

for cases 1 and 2

Iv
L2

(
1

Av1
+ 1

Av2

)
for cases 3, 4, 5, and 6

4E Ih

L
for cases 7 and 8

ζ(η) = 3

η

(
1

sin 2η
− 1

2η

)
β(η) = 3

2η

(
1

2η
− 1

tan 2η

)
η = h

2

√
P

E Iv

For the cases where two forces P1 and P are applied, the ratio n is predetermined. Calculate
α and then find Pcr. Then P1cr can be calculated using P1cr = (2n − 1)Pcr.

Configuration Buckling Loads

1. α = √n ·
√

1+ 0.35k + 2.1m − 0.017(k + 6m)2

m ≤ 0.2 n ≤ 1 k ≤ 10

2. α = √n ·
√

4+ 1.4k + 8.4m + 0.2(k + 6m)2

n ≤ 1 k ≤ 10 m ≤ 0.2
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TABLE 13-4 (continued) BUCKLING LOADS FOR FRAMES

Configuration Buckling Loads

3. α = √
1+ 0.7k + 2.1m − 0.068(k + 3m)2

4. α =
√
(0.14+ 1.72n)

[
1+ 0.7k + 2.1m − 0.068(k + 3m)2

]
n ≤ 1.5

5. α = √
4+ 2.8k + 8.4m + 0.08(k + 3m)2

6. α =
√
(0.04+ 1.92n)

[
4+ 2.8k + 8.4m + 0.08(k + 3m)2

]
n ≥ 1.5

7. Pcr is determined by solving

1

m
+ Lβ(η)

3E Iv
= 0

Ref. [13.4]
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TABLE 13-4 (continued) BUCKLING LOADS FOR FRAMES

Configuration Buckling Loads

8. Pcr is determined by solving[
3E Iv
mL
+ β(η)

]
β(η) = 1

4 [ζ(η)]2

Ref. [13.4]

9. α = 0.558π

10. α = 0.623π

11. α = 0.701π

12. α = 0.9π

13. α = 0.627π
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TABLE 13-5 FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES
Notation

Eh, Ev = moduli of elasticity of horizontal and vertical beams

G = shear modulus of elasticity

E = modulus of elasticity

Ih, Iv = moments of inertia of horizontal and vertical beams

Jv = torsional constant of vertical beams

ρi = mass per unit length of vertical beams; ρi = ρv , all vertical
beams are identical

ρh = mass per unit length of horizontal beam

W = total weight of frame

f = λ2

2πh2

(
Ev Iv
ρv

)1/2

Hz (cycles/s) for cases 1, 2, 3, and 4
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Configuration Natural Frequency

1.
First symmetric
in-plane mode,
pinned

c1 = L

h

(
Ev Iv
Eh Ih

ρh

ρv

)1/4

c2 =
(
ρh

ρv

)1/4 ( Eh Ih

Ev Iv

)3/4

λ = a1 + a2
√

c2 + a3
(√

c2
)2 + a4

(√
c2
)3 + a5

(√
c2
)4

0.1 ≤ c2 ≤ 10.0 1.5 < c1 ≤ 10.0

a1 0.05881+ 3.7774

(
1

c1

)
+ 4.4214

(
1

c1

)2
− 4.5495

(
1

c1

)3

a2 0.06772− 0.08744

(
1

c1

)
+ 1.8371

(
1

c1

)2
− 16.9061

(
1

c1

)3
+ 15.9685

(
1

c1

)4

a3 0.1265− 2.1961

(
1

c1

)
+ 6.139

(
1

c1

)2
− 3.07026

(
1

c1

)3

a4 −0.04549+ 0.7259

(
1

c1

)
− 1.4984

(
1

c1

)2
+ 0.4223

(
1

c1

)3

a5 0.00545− 0.08128

(
1

c1

)
+ 0.1277

(
1

c1

)2
+ 0.00154

(
1

c1

)3

0.1 ≤ c2 ≤ 10.0 0.1 ≤ c1 ≤ 1.5

a1 2.9505+ 0.01426c1 + 0.3933c2
1 − 0.1953c3

1

a2 2.09517− 5.5922c1 + 5.7203c2
1 − 2.2752c3

1

a3 −1.6907+ 6.8916c1 − 8.2798c2
1 + 3.09981c3

1

a4 0.5590− 2.6368c1 + 3.3057c2
1 − 1.2275c3

1

a5 −0.06605+ 0.3357c1 − 0.4296c2
1 + 0.1592c3

1
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TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

2.
First symmetric
in-plane mode,
clamped

c1 = L

h

(
Ev Iv
Eh Ih

ρh

ρv

)1/4

c2 =
(
ρh

ρv

)1/4 (Eh Ih

Ev Iv

)3/4

λ = a1 + a2
√

c2 + a3
(√

c2
)2 + a4

(√
c2
)3

0.1 ≤ c2 ≤ 10.0 1.2 < c1 ≤ 10.0

a1 18.33− 23.028
√

c1 + 11.843
(√

c1
)2 − 2.8164

(√
c1
)3 + 0.25598

(√
c1
)4

a2 −6.951+ 8.992
√

c1 − 4.364
(√

c1
)2 + 0.9325

(√
c1
)3 − 0.07345

(√
c1
)4

a3 3.728− 5.64
√

c1 + 3.169
(√

c1
)2 − 0.7878

(√
c1
)3 + 0.07319

(√
c1
)4

a4 −0.5991+ 0.9657
√

c1 − 0.5712
(√

c1
)2 + 0.1485

(√
c1
)3 − 0.01437

(√
c1
)4

0.1 ≤ c2 ≤ 10.0 1.2 ≥ c1 ≥ 0.1

a1 2.1037+ 13.649
√

c1 − 37.686
(√

c1
)2 + 42.2

(√
c1
)3 − 16.218

(√
c1
)4

a2 1.8503− 3.4236
√

c1 + 4.852
(√

c1
)2 − 3.5313

(√
c1
)3 − 0.34975

(√
c1
)4

a3 0.0647− 5.8812
√

c1 + 19.008
(√

c1
)2 − 21.873

(√
c1
)3 + 8.8495

(√
c1
)4

a4 −0.06883+ 1.3714
√

c1 − 4.2867
(√

c1
)2 + 4.8985

(√
c1
)3 − 1.931

(√
c1
)4
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3.
First asymmetric
in-plane mode,
pinned

c1 = Ev Iv
Eh Ih

c2 = ρv
ρh

λ = a1 + a2
(√

c1
)+ a3c1 + a4

(√
c1
)3 + a5

(√
c1
)4

12.0 ≥ h/L ≥ 0.25 12.0 ≥ c1 ≥ 0.25

c2 = 0.25, set a5 = 0

a1 0.5270+ 0.7587

√
h

L
− 0.2330

h

L
+ 0.02650

(√
h

L

)3

a2 −0.7049+ 0.9064

√
h

L
− 0.3750

h

L
+ 0.04973

(√
h

L

)3

a3 0.2644− 0.4642

√
h

L
+ 0.2145

h

L
− 0.02996

(√
h

L

)3

a4 −0.03382+ 0.06720

√
h

L
− 0.03350

h

L
+ 0.004914

(√
h

L

)3
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TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

c2 = 0.75, set a5 = 0

a1 0.7608+ 0.7983

√
h

L
− 0.2993

(√
h

L

)2

+ 0.03833

(√
h

L

)3

a2 −1.09597+ 1.8224

√
h

L
− 1.1311

(√
h

L

)2

+ 0.3092

(√
h

L

)3

− 0.03122

(√
h

L

)4

a3 0.4930− 1.1224

√
h

L
+ 0.8202

(√
h

L

)2

− 0.2500

(√
h

L

)3

+ 0.02730

(√
h

L

)4

a4 −0.06778+ 0.1709

√
h

L
− 0.1329

(√
h

L

)2

+ 0.04220

(√
h

L

)3

− 0.004738

(√
h

L

)4

c2 = 1.5, set a5 = 0

a1 0.8222+ 1.1944

√
h

L
− 0.8201

(√
h

L

)2

+ 0.2544

(√
h

L

)3

− 0.02879

(√
h

L

)4

a2 −1.3211+ 2.3536

√
h

L
− 1.5610

(√
h

L

)2

+ 0.4528

(√
h

L

)3

− 0.0481

(√
h

L

)4

a3 0.5721− 1.3439

√
h

L
+ 1.0166

(√
h

L

)2

− 0.3193

(√
h

L

)3

+ 0.03571

(√
h

L

)4

a4 −0.07699+ 0.1987

√
h

L
− 0.1587

(√
h

L

)2

+ 0.05152

(√
h

L

)3

− 0.005889

(√
h

L

)4
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c2 = 3.0

a1 1.2461+ 0.3113

√
h

L
− 0.09981

(√
h

L

)2

+ 0.007269

(√
h

L

)3

+ 0.0009349

(√
h

L

)4

a2 −2.002781+ 4.6441

√
h

L
− 3.7526

(√
h

L

)2

+ 1.2573

(√
h

L

)3

− 0.1480

(√
h

L

)4

a3 1.1303− 3.3717

√
h

L
+ 3.01029

(√
h

L

)2

− 1.06090

(√
h

L

)3

+ 0.1286

(√
h

L

)4

a4 −0.2818+ 0.9551

√
h

L
− 0.9064

(√
h

L

)2

+ 0.3304

(√
h

L

)3

− 0.04087

(√
h

L

)4

a5 0.02631− 0.09744

√
h

L
+ 0.09638

(√
h

L

)2

− 0.03596

(√
h

L

)3

+ 0.004509

(√
h

L

)4
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TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

c2 = 6.0

a1 1.4901− 0.03882

√
h

L
+ 0.1021

(√
h

L

)2

− 0.04520

(√
h

L

)3

+ 0.005995

(√
h

L

)4

a2 −1.9893+ 4.5893

√
h

L
− 3.6732

(√
h

L

)2

+ 1.2198

(√
h

L

)3

− 0.1426

(√
h

L

)4

a3 1.01408− 3.06477

√
h

L
+ 2.7202

(√
h

L

)2

− 0.9512

(√
h

L

)3

+ 0.1145

(√
h

L

)4

a4 −0.2289+ 0.8108

√
h

L
− 0.7698

(√
h

L

)2

+ 0.2790

(√
h

L

)3

− 0.03429

(√
h

L

)4

a5 0.01929− 0.0778

√
h

L
+ 0.0776

(√
h

L

)2

− 0.02886

(√
h

L

)3

+ 0.003601

(√
h

L

)4
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c2 = 12.0

a1 1.7059− 0.4443

√
h

L
+ 0.4067

(√
h

L

)2

− 0.1448

(√
h

L

)3

+ 0.01784

(√
h

L

)4

a2 −1.9940+ 4.6785

√
h

L
− 3.8064

(√
h

L

)2

+ 1.2804

(√
h

L

)3

− 0.1511

(√
h

L

)4

a3 0.9691− 3.03021

√
h

L
+ 2.7507

(√
h

L

)2

− 0.9771

(√
h

L

)3

+ 0.1189

(√
h

L

)4

a4 −0.2119+ 0.7952

√
h

L
− 0.7783

(√
h

L

)2

+ 0.2876

(√
h

L

)3

− 0.03583

(√
h

L

)4

a5 0.0174083− 0.07637

√
h

L
+ 0.07910

(√
h

L

)2

− 0.03009

(√
h

L

)3

+ 0.0038131

(√
h

L

)4
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TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

4.
First asymmetric
in-plane mode,
clamped

c1 = Ev Iv
Eh Ih

c2 = ρv
ρh

λ = a1 + a2(
√

c1)+ a3c1 + a4
(√

c1
)3

12 ≥ h/L ≥ 0.25 12.0 ≥ c1 ≥ 0.25

c2 = 0.25

a1 0.4687+ 1.8309

√
h

L
− 0.9885

(√
h

L

)2

+ 0.2793

(√
h

L

)3

− 0.03053

(√
h

L

)4

a2 −0.7082+ 0.6148

√
h

L
− 0.06704

(√
h

L

)2

− 0.05671

(√
h

L

)3

+ 0.01210

(√
h

L

)4

a3 0.3999− 0.6247

√
h

L
+ 0.2986

(√
h

L

)2

− 0.05446

(√
h

L

)3

+ 0.002969

(√
h

L

)4

a4 −0.06957+ 0.1329

√
h

L
− 0.08131

(√
h

L

)2

+ 0.02082

(√
h

L

)3

− 0.001938

(√
h

L

)4
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c2 = 0.75

a1 0.6517+ 2.3508

√
h

L
− 1.4862

(√
h

L

)2

+ 0.4412

(√
h

L

)3

− 0.04870

(√
h

L

)4

a2 −1.0348+ 1.2196

√
h

L
− 0.4609

(√
h

L

)2

+ 0.05260

(√
h

L

)3

+ 0.001087

(√
h

L

)4

a3 0.5720− 1.01757

√
h

L
+ 0.6004

(√
h

L

)2

− 0.14999

(√
h

L

)3

0.01366

(√
h

L

)4

a4 −0.09659+ 0.1992

√
h

L
− 0.1351

(√
h

L

)2

+ 0.03858

(√
h

L

)3

− 0.003989

(√
h

L

)4

c2 = 1.5

a1 0.8888+ 2.4200

√
h

L
− 1.6779

(√
h

L

)2

+ 0.5212

(√
h

L

)3

− 0.05889

(√
h

L

)4

a2 −1.311+ 1.8646

√
h

L
− 0.9713

(√
h

L

)2

+ 0.2194

(√
h

L

)3

− 0.01811

(√
h

L

)4

a3 0.6995− 1.3471

√
h

L
+ 0.8811

(√
h

L

)2

− 0.2464

(√
h

L

)3

+ 0.02515

(√
h

L

)4

a4 −0.1146+ 0.2476

√
h

L
− 0.1776

(√
h

L

)2

+ 0.05346

(√
h

L

)3

− 0.005787

(√
h

L

)4
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TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

c2 = 3.0

a1 1.2508+ 2.09185

√
h

L
− 1.5600

(√
h

L

)2

+ 0.5042

(√
h

L

)3

− 0.05829

(√
h

L

)4

a2 −1.5471+ 2.4771

√
h

L
− 1.4901

(√
h

L

)2

+ 0.3968

(√
h

L

)3

− 0.03920

(√
h

L

)4

a3 0.7925− 1.6060

√
h

L
+ 1.1121

(√
h

L

)2

− 0.3282

(√
h

L

)3

+ 0.03510

(√
h

L

)4

a4 −0.1253+ 0.2790

√
h

L
− 0.2066

(√
h

L

)2

+ 0.06396

(√
h

L

)3

− 0.007083

(√
h

L

)4

c2 = 6.0

a1 1.6631+ 1.4804

√
h

L
− 1.1766

(√
h

L

)2

+ 0.39396

(√
h

L

)3

− 0.04649

(√
h

L

)4

a2 −1.6468+ 2.7901

√
h

L
− 1.7805

(√
h

L

)2

+ 0.5016

(√
h

L

)3

− 0.05210

(√
h

L

)4

a3 0.8142− 1.6929

√
h

L
+ 1.2020

(√
h

L

)2

− 0.3626

(√
h

L

)3

+ 0.03949

(√
h

L

)4

a4 −0.1237+ 0.2797

√
h

L
− 0.2098

(√
h

L

)2

+ 0.06565

(√
h

L

)3

− 0.0073295

(√
h

L

)4
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c2 = 12.0

a1 2.0122+ 0.8737

√
h

L
− 0.7544

(√
h

L

)2

+ 0.2641

(√
h

L

)3

− 0.03196

(√
h

L

)4

a2 −1.6071+ 2.7565

√
h

L
− 1.7815

(√
h

L

)2

+ 0.5078

(√
h

L

)3

− 0.05327

(√
h

L

)4

a3 0.7787− 1.6318

√
h

L
+ 1.1642

(√
h

L

)2

− 0.3526

(√
h

L

)3

+ 0.03850

(√
h

L

)4

a4 0.1144+ 0.2604

√
h

L
− 0.1955

(√
h

L

)2

+ 0.06116

(√
h

L

)3

− 0.0068249

(√
h

L

)4

5.
First out-of-plane
mode

Approximate formula

f =
√

g

2π

{
W

2

[
L3

24E Ih
+ h3

3E Iv
− L4G Jv

32E Ih(2hE Ih + LG Jv)

]}−1/2

Hz

where g is the gravitational acceleration constant

Ref. [13.12]
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TABLE 13-5 (continued) FUNDAMENTAL NATURAL FREQUENCIES OF FRAMES

Configuration Natural Frequency

6.
Rigid beam supported
by n slender legs,
in-plane mode

Approximate formula f = 1

2π

[
12

∑
Ei Ii

h3(Mh + 0.37
∑

Mi )

]1/2

Hz Ref. [13.13]

Mh =Mass of the top beam

Mi =Mass of the i th vertical beam
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TABLE 13-6 SAFE-LOAD REGIONS
The combination of loadings describes a region on the xy plane. If a prescribed loading
defines a point inside the safe region, no collapse occurs. If a point falls on the boundary,
collapse occurs according to the collapse mode indicated. Fully plastic bending moment
is defined as Mp = σys Z p, where Z p is the plastic section modulus taken from Table 2-2
and σys is the yield stress of the material.

Frame and Loading Safe Load Region

1. Mode 1: x = 3

Mode 2: y = 8

Mode 3: 2x + y = 10

x = WH h

Mp

y = WV L

Mp

2. Mode 1: x = 4

Mode 2: y = 8

Mode 3: 2x + y = 12

x = WH h

Mp

y = WV L

Mp

3. Mode 1: x = 8

Mode 2: y = 8

Mode 3: x + y = 10

x = WH h

Mp

y = MV L

Mp

TABLE 13-6 Safe-Load Regions 715



TABLE 13-6 (continued) SAFE-LOAD REGIONS

Frame and Loading Safe Load Region

4. Mode 1: x = 3

Mode 2: y = 16

Mode 3: 2x + y − 4
√

y − 2 = 0

x = WH h

Mp

y = pV L2

Mp

5. Mode 1: x = 4

Mode 2: y = 16

Mode 3: 2x + y − 4
√

y − 4 = 0

x = WH h

Mp

y = pV L2

Mp

6. Mode 1: y = 8

Mode 2: 2x + y = 10

x = WH h

Mp

y = WV L

Mp

7. Modes 1–4: x + y = 8

x = WH h

Mp

y = WV L

Mp

716 TABLE 13-6 Safe-Load Regions



TABLE 13-6 (continued) SAFE-LOAD REGIONS

Frame and Loading Safe Load Region

8. Mode 1: x = 4

Mode 2: y = 18
√

3

Mode 3: y − 6x + 12

+ (9x − 36)

√
3y

y − 6x + 12
= 0

x = WH h

Mp

y = p0L2

Mp

9. Mode 1: x = 3

Mode 2: y = 18
√

3

Mode 3: (y − 6x − 6)3

− (27− 9x)23y = 0

x = WH h

Mp

y = p0L2

Mp

TABLE 13-6 Safe-Load Regions 717



TABLE 13-7 UNIFORM GRIDWORKSa

Notation

The ends of both the girders and stiffeners are simply supported.
Girders: beams that lie parallel to the x axis.
Stiffeners: beams that lie parallel to the y axis.

ng, ns = total number of girders and stiffeners, respectively

g, s = index for girders and stiffeners, respectively

wg, θg,Mg, Vg = deflection, slope, bending moment, and shear force of gth girder

Ig, Is = moments of inertia of girders and stiffeners, respectively. All girders
have the same Ig and all stiffeners have the same Is .

Lg, Ls = length of girders and stiffeners, respectively. All girders have the same
Lg and all stiffeners have the same Ls .

M = number of terms chosen by user to be included in summation

〈x − xs〉0 =
{

0 if x < xs

1 if x ≥ xs

K j = Take from Table 13-8.

Response

1.
Deflection

wg = sin
πg

ng + 1

∞∑
j=1

K j sin
jπx

Lg

2.
Slope

θg = − sin
πg

ng + 1

∞∑
j=1

K j
jπ

Lg
cos

jπx

Lg

3.
Bending moment

Mg = E Ig sin
πg

ng + 1

∞∑
j=1

K j

(
jπ

Lg

)2

sin
jπx

Lg

4.
Shear force

Vg = E Ig sin
πg

ng + 1

∞∑
j=1

K j

×
[(

jπ

Lg

)3

cos
jπx

Lg
+ π4 Is

(ng + 1)L3
s Ig

M∑
s=1

〈x − xs〉0 sin
jπxs

Lg

]

aFrom Ref. [13.6].
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TABLE 13-8 PARAMETERS Kj OF TABLE 13-7 FOR THE STATIC
RESPONSE OF GRIDWORKS

Notation

Pg, Ps = axial forces in girders and stiffeners, respectively (all girders have the
same Pg and all stiffeners have the same Ps)

ps = loading intensity along the sth stiffener (F/L)

Wsg = concentrated force at intersection xs, yg

Pe = π
2 E Is

L2
s

Pc = π2 E Ig

L2
g

Loading K j

1.
For concentrated
loads Wsg at
xs, yg

2L3
s

E Isπ4

Pe

Pe − Ps

ns∑
s=1

ng∑
g=1

Wsg sin
πg

ng + 1
sin

jπs

ns + 1

ng + 1

2
j4

(
Ls

Lg

)3 Ig

Is

(
1− Pg

j Pc

)
+ ns + 1

2

2.
For uniform
force ps along
sth stiffener

4L4
s

E Isπ5

Pe

Pe − Ps

ns∑
s=1

ps sin
jπs

ns + 1

ng + 1

2
j4

(
Ls

Lg

)3 Ig

Is

(
1− Pg

j Pc

)
+ ns + 1

2

3.
If uniform
force ps is
same for all
stiffeners

Only the first term ( j = 1) in the equations
of Table 13-7 is required:

K1 =
4L4

s

E Isπ5

Pe

Pe − Ps

ns∑
s=1

ps sin
πs

ns + 1

ng + 1

2

(
Ls

Lg

)3 Ig

Is

(
1− Pg

Pc

)
+ ns + 1

2
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TABLE 13-9 CRITICAL AXIAL LOADS IN GIRDERSa

Notation

ns = number of stiffeners

Lg, Ls = length of girders and stiffeners, respectively

E = modulus of elasticity

Ig, Is = moments of inertia of girders and stiffeners, respectively

Pcr = unstable value of Pg, axial force in girders

The length, moment of inertia, and axial force do not vary from girder to girder.
The lengths and moments of inertia of the stiffeners also do not vary from each other.

D1 =
0.0866L2

g

D3
D2 =

0.202L2
g

D3
D3 =

√
C1Lg L3

s Ig

Is(ns + 1)

Pe = π2 E Ig

L2
g

Take C1 from Table 13-10.

End Conditions of
Girders Case D1 Pcr

Simply supported 1 ≤ 1 (1+ D1)Pe
2 > 1 D2 Pe

Fixed 3 ≤ 1 (4+ D1)Pe
4 > 1 (3+ D2)Pe

aFrom Ref. [13.6].
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TABLE 13-10 VALUES OF C1 OF TABLE 13-9 FOR STABILITYa

End Conditions of Stiffeners, C1Number of
Girders, ng Simply Supported Fixed

1 0.020833 0.0052083
2 0.030864 0.0061728
3 0.041089 0.0080419
4 0.051342 0.010009
5 0.061603 0.011997
6 0.071866 0.013990
7 0.082131 0.015986
8 0.092396 0.017982
9 0.10266 0.019979

10 0.11293 0.021976

aFor simply supported stiffeners the formula

C1 =
ng + 1

π4


1+

∞∑
j=1

{[
2 j (ng + 1)+ 1

]−4 + [
2 j (ng + 1)− 1

]−4
}

applies for any ng .

TABLE 13-10 Values of Stability Parameters 721



TABLE 13-11 VALUES OF NATURAL FREQUENCY PARAMETERS Cn OF EQS. (13.1) AND (13.2)
Number
of
Stiffeners,
ns C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Girders with Simply Supported Ends

1 0.020833
2 0.030864 0.0020576
3 0.041089 0.0026042 0.00057767
4 0.051342 0.0032240 0.00065790 0.0002462
5 0.061603 0.0038580 0.00077160 0.00025720 0.00012564
6 0.071866 0.0044962 0.00089329 0.00028895 0.00012688 0.000073890
7 0.082131 0.0051361 0.0010177 0.00032552 0.00013769 0.000072209 0.000047321
8 0.092396 0.0057767 0.0011431 0.00036387 0.00015157 0.000076208 0.000045226 0.000032215
9 0.10266 0.0064178 0.0012691 0.00040301 0.00016667 0.000082237 0.000046681 0.000030328 0.000022963

10 0.11293 0.0070590 0.0013954 0.00044252 0.00018233 0.000089133 0.000049521 0.000030753 0.000021400 0.000016967

Any ns Cn = ns + 1

π4

[
1

n4
+
∞∑
j=1

{
[2 j (ns + 1)+ n]−4 + [2 j (ns + 1)− n]−4

}]

Girders with Fixed Ends

1 0.0052083
2 0.0061728 0.0011431
3 0.0080419 0.0011393 0.00042165
4 0.010009 0.0013459 0.00039075 0.00020078
5 0.011997 0.0015917 0.00043081 0.00018009 0.00011111
6 0.013990 0.0018480 0.00048904 0.00018923 0.000098217 0.000067910
7 0.015986 0.0021078 0.00055303 0.00020779 0.000099794 0.000059682 0.000044545
8 0.017982 0.0023691 0.00061925 0.00022977 0.00010668 0.000059226 0.000039097 0.000030804
9 0.019970 0.0026311 0.00068645 0.00025320 0.00011572 0.000061961 0.000038155 0.000027067 0.000022193

10 0.021976 0.0028934 0.00075415 0.00027732 0.00012573 0.000066109 0.000039232 0.000026101 0.000019547 0.000016522

722
TA

B
L

E
13-11

V
alu

es
o

f
N

atu
ralF

req
u

en
cy

P
aram

eters



TABLE 13-12 STIFFNESS MATRIX FOR PLANE TRUSSES
Notation

E = modulus of elasticity

A = area of the cross section

� = length of element

x X = angle between x and X axes

x Z = angle between x and Z axes

Right-handed global XY Z and local xyz coordinate systems are employed. The identity
cos2 x X + cos2 x Z = 1 is useful.

The relationships of this table should be used for the static analysis of trusses. For dynamic
analyses of trusses, use the frame formulas.

LOCAL COORDINATES[
Ña

Ñb

]i

= E A

�

[
1 −1
−1 1

] [
ũa
ũb

]i

p̃i = k̃i ṽi

p̃i =
[

Ñxa

Ñxb

]i

=
[

Ña

Ñb

]i

ṽi =
[

ũxa
ũxb

]i

=
[

ũa
ũb

]i

GLOBAL COORDINATES

pi = ki vi

vi =



uXa
uZa
uXb
uZb




i

pi =



FXa
FZa
FXb
FZb




i

ki = TiTk̃i Ti = E A

�

[
A −A
−A A

]

Ti =
[

cos x X cos x Z 0 0
0 0 cos x X cos x Z

]
A =

[
cos2 x X cos x X cos x Z

cos x X cos x Z cos2 x Z

]

TABLE 13-12 Stiffness Matrix for Plane Trusses 723



TABLE 13-13 STIFFNESS MATRIX FOR SPACE TRUSSES
Notation

E = modulus of elasticity

� = length of element

A = area of cross section

x X = angle between x axis and X axis, and so on.

The relationships of this table should be used for the static analysis of trusses. For dynamic
analyses of trusses, use the frame formulas. See Table 13-12 for coordinate system and
other definitions.

LOCAL COORDINATES[
Ña

Ñb

]i

= E A

�

[
1 −1
−1 1

] [
ũa
ũb

]i

p̃i = k̃i ṽi

GLOBAL COORDINATES

pi = ki vi

vi =




uXa
uY a
uZa
uXb
uY b
uZb




i

=




ua
va
wa
ub
vb
wb




i

pi =




FXa
FY a
FZa
FXb
FY b
FZb




i

ki = TiT k̃i Ti

Ti =
[

cos x X cos xY cos x Z 0 0 0
0 0 0 cos x X cos xY cos x Z

]
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TABLE 13-14 STIFFNESS MATRICES FOR PLANE FRAMES
Notation

E = modulus of elasticity

I, Iz = moments of inertia about local y and z axes

Iz =
∫

A
y2 d A I =

∫
A

z2 d A

� = length of element

G = shear modulus of elasticity

J = torsional constant

A = area of cross section

x X = angle between x and X axis; and so on,
for x Z , z X , and zZ

Right-handed global XY Z and local xyz coordinate systems are employed. The identities
cos2 x X + cos2 x Z = 1 and cos2 z X + cos2 zZ = 1 are useful. Bending is modeled using
Euler–Bernoulli beams.

In-Plane Loading Out-of-Plane Loading
(Bending and Extension) (Bending and Torsion)

DISPLACEMENTS AND FORCES DISPLACEMENTS AND FORCES

ṽi = [ũa w̃a θ̃a ũb w̃b θ̃b]T
p̃i = [Ña Ṽa M̃a Ñb Ṽb M̃b]T

ṽi = [φ̃a ṽa θ̃za φ̃b ṽb θ̃zb]T
p̃i = [T̃a Ṽya M̃za T̃b Ṽyb M̃zb]T

POSITIVE FORCES AND DISPLACEMENTS POSITIVE FORCES AND DISPLACEMENTS

TABLE 13-14 Stiffness Matrices for Plane Frames 725



TABLE 13-14 (continued) STIFFNESS MATRICES FOR PLANE FRAMES

In-Plane Loading Out-of-Plane Loading
(Bending and Extension) (Bending and Torsion)

LOCAL COORDINATES LOCAL COORDINATES

p̃i = k̃i ṽi

k̃i =

E I

�3




A�2/I
0 12 symmetric
0 −6� 4�2

−A�2/I 0 0 A�2/I
0 −12 6� 0 12
0 −6� 2�2 0 6� 4�2




p̃i = k̃i ṽi

k̃i =

E Iz

�3




G J�2/E Iz
0 12 symmetric
0 −6� 4�2

−G J�2/E Iz 0 0 G J�2/E Iz
0 −12 6� 0 12
0 −6� 2�2 0 6� 4�2




GLOBAL COORDINATES GLOBAL COORDINATES

pi = ki vi

vi = [
u Xa u Za θa u Xb u Zb θb

]T

pi = [
FXa FZa Ma FXb FZb Mb

]T

ki = TiT k̃i Ti

pi = ki + vi

vi = [
θXa uY a θZa θXb uY b θZb

]T

pi = [
MXa FY a MZa MXb FY b MZb

]T

ki = TiT k̃Ti

Global vi and pi Global vi and pi

Ti =




cos x X cos x Z 0 0 0 0
cos zX cos zZ 0 0 0 0

0 0 1 0 0 0
0 0 0 cos x X cos x Z 0
0 0 0 sin zX cos zZ 0
0 0 0 0 0 1




Ti =




cos x X 0 cos x Z 0 0 0
0 1 0 0 0 0

cos zX 0 cos zZ 0 0 0
0 0 0 cos x X 0 cos x Z
0 0 0 0 1 0
0 0 0 cos zX 0 cos zZ
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TABLE 13-15 STIFFNESS MATRIX FOR BAR IN SPACE
Notation

E = modulus of elasticity

I, Iz = moments of inertia about y and z axes

Iz =
∫

A
y2 d A Iy = I =

∫
A

z2 d A

x X = angle between x and X axes; similarly for xY ,
x Z , y X , yY , y Z , zX , zY , zZ

G = shear modulus of elasticity

A = area of cross section

J = torsional constant

� = length of element

The identities cos2 j X + cos2 jY + cos2 j Z = 1, j = x, y, z are useful.

DISPLACEMENTS AND FORCES

LOCAL COORDINATES p̃i = k̃i ṽi

ṽi = [
ũa ṽa w̃a φ̃a θ̃ya θ̃za ũb ṽb w̃b φ̃b θ̃yb θ̃zb

]T

p̃i = [
Ña Ṽya Ṽza T̃a M̃ya M̃za Ñb Ṽyb Ṽzb T̃b M̃yb M̃zb

]T

k̃i =




E A/�
0 12E Iz/�

3 Symmetric
0 0 12E Iy/�

3

0 0 0 G J/�
0 0 −6E Iy/�

2 0 4E Iy/�

0 6E Iz/�
2 0 0 0 4E Iz/�

−E A/� 0 0 0 0 0 E A/�
0 −12E Iz/�

3 0 0 0 −6E Iz/�
2 0 12E Iz/�

3

0 0 −12E Iy/�
3 0 6E Iy/�

2 0 0 0 12E Iy/�
3

0 0 0 −G J/� 0 0 0 0 0 G J/�
0 0 −6E Iy/�

2 0 2E Iy/� 0 0 0 6E Iy/�
2 0 4E Iy/�

0 6E Iz/�
2 0 0 0 2E Iz/� 0 −6E Iz/�

2 0 0 0 4E Iz/�
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TABLE 13-15 (continued) STIFFNESS MATRIX FOR BAR IN SPACE

GLOBAL COORDINATES pi = ki vi

vi = [
uXa uY a uZa θXa θY a θZa uXb uY b uZb θXb θY b θZb

]T

pi = [
FXa FY a FZa MXa MY a MZa FXb FY b FZb MXb MY b MZb

]T

ki = TiT k̃i Ti

�0 =

cos x X cos xY cos x Z

cos y X cos yY cos y Z
cos zX cos zY cos zZ




Ti =




�0
�0 0

0 �0
�0




POSITIVE FORCES AND DISPLACEMENTS
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TABLE 13-16 MASS MATRICES FOR PLANE FRAMES
Notation

ρ = mass per unit length

Ix = polar moment of inertia, Ix = Jx

Ixx j , Iyy j , Izz j = rotary inertia of lumped mass at point j
about the x, y, z axes, respectively

A = area of cross section

ry, rz = radius of gyration about y and z axes

ry =
√

Iy/A, rz =
√

Iz/A

Iy, Iz = moments of inertia about y and z axes

� = length of element

See Table 13-14 for coordinate systems, displacement vectors, and force vectors.

In-Plane Loading (Bending and Extension) Out-of-Plane Loading (Bending and Torsion)

Mass Lumped at Both Ends of Element

LOCAL COORDINATES

m̃i = ρ�
2




1 symmetric
0 1

0 0
�2

12
+ r2

y

0 0 0 1
0 0 0 0 1

0 0 0 0 0
�2

12
+ r2

y




=




ma
ma

Iyya
mb

mb
Iyyb




Set Iyya = Iyyb = 0 if rotary inertia is neglected.

LOCAL COORDINATES

m̃i = ρ�
2




Ix/A symmetric
0 1

0 0
�2

12
+ r2

z

0 0 0 Ix/A
0 0 0 0 1

0 0 0 0 0
�2

12
+ r2

z




=




Ixxa
ma

Izza
Ixxb

mb
Izzb




Set Izza = Izzb = 0 if rotary inertia is neglected.
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TABLE 13-16 (continued) MASS MATRICES FOR PLANE FRAMES

In-Plane Loading (Bending and Extension) Out-of-Plane Loading (Bending and Torsion)

Mass Lumped at Point a

Use only the a components of the force and displacement vectors.

m̃i = ρ�




1
1

�2

12
+ r2

y


 =


ma

ma
Iyya


 m̃i = ρ�




Ix/A
�2

12
+ r2

y

1


 =


Ixxa

Izza
ma




Consistent Mass Matrices for Uniform Beams

m̃i = ρ�

420




140
0 156 symmetric
0 −22� 4�2

70 0 0 140
0 54 −13� 0 156
0 13� −3�2 0 22� 4�2




+ ρA�

30

(ry

�

)2




0
0 36 symmetric
0 −3� 4�2

0 0 0 0
0 −36 3� 0 36
0 −3� −�2 0 3� 4�2




(rotary inertia)

GLOBAL COORDINATES

mi = TiT m̃i Ti , where Ti is as given in Table 13-14.

m̃i = ρ�

420




14Ix/A
0 156 symmetric
0 22� 4�2

70Ix/A 0 0 140Ix/A
0 54 13� 0 156
0 −13� −3�2 0 −22� 4�2




+ ρA�

30

(rz

�

)2




0
0 36 symmetric
0 3� 4�2

0 0 0 0
0 −36 −3� 0 36
0 3� −�2 0 −3� 4�2




(rotary inertia)

GLOBAL COORDINATES

mi = TiT m̃i Ti , where Ti is as given in Table 13-14.
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TABLE 13-17 MASS MATRICES FOR SPACE FRAMES
Notation

ρ = mass per unit length

Ix = polar moment of inertia, Ix = Jx

Ixx j , Iyy j , Izz j = rotary inertia of lumped mass
at point j about the x, y, z
axes, respectively

A = area of cross section

ry, rz = radius of gyration about y
and z axes

ry =
√

Iy/A, rz =
√

Iz/A

Iy, Iz = moments of inertia about y
and z axes

� = length of element

See Table 13-15 for coordinate systems, force vector, and displacement vector definitions. Formulas
for m j , Ixx j , Iyy j , Izz j are defined in Table 13-16.

Mass Lumped at Both Ends of Element

m̃i = ρl

2




1
0 1
0 0 1
0 0 0 Ix/A

0 0 0 0
�2

12
+ r2

y

0 0 0 0 0
�2

12
+ r2

z

0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 Ix/A

0 0 0 0 0 0 0 0 0 0
�2

12
+ r2

y

0 0 0 0 0 0 0 0 0 0 0
�2

12
+ r2

z




=




ma
ma

ma
Ixxa

Iyya
Izza

mb
mb

mb
Ixxb

Iyyb
Izzb
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TABLE 13-17 (continued) MASS MATRICES FOR SPACE FRAMES

Mass Lumped at Point a

Use only the a components of the force and displacement vectors.

mi = ρ�




1
1

1
Ix /A

�2

12
+ r2

y

�2

12
+ r2

z



=




ma
ma

ma
Ixxa

Iyya

Izza




Consistent Mass for Uniform Space Bars

m̃i = ρ�

420




140
0 156
0 0 156
0 0 0 140Ix /A
0 0 −22� 0 4�2

0 22� 0 0 0 4�2

70 0 0 0 0 0 140
0 54 0 0 0 13� 0 156
0 0 54 0 −13� 0 0 0 156
0 0 0 70Ix /A 0 0 0 0 0 140Ix /A
0 0 13� 0 −3�2 0 0 0 22� 0 4�2

0 −13� 0 0 0 −3�2 0 −22� 0 0 0 4�2




+ ρ

30�




0
0 36r2

z
0 0 36r2

y symmetric
0 0 0 0
0 0 −3�r2

y 0 4�2r2
y

0 3�r2
z 0 0 0 4�2r2

z
0 0 0 0 0 0 0
0 −36r2

z 0 0 0 3�r2
z 0 36r2

z
0 0 −36r2

y 0 3�r2
y 0 0 0 36r2

y
0 0 0 0 0 0 0 0 0 0
0 0 −3�r2

y 0 −�2r2
y 0 0 0 3�r2

y 0 4�2r2
y

0 3�r2
z 0 0 0 −�2r2

z 0 3�r2
z 0 0 0 4�2r2

z




(rotary inertia)

GLOBAL COORDINATES

mi = TiT m̃i Ti , where Ti is as given in Table 13-15.
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C H A P T E R 14
Torsion of Thin-Walled Beams

14.1 Notation 733
14.2 Sign Convention and Definitions 735
14.3 Stresses 736
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Shear Warping Stress 737

14.4 Twisting of Thin-Walled Beams 738
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14.5 Buckling Loads 741
14.6 Natural Frequencies 741
14.7 General Beams 742

References 745
Tables 747

The torsion of beams having noncircular cross sections and in particular thin-walled
beams are treated in this chapter. A thin-walled beam is made from thin plates joined
along their edges. If restrained warping occurs, it is essential to employ the formulas
of this chapter rather than simple torsion formulas. The term warping is defined
as the out-of-plane distortion of the cross section of a beam in the direction of the
beam’s longitudinal axis. Restrained warping will be significant during the twisting
of a thin-walled beam when the applied twisting moment or the boundary conditions
create an internal twisting moment that varies along the beam axis. For example, this
situation occurs if the in-span conditions prevent cross sections from warping freely.
The shear stresses and strains in a thin-walled beam tend to be higher than those in a
beam of solid cross section.

Software to perform analyses of thin-walled beams is available from the web site
for this book. This includes a program that computes cross-sectional properties and
stresses for a cross section of arbitrary shape. This software is based on theory de-
scribed in Ref. [14.1].

14.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F
for force, M for mass, and T for time.

733



734 TORSION OF THIN-WALLED BEAMS

A Cross-sectional area (L2)

bx Distributed bimoment (F L)

B Bimoment, warping moment (F L2)

C2 = G J/E� (1/L2)

CP




= (Iy + Iz)/A if shear center and centroid coincide

= (Iy + Iz)/A+ (zS/Iy)
∫

A z(y2 + z2) dA

+ (yS/Iz)
∫

A y(y2 + z2) dA− (y2
S + z2

S) if shear

center and centroid do not coincide

and the axial force passes through shear center

E Modulus of elasticity (F/L2)

E� Warping rigidity (F L4)

G Shear modulus of elasticity (F/L2)

G J Torsional rigidity (F L2)

Ipi Polar mass moment of inertia of concentrated mass at location i (M L2);
can be computed as Ipi = �a ρr2

p, where �a is length of shaft lumped
at location i

Iy Moment of inertia of cross section about y axis, = I (L4)

Iz Moment of inertia of cross section about z axis (L4)

J Torsional constant (L4); for circular cross sections, J is the polar moment
of inertia (Ix) of the cross-sectional area with respect to centroidal axis
of bar

kt Elastic foundation modulus (F L/L)

L Length of beam (L)

mx Distributed torque, twisting moment intensity (F L/L)

mx0 Initial magnitude of linearly varying distributed torque (F L/L)

mx1 Magnitude of torque that is uniformly distributed in x direction (F L/L)

mx� Final magnitude of linearly varying distributed torque (F L/L)

M,Mz Bending moments about y and z axes (F L)

P Compressive axial force passing through shear center; replace P by −P
for tensile axial forces (F)

Qω First sectorial moment (L4)

rp Polar radius of gyration [i.e., rp is radius of gyration of cross-sectional
area about the longitudinal (x) axis of beam (L)]

rS Perpendicular distance from shear center to tangent of centerline of wall
profile (L)

s Arc length measured from outer edge of wall profile (L)

S Shear center

t Wall thickness (L)
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T Total twisting moment, torque (F L)

Tt Torque due to pure torsion (F L)

Tω Warping torque (F L)

v, w Displacements in y and z directions

Vy , V Shear forces in y and z directions

yS , zS Distance along y, z directions between shear center and centroid (L)

� Warping constant (L6)

θ , θz Rotations about y and z axes

ρ Mass per unit length (M/L, FT 2/L2)

σω Normal stress caused by warping, or normal warping stress (F/L2)

τω Shear stress caused by warping, or shear warping stress (F/L2)

φ Angle of twist, rotation (rad)

φa , φb Angles of twist at points a and b

ψ Rate of change of angle of twist φ with respect to x axis (rad/L)

ω Warping (L2) of cross section with respect to plane of average warping
or principal sectorial coordinate with respect to shear center; also, natural
frequency (rad/T )

ωS Sectorial coordinate with respect to shear center S (L2)

14.2 SIGN CONVENTION AND DEFINITIONS

For the torsion of thin-walled beams, where restrained warping may be important,
the response variables are φ, the angle of twist; ψ , the rate of change of φ with
respect to the x axis; B, the bimoment; T , the torsional torque, and Tω, the warping
torque. A bimoment can be considered to be two equal and opposite moments Mc

acting about the same axis and separated from one another (Fig. 14-1). Its value is
the product of the moment and the separation distance. The effect of a bimoment
is to warp cross sections and twist the beam. Positive twisting displacements and
moments are illustrated as part of the tables of this chapter.

Figure 14-1: Bimoment B due to a twisting moment T . A positive angle of twist φ is also
illustrated.
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Figure 14-2: Normal warping stress σω and shear warping stress in an I-beam cross section.

14.3 STRESSES

The response formulas of this chapter give the internal bimoment and warping torque
along a beam. The normal and shear warping stresses (σω and τω) on a face of the
cross section (Fig. 14-2) can be computed using the formulas of this section. For
thin-walled open sections, the normal and shear stresses due to restrained warp-
ing or nonuniform torsion should be taken into account, as they are often higher
than the nonwarping stresses. Analytical and numerical procedures for the calcula-
tion of warping sectional properties and stresses are described in Chapters 2, 12,
and 15.

Normal Warping Stress

The normal stress σx caused by warping is

σx = σω = Bω/� (14.1)

This stress acts perpendicular to the surface of the cross section (Fig. 14-2). It is
assumed to be constant through the thickness of the thin-walled section. The quantity
ω is the principal sectorial coordinate, defined as ω = ωS − ω0, where

ω0 = 1

A

∫
A
ωS dA = 1

A

∫
A
ωSt ds (14.2a)

ωS =




∫ s

0
rS ds for open cross sections

∫ s

0
rS ds −

∮
rS ds∮
(1/t) ds

∫ s

0

1

t
ds for closed cross sections

(14.2b)

The integration
∫ s

0 in Eq. (14.2b) is taken from the free edge to the point at which the
stress σx is desired. The symbol

∮
indicates that the integration is taken completely

around the closed section. See Chapters 2 and 15 for the computation of ω. The
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bimoment is defined by

B =
∫

A
σxω dA (14.3a)

The torsional moment can cause warping (longitudinal displacement) of the cross
section. Consequently, the longitudinal displacement of the cross section caused by
axial forces on the cross section may result in a twist of the beam. Thus, a bimoment
may develop. In this case, the bimoment is expressed as

B =
∑

Piωi (14.3b)

where Pi is a concentrated longitudinal axial load in the cross section where B is
sought and ωi is the corresponding principal sectorial coordinate at the location
where Pi is applied. Here

∑
indicates summation of all the Piωi for the cross section

under consideration.
The warping constant � is defined as

� =




∫
A
ω2 dA for open cross sections

∫
A
ω2 dA−

∮
rS ds∮
(1/t) ds

∮
(Qω/t) ds for closed cross sections

(14.4)

and can be found in Table 2-6 for some common cross sections.

Shear Warping Stress

The shear stress τ due to warping is

τω =




TωQω

t�
for open cross sections

Tω
t�

[
Qω −

∮
(Qω/t) ds∮
(1/t) ds

]
for closed cross sections

(14.5)

This stress acts parallel to the edges of the cross section (Fig. 14-2). Like the nor-
mal warping stress, the shear warping stress is assumed to be constant through the
thickness of the thin-walled section. The quantity

Qω =
∫

A0

ω dA =
∫ s0

0
ωt ds (14.6)

is the first sectorial moment (Chapter 2). For an open cross section, the area A0 lies
between the position (s0) at which the stress is desired and the outer fiber of the cross
section. For a closed section, the integration of Eq. (14.6) should be taken as though
the section were open at an arbitrary point. This point then replaces the outer fiber.
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14.4 TWISTING OF THIN-WALLED BEAMS

The governing equations for the twisting of a thin-walled beam are

E�
d4φ

dx4
− G J

d2φ

dx2
= mx

E�
d3φ

dx3
− G J

dφ

dx
= −T

E�
d2φ

dx2
= −B

dφ

dx
= −ψ

(14.7)

These relations can be solved giving the angle of twist φ, rate of angle of twist ψ ,
bimoment B, and total torque T as functions of the coordinate x . The warping torque
Tω and pure torsion torque Tt can be calculated from Tω = −E� d3φ/dx3 and
Tt = G J dφ/dx . The total torque is T = Tω + Tt .

Formulas for Beams with Arbitrary Loading

The angle twist, bimoment, torsional moment, and warping torque of beams under
arbitrary loading with any end conditions are provided in Table 14-1.

Table 14-1, part A, lists equations for the responses. The functions Fφ , Fψ , FB ,
and FT are taken from Table 14-1, part B, by adding the appropriate terms for each
load applied to the beam. The initial parameters φ0, ψ0, B0, and T0, which are values
of φ, ψ , B, and T at the left end (x = 0) of the beam, are evaluated using the entry
in Table 14-1, part C, for the appropriate beam end conditions.

The end conditions for the twisting of a thin-walled beam are frequently referred
to as simply supported, fixed, free, and guided. An end is said to be simply supported
or pinned if the cross section at the end is allowed to warp freely but is prevented
from rotation. The angle of twist φ and the bimoment B are taken as being zero at
the simply supported end. If the rotation and the warping of an end cross section are
completely constrained, the end is said to be fixed. At a fixed end the angle of twist φ
and the rate of angle of twist ψ are zero. If neither the rotation nor the warping is
restrained, the end is considered to be free. For free ends the bimoment B and the
total twisting moment T are zero. A guided end twists but does not warp. For a
guided end the rate of angle of twist ψ and the torque T are zero.

Example 14.1 Response and Stresses of an I-Beam Calculate the displace-
ments, moments, and stresses of the clamped-free I-beam of Fig. 14-3 under uniform
twisting moment mx .

The cross sectional properties of the beam are obtained from Tables 2-5 and 2-6
as
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Figure 14-3: Cantilevered I-beam: (a) beam characteristics; (b) warping function.

J = 1.29

3

3∑
i=1

bi t
3
i = 12.9 in4, � = 1

24
b3h2t = 4166.667 in6 (1)

and

C = (G J/E�)1/2 = 3.49× 10−2 in−1 (2)

The loading functions are taken from Table 14-1, part B:

Fφ(x) = mx

C2G J

(
cosh Cx − 1− 1

2
C2x2

)

= 5.394× 10−4
(

cosh Cx − 1− 1

2
C2x2

)

Fψ(x) = mx

CG J
(Cx − sinh Cx) = 1.88× 10−5(Cx − sinh Cx)

FB(x) = −mx

C2
(cosh Cx − 1) = −82,118(cosh Cx − 1)

FT (x) = −mx x = −100x

(3)

The four initial parameters are based on the formulas of Table 14-1, part C:

φ0 = ψ0 = 0

B0 = FT

C
tanh C L − F B

cosh C L
= −mx L

C
tanh C L + mx

C2

cosh C L − 1

cosh C L

= −208,902.85 lb-in2

T0 = 10,000 lb-in.

(4)
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Then the responses are (Table 14-1, part A)

φ = B0
1− cosh Cx

G J
+ T0

Cx − sinh Cx

CG J
+ Fφ(x)

ψ = B0
sinh Cx

C E�
− T0

1− cosh Cx

G J
+ Fψ(x)

B = B0 cosh Cx + T0
sinh Cx

C
+ FB(x) (5)

T = T0 + FT (x)

Tω = B0C sinh Cx + T0 cosh Cx + FT (x)+ G J Fψ(x)

At particular locations along the beam (20, 40, 60, 80), values for these responses
are as follows:

20 in. 40 in. 60 in. 80 in.

φ(rad) 2.442× 10−4 7.195× 10−4 0.0012 0.001597
ψ(rad/in.) −2.064× 10−5 −2.509× 10−5 −2.228× 10−5 −1.744× 10−5

B (lb-in2) −66,077 1577 28,380 27,931
T (lb-in.) 8000 6000 4000 2000
Tω (lb-in.) 4857.8 2180.05 608.24 −655.01

With B known, the cross-sectional stresses can be calculated. Consider the cross
section at x = 60. From case 2 of Table 2-7, along the top flange the warping function
ω is linearly distributed and is zero at the middle. At point A (Fig. 14-3b),

ω = 1
2 h
(

1
2 b − ξ

)∣∣∣
ξ=2
= 15 in2 (6)

From Eq. (14.6),

QωA =
∫ 2

0

1

2
h

(
1

2
b − ξ

)
dξ = 40 in4 (7)

The stresses at point A are [Eqs. (14.1) and (14.5)]

σω = Bω

�
= 28,380(15)

4166.667
= 102.2 lb/in2

τω = TωQω

t�
= 608.24(40)

4166.667
= 5.84 lb/in2

(8)

For this cross section, the maximum normal stress is found at the tips of the
flanges and the maximum shear stresses are at the intersections of the flanges and
the web. Note that the normal stress vanishes in the web.
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14.5 BUCKLING LOADS

A thin-walled beam can buckle in a bending mode as presented in Chapter 11. At
certain levels of axial force P , it can also undergo torsional instability. The critical
axial force for torsional buckling of uniform bars with axial forces passing through
the shear center is given by

Pcr = 1

Cp

(
C1π

2

L2
E� + G J

)
(14.8)

where

C1 =




1
4 fixed–free ends

1 simply supported at both ends

2.045 fixed–simply supported ends

4 fixed at both ends

For bars with axial forces located at the eccentricity ey, ez from the centroid,
critical loads are provided in Table 14-2. The formulas in the table are based on the
solution of the differential equations [14.2]

E Izv
iv = qy, E Iwiv = qz, E Iωφ

iv − G Jφ′′ = mx (14.9)

where

qy = −Pv′′ − (zS P + My)φ
′′, qz = −Pw′′ + (yS P − Mz)φ

′′ (14.10)

mx = −(yS P + My)v
′′ + (yS P − Mz)w

′′ + (−r2 P + 2βz My − 2βy Mz)φ
′′

These loadings are obtained from the projections of the stress of the unbuckled state
in the y and z directions when the beam is undergoing buckling deformations. In
Eqs. (14.10), βy , βz , and r2 are called stability parameters and are expressed as

βy =
∫

A
y(y2 + z2) dA/2Iz − yS, βz =

∫
A

z(y2 + z2) dA/2I − zS

r2 = I + Iz

A
+ y2

S + z2
S

(14.11)

Thin-walled beams are also susceptible to local buckling.

14.6 NATURAL FREQUENCIES

Values of the fundamental natural torsional frequencies of uniform, open-section,
thin-walled beams can be taken from Fig. 14-4 for various end conditions. For these
plots, the shear center must coincide with the centroid. Table 14-3 provides the fre-
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Figure 14-4: Value of frequency parameter βL for first mode vibration of a thin-walled
beam under torsion. Shear center and centroid coincide. To use this figure, enter the figure at
the appropriate k, read βL from the plots, and calculate the first natural frequency ω1 from the
definition of β. (From [14.3], with permission.)

quency equations for a variety of uniform thin-walled beams. These can be solved
iteratively for the natural frequencies.

14.7 GENERAL BEAMS

The formulas provided thus far apply to single-span thin-walled beams. For more
general beam systems (e.g., those with multiple spans) it is advisable to use the
displacement method or the transfer matrix procedure of Appendix III. The transfer,
stiffness, and mass matrices can be employed to find the static response, buckling
load, or natural frequencies.

For thin-walled beams where the centroid and shear center coincide, the trans-
fer, stiffness, and mass matrices can be obtained from those of Chapter 11 with the
change of notation of Table 14-4. The point matrices of Table 14-5 can be used to
incorporate point occurrences in the solution. The notation for the transfer, stiffness,
and mass matrices for the twisting of the thin-walled beam is



φb
ψb

Bb

Tb

1


 = Ui




φa
ψa

Ba

Ta

1


 ,




Ta

Ba

Tb

Bb


 = ki



φa

ψa

φb

ψb


+



T 0
a

B0
a

T 0
b

B0
b


 (14.12)

Ui =




Uφφ Uφψ UφB UφT Fφ
Uψφ Uψψ UψB UψT Fψ
UBφ UBψ UB B UBT FB

UTφ UTψ UT B UT T FT
0 0 0 0 1


 ki =




k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44
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Figure 14-5: Sign conventions for (a) transfer matrices (sign convention 1) and (b) stiffness
matrices (sign convention 2).

The sign convention for the angle of twist and moment for transfer matrices is
shown in Fig. 14-5a. Figure 14-5b gives the sign convention for stiffness and mass
matrices.

The responses that these matrices represent are based on the governing equations
for a thin-walled beam under torsion:

∂φ

∂x
= −ψ (14.13a)

∂ψ

∂x
= B

E�
(14.13b)

∂B

∂x
= T + (G J − Cp P)ψ = Tω (14.13c)

∂T

∂x
= ktφ + ρr2

p
∂2φ

∂t2
− mx (x, t) (14.13d)

These governing equations apply to thin-walled beams of either constant or vari-
able cross section with the centroid and shear center coinciding with a compressive
force P (−P for tension) passing through the shear center of the cross section of the
element.

For thin-walled beams with arbitrary cross sections (i.e., the centroid and the
shear center do not coincide) (Fig. 14-6), the static deformation as well as the
dynamic responses are coupled for torsion and bending. These are referred to as
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Figure 14-6: Thin-walled beam for which centroid c and shear center S do not coincide.

torsional–flexural responses. In these cases, the static/dynamic responses and buck-
ling loads can be obtained from the stiffness, mass, and geometric stiffness matrices
of Tables 14-6 and 14-7. The element variables corresponding to these matrices are
(Fig. 14-7)

vi = [va θza vb θzb wa θa wb θb φa ψa φa ψb
]T (14.14a)

Figure 14-7: Element variables of a thin-walled beam element under torsional–flexural de-
formation: (a) bending in the xy plane; (b) bending in the xz plane; (c) torsion and warping.
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and the forces are

pi = [Vya Mza Vyb Mzb Va Ma Vb Mb Ta Ba Tb Bb
]T

(14.14b)

The sign convention for v, θz , w, and θ as well as for Vy , Mz , V , and M are the same
as that in Chapter 13, and the sign convention for φ and T is given in Fig. 14-5b.

The stiffness matrix and loading vector in Table 14-6 give exact results for static
response and approximate results for dynamic and stability analyses.
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TABLE 14-1 PART A: TWISTING OF THIN-WALLED BEAMS WITH
ARBITRARY LOADINGS: GENERAL RESPONSE EXPRESSIONS

Definitions

C = √G J/E�
F� = F� |x=L
FT = FT |x=L

Fφ = Fφ
∣∣
x=L

F B = FB |x=L

<x − a>n =
{

0 if x < a
(x − a)n if x ≥ a

<x − a>0 =
{

0 if x < a
1 if x ≥ a

Positive angle of twist
φ and torque T are
shown in Fig. 14-1.

Also, by definition:

cosh C <x − a>=
{

0 if x < a
cosh C(x − a) if x ≥ a etc.

Response

1. Angle of twist φ = φ0 −�0
sinh Cx

C
+ T0

Cx − sinh Cx

CG J

+ B0
1− cosh Cx

G J
+ Fφ(x)

2. Rate of angle of twist � = �0 cosh Cx − T0
1− cosh Cx

G J
+ B0

sinh Cx

C E�+ F�(x)

3. Total twisting moment T = T0 + FT (x)

4. Bimoment B = �0C E� sinh Cx + T0
sinh Cx

C
+ B0 cosh Cx

+ FB(x)

5. Warping torque Tω = �0G J cosh Cx + T0 cosh Cx + B0C sinh Cx

+ FT (x)+ G J Fψ(x)

748 TABLE 14-1 Part A: General Response Expressions



TABLE 14-1 PART B: TWISTING OF THIN-WALLED BEAMS WITH
ARBITRARY LOADING: LOADING FUNCTIONS

Uniformly Distributed Torque

Fφ(x)
T1

CG J
(−C <x−a> + sinh C <x−a>)

mx1

C2G J

(
cosh C <x − a1>

− <x − a1>
0 −C2<x − a1>

2

2− cosh C <x − a2>

+ <x − a2>
0 +C2<x − a2>

2

2

)

Fψ(x)
T1

G J
(<x − a>0 − cosh C <x − a>)

mx1

CG J
(C <x − a1> − sinh C<x − a1>

−C <x − a2> + sinh C <x − a2>)

FT (x) −T1 <x − a>0 −mx1(<x − a1> − <x − a2>)

FB(x) −T1

C
sinh C <x − a> −mx1

C2
(cosh C <x − a1> − <x − a1>

0

− cosh C <x − a2> + <x − a2>
0)

TABLE 14-1 Part B: Loading Functions 749



TABLE 14-1 (continued) PART B: TWISTING OF THIN-WALLED BEAMS WITH ARBITRARY
LOADING: LOADING FUNCTIONS

Concentrated Bimoment

Fφ(x)
B1

G J
(− <x−a>0 + cosh C <x−a>)

mx0

C2G J

(
cosh C <x − a1> − <x − a1>

0

−C2<x − a1>
2

2
− cosh C <x − a2>

+ <x − a2>
0 +C2<x − a2>

2

2

)

+ mx� − mx0

E�(a2 − a1)

(
1

C
sinh C <x − a1>

− <x − a1> −C2<x − a1>
2

6
− 1

C
sinh C <x − a2> + <x − a2>

+C2<x − a2>
2

6

)

Fψ(x) − B1

C E�
sinh C <x − a>

mx0

CG J
(C <x − a1> − sinh C <x − a1>

−C <x − a2> + sinh C <x − a2>)

− mx� − mx0

C J G(a2 − a1)

(
1

C
cosh C <x − a1>

− <x − a1>
0

C
− C

2
<x − a1>

2

− 1

C
cosh C <x − a2>

+ <x − a2>
0

C
+ C

2
<x − a2>

2
)

FT (x) 0 −mx0(<x − a1> − <x − a2>)

−mx� −mx0

2(a2 − a1)

(
<x − a1>

2 − <x − a2>
2)

FB(x) −B1 cosh C <x − a> −mx0

C2

(
cosh C <x − a1> − <x − a1>

0

− cosh C <x − a2> + <x − a2>
0)

+mx� −mx0

a2 − a1

(
<x − a1> − 1

C
sinh C<x − a1>

− <x − a2> + 1

C
sinh C <x − a2>

)

750 TABLE 14-1 Part B: Loading Functions



TABLE 14-1 PART C: TWISTING OF THIN-WALLED BEAMS WITH ARBITRARY LOADING: INITIAL PARAMETERS
Right
End

Left
End

1. Warps but does not twist
(pinned or simply
supported)

2. No warp and no twist (fixed) 3. Warps and twists (free) 4. Twists but does not warp
(guided)

1.

Warps but does not
twist (pinned or
simply supported)

φ0 = 0, B0 = 0

ψ0 = F B

G J L

(
−1+ C L

sinh C L

)

+ Fφ
L

T0 = − 1

L
(G J Fφ + F B)

ψ0 = 1

∇
[
(C L − sinh C L)Fψ

− C(cosh C L − 1)Fφ
]

T0 = G J

∇ (FφC cosh C L

+ Fψ sinh C L)
∇ = sinh C L − C L cosh C L

ψ0 = 1

G J

(
FT − C F B

sinh C L

)

T0 = −FT

ψ0 = −1

cosh C L

×
[

FT

G J
(1− cosh C L)

+ Fψ

]

T0 = −FT

2.
No warp and no twist
(fixed)

B0 = 1

∇
[
(C L − sinh C L)F B

− G J Fφ sinh C L
]

T0 = FφE�C3 cosh C L
− C(1− cosh C L)F B

∇ = sinh C L − C L cosh C L

B0 = 1

∇
[
E�C(C L − sinh C L)Fψ

− G J (cosh C L − 1)Fφ
]

T0 = 1

∇
[
G JC Fφ sinh C L

− G J (1− cosh C L)Fψ
]

∇ = cosh C L

B0 = FT

C
tanh C L

− F B

cosh C L
T0 = −FT

B0 = −1

sinh C L

×
[

FT

C
(1− cosh C L)

+ C E�Fφ

]

T0 = −FT

TA
B

L
E

14-1
P

art
C

:
In

itialP
aram

eters
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TABLE 14-1 (continued) PART C: TWISTING OF THIN-WALLED BEAMS WITH ARBITRARY LOADING: INITIAL PARAMETERS

Right
End

Left
End

1. Warps but does not twist
(pinned or simply
supported)

2. No warp and no twist (fixed) 3. Warps and twists (free) 4. Twists but does not warp
(guided)

3.

Warps and twists (free)

B0 = 0,
T0 = Tt0 + Tω0 = 0

φ0 = C L + sinh C L

G J sinh C L
F B − Fφ

ψ0 = − 2C F B

G J sinh C L

φ0 = −
Fψ sinh C L

C(1+ cosh C L)
(1− C L)− Fφ

ψ0 =
−2Fψ

1+ cosh C L

Kinematically unstable Kinematically unstable

4.

Twists but does not
warp (guided)

ψ0 = 0,

T0 = Tt0 + Tω0 = 0

φ0 = F B

G J

1− cosh C L

cosh C L
− Fφ

B0 = −F B

cosh C L

φ0 =
Fψ
C

1− cosh C L

sinh C L
− Fφ

B0 =
−FψC E�

sinh C L

Kinematically unstable Kinematically unstable
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TABLE 14-2 CRITICAL ELASTIC FLEXURAL–TORSIONAL LOADS
FOR THIN-WALLED COLUMNS

Notation

λ = nπ/L , n = 1, 2, . . . , is modal number of buckled mode
ey, ez = eccentricities of applied axial force from y and z axes
yS, zS = y and z coordinates of shear center

βy, βz, r = elastic flexural–torsional parameters for thin-walled beams

βy = Uz

2Iz
− yS

βz = Uy

2I
− zS

r2 = I + Iz

A
+ y2

S + z2
S

Uz =
∫

A y3 dA+ ∫A z2y dA

Uy =
∫

A z3 dA+ ∫A y2z dA

My,Mz = bending moments about y and z axes due to eccentricity of applied axial
force P

My = Pez
Mz = −Pey

I, Iz = moments of inertia about y and z axes
J = torsional constant
E = modulus of elasticity
G = shear modulus of elasticity
c = centroid
S = shear center

The critical buckling loads are determined from the equation∣∣∣∣∣
B11 0 B13
0 B22 B23

B31 B32 B33

∣∣∣∣∣ = 0

TABLE 14-2 Critical Elastic Flexural–Torsional Loads 753



TABLE 14-2 (continued) CRITICAL ELASTIC FLEXURAL–TORSIONAL LOADS FOR
THIN-WALLED COLUMNS

Configuration Parameters in Buckling Equation

1.
Pinned–pinned or
guided–guided or
pinned–guided

B11 = E Izλ
2 − P

B13 = −(My + zS P)
B22 = E Iλ2 − P
B23 = − (Mz − yS P)

B31 = −(My + zS P)
B32 = −(Mz − yS P)
B33 = E�λ2 − (r2 P + 2βy Mz

− 2βz My − G J )

2.
Fixed–fixed

B11 = 4E Izλ
2 − P

B13 = −(My + zS P)
B22 = 4E Iλ2 − P
B23 = − (Mz − yS P)

B31 = −(My + zS P)
B32 = −(Mz − yS P)
B33 = 4E�λ2 − (r2 P + 2βy Mz

− 2βz My − G J )

3.
Pinned–fixed

B11 = 1
4 E Izλ

2 − P
B13 = −(My + zS P)
B22 = E Iλ2 − P
B23 = −(Mz − yS P)

B31 = −(My + zS P)
B32 = −(Mz − yS P)
B33 = 1

4 E�λ2 − (r2 P + 2βy Mz)
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TABLE 14-3 FREQUENCY EQUATIONS FOR TORSIONAL VIBRATION
OF BEAMS OF THIN-WALLED OPEN SECTION WITH SHEAR CENTER
COINCIDING WITH CENTROIDa

Notation

E = modulus of elasticity
G = shear modulus of elasticity
L = length of beam

rp = polar radius of gyration

� = warping constant
J = torsional constant
ρ = mass per unit length

α =

√√√√G J +
√
(G J )2 + 4E�ρr2

pω
2
n

2E�
β =

√√√√−G J +
√
(G J )2 + 4E�ρr2

pω
2
n

2E�

End Conditions Frequency Equation

1. Pinned–pinned sinβL = 0 ωn = nπ

L2

√
n2π2 E� + L2G J

ρr2
p

2. Fixed–fixed 2(αL)(βL)[1− cosh(αL) cos(βL)] + [(αL)2

−(βL)2] sinh(αL) sin(βL) = 0

3. Fixed–pinned (βL) tanh(αL) = (αL) tan(βL)

4. Fixed–free
(αL)4 + (βL)4

(αL)2(βL)2
cosh(αL) cos(βL)

+ (αL)2 − (βL)2

(αL)(βL)
sinh(αL) sin(βL)+ 2 = 0

5. Pinned–free (αL)3 tanh(αL) = (βL)3 tan(βL)

6. Free–free [(αL)6 − (βL)6] sinh(αL) sin(βL)
+ 2(αL)3(βL)3[cosh(αL) cos(βL)− 1] = 0

aAdapted from Ref. [14.3].
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TABLE 14-4 CHANGE OF NOTATION
NECESSARY FOR TABLE 11-22 TO BE USED
FOR TWISTING OF THIN-WALLED BEAMS

Twisting of
Bending of Beams Thin-Walled Beams

w φ
θ ψ
M B
V T
pa mx0
pb mx�

1

G As
0

λ = (k − ρω2)/E I λ = (kt − ρr2
pω

2)/E�
η = (k − ρω2)/G As η = 0
ζ = (P + ρr2

yω
2 − k∗)/E I ζ = (CP P − G J )/E�
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TABLE 14-5 POINT MATRICES FOR CONCENTRATED OCCURRENCES
Transfer Matrices Stiffness Matrices

Case (Sign Convention 1) (Sign Convention 2)

1.
Concentrated
applied torque

Ui =




1 0
1 0

1 −Bi

1 −Ti
− − − − − − −
0 0 0 0 1




Traditionally, these
applied loads are
implemented as
nodal conditions.

2.
Concentrated
applied moments
equivalent to
bimoment Bi

3.
Concentrated mass

Ui =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

kti − Ipiω
2 0 0 1 0

− − − − − − − − −
0 0 0 0 1




Ta = −ω2 Ipiφa

4.
Torsional spring

Ta = ktiφa

TABLE 14-5 Point Matrices for Concentrated Occurrences 757



TABLE 14-6 STIFFNESS AND MASS MATRICES FOR
TORSIONAL–FLEXURAL DEFORMATION OF THIN-WALLED BEAMS

Notation
E = modulus of elasticity
J = torsional constant
� = length of element
α = �√G J/E� = C�

r p = polar radius of gyration

yS, zS = distance between shear
center and centroid

Iy = I, Iz = moments of inertia
about y and z axes

G = shear modulus of elasticity
� = warping constant

ρ = mass per unit length
D = 2(1− coshα)+ α sinhα

mx = distributed torque
φ = angle of twist; rotation

about x axis
ψ = dφ/dx

The centroid and shear center of the cross section do not necessarily coincide. Refer to Ref. [14.4] for a discussion
of coupled torsion and bending of beams.

The matrices ki
yy , ki

zz , mi
yy , and mi

zz in this table can be obtained from the matrices in Tables 11-18 and

11-24. ki
zz and mi

zz are the same as the stiffness and mass matrices in those two tables. ki
yy and mi

yy are obtained
by replacing I and Iz , ry by rz , and changing the signs of the elements in rows 2 and 4 of the matrices in those
tables and then changing the signs of the elements in columns 2 and 4 of the resulting matrices. The same matrices
can be obtained from the stiffness and mass matrices for bars in Chapter 13.

The element displacement and force vectors corresponding to the stiffness and mass matrices of this table
are [Eq. 14.14]

vi = [va θza vb θzb wa θa wb θb φa ψa φb ψb
]T

pi = [Vya Mza Vyb Mzb Va Ma Vb Mb Ta Ba Tb Bb
]T

See Fig. 14-7 for the sign convention for the displacements and forces.

Stiffness Matrix

ki =



ki
yy 0 0
0 ki

zz 0
0 0 ki

φφ




ki
yy and ki

zz are stiffness matrices for bending and can be obtained from Table 11-19.

ki
φφ =

E�

D�3




α3 sinhα −α2(1− coshα)� α3 sinhα −α2(1− coshα)�
α(α coshα − sinhα)�2 −α2(cosh α − 1)� α(sinhα − α)�2

α3 sinhα −α2(coshα − 1)�
symmetric α(α coshα − sinhα)�2




The loading vectors corresponding to ki
yy and ki

zz are given in Table 11-19. The loading vector for ki
φφ is

pi =
∫ �

0 γi (x)mx (x) dx , i = 1, 2, 3, 4, with

γ1(x) = − 1

D
[(1− coshα) cosh Cx + sinhα sinh Cx − Cx sinhα + 1− cosh α + α sinhα]

γ2(x) = 1

αD
[(α coshα − sinhα) cosh Cx + (cosh α − 1− α sinhα) sinh Cx

+ Cx(cosh α − 1)+ sinhα − α cosh α]

γ3(x) = − 1

D
[(coshα − 1) cosh Cx − sinhα sinh Cx + Cx sinhα + (1− coshα)]

γ4(x) = 1

αD
[(sinhα − α) cosh Cx + (1− coshα) sinh Cx + Cx + Cx(cosh α − 1)+ α − sinhα]
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TABLE 14-6 (continued) STIFFNESS AND MASS MATRICES FOR TORSIONAL–FLEXURAL
DEFORMATION OF THIN-WALLED BEAMS

Mass Matrix

mi =




mi
yy 0 mi

yφ

0 mi
zz mi

zφ

mi
yφ mi

zφ mi
φφ




mi
yy and mi

zz are consistent mass matrices for bending and can be obtained from Table 11-25:

mi
yφ = 2ρzSm mi

zφ = −2ρySm mi
φφ = ρr2

pm̃

The elements in m and m̃:

m11 = m33 = − 1

Dα4
[(12α − α3 + 0.35α5) sinhα + (24+ 0.5α4)(1− coshα)]

m21 = −m23 = − �

Dα4
[(6α − 0.05α5) sinhα + (12+ α2 + 0.083α4)(1− coshα)]

m31 = m13 = − �

Dα4
[(−12α + α3 + 0.15α5) sinhα + (−24+ 0.5α4)(1− coshα)]

m41 = −m43 = �

Dα4
[(−6α + 0.033α5) sinhα + (−12− α2 + 0.083α4)(1− coshα)]

m12 = −m34 = − �

Dα4
[(−6α + 1.5α3) sinhα + (12− α2 − 0.35α4) coshα − 12+ α2 − 0.15α4]

m22 = m44 = − �2

Dα4
[(5α − 0.083α3) sinhα − (8+ α2 − 0.05α4) coshα + 8+ 0.033α4]

m32 = −m14 = �

Dα4
[(6α + 0.5α3) sinhα − (12+ α2 + 0.15α4) coshα + 12+ α2 − 0.35α4]

m42 = m24 = − �2

Dα4
[(α + 0.083α3) sinhα − (4+ 0.033) coshα + 4+ α2 − 0.05α4]

m̃11 = m̃33 = 1

D2α
[(−5 sinhα + 2α − α coshα + α2 sinhα)(1− coshα)+ (0.33α3 − 2α) sinh2 α]

m̃12 = − �

D2α2
[(3.5α sinhα − 0.5α2)(1− coshα)+ 2α2 sinh2 α − 0.1667α3 sinhα(1+ 2 cosh α)]

m̃13 = 0.5�2 − m̃11

m̃14 = −�
D2α2

[−(8+ 2.5α sinhα + 0.5α2)(1− cosh α)− 4 sinh2 α

+ 0.1667 sinhα(2+ coshα)− α2 sinh2 α]
m̃22 = m̃44 = �2

D2α3
[(3α + 3 sinhα)(1− coshα)+ 0.1667α3(7+ 2 coshα)

− α2 sinhα(2+ 2.5 coshα)(6α + 0.1667α3 sinh2 α)]
m̃23 = −�

Dα2
[(2− 0.5α2)(1− coshα)+ α(2+ sinhα − α cosh α)] − m̃12

m̃24 = �2

D2α3
[(5α + 0.667α3 − 3 sinhα)(1− cosh α)− 0.5α3 coshα

+ α2 sinhα(3.5+ coshα)− α3 − (2α + 0.1667) sinh2 α]
m̃34 = −�

Dα2
[−(2+ 0.5α2)(1− coshα)+ α(α − 2 sinhα)] − m̃14

All the mi j and m̃i j that are not specified here are zero.
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TABLE 14-7 CONSISTENT GEOMETRIC STIFFNESS MATRIX FOR TORSIONAL–FLEXURAL DEFORMATION OF
THIN-WALLED BEAMSa

Notation

βy, βz, r2 = elastic flexural–torsional parameters for thin-walled beams (see Table 14-2)
ey, ez = eccentricities of the applied force, measured from y and z axes

α = �√G J/E�
D = 2(1− coshα)+ α sinhα
� = length of element

See Table 14-6 for definitions of other quantities in these matrices, including the displacement and force vectors.
The matrices ki

yyG and ki
zzG in this table can be obtained from Table 11-23. ki

yyG is the same as the matrix given in Table 11-22.
ki

zzG is obtained by changing the signs of the elements in rows 2 and 4 of the geometric stiffness matrix in Table 11-23 and then changing
the signs of the elements of columns 2 and 4 of the resulting matrix.

ki
G =



ki
yyG 0 ki

yφG
0 ki

zzG ki
zφG

ki
yφG ki

zφG ki
φφG




gG = −2




g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44




ki
yφG = 2(zS + ez)gG

ki
zφG = −2(yS + ey)gG

gφG =




gφ11 gφ12 gφ13 gφ14

gφ21 gφ22 gφ23 gφ24

gφ31 gφ32 gφ33 gφ34

gφ41 gφ42 gφ43 gφ44




ki
φφG = (r2 − 2βyey − 2βzez)g

φ
G
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g11 = −g31 = −g13 = g33 = 12

�α2

{
1− α3

12[α − 2 tanh(0.5α)]
}

g21 = g41 = −g23 = −g43 = g12 = −g32 = g14 = −g34

= 6

α2

{
1+ α

2

12
− α3

12[α − 2 tanh(0.5α)]
}

g22 = g44 = − 4�

α2

[
−1+ α

4D
(α coshα − sinhα)

]

g42 = g24 = − 2�

α2

[
−1+ α

2D
(α − sinhα)

]

gφ11 = −gφ13 = gφ33 =
α

D2�
[(1− coshα)(3 sinhα − α)+ α sinh2 α]

gφ12 = −
1

D2

[(
4+ α

2

2
+ α

2
sinhα

)
(1− coshα)+ 2 sinh2 α

]

gφ22 = gφ44 =
�

αD2

[
(coshα − 1)(sinhα + α)

+ α sinhα(α − 2 sinhα)− α
2

2
(α − sinhα coshα)

]

gφ24 =
�

αD2

[
(sinhα − 3α)(1− coshα)

+ α
2

2
(α coshα − 3 sinhα)

]

gφ34 = −gφ14 = −gφ12

gφ23 = −gφ12

aAdapted from Ref. [14.4]. All gi j and gφi j that are not specified are zero.
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Formulas for the stress analysis of bars are presented here. The stresses can result
from combinations of bending, extensional, and torsional loadings. In the earlier
chapters, stresses due to these loadings were considered separately. In the case of
bending, unsymmetrical bending is treated; thus, it is no longer necessary to consider
only symmetrical cross sections bent in the plane of symmetry. Most of the formulas
encompass composite materials.

All of the stresses can now be reliably computed for arbitrary cross-sectional
shapes using computer programs based on finite element methodology. See Ref.
[15.1] for finite element formulations and software. Some finite element formula-
tions are provided here.
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764 CROSS-SECTIONAL STRESSES: COMBINED STRESSES

15.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length and
F for force.

Ai Area of a segment composed of material i in composite bar (L2)

Er Reference modulus (F/L2)

Iωy, Iωz Sectorial products of inertia (L5)

Q(i)
ω First sectorial moment for element i (L4)

Qωj First sectorial moment at node j (L4)

Qy, Qz First moments of area (L3)

T Temperature change (degrees)

yc, zc Coordinates of geometric centroid (L)

αy, αz Shear correction coefficients

α Coefficient of thermal expansion (L/L · deg)∏
Potential energy (F L)

τb Bending shear stress (F/L2)

τt Torsional shear stress (F/L2)

τω Warping shear stress (F/L2)

ω Principal sectorial coordinate, warping function (L2)

ω(i) Principal sectorial coordinate for element i (L2)

ω j Principal sectorial coordinate at node j (L2)

ω
(i)
P Sectorial coordinate for element i with respect to a point (or pole) P;

usually, P is shear center S, which results in ωS , or geometric centroid
c, which leads to ωc (L2)

ωP j Sectorial coordinate at node j (L2)
∗ Superscript indicating a property of a composite bar

15.2 SIGN CONVENTION

It is essential in using the formulas that a particular sign convention be employed.
The right-handed Cartesian coordinates of Fig. 15-1 are used throughout. The coor-
dinate directions shown are defined to be positive. The exposed internal face whose
outward normal points along the positive direction of the x axis is defined to be
positive (Fig. 15-1 a), while the other opposing face is known as the negative face
(Fig. 15-1b). The internal force and moment components shown in Fig. 15-1a are
defined to be positive because they are acting on a positive face with their vectors
in the positive coordinate directions. Also, internal forces and moments acting on a
negative face are positive if their vectors are in the negative coordinate directions.



15.3 WARPING PROPERTIES 765

Figure 15-1: Sign convention for internal forces: (a) positive internal forces on left face of
a cut; (b) positive internal forces on right face of a cut.

Thus, the forces and moments on the negative face of Fig. 15-1b are positive. Unless
defined otherwise, applied forces and moments are positive if their vectors are in the
direction of a positive coordinate axis.

15.3 WARPING PROPERTIES

The geometric properties of plane areas associated with warping are discussed in
Chapter 2. Some of these properties are essential for the use of the formulas for
normal and shear stresses that are provided in the tables of this chapter. The deter-
mination of these important properties, which are tabulated in Chapter 2, will be
illustrated in this section.

In all calculations for the sectorial coordinates (e.g., ωS and ωc) a special sign
convention must be employed. Integration or summations are positive if their paths
are counterclockwise with respect to a pole (usually, the shear center or geometric
centroid). Clockwise paths should be assigned a negative sign. This sign convention
does not apply during the calculation of other warping characteristics.

Example 15.1 Calculation of Geometric Warping Characteristics for an I-
Section Derive expressions for the sectorial coordinate ωS for the thin-walled
wide-flange section shown in Fig. 15-2.
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Figure 15-2: Example 15.1; node numbers represented by 1, 2, 3, 4, 5, 6 and element num-
bers by (1), (2), (3), (4), (5).

The direct integration method will be carried out first, followed by the piecewise
integration method, to show how to handle the formulas of case 21 of Table 2-6 and
case 1 of Table 2-7.

For the thin-walled wide-flange section, the shear center and the centroid are both
located at the center of the web.

Integration Method

Let node 1 be the origin of the coordinate s (Fig. 15-2a) and let ωS1 = 0. From
Eq. (2.30b), we calculate

ω
(1)
S (s) = (−)

∫ s

0

h

2
dξ = −hs

2
, ωS2 = ω(1)S

(
b

2

)
= −bh

4

ω
(2)
S (s) = ωS2 + (−)

∫ s

b/2

h

2
dξ = −hs

2
− bh

4
, ωS3 = ω(2)S (b) = −bh

2
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ω
(3)
S (s) = ωS2 +

∫ s

b/2
(0) dξ = −bh

4
, ωS4 = ω(3)S

(
b

2
+ h

)
= −bh

4

aω(4)S (s) = ωS4 + (−)
∫ s

b/2+h

h

2
dξ = −hs

2
− bh

4
, ωS5 = ω(4)S (b + h) = −bh

2

ω
(5)
S (s) = ωS4 +

∫ s

b/2+h

h

2
dξ = hs

2
− bh

4
, ωS6 = ω(5)S (b + h) = 0

Note that the integration is performed along the wall profile from the origin of s to
the desired point. Also, the sign convention for integration must be applied carefully.

If node 5 were to be chosen as the origin of the coordinate s (Fig. 15-2b), then the
values of ω(i)S (s) could be calculated in a similar manner. Let ωS5 = 0:

ω
(2)
S (s) =

∫ s

0

h

2
dξ = hs

2
, ωS4 = ω(2)S

(
b

2

)
= bh

4

ω
(1)
S (s) = ωS4 +

∫ s

b/2

h

2
dξ = hs

2
, ωS6 = ω(1)S (b) = bh

2

ω
(3)
S (s) = ωS4 +

∫ s

b/2
(0) dξ = bh

4
, ωS2 = ω(3)S

(
b

2
+ h

)
= bh

4

ω
(5)
S (s) = ωS2 +

∫ s

(b/2)+h

h

2
dξ = h

2
(s − h), ωS1 = ω(5)S (b + h) = bh

2

ω
(4)
S (s) = ωS2 + (−)

∫ s

b/2+h

h

2
dξ = h

2
(b + h − s), ωS3 = ω(4)S (b + h) = 0

The values of ω(i)S and ωSj depend on the choice of the origin of s. This is due to

the fact that the sectorial coordinate ω(i)S or ωSj is the relative warping between the
initial points of s (s = 0) and the final point of integration involved in the expression
for ω(i)S or ωSj .

Piecewise Integration Method

The formula for ωSj is given in Eq. (2.30b) and Table 2-7.

ωSj =
∫ S j

0
rS ds =

∑
i

(±)rSi bi

The notation in this formula, which can be used to find ωS at any node j , deserves
special attention. The subscript i refers to the i th element. The signs (±) in the paren-
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Figure 15-3: Cross-sectional notation system. The tangential coordinate s, which is mea-
sured along the centerline of the wall profile, is positive if the direction is counterclockwise
with respect to the pole P (P can be c or S).

theses indicate a counterclockwise (+) or clockwise (−) direction for coordinate s
with respect to the shear center S. The symbol

∑
i means a summation along a line

of elements. Begin at an outer element and sum until reaching the point j , where the
value of ωSj is desired. The summation on i does not always involve a numerically
increasing sequence of i values. Also, the initial value of i need not always be 1. The
summation sequence follows the path of conventional integration along the wall pro-
file, as with the direct integration method mentioned above. If ωS is to be calculated
at node j in Fig. 15-3, begin the summation at element 1 and continue until reaching
node j , but do not include elements that are not along the primary path (i.e., elements
such as 4 and 5 are not to be included in the summation).

In Fig. 15-2a and b two alternative paths of summation (integration) are indicated
by the arrows parallel to the wall profile. The node and element numbers may be
assigned arbitrarily, but it is recommended that they be assigned with increasing
numbers along the flow of the arrows (path of summation). The directions of the
arrows are determined by choosing any free edge of the wall profile as the initial
point (e.g., note 1 in case a and node 5 in case b). The main path of summation is
established, such as path 1→ 2→ 4→ 5 in case a and path 5→ 4→ 2→ 1 in
case b. Any intermediate branch elements (e.g., 2→ 3 in case a and 4→ 6 in case
b), have outward paths of summation.

The signs in parentheses in Fig. 15-2 indicate counterclockwise (+) or clockwise
(−) paths of summation with respect to shear center S. If ωcj is sought, the clockwise
or counterclockwise paths are considered with respect to the centroid.

To establish a systematic calculation for complicated cross sections, it is recom-
mended that a table such as the following be set up:
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Node Element bi rSi (±)rSi bi ωSj =∑i (±)rSi bi

CASE a (Fig. 15-2a)

1 0
(1) 1

2 b 1
2 h (−) 1

4 bh
2 − 1

4 bh

(3) h 0 0
4 − 1

4 bh
a (4) 1

2 b 1
2 h − 1

4 bh
5 − 1

2 bh

2 − 1
4 bh

(2) 1
2 b 1

2 h − 1
4 bh

3 − 1
2 bh

4 1
4 bh

(5) 1
2 b 1

2 h − 1
4 bh

6 0

CASE b (Fig. 15-2b)

5 0

(2) 1
2 b 1

2 h 1
4 bh

4 1
4 bh

(3) h 0 0
2 1

4 bh

(5) 1
2 b 1

2 h 1
4 bh

1 1
2 bh

4 1
4 bh

(1) 1
2 b 1

2 h 1
4 bh

6 1
2 bh

2 1
4 bh

(4) 1
2 b 1

2 h (−) 1
4 bh

3 0

In calculating rSi bi , the notation for i of Fig. 15-3 is employed. The sign in paren-
theses is chosen according to the direction of summation with respect to the pole
(e.g., the shear center for Fig. 15-2). For example, in the case of Fig. 15-3, moving
along element 1 in the s direction is counterclockwise with respect to the pole P .
Hence, the sign in parentheses for rPi bi (= rP1b1) would be positive.
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Example 15.2 Calculation of Warping-Related Constants for a Z-Section
Derive expressions for the principal sectorial coordinate ω, the shear center lo-
cation ey , ez , the first sectorial moment Qω, and the warping constant 	 for the
thin-walled Z -section shown in Fig. 15-4. The use of the direct integration method
will be demonstrated first, followed by the piecewise integration method.

Figure 15-4: Arrows along the wall profile show the directions of summation. Signs depend
on the direction of integration.

Direct Integration Method

Begin by computing the location of the shear center, which for this simple cross
section is known at the outset to coincide with the centroid. See Section 2.11.

Step 1: Calculate ωc (with respect to the geometric centroid). The first step is to
find the sectorial coordinate ωc. Choose node 1 as the origin of the coordinate s and
let ωc1 = 0. We calculate ωc by using Eq. (2.24a) as follows:

ω(1)c (s) = (−)
∫ s

0

h

2
dξ = −hs

2
, ωc2 = ω(1)c (b) = −bh

2

ω(2)c (s) = ωc2 +
∫ s

b
(0) dξ = −bh

2
, ωc3 = ω(2)c (b + h) = −bh

2

ω(3)c (s) = ωc3 +
∫ s

b+h

h

2
dξ = h

2
(s − 2b − h), ωc4 = ω(3)c (2b + h) = 0

Step 2: Calculate the remaining constants in the shear center location relation. The
formulas for the shear center coordinates yS and zS are given by Eq. (2.29). Using
ωc(s) computed in step 1 and Eq. (2.28), we calculate Iωy and Iωz as follows:
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Iωy =
∫ b

0
ω(1)c (s)

(
−h

2

)
t f ds +

∫ b+h

b
ω(2)c (s)

(
b + h

2
− s

)
tw ds

+
∫ 2b+h

b+h
ω(3)c (s)

(
h

2

)
t f ds

= h2

4

∫ b

0
s t f ds − bh

2

∫ b+h

b

(
b + h

2
− s

)
tw ds

+ h2

4

∫ 2b+h

b+h
(s − 2b − h)t f ds

= b2h2

8
t f − 0− b2h2

8
t f = 0

Iωz =
∫ b

0
ω(1)c (s)(b− s)t f ds +

∫ b+h

b
ω(2)c (s)(0)tw ds

+
∫ 2b+h

b+h
ω(3)c (s)(b+ h − s)t f ds

= −h

2

∫ b

0
s(b − s)t f ds + 0+ h

2

∫ 2b+h

b+h
(s − 2b − h)(b+ h − s)t f ds

= −b3h

12
t f + b3h

12
t f = 0

Substitution of Iωy = Iωz = 0 into expressions for yS and zS [Eq. (2.29)] yields
yS = zS = 0. This shows that the geometric centroid and the shear center are at the
same point.

To find the principal sectorial coordinate ω and the warping constant 	, we pro-
ceed with the following steps.

Step 3: Calculate ωS (with respect to the shear center). This involves repeating the
calculation of step 1 using the shear center as a pole. However, for this example, the
shear center and centroid are at the same location (yS = zS = 0). Hence ω(i)S (s) =
ω
(i)
c (s). That is, ω(1)S (s) = − 1

2 hs, ω(2)S (s) = − 1
2 bh, ω(3)S (s) = − 1

2 h(s−2b−h), and
ωS1 = 0, ωS2 = − 1

2 bh, ωS3 = − 1
2 bh, and ωS4 = 0.

Step 4: Calculate the principal sectorial coordinate. According to Eq. (2.25b), the
principal sectorial coordinate ω is given by ω = ωS − ω0. The sectorial coordinate
ωS has been calculated in step 3. For ω0 we find [Eq. (2.25c)] that

ω0 = 1

A

∫
A
ωS dA = 1

A

[∫ b

0
ω
(1)
S t f ds +

∫ b+h

b
ω
(2)
S tw ds +

∫ 2b+h

b+h
ω
(3)
S t f ds

]
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= 1

2bt f + htw

(
−ht f

2

∫ b

0
s ds − bhtw

2

∫ b+h

b
ds + ht f

2

∫ 2b+h

b+h
(s − 2b − h) ds

)

= 1

2bt f + htw

(
−b2ht f

4
− bh2tw

2
− b2ht f

4

)

= −bh(htw + bt f )

2(2bt f + htw)

Hence,

ω(1) = ω(1)S − ω0 = −hs

2
+ bh(htw + bt f )

2(2bt f + htw)
(0 ≤ s ≤ b)

ω(2) = ω(2)S − ω0 = − b2ht f

2(2bt f + htw)
(b ≤ s ≤ b + h)

ω(3) = ω(3)S − ω0 = −h(2b + h − s)

2
+ bh(htw + bt f )

2(2bt f + htw)
(b + h ≤ s ≤ 2b + h)

Step 5: Calculate the warping constant 	. The formula for warping constant 	 is
given by Eq. (2.33) using ω as calculated in step 4. It is found that

	 =
∫ b

0
(ω(1))2t f ds +

∫ b+h

b
(ω(2))2tw ds +

∫ 2b+h

b+h
(ω(3))2t f ds

=
∫ b

0

(
hs

2
+ ω0

)2

t f ds +
∫ b+h

b

(
bh

2
+ ω0

)2

tw ds

+
∫ 2b+h

b+h

[
h(2b+ h − s)

2
+ ω0

]2

t f ds

= b3h2t f

12

bt f + 2htw
2bt f + htw

Step 6: Calculate the first sectorial moment Qω. Use the formula for Qω of
Eq. (2.31a). The value of the principal sectorial coordinate ω calculated in step 4 can
be inserted in the formula for Qω. Then for the upper flange,

Q(1)
ω =

∫ s

0
ω(1)t f dξ =

∫ s

0

(
−hξ

2
− ω0

)
t f dξ

=
(
−hs2

4
− ω0s

)
t f (0 ≤ s ≤ b)

Qω2 = Q(1)
ω at node 2 =

(
−b2h

4
− ω0b

)
t f
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Q(2)
ω = Qω2 +

∫ s

b
ω(2)tw dξ = −

(
b2h

4
+ ω0b

)
t f +

∫ s

b

(
−bh

2
− ω0

)
tw dξ

= − b2ht f tw
2(2bt f + htw)

(
s − b − h

2

)
(b ≤ s ≤ b + h)

Qω3 = Q(2)
ω at node 3 = − b2h2t f tw

4(2bt f + htw)

Q(3)
ω = Qω3 +

∫ 2b+h

b+h
ω(3)t f dξ = − b2h2t f tw

4(2bt f + htw)

+
∫ s

b+h

[
−h(2b + h − ξ)

2
− ω0

]
t f dξ

=
[(
−h2

2
− bh − ω0

)
s + hs2

4

]
t f − b2h2t f tw

4(2bt f + htw)

+ t f

[(
h2

2
+ bh + ω0

)
(b + h)− h(b + h)2

4

]
(b + h ≤ s ≤ 2b + h)

Qω4 = Q(3)
ω at node 4 = 0

These expressions for Qω are ready for use in computing the shear stress of
Table 15-2.

Piecewise Integration Method

This method proves to be useful in calculating the sectorial properties and warp-
ing characteristics for thin-walled beams with complicated cross sections formed
of straight elements. The integration is then reduced to a summation. It should be
emphasized that the sequence of summation for sectorial coordinates follows direct
integration and must adhere to the same sign convention. All of the calculations for
the sectorial properties and warping characteristics for the Z -section will be repeated
to demonstrate use of the formulas in this method. We begin, as before, by computing
the location of the shear center.

Step 1: Calculate ωci (with respect to the geometric centroid).

Node Element rci bi rci bi (±)ωci =∑i (±)rci bi

1 0
(1) 1

2 h b (−) 1
2 bh

2 − 1
2 bh

(2) 0 h 0

3 − 1
2 bh

(3) 1
2 h b 1

2 bh
4 0
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Step 2: Calculate the remaining constants in the shear center location relations.
The formulas for the shear center yS and zS are taken from case 21 of Table 2-6 as

yS = Iz Iωy − Iyz Iωz

Iy Iz − I 2
yz

, zS = − Iy Iωz − Iyz Iωy

Iy Iz − I 2
yz

where

Iωy =
∫

A
ωcz dA = 1

3

M∑
i=1

(ωcpz p + ωcq zq)ti bi + 1

6

M∑
i=1

(ωcpzq + ωcq z p)ti bi

Iωz =
∫

A
ωc y dA = 1

3

M∑
i=1

(ωcp yp + ωcq yq)ti bi + 1

6

M∑
i=1

(ωcp yq + ωcq yp)ti bi

M is the total number of elements. The quantities ωcp, (yp, z p) and ωcq , (yq , zq ) are
the sectorial areas and coordinates of the two ends of element i . For example, the
first end (p) of element 2 of Fig. 15-4 is node 2 and the second end (q) is node 3 in
the node sequence. So for element 2, ωcp = ωc2 and ωcq = ωc3.

Node Coordinate From Step 1

Element p q yp z p yq zq bi ti ωcp ωcq

(1) 1 2 b − 1
2 h 0 − 1

2 h b t f 0 − 1
2 bh

(2) 2 3 0 − 1
2 h 0 1

2 h h tw − 1
2 bh − 1

2 bh

(3) 3 4 0 1
2 h −b 1

2 h b t f − 1
2 bh 0

In expanded form, Iωy and Iωz appear as

Iωy = 1

3

[
(ωc1z1 + ωc2z2)t1b1︸ ︷︷ ︸

Element 1

+ (ωc2z2 + ωc3z3)t2b2︸ ︷︷ ︸
Element 2

+ (ωc3z3 + ωc4z4)t3b3︸ ︷︷ ︸
Element 3

]

+ 1

6

[
(ωc1z2 + ωc2z1)t1b1︸ ︷︷ ︸

Element 1

+ (ωc2z3 + ωc3z2)t2b2︸ ︷︷ ︸
Element 2

+ (ωc3z4 + ωc4z3)t3b3︸ ︷︷ ︸
Element 3

]

Iωz = 1

3

[
(ωc1 y1 + ωc2 y2)t1b1︸ ︷︷ ︸

Element 1

+ (ωc2 y2 + ωc3 y3)t2b2︸ ︷︷ ︸
Element 2

+ (ωc3y3 + ωc4 y4)t3b3︸ ︷︷ ︸
Element 3

]

+ 1

6

[
(ωc1y2 + ωc2 y1)t1b1︸ ︷︷ ︸

Element 1

+ (ωc2 y3 + ωc3 y2)t2b2︸ ︷︷ ︸
Element 2

+ (ωc3 y4 + ωc4 y3)t3b3︸ ︷︷ ︸
Element 3

]

Substitution of the appropriate values from the table above gives Iωy = Iωz = 0. The
formulas for yS and zS then provide yS = zS = 0.
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To find the principal sectorial coordinates ω and warping constant 	, we proceed
with the following steps.

Step 3: Calculate ωSi (with respect to the shear center). This involves repeating the
tabular circulation of step 1 using rSi instead of rci . However, for this example, the
shear center and centroid are at the same location (yS = zS = 0). Hence, rSi = rci ,
which gives ωSj = ωcj . That is, ωS1 = 0, ωS2 = − 1

2 bh, ωS3 = − 1
2 bh, ωS4 = 0.

Step 4: Evaluate the remaining constants in the expressions for the principal coordi-
nates. From Eq. (2.31c) and case 1 of Table 2-7, the expression ω0 is given by

ω0 = 1

A

∫
A
ωS dA = 1

A

[
1

2

M∑
i=1

(ωSp + ωSq)ti bi

]

In expanded form, noting, for example, that for element 2, ωSp = ωS2 and ωSq =
ωS3,

ω0 = 1

A

1

2

[
(ωS1 + ωS2)t1b1︸ ︷︷ ︸

Element 1

+ (ωS2 + ωS3)t2b2︸ ︷︷ ︸
Element 2

+ (ωS3 + ωS4)t3b3︸ ︷︷ ︸
Element 3

]

with A = 2bt f + htw. Substitution of the values of ωSj from step 3 into the expres-
sion for ω0 leads to

ω0 = −bh(t f b + twh)

2(2bt f + htw)

Then using the notation ω j to represent ω at node j , ω j = ωSj − ω0,

ω1 = ωS1 − ω0 = bh(htw + bt f )

2(2bt f + htw)
= ω4

ω2 = ωS2 − ω0 = − b2ht f

2(2bt f + htw)
= ω3

The value of the principal sectorial coordinate ω between the two nodes of any
element varies linearly and can be expressed in terms of the nodal values ωp , ωq . For
example, for element 1 (Fig. 15-5), ω between nodes 1 and 2 is found to be

Figure 15-5: Variation of ω along an element.
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ω(1) = ω in element 1 = (b2ht f + bh2tw)− (2bht f + h2tw)s

2(2bt f + htw)

= −hs

2
+ bh(htw + bt f )

2(2bt f + htw)
(0 ≤ s ≤ b)

The expressions for ω j or ω(1) calculated above can be inserted in Table 15-1 for
computation of the normal stress.

Step 5: Calculate the warping constant 	. The formula for warping constant 	 is
given in Eq. (2.33) and case 21, Table 2-6:

	 =
∫

A
ω2 dA = 1

3

M∑
i=1

(ω2
p + ωpωq + ω2

q)ti bi

where ωp and ωq are the principal sectorial coordinates at the ends of element i . This
can be expanded as

	 = 1

3

[
(ω2

1 + ω1ω2 + ω2
2)t1b1︸ ︷︷ ︸

Element 1

+ (ω2
2 + ω2ω3 + ω2

3)t2b2︸ ︷︷ ︸
Element 2

+ (ω2
3 + ω3ω4 + ω2

4)t3b3︸ ︷︷ ︸
Element 3

]

Substitution of the values of ω j calculated in step 4 and t1 = t f = t3, b1 = b = b3,
t2 = tw, and b2 = h yields

	 = b3h2t f

12

bt f + 2htw
2bt f + htw

Step 6: Calculate the first sectorial moment Qω. The formula for Qω is given in
Eq. (2.31a). The value of the principal sectorial coordinate ω calculated in step 4 can
be inserted into the expression for Qω. Then for the upper flange,

Q(1)
ω =

∫ s

0
ω(1)t f ds =

∫ s

0

[
−hs

2
+ bh(htw + bt f )

2(2bt f + htw)

]
t f ds

The integration leads to

Q(1)
ω =

[
−hs2

4
+ bh(htw + bt f )

2(2bt f + htw)
s

]
t f (0 ≤ s ≤ b)

A similar calculation yields

Q(2)
ω = −

b2ht f tw
2(2bt f + htw)

(
s − b − h

2

)
(b ≤ s ≤ b + h)
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These expressions for Qω are ready for use in computing the shear stress of
Table 15-2.

15.4 NORMAL STRESSES

Formulas for normal stresses on the face of a cross section are given in Table 15-1.
These formulas are based on the following assumptions:

1. The Euler–Bernoulli assumption, regarding the axial and flexural modes of
deformations, that a cross-sectional plane normal to the centroidal axis (or the
modulus-weighted centroidal axis in the case of a composite beam) remains
plane after deformation

2. The sectorial concept (see Chapter 2), regarding the restrained warping mode
of deformation, that the shear center is used as a pole

Neutral Axis

The neutral axis is, by definition, a line through the cross section along which the
normal stress is zero. To find the equation of this line for the general case of bending,
set σ = 0 in case 1 of Table 15-1:

z = Mz I ∗y + My I ∗yz

My I ∗z + Mz I ∗yz
y (15.1)

where the axial force P , thermal effects, and bimoment B have been neglected. The
neutral axis defined by Eq. (15.1) passes through the centroid. It is the line about
which the “plane section” rotates. The neutral axis is not, in general, perpendicular
to the plane of the resultant internal moment, nor does it usually coincide with either
of the principal axes of inertia. An exception is the case of simple bending using
case 5 of Table 15-1, in which the largest stress occurs at the point most removed
from the neutral axis.

Example 15.3 Normal Stresses in a Composite Beam Find the normal stresses
at points A and B on the composite cross section shown in Fig. 15-6. The section is
subjected to a bending moment M = 10 kN ·m in the direction shown. Also locate
the neutral axis.

The stresses are found using the formula of case 1 of Table 15-1 with B, P , and
T equal to zero. First, the location of modulus-weighted centroid of the cross section
must be found.

The desired centroid can be located in the y0, z0 reference frame using Eq. (2.41b).
The modulus-weighted area A∗ is given by Eq. (2.41a). Choose Er = 100 GN/m2.
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Figure 15-6: Example 15.3.

Then we find that

y∗c =
∑

y0i A∗i
A∗

= 4.94 cm,

z∗c =
∑

z0i A∗i
A∗

= 9.31 cm (1)

The moments of inertia of the cross section about the centroidal y, z axes are
[Eqs. (2.44)]

I ∗y =
5∑

i=1

Ei

Er
(I yi + z2

i Ai ) = 7028.52 cm4

I ∗z =
5∑

i=1

Ei

Er
(I zi + y2

i Ai ) = 1723.27 cm4 (2)

I ∗yz =
5∑

i=1

Ei

Er
(I yi zi + yi zi Ai ) = −590.23 cm4

The bending moments about the y, z axes are

M y = My = M cos 15◦ = 9.659 kN ·m,
Mz = Mz = M sin 15◦ = 2.588 kN ·m (3)
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Then, from case 1 of Table 15-1,

σ = E

Er

(
M y I ∗z + Mz I ∗yz

I ∗y I ∗z − I ∗2yz
z − Mz I ∗y + M y I ∗yz

I ∗y I ∗z − I ∗2yz
y

)

= E

100
(0.001285z − 0.001062y) (4)

with E in giganewtons per meter squared and y, z in centimeters.
At point A, y = 5.06 cm, z = −9.31 cm, E = E2 = 200GN/m2, and (4) yields

σ = 2[0.001285(−9.31)− 0.001062(5.06)] = −0.0347 GN/m2 (5)

At point B of material 5, y = 0.06 cm, z = 3.69 cm, E = E5 = 120 GN/m2, and
σ = 1.2[0.001285(3.69)− 0.001062(0.06)] = 0.0056 GN/m2.

The position of the neutral axis is obtained by setting σ = 0 in (4). This leads to

tanφ = z

y
= 0.001062

0.001285
= 0.8265 or φ = 39.57◦ (6)

Example 15.4 Thin-Walled Composite Section with Stringers and Thermal
Loading Find the bending stresses in the longitudinal stringers of the simplified
representation of an aircraft wing shown in Fig. 15-7. The section is subjected to
bending moment My = 5 × 105 in.-lb. Columns 2, 3, 4, 5, and 6 of Fig. 15-8 indi-
cate geometric and material properties of the section along with the applied thermal
loading. Assume that α = 1.2× 10−5 in./in.-◦F.

Typically, flight structures of this sort are comprised of thin metal skins connect-
ing longitudinal stringers. It is often assumed that the skin panels do not resist bend-
ing. The moments of inertia are then based on the areas of the stringers, not including
the area of the skins.

Figure 15-7: Example 15.4.



1 2 3 4 5 6 7 8 9 10 11 12

Ai yoi zoi Ti Ei Ei/Er A∗i yoi A∗i zoi A∗i yi zi

in2 in in ◦F 106 psi in2 in3 in3 in in

st
at

io
n

i 2× 7a 3× 8 4× 8 3–13.68 4–3.24

1 1.5 0 0 180 9.2 0.92 1.38 0 0 −13.68 −3.24

2 0.8 6 0 230 10.0 1.00 0.80 4.80 0 −7.68 −3.24

3 0.8 12 0 230 10.0 1.00 0.80 9.60 0 −1.68 −3.24

4 0.8 18 0 230 10.0 1.00 0.80 14.40 0 4.32 −3.24

5 2.0 24 0 205 9.5 0.95 1.90 45.60 0 10.32 −3.24

6 1.2 24 4 180 10.3 1.03 1.24 29.76 4.96 10.32 0.76

7 2.0 24 8 205 9.5 0.95 1.90 45.60 15.20 10.32 4.76

8 1.0 18 7 330 10.1 1.01 1.01 18.18 7.07 4.32 3.76

9 1.0 12 6 330 10.1 1.01 1.01 12.12 6.06 −1.68 2.76

10 1.0 6 5 330 10.1 1.01 1.01 6.06 5.05 −7.68 1.76

11 1.2 0 4 180 9.5 0.95 1.14 0 4.56 −13.68 0.76

12 0.6 0 2 130 10.2 1.02 0.612 0 1.24 −13.68 −1.24∑
13.60 186.12 44.14

780



13 14 15 16 17 18 19 20 21 22

y2
i A∗i z2

i A∗i yi zi A∗i (EαT A∗)i (EαT y A∗)i (EαT z A∗)i C2yi C3zi Er ATi σ

in4 in4 in4 103 lb 103 in-lb 103 in-lb 103 psi 103 psi 103 psi 103 psi
7× (C1 − 19

st
at

io
n

i 112 × 8 122 × 8 11× 12× 8 6× α × 5× 8 11× 16 12× 16 +20− 21)

1 258.26 14.49 61.17 27.42 −407.80 −96.58 −5.50 −16.50 21.60 −4.95

2 47.16 8.40 19.91 22.08 −169.57 −71.54 −3.09 −16.50 27.60 −13.79

3 2.26 8.40 4.35 22.08 −37.09 −71.54 −0.68 −16.50 27.60 −16.20

4 14.93 8.40 −11.20 22.08 95.39 −71.54 1.74 −16.50 27.60 −18.62

5 202.35 19.95 −63.53 44.40 482.36 −151.44 4.15 −16.50 24.60 −17.13

6 132.06 0.72 9.73 27.59 275.54 20.29 4.15 3.87 21.60 5.50

7 202.35 43.05 93.33 44.40 482.36 222.48 4.15 24.24 24.60 21.57

8 18.85 14.28 16.41 40.40 172.80 150.40 1.74 19.16 39.60 5.09

9 2.85 7.09 −4.68 40.40 −67.20 110.40 −0.68 14.05 39.60 2.37

10 59.57 3.13 −13.65 40.40 −307.20 70.40 −3.09 8.96 39.60 −0.33

11 213.34 0.66 −11.85 23.39 −336.80 18.71 −5.50 3.87 21.60 14.24

12 116.03 0.95 10.52 9.86 −130.64 −11.84 −5.50 −6.31 15.60 11.13∑
1270.01 130.12 110.51 370.40 52.15 118.20

aThe notation 2× 7 indicates that the entry in column 2 is multiplied by the entry in column 7 to obtain the entry in column 8.

Figure 15-8: Data for Example 15.4.
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Most of the calculations can be placed in tabular form, as shown in Fig. 15-8. Let
Er = 107 psi. We find that

y∗c =
∑

y0i A∗i
A∗

= 186.12

13.61
= 13.68 in., z∗c =

∑
z0i A∗i
A∗

= 44.14

13.61
= 3.24 in.

I ∗y =
∑

z2
i A∗i = 130.12 in4, I ∗z =

∑
y2

i A∗i = 1270.01 in4,

I ∗yz =
∑

yi zi A∗i = 110.51 in4

P = P +
∫

EαT dA = 0+
∑
(EαT A∗)i = 370.4× 103 lb

M y = My +
∫

EαT z dA = 5× 105 +
∑

(EαT z A∗)i = 618.2× 103 in.-lb

Mz = Mz −
∫

EαT y dA = 0−
∑

(EαT y A∗)i = −52.15× 103 in.-lb

C1 = P

A∗ =
370.4× 103

13.61
= 27.22× 103 psi

C2 =
Mz I ∗y + M y I ∗yz

I ∗y I ∗z − I ∗2yz
= −52.15(103)130.12+ 618.2(10)3110.51

130.12(1270.01)− (110.51)2

= 0.402× 103 lb/in3

C3 =
M y I ∗z + Mz I ∗yz

I ∗y I ∗z − I ∗2yz
= 618.2(103)1270.01− 52.15(103)110.51

130.12(1270.01)− (110.51)2

= 5.092× 103 lb/in3

From case 1 of Table 15-1, the stresses are calculated using

σi = Ei

Er
(C1 + C3zi − C2 yi − ErαTi )

= E

Er
(27.22× 103 + 5.092× 103zi − 0.402× 103 yi − ErαTi )

The normal stress in each stringer is listed in the final column of Fig. 15-8.

15.5 SHEAR STRESSES

The formulas for the shear stress on the face of the cross section are listed in
Table 15-2. For case 1 for a solid beam the stresses are positive if they point in the
directions of the y or z coordinates. For the thin-walled section of case 2 the stresses
are positive if they point in the direction of the positive s coordinate. Considerable
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care must be exercised in applying these formulas. Especially delicate is the need to
add the terms in cases 1 and 2 vectorially if the particular shear stresses (torsional,
transverse, and restrained warping shear stresses) act in different directions. The y, z
coordinates for case 3 are taken relative to axes passing through the centroid of the
cross section. Case 3 provides the average shear stress along b, which is the width in
any direction on a cross section (e.g., see b in Fig. 2-9).

Shear Center

Loading on a beam will usually produce combined bending and twisting. Some of
the formulas of this chapter are based on the assumption that no twisting moment
is developed. It is possible to locate a point in the cross-sectional plane through
which the resultant forces must pass (sometimes in a particular direction) if there is
to be no twisting. This point is called the shear center. Various definitions of shear
centers are presented in Ref. [15.1]. Some lead to shear center formulas that are
material dependent, while others are not functions of the material. Computational
formulations as well as software for calculating shear centers for cross sections of
arbitrary shape are given in [15.1]. Also, for software see the web site for this book.
Traditional formulas for shear center locations are given in Chapter 2. For several
specific cross sections, see Table 2-6.

It is possible to avoid the shear center formulas and to locate the shear center
easily by balancing the internal shear forces Vy, Vz with the resultant of the shear
stresses τ . This is accomplished by setting the summation of moments about any
convenient point equal to zero. If the resultant of Vy and Vz as caused by external
loading is not equal, opposite, and collinear to the resultant of the internal shear
stresses, bending is accompanied by twisting of the beam.

The following characteristics of a shear center can be demonstrated:

1. The shear center for a section consisting of two intersecting rectangular ele-
ments is at the point of intersection.

2. The shear center for a section with one axis of symmetry lies on this axis.
3. The shear center for a section with two axes of symmetry is at the intersection

of the two axes (i.e., at the centroid).

Example 15.5 Shear Center The shear center for a channel (Fig. 15-9) lies on
the axis of symmetry (i.e., along the y axis). To find the shear center coordinate e
along the y axis, we could use the formulas of Chapter 2 or simply sum moments
about point 1. The resultant forces in the section are designated F1 and F2. Then

∑
M1 = 0 : Vze − F1h = 0 (1)

so that

e = F1h

Vz
= h

Vz

∫ 3

2
q ds = ht

Vz

∫ 3

2
τ ds = ht

Vz

∫ 3

2

Qy Vz

t Iy
ds = h

Iy

∫ 3

2
Qy ds (2)
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Figure 15-9: Example 15.5.

where τ is given by case 3 of Table 15-2 with b = t , Vy = 0, and Iyz = 0 (the section
has an axis of symmetry). By definition of a first moment, Qy = y A0 = (h/2)ts.
From (2),

e = h

Iy

∫ 3

2

h

2
ts ds = th2a2

4Iy
(3)

The channel in this example has the y axis as an axis of symmetry. If there were
no axes of symmetry, special care would have to be taken. In particular, each term in
(1) would contain either Vz or Vy . [Note that in this example F1 is written in terms of

Vz ; i.e., F1 = Vz
∫ 3

2 (Qy/Iy) ds.] The coordinates yS, zS of the shear center are found
by equating the coefficients of Vy and Vz terms to zero. This yields two equations
for the two unknowns yS and zS . This manipulation is equivalent to taking moments
about a point in the section with Vy and Vz applied separately.

Example 15.6 Thin-Walled Composite Section with Stringers and Thermal
Loading Find the shear stress in the panels of the thin-walled section of Fig. 15-10.

Figure 15-10: Example 15.6.
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Other than the lack of a web connecting stringers 3 and 4, this section has the same
physical and material properties as the section in Example 15.4. The section is sub-
jected to a downward vertical shear force of 1500 lb at the shear center in addition to
an applied longitudinal thermal gradient T ′i = dTi/dx = −1.2 × 10−3Ti (◦F/in.),
where Ti is the temperature rise in the i th stringer (column 5 of Fig. 15-8).

Since the shear force passes through the shear center, torsional effects will be
neglected. Also, warping effects are to be ignored. The shear stress τ or shear flow
q = τb will be calculated using case 1 of Table 15-2. As in the case of Example 15.4,
the first area moments Q∗y, Q∗z are based on the areas of the stringers alone. The thin
webs are ignored for this computation.

Most of the calculations are indicated in Fig. 15-11. Other necessary computations
are

P
′ = d

dx

∫
EαT dA =

12∑
i=1

Ei A∗i αT ′i = −436.9 lb/in.

M
′
z = −Vy − d

dx

∫
EαT y dA = −

12∑
i=1

Ei A∗i yiαT ′i = 70.36 lb

M
′
y = Vz + d

dx

∫
EαT z dA = 1500+

12∑
i=1

Ei A∗i ziαT ′i

= 1500− 150.34 = 1349.66 lb

(1)

For tabulated calculations of the sort required here, it is convenient in case 2 of
Table 15-2 to gather together those terms that remain constant for all points on the
cross section. Thus, we write

q = − A∗0
A∗

P
′ + C ′2 Q∗z − C ′3 Q∗y +

∫
A0

E(αT )′ dA (2)

where

C ′2 =
M
′
z I ∗y + M

′
y I ∗yz

I ∗y I ∗z − I ∗2yz
and C ′3 =

M
′
y I ∗z + M

′
z I ∗yz

I ∗y I ∗z − I ∗2yz

do not vary over a cross section. For our case,

C ′2 =
M
′
z I ∗y + M

′
y I ∗yz

I ∗y I ∗z − I ∗2yz
= 70.36(130.12)+ 1349.66(110.51)

130.12(1270.01)− (110.51)2
= 1.034 lb/in4

C ′3 =
M
′
y I ∗z + M

′
z I ∗yz

I ∗y I ∗z − I ∗2yz
= 1349.66(1270.01+ 70.36(110.51)

130.12(1270.01)− (110.51)2
= 11.251 lb/in4

(3)



1 2 3 4 5 6 7 8 9 10

yi zi A∗i yi A∗i Q∗z zi A∗i Q∗y A∗0 Ei A∗i
in. in. in2 in3 in3 in3 in3 in2 106 lb

st
at

io
n

i Fig. 15-8 2× 4a ∑
5 3× 4

∑
7

∑
4

4 4.32 −3.24 0.80 3.46 3.46 −2.59 −2.59 0.80 8.0

5 10.32 −3.24 1.90 19.61 23.07 −6.16 −8.75 2.70 18.05

6 10.32 0.76 1.24 12.80 35.87 0.94 −7.81 3.94 12.77

7 10.32 4.76 1.90 19.61 55.48 9.04 1.23 5.84 18.05

8 4.32 3.76 1.01 4.36 59.84 3.80 5.03 6.85 10.2

9 −1.68 2.76 1.01 −1.70 58.14 2.79 7.82 7.86 10.2

10 −7.68 1.76 1.01 −7.76 50.38 1.78 9.60 8.87 10.2

11 −13.68 0.76 1.14 −15.60 34.78 0.87 10.47 10.01 10.83

12 −13.68 −1.24 0.612 −8.48 26.30 −0.77 9.70 10.63 6.24

1 −13.68 −3.24 1.38 −18.88 7.42 −4.47 5.23 12.01 12.67

2 −7.68 −3.24 0.80 −6.14 1.28 −2.59 2.64 12.81 8.0

3 −1.68 −3.24 0.80 −1.34 0.06 −2.59 0.05 13.61 8.0∑
13.60

786



11 12 13 14 15 16 17 18 19

αT ′i Ei A∗i αT ′i Ei A∗i yαT ′i Ei A∗i zαT ′i
A∗0
A∗ P

′
C ′2 Q∗z C ′3 Q∗y

∑
(E A∗αT ′)i q

10−6 lb/in

st
at

io
n

i in−1 lb/in lb lb lb/in lb/in lb/in
∑

12 −15+ 16

2× 12 3× 12 −17+ 18

4 −3.31 −26.48 −114.39 85.80 −25.7 3.58 −29.14 −26.48 31.94

5 −2.95 −53.25 −549.54 172.53 −86.74 23.85 −98.45 −79.73 129.2

6 −2.59 −33.07 −341.28 −25.13 −126.57 37.09 −87.87 −112.8 138.7

7 −2.95 −53.25 −549.54 −253.47 −187.61 57.37 13.84 −166.05 65.1

8 −4.75 −48.45 −209.30 −182.17 −220.06 61.87 56.59 −214.5 10.8

9 −4.75 −48.45 81.4 −133.72 −252.5 60.12 87.98 −262.95 −38.3

10 −4.75 −48.45 372.1 −85.27 −284.95 52.09 108.01 −311.4 −82.4

11 −2.59 −28.05 383.7 −21.32 −321.57 35.96 117.80 −339.45 −99.7

12 −1.87 −11.67 159.65 14.47 −341.49 27.19 109.13 −351.12 −91.3

1 −2.59 −32.82 448.98 106.34 −385.82 7.67 58.94 −383.94 −49.3

2 −3.31 −26.48 203.37 85.80 −411.5 1.32 29.70 −410.42 −27.3

3 −3.31 −26.48 44.49 85.80 −437.22 0.06 0.56 −436.9 −0.18∑ −436.90 −70.36 −150.34

a The notation 2× 4 indicates that the entry in column 2 is multiplied by the entry in column 4 to obtain the entry in column 5.

Figure 15-11: Data for Example 15.6.
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The final calculations for q are listed in column 19 of Fig 15-11. In passing over the
third stringer, the shear flow should drop to zero. The value 0.18 lb/in. shown is a
result of round-off error accumulation.

15.6 COMBINED NORMAL AND SHEAR STRESSES

A complete cross-sectional stress analysis usually involves both normal and shear
stresses. The following example illustrates such an analysis.

Example 15.7 Normal and Shear Stress Calculation Including Warping
Stresses Determine the normal and shear stresses on the cross section of the
cantilevered channel beam shown in Fig. 15-12a.

The eccentric force P is resolved into a force P applied through the shear center
and a torque TL = P(y + e) (Fig. 15-12b). The stresses due to P and TL can be
determined independently and then, for a point, superimposed to obtain the combined
stress at the point.

The geometric properties required for normal stresses can be obtained from
Table 2-1. Although many of the properties for warping-related stresses are listed
in Table 2-7, we choose to detail most of the calculations here. Also, the properties
needed for transverse shear are computed.

Cross-Sectional Properties

Select the origin of the s coordinate to be at the free edge of the lower flange
(Fig. 15-12c). Then the sectorial coordinate with respect to the shear center is found
to be [Eq. (2.30)]

ωS =
∫ s

0

h

2
dξ = h

2
s for 0 ≤ s ≤ b

ωS = h

2
b + (−)

∫ s

0
e dξ = bh

2
− e(s − b) for b ≤ s ≤ b + h

ωS = bh

2
− e(b+ h − b)+

∫ s

b+h

h

2
dξ = h

2
(s − 2e − h) for b + h ≤ s ≤ 2b + h

From Eq. (2.31c),

ω0 = 1

A

∫ 2b+h

0
ωS dA = 1

2bt f + htw

{∫ b

0

h

2
st f ds +

∫ b+h

b

[
bh

2
− e(s − b)

]
tw ds

+
∫ 2b+h

b+h

h

2
(s − 2e − h)t f ds

}
= h

2
(b − e)
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Figure 15-12: Example 15.7.

It follows from Eq. (2.31a) that for 0 ≤ s ≤ b,

ω = ωS − ω0 = 1

2
hs − 1

2
h(b − e) = 1

2
h(s − b + e)

Qω =
∫ s

0
(ωS − ω0)t f dξ = 1

2
ht f s

(
1

2
s − b + e

) (1)
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for b ≤ s ≤ b + h,

ω = ωS − ω0 = e

(
1

2
h − s + b

)

Qω = (Qω)s=b +
∫ s

b
(ωS − ω0)tw dξ (2)

= 1

2
bht f

(
e − 1

2
b

)
− etw

[
1

2
(s2 − b2)−

(
b + 1

2
h

)
(s − b)

]

and for b + h ≤ s ≤ 2b + h,

ω = ωS − ω0 = h

2
(s − e − h − b)

Qω = (Qω)s=b+h +
∫ s

b+h

h

2
(ξ − e − h − b)t f dξ (3)

= bht f

2

(
e − b

2

)
− ht f

2

{
(b + e + h)(s − b − h)− 1

2
[s2 − (b + h)2]

}

At point 1, s = 1
2 b,

Qω1 = 1

2
ht f

[
1

2
b

(
1

4
b − b + e

)]
= 1

4
bht f

(
e − 3

4
b

)
(4)

At point 2, s = b,

Qω2 = 1

2
ht f b

(
1

2
b − b + e

)
= 1

4
bht f (2e − b) (5)

At point 3, s = b + 1
2 h,

Qω3 = 1

4
bht f (2e − b)− etw

(
−1

8
h2
)
= 1

4
bht f (2e − b)+ 1

8
eh2tw (6)

The warping constant is, from Eq. (2.33),

	 =
∫ 2b+h

0
ω2t ds =

∫ 2b+h

0
(ωS − ω0)

2t ds

=
∫ b

0

h2

4
(s − b + e)2t f ds +

∫ b+h

b
e2
(

h

2
− s + b

)2

tw ds

+
∫ 2b+h

b+h

h2

4
(s − e − h − b)2t f ds
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= h2t f

6
(b3 − 3b2e + 3be2)+ e2h3tw

12

= h2

12

[
2t f (b

3 − 3b2e)+ e2(6t f b + twh)
]

The shear center location e can be taken from case 8 of Table 2-6 as

e = 3b2t f

6t f b + twh
(7)

Thus, we get

	 = h2b3t f

12

3t f b + 2twh

6t f b + twh
(8)

The first moments at points 1, 2, and 3 needed for shear stresses due to transverse
forces are, from [Eq. (2.19a)],

(Qy)1 = 1
4 bht f , (Qy)2 = 1

2 bht f , (Qy)3 = 1
2 bht f + 1

8 h2tw (9)

Internal Moments

The formulas of Chapter 14 are used to determine the internal bimoment and torque.
We use the equations of Table 14-1, part A, with the loading functions for the con-
centrated torque at x = L taken from Table 14-1, part B. The initial parameters are
given in Table 14-1, part C. The initial parameters can also be computed by applying
the end conditions of φ = ψ = 0 at x = 0 and B = T = 0 at x = L to the equations
of Table 14-1, part A:

φ = TL

G JC
[(cosh Cx − 1) tanh C L − sinh Cx + Cx]

B = −TL

C
(tanh C L cosh Cx − sinh Cx) (10)

Tω = −TL(tanh C L sinh Cx − cosh Cx)

where C2 = G J/E	.
At x = 0:

(a) It can be demonstrated that Tt (pure torsional torque)= 0 at x = 0. Substitute
the end condition ψ = −dφ/dx = 0 into Tt = G J dφ/dx (Section 14.4). Since
Tt = 0, it follows that τt = 0.

(b) The warping shear stress is given by τω = QωTω/t	, where t is the thickness
of the wall. At points 1, 2, and 3 on the cross section

τω1 = Qω1TL

t f 	
, τω2 = Qω2TL

t f 	
, τω3 = Qω3TL

tw	
(11)

where Qω1, Qω2, and Qω3 are given by (4), (5), and (6).
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(c) At x = 0, Vz = P and using case 4, Table 15-2 (with thickness b = t), the
bending shear stress becomes

τ = τb = −Vz Qy

t Iy
= − P Qy

t Iy
(12)

The shear stress is positive in the direction of the positive s coordinate. At points 1,
2, 3,

τb1 = − Pbh

4Iy
, τb2 = − Pbh

2Iy
, τb3 = − Ph

tw Iy

(
1

2
bt f + 1

8
htw

)
(13)

(d) At x = 0, My = −P L, and from case 5 of Table 15-1, the bending normal
stress is given by

σ = σb = Myz

Iy
= − P Lz

Iy
(14)

At points 1, 2, 3,

σb1 = − PhL

2Iy
, σb2 = − PhL

2Iy
, σb3 = 0 (15)

(e) Warping normal stress

σω = Bω

	
= −TL tanh C L

C	
ω (16)

where the principal sectorial coordinate ω for the lower flange and the web are given
by (1) and (2). Then at points 1, 2, 3,

σω1 = −TL tanh C L

C	

h

4
(2e − b), σω2 = −TL tanh C L

C	

eh

2
,

σω3 = −TL tanh C L

C L
(0) = 0

(17)

At x = L: From (10) at x = L we have the bimoment B = 0, the warping
torque Tω = TL/ cosh C L, and the rate of angle of twist

−ψ = φ′ = TL

G J

(
1− 1

cosh C L

)
(18)

(a) From Eq. (14.7) and Table 15-2, the pure torsional stress at the edges of the
wall is calculated as
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Tt = G Jφ′ = TL

(
1− 1

cosh C L

)

τt = Tt t

J
= tTL

J

(
1− 1

cosh C L

) (19)

The pure torsional stress varies linearly across the thickness. It is a maximum at both
edges and zero at the middle. The stresses on the two edges of the thin wall are equal
in magnitude and opposite in direction.

(b) The warping shear stress is calculated as

τω = QωTω
t	
= QωTL

t	 cosh C L
(20)

with Qω for points 1, 2, and 3 taken from (4), (5), and (6) and by using the appropriate
wall thickness.

(c) Since the shear force Vz is constant along the beam length, the bending shear
stress at x = L is the same as at x = 0.

(d) Since at x = L, My = 0, the bending normal stress is σ = 0.
(e) The warping normal stress is calculated as

σ = Bω/	 = 0 (21)

Combined Results

The normal and shear stresses at points 1, 2, and 3 on the cross section are obtained
as follows. At x = 0:

(a) Normal stresses:

σ1 = σb1 + σω1 = − PhL

2Iy
− h(2e − b)

4

TL tanh C L

C	

σ2 = σb2 + σω2 = − PhL

2Iy
− eh

2

TL tanh C L

C	

σ3 = σb3 + σω3 = 0

(22)

(b) Shear stresses:

τ1 = τt + τb1 + τω1 = − Pbh

4Iy
+ Qω1TL

t f 	

τ2 = τt + τb2 + τω2 = − Pbh

2Iy
+ Qω2TL

t f 	

τ3 = τt + τb3 + τω3 = − Ph

tw Iy

(
bt f

2
+ htw

8

)
+ Qω3TL

tw	

(23)
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At x = L:

(a) Normal stresses:

σ1 = σ2 = σ3 = 0

(b) Shear stresses:

τ1 = τt + τb + τω
where τb and τω are uniform through thickness t , τt varies linearly through thickness
t and is in opposite directions on the two sides (i.e., τt = ±tTL/J ). The extreme
shear stresses at points 1, 2, and 3 can be written as

τ1 = τt + τb1 + τω1 = ± tTL

J

(
1− 1

cosh C L

)
− Phb

4Iy
+ TL Qω1

t f 	 cosh C L

τ2 = ± tTL

J

(
1− 1

cosh C L

)
− Pbh

2Iy
+ TL Qω2

t f 	 cosh C L

τ3 = ± tTL

J

(
1− 1

cosh C L

)
− Ph

tw Iy

(
bt f

2
+ htw

8

)
TL Qω3

tw	 cosh C L

(24)

15.7 FINITE ELEMENT ANALYSIS

Characteristics such as normal stresses are readily found using the formulas pre-
sented in Table 15-1. The cross-sectional properties and stresses related to torsional
moments and shear forces are often so difficult to calculate that they have to be com-
puted with a numerical method, especially for sections of arbitrary shape. The most
common technique for determining such properties and stresses is the finite element
method. Commercial software packages using finite elements are now available to
calculate all important cross-sectional properties and stresses [15.1].

For Saint-Venant torsion, the principle of virtual work leads to the integral expres-
sion ∫

A

[(
∂

∂y
δω
∂ω

∂y
+ ∂

∂z
δω
∂ω

∂z

)
−
(
∂

∂y
δω z + ∂

∂z
δω y

)]
dA = 0 (15.2)

where ω(y, z) is a warping function distributed over the cross section with y, z coor-
dinates. The finite element formulation begins with the approximation of the warping
function over each element (i).

ω(y, z) =
∑

Niωi = N�e = �eT NT (15.3)

where Ni are the shape functions, N is a vector of the shape functions, ωi are the
nodal values of ω, and �e = [ω1 ω2 ω3 · · · ωnb ]T is a vector of nodal values
of the warping function ω.
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Equation (15.2) with the warping function of Eq. (15.3) leads to the element stiff-
ness relationship

ki �i = pi (15.4)

where the stiffness matrix and loading vectors are given by

ki =
∫

Ai

(
∂NT

∂y

∂N
∂y
+ ∂NT

∂z

∂N
∂z

)
dA, pi =

∫
Ai

(
z
∂NT

∂y
− y

∂NT

∂z

)
dA

(15.5)

Assemble the element stiffness matrices and loading vectors to form a system of
simultaneous linear equations that can be solved for the warping functions at the
nodal points. The torsional constant and stresses can then be computed using

J =
∫ [

z2 + y2 −
(

z
∂ω

∂y
− y

∂ω

∂z

)]
dA

τxy = G
dφ

dx

(
∂ω

∂y
− z

)
= T

J

(
∂ω

∂y
− z

)
(15.6)

τxz = G
dφ

dx

(
∂ω

∂z
+ y

)
= T

J

(
∂ω

∂z
+ y

)

where T is the twisting moment and dφ/dx is the rate of angle of twist. See
Ref. [15.1] for details. The warping constant 	 can also be computed using the
warping function.

The shear stresses due to transverse shear loads can be treated with a finite element
formulation. This shear problem can be based on the elasticity solution of a cantilever
beam with the x = 0 end fixed and the x = L end free and loaded by transverse
end (shear) force [15.2–15.6]. An appeal to Saint-Venant’s principle permits these
solutions to be applied to more general cases of loadings. More specifically, it is
assumed that the shear stresses on a particular cross section of a beam depend only
on the forces at that cross section provided that the cross section of interest is far
enough away from any points of rapid variation in the shear force. The finite element
solution is similiar to that for Saint-Venant torsion.
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TABLE 15-1 NORMAL STRESSES ON BEAM CROSS SECTION
Notation

σ = normal stress
E = modulus of elasticity
A = area of cross section
I = Iy, Iz = moments of inertia about y and z axes

Iyz = product of inertia
	 = warping constant
α = thermal coefficient of expansion
T = temperature change on cross section
ω = warping function
B = bimoment = ∫A σω dA
P = axial force, positive in tension
P = P + PT , M y = My + MT y, Mz = Mz + MT z

with
PT =

∫
EαT dA, MT y =

∫
EαT z dA, MT z =

∫
EαT y dA

Er = reference modulus of elasticity for composite section
Er = E for homogeneous material

y, z = coordinates measured from centroid
Bω/	 = applies only to thin-walled beams

Superscript asterisk indicates a property of a composite bar.
Ignore the * for homogeneous material.

Case Normal Stresses

1.
General

σ = E

Er

(
P

A∗
+ M y I ∗z + Mz I ∗yz

I ∗y I ∗z − I ∗2yz
z − Mz I ∗y + M y I ∗yz

I ∗y I ∗z − I ∗2yz
y − ErαT + Bω

	

)

2.
Homogeneous
section without
warping and
thermal loading

σ = P

A
+ My Iz + Mz Iyz

Iy Iz − I 2
yz

z − Mz Iy + My Iyz

Iy Iz − I 2
yz

y

3.
Unsymmetrical
section with
Mz = 0

σ = P

A
+ My(Izz − Iyz y)

Iy Iz − I 2
yz

4.
Bending about
principal axes

σ = P

A
+ My z

Iy
− Mz y

Iz

5.
Bending about
single (y)
principal axes

σ = P

A
+ My z

I
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TABLE 15-2 SHEAR STRESSES ON BEAM CROSS SECTION
Notation

τ = shear stress
τt = shear stress due to pure torsion
A = area of cross section
Iy = I, Iz = moments of inertia about y and z axes

Iyz = product of inertia
Q = Qy, Qz = first moments of inertia about y and z axes
	 = warping constant

Qω = first sectorial moment
α = thermal coefficient of expansion
T = temperature change on cross section
B = bimoment
Tt = pure torsion torque
Tω = warping torque

Vy, Vz = V, shear forces along y and z axes
b = width of cross section at point where shear stress is calculated
t = thickness of thin-walled cross section
r = radial distance from the centroidal longitudinal axis

P
′ = ∂

∂x
(P + PT ), (αT )′ = ∂

∂x
(αT )

M
′
y =

∂

∂x
(My + MT y), M

′
z = −

∂

∂x
(Mz + MT z)

B ′ = ∂B

∂x
For beams with no axial force, rotary foundation, rotary inertia, and applied distributed
moment:

M
′
y = Vz + ∂

∂x
MT y, M

′
z = −Vy − ∂

∂x
MT z

B
′ = Tω

A0 = area defined in Fig. 2-9

For composite bars, A∗0 =
∫

A0
dA∗ = ∫A0

(E/Er ) dA.
Superscript asterisk indicates a property of a composite bar (see Section 2.12).
See Chapter 2 for detailed definitions. Also, see definitions of Table 15-1.
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TABLE 15-2 (continued) SHEAR STRESSES ON BEAM CROSS SECTION

Case Shear Stresses

1.
Solid beam cross
section

τt = Ttr

J

τ = τt + 1

b

[
A∗0
A∗ P

′ + Q∗y I ∗z − Q∗z I ∗yz

I ∗y I ∗z − I ∗2yz
M
′
y

− Q∗z I ∗y − Q∗y I ∗yz

I ∗y I ∗z − I ∗2yz
M
′
z +

∫
A0

E(αT )′ dA

]

2.
Thin-walled open
cross section

τt = Tt t

J

τ = τt − 1

t

[ A∗0
A∗

P
′ + Q∗y I ∗z − Q∗z I ∗yz

I ∗y I ∗z − I ∗2yz
M
′
y −

Q∗z I ∗y − Q∗y I ∗yz

I ∗y I ∗z − I ∗2yz
M
′
z

− ∫A0
E(αT )′ dA+ Q∗ω

	∗
B ′
]

3.
Homogeneous
section with no
torsion, no axial
force, and no
thermal loading

τ = 1

b

(Qy Iz − Qz Iyz

Iy Iz − I 2
yz

Vz + Qz Iy − Qy Iyz

Iy Iz − I 2
yz

Vy

)

4.
Symmetric section,
bending about single
(y) axis

τ = V Q

I b
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802 CURVED BARS

The theory of deformations for circular curved bars is based on the classical theory
of arches, which relies on the assumption that plane cross sections remain plane,
stress is proportional to strain, rotations and translations are small, and the thickness
of the bar must be small in comparison to the radius of curvature of the bar.

16.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F
for force, M for mass, and T for time.

All Curved Bars

A Cross-sectional area (L2)
As Equivalent shear area, = A/αs (L2)
E Modulus of elasticity of material (F/L2)
g Gravitational acceleration (L/T 2)

G Shear modulus of elasticity (F/L2)
k Winkler (elastic) foundation modulus (F/L2)

k∗ Rotary foundation modulus (F L/L)
� Length of segment along bar, span of structural matrix
L Length of bar (L)

mi Concentrated mass (M)
R Radius of curvature of centroidal axis along bar (L)
t Time

T Change of temperature (degrees) (i.e., temperature rise with respect to ref-
erence temperature)

α Coefficient of thermal expansion [(L/L)/degree]
αs Shear correction coefficient
ρ Mass per unit length (M/L, FT 2/L2)
ω Natural frequency (rad/T )

In-Plane Stress and Deformation

Bars with a cross section symmetric about the plane of curvature are considered.
The loadings and deformation lie in the same plane as the bar. The bar, which can
be formed of straight or circular segments, undergoes extension and bending. In the
case of straight segments, the formulas are essentially a combination of the bending
formulas of Chapter 11 and the extension formulas of Chapter 12, so that such effects
as shear deformation and rotary inertia can be taken into account.

c Applied bending moment intensity; positive if vector, according to right-
hand rule, is in positive y direction (F L/L); c1 designates uniform moment
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e Shift in location of neutral axis (L)
h Height (thickness) of cross section (L)

I ∗ Moment of inertia modified for curvature of bar, = ∫A[z2/(1 − z/R)] dA
(L4)

I Moment of inertia about centroidal y axis (L4)
IT i Rotary inertia, transverse or diametrical mass moment of inertia of concen-

trated mass at station i ; can be calculated as IT i = �a ρr2
y , where �a is

length of beam lumped at station i (M L2)
ki , ko Correction factors for use of straight-beam formulas to calculate stresses

in curved bars
kx Extension elastic foundation modulus (F/L2)
�b Length of branch
M Bending moment at any section (F L)

MT Thermal moment, = ∫A EαT z dA (F L)
p Transverse loading intensity (F/L); p1 designates uniform load

px Distributed axial force, loading intensity (F/L); px1 designates uniform
force

P Axial force (F)
r Point on cross section measured from center of curvature (L)

ry Radius of gyration of cross-sectional area about y axis (L)
u Axial displacement (L)
V Shear force at any section (F)
w Transverse displacement (L)
W Concentrated applied transverse force (F)
θ Slope of deflection curve (rad)
σx Circumferential stress on cross section of curved bars or normal stress, or

fiber stress (F/L2)
σz Radial stress (F/L2)
τ Shear stress (F/L2)

Out-of-Plane Stress and Deformation

In this part of the chapter, bars lying in a plane with torsional loading and defor-
mation, along with out-of-plane transverse loading and bending deformation, are
treated. The formulas are essentially a combination of the bending formulas of Chap-
ter 11 and the torsion formulas of Chapter 12, with some adjustments for the curva-
ture of the bar. This means that the limitations on the applicability of the torsional
theory of that chapter apply here as well. For example, for both straight and circular
segments the torsional effects of restraints against warping are not taken into account.

cz Applied bending moment intensity, positive if vector according to right-
hand rule is in positive z direction (F L/L): cz1 designates uniform moment
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Ip Polar moment of inertia about x axis (L4)
Ipi Polar mass moment of inertia of concentrated mass at station i ; can be

calculated as Ipi = �a ρr2
p, where�a is length of beam lumped at station

i (M L2)
Iz Moment of inertia taken about neutral (z) axis (L4)
J Torsional constant; for a circular cross section J is polar moment of inertia

Ix of cross-sectional area with respect to axis of bar (L4)
kt Torsional elastic foundation modulus (F L/L)

mx Distributed torque, twisting moment intensity (F L/L); mx1 is uniform
torque

MT z Thermal moment, = − ∫A EαT y dA (F L)
Mz Bending moment at any section (F L)
py Transverse loading intensity (F/L); py1 designates uniform load
rp Polar radius of gyration (L)
rz Radius of gyration of cross-sectional area about z axis (L)
T Twisting moment, torque (F L); also, change of temperature
v Transverse displacement (L)

Vy Shear force at any section (F)
Wy Concentrated applied transverse force (F)
θz Slope of deflection curve (rad)
φ Angle of twist, rotation (rad)

16.2 IN-PLANE STRESS AND DEFORMATION

Sign Convention

Positive displacements u, w, and slope θ are shown in Fig. 16-1. Positive internal
bending moment M and forces V, P on the right face of an element are also il-
lustrated in Fig. 16-1. For applied loadings, the formulas provide solutions for the

Figure 16-1: Positive displacements, internal forces and moments, and applied loadings for
in-plane motion.
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loading illustrated. Loadings applied in the opposite direction require the sign of the
loading to be reversed in the formulas.

Stresses

The tables of this chapter provide the internal axial force, bending moment, and shear
force at any point along a bar. The normal and shear stresses on a face of the cross
section can be calculated using the stress formulas given in this section.

Normal Stress During bending, the cross sections of a straight beam are assumed
to remain plane, and the strains of compression and extension fibers equidistant from
the centroid of the cross section are equal in magnitude so that the normal stress is
distributed linearly on the cross section. For a curved beam, the cross sections are
also assumed to remain plane when the beam is bent, but the strains at two points on
opposite sides of and equidistant from the centroid are no longer equal in magnitude.
Although the magnitude of the extension and compression of the fibers at these points
are the same, the “original lengths” of the fibers are different. The normal stress
distribution is no longer linear. Figure 16-2 shows the stress distribution on a cross
section. Also, the neutral axis of the cross section does not coincide with the centroid
but is shifted. For pure bending, the distance of neutral axis shift is [16.1]

e = R − A/Am = R − rn, 0.6 < R/h < 8 (16.1a)

with

R = 1

A

∫
A

r dA, Am =
∫

A

dA

r
(16.1b)

where A is the cross-sectional area, R is the distance from the center of curvature
to the centroid of the cross section, h is the height of the cross section along the
direction of R, rn is the distance from the center of curvature to the neutral axis, and
r locates a point on the section measured from the center of curvature (Fig. 16-2).
Analytical expressions for these quantities for common cross sections are given in

Figure 16-2: Normal stress distribution of a curved beam.
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Table 16-1. Note that e is a cross-sectional property and not related to the applied
forces. Equations (16.1) are applicable for the range 0.6 < R/h < 8. When R/h <
0.6, the stress values can have a large error. In cases where R/h > 8 (i.e., for slender
curved beams), round-off errors or small inconsistencies in treating a cross section
of complicated shape may have a large effect on the calculated value of e. To avoid
this, e can be computed using [16.1]:

e � I/R A, R/h > 8 (16.1c)

where I is the moment of inertia about the centroidal axis.
If the tensile axial force P is applied,

e = R − AM

Am M + P(A − R Am)
= R − rn (16.1d)

where M is the bending moment about the y axis (Fig. 16-2).
The normal (circumferential) stress on the cross section is

σx = Mz

Aer
= M(rn − r)

Aer
= M(A − r Am)

Ar(R Am − A)
(16.2a)

where z is the distance from the neutral axis to the point of interest. When a tensile
axial force P through the centroidal axis occurs on the cross section, the term P/A
should be added to Eq. (16.2a):

σx = P

A
+ Mz

Aer
(16.2b)

The expression P/A implies that the normal stress due to P is taken to be constant
over the cross section, an assumption that is usually reasonable considering that the
stress due to P is normally much smaller than the stress due to M. Also, Eq. (16.2b)
is more accurate for pure bending than for shear loading (Fig. 16-3). When the first
term (P) is comparable in magnitude to the second term (M) or R/h is small, the
error of using Eq. (16.2b) increases significantly.

Figure 16-3: (a) Pure bending and (b) shear loading of curved beams.
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Cook [16.2] introduced two formulas for the circumferential stress σx to cope
with these inaccuracies:

σx = M(rn − r)

Aer
+ P

A

[
rn

r
+ Ae

I
(r − R)

]
(16.3a)

and

σx = Prn

Ar
+ Mz

Aer
(16.3b)

Equation (16.3a) is more accurate than Eq. (16.3b) since the stress distribution ex-
pressed by Eq. (16.3b) does not satisfy the equilibrium condition on the cross section.
Despite this, Eq. (16.3b) is preferred for its simplicity and adequate accuracy. Equa-
tions (16.2) and (16.3) are derived based on the assumptions that the shear and radial
stresses vanish, so they are best suited for those parts of the cross section where
these stresses are not significant. Also, for I- and T-section curved beams, use of
Eqs. (16.2) and (16.3) may cause nonnegligible errors due to the distortion of the
profile of the cross section. This problem will be considered later.

A comparison of Eqs. (16.2) and (16.3) with the straight-beam flexure formula
(σ = Mz/I ) indicates that the straight-beam solution is significantly in error for
small values of R/h and the error is not conservative. Generally, for curved beams,
with R/h > 5.0, the straight beam flexure formula can be used [16.3]. It can be
shown that when R/h→∞, Eq. (16.2a) becomes σx = Mz/I .

The normal stresses at the extreme fibers of the cross section can be calculated
by using the formulas for the normal stress for straight beams multiplied by a factor.
Thus the stress in the inside fiber (fiber AB of Fig. 16-2) is

σi = ki

(
P

A
+ Mzi

I

)
(16.4a)

while the stress in the outer fiber (fiber C D) is

σo = ko

(
P

A
− Mzo

I

)
(16.4b)

where zi , zo are the distances from the centroid to the inner and outer fibers.
Table 16-1 gives values for ki and ko. These formulas give the same results at
the inside and outside fibers as Eq. (16.2).

When the cross section of a curved beam is composed of two or more of the
regular shapes listed in Table 16-1, the values of A, Am , and R in Eq. (16.2) for the
composite section are given as

A =
n∑

i=1

Ai (16.5a)
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Am =
n∑

i=1

Ami (16.5b)

R =
∑n

i=1 Ri Ai∑n
i=1 Ai

(16.5c)

where n is the number of regular shapes that form the composite section.
The stress formulas are summarized in Table 16-2.

Example 16.1 Stress in a Curved Beam The curved beam in Fig. 16-4 has a
circular cross section 50 mm in diameter. The inside radius ri of the curved beam is
40 mm. Determine the stress at B when F = 20 kN.

The radius R is obtained from the geometry: R = ri + b = 40 + 25 = 65 mm.
Values of A and Am for the curved beam are calculated using the formulas in case 4
of Table 16-1. For 2b = 50 mm,

A = πb2 = (3.1416)(25)2 = 1963.5 mm2

Am = 2π(R −
√

R2 − b2)

= 2(3.1416)(65−
√

652 − 252)

= 31.416 mm

e = R − A/Am = 65− 1963.5/31.416 = 2.5 mm

rn = R − e = 65− 2.5 = 62.5 mm

(1)

On the cross section BC , the axial force P = −F = −20,000 N and the moment is
calculated as

Figure 16-4: Example 16.1: (a) external loading; (b) free-body diagram.
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M = −F R

= −20,000× 65 = −1,300,000

= −1300 N ·m (2)

Therefore, the stress at B is, by Eq. (16.2) with r = 40 mm,

(σx)B = P

A
+ M(A − r Am)

Ar(R Am − A)

= −20,000

1963.5
− 1,300,000× [1963.5− (40)(31.416)]
(1963.5)(40)[(65)(31.416)− (1963.5)]

= −159.15 MPa (3)

Example 16.2 Stress in a Crane Hook For a large number of manufactured
crane hooks, section BC is the critically stressed section (Fig. 16-5a). The cross-
sectional area can be closely modeled by a trapezoidal area A2, with half of an el-
lipse A1, and the area A3 contained by an arc of a circle. If the dimensions of the
critical section are shown in Fig. 16-5b and the hook is subjected to an axial load
F = 100 kN, determine the circumferential stresses at the inner and outer radii.

Figure 16-5: Example 16.2: crane hook.
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The circumferential stresses σx are calculated using Eq. (16.2). The geometric
property values A, R, and Am of the cross sections are obtained using Eq. (16.1) and
Table 16-1.

For the semiellipse area A1, refer to case 10 in Table 16-1. For the geometry
shown, a = 65.0+ 30.0 = 95.0 mm, 2b = 100.0, b = 50.0 mm, and h = 30.0 mm.
Then

A1 = 1

2
πbh = 2356.2 mm2, R1 = a − 4h

3π
= 82.3 mm

Am1 = 2b + πb

h
(a −

√
a2 − h2)− 2b

h

√
a2 − h2 sin−1 h

a
= 30.6 mm

(1)

For the trapezoidal area A2 use case 3 in Table 16-1. With

a = 65.0+ 30.0 = 95.0 mm, c = 95.0+ 60.0 = 155.0 mm,

b1 = 100.0 mm, b2 = 60.0 mm,

we obtain

A2 = b1 + b2

2
(c − a) = 4800.0 mm2

R2 = a(2b1 + b2)+ c(b1 + 2b2)

3(b1 + b2)
= 122.5 mm (2)

Am2 = b1c − b2a

c − a
ln

c

a
− b1 + b2 = 39.95 mm

Case 8 of Table 16-1 corresponds to area A3. From Fig. 16-5b,

b2 = 302 + (b − 10)2 or b = 50 mm

θ = tan−1 30

b − 10
= 0.6435 (3)

and a = 65.0+ 30.0+ 60.0− b cos 0.6435 = 115.0 mm. Thus,

A3 = b2θ − b2

2
sin 2θ = 408.75 mm2

R3 = a + 4b sin3 θ

3(2θ − sin 2θ)
= 159.04 mm

Am3 = 2aθ − 2b sin θ − π
√

a2 − b2 + 2
√

a2 − b2 sin−1 b + a cos θ

a + b cos θ

= 2.57 mm (for a > b)

(4)
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From Eqs. (16.5), we have

A = A1 + A2 + A3 = 7564.95 mm2, Am = Am1 + Am2 + Am3 = 73.12 mm

R = R1 A1 + R2 A2 + R3 A3

A
= 111.95 mm (5)

As shown in Fig. 16-5c, the internal load on section BC is P = F and the moment
is M = F R. The maximum tension and compression values of the circumferential
stresses σx occur at points B and C , respectively.

For B and C , from the dimensions given in Fig. 16-5b,

rB = 65.0 mm, rC = 65.0+ 30.0+ 60.0+ 10.0 = 165.0 mm (6)

Substitution of the appropriate values into Eq. (16.2) yields

(σx)B = P

A
+ M(A − rB Am)

ArB(R Am − A)
= 103.13 MPa

(σx)C = P

A
+ M(A − rC Am)

ArC (R Am − A)
= −51.8 MPa

(7)

Circumferential Stresses for Thin-Flange Cross Sections Generally
speaking, the cross sections of curved beams with thin flanges tend to distort when
the beams are subjected to bending moments. Often, this is referred to as profile
distortion. In the case shown in Fig. 16-6, the thin flanges are bent and tend to de-
flect radially as shown. As a consequence, the circumferential stress (normal stress)
distribution is not constant along the flanges. The maximum stress occurs at the
center of the inner flange (Fig. 16-7). Since the curved beam formula of Eq. (16.2)
assumes that the normal stress is constant in the flange, corrections are required if
the formula is to be used in the design of curved beams having thin-flange (e.g., I or
T) cross sections. One approximate approach is to “correct” the curved beam physi-
cally to prevent the distortion of the cross section by welding radial stiffeners to the
curved beams and then to use the curved beam formula. Another is Bleich’s [16.3]
method, which suggests that for the same bending moment the actual maximum
circumferential stresses in the flanges with distortion for the I- or T-section curved

Figure 16-6: Distortion of an I-section curved beam.
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Figure 16-7: Stress distribution in an I-section curved beam.

beam (Fig. 16-8a) may be calculated by applying Eq. (16.2) to an undistorted I- or
T-section curved beam with reduced flange width (Fig. 16-8b).

The reduced flange width is obtained by multiplying the original width of the
flange by the factor α given in Table 16-3. To use the table, calculate the ratio f =
b2

pi/r̄i t f i using the dimensions for the i th flange of the original cross section, where
bpi and t f i are as shown in Fig. 16-8a. Here r̄i is the radius of curvature to the center
of the i th flange. The reduced widths of the flange (Fig. 16-8b) are given by

b′pi = αbpi (16.6a)

b′i = 2b′pi + tw (16.6b)

where α is obtained from Table 16-3 according to the computed value of f , b′pi is the
reduced width of the projecting part of each flange, b′i is the reduced width of each
flange, and tw is the thickness of the web. Use these new dimensions in the standard
stress formulas to compute the peak circumferential stresses.

Figure 16-8: Bleich’s method for the flanges of I- or T-sections: (a) original flange and web;
(b) modified flange and web.
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Due to the bending of the flanges (Fig. 16-6), stress component σy is developed.
Bleich provided an approximate relation for σy in the inner flange, the flange that is
closest to the center of the curvature:

σy = −βσ̄x (16.7)

where β is obtained from Table 16-3 for the computed ratio f and σ̄x is the circum-
ferential stress at midthickness of the flange at the junction, calculated based on the
corrected cross section. The negative sign indicates that the sign of σy is opposite to
that of σ̄x . The stress σy is assumed to be uniformly distributed in the flange.

The radial stress given later can be calculated using either the original or the
modified cross section.

Example 16.3 Bleich Method for a T-Section Curved Beam A T-section
curved beam has the cross section shown in Fig. 16-9a. The center of curvature
of the curved beam lies 40 mm from the flange. If the curved beam is subjected to a
positive bending moment M = 2.50 kN ·m, determine (a) the stresses at points A
and B and (b) the maximum shear stress in the curved beam. Use Bleich’s method.

Figure 16-9: Example 16.3: (a) original section; (b) modified section.

(a) The width dimensions of the modified cross section (Fig. 16-9b) are calcu-
lated by Bleich’s method. Since there is only one flange, the subscript i will be
dropped. The coefficient f is calculated as

f = b2
p

r̄ t f
= [(40− 10)/2]2
(40+ 10/2)(10)

= 0.5

From Table 16-3 we obtain α = 0.878 and β = 1.238. Thus, by Eqs. (16.6) the
modified flange width is b′p = αbp = (0.878)(15) = 13.17 mm and b′ = 2b′p+tw =
2(13.17)+ 10 = 36.34 mm (Fig 16-9b).
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The values of A, Am , and R of the modified section are computed by Eqs. (16.5)
and case 1 in Table 16-1:

A = (36.34)(10)+ (50)(10) = 863.4 mm2

R = 1

863.4
[(36.34)(10)(45)+ (50)(10)(75)] = 62.37 mm

Am = (36.34)

(
ln

50

40

)
+ (10)

(
ln

100

50

)
= 15.04 mm

At the inner radius of the modified section with r = 40 mm and P = 0 (pure
bending), Eq. (16.2) gives the stress

(σx)i = M(A − r Am)

Ar(R Am − A)

= 2.50[863.4− (40)(15.04)]
(863.4)(40)[(62.37)(15.04)− 863.4] = 253.9 MPa (1)

Similarly, at the outer radius of the modified section, with r = 100 mm and P = 0,

(σx)o = 2.50[863.4− (100)(15.04)]
(863.4)(100)[(62.37)(15.04)− 863.4] = −247.0 MPa (2)

(b) Use Eq. (3.14) to compute the peak shear stress. The maximum principal
stress occurs at the inner radius of the cross section and is given by [Eq. (3.13a)]
σ1 = (σx)i = 253.9 MPa, while the minimum principal stress [Eq. (3.13b)] at this
point is obtained from Eq. (16.7):

σ3 = σy = −βσ̄x = −(1.238)
2.50[863.4− (45)(15.04)]

(863.4)(45)[(62.37)(15.04)− 863.4]
= −199.1 MPa (3)

Thus, the maximum shearing stress in the curved beam is [Eq. (3.13)]

τmax = 1
2 (σ1 − σ3) = 1

2 [253.9− (−199.1)] = 226.5 MPa (4)

This stress can be used to evaluate the strength of the beam. It is different from the
shear stress τ of the next section in that τ is the shear stress on the plane of the cross
section while τmax is the maximum shear stress occurring on a plane oriented at a
particular angle (Fig. 3-10).

Shear Stress The average shear stress τ across a width of a cross section (e.g.,
line 1–2 of Fig. 11-4) is

τ = V rn Q

bAe(R − z)2
(16.8)
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where

Q =
∫

A′
r dA (16.9)

The integration is taken over the area A′ that lies between the position at which the
stress is desired and the inner fiber of the cross section nearest the center of curvature.
The distance z is measured from the neutral axis.

Equation (16.8) is derived from the assumption that the shear stress is parallel
to the shear force, and the shear stresses at points on an element perpendicular to
the shear force are equal to the parallel shear stresses where the shear force is ap-
plied. Although there are some cases in practice that do not coincide with these
assumptions, the assumptions tend to be good approximations and Eq. (16.8) can
often be used without serious error. A comparison of the results of τmax/τaverage,
with the exact elasticity solution for a rectangular cross section, shows that when
1.25 ≤ R/h ≤ 5.5, the error of the value τmax/τaverage does not exceed 1% [16.4].

Radial Stress Radial stress is usually not a major consideration for the design
of the curved beams with solid cross sections because the magnitude of the radial
stress is small compared to the circumferential stress. But for curved beams that have
flanged cross sections with thin webs, the radial as well as circumferential stresses
may be large at the junctions of the flanges and webs. As a consequence, the shear
stress may also be large, and hence yielding may occur. A large radial stress in a
thin web may also cause the web to buckle. In such cases, the radial stress cannot be
neglected.

The radial stress is expressed by [16.3]

σz = 1

br

[
A′

A
P + AA′m − A′Am

A(R Am − A)
M

]
(16.10a)

where

A′m =
∫ r

r0

dA

r
and A′ =

∫ r

r0

dA

with b, A′, r0, and r shown in Fig. 16-10. A moment M that tends to straighten the
curved beam generates a tensile radial stress. This expression is obtained from the
equilibrium of the beam segment in Fig. 16-10a, where the resultants F of σx , which
takes the form of Eq. (16.2b) and is assumed to be constant along the beam segment,
and T of σz form an equilibrium system.

If shear stresses τ [Eq. (16.8)] on the cross sections are considered and σx and τ
are assumed to vary along the beam segment (Fig. 16-10b), the conditions of equi-
librium for the beam segment result in an expression for the radial stress [16.5]:

σz = rn

Aebr

[
(M − P R)

(
A′m −

A′

rn

)
+ P

r
(R A′ − Q)

]
(16.10b)
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Figure 16-10: Radial stresses: (a) equilibrium of a segment of a curved beam; (b) resultants.

Equation (16.10b) is more accurate than Eq. (16.10a). Equations (16.10) are reason-
ably accurate approximations for the radial stress σz in curved beams, although σx is
derived with the assumption that the shear and radial stresses vanish. This is similar
to the case of a straight beam where the normal stress is based on the assumption
that a plane cross remains plane, which implies that the shear stresses vanish. Then
the straight-beam shear stresses are obtained from the equilibrium of the resultants
of the normal and shear stresses. A comparison of Eq. (16.10a) [16.3] for rectangu-
lar cross-sectional beams subjected to shear loading (Fig. 16-3) with a corresponding
theory of elasticity solution indicates that Eq. (16.10a) is conservative, and it remains
conservative to within 6% for values of R/h > 1.0 even without considering the P
term.

As in the case of the cross sections with thin flanges where the circumferential
stresses on the cross sections should be corrected, expressions for the radial stress
on the cross sections with thick flanges and thin webs should also be corrected since
the flanges tend to rotate about their own neutral axes during deformation and larger
radial and shear stress are developed. See Ref. [16.6] for a method of correction.



16.2 IN-PLANE STRESS AND DEFORMATION 817

Simple Curved Bars

The response of curved bars can be obtained by solving the fundamental equations
of motion in first-order form for the in-plane deformation of a circular bar [16.7]:

∂u

∂x
= P

AE
− M

ARE
+ w

R
+ αT

∂w

∂x
= −θ − u

R
+ V

G As

∂θ

∂x
= M

E I ∗
+ w

R2
+ MT

E I ∗

∂M

∂x
= V + k∗θ + ρr2

y
∂2θ

∂t2
− c(x, t)

∂V

∂x
= kw − P

R
+ ρ ∂

2w

∂t2
− p(x, t)

∂P

∂x
= kx u + V

R
+ ρ ∂

2u

∂t2
− px (x, t)

(16.11)

These relations conform to sign convention 1 of Appendix II. They can be solved
for a variety of loading and end conditions.

Tabulated Formulas The extension, deflection, slope, bending moment, shear
force, and axial force for uniform circular bars with various end conditions and load-
ings are provided in Table 16-4. The deflection formulas apply only to uniform beams
with R/z0 ≥ 4, where z0 is the distance from the centroid of the cross section to
the outermost fiber. Included are some values at critical points. Table 16-5 contains
formulas for uniform circular rings. The formulas of Table 16-5 are based on the as-
sumptions that (1) the radius of curvature is very large compared to the dimensions
of the cross section, so that the deflection theory of straight bars is used in deriving
these expressions; (2) the effect of axial and shear forces on the displacements is
negligible; and (3) the deformations are small. Using superposition, these responses
can be combined to cover more complicated applied loadings.

Formulas for Bars with Arbitrary Loading Part A of Table 16-6 provides the
displacements, slope, moment, and force responses for uniform bars based on the so-
lution of Eqs. (16.11) without consideration of shear deformation. The assumptions
underlying Tables 16-4 and 16-5 are no longer involved. Loading functions needed
by the formulas of Table 16-6, part A, are listed in part B of the table. For the bound-
ary conditions in part C of the table, the initial parameters can be determined by the
method provided in Appendix III.

Buckling Loads

Table 16-7 gives the buckling loads for several uniform circular arches and rings.
Although all the loads are applied in the planes of the bars, some buckling modes are
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out of plane (case 3). The formulas in this table apply to thin bars (i.e., the radius of
gyration of the cross section is negligible compared to the radius of curvature of the
bar). Reference [16.10] provides more cases of buckling forces for various structures
and load types.

Natural Frequencies

The fundamental natural frequencies are given for arches in Table 16-8, while
Table 16-9 provides natural frequencies for rings. Table 16-10 gives frequency in-
formation for various structures with curved members. In all of these tables, both
in-plane and out-of-plane motion are considered.

16.3 OUT-OF-PLANE STRESS AND DEFORMATION

Sign Convention

Positive rotations φ, θz , displacement v, moments T , Mz , force Vy , and applied loads
py , mx are shown in Fig. 16-11. The formulas of this section provide responses for
the loading illustrated. Loadings applied in the opposite direction require the sign of
the loading to be reversed in the formulas.

Stresses

The tables of this chapter provide the internal moments and force along a bar. Once
these variables are known, the bending and direct shear stresses can be calculated
using the stress formulas in Chapter 11. The torsional shear stress is found from the
formulas in Chapter 12.

Simple Curved Bars

The fundamental equations of motion in first-order form for out-of-plane deforma-
tion of a circular bar are

Figure 16-11: Positive rotations, displacements, internal moments and forces, and applied
loadings for out-of-plane motion.
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∂φ

∂x
= T

G J
− θz

R

∂v

∂x
= θz + Vy

G As

∂θz

∂x
= φ

R
+ Mz

E Iz
+ MTz

E Iz

∂Mz

∂x
= −Vy + k∗θz − T

R
+ ρr2

z
∂2θz

∂t2
− cz(x, t)

∂Vy

∂x
= kv + ρ ∂

2v

∂t2
− py(x, t)

∂T

∂x
= Mz

R
+ ktφ + ρr2

p
∂2φ

∂t2
− mx (x, t)

(16.12)

These relations conform to sign convention 1 of Appendix II.

Tabulated Formulas The internal forces and displacements at the tips of some
simple curved bars are given in Table 16-11.

Formulas for Bars with Arbitrary Loading If Table 16-11 does not provide
sufficient information, use Table 16-12, which gives the rotation, deflection, mo-
ments, and shear force responses for uniform bars under more general applied load-
ing with any end conditions.

Table 16-12, part A, lists equations for the responses. The functions Fφ , Fv , Fθz ,
FMz , FVy , FT are taken from Table 16-12, part B, by adding approximate terms for
each load applied to the bar. The initial parameters φ0, v0, θz0 , Mz0 , Vy0 , T0, which
are values of φ, v, θz , Mz , Vy , T at the left end (x = 0) of the bar, are evaluated
for the end conditions shown in Table 16-12, part C, using the procedure outlined in
Appendix III.

Buckling Loads

See Table 16-7 for the buckling loads of out-of-plane modes of some curved bars.

Natural Frequencies

Tables 16-8 to 16-10 give natural frequencies and mode shapes for various configu-
rations of curved bars with out-of-plane motion.

16.4 GENERAL BARS

Most of the formulas provided thus far apply to single-span, uniform bars. For more
general bars, it is advisable to use the displacement method or the transfer matrix
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procedure, which are explained technically at the end of this book (Appendixes II
and III).

Several transfer and stiffness matrices are tabulated in Tables 16-13 to 16-16.
Mass matrices for use in a displacement method analysis are given in Table 16-17.

Frameworks containing curved elements are handled by using the stiffness matri-
ces of this chapter, as appropriate, in conjunction with the stiffness matrices of the
frame chapter (Chapter 13) and following the displacement method of analysis.

Rings

Rings are structural members that connect to themselves, a characteristic that re-
quires special techniques to be employed in handling the boundaries. For the transfer
matrix method, the initial parameters at a chosen point (say x = 0) are equal to the
state variables at the same point after moving around the loop (say x = L). That is,
for the transfer matrix method, using extended matrices, including applied loading
terms,

z0 = zx=L or z0 = Uz0

This gives

(U− I)z0 = 0 (16.13)

where I is a 7×7 diagonal matrix. This expression can then be solved for z0. In most
cases for a ring, the applied loadings are symmetric about some axis so that only half
of the ring needs to be analyzed. Some of the variables at the ends of the half ring
are known by inspection. For example, for the in-plane deformation of the ring of
Fig. 16-12,

u A = θA = 0, uB = θB = 0

Consider x = 0 to be at A and x = L to be at B. For this symmetric, in-plane de-
formation the remaining boundary conditions are VA = VB = 0. Then the responses

Figure 16-12: Ring.
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Figure 16-13: One-element model for analysis of a ring.

of the ring can be obtained by applying these end conditions to the equations of
Table 16-13, part A.

It may be desirable to model a whole ring as a single element. If the displace-
ment method is used for an analysis, the stiffness equations can be expressed as
(Fig. 16-13)

[
kaa kab

kba kbb

] [
va

vb

]
=
[

p̄a

p̄b

]
+
[

pa

pb

]
(16.14)

where p̄ and p are the loading vectors due to the applied loads and internal loads,
respectively. Since the ring is in equilibrium, va = vb and pa = −pb, Eq. (16.14)
can be rearranged as

(kaa + kab + kba + kbb)va = p̄a + p̄b (16.15)

to find the displacement va . If more elements are used, the conventional displacement
method should be employed.

In the case of a closed-loop bar, the eigenvalues are found with the transfer matrix
method as the roots of the determinant

|U− I| = 0 (16.16)

When the displacement method is used to find the natural frequencies of a ring
formed of a single element, the first three natural frequencies can be found from

K′ − ω2M′ = 0 (16.17)

where, from Eq. (16.15), K′ = kaa + kab + kba + kbb and similarly, M′ = maa +
mab + mba + mbb, where ki j and mi j , are given in Tables 16-14 and 16-17 with
b = a. Only three natural frequencies are computed because the number of degrees
of freedom of Eq. (16.17) is 3. If more natural frequencies are required, the ring
should be divided into elements and a standard eigensolution solver used to extract
the eigenfunctions from

(K− ω2M)V = 0 (16.18)

where K and M are the assembled mass and stiffness matrices.
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TABLE 16-1 SOME GEOMETRIC PROPERTIES OF CROSS SECTIONS
Notation

A = area of cross section
R = radius of curvature of centroidal axis of cross section; values given are for

circular bars, where R is constant, and can be considered to be reasonable
approximations for many noncircular bars, where bar is modeled as being
formed of short circular segments

Am =
∫

A(1/r) dA
e = R − A/Am = shift of neutral axis from centroidal axis
σx = Mz/Aer = normal stress on cross section [Eq. (16.2)]

z = distance from neutral axis to point of interest on cross section
r = distance from center of curvature to point of interest

ki , ko = factors used to multiply straight beam stress formulas to calculate stress in
extreme fibers of curved bars; σi = ki (P/A+ Mzi/I ),
σo = ko(P/A− Mzo/I ), where i and o indicate extreme fibers on inner
and outer sides

zi = distance from centroidal axis to extreme inner fiber
zo = distance from centroidal axis to extreme outer fiber
P = tensile axial force applied at centroid; replace P by −P if axial force is

compressive
M = bending moment about y axis
I = moment of inertia about y centroidal axis

Case A Am R

1.
Rectangle

b(c − a) b ln
c

a
1
2 (a + c)

2.
Triangle

1
2 b(c − a)

bc

c − a
ln

c

a
−b 1

3 (2a + c)

3.
Trapezoid

1
2 (b1+ b2)(c− a)

b1c − b2a

c − a
ln

c

a−b1 + b2

[a(2b1 + b2)+ c(b1

+2b2)]/3(b1 + b2)
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TABLE 16-1 (continued) SOME GEOMETRIC PROPERTIES OF CROSS SECTIONS

ki ko

c − a

6e

c − a − 2e

2R − c + a

c − a

6e

c − a + 2e

2R + c − a

c − a

6e

c − a − 3e

3R − c + a

c − a

12e

c − a + 3e

3R + c − a

(c − a)(b1 + 2b2)

6e(b1 + b2)

× (c − a)(b1 + 2b2)− 3e(b1 + b2)

3R(b1 + b2)− (c − a)(b1 + 2b2)

×1+ 4b2/b1 + (b2/b1)

(1+ 2b2/b1)2

(c − a)(2b1 + b2)

6e(b1 + b2)

× (c − a)(2b1 + b2)+ 3e(b1 + b2)

3R(b1 + b2)+ (c − a)(2b1 + b2)

×1+ 4b2/b1 + (b2/b1)
2

(2+ b2/b1)2
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Case A Am

4.
Circle

πb2 2π(R −√R2 − b2)

5.
Ellipse πbh

2πb

h
(R −√R2 − h2)

6.
Hollow circle

π(b2
1 − b2

2) 2π
(√

R2 − b2
2 −

√
R2 − b2

1

)

7.
Hollow ellipse π(b1h1 − b2h2) 2π

(b1 R

h1
− b2 R

h2
− b1

h1

√
R2 − h2

1

+ b2

h2

√
R2 − h2

2

)

8.
Portion of circle

b2θ − 1
2 b2 sin 2θ For a > b,

2aθ − 2b sin θ − π√a2 − b2 + 2
√

a2 − b2

× sin−1 b + a cos θ

a + b cos θ
For b > a,
2aθ − 2b sin θ + 2

√
b2 − a2

× ln
[b + a cos θ

a + b cos θ
+
√

b2 − a2 sin θ

a + b cos θ

]
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R ki ko

As shown in figure
b

4e

b − e

R − b

b

4e

e + b

R + b

As shown in figure
h

4e

h − e

R − h

h

4e

e + h

R + h

As shown in figure
b1

4e

b1 − e

R − b1

[
1+ (b2/b1)

2
] b1

4e

b1 + e

R + b1×[1+ (b2/b1)
2
]

As shown in figure
h1

4e

h1 − e

R − h1
× 1− (b2/b1)(h2/h1)

3

1− (b2/b1)(h2/h1)

h1

4e

h1 + e

R + h1

× 1−(b2/b1)(h2/h1)
3

1−(b2/b1)(h2/h1)

a + 4b sin3 θ

3(2θ − sin 2θ)

I

Ade

d − e

R − d

d =




b
(

2 sin3 θ
3(θ−sin θ cos θ) − cos θ

)

θ ≤ π
4

0.2Rθ2(1− 0.0619θ2 + 0.0027θ4)

θ > π
4

I

Ae

e + a + b − R

(a + b − R)(a + b)

TABLE 16-1 Some Geometric Properties of Cross Sections 827



TABLE 16-1 (continued) SOME GEOMETRIC PROPERTIES OF CROSS SECTIONS

Case A Am R

9.
Portion of
circle

b2θ − 1
2 b2 sin 2θ 2aθ + 2b sin θ − π√a2 − b2

−2
√

a2 − b2

× sin−1 b − a cos θ

a − b cos θ

a − 4b sin3 θ

3(2θ − sin 2θ)

10.
Solid semi-
circle or
semiellipse

1
2πbh 2b + πb

h

(
a −√a2 − h2

)

−2b

h

√
a2 − h2 sin−1 h

a

a − 4h

3π
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TABLE 16-1 (continued) SOME GEOMETRIC PROPERTIES OF CROSS SECTIONS

ki ko

I (R − a + b − e)

Ae(R − a + b)(a − b)

I (a − b cos θ − R − e)

Ae(a − b cos θ − R)(a − b cos θ)

0.2109d

e

d − e

R − d

d = h(3π − 4)

3π

0.2860d

e

e + 0.7374d

R + 0.7374d

d = h(3π − 4)

3π

TABLE 16-1 Some Geometric Properties of Cross Sections 829



TABLE 16-2 SUMMARY OF IN-PLANE LOADED CURVED BAR STRESSES
Notation

R = radius of curvature of centroidal axis
A = cross-sectional area
e = shift of neutral axis from centroidal axis
= R − rn = R − A/Am

rn = radius of curvature of neutral axis along the bar
M = bending moment about y axis
V = shear force
P = tensile axial force applied at centroid.

Replace P by −P if axial force is compressive

Am =
∫

A
dA

r
A′m =

∫
A′

dA

r
Q = ∫A′ r dA

b = width of cross section where stresses
are calculated

A′ = area of part of cross section below b
I = moment of inertia about centroidal y axis
z = distance in z direction from centroid to point

where stresses are calculated

Circumferential Stress σx

General Slender Beams
(e = r − rn = R − A/Am) [e = I/(R A)] With Thin Flanges

1.
Most accurate
P

A

[
rn

r
+ Ae

I
(r − R)

]

+ M(rn − r)

Aer

Ref. [16.2]

1.
Most accurate
P

A

(rn

r
+ r

R
− 1
)

+ M(rn − r)

Aer

Ref. [16.2]

Calculate modified flange width
using Eq. (16.6) and then calcu-
late stress using formulas to left

2.
More accurate than traditional
but less accurate and easier to
apply than case 1

Prn

Ar
+ M(rn − r)

Aer

Ref. [16.2]

2.
Traditional formula

P

A
+ M(rn − r)

Aer

3.
Traditional formula

P

A
+ M(rn − r)

Aer

830 TABLE 16-2 Summary of In-Plane Loaded Curved Bar Stresses



TABLE 16-2 (continued) SUMMARY OF IN-PLANE LOADED CURVED BAR STRESSES

Radial Stress σz

1.
Most accurate

rn

Aebr

[
(M − P R)

(
A′m −

A′

rn

)]
+ P

r
(R A′ − Q)

Ref. [16.4]

2.
Traditional formula
1

br

[
A′

A
P + AA′m − A′Am

A(R Am − A)
M

]

Shear Stress τ

1.

V rn Q

bAe(R − z)2

TABLE 16-3 BLEICH’S CORRECTION
FACTORS α AND β FOR CALCULATING
EFFECTIVE WIDTH AND LATERAL BENDING
STRESS OF I- OR T-SECTIONSa

Notation
bpi , t f i , and r̄i are shown in Fig. 16-8 [16.3].
f = b2

pi/(r̄i t f i ).

α = C0 + C1 f + C2 f 2 + C3 f 3 + C4 f 4 + C5 f 5

β = D0 + D1 f + D2 f 2 + D3 f 3 + D4 f 4 + D5 f 5

where C j and D j are taken from

j C j D j

0 1.0934663695 −0.10845356
1 −0.5142515924 4.0551477436
2 0.1284598483 −3.306290153
3 −0.0112111533 1.2434264877
4 0 −0.219079535
5 0 0.0146197753

aFrom Ref [16.3], with permission.

TABLE 16-3 Bleich’s Correction Factors 831



TABLE 16-4 IN-PLANE RESPONSE OF UNIFORM CIRCULAR BARS
Notation

u, w = displacements in x and z directions
θ = slope about y axis

uX , uZ = displacements in X and Z directions
E = modulus of elasticity
M = bending moment
V = shear force
I = moment of inertia about the

centroidal y axis
P = axial force
R = radius of bar

Displacements at Angle α
Case Moments and Forces at Angle α (u = uX sinα + uZ cosα,w = −uX cosα + uZ sinα)

1.
Radial load M = WR sinα

P = W sinα
V = −W cosα

uZ = −WR3

4E I
(cos 2ψ − cos 2α + 4 cos2 α − 4 cosψ cosα)

uX = WR3

4E I
[2(ψ − α)+ sin 2α − sin 2ψ − 4(cosα − cosψ) sinα]

At α = 0,

u = −WR3

4E I
(cos 2ψ − 4 cosψ + 3)

w = −WR3

4E I
(2ψ − sin 2ψ)

θ = W R2

E I
(1− cosψ)
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2.
Tangential load

M = −WR(1− cosα)
P = W cosα
V = W sinα

uZ = WR3

4E I
[4(ψ − α) cosα − 4(1+ cosα)(sinψ − sinα)

+ 2(ψ − α)+ sin 2ψ − sin 2α]
uX = −WR3

4E I
[4 sinα sinψ + 4 cosα − 4 cosψ

− 4(ψ − α) sinα − 4 sin 2α + cos 2ψ − cos 2α]
At α = 0,

u = WR3

4E I
(6ψ + sin 2ψ − 8 sinψ)

w = WR3

4E I
(cos 2ψ − 4 cosψ + 3)

θ = −W R2

E I
(ψ − sinψ)

3.
End moment M = M∗ uZ = −M∗R2

E I
[(ψ − α) cosα − sinψ + sinα]

uX = M∗R2

E I
(cosα + α sinα − cosψ − ψ sinα)

At α = 0,

u = −M∗R2

E I
(ψ − sinψ)

w = −M∗R2

E I
(1− cosψ)

θ = M∗R

E I
ψ
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TABLE 16-4 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR BARS

Displacements at Angle α
Case Moments and Forces at Angle α (u = uX sinα + uZ cosα,w = −uX cosα + uZ sinα)

4.
Radial load guided
end

M = WR sinα − M0

P = W sinα + M0 cosα

R(1− cosα)

V = −W sinα + M0 sinα

R(1− cosα)
where

M0 = WR

4

cos 2ψ − 4 cosψ + 3

ψ − sinψ

At α = 0,
u = 0

w = −WR3

4E I

[
2ψ − sin 2ψ + cos 2ψ − 4 cosψ + 3

ψ − sinψ
(cosψ − 1)

]

θ = 0

5.
Eccentric tangential
load

M = −W [R(cosα − 1)− a]
P = W cosα
V = W sin θ

At α = 0,

u = W R2

4E I
[2ψ(3R + 2a)− 4(2R + a) sinψ + R sin 2ψ]

w = W R2

4E I
[3R + 4a − 4(R + a) cosψ + R cos 2ψ]

θ = −W R

E I
[ψ(R + a)− R sinψ]
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6.
Uniform vertical
load

M = pR2(α cosα − sinα)
P = pRα cosα
V = P Rα sinα

uZ = pR4

8E I
[3(cos 2ψ − cos 2α)+ 16 cosα(cosα − cosψ)

+ 2(ψ2 − α2)− 8ψ sinψ cosα + 2ψ sin 2ψ + 2α sin 2α]
uX = − pR4

8E I
[4(ψ − α)+ 2ψ cos 2ψ − 2α cos 2α − 3 sin 2ψ

− 5 sin 2α + 8 sinα(2 cosψ + ψ sinψ − α sinα)]
At α = 0,

u = pR4

8E I
(2ψ sin 2ψ − 8ψ sinψ + 3 cos 2ψ − 16 cosψ + 2ψ2 + 13)

w = pR4

8E I
(4ψ + 2ψ cos 2ψ − 3 sin 2ψ)

7.
Uniform radial
load

M = −p1 R2(1− cosα)
P = p1 R(cosα − 1)
V = p1 R sinα

w = p1 R4

E I

[
1+

(
1

2
ψ − sinψ − 1

4
sin 2ψ − 1

2
α

)
sinα

−
(

cosψ + 1

2
sin2 ψ

)
cosα

]

If ψ = 180◦,

w = p1 R4

E I

[
1+ 1

2
(π − α) sinα + cosα

]

If ψ = 180◦ and α = 90◦,

w = 1.7854
p1 R4

E I
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TABLE 16-4 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR BARS

Moments and Forces Displacements at Angle α
Case at Angle α (u = uX sinα + uZ cosα,w = −uX cosα + uZ sinα)

8.
Split ring M = WR(cos γ − cosα)

P = −W cosα
V = −W sinα

w = −WR3

E I

[
1

2
(π − α) sinα + (1+ cosα) cos γ

]

At α = 90◦,

w = WR3

E I

(π
4
+ cos γ

)

Total change in end gap:

δ = WR3

E I

[
(π − γ )(1+ 2 cos2 γ )+ 3

2
sin 2γ

]

9.
Vertical load

M = WR(cosα − cosβ)
V = W sinα
P = W cosα

At α = 0,

u = Ku
WR3

E I
× 10−4

w = Kw
WR3

E I
× 10−4

Ku =




− 6.4935− 0.517ψ − 0.3577ψ2 + 0.018ψ3 − 7.01× 10−5ψ4 β = 0

− 4.33+ 22.9ψ − 1.473ψ2 + 0.02815ψ3 − 9.82× 10−5ψ4 β = 30◦
6.11ψ + 0.05082ψ2 − 0.0177ψ3 + 3.72× 10−4ψ4 − 2.229

× 10−6ψ5 + 4.19× 10−9ψ6 β = 60◦
− 3.79− 11.35ψ + 0.933ψ2 − 0.02346ψ3 + 2.163× 10−4ψ4

− 6.0× 10−7ψ5 β = 90◦
31.66ψ − 2.366ψ2 + 0.062886ψ3 − 7.587× 10−4ψ4

+ 4.201× 10−6ψ5 − 8.573× 10−9φ6 β = 120◦
− 34,500+ 396.67ψ − 1.111ψ2 β = 150◦
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Kw =




21.1− 21.96ψ + 1.11ψ2 − 0.027364ψ3 + 3.36× 10−4ψ4

− 9.43× 10−7ψ5 β = 0◦
1.62+ 10.6ψ − 0.304ψ2 − 7.47× 10−3ψ3 + 1.976

× 10−4ψ4 − 6.0× 10−7ψ5 β = 30◦
15.15− 19.0ψ + 0.896ψ2 − 0.0172ψ3 + 1.636

× 10−4ψ4 − 3.43× 10−7ψ5 β = 60◦
− 8.117+ 1.63ψ + 0.247ψ2 − 0.01126ψ3 + 1.18

× 10−4ψ4 − 2.572× 10−7ψ5 β = 90◦
34.6− 34.2ψ + 1.414ψ2 − 0.0174ψ3 + 6.55× 10−5ψ4 β = 120◦
− 1.077+ 23.167ψ − 1.563ψ2 + 0.03664ψ3 − 3.84× 10−4ψ4

+ 1.83× 10−6ψ5 − 3.2× 10−9ψ6 β = 150◦
ψ ≤ 180◦
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TABLE 16-4 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR BARS

Moments and Forces Displacements at Angle α
Case at Angle α (u = uX sinα + uZ cosα,w = −uX cosα + uZ sinα)

10.
Horizontal load

M = −WR(sinα − sinβ)
V = W cosα
P = −W sinα

At α = 0,

u = Ku
WR3

E I
× 10−4

w = Kw
WR3

E I
× 10−4

Ku =




32.46− 48.2ψ + 2.19ψ2 − 7.23× 10−3ψ3 − 4.2× 10−6ψ4 β = 0◦
− 5.195+ 29.07ψ − 2.078ψ2 + 4.7517× 10−2ψ3 − 3.287

× 10−4ψ4 + 7.2× 10−7ψ5 β = 30◦
− 31.472ψ + 2.592ψ2 − 7.72× 10−2ψ3 + 1.0284

× 10−3ψ4 − 6.0271× 10−6ψ5 + 1.2669× 10−8ψ6 β = 60◦
− 21.33ψ + 1.593ψ2 − 4.228× 10−2ψ3 + 5.092

× 10−4ψ4 − 2.812× 10−6ψ5 + 5.716× 10−9ψ6 β = 120◦
− 4.329+ 26.3ψ − 1.528ψ2 + 2.871× 10−2ψ3 − 2.114

× 10−4ψ4 + 5.144× 10−7ψ5 β = 90◦
− 0.39083− 39.0514ψ + 3.15292ψ2 − 9.186× 10−2ψ3

+ 1.20157× 10−3ψ4 − 6.96541× 10−6ψ5 + 1.45645

× 10−8ψ6 β = 150◦
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Kw =




− 23.8− 3.89ψ + 0.1389ψ2 + 4.63× 10−3ψ3 + 5.144

× 10−5ψ4 − 3.429× 10−7ψ5 β = 0◦
− 13.528− 18.674ψ + 1.16ψ2 − 1.95× 10−2ψ3 + 1.88

× 10−4ψ4 − 6.0× 10−7ψ5 β = 30◦
4.33+ 13.065ψ − 0.795ψ2 + 1.3× 10−2ψ3 − 5.61× 10−5ψ4 β = 60◦
− 6.49+ 12.31ψ − 0.612ψ2 + 9.3× 10−3ψ3 − 4.44× 10−5ψ4 β = 90◦

1.08+ 10.16ψ − 0.558ψ2 + 8.65× 10−3ψ3 − 3.975

× 10−5ψ4 β = 120◦
2.923− 26.344ψ + 1.657ψ2 − 3.66× 10−2ψ3 + 3.574

× 10−4ψ4 − 1.5385× 10−6ψ5 + 2.278× 10−9ψ6 β = 150◦
ψ ≤ 180◦

11.
Uniform
longitudinal load

M = −px1 R2(α − sinα)

P = px1 R sinα

V = px1 R(1− cosα)

At α = 0,

u = px1 R4

E I

[
sinψ + 1

4
sin 2ψ − 1

2
ψ − ψ cosψ

]

w = px1 R4

E I

[
1

2
ψ2 − ψ sinψ + 1

2
sinψ

]

θ = − px1 R3

E I

(
1

2
ψ2 + cosψ − 1

)
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TABLE 16-5 IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS
Notation

δx , δz = change in horizontal and vertical diameters; increase is
positive

�R = change in upper half of vertical diameter of ring, decrease
is negative

E = modulus of elasticity
I = moment of inertia about the centroidal y axis

M = bending moment
P = axial tensile force
V = shear force

M1, V1, P1,M2, V2, P2 = moments, shear forces, and axial forces at bottom and top,
respectively

R = radius of ring
ρ∗ = mass of liquid per unit volume

e = shift of neutral axis from centroid
g = gravitational acceleration

Case δx , δz , �R, M, P , V

1. δx = 0.137WR3/E I δz = −0.149WR3/E I
max(+M) = 0.3183WR at bottom (α = 0)

max(−M) = −0.1817WR at side (α = 1
2π)

P1 = 0 V1 = − 1
2 W

2. δx = (Kx WR3/E I )× 10−6 δz = (KzWR3/E I )× 10−5

�R = (K RWR3/E I )× 10−6 M = KM WR× 10−5

P = K P W × 10−4 V = KV W × 10−5

Kx = −37.72− 11.137β + 4.3146β2 − 0.945β3 + 0.007735β4

Kz = 59.7− 33.676β + 2.898β2 + 0.030688β3 − 0.00045β4

K R = −15.4174+ 9.0944β − 1.7172β2 + 0.35β3 − 0.00265β4

KM = 96.3− 42.8β + 2.619β2 + 0.1522β3 − 0.0014852β4

K P = −9988.79− 5.328β + 1.8837β2 + 0.0064β3 − 0.000145β4

KV = 155.337− 94.085β + 8.89β2 − 0.29125β3 + 0.00149β4

0 ≤ β < 90◦
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TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case δx , δz , �R, M, P , V

3. δx = (Kx M∗R2/E I )× 10−5 δz = (Kz M∗R2/E I )× 10−5

�R = (K R M∗R2/E I )× 10−6 M = KM M∗ × 10−5

P = (K P M∗/R)× 10−5 V = (KV M∗/R)× 10−6

Kx = −9.65− 628.15β − 0.55β2 + 0.1068β3 − 0.000255β4

Kz = −10.3376+ 1115.77β − 15.62β2 + 0.011β3 + 0.000276β4

K R = 3.2423+ 2363.26β + 1.828β2 − 0.3414β3 + 0.000823β4

KM = −99979+ 1650.43β + 2.05254β2 − 0.3165β3

+ 0.001760β4

K P = 19+ 1094β + 2.0747β2 − 0.3168β3 + 0.001763β4

KV = 1121.34− 638.56β + 250.35β2 − 1.699β3 − 0.001563β4

0 ≤ β < 90◦

4. δx = −0.1366WR3/E I δz = 0.1488WR3/E I

�R = 0.0554WR3/E I

At α = 0 to α = 1
2π,

M = KM WR× 10−5 P = K P W × 10−5 V = KV W × 10−5

KM = −49283.5+ 1490.52α + 10.845α2 − 0.4216α3

+ 0.002871α4 − 0.0000060366α5 ≤ α < 180◦

K P =




31835.1+ 1741.02α − 4.4α2 − 0.103865α3

+ 0.0003478α4 0 ≤ α < 90◦
41025.3− 180.548α − 4.8662α2 + 0.02014α3

90◦ ≤ α < 180◦

KV =




99887.7− 518.163α − 17.57α2 − 0.078α3

0 ≤ α < 90◦
−29732.8+ 1500.6α − 10.735α2 + 0.0184α3

90◦ ≤ α < 180◦

5. δx = (Kx WR3/E I )× 10−5 δz = (KzWR3/E I )× 10−5

�R = (K RWR3/E I )× 10−5

At α = β,
M = KM WR× 10−5 P = K P W × 10−5 V = −KV W × 10−5

Kx = −13593.9− 36.7665β + 8.83016β2 − 0.1004β3

+ 0.0002787β4

Kz = 14848.2+ 21.2347β − 11.9295β2

+ 0.17515β3 − 0.000728β4

K R = 5525.18+ 12.155β − 3.169β2 + 0.03308β3 − 0.0000754β4

KM = −50172.6+ 1850.02β − 29.129β2 + 0.22465β3

− 0.000663β4

K P = 31657.9+ 103.53β − 24.26β2 + 0.315β3 − 0.00112β4

KV = −95.94+ 597.267β − 2.48β2 − 0.1856β3 + 0.00156β4

0 ≤ β < 90◦
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TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case δx , δz , �R, M, P , V

6. δx = (Kx WR3/E I )× 10−5

δz = (KzWR3/E I )× 10−5

�R = (K RWR3/E I )× 10−5

At α = β ,
M = KMWR× 10−5 P = K P W × 10−5

V = KV W × 10−5

Kx = −66.0127+ 36.7665β − 8.83β2 + 0.100477β3

− 0.000279β4

Kz = 31.75− 21.2347β + 11.93β2 − 0.175β3

+ 0.000728β4

K R = 43043− 2068.6β + 41.97β2 − 0.3328β3

+ 0.0008599β4

KM = 180.54− 108.476β + 24.7β2 − 0.328β3 + 0.001β4

K P = 179.02+ 1638.54β + 19.8β2 − 0.41778β3

+ 0.00146β4

KV = 99896.1+ 47.1116β − 18.235β2 − 0.1413β3

+ 0.001762β4

0 ≤ β < 90◦

7. Radial displacement of each load point:
(KsWR3/2E I )× 10−5 (outward)
Radial displacement at α = 0, 2β, 4β, . . . :
(K ′sWR3/4E I )× 10−5 (inward)
At α = 0, 2β, 4β, . . . : max(+M) = 1

2 KMWR× 10−5

At each load: max(−M) = − 1
2 K ′M WR× 10−5

At α = 0, 2β, 4β, . . . : P = 1
2 K P W × 10−4

At each load: P = 1
2 K ′P W × 10−5

Ks=




−2112779.99+ 261138.9β − 14555.9β2 + 421.84β3

−6.5346β4 + 0.0512583β5 − 0.00015983β6

0 ≤ β < 90◦

−436680.99+ 13990.1β − 164.09β2 + 0.8548β3

−0.001548β4 90◦ ≤ β < 180◦

K ′s=




2112770− 261425.99β + 14555.7β2 − 421.749β3

+ 6.53425β4 − 0.0512493β5 + 0.00015978β6

0 ≤ β < 90◦

−379655000+ 19386100β − 407977β2 + 4529.78β3

−27.9914β4 + 0.0913129β5 − 0.000122919β6

90◦ ≤ β < 180◦
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TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case δx , δz , �R, M, P , V

7. Continued

KM =




57.9248+ 278.769β + 0.732387β2 − 0.00672β3

+ 0.000154986β4 0 ≤ β < 90◦
593102000− 29371900β + 600602.9β2 − 6491.33β3

+ 39.118β4 − 0.124651β5 + 0.000164149β6

90◦ ≤ β < 180◦

K ′M =




−195.475+ 612.305β − 1.1217β2 + 0.0246β3

0 ≤ β < 90◦
593089000− 29370999.9β + 600591β2 − 6491.21β3

+ 39.1173β4 − 0.124649β5 + 0.000164147β6

90◦ ≤ β < 180◦

K P =




211277− 25909.8β + 1455.57β2 − 42.1996β3

+ 0.65343β4 − 0.00512423β5 + 0.0000159778β6

0 ≤ β < 90◦
14589499− 735481.9β + 15343.6β2 − 169.466β3

+ 1.04532β4 − 0.00341539β5 + 0.00000462055β6

90◦ ≤ β < 170◦

K ′P =




2112750− 259966.9β + 14555.3β2 − 421.999β3

+ 6.53388β4 − 0.051238β5 + 0.00015975β6

0 ≤ β < 90◦
−145215000+ 7337399.9β − 153198β2 + 1692.69β3

− 10.4435β4 + 0.0341276β5 − 0.0000461753β6

90◦ ≤ β < 170◦

8. δx = (Kx 2pR4/E I )× 10−5 δz = (Kz2pR4/E I )× 10−5

�R = (K R pR4/E I )× 10−5 M1 = KM pR2 × 10−5 at bottom
At α = β,

P = −K P pR × 10−5 V = −KV pR × 10−5

Kx = 31522.7− 761.555β + 10.2634β2 − 0.057365β3

+ 0.000124β4

Kz = −26140.6+ 553.141β − 7.597β2 + 0.04243β3

− 0.00007107β4

K R = −25649.8+ 522.245β − 6.4062β2 + 0.03126β3

− 0.0000409β4

KM = 56051.4− 686.78β + 18.98β2 − 0.15β3 + 0.0003169β4

K P = −363585.9+ 12617.9β − 107.08β2 + 0.26787β3

KV = 151482− 10368.6β + 174.6β2 − 1.0304β3 + 0.001969β4

90◦ ≤ β < 180◦
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TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case δx , δz , �R, M, P , V

9. δx = −(Kx pR4/E I )× 10−5 δz = −(Kz pR4/E I )× 10−5

M1 = KM pR2 × 10−5 at bottom
At α = β,

P = −K P pR × 10−5 V = −KV pR × 10−5

Kx = 52.42− 501.15β + 1.66645β2 + 0.06487β3

− 0.0004992β4

Kz = −82.634+ 565.013β − 3.8146β2 − 0.0413β3

+ 0.0004167β4

KM = −59.498+ 1149.25β − 18.9β2 + 0.1281β3 − 0.000281β4

K P = 178.8− 100.5β + 39.367β2 − 0.2678β3 − 0.0002397β4

KV = 35.0613+ 1718.95β + 3.229β2 − 0.497β3 + 0.0027665β4

0 ≤ β < 90◦

10. δx = 0.1228p1 R4/E I δz = −0.1220p1 R4/E I
At bottom (α = 0),

M1 = 0.305p1 R2 P1 = −0.0265P1 R V1 = −0.5000p1 R
At α = π/2,

M = −0.165p1 R2 P = −0.500p1 R V = −0.0265p1 R
At α = π,

M = 0.1914p1 R2 P = 0.0265p1 R V = 0

11. M1 = KM pR2 × 10−5 at bottom
P = K P pR × 10−5at α = β V = KV pR × 10−5 at α = β

KM = −162.73+ 21.46β + 0.97334β2 − 0.09627β3

+ 0.000879β4 − 0.00000223957β5

K P = −96.97+ 116.72β − 11.45β2 + 0.34β3 − 0.0034138β4

+ 0.00000982β5

KV = 154.534− 118.746β + 12.831β2 − 0.4956β3

+ 0.0082537β4 − 0.0000527838β5 + 0.00000011193β6

0 ≤ β < 180◦

12. δx = (Kx 2p1 R4/E I )× 10−5 δz = (Kz2p1 R4/E I )× 10−5

M1 = KM p1 R2 × 10−5 at bottom
At α = β,

P = K P p1 R × 10−5 V = KV p1 R × 10−5

Kx = 3.943− 2.6611β + 0.275β2 − 0.026175β3

+ 0.0001559β4

Kz = 23.748− 10.215β + 0.702β2 + 0.013β3 − 0.0001038β4

KM = 32.28− 5.0077β − 15.3897β2 + 0.10335β3

K P = −21.797+ 8.691β − 15.9β2 + 0.08046β3 + 0.000021β4

KV = 24.8136− 21.14β + 2.6929β2 − 0.39β3 + 0.0025β4

0 ≤ β < 90◦
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TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case δx , δz , �R, M, P , V

13.

Ring symmetrically
supported and loaded
by its own weight p1
(force per unit length)

δx = (Kx 2p1 R4/E I )× 10−5 δz = (Kz p1 R4/E I )× 10−5

M1 = KM p1 R2 × 10−4 at bottom

At α = β,
P = K P p1 R × 10−5 V = KV p1 R × 10−5

Kx = 22005.2+ 18.3033β − 15.9884β2 + 0.2397β3 − 0.00104β4

Kz = −46067.4− 292.218β + 52.942β2 − 0.93β3 + 0.006129β4

− 0.00001366β5

KM = 15435.3− 655.64β + 9.7253β2 − 0.06153β3 + 0.0001345β4

K P = −47188.8− 1164.71β + 152.709β2 − 2.1833β3

+ 0.012524β4 − 0.0000267856β5

KV = 809.224+ 2108.65β + 51.143β2 − 2.7738β3 + 0.033555β4

− 0.000169β5 + 3.1099× 10−7β6

0 ≤ β < 180◦

14.

Unit length of pipe filled
with liquid of mass
density ρ∗ and supported
at base

δx = 0.2146gρ∗R5/E I δz = −0.2337gρ∗R5/E I
�R = −0.0938gρ∗R5/E I

max(+M) = M1 = 0.750gρ∗R3/E I at bottom

max(−M) = 0.321gρ∗R3 at α = 75◦

M = KM gρ∗R3 × 10−5 P = K P gρ∗R2 × 10−5

V = KV gρ∗R2 × 10−5

KM =



12318α α < 5◦

77375.6− 3059.47α + 22.126α2 + 0.0112α3

− 0.000273α4 5◦ ≤ α ≤ 180◦
K P = 126172− 2978.5α + 20.53α2 + 0.02317α3

− 0.0003033α4

KV = −156315.9+ 1123.8α + 32.9756α2 − 0.322α3

+ 0.0007267α4

0 ≤ α < 180◦
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TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case δx , δz , �R, M, P , V

15.

Unit length of pipe filled
with liquid of mass
density ρ∗ and supported
symmetrically at two
locations

δx = (Kx gρ∗R5/E I )× 10−5 δz = −(Kz gρ∗R5/E I )× 10−5

�R = (K Rgρ∗R5/(2E I )
)× 10−5

M1 = KM gρ∗R3 × 10−5

At α = β,
P = K P gρ∗R2 × 10−5 V = KV gρ∗R2 × 10−5

Kx = 19949.5+ 466.516β − 35.2866β2 + 0.54487β3

− 0.003048β4 + 0.00000466β5

Kz = 23085.7+ 133.53β − 25.868β2 + 0.454537β3

− 0.00299β4 + 0.000006647β5

K R = −19293.2+ 9.0767β + 10.897β2 − 0.156025β3

+ 0.00064066β4

KM = 77219.7− 3285.01β + 48.839β2 − 0.3098β3

+ 0.0006795β4

K P = 126224.9− 537.37β + 66.636β2 − 1.0577β3

+ 0.006257β4 − 0.0000133084β5

KV = −3730.44+ 2317.25β − 48.5β2 + 0.282β3

− 0.0006166β4

0 ≤ β < 180◦

16.

Bulkhead or supporting
ring pipe, supported at
sides and carrying a
load W transferred
by tangential shear S
uniformly distributed as
shown

S = W

πR
sinα

δx = 0 δz = 0

M = KM WR× 10−5 P = K P W × 10−5

V = KV W × 10−5 M1 = −0.0113WR at bottom

max(+M) = 0.0146WR at α = 66.8◦
max(−M) = −0.0146WR at α = 113.2◦

P1 = −0.0796W at α = 0

KM =




−7945.12− 7.4386α + 6.66845α2 − 0.01605α3

− 0.00013α4 0 ≤ α < 90◦
34331− 2513.46α + 30.603α2 − 0.12524α3

− 0.000157083α4 90◦ ≤ α ≤ 180◦

K P =




−1121.98− 4.2428α + 1.5515α2 − 0.009163α3

− 0.0000669α4 0 ≤ α < 90◦
75826.2− 1913.05α + 16.577α2 − 0.058α3

+ 0.00006837α4 90◦ ≤ α ≤ 180◦

KV =




7.6305+ 134.445α + 0.4064α2 − 0.04848α3

+ 0.0001825α4 90◦ ≤ α < 90◦
54993.9+ 210.22α + 9.3176α2 − 0.081α3

+ 0.000179α4 90◦ ≤ α < 180◦
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TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case δx , δz , �R, M, P , V

17.

Same as case 16 except
supported as shown

S = W

πR
sinα

δx = (Kx WR3/E I )× 10−5 δz = (KzWR3/E I )× 10−5

�R = (K RWR3/E I )× 10−5

At α = β,
M = KM WR× 10−5 P = K P W × 10−5

V = KV W × 10−5

Kx = 6797.16+ 18.722β − 4.423β2 + 0.0502β3

− 0.0001388β4

Kz = −7423.29− 10.27β + 5.947β2 − 0.0873β3

+ 0.0003627β4

K R = −2977.03− 5.925β + 1.579β2 − 0.01651β3

+ 0.0000378β4

KM = 23961.7− 927.9β + 16.0202β2 − 0.11946β3

+ 0.0002517β4

K P = −23776.8− 56.0366β + 18.56β2 − 0.1682β3

+ 0.0003928β4

KV = −39.96+ 433.994β − 0.8944β2 − 0.14β3

+ 0.000956β4

0 ≤ β < 90◦

18. δx = 0.4292
p1 R4

E I
δz = −0.4674

p1 R4

E I
M1 = 1.5p1 R2 M2 = 0.5p1 R2

max(+M) = 1.5p1 R2 at bottom

V2 = 0 P2 = 1
2 p1 R
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TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case δx , δz , �R, M, P , V

19.

Radial pressure varies
with (α − β)2 from 0
at α = β to p1 at α = π


0 α < β
p1

(π − β)2 (α − β)
2

β ≤ α ≤ π
W = 4p1 R

× π − β − sinβ

(π − β)2

δx =




−p1 R4

E I (π − β)2
{
β2(2− sinβ)

+β(sinβ − 3 cosβ − 8.283)+ 7 sinβ + 2.115

+ cosβ − 0.2122
[
(π − β)3 − 6(π − β − sinβ)

]}
β ≤ 1

2π

−p1 R4

E I (π − β)2
{
(2− cosβ)(π − β)− 3 sinβ

− 0.2122
[
(π − β)3 − 6(π − β − sinβ)

]}
β > 1

2π

δz = p1 R4

E I (π − β)2
{
4+ 4 cosβ − (π − β) sinβ − (π − β)2

+ 0.2122
[
(π − β)3 − 6(π − β − sinβ)

]}

M1 = −p1 R2

π(π − β)2
[
2β(2− cosβ)+ 6(sinβ − π)

+ π(π + β)2 + 2(π − β − sinβ)− 1

3
(π − β)3]

Mz = −p1 R2

π(π − β)2
[
2(π − β)(2− cosβ)− 6 sinβ

+ 2(π − β − sinβ)− 1

3
(π − β)3]

V2 = 0
max(+M) occurs at angular position α1 where α1 > β
and α1 > 108.6◦ and satisfies (α1 − β + sinβ cosα1)
+ (3 sinβ − 2π + 2β − β cosβ) sinα1 = 0
max(−M) = M1
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TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case δx , δz , �R, M, P , V

20.

W = gρ∗R2(π − β
+ sinβ cosβ)

Unit length of pipe
partially filled
with liquid;
h = thickness
of wall of pipe

δx =




3gρ∗R5(1− ν2)

2Eh3π

× {π(sinβ cosβ + 2π − 3β + 2β cos2 β)

+ 8π(2 cosβ − sinβ cosβ − 1
2π + β)

+ 8[(π − β)(1− 2 cosβ)+ sinβ cosβ − 2 sinβ]}
β ≤ 1

2π

3gρ∗R5(1− ν2)

2Eh3π

×{π[(π − β)(1+ 2 cos2 β)+ 3 cosβ sinβ]
+ 8[(π − β)(1− 2 cosβ)+ sinβ cosβ − 2 sinβ]}

β > 1
2π

δz = 3gρ∗R5(1− ν2)

2Eh3π
{π[sin2 β + (π − β)

× (π − β − 2 sinβ cosβ)] − 4π(1+ cosβ)2

− 8[(π − β)(1− 2 cosβ)+ sinβ cosβ − 2 sinβ]}
M2 = gρ∗R3

4π
{2θ sin2 β + 3 sinβ cosβ − 3β + π + 2π cos2 β

+ 2[sinβ cosβ − 2 sinβ + (π − β)(1− 2 cosβ)]}
P2 = gρ∗R2

4π
[3 sinβ cosβ + (π − β)(1− 2 cos2 β)]

V2 = 0

21. δx = (Kx p1 R4/E I )× 10−4 δz = (Kz p1 R4/E I )× 10−4

M1 = KM1 p1 R2 × 10−4 M2 = KM2 p1 R2 × 10−4

P2 = K P2 p1 R × 10−4

Kx = −831.109− 2.65β + 0.162β2 − 7.37× 10−4β3

+ 1.11× 10−7β4

Kz = 831.546+ 2.137β − 0.144β2 + 5.83× 10−4β3

+ 2.53× 10−7β4

KM1 = −1456.97− 0.584β + 7.6986× 10−2β2

+ 7.58257× 10−4β3 − 5.478× 10−6β4

KM2 = −1040.18− 3.89612β + 0.288β2

− 2.036× 10−3β3 + 3.971× 10−6β4

K P2 = −3122.7− 7.929β + 0.968856β2

− 8.173× 10−3β3 + 1.99× 10−5β4

30◦ ≤ β ≤ 120◦
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TABLE 16-5 (continued) IN-PLANE RESPONSE OF UNIFORM CIRCULAR RINGS

Case δx , δz , �R, M, P , V

22. δx = (Kx WR3/E I )× 10−4 δz = (KzWR3/E I )× 10−4

M1 = KM WR× 10−4 P2 = K P W × 10−4

max(+M) =




occurs at angular position α = tan−1(−π/ sin2 β)

β < 106.3◦
occurs at load W β ≥ 106.3◦

max(−M) = M1

Kx = −4053.2+ 81.547β − 0.8616β2 + 3.1913× 10−3β3

Kz = 4269.8− 88.72β + 0.9634β2 − 3.568× 10−3β3

KM = −6052− 29.9945β + 1.565β2 − 1.795× 10−2β3

+ 6.35× 10−5β4

K P = −801+ 66.6167β − 3.027β2 + 2.952× 10−2β3

− 8.2× 10−5β4

30◦ ≤ β ≤ 150◦

23. δx = (Kx WR3/E I )× 10−4 δz = (KzWR3/E I )× 10−4

M1 = KM1 WR× 10−4 P2 = K P W × 10−4

M2 = KM2 WR× 10−4

max(+M) =
{

M1 β ≤ 60◦
KM WR× 10−4 at load if β > 60◦

Kx = 819+ 141.42β − 4.62β2 + 0.040574β3

− 1.0957× 10−4β4

Kz = −2690− 23.975β + 2.1817β2 − 0.0205463β3

+ 5.36523× 10−5β4

KM1 = 5650+ 53.73β − 2.884β2 + 0.0168β3

− 1.852× 10−5β4

K P = 507.003− 211.57β + 1.9037β2 − 9.383× 10−4β3

− 1.83× 10−5β4

KM2 = 6753− 202.622β + 1.184β2 + 1.765× 10−3β3

− 1.852× 10−5β4

KM = 10578− 496.41β + 9.175β2 − 0.06416β3

+ 1.484× 10−4β4

30◦ ≤ β ≤ 150◦
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TABLE 16-6 PART A: STATIC RESPONSE OF CIRCULAR CURVED BEAMS
UNDER IN-PLANE LOADING: GENERAL RESPONSE EXPRESSIONS

Notation

E = modulus of elasticity
A = area of the cross section

I ∗ = moment of inertia modified for curvature of
bar, where z is measured from centroid of
cross section
= ∫A[z2/(1− z/R)] dA

Response

1. Extension:

u = u0 cosα +w0 sinα + θ0 R(cosα − 1)

+ V0

[
R

2E A
α sinα − R3

2E I ∗
(2− 2 cosα − α sinα)

]
− M0

R2

E I ∗
(α − sinα)

+ P0

[
R

2E A
(α cosα + sinα)+ R3

2E I ∗
(2α + α cosα − 3 sinα)

]
+ Fu

2. Deflection:

w = −u0 sinα +w0 cosα − θ0 R sinα + V0

(
1

E A
+ R2

E I ∗

)

× R(sinα − α cosα)

2
+ M0

R2

E I ∗
(cosα − 1)

+ P0

[
R

2E A
α sinα − R3

2E I ∗ (2− 2 cosα − α sinα)

]
+ Fw

3. Slope: θ = θ0 + V0 R2(1− cosα)

E I ∗
+ M0 Rα

E I ∗
− P0 R2(α − sinα)

E I ∗
+ Fθ

4. Shear force: V = V0 cosα − P0 sinα + FV

5. Bending moment: M = V0 R sinα + M0 + P0 R(cosα − 1)+ FM

6. Axial force: P = V0 sinα + P0 cosα + FP

Loading functions Fu , Fw, Fθ , FV , FM , and FP are defined in part B for a variety of
applied loads.

To use these formulas, substitute the loading functions into the formulas above and
calculate the initial parameters based on the boundary conditions in part C.
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TABLE 16-6 PART B: STATIC RESPONSE OF CIRCULAR CURVED BEAMS UNDER IN-PLANE LOADING:
LOADING FUNCTIONS
By definition:

<αn sinα> =
{

0 α < α1
(α − α1)

n sin(α − α1) α1 ≤ α < α2
(α2 − α1)

n sin(α2 − α1) α2 ≤ α
<αn cosα> =

{
0 α < α1
(α − α1)

n cos(α − α1) α1 ≤ α < α2
(α2 − α1)

n cos(α2 − α1) α2 ≤ α

<α − α1>
0 =

{
0 α < α1
1 α ≥ α1

<α − α1> =
{

0 α < α1
(α − α1) α ≥ α1

<αn> =
{

0 α < α1
(α − α1)

n α1 ≤ α < α2
(α2 − α1)

n α2 ≤ α
n = 0, 1, 2

Concentrated Forces and Moments

Concentrated In-Plane Force Concentrated Moment

Fu − W R

2E A
<α − α1> sin(α − α1)+ WR3

E I ∗
{
<α − α1>

0 [1− cos(α − α1)]
− 1

2 [<α − α1> sin(α − α1)]
}

R2C

E I ∗
(<α − α1> − sin <α − α1>)

Fw −WR

2

(
1

E A
+ R2

E I ∗

)
× [sin <α − α1> − <α − α1> cos(α − α1)] − R2C

E I ∗
{
<α − α1>

0 ×[cos(α − α1)− 1]}

Fθ −WR2

E I ∗
[<α − α1>

0 − <α − α1>
0 cos(α − α1)] − RC

E I ∗
<α − α1>
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FV −W <α − α1>
0 cos(α − α1) 0

FM −WR sin <α − α1> −C <α − α1>
0

FP W sin <α − α1> 0

Distributed Forces and Moments

For distributed forces and moments: zi = ui f, where zi = [Fu Fw Fθ FV FM FP ]T , f = [ fu fw fθ fV fM fP ]T ,
and ui is the upper left 6× 6 submatrix of the extended transfer matrix for massless circular bars of Table 16-13, part A, with ψ = α.

Uniformly Distributed In-Plane Force Uniformly Distributed Moment

fu − p1 R2

2

[(
1

E A
+ R2

E I ∗

)
× (− <α cosα> + <sinα>)− 2R2

E I ∗
<α>

]
c1 R3

E I ∗
(

1
2 <α

2> + <cosα>
)

fw
p1 R2

2

(
1

E A
+ R2

E I ∗

)
× (2 <α − α1>

0 − <α sinα> −2 <cosα>)
c1 R3

E I ∗ (
<α> − <sinα>)

fθ − p1 R3

E I ∗
(<α> − <sinα>)

c1 R2

2E I ∗
<α2>

fV p1 R <sinα> 0

fM p1 R2 <cosα> Rc1 <α>

fP −p1 R <cosα> 0
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TABLE 16-6 PART C: STATIC RESPONSE
OF CIRCULAR CURVED BEAMS UNDER
IN-PLANE LOADING: IN-PLANE BOUNDARY
CONDITIONS
Case Boundary Conditions

1. u = w = θ = 0
Clamped end

2. M = V = P = 0
Free end

3. u = w = M = 0
Pinned end

4. w = θ = P = 0
Clamped–circumferentially
guided end

5. u = θ = V = 0
Clamped–radially guided
end
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TABLE 16-6 (continued) PART C: STATIC RESPONSE OF
CIRCULAR CURVED BEAMS UNDER IN-PLANE LOADING:
IN-PLANE BOUNDARY CONDITIONS

Case Boundary Conditions

6. w = M = P = 0
Pinned–circumferentially
guided end

7. u = M = V = 0
Pinned–radially guided end

8. θ = V = P = 0
Clamped–free end
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TABLE 16-7 BUCKLING LOADS FOR CIRCULAR ARCHES AND RINGS
Notation

All bars are uniform in cross section. Unless otherwise specified, the direction of
uniform radial loading is not a function of the deformation of the bar.

E = modulus of elasticity
G = shear modulus of elasticity
R = radius of curved beam
A = area of cross section

I, Iz = moments of inertia about
y and z axes

Iyz = product of inertia
rp = polar radius of gyration, Ip/A
Ip = polar moment of inertia
J = torsional constant
� = warping constant
zS = z coordinate of shear center
αs = shear correction factor
n = buckling mode number

D =
∫

A
Ez2 dA B =

∫
A
αs G dA C =

∫
A

E dA Ks = D/B R2

Case Buckling Loads

1.
Hinged–hinged
In-plane loading

p1,cr = E I

R3

(
4π2

ψ2
− 1
)

Ref. [16.15]

2.
Fixed–fixed
In-plane loading

p1,cr = E I

R3
(K 2 − 1)

Factor K is the solution of

K tan
ψ

2
cot

Kψ

2
= 1

or use

K = 21.037− 0.322439ψ + 0.0024401ψ2

− 9.69329× 10−6ψ3 + 1.94155× 10−8ψ4

− 1.53892× 10−11ψ5 60◦ ≤ ψ ≤ 360◦
Ref. [16.15]
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TABLE 16-7 (continued) BUCKLING LOADS FOR CIRCULAR ARCHES AND RINGS

Case Buckling Loads

3.
Simply supported arch
Out-of-plane buckling

Boundary conditions: free to rotate
about z and y axes but not free
about arch axis (x axis)

Mcr

M ′cr

}
= E Iz + G J

2R

±
√(

E Iz − G J

2R

)2

+ E IzG J

R2

π2

ψ2

1. When R→∞
Mcr = π

√
E IzG J

L
M ′cr = −

π
√

E IzG J

L
where L is the length of the beam.

2. When ψ = π ,
M ′cr = 0

Ref. [16.15]

4. In-plane buckling of rings subject to uniform external pressure: The pressure is initially
directed to the center of the ring. After buckling, the direction of the pressure can be
in one of the three directions. pb and pa indicate the loads before and after buckling.
Before buckling, p1 = pb, and after buckling, p1 becomes pa .

a. Pressure acts perpendicular to
axis of ring section during
buckling

If Iyz = 0

p1,cr = 3
E I

R3
Otherwise,

p1,cr = 3
E Iz

R3

(
1− I 2

yz

Iz I

)

Ref. [16.16]

b. Direction of pressure does not
change during buckling

p1,cr = 4
E I

R3

Ref. [16.17]

c. Pressure is directed toward
initial center of curvature during
buckling

p1,cr = 4.5
E I

R3

Ref. [16.17]
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TABLE 16-7 (continued) BUCKLING LOADS FOR CIRCULAR ARCHES AND RINGS

Case Buckling Loads

5. In-plane loading of rings: Circular rings subject to uniform pressure directed radially.
The material can be nonuniform and shear deformation effects are considered. The load
directions are the same as case 4. Ref. [16.18]

a. Force remains perpendicular to
axis of ring section during
buckling (see figure of case 4a)

p1,cr = 3D

R3

1

1+ 4Ks

b. Force remains parallel to its initial
direction during buckling (see
figure of case 4b)

p1,cr = 4D

R3

1

1+ 4Ks

c. Force remains directed toward
initial center of curvature during
buckling and K 2

R � 1, (see
figure of case 4c)

p1,cr = 4.5D

R3

1

1+ 4Ks
K 2

R =
D

C R2

6. Out-of-plane buckling of rings:
Circular rings subject to uniform
external pressure which acts
perpendicular to ring axis and
remains parallel to plane of
initial curvature during buckling

p1,cr = E Iz

R3

9

4+ E Iz/G J
When warping constant � should be considered

p1,cr = E Iz

R3

n2(n2 − 1)

n4 + (E Iz/E�)R2
n ≥ 2

Ref. [16.16]
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TABLE 16-8 FUNDAMENTAL NATURAL FREQUENCY OF CIRCULAR
ARCHESa

Notation
R = radius of arch
E = modulus of elasticity
G = shear modulus of elasticity
J = torsional constant

I, Iz = moments of inertia about y and z axes
ν = Poisson’s ratio
ρ = mass per unit length

Case Fundamental Natural Frequency

1.
Clamped–clamped
In-plane bending

λ2

2π(Rψ)2

[
1− 2σ 2(1− 2/σλ)(ψ/λ)2 + (ψ/λ)4

1+ 5σ 2(1− 2/σλ)(ψ/λ)2

]1/2( E I

ρ

)1/2

λ = 7.8532 σ = 1.00078

2.
Clamped–clamped
Out-of-plane flexure

π

2(Rψ)2

[
3.586(ψ/π)2 + 1.246G Jβ/E Iz

(ψ/π)2 + 1.246G J/E Iz

]1/2( E Iz

ρ

)1/2

0 < E Iz/G J < 2 β = (ψ/π)4 − 2.492(ψ/π)2 + 5.139

3.
Clamped–pinned
Out-of-plane flexure

π

2(Rψ)2

[
1.080(ψ/π)2 + 1.166G Jβ/E Iz

(ψ/π)2 + 1.166G J/E Iz

]1/2( E Iz

ρ

)1/2

0 < E Iz/G J < 2 β = (ψ/π)4 − 2.332(ψ/π)2 + 2.440

aAdapted from Ref. [16.11].
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TABLE 16-9 NATURAL FREQUENCIES OF CIRCULAR RINGSa

Notation
R = radius of ring
E = modulus of elasticity
G = shear modulus of elasticity
ν = Poisson’s ratio
J = torsional constant

Ip = polar moment of inertia
I, Iz = moments of inertia about y and z axes
ρ∗ = mass per unit volume
ρ = mass per unit length

The natural frequencies for extension tend to be higher than the frequencies for bend-
ing for thin rings.

Case Natural Frequency fi (Hz)

1.
Extension

(1+ i2)1/2

2πR

(
E

ρ∗

)1/2

i = 0, 1, 2, 3, . . .

2.
Torsion for general
cross sections

1

2πR

(
i2G J + Iz E

ρ Ip

)1/2

i = 0, 1, 2, 3, . . .

3.
Torsion for circular
cross sections

(i2 + ν + 1)1/2

2πR

(
G

ρ∗

)1/2

4.
In-plane bending

i(i2 − 1)

2πR2(i2 + 1)1/2

(
E I

ρ

)1/2

i = 1, 2, 3, . . .

5.
Out-of-plane flexure for
general cross sections

i(i2 − 1)

2πR2

[
E Iz

ρ(i2 + E Iz/G J )

]1/2

i = 1, 2, 3, . . .

6.
Out-of-plane flexure for
circular cross sections

i(i2 − 1)

2πR2(i2 + 1+ ν)1/2
(

E I

ρ

)1/2

i = 1, 2, 3, . . .

aSee Ref. [16.11] for mode shapes.
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TABLE 16-10 NATURAL FREQUENCIES OF SOME SIMPLE STRUCTURES CONTAINING CURVED
BARSa

Notation
E = modulus of elasticity
G = shear modulus of elasticity
J = torsional constant

I, Iz = moments of inertia about y and z axes
Ip = polar moment of inertia
ρ = mass per unit length
γ = �/R
� = length of straight members
R = radius of curved segment

Boundary conditions at points A and B:
P–P: pinned–pinned
C–P: clamped–pinned
C–C: clamped–clamped

Natural frequencies fi (Hz):

In-plane motion: fi = λi

2πR2

(
E I

ρ

)1/2

Out-of-plane motion: fi = λi

2πR2

(
E Iz

ρ

)1/2

λi are defined below.

Case Parameters λi

In-Plane Motion

1. P–P λ1 = 23.0187− 27.835γ + 77.106γ 2 − 127.155γ 3 + 92.67γ 4 − 30.475γ 5 + 3.702γ 6

λ2 =
{

43.9286− 37.202γ + 74.1072γ 2 − 83.33γ 3 0 ≤ γ < 0.8

93.0596− 175.348γ + 142.188γ 2 − 55.082γ 3 + 8.286γ 4 0.8 ≤ γ ≤ 2.0

C–P λ1 = 23.017− 29.28γ + 86.0γ 2 − 131.486γ 3 + 84.51γ 4 − 22.89γ 5 + 1.98γ 6

λ2 =
{

43.957− 37.32γ + 85.71γ 2 − 93.75γ 3 0 ≤ γ < 0.8

54.13− 58.31γ + 23.8γ 2 − 3.47γ 3 0.8 ≤ γ ≤ 2.0

C–C λ1 = 23.013− 21.315γ + 47.424γ 2 − 58.644γ 3 + 28.523γ 4 − 4.758γ 5

λ2 =
{

44.0286− 33.4524γ + 80.3572γ 2 − 83.3γ 3 0 ≤ γ < 0.8

80.369− 99.1865γ + 44.643γ 2 − 6.94γ 3 0.8 ≤ γ ≤ 2.0
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TABLE 16-10 (continued) NATURAL FREQUENCIES OF SOME SIMPLE STRUCTURES CONTAINING CURVED BARSa

Out-of-Plane Motion

P–P λ1 = 9.5367− 8.327γ + 8.426γ 2 − 5.287γ 3 + 1.138γ 4

λ2 = 27.0483− 32.5γ + 109.85γ 2 − 212.817γ 3 + 180.284γ 4 − 69.854γ 5 + 10.244γ 6

C–P λ1 = 9.5− 8.736γ + 16.35γ 2 − 23.57γ 3 + 18.58γ 4 − 7.46γ 5 + 1.18γ 6

λ2 = 27.032− 29.7γ + 101.29γ 2 − 191.78γ 3 + 156.256γ 4 − 57.769γ 5 + 8.0423γ 6

C–C λ1 = 9.50375− 7.24γ + 15.447γ 2 − 29.65γ 3 + 29.4γ 4 − 13.67γ 5 + 2.3616γ 6

λ2 = 27.05− 21.782γ + 54.744γ 2 − 77.758γ 3 + 41.8283γ 4 − 7.64γ 5

In-Plane Motion

2. P–P λ1 = 4.5− 5.1125γ + 13.75γ 2 − 17.74γ 3 + 9.7656γ 4 − 1.912γ 5

λ2 =
{

17.8− 6.67γ + 10.3125γ 2 − 9.1146γ 3 0 ≤ γ < 1.2

34.4− 29.875γ + 7.1875γ 2 1.2 ≤ γ ≤ 2.0

C–P λ1 = 4.5− 5.375γ + 15.078γ 2 − 19.954γ 3 + 11.23γ 4 − 2.238γ 5

λ2 =
{

17.8− 7.417γ + 12.8125γ 2 − 10.677γ 3 0 ≤ γ < 1.2

28.85− 22.625γ + 5.0γ 2 1.2 ≤ γ ≤ 2.0

C–C λ1 = 4.5− 5.4875γ + 15.625γ 2 − 20.8γ 3 − 11.72γ 4 − 2.319γ 5

λ2 =
{

17.8− 6.417γ + 10.31γ 2 − 7.552γ 3 0 ≤ γ < 1.2

36.65− 27.825γ + 6.0γ 2 1.2 ≤ γ ≤ 2.0
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Out-of-Plane Motion

P–P λ1 = 5.81− 1.605γ + 0.0217γ 2 + 0.5136γ 3 − 0.244γ 4

λ2 = 9.33− 2.936γ − 0.625γ 2 + 4.65γ 3 − 4.49γ 4 + 1.1556γ 5

C–P λ1 = 5.784− 1.727γ + 0.633γ 2 − 0.2662γ 3

λ2 = 9.34− 4.094γ + 6.625γ 2 − 5.9γ 3 + 1.49γ 4

C–C λ1 = 5.8− 1.3664γ − 0.2973γ 2 + 0.7849γ 3 − 0.2848γ 4

λ2 = 9.3366− 3.6γ + 4.8459γ 2 − 3.4469γ 3 + 0.675γ 4

aBased on the results of Ref. [16.12], with permission.
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TABLE 16-11 OUT-OF-PLANE RESPONSE OF UNIFORM CIRCULAR BARS
Notation

The boundary conditions are clamped-free.
R = radius of arch
E = modulus of elasticity
G = shear modulus of elasticity
J = torsional constant
Iz = moment of inertia about z axis
λ = E Iz/G J

v, φ, θz = deflection, angle of rotation, and
slope at free end of bar

Mz, T = internal bending and twisting
moments

Wy, T1,Cz = concentrated applied force,
torque, and moment

Internal Moments Responses at Free End

Case Mz T v φ θz

1. −Wy R sinα Wy R(1− cosα) − Wy R3

E Iz

(
1+ 3λ

2
ψ

+ λ− 1

4
sin 2ψ − 2λ sinψ

)
Wy R2

E Iz

[
λ− 1

4
sin 2ψ

+ λ+ 1

2
ψ − λ sinψ

]
− Wy R2

E Iz

[
λ− 1

2
sin2 ψ

+ λ(1− cosψ)

]

2.
T1 sinα T1 cosα

T1 R2

E Iz

(
λ− 1

4
sin 2ψ

+ λ+ 1

2
ψ − λ sinψ

)
T1 R

E Iz

(
1+ λ

2
ψ

+ λ− 1

4
sin 2ψ

)
−T1 R

E Iz

λ− 1

2
sin2 ψ
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3.
Cz cosα −Cz sinα

Cz R2

E Iz

[
λ− 1

2
sin2 ψ

+ λ(1− cosψ)

]
−Cz R

E Iz

λ− 1

2
sin2ψ

Cz

E Iz

(
λ+ 1

2
ψ− λ− 1

4
sin 2ψ

)

4.
− py R2

× (1− cosα)
py R2(α− sinα) − py R4

E Iz

[
(1− cosψ)2

+ λ(ψ − sinψ)2
] − py R3

E Iz×[(λ+ 1)(1− cosψ)

− γ − 1

4
(1− cos 2ψ)

−λψ sinψ]

− py R3

E Iz

[
(λ+ 1)

(
sinψ − ψ

2

)

+ λ− 1

4
sin 2ψ − λψ cosψ

]
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TABLE 16-12 PART A: STATIC RESPONSE OF A CIRCULAR BEAM UNDER
OUT-OF-PLANE LOADING: GENERAL RESPONSE EXPRESSIONS

Notation

E = modulus of elasticity
G = shear modulus of

elasticity
R = radius of arch
J = torsional constant
Iz = moment of inertia

about z axis

λ1 = 1

G J
+ 1

E Iz

λ2 = 1
2 (sinα − α cosα)

λ3 = 1
2 (2− 2 cosα − α sinα)

λ4 = 1
2 (2α + α cosα − 3 sinα)

λ5 = 1
2 (α cosα + sinα)

λ6 = 1
2 (2− 2 cosα − α sinα)

λ7 = 1
2 (2α + α cosα − 3 sinα)

λ8 = 2 sinα − α cosα − α
Response

1. Angle of twist: φ = φ0 cosα + θz0 sinα − Vy0λ1 R2λ2 + Mz0 0.5λ1 Rα sinα

+ T0

(
R

G J
λ5 − R

E Iz
λ2

)
+ Fφ

2. Deflection: v = −φ0 R(cosα − 1)+ v0 + θz0 R sinα

+ Vy0

(
R3

G J
λ4 − R3

E Iz
λ2

)

+Mz0

(
R2α

2E Iz
sinα − R2

G J
λ3

)

− T0λ1 R2λ2 + Fv

3. Slope: θz = −φ0 sinα + θz0 cosα + Vz0

(
R2

G J
λ3 − R2α

2E Iz
sinα

)

+Mz0

(
R

E Iz
λ5 − R

G J
λ2

)
− T00.5λ1 Rα sinα + Fθz

4. Shear force: Vy = Vy0 + FVy

5. Bending moment: Mz = −Vy0 R sinα + Mz0 cosα − T0 sinα + FMz

6. Torque: T = Vy0(cosα − 1)+ Mz0 sinα + T0 cosα + FT

Loading functions Fφ , Fv , Fθz , FVy , FMz , and FT are defined in part B for a variety of
applied loads.

To use these formulas, substitute the loading functions into the formulas above and
calculate the initial parameters based on the boundary conditions in part C. Use the method-
ology of Appendix III.
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TABLE 16-12 PART B: STATIC RESPONSE OF CIRCULAR BEAMS UNDER OUT-OF-PLANE LOADING: LOADING
FUNCTIONS

<αn sinα> =




0 α < α1

(α − α1)
n sin(α − α1) α1 ≤ α < α2

(α2 − α1)
n sin(α2 − α1) α2 ≤ α

<αn cosα> =




0 α < α1

(α − α1)
n cos(α − α1) α1 ≤ α < α2

(α2 − α1)
n cos(α2 − α1) α2 ≤ α

<α − α1>
0 =

{
0 α < α1

1 α ≥ α1
<α − α1> =

{
0 α < α1

(α − α1) α ≥ α1

<αn> =




0 α < α1

(α − α1)
n α1 ≤ α < α2

(α2 − α1)
n α2 ≤ α

n = 0, 1

Concentrated Forces and Moments

Concentrated Vertical Load Concentrated Torque Concentrated Bending Moment

Fφ
Wyλ1 R2

2
[sin <α − α1> − <α − α1> cos(α − α1)] − T1 R

2

{(
1

G J
− 1

E Iz

)
sin <α − α1>

+ λ1[<α − α1> cos(α − α1)]
}

− 1
2λ1Cz R <α − α1> sin(α − α1)
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TABLE 16-12 (continued) PART B: STATIC RESPONSE OF CIRCULAR BEAMS UNDER OUT-OF-PLANE LOADING: LOADING FUNCTIONS

Concentrated Forces and Moments

Concentrated Vertical Load Concentrated Torque Concentrated Bending Moment

Fv − Wy R3

2

{
1

G J
[2 <α − α1>

+ <α − α1> cos(α − α1)− 3 sin <α − α1>]

− 1

E Iz
[sin <α − α1> − <α − α1> cos(α − α1)]

}

1
2 T1λ1 R2[sin <α − α1>

− <α − α1> cos(α − α1)]
−Cz R2

{
1

2E Iz
sin <α − α1>

+ 1

G J

[
<α − α1>

0 − <α − α1>
0 cos(α − α1)

− 1
2 <α − α1> sin(α − α1)

]}

Fθz

Wy R2

2

{
1

E Iz
<α − α1> sin(α − α1)

− 1

G J

[
2 <α − α1>

0 −2 <α − α1>
0 cos(α − α1)

− <α − α1> sin(α − α1)
]}

1
2 T1λ1 R <α − α1> sin(α − α1) −Cz R

{
1

E Iz
[<α − α1> cos(α − α1)

+ sin <α − α1>] − 1

2G J
[sin <α − α1>

− <α − α1> cos(α − α1)]
}

FVy −Wy 0 0

FMz Wy R sin <α − α1> T1 sin <α − α1> −Cz <α − α1>
0 cos(α − α1)

FT Wy R(<α − α1>
0 cos(α − α1)− <α − α1>

0) −T1 <α − α1>
0 cos(α − α1) −Cz sin <α − α1>

Distributed Forces and Moments

For distributed forces and moments: zi = ui f, where zi = [Fφ Fν Fθz FVy FMz FT ]T , f = [ fφ fν fθz fVy fMz fT ]T ,
and ui is the upper left 6 × 6 submatrix of the extended transfer matrix for massless circular bars of Table 16-13, part B, with ψ = α.
The elements of f are given below.
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Uniformly Distributed Transverse Force Uniformly Distributed Moment Uniformly Distributed Torque

fφ − py1 R3

2
λ1(<α − α1>

0 −2 <cosα>

− <α sinα>)

−cz1 R2

2
λ1(<sinα> − <α cos α>) − mx1 R2

2

[
λ1(<α − α1>

0 − <α sinα>

− <cosα>)+
(

1

G J
− 1

E Iz

)
<cosα>

]

fv
py1 R4

2

[
λ1(<α sinα> + <cosα> − <α − α1>

0)

−
(

1

E Iz
+ 3

G J

)
<cos α> − 2

G J
<α2>

]
− cz1 R3

2

[
λ1(<sinα>

− <α cosα>)− 2

G J
(<α>

− <sinα>)

]

1
2 mx1λ1 R3(<α sinα> +2 <cosα>)

− <α − α1>
0)

fθz − py1 R3

2

[
λ1(<sinα> − <α cosα>)

− 2

G J
(<α> − <sinα>)

]
cz1 R3

2

[
λ1(<α sinα> + <cosα>

− <α − α1>
0)−

(
1

E Iz

− 1

G J

)
<cos α>

]

1
2 mx1λ1 R2(<sinα> − <α cosα>)

fVy −py1 R <α> 0 0

fMz py1 R2 <cosα> −Rcz1 <sinα> −mx1 R <cosα>

fT py1 R2(<α> − <sinα>) −Rcz1 <cosα> −mx1 R <sinα>
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TABLE 16-12 PART C: STATIC RESPONSE
OF CIRCULAR BEAMS UNDER
OUT-OF-PLANE LOADING: OUT-OF-PLANE
BOUNDARY CONDITIONS
Case Boundary Conditions

1.
Clamped end

φ = v = θz = 0

2.
Free end

Mz = Vy = T = 0

3.
Tangentially pinned–free
end

θz = Vy = T = 0

4.
Tangentially pinned–fixed
end

v = θz = T = 0

870 TABLE 16-12 Part C: Out-of-Plane Boundary Conditions



TABLE 16-12 (continued) PART C: STATIC RESPONSE OF
CIRCULAR BEAMS UNDER OUT-OF-PLANE LOADING:
OUT-OF-PLANE BOUNDARY CONDITIONS

Case Boundary Conditions

5.
Radially pinned–free end

Mz = φ = Vy = 0

6.
Radially pinned–fixed end

Mz = φ = v = 0

7.
Free–fixed end

T = Mz = v = 0

8.
Clamped–free end

φ = θz = Vy = 0

TABLE 16-12 Part C: Out-of-Plane Boundary Conditions 871



TABLE 16-13 PART A: TRANSFER MATRICES FOR CIRCULAR SEGMENTS: IN-PLANE LOADING
Notation

Bending and Extension

R = radius of centroidal line of bar
I ∗ = moment of inertia modified for

curvature of bar,
∫

A[z2/(1− z/R)] dA
E = modulus of elasticity
ρ = mass per unit length
ω = natural frequency

px , pz = distributed forces per unit length
m = distributed moment per unit length

u, w, θ, V,M, P = extension, deflection, slope,
shear force, bending moment, and axial force

Definitions for λi :
λ1 = 1

G J
+ 1

E Iz

λ2 = 1
2 (sinψ − ψ cosψ)

λ3 = 1
2 (2− 2 cosψ − ψ cosψ)

λ4 = 1
2 (2ψ + ψ cosψ − 3 sinψ)

λ5 = 1
2 (ψ cosψ + sinψ)

λ6 = 1
2 (2− 2 cosψ − ψ sinψ)

λ7 = 1
2 (2ψ + ψ cosψ − 3 sinψ)

λ8 = 2 sinψ − ψ cosψ − ψ
State variables: z = [u w θ V M P 1]T

Transfer matrix: Ui =




Uuu Uuw Uuθ UuV UuM Uu P Fu

Uwu Uww Uwθ UwV UwM UwP Fw
Uθu Uθw Uθθ UθV UθM Uθ P Fθ
UV u UVw UV θ UV V UV M UV P FV

UMu UMw UMθ UMV UM M UM P FM

UPu UPw UPθ UPV UP M UP P FP

0 0 0 0 0 0 1




Loading vector: zi = [Fu Fw Fθ FV FM FP
]T fi = [ fu fw fθ fV fM fP

]T
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Massless Circular Bars

Transfer matrix:

Ui =




cosψ sinψ −R(1− cosψ) UuV − R2

E I ∗
(ψ − sinψ)

R

E A
λ5 + R3

E I ∗
λ4 Fu

− sinψ cosψ −R sinψ

(
1

E A
+ R2

E I ∗

)
Rλ2 − R2

E I ∗
(1− cosψ) −UwP Fw

0 0 1
R2

E I ∗
(1− cosψ)

R

E I ∗
ψ − R2

E I ∗
(ψ − sinψ) Fθ

0 0 0 cosψ 0 − sinψ FV

0 0 0 R sinψ 1 −R(1− cosψ) FM

0 0 0 sinψ 0 cosψ FP

0 0 0 0 0 0 1




UuV = UwP = R

2AE
ψ sinψ − R3

E I ∗2
λ3

Loading vector: zi = ui f
ui is the upper left 6× 6 submatrix of Ui .
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TABLE 16-13 (continued) PART A: TRANSFER MATRICES FOR CIRCULAR SEGMENTS: IN-PLANE LOADING

fu = −R2
∫ ψ

0

[
px

(
1

E A
λ5 + 1

E I ∗
R2λ4

)
+ m

R

E I ∗
(β − sinβ)− pz

(
1

2

1

E A
β sinβ − 1

E I ∗
R2λ3

)]
dβ

fw = R2
∫ ψ

0

[
px

(
1

2

β

E A
sinβ − 1

E I ∗ R2λ3

)
− m

1

E I ∗ R(1− cosβ)− pz

(
β

E A
+ 1

E I ∗ R2
)
λ2

]
dβ

fθ = R2
∫ ψ

0

[
px

1

E I ∗
R(β − sinβ)+ m

1

E I ∗
β + pz

1

E I ∗
R(1− cosβ)

]
dβ

fV = R
∫ ψ

0 (px sinβ + pz cosβ) dβ

fM = R
∫ ψ

0 [−px R(1− cosβ)− m − pz R sinβ] dβ
fP = R

∫ ψ
0 (−px cosβ + pz sinβ) dβ

Circular Bars with Mass

Ui =




cosψ sinψ R(cosψ − 1) 0 0 0 Fu

− sinψ cosψ −R sinψ 0 0 0 Fw

0 0 1 0 0 0 Fθ

ρω2 Rψ sinψ −ρω2 Rψ cosψ ρω2 R2(ψ sinψ + cosψ − 1) cosψ 0 − sinψ FV

ρω2 R2(sinψ − ψ cosψ) −ρω2 R2(ψ sinψ + cosψ − 1) −ρω2 Rr2
yψ + ρω2 R3λ8 R sinψ 1 R(cosψ − 1) FM

−ρω2 Rψ cosψ −ρω2 Rψ sinψ ρω2 R2(sinψ − ψ cosψ) sinψ 0 cosψ FP

0 0 0 0 0 0 1




The form of the loading vector is the same as that given above for a massless bar (i.e., z̄i = ui f, where ui is the upper left 6×6 submatrix
of this Ui ).
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TABLE 16-13 PART B: TRANSFER MATRICES FOR CIRCULAR SEGMENTS: OUT-OF-PLANE LOADING
Notation

Bending and Torsion

Iz = moment of inertia about z axis
py = distributed force per unit length

mx ,mz = distributed moments per unit length
G = shear modulus of elasticity
J = torsional constant

φ, v, θz, Vy,Mz, T = angle of twist, deflection, slope, shear force,
bending moment, and torque
See Table 16-13, part A, for further notation.

State variables: z = [φ v θz Vy Mz T 1
]T

Transfer matrix:

Ui =




Uφφ Uφv Uφθz UφVy UφMz UφT Fφ
Uvφ Uvv Uvθz UvVy UvMz UvT Fv
Uθzφ Uθzv Uθzθz Uθz Vy Uθz Mz Uθz T Fθz

UVyφ UVyv UVyθz UVy Vy UVy Mz UVy T FVy

UMzφ UMzv UMzθz UMz Vy UMz Mz UMz T FMz

UTφ UT v UT θz UT Vy UT Mz UT T FT
0 0 0 0 0 0 1




Loading vector:

zi = [Fφ Fv Fθz FVy FMz FT
]T

fi = [ fφ fv fθz fVy fMz fT
]T
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TABLE 16-13 (continued) PART B: TRANSFER MATRICES FOR CIRCULAR SEGMENTS: OUT-OF-PLANE LOADING

Massless Circular Bars

Transfer matrix:

Ui =




cosψ 0 sinψ −λ1 R2λ2
1
2λ1 Rψ sinψ

R

G J
λ5 − R

E Iz
λ2 Fφ

R(cosψ − 1) 1 R sinψ − R3

E Iz
λ2 + R3

G J
λ4

R2ψ

2E Iz
sinψ − R3

G J
λ3 −λ1 R2λ2 Fv

− sinψ 0 cosψ
R2

G J
λ3 − R2ψ

2E Iz
sinψ

R

E Iz
λ5 − R

G J
λ2 − 1

2λ1 Rψ sinψ Fθz

0 0 0 1 0 0 FVy

0 0 0 −R sinψ cosψ − sinψ FMz

0 0 0 R(cosψ − 1) sinψ cosψ FT

0 0 0 0 0 0 1




Loading vector: zi = ui f
ui is the upper left 6× 6 submatrix of Ui .

fφ = R2
∫ ψ

0

[
−pyλ1 Rλ2 − λ1

2
mzβ sinβ + mx

(
1

G J
λ5 − 1

E Iz
λ2

)]
dβ

fv = R3
∫ ψ

0

[
−py R

(
1

E Iz
λ2 − 1

G J
λ4

)
− mz

(
1

2E Iz
β sinβ − 1

G J
λ3

)
− mxλ1λ2

]
dβ

fθz = R2
∫ ψ

0

[
−py R

(
1

G J
λ3 − 1

2E Iz
β sinβ

)
+ mz

(
1

E Iz
λ5 − 1

G J
λ2

)
+ 1

2 mxλ1β sinβ
]

dβ

fVy = R
∫ ψ

0 py dβ

fMz = R
∫ ψ

0 (−py R sinβ − mz cosβ − mx sinβ) dβ
fT = −R

∫ ψ
0 [py R(cosβ − 1)− mz sinβ + mz cosβ] dβ
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Circular Bars with Mass

Ui =




cosψ 0 sinψ 0 0 0 Fφ

R(cosψ − 1) 1 R cosψ 0 0 0 Fv

− sinψ 0 cosψ 0 0 0 Fθz

ρω2 R2(ψ − sinψ) −ρω2 Rψ −ρω2 R2(1− cosψ) 1 0 0 FVy

UMzφ ρω2 R2(1− cosψ) UMzθz −R sinψ cosψ − sinψ FMz

UTφ ρω2 R2(ψ − sinψ) UT θz R(cosψ − 1) sinψ cosψ FT

0 0 0 0 0 0 1




UMzφ = −ρω2 R3λ6 + ρω2 R(r2
p + r2

z )
1
2ψ sinψ

UTφ = −ρω2 Rr2
pλ5 + ρω2 Rr2

z λ2 − ρω2 R3λ7

UMzθz = −ρω2 Rr2
z λ5 + ρω2 R(r2

p + R2)λ2
UT θz = −UMzφ

The form of the loading vector is the same as that given above for the massless bar (i.e., zi = ui f, where ui is the upper left 6 × 6
submatrix of this Ui ).
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TABLE 16-14 PART A: STIFFNESS MATRICES FOR CIRCULAR
SEGMENTS: IN-PLANE LOADING

Notation
R = radius of centroidal line of bar
E = modulus of elasticity
G = shear modulus of elasticity
A = area of cross section

As = equivalent shear area
I = moment of inertia about y axis
β = 1

2ψ

x, y, z = natural (local) curved element
coordinates

x̄, ȳ, z̄ = generalized element coordinates
X,Y, Z = global coordinates
Fx̄ , Fz̄ = forces on ends of element

in x̄, z̄ directions
ux̄ , uz̄ = displacement on ends

of element in x̄, z̄ directions
θ,M = rotation and bending moment

about ȳ axis

Definitions for Ci :

C1 = E A
R − rn

rn
C2 = rn

G As

C3 = E A

rn
C4 = rnC3 − C1(1− C2C3)

−rnC3 − C1(1+ C2C3)

C5 = 1− C4 − C2C3(1+ C4) C6 = C1C5

C7 = C3(1+ C4) C8 =
∫ r0

ri
r d A

C9 =
∫ r0

ri
(r0 − r)r d A C10 =

∫ r0
ri
(rn − r)2r d A

C11 = 2
C9

C10
− 2C8 C12 = 2C4C8 + C5C9

rn

C13 = 2C4C8 − 2
C5C9

rn
C14 = C2

4C8 + C2
5C10

r2
n

C15 = C2
4C8 − C2

5C10

r2
n

For thin beams without shear deformation effects and rotary inertia
C1 = E I/R2 C2 = C9 = C10 = 0 rn = R
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TABLE 16-14 (continued) PART A: STIFFNESS MATRICES FOR CIRCULAR SEGMENTS: IN-PLANE
LOADING

Nodal variables:

ṽi = [uxa uza θa uxb uzb θb
]T p̃i = [Fxa Fza Ma Fxb Fzb Mb

]T
p̃i = k̃i ṽi

Element stiffness matrices ki in the global coordinate system are obtained using
ki = TiT k̃i Ti , where Ti is the transformation matrix of Table 13-14 for in-plane loading.

Stiffness matrices:

k̃i = QS

Q =




0 0 0 0 −C7 0
0 0 0 0 0 −C7

0 −C1 0 0 −C6 cosβ C6 sinβ
0 0 0 0 C7 0
0 0 0 0 0 C7

0 C1 0 0 C6 cosβ C6 sinβ




S =




0 −(C5 cosβ)/�2 −rn(C4 cosβ sinβ − β)/�2

− (C5 sinβ)/�1 0 rn(C4 cosβ sinβ + β)/�1

1
2 −(C4 sin2 β − C5 cos2 β)/�2 rn(C4 sinβ − β cos β)/�2

[C5 sinβ(β sinβ + cosβ)
−βC4 cos2 β]/�1

− 1
2

− rn[βC4 cosβ
+β(β sinβ + cosβ)]/�1

β

�1
0 −rn(sinβ − β cosβ)/�1

0
1

�2
−(rn sinβ)/�2

0 (C5 cosβ)/�2 −rn(C4 sinβ cos β − β)/�2

(C5 sinβ)/�1 0 −rn(C4 cosβ sinβ + β)/�1

1
2 −(C5 cos2 β − C4 sin2 β)/�2 rn(C4 sinβ − β cosβ)/�2

−[C5 sinβ(sinβ + cosβ)
−βC4 cos2 β]/�1

− 1
2

rn[βC4 cosβ
+β(β sinβ + cos β)]/�1

− β

�1
0 rn(sinβ − β cosβ)/�1

0 − 1

�2
−(rn sinβ)/�2




�1 = 2C5 sin2 β − 2β(C4 + C5) cosβ sinβ − 2β2

�2 = 2(C4 + C5) cosβ sinβ − 2β
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TABLE 16-14 PART B: STIFFNESS MATRICES FOR CIRCULAR
SEGMENTS: OUT-OF-PLANE LOADING

Notation
J = torsional constant
Iz = moment of inertia

about z axis
Ip = polar moment of inertia

about x axis
β = 1

2ψ

x, y, z = natural (local) curved element
coordinates

x, y, z = generalized element coordinates
X,Y, Z = global coordinates
uy, Fy = displacements, forces on ends

of element in y direction
θx ,Mx = rotation and moment

about x axis
θz,Mz = rotation and moment

about z axis

See Table 16-14, part A, for further notation.
Definitions for Ci :

C1 = 1/G As C2 = G Ip/R2

C3 = E Iz/R2 C4 = 2RC2C3/(C2 + C3)

C5 = 2C3/(C2 + C3) C6 = (C2 − C3)/(C2 + C3)

C7 = Iz/A C8 = Ip/A

C9 = R2 + C7 + C8 C10 = R2 − C7 + C8

C11 = −C10 C12 = C7 + C5C8

C13 = C7 − C5C8 C14 = C7 + C2
5C8

C15 = C7 − C2
5C8

Nodal variables:
ṽi = [uya θxa θza uyb θxb θzb

]T
p̃i = [Fya Mxa Mza Fyb Mxb Mzb

]T p̃i = k̃i ṽi

Element stiffness matrices ki in the global coordinate system are obtained using ki =
TiT k̃i Ti , where Ti is the transformation matrix of Table 13-14 for out-of-plane loading.

880 TABLE 16-14 Part B: Out-of-Plane Loading



TABLE 16-14 (continued) PART B: STIFFNESS MATRICES FOR CIRCULAR SEGMENTS:
OUT-OF-PLANE LOADING

Stiffness matrices:

k̃i = QS

Q =




0 0 0 0 −C2 0
0 0 0 −C4 RC2 cosβ 0
0 0 0 0 −RC2 sinβ −C4

0 0 0 0 C2 0
0 0 0 C4 −RC2 cosβ 0
0 0 0 0 −RC2 sinβ C4




s =




1

2R
− cosβ

2
(β sinβ − C6 cos3 β + cosβ)/�1

0 1
2 (C6 cos2 β − 1)/�1

[sinβ(1− C6)

+β cos β]/(R�2)

−β[(1+ C1C2)(C6 sin2 β − 1)
+ cos2 β]/�2

−{[β(C1C2 + 1)C6 − β] cos β sinβ
−β2(C1C2 + 1)}/�2

−(sinβ)/R�2 [cos β sinβ − (C1C2 + 1)β]/�2 −(sin2 β)/�2

(C6 cos β sinβ
−β)/(R�2)

[sinβ(C6 sin2 β − 1)
+β cos β]/�2

(C6 cos β sin2 β − β) sinβ/�2

0 0 − 1

�1

1

2R
− cos β

2
−(β sinβ − C6 cos3 β + cos β)/�1

0 1
2 −(C6 cos2 β − 1)/�1

[sinβ(C6 − 1)
− β cos β]/(R�2)

β[(C1C2 + 1)C6 sin2 β

+ cos2 β − C1C2 − 1]/�2

−[β(C1C2 + 1)C6 sinβ cos β
− β cos β sinβ
− β(C1C2 + 1)]/�2

sinβ/R�2 −[cosβ sinβ + β(1+ C1C2)]/�2 − sin2 β/�2

− (C6 cos β sinβ
−β)/(R�2)

−[sinβ(C6 sin2 β − 1)
+β cosβ]/�2

[(C6 cos β sinβ − β) sinβ]/�2

0 0
1

�1




�1 = 2[C6 cosβ sinβ + β]
�2 = −2[sin2 β(1− C6)− (1+ C1C2)β(2β − C6 sin2 β)]

TABLE 16-14 Part B: Out-of-Plane Loading 881



TABLE 16-15 PART A: IN-PLANE DEFORMATION: POINT MATRICES
Notation

ρ = mass per unit length
ry = radius of gyration about y axis
ai = location of point occurrence

I = unit diagonal matrix
ω = natural frequency
z = state vector = [u w θ V M P 1]T

See part B for further notation.

Case Transfer Matrix Stiffness and Mass Matrices

1.
Concentrated applied forces

Ui =




03×1
−W

I6×6 C
−Pi

01×6 1




Traditionally, these forces
are taken as node forces.

2.
Extension spring ku , rotary spring
k∗1 , and transverse elastic support
k1. See part B of this table and
Table 11-20. Ui =




0 0 1/ku

I3×3 1/k1 0 0

0 1/k∗1 0 06×1

03×3 I3×3

01×6 1




[
Pa
Va
Ma

]
= kaa

[
ua
wa
θa

]

kaa =
[

ku 0 0
0 k1 0
0 0 k∗1

]
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3.
Concentrated mass with different
supports

Representing various supports
shown in part B.
mi = �aρ
IT i = �aρr2

y

Ui =




I3×3 03×3

0 kVw − miω
2 0 06×1

kMu 0 kMθ − IT iω
2 I3×3

kPu − miω
2 0 kPθ

01×6 1




The spring constants are defined in part B.

kaa =
[

kPu 0 kPθ
0 kVw 0

kMu 0 kMθ

]

maa =
[

mi 0 0
0 mi 0
0 0 IT i

]
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TABLE 16-15 PART B: IN-PLANE DEFORMATION: SPRING CONSTANTSa

kMu 0 0 0 −6E I

�2
b

−3E I

�2
b

0 0

kPu 0 0 ku
12E I

�3
b

3E I

�3
b

3E I

�3
b

0

kV u k1 0 0
E A

�b

E A

�b

E A

�b

E A

�b

kMθ 0 k∗1 0
4E I

�b

3E I

�b
0 0

kPθ 0 0 0 −6E I

�2
b

−3E I

�2
b

0 0

aUnits: k1, ku are in force/length; k∗1 is in force − length/rad. Circles in figures designate flexurally pinned ends.
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TABLE 16-16 PART A: OUT-OF-PLANE DEFORMATION: POINT MATRICES
Notation

ρ = mass per unit length
rp = polar radius of gyration about x axis
rz = radius of gyration about z axis
ai = location of occurrence

I = unit diagonal matrix
mi = �a ρ
Ipi = �a ρr2

p

Izi = �a ρr2
z

z = state vector = [φ v θz Vy Mz T 1
]T

See part B for further notation.

Case Transfer Matrices Stiffness and Mass Matrices

1.
Concentrated applied forces

Ui =




03×1

I6×6
−Wy

Cz

−T1

01×6 1




Traditionally, these forces are taken as node forces.

2.
Torsional spring kφ , rotary
spring k∗1 and transverse
elastic support k1; see part B. Ui =




0 0 1/kφ

I6×6 1/k1 0 0
06×1

0 1/k∗1 0

03×3 I3×3

01×6 1




[
Ta
Vya
Mza

]
= kaa

[
φa
va
θza

]

kaa =
[

kφ 0 0
0 k1 0
0 0 k∗1

]
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TABLE 16-16 (continued) PART A: OUT-OF-PLANE DEFORMATION: POINT MATRICES

3.
Concentrated mass with
flexible supports

mi = �a ρ
Ipi = �a ρr2

p

Ipi = (Ipi )c.g. of mi + mi e2

c.g. = center of gravity

Ui =




I3×3 03×3

kVyφ − miω
2e kV yv − miω

2 0 06×1

0 0 kMzθz − IT iω
2 I3×3

kTφ − Ipiω
2 kT v −miω

2e 0

01×6 1




kaa =

 kTφ kT v 0

kVyφ kVyv 0
0 0 kMzθz




maa =

Ip 0 0

0 mi 0
0 0 IT i




The spring constants kTφ, kT v, kVyφ, kVyv, and kMz θz are defined in part B.
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TABLE 16-16 PART B: OUT-OF-PLANE DEFORMATION: SPRING CONSTANTSa

kVyφ 0 0 0 0 0

kTφ 0 kφ 0
4E I

�b

3E I

�b

kVyv k1 0 0
E A

�b

E A

�b

kTv 0 0 0 0 0

kMzθz 0 0 k∗1
4E I

�b

3E I

�b
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TABLE 16-16 (continued) PART B: OUT-OF-PLANE DEFORMATION: SPRING CONSTANTSa

kVyφ 0 0
6E I

�2
b

3E I

�2
b

0

kTφ 0 0
4E I

�b

3E I

�b
0

kVyv
E A

�b

E A

�b

12E I

�3
b

3E I

�3
b

0

kTv 0 0
6E I

�2
b

3E I

�2
b

0

kMzθz 0 0
G J

�b

G J

�b

G J

�b

aUnits: k1 is in force/length; k∗1 and kφ are in force − length/rad. Circles on figures designate the flexural pinned end.
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TABLE 16-17 CONSISTENT MASS MATRICES FOR CIRCULAR
SEGMENTS

Notation
ρ∗ = mass per unit volume ρ = mass per unit length
β = 1

2ψ

Element variables and the sign convention are the same as those in Table 16-14. S and
Ci are shown in Table 16-14.

H is symmetric and the elements not shown in this table are zero.

In-Plane Motion, mi = ρ∗ST HS

H11 = 2β

(
C8 + C10

r2
n
− 2C9

rn

)

H31 = −C11 sinβ

H61 = 2 sinβ
(

C8 + C5C10

r2
n
− C5C9

rn
− C9

rn

)
+ C11β cosβ

H22 = 2C8β + 2
3β

3
(

C8 + C10

r2
n
− 2C9

rn

)

H42 = 2 sinβ

(
C8 − C9

rn

)
+ C11β cosβ

H52 = sinβ

(
6C8 + 2C5C10

r2
n
− 4C9

rn
+ C13

)
+ C11β

2 sinβ

+ 2β cosβ

(
C5C9

rn
− C5C10

r2
n
+ 2C9

rn
− 3C8

)

H33 = 2C8β

H63 = βC13

2
− C12 sinβ cosβ

2
H44 = 2C8β

H54 = βC13

2
+ C12 sinβ cosβ

2

H55 = C8
β3

3
+ C14β + C12 sin 2β

4
+ C15 sinβ cosβ − C12β cos 2β

2

H66 = C8
β3

3
+ C14β − C12 sin 2β

4
− C15 sinβ cosβ + C12β cos 2β

2
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TABLE 16-17 (continued) CONSISTENT MASS MATRICES FOR CIRCULAR SEGMENTS

Out-of-Plane Motion, mi = ρRST HS

H11 = R2β

H21 = R2 sinβ

H22 = 1
2 (C9β + C10 sinβ cosβ)

H33 = 1
2 (C9β + C11 sinβ cosβ)

H43 = 1
8 (C10 sin 2β + 2C11β cos 2β + 4C12β + 4C13 sinβ cosβ)

H44 = 1
24 [4C9β

3 + 6C10β
2 sin 2β + 12C14β + 12C15 sinβ cosβ

+ 6(C10 + 2C13)β cos 2β + 3(C11 − 2C13) sin 2β]
H53 = R2(1+ C1C2)(sinβ − β cosβ)+ C7 sinβ

H54 = R2(1+ C1C2)(β
2 sinβ + 2β cosβ − 2 sinβ)+ C7β cosβ

H55 = (1+ C1C2)
2β3( 1

3 R2)+ C7β

H61 = R2(sinβ − β cosβ)

H62 = 1
8 C10 sin 2β + 1

4 C11β cos 2β − C12(
1
2β)+ 1

2C13(sinβ cosβ)

H66 = 1
24 [4C9β

3 − 6C10β
2 sin 2β − 12C14β + 12C15 sinβ cosβ

− 6(C10 + 2C13)β cos 2β − 3(C11 − 2C13) sin 2β]

890 TABLE 16-17 Consistent Mass Matrices for Circular Segments
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In this chapter the critical speeds of a rotor and the response of a rotor to unbal-
anced forces are treated. The transient response of the rotor to loadings on the shaft
or through the bearing systems is also considered. The formulas presented are for
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shafts that are modeled primarily using the technical (Euler–Bernoulli) beam theory
of shafts.

17.1 NOTATION

The notation in this chapter conforms to that normally employed in practice by engi-
neers dealing with rotating-shaft systems. It differs somewhat from that used in the
rest of this book. The units for most of the definitions are given in parentheses, using
L for length, F for force, M for mass, and T for time.

A Cross-sectional area (L2)
As Equivalent shear area, = A/αs (L2)

c Coefficient of viscous damping (FT/L)
cc Critical damping coefficient (FT/L)

cyy, cyz, czy, czz Damping coefficients for bearing or seal system (FT/L) (Fig.
17-1)

c∗yy, c∗yz, c∗zy, c∗zz Rotary damping coefficients for bearing or seal system (F LT/rad)
c̄yy, c̄yz, c̄zy, c̄zz Damping coefficients for pedestal of bearing or seal system

(FT/L) (Fig. 17-1)
e Eccentricity arm for offset mass (L)
E Modulus of elasticity of material (F/L2)
gi Gyroscopic matrix for i th element
G Shear modulus of elasticity (F/L2)
I Moment of inertia of cross-sectional area about transverse neu-

tral axes (L4)
Ip Polar mass moment of inertia per unit length of shaft, = ρ∗Ar2

p

(M L); for hollow circular cross section Ip = 1
2ρ
∗A(r2

o + r2
i )

Ipi Polar mass moment of inertia of concentrated mass at station i
(M L2); can be calculated as Ipi = �a ρ∗Ar2

p , where �a is
length of shaft lumped at station i ; formulas for several config-
urations given in Table 12-5; for disk of concentrated mass Mi ,
Ipi = 1

2 Mi (r2
o + r2

i )

IT Transverse or diametrical mass moment of inertia per unit length
of shaft,= ρ∗Ar2 (M L); for hollow circular cross section IT =
1
4ρ
∗A(r2

o + r2
i )

IT i Transverse or diametrical mass moment of inertia of concen-
trated mass at station i (M L2); can be calculated as IT i =
�a ρ∗Ar2, where �a is length of shaft lumped at station
i ; for hollow cylinder of length �a and mass Mi , IT i =
1
4 Mi (r2

o + r2
i ) + 1

12 Mi (�a)2; for disk of concentrated mass
Mi , IT i = 1

4 Mi (r2
o + r2

i )
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ki Stiffness matrix for i th element

kyy, kyz, kzy, kzz Stiffness coefficients for bearing or seal system (F/L) (Fig.
17-1)

k∗yy, k∗yz, k∗zy, k∗zz Rotary stiffness coefficients for bearing system (F L/rad)

k̄yy, k̄yz, k̄zy, k̄zz Stiffness coefficients for pedestal of bearing or seal system
(F/L) (Fig. 17-1)

� Length of element; span of transfer matrix (L)

L Length of shaft (L)

mb Beam mass (shaft mass) (M)

mi Mass matrix for i th element

mi
T Translation mass matrix for i th element

mi
R Rotational mass matrix for i th element

Mi Concentrated mass (M)

My, Mz Bending moment components about y and z axes (F L)

N, Nn Shape functions

py, pz Applied loading intensities in y and z directions (F/L)

P Axial force; plus for compression, minus for tension (F)

r Radius of gyration of cross-sectional area about y or z axis (L)

ri Inner radius of hollow circular cross section (L)

ro Outer radius of hollow circular cross section (L)

rp Polar radius of gyration of cross-sectional area about x axis (L)

t Time (T )

Ui Field transfer matrix of i th element

Ui Point transfer matrix at x = ai

Vy, Vz Shear force components in y and z directions (F)

wx , wy, wz Displacements in x , y, and z directions (L)

wyb, wzb Bearing or seal displacements in y, z directions (L)

xyz Fixed-reference coordinates

XY Z Rotating-reference coordinates

Xηζ Rotating fluted coordinates with η and ζ as principal axes of
inertia of sectional area of fluted shaft

αs Shear correction factor (Table 2-4)

γn Damping exponent of nth mode

ζ Damping ratio for single-degree-of-freedom system, = c/cc

θy, θz Slope components of displacement curves about y and z axes
(rad)

ξηZ Rotating-reference coordinates with ξ and η as principal axes of
inertia of sectional area of radial beam

ρ Mass per unit length, = ρ∗A (M/L)
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ρ∗ Mass per unit volume (M/L3)

φn Mode shapes

ω Whirl speed or natural frequency (rad/T )

ωc Critical speed (rad/T )

ωd Damped critical speed (rad/T )
ωn Natural frequency of nth mode (rad/T )

� Spin or rotational speed (rad/T )

A single overdot refers to the first derivative with respect to
time t .

A double overdot refers to the second derivative with respect to
time t .

A single prime refers to the first derivative with respect to space
coordinate.

A double prime refers to the second derivative with respect to
space coordinate.

17.2 SIGN CONVENTION

Positive displacements, slopes, moments, shear forces, and applied loadings are in-
dicated in Fig. 17-1. As with the notation, the sign convention for rotor systems
conforms to that used in practice. See Fig. II-4.

17.3 BENDING VIBRATION

Whirling of a Single-Mass Rotor

The fundamentals of rotor whirl due to residual rotor unbalance can be character-
ized using the simple rotor shown in Fig. 17-2. This rotor system, referred to as a
Jeffcott rotor, consists of a massless elastic shaft on which a single disk is mounted
at midspan, with both ends simply supported. The rotor mass is concentrated at the
center of gravity G of the disk at a distance e from the geometric center (centroid)
S of the disk. The centerline 0̄0 of the bearings intersects the plane of the disk at 0,
and the shaft center is off by a distance 0S = w.

The equations of motion for the centroid S of the disk in the y and z directions
are

Mi ẅy + cẇy + kwy = Mi e�
2 cos�t (17.1)

Mi ẅz + cẇz + kwz = Mi e�
2 sin�t (17.2)

where Mi is the disk mass, c is the damping coefficient, k is the shaft stiffness at
midspan, and � is the shaft rotational speed. Combine these equations into the single



Figure 17-1: Notation and sign convention: (a) xz plane; (b) xy plane; (c, d) cross-sectional
view; (e) positive forces, moments, and slopes for transfer matrices (sign convention 1; P > 0
for compression, P < 0 for tension); (f ) positive forces, moments, and slopes for stiffness,
mass, and damping matrices (sign convention 2; P > 0 for tension, P < 0 for compression).
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Figure 17-2: Whirling of a simple rotor in two radially rigid bearings.
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equation

Mi ẅ + cẇ + kw = Mi e�
2ei�t (17.3)

where w = wy+ iwz is the whirl radius of the shaft geometric center, i = √−1. The
solution consists of a complementary function (free whirl) and a particular solution
(unbalance whirl). The unbalance whirl has the general form

w = w0ei(�t−φ) (17.4)

where w0 is the whirl radius amplitude and φ is the phase angle between the un-
balance force F = Mi e�2 and the amplitude w0. Substitution of Eq. (17.4) into
Eq. (17.3) leads to the whirl amplitude and phase angle at the disk,

w0 = eη2

[
(1− η2)2 + (2ζη)2

]1/2
(17.5)

φ = tan−1 2ζη

1− η2
(17.6)

where ωc = √k/Mi is the undamped critical speed, η = �/ωc is the speed ratio,
ζ = c/cc is the damping ratio, and cc = 2Miωc = 2

√
k Mi is the critical damping.

The nondimensional whirl amplitude w̄0 is given by

w̄0 = w0

e
= η2

[
(1− η2)2 + (2ζη)2

]1/2
(17.7a)

and the maximum whirl amplitude occurs at

η = 1/
√

1− 2ζ 2 ≈ 1+ ζ 2 (17.7b)

For low damping (ζ < 0.25), the maximum whirl amplitude can be approximated by

w̄0 ≈ 1/2ζ (17.8)

Figure 17-2 shows several whirling configurations, and Fig. 17-3 shows the vari-
ation of whirl amplitude and phase angle with the speed and damping ratio.

The critical speeds ωc for simple rotors with commonly occurring end conditions
are provided in Table 17-1.

Example 17.1 Centrifugal Pump The disk of a single-stage centrifugal pump
weighing 300 N is attached to the center of a 0.1-m-diameter steel shaft of length 1 m
between the bearings. Neglect the effects of damping and find (a) the translational
critical speed of the rotor, (b) the whirl amplitude at 1750 rpm if the eccentricity is
15 µm, and (c) the force transmitted to the bearings at this speed.
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Figure 17-3: Whirl amplitude and phase for a whirling rotor as a function of speed.

Assume that the shaft is simply supported at each end. The solution follows from
the formulas of case 1 of Table 17-1.

(a) The translational critical speed is calculated as follows:

Disk mass: Mi = W/g = 300/9.8 = 30.61 kg

Shaft mass: mb = ρ∗AL = 7850π(0.12/4)1 = 61.65 kg

Critical speed: ωc =
[

48E I

L3(Mi + 0.49mb)

]1/2

= 895.49 rad/s = 8551 rpm

(b) From Eq. (17.7) the whirl amplitude at 1750 rpm is

w0 = eη2

1− η2
= 15× 10−6(1750/8551)2

1− (1750/8551)2
= 0.656× 10−6 m = 0.656 µm

(c) The force transmitted to the two bearings at 1750 rpm is equal to the centrifu-
gal force Mi (w0 + e)�2 acting in an outward direction through G (Fig. 17-2c):

F = Mi (w0 + e)�2 = 30.61(0.656× 10−6 + 1.5× 10−5)(2π · 1750/60)2

= 16.1 N

The critical speeds of vertical shafts having an attached mass at an intermediate
point and various end constraints with consideration of the axial force owing to the
weight of the mass are shown in Table 17-2. Gyroscopic effects of the shaft and the
attached mass are ignored.
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Single-Mass Rotor on Elastic Supports

For a one-mass flexible rotor on two identical anisotropic bearing (Fig. 17-4), the
equations of motion of the mass and bearings are

Mi ẅy + k(wy −wyb) = Mi e�
2 cos�t Mi ẅz + k(wz −wzb)

= Mi e�
2 sin�t (17.9)

k(wyb −wy) = −2Fyk(wzb −wz) = −2Fz (17.10)

where k is the shaft stiffness, Fy and Fz are the reaction forces of the bearings, and
the shaft damping is ignored.

Figure 17-4: Single mass flexible rotor on two identical anisotropic bearings.
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Coupled Systems The bearing coefficients are denoted as

[
Fy

Fz

]
=
[

kyy kyz

kzy kzz

] [
wyb

wzb

]
+
[

cyy cyz

czy czz

] [
ẇyb

ẇzb

]
(17.11)

with ẇyb = dwyb/dt and ẇzb = dwzb/dt .
Substitution of Eq. (17.11) into Eqs. (17.9) and (17.10) leads to the equation of

motion

Mẅ+ Cẇ+Kw = F (17.12)

where

M =




Mi 0 0 0
0 Mi 0 0
0 0 0 0
0 0 0 0


 , C =




0 0 0 0
0 0 0 0
0 0 2cyy 2cyz

0 0 2czy 2czz


 ,

K =




k 0 −k 0
0 k 0 −k
−k 0 k + 2kyy 2kyz

0 −k 2kzy k + 2kzz


 , F = Mi e�

2




cos�t
sin�t

0
0


 ,

w = [wy wz wyb wzb
]T

, ẇ = dw
dt

, ẅ = d2w
dt2

This equation can be solved for the critical speeds or for the response of the rotor
to unbalance forces. For the latter case the solution for the motion of the mass can be
of the form

[
wy(t)

wz(t)

]
=
[
wc

y

wc
z

]
cos�t +

[
ws

y

ws
z

]
sin�t (17.13)

and then

w0(t) = wy(t)+ iwz(t)

= wc
y cos�t +ws

y sin�t + i(wc
z cos�t +ws

z sin�t)

= w+0 ei�t +w−0 e−i�t (17.14)

with

w+0 = 1
2 [(wc

y +ws
z )+ i(wc

z −ws
y)], w−0 = 1

2 [(wc
y − ws

z )+ i(wc
z +ws

y)]

where w+0 is the whirl radius of the forward precession component, which is in the
same direction as the rotation of the rotor, while w−0 is that of the backward preces-
sion component.
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The maximum whirl radius is defined by the major semiaxis of elliptic whirl orbit
of the geometric shaft center,

w0,max = |w+0 | + |w−0 | (17.15)

= 1
2

[√
(wc

y +ws
z )

2 + (wc
z −ws

y)
2 +

√
(wc

y −ws
z )

2 + (wc
z +ws

y)
2
]

Uncoupled Systems Consider the symmetric bearings without cross-coupling
terms. A force balance at the bearings gives

k(wy − wyb) = 2(kbwyb + cbẇyb), k(wz −wzb) = 2(kbwzb + cbẇzb)

(17.16)

where kb = kyy = kzz , cb = cyy = czz . Insert Eq. (17.16) into Eqs. (17.9) and
(17.10):

Mi ẅy + k(wy −wyb) = Mi e�2 cos�t, Mi ẅz + k(wz −wzb) = Mi e�2 sin�t,

k(wy −wyb) = 2(kbwyb + cbẇyb) k(wz − wzb) = 2(kbwzb + cbẇzb)

(17.17a)

Combine these equations as

Mi ẅ + k(w −wb) = Mi e�
2ei�t , k(w −wb) = 2(kbwb + cbẇb) (17.17b)

where w = wy+ iwz and wb = wyb+ iwzb are the whirl radii of the shaft geometric
center and the bearing journal center, respectively.

The solution to Eq. (17.17b) is of the form

w = w̄ei�t , wb = w̄bei�t (17.18)

The equations can be rewritten as

−Mi�
2w̄ + k(w̄ − w̄b) = Mi e�

2 (17.19a)

k(w̄ − w̄b) = 2(kb + i�cb)w̄b (17.19b)

From Eq. (17.19b),

w̄b = kw̄

k + 2kb + 2i�cb
(17.20)

Insert Eq. (17.20) into Eq. (17.19a) and rearrange terms,

w̄ = eη2

1− η2

(1+ K̄ )+ i�cb/kb

[1− K̄η2/(1− η2)] + i(�cb/kb)
(17.21)

where K̄ = k/2kb, η2 = (Mi/k)�2.
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The whirl radius at the geometric shaft center is found to be

w0 = |w̄| =
∣∣∣∣∣∣

eη2

1− η2

√
(1+ K̄ )2 + (�cb/kb)

2

[1− K̄η2/(1− η2)]2 + (�cb/kb)2

∣∣∣∣∣∣ (17.22)

Substitution of Eq. (17.21) into Eq. (17.20) gives the shaft whirl radius at the
bearings:

w0b = |w̄b| =
∣∣∣∣∣

eη2

1− η2

K̄√
[1− K̄η2/(1− η2)]2 + (�cb/kb)2

∣∣∣∣∣ (17.23)

Example 17.2 Rotor with Flexible Supports Consider a midspan disk of
weight W = 300 N and a steel shaft 0.1 m in diameter and 1 m in length be-
tween the bearings (Fig. 17-5). This rotor is assumed to operate with two identical
isotropic end bearings. The coupled terms of bearing coefficients are ignored:

kyz = kzy = 0, cyz = czy = 0

Also,

kyy = kzz = kb = 50 MN/m, cyy = czz = cb = 10 kN · s/m

Find (a) the system undamped critical speed, (b) the damped critical speed, (c)
the maximum shaft whirl radius at the disk for an eccentricity of 15 µm at the disk,
and (d) the maximum journal whirl radius.

(a) Undamped critical speed: Shaft stiffness (Table 10-3, case 8, for pinned–
pinned supports) is calculated as

ks = 48E I

L3
= 48(2.07× 1011)π(0.14)

13 × 64
= 4.877× 107 N/m (1)

The bearing stiffness is kb, so the combined shaft bearing stiffness k is (Table 10-4,
case 4)

1

k
= 1

ks
+ 1

2kb
= 1

4.877× 107 +
1

1× 108
(2)

so that

k = 3.278× 107 N/m

Figure 17-5: Example 17.2.
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The disk mass and shaft mass are calculated as

Mi = W/g = 30.61 kg and mb = ρ∗AL = 7850π(0.12/4)× 1 = 61.65 kg

The critical speed follows from the formulas of case 1 of Table 17-1 by replacing
shaft stiffness 48E I/L3 in case 1 with k of (2),

ωc =
√

k

Mi + 0.49mb
=
√

3.278× 107

60.8185
= 734.15 rad/s

= 60

2π
× 734.15 rpm

= 7010.6 rpm (3)

(b) Damped critical speed: The total damping coefficient c = 2cb. From the
damping ratio ζ = c/cc and cc = 2Miωc with Mi replaced by Mi + 0.49mb:

ζ = 2cb

2(Mi + 0.49mb)ωc
= 2(10)4

2(60.8185)734.15
= 0.2240 (4)

The shaft speed � at the maximum whirl amplitude is the damped critical speed ωd .

From Eq. (17.7b), the maximum whirl amplitude occurs at η = �/ωc = 1 + ζ 2.
Then

ωd = � = ωcη = ωc(1+ ζ 2) = 7010.6(1+ 0.22402) = 7362.4 rpm

= 770.98 rad/s (5)

(c) Maximum shaft whirl radius at disk: The maximum whirl motion produces the
resonance (� = ωd ). From Eq. (17.22),

K̄ = ks

2kb
= 4.877× 107

2(5× 107)
= 0.4877, η = �

ωc
= ωd

ωc
= 770.98

734.15
= 1.05 (6)

w0

e
=
∣∣∣∣∣∣

η2

1− η2

[
(1+ K̄ )2 + (ωdcb/kb)

2

[1− K̄η2/(1− η2)]2 + (ωdcb/kb)2

]1/2
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
1.052

1− 1.052



(1+ 0.4877)2 + (770.98× 104/(5× 107))2

[
1− (0.4877)1.052

1−1.052

]2 +
(

770.98×104

5×107

)2




1/2∣∣∣∣∣∣∣
= 2.58

(7)

and the maximum whirl radius is w0 = 2.58e = 3.87× 10−5 m = 38.7 µm.
(d) Maximum journal whirl radius: From Eq. (17.23), the dynamic magnification

factor at the bearings is given by
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w0b

e
=
∣∣∣∣∣∣

η2

1− η2

[
K̄ 2

[1− K̄η2/(1− η2)]2 + (ωdcb/kb)2

]1/2
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
1.052

1− 1.052




0.48772

[
1− (0.4877)1.052

1−1.052

]2 +
(

770.98×104

5×107

)2




1/2∣∣∣∣∣∣∣
= 0.84 (8)

Then the maximum whirl radius is

w0b = 0.84e = 1.26× 10−5 m = 12.6 µm (9)

Uniform Rotating Shaft

In the Euler–Bernoulli shaft model the shear deformation effects are neglected, but
the terms for the gyroscopic moment and the moment due to the inertia of rotation
of the cross section are included [17.2]:

E I
∂4w

∂x4
+ ρ∗A

∂2w

∂t2
− ρ∗ I

(
∂4w

∂x2 ∂t2
− i2�

∂3w

∂x2 ∂t

)
= p(x, t) (17.24)

where w = wy + iwz is the complex deflection and p(x, t) is the external force. For
a uniform shaft free from external forces, p(x, t) = 0, Eq. (17.24) has a solution of
the form

w(x, t) =
∞∑

n=1

φn(x)ηn(t) =
∞∑

n=1

Wne(
√

sn x+iωn t) (17.25)

where Wn is the complex amplitude, sn characterizes the mode shapes, and ωn are
the natural frequencies. This leads to the equation

E I s2
n + ρ∗ I (ω2

n − 2�ωn)sn − ρ∗Aω2
n = 0 (17.26)

From Eq. (17.26),

sn = −ρ∗ I (ω2
n − 2�ωn)

2E I
±


(
ρ∗ I (ω2

n − 2�ωn)

2E I

)2

+ ρ∗Aω2
n

E I




1/2

=
{

p2
n

−q2
n

√
sn =

{
pn

iqn
(17.27)
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The eigenfunctions φn(x) will take the form

φn(x) = C1n cosh pn x + C2n sinh pn x + C3n cos qn x + C4n sin qn x (17.28)

where C1n , C2n , C3n , and C4n are integration constants to be determined from the
boundary conditions, while pn and qn are the two values of

√
sn satisfying Eq.

(17.27).
The corresponding natural frequencies are determined from Eq. (17.26):

ωc1 =
−�β2

n +
√
�2β4

n + (1− β2
n )ω

2
0

1− β2
n

ωc2 =
−�β2

n −
√
�2β4

n + (1− β2
n )ω

2
0

1− β2
n

(17.29)

where

βn = λnr

L
, r2 = I

A
, ω0 =

(
λn

L

)2 ( E I

ρ∗A

)1/2

,

λn = pn L , or λn = qn L

For a Rayleigh beam (gyroscopic effects are ignored)

ωc1 = ω0√|1− β2
n |
, ωc2 = − ω0√|1− β2

n |
(17.30)

There are two natural frequencies, one always positive and the other negative. The
positive and negative natural frequencies are known to be associated with the for-
ward and backward precessions, respectively. The critical speeds, mode shapes, and
frequency equations for uniform rotors with various end conditions are provided in
Table 17-3.

Example 17.3 Cylindrical Rotor A uniform cylindrical rotor is supported in un-
damped flexible end bearings of identical stiffness kb in all radial directions (Fig.
17-6).

Deduce the frequency equation, and calculate the critical speeds using the fre-
quency equation. Ignore the effect of the inertia of rotation of the cross section.

Figure 17-6: Example 17.3.
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For this case

kb = 1 GN/m, L = 1 m, d = 0.1 m

E = 207 GN/m2, ρ∗ = 7854 kg/m3

Refer to Fig. 17-1e in establishing the equations representing the boundary con-
ditions. Use sign convention 1, Fig. 17-1e. The moments and shear forces on the
boundaries are

x = 0; M(0) = 0 V (0) = kbw(0, t)

x = L; M(L) = 0 V (L) = −kbw(L , t)
(1)

so

−E I
∂2w(0, t)

∂x2
= 0 − E I

∂3w(0, t)

∂x3
− kbw(0, t) = 0

−E I
∂2w(L , t)

∂x2
= 0 − E I

∂3w(L , t)

∂x3
+ kbw(L , t) = 0

(2)

If there is no gyroscopic moment and if the effect of the inertia of rotation of the
cross section is ignored, Eq. (17.24) becomes

E I
∂4w

∂x4
+ ρ∗A

∂2w

∂t2
= 0 (3)

which has the solution

w(x, t) =
∞∑

n=1

φneiωnt (4)

with

φn(x) = C1n cosh pn x + C2n sinh pnx + C3n cos pnx + C4n sin pn x (5)

where p4
n = ρ∗Aω2

n/E I .
Use this general solution of (5) in conjunction with boundary conditions (2) to

obtain the frequency determinant

cos pn L − cosh pn L + 2K̄ sinh pn L sin pn L − sinh pn L

− sin pn L − sinh pn L
+ K̄ (cos pn L + cosh pn L)
+ 2K̄ (cosh pn L − K̄ sinh pn L)

cos pn L − cosh pn L
+ K̄ (sin pn L + sinh pn L)

= 0 (6)

where

K̄ = kb

E I p3
n
= kb L3

E I

1

(pn L)3
= K̄ ∗

(pn L)3
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and K̄ ∗ = kb L3/E I expresses the ratio of the bearing stiffness to the shaft stiffness.
This leads to the frequency equation

(1− cos pn L cosh pn L)(pn L)6 + 2K̄ ∗(cos pn L sinh pn L

− sin pn L cosh pn L)(pn L)3 + 2K̄ ∗2 sin pn L sinh pn L = 0 (7)

Alternatively, this relationship can be obtained from Table 17-3, case 11, by set-
ting ρ∗ I = 0 (gyroscopic effects are ignored) in the equations for p2

n and q2
n .

For

K̄ ∗ = kb L3

E I
= 1× 109 × 13

(207× 109)(π · 0.14/64)
= 984.1465

the eigenvalues, as determined by a computer solution of the frequency equation (7),
are

p1L = 3.111, p2L = 6.033, p3L = 8.553, . . . (8)

From p4 = ρ∗Aω2
n/E I , the critical speeds are

ωci = (pi L)2

L2

(
E I

ρ∗A

)1/2

= (pi L)2

12

[
(2.07× 1011)(π · 0.14/64)

(7854)(π · 0.12/4)

]1/2

= 128.349(pi L2) rad/s = 1225.6(pi L)2 rpm (9)

so that

ωc1 = 1225.6(p1L)2 = 11,861.8 rpm,

ωc2 = 1225.6(p2L)2 = 44,608.3 rpm

ωc3 = 1225.6(p3L)2 = 89,657.3 rpm

If the gyroscopic moment and the effects of the inertia of rotation of the cross
section are to be considered, the eigenvalues and eigenfunctions of the rotor can be
determined using a computational solution of the frequency equation of Table 17-3,
case 11.

Transfer Matrices

The transfer matrices for several commonly occurring rotor elements, for systems
with constant rotating speeds, are provided in Tables 17-4 to 17-8. See Appendix III
for the general theory of the transfer matrix method. Several methods for the nu-
merical stabilization of transfer matrix calculations are discussed in Appendix III.
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The Riccati transfer matrix method of Ref. [III.6] is used frequently in dealing with
rotors. In the transfer matrix tables, the displacements, slopes, shear forces, and mo-
ments are expressed as

wz = wc
z cos�t +ws

z sin�t θy = θc
y cos�t + θ s

y sin�t

Vz = V c
z cos�t + V s

z sin�t My = Mc
y cos�t + Ms

y sin�t

wy = wc
y cos�t +ws

y sin�t θz = θc
z cos�t + θ s

z sin�t

Vy = V c
y cos�t + V s

y sin�t Mz = Mc
z cos�t + Ms

z sin�t

(17.31)

where, for example, wc
z , ws

z are the cosine and sine terms, respectively, of wz .

Rigid Disk From the equilibrium and compatibility conditions of a whirling disk,

wR
z = wL

z − θ L
y h

θ R
y = θ L

y

V R
z = V L

z + Mi

(
ẅL

z − 1
2 θ̈

L
y h
)

M R
y = M L

y + V L
z h + Mi

(
ẅL

z − 1
2 hθ̈ L

y

)
1
2 h + IT i θ̈y + Ipi�θ̇z

(17.32)

The quantities Mi , h, IT i , and Ipi are the mass, thickness, diametrical, and polar mass
moments of inertia of the disk, respectively. The superscripts L and R indicate the
left and right sides of the disk. When the whirling speed � is constant, the transfer
matrices are given in Table 17-4 for a rigid disk and for a concentrated mass.

Uniform Shaft Element The equation of motion for a Timoshenko shaft element
is

E I
∂4w

∂x4
+ ρ∗A

∂2w

∂t2︸ ︷︷ ︸
Euler−Bernoulli theory

−ρ∗ I
[

∂4w

∂x2 ∂t2

︸ ︷︷ ︸
principal rotary

inertia term

− i2�
∂3w

∂x2 ∂t

]

︸ ︷︷ ︸
gyroscopic

moment term

− ρ∗E Iαs

G

∂4w

∂x2 ∂t2︸ ︷︷ ︸
principal shear

deformation term

+ (ρ∗)2 Iαs

G

(
∂4w

∂t4
− i2�

∂3w

∂t3

)

︸ ︷︷ ︸
combined rotary inertia
and shear deformation

= 0 (17.33)

where w = wy + iwz is the complex deflection.
Assume that the shaft is whirling with a circular orbit, w = w(x)eiωt . Then

w(x) = C1 sinh px + C2 cosh px + C3 sin qx + C4 cos qx for γ ≥ 0
(17.34)
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where

p2 =
∣∣∣√β2 + γ − β

∣∣∣ , q2 =
∣∣∣√β2 + γ + β

∣∣∣
β = ω2

2

[
ρ∗αs

G
+ ρ∗

E

(
2�

ω
+ 1

)]
,

γ = ω2

[
ρ∗A

E I
− ρ∗

E

(
2�

ω
+ 1

)
ρ∗ω2αs

G

]

and constants Ci (i = 1, 4) are coefficients depending on the boundary conditions.
If γ < 0, replace sinh and cosh with sin and cos, respectively. The transfer matrix
for a uniform shaft with consideration of the effects of distributed mass and shear
deformation is given in Table 17-5. Also, the transfer matrix for a uniform shaft
section with static bow is given in this table. Table 17-6 shows the transfer matrix for
a shaft element (shear and gyroscopic effects are ignored) with axial torque effects.

Bearing and Seal Elements The general gearings and seals are represented
linearly by eight translational and eight rotary stiffness and damping coefficients.
The bearing or seal forces and moments are

[
Vy

Vz

]
= −

[
kyy kyz

kzy kzz

] [
wy

wz

]
−
[

cyy cyz

czy czz

] [
ẇy

ẇz

]

[
Mz

My

]
= −

[
k∗yy k∗yz

k∗zy k∗zz

][
θz

θy

]
−
[

c∗yy c∗yz

c∗zy c∗zz

][
θ̇z

θ̇y

] (17.35a)

From equilibrium,

V R
z = V L

z + kzzwz + kzywy + czzẇz + czyẇy

M R
y = M L

y + k∗zzθy + k∗zyθz + c∗zz θ̇y + c∗zy θ̇z

V R
y = V L

y + kyzwz + kyywy + cyzẇz + cyyẇy

M R
z = M L

z + k∗yzθy + k∗yyθz + c∗yz θ̇y + c∗yy θ̇z

(17.35b)

where V R
i , V L

i and M R
i , M L

i (i = y, z) are the reaction forces and moments, re-
spectively, to the right and left of the bearing or seal. The responses wi , θi and ẇi , θ̇i
are the relative displacements and slopes and corresponding velocities between the
journal and the bearing (Fig. 17-1d).

The transfer (point) matrix for a general bearing or seal is given in Table 17-7.
Normally, in a rotor dynamic analysis, only reaction forces are considered and the
reaction moments are ignored. In such cases the eight rotary stiffness and damping
coefficients (Fig. 17-1d) are set equal to zero. Formulations based on the eight trans-
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lational stiffness and damping coefficients are given in the next section (“Stiffness
and Mass Matrices”), about bearing and seal elements.

For an isotropic bearing (kzz = kyy, czz = cyy), Table 17-7 is simplified as
Table 17-8. This table includes the effect of a pedestal.

Example 17.4 Shaft on Isotropic Supports Consider the shaft of Fig. 17-7 that
is rotating on isotropic supports.

The state vector is z = [w θ V M
]T . In terms of transfer matrices, the state

vectors along the shaft are given by

z = U1U1z0 x < � (1)

z = U2U2U1U1z0 � < x < L

zx=L = U3U2U2U1U1z0

= Uz0 x = L (2)

From Table 17-8, set k = kb, c = c̄ = 0, Mi = 0, and k̄ →∞ (no bearing pedestal
motion), and

zi = kbk̄

kb + k
= kb

kb/k̄ + 1
→ kb (3)

Since k −→∞, in the limit zi = kb. Then, from Table 17-8,

U3 = U2 = U1 =




1 0 0 0
0 1 0 0
−kb 0 1 0

0 0 0 1


 (4)

and U1,U2 are the transfer matrices from Table 17-5 for the uniform shaft segments.
Because of the isotropic properties, Ui = Ts of Table 17-5. Since the left and right
ends are considered to be free,

[
V
M

]
x=0
=
[

V
M

]
x=L
= 0 (5)

Figure 17-7: Example 17.4.
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Equation (2), with boundary conditions taken into account, can be written as

Cancel rows because wx=L and θx=L are unknown{


w

θ

V = 0
M = 0




x=L

=




Ūww Ūwθ ŪwV ŪwM

Ūθw Ūθθ ŪθV ŪθM

ŪVw ŪV θ ŪV V ŪV M

ŪMw ŪMθ ŪMV ŪM M






w

θ

V = 0
M = 0




x=0

(6)

︸ ︷︷ ︸
Cancel columns because M0 = V0 = 0

where Ūi j = (Ui j )x=L with i , j = w, θ , V , M. Then (6) reduces to 0 = ŪVww0 +
ŪV θ θ0 and 0 = ŪMww0 + ŪMθ θ0. The determinant of these equations is

∇ = ŪMθ ŪVw − ŪMwŪV θ (7)

The natural frequencies of the rotor are the roots of∇ = 0. Since θ0 = −w0(ŪMw/ŪMθ ),
from (6) the initial parameters are

z0 =




w0

−w0(ŪMw/ŪMθ )

0
0


 (8)

The mode shapes are found by inserting into (1) the natural frequencies and the initial
parameters (8).

Stiffness and Mass Matrices

The rotor motion can be described with reference to the inertial frame xyz. The
rotating reference XY Z is defined relative to the inertial reference system xyz by
a single rotation �t about X with � denoting the whirl speed. Let the translations
(deflections) wy and wz in the y and z directions locate the elastic centerline and the
small-angle rotations θy and θz about the y and z axes, respectively, orient the plane
of the cross section. The definitions of positive shear forces, moments, deflections,
and slopes are shown in Fig. 17-1f.

Rotors are almost always modeled by circular shaft elements each having four
degrees of freedom at each end, with rigid masses and rigid or flexible disks attached
to model turbine disks, pump impellers, gears, seals, couplings, and so on.

Rigid Disk The governing equations of motion for a rigid disk are [17.3]

(mT +MR)v̈−�gv̇ = p (17.36)
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with v = [
wy wz θy θz

]T , where mT , mR , and g are provided in Table 17-4.
The forcing term p contains the effects of the mass unbalance and other external
effects on the disk.

For the unbalance force

p = Mi�
2



ηa

ζa

0
0


 cos�t + Mi�

2



−ζa

ηa

0
0


 sin�t

= pc cos�t + ps sin�t (17.37)

where Mi is the disk mass and (ηa, ζa) is the mass center eccentricity in the rotating
coordinate system XY Z (see the figure in Table 17-4).

Shaft Elements For a uniform shaft element, the structural matrices can be ob-
tained using the methodology for beam elements discussed in Appendix II. Use of
the exact solution of the governing equation of a uniform shaft element as the shape
function will lead to the “exact” dynamic force displacement relationship, the dy-
namic stiffness matrix. Alternatively, the deflection for an element can be taken to
be the exact static response of a beam, leading to the consistent mass, stiffness, and
gyroscopic matrices. For the latter case, with ξ = x/� for an element of length �,
extending from x = a to x = b,

[
wy(ξ, t)

wz(ξ, t)

]
= N(ξ)v(t)

v(t) = [wya wza θya θza wyb wzb θyb θzb
]T

(17.38)

The static shape function matrix N(ξ) is calculated as

N(ξ) =
[

N1 0 0 N2 N3 0 0 N4
0 N1 −N2 0 0 N3 −N4 0

]
(17.39)

where

N1 = 1− 3ξ2 + 2ξ3, N2 = �(ξ − 2ξ2 + ξ3), N3 = 3ξ2 − 2ξ3

N4 = �(−ξ2 + ξ3) (17.40)

The rotations (θy, θz) are related to the translations (wy, wz) by

θy = −∂wz

∂x
, θz = ∂wy

∂x
(17.41)

Therefore, the rotations can be expressed as
[
θy(ξ, t)
θz(ξ, t)

]
= N̄(ξ)v(t) (17.42)
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where

N̄(ξ) =
[

N̄y(ξ)

N̄z(ξ)

]

=

 0 −∂N1

∂x

∂N2

∂x
0 0 −∂N3

∂x
−∂N4

∂x
0

∂N1

∂x
0 0

∂N2

∂x

∂N3

∂x
0 0

∂N4

∂x


 (17.43)

The governing equations of motion for a shaft element referred to the inertial
reference frame are [17.3]

(mT +mR)v̈−�gv̇+ kv = p (17.44)

where

mT =
∫ �

0
ρ∗ANT N dx (translational mass matrix)

mR =
∫ �

0
IT N̄T N̄ dx (rotary mass matrix)

g =
∫ �

0
IpN̄T

z N̄y dx −
∫ �

0
IpN̄T

y N̄z dx (gyroscopic matrix)

k =
∫ �

0
E I N′′T N′′ dx (bending stiffness matrix)

and p is the force vector including mass unbalance and other element external effects.
For an element with distributed mass center eccentricity (η(x), ζ(x)), the unbalance
force is [17.3]

p =
∫ �

0
ρ∗A�2NT

([
η(ξ)

ζ(ξ)

]
cos�t +

[−ζ(ξ)
η(ξ)

]
sin�t

)
dx

= pc cos�t + ps sin�t (17.45)

When the mass unbalance is distributed linearly, the mass center eccentricities are

η(ξ) = ηa(1− ξ)+ ηbξ, ζ(ξ) = ζa(1− ξ)+ ζbξ (17.46)

where (ηa, ζa) and (ηb, ζb) express the mass center eccentricity at x = a and x = b,
respectively. The element matrices, including the dynamic stiffness matrix, are given
in Table 17-5. Table 17-6 shows the element matrices for the shaft with axial torque
effects. The conical shaft element matrices are given in Table 17-9.

Table 17-10 shows the element matrices for helically fluted shaft elements. The
mass and stiffness matrices for an annular elastic thin-disk element are given in
Table 17-11. See Chapters 18 and 19 for the theory underlying thin disks.
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Bearing Elements For aligned journal bearings, a general linearized mathemat-
ical model, now used in most rotor dynamic analyses, can be expressed by the eight
spring and damping coefficients commonly employed to model the dynamic radial
interaction force components between journal and bearings:

[
Fy

Fz

]
= −

[
kyy kyz

kzy kzz

] [
w∗y
w∗z

]
−
[

cyy cyz

czy czz

] [
ẇ∗y
ẇ∗z

]

= −kvb − cv̇b (17.47)

where (Fy, Fz) are the dynamic radial force components, (w∗y, w∗z ) are the relative
radial displacements references to the static equilibrium state, and (ẇ∗y, ẇ∗z ) are the
relative radial velocities between the journal and bearing.

The elements of matrices k and c are given in Table 17-12 for a short journal
bearing and for a typical type of tilting pad bearing. See Ref. [17.8] for further details.

Seal Elements High-performance pumps, compressors, and turbines (i.e., those
with high rotating speeds and high pressures), sometimes yield nonsynchronous vi-
brations induced by noncontacting annular and labyrinth sections. For the vibration
analysis of these machines the dynamic characteristics of the seals should be in-
cluded.

The linearized model for the seal is similar to that for a journal bearing,[
Fy

Fz

]
= −kvs − cv̇s (17.48)

where vs and v̇s are the relative displacement and velocity between journal and seal.
The stiffness matrix k and damping matrix c are given in Table 17-12 for a short
annular pressure seal, including the effect of elastic deformation. See Ref. [17.9] for
further discussion of seal elements.

Assembly of Global Matrices As explained in Appendix III, the global (sys-
tem) mass, gyroscopic, stiffness and damping matrices or dynamic stiffness matrix
of a rotor system can be assembled by summation of element matrices according to
the positions of shaft elements, rigid disks, bearings and seals, and so on. The global
force vector can be obtained in the same manner.

The global mass and gyroscopic matrices are formed of contributions from the
rigid disks and flexible shaft elements, while the global damping and stiffness matri-
ces are formed from element matrices of shaft segments, bearings, seals and aerody-
namic mechanisms which are commonly modeled with four spring and four damping
coefficients.

Suppose that a rotor system is discretized into M elements, with M + 1 nodes,
along the axis of the rotor (Fig. 17-8a). Each node has 4 degrees of freedom wy , wz ,
θy , and θz . In general, the global displacement vector would be defined as

V = [wy1 wz1 θy1 θz1 wy2 wz2 θy2 θz2 · · · wyi wzi θyi θzi

· · · wy,M+1 wz,M+1 θy,M+1 θz,M+1
]

(17.49)
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Figure 17-8: Rotor system and global matrices: (a) rotor system discretization; (b) assembly
of global matrices.
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The global matrices would be 4(M + 1) × 4(M + 1) in dimension and the global
force vector would be 4(M + 1)× 1.

First, consider the contributions of the shaft elements to the global matrices. The
left and right ends of shaft element i (i = 1, 2, . . . , M) correspond to the nodes i
and i + 1 of the rotor system, respectively. The left end of element i is the right end
of element i−1. The nodal displacements of element i , wya , wza , θya , θza , wyb, wzb,
θyb, and θzb in Table 17-5 correspond to wyi , wzi , θyi , θzi , wy,i+1, wz,i+1, θy,i+1, and
θz,i+1 in Eq. (17.49), which are the contributions to V from 4(i−1)+1 to 4i+4. The
8×8 element matrices of shaft element i , mT +mR , g and k in Table 17-5, should be
added to the global mass, gyroscopic, and stiffness matrices from row 4(i−1)+1 to
row 4i+4 and column 4(i−1)+1 to column 4i+4, respectively. The 8×1 element
force vector pc cos�t + ps sin�t of Table 17-5 should be added to the global force
vector from row 4(i − 1)+ 1 to row 4i + 4 (Fig. 17-8b).

Next consider the contribution of rigid disks to the global mass and gyroscopic
matrices. Suppose that there are Md disks, with disk jd( jd = 1, 2, . . . , Md ) located
at node id of the rotor system. Because the displacements and slopes wy , wz , θy , and
θz in Table 17-4 for disk jd corresponds to wyid , wzid , θyid , and θzid , which are the
entries from 4(id − 1) + 1 to 4(id − 1) + 4, of the global displacement vector V
of Eq. (17.49), the 4 × 4 element matrices of the rigid disk, mT + mR and g in
Table 17-4 should be added to the global mass and gyroscopic matrices from row
4(id − 1)+ 1 to row 4(id − 1)+ 4 and from column 4(id − 1)+ 1 to column 4(id −
1) + 4, respectively. The 4 × 1 force vector of the rigid disk, pc cos�t + ps sin�t
in Table 17-4, should be added to the global force vector from row 4(id − 1)+ 1 to
row 4(id − 1)+ 4 (Fig. 17-8).

Finally, consider the contribution of bearings, seals, or other mechanisms mod-
elled as eight spring and damping coefficients to global stiffness and damping matri-
ces. From Eq. (17.47),

[
Fy

Fz

]
= −kvb − cv̇b = −k(v j − vk)− c(v̇ j − v̇k) = −kv j − cv̇ j + kvk + cv̇k

(17.50)

where v j = [
w

j
y w

j
z
]T is the displacement vector of the journal, which, gener-

ally, is the part of the rotor where the bearing or seal is located. The vector vk =[
wk

y wk
z

]T is the displacement vector of the bearing or seal.
Suppose that there are Mb bearings or seals, one of which jb( jb = 1, 2, . . . , Mb)

is at node ib. Because the displacements w
j
y and w

j
z of the bearing jb correspond to

the displacement wyib and wzib , which are the 4(ib−1)+1 and 4(ib−1)+2 entries
of the global displacement vector V [Eq. (17.49)]. The 2× 2 stiffness and damping
matrices k and c of the bearing in Eq. (17.50) or Table 17-12 should be added to the
global stiffness and damping matrices, respectively, from row 4(ib − 1) + 1 to row
4(ib − 1)+ 2 and from column 4(ib − 1)+ 1 to 4(ib − 1)+ 2. The vector kvk + cv̇k

in Eq. (17.50) can be added to the global force vector from row 4(ib − 1)+ 1 to row
4(ib − 1)+ 2 (Fig. 17-8).
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Note that the global gyroscopic matrix multiplied by −� (� is the spin speed of
the rotor) is the damping matrix [Eqs. (17.36) and (17.44)].

Example 17.5 Natural Frequencies: Complex Eigenvalue Analysis of a Pump
System A pump rotor supported by two isotropic bearings is shown in Fig. 17-9.
The elastic modulus is 210 GN/m2. The mass and mass moment of inertia of the
impeller are 308.268 kg and 51.378 kg ·m2, respectively. The bearing characteristics
are modeled with stiffness coefficients of 1000 GN/m and damping coefficients of
10 kN · s/m.

Figure 17-9: Rotor-bearing system of Example 17.5.

(a) Compute the first two natural frequencies.

(b) Compute the complex eigenvalues at a rotating speed of 1800 rpm.

(c) Compare the complex eigenvalues with the real eigenvalues (natural frequen-
cies), which ignore the damping of the bearings.

(d) Graph the root loci of the first two modes as functions of rotating speed.

The rotor is modeled with the four shaft elements and one disk as shown in
Fig. 17-9. The mass, gyroscopic, and stiffness matrices can be obtained from
Tables 17-4 and 17-5.

For the shaft elements, these matrices (expressed as 4 × 4 submatrices) have di-
mension 8× 8 (Table 17-5):
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mi = mi
T +mi

R =
[

mi
11 mi

12

mi
21 mi

22

]

gi =
[

gi
11 gi

12

gi
21 gi

22

]
(1)

ki =
[

ki
11 ki

12

ki
21 ki

22

]

where i = 1, 2, 3, 4.
For the disk element, the 4 × 4 mass and gyroscopic matrices can be taken from

Table 17-4,

md = md
T +md

R =




Mi

Mi

IT i

IT i


 , gd =




0
0

0 Ipi

−Ipi 0




(2)

where Mi , IT i , and Ipi are the mass, translational, and polar mass moments of the
disk, respectively. Here IT i = 1

2 Ipi .
For the bearings, the stiffness and damping matrices have the forms [Eq. (17.47)]

kb =
[

kb 0
0 kb

]
, cb =

[
cb 0
0 cb

]
(3)

where kb = 1000 GN/m and cb = 10 kN · s/m. Define the global displacement
vector

V = [wy1 wz1 θy1 θz1 wy2 wz2 θy2 θz2 · · · wy5 wz5 θy5 θz5]T

According to the order of the shaft elements and the position of the disk, the global
mass matrix is assembled as

M
Mass matrix

=

From 5th to
12th column



m1
11 m1

12

m1
21 m1

22 +m2
11 m2

12

m2
21 m2

22 +m3
11 m3

12

m3
21 m3

22 +m4
11 m4

12

m4
21 m4

22 +md




From 5th to
12th row

(4)

Here, for example, for the second shaft element with i = 2, mi = m2 is added
from row and column 4(i −1)+1 = 5 to row and column 4i +4 = 12, respectively.
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Because the disk is on the right side of shaft element 4, the position of the disk in the
node sequence is id = 5 and md is added to M from row and column 4(id−1)+1 =
17 to row and column 4(id − 1) + 4 = 20. Thus, the matrix md is added to the
position of m4

22. Remember that mi
pq (i = 1, 2, 3, 4, p, q = 1, 2) are 4× 4 matrices.

If the disk is on the left side of element 4(id = 4), md should be added to the position
of m4

11. The global gyroscopic matrix G has the same form as M, with mi
pq and md

replaced by gi
pq and gd (i = 1, 2, 3, 4, p, q = 1, 2), respectively.

The global shaft stiffness matrix is assembled in the same fashion as M.

K =




k1
11 k1

12

k1
21 k1

22 + k2
11 k2

12

k2
21 k2

22 + k3
11 k3

12

k3
21 k3

22 + k4
11 k4

12

k4
21 k4

22




(5)

According to the position of the bearings, the global bearing stiffness matrix is
assembled as

Kb =




kb 0
0 kb

kb 0
0 kb




row 9
row 10

row 13
row 14

Col. 9 Col. 10 Col. 13 Col. 14 (all other elements = 0)

(6)

and the global bearing damping matrix Cb is obtained by replacing kb with cb.
For the first bearing, the position in the node sequence is ib = 3, so that kb or cb

should be added to Kb or Cb from row and column 4(ib − 1) + 1 = 9 to row and
column 4(ib − 1)+ 2 = 10. For the second bearing, ib = 4, so kb and cb are added
to Kb and Cb from row and column 13 to row and column 14, respectively.

The system equation is

MV̈+ (Cb −�G)V̇+ (K+Kb)V = 0 (7)

Transform this equation to first-order state vector form,

Bẇ+ Aw = 0 (8)

where

A =
[

Cb −�G K+Kb

−(K+Kb) 0

]

B =
[

M 0
0 K+Kb

]
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Figure 17-10: Critical speeds of the pump system (damping is ignored).

w = [V̇T VT
]T

For an assumed harmonic solution

w = w0eλt (9)

where λ = −γn + iωd , the associated eigenvalue problem is

(A+ λB)w0 = 0 (10)

By letting Cb = 0, the critical speeds of the rotor system can be obtained. Otherwise,
the complex eigenvalues can be computed. The results are shown in Figs. 17-10 to
17-12.

Further information on rotating-shaft systems can be found in Refs. [17.10]–
[17.13].

17.4 TORSIONAL VIBRATION

Since the speed of rotation has little effect on the torsional vibration of a shaft, the
formulas of Chapter 12 can be employed to study the torsional behavior of rotor
systems. A useful reference for torsional vibrations is Ref. [17.14].
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Damped Critical Speed ωd (rad/s) Damped Exponent γn (s−1)

Mode Forward (F) Backward (B) Forward (F) Backward (B)

1 410.74 96.02 −5.18 −0.66
2 784.14 724.84 −9.32 −12.73
3 2168.80 2148.51 −30.08 −29.92

(a)

Forward (F) Backward (B)

Mode Undamped ωc Damped ωd Undamped ωc Damped ωd

1 310.124 310.156 130.470 130.471
2 758.713 758.541 730.550 730.408
3 2164.39 2164.17 2153.14 2152.93

(b)

Figure 17-11: Partial results for Example 17.5: (a) complex eigenvalues at 1800 rpm; (b)
damped and undamped critical speeds (rad/s) at 1000 rpm.

Figure 17-12: Root loci of the damped rotor-bearing system.

17.5 VIBRATION OF A RADIAL BEAM

The dynamic characteristics of rotating blades are important in the design of rotating
structural elements such as turbine blades, aircraft propellers, cooling fans, helicopter
rotors, and satellite booms. A radial rotating beam mounted in the rim of a disk is
usually taken as the mathematical model for these types of structures.

The model is a uniform beam of length L and with a hub of radius R0 rotating at
a constant angular velocity of � (rad/s) about the x axis (Fig. 17-13). Here, xyz is a
set of global fixed coordinate axes with the origin at the center of the hub, XY Z are
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Figure 17-13: Coordinate system and geometry of a radial beam.

global rotating coordinate axes with the origin at the center of the rotating hub, and
ξηZ are rotating coordinates with the origin at the center of the rotating hub, with
ξ, η as the principal axes of inertia of the sectional area of the beam. The neutral
axis of the beam is inclined to the plane of rotation at an angle �. For � = 0◦, the
bending motion of the beam in the ξ Z plane becomes purely out of plane (flapping),
and for ψ = 90◦, the bending motion in the ξ Z plane is purely in plane (lead–lag).
The motion of the beam along the Z axis is called axial vibration.

Bending Vibration

Natural Frequencies Table 17-13 lists the natural frequencies of a beam of cir-
cular and square cross section at angle � = 0◦ or � = 90◦ with various boundary
conditions.

Stiffness and Mass Matrices For vibrations in the direction perpendicular to
the neutral axis of the beam (i.e., for motion in the ξ direction; Fig. 17-13), the
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stiffness and mass matrices of the rotating beam element are defined as

kB = �

∫ 1

0
E I N′′T N′′ dζ (bending stiffness matrix)

kC = �

∫ 1

0
FC N′T N′ dζ (centrifugal stiffness matrix)

(17.51)

mT = �

∫ 1

0
ρ∗ANT N dζ (translational mass matrix)

mR = �

∫ 1

0
IT N′T N′ dζ (rotary mass matrix)

where

N(ζ ) = [1− 3ζ 2 + 2ζ 3 �(ζ − 2ζ 2 + ζ 3) 3ζ 2 − 2ζ 3 �(−ζ 2 + ζ 3)
]
,

with ζ = Z̃/�, is the shape function matrix and � is the length of the element. The
centrifugal force FC is given by

FC = ρ∗A�2�2
[

R0

�2
(L − L ′)+ 1

2�2
(L2 − L ′2)− 1

�
(R0 + L ′)ζ − 1

2
ζ 2
]

(17.52)

with L equal to the length of the beam and L ′ equal to the total length of elements
before and not including the element under consideration. The mass and stiffness
matrices are given in Table 17-14.

Axial Vibration

Natural Frequencies and Mode Shapes Since the formulas for axial vibra-
tions are given in Chapter 12 on the extension of bars, only some problems that can
occur for radial rotating bars are considered here.

The equation of motion is given by (Fig. 17-13)

−ρ∗A
∂2wZ

∂t2
+ ρ∗A�2(R0 + Z ′ +wZ )+ E A

∂2wZ

∂Z ′2
= 0 (17.53)

The natural frequencies and mode shapes can be obtained from the boundary con-
ditions. For example, from Table 12-4, case 2, for a clamped–free beam, the natural
frequencies and mode shapes are

ω2
n =

E

ρ∗

(
λn

L

)2

−�2 (17.54)

φn = sin
λn Z ′

L
(17.55)
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where

λn = 1
2π,

3
2π, . . . = 1

2π(2n − 1), n = 1, 2, 3, . . .

Here, because of the rotating speed �, the formula for the natural frequency in
Table 12-4 is changed to that shown in Eq. (17.54).

Transfer Matrices The fundamental equations of motion in first-order form for
the axial vibration of a radial rotating bar (Fig. 17-13) are

∂wZ

∂Z ′
= P

AE

∂P

∂Z ′
= ρ∗A

∂2wZ

∂t2
− ρ∗A�2(R0 + Z ′ +wZ )

(17.56)

In this case, the centrifugal force represents a distributed axial force.
The transfer matrices, including exact mass and lumped mass modeling, for a bar

segment of length � are provided in Table 17-15.

Stiffness and Mass Matrices The displacement of a typical point between the
two ends of the element is

wZ (Z̃ , t) = N(ζ )v (17.57)

where v = [wZa wZb
]T , ζ = Z̃/�, and N(ζ ) is the shape function matrix given by

N(ζ ) = [N1(ζ ) N2(ζ )
]

N1(ζ ) = cos γ��ζ − cot γ�� sin γ��ζ (17.58)

N2(ζ ) = csc γ�� sin γ��ζ

where γ = √ρ∗/E .
The equivalent mass and stiffness matrices for a radial rotating-bar element are

m = �

∫ 1

0
ρ∗ANT N dζ (translational mass matrix)

kA = �

∫ 1

0
AEN′T N′ dζ (axial stiffness matrix) (17.59)

kC = �

∫ 1

0
FC NT N dζ (centrifugal stiffness matrix)

where FC is the centrifugal force defined by Eq. (17.52). The mass and stiffness
matrices are given in Table 17-15.
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TABLE 17-1 CRITICAL SPEEDS OF SIMPLE HORIZONTAL ROTORS
Notation

ωcj = critical speed ( j = 1, 2, 3, 4)
Mi = concentrated mass
mb = beam mass (shaft mass)
IT i = transverse mass moment of inertia

of concentrated mass
E = modulus of elasticity

Ipi = polar mass moment of inertia
of concentrated mass

� = rotational speed
I = moment of inertia of cross-

sectional area

See Table 11-14 for a free–free rotor.

Case Critical Speed (rad/s)

1.
Center mass,
pinned–pinned supports

ωc1 =
[

48E I

L3(Mi + 0.49mb)

]1/2

2.
Off-center mass,
pinned–pinned supports

ωc1 =
{

3E I L

L2
1L2

2[Mi + (α + β)mb]

}1/2

α = L1

L

[
(2L2 + L1)

2

12L2
2

+ L2
1

28L2
2

− L1(2L2 + L1)

10L2
2

z

]

β = L2

L

[
(2L1 + L2)

2

12L2
1

+ L2
2

28L2
1

− L2(2L1 + L2)

10L2
1

]

3.
Overhung rotor ωc1 =

[
3E I

L3(Mi + 0.24mb)

]1/2

4.
Overhung rotor with
linear spring

ωc1 =
[

E I/mb L3

1/(12.36236+ 3ξ k̄)+ m̄/(3+ k̄)

]1/2

m̄ = MI

mb
k̄ = kL3

E I

928 TABLE 17-1 Critical Speeds of Simple Horizontal Rotors



TABLE 17-1 (continued) CRITICAL SPEEDS OF SIMPLE HORIZONTAL ROTORS

Case Critical Speed (rad/s)

5.
Center mass, clamped–
clamped supports

ωc1 =
[

192E I

L3(Mi + 0.37mb)

]1/2

6.
Off-center mass, clamped–
clamped supports

ωc1 =
{

3E I L3

L3
1L3

2[Mi + (α + β)mb]

}1/2

α = L1

L

[
(3L1 + L2)

2

28L2
2

+ 9L2

20L2
2

− L(3L1 + L2)

4L2
2

]

β = L2

L

[
(3L2 + L1)

2

28L2
1

+ 9L2

20L2
1

− L(3L2 + L1)

4L2
1

]

7.
Long rigid rotor, elastic
supports

ωc1 = ωc2 =
√

2k

Mi

ωc3 = Ipi

2IT i
�+

√
kL2

2IT i
+
(

Ipi

2IT i
�

)2

ωc4 = Ipi

2IT i
�−

√
kL2

2IT i
+
(

Ipi

2IT i
�

)2

8.
Rigid rotor anisotropic
bearing (ky < kz)

ωc1 =
[

2ky

Mi
+ ky

�k

(
2c

Mi

)2
]1/2

ωc2 =
[

2kz

Mi
+ kz

�k

(
2c

Mi

)2
]1/2

where �k = kz − ky
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TABLE 17-2 CRITICAL SPEEDS OF SIMPLE VERTICAL ROTORSa

Notation
A = section area

As = equivalent shear area, As = A/αs
αs = shear correction factor (Table 2-4)
E = modulus of elasticity
G = shear modulus of elasticity
g = gravitational acceleration
I = moment of inertia of cross-

sectional area of shaft
IT i = transverse mass moment of

inertia of concentrated mass
kx1, kx2 = linear spring constants
k∗y1, k∗y2 = rotary spring constants

Mi = mass of concentrated mass
ωc = critical speed
ρ∗ = mass per unit volume of shaft

Gyroscopic effects of the rotor are not taken into account.

The critical speeds are the roots of the following determinant set equal to zero (the
frequency equation):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1 0 0 0 0

a21 a22 a23 a24 0 0 0 0

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

0 0 0 0 a75 a76 a77 a78

0 0 0 0 a85 a86 a87 a88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

a21 =
k∗y1L

E I
γ1 a22 = α1γ1 a23 =

k∗y1L

E I
δ1 a24 = −β1δ1

a31 = sin(α1�/L) a32 = cos(α1�/L)
a33 = sinh(β1�/L) a34 = cosh(β1�/L)
a35 = − sin(α2�/L) a36 = − cos(α2�/L)
a37 = − sinh(β2�/L) a38 = − cosh(β2�/L)
a41 = γ1a32 a42 = −γ1a31
a43 = δ1a34 a44 = δ1a33
a45 = γ2a36 a46 = −γ2a35
a47 = δ2a38 a48 = δ2a37

930 TABLE 17-2 Critical Speeds of Simple Vertical Rotors



TABLE 17-2 (continued) CRITICAL SPEEDS OF SIMPLE VERTICAL ROTORSa

a51 = Mi L

G As
ω2

ca31 +
[(

1+ P1

G As

)
γ1 − α1

]
a32

a52 = Mi L

G As
ω2

ca32 −
[(

1+ P1

G As

)
γ1 + α1

]
a31

a53 = Mi L

G As
ω2

ca33 +
[(

1+ P1

G As

)
γ1 − β1

]
a34

a54 = Mi L

G As
ω2

ca34 +
[(

1+ P1

G As

)
γ1 − β1

]
a33

a55 =
(

1− P2

G As

)
a45 − α2a36 a56 =

(
1− P2

G As

)
a46 + α2a35

a57 =
(

1− P2

G As

)
a47 − β2a38 a58 =

(
1− P2

G As

)
a48 − β2a37

a61 = IT i L

E I
ω2

ca41 − α1a42 a62 = IT i L

E I
ω2

ca42 + α1a41

a63 = IT i L

E I
ω2

ca43 − β1a44 a64 = IT i L

E I
ω2

ca44 − β1a43

a65 = −α2a46 a66 = α2a45

a67 = −β2a48 a68 = −β2a47

a75 = sinα2 a76 = cosα2

a77 = sinhβ2 a78 = cosh β2

a85 =
k∗y2L

E I
γ2a76 − γ2α2a75 a86 = −

k∗y2L

E I
γ2a75 − γ2α2a76

a87 =
k∗y2L

E I
δ2a78 + δ2β2a77 a88 =

k∗y2L

E I
δ2a77 + δ2β2a78

where

γ j =
α2

j − ρ∗AL2ω2
c/G As

(1+ P/G As)α j
( j = 1, 2)

δ j =
β2

j + ρ∗AL2ω2
c/G As

(1+ P/G As)β j
( j = 1, 2)

P1 = Mi g[kx1kx2(L − �)+ kx1 E A]/[kx1kx2L + (kx1 + kx2)E A]
P2 = Mi g(kx1kx2�+ kx2 E A)/[kx1kx2L + (kx1 + kx2)E A]
P =

{
P1 for j = 1
−P2 for j = 2

TABLE 17-2 Critical Speeds of Simple Vertical Rotors 931



TABLE 17-2 (continued) CRITICAL SPEEDS OF SIMPLE VERTICAL ROTORSa

The constants α j and β j ( j = 1, 2) are determined by solving the following two
equations simultaneously:

α2
j − β2

j =
(

1

E A
+ 1

G As

)
ρ∗AL2ω2

c +
(

1+ P

G As

)
P L2

E I

α2
jβ

2
j =

ρ∗AL4

E I
ω2

c

[(
1+ P

G As

)
− ρ∗ I

G As
ω2

c

]

In the following, the stiffness coefficients kx1, . . . , k∗y2 for several special support
conditions are listed.

Case 1 Case 2b Case 3b Case 4 Case 5 Case 6

H
in

ge
d-

H
in

ge
d

H
in

ge
d-

H
in

ge
d

H
in

ge
d-

H
in

ge
d

C
la

m
pe

d-
C

la
m

pe
d

C
la

m
pe

d-
G

ui
de

d

G
ui

de
d-

C
la

m
pe

d

kx1 ∞ ∞ 0 ∞ ∞ 0
kx2 ∞ 0 ∞ ∞ 0 ∞
k∗y1 0 0 0 ∞ ∞ ∞
k∗y2 0 0 0 ∞ ∞ ∞
aBased on Ref. [17.1].
bVertical (axial) motion permitted.

932 TABLE 17-2 Critical Speeds of Simple Vertical Rotors



TABLE 17-3 CRITICAL SPEEDS AND MODE SHAPES FOR UNIFORM ROTORSa IN BENDING
Notation

A = cross-sectional area
E = modulus of elasticity
I = moment of inertia of cross-sectional area
n = mode number
r = radius of gyration of cross-sectional area, r2 = I/A

ωc1 = forward whirling critical speed (positive)
ωc2 = backward whirling critical speed (negative)
ρ∗ = mass per unit volume
� = rotating speed
ξ = x/L

Critical speeds: ωc1,2 =
[
−�β2

n ±
√
�2β4

n + (1− β2
n )ω

2
0

]
/(1− β2

n ) (plus sign for ωc1, minus sign for ωc2)

βn = λnr/L ω0 =
(
λn

L

)2 ( E I

ρ∗A

)1/2

Boundary Conditions Frequency Equation Constant λn Mode Shapes φn

1.
Free–free

cosh λ cos λ = 1 λ1 = 4.7300
λ2 = 7.8532
λ3 = 10.9956

...
For large n,
λn ≈ 1

2 (2n + 1)π

(cosh λnξ + cosλnξ)− cosh λn − cosλn

sinhλn − sinλn
(sinhλnξ + sinλnξ)

2.
Free–hinged

tanλ = tanhλ λ1 = 3.9266
λ2 = 7.0686
λ3 = 10.2102

...
For large n,

λn ≈ 1
4 (4n + 1)π

(cosh λnξ + cosλnξ)− cosh λn + cosλn

sinhλn + sinλn
(sinhλnξ + sinλnξ)
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TABLE 17-3 (continued) CRITICAL SPEEDS AND MODE SHAPES FOR UNIFORM ROTORSa IN BENDING

Boundary Conditions Frequency Equation Constant λn Mode Shapes φn

3.
Free–guided

tan λ = − tanh λ λ1 = 2.3650
λ2 = 5.4978
λ3 = 8.6394

...
For large n,

λn ≈ 1
4 (4n − 1)π

(coshλnξ + cos λnξ)− sinh λn − sinλn

cosh λn + cosλn
(sinhλnξ + sin λnξ)

4.
Clamped–free

cosh λ cos λ = −1 λ1 = 1.8751
λ2 = 4.6941
λ3 = 7.8541

...
For large n,

λn ≈ 1
2 (2n − 1)π

(coshλnξ − cos λnξ)− cosh λn + cosλn

sinh λn + sinλn
(sinhλnξ − sin λnξ)

5.
Hinged–hinged

sin λ = 0 λn = nπ sin nπξ

6.
Hinged–guided

cos λ = 0 λn = 1
2 (2n− 1)π sin[ 12 (2n − 1)πξ ]

934
TA

B
L

E
17-3

C
riticalS

p
eed

s
an

d
M

o
d

e
S

h
ap

es
fo

r
U

n
ifo

rm
R

o
to

rs



7.
Guided–guided

sinλ = 0 λn = nπ cos nπξ

8.
Clamped–hinged

tanλ = tanhλ λ1 = 3.9266
λ2 = 7.0686
λ3 = 10.2102

...
For large n,

λn ≈ 1
4 (4n + 1)π

(cosh λnξ − cos λnξ)− cosh λn − cos λn

sinhλn − sin λn
(sinhλnξ − sin λnξ)

9.
Clamped–guided

tanλ = − tanhλ λ1 = 2.3650
λ2 = 5.4978
λ3 = 8.6394

...
For large n,

λn ≈ 1
4 (4n − 1)π

(cosh λnξ − cos λnξ)− sinhλn + sin λn

cosh λn − cos λn
(sinhλnξ − sin λnξ)

10.
Clamped–clamped

cosh λ cos λ = 1 λ1 = 4.7300
λ2 = 7.8532
λ3 = 10.9956

...
For large n,

λn ≈ 1
2 (2n + 1)π

(cosh λnξ − cos λnξ)− cosh λn − cos λn

sinhλn − sin λn
(sinhλnξ − sin λnξ)
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TABLE 17-3 (continued) CRITICAL SPEEDS AND MODE SHAPES FOR UNIFORM ROTORSa IN BENDING

11.

A =



λ2
1n 0 −λ2

2n 0
kb L3 E Iλ3

1n kb L3 −E Iλ3
2n

λ2
1n cosh λ1n λ2

1n sinh λ1n −λ2
2n cos λ2n −λ2

2n sinλ2n
kb L3 cosh λ1n − E Iλ3

1n sinh λ1n kb L3 sinh λ1n − E Iλ3
1n cosh λ1n kb L3 cos λ2n − E Iλ3

2n sin λ2n kb L3 sinλ2n + E Iλ3
2n cos λ2n




λ1n = pn L , λ2n = qn L

p2
n =



(
ρ∗ I (ω2

n − 2�ωn)

2E I

)2

+ ρ∗Aω2
n

E I




1/2

−ρ∗ I (ω2
n − 2�ωn)

2E I

q2
n =



(
ρ∗ I (ω2

n − 2�ωn)

2E I

)2

+ ρ∗Aω2
n

E I




1/2

+ρ∗ I (ω2
n − 2�ωn)

2E I

cosh λ1nξ + C ′2n sinhλ1nξ + C ′3n cosλ2nξ + C ′4n sinλ2nξ

C ′2n , C ′3n , C ′4n are constants that can be obtained by solving
the equation

A




1
C ′2n

C ′3n

C ′4n


 = 0

The frequency ωn can be computed by solving
det A = 0.

If ωn > 0, it is the forward whirling critical speed.
If ωn < 0, it is the backward whirling critical speed.

aRotors with circular cross-sectional area, hollow or solid.
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TABLE 17-4 TRANSFER, MASS, AND GYROSCOPIC MATRICES FOR
RIGID DISK AND CONCENTRATED MASS

Notation

Mi = mass of rigid disk
Ipi = polar mass moment of inertia of disk,

Ipi = 1
2 Mi (r2

o + r2
i ),

where ri and ro are inner and outer radii of disk
IT i = transverse mass moment of inertia of disk,

IT i = 1
2 Ipi + 1

12 Mi h2

(h = 0 for concentrated mass)
e = eccentricity of mass center coordinates in the

rotating of rigid disk
(ηa, ζa) = mass center coordinates in the

rotating coordinate system XY Z
ω = whirl speed of rotor (for unbalanced response,

ω = �)
� = spin speed
h = thickness of rigid disk

Superscripts: s, sine components; c, cosine components

Transfer Matrix (Sign Convention 1)

zb = Ui za

=




1 −h
1

A1 A3 1
−A3 A2 h 1 −A4

B

1 −h
1

A1 A3 1
−A3 A2 h 1 −A4

C

A4

1 h
1

A1 −A3 1
A3 A2 −h 1

−C

−A4

1 h
1

A1 −A3 1
A3 A2 −h 1

B

1







ws
z

θ s
y

V s
z

Ms
y

wc
z

θc
y

V c
z

Mc
y

ws
y

θ s
z

V s
y

Ms
z

wc
y

θc
z

V c
y

Mc
z

1




Ui za
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TABLE 17-4 (continued) TRANSFER, MASS, AND GYROSCOPIC MATRICES FOR RIGID
DISK AND CONCENTRATED MASS

A1 = −Miω
2

A2 = −IT iω
2 + 1

4 Miω
2h2

A3 = 1
2 Miω

2h

A4 = Ipi�ω

B = −Mi�
2ηa

C = −Mi�
2ζa

For a concentrated mass, set h equal zero.

Mass and Gyroscopic Matrices (Sign Convention 2)

(mT +mR)v̈−�gv̇ = p
with v = [ wy wz θy θz

]T p = [ Vy Vz My Mz
]T

mT =



Mi
Mi

0
0




mR =



0
0

IT i
IT i




g =



0
0

0 Ipi
−Ipi 0




For the unbalance force
p = pc cos�t + ps sin�t

pc = Mi�
2




ηa
ζa
0
0


 ps = Mi�

2



−ζa
ηa
0
0
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TABLE 17-5 TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC
MATRICES FOR A UNIFORM SHAFT ELEMENT IN BENDINGa

Notation

A = cross-sectional area
E = modulus of elasticity
I = moment of inertia of section area
� = length of shaft element
� = spin speed
r = radius of gyration of cross-sectional

area about y or z axis
G = shear modulus of elasticity
αs = shear correction factor (Table 2-4)
As = A/αs = equivalent shear area
ρ∗ = mass per unit volume
ω = whirl speed (for unbalanced response,ω = �)
e = mass center eccentricity

(ηa, ζa), (ηb, ζb) = mass center eccentricity at x = a, x = b
in the rotating coordinates XY Z

The eccentricity is distributed linearly along the x axis; η(ξ) = ηa(1− ξ)+ ηbξ ;
ζ(ξ) = ζa(1− ξ)+ ζbξ (ξ = x/�)

α = √β2 + γ p2 = |α − β| q2 = |α + β| ε = ρ∗ω2/E σ = E I/G As

β = 1

2
ω2
[
ρ∗αs

G
+ ρ∗

E

(
2�

ω
+ 1

)]
γ = ω2

[
ρ∗A

E I
− ρ∗

E

(
2�

ω
+ 1

)
αsρ
∗ω2

G

]

γ ≥ 0(ω ≤ √�2 + G As/(ρ∗ I )−�)

c0 = (q2 cosh p�+ p2 cos q�)/(p2 + q2)

c1 = (q2 sinh p�/p�+ p2 sin q�/q�)/(p2 + q2)

c2 = (cosh p�− cos q�)/[�2(p2 + q2)]
c3 = (sinh p�/p�− sin q�/q�)/[�2(p2 + q2)]

e0 = (p3 sinh p�− q3 sin q�)/(p2 + q2)

e1 = (p2 cosh p�+ q2 cos q�)/(p2 + q2)

e2 = (p sinh p�+ q sin q�)/(p2 + q2)

e3 = (cosh p�− cos q�)/(p2 + q2)

e4 = (sinh p�/p − sin q�/q)/(p2 + q2)

e5 = (cosh p�/p2 + cos q�/q2)/(p2 + q2)− 1

p2q2
(if γ = 0, set e5 = 0)

e6 = (sinh p�/p3 + sin q�/q3)/(p2 + q2)− �

p2q2
(if γ = 0, set e6 = 0)

Set sinh p�/p� = 1 if p� = 0.
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TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A
UNIFORM SHAFT ELEMENT IN BENDINGa

γ < 0(ω >
√
�2 + G As/(ρ∗ I )−�)

c0= (q2 cos p�− p2 cos q�)/(−p2 + q2)

c1= (q2 sin p�/p�− p2 sin q�/q�)/(−p2 + q2)

c2= (cos p�− cos q�)/[�2(−p2 + q2)]
c3= (sin p�/p�− sin q�/q�)/[�2(−p2 + q2)]
e0= (p3 sin p�− q3 sin q�)/(−p2 + q2)

e1= (−p2 cos p�+ q2 cos q�)/(−p2 + q2)

e2= (−p sin p�+ q sin q�)/(−p2 + q2)

e3= (cos p�− cos q�)/(−p2 + q2)

e4= (sin p�/p − sin q�/q]/(−p2 + q2)

e5= (− cos p�/p2 + cos q�/q2)/(−p2 + q2)+ 1

p2q2

e6= (− sin p�/p3 + sin q�/q3)/(−p2 + q2)+ �

p2q2

Transfer Matrix: Shear Deformation Included (Sign Convention 1)

zb=Ui za

z= [ws
z θ s

y V s
z Ms

y wc
z θc

y V c
z Mc

y ws
y θ s

z V s
y Ms

z wc
y θc

z V c
y Mc

z 1
]T
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TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A
UNIFORM SHAFT ELEMENT IN BENDINGa

Ui =




Ts

B + Fs
wz

Fs
θy

Fs
Vz

Fs
My

Ts

C + Fc
wz

Fc
θy

Fc
Vz

Fc
My

T∗s

−C + Fs
wy

Fs
θz

Fs
Vy

Fs
Mz

T∗s

B + Fc
wy

Fc
θz

Fc
Vy

Fc
Mz

1




The gyroscopic coupling effects between the xy and xz planes are ignored.
Ts = [T ]4×4

T∗s is obtained by multiplying the 2nd and 4th rows of Ts by −1, then multiplying the 2nd
and 4th columns of the resulting matrix by −1.
B= (vY )b − (vY )a

C = (vZ )b − (vZ )a

vb= static bow at the right end of the segment
va= static bow at the left end of the segment
The static bow defines the initial permanent deformation of the geometric shaft center
relative to the line of centers of the bearing system at rotating coordinates XY Z .
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TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A
UNIFORM SHAFT ELEMENT IN BENDINGa

T11 = c0 − c2
ρ∗ω2αs�

2

G
T21 = −c3

ρ∗ω2 A�3

E I

T31 = −c1ρ
∗ω2 A�+ c3

ρ∗2ω4αs�
3

G
T41 = −c2ρ

∗ω2 A�2

T12 = −c1�+ c3

[
ρ∗ω2�3

E

(
2�

ω
+ 1

)
+ ρ∗ω2�3αs

G

]

T22 = c0 − c2

[
ρ∗ω2�2

E

(
2�

ω
+ 1

)]

T32 = c2ρ
∗ω2 A�2

T42 = −c1ρ
∗ω2 I�

(
2�

ω
+ 1

)
+ c3

[
ρ∗2 Iω4�3

E I

(
2�

ω
+ 1

)2

+ ρ∗ω2 A�3

]

T13 = c1
αs�

G A
+ c3

(
−α2

s ρ
∗ω2�3

G2 A
− �3

E I

)
T23 = c2

�2

E I

T33 = c0 − c2
ρ∗ω2αs�

2

G
T43 = c1�− c3

[
ρ∗ω2�3

E

(
2�

ω
+ 1

)
+ ρ∗ω2αs�

3

G

]

T14 = −c2
�2

E I
T24 = c1

�

E I
− c3

ρ∗ω2�3

E2 I

(
2�

ω
+ 1

)

T34 = c3
ρ∗ω2 A�3

E I
T44 = c0 − c2

ρ∗ω2�3

E

(
2�

ω
+ 1

)

Fk
w j = [pk

aj (e5 − e6/�)+ pk
bj e6/�]/E I

+ {pk
aj [e3 + εe5 − (e4 + εe6)/�] + pk

bj (e4 + εe6)/�}/G As

Fk
θ j = [pk

aj (−e4 + e5/�)− pk
bj e5/�)/E I

Fk
V j = pk

aj [−(e2 + εe4)+ (e3 + εe5)/�] − pk
bj (e3 + εe5)/�

Fk
M j = pk

aj (−e3 + e4/�)− pk
bj e4/�

(k = s, c)

( j = z, y)

where

ps
az = ρ∗Aηa�

2; ps
bz = ρ∗Aηb�

2

pc
az = ρ∗Aζa�

2; pc
bz = ρ∗Aζb�

2

ps
ay = −ρ∗Aζa�

2; ps
by = −ρ∗Aζb�

2

pc
ay = ρ∗Aηa�

2; pc
by = ρ∗Aηb�

2
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TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A
UNIFORM SHAFT ELEMENT IN BENDINGa

Stiffness, Mass, Gyroscopic, and Dynamic Stiffness Matrices (Sign Convention 2)

1. The matrices here (e.g., the consistent mass matrices), are based on the static deflection
(shape function) of the beam [Eq. (17.40)]. The governing equation is

(mT +mR)v̈−�gv̇+ kv = pc cos�t + ps sin�t

v = [ wya wza θya θza wyb wzb θyb θzb
]T

p = [ Vya Vza Mya Mza Vyb Vzb Myb Mzb
]T

TRANSLATIONAL CONSISTENT MASS MATRIX

mT = ρ∗A�

420




156
0 156 symmetric
0 −22� 4�2

22� 0 0 4�2

54 0 0 13� 156
0 54 −13� 0 0 156
0 13� −3�2 0 0 22� 4�2

−13� 0 0 −3�2 −22� 0 0 4�2




ROTARY CONSISTENT MASS MATRIX

mR = ρ∗Ar2

30�




36
0 36 symmetric
0 −3� 4�2

3� 0 0 4�2

−36 0 0 −3� 36
0 −36 3� 0 0 36
0 −3� −�2 0 0 3� 4�2

3� 0 0 −�2 −3� 0 0 4�2
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TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A
UNIFORM SHAFT ELEMENT IN BENDINGa

GYROSCOPIC MATRIX

g = ρ∗Ar2

15�




0
36 0 skew symmetric
−3� 0 0

0 −3� 4�2 0
0 36 −3� 0 0
−36 0 0 −3� 36 0
−3� 0 0 �2 3� 0 0

0 −3� −�2 0 0 3� 4�2 0




STIFFNESS MATRIX

k = E I

(1+ φ)�3




12
0 12 symmetric
0 −6� (4+ φ)�2

6� 0 0 (4+ φ)�2

−12 0 0 −6� 12
0 −12 6� 0 0 12
0 −6� (2− φ)�2 0 0 6� (4+ φ)�2

6� 0 0 (2− φ)�2 −6� 0 0 (4+ φ)�2




φ = 12E I

G As�2

Set φ = 0 if shear deformation effects are to be neglected.

EQUIVALENT UNBALANCE FORCE VECTORS

pc = ρ∗A�

60
�2




21ηa + 9ηb

21ζa + 9ζb

−3ζa�− 2ζb�

3ηa�+ 2ηb�

9ηa + 21ηb

9ζa + 21ζb

2ζa�+ 3ζb�

−2ηa�− 3ηb�




, ps = ρ∗A�

60
�2




−21ζa − 9ζb

21ηa + 9ηb

−3ηa�− 2ηb�

−3ζa�− 2ζb�

−9ζa − 21ζb

9ηa + 21ηb

2ηa�+ 3ηb�

2ζa�+ 3ζb�
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TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A
UNIFORM SHAFT ELEMENT IN BENDINGa

2. The exact solution of the governing equation for the harmonic motion of a uniform shaft
element is taken as the shape function. This gives the dynamic stiffness matrix kdyn. The
governing equation is

p = kdynv− p

p = [Vya Vza Mya Mza Vyb Vzb Myb Mzb
]T

v = [wya wza θya θza wyb wzb θyb θzb
]T

kdyn =




k11

0 k11 symmetric
0 k21 k22

k21 0 0 k22

k31 0 0 k32 k33

0 k31 k32 0 0 k33

0 k41 k42 0 0 k43 k44

k41 0 0 k42 k43 0 0 k44




p = [p1 p2 p3 p4 p5 p6 p7 p8
]T

k11 = [(e2 + 2βe4)(e1 + εe3)− γ e3e4]E I/�

k21 = [e3(e1 + 2βe3)− e2(e2 + 2βe4)]E I/�

k31 = −(e2 + 2βe4)E I/�

k41 = −e3 E I/� = −k32

k22 = {e2e3 − (e1 + 2βe3)[e4 − σ(e2 + εe4)]} E I/�

k32 = e3 E I/�

k42 = [e4 − σ(e2 + εe4)]E I/�

k33 = [(e1 + εe3)(e2 + 2βe4)− γ e3e4]E I/� = k11

k43 = {(e1 + εe3)e3 − γ e4[e4 − σ(e2 + εe4)]}E I/�

k44 = {e2e3 − (e1 + 2βe3)[e4 − σ(e2 + εe4)]}E I/� = k22
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TABLE 17-5 (continued) TRANSFER, STIFFNESS, MASS, AND GYROSCOPIC MATRICES FOR A
UNIFORM SHAFT ELEMENT IN BENDINGa

p̄1 = V 0
ay p̄5 = V 0

by

p̄2 = V 0
az p̄6 = V 0

bz

p̄3 = M0
az p̄7 = M0

bz

p̄4 = M0
ay p̄8 = M0

by

V 0
aj = −[(e2 + 2βe4)Fw j + e3 Fθ j ]E I/�

M0
aj = {e3 Fw j + [e4 − σ(e2 + εe4)]Fθ j }E I/�

V 0
bj = −FV j + {[(e1 + εe3)(e2 + 2βe4)− γ e3e4]Fw j

+ [(e1 + εe3)e3 − γ e4[e4 − σ(e2 + εe4)]]Fθ j }E I/�

M0
bj = −FM j + {[(e1 + εe3)e3 + σe4[e4 − σ(e2 + εe4)]]Fw j

+ [e2e3 − (e4 + 2βe3)[e4 − σ(e2 + εe4)]]Fθ j }E I/�

( j = y, z)

� = e2
3 − (e2 + 2βe4)[e4 − σ(e2 + εe4)]

Fw j = [paj (e5 − e6/�)+ pbj e6/�)/E I

+ {paj [e3 + εe5 − (e4 + εe6)/�] + pbj (e4 + εe6)/�}/G As

Fθ j = [paj (−e4 + e5/�)− pbj e5/�)/E I

FV j = [−(e2 + εe4)+ (e3 + εe5)]/�− pbj (e3 + εe5)/�

FM j = paj (−e3 + e4/�)− pbj e4/�

( j = y, z)

pay = ρ∗A�2(ηa cos�t − ζa sin�t)

pby = ρ∗A�2(ηb cos�t − ζb sin�t)

paz = ρ∗A�2(ζa cos�t + ηa sin�t)

pbz = ρ∗A�2(ζb cos�t + ηb sin�t)

aSome of this table is based on Ref. [17.3].
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TABLE 17-6 TRANSFER AND STIFFNESS MATRICES FOR A UNIFORM
SHAFT ELEMENT IN BENDING WITH AXIAL TORQUE

Notation
Shear effects are ignored.

E = modulus of elasticity
� = length of shaft section
� = spin speed
I = moment of inertia of cross-sectional area
T = axial torque

Superscripts: s, sine components; c, cosine components

Transfer Matrix (Sign Convention 1)

β = E I/T 2 γ = T �/E I
zb = Ui za

z = [ws
z θ s

y V s
z Ms

y wc
z θc

y V c
z Mc

y ws
y θ s

z V s
y Ms

z wc
y θc

z V c
y Mc

z 1
]T

In this transfer matrix, the shaft is considered as a massless Euler–Bernoulli beam without
shear and gyroscopic effects.

Ui =




1 � A1 A3 A4 A6
1 −A3 A2 A6 A5

1
A7 A8 A9 A10

1 � A1 A3 A4 A6
1 −A3 A2 A6 A5

1
A7 A8 A9 A10

−A4 A6 1 −� A1 −A3
A6 −A5 1 A3 A2

1
A9 −A10 −A7 A8

−A4 A6 1 −� A1 −A3
A6 −A5 1 A3 A2

1
A9 −A10 −A7 A8

1




A1 = β(βT sin γ − �) A2 = 1

T
sin γ A3 = β(1− cos γ )

A4 = �2

2T
− β2T (1− cos γ ) A5 = 1

T
(1− cos γ ) A6 = �

T
− β sin γ

A7 = −βT sin γ A8 = cos γ A9 = βT (1− cos γ ) A10 = sin γ
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TABLE 17-6 (continued) TRANSFER AND STIFFNESS MATRICES FOR A UNIFORM SHAFT
ELEMENT IN BENDING WITH AXIAL TORQUE

Stiffness, Mass, and Gyroscopic Matrices (Sign Convention 2)

(mT +mR)v̈−�gv̇+ (k− kT )v = p = pc cos�t + ps sin�t

v = [ wya wza θya θza wyb wzb θyb θzb
]T

p = [ Vya Vza Mya Mza Vyb Vzb Myb Mzb
]T

The mass matrices mT , mR , gyroscopic matrix g, stiffness matrix k, and loading vectors
pc,ps can be taken from Table 17-5.
Axial torque incremental stiffness matrix:

kT = T




0 0 1/� 0 0 0 −1/� 0
0 0 0 1/� 0 0 0 −1/�

1/� 0 0 − 1
2 −1/� 0 0 1

2
0 1/� 1

2 0 0 −1/� − 1
2 0

0 0 −1/� 0 0 0 1/� 0
0 0 0 −1/� 0 0 0 1/�
−1/� 0 0 − 1

2 1/� 0 0 1
2

0 −1/� 1
2 0 0 1/� − 1

2 0




The total stiffness matrix of the shaft element is the difference (k − kT ) between the
stiffness matrix obtained in Table 17-5 and the incremental stiffness matrix kT .

aSome of the table is from Ref. [17.4].

948 TABLE 17-6 Transfer and Stiffness Matrices



TABLE 17-7 TRANSFER MATRIX FOR BEARING OR SEAL SYSTEMS
Notation

ci j = damping coefficients for bearing or seal system (i, j = y, z)
c∗i j = rotary damping coefficients for bearing or seal system
ki j = stiffness coefficients for bearing or seal system

k∗i j = rotary stiffness coefficients for bearing or seal system
ω = whirl frequency of journal bearing or seal system

Superscripts: s, sine components; c, cosine components

z =




ws
z

θ s
y

V s
z

Ms
y

wc
z

θc
y

V c
z

Mc
y

ws
y

θ s
z

V s
y

Ms
z

wc
y

θc
z

V c
y

Mc
z

1




Ui =




1
1

k′zz 1 −ωc′zz k′zy −ωc′zy

k∗′zz 1 −ωc∗′zz k∗′zy −ωc∗′zy

1
1

ωc′zz k′zz 1 ωc′zy k′zy

−ωc∗′zz k∗′zz 1 ωc∗′zy k∗′zy

1
1

k′yz −ωc′yz k′yy 1 −ωc′yy

k∗′yz −ωc∗′yz k∗′yy 1 −ωc∗′yy

1
1

ωc′yz k′yz ωc′yy k′yy 1
ωc∗′yz k∗′yz ωc∗′yy k∗′yy 1

1




All blanks indicate zeros.
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TABLE 17-7 (continued) TRANSFER MATRIX FOR BEARING OR SEAL SYSTEMS

k′yy kyy 0 kyy λ0y λ1y/λ2y k′yy

k′yz 0 0 0 0 0 k′yz

k′zy 0 0 0 0 0 k′zy

k′zz kzz 0 kzz λ0z λ1zλ2z k′zz

c′yy 0 cyy cyy 0 λ3y/λ2y c′yy

c′yz 0 0 0 0 0 c′yz

c′zy 0 0 0 0 0 c′zy

c′zz 0 czz czz 0 λ3z/λ2z c′zz

λ0 j = k j j (k̄ j j − M jiω
2)/(k j j + k̄ j j − M jiω

2)

λ1 j = λ0 j + ω2(k j j c̄2
j j + k̄ j j c2

j j )− ω4c2
j j M ji

j = y, z

λ2 j = (k j j + k̄ j j − M jiω
2)2 + ω2(c̄ j j + c j j )

2

λ3 j = c j j (k̄ j j − M jiω
2)+ ω2(c2

j j c̄ j j + c j j c̄2
j j )+ c̄ j j k2

j j

k′yy = 1
d2

1+ω2d2
2
(h1d1 + ω2h2d2)

k′yz = 1
d2

1+ω2d2
2
(h3d1 + ω2h4d2)

c′yy = 1
d2

1+ω2d2
2
(h2d1 − h1d2)

c′yz = 1
d2

1+ω2d2
2
(h4d1 − h3d2)

950
TA

B
L

E
17-7

Tran
sfer

M
atrix

fo
r

B
earin

g
o

r
S

ealS
ystem

s



k′zy =
1

d2
1 + ω2d2

2

(h5d1 + ω2h6d2)

k′zz =
1

d2
1 + ω2d2

2

(h7d1 + ω2h8d2)

c′zy =
1

d2
1 + ω2d2

2

(h6d1 − h5d2)

c′zz =
1

d2
1 + ω2d2

2

(h8d1 − h7d2)

d1 = (e1e4 − e3e2)− ω2( f1 f4 − f3 f2)

h1 = (k̄yg1 + k̄yzg5)− ω2(c̄yyg2 + c̄yzg6)

h2 = (k̄yg2 + k̄yzg6)+ (c̄yyg1 + c̄yzg5)

h3 = (k̄yg3 + k̄yzg7)− ω2(c̄yyg4 + c̄yzg8)

h4 = (k̄yg4 + k̄yzg8)+ (c̄yyg3 + c̄yzg7)

k̄y = −ω2 Myi + k̄yy

d2 = (e1 f4 − e3 f2)+ (e4 f1 − e2 f3)

h5 = (k̄zyg1 + k̄zg5)− ω2(c̄zyg2 + c̄zzg6)

h6 = (k̄zyg2 + k̄zg6)+ (c̄zyg1 + c̄zzg5)

h7 = (k̄zyg3 + k̄zg7)− ω2(c̄zyg4 + c̄zzg8)

h8 = (k̄zyg4 + k̄zg8)+ (c̄zyg3 + c̄zzg7)

k̄z = −ω2 Mzi + k̄zz

g1 = (e4kyy − e2kzy)− ω2( f4cyy − f2czy)

g2 = (e4cyy − e2czy)+ ( f4kyy − f2kzy)

g3 = (e4kyz − e2kzz)− ω2( f4cyz − f2czz)

g4 = (e4cyz − e2czz)+ ( f4kyz − f2kzz)

g5 = (−e3kyy + e1kzy)− ω2(− f3cyy + f1czy)

g6 = (−e3cyy + e1czy)+ (− f3kyy + f1kzy)

g7 = (−e3kyz + e1kzz)− ω2(− f3cyz + f1czz)

g8 = (−e3cyz + e1czz)+ (− f3kyz + f1kzz)

f1 = c̄yy + cyy

f2 = c̄yz + cyz

f3 = c̄zy + czy

f4 = c̄zz + czz

e1 = −ω2 Myi + k̄yy + kyy

e2 = k̄yz + kyz

e3 = k̄zy + kzy

e4 = −ω2 Mzi + k̄zz + kzz

The values of k∗′yy , k∗′yz , k∗′zy , k∗′zz , c∗′yy , c∗′yz , c∗′zy , and c∗′zz in Ui are taken from this table by replacing the coefficients kyy, kyz , . . . , cyy , cyz ,
. . . in the formulas above with the corresponding rotary coefficients k∗yy, k∗yz , . . . , c∗yy , c∗yz , . . . , respectively.
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TABLE 17-8 TRANSFER MATRIX FOR AN ISOTROPIC BEARING
SYSTEM

Notation
� = spin speed of rotor
λn = damping ratio

s =



i� for unbalanced response
iωn for undamped critical speed
λn + iωn for stability analysis or damped free vibration

Mi = mass of bearing pedestal
ωn = undamped critical speed




1 0 0 0 0
0 1 0 0 0
−zi 0 1 0 0

0 0 0 1 0
0 0 0 0 1






w
θ
V
M
1




Ui z

z = [w θ V M 1
]T

w = wz + iwy, θ = θy + iθz
V = Vz + iVy, M = My + i Mz
zb = Ui za

zi = (k + sc)(k̄ + sc̄ + s2 Mi )

k + sc + k̄ + sc̄ + s2 Mi

k = kyy = kzz, c = cyy = czz

k̄ = k̄yy = k̄zz, c̄ = c̄yy = c̄zz
Mi = Myi = Mzi
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TABLE 17-9 MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A
CONICAL SHAFT ELEMENT IN BENDINGa

Notation

Aa = cross-sectional area at left end of element, = π(r2
oa − r2

ia)
Ia = mass moment of gyration at left end of element,
= ρ∗Aa(π/4)(r4

oa − r4
ia)

r2
a = radius of gyration of mass moment at left end of element, = Ia/Aa
ri = inner radius of element at any x , = ria[1+ (ε − 1)ξ ]
ro = outer radius of element at any x , = roa[1+ (σ − 1)ξ ]
ρ∗ = mass per unit volume
� = spin speed
ξ = x/� ε = rib/ria σ = rob/roa
e = eccentricity of mass center

(ηa, ζa), (ηb, ζb) = mass center eccentricity at x = a and x = b, respectively

Superscripts: s, sine component; c, cosine component

α1 = 2[r2
oa(σ − 1)− r2

ia(ε − 1)]/(r2
oa − r2

ia)

α2 = [r2
oa(σ − 1)2 − r2

ia(ε − 1)2]/(r2
oa − r2

ia)

α = ρ∗Aa�/362,880
β = ρ∗ Ia/(362,880�)

γ = E Ia/(5040�3)

m = ρ∗Aa�
2/5040

δ1 = 4[r4
oa(σ − 1)− r4

ia(ε − 1)]/(r4
oa − r4

ia)

δ2 = 6[r4
oa(σ − 1)2 − r4

ia(ε − 1)2]/(r4
oa − r4

ia)

δ3 = 4[r4
oa(σ − 1)3 − r4

ia(ε − 1)3]/(r4
oa − r4

ia)

δ4 = [r4
oa(σ − 1)4 − r4

ia(ε − 1)4]/(r4
oa − r4

ia)

Coordinate System (Sign Convention 2)
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TABLE 17-9 (continued) MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A CONICAL
SHAFT ELEMENT IN BENDINGa

Equations of Motion

(mT +mR)v̈−�gv̇+ kv = pc cos�t + ps sin�t

v = [ wya wza θya θza wyb wzb θyb θzb
]T

All matrices are of size 8 × 8, and any term not explicitly defined is zero. Since all of the
matrices are either symmetric or skew symmetric, only the lower triangle is given, with the
type of symmetry indicated for each matrix.

Element Matrices

TRANSLATIONAL CONSISTENT MASS MATRIX mT (SYMMETRIC)
mT (1, 1) = mT (2, 2) = α(134,784+ 31,104α1 + 10,994α2)
mT (4, 1) = −mT (3, 2) = α�(19,008+ 6048α1 + 2448α2)
mT (5, 1) = mT (6, 2) = α(46,656+ 23,328α1 + 13,248α2)
mT (7, 2) = −mT (8, 1) = α�(11,232+ 5184α1 + 2736α2)

mT (3, 3) = mT (4, 4) = α�2(3456+ 1296α1 + 576α2)
mT (6, 3) = −mT (5, 4) = −α�(11,232+ 6048α1 + 3600α2)

mT (7, 3) = mT (8, 4) = −α�2(2592+ 1296α1 + 720α2)
mT (5, 5) = mT (6, 6) = α(134,784+ 103,680α1 + 83,520α2)
mT (8, 5) = −mT (7, 6) = −α�(19,008+ 12,960α1 + 9360α2)

mT (7, 7) = mT (8, 8) = α�2(3456+ 2160α1 + 1440α2)

ROTARY CONSISTENT MASS MATRIX mR (SYMMETRIC)
m R(1, 1) = m R(2, 2) = β(435,456+ 217,728δ1 + 124,416δ2 + 77,760δ3 + 51,840δ4)
m R(4, 1) = −m R(3, 2) = β�(36,288+ 36,288δ1 + 25,920δ2 + 18,144δ3 + 12,960δ4)
m R(8, 1) = −m R(7, 2) = β�(36,288− 10,368δ2 − 12,960δ3 − 12,960δ4)

m R(3, 3) = m R(4, 4) = β�2(48,684+ 12,096δ1 + 6192δ2 + 4752δ3 + 3456δ4)

m R(7, 3) = m R(8, 4) = −β�2(12,096+ 6048δ1 + 5184δ2 + 4752δ3 + 4320δ4)

m R(7, 7) = m R(8, 8) = β�2(48,384+ 36,288δ1 + 31,104δ2 + 28,080δ3 + 25,920δ4)
m R(5, 1) = m R(6, 2) = −m R(5, 5) = −m R(6, 6) = −m R(1, 1)
m R(6, 3) = −m R(5, 4) = m R(4, 1)
m R(8, 5) = −m R(7, 6) = −m R(8, 1)

GYROSCOPIC MATRIX g (SKEW SYMMETRIC)
g(2, 1) = β(870,912+ 435,456δ1 + 248,832δ2 + 155,520δ3 + 103,680δ4)
g(3, 1) = −β�(72,576+ 72,576δ1 + 51,840δ2 + 36,288δ3 + 25,920δ4)
g(7, 1) = −β�(72,576− 20,736δ2 − 25,920δ3 − 25,920δ4)

g(4, 3) = β�2(96,768+ 24,192δ1 + 13,824δ2 + 9504δ3 + 6912δ4)

g(8, 3) = −β�2(24,192+ 12,096δ1 + 10,368δ2 + 9504δ3 + 8640δ4)

g(8, 7) = β�2(96,768+ 72,576δ1 + 62,208δ2 + 56,160δ3 + 51,840δ4)
g(6, 1) = −g(5, 2) = −g(6, 5) = −g(2, 1)
g(4, 2) = g(5, 3) = g(6, 4) = g(3, 1)
g(8, 2) = −g(7, 5) = −g(8, 6) = g(7, 1)
g(7, 4) = −g(8, 3)
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TABLE 17-9 (continued) MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A CONICAL
SHAFT ELEMENT IN BENDINGa

STIFFNESS MATRIX k (SYMMETRIC)
k(1, 1) = γ (60,480+ 30,240δ1 + 24,192δ2 + 21,168δ3 + 19,008δ4)
k(4, 1) = γ �(30,240+ 10,080δ1 + 7056δ2 + 6048δ3 + 5472δ4)
k(8, 1) = γ �(30,240+ 20,160δ1 + 17,136δ2 + 15,120δ3 + 13,536δ4)

k(3, 3) = k(4, 4) = γ �2(20,160+ 5040δ1 + 2688δ2 + 2016δ3 + 1728δ4)

k(7, 3) = k(8, 4) = γ �2(10,080+ 5040δ1 + 4368δ2 + 4032δ3 + 3744δ4)

k(7, 7) = k(8, 8) = γ �2(20,160+ 15,120δ1 + 12,768δ2 + 11,088δ3 + 9792δ4)
k(5, 1) = k(6, 2) = −k(2, 2) = −k(5, 5) = −k(6, 6) = −k(1, 1)
k(3, 2) = k(5, 4) = −k(6, 3) = −k(4, 1)
k(7, 2) = k(8, 5) = −k(7, 6) = −k(8, 1)

UNBALANCED FORCE VECTORS pc , ps

pc(1) = mηa(1764+ 420α1 + 156α2)+ mηb(756+ 336α1 + 156α2)
pc(2) = mζa(1764+ 420α1 + 156α2)+ mζb(756+ 336α1 + 156α2)
pc(3) = −m�ζa(252+ 84α1 + 36α2)− m�ζb(168+ 84α1 + 48α2)
pc(4) = m�ηa(252+ 84α1 + 36α2)+ m�ηb(168+ 84α1 + 48α2)
pc(5) = mηa(756+ 420α1 + 264α2)+ mηb(1764+ 1344α1 + 1080α2)
pc(6) = mζa(756+ 420α1 + 264α2)+ mζb(1764+ 1344α1 + 1080α2)
pc(7) = m�ζa(168+ 84α1 + 48α2)+ m�ζb(252+ 168α1 + 120α2)
pc(8) = −m�ηa(168+ 84α1 + 48α2)− m�ηb(252+ 168α1 + 120α2)
ps(1) = −pc(2) ps(3) = −pc(4)
ps(2) = pc(1) ps(4) = pc(3)
ps(5) = −pc(6) ps(7) = −pc(8)
ps(6) = pc(5) ps(8) = pc(7)

aAdapted from Ref. [17.5].

TABLE 17-9 Conical Shaft Element in Bending 955



TABLE 17-10 MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A
HELICALLY FLUTED SHAFT ELEMENT IN BENDINGa

Notation
A = cross-sectional area
r1 = radius of gyration of cross-sectional area about ζ axis, = √I1/A
r2 = radius of gyration of cross-sectional area about η axis, = √I2/A
ρ∗ = mass per unit volume

xyz = inertial frame
XY Z = rotating coordinates with constant rotational speed �
Xηζ = rotating fluted coordinates (η, ζ

are principal axes of inertia of sectional area)
� = length of element
� = spin speed

Px , Pη, Pζ , T = Mx = forces and torque acting on end of the shaft
in Xηζ coordinates

I1 = moment of inertia of section about ζ
I2 = moment of inertia of section about η
β0 = flute helix angle per unit length

Coordinate Systems (Sign Convention 2)

Equations of Motion

(mT +mR)v̈+ g�v̇+ kv = 0

v = [wηa wζa θηa θζa wηb wζb θηb θζb
]T

Element Matrices

TRANSLATIONAL CONSISTENT MASS MATRIX mT :

mT = ρ∗A�

420




156
0 156 symmetric

0 −22� 4�2

22� 0 0 4�2

54 0 0 13� 156
0 54 −13� 0 0 156

0 13� −3�2 0 0 22� 4�2

−13� 0 0 −3�2 −22� 0 0 4�2
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TABLE 17-10 (continued) MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A HELICALLY
FLUTED SHAFT ELEMENT IN BENDINGa

ROTARY CONSISTENT MASS MATRIX mR :

mR = ρ∗A

30�




36r2
1

0 36r2
2 symmetric

0 −3�r2
2 4�2r2

2

3�r2
1 0 0 4�2r2

1

−36r2
1 0 0 −3�2r2

1 36r2
1

0 −36r2
2 3�r2

2 0 0 36r2
2

0 −3�r2
2 −�2r2 0 0 3�r2

2 4�2r2
2

3�r2
1 0 0 −�2r2

1 −3�r2
1 0 0 4�2r2

1




GYROSCOPIC MATRIX g:

g = ρ∗A�

210




0
156 0 skew symmetric
22� 0 0
0 −22� −4�2 0
0 −54 13� 0 0
54 0 0 13� 156 0
−13� 0 0 −3�2 −22� 0 0

0 13� 3�2 0 0 22� −4�2 0




STIFFNESS MATRIX k:

k =∑7
i=1 ki , where k1 = −�2mT

k2 = E

�3




12I1
0 12I2 symmetric
0 −6�I2 4�2 I2

6�I1 0 0 4�2 I1
−12I1 0 0 −6�I1 12I1

0 −12I2 6�I2 0 0 12I2

0 −6�I2 2�2 I2 0 0 6�I2 4�2 I2

6�I1 0 0 2�2 I1 −6�I1 0 0 4�2 I1




k3 = 2Eβ0

�




0
0 0 symmetric
p 0 0
0 −p −q 0
0 0 −p 0 0
0 0 0 p 0 0
−p 0 0 1

2 p� p 0 0
0 p 1

2 p� 0 0 −p q 0




p = 1

�
(I1 + I2)

q = 1

2
(I2 − I1)
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TABLE 17-10 (continued) MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A HELICALLY
FLUTED SHAFT ELEMENT IN BENDINGa

k4 =




36c
0 36d symmetric
0 −3d� 4d�2

3c� 0 0 4c�2

−36c 0 0 −3c� 36c
0 −36d 3d� 0 0 36d
0 −3d� −d�2 0 0 3d� 4d�2

3c� 0 0 −c�2 3c� 0 0 4c�2




c = 4E I2β
2
0 + Px

30�

d = 4E I1β
2
0 + Px

30�

k5 = Eβ2
0

15�




36I1
0 36I2 symmetric
0 −18�I2 4�2 I2

18�I1 0 0 12�2 I1
−36I1 0 0 −3�I1 36I1

0 −36I2 3�I2 0 0 36I2

0 −3�I2 −�2 I2 0 0 18�I2 4�2 I2

3�I1 0 0 −�2 I1 −18�I1 0 0 4�2 I1




k6 = 1

60




0
−30p′ 0 symmetric
3q ′� 0 0

0 −6q ′� 0 0
0 −30q ′ −6q ′� 0 0

30q ′ 0 0 6q ′� 30p′ 0
−6q ′� 0 0 −q ′�2 6q ′� 0 0

0 6q ′� q ′�2 0 0 −6q ′� 0 0




p′ = 2E(I1 + I2)β
3
0 − Pxβ0

q ′ = 2E(I1 − I2)β
3
0
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TABLE 17-10 (continued) MASS, GYROSCOPIC, AND STIFFNESS MATRICES FOR A HELICALLY
FLUTED SHAFT ELEMENT IN BENDINGa

k7 = �

420




156c′
0 156d ′ symmetric
0 −22�d ′ 4�2d ′

22�c′ 0 0 4�2c′
54c′ 0 0 13�c′ 156c′

0 54d ′ −13�d ′ 0 0 156d ′
0 13�d ′ −3�2d ′ 0 0 22�d ′ 4�2d ′

−13�c′ 0 0 −3�2c′ −22�c′ 0 0 4�2c′




c′ = E I1β
4
0 + Pxβ

2
0

d ′ = E I2β
4
0 + Pxβ

2
0

aAdapted from Ref. [17.6].
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TABLE 17-11 MASS AND STIFFNESS MATRICES FOR ANNULAR ELASTIC
THIN DISK ELEMENTSa

Notation

C = constant expressing variation in radial stress; C =
{

2 for m = 0
1 for m ≥ 1

E = modulus of elasticity
h(r) = thickness

m = number of nodal diameters (see Chapter 18 for more complete definition of m)
r = radius
ν = Poisson’s ratio

ρ∗ = mass per unit volume
� = spin speed

If linear thickness variation within the element is assumed,

h(r) = α + βr α = harb − hbra

rb − ra
β = hb − ha

rb − ra

Coordinate System

Equations of Motion

m ¨v+(kB + kC)v = 0 with v = [wxa wxb θφa θφb
]T

Element Matrices

MASS MATRIX m:

m = BT mdB
where

md =




Q1 symmetric
Q2 Q3
Q3 Q4 Q5
Q4 Q5 Q6 Q7


 Qk = Cπρ∗

∫ rb
ra

h(r)rk dr
(k = 1, 2, . . . , 7)
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TABLE 17-11 (continued) MASS AND STIFFNESS MATRICES FOR ANNULAR ELASTIC THIN DISK
ELEMENTSa

BENDING STIFFNESS MATRIX kB : kB = BT kbB
where

kb(1, 1) = P−3(m4 + 2m2 − 2νm2) kb(2, 3) = P0(m4 − 3m2 − 2νm2 + 2ν + 2)
kb(1, 2) = P−2(m4 − m2) kb(2, 4) = P1(m4 − 4m2 − 6νm2 + 6ν + 3)
kb(1, 3) = P−1(m4 − 4m2) kb(3, 3) = P1(m4 − 2m2 − 6νm2 + 8ν + 8)
kb(1, 4) = P0(m4 − 7m2 − 2νm2) kb(3, 4) = P2(m4 − m2 − 12νm2 + 18ν + 18)
kb(2, 2) = P−1(m4 − 2m2 + 1) kb(4, 4) = P3(m4 + 2m2 − 20νm2 + 36ν + 45)
kb(i, j) = kb( j, i) i and j = 1, 2, 3, 4

Pk = CπE

12(1− ν2)

∫ rb
ra

h3(r)rk dr

(k = −3,−2, . . . , 0, . . . , 3)

CENTRIFUGAL STIFFNESS MATRIX kC : kC = BT kGB
where

kG =




m2S−1 symmetric

m2S0 R1 + m2S1

m2S1 2R2 + m2S2 4R3 + m2S3

m2S2 2R3 + m2S3 6R4 + m2S4 9R5 + m2S5




Rk = Cπ
∫ rb

ra
rkh(r)σr (r) dr

(k = −1, 0, . . . , 5)

Sk = Cπ
∫ rb

ra
rkh(r)σφ(r) dr

σ r (r) = σrarb − σrbra

rb − ra
+ σrb − σra

rb − ra
r

σφ(r) = σφarb − σφbra

rb − ra
+ σφb − σφa

rb − ra
r

σra , σφa , and σrb, σφb are the radial and tangential stresses at the positions r = ra and
r = rb, respectively. These stresses can be calculated according to the dimensions and
shape of the disk by using the formulas in Table 19-3.
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TABLE 17-11 (continued) MASS AND STIFFNESS MATRICES FOR ANNULAR ELASTIC THIN
DISK ELEMENTSa

B(1, 1) = r2
b (rb − 3ra)/(rb − ra)

3 B(3, 1) = −3(ra + rb)/(rb − ra)
3

B(1, 2) = rar2
b/(rb − ra)

2 B(3, 2) = (ra + 2rb)/(rb − ra)
2

B(1, 3) = r2
a (3rb − ra)/(rb − ra)

3 B(3, 3) = 3(ra + rb)/(rb − ra)
3

B(1, 4) = r2
arb/(rb − ra)

2 B(3, 4) = (2ra + rb)/(rb − ra)
2

B(2, 1) = 6rarb/(rb − ra)
3 B(4, 1) = 2/(rb − ra)

3

B(2, 2) = −rb(2ra + rb)/(rb − ra)
2 B(4, 2) = −1/(rb − ra)

2

B(2, 3) = −6rarb/(rb − ra)
3 B(4, 3) = −2/(rb − ra)

3

B(2, 4) = −ra(ra + 2rb)/(rb − ra)
2 B(4, 4) = −1/(rb − ra)

2

The global matrices of the whole disk can be assembled using these element matrices
along the radial direction as in beam calculation problems. See Appendix III for
details.

aAdapted from Ref [17.7].
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TABLE 17-12 STIFFNESS AND DAMPING MATRICES FOR SHORT
JOURNAL BEARING, TILTING PAD BEARING, AND ANNULAR PLAIN SEAL
ELEMENTSa

Notation
� = angular velocity of journal (spin speed)

Fy, Fz = bearing or seal forces in y and z directions, respectively
w∗y, w∗z = relative displacements between journal

and bearing pedestal or seal

Bearing or seal force: F = −kv− cv̇ F = [Fy Fz]T v = [w∗y w∗z ]T
Stiffness matrix: k =

[
kyy kyz
kzy kzz

]

Damping matrix: c =
[

cyy cyz
czy czz

]

Bearings: 0 j = center of journal
0b = center of bearing
µ = lubricant viscosity
R = bearing radius
c = nominal bearing clearance, = C/R

D = bearing diameter, = 2R
C = bearing radial clearance (L)
� = bearing width or length

e j = journal eccentricity
S = Sommerfeld number
ε = nominal eccentricity, = e j/C

W̄ = static load supported by bearing,
= µ(30�/π)�D(R/C)2/S

Seals: c0 = seal clearance before deformation (L)

pe = seal outlet pressure of oil (F/L2)
� = seal width or length

pi = seal inlet pressure of oil (F/L2)
R = seal radius
λ = friction loss factor

ν1, ν2 = Poisson’s ratio of seal and shaft

ρ∗L = fluid (oil) density (M/L3)
γ = inlet loss factor (≈ 0.5)

E1, E2 = Young’s moduli of seal and shaft
c1, c2 = seal inlet and outlet clearance

after deformation (L)
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TABLE 17-12 (continued) STIFFNESS AND DAMPING MATRICES FOR SHORT JOURNAL
BEARING, TILTING PAD BEARING, AND ANNULAR PLAIN SEAL ELEMENTSa

Short Journal Bearing (π-film)

kyy = W̄

C

4[π2(2− ε2)+ 16ε2]
[π2(1− ε2)+ 16ε2]3/2

kyz = − W̄

C

π[π2(1− ε2)2 − 16ε4]
ε(1− ε2)1/2[π2(1− ε2)+ 16ε2]3/2

kzy = W̄

C

π[π2(1− ε2)(1+ 2ε2)+ 32ε2(1+ ε2)]
ε(1− ε2)1/2[π2(1− ε2)+ 16ε2]3/2

kzz = W̄

C

4[π2(1− ε2)(1+ 2ε2)+ 32ε2(1+ ε2)]
(1− ε2)[π2(1− ε2)+ 16ε2]3/2

cyy = W̄

�C

2π(1− ε2)1/2[π2(1+ 2ε2)− 16ε2]
ε[π2(1− ε2)+ 16ε2]3/2

cyz = czy = − W̄

�C

8[π2(1+ 2ε2)− 16ε2]
[π2(1− ε2)+ 16ε2]3/2

czz = W̄

�C

2π[π2(1− ε2)2 + 48ε2]
ε(1− ε2)1/2[π2(1− ε2)+ 16ε2]3/2

S = 1

(�/D)2

1− ε2

π[π2 + (16− π2)ε2]1/2
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TABLE 17-12 (continued) STIFFNESS AND DAMPING MATRICES FOR SHORT JOURNAL
BEARING, TILTING PAD BEARING, AND ANNULAR PLAIN SEAL ELEMENTSa

Tilting Pad Bearingb

kyy =




4.01
W̄

C
e−3.84ε (ε > 0.3)

W̄

C
(2.01− 2.24ε) (ε ≤ 0.3)

kzz = 1.67
W̄

C
e2.47ε

kyz = kzy = 0

cyy =




13.5
W̄

�C
(1− ε)2.11 (ε > 0.3)

35.0
W̄

�C
e−6.34ε (ε ≤ 0.3)

czz = W̄

�C
(30− 83.2ε + 76.4ε2)

cyz = czy = 0

S = 6.125

π(�/D)2e6.34ε
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TABLE 17-12 (continued) STIFFNESS AND DAMPING MATRICES FOR SHORT JOURNAL
BEARING, TILTING PAD BEARING, AND ANNULAR PLAIN SEAL ELEMENTSa

Annular Plain Seal

q1 =
∫ �

0

1+ γ + c2
1(λ+ δ) f (x)/δ

1+ γ + c2
1(λ+ δ) f (c2)/δ

dx

δ = R

E1�
(pi − pe)

[
(1− ν1)+ E1

E2
(1− ν2)

]

f (x) = 1

x2
− 1

c2
1

where

kyy = −π

ρ
Rm2

[
(δ + λ)d1 −

(
ρ∗L�

m

)2

d2

]

kyz = − 1
2πR�m[(δ + λ)d5 + d3 − d4]

kzy = −kyz

kzz = kyy

cyy = −πRm[(δ + λ)d5 + d3 − d4]
cyz = −czy = −ρ∗LπR�d2

czz = cyy

m = c1

{
2ρ∗L (pi − pe)

1+ γ + (1− λ/δ)[(c1/c2)
2 − 1]

}1/2

d1 = �

c2
1c2

2

(
�

2
− q1

c1

c2

)

d2 = �

2δ2
(c1 + c2)+ c1c2

δ3
log

c2

c1
+ q1

δ2

(
δ�+ c1 log

c2

c1

)

d3 = �2

2c1c2
− 2�

c1δ
− q1�

2c1c2

(
3+ c1

c2

)

d4 = �2

c1δ
2
(c1 + c2) log

c2

c1
− q1

c1δ
log

c2

c1

d5 = (c1 + c2)�

2c1c2δ
2
+ 1

δ3
log

c2

c1
− q1�

2

2c1c2
2

When the effect of elastic deformation is ignored, set
c1 = c2 = c E1 = E2 = E ν1 = ν2 = ν

aSome of this table is based on Refs. [17.8] and [17.9].
bFive pads, zero preload, 54◦ pad arc length, 0.5 offset, �/D < 0.5, and static load on bottom pad.
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TABLE 17-13 NATURAL FREQUENCIES OF VIBRATION OF A RADIAL BEAM OF CIRCULAR OR SQUARE CROSS
SECTIONa

Notation
Vibration occurs in the plane and perpendicular to the plane of rotation.
A = cross-sectional area
I = moment of inertia of cross-sectional area about

transverse neutral axis (ξ or η axes); for
circular cross section I = 1

4πr4, for square cross
section I = 1

12 h4

E = modulus of elasticity
R0 = hub radius
� = spin speed

ωcξ = natural frequency for motion in ξ direction
ωcη = natural frequency for motion in η direction

Coordinate Systems

Critical Speeds

ω2
cξ = α

E I

ρ∗AL4
+
{

β I

AL2
+ γ

}
�2 ω2

cη = α
E I

ρ∗AL4
+
{

β I

AL2
+ γ − 1

}
�2

where α, β, and γ are given below.
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TABLE 17-13 (continued) NATURAL FREQUENCIES OF VIBRATION OF A RADIAL BEAM OF CIRCULAR OR SQUARE CROSS SECTIONa

Boundary Conditions α β γ

1.
Free–hinged 244.08363 −152.552− 457.657

(
R0

L

)
− 732.251

(
R0

L

)2

−3.117− 9.726

(
R0

L

)
− 11.784

(
R0

L

)2

2.
Hinged–free

244.08363 305.105+ 457.657

(
R0

L

)
6.609+ 9.726

(
R0

L

)

3.
Free–guided 31.30813 4.989− 38.160

(
R0

L

)
− 93.924

(
R0

L

)2

−0.924− 3.980
(

R0

L

)
− 3.206

(
R0

L

)2

4.
Guided–free

31.30813 43.149+ 38.160

(
R0

L

)
3.056+ 3.980

(
R0

L

)

5.
Hinged–hinged

π4 3

4
π2 + π4

4
−1

4
+ π2

12
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6.
Hinged–guided

π4

16

21

16
π2 + π4

64
+ 9

8
π2
(

R0

L

)
1

4
+ π2

48
+ 1

2

(
R0

L

)

7.
Guided–hinged

π4

16

3

16
π2 + π4

64
− 9

8
π2
(

R0

L

)
−1

4
+ π2

48
− 1

2

(
R0

L

)

8.
Guided–guided

π4 21

4
π2 + π4

4

1

4
+ π2

12

9.
Clamped–free

162

13

1620

91
+ 405

13

(
R0

L

)
61

52
+ 81

52

(
R0

L

)

10.
Free–clamped

162

13
−1215

91
− 405

13

(
R0

L

)
− 486

13

(
R0

L

)2

− 5

13
− 81

52

(
R0

L

)
+ 135

182

(
R0

L

)2
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TABLE 17-13 (continued) NATURAL FREQUENCIES OF VIBRATION OF A RADIAL BEAM OF CIRCULAR OR SQUARE CROSS SECTIONa

11.
Clamped–hinged

4536

19

1620

19
+ 1134

19

(
R0

L

)
1

19
− 27

19

(
R0

L

)

12.
Hinged–clamped

4536

19

486

19
− 1134

19

(
R0

L

)
28

19
+ 27

19

(
R0

L

)

13.
Clamped–guided

63

2

1287

32
+ 1323

32

(
R0

L

)
25

64
+ 9

64

(
R0

L

)

14.
Guided–clamped

63

2
−9

8
− 1323

32

(
R0

L

)
1

4
− 9

64

(
R0

L

)

15.
Clamped–clamped

504 90 1

aBased on Ref. [17.15].
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TABLE 17-14 MASS AND STIFFNESS MATRICES FOR RADIAL BEAM
ELEMENTa

Notation

Vibration is in the direction (ξ ) perpendicular to the neutral axis of the beam.

A = cross-sectional area
ρ∗ = mass per unit volume

I = moment of inertia of section
about η axis

E = modulus of elasticity
� = rotational speed (spin speed of rotor)
r = radius of gyration, r2 = I/A

Coordinate System (Sign Convention 2)

Equations of Motion

(mT +mR)v̈+ (kB + kC −�2 sin�mT )v = 0

with v = [wξa θηa wξb θηb
]T , wξa , θηa and wξb, θηb are the displacements and slopes

at nodes a and b, respectively.

Element Matrices

TRANSLATIONAL CONSISTENT MASS MATRIX mT :

mT = ρ∗A�

420




156 symmetric
22� 4�2

54 13� 156
−13� −3�2 −22� 4�2




ROTARY CONSISTENT MASS MATRIX mR :

mR = ρ∗Ar2

120�




36 symmetric
3� 4�2

−36 −3� 36
3� −�2 −3� 4�2




BENDING STIFFNESS MATRIX kB :

kB = E I

�3




12 symmetric
6� 4�2

−12 −6� 12
6� 2�2 −6� 4�2
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TABLE 17-14 (continued) MASS AND STIFFNESS MATRICES FOR RADIAL BEAM ELEMENTa

CENTRIFUGAL STIFFNESS MATRIX kC :
kC = kC1 + kC2 + kC3

where

kC1 = ρ∗A��2

30
C1




36 symmetric
3� 4�2

−36 −3� 36
3� −�2 −3� 4�2




kC2 = ρ∗A��2

60
C2




36 symmetric
6� 2�2

−36 −6� 36
0 −�2 0 6�2




kC3 = ρ∗A��2

210
C3




72 symmetric
15� 4�2

−72 −15� 72
−6� −3�2 6� 18�2




C1 = R0

�2
(L − L ′)+ 1

2�2
(L2 − L

′2) C2 = 1

�
(R0 + L ′) C3 = −1

2

aBased on Ref. [17.16].
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TABLE 17-15 TRANSFER, STIFFNESS, AND MASS MATRICES FOR
AXIAL VIBRATION OF RADIAL ROTATING BAR ELEMENT

Notation

A = cross-sectional area
� = rotational speed

R0 = hub radius
E = modulus of elasticity
ρ∗ = mass per unit volume
L = length of beam

L ′ = total length of elements before, not including
the element under consideration

Transfer Matrix (Sign Convention 1)

ω = vibration frequency
P = axial load

β2 = ρ∗(ω2 +�2)/E
zb = Ui za z = [wZ P 1]T
EXACT TRANSFER MATRIX:

Ui =



cosβ� sinβ�/AEβ Fw

−AEβ sinβ� cosβ� FP

0 0 1




Fw = −ρ∗�2

E

[
(R0 + L ′)1− cosβ�

β2
+ β�− sinβ�

β3

]

FP = −ρ∗A�2
[
(R0 + L ′) sinβ�

β
+ 1− cosβ�

β2

]

LUMPED MASS TRANSFER MATRIX (mass lumped at middle point of element of
length �):

Ui =



1 �/E A Fw

−ρ∗A(ω2 +�2)� 1 FP

0 0 1




Fw = 0

FP = −ρ∗A�2[R0 + L ′ + 1
2�]�
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TABLE 17-15 (continued) TRANSFER, STIFFNESS, AND MASS MATRICES FOR AXIAL
VIBRATION OF RADIAL ROTATING BAR ELEMENT

Stiffness and Mass Matrices (Sign Convention 2)

γ 2 = ρ∗/E
α = γ��

mv̈+ (kA + kC )v = 0
v = [wZa wZb]T p = [Pa Pb]T

TRANSLATIONAL CONSISTENT MASS MATRIX m:

m = ρ∗A

[
m11 m12
m21 m22

]

where

m11 = (2 sin2 α − 1) sin 2α − 4 cosα sin3 α + 2α

4α sin2 α

m12 = m21 = cosα sin 2α + 2 sin3 α − 2α cosα

4α sin2 α

m22 = 2α − sin 2α

4α sin2 α

AXIAL STIFFNESS MATRIX kA :

kA = AE
α2

�

[
ka11 ka12
ka21 ka22

]

where

ka11 = (1− 2 sin2 α) sin 2α + 4 cosα sin3 α + 2α

4α sin2 α

ka12 = ka21 = −cosα sin 2α + 2 sin3 α + 2α cosα

4α sin2 α

ka22 = 2α + sin 2α

4α sin2 α
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TABLE 17-15 (continued) TRANSFER, STIFFNESS, AND MASS MATRICES FOR AXIAL VIBRATION OF RADIAL ROTATING BAR ELEMENT

Stiffness and Mass Matrices (Sign Convention 2)

CENTRIFUGAL STIFFNESS MATRIX kC :

kc = ρ∗A�2�3(pm− qd− 1
2 e)

where p = R0

�2
(L − L ′)+ 1

2�2
(L2 − L

′2), q = 1

�
(R0 + L ′)

m is the translational consistent mass matrix

d =
[

d11 d12

d21 d22

]

d11 = 4(α sin2 α − sin 2α − 2α) sin 2α + (2 sin2 α + 2α sin 2α − 1) cos 2α − 2 sin2 α + 2α2 + 1

8α2 sin2 α

d12 = d21 = (sinα + 2α cosα) sin 2α + (cosα − 2α sinα) cos 2α − (1+ 2α2) cosα

8α2 sin2 α

d22 = −2α sin 2α − cos 2α + 2α2 + 1

8α2 sin2 α

e =
[

e11 e12

e21 e22

]

e11 = [6(2α
2 − 1) sin2 α − 6α sin 2α − 6α2 + 3] sin 2α + [12α sin2 α + 3(2α2 − 1) sin 2α − 6α] cos(2α)+ 3 sin 2α + 4α3

24α3 sin2 α

e12 = e21 = [6α sinα + 3(2α2 − 1) cosα] sin 2α + [3(1− 2α2) sinα + 6α cosα] cos 2α − 3 sinα − 4α3 cosα

24α3 sin2 α

e22 = 3(1− 2α2) sin 2α − 6α cos 2α + 4α3

24α3 sin2 α
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978 PLATES
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A plate is a flat structural member whose thickness is no larger than one-tenth of the
length of the smallest lateral dimension. Most of the plate formulas presented here
are based on the Kirchhoff–Love assumptions that the plate is thin; deflections and
slopes are small; the plate material is linear, elastic, homogeneous, and isotropic;
normal stresses transverse to the middle surface are negligible; and straight lines
normal to the middle surface before deformation remain straight and normal to that
surface after deformation. Some formulas for large deflections, nonuniform proper-
ties, and anisotropic and nonhomogeneous materials are provided. Other complica-
tions such as rotary inertia, shear deformation, and inelastic behavior are discussed
in Refs. [18.1] and [18.2]. The sign convention for positive displacement, slopes,
moments, and forces is shown in the figures and tables as appropriate.

18.1 NOTATION

The units for most of the definitions are given in parentheses, using L for length, F
for force, and T for time.

All Plates

C Applied concentrated moment per unit length (F)

D Flexural rigidity of a plate, = Eh3/[12(1− ν2)] (F L)

E Young’s modulus (F/L2)

h Plate thickness (L)

p, ps Transverse applied load per unit area (F/L2)

p1 Applied uniform transverse force per unit area (F/L2)

t Time (T )

T Temperature change (degrees), temperature change with respect to refer-
ence temperature

w Transverse plate deflection (L)

W Applied concentrated force per unit length (F/L)

WT Concentrated force applied at a point (F) or uniformly distributed force
applied on a small area (F/L2)

ν Poisson’s ratio

ρ Plate mass per unit area (FT 2/L3)

∇2 Laplacian differential operator

∇4 Biharmonic differential operator
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Circular Plates

a0 Inner radius of plate (L)
aL Outer radius of plate (L)

Dr , Dφ, Drφ Flexural rigidities (F L)
Mr ,M Bending moment per unit length on planes normal to radial (r axis)

direction (F L/L); the net internal forces and moments per unit
length are referred to as stress resultants and are defined as in the
“Notation” section of Chapter 20.

Mrφ Twisting moment per unit length on either an r or φ coordinate
plane (F L/L)

Mφ Bending moment per unit length on planes normal to azimuthal
(tangential, φ axis) direction (F L/L)

P Radial in-plane force per unit length (F/L)
Qr Transverse shear force per unit length on planes normal to the r

axis (F/L)
Qφ Transverse shear force per unit length on planes normal to the φ

axis (F/L)
r, φ, z Coordinates in a right-handed polar system
rr , rφ Radii of gyration of mass about radial and tangential axes; for

isotropic, homogeneous material, set r2
r = r2

φ = 1
12 h2.

Vr , V Equivalent shear force per unit length on planes normal to the r axis
(F/L)

Vφ Equivalent shear force per unit length on planes normal to the φ
axis (F/L)

θ Slope about φ axis (rad)

The material constants are defined in Table 18-1 for isotropic, orthotropic, com-
posite, and layered circular plates.

Rectangular Plates

D, Dx , Dy Plate flexural rigidities (F L)
Dxy Torsional rigidity (F L)

L , L y Length of plate in x and y directions (L)
Mx Bending moment per unit length parallel to y axis (F L/L)

Mxy Twisting moment per unit length (F L/L)
My Bending moment per unit length parallel to x axis (F L/L)
Pcr Buckling load (F/L)
Px In-plane force per unit length acting in x direction (F/L)

Pxy In-plane shear force per unit length acting on planes normal to x or y
axis (F/L)

Py In-plane force per unit length acting in y direction (F/L)
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Qx Shear force per unit length on surfaces normal to x axis (F/L)
Qy Shear force per unit length on surfaces normal to y axis (F/L)
Vx Equivalent shear force acting on planes normal to x axis (F/L)
Vy Equivalent shear force acting on planes normal to y axis (F/L)

wmn Deflection mode shape of plate in mode corresponding to ωmn (L)
x, y, z Right-handed system of coordinates

θ Slope of plate surface about line parallel to y axis (rad)
θy Slope of plate surface about line parallel to x axis (rad)
σcr Buckling stress (F/L2)
σx Normal stress on surfaces perpendicular to x axis (F/L2)
σy Normal stress on surfaces perpendicular to y axis (F/L2)
ωmn Natural frequency (rad/T )

The material constants are defined in Table 18-14 for isotropic, orthotropic, and
stiffened rectangular plates.

18.2 CIRCULAR PLATES

Stresses

The tables of this chapter provide the deflection, slope, bending moment, and shear
force. Once the internal moments and forces are known, the stresses can be deter-
mined with the formulas given in Table 18-2.

Simple Circular Plates

In polar coordinates, the governing equation of motion for an isotropic plate of uni-
form thickness and with no in-plane loading is

∇4w =
(
∂2

∂r2
+ 1

r2

∂2

∂φ2
+ 1

r

∂

∂r

)(
∂2

∂r2
+ 1

r2

∂2

∂φ2
+ 1

r

∂

∂r

)
w = p

D
− ρ

D

∂2w

∂t2

(18.1)

where

∇4 = ∇2∇2

∇2 = ∂2

∂r2
+ 1

r2

∂2

∂φ2
+ 1

r

∂

∂r
(18.2)

D = Eh3

12(1− ν2)

The expressions for the internal bending moments, twisting moment, and shear
forces per unit length are



18.2 CIRCULAR PLATES 981

Mr = −D

[
∂2w

∂r2
+ ν
(

1

r2

∂2w

∂φ2
+ 1

r

∂w

∂r

)]
(18.3a)

Mφ = −D

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂φ2
+ ν ∂

2w

∂r2

)
(18.3b)

Mrφ = −(1− ν)D
(

1

r

∂2w

∂r∂φ
− 1

r2

∂w

∂φ

)
(18.3c)

Qr = −D
∂

∂r
(∇2w) (18.3d)

Qφ = −D
1

r

∂

∂φ
(∇2w) (18.3e)

Vr = Qr + 1

r

∂Mrφ

∂φ
(18.3f)

Vφ = Qφ + ∂Mrφ

∂r
(18.3g)

The equation of motion of Eq. (18.1) is solved readily for cases in which the loads
and boundary conditions are rotationally symmetric (independent of φ). Then, with
the interior term ignored, the governing equation of motion reduces to

d4w

dr4
+ 2

r

d3w

dr3
− 1

r2

d2w

dr2
+ 1

r3

dw

dr
= p

D
(18.4a)

or

∇4w =
(

d2

dr2
+ 1

r

d

dr

)(
d2

dr2
+ 1

r

d

dr

)
w = p

D
(18.4b)

The equations for the internal shear and moments are

Mr = −D

(
d2w

dr2
+ ν

r

∂w

dr

)
(18.5a)

Mφ = −D

(
ν

d2w

dr2
+ 1

r

dw

dr

)
(18.5b)

Mrφ = 0 (18.5c)

Qr = Vr = −D

(
d3w

dr3
+ 1

r

d2w

dr2
− 1

r2

dw

dr

)
(18.5d)

Qφ = 0 (18.5e)
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d

aL

r P

P

p

+w

V
or
Qr

V
or
Qr

z

W
M r M

P

+�
M = Mr
V = Vr

M�

�

V�
or
Q�

z

Figure 18-1: Positive displacementw, slope θ , moment M , shear force V , and applied load-
ing.

With derivatives with respect to r arranged to appear on the left-hand side, the
equations above in first-order form can be written as

dw

dr
= −θ dθ

dr
= M

D
− ν θ

r

dV

dr
= −V

r
− p (18.6)

d M

dr
= −(1− ν)M

r
+ V + D(1− ν2)θ

r2

with M = Mr and V = Vr . The convention for positive displacement, slopes, mo-
ments, and shear forces is shown in Fig. 18-1.

Complex Circular Plates

The first-order governing differential equations for complex circular plates in polar
coordinates are

∂w

∂r
= −θ

∂θ

∂r
= M

Dr
+ νφ

(
1

r2

∂2w

∂φ2
− θ

r

)
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∂M

∂r
= −
(

1− νr Dφ
Dr

)
M

r
+ V − [Dφ(1− νrνφ)+ 4Drφ] 1

r3

∂2w

∂φ2
(18.7)

+ Dφ(1− νrνφ)

r2
θ − 4Drφ

r2

∂2θ

∂φ2
+ ρr2

φ

∂2φ

∂t2

∂V

∂r
= −V

r
− νr Dφ

r2 Dr

∂2 M

∂φ2
+ Dφ

r4
(1− νrνφ)

∂4w

∂φ4
− 4Drφ

r4

∂2w

∂φ2

− [Dφ(1− νrνφ)+ 4Drφ] 1

r3

∂2θ

∂φ2
− ρr2

r

r2

∂4w

∂t2∂φ2
+ ρ ∂

2w

∂t2
− p(r, φ, t)

where M = Mr , V = Vr . The internal forces are

Mφ = −Dφ

(
1

r

∂w

∂r
+ 1

r2

∂2w

∂φ2
+ νr

∂2w

∂r2

)

Mrφ = Mφr = 2Drφ

(
1

r

∂2w

∂r∂φ
− 1

r2

∂w

∂φ

) (18.8)

Tabulated Formulas

Formulas for the deflections, moments, and shear forces for rather simple loadings
are given in Table 18-3.

Example 18.1 Static Deflection of a Circular Plate Subjected to a Distributed
Load A circular plate is subjected to a uniform load p1 = 26 lb/in2. At the center
of the plate, compute the deflection, the radial and azimuthal bending moments per
unit length, and the equivalent shear force per unit length acting on planes normal
to the radius. Perform the computation for both (a) pinned and (b) fixed outer edges.
Let E = 3.0× 107 lb/in2, h = 1.0 in., ν = 0.3, and aL = 13.5 in.

(a) For a pinned outer edge, case 1 of Table 18-3 applies:

D = Eh3

12(1− ν2)
= 2.75× 106 lb-in. (1)

For the center of the plate, α = r/aL = 0:

w = p1a4
L (5+ ν)

64D(1+ ν)

= (26)(13.5)4(5+ 0.3)

64(2.75× 106)(1+ 0.3)
= 0.020 in.

Mr = p1a2
L

16
(3+ ν) = (26)(13.5)2

16
(3+ 0.3) = 977.3 in.-lb/in. (2)
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Mφ = p1a2
L

16
(3+ ν) = 977.3 in.-lb/in.

Qr = − p1aL

2
α = 0.0

(b) For clamped edges, case 9 of Table 18-3 applies. At the center of the plate

α = r

aL
= 0

w = (26)(13.5)4(1)

(64)(2.75× 106)
= 0.00491 in.

Mr = (26)(13.5)2

16
(1+ 0.3) = 385.0 in.-lb/in. (3)

Mφ = 385.0 in.-lb/in.

Qr = 0

Formulas for Plates with Arbitrary Loading

Table 18-3 gives the responses of circular plates for some simple loadings and bound-
ary conditions. For more complicated uniform plates, the formulas in Table 18-4 can
be used to calculate the deflections, slopes, bending moments, and shear forces.

Part A of Table 18-4 lists equations for the responses. The functions Fw, Fθ , FV ,
and FM are taken from Table 18-4, part B, by adding the appropriate terms for each
load applied to the plate. The initial parametersw0, θ0, V0, and M0, which are values
of w, θ , V , and M at the inner edge (r = a0) of the plate, are evaluated using the
entry in Table 18-4, part C, for the appropriate edge conditions.

These general formulas are readily programmed for computer solution.

Example 18.2 Plate with a Concentrated Ring Load Determine the deflection
caused by a concentrated ring force in a plate fixed on the outer rim and rigidly
supported at the center (Fig. 18-2).

Figure 18-2: Circular plate with a rigid center support.
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From case 2 of Table 18-4, part A, the deflection is expressed by

w = − R

8πD
r2(ln r − 1)+ C1

r2

4
+ Fw (1)

Table 18-4, part B, gives Fw for the concentrated ring force W :

Fw =< r − a >0 Wa

4D

[
(r2 + a2) ln

r

a
− (r2 − a2)

]
(2)

According to Table 18-4, part C, the reaction R and constant C1 are given by

R = −16πD

a2
L

F̄w − 8πD

aL
F̄θ

C1 = −8(ln aL − 1
2 )

a2
L

F̄w − 4(ln aL − 1)

aL
F̄θ

(3)

Insertion of F̄w = Fw|r=aL and F̄θ = Fθ |r=aL from Table 18-4, part B, into (3) gives

C1 = Wa

D
(1− β2 + 2β2 lnβ)[ln a + (1− β2) lnβ]

R = 2πWa(1− β2 + 2β2 lnβ)
(4)

where β = a/aL . Substitution of (2) and (4) into (1) provides the expression for the
deflection at any radius r .

Buckling Loads

When a circular plate is subjected to a static in-plane radial force (per unit length)
P , the plate equation is

D ∇4w = P ∇2w (18.9)

in which the Laplacian operators are written in polar coordinates. For certain critical
values of the in-plane load, the plate will buckle transversely even though transverse
loads may not be present. A critical-load value is associated with each buckled mode
shape.

Majumdar [18.3] studied the buckling of a circular plate clamped at the outer
edge, free at the inner edge, and loaded with a uniform radial compressive force
applied at the outside edge. It is shown that for small ratios of inner to outer radius,
the plate buckles in a radially symmetric mode. When the ratio of the inner to outer
radius exceeds a certain value, the minimum buckling load corresponds to buckling
modes with nodes, which are the loci of points for which the displacements in the
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buckling modes are zero, along a circumference. The number of nodes depends on
the ratio of the inner and outer radii.

Formulas for the critical load of several circular plate configurations are listed
in Table 18-5. These critical loads are compressive in-plane forces per unit length
applied at the outer edge. The stress corresponding to the critical load should be less
than the yield strength of the material of the plate in order for the buckling load to be
valid.

Techniques for obtaining solutions to circular plate stability problems are dis-
cussed in Ref. [18.1].

Example 18.3 Critical In-Plane Loads of a Circular Plate Compute the criti-
cal in-plane compressive force for a circular plate with no center hole for both (a)
pinned and (b) clamped outer edges if the buckled shape has neither nodal diameters
nor circles. Let E = 3.0 × 107 lb/in2, h = 1.0 in., ν = 0.3, and aL = 36 in.,
so that D = Eh3/[12(1 − ν2)] = 2.75 × 106 lb-in. Also, calculate the stress level
corresponding to buckling to assure that the yield stress has not been reached.

(a) For pinned edges, from case 1 of Table 18-5,

Pcr = 0.426π2 D

a2
L

= 0.426π2(2.75× 106)/(36)2 (1)

= 0.89× 104 lb/in.

The stress corresponding to the stress resultant Pcr is given by

σcr = Pcr/h = 0.89× 104/1.0 = 8900 lb/in2 (2)

(b) For clamped edges, from case 2 of Table 18-5,

Pcr = (1.49)
π2 D

a2
L

= 1.49π2(2.75× 106)/(36)2 = 3.12× 104 lb/in. (3)

σcr = Pcr/h = 3.12× 104/1.0 = 31,200 lb/in2 (4)

Natural Frequencies

The formulas for natural frequencies in a number of cases of uniform thickness cir-
cular plates are listed in Table 18-6. The nodes, which are the loci of points along
which the mode shape displacements are zero, occur along diameters, numbered n,
of the plate or along concentric circles, numbered s, centered at the plate center. A
particular mode is chosen by specifying the number of nodal diameters and nodal
concentric circles. It can be observed that the fundamental frequency does not al-
ways correspond to the smallest s and n. Also, except for certain small values of
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s and n, the natural frequency increases as s increases for a fixed n, or vice versa.
Thus, to determine the fundamental, the second, the third natural frequency, and so
on, numerous combinations of s and n should be tested.

More complex cases can be treated using the transfer or stiffness matrices pro-
vided in other tables.

Example 18.4 Natural Frequencies of a Circular Plate For the plate of Ex-
ample 18.1, compute the natural frequencies of the first two rotationally symmet-
ric mode shapes (n = 0). Perform the computation for (a) free, (b) pinned, and
(c) fixed outer edges. In all cases D = 2.75 × 106 lb-in., aL = 13.5 in., and
ρ = 7.273× 10−4 lb-s2/in3.

(a) Free outer boundary: Use case 1 of Table 18-6. For the case of rotational
symmetry n = 0 (no nodal diameters), and for the lowest frequency in case 1, s = 1
(one nodal circle). Thus,

ωns | n=0
s=1
= ω01 = λ01

a2
L

√
D

ρ
(1)

λ01 = 8.892

so that

ω01 = 3000 rad/s or f01 = 477.5 Hz (2)

For s = 2, λ02 = 38.34, so that the natural frequency corresponding to the second
rotationally symmetric mode shape is

ωns | n=2
s=0
= ω02 = λ02

a2
L

√
D

ρ
= 12,935.8 rad/s or f02 = 2058.95 Hz (3)

Note that neither of these two frequencies is the fundamental frequency. For this
problem, the fundamental frequency occurs at s = 0 and n = 2.

ωns | n=2
s=0
= ω20 = λ20

a2
L

√
D

L
= 1857.32 rad/s or f20 = 295.6 Hz (4)

(b) Pinned outer edge: From case 2 of Table 18-6, it is evident that the lowest
frequency occurs for n = 0 (no nodal diameters) and s = 0 (no nodal circles). Then

ω00 = λ00

a2
L

√
D

ρ
(5)

λ00 = 4.977

so that

ω00 = 1679 rad/s or f00 = 267.3 Hz (6)
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Also,

λ01 = 29.76

and

ω01 = 1.004× 104 rad/s or f01 = 1598 Hz (7)

Here ω00 is the fundamental frequency but ω01 is the fourth frequency.
(c) Fixed outer boundary: Use case 3 of Table 18-6. For the case that the mode

shape contains no nodal diameter and no nodal circle,

λ00 = 10.216

ω00 = (λ00/a
2
L )
√

D/ρ = 3448 rad/s or f00 = 548.8 Hz (8)

and

λ01 = 39.771 (9)

ω01 = 13,419 rad/s or f01 = 2135.6 Hz

The position of ω00 and ω01 in the natural frequency sequence is the same as that in
case 2 above.

General Circular Plates

The problems of determining the static deflection, critical in-plane load, natural fre-
quencies, mode shapes, and steady sinusoidal response of complicated circular plates
can be solved using the displacement method or the transfer matrix method, which
are explained in references on structural mechanics, as well as in Appendixes II and
III. These approaches are well suited to computer implementation, and the techniques
can be applied to circular plates without rotationally symmetric loads.

In the governing situations, the φ-dependence of state variables and of applied
loads can be removed by expanding these quantities in a Fourier series. For the plate
deflection this series is

w(r, φ, t) =
∞∑

m=0

[wc
m(r, t) cos mφ + ws

m(r, t) sin mφ] (18.10)

An analogous series representation is used for the remaining state variables and for
the applied loads. After these series have been introduced into the equations gov-
erning the plate motion, the φ-dependence of all quantities is eliminated, and the
equations are integrated as functions of r and t .
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Transfer Matrices The transfer matrices are obtained from the solution of the
differential equations derived by substituting the Fourier series expansion of the state
variables in the form of Eq. (18.10) into Eq. (18.1), (18.6), or (18.7). These differen-
tial equations are functions of r and t only. Table 18-7 provides the transfer matrix
for a variety of plates under general loadings. In using these matrices, the loadings
must also be expanded in Fourier series in the form of Eq. (18.10). Together with
the solutions for disks of Chapter 19, these matrices can be used to find the static
response, buckling load, or natural frequencies for in-plane and transverse motion of
circular plates. The methodology for using these matrices is detailed in Appendix III.

The notation for the transfer matrix for plate element i is

Ui =




Uww Uwθ UwV UwM Fw
Uθw Uθθ UθV UθM Fθ
UVw UV θ UV V UV M F V

UMw UMθ UMV UM M F M

0 0 0 0 1


 (18.11)

Table 18-9 provides some point transfer matrices for concentrated occurrences.

Stiffness Matrices Table 18-8 contains stiffness matrices and loading vectors.
Use of these matrices in static, stability, and dynamic analyses is described in Ap-
pendix III.

For asymmetric bending of circular plates, displacement, force, and loading vari-
ables are the components of the Fourier expansion of the form of Eq. (18.10); that is,
the vector of nodal displacements for an element is

vi =
[
w

j
ma θ

j
ma w

j
mb θ

j
mb

]T
(18.12)

and the element force is

pi =
[

V j
ma M j

ma V j
mb M j

mb

]T
, m = 0, 1, 2, . . . , j = s, c (18.13)

For simplicity, the subscript m and superscript j have been dropped in the tables. For
example, w j

ma becomes wa and V j
ma becomes Va . The format for a stiffness matrix

is



Va

Ma

Vb

Mb


 =



k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44





wa

θa

wb

θb


 −



V 0
a

M0
a

V 0
b

M0
b




pi = ki vi − p̄i

(18.14)

Table 18-9 provides some point stiffness matrices for concentrated occurrences.
Stiffness matrices for an infinite circular plate lying on an elastic foundation are

presented in Table 18-10.
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Geometric Stiffness Matrices The geometric stiffness matrices used for the
buckling analyses of circular plates are provided in Table 18-11. The global geo-
metric stiffness matrix KG of a circular plate can be assembled from the element
geometric stiffness matrices ki

G . Values for the in-plane force P and the in-plane
displacement ua at radius r = a used in ki

G , the stiffness matrix for element i , are
often calculated through an in-plane analysis (i.e., a disk analysis for the prescribed
in-plane loading pattern as in Chapter 19). The in-plane forces for a buckling analysis
are assumed to remain proportional to the distribution of in-plane forces found from
the disk analysis for the initial pattern of applied in-plane forces. The load factor λ
is the constant of proportionality. The critical (buckling) load for the circular plate
can be obtained as the solution to the eigenvalue problem

(K− λKG)V = 0 (18.15)

where K and V are the global stiffness matrix and displacement vector and λ is an
eigenvalue, the lowest value of which is the ratio of the buckling load to an initial
applied in-plane force used in the disk analysis.

Mass Matrices Consistent and lumped mass matrices are given in Table 18-12.
The nodal variables are the same as those in the stiffness matrices. See Appendix III
for the use of mass matrices in dynamic analyses.

Large Deflections of Circular Plates

In general, the analytical solutions to the governing equations for large deflections of
thin plates are difficult to obtain. However, the deflection and stresses at some special
points of interest can be approximated by the formulas given in Table 18-13. These
formulas for large deflections apply for linear elastic materials.

Example 18.5 Circular Plate with Large Deflections A solid circular steel
plate 0.2 in. thick and 30 in. in diameter is fixed along the outer edge for transverse
motion and remains restrained against radial movement. Also, it is uniformly loaded
with p1 = 6.5 lb/in2. Determine the maximum deflection and the maximum stress
with E = 3× 107 lb/in2, ν = 0.3.

From the given edge conditions, case 3 in Table 18-13 should be used to obtain
the large-deflection solution:

p1a4

Eh4
= 6.5(30/2)4

3(10)7(0.2)4
= 6.86 = 5.333

1− ν2

w0

h
+ 0.857

(w0

h

)3
(1)

This cubic relationship between the load and the deflection gives

w0

h
≈ 1.0
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That is, the maximum deflection of the plate is

wmax = w0 = h = 0.2 in. (2)

The stress at the center of the plate is

σr0 = 3(107)(0.2)2

(30/2)2

[(
2

1− 0.32

)
(1.0)+ 0.5(1.0)2

]

= 14.4× 103 lb/in2 (3)

and the stress at the edge becomes

σra = 3(107)(0.2)2

(30/2)2
4

1− 0.32
(1.0) = 23.4× 103 lb/in2 (4)

Thus,

σmax = σra = 23.4× 103 lb/in2 (5)

18.3 RECTANGULAR PLATES

Stresses

This section contains several tables of formulas for the deflection, slope, shear force,
and bending moment for rectangular plates. Once the internal forces (i.e., bending
moments, twisting moments, and transverse forces) are obtained from these formu-
las, the stresses can be calculated from the formulas in Table 18-14. The material
properties are defined in Table 18-15.

Governing Differential Equations

The deflection of a simple plate (i.e., isotropic, uniform plate) is governed by a linear
partial differential equation

∇4w = ∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂

4w

∂y4
= p

D
− ρ

D

∂2w

∂t2

∇4 = ∂4

∂x4
+ 2

∂4

∂x2∂y2
+ ∂4

∂y4
=
(
∂2

∂x2
+ ∂2

∂y2

)2

= ∇2∇2 (18.16)

D = Eh3

12(1− ν2)
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This equation does not take into the account the effects of in-plane loading, shear
deformation, or rotary inertia.

The governing differential equation for anisotropic plates (Table 18-15) is

Dx
∂4w

∂x4
+ 2B

∂4w

∂x2∂y2
+ Dy

∂4w

∂y4
= p − ρ ∂

2w

∂t2
(18.17)

where

B = 1
2 (Dxνy + Dyνx + 4Dxy)

The normal stresses are related to the deflections by

σx = −Ex z

1− νxνy

(
∂2w

∂x2
+ νy

∂2w

∂y2

)
(18.18)

σy = −Eyz

1− νxνy

(
∂2w

∂y2
+ νx

∂2w

∂x2

)
(18.19)

The bending and twisting moments per unit length are found from the deflection field
through the equations

Mx = −Dx

(
∂2w

∂x2
+ νy

∂2w

∂y2

)
(18.20)

My = −Dy

(
∂2w

∂y2
+ νx

∂2w

∂x2

)
(18.21)

Mxy = 2Dxy
∂2w

∂x∂y
= −Myx (18.22)

The transverse shear forces per unit length are expressed as

Qx = ∂Mx

∂x
+ ∂Mxy

∂y
(18.23a)

Qy = ∂My

∂y
− ∂Myx

∂x
(18.23b)

For simple plates,

Qx = −D

(
∂3w

∂x3
+ ∂3w

∂x∂y2

)
(18.24a)

Qy = −D

(
∂3w

∂y∂x2
+ ∂

3w

∂y3

)
(18.24b)
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The equivalent shearing forces per unit length, which consist of the transverse shear
forces plus the rate of change of the twisting moments, are

Vx = Qx − ∂Mxy

∂y
(18.25a)

Vy = Qy + ∂Mxy

∂x
(18.25b)

For simple plates

Vx = −D

[
∂3w

∂x3
+ (2− ν) ∂

3w

∂x∂y2

]
, Vy = −D

[
∂3w

∂y3
+ (2− ν) ∂

3w

∂x2∂y

]

(18.26)

The signs of the quantities in Eqs. (18.16)–(18.26) correspond to sign conven-
tion 1 of Fig. 18-3.

Tabulated Formulas

Formulas for the deflection, internal moments, and forces for a variety of edge con-
ditions and transverse loads are provided in Table 18-16.

Figure 18-3: Sign conventions for rectangular plates: (a) sign convention 1 (transfer matri-
ces); (b) sign convention 2 (stiffness matrices).
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Example 18.6 Uniform Pressure on a Steel Plate A uniform pressure p1 =
26 lb/in2 acts on a square steel plate 24 × 24 × 1 in. For this plate, E = 3.0 ×
107 lb/in2, ν = 0.3, L = L y = 24 in., and h = 1 in.

(a) For four simply supported edges, compute the maximum deflection and bend-
ing moments per unit length.

(b) For four clamped edges, compute the deflection and bending moments per unit
length at the plate center.

(c) For two opposite sides pinned and two opposite sides free, compute the deflec-
tion and the bending moments per unit length at the plate center.

(a) From case 1 of Table 18-16 for pinned edges, for β = L/L y = 1.0. The
formula

wmax = c1 p1L4/Eh3 with c1 = 0.0443 (1)

gives

wmax = 0.01274 in.

Also,

(Mx )max = (My)max = c2 p1L2 with c2 = 0.0479 (2)

leads to

(Mx )max = (My)max = 717.35 lb-in./in.

(b) From case 10 of Table 18-16 for fixed edges, with α = L y/L = 1 and c1 =
0.0130,

wcenter = c1 p1L4/Eh3 = 0.003738 in. (3)

and with c2 = 0.02235 and c3 = 0.0225,

(Mx )center = (My)center = c2 p1L2 = 334.71 lb-in./in. (4)

(c) From case 11 of Table 18-16, with β = L/L y = 1.0, for pinned–free edges
c1 = 0.01309, and

D = Eh3/[12(1− ν2)]
= (3.0× 107 lb/in2)(1.0 in3)/[12(1− (0.3)2)]
= 2.747× 106 lb-in.

(5)
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Then

wcenter = c1 p1L4/D = 0.0411 in. (6)

Also,

(Mx )center = c3 p1L2 = (0.0225)(26 lb/in2)(24)2 in2 = 336.96 lb-in./in.

(My)center = c4 p1L2 = (0.0271)(26 lb/in2)(24)2 in2 = 405.8 lb-in./in.
(7)

Formulas for Plates with Arbitrary Loading

Responses of a plate with all four sides simply supported are given in Table 18-17.
The parameters for various loadings are also provided in this table. These formulas
are obtained by expanding the deflection w and loading p in the form

w =
∞∑

n=1

∞∑
m=1

Kmn sin
nπx

L
sin

mπy

L y
(18.27)

p =
∞∑

n=1

∞∑
m=1

amn sin
nπx

L
sin

mπy

L y
(18.28)

Substitute Eqs. (18.27) and (18.28) into the governing equation of Eq. (18.16)
to obtain the expression for Kmn . Then the other responses are obtained from
Eqs. (18.17)–(18.26). The convergence of the series in the formulas of Table 18-17
is usually fast for the case of distributed loads. The convergence, however, can be
slow for concentrated and discontinuous loads.

Example 18.7 Response of a Simply Supported Plate Find the deflections of
a simply supported rectangular plate subjected to a uniformly distributed load p1.
Determine the maximum moments and calculate the edge reactions. The lengths of
the plate in the x and y directions are L and L y = 2L , respectively.

First take the parameters amn for the distributed load from case 1 of Table 18-17:

amn = 16p1

π2mn
, m, n are odd integers (1)

The constant Kmn can then be determined from Table 18-17 as

Kmn = 16p1/π
2mn

Dπ4(n2/L2 + m2/L2
y)

2
= 16p1L4

Dπ6nm(n2 + m2/4)2
(2)

Hence the deflection can be expressed as

w = 16p1L4

Dπ6

∞∑
n=1

∞∑
m=1

sin(nπx/L) sin(mπy/2L)

nm(n2 + m2/4)2
, n,m = 1, 3, 5, . . . (3)



996 PLATES

The maximum deflection occurs at the center, x = 1
2 L , y = L . From (3),

wmax ≈ 16p1L4

Dπ6
(0.640− 0.032− 0.004+ 0.004) = 0.0101p1L4/D (4)

Note that this deflection series converges rapidly so that the summation of two terms
provides accuracy sufficient for practical purposes.

The maximum moments are found in a similar fashion. They too occur at x =
1
2 L , y = L . Examination of the moment expression shows that they converge more
slowly than the deflection series. At the center, four terms provide sufficient accuracy.
More terms are required as the moments are computed closer to the edges.

The shear forces are V and Vy determined from responses of Table 18-17. The
reactions at the edge can be found from the resulting expressions. For example, the
reaction force along the x = 0 edge is

V|x=0 = 16p1L

π3

∞∑
n=1

∞∑
m=1

n2 + (2− ν)(m2/4)

m(n2 + m2/4)2
sin

mπy

2L
, m, n = 1, 3, 5, . . .

(5)

Buckling Loads

The buckling of a plate subjected to in-plane forces is analogous to elastic buckling
of axially loaded slender columns. The differential equation of a statically loaded
rectangular plane with in-plane forces is

D∇4w = p + Px
∂2w

∂x2
+ Py

∂2w

∂y2
+ 2Pxy

∂2w

∂x∂y
(18.29)

where ∇4 is defined in Eq. (18.16) and Px , Py , and Pxy are the in-plane forces per
unit length. Positive forces are shown in Fig. 18-4. Buckling may occur due to in-
plane forces even if no transverse loads act. The expressions for the buckling loads
for a variety of rectangular plates are shown in Table 18-18.

Figure 18-4: Positive in-plane forces per unit length Px , Py , and Pxy .
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Example 18.8 Critical In-Plane Load of a Steel Plate Compute the critical in-
plane load acting parallel to the x direction for a plate with L = L y = 30 in.,
h = 0.3, E = 3 × 107 lb/in2, and ν = 0.3 when (a) all edges are simply supported
and (b) two edges are simply supported and the edges at x = 0 and x = L are fixed.

(a) Use case 1 of Table 18-18:

D = Eh3

12(1− ν2)
= 7.42× 104 lb-in, β = L/L y = 1 (1)

Pcr = k P ′ = (1+ 1)2
π2 D

L2
y

= 4(3.14)2

302
× 7.42× 104 = 3.252× 103 lb/in (2)

(b) From case 4 of Table 18-18, for α = L y/L = 1, k = 6.788,

Pcr = k P ′ = kπ2

L2
y

D = 5.518× 103 lb/in (3)

Local Buckling Instability is usually considered to be either primary or local.
For example, a tube in compression can fail (1) through primary buckling when it
acts like a column and there is an occurrence of an inordinate deflection or (2) by
local buckling when the wall collapses at a stress level less than that needed to cause
column failure. Other shapes, such as I-beams, can fail by the lateral deflection of
a compression flange as a column, the local wrinkling of thin flanges, or torsional
instability. Many shapes can be considered as being formed of flat plate elements. It
is the behavior of these flat elements that is treated in this chapter.

Natural Frequencies

The formulas for the natural frequencies of some rectangular plates are listed in
Tables 18-19 and 18-20. Some mode shapes for a square plate are shown in Fig. 18-5.
Additional data on frequencies and modes can be found in Ref. [18.2]. For complex
boundary conditions, approximate methods are used to estimate natural frequencies
and mode shapes. Some solution techniques are discussed in Appendix III and others
are considered in Ref. [18.1].

Example 18.9 Natural Frequencies of a Steel Plate Compute the fundamental
frequency for a square plate for (a) pinned edges, (b) fixed edges, and (3) two oppo-
site edges pinned and two free. Assume that L = L y = 24 in., the mass per unit area
ρ = 7.253× 10−4 lb-s2/in3, and D = 2.747× 106 lb-in.

For this plate β = L/L y = 1.
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Figure 18-5: Mode shapes for a completely free square plate. The dashed lines indicate
nodal lines for which the displacements in the mode shapes are zero. (From Ref. [18.2].)

(a) For pinned edges, use case 1 of Table 18-19 with m = n = 1:

λ11 = π2(1+ 1)

ω11 = (λ11/L2)
√

D/ρ (1)

= 2109 rad/s or f11 = ω11/2π = 335.6 Hz

(b) Take ωi for all edges fixed from case 7 with β = 1. Then λ1 = 36.0 and

ω1 = (λ1/L2)
√

D/ρ = 3846.4 rad/s or f1 = 612.2 Hz (2)

(c) Case 3, Table 18-19, provides the formula for two free edges and two pinned
edges. For β = 1, λ11 = 9.87, and

ω11 = (λ11/L2)
√

D/ρ = 1054.5 rad/s or f11 = 167.8 Hz (3)

General Rectangular Plates

The static and dynamic analysis of rectangular plates can also be performed with
transfer matrices and stiffness matrices. For simply supported conditions at the y = 0
and y = L y edges of the plate, the y dependence of the variables w, θ , V , and M
can be expressed in a sine series of the form



w(x, y)
θ(x, y)
V (x, y)
M(x, y)


 =

∞∑
m=1



wm(x)
θm(x)
Vm(x)
Mm(x)


 sin

mπy

L y
(18.30)
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The loadings are also expanded in a sine series. The transfer matrix and displacement
methods are used to find the x dependence of the state variables [i.e., wm(x), θm(x),
Vm(x), and Mm(x)].

For the case of other boundary conditions at y = 0 and y = L y , a series expansion
of the state variables w, θ , V , and M and the loadings such as MT x , MT y , and p in
terms of the eigenfunctions of a vibrating beam with the same end conditions as the
edges at y = 0 and y = L y can be assumed:



w(x, y)
θ(x, y)
V (x, y)
M(x, y)


 =

∞∑
m=1



wm(x)
θm(x)
Vm(x)
Mm(x)


φm(y) (18.31)

The functions φm(y) satisfy the boundary conditions and the orthogonality condi-
tions but may not necessarily be the actual deflected shape of the plate along the y
direction. However, the use of the eigenfunctions of a vibrating beam has been shown
to produce accurate results.

The solution procedure using the transfer matrix and displacement method in-
volves selecting a number of y positions at which the state variablesw(x, y), θ(x, y),
V (x, y), and M(x, y) are to be computed and the number of terms to be employed in
the series expansion of Eqs. (18.30) and (18.31). For each term in the expansion, a set
of displacement and force variables wm(x), θm(x), Vm(x), and Mm(x) is computed
utilizing the standard transfer matrix or displacement method procedure. These so-
lutions are summed as indicated in Eq. (18.30) and (18.31) to give the resultant state
variablesw(x, y), θ(x, y), V (x, y), and M(x, y) for a static response. The remaining
state variables My , Mxy , Qy , and so on, can be found from the relationships given
in Eqs. (18.20)–(18.23). Similar procedures apply for natural frequency, sinusoidal
response, and stability calculations.

Transient dynamic responses can be included by using the techniques of Ap-
pendix III to computewm(x, t), θm(x, t), Vm(x, t), and Mm(x, t). Then the left-hand
sides of Eqs. (18.30) and (18.31) would containw(x, y, t), θ(x, y, t), V (x, y, t), and
M(x, y, t).

Transfer Matrices Table 18-21 provides the transfer matrices for plates simply
supported at y = 0 and y = L y . The displacements and forceswm(x), θm(x), Vm(x),
and Mm(x) are computed using the matrices of Table 18-21, and the state variables
w(x, y), θ(x, y), V (x, y), and M(x, y) are taken from the expansion of Eq. (18.30).
Transfer matrices for various point occurrences are presented in Table 18-22. A more
general transfer matrix corresponding to the other boundary conditions is listed in
Table 18-23.

Stiffness Matrices Table 18-21 provides the stiffness matrices for rectangular
plates simply supported at both y = 0 and y = L y . Table 18-22 presents some stiff-
ness matrices for several concentrated occurrences. Table 18-23 contains some stiff-
ness matrices for a more general plate with arbitrary boundary conditions at y = 0
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and y = L y . Note that mass is included in some of the matrices of Tables 18-21
and 18-23, and hence these matrices are dynamic stiffness matrices. Apart from
the possible approximations for the y-direction expansions, these matrices use ex-
act shape functions and give exact results in the static, dynamic, buckling analyses.
See Appendixes II and III or Ref. [18.22].

Mass Matrices The consistent mass matrix for a rectangular plate simply sup-
ported at y = 0 and y = L y is presented in Table 18-24. With this matrix, together
with the stiffness matrix of Table 18-21, various types of dynamic analysis (described
in Appendix III) can be performed.

Large Deflections of Rectangular Plates

In some applications of thin plates, the maximum deflection may be larger than half
of the plate thickness (w ≥ 1

2 h). In such cases, the large-deflection theory of plates
should be used. This theory assumes that the deflections are not small relative to the
thickness h but are smaller than the remaining dimensions. The middle surface be-
comes strained and the corresponding stresses in it cannot be ignored. These stresses,
termed diaphragm or membrane stresses, enable the plate to be stiffer than predicted
by small-deflection theory. Furthermore, the square of the slope of the deflected sur-
face is no longer negligible in comparison with unity.

Approximation Formulas For aspect ratios β = L/L y ≥ 0.75, formulas for
approximating deflections and corresponding moments and in-plane forces are given
below. The accuracy of these formulas decreases as β becomes smaller. Given the
moments and in-plane forces, the stresses can be calculated using

σx = Px/h + 12Mx z/h3

σy = Py/h + 12My z/h3 (18.32)

τxy = Pxy/h + 12Mxyz/h3

1. Simply supported with uniformly distributed loading p1 with extension in x
and y directions prevented. An approximate value for the maximum deflection wmax
can be obtained from solution of the cubic equation [18.11]

16p1L4

π6 D
= wmax(1+ β2)2 + 3w3

max

4h2

[
(3− ν2)(1+ β4)+ 4νβ2

]
(18.33)

where β = L/L y . Approximations to the bending moments and the tensile forces in
the xy plane at the center of the plate are given by

Mxc = (π2 Dwmax/L2)(1+ νβ2) (18.34a)

Myc = (π2 Dwmax/L2)(β2 + ν) (18.34b)
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Px =
[
π2 Ehw2

max/[8(1− ν2)L2]
] [
(2− ν2)+ νβ2

]
(18.34c)

Py =
[
π2 Ehw2

max/[8(1− ν2)L2]
] [
(2− ν2)β2 + ν

]
(18.34d)

2. Simply supported plate with uniformly distributed loading p1 with extension
in x and y directions not prevented:

16p1L4

π6 D
= wmax(1+ β2)2 + 3.88β2(1− ν2)w3

max

(β2 + 0.6+ 1/β2)h2
(18.35)

Mxc = (π2 Dwmax/L2)(1+ νβ2) (18.36a)

Myc = (π2 Dwmax/L2)(β2 + ν) (18.36b)

Px = 2.76Ehw2
max

(β2 + 0.6+ 1/β2)L2
(18.36c)

Py = 2.76Ehw2
max

(β2 + 0.6+ 1/β2)L2
y

(18.36d)

Example 18.10 Rectangular Plate with Large Deflection A rectangular steel
plate with L = L y = 36 in., h = 0.3 in., is subjected to a uniform load of p1 =
10 lb/in2. Determine the maximum deflection and stress in the plate for the simply
supported boundary conditions that allow rotation but no displacements at the edge.
Also, E = 3× 107 lb/in2, ν = 0.316.

We find that

D = Eh3

12(1− ν2)
= 7.5× 104 in.

β = L

L y
= 36

36
= 1 (1)

Substitution of these results into Eq. (18.33) yields

4wmax + 58.867w3
max = 3.727 (2)

The solution to this equation is

wmax ≈ 0.342 in. (3)

The bending moments and tensile forces in the xy plane at the center of the plate are,
by Eqs. (18.34a) and (18.34c),

Mxc = 7.5(104)π2(0.342)

(36)2
(1+ 0.316× 1) = 257.06 lb-in./in.

= Myc (4)
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Px = Py = π2(3× 107)(0.30)(0.3422)

8(1− 0.3162)(36)2

[
(2− 0.3162)+ 0.316× 1

]

= 0.2467× 104 lb/in. (5)

Use of Eqs. (18.32), with z = 1
2 h, gives

σx = σy = 0.2467× 104

0.30
+ 12(257.06)

(0.30)2(2)
= 25,360.6 lb/in2 (6)

If we use the small-deflection theory to calculate the stresses (Table 18-16, case 1),

wmax = c1
p1L4

Eh3
= 0.0443

10× 364

3× 107(0.3)3
= 0.92 in.

Mmax = c2 p1L2 = 0.0479(10)(36)2 = 620.784 lb-in./in.

The stresses σx = σy = σmax would be

σmax = 12Mmaxh

2h3
= 6Mmax

h2

= 6(620.784)

(0.3)2
= 41,385.6 lb/in2 (7)

This value is about 1.6 times the stress obtained by the large-deflection theory (6).
Therefore, caution must be taken in utilizing the small- or large-deflection theory to
calculate the stresses in a plate.

18.4 OTHER PLATES

Responses, buckling loads, and natural frequencies of plates of various shapes are
given in Tables 18-25 to 18-27.
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TABLE 18-1 MATERIAL PROPERTIES FOR CIRCULAR PLATES
Notation

νr , νφ = Poisson’s ratio in r and φ directions; for isotropic materials,
νr = νφ = ν

Er , Eφ = modulus of elasticity in r and φ directions; for isotropic
materials,Er = Eφ = E

Dr , Dφ, Drφ = flexural rigidities
Kr , Kφ = extensional rigidities in r and φ directions
αr , αφ = thermal expansion coefficients in r and φ directions

h = thickness of plate
G = shear modulus of elasticity, same value for isotropic

and orthotropic materials

Plate Constants

1.
Homogeneous isotopic

νr = νφ = ν
Dr = Dφ = D = Eh3/[12(1− ν2)]
G = E/[2(1+ ν)]

Drφ = 1
2 D(1− ν) = 1

12 Gh3

Kr = Kφ = K = Eh/(1− ν2)

αr = αφ = α
2.
Homogeneous orthotropic

D j = E j h3/[12(1− νrνφ)] j = r, φ

K j = E j h/(1− νrνφ)

Drφ = 1
12 Gh3

3.
Continuously composite
isotropic

Dr = Dφ = D =
∫ h/2

−h/2

Ez2

1− ν2
dz

Drφ =
∫ h/2

−h/2

Ez2

2(1+ ν) dz

Kr = Kφ = K =
∫ h/2

−h/2

E

1− ν2
dz

αr = αφ = α
4.
Continuously composite,
orthotropic

D j = 1

1− νrνφ

∫ h/2

−h/2

E j z2

1− νrνφ
dz j = r, φ

K j =
∫ h/2

−h/2

E j

1− νrνφ
dz

Drφ =
∫ h/2

−h/2
Gz2 dz
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TABLE 18-1 (continued) MATERIAL PROPERTIES FOR CIRCULAR PLATES

Plate Constants

5.
Layered

D j = 2
∑

i

(
E j

1− νrνφ

)
i

∫
�hi

z2 dz j = r, φ

K j = 2
∑

i

(
E j

1− νrνφ

)
i

�hi

Drφ = 2
∑

i

(G)i

∫
�hi

z2 dz

�hi = thickness of i th layer

The summation extends over half of the plate
thickness.
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TABLE 18-2 STRESSES OF CIRCULAR PLATES
Notation

Mr ,Mφ = Bending moments per unit length
Mrφ = twisting moment per unit length

Pr , Pφ = in-plane forces per unit length
T = temperature change
σr = radial normal stress (F/L2)
σφ = circumferential normal stress (F/L2)
τrφ = shear stresses(F/L2)

νr , νφ = Poisson’s ratio in r and φ directions; for isotropic materials,
νr = νφ = ν

Er , Eφ = modulus of elasticity in r and φ directions; for isotropic
materials, Er = Eφ = E

Dr , Dφ, Drφ = flexural rigidities
Kr , Kφ = extensional rigidities in r and φ directions
αr , αφ = thermal expansion coefficients in r and φ directions

h = thickness of the plate
G = shear modulus of elasticity,Grφ = 1

12 h2G

Plate Stresses

1.
Homogeneous
isotropic
material

σr = Mr z

h3/12
, σφ = Mφz

h3/12
, τrφ = − zMrφ(1− ν2)

h3/12

2.
Other materials;
defined in
cases 2 and 3
of Table 18-1

σr = Ēr

[
− P̄

Kr
+ Mr z

Dr
− (αr + νφαφ)T

]

σφ = Ēφ

[
− P̄φ

Kφ
+ M̄φ z

Dφ
− (αφ + νrαr )T

]

τrφ = −Grφ
Mrφ z

Drφ

where

P̄ = Pr + PT P̄φ = Pφ + PTφ

M̄r = Mr + MT r M̄φ = Mφ + MTφ

PT =
∫ h/2

−h/2

Er (αr + νφαφ)
1− νrνφ

T dz, MT r =
∫ h/2

−h/2

Er (αr + νφαφ)
1− νrνφ

T z dz

PTφ =
∫ h/2

−h/2

Eφ(αφ + νrαr )

1− νrνφ
T dz, MTφ =

∫ h/2

−h/2

Eφ(αφ + νrαr )

1− νrνφ
T z dz

Ēr = Er

1− νrνφ
Ēφ =

Eφ
1− νrνφ

and P̄ and P̄φ are the in-plane compression forces. If the forces are
tensile, replace P̄ and P̄φ by −P̄ and −P̄φ .
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TABLE 18-3 DEFLECTIONS AND INTERNAL FORCES FOR CIRCULAR PLATES WITH AXIALLY SYMMETRIC
LOADS AND BOUNDARY CONDITIONS

Notation
w = deflection

Mr ,Mφ = bending moments per unit length
r = radial coordinate

aL = radius of outer boundary
α = r/aL

D = Eh3/[12(1− ν2)]

Qr = transverse shear force per unit length
ν = Poisson’s ratio

a1 = radial location of loading
β = a1/aL

p, p1 = distributed loading (F/L2)

Structural System and
Static Loading Deflection and Internal Forces

1.
w = p1a4

L

64D

(
5+ ν
1+ ν −

6+ 2ν

1+ ν α
2 + α4

)

Mr = 1

16
p1a2

L (3+ ν)(1− α2)

Mφ = 1

16
p1a2

L [3+ ν − (1+ 3ν)α2]

Qr = −1

2
p1aLα

2. If α ≤ β,
w = p1a4

L

64D(1+ ν)(C1 − 2C2α
2)

Mr = Mφ = 1

16
p1a2

L C2, Qr = 0

where

C1 = 5+ ν − 4(3+ ν)β2 + (7+ 3ν)β4 − 4(1+ ν)β4 lnβ
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C2 = 3+ ν − 4β2 + (1− ν)β4 + 4(1+ ν)β2 lnβ

If α ≥ β,
w = p1a4

L

32D(1+ ν) [(3+ ν)(1− 2β2)− (1− ν)β4] × (1− α2)

− p1a4
L

64D
(1− α4 + 8α2β2 lnα + 4β4 lnα)

Mr = 1

16
p1a2

L

[(
3+ ν − 1− ν

α2
β4
)
(1− α2)+ 4(1+ ν)β2 lnα

]

Mφ = 1

16
p1a2

L

[(
1+ 3ν + 1− ν

α2
β4
)
(1− α2)+ 4(1+ ν)β2 lnα + 2(1− ν)(1− β2)2

]

Qr = −1

2
p1a1

(
α − β

2

α

)

3.

p = maximum value of
distributed load

w = 7pa4
L

240(1+ ν)D (1− α
2)+ pa4

L

14,400D
(129− 290α2 + 225α4 − 64α5)

(Mr )α=0 = (Mφ)α=0 = 1

720
pa2

L (71+ 29ν)

(Qr )α=1 = − 1
6 paL

4.
w = pa4

L

24(1+ ν)D (1− α
2)+ pa4

L

576D
(7− 15α2 + 9α4 − α6)

Mr = 1
96 pa2

L [13+ 5ν − 6(3+ ν)α2 + (5+ ν)α4]
Mφ = 1

96 pa2
L [13+ 5ν − 6(1+ 3ν)α2 + (1+ 5ν)α4]

Qr = − 1
6 paLα(2− α2)
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TABLE 18-3 (continued) DEFLECTIONS AND INTERNAL FORCES FOR CIRCULAR PLATES WITH AXIALLY SYMMETRIC LOADS AND BOUNDARY
CONDITIONS

Structural System and
Static Loading Deflection and Internal Forces

5.
Concentrated force:
Units of total load
WT : force

w = WT a2
L

16πD

(3+ ν)
(1+ ν)(1− α

2)+ WT α
2
L

8πD
α2 lnα

Mr = −WT

4π
(1+ ν) lnα

Mφ = Mr + WT

4π
(1− ν)

Qr = − WT

2πaLα

6.
Concentrated force applied
on circle:
Units of W :
force/length

If α ≤ β,
w = Wa2

L a1

8D
(C1 − C2α

2)

Mr = Mφ = 1
4 Wa1(1+ ν)C2

where

C1 = 3+ ν
1+ ν (1− β

2)+ 2β2 lnβ

C2 = 1− ν
1+ ν (1− β

2)+ 2 lnβ

Qr = 0

If α ≥ β,
w = Wa2

L a1

8D(1+ ν)(C3 − C3α
2 + 2β2 lnα + 2α2 lnα)
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C3 = 3+ ν
1+ ν −

1− ν
1+ ν β

2

Mr = 1

4

Wa1

α2
[(1− ν)(1− α2)β2 − 2(1+ ν)α2 lnα]

Mφ = 1

4

Wa1

α2
[2(1− ν)α2 − (1− ν)(1+ α2)β2 − 2(1+ ν)α2 lnα]

Qr = −β
α

W

7.
Concentrated moment
applied on circle:
Units of C :
force × length/length

w = Ca2
L

2D(1+ ν)(1− α
2)

Mr = Mφ = C

Qr = 0

8. If α ≤ β,
w = Ca2

L

4D

[
2

(
1

1+ ν − lnβ

)
β2 −

(
1+ 1− ν

1+ ν β
2
)
α2
]

Mr = Mφ = C

2
[1+ ν + (1− ν)β2]

Qr = 0

If α ≥ β,
w = Ca2

L

D
β2
[

1− ν
1+ ν (1− α

2)− 2 lnα

]
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TABLE 18-3 (continued) DEFLECTIONS AND INTERNAL FORCES FOR CIRCULAR PLATES WITH AXIALLY SYMMETRIC LOADS AND BOUNDARY
CONDITIONS

Structural System and
Static Loading Deflection and Internal Forces

Mr = −Mφ = C

2
(1− ν)(1− α2)

β2

α2

Qr = 0

9.
w = p1a4

L

64D
(1− α2)2

Mr = 1
16 p1a2

L [1+ ν − (3+ ν)α2]
Mφ = 1

16 p1a2
L [1+ ν − (1+ 3ν)α2]

Qr = − 1
2 p1aLα

10.
w = pa4

L

14,400D
(129− 290α2 + 225α4 − 64α5)

(Mr )α=0 = (Mφ)α=0 = 29pa2
L

720
(1+ ν)

(Qr )α=1 = − 1
6 paL (Mr )α=1 = (Mφ)α=1 = −7pa2

L

120

11.
w = pa4

L

576D
(7− 15α2 + 9α4 − α6)

Mr = 1
96 pa2

L [5(1+ ν)− 6(3+ ν)α2 + (5+ ν)α4]
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Mφ = 1
96 pa2

L [5(1+ ν)− 6(1+ 3ν)α2 + (1+ 5ν)α4]
Qr = − 1

4 paL (2α − α3)

12. If α ≤ β,
w = p1a4

L

64D
[C1 + 2C2(1− α2)+ α4]

where

C1 = 4β2 − 5β4 + 8β2 lnβ + 4β4 lnβ

C2 = β2(β2 − 4 lnβ)

Mr = p1a2
L

16
[(1+ ν)(β4 − 4β2 lnβ)− (3+ ν)α2]

Mφ = p1a2
L

16
[(1+ ν)(β4 − 4β2 lnβ)− (1+ 3ν)α2]

Qr = − p1a1

2

α

β

If α ≥ β,
w = p1a2

L a2
1

32D
[2− 2α2 + β2(1− α2 + 2 lnα)+ 4α2 lnα]

(Mr )α=1 = − 1
8 p1a2

1(2− β2)

(Mφ)α=1 = ν(Mr )α=1

Qr = − p1a1

2

β

α
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TABLE 18-3 (continued) DEFLECTIONS AND INTERNAL FORCES FOR CIRCULAR PLATES WITH AXIALLY SYMMETRIC LOADS AND BOUNDARY
CONDITIONS

Structural System and
Static Loading Deflection and Internal Forces

13. If α ≤ β,

w = Wa2
L a1

8D
(C1 − C2α

2)

Mr = Mφ = 1
4 Wa1(1+ ν)C2

Qr = 0

where

C1 = (1− β2)+ 2β2 lnβ

C2 = (β2 − 1)− 2 lnβ

If α ≥ β,
w = Wa2

L a1

8D

[
(1+ β2)(1− α2)+ 2β lnα + 2α2 lnα

]
(Mr )α=1 = − 1

2 W (1− β2) (Mφ)α=1 = ν(Mr )α=1

Qr = −WT β

α
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14. If α ≤ β,

w = −Ca2
L

4D

[
2β2 lnβ + (1− β2)α2

]

Mr = Mφ = C

2
(1+ ν)(1− β2)

If α ≥ β,

w = −Ca2
L

4D
β2(1− α2 + 2 lnα)

(Mr )α=1 = −Cβ2 (Mφ)α=1 = −νCβ2
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TABLE 18-4 PART A: CIRCULAR PLATES WITH ARBITRARY LOADING:
GENERAL RESPONSE EXPRESSIONS

Notation
a0 = radius of center hole
w = deflection
θ = slope
V = shear force, = Vr
M = bending moment, = Mr

w0, θ0, V0,M0 = initial parameters for w, θ, V , and M
Fw, Fθ , FV , FM = loading functions defined in part B

p, p1, p2 = distributed applied loading in force/length2

r = radial coordinate
R = reaction force at center support defined in part C

C1 = integration constant defined in part C
ν = Poisson’s ratio
E = modulus of elasticity
h = thickness of plate
D = Eh3/[12(1− ν2)]

Platea Response Expressions

1.
Plate without center hole

w = w0 − M0
r2

2D(1+ ν) + Fw θ = M0
r

D(1+ ν) + Fθ

V = FV M = M0 + FM

2.
Plate with rigid support
at center

w = − R

8πD
r2(ln r − 1)+ C1

r2

4
+ Fw

θ = R

4πD
r

(
ln r − 1

2

)
− C1

r

2
+ Fθ

V = R

2πr
+ FV

M = R

4π

[
(1+ ν) ln r + 1− ν

2

]
− C1 D

2
(1+ ν)+ FM
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TABLE 18-4 (continued) PART A: CIRCULAR PLATES WITH ARBITRARY LOADING: GENERAL
RESPONSE EXPRESSIONS

Plate Response Expressions

3.
Plate with center hole w = w0 + θ0

[
−1

2
(1+ ν)a0 ln

r

a0
− (1− ν)r

2 − a2
0

4a0

]

+ M0

(
a2

0

2D
ln

r

a0
− r2 − a2

0

4D

)

+ V0
a0

4D

[
−(a2

0 + r2) ln
r

a0
+ (r2 − a2

0)

]
+ Fw

= w0Uww + θ0Uwθ + M0UwM + V0UwV + Fw

θ = θ0

[
(1+ ν)a0

2r
+ (1+ ν) r

2a0

]

+ M0
1

2Dr
(r2 − a2

0)

+ V0

[
a0r

2D
ln

r

a0
− a0

4Dr
(r2 − a2

0)

]
+ Fθ

= θ0Uθθ + M0UθM + V0UθV + Fθ
Note that Uθw = 0.

V = V0
a0

r
+ FV = V0UV V + FV

Note that UVw = UV θ = UV M = 0.

M = θ0(1− ν2)
Da0

2

(
1

a2
0

− 1

r2

)
+ M0

(
1− ν

2

a2
0

r2
+ 1+ ν

2

)

+ V0
a0

2

[
(1+ ν) ln

r

a0
+ (1− ν)r

2 − a2
0

2r2

]
+ FM

= θ0UMθ + V0UMV + M0UM M + FM

Note that UMw = 0.

Ui j are transfer matrix elements.

aResponses use the sign conventions in the figures. (Sign convention 1 of Appendix II).
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TABLE 18-4 PART B: CIRCULAR PLATES WITH ARBITRARY LOADING: LOADING FUNCTIONS

Loading Functions Fw(r), Fθ (r), FV (r), FM (r) <r − ai>
0=
{

0 if r < ai

1 if r ≥ ai

Concentrated Force
(applied for plates

with no center hole)
Concentrated Line Force Uniform Loading

Ramp Loading

Fw(r)
WT

8πD
r2(ln r − 1) <r − a>0 Wa

4D

[
(r2 + a2) ln

r

a

− (r2 − a2)

]
p1

8D
[Fwp1(r, a1)

− Fwp1(r, a2)]
p2

D��
[Fwp2(r, a1)

− Fwp2(r, a2)]
−p2 Fwp1(r, a2)

− p2

D��
[Fwp2(r, a1)

− Fwp2(r, a2)]
+ p2 Fwp1(r, a1)

Fθ (r) − WT

4πD
r(ln r − 1

2 ) − <r − a>0 Wa

2D

×
[

r ln
r

a
− 1

2r
(r2 − a2)

] − p1

4D
[Fθp1(r, a1)

− Fθp1(r, a2)]
− p2

D��
[Fθp2(r, a1)

− Fθp2(r, a2)]
− p2 Fθp1(r, a2)

p2

D��
[Fθp2(r, a1)

− Fθp2(r, a2)]
+ p2 Fθp1(r, a1)

FV (r) −WT

2πr
− <r − a>0 Wa

r
− p1

2
[FV p1(r, a1)

− FV p1(r, a2)]
− p2

��
[FV p2(r, a1)

− FV p2(r, a2)]
− p2 FV p1(r, a2)

p2

��
[FV p2(r, a1)

− FV p2(r, a2)]
+ p2 FV p1(r, a1)

FM (r) − WT

4π

[
(1+ ν) ln r

+ 1− ν
2

] − <r − a>0 Wa

2

[
(1+ ν) ln

r

a

+ 1− ν
2

(
1− a2

r2

)]
− p1

4
[FMp1(r, a1)

− FMp1(r, a2)]
− p2

��
[FMp2(r, a1)

− FMp2(r, a2)]
− p2 FMp1(r, a2)

p2

��
[FMp2(r, a1)

− FMp2(r, a2)]
+ p2 FMp1(r, a1)
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Concentrated Ring
Moment

(force − length/length)
Arbitrary Loading Fwp1(r, ai ) = <r − ai>

0

[
r4

8
− 5a4

i
8
+ a2

i r2

2

−a2
i

(
r2 + a2

i
2

)
ln

r

ai

]

Fθp1(r, ai ) = <r − ai>
0

(
r3

4
− a4

i
4r
− a2

i r ln
r

ai

)

FMp1 (r, ai ) = <r − ai>
0

[
3+ ν

4
r2 − a2

i +
(1− ν)a4

i

4r2

−(1+ ν)a2
i ln

r

ai

]

FV p1(r, ai ) = <r − ai>
0 r2 − a2

i
r

Fwp2(r, ai ) = <r − ai>
0

[
r5

225
− ai r

4

64
− a3

i r2

144
+ 29a5

i
1600

+a3
i
8

(
r2

3
+ a2

i
10

)
ln

r

ai

]

Fθp2(r, ai ) = <r − ai>
0

(
r4

45
− ai r

3

16
+ a3

i r

36
+ a5

i
80r
+ a3

i
12

r ln
r

ai

)

FMp2 (r, ai ) = <r − ai>
0
(

4+ ν
45

r3 − 3+ ν
16

ai r
2 + 4+ ν

36
a3

i

− 1− ν
80

a5
i

r2
+ 1+ ν

12
a3

i ln
r

ai

)

FV p2(r, ai ) = <r − ai>
0

(
r2

3
− ai r

2
+ a3

i
6r

)

Fw(r) − <r − a>0 C

2D

(
a2 ln

r

a

− r2 − a2

2

)
∫ r

a1

1

r

∫
r
∫

1

r

∫
pr

D
dr

Fθ (r) − <r − a>0 C

2D

r2 − a2

r
−1

r

∫ r

a1

r
∫

1

r

∫
pr

D
dr

FV (r) 0 −1

r

∫ r

a1

pr dr

FM (r) − <r − a>0 C

2

[
(1− ν)

(a

r

)2

+ 1+ ν
]

−
∫ r

a1

1

r

∫
pr dr

+ 1− ν
r2

∫ r

a1

r
∫

1

r

∫
pr dr
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TABLE 18-4 PART C: CIRCULAR PLATES WITH ARBITRARY LOADING: INITIAL PARAMETERS
Initial Parameters w0, θ0, V0, M0

Plates without Center Hole: F̄w = Fw|r=aL , F̄θ = Fθ |r=aL , F̄V = FV |r=aL , F̄M = FM |r=aL

Outer
Edge

Center
Condition

Simply Supported Fixed
Free Guided

1.

No center support
w0 = −

a2
L

2D(1+ ν) F̄M − F̄w

M0 = −F̄M

w0 = − 1
2 aL F̄θ − F̄w

M0 = −D(1+ ν)
aL

F̄θ

Kinematically unstable Kinematically unstable

2.

Center support
R = −16(1+ ν)πD

(3+ ν)a2
L

F̄w

− 8π

3+ ν F̄M

C1 = 8(1+ ν) ln aL + 4(1− ν)
(3+ ν)a2

L

F̄w

+ 4(ln aL − 1)

D(3+ ν) F̄M

R = −16πD

a2
L

F̄w

− 8πD

aL
F̄θ

C1 = −
8(ln aL − 1

2 )

a2
L

F̄w

− 4(ln aL − 1)

aL
F̄θ

R = −2πaL F̄V

C1 = 2

D(1+ ν) F̄M

− aL

D(1+ ν)
[
(1+ ν) ln aL

+ 1− ν
2

]
F̄V

R = −2πaL F̄V

C1 = −aL

D
(ln aL − 1

2 )F̄V

+ 2

aL
F̄θ
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Plates with Center Hole: F̄w = Fw|r=aL , F̄θ = Fθ |r=aL , F̄V = FV |r=aL , F̄M = FM |r=aL , Ūi j = Ui j |r=aL

Outer
Edge

Inner
Edge

Simply Supported Fixed
Free Guided

1.
Simply supported

θ0 = (F̄M ŪwV − F̄wŪMV )/∇
V0 = (F̄wŪMθ − F̄M Ūwθ )/∇
∇ = Ūwθ ŪMV − ŪMθ ŪwV

θ0 = (F̄θ ŪwV − F̄wŪθV )/∇
V0 = (F̄wŪθθ − F̄θ Ūwθ )/∇
∇ = Ūwθ ŪθV − Ūθθ ŪwV

θ0 = (F̄V ŪMV − F̄M ŪV V )/∇
V0 = (F̄M ŪV θ − F̄V ŪMθ )/∇
∇ = ŪMθ ŪV V − ŪV θ ŪMV

θ0 = (F̄V ŪθV − F̄θ ŪV V )/∇
V0 = (F̄θ ŪV θ − F̄V Ūθθ )/∇
∇ = Ūθθ ŪV V − ŪθV ŪV θ

2.
Fixed

M0 = (F̄M ŪwV − F̄wŪMV )/∇
V0 = (F̄wŪM M − F̄M ŪwM )/∇
∇ = ŪwM ŪMV − ŪM M ŪwV

M0 = (F̄θ ŪwV − F̄wŪθV )/∇
V0 = (F̄wŪθM − F̄θ ŪwM )/∇
∇ = ŪwM ŪθV − ŪθM ŪwV

M0 = (F̄V ŪMV − F̄M ŪV V )/∇
V0 = (F̄M ŪV M − F̄V ŪM M )/∇
∇ = ŪM M ŪV V − ŪV M ŪMV

M0 = (F̄V ŪθV − F̄θ ŪV V )/∇
V0 = (F̄θ ŪV M − F̄V ŪθM )/∇
∇ = ŪθM ŪV V − ŪθV ŪV M

3.
Free

w0 = (F̄M Ūwθ − F̄wŪMθ )/∇
θ0 = (F̄wŪMw − F̄M ŪwV )/∇
∇ = ŪwV ŪMθ − ŪMwŪwθ

w0 = (F̄θ Ūwθ − F̄M Ūθθ )/∇
θ0 = (F̄wŪθw − F̄θ Ūww)/∇
∇ = ŪwwŪθθ − ŪθwŪwθ

w0 = (F̄V ŪMθ − F̄M ŪV θ )/∇
θ0 = (F̄M ŪVw − F̄V ŪMw)/∇
∇ = ŪMwŪV θ − ŪMθ ŪVw

w0 = (F̄wŪθθ − F̄θ ŪV θ )/∇
θ0 = (F̄θ ŪVw − F̄V Ūθw)/∇
∇ = ŪθwŪV θ − Ūθθ ŪVw
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TABLE 18-4 (continued) PART C: CIRCULAR PLATES WITH ARBITRARY LOADING: INITIAL PARAMETERS

Outer
Edge

Inner
Edge

Simply Supported Fixed
Free Guided

4.
Guided

w0 = (F̄M ŪwM − F̄wŪM M )/∇
M0 = (F̄wŪMw − F̄M Ūww)/∇
∇ = ŪwwŪM M − ŪMwŪwM

w0 = (F̄θ ŪwM − F̄wŪθM )/∇
M0 = (F̄wŪθw − F̄θ Ūww)/∇
∇ = ŪwwŪθM − ŪwM Ūθw

w0 = (F̄V ŪM M − F̄M ŪV M )/∇
M0 = (F̄M ŪVw − F̄V ŪMw)/∇
∇ = ŪMwŪV M − ŪM M ŪVw

w0 = (F̄V ŪθM − F̄θ ŪV M )/∇
M0 = (F̄θ ŪVw − F̄V Ūθw)/∇
∇ = ŪθwŪV M − ŪθM ŪVw

5.
Rigid insert with
total load WT

w0 =
[

WT

2πa0
(ŪM M ŪwV

− ŪwMŪMV )+ ŪwM F̄M

− ŪM M F̄w

]
/∇

M0 =
[

WT

2πa0
(ŪwwŪMV

− ŪMwŪwV )+ ŪMw F̄V

− Ūww F̄M

]
/∇

V0 = −WT /(2πa0) θ0 = 0

∇ = ŪwwŪM M ŪMwŪwM

w0 =
[

WT

2πa0
(ŪθM ŪwV

− ŪwM ŪθV )

+ ŪwM F̄θ

− ŪθM F̄w

]
/∇

M0 =
[

WT

2πa0
(ŪwwŪθV

− ŪwV Ūθw)+ Ūθw F̄w

− Ūww F̄θ

]
/∇

V0 = −WT /(2πa0) θ0 = 0

∇ = ŪwwŪθM − ŪθwŪwM

w0 =
[

WT

2πa0
(ŪMV ŪV M

− ŪM M ŪV V )+ ŪM M F̄V

− ŪV M F̄M

]
/∇

M0 =
[

WT

2πa0
(ŪMwŪV V

− ŪMV ŪVw)+ ŪVw F̄M

− ŪMw F̄V

]
/∇

V0 = −WT /(2πa0) θ0 = 0

∇ = ŪMwŪV M − ŪM M ŪVw

w0 =
[

WT

2πa0
(ŪθV ŪV M

− ŪθM ŪV V )+ ŪθM F̄V

− ŪV M F̄θ

]
/∇

M0 =
[

WT

2πa0
(ŪθwŪV V

− ŪθV ŪVw)+ ŪVw F̄θ

− Ūθw F̄w

]
/∇

V0 = −WT /(2πa0) θ0 = 0

∇ = ŪθwŪV M − ŪθM ŪVw
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TABLE 18-5 CRITICAL IN-PLANE FORCES FOR CIRCULAR PLATES
Notation

E = modulus of elasticity
ν = Poisson’s ratio
c = buckling coefficient

Pcr = buckling load (force per unit length)

β = a0/aL P ′ = π2 D

a2
L

D = Eh3

12(1− ν2)

Nodal circle or nodal diameter refer to the circle or diameter in the plane of the plate for
which the displacement is zero in a buckling mode shape.

Conditions Buckling Loads

1.
Simply supported
outer boundary

Applies for no nodal circles or nodal diameters present in the
buckling mode shapes, Pcr = 0.426P ′

Ref. [18.5]

2.
Clamped outer
boundary

1. Applies for no nodal circles or nodal diameters present in the
buckling mode shapes, Pcr = 1.49P ′

2. Applies when nodal circles and/or nodal diameters are present
in the buckling mode shapes, Pcr = η × 1.49P ′

Nodal circles and diameters are shown. The numbers on the
dashed nodal circles refer to the percentage of aL (e.g., 0.49aL ).

Refs. [18.5]–[18.8]
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TABLE 18-5 (continued) CRITICAL IN-PLANE FORCES FOR CIRCULAR PLATES

Conditions Results

3.
Elastically restrained
boundary

c = buckling
coefficient

k = spring constant
(F L/L)

γ =
(

kaL

D

)1/2

Pcr = c2 D

a2
L

1. First mode

Elastically restrained edge:

c = 1.99421+ 0.4488381γ + 0.156167γ 2 − 0.04576γ 3,
0 ≤ γ ≤ 12

Clamped edge: c = 3.832
Simply supported edge: c = 2.049

2. Second mode, where a nodal line exists as a diameter

Elastically restrained edge:
c = 3.618543+ 0.1795γ + 0.189377γ 2 − 0.0433434γ 3,
0 ≤ γ ≤ 12

Clamped edge: c = 5.136
Simply supported edge: c = 3.625

Ref. [18.9]

4.
Simply supported
outer boundary,
inner boundary free

Pcr = cP ′ Symmetrical buckling

c =




0.436− 0.4387β + 1.35β2 − 5.72β3 + 6.67β4

0 ≤ β < 0.5

−35.86+ 209.79β − 448.35β2 + 418.75β3 − 144.58β4

0.5 ≤ β ≤ 0.9
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TABLE 18-5 (continued) CRITICAL IN-PLANE FORCES FOR CIRCULAR PLATES

Conditions Results

5.
Clamped outer
boundary, inner
boundary free

Pcr = cP ′ Symmetrical buckling
c = 1.482− 0.452β − 4.484β2 + 19.1β3 0 ≤ β < 0.5

6.
Simply supported
outer boundary
of plate of variable
thickness

Pcr = cEh3

12(1− ν2)a2
L

Average thickness h = h1

(
1− β2 + h0

h1
β2
)

For values of c, see table footnote a.

Refs. [18.4], [18.16]

7.
Clamped outer
boundary of plate
of variable thickness

Pcr = cEh3

12(1− ν2)a2
L

h = h1

(
1− β2 + h0

h1
β2
)

For values of c, see table footnote b.

Refs. [18.4], [18.16]
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TABLE 18-5 (continued) CRITICAL IN-PLANE FORCES FOR CIRCULAR PLATES
aFor case 6, values of c (for a uniform plate, c = 4.28) are:

h0

h1
β = 0.03 0.2 0.4 0.6 0.7 0.75 0.8 0.85 0.9 0.97

0.3 4.27 3.71 3.05 2.72 3.13

0.5 4.27 3.78 3.14 2.96 3.27 4.08

0.7 4.28 3.99 3.53 3.34 3.55 3.84 4.13

0.8 3.98

0.9 4.03

1.1 4.29 4.34 4.47 4.58 4.58 4.53 4.42

1.3 5.01 5.07 4.96 4.67 4.40

1.5 4.29 4.39 4.70 5.17 5.35 5.36 5.29 4.88 4.47

1.6 5.15 5.41 5.41

1.7 5.07 5.40 5.50 5.49 5.33 4.52

1.8 4.95 5.34 5.49 5.53 5.40

1.9 4.79 5.54

2.0 4.28 4.26 4.25 4.61 5.07 5.33 5.52 5.49 5.21 4.57

2.2 5.49

2.5 3.60 4.01 4.89 5.33 5.33

3.0 4.27 3.86 3.07 2.74 2.98 3.85 4.64 5.22 4.69

bFor case 7, values of c (for a uniform plate, c = 14.68) are:

h0

h1
β = 0.03 0.1 0.2 0.3 0.4 0.45 0.5 0.55 0.6 0.7 0.8 0.9 0.97

0.3 14.58 13.71 12.04 5.47 3.82 4.65 6.88 11.05

0.4 9.14

0.5 14.59 13.84 12.42 11.69 11.27 10.36 9.48 9.61 11.12 13.28

0.6 12.07 12.60 13.89
0.7 14.64 14.21 13.24 12.63 13.21 13.25 13.66

0.9 14.66 14.56 14.25 13.94 14.35 14.57 14.66 14.66

1.1 14.68 14.77 15.00 15.39 15.37 15.16 15.00 14.43 14.45

1.3 16.49 16.55 16.45 16.16 15.71 13.53

1.4 16.94 16.88 16.58 16.06 12.96

1.5 14.70 14.91 15.49 16.94 17.15 17.16 16.91 16.38 12.99 12.39

1.6 16.93 17.19 17.28 17.12 16.60

1.7 16.79 17.07 17.24 17.16

1.8 16.54 16.83 17.04 17.05 16.72

1.9 16.23 16.70 16.79

2.0 14.69 14.83 15.13 15.85 16.07 16.27 16.40 16.32 14.85 12.03 10.09 11.32

3.0 14.66 14.45 13.73 11.58 10.80 10.62 11.22 11.11 8.26 7.87

1028 TABLE 18-5 Critical In-Plane Forces for Circular Plates



TABLE 18-6 NATURAL FREQUENCIES OF SOME CIRCULAR PLATES AND MEMBRANESa

Notation
ν = Poisson’s ratio
n = number of nodal diameters
h = thickness of the plate
β = a0/aL

E = modulus of elasticity
ρ = mass per unit area of the plate
s = number of nodal circles, not including the

boundary circle when the boundary is constrained
D = flexural rigidity of the plate, = Eh3/[12(1− ν2)]

Nodal circles and diameters refer to loci of points along which the mode shape displacements are zero.

ωns(rad/T) = λns

a2
L

√
D

ρ
fns(Hz) = λns

2πa2
L

√
D

ρ

The values of λns are independent of ν except where indicated otherwise. All results are for the transverse vibration of plates unless

indicated otherwise. For membranes, the natural frequencies for transverse vibrations are given by fns(Hz) = λns
2

(
P
ρA

)1/2
, where A is

the area of the membrane and P is the tension per unit length.

Configuration and
Boundary Conditions Constants

1. Free λns for ν = 0.25
n

s
0 1 2 3

0 — — 5.513 12.75
1 8.892 20.41 35.28 53.16
2 38.34 59.74 84.38 112.36
3 87.65 118.88 153.29 191.02
4 156.73 196.67 241.99 289.51
5 245.52 296.46 350.48 408.16

TA
B

L
E

18-6
N

atu
ralF

req
u

en
cies

o
f

C
ircu

lar
P

lates
an

d
M

em
b

ran
es

1029



TABLE 18-6 (continued) NATURAL FREQUENCIES OF SOME CIRCULAR PLATES AND MEMBRANESa

2.
Simply supported

λns for ν = 0.3
n

s
0 1 2

0 4.977 13.94 25.6
1 29.76 48.51 70.14
2 74.20 102.80 134.33
3 138.34 176.84 218.24

3.
Fixed

λns

n
s

0 1 2 3

0 10.216 21.26 34.88 51.04
1 39.771 60.82 84.58 111.01
2 89.104 120.08 153.81 190.30
3 158.18 199.06 242.71 289.17
4 247.00 297.77 351.38 407.72
5 355.57 416.20 479.65 545.97

MEMBRANE
λns

n
s

0 1 2 3

1 1.357 2.162 2.897 3.600
2 3.114 3.958 4.749 5.507
3 4.882 5.740 6.556 7.343
4 6.653 7.517 8.348 9.153
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4.
Fixed both on outer and
inner edge

Number of nodal circles s = 0

λ00 = 28.944− 49.5495β + 338.977β2

λ10 = 26.537+ 2.40β + 222.672β2

λ20 = 41.8525− 80.131β + 360.317β2

0.1 ≤ β ≤ 0.6

MEMBRANE

For a0/aL > 1/2 :

λns = 1

π1/2

[
4s2
(

aL − a0

aL + a0

)
+ n2π2

(
aL + a0

aL − ao

)]1/2

n = 1, 2, 3, . . . s = 0, 1, 2, . . .

5.
Fixed outer edge, simply
supported inner edge

λ10 = 4.4725− 39.829β + 219.9576β2 − 417.08215β3 + 279.1661β4

λ00 = 4.8375− 22.9475β + 114.5183β2 − 220.6284β3 + 154.0753β4

λ20 = 9.7589− 74.3830β + 375.4257β2 − 701.6646β3 + 468.2281β4

λ30 = 18.4765− 102.7286β + 510.7268β2 − 977.0797β3 + 661.4566β4

λ01 = 2.5633− 1.4277
1

1− β + 15.4673
1

(1− β)2
λ11 = 13.8536− 10.7728

1

1− β + 18.05616
1

(1− β)2 − 0.1757
1

(1− β)3
λ21 = 38.9306− 27.1254

1

1− β + 21.9928
1

(1− β)2 − 0.4260
1

(1− β)3
λ31 = 71.7981− 45.8024

1

1− β + 26.2399
1

(1− β)2 − 0.6898
1

(1− β)3
0.1 ≤ β ≤ 0.9 ν = 0.33
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TABLE 18-6 (continued) NATURAL FREQUENCIES OF SOME CIRCULAR PLATES AND MEMBRANESa

6.
Fixed inner edge, free
outer edge

λ10 = −3.2345+ 2.7374γ + 2.6634γ 2 + 0.05452γ 3

λ00 = 6.08616− 9.3994γ + 7.7058γ 2 − 0.6312γ 3

λ20 = 1.4048− 0.2623γ + 3.4822γ 2

λ30 = 18.2517− 12.5105γ + 6.7362γ 2 − 0.2148γ 3

λ01 = 17.3288− 31.446γ + 37.7419γ 2 − 2.5071γ 3

λ11 = 2.1547− 1.8353γ + 22.05198γ 2

λ21 = 24.9692− 18.5025γ + 26.4093γ 2 − 0.2869γ 3

λ31 = 68.4516− 52.6774γ + 36.0325γ 2 − 0.9449γ 3

0.1 ≤ β ≤ 0.9 ν = 0.33 γ = 1

1− β

7.
Free outer edge with
concentrated mass at center

ω = λ

a2
L

√
D

ρ

λ =




8.8626− 4.4412µ+ 0.9465µ2 + 1.4061µ3 s = 1

36.005− 32.127µ+ 24.2798µ2 − 6.2115µ3 s = 2

78.0257− 49.8526µ+ 48.4639µ2 − 14.7959µ3 s = 3

137.3952− 61.4408µ+ 73.1068µ2 − 29.2415µ3 s = 4

µ =
(

m

πρa2
L

)1/2

ν = 0.3 m = magnitude of concentrated mass

aAdapted from Ref. [18.2].
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TABLE 18-7 TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTSa

Notation

The plate response is given by the Fourier series expansion of Eq. (18.10).

w, θ, V,M = deflection, slope, effective shear force per unit length, and bending
moment per unit length

D = Eh3

12(1− ν2)

ε
j
m = parameters provided in this table for particular distributed loadings

E = modulus of elasticity
h = thickness of plate
ν = Poisson’s ratio

Circular Plate Element with Center Hole

Notation
�p

��
= pb − pa

b − a

�c

��
= cb − ca

b − a
q1 = pa − a

�p

��

γ = b/a

pa, pb = magnitude of applied distributed forces at r = a and r = b (F/L2)

ca, cb = magnitude of applied distributed moments at r = a and r = b (F L/L2)

Transfer Matrices (Sign Convention 1)

The transfer matrix relations zb = Ui za + z̄i are extended to include the loading vector z̄i in the basic matrices (Appendix II), so that

zb = Ui za zb =
[
wb θb Vb Mb 1

]T za =
[
wa θa Va Ma 1

]T
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TABLE 18-7 (continued) TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTSa

m = 0 (SYMMETRIC DEFORMATION)


1 −1+ ν
2

a ln
b

a
− 1− ν

4a
(b2 − a2) −a(b2 + a2)

4D
ln

b

a
+ a

4D
(b2 − a2)

a2

2D
ln

b

a
− 1

4D
(b2 − a2) Fw

0
1+ ν

2

a

b
+ 1− ν

2

b

a

ab

2D
ln

b

a
− a

4Db
(b2 − a2)

b2 − a2

2Db
Fθ

0 0
a

b
0 F V

0
D(1− ν2)

2

b2 − a2

ab2

1+ ν
2

a ln
b

a
+ (1− ν)a

4b2
(b2 − a2)

1− ν
2

(a

b

)2 + 1+ ν
2

F M

0 0 0 0 1







wa

θa

Va

Ma

1




Ui za

Fw = εc
0

(
pa

8D
e11 + �p

��

1

D
e12 + ca

4D
e13 + �c

��

1

4D
e14

)
Fθ = εc

0

(
− pa

4D
e21 − �p

��

1

D
e22 + ca

4D
e23 + �c

��

1

4D
e14

)

F V = εc
0

(
− pa

2
e31 − �p

��
e32

)
F M = −εc

0

(
− pa

4
e41 − �p

��
e42 + cae43 + �c

��
e44

)

e11 = b4

8
− 5a4

8
+ a2b2

2
− a2

(
b2 + a2

2

)
ln

b

a
e12 = b5

225
− ab4

64
− a3b2

144
+ 29a5

1600
+ a3

8

(
b2

3
+ a2

10

)
ln

b

a

e13 = −2a3

3
ln

a

b
+ 1

9
(5a3 + 4b3 − 9b2a) e14 = b4

8
− 4

9
ab3 + a2b2

2
− 13

72
a4 − 1

6
a4 ln

b

a

e21 = b3

4
− a4

4b
− a2b ln

b

a
e22 = b4

45
− ab3

16
+ a3b

36
+ a5

80b
+ a3b

12
ln

b

a

e23 = −
(

4b2

3
− 2ab + 2a3

3b

)
e24 = −

(
b3

2
− 4

3
ab2 + a2b − a4

6b

)
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e31 = 1

b
(b2 − a2) e32 = b2

3
− ab

2
+ a3

6b

e41 = 3+ ν
4

b2 − a2 + 1

4b2
(1− ν)a4 − (1+ ν)a2 ln

b

a
e42 = 4+ ν

45
b3 − 3+ ν

16
ab2 + 4+ ν

36
a3 − 1− ν

80

a5

b2
+ 1+ ν

12
a3 ln

b

a

e43 = −
(

2+ ν
3

b − 1+ ν
2

a − 1− ν
6

a3

b2

)
e44 = −

(
3+ ν

8
b2 − 2+ ν

3
ab + 1+ ν

4
a2 + 1− ν

24

a4

b2

)
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TABLE 18-7 (continued) TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTSa

m = 1 (ASYMMETRIC DEFORMATION)


(3− ν)b
4a

− (1− ν)b3

8a3
+ (3+ ν)a

8b
− (1+ ν)b

4
− (1− ν)b3

8a2
+ (3+ ν)a2

8b

a2b

4D
ln

b

a
− 1

16Db
(b4 − a4) − ab

4D
ln

b

a
− (b2 − a2)(b2 − 3a2)

16Dba
Fw

− 3− ν
4a
+ 3(1− ν)b2

8a3
+ (3+ ν)a

8b2
1+ ν

4
+ 3(1− ν)b2

8a2
+ (3+ ν)a2

8b2
− a2

4D
ln

b

a
+ (b2 − a2)(3b2 − a2)

16Db2
− a

4D
ln

b

a
+ 3(b4 − a4)

16Dab2
Fθ

D(3+ ν)(1− ν)
4

b4 − a4

a3b4
D(3+ ν)(1− ν)

4

b4 − a4

a2b4
3+ ν

8
− (1− ν)a4

8b4
+ (3− ν)a2

4b2
3+ ν

8a
+ 3(1− ν)a3

8b4
− (3− ν)a

4b2
F V

D(3+ ν)(1− ν)
4

b4 − a4

a3b3
D(3+ ν)(1− ν)

4

b4 − a4

a2b3
(3+ ν)b

8
− (1− ν)a4

8b3
− (1+ ν)a2

4b

(3+ ν)b
8a

+ 3(1− ν)a3

8b3
+ (1+ ν)a

4b
F M

0 0 0 0 1







wa

θa

Va

Ma

1




Ui za

Fw = ε j
1

[
a4 pa

4D

(
4γ 4

45
− γ

3

4
+ γ

9
+ 1

20γ
+ γ

3
ln γ

)
+ a5

4D

�p

��

(
a5

48
− 4γ 4

45
+ γ

3

8
− 7γ

144
− 1

120γ
− γ

12
ln γ

)]

Fθ = ε j
1

[
−a3 pa

4D

(
16γ 3

45
− 3γ 2

4
+ 4

9
− 1

20γ 2
+ 1

3
ln γ

)
− a4

4D

�p

��

(
5γ 4

48
− 16γ 3

45
+ 3γ 2

8
− 19

144
+ 1

120γ 2
− 1

12
ln γ

)]

F V = ε j
1

[
−apa

4

(
4(9+ ν)γ

15
− 3+ ν

2
− 3− ν

3γ 2
+ 1− ν

10γ 4

)
− a2

4

�p

��

(
17+ ν

12
γ 2 − 4(9+ ν)

15
γ + 3+ ν

4
+ 3− ν

12γ 2
− 1− ν

60γ 4

)]

F M = ε j
1

[
−a2 pa

4

(
4(4+ ν)γ 2

15
− 3+ ν

2
γ − 1+ ν

3γ
+ 1− ν

10γ 3

)
− a3

4

�p

��

(
5+ ν

12
γ 3 − 4(4+ ν)

15
γ 2 + 3+ ν

4
γ − 1+ ν

12γ
− 1− ν

60γ 3

)]

γ = b/a
j = c, s
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m ≥ 2

Ui =
[

H(b)H−1(a) z̄i

0 1

]
=
[

H(b)H−1(a) −ε j
m [G(b)−H(b)H−1(a)G(a)]

0 1

]
=
[

H(b)H−1(a) −ε j
mH(b)[R(b)− R(a)]

0 1

]

where G(r) = H(r)R(r)

H(b) =




bm b−m bm+2 b−m+2

−mbm−1 mb−m−1 −(m + 2)bm+1 (m − 2)b−m+1

Dm2(m − 1)(1− ν)bm−3 −Dm2(m + 1)(1− ν)b−m−3 Dm(m + 1)(m − νm − 4)bm−1 −Dm(m − 1)(m − νm + 4)b−m−1

−Dm(m − 1)(1− ν)bm−2 −Dm(m + 1)(1− ν)b−m−2 −D(m + 1)(m + 2− νm + 2ν)bm −D(m − 1)(m − 2− νm − 2ν)b−m




H−1(a) =




m(1− ν)+ 4

8
a−m (m + 2)(1− ν)− 4

8m
a−m+1 a−m+3

8m(m − 1)D

m − 2

8m(m − 1)D
a−m+2

−m(1− ν)− 4

8
am (m − 2)(1− ν)+ 4

8m
am+1 am+3

8m(m + 1)D
− m + 2

8m(m + 1)D
am+2

−m(1− ν)
8

a−m−2 −1− ν
8

a−m−1 − a−m+1

8m(m + 1)D
− a−m

8(m + 1)D
m(1− ν)

8
am−2 −1− ν

8
am−1 − am+1

8m(m − 1)D

am

8(m − 1)D




zi =




F̄w
F̄θ
F̄V

F̄M


 = −ε

j
m[G(b)−H(b)H−1(a)G(a)] = −ε j

mH(b)[R(b)− R(a)]

j = c, s
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TABLE 18-7 (continued) TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTSa

m = 2 q1 = pa − a
�p

��

R(r) = 1

48D




r2
(

3

2
q1 + r

�p

��

)

r6
(

1

6
q1 + r

7

�p

��

)

−
(

q1 ln r + r
�p

��

)

−3r4
(

1

4
q1 + r

5

�p

��

)




m = 3

R(r) = 1

96D




r

(
2q1 + r

�p

��

)

r7
(

1

7
q1 + r

8

�p

��

)

1

r
q1 − �p

��
ln r

−r5
(

2

5
q1 + r

3

�p

��

)




m = 4

R(r) = 1

32D




1

3

(
q1 ln r + �p

��
r

)

r8

5

(
1

8
q1 + r

9

�p

��

)

1

5r2

(
1

2
q1 + �p

��
r

)

−r6

3

(
1

6
q1 + r

7

�p

��

)




m = 5

R(r) = 1

80D




1

2

(
−1

r
q1 + �p

��
ln r

)

1

3
r9
(

1

9
q1 + r

10

�p

��

)

1

3r3

(
1

3
q1 + r

2

�p

��

)

−1

2
r7
(

1

7
q1 + r

8

�p

��

)




m ≥ 6

R(r) =




α1r4−m
(

q1

4− m
+ r

5− m

�p

��

)

α2r4+m
(

q1

4+ m
+ r

5+ m

�p

��

)

α3r2−m
(

q1

2− m
+ r

3− m

�p

��

)

α4r2+m
(

q1

2+ m
+ r

3+ m

�p

��

)




α1 = 1

8m(m − 1)D
α2 = 1

8m(m + 1)D
α3 = −α2 α4 = −α1
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TABLE 18-7 (continued) TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTSa

Circular Plate Element without Center Hole

Notation
p = magnitude of applied distributed forces at r
c = magnitude of applied distributed moments at r

WT = concentrated force (F)
�p

��
= pb − p0

b

�c

��
= cb − c0

b

Transfer Matrices (Sign Convention 1)

The Ui in this table for m ≥ 1 are not truly transfer matrices as the vector at radius r = 0
contains arbitrary constants rather than state variables. However, the vector at other radii is
the state vector. All operations remain the same as those for the transfer matrices.

m = 0 (SYMMETRIC DEFORMATION)



1 0 0 − b2

2D(1+ ν) Fw

0 0 0
b

D(1+ ν) Fθ

0 0 0 0 F V

0 0 0 1 F M

0 0 0 0 1




Ui
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TABLE 18-7 (continued) TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTSa

Fw = εc
0

(
p0

b4

64D
+ �p

��

b5

225D
+ c0

b3

9D
+ �c

��

b4

32D

)
+ WT

8πD
b2(ln b − 1)

Fθ = −εc
0

(
−p0

b3

16D
− �p

��

b4

45D
− c0

b2

3D
+ �c

��

b3

8D

)
− WT

4πD
b(ln b − 1

2 )

F V = εc
0

(
−p0

b

2
− �p

��

b2

3

)
− WT

2πb

F M = −εc
0

[
−p0

b2

16
(3+ ν)− �p

��

b3

45
(4+ ν)− c0b(2+ ν)− �c

��

b2

8
(3+ ν)

]

− WT

4π

[
(1+ ν) ln b + 1− ν

2

]

m = 1 (ASYMMETRIC DEFORMATION)


0 −b − b3

2D(3+ ν) 0 Fw

0 1
3b2

2D(3+ ν) 0 Fθ

0 0 1 0 F V

0 0 r 0 F M

0 0 0 0 1




Ui

Fw, Fθ , F V , and F M are the loading functions of the m = 1 transfer matrix of this
table, with a = 0.

m ≥ 2


bm bm+2 0 0 Fw

−mbm−1 −(m + 2)bm+1 0 0 Fθ

Dm2(m − 1)(1− ν)bm−3 Dm(1+ m)[m(1− ν)− 4]bm−1 0 0 F V

−Dm(m − 1)(1− ν)bm−2 Dm(1+ m)(m + 2− νm + 2ν)bm 0 0 F M

0 0 0 0 1




Fw, Fθ , F V , and F M are the corresponding loading functions of the m ≥ 2 transfer
matrix of this table, with a = 0.
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TABLE 18-7 (continued) TRANSFER MATRICES FOR CIRCULAR PLATE ELEMENTSa

Parameter ε j
m in Loading Functions ( j = c or s)

Case Parameter

1.
Distributed load
constant in φ direction

εc
0 = 1 ε

j
m = 0 m > 0

c = j, s

2.
Distributed load
constant in φ
direction, covering
φ = φ1 to φ = φ2

εc
0 = (φ2 − φ1)/2π

εc
m =

1

mπ
(sin mφ2 − sin mφ1) m > 0

εs
m = −

1

mπ
(cos mφ2 − cos mφ1) m > 0

3.
Distributed load ramp
in φ direction

εc
0 =

1

4π
(φ2 − φ1)

2

εc
m =

1

mπ

[
(φ2 − φ1) sin mφ2 + 1

m
(cos mφ2 − cos mφ1)

]

m > 0

εs
m =

1

mπ

[
(φ1 − φ2) cos mφ2 + 1

m
(sin mφ2 − sin mφ1)

]

m > 0

4.
Harmonic load cosφ

εc
0 = 0 εc

1 = 1

εc
m = 0 m > 1εs

m = 0 m > 0

aFrom Ref. [18.10].
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TABLE 18-8 STIFFNESS MATRICES FOR CIRCULAR PLATE
ELEMENTS

Circular Plate Element with Center Hole

Notation
The plate response is given by the Fourier series expansion of Eq. (18.10).

w, θ, V,M = deflection, slope, effective shear force per unit length, and
bending moment per unit length

E = modulus of elasticity
h = thickness of plate
ν = Poisson’s ratio
γ = b/a

D = Eh3

12(1− ν2)

ε
j
m = parameters provided in Table 18-7 for particular distributed

loads
Fw, Fθ , F V , F M = loading functions defined in Table 18-7

Stiffness Matrices (Sign Conversion 2)

pi = ki vi − p

pi = [Va Ma Vb Mb
]T

vi = [wa θa wb θb
]T

p = [V 0
a M0

a V 0
b M0

b

]T
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TABLE 18-8 (continued) STIFFNESS MATRICES FOR CIRCULAR PLATE ELEMENTS

m = 0 (SYMMETRIC DEFORMATION)

k11 = 16πD

a2 H0
(γ 2 − 1) k12 = −8πD

aH0
(2γ 2 ln γ − γ 2 + 1)

k22 = 2πD[4γ 2(1+ ν) ln2 γ + (1− ν)γ 4 + 2γ 2(1+ ν − 4 ln γ )− 3− ν]/H0

k13 = −k11 k14 = −8πDγ

aH0
(γ 2 − 1− 2 ln γ ) k23 = −k12

k24 = 8πDγ (γ 2 ln γ + ln γ + 1− γ 2)/H0 k33 = k11 k34 = −k14

k44 = 2πD[−4γ 2(1+ ν) ln2 γ + (3+ ν)γ 4 − 2γ 2(1+ ν + 4 ln γ )− 1+ ν]/H0

γ = b/a H0 = (γ 2 − 1)2 − 4γ 2 ln2 γ ki j = k ji

V 0
a = k13 Fw + k14 Fθ M0

a = k23 Fw + k24 Fθ

V 0
b = −2πaγ F V + k33Fw + k34 Fθ M0

b = −2πaγ F M + k43 Fw + k44 Fθ

Fw, Fθ , F V , and F M are the loading functions of the m = 0 transfer matrix of Table 18-7.

m = 1 (ASYMMETRIC DEFORMATION)

k11 = 4πDγ

a2 H1

[
(γ 4 + 3) ln γ + 6(γ 2 − 1)− ν(γ 4 − 1) ln γ + ν(γ 2 − 1)2

]

k12 = 4πDγ

aH1

[
(γ 4 + 3) ln γ − 2γ 2(γ 2 − 1)− ν(γ 4 − 1) ln γ + ν(γ 2 − 1)2

]

k22 = 4πDγ

H1

[
(γ 4 + 3) ln γ − 2(γ 2 − 1)− ν(γ 4 − 1) ln γ + ν(γ 2 − 1)2

]

k33 = 4πDγ−1

a2 H1

[
6γ 2(γ 2 − 1)+ (3γ 4 + 1) ln γ + ν(γ 4 − 1) ln γ − ν(γ 2 − 1)2

]

k34 = −4πD

aH1

[
2(γ 2 − 1)− (3γ 4 + 1) ln γ − ν(γ 4 − 1) ln γ + ν(γ 2 − 1)2

]

k44 = 4πDγ

H1

[
(3γ 4 + 1) ln γ − 2γ 2(γ 2 − 1)+ ν(γ 4 − 1) ln γ − ν(γ 2 − 1)2

]

k13 = − 4πD

a2 H1

[
3(γ 4 − 1)+ 4γ 2 ln γ

]
k14 = −4πDγ

aH1

[
4γ 2(ln γ − 1)+ γ 4 + 3

]

k23 = −4πD

aH1

[
4γ 2(1+ ln γ )− 3γ 4 − 1

]
k24 = 4πDγ

H1
(γ 4 − 1− 4γ 2 + ln γ )

H1 = 2γ
[
(γ 4 − 1) ln γ − (γ 2 − 1)2

]
γ = b/a ki j = k ji

V 0
a = ε j

1 (k13Fw + k14 Fθ ) M0
a = ε j

1(k23 Fw + k24Fθ ) j = c, s

V 0
b = ε j

1 (−2πbFV + k33 Fw + k34 Fθ )

M0
b = ε j

1 (−2πbF M + k34 Fw + k44 Fθ )

Fw, Fθ , F V , and F M are the loading functions of the m = 1 transfer matrix of Table 18-7.
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TABLE 18-8 (continued) STIFFNESS MATRICES FOR CIRCULAR PLATE ELEMENTS

m ≥ 2

k11 = 2πDm2

a2 Hm

[
4(γ 2 − 1)(m2 − 2)+ 2mγ 2(γ 2m − γ−2m)− (1+ ν)γ 2(γm − γ−m)2 − (1− ν)m2(γ 2 − 1)2

]

k12 = −2πD

aHm

[
m2γ 2(γm + γ−m)2 + m4(1− ν)(γ 2 − 1)2 − 4m2 − 2mγ 2(γ 2m − γ−2m)+ νm2γ 2(γm − γ−m)2

]

k22 = 2πD

Hm

[
2mγ 2(γ 2m − γ−2m)− m2(γ 2 − 1)(γ 2 + 3)− (1+ ν)γ 2(γm − γ−m)2 + m2ν(γ 2 − 1)2

]

k13 = −4πDm2

a2 Hm

[
m(γm − γ−m)(γ 2 + 1)+ (γm + γ−m)(γ 2 − 1)(m2 − 2)

]

k23 = 4πDm

aHm

[
(γm − γ−m)

[
m2(γ 2 − 1)− 2γ 2

]+ m(γm + γ−m)(γ 2 − 1)
]

k33 = 2πDm2

a2 Hm

[
(1+ ν)(γm − γ−m)2 + 2m(γ 2m − γ−2m)+ (γ 2 − 1)(5m2 − 8− νm2)− m2γ−2(γ 2 − 1)(1− ν)]

k14 = −4πDmγ

aHm

[
(γm − γ−m)

[
m2(γ 2 − 1)+ 2

]− m(γm + γ−m)(γ 2 − 1)
]

k24 = −4πDmγ

Hm

[
(γm − γ−m)(γ 2 + 1)− m(γm + γ−m)(γ 2 − 1)

]

k34 = 2πDγ

aHm

[
m4(γ 2 − 1)2γ−2(1− ν)+ m2(1+ ν)(γm − γ−m)2 + 2m(γ 2m − γ−2m)− 4m2(γ 2 − 1)

]
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k44 = 2πD

Hm

[
2mγ 2(γ 2m − γ−2m)+ γ 2(1+ ν)(γm − γ−m)2 − m2(γ 2 − 1)(3γ 2 + 1)− νm2(γ 2 − 1)2

]
Hm =

[
γ 2(γm − γ−m)2 − m2(γ 2 − 1)2

]
γ = b/a ki j = k ji

V 0
a = ε j

m(k13 Fw + k14 Fθ ) M0
a = ε j

m(k23Fw + k24 Fθ )

V 0
b = ε j

m(−2πbF V + k33 Fw + k34 Fθ ) M0
b = ε j

m(−2πbF M + k43 Fw + k44 Fθ )

j = c, s

Fw, Fθ , F V , and F M are the loading functions of the m ≥ 2 transfer matrix of Table 18-7.

TA
B

L
E

18-8
S

tiffn
ess

M
atrices

fo
r

C
ircu

lar
P

late
E

lem
en

ts
1045



TABLE 18-8 (continued) STIFFNESS MATRICES FOR CIRCULAR PLATE ELEMENTS

Circular Plate Element without Center Hole

Stiffness Matrices (Sign Convention 2)

m = 0 (SYMMETRIC DEFORMATION)[
Vb
Mb

]
=
[

0 0
0 2πD(1+ ν)

][
wb
θb

]
−
[

V 0
b

M0
b

]

ki p

p =

 −2πbF V

2πb

(
−F M + D(1+ ν)

b
Fθ

)



m = 1 (ASYMMETRIC DEFORMATION)



Vb

Mb


 =



2πD(3+ ν)
b2

2πD(3+ ν)
b

2πD(3+ ν)
b

2πD(3+ ν)





wb

θb


−



V 0
b

M0
b




ki p

p = −2πb

[
F V

F M

]
+ ki
[

Fw
Fθ

]

m ≥ 2[
Vb
Mb

]
=
[

k11 k12
k21 k22

][
wb
θb

]
−
[

V 0
b

M0
b

]

ki p

k11 = 2πDm2(1+ 2m + ν)/b2

k12 = k21 = 2πDm(2+ m + mν)/b

k22 = 2πD(1+ 2m + ν)
p = −2πb

[
F V

F M

]
+ ki
[

Fw
Fθ

]

aFrom Ref. [18.10].
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TABLE 18-9 POINT MATRICES FOR CONCENTRATED OCCURRENCES
FOR CIRCULAR PLATES

Notation
The plate response is given by the Fourier series expansion of Eq. (18.10). See Table 11-21
for values of k1, k∗1 , . . . for more complex spring systems, including those with masses.

w, θ, V,M = deflection, slope, effective shear force per unit length,
and bending moment per unit length

W j
m ,C j

m = loading functions in transfer matrix
j = c or s

m = 0, 1, 2, . . . = identifies term in Fourier series expansions [Eq. (18.10)]
� = speed of rotation of rotating circular plate

mi = lumped mass or mass of ring per unit length
rs = radius of gyration of ring about circumferential axis

rr , rφ = radii of gyration of mass per unit length about radial and tangential axes,
for homogeneous material set r2

r = r2
φ = 1

12 h2

h = thickness of plate
ω = natural frequency
Is = area moment of inertia of ring about middle plane of plate

Es = modulus of elasticity of ring

Transfer matrix:




1 0 0 0 0
0 1 0 0 0

k1 − miω
2 − miω

2m2r2
r −mi�

2ai 1 0 −W j
m

0 −miω
2r2
φ + k∗i 0 1 C j

m

0 0 0 0 1




Ui

Stiffness and Mass Matrices:[
Va
Ma

]
=
[

k11 k12
k21 k22

] [
wa
θa

] [
Va
Ma

]
= −ω2

[
m11 m12
m21 m22

] [
wa
θa

]

Case Point Matrices

1.
Concentrated force WT
(force)

TRANSFER MATRIX:

W c
0 = WT /2πai and W s

0 = 0

W c
m = (WT cos mφ1)/πai m > 0

W s
m = (WT sin mφ1)/πai m > 0

STIFFNESS AND MASS MATRICES:

Traditionally, this applied load is implemented as
nodal conditions.
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TABLE 18-9 (continued) POINT MATRICES FOR CONCENTRATED OCCURRENCES FOR CIRCULAR
PLATES

Case Point Matrices

2.
Uniform line ring load W
(force/length)

TRANSFER MATRIX:

W c
0 = W W s

0 = 0 W c
m = W s

m = 0 m > 0

STIFFNESS MATRIX:

Traditionally, this applied load is implemented as nodal
conditions.

3.
Uniform line load W
(force/length in φ direction)

TRANSFER MATRIX:

W c
0 = W (φ2 − φ1)/2π W s

0 = 0

W c
m = W (sin mφ2 − sin mφ1)/mπ m > 0

W s
m = −W (cos mφ2 − cos mφ1)/mπ m > 0

STIFFNESS MATRIX:

Traditionally, this applied load is implemented as nodal
conditions.

4.
Concentrated moment
CT (force − length)

TRANSFER MATRIX:

Cc
0 = CT /2πai Cs

0 = 0

Cc
m = (CT cos mφ1)/πai m > 0

Cs
m = (CT sin mφ1)/πai m > 0

STIFFNESS MATRIX:

Traditionally, this applied load is implemented as nodal
conditions.

5.
Line ring spring k1
(force/length squared)a

TRANSFER MATRIX:

See transfer matrix under notation.

STIFFNESS MATRIX: a = ai[
Va
Ma

]
=
[

k1 0
0 0

] [
wa
θa

]

6.
Rotary line ring spring
(force − length/length)a

TRANSFER MATRIX:

See transfer matrix under notation.

STIFFNESS MATRIX: a = ai[
Va
Ma

]
=
[

0 0
0 k∗1

] [
wa
θa

]
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TABLE 18-9 (continued) POINT MATRICES FOR CONCENTRATED OCCURRENCES FOR CIRCULAR
PLATES

Case Point Matrices

7.
Ring lumped mass mi
(mass/length)a

ρ = mass per unit area
Rotary inertia terms
contain rr , rφ .

TRANSFER MATRIX:

See transfer matrix under notation.

MASS MATRIX: a = ai[
Va
Ma

]
= −ω2

[
mi 0
0 mir2

φ

] [
wa
θa

]

8.
Circular reinforcing
ring at r = ai

Reinforcing ring must be
symmetric in z direction
about middle plane of
plate.a

TRANSFER MATRIX:

Ui =




1 0 0 0 0

0 1 0 0 0

−miω
2 0 1 0 0

0 Es Is/a2
i − mir2

s ω
2 0 1 0

0 0 0 0 1




STIFFNESS AND MASS MATRICES: a = ai[
Va

Ma

]
=
[

0 0

0 Es Is/a2
i

] [
wa

θa

]

[
Va

Ma

]
= −ω2

[
mi 0

0 mir2
s

] [
wa

θa

]

aThese matrices apply for m = 0 (symmetric deformation).
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TABLE 18-10 STIFFNESS MATRICES FOR INFINITE CIRCULAR PLATE
ELEMENT WITH ELASTIC FOUNDATIONa

Notation
Use the stiffness matrix of this table for the outer infinite plate
element. Use stiffness matrices of Table 18-8 for inner elements.
Loadings should be placed on inner elements, represented by the
loading vectors of Table 18-8. The plate response is given by the
Fourier series expansion of Eq. (18.10).

m = 0, 1, 2, . . . , identifies term in Fourier series
expansion

E = modulus of elasticity
ν = Poisson’s ratio
D = plate rigidity,= Eh3/[12(1− ν2)]

kerm, keim = Kelvin functions of mth order
V j

a ,M j
a = shear force and bending moment

per unit length along circumference
at r = a

w
j
a , θ

j
a = deflection and slope at r = a
j = c, s

Stiffness Matrices

Infinite Circular Element with Center Hole on Elastic Foundation

m = 0 (SYMMETRIC BENDING)[
Va
Ma

]
=
[

k11 k12
k21 k22

]

ki
aa

[
wa
θa

]
wa = wc

a, θa = θc
a , Ma = Mc

a , Va = V c
a

k11 = 2πa[b33(aλ)e23(aλ)− b34(aλ)e23(aλ)]/B0

k12 = k21 = 2πa[b33(aλ)e14(aλ)− b34(aλ)e13(aλ)]/B0

k22 = 2πa[b43(aλ)e14(aλ)− b44(aλ)e13(aλ)]/B0

B0 = e14(aλ)e23(aλ)− e13(aλ)e24(aλ)
e13 = ker x e14 = kei x x = λr λ = (k/D)1/4

where ker x , kei x are Kelvin functions of order 0.

e23 = λ√
2
(ker1 x + kei1 x) e24 = λ√

2
(−ker1 x + kei1 x)

b33 = Dλ2
[
λ√
2
(kei1 x + ker1 x)− 2

r
kei x

]

b34 = −Dλ3

√
2
(ker1 x + kei1 x)

b43 = Dλ

[
1− ν√

2r
(ker1 x + kei1 x)− λkei x

]

b44 = −Dλ

[
1− ν√

2r
(ker1 x − kei1 x)+ λker x

]
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TABLE 18-10 (continued) STIFFNESS MATRICES FOR INFINITE CIRCULAR PLATE ELEMENT WITH
ELASTIC FOUNDATIONa

Stiffness Matrices

m ≥ 1 (ASYMMETRIC BENDING)[
V j

a

M j
a

]
=
[

k11 k12
k21 k22

]i

ki
aa

[
w

j
a

θ
j

a

]
j = s, c

k11 = 2πa[b33(aλ)e24(aλ)− b34(aλ)e23(aλ)]/Bm

k12 = k21 = 2πa[b33(aλ)e14(aλ)− b34(aλ)e13(aλ)]/Bm

k22 = 2πa[b43(aλ)e14(aλ)− b44(aλ)e13(aλ)]/Bm

Bm = e14(aλ)e23(aλ)− e13(aλ)e24(aλ)

e13 = kerm x e14 = keim x x = λr λ = (k/D)1/4

e23 = −λ
[

m

x
kerm x + 1√

2
(kerm−1x + keim−1x)

]

e24 = −λ
[

m

x
keim x + 1√

2
(keim−1x − kerm−1x)

]

e33 = λ2 d

dx
e23 e34 = λ2 d

dx
e24 e43 = λ d

dx
e33 e44 = λ d

dx
e34

b33 = D

[
m2(ν − 3)

r3
e13 + 1+ m2(2− ν)

r2
e23 − e33

r
− e43

]

b34 = D

[
m2(ν − 3)

r3
e14 + 1+ m2(2− ν)

r2
e24 − e34

r
− e44

]

b43 = D

(
νm2

r2
e13 − ν

r
e23 − e33

)
b44 = D

(
νm2

r2
e14 − ν

r
e24 − e34

)

aFrom Ref. [18.10].

TABLE 18-10 Stiffness Matrices for Infinite Circular Plate Element 1051



TABLE 18-11 GEOMETRIC STIFFNESS MATRICES FOR CIRCULAR
PLATES: SYMMETRIC CASEa

Notation
w, θ = deflection and slope γ = b/a

h = thickness of plate
ua = radial displacement at r = a; obtained from a disk analysis using the formulas

of Chapter 19
Sign convention is the same as that for stiffness matrices in Table 18-8.

Case Geometric Stiffness Matrices for Symmetric Bending (m = 0)

1.
Circular plate
element with
center hole

This matrix corresponds to a radial compressive force (per unit length) P
in plane of plate; this in-plane force in an element is obtained from a disk
analysis (Chapter 19) of the entire disk subject to a system of prescribed
applied in-plane loadings.

ki
G =



g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
g41 g42 g43 g44


 vi =



wa
θa
wb
θb




gi j = g ji = (−1)i+ j 2π
4∑

k=1

4∑
l=1

αikα jlζkl i, j = 1, 2, 3, 4

where αik , α jl are given in Table 18-12 for m = 0.

ζkl =
∫ b

a

[
1−
(

1− a2

r2

)
C1

]
β ′k(r)β ′l (r)r dr k, l = 1, 2, 3, 4

β ′1(r) = 0 β ′2(r) =
2r

a2
β ′3(r) =

1

r

β ′4(r) =
r

a2

(
1+ 2 ln

r

a

)

C1 = 1− ν
2
+ ua

Eh

2a P
ζkl = ζlk

In explicit form:
ζ11 = ζ12 = ζ13 = ζ14 = 0

ζ22 = (γ 2 − 1)[1(γ 2 + 1)− C1(γ
2 − 1)] γ = b/a

ζ23 = (1− C1)(γ
2 − 1)+ 2C1 ln γ

ζ24 = (1− C1)
[
γ 4
(

1
4 + ln γ

)
− 1

4

]
+ 2C1γ

2 ln γ

ζ33 = (1− C1) ln γ + 1
2 C1(1− γ−2)

ζ34 = (1− C1)γ
2 ln γ + C1(1+ ln γ ) ln γ

ζ44 = (1− C1)
[
γ 4
(

ln2 γ + 1
2 ln γ + 1

8

)
− 1

8

]

+ C1

[
γ 2
(

2 ln2 γ + 1
2

)
− 1

2

]
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TABLE 18-11 (continued) GEOMETRIC STIFFNESS MATRICES FOR CIRCULAR PLATES:
SYMMETRIC CASEa

Case Geometric Stiffness Matrices for Symmetric Bending (m = 0)

2.
Circular plate
without center
hole

This matrix corresponds to an in-plane compressive force Pa
(force/length) applied at r = a.

ki
G =
[

0 0

0 1
2πa2

]
vi =

[
wa

θa

]

aFrom Ref. [18.10].

TABLE 18-11 Geometric Stiffness Matrices: Symmetric Case 1053



TABLE 18-12 MASS MATRICES FOR CIRCULAR PLATE ELEMENTS IN
BENDINGa

Notation
w, θ = deflection and slope
ρ = mass per unit area
γ = b/a

M = total mass of circular plate element with center hole

If the mass is distributed along a circumference from radius r = r− to r = r+, then
M = ρπ[r+)2 − (r−)2]. The sign convention is the same as that for the stiffness matrices
in Table 18-8.

Mass matrix:

mi =



m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44


 vi =



wa
θa
wb
θb




Circular Plate with Center Hole, Consistent Mass

m = 0 (SYMMETRIC DEFORMATION) γ = b/a

mkj = (−1)k+ j 2π
4∑

n=1

4∑
l=1

αknα jlλnl

λnl =
∫ b

a ρβn(r)βl(r)r dr

α11 = γ 2[γ 2 − 1+ 2 ln γ − 4 ln2 γ ]/H0

α12 = (1− 2γ 2 ln γ − γ 2)/H0

α13 = (4γ 2 ln γ )/H0

α14 = 2(γ 2 − 1)/H0

α21 = (2γ a ln γ )/H0

α22 = −α21 α23 = aγ 2(γ 2 − 1− 2 ln γ )/H0

α24 = a(2γ 2 ln γ − γ 2 + 1)/H0

α31 = α12 α32 = −α12 α33 = −α13 α34 = −α14

α41 = [aγ (γ 2 − 1) ln γ ]/H0

α42 = −α41 α43 = aγ (2γ 2 ln γ − γ 2 + 1)/H0

α44 = aγ (γ 2 − 1− 2 ln γ )/H0

H0 = (γ 2 − 1)2 − 4γ 2 ln2 γ β1(r) = 1, β2(r) = (r/a)2
β3(r) = ln(r/a) β4(r) = (r/a)2 ln(r/a)
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TABLE 18-12 (continued) MASS MATRICES FOR CIRCULAR PLATE ELEMENTS IN BENDINGa

For uniform mass density ρ,

λ11 = ρa2(γ 2 − 1)/2 λ21 = ρa2(γ 4 − 1)/4 λ22 = ρa2(γ 6 − 1)/6

λ31 = ρa2[2γ 2 ln γ − (γ 2 − 1)]/4 λ32 = ρa2[4γ 2 ln γ − (γ 4 − 1)]/16

λ33 = ρa2[2γ 2 ln γ (ln γ − 1)+ (γ 2 − 1)]/4 λ41 = λ32

λ42 = ρa2[6γ 6 ln γ − (γ 6 − 1)]/36

λ43 = ρa2[4γ 4 ln γ (2 ln γ − 1)+ (γ 4 − 1)]/32

λ44 = ρa2[6γ 6 ln γ (3 ln γ − 1)+ (γ 6 − 1)]/108 λnl = λln (n, l = 1, 2, 3, 4)

m ≥ 1 (ASYMMETRIC DEFORMATION)

mkj = (−1)k+ jπ
∑4

n=1
∑4

l=1 αknα jlλnl

λnl =
∫ b

a ρrβn(r)βl(r) dr

m = 1, ρ = CONST., λ = b/a

α11 = γ [2(γ 4 − 3) ln γ − (γ 2 − 1)(γ 2 − 3)]/H1

α12 = γ 3[γ 2(2 ln γ − 3)+ 3]/H1

α13 = γ (γ 2 + 2 ln γ − 1)/H1

α14 = 2γ (3+ γ 2)(1− γ 2)/H1

α21 = aγ [2+ (γ 4 + 1)(2 ln γ − 1)]/H1

α22 = aγ 3[γ 2(1− 2 ln γ )− 1]/H1

α23 = aγ (γ 2 − 2 ln γ − 1)/H1 α24 = −2aγ (γ 2 − 1)2/H1

α31 = [4γ 2(1+ ln γ )− 3γ 4 − 1]/H1 α32 = γ 2(3γ 2 − 3− 2 ln γ )/H1

α33 = [1− γ 2(1+ 2 ln γ )]/H1 α34 = 2(γ 2 − 1)(3γ 2 + 1)/H1

α41 = aγ (γ 4 − 4γ 2 ln γ − 1)/H1 α42 = aγ 3(2 ln γ + 1− γ 2)/H1

α43 = aγ [γ 2(2 ln γ − 1)+ 1]/H1 α44 = −2aγ (γ 2 − 1)2/H1 = α24

H1 = 4γ [(γ 4 − 1) ln γ − (γ 2 − 1)2]
β1(r) = r/a β2(r) = (r/a)−1 β3(r) = (r/a)3
β4(r) = (r/a) ln(r/a)

λ11 = ρa2(γ 4 − 1)/4 λ22 = ρa2 ln γ

λ21 = ρa2(γ 2 − 1)/2 λ32 = ρa2(γ 4 − 1)/4

λ31 = ρa2(γ 6 − 1)/6 λ42 = ρa2(2γ 2 ln γ − γ 2 + 1)/4

λ41 = ρa2(4γ 4 ln γ − γ 4 + 1)/16 λ33 = ρa2(γ 8 − 1)/8

λ43 = ρa2(6γ 6 ln γ − γ 6 + 1)/36

λ44 = ρa2(8γ 4 ln2 γ − 4γ 4 ln γ + γ 4 − 1)/32

λnl = λln (n, l = 1, 2, 3, 4)
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TABLE 18-12 (continued) MASS MATRICES FOR CIRCULAR PLATE ELEMENTS IN BENDINGa

m > 1; ρ = CONST

α11 = γ 2[m2(1− γ 2)− (m + 2)(1− γ−2m)]/Hm

α12 = γ 2[m2(1− γ 2)+ (m − 2)(1− γ 2m)]/Hm

α13 = m[(m − 1)(γ 2 − 1)− (γ−2m+2 − 1)]/Hm

α14 = m[(m + 1)(γ 2 − 1)+ (γ 2m+2 − 1)]/Hm

α21 = aγ 2[m(1− γ 2)+ (1− γ−2m)]/Hm

α22 = aγ 2[m(γ 2 − 1)+ (1− γ 2m)]/Hm

α23 = a[m(γ 2 − 1)− γ 2(1− γ−2m)]/Hm

α24 = a[m(1− γ 2)+ γ 2(γ 2m − 1)]/Hm

α31 = γ 2[m2γ−m−2(γ 2 − 1)+ (m + 2)(γm − γ−m)]/Hm

α32 = γ 2[m2γm−2(γ 2 − 1)+ (m − 2)(γm − γ−m)]/Hm

α33 = m[(m − 2)γ−m(1− γ 2)− (γm − γ−m)]/Hm

α34 = m[(m + 2)γm(1− γ 2)− (γm − γ−m)]/Hm

α41 = aγ 2[mγ−m−1(γ 2 − 1)− γ (γm − γ−m)]/Hm

α42 = aγ 2[mγm−1(1− γ 2)+ γ (γm − γ−m)]/Hm

α43 = a[mγ−m+1(1− γ 2)+ γ (γm − γ−m)]/Hm

α44 = a[mγm+1(γ 2 − 1)− γ (γm − γ−m)]/Hm

Hm = 2[γ 2(γm − γ−m)2 − m2(γ 2 − 1)2]
β1(r) =

( r

a

)m

β2(r) =
( r

a

)−m

β3(r) =
( r

a

)2+m

β4(r) =
( r

a

)2−m

λ11 = ρa2(γ 2m+2 − 1)/(2m + 2)
λ21 = ρa2(γ 2 − 1)/2
λ22 = ρa2(1− γ 2−2m)/(2m − 2)
λ31 = ρa2(γ 2m+4 − 1)/(2m + 4)
λ32 = ρa2(γ 4 − 1)/4
λ33 = ρa2(γ 2m+6 − 1)/(2m + 6)
λ41 = ρa2(γ 4 − 1)/4
λ42 = ρa2(1− γ 4−2m)/(2m − 4) (m �= 2)
λ42 = ρa2 ln γ (m = 2)
λ43 = ρa2(γ 6 − 1)/6
λ44 = ρa2(1− γ 6−2m)/(2m − 6) (m �= 3)
λ44 = ρa2 ln γ (m = 3)
γ = b/a λnl = λln (n, l = 1, 2, 3, 4)
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TABLE 18-12 (continued) MASS MATRICES FOR CIRCULAR PLATE ELEMENTS IN BENDINGa

Circular Plate with Center Hole, Consistent Mass

m = 0 (SYMMETRIC DEFORMATION)

mi =
[
πρb2 πρb3/4
πρb3/4 πρb4/12

]

vi =
[
wb
θb

]

m ≥ 1 (ASYMMETRIC DEFORMATION)

mi =
[

m11 m12
m21 m22

]

vi =
[
wb
θb

]

m11 = πρb2[(m + 2)2/(2m + 2)− m + m2/(2m + 6)]/4
m12 = m21 = −πρb3[(m + 1)/(m + 2)− (m + 2)/(2m + 2)− m/(2m + 6)]/4
m22 = πρb4[1/(2m + 2)− 2/(2m + 4)+ 1/(2m + 6)]/4

Circular Plate with Center Hole, Lumped Mass

MASS LUMPED ALONG CIRCUMFERENCE AT r = a:

mi =



M 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




vi =


wa
θa
wb
θb




MASS LUMPED ALONG CIRCUMFERENCE AT r = b:

mi =



0 0 0 0
0 0 0 0
0 0 M 0
0 0 0 0




vi =


wa
θa
wb
θb




TABLE 18-12 Mass Matrices for Circular Plate Elements in Bending 1057



TABLE 18-12 (continued) MASS MATRICES FOR CIRCULAR PLATE ELEMENTS IN BENDINGa

MASS LUMPED AT BOTH r = a AND r = b:

mi =




1
2 M 0 0 0
0 0 0 0

0 0 1
2 M 0

0 0 0 0




vi =


wa
θa
wb
θb




Circular Plate without Center Hole, Lumped Mass

MASS LUMPED AT r = b:

mi =
[

M0 0
0 0

]

vi =
[
wb
θb

]

M0 = πb2ρ

aFrom Ref. [18.10].
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TABLE 18-13 DISPLACEMENTS AND STRESSES FOR LARGE
DEFLECTION OF UNIFORMLY LOADED CIRCULAR PLATES

Notation
E = modulus of elasticity
ν = Poisson’s ratio
h = thickness of plate
a = radius of plate
w0 = maximum deflection at center
p1 = uniformly distributed load on plate

The stresses in this table are at the lower surface. To use this table, solve the relation-
ship between load and deflection for w0 and then calculate the other responses.

Plates Deflection and Stresses

1.
Simply supported outer edge with
in-plane force [18.11]

The radial displacement at the
outer edge is zero.

Relationship between load and deflection:

p1a4

Eh4
= 5.333

1− ν2

w0

h
+ 2(23− 9ν)

21(1− ν)
(w0

h

)3

Extensional radial stress at center:

(σre)0 = Eh2

a2

5− 3ν

6(1− ν)
(w0

h

)2

Maximum stress in bending at center:

(σrb)0 = Eh2

a2

2

1− ν
(w0

h

)

Maximum total radial stress at center:

σr0 = (σre)0 + (σrb)0

Maximum total radial stress at outer boundary:

σra = Eh2

a2

[
1

3(1− ν)
(w0

h

)2 + 4

1− ν2

w0

h

]

Tensile in plane radial outer boundary reaction
per unit length:

P = 1

3(1− ν)
Eh3

a2

(w0

h

)2

TABLE 18-13 Displacements and Stresses of Loaded Circular Plates 1059



TABLE 18-13 (continued) DISPLACEMENTS AND STRESSES FOR LARGE DEFLECTION OF
UNIFORMLY LOADED CIRCULAR PLATES

Plates Deflection and Stresses

2.
Simply supported outer edge
without in-plane force [18.14]

The radial displacement at the
outer edge is not restrained.
Hence the radial force P is zero.

Relationship between load and deflection:

p1a4

Eh4
= 1.016

1− ν
w0

h
+ 0.376

(w0

h

)3

Maximum radial stress at center:

σr0 = Eh2

a2

[
1.238

1− ν2

w0

h
+ 0.294

(w0

h

)2
]

3.
Fixed at outer edge with in-plane
force [18.14]

The radial displacement at the
outer edge is zero.

Relationship between load and deflection:

p1a4

Eh4
= 5.333

1− ν2

w0

h
+ 0.857

(w0

h

)3

Maximum radial stress at center:

σr0 = Eh2

a2

[
2

1− ν2

w0

h
+ 0.5

(w0

h

)2
]

Maximum radial stress at outer boundary:

σra = Eh2

a2

(
4

1− ν2

w0

h

)
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TABLE 18-14 STRESSES OF RECTANGULAR PLATES
Notation

w = deflection
σx , σy = normal stresses in x and y directions
τxy = shear stress

Ex , Ey = modulus of elasticity in x and y directions; for isotropic materials,
Ex = Ey = E

νx , νy = Poisson’s ratio in x and y directions
αx , αy = thermal expansion coefficients in x and y directions

P = Px , Py, Pxy = in-plane forces (Fig. 18-4); Px and Py are in compression
G = shear modulus of elasticity; has the same value

in x and y directions
h = thickness of plate

Mx = M,My = bending moments per unit length on surface normal
to x and y axes

Mxy = twisting moment per unit length
Qx , Qy = shear force per unit length on surfaces normal to

x and y axes

Plates Stresses

1.
Isotropic or orthotropic with
material properties that do not
vary through depth of plate

σx = − P

h
+ Mz

h3/12
σy = − Py

h
+ My z

h3/12

τxy = Pxy

h
− Mxyz

h3/12
Pxy is an in-plane shear force

τxz = 3Qx

2h

[
1−
(

z

h/2

)2
]

τyz = 3Qy

2h

[
1−
(

z

h/2

)2
]
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TABLE 18-14 (continued) STRESSES OF RECTANGULAR PLATES

Plates Stresses

2.
Orthotropic with material
properties that vary through
depth of plate; variation
must be symmetric about
middle surface; in-plane
force Pxy ignored

σx = −Ex P∫ h/2
−h/2 Ex dz

+ Ex Mz∫ h/2
−h/2 Ex z2 dz

σy = −Ey Py∫ h/2
−h/2 Ey dz

+ Ey My z∫ h/2
−h/2 Eyz2 dz

τxy = −G Mxyz∫ h/2
−h/2 Gz2 dz

τxz = ∂

∂x

[
∂2w

∂x2

∫ z

−h/2

Ex z

1− νxνy
dz

+ ∂
2w

∂y2

∫ z

−h/2

(
Exνy

1− νxνy
+ 2G

)
z dz

]

τyz = ∂

∂y

[
∂2w

∂x2

∫ z

−h/2

(
Exνy

1− νxνy
+ 2G

)
z dz

∂2w

∂y2

∫ z

−h/2

Eyz

1− νxνy
dz

]

3.
Layered plate; stresses in mth
layer given [18.13]

In-plane forces are ignored.

σxm = −zCxm

(
∂2w

∂x2
+ νxm

∂2w

∂y2

)

σym = −zCym

(
∂2w

∂y2
+ νym

∂2w

∂x2

)

τxym = −2zGm
∂2w

∂x ∂y

For a symmetrically constructed plate, the other shear
stresses for m = 1, 2, 3, . . . , n + 1 (stresses are sym-
metrically distributed) are

τxzm = z2

2

∂

∂x

[
Cxm

∂2w

∂x2
+ (Cxmνym + 2Gm)

∂2w

∂y2

]

− h2

2

∂

∂x

[
C11m

∂2w

∂x2
+ (C12m + 2C66m)

∂2w

∂y2

]

τyzm = z2

2

∂

∂y

[
(Cxmνym + 2Gm)

∂2w

∂x2
+ Cym

∂2w

∂y2

]

− h2

2

∂

∂y

[
C12m + 2C66m)

∂2w

∂x2
+ C22m

∂2w

∂y2

]
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TABLE 18-14 (continued) STRESSES OF RECTANGULAR PLATES

Plates Stresses

Cxm = Exm

1− νxmνym
Cym = Eym

1− νxmνym

C11m =




Cx1 m = 1

1

h2

[
m−1∑
k=1

Cxk(h
2
k − h2

k+1)+ Cxmh2
m

]
m ≥ 2

C12m =




Cx1νy1 m = 1

1

h2

[
m−1∑
k=1

Cxkνym(h
2
k − h2

k+1)+ Cxmνymh2
m

]

m ≥ 2

C22m =




Cy1 m = 1

1

h2

[
m−1∑
k=1

Cyk(h
2
k − h2

k+1)+ Cymh2
m

]
m ≥ 2

C66m =




G1 m = 1

1

h2

[
m−1∑
k=1

Gk(h
2
k − h2

k+1)+ Gmh2
m

]
m ≥ 2

4.
Thermal loading

σx = Mz

h3/12
− Ex (αx + νyαy)

1− νxνy
T

σy = Myz

h3/12
− Ey(αy + νxαx )

1− νxνy
T
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TABLE 18-15 MATERIAL PROPERTIES FOR RECTANGULAR PLATES
Notation

Refer to Eqs. (18.16) through Eq. (18.19), especially Eq. (18.17).

Ex , Ey = moduli of elasticity in x and y directions, for isotropic materials Ex = Ey = E
h = thickness of plate

Dx , Dy = flexural rigidities in x and y directions
νx , νy = Poisson’s ratios in x and y directions

B = 1
2 (Dxνy + Dyνx + 4Dxy)

Dxy = torsional rigidity, = 1
4 (2B − Dxνy − Dyνx )

Plates Constants

1.
Homogeneous isotropic

νx = νy = ν Dx = Dy = D Dxy = 1
2 (1− ν)D

D = Eh3/[12(1− ν2)] B = D

2.
Homogeneous orthotropic

Dx = Ex h3

12(1− νxνy)
Dy = Eyh3

12(1− νxνy)
Dxy = Gh3

12

3.
Isotropic plate with equidistant stiffeners
in one direction [18.12]

Stiffeners on two sides:

Dx = Eh3

12(1− ν2)
Dy = Dx + Es Is

d
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where

Is = moment of inertia of stiffener taken about middle axis of cross section of plate

Es = modulus of elasticity stiffeners

Stiffeners on one side:

Dx = Eh3d

12[d − c + c(h/H )3] Dy = E Is

d

Dxy = D′xy +
G J

2d
where

G J = torsional rigidity of a rib

D′xy = torsional rigidity of slab without ribs

Is = moment of inertia of T section of width d about its neutral axis

4.
Isotropic plate with equidistant stiffeners
in two directions; axes of ribs are
parallel to principal directions [18.12]

νx = νy = ν Dx = Eh3

12(1− ν2)
+ E1 I1

d1

Dy = Eh3

12(1− ν2)
+ E2 I2

d2
Dxy = Eh3

12(1− ν2)
where

I1 = moment of inertia about plate’s middle surface of stiffener in x direction
E1 = modulus of elasticity of this stiffener
d1 = spacing of these stiffeners

I2, E2, d2 = corresponding constants for stiffeners lying in y direction
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TABLE 18-15 (continued) MATERIAL PROPERTIES FOR RECTANGULAR PLATES

Plates Constants

5.
Corrugated plate [18.12]

νx = νy = ν Dx = �

s

Eh3

12(1− ν2)

Dy = E I B = s

�

Eh3

12(1+ ν)
where

I = mean moment of inertia in x, y plane per unit length

I = 0.5h H 2(1− 0.81/C1) C1 = 1+ 2.5(H/2�)2

6.
Open gridworks [18.1]

νx = νy = ν Dx = E I1

d1
Dy = E I2

d2

B = G J1

2d1
+ G J2

2d2
Dxy =

√
Dx Dy

where

G J1,G J2 = torsional rigidities of beams parallel to x and y axes

E I1, E I2 = bending rigidities of beams parallel to x and y axes
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7.
Concrete slab with steel reinforcement
bars in both x and y directions [18.1]

νx = νy = νc Dx = Ec

1− ν2
c

[
Icx +

(
Es

Ec
− 1

)
Isx

]

Dy = Ec

1− ν2
c

[
Icy +

(
Es

Ec
− 1

)
Isy

]

Dxy = 1
2 (1− νc)

√
Dx Dy

where

νc = Poisson’s ratio for concrete

Ec, Es = moduli of elasticity for concrete and steel, respectively

Icx , Icy = moments of inertia of slab material about neutral axis in section where
x, y = const

Isx , Isy = moments of inertia of reinforcement bars about neutral axis in section where
x, y = const

8.
Concrete slab stiffened by concrete
ribs [18.1]

Dx = E Ix

d1
Dy = E Iy

d2

B = Eh3

12(1+ νxνy)
+ G

2

H1c3
1α1k1

d1
+ H2c3

2α2k2

d2
where
Ix , Iy = moments of inertia of slab section where x, y = const (see case 7), with respect to

neutral axis

ki = reduction factors, depending on ci/Hi , which are inserted to reduce the torsional
rigidities of the concrete ribs after cracks have developed

Values of αi are provided for some values of ci/Hi :

ci/Hi 1.0 1.2 1.5 2.0 2.5 3.0

αi 0.140 0.166 0.196 0.229 0.249 0.263

ci/Hi 4.0 6.0 8.0 10.0 ∞
αi 0.281 0.299 0.307 0.313 0.333
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TABLE 18-15 (continued) MATERIAL PROPERTIES FOR RECTANGULAR PLATES

Plates Constants

9.
Steel deck plate [18.1] with multiple
stiffeners

Dx = Eh3

12(1− νxνy)
+ Ehe2

x

(1− νxνy)
+ E Ix

d1

Dy = Eh3

12(1− νxνy)
+ Ehe2

y

(1− νxνy)
+ E Iy

d2

B = Eh3

12(1− νxνy)
+ G

6

(∑M1
i=1 H1i t3

1i

d1
+
∑M2

i=1 H2i t3
2i

d2

)

where

Ix , Iy = moments of inertia of stiffeners with respect to neutral axes in x , y directions

ex , ey = distances from middle plane of plate to neutral axes of stiffeners

M1(M2) = number of segments (i.e., flanges and webs) of thickness t1i (t2i ) and length
H1i (H2i ) comprising a single stiffener section in the x (y) direction.

10.
Composite (concrete–steel) slab

Use the formulas for a steel deck plate. First transform the concrete part of the slab into an
equivalent steel plate.

11. Continuously composite, isotropic νx = νy = ν Dx = Dy = D Dxy = 1
2 (1− ν)D

D = 1

1− ν2

∫ h/2

−h/2
Ez2 dz
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12.
Continuously composite, orthotropic

Dx = 1

1− νxνy

∫ h/2

−h/2
Ex z2 dz

Dy = 1

1− νxνy

∫ h/2

−h/2
Eyz2 dz

Dy =
∫ h/2

−h/2
Gz2 dz

13.
Multiple isotropic layers [18.1]

νx = νy = ν Dx = Dy = D D = (Q1C − Q2
2)/Q1

Q1 =
∑
k=1

Ek

1− ν2
k

(hk − hk−1)

Q2 = 1

2

∑
k=1

Ek

1− ν2
k

(h2
k − h2

k−1)

C = 1

3

∑
k=1

Ek

1− ν2
k

(h3
k − h3

k−1)

14. Symmetrically constructed with
isotropic layers [18.13]

νx = νy = ν Dx = Dy = D Dxy = 1
2 (1− ν)D

D = 2

3

n+1∑
m=1

cm ν = 2

3D

n+1∑
m=1

νmcm

cm =
Em(h3

m − h3
m+1)

1− ν2
m

with hn+2 set equal to zero

where Em , νm are Young’s modulus and Poisson’s ratio for mth layer This plate is con-
structed of an odd number of homogeneous layers symmetrically located about middle
layer.
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TABLE 18-15 (continued) MATERIAL PROPERTIES FOR RECTANGULAR PLATES

Plates Constants

15.
Symmetrically constructed with
orthotropic layers [18.13]

νx = 2

3Dy

n+1∑
m=1

cxmνym νy = νx Dy

Dx

Dx = 2

3

n+1∑
m=1

cxm Dy = 2

3

n+1∑
m=1

cym

Dxy = 2

3

[
n+1∑
m=1

Gm(h
3
m − h3

m+1)

]

cxm =
Exm(h3

m − h3
m+1)

1− νxmνym
cym =

Eym(h3
m − h3

m+1)

1− νxmνym
with hn+2 = 0

where Exm , Eym , νxm , νym = Young’s moduli and Poisson’s ratios of mth layer
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16.
Symmetrically constructed with identical
orthotropic layers

The principal directions of adjacent
layers are mutually perpendicular. That
is, if the material properties in
perpendicular directions are E1, ν1
and E2, ν2, then for odd-numbered
layers (k = 1, 3, 5, . . . , 2n + 1)
Exk = E1, νxk = ν1,
Eyk = E2, νyk = ν2

,

and for even-numbered layers
(k = 2, 4, 6, . . . , 2n)

Exk = E2, νxk = ν2,
Eyk = E1, νyk = ν1

.

νx = 2(2n + 1)3ν2

Q2
ν2 = 2(2n + 1)3ν2

Q1

Dx = Ex h3

12(1− νxνy)
Dy = Eyh3

12(1− νxνy)

Dxy = Gh3

12

Ex = E1

2(2n + 1)3
1− νxνy

1− ν1ν2
Q1

Ey = E2

2(2n + 1)3
1− νxνy

(1− ν1ν2)E2/E1
Q2

Q1 = (2n + 1)3(1+ E2/E1)+ [3(2n + 1)2 − 2](1− E2/E1)

Q2 = (2n + 1)3(1+ E2/E1)− [3(2n + 1)2 − 2](1− E2/E1)
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TABLE 18-15 (continued) MATERIAL PROPERTIES FOR RECTANGULAR PLATES

Plates Constants

17.
Plywood [18.12]; x axis parallel to
face grain.

νx = E ′′/E ′y νy = E ′′/E ′x Dx = 1
12 E ′x h3

Dy = 1
12 E ′yh3 Dxy = 1

12 Gh3

E ′x E ′y E ′′ G

Maple, 5-ply 1.87 0.60 0.073 0.159
Afara, 3-ply 1.96 0.165 0.043 0.110
Gaboon (Okoume), 3-ply 1.28 0.11 0.014 0.085
Birch, 3-ply and 5-ply 2.00 0.167 0.077 0.17
Birch with Bakelite membranes 1.70 0.85 0.061 0.10
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TABLE 18-16 DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES
Notation

w = deflection
E = modulus of elasticity
ν = Poisson’s ratio
h = thickness of plate
D = Eh3/[12(1− ν2)]

WT = concentrated loading (F)
p1 = uniformly distributed loading (F/L2)
α = L y/L
β = L/L y

Mx ,My = bending moment per unit length
on surface normal to x and y axes

Qx , Qy = shear force per unit length on
surfaces normal to x and y axes

Vx , Vy = equivalent shear force per unit length
acting on planes normal to x and y axes

Structural System and Static Loading Deflection and Internal Forces

1. Simply supported on all edges,
uniform loading

w = 16p1L4

π6 D

∑
m

∑
n

sin(nπx/L) sin(mπy/L y)

mn(n2/L2 + m2/L2
y)

2

Mx = 16p1L2

π4

∑
m

∑
n

γ1
sin(nπx/L) sin(mπy/L y)

mn(n2 + m2/α2)2

My = 16p1L2

π4

∑
m

∑
n

γ2
sin(nπx/L) sin(mπy/L y)

mn(n2 + m2/α2)2

wmax = c1
p1L4

Eh3
= wcenter

γ1 = (n2 + νm2/α2), γ2 = (m2/α2 + νn2)
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TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading Deflection and Internal Forces

(Mx )max = c2 p1L2 (center)

(My)max = c3 p2L2 (center)

(Qx )max = c4 p1L (x = 0, L edges)

(Qy)max = c5 p1L y (y = 0, L y edges)

(Vx )max = c6 p1L (lateral edge forces)

(Vy)max = c7 p1L y (lateral edge forces)

R0 = c8 p1L L y (corner forces)

CONSTANTS:

m = 1, 3, 5, . . . ,∞ n = 1, 3, 5, . . . ,∞
ν = 0.3

c1 = 0.1421+ 0.08204β − 0.3985β2 + 0.219β3

c2 = 0.1247+ 0.05524β − 0.2762β2 + 0.1441β3

c3 = 0.03726− 0.01504β + 0.1028β2 − 0.07756β3

c4 = 0.4967+ 0.1686β − 0.6849β2 + 0.3976β3

c5 = −0.0007805+ 0.3679β + 0.04574β2 − 0.07488β3

c6 = 0.4983+ 0.02879β + 0.004425β2 − 0.1137β3

c7 = −0.003591+ 0.5091β + 0.05874β2 − 0.1445β3

c8 = −0.003545+ 0.1179β − 0.02755β2 − 0.02202β3
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2.
Simply supported on all edges,
concentrated load

w = 4WT

Dπ4L L y

∑
m

∑
n

sin(nπa/L) sin(mπb/L y) sin(nπx/L) sin(mπy/L y)

(n2/L2 + m2/L2
y)

2

m = 1, 2, 3, . . . , ; n = 1, 2, 3, . . .

or

w = WT L2

Dπ3

∞∑
n=1

(
1+ βn cothβn − βn y1

L y
coth

βn y1

L y
− βnb1

L y
coth

βnb1

L y

)

×
sinh

βnb1

L y
sinh

βn y1

L y
sin

nπa

L
sin

mπx

L

n3 sinhβn

If y ≥ b, use y1 = L y − y and b1 = b

If y < b, use y1 = y and b1 = L y − b

βn = nπL y

L
n = 1, 2, 3, . . .

3.
Simply supported on all edges,
uniform load on a small circle of
radius r0 at center of plate

At center:

wmax = k1
WT L2

y

Eh3

σmax = 3WT

2πh2

[
(1+ ν) ln

2L y

πre
+ k2

]

where

re =
{√

1.6r2
0 + h2 − 0.675h r0 < 0.5h

r0 r0 > 0.5h

WT = total load on plate

k1 = 0.1851+ 0.06342α − 0.1643α2 + 0.04232α3

k2 = 0.9998+ 0.5195α − 1.29α2 + 0.2042α3
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TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading Deflection and Internal Forces

4.
Three edges simply supported, one
edge free, uniform load

(Mx )x=L/2
y=L y/2

= c1 p1L2
y

(My)x=L/2
y=L y/2

= c2 p1L2
y

(My)x=0
y=L y/2

= c3 p1L2
y

ν = 0.15

CONSTANTS:

c1 =
{ −2.7975+ 16.537β1/2 − 36.423β + 35.523β3/2 − 12.913β2 0.3 ≤ β < 0.8

−0.2714+ 0.6371β1/2 − 0.4533β + 0.1021β3/2 0.8 ≤ β ≤ 2.0

c2 = 0.1448− 0.7829β1/2 + 1.415β − 0.9113β3/2 + 0.2039β2 0.3 ≤ β ≤ 2.0

c3 = 0.2558− 1.3186β1/2 + 2.6532β − 1.9313β3/2 + 0.4817β2 0.3 ≤ β ≤ 2.0
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5.
Three edges clamped, one edge free,
uniform load

(Mx )x=L/2
y=L y/2

= c1 p1L2
y

(My)x=L/2
y=L y/2

= c2 p1L2
y

(My)x=0
y=L y/2

= c3 p1L2
y

(Mx )x=L
y=L y/2

= c4 p1L2

(My)x=L/2
y=0,L y

= c5 p1L2
y

(My)x=0
y=0,L y

= c6 p1L2
y

ν = 0.15
CONSTANTS:

c1 =
{−0.01247+ 0.05532α − 0.04778α2 + 0.01519α3 − 0.001687α4 1.25 < α ≤ 3.3

−0.006967+ 0.01615α + 0.01147α2 − 0.01205α3 0.5 ≤ α ≤ 1.25

c2 = 0.05474− 0.03243α + 0.006359α2 − 0.0003985α3 0.5 ≤ α ≤ 3.3

c3 = 0.03724+ 0.02528α − 0.02263α2 + 0.003719α3 0.5 ≤ α ≤ 3.3

c4 = −0.006349+ 0.02708α − 0.09165α2 + 0.01488α3 0.5 ≤ α ≤ 3.3

c5 = −0.1062+ 0.04391α − 0.00235α2 − 0.0007418α3 0.5 ≤ α ≤ 3.3

c6 = −0.06827− 0.04205α + 0.02756α2 − 0.003528α3 0.5 ≤ α ≤ 3.3
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TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading Deflection and Internal Forces

6.
Simply supported on all edges,
linearly varying load

If L/L y < 1.00,

(Mx )x=L/2
y=L y/2

= c1 p1L2

(Mx )max = c2 p1L2

(My)x=L/2
y=L y/2

= c3 p1L2

(My)max = c4 p1L2

If L/L y ≥ 1.00, replace p1L2 by p1L2
y .

ν = 0.15

CONSTANTS:

c1 =
{

0.08438− 0.06242β − 0.03592β2 + 0.03239β3 0.5 ≤ β ≤ 1.0

−0.003636+ 0.05639β − 0.04352β2 + 0.009206β3 1.0 < β ≤ 2.0

c2 =
{

0.085096− 0.0635β − 0.02495β2 + 0.02498β3 0.5 ≤ β ≤ 1.0

−0.01872+ 0.07831β − 0.04657β2 + 0.008649β3 1.0 < β ≤ 2.0

c3 =
{

0.01873+ 0.07069β − 0.02985β2 + 0.003716β3 0.5 < β ≤ 1.0

−0.04394+ 0.08744β − 0.03008β2 + 0.004946β3 1.0 < β ≤ 2.0

c4 =
{

0.01756− 0.05004β − 0.1028β2 + 0.05186β3 0.5 ≤ β ≤ 1.0

−0.01646+ 0.02599β + 0.01385β2 + 0.004938β3 1.0 < β ≤ 2.0
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7.
Two edges simply supported, two
edges clamped, linearly varying load

If β = L/L y < 1.00,
−(My)max = c1 p1L2

(Mx )x=L/2
y=0,L y

= c2 p1L2

(Mx )max = c3 p1L2

(Mx )x=L/2
y=L y/2

= c4 p1L2

(My)max = c5 p1L2

(My)x=L/2
y=L y/2

= c6 p1L2

If β ≥ 1.00, replace p1L2 by p1L2
y .

ν = 0.15

CONSTANTS:
0.5 ≤ β ≤ 1.0
c1 = −0.0947+ 0.09607β − 0.0758β2 + 0.03702β3

c2 = −0.07833+ 0.01816β + 0.04384β2 − 0.01853β3

c3 = 0.147− 0.3292β + 0.286β2 − 0.09076β3

c4 = 0.120− 0.218β + 0.1254β2 − 0.01945β3

c5 = −0.04249+ 0.196β − 0.2114β2 + 0.07222β3

c6 = −0.04249+ 0.196β − 0.2114β2 + 0.07222β3

1.0 < β ≤ 2.0

c1 = −0.001352− 0.04739β + 0.01262β2 − 0.001445β3

c2 = 0.01942− 0.09533β + 0.04973β2 − 0.008762β3

c3 = −0.005903+ 0.04346β − 0.03065β2 + 0.00615β3

c4 = 0.02255− 0.01713β + 0.001814β2 + 0.0006693β3

c5 = −0.0156+ 0.04088β − 0.01164β2 + 0.00638β3

c6 = −0.02249+ 0.06271β − 0.03123β2 + 0.005338β3
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TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading Deflection and Internal Forces

8.
Clamped on all edges,
linearly on varying load

If β = L/L y < 1.00,
(Mx )x=0

y=L y/2
= c1 p1L2

(Mx )x=L
y=L y/2

= c2 p1L2

−(My)max = c3 p1L2

(My)x=L/2
y=0,L y

= c4 p1L2

(Mx )max = c5 p1L2

(Mx )x=L/2
y=L y/2

= c6 p1L2

(My)max = c7 p1L2

(My)x=L/2
y=L y/2

= c8 p1L2

If β ≥ 1.00, replace p1L by p1L2
y .

ν = 0.15
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CONSTANTS:

0.5 ≤ β ≤ 1.0

c1 = −0.03596− 0.08083β + 0.1319β2 − 0.04816β3

c2 = −0.01030− 0.116β + 0.1791β2 − 0.07038β3

c3 = −0.02636− 0.004588β − 0.009978β2 + 0.01388β3

c4 = −0.02993+ 0.01295β − 0.02866β2 + 0.02036β3

c5 = 0.0261− 0.00459β − 0.01879β2 + 0.007399β3

c6 = 0.01218+ 0.05503β − 0.09913β2 + 0.04073β3

c7 = 0.03321− 0.1267β + 0.1792β2 − 0.07687β3

c8 = −0.005465+ 0.003079β + 0.03526β2 − 0.02409β3

1.0 < β ≤ 2.0

c1 = 0.02841− 0.1064β + 0.0549β2 − 0.01001β3

c2 = 0.005924− 0.05511β + 0.03986β2 − 0.00827β3

c3 = 0.03386− 0.08143β + 0.02145β2 − 0.0008475β3

c4 = 0.04529− 0.1128β + 0.04949β2 − 0.007329β3

c5 = −0.00482+ 0.03546β − 0.02663β2 + 0.006204β3

c6 = −0.00233+ 0.03325β − 0.02862β2 + 0.006528β3

c7 = −0.01682+ 0.02965β − 0.002959β2 − 0.001043β3

c8 = −0.03277+ 0.06381β − 0.02579β2 + 0.003542β3
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TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading Deflection and Internal Forces

9.
Two edges simply supported, two
edges flexibly supported, uniform
loading

wmax = c1
p1L4

D
= wcenter

(Mx )max = c2 p1L2 (center)

(My)max = c3 p1L2 (center)

ν = 0.3

E I = stiffness of edge beam supports

CONSTANTS:

c1 = 0.004037+ 0.003975
1

1+ η − 0.003862
1

(1+ η)2 + 0.008931
1

(1+ η)3
c2 = 0.04756+ 0.0356

1

1+ η − 0.05788
1

(1+ η)2 + 0.1001
1

(1+ η)3
c3 = 0.04759− 0.00504

1

1+ η − 0.05026
1

(1+ η)2 + 0.03471
1

(1+ η)3
η = E I

L D
≥ 0
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10.
Clamped on all edges uniform
loading

wmax = c1
p1L4

Eh3
= wcenter

(Mx )x=0
y=0
= c2 p1L2 (My)x=0

y=0
= c3 p1L2

(Mx )x=L/2
y=0

= −c4 p1L2 (My)x=0
y=L y/2

= −c5 p1L2

ν = 0.3

CONSTANTS:

1.0 ≤ α ≤ 2.0

c1 = −0.06479+ 0.1327α − 0.0665α2 + 0.01162α3

c2 = −0.07859+ 0.1748α − 0.09038α2 + 0.01652α3

c3 = 0.0009449+ 0.04083α − 0.0212α2 + 0.001949α3

c4 = −0.03425+ 0.1083α − 0.02085α2 − 0.002018α3

c5 = 0.4247+ 0.002192α + 0.01065α2 − 0.003921α3

11.
Two edges simply supported, two
edges free, uniform loading

(w)x=L/2
y=L y/2

= c1 p1L4/D

(w)x=L/2
y=0,L y

= c2 p1L4/D

(Mx )x=L/2
y=L y/2

= c3 p1L2

(My)x=L/2
y=L y/2

= c4 p1L2

(Mx )x=L/2
y=0,L y

= c5 p1L2

ν = 0.3
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TABLE 18-16 (continued) DEFLECTIONS AND INTERNAL FORCES OF RECTANGULAR PLATES

Structural System and Static Loading Deflection and Internal Forces

CONSTANTS:

0 ≤ β ≤ 2.0

c1 = 0.01302− 0.0007094β + 0.001017β2 − 0.0002372β3

c2 = 0.01522+ 0.0000742β − 0.0001711β2 − 0.000033β3

c3 = 0.125− 0.003249β + 0.0002489β2 + 0.0005003β3

c4 = 0.0375+ 0.01038β − 0.02955β2 + 0.008767β3

c5 = 0.133+ 0.0006847β − 0.001652β2 − 0.0002326β3
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TABLE 18-17 RESPONSE OF RECTANGULAR PLATES WITH FOUR SIDES
SIMPLY SUPPORTED

Notation
w = deflection

θ, θy = slopes about lines parallel to y and x directions
M,My ,Mxy = bending moments per unit length on planes normal to x and y directions

and twisting moment per unit length
V, Vy = equivalent shear forces per unit length acting on

planes normal to x and y axes
L , L y = length of plate in x and y directions

h = thickness of plate
E = modulus of elasticity
ν = Poisson’s ratio

D = Eh3

12(1− ν2)
Kmn = amn

Dπ4[(n2/L2)+ (m2/L2
y)]2

n,m = 1, 2, 3, . . .

The parameters amn are given for various loadings.

General Response Expressions

1. Deflection: w =
∞∑

n=1

∞∑
m=1

Kmn sin
nπx

L
sin

mπy

L y

2. Slopes: θ = −
∞∑

n=1

∞∑
m=1

Kmn
nπ

L
cos

nπx

L
sin

mπy

L y

θy =
∞∑

n=1

∞∑
m=1

Kmn
mπ

L y
sin

nπx

L
cos

mπy

L y

3. Bending moments: M = π2 D
∞∑

n=1

∞∑
m=1

Kmn

[( n

L

)2 + ν
(

m

L y

)2
]

sin
nπx

L
sin

mπy

L y

My = π2 D
∞∑

n=1

∞∑
m=1

Kmn

[(
m

L y

)2

+ ν
( n

L

)2
]

sin
nπx

L
sin

mπy

L y

4. Twisting moment: Mxy = π2 D(1− ν)
∞∑

n=1

∞∑
m=1

Kmn
mn

L y L
cos

nπx

L
cos

mπy

L y

5. Shear forces: V = π3 D
∞∑

n=1

∞∑
m=1

Kmn

×
[( n

L

)3 + (2− ν) n

L

(
m

L y

)2
]

cos
nπx

L
sin

mπy

L y

Vy = π3 D
∞∑

n=1

∞∑
m=1

Kmn

×
[(

m

L y

)3

+ (2− ν) m

L y

( n

L

)2
]

sin
nπx

L
cos

mπy

L y
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TABLE 18-17 (continued) RESPONSE OF RECTANGULAR PLATES WITH FOUR SIDES SIMPLY
SUPPORTED

Parameters amn for Various Loadings

Loading Parameter

1.
Uniform load p1
over whole plate

amn = 16p1

π2mn
n,m = 1, 3, 5, . . .

2.
Linearly varying load

amn = (−1)n
8L

mnπ

�p

��

m = 1, 3, 5, . . .
n = 1, 2, 3, 4, 5, . . .

3.
Uniform rectangular
load

amn = 4p1

mnπ2

(
cos

nπa1

L
− cos

nπa2

L

)

×
(

cos
mπb1

L y
− cos

mπb2

L y

)

4.
amn = 4

nmπ2

�p

��

(
cos

mπb1

L y
− cos

mπb2

L y

)

×
[
(a1 − a2) cos

nπa2

L
+ L

mπ

(
sin

nπa2

L
− sin

nπa1

L

)]

5.
Line force W
(force/length)

amn = 8

πLm
sin

nπa

L
m = 1, 3, 5, . . .

n = 1, 2, 3, . . .

If this line load begins at y = b1 and ends at y = b2, then for amn ,
use
4W

mπL
sin

nπa

L

(
cos

mπb1

L y
− cos

mπb2

L y

)

6.
Line force W amn = 4W

L L y

[
L y

mπ

(
sin

nπa1

L
+ sin

nπa2

L

)

×
(

cos
mπb1

L y
− cos

mπb2

L y

)

+ L

nπ

(
cos

nπa1

L
− cos

nπa2

L

)

×
(

sin
mπb1

L y
+ sin

mπb2

L y

)]
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TABLE 18-17 (continued) RESPONSE OF RECTANGULAR PLATES WITH FOUR SIDES SIMPLY
SUPPORTED

Loading Parameter

7.
Line force W

amn = 2W

L L yc3

{[
sin
(

c3b2 − nπc1

L

)
− sin

(
c3b1 − nπc1

L

)]

−
[
sin
(

c4b2 + nπc1

L

)
− sin

(
c4b1 + nπc1

L

)]}

c3 = mπL − nπc2L y

L L y
c4 = mπL + nπc2L y

L L y

8.
amn = 4WT

L L y
sin

nπa

L
sin

mπb

L y

9.
amn = 4WT

L L y

(
sin

nπa1

L
+ sin

nπa2

L

)(
sin

mπb1

L y
+ sin

mπb2

L y

)

10.
Line moment
(force − length/length)

amn = − 4nC

mL2
cos

nπa

L

(
cos

mπb1

L y
− cos

mπb2

L y

)

11.
Concentrated moment
(force − length)

amn = −4nCT

L2L y
cos

nπa

L
sin

mπb

L y

12.

amn = 4πCT

L L y

(
c2m
L y

cos mπb
L y

sin nπa
L + n

L sin mπb
L y

cos nπa
L

)
(1+ c2

2)
1/2

13.
amn = 4

L L y

∫ L
0

∫ L y

0 pz(x, y) sin
nπx

L
sin

mπy

L y
dx dy
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TABLE 18-18 CRITICAL IN-PLANE LOADS OF RECTANGULAR PLATES
Notation

E = modulus of elasticity
h = thickness of plate
k = buckling coefficient
ν = Poisson’s ratio

L , L y = length of plate in x and y directions
(WT )cr = concentrated buckling loads (F)

σcr = normal stress at buckling (F/L2); for σcr to be applicable, σcr < σys
(yield strength)

Pcr = buckling load, = hσcr(F/L)
(Pxy)cr = in-plane shear buckling load (F/L)
Half wave refers to half of a complete cycle of a sinusoidal curve. For example,
sin(nπx/L) sin(mπy/L y) (0 ≤ x ≤ L , 0 ≤ y ≤ L y) defines n = 1, 2, . . . and
m = 1, 2, . . . half waves in x and y directions.

P ′ = π2 D

L2
y

D = Eh3

12(1− ν2)
β = L

L y
α = L y

L

Dx , Dy , and B are given in Table 18-14.

Conditions Buckling Loads

1.
All edges simply supported

Pcr = k P ′

k =
(
β

m
+ m

β

)2

where

m = 1 (for β ≤ √2)

m = 2 (for
√

2 ≤ β ≤ √6)

m = 3 (for
√

6 ≤ β ≤ √12)

m = 4 (for
√

12 ≤ β ≤ √20)

For β > 4, k � 4.00.

Ref. [18.8]

2.
All edges clamped

Pcr = k P ′

k = 4

3

(
4β2

n2 + 1
+ 2+ 3n2β2

4

1+ 6/n2 + 1/n4

1+ 1/n2

)

where n is the number of half waves

Ref. [18.17]
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TABLE 18-18 (continued) CRITICAL IN-PLANE LOADS OF RECTANGULAR PLATES

Conditions Buckling Loads

3.
Two edges clamped, two
edges simply supported

FOR ISOTROPIC PLATE:

Pcr = k P ′

k = 4

3

(
4L2

n2L2
y
+ 2+ 3n2L2

y

4L2

)

FOR ORTHOTROPIC PLATE:

Pcr = k
π2
√

Dx Dy

L2
where

k =
√

Dy

Dx

(
n

β

)2

+ 8Bm2

3
√

Dx Dy
+ 16

3

√
Dx

Dy

(
βm2

n

)2

n,m = 1, 2, 3, . . .

4.
Two edges simply
supported, two edges
clamped

Pcr = k P ′

k = 2.964+ 6.774α − 9.380α2 + 7.908α3 − 1.478α4

0.33 ≤ α ≤ 2.5

5.
One edge clamped, other
three edges simply
supported

Pcr = k P ′

k = 13.2387− 19.6159β + 12.2847β2

0.728 ≤ β ≤ 0.889
kmin = 5.41 at β = 0.79

6.
One edge free, other three
edges simply supported

Pcr = k P ′

k = 0.4376+ 0.06992α + 0.8983α2 + 0.02869α3 α ≤ 2
Approximate formula: k = 0.42+ α2
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TABLE 18-18 (continued) CRITICAL IN-PLANE LOADS OF RECTANGULAR PLATES

Conditions Buckling Loads

7.
One edge free, one edge
clamped, and two edges
simply supported

Pcr = k P ′

k = 4.561− 4.851β + 2.315β2 − 0.3423β3

1.0 ≤ β ≤ 2.5

Approximate formulas:

L/L y = β ≤ 1.64 k = 0.559+ 1

β2
+ 0.13β2

β > 1.64 k = 1.28
kmin = 1.28 at β = 1.635

8.
All edges simply supported (WT )cr = π2 D

2L y

[
β3

∑
m=1,3,5,...

1

(β + m2)2

]−1

For β > 2: (WT )cr ≈ πEh3

3(1− ν2)L y

Ref. [18.18]

9.
Two clamped, two edges
simply supported

(WT )cr = π2 D

2L y

{
(2β3)

∑
m=1,3,5,...

1

[(2β)2 + m2]2
}−1

For β � 2: (WT )cr ≈ 2πEh3

3(1− ν2)L y

Ref. [18.18]

10.

All edges simply supported

(Pxy)cr = k P ′

k = 6.393− 3.249α + 6.67α2 − 0.09172α3

0.33 ≤ α ≤ 3

Exact solution:

k = 5.348+ 2.299α − 1.8406α2 + 3.544α3 α ≤ 1

11.
All edges clamped

(Pxy)cr = k P ′

k = 8.942+ 30.89α1/2 − 75.36α + 50.20α3/2

0.4 ≤ α ≤ 2.5

Exact solution:

For β →∞ k = 8.98
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TABLE 18-18 (continued) CRITICAL IN-PLANE LOADS OF RECTANGULAR PLATES

Conditions Buckling Loads

12.
Two edges clamped, two
edges simply supported

(Pxy)cr = k P ′

k = 8.905+ 3.674α − 4.499α2 + 5.090α3 − 0.7569α4

α ≤ 3

13.
All edges simply
supported

The in-plane forces are
assumed to remain
proportional to each
other. Hence, Px/Py = λ
is a known (prescribed)
constant ratio of the
in-plane forces.
(Py)cr is treated as the
critical load to be
calculated.

(Py)cr = k P ′

ISOTROPIC PLATE:

k = (m + n2/mβ2)2

1+ (Px/Py)(n/βm)2

ORTHOTROPIC PLATE:

k =
√

Dy/Dx m2 + 2Bn2/(β2√Dx Dy)+
√

Dx/Dy(n2/β2m)2

1+ λ(n/βm)2

P ′ = π2√Dx Dy

L2
y

λ = Px/Py

where m, n are the number of half waves in x and y directions
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TABLE 18-19 NATURAL FREQUENCIES OF ISOTROPIC RECTANGULAR
PLATES AND MEMBRANESa

Notation
E = modulus of elasticity
h = thickness of plate
ρ = mass per unit area
β = L/L y
ν = Poisson’s ratio

L , L y = length of plate in x and y directions

D = Eh3

12(1− ν2)

The natural frequencies in this table are defined in two ways:

1. ωnm = λnm

L2

√
D

ρ
rad/s

where n and m (n,m = 1, 2, 3, . . . ) are the numbers of half waves in the mode shapes
in the x and y directions; ω11 is the fundamental frequency.

2. ωi = λi

L2

√
D

ρ
rad/s

where i (i = 1, 2, 3, . . . ) is the number of the natural frequency; for the fundamental
frequency, i = 1.

fnm(Hz) = ωnm

2π
and fi (Hz) = ωi

2π
The values of λnm or λi are independent of ν except where specifically indicated.

Configuration and
Boundary Conditions Natural Frequencies

1.
All edges simply
supported

λnm = π2(n2 + β2m2)

m, n = 1, 2, 3, . . .

First mode is ω11; second is ω12, etc.

2.
Three edges simply
supported, one edge
free

λ11 = 6.238+ 16.07β − 21.2β2 + 15.51β3 − 5.3936β4

+ 0.8995β5 − 0.0576β6 0.5 ≤ β ≤ 5.0
ν = 0.25
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TABLE 18-19 (continued) NATURAL FREQUENCIES OF ISOTROPIC RECTANGULAR PLATES AND
MEMBRANESa

Configuration and
Boundary Conditions Natural Frequencies

3.
Two edges simply
supported, two
edges free

λ11 = 9.87 (β = 1)

λ21 = 8.54+ 4.31β + 3.952β2 − 0.6751β3

0.5 ≤ β ≤ 2.0
λ12 = 39.48 (β = 1)

λ22 = 39.2− 0.273β + 9.123β2 − 1.3256β3

0.5 ≤ β ≤ 2.0
ν = 0.3

4.
One edge built in,
other edges simply
supported

λ11 = β2(50.4− 41.85β + 17.65β2 − 2.5β3)

1 ≤ β ≤ 3
λ12 = 51.7 (β = 1)
λ21 = 58.7 (β = 1)
λ22 = 86.12 (β = 1)

5.
Two opposite edges
clamped, other edges
simply supported

λ11 = β2(122.0− 188.567β + 121.2β2 − 25.73β3)

λ21 = β2(159.4− 181.2β + 115.4β2 − 24.4β3)

λ31 = β2(219.6− 180.7β + 114.2β2 − 24.0β3)

λ12 = β2(463.9− 820.167β + 520.8β2 − 109.73β3)

0.5 ≤ β ≤ 2.0

6.
Three edges clamped,
one edge simply
supported

APPROXIMATE:

λ1 = 22.4+ 0.85β + 4.85β2 + 3.7β3

β ≤ 2
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TABLE 18-19 (continued) NATURAL FREQUENCIES OF ISOTROPIC RECTANGULAR PLATES AND
MEMBRANESa

Configuration and
Boundary Conditions Natural Frequencies

7.
All edges clamped

λ1 = β2(89.3− 84.73β + 36.7β2 − 5.27β3)

λ2 = β2(107.2− 51.9β + 21.5β2 − 3.0β3)

λ3 = β2(262.7− 241.3β + 102.1β2 − 14.47β3)

1.0 ≤ β ≤ 3.0

MEMBRANES:

fnm(Hz) = λnm

2

(
P

ρA

)

are the natural frequencies for transverse vibrations, where A is
the cross-sectional area and P is the tension force per unit length.

λnm = (n2α + m2β)1/2

8.
One edge clamped,
all other edges free

FOR SYMMETRIC MODES:

λ1 = 3.52− 0.0967β + 0.03β2 − 0.00476β3

λ2 = −12.6+ 58.82β − 29.26β2 + 4.166β3

λ3 = 31.086− 37.1β + 40.35β2 − 7.32β3

β = 0.5, 1, 2, or 4
ν = 0.3

aAdapted from Ref. [18.2].
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TABLE 18-20 NATURAL FREQUENCIES OF ORTHOTROPIC RECTANGULAR PLATESa

Notation
Dx , Dy, Dxy = flexural rigidities defined in Table 18-14

L , L y = length of plate in x and y directions
ρ = mass per unit area
α = L y/L
γ0 = nπ γ1 = (n + 1/4)π γ2 = (n + 1/2)π
γ3 = mπ γ4 = (m + 1/4)π γ5 = (m + 1/2)π

n,m = number of half waves in the mode shapes in the x, y directions (n,m = 1, 2, 3, . . . )

Natural frequencies:

ωnm = 1

L2
y

√
1

ρ
[Dx (αk1)4 + 2Dxyα2k3 + Dy(k2)4]

Except for the case of all four sides simply supported, the values of k1, k2, and k3 are approximate.

Configuration and
Boundary Conditions k1 k2 k3 Conditions

1.
All edges clamped

4.730
4.730
γ2

γ2

4.730
γ5

4.730
γ5

151.3
12.30γ5(γ5 − 2)
12.30γ2(γ2 − 2)
γ2γ5(γ2 − 2)(γ5 − 2)

n = 1,m = 1
n = 1,m = 2, 3, 4, . . .
n = 2, 3, 4, . . . ,m = 1
n = 2, 3, 4, . . . ,m = 2, 3, 4, . . .

TA
B

L
E

18-20
N

atu
ralF

req
u

en
cies

o
f

O
rth

o
tro

p
ic

R
ectan

g
u

lar
P

lates
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TABLE 18-20 (continued) NATURAL FREQUENCIES OF ORTHOTROPIC RECTANGULAR PLATESa

Configuration and
Boundary Conditions k1 k2 k3 Conditions

2.
Three edges clamped, one edge
simply supported

4.730
γ2

γ4

γ4

12.30γ4(γ4 − 1)
γ2γ4(γ2 − 2)(γ4 − 1)

n = 1, 2, 3, . . . ,m = 1
n = 1, 2, 3, . . . ,m = 2, 3, 4, . . .

3.
Two opposite edges clamped,
other edges simply supported

4.730
γ2

γ3

γ3

12.30γ 2
3

γ2γ
2
3 (γ2 − 2)

n = 1,m = 1, 2, 3, . . .
n = 2, 3, 4, . . . ,m = 1, 2, 3, . . .
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4.
Two consecutive edges clamped,
other edges simply supported

γ1 γ4 γ1γ4(γ1 − 1)(γ4 − 1) n = 1, 2, 3, . . .
m = 1, 2, 3, . . .

5.
One edge clamped, other edges
simply supported

γ1 γ3 γ1γ
2
3 (γ1 − 1) n = 1, 2, 3, . . .

m = 1, 2, 3, . . .

6.
All edges simply supported

γ0 γ3 γ 2
0 γ

2
3 n = 1, 2, 3, . . .

m = 1, 2, 3, . . .

aAdapted from Ref. [18.2].
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TABLE 18-21 TRANSFER AND STIFFNESS MATRICES FOR
RECTANGULAR PLATE SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE
EDGES

Notation
Simple supports are at y = 0 and y = L y .
Element extends from x = a to x = b.

w = deflection
θ = slope about y axis
E = modulus of elasticity
� = length of element in x direction, span of matrices

L y = length of element in y direction
εm = constant that accounts for variation of distributed

loads in y direction
ν = Poisson’s ratio
h = thickness of plate
ρ = mass per unit area

Py = compressive in-plane force per unit length in
y direction

ω = natural frequency (rad/s)
M = bending moment per unit length, about y axis
V = equivalent shear force per unit length, in z direction

MT (x) =
∫ h/2

−h/2

Eα

1− ν T (x, z)z dz

MTa =
∫ h/2

−h/2

Eα

1− ν T (a, z)z dz

MTb =
∫ h/2

−h/2

Eα

1− ν T (b, z)z dz

T = change in temperature

D = Eh3/[12(1− ν2)]
β = mπ/L y

d2(q2) =
{
β
√

Py/D + (−)β2 for static response withPy

ω
√
ρ/D + (−)β2 for vibration

ζ = νβ2

λ =
{
β
√

Py/D for static response withPy

ω
√
ρ/D for vibration

η1(η2) =
{
β
√

Py/D − (+)(1− ν)β2 for static response withPy

ω
√
ρ/D − (+)(1− ν)β2 for vibration
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TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE
SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

ch =



coshβ� for massless isotropic segment
cosh d� for isotropic plate segment

with mass or in-plane force
c = cos q�

sh =



sinhβ� for massless isotropic segment
sinh d� for isotropic plate segment

with mass or in-plane force
s = sin q�

εm = constant that accounts for variation of distributed loads in y direction. Values of εm
are given below.

Loading (Force or
Moment) Distribution

in y Direction Constant εm

1.
Distributed load constant
in y direction

εm = 2

mπ

(
cos

mπb1

L y
− cos

mπb2

L y

)

If b1 = 0, b2 = L y :

εm = 2

mπ
(1− cos mπ)

=
{

4/mπ if m = 1, 3, 5, 7, . . .

0 if m = 2, 4, 6, 8, . . .

2.
Distributed load ramp in
y direction

εm = 2

m2π2

[
−�ymπ cos

mπb2

L y

+ L y

(
sin

mπb2

L y
− sin

mπb1

L y

)]

3.
Sinusoidal load in y
direction

ε1 = 1
εm = 0 m > 1
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TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE
SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

For static response of plate with in-plane compressive force Py

d2 = mπ

L y

√
Py

D
+
(

mπ

L y

)2

q2 = mπ

L y

√
Py

D
−
(

mπ

L y

)2

λ = mπ

L y

√
Py

D
η1 = mπ

L y

√
Py

D
− (1− ν)

(
mπ

L y

)2

η2 = mπ

L y

√
Py

D
+ (1− ν)

(
mπ

L y

)2

ζ = ν
(

mπ

L y

)2

For vibrating plate:

d2 =
√
ρ

D
ω +
(

mπ

L y

)2

q2 =
√
ρ

D
ω −
(

mπ

L y

)2

λ =
√
ρ

D
ω η1 =

√
ρ

D
ω − (1− ν)

(
mπ

L y

)2

η2 =
√
ρ

D
ω + (1− ν)

(
mπ

L y

)2

ζ = ν
(

mπ

L y

)2

The variables at x, y are given by

w(x, y)
θ(x, y)
V (x, y)
M(x, y)


 =

∞∑
m=1



wm(x)
θm(x)
Vm(x)
Mm(x)


 sin

mπy

L y

where wm(x), θm(x), Vm(x),Mm(x) are computed using the matrices of this table and the
methodology of Appendix III.
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TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE
SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

Transfer Matrix (Sign Convention 1):

The transfer matrix method can be used to compute wm(x), θm(x , Vm(x), Mm(x) for
each m. To simplify the notation, the subscript m will be dropped.




wb

θb

Vb

Mb

1


 =




Uww Uwθ UwV UwM Fw
Uθw Uθθ UθV UθM Fθ
UVw UV θ UV V UV M F V

UMw UMθ UMV UM M F M

0 0 0 0 1







wa

θa

Va

Ma

1




zb = Ui za

Stiffness Matrix (Sign Convention 2):

The responses wm(x), θm(x), Vm(x), Mm(x) can be computed for each m using the dis-
placement method. To simplify the notation, the subscript m will be dropped from wm , θm ,
Vm , and Mm .

i th element


Va

Ma

Vb

Mb


 =




k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44






wa

θa

wb

θb


 +




V 0
a

M0
a

V 0
b

M0
b




pi = ki vi − p̄i
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TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE
SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

Matrices

Massless, Isotropic Segment

TRANSFER MATRIX:

Uww = −β2 (1− ν)�sh + ch UVw = Dβ4

2

[
(3− 2ν − ν2)

sh

β
− (1− ν)2�ch

]

Uwθ = −1

2

[
(1+ ν) sh

β
+ (1− ν)�ch

]
UV θ = −Dβ3

2
(1− ν)2�sh

UwV = 1

2Dβ2

(
sh

β
− �ch

)
UV V = −β2 (1− ν)�sh + ch

UwM = − �sh

2Dβ
UV M = β2

2

[
(1+ ν) sh

β
− (1− ν)�ch

]

Uθw = −β
2

2

[
(1+ ν) sh

β
− (1− ν)�ch

]
UMw = D

2
β3(1− ν)2�sh

Uθθ = β

2
(1− ν)�sh + ch UMθ = Dβ2

2

[
(3− 2ν − ν2)

sh

β
+ (1− ν)2�ch

]

UθV = �

2Dβ
sh UMV = 1

2

[
(1+ ν) sh

β
+ (1− ν)�ch

]

UθM = 1

2D

(
sh

β
+ �ch

)
UM M = 1

2
β(1− ν)�sh + ch

LOADING FUNCTIONS:

Fw = εm

2Dβ4

[
pa(β�sh − 2ch + 2)+ pb − pa

�

(
− 3

β
sh + �ch + 2�

)

− caβ
2
(

sh

β
− �ch

)
+ cb − ca

�
(β�sh − 2ch + 2)

− 2MTaβ
2
(
−β�

2
sh − 2+ 2ch

)
− 1

�
(MTb − MTa )2β(2sh − 2β�− β�ch)

]

Fθ = εm

2Dβ4

[
paβ

2
(

sh

β
− �ch

)
− pb − pa

�
(β�sh − 2ch + 2)− caβ

3�sh

+ cb − ca

�
β2
(

sh

β
− �ch

)
− MTa 2β3

(
3

2
sh − β�

2
ch

)

− MTb − MTa

�
2β4
(

2ch − 2− β�
2

sh

)]
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TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE
SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

F V = εm

[
pa

(
1− ν

2
�ch − 3− ν

2β
sh

)
+ pb − pa

�

(
1− ν

2β
�sh − 2− ν

β2
ch + 2− ν

β2

)

+ ca

(
1− ν

2
β�sh − ch + 1

)
− cb − ca

�

(
3− ν

2

sh

β
− 1− ν

2
�ch − �

)

− MTa 2(1− ν)βsh − 1

�
(MTb − MTa )2(1− ν)(ch − 1)

]

F M = εm

β2

[
−pa

(
1− ν

2
β�sh + νch − ν

)
+ pb − pa

�

(
1− 3ν

2

sh

β
− 1− ν

2
�ch + ν�

)

− caβ
2
(

1+ ν
2

sh

β
+ 1− ν

2
�ch

)
− cb − ca

�

(
1− ν

2
β�sh + νch − ν

)

− MTaβ
2(1− ν)

(
β�sh

2
+ 2− 2ch

)
− 1

�
(MTb − MTa )β

2(1− ν)
(

2�− 2

β
sh

)]

STIFFNESS MATRIX:

k11 = −2Dβ3(�β + chsh)/Hs

k21 = Dβ2
[
(1+ ν)�2β2 + (1− ν + 2�2β2ν)s2

h

]
/Hs

k22 = 2Dβ(�β − chsh)/Hs

k31 = 2Dβ3(sh + �βch)/Hs

k32 = −2D�β3sh/Hs

k33 = k11

k41 = −k32

k42 = −2Dβ(�βch − sh)/Hs

k43 = −Dβ2
[
(1− ν)�2β2 + (1+ ν)s2

h

]
/Hs

k44 = k22 This matrix is symmetric.

Hs = �2β2 − sh2

ki j = k ji

V 0
a = (UθM Fw −UwM Fθ )/�0

M0
a = (−UθV Fw +UwV Fθ )/�0

V 0
b = F V − [(UV V UθM +UV MUθV )Fw − (UV MUwV −UV V UwM )Fθ ]/�0

M0
b = F M − [(UMV UθM +UM MUθV )Fw − (UM MUwV −UMV UwM )Fθ ]/�0

�0 = UwV UθM −UθV UwM
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TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE
SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

Matrices

Isotropic Plate Segment with Mass or In-Plane Force

TRANSFER MATRIX:



1

2λ
(η1ch + η2c) − 1

2λ

(
η2

d
sh + η1

q
s

)
− 1

2λD

(
sh

d
− s

q

)
− 1

2λD
(ch − c) Fw

− 1

2λ
(η1shd − η2qs)

1

2λ
(η2ch + η1c)

1

2λD
(ch − c)

1

2λD
(dsh + qs) Fθ

− D

2λ
(η2

1dsh + η2
2qs)

D

2λ
η1η2(ch − c)

1

2λ
(η1ch + η2c)

1

2λ
(η1dsh − η2qs) F V

− D

2λ
η1η2(ch − c)

D

2λ

(
η2

2
d

sh −
η2

1
q

s

)
1

2λ

(η2

d
sh + η1

d
s
) 1

2λ
(η2ch + η1c) F M

0 0 0 0 1




Ui

Fw = εm

2λD

{
pa

(
ch

d2
+ c

q2
− 2

d2

λ

q2

)
+ pb − pa

�

(
sh

d3
+ s

q3
− 2

d2

λ�

q2

)
+ ca

(
sh

d
− s

q

)

+ cb − ca

�

(
ch

d2
+ c

q2
− 2

d2

λ

q2

)
− MTa

[
η2

ch − 1

d2
+ η1

1− c

q2

+ (1− ν)
(

mπ

L y

)2 (ch − 1

d2
− 1− c

q2

)]

− MTb − MTa

�

[
η2

sh − d�

d3
+ η1

q�+ sh

q3

+ (1− ν)
(

mπ

L y

)2 ( sh − d�

d3
− q�+ sh

q3

)]}
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TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE
SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

Fθ = −εm

2λD

{
pa

(
sh

d
− s

q

)
+ pb − pa

�

(
ch

d2
+ c

q2
− 2λ

d2q2

)

+ ca(ch − c)+ cb − ca

�

(
sh

d
− s

q

)

− MTa


η2

sh

d
− η1

s

q
+ (1− ν)

(
mπ

L2
y

)2 (
sh

d
+ s

q

)


− MTb − MTa

�

[
η2

ch − 1

d2
− η1

c − 1

q2

+ (1− ν)
(

mπ

L y

)2 (ch − 1

d2
− c − 1

q2

)]}

F V = −εm

2λ

{
pa

(
η2

d
sh + η1

q
s

)
+ pb − pa

�

(
η1

d2
ch − η2

q2
c + d4 − q4 − 2λs

d2q2

)

+ ca(η1ch + η2c − 2λ)+ cb − ca

�

(
η1

d
sh + η2

q
s − 2λ�

)

− MTa

[
η1η2

(
sh

d
− s

q

)
+ (1− ν)

(
mπ

L2
y

)(
η1

sh

d
− ηs

s

q

)]

− MTb − MTa

�

[
η1η2

(
ch − 1

d2
+ c − 1

q2

)

+ (1− ν)
(

mπ

L y

)2 (
η1

ch − 1

d2
+ η2

1− c

q2

)]}

F M = −εm

2λ

{
pa

(
η2

d2
ch − η1

q2
c + 2λζ

d2q2

)
+ pb − pa

�

(
η2

d3
sh − η1

q3
s + 2λζ�

d2q2

)

+ ca

(
η2

d
sh + η1

q
s

)
+ cb − ca

�

(
η2

d2
ch − η1

q2
c + 2λζ

d2q2

)

− MTa


η2

2
ch − 1

d2
+ η2

1
c − 1

q2
+ (1− ν)

(
mπ

L2
y

)2 (
η2

ch − 1

d2
− η1

c − 1

q2

)


− MTb − MTa

�

[
η2

2
sh − d�

d3
+ η2

1
s − q�

q3

+ (1− ν)
(

mπ

L y

)2 (
η2

sh − d�

d2
− η1

sh − q�

q3

)]}
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TABLE 18-21 (continued) TRANSFER AND STIFFNESS MATRICES FOR RECTANGULAR PLATE
SEGMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

STIFFNESS MATRIX:

H0 = 2(1− chc)

k11 = (η1 + η2)(dshc + qchs)D/H0

k12 =
[
(η2 − η1)(1− chc)− (d2η1 + q2η2)

shs

dq

]
D/H0

k13 = −2λ(dsh + qs)D/H0

k14 = 2λ(c − ch)D/H0

k21 = k12

k22 = (η1 + η2)

(
chs

q
− csh

d

)
D/H0

k23 = 2λ(ch − c)D/H0

k24 = 2λ

(
sh

d
− s

q

)
D/H0

k31 = k13 k32 = k23

k33 = (η1 + η2)(dshc + qchs)D/H0

k34 =
[
(η2 − η1)(−1+ chc)+ shs

dq
(d2η1 + q2η2)

]
D/H0

k41 = k14 k42 = k24 k43 = k34

k44 = (η1 + η2)

(
s

q
ch − c

d
sh

)
D/H0

V 0
a = 2λD[(dsh + qs)Fw + (ch − c)Fθ ]/H0

M0
a = −2λD

[
(ch − c)Fw +

(
sh

d
− s

q

)
Fθ

]
/H0

V 0
b = F V − D

{
(η1 + η2)(dcsh + qsch)Fw

+
[
(η2 − η1)(cch − 1)+ ssh

aq
(d2η1 + q2η2)

]
Fθ

}
/H0

M0
b = F M − D

{[
(η2 − η1)(cch − 1)+ ssh

dq
(d2η1 + q2η2)

]
Fw

+ (η1 + η2)

(
sch

q
− csh

d

)
Fθ

}
/H0
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TABLE 18-22 TRANSFER AND STIFFNESS MATRICES FOR POINT
OCCURRENCES FOR RECTANGULAR PLATE SEGMENT WHERE TWO
OPPOSITE EDGES ARE SIMPLY SUPPORTED
Case Matrices

1.
Concentrated force WT

Wm = 2WT

L y
sin

mπb

L y

TRANSFER MATRIX FOR CASES 1–5:

Ui =




1 0 0 0 wm

0 1 0 0 −αm

0 0 1 0 −Wm

0 0 0 1 −Mm

0 0 0 0 1




STIFFNESS MATRIX FOR CASES 1–6:

Traditionally, these applied loads are
implemented as nodal conditions.2.

Line force W (force/length in y
direction)

Wm = 2W

mπ

(
cos

mπb1

L y
− cos

mπb2

L y

)

3.
Linearly varying line force

Wm = �p

��

2

m2π2

×
[
(b1 − b2)mπ cos

mπb2

L y

+ L y

(
sin

mπb2

L y
− sin

mπb1

L y

)]

4.
Line moment C (force − length/length
in y direction)

Mm = 2C

mπ

(
cos

mπb1

L y
− cos

mπb2

L y

)
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TABLE 18-22 (continued) TRANSFER AND STIFFNESS MATRICES FOR POINT OCCURRENCES FOR
RECTANGULAR PLATE SEGMENT WHERE TWO OPPOSITE EDGES ARE SIMPLY SUPPORTED

Case Matrices

5.
Jump in deflection w1 (length) and
change in slope α (radians)

wm = 2w1

mπ
(1− cos mπ)

αm = 2α

mπ
(1− cos mπ)

TRANSFER MATRIX FOR CASES 1–8:

Ui =




1 0 1/k2 0 wm

0 1 0 1/k∗2 −αm

k1 − miω
2 0 1 0 −Wm

0 k∗1 0 1 −Mm

0 0 0 0 1




6.
Linear and rotary hinges k2, k∗2

7.
Springs: k1 (force/length squared) and
k∗1 (force − length/length squared).
Values of k1, k∗1 can be taken from
Table 11-21 for various spring, flex-
ible support combinations; for
example, line spring k1.

STIFFNESS MATRIX FOR CASE 7:[
Va

Ma

]
=
[

k1 0

0 k∗1

] [
wa

θa

]

8.
Line lumped mass Mi (mass/length in
y direction)

STIFFNESS MATRIX FOR CASE 8:[
Va

Ma

]
= −ω2

[
Mi 0

0 0

] [
wa

θa

]
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TABLE 18-23 TRANSFER AND STIFFNESS MATRICES FOR A GENERAL
RECTANGULAR PLATE SEGMENT

Notation
w = deflection
θ = slope about y axis
� = length of element in the x direction

P, Py = compressive forces per unit length in x and y directions
M = bending moment per unit length, about y axis
V = equivalent shear force per unit length, in z direction

Dx , Dy, Dxy = defined in Table 18-14
ρ = mass per unit area
ω = natural frequency
k = modulus of elastic foundation(F/L3)

ηm =



simply–simply supported mπ

fixed–simply supported (4m + 1)π/4

fixed–fixed (2m + 1)π/2

These supports are at y = 0 and y = L y :
L y = length of plate in y direction

νx , νy = Poisson’s ratio in x and y directions

B = 1
2 (Dxνy + Dyνx + 4Dxy)

βm = ηm/L y

λm = 1

Dx

{
Dyβ

4
m

[
1+ νxνy

(
ϕ2

m − 1
)]+ β2

mϕm Py − ρω2 + ky
}

α1m = −νyβ
2
mϕm

α3m = −
P

Dx
−
(

1− νx Dy

Dx

)
β2

mϕm

ζm = 1

Dx

(
P − 2Bβ2

mϕm
)

α2m = −
(

4Dxy

Dx
+ νy

)
β2

mϕm

ϕm = modal constant defined below

Boundary Conditions Values of ϕm, m = 1, 2, 3, . . . ,∞
Case y = 0 y = L y ϕ1 ϕ2 ϕ3 ϕm(m ≥ 4)

1 Simply
supported

Simply
supported

1 1 1 1

2 Simply
supported

Fixed
2.9317

η1

6.0686

η2

9.2095

η3

ηm − 1

ηm

3 Fixed Fixed
2.6009

η1

5.8634

η2

8.9984

η3

ηm − 2

ηm
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TABLE 18-23 (continued) TRANSFER AND STIFFNESS MATRICES FOR A GENERAL
RECTANGULAR PLATE SEGMENT

To use this table to obtain a matrix for a particular element, follow the steps:
1. Evaluate the desired number of terms of βm and ϕm with the boundary conditions at

y = 0 and y = L y considered.
2. Calculate the parameters λm , ζm , α1m , α2m , α3m .
3. Look up the appropriate ei functions in this table.
4. Substitute these ei expressions into the matrices below.
5. According to the distribution of the loading in the y direction, insert εm of this table

into the loading functions of this table.
6. Use the matrices of this table and the techniques of Appendix III to compute wm(x),
θm(x), Vm(x), and Mm(x) and calculate w(x, y), θ(x, y), V (x, y), and M(x, y) from



w(x, y)
θ(x, y)
V (x, y)
M(x, y)


 =

∞∑
m=1



wm(x)
θm(x)
Vm(x)
Mm(x)


 ϕm(y)

To simplify the notation in this table, the subscript m will be dropped fromwm , θm , Vm ,
and Mm . The quantity of ϕm(y) is given by

Boundary Conditions

Case y = 0 y = L y ϕm(y)

1 Simply
supported

Simply
supported

sin βm y

2 Simply
supported

Fixed coshβm y − cosβm y + Em(sinhβm y − sin βm y)

3 Fixed Fixed coshβm y − cosβm y − Em(sinhβm y − sin βm y)

Em = (cosh ηm − cos ηm)/(sinh ηm − sin ηm)

Matrices

Transfer Matrix (Sign Convention 1)




wb

θb

Vb

Mb

1


 =




Uww Uwθ UwV UwM Fw
Uθw Uθθ UθV UθM Fθ
UVw UV θ UV V UV M F V

UMw UMθ UMV UM M F M

0 0 0 0 1







wa

θa

Va

Ma

1




zb = Ui za
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TABLE 18-23 (continued) TRANSFER AND STIFFNESS MATRICES FOR A GENERAL
RECTANGULAR PLATE SEGMENT

Uww = e1 + (ζm + α1m)e3 Uθw = −e0 − (ζm + α1m)e2
Uwθ = −e2 − (ζm + α2m)e4 Uθθ = e1 + (ζm + α2m)e3
UwV = −e4/Dx UθV = e3/Dx
UwM = −e3/Dx UθM = e2/Dx
UVw = Dx [(λm + α1mα2m + α1mζm)e2 − λm(α2m − α1m)e4]
UV θ = −Dx [λm + α2m(ζm + α2m)]e3
UV V = e1 − α2me3
UV M = e0 − α2me2
UMw = Dx [λm + α1m(ζm + α1m)]e3
UMθ = Dx [e0 − (α1m − ζm − α2m)e2 − α1m(ζm + α2m)e4]
UMV = e2 − α1me4
UM M = e1 − α1me3

Stiffness Matrix (Sign Convention 2)

i th element



Va
Ma
Vb
Mb


 =



H0 H1 symmetric
H0(H3 + H4 + H5) H0 H2

−H0 H6 H0 H7 H0 H1
−H0 H7 H0 H3 H0(H1 − α2m∇) H0 H2





wa
θa
wb
θb


+



V 0
a

M0
a

V 0
b

M0
b




pi = ki vi − p̄i

∇ = e2
3 − e2e4

H0 = Dx/∇
H1 = e1e2 − e0e3

H2 = e2e3 − e1e4

H3 = e1e3 − e2
2

H4 = e2
3(ζm + α2m)

H5 = e2e4(ζm + α2m)

H6 = e2

H7 = e3

H8 = e4

H9 = e1e3 − e0e4

V 0
a = H0(H6 Fw + H7 Fθ )

M0
a = −H0(H7 Fw + H8 Fθ )

V 0
b = F V − [H1 Fw + (H9 − α2m∇)Fθ ]H0

M0
b = F M − [(α1m∇ − H5)Fw + H2 Fθ ]H0
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TABLE 18-23 (continued) TRANSFER AND STIFFNESS MATRICES FOR A GENERAL RECTANGULAR PLATE SEGMENT

Constants for the Matrices

Column 1 2 3 4 5

λm > 0

λm < 0 λm = 0 λm = 1
4ζ

2
m λm <

1
4ζ

2
m λm >

1
4ζ

2
m

e0
1

g
(d3sh − q3s) −ζmδ −ζm

4
(3δ2 + c�) −1

g
(q3δ2 − d3s1) −λme4 − ζme2

e1
1

g
(d2ch + q2c) c

1

2
(2c − δ1�)

p

g
(q2δ − d2c) chc − q2 − d2

2 dq
shs

e2
1

g
(dsh + qs) δ 1

2 (δ2 + c�)
p

g
(qs2 − ds1)

1

2dq
(dchs + qcsh)

e3
1

g
(ch − c)

1

ζm
(1− c)

δ2�

2

1

g
(c − s)

1

2dq
shs

e4
1

g

(
sh

d
− s

q

)
1

ζm
(�− δ) 1

ζm
(δ2 − c�)

1

g

(
s1

d
− s2

q

) 1

2(d2 + q2)

×
(

chs

q
− csh

d

)

e5
1

g

(
ch

d2
+ c

q2

)
− 1

d2q2

1

ζm

(
�2

2
− e3

)
2

ζ 2
m
(−2c − δ1�+ 2)

p

g

(
δ

q2
− c

d2

)
+ 1

d2q2

1− e1

λm
− ζm

λm
e3

e6
1

g

(
sh

d3
+ s

q3

)
− �

d2q2

1

ζm

(
�2

6
− e4

)
2

ζ 2
m
(−3δ2 + c�+ 2�)

p

g

(
s2

q3
− s1

d3

)
+ 1

d2q2

�− e2

λm
− ζm

λm
e1
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Columns 1, 2, . . . below are to be used with columns 1, 2, . . . , respectively, above.

Column 1 2a ζm > 0: 3a ζm > 0: 4a ζm > 0: 5

ch = cosh d�
c = cos q�

sh = sinh d�
s = sin q�

g = d2 + q2

d2 =
√
β4

m +
1

4
ζ 2

m −
1

2
ζm

q2 =
√
β4

m +
1

4
ζ 2

m +
1

2
ζm

β4
m = −λm

α2 = ζm

c = cosα�

δ = sinα�

α

β2
m = −

1

2
ζm

c = cosβm�

δ1 = βm sinβm�

δ2 = sinβm�

βm

g = q2 − d2 p = 1
c = cos d�
δ = cos q�

s1 = sin d�
s2 = sin q�

d2 = 1
2ζm −

√
1
4ζ

2
m − λm

q2 = 1
2ζm +

√
1
4ζ

2
m − λm

ch = cosh d�
c = cos q�

sh = sinh d�
s = sin q�

d2 = 1
2

√
λm − 1

4ζm

q2 = 1
2

√
λm + 1

4ζm

2b ζm < 0 : 3b ζm < 0 : 4b ζm < 0 :

α2 = −ζm

c = coshα�

δ = sinhα�

α

β2
m = −

1

2
ζm

c = coshβm�

δ1 = −βm sinhβm�

δ2 = sinhβm�

βm

p = −1

g = q2 − d2

c = cosh d�, δ = cosh q�
s1 = sinh d�, s2 = sinh q�

d2 = − 1
2ζm +

√
1
4ζ

2
m − λm

q2 = − 1
2ζm −

√
1
4ζ

2
m − λm
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TABLE 18-23 (continued) TRANSFER AND STIFFNESS MATRICES FOR A GENERAL RECTANGULAR PLATE SEGMENT

Loading Functions for the Matrices

Notation

ē j = e j |�=�−a1 ê j = e j |�=�−a2 �e j = ē j − ê j
�p

��
= pa2 − pa1

a2 − a1

�c

��
= ca2 − ca1

a2 − a1

Loading Fw Fθ F V F M

1. εm

Dx
WT ē4

εm

Dx
WT ē3 εm WT [α2mē3 − ē1] εm WT [α1mē4 − ē2]

2. εm

Dx
Cē3

εm

Dx
Cē2 εmC[α2mē2 − ē0] εmC[α1mē3 − ē1]

3. εm

Dx

[
pa1 ē5 − pa2 ê5

+�p

��
�e6

]

+ εm

Dx

[
cae4 − cbê4

+�c

��
�e5

]

εm

Dx

[
pa1 ê4 − pa1 ē4

−�p

��
�e5

]

+ εm

Dx

[
ca2 ê3 − ca1 ē3

−�c

��
�e4

]

εm

{
pa1 (α2mē4 − ē2)

−pa2 (α2mê4 − ê2)

+�p

��
(α2m�e5 −�e3)

}

+εm

{
ca1(α2mē3 − ē1 + 1)

+�c

��
(α2m�e4 −�e2

+α2m − α1m)

−ca2 (α2mê3 − ê1)

}

εm

{
pa1(α1mē5 − ē3)

−pa2(α1mê5 − ˆ̄e3)

+�p

��
(α1m�e6 −�e4)

+εm

{
ca1(α1mē4 − ē2)

−ca2(α1mê4 − ê2)

+�c

��
(α1m�e5 −�e3)

}
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Constants εm for the Loading Functions

Notation
yk = 1

2 (b1 + b2) �y = 1
2 (b2 − b1)

c1 = c2 = c3 = 0, c4 = 1 for simply supported at y = 0 and y = L y

c1 = c3 = 1, c2 = c4 = Em for fixed at y = 0 and simply supported or fixed at y = L y

Em = (cosh ηm − cos ηm)/(sinh ηm − sin ηm)

Loading Constant, εm

1. 2

L y
(c1 cosh βmbw − c2 cosβmbw − c3 sinhβmbw + c4 sinβmbw)

2. 2

L y
(c1 cosh βmbc − c2 cosβmbc − c3 sinhβmbc + c4 sin βmbc)

3.
Line force W and moment C

4

ηm
[(c1 coshβm yk − c2 sinhβm yk) sinhβm�y − (c3 cosβm yk − c4 sin βm yk) sinβm�y]
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TABLE 18-24 CONSISTENT MASS MATRIX FOR RECTANGULAR PLATE
ELEMENT SIMPLY SUPPORTED ON TWO OPPOSITE EDGES

Notation
ρ = mass per unit area

�, L y = length of element in x and y directions
α = �mπ

sh = sinhβ�
Hm = α2 − L2

ys2
h

β = mπ/L y
ch = coshβ�

Element variables:

vi = [wa θa wb θb
]T

Mass Matrix

mi =



m11 symmetric
m21 m22
m31 m32 m33
m41 m42 m43 m44




m11 = −�ρ
12α

[
2α5 − 5α3L3

y(1+ 2c2
h)+ 15αL4

ys2
h − α2chsh L y(15L2

y + 2α2)

+ 15L5
ychs3

h

]/
Hm

m21 = − L y�
2ρ

6α2

[
α4L y(2+ c2

h)(1+ νs2
h)− 3α2L3

ys2
h − 3L3

ys4
h(2α

2ν + L2
y)+ 3α3(α2ν

+ L2
y)chsh

]/
Hm

m22 =
L2

y�
3ρ

12α2

{
2α5 + L y

[
α2(2α2 − 9L2

y)− 3L4
ys2

h

]
chsh + α3L2

y(1+ 2c2
h)+ 9αL4

ys2
h

}/
Hm

m31 = − �ρ

12α

{
L ysh
[
2α4 + 3α2L2

y(3+ 2c2
h)− 15L4

ys2
h

]+ αch
[
α4 + α2L2

y(14+ c2
h)

− 15L4
yc2

h

]}/
Hm

m32 = −m41

m33 = m11

m41 = − �
2ρ

12α

{
α2L ysh

[
α2 + L2

y(8+ c2
h)
]− 15L5

ys3
h + 3αL2

ych(α
2 + L2

ys2
h)
}/

Hm

m42 =
L2

y�
3ρ

12α3

{
3L5

ys3
h + α2L y(4α2 + 9L2

y)sh + α
[
α2L2

y(c
2
h − 4)+ α4 − 9L4

ys2
h

]
ch
}/

Hm

m43 =
L2

y�
2ρ

6α2

[− 3α2L2
ys2

h + α4(2+ c2
h)− 3L4

ys4
h + 3α3L ycysh

]/
Hm

m44 = m22
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TABLE 18-25 DEFLECTIONS AND INTERNAL FORCES OF PLATES OF
VARIOUS SHAPES

Notation
w = deflection

Mr ,Mφ,Mx ,My = moments per unit length
Qr = shear force per unit length
E = modulus of elasticity
ν = Poisson’s ratio
h = thickness of plate
r = radial coordinate

p1 = distributed applied force per area

D = Eh3

12(1− ν2)

Case Deflection and Internal Forces

1.
Simply supported
semicircular plate

w = p1a4
L

D

∑
m=1,3,5,...

{
4r4

a4
L

1

mπ(16− m2)(4− m2)

+ rm

am
L

m + 5+ ν
mπ(16− m2)(2+ m)[m + 1

2 (1+ ν)]

− rm+2

am+2
L

m + 3+ ν
mπ(4+ m)(4− m2)[m + 1

2 (1+ ν)]
}

sin mϕ

Mr = c1 p1a2
L Mφ = c2 p1a2

L

CONSTANTS: ν = 0.3

c1 = −0.045+ 0.2122

(
r

aL

)
− 0.0392

(
r

aL

)2

− 0.128

(
r

aL

)3

c2 = 0.022+ 0.0484

(
r

aL

)
− 0.0264

(
r

aL

)2

− 0.0352

(
r

aL

)3

0.25 ≤ r

aL
≤ 1

2.
Fixed semicircular
plate

w2 = 0.002021
p1a4

L

D
at point 2

(Mr )max = 0.069p1a2
L at point 1

(Mφ)2 = −0.019p1a2
L

(Mr )3 = 0.06p1a2
L

(Qr )1 = −0.497p1aL

(Qr )3 = −0.380p1aL

ν = 0.3
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TABLE 18-25 (continued) DEFLECTIONS AND INTERNAL FORCES OF PLATES OF VARIOUS
SHAPES

Case Deflection and Internal Forces

3.
Wedge plate

Only the boundary
conditions for
case 1 are shown.

Mmax = ci
p1a2

6
Case (i) Boundary Conditions

1 Straight edges clamped, curved edges free
2 All edges fixed
3 Straight edges simply supported, curved

edges fixed

CONSTANTS:

β = b/a

c1 = 0.8939− 0.2013β + 0.01312β2 + 0.006661β3

0.8 ≤ β ≤ 2.5

c2 =




9.0967− 44.5356β + 85.997β2 − 79.4533β3

+ 35.4362β4 − 6.1197β5 0.6 ≤ β ≤ 1.75

c1 1.75 < β ≤ 2.5

c3 = 0.04652+ 0.8334β − 0.3994β2 + 0.0602β3

0.8 ≤ β ≤ 2.5

4.
Wedge plate

Clamped on straight
edges, free on curved
boundary

w = p1r4

64D

(
1+ cos 4φ − 4 cos θ cos 2φ

2 cos2 θ + 1

)

Mr = −p1

16
r2ν

(
1− 3 cos 4φ

2 cos2 θ + 1

)

− 3p1

16
r2
(

1+ cos 4φ − 4 cos θ cos 2φ

2 cos2 θ + 1

)

Mφ = −p1r2

16

(
1− 3 cos 4φ

2 cos2 θ + 1

)

− 3p1r2

16
ν

(
1+ cos 4φ − 4 cos θ cos 2φ

2 cos2 θ + 1

)

Qr = −p1r

2

(
1+ 3 cos θ cos 2φ

2 cos2 θ + 1

)
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TABLE 18-25 (continued) DEFLECTIONS AND INTERNAL FORCES OF PLATES OF VARIOUS
SHAPES

Case Deflection and Internal Forces

5.
Simply supported ellipse
with distributed load

Ref. [18.12]

(wmax)center � (0.146α − 0.1)p1b4

αEh3

(σmax)center = ±0.3125(2α − 1)p1b2

αh2

Mx = c1
p1b2

r
My = c2

p1b2

4
(center)

ν = 0.3

CONSTANTS:

α = a/b 1.0 ≤ α ≤ 2.0
c1 = −0.1565+ 0.7066α − 0.4263α2 + 0.0823α3

c2 = −0.2882+ 0.720α − 0.258α2 + 0.03241α3

Alternatively, use of an equivalent rectangular plate may give
acceptable approximation.

6.
Simply supported ellipse
with concentrated force

For small d only:

wcenter = WT b2

Eh3
(0.6957+ 0.2818β − 0.422β2)

where
ν = 0.3

β = b

a

Alternatively, use of an equivalent rectangular plate may give
acceptable approximation.

TABLE 18-25 Deflections and Internal Forces of Plates 1119



TABLE 18-25 (continued) DEFLECTIONS AND INTERNAL FORCES OF PLATES OF VARIOUS
SHAPES

Case Deflection and Internal Forces

7.
Fixed elliptical plate with
uniformly distributed load

Ref. [18.12]

W0 = p1

D

(
24

a4
+ 24

b4
+ 16

a2b2

)

w = W0

(
1− x2

a2
− y2

b2

)2

Mx = −4W0 D

[(
ν

a2b2
+ 3

a4

)
x2

+
(

1

a2b2
+ 3ν

b4

)
y2 −

(
ν

b2
+ 1

a2

)]

My = −4W0 D

[(
ν

a2b2
+ 3

b4

)
y2

+
(

1

a2b2
+ 3ν

a4

)
x2 −

(
ν

a2
+ 1

b2

)]

8.
Fixed elliptical plate with
linearly varying distributed
load

Ref. [18.12]

W0 = p0

24D

(
5

a4
+ 1

b4
+ 2

a2b2

)
a

w = W0x

(
1− x2

a2
− y2

b2

)2

Mx = −4W0 Dx

[(
3

a2
− 5

a4
x2 − 3

a2b2
y2
)

+ ν
(

1

b2
− x2

a2b2
− 3y2

b4

)]

My = 4W0 Dx

[(
1

b2
− x2

a2b2
− 3

b4
y2

)

+ ν
(

3

a2
− 5

a4
x2 − 3

a2b2
y2
)]
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TABLE 18-25 (continued) DEFLECTIONS AND INTERNAL FORCES OF PLATES OF VARIOUS
SHAPES

Case Deflection and Internal Forces

9.
Parallelogram plate, simply supported

wcenter = c1 p1L4
y/Eh3

(Mx )center = c2 p1L2
y

(My)center = c3 p1L2
y

ν = 0.3

CONSTANTS:

L = 2L y

φ c1 c2 c3

00 0.1096 0.0461 0.1020

300 0.1059 0.0485 0.0990

450 0.0989 0.0489 0.0940

600 0.0718 0.0531 0.0764

750 0.0097 0.0370 0.0113

10.
Triangular plate

Simply supported along y = 0 edge,
other two edges clamped.
Ref. [18.12]

wmax = c1
p1a4

Eh3

(Mx )max = c2 p1a2

(My)max = c3 p1a2

ν = 0.3

CONSTANTS:

Load A B C

c1 0.00268 0.00082 0.00193
c2 0.0106 0.00395 0.00700
c3 0.00992 0.00390 0.00790

11.
Triangular plate

All edges are clamped.

wmax = c1
p1a4

Eh3

(Mx )max = c2 p1a2

(My)max = c3 p1a2

ν = 0.3

CONSTANTS:

Load A B C

c1 0.00195 0.00063 0.00131
c2 0.00885 0.00356 0.00533
c3 0.00806 0.00379 0.00583
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TABLE 18-26 BUCKLING LOADS FOR PLATES OF VARIOUS SHAPES
Notation

E = modulus of elasticity
h = thickness of plate
ν = Poisson’s ratio

D = Eh3

12(1− ν)2
Pcr = in-plane normal buckling load per unit length

(Pxy)cr = buckling shear force per unit length

P ′ = Eπ2h

12(1− ν2)

(
h

a

)2

P = uniformly distributed compressive in-plane load per unit length
Pxy = uniformly distributed shear force per unit length

Case Buckling Load

1.
Simply supported equilateral
triangular plate with uniform
pressure

Pcr = 4.00P ′

Refs. [18.4], [18.19]

2.
Simply supported right-angled
isosceles triangular plate with
uniform pressure

Pcr = 5.00P ′

Refs. [18.4], [18.20]

3.
Simply supported right-angled
isosceles triangular plate

Pcr = 9.11P ′

Ref. [18.21]
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TABLE 18-26 (continued) BUCKLING LOADS FOR PLATES OF VARIOUS SHAPES

Case Buckling Load

4.
Simply supported
parallelogram

Pcr = k
π2 D

L2

k = β2(φk/ sin3 γ )

When β = L/L y = 1,

φk = 2.15+ 0.004556γ + 6.667× 10−4γ 2

− 5.432× 10−6γ 3

45◦ ≤ γ ≤ 90◦

5.
Clamped rhomboidal
plate, under uniform
pressure perpendicular
to sides in plane of
plate

Pcr = k
π2 D

L2

k = 9.85− 0.281γ + 3.1267× 10−3γ 2 − 1.175× 10−5γ 3

45◦ ≤ γ ≤ 90◦

6.
Parallelogram plate, all
edges simply supported

Pxy = Pyx

(Pxy)cr = k
π2 D

L2
y

k = ψ

4β sin3 γ

β = L/L y
When β = 1,

ψ = 122.51+ 0.223γ − 0.03055γ 2 + 2.472× 10−4γ 3

− 5.75× 10−7γ 4

When β = 2,

ψ = 126.27+ 1.44γ − 0.0548γ 2 + 4.257× 10−4γ 3

− 1.046× 10−6γ 4

45◦ ≤ γ ≤ 135◦
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TABLE 18-27 NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF
VARIOUS SHAPESa

Notation
E = modulus of elasticity
h = thickness of plate
ν = Poisson’s ratio
ρ = mass per unit area
α = L y/L
β = L/L y

Natural frequencies (Hz):

fi = λi

2πL2

[
Eh3

12ρ(1− ν2)

]1/2

The values of λi (i =mode number) are independent of ν except where specially indicated.

All results are for the transverse vibration of plates unless otherwise indicated. For mem-
branes the natural frequencies are for transverse vibrations.

A = area of membrane
P = tension per unit length

Case Parameter λi

1.
Simply supported
rhombus

λ1 = 132.24− 3.725γ + 0.0418γ 2 − 1.59× 10−4γ 3

λ2 = 206.15− 5.314γ + 0.0584γ 2 − 2.08× 10−4γ 3

λ3 = −1937.6+ 87.3γ − 1.241γ 2 + 5.737× 10−3γ 3

λ4 = 448.9− 14.204γ + 0.182γ 2 − 7.73× 10−4γ 3

λ5 = −2.1+ 8.93γ − 0.1688γ 2 + 9.1× 10−4γ 3

λ6 = 1005.06− 36.6γ + 0.5056γ 2 − 2.34× 10−3γ 3

45◦ ≤ γ ≤ 90◦

2.
Simply supported
parallelogram

β = 1/2, 45◦ ≤ γ ≤ 70◦

λ1 = 71.062− 1.525γ + 0.01009γ 2

λ2 = 87.352− 1.746γ + 0.01149γ 2

β = 1/3, 45◦ ≤ γ ≤ 70◦

λ1 = 67.47− 1.469γ + 0.009733γ 2

λ2 = 73.736− 1.544γ + 0.01021γ 2

β = 2/3, 45◦ ≤ γ ≤ 90◦

λ1 = 101.038− 2.8904γ + 0.03264γ 2 − 1.24889× 10−4γ 3

λ2 = 137.212− 3.6264γ + 0.040565γ 2 − 1.5363× 10−4γ 3
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TABLE 18-27 (continued) NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS
SHAPESa

Case Parameter λi

3.
Clamped–simply
supported, simply
supported, simply
supported rhombus

λ1 = 345.31− 15.5γ + 0.2965γ 2 − 2.63× 10−3γ 3 + 8.98
× 10−6γ 4

λ2 = 461.18− 19.63γ + 0.3713γ 2 − 3.256× 10−3γ 3

+ 1.1× 10−5γ 4

λ3 = 139.43+ 5.884γ − 0.2564γ 2 + 3.106× 10−3γ 3

− 1.2164× 10−5γ 4

λ4 = 3443.2622− 1163.3586γ 1/2 + 134.4698γ − 5.1802γ 3/2

λ5 = 845.5009− 177.752γ 1/2 + 13.6238γ − 0.3341γ 3/2

λ6 = 740.78− 14.71γ − 0.0845γ 2 + 4.3× 10−3γ 3

− 2.67× 10−5γ 4

40◦ ≤ γ ≤ 90◦

4.
Clamped–simply
supported, clamped–
simply supported
rhombus

λ1 = 410.53− 18.48γ + 0.3554γ 2 − 3.17× 10−3γ 3

+ 1.089× 10−5γ 4

λ2 = 538.72− 23.53γ + 0.454γ 2 − 4.056× 10−3γ 3

+ 1.39× 10−5γ 4

λ3 = 486.22− 17.147γ + 0.3196γ 2 − 3.117× 10−3γ 3

+ 1.234× 10−5γ 4

λ4 = 1251.43− 57.33γ + 1.0705γ 2 − 8.917× 10−3γ 3

+ 2.793× 10−5γ 4

λ5 = 786.41− 33.80γ + 0.7296γ 2 − 7.56× 10−3γ 3

+ 2.987× 10−5γ 4

λ6 = 1134.6− 40.13γ + 0.5387γ 2 − 2.41× 10−3γ 3

40◦ ≤ γ ≤ 90◦

5.
Parallelogram plate,
clamped–simply
supported, clamped–
simply supported

β = 2/3 45◦ ≤ γ ≤ 90◦

λ1 = 327.06− 13.84γ + 0.2514γ 2 − 2.126× 10−3γ 3

+ 6.965× 10−6γ 4

λ2 = 349.6− 14.22γ + 0.2554γ 2 − 2.1414× 10−3γ 3

+ 6.98× 10−6γ 4

λ3 = 405.6− 15.97γ + 0.288γ 2 − 2.42× 10−3γ 3

+ 7.9× 10−6γ 4

β = 1
2

λ1 = 129.6− 2.52763γ + 0.01506γ 2

λ2 = 207.8099− 5.9092γ + 0.06589γ 2 − 0.0002479γ 3

λ3 = 227.31− 6.2092γ + 0.06913γ 2 − 0.0002598γ 3
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TABLE 18-27 (continued) NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS
SHAPESa

Case Parameter λi

6.
Clamped–simply
supported, simply
supported–clamped
rhombus

λ1 = 457.28− 24.94γ + 0.6339γ 2 − 9.12× 10−3γ 3

+ 7.4729× 10−5γ 4 − 3.3× 10−7γ 5 + 6.136× 10−10γ 6

λ2 = 435.3− 16.2γ + 0.265γ 2 − 1.947× 10−3γ 3

+ 5.44× 10−6γ 4 − 1.11× 10−10γ 5

λ3 = 369.53− 8.0135γ + 0.0696γ 2 − 2.745× 10−4γ 3

+ 7.447× 10−7γ 4

λ4 = 2206.26− 140.757γ + 3.93γ 2 − 0.0586γ 3 + 4.896

× 10−4γ 4 − 2.173× 10−6γ 5 + 4.0× 10−9γ 6

λ5 = 1367.43− 85.0579γ + 2.5565γ 2 − 0.0412287γ 3 + 3.65634

× 10−4γ 4 − 1.67497× 10−6γ 5 + 3.1051× 10−9γ 6

λ6 = 2856.2− 184.832γ + 5.35065γ 2 − 0.0829448γ 3

+ 7.15537× 10−4γ 4 − 3.23696× 10−6γ 5 + 6.00311

× 10−9γ 6

40◦ ≤ γ ≤ 140◦

7.
Clamped–free,
free–free rhombus

λ1 = 12.95− 0.3066γ + 3.358× 10−3γ 2 − 1.24× 10−5γ 3

λ2 = 50.59− 1.4242γ + 0.01628γ 2 − 6.2765× 10−5γ 3

45◦ ≤ γ ≤ 90◦

ν = 0.3

8.
Clamped–clamped,
simply supported–
clamped rhombus

λ1 = 425.87− 18.906γ + 0.360033γ 2 − 3.2003× 10−3γ 3

+ 1.0946× 10−5γ 4

λ2 = 558.58− 23.58γ + 0.444γ 2 − 3.881× 10−3γ 3

+ 1.31× 10−5γ 4

λ3 = 352.69− 6.228γ + 0.0314γ 2 + 3.39× 10−5γ 3

λ4 = 1622.79− 82.28γ + 1.693γ 2 − 0.0156γ 3

+ 5.413× 10−5γ 4

λ5 = 1321.28− 69.31γ + 1.608γ 2 − 0.0169γ 3

+ 6.65× 10−5γ 4

λ6 = 771.246− 12.375γ − 0.192γ 2 + 5.79× 10−3γ 3

− 3.35× 10−5γ 4

40◦ ≤ γ ≤ 90◦
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TABLE 18-27 (continued) NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS
SHAPESa

Case Parameter λi

9.
Clamped rhombus

λ1 = 264.064− 7.6γ + 0.086γ 2 − 3.295× 10−4γ 3

λ2 = 386.36− 10.92γ + 0.1262γ 2 − 4.84× 10−4γ 3

λ3 = 469.58− 11.184γ + 0.105γ 2 − 3.3× 10−4γ 3

λ4 = 696.52− 22.1γ + 0.278γ 2 − 1.17× 10−3γ 3

λ5 = 167.84+ 5.1263γ − 0.1352γ 2 + 8.2× 10−4γ 3

λ6 = 1381.06− 49.76γ + 0.6778γ 2 − 3.1× 10−3γ 3

45◦ ≤ γ ≤ 90◦

10.
Simply supported
isosceles triangle

λ1 = 10.18+ 22.34β + 13.32β2

λ2 = 8.51+ 54.53β + 69.36β2

− 29.5β3

λ3 = 96.85− 201.1β + 318.786β2

− 93.53β3

λ4 = 14.436+ 78.54β + 159.24β2

− 74.6β3

λ5 = 18.81+ 140.97β + 40.3β2

0.5 ≤ β ≤ 1.5

MEMBRANE

All edges supported.

P = tension on all edges.

f1(Hz) = λ1

2

(
P

ρA

)1/2

λ1 = 4.0609− 7.3317
√
α

+ 7.9241α

− 3.8893α3/2

+ 0.7603α2

0.35 ≤ α ≤ 2.0

A = 1
2 L L y

11.
Simply supported
asymmetric triangle

λi (= λ1) for fundamental mode:

β γ = 0◦ γ = 10◦ γ = 20◦ γ = 30◦ γ = 45◦

0.5 24.69 24.78 25.06 25.64 27.78
1.0 45.85 46.28 47.71 50.57 60.22
1.5 73.66 74.64 77.85 84.21 105.1

12.
Clamped–free–free
isosceles triangle

λ1 = 7.178− 0.0297β + 3.665× 10−4β2 + 2.3335× 10−4β3

λ2 = 30.92− 0.145β + 0.025β2 − 1.44× 10−3β3

λ3 = 36.88+ 21.5β + 2.94β2 − 0.19β3

λ4 = 44.49+ 100.653β + 3.9β2 − 0.253β3

ν = 0.30 1 ≤ β ≤ 7
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TABLE 18-27 (continued) NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS
SHAPESa

Case Parameter λi

13.
Clamped–free–free
right triangle

λ1 = 4.7223+ 0.691β

− 0.05433β2

λ2 = 20.07+ 3.148β

− 0.2413β2

ν = 0.30 2 ≤ β ≤ 7

MEMBRANE

All edges supported.

P = tension on all edges

fnm(Hz) = λnm

2

(
P

ρA

)1/2

λnm =
(

m2 + n2

2

)1/2

n,m = 1, 2, 3, . . .

L = L y, A = 1
2 L2

14.
Simply supported
symmetric trapezoid

λ1 for fundamental mode: 0 ≤ α ≤ 1.0
d/L = 0.5

λ1 = 98.7375− 136.5055α + 140.0249α2 − 52.9631α3

d/L = 2/3

λ1 = 69.7416− 87.4303α + 71.751α2 − 21.9561α3

d/L = 1.0

λ1 = 45.8944− 45.3731α + 19.9653α2 − 0.706α3

d/L = 1.5

λ1 = 32.7435− 24.014α + 1.4861α2 + 4.0509α3

15.
Simply supported
unsymmetric trapezoid

λ1 for fundamental mode: 10◦ ≤ γ ≤ 45◦
d/L = 0.5, α = 0.4

λ1 = 62.3913+ 0.1493γ − 0.006487γ 2 + 0.0001848γ 3

d/L = 0.5, α = 0.8

λ1 = 52.5236+ 0.06484γ − 0.002564γ 2 + 0.0000844γ 3

d/L = 1.0, α = 0.4

λ1 = 30.1211+ 0.1341γ − 0.004489γ 2 + 0.0001865γ 3

d/L = 1.0, α = 0.8

λ1 = 21.5645+ 0.1095γ − 0.004355γ 2 + 0.0001459γ 3
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TABLE 18-27 (continued) NATURAL FREQUENCIES OF PLATES AND MEMBRANES OF VARIOUS
SHAPESa

Case Parameter λi

d/L = 1.5, α = 0.4

λ1 = 22.9914+ 0.1254γ − 0.003636γ 2 + 0.0001681γ 3

d/L = 1.5, α = 0.8

λ1 = 15.9585+ 0.1209γ − 0.004465γ 2 + 0.0001586γ 3

16.
Simply supported
regular polygon
with n sides

Number of sides = 4 5 6 7 8

λ1 = 19.74 11.01 7.152 5.068 3.794

R1 = L/(2 sin γ ) R2 = L/(2 tan γ )

MEMBRANE All edges supported.

P = tension on all edges.

Number of sides = 4 5 6 7 8

λ1 = 1.414 1.385 1.372 1.366 1.362

f1(Hz) = λ1

2

(
P

ρA

)1/2

A = n

4
L2 cot γ

17.
Clamped regular
polygon with n sides

Number of sides: = 4 5 6 7 8

λ1 = 35.08 19.71 12.81 9.081 6.787

R1 = L/(2 sin γ ) R2 = L/(2 tan γ )

18.
Clamped ellipse

λ1 for fundamental mode:

λ1 = 132.88− 301.31
√
α + 269.89α − 107.02α1.5

+ 15.771α2 1.0 ≤ α = a/b ≤ 5.0

MEMBRANE All edges supported.

P = tension on all edges.

f1(Hz) = λ1

2

(
P

ρA

)1/2 A = πab

α = a/b

λ1 = 2.405

[(
α + 1

α

)
/2π

]1/2

aAdapted from Ref. [18.15].
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Formulas for the displacements, stresses, and free vibration characteristics of thick-
walled cylinders, thick spheres, and disks are provided in this chapter. These formu-
las are based on the linear theory of elasticity. The loading and responses are axially
symmetric for cylinders and disks and spherically symmetric for spheres.

19.1 DEFINITIONS AND NOTATION

If the wall thickness of a shell of revolution is more than about one-tenth the radius,
the shell is usually called a thick shell [e.g., a thick-walled cylinder (or thick cylin-
der)]. The units for the notation are given in parentheses for each definition, using L
for length, F for force, M for mass, and T for time.

1131



1132 THICK SHELLS AND DISKS

Thick Cylinders

The formulas presented in this chapter for thick cylinders are applicable for sections
some distance from the ends of the cylinder. In other words, the effects of end con-
straints are negligible. The applied loading as well as the resulting displacements
and stresses are axially symmetric. The solution is based on generalized plane strain
models for which the strain εz in the axial direction is a constant.

a0, aL Radii of inner and outer surfaces (L)

E Modulus of elasticity (F/L2)

G = E/[2(1+ ν] Shear modulus of elasticity, Lamé coefficient (F/L2)

Mi Concentrated cylindrical mass (i.e., mass is lumped as thin cylindrical
shell) (M/L2)

N Axial force (F)

p Applied radial pressure (F/L2); applied pressure in positive radial
(increasing r) direction taken to be positive

p0
a, p0

b Loading components for stiffness equation at r = a and r = b (F/L)

pr Radial loading intensity (F/L3); positive if its direction is along pos-
itive r direction

p0, pa, pb Radial forces at r = 0, r = a, and r = b (F/L)

p1 Applied internal pressure (F/L2), positive as shown in Fig. 19-1

p2 Applied external pressure (F/L2), positive as shown in Fig. 19-1

r, φ Radial, circumferential coordinates

t Time (T )

T Change in temperature (degrees) (i.e., temperature rise or loss with
respect to reference temperature)

T1 Magnitude of temperature change, uniform in r direction

u Radial displacement (L)

u0, ua, ub Radial displacement at r = 0, r = a, r = b

Figure 19-1: Cylinder.
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α Coefficient of thermal expansion (L/L · degree)
λ = Eν/[(1+ ν)(1− 2ν)], Lamé coefficient (F/L2)
ν Poisson’s ratio
ρ∗ Mass per unit volume (M/L3)

σ = σr Radial stress (F/L2)
σz Axial stress, positive in tension (F/L2)
σφ Circumferential (tangential) stress (F/L2)
ω Natural frequency (rad/T )
 Angular velocity of rotation (rad/T )

Thick Spherical Shells

The notation that differs from that for cylinders is defined here.

Mi Concentrated spherical mass (M/L2); lumped as thin spherical shell
p0

a, p0
b Loading components for stiffness equation at r = a and r = b (F)

p0, pa, pb Radial forces at r = 0, r = a, and r = b (F)

Disks

The formulas for disks are based on plane stress models for which the axial normal
stress is zero, as are axially oriented shear stresses. The notation that differs from
that for cylinders and spheres is defined here.

h Thickness of disk (L)
Mi Concentrated ring mass (M/L)

p0
a, p0

b Loading components for stiffness equation at r = a and r = b (F)
pr Radial loading density; positive if its direction is along positive r di-

rection (F/L2)
p0, pa, pb Radial forces for stiffness equation at r = 0, r = a, and r = b (F)

P Internal radial force per unit circumferential length (normal force per
unit length on r face), = σr h (F/L)

P0, Pa, Pb Radial forces per unit circumferential length at r = 0, r = a, and
r = b (F/L)

Pφ Circumferential force per unit radial length, = σφh (F/L)

19.2 STRESSES

The stress formulas for thick cylinders and spheres under uniform pressure on the
inner and outer circumferential surfaces are given in this section. Also, the stresses
in a rotating disk are listed. The positive stresses σr and σφ are as in Fig. 19-2.
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Figure 19-2: Positive radial displacement u and stresses σr , σφ .

Thick Cylinders

For a cylinder with both inner and outer pressures,

σr = p1a2
0

a2
L − a2

0

(
1− a2

L

r2

)
− p2a2

L

a2
L − a2

0

(
1− a2

0

r2

)
(19.1a)

σφ = p1a2
0

a2
L − a2

0

(
1+ a2

L

r2

)
− p2a2

L

a2
L − a2

0

(
1+ a2

0

r2

)
(19.1b)

Figure 19-3 shows the relative magnitude of σφ and σr under inner and outer pres-
sure. If only the loading p1 is applied on the inner circumferential surface of the
cylinder, the maximum σφ and σr both occur at the inner surface, where σφ is
[1 + (aL/a0)

2]/[1 − (aL/a0)
2] times σr . Also if only p2 is applied on the outer

surface, the maximum σφ occurs at the inner surface while the maximum σr occurs
at the outer surface. The ratio of σφ to σr at r = aL is [(aL/a0)

2+1]/[(aL/a0)
2−1].

For thick cylinders with an applied axial force N , positive in tension, axial stress σz

may develop. This stress can be expressed as

σz = N/[π(a2
L − a2

0)] = const (19.1c)

Thick Spherical Shells

The stress formulas for thick spheres are

σr = p1a3
0

a3
L − a3

0

(
1− a3

L

r3

)
− p2a3

L

a3
L − a3

0

(
1− a3

0

r3

)
(19.2a)

σφ = p1a3
0

a3
L − a3

0

(
1+ a3

L

2r3

)
− p2a3

L

a3
L − a3

0

(
1+ a3

0

2r3

)
(19.2b)
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Figure 19-3: Stresses σr and σφ in thick-walled cylinders under (a) internal and (b) external
pressure.

Nonpressurized Rotating Disk of Constant Thickness

Solid Disk (No Center Hole)

σr = 3+ ν
8

ρ∗2a2
L

(
1− r2

a2
L

)
(19.3a)

σφ = 3+ ν
8

ρ∗2a2
L

(
1− 1+ 3ν

3+ ν
r2

a2
L

)
(19.3b)

Disk with Central Hole

σr = 3+ ν
8

ρ∗2

(
a2

L + a2
0 −

a2
0a2

L

r2
− r2

)
(19.4a)

σφ = 3+ ν
8

ρ∗2

(
a2

L + a2
0 +

a2
L a2

0

r2
− 1+ 3ν

3+ ν r2

)
(19.4b)
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The maximum value of σr occurs at r = √a0aL and is

σr,max = 1
8 (3+ ν)ρ∗2(aL − a0)

2 (19.5)

The maximum σr is always less than the maximum value of σφ regardless of the ratio
aL/a0.

Equations (19.3) and (19.4) are illustrated in Fig. 19-4. Comparison of Eqs. (19.3)
and (19.4) shows that the peak stresses in a disk with a hole are always greater than
those in a disk without a hole. A small central hole, even a pinhole, doubles the
peak normal stress σφ over the case of no hole. This can be seen by setting r = a0
in Eqs. (19.4) and letting a0 approach zero. The resulting σφ is twice that given by
Eq. (19.3).

Note that these formulas apply for thin disks only, where the plane stress assump-
tion holds.

Figure 19-4: Stresses σr and σφ in rotating disks of constant thickness: (a) solid disk; (b)
disk with a center hole.
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Example 19.1 Cylinder Design A long cylinder without an applied axial force
is to have an inner radius of 40 mm and carry an internal pressure of 82 MPa with
a safety factor of 2. Determine the outside radius according to the Tresca theory of
failure (yield). Also, find the principal stresses at r = a0. For this material, σys =
500 MPa.

From Eqs. (19.1a) and (19.1b), the largest circumferential and radial stresses oc-
cur on the inner surface of this cylinder. Also, at this point, the maximum principal
stress is σφ and the minimum is σr . From Eq. (3.22b),

τmax = 1

2
(σmax − σmin) = 1

2
(σφ − σr ) = 1

2

2p1a2
L

a2
L − a2

0

= p1a2
L

a2
L − a2

0

(1)

The maximum allowable shear stress in tension is

τmax = 1
2σys = 250 MPa (2)

The Tresca theory of failure leads to

p1a2
L/(a

2
L − a2

0) = 250 (3)

With the factor of safety of 2, p1 = 2× 82 = 164 MPa. Then, with a0 = 40 mm,
(3) yields

aL =
(

250

250− 164

)1/2

(40) = 68.20 mm (4)

The principal stresses at r = a0 under the working pressure p1 = 82 MPa are,
from Eqs. (19.1a)–(19.1c),

σφ|r=a0
= σ1 = (82)(40)2

68.202 − 402

(
1+ 68.202

402

)
= 168 MPa

σz|r=a0
= σ2 = 0

σr |r=a0
= σ3 = −82 MPa

(5)

19.3 DESIGN OF CYLINDERS WITH INTERNAL PRESSURE

A frequently occurring design problem occurs for cylinders subject to internal pres-
sure (p1) only. For this kind of loading, the maximum values of σr and σφ occur at
the inner circumferential surface of the cylinder. From Eqs. (19.1) and Fig. (19-3a),
| σr | = p1 and σφ varies with the thickness of the cylinder (Fig. 19-5). Controlling
the maximum value of σφ is the major concern of the design. Let t = aL − a0 and
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Figure 19-5: Stress σφ at r = a0 of a cylinder due to internal pressure only.

p2 = 0. Then the expression for σφ at r = a0 is

σφ|r=a0
= 1+ (1+ t/a0)

2

(t/a0)(2+ t/a0)
p1 (19.6)

which can be shown to be equal to the value given in Fig. 19-3a. It can be seen from
this expression that this stress approaches p1 as the ratio t/a0 approaches infinity,
as shown in Fig. 19-5. Therefore, if the allowable stress of the cylinder is σys , the
internal pressure p1 must never exceed σys no matter how thick (t) the wall is made.
To overcome this limitation, the cylinder can be prestressed to generate a state of
initial compression (i.e., residual stress) at and near the inner surface. There are two
common methods to produce residual stresses in cylinders. One is to press the cylin-
der from the inner surface until it deforms plastically to some distance in the radial
direction. This procedure is called autofrettage or self-hooping. Another is to make
a composite cylinder by shrink fitting one or more jackets over a cylinder.

For two shrink-fit cylinders of the same material (Fig. 19-6a) subjected to inter-
nal pressure p1, a logical residual stress distribution would be one that results in the
composite cylinder failing simultaneously at the inner radii of the inner and the outer
cylinders. To achieve this, take two cylinders with outer and inner radii c and c −�
(or c + � and c). Preheat the outer cylinder (or cool the inner one) and make them
fit. Then at room temperature, stresses will develop at the inner and outer surfaces of
the cylinders. After p1 is applied, an interface pressure pc is developed between the
inner and outer cylinders (Fig. 19-6b). The pressure pc and the radius c should be de-
termined such that the maximum shear stresses from a theory of failure (e.g., Tresca)
are minimized. Reference [19.1] presents a solution for this problem. Let the two
maximum shear stresses have the same magnitude at the inner radii of the inner and
the outer cylinders. This maximum shear stress is expressed as

τmax = p1aL/[2(aL − a0)] (19.7)

With a0 and τmax known, aL can be determined from this relationship. The expres-
sions for pc and c from the Tresca theory are then found as
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Figure 19-6: Stress distribution in composite cylinders: (a) composite configuration; (b)
initial stress distribution due to shrink-fit contact pressure at interface r = c; (c) combined
stress distribution due to shrink-fit and internal pressure (dashed lines represent stresses due
to p1 alone).

pc = p1(aL − a0)/[2(aL + a0)] (19.8)

c = √aL a0 (19.9)

After pc and c are computed, the outer radius rout of the inner cylinder and the inner
radius rin. of the outer cylinder can then be determined as

rout = c rin. = c −� (outer cylinder should be heated)

or

rout = c +� rin. = c (inner cylinder should be cooled)

with

� = 2c3 pc

E

a2
L − a2

0

(a2
L − c2)(c2 − a2

0)
(19.10a)

or

� = p1
√

aL a0/E (19.10b)
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The temperature change T needed to heat the outer cylinder (or to cool the inner
cylinder) in order to fit the cylinders together is

T = �

cα
= p1

αE
(19.11)

Example 19.2 Composite Cylinder If the cylinder in Example 19.1 is compos-
ite with the inner and outer cylinders as shown in Fig. 19-6, determine the outer
radius of the composite cylinder under the design pressure 164 MPa, the required
contact pressure pc, the radius c of the interface, and the circumferential stresses at
r = a0 = 40 mm and at r = c under the working pressure 82 MPa. The inner and
outer cylinders are made from steel with E = 200 GPa, α = 12× 10−6/◦C, and the
allowable τmax at 250 MPa.

With a0 = 40 mm and a design pressure of 164 MPa, the outer radius of the
composite cylinder is obtained from [Eq. (19.7)]

τmax = 250 = 164aL/2(aL − 40) (1)

as aL = 59.52 mm. The required contact pressure is, from Eq. (19.8),

pc = 164(59.52− 40)

2(59.52+ 40)
= 16.08 MPa (2)

From Eq. (19.9), the radius of the interface is

c = √40(59.52) = 48.79 mm (3)

The circumferential stress at r = a0 is due to the working pressure p1 = 82 MPa
and the contact pressure pc.

The state of stress under combined internal working pressure and shrink-fit load-
ing is shown in Fig. 19-6c. From Eq. (19.1b), for the inner radius of the inner cylin-
der,

σφ|r=a0
= −pc

2c2

c2 − a2
0

+ p1
a2

0 + a2
L

a2
L − a2

0

= −pc
2

1− (a0/c)2
+ p1

1+ (aL/a0)
2

(aL/a0)2 − 1

= − 2(16.08)

1− (40/48.79)2
+ 82

1+ (59.52/40)2

(59.52/40)2 − 1

= −98.09+ 217.07 = 118.98 MPa (4)
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At the inner radius of the outer cylinder,

σφ|r=c = pc
a2

L + c2

a2
L − c2

+ p1a2
0

a2
L − a2

0

(
1+ a2

L

c2

)
= 250.0 MPa (5)

The required interference� in radius at room temperature is, from Eq. (19.10),

� = p1
√

a0aL/E (6)

For the design pressure p1 = 164 MPa,

� = 164
√

40(59.52)/200(103) = 0.04 mm (7)

For steel with α = 12(10)−6/◦C, the temperature change T needed is, by
Eq. (19.11),

T = 164/
[
12(10)−6(200)(10)3

]
= 68.33◦C (8)

It is interesting to note that the weight of the cylinder in this example is less than
that in Example 19.1, since the area of the cross sections are, respectively,

A2 = π(59.522 − 402) = 6099.86 mm2 (9)

A1 = π(68.202 − 402) = 9580.89 mm2 (10)

This is an (A1− A2)/A1 = 36.3% reduction in weight per unit axial length of the
cylinder. In fact, the reduction will be greater if the design pressure is higher.

19.4 SIMPLE SHELLS AND DISKS

Thick Cylinders

The governing equations for the radial displacement and stresses in a thick cylinder
are given by

d2u

dr2
+ 1

r

du

dr
− u

r2
= − 1

λ+ 2G
pr + 3λ+ 2G

λ+ 2G
α

dT

dr
(19.12a)

(λ+ 2G)
du

dr
+ λ

r
u − (3λ+ 2G)αT = σr (19.12b)

The radial displacement and stress for a cylinder are provided in Table 19-1, along
with the tangential and axial stresses σφ and σz . Part A of the table lists formulas for
the radial displacements and stresses. The loading functions are taken from part B
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of Table 19-1 by adding the appropriate terms for each applied load. The initial pa-
rameters are provided in part C of the table for particular inner and outer surface
conditions.

Example 19.3 Thick Cylinder with Internal Pressure Calculate the displace-
ment and stresses of a thick cylinder of inner and outer radii a0 = 10 in. and
aL = 20 in. The cylinder is subjected to internal uniform pressure p1 = 100 lb/in2.
The material constants are E = 3 × 107 lb/in2, ν = 0.3, G = E/[2(1 + ν)] =
1.1538× 107 lb/in2, and λ = Eν/[(1+ ν)(1− 2ν)] = 1.730× 107 lb/in2.

The response of the cylinder can be calculated from the formulas in Table 19-1.
First find the initial parameters u0 and σ0. Both the inner and outer circumferential
boundaries of the cylinder cross section are free, so that, from Table 19-1, part C,

σ0 = 0 (1)

u0 = − Fσ
[G/(1− ν)] [(a2

L − a2
0)/(a0a2

L )
] (2)

From Table 19-1, part B, if the radial pressure is applied at a1 = a0, the loading
functions, with <r − a0>

0= 1 for r ≥ a0, are

Fu(r) = − p1ν

2(1− ν)λ
r2 − a2

0

r
(3)

Fσ (r) = − p1

1− ν
[

1

2
+ Gν

λ

(a0

r

)2
]

(4)

Then

Fσ = Fσ |r=aL
= − p1

1− ν

[
1

2
+ Gν

λ

(
a0

aL

)2
]
= −78.57 (5)

Substitute (5) into (2) to find u0 = 6.36× 10−5 in.
The displacement u and stresses σr , σφ , and σz are then found from part A of

Table 19-1 to be

u = u0[(Gν/λ)(r/a0)+ a0/2r]
1− ν − p1ν

2(1− ν)λ
r2 − a2

0

r
(6a)

σr = u0G(r2 − a2
0)

(1− ν)a0r2
− p1

1− ν
[

1

2
+ Gν

λ

(a0

r

)2
]

(6b)

σφ = 4G(λ+ G)

λ+ 2G

u

r
+ λ

λ+ 2G
σr (6c)

σz = 2λG

λ+ 2G

u

r
+ λ

λ+ 2G
σr (6d)
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Substitution of the numerical values of λ, G, ν, and u0 into (6) leads to the fol-
lowing responses:

r u σr σφ σz

10 6.36 × 10−5 −100.0 166.667 20
12 5.508× 10−5 −59.26 125.926 20
14 4.936× 10−5 −34.69 101.36 20
16 4.536× 10−5 −18.75 85.42 20
18 4.25 × 10−5 −7.82 74.486 20
20 4.04 × 10−5 0 66.667 20

The values of σr and σφ are the same as the stress values obtained from
Eqs. (19.1a) and (19.1b). Note that no axial force is involved in this example, but the
axial stress σz does not vanish. This is because the formulas in Table 19-1 are based
on the plane strain assumption of εz = 0 (i.e, either the cylinder is very long or the
ends of the cylinder are constrained). This contrasts to the situation for Eq. (19.1c),
which is based on the generalized plane strain assumption of εz = const. Equa-
tion (19.1c) describes the axial stress in the cylinder when the ends of the cylinder
are free.

Example 19.4 Thermally Loaded Cylinder Find the stress and displacements
in a thermally loaded cylinder with zero tractions on the inner and outer boundaries.
The temperature change along the radial direction for a cylinder with temperature
changes Ta0, TaL on the inner (a0) and outer (aL ) surfaces is [19.2]

T (r) = Ta0 ln(aL/r)− TaL ln(a0/r)

ln(aL/a0)
(1)

For isotropic material, the radial stress and displacement are given by cases 1 and
2 of Table 19-1, part A, as

u = u0[(Gν/λ)(r/a0)+ a0/2r]
1− ν + σ0ν[(r2 − a2

0)/r]
2(1− ν)λ + Fu (2)

σr = u0G(r2 − a2
0)

(1− ν)a0r2
+
σ0

[
1
2 + (Gν/λ)(a0/r)2

]
1− ν + Fσ (3)

From Table 19-1, part B, the loading functions for an arbitrary temperature change T
are

Fu(r) = 1+ ν
1− ν

α

r

∫ r

a0

T (ξ)ξ dξ (4)
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Fσ (r) = − E

1− ν
α

r2

∫ r

a0

T (ξ)ξ dξ (5)

The inner and outer boundaries are free, so that from Table 19-1, part C, the initial
parameters are σ0 = 0 and

u0 = −
Fσ |r=aL

[G/(1− ν)][(a2
L − a2

0)/(a0a2
L )]
= [E/(1− ν)](α/α

2
L)
∫ aL

a0
T (ξ)ξ dξ

[G/(1− ν)] [(a2
L − a2

0)/(a0a2
L )
]

= a0 Eα
∫ aL

a0
T (ξ)ξ dξ

G(a2
L − a2

0)
(6)

To complete the solution, calculate the integrals containing the temperature
change,

∫ r

a0

T (ξ)ξ dξ =
∫ r

a0

[Ta0 ln(aL/ξ)− TaL ln(a0/ξ)]ξ
ln(aL/a0)

dξ

= 1

4
r2 Ta0 − TaL

ln(aL/a0)
+ 1

2
r2T (r)+ 1

4
(TaL − Ta0)a

2
0 −

1

2
Ta0a2

0 ln
aL

a0
(7)

Then

∫ aL

a0

T (ξ)ξ dξ = 1

4
a2

L
Ta0 − TaL

ln(aL/a0)
+ 1

2
a2

L
TaL

ln(aL/a0)

+ 1

4
(TaL − Ta0)a

2
0 −

1

2
Ta0a2

0 ln
aL

a0
(8)

Equations (7) and (8) placed in (4), (5), and (6) complete the response represented
by the displacement of (2) and the stress of (3).

Thick Spherical Shells

The governing equations for the radial displacement and stresses are given by

d2u

dr2
+ 2

r

du

dr
− 2

u

r2
= − 1

λ+ 2G
pr + 3λ+ 2G

λ+ 2G
α

dT

dr
(19.13a)

(λ+ 2G)
du

dr
+ 2λ

r
u − (3λ+ 2G)αT = σr (19.13b)

Formulas for the radial displacement and radial stress as well as the tangential stress
are given in Table 19-2, part A. The loading functions and initial parameters are
provided in parts B and C of the table.
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Disks

The governing equations for the radial displacement and stresses in terms of the
applied loadings are given by

d2u

dr2
+ 1

r

du

dr
− 1

r2
u = −1− ν2

Eh
pr + (1+ ν)α dT

dr
(19.14a)

Eh

1− ν2

du

dr
+ νEh

1− ν2

u

r
− Ehα

1− ν T = P (19.14b)

where P = hσr . Table 19-3 provides formulas for the radial displacement, radial
force per circumferential length, and tangential force per circumferential length of
disks or constant thickness.

Example 19.5 Rotating Disk with Internal Pressure Find the displacement
and internal forces in a disk of constant thickness rotating at angular velocity 
and subject to an internal pressure p1 (force per length) on the inner periphery at
r = a0.

The radial displacement and force are given by cases 1 and 2 of Table 19-3, part A,
as

u = u0
r

a0

(
1− 1+ ν

2

r2 − a2
0

r2

)
+ P0

1− ν2

2Eh

r2 − a2
0

r
+ Fu (1)

P = u0
Eh

2a0r2
(r2 − a2

0)+ P0

(
1− 1− ν

2

r2 − a2
0

r2

)
+ FP (2)

From part B of Table 19-3, the loading functions for the centrifugal loading and
internal pressure (p1 = P∗ at r = a0 and <r − a0>

0= 1 for r ≥ a0) are given by

Fu = − p1

Eh

1− ν
2

r2 − a2
0

r
− (r

2 − a2
0)

2

r

1− ν2

8

ρ∗2

E
(3)

FP = −p1

(
1− 1− ν

2

r2 − a2
0

r2

)

− (r2 − a2
0)
ρ∗2h

4

[
(1+ ν)+ 1− ν

2

(r2 + a2
0)

r2

]
(4)

The initial parameters of (1) and (2) are provided in Table 19-3, part C. The bound-
aries are taken to be free–free. The inner boundary is treated as being free since
the pressure is accounted for as a loading and not as a boundary condition. From
Table 19-3, part C,
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P0 = 0 (5)

u0 = −2FP|r=aL a0a2
L

Eh(a2
L − a2

0)
= 2p1a0a2

L [1− (1− ν)(a2
L − a2

0)/2a2
L ]

Eh(a2
L − a2

0)

+ a0a2
L

E

ρ∗2

2

[
(1+ ν)+ 1− ν

2

a2
L + a2

0

a2
L

]
(6)

With (3), (4), (5), and (6), Eqs. (1) and (2) now provide the radial displacement and
force throughout the disk. The tangential force is given by case 3 of Table 19-3,
part A, using the u and P found above.

19.5 NATURAL FREQUENCIES

The natural frequencies for simple thick cylinders, spheres, and disks are presented
in Table 19-4. For more complicated cases, use the procedures given in Appendix III
and the transfer, stiffness, and mass matrices in Tables 19-5 to 19-9 to compute the
natural frequencies.

19.6 GENERAL SHELLS AND DISKS

The formulas of Tables 19-1 to 19-3 apply to rather simple shells and disks. For
more general members (e.g., those formed of several members), it is advisable to
use the displacement method or the transfer matrix procedure, which are explained
technically at the end of this book (Appendixes II and III).

Several transfer and stiffness matrices are tabulated in Tables 19-4 to 19-7. Mass
matrices for use in a displacement method analysis are given in Tables 19-8 and
19-9. These responses are based on Eqs. (19.12)–(19.14), as appropriate. For dy-
namic problems, substitute pr − ρ∗∂2u/∂t2 for pr in Eqs. (19.12) and (19.13) for
cylinders and shells and pr − hρ∗∂2u/∂t2 for pr in Eq. (19.14) for disks.

Example 19.6 Disk of Hyperbolic Profile A steel disk of hyperbolic profile is
loosely attached to a rigid post as shown in Fig. 19-7. The configuration rotates at
frequency . Find the radial stress distribution in the disk.

Figure 19-7: Example 19.6.
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The transfer matrix of Table 19-7, case 3, applies to this problem. For this disk
n = 1, hk = haa = 15, E = 3× 107 lb/in2, ν = 0.3, n1 = 1.75, and n2 = −0.75.
The stress is given by

σ = P

h
= u0UPu

h
+ P0UP P

h
+ FP

h
(1)

where, from Table 19-7 with a = 3 in.,

UPu = Ehk(n1 + ν)(n2 + ν)
(1− ν2)(bn+1)(n2 − n1)

[(
b

a

)n1

−
(

b

a

)n2
]

= 182.5× 106 × 1

b2

[(
b

3

)1.75

−
(

b

3

)−0.75
]

FP = −ρ
∗2hkb2−n

8− (3+ ν)n
{
(3+ ν) (2)

− 1

n2 − n1

[
(n1 + ν)(n2 − 3)

(
b

a

)n1−3

− (n2 + ν)(n1 − 3)

(
b

a

)n2−3
]}

= −3.19ρ∗2b

[
3.3− 3.075

(
b

3

)−1.25

− 0.225

(
b

3

)−3.75
]

It is not necessary to look up UP P since P0 of Eq. (1) is zero as a result of the loose
fit at the inner boundary. Also, at the outer circumference, where r = b = 15 in., the
force P is zero. Thus, for free–free conditions, with Pr=3 in. = 0 and Pr=b=15 in. =
0, the initial parameters are

P0 = 0 u0 = −F P/UPu|b=15 (3)

The expression for u0 is obtained by setting Pr=b=15 in. = 0 in (1). Also, F P =
(FP)b=15. Substitution of b = 15 in. into (2) gives

UPu|b=15 = 13.32× 106 F P = −138.2ρ∗2 (4)

Equations (3) and (4) lead to u0 = 1.04× 10−5ρ∗2. If this value of u0 is placed in
(1), we find that

σ = (−10.527b + 316.27b−0.25 − 4282.33b−2.75)(ρ∗2/h) (5)

This expression applies for any solution if b is replaced by r so that the radial stress
in the disk is completely defined by (5).

Example 19.7 Shrink-Fit Disk–Shaft System A disk–shaft system (Fig. 19-8a)
can be used to illustrate both the solution to a complicated disk problem and the
treatment of shrink fit.
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Figure 19-8: Example 19.7.

Suppose that the shaft can be modeled as a solid (holeless) disk of thickness equal
to that (h1) of the outer disk where it is connected to the shaft (Fig. 19-8b). The outer
disk, which possesses a variable thickness, will be handled as a succession of disks,
each with a constant thickness (Fig. 19-8c). Assume that the disk is to be shrink fit
to the shaft.

Expressions for the displacements and forces in the shaft can be treated separately
and then the results are joined with the disk response to account for shrink-fit results.
Let c be the inner radius of the disk and the outer radius of the shaft after shrinking.
In the case of the shaft, the responses are taken from case 4 of Table 19-7 as

u|r=c = P0Uu P|r=c + Fu|r=c = P0
c

Eh1
(1− ν)− (1− ν2)

ρ∗2c3

8E
(1a)

P|r=c = P0UP P|r=c + FP|r=c = P0 − (3+ ν)ρ
∗h1

2c2

8
(1b)

For the disk of variable cross section which is treated as a succession of disks of
constant thickness, the overall transfer matrix U can be developed as

U = U1U2U3 · · ·Un (2)

where Ui is the transfer matrix for the i th disk of constant thickness. The expression
for Ui is taken from case 1, Table 19-7, with a = ai−1, b = ai as
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Ui =




ai

ai−1

(
1− 1+ ν

2

a2
i − a2

i−1

a2
i

)
1− ν2

2Ehi

a2
i − a2

i−1

ai
− (a

2
i − a2

i−1)
2

ai

1− ν2

8

ρ∗2

E

Ehi

2ai−1a2
i

(a2
i − a2

i−1) 1− 1− ν
2

a2
i − a2

i−1

a2
i

− (a
2
i − a2

i−1)ρ
∗2hi

4

[
(1+ ν)+ 1− ν

2

a2
i + a2

i−1

a2
i

]

0 0 1




(3)

where i = 1, 2, . . . , n.
In nonmatrix form, the displacement and force at r = aL are

u|r=aL = ucUuu(aL , c)+ PcUu P (aL , c)+ Fu(aL , c) (4a)

P|r=aL = ucUPu(aL , c)+ PcUP P (aL , c)+ FP(aL , c) (4b)

where U jk(aL , c) are components of the overall transfer matrix from r = c to r =
aL .

Generation of a solution requires knowledge of initial parameters P0 of (1) and
uc, Pc of (4). In the case of a shrink-fit problem, the interaction between the shaft and
the disk provides the condition necessary to evaluate the initial parameters. Suppose
that rs is the outer radius of the shaft before shrinking and rD is the inner radius of
the disk before shrinking. Also let uD|r=c be the displacement of the inner radius of
the disk upon shrink fitting and us|r=c the displacement of the outer radius of the
shaft after shrinking. The shrink-fit deformation, or shrinkage, is

�sf = rs − rD = uD|r=c − us|r=c (5)

The shaft displacement us|r=c is found in terms of P|r=c = Pc by eliminating P0
from (1a) and (1b):

us|r=c = Pc − FP|r=c

UP P|r=c
Uu P|r=c + Fu|r=c (6)

The disk displacement uD|r=c is given by (4b) as a function of Pc,

uD|r=c = P|r=aL − FP (aL , c)

UPu(aL , c)
− Pc

UP P (aL , c)

UPu(aL , c)
(7)

Substitution of (6) and (7) into (5) provides a relationship sufficient to solve a
variety of shrink-fit problems. For example, for a prescribed shrinkage�sf, the pres-
sure Pc between the shaft and disk can be computed from (5). Or the shrinkage �sf
necessary to achieve an interaction pressure Pc can be calculated. In each case, a
specified external pressure on the disk can be included. In problems involving cylin-
ders, it is common to include the effect of an internal pressure on an inner cylinder.
With either �sf or Pc given, it is possible to calculate all displacements and stresses
in the shaft and disk.
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TABLE 19-1 PART A: THICK CYLINDERS: GENERAL RESPONSE
EXPRESSIONS

Notation
a0 = radius of inner boundary
G = shear modulus of elasticity
ν = Poisson’s ratio
λ = Lamé coefficient
α = coefficient of thermal expansion
T = change of temperature along length

of wall thickness
σ0 = σr |r=a0 u0 = u|r=a0

The formulas in this table are based on the plane strain assumption of εz = 0.

Response

1.
Displacement:

u = u0[(Gν/λ)(r/a0)+ a0/2r]
1− ν + σ0ν(r2 − a2

0)

2(1− ν)λr
+ Fu

2.
Radial stress:

σr = u0G(r2 − a2
0)

(1− ν)a0r2
+ σ0[ 12 + (Gν/λ)(a0/r)2]

1− ν + Fσ

3.
Tangential stress:

σφ = 4G(λ+ G)

λ+ 2G

u

r
+ λ

λ+ 2G
σr − EαT

1− ν
4.
Axial stress:

σz = 2λG

λ+ 2G

u

r
+ λ

λ+ 2G
σr − EαT

1− ν

1152 TABLE 19-1 Part A: General Response Expressions



TABLE 19-1 PART B: THICK CYLINDERS: LOADING FUNCTIONS
Notation

E = modulus of elasticity
ν = Poisson’s ratio
ρ∗ = mass per unit volume
 = angular velocity of rotation
α = coefficient of thermal expansion

<r − a1>
0 =

{
0 if r < a1

1 if r ≥ a1

Fu(r) Fσ (r)

1.
Radial pressure
applied at r = a1
(force/length2)

− pν

2(1− ν)λ
× r2 − a2

1

r
<r − a1>

0

− p

1− ν
×
[

1

2
+ Gν

λ

(a1

r

)2
]
<r − a1>

0

2.
Constant
temperature
change T1
(independent
of r)

r2 − a2
0

2r

1+ ν
1− ν αT1 −r2 − a2

0

2r2

αE

1− ν T1

3.
Centrifugal
loading due
to rotation
of cylinder
at angular
velocity 

−ρ
∗2

8

(r2 − a2
0)

2

r

× (1+ ν)(1− 2ν)

E(1− ν)

−(r2 − a2
0)
ρ∗2

4

×
(

2− 1− 2ν

1− ν
r2 − a2

0

2r2

)

4.
Arbitrary
temperature
change T (r)

1+ ν
1− ν

α

r

∫ r

a0

T (ξ)ξ dξ − E

1− ν
α

r2

∫ r

a0

T (ξ)ξ dξ
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TABLE 19-1 PART C: THICK CYLINDERS: INITIAL PARAMETERS
Notation

ν = Poisson’s ratio
λ = Lamé coefficient
G = shear modulus of elasticity

aL = radius of outer surface of cylinder
Fu = Fu|r=aL Fσ = Fσ |r=aL

Outer
Edge

Inner
Edge

Fixed Free

1.
Fixed

u0 = 0

σ0 = − Fu

∇
∇ = ν

2(1− ν)λ
a2

L − a2
0

aL

σ0 = − Fσ
∇

∇ = 1

1− ν

[
1

2
+ Gν

λ

(
a0

aL

)2
]

2.
Free

σ0 = 0

u0 = − Fu

∇
∇ = 1

1− ν
(

Gν

λ

aL

a0
+ a0

2aL

) u0 = − Fσ
∇

∇ = G

1− ν
a2

L − a2
0

a0a2
L
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TABLE 19-2 PART A: SPHERES: GENERAL RESPONSE
EXPRESSIONS

Notation
a0 = radius of inner boundary
G = shear modulus of elasticity
λ = Lamé coefficient
α = coefficient of thermal expansion
T = change of temperature

in radial direction
σ0 = σr |r=a0 u0 = u|r=a0

Response

1.
Displacement: u = u0

4Gr3 + (3λ+ 2G)a3
0

3(λ+ 2G)a0r2
+ σ0

a0

3(λ+ 2G)

(
r

a0
− a2

0

r2

)
+ Fu

2.
Radial
stress:

σr = u0
4G(3λ+ 2G)

3(λ+ 2G)a0r3
(r3 − a3

0)+ σ0
3λ+ 2G + 4Ga3

0/r3

3(λ+ 2G)
+ Fσ

3.
Tangential
stress:

σφ = 2G
2+ 3λ

2G + λ
u

r
+ λ

2G + λσr − 2G(3λ+ 2G)

2G + λ αT

TABLE 19-2 Part A: General Response Expressions 1155



TABLE 19-2 PART B: SPHERES: LOADING FUNCTIONS
Notation

λ = Lamé coefficient
G = shear modulus of elasticity
α = coefficient of thermal expansion

<r − a1>
0 =

{
0 if r < a1

1 if r ≥ a1

Fu(r) Fσ (r)

1.
Radial pressure
applied at r = a1
(force/length2)

− pa1

3(λ+ 2G)

(
r

a1
− a2

1

r2

)

× <r − a1>
0

−p
3λ+ 2G + 4Ga3

1/r3

3(λ+ 2G)
<r − a1>

0

2.
Constant
temperature
change T1
(independent
of r)

3λ+ 2G

3(λ+ 2G)

(r3 − a3
0)

r2
αT1 −4G(3λ+ 2G)

3(λ+ 2G)

(r3 − a3
0)

r3
αT1

3.
Arbitrary
temperature
change T (r)

3λ+ 2G

λ+ 2G

α

r2

∫ r

a0

T (ξ)ξ2 dξ
−4Gα

r3

3λ+ 2G

λ+ 2G

∫ r

a0

T (ξ)ξ2 dξ
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TABLE 19-2 PART C: SPHERES: INITIAL PARAMETERS
Notation

aL = radius of outer boundary
λ = Lamé coefficient
G = shear modulus of elasticity

Fu = Fu|r=aL Fσ = Fσ |r=aL

Outer
Edge

Inner
Edge

Fixed Free

1.
Fixed

u0 = 0

σ0 = − Fu

∇
∇ = a0

3(λ+ 2G)

(
aL

a0
− a2

0

a2
L

) σ0 = − Fσ
∇

∇ = 3λ+ 2G + 4Ga3
0/a

3
L

3(λ+ 2G)

2.
Free

σ0 = 0

u0 = − Fu

∇
∇ = 4Ga3

L + (3λ+ 2G)a3
0

3(λ+ 2G)a0a2
L

u0 = − Fσ
∇

∇ = 4G(3λ+ 2G)(a3
L − a3

0)

3(λ+ 2G)a3
La0

TABLE 19-2 Part C: Initial Parameters 1157



TABLE 19-3 PART A: DISKS: GENERAL RESPONSE EXPRESSIONS
Notation

a0 = radius of inner boundary
E = modulus of elasticity
ν = Poisson’s ratio
α = coefficient of thermal expansion
T = change of temperature

in radial direction
h = thickness of disk

σr , σφ = radial and circumferential stresses,
respectively

P0 = P|r=a0 u0 = u|r=a0
P = radial force per circumferential length

Pφ = tangential force per circumferential length
P = hσr Pφ = hσφ

Response

1.
Displacement: u = u0

r

a0

(
1− 1+ ν

2

r2 − a2
0

r2

)
+ P0

1− ν2

2Eh

r2 − a2
0

r
+ Fu

2.
Radial force: P = u0

Eh

2a0r2
(r2 − a2

0)+ P0

(
1− 1− ν

2

r2 − a2
0

r2

)
+ FP

3.
Tangential force: Pφ = Eh

r
u + νP − EhαT
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TABLE 19-3 PART B: DISKS: LOADING FUNCTIONS
Notation

E = modulus of elasticity
ν = Poisson’s ratio

G = shear modulus of elasticity
h = thickness of disk
ρ∗ = mass per unit volume
 = angular velocity of rotation

<r − a1>
0 =

{
0 if r < a1

1 if r ≥ a1

Fu(r) FP(r)

1.
Radial force
P∗ per unit
circumferential
length applied
at r = a1

− P∗

Eh

1− ν2

2

r2 − a2
1

r
<r − a1>

0 −P∗
(

1− 1− ν
2

r2 − a2
1

r2

)
<r − a1>

0

2.
Constant
temperature
change T1
(independent
of r)

r2 − a2
0

2r
(1+ ν)αT1 −h

r2 − a2
0

2r2
EαT1

3.
Centrifugal
loading due
to rotation
of disk at
angular
velocity 

− (r
2 − a2

0)
2

r

1− ν2

8

ρ∗2

E
−(r2 − a2

0)
ρ∗2h

4

×
[
(1+ ν)+ 1− ν

2

r2 + a2
0

r2

]

4.
Arbitrary
temperature
change T (r)

1+ ν
r

α

∫ r

a0

ξT (ξ) dξ −hEα

r2

∫ r

a0

ξT (ξ) dξ
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TABLE 19-3 PART C: DISKS: INITIAL PARAMETERS
Notation

E = modulus of elasticity
ν = Poisson’s ratio
h = thickness of disk

aL = radius of outer surface
Fu = Fu|r=aL F P = FP|r=aL

Outer
Edge

Inner
Edge

Fixed Free

1.
Fixed

u0 = 0

P0 = − Fu

∇
∇ = 1− ν2

2Eh

a2
L − a2

0

aL

P0 = − F P

∇
∇ = 1− 1− ν

2

a2
L − a2

0

a2
L

2.
Free

P0 = 0

u0 = − Fu

∇
∇ = aL

a0

(
1− 1+ ν

2

a2
L − a2

0

a2
L

) u0 = − F P

∇
∇ = Eh

2a0a2
L

(a2
L − a2

0)
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TABLE 19-4 NATURAL FREQUENCIES FOR THICK SHELLS AND
DISKS

Notation
E = modulus of elasticity
G = shear modulus of elasticity
ρ∗ = mass per unit volume
ωn = nth natural frequency
ν = Poisson’s ratio
λ = Eν/[(1+ ν)(1− 2ν)] = Lamé coefficient

a0, aL = inner and outer radii
λn = frequency parameter

ω2
n =




λ2
n
λ+ 2G

ρ∗a2
L

(isotropic thick cylinders and spheres)

λ2
n

c11

ρ∗a2
L

(anisotropic cylinder of case 3)

λ2
n

E

ρ∗(1− ν2)a2
L

(disks)

α = aL

a0
c11, c12, c13, c22, c23 = elastic constants for anisotropic material [Eq. (4.2)]

ν = 0.3 for all formulas in this table.

Configuration Frequency Parameters

1.
Cylinder segment,
free inner and
outer surfaces

λ1 = 0.337629+ 0.703004α − 0.15434α2 + 0.017533α3

λ2 = 3.383514+ 3.021092

α − 1
+ 0.021578

(α − 1)2
− 0.0011806

(α − 1)3

λ3 = 6.398913+ 6.22643

α − 1
+ 0.010095

(α − 1)2
− 0.000550699

(α − 1)3

1.1 ≤ α ≤ 2.0

2.
Cylinder without
center hole, free
outer surface

λ1 = 2.125748
λ2 = 5.41389
λ3 = 8.5870
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TABLE 19-4 (continued) NATURAL FREQUENCIES FOR THICK SHELLS AND DISKS

Configuration Frequency Parameters

3.
Anisotropic cylinder
without center hole,
free outer surface

Fundamental frequency parameter:
λ1 = 0.4423+ 0.2049γ − 0.0237γ 2 + 0.0017γ 3 η = 0.1
λ1 = 0.9421+ 0.4587γ − 0.05199γ 2 + 0.00377γ 3 η = 0.5
λ1 = 1.2575+ 0.644γ − 0.07038γ 2 + 0.0049926γ 3 η = 1.0
λ1 = 1.6013+ 0.8791γ − 0.08693γ 2 + 0.005831γ 3 η = 2.0
λ1 = 1.9914+ 1.1814γ − 0.08385γ 2 + 0.0049185γ 3 η = 5.0

γ = c22/c11 η = (c22/c11)
1/2 + c12/c11

4.
Spherical segment,
free inner and outer
surfaces

λ1 = 0.626+ 0.9725α − 0.1375α2 − 1.32453α3

λ2 = 4.01637+ 2.45702

α − 1
+ 0.210243

(α − 1)2
− 0.021077

(α − 1)3

λ3 = 6.69786+ 5.964807

α − 1
+ 0.096849

(α − 1)2
− 0.0096571

(α − 1)3

1.2 ≤ α ≤ 2.0

5.
Spherical segment
without center hole,
free outer surface

λ1 = 2.67021
λ2 = 6.091989
λ3 = 9.300894

6.
Disk ring,
free inner and
outer boundaries

λ1 = 0.34598+ 0.7691α − 0.1804α2 + 0.020096α3

λ2 = 3.5347+ 2.8678

α − 1
+ 0.07512

(α − 1)2
− 0.0069235

(α − 1)3

λ3 = 6.4717+ 6.15398

α − 1
+ 0.03511

(α − 1)2
− 0.003218

(α − 1)3

1.2 ≤ α ≤ 2.0
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TABLE 19-4 (continued) NATURAL FREQUENCIES FOR THICK SHELLS AND DISKS

Configuration Frequency Parameters

7.
Disk without center
hole, free outer
boundary

λ1 = 2.04885
λ2 = 5.38936
λ3 = 8.57816

8.
Cylinder segment,
fixed inner surface
and free outer surface

λ1 = 1.79138+ 1.45157

α − 1
+ 0.020484

(α − 1)2
− 0.0010994

(α − 1)3

λ2 = 4.82918+ 4.64203

α − 1
+ 0.013076

(α − 1)2
− 0.00072803

(α − 1)3

λ3 = 7.92344+ 7.81376

α − 1
+ 0.0073076

(α − 1)2
− 0.0040230

(α − 1)3

9.
Cylinder segment,
free inner surface
and fixed outer surface

λ1 = 2.16852+ 1.28071

α − 1
+ 0.052985

(α − 1)2
− 0.0029207

(α − 1)3

λ2 = 4.89249+ 4.62673

α − 1
+ 0.015628

(α − 1)2
− 0.00086171

(α − 1)3

λ3 = 7.95983+ 7.80404

α − 1
+ 0.0090911

(α − 1)2
− 0.00050073

(α − 1)3

10.
Spherical segment,
fixed inner surface
and free outer surface

λ1 = 2.15852+ 1.27428

α − 1
+ 0.050321

(α − 1)2
− 0.0026847

(α − 1)3

λ2 = 5.015518+ 4.54511

α − 1
+ 0.030062

(α − 1)2
− 0.0016459

(α − 1)3

λ3 = 8.044102+ 7.74788

α − 1
+ 0.019202

(α − 1)2
− 0.0010549

(α − 1)3
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TABLE 19-4 (continued) NATURAL FREQUENCIES FOR THICK SHELLS AND DISKS

Configuration Frequency Parameters

11.
Spherical segment,
free inner surface
and fixed outer surface

λ1 = 7.26960− 6.84825

α − 1

+ 3.991179

(α − 1)2
− 0.68994

(α − 1)3
+ 0.036929

(α − 1)4

λ2 = 5.0054713+ 4.47794

α − 1
+ 0.056356

(α − 1)2
− 0.0035934

(α − 1)3

λ3 = 8.070949+ 7.60964

α − 1
+ 0.062880

(α − 1)2
− 0.0040676

(α − 1)3

12.
Disk ring, fixed
inner boundary and
free outer boundary

λ1 = 1.70971+ 1.45025

α − 1
+ 0.020784

(α − 1)2
− 0.0011170

(α − 1)3

λ2 = 4.79584+ 4.64898

α − 1
+ 0.011415

(α − 1)2
− 0.00062540

(α − 1)3

λ3 = 7.90695+ 7.81390

α − 1
+ 0.0072626

(α − 1)2
− 0.00039914

(α − 1)3

13.
Disk ring, free
inner boundary and
fixed outer boundary

λ1 = 2.33085+ 1.24567

α − 1
+ 0.058895

(α − 1)2
− 0.0032348

(α − 1)3

λ2 = 4.96403+ 4.60411

α − 1
+ 0.019722

(α − 1)2
− 0.0010864

(α − 1)3

λ3 = 8.0032775+ 7.79008

α − 1
+ 0.011628

(α − 1)2
− 0.00064035

(α − 1)3

14.
Disk without
center hole,
fixed outer boundary

λ1 = 3.8317
λ2 = 7.0156
λ3 = 10.1735
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TABLE 19-5 TRANSFER AND STIFFNESS MATRICES FOR
CYLINDERS

Notation

E = modulus of elasticity
ν = Poisson’s ratio
ρ∗ = mass per unit volume

T (r) = arbitrary temperature change; in expressions for Fu and Fσ
set T (ξ) = 0 if only constant temperature change is present

pr (r) = arbitrary loading intensity in r direction (F/L3)
G = shear modulus of elasticity
λ = Lamé constant

T1 = constant temperature change
u0, ua, ub = radial displacements at r = 0, a, b
σ0, σa, σb = radial stresses at r = 0, a, b (F/L2)

p0, pa = 2πaσa, pb = 2πbσb = radial forces (stress resultants)
at r = 0, a, b (F/L)

p0
a, p0

b = loading components for stiffness equation at r = a, b (F/L)

Fu = Fu|r=b Fσ = Fσ |r=b
 = angular velocity of rotation that leads to centrifugal loading force

β2 =


ρ∗2/(λ+ 2G) isotropic material
ρ∗2/c11 anisotropic

material [Eq. (4.2)]




Replace  by ω if the
natural frequencies ωi
are of interest.

e1 = e3(a)Jγ (βa)− e2(a)Yγ (βa)

e2(r) =




λ+ 2G

r

[
2(λ+ G)

λ+ 2G
J1(βr)− βr J2(βr)

]
isotropic material

c11

r

[(
γ + c12

c11

)
Jγ (βr)− βr Jγ+1(βr)

]
anisotropic material

e3(r) =




λ+ 2G

r

[
2(λ+ G)

λ+ 2G
Y1(βr)− βrY2(βr)

]
isotropic material

c11

r

[(
γ + c12

c11

)
Yγ (βr)− βrYγ+1(βr)

]
anisotropic material

Jγ (βr) and Yγ (βr) are Bessel functions of order γ of the first and second kind,
respectively.

γ =
{

1 isotropic material
(c22/c11)

1/2 anisotropic material [Eq. (4.2)].
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TABLE 19-5 (continued) TRANSFER AND STIFFNESS MATRICES FOR CYLINDERS

Matrices

Transfer Matrices Stiffness Matrices

Case

zb = Ui za

zb =
[
ub σb 1

]T
za =

[
ua σa 1

]T

Ui =

Uuu Uuσ Fu

Uσu Uσσ Fσ
0 0 1




pi = ki vi − p̄i

pi = [pa pb
]T

vi = [ua ub
]T

p̄i = [p0
a p0

b

]T
ki =

[
k11 k12
k21 k22

]T

1.
Massless
cylinder, with
center hole




1

1− ν
(

Gνb

λa
+ a

2b

)
ν

2(1− ν)λ
b2 − a2

b
Fu

G

1− ν
b2 − a2

ab2

1

1− ν
[

1

2
+ Gν

λ

(a

b

)2
]

Fσ

0 0 1







ua

σa

1




Ui za

k11 = 2π(2Gνβ2
0 + λ)/H0

k12 = k21 = −4πλ(1− ν)β0/H0

k22 = 2π(2Gν + λβ2
0 )/H0

H0 = ν(β2
0 − 1)

β0 = b/a

p0
a = k12Fu

p0
b = −2πbFσ + k22 Fu
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2.
Cylinder with
center hole
and mass

Uuu = 1

e1
[e3(a)Jγ (βb)− e2(a)Yγ (βb)]

Uuσ = 1

e1
[Jγ (βa)Yγ (βb)− Yγ (βa)Jγ (βb)]

Uσu = 1

e1
[e3(a)e2(b)− e2(a)e3(b)]

Uσσ = 1

e1
[Jγ (βa)e3(b)− Yγ (βa)e2(b)]

k11 = 2πa[e3(a)Jγ (βb)− e2(a)Yγ (βb)]/H2
k12 = k21 = −2πae1/H2
k22 = 2πb[e3(b)Jγ (βa)− e2(b)Yγ (βa)]/H2
H2 = Jγ (βa)Yγ (βb)− Yγ (βa)Jγ (βb)
p0

a = k12 Fu p0
b = −2πbFσ + k22 Fu

3.
Massless
cylinder
without
center hole

zb = Ui z0

z0 =
[
u0 σ0 1

]T



0
νb

λ
Fu

0 1 Fσ
0 0 1







u0

σ0
1




Ui z0

pi = ki vi − p̄i pi = [p0 pb
]T p̄i =

[
0 p0

b

]T

vi = [u0 ub
]T

ki =
[

0 0
0 2πλ/ν

]

p0
b = −2πbFσ + (2πλ/ν)Fu

4.
Cylinder
without
center hole
including mass

zb = Ui z0

z0 =
[
u0 σ0 1

]T



0
J1(βb)

(λ+ G)β
Fu

0
λ+ 2G

β(λ+ G)b

[
2(λ+ G)

λ+ 2G
J1(βb)− βbJ2(βb)

]
Fσ

0 0 1







u0

σ0

1




Ui z0

pi = ki vi − p̄i pi = [p0 pb
]T p̄i =

[
0 p0

b

]T

vi = [u0 ub
]T

ki =
[

0 0
0 k22

]

k22 = 2π(λ+ 2G)

J1(βb)

×
[

2(λ+ G)

λ+ 2G
J1(βb)− βbJ2(βb)

]

p0
b = −2πbFσ + k22 Fu
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TABLE 19-5 (continued) TRANSFER AND STIFFNESS MATRICES FOR CYLINDERS

Loading Vectors

Case Loading Vectors

1.
Massless cylinder
with center hole

Fu = b2 − a2

2b

1+ ν
1− ν αT1 + 1+ ν

1− ν
α

b

∫ b
a ξT (ξ) dξ

− ρ
∗2

8

(b2 − a2)2

b

(1+ ν)(1− 2ν)

E(1− ν)
− (1+ ν)(1− 2ν)

E(1− ν)
1

b

∫ b

a
η

[∫ η

a
pr (ξ) dξ dη

]

Fσ = −b2 − a2

2b2

αE

1− ν T1 − E

1− ν
α

b2

∫ b

a
ξT (ξ) dξ

− (b2 − a2)
ρ∗2

4

(
2− 1− 2ν

1− ν
b2 − a2

2b2

)

+ 1− 2ν

1− ν
1

b2

∫ b

a
η

[∫ η

a
pr (ξ) dξ

]
dη −

∫ b

a
pr (ξ) dξ

2.
Cylinder with
center
hole and mass

Fu = −
∫ b

a
pr (ξ)Uuσ (ξ, a) dξ

Fσ = −
∫ b

a
pr (ξ)Uσσ (ξ, a) dξ

Uuσ (ξ, a) and Uσσ (ξ, a) are obtained by replacing b with ξ
in Uuσ and Uσσ of case 2 of the transfer matrices.
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TABLE 19-5 (continued) TRANSFER AND STIFFNESS MATRICES FOR CYLINDERS

Case Loading Vectors

3.
Massless cylinder
without center hole

Fu = (1+ ν)bαT1 + 1+ ν
1− ν

α

b

∫ b

0
ξT (ξ) dξ

+ αbEνT|r=0

2λ(1− ν) −
ρ∗2b3

8

(1+ ν)(1+ 2ν)

E(1− ν)
− (1+ ν)(1− 2ν)

E(1− ν)b
∫ b

0
η

[∫ η

0
pr (ξ) dξ

]
dη

Fσ = − E

1− ν
α

b2

∫ b

0
ξT (ξ) dξ

+ αET|r=0

2(1− ν) −
ρ∗2b2

8

(3− 2ν)

1− ν
+ 1− 2ν

1− ν
1

b2

∫ b

0
η

[∫ η

0
pr (ξ) dξ

]
dη −

∫ b

0
pr (ξ) dξ

4.
Cylinder without
center hole,
including mass

Fu = −
∫ b

0
pr (ξ)Uuσ (ξ) dξ

Fσ = −
∫ b

0
pr (ξ)Uσσ (ξ) dξ

Uuσ (ξ) and Uσσ (ξ) are obtained by replacing b with ξ in
Uuσ and Uσσ of case 4 of the transfer matrices.
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TABLE 19-6 TRANSFER AND STIFFNESS MATRICES FOR SPHERES
Notation

E = modulus of elasticity
ν = Poisson’s ratio
ρ∗ = mass per unit volume

T (r) = arbitrary temperature change; in expressions for Fu and Fσ set T (ξ) = 0
if only a constant temperature change is present.

pr (r) = arbitrary loading intensity in r direction (F/L3)
G = shear modulus of elasticity
λ = Lamé constant

T1 = constant temperature change
 = angular velocity of rotation that leads to centrifugal loading force

u0, ua, ub = radial displacements at r = 0, a, b
σ0, σa, σb = radial stresses at r = 0, a, b

p0, pa = 4πa2σa, pb = 4πb2σb = total radial forces at r = 0, a, b
p0

a, p0
b = loading components for stiffness equation at r = a, b

β2 =


ρ∗2/(λ+ 2G) isotropic material
ρ∗2/c11 anisotropic

material [Eq. (4.2)]




Replace  by ω if the
natural frequencies ωi
are of interest.

e1 = e3(a)
Jγ (βa)√
βa
− e2(a)

Yγ (βa)√
βa

e2(r) =




β(λ+ 2G)

(βr)3/2

[
2(λ+ G)

λ+ 2G
J3/2(βr)− βr J5/2(βr)

]
isotropic material

βc11

(βr)3/2

[(
γ − 1

2
+ 2c12

c11

)
Jγ (βr)− βr Jγ+1(βr)

]
anisotropic
material

e3(r) =




β(λ+ 2G)

(βr)3/2

[
2(λ+ G)

λ+ 2G
Y3/2(βr)− βrY5/2(βr)

]
isotropic material

βc11

(βr)3/2

[(
γ − 1

2
+ 2c12

c11

)
Yγ (βr)− βrYγ+1(βr)

]
anisotropic
material

Jγ (βr) and Yγ (βr) are Bessel functions of order γ of the first and second kind,
respectively.

γ =




3

2
isotropic material

1

2

[
8(c22 + c23 − c12)

c11
+ 1

]1/2

anisotropic material [Eq. (4.2)]
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TABLE 19-6 (continued) TRANSFER AND STIFFNESS MATRICES FOR SPHERES

Matrices

Transfer Matrices Stiffness Matrices

Case

zb = Ui za

zb =
[
ub σb 1

]T
za =

[
ua σa 1

]T
Ui =


Uuu Uuσ Fu

Uσu Uσσ Fσ
0 0 1




pi = ki vi − p̄i

pi = [pa pb
]T

vi = [ua ub
]T

p̄i = [p0
a p0

b

]T
ki =

[
k11 k12
k21 k22

]
Element i

1.
Massless
spherical
segment




4Gb3 + (3λ+ 2G)a3

3(λ+ 2G)ab2

a

3(λ+ 2G)

(
b

a
− a2

b2

)
Fu

4G(3λ+ 2G)(b3 − a3)

3ab3(λ+ 2G)

3λ+ 2G + 4Ga3/b3

3(λ+ 2G)
Fσ

0 0 1







ua

σa

1




Ui za

k11 = 4πa[3λ+ 2(2β3
0 + 1)G]/H0

k21 = k12 = −12πaβ2
0 (λ+ 2G)/H0

k22 = 4πb[4G + β3
0 (2G + 3λ)]/H0

p0
a = k12 Fu

p0
b = −4πb2 Fσ + k22Fu
β0 = b/a
H0 = β3

0 − 1

2.
Spherical
segment
with mass
(with
center hole)

Uuu = 1

e1
√
βb
[e3(a)Jγ (βb)− e2(a)Yγ (βb)]

Uuσ = 1

e1β
√

ab
[Jγ (βa)Yγ (βb)− Yγ (βa)Jγ (βb)]

Uσu = 1

e1
[e3(a)e2(b)− e2(a)e3(b)]

Uσσ = 1

e1
√
βa
[e3(b)Jγ (βa)− e2(b)Yγ (βa)]

k11 = 4πa2√βa[e3(a)Jγ (βb)− e2(a)Yγ (βb)]/H3

k12 = k21 = −4πa2e1β
√

ba/H3
k22 = 4πb2√βb[e3(b)Jγ (βa)− e2(b)Yγ (βa)]/H3
H3 = Jγ (βa)Yγ (βb)− Yγ (βa)Jγ (βb)
p0

a = k12 Fu p0
b = −4πb2 Fσ + k22 Fu
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TABLE 19-6 (continued) TRANSFER AND STIFFNESS MATRICES FOR SPHERES

3.
Massless
spherical
segment
without
center hole

zb = Ui z0

z0 =
[
u0 σ0 1

]T



0
b

3λ+ 2G
Fu

0 1 Fσ
0 0 1



[

u0
σ0
1

]

Ui z0

pi = ki vi − p̄i

pi = [p0 pb
]T vi = [u0 ub

]T
p̄i = [0 p0

b

]T
ki =

[
0 0
0 k22

]

k22 = 4πb(3λ+ 2G)
p0

b = −4πb2Fσ + k22 Fu

4.
Spherical
segment
without
center hole
including
mass

zb = Ui z0

z0 =
[
u0 σ0 1

]T
Uuσ = 3

√
π√

2(3λ+ 2G)

J3/2(βb)

β3/2b1/2

Uσσ = 3(λ+ 2G)
√
π√

2(3λ+ 2G)(βb)3/2

×
[

3λ+ 2G

λ+ 2G
J3/2(βb)− βbJ5/2(βb)

]

Uuu = Uσu = 0

pi = ki vi − p̄i

pi = [p0 pb
]T vi = [u0 ub

]T
p̄i = [0 p0

b

]T
ki =

[
0 0
0 k22

]

k22 = 4πb

[
3λ+ 2G

b
− (λ+ 2G)βb

J3/2(βb)
J5/2(βb)

]

p0
b = −4πb2Fσ + k22 Fu
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TABLE 19-6 (continued) TRANSFER AND STIFFNESS MATRICES FOR SPHERES

Loading Vectors

Case Loading Vectors

1.
Massless spherical
segment

Fu = 3λ+ 2G

3(λ+ 2G)

b3 − a3

b2
αT1

+ 3λ+ 2G

λ+ 2G

α

b2

∫ b

a
ξ2T (ξ) dξ

− 1

b2(λ+ 2G)

∫ b

a
η2
[∫ η

a
pr (ξ) dξ

]
dη

Fσ = −4G(3λ+ 2G)

3(λ+ 2G)

b3 − a3

b3
αT1

− 4G(3λ+ 2G)

λ+ 2G

α

b3

∫ b

a
ξ2T (ξ) dξ

+ 4G

b3(λ+ 2G)

∫ b

a
η2
[∫ η

a
pr (ξ) dξ

]
dη

−
∫ b

a
pr (ξ) dξ

2.
Spherical segment
with mass (with
center hole)

Fu = −
∫ b

a
pr (ξ)Uuσ (ξ, a) dξ

Fσ = −
∫ b

a
pr (ξ)Uσσ (ξ, a) dξ

Uuσ (ξ, a) and Uσσ (ξ, a) are obtained by replacing b with ξ
in Uuσ and Uσσ of case 2 of the transfer matrices.
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TABLE 19-6 (continued) TRANSFER AND STIFFNESS MATRICES FOR SPHERES

Case Loading Vectors

3.
Massless spherical
segment without
center hole

Fu = bαT1 + 3λ+ 2G

λ+ 2G

α

b2

∫ b

0
ξ2T (ξ) dξ

+ 4Gαb

3(λ+ 2G)
Tr=0

+ 1

3(λ+ 2G)

(
1

b2

∫ b

0
pr ξ

3 dξ − b
∫ b

0
pr dξ

)

Fσ = −4G(3λ+ 2G)

λ+ 2G

α

b3

∫ b

0
ξ2T (ξ) dξ

+ 4G(3λ+ 2G)α

3(λ+ 2G)
Tr=0

− 1

3(λ+ 2G)

[
4G

b3

∫ b

0
pr ξ

3 dξ

+ (3λ+ 2G)
∫ b

0
pr dξ

]

4.
Spherical segment
without center hole,
including mass

Fu = −
∫ b

0
pr (ξ)Uuσ (ξ) dξ

Fσ = −
∫ b

0
pr (ξ)Uσσ (ξ) dξ

Uuσ (ξ) and Uσσ (ξ) are obtained by replacing b with ξ
in Uuσ and Uσσ of case 4 of the transfer matrices.
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TABLE 19-7 TRANSFER AND STIFFNESS MATRICES FOR DISKS
Notation

E = modulus of elasticity
ν = Poisson’s ratio
ρ∗ = mass per unit volume

T (r) = arbitrary temperature change; in expressions for Fu and F P , set T (ξ) = 0
if only a constant temperature change is present

pr (r) = arbitrary loading intensity in r direction (F/L2)
G = shear modulus of elasticity
λ = Lamé constant

T1 = constant temperature change
 = angular velocity of rotation that leads

to centrifugal loading force
h = thickness

u0, ua, ub = radial displacements at r = 0, a, b
P0, Pa, Pb = radial forces per unit length at r = 0, a, b

p0, pa = 2πa Pa, pb = 2πbPb = total radial forces at r = 0, a, b
p0

a, p0
b = loading components for stiffness equation at r = a, b

β2 = ρ∗2(1− ν2)/E
e1 = e3(a)J1(βa)− e2(a)Y1(βa)

e2(r) = 1

r

Eh

1− ν2
[(1+ ν)J1(βr)− βr J2(βr)]

e3(r) = 1

r

Eh

1− ν2
[(1+ ν)Y1(βr)− βrY2(βr)]

J1(βr) and J2(βr) are Bessel functions of the first kind of order 1 and 2, respectively.
Y1(βr) and Y2(βr) are Bessel functions of the second kind of order 1 and 2, respectively.
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TABLE 19-7 (continued) TRANSFER AND STIFFNESS MATRICES FOR DISKS

Matrices

Transfer Matrices Stiffness matrices

Case

zb = Ui za

zb =
[
ub Pb 1

]T
za =

[
ua Pa 1

]T

Ui =

Uuu Uu P Fu

UPu UP P F P
0 0 1




pi = ki vi − p̄i

pi = [pa pb
]T

vi = [ua ub
]T

p̄i = [p0
a p0

b

]T
ki =

[
k11 k12
k21 k22

]

Element i

1.
Annular element
without mass




b

a

[
1− 1+ ν

2

b2 − a2

b2

]
1

Eh

1− ν2

2

b2 − a2

b
Fu

Eh

2ab2
(b2 − a2) 1− 1− ν

2

b2 − a2

b2
F P

0 0 1




k11 = 2πEh[β2
0(1− ν)+ (1+ ν)]/H

k12 = k21 = −4πEhβ0/H
k22 = 2π[β2

0 (1+ ν)+ (1− ν)]/H
H = (1− ν2)(β2

0 − 1)
p0

a = k12 Fu

p0
b = −2πbF P + k22 Fu
β0 = b/a
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2.
Annular element
with mass

Uuu = 1

e1
[e3(a)J1(βb)− e2(a)Y1(βb)]

Uu P = 1

e1
[J1(βa)Y1(βb)− Y1(βa)J1(βb)]

UPu = 1

e1
[e3(a)e2(b)− e2(a)e3(b)]

UP P = 1

e1
[J1(βa)e3(b)− Y1(βa)e2(b)]

k11 = 2πa[e3(a)J1(βb)− e2(a)Y1(βb)]/H4
k12 = k21 = −2πae1/H4
k22 = 2πb[J1(βa)e3(b)− Y1(βa)e2(b)]/H4
H4 = J1(βa)Y1(βb)− Y1(βa)J1(βb)
p0

a = k12 Fu p0
b = −2πbF P + k22 Fu

3.
Disk of variable
thickness

h = hk/rn

hk is a reference
thickness

hk = haan

Hyperbolic profile

n1 = n

2
+
√

n2

4
+ νn + 1

n2 = n

2
−
√

n2

4
+ νn + 1

Uuu = 1

n2 − n1

[
(n2 + ν)

(
b

a

)n1

− (n1 + ν)
(

b

a

)n2
]

Uu P = bn(1− ν2)a

hk E(n2 − n1)

[(a

b

)n1 −
(a

b

)n2
]

UPu = Ehk(n1 + ν)(n2 + ν)
(1− ν2)(bn+1)(n2 − n1)

[(
b

a

)n1

−
(

b

a

)n2
]

UP P = a

b

1

n2 − n1

[
(n2 + ν)

(a

b

)n1 − (n1 + ν)
(a

b

)n2
]

k11 = 2πahk E[(n2 + ν)βn1
0 + (n1 + ν)βn2

0 ]/H4
k21 = k12 = −2πahk E(n2 − n1)/H4

k22 = 2πbhk Eβ−1
0 [(n2 + ν)β−n1

0
− (n1 + ν)β−n2

0 ]/H4

H4 = hn(1− ν2)a(β−n1
0 − β−n2

0 )

p0
a = k12 Fu

p0
b = −2πbF P + k22 Fu
β0 = b/a

TA
B

L
E

19-7
Tran

sfer
an

d
S

tiffn
ess

M
atrices

fo
r

D
isks

1177



TABLE 19-7 (continued) TRANSFER AND STIFFNESS MATRICES FOR DISKS

Case Transfer Matrices Stiffness Matrices

4.
Massless disk
element without
center hole

zb = Ui z0

z0 =
[
u0 P0 1

]T



0
b

Eh
(1− ν) Fu

0 1 F P
0 0 0






u0

P0
1




Ui z0

pi = ki vi − p̄i

pi = [p0 pb
]T vi = [u0 ub

]T
p̄i = [0 p0

b

]T
ki =

[
0 0
0 k22

]

k22 = 2πEh/(1− ν)
p0

b = −2πbF P + k22Fu

5.
Disk element
without center
hole, including
mass

zb = Ui z0

z0 =
[
u0 P0 1

]T



0
2J1(βb)

βEh
(1− ν) Fu

0
2

β(1+ ν)b [(1+ ν)J1(βb)− βbJ2(βb)] F P

0 0 1







u0

P0

1




Ui z0

pi = ki vi − p̄i

pi = [p0 pb
]T vi = [u0 ub

]T
p̄i = [0 p0

b

]T ki =
[

0 0
0 k22

]

k22 = 2πEh{[(1+ ν)J1(βb)
− βbJ2(βb)]/[(1− ν2)J1(βb)]}

p0
b = −2πbF P + k22Fu
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TABLE 19-7 (continued) TRANSFER AND STIFFNESS MATRICES FOR DISKS

Loading Vectors

Case Loading Vectors

1.
Annular element
without mass

Fu = b2 − a2

2b
(1+ ν)αT1 + 1+ ν

b
α
∫ b

a ξT (ξ) dξ

− (b
2 − a2)2

b

1− ν2

8

ρ∗2

E

− 1− ν2

Eh

∫ b

a

[
η

∫ η

a
pr (ξ) dξ

]
dη

F P = −h(b2 − a2)

2b2
EαT1 − hEα

b2

∫ b

a
ξT (ξ) dξ

− (b2 − a2)
ρ∗2h

4

[
(1+ ν)+ 1− ν

2

(b2 + a2)

b2

]

+ 1− ν
b2

∫ b

a
η

[∫ η

a
pr (ξ) dξ

]
dη −

∫ b

a
pr (ξ) dξ

2.
Annular element
with mass

Fu = −
∫ b

a
pr (ξ)Uu P (ξ, a) dξ

F P = −
∫ b

a
pr (ξ)UP P (ξ, a) dξ

Uu P (ξ, a) and UP P (ξ, a) are obtained by replacing b with ξ
in Uu P and UP P of case 2 of the transfer matrices.

3.
Disk of variable
thickness

h = hk/rn

hk is a reference
thickness

hk = haan

Hyberbolic
profile

Fu = b32ρ∗
E

[
ν2 − 1

8− (3+ ν)n

]

×
{

1− 1

n2 − n1

[
(n2 − 3)

(
b

a

)n1−3
− (n1 − 3)

(
b

a

)n2−3
]}

F P = −ρ
∗2hkb2−n

8− (3+ ν)n
{
(3+ ν)− 1

n2 − n1

×
[
(n1 + ν)(n2 − 3)

(
b

a

)n1−3
− (n2 + ν)(n1 − 3)

(
b

a

)n2−3
]}
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TABLE 19-7 (continued) TRANSFER AND STIFFNESS MATRICES FOR DISKS

Vectors

Case Loading Vectors

4.
Massless disk
element without
center hole

Fu = bαT1 + (1+ ν)α
b

∫ b

0
ξT (ξ) dξ

+ bα
1− ν

2
T |r=0 − (1− ν2)

ρ∗2b3

8E

− 1− ν2

Ehb

∫ b

0

[
η

∫ η

0
pr (ξ) dξ

]
dη

F P = −hEα

b2

∫ b

0
ξT (ξ) dξ + hα

2
ET

∣∣∣∣
r=0

− (3+ ν)ρ
∗h2b2

8
+ 1− ν

b2

∫ b

0
r

[∫ b

0
pr (r) dr

]
dr

−
∫ b

0
pr (r) dr

5.
Disk element
without center
hole, including
mass

Fu = −
∫ b

0
pr (ξ)Uu P(ξ) dξ

F P = −
∫ b

0
pr (ξ)UP P (ξ) dξ

Uu P (ξ) and UP P (ξ) are obtained by replacing b with ξ
in Uu P and UP P of case 5 of the transfer matrices.
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TABLE 19-8 POINT MATRICES OF CYLINDERS, SPHERES, AND
DISKS

Notation

ρ∗ = mass per unit volume
ω = natural frequency
a = radial coordinate of point
h = thickness of a disk

Mi = mass per unit circumferential length or area

For cylinders: Mi = (a+)2 − (a−)2
2a

ρ∗ = �a ρ∗ and pa = 2πaσa

For spheres: Mi = (a+)3 − (a−)3
3a2

ρ∗ = �a ρ∗ and pa = 4πa2σa

For disks: Mi = (a+)2 − (a−)2
2a

hρ∗ = �a hρ∗ and pa = 2πa Pa

Stiffness Matrix and
Transfer Matrices Loading Vectora

Case z+a = Ui z−a pa = kaua − p0
a

1.
Pressure (radial force
per unit circumferential
length or area)
applied at r = a

CYLINDERS:
1 0 0

0 1 −p

0 0 1




ua
σa

1




Ui za

SPHERES:
1 0 0

0 1 −p

0 0 1




ua
σa

1




Ui za

DISKS:
1 0 0

0 1 −p

0 0 1




ua

Pa

1




Ui za

p0
a = −p

Often, these pressures are
incorporated in the
displacement method
solution as nodal loading.

TABLE 19-8 Point Matrices of Cylinders, Spheres, and Disks 1181



TABLE 19-8 (continued) POINT MATRICES OF CYLINDERS, SPHERES, AND DISKS

Stiffness and Mass Matrices
Case z+a = Ui z−a pa = (ka − ω2ma)ua

2.
Concentrated mass
and elastic support

�a = a+ − a−

For disks

Elastic support k

CYLINDERS:


1 0 0
−Miω

2 1 0

0 0 1




ua
σa

1




Ui za

ma = Mi

The lumped mass can be
incorporated as a nodal
condition.

SPHERES:


1 0 0
−Miω

2 1 0

0 0 1




ua
σa

1




Ui za

ma = Mi

DISKS:


1 0 0
k − Miω

2 1 0

0 0 1




ua

Pa

1




Ui za

ma = Mi , ka = k

aTraditionally stiffness and mass matrices for case 1 are implemented as nodal conditions.
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TABLE 19-9 MASS MATRICES FOR CYLINDERS, SPHERES, AND
DISKS

Notation[
m11 m12

m21 m22

] [
ua

ub

]

mi vi

ρ∗ = mass per unit volume β0 = b/a h = thickness of disk

Case Mass Matrices

1.
Thick cylinder with center
hole (consistent mass)

m11 = πa2ρ∗[β2
0 (4β

2
0 lnβ0 − 3β2

0 + 4)

− 1]/2(β2
0 − 1)2

m12 = m21 = πa2ρ∗β0[β4
0 − 4β2

0 lnβ0

− 1]/2(β2
0 − 1)2

m22 = πa2ρ∗β2
0 [β4

0 − 4β2
0 + 4 lnβ0 + 3]/2(β2

0 − 1)2

2.
Thick sphere element
(consistent mass)

m11 = 4πρ∗a3[5β4
0 + β3

0 − 3β2
0 − 2β0 − 1]/5[β4

0

+ 2β3
0 + 3β2

0 + 2β0 + 1]
m12 = m21 = 6πρ∗a3β2

0 [β3
0 + 2β2

0 − 2β0 − 3]/5B

m22 = 4πρ∗a3β3
0 [β4

0 + 2β3
0 + 3β2

0 − β0 − 5]/5B

B = β4
0 + 2β3

0 + 3β2
0 + 2β0 + 1

3.
Disk element with center
hole (consistent mass)

m11 = πhρ∗a2[β2
0 (4β

2
0 lnβ0 − 3β2

0 + 4)

− 1]/2(β2
0 − 1)2

m12 = m21 = πhρ∗a2β0[β4
0 − 4β2

0 lnβ0

− 1]/2(β2
0 − 1)2

m22 = πhρ∗a2β2
0 [β4

0 − 4β2
0 + 4 lnβ0

+ 3]/2(β2
0 − 1)2

4.
Thick cylinder without
center hole
(lumped mass)

[
0 0

0 1
2πb2ρ∗

] [
u0

ub

]

mi vi
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TABLE 19-9 (continued) MASS MATRICES FOR CYLINDERS, SPHERES, AND DISKS

Case Mass Matrices

5.
Sphere (lumped mass)

[
0 0
0 4

5πb3ρ∗
][

u0
ub

]

mi vi

6.
Disk (lumped mass)

[
0 0
0 1

2πb2hρ∗
][

u0
ub

]

mi vi
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A shell is a three-dimensional body bounded by two curved surfaces. Most of the
formulas here apply to shells of revolution, a special but commonly occurring shell.
To generate a thin shell of revolution, a plane that passes longitudinally through a
polar axis is rotated about that axis; two lines in the plane that lie close to each other
and are called generators of the shell form the inner and outer surfaces of the shell
as the generating plane is rotated.

Formulas for membrane shells and shells with bending are provided in this chap-
ter. In the case of a membrane shell, the shell’s middle surface is free of bending
and twisting moments as well as transverse shear forces. In many shell problems
the presence of moments and shear forces is necessary to accept the type of loading
and to satisfy the shell boundary conditions. This need has led to bending shell the-
ory, which is a more comprehensive theory. When the term bending is used, it often
applies to a shell with both membrane and bending deformations.

20.1 DEFINITIONS

The middle surface of a shell is the surface that is everywhere equidistant between
the inner and outer surfaces. The mechanical state of the shell is specified by the
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1186 THIN SHELLS

Figure 20-1: Coordinates specifying points on a shell of revolution.

values of certain stress resultants that act on the middle surface. A meridian of the
shell is formed by the intersection of the generating plane and the middle surface. A
parallel (azimuth) of the shell is the intersection of a plane perpendicular to the polar
axis with the middle surface. The principal radii of curvature of the middle surface
are the radii of curvature of the meridians and parallels Rφ and Rθ , respectively. The
coordinates that specify a point on the surface of the shell are shown in Fig. 20-1.
The radius Rθ is the distance to the polar axis along the shell normal at the surface
point. The angle θ is the angle between any arbitrary reference line and the radius of
the parallel that passes through the point. The angle φ is the angle between the polar
axis and Rφ . An additional coordinate system is defined in the shell surface; x is
tangent to the meridian, y is tangent to the parallel, and z coincides with the surface
normal. The positive directions of the x, y, z coordinates are shown in Fig. 20-1.

Notation

The units for most of the definitions are given in parentheses, using L for length, F
for force, M for mass, and T for time.

B Extensional rigidity of shell surface (F/L)

D Flexural rigidity of shell surface (F L)

E Young’s modulus (F/L2)

f Natural frequency of a shell, = ω/2π (Hz)

h Thickness of shell wall (L)

H Horizontal force per unit length on a shell edge (F/L)

L , � Shell length (L)

m Number of longitudinal nodes in a given mode of vibration

M Bending moment per unit length on a shell edge (F L/L)



20.1 DEFINITIONS 1187

Mx Bending moment per unit length on shell edge, in plane perpendicular
to x axis (F L/L)

Mθ Bending moment per unit length on meridional planes (F L/L)
Mφ Bending moment per unit length on parallel planes (F L/L); the

moments and forces per unit length for shells are referred to as
stress resultants; in the case of Mφ , this stress resultant is defined as

Mφ =
∫ h/2
−h/2 σφ z dz.

n Number of circumferential nodes in given mode of vibration
Nx , Ny Normal forces in x and y directions (F/L)

Nxy In-plane shear force per unit length (F/L)
Nθ Normal force per unit length in azimuthal (parallel) direction, which

is normal to the meridional direction (F/L)
Nφ Normal force per unit length in the meridional direction (F/L); this

stress resultant is defined as Nφ =
∫ h/2
−h/2 σφ dz; the other forces per

unit length are defined similarly
Nφθ , Nθφ In-plane shear forces per unit length (F/L)

px , py, pz Components of loads applied to shell surface (F/L2)
p1 Applied uniform load on an area (F/L2)
p2 Uniform vertical load on a projected area (F/L2)
P Applied axial force (F)
q Dead weight of shell (F/L2)
Q Transverse shear force per unit length on a parallel-plane shell edge

supplied by shear diagram
Qθ Transverse shear force per unit length on meridional planes (F/L)
Qφ Transverse shear force per unit length on parallel planes (F/L)

r Radius of a parallel circle, = Rθ sinφ (L)
R Radius of a circular cylinder or sphere (L)

Rθ , θ, φ Coordinates that locate a point on middle surface of a shell
Rφ Radius of curvature of meridian at a point (L)

s, ξ Nondimensional length coordinate of a cylindrical or conical shell,
s = x/L

t Time (T )
u, v,w Displacements of a point in middle surface in x, y, z directions, re-

spectively (L)
W Lantern loading, load per unit length on shell edge (F/L)

x, y, z Coordinate system in surface of a shell
β Rotation of tangent to meridian during deflection (degrees)

R Displacement in direction of radius of a parallel (L)
εφ, εθ Strains in meridional and parallel directions in middle surface (L/L)

κ = h2/12R2
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ν Poisson’s ratio
ρ∗ Mass per unit volume of a shell (FT 2/L4)
ρw Specific weight of liquid (F/L3)
σi Component of normal stress in i direction (F/L2)

σφ, σθ Normal stresses in meridional and azimuthal (parallel) directions
(F/L2)

ω Natural (circular) frequency of a shell (rad/T )
�2 Frequency parameter, = ρ∗(1− ν2)R2ω2/E

�p Frequency parameter for cylindrical shells

p =




a for axial modes

t for torsional modes

at for coupled axial–radial modes

rt for coupled radial–torsional modes

Subscripts

C Cylinder
D Dome

20.2 MEMBRANE SHELLS OF REVOLUTION

The membrane hypothesis produces the simplest and most readily solvable system
of shell equations. If the wall of the shell is thin and there are no abrupt changes in
thickness, slope, or curvature and if the loading is uniformly distributed or smoothly
varying and symmetric, the bending responses can be very small and can be ne-
glected. Hence it can be assumed that the shell’s middle surface is free of bending
moments, twisting moments, and transverse shear forces. The stress resultants that
are assumed to be present are the in-plane normal and shear forces per unit length
of shell surface. These membrane forces are depicted in Fig. 20-2. Because there

Figure 20-2: Membrane forces acting on a shell element.
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are four stress resultants to be found and four equilibrium conditions to satisfy, the
membrane shell problem is statically determinate. Since the membrane forces cannot
produce moments about the x and y axes, the conditions

∑
Mx = 0 and

∑
My = 0

are automatically satisfied. The remaining equilibrium equations are
∑

Mz = 0,
∑

Fx =
∑

Fy =
∑

Fz = 0

Applying the equilibrium conditions to a shell element produces the four equa-
tions for the static deformation of a membrane shell [20.1]:

Nφθ = Nθφ (20.1a)

∂

∂φ
(NφRθ sinφ)+ ∂Nφθ

∂θ
Rφ − Nθ Rφ cosφ + px RφRθ sinφ = 0 (20.1b)

∂Nθ
∂θ

Rφ + ∂

∂φ
(Nφθ Rθ sinφ)+ Nφθ Rφ cosφ + py RφRθ sinφ = 0 (20.1c)

NφRθ + Nθ Rφ + pz RφRθ = 0 (20.1d)

Because the bending stresses are zero, the normal stresses are simply

σφ = Nφ/h (20.2)

σθ = Nθ /h (20.3)

From considerations of the nature of the deformation, Hooke’s law, and the definition
of a stress resultant, the equations for the strains in terms of stress resultants are found
to be

εφ = (Nφ − νNθ )/Eh (20.4a)

εθ = (Nθ − νNφ)/Eh (20.4b)

The membrane theory of shells is not strictly applicable to cases in which bound-
ary conditions and loading conditions cannot be countered by in-plane forces. See
Figs. 20-3 and 20-4. Figure 20-4 shows a situation in which the membrane theory
is inapplicable; however, approximate methods are available for treating such cases
without invoking the full bending theory of shells. Also, in most cases in which

Figure 20-3: Boundary condition that membrane theory satisfies.
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Figure 20-4: Loading condition incompatible with membrane theory.

significant bending stresses occur, the stresses are confined to small regions of the
shell near the boundaries. Tables 20-1 to 20-5 present formulas for the stresses and
deformation for membrane shells with several types of loads.

Example 20.1 Membrane Analysis of a Hemispherical Shell Subjected to a
Uniformly Distributed Load Suppose that a uniformly distributed vertical load
(case 2, Table 20-1, part A) p2 = 40 psi acts on a hemispherical dome. Compute
the maximum values of the membrane forces, the corresponding shell stresses, and
the displacement at the base. The shell is constructed of steel with h = 2 in. and
R = 30 ft.

Take a differential area dA on the middle surface of the shell. The projection of
dA on the horizontal plane is dA cosφ. The total load on this differential area is then

P = p2 dA cosφ (1)

The load on the unit area of the shell surface is

P/dA = p2 cosφ (2)

The components of this load in the x , y, and z directions are

px = p2 cosφ sinφ, py = 0, pz = p2 cos2 φ (3)

This confirms case 2 of Table 20-1, part A. From case 2 of Table 20-1, part B,

Nφ = − 1
2 p2 R, Nθ = −( 1

2 p2 R) cos 2φ (4)

At φ = 90◦,

Nφ = − 1
2 (p2 R) = −Nθ,max = − 1

2 [(40)(30)× 12] = −7200 lb/in.

σφ = −σθ,max = Nθ,max

h
= −7200 lb/in.

2 in.
= −3600 lb/in2

(5)
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At the base of the shell,

R(φ = 90◦) = R2 p2

Eh

1+ ν
2
= (30× 12)2(40)(1+ 0.3)

(3× 107)(2)(2)
= 0.05616 in.

β(φ = 90◦) = 0

(6)

Example 20.2 Membrane Analysis of a Cylinder Filled with Water A cylin-
der 20 ft high with a radius of 3 ft is filled with water. The specific weight ρw of
water is 62.4 lb/ft3. The other constants are E = 3× 107 psi and h = 2 in. Compute
the stress resultants and displacement at the base.

The load of this problem corresponds to case 1 of Table 20-3 with λp = 0. The
horizontal water pressure is distributed linearly along the x direction with pz =
−p0(1− ξ), ξ = x/L, and

p0 = Lρw = (20 ft)(62.4 lb/ft3) = 1248 lb/ft2 = 8.6667 lb/in2

where L is the height of the cylinder. Then at the base (ξ = 0)

Nθ = p0 R = (1248 lb/ft2)(3 ft) = 3744 lb/ft = 312 lb/in.

w = − p0 R2

Eh
= − 1

(3× 107)(2)

[
(8.6667)(3× 12)2

]
= −1.872× 10−4 in.

The displacement u is zero at the base where ξ = 0. The azimuthal normal stress at
ξ = 0 is

σθ = Nθ /h = 312/2 = 156 lb/in2

20.3 SHELLS OF REVOLUTION WITH BENDING

There are a variety of formulations for shells of revolution with bending. Usually, 10
stress resultants are considered to act on a shell element. Membrane stress resultants
remain as shown in Fig. 20-2, while non–membrane stress resultants are depicted
in Fig. 20-5. The same system of coordinates is used for the bending theory as was
used for the membrane shells. The forces shown in Fig. 20-5 are positive. Because
there are 10 stress resultants and only six equilibrium equations, in contrast to the
membrane shell, the problem of the bending of a shell is statically indeterminate.

If the loads are axisymmetric, the response quantities do not vary with the θ coor-
dinate. In addition, axial symmetry dictates that the twisting moments, in-plane shear
forces, and the transverse shear forces on the meridional planes are zero:

Mθφ = Mφθ = 0, Nφθ = Nθφ = 0, Qθ = 0 (20.5)
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Figure 20-5: Stress resultants for bending theory of shells: (a) transverse shear forces per
unit length; (b) bending and twisting moments per unit length. Positive forces and moments
are shown.

Application of the laws of equilibrium to a differential shell element yields the fol-
lowing three equations in five unknowns [20.1]:

d

dφ
(NφRθ sinφ)− Nθ Rφ cosφ − QφRθ sinφ + px RφRθ sinφ = 0 (20.6a)

NφRθ sinφ + Nθ Rφ sinφ + d

dφ
(QφRθ sinφ)+ pz RφRθ sinφ = 0 (20.6b)

d

dφ
(MφRθ sinφ)− QφRφRθ sinφ + Mθ Rφ cosφ = 0 (20.6c)

By considering the deformation of the shell, three additional variables (εθ , εφ, β) are
introduced and five additional equations are obtained [20.1]:

β = (εφ − εθ ) cotφ − Rθ
Rφ

dεθ
dφ

(20.7a)

Nφ = B(εφ + νεθ ) (20.7b)

Nθ = B(εθ + νεφ) (20.7c)

Mφ = −D(χφ + νχθ ) (20.7d)

Mθ = D(χθ + νχφ) (20.7e)
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in which

χφ = 1

Rφ

dβ

dφ
(20.7f)

χθ = β cotφ

Rθ
(20.7g)

B = Eh

1− ν2
(extensional rigidity) (20.7h)

D = Eh3

12(1− ν2)
(flexural rigidity) (20.7i)

This final set of eight equations in eight unknowns forms the equations of motion
for the static axisymmetric deformation of a bending shell. The normal stresses are
given in terms of the stress resultants as

σφ = Nφ
h
+ Mφ

h3/12
z (20.8a)

σθ = Nθ
h
− Mθ

h3/12
z (20.8b)

where z is measured from the middle surface.
Although the eight relations of Eqs. (20.6) and (20.7) are sufficient to solve the

problem of a shell with bending, the process of solution is so complicated that ap-
proximate methods are commonly employed. One approximate technique, which is
to be utilized for part of this chapter, is the force method [20.1, 20.2]. In this method,
the edge forces on a shell are treated separately from the applied loadings (e.g., dead
weight and normal pressure). Begin with a membrane analysis of the shell with the
applied loads (without the boundary forces) and the membrane boundary conditions.
This is followed by a bending analysis with the edge forces as the loads. The bound-
ary conditions for this analysis are consistent with the assumptions of the membrane
theory (i.e., the boundaries are free to displace and rotate in the manner necessary to
satisfy the membrane hypothesis). The edge displacements of these two analyses are
calculated, with the displacements of the bending analysis expressed in terms of the
unknown edge forces. Neither of the displacements from these two analyses is com-
patible with the actual boundary conditions of the shell, so they are superimposed
to satisfy the actual displacement boundary conditions. The resulting relationships
are conditions that can be solved for the heretofore unknown edge forces. Once the
edge forces are determined, the complete solution of the shell can be obtained by the
superposition of the membrane and bending analysis results.

For a circular cylindrical shell with axially symmetric loading, the governing dif-
ferential equations are the same as those for a beam on an elastic foundation of
modulus k and with axial force P [Eq. (11.7)]. Hence, simple cylinder problems can
be solved using the beam formulas. To do this, substitute the shell parameters
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Beam on an Elastic Foundation Circular Cylindrical Shell
with Axial Force with Axisymmetric Load

(Table 11-3 with αs/G A = 0) D = Eh2/[12(1− ν2)]

w(L) w(L)
θ (rad) slope (rad)
M(F L) M(F L/L)
V (F) V (F/L)
E I (F L2) D(F L)
P(F) Nx (F/L)
k(F/L2) Eh/R2(F/L3)

p(F/L) p1 − νNx/R(F/L2)

Figure 20-6: Equivalence of a circular cylindrical shell with an axisymmetric load and a
beam on an elastic foundation.

Eh

R2
and D = Eh3

12(1− ν2)
(20.9)

in Table 11-3 for k and E I , respectively, and set αs/G A = 0. Here R is the radius
of the cylinder and h is the wall thickness. The deflection, slope, shear force, and
moments of the cylinder along the x axis are given in Table 11-3, part A, with load-
ings of Table 11-3, part B, and the boundary conditions of Table 11-3, part C. This
equivalence is illustrated in Fig. 20-6.

Responses for bending shells of revolution, which are subject to edge loads, are
listed in Tables 20-6 to 20-8. Definitions of the Fi , Fi (ξ) factors are contained in
Table 20-9.

Example 20.3 Hemispherical Shell under Uniform External Pressure The
hemispherical shell shown in Fig. 20-7a is subjected to a uniform radial pressure of
100 psi. For this shell, the edges are built in, R = 10 ft, h = 3.0 in., E = 3×107 psi,
and ν = 0.3. Use the force method to compute the responses at φ = 15◦.

The shell can be treated (Fig. 20-7b) as the superposition of a simply supported
membrane shell under uniform normal pressure of case 1 of Table 20-1, part B, and a
shell with bending deformation with forces and moments at the lower edge of cases
1 and 2 of Table 20-6. The first step of the computation is to determine the reaction
forces H and M. These can be determined from the geometric conditions that the
displacement and rotation at the lower edges are zero:
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Figure 20-7: Hemispherical shell with external pressure: (a) hemisphere under uniform ra-
dial pressure; (b) superposition of solutions.

R = Rm +Rb = 0 (1)

β = βm + βb = 0 (2)

where the superscripts m and b stand for membrane and bending, respectively. From
case 1 of Table 20-1, part B, and cases 1 and 2 of Table 20-6, at φ = 90◦,

Rm = − p1

2

R2

Eh
(1− ν) (3)

Rb = −2Rk

Eh
H + 2k2

Eh
M (4)

βm = 0 (5)

βb = 2k2

Eh
H − 4k3

Eh R
M (6)

Substitute Eqs. (3)–(6) into (1) and (2) to form

R = − p1

2

R2

Eh
(1− ν)− 2Rk

Eh
H + 2k2

Eh
M = 0 (7)

β = 2k2

Eh
H − 4k3

Eh R
M = 0 (8)

Solve these equations to find that

M = −p1 R2(1− ν)/4k2 (9)

H = 2k M/R (10)

With M and H known, the responses can be found from Tables 20-1 and 20-6 with
φ = 15◦ and α = 1

2π − φ = 75◦ as

R|φ=15◦ = Rm |φ=15◦ +Rb|φ=15◦

= − p1

2

R2

Eh
(1− ν) sin 15◦
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− H

Eh
Re−kα

[
2k sin 15◦ cos kα −√2 ν cos 15◦ cos

(
kα + 1

4
π

)]

+ 2Mk

Eh
e−kα

[√
2 k sin 15◦ cos

(
kα + 1

4
π

)
+ ν cos 15◦ sin kα

]

= −1.449× 10−3 in. (11)

β|φ=15◦ = βm + βb

= 0+ H

Eh

[
2
√

2 k2e−kα sin(kα + 1

4
π)

]
− M

Eh

(
4k3

R
e−kα cos kα

)

= 1.701× 10−8 rad (12)

Qφ|φ=15◦ =
√

2 He−kα cos

(
kα + 1

4
π

)
+ 2k M

R
e−kα sin kα

= 4.2791× 10−3 lb/in. (13)

N m
φ |φ=15◦ = N m

θ |φ=15◦ = − 1
2 Rp1 = −6000 lb/in.

N b
φ |φ=15◦ = −Qφ cot 15◦ = −1.59× 10−2 lb/in.

N b
θ |φ=15◦ = −2Hke−kα cos kα + 2

√
2 M

k2

R
e−kα cos(kα + 1

4π)

= −0.1289 lb/in.

Nφ|φ=15◦ = N m
φ |φ=15◦ + N b

φ |φ=15◦ = −6000.0159 lb/in. (14)

Nθ |φ=15◦ = N m
θ |φ=15◦ + N b

θ |φ=15◦ = −6000.1289 lb/in. (15)

Mφ = −H
R

k
e−kα sin kα +√2 Me−kα sin

(
kα + 1

4
π

)

= −5.39× 10−2 lb-in./in. (16)

Mθ |φ=15◦ = H
R

k2
√

2
e−kα cot 15◦ sin

(
kα + 1

4
π

)
+ νMφ

+ M

k
e−kα cot 15◦ cos kα

= 5.21× 10−2 lb-in./in. (17)

The stresses at the outer surface (z = −0.5h) are [Eq. (20.8)]

σφ |φ=15◦ = Nφ
h
+ Mφ

h3/12
z = −1999.96 psi (18)

σθ |φ=15◦ = Nθ
h
− Mθ

h3/12
z = −2000.0078 psi (19)
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It can be seen that the internal forces due to bending are relatively small, so that the
effect of bending for this load on this shell can be neglected.

20.4 MULTIPLE-SEGMENT SHELLS OF REVOLUTION

Shells can often be modeled as a succession of simple shell elements. A cylindrical
shell with spherical bulkheads is an example. Multiple-segment shells of revolution
are to be considered here.

The force method, which was discussed in Section 20.3, can be applied to
multiple-segment shells. They are analyzed by combining the relations that must
apply at the junctions of the shell with the knowledge of the influence coefficients
that relate the deformations at the junctions with the forces and moments that act on
the shell edges. This method involves the following steps:

1. Divide the shell into separate segments and solve the membrane problem for
the applied loading for each segment to obtain the displacements and rotations
at the connecting lines for each pair of segments. The calculated displace-
ments and rotations are not compatible for adjacent segments at the common
connection lines. Hence correction forces (usually, H and M) at these edges
are needed to hold them together.

2. Calculate the displacements and rotations at the common connection lines due
to unit correction forces (H = 1 and M = 1) only.

3. For each segment establish relationships between the actual displacements and
rotations at the edges and the correction forces and membrane responses. For
example, for the segment in Fig. 20-8, the displacements and rotations are



β1

R1

β2

R2


 = f




M1

H1

M2

H2


+




β0
1

R0
1

β0
2

R0
2


 (20.10)

Figure 20-8: Single segment of a multiple-segment shell: (a) shell segment for membrane
analysis to find β0

i , R0
i , i = 1, 2, in Eq. (20.10); (b) shell segment for bending analysis to

find the elements in Eq. (20.11).
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where βi , Ri , i = 1, 2, are actual rotations and displacements at edges 1
and 2; Hi , Mi , i = 1, 2, are correction forces and moments at edges 1 and 2;
β0

i , R0
i , i = 1, 2, are rotations and displacements at edges 1 and 2 from the

membrane analysis of the shell segment with applied loading; and

f =




β
M1
1 β

H1
1 β

M2
1 β

H2
1

RM1
1 RH1

1 RM2
1 RH2

1

β
M1
2 β

H1
2 β

M2
2 β

H2
2

RM1
2 RH1

2 RM2
2 RH2

2


 (20.11)

is the flexibility matrix. The elements in the flexibility matrix are the deforma-
tions at edge 1 or 2 (as indicated by the subscripts) due to the unit loadings
M = 1 and H = 1 at these edges. For example, βM2

1 is the rotation at edge 1
due to the unit moment at edge 2. These elements are also called influence or
flexibility coefficients.

4. Establish the equilibrium and compatibility equations at each connection line.
5. Use the conditions in step 4 to form a set of algebraic equations with as many

unknowns (deformations and correction forces) as there are equations. To do
so, utilize the equations of step 3 [Eq. (20.10)] for the array of segments com-
posing the shell.

6. Solve the equations to find the unknowns and find the responses at the points
of interest.

The formulas in Tables 20-10 and the equations for membrane deformations and
influence coefficients in Tables 20-11 to 20-13 provide the information necessary
to apply this method. Table 20-10, part A, gives relations [Eq. (20.10)] for the de-
formations of the edges of the shell segments, and Table 20-10, part B, lists the
equilibrium and compatibility equations at the edges. The influence coefficients are
found in Tables 20-11 to 20-13. For the sign convention of the correction forces as
shown in the figures of Table 20-10, part A, positive moments cause tension in the
inner shell surface. Positive horizontal forces cause tension in the inner shell surface
at the upper edge and compression in the inner shell surface at the lower edge.

For a shell segment greater than a certain length, the deformation at one edge of
the segment is not significantly affected by edge loads that act on the opposite edge.
For a cylinder, when kL > 4, where k = [3(1− ν2)]1/4/√Rh, or L ≥ 3.1

√
Rh, the

influence of the correction force at one edge on the other edge is usually negligible.
These cases are much simpler than those in which edge forces and moments exert a
measurable effect on the deformations of the other edge. This will be illustrated in
the following example.

Example 20.4 Cylindrical Shell with a Spherical Dome The steel shell shown
in Fig. 20-9a is subjected to an internal pressure of p1 = 300 psi. The constants
of the shell are RC (cylinder) = 1.5 ft, RD (dome) = 3.0 ft, φ1 = 30◦, L = 5 ft,
h = 1 in., ν = 0.3, and E = 3× 107 psi.
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Figure 20-9: Cylinder with a spherical dome subject to internal pressure: (a) configuration
of Example 20.4; (b) edge loads acting on segments.

The following notation is used for the actual and membrane deformations:

βDi = actual rotation of dome at junction i due to applied load and edge correc-
tion forces

β0
Di = rotation of dome at junction i due to applied load from membrane analysis

Similar notation applies for other responses: βCi , RDi , RCi , β0
Ci , R0

Di , R0
Ci ,

and so on, where subscript C identifies the cylinder.
For the influence coefficients:

β
M j
Di = rotation of dome at junction i caused by unit moment at junction j

RM j
Di = horizontal displacement of dome at junction i caused by unit moment

at junction j

This pattern applies for the remainder of the influence coefficients β
Hj
Di ,R

Hj
Di , β

M j
Ci ,

R
M j
Ci , β

Hj
Ci , R

Hj
Ci , in which H denotes a unit horizontal load and C refers to the

cylinder.
Proceed as follows to solve this shell problem:

Step 1: Divide the entire shell into two segments, a dome and a cylinder. The
segments and junctions as well as the edge loads that act on each segment are shown
in Fig. 20-9b. Calculate the deformations at the edges of the dome and cylinder due
to the applied loads through a membrane analysis.

The formulas for the membrane deformations of the dome are read from
Table 20-11, part A, case 4:
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β0
D1 = 0

R0
D1 = −

R2
D(−p1)

2Eh
(1− ν) sinφ1 = 2.268× 10−3 in.

(1)

For the cylinder, membrane deformations are from Table 20-13, part A, case 1:

β0
C1 = 0

R0
C1 =

R2
C p1

Eh
= 3.24× 10−3 in.

(2)

It is seen that at the connection edge between the dome and cylinder, the displace-
ments are not compatible. There is a gap

 = R0
D1 −R0

C1 = −9.72× 10−4 in. (3)

between the dome and the cylinder.
The membrane deformations at the lower edge of the cylinder can also be found

from case 1 of Table 20-13, part A, to be

β0
C2 = 0

RC2 = p1 R2
C

Eh
= 3.24× 10−3

(4)

It is evident that RC2 is not compatible with the clamped boundary condition.
For the deformations to be compatible at the connection lines, correction forces

of M and H (Fig. 20-9b) at the edges are needed.
Step 2: Calculate the deformations at the edges of the dome and cylinder due to

unit correction forces (i.e., calculate the influence coefficients).
The rotation of the dome lower edge due to the unit edge moment is found in

case 6 of Table 20-11, part C:

β
M1
D1 = −

4k3
D

Eh RD
(5)

From Table 20-11, for the sphere, k = kD = [3(1 − ν2)(RD/h)2]1/4 = 7.712, so
that

β
M1
D1 = −1.699× 10−6

Also, from the same table,

β
H1
D1 =

2k2
D

Eh
sinφ1 = 1.9825× 10−6

RM1
D1 =

2k2
D

Eh
sinφ1 = 1.9825× 10−6 in. (6)
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RH1
D1 = −

RD

Eh
sinφ1(2kD sinφ1 − ν cosφ1) = −4.4713× 10−6 in.

For the cylinder, if kL > 4 the influence of the edge forces of one edge on the
deformations on other edge of the cylinder being treated is usually negligible. From
Table 20-13,

k = kC =
[
3(1− ν2)

]1/4/√RC h = 0.303 in−1 (7)

and kL = 18.18. To verify the weakness of the effect of the opposing edge, several of
the influence coefficients will be computed using Table 20-13, part B. The influence
coefficients that connect opposite cylinder edges are RH2

C1 and βH2
C1 . The influence

coefficient RH2
C1 is the horizontal displacement of the cylinder at junction 1 (C1)

caused by a unit horizontal force at junction 2 (H2). It is obtained from Table 20-13,
part B, case 1 (corresponding to Hi = H2) and column 3 (corresponding to j = C1).
This gives

RH2
C1 =

2R2
C k

Eh

F9

F1
(8a)

Similarly, from case 1, column 4,

β
H2
C1 =

2R2
C k2

Eh

2F8

F1
(8b)

where F1, F8, and F9 are read from Table 20-9:

F1 = sinh2 kL − sin2 kL = 1.545× 1015

F8 = sinh kL sin kL = 1.226× 107

F9 = cosh kL sin kL − sinh kL cos kL = −2.508× 107

The ratios F9/F1 and F8/F1 are of the order 10−8, which makes the influence
coefficients in (8) very small. Thus, the influence of loads at one edge on the defor-
mations at the other is negligible. Hence, only the coefficients for the influence of
the unit forces on their own edges need to be calculated.

Table 20-13, part B, lists the influence coefficients:

β
H ′1
C1 = βH2

C2
= 2R2

C k2
C

Eh

F2

F1
= 1.983× 10−6

R
H ′1
C1 = −RH2

C2 =
2R2

C kC

Eh

F4

F1
= 6.5448× 10−6 in. (9)

β
M ′1
C1 = −βM2

C2 =
2R2

C k3
C

Eh
2

F3

F1
= 1.202× 10−6
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R
M ′1
C1 = RM2

C2 =
2R2

C k2
C

Eh

F2

F1
= 1.983× 10−6 in.

where, from Table 20-9,

F2 = sinh2 kC L + sin2 kC L = 1.545× 1015, F2/F1 = 1

F3 = sinh kC L cosh kC L + sin kC L cos kC L = 1.545× 1015, F3/F1 = 1

F4 = sinh kC L cosh kC L − sin kC L cos kC L = 1.545× 1015, F4/F1 = 1

Step 3: Find the expressions of the actual deformations at the edges for each seg-
ment.

The actual deformations of the dome at junction 1 are (case 2 of Table 20-10,
part A)
[
βD1

RD1

]
= fD

[
M1

H1

]
+

[
β0

D1

R0
D1

]
=

[
β

M1
D1 β

H1
D1

RM1
D1 RH1

D1

][
M1

H1

]
+

[
β0

D1

R0
D1

]

vD1 = fDpD1 + v0
D1

(10)

where

vD1 =
[
βD1 RD1

]T
, pD1 =

[
M1 H1

]T
, v0

D1 =
[
β0

D1 R0
D1

]T

The deformations of the cylinder at its two edges are (case 1 of Table 20-10,
part A)



βC1

RC1

βC2

RC2


 = fC




M ′1
H ′1
M2

H2


+




β0
C1

R0
C1

β0
C2

R0
C2


 (11)

or [
vC1

vC2

]
=

[
fC11 fC12

fC21 fC22

][
pC1

pC2

]
+

[
v0

C1

v0
C2

]

where

vC1 =
[
βC1 RC1

]T
, vC2 =

[
βC2 RC2

]T

pC1 =
[
M ′1 H ′1

]T
, pC2 =

[
M2 H2

]T

fC11 =

 β

M ′1
C1 β

H ′1
C1

R
M ′1
C1 R

H ′1
C1


 , fC12 =

[
β

M2
C1 β

H2
C1

RM2
C1 RH2

C1

]
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fC21 =

 β

M ′1
C2 β

H ′1
C2

R
M ′1
C2 R

H ′1
C2


 , fC22 =

[
β

M2
C2 β

H2
C2

RM2
C2 RH2

C2

]

Step 4: Establish the equilibrium and compatibility equations at the junctions.
At junction 1, the equilibrium and compatibility equations are (case 1 of Table

20-10, part B)

pD1 = −pC1, vD1 = vC1 (12)

At junction 2 (case 3 of Table 20-10, part B)

vC2 = 0 (13)

Step 5: Form the algebraic equations for the unknown correction forces. Rear-
range (10) and (11) using the conditions of (12) and (13) to obtain

vC1 + fDpC1 = v0
D1 (14a)

vC1 − fC11pC1 − fC12pC2 = v0
C1 (14b)

−fC21pC1 − fC22pC2 = v0
C2 (14c)

This is a set of linear algebraic equations with unknowns vC1, pC1, and pC2. Note
that there are six equations for six unknowns.

As mentioned earlier, the influence of the forces on one end of the cylinder on
the deformations of the other end can be ignored. This condition leads to fC12 =
fC21 = 0. The omission of the coupling between edges separates the problem into
one set of two equations for M1 and H1 and another set of two equations for M2 and
H2. Subtract (14b) from (14a) to find that

(fD + fC11)pC1 = v0
D1 − v0

C1 (15)

that is,

(
β

M1
D1 + β

M ′1
C1

)
M1 +

(
β

H1
D1 + β

H ′1
C1

)
H1 = β0

D1 − β0
C1(

RM1
D1 +R

M ′1
C1

)
M1 +

(
RH1

D1 +R
H ′1
C1

)
H1 = R0

D1 −R0
C1

or

(−4.97× 10−7)M1 + (3.966× 10−6)H1 = 0

(3.966× 10−6)M1 + (2.0735× 10−6)H1 = −9.72× 10−4
(16)

and (14c) becomes

fC22pC2 = −v0
C2
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or

β
M2
C2 M2 + βH2

C2 H2 = −β0
C2, RM2

C2 M2 +RH2
C2 H2 = −R0

C2

or

(−1.202× 10−6)M2 + (1.9831× 10−6)H2 = 0

(1.9831× 10−6)M2 + (−6.5448× 10−6)H2 = −3.24× 10−3
(17)

Step 6: Solve the linear equations to find the correction forces. Equations (16)
and (17) yield

M1 = −230.0 lb-in./in., H1 = −28.82 lb/in. (18)

and

M2 = 990.1 lb-in./in., H2 = 1633.9 lb/in. (19)

20.5 OTHER SHELLS

In previous sections, responses of shells of revolution were presented. In this section,
membrane responses of other types of shells will be given. Table 20-14 gives the
stress resultants for some membrane shells.

Note that in the figure of case 2 of Table 20-14, the two dashed lines are parabolas,
one of which opens downward and another upward. The shell is formed by sliding
the parabola in the y0z plane along the parabola in the x0z plane, or vice versa. The
boundaries of the shell are all parabolas.

Such cases as the cylindrical shells in cases 3–7 of Table 20-14 are said to have
shear diaphragms at the ends (x = ± 1

2 L). For these boundaries, the radial and cir-
cumferential displacements, the force in the axial direction, and the moment about
the tangent of the circumferential wall contour are all zero at the boundary. These
conditions can be closely approximated in physical applications by rigidly attaching
a thin, flat, cover plate at each end. The plate would have considerable stiffness in its
own plane such that the displacements v andw are restrained. However, the plate, by
virtue of its thinness, would have very little stiffness in the x direction transverse to
its plane. Consequently, a plate generates a negligible longitudinal membrane force
Nx in the shell as the shell deforms (Fig. 20-10). Also, corresponding to Mx = 0
is the condition that there is no restraint against rotation about the circumferential
boundary. The name shear diaphragm reflects the capability of the plate to supply
shearing forces Nxθ and Qx to the shell. The shear diaphragm boundary condition
is often called simply supported. The term simply supported is borrowed from linear
beam and plate theory. However, the shear diaphragm explanation is usually consid-
ered to be more appropriate for shell theory [20.6].
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Figure 20-10: Boundary forces for a cylindrical shell.

20.6 STABILITY

When thin shells are subject to axial compression, torsion, bending, lateral pressure,
or a combination of these loads, elastic buckling of the shell wall can occur for certain
critical values of the applied loads. Unlike columns and thin plates for which the
buckling loads from classical small-deflection theory are considered to be reasonably
realistic, the buckling loads for some types of shells may be much less than the load
predicted by the theory. Sources of this deviation of buckling loads may be from the
dependence of the buckling loads on the deviations from the nominal shape of the
structure or on the local edge conditions. In many cases empirical formulas are used
to predict the buckling loads. Table 20-15 presents formulas for the recommended
design-allowable buckling loads for spheres, truncated cones, and cylindrical shells.

The simply supported boundary condition is defined in Section 20.5. If the shell is
under bending deformation, in addition to Nx , the shear diaphragm generates negligi-
ble bending moment Mx . Also, the shear diaphragm supplies shear force Qx together
with Nxθ (Fig. 20-10). Many additional cases of buckling loads are provided in Ref.
[20.5].

Example 20.5 Axial Compression of a Simply Supported Circular Cylindri-
cal Shell Compute the theoretical and empirical critical axial loads for a simply
supported cylindrical shell with the properties L = 0.6096 m, R = 0.198 m,
h = 0.39624 mm, E = 207 GPa, and ν = 0.3. These give R/h = 500 and
D = Eh3/12(1− ν2) = 1.179 N ·m. From Table 20-15 for cylindrical shells,

Z = L2(1− ν2)1/2/Rh

= (0.6096)2(1− 0.32)1/2/[(0.198)(3.9624× 10−4)] = 4515.7 (1)

Then, case 9 gives K theoretical value of 3.503 and K empirical of 3.059 for R/h =
500. Then,

Kc = 3187 for the theoretical formula

Kc = 1145 for the empirical formula
(2)

Thus, the critical loads are found to be as follows:
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Theoretical formula:

σcr = Kc
π2 D

L2h
= 3187× π2 × 1.179

0.60962 × 3.9624× 10−4

= 2.517× 108 N/m2 = 251.7 MPa (3)

Nx,cr = σcrh = 2.517× 108 × 3.9624× 10−4 = 99.734 N/m

Empirical formula:

σcr = Kc
π2 D

L2h
= 1331× π2 × 1.179

0.60962 × 3.9624× 10−4

= 1.05× 108 N/m2 = 105.1 MPa (4)

Nx,cr = σcrh = 1.051× 108 × 3.9624× 10−4 = 41 645 N/m

In this case the theoretical buckling load is 2.38 times as large as the value of the
empirical load. More credence is usually given to results based on the empirical
formula.

Example 20.6 Simply Supported Circular Cylindrical Shell Subjected to Ax-
ial Compressive Load and Internal Pressure Suppose that a simply supported
cylindrical shell of Example 20.5 is subjected to an internal pressure of 6.895 MPa
in addition to an axial load. Compute the critical value of the axial load.

Case 10 of Table 20-15 provides the critical axial load.

R

h
= 500, p = p1

E(R/h)2
= 6.895× 106

(2.07× 1011)5002
= 1.333× 10−10

Kc = 0.2786

σcr = Kc(Eh/R) = (0.2786)(2.07× 1011)/500 = 115.4 MPa (1)

Pcr = σcr(2πRh)+ p1πR2 = (115.4× 106)(2π)(0.198)(3.9624× 10−4)

+ (6.895× 106)(0.1982)(π)

= 919 MN (2)

Nx,cr = Pcr/2πR

= 9.19× 105/(2π)(0.198) = 738 704 N/m (3)

The effect of the internal pressure is to increase the critical axial load by a factor of
738 704/41 645 = 17.7 over the empirical load with no internal pressure.
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Example 20.7 Simply Supported Truncated Conical Shell under Axial Com-
pression Compute the compressive axial load for axisymmetric and asymmetric
buckling for a truncated cone, simply supported at both ends, that has the properties
(see figure in case 3, Table 20-15)

h = 0.0156 in., α = 30◦, E = 3× 107 psi, ν = 0.3

x1 = 1 ft, x2 = 3 ft

The geometry of the figure shows that r1 = x1 sinα = 0.5 ft. From case 3 in
Table 20-15, the axial load for axisymmetric buckling is found to be

(Pcr)axisymmetric = 2Eh2π cos2 α/
√

3(1− ν2)

= 2(3× 107)(0.0156)2π cos2(30◦)/
√

3(1− 0.32) = 20,822 lb

(1)

Also, from case 3 of Table 20-15, the minimum axial load for asymmetric buck-
ling is Pcr = σcrπx1h sin 2α, with

σcr = σcr,A

(
1

2

1+ x1/x2

1− x1/x2
log

x2

x1

)1/2

(2)

where

σcr,A = E
h

r1

1√
3(1− ν2)

cosα = 23,603.2 lb/in2 (3)

Then, from (2), σcr = 16,304.15 lb/in2. Finally,

(Pcr)asymmetric = σcr(πx1h sin 2α) = 8303.95 lb (4)

Example 20.8 Complete Spherical Shell under External Pressure Compute
the empirical critical values of the external pressure for a sphere for which

R = 3 ft, h = 0.0156 in., E = 3× 107 psi, ν = 0.3

From case 1 of Table 20-15, the empirical buckling pressure is

p1,cr = (0.8)E√
1− ν2

(
h

R

)2

= 4.725 lb/in2 (1)
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20.7 NATURAL FREQUENCIES

For the dynamics of shells, the governing equations of motion are a set of partial
differential equations, including derivatives with respect to time. Since many sim-
plifications can be invoked, numerous forms of governing equations of motion for
shells have been derived.

Leissa [20.6] discusses several different equations of motion of thin shells. All of
these small displacement theories utilize the Love–Kirchhoff hypothesis that:

1. The shell is thin (i.e., h/R � 1).

2. The problem is linear, which allows all calculations to be referred to the origi-
nal configuration of the shell.

3. Transverse stresses normal to the middle surface are negligible.

4. Straight lines initially normal to the middle surface remain normal to that sur-
face after deformation, and they undergo no extension.

Residual stresses, anisotropy, variable thickness, shear deformation, rotary inertia,
nonlinearities, and the influence of the external environment are ignored.

References [20.7] and [20.8] are representative of the literature providing approx-
imate frequencies for shells.

Circular Cylindrical Shells

The simplest set of equations for the bending of a cylindrical shell is probably that of
Donnell–Mushtari [20.6, 20.9]. With respect to the coordinates shown in Fig. 20-11,
these equations of motion are

∂2u

∂s2
− 1− ν

2

∂2u

∂θ2
+ 1+ ν

2

∂2v

∂s ∂θ
− ν ∂w

∂s
= ρ∗ (1− ν

2)R2

E

∂2u

∂t2

− 1+ ν
2

∂2u

∂s ∂θ
− 1− ν

2

∂2v

∂s2
+ ∂

2v

∂θ2
+ ∂w
∂θ
= −ρ∗ (1− ν

2)R2

E

∂2v

∂t2

ν
∂u

∂s
+ ∂v
∂θ
−w − κ∇4w = ρ∗(1− ν2)

R2

E

∂2w

∂t2

s = x/R

(20.12)

where κ = h2/12R2. When the term containing κ is ignored, these equations reduce
to those for membrane shells. Modifications to Eqs. (20.12) for other theories are
presented in Ref. [20.6]. The discussion here will be limited to the theory of Donnell–
Mushtari and that of Flügge [20.9], which involves a modified version of Eqs. (20.12)
[20.6].

Tables 20-16 (membrane) and 20-17 (bending) give the natural frequencies of
cylindrical shells under various end conditions. The basic assumption for the mode
shapes u, v, and w in the x , y, and z directions are that they are formed of n and m



20.7 NATURAL FREQUENCIES 1209

Figure 20-11: Coordinates for a cylindrical shell.

half waves in the circumferential and longitudinal directions, that is,

u = A cos λs cos nθ cosωt, v = B sin λs sin nθ cosωt, (20.13)

w = C sin λs cos nθ cosωt

where A, B, and C are constants and λ = mπR/L. Substitution of the assumed
shapes into the governing equations of motion of Eq. (20.12) yields the equations for
the natural frequencies and mode shapes.

The cylindrical shell of infinite length is rather simple to analyze. It is assumed
that the wavelength in the x direction is infinitely long (i.e., the mode shapes are
independent of x), and hence the terms containing λ in Eqs. (20.13) are removed. For
this shell, the axial motion is independent of the radial and torsional displacements.
The shell only vibrates radially and torsionally. Three natural frequencies exist for
each n. For n = 0, the three modes are independent, but otherwise, the radial and
torsional modes are coupled. For very large n, the radial and torsional modes tend to
become independent again.

For the case of simply supported shells, the end conditions are such that the v,w
displacements as well as the force Nx in the longitudinal direction and the moment
Mx (Fig. 20-11) in the circumferential direction are zero. These boundary conditions
correspond to the shear diaphragm discussed in Section 20.5.

Note that in case 2 of Tables 20-16 and 20-17, the cubic equation for the frequency
parameter �2[= ρ∗(1− ν2)R2ω2/E] will have three roots for fixed values of n and
λ (= mπR/L). Thus a shell of a given length may vibrate in any of three distinct
modes, each with the same number of circumferential and longitudinal waves, and
each with its own distinct frequency. The modes associated with each frequency can
be classified as primarily radial (or flexural), longitudinal (or axial), or circumferen-
tial (or torsional). The lowest frequency is usually associated with a motion that is
primarily radial.

Unlike most of the other structural members, such as beams and bars, the fun-
damental frequency of circular cylindrical shells is not always associated with the
smallest numbers for n and m. Also, the frequency does not necessarily increase
monotonically with increasing values of the number of half waves m and n in
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Figure 20-12: Variation of the frequency parameter � for a cylinder. (From [20.6].)

Eq. (20.13). Figure 20-12 shows the relationship between the frequency parameter
� and the indices n and m for a fixed ratio R/h. It is seen that for a particular value
of the number of circumferential waves n, the smaller the m, the smaller the �, so
the fundamental frequency always occurs for m = 1. With m = 1, the index number
n that is associated with the fundamental frequency strongly depends on the value
L/R. In Fig. 20-13, which shows the fundamental frequency in terms of length-to-
radius ratio L/R and the index number n, for L/R = 5, the fundamental frequency
corresponds to m = 1 and n = 5, while for L/R = 1, the fundamental frequency
corresponds to n = 11. Thus, for a specific thin cylinder, numerous n should be
scrutinized to determine which one is associated with the fundamental frequency.

Example 20.9 Natural Frequencies of an Infinite Membrane Cylinder Com-
pute the natural frequencies at n = 0, 1, 2, 3, 4 for an infinitely long circular cylindri-
cal membrane. For this shell R = 0.762 m, L →∞, ν = 0.3, ρ∗ = 7747.6 kg/m3,
and E = 207 GPa.

The frequency parameter �2 is taken from Table 20-16, part A, case 1, and then
the frequency is obtained using

ω2 = E�2/[ρ∗(1− ν2)R2] (1)
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Figure 20-13: Fundamental frequency parameter � for various L/R ratios of a cylinder
with R/h = 500 and m = 1. (From [20.6].)

For n = 0, case 1 of Table 20-16 gives

�2
a = 0, �2

r t = 1

ω2
r t =

E�2
r t

ρ∗(1− ν2)R2
= (2.07× 1011)�2

r t

(7747.6)(1− 0.32)(0.762)2
= 5.056× 107

Then

ωr t = 7110.6 rad/s and fr t = ωr t/2π = 1131.68 Hz (2)

Similarly, for n = 1,

�2
a = 1

2 (1− 0.3)(1)2 = 0.35, ω2
a = 1.7696× 107, or ωa = 4206.66 rad/s

and

fa = 669.51 (3)

Note that the lowest frequency is not associated with n = 0. Also, for n = 1,

�2
r t = (1+ 12) = 2

ω2
r t = 1.0112× 108 or ωr t = 10 055.8 rad/s
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and

fr t = 1 600.43 Hz (4)

Continue the computation for n = 2, 3, 4:

n frt (H z) fa(H z)

2 2529.54 1338.51
3 3577.31 2007.76
4 4664.24 2677.02

(5)

Example 20.10 Radial (Bending)–Torsional Frequencies of an Infinite Cylin-
der with Bending Compute the radial–torsional natural frequencies of an infinitely
long circular cylindrical shell of R = 30 in., ρ∗ = 72.5 × 10−5 lb-sec2/in4, h =
3.16 in., E = 3 × 107 psi, and ν = 0.3 using the bending formulas for n =
0, 1, 2, 3, 4.

From Table 20-17,

κ = h2/12R2 = 9.25× 10−4

The natural frequencies ωr t are obtained from

ω2
r t =

E�2
r t

ρ∗(1− ν2)R2

where the formulas for�r t are taken from case 1 of Table 20-17. With fr t = ωr t/2π :

fr t (Hz)

n Donnell–Mushtari Flügge

0 0.0 0.0
1131.3 1131.3

1 24.3 29.8
1600.1 1599.96

2 123.18 130.67
2530.37 2529.99

3 294.12 302.22
3578.74 3578.07

4 535.14 543.52
4666.21 4665.24

For each n there are two natural frequencies that correspond to the minus and plus
signs in the equations for �r t in case 1 of Table 20-17, part A. The higher values
of these two frequencies for n = 0, . . . , 4 do not differ significantly from those
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values computed using the membrane theory. This is because κ is very small for this
example, and the terms κn4 and κn6 in case 1 of Table 20-17, part A, are negligible
for small n. For large n, the difference between the two theories increases.

Example 20.11 Simply Supported (by Shear Diaphragms) Circular Cylindri-
cal Membrane Suppose that the membrane shell treated in Example 20.9 has a
length of 9.144 m. Compute the frequencies associated with the axisymmetric mode
(n = 0) if m = 1.

The parameter λ of Table 20-16, part A, is

λ = mπR/L = π × 0.762/9.144 = 0.2618

From case 2 of Table 20-16, part A, for torsional motion with n = 0,

�2
t = 1

2 (1− ν)λ2 = 0.024 (1)

and with ω2
t = E�2

t /[ρ∗(1− ν2)R2],

ω2
t = 1.212× 106 or ft = 175.2 Hz (2)

For axial–radial modes with n = 0,

�2
ar = 1

2

([
1+ (0.2618)2

]± {[
1− (0.2618)2

]2 + 4(0.3)2(0.2618)2
}1/2)

so that �2
ar = 0.0620 and 1.0066. Then, from ω2

ar = E�2
ar/[ρ∗(1− ν2)R2],

ω2
ar = (5.056× 107)(0.0620) = 3.135× 106

and

ω2
ar = (5.056× 107)(1.0066) = 5.085× 107

Thus,

far = 281.8 Hz and 1134.9 Hz (3)

The two frequencies given here correspond to the minus and plus signs of the equa-
tion in case 2 of Table 20-16, part A, for the frequency parameter �2

ar at n = 0. In
this case two distinct frequencies have the same coupled axial–radial mode shapes.

Example 20.12 Simply Supported Cylindrical Shell with Bending Repeat the
frequency computation of Example 20.11 using the bending formulas for n = 0 and
m = 1.
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From case 2 of Table 20-17, part A, it is seen that the torsional mode with ft =
175.2 Hz is the same as it was under the membrane hypothesis in Example 20.11.

For coupled axial–radial modes, with κ = h2/12R2 = 92.5× 10−5, the relations
of case 2 of Table 20-17, part A, lead to identical results for the Flügge and Donnell–
Mushtari theories. These are

far = 281.5 Hz corresponds to minus sign

far = 1134.7 Hz corresponds to plus sign

Thus, for n = 0, the bending theory yields results essentially the same as those
obtained in Example 20.11 for the membrane case of coupled axial–radial motion.

Conical Shells

The coordinates used to describe the conical shell are shown in Fig. 20-14. The
term conical refers here to a right circular cone that may be truncated. Information
for computing the natural frequencies of cones and conical frustums is presented
in Table 20-18. It should be noted that the lowest frequency of the shell does not
necessarily occur for n = 0.

Example 20.13 Frequencies of Axisymmetric Modes for a Complete Conical
Shell with a Clamped Base Compute the frequencies of the first three axisym-
metric modes of a conical shell with a clamped base and h = 0.125 in. = 3.175 ×
10−3 m, R = 4.0 in. = 0.1016 m, α = 30◦, ν = 0.3, E = 3 × 107 psi =
2.07× 1011 Pa, and ρ∗ = 725.4× 10−6 lb-s2/in4 = 7752 kg/m3.

Figure 20-14: Coordinates for a conical shell.
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From case 2 of Table 20-18,

η = 12(1− ν2)

tan4 α

(
R

h

)2

= 12(1− 0.32)

tan4(30◦)

(
0.1016

3.175× 10−3

)2

= 100,638.7 (1)

For j = 1, it is seen from case 2 that �1 ≈ 1.796 (η = 100,638.7 ≈ 100,000).
Finally,

f1 = �1

2πR

(
E

ρ∗

)1/2

= 1.796

(2)(π)(0.1016)

(
2.07× 1011

7752

)1/2

= 14,538.2 Hz (2)

Similarly, if j = 2, �2 ≈ 2.429 and

f2 = �2

2πR

(
E

ρ∗

)1/2

= �2

�1
f1 = 2.429

1.796
(14,538.2) = 19,662.2 Hz (3)

Also, for j = 3, �3 ≈ 3.447 and

f3 = �3

�1
f1 = 3.447

1.796
(14,538.2) = 27,902.7 Hz (4)

Example 20.14 Conical Shell with a Free Boundary Assume that the shell
treated in Example 20.13 has a free base and compute the frequencies for the first
three axisymmetric modes.

From case 1 of Table 20-18 the estimated frequency parameters are �1 ≈ 1.251,
�2 ≈ 1.981, and �3 ≈ 2.906. Use

fi = �i

2πR2

(
E

ρ∗

)1/2

= �i
1

2π(0.1016)

(
2.07× 1011

7752

)1/2

= 8094.8�i (1)

to find

f1 = (1.251)(8094.8) = 10,126.59 Hz (2)

f2 = (1.997)(8094.8) = 16,165.32 Hz (3)

f3 = (2.906)(8094.8) = 23,523.49 Hz (4)

Example 20.15 Lowest Frequency of the Axisymmetric Mode of a Clamped–
Free Conical Frustum Compute the lowest frequency of the axisymmetric mode
of a clamped–free conical frustum for which α = 75.49◦, h = 0.03125 in., R1 =
0.4 in., R2 = 1.0 in., E = 1.04 × 107 psi, ρ∗ = 259.2 × 10−6 lb-s2/in4, and
ν = 0.33.
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First calculate γ of case 6 of Table 20-18 as

γ = 12(1− ν2)(R2/h)2

tan4 α
= 12(1− 0.332)(1/0.03125)2

tan4(75.49◦)
= 49.124 (1)

Since R1/R2 = 0.4 and η = log γ = 1.69, case 6 gives �2 = 2.473, so that

f1 =
√

2.473

2π(1)

(
1.04× 107

259.2× 10−6

)1/2

= 50.134× 103 Hz (2)

Spherical Shells

The frequencies of several spherical shells or shell segments are found using the
formulas in Table 20-19.

Example 20.16 Spherical Membrane Shell Compute the fundamental radial
frequency for a spherical membrane shell with R = 30 ft, h = 2 in., E = 3×107 psi,
ν = 0.3, and ρ∗ = 75.5×10−5 lb-s2/in4. From case 1 of Table 20-19, the frequency
parameter for membrane theory is

�2
r =

2(1+ ν)
1+ h2/12R2

so that the natural frequency is given as

f1 = 1

2πR

[
�2

r E

ρ∗(1− ν2)

]1/2

=
[
2(1+ ν)/(1+ h2/12R2)

]1/2 1

2πR

[
E

ρ∗(1− ν2)

]1/2

= 149.0 Hz (1)
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TABLE 20-1 MEMBRANE SPHERICAL SHELLSa

Notation
E = modulus of elasticity
ρw = specific weight of liquid

h = thickness of shell
φ1, φ2 = angle φ corresponding to lower

and upper edges
q = dead weight
∇ = surface of liquid
ν = Poisson’s ratio
R = radius of shell
φ = meridional angle of point of interest

p1 = applied uniform pressure
p2 = uniformly distributed loading

on projected area
d = distance from surface of liquid

to top or bottom of shell
Nφ, Nθ = normal forces per unit length

(stress resultants) in meridional
and circumferential (parallel) directions

px , py, pz = components of applied load
in meridional, circumferential (parallel)
and normal directions

β = rotation of tangent to meridian
during deformation

R = displacement in direction of radius
of curvature of a parallel

The stresses are defined as
σφ = Nφ/h σθ = Nθ /h

Membrane forces are positive if causing tension in the shell.

Part A. Loadings

Case Components

1.
Dead weight

px = q sinφ
py = 0
pz = q cosφ
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TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLSa

Part A. Loadings

Case Components

2.
Uniformly distributed loading
on projected area (snow load)

px = p2 cosφ sinφ
py = 0

pz = p2 cos2 φ

3.
Hydrostatic pressure loading

px = py = 0
pz = ρw[d + R(1− cosφ)]
For reversed spherical shell, d is the distance from the
surface of the liquid to the apex of the reversed shell,
and pz = ρw[d − R(1− cosφ)].

4.
Uniform loading in z direction
(pressurization)

px = py = 0 pz = p1

5.
Lantern loading W , load per unit
length on upper shell edge

px = py = pz = 0
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TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLSa

Part B. Stress Resultants, Deformations, and Rotations

1. Simply supported spherical cap

Internal Forces Deformations

DEAD-WEIGHT LOADING:

Nφ = − Rq

1+ cosφ

Nθ = −Rq

(
cosφ − 1

1+ cosφ

)
R = R2q

Eh
sinφ

[
− cosφ

+ 1+ ν
sin2 φ

(1− cosφ)

]

β = − Rq

Eh
(2+ ν) sinφ

UNIFORM LOADING ON PROJECTED AREA:

Nφ = − 1
2 p2 R

Nθ = − 1
2 p2 R cos 2φ

R = R2 p2

Eh
sinφ

(
− cos2 φ + 1+ ν

2

)

β = − Rp2

Eh
(3+ ν) sinφ cosφ

HYDROSTATIC PRESSURE LOADING:

Nφ = −ρwR2

6

(
−1+ 3

d

R
− 2 cos2 φ

1+ cosφ

)

Nθ = −ρwR2

6

(
−1+ 3

d

R
− 4 cos2 φ − 6

1+ cosφ

)
R = −ρwR3

6Eh
sinφ

[
3
(

1+ d

R

)
(1− ν)

−6 cosφ − 2(1+ ν)
sin2 φ

(cos3 φ − 1)

]

β = ρwR2

Eh
sinφ

NORMAL UNIFORM LOADING:

Nφ = − 1
2 Rp1

Nθ = − 1
2 Rp1

R = − R2 p1

2Eh
(1− ν) sinφ

β = 0
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TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLSa

Part B. Stress Resultants, Deformations, and Rotations

2. Reversed, simply supported

Internal Forces Deformations

DEAD-WEIGHT LOADING:

Nφ = Rq

1+ cosφ

Nθ = Rq

(
cosφ − 1

1+ cosφ

)
R = − R2q

Eh
sinφ [− cosφ

+ 1+ ν
sin2 φ

(1− cosφ)
]

β = − Rq

Eh
(2+ ν) sinφ

UNIFORM LOADING ON PROJECTED AREA:

Nφ = 1
2 p2 R

Nθ = 1
2 p2 R cos 2φ

R = − R2 p2

Eh
sinφ

(
1+ ν

2
− cos2 φ

)

β = − Rp2

Eh
(3+ ν) sinφ cosφ

HYDROSTATIC PRESSURE LOADING:

Nφ = −ρwR2

6

(
−1− 3

d

R
− 2 cos2 φ

1+ cosφ

)

Nθ = ρwR2

6

(
1+ 3

d

R
+ 4 cos2 φ − 6

1+ cosφ

)
R = −ρwR3

6Eh
sinφ

[
3

(
1− d

R

)
(1− ν)

−6 cosφ − 2(1+ ν)
sin2 φ

(cos3 φ − 1)

]

β = −ρwR2

Eh
sinφ

NORMAL UNIFORM LOADING:

Nφ = 1
2 Rp1

Nθ = 1
2 Rp1

R = R2 p1

2Eh
(1− ν) sinφ

β = 0
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TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLSa

Part B. Stress Resultants, Deformations, and Rotations

3. Simply supported, open spherical shell

Internal Forces Deformations

DEAD-WEIGHT LOADING:

Nφ = − Rq

sin2 φ
(cosφ2 − cosφ)

Nθ = −Rq

[
cosφ

− 1

sin2 φ
(cosφ2 − cosφ)

]

R = R2q

Eh
sinφ

[
− cosφ

+ 1+ ν
sin2 φ

(cosφ2 − cosφ)

]

β = − Rq

Eh
(2+ ν) sinφ

UNIFORM LOAD ON PROJECTED AREAS:

Nφ = − p2 R

2

(
1− sin2 φ2

sin2 φ

)

Nθ = − p2 R

2

(
2 cos2 φ − 1+ sin2 φ2

sin2 φ

)
R = R2 p2

Eh
sinφ

[
− cos2 φ

+ 1+ ν
2

(
1− sin2 φ2

sin2 φ

)]

β = − Rp2

Eh
(3+ ν) sinφ cosφ

HYDROSTATIC PRESSURE LOADING:

Nφ = −ρwR2

6

[
3

(
1+ d

R

)(
1− sin2 φ2

sin2 φ

)

− 2
cos3 φ2 − cos3 φ

sin2 φ

]

Nθ = −ρwR2

6

[
3

(
1+ d

R

)(
1+ sin2 φ2

sin2 φ

)

+ 2(2 cos3 φ + cos3 φ2)− 6 cosφ

sin2 φ

]

R = −ρwR3

6Eh
sinφ

{
3

(
1+ d

R

)[
1− ν

+ (1+ ν) sin2 φ2

sin2 φ

]
− 6 cosφ

+ 2(1+ ν)cos3 φ2 − cos3 φ

sin2 φ

}

β = ρwR2

Eh
sinφ
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TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLSa

Part B. Stress Resultants, Deformations, and Rotations

UNIFORM NORMAL LOADING:

Nφ = − Rp1

2

(
1− sin2 φ2

sin2 φ

)

Nθ = − Rp1

2

(
1+ sin2 φ2

sin2 φ

)
R = − R2 p1

Eh
sinφ

[
1

− 1+ ν
2

(
1− sin2 φ2

sin2 φ

)]

β = 0

LANTERN LOADING:

Nφ = −W sinφ2

sin2 φ

Nθ = W sinφ2

sin2 φ

R = W R

Eh
(1+ ν) sinφ2

sinφ
β = 0

4. Reversed, simply supported, open spherical shell

Internal Forces Deformations

DEAD-WEIGHT LOADING:

Nφ = Rq

sin2 φ
(cosφ2 − cosφ)

Nθ = Rq

[
cosφ − 1

sin2 φ
(cosφ2

− cosφ)

]

R = − R2q

Eh
sinφ

[
− cosφ

+ 1+ ν
sin2 φ

(cosφ2 − cosφ)
]

β = − Rq

Eh
(2+ ν) sinφ

UNIFORM LOAD ON PROJECTED AREAS:

Nφ = p2 R

2

(
1− sin2 φ2

sin2 φ

)

Nθ = p2 R

2

(
2 cos2 φ − 1+ sin2 φ2

sin2 φ

)
R = − R2 p2

Eh
sinφ

[
− cos2 φ

+ 1+ ν
2

(
1− sin2 φ2

sin2 φ

)]

β = − Rp2

Eh
(3+ ν) sinφ cosφ
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TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLSa

HYDROSTATIC PRESSURE LOADING:

Nφ = −ρwR2

6

[
3

(
1− d

R

)(
1− sin2 φ2

sin2 φ

)

− 2(cos3 φ2 − cos3 φ)

sin2 φ

]

Nθ = −ρwR2

6

[
3
(

1− d

R

)(
1+ sin2 φ2

sin2 φ

)

+ 2(2 cos3 φ + cos3 φ2)− 6 cosφ

sin2 φ

]

R = −ρwR3

6Eh
sinφ

{
3

(
1− d

R

)[
1− ν

+ (1+ ν) sin2 φ2

sin2 φ

]
− 6 cosφ

+ 2(1+ ν)cos3 φ2 − cos3 φ

sin2 φ

}

β = −ρwR2

Eh
sinφ

UNIFORM NORMAL LOADING:

Nφ = Rp1

2

(
1− sin2 φ2

sin2 φ

)

Nθ = Rp1

2

(
1+ sin2 φ2

sin2 φ

)
R = R2 p1

Eh
sinφ

[
1

− 1+ ν
2

(
1− sin2 φ2

sin2 φ

)]

β = 0

LANTERN LOADING:

Nφ = W sinφ2

sin2 φ

Nθ = −W sinφ2

sin2 φ

R = −W R(1+ ν)
Eh

sinφ2

sinφ
β = 0
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TABLE 20-1 (continued) MEMBRANE SPHERICAL SHELLSa

5. External liquid over portion of simply supported shell

Internal Forces Deformations

LOADING:
pz = ρw(R − R cosφ − d).
FOR POINTS ABOVE THE LIQUID LEVEL:
Nφ = Nθ = 0
FOR POINTS BELOW THE LIQUID LEVEL:

Nφ = −ρw R2

6

{
d

R

[
1

sin2 φ

d

R

(
3− d

R

)
− 3

]

+ 1− 2 cos2 φ

1+ cosφ

}

Nθ = −ρwR2
(

1− cosφ − d

R

)
− Nφ

6. Internal liquid filling portion of simply supported shell
φ′ = 180◦ − φ

LOADING:
pz = −ρw(R − R cosφ′ − d).
FOR POINTS ABOVE THE LIQUID LEVEL:

Nφ = ρw d2

6

(
3− d

R

)
1

sin2 φ′

Nθ = −ρw d2

6

(
3− d

R

)
1

sin2 φ′
FOR POINTS BELOW THE LIQUID LEVEL:

Nφ = ρw R2

6

(
3

d

R
− 1+ 2 cos2 φ′

1+ cosφ′

)

Nθ = ρwR2
(

d

R
− 1+ cosφ′

)
− Nφ

aAdapted from Ref. [20.2].
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TABLE 20-2 MEMBRANE CONICAL SHELLa

Notation
E = modulus of elasticity
ν = Poisson’s ratio
h = thickness of shell
ρw = specific weight of liquid
∇ = surface of liquid
d = distance from surface of liquid to

vertex of shell
q = weight of shell per unit area

p1 = applied uniform pressure
p2 = uniformly distributed loading

on projected area
px , py, pz = components of applied force

on shell
R = horizontal displacement of shell
β = rotation of tangent of meridian

Nφ, Nθ = normal forces per unit length (stress
resultants) in meridional and
circumferential (parallel) directions

Loading and internal forces

Deformations

Part A. Loadings

Case Components

1.
Uniform normal pressure p1

px = 0
py = 0
pz = p1
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TABLE 20-2 (continued) MEMBRANE CONICAL SHELLa

Part A. Loadings

Case Components

2.
Hydrostatic pressure loading

(a) External liquid (b) Liquid inside

px = 0
py = 0
pz = ρw(d + x sinα0) for (a)
pz = ρw(d − x sinα0) for (b)

3.
Uniformly distributed loading over the base

px = p2 cosα0 sinα0

py = 0

pz = p2 cos2 α0

4.
Dead-weight loading

px = q sinα0

py = 0
pz = q cosα0

q = weight of shell per unit area
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TABLE 20-2 (continued) MEMBRANE CONICAL SHELLa

Part A. Loadings

Case Components

5.
Hydrostatic pressure over portion of shell

(a) External liquid (b) Liquid inside

px = 0
py = 0
pz = ρw(x sinα0 − d) for (a)
pz = ρw(d − x sinα0) for (b)

6.
Equally distributed loading along opening edge
(lantern load)

W is in force per length.
px = py = pz = 0
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TABLE 20-2 (continued) MEMBRANE CONICAL SHELLa

Part B. Stress Resultants, Deformations, and Rotations

1. Closed conical shell (supported)

Internal Forces Deformations

DEAD-WEIGHT LOADING:

Nθ = −qx cos2 α0

sinα0

Nx = −1

x

(
qx2

2 sinα0

)
R = − x2

Eh
q cotα0

(
cos2 α0 − ν

2

)

β = qx cosα0

Eh sin2 α0

[
(2+ ν) cos2 α0 − 1

2
− ν

]

UNIFORM LOADING ON PROJECTED
AREA:

Nθ = −p2
cos3 α0

sinα0
x

Nx = −p2
x

2
cotα0

R = −p2
x2

Eh
cosα0 cotα0

(
cos2 α0 − ν

2

)

β = p2x

Eh
cot2 α0

[
(2+ ν) cos2 α0 − ν − 1

2

]

UNIFORM NORMAL LOADING:

Nθ = −p1x cotα0

Nx = −p1
x

2
cotα0

R = −p1
x2

Eh
cosα0 cotα0

(
1− ν

2

)

β = 3

2

p1x

Eh
cot2 α0

HYDROSTATIC PRESSURE LOADING:

Nθ = −ρwx cosα0

(
d

sinα0
+ x

)

Nx = −ρwx cosα0

(
d

2 sinα0
+ x

3

)
R = ρwx2

Eh
cos2 α0

[
d

sinα0

(ν
2
− 1

)

+x
(ν

3
− 1

)]

β = ρwx2

Eh

cos2 α0

sinα0

(
3

2

d

sinα0
+ 8

3
x

)

HYDROSTATIC PRESSURE OVER PORTION OF SHELL:

Nθ =
{

0 for points above ∇
−ρwx(x cosα0 − d cotα0) for points below ∇

Nx =




0 for points above ∇
−ρw

6x

[
cosα0

sin3 α0
d3 + x2(2x cosα0 − 3d cotα0)

]
for points below ∇
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TABLE 20-2 (continued) MEMBRANE CONICAL SHELLa

Part B. Stress Resultants, Deformations, and Rotations

2. Closed conical shell (hanging)

Internal Forces Deformations

DEAD-WEIGHT LOADING:

Nθ = q
cos2 α0

sinα0
x

Nx = q

2 sinα0
x

R = qx2

Eh
cotα0

(
cos2 α0 − ν

2

)

β = qx cosα0

Eh sin2 α0

[
(2+ ν) cos2 α0 − 1

2
− ν

]

UNIFORM LOADING ON PROJECTED
AREA:

Nθ = p2x
cos3 α0

sinα0

Nx = p2
x

2
cotα0

R = p2
x2

Eh
cosα0 cotα0

(
cos2 α0 − ν

2

)

β = p2x

Eh
cot2 α0

[
(2+ ν) cos2 α0 − ν − 1

2

]

UNIFORM NORMAL PRESSURE:

Nθ = −px cotα0

Nx = −p1
x

2
cotα0

R = −p1
x2

Eh
cosα0 cotα0

(
1− ν

2

)

β = −3

2

p1x

Eh
cot2 α0

HYDROSTATIC PRESSURE LOADING:

Nθ = −ρwx cosα0

(
x − d

sinα0

)

Nx = −ρwx cosα0

(
x

3
− d

2 sinα0

)
R = ρwx2

Eh
cos2 α0

[
x
(ν

3
− 1

)

− d

sinα0

(ν
2
− 1

)]

β = ρwx

Eh

cos2 α0

sinα0

(
−8

3
x + 3

2

d

sinα0

)

HYDROSTATIC PRESSURE OVER PORTION OF SHELL:

Nθ =
{

0 for points above ∇
ρwx(d cotα0 − x cosα0) for points below ∇

Nx =




ρwd3

6x

cosα0

sin3 α0
for points above ∇

ρwx

2
(3d cotα0 − 2x cosα0) for points below ∇
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TABLE 20-2 (continued) MEMBRANE CONICAL SHELLa

Part B. Stress Resultants, Deformations, and Rotations

3. Open conical shell (supported)

Internal Forces Deformations

DEAD-WEIGHT LOADING:

Nθ = −q
cos2 α0

sinα0
x

Nx = − qx

2 sinα0

[
1−

( x1

x

)2
]

R = − qx2

2Eh
cotα0

{
2 cos2 α0 − ν

[
1

−
( x1

x

)2
]}

β = qx cosα0

2Eh sin2 α0

[
2(2+ ν) cos2 α0 − 1

+
( x1

x

)2 − 2ν

]

UNIFORM LOADING ON PROJECTED
AREA:

Nθ = − p2x cos3 α0

sinα0

Nx = −1

2
p2x

[
1−

( x1

x

)2
]

cotα0

R = − p2x2

2Eh

cos2 α0

sinα0

{
2 cos2 α0 − ν

[
1

−
(

x1

x2

)2 ]}

β = p2x

2Eh
cot2 α0

[
2(2+ ν) cos2 α0 − 2ν

+
( x1

x

)2 − 1
]

UNIFORM NORMAL PRESSURE:

Nθ = −p1x cotα0

Nx = − p1

2
x cotα0

[
1−

( x1

x

)2
]

R = − p1

Eh
x2 cosα0 cotα0

{
1− ν

2

[
1

−
( x1

x

)2
]}

β = p1x

2Eh
cot2 α0

[
3+

( x1

x

)2
]
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TABLE 20-2 (continued) MEMBRANE CONICAL SHELLa

Internal Forces Deformations

EQUALLY DISTRIBUTED LOADING
ALONG OPENING EDGE (LANTERN
LOAD):

Nθ = 0

Nx = − W

sinα0

x1

x

R = −νW x1 cotα0

Eh

β = − W

Eh

x1

x

cotα0

sinα0

HYDROSTATIC PRESSURE LOADING:

Nθ = −ρwx cosα0

(
d

sinα0
+ x

)

Nx = −ρwx cosα0

{
d

2 sinα0

[
1

−
( x1

x

)2
]
+ x

3

[
1−

( x1

x

)3
]}

R = ρwx2

Eh
cos2 α0

{
ν

[
d

2 sinα0

[
1−

( x1

x

)2
]

+ x

3

[
1−

( x1

x

)3
] ]
− d

sinα0
− x

}

β = ρwx

Eh

cos2 α0

sinα0

{
d

2 sinα0

[
3+

( x1

x

)2
]

+ x

3

[
8+

( x1

x

)3
]}
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TABLE 20-2 (continued) MEMBRANE CONICAL SHELLa

Part B. Stress Resultants, Deformations, and Rotations

4. Open conical shell (hanging)

Internal Forces Deformations

DEAD-WEIGHT LOADING:

Nθ = q
cos2 α0

sinα0
x

Nx = qx

2 sinα0

[
1−

( x1

x

)2
]

R = qx2 cotα0

2Eh

{
2 cos2 α0 − ν

[
1−

( x1

x

)2
]}

β = qx cosα0

2Eh sin2 α0

[
2(2+ ν) cos2 α0 − 1

+
( x1

x

)2 − 2ν

]

UNIFORM LOADING ON PROJECTED
AREA:

Nθ = p2x cos3 α0

sinα0

Nx = 1

2
p2x

[
1−

( x1

x

)2
]

cotα0

R = p2x2

2Eh

cos2 α0

sinα0

{
2 cos2 α0 − ν

[
1

−
( x1

x

)2
]}

β = p2x2

2Eh
cot2 α0

[
2(2+ ν) cos2 α0 − 2ν

+
( x1

x

)2 − 1

]

UNIFORM NORMAL PRESSURE:

Nθ = −p1x cotα0

Nx = − p1

2
x cotα0

[
1−

( x1

x

)2
]

R = − p1x2

Eh
cosα0 cotα0

{
1− ν

2

[
1

−
( x1

x

)2
]}

β = − p1x

2Eh
cot2 α0

[
3+

( x1

x

)2
]
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TABLE 20-2 (continued) MEMBRANE CONICAL SHELLa

Internal Forces Deformations

EQUALLY DISTRIBUTED LOADING
ALONG OPENING EDGE
(LANTERN LOAD):

Nθ = 0 Nx = W

sinα0

x1

x

R = −νW x1

Eh
cotα0 β = − W

Eh

x1

x

cotα0

sinα0

HYDROSTATIC PRESSURE LOADING:

Nθ = −ρwx cosα0

(
x − d

sinα0

)

Nx = −ρwx cosα0

{
x

3

[
1−

( x1

x

)3
]

− d

2 sinα0

[
1−

( x1

x

)2
]}

R = ρwx2

Eh
cos2 α0

{
ν

[
x

3

[
1−

( x1

x

)3
]

− d

2 sinα0

[
1−

( x1

x

)2
] ]
+ d

sinα0
− x

}

β = ρwx

Eh

cos2 α0

sinα0

{
d

2 sinα0

[
3+

( x1

x

)2
]

− x

3

[
8+

( x1

x

)3
]}

aAdapted from Ref. [20.2].
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TABLE 20-3 MEMBRANE CYLINDRICAL SHELLSa

Notation
E = modulus of elasticity
R = radius of cylinder

λp, α, β, λpi , αi = constants
ξ = x/L
ν = Poisson’s ratio
h = thickness of shell
L = length of cylinder

u, v,w = displacement in x , y, and z directions
Nx , Nθ = normal forces per unit length (stress resultants)

in x and circumferential (parallel) directions
Nxθ = shear forces per unit length (stress resultants)

with respect to x and circumferential directions

The boundaries of the shell are free to deflect normal to the shell middle surface and to
rotate.

Linear loading: pz = −p0(1+ λp − ξ)

Trigonometric loading: pz = −p0(sinαξ + λp cosβξ)

Exponential loading: pz = −p0

∑
i

λpi e
−αi ξ

Dead-weight loading: px = −p0(1− ξ)
Periodical loading: pz = −p0

∑
i

λpi cosαiθ
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TABLE 20-3 (continued) MEMBRANE CYLINDRICAL SHELLSa

Case Internal Forces Deformations

1.
Cylindrical shell
under linear
loading

Nθ = p0(1+ λp − ξ)R u = 1

Eh

[
−νp0 RLξ

(
1+ λp − 1

2
ξ

)]

w = − 1

Eh
[p0 R2(1+ λp − ξ)]

2.
Cylindrical
shell under
trigonometric
loading

Nθ = p0 R(sinαξ +λp cosβξ) u = 1

Eh
νp0 RL

(
cosαξ

α

− λp
sinβξ

β

)

w = − 1

Eh
p0 R2(sinαξ

+ λp cosβξ)

3.
Cylindrical
shell under
exponential
loading

Nθ = p0 R
∑

i

λpx e−αi ξ u = 1

Eh
νp0 RL

∑
i

λpi

αi
e−αi ξ

w = − 1

Eh
p0 R2

∑
i

λpi e
−αi ξ
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TABLE 20-3 (continued) MEMBRANE CYLINDRICAL SHELLSa

Case Internal Forces Deformations

4.
Linearly varying
loading in x
direction

Nx = −p0L
( 1

2 − ξ + 1
2ξ

2
)

u = − 1

Eh

[
p0L2ξ

(
1

2
− 1

2
ξ + 1

6
ξ2

)]

w = 1

Eh
νp0 RL

(
−1

2
+ ξ − 1

2
ξ2

)

5.
Cylindrical
shell under
circumferential
loading

Loads reacted
at lower base

Nxθ = py L(1− ξ) v = 1

Eh

[
2(1+ ν)py L2

(
ξ − 1

2
ξ2

)]

aAdapted from Ref. [20.2].
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TABLE 20-4 MEMBRANE TOROIDAL SHELLSa

Notation
E = modulus of elasticity
ρw = specific weight of liquid

h = thickness of shell
φ1, φ2 = meridional angle of lower

and upper edge
q = dead weight

p1 = applied uniform pressure
p2 = uniformly distributed loading

on projected area
ν = Poisson’s ratio
R = radius of curvature of meridian at point
φ = meridional angle of point of interest

R, v = horizontal and vertical displacements
β = rotation of tangent at meridian
∇ = surface of liquid
W = lantern loading
d = distance from center of curvature of meridian

to surface of liquid
Nφ, Nθ = normal force per unit length

(stress resultants) in meridional
and circumferential (parallel) directions

The shells in this table are formed by rotating a circle (or a segment of a circle) around an axis; b is the distance from the axis to the
center of the circle.

See Table 20-1, part A, for definitions of the loadings.
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Part A. Stress Resultants, Deformations, and Rotations for Toroidal Shells

Case Internal Forces Deformations

1.
Toroidal shell with
internal pressure

Nφ = p1 R

2

(
2b + R sinφ

b + R sinφ

)

Nθ = p1 R

2

R = p1 R2

2Eh

[
b

R
(1− 2ν)+ (1− ν) sinφ

]

2.
Toroidal segment

Approximate
useful range
35◦ ≤ φ ≤ 90◦

Nφ = p1 R

2

(
b

R sinφ
+ 1

)

Nθ = p1 R

2

(
1− b2

R2 sin2 φ

)
R = p1 R2

2Eh

[
b

R
(1− 2ν)+ (1− ν) sinφ + b2(1+ ν)

R2 sinφ
− b3

R3 sin2 φ

]

v = p1 R2

2Eh

[
(1− ν) cosφ + b

R

(
1+ 2b2

3R2

)
cotφ

+ b2

R2

(
3

2
+ 2ν

)
cotφ

sinφ
− b2

R2

(
1− b

3R

)
cotφ

sin2 φ

− b2

2R2
(1+ 2ν) ln

(
tan

φ

2

)]

β = − p1 R cotφ

2Eh sinφ

[
b

R

(
2b

R sinφ
− 1

)(
b

R sinφ
+ 1

)]
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TABLE 20-4 (continued) MEMBRANE TOROIDAL SHELLSa

3.
Toroidal segment

Approximate useful
range 35◦ ≤ φ ≤ 90◦

Nφ = p1 R

2

(
b

R sinφ
− 1

)

Nθ = p1 R

2

(
b2

R2 sin2 φ
− 1

)
R = p1 R2

2Eh

[
− b

R
(1− 2ν)+ (1− ν) sinφ − b2(1+ v)

R2 sinφ
+ b3

R3 sinφ

]

v = p1 R2

2Eh

[
(1− ν) cosφ + b

R

(
1+ 2b2

3R2

)
cotφ + b2

R2

(
3

2
+ 2ν

)
cotφ

sinφ

− b2

R2

(
1− b

3R

)
cotφ

sin2 φ
− b2

2R2
(1+ 2ν) ln

(
tan

φ

2

)]

β = − p1 R cotφ

2Eh sinφ

[
b

R

(
2b

R sinφ
+ 1

)(
b

R sinφ
− 1

)]
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Part B. Stress Resultants for Toroidal Domes

1. Pointed dome

Loading Condition Nφ Nθ

DEAD-WEIGHT LOADING:

px = q sinφ
pz = q cosφ

−q R
c0 − c − (φ − φ0)s0

(s − s0)s
s = sinφ, s0 = sinφ0,

c = cosφ, c0 = cosφ0

−q
R

sin2 φ
[(φ − φ0) sinφ0 − (cosφ0 − cosφ)

+ (sinφ − sinφ0) sinφ cosφ]

UNIFORMLY DISTRIBUTED
VERTICAL LOADING ON
PROJECTED AREA:

px = p2 sinφ cosφ

pz = p2 cos2 φ

−p2
R

2

(
1− sin2 φ0

sin2 φ

)
−p2

R

2

(
cos 2φ + 2 sinφ sinφ0 − sin2 φ0

sin2 φ

)

2. Toroid surface

Loading Condition Nφ Nθ

DEAD-WEIGHT LOADING:

px = q sinφ
pz = q cosφ

−q R
1− cosφ + φ sinφ0

sinφ(sinφ + sinφ0)
−q R

[
cosφ − 1− cosφ

sin2 φ
+ sinφ0

(
cotφ − φ

sin2 φ

)]
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TABLE 20-4 (continued) MEMBRANE TOROIDAL SHELLSa

UNIFORMLY DISTRIBUTED
VERTICAL LOADING ON
PROJECTED AREA:
px = p2 sinφ cosφ
pz = p2 cos2 φ

−p2 R
sinφ + 2 sinφ0

2 sinφ + sinφ0
−p2

R

2
(cos 2φ − 2 sinφ sinφ0)

3. Partial ring surface Symmetrical cross section (φ0 = −φ1)

DEAD-WEIGHT LOADING:
px = q sinφ
pz = q cosφ

−q
bR(φ − φ0)+ R2(cosφ0 − cosφ)

(b + R sinφ) sinφ
For φ0 = −φ1,

b

−q
bRφ + R2(1− cosφ)

(b + R sinφ) sinφ

− q

sinφ
[(b + R sinφ) cosφ − b(φ − φ0)− R(cosφ0 − cosφ)]

For φ0 = −φ1,
b

− q

sinφ
[(b + R sinφ) cosφ − bφ − R(1− cosφ)]

UNIFORMLY DISTRIBUTED
NORMAL LOADING:
pz = p1

− p1

2(b + R sinφ) sinφ

[
(b + R sinφ)2

− (b + R sinφ0)
2
]

For φ0 = −φ1,
b

− p1 R

2

2b + R sinφ

b + R sinφ

− p1

2 sin2 φ
[2b sinφ0 + R(sin2 φ0 + sin2 φ)]

For φ0 = −φ1,
b

− 1
2 p1 R

LANTERN LOADING: −W
b + R sinφ0

(b + R sinφ) sinφ

W1

R

b + R sinφ0

sin2 φ
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HYDROSTATIC PRESSURE
LOADING:
pz = ρw(d − R cosφ)

− ρwR

(b + R sinφ) sinφ

[
− bd(sinφ0 − sinφ)

+ Rd

2
(cos2 φ0 − cos2 φ)

+ bR

2
(sinφ0 cosφ0 − sinφ cosφ − φ + φ0)

− R2

3
(cos3 φ0 − cos3 φ)

]

For φ0 = −φ1,
b

− ρwR

(b + R sinφ) sinφ

[
bd sinφ + Rd

2
sin2 φ

− bR

2
(sinφ cosφ + φ)

− R2

3
(1− cos3 φ)

]

− ρw

sin2 φ

[
(d − R cosφ)(b + R sinφ) sinφ

+ bd(sinφ0 − sinφ)− Rd

2
(cos2 φ0 − cos2 φ)

− bR

2
(sinφ0 cosφ0 − sinφ cosφ − φ + φ0)

+ R2

3
(cos3 φ0 − cos3 φ)

]

For φ0 = −φ1,
b

− ρw

sin2 φ

[
Rd

2
sin2 φ − bR

2
(sinφ cosφ − φ)

−R2

(
cosφ sin2 φ − 1− cos3 φ

3

)]

aAdapted from Ref. [20.2].
bSymmetrical cross section.
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TABLE 20-5 VARIOUS MEMBRANE SHELLS OF REVOLUTIONa

Notation
R = radius of curvature of meridian

at a point
φ = meridional angle of point of interest
ρw = specific weight of liquid
p1 = applied uniformly distributed load
p2 = uniformly distributed loading

on projected area
q = dead weight

r0 = radius of curvature at vertex
φ0 = meridional angle of apex
x0 = radius of top opening
∇ = surface of liquid
d = distance from surface

of liquid to vertex of shell
px , py, pz = components of applied load in x (meridional),

y (parallel), and z (normal) directions
Nφ, Nθ = membrane forces per unit length

(positive if carrying tension in wall)
See Table 20-1, part A, for definitions of loadings.

1. Parabola

Loading Condition Nφ Nθ

DEAD-WEIGHT LOADING:

px = q sinφ
pz = q cosφ

−q
r0(1− cos3 φ)

3 sin2 φ cos2 φ
−q

r0(2− 3 cos2 φ + cos3 φ)

3 sin2 φ

UNIFORMLY DISTRIBUTED
VERTICAL LOADING ON
THE PROJECTED AREA:

px = p2 sinφ cosφ

pz = p2 cos2 φ

−p2
r0

2

1

cosφ
−p2

r0

2
cosφ

UNIFORM NORMAL
LOADING:

pz = p1

−p1
r0

2

1

cosφ
−p1

r0

2

1+ sin2 φ

cosφ
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TABLE 20-5 (continued) VARIOUS MEMBRANE SHELLS OF REVOLUTIONa

Loading Condition Nφ Nθ

HYDROSTATIC PRESSURE
LOADING:

pz = ρw
(

d + r0

2
tan2 φ

) −ρw r0

2

(
d

+r0

4
tan2 φ

)
1

cosφ

−ρw r0

2

[
d(2 tan2 φ + 1)

+ r0 tan2 φ

(
tan2 φ

+ 3

4

)]
cosφ

2. Cycloid

DEAD-WEIGHT LOADING:

px = q sinφ
pz = q cosφ

−2qr0
φs + c − 1

3 c3 − 2
3

(2φ + sin 2φ) sinφ
s = sinφ, c = cosφ

−qr0

(
1

3

1− cos3 φ

sin2 φ cosφ

−φ
2

tanφ − 1

2
sin2 φ

)

UNIFORMLY DISTRIBUTED
VERTICAL LOADING ON,
PROJECTED AREA:

px = p2 sinφ cosφ

pz = p2 cos2 φ

−p2
r0

8

2φ + sin 2φ

sinφ
−p2

r0

16

2φ + sin 2φ

sinφ

×
(

4 cos2 φ − 2φ

sin 2φ
− 1

)

3. Modified elliptical shell

Equation of meridian: x2 = −
∫

x3
1 dx1√

(1− x2
1)(x

2
1 − a1)(x2

1 − a2)

where

a1 = 1

2

(√
1− 4x2

0

1− x2
0

− 1

)
a2 = −1

2

(√
1+ 4x2

0

1− x2
0

+ 1

)

m = (1− x2
1)(x

2
1 − a1)(x2

1 − a2) n = 1+ x6
1

m
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TABLE 20-5 (continued) VARIOUS MEMBRANE SHELLS OF REVOLUTIONa

Loading Condition Nφ Nθ
UNIFORM NORMAL
LOADING:

pz = p1

ap1n1/2m1/2

2x2
1

Nφ
(

2− x1

n

)

For the bottom edge,

1
2 p1a Nφ

(
2− x1

n

)

4. Pointed shell
Solution is not valid at apex.

m = 1− sinφ0

sinφ

UNIFORM NORMAL
LOADING:

pz = p1

1
2 p1 Rm p1m(1− 1

2 m)R

aAdapted from Ref. [20.2].
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TABLE 20-6 SPHERICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

Notation
ν = Poisson’s ratio
h = thickness of shell
β = angle of rotation

M = applied moment per unit length
φ1, φ2 = meridional angles of lower and upper edges

Fi (α), Fi = factors defined in Table 20-9
Qφ = shear force per unit length

R = radius of shell
R = horizontal displacement

H = applied horizontal force per unit length
φ = meridional angle of point of interest

Mφ,Mθ = moments per unit length
Nφ, Nθ = membrane forces per unit length

α = φ1 − φ α0 = φ1 − φ2 k = [
3(1− ν2)(R/h)2

]1/4

Case Internal Forces Deformations

1.
Spherical cap subject to edge
horizontal load

Qφ = H
[√

2 e−kα sinφ1 cos
(

kα + 1
4π

)]
Nφ = −Qφ cotφ

Nθ = −H(2ke−kα sinφ1 cos kα)

Mφ = −H

(
R

k
e−kα sinφ1 sin kα

)

Mθ = H

[
R

k2
√

2
e−kα sinφ1 cotφ sin

(
kα

+ 1

4
π

)]
+ νMφ

Ehβ = H
[
2
√

2k2e−kα sinφ1 sin
(

kα + 1
4π

)]
Eh(R) = −H Re−kα sinφ1

[
2k sinφ cos kα

−√2ν cosφ cos
(

kα + 1
4π

) ]
For α = 0 and φ = φ1:

Ehβ = H(2k2 sinφ1)

Eh(R) = −H [R sinφ1(2k sinφ1 − ν cosφ1)]
For φ1 = 90◦:

Ehβ = 2k2 H
Eh(R) = −2Rk H
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TABLE 20-6 (continued) SPHERICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

2.
Spherical cap subject to edge
moment

Qφ = M

(
2k

R
e−kα sin kα

)

Nφ = −Qφ cotφ

Nθ = M

[
2
√

2
k2

R
e−kα cos

(
kα + 1

4
π

)]

Mφ = M
[√

2 e−kα sin
(

kα + 1
4π

)]

Mθ = M

(
1

k
e−kα cotφ cos kα

)
+ νMφ

Ehβ = −M

(
4k3

R
e−kα cos kα

)

EhR = M R sinφ(Nθ − νNφ)

= 2Mke−kα[√2k sinφ cos
(

kα + 1
4π

)
+ ν cosφ sin kα

]
For α = 0 and φ = φ1:

Ehβ = −M

(
4k3

R

)
Eh(R) = M(2k2 sinφ1)

For φ1 = 90◦:

Ehβ = −M
4k3

R
Eh(R) = 2Mk2

3.
Open spherical shell subject
to edge force

Boundary conditions:
α = 0(φ = φ1) Mφ = 0
H = −Qφ sinφ1 − Nφ cosφ1

α = α0(φ = φ2)

Mφ = 0 Qφ = 0

Nφ = −H sinφ1 cotφ

[
F7(α)− F4

F1
F10(α)+ F2

F1
F8(α)

]

Nθ = Hk sinφ1

[
−F9(α)− 2

F4

F1
F7(α)+ F2

F1
F10(α)

]

Qφ = −H sinφ1

[
F7(α)− F4

F1
F10(α)+ F2

F1
F8(α)

]

Mφ = H
R

2k
sinφ1

[
− F10(α)+ 2

F4

F1
F8(α)− F2

F1
F9(α)

]

Mθ = −H
R

2k
sinφ1

{
−

[
cotφ

k
F8(α)− νF10(α)

]

+ F4

F1

[
cotφ

k
F9(α)− 2νF8(α)

]

+ F2

F1

[
cotφ

k
F7(α)+ νF9(α)

]}

R = H
Rk

Eh
sinφ sinφ1

[
− F9(α)− 2

F4

F1
F7(α)

+ F2

F1
F10(α)

]

β = H
2k2

Eh
sinφ1

[
−F8(α)− F4

F1
F9(α)+ F2

F1
F7(α)

]
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4.
Open spherical shell with
force at top edge

Boundary conditions:
α = 0(φ = φ1)

Mφ = 0 Qφ = 0
α = α0(φ = φ2)

Mφ = 0
H = −Q sinφ2 − N cosφ2

Nφ = H cotφ sinφ2

[
F9

F1
F10(α)− 2

F8

F1
F8(α)

]

Nθ = H2k sinφ2

[
− F9

F1
F7(α)+ F8

F1
F10(α)

]

Qφ = H sinφ2

[
F9

F1
F10(α)− 2F8

F1
F8(α)

]

Mφ = H
R

k
sinφ2

[
F9

F1
F8(α)− F8

F1
F9(α)

]

Mθ = H
R

2k
sinφ2

{
F9

F1

[
−cot φ

k
F9(α)+ ν2F8(α)

]

− 2F8

F1

[
cotφ

k
F7(α)+ νF9(α)

]}

R = −H sinφ2
Rk

Eh
2 sinφ

[
F9

F1
F7(α)− F8

F1
F10(α)

]

β = H sinφ2
2k2

Eh

[
F9

F1
F9(α)+ 2F8

F1
F7(α)

]

5.
Open spherical shell with
moment at bottom edge

Nφ = M cotφ
2k

R

[
F6

F1
F15(α)+ F5

F1
F16(α)− F3

F1
F8(α)

]

Nθ = −M
2k2

R

[
F6

F1
F14(α)+ F5

F1
F13(α)− F3

F1
F10(α)

]

Qφ = M
2k

R

[
F6

F1
F15(α)+ F5

F1
F16(α)− F3

F1
F8(α)

]

R = −M
2k2

Eh
sinφ

[
F6

F1
F14(α)+ F5

F1
F13(α)− F3

F1
F10(α)

]

β = −M
4k3

EhR

[
F6

F1
F16(α)− F5

F1
F15(α)− F3

F1
F7(α)

]
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TABLE 20-6 (continued) SPHERICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

Boundary conditions:
α = 0 Mφ = −M

Qφ = 0
α = α0

Mφ = 0 Qφ = 0

Mφ = −M

[
F6

F1
F13(α)− F5

F1
F14(α)+ F3

F1
F9(α)

]

Mθ = M

{
F6

F1

[
cotφ

k
F16(α)− νF13(α)

]

− F5

F1

[
cotφ

k
F15(α)− νF14(α)

]

− F3

F1

[
cotφ

k
F7(α)+ νF9(α)

]}

6.
Open spherical shell
with top moment

Boundary conditions:
α = 0(φ = φ1)

Mφ = 0 Qφ = 0
α = α0(φ = φ2)

Mφ = M Qφ = 0

Nφ = M
2k

R
cotφ

[
F8

F1
F10(α)− F10

F1
F8(α)

]

Nθ = M
2k2

R

[
−2

F8

F1
F7(α)+ F10

F1
F10(α)

]

Qφ = −M
2k

R

[
− F8

F1
F10(α)+ F10

F1
F8(α)

]

Mφ = M

[
2

F8

F1
F8(α)− F10

F1
F9(α)

]

Mθ = −M

{
F8

F1

[
cotφ

k
F9(α)− ν2F8(α)

]

+ F10

F1

[
cotφ

k
F7(α)+ νF9(α)

]}

R = M
2k2

Eh
sinφ

[
−2

F8

F1
F7(α)+ F10

F1
F10(α)

]

β = M
4k3

Eh R

[
F8

F1
F9(α)+ F10

F1
F7(α)

]

aAdapted from Ref. [20.2].
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TABLE 20-7 CONICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

Notation
E = modulus of elasticity
h = thickness of shell
R = distance from point of

interest to shell axis
R = horizontal displacement at φ

H = applied horizontal force per unit length
Fi (ξ), Fi = factors defined in Table 20-9

ν = Poisson’s ratio
φ = angle between normal of shell

and axis
R0 = radius of base circle
β = rotation of meridian

M = applied moment per unit length
α = coefficient that locates section of interest (this

is not related to the angle α0 shown in the figure)

k =
{
�[3(1− ν2)]1/4/(√R0h sinφ) for conical cap

[3(1− ν2)]1/4/(hxm cotα0)
1/2 for open conical shell

D = Eh3

12(1− ν2)
xm = L − L̄

2
ξ = x̄

L̄
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TABLE 20-7 (continued) CONICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

Case Internal Forces Deformations

1.
Conical shell with
horizontal load

Nφ = −H
[√

2 cosφe−kα cos
(
kα + 1

4π
)]

Nθ = −H

(
2Rk sin2 φ

�
e−kα cos kα

)

Mφ = −H
�

k
e−kα sin kα

Mθ = H�2

√
2Rk2

cotφ

sinφ
e−kα sin

(
kα + 1

4
π

)
− νMφ

Qx = H
√

2 sinφe−kα cos

(
kα + 1

4
π

)

R = −H�3e−kα

2Dk3 sinφ

[
cos kα − ν �√

2Rk

cotφ

sinφ
cos

(
kα + 1

4π
)]

β = H�2e−kα sin
(
kα + 1

4π
)

√
2Dk2 sinφ

For α = 0:

R = −H�3

2Dk3 sinφ

(
1− ν� cotφ

2Rk sinφ

)

β = H�2

2Dk2 sinφ

2.
Conical shell with
moment at lower
edge

Nφ = M

(
2k cosφ

�
e−kα sin kα

)

Nθ = −M

[
2
√

2Rk2 sin2 φ

�2
e−kα cos

(
kα + 1

4
π

)]

Mφ = M
[√

2e−kα sin
(
kα + 1

4π
)]

Mθ = −M
� cotφe−kα cos kα

Rk sinφ
− νMφ

Qx = M

(
2k sinφ

�
e−kα sin kα

)

R = M
�3e−kα

2Dk2 sinφ

[√
2 cos

(
kα + 1

4
π

)

+ ν �
R

cosφ sin kα

k sin2 φ

]

β = −M
�e−kα cos kα

Dk sinφ
For α = 0:

R = M�2

2Dk2 sinφ

β = −M�

Dk sinφ
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3.
Open conical shell with upper
edge load

Nx = −H cosα0

[
F7(ξ)− F4

F1
F10(ξ)+ F2

F1
F8(ξ)

]

Nθ = H xmk cosα0

[
F9(ξ)+ 2F4

F1
F7(ξ)− F2

F1
F10(ξ)

]

Mx = H
sinα0

2k

[
F10(ξ)− 2F4

F1
F8(ξ)+ F2

F1
F9(ξ)

]

Qx = −H sinα0

[
F7(ξ)− F4

F1
F10(ξ)+ F2

F1
F8(ξ)

]

R = H
sin2 α0

4Dk3

[
F9(ξ)+ 2F4

F1
F7(ξ)− F2

F1
F10(ξ)

]

β = H
sinα0

2Dk2

[
−F8(ξ)+ F4

F1
F9(ξ)+ F2

F1
F7(ξ)

]

4.
Open conical shell with lower
edge load

Nx = −H cosα0

[
− F9

F1
F10(ξ)+ 2F8

F1
F8(ξ)

]

Nθ = −2H xmk cosα0

[
− F9

F1
F7(ξ)+ F8

F1
F10(ξ)

]

Mx = −H
sinα0

k

[
F9

F1
F8(ξ)− F8

F1
F9(ξ)

]

Qx = −H sinα0

[
− F9

F1
F10(ξ)+ 2F8

F1
F8(ξ)

]

R = −H
sin2 α0

2Dk3

[
− F9

F1
F7(ξ)+ F8

F1
F10(ξ)

]

β = H
sinα0

2Dk2

[
F9

F1
F9(ξ)+ 2F8

F1
F7(ξ)

]
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TABLE 20-7 (continued) CONICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

5.
Open conical shell
with upper
edge moment

Nx = M2k cotα0

[
F6

F1
F15(ξ)+ F5

F1
F16(ξ)− F3

F1
F8(ξ)

]

Nθ = M2k2xm cotα0

[
F6

F1
F14(ξ)+ F5

F1
F13(ξ)− F3

F1
F10(ξ)

]

Mx = M

[
F6

F1
F13(ξ)− F5

F1
F14(ξ)+ F3

F1
F9(ξ)

]

Qx = M2k

[
F6

F1
F15(ξ)+ F5

F1
F16(ξ)− F3

F1
F8(ξ)

]

R = M
sinα0

2Dk2

[
F6

F1
F14(ξ)+ F5

F1
F13(ξ)− F3

F1
F10(ξ)

]

β = − M

Dk

[
F6

F1
F16(ξ)− F5

F1
F15(ξ)− F3

F1
F7(ξ)

]

6.
Open conical shell
with lower
edge moment

Nx = −M2k cotα0

[
F8

F2
F10(ξ)− F10

F1
F8(ξ)

]

Nθ = −M2k2xm cotα0

[
2F8

F1
F7(ξ)− F10

F1
F10(ξ)

]

Mx = M

[
2F8

F1
F8(ξ)− F10

F1
F9(ξ)

]

Qx = −M2k

[
F8

F1
F10(ξ)− F10

F1
F8(ξ)

]

R = −M
sinα0

2Dk2

[
2F8

F1
F7(ξ)− F10

F1
F10(ξ)

]

β = −M
1

Dk

[
F8

F1
F9(ξ)+ F10

F1
F7(ξ)

]

aAdapted from Ref. [20.2].
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TABLE 20-8 CYLINDRICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

Notation
E = modulus of elasticity
h = thickness of shell
L = length of shell
β = angle of rotation along shell

M = applied moment per unit length
ν = Poisson’s ratio
R = radius of shell

R = horizontal displacement along shell
H = applied horizontal force per unit length

Fi (ξ), Fi = factors defined in Table 20-9
Nx , Nθ = normal forces per unit length (stress resultants)

in axial and circumferential (parallel) directions
Mφ,Mθ = moments per unit length about circumferential

and longitudinal (x) axes
Qx = transverse shear force per unit length, in plane

perpendicular to x axis

k = L[3(1− ν2)]1/4/√Rh D = Eh3

12(1− ν2)
λ = x

L

Case Internal Forces Deformations

1. Long cylindrical shell
with upper edge load

Nx = 0

Nθ = −H
2Rk

L
e−kλ cos kλ

Mx = H
L

k
e−kλ sin kλ

Mθ = νMx

Qx = H
√

2 e−kλ cos

(
kλ+ 1

4
π

)

β = H
L2

√
2 k2 D

e−kλ sin
(

kλ+ 1
4π

)

R = − R

Eh
(Nθ − νNx) = H

L3

2Dk3
e−kλ cos kλ

For the case λ = 0:

β = H L2/2k2 D

R = H L3/2k3 D
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TABLE 20-8 (continued) CYLINDRICAL SHELLS WITH AXIALLY SYMMETRIC LOADING: BENDING THEORYa

Case Internal Forces Deformations

2.
Long cylindrical shell
with upper edge moment

Nx = 0

Nθ = −M
2
√

2 Rk2

L2
e−kλ cos

(
kλ+ 1

4
π

)

Mx = M
[√

2 e−kλ sin
(

kλ+ 1
4π

)]
Mθ = νMx

Qx = −M
2k

L
e−kλ sin kλ

β = M

(
L

Dk
e−kλ cos kλ

)

R = − R

Eh
(Nθ − νNx)

= M

[
L2

√
2 Dk2

e−kλ cos

(
kλ+ 1

4
π

)]

For the case λ = 0:
β = M(L/Dk)

R = M(L2/2Dk2)

3.
Cylindrical shell with
upper edge load

Nθ = H2k R

[
− F9

F1
F7(ξ)+ F8

F1
F10(ξ)

]

Mx = H

k

[
F9

F1
F8(ξ)− F8

F1
F9(ξ)

]

Qx = −H

[
F9

F1
F10(ξ)− 2F8

F1
F8(ξ)

]

R = H

2Dk3

[
− F9

F1
F7(ξ)+ F8

F1
F10(ξ)

]

β = H

2Dk2

[
F9

F1
F9(ξ)+ 2F8

F1
F7(ξ)

]

4.
Cylindrical shell with
lower edge load

Nθ = −H2k R

[
F4

F1
F7(ξ)− F5

F1
F15(ξ)− F6

F1
F16(ξ)

]

Mx = −H

k

[
− F4

F1
F8(ξ)− F5

F1
F16(ξ)+ F6

F1
F15(ξ)

]

Qx = −H

[
F4

F1
F10(ξ)+ F5

F1
F13(ξ)− F6

F1
F14(ξ)

]

R = −H

2Dk3

[
F4

F1
F7(ξ)− F5

F1
F15(ξ)− F6

F1
F16(ξ)

]

β = H

2Dk2

[
F4

F1
F9(ξ)+ F5

F1
F14(ξ)+ F6

F1
F13(ξ)

]

1258
TA

B
L

E
20-8

C
ylin

d
ricalS

h
ells:

B
en

d
in

g
T

h
eo

ry



5.
Cylindrical shell with
upper edge moment

Nθ = M2k2 R

[
−2F8

F1
F7(ξ)+ F10

F1
F10(ξ)

]

Mx = M

[
2F8

F1
F8(ξ)− F10

F1
F9(ξ)

]

Qx = −Mk

[
2F8

F1
F10(ξ)− 2F10

F1
F8(ξ)

]

R = M

2Dk2

[
−2F8

F1
F7(ξ)+ F10

F1
F10(ξ)

]

β = M

2Dk

[
2F8

F1
F9(ξ)+ 2F10

F1
F7(ξ)

]

6.
Cylindrical shell with
lower edge moment

Nθ = −M2k2 R

[
− F2

F1
F7(ξ)+ F3

F1
F10(ξ)− F8(ξ)

]

Mx = −M

[
F2

F1
F8(ξ)− F3

F1
F9(ξ)− F7(ξ)

]

Qx = k M

[
F2

F1
F10(ξ)− 2F3

F1
F8(ξ)+ F8(ξ)

]

R = −M

2Dk2

[
− F2

F1
F7(ξ)+ F3

F1
F10(ξ)− F8(ξ)

]

β = −M

2Dk

[
F2

F1
F9(ξ)+ 2F3

F1
F7(ξ)− F10(ξ)

]

aAdapted from Ref. [20.2].
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TABLE 20-9 FACTORS FOR USE IN TABLES 20-6 TO 20-8a

Notation
h = thickness of shell
ν = Poisson’s ratio

For cylindrical shells:
k = [3(1− ν2)]1/4/√Rh

xi = x/L

For conical shells:

k =


�[3(1− ν2)]1/4/(√R0h sinφ) for conical cap

[3(1− ν2)]1/4/(hxm cotα0)
1/2

for open conical shell

ξ =
{

x/L for conical cap
x̄/L̄ for open conical shell

xm = L − 1
2 L̄

For spherical shells:

k = [3(1− ν2)(R/h)2]1/4
Replace L by α0:
ξ = α/α0

i Fi (ξ) Fi

1b sinh2 kLξ − sin2 kLξ sinh2 kL − sin2 kL
2 sinh2 kLξ + sin2 kLξ sinh2 kL + sin2 kL
3 sinh kLξ cosh kLξ + sin kLξ cos kLξ sinh kL cosh kL + sin kL cos kL
4 sinh kLξ cosh kLξ − sin kLξ cos kLξ sinh kL cosh kL − sin kL cos kL
5 sin2 kLξ sin2 kL
6 sinh2 kLξ sinh2 kL
7 cosh kLξ cos kLξ cosh kL cos kL
8 sinh kLξ sin kLξ sinh kL sin kL
9 cosh kLξ sin kLξ − sinh kLξ cos kLξ cosh kL sin kL − sinh kL cos kL

10 cosh kLξ sin kLξ + sinh kLξ cos kLξ cosh kL sin kL + sinh kL cos kL
11 sin kLξ cos kLξ sin kL cos kL
12 sinh kLξ cosh kLξ sinh kL cosh kL
13 cosh kLξ cos kLξ − sinh kLξ sin kLξ cosh kL cos kL − sinh kL sin kL
14 cosh kLξ cos kLξ + sinh kLξ sin kLξ cosh kL cos kL + sinh kL sin kL
15 cosh kLξ sin kLξ cosh kL sin kL
16 sinh kLξ cos kLξ sinh kL cos kL
17c exp(−kLξ cos kLξ) exp(−kL cos kL)
18 exp(−kLξ sin kLξ) exp(−kL sin kL)
19 exp[−kLξ(cos kLξ + sin kLξ)] exp[−kL(cos kL + sin kL)]
20 exp[−kLξ(cos kLξ − sin kLξ)] exp[−kL(cos kL − sin kL)]

aFrom Ref. [20.2].
bFor sphere: F1(α) = sinh2 kα0(α/α0)− sin2 kα0(α/α0) = sinh2 kα − sin2 kα.
c exp(β) = eβ .
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TABLE 20-10 RELATIONS FOR MULTIPLE-SEGMENT SHELLS OF
REVOLUTIONa

Notation
f = flexibility matrix

β
f

i ,R f
i = influence coefficients; rotation and displacement at edge i

due to force f (i = 1, 2, f = M1, H1,M2, H2)
β0

i ,R0
i = rotation and displacement at edge i obtained from membrane analysis of

segment with actual applied load (i = 1, 2)
βi ,Ri = rotation and displacement at edge i from membrane solution

and correction forces

Part A. Equations for Deformation of Shell Segments

Geometry Equation Flexibility Matrix f

1.
Two-edged
segment



β1

R1

β2

R2


 = f




M1

H1

M2

H2


+



β0

1

R0
1

β0
2

R0
2






β

M1
1 β

H1
1 β

M2
1 β

H2
1

RM1
1 RH1

1 RM2
1 RH2

1

β
M1
2 β

H1
2 β

M2
2 β

H2
2

RM1
2 RH1

2 RM2
2 RH2

2




2.
Segments with
one edge

FOR UPPER SEGMENT:[
β1

R1

]
= f

[
M1

H1

]
+

[
β0

1

R0
1

]

FOR LOWER SEGMENT:[
β2

R2

]
= f

[
M2

H2

]
+

[
β0

2

R0
2

]

[
β

M1
1 β

H1
1

RM1
1 RH1

1

]

[
β

M2
2 β

H2
2

RM2
2 RH2

2

]
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TABLE 20-10 (continued) RELATIONS FOR MULTIPLE-SEGMENT SHELLS OF REVOLUTIONa

Part B. Compatibility and Equilibrium Equations at Junctions

Junction Equations

1.
Junction of two shell elements




M2

H2

β2

R2


−




M ′2
H ′2
0
0


 =




0
0
β ′2
R′2




2.
Junction of three shell elements




M2

H2

β2

β2

R2

R2



−




M ′2
H ′2
0
0
0
0



−




M ′′2
H ′′2
0
0
0
0



=




0
0
β ′2
β ′′2
R′2
R′′2




3.
Fixed edge

β1 = 0 R1 = 0

4.
Pinned edge

M1 = 0 R1 = 0

5.
Sliding edge

M1 = 0 H1 = 0

aAdapted from Ref. [20.2].
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TABLE 20-11 MEMBRANE EDGE DEFORMATIONS AND INFLUENCE
COEFFICIENTS FOR SPHERICAL ELEMENTSa

Notation
E = modulus of elasticity
ν = Poisson’s ratio
R = radius of shell
h = thickness of shell

Ri ,R j = horizontal displacements at
i, j edges (rad), positive in
same direction as in figures.

βi , β j = angles of rotation of meridional
tangents at i, j edges

Hi , Hj = horizontal forces per unit length
on i, j edges

Mi ,M j = moments per unit length on i, j
edges

φi , φ2 = meridional angles of lower and
upper edges

Fi = factors defined in Table 20-9
ρw = specific weight of liquid (F/L3)
W = lantern loading (see Table 20-1,

part A, for definition)
R0

i , β
0
i = membrane deformations at edge

i due to applied loads
R f

i , β
f

i = influence coefficients, that is,
deformations at edge i due to unit
force f ( f = Mi , Hi ,M j , Hj )

k = [3(1− ν2)(R/h)2]1/4
Positive moments cause tension in the inner shell surface.
Positive horizontal forces cause tension in the inner shell surface at the upper edge and
compression in the inner shell surface at the lower edge.
The deformations in each case (column) in the table are due to the applied loading shown
on the left.

Part A. Membrane Deformations of Spherical Caps

Edge Deformation

Loading Condition

1.
Dead-weight
loading

1

q

�

R2q

Eh
sinφ1

(
− cosφ1 + 1+ ν

1+ cosφ1

)
− Rq

Eh
(2+ ν) sinφ1

TABLE 20-11 Membrane Edge Deformations for Spherical Elements 1263



TABLE 20-11 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS
FOR SPHERICAL ELEMENTSa

Part A. Membrane Deformations of Spherical Caps

Edge Deformation

Loading Condition

2.
Uniform vertical
external pressure
on projected area

R2 p2

Eh
sinφ1

(
− cos2 φ1 + 1+ ν

2

)
− Rp2

Eh
(3+ν) sinφ1 cosφ1

3.
Hydrostatic
loading

− ρwR3

6Eh
sinφ1

[
6(1− cosφ1)

− (1+ ν)
(

1− 2
cos2 φ1

1+ cosφ1

)]
ρwR2

Eh
sinφ1

4.
Uniform normal
external pressure

− R2 p1

2Eh
(1− ν) sinφ1 0
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TABLE 20-11 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS
FOR SPHERICAL ELEMENTSa

Part A. Membrane Deformations of Spherical Caps

Edge Deformation

Loading Condition

5.
Dead-weight
loading

R2q

Eh
sinφ1

[
cosφ1 − 1+ ν

1+ cosφ1

]
− Rq

Eh
(2+ ν) sinφ1

6.
Uniform vertical
pressure on
projected area

− R2 p2

Eh
sinφ1

(
− cos2 φ1 + 1+ ν

2

)
− Rp2

Eh
(3+ν) sinφ1 cosφ1

7.
Hydrostatic
loading

− ρwR3

6Eh
sinφ1

[
2− 3 cosφ1

+ 2
cos2 φ1

1+ cosφ1

]
(1+ ν)

−ρwR2

Eh
sinφ1

8.
Uniform normal
pressure

R2 p1

2Eh
(1− ν) sinφ1 0

TABLE 20-11 Membrane Edge Deformations for Spherical Elements 1265



TABLE 20-11 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR SPHERICAL ELEMENTSa

Part B. Membrane Deformations of Spherical Segments

Edge Deformation

Loading Condition

1.
Dead-weight
loading

j

i

q

�

�2
�1

Rq

Eh
sinφ1

[
− cosφ1

+ 1+ ν
sin2 φ1

(− cosφ1

+ cosφ2)

]

− Rq

Eh
(2+ ν) sinφ1 − R2q

Eh
sinφ2 cosφ2 − Rq

Eh
(2+ ν) sinφ2

2.
Uniform vertical
pressure on
projected area

R2 p2

Eh
sinφ1

[
− cos2 φ1

+ 1+ ν
2

(
1− sin2 φ2

sin2 φ1

)]
− Rp2

Eh
(3+ ν) sinφ1 cosφ1 − R2 p2

Eh
sinφ2 cos2 φ2 − Rp2

Eh
(3+ ν) sinφ2 cosφ2
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Edge Deformation

Loading Condition

3.
Hydrostatic
loading

− ρwR3

Eh
sinφ1

{
cosφ2 − cosφ1

− 1+ ν
6

[
3 cosφ2

(
1− sin2 φ2

sin2 φ1

)]

− 2
cos3 φ2 − cos3 φ1

sin2 φ1

}

ρwR2

Eh
sinφ1 0

ρwR2

Eh
sinφ2

4.
Uniform normal
load

− R2 p1

Eh
sinφ1

[
1− 1+ ν

2

(
1

− sin2 φ2

sin2 φ1

)]
0 − R2 p1

Eh
sinφ2 0

5.
Lantern load

W R

Eh
(1+ ν) sinφ2

sinφ1
0

W R

Eh
(1+ ν) 0
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TABLE 20-11 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR SPHERICAL ELEMENTSa

Part B. Membrane Deformations of Spherical Segments

Edge Deformation

Loading Condition

6.
Dead-weight loading

− R2q

Eh
sinφ1

[
− cosφ1

+ 1+ ν
sin2 φ1

(− cosφ1

+ cosφ2)

]

− Rq

Eh
(2+ ν) sinφ1

R2q

Eh
sinφ2 cosφ2 − Rq

Eh
(2+ ν) sinφ2

7.
Uniform vertical load
on projected area

R2 p2

Eh
sinφ1

[
− cos2 φ1

+ 1+ ν
2

(
1− sin2 φ2

sin2 φ1

)]
− Rp2

Eh
(3+ ν)

sinφ1 cosφ1

R2 p2

Eh
sinφ2 cos2 φ2 − Rp2

Eh
(3+ ν)

sinφ2 cosφ2
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Loading Condition

8.
Hydrostatic load

+ ρwR3

6Eh
(1+ ν) sinφ2

·
[

3 cosφ1

(
1− sin2 φ2

sin2 φ1

)

− 2
cos3 φ2 − cos3 φ1

sin2 φ1

]

− ρwR2

Eh
sinφ1

ρwR3

Eh
sinφ2(cosφ1

− cosφ2)

ρwR2

Eh
sinφ2

9.
Uniform normal
pressure

R2 p1

Eh
sinφ1

[
1

− 1+ ν
2

(
1− sin2 φ2

sinφ1

)]
0

R2 p1

Eh
sinφ2 0

10.
Lantern load

−W R

Eh
(1+ ν) sinφ2

sinφ1
0 −W R

Eh
(1+ ν) 0
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TABLE 20-11 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR SPHERICAL ELEMENTSa

Part C. Influence Coefficients (Bending Deformations at Edges) of Spherical Shells

Edge Deformation

Load Condition

1. −2Rk

Eh
sin2 φ1

F4

F1

2k2

Eh
sinφ1

F2

F1

2Rk

Eh
sinφ1 sinφ2

F9

F1

2k2

Eh
sinφ1

2F8

F1

2. 2k2

Eh
sinφ1

F2

F1
− 2k3

Eh R

2F3

F1
−2k2

Eh
sinφ2

2F8

F1
− 2k3

Eh R

2F10

F1
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Edge Deformation

3. −2Rk

Eh
sinφ1 sinφ2

F9

F1

2k2

Eh
sinφ2

2F8

F1

2Rk

Eh
sin2 φ2

F4

F1

2k2

Eh
sinφ2

F2

F1

4.
−2k2

Eh
sinφ1

2F8

F1
− 2k3

Eh R

2F10

F1

2k2

Eh
sinφ2

F2

F1

2k3

Eh R

2F3

F1
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TABLE 20-11 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS
FOR SPHERICAL ELEMENTSa

Part C. Influence Coefficients (Bending Deformations at Edges) of Spherical Shells

Edge Deformation

Shell Geometry and
Loading Condition

5. − R

Eh
sinφ1(2k sinφ1

− ν cosφ1)

2k2

Eh
sinφ1

6. 2k2

Eh
sinφ1 − 4k3

Eh R

aAdapted from Ref. [20.2].
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TABLE 20-12 MEMBRANE EDGE DEFORMATIONS AND INFLUENCE
COEFFICIENTS FOR CONICAL SHELL ELEMENTSa

Notation
E = modulus of elasticity
ν = Poisson’s ratio
h = thickness of shell
ρw = specific weight of liquid

Ri ,R j = horizontal displacements at i, j edges
βi , β j = angles of rotation of meridional tangents

at i, j edges (rad), positive in same direction
as in figures

R0
i , β

0
i = membrane deformations

at edge i due to applied loads
R f

i , β
f

i = influence coefficients, that is,
deformations at edge i
due to force f ( f = Mi , Hi ,M j , Hj )

Hi , Hj = horizontal forces per unit length on i, j edges
Mi ,M j = moments per unit length on i, j edges

Fi = factors defined in Table 20-9
p1 = applied uniform pressure
p2 = uniformly distributed loading

on projected area
q = dead weight

W = lantern load; see Table 20-2,
part A, for definition

k = [3(1− ν2)]1/4/(hxm cotα)1/2 for open conical shell

D = Eh3

12(1− ν2)
xm = L − 1

2 L̄

Positive edge moments cause tension in the inner shell surface. Positive horizontal edge
forces cause tension in the inner shell surface at the upper edge and compression in the
inner shell surface at the lower edge. The deformations in each case (columns) in the table
are due to the applied loading shown on the left.

Part A. Membrane Deformations of Conical Shells

Edge Deformation

Loading Condition

1.
Dead-weight loading

i

qx2

�0

−qx2
2

Eh
cotα0

(
cos2 α0 − ν

2

) qx2

Eh

cosα0

sin2 α0

[
(2+ ν) cos2 α0

− 1
2 − ν

]
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TABLE 20-12 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS
FOR CONICAL SHELL ELEMENTSa

Part A. Membrane Deformations of Conical Shells

Edge Deformation

Loading Condition

2.
Uniform vertical
load on projected
area

− p2x2
2

Eh
cosα0 cotα0

(
cos2 α0

− ν
2

)
p2x2

Eh
cot2 α0

[
(2+ ν) cos2 α0

− 1
2 − ν

]

3.
Hydrostatic load

ρwx2
2

Eh
cos2 α0

[
d

sinα0

(
ν

2
− 1

)

+ x2

(
ν

3
− 1

)]
ρwx2

Eh

cos2 α0

sinα0

(
3

2

d

sinα0
+ 8

3
x2

)

4.
Uniform normal
pressure

− p1x2
2

Eh

(
1− ν

2

)
cosα0 cotα0

p1x2

Eh

3

2
cot2 α0
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TABLE 20-12 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS
FOR CONICAL SHELL ELEMENTSa

Part A. Membrane Deformations of Conical Shells

Edge Deformation

Loading
Condition

5.
Dead-weight
loading

qx2
2

Eh
cotα0

(
cos2 α0 − ν2

)
qx2

Eh

cosα0

sin2 α0

[
(2+ ν) cos2 α0

− 1
2 − ν

]

6.
Uniform vertical
load on projected
area

p2x2
2

Eh
cosα0 cotα0

(
cos2 α0

−ν
2

)
p2x2

Eh
cot2 α0

[
(2+ ν) cos2 α0

− 1
2 − ν

]

7.
Hydrostatic load − ρwx2

2

Eh
cos2 α0

[
d

sinα0

(
ν

2
− 1

)

− x2

(
ν

3
− 1

)]
ρwx2

Eh

cos2 α0

sinα0

(
3

2

d

sinα0
− 8

3
x2

)

8.
Uniform normal
pressure

p1x2
2

Eh
cosα0 cotα0

(
1− ν

2

)
p1x2

Eh

3

2
cot2 α0
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TABLE 20-12 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CONICAL SHELL ELEMENTSa

Part B. Membrane Deformations of Truncated Cones

Edge Deformation

Loading Condition

1.
Dead-weight loading

j

i

q
x2

�0

x1

− qx2
2

Eh
cotα0

[
2 cos2 α0

− ν
(

1− x2
1

x2
2

)]
qx2

Eh

cosα0

2 sin2 α0

×
[

2(2+ ν) cos2 α0

− 1− 2ν −
(

x1

x2

)2]

−qx2
1

Eh

cos3 α0

2 sinα0

qx1

Eh

cosα0

sin2 α0
[(2+ ν) cos2 α0 − ν]

2.
Uniform vertical
load on projected
area

− p2x2
2

Eh

cos2 α0

2 sinα0

[
2 cos2 α0

− ν
(

1− x2
1

x2
2

)]
p2x2

Eh

cot2 α0

2

×
[

2(2+ ν) cos2 α0

− 1− 2ν +
(

x1

x2

)2]

− p2x2
1

Eh

cos4 α0

sinα0

p2x1

Eh
cot2 α0[(2+ ν) cos2 α0 − ν]
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Edge Deformation

3.
Hydrostatic load

ρwx2
2

Eh
cos2 α0

×
{
ν

[
d

2 sinα0

(
1− x2

1

x2
2

)

+ x2

3

(
1− x3

1

x3
2

)]

− d

sinα0
− x2

}

ρwx2

Eh

cos2 α0

sinα0

×
[

d

2 sinα0

(
3+ x2

1

x2
2

)

+ x2

3

(
8+ x3

1

x3
2

)]

− ρwx2
1

Eh
cos2 α0

(
d

sinα0

+ x1

)
ρwx1

Eh

cos2 α0

sinα0

(
2d

sinα0

+ 3x1

)

4.
Uniform vertical
load

− p1x2
2

Eh
cosα0 cotα0

×
[

1− ν
2

(
1− x2

1

x2
2

)]
p1x2

Eh

cos2 α0

2

[
3

+
(

x1

x2

)2]
− p1x2

1

Eh
cosα0 cotα0 2

p1x1

Eh
cot2 α0

5.
Lantern load

W

Eh
x1ν cotα0

W

Eh

x1 cotα0

x2 sinα0

W

Eh
x1ν cotα0 − W

Eh

cotα0

sinα0
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TABLE 20-12 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CONICAL SHELL ELEMENTSa

Part B. Membrane Deformations of Truncated Cones

Edge Deformation

Loading Condition

6.
Dead-weight load

qx2
2

Eh

cotα0

2

[
2 cos2 α0

− ν
(

1− x2
1

x2
2

)]
qx2

Eh

cosα0

2 sin2 α0

×
[

2(2+ ν) cos2 α0

− 1− 2ν +
(

x1

x2

)2]

qx2
1

Eh

cos3 α0

sinα0

qx1

Eh

cosα0

sin2 α0
[(2

+ ν) cos2 α − ν]

7.
Uniform vertical
load on projected
area

p2x2
2

Eh

cos2 α0

2 sinα0

[
2 cos2 α0

− ν
(

1− x2
1

x2
2

)]
p2x2

Eh

cot2 α0

2

×
[

2(2+ ν) cos2 α0

− 1− 2ν +
(

x1

x2

)2]

p2x2
1

Eh

cos4 α0

sinα0

p2x1

Eh
cot2 α0[(2

+ ν) cos2 α0 − ν]
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Edge Deformation

8.
Hydrostatic load

ρwx2
2

Eh
cos2 α0

{
ν

[
x2

3

(
1

− x3
1

x3
2

)
− d

2 sinα0

(
1

− x2
1

x2
2

)]
+ d

sinα0
− x2

}

ρwx2

Eh

cos2 α0

sinα0

×
[

d

2 sinα0

(
3+ x2

1

x2
2

)

− x2

3

(
8+ x3

1

x3
2

)]

ρwx2
1

Eh
cos2 α0

(
d

sinα0

− x1

)
ρwx1

Eh

cos2 α0

sinα0

(
2d

sinα0

− 3x1

)

9.
Uniform normal
pressure

p1x2
2

Eh
cosα0 cotα0

×
[

1− ν
2

(
1− x2

1

x2
2

)]
p1x2

Eh

cot2 α0

2

[
3

+
(

x1

x2

)2]
p1x2

1

Eh
cosα0 cotα0

p1x1

Eh
2 cot2 α0

10.
Lantern load

− W

Eh
x1ν cotα0 − W

Eh

x1 cotα0

x2 sinα0
− W

Eh
x1ν cotα0 − W

Eh

cotα0

sinα0
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TABLE 20-12 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CONICAL SHELL ELEMENTSa

Part C. Influence Coefficients (Bending Deformation) of Truncated Cones

Edge Deformation

Loading Condition

1. −sin2 α0

2Dk3

F4

F1

sinα0

2Dk2

F2

F1

sin2 α0

2Dk3

F9

F1

sinα0

2Dk2

2F8

F1

2. sinα0

2Dk2

F2

F1
− 1

2Dk

2F3

F1
−sinα0

2Dk2

2F8

F1
− 1

2Dk

2F10

F1
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Edge Deformation

3. −sin2 α0

2Dk3

F9

F1

sinα0

2Dk2

2F8

F1

sin2 α0

2Dk3

F4

F1

sinα0

2Dk2

F2

F1

4. −sinα0

2Dk2

2F8

F1

1

2Dk

2F10

F1

sinα0

2Dk2

F2

F1

1

2Dk

2F3

F1

aAdapted from Ref. [20.2].
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TABLE 20-13 MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CYLINDRICAL SHELL
ELEMENTSa

Notation

E = modulus of elasticity
ν = Poisson’s ratio
h = thickness of shell
R = radius of shell
L = length of shell

Ri ,R j = horizontal displacements at i, j edges,
positive in same direction as in figures

βi , β j = angles of rotation of meridional tangents at i, j edges (rad)
R0

i , β
0
i = membrane deformations at edge i due

to applied loads
R f

i , β
f

i = influence coefficients, that is,
deformations at edge i due to force f ( f = Mi , Hi ,M j , Hj )

Hi , Hj = horizontal forces per unit length on i, j edges
Mi ,M j = moments per unit length on i, j edges

Fi = factors defined in Table 20-9
k = [3(1− ν2)]1/4/√Rh

Deformations in each case (column) of the table are due to the applied loading on the left.
Positive edge moments cause tension in the inner shell surface.
Positive edge horizontal forces cause tension in the inner shell surface at the upper edge and compression in the inner shell surface at
the lower edge.
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A. Membrane Deformations

Edge Deformation

Loading Conditions

1.

p(ξ) = p0 = constant

p0 R2

Eh
0

p0 R2

Eh
0

2.

p(ξ) = p0(1− ξ)

0 − p0 R2

EhL

p0 R2

Eh
− p0 R2

EhL
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TABLE 20-13 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CYLINDRICAL SHELL ELEMENTSa

3.

p(ξ) = p0 sinαξ

p0 R2

Eh

4(kL)4

α4 + 4(kL)4

[
sinα

− α2

2(kL)2

(
α

kL

F9

F1
− F2

F1
sinα

+ α

kL

F4

F1
cosα

)]

p0 R2

Eh

4(kL)4

α4 + 4(kL)4
k
[ α

kL
cosα

+ α2

2(kL)2

(
2F3

F1
sinα − α

kL

2F8

F1

− α

kL

F2

F1
cosα

)]

p0 R2

Eh

α2

2(kL)2
4(kL)4

α4 + 4(kL)4

×
(
α

kL

F4

F1
− 2F8

F1
sinα

+ α

kL

F9

F1
cosα

)

p0 R2

Eh

4(kL)4

α4 + 4(kL)4
k
[ α

kL

− α2

2(kL)2

(
α

kL

F2

F1
− 2F10

F1
sinα

+ α

kL

F8

F1
cosα

)]

4.

p(ξ) = p0 cosαξ

p0 R2

Eh

4(kL)4

α4 + 4(kL)4

[
cosα

− α2

2(kL)2

(
2F8

F1
− F3

F1
cosα

− α

kL

F4

F1
sinα

)]

− p0 R2

Eh

4(kL)4

α4 + 4(kL)4
k
[ α

kL
sinα

+ α2

2(kL)2

(
2F10

F1
− 2F3

F1
cosα

− α

kL

F2

F1
sinα

)]

p0 R2

Eh

4(kL)4

α4 + 4(kL)4

[
1

+ α2

2(kL)2

(
F2

F1
− 2F8

F1
cosα

− α

kL

F9

F1
sinα

)]

− p0 R2

Eh

4(kL)4

α4 + 4(kL)4
k

α2

2(kL)2

×
(

2F3

F1
− 2F10

F1
cosα

− α

kL

2F8

F1
sinα

)

5.

p(ξ) = p0e−αξ

p0 R2

Eh

4(kL)4

α4 + 4(kL)4

[
e−α

+ α2

2(kL)2

(
2F8

F1
− α

kL

F9

F1

)

− α2

2(kL)2

(
F2

F1

+ α

kL

F4

F1

)
e−α

]

− p0 R2

Eh

4(kL)4

α4 + 4(kL)4
k
[ α

kL
e−α

− α2

2(kL)2

(
2F10

F1
− α

kL

2F8

F1

)

+ α2

2(kL)2

(
2F3

F1

+ α

kL

F2

F1

)
e−α

]

p0 R2

Eh

4(kL)4

α4 + 4(kL)4

[
1

− α2

2(kL)2

(
F2

F1
− α

kL

F4

F1

)

+ α2

2(kL)2

(
2F8

F1

+ α

kL

F9

F1

)
e−α

]

− p0 R2

Eh

4(kL)4

α4 + 4(kL)4
k
[ α

kL

− α2

2(kL)2

(
2F3

F1
− α

kL

F2

F1

)

+ α2

2(kL)2

(
2F10

F1

+ α

kL

2F8

F1

)
e−α

]
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B. Influence Coefficients (Bending Deformations)

Edge Deformation

Loading Condition

1.

−2R2k

Eh

F4

F1

2R2k2

Eh

F2

F1

2R2k

Eh

F9

F1

2R2k2

Eh

2F8

F1

2.
2R2k2

Eh

F2

F1
−2R2k3

Eh

2F3

F1
−2R2k2

Eh

2F8

F1
−2R2k3

Eh

2F10

F1

TA
B

L
E

20-13
D

efo
rm

atio
n

s
fo

r
C

ylin
d

ricalS
h

ellE
lem

en
ts

1285



TABLE 20-13 (continued) MEMBRANE EDGE DEFORMATIONS AND INFLUENCE COEFFICIENTS FOR CYLINDRICAL SHELL ELEMENTSa

3.

−2R2k

Eh

F9

F1

2R2k2

Eh

2F8

F1

2R2k

Eh

F4

F1

2R2k2

Eh

F2

F1

4.

−2R2k2

Eh

2F8

F1

2R2k3

Eh

2F10

F1

2R2k2

Eh

F2

F1

2R2k3

Eh

2F3

F1

Loading Condition

5.
R2k2

Eh

2F2

F1 + 2

R2k3

Eh

4F3

F1 + 2
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6.
R2k

Eh

2F4

F1 + 2

R2k2

Eh

2F2

F1 + 2

7.
R2k2

Eh

2F3

F4

R2k3

Eh

4(F1 + 1)

F4

8.
R2k

Eh

2F2

F4

R2k2

Eh

2F3

F4

aFrom Ref. [20.2].
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TABLE 20-14 STRESS RESULTANTS OF MEMBRANE SHELLS OF
VARIOUS SHAPES

Notation

h1, h2 = constants shown in equations
of shells

α = angle between tangent
of curve and horizontal line

p2 = uniform vertical load (snow load)
q = dead-weight load
λn = (nπ/b)√h2/h1

Boundary conditions for the cylindrical membrane shells (cases 3–7) are equivalent to
being simply supported (shear diaphragms) at x = ± 1

2 L. Normally, the development of
these membrane solutions for stress resultants requires that only the force boundary con-
ditions be invoked. The boundary conditions must be compatible with the conditions of
equilibrium.
See Table 20-1, part A, for the definitions of applied loads.

Description Stress Resultants

1.
Elliptic paraboloid shell
under uniform vertical
load p2

Shell geometry:
z = x2/2h1 + y2/2h2
h1 = a2/8hx

h2 = b2/8hy
Boundary conditions:
Nx = 0 at x = ± 1

2 a

Ny = 0 at y = ± 1
2 b

Nx = h2

h1

√
h2

1 + x2

h2
2 + y2

4p2h1

π

∑∞
n=1,3,...(−1)(n+1)/2 1

n

[
1

− cosh λnx

cosh(λna/2)

]
cos

nπy

b
Ny =

h3
4p2h2

π

∑∞
n=1,3,...(−1)(n+1)/2 1

n

cosh λn x

cosh(λna/2)
cos

nπy

b
Nxy =

4p2

π

√
h1h2

∑∞
n=1,3,...(−1)(n+1)/2 1

n

sinh λnx

sinh(λna/2)
sin

nπy

b

h3 = h1

h2

√
h2

2 + y2

h2
1 + x2

Ref. [20.3]
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TABLE 20-14 (continued) STRESS RESULTANTS OF MEMBRANE SHELLS OF VARIOUS SHAPES

Description Stress Resultants

2.
Hyperbolic paraboloid
shell with generating
parabolas as boundaries
and under uniform
vertical load p2

Shell geometry:
z = x2/2h1 − y2/2h2
h1 = a2/8hy ,
h2 = b2/8hy

Boundary conditions:
free at x = ± 1

2 a and
y = ± 1

2 b

Nx = h2

h1

√
h2

1 + x2

h2
2 + y2

4p2h1

π

∑∞
n=1,3,...(−1)(n+1)/2 1

n

[
1

− cosh λn x

cosh(λna/2)

]
cos

nπy

b
Ny =

h3
4p2h2

π

∑∞
n=1,3,...(−1)(n−1)/2 1

n

cosh λn x

cosh(λna/2)
cos

nπy

b
Nxy =

4p2

π

√
h1h2

∑∞
n=1,3,...(−1)(n−1)/2 1

n

sinh λnx

sinh(λna/2)
sin

nπy

b
with

a = √h1/h2 2b h3 = h1

h2

√
h2

2 + y2

h2
1 + x2

Ref. [20.3]

3.
Cylindrical shell with
semielliptic cross
section

Boundary condition:
simply supported at
x = ± 1

2 L

DEAD WEIGHT:

Nθ = −q

[
a2b2 cosα

(a2 sin2 α + b2 cos2 α)3/2

]

Nxθ = −qx

[
2+ 3(a2 − b2) cos2 α

a2 sin2 α + b2 cos2 α

]
sinα

Nx = −q

2

(
L2

4
− x2

)[
2ab

k3

+ 3(a2 − b2)

abk

(
cos2 α − 2k2

b2
sin2 α

)]
cosα

where k = ab

(a2 sin2 α + b2 cos2 α)1/2
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TABLE 20-14 (continued) STRESS RESULTANTS OF MEMBRANE SHELLS OF VARIOUS SHAPES

Description Stress Resultants
UNIFORMLY DISTRIBUTED LOADING
ON PROJECTED AREA (SNOW LOAD):

Nθ = −p2
a2b2 cos2 α

(a2 sin2 α + b2 cos2 α)3/2

Nxθ = −3p2x
a2 sinα cosα

a2 sin2 α + b2 cos2 α

Nx = −3

2
p2

(
L2

4
− x2

)
−a2 sin2 α + b2 cos2 α

b2(a2 sin2 α + b2 cos2 α)1/2

Ref. [20.4]

4.
Cylindrical shell with
circular cross section

Boundary condition:
simply supported
at x = ± 1

2 L

DEAD WEIGHT:
Nθ = −q R cosα

Nxθ = −2qx sinα

Nx = − q

R

(
L2

4
− x2

)
cosα

SNOW LOAD:
Nθ = −p2 R cos2 α

Nxθ = −1.5p2x sin 2α

Nx = −1.5
p2

R

(
L2

4
− x2

)
cos 2α

Ref. [20.4]

5.
Cylindrical shell with
catenary cross section

Geometry of shell:
z = a cosh(y/a)
where a is a constant that is
the distance from the vertex of
the catenary to the x axis.
Boundary condition:
simply supported at x = ± 1

2 L

DEAD WEIGHT:

Nθ = − qa

cosα
Nxθ = Nx = 0
SNOW LOAD:
Nθ = −p2a

Nxθ = −0.5p2x sin 2α

Nx = −0.5
p2

a

(
L2

4
− x2

)
cos 2α cos2 α

Ref. [20.4]
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TABLE 20-14 (continued) STRESS RESULTANTS OF MEMBRANE SHELLS OF VARIOUS
SHAPES

Description Stress Resultants

6.
Cylindrical shell with
cycloidal cross section

Boundary conditions:
simply supported
at x = ± 1

2 L

y = a(β − π − sinβ) R0 = 4a
z = a(1+ cosβ) 0 ≤ β ≤ 2π
DEAD WEIGHT:
Nθ = −q R0 cos2 α

Nxθ = −3qx sinα

Nx = −3

2

q

R0

(
L2

4
− x2

)

SNOW LOAD:
Nθ = −p2 R0 cos2 α

Nxθ = −2p2x sinα cosα

Nx = −2
p2

R0

(
L2

4
− x2

)
cos2 α − sin2 α

cosα

Ref. [20.4]

7.
Cylindrical shells with
parabolic cross section

Geometry of shell:
y2 = 4az a = const
Boundary conditions:
simply supported
at x = ± 1

2 L

DEAD WEIGHT:

Nθ = − q R0

cos2 α
Nxθ = qx sinα

Nx = 0.5
q

R0

(
L2

4
− x2

)
cos4 α

SNOW LOAD:

Nθ = − p2 R0

cosα
Nxθ = Nx = 0
where

R0 = 2a
Ref. [20.4]
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TABLE 20-15 CRITICAL LOADS FOR VARIOUS SHELLS OF
REVOLUTION

Notation

E = modulus of elasticity
ν = Poisson’s ratio
h = thickness of shell
L = length of shell along generator
b = width of panel in circumferential direction
R = radii of cylinders and panels

Re = constant given in various cases for cones
p1 = uniform pressure (F/L2)
pcr = critical pressure at buckling (F/L2)
Pcr = critical concentrated force at buckling (F/L)
σcr = stress at buckling; for truncated cones,

stress at small end
τcr = shear stress at buckling; for truncated cones,

shear stress at small end
D = Eh3/12(1− ν2)

Unless otherwise specified,

Z =




L2

Reh
(1− ν2)1/2 for conical shells (for case 5, use Le instead of L)

L2

Rh
(1− ν2)1/2 for cylindrical shells

b2

Rh
(1− ν2)1/2 for panels

For a simply supported (shear diaphragm) boundary condition, the radial and cir-
cumferential displacements are zero, the force in the axial direction and the moment
about the tangent of the circumferential wall contour are zero, and there is no re-
straint against translation in the axial direction and rotation about the circumferential
boundary.
Unless otherwise specified, the boundary conditions of the shells are simply sup-
ported.

Description Critical Load

1.
Spherical shell
with external pressure p1

Empirical buckling formula:

p1, cr = 0.80E√
1− ν2

(
h

R

)2

Ref. [20.12]
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TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION

Description Critical Load

2.
Clamped spherical cap
with external pressure p1

p1, cr =
(

0.14+ 3.2

λ2

)
Kc

where Kc = 2[
3(1− ν2)

]1/2
E

(
h

R

)2

λ = [
12(1− ν2)

]1/4
(

R

h

)1/2

2 sin
φ

2
Ref. [20.2]

3.
Truncated conical shell
subjected to concentrated
axial compression force

Boundary condition:
simply supported at upper
and lower edges

For axisymmetrical buckling:
Pcr = Kc cos2 α
where

Kc = 2Eh2π√
3(1− ν2)

For asymmetric buckling:
Pcr = σcr · πx1h sin 2α
where

σcr = Eh cosα

r1

√
3(1− ν2)

√
1

2

1+ x1/x2

1− x1/x2
log

x2

x1

Ref. [20.13]

4.
Truncated conical shell
with concentrated force
and internal pressure p1

Pcr = 2πReσcrh cos2 α + πR2
e p1 cos2 α (α < 75◦)

where

Re = R1

cosα
σcr = (γ Kc + Kb)

Eh

Re

Kc = 1[
3(1− ν2)

]1/2

γ = 6.1424+ 5.9264 log η1 − 4.3154 log2 η1

+ 0.6357 log3 η1
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TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION

Description Critical Load

Kb = 10K

K = −0.6869+ 0.1846 log η2 − 0.1452 log2 η2

+ 0.030019 log3 η2
where

η1 = Re

h
η2 = p1

E

(
Re

h

)2

This formula is valid for
Re/h > 700
Z > 25 for simply supported edges
Z > 80 for clamped edges
Ref. [20.2]

5.
Truncated conical shell
with torsional moment

Tcr = 2πR2
1hτcr (α < 60◦)

where

τcr = R2
e

R2
1

Kc
Eh

Re Z1/4

Z = L2
e

Reh
(1− ν2)1/2

Re =
{

1+
(

1+ R2/R1

2

)1/2

−
(

1+ R2/R1

2

)−1/2
}

R1 cosα

Kc = 0.4218+ 83.1595η−1 − 13,710.7197η−2

+ 810,673.75η−3

η = Re

h
This formula is valid for
Z > 100 for simply supported edges and
clamped edges
Ref. [20.2]
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TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION

Description Critical Load

6.
Truncated conical shell
with bending moment

Mcr = πR2
1σcrh cosα (α < 60◦)

where

σcr = γ Kc
Eh

Re
Re = R1

cosα
Kc = 1[

3(1− ν2)
]1/2

γ = 15.9069− 14.7607 log η + 11.1455 log2 η

− 3.9906 log3 η + 0.4778 log4 η
η = Re/h

This formula is valid for
Z > 20 for simply supported edges
Z > 80 for clamped edges
Ref. [20.2]

7.
Truncated conical shell
with bending moment
and internal pressure

Mcr = πR2
1hσcr cosα (α < 60◦)

where

σcr = (γ Kc + Kb)
Eh

Re

(
Re

h
> 500

)

Re = R1

cosα
γ = 1[

3(1− ν2)
]1/2

Kc is taken from case 6.

Kb =
{

10K1 0.01 ≤ η < 0.2
10K2 0.2 ≤ η ≤ 10

K1 = −0.4166+ 0.1882 log η − 0.03687 log2 η

− 0.01516 log3 η

K2 = −0.1376+ 0.8051 log η + 0.1946 log2 η

− 0.1374 log3 η

η = p1

E

(
Re

h

)2

This formula is valid for
Z > 20 for simply supported edges
Z > 80 for clamped edges
Ref. [20.2]

TABLE 20-15 Critical Loads for Various Shells of Revolution 1295



TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION

Description Critical Load

8.
Truncated conical
shell with
external pressure

(p1)cr = σcrh cosα

R2
(α < 75◦)

where

Re = R1 + R2

2 cosα

σcr = Kc
π2 E

12(1− ν2)

(
h

L

)2 R2

Re cosα

Kc = 10−0.186+0.535 log Z

This formula is for simply supported
edges and is conservative for clamped edges.
Ref. [20.2]

9.
Cylindrical shell
axial compression

σcr = Kc
π2 D

L2h
where Kc = 10K , Z = L2

Rh

√
1− ν2

For simply supported edges

K =




Empirical design curves:
0.03967+ 0.3788 log Z + 0.1301 log2 Z
− 0.01108 log3 Z (R/h = 3000)

0.03839+ 0.4002 log Z + 0.142 log2 Z
− 0.01422 log3 Z (R/h = 2000)

0.03345+ 0.4701 log Z + 0.1298 log2 Z
− 0.01229 log3 Z (R/h = 1000)

0.03909+ 0.5159 log Z + 0.1366 log2 Z
− 0.01414 log3 Z (R/h = 500)

Theoretical:
0.01920+ 0.7378 log Z + 0.1206 log2 Z
− 0.01686 log3 Z
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TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION

Description Critical Load
For clamped edges

K =




Empirical design curves:

0.6046+ 0.02859 log Z + 0.1935 log2 Z

− 0.01388 log3 Z (R/h = 3000)

0.6078− 0.002595 log Z + 0.2260 log2 Z

− 0.01884 log3 Z (R/h = 2000)

0.6128− 0.05537 log Z + 0.2816 log2 Z

− 0.02637 log3 Z (R/h = 1000)

0.6148− 0.1096 log Z + 0.3535 log2 Z

− 0.03833 log3 Z (R/h = 500)
Theoretical:

0.5900− 0.03724 log Z + 0.4361 log2 Z

− 0.05646 log3 Z

10.
Clamped
cylindrical
shell axial
compression and
internal pressure

Pcr = πR(2hσcr + p1 R)
where
σcr = Kc Eh/R

Kc =




0.09988+ 0.1235
√

p̄ + 0.004858 p̄

− 0.001976
(√

p̄
)3

(R/h→∞)
0.1630+ 0.0947

√
p̄ + 0.0118 p̄

− 0.00267
(√

p̄
)3

(R/h = 2000)
0.1874+ 0.1339

√
p̄ − 0.006912 p̄

− 0.0007018
(√

p̄
)3

(R/h = 1333)
0.2462+ 0.1316

√
p̄ − 0.01203 p̄

− 0.00005
(√

p̄
)3

(R/h = 800)
0.2786+ 0.1277

√
p̄ − 0.01156 p̄

− 0.0001997
(√

p̄
)3

(R/h = 500)
0.3295+ 0.1165

√
p̄ − 0.01187 p̄

− 0.0000728
(√

p̄
)3

(R/h = 400)

p̄ = p1

E(R/h)2
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Description Critical Load

11.
Cylindrical shell with
torsional moment at
ends

Tcr = 2πR2Kc
Eh2

RZ1/4

where
Kc = 0.4233+ 79.9779η−1 − 12,759.6621η−2

+ 755,633.25η−3

η = R/h
This formula is valid for
Z < 78(R/h)2(1− ν2)
Z > 100 for simply supported edges
Z > 100 for clamped edges
Ref. [20.2]

12.
Cylindrical shell with
torsional moments at
ends and internal
pressure

Tcr = 2πR2h2
(

Kc
E

RZ1/4
+ Kb

E

R

)

where
Kc is defined in case 11
Kb = 10K

K = −0.1318+ 0.8758 log η + 0.07645 log2 η

+ 0.01314 log4 η

η = p1

E

(
R

h

)2

The formula in this case is valid
under the same conditions as for case 11.
Ref. [20.2]

13.
Cylindrical shell with
bending moment at
ends

Mcr = πR2σcrh
where

σcr = γ Kc
Eh

R

γ = 1[
3(1− ν2)

]1/2

Kc = 15.3914− 13.8791 log η + 10.6439 log2 η

− 3.8693 log3 η + 0.4669 log4 η
η = R/h

Ref. [20.2]
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TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION

Description Critical Load

14.
Cylindrical shell with
bending moment
and internal pressure

Mcr = πR2σcrh (R/h > 500)
where

σcr = (γ Kc + Kb)
Eh

R
γ and Kc are defined in case 13
Kb = 10K

K =




−0.866− 0.926 log η
−0.869 log2 η − 0.2073 log3 η

}
0.01 ≤ η < 0.2

−0.1377+ 0.8275 log η
+0.1908 log2 η − 0.1383 log3 η

}
0.2 ≤ η ≤ 10

η = p1

E

(
R

h

)2

Ref. [20.2]

15.
Cylindrical shell with
external pressure

p1, cr = σcrh/R
where

σcr = Kc
π2 E

12(1− ν2)

(
h

L

)2

Kc = 10K

K = 0.6337− 0.1455 log Z + 0.1977 log2 Z
− 0.01915 log3 Z

Ref. [20.2]

16.
Curved panel with
axial compression

p1, cr = Kc
Eh

R
(a/b > 0.5)

where
Kc = 0.22195+ 29.7611η−1 − 2322.08667η−2

+ 65,832.1484η−3

η = R/h
This formula is valid for
Z > 30 for simply supported edges
Z > 50 for clamped edges
Ref. [20.2]

TABLE 20-15 Critical Loads for Various Shells of Revolution 1299



TABLE 20-15 (continued) CRITICAL LOADS FOR VARIOUS SHELLS OF REVOLUTION

Description Critical Load

17.
Cylindrical panel
with shear forces

τ(F/L2)

τcr = Kc
π2 E

12(1− ν2)

(
h

b

)2

(a > b)

where Kc = 10K

K =




0.7171− 0.2427 log Z + 0.2613 log2 Z
− 0.02906 log3 Z (a/b→∞)

0.7545− 0.3151 log Z + 0.3261 log2 Z
− 0.03461 log3 Z (a/b = 3.0)

0.8056− 0.3378 log Z + 0.35 log2 Z
− 0.03825 log3 Z (a/b = 2.0)

0.8653− 0.3246 log Z + 0.3336 log2 Z
− 0.03492 log3 Z (a/b = 1.5)

0.9643− 0.2683 log Z + 0.2949 log2 Z
− 0.02898 log3 Z (a/b = 1.0)

Ref. [20.2]

18.
Curved panel subject
to bending at ends

σcr = Kc
π2 E

12(1− ν2)

(
h

b

)2

where Kc = 10K

For simply supported edges

K =




1.3838+ 0.0672 log Z − 0.04973 log2 Z
+ 0.04021 log3 Z (R/h = 2000)

1.387+ 0.01058 log Z − 0.01525 log2 Z
+ 0.04497 log3 Z (R/h = 1000)

1.395− 0.2141 log Z + 0.1874 log2 Z
+ 0.01432 log3 Z (R/h = 500)

For clamped edges

K =




1.667+ 0.1819 log Z − 0.2028 log2 Z
+ 0.06786 log3 Z (R/h = 2000)

1.6705+ 0.1575 log Z − 0.2131 log2 Z
+ 0.084 log3 Z (R/h = 1000)

1.6779− 0.008678 log Z − 0.0779 log2 Z
+ 0.06963 log3 Z (R/h = 500)

Ref. [20.2]
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TABLE 20-16 NATURAL FREQUENCIES OF MEMBRANE CIRCULAR
CYLINDRICAL SHELLSa

Notation

E = modulus of elasticity
ρ∗ = mass per unit volume
h = thickness of shell
ν = Poisson’s ratio
R = radius of cylinder
L = length of cylinder
ω = natural frequency
� = frequency parameter

C1 = constant given in part B
n = number of waves in mode shapes

in circumferential direction
m = number of half waves in mode shapes

in longitudinal direction
m1 = number of circumferential nodal circles

in mode shapes along longitudinal direction;
nodal circles are circles that have zero
displacements in the mode shapes

�a,�r t = frequency parameters for axial and coupled
radial–torsional modes, respectively

�t ,�ar = frequency parameters for torsional and coupled
axial–radial modes, respectively

The simply supported boundary condition is defined in Section 20.5 (shear diaphragm).

ω2 = E�2

ρ∗(1− ν2)R2
where �2 = �2 or �2

a or �2
r t or �2

ar , as appropriate

η = R

nL
λ = mπR

L

Unless specified otherwise, the vibration modes are general responses (i.e., they do not
pertain to axial, radial, or torsional modes in particular).

Cases 3–6 give lower bounds for the frequency parameters.

Part A. Frequencies

Case Frequency Parameter �

1.
Infinite Axial modes: �2

a = 1
2 (1− ν)n2

Coupled radial–torsional modes: �2
r t = 1+ n2

For the coupled radial–torsional modes, for each n there is a
rigid body mode such that �2

r t = 0.
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TABLE 20-16 (continued) NATURAL FREQUENCIES OF MEMBRANE CIRCULAR
CYLINDRICAL SHELLSa

Case Frequency Parameter �

2.
Simply supported
(shear diaphragms)

In general, �2 is taken from the polynomial
�6 − K2�

4 + K1�
2 − K0 = 0

with
K0 = 1

2 (1− ν)
[
(1− ν2)λ4

]
K1 = 1

2 (1− ν)
[
(3+ 2ν)λ2 + n2 + (n2 + λ2)2

]
K2 = 1+ 1

2 (3− ν)(n2 + λ2)

For n = 0

�2
t = 1

2 (1− ν)λ2

for the torsional modes and

�2
ar = 1

2

{
(1+ λ2)±

[
(1− λ2)2 + 4ν2λ2

]1/2
}

for coupled axial–radial modes.

3.
Clamped–clamped �2 = (1− ν2)C1

C1 is given in part B.

4.
Clamped–simply
supported

�2 = (1− ν2)C1
C1 is given in part B.

5.
Clamped–free �2 = (1− ν2)C1

C1 is given in part B.

6.
Free–free �2 = (1− ν2)C1

C1 is given in part B.
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TABLE 20-16 (continued) NATURAL FREQUENCIES OF MEMBRANE CIRCULAR
CYLINDRICAL SHELLSa

Part B. Values of C1 in Part A

m η = R/nL C1

Clamped–Clamped

1 0.05 ≤ η ≤ 0.5 0.007635− 0.3997η+ 5.6899η2 + 3.6782η3

− 38.02963η4 + 39.3571η5

0.02 ≤ η < 0.05 −0.0000928+ 0.01661η − 1.1437η2 + 36.8874η3

2 0.05 ≤ η ≤ 0.5 0.03535− 2.1611η+ 41.7726η2 − 150.9171η3

+ 229.5575η4 − 129.7816η5

0.02 ≤ η < 0.05 0.002662− 0.2738η+ 7.4659η2 + 52.0798η3

3 0.03 ≤ η ≤ 0.5 0.04294− 3.5672η+ 94.2065η2 − 482.5035η3

+ 1016.7775η4 − 772.1803η5

0.02 ≤ η < 0.03 0.00300− 0.3341η+ 7.7305η2 + 327.2686η3

4 0.11 ≤ η ≤ 0.5 −0.2947+ 9.0206η− 23.0492η2 + 19.9852η3

0.05 ≤ η < 0.11 −0.06306− 0.1960η+ 83.05571η2 − 361.1688η3

0.02 ≤ η < 0.05 0.04067− 4.5017η+ 155.2445η2 − 902.207η3

5 0.11 ≤ η ≤ 0.5 −0.0815+ 8.1183η− 21.7869η2 + 19.5029η3

0.05 ≤ η < 0.11 −0.1334+ 2.9094η+ 79.5741η2 − 439.1654η3

0.02 ≤ η < 0.05 0.03745− 4.6983η+ 185.8469η2 − 869.5823η3

Clamped–Simply Supported

0 0.07 ≤ η ≤ 0.5 0.01077− 0.3552η+ 2.9869η2 + 15.041η3 − 55.2075η4

+ 48.2361η5

0.02 ≤ η < 0.07 −0.000144+ 0.01955η− 1.002849η2 + 23.8347η3

1 0.08 ≤ η ≤ 0.5 −0.01327− 1.032η+ 28.657η2 − 82.15η3 + 71.34η4

0.02 ≤ η < 0.08 −0.001386+ 0.2027η− 11.49η2 + 311.98η3 − 1222.9η4

2 0.08 ≤ η ≤ 0.5 −0.4030+ 7.962η − 17.1523η2 + 13.0029η3

0.02 ≤ η < 0.08 0.00146− 0.003047η− 13.304η2 + 777.5η3 − 4198.7η4

3 0.08 ≤ η ≤ 0.5 −0.3694+ 9.8843η− 26.04476η2 + 23.1253η3

0.02 ≤ η < 0.08 0.01973− 2.0216η+ 55.382η2 + 485.28η3 − 4895.0η4

4 0.08 ≤ η ≤ 0.5 −0.2154+ 9.7156η− 27.3906η2 + 25.3478η3

0.02 ≤ η < 0.08 0.05062− 5.8587η+ 212.6672η2 − 1100.2689η3
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TABLE 20-16 (continued) NATURAL FREQUENCIES OF MEMBRANE CIRCULAR CYLINDRICAL
SHELLSa

Part B. Values of C1 in Part A

Clamped–Free

0 0.1 ≤ η ≤ 0.5 0.00092+ 0.002226η − 0.4103η2 + 4.5762η3 − 4.6157η4

0.035 ≤ η < 0.1 −0.0001156+ 0.008336η− 0.2215η2 + 2.6565η3

0.02 ≤ η < 0.035 −0.0000021+ 0.0005052η− 0.03834η2 + 1.15745η3

1 0.08 ≤ η ≤ 0.5 0.060995− 1.855η + 18.704η2 − 36.66η3 + 23.329η4

0.027 ≤ η < 0.08 0.0004134− 0.013664η− 0.70137η2 + 37.08687η3

0.02 ≤ η < 0.027 0.0004057− 0.046776η+ 1.51436η2

2 0.08 ≤ η ≤ 0.5 −0.075256+ 0.10096η + 28.599η2 − 93.341η3 + 86.742η4

0.02 ≤ η < 0.08 0.0018112− 0.15584η + 1.7872η2 + 146.712η3

3 0.08 ≤ η ≤ 0.5 −0.43498+ 9.2468443η − 22.2211η2 + 18.4197η3

0.027 ≤ η < 0.08 0.01085− 0.80057η + 8.04η2 + 692.4η3 − 4262.9η4

0.02 ≤ η < 0.027 −0.0001266+ 0.071225η− 10.3095η2 + 615.065η3

4 0.07 ≤ η ≤ 0.5 −0.3339+ 9.929η− 25.77η2 + 22.202η3

0.02 ≤ η < 0.07 0.007042− 0.5893η − 5.747η2 + 1838.4η3 − 14,025η4

Free–Free

2 0.08 ≤ η ≤ 0.5 0.18343− 5.233η + 48.646η2 − 118.47η3 + 94.264η4

0.02 ≤ η < 0.08 −0.0004718+ 0.057847η− 2.609η2 + 52.783η3 + 71.018η4

3 0.08 ≤ η ≤ 0.5 −0.24301+ 3.2871η + 14.394η2 − 68.137η3 + 70.793η4

0.02 ≤ η < 0.08 −0.0042972+ 0.565η − 28.073η2 + 649.04η3 − 2551.1η4

4 0.08 ≤ η ≤ 0.5 −0.4655+ 10.45823η− 27.1505η2 + 23.7978η3

0.02 ≤ η < 0.08 0.000248+ 0.27803η − 34.487η2 + 1439.1η3 − 8039η4

aAdapted from Ref. [20.6].
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TABLE 20-17 NATURAL FREQUENCIES OF CIRCULAR CYLINDRICAL
SHELLS WITH BENDINGa

Notation

E = modulus of elasticity
ρ∗ = mass per unit volume
h = thickness of shell

D1 = constant given in this table, part B
C1 = constant given in Table 20-16, part B
ω = natural frequency
� = frequency parameter

�a,�r t ,�t ,�at = see definitions of Table 20-16
ν = Poisson’s ratio
R = radius of cylinder
L = length of cylinder
n = number of waves in mode shapes in circumferential direction
m = number of half waves in mode shapes in longitudinal direction

m1 = number of circumferential nodal circles in mode shapes
along longitudinal direction; nodal circles are circles that have
zero displacements in mode shapes (see figures with Table 20-16
notation)

ω2 = E�2

ρ∗(1− ν2)R2

where �2 = �2 or �2
a or �2

r t or �2
t

or �2
at as appropriate.

η = R

nL
λ = mπR

L
κ = h2

12R2

Unless specified otherwise, the vibration modes are general responses (i.e., they do
not pertain to axial, radial, or torsional modes in particular).
Cases 4–7 give lower bounds for the frequency parameters.

Part A. Frequencies

Case Frequency Parameter �

1.
Infinite FROM DONNELL–MUSHTARI THEORY:

Axial modes:
�2

a = 1
2 (1− ν)n2

Coupled radial–torsional modes:

�2
r t = 1

2

{
(1+ n2 + κn4)∓

[
(1+ n2)2 + 2κn4(1− n2)

]1/2
}

FROM FLÜGGE THEORY:
Axial modes:
�2

a = 1
2 (1− ν)n2

Coupled radial–torsional modes:

�2
r t = 1

2

{
(1+ n2 + κn4)∓

[
(1+ n2)2 − 2κn6

]1/2
}
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TABLE 20-17 (continued) NATURAL FREQUENCIES OF CIRCULAR CYLINDRICAL SHELLS WITH
BENDINGa

Case Frequency Parameter �

2.
Simply supported
(shear diaphragms)

In general, �2 is taken from the polynomial
�6 − K2�

4 + K1�
2 − K0 = 0

The coefficients K0, K1, and K2 are:
FROM DONNELL–MUSHTARI THEORY:

K0 = 1
2 (1− ν)

[
(1− ν2)λ4 + κ(n2 + λ2)4

]
K1 = 1

2 (1− ν)
[
(3+ 2ν)λ2 + n2 + (n2 + λ2)2

+ 3− ν
1− ν κ(n

2 + λ2)3
]

K2 = 1+ 1
2 (3− ν)(n2 + λ2)+ κ(n2 + λ2)2

FROM FLÜGGE THEORY:
K0 = 1

2 (1− ν)
[
(1− ν2)λ4 + κ(n2 + λ2)4

]+ κ K0

K0 = 1
2 (1− ν)[2(2− ν)λ2n2 + n4 − 2νλ6 − 6λ4n2

− 2(4− ν)λ2n4 − 2n6

K1 and K2 are the same as in Donnell–Mushtari theory.
For n = 0:

FROM DONNELL–MUSHTARI THEORY:
�2

t = 1
2 (1− ν)λ2

Coupled axial–radial modes:
�2

ar =
{
(1+ λ2 + κλ4)

∓ [
(1− λ2)2 + 2λ2(2ν2 + κλ2 − κλ4)

]1/2 }
FROM FLÜGGE THEORY:
�2

t = 1
2 (1− ν)λ2

�2
ar = 1

2

{[
1+ λ2 + κλ4

]∓ [
(1+ λ2)2 + 4ν2λ2 − 2κλ6

]1/2
}

3.
Approximations for
simply supported
cylindrical shell

1. Neglect the tangential inertia
(not accurate for n = 1)

�2 = K0 + κK0

[(1− ν)/2](λ2 + n2)2

in which K0 and K0 are as defined
in case 2.
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TABLE 20-17 (continued) NATURAL FREQUENCIES OF CIRCULAR CYLINDRICAL SHELLS
WITH BENDINGa

Case Frequency Parameter �

2. Assume that λ2 � n2. (The circumferential wavelength
is small relative to the axial wavelength.)
The constants in case 2 now become
K0 = 1

2 (1− ν)[(1− ν2)λ4 + κn8]
K1 = 1

2 [(1− ν)n2(n2 + 1)+ (3− ν)κn6]
K2 = 1+ 1

2 (3− ν)n2 + κn4

The modification for the Flügge theory is
K0 = 1

2 (1− ν)n4(1− 2n2)

3. Combination of approximations 1 and 2
leads for given (n, λ) to

�2 = (1− ν2)λ4

(n2 − λ2)2
+ κ(n2 − λ2)2

4. Neglect �6 and �4 in the equation of case 2:

�2 = K0 + κ K0

K1

in which K0, K1, and K0 are given in case 2.

4.
Clamped–clamped �2 = (1− ν2)C1 + κn4 D2

1
C1 is given in Table 20-16, part B, and
D1 is given in this table, part B.

5.
Clamped–simply
supported

�2 = (1− ν2)C1 + κn4 D2
1

C1 is given in Table 20-16, part B, and
D1 is given in this table, part B.

6.
Clamped–free �2 = (1− ν2)C1 + κn4 D2

1
C1 is given in Table 20-16, part B, and
D1 is given in this table, part B.

7.
Free–free �2 = (1− ν2)C1 + κn4 D2

1
C1 is given in Table 20-16, part B, and
D1 is given in this table, part B.
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TABLE 20-17 (continued) NATURAL FREQUENCIES OF CIRCULAR CYLINDRICAL SHELLS
WITH BENDINGa

Part B. Values of D1 in Part A

m η = R/nL D1

Clamped–Clamped

1 0.08 ≤ η ≤ 0.5 1.1026− 2.22216η+ 25.3243η2 − 0.9368η3

0.02 ≤ η < 0.08 0.9967+ 0.2264η+ 4.7564η2 + 64.967η3

2 0.08 ≤ η ≤ 0.5 1.1176− 3.0116η+ 70.4188η2 − 8.2918η3

0.02 ≤ η < 0.08 0.9988+ 0.078665η+ 38.21754η2 + 119.6485η3

3 0.08 ≤ η ≤ 0.5 1.0147− 1.3757η+ 123.966η2 − 2.146η3

0.02 ≤ η < 0.08 1.0029− 0.2573η+ 97.6849η2 + 152.3918η3

4 0.08 ≤ η ≤ 0.5 0.9364− 0.1667η+ 198.895η2 + 1.7888η3

0.02 ≤ η < 0.08 1.1055− 8.3424η+ 355.4656η2 − 979.03424η3

5 0.08 ≤ η ≤ 0.5 9.085− 238.8638η+ 2817.9036η2 − 11,918.832η3

+ 25,521.979η4 − 19,963.1504η5

0.02 ≤ η < 0.08 1.0121− 1.3277η+ 294.845η2 + 79.63435η3

Clamped–Simply Supported

0 0.08 ≤ η ≤ 0.5 1.0953− 1.83523η+ 20.696η2 − 5.6876η3

0.02 ≤ η < 0.08 0.98544+ 0.7798η− 4.61999η2 + 101.65366η3

1 0.08 ≤ η ≤ 0.5 1.06957− 1.8352η+ 55.9259η2 − 6.4323η3

0.02 ≤ η < 0.08 0.9648+ 3.09396η− 42.9602η2 + 663.6377η3

2 0.08 ≤ η ≤ 0.5 0.9798− 0.3857η+ 104.6534η2

0.02 ≤ η < 0.08 0.9950+ 0.31014η+ 83.92687η2 + 129.6919η3

3 0.08 ≤ η ≤ 0.5 2.0005− 17.6278η+ 260.8745η2 − 103.5345η3

0.02 ≤ η < 0.08 0.9995− 0.2958η+ 172.6369η2 + 30.4299η3

4 0.08 ≤ η ≤ 0.5 1.3992− 6.9458η+ 299.01544η2 − 30.2670η3

0.02 ≤ η < 0.08 2.32243− 175.344η+ 8953.7051η2 − 201,717.40625η3

+ 2,190,977.5η4 − 8,950,106η5
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TABLE 20-17 (continued) NATURAL FREQUENCIES OF CIRCULAR CYLINDRICAL SHELLS
WITH BENDINGa

Clamped–Free

0 0.08 ≤ η ≤ 0.5 0.993996+ 0.0221η + 1.8443η2 + 0.054795η3

0.02 ≤ η < 0.08 1.003234− 0.22555η + 3.7473η2 − 2.1798η3

1 0.08 ≤ η ≤ 0.5 0.9567+ 0.8161η + 16.36077η2 + 0.9839η3

0.02 ≤ η < 0.08 0.99833+ 0.04249η + 19.4784η2 + 6.6541η3

2 0.08 ≤ η ≤ 0.5 1.0087+ 0.26014η + 54.2387η2

0.02 ≤ η < 0.08 0.9072+ 7.1194η − 100.8743η2 + 1019.1997η3

3 0.08 ≤ η ≤ 0.5 1.0206+ 0.10173η + 110.7527η2

0.02 ≤ η < 0.08 0.999521− 0.03371η + 119.5925η2 − 55.66833η3

4 0.08 ≤ η ≤ 0.5 1.01137+ 0.080428η + 186.8723η2

0.02 ≤ η < 0.08 0.9932+ 0.4689η + 185.9586η2

Free–Free

0 0.08 ≤ η ≤ 0.5 0.9754+ 0.2547η + 7.5513η2 − 5.8221η3

0.02 ≤ η < 0.08 0.99117+ 0.44896η − 4.610324η2 + 87.0146η3

1 0.08 ≤ η ≤ 0.5 0.8894+ 2.4549η + 20.2022η2 + 0.018356η3

0.02 ≤ η < 0.08 0.9828+ 1.0068η + 15.86037η2 + 102.00745η3

2 0.08 ≤ η ≤ 0.05 0.8703+ 3.5628η + 53.1368η2 + 7.2333η3

0.02 ≤ η < 0.08 0.9849+ 0.8886η + 67.5611η2 + 23.1573η3

3 0.08 ≤ η ≤ 0.05 0.6701+ 7.8683η + 85.67425η2 + 52.2036η3

0.02 ≤ η < 0.08 0.9950+ 0.0677115η + 156.3289η2 − 205.7957η3

4 0.08 ≤ η ≤ 0.05 1.08086+ 0.9024η + 198.6602η2

0.02 ≤ η < 0.08 0.98223+ 1.1859η + 216.1208η2 − 106.05356η3

aAdapted from Ref. [20.6].
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TABLE 20-18 NATURAL FREQUENCIES OF CONICAL SHELLS WITH
BENDINGa

Notation

E = modulus of elasticity
h = thickness of shell
s = distance from apex

�,� j ,�n = frequency parameters
R = radius of cone base
J1 = Bessel function of first kind
Y1 = Bessel function of second kind
ν = Poisson’s ratio
n = number of circumferential waves in mode shapes (see figures

with Table 20-16 notation)
ρ∗ = mass per unit volume
α = half angle of cone
j = number of root characteristic equation for

specific mode (i.e., for a specific n); this means that
there are several distinct natural frequencies
corresponding to a fixed n

ω = natural frequency (rad/s)
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1. Complete cone with free base

Natural
Frequency (ω) Frequency Parameter

� j

R

(
E

ρ∗

)1/2

Axisymmetric Mode (n = 0)

η = 12(1− ν2)(R/h)2/ tan4 α with ν = 0.3

�1 =



3.2003+ 81.0593η−1 0.1 ≤ η ≤ 6
1.4362− 3.7517(log η)−1 + 17.861(log η)−2 − 4.3278(log η)−3 8 ≤ η ≤ 800
1.0598− 1.9098(log η)−1 + 14.6899(log η)−2 − 1.8035(log η)−3 800 < η ≤ 100,000

�2 =
{

8.26823+ 1477.901η−1 0.1 ≤ η ≤ 80
1.0811+ 1.7538(log η)−1 − 31.967(log η)−2 + 228.46(log η)−3 100 ≤ η ≤ 100,000

�3 =




13.7244+ 7700.08936η−1 0.1 ≤ η ≤ 80
−8.608× 104 + 8.44× 104(log η)−1 − 3.0847× 105(log η)−2

+ 4.9798× 105(log η)−3 − 2.9809× 105(log η)−4 100 ≤ η < 1000
−453.16+ 7472.7(log η)−1 + 45,745(log η)−2

+ 123,420(log η)−3 − 122,520(log η)−4 1000 < η ≤ 100,000

�4 =




18.57213+ 24,591.9844η−1 0.1 ≤ η ≤ 6
15,066.074− 121,113.0469(log η)−1 + 380,252.875(log η)−2

− 584,762(log η)−3 + 448,058.344(log η)−4 − 135,024.52(log η)−5 8 ≤ η ≤ 200
−64.661+ 906.32715(log η)−1 − 4358.1699(log η)−2 + 7734.356(log η)−3 200 < η ≤ 100,000
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TABLE 20-18 (continued) NATURAL FREQUENCIES OF CONICAL SHELLS WITH BENDINGa

2. Complete cone with clamped base

Natural
frequency (ω) Frequency Parameter

� j

R

(
E

ρ∗

)1/2

Axisymmetric Mode (n = 0)

η = 12(1− ν2)(R/h)2/ tan4 α with ν = 0.3

�1 =
{

5.90356+ 104.38289η−1 0.1 ≤ η ≤ 40
−0.29463+ 8.39616(log η)−1 + 11.2915(log η)−2 − 5.0101(log η)−3 60 ≤ η ≤ 100,000

�2 =




19,665.967− 43,630.3125η−1 + 36,566.6133η−2

− 12,819.2305η−3 + 1903.352η−4 − 94.385η−5 0.1 ≤ η ≤ 1
66.963− 398.13(log η)−1 + 775.51(log η)−2

− 320.38(log η)−3 + 43.05(log η)−4 2 ≤ η ≤ 600
−1.577+ 31.5281(log η)−1 − 126.1601(log η)−2 + 343.7357(log η)−3 600 < η ≤ 100,000

�3 =
{

14.0355+ 7939.58398η−1 0.1 ≤ η < 400
−9.51032+ 161.3258(log η)−1 − 859.5827(log η)−2 + 1885.0045(log η)−3 400 ≤ η < 100,000

�4 =
{

18.5415+ 25, 022.31445η−1 0.1 ≤ η ≤ 800
−43.1926+ 664.6763(log η)−1 − 3464.3162(log η)−2 + 6677.5742(log η)−3 1000 ≤ η ≤ 100,000
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TABLE 20-18 (continued) NATURAL FREQUENCIES OF CONICAL SHELLS WITH BENDINGa

3. Frustum of cone (open conical shell) with simply supported edges

Natural
Frequency (ω) Frequency Parameter

�

L

[
E

ρ∗(1− ν2)

]1/2

Lowest Mode for ν = 0.3

h/R2 = 0.03 β = 90◦ − α
� = 0.16498+ 0.01997β − 0.000256β2

+ 0.000001525β3 15◦ ≤ β ≤ 85◦
h/R2 = 0.01
� = 0.04757+ 0.021399β − 0.0008059β2

+ 0.000020133β3 − 0.0000002478β4

+ 0.0000000011634β5 5◦ ≤ β ≤ 87◦
h/R2 = 0.005
� = 0.03094+ 0.016305β − 0.0006938β2

+ 0.00001935β3 − 0.0000002575β4

+ 0.0000000012755β5 3◦ ≤ β ≤ 87◦
h/R2 = 0.001
� = 0.0089055+ 0.009064β − 0.00042673β2

+ 0.00001244β3 − 0.0000001694β4

− 0.0000000008554β5 3◦ ≤ β ≤ 87◦
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TABLE 20-18 (continued) NATURAL FREQUENCIES OF CONICAL SHELLS WITH BENDINGa

4. Frustum of cone (open conical shell) with clamped edges

Natural
Frequency (ω) Frequency Parameter

� j

S1

[
E

2(1+ ν)ρ∗
]1/2

S1 = R1/ sinα
Solution also
applicable to
annular disks:
α = 90◦

Axisymmetric Torsional Mode
η = R2/R1 1.0 ≤ η ≤ 50
�1 = 3.0909+ 0.06098η − 0.001923η2 + 0.000019652η3

�2 = 6.23083+ 0.046874η− 0.00125η2 + 0.000011594η3

�3 = 9.38016+ 0.036212η− 0.0008112η2 + 0.000006657η3

�4 = 12.52926+ 0.028825η− 0.0005425η2 + 0.000003902η3

�5 = 15.6766+ 0.02366η− 0.000374482η2

+ 0.000002283η3

� j = � j

η − 1

� j is independent of α and is the solution
of J1(�)Y1(η�) = J1(η�)Y1(�).
j indicates the j th root of the equation.

5. Frustum of cone (open conical shell) with free edges

�n

R2

[
E

ρ∗(1− ν2)

]1/2

For one half wave in the mode shape along L

h2

12R2
2

n(n2 − 1)

(n2 + cos2 α)1/2

[
1+ 6(1− R1/R2)

n − 2
sin

3α

2

]

n = 2, 3, 4, . . . α < 60◦

See Ref. [20.10] for other modes.
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TABLE 20-18 (continued) NATURAL FREQUENCIES OF CONICAL SHELLS WITH BENDINGa

6. Frustum of cone (open conical shell) with clamped–free edges (upper edge clamped)

Natural
Frequency (ω) Frequency Parameter

�

R2

(
E

ρ∗

)1/2

For Lowest Axisymmetric Mode for ν = 0.3

γ = 12(1− ν2)(R2/h)2/ tan4 α η = log γ �2 = 10K

R1/R2 = 0.1

K =




1.2568− 1.0406η− 0.0442826η2 + 0.07858η3

+ 0.06301η4

1.38211− 1.5298η + 0.57211η2 − 0.09466η3

+ 0.0054478η4

−0.1731

R1/R2 = 0.2

K =




1.434614− 1.0208η + 0.02603η2

+ 0.070555η3

2.4628− 2.8499η+ 1.1124η2 − 0.1499η3

−0.7692

R1/R2 = 0.3

K =




1.66798− 1.03017η + 0.004725η2

+ 0.064098η3

15.554− 26.4455η + 18.0405η2 − 6.1084η3

+ 1.01534η4 − 0.0657η5

−0.7692

R1/R2 = 0.4

K =




1.9051− 1.02472η+ 0.017246η2 + 0.02796η3

+ 0.004479η4

3.4879− 3.01358η+ 0.86266η2 − 0.08218η3

−0.01538

−1 ≤ η < 1.25

1.25 ≤ η ≤ 2.75
2.75 < η ≤ 4

−1 ≤ η < 1.25
1.25 < η ≤ 2.5
2.75 < η ≤ 4

− 1 ≤ η < 1.75

1.75 ≤ η ≤ 3.25
3.25 < η ≤ 4

− 1 ≤ η < 2.5
2.5 ≤ η ≤ 3.25

3.25 < η ≤ 4
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TABLE 20-18 (continued) NATURAL FREQUENCIES OF CONICAL SHELLS WITH BENDINGa

Natural
Frequency (ω) Frequency Parameter

R1/R2 = 0.5

K =




2.25325− 1.00933η − 0.015067η2

+ 0.02883η3

−100.85114+ 189.11171η− 138.6594η2

+ 49.9954η3 − 8.8953η4 + 0.6261η5

R1/R2 = 0.6

K =




2.6292− 1.03156η − 0.02928η2 + 0.01584η3

+ 0.007319η4

−277.2174+ 506.6892η− 365.6982η2

+ 130.7203η3 − 23.17983η4

+ 1.632534η5

R1/R2 = 0.7

K =




3.1251− 1.00322η − 0.002791η2

+ 0.001848η3

−11.5472+ 12.7924η − 4.3464η2

+ 0.4693η3

R1/R2 = 0.8
K = 3.8484− 1.0395η − 0.01532η2 + 0.01456η3

− 1 ≤ η < 2

2 ≤ η ≤ 3.5

− 1 ≤ η < 2.25

2.25 ≤ η ≤ 3.5

− 1 ≤ η < 2.5

2.5 ≤ η ≤ 3.25

− 1 ≤ η ≤ 3

aAdapted from Ref. [20.6].
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TABLE 20-19 NATURAL FREQUENCIES OF SPHERICAL SHELLSa

Notation

E = modulus of elasticity
ρ∗ = mass per unit volume
h = thickness of shell
ω = natural frequency

i, j = integer indices, i, j = 0, 1, 2, . . .
ν = Poisson’s ratio
R = radius of sphere or spherical segment
�2 = frequency parameter

�r ,�t ,�r t = frequency parameters for radial, torsional, and coupled
radial–torsional modes, respectively

(ωi j )p = natural frequency of plate in bending
corresponding to projection of shell
and with same boundary conditions as shell;
(ωi j )p can be obtained from Chapter 18

Unless specified otherwise, the vibration modes are general responses (i.e., they
do not pertain to torsional, radial, or tangential modes in particular).

ω2 = E�2

ρ∗(1− ν2)R2
where �2 = �2 or �2

r or �2
t or �2

r t as appropriate.

κ = h2

12R2
ξ = 1/κ

k1 = 1+ κ kr = 1+ 1.8κ r = i(i + 1) i = 0, 1, 2, . . .

Case Frequency Parameter

1.
Complete spherical
shells

FUNDAMENTAL RADIAL MODE
Membrane analysis

�2
r =

2(1+ ν)
1+ h2/(12R2)

Bending analysis (solve for �2
r ):

2.4�6
r k1(kr k1 − 4κ)/(1− ν)

−�4
r {(kr k1 − 4κ)[r + 4.8(1+ ν)/(1− ν)]
+ k1[ξ(1+ 3κ)+ 3+ 1.8κ
+ 4.8(1+ 1.4κ)(r/(1− ν)− 1]}

+�2
r {4(1+ ν)(2− r)
+ kr [r(r − 3− ν)+ 4.4(1+ ν)(r − 2)]
+ k1[2.4r(r + 4ν)/(1− ν)+ r(r + ξ + ν)
+ (1+ 3ν)(ξ − 2.4)− (1− ν)]}

− (r − 2)[r(r − 2)+ 2.4(1+ ν)(r − 1+ ν)
+ (1− ν2)(ξ + 1)] = 0

TABLE 20-19 Natural Frequencies of Spherical Shells 1317



TABLE 20-19 (continued) NATURAL FREQUENCIES OF SPHERICAL SHELLSa

Case Frequency Parameter

TORSIONAL MODES

�2
t =

(1− ν)(i2 + i − 2)

2+ 5h2/(6R2)

RADIAL–TANGENTIAL MODES
Membrane analysis:
�2

rt = 1
2 {(i2 + i + 1+ 3ν)∓ [(i2 + i + 1+ 3ν)2

− 4(1− ν2)(i2 + i − 2)]1/2}
Bending analysis (solve for �2

rt):
4.8�4

rt(kr k1 − 4κ)/(1− ν)− 2�2
rt[ξ(1+ 3κ)

+ 3+ 1.8κ + 2.4(1+ 1.4κ)(r − 2)]
+ (1− ν)(r − 2)[ξ + 1+ 1.2(r − 2)] = 0

2.
Deep spherical
shell segments

�2 = (i2 − 1)2i2(1− ν2)

3(1+ ν)
(

h

R

)2 s1i

s2i

s1i = 1

8

{
[tan(φ0/2)]2i−2

n − 1
+ 2[tan(φ0/2)]2i

n

+ [tan(φ0/2)]2i+2

n + 1

}

s2i =
∫ φ0

0

(
tan

φ0

2

)2i [
(i + cosφ)2

+ 2(sinφ)2
]

sinφ dφ

3.
Shallow spherical
shell segments

�2 =
[
(ωi j )

2
p +

E

ρ∗R2

]1/2
ρ∗(1− ν2)R2

E
For a segment to be shallow, the rise of the shell d
must be less than about 1

8 of the diameter D, which is
the diameter of the smallest circle that contains the
projection. The projection can have various shapes. If
the segment is not shallow, use the formulas of case 2.

aAdapted from Ref. [20.11].
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I.1 ALGEBRAIC OPERATIONS 1321

Frequently used mathematics formulas are provided in this appendix along with brief
outlines of some useful solution procedures.

I.1 ALGEBRAIC OPERATIONS

Algebraic Laws

Commutative law: x + y = y + x, xy = yx

Associative law: x + (y + z) = (x + y)+ z,

x(yz) = (xy)z

Distributive law: z(x + y) = zx + zy

(I.1)

Exponents

Here a = basis and n = exponent:

an = a · a · · · a (n times)

a0 = 1 if a �= 0, an · bn = (ab)n

am · an = am+n, am/an = am−n

(am)n = am·n, (a + b)2 = a2 + 2ab + b2

a2 − b2 = (a + b) · (a − b), (a + b)3 = a3 + 3a2b + 3ab2 + b3

Roots

Here n = exponent and c = root:

n
√

a = c

n
√

a = a1/n,
n
√

an = a, n
√

am·n = am,
n
√

a · b = n
√

a · n
√

b

n
√

a/b =
n
√

a
n
√

b
, n

√
1/a = 1

n
√

a
= a−1/n,

n
√

am = am/n (I.2)

n
√

m
√

a = n·m√a = m
√

n
√

a

m
√

a · n
√

a = a1/m · a1/n = a1/m+1/n = a(m+n)/(m·n) = m·n√
an+m

Logarithms

Basic Relationships Here b = base, a = number, and c = logarithm:

logb a = c

logb a = c↔ bc = a (I.3)
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logb b = 1 (because b1 = b), logb 1 = 0 (because b0 = 1)

logb 0 = −∞ (because lim
c→−∞ bc = 0)

Rules for Calculation

logb(c · d) = logb c + logb d, logb an = n · logb a

logb
c

d
= logb c − logb d, logb

n
√

a = (1/n) logb a
(I.4)

Common Logarithm Use a base of 10.

Natural (Naperian) Logarithm

loge a = ln a where e = lim
n→∞(1+ 1/n)n = 2.718281828 . . .

Transformation from One Logarithm System to Another

logb a = 1

logc b
· logc a = logb c · logc a (I.5)

Series

(See Section I.9 for more formulas for series.)

Arithmetic Series

a + (a + d)+ (a + 2d)+ · · · + [a + (n − 1)d] = 1
2 n[2a + (n − 1) · d]

Geometric Series

a + a · q + a · q2 + · · · + a · qn−1 = a · qn − 1

q − 1
, q �= 1

Infinite Geometric Series

a + a · q + a · q2 + · · · = a

1− q
for | q | < 1

n∑
i=1

i = 1

2
n(n + 1),

n∑
i=1

i2 = 1

3
n(n + 1)

(
n + 1

2

)
,

n∑
i=1

i3 = 1

4
n2(n + 1)2

(I.6)

Binomial Series A binomial series is a polynomial expansion of the nth (n is a
positive integer) power of the sum of two quantities.
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Binomial Theorem

(a ± b)n =
(

n

0

)
an ±

(
n

1

)
an−1b1 +

(
n

2

)
an−2b2 ±

(
n

3

)
an−3b3 + · · · (I.7a)

+ (±1)n−1
(

n

n − 1

)
a1bn−1 + (±1)nbn, n = 1, 2, 3, . . .

Binomial Coefficients
(

n

0

)
= 1,

(
n

1

)
= n,

(
n

2

)
= n · (n − 1)

2 · 1 ,

(
n

3

)
= n(n − 1)(n − 2)

3 · 2 · 1 , . . .

(
n

n

)
= 1,

(
n

k

)
= n!

k! (n − k)! , n! = n · (n − 1) · · · 2 · 1 (n factorial)

0! = 1,

(
n

n − k

)
=

(
n

k

)
,

(
n

n − 1

)
= n

If x , m are real numbers, k is an integer:

(1± x)m = 1±
(

m

1

)
x +

(
m

2

)
x2 ±

(
m

3

)
x3 + · · · (I.7b)

where

(
m

k

)
=




m(m − 1) · · · (m − k + 1)

k! for k > 0

1 for k = 0

0 for k < 0

This series, for



m = 0, 1, 2, . . . (i.e., m is an integer) and x of any value is a finite series

m �= 0, 1, 2, . . . (i.e., m is not an integer) and | x | < 1 is an infinite
convergent series

m �= 0, 1, 2, . . . (i.e., m is not an integer) and | x | > 1 is an infinite
divergent series

I.2 COMPLEX NUMBERS

Here z = x + iy, where i = √−1, x = real number (real part), and y = real number
(iy is the imaginary part). The complex number is designated z, and z = x + iy, z̄ =
x − iy are conjugate complex numbers.

A complex number may be represented as a vector in the xy plane (complex
plane z) as shown in Fig. I-1.
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Figure I-1: Complex plane z.

Rules for Calculations

z1 + z2 = (x1 + x2)+ i(y1 + y2)

z = x + iy = | z |(cosβ + i sinβ) = | z |eiβ (I.8)

z̄ = x − iy = | z |(cosβ − i sinβ) = | z |e−iβ

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1y2 + i(x1y2 + x2y1)

zn = (x + iy)n = [| z |(cosβ + i sinβ)]n = | z |neinβ (I.9)

z̄n = (x − iy)n = [| z |(cosβ − i sinβ)]n = | z |ne−inβ

n
√

z = n
√

x + iy = n
√| z |

(
cos

β + 2kπ

n
+ i sin

β + 2kπ

n

)
= n

√| z |ei(β+2kπ)/n

for k = 0, 1, 2, . . . , n − 1

I.3 PLANE TRIGONOMETRY

Definitions

One degree equals 1
360 of one complete rotation.

One hundred eighty degrees equals π radians.
One radian equals the angle at the center of a circle corresponding to an arc of
length equal to the radius of the circle (Fig. I-2).
An acute angle is an angle between 0 and 90◦.
An obtuse angle is an angle between 90◦ and 180◦.
Acute angle α (Fig. I-3a):

sinα = a/c, cosα = b/c, tanα = a/b

cotα = b/a, secα = c/b, cscα = c/a
(I.10a)
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Figure I-2: Radian.

Figure I-3: (a) Acute angle α, right triangle; (b) arbitrary angle α.

Arbitrary angle α (Fig. I-3b):

sinα = y/r, cosα = x/r, tanα = y/x

cotα = x/y, secα = r/x, cscα = r/y
(I.10b)

The graphs of the basic trigonometric functions are shown in Fig. I-4.

Laws of Sines, Cosines, and Tangents

Refer to Fig. I-5:

Law of sines: a/ sinα = b/ sinβ = c/ sin γ

Law of cosines: a2 = b2 + c2 − 2bc cosα

b2 = a2 + c2 − 2ac cosβ

c2 = a2 + b2 − 2ab cos γ

Law of tangents:
a + b

a − b
= tan 1

2 (α + β)
tan 1

2 (α − β)

(I.11)
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Figure I-4: Basic trigonometric functions.

Figure I-5: Arbitrary triangle.

Identities

Area A = √
s(s − a)(s − b)(s − c) (Heron’s formula)

s = 1
2 (a + b + c)

sin(α ± β) = sinα cosβ ± cosα sinβ,

cos(α ± β) = cosα cosβ ∓ sinα sinβ

tan(a ± β) = tanα ± tanβ

1∓ tanα tanβ
, (I.12)

cot(α ± β) = cotα cotβ ∓ 1

cotβ ± cotα

sin(α + β) sin(α − β) = cos2 β − cos2 α,

cos(α + β) cos(α − β) = cos2 α − sin2 β

sin2 α + cos2 α = 1

sin 2α = 2 sinα cosα

cos 2α = cos2 α − sin2 α = 1− 2 sin2 α = 2 cos2 α − 1



I.3 PLANE TRIGONOMETRY 1327

tan 2α = 2 tanα

1− tan2 α
= 2

cotα − tanα
(I.13a)

cot 2α = cot2 α − 1

2 cotα
= cotα − tanα

2

sinα = 2 sin
α

2
cos

α

2

cosα = cos2 α

2
− sin2 α

2

= 1− 2 sin2 α

2
= 2 cos2 α

2
− 1 (I.13b)

tanα = 2 tan(α/2)

1− tan2(α/2)
= 2

cot(α/2)− tan(α/2)

cotα = cot2(α/2)− 1

2 cot(α/2)
= cot(α/2)− tan(α/2)

2

sinα = ±
√

1− cos 2α

2

cosα = ±
√

1+ cos 2α

2
(I.13c)

tanα = ±
√

1− cos 2α

1+ cos 2α
= sin 2α

1+ cos 2α
= 1− cos 2α

sin 2α

sin
α

2
= ±

√
1− cosα

2

cos
α

2
= ±

√
1+ cosα

2
(I.13d)

tan
α

2
= ±

√
1− cosα

1+ cosα
= 1− cosα

sinα
= sinα

1+ cosα

sinα + sinβ = 2 sin
α + β

2
cos

α − β
2

sinα − sinβ = 2 cos
α + β

2
sin

α − β
2

cosα + cosβ = 2 cos
α + β

2
cos

α − β
2

(I.14)

cosα − cosβ = −2 sin
α + β

2
sin

α − β
2

sin2 α = 1
2 (1− cos 2α), cos2 α = 1

2 (1+ cos 2α)
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(a) (b)

b

a

ch b

a

c

h

m

n

�� ��

��

Figure I-6: (a) Equilateral triangle; (b) right triangle. The radius of the inscribed circle is r
and of the circumscribed circle is R.

Equilateral Triangle (Fig. I-6a)

α = β = γ = 60◦, a = b = c

Area = 1
4 a2

√
3, r = 1

6 a
√

3, R = 1
3 a
√

3 (I.15)

h = 1
2 a
√

3

Right Triangle (Fig. I-6b)

α + β = γ = 90◦, c2 = a2 + b2 (Pythagorean formula) a = √
(c + b)(c− b)

Area = 1

2
ab, r = ab

a + b + c
, R = 1

2
c, h = ab

c

Let n be on the a side of c, and m on the b side. m + n = c

m = b2

c
, n = a2

c
(I.16)

Inverse Trigonometric Functions

Definitions

Trigonometric Function Corresponding Inverse Principal Values

y = sinα α = sin−1 y = arcsin y −1

2
π ≤ α ≤ +1

2
π

y = cosα α = cos−1 y = arccos y 0 ≤ α ≤ π

y = tanα α = tan−1 y = arctan y −1

2
π < α < +1

2
π

y = cotα α = cot−1 y = arccot y 0 < α < π

(I.17)

Thus, α is the arc of an angle for which the trigonometric function is y.
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Identities

sin−1 y + cos−1 y = 1
2π, tan−1 y + cot−1 y = 1

2π

sin−1(−y) = − sin−1 y, tan−1(−y) = − tan−1 y

cos−1(−y) = π − cos−1 y, cot−1(−y) = π − cot−1 y

(I.18)

Graphs of the inverse trigonometric functions are shown in Fig. I-7. The solid lines
in Fig. I-7 correspond to the principal values of the argument α. The dashed lines,
which correspond to other values of the argument α, are based on the relationships

sin(α + 2kπ) = sinα, cos(α + 2kπ) = cosα

tan(α + kπ) = tanα, cot(α + kπ) = cotα
(I.19)

where k = ±0, 1, 2, 3, . . . .

Figure I-7: Inverse trigonometric functions.
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Exponential Relations: Euler’s Equation

eiα = cosα + i sinα, i = √−1

sinα = eiα − e−iα

2i
, cosα = eiα + e−iα

2

(I.20)

I.4 HYPERBOLIC FUNCTIONS

Definitions
Hyperbolic sine of x = sinh x = 1

2 (e
x − e−x)

Hyperbolic cosine of x = cosh x = 1
2 (e

x + e−x)

Hyperbolic tangent of x = tanh x = ex − e−x

ex + e−x

Hyperbolic cotangent of x = coth x = ex + e−x

ex − e−x

Hyperbolic secant of x = sech x = 2

ex + e−x

Hyperbolic cosecant of x = csch x = 2

ex − e−x

(I.21)

The graphs of the hyperbolic functions are shown in Fig. I-8.

Identities

cosh2 x − sinh2 x = 1, tanh x = sinh x

cosh x

sech x cosh x = 1, tanh2 x + sech2x = 1

coth x = cosh x

sinh x

csch x sinh x = 1, coth2x − csch2x = 1

tanh x coth x = 1, sinh(−x) = − sinh x

tanh(−x) = − tanh x,

cosh(−x) = cosh x, sech (−x) = sech x

coth(−x) = − coth x, csch (−x) = −csch x

sinh(x ± y) = sinh x cosh y ± cosh x sinh y

cosh(x ± y) = cosh x cosh y ± sinh x sinh y

e±x = cosh x ± sinh x

(I.22)
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Figure I-8: Hyperbolic functions.

I.5 COORDINATE SYSTEMS

Rectangular Coordinate System

The rectangular coordinates of a point P are x, y, z, the distances of P from the
yz, xz, and xy planes, respectively (Fig. I-9). If there are three points P1, P2, P3 =
P1(x1, y1, z1), P2(x2, y2, z2), P3(x3, y3, z3), the following definitions are useful:

Distance between P1 and P2 is calculated as

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (I.23)

P1, P2, P3 are collinear if and only if

x2 − x1

x3 − x1
= y2 − y1

y3 − y1
= z2 − z1

z3 − z1
(I.24a)
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Figure I-9: Coordinates.

P1, P2, P3, P4 are coplanar if and only if a determinant vanishes; that is,

∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣
= 0 (I.24b)

If point P3 divides P1, P2 as shown in Fig. I-10, P3 would have the coordinates

ax2 + bx1

a + b
,

ay2 + by1

a + b
,

az2 + bz1

a + b
(I.25)

In particular, when a = b, P3 is the midpoint of P1 P2 given by 1
2 (x1 + x2),

1
2 (y1 + y2), 1

2 (z1 + z2).
The relationships between rectangular and other common coordinate systems are

listed in Table I-1.

Figure I-10: Straight lines. Point P3 divides P1 P2 into lengths a and b.
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Figure I-11: Notation.

Direction Cosines

The three angles between a line P1 P2 and the coordinate axes x, y, z are called the
direction angles of the line, denoted α, β, and γ .

The direction cosines of line P1 P2 are designated

nx = cosα = x2 − x1

d
, ny = cosβ = y2 − y1

d
, nz = cos γ = z2 − z1

d
(I.26)

where d is the length of the line (distance between P1 and P2). Here x1, y1, z1 are
the coordinates of P1 and x2, y2, z2 are those of P2. The direction cosines for a line
lying in the xy plane are depicted in Fig. I-11.

Identity:

cos2 α + cos2 β + cos2 γ = 1 (I.27)

or

n2
x + n2

y + n2
z = 1

Unit Vectors on a Boundary Curve

For a boundary curve lying in the xy plane as shown in Fig. I-12a, the vector n is
the unit outward normal n = nx i+ nyj and t is the unit tangent vector t = tx i+ tyj,
where i and j are unit vectors along the x and y axes. The quantity s, the coordi-
nate along the arc of the boundary, increases in the counterclockwise sense. The
unit tangent vector t is directed along increasing s. Since n and t are unit vectors,
n2

x + n2
y = 1 and t2

x + t2
y = 1. The components of n are its direction cosines, that is,

from Eq. (I.26) with d = 1 or Fig. I-12b.

nx = cosα and ny = cosβ (I.28)

since, for example, cosβ = ny/
√

n2
x + n2

y = ny.
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Figure I-12: Geometry of unit normal and tangential vectors: (a) normal and tangential
unit vectors on the boundary; (b) components of the unit normal vector; (c) unit normal and
tangential vectors; (d) differential components.
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From Fig. I-12c,

cosϕ = nx , sinϕ = ny

sinϕ = −tx , cosϕ = ty (I.29)

so that

nx = ty, ny = −tx (I.30)

and the unit outward normal is defined in terms of the components tx and ty of the
unit tangent as

n = ty i− tx j = t× k (I.31)

From Fig. I-12d,

sinϕ = −dx

ds
and cosϕ = dy

ds

Thus,

nx = ty = dy

ds
, ny = −tx = −dx

ds
(I.32)

The vector r to any point on the boundary (Fig. I-12a) is

r = x i+ y j

Then

dr = dx i+ dy j =dr
ds

ds =
(

dx

ds
i+ dy

ds
j
)

ds = t ds (I.33)

Curvature Formulas

With respect to rectangular coordinates (Fig. I-13a), curvature κ is calculated as

κ = lim
�s→0

�α

�s
= dα

ds
= y′′

(1+ y ′2)3/2
,

where y = y(x), ′ = d

dx
, and ′′ = d2

dx2
(I.34)

With respect to polar coordinates (Fig. I-13b),

κ = ρ2 + 2ρ
′2 − ρρ ′′

(ρ2 + ρ ′2)3/2 where ρ = ρ(θ)
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Figure I-13: Curvatures.

Radius of curvature R is calculated as

R = 1

| κ | =
∣∣∣∣ ds

dα

∣∣∣∣
With respect to rectangular coordinates,

R =
∣∣∣∣∣
(1+ y

′2)3/2

y′′

∣∣∣∣∣ (I.35a)

With respect to polar coordinates,

R =
∣∣∣∣∣
(ρ2 + ρ ′2)3/2
ρ2 + 2ρ ′2 − ρρ ′′

∣∣∣∣∣ (I.35b)

Basic Formulas in Plane Analytic Geometry

Area of a triangle with the vertices P1(x1, y1), P2(x2, y2), and P3(x3, y3) (Fig. I-14):

A = 1

2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ (I.36)

Figure I-14: Triangle made of three points P1, P2, and P3.
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Distance between two points P1(x1, y1) and P2(x2, y2) (Fig. I-11):

d =
√
(x2 − x1)2 + (y2 − y1)2

tanα = y2 − y1

x2 − x1

cosα = x2 − x1

d

cosβ = y2 − y1

d

(I.37)

Equation of a line (Fig. I-11):

y = mx + b, slope of P1 P2, m = tanα = y2 − y1

x2 − x1
(I.38)

Translation of coordinates (Fig. I-15a):

x = x ′ + a or x ′ = x − a

y = y′ + b or y′ = y − b
(I.39)

Rotation (Fig. I-15b):

x = x ′ cosα − y′ sinα, x ′ = x cosα + y sinα

or

y = x ′ sinα + y′ cosα, y′ = −x sinα + y cosα (I.40)

Translation and rotation (Fig. I-15c):

x = x ′ cosα − y′ sinα + a, x ′ = (x − a) cosα + (y − b) sinα

or

y = x ′ sinα + y′ cosα + b, y′ = −(x − a) sinα + (y − b) cosα (I.41)

Figure I-15: (a) Translation; (b) rotation; (c) translation and rotation.
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I.6 QUADRATIC EQUATIONS

Ax2 + Bx + C = 0, x1,2 = 1

2A

(
− B ±

√
B2 − 4AC

)

x2 + px + q = 0, x1,2 = 1

2

(
− p ±

√
p2 − 4q

) (I.42)

I.7 SYSTEM OF LINEAR EQUATIONS
Determinants

D = | aik | =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣
(I.43)

where i = row number and k = column number. Here aik indicates the element
in the i th row and the kth column. An exchange of the columns and rows does not
affect the value of the determinant:

| aik | = | aki |
An exchange of two rows or two columns changes the sign of the determinant. If all
the elements of one row (column) are k times the corresponding elements of another
row (column), then D = 0. The addition of the elements of one row (column) to the
elements of another row (column) does not change the value of the determinant.

The minor Dik of the element aik is the determinant obtained from D by removing
the i th row and the kth column from Eq. (I.43). The cofactor Aik of the element aik
is its minor multiplied by (−1)i+k , or

Aik = (−1)i+k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1,k−1 a1,k+1 · · · a1,n

... · · · ...
...

...
...

ai−1,1 · · · ai−1,k−1 ai−1,k+1 · · · ai−1,n

ai+1,1 · · · ai+1,k−1 ai+1,k+1 · · · ai+1,n

...
...

...
...

an,1 · · · an,k−1 an,k+1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(I.44)

where a1,1 = a11, a1,n = a1n , an,n = ann , and so on.

Expansion of Terms of Cofactors A determinant can be represented in terms
of the elements and cofactors of any row j or column j as follows:

D = det(aik) = | aik | =
n∑

i=1

ai j Ai j =
n∑

k=1

a jk A jk ( j = 1, 2, 3, . . . , n) (I.45)
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For example,

D =
∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12

D =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22
a31 a32

∣∣∣∣
= a11(a22a33 − a32a23)− a12(a21a33 − a31a23)+ a13(a21a32 − a31a22)

= a11a22a33 + a12a23a31 + a13a21a32 − a12a21a33 − a11a23a32 − a13a22a31
(I.46)

Sarrus Scheme for Evaluating a 3 × 3 Determinant The first two columns
are written to the right of the determinant. The three-term products of the main di-
agonals are summed and the three-term products of the opposing diagonals are sub-
tracted:

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

| aik | = a11a22a33 + a12a23a31

+ a13a21a32 − a12a21a33

− a11a23a32 − a13a22a31

(I.47)

Cramer’s Rule

Consider the system of linear equations

a11 · x1 + a12 · x2 + · · · + a1n · xn = b1

a21 · x1 + a22 · x2 + · · · + a2n · xn = b2

...
...

...
...

an1 · x1 + an2 · x2 + · · · + ann · xn = bn

(I.48a)

The system of equations has a unique solution if D = | aik | �= 0.
Cramer’s rule provides a solution in the form

x1 = D1

D
, x2 = D2

D
, . . . , xn = Dn

D
(I.48b)

with the determinants

D1 =

∣∣∣∣∣∣∣∣∣∣∣

b1 a12 · · · a1n

b2 a22 · · · a2n

...
...

...

bn an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣

(first column of D is replaced by right
side of system of equations)
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D2 =

∣∣∣∣∣∣∣∣∣

a11 b1 · · · a1n

a21 b2 · · · a2n
...

...
...

an1 bn · · · ann

∣∣∣∣∣∣∣∣∣
(second column of D is replaced by

right side of system of equations)

etc.

Example I.1 Cramer’s Rule Find the solution of the following equations:

2.5x1 − 3.1x2 = 7.2

1.5x1 + 4.2x2 = 5.0
(1)

From Eqs. (I.48b),

D =
∣∣∣∣2.5 −3.1
1.5 4.2

∣∣∣∣ = 2.5× 4.2− (−3.1)× 1.5 = 15.15

D1 =
∣∣∣∣7.2 −3.1
5.0 4.2

∣∣∣∣ = 7.2× 4.2− (−3.1)× 5.0 = 45.74

D2 =
∣∣∣∣2.5 7.2
1.5 5.0

∣∣∣∣ = 2.5× 5.0− 7.2× 1.5 = 1.7

(2)

we obtain

x1 = D1

D
= 3.01914, x2 = D2

D
= 0.1122 (3)

I.8 DIFFERENTIAL AND INTEGRAL CALCULUS

Basic Operations

The derivative of the sum of two functions f and g equals the sum of derivatives:

( f + g)′ = f ′ + g′ (I.49a)

where the superscript prime indicates a derivative. A constant a is factored out of the
derivative,

(a f )′ = a( f ′) (I.49b)

For constants a and b and functions f and g there exist the following operations:
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Addition of functions: (a f + bg)′ = a f ′ + bg′

Product of functions: ( f g)′ = f ′g + f g′

Division of functions:

(
f

g

)′
= f ′g − f g′

g2

Function of a function:
d

dx
f [g(x)] = d f (g)

dg

dg(x)

dx

(composite function)

Inverse function: If y′(x) exists, then x ′(y) = 1/y′(x)

(I.49c)

Refer to Table I-2 for differentiation formulas of common functions.

Differentiation of Functions with Multiple Variables

d f (x1, x2, . . . , xn) =
(
∂ f

∂x1

)
dx1 +

(
∂ f

∂x2

)
dx2 + · · · +

(
∂ f

∂xn

)
dxn (I.50a)

If x2, . . . , xn are functions of x1,

d f (x1, x2, . . . , xn)

dx1
= ∂ f

∂x1
+ ∂ f

∂x2

dx2

dx1
+ · · · + ∂ f

∂xn

dxn

dx1
(I.50b)

The derivative d f (x)/dx equal to zero at x0,∣∣∣∣d f

dx

∣∣∣∣
x=x0

= 0 (I.51a)

is a necessary condition for f to have a stationary value at x0. There are three pos-
sible types of such points: a minimum, a maximum, and a point of inflection. To
learn which occurs at x = x0:

Minimum if d2 f/dx2 > 0

Maximum if d2 f/dx2 < 0

Point inflection if d2 f/dx2 = 0




evaluated at x = x0 (I.51b)

Integral Formulas

See Table I-3 for common integral formulas.

Integral Theorems

Integration-by-Parts Formula
∫ b

a
u(x)v′(x) dx = u(x)v(x)|ba −

∫ b

a
v(x)u′(x) dx (I.52a)
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or

∫ b

a
u dv = uv|ba −

∫ b

a
v du (I.52b)

where u′(x) = du/dx , v′(x) = dv/dx , and u(x) and v(x)must be differentiable for
a ≤ x ≤ b.

Green’s Formula
∮

C
P(x, y) dx +

∮
C

Q(x, y) dy =
∫∫

A

(
∂Q

∂x
− ∂P

∂y

)
dx dy (I.53)

where C is the boundary of region A,
∮

C is the line integration along C , and P , Q,
∂P/∂y, and ∂Q/∂x are continuous in the region A. Sometimes this is referred to as
a Gauss integral theorem.

Based on Green’s formula, the integration-by-parts formula for two-dimensional
problems can be written as

∫∫
A

R
∂Q

∂x
dA =

∮
C

Q Rnx ds −
∫∫

A
Q
∂R

∂x
dA (I.54)

where Q = Q(x, y), R = R(x, y), and dA = dx dy, a surface element. The quantity
s is a coordinate along the contour of the cross section. Also, nx is the direction
cosine between the outward normal and the x axis.

Gauss Integral Theorem (Divergence Theorem)
∫

V
div v dV =

∫
S

v · n dS (I.55a)

where V is the volume enclosed by surface S, v = [vx vy vz]T is an arbitrary
vector differentiable in V with continuous partial derivatives, n = [nx ny nz]T =
[cosα cosβ cos γ ]T is a unit vector at a point on S and is the outward normal to S,
and

div v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
(I.55b)

is the divergence of v. Also, α, β, and γ are the angles between the outward normal
and the coordinates x , y, and z, and v · n represents the dot product v · n = vx nx +
vyny + vznz . On S it is sufficient that the integral exists.

In expanded notation, Eq. (I.55a) becomes

∫
V

(
∂vx

∂x
+ ∂vy

∂y
+ ∂v2

∂z

)
dV =

∫
S
(vxnx + vyny + vznz) dS (I.55c)
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where dV = dx dy dz in rectangular coordinates and dS is a surface element area
on S.

I.9 LAPLACE TRANSFORM

The Laplace transform of a function f (t), denoted by L{ f (t)} or F(s), is defined as

L{ f (t)} = F(s) =
∫ ∞

0
e−st f (t) dt (I.56)

where f (t) is defined for positive t , s is complex s = x + iy. Table I-4 gives several
Laplace transform pairs, f (t) and F(s).

I.10 REPRESENTATION OF FUNCTIONS BY SERIES

See Section I.1 for some algebraic series.

Taylor’s Series for Single Variable

If a function f (x) is continuous and single-valued and has all derivatives on an in-
terval including x = x0 + h, then

f (x0 + h) = f (x0)+ f ′(x0)

1! h + f ′′(x0)

2! h2 + · · · + f (n)(x0)

n! hn + Rn (I.57)

where f ′ = d f/dx ,

Rn = f (n+1)(x0 + θh)

(n + 1)! hn+1, 0 < θ < 1

Maclaurin’s Series

The Taylor expansion for the special case x0 = 0 and h = x gives Maclaurin’s series
expansion:

f (x) = f (0)+ x

1! f ′(0)+ x2

2! f ′′(0)+ · · · + xn

n! f (n)(0)+ Rn (I.58)

where

Rn = xn+1

(n + 1)! f (n+1)(θx), 0 < θ < 1
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Taylor’s Series for Two Variables

Taylor’s series for a function of two variables is

f (x + a, y + b) = f (x, y)+ 1

1!D1[ f (x, y)]

+ 1

2!D2[ f (x, y)] + · · · + 1

n!Dn[ f (x, y)] + Rn (I.59)

where

Dn[ f (x, y)] =
(

a
∂

∂x
+ b

∂

∂y

)n

[ f (x, y)] =
n∑

i=1

(
n

i

)
an−i bi ∂

n f (x, y)

∂xn−i ∂yi

and

Rn = 1

(n + 1)!Dn+1[ f (x + θ1a, y + θ2b)] 0 < θ1 < 1, 0 < θ2 < 1

Let x = y = 0 in the equation above and a = x, b = y. Then

f (x, y) = f (0, 0)+ 1

1!D1[ f (0, 0)] + 1

2!D2[ f (0, 0)] + · · · + 1

n!Dn[ f (0, 0)] + Rn

(I.60)

where

Dn =
(

x
∂

∂x
+ y

∂

∂y

)n

and Rn = 1

(n + 1)!Dn+1[ f (θ1x, θ2 y)]

0 < θ1 < 1, 0 < θ2 < 1

Fourier Series

Let f (x) be a periodic function in the interval [−�, �] and let
∫ �
−� | f (x) | dx exist.

Then the Fourier series of the function f (x) is

f (x) = a0

2
+
∞∑

n=1

(
an cos

nπ

�
x + bn sin

nπ

�
x
)

(I.61)

where

an = 1

�

∫ �

−�
f (x) cos

nπ

�
x dx (n = 0, 1, 2, . . . )

bn = 1

�

∫ �

−�
f (x) sin

nπ

�
x dx (n = 1, 2, 3, . . . )
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Series Expansions of Some Common Functions

The series expansion of functions can be obtained by using either the Taylor or
Maclaurin theorems. Series expansions of some common functions are given here:

ex = 1+ x

1! +
x2

2! + · · · +
xn

n! + · · · (−∞ < x < +∞)

ax = 1+ x ln a + (x ln a)2

2! + (x ln a)3

3! + · · ·

sin x = x − x3

3! +
x5

5! −
x7

7! + · · · (−∞ < x < +∞)

cos x = 1− x2

2! +
x4

4! −
x6

6! + · · · (−∞ < x < +∞)

tan x = x + x3

3
+ 2x5

15
+ 17x7

315
+ 62x9

2835
+ · · · (| x | < 1

2π)

sinh x = x + x3

3! +
x5

5! +
x7

7! + · · · (−∞ < x < +∞)

cosh x = 1+ x2

2! +
x4

4! +
x6

6! + · · · (−∞ < x <∞) (I.62)

esin x = 1+ x + x2

2! −
3x4

4! −
8x5

5! −
3x6

6! +
56x7

7! + · · ·

ln x = 2

[
x − 1

x + 1
+ 1

3

(
x − 1

x + 1

)3

+ 1

5

(
x − 1

x + 1

)5

+ · · ·
]

(0 < x < +∞)

ln x = x − 1

x
+ 1

2

(
x − 1

x

)2

+ 1

3

(
x − 1

x

)3

+ · · · (x > 1
2 )

ln x = (x − 1)− 1
2 (x − 1)2 + 1

3 (x − 1)3 − · · · (0 < x ≤ 2)

ln(1+ x) = x − 1
2 x2 + 1

3 x3 − 1
4 x4 + · · · (−1 < x < +1)

(1± x)n = 1± nx + n(n − 1)x2

2! ± n(n − 1)(n − 2)x3

3! + · · · (| x | < 1, n > 0)

(1± x)−n = 1∓ nx + n(n + 1)x2

2! ∓ n(n + 1)(n + 2)x3

3! + · · · (| x | < 1, n > 0)

where n is a real number.
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I.11 MATRIX ALGEBRA

Definitions

A matrix is an array of elements consisting of m rows and n columns:

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


 (I.63)

If m = n, the matrix is called a square matrix; otherwise, it is a rectangular matrix.
The principal diagonal is the diagonal spanning between the upper left corner and
the lower right corner.

The transpose of a matrix A, denoted by AT , is the matrix with elements defined
as

aT
i j = a ji

That is, the rows have become corresponding columns and the columns have become
corresponding rows.

A symmetric square matrix is a matrix with the property A = AT , or ai j = a ji .
A skew-symmetric (or antisymmetric) square matrix is a matrix with the property

A = −AT , or ai j = −a ji .
A lower triangular matrix has all elements equal to zero above the principal di-

agonal.

An upper triangular matrix has all zeros as elements below the principal diagonal.
A diagonal matrix has all elements equal to zero except those along the principal

diagonal.
A null matrix is a matrix with all its elements equal to zero.

An identity matrix is a diagonal matrix with all its diagonal elements equal to 1.

Singularity, Inverse, and Rank A matrix A is singular if its determinant is
zero, |A | = 0. Otherwise, it is nonsingular.

If A is a square matrix and its determinant |A | �= 0 (nonsingular), the matrix A−1

satisfying the relation AA−1 = A−1A = I is called an inverse matrix. The inverse
matrix is unique.

The order of the largest nonzero determinant that can be obtained from the ele-
ments of a matrix is called the rank of the matrix. The trace of a square matrix A is
the sum of the diagonal elements:

tr A =
n∑

i=1

aii
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Laws

A+ B = B+ A, AB �= BA,

A[B+ C] = AB+ AC, [A+ B]C = AC+ BC

A+ (B+ C) = (A+ B)+ C, A(BC) = (AB)C,

(A+ B)T = AT + BT , (A+ B)−1 = A−1 + B−1

(AB)T = BT AT , (AB)−1 = B−1A−1, (BT )T = B, (B−1)−1 = B

tr (AB) = tr (BA), tr (ABC) = tr (BCA) = tr (CAB) (I.64)

AI = IA = A, where I =




1 0 · · · 0

0 1 · · · 0
...

...
...

0 0 · · · 1


 , I−1 = I

a(AB) = (aA)B = A(aB), a(A+ B) = aA+ aB, [0] =




0 · · · 0
...

...

0 · · · 0




(a + b)A = aA+ bA, a(bA) = (ab)A

where a, b are real numbers

aA = Aa (a · b �= 0)

If AB = 0, then A and/or B may or may not be zero.
Two square matrices A and B related by a transformation A = TT BT, where T is

nonsingular, are congruent. The congruent transformation has the property that if B
is symmetric, A will be symmetric.

Basic Operations

Addition/Subtraction

Amn ± Bmn = [ai j ] ± [bi j ] =



a11 ± b11 a12 ± b12 · · · ain ± bin
...

...
...

am1 ± bm1 am2 ± bm2 · · · amn ± bmn




(I.65a)

where Amn and Bmn are matrices A and B, each consisting of m rows and n columns.

Amn = [ai j ], Bmn = [bi j ]
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Multiplication of Two Matrices

Amn · Bnl = Cml = [Ci j ]
where

Ci j =
n∑

k=1

aikbk j (i = 1, 2, . . . ,m, j = 1, 2, . . . , l) (I.65b)

Inverse Matrix

A−1 =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

an1 an2 · · · ann




−1

= 1

|A |




A11 A21 · · · An1

A12 A22 · · · An2

...
...

...

A1n A2n · · · Ann



= adj A
|A |

(I.66)

where

|A | = det A, A jk = cofactor of element a jk [Eq. (I.44)]
and the transpose of the matrix whose elements are A jk is called the adjoint matrix
adj A.

Example I.2 Inverse of a Matrix Determine the inverse matrix of

A =
[

2.5 −3.1
1.5 4.2

]

First we find

A11 = (−1)1+1| 4.2 | = 4.2, A21 = (−1)2+1| − 3.1 | = −(−3.1) = 3.1

A12 = (−1)2+1| 1.5 | = −1.5, A22 = (−1)2+2| 2.5 | = 2.5

|A | =
∣∣∣∣2.5 −3.1
1.5 4.2

∣∣∣∣ = 15.15

From Eq. (I.66),

A−1 = adj A
|A | =

1

|A |
[

A11 A21
A12 A22

]

= 1

15.15

[
4.2 3.1
−1.5 2.5

]
=

[
0.2772 0.2046
−0.0990 0.1650

]
(1)
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The inverse matrix is often used to solve linear equations of the form

Ax = b (I.67)

A =



a11 · · · a1n
...

...

an1 · · · ann


 , |A | �= 0, x =




x1
x2
...

xn


 , b =




b1
b2
...

bn


(I.68)

x = A−1b

Example I.3 Solution of a System of Equations Solve the problem of Ex-
ample I.1 by computing the inverse matrix [i.e., use Eq. (I.68) and Eq. (1) of
Example I.2].

From Example I.1,

A =
[

2.5 −3.1
1.5 4.2

]
(1)

and from Example I.2,

A−1 =
[

0.2772 0.2046
−0.0990 0.1650

]
(2)

Then

x =
[

x1
x2

]
= A−1b =

[
0.2772 0.2046
−0.0990 0.1650

] [
b1
b2

]

=
[

0.2772 0.2046
−0.0990 0.1650

] [
7.2
5.0

]
=

[
3.01884
0.1122

]
(3)

Determinants

A = Ann matrix:

|AT | = |A |, |A−1 | = 1
|A | , | I | = 1

|AB | = |A ||B |, |AB−1 | = |A |/|B | (I.69)

|A−1B−1 | = 1/(|A ||B |)

Eigenvalues and Eigenvectors

If A is a matrix of order n, the equation

|A− λI | = 0 (I.70)
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is called the characteristic equation of the matrix A, and it is a polynomial of degree
n in λ. The roots of this equation are called the eigenvalues or characteristic values
of A.

Any vector x satisfying Ax = λx corresponding to the characteristic values λ is
called a characteristic vector or eigenvector of A. Often, the characteristic vector is
normalized to have a unit length, xT x = 1.

Example I.4 Eigenvalue Problem Determine the eigenvalues and their corre-
sponding eigenvectors of the square matrix

A =
[−2 4
−6 8

]
(1)

From |A− λI | = 0, the characteristic equation is
∣∣∣∣−2− λ 4
−6 8− λ

∣∣∣∣ = (−2− λ)(8− λ)− (4)(−6) = (λ− 2)(λ− 4) = 0 (2)

The eigenvalues are the solutions of this equation:

λ1 = 2, λ2 = 4 (3)

Let the eigenvector be

x =
[

x1
x2

]
(4)

Substitute λ1, λ2 into the equation Ax = λx:
[−2 4
−6 8

] [
x1
x2

]
= λ

[
x1
x2

]
(5)

that is,

(−2− λ)x1 + 4x2 = 0

−6x1 + (8− λ)x2 = 0
(6)

For λ = 2,

−4x1 + 4x2 = 0

−6x1 + 6x2 = 0
(7)

It is clear that x1 = x2 satisfies these two equations. There are an infinite number
of solutions and an additional condition is necessary for the solutions to be unique.
For example, if the eigenvectors are chosen such that xT x = 1,

[
x1 x2

] [x1
x2

]
= x2

1 + x2
2 = 1 (8)
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Hence x1 = x2 =
√

2 /2, or

x =
[

x1
x2

]
=

[√
2 /2√
2 /2

]
(9)

Similarly, for λ = 4, the eigenvector is

x =
[

x1
x2

]
=

[
2
√

13 /13
3
√

13 /13

]
(10)

I.12 NUMERICAL METHODS

Linear Interpolation Method to Solve f(x) = 0

The roots of an algebraic equation are desired. If f (x) is a continuous function and
two values x10, x20(x10 < x20) are chosen such that f (x10) and f (x20) are of oppo-
site sign (Fig. I-16), the line segment between [x10, f (x10)] and [x20, f (x20)] inter-
sects the x axis at

x1 = x10 f (x20)− x20 f (x10)

f (x20)− f (x10)
(I.71)

Next x1 is taken as x20, and the same iteration is followed for x10 and x1 to find x2,
then x3, and so on, until xn is obtained close to the xn−1 value within the acceptable
tolerance, which means that xn ≈ x∗, f (x∗) = 0 (Fig. I-16).

Newton’s Method

Assume that x0 is an approximate root of f (x) = 0. Calculate a better approximation
by means of

x1 = x0 − f (x0)

f ′(x0)
(I.72)

Figure I-16: Linear interpolation.
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where f ′ = d f/dx , and then use x1 as x0 and repeat this process until a desired
accuracy is achieved. The general form of Eq. (I.72) can be written as

xn+1 = xn − f (xn)

f ′(xn)
, n = 0, 1, 2, . . . (I.73)

and xn → x∗. Note that Newton’s method is used to find only the real roots of
f (x) = 0, not the complex roots.

Zeros of a Polynomial

A polynomial of degree n can be expressed as

f (x) = an xn + an−1xn−1 + · · · + a1x + a0 (I.74)

where an �= 0, an−1, . . . , a0 are real or complex numbers and n is a positive integer.
Based on Newton’s method, an iterative approximation for the location of a zero

(i.e., the roots of the polynomial equation f = 0), beginning with the approximate
value x0, can be obtained using

xi+1 = xi − an xn
i + an−1xn−1

i + · · · + a1xi + a0

nan xn−1
i + (n − 1)an−1xn−2

i + · · · + a1
, i = 0, 1, 2, . . . (I.75)

According to a fundamental theorem of algebra, Eq. (I.74) has exactly n zero lo-
cations (roots), which may be real, complex, and not necessarily distinct. Equa-
tion (I.75) is used for approximating real roots.

Example I.5 Zeros of a Polynomial Find the location of a zero of y = 2x3 −
3x2 + x − 1.

From Eq. (I.75),

xi+1 = xi − 2x3
i − 3x2

i + xi − 1

6x2
i − 6xi + 1

(1)

Choose x0 = 2.0. Then

x1 = 1.615385, x2 = 1.440559, x3 = 1.400239

x4 = 1.398166, x5 = 1.398161, x6 = 1.398161

Further iteration will not change the location significantly. Hence, it is concluded
that the location of the zero is about 1.398161. In this example, there is only one
real root, but in other cases there may be more than one real root. These roots can be
found using the same method by beginning with other approximate values. Complex
roots cannot be found by using Eq. (I.75) or Newton’s method.
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Gauss Algorithm

Gauss elimination solves a system of linear equations [Eqs. (I.35a)] using the fol-
lowing method: Multiply the first equation of the system by the coefficient−a21/a11
and then add this equation to the second equation. The first coefficient of the sec-
ond equation, denoted by a′21, is now zero. This process continues similarly with the
other equations until a′31, . . . , a

′
n1 are zero. That is, the second equation and each

following equation does not contain x1 since its coefficient is zero. Now begin with
the second equation to eliminate the coefficient of x2 in the remaining equations. In
short, for the nth equation in such a system, its first n − 1 coefficients are zero after
Gauss elimination. The end result is a system that takes the form

a11x1 + a12x2 + a13x3 + · · · + a1n xn = b1

a′22x2 + a′23x3 + · · · + a′2n xn = b′2
a′′33x3 + · · · + a′′3n xn = b′′3 (I.76)

. . .
...

...

a(n−1)
nn xn = b(n−1)

n

Now solve the final equation for xn , then the second to the last equation for xn−1,
and so on.

It can be seen that Gauss elimination contains two phases, forward elimination
and backward substitution.

Example I.6 Gauss Elimination Solve the following system of linear equations
by Gauss elimination:

5x1 + 2x2 + 3x3 + 2x4 = −1 (1)

2x1 + 4x2 + x3 − 2x4 = 5 (2)

x1 − 3x2 + 4x3 + 3x4 = 4 (3)

3x1 + 2x2 + 2x3 + 8x4 = −6 (4)

First, we use forward elimination to transform (1) to (4) into the form of Eq. (I.76).
The initial step is to eliminate the first unknown x1 from (2)–(4):

(2)− (1)× 2
5 : 16

5 x2 − 1
5 x3 − 14

5 x4 = 27
5

or

16x2 − x3 − 14x4 = 27 (5)

where (2)− (1)× 2
5 means Eq. (2) minus Eq. (1) multiplied by 2

5 . Similarly,

(3)− (1)× 1
5 : − 17

5 x2 + 17
5 x3 + 13

5 x4 = 21
5
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or

− 17x2 + 17x3 + 13x4 = 21 (6)

(4)− (1)× 3
5 : 4

5 x2 + 1
5 x3 + 34

5 x4 = − 27
5

or

4x2 + x3 + 34x4 = −27 (7)

It is seen that there are three unknowns in (5), (6), and (7). Keep (5) and eliminate
unknown x2 from (6) and (7),

(6)− (5)×
(
− 17

16

)
: 255

16 x3 − 30
16 x4 = 795

16

or

17x3 − 2x4 = 53 (8)

(7)− (5)× 4
16 : 5

16 x3 + 150
16 x4 = −135

or

x3 + 30x4 = −27 (9)

Finally, from (8) and (9), eliminate the unknown x3 in (9),

(9)− (8)× 1
17 : 512x4 = −512 (10)

Consequently, (1), (5), (8), and (10) together lead to the form of Eq. (I.76):

5x1 + 2x2 + 3x3 + 2x4 = −1

16x2 − x3 − 14x4 = 27

17x3 − 2x4 = 53

512x4 = −512

(11)

Use back substitution to solve for the unknowns from (11). This gives x4 = −1,
x3 = 3, x2 = 1, x1 = −2.

Numerical Integration

Trapezoidal rule (n is even or odd) (Fig. I-17): Define h = b − a

n
, yi = f (xi )

∫ b

a
y(x) dx =

∫ b

a
f (x) dx ≈ 1

2
h(y0 + 2y1 + 2y2 + · · · + 2yn−1 + yn)+ εT

(I.77)



I.12 NUMERICAL METHODS 1355

Figure I-17: Trapezoidal rule. Figure I-18: Rectangular formula.

Truncation error:

εT ≈ − 1
12 [nh3 f ′′(ξ)], a ≤ ξ ≤ b

Rectangular formula (Fig. I-18): Define

h = b − a

n
, yi = f (xi ), xi = a + 1

2 (2i − 1)h

∫ b

a
y dx ≈ h(y1 + y2 + · · · + yn) (I.78)

Simpson’s rule [n is even] (Fig. I-19): Define h = b − a

n
.

∫ b

a
y(x) dx =

∫ b

a
f (x) dx ≈ 1

3 h(y0 + 4y1 + 2y2 + 4y3 + · · · + 4yn−3

+ 2yn−2 + 4yn−1 + yn) (I.79)

Figure I-19: Simpson’s rule.
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TABLE I-1 RELATIONSHIPS BETWEEN COMMON COORDINATE
SYSTEMS
Translation: If the rectangular coordinate system (x, y, z) translates to a point
0′(a, b, c) and forms a new rectangular coordinate system (x ′, y′, z′), then

x = x ′ + a, y = y′ + b, z = z′ + c

Rotation: If the new system x ′, y′, z′ rotates about the origin and has the following
relationship with the old one:

Direction Cosine with Old Axis

New Axis x y z

x ′ l1 m1 n1
y′ l2 m2 n2
z′ l3 m3 n3

then

x = l1x ′ + l2y′ + l3z′
y = m1x ′ + m2 y′ + m3z′
z = n1x ′ + n2y′ + n3z′

A cylindrical coordinate system (r, θ, z) has the following relationship with the
Cartesian (rectangular) coordinates (x, y, z):

x = r cos θ, r = √
x2 + y2

y = r sin θ, θ = arctan(y/x)
z = z z = z

A spherical coordinate system (ρ, θ, φ) has the following relationship with the
Cartesian (rectangular) coordinates (x, y, z):

x = ρ cos θ sinφ
y = ρ sin θ sinφ
z = ρ cosφ

φ = arccos
z√

x2 + y2 + z2

θ = arctan
y

x
ρ2 = x2 + y2 + z2

1358 TABLE I-1 Relationships between Common Coordinate Systems



TABLE I-2 DIFFERENTIATION FORMULAS
a = constant �= 0

da

dx
= 0, da = 0,

d(x)

dx
= 1, d(x) = dx

d

dx
(u + v −w) = du

dx
+ dv

dx
− dw

dx
, d(u + v −w) = du + dv − dw

d

dx
(av) = a

dv

dx
, d(av) = a dv

d

dx
(uv) = u

dv

dx
+ v du

dx
, d(uv) = u dv + v du

d

dx
(vn) = nvn−1 dv

dx
,

d

dx
(xn) = nxn−1, d(vn) = nvn−1 dv

d

dx

(u

v

)
= v(du/dx)− u(dv/dx)

v2
, d

(u

v

)
= v du − u dv

v2

d

dx

(a

v

)
= −a(dv/dx)

v2
, d

(a

v

)
= −a dv

v2

dy

dx
= dy

dv

dv

dx
,

dy

dx
= 1

dx/dy
,

dy

dx
= dy/dt

dx/dt

dn

dxn
(uv) = dnu

dxn
v + n

dn−1u

dxn−1

dv

dx
+ n(n − 1)

2!
dn−2u

dxn−2

d2v

dx2

+ n(n − 1)(n − 2)

3!
dn−3u

dxn−3

d3v

dx3
+ · · · + u

dnv

dxn

d

dx
loga u = 1

ln a

1

u

du

dx
,

d

dx
ln u = 1

u

du

dx

d

dx
(au) = (ln a)au du

dx
,

d

dx
(eu) = eu du

dx

d

dx
(uv) = uv(ln u)

dv

dx
+ vuv−1 du

dx

d ln(v1v2 · · · vn) = dv1

v1
+ dv2

v2
+ · · · + dvn

vn
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TABLE I-2 (continued) DIFFERENTIATION FORMULAS

d

dx
(sin u) = cos u

du

dx
,

d

dx
(cos u) = − sin u

du

dx

d

dx
(tan u) = sec2 u

du

dx
,

d

dx
(cot u) = − csc2 u

du

dx

d

dx
(sec u) = sec u tan u

du

dx
,

d

dx
(csc u) = − csc u cot u

du

dx

d

dx
(sinh u) = cosh u

du

dx
,

d

dx
(cosh u) = sinh u

du

dx

d

dx
(tanh u) = sech2 u

du

dx
,

d

dx
(coth u) = − csch2 u

du

dx

d

dx
(sech u) = − tanh u sech u

du

dx
,

d

dx
(csch u) = − coth u csch u

du

dx

d

dx

(
arcsin

u

a

)
= 1√

a2 − u2

du

dx
,

d

dx

(
arccos

u

a

)
= − 1√

a2 − u2

du

dx

d

dx

(
arctan

u

a

)
= a

a2 + u2

du

dx
,

d

dx

(
arccot

u

a

)
= − a

a2 + u2

du

dx

d

dx

(
arcsec

u

a

)
= a

| u |√u2 − a2

du

dx
,

d

dx

(
arccsc

u

a

)
= − a

| u |√u2 − a2

du

dx

d

dx
(arcsinh u) = 1√

1+ u2

du

dx
,

d

dx
(arccosh u) = ± 1√

u2 − 1

du

dx
, u > 1

d

dx
(arctanh u) = 1

1− u2

du

dx
, | u | < 1

d

dx
(arccoth u) = 1

1− u2

du

dx
, | u | > 1

d

dx
(arcsech u) = ± 1

u
√

1− u2

du

dx
, 0 < u < 1

d

dx
(arccsch u) = − 1

| u |√1+ u2

du

dx
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TABLE I-3 INTEGRAL FORMULAS
a, b = constants

Elementary Forms∫
a dx = ax

∫
a f (x) dx = a

∫
f (x) dx

∫
φ(y) dx =

∫
φ(y)

y′
dy, where y′ = dy

dx∫
(u + v) dx =

∫
u dx +

∫
v dx, where u and v are any functions of x

∫
u dv = u

∫
dv −

∫
v du = uv −

∫
v du

∫
u

dv

dx
dx = uv −

∫
v

du

dx
dx

∫
xn dx = xn+1

n + 1
except when n = −1

∫
f ′(x) dx

f (x)
= ln f (x), d f (x) = f ′(x) dx

∫
dx

x
= ln x

∫
f ′(x) dx

2
√

f (x)
= √

f (x), d f (x) = f ′(x) dx

∫
ex dx = ex ,

∫
eax dx = eax/a

∫
bax dx = bax

a ln b
(b > 0)

∫
ln x dx = x ln x − x,

∫
ax ln a dx = ax (a > 0)

∫
dx

a2 + x2
= 1

a
tan−1 x

a

∫
dx

a2 − x2
=




1

a
tanh−1 x

a
or

1

2a
ln

a + x

a − x
(x2 < a2)
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TABLE I-3 (continued) INTEGRAL FORMULAS

∫
dx

x2 − a2
=




−1

a
coth−1 x

a
or

1

2a
ln

x − a

x + a
(x2 > a2)

∫
dx√

a2 − x2
= sin−1 x

| a | (a > 0)

∫
dx√

x2 ± a2
= ln(x +

√
x2 ± a2)

∫
dx

x
√

x2 − a2
= 1

a
sec−1 x

a
+ c (a > 0)

∫
dx

x
√

a2 ± x2
= −1

a
ln

(
a +√a2 ± x2

x

)

Hyperbolic Functions∫
sinh x dx = cosh x,

∫
cosh x dx = sinh x

∫
tanh x dx = ln cosh x,

∫
coth x dx = ln sinh x

∫
sech x dx = tan−1(sinh x) = 2 tan−1 ex

∫
csch x dx = ln tanh

1

2
x

∫
sech2 x dx = tanh x,

∫
csch2 x dx = − coth x

∫
sech x tanh x dx = − sech x

∫
x sinh x dx = x cosh x − sinh x,

∫
x cosh x dx = x sinh x − cosh x

∫
sinh−1 x dx = x sinh−1 x −

√
1+ x2,

∫
cosh−1 x dx = x cosh−1 x −

√
x2 − 1

∫
tanh−1 x dx = x tanh−1 x + 1

2
ln(1− x2)

1362 TABLE I-3 Integral Formulas



TABLE I-3 (continued) INTEGRAL FORMULAS
∫

coth−1 x dx = x coth−1 x + 1

2
ln(x2 − 1)

∫
sech−1 x dx = x sech−1 x + sin−1 x

∫
csch−1 x dx = x csch−1 x + sinh−1 x

Trigonometric Functions∫
sin x dx = − cos x

∫
cos x dx = sin x

∫
sin2 x dx = 1

2
x − 1

2
sin x cos x = 1

2
x − 1

4
sin 2x

∫
cos2 x dx = 1

2
x + 1

2
sin x cos x = 1

2
x + 1

4
sin 2x

∫
sin3 x dx = −1

3

(
sin2 x + 2

)
cos x

∫
cos3 x dx = 1

3

(
cos2 x + 2

)
sin x

∫
sinn x dx = −sinn−1 x cos x

n
+ n − 1

n

∫
sinn−2 x dx

∫
cosn x dx = cosn−1 x sin x

n
+ n − 1

n

∫
cosn−2 x dx

∫
sinm x cos x dx = sinm+1 x

m + 1∫
sin x cosm x dx = −cosm+1 x

m + 1∫
sin2 x cos2 x dx = −1

8

(
1

4
sin 4x − x

)

∫
cosm x sinn x dx = cosm−1 x sinn+1 x

m + n
+ m − 1

m + n

∫
cosm−2 x sinn x dx

= −sinn−1 x cosm+1 x

m + n
+ n − 1

m + n

∫
cosm x sinn−2 x dx
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TABLE I-3 (continued) INTEGRAL FORMULAS

Exponential Functions
∫

eax dx = eax

a

∫
ax dx = ax

ln a∫
xeax dx = eax

a2 (ax − 1)

∫
xmeax dx = xmeax

a
− m

a

∫
xm−1eax dx

∫
eax

xm
dx = − 1

m − 1

eax

xm−1
+ a

m − 1

∫
eax

xm−1
dx

∫
ex sin x dx = 1

2
ex (sin x − cos x)

∫
ex cos x dx = 1

2
ex (sin x + cos x)

∫
eax sin bx dx = eax (a sin bx − b cos bx)

a2 + b2∫
eax cos bx dx = eax (b sin bx + a cos bx)

a2 + b2

∫
eax cosn x dx = eax cosn−1 x (a cos x + n sin x)

a2 + n2
+ n(n − 1)

a2 + n2

∫
eax cosn−2 x dx

∫
eax sinn x dx = eax sinn−1 x (a sin x − n cos x)

a2 + n2
+ n(n − 1)

a2 + n2

∫
eax sinn−2 x dx

∫
ex

x
dx = ln x + x + x2

2 · 2! +
x3

3 · 3! +
x4

4 · 4! + · · ·

Logarithmic Functions∫
ln x dx = x ln x − x

∫
xn ln x dx = xn+1

[
ln x

n + 1
− 1

(n + 1)2

]

∫
xn(ln x)m dx = xn+1

n + 1
(ln x)m − m

n + 1

∫
xn(ln x)m−1 dx

∫
(ln x)n

x
dx = 1

n + 1
(ln x)n+1
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TABLE I-3 (continued) INTEGRAL FORMULAS
∫

dx

x ln x
= ln(ln x)

∫
dx

x(ln x)n
= − 1

(n − 1)(ln x)n−1

∫
xn

(ln x)m
dx = − xn+1

(m − 1)(ln x)m−1
+ n + 1

m − 1

∫
xn

(ln x)m−1
dx

∫
eax ln x dx = eax ln x

a
− 1

a

∫
eax

x
dx

Forms Containing (a + bx)
∫

dx

a + bx
= 1

b
ln(a + bx)

∫
dx

(a + bx)n
= 1

b(1− n)(a + bx)n−1
if n �= 1

∫
(a + bx)n dx = (a + bx)n+1

b(n + 1)
if n �= 1

∫
x

a + bx
dx = 1

b2
[a + bx − a ln(a + bx)]

∫
x2

a + bx
dx = 1

b3

[
1

2
(a + bx)2 − 2a(a + bx)+ a2 ln(a + bx)

]

∫
x

(a + bx)2
dx = 1

b2

[
ln(a + bx)+ a

a + bx

]

∫
x2

(a + bx)2
dx = 1

b3

[
a + bx − 2a ln(a + bx)− a2

a + bx

]

Forms Containing (x2 − a2)1/2

∫
(x2 − a2)1/2 dx = 1

2
x(x2 − a2)1/2 − 1

2
a2 ln

[
x + (x2 − a2)1/2

]
∫

x(x2 − a2)1/2 dx = 1

3
(x2 − a2)3/2

∫
x2(x2 − a2)1/2 dx = x

8
(2x2 − a2)(x2 − a2)1/2 − a4

8
ln

[
x + (x2 − a2)1/2

]
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TABLE I-3 (continued) INTEGRAL FORMULAS

Forms Containing (a + bx)1/2

∫
(a + bx)n/2 dx = 2(a + bx)(n+2)/2

b(n + 2)
∫

x(a + bx)n/2 dx = 2

b2

[
(a + bx)(n+4)/2

n + 4
− a(a + bx)(n+2)/2

n + 2

]

∫
x−1(a + bx)n/2 dx = b

∫
(a + bx)(n−2)/2 dx + a

∫
x−1(a + bx)(n−2)/2 dx

Forms Containing (a2 + x2)1/2

∫
(a2 + x2)1/2 dx = 1

2
x(a2 + x2)1/2 + 1

2
a2 ln

[
x + (a2 + x2)1/2

]
∫

x(a2 + x2)1/2 dx = 1

3
(a2 + x2)3/2

∫
x2(a2 + x2)1/2 dx = x

8
(2x2 + a2)(a2 + x2)1/2 − a4

8
ln

[
x + (a2 + x2)1/2

]

Forms Containing (a2 − x2)1/2

∫
(a2 − x2)1/2 dx = 1

2
x(a2 − x2)1/2 + 1

2
a2 sin−1 x

a∫
x(a2 − x2)1/2 dx = −1

3
(a2 − x2)3/2

∫
x2(a2 − x2)1/2 dx = x

8
(2x2 − a2)(a2 − x2)1/2 + a4

8
sin−1 x

a
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TABLE I-3 (continued) INTEGRAL FORMULAS

Forms Containing (a + bxn)
∫

dx

a2 + x2
= 1

a
tan−1 x

a
= 1

a
sin−1 x

(a2 + x2)1/2∫
dx

x2 − a2
= 1

2a
ln

x − a

x + a
if x2 > a2

= 1

2a
ln

a − x

a + x
if x2 < a2

∫
dx

a + bx2
= 1√

ab
tan−1

(
x

√
b

a

)
if a > 0, b > 0

= 1

2

1√−ab
ln

√
a + x

√−b√
a − x

√−b
if a > 0, b < 0

TABLE I-3 Integral Formulas 1367



TABLE I-4 LAPLACE TRANSFORM PAIRS
Function f (t) Laplace Transform F(s)

δ(t) (delta function) 1

1 or unit step function at t = 0
1

s

t or unit ramp at t = 0
1

s2

tn−1

(n − 1)! n = 1, 2, . . .
1

sn

tn, n = 1, 2, . . .
n!

sn+1

e−at 1

s + a

eat 1

s − a

sin at
a

s2 + a2

cos at
s

s2 + a2

teat 1

(s − a)2

1

(n − 1)! t
n−1e−at n = 1, 2, . . .

1

(s + a)n

cosh at
s

s2 − a2

sinh at
a

s2 − a2

t sin at
2as

(s2 + a2)2

t cos at
s2 − a2

(s2 + a2)2

1

a2
(1− cos at)

1

s(s2 + a2)
1

a3
(at − sin at)

1

s2(s2 + a2)
1

2a3
(sin at − at cos at)

1

(s2 + a2)2

1

(1− a2)1/2ω
e−aωt sin(1− a2)1/2ωt

1

s2 + 2aωs + ω2

e−aωt
[

cos(1− a2)1/2ωt + a

(1− a2)1/2
sin(1− a2)1/2ωt

]
s + 2aω

s2 + 2aωs + ω2
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In this and the following appendix we outline structural analysis methodology. Many
references, such as [II.1], are available to provide a more thorough background in
structural mechanics. We begin with the study of structural members, with primary
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Figure II-1: Some basic structural members: (a) extension bar; (b) torsion bar; (c) beam.

emphasis given to the beam element. In Appendix III, the transfer matrix and dis-
placement methods of joining the elements into structural systems will be outlined.

The fundamental equations describing the deformation of a solid can be placed
in three distinct categories: the equations of equilibrium, the material law, and the
strain–displacement relations (conditions of geometric fit, kinematic relations). For
structural members these relationships can be expressed as differential equations.

Ideally, the complete set of these three basic relationships for an elastic body
would be solved for an “exact” solution. For arbitrary configurations general closed-
form solutions do not exist. However, for special structures or structural members,
such as beams and plates, approximate theories have been developed. Usually, these
approximate theories are based on assumptions made with respect to the distribu-
tion of strains or displacements within the structure, and sometimes they are supple-
mented by assumptions on the influence of certain stress components. For example,
for the extension, torsion, and bending of a bar, it is assumed that transverse cross
sections simply translate, rotate, and remain plane, respectively, while deforming
(Fig. II-1). As is to be expected, these approximate theories may contain some in-
consistencies. For instance, in the case of the bending of a bar, shear stresses are
introduced and the corresponding strains lead to deformations that violate the basic
deformation assumptions. Solutions based on these approximations can be no better
than the deformation model permits.

II.1 ENGINEERING BEAM THEORY: DIFFERENTIAL
FORM OF GOVERNING EQUATIONS

We will derive briefly the governing differential equations for a beam.

Geometric Relationships

For beams, the geometric relationships will be strain-displacement equations. The
bending strain is chosen to be the curvature κ = 1/ρ, where ρ is the radius of
curvature of the beam axis through the centroids of the cross section. From analytical
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geometry, the curvature of the deflection curve is given by

κ = ∂θ/∂x

(1+ θ2)3/2

or for θ small relative to unity,

κ = ∂θ

∂x
(II.1)

where θ is the slope of the deflection curve.
It is assumed that in all cases the beam deforms as though it were undergoing

pure bending (a constant moment along the beam). This contention (Bernoulli’s
or Navier’s hypothesis) implies that cross sections of the beam remain plane un-
der bending. This means that for a beam with variable cross-sectional properties or
applied loading, it is assumed that a “flat” cross section remains flat as it deforms
(Fig. II-1c), as it would for a uniform beam subjected only to a constant moment
along the beam. See an elementary strength-of-materials text for a more detailed
discussion of beam theory. For this deformation the axial displacement u(x, z) of a
point on a cross-sectional plane is (Fig. II-2)

u(x, z) = u0(x)+ zθ(x) (II.2)

where u0 is the axial displacement of the centroidal x axis. Displacements in the
positive coordinate directions are considered to be positive. Rotations (slopes) are
positive if their vectors, according to the right-hand rule, lie in the positive coordinate
direction. The shear strain γxz is given as

γxz = ∂u

∂z
+ ∂w
∂x
= θ + ∂w

∂x
= γ (II.3)

For the cross sections to remain plane, it is necessary that this shear strain be zero
(i.e., shear deformation effects are neglected). Then

Figure II-2: Element of a beam in bending.
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θ = −∂w
∂x

or κ = −∂
2w

∂x2
(II.4)

This is the desired geometric relation for bending. The component w is the displace-
ment of the beam axis (i.e., the deflection of the centerline of the beam).

Material Laws

The material law of the beam should reflect the assumption that the elongation and
contraction of longitudinal fibers are the dominant deformations. It follows that the
material should be assumed to be rigid in the z direction. This implies that there will
be no contribution to the longitudinal strain εx by stresses in the z direction. Also,
assume that σy = 0, as the loading is in the xz plane. Then the material law would
simply be εx = σx/E or σx = Eεx . From Eq. (II.2), u = u0 + zθ , so that

εx = ∂u

∂x
= ∂u0

∂x
+ z

∂θ

∂x
= ∂u0

∂x
+ zκ (II.5)

The stress resultants or the net internal forces are the axial force P ,

P =
∫

A
σx dA =

∫
A

Eεx dA =
∫

A
E

(
∂u0

∂x
+ zκ

)
dA = E A

∂u0

∂x
(II.6a)

and the bending moment M,

M =
∫

A
σx z dA =

∫
A

Eεx z dA =
∫

A
E

(
∂u0

∂x
+ zκ

)
z dA = κE

∫
A

z2 dA = κE I

(II.6b)

where I is the moment of inertia about the y axis. The integral
∫

z dA is zero if z is
measured from a centroidal axis of the beam’s cross section.

If the shear deformation effects are to be taken into account, the material equation
relating the shear strain and the net internal shear force should supplement Eqs. (II.6).
Hooke’s law for shear takes the form τxz = τ = Gγ . Let V = τav A be the stress
force relationship, where V is the shear force and A is the cross-sectional area. Se-
lect τav = ksτ , where ks is a dimensionless shear form factor that depends on the
cross-sectional shape and τ is the shear stress at the centroid of the cross section.
Normally, the structural equations are expressed in terms of the shear correction fac-
tor αs = 1/ks , where values of as are given in Table 2-4. Also, it is convenient to
define a shear corrected area As = ks A = A/αs . The material relationship becomes

V = G Asγ (II.7)

Now θ is not the slope of the deflection curve but is an angle of rotation of the beam
cross section that is not perpendicular to the beam axis.



II.1 ENGINEERING BEAM THEORY: DIFFERENTIAL FORM OF GOVERNING EQUATIONS 1373

Figure II-3: Undeformed beam element on which the conditions of equilibrium are based.
Both net internal forces and applied loading shown here are positive.

Equations of Equilibrium

Figure II-3 illustrates a beam element with internal forces. The forces and moments
shown in Fig. II-3 are positive, including the applied loads, which are positive if their
corresponding vectors lie in positive coordinate directions.

The summation of forces in the vertical direction provides

−V + pz dx + V + ∂V

∂x
dx = 0 or

∂V

∂x
+ pz = 0 (II.8a)

Similarly,

∂P

∂x
+ px = 0 (II.8b)

is the equilibrium relation for the axial (x) direction. Sum moments about the left
end of the element,

−M + M + ∂M

∂x
dx − dx

(
V + ∂V

∂x
dx

)
− 1

2
dx pz dx = 0

or

∂M

∂x
− V − ∂V

∂x
dx − 1

2
pz dx = 0

In the limit as dx → 0, (∂V/∂x) dx and 1
2 pz dx approach zero. Then

∂M

∂x
− V = 0 (II.9a)

The equilibrium condition of Eq. (II.9a) can also be expressed in stress components
as

∂σx

∂x
+ ∂τxz

∂z
= 0 (II.9b)
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Eliminate the shear force V from Eqs. (II.8a) and (II.9a),

∂2 M

∂x2
+ pz = 0 (II.10)

Displacement Form of Governing Differential Equations

The usual beam equations are the Euler–Bernoulli beam, in which the shear defor-
mation has been neglected. Ignore the axial extension relationships and find, from
Eqs. (II.1), (II.4), and (II.6b),

M = E Iκ = E I
∂θ

∂x
= −E I

∂2w

∂x2
(II.11)

Place this relationship in the equilibrium conditions, Eqs. (II.8a) and (II.9a),

V = ∂M

∂x
= − ∂

∂x
E I
∂2w

∂x2
(II.12)

and

−∂V

∂x
= ∂2

∂x2
E I
∂2w

∂x2
= pz (II.13)

The complete set of governing differential equations is then

∂2

∂x2
E I
∂2w

∂x2
= pz (II.14a)

V = − ∂

∂x
E I
∂2w

∂x2
(II.14b)

M = −E I
∂2w

∂x2
(II.14c)

θ = −∂w
∂x

(II.14d)

Other effects are readily included. To take mass into account and thereby to in-
clude dynamic effects, d’Alembert’s principle is useful. Despite being objectionable
to some, this principle, which is studied in elementary dynamics courses, permits the
mass to be introduced and to be physically interpreted. If the transverse displacement
of a beam is given by w, the velocity and acceleration will be

∂w

∂t
= ẇ and

∂2w

∂t2
= ẅ

The acceleration ẅ produces the d’Alembert force,

pz = −ρẅ
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where ρ is the mass per unit length along the beam. The minus sign indicates that
the inertia force is in the direction opposite to the motion.

The governing equations with dynamics included appear as

∂2

∂x2
E I
∂2w

∂x2
+ ∂

∂x
P
∂w

∂x
+ kw + ρ ∂

2w

∂t2
= pz(x, t) (II.15a)

V = − ∂

∂x
E I
∂2w

∂x2
− P

∂w

∂x
(II.15b)

M = −E I
∂2w

∂x2
(II.15c)

θ = −∂w
∂x

(II.15d)

Also included here is the effect of a compressive axial force P (force) and a Winkler
elastic foundation of modulus k (force per length squared).

Retention of shear deformation terms leads to a more general form of the dis-
placement formulation equations. Substitute the strain–displacement relations of
Eqs. (II.1) and (II.3) into the material law relations V = G Asγ and M = E Iκ.
Place the resulting force–displacement equations in the conditions of equilibrium to
eliminate the force terms

pz = − ∂

∂x

[
G As

(
∂w

∂x
+ θ

)]
(II.16a)

0 = − ∂

∂x

(
E I
∂θ

∂x

)
+ G As

∂w

∂x
+ G Asθ (II.16b)

V = G As

(
∂w

∂x
+ θ

)
(II.16c)

M = E I
∂θ

∂x
(II.16d)

The inertia terms for dynamics is readily included in this relationship.
Even more effects can be included. Define the following, where the units are given

in parentheses, with F for force, L for length, T for time, and M for mass:

c External or viscous damping coefficient (FT/L2,M/T L)
c̄ Moment intensity, applied moment per unit length along beam (F L/L)

IT Rotary inertia, transverse or diametrical mass moment of inertia per unit
length, = ρr2

y (M L)

k Winkler (elastic) foundation modulus (F/L2)
k∗ Rotary foundation modulus (F L/L)

MT Thermal moment,
∫

A EαT z dA(F L)

ry Radius of gyration, r2
y = I/A
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T Temperature change (degrees) (i.e., the temperature rise with respect to a
reference temperature)

α Coefficient of thermal expansion (L/(L · degree))

The more complete governing equations of motion become

pz(x, t) = − ∂

∂x

[
G As

(
∂w

∂x
+ θ

)]
+ kw + c

∂w

∂t
+ ρ ∂

2w

∂t2
(II.17a)

c̄(x, t) = − ∂

∂x

(
E I
∂θ

∂x

)
+ G As

∂w

∂x
+ (G As + k∗ − P)θ + ∂

∂x
MT + ρr2

y
∂2θ

∂t2

(II.17b)

V = G As

(
∂w

∂x
+ θ

)
(II.17c)

M = E I
∂θ

∂x
− MT (II.17d)

In addition to bending, this beam, called a Timoshenko beam, includes the effects
of shear deformation and rotary inertia. The expressions are reduced to those for
a Rayleigh beam (bending, rotary inertia) by setting 1/G As = 0, for a shear beam
(bending, shear deformation) by setting ρr2

y ∂
2θ/∂t2 = 0, and for an Euler–Bernoulli

beam (bending) by setting 1/G As = 0 and ρr2
y ∂

2θ/∂t2 = 0. Equations (II.17) are
appropriate for a beam with a tensile axial force if P is replaced by −P . In their
present form they apply to beams with a compressive axial force P .

Mixed Form of Governing Differential Equations

A frequently used form of the governing equations is a mixed form involving both
forces and displacements. These relations are found in a straightforward fashion by
eliminating the strain between strain–displacement and constitutive relationships.
For an Euler–Bernoulli beam without inertia effects but including shear deforma-
tion, this leads to

∂w

∂x
= −θ + V

G As
(II.18a)

∂θ

∂x
= M

E I
(II.18b)

Supplement these relationships with equilibrium conditions in the form

∂V

∂x
= −pz (II.18c)

∂M

∂x
= V (II.18d)
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where the inertia terms are not included explicitly, or

∂z
∂x
= Az+ P (II.19a)

where

z =




w

θ

V
M



, A =




0 −1
1

G As
0

0 0 0
1

E I
0 0 0 0
0 0 1 0



, P =




0

0

−pz

0




(II.19b)

Note that these mixed methods governing equations for a beam do not involve
derivatives of geometric or material parameters, and all derivatives are of first order.
Both of these characteristics contrast to the displacement governing equations (II.14)
and (II.15). These characteristics can be advantageous when solving the equations.
For example, numerical integration schemes often operate with first-order deriva-
tives only and equations with higher-order derivatives must first be transformed to
this form.

If the axial terms are included, Eq. (II.19a) would be defined as

z =




u0

w

θ

P
V
M



, A =




0 0 0
1

E A
0 0

0 0 −1 0
1

G As
0

0 0 0 0 0
1

E I
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0



, P =




0

0

0

−px

−pz

0




(II.20)
The Timoshenko beam equations in first-order form are

∂w

∂x
= −θ + V

G As
(II.21a)

∂θ

∂x
= M

E I
+ MT

E I
(II.21b)

∂V

∂x
= kw + c

∂w

∂t
+ ρ ∂

2w

∂t2
− pz(x, t) (II.21c)

∂M

∂x
= V + (k∗ − P)θ + ρr2

y
∂2θ

∂t2
− c̄(x, t) (II.21d)

For harmonic motion (e.g., assume that all forces and displacements vary in time as
sinωt),
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dw

dx
= −θ + V

G As
(II.22a)

dθ

dx
= M

E I
+ MT

E I
(II.22b)

dV

dx
= kw − ρω2w − pz(x) (II.22c)

d M

dx
= V + (k∗ − P)θ − ρr2

yω
2θ − c̄(x) (II.22d)

where damping has been ignored. The variables w, θ , V , and M are functions of x
only [i.e., w = w(x), θ = θ(x), V = V (x), and M = M(x)], since it was assumed
that the responses are harmonic in time [e.g., w(x, t) = w(x) sinωt].

Stress Formulas

The governing equations are solved to provide the state variables w, θ , V , and M
along the beam. With the moment M and shear force V known, the normal and shear
stresses in the beam can be computed. Substitution of Eqs. (II.6a) and (II.6b) into
σx = Eεx = E(∂u0/∂x + z∂θ/∂x) gives

σx = P

A
+ Mz

I
(II.23)

To find the shear stress τxz , substitute σx = Mz/I into the conditions of equilib-
rium. This leads to −∂τxz/∂z = V z/I . For a rectangular cross section of height h,
suppose that the shear stresses are distributed uniformly across the width. Integrate
−∂τxz/∂z = V z/I with respect to z from the level z = z1 to z = 1

2 h, where z1 is
the position where τxz is to be evaluated and 1

2 h defines the top (or bottom) surface
of the beam. Then

−τxz

∣∣∣∣
h/2

z1

= V

I

∫ h/2

z1

z dz

For the x direction on the upper or lower surfaces, τxz is zero at z = 1
2 h, and hence,

for the shear stress τxz at z1,

τxz = V

I

∫ h/2

z1

z dz = V

2I

(
h2

4
− z2

1

)
(II.24)

II.2 SIGN CONVENTION FOR BEAMS

Traditionally, two distinct sign conventions are employed: one for analytical formu-
las and the other for computational solutions. The sign convention of Section II.1,
which is frequently employed for formulas and structural members, where the distri-
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Figure II-4: Sign convention for a beam element. (a) Sign convention 1: Positive forces,
moments, slopes, and displacements are shown. Used for analytical formulas and structural
members. (b) Sign convention 2: Forces and moments on both ends of the beam element
are positive if they (their vectors) lie in the positive coordinate directions. Positive forces,
moments, slopes, and displacements are shown. Positive deflection and slope are the same as
for sign convention 1. Sign convention 2 is convenient to use in the study of network structural
systems using matrix methods.

bution of the internal bending moment and shear force are of concern, is illustrated
in Fig. II-4a, sign convention 1.

The other sign convention is better suited for use in many matrix analyses of
structures. This sign convention, which will be referred to as sign convention 2, is
shown in Fig. II-4b. For this second convention, for both ends (x = a and x = b) of
the beam element, the forces and moments along the positive coordinate directions
are considered to be positive. Comparing the ends of the beam elements in Fig. II-4a
and b, the forces of the two sign conventions are related as follows:

Sign Convention Sign Convention
1 2

Vb Vb

Mb Mb

Pb Pb
Va −Va

Ma −Ma

Pa −Pa

(II.25)

Since deflections and slopes remain the same according to both sign conventions, no
special displacement transformation is required.
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II.3 SOLUTION OF GOVERNING EQUATIONS FOR A BEAM ELEMENT

We begin the study of the solution of the governing beam equations by employing
simple integration for a simple Euler–Bernoulli beam. Integration of Eqs. (II.14) for
constant E I leads to (sign convention 1)

∫ x

0

d2

dx2
E I

d2w

dx2
dx =

∫ x

0
pz(τ ) dτ

V = −E I
d3w

dx3
= −C1 −

∫ x

0
pz(τ ) dτ

M = −E I
d2w

dx2
= −C2 − C1x −

∫∫ x

0
pz(τ ) dτ

θ = −dw

dx
= − C3

E I
− C2x

E I
− C1

E I

x2

2
−
∫∫∫ x

0

pz(τ )

E I
dτ

w = C4

E I
+ C3

E I
x + C2

E I

x2

2
+ C1

E I

x3

3! +
∫∫∫∫ x

0

pz(τ )

E I
dτ

(II.26)

A more useful form of the solution is obtained by expressing the arbitrary con-
stants of integration C1, C2, C3, and C4 in terms of physically meaning constants.
We choose to replace C1, C2, C3, and C4 by values of the displacements and forces
at the left end of the beam element. That is, we wish to reorganize the constants of
integration C1, C2, C3, and C4 in terms of the variables at a (i.e., wa, θa, Va,Ma).
Suppose that x = 0 corresponds to the left end a of the beam element. Let there be
no loading at x = 0 so that the integrals of pz vanish at x = 0. From Eq. (II.26) for
x = 0,

wa = wx=0 = C4

E I
, θa = θx=0 = − C3

E I

Ma = Mx=0 = −C2, Va = Vx=0 = −C1

(II.27)

Use Eq. (II.27) to replace the constants C1, C2, C3, and C4 in Eq. (II.26) by the state
variables and set x = �:

wb = wa − θa� − Va
�3

3! E I
− Ma

�2

2E I
+
∫∫∫∫ �

0

pz(τ )

E I
dτ

θb = θa + Va
�2

2E I
+ Ma

�

E I
−

∫∫∫ �

0

pz(τ )

E I
dτ

Vb = Va −
∫ �

0
pz(τ ) dτ

Mb = Va� + Ma −
∫∫ �

0
pz(τ ) dτ

(II.28)



II.3 SOLUTION OF GOVERNING EQUATIONS FOR A BEAM ELEMENT 1381

In matrix notation this appears as

zb = Ui za + z̄i (II.29)

where z = [ w θ V M ]T ,

Ui = Ui (�) =




1 −� − �3

6E I
− �2

2E I

0 1
�2

2E I

�

E I
0 0 1 0
0 0 � 1




(II.30)

z̄i =




∫∫∫∫ �
0

pz(τ )

E I
dτ

∫∫∫ �
0

pz(τ )

E I
dτ∫ �

0 pz(τ ) dτ∫∫ �
0 pz(τ ) dτ



=




Fw

Fθ

FV

FM




(II.31)

The matrix Ui , which is sometimes denoted by Ui (�) = Ui (b − a), is referred to as
a transfer matrix since it “transfers” the variables, w, θ , V , and M from x = a to
x = b. The vector z of displacements and forces is called the state vector as these
variables fully describe the response, or “state,” of the beam.

If the loading is ignored, the transfer matrix appears as



w

θ

V
M




b

=




1 −� −�3/6E I −�2/2E I
0 1 �2/2E I �/E I

0 0 1 0
0 0 � 1






w

θ

V
M




a
zb = Ui za

(II.32)

It can be shown that the partitions of this relationship can be identified with the basic
relations for a beam:

Ui =




Geometry Material
(rigid-body law
displacements)

(Influence of
springs, foundations, etc.) Equilibrium


 (II.33)

First-Order Form of Governing Equations

A typical method of developing transfer matrices, which applies to both simple and
difficult problems, is that of integration of first-order equations in the state variables.
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Integration of Eqs. (II.19) gives

zb = Ui
[

za +
∫ b

a
(Ui )−1P dτ

]
= Ui za + z̄i (II.34)

where

z̄i = z̄i
b = Ui

∫ �

0
[Ui (τ )]−1P(τ ) dτ (II.35)

and for a constant coefficient matrix A,

Ui = Ui (b − a) = eA(b−a) (II.36)

with b − a = �. Substitution of Eq. (II.34) into Eq. (II.19) will verify Eq. (II.34).
The exponential representation of the transfer matrix of Eq. (II.36) can be expanded
in the series

Ui = eA� = I+ A�
1! +

A2�2

2! + · · · =
∞∑

s=0

As�s

s! (II.37)

where I is the identity matrix, a square matrix with diagonal values of 1 as the only
nonzero elements. This expansion lends itself well for numerical calculations for
complicated members, as it is often possible to control the error. Analogous to the
solution of a first-order scalar differential equation, the loading term would be of the
form

z̄i = eA(b−a)
∫ b

a
e−A(x−a)P dx (II.38)

Since [Ui (x)]−1 = e−Ax , it follows that for constant A,

[Ui (x)]−1 = Ui (−x) (II.39)

This relationship can be useful when finding the loading vector z̄i .

Example II.1 Transfer Matrix for an Euler–Bernoulli Beam For the Euler–
Bernoulli beam (no shear deformation), with the governing equations of Eq. (II.19),
the transfer matrix is obtained from Eq. (II.37) using

A =




0 −1 0 0
0 0 0 1/E I
0 0 0 0
0 0 1 0
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A2 =




0 0 0 −1/E I
0 0 1/E I 0
0 0 0 0
0 0 0 0


 (1)

A3 =




0 0 −1/E I 0
0 0 0 0
0 0 0 0
0 0 0 0




A4 = 0

Several methods for computing transfer matrices are treated in Refs. [II.1]
and [II.2]. For example, the solution eA� can be represented as a matrix polyno-
mial using the Cayley–Hamilton theorem (i.e., the minimal polynomial), which
requires knowledge of the eigenvalues of A. The number of terms needed in an
expansion of eA� can be reduced by using Padé approximations.

For a nonconstant A, Picard iteration [II.2] and other methods are available. Nu-
merical integration techniques, such as Runge–Kutta, are available to solve differ-
ential equations. Since state-space control methods often involve the solution of a
system of first-order differential equations, the relevant control theory literature is a
fruitful source of information on the calculation of transfer matrices.

Two General Analytical Techniques Two procedures suitable for finding the
transfer matrices for general forms of the governing equations of motion are pre-
sented here, one based on the Cayley–Hamilton theorem mentioned above and the
other on the Laplace transform.

We begin with first-order partial differential equations for the static and dynamic
responses of a beam with axial load P , displacement foundation k, and rotary foun-
dation k∗ [Eqs. (II.22), with c̄ = MT = 0]:

dz
dx
= z′ = Az+ P (II.40a)

with

A =




0 −1 1/G As 0
0 0 0 1/E I

k − ρω2 0 0 0
0 k∗ − P − ρr2

yω
2 1 0


 , P =




0
0
−pz

0




(II.40b)
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It follows from Eq. (II.35) that the loading elements z̄1 can be computed if the trans-
fer matrix Ui is available. Thus, it is necessary only to find Ui in order to complete a
solution and pz can be set equal to zero in Eq. (II.40).

Solution to First-Order Form of Equations We wish to solve the homoge-
neous differential equations

dz
dx
= Az

The solution can be in the form [Eq. (II.37)]

zb = Ui za = eA�za

Since a function of a square matrix A of order n is equal to a polynomial in A of
order n − 1, the 4× 4 matrix A can be expanded as

eA� = c0I+ c1A�+ c2(A�)2 + c3(A�)3 (II.41a)

Because a matrix satisfies its own characteristic equation (the Cayley–Hamilton the-
orem), A of Eq. (II.41a) can be replaced by its characteristic values λi . Then

eλi� = c0 + c1λi�+ c2(λi�)
2 + c3(λi�)

3, i = 1, 2, 3, 4 (II.41b)

are four equations that can be solved for the functions c0, c1, c2, and c3. Place these
values into Eq. (II.41a) to obtain the desired transfer matrix.

The characteristic values λi are found by solving the characteristic equation

| Iλi − A | = 0

For the A of Eq. (II.40b),

| Iλi − A | =

∣∣∣∣∣∣∣∣

λi 1 −1/G As 0
0 λi 0 −1/E I

−k + ρω2 0 λi 0
0 −k∗ + P + ρr2

yω
2 1 λi

∣∣∣∣∣∣∣∣
= 0

This determinant has the roots λ1, λ2, λ3, λ4 = (±n1,±in2),

n1,2 =
{[

1
4 (ζ + η)2 − λ

]1/2 ∓ 1
2 (ζ − η)

}1/2

where

λ = (k − ρω2)/E I, η = (k − ρω2)/G As,

ζ =
(

P − k∗ + ρr2
yω

2
)
/E I
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Substitution of these characteristic values into Eq. (II.41b) gives

en1� = c0 + c1n1�+ c2(n1�)
2 + c3(n1�)

3

e−n1� = c0 − c1n1�+ c2(n1�)
2 − c3(n1�)

3

ein2� = c0 + ic1n2�− c2(n2�)
2 − ic3(n2�)

3

e−in2� = c0 − ic1n2�− c2(n2�)
2 + ic3(n2�)

3

The constants c0, c1, c2, c3 from these four equations are

c0 = (n2
2 cosh n1�+ n2

1 cos n2�)/(n
2
1 + n2

2)

c1 = [(n2
2/n1) sinh n1�+ (n2

1/n2) sin n2�]/[�(n2
1 + n2

2)]
c2 = (cosh n1�− cos n2�)/[�2(n2

1 + n2
2)]

c3 = [(1/n1) sinh n1�− (1/n2) sin n2�]/[�3(n2
1 + n2

2)]

From Eq. (II.41a), the transfer matrix becomes

Ui = c0I+ c1(A�)+ c2(A�)2 + c3(A�)3

=




c0 + �2c2η −�c1 − �3c3(n − ζ ) (c1�+ c3�
3η)/ks G A − c3�

3/E I −�2c2/E I
λc3�

3 c0 − �2c2ζ �2c2/E I (�c1 − c3�
3ζ )/E I

λE I (�c1 + η�3c3) −λE Ic2�
2 c0 + c2�

2η −�3c3λ

λE Ic2�
2 E I [−c1�ζ + c3�

3(ζ2 − λ)] �c1 + c3�
3(η − ζ ) c0 − c2�

2ζ




(II.42)

This transfer matrix is presented in Table 11-22, where the influence of inertia has
been included.

Laplace Transform Another viable technique for deriving transfer matrices is to
use the Laplace transform. Although this transform can be applied to the first-order
equations of Eqs. (II.40), we choose to utilize a single fourth-order equation obtained
from the homogeneous form of these equations:

d4w

dx4
+ (ζ − η)d2w

dx2
+ (λ− ζη)w = 0 (II.43)

where

ζ = (P − k∗ + ρr2
yω

2)/E I, η = (k − ρω2)/G As,

λ = (k − ρω2)/(E I )
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The Laplace transform of Eq. (II.43) gives

w(s)[s4 + (ζ − η)s2 + (λ− ζη)] = s3w(0)+ s2w′(0)+ sw′′(0)+w′′′(0)
+ (ζ − η)w′(0)+ (ζ − η)sw(0)

where s is the transform variable. The inverse transform is

w(x) = [e1(x)+ (ζ − η)e3(x)]w(0)+ [e2(x)+ (ζ − η)e4(x)]w′(0)
+ e3(x)w

′′(0)+ e4(x)w
′′′(0)

where

ei (x) = L−1 s4−i

s4(ζ − η)s2 + λ− ζη (II.44a)

L−1 indicating the inverse Laplace transform. Equation (II.44a) leads to several use-
ful identities:

ei (x) = d

dx
ei+1(x), i = −2,−1, 0, 1, 2, 3

ei+1(x) =
∫ x

0
ei (u) du, i = 4, 5, 6

(II.44b)

Arrange w(x) and its three derivatives w′ = dw/dx , w′′ = d2w/dx2, and w′′′ =
d3w/dx3 as




w(x)
w′(x)
w′′(x)
w′′′(x)


=




e1 + (ζ − η)e3 e2 + (ζ − η)e4 e3 e4
e0 + (ζ − η)e2 e1 + (ζ − η)e3 e2 e3

e−1 + (ζ − η)e1 e0 + (ζ − η)e2 e1 e2
e−2 + (ζ − η)e0 e−1 + (ζ − η)e1 e0 e1






w(0)
w′(0)
w′′(0)
w′′′(0)




w(x) = Q(x) w(0)
(II.45a)

By taking the derivatives d2w/dx2 and d3w/dx3 of dw/dx = −θ + V/G As of
Eq. (II.40), form w(x) = Rz(x), which relates the deflectionw(x) and its derivatives
to the state variables z(x). In this equation

R =




1 0 0 0
0 −1 1/G As 0
η 0 0 −1/E I
0 ζ − η −1/E I + η/G As 0


 (II.45b)

The transfer matrix is obtained from z(x) = R−1w(x) and Eq. (II.45a):

z(x) = R−1Q(x)w(0) = R−1 Q(x)R z(0)
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or

zb = R−1Q(�)R za = Ui za (II.46)

This procedure readily leads to the general transfer matrix of Table 11-22.

Effect of Applied Loading

The influence of a prescribed loading P can be incorporated in the response expres-
sions using Eq. (II.35). It is apparent that this effect can be calculated if the transfer
matrix for the element is known either analytically or numerically.

Example II.2 Effect of a Linearly Varying Distributed Load Demonstrate the
use of Eq. (II.35) to compute loading functions Fw, Fθ , FV , and FM for an Euler–
Bernoulli beam segment of constant cross section and length � loaded with a linearly
increasing force described by pz = p0x/�.

Since [Eq. (II.39)] for a beam of constant cross section [Ui (x)]−1 = Ui (−x),

∫ �

0
(Ui )−1P dx =

∫ �

0
Ui (−x)P dx

=
∫ �

0




1 x
x3

6E I
− x2

2E I

0 1
x2

2E I

−x

E I
0 0 1 0
0 0 −x 1







0

0

−p0x/�
0




dx =
∫ �

0

1

�




−p0x4

6E I
−p0x3

2E I
−p0x
p0x2




dx

(1)

From Eq. (II.35) the vector z̄i = [ Fw Fθ FV FM ]T is given by

z̄i = Ui (�)

∫ �

0
[Ui (x)]−1P dx = p0

[
�4

120E I
− �3

24E I
−�

2
−�

2

6

]T

(2)

which applies for x = �. For values of x less �,

z̄i = Ui (x)
∫ x

0
[Ui (τ )]−1P(τ ) dτ = p0

�

[
x5

120E I

−x4

24E I
− x2

2
− x3

6

]T

(3)

With Ui = eAx the loading vector z̄i can be written in the series form

z̄i =
∞∑
j=0

A j x ( j+1)

( j + k + 1)! (k!)P (4)

where k = 0 for a uniform load, k = 1 for a linearly varying load, and so on.
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For the case of our linearly varying load,

z̄i =
(

Ix

2
+ Ax2

3! +
A2x3

4! +
A3x4

5!

)
P (5)

since A j = 0 for j ≥ 4 and A0 = I, the unit diagonal matrix. At x = �, this
expression leads to (2).

A technique for finding the effect of applied loading, that is particularly useful if
the transfer matrix elements are known analytically, will be presented here.

It is useful to define a general notation for a transfer matrix:



w

θ

V
M




b

=




Uww Uwθ UwV UwM

Uθw Uθθ UθV UθM

UVw UV θ UV V UV M

UMw UMθ UMV UM M





w

θ

V
M




a

+




Fw
Fθ
FV

FM



�=b−a

zb = Ui (�) za + z̄i

(II.47)

where Ui j represents a transfer matrix element and Fw, Fθ , FV , and FM are loading
functions.

A transfer matrix is such that often the effect of various types of loading can be
identified by observation. For example, it is apparent from the first row of Eq. (II.47)
that the contribution of a shear force V at x = a to the deflection w at x = b is
V UwV (�). Quite similar to a shear force at a point is an applied concentrated load.
That is, the effect on the deflection at x = b of a downward concentrated force W at
x = a would be expressed as−WUwV (�) in the case of sign convention 1. It follows
that the contribution of a concentrated force at x = a to the other responses θ , V ,
and M is similar, so that the loading function vector becomes




Fw
Fθ
FV

FM


 =



−WUwV (�)

−WUθV (�)

−WUV V (�)

−WUMV (�)


 (II.48)

Use of a Duhamel or convolution integral permits distributed applied loads pz(x)
to be treated as [II.1, II.2]

Fj =
∫ �

0
pz(x)U jV (�− x) dx = −

∫ �

0
pz(�− x)U jV (x) dx (II.49)

with j = w, θ, V,M.
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Figure II-5: Beam with ramp loading.

Example II.3 Loading Functions for a Linearly Varying Load Calculate the
loading function component Fw for the linearly distributed applied load shown in
Fig. II-5.

For this distributed load

pz(x) = p0

L
(L − x) (1)

so that Eq. (II.49), with � = L, gives

Fw = −
∫ L

0
pz(x) UwV (L − x) dx

(2)

= −
∫ L

0

p0

L
(L − x)

[
− (L − x)3

3! E I

]
dx = p0L4

30E I

II.4 PRINCIPLE OF VIRTUAL WORK: INTEGRAL FORM
OF GOVERNING EQUATIONS

Essential to the development of structural mechanics theory are the variational theo-
rems, the principle of virtual work, and the principle of complementary virtual work.
Here we summarize briefly the fundamentals of the principle of virtual work.

Virtual Work

It is useful to define the work done by the loads on a body during a small, admissi-
ble change in the displacements. An admissible or possible change is a displacement
that varies continuously as a function of the coordinates and does not violate dis-
placement boundary conditions. Although the actual displacements may be large,
the change in the displacements must be small. Traditionally, these infinitesimal, ad-
missible changes in displacements have been named virtual displacements. Virtual
displacements are designated by δui , indicating that they correspond to a variation
of a function as defined in the calculus of variations.



1390 STRUCTURAL MEMBERS

The definition of virtual work follows directly from the definition of ordinary
work, which is the product of a force and the displacement of its point of application
in the direction of the force. In the case of beams, the curvature κ is taken as the
measure of bending strain and the bending moment M is the corresponding force.
Then the internal virtual work (δWi ) due to bending of a beam would be

δWi = −
∫

x
δκ M dx (II.50)

where δκ represents the virtual strain and the negative sign is chosen to reflect that
the work of the internal moment is the negative of that due to the bending stress. For
a beam with no shear deformation considered, the curvature is given by [Eq. (II.4)]
κ = −∂2w/∂x2 and the bending moment M = κE I [Eq. (II.6b)]. The internal
virtual work would then be

δWi = −
∫

x
δκ M dx = −

∫
x
δκ E Iκ dx = −

∫
x

(
δ
∂2w

∂x2

)
E I
∂2w

∂x2
dx (II.51)

For a beam segment from x = a to x = b, the external virtual work (δWe) would be

δWe =
∫

x
δw pz dx + [M δθ + V δw]ba (II.52a)

where δw is the virtual deflection, pz is the applied loading intensity along the beam,
and M, V are concentrated moments, shear forces on the ends a, b of the element,

[M δθ + V δw]ba = (M δθ)b + (V δw)b − (m δθ)a − (V δw)a (II.52b)

Statement of the Principle of Virtual Work

The principle of virtual work for a solid can be derived from the equations of equilib-
rium, and vice versa. They are, in a sense, equivalent in that the principle of virtual
work is a global (integral) form of the conditions of equilibrium. As shown in text-
books on structural mechanics, an integral form of the equations of equilibrium, with
the help of integration by parts (or the divergence theorem if more than one dimen-
sion is involved), leads to the relationship

δW = δWi + δWe = 0 (II.53)

which embodies the principle of virtual work.
The principle can be stated as follows: A deformable system is in equilibrium if

the sum of the total external virtual work and the internal virtual work is zero for vir-
tual displacements that satisfy the strain–displacement equations and displacement
boundary conditions.

The fundamental unknowns for the principle of virtual work are displacements.
Although stresses or forces often appear in equations representing the principle, these
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variables should be considered as being expressed as functions of the displacements.
Also, the variations are always taken on the displacements in the principle of virtual
work. In fact, this principle is also known as the principle of virtual displacements.

In the case of a beam, with δWi and δWe given by Eqs. (II.51) and (II.52), respec-
tively, the principle of virtual work [Eq. (II.53)] takes the form

δW = δWi + δWe

= −
∫ b

a

(
δ
∂2w

∂x2

)
E I
∂2w

∂x2
dx +

∫ b

a
δw pz dx + [M δθ + V δw]ba = 0

(II.54)

If dynamic effects are included, then this relationship, supplemented with pz =
−ρẅ, becomes

δW = −
∫ b

a
δw′′E Iw′′ dx +

∫ b

a
δw pz dx

(II.55)

−
∫ b

a
δw ρẅ dx + [M δθ + V δw]ba = 0

where ∂2w/∂x2 = w′′ has been employed.

II.5 STIFFNESS MATRIX

Definition of Stiffness Matrices

For a beam element from x = a to x = b, a stiffness matrix provides a rela-
tionship between the displacements at a and b (wa, θa, wb, θb) to all the forces
(Va,Ma, Vb,Mb). For the i th element, the stiffness matrix ki is defined as

pi = ki vi (II.56)

where

pi =
[

pa

pb

]
=




Va

Ma

Vb

Mb


 , vi =

[
va

vb

]
=



wa

θa

wb

θb


 ,

ki =
[

kaa kab

kba kbb

]
=




k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44
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The stiffness matrix is the most essential ingredient in the analysis of structural
systems.

An important technique for finding a stiffness matrix for a structural member is
simply to reorganize a transfer matrix to form the stiffness matrix. This is to be
expected since both the transfer and stiffness matrices are relationships between the
same eight variables wa, θa, wb, θb, Va,Ma, Vb,Mb. Of course, there are numerous
other methods for finding the stiffness matrix, some of which will be considered later
in this section.

Sometimes, as was done for the transfer matrix, it is useful to include with the
stiffness matrix a vector to account for applied loading. Normally, this vector would
account for only the loading applied between the ends since end loadings are inserted
using the vector pi . To derive a stiffness matrix with a loading vector appended, begin
by writing a transfer matrix in the notation of sign convention 2.

Consider first the rearrangement of the transfer matrix into a stiffness matrix.
Begin by writing the transfer matrix in the partitioned form

[
vb

pb

]
=
[

Uvv Uvp

Upv Upp

][
va

pa

]
+
[

Fv
Fp

]

zb = Ui za + z̄i

(II.57)

where

Fv =
[

Fw
Fθ

]
, Fp =

[
FV

FM

]

It is assumed here that sign convention 2 (Fig. II-4b) applies for the forces. From
Eq. (II.57),

pb = Upvva + Upppa + Fp, vb = Uvvva + Uvppa + Fv

It follows that

pa = U−1
vp vb − U−1

vp Uvvva − U−1
vp Fv

and

pb = Upvva + Upppa + Fp

= (Upv − UppU−1
vp Uvv)va + UppU−1

vp vb + Fp − UppU−1
vp Fv (II.58)

In matrix form,

[
pa

pb

]
=
[ −U−1

vp Uvv U−1
vp

Upv − UppU−1
vp Uvv UppU−1

vp

][
va

vb

]
+
[ −U−1

vp Fv

Fp − UppU−1
vp Fv

]

(II.59)
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Va

Ma

Vb

Mb


=




k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44





wa

θa

wb

θb


−




V 0
a

M0
a

V 0
b

M0
b




pi = ki vi − p̄i

(II.60)

For a beam, Eq. (II.58) leads to the stiffness matrix




Va

Ma

Vb

Mb



=




12E I

�3
−6E I

�2
−12E I

�3
−6E I

�2

−6E I

�2

4E I

�

6E I

�2

2E I

�

−12E I

�3

6E I

�2

12E I

�3

6E I

�2

−6E I

�2

2E I

�

6E I

�2

4E I

�







wa

θa

wb

θb




=
[

kaa kab

kba kbb

]
vi

pi = ki vi

(II.61)

It is evident from this relationship that a stiffness element ki j (e.g., k11 =
12E I/�3) is the force developed at coordinate i due to a unit displacement at
coordinate j , with all other displacements equal to zero. These “coordinates” are
usually called degrees of freedom (DOFs), which are normally defined as the in-
dependent coordinates (displacement components) necessary to fully describe the
spatial position of a structure.

It is often helpful to scale the stiffness matrix of Eq. (II.61) as




Va

Ma/�

Vb

Mb/�


= E I

�3




12 −6 −12 −6
−6 4 6 2
−12 6 12 6
−6 2 6 4





wa

�θa

wb

�θb




pi = ki vi

(II.62)

A very general stiffness matrix, including the effect of elastic foundations, inertia,
and shear deformation, can now be obtained by inserting the general transfer matrix
components of Table 11-22 in Eq. (II.60). This leads to the generalized dynamic
stiffness matrix of Table 11-22.

Determination of Stiffness Matrices

In addition to the conversion of a transfer matrix into a stiffness matrix described
above, other analysis techniques, such as the use of the unit load method or Cas-
tigliano’s theorem, will also lead to the stiffness matrix. Many such methods are
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described in standard textbooks on structural mechanics. The use of trial functions
to derive a stiffness matrix is of special interest.

Before turning to the trial function approach, we will illustrate with a beam the
direct evaluation of a stiffness matrix using the governing differential equations. This
entails the application of unit displacements (deflection or rotation) at the ends of a
beam element.

To compute ki1, i = 1, 2, 3, 4, corresponding to the first column of the stiffness
matrix, use the configuration of Fig. II-6a. From Eq. (II.60) with p̄i = 0, the forces
in this model with displacements wa = 1, θa = 0, wb = 0, and θb = 0 correspond
to the stiffness coefficients

k11 = Va, k21 = Ma, k31 = Vb, k41 = Mb

The cantilevered beam of Fig. II-6b, which models the prescribed displacements, can
be used to find Va , Ma , Vb, and Mb based on the displacement conditions wa = 1
and θ1 = 0. For this beam, with sign convention 2, M = −Ma − Va x . Integrate
d2w/dx2 = −M/E I to find that

dw

dx
= 1

E I

(
Ma x + Va

x2

2

)
+ C1 = −θ

w = 1

E I

(
Ma

x2

2
+ Va

x3

6

)
+ C1x + C2

Use θa = 0 and wb = 0 to find that C1 = 0 and C2 = −Ma�
2/2E I − Va�

3/6E I .
Then impose θb = 0 on the first equation and wa = 1 on the second, giving

Va = 12E I/�3 = k11, Ma = −6E I/�2 = k21

Figure II-6: Beam element for computing the first column of the stiffness matrix: (a) con-
figuration for computing ki1; (b) equivalent configuration.
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From the conditions of equilibrium for the beam of Fig. II-6b, the forces Mb and Vb

can be evaluated:

k31 = Vb = −Va = −12E I/�3, k41 = Mb = −Va�− Ma = −6E I/�2

The second, third, and fourth columns of the stiffness matrix are computed in a
similar fashion.

Approximation-by-Trial Function

Interpolation Functions The stiffness matrices considered thus far are “exact”
in the sense that the exact solution of the engineering beam theory has been placed
in the form of a stiffness matrix. For structural elements other than beams, it is often
not possible to establish an exact solution. In these cases a technique involving an
assumed or trial series solution is employed to obtain an approximate solution. This
is the approach for finding stiffness matrices for the finite-element method.

Assume that the deflection of a beam element can be approximated by the poly-
nomial

w = C1 + C2x + C3x2 + C4x3 + · · · = ŵ1 + ŵ2x + ŵ3x2 + ŵ4x3 + · · ·
(II.63a)

where C j = ŵ j , j = 1, 2, . . . are unknown constants. This is a trial function, often
referred to as a basis function. Express the first four terms as

w = [ 1 x x2 x3
]


ŵ1
ŵ2
ŵ3
ŵ4


 = Nuŵ = ŵT NT

u (II.63b)

where

Nu =
[

1 x x2 x3
]

Rewrite the series as an interpolation function by expressing it in terms of the
unknown displacements at the end of the beam element rather than in terms of the
constants ŵ j . To accomplish this, transform the vector of unknowns ŵ j into the
unknown nodal displacement vector for the i th element:

vi =




wa
θa = −w′a

wb

θb = −w′b




The derivative of w is given by

w′ = N′uŵ = ŵT (N′u)T
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where

N′u =
[

0 1 2x 3x2
]

Evaluate w and θ = −w′ at x = a and x = b:



wa

θa

wb

θb


=




w(0)
−w′(0)
w(�)

−w′(�)


 =




1 0 0 0
0 −1 0 0
1 � �2 �3

0 −1 −2� −3�2





ŵ1
ŵ2
ŵ3
ŵ4




vi = N̂u ŵ

It follows that

ŵ = N̂−1
u vi = Gvi

where

G = N̂−1
u =




1 0 0 0
0 −1 0 0
−3/�2 2/� 3/�2 1/�

2/�3 −1/�2 −2/�3 −1/�2




Finally, the desired relationship between w and vi is

w = Nuŵ = NuGvi = Nvi (II.64)

where N = NuG. This expression is the interpolation form of the assumed series and
is usually referred to as a shape function. If the normalized coordinate ξ = x/� is
introduced, vi can be redefined as in Eq. (II.62), and

w= [ 1 ξ ξ2 ξ3
]



1 0 0 0
0 −1 0 0
−3 2 3 1

2 −1 −2 −1





wa

�θa

wb

�θb


= Nvi

= Nu G vi

(II.65a)

or

= (1− 3ξ2 + 2ξ3)wa + (−ξ + 2ξ2 − ξ3)θa�+ (3ξ2 − 2ξ3)wb
(II.65b)

+ (ξ2 − ξ3)θb�

The quantities in brackets are Hermitian polynomials, which are well-known tab-
ulated functions. The polynomials of Eq. (II.64) or (II.65) can be used with the prin-
ciple of virtual work to generate stiffness matrices.
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Evaluation of Stiffness Matrix Using the Principle of Virtual Work The
following procedure is quite general in that it can be used to derive stiffness matrices
for any element. If axial, dynamic, and shear deformation effects are not taken into
account, the principle of virtual work (δWi = −δWe) for a beam appears as in
Eq. (II.54):

∫ b

a
δw′′E Iw′′ dx =

∫ b

a
δw pz dx + [M δθ + V δw]ba (II.66)

where w′ = dw/dx .
To find the element stiffness matrix, substitute the assumed polynomial for w in

Eq. (II.66). First find the variational quantities δw and δw′′ expressed in terms of the
trial series. In Eq. (II.64) G contains constant elements and Nu is a function of the
axial coordinate x . Thus,

δw = δ(Nvi ) = N δvi = δviT NT

where δviT are the virtual end displacements, and

w′′ = N′′uGvi = BuGvi = N′′vi = Bvi

(II.67)
δw′′ = B δvi = δviT BT

with N′′u = Bu = [ 0 0 2 6ξ ]/�2, B = BuG, and B = N′′.
Substitute these expressions into Eq. (II.66):

∫ b

a

δw′′︷ ︸︸ ︷
δviT BT E I

w′′︷︸︸︷
B vi dx =

∫ b

a

δw︷ ︸︸ ︷
δviT NT pz dx + δviT pi (II.68)

where pi contains the applied loading M and V at the ends; that is,

pi =



−Va
−Ma

Vb

Mb


 =




Va
Ma

Vb

Mb




Sign Sign
convention convention

1 2

Then

δviT
(∫ b

a
BT E I B dx v−

∫ b

a
NT pz dx − pi

)
= 0 (II.69)
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or since G is not a function of x ,

δviT
[

GT
∫ b

a
BT

u E I Bu dx Gvi −
(

GT
∫ b

a
NT

u pz dx + pi
)]
= 0 (II.70)

︸ ︷︷ ︸
ki vi

︸ ︷︷ ︸
p̄i

or δviT (ki vi − p̄i − pi ) = 0, with

p̄i =
∫ b

a
NT pz dx = GT

∫ b

a
NT

u pz dx = �GT
∫ 1

0
NT

u pz(ξ) dξ (II.71)

Note that the stiffness matrix is given by

ki = GT
∫ b

a
BT

u E I Bu dx G =
∫ b

a
BT E I B dx (II.72)

and for constant E I ,

ki = E I
∫ b

a
BT B dx (II.73)

Suppose that there is no applied distributed loading (i.e., pz = 0). Then p̄i = 0, and

δviT
(

GT
∫ b

a
BT

u E I Bu dx Gvi − pi
)
= 0 (II.74)

Thus, for element i ,

δviT (ki vi − pi ) = 0 or ki vi = pi (II.75)

As expected, the principle of virtual work expresses the conditions of equilibrium
(ki vi = pi ) between the forces ki vi representing the element properties and the load
vector pi representing the applied loads at the ends.

If element i is a portion of a structural system, this relationship represents the
contribution of the i th element to the equilibrium of the whole system, expressed as
the virtual work of the i th element that is a part of the virtual work of the whole
structural system.

The evaluation of the stiffness matrix of Eq. (II.72) is readily carried out. Remem-
ber that vi = [ wa �θa wb �θb ]T , pi = [ Va Ma/� Vb Mb/� ]T and use
Bu = N′′u and dx = � dξ . The integral in ki is integrated over 0 to 1 rather than a
to b:

∫ 1

0
BT

u E I Bu� dξ =




0 0 0 0
0 0 0 0

0 0 4 6
0 0 6 12


 E I

�3
(II.76)
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Then ki of Eq. (II.72) becomes

GT
∫ 1

0
BT

u E I Bu� dξ G =




12 −6 −12 −6
−6 4 6 2

−12 6 12 6
−6 2 6 4


 E I

�3

︸ ︷︷ ︸
ki

(II.77)

Observe that the use of the polynomial of Eq. (II.64) to represent w results in
an exact [Eq. (II.62)], rather than an approximate, stiffness matrix. Use of a differ-
ent polynomial can lead to a different stiffness matrix. Stiffness matrices for many
elements are not exact.

The loading vector p̄i is evaluated using Eq. (II.71):

p̄i = � ∫ 1
0 NT pz(ξ) dξ

= �GT
∫ 1

0 NT
u pz(ξ) dξ = � ∫ 1

0




1− 3ξ2 + 2ξ3

(−ξ + 2ξ2 − ξ3)�

3ξ2 − 2ξ3

(ξ2 − ξ3)�


 pz(ξ) dξ

(II.78)

If pz is a constant of magnitude p0,

p̄i = −p0�




− 1
2

1
12�

− 1
2

− 1
12�




(II.79)

For hydrostatic loading with pz varying linearly from ξ = 0 to ξ = 1, where its
magnitude is p0, pz = p0ξ and

p̄i = − p0�

60




9
−2�
21
3�


 (II.80)

Properties of Stiffness Matrices

It is not difficult to show that all stiffness matrices have several characteristics in
common. Stiffness matrices are symmetric,

ki j = k ji and kab = kT
ba (II.81)

Also, the diagonal elements of a stiffness matrix are positive.
A particularly interesting property can be observed by studying the stiffness ma-

trix of Eq. (II.61). The sum of rows 1 and 3 is [ 0 0 0 0 ]. Thus, ki with a value
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of zero for its determinant is singular. We say that rows 1 and 3 are linearly depen-
dent, as are several other rows and columns such as columns 1 and 3. The application
of the boundary conditions has the effect of rendering the stiffness matrix nonsingu-
lar. This is to say that after elimination of rigid-body motion, a stiffness matrix is
positive definite.

II.6 MASS MATRICES

The incorporation of mass in an analysis raises several interesting questions because
some mass models lead to inefficient and even ineffective numerical solutions. In the
case of a transfer matrix, the mass per length ρ can be retained in its distributed form.
This leads to the transfer matrices of Chapter 11 (Table 11-22), in which ρ appears
nonlinearly in transcendental expressions. If such transfer matrices are converted
[Eq. (II.59)] to stiffness matrices, the results are called dynamic stiffness matrices. In
such a case, as can be seen in Table 11-22, the mass continues to appear nonlinearly
in transcendental terms. As will be shown in Appendix III, this nonlinear represen-
tation of mass, although it constitutes exact modeling, tends to be difficult to handle
efficiently in a dynamic analysis.

One technique to avoid having ρ appear in transcendental functions is to employ
lumped-mass modeling, in which the mass is considered to act at distinct points only.
The mass distributed to each side of a point is considered to be concentrated at the
point. The transfer matrix to take into account a lumped mass can be derived from
a transfer matrix containing distributed mass ρ by going to the limit as x → 0 and
ρx → m, where m is the magnitude of the mass (units of mass). In addition, this
point matrix can be found from the conditions of continuity and equilibrium of the
mass. Thus, taking only translational motion into account (Fig. II-7), w+ = w−,
θ+ = θ−, M+ = M−, and V+ = V−−mω2w j , where ω is the frequency of the mass
motion. This leads to the transfer point matrix

U j =




1 0 0 0
0 1 0 0
−mω2 0 1 0

0 0 0 1


 (II.82)

The subscript j indicates that the lumped mass occurs at point j .

Figure II-7: Concentrated mass.
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In stiffness matrix form (with ω2 factored out) the lumped mass would be the
diagonal matrix

mi =




1
2 m 0 0 0
0 0 0 0
0 0 1

2 m 0
0 0 0 0


 (II.83)

Another approach for deriving a mass matrix, which is quite common in practice,
is based on the principle of virtual work as expressed by Eq. (II.55):

∫ b

a
δw′′E Iw′′ dx −

∫ b

a
δw pz dx +

∫ b

a
δw ρẅ dx − [M δθ + V δw]ba = 0

(II.84)

The third term on the left-hand side, which includes ρ, is of interest here. Recall from
Eq. (II.64) that w = Nvi . Then ẅ = Nv̈i . Since δw = δviT NT , the third integral in
Eq. (II.84) becomes

δviT
∫ b

a
ρNT N dx v̈i (II.85)

The integral

mi =
∫ b

a
ρNT N dx (II.86)

defines a mass matrix that can be employed in the dynamic analysis of large systems.
If the same N is chosen for Eq. (II.86) as is employed to compute the stiffness

matrix ki of Eq. (II.72), the mass matrix mi is said to be consistent. Substitution of
N in Eq. (II.64) in the integral of Eq. (II.86) gives

mi = ρ�

420




156 −22� 54 13�
−22� 4�2 −13� −3�2

54 −13� 156 22�
13� −3�2 22� 4�2


 (II.87)

where it has been assumed that ρ is constant. The corresponding vi is defined as
Eq. (II.61) (i.e., vi = [ wa θa wb θb ]T ). Note that this mass matrix contains
only simple linear or quadratic expressions in � and that ρ, the mass per length,
has been extracted from the matrix. Although this mass matrix is not diagonal, it is
symmetric and often leads to a computationally efficient dynamic solution.

A more exact mass matrix can be obtained by using a more exact N in Eq. (II.85).
Such an N can be taken from Table 11-22. Often, this results in ρ appearing inside the
mass matrix in transcendental form and results in a less efficient, but more accurate,
dynamic analysis.
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II.7 DYNAMIC STIFFNESS MATRICES

As mentioned above, transfer matrices such as those of Eq. (II.42) can contain the
mass ρ without any approximations. This is referred to as “exact” mass modeling,
which contrasts with the approximate lumped and consistent mass modeling. If such
a transfer matrix is converted to a stiffness matrix, the resulting dynamic stiffness
matrix ki

dyn provides exact modeling of the mass.

II.8 GEOMETRIC STIFFNESS MATRICES

The treatment of the axial force P in a beam analysis is very similar to that of ρ, the
mass per length. First, the axial force can be considered as being continuous, leading
to the exact transfer and stiffness matrices of Table 11-22. These can be difficult to
utilize numerically. Second, the axial force can be lumped at particular locations,
providing a computationally attractive diagonal stiffness matrix.

Finally, the principle of virtual work can give a matrix for axial forces that is
similar to the matrix of Section II.7 for mass. If axial force is taken into account
explicitly, the principle of virtual work of Eq. (II.54) would appear as

∫ b

a
δw′′ E Iw′′ dx −

∫ b

a
δw pz dx −

∫ b

a
δw′ Pw′ dx − [M δθ + V δw]ba = 0

(II.88)

where P is in compression. The third integral on the left-hand side leads to the stiff-
ness matrix

ki
G =

∫ b

a
N
′T N′ dx = GT

∫ b

a
N
′T
u N′u dx G (II.89)

called the geometric, differential, or stress stiffness matrix. As explained in Ap-
pendix III, this is a very useful matrix for studies of structural stability.

If the same displacement trial function is employed in forming ki
G that is used in

deriving ki , the geometric stiffness matrix is said to be consistent. If N of Eq. (II.64)
is used,

ki
G =

1

30�




36 −3� −36 −3�
−3� 4�2 3� −�2

−36 3� 36 3�
−3� −�2 3� 4�2


 (II.90)

This symmetric matrix is the most commonly used geometric stiffness matrix.
More accurate, but computationally less favorable geometric stiffness matrices

can be obtained by utilizing a more accurate N such as that which can be taken from
Table 11-22.
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Also, ki and ki
G need not be based on the same displacement functions. Since

only first-order derivatives of w appear in ki
G of Eq. (II.89), whereas second-order

derivatives of w appear in the ki term [the first integral of Eq. (II.88)], a “simpler”
displacement function is sometimes employed in forming ki

G .
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A structure will be considered to be composed of structural elements connected at
nodes (joints). This structure is analyzed by assembling the characteristics of each
element.

The first global analysis procedure to be considered is the transfer matrix method.
This method is characterized by progressive matrix multiplications along a line sys-
tem, resulting in a final matrix of size that does not depend on the number of elements
in the structure.

A network structure such as a framework is normally treated using the force or
displacement method. Unlike the transfer matrix method, the force and displacement
methods lead to final system matrices that increase in size as the number of elements
composing the system increases.

The force method (the flexibility, influence coefficient, or compatibility method) is
based on the principle of complementary virtual work, which leads to global compat-
ibility conditions and a system flexibility matrix relating redundant forces to applied
loadings.

Computer-oriented structural analysis is dominated by the displacement method
(the stiffness or equilibrium method). Most of this appendix is concerned with the
displacement method, which is based on the principle of virtual work and leads to
global equilibrium equations. These relations are solved for the nodal displacements
as functions of applied forces. For structural systems the displacement method is
normally considered to be simpler to automate than the force method.

Structural mechanics textbooks such as Ref. [II.1] contain detailed developments
of the methods of analysis. This appendix provides a description of the most impor-
tant techniques of structural analysis.

III.1 TRANSFER MATRIX METHOD

The transfer matrix giving the state variables z at point b in terms of the state vari-
ables at point a of a structure appears as

zb = Ui za + z̄i (III.1)
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in which the transfer matrix Ui for a beam element for sign convention 1 is given by
[Eqs. (II.32)]



w

θ

V
M




b

=




1 −� −�3/6E I −�2/2E I
0 1 �2/2E I �/E I
0 0 1 0
0 0 � 1





w

θ

V
M




a

+




Fw
Fθ
FV

FM




i

zb = Ui za + z̄i

(III.2)

Frequently, it is helpful to incorporate the loading terms in the transfer matrix by
defining an extended state vector z and an extended transfer matrix Ui :




w

θ

V
M

1




b

=




1 −� −�3/6E I −�2/2E I Fw
0 1 �2/2E I �/E I Fθ
0 0 1 0 FV

0 0 � 1 FM

0 0 0 0 1







w

θ

V
M

1




a
zb = Ui za

(III.3)

The system of Fig. III-1 is formed of several beam elements with transfer matrices

zb = U1za (III.4a)

zc = U2zb (III.4b)

zd = U3zc (III.4c)

ze = U4zd (III.4d)

where zi is the state vector at location i . Each transfer matrix is given by Eq. (III.3)
using the appropriate E I , �, and loading functions Fj . In Eqs. (III.4a)–(III.4d) the
state vectors zb, zc, zd , and ze can be written in terms of the initial state vector za by
replacing zb in Eq. (III.4b) by zb of Eq. (III.4a), zc of Eq. (III.4c) by zc of Eq. (III.4b),
and so on. Thus,

Figure III-1: System transfer matrix.
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zb = U1za

zc = U2zb = U2U1za

zd = U3zc = U3U2U1za

ze = U4zd = U4U3U2U1za

(III.5)

It has been shown here that the state vector at any point along the beam is obtained
by progressive multiplication of the transfer matrices for the elements from left to
right up to that point. That is, at any point j ,

z j = U j U j−1 · · ·U2U1za (III.6)

For a system with a total of M elements,

zx=L = zL = UMUM−1 · · ·U2U1za = Uza (III.7)

where zL is the state vector at the right end and U is the global, or overall, transfer
matrix extending from the left to the right end of the system.

Two “sweeps” along the structure are needed to complete a transfer matrix solu-
tion. First the overall, or global, transfer matrix U of Eq. (III.7) is established, nor-
mally using a computer program that calls up stored transfer matrices and performs
the matrix multiplications of Eq. (III.7). For a beam the four boundary conditions are
applied to Eq. (III.7), leading to equations for the four unknown state variables wa ,
θa , Va , and Ma . Thus, za becomes known. Now, a second sweep along the system
using Eq. (III.6) permits the responses w, θ , V , and M to be calculated and printed
out along the beam. Between stations the responses are calculated by adjusting the x
coordinate (�) in the transfer matrix for that element. A later section introduces some
techniques that provide greater computational economy in developing a complete
transfer matrix solution.

The transfer matrix procedure is characterized by simplicity and systemization.
It involves system matrices of dimension the same as that of the element matrices.
It is a mixed method in that both force and displacement responses are computed
simultaneously as the calculations proceed. The primary disadvantage of the transfer
matrix method is that it is numerically sensitive, particularly when the boundaries are
far enough apart to have little influence on each other. It is apparent that the transfer
matrix method applies only to structural systems possessing a chainlike topology.

Loading and In-Span Conditions

The incorporation in the transfer matrix solution of the effects of such occurrences
as springs, lumped masses, and supports requires special consideration. Formulas
for the calculation of the loading functions for distributed applied loading were de-
veloped in Appendix II. The introduction of concentrated applied loadings will be
treated here. One case, lumped masses, was considered in Appendix II.
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Figure III-2: Beam segment showing M and V to each side of j for sign convention 1.

Suppose that a concentrated transverse force W is applied at point (node) j . Con-
sider the short segment spanning j shown in Fig. III-2. The deflection w and slope
θ will be continuous across j so that w+ = w−, θ+ = θ−. For an infinitesimally
short element a summation of moments about j shows that the bending moment is
also continuous, giving M+ = M−. However, the condition of equilibrium for the
vertical forces gives V− − W − V+ = 0 or V+ = V− − W , which shows that the
shear force changes by a magnitude W in moving across the load. In summary,



w

θ

V
M



+

j

=



w

θ

V
M



−

j

+




0
0
−W

0




j
z+j = z−j + z̄ j

(III.8a)

or in a transfer matrix form,




w

θ

V
M

1




+

j

=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 −W
0 0 0 1 0

0 0 0 0 1







w

θ

V
M

1




−

j
z+j = U j z−j

(III.8b)

Such a transfer matrix is referred to as a point matrix, while the transfer matrix for
an element with distributed properties is called a field matrix.

Example III.1 Spring The point matrix for an extension spring is rather simple
to derive. The force in the spring of Fig. III-3 is proportional to the beam deflection
w at j (i.e., the force is kw j ). Utilize the point matrix of Eq. (III.8) with W = −kw j ,

Figure III-3: Beam with spring.
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Figure III-4: Point occurrences.

where the minus sign indicates that the force due to the spring is upward while W of
Fig. III-2 is in the downward direction. The point matrix for the spring is given by




w

θ

V
M
1




+

j

=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 kw j

0 0 0 1 0
0 0 0 0 1







w

θ

V
M
1




−

j

=




1 0 0 0 0
0 1 0 0 0
k 0 1 0 0
0 0 0 1 0
0 0 0 0 1







w

θ

V
M
1




−

j

(1)

Point and field matrices are incorporated in the same manner in the progressive ma-
trix multiplications of a transfer matrix solution. For the beam of Fig. III-4, for ex-
ample, the state variable ze is given by

zx=L = ze = U4UdU3U2UbU1za

Introduction of Boundary Conditions

Formulas for transfer matrices are provided throughout this book. Transfer matrix
notation is summarized in Table III-1. A solution for a static problem begins with the
modeling of the structural system in terms of elements that connect locations of point
occurrences such as applied concentrated forces or jumps in cross-sectional area. De-
termine the section properties such as the element moments of inertia and calculate
the field matrix for each element as well as the point matrices for the concentrated
occurrences. Then form the global transfer matrix by multiplying progressively the
transfer matrices from the left end to the right end of the system. Thus, for a system
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with M elements, calculate U of

zx=L = zL = UM UM−1 · · ·Uk · · ·U2U1za = Uza (III.9a)

From this relationship evaluate the initial variables wa , θa , Va , and Ma of

za =




w

θ

V
M
1




a

by applying the boundary conditions to Eq. (III.9a). In implementing this, eliminate
the unnecessary rows and columns of Eq. (III.9a) and solve the remaining equations.
The solution is completed by calculating the deflection, slope, shear force, and inter-
nal moment of all points of interest using

z j = UjU j−1 · · ·Uk · · ·U2U1za (III.9b)

The responses can be computed between the ends of the elements by adjusting the x
coordinate (�) in the transfer matrix for that element.

The transfer matrix method is described in many texts, such as Refs. [III.1]–
[III.3]. Techniques for improving the computational efficiency and the numerical
stability of transfer matrix solutions are considered in the following sections.

Example III.2 Beam with Linearly Varying Loading Since beam solutions are
exact, the uniform beam of Fig. III-5 can be modeled with one element. We choose,
however, to consider the beam as being modeled with two elements.

From Table 11-19, with shear deformation ignored, the transfer matrices for each
element are

U1 =




1 −� −�3/6E I −�2/2E I (4p0 + 1
2 p0)�

4/120E I
0 1 �2/2E I �/E I −(3p0 + 1

2 p0)�
3/24E I

0 0 1 0 − 1
2 (p0 + 1

2 p0)�

0 0 � 1 − 1
6 (2p0 + 1

2 p0)�
2

0 0 0 0 1



�=�1

(1)

U2 =




1 −� −�3/6E I −�2/2E I p0�
4/60E I

0 1 �2/2E I �/E I −p0�
3/16E I

0 0 1 0 − 1
4 p0�

0 0 � 1 − 1
6 p0�

2

0 0 0 0 1



�=�2

(2)

The overall transfer matrix U is calculated as

zx=L = zc = U2U1za = Uza (3)
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Figure III-5: Beam with linearly varying loading.

The vector za of initial values is evaluated by applying the boundary conditions to
(3). For beams, two of the four initial responses wa , θa , Va , and Ma are determined
by observation. Thus, for the beam of Fig. III-5, it is evident that wa = 0 and θa = 0
since the left end is fixed. At the other end, which is simply supported, the conditions
are wx=L = 0 and Mx=L = 0. These conditions are applied to (3):



w = 0
θ

V
M = 0

1




x=L

=




UvW UvM Fw

UMV UM M FM
0 0 1




x=L




w = 0
θ = 0

V
M
1




x=0
zx=L = Ui za

Cancel columns Ignore rows 2 and 3
1 and 2 since since θx=L and Vx=L

w0 = θ0 = 0 are unknown

(4)

where Ukj and Fk are the elements of U of (3). The equations wx=L = 0 and
Mx=L = 0 in (4) are used to compute Ma and Va :
[
w

M

]
x=L
=
[

0
0

]
=
[

UwV UwM

UMV UM M

]
x=L

[
Va

Ma

]
+
[

Fw
FM

]
x=L

(5)

or

0 = VaŪwV + MaŪwM + F̄w, 0 = VaŪMV + MaŪM M + F̄M (6)

where

Ūi j = Ui j |x=L , F̄i = Fi |x=L

That is, an overbar is used to indicate that the transfer matrix or loading component
are global components in that they are evaluated at the right end of the member.
Equation (6) can be solved for Ma, Va :

Va = (FMUwM − FwUM M )|x=L/∇ = 2
5 p0L

Ma = (FwUMV − FMUwV )|x=L/∇ = − 1
15 p0L2

(7)
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where

∇ = (UwV UM M −UwMUMV )|x=L = ŪwV ŪM M − ŪwMŪMV (8)

The vector za is fully determined now, since wa = 0, θa = 0, and Ma, Va are
given by (7). The variables w, θ , V , and M can be computed using Eq. (III.6) and
can be printed out at selected locations. For example, the responses at nodes b and c
are

zb = zx=�1 = U1za, zc = zx=L = U2U1za = Uza (9)

Between the ends of elements, responses are computed by adjusting the coordinate
in the appropriate transfer matrix. For example, if the responses are desired at the
midpoint of the second element,

zx=�1+ 1
2 �2
= U2( 1

2�2)U1(�1)za (10)

Example III.3 Beam on Flexible Supports The beam of Fig. III-6b is a free–
free beam model with 10 extension springs and one concentrated force of the beam
of Fig. III-6a.

Figure III-6: Beam on flexible supports: (a) half of a beam; (b) model of the beam in (a).
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In transfer matrix form the response at the right end is given by

zx=L = UkU10U j U9 · · ·U6U f U5 · · ·U2UbU1Uazx=0 = Uz0 (1)

The transfer matrices are given by

Ui =




1 −� −�3/6E I −�2/2E I 0
0 1 �2/2E I �/E I 0
0 0 1 0 0
0 0 � 1 0
0 0 0 0 1




i = 1, 2, . . . , 9, 10
(Table 11-19)

(2)

Ui =




1 0 0 0 0
0 1 0 0 0
ki 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 i = a, b, c, d, e, g, . . . , k (Table 11-21) (3)

U f =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 −W
0 0 0 1 0
0 0 0 0 1


 (Table 11-21) (4)

The ends of the beam are free. Thus, the boundary conditions are Mx=0 = Vx=0 =
Mx=L = Vx=L = 0. These are applied to (1), zx=L = Uzx=0, where matrices with
an overbar are evaluated at x = L,




w

θ

V = 0
M = 0

1




x=L

=




F̄w
F̄θ

ŪVw ŪV θ F̄V

ŪMw ŪMθ F̄M

0 0 1







w

θ

V = 0
M = 0

1




x=0
Cancel columns 3 and 4 because V0 = M0 = 0
Ignore rows 1 and 2 because wx=L , θx=L are unknown

(5)

where Ukj and Fk are the elements of U of (1), and Ūk j = Ukj |x=L and F̄k = Fk |x=L .
The equations Mx=L = 0 and Vx=L = 0 are used to compute the unknown initial
parameters w0, θ0. Thus, from (5),

Vx=L = 0 = w0ŪVw + θ0ŪV θ + F̄V , Mx=L = 0 = w0ŪMw + θ0ŪMθ + F̄M

so that

w0 =
(−F̄V ŪMθ + F̄MŪV θ

)
/∇, θ0 =

(−F̄MŪVw + F̄V ŪMw
)
/∇, (6)

∇ = ŪVwŪMθ − ŪV θŪMw
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Now that z0 (i.e., w0, θ0, V0, and M0) is known, the state vector can be printed
out along the beam; for example,

zx=a2 = U1Uaz0, zx=a3 = U2UbU1Uaz0 (7)

The reactions at the springs are found by monitoring the change in shear force
across the springs or by forming the product of the beam deflections at the springs
and the spring constants. The reactions are computed to be

Ra = 34,230 lb, Rb = 19,180 lb, Rc = 27,560 lb
(8)

Rd = 36,330 lb, Re = 281,800 lb

The approach above permits the inclusion of a variable moment of inertia along
the beam axis.

Example III.4 Thermal Stress Analysis Suppose that a beam of rectangular
cross section with the left end fixed and right end simply supported (Fig. III-7) is
subjected to a change in temperature,

T = T (z) = T0
z

h
(1)

where T0 is a known constant. The reaction RL of Fig. III-7 is produced by the tem-
perature change imposed on the beam. Find the displacements and bending stresses
due to this thermal loading. The thermal moment is given by

MT = Eα
∫

A
T z d A = EαT0

h

∫
A

z2 d A = E IαT0

h
(2)

Since the origin of the y, z axes is the centroid of the cross section, the thermal axial
force is

PT = Eα
∫

A
T d A = EαT0

1

h

∫
A

z d A = 0 (3)

Suppose that E = 200 GN/m2, L = 2 m, h = 0.15 m, b = 0.07 m, T0 = 20◦C,
and α = 11× 10−6 (1/◦C). Insertion of these values into (2) gives

Figure III-7: Beam subjected to transverse temperature change.
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MT = 5.775 kN ·m (4)

where I = 1
12 bh3.

In transfer matrix notation the response takes the form

zx = U1z0 (5)

with z given by [ w θ V M 1 ]T . The transfer matrix U1 can be taken di-
rectly from Table 11-19. Alternatively, U1 can be extracted from Table 11-22. In
doing so, note that there is no elastic foundation (k = 0), no axial force (P = 0), no
rotary foundation (k∗ = 0), and mass and shear deformation are not to be considered
(ρ = 0 and 1/G As = 0). Thus,

λ = η = ζ = 0 (6)

For this case, the ei functions with x = L are given by case 2 of the definitions for
ei in Table 11-22,

e0 = 0, e1 = 1, e2 = L , e3 = 1
2 L2

e4 = 1
6 L3, e5 = 1

24 L4, e6 = 1
120 L5

(7)

The loading column is formed using Table 11-22, with

MT a = MT b = MT , pa = pb = ca = cb = 0 (8)

Then

F̄w = −MT L2/2E I, F̄θ = MT L/E I, F̄V = 0, F̄M = 0 (9)

Substitution of ei from (7) and the loading functions of (9) into the transfer matrix
gives, at x = L,




1 −L −L3/6E I −L2/2E I −MT L2/2E I
0 1 L2/2E I L/E I MT L/E I
0 0 1 0 0
0 0 L 1 0
0 0 0 0 1


 (10)

Applied to (10), the boundary conditions wx=0 = wx=L = 0, θx=0 = 0, and
Mx=L = 0 appear as




w = 0
θ

V
M = 0

1




x=L

= Ū1




w = 0
θ = 0

V
M
1




x=0

(11)
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Figure III-8: Response of a beam with thermal loading.

Solution of the equations wx=L = 0 and Mx=L = 0 of (11) gives the initial
conditions

V0 = 3MT /2L = 4331.3 N, M0 = − 3
2 MT = −8662.5 N ·m (12)

Equation (5) can be used to print out the responses along the beam by using the initial
conditions of (12) and the transfer matrix of (10) with L replaced by x . The results
are shown in Fig. III-8.

If an analytical expression is desired, Eq. (5) is readily shown to reduce to the
deflection

w = MT

4E I

(
x2 − x3

L

)
= αT0

4h

(
x2 − x3

L

)
(13)

and the internal moment is given by

M = 3MT

2

( x

L
− 1
)
= 3E IαT0

2h

( x

L
− 1
)

(14)

The normal stress due to this thermal loading is (Table 15-1, Case 1)

σ = −αET + Mz

I
= αET0z

2h

(
3

x

L
− 5
)

(15)

Stability

Structural members can reach a critical state that is quite different from the usual
critical strength or stiffness levels set as criteria for structural failure. This state,
referred to as instability or buckling, is the result of the ordinary equilibrium mode
of deformation becoming unstable. The state of buckling is usually caused by an
axial or in-plane force being of such value (the critical load) that the response (e.g.,
displacement) begins to increase inordinately as the load is increased slightly. The
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governing equations of motion for a simple beam with a compressive axial force P
are [Eq. (11.7a)], with k = 0,

E I
d4w

dx4
+ P

d2w

dx2
= pz

V = −E I
d3w

dx3
− P

dw

dx
, M = −E I

d2w

dx2
, θ = −dw

dx

These relations, with pz = 0, can be solved in the transfer matrix form, giving




w

θ

V

M




b

=




1 − s

α

α�− s

α d E I

1− c

d E I

0 c −1− c

d E I

s

αE I
0 0 1 0

0
E I sd

α

s

α
c







w

θ

V

M




a
zb = Ui za

(III.10)

For a compressive axial force,

α2 = P/E I, s = sinα�, c = cosα�, d = −α2 (III.11)

and for a tensile axial force,

α2 = −P/E I, s = sinhα�, c = coshα�, d = α2 (III.12)

This same transfer matrix is given in Table 11-22.
Buckling can be identified by determining the axial load for which expres-

sions w, θ, V,M experience unrestrained growth. These expressions become large
if the values of the initial parameters w0, θ0, V0,M0 (or wa, θa, Va,Ma) become
large. Thus, the critical level of axial force is reached if the denominators of the
wa, θa, Va,Ma expressions, obtained by application of the boundary conditions to
Eq. (III.7), approach zero. In solving for wa , θa , Va , and Ma , it is found that these
initial values increase inordinately in magnitude for specific values of the axial force.
The lowest value is the critical or buckling load.

This sort of problem involving particular values of a parameter (here the axial
force) is called an eigenvalue problem. These special discrete values are called char-
acteristic values or eigenvalues, and the corresponding responses are characteristic
functions, eigenfunctions, or mode shapes. The expression that leads to the critical
values is called the characteristic equation. Eigenvalue problems also arise in the
study of the dynamics of structural members, with the natural frequencies being the
eigenvalues.

It should be understood that this classical approach to instability, which involves
“unrestrained growth” of the response, is based on fundamental equations of motion
that were derived for linearly elastic material and small deflections. Strictly speaking,
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it is improper to think of truly large deflections. More accurate theories are required
to describe large deflections.

Example III.5 Buckling Load for a Fixed–Fixed Column Find the critical ax-
ial force for a uniform column of length L with fixed ends.

The transfer matrix Ui = U for a uniform beam element with axial force P is
given by Eq. (III.10). Since the column is fixed on both ends, the boundary conditions
are

wx=a = θx=a = wx=L = θx=L = 0 (1)

Applied to zL = Uza , these conditions give



w = 0
θ = 0

V
M




b

=




ŪwV ŪwM

ŪθV ŪθM





w = 0
θ = 0

V
M




a

(2)

or

0 = VaŪwV + MaŪwM , 0 = VaŪθV + MaŪθM (3)

where Ūi j = Ui j |x=L .
The determinant of the equations on the right-hand side is

∇ = (ŪwV ŪθM − ŪwMŪθV
)

x=L (4)

If these were not homogeneous relations and Cramer’s rule were employed to solve
these equations, the denominator of the responses would be a determinant, say ∇.
See, for example, Eqs. (7) of Example III.2 or Eqs. (6) of Example III.3. Inordinately
large responses correspond to ∇ = 0.

The buckling criterion (characteristic equation) of ∇ = 0 can also be reasoned to
be the condition for finding nontrivial solutions of a system of homogeneous equa-
tions.

Substitution of the appropriate transfer matrix elements of Eq. (III.10) in ∇ = 0
gives

− (1− cosαL)2

P2
− sin2 αL

P2
+ αL

P2
sinαL = 0 (5)

which for the meaningful case of P = 0 reduces to

2− 2 cosαL − αL sinαL = 0

This expression is satisfied by

αL = 2nπ, n = 0, 1, 2, . . . , α2 = P/E I (6)
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The desired critical or buckling load is given by the lowest meaningful value of P in
(6), that is, for n = 1,

P|∇=0 = 4π2 E I

L2
= Pcr (7)

The value n = 0 is ruled out as it implies that P = 0, which is a trivial or meaningless
case. Although ∇ assumes a value of zero for other values of n (n = 2, 3, . . . ), the
corresponding unstable loads P are of limited engineering interest since the column
has essentially already failed.

An interesting characteristic of this theory of instability is that the critical axial
load of a beam is the same regardless of the transverse loading on the bar because the
loading does not affect the values of the determinant of the equations. For example,
in Eqs. (7) of Example III.2 or Eqs. (6) of Example III.3, the loading functions Fw,
Fθ , FV , and FM appear only in the numerators of the initial-value expressions and
not in ∇.

The stability of a member with abrupt in-span changes is treated in a fashion
similar to that of the member of constant cross section. The characteristic equation
is formed of the global, or overall, transfer matrix elements developed by the usual
progressive multiplication of the transfer matrices of the various elements of the
member.

It should be noted that the axial force in various elements of a member may be
calculated by applying an equilibrium of forces in the axial direction. Thus, for the
member of Fig. III-9,

Pelement 1 = P0

Pelement 2 = P0 + P1

...

Pelement j = P0 + P1 + · · · + Pj−1

As often as not, it is difficult, if not impossible, to find an analytical expression for
P that satisfies the characteristic equation [e.g., ∇ = 0 in Eq. (5) of Example III.5].
Thus, Pcr is usually found by computationally searching for the lowest value of P
(i.e., the root) for which ∇ = 0. Typically, a computer program evaluates ∇ numer-
ically for trial values of P in the search routine. The magnitude of P is increased

Figure III-9: Column of stepped cross section.
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until ∇ changes sign. Then one of the many root-finding techniques is employed to
close in on Pcr.

In the case of a member with a variable axial load (e.g., the beam of Fig. III-9)
the ratio of the load applied at each element to a nominal value (e.g., P0) is usually
known. Then the nominal value leading to instability is sought by setting ∇ = 0.

Example III.6 Column of Variable Cross Section Find the buckling load for
the stepped column of Fig. III-10.

The global transfer matrix is defined by

zL = Uza (1)

with

U = U2U1 (2)

where U1 is given by Eq. (III.10) with �, E I , and P replaced by �1, E I1, and Pa .
The transfer matrix U2 is given by Eq. (III.10) using �2, E I2, and Pa + Pb. Note that
the axial force in element 2 is Pa + Pb, not just Pb.

The column is simply supported on both ends so that the boundary conditions are

wx=a = Mx=a = wx=L = Mx=L = 0 (3)

These conditions applied to (1) appear as



w = 0
θ

V
M = 0




L

=




Ūwθ ŪwV

ŪMθ ŪMV





w = 0
θ

V
M = 0




a
zL = U za

(4)

or

0 = θaŪwθ + VaŪwV , 0 = θaŪMθ + VaŪMV (5)

where Ūi j = Ui j |x=L .
The determinant (set equal to zero) of these homogeneous equations constitutes

the characteristic equation. That is,

Figure III-10: Stepped column.
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∇ = Ūwθ ŪMV − ŪMθ ŪwV = 0 (6)

leads to the buckling load.
Relation (6) becomes

1

α2
1

− α
2
1 L E I1 Pb + �1

α1 tanα1�1
− I1/I2

α2
2

− α
2
2 L E I1 Pb − �2 I1/I2

α2 tanα2�2
= 0 (7)

where
α2

1 = Pa/E I1, α2
2 = (Pa + Pb)/E I2

Combinations of Pa and Pb that satisfy ∇ = 0 define the conditions of instability.
Normally, Pa and Pb are not independent. Typically, Pb is known to be proportional
to Pa (i.e., Pb = cPa , where c is a known constant). Then (6) is the characteristic
equation for a single unknown, the lowest value of which is the buckling load.

As mentioned above, the buckling loads for complicated stepped columns must
be found by a numerical search for the lowest root of ∇ = 0. Typically, this process
begins by evaluating∇ for an estimated buckling load that is believed to be below the
actual buckling load. Increase the estimate and repeat the evaluation of ∇. Continue
the process until ∇ changes sign. The desired buckling load, which lies between the
two previous estimates, is then found to a prescribed accuracy by utilizing a root-
finding scheme such as Newton–Raphson. Effective software for this calculation is
readily available.

More information about eigenvalue problems is given in the following section
on dynamics, in which the natural frequencies rather than the critical loads are the
eigenvalues.

Free Vibrations

Special consideration must be given to structural problems when acceleration effects
cannot be neglected. More specifically, problems in dynamics arise when the inertia
of the acceleration of the structural mass must be taken into account. The response
or solution that is sought will now be given by time-dependent state variables. Some
terminology for the fundamentals of dynamics is provided in Chapter 10.

If a structural member possesses only a small amount of damping or if the dy-
namic response is desired for only a short period of time, an assumption of no damp-
ing may be imposed on the equations governing the motion. As an example, for an
undamped Euler–Bernoulli beam, the equations of motion become

∂2

∂x2

(
E I
∂2w

∂x2

)
= −ρ ∂

2w

∂t2
+ pz(x, t)
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V (x, t) = − ∂

∂x

(
E I
∂2w

∂x2

)
(higher-order form)

M(x, t) = −E I
∂2w

∂x2
(III.13a)

θ(x, t) = −∂w
∂x

and

∂w

∂x
= −θ

∂θ

∂x
= M

E I

∂V

∂x
= ρ ∂

2w

∂t2
− pz(x, t) (first-order form)

∂M

∂x
= V

(III.13b)

where ρ is the mass per unit length and w = w(x, t).
Even without the consideration of damping, these partial differential equations

are difficult to solve. Indeed, no simple solution exists except for a few elementary
structural dynamics problems. Numerical integration of the equations of motion is
hazardous at best. Even if they are integrated successfully, no information is provided
concerning the natural frequencies of the structure. Normal-mode theory, however,
does involve the computation of the natural frequencies and appears to be the most
logical approach for coupling with transfer matrix methodology. It will be examined
in some detail here.

It is possible for a structure to respond in one of many so-called natural (normal,
principal, characteristic, free) modes, that is, deformation configurations, which are
characteristic of the member. Natural vibration occurs under the action of innate
forces of the member and is not due to external impressed forces. Motion in a natural
mode can be generated by imposing appropriate initial conditions of displacement
and velocity. Normal-mode theory for structural response uses these natural mode
shapes to construct a solution for a structure subject to any time-dependent loading,
initial, boundary, and in-span conditions.

Elastic structures exhibit many natural modes; fortunately, usually, information
on only a limited number of them is necessary to represent most dynamic responses.
Apart from the use of natural modes and frequencies in the construction of the tran-
sient dynamic solution, the modal characteristics are valuable information in their
own right. For example, if a member is excited by a harmonic loading function, the
member will respond with a motion at the frequency of the loading function. If this
loading frequency coincides with one of the natural frequencies of the system, large
dangerous amplitudes may occur. This is the resonance condition.
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Consider now the free motion of a beam. Free refers to the absence of exter-
nally applied loads. Set the loading function pz(x, t) equal to zero in the first of
Eqs. (III.13a). Then

∂2

∂x2

(
E I
∂2w

∂x2

)
= −ρ ∂

2w

∂t2
(III.14)

Assume that the variables can be separated in space (x) and time (t), giving

w(x, t) = w(x)q(t) (III.15)

where q is a function of time. Substitution of this expression into Eq. (III.14) yields

d2

dx2

(
E I

d2w(x)

dx2

)
q(t) = −ρw(x) d2

dt2
q(t)

or

(d2/dx2)E I [d2w(x)/dx2]
ρw(x)

= −d2q(t)/dt2

q(t)

For the left-hand side, which is a function only of x , to be equal to the right-hand
side, which is dependent only on t , both sides must be equal to the same constant,
say ω2. Then

d2

dx2
E I

d2w

dx2
= ρω2w (III.16)

and

d2q(t)

dt2
+ ω2q(t) = 0

The solution to this latter relation is given by

q(t) = A sinωt + B cosωt (III.17)

where A, B are constants. It is seen that ω is the frequency, in radians per unit of
time, of the free motion. This is the undamped natural frequency of the beam.

The assumed value of w(x, t) of Eq. (III.15) placed in Eqs. (III.13) leads to

θ(x, t) = θ(x)q(t), V (x, t) = V (x)q(t),
(III.18)

M(x, t) = M(x)q(t)

with

d2

dx2

(
E I

d2w

dx2

)
= ρω2w
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V (x) = − d

dx

(
E I

d2w

dx2

)
(higher-order form)

M(x) = −E I
d2w

dx2
(III.19a)

θ(x) = −dw

dx

and

dw

dx
= −θ

dθ

dx
= M

E I
(first-order form)

dV

dx
= −ρω2w

d M

dx
= V

(III.19b)

where w = w(x).
These equations can be solved in the same fashion as the equations of motion for

the static response of a beam. For a uniform beam, the transfer matrix solution to
Eqs. (III.19) appears as




w

θ

V

M




b

=




coshβ�+ cosβ�

2
−sinhβ�+ sinβ�

2β

−β(sinhβ�− sinβ�)

2

coshβ�+ cosβ�

2

− E Iβ3(sinhβ�+ sinβ�)

2

E Iβ2

2
(coshβ�− cosβ�)

− E Iβ2

2(coshβ�− cosβ�)

E Iβ

2
(sinhβ�− sinβ�)

−sinhβ�− sinβ�

2E Iβ3
−coshβ�− cosβ�

2E Iβ2

cosh β�− cosβ�

2E Iβ2

sinhβ�+ sinβ�

2E Iβ
cosh β�+ cosβ�

2

β

2
(sinhβ�− sinβ�)

sinhβ�+ sinβ�

2β

cosh β�+ cosβ�

2







w

θ

V

M




a

(III.20)

where β4 = ρω2/E I .
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Equations (III.20) contain five unknowns, the four constants of integrationwa , θa ,
Va , and Ma (w0, θ0, V0, and M0) and the undamped natural frequency ω. Recall that
there are only four known conditions—the boundary conditions—available to apply
to these equations to find the unknowns. Apparently, one quantity remains unknown
in the study of free motion; however, it will be shown that motion generated by
prescribed initial conditions or applied loading is fully determined. The study of free
vibrations bears a close resemblance to the study of instability wherein the boundary
conditions are applied to find the critical loading rather than the initial parameters,
as in the case with static equilibrium problems. Both problems belong to the class
of eigenvalue problems. Frequencies and mode shapes are referred to as eigenvalues
and eigenfunctions, respectively.

Consider the case of a beam simply supported at both ends. The boundary con-
ditions are wx=0 = Mx=0 = wx=L = Mx=L = 0. These conditions applied to
Eq. (II.47) with a = 0, b = L, and with the loading terms set equal to zero, give

w0 = 0, M0 = 0 (III.21a)

wx=L = θ0Ūwθ + V0ŪwV = 0 (III.21b)

Mx=L = θ0ŪMθ + V0ŪMV = 0 (III.21c)

where Ūwθ , ŪwV , ŪMθ , and ŪMV are Uwθ , UwV , UMθ , and UMV , respectively, eval-
uated at x = L. Equations such as these are said to be homogeneous. Nontrivial
solutions to these homogeneous equations exist when the determinant of the initial
parameters goes to zero, that is, when

∇ =
∣∣∣∣ Uwθ UwV

UMθ UMV

∣∣∣∣
x=L
= (UwθUMV −UMθUwV )x=L

= ŪwθŪMV − ŪMθ ŪwV = 0 (III.22)

Equation (III.22) is a function of the unknown frequency ω. The determinant ∇ can
be zero for many different values of ω; these values are the desired natural frequen-
cies of the system and are designated by ωn, n = 1, 2, . . . .

Reference here to transfer matrix relations for static responses is informative in
that a rough (nonrigorous) concept of the philosophy behind setting ∇ = 0 is ob-
tained. In the case of static equilibrium each initial parameter appears in the form
[see e.g., Eqs. (7) of Example III.2 or Eqs. (6) of Example III.3]

[
loading
function

] [
transfer

matrix element

]
−
[

loading
function

] [
transfer

matrix element

]

∇
Since the loading functions are zero by definition of free vibration, the numerator of
this expression is zero. Then the only possibility for a nontrivial solution is for the
denominator to be zero also. Thus, ∇ is set equal to zero.
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It is noteworthy that it is not possible to determine both of the unknowns θ0, V0
of Eq. (III.21). However, there is sufficient information to find the ratio θ0/V0. From
Eq. (III.21b)

θ0/V0 = −(UwV /Uwθ )x=L (III.23)

and from Eq. (III.21c),

θ0/V0 = −(UMV /UMθ )x=L (III.24)

Recall that the frequencies have been selected such that ∇ = 0, or from Eq. (III.22),

(UwV /Uwθ )x=L = (UMV /UMθ )x=L (III.25)

Thus the values of θ0/V0 expressed by Eqs. (III.23) and (III.24) are equivalent.
Alternatively, the problem can be viewed from the standpoint of the four boundary

conditions leading to the four relations w0 = 0, M0 = 0, and θ0/V0 as given in
Eq. (III.23) and θ0/V0 of Eq. (III.24). Since the two expressions for θ0/V0 must be
equal, Eq. (III.25) [or equivalently, Eq. (III.22)] is again obtained as a condition that
must be satisfied. Thus, application of the boundary conditions again leads to the
condition ∇ = 0.

As just observed, the ratio of the initial parameters can be determined but not the
values of all of the initial parameters themselves. Thus, one of the initial parameters
can be found in terms of the other. The latter initial parameter is chosen to remain
as the only unknown of the problem. If θ0 is assumed to be the arbitrary constant of
unknown magnitude, the initial parameters for this hinged–hinged beam appear as

w0 = 0, M0 = 0, θ0 = θ0

V0 = −θ0(UMθ /UMV )x=L
(III.26)

Formulas of this sort can be derived and tabulated for any set of boundary conditions.
In summary, it is seen that the four conditions wx=0 = Mx=0 = wx=L =

Mx=L = 0 applied to the transfer matrix equations with five unknowns [Eqs. (II.47)
with a = 0, b = L, and z̄i = 0] result in a situation with one unknown remain-
ing. That is, only the ratio of two of the parameters can be determined and not the
values of the initial parameters themselves. Fortunately, this situation occurs only in
the study of free motion because the specification of loading and initial conditions
suffices to eliminate the unknown.

To obtain the undamped mode shapes, place the frequencies ωn, n = 1, 2, . . . ,
and the expressions for the initial parameters [Eq. (III.26)] in the response expres-
sions [Eq. (II.47)]:

wn(x) = θ0 [Uwθ |x −UwV |x (UMθ /UMV )x=L ]ω=ωn
(III.27a)

θn(x) = θ0 [Uθθ |x −UθV |x (UMθ /UMV )x=L ]ω=ωn
(III.27b)
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Vn(x) = θ0 [UV θ |x −UV V |x (UMθ /UMV )x=L ]ω=ωn
(III.27c)

Mn(x) = θ0 [UMθ |x −UMV |x (UMθ /UMV )x=L ]ω=ωn
(III.27d)

where ωn = ω1, ω2, . . . . These are really “shape” functions as they contain the
unknown quantity or amplitude θ0. Often, this amplitude is assigned a unit value.

Consider the simply supported beam of length L in more detail. Place the transfer
matrix elements of Eqs. (III.20) in ∇ of Eq. (III.22):

∇ = −sinhβL + sinβL

2β

sinhβL + sinβL

2β

+ E Iβ
sinhβL − sinβL

2

sinhβL − sinβL

2E Iβ3

= −sinhβL sinβL

β2
= 0 (III.28)

The values of β that make this expression equal to zero are desired. Other than β = 0,
it is clear that the zeros of the function sinhβL sinβL are the zeros of sinβL. This
follows because sinh βL is not zero except at βL = 0. Thus, sinβL = 0 or βL =
nπ, n = 1, 2, . . . . The notation is improved somewhat if ω and β are replaced by
ωn and βn . Then βn L = nπ . Since β4

n = ρω2
n/E I ,

ωn = (nπ) 2
√

E I/ρ

L2
, n = 1, 2, . . . (III.29)

That is,

ω1 = π2

L2

√
E I

ρ
, ω2 = 4π2

L2

√
E I

ρ
, etc.

These are the undamped natural frequencies for the uniform, simply supported beam.
The deflection mode shape [Eq. (III.27a)] becomes

wn(x) = θ0

(
−sinhβnx + sinβn x

2βn
+ sinhβn x − sinβn x

2βn

sinhβn L − sinβn L

sinhβn L + sinβn L

)

=
(
− θ0

βn

)
sinβn x (III.30)

with ω2
n = (nπ/L)4 E I/ρ, n = 1, 2, . . . . This completes the determination of the

undamped frequencies and the mode shapes for the uniform, simply supported beam.
In the case of more complicated configurations (e.g., a beam of variable cross sec-
tion), it is not always possible to obtain explicit expressions for the frequencies. Then
the roots (frequencies or eigenvalues) of ∇, which are formed from the global trans-
fer matrix elements, can be found computationally.
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Example III.7 Transfer Matrix Method for a Beam with Continuous Mass
The natural frequencies of a uniform beam simply supported at the ends will be
found using several methods in this appendix. For this beam let L = 80 in., E =
3 × 107 lb/in2, I = 1.3333 in4, and ρ = 2.912 × 10−3 lb-sec2/in2. Begin by con-
sidering the mass to be distributed continuously.

Suppose that the beam is modeled as two segments, as shown in Fig. III-11. Apart
from the desire to illustrate the transfer matrix procedure, there is no reason that this
uniform beam should be modeled with two elements. Of course, a single-element
model is substantially simpler to utilize.

For the model of Fig. III-11,

zc = U2U1za (1)

where U2 = U1, and from Eq. (III.20),

U1 = U2 =




1

2
(C4 + C2) − 1

2β
(C3 + C1)

−1

2
β(C3 − C1)

1

2
(C4 + C2)

−1

2
E Iβ3(C3 + C1)

1

2
E Iβ2(C4 − C2)

−1

2
E Iβ2(C4 − C2)

1

2
E Iβ(C3 − C1)

− 1

2E Iβ3
(C3 − C1) − 1

2E Iβ2
(C4 − C2)

1

2E Iβ2
(C4 − C2)

1

2E Iβ
(C3 + C1)

1

2
(C4 + C2)

1

2
β(C3 − C1)

1

2β
(C3 + C1)

1

2
(C4 + C2)




(2)

where

C1 = sinβ�, C2 = cosβ�, C3 = sinhβ�, C4 = coshβ�,

β4 = ρω2/E I

Figure III-11: Two-element model of a uniform simply supported beam.
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Then

U = U2U1 =




Ūww Ūwθ ŪwV ŪwM

Ūθw Ūθθ ŪθV ŪθM

ŪVw ŪV θ ŪV V ŪV M

ŪMw ŪMθ ŪMV ŪM M


 (3)

where Ūi j are the transfer matrix components evaluated at x = L.
Insert (3) and the simply supported boundary conditionswa = Ma = wc = Mc =

0 into (1),



w = 0
θ

V
M = 0




c

=




Ūww Ūwθ ŪwV ŪwM

Ūθw Ūθθ ŪθV ŪθM

ŪVw ŪV θ ŪV V ŪV M

ŪMw ŪMθ ŪMV ŪM M





w = 0
θ

V
M = 0




a

(4)

The relations wc = 0 and Mc = 0 appear as

Ūwθθa + ŪwV Va = 0, ŪMθ θa + ŪMV Va = 0 (5)

For a nontrivial solution for θa and Va , the condition

∇ =
[

Ūwθ ŪwV

ŪMθ ŪMV

]
= ŪwθŪMV − ŪwV ŪMθ = 0 (6)

must hold. From (2) and (3),

∇ = 1

β2
(2C3C4)(−2C1C2) = 0

where

C3C4 = sinhβ� cosh β�, C1C2 = sinβ� cos β� (7)

For a nontrivial solution of β, only sinβ� cos β� = 0 is possible. Because of the
double-angle identities, Eqs. (I.13a), this leads to

sin 2β� = 0 (8)

which implies that

β = nπ/2� = nπ/L , n = 1, 2, 3, . . . (9)

Finally,

ρω2/E I = (nπ/2�)4
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or

ωn =
√

E I

ρ

(nπ

2�

)2 =
√

E I

ρ

(nπ

L

)2
(10)

which is the same expression in Eq. (III.29) for a single-element model.
For this beam

ω1 =
√

1.3333(3× 107)

2.912× 10−3

(
π

2× 40

)2

= 180.74 rad/s or f1 = ω1

2π
= 28.767 Hz

ω2 =
√

1.3333(3× 107)

2.912× 10−3

(
2π

2× 40

)2

= 722.96 rad/s = 115.066 Hz (11)

ω3 = 1626.66 rad/s = 258.899 Hz

ω4 = 2891.84 rad/s = 460.264 Hz

...

Often, the difficulties in finding a solution, including the computational burden
of identifying the frequencies, can be reduced if certain approximations are made
in modeling the structure. One of the most popular models involves the discretiza-
tion, or lumping, of physical parameters along the member. These lumped parameter
models, which lead to solutions of widely varying degrees of accuracy, usually re-
sult in ∇ = 0 being a polynomial expression for the frequency. Computationally
the polynomial is a highly tractable form when roots are desired, especially when
compared to the often unwieldy transcendental functions incurred in the distributed
parameter representation. Discretization of parameters limits the degrees of freedom
of motion. There will usually be only as many frequencies as there are “lumps.” Nat-
urally, care must be taken in forming the lumped parameter model of the structural
member. Fortunately, the lower frequencies, which are normally those of greatest
engineering concern, are usually found with adequate accuracy using a reasonable
number of lumps in the lumped parameter model. A point matrix representing the
most common of lumped parameter models—the lumped mass model—was derived
in Section II.6, Eq. (II.82). Lumped mass matrices are given in Table 11-21.

In a lumped mass beam model a beam with distributed mass is replaced by point
masses joined by massless beams (Fig. III-12). The global transfer matrix U for a
lumped mass model is pieced together in the familiar fashion:

zx=L = UM+1UMUM · · ·UkUk · · ·U1U1z0 = Uz0 (III.31)

where Uk are the point matrices [Eq. (II.82)] and the Uk are the field matrices for the
massless beam segments [i.e., Eqs. (II.32)].
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Figure III-12: Lumped mass modeling.

Example III.8 Transfer Matrix Method for a Lumped Mass Beam Model
Suppose that the mass of the beam of Example III.7 is lumped as shown in Fig. III-13.
Find the natural frequencies using the transfer matrix method.

In transfer matrix form

zL = zd = U3UcU2UbU1za = Uza (1)

where

U1 =




1 −�1 −�3
1/6E I −�2

1/2E I
0 1 �2

1/2E I �1/E I
0 0 1 0
0 0 �1 1


 (2)

U2 =




1 −2�1 −8�3
1/6E I −4�2

1/2E I
0 1 4�2

1/2E I 2�1/E I
0 0 1 0
0 0 2�1 1


 (3)

U3 = U1 (4)

Ub =




1 0 0 0
0 1 0 0

−m1ω
2 0 1 0

0 0 0 1


 (5)

Uc = Ub since m1 = m2 (6)

�1=�3=     �2= 20 in.
2
1

2
1

m1=m2= (( �1+    �2 = (20+20)×2.912×10-3 =0.1165 lb-s2/in.

Ub Uc

a
�1

L = 80 in.

U1 U2 U3

�2 �3

b c
dm1 m2

�

Figure III-13: Lumped mass model of the simply supported beam of Fig. III-11.
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Substitution of the foregoing results into 1 gives

U = U3UcU2UbU1 =




Ūww Ūwθ ŪwV ŪwM

Ūθw Ūθθ ŪθV ŪθM

ŪVw ŪV θ ŪV V ŪV M

ŪMw ŪMθ ŪMV ŪM M


 (7)

where Ūi j = Ui j |x=L are components of U evaluated at x = L (i.e., at d).
Application of the boundary conditions wa = Ma = wd = Md = 0 to zd = Uza

leads to the homogeneous relations

Ūwθθa + ŪwV Va = 0

ŪMθ θa + ŪMV Va = 0
(8)

For nontrivial solutions, the determinant of the coefficients θa and Va must be zero;
that is,

∇ = ŪwθŪMV − ŪwV ŪMθ = 0 (9)

From (7) it is found that

Ūwθ = −4�1 − �4
1

2E I
(9m1 + m2)ω

2 − 2m1m2�
7
1

9E2 I 2
ω4

ŪMV = 4�1 + �4
1

2E I
(9m2 + m1)ω

2 + 2m1m2�
7
1

9E2 I 2
ω4

ŪwV = −32�3
1

3E I
− 3(m1 + m2)�

6
1

4E2 I 2
ω2 − 1

27

m1m2�
9
1

E3 I 3
ω4

ŪMθ = 3�2
1(m1 + m2)ω

2 + 4m1m2�
5
1

3E I
ω4

(10)

Substitute the numerical values of E , I , m1 = m2, and �1 into (10). Then (9) becomes
the frequency equation

ω4 − (2.896× 105)ω2 + 0.82855× 1010 = 0 (11)

The roots of this polynomial are

ω1 = 179.415 rad/s = 28.555 Hz, ω2 = 507.356 rad/s = 80.748 Hz (12)

Note that the first natural frequency is quite close to the more precise results of
Example III.7, although slightly lower. The “rule of thumb” is that one-half of the
frequencies obtained using a lumped mass model should be considered as being suffi-
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ciently accurate to be useful. Also, normally the lumped mass model provides values
somewhat lower than the correct natural frequencies.

Note that the frequency equation of Eq. (11), Example III.8, is a polynomial in ω2.
It is of interest that the global transfer matrix U and hence∇ can always be expressed
in terms of a polynomial in ω2 for lumped mass systems. Since the frequency equa-
tion is also a polynomial, the cumbersome determinant search technique for finding
natural frequencies can be replaced by efficient, standard polynomial root-solving
routines [III.2]. However, for large systems and higher frequencies, numerical insta-
bilities may occur.

Responses due to arbitrary time-dependent applied loading or prescribed initial
conditions are considered in Section III.7. In the following section we examine the
response of a member to cyclic loading. After some time the initial displacement
and velocity are of no concern and the member responds in a cyclic fashion. This is
referred to as steady-state motion.

Steady-State Motion

Assume that an undamped beam is excited by a cyclic loading, in particular, by the
harmonic loading pz(x, t) = pz(x) sin�t . Permit the motion to continue until the
effect of any irregular starting (initial) conditions dies out. Then, all of the state
variables of this elastic member will respond with the same harmonic motion. Thus,

w(x, t) = w(x) sin�t θ(x, t) = θ(x) sin�t

V (x, t) = V (x) sin�t M(x, t) = M(x) sin�t
(III.32)

This is one form of steady-state motion. Unlike the response frequencies for free
motion that are found from the condition ∇ = 0, the frequency � of the loading
and response is specified input information for the problem and as such is a known
variable.

Substitution of Eqs. (III.32) in Eqs. (III.13) leads to

d2

dx2

(
E I

d2w

dx2

)
− ρ�2w = pz(x)

V (x) = − d

dx

(
E I

d2w

dx2

)
(higher-order form)

M(x) = −E I
d2w

dx2

θ(x) = −dw

dx

(III.33a)
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and

dw

dx
= −θ

dθ

dx
= M

E I
(first-order form)

dV

dx
+ ρ�2w = −pz(x)

d M

dx
= V

(III.33b)

The problem has been reduced to one of statics. Since the governing equa-
tions (III.33) with pz(x) = 0 are identical to those for the free motion of a beam
[Eqs. (III.19)] if ω = �, the solution to Eqs. (III.33) is given by the transfer matrices
tabulated in this book in the dynamic response sections. These transfer matrices
(with ω = �) are then used in precisely the fashion employed in the static re-
sponse problems. That is, the loading functions are developed, field changes taken
into account, and initial parameters evaluated using the static response tables. Upon
completion of the static solution to find w(x), θ(x), V (x), and M(x), these vari-
ables are inserted in Eqs. (III.32) to give the full spatial and temporal solution [i.e.,
w(x, t), θ(x, t), V (x, t),M(x, t)].

It is noteworthy that this steady-state response can encompass any loading, in-
span condition, change in cross section or material, and nonhomogeneous boundary
condition that can be accounted for by a static solution.

If the forcing frequency � coincides with one of the natural frequencies, then, as
in the case of free motion, the denominator (∇) in the initial parameter equations will
be zero. This means that the initial parameters are indeterminate, as well they should
be since physically this situation corresponds to a state of resonance response.

Indeterminate In-Span Conditions

Such in-span conditions as rigid supports and releases require special attention be-
cause, unlike the in-span concentrated force, spring, and mass considered earlier in
this appendix, there is insufficient information available at the location of the con-
dition to take it into account in the response expressions as the progressive matrix
multiplications proceed across the condition. This becomes evident if a rigid sup-
port is considered to be an infinitely stiff spring. The reaction force Rb in the spring
at xb is proportional to the compression of the spring, i.e., Rb = kwb, where k is
the spring rate. This reaction becomes an unknown force at a rigid in-span support
since then Rb = kwb = (k = ∞)(wb = 0). Unfortunately, the condition wb = 0
at xb cannot be used to evaluate the unknown Rb as the transfer matrix multiplica-
tion moves across xb. A condition such as this is sometimes referred to as being an
in-span indeterminate. Other in-span indeterminates for beams are moment releases,
shear releases, and angle guides, as shown in Fig. III-14. In each case, for each new
unknown created there is a new condition to be satisfied.
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Figure III-14: In-span indeterminate conditions.

Several methods are available for incorporating these in-span conditions into the
solution.

Increase in Number of Unknowns One method for including these in-span
conditions is simply to expand the initial state vector to introduce each new unknown
as it occurs. For example, consider the portion of the beam shown in Fig. III-15a,
where the left end of the beam is hinged and a rigid in-span support occurs at x = xb.
In this section, superscripts indicate the element involved and the subscripts denote
locations. For the left-end conditions of wa = Ma = 0, the initial state vector can be

Figure III-15: Portion of beam with in-span rigid support: (a) zero deflection at support;
(b) imposed deflection of magnitude w̄b .
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written as

za =




0
θa

Va

0


 =




0 0
1 0
0 1
0 0



[
θa

Va

]
= Va ẑa

Va

(III.34)

The state vector just to the left of node b would be

z−b = U1Va ẑa + z̄1
b = V1

bẑa + z̄1
b

=




V11 V12
V21 V22
V31 V32
V41 V42


 ẑa +




z1
z2
z3
z4




b

=




0
θ

V
M




b

(III.35)

where V1
b = U1Va . Just to the right of node b, upon inclusion of the effect of the

unknown reaction of magnitude Rb = �Vb, the state vector becomes

z+b =




0
θ

V
M




b

+




0
0
�Vb

0


 =




V11 V12 0
V21 V22 0
V31 V32 1
V41 V42 0




 θa

Va

�Vb


+




z1
z2
z3
z4




b
V2

b
(III.36)

This procedure can continue, adding a new unknown at each new in-span indeter-
minate. The unknown in-span variables and the two unknown initial state variables
are obtained from the equations arising from the prescribed conditions at the in-span
indeterminates [e.g., wb = 0 in Eq. (III.36)], as well as the two right-end boundary
conditions.

Progressive Elimination of Unknowns Another feasible approach for the
inclusion of in-span indeterminates is to proceed as just outlined but to eliminate
an unknown each time an indeterminate condition occurs. This procedure is read-
ily generalized and automated for use in a structural member analysis computer
program.

To illustrate the progressive elimination of unknowns, consider the beam of
Fig. III-15b, which is the same beam portion just treated with the support of x = xb

lowered a height w̄b. This seemingly complicated constraint is included to illus-
trate that quite general conditions are readily taken into account. For this case, the
condition of a prescribed displacement inserted in Eq. (III.35) can be employed to
eliminate one of the initial state variables, either θa or Va . That is, Eq. (III.35) would
appear as
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z−b = V1
bẑa + z̄1

b =




V11 V12
V21 V22
V31 V32
V41 V42



[
θa

Va

]
+




z1
z2
z3
z4




b

=



w̄b

θb

Vb

Mb


 (III.37)

and if we choose to eliminate Va , the first equation in Eq. (III.37) gives

Va = −(1/V12)(V11θa − w̄b + z1) (III.38)

Substitute this into Eq. (III.37) to eliminate Va and proceed beyond the support,
introducing the new unknown reaction �Vb:

z+b =




0
0
�Vb

0


+ z−b =




V11 − V12V11/V12 0
V21 − V22V11/V12 0
V31 − V32V11/V12 1
V41 − V42V11/V12 0



[

θa

�Vb

]

+




w̄b
(w̄b − z1)V22/V12 + z2
(w̄b − z1)V32/V12 + z3
(w̄b − z1)V42/V12 + z4


V2

b ẑb + z̄2
b (III.39)

Now to proceed to the next in-span indeterminate condition (or the right boundary,
whichever occurs first) and utilize the new known condition to eliminate the un-
known �Vb. This process continues until the right boundary is reached and the two
current unknowns can be evaluated.

Numerical Difficulties

The transfer matrix method with its assembly of the overall transfer matrix by pro-
gressive multiplication of element matrices tends to encounter numerical difficulties.
This is hardly surprising as an applied loading at one end of a chainlike structure
may have little effect on the response at a distant end. The sources of the numerical
problems and techniques for overcoming them are treated in depth in such references
as [III.4] and [III.5].

Sources of Numerical Difficulties The accumulation of roundoff and trunca-
tion errors by the progressive multiplication of the form

z j = U j · · ·U2U1za = Uza (III.40)

is one source of numerical difficulties of the transfer matrix method. Rather than
converging to z j , this expression can converge to the eigenvector (say z̃) of the first
eigenvalue of U. This can occur if the vectors in U become linearly dependent and,
as a result, the determinant of the system of equations will approach the value zero.
Even if za is known precisely, the solution can converge to z̃.



III.1 TRANSFER MATRIX METHOD 1439

Another source of numerical difficulties occurs when the transfer matrix proce-
dure involves the difference of large numbers. For computer calculations in which a
limited number of digits are retained, this can lead to inaccuracies. This problem can
arise, for example, if a very stiff spring is included in the model or if high natural
frequencies are being calculated. Also, this difficulty can be anticipated if the effect
of occurrences on one boundary is small on the other boundary so that the calculation
for the determination of the initial conditions (za) can involve the difference between
large numbers.

Corrective Measures The procedures to overcome the numerical difficulties in-
herent in the transfer matrix process are characterized by a division of the structural
system into intervals and the application of a solution technique that avoids the nu-
merical difficulties. This would appear to be counterproductive since it violates the
fundamental “spirit” of the transfer matrix method and its sequence of matrix manip-
ulations. However, this new subdivision solution can be more efficient as measured
by operation counts than the usual transfer matrix procedure as well as leading to a
sufficiently accurate solution. An effective technique to counter the numerical diffi-
culties is the Ricatti transfer matrix method of Ref. [III.5]. Several other corrective
methods are outlined here.

In-Span State Variables as New Unknowns Let the structural system be di-
vided into subintervals as shown in Fig. III-16. These new intervals need not corre-
spond to the elements originally employed in setting up the transfer matrix formula-
tion. However, each interval should be chosen to be sufficiently small so as to assure
that no numerical error is introduced in expressing a state vector at one station, say
c, in terms of the state vector at the preceding station, say b, using transfer matrices.
The in-span state variables of zb, zc, zd , . . . are then treated as unknowns.

Suppose that the overall transfer matrices between the new in-span stations
b, c, d, . . . , each of which may involve several progressive transfer matrix multipli-
cations corresponding to the elements of the original model, are given by

zb = U1za, zc = U2zb, zd = U3zc, . . . (III.41)

To establish a system of equations with za, zb, . . . as the unknowns, rewrite
Eq. (III.41) as

−U1za + Izb = 0

−U2zb + Izc = 0 (III.42)

−U3zc + Izd = 0

...

Figure III-16: Division of a system into intervals.



1440 STRUCTURAL SYSTEMS

or in matrix form




U1 I

−U2 I

−U3 I







za

zb

zc

zd
...



= 0 (III.43)

This relationship is readily modified to show the applied loadings. This set of equa-
tions can be solved for za, zb, . . . using any reliable linear equation solver. Boundary
and in-span conditions of any sort are readily incorporated into Eq. (III.43).

Use of a Displacement or Force Method One of the simplest procedures to
overcome the numerical difficulties of the transfer matrix method is to convert the
transfer matrices into stiffness or flexibility matrices, as explained in Appendix II,
and then utilize the displacement or force method, as appropriate, to solve for the
unknowns. The transfer matrices chosen can correspond in length to the original
element models or to the other intervals (e.g., those of Fig. III-16). Boundary and
in-span conditions are often easier to incorporate during the displacement or force
method stage of the solution than during the development of the transfer matrices.
The displacement and force methods are to be discussed in the following sections.
Since, in practice, the displacement method is employed more than the force method
for large systems and hence is the more familiar of the two, the displacement method
is usually the best choice. After the displacements at the nodes are computed and the
forces at the nodes are determined using the stiffness matrices, the transfer matrices
can be used to print out the displacements and forces along the member. An oper-
ations count shows that the combined transfer matrix-displacement method is more
efficient than the use of pure transfer matrices.

Frontal Solution Procedure One of the better solution procedures for solving
the system of equations for a displacement method is the frontal approach, which
is an element-by-element technique proceeding like a “wavefront” spreading over
the system. This type of procedure can be formulated explicitly in terms of transfer
matrix equations.

With a frontal transfer matrix approach the initial unknowns za at the left end a
are replaced by new unknowns at point b. This process is continued, from b to c,
from c to d, and so on. This is a condensation procedure that can be considered as
the progressive replacement of the structure by equivalent springs (Fig. III-17). See
Ref. [III.1] for details.

III.2 GENERAL STRUCTURAL SYSTEMS

The displacement method is the dominant technique currently in use for analyzing
general structural systems. An alternative solution technique is the force method.
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Figure III-17: Frontal procedure for solving transfer matrix problems.

Although the transfer matrix method applies only for structures with a linelike ge-
ometry, the force and displacement methods are appropriate for any geometry. For
the transfer matrix method the system matrix remains small regardless of the system
complexity, while the force and displacement methods lead to large system matri-
ces whose size depends on the complexity of the structure. We begin the study of
the force and displacement methods by defining rather cumbersome notation. See
Table III-2.

Coordinate Systems, Definitions, and Degrees of Freedom

Network structures are usually modeled as a finite number of elements connected
at nodes. Only nodal variables such as forces and displacements will occur in the
governing equations. This is said to be a spatially discretized model (Fig. III-18).

Figure III-18: Spatially discretized model with elements: (a) framework model with rod
elements connected at nodes; (b) three-dimensional model with solid elements.
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Figure III-19: Global coordinates X,Y, Z and nodal displacements and forces at nodes i
and j .

The model may contain one-, two-, or three-dimensional elements, as required by
the system. Such models are often called finite-element models, and the solution
technology is called the finite-element method.

Nodal Variables The location of the nodes is described in a global coordi-
nate system (X,Y, Z). At each node, nodal forces and displacements are defined
(Fig. III-19). These system forces and displacements are the unknowns. After the
nodal forces and displacements are calculated, the internal forces and displacements
between the nodes of an element are computed.

The degrees of freedom (DOFs) of a node are the independent coordinates (dis-
placements) essential for completely describing the motion of a node. For a general
solid, each node can have six DOFs: three translations and three rotations. Three
forces and three moments correspond to these DOFs. Thus, at each node of a solid
the following displacements and forces occur:

UX UY UZ three translations
�X �Y �Z three rotations
PX PY PZ three forces
MX MY MZ three moments

(III.44)

Systems forces and displacement are designated by capital letters. In general, in solid
mechanics terminology, the terms forces and displacements include moments and
rotations, respectively.

The forces and displacements at each node are written in vector form as

P j =




PX

PY

PZ

MX
MY

MZ




j

, V j =




UX

UY

UZ

�X
�Y

�Z




j

(III.45)

The subscript j designates the j th node. For the whole structure, the nodal forces P
and nodal displacements V are assembled as
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P =




P1
P2
...

P j
...

PN



, V =




V1
V2
...

V j
...

VN




(III.46)

where N is the number of nodes.

Element Variables Consider element forces and displacements aligned with the
system coordinates X,Y, Z . At nodes a and b of element i , element forces pi and
corresponding displacements vi act (Fig. III-20):

pi =
[

pi
a

pi
b

]
=




Fi
Xa

Fi
Y a

Fi
Za

Fi
Xb

Fi
Y b

Fi
Zb




, vi =
[

vi
a

vi
b

]
=




ui
Xa

ui
Y a

ui
Za

ui
Xb

ui
Y b

ui
Zb




(III.47)

Moments and rotations can be included in pi and vi , respectively.
The element stiffness matrix ki relates the element forces pi and element dis-

placements vi :

[
pa

pb

]i

=
[

kaa kab

kba kbb

]i[ va

vb

]i

pi = ki vi
(III.48)

In Eq. (III.48), the first subscript of the submatrices designates the node or location
for which the equation is established, while the second subscript identifies the DOF
“causing” or corresponding to the force.

In addition to the global reference frame X,Y, Z , a new coordinate system along
with corresponding forces and displacements is defined. A local reference frame

Figure III-20: Some forces and displacements aligned with global coordinates X,Y, Z at
ends a and b of element i . Moments and rotations could also have been shown.
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Figure III-21: Local coordinate system, local forces, and local displacements of element i .
Moments and rotations could also have been shown.

x, y, z is aligned in a natural direction along the element. The element forces, dis-
placements, and stiffness matrix in the local element coordinate system appear as
(Fig. III-21)

[
p̃a

p̃b

]i

=
[

k̃aa k̃ab

k̃ba k̃bb

]i[
ṽa

ṽb

]i

p̃i = k̃i ṽi

(III.49)

The local coordinate quantities are indicated with a tilde.
For a bar (Fig. III-21),

p̃i =
[

p̃i
a

p̃i
b

]
=




Ña

Ṽya

Ṽza

Ñb

Ṽyb

Ṽzb




ṽi =
[

ṽa

ṽb

]
=




ũa

w̃ya

w̃za

ũb

w̃yb
w̃zb




which could also include moments and rotations. In the notation of Table 13-15,
w̃y = ṽ and w̃z = w̃.

Coordinate Transformations

All forces and displacements for the elements are referred to a common reference
frame by transforming to the global coordinates the nodal forces and displacements
expressed in the local coordinates.

To transform global to local coordinates in two dimensions, use (Fig. III-22)


 x

y
z


 =


 cos x X cos xY cos x Z

cos y X cos yY cos y Z
cos z X cos zY cos zZ




 X

Y
Z




=

 cosα 0 − sinα

0 1 0
sinα 0 cosα




 X

Y
Z




(III.50)
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Figure III-22: Right-handed global (X,Y, Z) and local (x, y, z) coordinate systems. Posi-
tive angle α is shown. The vector corresponding to α is positive along the positive y direction.

where, for example, x X is the angle between the x axis and the X axis. Forces and
displacements transform in a similar fashion. Thus,

[
p̃a

p̃b

]i

=
[

Ti
aa 0
0 Ti

bb

][
pa

pb

]i

p̃i = Ti pi
and ṽi = Ti vi (III.51)

where the transformation matrix Ti is defined by

Ti =
[

Taa Tab

Tba Tbb

]i

with

Ti
aa = Ti

bb =

 cos x X 0 − cos x Z

0 1 0
cos z X 0 cos zZ




i

=

 cosα 0 − sinα

0 1 0
sinα 0 cosα




i

, Ti
ba = Ti

ab = 0 (III.52)

with α (or x X), the angle between the (global) X coordinate and the (local) x coor-
dinate. It is evident that Ti

j j , j = a or b of Eq. (III.52), satisfies

TiT
j j Ti

j j = I also TiT Ti = I

where the superscript T indicates a transpose and I is the unit diagonal matrix. Since
(Ti )−1Ti = I, it is observed that

(Ti )−1 = TiT (III.53)
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This relationship permits the transformation of forces and displacements from local
to global coordinates to be written as

[
pa

pb

]i

=
[

TiT
aa 0
0 TiT

bb

][
p̃a

p̃b

]i

pi = TiT p̃i
and vi = TiT ṽi (III.54)

It is essential that we are able to transform from one coordinate system to another.
Observe that

pi = TiT p̃i = TiT k̃i ṽi = TiT k̃i Ti vi

Since pi = ki vi , it is seen that the stiffness matrix transforms according to

ki = TiT k̃i Ti (III.55)

which is referred to as a congruent transformation. Under this transformation ki will
be a symmetric matrix since k̃i is symmetric.

III.3 DISPLACEMENT METHOD

In practice, the displacement method is considered to be the “standard” method for
the analysis of large structural systems. Although the displacement method can be
formulated directly (direct stiffness method), it is normally considered to be a vari-
ationally based approach. It follows from the principle of virtual work. Since this
principle is equivalent to the equations of equilibrium, the displacement method is
also referred to as the equilibrium method.

Displacement Method Based on the Principle of Virtual Work

Suppose that the structure is modeled in terms of elements for which the responses
are represented by forces and displacements at their ends. If there are M elements
with internal end forces pi and displacements vi and applied end forces p̄i (including
the effect of loads distributed along the element) and displacements v̄i , the principle
of virtual work (Appendix II), δWi + δWe = 0, appears as

−
M∑

i=1

(δWi + δWe)
i = −(δWi + δWe)

=
M∑

i=1

δviT ki vi −
M∑

i=1

δviT pi

=
M∑

i=1

δviT (ki vi − pi ) = 0 (III.56)
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where δvi is a vector of virtual displacements and δWi and δWe are the internal
and external virtual works, respectively. As explained in Appendix II, virtual dis-
placements are small variations in the displacements that behave according to the
principles of variational calculus. For our purposes, variations can be considered to
behave like ordinary derivatives, although a virtual displacement does not represent
a rate of change along a direction as does an ordinary derivative of a displacement.

Equation (III.56) represents the summation of internal and external virtual work
down by the element forces at the nodes. Alternatively, this total virtual work can be
expressed in terms of system responses P and V.

To ensure compatibility at the nodes, the end displacements of the various ele-
ments joined at each node must match the values of the displacements of the node.
Assume that the local (element) end displacements ṽi have been transformed to the
directions of the global coordinate system (vi ).

For the two-element, three-node structure of Fig. III-23, the nodal compatibility
conditions take the form

v1
a = Va v1

b = v2
b = Vb v2

c = Vc (III.57)

which, in matrix notation, appear as

[
v1

v2

]
=




v1
a

v1
b

v2
b

v2
c


=




I

I

I

I




 Va

Vb

Vc




v = a V

(III.58)

where I is the unit diagonal matrix. The Boolean matrix (containing null or unit val-
ues) a, known as the global kinematic, connectivity, locator, or incidence matrix,
indicates which element is connected to which node. These compatibility condi-
tions in essence transform a displacement vector v containing some duplicate dis-
placements (i.e., v1

b and v2
b), into a displacement vector V with no redundant vari-

ables.
Write Eq. (III.56) in matrix rather than index summation form,

M∑
i=1

δviT (ki vi − pi ) = δvT (kv− p) = 0 (III.59)

Figure III-23: Three-node (a, b, c) two-element (1, 2) structure.
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where

v =




v1

v2

...

vM


 is an unassembled displacement vector (III.60)

p =




p1

p2

...

pM


 is an unassembled load vector (III.61)

k =




k1

k2

. . .

kM


 = diag [ki ] is an unassembled global

stiffness matrix

Substitute v = aV in Eq. (III.59) in order to write the principle of virtual work
expression in terms of the system nodal displacements:

δvT (kv− p) = δVT aT (kaV− p) = δVT (aT kaV− aT p) = 0 (III.62)

The quantity

K = aT ka (III.63)

is defined as the “assembled” system stiffness matrix, and

P̄ = aT p (III.64)

is the assembled applied load vector. Thus, Eq. (III.62) becomes

δVT (KV− P̄) = 0

which implies that

KV = P̄ (III.65)

This is a set of algebraic equations for the unknown nodal displacements that repre-
sent the global statement of equilibrium. The matrices involved here are assembled in
the sense that the duplications that occurred in v [e.g., in Eq. (III.58), where v1

b = v2
b]

were removed by introducing the compatibility conditions such that v is replaced by
aV. The system nodal displacements obtained from Eq. (III.65) can be used in com-
puting forces, stresses, and other displacements.

The connectivity matrix a governs the assembly of the global stiffness matrix K.
However, the assembled matrix relationships K = aT ka and P̄ = āT p are not of
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great practical value, as this assembly is normally implemented as a superposition
(i.e., an addition process).

The rationale underlying the assembly by summation is readily visualized using
the two-element, three-node system of Fig. III-23. The stiffness matrix for element 1,
which spans from a to b, can be written as [Eq. (III.48)]

k1 =
[

kaa kab

kba kbb

]
(III.66)

where it is assumed that the necessary coordinate transformations have been imple-
mented so that all variables and matrices are referred to the global coordinates. For
element 2, which begins at node b and ends at node c,

k2 =
[

kbb kbc

kcb kcc

]
(III.67)

To obtain the global stiffness matrix K, form K = aT ka:

aT


I

I I

I




k[
k1 0

0 k2

]
a



I

I

I

I




=



k1
aa k1

ab

k1
ba k1

bb + k2
bb k2

bc

k2
cb k2

cc


 = K (III.68)

It is evident from this matrix that the global stiffness matrix is assembled by sum-
ming element stiffness matrices of like subscripts. The unassembled stiffness matrix
appears as

[
p1

p2

]
=




p1
a

p1
b

p2
b

p2
c


 =


 k1

k2



[

v1

v2

]
= [k]




v1
a

v1
b

v2
b

v2
c




p = k v

(III.69)

whereas the assembled global stiffness matrix of Eq. (III.68) is

 P̄a

P̄b

P̄c


=


 k1

k2




 Va

Vb

Vc


=


 k1

aa k1
ab

k1
ba k1

bb + k2
bb k2

bc
k2

cb k2
cc




 Va

Vb

Vc




P̄ = K V
(III.70)
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Apparently, all coefficients of K either are taken directly from k1 or k2 or, as seen
by the overlapping boxes, are the sum of certain k1 and k2 coefficients. The process
of assembling the stiffness matrix K by summation of those element stiffness matrix
coefficients with identical subscripts, is written Ki j = k1

i j + k2
i j . This summation

process is made possible by carefully fitting the element stiffness matrix into the
global nodal numbering system. This will be discussed in a later section.

Direct Derivation of Global Displacement Equations

The principle of virtual work leads to equations of equilibrium for displacements that
satisfy compatibility requirements. The displacement relations of Eqs. (III.65) can be
derived directly from the conditions of equilibrium. Return to the two-element, three-
node system of Fig. III-23. At each node, sum all forces contributed by the elements
joined at this node. These nodal equilibrium relations appear as

p1
a = P̄a

p1
b + p2

b = P̄b

p2
c = P̄c

or




I

I I

I




b∗




p1
a

p1
b

p2
b

p2
c




p

=




P̄a

P̄b

P̄c




P̄

(III.71)

where b∗ is the global statics or equilibrium matrix. These relationships constitute
the conditions of equilibrium between p and P̄. The reciprocal relation is

p = bP̄ (III.72)

Since b∗ is not necessarily a square matrix, in general, b∗ = b−1. However,

b∗b = I (III.73)

whereas bb∗ = I. A comparison of Eqs. (III.59) and (III.71) indicates that‡

b∗ = aT (III.74)

From Eqs. (III.71) and (III.74),

b∗p = P̄ = aT p (III.75)

‡It is possible to show that a∗ = bT , with a∗ given by V = a∗v. Also, aa∗ = I, a∗a = I.
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Introduce into this relationship the set of unassembled stiffness equations,

p = kv (III.76)

where p,k, v are defined in Eq. (III.61),

aT kv = P̄

Finally, from the nodal connectivity equations of Eq. (III.59),

aT kaV = P̄ or KV = P̄ (III.77)

which are the desired displacement equilibrium relations of Eqs. (III.65).

System Stiffness Matrix Assembled by Summation

Fundamental to the process of assembling a global stiffness matrix by summation
is the proper identification of where an element fits into the system with its node-
numbering system. This can be accomplished with the aid of an incidence table that
identifies each end of each element with a global node. For the two-bar-element,
three-node system of Fig. III-23, the incidence table appears as follows:

Global Node Numbers Corresponding
to Element End Numbers

System Node Number System Node Number
Element Where Element Begins Where Element Ends

1 a b
2 b c

After the element ends are assigned to system nodes, the element stiffness coeffi-
cients are summed to provide the corresponding system stiffness coefficient. The
formation of K is equivalent to a loop summation calculation over all elements i ,

K jk ← K jk + ki
jk (III.78)

where j and k are taken from the incidence table for each element i .
As is to be expected, a host of numerical schemes have been proposed for effi-

ciently treating the matrices during the assembly process. Most of the procedures are
concerned with how to avoid the need to fully develop all of the matrices.

Characteristics of Stiffness Matrices

Element and global stiffness matrices are symmetric. They are also positive definite.
The symmetry property is useful since only terms on and to one side of the main
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Figure III-24: Bandwidth. Typically, coefficients in the band are nonzero.

diagonal need to be utilized in a computer program. Several solution techniques for
systems of linear equations can take advantage of the sparseness that tends to occur
in stiffness matrices, especially if the nonzero terms occur close to the diagonal. This
is a banded matrix. Proper choice of a numbering system for the degrees of freedom
can lead to the nonzero terms being clustered close to the diagonal. Basically, to
minimize the bandwidth (Fig. III-24), the degrees of freedom should be numbered
such that the distance (difference between nodal numbers) from the main diagonal
to the most remote nonzero term in a particular row of the stiffness matrix is mini-
mized. Normally, consecutive numbering of nodes across the shorter dimension of a
structure results in a small bandwidth.

There is a large literature (e.g., [III.6, III.7]) on efficient methods of retaining only
the essential information in an analysis involving stiffness matrices. Methods have
been developed (e.g., [III.7]–[III.10]) for the automatic renumbering of nodes so that
the bandwidth is reduced.

Incorporation of Boundary Conditions

The boundary conditions can be introduced rather simply by ignoring those columns
in K of P̄ = KV that correspond to zero (prescribed) displacements and ignoring
those rows in P̄ = KV for the corresponding unknown reactions. Proceed, then,
to solve the remaining equations (a square matrix) for the unknown nodal displace-
ments.

Several techniques are available whereby the boundary conditions are applied
to the element stiffness matrices before they are assembled into global matrices
(e.g., [III.6]).

Reactions and Internal Forces, Stress Resultants, and Stresses

The equations (rows) for reactions that are usually ignored as the system equations
are solved can be reconstructed (after the rest of the equations are solved) and then
utilized to calculate the reactions.

Element internal forces, stress resultants, or stress distributions are sometimes a
bit difficult to calculate since only nodal displacements V are determined directly in
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a displacement method analysis. The element joint forces can be computed from

pi = ki vi (III.79)

if the displacement vector vi is available, perhaps from v = aV [Eq. (III.58)]. El-
ement forces and displacements in the local coordinate system are obtained using
Eq. (III.51).

The distribution of response variables along a member (e.g., a beam or bar) can
be computed using the transfer matrix method. Since the locally oriented displace-
ments and forces are found by postprocessing the results of a global displacement
analysis, the state vector is known at the ends of a member (or element). It is then a
straightforward process to use transfer matrices to determine the distribution of these
variables along a member.

Frames

To demonstrate the application of the displacement method, consider a frame or rigid
frame, which is composed of beam elements in which bending and axial (extension
and/or torsion) effects occur. The term frame sometimes includes pin-jointed trusses
as well as rigid-jointed frames. Frame formulas are provided in Chapter 13.

Element Coordinate Transformations Consider two-dimensional frames
with in-plane loading that lie in the xz plane. Components of local and global forces
and displacements in the local xz and global X Z coordinate systems are given in
Fig. III-25. Transformation relations are also shown. As referred to the global coor-
dinates, the forces and displacements at end a of the i th element of a plane frame
can be represented as

pi
a =


 FX

FZ

M




i

a

, vi
a =


 uX

uZ

θ




i

a

(III.80)

where Mi
a = Mi

Y a and θ i
a = θ i

Y a . In terms of the local coordinates, the corresponding
forces are designated as p̃i

a . The transformations from global to local coordinates
follows from the geometry of Fig. III-25:

Ña = FXa cosα − FZa sinα = FXa cos x X + FZa cos x Z

Ṽa = FXa sinα + FZa cosα = FXa cos z X + FZa cos zZ

M̃a = Ma

where, for example, x X is the angle between the x axis and the X axis. In matrix
notation, the local and global forces for end a of the i th element are related by

p̃i
a = Ti

aapi
a



1454 STRUCTURAL SYSTEMS

Figure III-25: Forces and displacements for a frame element. (a) Global coordinate system,
nodal DOF, and system applied nodal loading. (b) Local coordinates, forces, and displace-
ments on the ends of an element (sign convention 2). For right-handed global (X,Y, Z) and
local (x, y, z) coordinate systems, the vector corresponding to a positive α is along the y axis.
The angle α is measured from a global coordinate axis to the corresponding local coordinate
axis. (c) Forces and displacements aligned along global coordinates on the ends of an element
(sign convention 2). (d) Components of forces.

where

Ti
aa =


 cosα − sinα 0

sinα cosα 0
0 0 1




i

=

 cos x X cos x Z 0

cos z X cos zZ 0
0 0 1




i

(III.81)

Displacements transform in the same fashion. These can be generalized as in
Eq. (III.51).

The stiffness matrix in global coordinates [Eq. (III.55)] is represented as

ki = TiT k̃i Ti =

 ki

j j ki
jk

ki
k j ki

kk


 (III.82)
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where

Ti =
[

Ti
aa 0
0 Ti

bb

]
with Ti

aa = Ti
bb given by Eq. (III.81)

ki
k j are 3 × 3 matrices, and k̃i is the element stiffness matrix of Eq. (II.61) with the

addition of axial extension terms,

k̃i =




E A/� 0 0 −E A/� 0 0
0 12E I/�3 −6E I/�2 0 −12E I/�3 −6E I/�2

0 −6E I/�2 4E I/� 0 6E I/�2 2E I/�
−E A/� 0 0 E A/� 0 0

0 −12E I/�3 6E I/�2 0 12E I/�3 6E I/�2

0 −6E I/�2 2E I/� 0 6E I/�2 4E I/�




i

(III.83)

This stiffness matrix, which is referred to local coordinates, applies for frame ele-
ments with in-plane loading. Now that this is available, a displacement method frame
analysis can proceed.

Example III.9 Displacement Method for a Frame The simple two-dimensional
frame of Fig. III-26a is idealized as shown in Fig. III-26b. Both legs are fixed and
concentrated loadings are applied, as shown in Fig. III-27. All bars are made of

Figure III-26: Simple plane frame: (a) framework; (b) model with elements (bars) 1, 2, 3
and nodes (joints) a, b, c, d.

Figure III-27: Plane frame. Positive Y and y axes are directed out of the page.
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steel with E = 200 GN/m2. For bars 1 and 2, I = 2.056 × 10−5 m4 and A =
4.25× 10−3 m2. For bar 3, I = 4.412× 10−5 m4 and A = 7.16× 10−3 m2.

Begin by correlating the element stiffness matrices with global node numbers. To
assist in this process, prepare an incidence table:

System Node Number System Node Number
Beam Where Beam Begins Where Beam Ends

1 a b
2 b c
3 c d

The entries here are used to assign subscripts to the stiffness matrix elements corre-
sponding to the global node numbers.

Transform the element stiffness matrix to global coordinates.

Element 1

Use � = 3.536 m, E I = 4.112 MN ·m2, and E A = 850 MN. From Eq. (III.83),

k̃1 =




240,416,300 0 0 −240,416,300 0 0
0 1,116,527 −1,973,760 0 −1,116,527 −1,973,760
0 −1,973,760 4,652,197 0 1,973,760 2,326,099

−240,416,300 0 0 240,416,300 0 0
0 −1,116,527 1,973,760 0 1,116,527 1,973,760
0 −1,973,760 2,326,099 0 1,973,760 4,652,197




(1)

For a global coordinate system X Z placed at a in Fig. III-27, the angles between
the local and global coordinates are x1 X = 45◦, x1 Z = 135◦, z1 X = 45◦, and
z1 Z = 45◦. Alternatively, α = 45◦. From Ti of Eq. (III.82)

T1 =




0.70711 −0.70711 0 0 0 0
0.70711 0.70711 0 0 0 0

0 0 1.00000 0 0 0
0 0 0 0.70711 −0.70711 0
0 0 0 0.70711 0.70711 0
0 0 0 0 0 1.00000


 (2)

From Eq. (III.82), the element stiffness matrix in global coordinates is

k1 = T1T k̃1T1

=




120,766,400 −119,649,900 −1,395,659 −120,766,400 119,649,900 −1,395,659
−119,649,900 120,766,400 −1,395,659 119,649,900 −120,766,400 −1,395,659
−1,395,659 −1,395,659 4,652,197 1,395,659 1,395,659 2,326,099
−120,766,400 119,649,900 1,395,659 120,766,400 −119,649,900 1,395,659

119,649,900 −120,766,400 1,395,659 −119,649,900 120,766,400 1,395,659
−1,395,659 −1,395,659 2,326,099 1,395,659 1,395,659 4,652,197




=

 k1

aa k1
ab

k1
ba k1

bb


 (3)

where the subscripts have been taken from the incidence table.
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Element 2

Since the local and global coordinates coincide for this case, k2 = k̃2. Substitute
� = 3.0 m, E I = 4.112 MN ·m2, and E A = 850 MN in Eq. (III.83):

k2 =




283,333,300 0 0 −283,333,300 0 0
0 1,827,556 −2,741,333 0 −1,827,556 −2,741,333
0 −2,741,333 5,482,667 0 2,741,333 2,741,333

−283,333,300 0 0 283,333,300 0 0
0 −1,827,556 2,741,333 0 1,827,556 2,741,333
0 −2,741,333 2,741,333 0 2,741,333 5,482,667




=

 k2

bb k2
bc

k2
cb k2

cc


 (4)

Element 3

For this case, use � = 2.5 m, E I = 8.824 MN · m2, and E A = 1432 MN in
Eq. (III.83). For a global coordinate system X Z placed at point c, the angles between
the local and global coordinates are x3 X = 90◦, x3 Z = 0◦, z3 X = 180◦, z3 Z = 90◦.
Alternatively, α = −90◦. From Eq. (III.82),

k3 = T3T k̃3T3 =




6,776,832.0 42.7 8,471,040.0
42.7 572,800,000.0 −0.6

8,471,040.0 −0.6 14,118,400.0
−6,776,832.0 −42.7 −8,471,040.0

−42.7 −572,800,000.0 0.6
8,471,040.0 −0.6 7,059,200.0

−6,776,832.0 −42.7 8,471,040.0
−42.7 −572,800,000.0 −0.6

−8,471,040.0 0.6 7,059,200.0
6,776,832.0 42.7 −8,471,040.0

42.7 572,800,000.0 0.6
−8,471,040.0 0.6 14,118,400.0




=
[

k3
cc k3

cd

k3
dc k3

dd

]
(5)

Assemble the global stiffness matrix using

K̄ jk =
M∑

i=1

ki
jk (6)

where the summation is taken over all beam elements (M). It is clear that

K jk = ki
jk, i = 1, 2, 3 (7)

except for Kbb and Kcc, which are given by

Kbb = k1
bb + k2

bb, Kcc = k2
cc + k3

cc (8)
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The assembled global stiffness matrix will appear as

K =




k1

k2

k3


 (9)

Thus, KV = P̄ has now been established, where

V =




UXa

UZa

�Y a

UXb
UZb

�Y b

UXc

UZc

�Y c

UXd

UZd

�Y d




=




0
0
0

UXb
UZb

�Y b

UXc

UZc

�Y c

0
0
0




, P̄ =




PXa

PZa

MY a

PXb
PZb

MY b

PXc

PZc

MY c

PXd

PZd

MY d




=




PXz =?
PZa =?
MY a =?

0
WZ

0
WX

0
0

PXd =?
PZd =?
MY d =?




(10)

The displacement boundary conditions and the applied forces are shown above.
Question marks indicate reactions at the supports at a and d. Delete the columns
corresponding to the zero displacements at the supports and ignore the rows corre-
sponding to the reactions. This results in




.4041× 109 −.1196× 109 .1396× 107

−.1196× 109 .1226× 109 −.1346× 107

.1396× 107 −.1346× 107 .1013× 108

−.2833× 109 .0000 .0000
.0000 −.1828× 107 .2741× 107

.0000 .2741× 107 .2741× 107

−.2833× 109 .0000 .0000
.0000 −.1828× 107 −.2741× 107

.0000 .2741× 107 .2741× 107

.2901× 109 .4273× 102 .8471× 107

.4273× 102 .5746× 109 .2741× 107

.8471× 107 .2741× 107 .1960× 108







UXb

UZb

�Y b

UXc

UZc
�Y c




=




0
0.015× 106

0
0.012× 106

0
0




(11)
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which yields the displacements




UXb

UZb

�Y b

UXc

UZc

�Y c



=




.29559× 10−2 m

.29900× 10−2 m

.22786× 10−3 rad

.29543× 10−2 m

.12679× 10−4 m
−.89223× 10−3 rad




(12)

The displacements at the nodes are given by (12). To find the reactions, return to
KV = P̄ using K of (9), V of (10) with the numerical values of (12), and P̄ of (10).
This leads to the reactions (in global coordinates)

PXa = .46260× 103 N, PXd = −.12463× 105 N

PZa = −.77374× 104 N, PZd = −.72626× 104 N

MY a = .88286× 104 N, MY d = .18728× 105 N

(13)

The responses in local coordinates on the ends of the elements require some extra
effort. For example, to find the forces on the ends of an element, calculate the forces
in global coordinates first and then transform these forces into the local coordinate
system. The forces referred to global coordinates for element 1:

p1 =




FXa

FZa

Ma

FXb

FZb

Mb



= k1v1 = k1




uXa

uZa

θa

uXb

uZb

θb




= k1




UXa
UZa

�Y a

UXb

UZb

�Y b



= [matrix of Eq. (3)]




0
0
0

.29559× 10−2 m

.29900× 10−2 m

.22786× 10−3 rad




=




.46260× 103 N
−.77374× 104 N
.88286× 104 N ·m
−.46260× 103 N
.77374× 104 N
.93586× 104 N ·m




(14)
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Referred to local coordinates, element 1 forces are

p̃1 = T1p1 =




Ña

Ṽa

M̃a

Ñb

Ṽb

M̃b



=




.57983× 104 N
−.51441× 104 N
.88286× 104 N ·m
−.57983× 104 N
.51441× 104 N
.93586× 104 N ·m




(15)

Structures with Distributed Loads

Concentrated loads applied between the ends of an element can be accommodated by
adding new nodes, a practice that increases the size of the system of equations to be
solved. An alternative is to include another loading vector in the stiffness equations.
This addition of a new loading vector is particularly appropriate for distributed loads
applied between the nodes. For a beam element this loading vector was considered
in Section II.5. The additional loading vector for the global stiffness matrices will be
treated here.

The element stiffness matrix, including the extra loading vector, appears as (Ap-
pendix II)

pi = ki vi − p̄i (III.84)

Expressions for the components of the loading vector pi for a variety of types of
loading are provided in the tables of Chapter 11. For example, for an Euler–Bernoulli
beam element with a uniformly distributed load of magnitude p0 (Table 11-19),

p̄i =




V 0
a

M0
a

V 0
b

M0
b


 =

p0�

2




1

− 1
6

1
1
6


 (III.85)

For displacements and forces referred to a local coordinate system,

p̃i = k̃i v̄i − ˜̄pi
(III.86)

Transformation from local to global coordinates systems is implemented using

pi = TiT p̃i ki = TiT ki Ti p̄i = TiT ˜̄pi
(III.87)

The global stiffness matrix is still assembled using

K jk =
M∑

i=1

ki
jk (III.88a)
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where M is the number of elements. The new global loading vector is assembled as

P̄ j =
M∑

i=1

p̄i
j (III.88b)

The P j for node j can be formed into P̄ for the whole system. This can be incor-
porated into P̄ of Eq. (III.77) or, alternatively, one can distinguish between nodal
loading terms due to distributed loading and direct nodal loading. The system equi-
librium equations now appear as

P = KV− P̄ (III.89)

where P is a nodal vector containing direct nodal loads and P̄ is a nodal vector due
to applied distributed loading.

Example III.10 Beam with Linearly Varying Loading Consider the fixed–
simply supported beam with linearly varying applied load of Fig. III-5. Although
we choose to model the beam with two elements, the most logical model would
contain a single element as the stiffness matrix for beams is exact and hence can
span any length. The local and global coordinate systems coincide for this horizontal
beam; consequently, there is no need to transform variables from local to global
coordinates.

Table 11-19 can supply the element loading vectors p̄i . In using the formulas of
this table, note that for the first element the distributed load begins with a magnitude
of p0 and ends with 1

2 p0. For the second element the load begins with 1
2 p0 and ends

with a magnitude of zero.
An alternative approach for determining loading vectors is to utilize Eq. (II.71).

To illustrate this, consider the linearly distributed load pz(ξ) of Fig. III-28:

pz(ξ) = pa + (pb − pa)ξ (1)

with ξ = x/�. Rewrite this as

pz(ξ) = NpGpp̄p (2)

Figure III-28: Linearly distributed load.
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where

Np = [1 ξ ], Gp =
[

1 0
−1 1

]
, p̄p =

[
pa

pb

]
(3)

From Eq. (II.71),

p̄i = GT
∫ b

a
NT

u pz dx = GT
∫ 1

0
NT

u Np dξ �Gpp̄p (4)

Take G and Nu from Eq. (II.65a). Then

∫ 1

0
NT

u Np dξ � =
∫ 1

0




1
ξ

ξ2

ξ3


 [1 ξ ] dξ � =




1 1
2

1
2

1
3

1
3

1
4

1
4

1
5


 � (5)

and from (4),

GT
∫ 1

0
NT

u Np dξ �Gpp̄p =

GT


1 0 −3 2

0 −1 2 −1

0 0 3 −2

0 0 1 −1



�




1 1
2

1
2

1
3

1
3

1
4

1
4

1
5




Gp[
1 0
−1 1

]

= �




7
20

3
20

− 1
20 − 1

30
3
20

7
20

1
30

1
20


 (6)

Finally,

p̄i = �




7
20

3
20

− 1
20 − 1

30
3

20
7
20

1
30

1
20



[

pa

pb

]
(7)

For our beam of Fig. III-5 with � = �1 = �2 = 1
2 L, for element 1, with pa = p0

and pb = 1
2 p0,

p̄1 = p0�

120




51
−8
39
−7


 =

[
p̄1

a

p̄1
b

]
(8)
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For element 2, with pa = 1
2 p0 and pb = 0,

p̄2 = p0�

120




21
−3

9
2


 =

[
p̄2

b

p̄2
c

]
(9)

The global matrix can now be formed as

KV− P̄ = P (10)

where

V =




wa

θa�

wb

θb�

wc

θc�




(11)

and from Eq. (II.62),

K =



k1
aa k1

ab 0

k1
ba k1

bb + k2
bb k2

bc

0 k2
cb k2

cc




= E I

�3




12 −6 −12 −6 0 0
−6 4 6 2 0 0
−12 6 24 0 −12 −6
−6 2 0 8 6 2

0 0 −12 6 12 6
0 0 −6 2 6 4




Assemble the global loading vector P̄ in the same manner as for the global stiffness
matrix. It follows from Eq. (III.88b),

P̄ j =
∑

i

p̄i
j

that

P̄ =

 P̄a

P̄b

P̄c


 =


 p̄1

a
p̄1

b + p̄2
b

p̄2
c


 = p0�

120




51
−8

39+ 21
7− 3

9
2



= p0�

120




51
−8
60
4
9
2




(12)
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The vector P contains concentrated loads applied at the nodes as well as the unknown
reactions. Since for this beam there are no loads applied at the nodes and the rows
corresponding to the unknown reactions are not used in calculating the displacements
V,P will be ignored and the system equations will appear as KV− P̄ = 0.

Introduction of the boundary conditions wa = θa = wc = 0 reduces KV = P̄ to
the nonsingular system of equations

E I

�3


 24 0 −6

0 8 2
−6 2 4




 wb

θb�

θc�


 = p0�

120


 60

4
2


 (13)

which has the solution


 wb

θb

θc


 = p0�

3

120E I


 4.5�
−1.5

8.0


 (14)

Since the vector of displacements V has now been determined, the beam reactions
can be computed using KV− P̄ = P.

To calculate the forces at the ends of the elements, use

ki vi − p̄i = pi (15)

For this horizontally oriented beam, the local displacements at the ends of the
elements are equal to the node (global) displacements so that a coordinate transfor-
mation will not be necessary. Then, (15) leads to

p1 =




Va

Ma
Vb

Mb


 = k1v1 − p̄1 = p0�

3

120E I

E I

�3



−12 −6�

6� 2�2

12 6�
6� 4�2



[

4.5�
−1.5

]

− p0�

120




51
−8�
39
7�


 = p0�

120



−96

32�
6

14�


 (16)

p2 =




Vb

Mb

Vc

Mc


 = k2v2 − p̄2 = p0�

3

120E I

E I

�3




12 −6� −6�
−6� 4�2 2�2

−12 6� 6�
−6� 2�2 4�2




 4.5�
−1.5

8.0




− p0�

120




21
−3�

9
2�


 = p0�

120



−6
−14�
−24

0


 (17)
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Although stiffness equations can be employed to find the variation of the re-
sponses (e.g., the deflection) along the beam, it is often simpler to use transfer ma-
trices. Hence,

z j = U1za for element 1 (18)

z j = U2zb for element 2 (19)

The vectors za and zb contain known displacements and forces at x = a and x = b.
With the transfer matrices U1 and U2 expressed in terms of the variable x , (18) and
(19) provide the desired responses. In the case of the deflection, with ξ = x/L,

w(ξ) =




p0�
4

120E I
(16ξ2

1 − 16ξ3
1 + 50ξ4

1 − 0.5ξ5
1 ) ξ1 = 2ξ 0 ≤ x ≤ L/2

p0�
4

120E I
[4.5+ 1.5(2ξ − 1)− 7(2ξ − 1)2 − (2ξ − 1)3

+ 2.5(2ξ − 1)4 − 0.5(2ξ − 1)5] L/2 ≤ x ≤ L
(20)

or, for any ξ ,w(ξ) = (p0L4/120E I )(4ξ2−8ξ3+5ξ4−ξ5). These exact deflections,
along with the bending moment and shear force, are plotted in Fig. III-29.

Figure III-29: Response of the beam of Fig. III-5 with linearly varying loading: (a) deflec-
tion; (b) bending moment; (c) shear force.
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Special Intermediate Conditions

In-span conditions (e.g., hinges or supports) such as those illustrated in Fig. III-14
require special attention, as one response variable is constrained (usually, the value
is zero) while a discontinuity (a reaction) in the complementary variable is gener-
ated. In general, this type of occurrence is more readily incorporated in the solution
when using the displacement method than it is with the transfer matrix method. Nor-
mally, a global degree of freedom is constrained by these conditions. For example,
a rigid support at a node completely restrains the displacement in the direction of a
component of V, and then the condition that must be imposed is a prescribed global
displacement (usually zero). This is implemented simply by setting one displacement
in V equal to zero. See Ref. [III.1] for details.

III.4 FORCE METHOD

Virtually all of the currently available general-purpose computer programs are based
on the displacement method. The force method, although it is popular for hand cal-
culations, is rarely the method of choice for solving large-scale problems [III.11].
The cause of the domination by the displacement method is that at the time when
most of the general-purpose analysis computer programs were being developed, it
was felt that the force method could not easily be automated for large-scale prob-
lems. The principle of complementary virtual work provides the basis of the force
method. This principle is equivalent to the global form of the kinematic admissi-
bility conditions (compatibility). As a consequence, the force method is sometimes
referred to as the compatibility method as well as the flexibility or influence coeffi-
cient method.

The force method equations will not be derived here, but the derivation in a struc-
tural mechanics text such as Ref. [III.1] will usually follow closely the derivation
of the displacement method equations. The similarity of the formulations of the dis-
placement and force methods is symbolic of the dual nature of the two techniques.
This same duality exists between the principle of virtual work and the principle of
complementary virtual work. Whereas the displacement method and the principle of
virtual work require kinematically admissible displacements (i.e., a must be formed)
and provide equilibrium equations, the force method and the principle of comple-
mentary virtual work begin with equilibrium conditions (i.e., b must be formed) and
lead to kinematic equations. This process is illustrated in Fig. III-30.

The force, displacement, and transfer matrix approaches are compared in Table
III-3. In contrast to the displacement and force methods, as mentioned earlier the
transfer matrix method does not involve the assembly of a system matrix for which
the size increases with the degrees of freedom of the system. Moreover, the system
matrix for the transfer matrix method is formed by progressive element matrix mul-
tiplications rather than superposition.
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Figure III-30: System matrices for force and displacement methods.

III.5 STABILITY BASED ON THE DISPLACEMENT METHOD

In the same fashion that the principle of virtual work of Eq. (II.66) leads to the
equilibrium equations

KV = P̄

the principle of virtual work, including an explicit in-plane force [e.g., Eq. (II.88)],
provides the set of equations

(K− λKG)V = P̄ (III.90)

where KG is the system (global) geometric stiffness matrix that can be assembled
from element matrices in the same manner as the system stiffness matrix K. In an
instability study of a structural system, the axial forces throughout the system must
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be defined relative to each other. For example, the axial forces can remain fixed
in magnitude relative to one another. Thus, if KG is the global geometric stiffness
matrix for a reference level of axial forces, λKG corresponds to another level of axial
forces, where λ is a scalar multiplier called the load factor. For a single member (e.g.,
a uniform column), λ is simply the axial force P .

For classical instability theory of linearly elastic structures, the applied loadings
P̄ of Eq. (III.90) do not affect the buckling load of a structure. The buckling load is
found by solving the homogeneous problem

(K− λKG)V = 0 (III.91)

The critical force problem represented by this relationship is in the form of a clas-
sical eigenvalue problem and can be solved efficiently with considerable reliability
by using standard, readily available eigenvalue problem software. One of the least
efficient methods for solving for the buckling load (yet necessary for certain types of
KG) is to perform a critical value search of det(K− λKG) = 0.

Example III.11 Stepped Column The stepped column of Fig. III-31 will be
used to illustrate several of the techniques for computing buckling loads for a struc-
tural system. The boundary and in-span conditions are wa = wc = wd = 0 and
Ma = Md = 0.

Transfer Matrix Method

Use the transfer matrix of Eq. (III.10) along with the methodology presented in Sec-
tion III.1 for incorporating the in-span support to develop a global transfer matrix.
The boundary conditions applied to the global transfer matrix equations lead to the
characteristic equation and the critical axial load of

Pcr = 7.064
E I

�2
(1)

Displacement Method

The goal here is to set up the eigenvalue problem in the form of Eq. (III.91). First es-
tablish the ordinary stiffness matrix K. To do so, assemble element stiffness matrices
ki , i = 1, 2, 3, of Eq. (II.62):

Figure III-31: Stepped column.



III.5 STABILITY BASED ON THE DISPLACEMENT METHOD 1469



Va
Ma/�

Vb
Mb/�

Vc
Mc/�

Vd
Md/�



= E I

�3




36 −18 −36 −18 0 0 0 0
−18 12 18 6 0 0 0 0
−36 18 60 6 −24 −12 0 0
−18 6 6 20 12 4 0 0

0 0 −24 12 36 6 −12 −6
0 0 −12 4 6 12 6 2
0 0 0 0 −12 6 12 6
0 0 0 0 −6 2 6 4







wa
�θa
wb
�θb
wc
�θc
wd
�θd



(2)

Next the global geometric stiffness matrix should be assembled using the element
geometric stiffness matrices ki

G . If the consistent geometric stiffness matrix of
Eq. (II.90) is utilized, the global geometric stiffness matrix will be

KG = 1

�




18
15 − 1

10 − 18
15 − 1

10 0 0 0 0

− 1
10

2
15

1
10 − 1

30 0 0 0 0

− 18
15

1
10

36
15 0 − 18

15 − 1
10 0 0

− 1
10 − 1

30 0 4
15

1
10 − 1

30 0 0

0 0 − 18
15

1
10

36
15 0 − 18

15 − 1
10

0 0 − 1
10 − 1

30 0 4
15

1
10 − 1

30

0 0 0 0 − 18
15

1
10

18
15

1
10

0 0 0 0 − 1
10 − 1

30
1
10

2
15




(3)

Apply the displacement boundary conditions and ignore the rows corresponding to
the unknown reactions. Then the eigenvalue problem appears as







12 18 6 0 0

18 60 6 −12 0

6 6 20 4 0

0 −12 4 12 2

0 0 0 2 4



− λ




2
15

1
10 − 1

30 0 0
1

10
12
5 0 − 1

10 0

− 1
30 0 4

15 − 1
30 0

0 − 1
10 − 1

30
4

15 − 1
30

0 0 0 − 1
30

2
15







V = 0

(4)

where

λ = P�2

E I
and V =




�θa

wb

�θb

�θc

�θd
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The solution of these equations, which constitute a generalized (linear) eigenvalue
problem, provides a critical solution of magnitude

Pcr = 7.298(E I/�2) (5)

This consistent matrix model leads to a result that is above the “exact” value of
(1). Use of this type of geometric stiffness matrix always leads to a value above the
correct eigenvalue.

III.6 FREE VIBRATIONS BASED ON THE DISPLACEMENT METHOD

The governing equations KV = P̄ for the nodal displacements of a system under
static loading are now familiar. If dynamic effects are to be taken into account, then
according to D’Alembert’s principle, we simply assure that equilibrium of forces at
the nodes includes the effect of inertia. Then the governing equations become

MV̈+KV = P̄ (III.92)

where M, the global mass matrix, is assembled from element mass matrices mi in
the same fashion that K is obtained from ki . For example, M can be assembled using
the consistent mass element matrices mi of Eq. (II.87).

To study the free vibrations, set the applied loading P̄ to zero and assume that
each displacement performs harmonic motion in phase with all other displacements.
Thus, as explained in Section III.1 in the discussion of free vibrations, assume that

V(x, y, z, t) = V(x, y, z) sinωt (III.93)

so that Eq. (III.92) reduces to

(K− ω2M)V = 0 (III.94)

or

(K− λM)V = 0 (III.95)

where λ = ω2. Equation (III.95) represents a generalized eigenvalue problem.
The trivial solution of Eq. (III.95) would be V = 0. If V = 0, only particular

values λn satisfy Eq. (III.95). These λn are the characteristics or eigenvalues of the
problem, which correspond to the natural frequencies of the structure. The lowest
value of λn is the fundamental natural frequency. To each λn corresponds an eigen-
vector Vn , which defines the mode shape of the nth mode of motion for the structure.
It is important to understand that Vn defines the shape and not the magnitude of the
motion. The eigenvalue problem is to extract from Eq. (III.95) the solution pairs λn

and Vn .
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Mass Matrix

The most common element mass matrices are the consistent mass matrices mi of
Eq. (II.87) and the lumped mass matrix of Eq. (II.83).

The lumped mass element matrix is diagonal, as is the corresponding assembled
global matrix M. The lumped mass matrix is positive semidefinite when zeros oc-
cur on the diagonal, whereas the consistent mass (element and global) matrices are
positive definite. The zeros on the diagonal can complicate certain numerical algo-
rithms. It is clear that a lumped mass matrix would require less storage space than a
consistent mass matrix. It is also more economical to form and to manipulate. Con-
sistent mass matrices lead to eigenvalues that are higher than the exact value, whereas
lumped mass matrices will usually approach the exact eigenvalues from below. See
Ref. [III.6] for a succinct comparison of lumped and consistent mass matrices along
with some interesting variations on these two types of mass modeling.

Eigenvalue Problem

The characteristic equation for the eigenvalue problem of Eq. (III.95) is

det(K− λM) = 0 (III.96)

in which the displacement boundary conditions have reduced the size of K and M.
Equation (III.96) takes the form of a polynomial in λ, whose roots are the desired
eigenvalues λn . However, irrespective of whether a numerical determinant search of
Eq. (III.96) is implemented or the characteristic polynomial is formed and solved,
use of det(K − λM) = 0 for problems of many degrees of freedom is normally
found to be a cumbersome process that should be avoided. Normally, as indicated
later in this subsection, a number of eigenvalue solution routines provide preferred
solution methodology.

Example III.12 Displacement Method for a Beam Using a Consistent Mass
Matrix Use the displacement method to find the natural frequencies of the beam
of Fig. III-11 and Example III.7. The beam is modeled with two elements of equal
length.

Begin by assembling the global stiffness and mass matrices. The notation is shown
in Fig. III-11. The element stiffness matrix ki is given by Eq. (II.61), while the con-
sistent mass matrix mi is given by Eq. (II.87):

ki = E I

�3




12 −6� −12 −6�
−6� 4�2 6� 2�2

−12 6� 12 6�
−6� 2�2 6� 4�2


 , i = 1, 2

=
[

k1
aa k1

ab

k1
ba k1

bb

]
=
[

k2
bb k2

bc

k2
cb k2

cc

]
(1)
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mi = ρ�

420




156 −22� 54 13�
−22� 4�2 −13� −3�2

54 −13� 156 22�
13� −3�2 22� 4�2


 , i = 1, 2

=
[

m1
aa m1

ab

m1
ba m1

bb

]
=
[

m2
bb m2

bc

m2
cb m2

cc

]
(2)

The global stiffness matrix is assembled as

K =

 k1

aa k1
ab 0

k1
ba k1

bb + k2
bb k2

bc
0 k2

cb k2
cc




= E I

�3




12 −6� −12 −6� 0 0
−6� 4�2 6� 2�2 0 0
−12 6� 24 0 −12 −6�
−6� 2�2 0 8�2 6� 2�2

0 0 −12 6� 12 6�
0 0 −6� 2�2 6� 4�2




(3)

with the corresponding global displacement vector

V = [wa θa wb θb wc θc
]T

Similarly, the global mass matrix is

M =

 m1

aa m1
ab 0

m1
ba m1

bb +m2
bb m2

bc
0 m2

cb m2
cc




= ρ�

420




156 −22� 54 13� 0 0
−22� 4�2 −13� −3�2 0 0

54 −13� 312 0 54 13�
13� −3�2 0 8�2 −13� −3�2

0 0 54 −13� 156 22�
0 0 13� −3�2 22� 4�2




(4)

The frequencies can be determined by solving the generalized eigenvalue prob-
lem of Eq. (III.95). Equation (III.95) is first modified by applying the displacement
boundary conditions to V and ignoring the rows in (K − λM)V = 0 corresponding
to the unknown reactions.

Thus, with wa = wc = 0,

V = [wa θa wb θb wc θc
]T (5)
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reduces to

[
θa wb θb θc

]T (6)

so that the columns in K and M corresponding to wa and wc can be canceled. Fur-
thermore, ignore the rows for the reactions Va and Vc, which are unknown. The
eigenvalue problem becomes




E I

�3




4�2 6� 2�2 0
6� 24 0 −6�
2�2 0 8�2 2�2

0 −6� 2�2 4�2




−λ




4�2 −13� −3�2 0
−13� 312 0 13�
−3�2 0 8�2 −3�2

0 13� −3�2 4�2


 ρ�

420






θa

wb

θb

θc


 = 0 (7)

Use of a classical eigenvalue solution procedure will lead to the desired frequen-
cies. Computer software for eigenvalue problems is readily available.

An alternative technique for finding the frequencies is to establish the character-
istic equation from the determinant of the coefficients of (K− λM)V = 0. This can
be implemented for problems of limited degrees of freedom. Let

K = ω2M = [Di j ], i, j = 1, 2, . . . , 6 (8)

and apply the displacement boundary conditions (wa = wc = 0). This leads to




D11 D12 D13 D14 D15 D16
D21 D22 D23 D24 D25 D26
D31 D32 D33 D34 D35 D36
D41 D42 D43 D44 D45 D46
D51 D52 D53 D54 D55 D56
D61 D62 D63 D64 D65 D66







wa = 0
θa

wb

θb

wc = 0
θc



= 0 (9)

The first and fifth equations (rows) correspond to unknown reactions. The remaining
equations appear as




D22 D23 D24 D26
D32 D33 D34 D36
D42 D43 D44 D46
D62 D63 D64 D66





θa

wb

θb

θc


 = 0 (10)

The characteristic equation is obtained from the determinant of the coefficients of
(10), that is,
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∇ =




D22 D23 D24 D26
D32 D33 D34 D36
D42 D43 D44 D46
D62 D63 D64 D66


 = 0 (11)

This relationship can be obtained directly from (7).
Inset the numerical values

D22 = 3.9999× 106 − 1.7752ω2

D32 = D23 = 1.49996× 105 + 0.1442ω2

D33 = 1.4999× 104 − 0.0865ω2

D42 = D24 = 1.9999× 106 + 1.3314ω2

D43 = D34 = 0

D44 = 7.9998× 106 + 3.5505ω2

D62 = D26 = 0

D36 = D63 = −1.49996× 105 − 0.1442ω2

D64 = D46 = D42

D66 = D22

(12)

Substitution of (12) into (11) and use of factorization leads to two equations:

ω4 − 41.0093× 105ω2 + 13.3967× 1010 = 0

and

ω4 − 14.1631× 106ω2 + 8.7036× 1012 = 0 (13)

The roots of these equations are

ω1 = 181.48 or f1 = ω1/2π = 28.88 Hz

ω2 = 802.37 or f2 = 127.70 Hz

ω3 = 2016.92 or f3 = 321.00 Hz

ω4 = 3676.86 or f4 = 585.19 Hz

(14)

Note that the consistent mass matrix leads to higher frequencies than the “exact”
values of Example III.7. The approximation introduced in this example is the use of
the consistent mass matrix, which is approximate. This contrasts with Example III.7,
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where the exact mass was employed. To make the higher frequencies more accurate
when consistent mass matrices are employed, more elements should be included in
the model.

Example III.13 Displacement Method for a Lumped Mass Model of a Beam
Use the displacement method to find the natural frequencies of the beam of Fig. III-11
along with the lumped parameter idealization of Fig. III-32. Begin by assembling
the global stiffness and mass matrices. From Eq. (II.83), for a lumped mass model
of a beam element

mi = ρ�

2




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 , i = 1, 2 (1)

so that the assembled mass matrix will be

M = ρ�

2




1 0 0 0 0 0
0 0 0 0 0 0
0 0 1+ 1 0+ 0 0 0
0 0 0+ 0 0+ 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0




(2)

The global stiffness matrix is still given by Eq. (3) of Example III.12.
Apply the displacement boundary conditions to (K − λM)V = 0 and ignore the

rows corresponding to the unknown reactions. This leads to the linear eigenvalue
problem

Figure III-32: Lumped parameter model. Note that this model differs from that of
Fig. III-13.
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E I

�3




4�2 6� 2�2 0
6� 24 0 −6�
2�2 0 8�2 2�2

0 −6� 2�2 4�2


− λ




0 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0


 ρ�2






θa

wb

θb

θc


 = 0

(3)

where λ = ω2. The frequencies can be found from this relationship using a standard
eigenvalue solution procedure.

Alternatively, the characteristic equation can be established from the determinant
of the system of equations. Let

(K− ω2M) = [Hi j ], i, j = 1, 2, . . . , 6 (4)

Follow the procedure of Example III.12. This leads to

∇ =




H22 H23 H24 H26
H32 H33 H34 H36
H42 H43 H44 H46
H62 H63 H64 H66


 = 0 (5)

where

H22 = 3.9999× 106

H32 = H23 = 1.49996× 105

H33 = 1.49996× 104 − 0.1165ω2

H42 = H24 = 1.9999× 106

H43 = H34 = 0

H44 = 7.9998× 106

H62 = H26 = 0

H63 = H36 = −1.49996× 105

H64 = H46 = H42

H66 = H22

(6)

With these numbers, (5) gives the fundamental natural frequency

ω = 179.408 rad/s or f = ω/2π = 28.55 Hz (7)

As is generally the case, the fundamental frequency derived using the lumped
mass model is lower than the exact value of Example III.7.
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There are a variety of effective and efficient algorithms, along with readily avail-
able software, that attack the eigenvalue problem of Eq. (III.95) directly without re-
sorting to solving Eq. (III.96). Often, eigenvalue problem computer programs require
that Eq. (III.95) be converted to the standard eigenvalue problem

(A− λI)Y = 0 (III.97)

where I is the unit diagonal matrix, A is symmetric, and Y is the eigenvector. Eigen-
values λ that satisfy this relationship are said to be the eigenvalues of A. To obtain
the standard form, premultiply Eq. (III.95) by M−1:

(M−1K− λI)V = 0 (III.98)

However, M−1K is in general not symmetric, so further manipulations are required
to achieve a standard form. In particular, Choleski decomposition of M or K is per-
formed, resulting in the standard form. Furthermore, since practical models often
involve large mass matrices M, it is desirable to avoid implementation of the in-
verse M−1. In fact, in some cases, for lumped mass models M−1 does not exist. For
in-depth discussions of these issues, see Ref. [III.6].

Consult a structural dynamics textbook for such popular eigenvalue solution
routines as Jacobi, Householder, inverse iteration or power, subspace iteration, or
Lanczo’s method. Frequently, it is helpful to use condensation techniques (e.g.,
Guyan reduction) to reduce the number of degrees of freedom of a dynamics prob-
lem.

A zero eigenvalue λi should be obtained for each possible rigid-body motion of
a structure that is not restrained. Since the mass can hold the structure together,
a singular stiffness matrix K is more palatable for a dynamic problem than for a
static solution, although some operations may not be suitable. For a real, symmetric,
and nonsingular K, the rank of M is equal to the number of nonzero independent
eigenvalues of Eq. (III.95). It follows that for an M formed using consistent mass
element matrices, the number of frequencies available from an analysis is equal to
the number of unrestrained nodal displacements.

Frequency-Dependent Stiffness and Mass Matrices

The mass matrices considered thus far are clearly approximate. In the case of the
lumped mass matrix, a user-orchestrated physical discretization is imposed on the
system. For the consistent mass matrix mi , the shape function N, almost always a
polynomial, that was employed to form the stiffness matrix for a static analysis is
inserted in

mi =
∫ b

a
ρ NT N dx (III.99)

The methodology and formulas of this book permit a much more general and ex-
act approach, albeit a less efficient one. Some of the transfer matrices (e.g., those of
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Table 11-22) contain distributed mass without approximation. If such a transfer ma-
trix is converted to a stiffness matrix format using the transformation of Eq. (II.59),
a dynamic stiffness matrix ki

dyn results. Table 11-22 contains such a matrix. The dis-
tributed mass in the dynamic stiffness matrix is modeled exactly and the resulting
stiffness matrix is a function of the frequency. Suppose that the assembled global
stiffness matrix is Kdyn. The characteristic equation from which the natural frequen-
cies can be computed can be written as

det Kdyn(ω) = 0 (III.100)

where the boundary conditions have been applied and have resulted in a reduced
Kdyn. A numerical determinant search in which the determinant is evaluated for trial
frequencies can be utilized to find the frequencies.

Example III.14 Use of a Dynamic Stiffness Matrix for the Natural Frequen-
cies of a Beam Use the dynamic stiffness matrix to find the natural frequencies
of the beam of Fig. III-11. Since an exact mass model is to be employed, this beam
can be treated as a single-element beam. We choose, however, to continue with the
two-element model shown in Fig. III-11. Assuming the use of a long element does
not lead to numerical instabilities, both models provide the same exact solution (fre-
quencies and mode shapes).

The element stiffness relationship is

ki vi = pi where i = 1, 2

ki
dyn = ki =




ki
11 ki

12 ki
13 ki

14

ki
21 ki

22 ki
23 ki

24

ki
31 ki

32 ki
33 ki

34

ki
41 ki

42 ki
43 ki

44


 , vi =



wa

θa

wb

θb


 , pi =




Va

Ma

Vb

Mb




(1)

The stiffness elements for a dynamic stiffness matrix for a beam, which includes the
effects of the mass, are given in Table 11-22:

ki
11 = (E I/�)[(e2 − ηe4)(e1 + ζe3)+ λe3e4]

ki
12 = (E I/�)[e3(e1 − ηe3)− e2(e2 − ηe4)]

ki
13 = −(E I/�)(e2 − ηe4)

ki
14 = −(E I/�)(e3)

ki
21 = ki

12

ki
22 = (E I/�){e3e2 − (e1 − ηe3)[e4 − ξ(e2 + ζe4)]}
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ki
23 = (E I/�)(e3) = −ki

14

ki
24 = (E I/�)[e4 − ξ(e2 + ζe4)]

ki
31 = ki

13 (2)

ki
32 = ki

23

ki
33 = (E I/�)[(e1 + ζe3)(e2 − ηe4)+ λe3e4] = ki

11

ki
34 = (E I/�){(e1 + ζe3)e3 + λe4[e4 − ξ(e2 + ζe4)]}

ki
41 = ki

14

ki
42 = ki

24

ki
43 = ki

34

ki
44 = (E I/�){e2e3 − (e1 − ηe3)[e4 − ξ(e2 + ζe4)]} = ki

22

� = e2
3 − (e2 − ηe4)[e4 − ξ(e2 + ζe4)]

Also, from Table 11-22,

λ = (k − ρω2)/E I = −ρω2/E I < 0
η = (k − ρω2)/G As = 0 if shear deformation

is not included (1/G As = 0)
ξ = E I/G As = 0
ζ = (P − k∗ + ρr2

yω
2)/E I = 0

(3)

since P = 0, k∗ = 0, and rotary effects are to be ignored. For λ < 0, case 1 of the
definitions for ei in Table 11-22 provides

e1 = (d2 A + q2 B)/g e2 = (dC + q D)/g
e3 = (A − B)/g e4 = (C/d − D/q)/g

(4)

in which the parameters are obtained from Table 11-22:

d2 =
√
(ζ + η)2/4− λ− (ζ − η)/2 = √ρ/E I ω

q2 =
√
(ζ + η)2/4− λ+ (ζ + η)/2 = √ρ/E I ω = d2

g = d2 + q2 = 2
√
ρ/E I ω

A = cosh d� B = cos q� = cos d�

C = sinh d� D = sin q� = sin d�

(5)

Insertion of (5) into (4) gives

e1 = 1
2 (cosh d�+ cos d�)
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e2 = 1

2
√
ω

(
E I

ρ

)1/4

(sinh d�+ sin d�) (6)

e3 = 1

2ω

√
E I

ρ
(cosh d�− cos d�)

e4 = 1

2ω
√
ω

(
E I

ρ

)3/4

(sinh d�− sin d�)

and

� = e2
3 − (e2 − 0)(e4 − 0)

= e2
3 − e2e4

= 1

2ω2

(
E I

ρ

)
(1− cosh d� cos d�)

Substitution of (3) into (2) provides

ki
11 = (E I/�)(e1e2 + λe3e4)

ki
12 = (E I/�)(e1e3 − e2

2)

ki
13 = −(E I/�)e2

ki
14 = −(E I/�)e3

ki
21 = ki

12

ki
22 = (E I/�)(e3e2 − e1e4)

ki
23 = (E I/�)e3 = −ki

14

ki
24 = (E I/�)e4

ki
31 = ki

13

ki
32 = ki

23

ki
33 = (E I/�)(e1e2 + λe3e4) = ki

11

ki
34 = (E I/�)(e1e3 + λe2

4)

ki
41 = ki

14

ki
42 = ki

24

ki
43 = ki

34

ki
44 = (E I/�)(e3e2 − e1e4) = ki

22

(7)
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The global dynamic stiffness matrix assembled for the two-element beam model
appears as

Kdyn =




k1
11 k1

12 k1
13 k1

14 0 0

k1
21 k1

22 k1
23 k1

24 0 0

k1
31 k1

32 k1
33 + k2

11 k1
34 + k2

12 k2
13 k2

14

k1
41 k1

42 k1
43 + k2

21 k1
44 + k2

22 k2
23 k2

24

0 0 k2
31 k2

32 k2
33 k2

34

0 0 k2
41 k2

42 k2
43 k2

44




(8)

with the corresponding global displacement vector

V = [wa θa wb θb wc θc
]T

Introduce the displacement boundary conditions wa = wc = 0 to eliminate columns
1 and 5 of (8) and delete the rows (1 and 5) for the reactions complementary to these
prescribed displacements. The characteristic equation [Eq. (III.100)] now appears as

∣∣∣∣∣∣∣∣∣

k1
22 k1

23 k1
24 0

k1
32 k1

33 + k2
11 k1

34 + k2
12 k2

14

k1
42 k1

43 + k2
21 k1

44 + k2
22 k2

24

0 k2
41 k2

42 k2
44

∣∣∣∣∣∣∣∣∣
= 0

A frequency search applied to this determinant relationship leads to the natural fre-
quencies.

As expected, this dynamic stiffness matrix yields the same (exact) natural fre-
quencies obtained in Example III.7. This is because no approximation such as the
use of consistent or lumped mass modeling was made. The advantage of exact mass
modeling permits a coarser mesh (i.e., fewer elements) to be employed in the model.
The disadvantage is that the determinant search for frequencies can be a difficult,
inefficient procedure, especially for complex systems.

As mentioned in Example III.14, a determinant search, such as would be required
by Eq. (III.100), is often a numerically cumbersome, inefficient process that perhaps
should be avoided. The inefficiency results from the need to calculate the value of the
determinant for each trial value of the frequency. A detailed review of the problems
associated with the use of the dynamic stiffness matrix is provided in Ref. [III.12].
The determinant search can be circumvented by creating an eigenvalue problem in
which the structural matrices are not functions of the frequency parameter ω.

Typically, one begins by generating a frequency-dependent mass matrix in a man-
ner similar to the formation of the dynamic stiffness matrix ki

dyn. A frequency-
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dependent mass matrix can be obtained by placing the exact (frequency-dependent)
shape function N in Eq. (III.99). The same exact mass matrix is available by differen-
tiating the element dynamic stiffness matrix by the frequency parameter ω [III.13]:

mi = −∂ki
dyn/∂ω

2 (III.101)

An economical alternative is to calculate a frequency-dependent “quasistatic”
mass matrix mi , defined as

m̃i =
∫

V
NT

0 ρN dV (III.102)

where N0 is an element static shape function such as the N given in Eq. (II.65).
Define an associated frequency-dependent stiffness matrix ki (ω) in terms of the

dynamic stiffness matrix ki
dyn(ω) and a frequency-dependent mass matrix mi (ω),

ki
dyn(ω) = ki (ω)− ω2mi (ω) (III.103)

The operations involved in forming ki
dyn, mi , and ki can be performed using sym-

bolic manipulation software.
Assemble the global matrices M(ω) and K(ω) using the element matrices mi (ω)

and ki (ω), giving the eigenvalue problem

[K(ω)− ω2M(ω)]V = 0 (III.104)

A simple iterative solution of this problem usually converges rapidly to the exact
eigenvalue solution:

[K(0)− ω2M(0)]V = 0→ ω = ω0
1, ω

0
2, ω

0
3, . . . , v = v0

[K(ω0
1)− ω2M(ω0

1)]V = 0→ ω = ω1
1, ω

1
2, ω

1
3, . . . , v = v1

...

[K(ω j−1
1 )− ω2M(ω j−1

1 )]V = 0→ ω = ω j
1 , ω

j
2 , ω

j
3 , . . . , v = v j

(III.105)

where superscript j designates the eigensolution of the j th iteration. The frequencies
ω0

1, ω
0
2, ω

0
3, . . . are those that are obtained using a consistent mass matrix and the

usual static stiffness matrix.
This approach, although less efficient than solving the generalized eigenvalue

problem of Eqs. (III.95), is normally more efficient than the determinant search
required to solve Eq. (III.100). This procedure, represented by Eqs. (III.105), has
the advantage of being able to utilize readily available, reliable, standard eigenvalue
solvers, which should result in an accurate set of frequencies and mode shapes. Fur-
thermore, remember that the frequency-dependent mass and stiffness matrices permit
a model to be employed with fewer (larger) elements than is possible with consistent
or lumped mass matrices. Even more precise higher frequencies are obtained from
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Eqs. (III.105) if K and M are evaluated at ω j−1
n , n > 1, rather than at the lowest

natural frequency ω j−1
1 .

More common than the use of the iterative procedure of Eq. (III.105) is the estab-
lishment of a quadratic, generalized eigenvalue problem using matrices expanded in
series [III.14]. Expand the mass, stiffness, and dynamic stiffness matrices in Taylor
series:

mi =
∞∑

n=0

mnω
2n or m̃i =

∞∑
n=0

m̃nω
2n (III.106a)

ki =
∞∑

n=0

knω
2n (III.106b)

ki
dyn =

∞∑
n=0

(kdyn)nω
2n (III.106c)

From Eq. (III.103), define

(kdyn)n = kn −mn−1, n ≥ 1 (III.107)

A simple relationship between the series terms m0,m1, . . . and k1,k2, . . . is quite
useful [III.14]:

(n + 1)kn+1 = nmn = n(n + 1)m̃n = −n(n + 1)(kdyn)n+1, n ≥ 1,
(III.108)

Also,

(kdyn)0 = k0 (traditional stiffness matrix)

(kdyn)1 = −m0 (traditional consistent mass matrix)
(III.109)

and k1 = 0. Usually, enough terms in the series expansions are retained to cre-
ate a quadratic eigenvalue problem. There is a sizable literature on the solution of
higher-order eigenvalue problems, especially on the efficient solution of quadratic
eigenvalue problems.

III.7 TRANSIENT RESPONSES

The response of a structural system to prescribed time-dependent loading involves
the solution of

MV̈+KV = P̄ (III.110)

This is an ordinary differential equation in time that can be integrated directly. Text-
books on vibrations or structural dynamics describe a variety of time integration
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techniques for solving Eq. (III.110). However, by far the most frequently used tech-
nique in practice is the modal superposition method, which employs the free vibra-
tion responses. Since the natural frequencies and mode shapes are often calculated at
the offset of a dynamic analysis of a structural system, it is a relatively simple pro-
cedure to proceed to compute the transient response using modal superposition. This
method will be described in brief here for use with structural systems. See Ref. [III.1]
for the details on using modal superposition to find the response of structural mem-
bers. Also, further information on this method is available in structural dynamics
textbooks.

With modal superposition the solution to Eqs. (III.110) are expressed as a sum-
mation involving the eigenvectors Vn . Actually, the solution is written in terms of
normalized eigenvectors. One common method of normalizing the eigenvectors is to
choose the unknown constants such that

VT
j MV j = I (III.111)

Arrange the newly normalized eigenvectors as columns in a matrix �. This is called
the modal matrix and has the orthogonality properties

�T M� = I, �T K� = �2 (III.112)

where I is the unit diagonal matrix and �2 is a diagonal matrix of the squared natural
frequencies, called the spectral matrix.

To find the solution to Eq. (III.110), express the displacements V as the sum of
the normal modes,

V = �q (III.113)

where q is a vector of time-dependent modal amplitudes. The values of q(t) are
found by substituting V of Eq. (III.113) in Eq. (III.110) and premultiplying by �T .
It follows from Eqs. (III.112) that

q̈n + ω2
nqn = pn (III.114a)

where

pn = �T
n P̄ (III.114b)

The vector �n is the nth column of �. Equation (III.114a) represents a set of un-
coupled ordinary differential equations in time, with the solution

qn(t) = qn(0) cosωnt + q̇n(0)
sinωnt

ωn
+
∫ t

0
pn(τ )

sinωn(t − τ)
ωn

dτ (III.115)

where pn(t) is a known function of time. There are as many qn equations as there
are degrees of freedom. To find initial values of qn and q̇n of Eq. (III.115), evaluate
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V = �q and V̇ = �q̇ at t = 0 and premultiply both sides by �T M. This gives

q(0) = �T MV(0), q̇(0) = �T MV̇(0) (III.116)

qn(0) = �T
n MV(0), q̇n(0) = �T

n MV̇(0) (III.117)

This modal solution may appear to be computationally inefficient. However, � is
usually not difficult to form, as only a few modes may be needed for a sufficiently
accurate solution. If m modes are employed, there are m columns in � and only m
solutions to Eq. (III.114) required. For a problem with multiple loading histories, the
modal summation approach is particularly advantageous, as the second, third, and so
on, loadings are handled very economically.

Treatises on structural dynamics contain considerable insight into making the
modal superposition approach more efficient and accurate.
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TABLE III-1 NOTATION FOR TRANSFER MATRIX METHOD
Symbol Definition

Ui Transfer matrix for i th element (field) zb = Ui za
U Global or overall transfer matrix that spans several (M) elements,

U = UMUM−1 · · ·U2U1

Uk Point matrix to account for concentrated occurrence (e.g., a point force
or discrete spring, at location k)

zk State vector at location k; contains all displacement and force
state variables

z̄i Applied loading function vector for i th element

TABLE III-2 NOTATION FOR DISPLACEMENT AND FORCE METHODS
Notation

Indices: Superscript for distributed quantity (e.g., an element index); subscript for
point quantity (e.g., a node index). As an example, vi

k is the displacement v of the
i th element at the kth node.

Local coordinate system: Variables referred to a local coordinate system are
indicated by a tilde (e.g., k̃i is the local stiffness matrix of the i th element).

Prescribed (applied) variables will be indicated with a line over the letter (e.g., P̄k is
the force applied at node k).

Symbol Definition

V Vector of global nodal displacements
P Vector of global nodal forces
V̄ Applied global displacements
P̄ Applied global forces
vi Vector of nodal displacements of i th element
pi Vector of nodal forces of i th element
v̄i , p̄i Element loading vectors
ki Stiffness matrix of i th element
K System (global) stiffness matrix
fi Flexibility matrix of i th element
F System flexibility matrix
a Kinematic transformation (incident) matrix, v = aV
b Static transformation matrix, p = bP
Ti Transformation matrix (e.g., ṽi = Ti vi )
Ti

j j , j = a, b Transformation matrix, element i , node j ;

Ti =
[

Taa 0
0 Tbb

]i

for nodes a, b of element i
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TABLE III-2 (continued) NOTATION FOR DISPLACEMENT AND FORCE METHODS

Ñ Internal axial force in local coordinates
Ṽy , Ṽz or Ṽ Internal shear forces in local coordinates
T̃ = M̃x , M̃ = M̃y, M̃z Internal moments in local coordinates
ũ = ũx Axial displacement in local coordinates
ṽ = ũ y, w̃ = ũz Transverse displacements in local coordinates
φ̃ = θ̃x , θ̃ = θ̃y, θ̃z Rotations about x , z, and y axes in local coordinates
FX , FY , FZ Forces on the ends of element in global X , Y ,

and Z directions, respectively
uX , uY , uZ Displacements on the ends of element in global X , Y ,

and Z directions, respectively
θX , θY = θ, θZ Rotations on the ends of element in global X , Y ,

and Z directions, respectively
PX , PY , PZ Nodal forces in global coordinates
MX ,MY ,MZ or M Nodal moments in global coordinates
UX ,UY ,UZ Nodal displacements in global coordinates
�X ,�Y ,�Z Nodal rotation in global coordinates X , Y ,

and Z directions, respectively
P̄X , P̄Y , P̄Z Applied nodal loading forces in global coordinates
M̄X , M̄Y , M̄Z Applied nodal moments in global coordinates X , Y ,

and Z directions, respectively

For plane structure with in-plane loading:

p̃ =

 Ñ

Ṽ
M̃


 , ṽ =


 ũ
w̃

θ̃


 , p =

[
FX
FZ
M

]
, v =

[
uX
uZ
θ

]

TABLE III-2 Notation for Displacement and Force Methods 1489



TABLE III-3 COMPARISON OF METHODS FOR STRUCTURAL
ANALYSIS

Method

Analysis Transfer Matrix Displacement Force

Unknowns in Displacement Displacement Force
analysis and force variables variables

variables

Characterization Transfer matrix Stiffness matrix Flexibility
of i th Ui ki matrix
element fi

Matrix
characterizing
system

U =
∏

i

Ui K =
∑

i

ki = aT ka F = bT fb

Conditions — Compatibility Equilibrium
fulfilled at
outset of
formulation

System equations Equilibrium and Equilibrium Compatibility
satisfy compatibility

1490 TABLE III-3 Comparison of Methods for Structural Analysis
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Finite element analysis 794 

Finite element method 1442 

Finite element models 1442 

First moment  59 

 of area  28 

First sectorial moment 37 737 

Flaw size  310 

Flaws   307 

 semicircular 339 

Flexibility coefficient 115 

Flexibility matrix, multiple-segment shells 1198 

Flexibility method 1406 1466 

Flexure formula 120 

Flow curve  158 

Fluted shaft element, matrices 956 

Force, transmissibility 459 

Force method 1406 1440 1466 

 multiple-segment shells 1197 

 notation  1488 

Forced vibration: 

 with damping 460 

 without damping 458 

Forces: 

 body  91 

 shear  109 

 sign convention 764 

 surface  91 
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 energy balance 326 

 fatigue  432 

 Griffith–Orowan–Irwin theory 326 

 plane strain 312 

 plane stress 312 

 strain-energy density 326 

 strength  360 

 toughness 360 

 unstable  326 

Fracture criteria 329 

Fracture mechanics 307 

 fatigue  340 

 flaw size  340 

 general design 315 

 J integral 327 

 linear elastic 309 315 

Fracture mechanics and fatigue, tables 349 

Fracture toughness 311 

Fracture transition elastic 161 

Fracture transition plastic 161 

Frames   661 1453 

 buckling loads 666 699 

 collapse  715 

 collapse loads 666 

 formulas  663 

 gridworks 667 718 

 load factor 667 
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 plastic design 666 

 safe load regions 715 
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 space  731 

 stability analysis 673 

 static loading 668 

 statically determinate rectangular single bay 676 

 statically indeterminate rectangular 681 

 stiffness matrices 673 723 725 

 stiffness matrix for plane trusses 723 

 stiffness matrix for space trusses 724 

 tables  675 

 transfer matrix method 673 

Free vibrations 1422 

 displacement method 1470 

 with damping 457 

 without damping 456 

Frequencies  626 

 beams  535 

 beams with in-span supports 599 

 beams with point masses 597 

 extension 626 

 shells  1208 

 tapered beams 599 
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Frontal solution procedure 1440 

G 
Gage factor  237 

Gauss elimination 1353 

Gauss integral 1342 

General mass matrix 616 

Geometric properties 17 

 tables  46 

Geometric series 1322 

Geometric stiffness matrices 1402 

 circular plate 1052 

 consistent 614 

 thin-walled beams 760 

Gerber’s formula 331 

Girders   667 

 critical axial loads 720 

 stability  721 

Glass   223 

Glass transition temperature 178 218 

Goodman’s diagram 331 

Goodman’s formula 331 

 brittle material 338 

 ductile material 338 

Green’s formula 1342 

 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Gridworks  667 718 

 buckling loads 670 

 frequencies 722 

 general grillages 672 
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 static loading 668 

 stiffeners 667 

 uniform  667 

Griffith–Orowan–Irwin theory 326 

Grillages  667 

 general  672 

Grooves   307 

Guest’s theory 136 

Guyan reduction 1477 

H 
Half-power point 463 

Hardenability 172 

Hardening  172 

Hardness: 

 Brinell  163 

 Knoop  164 

 microhardness 164 

 Rockwell 163 

 Vicker’s test 163 

Hardness tests 162 198 

Harmonic motion 454 

Hermitian polynomials 1396 
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High-carbon steel 173 

High-strength low-alloy steels 177 

Hill’s equation 182 

Hinge, plastic 531 

Holographs  236 

Hooke’s law  113 

Horsepower  119 

Householder method 1477 

Human, natural frequencies 515 

Human body vibrations 471 

Hyperbolic functions 1330 

 derivatives 1360 

 identities 1330 

 integrals  1362 

I 
Identity matrix 1346 

Impact factor  472 

Impact force  478 

Impact formulas 472 

Impact tests  159 

Imperfect columns 587 

In vitro   183 

Incidence matrix 1447 

Inertial loading 453 

Infinite geometric series 1322 
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Integral formulas 1341 1361 

Integration: 

 by parts  1341 

 formulas  1361 

Interferometric strain gages 236 

Internal-friction theory 137 

Interpolation function 1395 

Inverse iteration method 1477 

Inverse matrix 1346 1348 

Inverse trigonometric functions 1328 

 derivatives 1360 

Inverse trigonometric identities 1329 

Iron, cast  209 

Irwin correction 315 

Isoentatic  244 

Isostatics  244 

Isotropic material 152 194 

Izod notched-bar impact test 159 

Izod test   159 260 

J 
J integral  327 

Jacobi method 1477 

Jeffcott rotor  894 
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 bearing failure 401 
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 compression or bearing 373 

 concentrically loaded 379 

 design  382 

 double shear failure 401 

 eccentrically loaded 379 

 end failure 376 402 

 fastener shearing 401 

 load factor 371 

 modes of failure 373 401 

 resistance factor 371 

 riveted  371 

 shearing  373 

 single shear failure 401 

 tables  397 

 tension or tearing 373 402 

 welded  390 

Journal bearing, damping matrices 963 

K 
Kern   535 

 short columns 588 

Knoop hardness test 164 

Knoop microhardness test 198 
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 beams  1385 

 formulas  1368 

Larson–Miller parameter 166 

Laser speckle interferometry 236 

Laws of sines and cosines 1325 

Laws of tangents 1325 

Life-fraction  167 

Ligaments  182 227 

Linear equations 1337 

Gauss algorithm 1353 

Linear interpolation 1351 

Load factor 371 667 

Loading: 

 collapse  531 

 critical  531 

 dynamic  453 

 elastic buckling 531 

 inertial  453 

 static  453 

Logarithmic decrement 457 

Logarithms  1321 

 common  1322 

 natural (Naperian) 1322 

Love–Kirchhoff hypothesis, shells of revolution 1208 

Low cycle fatigue 329 

Low-carbon steels 173 
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M 
Maclaurin’s series 1343 

Magnesium  178 

 alloys  215 

Magnification factor 458 

Manganese steels 173 

Manson–Haferd formula 200 

Manson–Haferd parameter 167 

Martempering 171 

Martensite  170 

Mass   512 

 lumped, matrix 614 

Mass matrices 1400 

 bars   628 

 circular plate 1054 

 consistent 614 1401 

 cylinders 1183 

 disks  1183 

 frequency-dependent 1477 

 general  614 

 lumped  614 

 plane frames 729 

 radial beam 971 

 rectangular plate 1116 

 rotors  911 

 space frames 731 
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Mass moments of inertia 512 

Material index, material selection 185 

Material law: 

 matrix  193 

 stress-strain relationships 113 

Material selection 232 

 material index 185 

 process selection chart 188 

Materials: 

 concrete slab 1067 

 damping properties 601 

 dynamic characteristics 479 

 lumped mass 614 

 mass, consistent 616 

 mass, extension 660 

 mass, general 616 

 mass, torsion 659 

 point  608 

 point, curved bars 882 

 stiffness  536 

 stiffness (consistent) 614 

 stiffness, curved bars 878 

 transfer  536 

 transfer, curved bars 872 
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 basic operations 1347 

 characteristic equation 1350 

 characteristic values 1350 

 characteristic vectors 1350 

 congruent 1347 

 diagonal  1346 

 eigenvalues 1349 

 eigenvectors 1349 

 global kinematic 1447 

 identity  1346 

 incidence 1447 

 inverse  1346 

 lower triangular 1346 

 multiplication 1348 

 nonsingular 1346 

 null   1346 

 rank   1346 

 rectangular 1346 

 singular  1346 

 skew-symmetric 1346 

 square  1346 

 subtraction 1347 

 symmetric 1346 
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 systems of equations 1349 

 trace  1346 

 transpose 1346 

 triangular 1346 

 upper triangular 1346 

Matrix algebra 1346 

Maugis–Dugdale theory 434 

Maximum distortion energy theory 137 

Maximum principal stress: 

 maximum-stress failure theory 135 

 Rankine failure theory 135 

Maximum shear stress 97 438 

 bodies in line contact 449 

Maximum-shear theory 136 

Maximum-strain theory 136 

 Saint-Venant failure theory 136 

Maxwell–Huber–Hencky–von Mises theory 137 

Mechanical properties, tables 191 

Membrane analogy 624 

Membrane hypothesis 1188 

Membrane shells 1185 1188 

Membranes: 

 circular  1029 

 natural frequencies 1029 1092 

 rectangular 1092 

 various shell shapes 1246 1288 

MEMS   184 

Meniscus  227 

Meridian  125 1186 
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 scanning probe 433 

Mixed method 1408 

Modal superposition method 1484 

Mode I crack propagation 311 

Mode shapes: 

 beams  535 

 columns  578 

 uniform bars in extension 648 

 uniform bars in torsion 645 

Modulus of dilation 113 

Modulus of elasticity 156 195 

 volumetric 113 

Modulus of resilience 156 

Modulus of toughness 156 

Modulus-weighted section properties 41 

 area   41 

 centroid  42 

 first moment 43 

 first sectorial moment 43 

 moments of inertia 42 

 warping constant 43 

Mohr’s circle 24 100 144 

 moments of inertia 24 

 stress  24 

 three dimensions 104 

 two-dimensional state of stress 100 
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 use   101 

Mohr’s theory 137 

Moire technique 236 

Molybdenum steels 174 

Moments of inertia 19 26 46 

 mass  512 

 polar  21 650 

 polar, concentrated masses 650 

 section  778 

 variable, beams 604 

Multiple-segment shells 1197 

Muscle   182 

N 
Nanotechnology, scanning probe microscopy 433 

Natural frequencies 455 465 626 

 approximate formulas 467 

 arches  859 

 buildings 600 

 circular membranes 1029 

 circular plates 986 1029 

 common systems 487 

 conical shells 1214 

 conical shells, with bending 1310 

 curved bars 861 

 cylinders 1161 

 cylindrical shells 1301 

 cylindrical shells, with bending 1305 

 disks  1161 
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 dynamic stiffness matrices 1478 

 eigenvalues 1418 
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 human body 515 

 membranes 1092 1124 

 plates, various shapes 1124 

 pump  917 

 Rayleigh’s formula 467 

 rectangular membranes 1092 

 rectangular plates, orthotropic 1095 

 rings  860 

 rotating beam 967 

 shells  1208 

 spheres  1161 

 spherical shells 1317 

 structural members 626 

 thick shells 1146 

 triangular plates 1127 

 uniform bars in extension 648 

 uniform bars in torsion 645 

Natural logarithm 1322 

Natural strain 111 

Navier’s hypothesis 1371 

Network structure 1406 

Neuber constant 331 

Neuber equation 331 

Neuber’s rule 261 

Neutral axis  120 777 805 
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Nickel-molybdenum steels 176 

Nil-ductility transition temperature 160 312 

Nonferrous alloys 217 

Nonferrous metals 177 

Normal strain 110 

Normal stresses 92 777 

 maximum 98 

 minimum 98 

 warping  736 

Normal vectors 1333 

Normalizing  172 

Normal-mode theory 1423 

Notch sensitivity index 260 331 

 scale effect 260 

Notched-bar impact tests 159 

Numerical difficulties, beams 1438 

Numerical integration: 

 rectangular formula 1355 

 Simpson’s rule 1355 

 trapezoidal rule 1354 

O 
Octahedral normal stress 106 

Octahedral planes 106 

Octahedral shear stress 106 427 438 

 bodies in line contact 449 
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P 
Palmgren–Langer–Miner rule 334 

Parallel-axis formulas 20 

Parallel, shell 1186 

Pearlite   170 

Photoelasticity 236 245 

Photolithography 184 

Pipes, in-plane response 851 

Plane, trigonometry 1324 

Plane frames: 

 mass matrices 729 

 stiffness matrices 725 

Plastic hinge  531 

Plastic moment 531 

Plastics   178 

 abbreviations 218 

 molding and extrusion 220 

Plates   978 

 arbitrary loading 1018 

 buckling  996 1088 1122 

 buckling, triangular shapes 1122 

 circular  980 

 composite 1068 

 concrete slab 1067 

 critical in-plane forces 1025 
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 Kirchhoff-Love assumptions 978 

 large deflection 1000 1059 

 local buckling 997 

 material properties 1007 

 natural frequencies 997 1124 

 orthotropic 1062 

 rectangular plates 1061 

 stresses  1009 

 tables  1005 

 transfer matrices 999 

 various shapes 1091 1117 

Point matrices 1409 

 thin-walled beams 757 

Point matrix, beams 608 

Poisson’s ratio 113 154 156 195 

Polar moment of inertia 21 

 concentrated masses 650 

Polymer, properties 230 

Polynomial, zeroes 1352 

Potentiometer 242 

Power   119 

Precipitation  172 

Pressure vessels 124 

Principal directions 415 

Principal moments of inertia 23 

Principal normal sections 415 

Principal planes 97 103 415 
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Principle of virtual work 1389 

Process selection chart, material selection 188 

Product of inertia 20 

Profile distortion 811 

Proof strength 389 

Proportional limit 156 

Pump: 

 centrifugal 897 

 natural frequencies 917 

 seal elements 914 

Pure metals  201 

Q 
Quadratic equations 1338 

Quadratic formula 1338 

Quality factor 463 

Quenching  171 

R 
Radial stresses, curved bars 831 

Radius of curvature 1336 

Radius of gyration 21 46 

 Euler’s formula 532 
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Recrystallization 170 

Rectangular plates 991 

 approximate formulas 1000 

 arbitrary loading 995 

 buckling  996 1088 

 concentrated loads 1107 

 corrugated 1066 

 critical in-plane loads 1088 

 deflections 1073 

 forces  1073 

 general  998 

 general response 1073 

 governing equations 991 

 gridworks 1066 

 isotropic  1061 

 large deflection 1000 

 layered  1062 

 mass matrix 1116 

 material properties 1064 

 natural frequencies 1092 1095 

 orthotropic 1061 

 plywood  1072 

 sign convention 993 

 stiffeners 1064 

 stiffness matrices 999 1098 1109 

 stresses  991 1061 
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 thermally loaded 1063 

 transfer matrices 999 1098 1109 

 various shapes 1117 

Reduced modulus theory 534 

Reduction of area 156 

Refraction: 

 double  245 

 index of  245 

Residual stress 110 

Resilience, modulus 156 

Resistance factor 371 

Resonance  463 

Resonant frequency 463 

Reuss–Voigt bounds 185 

Rings   820 

 buckling loads 856 

 in-plane response 840 

 natural frequencies 860 

Rivets   371 

 bearing capacity 384 398 

 bearing end failure 384 

 eccentrically loaded 387 

 minimum distance 400 

 shear failure 383 

 shearing capacities 398 

 tensile capacity 385 

Rockwell hardness scales 199 

Rockwell hardness test 163 

Roots   1321 
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Rotating disks 1135 1158 

Rotor   891 

 axial vibration 923 

 bearing and seal elements 909 

 bearing elements 914 

 bending stiffness matrix 913 

 bending vibration 894 922 

 centrifugal stiffness matrix 923 

 concentrated mass 937 

 conical shaft 953 

 coupled systems 900 

 critical speeds 897 928 

 critical speeds, bending 933 

 disk element 911 960 

 gyroscopic matrices 913 939 

 helically fluted shaft 956 

 isotropic bearing 952 

 Jeffcott  894 

 mass matrices 911 939 

 mode shapes, bending 933 

 natural frequencies 923 

 radial beam element 967 

 radial rotating bar 924 

 rigid disk 937 

 rotary mass matrix 913 923 

 single-mass 899 

 stiffness matrices 911 924 

 tables  927 
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 torsional vibration 920 

 transfer matrices 907 924 937 939 

 translational mass matrix 913 923 

 unbalanced forces 897 

 uncoupled systems 901 

 uniform shaft element 908 

 whirl  894 

 whirl radius 897 

Roundoff errors 1438 

S 
Saint-Venant torsion 794 

Sarrus scheme, determinant 1339 

Seal systems, transfer matrices 949 

Second moment of an area 19 

Section modulus 27 54 121 

 elastic  20 

 plastic  20 

 shape factor 20 

Section properties, modulus-weighted 41 

Sectorial area 36 

 direct integration 36 

Sectorial linear moments 37 

Sectorial moment 737 772 

 of inertia 37 

Sectorial products of inertia 765 

Sectorial properties 36 

Semimajor axis, Hertzian contact 418 

Semiminor axis, Hertzian contact 418 
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Series   1322 

 arithmetic 1322 

 binomial  1322 

 Fourier  1344 

 geometric 1322 

 Maclaurin 1343 

 Taylor  1343 

Shaft element: 

 gyroscopic matrices 939 

 helically fluted 956 

 mass matrices 939 

 stiffness matrices 939 

Shafts: 

 bending  127 

 torsion  128 

Shanley’s method 335 

Shape factor  20 28 

Shape functions 1396 

Shear beam  1376 

Shear building 468 

Shear center  38 77 735 766 

 open cross section 39 

 Trefftz’s definition 39 

Shear correction coefficients 736 

Shear correction factor 29 60 529 1372 

Shear deflection constant 30 529 

Shear diagonal 98 

Shear diaphragm 1204 

Shear, direct  116 
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Shear modulus 145 154 

Shear strain  111 

Shear stress  92 121 131 782 

 average  109 

 bending  792 

 finite-element solution 794 

 first moment of area 28 

 maximum 100 

 torsional  791 

Shell of revolution 125 

 bending  1191 

 thick  1131 

 various shapes 1246 

Shells   1131 1185 

 bending  1185 1191 

 buckling  1205 1292 

 conical  1214 1253 

 cycloid  1247 

 cylindrical 1132 1257 

 disks  1135 

 Donnell–Mushtari theory 1208 

 elliptical  1247 

 flexibility coefficients 1198 

 flexibility matrix 1198 

 force method 1193 

 frequencies 1208 

 hemispherical 1246 

 influence coefficients 1198 1263 
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 Love–Kirchhoff theory 1208 

 membrane hypothesis 1188 

 meridian  1186 

 multiple segment 1197 1261 

 natural frequencies 1146 1161 1208 

 parabola  1246 

 parallel  1186 

 radial-torsional frequencies 1212 

 shear diaphragm 1204 

 spheres  1133 

 spherical 1220 1249 

 stability  1205 

 stresses  1189 

 tables  1151 1219 

 thick  1131 

 thin   1185 

 toroidal  1240 

Shot peening  172 

Shrink-fit contact pressure 1138 

SI units   2 8 

 conversion 9 

 recognition figures 12 

Sign convention 2 

 bars   763 

 beams  1379 

 stresses  92 

Simpson’s rule 1355 

Sines, law of  1325 

Single-degree-of-freedom system 456 
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Slag    169 

Slenderness ratio 532 

S–N curves  330 

 aluminum 364 

 steel  363 

Sneddon’s model 434 

Soderberg diagram 332 

Soft tissue: 

 cartilage  182 

 ligaments 182 

 muscle  182 

 tendons  182 

Soft tissue mechanics 182 

Spectral matrix 1484 

Spheres: 

 general response 1155 

 mass matrix 1183 

 point matrices 1181 

 stiffness matrices 1170 

 stresses  1134 

 thick  1133 

 transfer matrices 1170 

Spherical shells: 

 bending  1249 

 membrane 1220 

 natural frequencies 1317 

Spheroidize annealing 172 

Spring constants, curved bars 884 
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Stability   1417 

 girders  721 

 parameters 741 

Stainless steels 170 176 208 

 austenitic 176 

 cast   176 

 ferritic  176 

 martensitic 176 

Static loading 453 

Steady-state motion 1434 

Steel   169 

 alloy  206 

 carbon  204 

 classifications 172 

 high-strength, low-alloy steel 170 

 SAE grades for bolts 403 

 S-N curves 363 

 specifications 203 

 stainless  208 

 tool   177 

Stiffeners  667 

Stiffness: 

 bars   498 

 beams  499 

 equivalent 498 

 frames  504 

 plates  503 

 rubber members 506 

Stiffness coefficient 115 
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Stiffness matrices 539 

 banded  1452 

 bars   629 

 beams  1391 

 bending, rotor 939 

 by summation 1451 

 Castigliano’s theorem 1393 

 characteristics 1451 

 circular plates 1042 

 consistent 1402 

 curved bars, in-plane 878 

 curved bars, out-of-plane 880 

 cylinders 1165 

 differential 1402 

 disks  1175 

 extension 656 

 frames  1453 

 geometric 1402 

 plane frames 725 

 plane trusses 723 

 properties 1399 

 radial beam 971 

 rectangular plates 1098 

 rotors  911 

 singular  1400 

 space trusses 724 

 spherical shells 1170 

 stability  1467 

 stress  1402 

 system  1451 
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 thin-walled beams 758 

 torsion  653 

 unassembled 1447 

 frequency-dependent 1477 

Stiffness method 1406 

Strain: 

 definition 110 

 engineering 114 155 

 natural  111 

 normal  110 

 plane  112 

 shear  111 

 true   111 

Strain energy  474 

Strain-energy density 326 

Strain gages  237 248 

 electrical resistance 237 

Strain hardening 156 

Strain rate  479 

Strain sensitivity 237 248 

Strength, effect of impact loads 479 

 engineering 114 155 

Stress and strain, tables 143 

Stress concentration 255 310 331 

 alleviation 265 

 fatigue  259 

 fillets  298 

 force flow 265 

 holes  283 
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 interface notch 265 

 nonzero mean load 338 

 notch sensitivity 260 

 notches and grooves 274 

 reducing  265 

 relief notches 265 

 stress flow 265 

Stress concentration factor: 

 effective  259 

 tables  273 

 theoretical 256 

Stress corrosion 308 

Stress formulas 146 

Stress intensity 137 

Stress intensity factor 310 350 

 mode I  350 

 mode II  350 

 mode III  350 

 range  341 367 

 transition 341 

Stress limitation curve 162 

Stress resultants 108 

Stress rupture 165 

Stress tensor  93 

Stresses: 

 allowable 109 

 allowable, in bolts and rivets 398 

 arbitrary orientation, two-dimensional case 95 

 circumferential 124 
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 combined 126 

 combined normal and shear 788 

 cross-sectional 763 

 curved bars 831 

 cylinder  124 

 deviator  107 

 engineering 114 155 

 extensional 625 

 Hertzian  415 

 hollow thin-walled cross sections 622 

 imperfect columns 587 

 initial  110 

 lockup  110 

 longitudinal 124 

 maximum principal, three dimensional 103 

 maximum shear, three dimensional 103 

 mean  107 

 membrane 124 

 meridional 125 

 non-Hertzian 432 

 oblique plane 102 

 octahedral 106 

 residual  110 

 shear  121 131 

 shells of revolution 125 

 sphere  124 

 tables  143 797 

 thin-walled open sections 624 

 three-dimensional systems 102 
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 torsion of circular cross sections 635 

 torsion of thick noncircular sections 634 

 torsion of thin-walled cross sections 635 

 torsion of thin-walled open sections 636 

 torsional  622 

 warping  736 

 welds  408 

 working  110 

Stress–strain curve: 

 nominal  158 

 true   158 

Stress–strain relations 113 

Structural member analysis 1369 

Structural members, stiffness 498 

Structural methods, comparison 1490 

Structural systems 1405 1406 1440 

Structure design, dynamic effects 481 

Structures: 

 damping  601 

 network  1406 

Subspace iteration method 1477 

Surface finish, effect on fatigue life 337 

T 
Tangent, law of 1325 

Tangent modulus theory 534 

Tangential vectors 1333 

Tanks   601 

Tapered beams 599 
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Taylor’s series 1343 

 two variables 1344 

Tempering  171 

Tendons   182 227 

Tensile strength 156 

Tensile test  154 

Tension: 

 normal stress 94 

 shear stress 94 

Tensor, stress 93 

Thermal expansion coefficients 195 

Thin-walled beams 733 

 buckling  741 

 buckling loads 741 

 critical loads 753 

 frequency equations 741 755 

 geometric stiffness matrix 744 760 

 mass matrices 744 759 

 natural frequencies 741 

 natural torsional frequencies 741 

 point matrices 742 757 

 sign convention 735 

 stiffness matrices 742 758 

 tables  747 

 torsion  733 738 

 torsion, arbitrary loading 748 

 torsional loads 753 

 vibration 755 
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 closed  32 

 open  31 

Tilting pad bearing, stiffness matrices 963 

Timoshenko beam 1376 

Tissue, human 228 

Tool steels  170 177 

Toroidal shells, membrane 1240 

Torsion   622 625 

 circular cross sections 117 

 critical loads 753 

 mass matrices 659 

 multi-cell body 635 

 natural frequencies 626 

 stiffness matrices 653 

 stress  634 

 tabulated formulas 626 

 thin-walled beams 733 

 thin-walled noncircular tubes 118 

 thin-walled shafts 117 

 transfer matrices 653 

 vibration 626 

Torsion of bars: 

 mode shapes 645 

 natural frequencies 645 

Torsional buckling 741 

Torsional constant 31 63 625 

 multicell  33 

 section  31 

 thin-walled 31 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Torsional stresses 634 

 various cross-sections 634 

Torsional vibration 755 

Toughness, modulus 156 

Towers   601 

Transfer matrices 536 

 beams  1381 

 circular plates 1033 

 curved bars, in-plane 872 

 curved bars, out-of-plane 873 

 cylinders 1165 

 disks  1175 

 extended 1407 

 extension 656 

 global  1408 

 in-span conditions 1408 

 overall  1408 

 plates  1033 

 radial beam 973 

 rectangular plates 1098 

 rotor bearing, isotropic 952 

 spherical shells 1170 

 torsion  653 

Transfer matrix method 1406 

 normal-mode theory 1423 

 notation  1488 

Transient responses 1483 

Transmissibility: 

 force  459 461 

 motion  463 
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Transversely isotropic material 193 

Trapezoidal rule 1354 

Trefftz’s definition 39 

Tresca’s theory 136 

Triangle: 

 area   1336 

 types  1328 

Trigonometric functions 1325 

 integrals  1363 

 inverse  1328 

Trigonometric identities 1326 

 inverse  1329 

Trigonometry 1324 

True strain  111 158 

Truncation errors 1438 

Trusses   661 

 plane  723 

 space  724 

 stiffness matrix 723 724 

U 
Underdamped 457 

Uniform beams 546 

Uniform gridwork 667 

Unit vectors  1333 

Unsymmetric bending 129 

 normal stress 129 

 shear stress 132 

Upper critical temperature 170 
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V 
Variational calculus 1447 

Vibration fundamentals 453 

Vibration: 

 effect on human body 471 

 forced  458 

 free   456 

 radial beam 921 

 rotor  920 

Vickers hardness test 163 198 

Viscoelastic elements 471 514 

Viscoelasticity 178 

von Mises: 

 yield  313 

 theory  137 

W 
Warping   733 

 finite-element analysis 794 

 moment  736 

 properties 85 765 

 sectional properties 736 

Warping constant 37 77 737 

 closed cross section 737 

 open cross section 737 

Warping function 794 

Warping properties: 

 direct integration method 766 

 piecewise integration method 767 
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Warping stress: 
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