


 

Computational Sensor Networks 
 

 
 

 
 
 
 

 

 

 



 
Thomas C. Henderson  
 

 
 
 
 
 
 

 

Computational Sensor Networks 
 

 
 

 
 
 
 

 



 
 
Thomas C. Henderson 
University of Utah 
School of Computing 
50 S. Central Campus Drive 
Salt Lake City, UT  84112 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 
ISBN: 978-0-387-09642-1     
 

Library of Congress Control Number:  2008937488 
 
© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper.

springer.com

DOI: ISBN 10.1007/978-0-387-09643-8
  e-ISBN 978-0-387-09643-8 :



Dedication

To all those who participated in developing the ideas and systems presented here (es-
pecially to Felix Sawo, Kyle Luthy, Uwe Hanebeck, and Eddie Grant), to my family,
and to the power of the senses!

v



Preface

This book is the result of many years of effort in trying to understand sensors and sensor
networks in a deep and meaningful way. It is also the work of many hands, colleagues
all, including undergraduate and graduate students, and faculty and researchers from
the University of Utah and other institutions. I thank them all for their contributions,
discussions, and demonstrations of the ideas and technologies. I would also like to
thank the reviewers which included: Edward Grant, Frans Groen, Yu H. Hu, Sitharama
S. Iyengar, Gordon Lee, and Art Sanderson.

Sensors, of course, tie computing systems to the world by allowing access to the
surroundings, and in this we aim to achieve what biological systems have. However, that
acuity and clarity of perception, robustness, self-healing capability, fluid sensorimotor
ability that we all experience daily is still far from realized in man-made artifacts. Thus,
no matter what progress we record here in this monograph, the future holds even more
exciting challenges and successes.

The ideas presented in this book are gathered around the insight that a sensor network
can be fruitfully viewed as a computational science tool. That is, the sensor network
is embedded in real world physical phenomena, and the better those can be modeled,
the better the collection and analysis of data will be. Moreover, strong model-based
methods allow data to be converted to information which is the foremost concern.
We believe that the methodology presented here is fundamental in nature and can be
usefully exploited in any sensor network.

Much remains to be done, and we have tried to point out research directions at the
end of each chapter. Thus, this book should provide some guideposts to the future of
sensor networks as well as an exposition of the current state-of-the-art in computational
sensor networks. We look forward to participating in discovering that future!

vii



Contents

Dedication v

Preface vii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The CSN Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 CSN: Overview of Approach 7

2.1 Scenario: Monitor Temperature . . . . . . . . . . . . . . . . . . . . . 7
2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Temperature Phenomenon Model . . . . . . . . . . . . . . . 8
2.2.2 Temperature Sensor Model . . . . . . . . . . . . . . . . . . . 8
2.2.3 CSN Design . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 System Component Models . . . . . . . . . . . . . . . . . . 11

2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Input Streams . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Known Result Comparison . . . . . . . . . . . . . . . . . . . 13
2.4.3 Data, Analysis and Interpretation . . . . . . . . . . . . . . . . 13

2.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Leadership Algorithms 21

3.1 Leadership Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 SNL Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 The Simulation Logic . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.4 SNL Protocol Statistics . . . . . . . . . . . . . . . . . . . . . 29
3.3.5 Irregular Broadcast Region Shape . . . . . . . . . . . . . . . 34

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



x CONTENTS

3.4.1 Berkeley Motes . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 JStamp Processors . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 40

4 Coördinate Frames and Gradient Calculation 43

4.1 Local and Global Coördinate Frames . . . . . . . . . . . . . . . . . . 43
4.1.1 Incorporating Points into a Coördinate Frame . . . . . . . . . 44
4.1.2 Constructing a Local Frame . . . . . . . . . . . . . . . . . . 46
4.1.3 Moving between Local Frames . . . . . . . . . . . . . . . . . 49

4.2 Gradient Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Gradient Calculation . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Simulation Experiments . . . . . . . . . . . . . . . . . . . . 55
4.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Pattern Formation in S-Nets 61

5.1 Regular Geometric Figures . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Reaction-Diffusion Patterns . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Level Set Methods in S-Nets . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Simple Level Set Example . . . . . . . . . . . . . . . . . . . 77
5.3.2 Shortest Path Problem . . . . . . . . . . . . . . . . . . . . . 77

5.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Logical Sensors and Computational Mapping 83

6.1 Logical Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.1 Formal Aspects of Logical Sensors . . . . . . . . . . . . . . . 88
6.1.2 Logical Sensor Specification Language . . . . . . . . . . . . 89
6.1.3 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.4 Ramifications a Replacement Scheme . . . . . . . . . . . . . 92
6.1.5 Features and Their Propagation . . . . . . . . . . . . . . . . 94

6.2 Instrumented Logical Sensor Systems . . . . . . . . . . . . . . . . . 96
6.2.1 Sensor Modeling . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.2 Performance Semantics of Sensor Systems . . . . . . . . . . 100

6.3 Sensor System Specification . . . . . . . . . . . . . . . . . . . . . . 102
6.3.1 Construction Operators . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Example: Wall Pose Estimation . . . . . . . . . . . . . . . . . . . . 108
6.4.1 System Modeling and Specification . . . . . . . . . . . . . . 108
6.4.2 Performance Semantic Equations . . . . . . . . . . . . . . . 109
6.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Mobile Robot Performance Analysis 117

7.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Mobile Robot Model . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.3 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



CONTENTS xi

7.5 Goal Achievement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.6 Multiple Robot Behaviors . . . . . . . . . . . . . . . . . . . . . . . . 129
7.7 One Robot Goes to a Temperature Source . . . . . . . . . . . . . . . 131
7.8 Multiple Robots Surround Temperature Source

Evenly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.9 Multiple Robots Go Back and Forth to the Temperature Source . . . . 150

8 CSN: The Heat Equation 161

8.1 Sensor Node Localization . . . . . . . . . . . . . . . . . . . . . . . . 162
8.1.1 Generate and Test . . . . . . . . . . . . . . . . . . . . . . . . 165
8.1.2 Dense Sample Method . . . . . . . . . . . . . . . . . . . . . 166
8.1.3 Nonlinear Optimization Method . . . . . . . . . . . . . . . . 168
8.1.4 Polynomial System Localization (PSL) . . . . . . . . . . . . 168

8.2 Sensor Bias Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9 Bayesian Estimation of Distributed Phenomena 175

9.1 Sensor Networks for Distributed Phenomena . . . . . . . . . . . . . . 176
9.1.1 Prospective Application Scenarios . . . . . . . . . . . . . . . 177
9.1.2 Parameter Identification (SRI method) . . . . . . . . . . . . . 178
9.1.3 Node Localization (SRL method) . . . . . . . . . . . . . . . 179

9.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.3 Probabilistic Finite-Dimensional Models . . . . . . . . . . . . . . . . 182

9.3.1 Probabilistic System Model . . . . . . . . . . . . . . . . . . 184
9.3.2 Probabilistic Measurement Model . . . . . . . . . . . . . . . 188

9.4 Reconstruction of Distributed Phenomena . . . . . . . . . . . . . . . 189
9.4.1 Reconstruction based on Precise Mathematical Models . . . . 190
9.4.2 Incorrect Model Parameters . . . . . . . . . . . . . . . . . . 193

9.5 Augmented Model for Node Localization . . . . . . . . . . . . . . . 197
9.6 Decomposition of the Estimation Problem . . . . . . . . . . . . . . . 198

9.6.1 General Prediction and Measurement Step . . . . . . . . . . . 199
9.6.2 The Sliced Gaussian Mixture Filter (SGMF) . . . . . . . . . . 200

9.7 Application: Node Localization . . . . . . . . . . . . . . . . . . . . 204
9.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 207

Bibliography 209

Index 223



Chapter 1

Introduction

Computational1 sensor networks (CSN) provide a conceptual framework which offers
insight into the design, analysis, development and execution of distributed sensing and
actuation systems. The method depends on a set of models describing the constituent
components:

sensors,

actuators,

computation,

communication, and

physical phenomena.

Given a specific information goal, these models are exploited to explore the design
space of solutions, including error and performance characterization. Sometimes spe-
cial constraint functions must also be considered, e.g., temporal or energy limits, or
optimal solutions are desired, and the CSN approach allows that as well. Cost benefit
analysis may also be sought, and thus, techniques are needed to find regions of the
design space which satisfy given criteria or boundary surfaces of interest.

CSN offers a unique vantage point as well with respect to the physical phenomena
in which the system is embedded. Given a valid forward solution for the phenomenon
of interest (e.g., the heat equation), it may be possible to formulate questions about
the structure of the sensor network as inverse problems. For example, the heat equa-
tion gives rise to a set of nonlinear equations whose solution solves the sensor node
localization problem (see Chapter 9).

The viewpoint of scientific computing may also be exploited to bring to bear:

simulation tools: a CSN may be modeled and analyzed by means of standard
simulation methods, but may also perform simulations as part of its real-time
analysis in order to verify and validate the operational system.

1This chapter is an expanded version of work presented in [66] with K. Sikorski, K. Luthy and E. Grant.

1 
© Springer Science+Business Media, LLC 2009 
T.C. Henderson, Computational Sensor Networks, DOI: 10.1007/978-0-387-09643-8_1, 



2 CHAPTER 1. INTRODUCTION

parallel and distributed system development paradigms: a CSN typically consists
of a set of communicating processors performing a distributed computation.

numerical methods: a CSN typically solves systems of equations as part of its
methodology.

software and systems engineering: a CSN requires careful engineering in order
to combine hardware and software to achieve the desired system goal.

Thus, it may be asked whether CSNs are something new as a research domain, or
an amalgam of more well-established research areas. Our view is the following thesis:

Computational Sensor Networks offer a new scientific research op-
portunity in that systems may be developed which exploit strong models of
the physical environment in which they operate in order to validate those
models, as well as to probe the structure of the CSN as well. In this sense
they are more self-aware than standard computational artifacts.

A methodology is proposed here, and demonstrated by means of examples of its
application. This involves statement of problem, definition of models, specification of
requirements, development and deployment of embedded verification and validation
methods[118], and analysis of performance.

The standpoint from which this work proceeds is that CSNs are measurement sys-
tems which are embedded in a continuous phenomenon for which they build or exploit
models, and which can perform experiments to validate those models. There should
be well-defined measurement goals, as well as error measures, and mechanisms (algo-
rithms) to reduce the error to within a desired tolerance. Furthermore, nodes are gener-
ally viewed as equivalent; that is, all have the same computational, sensing, energy, and
communication power, run the same algorithms, and are otherwise interchangeable; of
course, the roles played by individual nodes in a specific computation may differ.

Finally, CSN science and engineering is firmly built on top of the efforts of the wire-
less sensor network computer architecture, embedded systems, compilers, database, and
operating systems communities. However, the central CSN issues may generally be
viewed as part of the application layer to the systems researchers.

1.1 Background

Sensor networks have received increasing attention over the last few years. For example,
DARPA’s SensIT program envisioned fields of cheap, long-lived, networked sensor
devices. David Culler’s work on sensor networks explores the rich design space of low-
power processors, communication devices and sensors. NSF funded an STC Center
for Embedded Network Systems headed by Deborah Estrin that developed algorithms
for wireless and distributed sensing systems.

Some examples of issues addressed by these various projects include: power mini-
mization [152, 166], self-configuration [15, 101], data handling [11, 72, 105], systems
issues [43, 120, 167], and fault tolerance [167]. In general, higher-level exploitation of



1.1. BACKGROUND 3

sensor networks applies standard sequential or distributed algorithms to the data. Some
work in this area includes calibration [161] and habitat monitoring [107].

Sensor networks (S-Nets) are collections of (generally) non-mobile devices (S-
elements or SEL’s) which can compute, communicate and sense the environment; of-
tentimes, they must be able to create local groups of devices (S-clusters). Our own work
started in the late 1990’s [62], and has mainly addressed the creation of an information
layer on top of the sensor nodes. This includes distributed algorithms for leadership pro-
tocols, coördinate frame and gradient calculation, reaction-diffusion pattern formation,
and level set methods to compute shortest paths through the net [19, 20, 55].

At one extreme, mobile robots can be provided with a wealth of on-board sensing,
communication and computational resources [8, 146]; at the other extreme, robots with
fewer on-board resources can perform their tasks in the context of a large number of
stationary devices distributed throughout the task environment [62]. We have performed
simulation and physical experiments using C and Matlab, as well as Berkeley motes,
and the performance of robot tasks with and without the presence of an S-Net has been
evaluated in terms of various measures. See [20, 19] for a more detailed account.

This approach can be exploited widely and across several scales of application; e.g.,
from robots inside buildings to robots fighting forest fires. If mobile robots are used
to fight forest fires, there may be several hot spots to extinguish or control. If sensor
devices can be distributed in the environment, then their values and gradients can be
used to direct the behavior of fire fighting robots and to transport fire extinguishing
materials from a depot to the nearest fire source. During this movement to and from the
fire, collision avoidance algorithms can be employed. Sometimes coördinated activities
are necessary and communication models are also important.

In our previous work, we provided models for various components of the study:
(1) mobile robots with on-board sensors, (2) communication, (3) the S-Net (includes
computation, sensing and communication), and (4) the simulation environment. We
have developed algorithms in the simulation environment for the S-Net which perform
coöperative computation and provide global information about the environment. Local
and global frames are defined and created. A method for the production of global
patterns using reaction-diffusion equations has been described and its relation to multi-
robot cooperation demonstrated. In addition, we have shown how to compute shortest
paths in the S-Net using level set techniques [142].

The results of our simulation experiments help us better understand the benefits
and drawbacks of the S-Net. We have shown that for behaviors of one mobile robot
going to a temperature source, and multiple mobile robots surrounding a temperature
source, in the ideal situation (which means no noise), the S-Net approach may cost
more than the non-S-Net system. But when noise is added in, which is more realistic,
the S-Net system is more robust than the non-S-Net system. For the task of multiple
mobile robots going back and forth to a temperature source, there are thresholds above
which the S-Net system outperforms the non-S-Net system.

Some drawbacks of sensor networks include the need to conserve power and not
run all the nodes all the time (partial data), and sensors are noisy (sometimes return
the wrong value). In order to address sensor networks in a comprehensive manner,
the sensor network community has initiated a research program that includes work in
the areas of sensor network architectures, programming systems, reference implemen-



4 CHAPTER 1. INTRODUCTION

CSN1

Transit Network

CSNn

Physical
Phenomena
of Interest

Basestation

Computational
Grid

The

Figure 1.1: Computational Sensor Network Large-Scale Utilization Paradigm (adapted
from [66]).

tations, hardware and software platforms, testbeds and applications. We explore the
impact of a computational science approach on all these aspects of sensor networks,
and show that much benefit can be derived [56, 57].

1.2 The CSN Approach

Exploiting sensor networks involves understanding algorithmic and engineering issues
of real-world devices, and making both raw and processed data readily accessible to
humans. In the following chapters, a general paradigm (CSN) for sensor network design
and development is described, as well as a set of specific techniques for use in CSNs.

The Computational Sensor Network (CSN) application domain is displayed in Fig-
ure 1.1. Physical phenomena of interest are monitored by a set of CSNs, each with its
own models. CSNi produces its results (as specified by the requirements) which are
passed along to other CSNs as well as to the general computational grid. These results
may provide information for observers, decision makers, or may provide dynamic data
for large-scale, multi-physics simulations. Figure 1.2 shows most of the system com-
ponents and physical phenomena involved in a sensor network’s operation. As shown
in the figure, a CSN includes hardware (the SELs) and models may exist for power
usage, fault tolerance, computational costs, etc. RF is the key issue for communication
models, and making these accurate is difficult. Sensor models are essential and should
be updated as time passes (e.g., bias, drift, error, etc.). Software components exist and
important concerns include: correctness, numerical stability, convergence, accuracy,
computational complexity, and how error and uncertainty are handled and interact from
the various components. The physical phenomenon must be understood well enough



1.2. THE CSN APPROACH 5

SEL1

SEL2 SEL3

SEL4
SEL5

SEL6

SEL7

RF

Embedded Code

}
Distributed Algorithms

Hardware
Sensors

Physical Phenomena

Signals Complete

System

Model

Figure 1.2: Aspects of a Computational Sensor Network.

at least to the first order, and this may involve PDE or statistical models. Finally, it
is often necessary to provide some evaluation of the entire system, and this means de-
veloping models that can be used together in a correct way. This is a complicated and
broad problem domain, and our goal is to provide tools to allow relevant aspects to be
modeled and accounted for in developing the solution to a sensing problem.

In order to meet these analysis and system development aspects, we believe that
two major issues must be addressed by the CSN system development framework (see
Figure 1.3):

1. Computational Modeling: It is necessary to develop a framework within which
it is possible to define models of physical phenomena of interest, as well as
sensors and actuators, and to produce computational methods to determine state
or structure of either the monitored system or the sensor network itself.

2. Computation Mapping: Given a method developed in (1), it is necessary to
combine it with a model of the sensor network, and a set of verification and
validation requirements to produce a set of executable tasks which can be mapped
onto the sensor network architecture as well as a wider computational grid.

The layout of an individual CSN is shown in Figure 1.4.
CSNs provide a sensor network programming paradigm built from a combination

of (1) scientific computing practice (e.g., see [87]), and (2) the Instrumented Logical
Sensor methodology [31]. This combination permits the construction of qualitatively
different applications by incorporation of the specific models for the phenomena being
monitored, the sensors and actuators deployed, and the requirements imposed.

The rest of this book lays out the essentials of the CSN approach. Chapter 2 gives
a brief detailed example of the simulation framework and describes what is meant by
verification and validation. Chapter 3 gives an optimal sensor network leadership pro-
tocol. Coördinate frame development and gradient calculation algorithms are given in
Chapter 4. Chapter 5 describes pattern formation using reaction-diffusion and level set
applications in the CSN framework. Chapter 6 provides a complete sample simulation



6 CHAPTER 1. INTRODUCTION

Phenomena Models
Sensor Models
Actuator Models

State/Structure Recovery Methods

V & V Requirements

Map onto computational
architecture (sensor net,
wider grid of processors)

Methods to determine

We give: localization and sensor bias examples

We give: examples from our robotics methods

(1) Computational Modeling

(2) Computation Mapping

phenomenon or net
state or structure

Computational Models

Figure 1.3: Computational Sensor Network System Development Framework(adated
from [66]).

Logical Sensor
Instrumented

Actuator
Physical

Models
PhenomenaCSN

Kernel

Logical Sensor
Instrumented

Sensor
Physical

Communication

Figure 1.4: Basic Computational Sensor Network Layout (adated from [66]).

scenario involving mobile robots and sensor networks. Chapter 7 turns to computation
mapping - that is, it provides a methodology for mapping computational models onto
distributed sensor network systems while providing system support for verification and
validation. Finally, Chapters 8 and 9 explain how computational models can be ex-
ploited to probe the structure of the physical phenomenon and of the sensor system as
well, and in particular, the sensor node localization problem is solved.



Chapter 2

CSN: Overview of Approach

2.1 Scenario: Monitor Temperature

We start with a simple problem and cover it in detail to illustrate the ideas behind
the CNS approach. We first propose a computational model for temperature variation
during a 24-hour period. This model is then incorporated into a one-SEL S-Net in order
to report any period during which the sampled temperature values are invalid with
respect to (1) the temperature model, or (2) the sensor model. A detailed discussion
of the simulation is given in order to facilitate the understanding of more complicated
scenarios that appear in later chapters.

Problem 1: Monitor the temperature at regular intervals at a specified location with
a mote, and make sure the data satisfies the local temperature model; i.e., that the
measured temperature is in agreement with the temperature phenomenon and sensor
models.

Problem 2: Monitor the temperature at regular intervals at a specified location with a
mote, and make sure the data satisfies the sensor model; i.e., in this case that the noise
is standard Gaussian.

A detailed engineering analysis requires more constraints in order to provide a real
solution to this problem (including, for example, financial cost, etc.), and we have
therefore assumed that the system is comprised of a standard sensor node (e.g., the
Berkeley mote) which will be programmed to take temperature samples at regular
intervals and transmit (i.e., wireless broadcast) a report if those values invalidate the
temperature model. A solution will be developed which minimally solves the problem
statement.

Before developing a physical solution, it is prudent to perform a simulation analysis.
Simulation helps us determine whether the solution works as intended, helps get answers
to quantitative questions, and helps make comparisons between designs. In this case,
the main question to be answered by the CSN as it runs is:

© Springer Science+Business Media, LLC 2009 
T.C. Henderson, Computational Sensor Networks, DOI: 10.1007/978-0-387-09643-8_2, 7 



8 CHAPTER 2. CSN: OVERVIEW OF APPROACH

Is the temperature model validated by the sample temperature readings?

Is the sensor model validated by the sample temperature readings?

We next develop a simple computational model for temperature variation during a
24-hour period. This model is then exploited by an S-Net to test these issues.

2.2 Models

The design of a system requires models of the major components of the system. This
will also allow for a straightforward development of a simulation when desired.

2.2.1 Temperature Phenomenon Model

Table 2-1 gives a set of 24 times and temperatures recorded at the Salt Lake City, UT
airport taken between the hours of noon 17 June 2008 to 11am 18 June 2008. Using
Matlab’s polyfit function, we determine the best cubic polynomial, T , to approximate
the data to be (t = 1 : 24):

T (t) = 0.0207t3 − 0.7099t2 + 5.0065 ∗ t + 84.4348 (2.1)

Table 2-1. Time and Temperature (Salt Lake City, June 17-18, 2008).

Time 12 13 14 15 16 17 18 19 20 21 22 23

Temperature (F) 90 91 93 92 93 96 94 92 88 82 78 77

Time 24 01 02 03 04 05 06 07 08 09 10 11

Temperature (F) 79 73 68 68 65 63 66 66 71 74 78 79

Figure 2.1 shows this polynomial overlaid on the data. The function T characterizes
the exact temperature at every time instant.

2.2.2 Temperature Sensor Model

The temperature sensor is assumed to provide the temperature value plus some noise.
The noise value is sampled from a normal distribution with zero mean and variance one
(i.e., the standard normal distribution). This is expressed as:

ω ∼ N (0, 1)

where ω is the noise. The general normal distribution with mean μ and variance σ2 is
defined as:

N (μ, σ2) =
1

σ
√

2π
exp−

(x−μ)2

2σ2



2.2. MODELS 9

0 5 10 15 20 25
60

65

70

75

80

85

90

95

100

Sample Number

T
e

m
p

e
ra

tu
re

 (
F

)

Figure 2.1: Temperature as a Function of Time.

Given this sensor model and a time during the day, sample data will be generated
in the simulation by adding the temperature value produced by the model (the cubic
polynomial) and a sample value drawn from the standard normal distribution:

T ∗(t) = T (t) + ω (2.2)

These two models (temperature phenomenon and sensor) can be used in the S-Net to
monitor their validity based on the actual samples. Of course, this is a very simple model
and only used to demonstrate the CSN methodology; more sophisticated temperature
models (e.g., PDEs) would be needed in a realistic scenario.

2.2.3 CSN Design

In order to test the validity of the models, we will compare the sampled data to the
model. If we only had Eqn (2.1), then the absolute value of the difference between
the samples and the model values would provide information about the quality of the
model:

Err(t) =| T ∗(t)− T (t) | (2.3)

Over a period of time, samples can be accumulated and statistics of the data computed.
For example, the max{Err} might provide a good indicator of dissimilarity between
the samples and the model. However, given that we have a statistical sampling process
in the definition of temperature values (i.e., Eqn (2.2)), a statistical approach is therefore
warranted to test the sample data.



10 CHAPTER 2. CSN: OVERVIEW OF APPROACH

Solution to Problem 1: Validate the Temperature Model

Our approach to this is to collect a number of samples during each hour of the day (i.e.,
midnight to 1am, 1am to 2am, etc.). The Null Hypothesis is H0 : μ0 = μM , where μM
is the mean temperature value during the hour; the average of the temperatures at the
start and end of the hour is used to compute μM :

μM =
T (tstart + T (tend)

2

The alternative hypothesis is Ha : μ �= μM ; that is, H0 should be rejected if the sample
mean x is much different from μM .

The mote will obtain a sample of n temperature values. The sample mean, x
should have a normal distribution with expected value μX = μ and standard deviation
σX = σ/

√
n. To determine if the null hypothesis, H0, holds, we use the following

statistic:

z =
(x− μM )

σ/
√

n
(2.4)

The rejection region for the level 0.05 test is that z ≤ −1.96. or z ≥ 1.96. (See [33]
for a complete treatment of the statistics used here.)

Solution to Problem 2: Validate Sensor Model

In order to test the validity of the sensor model, we assume the temperature model is
correct. The same data collected for the solution to Problem 1 may be used here. First
the difference in each sample from the value predicted by the model is calculated:

err(t) = samp(t)−model(t)

Since the sensor error model is assumed N (0, 1), the Kolmogorov-Smirnov test for
continuous data may be used to determine how well err fits the N (0, 1) distribution
(see [129] for details on this method). The Kolmogorov-Smirnov statistic D is given
by:

D = max{ j

n
− F (y(j)), F (y(j))− j − 1

n
}, j = 1, . . . , n

where j is an index into the n sample values. F is the density function ofN (0, 1), and
y(j) is the jth smallest value of the samples. We calculate the p-value by performing
a simulation of PF {D > d} using the uniform distribution. If the p-value is low, then
the hypothesis that the samples are from the N (0, 1) is rejected. Note that this is one
important aspect of CSN; namely, that some aspect of the physical context or system
features may be monitored to verify the correctness of the system during execution, as
well as to probe the structure of the environment. Since the system has sensors, the
models it uses may be validated during execution as well, and this leads to an adaptive
system.



2.3. SIMULATION 11

2.2.4 System Component Models

There are no actuators in this example, and the sensor set consists of temperature
sensors. To make the simulation more realistic, we will incorporate information for the
Berkeley mote concerning how much time and power it takes to acquire temperature
data, to broadcast and to compute. There is some data available in the literature [138],
and we will exploit it here. It is known that the radio broadcast requires 0.075 seconds,
and 13.8 mA; moreover, the SenseToRfm task described in [138] is close to our problem,
so we can assume that 35% of the power is spent on CPU, 6% on the sensor, and 59%
on the broadcast. Thus, 1 execution (at the module level) of each requires 13.8 mA for
the radio, 8.2 mA for the CPU, and 1.4 mA for the sensor. Assuming about 4 × 103

instructions and 50ns per instruction, the time for the CPU is 2 × 10−4 per cycle.
Assume the time for the sensor is 0.01 sec per reading (we do not include warm-up
time). Table 2-2 gives the time and energy costs.

Time (sec) Energy (mA)

Radio 0.075 13.8

CPU 0.0001 8.2

Sensor 0.01 1.4

Table 2-2. Time and Energy Costs for Temperature Monitoring.

Here the model will be used to determine time and power consumed, and not to char-
acterize the statistics of the reported temperature value.

2.3 Simulation

The simulation is quite straightforward; the algorithm to monitor the sample data is
first developed, and then it is instrumented to gather the information of interest (e.g.,
time and energy costs, statistics of interest, etc.). The nature of the system, as well as
the basic statistical techniques have been described above. Relevant questions to be
answered by this simulation include:

What is the tradeoff between sample size and false positive/negative errors? en-
ergy minimization?

What threshold values are most robust?

The simulation allows us to gain insight into these issues.

2.3.1 Method

The basic approach is described above and corresponds to Algorithm Monitor:

Algorithm Monitor:

Input: sample frequency



12 CHAPTER 2. CSN: OVERVIEW OF APPROACH

Output: broadcasts sensor or model invalid message

while SEL has energy

Get samples during 1-hour interval

if temperature model invalid

then Broadcast(temperature model invalid)

if sensor model invalid

then Broadcast(sensor model invalid)

end

To answer the questions raised requires running a set of trials with a range of values
for the number of samples and the various thresholds. These must be tried with both
valid sample data as well as invalid data, and the percentage of errors determined.

2.4 Verification

A model of a simple temperature validation process has been developed, and then
translated into an operational Matlab code. It is quite possible that during this process
errors were made. There are several types of errors including syntactic and semantic
errors. A syntactic error is some form of transliteration mistake, e.g., a variable name
is misspelled, the Matlab syntax is not followed correctly, etc. Most of those may be
found with conventional debugging techniques, and we do not consider that further.

Semantic mistakes on the other hand are more difficult to ferret out. For example, if
a rare event is added to the wrong queue, this may lead to errors which only occasionally
appear (due to the random nature of the processes, there may be some nondeterminism
in the system, unless the same random numbers are used repeatedly for debugging
purposes).

For a general introduction to verification and validation in discrete event simulation,
see [98], and for a strong view from the computational science community, see [118].
Here we will simply outline the verification process used for this simulation.

There are several important aspects to verification. First, we must ensure as well
as possible that the input streams of samples of random variables are correct (i.e., are
a sample from the desired random variable). It is also useful to include checks to see
if known important conditions are ever violated. Another thing to check is that corner
cases are handled correctly. Finally, it is good to run the code on samples where the
solution is known to check that the correct solution is found.

2.4.1 Input Streams

The only input stream for this simulation is drawn from the standard Gaussian distribu-
tion for the temperature noise. Figure 2.2 gives a histogram of the noise samples from
a run of the code. No χ2 statistic is computed, but the histogram looks Gaussian. If this
did not look right, then a more in-depth analysis would be called for, and appropriate



2.4. VERIFICATION 13

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Figure 2.2: Histogram of Temperature Sample Noise.

changes in the simulation would need to be made; for example, it might be necessary
to use more samples.

2.4.2 Known Result Comparison

An easy way to have a known result is to eliminate the random nature of the simulation.
For example, if no noise is added to the temperature sample, then there should be no
broadcast messages. If, on the other hand, the temperature is set to always return a 0
value, then every sample set should cause a broadcast.

Another type of check consists of invariants; e.g., the sample times should all fall
within a single wall-clock hour; this can be checked as the code runs. The number of
broadcasts reporting an invalid model should never exceed the number of sample sets;
this is also true for broadcasts reporting an invalid sensor model.

2.4.3 Data, Analysis and Interpretation

Data

The simulation is run in order to gain insight concerning the number of samples required,
the energy costs due to that, the threshold values of validity checking and the relationship
of these to the robustness of the process. The parameters to be studied are:

number of samples

threshold for the temperature model validity z-statistic

threshold for the sensor model validity p-value statistic

The statistics to be ascertained include:



14 CHAPTER 2. CSN: OVERVIEW OF APPROACH

average energy spent per unit time

average number of false positives

average number of false negatives

The variances of these are also computed.

Input Parameters

The number of samples needs to be high enough in order to produce good statistical
values. However, each sample costs energy to acquire, and thus, the number should be
kept as low as possible. The set of values to be tested is: {10, 30, 50, 70, 90}.

In testing a population mean as we are doing here, we use the statistic z given in
Eqn (2.4) which corresponds to the distance between the sample and model means
given in standard deviation units. A threshold must be set on z such that if z ≥ c,
then the hypothesis, H0, is rejected. This cutoff value is chosen so as to set the Type I
error probability at the desired level, called α. That is, α is the probability of rejecting
H0 when it is true. Thus, the smaller α (which implies a higher threshold), the less
likely a Type I error occurs. Here the set of α’s is {0.05, 0.20} corresponding to cutoff
thresholds of {1.96, 1.28}, respectively.

Finally, in order to test the goodness of fit of the sample data to aN (0, 1) distribution
using the Kolmogorov-Smirnov test statistic D, it is necessary to determine how likely
the D value is, given that the samples come from N (0, 1) (given that H0 is true). To
that end, the p-value is defined as the probability of getting values of D larger than the
specific d found for the sample set. This probability is estimated using simulation (and
can be done off-line). In order to test the sensitivity of the p-value, the range for testing
is {0.01, 0.05}. Thus, there are 5× 2× 2 = 20 test cases to run. The output statistics
for these are given in Table 2-1.

This data is also shown in Figures 2.3 and 2.4.
The simulation was also run with a different sensor model for the acquisition of

temperatures (noise samples were taken from N (2, 3)). Table 2-2 gives the results for
this.

This data is plotted in Figures 2.5 and 2.6.

Analysis and Interpretation

As can be seen very clearly, the 10-sample version with c = 1.96, p = 0.01significantly
outperforms the 90-sample version since it runs around 1,030 cycles versus 115, and it
makes a lower percentage of temperature model errors (1.45% vs. 1.48%) and sensor
model errors are comparable (1.27% vs. 1.25%). The order of magnitude greater
running time is the most significant feature.

The question arises as to why fewer samples should outperform more samples. One
possibility is that since μM is the average between the two hourly values, then when
there are fewer samples, they are closer to that value (samples are evenly spaced about
the midpoint). This conjecture has not been verified.

When considering which parameters fare better for the case of a bad sensor model
(i.e., the actual mean of the noise is 2, and the variance is 3), the 10-sample version



2.4. VERIFICATION 15

Table 2-1. Data from Simulation of Algorithm Monitor (n: number of sample; c:
cutoff; p: p-value).

n c p invalid invalid invalid invalid cycles
model model sensor sensor
mean variance mean variance

10 1.28 0.05 88.50 83.17 52.40 46.27 1020.90

10 1.96 0.01 89.50 98.28 10.00 7.11 1026.90

10 1.28 0.05 14.30 14.46 52.60 59.38 1031.60

10 1.96 0.01 15.00 22.89 13.20 20.62 1037.10

30 1.28 0.05 32.70 30.68 18.30 17.34 344.30

30 1.96 0.01 29.90 12.99 3.00 2.00 345.10

30 1.28 0.05 3.40 4.04 17.00 16.67 345.80

30 1.96 0.01 3.50 3.39 3.60 1.38 346.10

50 1.28 0.05 23.70 19.57 9.80 13.96 207.00

50 1.96 0.01 23.60 8.04 1.90 4.54 207.00

50 1.28 0.05 2.30 1.34 9.20 7.96 207.50

50 1.96 0.01 2.00 3.33 2.0 1.56 208.00

70 1.28 0.05 20.20 21.96 7.30 5.34 148.00

70 1.96 0.01 23.20 5.07 7.30 5.34 148.00

70 1.28 0.05 3.60 3.16 9.10 6.32 148.00

70 1.96 0.01 2.70 2.68 1.10 1.21 148.00

90 1.28 0.05 20.40 43.82 6.40 10.93 115.00

90 1.96 0.01 21.40 7.60 0.50 0.50 115.00

90 1.28 0.05 3.40 3.60 5.80 3.29 115.00

90 1.96 0.01 1.70 3.24 1.40 2.27 115.00



16 CHAPTER 2. CSN: OVERVIEW OF APPROACH

1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

10 Samples

30 Samples

50 Samples

70 Samples

90 Samples

Test Cases

P
e

rc
e

n
ta

g
e

 I
n

va
lid

 T
e

m
p

e
ra

tu
re

 M
o

d
e

ls
 D

e
te

ct
e

d

Figure 2.3: Percentage of Correctly Detected Invalid Temperature Models.

1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Test Cases

P
e

rc
e

n
ta

g
e

 I
n

va
lid

 S
e

n
so

r 
M

o
d

e
ls

 D
e

te
c
te

d

Figure 2.4: Percentage of Correctly Detected Invalid Sensor Models.



2.4. VERIFICATION 17

Table 2-2. Data from Simulation of Algorithm Monitor with Bad Sensor.

n c p invalid invalid invalid invalid cycles
model model sensor sensor
mean variance mean variance

10 1.28 0.05 803.80 3.96 780.30 28.46 813.30

10 1.96 0.01 813.70 13.57 694.40 37.82 824.40

10 1.28 0.05 755.10 28.99 786.70 13.34 819.50

10 1.96 0.01 761.80 40.62 694.90 101.88 831.60

30 1.28 0.05 33.70 0.68 329.00 0.00 329.00

30 1.96 0.01 32.20 0.62 328.60 0.49 329.00

30 1.28 0.05 29.70 0.68 329.50 0.28 329.50

30 1.96 0.01 28.80 0.40 329.90 0.10 329.90

50 1.28 0.05 36.20 0.62 201.00 0.00 201.00

50 1.96 0.01 35.30 1.34 201.00 0.00 201.00

50 1.28 0.05 32.00 0.44 201.00 0.00 201.00

50 1.96 0.01 31.30 0.46 201.00 0.00 201.00

70 1.28 0.05 37.60 0.27 145.00 0.00 145.00

70 1.96 0.01 37.80 0.40 145.00 0.00 145.00

70 1.28 0.05 32.90 0.54 145.00 0.00 145.00

70 1.96 0.01 33.20 0.62 145.00 0.00 145.00

90 1.28 0.05 38.90 0.54 113.00 0.00 113.00

90 1.96 0.01 38.60 0.71 113.00 0.00 113.00

90 1.28 0.05 34.60 0.49 113.00 0.00 113.00

90 1.96 0.01 34.00 0.22 113.00 0.00 113.00



18 CHAPTER 2. CSN: OVERVIEW OF APPROACH

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test Cases

P
e

rc
e
n

ta
g

e
 I
n

va
lid

 T
e
m

p
e
ra

tu
re

 M
o
d

e
ls

 D
e
te

ct
e

d

Figure 2.5: Percentage of Invalid Temperature Models with Bad Sensor Model.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 Samples

30−90 Samples

Test Cases

P
e

rc
e

n
ta

g
e

 I
n

va
lid

 S
e

n
so

r 
M

o
d

e
ls

 D
e

te
ct

e
d

Figure 2.6: Percentage of Invalid Sensor Models with Bad Sensor Model.



2.5. VALIDATION 19

with c = 1.96, and p = 0.01 still looks to perform the best in the sense that it detects
an invalid temperature model 92% of the time, and invalid sensor model 84% of the
time. Depending on the application, it may be warranted to use more samples, as in
all the other cases, the invalid sensor model is detected 100% of the time, however,
an invalid temperature model is reported only about 8.73% of the time. This may be
considered better since the two different statistical tests can differentiate between a bad
temperature model and a bad sensor model.

2.5 Validation

In order to validate the simulation, it would be necessary to collect some data from
physical experiments and see that the models match, and that the predicted values
match. In this instance, we have based the input models on experimental data from the
literature and the airport temperature recording site, and checked that the simulation
values reflect the actual data. As for the validation computation, it is a bit too simplistic
to be accurate, but we could indeed run some physical experiments to see if the validation
results for the system are accurate. If they are not correct, it would be necessary to
determine why that is the case, and then modify the model to account for those things.

2.6 Summary

In this chapter, a simple simulation was developed, and the basic structure of the sim-
ulation was described. Case handling was explained, as well as how to make use of
input distributions. Simulation verification and validation specifics were given, and an
example of how knowledge of the physical phenomenon can be used to determine when
the system is operating outside the proscribed range of operation.



Chapter 3

Leadership Algorithms

It is sometimes important to have a local leader1 for a set of sensor nodes. Such a
leader may be used as the origin of a coordinate system, as the node responsible for
communication, etc. Thus it is important to have a reliable and correct method to assign
nodes as leaders. In order to proceed, it is necessary to give as careful a definition of
the problem – and its solution! – as possible.

The Leadership Problem: Each SEL has a unique integer ID (UID) and a fixed geo-
graphic location; SELs have a restricted broadcast range which defines a connectivity
graph. The SELs are to be grouped into subgraphs, called S-clusters, such that each
S-cluster has a leader, and the leader of each S-cluster has the lowest ID of all members
of the S-cluster.

In this chapter, we describe an algorithm to solve the S-cluster leadership problem
[55]. For a good introduction to distributed algorithms, including solutions to variations
of the leadership problem and correctness proofs, see [104]. For a leadership election
protocol in the context of target tracking, see [168].

The algorithm presented here is optimal with respect to the number of broadcasts,
and has some very nice properties as determined on nodes whose locations are random
samples from a uniform distribution in a square area. Given a set of SELs which have
determined their neighbors:

Each SEL broadcasts exactly one message during execution of the leadership
protocol.

The number of leaders is bounded by the maximum number of circles (whose
radius is the broadcast range) which can be packed into a square area.

1This chapter is an expanded version of work presented in [55, 58], as well as work with Jong-Chul Park,
Nate Smith and Richard Wright [64].

© Springer Science+Business Media, LLC 2009 
21 T.C. Henderson, Computational Sensor Networks, DOI: 10.1007/978-0-387-09643-8_3, 



22 CHAPTER 3. LEADERSHIP ALGORITHMS

3.1 Leadership Protocol

We gave an algorithm to solve the S-cluster leadership problem [55]. For a good
introduction to distributed algorithms, including solutions to variations of the leadership
problem and correctness proofs, see [104]. For a leadership election protocol in the
context of target tracking, see [168]. Others have introduced leadership protocols (also
called cluster formation algorithms); e.g., Chan and Perrig [17] described the ACE
algorithm which is an emergent algorithm to form highly uniform clusters, and Shin et
al. gave a variation of that [144]. However, both of these algorithms are much more
restrictive than SNL in that they require that clusters be disjoint, and thus their methods
require an iterative broadcast procedure which consumes much more energy than SNL
which requires only one broadcast per node to determine the leaders. The leadership
problem may be defined as follows:

An S-Net system will be represented as an undirected graph where each node is a
SEL. Note that the assumption is that the graph is undirected; however, this is something
that must be established by a lower level algorithm (e.g, as part of the communication
protocols). It is not the case, in general, that pairs of SELs can receive broadcasts from
one another. Each node is a distinct process and each is placed in the environment as a
distinct hardware device.

Formal definitions can be given for the nodes, and this involves defining states,
including start states, message generating functions, and state transitions. However,
only an informal description is given here. Such a description will include broadcast()
and receive() primitive functions with their associated messages. A broadcast sends
a message to all SELs within range. Proof methods typically involve either invariant
assertions and a demonstration that they hold; simulations are used to explore the
average case behavior.

A simple example of a leadership algorithm is the LCR algorithm which provides a
basic solution to the leadership problem in a synchronous ring network [104]; it involves
each process sending its UID in one direction around the ring to its neighbor; when a
process receives a UID, it will throw it away if it is less than its own, resend it to its
neighbor if it is larger than its own, and declare itself the leader if it is equal to its own.
Our solution is related to this idea, although not the same.

The S-Net leadership basic algorithm (SNL) is executed by each node, and is as
follows:

Algorithm SNL:

Step 1. Broadcast own ID for a fixed time, T1.

Step 2. Receive from other nodes, create neighbors list for a fixed time, T1

Step 3. Create remaining nodes list (initially, neighbors)

while not done

if node’s own ID is lower than min ID in remaining nodes list,

then node is leader

broadcast cluster (self and neighbors)



3.2. CORRECTNESS 23

done

else receive broadcast cluster list

if in list

node is not a leader

re-broadcast list

done

else remove list from remaining

Note that we assume that enough time is given to Steps 1 and 2 so that each node can
complete the step correctly. This will most likely be implemented as a fixed time delay
in an embedded system. Also, we assume that there are communications protocols that
are reliable enough to transmit the messages without loss of information, and to ensure
that communication between nodes is bi-directional.

3.2 Correctness

We outline an informal argument for the correctness of algorithm SNL. Let U =
{1, 2, . . . , uidmax}. The message alphabetM is the power set of U , i.e., P(U).

The state of each node includes:

my UIDi: node i’s unique UID (e.g., my UIDi = i)

broadcast: a message inM or null, initially null

leader: a Boolean, indicating whether the node is a leader, initially false

resolved: a Boolean, indicating whether the node has resolved as either a leader
or not, initially false

Data structures used include:

neighbors: list of SEL neighbors, initially null

remaining: list of SEL neighbors still unresolved, initially null

The start state for each node i is that initial set of values indicated above. For each
node, the following messages are possible:

self: consists of my UIDi

cluster: list of UID’s that form a cluster; i.e., a leader and its neighbors



24 CHAPTER 3. LEADERSHIP ALGORITHMS

The transition function for SNL is defined as:

% Step 1 of SNL
while (timer1 > 0)
broadcast self;

endwhile

% Step 2 of SNL (runs concurrently with Step 1)
while (timer1 > 0)
add_to_neighbors(receive())

endwhile

remaining = neighbors;
% Step 3 of SNL
while (not resolved)
% Step 3.1
if (my_UID(i) < min(remaining))
leader = true;
resolved = true;
broadcast(my_UID(i), neighbors);
exit;

endif

list = receive();
% Step 3.2
if (my_UID(i) in list)
leader = false;
resolved = true;
broadcast(list);
exit;

endif
remaining = remaining - list;

endwhile

Note that the broadcast in (3.2) has to take place so that a node i not in the cluster, but
neighboring a node j in the cluster, can know that node j is resolved; this is necessary
since the leader will not reach the non-cluster nodes that neighbor cluster nodes (i.e.,
the broadcast from the leader node will not reach node i).

The algorithm is supposed to achieve:

(i) leader = true

for any node that has the lowest UID of it and its unresolved neighbors.

(ii) leader = false

for any node that neighbors a leader.

(iii) resolved = true

for every node.



3.3. SNL SIMULATION 25

Case (i)

Suppose that node i has the lowest UID of it and any of its neighbors. Then when
it finishes Step (2),

remaining = (neii1 UID, . . . , neiik UID)

Thus, in Step (3),
∀j my UIDi < neiij UID

Node i then asserts itself as a leader.

Case (ii)

Suppose node ihas a neighbor which eventually asserts itself a leader, sayneiim UID.
Then,

remaining = (neii1 UID, . . . , neiim UID, . . .)

and (3.1) is always false as long as node i does not assert itself as a leader. This is
true because neiim UID will not be removed from remaining unless a SEL is declared
with node im as a member. Eventually, node im will assert itself as a leader, and will
broadcast a list with node i as a member. Thus, (3.2) will be true, and node i will
declare itself not a leader.

Case (iii)

Every node is a leader or neighbors a leader. Thus, eventually one of cases (i) or
(ii) will occur, and in each case, node i is resolved.

The algorithm is optimal with respect to the number of broadcasts, and has some
very nice properties as determined on nodes whose locations are random samples from
a uniform distribution in a square area. Given a set of SELs which have determined
their neighbors:

Each SEL broadcasts exactly one message during execution of the leadership
protocol.

The number of leaders is bounded by the maximum number of circles (whose
radius is the broadcast range) which can be packed into a square area.

Note that Perrig’s ACE algorithm requires 7 broadcasts per node per iteration of
the algorithm (there may be several), while the Node Degree algorithm requires on
average 1.1 broadcasts per node for each of several iterations. SNL requires only a
single broadcast per node for the entire execution (after neighbors are established).

3.3 SNL Simulation

Figure 3.1 shows the result of running a simulated version of the SNL protocol on 81
SELs which are arranged in a 9x9 grid layout. The broadcast range for each SEL is
circular with radius 1.1 units; this means each SEL can reach its 4-neighbors (distance
1), but not its diagonal neighbors (distance

√
2). This can be verified in the figure as

each leader is a circle and SEL n, where n is odd, is a leader.



26 CHAPTER 3. LEADERSHIP ALGORITHMS

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26 27

28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81

 X Axis

 Y
 A

xi
s

Leaders (red circles) for 9x9 Grid

Figure 3.1: SNL Protocol Result on a 9x9 Grid with Broadcast Range 1.1 Units (adapted
from [58]).

To better understand the way SNL works, consider the 4-node layout in Figure 3.2.
The node locations, IDs and neighbors are given in Table 3.1. The broadcast range is
1.5 units.

Table 3.1 A Simple SEL Set.

Node ID x y Neighbors

1 5 4 2,3

2 4 5 1,3,4

3 6 5 1,2,4

4 5 6 2,3

The nodes proceed asynchronously and at the first iteration of Step 3, the following
occurs:

Node 1: has a lower ID than its neighbors, and will assert itself as a leader.

Node 2: has Node 1 as a neighbor and therefore performs a receive.

Node 3: has Node 1 as a neighbor and therefore performs a receive.

Node 4: has Nodes 2 and 3 as neighbors and therefore performs a receive.



3.3. SNL SIMULATION 27

3 3.5 4 4.5 5 5.5 6 6.5 7
3

3.5

4

4.5

5

5.5

6

6.5

7

 X Axis

 Y
 A

xi
s

Simple Node Layout

Figure 3.2: Simple SEL Layout to Demonstrate SNL Protocol (adapted from [58]).

Eventually Node 1 will broadcast its cluster: [1, 2, 3]. The other nodes will loop
waiting to receive a broadcast. Nodes 2 and 3 will receive Node 1’s broadcast, but
Node 4 is out of Node 1’s broadcast range and will not receive it.

After Node 1 broadcasts its cluster, it exits and goes to other tasks. Suppose Node 3
receives the broadcast first (this is nondeterministic); then Node 3 finds its ID in the list
and asserts itself as a follower, re-broadcasts the list, and exits. Node 2 will eventually
receive the list and assert itself as a follower, re-broadcast the list and exit. Eventually,
Node 4 will receive the broadcast from Node 2 or Node 3. Node 4 does not find itself
in the cluster [1, 2, 3], and it re-assigns its remaining list as [2, 3]− [1, 2, 3] which is the
empty list. At this point, Node 4’s ID is lower than anything on the list, and so Node 4
asserts itself as a leader and exits. Figure 3.3 shows the resulting leadership structure
(Nodes 1 and 4 are leaders and Nodes 2 and 3 are followers).

3.3.1 The Simulation Logic

The SNL protocol simulation builds on the monitor simulation in the previous chapter.
It is organized as follows:

Simulation Protocol:

SELs are initialized as described.

Broadcast ID events are scheduled for nodes.

Receive events are scheduled for nodes.



28 CHAPTER 3. LEADERSHIP ALGORITHMS

3.5 4 4.5 5 5.5 6 6.5
3.5

4

4.5

5

5.5

6

6.5

1

2 3

4

 X Axis

 Y
 A

xi
s

Leaders (red circles) for Simple Layout

Figure 3.3: Result of SNL Protocol on Simple SEL Layout (adapted from [58]).

while event-queue �= ∅ and ∃ unresolved nodes

Select next event.

Handle next event.

end.

The events are:

Broadcast ID: Broadcast ID and schedule next broadcast ID if still in Phase I (Steps
1 and 2).

Broadcast receive: Receive a broadcast and schedule next receive event if still in
Phase I.

Broadcast neighbors: Broadcast neighbors list.

Broadcast cluster: Broadcast cluster list.

Receive ID: Receive ID and schedule next receive ID event if still in Phase I.



3.3. SNL SIMULATION 29

Receive cluster: Handle part of Step 3 when node is not a leader; i.e., receives cluster
list and either resolves as follower if in list or otherwise subtracts received list
from remaining and schedules new receive cluster event.

Phase I timer end: Initializes SEL’s neighbors and remaining lists and schedules a
first execution of Step 3.1 (i.e., if leader, broadcast cluster; otherwise, schedule
a receive list event).

Determine Role: Execute Step 3.1 of SNL algorithm. If SEL is not a leader, schedule
a receive cluster event.

3.3.2 Verification

The algorithm assumes that all neighbor relations are bi-directional. A check is put into
the code for this prior to starting Step 3.

Other verification checks include (1) no leader neighbors another leader, (2) every
follower neighbors at least one leader, and (3) every SEL is resolved (i.e., is either a
leader or follower).

Alternatively, this can be formulated as (1) every SEL is either a leader or a follower
and in a cluster, (2) every follower neighbors at least one leader, and (3) every neighbor
of a leader is in its cluster. This is the check performed in the code and it has been run
on thousands of randomly generated networks, and correctness tested.

3.3.3 Validation

There are many sensor networks whose structure can be exploited to test validity. For
example, all odd-sided unit grids numbered by row whose SELs have broadcast range
1.1, should have all odd nodes as leaders. Regular polygon nets with SELs on the
unit circle and broadcast range 1.1

√
2(1− cos(θ)), where θ is the angle between two

adjacent points, should only have the two nearest polygon points as neighbors. Tests
have been run for up to 200 without error to test validity on such polygon nets (a ring
network).

3.3.4 SNL Protocol Statistics

The SNL protocol results in a structure of leaders and followers, and some of the
properties of this structure are of interest. Given a set of n node locations sampled
from a uniform 2-D distribution, and with randomly assigned SEL ID’s, we study the
following statistics:

average number of leaders, and

their spatial distribution.



30 CHAPTER 3. LEADERSHIP ALGORITHMS

X

Y

Figure 3.4: Results of SNL Protocol on 100-SEL Configuration.

To obtain these statistics, a suitable framework must be established. We consider
SELs distributed randomly in the unit square, and each having the same broadcast
range, r, 0 < r <= 1. Thus, the leadership protocol structure is a function of the
spatial distribution and density, and the broadcast range. Figure 3.4 shows the result
of running the SNL protocol on a 100-SEL configuration. Figures 3.5 and 3.6 show
for various values of r (1, 0.707, 0.5, 0.25, 0.1, 0.05 and 0.01) the average number of
clusters per number of SELs (10 to 100).

The simulation protocol for a given number, n, of SELs and broadcast radius r, is
as follows: (1) a trial consists of the generation of 200 random layouts for the SELs
and the execution of the SNL protocol for each layout; the mean number of leaders is
then computed for these 200 results; (2) 20 trials are run and the mean and variance
computed for the 20 trials. As a verification check that the data is correct, the average
node degree is calculated and shown to grow linearly with the number of SELs. No error
bars are shown for the average number of leaders since the 95% confidence interval is
about 0.001; thus, confidence is high for a narrow spread about the mean.

As can be seen in Figures 3.5 and 3.6, the number of leaders (and therefore clusters)
approaches a limiting value for the larger radii, but continues to grow through 100 SELs
for the smaller radii. Some interesting questions are: (1) What is the maximum number
of leaders possible? and (2) Does the average approach the maximum as the number
of SELs goes to infinity?

The first question can be posed as a circle packing problem (see [149, 153] for a
good introduction to circle packing). The best solutions for packing up to 200 circles
into the unit square are given in Table 13.1 in [153]; we give a selected subset in Table
3.2 here.



3.3. SNL SIMULATION 31

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

r = 0.25

r = 0.5

r = 0.707

r = 1

 Number of SELs

 A
ve

ra
g

e
 N

u
m

b
e

r 
o

f 
C

lu
st

e
rs

Number of Clusters vs. Number of SELs (large radius)

Figure 3.5: Average Number of Clusters vs. Number of SELs in Network (adapted
from [58]).

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

r = 0.1

r = 0.05

r = 0.01

 Number of SELs

 A
ve

ra
g

e
 N

u
m

b
e

r 
o

f 
C

lu
st

e
rs

Number of Clusters vs. Number of SELs (small radius)

Figure 3.6: Average Number of Clusters vs. Number of SELs in Network (adapted
from [58]).



32 CHAPTER 3. LEADERSHIP ALGORITHMS

Table 3.2. Radius for Packing N Circles in the Unit Square.

N Radius

2 0.292893218813

3 0.254333095030

4 0.250000000000

5 0.207106781187

10 0.148204322565

64 0.063458986813

100 0.051401071774

196 0.036583075322

Consider the SNL problem with circular broadcast range inside the circle of
radius r:

1. The SEL location serves as the center of the broadcast circle, and thus all centers
of the circles must be in the unit square. However, part of the circle may extend
beyond the square.

2. No two leaders may directly communicate, and the minimum distance between
leaders is r.

Consider the case of 4 SELs, one at each corner of the square and r = 1 (see Figure 3.7.
For this case, 4 is the maximum number of SELs possible. Note that Figure 3.5 shows
that the average number of clusters for r = 1 is about 1.5. The maximal case can only
be achieved if SELs are placed on or near the optimal coordinates and if the SEL IDs
are appropriate.

To convert the SNL problem to a circle packing problem, the following steps are
required:

1. In a circle packing problem, the circles are not allowed to overlap; therefore,
circles of radius r/2 must be used.

2. For the radius r/2, the square of side 1 + r contains all broadcast ranges of
possible SELs with centers in the unit square.

These two requirements lead to a scaling from the SNL radius, rSNL, to a standard
circle packing radius, rpack:

rpack = r/(2(1 + r))

This yields the following process to determine the maximal (or upper bound on the)
number of leaders (clusters) possible for a given radius, r:

1. Determine upper bound for number of leaders:

1.a Compute rpack = r/(2(1 + r)).



3.3. SNL SIMULATION 33

Figure 3.7: Maximal Packing of Leader SELs in Unit Square.

1.b Find where rpack falls in the Best Known Packing Results Table.

See Figure 3.8 for the transformation of the circle packing version of the 4 leaders.
Table 3.3 summarizes the results found for the set of radii considered previously:

Table 3.3. Upper Bound and SNL Average Cluster Size for Various Radii.

rSNL rpack Upper Bound Average

1.000 0.2500 4 1.5

0.707 0.2071 6 2.5

0.500 0.1667 10 4.0

0.250 0.1000 25 12.0

0.100 0.0455 129 70.0

0.050 0.0238 1,849 250.0

0.010 0.0050 41,209 ?4,500.0

Of course, it would also be interesting to find a leadership protocol that was equiva-
lent to covering the unit square (see [117]) since this would require the minimum number
of leaders, but at the moment, this seems to be a complex computation; moreover, this
would greatly reduce cluster overlap.



34 CHAPTER 3. LEADERSHIP ALGORITHMS

Figure 3.8: Maximal Packing of Leader SELs in Unit Square.

3.3.5 Irregular Broadcast Region Shape

The results given previously assume a circular broadcast area, centered at the SEL.
Ganesan has shown[43] that physical motes do not broadcast this way. Thus, we must
examine how irregular broadcast shape influences the statistics determined above.

Using the data given by Ganesan et al. as the basis for a broadcast shape, the statistics
for mean number of clusters was recomputed. Figure 3.9 shows the shape used as an
approximation of the Berkeley mote’s broadcast shape. A 271x336 array holds the
characteristic function of the shape (i.e., 1 where the shape is, and 0 otherwise). These
are scaled by 0.0194 in order to obtain a 5.2644x6.5270 unit rectangle so that the shape
has area 4π (equivalent area to a circle with radius 2). Two SELs are broadcast neighbors
if the broadcast shape of each overlaps the location of the other. The orientations of
these broadcast shapes are random across the SELs.

Figure 3.10 shows the mean number of clusters for various numbers of motes
randomly distributed in a 6x6 square. As can be seen, the average number of clusters
approaches 8 as N grows larger.

3.4 Implementation

Next, we describe two complementary implementations of the SNL protocol: (1) on a
set of Berkeley motes comprised of low-power 8-bit, 128Kb memory processors, com-
munication devices and sensors, and (2) on a set of JStamps having 32-bit controllers,
2Mb of memory and native execution Java hardware.



3.4. IMPLEMENTATION 35

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.9: Approximation of Berkeley Mote Broadcast Shape (adapted from [58]).

10 20 30 40 50 60 70 80
4

4.5

5

5.5

6

6.5

7

7.5

8

 Number of SELs

 A
ve

ra
g
e
 N

u
m

b
e
r 

o
f 
C

lu
st

e
rs

Number of Clusters vs. Number of SELs (Berkeley mote shape)

Figure 3.10: Average Number of Clusters vs. Number of SELs in Network (adapted
from [58]).



36 CHAPTER 3. LEADERSHIP ALGORITHMS

Figure 3.11: Berkeley Mote (adapted from [64]).

3.4.1 Berkeley Motes

We have developed one implementation in a set of four Berkeley motes. Figure 3.11
shows one of the Mica nodes [69]. The device features an 8-bit Atmega 103 Micro-
controller (4 MHz) with 4 Kb system RAM, 128 Kb flash program memory, 8 channel,
10-bit ADC and 3 hardware timers. For I/O it has one external UART, one SPI port
and 48 general purpose I/O lines. It has an AT90LS2343 microcontroller coprocessor
for wireless communication, and a DS2401 unique ID device. It has RF range of up
to tens of meters at rates up to 115Kb/s. A Maxim1678 DC-DC converter provides a
solid 3V supply operated off a pair of AA batteries. There is an expansion connector
I/O system interface which allows a variety of sensing boards. Finally, the mote runs
the TinyOS multithreading event-based operating system, and applications are written
in NesC; NesC is a C-like language that was developed by the Berkeley group just for
the purpose of embedded system applications like sensor networks.

Leadership Protocol in the Berkeley Motes

The protocol was developed in NesC and the configuration file is:

configuration SandR {}
implementation {

components Main, SandRM, RadioCRCPacket
as Comm, UARTNoCRCPacket,

ClockC, LedsC;

Main.StdControl -> SandRM;

SandRM.UARTControl-> UARTNoCRCPacket;



3.4. IMPLEMENTATION 37

Figure 3.12: 250 Mote Leadership Solution from Mote Simulator (adapted from [64]).

SandRM.UARTSend-> UARTNoCRCPacket;
SandRM.UARTReceive-> UARTNoCRCPacket;

SandRM.RadioControl -> Comm;
SandRM.RadioSend -> Comm;
SandRM.RadioReceive -> Comm;

SandRM.Clock -> ClockC;
SandRM.Leds -> LedsC;

}

The code was developed first in the Mote simulator, and Figure 3.12 shows a 250-node
leadership solution. The gray squares have devices and the variable gray level squares
are leaders. The edges show communication connectivity.

In the mote implementation, the leadership code takes 14.3Kb memory. A delay of
2 seconds is set for Phase I to allow neighbors lists to be built. Figure 3.13 shows four
motes which have run the protocol; leader motes have the red LED illuminated. (The
leader motes are the left and right motes which are not in each others broadcast range;



38 CHAPTER 3. LEADERSHIP ALGORITHMS

Figure 3.13: 4-Mote Leadership Solution; red LED means leader (adapted from [64]).

they both can communicate with the middle two motes.) Figure 3.14 shows a test of
the SNL leadership protocol on 90 Berkeley motes.

3.4.2 JStamp Processors

We have also implemented the S-Net algorithms in Systronix JStamps (see Figure 3.15).
There are many benefits to using Java as the programming language, and the JStamp or
JStik as the controller hardware. JStamp and JStik are physically small (JStamp is only
1x2 inches), yet contain a 32-bit controller, 2 Mbytes of memory, and the rich constructs
of Java. Software can be developed in Java on PCs and then easily loaded onto the
nodes. Another huge benefit of Java is the robust and proven security models designed
into the Java language and JXTA. Native execution Java hardware is physically small,
very power efficient, and computationally powerful. For example, the 1x2 inch JStamp
can run off a standard 9V transistor battery for up to 40 hours, and execute three million
Java byte codes per second. Systronix is currently the world leader in the commercial
development of such modules.

Of course, sensor networks do not always require wireless connectivity, and our
current JStamp testbed is set up as shown in Figure 3.16. Each JStamp in the testbed
has an RS232 connection to a PC, and the PCs are connected through Ethernet. (If we
use JStiks instead of JStamps, they have their own Ethernet ports and eliminate the need
for PCs. RF capability for JStamps/JStiks is also under development by Systronix.)

Independent processes are run on each PS which handle the communication between
JStamps; these processes connect to each other through sockets. The S-Net leadership
protocol and coordinate frame algorithm have been implemented in the JStamp testbed



3.4. IMPLEMENTATION 39

Figure 3.14: Test of SNL Leadership Protocol with 90 Berkeley Motes.

Figure 3.15: Systronix JStamp Processor (adapted from [64]).



40 CHAPTER 3. LEADERSHIP ALGORITHMS

PCPC

JSTAMP JSTAMP

Ethernet

...

Figure 3.16: JStamp Testbed Layout (adapted from [64]).

with no problems encountered. There is an effect in setting timer values in the leadership
protocol which is a critical issue in energy awareness in S-Nets.

3.5 Summary and Conclusions

These initial results of actual implementations of the S-Net algorithms are very encour-
aging. As pointed out by Chan and Perrig [17], the leadership protocol algorithm is the
basis for many efficient wireless sensor network algorithms, including query processing
[36], data aggregation [53, 165], routing [96, 155] and reliable broadcast [115, 154].

As far as comparing the two implementation testbeds, they have very complemen-
tary features. First, the Berkeley motes offer:

small size

low cost

low power

RF

simulation environment

Mote cons include:

small memory

new programming language (NesC)

differences between simulator and mote codes

difficult to debug motes

The major issue in learning NesC is getting the communications aspects correct. In
addition, there are some problems with shoehorning codes into the simulator (specified
node connections may not occur in the simulator). In the actual motes, new batteries
need to be used for benchmarking and testing to get consistent results. Moreover, the



3.5. SUMMARY AND CONCLUSIONS 41

clock setting influences the correctness of the leadership protocol: set to 32 ticks/sec is
really good; 64 ticks/sec results in failure about half the time, and 100 ticks/sec leads
to high failure rates. In addition, delay timings are crucial for Phase I of the leadership
protocol. Finally, simple acknowledgments in the frame algorithm led to more accurate
results (angles between devices, etc.).

The JStamp testbed offers:

Java programming

off-stamp debugging

small size

low power

large memory

permits large memory sensors (e.g., CMUCam).

JStamp cons are:

no RF

no simulator for testbed

We have also explored parallel programming versions of SNL on multi-processor
systems[55]. Simulations based on Unix processes, as well as MPI versions have been
demonstrated and exploited.

To answer the question: “Does the SNL algorithm work as expected”? we have the
following information. There is no mathematical proof at this time. However, it has
been shown to work in the following cases:

For all odd-sided (4-neighbor) regular grids from 3x3 up to 21x21.

For n evenly spaced points on a circle (2 neighbors each) for n ranging from 4
to 200.

For thousands of randomly generated graphs ranging in size from 10 to 100 nodes,
and with average degree from 1 to 30.



Chapter 4

Coördinate Frames and
Gradient Calculation

Computational Sensor Networks1 depend on phenomenological models which de-
scribe spatio-temporal relations between physical quantities. This generally requires a
common coördinate frame of reference. Almost all calculation depends on functions
defined with respect to x, y, z, and t (e.g., the heat equation relates the partial derivative
of temperature with respect to time to the second derivative of temperature with respect
to space). Other quantities of interest, such as velocity, acceleration, momentum, etc.,
all depend on a frame of reference.

Generally, such a frame is assumed known or given; however, this is not usually
the case for SELs in an S-Net. Such nodes are typically restricted in terms of hardware
due to energy concerns and are used in places where GPS is not available (in buildings,
cities, forests, etc.). In many cases it is sufficient to construct a local coördinate frame,
that is, one given in terms of the SELs which define it; this is also called a relative
frame. Of course, such a relative frame may include a large number of spatially dis-
tributed SELs so long as the necessary conditions hold (see below). It is also possible
to anchor SELs to a global, or absolute, frame, like that provided by GPS, if necessary,
and given enough global information.

This chapter provides the necessary tools to construct coördinate frames, and to
relate them to mobile agents who desire to exploit them for localization and navigation.

4.1 Local and Global Coördinate Frames
To utilize the sensor population for localization and navigation purposes, local and/or
global frames of reference need to be established. The assumption here is that the
only information each sensor knows about the other sensors is their distance from it.
Sensors can have uniquely identifiable tagged chirps, and can broadcast a signal that
other sensors hear and relay back after some delay. Other physical phenomena may

1This chapter is a modified version of work done with Mohamed Dekhil, Scott Morris, Yu Chen and
William B. Thompson [62], and Eddie Grant [63].

© Springer Science+Business Media, LLC 2009 
43 T.C. Henderson, Computational Sensor Networks, DOI: 10.1007/978-0-387-09643-8_4, 



44 CHAPTER 4. COÖRDINATE FRAMES AND GRADIENT CALCULATION

be modeled and used to determine SEL location as well; e.g., the heat equation (see
Chapters 8 and 9). Thus, a set of distances can be determined and from these an
algorithm can compute positions with respect to a local sensor frame. The following
is a formulation of this problem and its solution2.

Problem: Given a set of n points, where n ≥ 3, and the distances between each
pair of points, {dij}, where i = 1..n, j = 1..n, and i 6= j, it is required to establish
a planar frame of reference F where point i can be represented by the coördinates
(xi, yi), where i = 1..n.

First we show how to incorporate unknown points into a known frame, and then
show how to construct a local frame in which the frame origin is selected either arbi-
trarily or relative to a certain event or landmark.

4.1.1 Incorporating Points into a Coördinate Frame

In this formulation we show how knowledge of the coördinates of at least three points,
p1, p2, and p3, not laying on a straight line may be used to incorporate other points
into a frame.

Assume that the coördinates of the first three points are: (x1, y1), (x2, y2), and
(x3, y3), respectively, and the distances between these points and unknown point pi
are di1, di2, and di3, respectively, where i = 4..n (see Figure 4.1). The distance can
be expressed in terms of the unknown coördinates of point i, (xi, yi), as follows:

(x  ,y )

(x  ,y )

x

y

(x  ,y )

(x  ,y )

di1

di2

i3d

p

p

p

1

2

3

p
i

3 3

ii

2 2

11

Figure 4.1: The Incorporation of at Point into a Known Frame (adapted from [62]).

2Note that if nodes have GPS or some other method to determine absolute location, then that obviates
the determination of a relative frame.



4.1. LOCAL AND GLOBAL COÖRDINATE FRAMES 45

(xi − x1)2 + (yi − y1)2 = d2
i1 (4.1)

(xi − x2)2 + (yi − y2)2 = d2
i2 (4.2)

(xi − x3)2 + (yi − y3)2 = d2
i3 (4.3)

By subtracting Equation 4.2 from Equation 4.1 we get:

−2x1xi + x2
1 + 2x2xi − x2

2 − 2y1yi + y2
1 + 2y2yi − y2

2 = d2
i1 − d2

i2

and subtracting Equation 4.3 from Equation 4.1 yields:

−2x1xi + x2
1 + 2x3xi − x2

3 − 2y1yi + y2
1 + 2y3yi − y2

3 = d2
i1 − d2

i3

Simplifying the last two equations yields:

(x2 − x1)xi + (y2 − y1)yi = C1 (4.4)

and
(x3 − x1)xi + (y3 − y1)yi = C2 (4.5)

where
C1 =

1
2

(d2
i1 − d2

i2 − x2
1 + x2

2 − y2
1 + y2

2)

and
C2 =

1
2

(d2
i1 − d2

i3 − x2
1 + x2

3 − y2
1 + y2

3)

From Equation 4.4 we get:

xi =
C1 − (y2 − y1)yi

(x2 − x1)
(4.6)

Substituting 4.6 into 4.5 we can calculate yi as:

yi =
C2 − (x3−x1)

(x2−x1)C1

(y3 − y1)− (x3−x1)
(x2−x1) (y2 − y1)

Simplifying this equation yields:

yi =
(x1 − x3)C1 + (x2 − x1)C2

y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1)
(4.7)

Substituting for yi in Equation 4.6 we get:

xi =
C1 − (y2 − y1) (x1−x3)C1+(x2−x1)C2

y1(x3−x2)+y2(x1−x3)+y3(x2−x1)

(x2 − x1)

Simplifying this last equation we get the solution for xi as:

xi =
(y3 − y1)C1 + (y1 − y2)C2

y1(x3 − x2) + y2(x1 − x3) + y3(x2 − x1)
(4.8)

This formulation shows that the knowledge of the coördinates of 3 points not forming
a straight line is sufficient to construct a frame and calculate the location of the other
points with respect to that frame. The condition that the 3 points should not be on a
straight line is necessary, otherwise, the denominator in Equations 4.7 and 4.8 will be
zero.



46 CHAPTER 4. COÖRDINATE FRAMES AND GRADIENT CALCULATION

4.1.2 Constructing a Local Frame
The main goal of the S-Net paradigm is to provide sensory information within a wide
spatial area where clusters of small simple sensors are used to identify and locate
certain events or actions in the environment. In many cases it is sufficient to use a
local (or relative) frame to navigate and locate local events within the cluster range.

A local frame can be viewed as a special case of the global frame, where the po-
sition and orientation of the frame can be chosen arbitrarily. We now show how to
construct a local frame for a set of n points, where n ≥ 3.

1. Select any 3 points p1, p2, and p3 not laying on a straight line; the set {p1, p2, p3}
is called the frame kernel. Assume that the distances between these points are
d12, d13, and d23. The condition for non linearity is that the distance between
any two points should be less than the sum of the distances between these two
points and the third point:

dij < dik + djk

2. Set p1 as the frame origin (i.e., p1 = (0, 0)).

3. Form the x-axis of the local frame as p1p2, where p2 is constrained by a circle
centered at p1 with radius d12. This means that p2 = (d12, 0).

4. Calculate the location of the third point by selecting one of the two intersection
points of two circles centered at p1 and p2 with radii d13 and d23, respectively
(see Figure 4.2). To calculate the location of p3 we solve the following two
equations:

(x3 − x1)2 + (y3 − y1)2 = d2
13

(x3 − x2)2 + (y3 − y2)2 = d2
23

Substituting the values of x1, y1, x2, and y2 from steps 2 and 3 above we get:

x2
3 + y2

3 = d2
13

(x3 − d12)2 + y2
3 = d2

23

By solving these two equations for x3 and y3 we get:

x2
3 =

d2
12 + d2

13 − d2
23

2d12
(4.9)

y3 = ±

√
d2

13 −
d2

12 + d2
13 − d2

23

2d12
(4.10)

We then select one of the two locations for p3. Here we select the positive value
of y3.

5. Use the results to incorporate points into a known frame to get the (x, y) loca-
tions of the remaining points with respect to this local frame.



4.1. LOCAL AND GLOBAL COÖRDINATE FRAMES 47

d13

d23

(x ,y )3 3

p
3

(0,0)

p1

y

x

(d   ,0)12

2p

Figure 4.2: Construction of a Local Frame (adapted from [62]).

321

1

2

3

1 2 3

4 5 6

7 8 9

x

y

Figure 4.3: 3x3 Grid.

We have developed a Matlab code which calculates a coördinate frame for each
SEL whenever that is possible in terms of its neighbors. For the 3x3 grid shown in
Figure 4.3, the local frames are determined as shown in Table 4-1.

As can be seen, no SEL succeeds in determining the coördinates of more than
four points. This is due to the fact that the distance from three established SELs must
be known to a new point and usually only a couple of distances are known to points
already in the frame. This fails for more points because the broadcast range is 1.5
units. If this is raised to 2 units, we get the result shown in Table 4-2. (Note that is is



48 CHAPTER 4. COÖRDINATE FRAMES AND GRADIENT CALCULATION

Table 4-1. 3x3 Grid Coördinate Frames (Broadcast Range 2 Units).

SEL SEL at SEL defining SEL defining Other SELs
Origin X-axis Y-axis in frame

1 1 2 4 5

2 2 1 5 4

3 3 6 2 5

4 4 1 5 2

5 5 6 2 3

6 6 5 9 8

7 7 8 4 5

8 8 5 7 4

9 9 6 8 5

possible to produce multiple frames at a SEL and then merge them; e.g., SEL 2 could
produce frame {2, 5, 1} and add SEL 4, and then form frame {2, 3, 5} and add SEL 6.
Combining these would produce frame {2, 5, 1, 4, 3, 6}.

Table 4-2. 3x3 Grid Coördinate Frames (Broadcast Range 2 Units).

SEL SEL at SEL defining SEL defining Other SELs
Origin X-axis Y-axis in frame

1 1 4 2 5,3,7

2 2 4 6 5,1,3,8

3 3 2 6 5,1,9

4 4 8 2 1,5,6,7

5 5 9 3 1,2,4,6,7,8

6 6 8 2 4,5,3,9

7 7 4 8 5,1,9

8 8 4 6 2,5,7,9

9 9 8 6 5,3,7



4.1. LOCAL AND GLOBAL COÖRDINATE FRAMES 49

4.1.3 Moving between Local Frames
Moving from one sensor cluster to another requires a transformation between the two
local frames. To determine the transformation functions, there must be at least two
points common to both frames. Using a homogeneous transformation, the relationship
between the (x, y) locations of a point pi with respect to both frames can be written as
(see Figure 4.4):

dx

y

x

y ’x ’

i

i i

i

dy

p
i

x

y

x’

y’

θ

Figure 4.4: Transformation between Frames (adapted from [62]).

 xi
yi
1

 =

 cos θ − sin θ dx
sin θ cos θ dy

0 0 1

 x
′

i

y
′

i

1

 (4.11)

Thus, we have two equations in three unknowns; dx, dy , and θ.

xi = x
′

i cos θ − y
′

i sin θ + dx (4.12)

yi = x
′

i sin θ + y
′

i cos θ + dy (4.13)

Therefore, we need at least two common points, p1 and p2, to solve Equations 4.12
and 4.13.

Assume that we have two common points p1 and p2 with coördinates (x1, y1) and
(x2, y2) with respect to the first frame, and (x

′

1, y
′

1) and (x
′

2, y
′

2) with respect to the
second frame. Substituting these points in Equations 4.12 and 4.13 yields:

x1 = x
′

1 cos θ − y
′

1 sin θ + dx (4.14)

y1 = x
′

1 sin θ + y
′

1 cos θ + dy (4.15)

x2 = x
′

2 cos θ − y
′

2 sin θ + dx (4.16)

y2 = x
′

2 sin θ + y
′

2 cos θ + dy (4.17)



50 CHAPTER 4. COÖRDINATE FRAMES AND GRADIENT CALCULATION

By subtracting Equation 4.16 from Equation 4.14 and Equation 4.17 from Equation 4.15
we get:

(x1 − x2) = (x
′

1 − x
′

2) cos θ − (y
′

1 − y
′

2) sin θ (4.18)

(y1 − y2) = (x
′

1 − x
′

2) sin θ + (y
′

1 − y
′

2) cos θ (4.19)

Solving the last two equations results in:

θ = atan2 (A,B) (4.20)

where
A = (x

′

1 − x
′

2)(y1 − y2)− (y
′

1 − y
′

2)(x1 − x2)

and
B = (x

′

1 − x
′

2)(x1 − x2) + (y
′

1 − y
′

2)(y1 − y2)

Substitute for θ in Equations 4.14 and 4.15 to solve for dx and dy as follows:

dx = x1 − x
′

1 cos θ + y
′

1 sin θ (4.21)

dy = y1 − x
′

1 sin θ − y
′

1 cos θ (4.22)

Finally, we use Equation 4.11 to transform the rest of the points between the two
frames.

A frame extension algorithm is given by SNET extend frames which when applied
to the frames given in Table 4-1 incorporates every point into each frame. Note that
when mapping points from one frame to another, it is necessary to make sure that the
frames have the same sense (i.e., both right-handed or left-handed). They must have
three common points for this check.

We have developed algorithms to compute a coördinate frame for a cluster of
Berkeley motes. Figure 4.5 shows a 250-mote simulation result with the local frames
shown, and Figure 4.6 shows the local frame neighborhoods. We have run the code
on the 4 Berkeley motes and produced correct frames for them as well; the coordinate
frame executable takes 21Kb. The leadership and coordinate frame executable takes
133.4Kb memory.

Exploiting sensor networks involves understanding algorithmic and engineering is-
sues of real-world devices, and making both raw and processed data readily accessible
to humans. We have implemented these algorithms on two complementary domains:
Berkeley motes and JStamp embedded processors [64].

4.2 Gradient Calculation
Given a coördinate frame and a set of samples from a real-valued function at various
points in the frame, the partial derivatives of the function in X and Y are generally of
interest, as is the vector formed from these derivatives, the gradient. Much is known
analytically about derivatives, and the approximation of derivatives from sampled data,
but this is usually performed on a regular grid with equi-spaced points. With Compu-
tational Sensor Networks, a major issue is that SELs are not generally deployed in a



4.2. GRADIENT CALCULATION 51

Figure 4.5: 250-Mote Coordinate Frames Calculation; mote simulation (adapted from
[64]).

Figure 4.6: A Selection of S-Element Devices and their Local Neighbors (adapted
from [64]).



52 CHAPTER 4. COÖRDINATE FRAMES AND GRADIENT CALCULATION

regular grid, and therefore, the calculation of derivatives and the gradient must take
this into account.

In this section, we analyze and compare four different techniques to estimate the
gradient of the function represented by the sensor samples. These include: (GA1) a
simple device ID defined direction (i.e., this is a coördinate-free method), (GA2) di-
rectional derivatives, (GA3) polynomial approximation with a plane, and (GA4) poly-
nomial approximation with a quadratic. We compare these based on density of devices
per unit area, and noise in the position and sensed data. The interesting result is that
GA3 significantly outperforms the other algorithms, although GA1 performs very well
and is much easier to compute than the others.

At the most basic level, the devices are distributed in the environment. Consider
the following scenario. A set of devices are dropped in a wide geographic area to
monitor a toxic gas leak in the air. Mobile robots involved in the containment and
cleanup need to follow the chemical gradient to move to the toxin source locations.
Thus, the gradient of the concentration scalar field is required. Figure 4.7 shows an
example set of devices with neighbors in the graph defined as those in radio broadcast
range.

4.2.1 Gradient Calculation
Generally, CSN problems are defined on the plane, and in this case the gradient of f at
(x, y) is the vector in <2 given by:

grad f = (
∂f

∂x
,
∂f

∂y
) = ∇f

(We follow Marsden [108] for our vector calculus notation.)

Coördinate Frame Free Method (GA1)

This method does not use a coördinate frame, but rather expects a mobile agent to
be able to identify and move between specific SELs based on their IDs and wireless
communication with them.

The gradient is approximated at each device (IDdevice) as follows:

1. From the neighbors of IDdevice, the device (IDmin) with the minimum sensed
data value is determined as well as the device (IDmax) with the maximum
sensed data value.

2. The gradient at device IDdevice is reported as the pair of device ID’s:
(IDmin,IDmax).

A mobile agent uses these ID’s to move in the gradient direction by moving between
the two devices, IDmin and IDmax, and then moving in the direction of IDmax.
Note the method does not require that the (x,y) positions of the individual devices be
known. Accurate calibration of sensor networks is a difficult task and getting good
position data can be very difficult or very expensive [161], thus making this approach
useful when no coördinate frame is available. This method is very inexpensive and



4.2. GRADIENT CALCULATION 53

robust and thus, very attractive if its performance compares well to the other more
rigorous approaches.

Directional Derivatives (GA2)

This method requires knowledge of the positions of the devices. The directional
derivative of f at x in direction v is given by:

d.d. =
d

dt
f(x + tv) |t=0

if it exists. From this, we have that the directional derivative is also defined by:

d.d. = lim
h→0

f(x + hv)− f(x)
h

We approximate this by:

d.d.a. =
f(x + hv)− f(x)

h
(4.23)

Assuming all directional derivatives exist, it is the case that:

Df(x)v = grad f(x) · v = ∇f(x) · v

so that:

d.d. = [
∂f

∂x
(x)]vx + [

∂f

∂y
(x)]vy (4.24)

where v = (vx, vy). Combining these, we approximate the gradient at each device,
IDdevice, located at e0, as follows:

1. Choose two of IDdevice’s neighbors, ID1 and ID2, located at e1 and e2, re-
spectively, such that ∠e1e0e2 is as close to a right angle as possible.

2. For the two points, e1 and e2, solve (4.23) to get the following pair of equations:

d.d.a.1 = fxe1x + fye1y (4.25)

d.d.a.2 = fxe2x + fye2y (4.26)

3. Solve (4.25) and (4.26) for the two unknowns: fx and fy and form the gradient
as (fx, fy).



54 CHAPTER 4. COÖRDINATE FRAMES AND GRADIENT CALCULATION

Polynomial Approximation: Plane (GA3)

For each device, the position must be known. To approximate the gradient:

1. From the positions and sensed data values of the n points within broadcast range
of the current device (i.e., itself and its neighbors), form the linear system:

f(e1)
f(e2)

...
f(en)

 =


1 e1x e1y

1 e2x e2y

...
1 enx eny


 a0

a1

a2

 (4.27)

2. Solve (4.27) for a0, a1, and a2.

3. The gradient is then (a1, a2).

Polynomial Approximation: Quadratic (GA4)

Here we make the assumption that the functional form of the sensed data is:

f(x, y) =
Dmax√

1 + (Sx − x)2 + (Sy − y)2
(4.28)

where Dmax is the maximum value of the function at the source location (Sx, Sy). In
order to set up to solve for the gradient, rewrite (4.28) as follows:

1
f(x, y)

=
√

1 + (Sx − x)2 + (Sy − y)2

Dmax

1
f2(x, y)

=
1 + (Sx − x)2 + (Sy − y)2

D2
max

u(x, y) = a0 + a1x + a2y + a3x
2 + a4y

2

where u(x, y) = 1
f2(x,y) , a0 = 1+S2

x+S2
y

D2
max

, a1 = −2Sx
D2
max

, a2 = −2Sy
D2
max

, a3 = 1
D2
max

, and
a4 = 1

D2
max

.

Then the gradient is found as:

1. From the positions and sensed data of the device and its neighbors, form the
linear system: 

u(e1)
u(e2)

...
u(en)

 =


1 e1x e1y e2

1x e2
1y

1 e2x e2y e2
2x e2

2y
...

1 enx eny e2
nx e2

ny




a0

a1

a2

a3

a4

 (4.29)

2. Solve (4.29) for a0, a1, a2, a3, and a4.

3. Then the gradient is given by (2a3x + a1, 2a4y + a2).

Note that Sx = −a1
2a4

, Sy = −a2
2a4

, and Dmax = 1√
a4

. Note that the recovery of these
parameters is difficult as the ai’s are very sensitive to the data.



4.2. GRADIENT CALCULATION 55

4.2.2 Simulation Experiments
Our simulation works as follows:

for number of devices = devmin to devmax

for noise = 0 to noisemax

for number of trials = 1 to trialsmax

Distribute devices uniformly over area

Select source location for scalar field

Set values of sensor devices

for each gradient method

Calculate the gradient

Calculate the error

end
end

end
end

This has been implemented in Matlab, and Table 4-3. gives the results of the simula-
tions.

The density of the devices was allowed to vary from 1 per unit area to 10 per
unit area. The table shows that increasing the number of devices generally improves
the quality of the approximation. Two noise levels were evaluated: (1) no noise, and
(2) noise with standard deviation 1. This noise is applied to both the position of the
devices, as well as to the sensed data values. That is, the device position is normally
distributed about the actual position with 0 mean and either standard deviation of 0 or
1. Sensed data is handled in a similar manner.

4.2.3 Conclusion
From Table 4-3 it can be seen that GA3 performs significantly better than the other
algorithms, even under noisy conditions. Figure 4.7 shows a sample sensor network
with neighbors graph, and Figure 4.8 shows the gradient approximation by GA3 with
an average of 2 devices per unit area and no noise. Moreover, GA1 - which does not
use device position information - performs comparable to the other algorithms, and
in absolute terms is not so bad (about 16 degrees error under noisy conditions with a
couple of devices per unit area). Figure 4.9 shows the results under the same conditions
as GA3 above.

Figures 4.10 and 4.11 show the results of GA2 and GA4 on the same data. As can
be seen, GA4 does a very poor job of approximating the gradient; any time a specific
functional form is chosen, it will do poorly if it does not match the actual environment.



56 CHAPTER 4. COÖRDINATE FRAMES AND GRADIENT CALCULATION

Table 4-3. Simulation Results.

Algorithm Angle Angle Mag Mag
Error Error Error Error

(degrees) Std (pixels) Std

100 devices /

0 data error

GA1 5.89 0.02 5.85 1.49

GA2 5.39 0.02 10.71 8.40

GA3 1.20 0.01 2.90 0.62

GA4 16.63 0.10 10.70 19.12

200 devices /

0 data error

GA1 2.92 0.01 5.34 1.34

GA2 6.18 0.01 14.52 21.42

GA3 0.67 0.01 2.61 0.51

GA4 14.83 0.10 6.90 3.54

100 devices /

1 std data error

GA1 25.79 0.02 6.01 1.43

GA2 20.90 0.06 7.72 2.74

GA3 10.24 0.04 6.49 2.70

GA4 18.59 0.06 56.4 326.94

200 devices /

1 data error

GA1 15.69 0.03 5.72 1.37

GA2 10.61 0.04 8.67 3.44

GA3 6.58 0.04 5.81 0.97

GA4 17.87 0.08 52.80 150.21



4.2. GRADIENT CALCULATION 57

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Sensor network with neighbors graph (200 devices in 10x10 area)

Figure 4.7: Sample Sensor Network with Neighbors Graph (adapted from [63]).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
GA3 with 200 devices and no noise (Sx,Sy) = (0.03,2.2)

+ end of vector indicates gradient direction

Figure 4.8: GA3 Gradient Approximation with No Noise (adapted from [63]).



58 CHAPTER 4. COÖRDINATE FRAMES AND GRADIENT CALCULATION

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
GA1 with 200 devices and no noise (Sx,Sy) = (0.03,2.2)

+ end of vector indicates gradient direction

Figure 4.9: GA1 Gradient Approximation with No Noise (adapted from [63]).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6
GA2 with 200 devices and no noise (Sx,Sy) = (0.03,2.2)

+ end of vector indicates gradient direction

Figure 4.10: GA2 Gradient Approximation with No Noise (adapted from [63]).



4.2. GRADIENT CALCULATION 59

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5
GA4 with 200 devices and no noise (Sx,Sy) = (0.03,2.2)

Figure 4.11: GA4 Gradient Approximation with No Noise (adapted from [63]).

Methods have been given for (1) the determination of local coördinate frames,
given the pairwise distances between nodes, (2) the transformation between local
frames which share at least two points, (3) several methods for the calculation of the
gradient in a sensor network, including a coördinate free technique.



Chapter 5

Pattern Formation in S-Nets

Biological systems exhibit an amazing array of distributed sensor/actuator systems,
and the exploitation of principles and practices found in nature will lead to more ef-
fective artificial systems. The retina is an example of a highly tuned sensing organ,
and the human skin is comprised of a set of heterogeneous sensor and actuator ele-
ments. Moreover, the specific organization and architecture of these systems depends
on contextual influences during the developmental stages of the organism. Compara-
ble theoretical and technological methodologies need to be found for wireless sensor
networks. We propose the study of reaction-diffusion systems from mathematical bi-
ology as a starting point for this endeavor. Algorithms and experiments are described
here for a useful set of pattern formation methods in wireless sensor networks.

Alan Turing introduced a revolutionary reaction-diffusion model as the chemical
basis of morphogenesis [156], and this method lends itself particularly well to pattern
synthesis in distributed systems. For more detailed explanations, see his original paper
(which provides an exemplar of the scientific paper – theory, analysis and numerical
solution on the Manchester machine which Turing helped design and build!), as well
as the works of Murray [111], Meinhardt [109], and more recently, Maini and Othmer
[106]. Turing’s key insight was that diffusion of an inhibitory morphogen could lead
to the formation of stable and variegated patterns. This is related to nonlinear far from
equilibrium thermodynamics, and dissipative structures (e.g., see Prigogine [116, 123,
124] who received the Nobel prize in chemistry for work in this area). One goal of our
work is to understand how these principles are at work in biological sensor systems
and how they may be exploited in wireless sensor networks.

We have previously proposed to use Turing’s reaction-diffusion mechanism to gen-
erate patterns in wireless sensor networks. [67]. The basis of this mechanism is a set of
equations that capture the reaction and diffusion aspects of certain chemical kinetics:

∂c
∂t

= f(c) + D∇2c (5.1)

where f(c) describes the reaction and D∇2c expresses the diffusion component. The
simplest such systems have two morphogens or variables; one of these acts as the

© Springer Science+Business Media, LLC 2009 
61 T.C. Henderson, Computational Sensor Networks, DOI: 10.1007/978-0-387-09643-8_5, 



62 CHAPTER 5. PATTERN FORMATION IN S-NETS

activator and the other acts as the inhibitor. The two variable system can be modeled
by:

∂u

∂t
= γf(u, v) +∇2u,

∂v

∂t
= γg(u, v) + d∇2v (5.2)

where u and v are the concentrations of the morphogens, d is the diffusion coefficient
and γ is a constant measure of scale. The functions f(u, v) and g(u, v) represent the
reaction kinetics. As an example, we have explored the generation of spatial patterns
using the Turing system of equations:

f(u, v) = β − uv, g(u, v) = uv − v − α

where u and v are the morphogen concentrations, α and β are the decay and growth
rates, respectively, and γ sets the speed of the reaction. They define a domain in which
Equation (2) becomes linearly unstable to certain spatial disturbances. This domain
is referred to as Turing space where the concentrations of the two morphogens will
become unstable and result in the patterns shown in Figure 5.1.

X

Y

Figure 5.1: Turing Spot Pattern.

The pattern is the result of each cell running the equations locally while diffusing
to its neighbors; a stable solution may be thresholded to produce a binary value at each
sensor, and the total of these gives the pattern. Note that the distribution of these spots
is close to hexagonal.

We introduced the use of Turing’s reaction-diffusion pattern formation to support
high-level tasks in sensor networks (S-Nets). This has led us to explore various biolog-
ically motivated mechanisms. We address below some issues that arise in trying to get
reliable, efficient patterns in irregular grids.



COMPUTATIONAL SENSOR NETWORKS 63

Much remains to be done at the higher level of information extraction, interpreta-
tion and exploitation of networked sensor systems. Our central thesis is that bio-based
engineering will lead to strong solutions in this domain; that is, we propose to identify
and ultimately incorporate effective computational strategies used by biological sys-
tems. The challenge is to identify mechanisms that lead to algorithms or paradigms
that are reliable, inexpensive and ubiquitous in many applications.

Others have explored the use of both reaction-diffusion and more general diffusion
methods in computer vision and robotics. For example, Fukuda et al. describe the
use of reaction-diffusion techniques in robot motion[?]. Moreover, as described by
Peronna et al.[?], multi-scale descriptions of images (i.e., scale-space) can be produced
by embedding the original image in a family of images obtained by convolving the
original image with a filter; Koenderink[?] showed that this is equivalent to finding the
solution of the diffusion equation:

It = 52I = Ixx + Iyy

We believe that it will be quite useful for S-Nets to use similar methods to analyze
sensed data of various sorts. Other proposed diffusion models include, for example,
[?] who proposes directed diffusion - a datacentric communication coördination tech-
nique that “enables energy savings by selecting empirically good paths and by caching
and processing data in- network.” The focus of such work is more on the networking
and operating systems aspects of the sensor network, whereas our work is more con-
cerned with the sensor network as a computation engine itself. More closely related to
our work is that of Justh and Krishnaprasad [?] who propose the active coordination
of a large array of microactuators by means of diffusive coupling implemented as in-
terconnection templates, and Nagpal [?] who describes methods to create patterns of
diverse geometry. We believe that this style of research will reap great benefits in three
aspects: (1) network morphogenesis, (2) sensed data analysis, and (3) display pattern
synthesis.

As Meinhardt points out [?], “the control of development in a higher organism is
one of the major unresolved problems in biology ... in a developmental system a signal-
ing and signal-receiving mechanism must exist which enables the cell to communicate
in a manner appropriate to its position ... [the] goal is to show which interactions of
substances can lead to such signaling systems and how the cells then can respond to
these signals in order that stable states of determination are attained.” This matches
our view of the core issues, and we see that their solution can heavily impact sensor
network algorithms as well.

For example, consider a forest fire scenario: sensor devices are dropped into a wide
geographic area, establish a network, compute coördinate frames, calculate gradients,
and produce a stripe pattern of off-on signals that can be used by fire fighting agents
to go to a fire control point by following on devices (pattern == 1) and return by
following off devices (pattern == 0) (see Figure 1.2). Such patterns can be computed
by very robust reaction-diffusion systems derived from models of biological pattern
formation.

Our general research program is to explore a small set of biological sensing and
signaling mechanisms, and we hope to make significant contributions by providing



64 CHAPTER 5. PATTERN FORMATION IN S-NETS

−40 −30 −20 −10 0 10

5

10

15

20

25

30

35

40

45

50

55

X (meters)

Y
 (

m
e

te
rs

)

Figure 5.2: Robot Path in Reaction Diffusion Pattern (◦ is the fire control point; � is
the robot load point).

(1) biologically realistic models and efficient computational counterparts, (2) fault tol-
erant frameworks in which to run them, and (3) demonstrations of their application
in human interface and large-scale sensor networks. In addition, we are building S-
Net simulation, emulation, and experimentation testbeds [64]. Here we describe some
initial results in the first of these areas.

Patterns in the S-Net can be used to support many high-level algorithms or activi-
ties:

stripe, spot or ring patterns can be used as encoders for physical or logical pur-
poses; for example, a robot can keep track of how far it has traveled (physical),
or communication packets can travel along certain stripes to minimize power
cost or to avoid congestion (logical).

certain sets of patterns form a basis set for 2D images (e.g., Haar or Hadamard
basis sets); any map (topo, etc.) or image can then be encoded in terms of the
coefficients associated with the respective basis images.

the patterns can be used as a reference wave so that sensed data (or features
derived from it) can be encoded as an interference pattern (i.e., a hologram)

moving waves can also be computed, and thus the S-Net can serve as a signal
carrier or modulator.

Understanding the precision and reliability of pattern formation is then of high impor-
tance.

The most common application of S-Nets is to serve as a sensory organ; e.g., to
capture images, sounds, chemical concentrations, temperature, etc., over the region of



5.1. REGULAR GEOMETRIC FIGURES 65

interest. However, S-Nets may also be used as a display, either directly through LED’s
or by making values avaliable upon query. A biological analogy is the skin; a zebra’s
stripes provide coloration as well as a myriad of sensors embedded in the skin, and
these serve to provide some ecological advantage. A combination of these is especially
interesting where the display is influenced by the sensing; e.g., for camouflage effects
like in the chameleon.

Given a set of SELs in the plane, it may be useful to store and exploit a pattern in
the S-Net. For example, stripes may be useful for several purposes: (1) as pathways
for physical or logical tasks, e.g., mobile agents trajectories or packet transmission,
(2) as distance encoders as mobile agents cross them, or (3) as boundary markers. The
ability to store arbitrary patterns (e.g., maps) has been shown useful [62, 19] for cal-
culating shortest paths for robots to follow through terrain with varying traversability
properties.

If the SELs are situated in a coördinate frame, i.e., each SEL knows its (x, y) lo-
cation, then given a specification of the pattern as a function f(x, y), each SEL can
determine its own value. Useful binary patterns may also be represented as a bit stored
at each SEL, which requires a thresholding function t(x, y), as well; this works well for
paths or checkerboards. Moreover, combinations of stripe and checkerboard patterns
may serve as a set of 2D basis functions to allow the representation of any arbitrary
pattern as a linear combination of them.

5.1 Regular Geometric Figures
Equi-spaced straight line segments, stripes, with orientation θ, may be easily computed
by means of the following function ([111]):

f(x, y) = cos(xcos(θ) + ysin(θ))

Figure 5.3 shows the result with θ = 0 and θ = π/4.

Stripes at 0 degrees Stripes at 45 degrees

Figure 5.3: Vertical and 45o Stripes.

If the range of f(x, y) is [−1, 1], then a mobile agent can determine how far it is
from the center of the nearest stripe. Consider now the case of a set of SELs randomly



66 CHAPTER 5. PATTERN FORMATION IN S-NETS

distributed in a square area (each x and y coördinate is sampled from a uniform distri-
bution). Figure 5.4 shows an instance of 1,000 SELs. Each SEL can determine its own
value using the formula given above, and mobile agents can request this information
in order to stay near the stripe of interest; in this way, the mobile agent does not need
to be incorporated into the S-Net coördinate frame. Figure 5.5 shows the set of SELs
with values near 1 shown as a circle (’o’) and values near -1 shown as a dot (’.’) for
both stripe orientation 0 and π/4.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

X

Y

Figure 5.4: Sample of 1,000 SELs in a Square Area.

−20 −10 0 10 20
−15

−10

−5

0

5

10

15

X

Y

−20 −10 0 10 20
−15

−10

−5

0

5

10

15

X

Figure 5.5: Vertical and 45o Stripes in S-Net.



5.1. REGULAR GEOMETRIC FIGURES 67

f(x,y) = cos(x)*cos(y) 0 < f(x,y)

Figure 5.6: Checkerboard in the Plane.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

X

Y

Figure 5.7: Checkerboard in S-Net.

Another useful pattern is the checkerboard. The function:

f(x, y) = cos(x)cos(y)

thresholded by 0 < f(x, y) yields a checkerboard oriented along the x and y axes
(see Figure 5.6 for both the original and thresholded versions). Using 2,000 SELs, it
is possible to approximate the squares in an S-Net (thresholded at 0.3 < f(x, y) and
f(x, y) < −0.3 as shown in Figure 5.7).

As a final example, consider the hexagonal structure defined by:

f(x, y) = cos(
y
√

3 + x

2
) + cos(

y
√

3− x

2
) + cos(x)



68 CHAPTER 5. PATTERN FORMATION IN S-NETS

shown in Figure 5.8 with both original values and thresholded at 0 < f(x, y). Fig-
ure 5.9 shows how this would be displayed by an S-Net.

f(x,y) = hex(x,y) 0 < f(x,y)

Figure 5.8: Hexagonal Structure.

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

X

Y

Figure 5.9: Hexagonal Structure in S-Net.

Of course, if coördinates are available, any pattern which can be expressed as a 2D
function can be approximated by an S-Net. The quality of the approximation must be
evaluated in probabilistic terms when the distribution of SELs is random.

These regular patterns have been implemented on a set of Moteiv Tmote Sky
motes, and the results are shown in Figures 5.10 through 5.14. Figure 5.10 shows
the set of the 42 motes as laid out for these experiments. Figures 5.11 and 5.12 show
the vertical and 45o lines, while Figures 5.13 and 5.14 show the checkerboard and
hexagonal layouts, respectively.



5.2. REACTION-DIFFUSION PATTERNS 69

Figure 5.10: Layout of 42 X-bow T-Sky Motes.

X

Y

X

Y

Figure 5.11: Vertical Lines in T-Sky Motes (left side: layout; right side: LED’s turned
on).

X

Y

X

Y

Figure 5.12: 45o Lines in T-Sky Motes (left side: layout; right side: LED’s turned on).

5.2 Reaction-Diffusion Patterns

Some work has already been done to determine the range and type of patterns possi-
ble with the Turing pattern formation approach. Theoretical aspects have been stud-
ied and regions of the parameter space characterized as they relate to pattern forma-
tion (i.e., the parameters are the coefficients in the PDEs) [4, 46, 97]. Others have



70 CHAPTER 5. PATTERN FORMATION IN S-NETS

X

Y

X

Y

Figure 5.13: Checkerboard Layout in T-Sky Motes (left side: layout; right side: LED’s
turned on).

X

Y

X

Y

Figure 5.14: Hexagonal Layouts in T-Sky Motes (left side: layout; right side: LED’s
turned on).

investigated how pattern formation is influenced by number of cells, time scale, and
initial condition variation. In particular, Bard and Lauder [7] showed that “stable re-
peating peaks of chemical concentration of periodicity 2-20 cells can be obtained in
embryos in periods of time less than an hour. We do find however that these patterns
are not reliable. Small variations in initial conditions give small but significant changes
in the number and positions of observed peaks.” They showed that this method has dif-
ficulty producing exact patterns reliably. We have found other difficulties in producing
the patterns necessary to support higher-level tasks. We describe these here and pro-
pose some solutions.

A more significant issue for us is that the reaction-diffusion pattern formation equa-
tions assume that the inter-cell distance is uniform (and usually equal to 1). Our S-Nets,
however, do not form a uniformly spaced grid in 1D or 2D; in fact, we generally as-
sume that the sensor devices are randomly dropped in the environment. In addition,
the diffusion part of the equations uses the inter-node distances in the computation of
the second derivative. Two concerns are:

these distances are not uniform, and

in an actual implementation, there will be some amount of error in the inter-node
distance determination.



5.2. REACTION-DIFFUSION PATTERNS 71

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

10

Cell Number

M
o
rp

h
o
g
e
n
 C

o
n
c
e
n
tr

a
ti
o
n

Iteration751

Figure 5.15: Typical 1-D Turing Pattern.

This has led us to investigate the impact of non-uniform spacing on the pattern com-
putation.

The basic 1D Turing reaction-diffusion mechanism produces a pattern as shown in
Figure 5.15, and takes about 1,040 iterations to converge for a set of 60 cells. A set of
simulation experiments were run with from 10 to 100 cells in steps of 10. Table 5-1
gives the results for the mean number of steps to converge (total change in morphogen
a is less than 0.0001), and the mean number of stripes formed.

Next consider what happens when non-unit distances are introduced as the inter-
device distances. The point locations are determined as follows:

start with n equi-spaced points, 1 unit length apart,

add uniform noise to the location with max x and y distances from the grid
positions varying from 0 to 0.65.

Table 5-2 gives the average number of failures to converge for the Turing pattern. This
result, as well as similar results with 2D patterns, argues against using actual inter-
SEL distances for the reaction-diffusion computation. However, this turns out to be an
advantage since the inter-SEL distances may be difficult to determine. Moreover, the
patterns will form based purely on the topological nature of the SEL interconnectivity
graph. This can be very advantageous in 2D pattern formation in the S-Net.

Figure 5.1 shows the Turing pattern, but it is formed in an n × n array, where
every array element has two vertical neighbors and two horizontal neighbors (boundary
elements wrap around to the opposite boundary elements), and all neighbors are at unit
distance. This makes the Laplacian calculation reasonably accurate.

As a first approximation to an arbitrary S-Net, we produce a set of SELs whose
locations correspond to these grid locations. However, if the grid connectivity is kept,
and unit distances are used in the Laplacian, then convergence occurs. Figure 5.16
shows a close up of part of the grid, as well as the concentrations of morphogen a



72 CHAPTER 5. PATTERN FORMATION IN S-NETS

Table 5-1. Mean Steps and Stripes.
number of cells mean steps mean stripes

10 720 1.35

20 883 3.14

30 938 4.83

40 955 6.62

50 998 8.30

60 1,041 9.89

70 1,047 11.54

80 1,086 13.16

90 1,102 14.80

100 1,113 16.49

Table 5-2. Mean Steps and Stripes.

max x/y offset ≤ 0.3 0.35 0.40 0.45 0.50 0.55 0.60 0.65 ≥
avg failures per trial 0.0 0.06 0.11 0.58 0.85 0.94 0.96 1.0

resulting from an execution of the reaction-diffusion code at each SEL. The concentra-
tion of morphogen a in the S-Net is displayed by producing an image array of specified
size and assigning the appropriate gray level at each pixel according to the amount of
morphogen a at each SEL located in the corresponding pixel. Also, note that in the
S-Net, there is no wrap-around diffusion at the boundaries.

Similar to the 1D case, we find that if the locations of the SELs are perturbed off
the grid locations, and we use the actual inter-SEL distances to compute the reaction-
diffusion equations, then the failure rate of convergence increases with distance from
grid locations. Figure 5.17 shows a set of SELs perturbed by up to 2 pixels in x and 2
pixels in y from the grid positions, but maintaining the same connectivity as the grid,
and the corresponding pattern computed by the reaction-diffusion process. This is the
pattern after 3,000 iterations, but it has not yet stabilized and the spots have not yet
developed.

Next, we consider the case of SELs randomly distributed in the square area. It turns
out that if all neighbors within a certain distance (e.g., broadcast range) are used in the
reaction-diffusion calculation, and the distances are used to compute the Laplacian,
then the process generally fails to converge. However, if each SEL randomly selects
four of its neighbors (e.g., from the broadcast connectivity graph), then the reaction-
diffusion process converges. Figure 5.18 shows an example of this on a 5 × 5 square
area using 2,000 SELs placed by sampling the x and y coordinates from the uniform
distribution. Figure 5.19 shows the layout of a set of 42 X-Bow T-Sky motes; with



5.2. REACTION-DIFFUSION PATTERNS 73

0 5 10 15

35

40

45

50

55

60

65

X

Y

X

Y

Figure 5.16: S-Net Regular Grid 2-D Turing Pattern.

2 4 6 8 10 12
45

46

47

48

49

50

51

52

X

Y

X

Y

Figure 5.17: S-Net of Perturbed Regular Grid 2-D Turing Pattern.

X

Y

1.5 2 2.5

3.8

4

4.2

4.4

4.6

4.8

5

X

Y

Figure 5.18: S-Net of Randomly Placed SELs and the Resulting 2-D Turing Pattern
using 4 Randomly Selected Neighbors.



74 CHAPTER 5. PATTERN FORMATION IN S-NETS

Figure 5.19: Layout of a Set of 42 X-Bow T-Sky Motes.

the small number of motes, the reaction-diffusion process leads to the formation of
spots (i.e., the morphogen concentration a > 5). In one instance, a spot appeared after
1,250 iterations; however, the spot pattern is not stable, and eventually disappears if
allowed to continue. We believe that several issues are at play: the number of nodes,
the asynchronous nature of the mote transmissions, as well as the locality and bi-
directionality of the connectivity.

One further example of the application of the spot formation reaction-diffusion
process is to create straight lines in S-Nets. This can be done without knowing the
distance between motes, and without a coördinate frame. Suppose the goal is to create
stripes as shown in Figure 2. At each mote, determine its neighbors with lowest and
highest sensor measurements. These are assumed to lie in the gradient direction. If the
diffusion is restricted to take place only through these neighbors, then the spots blend
in this direction and become straight lines. Figure 5.20 shows this result on a simulated
set of motes.

5.3 Level Set Methods in S-Nets
Level set methods have been developed over the last few years to facilitate the analy-
sis and computation of evolving interfaces or fronts [142]. This has wide application
in computer vision, robotics, geometry and fluid mechanics. A relevant example for
S-Nets is the determination of the shortest path across a given terrain. The level set
methods depends in this case on knowledge of the speed possible at each point on
the terrain, and this is represented by a pattern developed in the S-Net; e.g., by sur-
face traversability analysis of sensor data. Moreover, the level set computation can be
reformulated as a reaction-diffusion system.

In the level set approach, numerical techniques are used to track complex fronts
as they evolve. The propagation of the interface can be characterized as either an
initial value problem or as a boundary value problem. In the application of interest
here, a curve in 2-D represents the front, and this curve moves outward with some
speed and normal to the curve. The speed is either constant or a function of position.



5.3. LEVEL SET METHODS IN S-NETS 75

Iteration5950

Figure 5.20: Lines Produced by 2D Reaction-Diffusion Process.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.21: Shortest Path through Terrain Scenario (A:Start; B: Goal).

For example, a higher maximum speed is possible on a road than on rough terrain.
Figure 5.21 shows the scenario: the S-Net is to compute a shortest path over a surface
terrain. Each SEL produces an estimate of the terrain traversability index at its location.
Based on these, as well as the start and goal positions, we seek to produce a time
minimal path. Thus, the phenomenon model in this case is the motion of the front
across the terrain. this means that we would like to determine optimal paths from the



76 CHAPTER 5. PATTERN FORMATION IN S-NETS

mobile robot to a target location with the following conditions:

the computation should be distributed in the SELs

the computation should be able to incorporate constraints (e.g., in the form of a
speed function tied to the nature of the terrain)

the computation should be robust.

In the initial value level set formulation, we assume there is a closed hyper-surface
Γ(t=0), propagating along its normal direction with speed F, which is a function of
curvature, normal direction, etc. The main idea of the level set methodology is to
embed this propagating interface as the zero level set of a higher dimensional function
φ, defined as φ(x,t=0). x is a point in <n. The equation for the evolving function
φ(x,t) that contains the embedded motion of Γ(t) as the zero level set (in the Eulerian
formulation) is:

φt + F |∇φ| = 0 (5.3)

This formula transforms a geometry problem into an initial value partial differential
equation, so that numerical techniques can be used to solve the problems of a surface
moving in two or three dimensions.

Alternatively, it is possible to solve this by using the boundary value approach
proposed by Sethian [142](p. 181):

As a simple example, imagine a starting point A and a finishing point
B in the plane, and a collection of subsets of the plane which represent ob-
stacles: Ωj , j = 1 . . . N . The shortest path under a speed function F (x, y)
from A to B which avoids these obstacles can be found by computing the
solution to the Eikonal equation:

| 5T |= 1
F (x, y)

where F (x, y) is reset to a very small number ε at those (x, y) which
belong to one of the subsets. Once the solution is found, back propagation
from B to A along the gradient constructs the optimal path.

The function F (x, y) gives the speed (i.e., maximum possible robot speed) at location
(x, y) in the terrain. The function T (x, y) gives the time of arrival of the mobile robot
were it to take the fastest possible path to (x, y) from its current position.

In general, the function T depends on the mobile robot’s location and must be
computed. Once T is known, the gradient of T can be computed, and then the optimal
path is found by following the opposite of the gradient of T from the target back to
the robot. Our insight is that this computation is easily done by the distributed sensor
devices.

To solve the shortest path problem, consider a boundary propagating through the
plane, and let its time of arrival at a point (x, y) be T (x, u); note the discussion here
is based on Sethian’s exposition). Level sets allow the determination of an optimal



5.3. LEVEL SET METHODS IN S-NETS 77

solution in terms of shortest arrival time. Assume that the maximum speed possible at
every point is given by F (x, y) > 0. Since d = rt, we have:

dx = F (x, y)dT

⇒ 1 = F (x, y)
dT

dx

It is the case then that5T is orthogonal to the level sets of T (which are equal arrival
times), and

| 5T | F = 1

Given that T (x, y) = 0 at the start location, then the boundary value formulation is:

front = Γ(t) = {(x, y) | T (x, y) = t}

When F (x, y) depends only on position, then this is called the Eikonal equation.

5.3.1 Simple Level Set Example
Consider a terrain for which the robot speed is constant at every point in the plane,
e.g., F (x, y) = 1. If the starting point is at the origin, then this represents a circular
front and T (x, y) =

√
x2 + y2. Then the analytic solution is:

5T (x, y) =


∂T

∂x

∂T

∂y

 =


x

√
x2 + y2

y
√

x2 + y2


The Eikonal equation is:

| 5T |= 1

and
Γ(t) = {(x, y) | t =

√
x2 + y2}

Thus, the level set is given by this implicit formula and for each t is the set of (x, y)
points lying on the circle of radius t centered at the origin. Some of the advantages of
this method include that it can be accurately approximated numerically, and that severe
topological changes in the front (e.g., two circles crossing), are handled very well by
the level set curve.

5.3.2 Shortest Path Problem
Let us now consider in more detail the shortest arrival time problem. Given:

S: a set of n SELs with locations (xi, yi)

Fi: the terrain speed value at SEL Si

A: start location (xA, yA)

B: start location (xB , yB)



78 CHAPTER 5. PATTERN FORMATION IN S-NETS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.22: SELs with Overlayed Virtual Regular Grid.

Kimmel and Sethian [91] describe how to use level sets to find the shortest time of
arrival path from A to B. The level set T (x, y) = C is the set of all points in the plane
which take minimal time C to reach. The Eikonal equation is solved to determine
T (x, y) at all points of interest. Subsequently, the shortest path is found by tracing
back from B to A following the gradient.

The solution provided above is intended for a regularly spaced orthogonal grid
aligned with the x− and y−axes. Given the set of 100 SELs shown in Figure 5.21, we
propose to construct a virtual regular grid of the desired spacing and to assign speed
function values based on the neighboring SELs. Figure 5.22 shows an example 20x20
grid overlayed on the SELs. A simple first approach is to assign the speed of the nearest
SEL to each grid point; this corresponds to the set of all grid points in the Voronoi cell
of each SEL. Figure 5.23 shows this. Also shown are start point A at (0.07, 0.93) and
goal point B at (0.92, 0.18).

Although the basic level set method requires expression of the gradient as a finite
difference and iterative solution of the resulting quadratic equation at each point, we
propose the following variant. Let G be the set of all grid points, Vi be the Voronoi
region of each SEL, and Gi be the grid points in Vi.

Initialize
Let g be grid point closest to A

Set T(g) to 0 and add g to FRONTIER

Set T(h) = infty for all other grid points h

Add all other grid points to OPEN

Set CLOSED to empty; set Frontier to {G− FRONTIER}



5.3. LEVEL SET METHODS IN S-NETS 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

B

Figure 5.23: SELs with Grid Points and Voronoi Regions.

Loop until T(B) is determined

Choose N ∈ FRONTIER such that T (N) is minimum

Compute T (M) for each neighbor M of N

Replace T (M) if new time is lower than previous

If M ∈ OPEN, move M to FRONTIER

Move N to CLOSED

end loop

Figure 5.24 shows two example speed maps for the unit square, and the resulting short-
est time of arrival path. The left map is constant speed and thus finds the straightest
line from A to B. The right map has road-like areas and some obstacles (speed is zero
in these regions).

Of course, the shortest time of arrival algorithm must be modified some to run as
the same algorithm in each SEL:

∀g ∈ Gi, set g.state = OPEN and g.T =∞
if A ∈ Vi, let g∗ in Gi be closest to A

Set g∗.state = FRONTIER, g∗.T = 0

Loop until T (B) is determined

if all g ∈ Gi have g.state = OPEN

Receive updates



80 CHAPTER 5. PATTERN FORMATION IN S-NETS

Update g ∈ Gi accordingly

else Broadcast grid points and iteration

Receive updates

if the lowest T value is for g ∈ Gi where g.state = FRONTIER

Compute g’s neighbors’ new times

Set g.state to CLOSED

Update times of neighbors in Gi

Broadcast new times

end
end

end loop

Of course, it is also possible to compute level sets on irregular meshes as described
by Sethian [142], however, this requires even more sophisticated mathematical tech-
niques, and their development in the S-Net is more difficult.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5.24: Shortest Paths for Two Different Speed Maps; (left: constant F; right:
variable speeds: path goes to road (white) and down, then around obstacle blocking
road, and then along road and then to goal).

5.4 Future Directions
We have described techniques for forming patterns in sensor networks based on trigono-
metric functions and reaction diffusion equations. Such methods may be used to pro-
cess data, although that is not discussed here, and to carry sensed signal information.
The next focus of our work is on the production of patterns based on sense data anal-
ysis (e.g., camouflage synthesis). Such methods may also find application in sensor
network security; in this scenario, a deformed pattern will emerge from a distributed
computation if there are any nodes which have fallen victim to attack, or if external



5.4. FUTURE DIRECTIONS 81

nodes have managed to get themselves incorporated into the S-Net. Of course, resource
allocation and exploitation may also be based on patterns, and given the random nature
of the patterns, may help conserve resources (e.g., energy) overall.

We are also exploring mesh generation in wireless sensor networks. As was pointed
out by Adamatzky et al. [1], physical reaction-diffusion computers can calculate
Voronoi graphs. Thus, a basis exists in the reaction-diffusion computation to produce
good triangulations for mote connectivity. The triangle are also important for compu-
tations on irregular meshes; e.g., for finite element methods. We are exploring this in
the context of a larger set of motes.

Another area of research is the calculation of level sets [142] in the S-Net. These
can be used for shortest path computation where an arbitrary speed function may be
defined. We have shown how mobile robots can use this approach to find the lowest
time path to traverse variable speed terrain [19]. However, the Eikonal equation used
there may be set up as a reaction-diffusion system, and piggy-backed on the approach
defined here.

Finally, stripes and spots may be of use for various purposes by mobile agents or
the S-Net, but a more direct combination of the S-Net as both a sensing and display
device is to be found in the creation of active camouflage. Consider the case of a
camouflaged truck. Although it has a standard camouflage tarpaulin, it may not blend
well with the forest behind it. Several problems may exist with coloration and blobs
versus stripes (e.g., tree trunks and branches), leaf texture, etc.

One approach to overcome this mismatch is to pair a modeling process of the nat-
ural scene behind the truck with a display synthesis component in front of the truck.
The technical basis for such a mechanism can be found in the work of Zhu and Mum-
ford [170]. They propose (1) a theory for discovering the statistics of a set of natural
images, and (2) a framework which allows the definition of reaction-diffusion equa-
tions to produce similar natural images, and in particular, they show how to remove
conspicuously dissimilar segments from a scene. Specifically, they show that given a
learned set of prior models that reproduce the observed statistics, the potentials of the
resulting Gibbs distributions have potentials of the form:

U(I; Λ, S) =
K∑
α=1

∑
x,y

λα((F (α) × I)(x, y))

where S = {F (1), F (2), . . . , F (K)} is a set of filters and Λ = {λ(1), λ(2), . . . , λ(K)}
is the set of potential functions.

Reaction-diffusion equations are found as the gradient descent partial differential
equations on U(I; Λ, S); diffusion arises from the energy terms while pattern forma-
tion reactions are related to the inverted energy terms. These are then used to remove
clutter in a scene and to denoise images. 5One example of this process given by Zhu
We propose that the resulting images can be displayed by LEDs distributed throughout
the material of the camouflage canvas, and based upon our previous work in e-textiles
[83, 85, 110], we believe that technical solutions exist for the realization of this goal.



Chapter 6

Logical Sensors and

Computational Mapping

Computational Sensor Networks1 represent a scientific computing approach, and this
includes the Verification and Validation (V & V) methodology of that discipline [118];
that is, model implementations must be verified (e.g., for numerical properties like error
and convergence), and appropriate tests embedded in the system to monitor system
correctness during execution. However, an important new aspect of this approach is
that a CSN has the ability to sense and interact with the environment, and thus can
run its own validation experiments to confirm or refute model structure or parameter
values.

Given a computational method, such as one of those described previously, the next
major goal is to develop a framework to facilitate mapping it onto a sensor network
architecture. A strong requirement is to build on existing architectures (e.g., Sensor
Network Architecture (SNA), Tenet, etc.) and to provide value added for information
analysis methods (e.g., COMPASS and WaveScope). Our approach to this is to extend
our previous Logical Sensor Specification (LSS) methodology into the CSN arena.

Recall that the SNA group has stated [24] that an architecture is not an end in itself,
but that the task at hand is “the dense monitoring and analysis of sizable extents of
the physical world,” and that “sensor networks allow the understanding of the system-
atic behavior of various phenomena.” The CSN approach allows a more quantified
understanding of physical phenomena and the sensor network, too.

LSS corresponds to a functional architecture in terms of the SNA ([24], p. 2):

Functional Architecture: This is the analog of “machine organization”
in computer design or system decomposition in software systems. It in-
cludes a description of the logical building blocks or functional units, the
capabilities of each, and their interconnection. In the TCP/IP stack, this
is the suite of protocols and their interdependencies. While these Internet

1This chapter is a modified version of work done with Esther Shilcrat [65] (Section 6.1) and Mohamed
Dekhil [31] (Section 6.2)

© Springer Science+Business Media, LLC 2009 
83 T.C. Henderson, Computational Sensor Networks, DOI: 10.1007/978-0-387-09643-8_6, 



84 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

protocols are largely arranged in a layered manner, it appears that the com-
ponent services in sensor networks are more deeply interrelated, and the
current set of designs have wide variations in both the decomposition and
the interconnection.

Another relevant aspect of the SNA architecture to the LSS approach is the pro-
gramming architecture which is composed of two aspects:

internal programming interface (IPI): how processing is performed across the
numerous nodes of the sensor network, and

external programming interface (EPI): how information extracted from the sensor
network is processed on conventional computing resources.

With respect to the IPI, CSN’s require an organization of the task structure, as well as
load balancing, communication minimization, etc. We have a great deal of experience
with this in large-scale, multi-physics simulation [103], and we are developing a similar
approach for CSN’s.

Generally, the EPI is viewed as conventional, but in our case, certain aspects of
CSN’s require more detailed exchange of information through the interface: (1) error
analysis, (2) physical phenomena models or computational methods, and (3) V & V
requirements.

6.1 Logical Sensors

An early architectural approach which advocated strong programming semantics for
multisensor systems is our Logical Sensor System (LSS) [65]. This approach exploits
functional (or applicative) language theory to achieve that. The most developed version
of LSS is Instrumented Logical Sensor Specification (ILSS) [31, 26]. We have devel-
oped Logical Sensors as specific sensor system specification methodologies whose
overall goal is to aid in the coherent synthesis of efficient and reliable sensor systems.

Both the need for and availability of wireless sensor networks is growing, as is
their complexity in terms of the number and variety of sensors within a system. Sensor
networks now have a diversity of processors and sensors, and ad hoc techniques have
been used to integrate them into a complete system and to operate on their data. In the
future, however, such systems must be adaptable and reconfigurable to account for both
sensor redundancy, complementarity and coverage, as well as to optimize time, space,
and power efficiency. Two major issues regarding the configuration of S Nets arise:

1. how to develop a coherent and efficient treatment of the information provided by
many SELs, particularly when the sensors are of various kinds;

2. how to allow for S-Net reconfiguration, as a means toward greater tolerance
for SEL device failure, dynamic selection of resources, and to facilitate future
incorporation of additional SELs.

The Multisensor Kernel System (MKS) was proposed as a uniform mechanism
for dealing with data taken from several diverse sensors [54]. MKS has three ma-
jor components: low-level data organization, high-level modeling, and logical sensor



6.1. LOGICAL SENSORS 85

specification. The first two components of MKS concern the choice of a low-level rep-
resentation of real-world phenomena and the integration of that representation into a
meaningful interpretation of the real world, and have been discussed in detail elsewhere
[38]. The logical sensor specification component aids the user in the configuration and
integration of data such that, regardless of the number and kinds of sensor devices, the
data are represented consistently. As such, the logical sensor specification component
is designed in keeping with the overall goal of MKS, which is to provide an efficient and
uniform mechanism for dealing with data taken from the S-Net, as well as facilitating
sensor system reconfiguration. However, the logical sensor specification component of
MKS can be used independently of the other two MKS components, and thus, a use for
logical sensors is evident in any multisensor system and where sensor reconfiguration
is desired.

The emergence of significant S-Net systems provides a major motivation for the
development and application of logical sensors. Monitoring highly automated factories,
complex chemical processes or the environment requires the integration and analysis of
diverse types of sensor measurements; e.g., it may be necessary to monitor temperature,
pressure, reaction rates, etc. In many cases, fault tolerance is of vital concern; e.g., in
nuclear power plants, vehicles and other transportation structures. Our work has been
done in a variety of contexts ranging from robotic workcells to snow quality monitoring,
involving the following kinds of sensors:

temperature sensors,

cameras (an intensity array of the scene is produced),

tactile pads (local forces are sensed),

proximity sensors,

laser range finders (distance to surfaces is produced),

smart sensors (special algorithms are implemented in hardware).

Oftentimes if the special hardware is not available, then some of these sensors may be
implemented as a software/hardware combination which should be viewed as a distinct
sensor and which may ultimately be replaced by special hardware.

Other principal motivations for logical sensor specification are:

1. Benefits of data abstraction: the specification of a SEL is separated from its im-
plementation. The S-Net is then much more portable in that the specifications
remain the same over a wide range of implementations. Moreover, alternative
mechanisms can be specified to produce the same sensor information but perhaps
with different precision or at different rates. Further, the stress on modularity
not only contributes to intellectual manageability [163], but is also an essen-
tial component of the system’s reconfigurable nature. The inherent hierarchical
structuring of logical sensors further aids system development.

2. Availability of smart sensors: the lowering cost of hardware combined with de-
veloping methodologies for the transformation from high-level algorithmic lan-
guages to silicon have made possible a system view in which hardware/software



86 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

divisions are transparent. It is now possible to incorporate fairly complex algo-
rithms directly into hardware. Thus, the substitution of hardware for software
(and vice versa) should be transparent above the implementation level.

Logical sensors are proposed as a means by which to insulate the user from the
peculiarities of the sensor devices, which in this case are (generally) physical sensors.
Thus, for example, a sensor system could be designed around camera input without
regard to the kind of camera being used. However, in addition to providing insulation
from the vagaries of physical devices, logical sensor specification is also a means to
create and package virtual sensors. For example, the kind of data produced by a
physical laser rangefinder sensor could also be produced by two cameras and a stereo
program. This similarity of output result is more important to the user than the fact
that one o getting it is by using one physical device, and the other way is by using two
physical devices and a program. Logical sensor specification allows the user to ignore
such differences of how output is produced, and treat different means of obtaining
equivalent data as logically the same.

We have touched briefly on the rôle of logical sensors. We now define them formally.
A logical sensor is defined in terms of four parts:

1. A logical sensor name. This is used to uniquely identify the logical sensor.

2. A characteristic output vector. This is basically a vector of types which serves
as a description of the output vectors that will be produced by the logical sensor.
Thus, the output of the logical sensor is a set (or stream) of vectors, each of which
is of the type declared by that logical sensor’s characteristic output vector. The
type may be a standard type (e.g., real, integer, etc.), a user-generated type, or a
well-defined subrange of either. When an output vector is of the type declared by
a characteristic output vector (i.e., the cross product of the vector element types),
we say that the output vector is an instantiation of the characteristic output vector.

3. A selector whose inputs are alternate subnets and an acceptance test name. The
rôle of the selector is to detect failure of an alternate and switch to a different
alternate. If switching cannot be done, the selector reports failure of the logical
sensor.

4. Alternate subnets. This is a list of one or more alternate ways in which to obtain
data with the same characteristic output vector. Hence, each alternate subnet is
equivalent, with regard to type, to all other alternate subnets in the list, and can
serve as backups in case of failure. Each alternate subnet in the list is composed
of (a) a set of input sources, and (b) a computation unit. Each element of the set of
input sources must itself be a logical sensor ot the empty set (null). Allowing null
input permits physical sensors, which have only an associated program (the device
driver), to be described as a logical sensor, thereby permitting uniformity of sensor
treatment. A computation unit is a software program, or perhaps hardware units
may also be used. In some cases a special do nothing computation unit may be
used. We refer to this unit as PASS.

A logical sensor can be viewed as a network composed of subnetworks which are
themselves logical sensors. Communication within a network is controlled via the flow



6.1. LOGICAL SENSORS 87

of data from one subnetwork to another. Hence, such networks are data flow networks.
Alternatively, we present the following inductive definition of a logical sensor. A logical
sensor is an acceptance test which checks (sequentially and on demand) the output of
either:

1. A list of computation units, with specified output type (the characteristic output
vector), which require no input sources.

2. A list of computation units, with specified output type, whose input sources are
logical sensors.

Figure 6.1 gives a pictorial presentation of this notion. The characteristic output vector
declared for this logical sensor is (x-loc:real, y-loc:real, z-loc:real, curvature:integer).
We present two examples to clarify the definition of logical sensors, and in particular
to show how the inputs to a logical sensor are defined in terms of other logical sensors
and how the program accepts input from the source logical sensors, performs some
computation on them, and returns as output a set (stream) of vectors of the type defined
by the characteristic output vector. Figure 6.2 shows the logical sensor specification for
a Camera which happens to have no other logical sensor inputs. The specification for
a stereo camera range finder called Range Finder is given in Figure 6.3. The program
stereo takes the output of two cameras and computes vectors of the form (x, y, z) for
every point on the surface of an object in the field of view. The idea is that a logical
sensor can specify either a device driver program which needs no other logical sensor
input and gets its input directly from the physical device, or a logical sensor can specify
that the output of other logical sensors be routed to a certain program and the result
packaged as indicated. This allows the user to create packages of methods which
produce equivalent data, while ignoring the internal configurations of those packages.

program

inputs from other logical sensors

an instantiated

characteristic output vector

.......

(2.31, 1.68, 0.93, 1)

Figure 6.1: Graphical View of a Logical Sensor (adapted from [65]).



88 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

program
drivercamera (x−loc:int, y−loc:int, intensity:int)

characteristic output vector

Figure 6.2: The Logical Sensor Specification of a Camera (adapted from [65]).

analysis program for

range finder

Camera 2

Camera 1

(x:real, y:real, z:real)

characteristic output vector

Figure 6.3: The Logical Sensor of a Range-Finder (adapted from [65]).

6.1.1 Formal Aspects of Logical Sensors

Having described how logical sensors are developed and operate, we now define a
logical sensor to be a network composed of one or more subnetworks, where each
subnetwork is a logical sensor. The computation units of the logical sensors are the
nodes of the network. Currently, the network forms a rooted acyclic graph. The graph is
rooted because, taken in its entirety, it forms a complete description of a single logical
sensor (versus, for example, being a description of two logical sensors which share
subnetworks). We also say that it is rooted because there exists a path between each
subnetwork and a computation unit of the final logical sensor. Logical sensors may not
be defined in terms of themselves; that is, no recursion is allowed; thus, the graph is
acyclic.

All communication within a network is accomplished via the flow of data from
one subnetwork to another. No other explicit control mechanism, such as the use of
shared variables, alerts, interrupts, etc., is allowed. The use of such control mechanisms
would decrease the modularity and independent operation of subnetworks. Hence, the
networks described by the logical sensor specification language are data flow networks,
and have the following properties:

A network is composed of independently, and possibly concurrently, operating
subnetworks.

A network, or some of its subnetworks, may communicate with its environment
via possibly infinite input or output streams.

Subnetworks are modular.

Since the actual output produced by a subnetwork may depend on things like hard-
ware failures (and because the output produced by the different subnets of a logical
sensor are only required to have the same type), the subnetworks (and hence the net-
work) are also indeterminate.



6.1. LOGICAL SENSORS 89

6.1.2 Logical Sensor Specification Language

We have shown that a logical sensor has the following properties:

A logical sensor is a network composed of subnetworks which are themselves
logical sensors

A logical sensor may be defined only in terms of other, previously defined, logical
sensors.

A computation unit is an integral part of the definition of a logical sensor.

A logical sensor produces output of the type declared by its characteristic output
vector, and the declaration of the characteristic output vector is also an integral
part of the definition of the logical sensor.

It should be noted that there may be alternate input paths to a particular sensor, and
these correspond to the alternate subnets. But even though there may be more than
one path through which a logical sensor produces data, the output will be of the type
declared by the logical sensor’s characteristic output vector.

With these points in mind, a language for describing the logical sensor system can
be formed. We give the syntax below.

Syntax

(logical sensor) → (logical-sensor-name)

(characteristic-output-vector)

(selector)

(alternate-subnet-list)

(logical-sensor-name) → (identifier)

(characteristic-output-vector) → (name-type-list)

(name-type-list) → (identifier):(type)

{; (name-type-list) }
(selector) (acceptance-test-name)

(alternate-subnet-list) → (computation-unit-name)(input-list)

{(alternate-subnet-list)}
(acceptance-test-name) → (identifier)

(input-list) → (logical-sensor-list)|null

(logical-sensor-list) → (logical-sensor)

{(logical-sensor-list)}
(computation-unit-name) → (identifier)



90 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

Semantics

Below we present the high-level description of the operational semantics (i.e., the
execution effect) for each rule of the grammar.

1. A logical sensor declaration provides an associated name for the logical sensor
used for identification purposes, and a characteristic output vector to declare the
type of output for that logical sensor. A selector performs the test and switch
after the acceptance test and the alternate subnet list establishes the alternative
way of providing the characteristic output vector.

2. A logical sensor name declaration associates a (unique) identifier for the logical
sensor.

3. A characteristic output vector establishes the type of output for the logical sensor.

4. A name-type list declaration establishes the precise nature of the output type as
declared by the characteristic output vector. It consists of a cross product of
types, with an associated name.

5. A selector declaration specifies the order in which the alternates in the alternate
subnet list will be tested by the acceptance test.

6. An alternate subnet list declaration establishes a series of input sources, computa-
tion unit name tuples, thus making known which logical sensors and computation
units are part of the definition of the logical sensor being declared.

7. An output list declaration establishes which legal input sources (either none or a
series of logical sensors) are to be used as input to the computation unit.

8. A logical sensor list declaration establishes the set of logical sensors to be used
as input.

9. A computation unit name declaration establishes the name of the actual program
which will execute on the declared input sources.

10. An acceptance test name declaration establishes the name of the actual program
which will be used to test the alternate subnets.

It is also possible to provide more formal semantics for the logical sensor specifi-
cation language. Many works provide denotational semantics (i.e., semantic schemes
which associate with each construct in the language an abstract mathematical object)
for general data flow networks [80, 81, 89]. When such semantics have been given for
the networks represented by logical sensors, we will be able to formally prove desired
network properties; e.g., that the output of a specified logical sensor has particular
properties of interest.

We have two implementations of the logical sensor specification language: a C
version (called C-LSS) running under UNIX, and a functional language version (called
FUN-LSS). These have been described elsewhere [65]. For example. FUN-LSS pro-
vides a logical sensor specification interface for the user and maintains a database of



6.1. LOGICAL SENSORS 91

S-expressions which represents the logical sensor definitions. The operations allowed
on logical sensors include:

Create: a new logical sensor can be specified by giving all the necessary infor-
mation and is it inserted in the database.

Update: an existing logical sensor may have certain fields changed; in particular,
alternative subnets can be added or deleted, program names and the corresponding
sensor lists can be changed.

Delete: a logical sensor can be deleted so long as no other logical sensor depends
on it.

Dependencies: all logical sensor dependencies are shown.

6.1.3 Fault Tolerance

The Logical Sensor Specification Language has been designed in accordance with
the view that languages should facilitate error determination and recovery. As we have
explained, a logical sensor has a selector function which takes possibly many alternative
subnets as input. The selector determines errors and attempts recovery via switching
to another alternate subnet. Each alternate subnet is an input source – computation
unit pair. Selectors can detect failures which arise from either an input source or the
computation unit. Thus, the selector together with the alternate subnets constitute a
failure and substitution device, that is, a fault tolerance mechanism, and both hardware
and software fault tolerance is achieved. This is particularly desirable in light of the fact
that “fault tolerance does not necessarily require diagnosing the cause of the fault or even
deciding whether it arises from the hardware or the software” (emphasis added) [126].
In a multisensor system, particularly where continuous operation is expected, trying to
determine and correct exact source of failure may be prohibitively time consuming.

Substitution choices may be based on either replication or replacement. Replication
means that exact duplicates of the failed component have been specified as alternate
subnets, In replacement, a different unit is substituted. Replacement of software mod-
ules has long been recognized as necessary for software fault tolerance, with the hope,
as Randell states, that using a software module of independent design will facilitate
coping “with the circumstances that caused the main component to fail” [126]. We feel
that replacement of physical sensors should be exploited both with Randell’s point in
view and because extraneous considerations, such as cost, and spatial limitations as to
placement ability are very likely to limit the number of purely backup physical sensors
which can be involved in a sensor system.

Recovery Blocks

The recovery block is a means of implementing software fault tolerance [126]. A
recovery block contains a series of alternates which are to be executed in the order
listed. Thus, the first in the series of alternates is the primary alternate. An acceptance
test is used to ensure that the output produced by an alternate is correct or acceptable.
First the primary alternate is executed and its output scrutinized via the acceptance test.



92 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

If it passes, that block is exited, otherwise the next alternate is tried, and so on. If no
alternate passes, control switches to a new recovery block if one on the same level or
higher is available; otherwise, an error results.

Similarly, a selector tries, in turn, each alternate subnet in the list and tests each
one’s output via an acceptance test. However, while Randell’s scheme requires the use
of complicated recovery mechanisms (restoring the state, etc.), the use of a data flow
model makes error recovery relatively easy. Furthermore, our user interface computes
the dependency relation between logical sensors [143]. This permits the system to
know which other sensors are possibly affected by the failure of a sensor.

The general difficulties relating to software acceptance tests, such as how to devise
them, how to make them simpler than the software module being tested, and so on,
remain. It is our view that some acceptance tests will have to be designed by the user,
and that our goal is simply to accommodate the use of the test. Unlike Randell, we
envision the recovery block as a means for both hardware and software fault tolerance,
and hence we also allow the user to specify general hardware acceptance tests. Such
tests may be base, or example, on data link control information, two-way handshaking,
and other protocols. It is important to note that a selector must be specified even if there
is only one subnet in a logical sensor’s list of alternate subnets. Without at least the
minimal acceptance test of a time out, a logical sensor could be placed on hold forever
even when alternate ways to obtain the necessary data could have been executed. Given
the minimal acceptance test, the selector will at least be able to signal failure to a higher-
level selector which may then institute a recovery. However, we also wish to devise
special schemes for acceptance tests when the basis for substitution is replacement.
While users will often know which logical sensors are functionally equivalent, it is also
likely that not all possible substitutions of logical sensors can be considered. Thus, we
are interested in helping the user expand what is considered functionally equivalent.
Such a tool could also be used to automatically generate logical sensors.

We give an example logical sensor network in Figure 6.4. This example shows
how to obtain surface point data from possible alternate methods. The characteristic
output vector of Range-Finder is (x : real, y : real, z : real) and is produced by
selecting one of the two alternate subnets and projecting the first three elements of
the characteristic output vectors. The preferred subnet is composed of the logical
sensor Image-Range. This logical sensor has two alternate subnets which both have the
dummy computational unit PASS. PASS does not effect the type of the logical sensor.
These alternatives will be selected in turn to produce the characteristic output vector
(x : real, y : real, z : real, i : int). If both alternates fail, the Image-Range sensor
has failed. The Range-Finder then selects the second subnet to obtain the (x : real, y :
real, z : real) information from the Tactile-Range’s characteristic output vector. If the
Tactile-Range subsequently fails, then the Range-Finder fails. Each subnet uses this
mechanism to provide fault tolerance.

6.1.4 Ramifications a Replacement Scheme

Many difficult issues arise when fault tolerance is based on a replacement scheme. Be-
cause the replacement scheme is instrumented through the use of alternate subnets, the
user can be sure that the type of output will remain constant, regardless of the particular



6.1. LOGICAL SENSORS 93

Select

Project
1_2_3

Project
1_2_3

Select

Select Select Select

Select

Stereo

Driver
Camera 1

Driver
Camera 2

Driver
Tactile Pad

Tactile Range

(x:real, y:real, z:real)

(x:real, y:real, z:real, i:int)

(i:int, j:int, level:int) (i:int, j:int, level:int) (i:int, j:int, f:real)

(x:real, y:real, z:real, f:real)

Figure 6.4: The Logical Sensor for Range-Finder (adapted from [65]).

source subnet. Ideally, however, we consider that a replacement-based scheme is truly
fault tolerant only if the effect of the replacement is within allowable limits, where the
allowable limits are determined by the user. As a simple example, consider a sensor
array of one camera, A, and a backup camera, B, of another type. Suppose camera
A has accuracy of ±0.01%, and camera B has accuracy of ±0.04%. If the user has
determined that the allowable limit on accuracy is±0.03%, then replacement of camera
A by camera B will not yield what we call a truly fault tolerant system.

As mentioned above, determining functional equivalence may necessitate knowing
more about a logical sensor than just its type. This example illustrates this point in
that we have isolated a need to know about leaf logical sensors (physical sensors).
However, we also mentioned that the above example was simplified. Let us now
assume, in addition, that the user can use a variety of algorithms to obtain the desired
final output. Suppose that one of those algorithms incorporates interpolation techniques
which could increase the degree of accuracy of camera B’s output. In this case, the
user may use camera B and this algorithm as an alternate subnet and have a truly fault
tolerant system. Thus, when we consider this more complex example, we see a general
need for having features (besides type of output) of logical sensors visible, and a need
to propagate such information through the system.

Feature propagation, together with allowable limit information, is needed for replace-
ment-based fault tolerance schemes and constitutes an acceptance test mechanism. In
addition, such feature propagation has a good potential for use in automatic logical
sensor system specification and optimization. For example, consider an environment
monitoring location with several SELs. Once various logical sensors have been defined
and stored, feature propagation can be used to configure new logical sensors with prop-
erties in specified ranges, or to determine the best logical sensor system (within the
specified and perhaps weighted parameters).



94 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

6.1.5 Features and Their Propagation

Our view is that propagation of features will occur from the leaf nodes to the root of
the network. In sensor systems, the leaf nodes will generally be physical sensors (with
associated drivers). Thus, we first discuss the important features of physical sensors.

Features of Physical Sensors

Our goal here is to determine whether a set of generally applicable physical sensor
features exists, and then to provide a database to support the propagation mechanism.
In addition, it is possible for the user to extend the set of features. To date, existing
systems provide a small set of generally applicable features.

All physical sensors convert physical properties or measurements to some alternative
form, and hence are transducers. Some standard terms for use in considering transducer
performance must be defined [164]. We have selected a set of features defined by Wright
which we feel are generally applicable to physical sensors.

Error – the difference between the value of a variable indicated by the instrument
and the true value at the input.

Accuracy – the relationship of the output to the true input within certain prob-
ability limits. Accuracy is a function of nonlinearities, hysteresis, temperature
variation, etc.

Repeatability – the closeness of agreement within a group of measurements at
the same input conditions.

Drift – the change in output that may occur despite constant input conditions.

Resolution – the smallest change in input that will result in a significant change
in transducer output.

Hysteresis – a measure of the effect of history on the transducer.

Threshold – the minimum change in input required to change the output from a
zero indication.

Range – the maximum range of input variable over which the transducer can
operate.

Based on this set of physical sensor characteristics, the next step in arriving at a
characterization of logical sensors is to compose physical sensor feature information
with computation unit feature information.

Algorithm Features

There are several difficult issues involved in choosing a scheme whereby features of
algorithms can be composed with features of physical sensors such that the overall
logical sensor may be classified. As Bhanu [10] has pointed out: “The design of the



6.1. LOGICAL SENSORS 95

system should be such that each of its components makes a maximum use of the input
data characteristics and its goals are in conformity with the end result.”

One issue to be resolved is how to represent features and feature composition.
One approach is to record feature information and compositions functions separately.
Thus, it would be necessary to classify an algorithm as having a certain degree of
accuracy, and in addition, provide an accuracy function which given the accuracy of
the physical sensor, produces the overall accuracy for the logical sensor which results
from the composition of the physical sensor and the algorithm. A major difficulty in
resolving such issues is presented by the great variety of sensor systems, both actual
and potential, and the varying level of awareness of such issues within different sensor
user communities. For example, experienced users of certain types of sensors may
have a fairly tight knowledge of when and why certain algorithms work well, whereas
other communities may not. Indeed, even within a sensor user community, algorithm
evaluation techniques may not be standardized, hence yielding a plethora of ways in
which properties of algorithms may be described. This problem is manifest in Bhanu’s
survey of the evaluation of automatic target recognition (ATR) algorithms.

The state of the art in algorithm evaluation techniques effects the choices made
regarding the use of classifying physical sensors whether we wish to simply catalog
information or maximize criteria. For example, if the user cannot provide information
about the degree of resolution for the algorithms used, then an overall logical sensor
resolution figure cannot be determined, even if the resolution of all physical sensors
is known. Also, if such is the case, then the system cannot be used to help the user
maximize the degree of resolution of the final output.

We now describe some techniques to allow for dynamic specification and allocation
of logical sensors. Though the kinds of logical sensors which we consider represent
only simple extensions to the existing logical sensor system, this type of work is the first
step toward generally extensible logical sensor systems. The goal here is to show how,
given information about logical sensors which can be configured in the system, new
logical sensors can be defined automatically. Two techniques have been investigated:
tupling and merging data.

Tupling Data

Tupling data is a technique which can be used to automatically generate new logical
sensors in a feature-based sensor system. In such systems, the logical sensors return
information about certain features found in the environment, such as objects present,
motion, temperature, chemicals present, etc. The user may then request a new logical
sensor be established by specifying the name for the new logical sensor, and giving
the names of the input logical sensors. The output of the new logical sensor will be,
simply, a set of tuples (one for each object in the environment), where each tuple is
composed of the Cartesian product of the features which were input from the source
logical sensors. Thus, we are basically packaging together features of interest so that
they will be in one output stream. For example, suppose that the number of edges
and number of holes are sufficient to determine the presence of bolts. Then a logical
sensor bolt detector could be created by tupling the output of the logical sensors edge
detector and hole detector (so long as they produce results which can be identified with



96 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

specific objects). It should be noted that we assume that the latter two logical sensors
produce output of the form (object number, feature 1, feature 2, ..., feature N). In this
example, hole detector produces output of the form (object number, number of edges)
and logical sensor hole detector produces output of the form (object number, number of
holes). Logical sensor bolt detector will match the object number and produce tuples
of the form (object number, number of edges, number of holes).

Merging Data

Another facility we have investigated dynamically incorporates, in response to a system
demon, a newly defined logical sensor which outputs the merge of 3D logical sensor
inputs. The idea is to accommodate an interactive request to allow the output of two
physical sensors to be treated as one; for example, to create a multiple-view laser
range finder logical sensor from two different laser range finder logical sensors. In this
example, a logical sensor multiview laser is created with input logical sensors of both
laser range finders, and the inputs are merged to produce output. Thus, the user can
decide interactively to get more views without having to reconfigure the entire system.
Also such a facility obviates the need for having multiple program units where the only
difference is the number of expected inputs.

6.2 Instrumented Logical Sensor Systems

Instrumented Logical Sensor Systems (ILSS) were introduced as an extension to LSS
which permits incorporation of the verification and validation aspects of computational
science directly into the definition of the modules [29, 26]. Sensor systems are becoming
ubiquitous throughout society, yet their design, construction and operation are still
more of an art than a science. We define, develop, and apply a formal semantics
for sensor systems that provides a theoretical framework for an integrated software
architecture for modeling sensor-based control systems. Our goal is to develop a design
framework which allows the user to model, analyze and experiment with different
versions of a sensor system. This includes the ability to build and modify multisensor
systems and to monitor and debug both the output of the system and the affect of
any modification in terms of robustness, efficiency, and error measures. The notion
of Instrumented Logical Sensor Systems (ILSS) that are derived from this modeling
and design methodology is introduced. The instrumented sensor approach is based on
a sensori-computational model which defines the components of the sensor system in
terms of their functionality, accuracy, robustness and efficiency. This approach provides
a uniform specification language to define sensor systems as a composition of smaller,
predefined components. From a software engineering standpoint, this addresses the
issues of modularity, reusability, and reliability for building complex systems. An
example is given which compares vision and sonar techniques for the recovery of wall
pose.

In any closed-loop control system, sensors are used to provide the feedback informa-
tion that represents the current status of the system and the environmental uncertainties.
Building a sensor system for a certain application is a process that includes the analysis



6.2. INSTRUMENTED LOGICAL SENSOR SYSTEMS 97

of the system requirements, a model of the environment, the determination of system
behavior under different conditions, and the selection of suitable sensors. The next step
in building the sensor system is to assemble the hardware components and to develop
the necessary software modules for data fusion and interpretation. Finally, the system
is tested and the performance is analyzed. Once the system is built, it is difficult to
monitor the different components of the system for the purpose of testing, debugging
and analysis. It is also hard to evaluate the system in terms of time complexity, space
complexity, robustness, and efficiency, since this requires quantitative measures for
each of these.

In addition, designing and implementing real-time systems is becoming increasingly
complex because of many added features such as fancy graphical user interfaces (GUIs),
visualization capabilities and the use of many sensors of different types. Therefore,
many software engineering issues such as reusability and the use of COTS (Commercial
Off-The Shelf) components [125], real-time issues [71, 139, 145], sensor selection [44],
reliability [84, 90, 150], and embedded testing [159] are now getting more attention
from system developers.

We previously proposed to use formal semantics to define performance characteris-
tics of sensor systems [27]. Here we address these and other problems related to sensor
system modeling and evaluation. We start by presenting a theoretical framework for
modeling and designing sensor systems based on a formal semantics in terms of a virtual
sensing machine. This framework defines an explicit tie between the specification, ro-
bustness and efficiency of the sensor system by defining several quantitative measures
that characterize certain aspects of the system’s behavior. Figure 6.5 illustrates our
proposed approach which provides static analysis (e.g., time/space complexity, error
analysis) and dynamic handles that assist in monitoring and debugging the system.

6.2.1 Sensor Modeling

Each sensor type has different characteristics and functional description. Therefore
it is desirable to find a general model for these different types that allows modeling
sensor systems that are independent of the physical sensors used, and enables studying
the performance and robustness of such systems. There have been many attempts to
provide “the” general model along with its mathematical basis and description. Some
of these modeling techniques concern error analysis and fault tolerance of multisensor
systems [13, 32, 74, 112, 121, 122]. Other techniques are model-based and require
a priori knowledge of the object and its environment [35, 48, 77]. These techniques
help fit data to a model, but do not provide the means to compare alternatives. Task-
directed sensing is another approach to devise sensing strategies [12, 51, 50], but again,
it does not provide measures to evaluate the sensor system in terms of robustness and
efficiency.

Another approach to modeling sensor systems is to define sensori-computational
systems associated with each sensor to allow design, comparison, transformation, and
reduction of any sensory system [34]. In this approach the concept of information
invariants is used to define some measure of information complexity. This approach
provides a very strong computational theory which allows comparing sensor systems,
reducing one sensor system to another, and measuring the information complexity



98 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

?

?

System

Model

robustness

efficiency instrumented
components

Help select

Space and time
complexity

Software

Sensors

Hardware

Environment
Requirements

Debugging

Monitoring

Figure 6.5: The Proposed Modeling Approach (adapted from [26]).

required to perform a certain task. However, as stated by Donald, the measures for
information complexity are fundamentally different from performance measures. Also,
this approach does not permit one to judge which system is “simpler,” “better,” or
“cheaper.”

To that end, we introduced the notion of an Instrumented Logical Sensor System
(ILSS) which represents our methodology for incorporating design tools and allows
static and dynamic performance analysis, on-line monitoring, and embedded testing.
Figure 6.6 shows the components of our framework. First (on the left), an Instrumented
Logical Sensor Specification is defined, as well as F , a set of functions which measure



6.2. INSTRUMENTED LOGICAL SENSOR SYSTEMS 99

system properties of interest. This specification is derived from a mathematical model,
simulation results, or from descriptions of system components. Analysis of some
aspects of the ILSS are possible (e.g., worst-case complexity of algorithms). Next
(the center of the figure), an implementation of the system is created; this can be done
by hand or automatically generated in a compile step (note that the original Logical
Sensor Specifications [65] could be compiled into Unix shell script or Function Equation
Language (FEL), an applicative language). Either way, the monitoring, embedded
testing or taps are incorporated into the system implementation. Finally (the right
hand side), validation is achieved by analyzing the system response and performance
measures generated during system execution. In this way, there are some semantic
constraints on the values monitored which relate the system output measures to the
original question posed for the specification.

An ILSS library was developed as part of an interactive graphical programming
environment called CWave used to design and execute real-time control systems. We
also developed a theoretical framework and validation strategy with a partial imple-
mentation within CWave. CWave is a graphical program specification language that
has been created to design measurement systems and applied to a broad set of robot
systems (e.g., Lego robot warehouse demos) in the software engineering projects class
here at Utah. Finally, CWave is a specification language and can be linked to simulation
tools, or executed in an interpreted mode, or compiled for incorporation in embedded
systems.

Response
System

Measures
Performance

ILSS and   F

Virtual Sensing Machine (VSM)

Real System

Simulation

Mathematical
Model

Performance
Analysis

Sensing

Comm.

Control

Robot

Power

Specification

Embedded
Testing

On-line
Monitoring

Implementation Validation

Figure 6.6: The Instrumented Logical Sensor System Components (adapted from [26]).



100 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

6.2.2 Performance Semantics of Sensor Systems

The use of sensors in safety critical applications, such as transportation and medicine,
requires a high level of reliability. However, increased robustness and reliability of a
multisensor system requires increased cost through redundant components and more
sensor readings and computation. In contrast, increasing the efficiency of the system
means less redundant components, fewer sensor readings and less computation. Perfor-
mance analysis is crucial to making an informed tradeoff between design alternatives.

Performance analysis consists of a static analysis of a specification of the system
and its parameters as well as a dynamic analysis of the system’s run-time behavior. The
static analysis can be based on some formal description of the syntax and semantics
of the sensor system, while the dynamic analysis requires on-line monitoring of some
quantitative measures during run-time.

Our goal is to achieve strong performance analysis and provide information which
allows the user to make informed choices concerning system tradeoffs. This involves a
sensor system model which permits quantitative measures of time and space complexity,
error, robustness, and efficiency, and which facilitates analysis, debugging and on-line
monitoring which directly supports the CSN paradigm.

Formal semantics of programming languages provides techniques to describe the
meaning of a language based on precise mathematical principles. These formal tech-
niques should provide the following: precise machine-independent concepts, unam-
biguous specification techniques, and a rigorous theory to support reliable reasoning
[45]. The main types of formal semantics are: denotational semantics which concerns
designing denotations for constructs, operational semantics which concerns the spec-
ification of an abstract machine together with the machine behavior when running the
program, and axiomatic semantics which concerns axioms and rules of inference for
reasoning about programs.

Our view is that performance semantics should allow us to compute measures of
interest on program structures. Denotational semantics is the closest to our view since,
according to [3], to specify the semantics of a language denotationally means to specify
a group of functions which assigns mathematical objects to the program and to parts of
programs (modules) in such a way that the semantics of a module depends only on the
semantics of the submodules. Thus, given a set of programs, P , from a language, and
an operating context, C, the semantics is a set of functions

F = {fi}

where

fi : P × C → �
where � is the measurement domain.

The static semantics defines structural measures over the syntax of p ∈ P . This
includes standard measures such as maximum depth of the program graph, branch-
ing measures, data structure properties, storage estimates and standard computational
complexity measures. Note that these can be determined without reference to C (i.e.,
f : P → �). This can be extended to include functions of the operational context
C, including sensor models, accuracy, precision, redundancy and replacement, as well



6.2. INSTRUMENTED LOGICAL SENSOR SYSTEMS 101

as operating system effects, communication strategies and protocols, and processor
properties.

The dynamic semantics include validity measures and operational characteristics.
Validity measures permit the comparison of behavior models to actual run-time per-
formance (monitors), while operational characteristics are simply measures of run-
time values (taps). The values of a tap or monitor are represented as a sequence
X = (xn : n ∈ N ); xn is the nth value produced by the tap or monitor

X : N → S

where S is the structure produced by the tap or monitor.
The selection of functions inF depends directly on the user’s needs and are defined

so as to answer specific questions. Standard questions include actual running times,
space requirements, bottlenecks, etc., and a complex application can be investigated
in a top down manner – the user may define new measurement functions on lower
level modules once information is gained at a higher level. This forces the user to
identify crucial parameters and to measure their impact. For example, a target tracking
application may be data dependent, say on the number of segmented objects or their
distribution in the scene. Thus, the user is coerced into a better understanding of the
significant value regimes of these parameters and may develop monitors to ensure that
the application stays within a given range, or that it dynamically switches algorithms
when a particular parameter value occurs (e.g., more than 100 segmented objects occur
in the image). The main point is that the user can construct executable versions of the
fi ∈ F to ensure the validity of the controller as it runs.

Although computational complexity provides insight for worst case analysis, and
for appropriate population distribution models, average case analysis can be performed,
and we propose here what might be termed empirical case analysis which allows the
user to gain insight into the system without requiring a detailed analytical model of the
entire application and its context. Very few users exploit formal complexity analysis
methods; we believe that empirical case analysis is a very useful tool.

Simple Example: Time Vs. Robustness Using Sonar Readings

Suppose that we have two mobile SELs and want to determine how many sonar readings
to use to get a robust range estimate, but would like to trade off against the time taken
to sample. This simple example demonstrates the motivation of the proposed approach
and how it can be used to select between alternatives. In this example we have a
“classical” tradeoff between speed (time to accomplish a certain task) and robustness
(a combination of accuracy and repeatability). Assume that the sonar has been calibrated
to eliminate any environmental effects (e.g., wall type, audio noises, etc.). The variables
in this case are the accuracy of the physical sonar sensor and the number of readings
taken for the same position.

Assuming the time to take one reading is t, the error standard deviation is σ, and the
probability of a bad reading is Prb, taking one reading yields minimum time and worst
accuracy. By adding a filter (e.g., averaging) and taking multiple readings, accuracy
increases and time also increases. Therefore, we need quantitative measures to decide



102 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

how many readings are needed to achieve the required accuracy (measured in terms of
the standard deviation of the error) within a time limit.

Using the formalism presented earlier, the semantics of this problem can be defined
using the set of functions F = {time, error, repeatability}. In the case of using a
single reading these functions can be written as:

time(single) = t

error(single) =
σ√

(1− Prb)

repeatability(single) = 1− Prb

Now, if we take the average of n readings, the semantics can be written as:

time(average) = nt + τn

error(average) =
σ√

n ∗ (1− Prb)

repeatability(average) = 1− Prnb

where τn is the time to calculate the average of n readings, and τ1 = 0.
In this simple example we were able to get estimates of the required measures using

mathematical models. However, we did not consider the changes in the environment
and how it affects these measures. In this case, the set of functionsF are mappings from
the cross product of the program P and the operating context C to the measurement
domain �, that is

fi : P × C → �
To solve this problem, we either have to model the environmental effects and include

it in our model, or we may need to conduct simulations if a mathematical model is not
possible. Simulation is a very useful tool to approximate reality, however, in some
cases even simulation is not enough to capture all the variables in the model, and real
experiments with statistical analysis may be required to get more accurate results. Thus,
the formal functions can be operationalized as monitors or taps in the actual system.

6.3 Sensor System Specification

The ILSS approach is based on Logical Sensor Systems (LSS) described in the previous
section, and is comprised of the following components (see Figure 6.7):

1. ILS Name: uniquely identifies a module.

2. Characteristic Output Vector (COV): strongly typed output structure. We have
one output vector (COVout) and zero or more input vectors (COVin).

3. Commands: input commands to the module (Commandsin) and output com-
mands to other modules (Commandsout).



6.3. SENSOR SYSTEM SPECIFICATION 103

4. Select Function: selector which detects the failure of an alternate and switches
to another alternate (if possible).

5. Alternate Subnets: alternative ways of producing the COVout. It is these im-
plementations of one or more algorithms that carry the main functions of the
module.

6. Control Command Interpreter (CCI): interpreter of the commands to the module.

7. Embedded Tests: self testing routines which increase robustness and facilitate
debugging.

8. Monitors: modules that check the validity of the resulting COVs.

9. Taps: hooks on the output lines to view different COV values.

ILSS Name

Command Control Interpreter (CCI)

S
ub

ne
t 

n

COVin

inCommands outCOV

Commands out

E
m

be
dd

ed
T

es
ts

Select Function

Taps

S
ub

ne
t 

2

S
ub

ne
t 

1

M
on

it
or

s

Figure 6.7: The Extended Logical Sensor Module (adapted from [26]).

These components identify the system behavior and provide mechanisms for on-line
monitoring and debugging. In addition, they give handles for measuring the run-time
performance of the system.

Monitors are validity check stations that filter the output and alert the user to any
undesired results. Each monitor is equipped with a set of rules (or constraints) that
governs the behavior of the COV under different situations.

Embedded testing is used for on-line checking and debugging proposes. Weller
proposed a sensor processing model with the ability to detect measurement errors and
to recover from these errors [159]. This method is based on providing each system
module with verification tests to verify certain characteristics in the measured data and
to verify the internal and output data resulting from the sensor module algorithm. The



104 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

Results

CheckData

Generation

Subnet i

Local tests

COVin COVout

Figure 6.8: Local Embedded Testing (adapted from [26]).

recovery strategy is based on rules that are local to the different sensor modules. We
use a similar approach in our framework called local embedded testing in which each
module is equipped with a set of tests based on the semantic definition of that module.
These tests generate input data to check different aspects of the module, then examine
the output of the module using a set of constraints and rules defined by the semantics.
Also these tests can take input data from other modules if we want to check the operation
for a group of modules.

Figure 6.8 illustrates the idea of local embedded testing. Local embedded testing
increases the robustness of the system and provides the user with possible locations to
tap into when there is a problem with the system.

6.3.1 Construction Operators

In our proposed framework, a sensor system is composed of several ILSS modules
connected together in a certain structure. We define operations for composing ILSS
modules, and then define the semantics of these operations in terms of the performance
parameters. Some of these operations are (see Figure 6.9):

Serial(ILSS1, ILSS2): two logical modules are connected in series. Here
COV 3 = COV 2.

Select(ILSS1, ILSS2): COV 3 is equal to either COV 1 or COV 2.

Combine(ILSS1, ILSS2): COV 3 is the concatenation of COV 1 and COV 2.

For these simple constructs, the semantics is defined as a set of functions that
propagate the required performance measures. Several techniques can be used for
propagation. Best case analysis, worst case analysis, average, etc. Selecting among
these depends on the application, hence it should be user defined. As an example,
the time of the resulting logical system using worst case analysis can be calculated as
follows:

time(Serial(ILSS1, ILSS2)) = time(ILSS1) + time(ILSS2)

time(Select(ILSS1, ILSS2) = max(time(ILSS1), time(ILSS2))

time(Combine(ILSS1, ILSS2) = max(time(ILSS1), time(ILSS2))



6.3. SENSOR SYSTEM SPECIFICATION 105

ILS1

ILS3

COV1
ILS2

COV2
COV3

COV2

COV1

COV1

COV2

ILS1

ILS1

ILS2

ILS2

ILS3

ILS3

COV3

COV3

Serial:

Select:

Combine:

Figure 6.9: Some Operations used for Propagating the Performance Measures (adapted
from [26]).

Hence, the semantic functions of the composite system are defined in terms of the
semantic functions of the subcomponents, Similarly, functions that define the propaga-
tion of other performance measures can be defined in the same way.

For error propagation, we use a simple approach which does not require carrying
a lot of information through the system. This approach is based on the uncertainty
propagation described in [39, 70]. Assume that we have a certain module with n
inputs X = (x1, x2, . . . , xn) and m outputs Y = (y1, y2, . . . , ym) such that Y =
f(X), and assume that the error variance associated with the input vector is ΛX =
(Λx1 , Λx2 , . . . , Λxn) (see Figure 6.10), then the error variance for the output vector is
calculated using the equation:

ΛY =
(

∂Y

∂X

)
ΛX

(
∂Y

∂X

)T

where ∂Y
∂X is the partial derivative of Y with respect to X evaluated at the measured

value of the input vector X . If all the elements in X are independent variables, then



106 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

this equation can be written as:

Λyi =
n∑
j=1

(
∂yi
∂xj

)2

Λxj , i = 1, 2, . . . , m

Our overall goal is to provide a tightly coupled mechanism to map high-level perfor-
mance measures onto an appropriate set of monitors, tests and taps so as to provide the
required information.

δ
δ( ) Λ ( )δ

δ

T
Y
X

Y
X

= Λ Y X
x

x

x

1

n

2

1

2

y

y

y
m

Y = F (X)

Figure 6.10: A Simple Approach for Error Propagation (adapted from [26]).

6.3.2 Implementation

The ultimate goal of this project is to utilize the proposed theoretical framework in
a usable modeling and prototyping environment with tools for analysis, debugging,
and monitoring sensor systems with emphasis on robot control applications. Thus, we
developed an ILSS library within a visual programming system called CWave targeted
toward the development of control systems for measurement devices and hardware
simulations. CWave is developed by the Component Software Project (CSP) research
group in the Department of Computer Science at the University of Utah in coöperation
with the CSP group at Hewlett Packard Research Labs in Palo Alto, California.

CWave is based on a reusable software components methodology where any sys-
tem can be implemented by visually wiring together predefined and/or user created
components and defining the dataflow between these components. The CWave de-
sign environment includes several important features that make it suitable to use as a
framework for implementing ILSS components. Some of these features are:

Open architecture with ease of extensibility.

Drag-and-drop interface for selecting components.

Several execution modes including single step, slow, and fast execution.

On-line modification of component properties.

The ability to add code interactively using one of several scripting languages
includingVisual Basic and Java Script. This is particularly useful to add monitors
and/or taps on the fly.

Parallel execution using visual threads.

On-line context sensitive help.



6.3. SENSOR SYSTEM SPECIFICATION 107

Description

Window

CWave Program

Message

Window

Component

Palette

browser

HTML Help

Figure 6.11: CWave Design Environment (adapted from [26]).

Figure 6.11 shows the CWave design environment with some of its features.
An object-oriented approach is used to develop the ILSS components using Visual

C++ for implementation. Each component is an object that possesses some basic
features common to all components plus some additional features that are specific
to each ILSS type. The following are some of the basic functions supported by all
components:

Initialize: performs some initialization steps when the component is created.

Calibrate: starts a calibration routine.

Sense: generates the COV corresponding to the current input and the component status.

Reset: resets all the dynamic parameters of the component to their initial state.

Test: performs one or more of the component’s embedded tests.

Select: selects one of the alternate subnets. This allows for dynamic reconfiguration
of the system.

Monitor: observes the COV and validate its behavior against some predefined char-
acteristic criteria.

Tap: displays the value of the required variables.



108 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

We used several design patterns in designing and implementing the components.
Design patterns provide reliable and flexible object-oriented designs that can accom-
modate rapid modifications and extensions [42]. For example, the decorator pattern is
used to dynamically attach additional functionality to the object. This is particularly
useful in our case where the user can dynamically choose the performance measures to
be propagated and the values to be monitored while the system is running. Note that
monitors, tests, and taps can be exploited to analyze CWave (or any implementation
language) module performance independently of the sensor aspects of the system. This
is rendered more efficient and transparent to the user by incorporating them directly as
language features.

6.4 Example: Wall Pose Estimation

The following example illustrates the use of the proposed framework to model and
analyze two alternatives for determining flat wall position and orientation: one using
vision and one using sonar sensors [28, 59, 61, 30]. The sonar sensors are mobile
SELs (the experiments were carried out on a LABMATE mobile robot designed by
Transitions Research Corporation).

In this example, we consider two different logical sensors to determine wall pose
and find the corresponding errors and time complexity for each. The first ILSS uses
a camera and known target size and location. The second ILSS deals with the sonar
sensor as a wedge sensor (i.e., it returns a wedge centered at the sonar sensor and spread
by an angle 2θ.) Figure 6.12 shows the two logical sensors. (See [61] for an overview
of the sonar pose recovery technique, and [60] for target-based calibration.)

In this figure, image is the 128x128 black and white image acquired by the Cam-
era, and r1 and r2 are the two sonar readings generated from Sonar1 and Sonar2,
respectively. Target Points extracts three reference points from the image, while Vision
Line produces two points on the line of intersection of the wall with the x-z plane of
the camera system. Wedge Sonar Line takes the two range values r1 and r2, and the
spread angle of the sonar beam θ, and returns two 2D points on the line representing
the wall.

6.4.1 System Modeling and Specification

As shown in Figure 6.12, ILSS1 is composed of three modules, a Camera module, a
Target Points module and a Vision Line module. On the other hand, LSS2 has three
modules, two Sonar modules and a Wedge Sonar Line module followed by a Combine
operator.

Each ILSS is defined in terms of a set of components that characterize the module.
The data and the corresponding performance measures start from the Camera or Sonar
module and propagate upward until they reach the COV of the main ILSS. On the other
hand, the commands start from the main ILSS and propagate downward until they
reach the Camera or Sonar module. The COV is composed of two parts: data and
performance measures. For example, COVout for Sonar1 is

({r1, θ}, {t, Λr1, Λθ})



6.4. EXAMPLE: WALL POSE ESTIMATION 109

rl
(y  , y  , y  )

(x  ,z  ,x  ,z  )

c

211

(x  ,z  ,x  ,z  )2

2

11 2

(r1, )θ

)θ(r2, 

Wall

ILSS1

Sonar1

Sonar2

Returned Points

r1

r2

θ

θ

Sonar

Line

ILSS2

Combine
Wedge

Points Line

Target Vision

image

Camera

Wall

Figure 6.12: Two Instrumented Logical Sensors for Determining Wall Position (adapted
from [26]).

where t is the time taken to execute the module and Λr1 and Λθ are the error variances
for r1 and θ, respectively. In this example, each module has only one alternate subnet,
therefore, the select function is trivial.

6.4.2 Performance Semantic Equations

Using worst case analysis, the performance semantic equations of the time and error
for ILSS1 and ILSS2 can be written as:

time(ILSS1) = time(Serial(Camera, TargetPoints, V isionLine))

error(ILSS1) = error(Serial(Camera, TargetPoints, V isionLine))

time(ILSS2) = time(serial(combine(Sonar1, Sonar2),Wedge sonar line))

error(ILSS2) = error(serial(combine(Sonar1, Sonar2),Wedge sonar line))



110 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

Now, we need to calculate the time and error for the subcomponents. Assume that
tsonar1, tsonar2, tcamera, tTargetPoints, tV isionLine and twedge sonar line are the time
for the subcomponents, and Λr1, Λr2, Λyl , Λyc , Λyr and Λθ are the error measures
for r1, r2, yl, yc, yr and θ, respectively. The time for LSS1 and LSS2 can be easily
calculated using the propagation operations discussed earlier as follows:

time(ILSS1) = tcamera + tTargetPoints + tV isionLine

time(ILSS2) = max(tsonar1, tsonar2) + twedge sonar line

Propagating the error requires more elaborate analysis for each component. For
ILSS1, we start with the error in the physical sensor which is the camera in this case.
The camera generates two-dimensional arrays of intensity values, P (x, y), where P is
an m × n matrix. The error we are concerned abound in this example is the error in
position (x, y) of a point on the CCD array (which corresponds to rows and columns
in the image.) This error is affected by the resolution of the camera and the distance
between the CCD elements. Let’s assume that the error is Gaussian with mean 0 and
variance (Λx, Λy) at any point (x, y). This can be written as:

error(Camera) = {(Λx, Λy)m×n}
This error translates directly into the second component, Target Points, which ex-
tracts the y value for three different points in the image; yl, yc, and yr. Assuming that
the variance in the y direction (Λy) is the same at any pixel, the error at this stage will
be:

error(Target Points) = {Λy, Λy, Λy}
The last component in ILSS1, V ision Line performs several operations on these

three values to generate the two points of the line representing the wall. First, the
corresponding z value is calculated for the three points using the equation:

zi =
Y0

yi
, i = l, c, r

where Y0 is the height of the physical point and is a known constant in our example.
The error associated with zi can be calculated as follows:

Λzi =
(

∂zi
∂yi

)2

Λyi

By calculating the derivative in the above equation we get:

Λzi =
(−Y0

y2
i

)2

Λy =
Y 2

0

y4
i

Λy

which shows how Λzi depends on the value of yi. Second, the angle between the robot
and the wall (α) is calculated with the function:

α = sin−1
(

zl − zr
D0

)



6.4. EXAMPLE: WALL POSE ESTIMATION 111

where D0 is the known distance between the two physical points pl and pr. Therefore,

Λα =
(

∂α

∂zl

)2

Λzl +
(

∂α

∂zr

)2

Λzr

=

⎛
⎜⎜⎝ 1√

1−
(
zl−zr
D0

)2

⎞
⎟⎟⎠

2

Λzl +

⎛
⎜⎜⎝ −1√

1−
(
zl−zr
D0

)2

⎞
⎟⎟⎠

2

Λzr

After simplifying the last equation we get:

Λα =
D2

0

D2
0 − (zl − zr)2 (Λzl + Λzr )

Finally, we calculate two points on the line representing the wall as shown in
Figure 6.13. Take the first point p1 at (0, zc) and the second point p2 at one unit
distance from p1 along the wall which gives the point (cos α, zc + sin α):

x1 = 0, z1 = zc

x2 = cos α, z2 = zc + sin α

From these equations, the error for the two points will be:

Λx1 = 0, Λz1 = Λzc

Λx2 = sin2α Λα, Λz2 = Λzc + cos2α Λα

p

pα

1

l

z
c

z
r

(0, z  )

l
p

z

c

r

c

α

(cos    , z  + sin    )c α

Figure 6.13: The Two Points on the Line Representing the Wall (adapted from [26]).

Now, we can write the error of ILSS1 as:

error(ILSS1) = {Λx1 , Λz1 , Λx2 , Λz2}
Notice that we can write the error in terms of Λy, Y0, D0, yl, yc, and yr. For example,
let’s assume that Λy = 1mm2, Y0 = 500mm, D0 = 300mm, and yl = yc = yr =
10mm (α is zero in this case), then the error will be:

error(ILSS1) = {0, 25mm2, 0, 25mm2}



112 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

Now we analyze ILSS2 in a similar manner. At the first level, we have the physical
sonar sensor where the error can be determined either from the manufacturer specs,
or from experimental data. In this example we will use the error analysis done by
Schenkat and Veigel [137] in which there is a Gaussian error with mean μ and variance
σ2. From this analysis, the variance is a function of the returned distance r. To simplify
the problem let’s assume that the variance in both sensors is Λr = 4.0mm2. Therefore
we can write the error in the sonars as:

error(Sonar) = {Λr}

In the Wedge Sonar Line module, there are five possible cases for that line depending
on the values of r1 and r2 [61]. In any case, the two points on the line can be written
as:

x1 = r1 cos α1, z1 = r1 sin α1

x2 = r2 cos α2, z2 = r2 sin α2

where the values of α1 and α2 are between −θ to θ (see Figure 6.14).

r1

Wall

Sonar1

Sonar2

r2

α1

α2

Figure 6.14: The General Case for the Points Returned by the Wedge sonar line
(adapted from [26]).

Considering the worst case error, we can set α1 = α2 = θ. Assuming that the error
in θ is zero, then the error in the calculated points is:

Λxi =
(

∂xi
∂r

)2

Λr

Λzi =
(

∂zi
∂r

)2

Λr

which results in:

Λx1 = cos2 θ Λr, Λz1 = sin2 θ Λr

Λx2 = cos2 θ Λr, Λz2 = sin2 θ Λr



6.4. EXAMPLE: WALL POSE ESTIMATION 113

Finally, the error function for ILSS2 is:

error(ILSS2) = {Λx1 , Λz1 , Λx2 , Λz2}
As an example, if Λr = 4.0mm2, and θ = 11o (approximately correct for the Polaroid
sensor), we get:

error(ILSS2) = {3.85mm2, 0.15mm2, 3.85mm2, 0.15mm2}
This example illustrates the importance and usefulness of the ILSS library since all

these analyses can be performed once and put in the library for reuse and the user does
not have to go through these details again. For example, if a different sonar sensor is
used, then the same error analysis can be used by supplying the sensor’s error variance.
In addition, given that the error range has been determined, redundancy can be added
using different sensor pairs to sense the same wall and a monitor can be added to detect
error discrepancies.

6.4.3 Experimental Results

We do not have a very good model of our camera, and therefore actual experiments
were required to compare the pose error for the two proposed techniques. The two
instrumented logical sensors were used to find the location of walls using real data.
The goal of the experiment was to use the framework to obtain measures to help choose
between a vision based wall pose technique and a sonar based wall pose estimator.

First, we calibrated the range of our visual target (a horizontal line at a known height,
Y0 with vertical stripes regularly spaced 34.2mm apart) with its y-location in the image.
This was done by aligning the z-axis of the mobile robot camera to be normal to the
wall; the mobile robot was then backed away from the wall a known distance and the
image row number of the horizontal target line recorded. Figure 6.15 shows the results
of this step. (Note that we digitized a 128x128 image; greater resolution would produce
more accurate results.)

Once the target range calibration was done, the robot was placed in eight different
poses with respect to the wall and the visual target acquired. Each image was constrained
to have at least two vertical stripes and neither of them could be centered on the middle
column of the image. The test images are shown in Figure 6.16.

Sonar data was also taken at each pose. The actual pose of the mobile robot with
respect to the wall was independently measured by hand. Table 6.1 gives the hand
measured, sonar and image calculated results. The error values of the sonar and vision
results with respect to the handmeasured data are plotted in Figures 6.17 and 6.18.

These results allow the user to decide whether to use one technique or the other
given the global context. For example, our application was a tennis ball pickup com-
petition in which we were using vision to track tennis balls anyway, and we needed to
locate a delivery location along the wall; if we can get by with pose error of less than
0.3m range and 15o angle, then ILSS1 will suffice. If less error were required, then a
costly sonar system with hardware and software would need to be added to the robot, or
else the use of higher resolution imagery could be explored. However, decisions made
with respect to all these considerations would now be defensible and well documented.



114 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

0 5 10 15 20 25 30 35 40 45
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Image Row Number

R
a
n
g
e
 in

 z

 

Figure 6.15: Row vs. Range (adapted from [26]).

Table 6.1: Pose Results from Measured Data, Sonar, and Vision Techniques.

Test No. Measured ρ Measured θ Sonar ρ Sonar θ Vision ρ Vision θ

1 919 -21 915.6 -20.6 888 -29.66

2 706 -27 715.4 -22.7 667 -35.51

3 930 20 924.0 23.2 783 23.99

4 1,242 0 1,226.3 4.6 1,128 10.27

5 764 32 778.5 46.1 593 43.62

6 1,164 -11 1,164.9 -13.7 1,084 -13.33

7 1,283 6 1,277.4 3.7 979 -6.53

8 1,319 -10 1,300.8 -9.8 1,084 -13.33



6.4. EXAMPLE: WALL POSE ESTIMATION 115

Figure 6.16: Visual Target Test Images (adapted from [26]).

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

Test Number

R
a
n
g
e
 E

rr
o
r 

in
 m

m

Figure 6.17: Error in ρ for Sonar (dashed line) and Vision (adapted from [26]).



116 CHAPTER 6. LOGICAL SENSORS AND COMPUTATIONAL MAPPING

1 2 3 4 5 6 7 8
0

5

10

15

Test Number

A
n

g
le

 E
rr

o
r 

in
 D

e
g

re
e

s

Figure 6.18: Error in θ for Sonar (dashed line) and Vision (adapted from [26]).

(For another detailed example comparing two alternative sonar sensor techniques to
obtain wall pose, see [30].)

Note that, to keep things simple, we did not consider the error in the sonar location
and orientation. However, these errors can be incorporated into the model in the same
manner.

6.5 Conclusions

In this chapter, we have presented a theoretical framework for sensor modeling and
design based on defining the performance semantics of the system. We introduced the
notion of instrumented sensor systems, which is a modeling and design methodology
that facilitates interactive, on-line monitoring for different components of the sensor
system. It also provides debugging tools and analysis measures for the sensor system.
The instrumented sensor approach can be viewed as an abstract sensing machine which
defines the semantics of sensor systems. This provides a strong computational and op-
erational engine that can be used to define and propagate several quantitative measures
to evaluate and compare design alternatives. The implementation of this framework
within the CWave system was described and examples were presented. This method-
ology is particularly appropriate for Computational Sensor Networks.

Acknowledgment

We would like to thank Professor Robert Kessler and Christian Mueller for providing the
CWave program that we used to implement the instrumented sensor library, Professor
Gary Lindstrom for his helpful discussions of program semantics, and Kevin Linen of
North Carolina A & T for help with the experiments.



Chapter 7

Mobile Robot Performance

Analysis

As stated in the introduction to the book, the CSN approach is based on the analysis of
models of the sensor network, the physical phenomena, and the application scenario1.
We apply this here to show that the exploitation of nonmobile, distributed sensor and
communication devices by a team of mobile robots offers performance advantages in
terms of speed, energy, robustness and communication requirements. At one extreme,
mobile robots can be provided with a wealth of on-board sensing, communication and
computational resources [8, 146]; at the other extreme, robots with fewer on-board
resources can perform their tasks in the context of a large number of stationary devices
distributed throughout the task environment [62]. In this study, all the models are
simulated using software (C and Matlab), and the performance of robot tasks with and
without the presence of an S-Net (i.e., a set of distributed sensor devices) is evaluated
in terms of various measures.

The notions described above can be exploited in many situations and across several
scales of application. Let us consider the following three: (1) fire fighting robots, (2)
reservoir monitoring agents, and (3) wearable devices.

Fire fighting:

Suppose mobile robots are used to fight forest fires; then, there may be several
hot spots to extinguish or attempt to control. If sensor devices can be distributed
in the environment, then their values and gradients can be used to direct the
behavior of fire fighting robots. Such mobile robots used as fire fighters can
have several behaviors. They can transport fire extinguishing materials from
a depot to the closest fire source and attempt to put out the fire. During this
movement to and from the fire, collision avoidance algorithms can be employed.
Sometimes coordinated activities are necessary and communication models are
also important. Such a fire fighting behavior will continue until the current fire

1This chapter is a modified version of work done with Yu Chen [20].

© Springer Science+Business Media, LLC 2009 
117 T.C. Henderson, Computational Sensor Networks, DOI: 10.1007/978-0-387-09643-8_7, 



118 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

source is under control. Then the robots will move to the next serious source
according to sensed temperature gradients.

Reservoir task:

When swimming robots are used in a reservoir, some chemical sources can be
detected and handled. If chemical concentration sensor devices can be distributed
in the environment, their values and gradients can be used to direct the behavior
of swimming robots. Such mobile robots can have several behaviors. They can
transport neutralizer to the closest source, or they can block up the leaking source.
During this process, coordinated activities and communication are necessary. The
process will continue until the concentration in the whole reservoir is within a
specified limit.

Wearable devices:

Networked devices embedded in clothing or the external surface of a vehicle may
be used to sense the environment and to automatically change the coloration of
the clothing or vehicle to better suit a given task. For example, this could be
used to blend into the background (i.e., camouflage), or to stand out from the
environment (i.e., for rescue). The S-Net we are studying allow such capabilities.

7.1 Study Design

In this chapter, we provide models for various components of study: (1) mobile robots
with on-board sensors (2) communication, (3) the S-Net (includes computation, sens-
ing and communication), and (4) the simulation environment. We give algorithms
developed for the S-Net which perform coöperative computations and provide global
information about the environment using local and global frames as defined previously.
The method for the production of global patterns using reaction-diffusion equations is
exploited and its use for multi-robot coöperation demonstrated.

We describe the results of a set of experiments designed to help us better understand
the benefits and drawbacks of S-Nets. For behaviors of one mobile robot going to a
temperature source, and multiple mobile robots surrounding a temperature source, in
the ideal situation, which means no noise is present, the S-Net takes more time and
distance. But when noise is added in, which is more realistic, the S-Net is more robust
than the non-S-Net system. For the last behavior of multiple mobile robots going back
and forth to a temperature source, there are thresholds above which the S-Net system
outperforms the non-S-Net system.

Several models are required in order to explore the questions that have been posed.
These include a mobile robot model, sensor models, an S-Net model, a communication
model, and a model of the environment. The simulation provides a computational
framework for the interaction of these models in terms of mobile robots performing
useful tasks in the environment, and we define our simulation model as well.



7.2. MOBILE ROBOT MODEL 119

7.2 Mobile Robot Model

In order to act, a robot must receive current environmental information and calculate
its movement based on the information received. On-board sensors (e.g., temperature,
range, etc.) provide information about the environment and inform the robot’s behav-
iors. In addition, the mobile robot may be able to communicate with other robots or the
S-Net. The robot achieves movement by rotating or translating based on turning and
motion primitives with given rotational and linear speeds.

A Mobile Robot Model is defined by:

Local Frame:

2D or 3D frame attached to the robot that provides the relative location of objects
with respect to the mobile robot. An example of robot local frame is displayed
in Figure 7.1.

Mobile Robot

Temperature Sensors

X

Y

Figure 7.1: Local Robot Frame (adapted from [20]).

Position Estimate:

2D or 3D location estimate in world frame coördinates. It is used to control the
robot’s behavior.

Heading Estimate:

Orientation estimate in world frame coördinates. It is used to control the robot’s
behavior.



120 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

These are the robot’s estimates, and may be different from the actual values in the
environment model; this is caused by various sensor, actuation and computation
errors.

Description of On-board Sensors:

A simple distribution of on-board sensors is displayed in Figure 7.1. Four on-
board temperature sensors are located on the axes of the local frame, and at a
certain distance from the center of mobile robot. In the current implementation,
the on-board sensors can be temperature sensors or range sensors.

Primitive Behaviors:

Primitive motion functions available to the robot (e.g., turn, go forward, go
backward, stop turn, stop go).

{ Turn: the robot can set its rotational speed as the maximum rotating speed
in either the clockwise or counterclockwise directions.

{ Go Forward and Go Backward: the mobile robot can set the linear motion
speed as maximum linear speed in either the positive or negative X direction
of its local frame.

{ Stop: there are commands to stop rotation and stop linear motion.

High-level Behaviors:

The high-level behavior of the robot is specified by a program which maps the
robot state and environmental information to primitive behavior sequences. For
example, the behavior for the mobile robot to go to the closest temperature
source will include: mobile robot sensing to get environmental temperature and
gradients, turning as well as going forward to the source, and finally stopping
when it reaches a certain distance from the temperature source.

The Environment Model consists of:

World Frame:

Base frame for world objects.

Actual Robot Location:

This is the actual 2D or 3D position of robot in the world frame.

Obstacles:

Location and shape of obstacles in the world frame. The central location of
obstacles may be generated randomly by using a random number generator. The
basic shape of obstacles will be square blocks with certain length edge. If two
or more obstacles overlap, various shapes will form.



7.3. COMMUNICATION MODEL 121

Sources:

Functions describing sources and distribution of energy, material, etc. (e.g., heat,
chemicals, etc.). Multiple sources may be defined, the number and position of
sources can be decided by the user. The formula for distribution of temperature is:

T (x, y) =
C√

(x− xs)2 + (y − ys)2 + 1
(7.1)

The temperature in a given location will be the maximum of all the temperature
sources.

The Sensor Model is given by a specific model for each modality; this includes noise
effects and others for each type of sensor. Here we specify models for the sensors used
in our simulation. [Note: the robot can only estimate the actual environment variables’
values by using its sensors.]

Temperature Sensor Model:

Ideally the sensors do not have any noise, but in practice, sensor data is corrupted
by noise, e.g., Gaussian noise. A simple model for a temperature sensor is:

T̂ (x, y) = T (x, y) +N (μ, σ2) (7.2)

where T (x, y) is the actual temperature at location (x, y) in the environment and
N (μ, σ2) is a normal distribution function with mean μ and variance σ2. The
sensor response may also be affected by nonlinear effects such as hysteresis or
failure modes.

Range Sensor Model (generic):

A range sensor (e.g., sonar) can detect objects within a certain distance. Range
sensor models depend on the sensor device geometry and physics as well as the
structure of sensed surfaces, here we only give the generic form of expression:

R̂(x, y, θ) = R(x, y, θ) +N (μ, σ2) (7.3)

where R(x, y, θ) is the actual range of the nearest object from location (x, y) in
direction θ, and N (μ, σ2) is Gaussian noise.

7.3 Communication Model

The communication model consists of a protocol, message layout, error model and
performance characteristics. The protocol specifies the meaning of the bits in a message,
as well as a set of commands for communication between robots and SELs. A group of
SELs sharing a common frame is called an S-clique.



122 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

Protocol:

Commands for a robot to communicate with SELs:

value command meaning

X0000000 reset reset all the SELs

X0000001 is anybody there robot requesting all SELs in range to respond

X0000010 talk to origin robot communicates with origin of local frame
to get information of SELs in local frame

X0000011 talk to one robot communicates with SELs separately

X0000100 local position robot communicates with origin of local frame,
provides its position in local frame and asks
origin for gradient

Commands for SELs to communicate with each other (suppose SEL1 sends to
SEL2):

value meaning

X1000000 reset all SELs

X1000001 SEL1 requesting all SELs in range to respond

(so distance can be calculated )

X1000010 SEL1 responding to SEL2 range request

X1000011 SEL1 asserting it is origin in S-clique

X1000100 origin provides the robot gradient in local frame

In the simulation, the message sent out by robots or each SEL are renewed every
hundredth of a second. The highest order bit (shown by the “X” in the command
value is a bit used to specify whether it’s a new message or not, i.e., if a robot or
a SEL sends out a new message, the “X” bit in this agent’s message is set to 1,
otherwise it is 0.

Robots and SELs use the message structures described above in order to achieve
various goals. For example, to determine a local frame, the following sequence
is used:

{ Form local frame and find origin:

∗ For each SEL, send command X1000001 to form an S-clique

∗ After SEL receives other SELs’ command to form S-clique, it responds
to the ones within range

∗ After finding the origins of local frames, they send out command
X1000011 to assert that they are origin of S-clique

∗ Next, the origin determines frame



7.3. COMMUNICATION MODEL 123

Message layout indicates the structure of each message sent out by either a mobile
robot or a SEL. In the first byte of the message, there is a bit to indicate the new
message, and a bit to indicate whether its a SEL or a robot. The other bits in this
byte are reserved for future use. The next two bytes are the IDs for each agent.
The bytes after depend on each command.

bytes\bits 7 6 5 4 3 2 1 0

1 new SEL
message or robot

2 ID

3

command
dependent

The command dependent part for robot communicates with the SELs:

{ Is Anybody There:

field No. description No. of bytes

4 empty

{ Talk To Origin:

field No. description No. of bytes

4 SEL1 ID 2

5 X position of SEL1 in local frame 2

6 Y position of SEL1 in local frame 2

7 SEL2 ID 2

8 X position of SEL2 in local frame 2

9 Y position of SEL2 in local frame 2

{ Talk To One:

field No. description No. of bytes

4 number of agents want to talk with 1

5 agent 1 ID 2

6 agent 2 ID 2

.

.

.



124 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

{ Local Position:

field No. description No. of bytes

4 SEL ID of origin 2

5 X position of robot in local frame 2

6 Y position of robot in local frame 2

{ Is Home Around:

field No. description No. of bytes

4 empty

{ Talk to Blake Origin:

field No. description No. of bytes

4 ID of SEL want to talk to

The command dependent part for robot communicates with robots:

field No. description No. of bytes

4 ID of the first cooperating robot 2

5 ID of the second cooperating robot 2

6 the distance to the first robot 2

7 the distance to the second robot 2

The command dependent part for SELs communicate with each other or with
mobile robots:

{ Command 0000000:

field No. description No. of bytes

4 empty

{ Command 0000001:

field No. description No. of bytes

4 empty

{ Command 0000010:

field No. description No. of bytes

4 agent ID of which asked 2

5 distance to the agent asked 2



7.4. SIMULATION MODEL 125

{ Command 0000011:

field No. description No. of bytes

4 empty

{ Command 0000011:

field No. description No. of bytes

4 robot ID 2

5 gradient in robot’s position (local frame) 4

Error:

The messages will be exchanged as packages. Messages can be lost during the
process of communication; the effect of this error is that some agents do not
receive the message. Various methods may be used to recover from this error
(e.g., wait one communication period and let the source send the message one
more time). Another kind of error is a wrong message, e.g., bad bits may be sent.
Parity checking can be used to detect and correct this. For this study we explore
only such simple kinds of errors and recovery.

Performance:

The performance characteristics which can be set include:

{ bandwidth: bits per second transmission

{ range: maximum distance from device that signals can be received.

S-Net devices consist of three essential components: computation, sensing and
communication. The computation element is described by the speed of the processor,
its storage capacity, power requirements and cost. Sensors used by the S-Net devices are
modeled as described above, but also include bandwidth, latency, power requirements
and cost. The communication model is like that given for mobile robots, but includes
power requirement and cost as well.

7.4 Simulation Model

We use discrete event simulation with a fixed time step. In that we must model and
simulate continuous events (e.g., during robot motion) as well as discrete events, we
allow for an every-time-step event which can be put at the head of the event queue and
must be handled every time step. Any number of these may be added to the event queue.

The event list is a table recording all events that will happen in each time step. At
the beginning of each time step, we copy it to a temporary list, and new events will be
generated and added to the event list during the movement of the robots. The table has
three fields:

Agent ID: all the mobile robots and distributed sensors are agents with unique
IDs. Robot IDs are distinguishable from SEL IDs.



126 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

Event type code: indicates the type of behavior, including:

{ RunRobots: executes the robots’ behaviors; this transforms the high-level
behavior into a sequence of primitive behaviors such as: turn, go forward,
go backward.

{ RunS-Elements: executes the SELs’ behaviors; this includes communica-
tion between sensors and robot, forming local frames, and running local
computations.

{ Turn, Go Forward, Go Backward: primitive behaviors for mobile robots.

{ Stop Turn: will stop the rotation of the robot.

{ Stop Go: will stop the linear motion of robot.

{ Broadcast: produces communication events.

Time code: time of event execution. To handle continuous movements of mobile
robots, some basic behaviors such as rotating and going will happen all the time,
so we set up a special code which means to execute every time step. Other
behaviors such as StopGo and StopTurn, are discrete and occur at the scheduled
time.

During each time step, all scheduled events are handled and new events will be
generated and added to the event list according to the different robot behaviors. At the
end of each time step, the resulting state is evaluated to determine its feasibility. If
an impossible state has occurred (e.g., a robot penetrates an obstacle), then a special
handler is called to resolve the problem. Once a possible state is achieved, the status of
each robot such as position and local direction is updated. This procedure is repeated
until the simulation terminates.

The mobile robot’s moving and turning behaviors are based on information provided
by the S-Net. As an example, consider the case of temperature sensors. At one extreme,
a mobile robot may have four on-board temperature sensors located in different posi-
tions, thus providing four different spatial samples. The temperature gradient can be
determined from these four values. Equations [ 7.4] and [ 7.5] give the temperature
function and gradient function, respectively. The temperature gradient can be used to
control the heading of the robot (see Figures 7.2 and 7.3).

Figure 7.3 is a simulation of a mobile robot moving in the temperature gradient
direction to find the temperature source. The mobile robot starts at the origin and
moves to the temperature source (located at (-3,2)), which has the distribution function
(7.4). The turning speed is π radians/sec and linear speed is 2 meters/sec. At the
other extreme, with the S-Nets, the robot will obtain the gradient information from the
scattered SELs.

T (x, y) =
C√

(x− xs)2 + (y − ys)2 + 1
(7.4)

∇T =

⎡
⎣
∂T
∂x

∂T
∂y

⎤
⎦ =

⎡
⎢⎣

−C(x−xs)√
(x− xs)2 + (y − ys)2(1 +

√
(x− xs)2 + (y − ys)2)2

−C(y−ys)√
(x− xs)2 + (y − ys)2(1 +

√
(x− xs)2 + (y − ys)2)2

⎤
⎥⎦ (7.5)



7.5. GOAL ACHIEVEMENT 127

Gradient Direction
Mobile Robot

Temperature Sensors

Figure 7.2: Gradient Calculation and Following (adapted from [20]).

When more than one robot is in use and without S-Nets, direct coöperation between
robots is necessary. A set of algorithms are needed to prevent robots’ collision and to
improve the operational efficiency (e.g., minimum total distance, etc.). Our goal is to
study the various aspects of the relationship between robots with and without S-Nets.
Variables of interest include: sensor distribution, robot and SEL parameters, and sensor
performance.

When using multiple robots and devices, communication between agents plays an
important role. The robots should be able to communicate (e.g., current position, speed,
etc.) with each other, as well as SELs and external controllers. A simple and efficient
communication protocol has been described in Section 2.1.

We study robot performance in terms of behaviors developed for various scenar-
ios including both military (e.g., tactical urban settings) and disaster mitigation (e.g.,
chemical spills, forest fires). Robots can be used to control fire or detect poisonous gas
sources; i.e., things that are difficult and dangerous for human beings.

7.5 Goal Achievement

The most important criterion for robot evaluation is the successful achievement of its
goals. Assuming that various strategies are all successful, the next level of comparison
is achieved in terms of the efficiency of the behavior. A basic set of goals for mobile
robots are:

Go to geometric destination: This may involve either absolute or relative lo-
cations as well as the ability to maintain relative positives (e.g., follow another
robot).



128 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

Figure 7.3: Simulation of a Mobile Robot Moving against Temperature Gradient
(adapted from [20]).

{ Go to absolute location: Suppose we know the global position of the mobile
robot and the SELs and all the agents belong to the same global frame, then
go to absolute location can be implemented directly.

{ Go to relative location: In most cases, a global frame may not be available.
Information of the environment can be obtained only through local frames.
The location of destination is relative to the local frame, and the mobile
robot needs to exploit the transformation between local frames to reach the
final destination.

Go to destination related to source: This involves moving with respect to the
sources of interest in the particular problem (e.g., a temperature source). More-
over, this may be based on the known values at the SELs or interpolated values.

For those behaviors that utilize the S-Net, all the information about source comes
from SELs, therefore the mobile robot needs to communicate with the origins
of various S-cliques or even with particular SELs (e.g., the SEL with highest
temperature in some S-clique). To achieve this, the robot:

{ Communicates with the origin and the other two SELs in an S-clique frame
to decide its current position in that frame.

{ After moving a certain distance, the robot again communicates with them
to determine the new location.



7.6. MULTIPLE ROBOT BEHAVIORS 129

{ Transforms the pertinent information such as the location of the SEL with
highest temperature value to its own frame (the robot frame) and moves to
that location.

{ Repeats the above process until it reaches the SEL with highest value of all
SELs.

In the discussion above, we suppose there are at least two common SELs between
every two local frames. But in reality, disconnected S-cliques may occur, which
means some S-cliques may have less than two common SELs with others. In
this case, the mobile robot can only reach the SEL with the highest value in the
connected S-clique set. To do better, it is necessary to increase the number of
SELs, or adjust the range of the S-clique broadcast.

For the robot behaviors that do not exploit an S-Net, the mobile robot obtains
the information about the source (e.g., the temperature gradient) by itself. The
mobile robot moves along the gradient towards the source, until the detected
value (e.g., temperature) is above some limit.

Go along constrained path: This involves the incorporation of various constraints
into the path selection method; for example, the least costly path may be desired
(cost may be related to distance, time, energy, etc.) or a path with some constant
value in a space of interest (e.g., constant distance from a source), or may involve
other desired properties (e.g., avoid collisions).

7.6 Multiple Robot Behaviors

Here we consider two basic behaviors:

Multiple mobile robots cooperate and communicate via the S-Net to find temper-
ature source and keep certain distance from the temperature source evenly.

When the robots reach a certain distance away from the highest temperature
SEL, robots communicate with each other to get their distances. Then two of the
mobile robots that are close to each other keep their positions and the farthest
one from them computes the positions that form an equilateral triangle; from the
two results, the robot chooses the closer one and moves to it.

Multiple mobile robots go back and forth to a temperature source, the intensity
of the temperature source will decrease after each robot’s visit, and finally the
temperature of whole environment area will be controlled.

Home is chosen as the origin of the S-clique that sensed the lowest temperature,
then stripe patterns are formed along the gradient of the temperature source to
Home. The straight line from Home to the temperature source is in the middle of
a white stripe, and black stripes alternate spatially with white stripes. The width
of each stripe is a constant. The robots will move from Home to temperature
source along white stripe and follow the black stripe back Home. During the
procedure, if any robot detects that a collision is about to happen, it will slow
down to avoid the collision.



130 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

The development up to this point has created the framework in which the perfor-
mance of mobile robots can be compared with respect to using the S-Net or not. We
now compare the performance of mobile robots while solving the following tasks:

One robot goes to a temperature source.

Multiple robots surround a temperature source.

Multiple robots go back and forth to a temperature source.

This set of tasks represents typical mobile robot tasks and can be configured to exploit
many of the constraints described in earlier chapters. For example, a robot’s path may
be required to be the shortest, the gradient may be followed, or patterns in the S-Net may
be used as road markers. Moreover, the last two tasks provide a setting to use multiple
robots, ranging from few to many robots. In addition, robot interactions are necessary,
at least as far as avoiding collisions. For each of these tasks, we propose a relevant
set of performance measures, as well as a discussion of parameters and their possible
values. Finally, we give the performance results and compare the two approaches.

Our goal is to find out under what conditions, the S-Net system can perform better
or more robustly and the cost by analyzing the measurement such as time used, distance
traveled and the final distance to the temperature source. According to the final result,
for the first two behaviors, the S-Net system does not perform better when no noise is
present, but when the noise is added in, we find that the S-Net system is more robust,
especially in rough situations, in which there is lots of noise in the environment. For the
third behavior, the S-net system not only performs much better under realistic situations,
but even under ideal conditions, it displays a benefit. For a certain distance of round
trip, the s-Net system can support more robots and prevent collisions happen between
each other. On the other hand, if there are too many robots in the non-S-Net, some
robots cannot move properly and prevent collision.

Overview of methodology:

One robot goes to a temperature source

{ The system without the S-Net:

The robot uses four on-board temperature sensors to detect the temperature
and moves along the temperature gradient toward the temperature source.

{ The S-Net system:

The robot communicates with the SELs around and finds out the closest ori-
gin of an S-clique; then the robot communicates with this origin to transform
the position of the SEL with highest temperature in the S-clique to its own
frame, and move to that position. This procedure repeats until the robot
reaches the highest SEL of the entire S-Net.

Multiple robots surround a temperature source

{ The system without the S-Net:

Three robots begin from different places, and each of them uses four on-
board temperature sensors to detect the temperature and move along the



7.7. ONE ROBOT GOES TO A TEMPERATURE SOURCE 131

temperature gradient toward the temperature source. When the average
temperature detected is above a certain value, they stop and try to commu-
nicate with each other. Then one robot will maintain its position, and the
other robots will move following a constant-valued temperature contour.
To do this, they compute the gradient and move perpendicular to it.

{ The S-Net system:

Three robots begin from different places, and each of them uses local frame
transformations to move to the SEL with the highest temperature. When all
robots reach a certain distance away from the highest temperature SEL, two
of the robots keep their positions, and the other one which is the farthest
from them will move forward to form an equilateral triangle.

Multiple robots go back and forth to a temperature source

{ The system without the S-Net:

Each robot moves from Home using four on-board temperature sensors to
detect the temperature and moves along the temperature gradient toward
the temperature source. Then they turn around, using four on-board Home
sensors to move back to Home. The robot behavior to prevent collision is to
detect a collision, make a right turn and then try to get back on track again.

{ The S-Net system:

The stripe patterns are formed along the gradient of the temperature source
to Home. Each robot begins from the same place and moves along the
white stripe toward the temperature source and follows the black stripe
back Home. When a robot detects that a collision is about to happen, it will
slow down to prevent the collision, until it cannot detect the collision any
more.

7.7 One Robot Goes to a Temperature Source

This is the simplest behavior for a robot, and the major focus of this experiment is to
analyze the robustness of the system by changing the parameters of the temperature
source and controlling the noise parameters in the sensors.

We compare the performance of:

One robot without on-board sensors utilizing the S-Net to reach the closest tem-
perature source.

One robot using only on-board sensors to reach the closest temperature source.

Examples of these two alternatives are shown in Figures 7.4 and 7.5, in which
there is one temperature source (“�”) in the environment. Figure 7.4 is an isotherm plot
describing the distribution of temperature, in which a robot starts at the origin (0, 0) and
follows the temperature gradient to reach the source, which is located at (3, 2). In order
to make the isotherm plot more clear, we amplify the units by 10. Figure 7.5 not only
gives the trace of a robot goes to the destination with the S-Net, but also provides the



132 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

formation of local frames. In the figure, each “+” is one SEL, and each “*” is the origin
of one local frame, and “−−−” is the range of local frame origin. As we mentioned
before, there should be at least two common SELs between any two close frames in
order to transform coördinates between them. In Figure 7.5, a robot also starts at the
origin (0, 0) and moves to the temperature source (3, 2) by using local S-clique frames.
Since by using the S-Net, the robot can only estimate the destination location in its own
frame, as well as the fact that the robot has a non-zero turning radius, this causes the
robot to go to a place close to the temperature source instead of exactly to the source.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

X (decimeters)

Y
 (

d
e

ci
m

e
te

rs
)

Figure 7.4: Robot Goes to Destination without S-Net (adapted from [20]).

Constants set up for the experiments are:

Maximum Linear Speed 1 m/s

Maximum Rotation Speed π rad/s

Initial Location of Robot (0, 0) (“o” in the figure)

Initial Direction of Robot 0 rad

Number of Sources 1

Location of Source (3, 2)

in which the initial location and initial direction of robot, as well as the location of
sources are all according to home frame of environment instead of any local frame.

In these experiments we test performance time and distance traveled with respect
to sensor noise or variance (0 to 25), number of SELs (100 to 300), and broadcast
distance (1 to 2.5) for the SELs. According to [41, 152, 37], noise of a sensor includes
inherent noise, transmitted noise, mechanical noise and setback noise and so on. The
temperature sensor model we choose here has the range of [0, 1000oC], and we think



7.7. ONE ROBOT GOES TO A TEMPERATURE SOURCE 133

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

X (meters)

Y
 (

m
e
te

rs
)

Figure 7.5: Robot Goes to Destination with S-Net (adapted from [20]).

that 0.05% is a reasonable tolerance for the temperature sensors. That is why we choose
σ2 ranges from 0 to 25. The number of SELs is chosen according to the principle that we
want to use as few SELs as possible, but we still want the S-Net to function well, which
means there should be enough SELs to satisfy local frame transformations. Generally,
the broadcast distance is closely related to the cost of devices. We try to keep the price
as low as possible, and the range of 1m to 2.5m is enough for local frame establishment.

The results are displayed in Figures 7.6 to 7.18. Each data point represents the
estimated value of the performance measure of interest, and is the mean of ten simulation
experiments. The variance is also shown. The stochastic part of each experiment is the
location of the SELs. The reason we choose ten simulation experiments is according
to the confidence interval. Suppose we want to obtain an approximate 90% confidence
interval for the expected average time utilization, which is given by:

E(X) = E(
∑N
i=1 Di

N
)

From the ten replications we obtain:

X(10) = 4.95

S2(10) = 1.34

and the confidence interval is:

X(10)± tn−1,1−α2

√
S2(n)

n

= X(10)± t9,0.95

√
S2(10)

10
= 4.95± 0.679



134 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

Thus, subject to the correct interpretation to be given to a confidence interval, we
can claim with approximately 90% confidence that E(X) is contained in the interval
[4.271, 5.629] seconds.

0 50 100 150 200 250 300 350
2.5

3

3.5

4

4.5

5

5.5

6

Number of S−Elements

T
im

e
 U

se
d

Figure 7.6: Time vs. Number of SELs with S-Net; Range = 2 (adapted from [20]).

0 50 100 150 200 250 300 350
2

2.5

3

3.5

4

4.5

5

5.5

6

Number of S−Elements

D
is

ta
n
ce

 T
ra

ve
le

d

Figure 7.7: Distance Traveled vs. Number of SELs with S-Net; Range = 2 (adapted
from [20]).



7.7. ONE ROBOT GOES TO A TEMPERATURE SOURCE 135

0 50 100 150 200 250 300 350
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Number of S−Elements

F
in

a
l D

is
ta

n
ce

 t
o
 s

o
u
rc

e

Figure 7.8: Final Distance to Source vs. Number of SELs with S-Net; Range = 2
(adapted from [20]).

The robot first communicates with the S-clique origin with the highest temperature
within communication range, then gets the information about the local frame from it.
After the robot determines its own position in the S-clique’s frame, it transform the
location of the SEL, with the highest temperature value, to its own frame and then goes
to that location. This process repeats through S-cliques within range until robot reaches
the SEL with the highest global temperature. Figures 7.6 and 7.7 show that more SELs
will cause an increase in both time used and distance traveled by the robot. This effect
is explained below.

According to Figure 7.8, we can see that when the number of SELs increases, the
final distance of the robot from the temperature source decreases dramatically. When
the number of SELs increases, the variances of both time utilized and distance traveled
decrease, which means the system becomes more robust. The fact that time used and
distance traveled increase with number of SELs relates to the density of the SEL set
and the ability of the S-Net to provide adequate spatial resolution. Because the increase
of number of SELs will cause an increase in the number of S-cliques and local frames
formed, more local frame transformations will be done by the robot. When the robot
tries to reach the highest SEL of each local frame the path becomes more zigzag. But
the payoff is that the final distance of robot to the temperature source decreases.

Figure 7.9 shows quantitatively that as the number of SELs increases, the average
distance from each SEL to the nearest other SELs decreases. So suppose the robot can
reach the highest SEL of the whole system, when given a specified accuracy for the
final location with respect to a temperature source, we can determine the number of
SELs required. For example, to guarantee that a mobile robot can reach a temperature



136 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

50 100 150 200 250 300 350 400 450 500
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of S−Elements

A
v
e
ra

g
e
 D

is
ta

n
c
e
 b

e
tw

e
e
n
 F

la
ke

s
 (

m
e
te

rs
)

Figure 7.9: Average Distance of SELs vs. Number of SELs in the Area (adapted from
[20]).

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Range

T
im

e
 U

se
d

Figure 7.10: Time vs. Range with S-Net; Number of SELs = 250 (adapted from [20]).

source within 1 meter, we need at least 100 SELs over an area about 10m ∗ 10m (the
radius of each robot is 0.1m).

According to Figures 7.10, 7.11, and 7.12, we can see that when the radio broadcast
range is less than 1.5m, the behavior is less robust (variances are large). When the range
is between 1.5 and 2.0m, the variance decreases and the behavior becomes more robust.



7.7. ONE ROBOT GOES TO A TEMPERATURE SOURCE 137

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Range

D
is

ta
n
ce

 T
ra

ve
le

d

Figure 7.11: Distance Traveled vs. Range with S-Net; Number of SELs = 250 (adapted
from [20]).

Figures 7.13 to 7.18 show the results after adding noise to the sensors, in which “...”
is the result of a mobile robot without the S-Net, and “—” is the result of the behavior
with the S-Net. For those with the S-Net, we did ten simulation runs by changing the
distribution of SELs, and the mean and standard deviation are shown in each sample
point. The values obtained by each sensor (including on-board sensors and all the SELs)
are normally distributed with parameters (μ, σ2), in which μ is the ideal temperature
value, and σ2 is the variance. In fact, each sensor smooth its data value by taking ten
samples and returning the average, for both systems with or without the S-Net.

From these figures, we can clearly see that when the noise variance is above 10,
for the mobile robot that utilizes the S-Net, the result does not change much. But for
the mobile robot that uses on-board sensors, it so happens that the robot fails to locate
the temperature source correctly (Figure 7.19). The times and distances traveled by the
mobile robot depend on this limit; the maximum time allowed for the task is 15 time
units. In theory, it might never locate the source. This is because the four on-board
sensors are located too close to each other, so the temperatures they report are too noisy
to be useful. When noise is added to each sensor, the gradient computed from their
values can have large error, which will further change the direction the mobile robot
moves. One proposed solution to this problem is to have the mobile robot move to
four widely spaced locations and get samples across a greater spatial scale to compute
the correct gradient. This will certainly cost much in time and energy. In fact, it also
reduces the accuracy with which the robot can locate the source.

For some specific cases, e.g., there are two or more temperature sources in the
environment, and mobile robot located in the exact middle area of the sources, it is
difficult for the mobile robot to locate the source when noise is added to the sensors.



138 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
−0.5

0

0.5

1

1.5

2

2.5

Range

F
in

a
l D

is
ta

n
c
e

 t
o

 s
o

u
rc

e

Figure 7.12: Final Distance to Source vs. Range with S-Net; Number of SELs = 250
(adapted from [20]).

Figures 7.21 and 7.22 show the results of this experiment, with noise variance σ2 = 8,
the mobile robot with on-board sensors cannot figure out the exact location of the
temperature source.

From all these measurements and comparisons of the two systems, we can see
that when in the ideal situation, which means no noise, the S-Net takes more time and
distance. Compared to the non-S-Net (time used averages 3.22sec, distance traveled
averages 3.21m), the cost of time ranges from 3.6(sec) to 5.5(sec), and distance traveled
from 3.6m to 5.2m. But when noise is added in, which is more realistic, the S-Net system
basically does not change much, but the system without the S-Net gets much worse. So
we conclude that when in real situations, especially tough situations with lots of noise,
the S-net system will be more robust than the system without the S-Net.

7.8 Multiple Robots Surround Temperature Source

Evenly

This experiment is designed to explore the benefits of using the S-Net with regard to
multiple mobile robot coöperation. Also, we use the same behavior in all the robots, so
that by satisfying the same set of constraints, the robots can achieve the desired final
result.

We compare the performance of:

Three mobile robots without on board temperature sensors utilizing the S-Net to
surround the SEL with the highest temperature value.

Three mobile robots using only on-board temperature sensors to surround the
temperature source evenly.



7.8. MULTIPLE ROBOTS SURROUND TEMPERATURE SOURCE EVENLY 139

−5 0 5 10 15 20 25 30
0

2

4

6

8

10

12

Noise Variance

T
im

e
 U

se
d

Figure 7.13: Time vs. Variance of Noise With S-Net; Number of SELs = 300, Range =
2 (adapted from [20]).

−5 0 5 10 15 20 25 30
3

4

5

6

7

8

9

10

11

12

Noise Variance

T
im

e
 U

se
d

Figure 7.14: Time vs. Variance of Noise Without S-Net (adapted from [20]).

Examples of these two alternatives are shown in Figures 7.23 and 7.24, in which
three mobile robots originated from different places (“o”), and there is a temperature
source (“�”) in the environment. “*” in Figure 7.23 is the position of the SEL with
highest temperature.



140 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

−5 0 5 10 15 20 25 30
−2

0

2

4

6

8

10

12

Noise Variance

D
is

ta
n

ce
 T

ra
ve

le
d

Figure 7.15: Distance Traveled vs. Variance of Noise With S-Net; Number of SELs =
300, Range = 2 (adapted from [20]).

−5 0 5 10 15 20 25 30
2

3

4

5

6

7

8

9

10

11

12

Noise Variance

D
is

ta
n

ce
 T

ra
ve

le
d

Figure 7.16: Distance Traveled vs. Variance of Noise Without S-Net (adapted from
[20]).



7.8. 141

−5 0 5 10 15 20 25 30
−2

0

2

4

6

8

10

Noise Variance

F
in

a
l 
D

is
ta

n
ce

 t
o

 s
o

u
rc

e

Figure 7.17: Final Distance to Source vs. Variance of Noise With S-Net; Number of
SELs = 300, Range = 2 (adapted from [20]).

−5 0 5 10 15 20 25 30
−2

0

2

4

6

8

10

Noise Variance

F
in

a
l D

is
ta

n
ce

 t
o

 s
o

u
rc

e

Figure 7.18: Final Distance to Source vs. Variance of Noise Without S-Net (adapted
from [20]).

MULTIPLE ROBOTS SURROUND TEMPERATURE SOURCE EVENLY



142 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

−50 −40 −30 −20 −10 0 10 20 30 40 50
−10

0

10

20

30

40

50

X (decimeters)

Y
 (

d
e
ci

m
e
te

rs
)

Figure 7.19: Robot Goes to Destination without S-Net; with noise variance = 10
(adapted from [20]).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

X (meters)

Y
 (

m
e
te

rs
)

Figure 7.20: Robot Goes to Destination with S-Net; with noise variance = 10 (adapted
from [20]).



7.8. 143

−50 −40 −30 −20 −10 0 10 20 30 40 50
−10

0

10

20

30

40

50

X (decimeters)

Y
 (

d
e
ci

m
e
te

rs
)

Figure 7.21: Robot Goes to Destination without S-Net; with noise variance = 8 (adapted
from [20]).

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

X (meters)

Y
 (

m
e
te

rs
)

Figure 7.22: Robot Goes to Destination with S-Net; with noise variance = 8 (adapted
from [20]).

MULTIPLE ROBOTS SURROUND TEMPERATURE SOURCE EVENLY



144 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

X (meters)

Y
 (

m
e
te

rs
)

Figure 7.23: Three Robots Surround the Temperature Source Without S-Net (adapted
from [20]).

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

X (meters)

Y
 (

m
e
te

rs
)

Figure 7.24: Three Robots Surround the Highest SEL with S-Net (adapted from [20]).



7.8. 145

Constants set up for the experiments are:

Robot 1 Robot 2 Robot 3

Maximum Linear Speed 1 m/s 1 m/s 1 m/s

Maximum Rotation Speed π rad/s π rad/s π rad/s

Initial Location of Robots (0, 0) (1, 0) (0, 1)

Initial Direction of Robot 0 rad 0 rad π/2 rad

Number of Sources 1

Location of Source (3, 2)

In these experiments we test performance time and distance traveled with respect to
sensor noise or variance (0 to 25), number of SELs (100 to 300), and broadcast distance
(1 to 2.5) for the SELs. From the ten replications we obtain:

X(10) = 4.72

S2(10) = 0.732

and the confidence interval is:

X(10)± tn−1,1−α2

√
S2(n)

n

= X(10)± t9,0.95

√
S2(10)

10
= 4.72± 0.496

Thus, we can claim with approximately 90% confidence that E(X) is contained in the
interval [4.224, 5.216] seconds.

The results are displayed in Figures 7.25 to 7.31. Each data point represents the
estimated value of the performance measure of interest, and is the mean of ten simulation
experiments. The variance is also shown. The stochastic part of each experiment is the
location of the SELs.

According to Figure 7.27, we can see that when the number of SELs increases, the
final distance of the robot from the temperature source decreases dramatically. When the
number of SELs increases, the variance of time utilized and distance traveled decrease;
this means the system becomes more robust. The fact that time and distance traveled
increase with the number of SELs relates to the density of the SEL set and the ability
of the S-Net to provide adequate spatial resolution.

According to Figures 7.28 to 7.29, we notice that in this particular behavior, range
does not affect the results much. This is because the parameters, such as time utilized,
distance traveled and final distance to source, depend not only on each specific robot,
but also the communication and coöperation of the three robots, which decreases the
effect of range on the robustness of this behavior. Range can only control the aspect
in which each robot tries to get close to the temperature source, but does not have any
effect on the later part, in which the three robots try to cooperate and surround the
highest SEL. However, both parts account for the time used and distance traveled. It is
sure that the final distance to the source is decreased, and this is significant because of
the effect of the range parameter.

MULTIPLE ROBOTS SURROUND TEMPERATURE SOURCE EVENLY



146 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

0 50 100 150 200 250 300 350
2.5

3

3.5

4

4.5

5

5.5

6

6.5

Number of S−Elements

T
im

e
 U

se
d

Figure 7.25: Time vs. Number of SELs for Robots with S-Net; Range = 2 (adapted
from [20]).

0 50 100 150 200 250 300 350
1

1.5

2

2.5

3

3.5

4

4.5

5

Number of S−Elements

D
is

ta
n
ce

 T
ra

ve
le

d

Figure 7.26: Distance Traveled vs. Number of SELs for Robots with S-Net; Range = 2
(adapted from [20]).



7.8. 147

0 50 100 150 200 250 300 350
−0.5

0

0.5

1

1.5

2

2.5

3

Number of S−Elements

F
in

a
l D

is
ta

n
c
e

 t
o

 s
o

u
rc

e

Figure 7.27: Final Distance to Source vs. Number of SELs for Robots with S-Net;
Range = 2 (adapted from [20]).

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Range

T
im

e
 U

se
d

Figure 7.28: Time vs. Range for Robots with S-Net; Number of SELs = 300) (adapted
from [20]).

MULTIPLE ROBOTS SURROUND TEMPERATURE SOURCE EVENLY



148 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
−0.5

0

0.5

1

1.5

2

2.5

Range

F
in

a
l D

is
ta

n
c
e

 t
o

 s
o

u
rc

e

Figure 7.29: Final Distance to Source vs. Range for Robots with S-Net; Number of
SELs = 300 (adapted from [20]).

Figures 7.30 to 7.31 show the results of adding noise to sensors, in which “...” is
the result of mobile robots without the S-Net, and “—” is the result of the behavior
with the S-Net. For those with the S-Net, we did ten simulation runs by changing
the distribution of SELs, so the mean and standard deviation are shown in each sample
point. The values obtained by each sensor (including on-board sensors and all the SELs)
are normally distributed with parameters (μ, σ2), in which μ is the ideal temperature
value, and σ2 is the variance. In fact, each sensor smooth the data value by taking ten
samples and returning the average.

From these figures, we can clearly see that, when the noise variance is above 10,
for the mobile robot that utilizes the S-Net, the result does not change much. But for
the mobile robot that uses on-board sensors, the robot can not surround the temperature
source correctly (Figure 7.32).

In the robot system without the S-Net, when robots reach a certain distance away
from the temperature source, which means when their sensed temperatures are above
some level, the robots will begin to cooperate. One robot, which is closer to the others
will maintain its position, and the other robots will move following a constant-valued
temperature contour. To do this, they compute the gradient and move perpendicular to
it. While tracking the contour, even a small amount of noise will cause them to move
away from the contour, and results in their inability to finish the surrounding task. On
the other hand, in the S-Net system, when robots reach a certain distance away from
the highest temperature SEL, two of the robots keep their positions, and the other one
which is farthest from them will move forward to form an equilateral triangle. So we
conclude that when in real situations, especially tough situations with lots of noise, the
S-Net system will be more robust than the system without the S-Net.



7.8. 149

−5 0 5 10 15 20 25 30
0

2

4

6

8

10

12

Noise Variance

T
im

e
 U

se
d

Figure 7.30: Time vs. Variance of Noise for Robots with S-Net; Number of SELs =
300, Range = 2 (adapted from [20]).

−5 0 5 10 15 20 25 30
−2

0

2

4

6

8

10

Noise Variance

F
in

a
l D

is
ta

n
ce

 t
o

 s
o

u
rc

e

Figure 7.31: Final Distance to Source vs. Variance of Noise for Robots Without S-Net
(adapted from [20]).

MULTIPLE ROBOTS SURROUND TEMPERATURE SOURCE EVENLY



150 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

0 1 2 3 4 5 6 7 8 9
−1

0

1

2

3

4

5

X (meters)

Y
 (

m
e
te

rs
)

Figure 7.32: Robots Surround the Temperature Source without S-Net; with noise vari-
ance = 10 (adapted from [20]).

7.9 Multiple Robots Go Back and Forth to the Temper-

ature Source

This experiment is also designed to explore the benefits of using the S-Net with regard
to multiple coöperating mobile robots. Also, we would like to use the same behavior in
all the robots, so that by satisfying the same set of constraints, the robots can achieve
the desired final result.

We compare the performance of:

Multiple mobile robots without on-board temperature sensors which utilize a
stripe pattern formed by the S-Net to go back and forth to the temperature source
from a home location.

Multiple mobile robots using only on-board temperature sensors and Home sen-
sors to go back and forth to the temperature source from a home location.

Examples of these two alternatives are shown in Figures 7.33 and 7.34, in which
mobile robots originated from Home (“o” in figures), and there is a temperature source
(“�” in figures) in the environment.



7.9. MULTIPLE ROBOTS GO BACK AND FORTH TO THE TEMPERATURE SOURCE 151

−40 −30 −20 −10 0 10

5

10

15

20

25

30

35

40

45

50

55

X (meters)

Y
 (

m
e
te

rs
)

Figure 7.33: Trace of Robots Going Back and Forth with S-Net; 2 robots, 2 round trips
(adapted from [20]).

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

45

50

X (meters)

Y
 (

m
e

te
rs

)

Figure 7.34: Trace of Robots Going Back and Forth without S-Net; 2 robots, 2 round
trips (adapted from [20]).



152 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

Constants set up for the experiment are:

Robot

Maximum Linear Speed 10 m/s

Maximum Rotation Speed 20π rad/s

Initial Direction of Robot 0 rad

Number of Sources 1

In the case that mobile robots use the S-Net (500 SELs), Home is chosen as the
origin of the S-clique that sensed the lowest temperature; this provides the longest path
to the maximum temperature SEL. Then stripe patterns are formed along the gradient
of the temperature source to Home. The straight line of Home to temperature source
(located in [10, 20]) is in the middle of the white stripe (pattern value is 1), the width of
each stripe is a constant (5m in our case), and black stripes (pattern value is 0) alternate
spatially with white stripes. Different stripe patterns are formed for different random
streams. The robots will move along the white stripe toward the temperature maximum
and follow the black stripe Home. When a robot detects that a collision is about to
happen, it will slow down to prevent the collision.

In the case that mobile robots do not use the S-Net, Home is arbitrarily located at
the origin of environment (0, 0), and the temperature source is located according to
the average distance of Home to the temperature source in the S-Net experiments. The
purpose of this is to make sure that the distances of the round trip are basically the same
for both setups. We believe that the gradient of temperature source to Home does not
affect our experiment, so we let the temperature source be located in (40, 46). When
robots detect an environment collision, they make a right turn and then try get back on
track again. The robots do not use the method of slowing down, because it is difficult
and time consuming to determine whether the robot in front is moving toward them or
moving in the same direction as they are moving.

In these experiments we test performance time and distance traveled, with respect
to the number of round trips (1 to 10) and the number of robots on the path (1 to 10).
The results are displayed in Figures 7.35 to 7.38. Each data point represents the
estimated value of the performance measure of interest, and is the mean of twelve
simulation experiments. The stochastic part of each experiment is the location of the
SELs.

Figures 7.35 and 7.36 give the performance of the S-Net system, from which we
can see that when the number of robots and trips increase, the average time used and
distance traveled by each robot increases linearly, and there are no major deviations
from linear. When we take a close look at the data collected, we find that on occasion,
due to the particular random number streams, the result is not ideal, which means the
robots cannot exactly follow the stripe, but get lost looking for the correct stripe. Under
detailed analysis, we found that it is caused by some particular distributions of SELs.
Since we use the origin with lowest temperature as the Home, it is sometimes possible
that it is on the border of the stripe. There may not be enough SELs on the border for
black stripes, and then when the robots try to follow the stripe to go Home, they may
not get enough information to keep on the black stripe, and thus move away. This can



7.9. MULTIPLE ROBOTS GO BACK AND FORTH TO THE TEMPERATURE SOURCE 153

0

2

4

6

8

10

0

2

4

6

8

10
0

20

40

60

80

100

120

140

Number of Robots
Number of Trips

T
im

e
 U

se
d

 (
s)

Figure 7.35: Time Used by up to 10 Robots for up to 10 Round Trips with S-net; number
of SELs = 500 (adapted from [20]).

0

2

4

6

8

10

0

2

4

6

8

10
0

200

400

600

800

1000

1200

1400

Number of Robots
Number of Trips

D
is

ta
n

ce
 T

ra
ve

le
d

 (
m

)

Figure 7.36: Distance Traveled by up to 10 Robots for up to 10 Round Trips with S-net;
number of SELs = 500 (adapted from [20]).

be solved by making more SELs on the border or making Home far away from borders.
But this is just some particular cases, which can be handled accordingly in reality, and
is not unsolvable.

Figures 7.37 and 7.38 give the performance of the system without the S-Net, from
which we can see that when the number of robots and trips increased, the average time
used and distance traveled by each robot increase linearly. After a detailed analysis of



154 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

0

2

4

6

8

10

0

2

4

6

8

10
0

50

100

150

Number of Robots
Number of Trips

T
im

e
 U

se
d

 (
s)

Figure 7.37: Time Used by up to 10 Robots for up to 10 Round Trips without S-Net
(adapted from [20]).

0

2

4

6

8

10

0

2

4

6

8

10
0

200

400

600

800

1000

1200

1400

Number of Robots
Number of Trips

D
is

ta
n

ce
 t

ra
ve

le
d

 (
m

)

Figure 7.38: Distance Used by up to 10 Robots for up to 10 Round Trips without S-Net
(adapted from [20]).

the data collected, we found that when there are more than eight robots on the same
path, several robots may lose control. This is related to the robot behavior chosen.
While there are lots of other behaviors, we believe that this is a rather standard collision
avoidance algorithm and representative of many implementations in physical systems.



7.9. MULTIPLE ROBOTS GO BACK AND FORTH TO THE TEMPERATURE SOURCE 155

−40 −30 −20 −10 0 10

5

10

15

20

25

30

35

40

45

50

55

X (meters)

Y
 (

m
e
te

rs
)

Figure 7.39: Trace of Robots Going Back and Forth with S-Net; 2 robots, 2 round trips,
noise = 10 (adapted from [20]).

−5 0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50

X (meters)

Y
 (

m
e
te

rs
)

Figure 7.40: Trace of Robots Going Back and Forth without S-Net; 2 robots, 2 round
trips, noise = 0.5 (adapted from [20]).

Figures 7.39 and 7.40 show how noise affects the performance in both cases. From
these figures, we found that the one using S-Net can handle noise very well, when the
noise variance is about 10, the performance and trace of robots generally stay the same.
But for the case that does not use the S-Net, noise variance has a huge effect on the



156 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

performance of the robots, where even a tiny variance as little as 0.5 can cause the
robots to lose control. So we can conclude that, in terms of noise, the S-Net performs
much better.

The performance measures used to this point have looked at success/failure, time
to goal and distance traveled. Another crucial aspect is the more qualitative users’
defined cost which is, in general, a function of the physical performance measures. For
example, it may be that timeliness is extremely important, and the user may assign an
exponential cost to time. Even if the cost is directly proportional, it may be linearly
related with a steep slope.

To explore this aspect of performance cost, we have set up two models: (1) linear,
and (2) quadratic. The three major terms included are:

robot cost: we always assume this is linear in the number of robots.

S-net cost: we always assume this is linear in the number of SELs.

physical quantitative (e.g., time and distance determined from simulation exper-
iments): we apply a linear or quadratic forum to this term.

In order to explore this issue, we examined linear and quadratic cost functions in
terms of parameters in the equations in order to determine the existence of various cost
requires related to parameter values.

We define the cost relation as:

Cl = Cs + Cp

where:

Cl is the total cost

Cs is the cost of the system infrastructure

Cp is the cost of performance

Cs = Nr ∗ Cr + Ns−el ∗ Cs−el

Cp = at ∗ tk + ad ∗ dk

in which k = 1 in the linear case, and k = 2 in the quadratic case.
The performance data without the S-Net are given by Tables T1, and T2 (time and

distance, respectively), and performance with S-Net is given by Tables T3 and T4. We
compare the two systems (without and with S-Net) by computing the number of cases
for which the S-Net system outperforms the non-S-Net system (over the 100 cases of
experiment).



7.9. MULTIPLE ROBOTS GO BACK AND FORTH TO THE TEMPERATURE SOURCE 157

The time used for system without S-Net is:

trips 1 2 3 4 5 6 7 8 9 10

robots

1 12.29 13.82 15.30 16.68 18.06 19.43 20.77 41.25 56.67 69.01

2 24.45 25.98 27.43 28.83 30.21 31.60 33.53 52.23 51.88 65.00

3 36.61 38.20 39.67 41.08 42.49 44.05 45.75 47.63 62.92 75.14

4 48.76 50.32 51.90 53.31 54.73 56.20 58.08 60.18 74.19 85.06

5 60.90 62.53 64.05 65.58 67.06 68.65 70.38 72.64 85.03 95.15

6 73.04 74.68 76.23 77.70 79.09 80.82 83.04 85.31 96.28 108.7

7 85.20 86.81 88.35 89.89 91.34 93.11 95.30 97.78 107.1 115.3

8 97.36 99.0 100.6 102.1 103.5 105.4 107.9 110.3 118.3 125.3

9 109.52 111.2 112.7 114.3 115.7 117.6 120.2 122.3 129.5 135.0

10 121.68 123.3 124.9 126.4 127.9 130.1 132.2 134.7 140.6 145.4

The distance traveled for system without S-Net is:

trips 1 2 3 4 5 6 7 8 9 10

robots

1 122.7 124.6 126.7 128.5 130.4 132.2 133.8 232.1 305.3 362.8

2 244.1 246.0 247.9 249.8 251.6 253.4 257.1 346.3 339.0 400.1

3 365.5 367.6 369.7 371.5 373.5 375.7 378.9 382.6 454.3 510.6

4 486.8 488.8 491.0 492.9 494.8 497.2 500.8 505.5 570.5 620.0

5 608.0 610.4 612.6 614.7 616.9 619.6 622.6 627.9 684.8 730.4

6 729.2 731.7 733.9 735.8 737.7 741.0 745.8 751.2 800.9 857.9

7 850.6 853.0 855.2 857.3 859.4 862.8 867.4 873.5 915.1 950.5

8 972.0 974.5 976.7 978.7 980.7 984.9 990.2 996.2 1031 1060

9 1093 1096 1098 1100 1102 1106 1112 1117 1147 1169

10 1215 1217 1219 1222 1224 1229 1233 1239 1263 1280



158 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

The time used for system with S-Net is:

trips 1 2 3 4 5 6 7 8 9 10

robots

1 12.18 13.18 14.18 15.23 16.26 17.25 18.26 19.25 20.24 21.24

2 24.09 25.17 26.17 27.29 28.31 29.27 30.38 31.42 32.52 33.51

3 35.99 37.16 38.17 39.28 40.28 41.35 43.91 44.90 45.92 46.94

4 47.93 49.20 50.17 51.28 52.30 53.43 55.87 56.99 57.99 59.16

5 59.83 61.18 62.11 63.28 64.36 65.41 69.14 70.11 71.02 71.27

6 71.75 73.20 74.08 75.39 76.41 77.60 80.99 82.03 82.96 84.14

7 90.43 91.87 92.63 93.95 96.28 94.06 95.43 95.53 95.03 96.81

8 101.3 102.8 103.6 104.9 107.1 106.4 106.8 107.2 107.5 108.8

9 112.15 113.8 114.5 115.8 117.9 117.6 118.2 119.0 119.8 121.1

10 123.0 124.8 125.4 126.9 128.8 129.4 129.5 131.1 131.9 133.0

The distance traveled for system with S-Net is:

trips 1 2 3 4 5 6 7 8 9 10

robots

1 116.8 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7

2 234.0 234.0 234.0 234.0 234.0 234.0 233.9 234.0 234.0 234.0

3 351.2 351.2 351.2 351.2 351.3 351.2 365.5 364.0 362.9 361.9

4 468.8 468.8 468.8 468.8 468.8 468.8 481.6 480.4 479.3 478.4

5 585.9 586.0 586.0 585.9 586.0 586.0 610.5 607.9 604.4 594.9

6 703.4 703.6 703.7 703.6 703.7 703.6 725.0 722.9 719.7 718.6

7 888.3 887.7 886.9 885.9 899.4 863.6 865.6 853.0 835.1 840.4

8 995.4 994.7 994.2 993.2 1005 983.1 975.9 965.3 956.2 954.8

9 1102 1102 1101 1100 1110 1092 1086 1078 1075 1073

10 1209 1209 1208 1207 1215 1207 1196 1194 1192 1187



7.9. MULTIPLE ROBOTS GO BACK AND FORTH TO THE TEMPERATURE SOURCE 159

0 2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coefficient

P
e

rc
e

n
ta

g
e

 t
h

a
t 
S

−
N

e
t 
C

o
st

s 
L

e
ss

Figure 7.41: System Cost Comparison vs. Coefficient in Quadratic Distribution
(adapted from [20]).

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Coefficient

P
e
rc

e
n
ta

g
e
 t
h
a
t 
S

−
N

e
t 
C

o
st

s 
L
e
ss

Figure 7.42: System Cost Comparison vs. Coefficient in Linear Distribution (adapted
from [20]).

To establish Cs, we investigated mobile robot costs and a reasonable projection
for SEL costs. For a given number of robots and SELs, these costs are fixed and
the cost variation comes from the Cp term. Rather than look at particular fixed at
and ad, we have assumed they are equal. Separate them out vary at independent of
ad. Figures 7.41 and 7.42 show the percentages of times the S-Net out-perform the



160 CHAPTER 7. MOBILE ROBOT PERFORMANCE ANALYSIS

non-S-Net as a function of the coefficient value (at = ad). As can be seen, for both
the quadratic and linear cost function, there are thresholds below which the non-S-Net
out-performs the S-Net. This indicates that for any particular implementation, a specific
detailed analysis should be done to determine which is preferred.



Chapter 8

CSN: The Heat Equation

We have proposed Computational Sensor Networks as a methodology1 to exploit models
of physical phenomena in order to better understand the structure of the sensor network.
To do so, it is necessary to relate changes in the sensed variables (e.g., temperature)
to the aspect of interest in the sensor network (e.g., sensor node position, sensor bias,
etc.), and to develop a computational method for its solution. As examples, we describe
the use of the heat equation to solve the sensor node localization problem and to detect
sensor bias. Simulation and physical experiments are described.

A model-based approach to the design and implementation of Computational Sensor
Networks (CSNs) is proposed. This high-level paradigm for the development and ap-
plication of sensor device networks provides a strong scientific computing foundation,
as well as the basis for robust software engineering practice. As described in Chapter
1, the three major components of this approach include (1) models of phenomena to be
monitored, (2) models of sensors and actuators, and (3) models of the sensor network
computation. We propose guiding principles to identify the state or structure of the phe-
nomenon being sensed, or of the sensor network itself. This is called computational
modeling. These methods are then incorporated into the operational system of the sen-
sor network and adapted to system performance requirements to produce a mapping
of the computation onto the system architecture. This is called real-time computa-
tional mapping and allows modification of system parameters according to real-time
performance measures. This chapter deals mainly with computational modeling.

CSNs represent a scientific computing approach, and this includes the Verification
and Validation (V & V) methodology of that discipline[118]; that is, model implemen-
tations must be verified (e.g., for correctness or numerical properties like error and
convergence), and appropriate tests embedded in the system to monitor system cor-
rectness during execution. However, an important new aspect of this approach is that
a CSN has the ability to sense and interact with the environment, and thus can run its
own validation experiments to confirm or refute model structure or parameter values.
Another intrinsic capability offered by CSNs is that models can be used to determine

1This chapter is a modified version of work done with Christopher Sikorski, Kyle Luthy and Edward
Grant[66], and Felix Sawo and Uwe Hanebeck [132].

© Springer Science+Business Media, LLC 2009 
161 T.C. Henderson, Computational Sensor Networks, DOI: 10.1007/978-0-387-09643-8_8, 



162 CHAPTER 8. CSN: THE HEAT EQUATION

unknown aspects of the structure of the measurement system itself given a known state
of the physical phenomenon. For example, given the heat flow PDE and known tem-
peratures at fixed (but unknown) sensor node locations, the equations can be reworked
so as to determine the sensor locations (i.e., to solve the sensor localization problem).
This can be done for a wide variety of initial conditions and depends only on the equa-
tions defining the physical process and the specific realization of the process in the
world. Thus, real-time V & V are performed and this permits a scientifically repeatable
basis for sensor network experiments. Real-time computational steering is achieved
by (1) embedding verification and validation modules into the executable code, and (2)
modeling module performance in terms of statistically meaningful characterization of
output features conceptually defined by the user.

On the sensor network side, many advances have been made in sensor network
technology and algorithms in the last few years. See [168] for an overview of the
state of the art. Work has been done on: architecture [69], systems and security [167],
and applications. Our own work has focused on the creation of an information field
useful to mobile agents, human or machine, that accomplish tasks based on the infor-
mation provided by the sensor network (see previous chapters). In order to address
sensor networks in a comprehensive manner, the sensor network community has initi-
ated a research program that includes work in the areas of sensor network architectures,
programming systems, reference implementations, hardware and software platforms,
testbeds and applications. Here we explore the impact of a computational science

approach on all these aspects of sensor networks, and show that much benefit can
be derived [56, 57]; in particular, the tools developed here can be highly leveraged
across many scientific communities. CSNs will provide software engineering support
for scientists and engineers to exploit sensor networks where it is notoriously diffi-
cult to develop and validate systems, for example, in our proposed snow monitoring
application.

One of the major innovations of this approach is the incorporation of a strong model
of the phenomenon to be observed. This allows the system developer great insight into
the V & V requirements. We demonstrate the usefulness of the CSN approach by way
of two examples:

Sensor Node Localization: Given a model of the physical phenomenon, and
a set of sensor nodes in unknown, but fixed, locations, use the computational
model to determine the sensor node locations.

Sensor Bias Detection: Given a model of the sensor, use the computational
model to determine sensor bias.

8.1 Sensor Node Localization

To demonstrate how this methodology can be applied, we show how the sensor node
localization problem can be solved. Oftentimes sensor devices are dropped at random
into an environment or maybe moved (e.g., in a snow monitoring application, the devices
may move with the snow both in depth as well as tangential to the surface). Many
approaches to sensor node localization have been proposed [23, 102, 114]; see [160] for



8.1. SENSOR NODE LOCALIZATION 163

Figure 8.1: Heat Flow in a Uniform Rod (adapted from [66]).

a survey. As one example, Whitehouse and Culler propose a macro-calibration method
for localization [162]. Their ad hoc localization system estimates distance between
nodes using received signal strength information and acoustic time of flight. Although
these phenomena can be modeled in the CSN context, their approach requires additional
sensors (microphones) and processes. Moreover, CSNs solve an inverse problem based
on the physical phenomenon - the example given here uses the heat equation (note that
temperature sensors are ubiquitous and the method is robust).

Consider a rod of uniform cross-section and length 1 that is completely isolated
except at the ends (see Figure 8.1). The heat flow is therefore limited to the x direction
and the development of the temperature y over time can be described by the following
partial differential equation (known as the diffusion equation):

∂y

∂t
= D · ∂

2y

∂x2 with D =
κ

c · ρ

where κ denotes the thermal conductivity, c the specific heat capacity and ρ the density
of the rod. Figure 8.2 shows how the temperature changes over time for an arbitrary
initial state. Note that usually the temperatures at the ends are fixed and the temperatures
settle to a linear ramp (one could then easily assign locations to the nodes given a
temperature); however, the basic requirement is that the temperature values in the rod
change according to the heat equation in order for the method to work. It is also possible
to allow the temperature at the ends to vary. There exist temperature distributions which
are ambiguous, and thus where the method will not work – e.g., a constant temperature
across the whole rod.

Such PDE’s are usually solved by discretization and approximation of the deriva-
tives. Then the temporal variation of the rod at any location can be determined using the
standard finite difference approach: a grid of discrete, general points over the domain
is considered and the derivatives are replaced by their finite-difference expressions
at those points. We denote the points along the x-axis by xi, the time points by tj
(with Δt the time step) and finally the temperature at point xi and time tj by yi,j .



164 CHAPTER 8. CSN: THE HEAT EQUATION

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

500

600
250

300

350

400

450

500

550

position [m]

Simulated Temperatures II

time [s]

te
m

p
e
ra

tu
re

 [
F

]

Figure 8.2: Simulation of Heat Flow Equation (adapted from [66]).

Then: (
∂y

∂t

)
i,j

=
yi,j+1 − yi,j

Δt

(
∂2y

∂x2

)
i,j

=

yi+1,j − yi,j
xi+1 − xi

− yi,j − yi−1,j

xi − xi−1
1
2 (xi+1 − xi−1)

which yields:

yi,j+1 = yi,j +
2ΔtD

(xi+1 − xi−1)
(

yi+1,j

(xi+1 − xi)

− yi,j
(xi+1 − xi)

− yi,j
(xi − xi−1)

+
yi−1,j

(xi − xi−1)
)

The key idea is that the equations express an explicit relation between three positions
on a line (two known endpoints and one unknown location between them), and four
temperature values (all known and one at each location at time t and one at the unknown
location at time t + 1). In general, this leads to a system of polynomial equations of
degree three, however, for the case of one unknown location, this reduces to a single
quadratic equation. This can the be solved and the root selected which best fits the
conditions (e.g., must be between the two known locations).

To solve the localization problem in this case, the set of equations (one for each yi)
must be solved for the xi values. This requires solving a set of degree 3 polynomial
equations - which can be a difficult problem. For example, given n sensor nodes, there
are up to 3n distinct solutions (most are complex solutions, and thus not feasible). See
[147] for analytical solution methods, e.g., homotopy continuations.

In the next sections we describe several alternative methods to solve for the SEL
locations. First, a set of techniques are proposed which exploit the forward solution of



8.1. SENSOR NODE LOCALIZATION 165

the equation; these involve either a generate and test approach or a nonlinear gradient
descent solver. Second the Polynomial System Localization (PSL) method is given
which directly solves for the unknown location.

8.1.1 Generate and Test

We have discovered that in the case of sensor networks, a search over uniform samples
can be performed which produces the sensor node locations quite efficiently. Consider
Algorithm Mesh localization.

Algorithm Mesh localization

———————————————————

On input:

n: the number of unknown SEL locations

T
(j)
i : the temperature at node i at time j, i = 1 . . . n

x0, T0: min x value and temperature there

xn+1, Tn+1: max x value and temperature there

δt: time step for simulation

k: heat constant for simulation

On output:

Si, i = 1 . . . n; SEL locations

begin

Sij ← uniform mesh samples on interval

T ′Sij ← Heat 1D Sim – predicted temps for Sij

Dij ← ‖T ′Sij − T‖ – distance from actual temps

imin, jmin = argmin(Dij) – best temperature match

Si ← Simin,jmin

end

The algorithm generates equi-spaced locations for the sensors, then simulates the
heat equation to obtain predicted temperatures given the assumed node locations, then
uses a distance norm to obtain an estimate of how much the actual and predicted
temperature values differ. Finally, it determines the minimum error set of locations.

The results of Algorithm Mesh localization are good, but to achieve an answer in
a reasonable time requires a hierarchical approach. First, locations are found at the
integer level resolution for location, then these can be refined to get more accuracy.
For example, for four unknown locations across an interval [0, 11], each location has
10 possibilities for a total of 104 combinations (since the locations are not known to be
in any particular order on the interval and cannot be at the endpoints of the interval).



166 CHAPTER 8. CSN: THE HEAT EQUATION

Steam

Inlet

Steam

Chamber

Circular Test Rod

Thermocouple

Connector &

Switch

2 3 4 5 6 7 8 91

Thermocouples

Figure 8.3: Layout of the Heated Rod Experiment (adapted from [66]).

8.1.2 Dense Sample Method

An alternate approach is to try to match more densely sampled temperature sets at
an individual SEL to forward simulation temperature vs. time curves produced in the
interval. Algorithm Heat 1D dense does this.

Algorithm Heat 1D dense

———————————————————

On input:

n: the number of unknown SEL locations

T
(j)
i : the temperature at node i at time j, i = 1 . . . n

x0, T0: min x value and temperature there

xn+1, Tn+1: max x value and temperature there

δt: time step for simulation

k: heat constant for simulation

On output:

Si, i = 1 . . . n; SEL locations

begin

xi ← dense set of samples on interval

T
′(j)
i ← Heat 1D Sim – predicted temps at xi at time j

foreach Tk – temperature trace at unknown location

pk = arg{min{correlation(Tk, T ′i )}} – best temperature match

end

Si ← pi, i = 1 . . . n

end

We have applied this method to data taken from an experimental apparatus (Fig-
ure 8.3 shows the layout). A one meter long stainless steel rod (304CG) of diameter
one inch is connected to a steam chamber at one end and is instrumented with type T
thermocouples located at 0.005m, 0.035m, and 0.095m, respectively, from the steam



8.1. SENSOR NODE LOCALIZATION 167

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

80

90

100

Position of Temperature Calculation

T
e

m
p

e
ra

tu
re

 (
C

)

Temperature Model over Time as Calculated on a Mote.

Figure 8.4: Forward Temperature Simulation from Tmote Sky Execution (adapted from
[66]).

chamber. The thermocouples are connected to 10 channel selector switches which in
turn are connected to a digital readout. The rod is attached to the steam chamber that
provides a constant energy source at the base. The steam is turned on, and temperature
readings are taken every 20 seconds as the rod heats.

Given knowledge of the initial conditions once the steam is activated (namely, 100
degrees C at one end and room temperature elsewhere along the rod), it is possible to
run a careful simulation to obtain temperature curves at a dense sample of points along
the rod (e.g., 1,000). Code was developed for the Tmote Sky and Figure 8.4 shows the
results of a mote calculation. Each sensor is then matched independently to determine
the best fit location.

Table 8.1 Simulated/Measured Temperature Data for Heated Rod.

x = 0.005 x = 0.035 x = 0.095

sim/measured sim/measured sim/measured

65.2/65.2 30.2/30.2 20.6/20.6

85.4/68.3 33.9/33.1 21.2/20.7

88.2/71.0 35.7/35.5 21.4/21.0

89.5/73.4 37.6/37.6 21.6/21.1

90.4/75.9 39.5/39.8 21.8/21.3

91.1/77.9 41.4/41.9 21.9/21.6

91.6/79.8 43.2/43.9 22.1/22.0



168 CHAPTER 8. CSN: THE HEAT EQUATION

Table 8.1 gives the simulated and measured temperature values. The actual and recov-
ered locations are: (0.005, 0.035, 0.095) and (0.011, 0.035, 0.100), respectively. As
can be seen, the heat transfer model fits better away from the steam source.

8.1.3 Nonlinear Optimization Method

We have also studied the use of a nonlinear system solver (fminsearch2 in Matlab) to
solve the localization problem. This is set up as follows:

Temperature values at specific locations and time instants are generated and taken
as input data (the positions are not made available).

A set of random location sets are generated, and the forward simulation used to
predict the temperature at each time instant for each possible set of locations, and
the lowest error set is used as the starting point for the nonlinear solution search.
(Error is just the Euclidean distance between the temperature sets viewed as a
vector.)

Matlab’s fminsearch is run to find the least error solution.

The results for one to four unknown SEL locations in the interval [0, 10] and for four
time instants (t = 1, 2, 3, 4 seconds) are shown in Table 8.2. Ten trials were run per
test case, and of the 40 trials, 3 failed to find a solution.

Table 8.2 fminsearch Error Results.

Number Unknowns Mean(max(errors)) Var(max(errors))

1 0.2281 0.1784

2 0.3529 1.2452

3 0.4016 0.3952

4 1.3395 10.3094

Thus, we see that for a small number of locations, and a reasonably good starting set
of positions, the average error is low (less than 0.4 units out of 10 units), and has low
variance. However, the method does not necessarily converge.

8.1.4 Polynomial System Localization (PSL)

The Polynomial System Localization (PSL method) is purely deterministic, meaning
that neither uncertainties in the model description nor in the measurements are consid-
ered. This direct method is based on restating the model of the distributed phenomenon
in terms of a polynomial system including the state of the phenomenon and the loca-
tion to be identified. Then, solving a system of polynomial equations leads directly

2fminsearch performs multidimensional unconstrained nonlinear minimization using Nelder-Mead.



8.1. SENSOR NODE LOCALIZATION 169

to the desired location of the sensor node. The PSL method has low computational
complexity and can be implemented in a fairly straightforward manner.

This deterministic approach for the localization of individual nodes in a sensor
network based on local measurements of a distributed phenomenon. The key idea of
the proposed direct method is to solve the partial differential equation (Eqn 8.1) in
terms of the unknown node locations. This leads to a straightforward solution as long
as the resulting nonlinear equations can be readily solved. Solving these equations for
all sensor locations is called the Polynomial System Localization Method. The PSL
method basically consists of two steps: (1) spatial and temporal discretization of the
mathematical model, and (2) reformulating and finally solving the resulting system of
polynomial equations in terms of the desired locations.

Solving Polynomial System Equations

Based on the spatial and temporal discretization, the partial differential equation
(Eqn 8.1) may be expressed as a finite difference equation and put in the following form
at each discretization point, pi, in the interval in question

0 = Ai
k(xi+1

k −xik)(xik−xi−1
k )(xi+1

k −xi−1
k )−Bi

k(xik−xi−1
k )+Ci

k(xi+1
k −xik) (8.1)

where

Ai
k =

yik+1 − yik
2αΔt

, Bi
k = yi+1

k − yik, Ci
k = yik − yi−1

k

At this point, it is important to mention that xik represents the unknown location of the
sensor node to be localized and xi+1

k and xi−1
k are the known locations of neighboring

nodes. The derived system equation (Eqn 8.3) can be simply regarded as an explicit
relation between three positions on a line (two known endpoints and one unknown
location between them), and four values of the measured phenomenon (all known and
one at each location at time t and one at the unknown location at time t+1). In order to
derive the unknown location xik of sensor node i, the polynomial system of equations
(Eqn 8.3) needs to be solved and the root selected, which best fits the conditions (e.g.,
must be between the two known locations xi−1

k and xi+1
k ).

The PSL method assumes a densely deployed sensor network in which every node
i communicates with its neighboring nodes i− 1 and i + 1. This means that measure-
ments of the distributed phenomenon yi−1

k and yi+1
k need to be transmitted between

adjacent nodes. It can be stated that the denser the sensor nodes are deployed, the more
accurate the individual nodes in the network can be localized. The proposed localiza-
tion approach involves neither errors in the mathematical model nor uncertainties in
the measurements. However, it can be easily implemented and has low computational
complexity.

The simulation results for the PSL method are depicted in Figure 8.5. It is important
to mention that this deterministic approach was simulated with perfect information, i.e.,
there is noise neither in the system nor in the measurements. Furthermore, we assume
that the sensor node to be localized receives information about distributed phenomenon
and locations from neighboring nodes. Since the diffusion equation has derivatives
involving Δt and Δx, the PSL method is sensitive to the distance between the two



170 CHAPTER 8. CSN: THE HEAT EQUATION

Figure 8.5: Results of PSL Method (adapted from [132]).

adjacent known locations. Evidence of this effect is shown in Figure 8.5 which plots
the values found by the PSL method for known points of varying distance from the
unknown. It is obvious that the denser the nodes are deployed the more accurate the
location can be identified. The PSL method is a deterministic approach and is mainly
based on restating the mathematical model in terms of the location. In the case of no
noise in the model description and the measurement, this method leads to sufficient
results for a dense sensor network.

In future work it is necessary to incorporate error into the PDE model as well as the
sensors, and to study the robustness of the method in the presence of noise. Â Another
issue is that if the locations of several nodes are unknown, they may be solved separately
using the method described above; however, we should compare it to the simultaneous
solution of the system of degree three equations. Finally, we intend to test the method
on actual sensor data.

8.2 Sensor Bias Estimation

A sensor model generally characterizes at least two sources of error: (1) random error
(noise), and (2) systematic error (bias). Given the exact temperature yji at position xi
and time tj , the measured value is given by:

zji = yji + bi + ω ω ∼ N (0, σ2)

where ω is random noise sampled from a Gaussian distribution with mean 0 and variance
σ2, and bi is the bias of sensor Si. Assume that n + 2 SELs, and thus, the sensors,
are equi-spaced along a rod of unit length with spacing h; that is, Si is located at
xi = ih, i = 0 . . . n + 1 (i.e., x0 = 0 and xn+1 = 1). Thus, h = 1

n+1 .
Given the model of the heat equation and the sensor model, we will show how to

determine values for the biases, bi, i = 1 . . . n. First, we rewrite (Eqn 8.1) as:

yji = zji − bi − ω



8.2. SENSOR BIAS ESTIMATION 171

and combine it with the finite difference approximation to the heat equation:

yj+1
i − yji

Δt
= D · y

j
i+1 − 2yji + yji−1

h2

= D ·
(zj+1
i − ωj+1

i − zji + ωji )h
2

ΔtD

−zji+1 + ωji+1 + 2zji − 2ωji − zji−1 + ωji−1 = −bi+1 + 2bi − bi−1

Assume that the noise is small compared to the bias and note that the mean of the noise
terms is 0; this yields:

−bi+1 + 2bi − bi−1 =
h2(zj+1

i − zji )
ΔtD

− zji+1 + 2zji − zji−1

Now assume that the bias for S0 and Sn+1 is 0. Then this gives rise to a tridiagonal
system: ⎛

⎜⎜⎜⎜⎝

−2 1

1
. . .

. . . 1
1 −2

⎞
⎟⎟⎟⎟⎠ ·

⎛
⎜⎝

b1
...

bn−1

⎞
⎟⎠ =

⎛
⎜⎝

v1
...

vn

⎞
⎟⎠ (v)

where vi is the right hand side of (Eqn v). This can be solved with direct methods (or
in case of over-determined systems, can be solved using least squares).

We carried out some experiments to see how our approach for bias detection per-
forms. We simulated temperatures using spectral methods to generate the data for the
experiments. The sensor located at the center of the rod was assigned a bias of bn/2 = 5
while all other sensors had no bias. There are two sources of error to the bias estimate:
inaccuracies introduced by the finite difference approximations and noise. Figure 8.6
demonstrates the influence of the former. The figure compares true and estimated bias
values; Δt = 2s was chosen as time step. For the estimation we used the approx-
imation formula already introduced (error is ∈ O((Δx)2)) as well as the following
approximation formula which has error ∈ O((Δx)4):

(
∂2y

∂x2

)
i,j

=
−yi−2,j + 16yi−1,j + 30yi,j + 16yi+1,j − yi+2,j

12(Δx)2

To apply this formula one has to assume that the two first and last bias values are known
in advance (we set them to zero). As expected the higher accuracy of the latter formula
also leads to better values for the bi. The figure shows the influence of the sensors’
distance Δx: For an increasing number of sensors (which decreases Δx) the error of
the bias estimate is plotted. The error is computed by

e =
1

n + 1

(∑
(bi − b̃i)2

) 1
2

where b̃i denotes the estimated value for bi.



172 CHAPTER 8. CSN: THE HEAT EQUATION

10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Error depending on number of sensors

number of sensors

e
rr

o
r

O(Δ x4) formula

O(Δ x
2
) formula

Figure 8.6: Errors Depending on Δx and the Approximation Formulas.

To demonstrate the influence of noise, we added white Gaussian noise to the (sim-
ulated) measurements. Now a single estimate is not sufficient any more since it is
influenced by this noise. Therefore it becomes necessary to take into account more
than just two consecutive measurements. This can be accomplished by using the equa-
tion several times for different measurements and solving this now over-determined
system, or by solving the individual equations independently and computing the mean
value. For different levels of noise Figure 8.7 shows how the bias estimate converges as
more and more measurements are included (we used the same initial temperatures and
bias values as above, 15 sensors and the O((Δx)4) finite-differences approximation).

So far we have done all of our sensor bias experiments with equispaced sensor nodes;
this is a constraint that will rarely hold in real world applications and for unequally
spaced sensors other approximations formulas have to be used, like derivatives of
interpolating polynomials, for example (note that the resulting terms will still be linear
in the bi). The technique presented here also has another drawback. The computation
is performed globally so that the measurements of all sensors first have to be sent to
a central node before computation can start. But consider the following scenario: the
sensor network could frequently test itself by computing the bias of a single sensor
under the assumption that the neighboring sensors have zero bias (this computation can
be done locally since it involves only measurements from a constant number of sensor-
nodes – 3 sensors for the O((Δx)2))-approximation and 5 sensors for the O((Δx)4))-
approximation). Although the condition of zero-biased neighboring nodes may not
hold, the sensor-network should still be able to detect malfunctioning nodes this way
and can exclude those from further computation.

We have demonstrated the ideas already presented for a concrete example: we
estimated sensor bias solely based on sensor measurements and a system model by



8.3. FUTURE DIRECTIONS 173

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14

16

number of steps

e
rr

o
r

Error depending on number of steps and noise

variance 0.1
variance 1

Figure 8.7: Estimates Depending on Noise and the Number of Measurements.

using methods known from the computational field. The accuracy of the approximation
formulas had a clear impact on the reliability and the convergence behavior of the
estimates – but more accurate approximations will also result in higher computation
costs.

8.3 Future Directions

A major issue is the determination of an adequate model of the phenomenon. We take
as our starting point that this is possible, especially when the structure of the model
is known, and all that remains is to identify parameters. For recent work on this,
see [135] and the next chapter. They derive the system model and the measurement
model by the finite spectral method and show how nonlinear phenomena with complex
boundary conditions can be reconstructed and predicted. More work needs to be done to
characterize the types of functions which allow unique solutions in these circumstances.

These preliminary results are very encouraging. However, there is much work to
be done:

The method must be extended to other phenomena.

The method must be extended to 2-D and 3-D.

The method must be applied to physical experiments. This requires the identifi-
cation of high-quality models (i.e, their form and parameters).

A few words are in order about the practicability of the method:

Each sensor node can solve the problem independently in terms of sensor data
from its neighbors.



174 CHAPTER 8. CSN: THE HEAT EQUATION

Generally, there will not be a large number of neighbors, and thus the system
should be readily solvable.

The only communication required is a time sequence sample of temperatures
from the neighbors.

Solutions can be shared between nodes to improve efficiency and accuracy.

Temperature values can be averaged to reduce the effect of noise.

Off-network computation of the numerical solution is also possible.

Acknowledgments

We would like to thank Mr. Konark Pakkala and Prof. Kent S. Udell for perform-
ing the heated rod experiment and collecting the data, Mr. Markus Westphal for his
contributions to sensor bias estimation, Mr. Dietrich Brunn and Prof. Uwe Hanebeck
for discussions on this topic, and Mr. Felix Sawo for his help and input.



Chapter 9

Bayesian Estimation of
Distributed Phenomena

Felix Sawo and Uwe D. Hanebeck1

Intelligent Sensor-Actuator-Systems Laboratory
Institute of Computer Science and Engineering
Universität Karlsruhe (TH), Germany

This chapter introduces a Bayesian approach for the estimation of distributed phe-
nomena based on discrete time-space measurements obtained by a sensor network.
We introduce a new methodology for sensor network applications, which rigorously
exploits mathematical models of the distributed phenomenon to be monitored. By
this unobtrusive exploitation, the individual sensor nodes collect information not only
about properties of the phenomenon but also about the sensor network itself. The nov-
elty of the introduced estimation method is the systematic approach and the consid-
eration of uncertainties not only occurring in the mathematical model but also arising
naturally from noisy measurements.

First, it is shown how the physical phenomenon in terms of a distributed-parameter
system description is spatially decomposed and temporally discretized leading to a
lumped-parameter finite-dimensional description in state space form. Then, based on
such a system description, the proposed methodology of simultaneous state and pa-
rameter estimation of distributed phenomena is introduced in a quite general form. It
turns out that this in most cases leads to a high-dimensional nonlinear estimation prob-
lem, making special types of nonlinear estimators necessary. Accordingly, a novel
estimator, the so-called Sliced Gaussian Mixture Filter is employed. This estimator
exploits the linear substructure in the high-dimensional nonlinear estimation problem,
and leads to a more efficient process. Furthermore, we introduce the application of this

1This chapter is a modified version of [132]

© Springer Science+Business Media, LLC 2009 
T.C. Henderson, Computational Sensor Networks, DOI: 10.1007/978-0-387-09643-8_8, 175 



176 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

(a) (b)

sensor nodes, e.g.,
   temperature
   light intensity  

   pressure
   humidity

communi-
cation unit

support snow avalanche 

warning systems
evaluation of snowmelt
effective utilization of 
water ressources

Figure 9.1: Visualization of a Snow Monitoring Scenario. (a) The individual sen-
sor nodes collect local information about the snow state, e.g., temperature, light
intensity, pressure, or humidity. (b) The observations provide useful information
for snow avalanche warning systems and allow an effective utilization of water re-
sources.(adapted from [132])

methodology to two of the most common tasks arising in sensor network applications.
This results in two different methods:

the simultaneous reconstruction of the state and identification of parameters of
distributed phenomena (SRI method), and

the simultaneous reconstruction of the state of distributed phenomena and local-
ization of sensor nodes (SRL method).

The proposed methods provide novel prospects not only for the estimation of dis-
tributed phenomena but also for sensor network applications in general. Thanks to
the simultaneous approach, the network is able to estimate the entire state of the dis-
tributed phenomenon, identify non-measurable quantities, verify and validate the cor-
rectness of the estimation results, and eventually adapt its algorithms and behavior in
an autonomous fashion.

The results presented in this chapter were published in [14, 132, 134, 136]. How-
ever, the proposed model–based methods for the estimation of distributed phenomena
are presented in a considerably extended form in this chapter.

9.1 Sensor Networks for Distributed Phenomena
In recent years, advances in technology have made it possible to build wireless sensor
networks providing a smart interaction with the environment [25]. Typical advantages
of using sensor networks include the deployment at low cost and in large numbers, as
well as the inherent robustness thanks to the redundancy [21]. An important applica-
tion for such networks is the observation of natural physical phenomena. Examples
for such physical phenomena are: temperature distribution [136], chemical concentra-
tion [169], fluid flow, deflection and vibration in buildings, or the surface motion of a
beating heart in minimally invasive surgery [5].



9.1. SENSOR NETWORKS FOR DISTRIBUTED PHENOMENA 177

For the reconstruction of such distributed phenomena, the sensor network can be
exploited as a huge information field collecting data from its surrounding. In such sce-
narios, the individual sensor nodes are densely deployed either inside the phenomenon
or close to it. Then, by distributing local information to a global processing node,
the phenomenon can be coöperatively reconstructed in an intelligent and autonomous
manner [75, 130, 133]. This provides useful information both to mobile agents and to
humans, which can accomplish their respective tasks more efficiently, thanks to the ex-
tended perception provided by the sensor network. Hence, dangerous situations, such
as forest fires, seismic sea waves, or snow avalanches can be forecast or even prevented
[66]. In the following, prospective application scenarios where sensor networks could
provide a novel approach are described.

9.1.1 Prospective Application Scenarios
For snow monitoring scenarios, for example, there are two applications where the
sensor network could provide novel possibilities: forecasting snow avalanches and
flood runoffs. Snow avalanches are a major hazard to people, equipment or facilities,
such as buildings, ski slopes, roads, power lines, and railways, in mountainous regions
throughout the world. Each year, snow avalanches cause casualties and damage, not
only in non-protected areas but also in popular cross-country skiing areas, e.g., in the
Wasatch mountains in Utah. The application of an intelligent and autonomous sensor
network could offer useful information for the support of avalanche forecasting sys-
tems. The individual sensor nodes deployed on the ground or within the snow pack
collect measurable information about the snow state, such as temperature, light inten-
sity, pressure or humidity; see Figure 9.1 (a). Then, based on these observations and
after further processing, measures about the stability of the snow pack, e.g., stress dis-
tribution, strain distribution, density distribution or location of so-called weak layers,
of a certain area could be estimated [9, 99, 100, 127, 151]. Thus, by means of a sensor
network, the possibility of snow avalanches can be predicted and defense structures in
avalanche starting zones can be optimized; see Figure 9.1 (b). An additional applica-
tion scenario where sensor networks could provide novel possibilities is the accurate
and efficient evaluation of snowmelt. By this means, water resources could be utilized
more efficiently and flood runoffs could be forecast more accurately [76, 95].

A further example worth mentioning is the application of sensor networks to moni-
toring the condition and composition of ice in skating rinks [171]. For speed skaters to
reach faster times, the optimal ice composition and especially the optimal temperature
distribution of the ice is quite essential. For that reason, temperature nodes deployed
at different points within the ice allow the estimation of the actual temperature distri-
bution on the top of the surface and eventually the determination of the optimal ice
composition. In addition, the sensor nodes can be linked to ice making machines,
so that they can be adjusted in order to compensate changes in temperature, wind, or
humidity [171].

In the aforementioned scenarios and for sensor network applications in general,
the number of nodes and the measurement rates should be as low as possible due to
economic and energetic reasons. As it stands, the lower the measurement rate of the
individual nodes, the higher their durability. Therefore, a trade-off between energy



178 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

costs and accuracy has to be found. The challenge for the observation of distributed
phenomena is that measurements are available only at discrete time steps and discrete
locations, meaning that no information between the individual sensor nodes is avail-
able. In order to get meaningful and accurate information not only at the sensor nodes
itself but also between these nodes, the model-based reconstruction of the distributed
phenomenon is of major significance. By exploiting additional physical background
information of the phenomenon in the form of a mathematical model, the accuracy
of the reconstruction can be improved significantly, even at non-measurement points
[5, 130, 136].

In the following subsections, two of the most important tasks for the reconstruction
of distributed phenomena based on a sensor network are explicitely described:

identification of model parameters (SRI method, introduced in [134]), and

localization of individual sensor nodes (SRLmethod, introduced in [132])

These two phases for the estimation of a distributed phenomenon are visualized in
Figure 9.2. The novelty of the proposed methods is the rigorous exploitation of a
mathematical model describing the dynamic and distributed behavior of both the phe-
nomenon to be observed and the sensor network.

9.1.2 Parameter Identification (SRI method)
The model-based reconstruction of a distributed phenomenon by means of a sensor net-
work is based on the mathematical model describing the physical behavior. Assuming
we have an appropriate and sufficiently accurate model, the distributed phenomenon
is uniquely characterized by model parameters and boundary conditions. However,
in practical implementations, the model parameters such as the diffusion coefficient,
might not be known in advance and usually need to be identified. Hence, one of the
most important issues concerning distributed phenomena is the parameter estimation,
also referred to as parameter identification or the inverse problem. The main goal is
the estimation of parameters ηP

k
in the system model from observed measurements

such that the distributed state p(z, t) sufficiently accurate explains the observations
obtained by the sensor network [157]. The discrete time-space samples measured by
the individual sensor nodes are incorporated into the mathematical model in order to
improve its accuracy in terms of estimated model parameters [130].

For sensor network applications, the parameter identification becomes even more
essential due to the harsh and unknown environment, unpredictable variations of the
phenomenon, and imprecisely known sensor locations. It is important to emphasize
that remaining uncertainties not only in the measurements but also in the assumed
model structure need to be considered in a systematic way during the identification
process. As it is shown in the following sections, the identification problem as well
as the localization problem can be transformed into a simultaneous state and param-
eter estimation problem [133, 134]. Based on this framework, a Bayesian estimation
approach can be employed, and thus the distributed phenomenon can be reconstructed
and imprecisely known model parameters can be identified in a simultaneous fashion;
see Figure 9.2 (a).



9.1. SENSOR NETWORKS FOR DISTRIBUTED PHENOMENA 179

Identification Phase(a)

Simultaneous reconstruction ...

Estimation of distributed system

... and system identification.

Unkown structure and para-
meters of distributed system

Fixed and known node locations
(possibly known beacons)

Localization Phase(b)

Simultaneous reconstruction ...

Estimation of distributed system

... and node localization.

Unkown location of movable
or newly deployed nodes

Known structure and parameters
of distributed system

Sensor planning and scheduling(c)

Figure 9.2: Visualization of Two Phases for the Estimation of Distributed Natural
Phenomena. The phases are managed by a planning and scheduling process (not con-
sidered in this chapter). (a) The first phase consists of the identification of the envi-
ronment in order to derive a mathematical model of the phenomenon to be monitored
(identification phase). (b) Based on the mathematical model, newly deployed sensor
nodes can be localized by local observations (localization phase)(adapted from [132]).

9.1.3 Node Localization (SRL method)

The sensor data derived from the individual nodes in most applications has only limited
utility without location information. The precise knowledge of the node locations
are particularly important for the accurate reconstruction of distributed phenomena.
Manually measuring the location of every individual sensor node in the entire network
becomes infeasible, especially when the number of sensor nodes is large or the nodes
are inaccessible. The aforementioned issues make the localization problem one of the
most important tasks to be considered in the area of sensor networks.

There are several ways to classify localization methods. In this research work,
these methods are classified into active methods and passive methods. The active
localization methods estimate the locations based on signals that are artificially stimu-
lated and measured by the sensor network, e.g., artificially generated acoustic events.
That means, the localization process is performed in fairly controlled environments,
and incur significant installation and maintenance costs. A comprehensive survey on
active localization methods can be found in [68].

In the case of passive localization methods, which rather occur in a non-controlled
environment, the stimuli necessary for the localization process are generated in a natu-
ral fashion. The clear advantage of passive methods is that they do not need additional
infrastructure. This certainly keeps the installation and maintenance costs at a very low
level. In addition, these methods become particularly important for applications where
satellite positioning systems are simply not available, e.g., sensor networks for moni-
toring the snow cover or indoor applications. In our previous research work, a purely



180 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

data–driven modeling approach was introduced for the passive localization of cellular
phones based on measuring signal strengths [47] and barometric pressure [158].

In this work, for the passive localization of individual nodes in a network, we
present a model-based approach using local observations only, the so-called simul-
taneous reconstruction and localization method (SRL method). The novelty of the
proposed method is the rigorous exploitation of a strong mathematical model of the
distributed phenomenon for localizing the individual nodes. The use of such a math-
ematical model for node localizations was proposed in [66]; however, there was no
consideration of uncertainties naturally occurring in the measurements and in the used
mathematical model. The proposed simultaneous approach, on the other hand, allows
the consideration of these uncertainties during the localization process. In addition,
the often remaining uncertainties in node locations can be considered during the pure
reconstruction process of the distributed phenomenon. The SRL method for localiz-
ing individual nodes in a sensor network with consideration of remaining uncertainties
was introduced in [132].

It is shown that the localization problem can be regarded as a simultaneous state
and parameter estimation problem, with node locations as the parameters to be identi-
fied. By this means, the sensor nodes are localized and the distributed phenomenon is
reconstructed in a simultaneous fashion; see Figure 9.2 (b). The improved knowledge
can be exploited for other nodes to localize themselves.

9.2 Problem Formulation
There are several possibilities for the classification and characterization of physical
phenomena and their respective mathematical descriptions. In this work, they are clas-
sified into lumped-parameter systems and distributed-parameter systems [14]. The
key characteristic of a lumped-parameter system is that the state vector uniquely de-
scribing the system behavior depends only on time. Examples of lumped-parameter
systems are bird flocks or swarm of robots. Such systems are usually described by a
system of ordinary differential equations. On the other hand, the so-called distributed
state of distributed-parameter systems does not only depend on time but also on the
location, e.g., irrotational fluid flow, heat conduction, and wave propagation. The
dynamic behavior of distributed-parameter systems can be described by a system of
partial differential equations.

In this work, for simplicity we consider only distributed-parameter systems rep-
resented byone-dimensional linear partial differential equations, although similar ex-
pression can be found for the multi-dimensional case. In its most general form, the
one-dimensional partial differential equation is given in implicit form by

L
(
p(r, t), s(r, t),

∂p

∂t
, . . . ,

∂ip

∂ti
,
∂p

∂r
, . . . ,

∂ip

∂ri

)
= 0, (9.1)

where p(r, t) denotes the state of the distributed system at time t and location z. The
source term s(r, t), the state p(r, t), and its derivatives are related by means of a lin-
ear operator denoted by L (·). The dynamic behavior of the distributed phenomenon
strongly depends on specific physical parameters collected in the parameter vector



9.2. PROBLEM FORMULATION 181

Model-based Estimator
Nonlinear and high-dimensional
estimation problem

Distributed and decentralized 

estimation problem

Task planning and sensor 
scheduling problem

Discrete System model

xk+1 = ak

(
xk,uk, η

P
k

)
+ wk

Measurement model

ŷ
k

= hk

(
xk, η

M
k

)
+ vk

ηP
k

Unknown parameters
of phenomenon

Diffusion coefficient
System inputs
Boundary conditions
External disturbances

ηM
k

Unknown parameters
of sensor nodes

Node locations
Sensor bias
Sensor variances
Correlations

Extended state
vector:

ŷ
(1)
k

ŷ
(2)
k

ŷ
(i)
k

zk =


 xk

ηP
k

ηM
k




Figure 9.3: Overview and Challenges for the Model-based Simultaneous State and
Parameter Estimation of Distributed Phenomena. Examples for unknown parameters
ηP
k

and ηM
k

to be estimated in the system model and the measurement model(adapted
from [132]).

ηP
k

, such as diffusion coefficient and coefficient of viscosity. The main goal is the
estimation of the distributed state p(r, t) and the parameter vector ηP

k
based on local

measurements obtained by a sensor network.
In general, the application of a Bayesian estimation approach for the state and

parameter estimation based on a distributed-parameter system (9.1) is a challenging
task. For that reason, we presented in our previous research work [5, 133, 136] the
conversion of the partial differential equation (9.1) into a finite-dimensional system in
state-space form. The conversion of the system description leads to a high-dimensional
nonlinear system model. This nonlinearity is mainly caused by the nonlinear relation-
ship between the distributed state p(r, t) and unknown parameters ηP

k
. That means, the

nonlinear finite-dimensional model of the distributed system (9.1) is given as follows

xk+1 = ak

(
xk,η

P
k

, ûk

)
+wx

k, (9.2)

where xk represents the converted distributed state, ûk denotes the system input, and
wx
k contains subsumed system uncertainties. The parameter vector ηP

k
in (9.2) com-

prises all the unknown parameters to be identified in the distributed phenomenon, such
as unpredictable variations of physical constants or material properties. In addition,
unknown constraints at the boundary of the considered domain, unknown system in-
puts, and unknown disturbances could be included in the parameter vector ηP

k
; see

Figure 9.3.
Besides the probabilistic system model there is a probabilistic measurement model

describing the physical properties of the sensor network itself. That means, it relates
the actual measurements of the network to the state vector xk representing the dis-
tributed phenomenon. In this research work, we assume that the measurements ŷ

k
are

related nonlinearly to the state vector xk according to

ŷ
k

= hk

(
xk,η

M
k

)
+ vk, (9.3)



182 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

where vk is the uncertainty in the measurement model. The parameter vector ηM
k

con-
tains all the unknown parameters to be identified in the measurement model. Sensor
bias and sensor variances, for example, could be included in the unknown parameter
vector ηM

k
for the purpose of tracking wear of the sensor nodes. Furthermore, one

could imagine to collect the possibly unknown location of the individual sensor nodes
and correlations in the parameter vector ηM

k
; see Figure 9.3.

It is shown that for the simultaneous state and parameter estimation of distributed
phenomena, the nonlinear system function ak(·) and the nonlinear measurement func-
tion hk(·) include a high-dimensional linear sub-structure. This allows a decomposi-
tion of the estimation in terms of the augmented state vector zk into three sub-state
vectors,

zk =

[
(xk)T︸ ︷︷ ︸

Linear subspace

(ηP
k

)T (ηM
k

)T︸ ︷︷ ︸
Nonlinear subspace

]T
(9.4)

with the high-dimensional state vector xk ∈ Rr (characterizing the conditional linear
system) and the parameter vectors ηP

k
∈ RNp and ηM

k
∈ RNm (characterizing the

nonlinear part of the system). For the estimation of the total state vector zk, the de-
composition into a state vector xk and parameter vector η

k
is exploited for the deriva-

tion of a more efficient estimator than a nonlinear estimator operating on the entire
vector zk. This decomposition of the estimation problem into a linear and a nonlin-
ear problem is mainly achieved by a novel density representation, the so-called sliced
Gaussian mixture density, and the systematic approximation of arbitrary densities by
this representation.

9.3 Probabilistic Finite-Dimensional Models

The model–based state estimation of distributed phenomena based on a distributed–
parameter description (9.1) is quite complex. The reason is that for a Bayesian estima-
tion method usually a system description in lumped–parameter form is necessary. In
order to cope with this, the distributed–parameter system is converted into a lumped–
parameter system. Based on the resulting finite-dimensional model, algorithms can be
derived allowing the estimation and identification of a distributed phenomenon (9.1),
as well as the localization of individual sensor nodes locally measuring the distributed
phenomenon.

In this section, we derive a finite-dimensional model of general distributed systems
(9.1), which can be exploited for the simultaneous state and parameter estimation of
such systems. The finite-dimensional model consists of two components: the system
model and the measurement model. The system model describes the dynamic behav-
ior of the distributed phenomenon to be monitored. The state of the phenomenon is
uniquely characterized by a finite-dimensional state vector xk and a vector ηP

k
con-

taining model parameters. On the other hand, the measurement model describes the
distributed properties of the sensor network itself. The local measurements obtained
by the individual nodes are related to both the state vector xk and the parameter vector
ηM
k

containing for example node locations or sensor bias.



9.3. PROBABILISTIC FINITE-DIMENSIONAL MODELS 183

Neumann conditionDirichlet condition

?

position r0 L

System input s(r, t)

Sensor node
locations ηM

k
? ηP

k

System model
parameter

(SRI-method) (SRL-method)

Figure 9.4: Visualization of the Solution Domain and Boundary Conditions of the
Considered Distributed Phenomenon. The aim is the identification of system model
parameters (SRI method) and the localization of sensor nodes (SRL method) based on
local measurements of the phenomenon(adapted from [132]).

The methods introduced in this section can be applied to the general case of linear
partial differential equations (9.1), and could even be extended to the multi-dimensional
case in a straightforward fashion. However, we restrict our attention to a certain dis-
tributed phenomenon, the so-called diffusion equation.

Example 1 (Considered distributed phenomenon)
Throughout the entire chapter, we consider the following distributed phenomenon char-
acterized by a one-dimensional partial differential equation

L(p(r, t)) =
∂p(r, t)

∂t
− α ∂

2p(r, t)

∂r2
− γs(r, t) = 0, (9.5)

where p(r, t) and s(r, t) are the distributed system state and the distributed system
input, respectively. The diffusion coefficient α ∈ R is characterized by specific mate-
rial properties, such as the medium density ρ, the heat capacity cp, and the thermal
conductivity k, according to α := κ/(ρcp). The input coefficient γ ∈ R represented by
γ := 1/(ρcp) characterizes the influence of the system input on the distributed phe-
nomenon. For example, the propagation of heat in the snow pack can be described by
such equations. The complete mathematical model of the snow pack, however, con-
sists of further partial differential equations characterizing the model parameters α and
γ; see [9, 99, 100]. These further dependencies of the parameters in terms of differen-
tial equations are omitted here for simplicity. For the derivation of a finite-dimensional
model, and thus, the reconstruction of the entire distributed phenomenon (9.5), knowl-
edge of the boundary conditions is necessary. There are several types of boundary
conditions depending on the constraints at the boundaries of the considered solution
domain. Considering the solution in a domain Ω = {r|0 ≤ r ≤ L}, we assume the
following boundary conditions

p(r = 0, t) = gD,
∂p(r = L, t)

∂r
= gN , (9.6)

where gN , specifying a condition on the derivative, is referred to as a Neumann bound-
ary condition and gD is the so-called Dirichlet boundary condition. The solution domain
and the boundary conditions of the considered distributed phenomenon is visualized in



184 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

Fig 9.4. The main goal in this section is to derive a finite-dimensional model which can
be used for the estimation of the distributed state p(r, t), the model parameter α (SRI
method) and the sensor node locations ηM (t) (SRL method) in a simultaneous fashion;
see Fig 9.4.

9.3.1 Probabilistic System Model
The finite-dimensional model necessary for the simultaneous state and parameter es-
timation of distributed phenomena can be derived, in general, by methods for solv-
ing partial differential equations. The modal analysis method basically uses a set of
global expansion functions for the approximation of the solution of the partial dif-
ferential equation, and thus, the derivation of a probabilistic system model. These
methods just need a few parameters for characterizing a smooth solution of the dis-
tributed phenomenon [128]. However, global expansion functions can be found only
for simple problems with simple boundary conditions. On the other hand, there are
methods such as the finite-difference method [22, 130], the finite-element method [6],
and the spectral-element method [88, 94, 133]. The systematic decomposition of the
solution domain involved in these methods allows the derivation of a probabilistic sys-
tem model even for rather complex geometries and boundary conditions. Furthermore,
the application to nonlinear partial differential equations is possible.

It is well-known that the aforementioned methods may be used with the same nu-
merical methodology, the so-called Galerkin formulation. Based on this formulation,
a finite-dimensional system model of the distributed phenomenon (9.5) can be derived
in two steps, the spatial decomposition and the temporal discretization. The two steps
for the conversion of the distributed phenomenon (9.5) and their respective resulting
system description are visualized in Figure 9.5 (a).

Spatial decomposition By means of the spatial decomposition, partial differential
equations can be converted into a system of ordinary differential equations. First, the
solution domain Ω = {r|0 ≤ r ≤ L} is spatially decomposed into Nx subdomains
Ωe (the so-called finite elements). Then, an appropriate representation of the solution
p(r, t) within each subdomain Ωe needs to be defined. The Galerkin method assumes
that the solution p(r, t) in the entire domain Ω can be represented by a piecewise
approximation according to

p(r, t) =
Nx∑
i=1

Ψi(r)xi(t), (9.7)

where Ψi(r) are analytic functions called shape functions and xi(t) are their respective
weighting coefficients. It is important to note that the individual shape functions Ψi(r),
in general, are defined in the entire solution domain Ω. The essence of the aforemen-
tioned finite-element and spectral-element method for the conversion of the distributed
phenomenon lies in the choice of the shape functions Ψi(r), e.g., piecewise linear
functions, orthogonal functions, or trigonometric functions. The spatial decomposition
into several subdomains Ωe and the involving definition of respective shape functions
Ψi(r) are visualized by means of an example in Figure 9.5 (b).



9.3. PROBABILISTIC FINITE-DIMENSIONAL MODELS 185

(b)
x1
k

p(r, t)x2
k

x3
k

x4
k

Ω
e1e0 e2

e3

Shape functions

Ψ2(r)
Ψ3(r)

Ψ4(r)

Ψ1(r)

Ω1 Ω2 Ω3Ω

(a) Conversion of Distributed System
di

st
ri

bu
te

d-
pa

ra
m

et
er

lu
m

pe
d-

pa
ra

m
et

er
di

sc
re

te
-

ti
m

e

∂p(r, t)
∂t

= α
∂2p(r, t)

∂r2 + s(r, t)

Partial differential equation

Ordinary differential equation

xk+1 = Akxk + Bk(û + wx
k)

System model
(state-space form)

Figure 9.5: (a) Conversion of the Distributed System into a System Model in State-
space Form (by spatial and temporal decomposition). (b) The solution p(z, t) of the
distributed phenomenon is approximated by a series of shape functions Ψi(z) and their
respective weighting coefficients xik. Elemental decomposition of solution domain Ω
into several subdomains Ωe and application of shape functions Ψi(z)(adapted from
[132]).

The approximated solution in terms of the finite expansion (9.7) cannot satisfy the
partial differential equation (9.1) everywhere in the region of interest. That means
usually a residual RΩ remains. To make this residual small in some sense, a weighted
integral has to be minimized ∫

Ω

Ψi(r)L(p(r, t))dr = 0,

with i = 1, . . . , Nx. This weighted integral can be reduced to a system of ordinary
differential equations by replacing the solution function p(r, t) and the input function
s(r, t) by the finite expansion (9.7). In the case of the one-dimensional diffusion equa-
tion (9.5) this leads to following system of ordinary differential equations in terms of
the continuous-time weighting coefficients xi(t),

MG ẋ(t) = −αDG x(t) + (γ MGu
∗(t) + b∗(t))︸ ︷︷ ︸
u(t)

, (9.8)

where MG is called the global mass matrix and DG is the global diffusion matrix. Ba-
sically, this system of equations describes the time evolution of the weighting coeffi-
cients xi(t) representing the approximated solution of the partial differential equation,
i.e., approximation of the distributed state p(r, t).

The individual entries Mg
ij and Dg

ij of the global mass matrix MG and the global
diffusion matrix DG can be derived according to

Mg
ij =

∫
Ω

Ψi(r)Ψj(r)dr , Dg
ij =

∫
Ω

dΨi(r)
dr

dΨj(r)
dz

dr.



186 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

It is obvious that MG and DG contain the information about the discretized domain Ω
and merely depend upon the choice of the shape functions Ψi(r), i.e., depend on the
conversion method used. The vectors x(t) and ẋ(t) are the so-called continuous-time
state vectors containing the weighting coefficients xi(t) and their derivatives

x(t) = [x1(t),x2(t), . . . ,xNx(t)] .

The boundary conditions of the distributed phenomenon to be monitored are collected
in the boundary condition vector b∗(t). For brevity, the input vector u∗(t) and the
boundary condition vector b∗(t) are combined to a so-called augmented input vector
u(t). The interested reader is referred to [88] and [136] for more information on how
to derive the system of ordinary differential equations (9.8).

Temporal discretization In the previous section, we presented the spatial decompo-
sition allowing the conversion of the partial differential equation (9.5) into a set of or-
dinary differential equations (9.8). In this section, the time evolution of the distributed
phenomenon can be specified by discretizing the system of ordinary differential equa-
tions (9.8) in time. The temporal discretization produces a linear system of equations
in terms of the discrete-time state vector xk containing the unknown weighting factors
of the finite expansion (9.7).

To circumvent the restriction on the time step ∆t, it is reasonable to integrate
the set of ordinary differential equations by means of implicit methods, such as the
Crank-Nicolson discretization. Basically, the Crank-Nicolson method evaluates the
differential equation (9.8) at time step t+ 1

2∆t, approximates the time derivative on the
left-hand side with a centered finite difference and the rest of the terms with averages.
This approximation leads to following system of linear equations

MG
xk+1 − xk

∆t
= uk −

1
2
αDG

[
xk+1 + xk

]
, (9.9)

where xk denotes the spatially discretized state vector. It is important to note that this
linear system is unconditionally stable for any selected time step ∆t.

In the case of linear partial differential equations (9.5), the aforementioned meth-
ods for the spatial decomposition and temporal discretization result always in a linear
system of equations according to

xk+1 = Ak(α)xk + Bk(α) (ûk +wx
k) , (9.10)

where xk is referred to as the state vector characterizing the state of the distributed
phenomenon. The system matrix Ak ∈ RNx×Nx and the input matrix Bk ∈ RNx×Nx
are derived by

Ak(α) =
(

MG +
1
2
α∆tDG

)−1(
MG −

1
2
α∆tDG

)
,

Bk(α) = ∆t α

(
MG +

1
2
α∆tDG

)−1

.



9.3. PROBABILISTIC FINITE-DIMENSIONAL MODELS 187

(b) Output equation

(a) Measurement equation

Stochastic measurement model

ŷ
k

= Hk(ηMk )xk + vk

ŷsik = hsik p(rsik , tk)
)

+ v∗k

p(rsik , tk) =
Nx∑
j=1

Ψj(rsik )x
j
k

Figure 9.6: Components of the Probabilistic Measurement Model for the Estima-
tion of Distributed Phenomena: (a) Measurement equation relating the measure-
ments ŷik to the distributed state p(ηM

k
, tk). (b) Output equation relating the dis-

tributed state p(ηM
k

, tk) to the finite-dimensional state vector xk characterizing the
phenomenon(adapted from [132]).

There are several important features to note about the finite-dimensional system
model (9.10). It is obvious that the structure of the system matrix Ak and the input
matrix Bk merely depend on the model parameters. In the case of the one-dimensional
diffusion equation (9.5), the parameter vector ηP

k
∈ RPp could contain the following

model parameters

ηP
k

:=
[
α γ . . .

]T ∈ RPp ,
where α denotes the diffusion coefficient and γ is the system input coefficient. The
parameters contained in the vector ηP

k
are not restricted to the aforementioned param-

eters, but can be easily extended depending on the structure of the partial differential
equation given in general form in (9.1).

That means, for the accurate reconstruction by means of a sensor network, param-
eters characterizing the behavior of the distributed phenomenon need to be precisely
known. Due to such dependencies, the deviation of the true behavior from the prob-
abilistic system model (9.10) leads to poor estimation results, shown by means of an
example in Sec. 9.4. On the other hand, thanks to the dependency of the probabilistic
system model (9.10) on such parameters, the identification problem can be stated as
a simultaneous state and parameter estimation problem. Hence, the phenomenon can
be reconstructed and unknown parameters can be identified in a simultaneous fashion.

Besides the finite-dimensional model of the distributed phenomenon, the mapping
of specific measurements to the finite-dimensional state vector xk representing the dis-
tributed state p(r, t) is necessary. The probabilistic measurement model is introduced
in the next section.



188 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

9.3.2 Probabilistic Measurement Model
In this section, we derive the probabilistic measurement model for the reconstruction
of distributed phenomena by means of a sensor network. In particular, the dependency
of the model description on the node locations are clarified. The node coordinates
of the entire network is collected in the so-called node location vector ηM

k
∈ RM ,

according to
ηM
k

:=
[
rs1k rs2k . . . rsMk

]
∈ RM ,

where M is the number of considered nodes in the network. For distributed phenom-
ena, the measurement model consists of two parts, namely the measurement equation
and the output equation, described in the following.

Measurement equation The measurement equation relates the actual measure-
ments ŷik at location rsik to the distributed state p(rsik , tk) characterizing the physical
phenomenon, according to

ŷsik = hsik
(
p(rsik , tk)

)
+ v∗k,

where v∗k contains the possibly correlated uncertainties arising from the sensor net-
work. In general, depending on the measurement principle used for the actual sensor,
the mapping hsik (·) consists of nonlinear functions; see Figure 9.6 (a).

Output equation The output equation relates the distributed state p(rsik , tk) of
the partial differential equation (9.5) in continuous space directly to the finite-dimen-
sional state vector xk, according to

p(rsik , tk) =
Nx∑
j=1

Ψj(rsik )xjk,

where Ψj(r) represents the shape functions. It is important to emphasize that the shape
functions Ψj(r) here are identical to the shape functions in the finite expansion (9.7)
used for the spatial decomposition; see Figure 9.6 (b).

Measurement model By means of the measurement equation and the output
equation, the entire measurement model for the estimation of distributed phenomena
can be derived. For simplicity and brevity, we assume that the individual sensor nodes
directly measure a realization of the distributed phenomenon p(rsik , tk) at their re-
spective locations rsik . Then, the measurement matrix Hk for the entire network is
assembled by the individual shape functions,

ŷ
k

=

Ψ1(rs1k ) · · · ΨN (rs1k )
...

. . .
...

Ψ1(rsMk ) · · · ΨN (rsMk )


︸ ︷︷ ︸

Hk(ηM
k

)

xk + vk, (9.11)



9.4. RECONSTRUCTION OF DISTRIBUTED PHENOMENA 189

where vk denotes the measurement uncertainty and M represents the number of sen-
sor nodes used in the network. The measurement model (9.11) directly relates the
measurements ŷ

k
to the state vector xk and to the location vector ηM

k
containing the

individual node locations. The components of the measurement model for the estima-
tion of distributed phenomena is shown in Figure 9.6. In the following example, the
structure of the measurement matrix Hk for the reconstruction and the localization is
visualized.

Example 2 (Measurement model for node localization)
In this example, we clarify the structure of the measurement matrix Hk subject to piece-
wise linear shape functions. The entire solution domain Ω is decomposed into 3 sub-
domains and appropriate piecewise linear functions are defined on each sub-domain.
The spatial decomposition and the shape functions are shown in Figure 9.5 (b). As-
suming there are two sensor nodes located at rs1k and rs2k in the sub-domains Ω1 and
Ω2, the probabilistic measurement model is given as follows

[
ŷ1
k

ŷ2
k

]
=



Ψ1(rs1k )︷ ︸︸ ︷
c11 + c12 r

s1
k

Ψ2(rs1k )︷ ︸︸ ︷
c13 + c14 r

s1
k 0 0

0 c21 + c22 r
s2
k︸ ︷︷ ︸

Ψ2(rs2
k

)

c23 + c24 r
s2
k︸ ︷︷ ︸

Ψ3(rs2
k

)

0



x1
k

x2
k

x3
k

x4
k

+ vk.

The constants cji arise from the definition of the piecewise linear shape functions in
each sub-domain, i.e., the geometry of the applied grid for the finite elements. The
extension to orthogonal polynomials and trigonometric functions can be derived in a
straightforward fashion.

There are several important properties of the measurement model (9.11) essential
for the estimation of distributed phenomena and the localization of sensor nodes based
on local measurements. It is obvious that the structure of the measurement matrix Hk

merely depends on the location ηM
k

of the individual sensor nodes. That means, for
the accurate reconstruction of the distributed phenomenon (9.5) based on a sensor net-
work, the exact node locations ηM

k
are necessary. Due to this dependency, deviations

of true locations from the modeled node locations lead to poor estimation results. This
degradation of the estimation performance is shown in Sec. 9.4.

On the other hand, thanks to the dependency of the measurement matrix Hk on
the node locations ηM

k
, the localization problem can be stated as a simultaneous state

and parameter estimation problem. By this means, the distributed phenomenon can
be reconstructed and the sensor nodes can be localized in a simultaneous fashion. The
method for the simultaneous reconstruction and node localization (SRL method) is
introduced in Sec. 9.7.

9.4 Reconstruction of Distributed Phenomena
The probabilistic finite-dimensional model (9.10) can be used for the simulation of the
distributed phenomenon by simply propagating the finite-dimensional state vector xk
over time. Based on this propagation, the distributed state p(r, t) of the underlying



190 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

(b)

Dirichlet condition

System input

10

0
2

4
6

8

0

10

20

20

25

30

35

Neumann condition

(a)

Dirichlet condition
Dirichlet condition

(d)

(c)

?
?

20
10

0

20

10

0

60

40

20

0

p
(r

,t
)/

◦ C

p
(r

,t
)/

◦ C

time t/s

time t/s

positi
on r/m

position r/m

Figure 9.7: Visualization of the Numeric Solution (a),(c) and their Respective As-
sumed Conditions (b),(d) of the Simulated Distributed Phenomenon. These examples
are used for demonstrating the performance of the proposed methods, i.e., for pure
reconstruction, identification of model parameters (SRI method), and localization of
sensor nodes (SRL method)(adapted from [132]).

phenomenon is directly derived using the finite expansion (9.7) for given initial condi-
tions. However, for the model-based estimation of distributed phenomena, the aim is
not just the simulation of the system, but the reconstruction of the entire state p(r, t)
by means of measurements obtained from a sensor network.

This section is devoted to the state reconstruction of the distributed phenomenon
by means of discrete time-space measurements only, i.e., the mathematical model and
the node locations are precisely known. The introduced reconstruction process al-
lows to derive estimates not only at the actual measurement points but also at non-
measurement points. It is shown that by assuming a precise mathematical model this
process leads to accurate estimation results. On the other hand, the deviation of pa-
rameters such as diffusion coefficient ηP

k
or node locations ηM

k
leads to a degradation

of the performance of the entire reconstruction process.

9.4.1 Reconstruction based on Precise Mathematical Models

In general, depending on the structure of the system model (9.2) and the measure-
ment model (9.3), i.e., being linear or nonlinear, an appropriate estimator has to be
chosen in order to estimate the state characterizing the distributed phenomenon. For
the pure reconstruction of the distributed state p(r, t) the system model (9.10) and the
measurement model (9.11) are linear in terms of the state vector xk. Hence, it is suffi-
cient to use the linear Kalman filter to obtain the best possible estimate, and eventually



9.4. RECONSTRUCTION OF DISTRIBUTED PHENOMENA 191

reconstruct the entire phenomenon. The reconstruction process of the distributed phe-
nomenon based on the linear Kalman filter consists of two steps, the linear prediction
step and the linear measurement step. These two steps are alternately performed in or-
der to reconstruct the entire distributed state p(r, t) even at non-measurement points,
as visualized in Figure 9.8.

Linear Prediction Step The purpose of the linear prediction step is to propagate
the current state estimate xek through the linear system equation (9.2) to the next time
step. In the case of the Kalman filter, the probabilistic of the general random vector
xk is uniquely characterized by the mean x̂k and the covariance matrix Ck. For the
pure reconstruction, we assume a precise mathematical model (9.2) of the underlying
distributed phenomenon, i.e., a precisely known diffusion coefficient. Hence, the mean
x̂pk+1 and the covariance matrix Cp

k+1 of the state vectorxk+1 can be simply calculated
by

x̂pk+1 = Akx̂
e
k + Bkûk,

Cp
k+1 = AkCe

kA
T
k + BkCw

k BT
k , (9.12)

where x̂ek and Ce
k are the mean and the covariance matrix of the estimated state vector

xk from the previous time step. The covariance matrix Cw
k represents the input un-

certainties. It is important to note that, for simplicity and brevity, we assume the input
vector uk and the state vector xk to be stochastically uncorrelated.

Linear Measurement Step For the purpose of reducing the uncertainty of the
state vector xk, measurements ŷ

k
obtained from the sensor network are incorporated

into the reconstruction process. For distributed phenomena, the discrete time-space
measurements ŷ

k
are related to the state vector xk via the measurement model (9.11)

derived in the previous section. Assuming a precise measurement matrix Hk, i.e.,
precisely known node locations and sensor characteristics, the mean x̂ek and covariance
matrix Ce

k of the estimated state xk can be derived by

x̂ek = x̂pk + Cp
kH

T
k

(
Cv
k + HkC

p
kH

T
k

)−1
(
ŷ
k
−Hkx̂

p
k

)
,

Ce
k = Cp

k −Cp
kH

T
k

(
Cv
k + HkC

p
kH

T
k

)−1
HkC

p
k. (9.13)

The matrix Cv
k denotes the possibly correlated covariance matrix of the individual

nodes in the entire sensor network. For simplicity and brevity, we assume the mea-
surements y

k
to be stochastically uncorrelated to the state vector xk.

The performance of the reconstruction process assuming a precise mathematical
description of the underlying distributed phenomenon and the sensor network itself is
demonstrated by means of the following example.

Example 3 (Precise mathematical models)
In this example, the performance of the reconstruction method in the case of precise
mathematical models is demonstrated by means of simulation results. The goal is the



192 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

xk
xk+1

Delay

Real distributed phenomenon

wx
k

Bayesian Estimator
x
p
k

x
p
k+1

xe
k

xe
k

ŷ1
k

ŷ2
k ŷik

η1
k η2

k ηik

p(z, t)

Ω

Ω Ω1 Ω2 Ω3

Measurements from
sensor network

Reconstruction of entire
distributed phenomenon

vk ŷ
k

(b)

(a)

Ak · xk Hk · xk

Measurement step

Prediction step

Delay Output
equation

Figure 9.8: Structure of a Distributed Phenomenon Represented as a High-dimensional
Linear System with Additive Noise and its Respective Linear Bayesian Estimator for
the Reconstruction. The output ŷ

k
can be regarded as a realization of the random

variable y
k
. The input uk is omitted here for simplicity. By means of the model-

based estimation process the entire phenomenon can be reconstructed, even at non-
measurement points(adapted from [132]).

reconstruction of the distributed state p(z, t) using both a mathematical model describ-
ing the physical behavior and measurements obtained by a single sensor node. It is im-
portant to emphasize that the novelty of the proposed approach is to consider remaining
uncertainties arising from noisy measurements and occurring in the mathematical mod-
els. We assume the underlying phenomenon to be represented by the one-dimensional
partial differential equation (9.5), introduced in Example 1. The distributed-parameter
system (9.5) is converted into a lumped-parameter system based on piecewise linear
shape functions, i.e., using the finite element method. For simplicity, the sensor network
consists of one single sensor node at location ηSk .

For the pure reconstruction of the entire phenomenon using just a single sensor
node, we assume the model parameter ηPk and the node location ηSk to be precisely
known. The nominal parameters of the mathematical model of the phenomenon and
the sensor node are given by:

Solution domain L = 10 m,

Dirichlet condition at left end gD = p(r = 0, t) = 20 ◦C,

Neumann condition at right end gN =
∂p(r = L, t)

∂r
= 0 m−1 ·◦ C,

Model parameter / node location αk = 0.8 m2 s−1, γk = 1 cal−1 ·m3 ·◦ C, rsk = 8 m,

Time discretization constant ∆t = 0.01 s,

Number of discretization nodes Nx = 50,

System input s(r, t) = 10 · e−10 (r−5)2 cal ·m−3 · s−1.

The assumed conditions of the simulated example and the numeric solution of the
deterministic partial differential equation for a given initial solution is depicted in



9.4. RECONSTRUCTION OF DISTRIBUTED PHENOMENA 193

Sensor ON

(a)

numeric solution

realization

mean estimate

15

25

35

0 10 20

Sensor ON

0 10 20
15

25

35

(b)

numeric solution

realization

mean estimate

Measurement point Non-measurement point
p
(r

,t
)/

◦ C

time t/s

p
(r

,t
)/

◦ C

time t/s

Figure 9.9: Realization of the Distributed Phenomenon p(z, t) (gray), Mean of Recon-
structed Phenomenon (black), 3σ-bounds (gray shaded), and Numeric Solution of De-
terministic Model (black dotted) for (a) measurement point and (b) non-measurement
point(adapted from [132]).

Figure 9.7 (a)-(b). Based on the system model (9.2) and the measurement model (9.11)
with aforementioned nominal parameters, the estimator for the purpose of reconstruct-
ing the distributed phenomenon can be designed. The noise terms represented by
respective covariance matrices are assumed as follows

System input noise Cw
k = diag {100, . . . , 100} cal ·m−3 · s−1,

Measurement noise Cvk = 1 ◦C.

The simulation results are depicted in Figure 9.9. It is obvious that using a model-based
approach the entire distributed phenomenon can be reconstructed. At the beginning of
the simulation just uncertain information about the distributed state p(z, t) is known.
As soon as the sensor node starts to measure a realization of the phenomenon at a
certain location, the estimation becomes more and more certain, i.e., the uncertainty
(gray shaded area) decreases. This is depicted in Figure 9.9 (a). It is important to
emphasize, that the uncertainty decreases not only at the measurement point, but also
at non-measurement points, thanks to the model-based approach; see Figure 9.9 (b).
Furthermore, based on the estimated phenomenon in terms of a density function, op-
timal measurement sequences and locations can be found using sensor planning and
scheduling algorithms.

For the pure reconstruction introduced in this section, the model parameters ηP
k

and the node locations ηM
k

are assumed to be precisely known. As already mentioned,
the deviation of the assumed mathematical models from both the real distributed phe-
nomenon and the real properties of the sensor network leads to a degradation of the
estimation performance. This is demonstrated in the next section.



194 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

9.4.2 Incorrect Model Parameters
For the pure reconstruction, both the system model (9.2) and the measurement model
(9.3) exploited for the estimation process, is assumed to be precisely known. Hence,
the entire distributed phenomenon can be accurately reconstructed, even at non-
measurement points thanks to the model-based approach. It is well known that the
Kalman filter equations (9.12) and (9.13) used for the reconstruction process requires
a rather precise model of the underlying physical system and a precisely known uncer-
tainty description. If any of these assumptions is violated, then the performance of the
reconstruction process can quickly degrade.

In this section, the degradation caused by the deviation of the system model and
the measurement model is described and demonstrated by means of two examples:

incorrect diffusion coefficient (deviations in the system model)

incorrect node locations (deviations in the measurement model)

These two examples demonstrate the severe effect of assuming parameters both in the
system model and the measurement model deviating from the true system. Further-
more, this degradation of the performance justifies the simultaneous approach for the
parameter identification (SRI method) and the node localization (SRL method) during
the reconstruction of distributed phenomena.

Incorrect Diffusion Coefficient In many cases, the underlying real physical phe-
nomenon deviates from the nominal mathematical model, basically caused by neglect-
ing particular physical effects or external disturbances. Furthermore, the respective
model parameters could vary over time without knowing the exact dynamic behavior
of these variations. In addition, due to the distributed characteristic of the physical phe-
nomenon, not only the states are distributed and inhomogeneous but also the parame-
ters describing the dynamic behavior. Considering all these issues in the mathematical
model quickly increases the complexity of the model description and the computa-
tional load. On the other hand, neglecting these physical effects leads to a deviation
of the mathematical model and thus, causes a degradation of the reconstruction per-
formance. That means, for practical applications a trade-off between accuracy and
computational load needs to be found. The degradation leading to poor performance
is illustrated in the next example.

Example 4 (Reconstruction with incorrect model parameters)
In this example, we consider a distributed phenomenon represented by the one-dimen-
sional partial differential equation (9.5) with respective boundary conditions and system
inputs. The nominal parameters for the system model (9.5) are given by

Dirichlet condition at left end gD = p(r = 0, t) = 20 ◦C,

Neumann condition at right end gN =
∂p(r = L, t)

∂r
= 0 m−1 ·◦ C,

System input s(r, t) = 10 · e−10 (r−5)2 cal ·m−3 · s−1,

True model parameter αtrue = 0.8 m2 · s−1,



9.4. RECONSTRUCTION OF DISTRIBUTED PHENOMENA 195

400 20
0

3

1

2

rm
s

αmodel

0.3
0.1

0.6

(b)(a)

40

20

0

0

3

0
0.5

1

time t/s
tim

e t/sαmodel

rm
s

Figure 9.10: Root Mean Square Error êk and Error Variance C rms
k for the Estimated

Distributed Phenomenon for 100 Monte Carlo simulation runs. The true parame-
ter αtrue is given by αtrue = 0.8 m2 · s−1. (a)-(b) Visualization of rms êk of the
Kalman filter based on various incorrect parameters αmodel = {0.1, 0.2, . . . , 1.5} m2 ·
s−1(adapted from [132]).

where the remaining parameters necessary for the reconstruction are described in Ex-
ample 3. The assumed boundary conditions, the location of the system input and the
numeric solution of the deterministic partial differential equation (9.5) are visualized in
Figure 9.7 (a)-(b). The state estimation of the distributed phenomenon is performed on
the basis of a Kalman filter with the nominal parameter set for the diffusion coefficient
ηPk according to

αmodel = {0.1, 0.2, . . . , 1.5}m2 · s−1,

with the true parameter αtrue = 0.8 m2 · s−1. For each parameter value, 100 indepen-
dent Monte Carlo simulation runs have been performed, resulting in NMC = 100 true
realizations x̃ik of the finite-dimensional state vector characterizing the distributed state
p(z, t). The simulation result for the reconstruction with incorrect model parameters is
shown in Figure 9.10.

Based on the reconstruction process described in Sec. 9.4.1, the entire distributed
phenomenon can be reconstructed using the nominal mathematical models and the
discrete time-space measurements from the sensor network. The estimated finite-
dimensional state vector xek can be directly derived from (9.12) and (9.13). The root
mean square error (rms) and the error variance for the estimation result are approxi-
mated by calculating the average according to

êk ≈

√√√√ 1
n ·m

NMC∑
i=1

‖x̃ik − x̂ik‖ , C rms
k ≈ 1

n− 1

n∑
i=1

(
eik − êk

)2
, (9.14)

where x̂ik denotes the mean of the estimated state vector xek. The root mean square
error êk and error variance C rms

k for each nominal parameter value are visualized in
Figure 9.10 (a)-(b). It can be clearly seen that the more the nominal parameter αmodel
deviates from the true parameter αtrue, the more the performance of the estimation
results degrades.



196 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

0 20 40

rm
s

0

20

40(a)

40
20

0

rm
s

0

20

40

20

10
16

node position

(b)(a)

40
2020

16

(b

time t/stim
e t/s

Figure 9.11: Visualization of Root Mean Square Error (rms) and Error Variance Av-
eraged over 100 Monte Carlo Simulation Runs. The true node location is assumed
to be rstrue = 16 m. (a) Rms of Kalman filter based on incorrect node locations
rsmodel = {10 , 10.5 , . . . , 20} m. It is obvious that with the deviation of the node
location the performance quickly degrades. (b) Comparison of Kalman filter based
on incorrect node locations and the simultaneous reconstruction and node localization
(SRL method) approach(adapted from [132]).

Incorrect Node Locations In many real world applications the actual properties
of the sensor network deviate from the measurement model. This deviation of the
mathematical model could be caused for example by deviated node locations, ignored
sensor bias, or imprecisely known correlations between the nodes. In particular, the
locations of sensor nodes (randomly deployed or movable nodes) contain some uncer-
tainties or even could be completely unknown. The degradation of the performance of
the reconstruction process caused by deviated node locations is demonstrated in the
following example.

Example 5 (Reconstruction with incorrect node location)
In this example, we consider the one-dimensional diffusion equation (9.5) subject to
Dirichlet boundary condition at both ends and respective initial conditions. The nominal
parameters for the system model (9.5) and the measurement model are given by

Dirichlet condition at left end gLD = p(r = 0, t) = 0 ◦C,

Dirichlet condition at right end gRD = p(r = L, t) = 60 ◦C,

System input s(z, t) = 0 cal ·m−3 · s−1,

True node location ηStrue = 16 m,

where the remaining parameters are described in Example 3. The assumed bound-
ary conditions and the numeric solution of the deterministic partial differential equa-
tion (9.5) are visualized in Figure 9.7 (c)-(d). The system uncertainty at the individ-
ual discretization nodes is given by Cwik = 20 and the measurement noise variance
by Cvk = 0.5 ◦C. The reconstruction of the distributed phenomenon is performed on
the basis of a Kalman filter with nominal parameter set for the sensor location rsmodel



9.5. AUGMENTED MODEL FOR NODE LOCALIZATION 197

according to
rsmodel = {10 , 10.5 , . . . , 20} m.

For each assumed node location, 100 independent Monte Carlo simulation runs have
been performed, resulting in NMC = 100 true realizations x̃ik of the distributed phe-
nomenon.

The root mean square error (9.14) of the Kalman filter based on incorrect node
locations is shown in Figure 9.11 (a). It is obvious that the more the assumed node
location ηSmodel deviates from the true location ηStrue, the more the performance of the re-
construction result degrades. Figure 9.11 (b) depicts the comparison of the estimation
error between the Kalman filter based on incorrect node locations and the simultane-
ous node localization and reconstruction approach (SRL method). Obviously, thanks
to the simultaneous localization approach the performance of the reconstruction can
be significantly increased.

9.5 Augmented Model for Node Localization
For the simultaneous state and parameter estimation of distributed phenomena, the
unknown parameters ηP

k
and ηM

k
are treated as additional state variables. By this

means, conventional estimation techniques can be used to simultaneously estimate the
parameters, such as model parameters or node locations, and the state of the distributed
phenomenon. Hence, an augmented state vector zk containing the system state xk and
the additional unknown parameters is defined by (9.4).

The augmentation of the state vector with additional unknown parameters leads to
the so-called augmented finite-dimensional model of distributed phenomena. In the
case of the sensor node localization by local measurements (SRL method), the aug-
mentation results in the following augmented system model and augmented measure-
ment model xk+1

ηM
k+1

 =

[
Ak xk + Bk ûk

aMk (ηM
k

)

]
+

[
Bkw

x
k

wM
k

]
, (9.15)

ŷ
k

= Hk(ηM
k

)xk︸ ︷︷ ︸
hk(zk)

+vk. (9.16)

The nonlinear function aMk (·) describes the dynamic behavior of the parameters to be
estimated. The structure of the augmented model description (9.15) and (9.16) is de-
picted in Figure 9.12. In this case, it is obvious that the augmented measurement model
is nonlinear in the augmented state vector zk due to the multiplication of Hk(ηM

k
) and

the system state xk; see Example 2. Thus, the node locations ηM
k

characterizes the
measurement matrix Hk and the actual measured values.

It is important to emphasize that the measurement model (9.16) contains a high-
dimensional linear substructure, which can be exploited by the application of a more
efficient estimator. In the following section, we describe a novel estimator – the Sliced
Gaussian Mixture Filter – allowing the decomposition of the simultaneous state and



198 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

parameter estimation. This results in a very efficient localization of the individual
nodes in the sensor network.

9.6 Decomposition of the Estimation Problem

In many applications, estimating the state of a system from noisy measurements is
a common task. In some special cases, such as linear systems with Gaussian ran-
dom variables, exact solutions to the estimation problem can be found by applying the
Kalman filter [82]. There exist a vast variety of approaches for nonlinear systems with
non-Gaussian random variables. For the efficient implementation of the Bayesian es-
timator for such systems, the approximation of the true density is necessary. The well-
known extended Kalman filter [148] is based on a linearization of the used nonlinear
system equations and the application of the standard Kalman filter on the resulting
linearized equations. The unscented Kalman filter [78] uses a deterministic sampling
of the true density and thus offers an increased higher-order accuracy compared to the
extended Kalman filter. However, for both filters the resulting single Gaussian density
is often not sufficient for representing the underlying true density. One possibility for
increasing the performance is to use a sample representation of the underlying density
function, like in particle filters [2, 49].

The mathematical model arising in many applications contains a linear sub–struc-
ture. In particular, in the case of the system equations (9.15) and (9.16) for distributed
phenomena, the linear substructure is high-dimensional, and thus offers the chance to
significantly increase the estimation performance. There are several methods to solve
the combined linear/nonlinear estimation problem while beneficially exploiting the
linear substructure. The decomposition of the entire estimation problem into a linear
and a nonlinear problem allows for an overall more efficient process. The marginal-
ized particle filter [16, 18, 86, 140] uses a marginalization over the linear sub-space
to reduce the dimensionality of the entire state space. The remaining density is subse-
quently represented by particles. Based on this decomposition, the standard particle
filter is adopted to cope with the reduced non-linear problem and the Kalman filter is
exploited in order to find the optimal estimate for the linear sub-space associated with
each individual particle. In comparison to the standard particle filter, the marginalized
filter certainly improves the performance; however, some drawbacks still remain. For
instance, special algorithms are necessary in order to avoid sample degeneration and
impoverishment. In addition, measures on how well the true joint density is repre-
sented by the estimated one is not provided within this framework.

For that reason, in our previous research work [92, 134], we introduced a more
systematic estimator exploiting linear substructures in general nonlinear systems, the
so-called Sliced Gaussian Mixture Filter (SGMF). There are two key features leading
to a significantly improved estimation result.

Novel density representation: The utilization of a special kind of density al-
lows the decomposition of the general estimation problem into a linear and non-
linear problem. To be more specific, as a density representation we employ a
so-called sliced Gaussian mixture density.



9.6. DECOMPOSITION OF THE ESTIMATION PROBLEM 199

xk

xk+1
Delay

Reconstruction structure

wx
k

Delay
Identification structure
(SRI-method)

Dynamic system

vk

ŷ
k

Estimator

η
k

Localization structure
(SRL-method)

ηP
k+1

ηP
k

ηM
k

ηM
k+1

Delay

fp(zk)

fp(zk+1)

fe(zk)

Prediction
step

Measure-
ment step

fL(ŷ
k
 zk)

(b)(a)

w
P
k

Delay

Ak(ηPk )

Hk(ηMk )

w
M
kaPk (ηP

k
) aMk (ηM

k
)

Figure 9.12: Visualization of (a) Dynamic System and (b) Model-based Bayesian Esti-
mator for the Node Localization based on Local Observations. The system description
contains a high-dimensional linear substructure. The node location ηM

k
character-

izes the measurement matrix Hk, and thus, the individual measurements(adapted from
[132]).

Systematic approximation: The systematic approximation of the density re-
sulting from the estimation update leads to (close to) optimal results. Thus,
less parameters for the density description are necessary and a measure for the
approximation performance is provided.

Despite the high-dimensional nonlinear character, the systematic approach of the si-
multaneous state and parameter estimation for large-area distributed phenomena is fea-
sible thanks to a decomposition based on the sliced Gaussian mixture density. Further-
more, the uncertainties occurring in the mathematical system description and arising
from noisy measurements are considered by an integrated treatment.

9.6.1 General Prediction and Measurement Step

Before the framework of the Sliced Gaussian Mixture Filter is described in more detail,
in this section, we explain the general prediction and measurement step for general
systems characterized by nonlinear equations. The aim of the Bayesian estimator is
to calculate the probability density function f(zk) representing the state vector zk as
precisely as possible at every time step. Due to its high computational demand and
the resulting non-parametric density representation, approximation approaches for the
nonlinear estimation problem are inevitable.

In general, the model-based Bayesian estimator consists of two steps being per-
formed alternately in order to derive an estimate for the state vector zk in terms of the
density function f(zk). The two steps of the Bayesian estimator are the prediction step
and the measurement step.



200 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

Prediction Step The purpose of the prediction step is to determine, for a given prior
density fe(zk) for zk, the predicted density fp(zk+1) of zk+1 for the next discrete
time step. This can be achieved by evaluating the well-known Chapman-Kolmogorov
equation

fp(zk+1) =
∫

Ω

fT (zk+1|zk)fe(zk)dzk, (9.17)

where fT (zk+1|zk) is the so-called transition density. The additive noise wz
k subject

to the system model (9.15) is assumed to be zero-mean white Gaussian with density

wz
k ∼ fwk (wzk) = N

(
wzk − µw

k
, Cw

k

)
(9.18)

where µw
k

= 0 is the mean vector and Cw
k is the system covariance matrix. The tran-

sition density fT (·) strongly relies on the nonlinear augmented system model (9.15).
Assuming the system noise wz

k to be given by (9.18), the transition density fT (·) can
be derived according to

fT (zk+1|zk) = N
(
zk+1 − ak(zk, ûk), Cw

k

)
,

which characterizes the probability of the transition of the state vector zk to the next
time step. It is clear that the structure of the transition density fT (·) strongly depends
on the actual structure of the underlying system model.

Measurement Step The information of measurements ŷ
k

can be incorporated into
the processing scheme in order to improve the estimation of zk. The estimated density
fe(zk) can be determined by the famous Bayes’ formula

fe(zk) = c · fL(ŷ
k
|zk) · fp(zk), (9.19)

where the coefficient c is a normalization constant. The density function fL(y
k
|zk)

is the so-called likelihood. The additive noise vk subject to the measurement model
(9.16) is assumed to be zero-mean white Gaussian with density

vk ∼ fwk (vk) = N
(
vk − µv

k
, Cv

k

)
, (9.20)

where µv
k

= 0 is the mean vector and Cv
k is the measurement covariance matrix.

Assuming the measurement noise vk to be given by (9.20), the likelihood fL(·) can
be derived according to

fL(ŷ
k
|zk) = N

(
ŷ
k
− hk(zk), Cv

k

)
,

which can be regarded as the conditional density for the occurrence of the measure-
ment ŷ

k
for given xk. It is obvious that the structure of the likelihood function fL(·)

depends on the structure of the measurement model.



9.6. DECOMPOSITION OF THE ESTIMATION PROBLEM 201

9.6.2 The Sliced Gaussian Mixture Filter (SGMF)

In this section, we describe the Bayesian prediction step and measurement step based
on sliced Gaussian mixture densities. It is shown, how this novel density representation
can be exploited for decomposing the general prediction step (9.17) and measurement
step (9.19) into a linear and nonlinear part. By this means, a more efficient closed-
form calculation of the simultaneous state and parameter estimation of distributed phe-
nomena is possible. The framework of decomposing the nonlinear estimation problem
can be applied to various dynamic systems. However, we restrict our attention to the
augmented system model (9.15) and measurement model (9.16) necessary for the node
localization (SRL method) [132]. The resulting equations of the prediction step and
measurement step in the case of the identification of model parameters (SRI method)
can be found in [134].

The Sliced Gaussian Mixture Filter basically consists of three steps: the decom-
position of the estimation problem, the utilization of an efficient update, and the re-
approximation of the density representation.

1. Decomposition: The nonlinear high-dimensional estimation problem is decom-
posed into a linear high-dimensional problem (state estimation) and nonlin-
ear low-dimensional problem (parameter estimation). This can be achieved by
means of the sliced Gaussian mixture density; see Figure 9.13 (a).

2. Efficient update: Based on the decomposition in a linear and nonlinear esti-
mation problem both the prediction step and the measurement step can be per-
formed with an overall more efficient performance. Basically, analytic and ef-
ficient estimators, such as Kalman filter, are exploited to efficiently perform the
estimation update in the linear high-dimensional subspace. The estimation in
the nonlinear subspace is performed by nonlinear estimators, such as the Dirac
mixture filter, visualized in Figure 9.13 (b).

3. Re-approximation: The estimation based on the sliced Gaussian mixture den-
sities leads to a density representation consisting of Gaussian mixtures in all
subspaces. In order to bound the complexity, the resulting density needs to be
re-approximated by means of the sliced Gaussian mixture density, depicted in
Figure 9.13 (b).

The remainder of this section is devoted to a more detailed description on the three
steps of the Sliced Gaussian Mixture Filter (SGMF). Furthermore, the update equations
for the simultaneous reconstruction and node localization (SRL method) are given.

Decomposition through sliced Gaussian mixtures For the decomposition of the
nonlinear estimation problem into a (conditionally) linear and a nonlinear problem, we
proposed in our previous research work [92] [134] so-called sliced Gaussian mixture
densities as a density representation. This density function f(xk, ηk) is represented by
a Dirac mixture in the nonlinear sub-space η

k
(parameter space) and Gaussian mixture



202 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

Reapproximation

Efficient updateηk
Nonlinear
sub-space

Linear
sub-space

xk

ηk

xk

ηk
xk

(a)Sliced Gaussian mixture densities

Gaussian mixture density

Sliced Gaussian mixture density

(b)Efficient update and reapproximation

Reapproximation

ηk

xk

xt de it

ηk
xk

Sliced Ga

Figure 9.13: (a) Visualization of a Sliced Gaussian Mixture Density Consisting of
a Gaussian Mixture in xk Subspace and a Dirac Mixture in ηk Subspace. (b) The
efficient update and the re-approximation of the resulting Gaussian mixture density by
a sliced Gaussian mixture density is alternately performed(adapted from [132]).

in the linear sub-space xk (state space),

f(xk, ηk) =
M∑
i=1

αik δ(η
k
− ξi

k
)︸ ︷︷ ︸

Dirac mixture

· f(xk|ξ
i

k
)︸ ︷︷ ︸

Gaussian mixture

, (9.21)

where δ(·) is the Dirac delta function and αik their respective weighting coefficients.
The density parameters ξi

k
∈ Rs can be regarded as the position of the individual

density slices, as shown in Figure 9.13 (a). The marginal density in nonlinear sub-
space η

k
is given by a Dirac mixture function, according to

f(η
k
) =

M∑
i=1

αikδ(η
k
− ξi

k
), (9.22)

where αik and ξi
k

represent the weights and positions of the Dirac functions, respec-
tively. The density representation along the individual slices is assumed to be a Gaus-
sian mixture density

f(xk|ξ
i

k
) =

Ni∑
j=1

βijk N
(
xk − µij

k
, Cij

k

)
, (9.23)

with βijk , µij
k
∈ Rr, and Cij

k ∈ Rr×r denoting the weights, means, and covariance
matrices of the j-th component of the Gaussian mixture density of the i-th slice.

Efficient update and posterior density Thanks to the system model (9.15) and con-
ditionally linear measurement model (9.16), the Chapman-Kolmogorov equation for
the prediction step and the Bayes formula for the measurement step can be solved an-
alytically. The proof is omitted here, only the resulting predicted density is stated.



9.6. DECOMPOSITION OF THE ESTIMATION PROBLEM 203

By means of the sliced Gaussian mixture filter, the predicted density f̃p results in a
Gaussian mixture in linear xk and nonlinear sub-space ηM

k
,

f̃p(xk+1, η
S
k+1

) = c ·
M∑
i=1

Ni∑
j=1

αikβ
ij
k γijk

· N
(
ηS
k+1
− ξpi

k+1
, Cn

w

)
N
(
xk+1 − µpij

k+1
, Cpij

k+1

)
, (9.24)

where the mean µpij
k+1

and covariance matrices Cpij
k+1 in linear sub-space xk are calcu-

lated by applying the standard Kalman filter. The mean in nonlinear sub-space ηM
k

is
derived by simply repositioning the density slices.

In the following, the parameters of the posterior density (9.24) for the node local-
ization in a sensor network (SRL method) are stated. For the sake of simplicity and in
order to keep the equations simple, the abbreviation Hi

k := H(ξi
k
) is used.

Parameters of resulting density (9.24) for the prediction step:

Mean vectors µpij
k+1

:= Akµ
eij
k

+ Bkûk

Covariance matrices Cpij
k+1 := AkC

eij
k Ak

T + Cl
w

Positions in nonlinear subspace ξpi
k+1

:= aMk

(
ξei
k

)
Parameters of resulting density (9.24) for the measurement step:

Weights of the slice γijk := N
(
ŷ
k
−Hi

kµ
pij
k

, Hi
kC

pij
k Hi

k
T + Cv

k

)
Mean vectors µeij

k
:= µpij

k
+ K

(
ŷ
k
−Hi

kµ
pij
k

)
Covariance matrices Ceij

k := Cpij
k −KHi

kC
pij
k

Kalman gains K := Cpij
k Hi

k
T
(
Cv
k + Hi

kC
pij
k Hi

k
T
)−1

At this point it is important to emphasize that the aforementioned equations for the pa-
rameters of the posterior density (9.24) strongly depend on the actual model structure
(9.15) and (9.16). For the simultaneous reconstruction and identification of distributed
phenomena (SRI method) similar equations can be found, as it was derived in our
previous research work [134].

Re-approximation and bounding complexity In order to bound the complexity,
the predicted density (9.24) in terms of a Gaussian mixture density needs to be re-
approximated by a sliced Gaussian mixture density (9.21). There are several ap-
proaches to perform this approximation. One possible approach for the approximation
is to derive the location of the density slices by only considering the marginal den-
sity f̃p(ηM

k+1
). In general, the approximation of arbitrary marginal densities by Dirac

mixture densities (9.22) can be achieved by: batch approximation [141] or sequential
approximation [52].



204 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

The batch approximation is an efficient solution procedure for arbitrary true den-
sity functions on the basis of homotopy continuation (progressive Bayes). This proce-
dure results in an optimal solution. The sequential approximation is based on inserting
one component of the Dirac mixture density at a time. The key idea of this algorithm
is that every component of the Dirac mixture density corresponds to an interval in
the nonlinear subspace of the sample space and approximates the true marginal den-
sity only in the corresponding interval. Then, based on the splitting of the intervals
and their respective component of the Dirac mixture density arbitrary densities can be
approximated.

After the approximation of the marginal density f̃p(ηM
k+1

) in the nonlinear sub-
space, the Dirac approximation is extended to a sliced Gaussian mixture representa-
tion over the entire sample space. Basically, this is achieved by evaluating the Gaussian
mixture density f̃p(xk+1, η

M
k+1

) at every Dirac position. This leads to a sliced Gaus-
sian mixture density (9.21), which can be used for the next processing step. A more
detailed description on the re-approximation can be found in [92].

9.7 Application: Node Localization
In this section, we demonstrate the application and performance of the proposed sen-
sor node localization method (SRL method). As it is described above, the localization
problem is restated as a simultaneous state and parameter estimation problem. The re-
sulting high-dimensional nonlinear problem is decomposed into a linear and nonlinear
part by means of the Sliced Gaussian Mixture Filter, and thus leads to an overall more
efficient localization method.

There are four key features characterizing the novelties of the proposed method for
the passive localization (SRL method):

The approach is based on local measurements of distributed phenomena only.

The uncertainties in the mathematical model and the local measurements of the
sensor network are systematically considered.

For the estimated node locations, an uncertainty measure is derived in terms of
a density function.

The simultaneous approach allows improving the estimation of the distributed
phenomenon, which then can be exploited for localizing other nodes.

For a more detailed description of the simultaneous reconstruction and node localiza-
tion method (SRL method), the interested reader is referred to [132].

By means of simulation results, we investigate the accuracy of the identified loca-
tion ηMk of a sensor node locally measuring a distributed phenomenon. The underlying
distributed phenomenon is assumed to be given as follows:

Example 6 (Simulated system)
In this simulation, we consider the localization of sensor nodes based on the one-
dimensional partial differential equation (9.5). The initial conditions and Dirichlet bound-
ary conditions are depicted in Figure 9.7 (c)–(d). Here, we assume that the sensor



9.7. APPLICATION: NODE LOCALIZATION 205

 

 

0 10 20

20

10

0

−10

30

 

2 4 6 8

(a)true node location CSN-method

SRL-method 

(based on sliced Gaussian mixture filter)

location

(b)

0.2
0.4
0.6
0.8
1.0

0
20

10 0

5

05

f
(η

)

10

time t/s

tim
e

t/
s

η/m

η
/m

lo
ca

ti
on

Figure 9.14: Comparison of SRL method based on SGMF, SRL method based on MPF,
and Deterministic Approach CSN-method. (a) Root mean square error over time of
100 simulation runs. (b) Specific density function f(ηMk ) for estimated node location
ηMk over time(adapted from [132]).

network consists only of one single sensor node locally measuring the phenomenon.
Furthermore, the sensor node has only very uncertain knowledge about the initial dis-
tributed phenomenon; see Figure 9.7 (c). The goal is to localize the sensor node with
initially unknown location using local measurements of the distributed phenomenon.
The true node location is assumed to be ηStrue = 16 m. The system noise term is
Cw
l = diag {20, . . . , 20}, the noise term for the node location is given by Cwn = 0.03,

and for the local measurement of the node to be localized is assumed to be Cvk = 0.01.
Here, we compare different approaches for the passive localization:

Deterministic approach introduced in [66] (CSN-method)

SRL method based on the sliced Gaussian mixture filter (using 50 slices)

SRL method based on the marginalized particle filter (using 500 particles)

The aforementioned approaches for node localizations are compared based on 100
Monte-Carlo simulation runs. In particular, the accuracy of the estimated location ηMk
is investigated. The results of the localization methods are shown in Figure 9.14 and
Figure 9.15.

The estimation of the unknown location ηMk for one specific simulation run is de-
picted in Figure 9.14 (a). It can be clearly seen that after a certain transition time the
SRL method based on sliced Gaussian mixture filter (with 50 slices) offers a nearly
exact location. The estimation of the deterministic approach (CSN-method) strongly



206 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

 

 

10 202 4 6 8

2

4

0

(a)

rm
s 

lo
ca

ti
on

CSN-method

SRL-method (SGMF)
SRL-method (MPF)

(b) (c)
 

 

 

0

40

80

10 200 10 200

time t/s

r/m r/m

p
(r

)/
◦ C

Figure 9.15: Comparison of SRL method based on SGMF (black), SRL method based
on MPF (dashed), and CSN-method (dotted). (a)–(b) Improvement of estimation of
distributed phenomenon (gray shaded area) thanks to simultaneous approach; realiza-
tion of the distributed phenomenon (black dotted). (c) Specific simulation run for the
estimation of the node location. The true location (black dotted) is assumed to be
ηMtrue = 16 m(adapted from [132]).

deviates from the true location. This is caused mainly by neglected system and mea-
surement noises. The entire density function f(ηMk ) for the estimated location ηMk for
a specific simulation run is depicted in Figure 9.14 (b). The ambagious distribution of
the physical phenomenon to be observed results in a multimodal density function for
the estimated location ηM

k
. This explains the higher uncertainty at the beginning of

the simulation. However, by exploiting more and more measurements and information
about the dynamic system, the estimation of the location changes from a multimodal to
an unimodal function. Thus, the location estimate becomes more accurate and certain.

The root mean square error (rms) of all 100 simulation runs over time is depicted
in Figure 9.15 (a). It is obvious that the SRL method based on the Sliced Gaussian
Mixture Filter (with 50 slices) outperforms both the deterministic approach (CSN-
method) and the approach based on marginalized particle filter (with 500 particles).
This is mainly due to the stochastic approach and the systematic approximation of the
density used in the framework of the simultaneous state and parameter estimation.

Thanks to the simultaneous property of the SRL method, not only can the sen-
sor node be accurately localized, but also the estimate of the distributed phenomenon
can be further improved. The improvement of the reconstruction result is obvious by
comparing Figure 9.14 (b) with Figure 9.14 (c). It is important to emphasize that the
phenomenon can be reconstructed at the actual measurement point as well as at non-
measurement points. The improved knowledge about the phenomenon in the entire
solution domain can be exploited by other sensor nodes to localize themselves.

In this work, we restricted ourselves to the localization of one single sensor node
locally measuring a distributed phenomenon. It is believed that using more than one



9.8. CONCLUSIONS AND FUTURE WORK 207

sensor node, the performance of the localization process can be significantly improved
since more information about the distributed phenomenon can be exploited. Further-
more, already localized sensor nodes, e.g., sensor beacons or base stations, can be used
to reconstruct the physical phenomenon, and thus support the localization of individual
sensor nodes deployed between the beacons.

9.8 Conclusions and Future Work
In this chapter, we describe the methodology for the simultaneous state and parame-
ter estimation of distributed phenomena. The spatial and temporal decomposition of
the distributed system results in a finite-dimensional model in state space form (usu-
ally characterized by a high-dimensional state vector). Hence, the augmentation of
the system state with the parameter to be estimated leads to a high-dimensional non-
linear system description. Based on a novel density representation – sliced Gaussian
mixture density – the linear sub-structure contained in the finite-dimensional model is
exploited. This leads to an overall more efficient estimation process. The performance
is demonstrated by means of simulation results and it turns out that, compared to other
nonlinear estimators, the sliced Gaussian mixture filter achieves a higher accuracy.

The application of the proposed method for the simultaneous state and param-
eter estimation to sensor networks provides novel prospects. The network is able
to estimate the entire state of the distributed phenomenon, identify non-measurable
quantities, verify and validate the correctness of the estimation results, and adapt au-
tonomously their algorithms. Within the proposed framework, a novel method for the
localization of individual sensor nodes is introduced. The localization method (SRL
method) performs without relying on a satellite positioning system (which is not al-
ways available, e.g., indoor applications) as long as a strong model of the surrounding
is available.

So far, the model parameters and structure were assumed to be precisely known for
the SRL method. In many real world applications, however, the parameters contain re-
maining uncertainties, or even could be completely unknown. The combination of the
parameter identification of distributed phenomena and the node localization is left for
future research work. Finally, it is intended to test the proposed localization methods
on actual sensor data.

For the observation of large-area distributed phenomena, decentralized methods
are inevitable in order to cope with high-dimensional state vectors. Hence, further de-
compositions both in the linear subspace and nonlinear subspace are necessary, similar
to [131]. This is left for future research work.



Chapter 9

Bayesian Estimation of
Distributed Phenomena

Felix Sawo and Uwe D. Hanebeck1

Intelligent Sensor-Actuator-Systems Laboratory
Institute of Computer Science and Engineering
Universität Karlsruhe (TH), Germany

This chapter introduces a Bayesian approach for the estimation of distributed phe-
nomena based on discrete time-space measurements obtained by a sensor network.
We introduce a new methodology for sensor network applications, which rigorously
exploits mathematical models of the distributed phenomenon to be monitored. By
this unobtrusive exploitation, the individual sensor nodes collect information not only
about properties of the phenomenon but also about the sensor network itself. The nov-
elty of the introduced estimation method is the systematic approach and the consid-
eration of uncertainties not only occurring in the mathematical model but also arising
naturally from noisy measurements.

First, it is shown how the physical phenomenon in terms of a distributed-parameter
system description is spatially decomposed and temporally discretized leading to a
lumped-parameter finite-dimensional description in state space form. Then, based on
such a system description, the proposed methodology of simultaneous state and pa-
rameter estimation of distributed phenomena is introduced in a quite general form. It
turns out that this in most cases leads to a high-dimensional nonlinear estimation prob-
lem, making special types of nonlinear estimators necessary. Accordingly, a novel
estimator, the so-called Sliced Gaussian Mixture Filter is employed. This estimator
exploits the linear substructure in the high-dimensional nonlinear estimation problem,
and leads to a more efficient process. Furthermore, we introduce the application of this

1This chapter is a modified version of [132]

© Springer Science+Business Media, LLC 2009 
175 T.C. Henderson, Computational Sensor Networks, DOI: 10.1007/978-0-387-09643-8_9, 



176 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

(a) (b)

sensor nodes, e.g.,
   temperature
   light intensity  

   pressure
   humidity

communi-
cation unit

support snow avalanche 

warning systems
evaluation of snowmelt
effective utilization of 
water ressources

Figure 9.1: Visualization of a Snow Monitoring Scenario. (a) The individual sen-
sor nodes collect local information about the snow state, e.g., temperature, light
intensity, pressure, or humidity. (b) The observations provide useful information
for snow avalanche warning systems and allow an effective utilization of water re-
sources.(adapted from [132])

methodology to two of the most common tasks arising in sensor network applications.
This results in two different methods:

the simultaneous reconstruction of the state and identification of parameters of
distributed phenomena (SRI method), and

the simultaneous reconstruction of the state of distributed phenomena and local-
ization of sensor nodes (SRL method).

The proposed methods provide novel prospects not only for the estimation of dis-
tributed phenomena but also for sensor network applications in general. Thanks to
the simultaneous approach, the network is able to estimate the entire state of the dis-
tributed phenomenon, identify non-measurable quantities, verify and validate the cor-
rectness of the estimation results, and eventually adapt its algorithms and behavior in
an autonomous fashion.

The results presented in this chapter were published in [14, 132, 134, 136]. How-
ever, the proposed model–based methods for the estimation of distributed phenomena
are presented in a considerably extended form in this chapter.

9.1 Sensor Networks for Distributed Phenomena
In recent years, advances in technology have made it possible to build wireless sensor
networks providing a smart interaction with the environment [25]. Typical advantages
of using sensor networks include the deployment at low cost and in large numbers, as
well as the inherent robustness thanks to the redundancy [21]. An important applica-
tion for such networks is the observation of natural physical phenomena. Examples
for such physical phenomena are: temperature distribution [136], chemical concentra-
tion [169], fluid flow, deflection and vibration in buildings, or the surface motion of a
beating heart in minimally invasive surgery [5].



9.1. SENSOR NETWORKS FOR DISTRIBUTED PHENOMENA 177

For the reconstruction of such distributed phenomena, the sensor network can be
exploited as a huge information field collecting data from its surrounding. In such sce-
narios, the individual sensor nodes are densely deployed either inside the phenomenon
or close to it. Then, by distributing local information to a global processing node,
the phenomenon can be coöperatively reconstructed in an intelligent and autonomous
manner [75, 130, 133]. This provides useful information both to mobile agents and to
humans, which can accomplish their respective tasks more efficiently, thanks to the ex-
tended perception provided by the sensor network. Hence, dangerous situations, such
as forest fires, seismic sea waves, or snow avalanches can be forecast or even prevented
[66]. In the following, prospective application scenarios where sensor networks could
provide a novel approach are described.

9.1.1 Prospective Application Scenarios
For snow monitoring scenarios, for example, there are two applications where the
sensor network could provide novel possibilities: forecasting snow avalanches and
flood runoffs. Snow avalanches are a major hazard to people, equipment or facilities,
such as buildings, ski slopes, roads, power lines, and railways, in mountainous regions
throughout the world. Each year, snow avalanches cause casualties and damage, not
only in non-protected areas but also in popular cross-country skiing areas, e.g., in the
Wasatch mountains in Utah. The application of an intelligent and autonomous sensor
network could offer useful information for the support of avalanche forecasting sys-
tems. The individual sensor nodes deployed on the ground or within the snow pack
collect measurable information about the snow state, such as temperature, light inten-
sity, pressure or humidity; see Figure 9.1 (a). Then, based on these observations and
after further processing, measures about the stability of the snow pack, e.g., stress dis-
tribution, strain distribution, density distribution or location of so-called weak layers,
of a certain area could be estimated [9, 99, 100, 127, 151]. Thus, by means of a sensor
network, the possibility of snow avalanches can be predicted and defense structures in
avalanche starting zones can be optimized; see Figure 9.1 (b). An additional applica-
tion scenario where sensor networks could provide novel possibilities is the accurate
and efficient evaluation of snowmelt. By this means, water resources could be utilized
more efficiently and flood runoffs could be forecast more accurately [76, 95].

A further example worth mentioning is the application of sensor networks to moni-
toring the condition and composition of ice in skating rinks [171]. For speed skaters to
reach faster times, the optimal ice composition and especially the optimal temperature
distribution of the ice is quite essential. For that reason, temperature nodes deployed
at different points within the ice allow the estimation of the actual temperature distri-
bution on the top of the surface and eventually the determination of the optimal ice
composition. In addition, the sensor nodes can be linked to ice making machines,
so that they can be adjusted in order to compensate changes in temperature, wind, or
humidity [171].

In the aforementioned scenarios and for sensor network applications in general,
the number of nodes and the measurement rates should be as low as possible due to
economic and energetic reasons. As it stands, the lower the measurement rate of the
individual nodes, the higher their durability. Therefore, a trade-off between energy



178 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

costs and accuracy has to be found. The challenge for the observation of distributed
phenomena is that measurements are available only at discrete time steps and discrete
locations, meaning that no information between the individual sensor nodes is avail-
able. In order to get meaningful and accurate information not only at the sensor nodes
itself but also between these nodes, the model-based reconstruction of the distributed
phenomenon is of major significance. By exploiting additional physical background
information of the phenomenon in the form of a mathematical model, the accuracy
of the reconstruction can be improved significantly, even at non-measurement points
[5, 130, 136].

In the following subsections, two of the most important tasks for the reconstruction
of distributed phenomena based on a sensor network are explicitely described:

identification of model parameters (SRI method, introduced in [134]), and

localization of individual sensor nodes (SRLmethod, introduced in [132])

These two phases for the estimation of a distributed phenomenon are visualized in
Figure 9.2. The novelty of the proposed methods is the rigorous exploitation of a
mathematical model describing the dynamic and distributed behavior of both the phe-
nomenon to be observed and the sensor network.

9.1.2 Parameter Identification (SRI method)
The model-based reconstruction of a distributed phenomenon by means of a sensor net-
work is based on the mathematical model describing the physical behavior. Assuming
we have an appropriate and sufficiently accurate model, the distributed phenomenon
is uniquely characterized by model parameters and boundary conditions. However,
in practical implementations, the model parameters such as the diffusion coefficient,
might not be known in advance and usually need to be identified. Hence, one of the
most important issues concerning distributed phenomena is the parameter estimation,
also referred to as parameter identification or the inverse problem. The main goal is
the estimation of parameters ηP

k
in the system model from observed measurements

such that the distributed state p(z, t) sufficiently accurate explains the observations
obtained by the sensor network [157]. The discrete time-space samples measured by
the individual sensor nodes are incorporated into the mathematical model in order to
improve its accuracy in terms of estimated model parameters [130].

For sensor network applications, the parameter identification becomes even more
essential due to the harsh and unknown environment, unpredictable variations of the
phenomenon, and imprecisely known sensor locations. It is important to emphasize
that remaining uncertainties not only in the measurements but also in the assumed
model structure need to be considered in a systematic way during the identification
process. As it is shown in the following sections, the identification problem as well
as the localization problem can be transformed into a simultaneous state and param-
eter estimation problem [133, 134]. Based on this framework, a Bayesian estimation
approach can be employed, and thus the distributed phenomenon can be reconstructed
and imprecisely known model parameters can be identified in a simultaneous fashion;
see Figure 9.2 (a).



9.1. SENSOR NETWORKS FOR DISTRIBUTED PHENOMENA 179

Identification Phase(a)

Simultaneous reconstruction ...

Estimation of distributed system

... and system identification.

Unkown structure and para-
meters of distributed system

Fixed and known node locations
(possibly known beacons)

Localization Phase(b)

Simultaneous reconstruction ...

Estimation of distributed system

... and node localization.

Unkown location of movable
or newly deployed nodes

Known structure and parameters
of distributed system

Sensor planning and scheduling(c)

Figure 9.2: Visualization of Two Phases for the Estimation of Distributed Natural
Phenomena. The phases are managed by a planning and scheduling process (not con-
sidered in this chapter). (a) The first phase consists of the identification of the envi-
ronment in order to derive a mathematical model of the phenomenon to be monitored
(identification phase). (b) Based on the mathematical model, newly deployed sensor
nodes can be localized by local observations (localization phase)(adapted from [132]).

9.1.3 Node Localization (SRL method)

The sensor data derived from the individual nodes in most applications has only limited
utility without location information. The precise knowledge of the node locations
are particularly important for the accurate reconstruction of distributed phenomena.
Manually measuring the location of every individual sensor node in the entire network
becomes infeasible, especially when the number of sensor nodes is large or the nodes
are inaccessible. The aforementioned issues make the localization problem one of the
most important tasks to be considered in the area of sensor networks.

There are several ways to classify localization methods. In this research work,
these methods are classified into active methods and passive methods. The active
localization methods estimate the locations based on signals that are artificially stimu-
lated and measured by the sensor network, e.g., artificially generated acoustic events.
That means, the localization process is performed in fairly controlled environments,
and incur significant installation and maintenance costs. A comprehensive survey on
active localization methods can be found in [68].

In the case of passive localization methods, which rather occur in a non-controlled
environment, the stimuli necessary for the localization process are generated in a natu-
ral fashion. The clear advantage of passive methods is that they do not need additional
infrastructure. This certainly keeps the installation and maintenance costs at a very low
level. In addition, these methods become particularly important for applications where
satellite positioning systems are simply not available, e.g., sensor networks for moni-
toring the snow cover or indoor applications. In our previous research work, a purely



180 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

data–driven modeling approach was introduced for the passive localization of cellular
phones based on measuring signal strengths [47] and barometric pressure [158].

In this work, for the passive localization of individual nodes in a network, we
present a model-based approach using local observations only, the so-called simul-
taneous reconstruction and localization method (SRL method). The novelty of the
proposed method is the rigorous exploitation of a strong mathematical model of the
distributed phenomenon for localizing the individual nodes. The use of such a math-
ematical model for node localizations was proposed in [66]; however, there was no
consideration of uncertainties naturally occurring in the measurements and in the used
mathematical model. The proposed simultaneous approach, on the other hand, allows
the consideration of these uncertainties during the localization process. In addition,
the often remaining uncertainties in node locations can be considered during the pure
reconstruction process of the distributed phenomenon. The SRL method for localiz-
ing individual nodes in a sensor network with consideration of remaining uncertainties
was introduced in [132].

It is shown that the localization problem can be regarded as a simultaneous state
and parameter estimation problem, with node locations as the parameters to be identi-
fied. By this means, the sensor nodes are localized and the distributed phenomenon is
reconstructed in a simultaneous fashion; see Figure 9.2 (b). The improved knowledge
can be exploited for other nodes to localize themselves.

9.2 Problem Formulation
There are several possibilities for the classification and characterization of physical
phenomena and their respective mathematical descriptions. In this work, they are clas-
sified into lumped-parameter systems and distributed-parameter systems [14]. The
key characteristic of a lumped-parameter system is that the state vector uniquely de-
scribing the system behavior depends only on time. Examples of lumped-parameter
systems are bird flocks or swarm of robots. Such systems are usually described by a
system of ordinary differential equations. On the other hand, the so-called distributed
state of distributed-parameter systems does not only depend on time but also on the
location, e.g., irrotational fluid flow, heat conduction, and wave propagation. The
dynamic behavior of distributed-parameter systems can be described by a system of
partial differential equations.

In this work, for simplicity we consider only distributed-parameter systems rep-
resented byone-dimensional linear partial differential equations, although similar ex-
pression can be found for the multi-dimensional case. In its most general form, the
one-dimensional partial differential equation is given in implicit form by

L
(
p(r, t), s(r, t),

∂p

∂t
, . . . ,

∂ip

∂ti
,
∂p

∂r
, . . . ,

∂ip

∂ri

)
= 0, (9.1)

where p(r, t) denotes the state of the distributed system at time t and location z. The
source term s(r, t), the state p(r, t), and its derivatives are related by means of a lin-
ear operator denoted by L (·). The dynamic behavior of the distributed phenomenon
strongly depends on specific physical parameters collected in the parameter vector



9.2. PROBLEM FORMULATION 181

Model-based Estimator
Nonlinear and high-dimensional
estimation problem

Distributed and decentralized 

estimation problem

Task planning and sensor 
scheduling problem

Discrete System model

xk+1 = ak

(
xk,uk, η

P
k

)
+ wk

Measurement model

ŷ
k

= hk

(
xk, η

M
k

)
+ vk

ηP
k

Unknown parameters
of phenomenon

Diffusion coefficient
System inputs
Boundary conditions
External disturbances

ηM
k

Unknown parameters
of sensor nodes

Node locations
Sensor bias
Sensor variances
Correlations

Extended state
vector:

ŷ
(1)
k

ŷ
(2)
k

ŷ
(i)
k

zk =


 xk

ηP
k

ηM
k




Figure 9.3: Overview and Challenges for the Model-based Simultaneous State and
Parameter Estimation of Distributed Phenomena. Examples for unknown parameters
ηP
k

and ηM
k

to be estimated in the system model and the measurement model(adapted
from [132]).

ηP
k

, such as diffusion coefficient and coefficient of viscosity. The main goal is the
estimation of the distributed state p(r, t) and the parameter vector ηP

k
based on local

measurements obtained by a sensor network.
In general, the application of a Bayesian estimation approach for the state and

parameter estimation based on a distributed-parameter system (9.1) is a challenging
task. For that reason, we presented in our previous research work [5, 133, 136] the
conversion of the partial differential equation (9.1) into a finite-dimensional system in
state-space form. The conversion of the system description leads to a high-dimensional
nonlinear system model. This nonlinearity is mainly caused by the nonlinear relation-
ship between the distributed state p(r, t) and unknown parameters ηP

k
. That means, the

nonlinear finite-dimensional model of the distributed system (9.1) is given as follows

xk+1 = ak

(
xk,η

P
k

, ûk

)
+wx

k, (9.2)

where xk represents the converted distributed state, ûk denotes the system input, and
wx
k contains subsumed system uncertainties. The parameter vector ηP

k
in (9.2) com-

prises all the unknown parameters to be identified in the distributed phenomenon, such
as unpredictable variations of physical constants or material properties. In addition,
unknown constraints at the boundary of the considered domain, unknown system in-
puts, and unknown disturbances could be included in the parameter vector ηP

k
; see

Figure 9.3.
Besides the probabilistic system model there is a probabilistic measurement model

describing the physical properties of the sensor network itself. That means, it relates
the actual measurements of the network to the state vector xk representing the dis-
tributed phenomenon. In this research work, we assume that the measurements ŷ

k
are

related nonlinearly to the state vector xk according to

ŷ
k

= hk

(
xk,η

M
k

)
+ vk, (9.3)



182 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

where vk is the uncertainty in the measurement model. The parameter vector ηM
k

con-
tains all the unknown parameters to be identified in the measurement model. Sensor
bias and sensor variances, for example, could be included in the unknown parameter
vector ηM

k
for the purpose of tracking wear of the sensor nodes. Furthermore, one

could imagine to collect the possibly unknown location of the individual sensor nodes
and correlations in the parameter vector ηM

k
; see Figure 9.3.

It is shown that for the simultaneous state and parameter estimation of distributed
phenomena, the nonlinear system function ak(·) and the nonlinear measurement func-
tion hk(·) include a high-dimensional linear sub-structure. This allows a decomposi-
tion of the estimation in terms of the augmented state vector zk into three sub-state
vectors,

zk =

[
(xk)T︸ ︷︷ ︸

Linear subspace

(ηP
k

)T (ηM
k

)T︸ ︷︷ ︸
Nonlinear subspace

]T
(9.4)

with the high-dimensional state vector xk ∈ Rr (characterizing the conditional linear
system) and the parameter vectors ηP

k
∈ RNp and ηM

k
∈ RNm (characterizing the

nonlinear part of the system). For the estimation of the total state vector zk, the de-
composition into a state vector xk and parameter vector η

k
is exploited for the deriva-

tion of a more efficient estimator than a nonlinear estimator operating on the entire
vector zk. This decomposition of the estimation problem into a linear and a nonlin-
ear problem is mainly achieved by a novel density representation, the so-called sliced
Gaussian mixture density, and the systematic approximation of arbitrary densities by
this representation.

9.3 Probabilistic Finite-Dimensional Models

The model–based state estimation of distributed phenomena based on a distributed–
parameter description (9.1) is quite complex. The reason is that for a Bayesian estima-
tion method usually a system description in lumped–parameter form is necessary. In
order to cope with this, the distributed–parameter system is converted into a lumped–
parameter system. Based on the resulting finite-dimensional model, algorithms can be
derived allowing the estimation and identification of a distributed phenomenon (9.1),
as well as the localization of individual sensor nodes locally measuring the distributed
phenomenon.

In this section, we derive a finite-dimensional model of general distributed systems
(9.1), which can be exploited for the simultaneous state and parameter estimation of
such systems. The finite-dimensional model consists of two components: the system
model and the measurement model. The system model describes the dynamic behav-
ior of the distributed phenomenon to be monitored. The state of the phenomenon is
uniquely characterized by a finite-dimensional state vector xk and a vector ηP

k
con-

taining model parameters. On the other hand, the measurement model describes the
distributed properties of the sensor network itself. The local measurements obtained
by the individual nodes are related to both the state vector xk and the parameter vector
ηM
k

containing for example node locations or sensor bias.



9.3. PROBABILISTIC FINITE-DIMENSIONAL MODELS 183

Neumann conditionDirichlet condition

?

position r0 L

System input s(r, t)

Sensor node
locations ηM

k
? ηP

k

System model
parameter

(SRI-method) (SRL-method)

Figure 9.4: Visualization of the Solution Domain and Boundary Conditions of the
Considered Distributed Phenomenon. The aim is the identification of system model
parameters (SRI method) and the localization of sensor nodes (SRL method) based on
local measurements of the phenomenon(adapted from [132]).

The methods introduced in this section can be applied to the general case of linear
partial differential equations (9.1), and could even be extended to the multi-dimensional
case in a straightforward fashion. However, we restrict our attention to a certain dis-
tributed phenomenon, the so-called diffusion equation.

Example 1 (Considered distributed phenomenon)
Throughout the entire chapter, we consider the following distributed phenomenon char-
acterized by a one-dimensional partial differential equation

L(p(r, t)) =
∂p(r, t)

∂t
− α ∂

2p(r, t)

∂r2
− γs(r, t) = 0, (9.5)

where p(r, t) and s(r, t) are the distributed system state and the distributed system
input, respectively. The diffusion coefficient α ∈ R is characterized by specific mate-
rial properties, such as the medium density ρ, the heat capacity cp, and the thermal
conductivity k, according to α := κ/(ρcp). The input coefficient γ ∈ R represented by
γ := 1/(ρcp) characterizes the influence of the system input on the distributed phe-
nomenon. For example, the propagation of heat in the snow pack can be described by
such equations. The complete mathematical model of the snow pack, however, con-
sists of further partial differential equations characterizing the model parameters α and
γ; see [9, 99, 100]. These further dependencies of the parameters in terms of differen-
tial equations are omitted here for simplicity. For the derivation of a finite-dimensional
model, and thus, the reconstruction of the entire distributed phenomenon (9.5), knowl-
edge of the boundary conditions is necessary. There are several types of boundary
conditions depending on the constraints at the boundaries of the considered solution
domain. Considering the solution in a domain Ω = {r|0 ≤ r ≤ L}, we assume the
following boundary conditions

p(r = 0, t) = gD,
∂p(r = L, t)

∂r
= gN , (9.6)

where gN , specifying a condition on the derivative, is referred to as a Neumann bound-
ary condition and gD is the so-called Dirichlet boundary condition. The solution domain
and the boundary conditions of the considered distributed phenomenon is visualized in



184 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

Fig 9.4. The main goal in this section is to derive a finite-dimensional model which can
be used for the estimation of the distributed state p(r, t), the model parameter α (SRI
method) and the sensor node locations ηM (t) (SRL method) in a simultaneous fashion;
see Fig 9.4.

9.3.1 Probabilistic System Model
The finite-dimensional model necessary for the simultaneous state and parameter es-
timation of distributed phenomena can be derived, in general, by methods for solv-
ing partial differential equations. The modal analysis method basically uses a set of
global expansion functions for the approximation of the solution of the partial dif-
ferential equation, and thus, the derivation of a probabilistic system model. These
methods just need a few parameters for characterizing a smooth solution of the dis-
tributed phenomenon [128]. However, global expansion functions can be found only
for simple problems with simple boundary conditions. On the other hand, there are
methods such as the finite-difference method [22, 130], the finite-element method [6],
and the spectral-element method [88, 94, 133]. The systematic decomposition of the
solution domain involved in these methods allows the derivation of a probabilistic sys-
tem model even for rather complex geometries and boundary conditions. Furthermore,
the application to nonlinear partial differential equations is possible.

It is well-known that the aforementioned methods may be used with the same nu-
merical methodology, the so-called Galerkin formulation. Based on this formulation,
a finite-dimensional system model of the distributed phenomenon (9.5) can be derived
in two steps, the spatial decomposition and the temporal discretization. The two steps
for the conversion of the distributed phenomenon (9.5) and their respective resulting
system description are visualized in Figure 9.5 (a).

Spatial decomposition By means of the spatial decomposition, partial differential
equations can be converted into a system of ordinary differential equations. First, the
solution domain Ω = {r|0 ≤ r ≤ L} is spatially decomposed into Nx subdomains
Ωe (the so-called finite elements). Then, an appropriate representation of the solution
p(r, t) within each subdomain Ωe needs to be defined. The Galerkin method assumes
that the solution p(r, t) in the entire domain Ω can be represented by a piecewise
approximation according to

p(r, t) =
Nx∑
i=1

Ψi(r)xi(t), (9.7)

where Ψi(r) are analytic functions called shape functions and xi(t) are their respective
weighting coefficients. It is important to note that the individual shape functions Ψi(r),
in general, are defined in the entire solution domain Ω. The essence of the aforemen-
tioned finite-element and spectral-element method for the conversion of the distributed
phenomenon lies in the choice of the shape functions Ψi(r), e.g., piecewise linear
functions, orthogonal functions, or trigonometric functions. The spatial decomposition
into several subdomains Ωe and the involving definition of respective shape functions
Ψi(r) are visualized by means of an example in Figure 9.5 (b).



9.3. PROBABILISTIC FINITE-DIMENSIONAL MODELS 185

(b)
x1
k

p(r, t)x2
k

x3
k

x4
k

Ω
e1e0 e2

e3

Shape functions

Ψ2(r)
Ψ3(r)

Ψ4(r)

Ψ1(r)

Ω1 Ω2 Ω3Ω

(a) Conversion of Distributed System
di

st
ri

bu
te

d-
pa

ra
m

et
er

lu
m

pe
d-

pa
ra

m
et

er
di

sc
re

te
-

ti
m

e

∂p(r, t)
∂t

= α
∂2p(r, t)

∂r2 + s(r, t)

Partial differential equation

Ordinary differential equation

xk+1 = Akxk + Bk(û + wx
k)

System model
(state-space form)

Figure 9.5: (a) Conversion of the Distributed System into a System Model in State-
space Form (by spatial and temporal decomposition). (b) The solution p(z, t) of the
distributed phenomenon is approximated by a series of shape functions Ψi(z) and their
respective weighting coefficients xik. Elemental decomposition of solution domain Ω
into several subdomains Ωe and application of shape functions Ψi(z)(adapted from
[132]).

The approximated solution in terms of the finite expansion (9.7) cannot satisfy the
partial differential equation (9.1) everywhere in the region of interest. That means
usually a residual RΩ remains. To make this residual small in some sense, a weighted
integral has to be minimized ∫

Ω

Ψi(r)L(p(r, t))dr = 0,

with i = 1, . . . , Nx. This weighted integral can be reduced to a system of ordinary
differential equations by replacing the solution function p(r, t) and the input function
s(r, t) by the finite expansion (9.7). In the case of the one-dimensional diffusion equa-
tion (9.5) this leads to following system of ordinary differential equations in terms of
the continuous-time weighting coefficients xi(t),

MG ẋ(t) = −αDG x(t) + (γ MGu
∗(t) + b∗(t))︸ ︷︷ ︸
u(t)

, (9.8)

where MG is called the global mass matrix and DG is the global diffusion matrix. Ba-
sically, this system of equations describes the time evolution of the weighting coeffi-
cients xi(t) representing the approximated solution of the partial differential equation,
i.e., approximation of the distributed state p(r, t).

The individual entries Mg
ij and Dg

ij of the global mass matrix MG and the global
diffusion matrix DG can be derived according to

Mg
ij =

∫
Ω

Ψi(r)Ψj(r)dr , Dg
ij =

∫
Ω

dΨi(r)
dr

dΨj(r)
dz

dr.



186 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

It is obvious that MG and DG contain the information about the discretized domain Ω
and merely depend upon the choice of the shape functions Ψi(r), i.e., depend on the
conversion method used. The vectors x(t) and ẋ(t) are the so-called continuous-time
state vectors containing the weighting coefficients xi(t) and their derivatives

x(t) = [x1(t),x2(t), . . . ,xNx(t)] .

The boundary conditions of the distributed phenomenon to be monitored are collected
in the boundary condition vector b∗(t). For brevity, the input vector u∗(t) and the
boundary condition vector b∗(t) are combined to a so-called augmented input vector
u(t). The interested reader is referred to [88] and [136] for more information on how
to derive the system of ordinary differential equations (9.8).

Temporal discretization In the previous section, we presented the spatial decompo-
sition allowing the conversion of the partial differential equation (9.5) into a set of or-
dinary differential equations (9.8). In this section, the time evolution of the distributed
phenomenon can be specified by discretizing the system of ordinary differential equa-
tions (9.8) in time. The temporal discretization produces a linear system of equations
in terms of the discrete-time state vector xk containing the unknown weighting factors
of the finite expansion (9.7).

To circumvent the restriction on the time step ∆t, it is reasonable to integrate
the set of ordinary differential equations by means of implicit methods, such as the
Crank-Nicolson discretization. Basically, the Crank-Nicolson method evaluates the
differential equation (9.8) at time step t+ 1

2∆t, approximates the time derivative on the
left-hand side with a centered finite difference and the rest of the terms with averages.
This approximation leads to following system of linear equations

MG
xk+1 − xk

∆t
= uk −

1
2
αDG

[
xk+1 + xk

]
, (9.9)

where xk denotes the spatially discretized state vector. It is important to note that this
linear system is unconditionally stable for any selected time step ∆t.

In the case of linear partial differential equations (9.5), the aforementioned meth-
ods for the spatial decomposition and temporal discretization result always in a linear
system of equations according to

xk+1 = Ak(α)xk + Bk(α) (ûk +wx
k) , (9.10)

where xk is referred to as the state vector characterizing the state of the distributed
phenomenon. The system matrix Ak ∈ RNx×Nx and the input matrix Bk ∈ RNx×Nx
are derived by

Ak(α) =
(

MG +
1
2
α∆tDG

)−1(
MG −

1
2
α∆tDG

)
,

Bk(α) = ∆t α

(
MG +

1
2
α∆tDG

)−1

.



9.3. PROBABILISTIC FINITE-DIMENSIONAL MODELS 187

(b) Output equation

(a) Measurement equation

Stochastic measurement model

ŷ
k

= Hk(ηMk )xk + vk

ŷsik = hsik p(rsik , tk)
)

+ v∗k

p(rsik , tk) =
Nx∑
j=1

Ψj(rsik )x
j
k

Figure 9.6: Components of the Probabilistic Measurement Model for the Estima-
tion of Distributed Phenomena: (a) Measurement equation relating the measure-
ments ŷik to the distributed state p(ηM

k
, tk). (b) Output equation relating the dis-

tributed state p(ηM
k

, tk) to the finite-dimensional state vector xk characterizing the
phenomenon(adapted from [132]).

There are several important features to note about the finite-dimensional system
model (9.10). It is obvious that the structure of the system matrix Ak and the input
matrix Bk merely depend on the model parameters. In the case of the one-dimensional
diffusion equation (9.5), the parameter vector ηP

k
∈ RPp could contain the following

model parameters

ηP
k

:=
[
α γ . . .

]T ∈ RPp ,
where α denotes the diffusion coefficient and γ is the system input coefficient. The
parameters contained in the vector ηP

k
are not restricted to the aforementioned param-

eters, but can be easily extended depending on the structure of the partial differential
equation given in general form in (9.1).

That means, for the accurate reconstruction by means of a sensor network, param-
eters characterizing the behavior of the distributed phenomenon need to be precisely
known. Due to such dependencies, the deviation of the true behavior from the prob-
abilistic system model (9.10) leads to poor estimation results, shown by means of an
example in Sec. 9.4. On the other hand, thanks to the dependency of the probabilistic
system model (9.10) on such parameters, the identification problem can be stated as
a simultaneous state and parameter estimation problem. Hence, the phenomenon can
be reconstructed and unknown parameters can be identified in a simultaneous fashion.

Besides the finite-dimensional model of the distributed phenomenon, the mapping
of specific measurements to the finite-dimensional state vector xk representing the dis-
tributed state p(r, t) is necessary. The probabilistic measurement model is introduced
in the next section.



188 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

9.3.2 Probabilistic Measurement Model
In this section, we derive the probabilistic measurement model for the reconstruction
of distributed phenomena by means of a sensor network. In particular, the dependency
of the model description on the node locations are clarified. The node coordinates
of the entire network is collected in the so-called node location vector ηM

k
∈ RM ,

according to
ηM
k

:=
[
rs1k rs2k . . . rsMk

]
∈ RM ,

where M is the number of considered nodes in the network. For distributed phenom-
ena, the measurement model consists of two parts, namely the measurement equation
and the output equation, described in the following.

Measurement equation The measurement equation relates the actual measure-
ments ŷik at location rsik to the distributed state p(rsik , tk) characterizing the physical
phenomenon, according to

ŷsik = hsik
(
p(rsik , tk)

)
+ v∗k,

where v∗k contains the possibly correlated uncertainties arising from the sensor net-
work. In general, depending on the measurement principle used for the actual sensor,
the mapping hsik (·) consists of nonlinear functions; see Figure 9.6 (a).

Output equation The output equation relates the distributed state p(rsik , tk) of
the partial differential equation (9.5) in continuous space directly to the finite-dimen-
sional state vector xk, according to

p(rsik , tk) =
Nx∑
j=1

Ψj(rsik )xjk,

where Ψj(r) represents the shape functions. It is important to emphasize that the shape
functions Ψj(r) here are identical to the shape functions in the finite expansion (9.7)
used for the spatial decomposition; see Figure 9.6 (b).

Measurement model By means of the measurement equation and the output
equation, the entire measurement model for the estimation of distributed phenomena
can be derived. For simplicity and brevity, we assume that the individual sensor nodes
directly measure a realization of the distributed phenomenon p(rsik , tk) at their re-
spective locations rsik . Then, the measurement matrix Hk for the entire network is
assembled by the individual shape functions,

ŷ
k

=

Ψ1(rs1k ) · · · ΨN (rs1k )
...

. . .
...

Ψ1(rsMk ) · · · ΨN (rsMk )


︸ ︷︷ ︸

Hk(ηM
k

)

xk + vk, (9.11)



9.4. RECONSTRUCTION OF DISTRIBUTED PHENOMENA 189

where vk denotes the measurement uncertainty and M represents the number of sen-
sor nodes used in the network. The measurement model (9.11) directly relates the
measurements ŷ

k
to the state vector xk and to the location vector ηM

k
containing the

individual node locations. The components of the measurement model for the estima-
tion of distributed phenomena is shown in Figure 9.6. In the following example, the
structure of the measurement matrix Hk for the reconstruction and the localization is
visualized.

Example 2 (Measurement model for node localization)
In this example, we clarify the structure of the measurement matrix Hk subject to piece-
wise linear shape functions. The entire solution domain Ω is decomposed into 3 sub-
domains and appropriate piecewise linear functions are defined on each sub-domain.
The spatial decomposition and the shape functions are shown in Figure 9.5 (b). As-
suming there are two sensor nodes located at rs1k and rs2k in the sub-domains Ω1 and
Ω2, the probabilistic measurement model is given as follows

[
ŷ1
k

ŷ2
k

]
=



Ψ1(rs1k )︷ ︸︸ ︷
c11 + c12 r

s1
k

Ψ2(rs1k )︷ ︸︸ ︷
c13 + c14 r

s1
k 0 0

0 c21 + c22 r
s2
k︸ ︷︷ ︸

Ψ2(rs2
k

)

c23 + c24 r
s2
k︸ ︷︷ ︸

Ψ3(rs2
k

)

0



x1
k

x2
k

x3
k

x4
k

+ vk.

The constants cji arise from the definition of the piecewise linear shape functions in
each sub-domain, i.e., the geometry of the applied grid for the finite elements. The
extension to orthogonal polynomials and trigonometric functions can be derived in a
straightforward fashion.

There are several important properties of the measurement model (9.11) essential
for the estimation of distributed phenomena and the localization of sensor nodes based
on local measurements. It is obvious that the structure of the measurement matrix Hk

merely depends on the location ηM
k

of the individual sensor nodes. That means, for
the accurate reconstruction of the distributed phenomenon (9.5) based on a sensor net-
work, the exact node locations ηM

k
are necessary. Due to this dependency, deviations

of true locations from the modeled node locations lead to poor estimation results. This
degradation of the estimation performance is shown in Sec. 9.4.

On the other hand, thanks to the dependency of the measurement matrix Hk on
the node locations ηM

k
, the localization problem can be stated as a simultaneous state

and parameter estimation problem. By this means, the distributed phenomenon can
be reconstructed and the sensor nodes can be localized in a simultaneous fashion. The
method for the simultaneous reconstruction and node localization (SRL method) is
introduced in Sec. 9.7.

9.4 Reconstruction of Distributed Phenomena
The probabilistic finite-dimensional model (9.10) can be used for the simulation of the
distributed phenomenon by simply propagating the finite-dimensional state vector xk
over time. Based on this propagation, the distributed state p(r, t) of the underlying



190 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

(b)

Dirichlet condition

System input

10

0
2

4
6

8

0

10

20

20

25

30

35

Neumann condition

(a)

Dirichlet condition
Dirichlet condition

(d)

(c)

?
?

20
10

0

20

10

0

60

40

20

0

p
(r

,t
)/

◦ C

p
(r

,t
)/

◦ C

time t/s

time t/s

positi
on r/m

position r/m

Figure 9.7: Visualization of the Numeric Solution (a),(c) and their Respective As-
sumed Conditions (b),(d) of the Simulated Distributed Phenomenon. These examples
are used for demonstrating the performance of the proposed methods, i.e., for pure
reconstruction, identification of model parameters (SRI method), and localization of
sensor nodes (SRL method)(adapted from [132]).

phenomenon is directly derived using the finite expansion (9.7) for given initial condi-
tions. However, for the model-based estimation of distributed phenomena, the aim is
not just the simulation of the system, but the reconstruction of the entire state p(r, t)
by means of measurements obtained from a sensor network.

This section is devoted to the state reconstruction of the distributed phenomenon
by means of discrete time-space measurements only, i.e., the mathematical model and
the node locations are precisely known. The introduced reconstruction process al-
lows to derive estimates not only at the actual measurement points but also at non-
measurement points. It is shown that by assuming a precise mathematical model this
process leads to accurate estimation results. On the other hand, the deviation of pa-
rameters such as diffusion coefficient ηP

k
or node locations ηM

k
leads to a degradation

of the performance of the entire reconstruction process.

9.4.1 Reconstruction based on Precise Mathematical Models

In general, depending on the structure of the system model (9.2) and the measure-
ment model (9.3), i.e., being linear or nonlinear, an appropriate estimator has to be
chosen in order to estimate the state characterizing the distributed phenomenon. For
the pure reconstruction of the distributed state p(r, t) the system model (9.10) and the
measurement model (9.11) are linear in terms of the state vector xk. Hence, it is suffi-
cient to use the linear Kalman filter to obtain the best possible estimate, and eventually



9.4. RECONSTRUCTION OF DISTRIBUTED PHENOMENA 191

reconstruct the entire phenomenon. The reconstruction process of the distributed phe-
nomenon based on the linear Kalman filter consists of two steps, the linear prediction
step and the linear measurement step. These two steps are alternately performed in or-
der to reconstruct the entire distributed state p(r, t) even at non-measurement points,
as visualized in Figure 9.8.

Linear Prediction Step The purpose of the linear prediction step is to propagate
the current state estimate xek through the linear system equation (9.2) to the next time
step. In the case of the Kalman filter, the probabilistic of the general random vector
xk is uniquely characterized by the mean x̂k and the covariance matrix Ck. For the
pure reconstruction, we assume a precise mathematical model (9.2) of the underlying
distributed phenomenon, i.e., a precisely known diffusion coefficient. Hence, the mean
x̂pk+1 and the covariance matrix Cp

k+1 of the state vectorxk+1 can be simply calculated
by

x̂pk+1 = Akx̂
e
k + Bkûk,

Cp
k+1 = AkCe

kA
T
k + BkCw

k BT
k , (9.12)

where x̂ek and Ce
k are the mean and the covariance matrix of the estimated state vector

xk from the previous time step. The covariance matrix Cw
k represents the input un-

certainties. It is important to note that, for simplicity and brevity, we assume the input
vector uk and the state vector xk to be stochastically uncorrelated.

Linear Measurement Step For the purpose of reducing the uncertainty of the
state vector xk, measurements ŷ

k
obtained from the sensor network are incorporated

into the reconstruction process. For distributed phenomena, the discrete time-space
measurements ŷ

k
are related to the state vector xk via the measurement model (9.11)

derived in the previous section. Assuming a precise measurement matrix Hk, i.e.,
precisely known node locations and sensor characteristics, the mean x̂ek and covariance
matrix Ce

k of the estimated state xk can be derived by

x̂ek = x̂pk + Cp
kH

T
k

(
Cv
k + HkC

p
kH

T
k

)−1
(
ŷ
k
−Hkx̂

p
k

)
,

Ce
k = Cp

k −Cp
kH

T
k

(
Cv
k + HkC

p
kH

T
k

)−1
HkC

p
k. (9.13)

The matrix Cv
k denotes the possibly correlated covariance matrix of the individual

nodes in the entire sensor network. For simplicity and brevity, we assume the mea-
surements y

k
to be stochastically uncorrelated to the state vector xk.

The performance of the reconstruction process assuming a precise mathematical
description of the underlying distributed phenomenon and the sensor network itself is
demonstrated by means of the following example.

Example 3 (Precise mathematical models)
In this example, the performance of the reconstruction method in the case of precise
mathematical models is demonstrated by means of simulation results. The goal is the



192 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

xk
xk+1

Delay

Real distributed phenomenon

wx
k

Bayesian Estimator
x
p
k

x
p
k+1

xe
k

xe
k

ŷ1
k

ŷ2
k ŷik

η1
k η2

k ηik

p(z, t)

Ω

Ω Ω1 Ω2 Ω3

Measurements from
sensor network

Reconstruction of entire
distributed phenomenon

vk ŷ
k

(b)

(a)

Ak · xk Hk · xk

Measurement step

Prediction step

Delay Output
equation

Figure 9.8: Structure of a Distributed Phenomenon Represented as a High-dimensional
Linear System with Additive Noise and its Respective Linear Bayesian Estimator for
the Reconstruction. The output ŷ

k
can be regarded as a realization of the random

variable y
k
. The input uk is omitted here for simplicity. By means of the model-

based estimation process the entire phenomenon can be reconstructed, even at non-
measurement points(adapted from [132]).

reconstruction of the distributed state p(z, t) using both a mathematical model describ-
ing the physical behavior and measurements obtained by a single sensor node. It is im-
portant to emphasize that the novelty of the proposed approach is to consider remaining
uncertainties arising from noisy measurements and occurring in the mathematical mod-
els. We assume the underlying phenomenon to be represented by the one-dimensional
partial differential equation (9.5), introduced in Example 1. The distributed-parameter
system (9.5) is converted into a lumped-parameter system based on piecewise linear
shape functions, i.e., using the finite element method. For simplicity, the sensor network
consists of one single sensor node at location ηSk .

For the pure reconstruction of the entire phenomenon using just a single sensor
node, we assume the model parameter ηPk and the node location ηSk to be precisely
known. The nominal parameters of the mathematical model of the phenomenon and
the sensor node are given by:

Solution domain L = 10 m,

Dirichlet condition at left end gD = p(r = 0, t) = 20 ◦C,

Neumann condition at right end gN =
∂p(r = L, t)

∂r
= 0 m−1 ·◦ C,

Model parameter / node location αk = 0.8 m2 s−1, γk = 1 cal−1 ·m3 ·◦ C, rsk = 8 m,

Time discretization constant ∆t = 0.01 s,

Number of discretization nodes Nx = 50,

System input s(r, t) = 10 · e−10 (r−5)2 cal ·m−3 · s−1.

The assumed conditions of the simulated example and the numeric solution of the
deterministic partial differential equation for a given initial solution is depicted in



9.4. RECONSTRUCTION OF DISTRIBUTED PHENOMENA 193

Sensor ON

(a)

numeric solution

realization

mean estimate

15

25

35

0 10 20

Sensor ON

0 10 20
15

25

35

(b)

numeric solution

realization

mean estimate

Measurement point Non-measurement point
p
(r

,t
)/

◦ C

time t/s

p
(r

,t
)/

◦ C

time t/s

Figure 9.9: Realization of the Distributed Phenomenon p(z, t) (gray), Mean of Recon-
structed Phenomenon (black), 3σ-bounds (gray shaded), and Numeric Solution of De-
terministic Model (black dotted) for (a) measurement point and (b) non-measurement
point(adapted from [132]).

Figure 9.7 (a)-(b). Based on the system model (9.2) and the measurement model (9.11)
with aforementioned nominal parameters, the estimator for the purpose of reconstruct-
ing the distributed phenomenon can be designed. The noise terms represented by
respective covariance matrices are assumed as follows

System input noise Cw
k = diag {100, . . . , 100} cal ·m−3 · s−1,

Measurement noise Cvk = 1 ◦C.

The simulation results are depicted in Figure 9.9. It is obvious that using a model-based
approach the entire distributed phenomenon can be reconstructed. At the beginning of
the simulation just uncertain information about the distributed state p(z, t) is known.
As soon as the sensor node starts to measure a realization of the phenomenon at a
certain location, the estimation becomes more and more certain, i.e., the uncertainty
(gray shaded area) decreases. This is depicted in Figure 9.9 (a). It is important to
emphasize, that the uncertainty decreases not only at the measurement point, but also
at non-measurement points, thanks to the model-based approach; see Figure 9.9 (b).
Furthermore, based on the estimated phenomenon in terms of a density function, op-
timal measurement sequences and locations can be found using sensor planning and
scheduling algorithms.

For the pure reconstruction introduced in this section, the model parameters ηP
k

and the node locations ηM
k

are assumed to be precisely known. As already mentioned,
the deviation of the assumed mathematical models from both the real distributed phe-
nomenon and the real properties of the sensor network leads to a degradation of the
estimation performance. This is demonstrated in the next section.



194 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

9.4.2 Incorrect Model Parameters
For the pure reconstruction, both the system model (9.2) and the measurement model
(9.3) exploited for the estimation process, is assumed to be precisely known. Hence,
the entire distributed phenomenon can be accurately reconstructed, even at non-
measurement points thanks to the model-based approach. It is well known that the
Kalman filter equations (9.12) and (9.13) used for the reconstruction process requires
a rather precise model of the underlying physical system and a precisely known uncer-
tainty description. If any of these assumptions is violated, then the performance of the
reconstruction process can quickly degrade.

In this section, the degradation caused by the deviation of the system model and
the measurement model is described and demonstrated by means of two examples:

incorrect diffusion coefficient (deviations in the system model)

incorrect node locations (deviations in the measurement model)

These two examples demonstrate the severe effect of assuming parameters both in the
system model and the measurement model deviating from the true system. Further-
more, this degradation of the performance justifies the simultaneous approach for the
parameter identification (SRI method) and the node localization (SRL method) during
the reconstruction of distributed phenomena.

Incorrect Diffusion Coefficient In many cases, the underlying real physical phe-
nomenon deviates from the nominal mathematical model, basically caused by neglect-
ing particular physical effects or external disturbances. Furthermore, the respective
model parameters could vary over time without knowing the exact dynamic behavior
of these variations. In addition, due to the distributed characteristic of the physical phe-
nomenon, not only the states are distributed and inhomogeneous but also the parame-
ters describing the dynamic behavior. Considering all these issues in the mathematical
model quickly increases the complexity of the model description and the computa-
tional load. On the other hand, neglecting these physical effects leads to a deviation
of the mathematical model and thus, causes a degradation of the reconstruction per-
formance. That means, for practical applications a trade-off between accuracy and
computational load needs to be found. The degradation leading to poor performance
is illustrated in the next example.

Example 4 (Reconstruction with incorrect model parameters)
In this example, we consider a distributed phenomenon represented by the one-dimen-
sional partial differential equation (9.5) with respective boundary conditions and system
inputs. The nominal parameters for the system model (9.5) are given by

Dirichlet condition at left end gD = p(r = 0, t) = 20 ◦C,

Neumann condition at right end gN =
∂p(r = L, t)

∂r
= 0 m−1 ·◦ C,

System input s(r, t) = 10 · e−10 (r−5)2 cal ·m−3 · s−1,

True model parameter αtrue = 0.8 m2 · s−1,



9.4. RECONSTRUCTION OF DISTRIBUTED PHENOMENA 195

400 20
0

3

1

2

rm
s

αmodel

0.3
0.1

0.6

(b)(a)

40

20

0

0

3

0
0.5

1

time t/s
tim

e t/sαmodel

rm
s

Figure 9.10: Root Mean Square Error êk and Error Variance C rms
k for the Estimated

Distributed Phenomenon for 100 Monte Carlo simulation runs. The true parame-
ter αtrue is given by αtrue = 0.8 m2 · s−1. (a)-(b) Visualization of rms êk of the
Kalman filter based on various incorrect parameters αmodel = {0.1, 0.2, . . . , 1.5} m2 ·
s−1(adapted from [132]).

where the remaining parameters necessary for the reconstruction are described in Ex-
ample 3. The assumed boundary conditions, the location of the system input and the
numeric solution of the deterministic partial differential equation (9.5) are visualized in
Figure 9.7 (a)-(b). The state estimation of the distributed phenomenon is performed on
the basis of a Kalman filter with the nominal parameter set for the diffusion coefficient
ηPk according to

αmodel = {0.1, 0.2, . . . , 1.5}m2 · s−1,

with the true parameter αtrue = 0.8 m2 · s−1. For each parameter value, 100 indepen-
dent Monte Carlo simulation runs have been performed, resulting in NMC = 100 true
realizations x̃ik of the finite-dimensional state vector characterizing the distributed state
p(z, t). The simulation result for the reconstruction with incorrect model parameters is
shown in Figure 9.10.

Based on the reconstruction process described in Sec. 9.4.1, the entire distributed
phenomenon can be reconstructed using the nominal mathematical models and the
discrete time-space measurements from the sensor network. The estimated finite-
dimensional state vector xek can be directly derived from (9.12) and (9.13). The root
mean square error (rms) and the error variance for the estimation result are approxi-
mated by calculating the average according to

êk ≈

√√√√ 1
n ·m

NMC∑
i=1

‖x̃ik − x̂ik‖ , C rms
k ≈ 1

n− 1

n∑
i=1

(
eik − êk

)2
, (9.14)

where x̂ik denotes the mean of the estimated state vector xek. The root mean square
error êk and error variance C rms

k for each nominal parameter value are visualized in
Figure 9.10 (a)-(b). It can be clearly seen that the more the nominal parameter αmodel
deviates from the true parameter αtrue, the more the performance of the estimation
results degrades.



196 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

0 20 40

rm
s

0

20

40(a)

40
20

0

rm
s

0

20

40

20

10
16

node position

(b)(a)

40
2020

16

(b

time t/stim
e t/s

Figure 9.11: Visualization of Root Mean Square Error (rms) and Error Variance Av-
eraged over 100 Monte Carlo Simulation Runs. The true node location is assumed
to be rstrue = 16 m. (a) Rms of Kalman filter based on incorrect node locations
rsmodel = {10 , 10.5 , . . . , 20} m. It is obvious that with the deviation of the node
location the performance quickly degrades. (b) Comparison of Kalman filter based
on incorrect node locations and the simultaneous reconstruction and node localization
(SRL method) approach(adapted from [132]).

Incorrect Node Locations In many real world applications the actual properties
of the sensor network deviate from the measurement model. This deviation of the
mathematical model could be caused for example by deviated node locations, ignored
sensor bias, or imprecisely known correlations between the nodes. In particular, the
locations of sensor nodes (randomly deployed or movable nodes) contain some uncer-
tainties or even could be completely unknown. The degradation of the performance of
the reconstruction process caused by deviated node locations is demonstrated in the
following example.

Example 5 (Reconstruction with incorrect node location)
In this example, we consider the one-dimensional diffusion equation (9.5) subject to
Dirichlet boundary condition at both ends and respective initial conditions. The nominal
parameters for the system model (9.5) and the measurement model are given by

Dirichlet condition at left end gLD = p(r = 0, t) = 0 ◦C,

Dirichlet condition at right end gRD = p(r = L, t) = 60 ◦C,

System input s(z, t) = 0 cal ·m−3 · s−1,

True node location ηStrue = 16 m,

where the remaining parameters are described in Example 3. The assumed bound-
ary conditions and the numeric solution of the deterministic partial differential equa-
tion (9.5) are visualized in Figure 9.7 (c)-(d). The system uncertainty at the individ-
ual discretization nodes is given by Cwik = 20 and the measurement noise variance
by Cvk = 0.5 ◦C. The reconstruction of the distributed phenomenon is performed on
the basis of a Kalman filter with nominal parameter set for the sensor location rsmodel



9.5. AUGMENTED MODEL FOR NODE LOCALIZATION 197

according to
rsmodel = {10 , 10.5 , . . . , 20} m.

For each assumed node location, 100 independent Monte Carlo simulation runs have
been performed, resulting in NMC = 100 true realizations x̃ik of the distributed phe-
nomenon.

The root mean square error (9.14) of the Kalman filter based on incorrect node
locations is shown in Figure 9.11 (a). It is obvious that the more the assumed node
location ηSmodel deviates from the true location ηStrue, the more the performance of the re-
construction result degrades. Figure 9.11 (b) depicts the comparison of the estimation
error between the Kalman filter based on incorrect node locations and the simultane-
ous node localization and reconstruction approach (SRL method). Obviously, thanks
to the simultaneous localization approach the performance of the reconstruction can
be significantly increased.

9.5 Augmented Model for Node Localization
For the simultaneous state and parameter estimation of distributed phenomena, the
unknown parameters ηP

k
and ηM

k
are treated as additional state variables. By this

means, conventional estimation techniques can be used to simultaneously estimate the
parameters, such as model parameters or node locations, and the state of the distributed
phenomenon. Hence, an augmented state vector zk containing the system state xk and
the additional unknown parameters is defined by (9.4).

The augmentation of the state vector with additional unknown parameters leads to
the so-called augmented finite-dimensional model of distributed phenomena. In the
case of the sensor node localization by local measurements (SRL method), the aug-
mentation results in the following augmented system model and augmented measure-
ment model xk+1

ηM
k+1

 =

[
Ak xk + Bk ûk

aMk (ηM
k

)

]
+

[
Bkw

x
k

wM
k

]
, (9.15)

ŷ
k

= Hk(ηM
k

)xk︸ ︷︷ ︸
hk(zk)

+vk. (9.16)

The nonlinear function aMk (·) describes the dynamic behavior of the parameters to be
estimated. The structure of the augmented model description (9.15) and (9.16) is de-
picted in Figure 9.12. In this case, it is obvious that the augmented measurement model
is nonlinear in the augmented state vector zk due to the multiplication of Hk(ηM

k
) and

the system state xk; see Example 2. Thus, the node locations ηM
k

characterizes the
measurement matrix Hk and the actual measured values.

It is important to emphasize that the measurement model (9.16) contains a high-
dimensional linear substructure, which can be exploited by the application of a more
efficient estimator. In the following section, we describe a novel estimator – the Sliced
Gaussian Mixture Filter – allowing the decomposition of the simultaneous state and



198 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

parameter estimation. This results in a very efficient localization of the individual
nodes in the sensor network.

9.6 Decomposition of the Estimation Problem

In many applications, estimating the state of a system from noisy measurements is
a common task. In some special cases, such as linear systems with Gaussian ran-
dom variables, exact solutions to the estimation problem can be found by applying the
Kalman filter [82]. There exist a vast variety of approaches for nonlinear systems with
non-Gaussian random variables. For the efficient implementation of the Bayesian es-
timator for such systems, the approximation of the true density is necessary. The well-
known extended Kalman filter [148] is based on a linearization of the used nonlinear
system equations and the application of the standard Kalman filter on the resulting
linearized equations. The unscented Kalman filter [78] uses a deterministic sampling
of the true density and thus offers an increased higher-order accuracy compared to the
extended Kalman filter. However, for both filters the resulting single Gaussian density
is often not sufficient for representing the underlying true density. One possibility for
increasing the performance is to use a sample representation of the underlying density
function, like in particle filters [2, 49].

The mathematical model arising in many applications contains a linear sub–struc-
ture. In particular, in the case of the system equations (9.15) and (9.16) for distributed
phenomena, the linear substructure is high-dimensional, and thus offers the chance to
significantly increase the estimation performance. There are several methods to solve
the combined linear/nonlinear estimation problem while beneficially exploiting the
linear substructure. The decomposition of the entire estimation problem into a linear
and a nonlinear problem allows for an overall more efficient process. The marginal-
ized particle filter [16, 18, 86, 140] uses a marginalization over the linear sub-space
to reduce the dimensionality of the entire state space. The remaining density is subse-
quently represented by particles. Based on this decomposition, the standard particle
filter is adopted to cope with the reduced non-linear problem and the Kalman filter is
exploited in order to find the optimal estimate for the linear sub-space associated with
each individual particle. In comparison to the standard particle filter, the marginalized
filter certainly improves the performance; however, some drawbacks still remain. For
instance, special algorithms are necessary in order to avoid sample degeneration and
impoverishment. In addition, measures on how well the true joint density is repre-
sented by the estimated one is not provided within this framework.

For that reason, in our previous research work [92, 134], we introduced a more
systematic estimator exploiting linear substructures in general nonlinear systems, the
so-called Sliced Gaussian Mixture Filter (SGMF). There are two key features leading
to a significantly improved estimation result.

Novel density representation: The utilization of a special kind of density al-
lows the decomposition of the general estimation problem into a linear and non-
linear problem. To be more specific, as a density representation we employ a
so-called sliced Gaussian mixture density.



9.6. DECOMPOSITION OF THE ESTIMATION PROBLEM 199

xk

xk+1
Delay

Reconstruction structure

wx
k

Delay
Identification structure
(SRI-method)

Dynamic system

vk

ŷ
k

Estimator

η
k

Localization structure
(SRL-method)

ηP
k+1

ηP
k

ηM
k

ηM
k+1

Delay

fp(zk)

fp(zk+1)

fe(zk)

Prediction
step

Measure-
ment step

fL(ŷ
k
 zk)

(b)(a)

w
P
k

Delay

Ak(ηPk )

Hk(ηMk )

w
M
kaPk (ηP

k
) aMk (ηM

k
)

Figure 9.12: Visualization of (a) Dynamic System and (b) Model-based Bayesian Esti-
mator for the Node Localization based on Local Observations. The system description
contains a high-dimensional linear substructure. The node location ηM

k
character-

izes the measurement matrix Hk, and thus, the individual measurements(adapted from
[132]).

Systematic approximation: The systematic approximation of the density re-
sulting from the estimation update leads to (close to) optimal results. Thus,
less parameters for the density description are necessary and a measure for the
approximation performance is provided.

Despite the high-dimensional nonlinear character, the systematic approach of the si-
multaneous state and parameter estimation for large-area distributed phenomena is fea-
sible thanks to a decomposition based on the sliced Gaussian mixture density. Further-
more, the uncertainties occurring in the mathematical system description and arising
from noisy measurements are considered by an integrated treatment.

9.6.1 General Prediction and Measurement Step

Before the framework of the Sliced Gaussian Mixture Filter is described in more detail,
in this section, we explain the general prediction and measurement step for general
systems characterized by nonlinear equations. The aim of the Bayesian estimator is
to calculate the probability density function f(zk) representing the state vector zk as
precisely as possible at every time step. Due to its high computational demand and
the resulting non-parametric density representation, approximation approaches for the
nonlinear estimation problem are inevitable.

In general, the model-based Bayesian estimator consists of two steps being per-
formed alternately in order to derive an estimate for the state vector zk in terms of the
density function f(zk). The two steps of the Bayesian estimator are the prediction step
and the measurement step.



200 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

Prediction Step The purpose of the prediction step is to determine, for a given prior
density fe(zk) for zk, the predicted density fp(zk+1) of zk+1 for the next discrete
time step. This can be achieved by evaluating the well-known Chapman-Kolmogorov
equation

fp(zk+1) =
∫

Ω

fT (zk+1|zk)fe(zk)dzk, (9.17)

where fT (zk+1|zk) is the so-called transition density. The additive noise wz
k subject

to the system model (9.15) is assumed to be zero-mean white Gaussian with density

wz
k ∼ fwk (wzk) = N

(
wzk − µw

k
, Cw

k

)
(9.18)

where µw
k

= 0 is the mean vector and Cw
k is the system covariance matrix. The tran-

sition density fT (·) strongly relies on the nonlinear augmented system model (9.15).
Assuming the system noise wz

k to be given by (9.18), the transition density fT (·) can
be derived according to

fT (zk+1|zk) = N
(
zk+1 − ak(zk, ûk), Cw

k

)
,

which characterizes the probability of the transition of the state vector zk to the next
time step. It is clear that the structure of the transition density fT (·) strongly depends
on the actual structure of the underlying system model.

Measurement Step The information of measurements ŷ
k

can be incorporated into
the processing scheme in order to improve the estimation of zk. The estimated density
fe(zk) can be determined by the famous Bayes’ formula

fe(zk) = c · fL(ŷ
k
|zk) · fp(zk), (9.19)

where the coefficient c is a normalization constant. The density function fL(y
k
|zk)

is the so-called likelihood. The additive noise vk subject to the measurement model
(9.16) is assumed to be zero-mean white Gaussian with density

vk ∼ fwk (vk) = N
(
vk − µv

k
, Cv

k

)
, (9.20)

where µv
k

= 0 is the mean vector and Cv
k is the measurement covariance matrix.

Assuming the measurement noise vk to be given by (9.20), the likelihood fL(·) can
be derived according to

fL(ŷ
k
|zk) = N

(
ŷ
k
− hk(zk), Cv

k

)
,

which can be regarded as the conditional density for the occurrence of the measure-
ment ŷ

k
for given xk. It is obvious that the structure of the likelihood function fL(·)

depends on the structure of the measurement model.



9.6. DECOMPOSITION OF THE ESTIMATION PROBLEM 201

9.6.2 The Sliced Gaussian Mixture Filter (SGMF)

In this section, we describe the Bayesian prediction step and measurement step based
on sliced Gaussian mixture densities. It is shown, how this novel density representation
can be exploited for decomposing the general prediction step (9.17) and measurement
step (9.19) into a linear and nonlinear part. By this means, a more efficient closed-
form calculation of the simultaneous state and parameter estimation of distributed phe-
nomena is possible. The framework of decomposing the nonlinear estimation problem
can be applied to various dynamic systems. However, we restrict our attention to the
augmented system model (9.15) and measurement model (9.16) necessary for the node
localization (SRL method) [132]. The resulting equations of the prediction step and
measurement step in the case of the identification of model parameters (SRI method)
can be found in [134].

The Sliced Gaussian Mixture Filter basically consists of three steps: the decom-
position of the estimation problem, the utilization of an efficient update, and the re-
approximation of the density representation.

1. Decomposition: The nonlinear high-dimensional estimation problem is decom-
posed into a linear high-dimensional problem (state estimation) and nonlin-
ear low-dimensional problem (parameter estimation). This can be achieved by
means of the sliced Gaussian mixture density; see Figure 9.13 (a).

2. Efficient update: Based on the decomposition in a linear and nonlinear esti-
mation problem both the prediction step and the measurement step can be per-
formed with an overall more efficient performance. Basically, analytic and ef-
ficient estimators, such as Kalman filter, are exploited to efficiently perform the
estimation update in the linear high-dimensional subspace. The estimation in
the nonlinear subspace is performed by nonlinear estimators, such as the Dirac
mixture filter, visualized in Figure 9.13 (b).

3. Re-approximation: The estimation based on the sliced Gaussian mixture den-
sities leads to a density representation consisting of Gaussian mixtures in all
subspaces. In order to bound the complexity, the resulting density needs to be
re-approximated by means of the sliced Gaussian mixture density, depicted in
Figure 9.13 (b).

The remainder of this section is devoted to a more detailed description on the three
steps of the Sliced Gaussian Mixture Filter (SGMF). Furthermore, the update equations
for the simultaneous reconstruction and node localization (SRL method) are given.

Decomposition through sliced Gaussian mixtures For the decomposition of the
nonlinear estimation problem into a (conditionally) linear and a nonlinear problem, we
proposed in our previous research work [92] [134] so-called sliced Gaussian mixture
densities as a density representation. This density function f(xk, ηk) is represented by
a Dirac mixture in the nonlinear sub-space η

k
(parameter space) and Gaussian mixture



202 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

Reapproximation

Efficient updateηk
Nonlinear
sub-space

Linear
sub-space

xk

ηk

xk

ηk
xk

(a)Sliced Gaussian mixture densities

Gaussian mixture density

Sliced Gaussian mixture density

(b)Efficient update and reapproximation

Reapproximation

ηk

xk

xt de it

ηk
xk

Sliced Ga

Figure 9.13: (a) Visualization of a Sliced Gaussian Mixture Density Consisting of
a Gaussian Mixture in xk Subspace and a Dirac Mixture in ηk Subspace. (b) The
efficient update and the re-approximation of the resulting Gaussian mixture density by
a sliced Gaussian mixture density is alternately performed(adapted from [132]).

in the linear sub-space xk (state space),

f(xk, ηk) =
M∑
i=1

αik δ(η
k
− ξi

k
)︸ ︷︷ ︸

Dirac mixture

· f(xk|ξ
i

k
)︸ ︷︷ ︸

Gaussian mixture

, (9.21)

where δ(·) is the Dirac delta function and αik their respective weighting coefficients.
The density parameters ξi

k
∈ Rs can be regarded as the position of the individual

density slices, as shown in Figure 9.13 (a). The marginal density in nonlinear sub-
space η

k
is given by a Dirac mixture function, according to

f(η
k
) =

M∑
i=1

αikδ(η
k
− ξi

k
), (9.22)

where αik and ξi
k

represent the weights and positions of the Dirac functions, respec-
tively. The density representation along the individual slices is assumed to be a Gaus-
sian mixture density

f(xk|ξ
i

k
) =

Ni∑
j=1

βijk N
(
xk − µij

k
, Cij

k

)
, (9.23)

with βijk , µij
k
∈ Rr, and Cij

k ∈ Rr×r denoting the weights, means, and covariance
matrices of the j-th component of the Gaussian mixture density of the i-th slice.

Efficient update and posterior density Thanks to the system model (9.15) and con-
ditionally linear measurement model (9.16), the Chapman-Kolmogorov equation for
the prediction step and the Bayes formula for the measurement step can be solved an-
alytically. The proof is omitted here, only the resulting predicted density is stated.



9.6. DECOMPOSITION OF THE ESTIMATION PROBLEM 203

By means of the sliced Gaussian mixture filter, the predicted density f̃p results in a
Gaussian mixture in linear xk and nonlinear sub-space ηM

k
,

f̃p(xk+1, η
S
k+1

) = c ·
M∑
i=1

Ni∑
j=1

αikβ
ij
k γijk

· N
(
ηS
k+1
− ξpi

k+1
, Cn

w

)
N
(
xk+1 − µpij

k+1
, Cpij

k+1

)
, (9.24)

where the mean µpij
k+1

and covariance matrices Cpij
k+1 in linear sub-space xk are calcu-

lated by applying the standard Kalman filter. The mean in nonlinear sub-space ηM
k

is
derived by simply repositioning the density slices.

In the following, the parameters of the posterior density (9.24) for the node local-
ization in a sensor network (SRL method) are stated. For the sake of simplicity and in
order to keep the equations simple, the abbreviation Hi

k := H(ξi
k
) is used.

Parameters of resulting density (9.24) for the prediction step:

Mean vectors µpij
k+1

:= Akµ
eij
k

+ Bkûk

Covariance matrices Cpij
k+1 := AkC

eij
k Ak

T + Cl
w

Positions in nonlinear subspace ξpi
k+1

:= aMk

(
ξei
k

)
Parameters of resulting density (9.24) for the measurement step:

Weights of the slice γijk := N
(
ŷ
k
−Hi

kµ
pij
k

, Hi
kC

pij
k Hi

k
T + Cv

k

)
Mean vectors µeij

k
:= µpij

k
+ K

(
ŷ
k
−Hi

kµ
pij
k

)
Covariance matrices Ceij

k := Cpij
k −KHi

kC
pij
k

Kalman gains K := Cpij
k Hi

k
T
(
Cv
k + Hi

kC
pij
k Hi

k
T
)−1

At this point it is important to emphasize that the aforementioned equations for the pa-
rameters of the posterior density (9.24) strongly depend on the actual model structure
(9.15) and (9.16). For the simultaneous reconstruction and identification of distributed
phenomena (SRI method) similar equations can be found, as it was derived in our
previous research work [134].

Re-approximation and bounding complexity In order to bound the complexity,
the predicted density (9.24) in terms of a Gaussian mixture density needs to be re-
approximated by a sliced Gaussian mixture density (9.21). There are several ap-
proaches to perform this approximation. One possible approach for the approximation
is to derive the location of the density slices by only considering the marginal den-
sity f̃p(ηM

k+1
). In general, the approximation of arbitrary marginal densities by Dirac

mixture densities (9.22) can be achieved by: batch approximation [141] or sequential
approximation [52].



204 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

The batch approximation is an efficient solution procedure for arbitrary true den-
sity functions on the basis of homotopy continuation (progressive Bayes). This proce-
dure results in an optimal solution. The sequential approximation is based on inserting
one component of the Dirac mixture density at a time. The key idea of this algorithm
is that every component of the Dirac mixture density corresponds to an interval in
the nonlinear subspace of the sample space and approximates the true marginal den-
sity only in the corresponding interval. Then, based on the splitting of the intervals
and their respective component of the Dirac mixture density arbitrary densities can be
approximated.

After the approximation of the marginal density f̃p(ηM
k+1

) in the nonlinear sub-
space, the Dirac approximation is extended to a sliced Gaussian mixture representa-
tion over the entire sample space. Basically, this is achieved by evaluating the Gaussian
mixture density f̃p(xk+1, η

M
k+1

) at every Dirac position. This leads to a sliced Gaus-
sian mixture density (9.21), which can be used for the next processing step. A more
detailed description on the re-approximation can be found in [92].

9.7 Application: Node Localization
In this section, we demonstrate the application and performance of the proposed sen-
sor node localization method (SRL method). As it is described above, the localization
problem is restated as a simultaneous state and parameter estimation problem. The re-
sulting high-dimensional nonlinear problem is decomposed into a linear and nonlinear
part by means of the Sliced Gaussian Mixture Filter, and thus leads to an overall more
efficient localization method.

There are four key features characterizing the novelties of the proposed method for
the passive localization (SRL method):

The approach is based on local measurements of distributed phenomena only.

The uncertainties in the mathematical model and the local measurements of the
sensor network are systematically considered.

For the estimated node locations, an uncertainty measure is derived in terms of
a density function.

The simultaneous approach allows improving the estimation of the distributed
phenomenon, which then can be exploited for localizing other nodes.

For a more detailed description of the simultaneous reconstruction and node localiza-
tion method (SRL method), the interested reader is referred to [132].

By means of simulation results, we investigate the accuracy of the identified loca-
tion ηMk of a sensor node locally measuring a distributed phenomenon. The underlying
distributed phenomenon is assumed to be given as follows:

Example 6 (Simulated system)
In this simulation, we consider the localization of sensor nodes based on the one-
dimensional partial differential equation (9.5). The initial conditions and Dirichlet bound-
ary conditions are depicted in Figure 9.7 (c)–(d). Here, we assume that the sensor



9.7. APPLICATION: NODE LOCALIZATION 205

 

 

0 10 20

20

10

0

−10

30

 

2 4 6 8

(a)true node location CSN-method

SRL-method 

(based on sliced Gaussian mixture filter)

location

(b)

0.2
0.4
0.6
0.8
1.0

0
20

10 0

5

05

f
(η

)

10

time t/s

tim
e

t/
s

η/m

η
/m

lo
ca

ti
on

Figure 9.14: Comparison of SRL method based on SGMF, SRL method based on MPF,
and Deterministic Approach CSN-method. (a) Root mean square error over time of
100 simulation runs. (b) Specific density function f(ηMk ) for estimated node location
ηMk over time(adapted from [132]).

network consists only of one single sensor node locally measuring the phenomenon.
Furthermore, the sensor node has only very uncertain knowledge about the initial dis-
tributed phenomenon; see Figure 9.7 (c). The goal is to localize the sensor node with
initially unknown location using local measurements of the distributed phenomenon.
The true node location is assumed to be ηStrue = 16 m. The system noise term is
Cw
l = diag {20, . . . , 20}, the noise term for the node location is given by Cwn = 0.03,

and for the local measurement of the node to be localized is assumed to be Cvk = 0.01.
Here, we compare different approaches for the passive localization:

Deterministic approach introduced in [66] (CSN-method)

SRL method based on the sliced Gaussian mixture filter (using 50 slices)

SRL method based on the marginalized particle filter (using 500 particles)

The aforementioned approaches for node localizations are compared based on 100
Monte-Carlo simulation runs. In particular, the accuracy of the estimated location ηMk
is investigated. The results of the localization methods are shown in Figure 9.14 and
Figure 9.15.

The estimation of the unknown location ηMk for one specific simulation run is de-
picted in Figure 9.14 (a). It can be clearly seen that after a certain transition time the
SRL method based on sliced Gaussian mixture filter (with 50 slices) offers a nearly
exact location. The estimation of the deterministic approach (CSN-method) strongly



206 CHAPTER 9. BAYESIAN ESTIMATION OF DISTRIBUTED PHENOMENA

 

 

10 202 4 6 8

2

4

0

(a)

rm
s 

lo
ca

ti
on

CSN-method

SRL-method (SGMF)
SRL-method (MPF)

(b) (c)
 

 

 

0

40

80

10 200 10 200

time t/s

r/m r/m

p
(r

)/
◦ C

Figure 9.15: Comparison of SRL method based on SGMF (black), SRL method based
on MPF (dashed), and CSN-method (dotted). (a)–(b) Improvement of estimation of
distributed phenomenon (gray shaded area) thanks to simultaneous approach; realiza-
tion of the distributed phenomenon (black dotted). (c) Specific simulation run for the
estimation of the node location. The true location (black dotted) is assumed to be
ηMtrue = 16 m(adapted from [132]).

deviates from the true location. This is caused mainly by neglected system and mea-
surement noises. The entire density function f(ηMk ) for the estimated location ηMk for
a specific simulation run is depicted in Figure 9.14 (b). The ambagious distribution of
the physical phenomenon to be observed results in a multimodal density function for
the estimated location ηM

k
. This explains the higher uncertainty at the beginning of

the simulation. However, by exploiting more and more measurements and information
about the dynamic system, the estimation of the location changes from a multimodal to
an unimodal function. Thus, the location estimate becomes more accurate and certain.

The root mean square error (rms) of all 100 simulation runs over time is depicted
in Figure 9.15 (a). It is obvious that the SRL method based on the Sliced Gaussian
Mixture Filter (with 50 slices) outperforms both the deterministic approach (CSN-
method) and the approach based on marginalized particle filter (with 500 particles).
This is mainly due to the stochastic approach and the systematic approximation of the
density used in the framework of the simultaneous state and parameter estimation.

Thanks to the simultaneous property of the SRL method, not only can the sen-
sor node be accurately localized, but also the estimate of the distributed phenomenon
can be further improved. The improvement of the reconstruction result is obvious by
comparing Figure 9.14 (b) with Figure 9.14 (c). It is important to emphasize that the
phenomenon can be reconstructed at the actual measurement point as well as at non-
measurement points. The improved knowledge about the phenomenon in the entire
solution domain can be exploited by other sensor nodes to localize themselves.

In this work, we restricted ourselves to the localization of one single sensor node
locally measuring a distributed phenomenon. It is believed that using more than one



9.8. CONCLUSIONS AND FUTURE WORK 207

sensor node, the performance of the localization process can be significantly improved
since more information about the distributed phenomenon can be exploited. Further-
more, already localized sensor nodes, e.g., sensor beacons or base stations, can be used
to reconstruct the physical phenomenon, and thus support the localization of individual
sensor nodes deployed between the beacons.

9.8 Conclusions and Future Work
In this chapter, we describe the methodology for the simultaneous state and parame-
ter estimation of distributed phenomena. The spatial and temporal decomposition of
the distributed system results in a finite-dimensional model in state space form (usu-
ally characterized by a high-dimensional state vector). Hence, the augmentation of
the system state with the parameter to be estimated leads to a high-dimensional non-
linear system description. Based on a novel density representation – sliced Gaussian
mixture density – the linear sub-structure contained in the finite-dimensional model is
exploited. This leads to an overall more efficient estimation process. The performance
is demonstrated by means of simulation results and it turns out that, compared to other
nonlinear estimators, the sliced Gaussian mixture filter achieves a higher accuracy.

The application of the proposed method for the simultaneous state and param-
eter estimation to sensor networks provides novel prospects. The network is able
to estimate the entire state of the distributed phenomenon, identify non-measurable
quantities, verify and validate the correctness of the estimation results, and adapt au-
tonomously their algorithms. Within the proposed framework, a novel method for the
localization of individual sensor nodes is introduced. The localization method (SRL
method) performs without relying on a satellite positioning system (which is not al-
ways available, e.g., indoor applications) as long as a strong model of the surrounding
is available.

So far, the model parameters and structure were assumed to be precisely known for
the SRL method. In many real world applications, however, the parameters contain re-
maining uncertainties, or even could be completely unknown. The combination of the
parameter identification of distributed phenomena and the node localization is left for
future research work. Finally, it is intended to test the proposed localization methods
on actual sensor data.

For the observation of large-area distributed phenomena, decentralized methods
are inevitable in order to cope with high-dimensional state vectors. Hence, further de-
compositions both in the linear subspace and nonlinear subspace are necessary, similar
to [131]. This is left for future research work.



Bibliography

[1] A. Adamatzky, B.D.L. Cotello, and T. Asai. Reaction-Diffusion Computers.
Elsevier, Amsterdam, The Netherlands, 2005.

[2] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on Particle
Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transac-
tions on Signal Processing, 50(2):174–188, February 2002.

[3] E.A.Ashcroft. R for Semantics. ACM Transactions on Programming Languages
and Systems, 4(2):283–295, 1982.

[4] A. Babloyantz and J. Hiernaux. Models for Cell Differentiation and Generation of
Polarity in Diffusion-Governed Morphogenetic Fields. Bulletin of Mathematical
Biology, 37:637–657, 1975.

[5] T. Bader, A. Wiedemann, K. Roberts, and U.D. Hanebeck. Model-based Motion
Estimation of Elastic Surfaces for Minimally Invasive Cardiac Surgery. In IEEE
International Conference on Robotics and Automation (ICRA 2007), Rome, Italy,
April 2007.

[6] A. J. Baker. Finite Element Computational Fluid Mechanics. Taylor and Francis,
London, UK, 1983.

[7] J. Bard and I. Lauder. How Well does Turing’s Theory of Morphogenesis Work?
Jnl Theor Biology, 45:501–531, 1974.

[8] J.E. Bares and D.S. Wettergreen. Dante II: Technical Description, Results, and
Lessons Learned. The International Journal of Robotics Research, 18(7):621–
649, July 1999.

[9] P. Bartelt and M. Lehning. A Physical SNOWPACK Model for the Swiss
Avalanche Warning, Part I: Numerical Model. Cold Regions Science and Tech-
nology, 35:123–145, 2002.

[10] B. Bhanu. Evaluation of Automatic Target Recognition Algorithms. In P.-E.
Danielsson and A.J. Oosterlinck, editors, Proceedings Vol. 435 SPIE Conference
on Architecture and Algorithms for Digital Image Processing, pages 18–25,
August 1983.

209



210 BIBLIOGRAPHY

[11] P. Bonnet, J.E. Gehrke, and P. Seshadri. Towards Sensor Database Systems.
In Proc of the Second Intntl Conf on Mobile Data Management, Hong Kong,
January 2001.

[12] A.J. Briggs and B.R. Donald. Automatic Sensor Configuration for Task-directed
Planning. In IEEE Conference on Robotics and Automation, pages 1345–1350,
San Diego, CA, May 1994.

[13] R.R. Brooks and S. Iyengar. Averaging Algorithm for Multi-dimensional Re-
dundant Sensor Arrays: Resolving Sensor Inconsistencies. Technical report,
Louisiana State University, Baton Rouge, LA, 1993.

[14] D. Brunn, F. Sawo, and U.D. Hanebeck. Modellbasierte Vermessung verteil-
ter Phänomene und Generierung optimaler Messsequenzen. tm - Technisches
Messen, Oldenbourg Verlag, 3:75–90, March 2007.

[15] N. Bulusu, D. Estrin, L. Girod, and J. Heidemann. Scalable Coordination for
Wireless Sensor Networks: Self-Configuring Localization Systems. In Proc.
Sixth International Symposium on Communication Theory and Applications
(ISCTA ’01), Ambleside, Lake District, UK, July 2001.

[16] G. Casella and C.P. Robert. Rao-Blackwellisation of Sampling Schemes.
Biometrika, 83(1):81–94, 1996.

[17] H. Chan and A. Perrig. ACE: An Emergent Algorithm for Highly Uniform
Cluster Formation. In Proceedings of First European Workshop on Wireless
Sensor Networks, Berlin, Germany, January 2004.

[18] R. Chen and J.S. Liu. Mixture Kalman Filters. Journal of the Royal Statistical
Society, 62(3):493–508, 2000.

[19] Y. Chen. SNETs: Smart Sensor Networks. Master’s thesis, University of Utah,
Salt Lake City, Utah, December 2000.

[20] Y. Chen and T.C. Henderson. S-Nets: Smart Sensor Networks. In Proceedings of
the International Symposium on Experimental Robotics, pages 85–94, Honolulu,
Hawaii, December 2000.

[21] C.-Y. Chong and S.P. Kumar. Sensor Networks: Evolution, Opportunities, and
Challenges. Proceedings of the IEEE, 91(8):1247–1256, 2003.

[22] T.J. Chung. Computational Fluid Dynamics. Cambridge University Press, Cam-
bridge, UK, 2002.

[23] P. Corke, R. Peterson, and D. Rus. Localization and Navigation Assisted by
Cooperating Networked Sensors and Robots. International Journal of Robotics
Research, 24(9):771–786, September 2005.

[24] D. Culler, P. Dutta, C.T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre, S. Shenker,
I. Stoica, G. Tolle, and J. Zhao. Towards a Sensor Network Architecture: Low-
ering the Waistline. In HOTOS’05: Proceedings of the 10th conference on Hot
Topics in Operating Systems, pages 24–24, Berkeley, CA, USA, 2005.



BIBLIOGRAPHY 211

[25] D. Culler, D. Estrin, and M. Srivastava. Overview of Sensor Networks. IEEE
Computer, 37(8):41–49, 2004.

[26] M. Dekhil. Instrumented Logical Sensor Systems. PhD thesis, University of
Utah, Salt Lake City, UT, August 1998.

[27] M. Dekhil and T.C. Henderson. Instrumented Sensor Systems. In IEEE Inter-
national Conference on Multisensor Fusion and Integration (MFI 96), pages
193–200, Washington, D.C., December 1996.

[28] M. Dekhil and T.C. Henderson. Optimal Wall Pose Determination in a Shared-
Memory Multi-Tasking Control Architecture. In IEEE International Conference
on Multisensor Fusion and Integration (MFI 96), pages 736–741, Washington,
D.C, December 1996.

[29] M. Dekhil and T.C. Henderson. Instrumented Sensor System Architecture.
UUCS-97-011, University of Utah, Salt Lake City, UT, March 1997.

[30] M. Dekhil and T.C. Henderson. Instrumented Sensor SystemArchitecture. Tech-
nical Report UUCS-97-011, University of Utah, Department of Computer Sci-
ence, August 1997.

[31] M. Dekhil and T.C. Henderson. Instrumented Logical Sensors Systems. Inter-
national Journal of Robotics Research, 17(4):402–417, 1998.

[32] M. Dekhil and T.M. Sobh. Embedded Tolerance Analysis for Sonar Sensors. In
Invited paper to the special session of the 1997 Measurement Science Conference,
Measuring Sensed Data for Robotics and Automation, Pasadena, CA, January
1997.

[33] J.L. Devore. Probability and Statistics for Engineering and the Sciences.
Duxbury Press, Pacific Grove, CA, 1995.

[34] B.R. Donald. On Information Invariants in Robotics. Artificial Intelligence,
72:217–304, 1995.

[35] H.F. Durrant-Whyte. Integration, Coordination and Control of Multisensor
Robot Systems. Kluwer Academic Publishers, Boston, MA, 1988.

[36] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next Century Challenges:
Scalable Coordination in Sensor Networks. In Proceedings of Mobicom 1999,
Seattle, WA, August 1999.

[37] H.R. Everett. Sensors for Mobile Robots Therory and Application. A K Peters,
Ltd., Massachusetts, 1995.

[38] W.S. Fai. A Multi-sensor Integration and Data Acquisition System. Master’s
thesis, University of Utah, Salt Lake City, Utah, June 1983.

[39] O. Faugeras. Three-dimensional Computer Vision - A Geometric viewpoint. The
MIT Press, Cambridge, MA, 1993.



212 BIBLIOGRAPHY

[40] D. Floreano, J.D. Nicoud, and F. Mondada, editors. Advances in Artificial Life,
5th European Conference, ECAL’99, Lausanne, Switzerland, September 13-
17, 1999, Proceedings, volume 1674 of Lecture Notes in Computer Science.
Springer, 1999.

[41] J. Fraden. AIP Handbook of Modern Sensors. American Institute of Physics,
New York, 1993.

[42] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-oriented Software. Addison Wesley, Reading, MA, 1995.

[43] D. Ganesan, D. Estrin, A. Woo, and D. Culler. Complex Behavior at Scale:
An Experimental Study of Low-Power Wireless Sensor Networks. Technical
Report CSD-TR 02-0013, University of California at Los Angeles, Department
of Computer Science, February 2002.

[44] C. Giraud and B. Jouvencel. Sensor Selection in a Fusion Process: a Fuzzy Ap-
proach. In R.C. Luo, editor, Proceedings of the IEEE International Conference
on Multisensor Fusion and Integration, pages 599–606, Las Vegas, NV, 1994.

[45] M.J.C. Gordon. Denotational Description of Programming Languages.
Springer-Verlag, New York, NY, 1979.

[46] M.I. Granero, A. Porati, and D. Zanacca. A Bifurcation Analysis of Pattern
Formation in a Diffusion Goverened Morphogenetic Field. Jnl of Mathematical
Biology, 4:21–27, 1977.

[47] M. Grigoras, O. Feiermann, and U.D. Hanebeck. Data-Driven Modeling
of Signal Strength Distributions for Localization in Cellular Radio Networks
(Datengetriebene Modellierung von Feldstärkeverteilungen für die Ortung in
zellulären Funknetzen). at - Automatisierungstechnik - Automatisierungstech-
nik, Sonderheft: Datenfusion in der Automatisierungstechnik, 53(7):314–321,
July 2005.

[48] F.C.A. Groen, P.P.J. Antonissen, and G.A. Weller. Model Based Robot Vision.
In IEEE Instrumentation and Measurement Technology Conference, pages 584–
588, Irvine, CA, May 1993.

[49] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson,
and P.-J. Nordlund. Particle Filters for Positioning, Navigation, and Tracking.
IEEE Transactions on Signal Processing, 50(2):425–437, 2002.

[50] G.D. Hager and M. Mintz. Task-directed Multisensor Fusion. In IEEE Confer-
ence on Robotics and Automation, pages 662–667, Scottsdale, AZ, 1989.

[51] G.D. Hager and M. Mintz. Computational Methods for Task-directed Sensor
Data Fusion and Sensor Planning. Int. J. Robotics Research, 10(4):285–313,
August 1991.



BIBLIOGRAPHY 213

[52] U.D. Hanebeck and O.C. Schrempf. Greedy Algorithms for Dirac Mixture Ap-
proximation of Arbitrary Probability Density Functions. In IEEE Conference on
Decision and Control (CDC 2007), New Orleans, LA, December 2007.

[53] W. Heizelman, A. Chandrakasan, and H. Balakrishnan. Energy Efficient Com-
munication Protocol for Wireless Microsensor Networks. In Proceedings of 33rd
Hawaii International Conference on System Sciences, Hawaii, January 2000.

[54] T. Henderson, W. Fai, and C. Hansen. MKS: A Multisensor Kernel System.
IEEE Trans. Systems Man and Cybernetics, 14(5):784–791, 1984.

[55] T.C. Henderson. Leadership Protocol for S-Nets. In Proc Multisensor Fusion
and Integration, pages 289–292, Baden-Baden, Germany, August 2001.

[56] T.C. Henderson. Verification and Validation of Sensor Networks. In Schloss
DagstuhlWorkshop on Form and Content of Sensor Networks, Wadern, Germany,
September 2005.

[57] T.C. Henderson. Performance Measures for Sensor Networks. In NIST-ANS
Workshop on Urban Search and Rescue Performance Measures for Intelligent
Systems, Salt Lake City, UT, February 2006.

[58] T.C. Henderson. Further Observations on the SNL Wireless Sensor Network
Leadership Protocol. In Sukhan Lee, editor, Proceedings of the IEEE Interna-
tional Conference on Multisensor Fusion and Integration, Seoul, South Korea,
2008.

[59] T.C. Henderson, B. Bruderlin, M. Dekhil, L. Schenkat, and L. Veigel. Sonar
Sensing Strategies. In IEEE Conference on Robotics and Automation, pages
341–346, Minneapolis, MN, April 1996.

[60] T.C. Henderson and M. Dekhil. Visual Target Based Wall Pose Estimation.
Technical Report UUCS-97-010, University of Utah, Department of Computer
Science, Salt Lake City, UT, July 1997.

[61] T.C. Henderson, M. Dekhil, B. Bruderlin, L. Schenkat, and L. Veigel. Flat
Surface Recovery from Sonar Data. In DARPA Image Understanding Workshop,
pages 995–1000, Palm Springs, CA, February 1996.

[62] T.C. Henderson, M. Dekhil, S. Morris, Y. Chen, and W.B. Thompson. Smart
Sensor Snow. IEEE Conference on Intelligent Robots and Intelligent Systems,
October 1998.

[63] T.C. Henderson and E. Grant. Gradient Calculation in Sensor Networks. In Proc
International Conf on Intelligent Robots and Systems, Sendai, Japan, October
2004.

[64] T.C. Henderson, J.-C. Park, N. Smith, and R.Wright. From Motes to Java Stamps:
Smart Sensor Network Testbeds. In Proc International Conf on Intelligent Robots
and Systems, Las Vegas, NV, October 2003.



214 BIBLIOGRAPHY

[65] T.C. Henderson and E. Shilcrat. Logical Sensor Systems. Journal of Robotic
Systems, 1(2):169–193, 1984.

[66] T.C. Henderson, C. Sikorski, K. Luthy, and E. Grant. Computational Sensor
Networks. In Proc International Conf on Intelligent Robots and Systems, San
Diego, CA, October 2007.

[67] T.C. Henderson, R.Venkataraman, and G. Choikim. Reaction-Diffusion Patterns
in Smart Sensor Networks. In Proc International Conference on Robotics and
Automation, New Orleans, April 2004.

[68] J. Hightower and G. Borriello. Location Systems for Ubiquitous Computing.
IEEE Computer, 34(8), 2001.

[69] J. Hill and D. Culler. A Wireless Embedded Sensor Architecture for System-
Level Optimization. ECE, UC Berkeley, October 2002.

[70] J.P. Holman and Jr. W.J. Gajda. Experimental Methods for Engineers. McGraw-
Hill, New York, NY, 1978.

[71] H. Hu, J.M. Brady, F. Du, and P.J. Probert. Distributed Real-time Control of
a Mobile Robot. Jnl of Intelligent Automation and Software Computing, pages
63–83, August 1995.

[72] T. Imielinski and S. Goel. DataSpace - Querying and Monitoring Deeply Net-
worked Collections in Physical Space. In Proc. of International Workshop on
Data Engineering for Wireless and Mobile Access (MobiDE’99), Seattle, WA,
August 1999.

[73] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable
and Robust Communication Paradigm for Sensor Networks. In Proc. of Mobicom
2000, Boston, August 2000.

[74] S.S. Iyengar and L. Prasad. A General Computational Framework for Distributed
Sensing and Fault-tolerant Sensor Integration. IEEE Transactions on Systems,
Man and Cybernetics, 25(4):643–650, April 1995.

[75] A. Jeremic and A. Nehorai. Design of Chemical Sensor Arrays for Monitoring
Disposal Sites on the Ocean Floor. IEEE Journal of Oceanic Engineering,
23:334–343, 1998.

[76] J. Jin, X. Gao, S. Sorooshian, Z.-L. Yang, R. Bales, R.E. Dickinson, S.-F. Sun,
and G.-X. Wu. One-dimensional Snow Water and Energy Balance Model for
Vegetated Surfaces. Hydrological Processes, 13:2467 – 2482, 1999.

[77] R. Joshi and A.C. Sanderson. Model-based Multisensor Data Fusion: a Minimal
Representation Approach. In IEEE Conference on Robotics and Automation,
pages 477–484, San Diego, CA, May 1994.

[78] S.J. Julier and J.K. Uhlmann. Unscented Filtering and Nonlinear Estimation.
Proceedings of the IEEE, 92(3):401–422, 2004.



BIBLIOGRAPHY 215

[79] E.W. Justh and P.S. Krishnaprasad. Pattern-forming Systems for Control of Large
Arrays of Actuators. Jnl of Nonlinear Sci, 11(4):239–277, 2001.

[80] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In
Proceedings of IFIP, 1974.

[81] G. Kahn and D. MacQueen. Coroutines and Networks of Parallel Processes. In
Proceedings of IFIP, 1974.

[82] R.E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Transactions of the ASME - Journal of Basic Engineering, 82:35–45, 1960.

[83] T. Kang, C.R. Merritt, B. Karaguzel, J.M. Wilson, P.D. Franzon, B. Pourdeyhimi,
E. Grant, and T. Nagle. Sensors on Textile Substrates for Home-Based Healthcare
Monitoring. In Conference on Distributed Diagnosis and Healthcare (D2H2),
pages 5–7, Arlington, VA, April 2006.

[84] R. Kapur, T.W. Williams, and E.F. Miller. System Testing and Reliability Tech-
niques for Avoiding Failure. IEEE Computer, 29(11):28–30, November 1996.

[85] B. Karaguzel, C.R. Merritt, T.H. Kang, J. Wilson, P. Franzon, H.T. Nagle,
E. Grant, and B. Pourdeyhimi. Using Conductive Inks and Non-Woven Textiles
for Wearable Computing. In Proceedings of the 2005 Textile Institute Worlsd
Conference, Raleigh, NC, March 2005.

[86] R. Karlsson, T. Schön, and F. Gustafsson. Complexity Analysis of the Marginal-
ized Particle Filter. IEEE Transactions on Signal Processing, 53(11):4408–4411,
2005.

[87] G. Karniadakis and R.M. Kirby. Parallel Scientific Computing in C++ and MPI.
Cambridge University Press, Cambridge, UK, 2002.

[88] G.E. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Computa-
tional Fluid Dynamics. Oxford University Press, Oxford, UK, 2005.

[89] R.M. Keller. Denotational Models for Parallel Programs with Indeterminate Op-
erators. In E.J. Neuhold, editor, Formal Descriptions of Programming Concepts,
pages 337–366, Amsterdam, The Netherlands, 1978. North Holland Publishing
Co.

[90] K.H. Kim and C. Subbaraman. Fault-tolerant Real-time Objects. Communica-
tions of the ACM, 40(1):75–82, January 1997.

[91] R. Kimmel and J.A. Sethian. Fast Marching Methods for Robotic Navigation
with Constraints. Technical Report Center for Pure and Applied Mathematics,
University of California, Berkeley, Department of Mathematics, May 1996.

[92] V. Klumpp, F. Sawo, U.D. Hanebeck, and D. Fränken. The Sliced Gaussian Mix-
ture Filter for Efficient Nonlinear Estimation. In 11th International Conference
on Information Fusion (Fusion 2008), Cologne, Germany, 2008.



216 BIBLIOGRAPHY

[93] J. Koenderink. The Structure of Images. Biol. Cyber., 50:363–370, 1984.

[94] D. Komatitsch, J.-P. Vilotte, R. Vai, J.M. Castillo-Covarrubias, and F.J. Sanchez-
Sesma. The Spectral Element Method for ElasticWave Equations -Application to
2-D and 3-D Seismic Problems. In International Journal for Numerical Methods
in Engineering, volume 45, pages 1139–1164, 1999.

[95] J. Kondo and T. Yamazaki. A Prediction Model for Snowmelt, Snow Surface
Temperature and Freezing Depth Using a Heat Balance. Journal of Applied
Meteorology, 29:375–384, 1990.

[96] P. Krishna, N.H. Vaidya, M. Chatterjee, and M. Steenstrup. A Cluster-based
Approach for Routing in Dynamic Networks. ACM SIGCOMM Computer Com-
munication Review, 27(2):49–65, April 1997.

[97] T.C. Lacalli and L.G. Harrison. Turing’s Conditions and the Analysis of Mor-
phogenetic Models. Jnl of Theoretical Biology, 76:419–436, 1979.

[98] A.M. Law and W.D. Kelton. Simulation Modeling and Analysis. McGraw-Hill,
New York, NY, 2000.

[99] M. Lehning, P. Bartelt, R. Brown, and C. Fierz. A Physical SNOWPACK Model
for the Swiss Avalanche Warning Part III: Meterological Forcing, Thin Layer
Formation and Evaluation. Cold Regions Science and Technology, 35:169–184,
2002.

[100] M. Lehning, P. Bartelt, R. Brown, C. Fierz, and P. Satyawali. A Physical SNOW-
PACK Model for the Swiss Avalanche Warning Part II: Snow Microstructure.
Cold Regions Science and Technology, 35:147–167, 2002.

[101] A. Lim. Support for Reliability in Self-Organizing Sensor Network. In Proc of
the Intnl Conf on Information Fusion, Annapolis, Maryland, July 2002.

[102] J.T.-H. Lo and Jr. S.L. Marple. Observability Conditions for Multiple Signal
Direction Finding and Array Sensor Localization. IEEE-T Signal Processing,
40(11):2641–2650, 1992.

[103] J. Luitjens, M. Berzins, and T.C. Henderson. Parallel Space-Filling Curve Gen-
eration Through Sorting. Concurrency and Computation: Practice and Experi-
ence, 19(10):1387–1402, 2007.

[104] N. Lynch. Distributed Algorithms. Morgan-Kaufman Pub, San Francisco, CA,
1996.

[105] S. Madden, M.J. Franklin, and J.M. Hellerstein. TAG: a TinyAggregation Service
for Ad-Hoc Sensor Networks. In Proc. of the Fifth Symposium on Operating
Systems Design and Implementation, Boston, MA, December 2002.

[106] P.K. Maini and H.G. Othmer. Mathematical Models for Biological Pattern For-
mation. Springer-Verlag, Berlin, 2001.



BIBLIOGRAPHY 217

[107] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wire-
less Sensor Netwroks for Habitat Monitoring. In WSNA 2002, Atlanta, GA,
September 2002.

[108] J.E. Marsden and A.J. Tromba. Vector Calculus. W.H. Freeman and Company,
New York, NY, 1988.

[109] H. Meinhardt. Models of Biological Pattern Formation. Academic Press, Lon-
don, UK, 1982.

[110] C.R. Merritt, B. Karaguzel, T.H. Kang, J. Wilson, P. Franzon, H.T. Nagle,
B. Pourdeyhimi, and E. Grant. Electrical Characterization of Transmission Lines
on Specific Non-Woven Textile Substrates. In Proceedings of the 2005 Textile
Institute Worlsd Conference, Raleigh, NC, March 2005.

[111] J. Murray. Mathematical Biology. Springer-Verlag, Berlin, 1993.

[112] D. Nadig, S.S. Iyengar, and D.N. Jayasimha. New Architecture for Distributed
Sensor Integration. In IEEE SOUTHEASTCON Proceedings, Charlotte, NC,
1993.

[113] R. Nagpal. Programmable Pattern-Formation and Scale-Independence. In Proc
International Confernce on Complex Systems (ICCS), Nashua, NH, June 2002.

[114] B.C. Ng and A. Nehorai. Active Array Sensor Localization. IEEE-T Signal
Processing, 44:309–327, 1995.

[115] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The Broadcast Storm Problem
in a Mobile Ad Hoc Network. In Proceedings of Mobicom 1999, Seattle, WA,
August 1999.

[116] G. Nicolis and I. Prigogine. Exploring Complexity: an Introduction. W.H.
Freeman and Co, New York, NY, 1989.

[117] K.J. Nurmela and P.R.J. Ostergard. Covering a Square with up to 30 Equal
Circles. Technical Report HUT-TCS-A62, Helsinki University of Technology,
Laboratory for Theoretical Computer Science, Helsinki, Finnland, 2000.

[118] W.L. Oberkampf, T.G. Trucano, and C. Hirsch. Verification, Validation and
Predictive Capability in Computational Engineering and Physics. In Foundations
for Verification and Validation in the 21st Century Workshop, Laurel, Maryland,
October 2002.

[119] P. Perona, T. Shiota, and J. Malik. Anisotropic Diffusion. In B. Romeny, editor,
Geometry-Driven Diffusion in Computer Vision, Dordrecht, The Netherlands,
1994. Kluwer.

[120] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D. Tygar. SPINS: Security
Protocols for Sensor Networks. Wireless Networks, 8(5):521–534, Sept 2002.



218 BIBLIOGRAPHY

[121] L. Prasad, S.S. Iyengar, R.L. Kashyap, and R.N. Madan. Functional Charac-
terization of Fault Tolerant Integration in Distributed Sensor Networks. IEEE
Transactions on Systems, Man and Cybernetics, 21(5):1082–1087, September
1991.

[122] L. Prasad, S.S. Iyengar, R.L. Rao, and R.L. Kashyap. Fault-tolerant Sensor Inte-
gration using Multiresolution Decomposition. Journal of The American Physical
Society, 49(4):3452–3461, April 1994.

[123] I. Prigogine. Thermodynamics of Irreversible Processes. Interscience Publishers,
New York, NY, 1968.

[124] I. Prigogine. From Being to Becoming: Time and Complexity in the Physical
Sciences. W.H. Freeman and Co, San Francisco, CA, 1980.

[125] J.A. Profeta. Safety-critical Systems Built with COTS. IEEE Computer,
29(11):54–60, November 1996.

[126] B. Randell. System Structure for Software Fault Tolerance. In R.T. Yeh, editor,
Current Trends in Programming Methodology, Vol. 1, pages 195–219, Engle-
wood Cliffs, NJ, 1977.

[127] K. Rankinen, T. Karvonen, and D. Butterfield. A Simple Model for Predicting
Soil Temperature in Snow-covered and Seasonally Frozen Soil: Model Descrip-
tion and Testing. Hydrology and Earth System Sciences, 8:706–716, 2004.

[128] K. Roberts and U.D. Hanebeck. Prediction and Reconstruction of Distributed
Dynamic Phenomena Characterized by Linear Partial Differential Equations. In
Proceedings of the 8th International Conference on Information Fusion (Fusion
2005), Philadelphia, Pennsylvania, July 2005.

[129] S.M. Ross. Simulation. Elsevier, Amsterdam, The Netherlands, 2006.

[130] L. A. Rossi, B. Krishnamachari, and C.-C.J. Kuo. Distributed Parameter Esti-
mation for Monitoring Diffusion Phenomena Using Physical Models. In First
Annual IEEE Communications Society Conference on Sensor and Ad Hoc Com-
munications and Networks (SECON 2004), pages 460–469, Los Angeles, USA,
2004.

[131] F. Sawo, F. Beutler, and U.D. Hanebeck. Decentralized Reconstruction of Phys-
ical Phenomena based on Covariance Bounds. In Proceedings of the 17th IFAC
World Congress (IFAC 2008), Seoul, Republic of Korea, July 2008.

[132] F. Sawo, T.C. Henderson, C. Sikorski, and U.D. Hanebeck. Sensor Node Local-
ization Methods based on Local Observations of Distributed Natural Phenom-
ena. In Sukhan Lee, editor, Proceedings of the IEEE International Conference
on Multisensor Fusion and Integration, Seoul, South Korea, August 2008. IEEE.



BIBLIOGRAPHY 219

[133] F. Sawo, M.F. Huber, and U.D. Hanebeck. Parameter Identification and Re-
construction Based on Hybrid Density Filter for Distributed Phenomena. In
10th International Conference on Information Fusion (Fusion 2007), Quebec,
Canada, July 2007.

[134] F. Sawo, V. Klumpp, and U.D. Hanebeck. Simultaneous State and Parameter
Estimation of Finite-Dimensional Models of Distributed Systems based on Sliced
Gaussian Mixture Filter. In 11th International Conference on Information Fusion
(Fusion 2008), Cologne, Germany, 2008.

[135] F. Sawo, K. Roberts, and U.D. Hanebeck. Bayesian Estimation of Distributed
Phenomena Using Discretized Representations of Partial Differential Equations.
In Proceedings Proceedings of the 3rd International Conference on Informatics
in Control, Automation and Robotics (ICINCO 2006), pages 16–23, Setubal,
Portugal, August 2006.

[136] F. Sawo, K. Roberts, and U.D. Hanebeck. Bayesian Estimation of Distributed
Phenomena using Discretized Representations of Partial Differential Equations.
In 3rd International Conference on Informatics in Control, Automation and
Robotics (ICINCO 2006), pages 16–23, Setubal, Portugal, August 2006.

[137] L. Schenkat, L. Veigel, and T.C. Henderson. EGOR: Design, Development,
Implementation – An Entry in the 1994 AAAI Robot Competition. Technical
Report UUCS-94-034, University of Utah, Salt Lake City, UT, December 1994.

[138] V. Schnayder, M. Hempstead, B. Chen, G.W. Allen, and M. Welsh. Simulat-
ing the Power Consumption of Sensor Network Applications. In ACM SenSys
Proceedings, Baltimore, MA, November 2004.

[139] S.A. Schneider, V. Chen, and G. Pardo. ControlShell: A Real-time Software
Framework. In AIAA Conference on Intelligent Robots in Field, Factory, Service
and Space, Dayton, OH, 1994.

[140] T. Schön, F. Gustafsson, and P.-J. Nordlund. Marginalized Particle Filters for
Nonlinear State-space Models. Technical report, Linköpings–University, 2003.

[141] O.C. Schrempf and U.D. Hanebeck. A State Estimator for Nonlinear Stochastic
Systems Based on Dirac Mixture Approximations. In Proceedings of the 4th
International Conference on Informatics in Control, Automation and Robotics
(ICINCO 2007), volume SPSMC, pages 54–61, Angers, France, May 2007.

[142] J.A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge Uni-
versity Press, New York, 1996.

[143] E. Shilcrat, P. Panangaden, and T.C. Henderson. Implementing Multi-sensor
Systems in a Functional Language. Technical Report UUCS-84-001, The Uni-
versity of Utah, Salt Lake City, UT, February 1984.

[144] K. Shin, A. Abraham, and S.Y. Han. Self-Organizing Sensor Networks using
Intelligent Clustering. In LNCS Proceedings of the Workshp on Ubiquitous Web
systems and Intelligence, Berlin, Germany, 2006.



220 BIBLIOGRAPHY

[145] D. Simon, B. Espiau, E. Castillo, and K. Kapellos. Computer-Aided Design of
a Generic Robot Controller Handling Reactivity and Real-time Issues. IEEE
Transactions on Control Systems Technology, 4(1), 1993.

[146] R. Smith, A. Frost, and P. Probert. A Sensor System for the Navigation of an
UnderwaterVehicle. The International Journal of Robotics Research, 18(7):697–
710, July 1999.

[147] A.J. Sommese and II C. Wampler. The Numerical Solution of Systems of Poly-
nomials Arising in Engineering and Science. World Scientific, New York, NY,
2005.

[148] H.W. Sorenson. Kalman Filtering: Theory and Application. Piscataway, NJ:
IEEE, 1985.

[149] K. Stephenson. Introduction to Circle Packing. Cambridge University Press,
New York, NY, 2005.

[150] D.B. Stewart and P.K. Khosla. Mechanisms for Detecting and Handling Timing
Errors. Communications of the ACM, 40(1):87–93, January 1997.

[151] M. Stoffel. Numerical Modelling of Snow Using Finite Elements. PhD thesis,
Swiss Federal Institute of Technology Zürich, Zürich, Switzerland, May 2005.

[152] V. Swaminathan, K. Chakrabarty, and S.S. Iyengar. Dynamic I/O Power Man-
agement for Hard Real-time Systems. In Proc. Intl. Symposium on Hard-
ware/Software Co-Design (CODES, pages 237–242, Ambleside, Lake District,
UK, 2001.

[153] P.G. Szabo, M.C. Markot, T. Csendes, E. Specht, L.G. Casado, and I. Garcia.
New Approaches to Circle Packing in a Square. Springer, New York, NY, 2007.

[154] D.G. Thaler and C.V. Ravishankar. Distributed Top-Down Hierarchy Construc-
tion. In Proceedings of INFOCOM 1998, pages 693–701, San Francisco, CA,
1998.

[155] P.F. Tsuchiya. The Landmark Hierarchy: a New Hierarchy for Routing in Very
Large Networks. ACM SIGCOM Computer Communication Review, 18(4):35–
42, August 1988.

[156] A. Turing. The Chemical Basis of Morphogenesis. Philosophical Transactions
of the Royal Society of London, B237:37–72, 1952.

[157] D. Ucinski. Measurement Optimization for Parameter Estimation in Distributed
Systems. Technical University Press, Zielona Gora, Poland, 1999.

[158] H. Wang, H. Lenz, A. Szabo, and U.D. Hanebeck. Fusion of Barometric Sensors,
WLAN Signals and Building Information for 3–D Indoor/Campus Localization.
In Proceedings of the 2006 IEEE International Conference on Multisensor Fu-
sion and Integration for Intelligent Systems (MFI 2006), pages 426–432, Hei-
delberg, Germany, September 2006.



BIBLIOGRAPHY 221

[159] G.A. Weller, F.C.A. Groen, and L.O. Hertzberger. A Sensor Processing Model
Incorporating Error Detection and Recovery. In Traditional and Non-traditional
Robotic Sensors Edited by T. C. Henderson, pages 351–363. Springer-Verlag,
Berlin, 1990.

[160] K. Whitehouse. The Design of Calamari: an Ad Hoc Localization System for
Sensor Networks. Master’s thesis, University of California, Berkeley, San Fran-
cisco, CA, 2002.

[161] K. Whitehouse and D. Culler. Calibration as Parameter Estimation in Sensor
Networks. In Proc. WSNA 2002, Atlanta, GA, September 2002.

[162] K. Whitehouse and D. Culler. Macro-Calibration in Sensor/Actuator Networks.
In Proceedings of Mobile Networks and Applications, volume 8, pages 463–472,
2003.

[163] N. Wirth. On the Compostion of Well-Structured Programs. In E.N. Yourdan,
editor, Classics in Software Engineering, pages 153–172, London, 1979.

[164] J.D. Wright. Measurements, Transmission, and Signal Processing. In D.A.
Mellichamp, editor, Real-Time computing, pages 80–112, New York, NY, 1983.

[165] Y. Xu, S. Bien,Y. Mori, J. Heidemann, and D. Estrin. Topology Control Protocols
to Conserve Energy in Wireless Ad Hoc Networks. Technical Report 6, Univer-
sity of California, Los Angeles, Center for Embedded Networked Computing,
January 2003.

[166] Y. Yemini, S. da Silva, D. Florissi, and H. Huang. The Network Flow Language:
A Mark-basedApproach toActive Networks. Computer Science XXX, Columbia
University, July 1999.

[167] L. Zhang. Simple Protocols, Complex Behavior. In Proc. IPAM Large-Scale
Communication Networks Workshop, March 2002.

[168] F. Zhao and L. Guibas. Wireless Sensor Networks. Elsevier, Amsterdam, 2004.

[169] T. Zhao and A. Nehorai. Detecting and Estimating Biochemical Dispersion of
a Moving Source in a Semi-Infinite Medium. IEEE Transactions on Signal
Processing, 54(6):2213–2225, June 2006.

[170] S.C. Zhu and D. Mumford. Prior Learning and Gibbs Reaction-Diffusion. IEEE-
T on Pattern Analysis and Machine Intelligence, 19(11):1236–1250, 1997.

[171] Perfect Ice Conditions Ensure Faster Speed Skating Times (url:
http://www.zigbee.org/imwp/download.asp?ContentID=12588). ZigBee
Alliance, 2008.



Index

accuracy, 94
activator, 62
alternate subnets, 86, 89, 92, 103
applications, 177
augmented model, 197

batch approximation, 203
Bayesian estimation, 175

camouflage, 80
characteristic output vector, 86, 102
checkerboard, 67
circle packing problem, 30
cluster formation, 22
coördinate frame, 43
coördinate frame free, 52
combine, 104
commands, 102
communication model, 121
computation mapping, 5
computational modeling, 5
computational sensor networks, 1, 4,

161
constructing a local frame, 46
construction operators, 104
control command interpreter, 103
CWave, 106

data abstraction, 85
data flow, 87
dense sample method, 166
diffusion, 62
diffusion equation, 163
directed diffusion, 63
directional derivative, 53
dissipative structures, 61
distributed-parameter, 175, 180

drift, 94
dynamic semantics, 101

Eikonal equation, 76
embedded testing, 103
embedded tests, 103
empirical case analysis, 101
error, 94
error propagation, 105
external programming interface, 84

fault tolerance, 91
feature propagation, 93
Features of Physical Sensors, 94
finite difference, 163
frame transformation, 49
functional architecture, 83

generate and test, 165
Gibbs distributions, 81
global diffusion matrix, 185
global mass matrix, 185
goal achievement, 127
gradient, planar approximation, 54
gradient, quadratic approximation, 54

heat equation, 161
heat flow, 163
hexagonal structure, 67
homotopy continuations, 164
hysteresis, 94

ILS name, 102
ILSS, 84
incorrect model parameters, 193
inhibitor, 62
instrumented logical sensor specifica-

tion, 84

223



224 INDEX

instrumented logical sensor systems, 96
internal programming interface, 84
inverse problem, 178
irregular broadcast shape, 34
irregular meshes, 80

Kolmogorov-Smirnov, 10

leadership problem, 21
level set methods, 74
localization, 161
logical sensor, 89
logical sensor name, 86
logical sensor specification language,

90
LSS, 83
LSS semantics, 90
LSS Syntax, 89
lumped-parameter, 175, 180

maximum number of leaders, 30
measurement equation, 188
measurement model, 182, 188
merging data, 96
MKS, 84
mobile robot model, 119
mobile robot performance analysis, 117
modal analysis, 184
monitor, 101
monitors, 103
morphogenesis, 61
multiple robot behaviors, 129
Multisensor Kernel System, 84

network morphogenesis, 63
non-uniform spacing, 71
nonlinear dynamics, 61
nonlinear optimization method, 168
normal distribution, 8
number of leaders, 32

output equation, 188

parameter identification, 178
pattern formation, 61
patterns, 64
performance semantic equations, 109

performance semantics, 100
physical sensors, 94
Polynomial System Localization, 165,

168
primary alternate, 91
probabilistic finite-dim. models, 182
probabilistic measurement model, 188
probabilistic system model, 184
propagating interface, 76

range, 94
reaction kinetics, 62
reaction-diffusion, 61, 69, 81
reconstruction of distributed phenom-

ena, 189
recovery block, 91
regular geometric figures, 65
repeatability, 94
replacement, 91
replication, 91
resolution, 94
robot goes to a temperature source, 131
robots go back and forth to temperature

source, 150
robots surround temperature source, 138

S-cluster, 3
S-elements, 3
S-Net leadership algorithm, 22
S-Nets, 3
SEL, 3
select, 104
select function, 103
selector, 86
sensor bias, 161
sensor bias estimation, 170
sensor node localization, 162, 179, 204
sensor system specification, 102
sequential approximation, 203
serial, 104
SGMF, 200
shortest arrival time, 77
simulation model, 125
simultaneous reconstruction, 176
sliced Gaussian mixture density, 182
Sliced Gaussian Mixture Filter, 175, 198



INDEX 225

smart sensors, 85
SNL, 22
SNL protocol implementation, 34
SNL protocol statistics, 29
software acceptance tests, 92
sogical sensor specification, 83
spatial decomposition, 184
speed function, 76
SRI method, 176, 178
SRL method, 176, 179
stripes, 65, 74
subnetworks, 88
system model, 182
Systronix JStamps, 38

tap, 101
taps, 103

temperature phenomenon model, 8
temporal discretization, 186
threshold, 94
tupling data, 95
Turing, 61
Turing space, 62
Turing spot pattern, 62
Turing system, 62
type I error, 14

validation, 18, 83
validity, 101
verification, 12, 83
virtual sensors, 86


	149057_1_En_FM_OnlinePDF.pdf
	149057_1_En_1_Chapter_OnlinePDF.pdf
	149057_1_En_2_Chapter_OnlinePDF.pdf
	149057_1_En_3_Chapter_OnlinePDF.pdf
	149057_1_En_4_Chapter_OnlinePDF.pdf
	149057_1_En_5_Chapter_OnlinePDF.pdf
	149057_1_En_6_Chapter_OnlinePDF.pdf
	149057_1_En_7_Chapter_OnlinePDF.pdf
	149057_1_En_8_Chapter_OnlinePDF.pdf
	149057_1_En_9_Chapter_OnlinePDF.pdf
	149057_1_En_BM_OnlinePDF.pdf



