
Mieso K. Denko
Laurence Tianruo Yang
Yan Zhang
Editors

Autonomic
Computing and
Networking

Autonomic Computing and Networking

Mieso K. Denko · Laurence Tianruo Yang ·
Yan Zhang
Editors

Autonomic Computing
and Networking

123

Editors
Mieso K. Denko
Department of Computing and

Information Science
University of Guelph
Reynolds Building
Guelph, ON N1G 2W1
Canada
denko@cis.uoguelph.ca

Yan Zhang
Simula Research Laboratory
Norway
yanzhang@ieee.org

Laurence Tianruo Yang
Department of Computer Science
Francis Xavier University
Antigonish, NS B2G 2W5
Canada
ltyang@gmail.com

ISBN 978-0-387-89827-8 e-ISBN 978-0-387-89828-5
DOI 10.1007/978-0-387-89828-5

Library of Congress Control Number: 2008940265

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

springer.com

Preface

Autonomic computing and networking are emerging paradigms that allow for
the creation of self-managing and self-controlling environments by employing
distributed algorithms and context-awareness to dynamically control networking
functions without human interventions. Autonomic networking is characterized by
recovery from failures and malfunctions and agility to changing networking envi-
ronments and self-optimization. The self-control and management features can help
overcome the growing complexity and heterogeneity of existing communication net-
works and systems. The realization of fully autonomic heterogeneous networking
requires fundamental research challenges in all aspects of computing, networking,
communications, and other related fields.

This book, with chapters contributed by prominent researchers from academia
and industry, will serve as a technical guide and reference material for engineers,
scientists, practitioners, and researchers by providing them with state-of-the-art
research findings and future opportunities and trends. These contributions include
state-of-the-art architectures, protocols, technologies, and applications in pervasive
computing and wireless networking. In particular, the book covers existing and
emerging communications and computing models, design architectures, mobile and
wireless applications, technologies, and research issues in autonomic computing
systems and communications.

The book has 18 chapters organized into two sections: autonomic computing and
autonomic networking. Each section contains nine chapters addressing existing and
emerging architectures, protocols, and applications.

Part I Autonomic Computing

This section consists of Chapters 1–9 and covers various topics on autonomic com-
puting systems and applications. Chapter 1 by Radu discusses a generic autonomic
computing framework for the development of self-managing systems. A prototype
implementation of the reconfigurable policy engine is used to develop autonomic
solutions in case studies from several application domains.

Chapter 2 by Garlan et al. presents a system called Rainbow that uses software
architecture models and styles to support self-adaptation. The framework provides

v

vi Preface

general and reusable infrastructures with well-defined customization points, allow-
ing engineers to systematically customize Rainbow for particular systems. Chap-
ter 3 by Mpitziopoulos et al. discusses mobile agent-based middleware solutions for
autonomic data fusion tasks. Chapter 4 by Hagimont et al. presents a component-
based autonomic management system for legacy software. It describes the design
and implementation of such a system and evaluates different uses. Chapter 5 by
Brock and Goscinski proposes a dynamic web services description language for sup-
porting autonomic computing. The framework allows the attributes of web services
to be visible, thus allowing the autonomic system to better cater to the installation
and use of new components. Chapter 6 by Oliveri et al. discusses a bio-inspired
cognitive radio for dynamic spectrum access. Autonomic bio-inspired approaches

Part II: Autonomic Networking

This section consists of Chapters 10–18 with a focus on autonomic networking and
communications.

Chapter 10 by Boutaba et al. discusses autonomic networks with focus on knowl-
edge management and self-stabilization. In-depth discussions of basic concepts,
research challenges, and their importance for the success of autonomic networks
are presented. Chapter 11 by Yu et al. discusses autonomic wireless sensor net-
works. The chapter has an in-depth discussion of existing research activities in this
area. Chapter 12 by Wada et al. discusses a model-driven development environment
for biologically inspired autonomic network applications. The chapter proposes and
evaluates a new development environment, called iNetLab, which can improve the
productivity of designing, maintaining, and tuning operational policies in autonomic
network applications. Chapter 13 by Cascado et al. discusses network reconfigura-
tion in high-performance interconnection networks. Chapter 14 by Zulkernine et al.
discusses autonomic management of networked web service-based processes. The
authors discuss web services management from service providers’ and service con-
sumers’ perspectives.

Chapter 15 by Zseby et al. discusses self-protection in autonomic and related net-
works. Chapter 16 by Cong-Vinh discusses the formal aspects of self-∗ in autonomic
networked computing systems. Chapter 17 by Alouf et al. discusses autonomic
information diffusion in intermittently connected networks. The chapter proposes a
framework for designing autonomic information diffusion mechanisms using tech-
niques and tools drawn from evolutionary computing research. Finally, Chapter 18

and spectral access are also discussed. Chapter 7 by Boucadair discusses the intro-
duction of autonomous behaviors to IP multimedia subsystem (IMS)-based architec-
tures. Solutions covered aim at enhancing the robustness and the availability of cur-
rent IMS-based architectures owing to the activation of autonomic-like techniques.
Chapter 8 by Bixio et al. discusses the cognition-based distributed spectrum sensing
for autonomic wireless systems. Finally, in Chapter 9, Kwok presents an autonomic
peer-to-peer systems with a focus on incentive and security issues.

Preface vii

by He et al. presents dynamic and fair spectrum access mechanism for autonomous
communications.

This book has the following salient features:

• Provides a comprehensive reference on autonomic computing and networking.
• Presents state-of-the-art techniques in autonomic computing and networking.
• Contains illustrative figures enabling easy reading.
• Discusses emerging trends and open research problems in autonomic computing

and networking.

We owe our deepest gratitude to all the authors for their valuable contribution to
this book and their great efforts. All of them are extremely professional and cooper-
ative. We wish to express our thanks to Springer especially Katelyn Stanne, Caitlin
Womersley, and Jason Ward for their support and guidance during the preparation
of this book. A special thank also goes to our families and friends for their constant
encouragement, patience, and understanding throughout this project.

The book serves as a comprehensive and essential reference on autonomic com-
puting and networking and is intended as a textbook for senior undergraduate and
graduate-level courses. It can also be used as a supplementary textbook for under-
graduate courses. The book is a useful resource for the students and researchers to
learn autonomic computing and networking. In addition, it will be valuable to pro-
fessionals from both the academia and industry and generally serves instant appeal
to the people who would like to contribute to autonomic computing and networking
technologies.

We welcome and appreciate your feedback and hope you enjoy reading the book.

Mieso K. Denko
Ontario, Canada

Laurence T. Yang
Nova Scotia, Canada

Yan Zhang
Oslo, Norway

Contents

Part I Autonomic Computing

General-Purpose Autonomic Computing . 3
Radu Calinescu

Software Architecture-Based Self-Adaptation . 31
David Garlan, Bradley Schmerl, and Shang-Wen Cheng

Mobile Agent Middleware for Autonomic Data Fusion in Wireless
Sensor Networks . 57
Aristides Mpitziopoulos, Damianos Gavalas, Charalampos Konstantopoulos,
and Grammati Pantziou

Component-Based Autonomic Management for Legacy Software 83
Daniel Hagimont, Patricia Stolf, Laurent Broto, and Noel De Palma

Dynamic WSDL for Supporting Autonomic Computing 105
Michael Brock and Andrzej Goscinski

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 131
Giacomo Oliveri, Marina Ottonello, and Carlo S. Regazzoni

Introducing Autonomous Behaviors into IMS-Based Architectures 155
Mohamed Boucadair

Embodied Cognition-Based Distributed Spectrum Sensing for
Autonomic Wireless Systems . 179
Luca Bixio, Andrea F. Cattoni, Carlo S. Regazzoni, and Pramod K. Varshney

Autonomic Peer-to-Peer Systems: Incentive and Security Issues 205
Yu-Kwong Kwok

ix

x Contents

Part II Autonomic Networking

Toward Autonomic Networks: Knowledge Management and
Self-Stabilization . 239
Raouf Boutaba, Jin Xiao, and Qi Zhang

Autonomic Networking in Wireless Sensor Networks 261
Mengjie Yu, Hala Mokhtar, and Madjid Merabti

iNetLab: A Model-Driven Development and Performance Engineering
Environment for Autonomic Network Applications . 285
Hiroshi Wada, Chonho Lee, Junichi Suzuki, and Tetsuo Otani

Network Reconfiguration in High-Performance Interconnection
Networks . 313
R. Casado, A. Bermúdez, A. Robles-Gómez, O. Lysne, T. Skeie,
Å.G. Solheim, and T. Sødring

Autonomic Management of Networked Web Services-Based Processes 333
Farhana H. Zulkernine, Wendy Powley, and Patrick Martin

Concepts for Self-Protection . 355
Tanja Zseby, Heiko Pfeffer, and Stephan Steglich

Formal Aspects of Self-∗ in Autonomic Networked Computing Systems . . . 381
Phan Cong-Vinh

Autonomic Information Diffusion in Intermittently Connected
Networks . 411
Sara Alouf, Iacopo Carreras, Álvaro Fialho, Daniele Miorandi,
and Giovanni Neglia

Dynamic and Fair Spectrum Access for Autonomous
Communications . 435
Jianhua He, Jie Xiang, Yan Zhang, and Zuoyin Tang

Index . 455

Contributors

Sara Alouf INRIA, Sophia Antipolis, France, sara.alouf@sophia.inria.fr

A. Bermúdez Universidad de Castilla-La Mancha, I3A Campus Universitario s/n,
02071 Albacete, Spain, abermu@dsi.uclm.es

Luca Bixio Department of Biophysical and Electronic Engineering, University
of Genova, Via Opera Pia 11a, 16145 Genova, Italy, luca.bixio@dibe.unige.it

Mohamed Boucadair France Télécom R&D, 42 Rue des coutures, 14066 Caen
Cedex, France, mohamed.boucadair@orange-ftgroup.com

Raouf Boutaba David R. Cheriton School of Computer Science, University
of Waterloo, Waterloo, ON, Canada, rboutaba@cs.uwaterloo.ca

Michael Brock Deakin University, Pigdons Road, Waurn Ponds, Geelong, Victoria
3217, Australia, mrab@deakin.edu.au

Laurent Broto UPS, Toulouse, France, broto@irit.fr

Radu Calinescu Computing Laboratory, University of Oxford, Oxford, England
UK, Radu.Calinescu@comlab.ox.ac.uk

Iacopo Carreras CREATE-NET, Trento, Italy, iacopo.carreras@create-net.org

R. Casado Universidad de Castilla-La Mancha, I3A Campus Universitario s/n,
02071 Albacete, Spain, rcasado@dsi.uclm.es

Andrea F. Cattoni Department of Biophysical and Electronic Engineering,
University of Genova, Via Opera Pia 11a, 16145 Genova, Italy,
cattoni@dibe.unige.it

Shang-Wen Cheng Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA
15213, USA, zensoul@cs.cmu.edu

Phan Cong-Vinh London South Bank University, Borough Road, London SE1
0AA, United Kingdom, phanvc@ieee.org

Noel De Palma INPG, Grenoble, France, depalma@inrialpes.fr

xi

xii Contributors

Álvaro Roberto Silvestre Fialho INRIA, Sophia Antipolis, France, Now at
Microsoft Research-INRIA Joint Centre, Orsay, France, alvaro.fialho@inria.fr

David Garlan Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA
15213, USA, garlan@cs.cmu.edu

Damianos Gavalas Dept of Cultural Technology and Communication, University
of the Aegean Address of Institute, Lesvos, Greece, dgavalas@aegean.gr

Andrzej Goscinski Deakin University, Pigdons Road, Waurn Ponds, Geelong
Victoria 3217, Australia, ang@deakin.edu.au

Daniel Hagimont INPT, Toulouse, France, hagimont@enseeiht.fr

Jianhua He Institute of Advanced Telecommunications, Swansea University,
Swansea SA2 8PP, UK, j.he@swansea.ac.uk

Charalampos Konstantopoulos Research Academic Computer Technology
Institute, Patras, Greece, konstant@cti.gr

Yu-Kwong Kwok Department of Electrical and Computer Engineering, Colorado
State University, Fort Collins, CO 80526-1373, USA, Ricky.Kwok@colostate.edu

Chonho Lee University of Massachusetts, Boston, MA, USA
chonho@cs.umb.edu

O. Lysne University of Oslo, Simula Research Laboratory, P.O. Box 134, N-1325
Lysaker, Norway, olavly@simula.no

Patrick Martin School of Computing, Queen’s University, Kingston, ON K7L
3N6, Canada, martin@cs.queensu.ca

Madjid Merabti School of Computing and Mathematical Science, Liverpool John
Moores University, Byrom Street, Liverpool, UK, M.Merabti@ljmu.ac.uk

Daniele Miorandi CREATE-NET, Trento, Italy, daniele.miorandi@create-net.org

Hala Mokhtar School of Computing and Mathematical Science, Liverpool John
Moores University, Byrom Street, Liverpool, UK, H.M.Mokhtar@ljmu.ac.uk

Aristides Mpitziopoulos Dept of Cultural Technology and Communication,
University of the Aegean Address of Institute, Lesvos, Greece, crmaris@aegean.gr

Giovanni Neglia INRIA, Sophia Antipolis, France University of Palermo,
P alermo, Italy, giovanni.neglia@ieee.org

Giacomo Oliveri Department of Biophysical and Electronic Engineering,
University of Genova, Via Opera Pia 11a, 16145 Genova, Italy,
giacomo.oliveri@dibe.unige.it

Tetsuo Otani Central Research Institute of Electric Power Industry
ohtani@criepi.denken.or.jp

Contributors xiii

Marina Ottonello Department of Biophysical and Electronic Engineering,
University of Genova, Via Opera Pia 11a, 16145 Genova, Italy,
marina@dibe.unige.it

Grammati Pantziou Department of Informatics, Technological Educational
Institution of Athens, Athens, Greece, pantziou@teiath.gr

Heiko Pfeffer Fraunhofer Institute Fokus, Berlin, Germany
heiko.pfeffer@fokus.fraunhofer.de

Wendy Powley School of Computing, Queen’s University, Kingston, ON K7L
3N6, Canada, wendy@cs.queensu.ca

Carlo S. Regazzoni Department of Biophysical and Electronic Engineering,
University of Genova, Via Opera Pia 11a, 16145 Genova, Italy, carlo@dibe.unige.it

A. Robles-Gómez Universidad de Castilla-La Mancha, I3A Campus Universitario
s/n, 02071 Albacete, Spain, arobles@dsi.uclm.es

Bradley Schmerl Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA
15213, USA, schmerl@cs.cmu.edu

T. Skeie University of Oslo, Simula Research Laboratory, P.O. Box 134, N-1325
Lysaker, Norway, tskeie@simula.no

T. Sødring University of Oslo, Simula Research Laboratory, P.O. Box 134,
N-1325 Lysaker, Norway, tsodring@simula.no

A.G. Solheim University of Oslo, Simula Research Laboratory, P.O. Box 134,
N-1325 Lysaker, Norway, aashig@simula.no

Stephan Steglich Fraunhofer Institute Fokus, Berlin, Germany
stephan.steglich@fokus.fraunhofer.de

Patricia Stolf IUFM, Toulouse, France, stolf@irit.fr

Junichi Suzuki University of Massachusetts, Boston, MA jxsg@cs.umb.edu

Zuoyin Tang

Pramod K. Varshney Department of Electrical Engineering and Computer
Science, Syracuse University, NY, USA, varshney@syr.edu

Hiroshi Wada University of Massachusetts, Boston, MA, USA, fshu@cs.umb.edu

Jie Xiang Simula Research Laboratory, Martin Linges vei 17, IT Fornebu,
P.O.Box 134, No-1325 Lysaker, Norway, jxiang@simula.no

Jin Xiao David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada, j2xiao@cs.uwaterloo.ca

Mengjie Yu School of Computing and Mathematical Science, Liverpool John
Moores University, Byrom Street, Liverpool UK, M.Yu@2001.ljmu.ac.uk

xiv Contributors

Qi Zhang David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada, q8zhangg@cs.uwaterloo.ca

Tanja Zseby Fraunhofer Institute Fokus, Berlin, Germany
tanja.zseby@fokus.fraunhofer.de

Farhana H. Zulkernine School of Computing, Queen’s University, Kingston, ON
K7L 3N6, Canada, farhana@cs.queensu.ca

Yan Zhang Simula Research Laboratory, Norway, yanzhang@iee.org

Zuoyin Tang Department of Electronic and Electrical Engineering, University
of Strathclyde, Glasgow G1 1XW, UK, Zuoyin.Tang@strath.ac.uk

Part I
Autonomic Computing

General-Purpose Autonomic Computing

Radu Calinescu

Abstract The success of mainstream computing is largely due to the widespread
availability of general-purpose architectures and of generic approaches that can
be used to solve real-world problems cost-effectively and across a broad range
of application domains. In this chapter, we propose that a similar generic frame-
work is used to make the development of autonomic solutions cost effective, and to
establish autonomic computing as a major approach to managing the complexity of
today’s large-scale systems and systems of systems. To demonstrate the feasibility
of general-purpose autonomic computing, we introduce a generic autonomic com-
puting framework comprising a policy-based autonomic architecture and a novel
four-step method for the effective development of self-managing systems. A pro-
totype implementation of the reconfigurable policy engine at the core of our archi-
tecture is then used to develop autonomic solutions for case studies from several
application domains. Looking into the future, we describe a methodology for the
engineering of self-managing systems that extends and generalises our autonomic
computing framework further.

1 Introduction

The last decade has brought revolutionary transformations to the way in which
information and communication technologies (ICT) are used to conduct business
and research and to provide services in all sectors of the society [26]. The ability
to accomplish more, faster and on a broader scale through expert use of ever more
complex ICT systems is at the core of today’s scientific discoveries, newly emerged
services and everyday life. Autonomic computing represents an effective approach
to managing the spiralling complexity of these systems by delegating their configu-
ration, optimisation, repair and protection to the systems themselves [15, 21].

R. Calinescu (B)
Computing Laboratory, University of Oxford, Oxford, England, UK
e-mail: Radu.Calinescu@comlab.ox.ac.uk

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 1, C© Springer Science+Business Media, LLC 2009

3

4 R. Calinescu

The research efforts of the past few years have generated a wealth of knowl-
edge on what autonomic systems should look like [9, 13, 21, 31, 34] and what
best practices to follow in building them [4, 16, 41, 43]. This progress is to a great
extent a by-product of the effort that went into the development of successful auto-
nomic solutions addressing specific management tasks in real-world applications
[8, 25, 27, 40, 42]. While these developments demonstrate the feasibility of the auto-
nomic computing approach to complexity management, the current use of bespoke
and domain-specific architectures, and of dedicated models and policies limits sig-
nificantly the cost-effectiveness and reusability of today’s autonomic solutions.

These limitations resemble the problems encountered in the early days of main-
stream computing, and overcome successfully through the use of general-purpose
architectures and generic approaches for the development of real-world applica-
tions across multiple application domains. We therefore propose that an equally
generic framework is used to make the development of self-managing systems cost-
effective, and to drive standardisation, component reuse and user adoption in the
realm of autonomic computing. Given that policy-based autonomic computing rep-
resents the most advanced approach to developing self-managing systems of practi-
cal utility, we describe below the criteria that a policy-based autonomic computing
framework needs to satisfy in order to qualify as “general purpose”:

C1 Support for the whole range of software, hardware and data compo-
nents encountered in real-world ICT systems. To enable the development of
effective autonomic systems for real-world applications, the framework should
support the organisation of heterogeneous collections of existing and future
ICT components into self-managing systems. Both components specifically
designed for inclusion into a self-managing system (i.e., autonomic-enabled
ICT resources) and components not originally intended for this purpose (i.e.,
legacy ICT resources) should be catered for.1

C2 Support for a broad spectrum of self-* functional areas and autonomic
computing policies. The framework should aid the development of self-
management capabilities spawning a rich spectrum of self-* functional areas,
e.g., self-configuration, self-healing, self-optimisation and self-protection
[21, 31, 34]. This must be achieved through supporting all types of autonomic
computing policies, including action, goal and utility-function policies [44, 45].

C3 Support for the cost-effective development of self-managing systems for
a large variety of application domains and use cases. The framework must
reduce the effort and costs incurred in the development of today’s autonomic
systems significantly through enabling the extensive reuse of components and
the sharing of autonomic computing models and policies. It should drive the
standardisation of interfaces, policies, models and components for autonomic
computing, and should allow and encourage the modular development of com-
plex self-managing systems and systems of systems. Last but not least, the
framework must provide a generic method for developing autonomic systems
from any combination of legacy and/or autonomic-enabled ICT resources.

1 The ICT components to be integrated into an autonomic system will be termed (ICT) resources.

General-Purpose Autonomic Computing 5

To demonstrate the feasibility of general-purpose autonomic computing, we
introduce a novel policy-based autonomic computing framework comprising an
autonomic architecture designed around a reconfigurable policy engine, and a four-
step method for the effective development of self-managing systems. This frame-
work builds on recent advances in autonomic computing [9, 13, 17, 34], and extends
the author’s previous work in this area [4–7] in several new directions. Thus, we
describe for the first time how multiple instances of the same general-purpose
autonomic architecture can be organised into self-managing systems of systems
by means of a new type of autonomic policy termed a resource-definition policy.
Also, we present the first-ever integration of quantitative model checking techniques
[23, 24] into autonomic policy engines, and show how the use of this new capability
enables the specification of powerful utility-function policies. Finally, we present a
new four-step method for the development of self-managing systems starting from a
model of their ICT resources, and we illustrate its application to several case studies
that spawn different application domains and employ a wide range of policy types.

The remainder of the chapter is organised as follows. In Sect. 2, we contrast
our framework with other approaches to autonomic solution development. We then
describe the general-purpose autonomic architecture and the reconfigurable policy
engine at its core in Sects. 3 and 4, respectively. A prototype implementation of
the policy engine is presented in Sect. 5, followed by the description of our generic
method for the development of self-managing systems in Sect. 6, and by several
case studies that illustrate its use in a number of different real-world applications
in Sect. 7. Section 8 analysis the extent to which our candidate general-purpose
autonomic framework satisfies the criteria stated at the beginning of the chapter,
and suggests ways for extending our current results.

2 Related Work

The autonomic infrastructure proposed in [35] is retrofitting autonomic functional-
ity onto legacy systems by using sensors to collect resource data, gauges to inter-
pret these data and controllers to decide the “adaptations” to be enforced on the
managed systems through effectors. This infrastructure was successfully used to
monitor, analyse and control legacy systems in applications such as spam detection,
instant messaging quality-of-service management and load balancing for geograph-
ical information systems [19]. Our framework is building on the powerful approach
in [19, 35], and has the added capability to handle heterogeneous types of resources
unknown until runtime, and to support the development of autonomic systems of
systems through the use of resource-definition policies.

In [20], the authors define an autonomic architecture meta-model that extends
IBM’s autonomic computing blueprint [16], and use a model-driven process to
partly automate the generation of instances of this meta-model. Each instance is
a special-purpose organic computing system that can handle the use cases defined
by the model used for its generation. Our general-purpose autonomic architecture
eliminates the need for the 19-activity generation process described in [20] by using

6 R. Calinescu

a universal policy engine that can be dynamically redeployed to handle any use cases
encoded within its resource model and policy set.

Several research projects propose the use of model-driven architecture (MDA)
techniques to develop autonomic computing policies and self-managing systems
starting from high-level behavioural models of the system or of its components
[10, 36, 39]. Two of these approaches [10, 36] are targeted at bespoke systems whose
components already exhibit sophisticated autonomic behaviour, and thus cannot be
readily extended to handle generic legacy resources. In contrast, our framework
can accommodate any type of ICT resource whose characteristics can be mod-
elled as described in Sect. 6. The preliminary work described in [39] is closer to
our approach in that it advocates the importance of using MDA techniques in the
development of generic self-managing systems; however, the authors do not sub-
stantiate their proposal with any concrete solution, but rather qualify it as an open
challenge.

A number of other projects have investigated isolated aspects related to the devel-
opment of autonomic systems out of non-autonomic components. Some of these
projects addressed the standardisation of the policy information model, with the
Policy Core Information Model [30] representing the most prominent outcome of
this work. Recent efforts such as Oasis’ Web Services Distributed Management
(WSDM) project were directed at the standardisation of the interfaces through
which the manageability of a resource is made available to other applications
[32]. An integrated development environment for the implementation of WSDM-
compliant interfaces is currently available from IBM [17].

In [12], the authors take a view similar to ours by introducing a paradigm termed
model-driven autonomic computing, and explaining that the model-based validation
of self-management decisions represents a more reliable and flexible approach than
the use of pre-set policies. A powerful hierarchical model of NASA’s Autonomous
Nano-Technology Swarm missions is successfully used in [12] to achieve the self-
managing functionality that these missions depend on, and thus to illustrate the ben-
efits of the approach. Our work complements the results in [12] with a new model-
based approach to developing self-management functionality and a generic method
that uses existing tools and standards for the implementation of autonomic systems.

Finally, we build on recent advances in component-based programming, by using
an approach to ICT resource composition and dynamic configuration that resembles
the one supported by reflective component models such as Fractal [3]. In addi-
tional to the Fractal functionality, our framework automates the generation of
most component interfaces and the management of the targeted system.

3 General-Purpose Autonomic Architecture

Figure 1 depicts our general-purpose autonomic architecture, a preliminary version
of which was introduced in [5, 6]. The core component of the architecture is a
universal policy engine that organises a heterogeneous collection of legacy ICT
resources and autonomic-enabled resources into a self-managing system. To reduce

General-Purpose Autonomic Computing 7

Fig. 1 UML component diagram of the autonomic architecture. The architecture supports the
development of two types of autonomic systems-of-systems: a hierarchical topology that allows
an instance of the policy engine to manage other instances of the architecture (i.e., the managed
resources n+1 to n+m in the diagram); and a federation of collaborating instances of the archi-
tecture that use each others’ high-level sensors and effectors, as shown by the dashed lines in the
diagram

the effort required to develop autonomic solutions, the policy engine can handle
resources whose types are unknown during its implementation and deployment.
This unique capability is achieved through runtime configuration: a model of the
system to be managed is supplied to the policy engine for this purpose. As a result,
the engine can implement the high-level goals described by a set of user-specified
policies that make reference to the resources defined in the system model.

As recommended by IBM’s architectural blueprint for autonomic computing
[16], standardised adaptors are used to expose the manageability of all types of
legacy ICT resources in a uniform way, through sensor and effector interfaces. The
autonomic-enabled resources in the self-managing system are either typical ICT
resources designed to expose sensor and effector interfaces allowing their direct
inter-operation with the policy engine, or other instances of the architecture. The
latter option is possible because the policy engine exposes the entire system as an
atomic ICT resource through high-level sensors and high-level effectors. A detailed
description of the architecture and an overview of existing standards and technolo-
gies that can be used to implement it in practice are available in [5, 6].

8 R. Calinescu

4 Reconfigurable Policy Engine

The internal architecture of our policy engine (Fig. 2) is influenced by the types of
policies it implements and by its ability to handle resources whose characteristics
are supplied to the engine at runtime. A “coordinator” module is employing the
following components to implement the closed control loop of an autonomic system:

• The runtime code generator produces the necessary interfaces when the policy
engine is configured to manage new types of resources or supplied with new
resource-definition policies. When a new system model is used to configure the
policy engine, manageability adaptor proxies are generated that allow the engine
to interoperate with the manageability adaptors for the resource types specified
in the system model. Likewise, when resource-definition policies are set up that
specify new ways in which the policy engine should expose the ICT resources it
manages, high-level manageability adaptors are generated.

• The manageability adaptor proxies are thin interfaces allowing the policy engine
to communicate with the autonomic-enabled resources and the manageability
adaptors for the legacy resources in the system.

• The high-level manageability adaptors expose the system state and configura-
tion in a format that allows its integration within other instances of the architec-
ture. The way in which these interfaces are dynamically specified by means of
resource-definition policies is described later in the chapter.

Fig. 2 Architecture of the
reconfigurable policy engine.
The shaded components are
implemented by the prototype
described in Sect. 5. A
standards-based database
driver will be added in a
future version of the
prototype. The machine
learning modules represent
the focus of ongoing research
efforts by the autonomic
computing community, and
will be included in a
reference implementation of
the engine when the results of
this research start to
crystallise

General-Purpose Autonomic Computing 9

• The scheduler is used to support the scheduling operators appearing in policy
actions for the goal and utility-function policies handled by the policy engine.

• The resource discovery component is used to locate the resources to be managed
by the policy engine.

• The database driver is used to maintain policy engine data such as historical
resource property values in an external persistent storage.

• The machine learning modules use machine learning techniques [2] to derive
and/or refine a behavioural model of the managed resources based on sensor data
and inside policy engine information. This enables the engine to support goal
and utility-function policies for systems for which in-depth knowledge about
the behavioural characteristics of the managed resources cannot be supplied by
system administrator. The usefulness of a Modeler component for the implemen-
tation of utility-function policies is mentioned in [44], although the authors are
not specific about the learning algorithms that such a component might use.

• The probabilistic model checker enables the policy engine to take full advantage
of the behavioural model supplied by the system administrator or built by its
machine learning modules. This is done by using probabilistic model checking
to establish quantitative properties of the system [24] and thus to implement the
user-specified policies. As will be illustrated by a couple of the case studies
in Sect. 7, the integration of these quantitative verification techniques into the
policy engine enables system administrators to specify powerful goal and utility-
function policies that would have been extremely complicated or even impossible
to express otherwise. Another use envisaged for the model checker is to help
verify the policies implemented by the engine as suggested in [22].

5 Prototype Implementation

In this section we overview a prototype implementation of our autonomic architec-
ture that was originally introduced in [7], and we describe for the first time two of its
new features: the integration of a probabilistic model checker with the policy engine
and the implementation of resource-definition policies.

Two major choices influence the realisation of an instance of the architecture:
the technology used to represent the system model and the technology chosen for
the implementation of the policy engine components. We chose to represent system
models as plain XML documents that are instances of a pre-defined meta-model
encoded as an XML schema. This choice was motivated by the availability of
numerous off-the-shelf tools for the manipulation of XML documents and XML
schemas that are largely lacking for the other technologies we considered (e.g.,
[1, 29, 32]). In particular, by using existing XSLT engines and XML-based code
generators, we shortened the prototype development time and avoided the need to
implement bespoke components for this functionality.

As shown in Fig. 3, an ICT system is a named set of resources (resource in
the UML diagram), each comprising a unique identifier ID and a set of resource

10 R. Calinescu

Fig. 3 Meta-model of an ICT system

properties with their characteristics. A resource property is associated a unique ID,
and has a data type (i.e., propertyDataType). Several other property characteristics
are defined in the meta-model:

• mutability – the WS-RMD MutabilityType [33] specifies if the property is “con-
stant”, “mutable” or “appendable”;

• modifiability – tells if the property is “read-only”, “read–write”, “write-only” or
“derived” from other properties and the behavioural model of the system;

• subscribeability – specifies whether a client such as the policy engine can sub-
scribe to receive notifications when the value of this property changes;

• primaryKey – indicates whether the property is part of the property set used to
identify a resource instance among all resource instances of the same type.

Our prototype policy engine and the manageability adaptors enabling its interopera-
tion with legacy resources were implemented as web services in order to leverage the
platform independence, loose coupling and security features of this technology [46].
The runtime configuration of the engine required the extensive use of techniques
available only in an object-oriented environment, e.g., runtime generation of data
types and manageability adaptor proxies, reflection and generics. Based on these
requirements, J2EE and .NET were selected as candidate development platforms
for the prototype engine, with .NET being eventually preferred due to its better
handling of dynamic proxy generation and slightly easier-to-use implementation of
reflection. The components included in the prototype are shown in Fig. 2.

The free, open-source probabilistic model checker PRISM [14] developed by
the Quantitative Analysis and Verification Group at the University of Oxford was
chosen for integration with the original version of the policy engine described in
[7]. This choice was based on an extensive performance analysis of a range of model
checkers [18] that ranked PRISM as the best option for analysing large behavioural
models such as the ones encountered in autonomic computing systems. Further-
more, PRISM comes with a command-line interface that made possible its direct
integration into the existing version of the policy engine, and the runtime execution
of quantitative analysis experiments [23, 24] that self-managing systems can use to
realise powerful goal and utility-function policies as illustrated in Sects. 7.3 and 7.4.

General-Purpose Autonomic Computing 11

Another novel feature of the policy engine that we describe for the first time is
its ability to handle resource-definition policies, i.e., policies of the form

RESDEF(newResourceId, propertyDe f1, . . . , propertyDe fm), (1)

where newResourceId is a string corresponding to the ID element of a resource
definition from the meta-model in Fig. 3 and

propertyDe fi = (propertyIdi, expri, subscribeabilityi, primaryKeyi), 1≤ i≤ m
(2)

define the properties of the new resource type. The expri component in (2) tells the
policy engine how to calculate the value of the ith resource property as a function
of the resources in the policy scope, or is one of INTEGER, DOUBLE or STRING
to indicate that property i is a “read–write” property with one of these primitive
types. The other components of propertyDe fi correspond to the property charac-
teristics from the system meta-model in Fig. 3 that cannot be inferred from expri.
To implement a resource-definition policy, the policy engine generates dynamically
the data type for the new resource and its manageability adaptor (i.e., a new web
service whose URL is built by replacing the suffix PolicyEngine.asmx from
the policy engine URL with newResourceIdManageabilityAdaptor.asmx).
This manageability adaptor exposes objects of the new data type that are created and
whose fields are set in accordance with the property definitions (2). The case study
presented in Sect. 7.5 illustrates the use of resource-definition policies.

6 A Generic Method for the Development of Autonomic Systems

Our method for the development of autonomic systems comprises four steps:

1. development of a model of the system to which autonomic capabilities are added;
2. generation of manageability adaptors for the legacy resources in the system;
3. reconfiguration of the policy engine by means of the system model from step 1;
4. development of autonomic computing policies that handle the required use cases.

To illustrate these steps, we will apply them to a system comprising a set of services
of different priorities, subjected to different workloads, and sharing the CPU capac-
ity of the same server. The aim of the case study is to develop an autonomic solution
for managing the allocation of CPU to services such that high-priority services are
treated preferentially, subject to each service getting a minimum amount of CPU.

Several policy types are typically used in autonomic systems [44, 45]: action
policies provide a low-level specification of how the system configuration should
be changed to match its state; goal policies specify precise constraints that should
be met by varying the system configuration and utility-function policies supply a
“measure of success” that the self-managing system should optimise by appropri-
ately varying its configuration. In our running example we will use a utility-function
policy, which is the most flexible of these policy types.

12 R. Calinescu

To implement utility-function policies, the policy engine needs an understanding
of the behaviour of the system and its resources. Given a resource, we define its state
s as the vector whose elements are the read-only properties of the resource, and its
configuration c as the vector comprising its modifiable (i.e., read–write) properties.
Let S and C be the value domains for s and c, respectively.2 A behavioural model of
the resource is a function

behaviouralModel : S × C → S, (3)

such that for any current resource state s ∈ S and for any resource configuration
c ∈ C, behaviouralModel(s, c) represents the future state of the resource if its con-
figuration is set to c.

Our policy engine works both with an approximation of the behavioural model
that consists of a set of discrete values of the behaviouralModel in (3) and with
a continuous-time Markov chain (CTMC) [23] representation of (3). For our run-
ning example, we will use the former type of behavioural model; the use of CTMC
behavioural models is described in Sect. 7. As the current version of the policy
engine does not include the machine learning modules described in Sect. 4, it
acquires these behavioural models from the manageability adaptors for the managed
resources. With the future addition of machine learning modules (Fig. 2), the pol-
icy engine will gain the ability to use learning techniques to refine and, eventually,
to derive these behavioural models automatically based on its observation of the
managed resources.

Step 1: Model Development Let System be the set of all instances of the meta-
model in Fig. 3; the purpose of this step is to find a system model

M ∈ System (4)

that can be used to implement the desired autonomic solution. To achieve this goal,
we identify the system resources involved in the autonomic solution and their rel-
evant properties. Given the ability to reconfigure the policy engine at any time, it
makes sense to keep this model as simple as possible: additional resources and/or
resource properties can be specified in new versions of the model, and conveyed to
the policy engine as and when necessary. For instance, the single resource type for
our example system is service, and its properties are as follows: name, a unique
identifier used to distinguish between different services; priority, an integer
value; cpuAllocation, the percentage of the server CPU allocated to the service;
responseTime, the service response time, averaged over the past one-second
time interval; interArrivalTime, the request inter-arrival time, averaged over
the past one-second time interval and behaviouralModel, an approximation of
the service behaviour that provides information on how the service response time
varies with its CPU allocation and the request inter-arrival time.

2 Note that S and C are fully specified in the system model.

General-Purpose Autonomic Computing 13

Each resource property is then analysed in order to identify its value domain,
mutability, modifiability and all of the other characteristics specified by the meta-
model in Fig. 3. This information is encoded as an instance of the system meta-
model, ready to be used in the subsequent steps of the method. By analysing these
resource properties for our running example and representing the analysis results as
an instance of the system meta-model, we produced with the system model in Fig. 4.

Step 2: Manageability Adaptor Generation Given a system model M, this step
generates manageability adaptors for each type of legacy resource. Off-the-shelf
tools can be used to automate most of this generation. First, an XSLT transformation

schemaGen : System → XmlSchema (5)

is applied to the system model in order to obtain an XML schema for the resource
types in the system. The XML schema generated when this transformation is applied
to our sample system model is depicted as UML in Fig. 5a. A standard data type

<system xmlns=“...”>

<name>server</name>

<!-- Services running within a server -->
<resource>
<ID>service</ID>

<property>
<ID>name</ID>
<propertyDataType>
<xs:simpleType name=“serviceName”>
<xs:restriction base=“xs:string”/>

</xs:simpleType>
</propertyDataType>
<mutability>constant</mutability>
<modifiability>read-only</modifiability>
<subscribeability>false</subscribeability>
<primaryKey>true</primaryKey>

</property>

<property>
<ID>priority</ID>
. . .

</property>

<property>
<ID>cpuAllocation</ID>
<propertyDataType>
<xs:simpleType name=“serviceCpuAllocation”>
<xs:restriction base=“xs:int”>
<xs:minInclusive value=“0”/>
<xs:maxInclusive value=“100”/>

</xs:restriction>
</xs:simpleType>

</propertyDataType>
<mutability>mutable</mutability>
<modifiability>read-write</modifiability>
<subscribeability>false</subscribeability>
<primaryKey>false</primaryKey>

</property>

<property>
<ID>responseTime</ID>
. . .

</property>

<property>
<ID>interArrivalTime</ID>
. . .

</property>

<property>
<ID>behaviouralModel</ID>
<propertyDataType>
<xs:complexType

name=“serviceBehaviouralModel”>
<xs:sequence>
<xs:element name=“modelElement”

type=“serviceModelElement”
maxOccurs=“unbounded”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=“serviceModelElement”>
<xs:sequence>
<xs:element name=“responseTime”

type=“serviceResponseTime”/>
<xs:element name=“interArrivalTime”

type=“serviceInterArrivalTime”/>
<xs:element name=“cpuAllocation”

type=“serviceCpuAllocation”/>
</xs:sequence>

</xs:complexType>
</propertyDataType>
<mutability>constant</mutability>
<modifiability>read-only</modifiability>
<subscribeability>false</subscribeability>
<primaryKey>false</primaryKey>

</property>

</resource>
</system>

Fig. 4 System model for the running example

14 R. Calinescu

Fig. 5 Generated XML schema (a) and manageability adaptor (b) for the sample system

generator such as Microsoft’s XML Schema Definition tool [28] is then used to
automatically generate the data type set associated with this schema:

dataTypeGen : XmlSchema → P DataType. (6)

General-Purpose Autonomic Computing 15

Finally, a simple transformation was implemented to automate the generation of
manageability adaptor stubs for the legacy resources in the system:

adaptorGen : XmlSchema → P ManageabilityAdaptor. (7)

As shown in Fig. 5b, which depicts the data type (i.e., service) and the manage-
ability adaptor (i.e., ServiceManageabilityAdaptor) for the system in our run-
ning example, all manageability adaptors are subclassing the generic abstract web
service ManagedResource<T>. The bulk of the sensor and effector functionality
associated with a manageability adaptor is implemented in this base abstract class,
and only a small number of simple, resource-specific methods that are declared
abstract in ManagedResource<T> need to be implemented manually in each man-
ageability adaptor. Note that the policy engine is itself implemented as a subclass
of ManagedResource<T>, so that an instance of the architecture can be readily
included as a managed resource into a larger autonomic system as described in
Sect. 3.

To complete this step, the manageability adaptor produced by the generator
in (7) and depicted in Fig. 5b was manually extended, and then connected to a
server discrete-event simulator running a high-priority “premium” service and a
low-priority “standard” service. These services handled simulated requests with
normally distributed CPU utilisation and exponentially distributed inter-arrival time.

Step 3: Engine Configuration This step consists in supplying the system model to
the instance of the policy engine used in the autonomic solution. As stated before,
the policy engine was realised as a web service, so we implemented a web interface
for its simple configuration. Figure 6 shows a snapshot of this interface after the

Fig. 6 Policy engine configuration

16 R. Calinescu

system model from our running example, and the utility-function policy that will be
presented in step 4 were supplied to the engine.

Step 4: Policy Development In this step, autonomic computing policies are
designed that support the use cases of the envisaged autonomic solution. The scope,
priority, condition and action components of these policies make reference to the
resources and resource properties defined in the system model used to configure the
policy engine. Each of these policy components can be specified using a rich set of
operators and functions [6] that allow the definition of action, goal, utility-function
and, in the latest version of the engine, of resource-definition policies.

The policy set is applied to all resources whose locations are known to the policy
engine,3 and which are in the scope of the policies. Policy development is generally
a complex, error-prone and iterative process [4], and our framework improves the
effectiveness of this process significantly by (a) enabling and encouraging the reuse
of system models and policies and (b) simplifying the iterative development and
testing of policies for new types of resources and of policies that explore the use of
new properties of existing resources in novel ways.

For our autonomic solution, we defined a utility function that models the business
gain associated with running a set of service resources R with different levels of
service:

utility(R) =
∑
r∈R

r.priority ∗ min(1000, max(0, 2000 − r.responseTime)).

Figure 7a depicts the utility function for a server running a “premium” service
with priority 100 and a “standard” service with priority 10. The policy action
implemented by the autonomic system (Fig. 6 and Table 1) was defined by means of
the MAXIMISE(R, utility, property, capacity, min, max, model) operator that uses
the information about the system behaviour encoded in model to set the value of the
specified resource property for all resources in R such as to: (a) maximise the value
of the utility function and (b) ensure that the value of property stays between min
and max, and that the sum of the property values across all resources in R does not
exceed the available capacity.

This policy provides the definition of the utility function, and the link between
the responseTime, interArrivalTime and cpuAllocation properties
of a service resource and the components of its behaviouralModel property.
Each time it evaluates the utility-function policy, the policy engine uses this infor-
mation to select the elements from the behavioural model that are in the proximity
of the current state of the system; the Euclidean metric is used for this calculation.
The new configuration for the system is then chosen as the one associated with the
selected element that maximises the value of the utility function. The experimental
results of applying this policy to our example system are presented in Sect. 7.1.

3 The policy engine employs a resource discovery service (Fig. 2) to obtain the URLs of the
resources to be managed.

General-Purpose Autonomic Computing 17

Fig. 7 Utility function (a) and service behavioural model (b) for the running example

Table 1 The arguments of the MAXIMISE(R, utility, property, capacity, min, max, model) policy
action for the running example of an autonomic system

R service

utility SUM(service.priority ∗ MIN(1000, MAX(0, 2000 − service.responseTime)))
property service.cpuAllocation
capacity 100
min 15
max 100
model service.responseTime(service.interArrivalTime, service.cpuAllocation) =

service.behaviouralModel.responseTime(service.behaviouralModel.
interArrivalTime, service.behaviouralModel.cpuAllocation)

18 R. Calinescu

7 Case Studies

7.1 Utility-Driven Allocation of CPU Capacity

We start our presentation of case studies with the experimental results for the run-
ning example of an autonomic system from the previous section. Variants of this
system were used to validate autonomic computing frameworks in the past (e.g.,
[44]), hence this well-understood use case provides a good basis for a first assess-
ment of the framework. To evaluate our autonomic solution, the behavioural model
for a service was obtained from 100 runs of the server simulator in which the
average service response time was recorded for 920 equidistant points covering
the entire (interArrivalTime, cpuAllocation) value domain (Fig. 7b).
Figure 8 shows a typical experiment in which the utility-function policy in Table 1
was used to manage the allocation of CPU to our “premium” and “standard” ser-
vices, when their request inter-arrival times were varied to simulate different work-
loads. The policy evaluation period was set to 3 s for this experiment, so that the
system could self-adapt to the rapid variation in the workload of the two services.
This allowed us to measure the CPU overhead of the policy engine, which was under
1% with the engine service running on a 1.8 GHz Windows XP machine. In a real
scenario, such variations in the request inter-arrival time are likely to happen over
longer intervals of time, and the system would successfully self-optimise with far
less frequent policy evaluations.

7.2 Goal-Based Scheduling of CPU Capacity

In the absence of knowledge about the behaviour of the legacy ICT resources that
need to be organised into a self-managing system, goal policies can often be used in
conjunction with scheduling heuristics. In this section, we consider the same system
as in Sect. 7.1, but assume that a behavioural model describing the variation of the
service response time with its allocated CPU and request inter-arrival rate is not
available. Figure 9 depicts a concise representation of the system model and a goal
policy that can be used in this scenario. The action of this goal policy is specified by
means of an expression that uses the SCHEDULE(R, ordering, property, capacity,
min, max, optimal) operator that (a) sorts the resources in R in non-increasing order
of the comparable expressions in ordering; (b) in the sorted order, sets the specified
resource property to a value never smaller than min or larger than max, and as close
to optimal as possible; and (c) ensures that the overall sum of all property values
does not exceed the available capacity. Accordingly, the policy action in Fig. 9 will
set the cpuAllocation property of all services to a value between 15 and 100%, sub-
ject to the overall CPU allocation staying within the 100% available capacity. Opti-
mally, the cpuAllocation should be left unchanged if the 55 ≤ cpuUtilisation ≤ 85,

General-Purpose Autonomic Computing 19

Fig. 8 Experimental results for Sect. 7.1. The CPU allocations for the services are initially
decreased to match their light workload (5 ms request inter-arrival time during time interval a).
As the service workloads increase, so do the CPU allocations, until the CPU required to satisfy
the demand from the premium service leaves insufficient CPU capacity for the standard service to
make any contribution to the utility function (time interval d), hence it is allocated the minimum
amount of CPU specified in the policy (i.e., 15%). As soon as less CPU capacity is required to
satisfy the needs of the premium service (time interval e), the standard service is swiftly allocated
sufficient CPU to bring it back into a region of operation in which it contributes to the utility
function. Subsequently, the CPU allocations are varied to accommodate more gradual changes in
the workloads (time intervals f–g)

decrease by 5% if cpuUtilisation < 55 and increase by 5% if cpuUtilisation > 85.4

The experimental results for the resulting autonomic solution (available in [7])
resemble those corresponding to the use of a utility-function policy in Sect. 7.1,
but are less effective in two important circumstances:

4 The HYSTERESIS(val, lower, upper) operator used to achieve this behaviour (Fig. 9) returns
−1, 0 or 1 if val < lower, lower ≤ val ≤ upper or upper < val, respectively.

20 R. Calinescu

Fig. 9 Policy engine parameters for the case study in Sect. 7.2. The policy engine is configured
to monitor the service cpuUtilisation (i.e., the amount of CPU utilised by the service,
expressed as a percentage of its CPU allocation) and to realise a goal policy requiring that the
cpuUtilisation is maintained between 55 and 80% of the allocated CPU

• several successive policy evaluations are required to handle significant changes
in the service workloads because the CPU capacity allocated to services can be
modified by only ±5% at a time;

• when insufficient CPU is available to ensure that a low-priority service runs in
an operation area that is useful for the business and the utility-function policy in
Sect. 7.1 would restrict the CPU allocated to the service to a minimum, the goal
policy gives it all available CPU, thus wasting CPU capacity unnecessarily.

7.3 Dynamic Power Management of Disk Drives

When formal methods are used in the development and/or verification of legacy
ICT resources, the behavioural models employed by these methods can often be
exploited by our framework to augment the legacy ICT resources with autonomic
capabilities. Starting from the CTMC model of a Fujitsu disk drive in [38] and its
encoding as a PRISM CTMC model [37], we built (Fig. 10) a system model of
the disk drive that can be used for the configuration of our policy engine. We then
used this system model to add self-optimisation capabilities to the disk drive so
that it dynamically adapted its probability of transitioning from the idle state to the
low-power sleep state to changes in (a) the request inter-arrival time and (b) the
user-specified utility function:

utility = w1 min

(
1, max

(
0,

11 − queueLength)

2

))
+ w2 max(0, 1.2 − power),

(8)

General-Purpose Autonomic Computing 21

Fig. 10 PRISM CTMC model of a three-state Fujitsu disk drive taken from [37], and used to
devise the system model for the configuration of the policy engine. The uninitialised PRISM
constants correspond to “read-only” and “read–write” properties of a disk drive resource (i.e.,
interArrivalTime and switchToSleepProbability, respectively). PRISM reward
structures (i.e., power and queueLength) correspond to “derived” disk drive properties

where the weights w1 and w2 are chosen depending on the circumstances in which
the disk drive is used (Fig. 11). Given this policy, the policy engine ran PRISM
experiments [24] to establish the optimal switchToSleepProbability for
the disk drive at regular, 10-s time intervals. For our simple CTMC model, each of
these experiments took subsecond time, yielding the results in Fig. 12.

7.4 Adaptive Control of Cluster Availability

The case study presented in this section involves the adaptive control of cluster
availability within a data centre. The aim of the autonomic solution is to control
the number of servers allocated to the N ≥ 1 clusters of a data centre in order to
maximise the utility function

22 R. Calinescu

Fig. 11 The utility function (8) (depicted here for w1 = w2 = 100) was used to achieve a user-
customisable trade-off between the disk drive responsiveness (which is provably proportional to its
average queueLength [38]) and its power consumption (i.e., power)

utility =
N∑

i=1

priorityi ·GOAL(availabilityi ≥ target availabilityi)−ε
N∑

i=1

serversi

(9)
subject to

N∑
i=1

serversi ≤ Total servers and requiredi ≤ serversi, (10)

where priorityi > 0, availabilityi ∈ [0, 1], target availabilityi ∈ [0, 1], requiredi ≥
1 and serversi ≥ 1 represent the priority, (actual) availability, target availability,
number of required servers and number of (allocated) servers for cluster i, 1 ≤ i ≤
N, respectively. The GOAL operator yields 1 when its argument is true and 0
otherwise, Total servers ≥ 1 is the total number of servers in the data centre, and
0 < ε � 1 is a constant.5 The availability of cluster i, availabilityi, is the fraction
of a 1-year time period during which at least requiredi servers are usable (i.e., they
are operational and connected to an operational switch and backbone).

Like in the previous case study, we extracted the system model for the configu-
ration of our policy engine from an existing behavioural model of the targeted ICT
resource, namely from the CTMC model of a dependable cluster of workstations
introduced in [11]. This model takes into account the failure and repair rates of
all components from our targeted cluster architecture (Fig. 13a). Consequently, the
policy engine can use PRISM to calculate the cluster availabilities for the data-centre
configurations satisfying (10), and to decide the number of servers that each cluster

5 The second term of the utility function (9) ensures that when multiple configurations maximise
the first term, the configuration that uses the fewest servers is preferred.

General-Purpose Autonomic Computing 23

Fig. 12 Discrete-event simulation results contrasting our autonomic approach to disk drive
dynamic power management (DPM) with two standard DPM methods [38]: the timeout method
that moves the disk drive into the sleep state after a period of idleness t and “awakens” it immedi-
ately after a request has arrived; and the N method that moves the disk drive into the sleep state as
soon as it becomes idle, and “awakens” it after N requests accumulate in its queue. The autonomic
DPM approach achieved a better utility than the two standard DPM methods for most of the time,
and similar utility to the better of the two for the rest of the time. This is due to the good trade-off
that the autonomic approach realised between power consumption and request queue length across
a wide workload range, while the other approaches are effective for specific workloads

should get so that the value of the utility function (9) is maximised. Given the com-
plexity of the CTMC behavioural model, we implemented a cluster manageability
adaptor that uses notifications to inform the policy engine about changes in the
number of required servers for the clusters. Hence, the policy engine recalculates
the server allocations only when there is a change in the state of the autonomic
system. In our simulations, this calculation took up to 30 s. This response time is
acceptable for the considered use case because, based on our previous experience
with policy-based data-centre management [4], half a minute represents a small

24 R. Calinescu

Fig. 13 Architecture of an n-server dependable cluster, taken from [11] (a), and simulation results
for a three-cluster data centre over a 4-week time period (b)

delay compared to the time required to provision a server when it is allocated to
a new cluster.6 The experimental results are shown in Fig. 13b.

7.5 Dynamic Web Content Generation

The last case study is extending the autonomic solution from the previous section
by incorporating the autonomic system for controlling cluster availability into an
autonomic system of systems (Fig. 14). The resource-definition policy action below
was supplied to policy engine instances within the autonomic data-centre systems:

RESDEF(businessValue, (id, CONCAT(cluster.id), f alse, true),

(max, SUM(cluster.priority), true, f alse), (actual, SUM(cluster.priority∗ (11)

GOAL(cluster.availability >= cluster.targetAvailability)), true, f alse)).

6 Section 8 suggests techniques for working around the time taken by runtime model checking
when such delays are not acceptable.

General-Purpose Autonomic Computing 25

Fig. 14 Autonomic system of systems comprising several instances of the data-centre system from
Sect. 7.4, and an autonomic-enabled web page implementing a business dashboard. The data-centre
systems were each configured to expose their actual and ideal utility by means of a resource-
definition policy, and the top-level policy engine implements an action policy that updates the
properties of the autonomic-enabled web page with a summary of these utilities

As described in Sect. 5, this resulted in each of these policy engines dynamically
creating a new ICT resource named businessValue and comprising three “read-
only” properties: id – the concatenated identifiers of its clusters; max – its ideal
utility, i.e., the maximum possible value of the first term in (9); and actual –
the actual value of this term. A model of this synthesised ICT resource and of an
autonomic-enabled web page was then used to configure the top-level policy engine
in Fig. 14, and an action policy was used to ensure that this policy engine updates
the web page periodically with a summary based on the businessValue of each
autonomic data-centre system it knows about (Fig. 15).

8 Summary and Future Work

The success of mainstream computing is largely due to the availability of a system
development methodology that enables and encourages standardisation, component
reuse and user adoption. Building on recent advances in autonomic computing and
on our previous work on policy-based autonomic systems, we proposed a general-
purpose framework that brings similar benefits to the realm of autonomic com-
puting. We introduced a set of criteria for assessing the generality of autonomic
computing frameworks, and a new method for the development of self-managing
systems starting from a model of their ICT resources. Also, we presented the inte-
gration of a probabilistic model checker into an autonomic computing policy engine,
and we described how a new policy type termed a resource-definition policy can be
used to build autonomic systems of systems.

26 R. Calinescu

Fig. 15 An autonomic-enabled web page exposes effectors that the top-level policy engine uses to
supply it with summary information about the maximum utility and actual utility of a set of auto-
nomic data-centre systems (a single data-centre system was used in the experiment shown here).
The web page presents the dynamically acquired information using a graphical representation that
is generated at runtime using Matlab. Thus, the information about potential loss of business value
is conveyed in a concise format that can be used directly by a data-centre manager

To validate our framework, we employed it to build autonomic solutions spawn-
ing a range of application domains and using a variety of autonomic computing
policies. Table 2 uses these case studies to analyse the extent to which the proposed
framework satisfies the generality criteria C1–C3 introduced in Sect. 1:

Table 2 Summary of the case studies presented in the paper

Sect. 7.1
Self-monitoring
Self-optimisation

CPU capacity
allocation

C1 ICT resources

So
ftw

ar
e

Har
dw

ar
e

Dat
a

Le
ga

cy
Au

to
no

m
ic-

en
ab

led
M

ain
 se

lf-
*

Ac
tio

n
Goa

l
Utili

ty-
fu

nc
tio

n
Res

ou
rc

e-
de

fin
itio

n

fu
nc

tio
na

l a
re

as

C2 self-* areas & policies C3 application domain

CPU capacity
allocation
Dynamic power
management
Cluster availability
control
Dynamic gen. of
web content

Self-monitoring
Self-optimisation
Self-monitoring
Self-adaptation
Self-configuration
Self-protection
Self-monitoring
Self-generation

Sect. 7.2

Sect. 7.3

Sect. 7.4

Sect. 7.5

General-Purpose Autonomic Computing 27

C1 In terms of supported ICT resources, our case studies demonstrate that the
framework can handle the whole range of envisaged ICT resources.

C2 The framework has been used to develop autonomic solutions in several areas of
self-* functionality, and to support all types of autonomic computing policies.
To further confirm its generality, new applications are being currently investi-
gated that address additional areas of self-* functionality.

C3 The autonomic systems developed for the presented case studies cover a range
of application domains, including the development of a hierarchical system of
systems. This is a good first step towards establishing that the framework sat-
isfies this criterion. More work is required to assess the feasibility of using the
framework in other use cases, and in particular in the development of federations
of collaborating autonomic systems with no centralised management.

Based on past experience in using a domain-specific autonomic framework [4]
to develop systems similar to those in Sects. 7.1 and 7.2, we estimate that the use
of the generic framework to build these systems reduced the development effort
by roughly an order of magnitude, and we expect the same to hold true for other
applications.

Fig. 16 Proposed autonomic system development methodology. The autonomic architecture, pol-
icy engine and system meta-model described in this paper are used at the domain-independent
level, alongside a proposed ICT ontology and a proposed tool for designing the meta-model
instances used to configure the policy engine. Repositories of ICT resource definitions and auto-
nomic policies, and domain-specific ICT ontologies should be available at the level of an appli-
cation domain, while our generic method for autonomic system development is employed for the
cost-effective development of autonomic systems at the application-specific level

28 R. Calinescu

A key feature of our autonomic computing framework is its use of runtime prob-
abilistic model checking. As shown in Sect. 7.4, model checking large systems can
incur significant overheads, and the use of the subscription-notification mechanism
supported by the framework (instead of periodical policy evaluation) is one way
to accommodate this constraint. Other approaches to be investigated include the
use of caching and pre-evaluation techniques to bypass the model checking step
during policy evaluation, and the use of a hybrid approach in which a smaller model
checking experiment is carried out to produce a close-to-optimal configuration for
the autonomic system and a faster technique is then used to refine this configuration.

In addition to reusing components and techniques across a broad range of appli-
cations, our approach to autonomic system development allows and encourages the
reuse of system models and autonomic computing policies. To take reusability fur-
ther, these models and policies should draw their elements from domain-specific
repositories of resource definitions and autonomic computing policies, respectively.
Furthermore, to maximise the sharing of models, policies, manageability adaptors
and autonomic-enabled resources, these repositories need to be built around con-
trolled ICT ontologies, as required by the methodology for the cost-effective devel-
opment of autonomic systems that we are proposing in Fig. 16. This methodology
that we are working towards is in line with the excellent principles stated in [43]
and successfully applied in the context of autonomic networking by Strassner
et al. [42].

Acknowledgments The work presented in this chapter was partly supported by the UK Engineer-
ing and Physical Sciences Research Council grant EP/F001096/1. The author is grateful to Marta
Kwiatkowska, David Parker, Gethin Norman and Mark Kattenbelt for insightful discussions during
the integration of the PRISM probabilistic model checker with the autonomic policy engine.

References

1. J. Arwe et al. Service Modeling Language, version 1.0, March 2007. http://www.w3.org/
Submission/2007/SUBM-sml-20070321.

2. C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.
3. E. Bruneton et al. The Fractal component model and its support in Java. Softw. Pract.

Exper., 36:1257–1284, 2006.
4. R. Calinescu. Challenges and best practices in policy-based autonomic architectures. In Proc.

3rd IEEE Intl. Symp. Dependable, Autonomic and Secure Computing, pages 65–74, 2007.
5. R. Calinescu. Model-driven autonomic architecture. In Proc. 4th IEEE Intl. Conf. Autonomic

Computing, June 2007.
6. R. Calinescu. Towards a generic autonomic architecture for legacy resource management. In

K. Elleithy, editor, Innovations and Advanced Techniques in Systems, Computing Sciences and
Software Engineering, pages 410–415, Springer, 2008.

7. R. Calinescu. Implementation of a generic autonomic framework. In D. Greenwood et al.,
editor, Proc. 4th Intl. Conf. Autonomic and Autonomous Systems, pages 124–129, March 2008.

8. M. Devarakonda et al. Policy-based autonomic storage allocation. In Self-Managing Dis-
tributed Systems, volume 2867 of LNCS, pages 143–154. Springer, 2004.

9. S. Dobson et al. A survey of autonomic communications. ACM Transactions on Autonomous
and Adaptive Systems, 1(2):223–259, December 2006.

General-Purpose Autonomic Computing 29

10. D. Gracanin et al. Towards a model-driven architecture for autonomic systems. In Proc. 11th
IEEE Intl. Conf. Engineering of Computer-Based Systems, pages 500–505, 2004.

11. B. Haverkort et al. On the use of model checking techniques for dependability evaluation. In
Proc. 19th IEEE Symp. Reliable Distributed Systems, pages 228–237, October 2000.

12. M. Hinchey et al. Modeling for NASA autonomous nano-technology swarm missions and
model-driven autonomic computing. In Proc. 21st Intl. Conf. Advanced Networking and
Applications, pages 250–257, 2007.

13. M.G. Hinchey and R. Sterritt. Self-managing software. Computer, 39(2):107–109, Feb. 2006.
14. A. Hinton et al. PRISM: A tool for automatic verification of probabilistic systems. In

H. Hermanns and J. Palsberg, editors, Proc. 12th Intl. Conf. Tools and Algorithms for the
Construction and Analysis of Systems, volume 3920 of LNCS, pages 441–444. Springer, 2006.

15. IBM Corporation. Autonomic computing: IBM’s perspective on the state of information tech-
nology, October 2001.

16. IBM Corporation. An architectural blueprint for autonomic computing, 2004. http://www-
03.ibm.com/autonomic/pdfs/ACBP2 2004-10-04.pdf.

17. IBM Corporation. Autonomic integrated development environment, April 2006.
http://www.alphaworks.ibm.com/ tech/aide.

18. D.N. Jansen et al. How fast and fat is your probabilistic model checker? An experimental
comparison. In K. Yorav, editor, Hardware and Software: Verification and Testing, volume
4489 of LNCS, pages 69–85. Springer, 2008.

19. G. Kaiser et al. Kinesthetics extreme: An external infrastructure for monitoring distributed
legacy systems. In Proc. of the 5th Annual Intl. Active Middleware Workshop, June 2003.

20. H. Kasinger and B. Bauer. Towards a model-driven software engineering methodology for
organic computing systems. In Proc. 4th Intl. Conf. Comput. Intel., pages 141–146, 2005.

21. J.O. Kephart and D.M. Chess. The vision of autonomic computing. IEEE Computer Journal,
36(1):41–50, January 2003.

22. S. Kikuchi et al. Policy verification and validation framework based on model checking
approach. In Proc. 4th IEEE Intl. Conf. Autonomic Computing, June 2007.

23. M. Kwiatkowska. Quantitative verification: Models, techniques and tools. In Proc. 6th Joint
Meeting of the European Software Engineering Conf. and the ACM SIGSOFT Symp. Founda-
tions of Software Engineering, pages 449–458. ACM Press, September 2007.

24. M. Kwiatkowska et al. Stochastic model checking. In M. Bernardo and J. Hillston, editors,
Formal Methods for the Design of Computer, Communication and Software Systems: Perfor-
mance Evaluation (SFM’07), volume 4486 of LNCS, pages 220–270. Springer, 2007.

25. C. Lefurgy et al. Server-level power control. In Proc. 4th IEEE Intl. Conf. Autonomic Com-
puting, June 2007.

26. T. Lenard and D. Britton. The Digital Economy Factbook. The Progress and Freedom Foun-
dation, 2006.

27. Wen-Syan Li et al. Load balancing for multi-tiered database systems through autonomic
placement of materialized views. In Proc. 22nd IEEE Intl. Conf. Data Engineering, April
2006.

28. Microsoft Corporation. Xml schema definition tool (xsd.exe), 2007. http://
msdn2.microsoft.com/en-us/library/x6c1kb0s(VS.80).aspx.

29. Microsoft Corporation. System Definition Model overview, April 2004.
http://download.microsoft.com/download/b/3/8/b38239c7-2766-4632-9b13-
33cf08fad522/sdmwp.doc.

30. B. Moore. Policy Core Information Model (PCIM) extensions, January 2003. IETF RFC
3460, http://www.ietf.org/rfc/rfc3460.txt.

31. R. Murch. Autonomic Computing. IBM Press, 2004.
32. B. Murray et al. Web Services Distributed Management: MUWS primer, February 2006.

OASIS WSDM Committee Draft, http://www.oasis-open.org/committees/download.php/
17000/wsdm-1.0-muws-primer-cd-01.doc.

33. OASIS. Web Services Resource Metadata 1.0, November 2006.

30 R. Calinescu

34. M. Parashar and S. Hariri. Autonomic Computing: Concepts, Infrastructure & Applications.
CRC Press, 2006.

35. J. Parekh et al. Retrofitting autonomic capabilities onto legacy systems. Cluster Computing,
9(2):141–159, April 2006.

36. J. Pena et al. A model-driven architecture approach for modeling, specifying and deploying
policies in autonomous and autonomic systems. In Proc. 2nd IEEE Intl. Symp. Dependable,
Autonomic and Secure Computing, pages 19–30, 2006.

37. PRISM Case Studies: Dynamic Power Management. http://www.prismmodelchecker.org/
casestudies/power.php.

38. Q. Qiu et al. Stochastic modeling of a power-managed system: construction and optimization.
In Proc. Intl. Symp. Low Power Electronics and Design, pages 194–199. ACM Press, 1999.

39. M. Rohr et al. Model-driven development of self-managing software systems. In Proc. 9th
Intl. Conf. Model-Driven Engineering Languages and Systems. Springer, 2006.

40. R. Sterritt et al. Sustainable and autonomic space exploration missions. In Proc. 2nd IEEE
Intl. Conf. Space Mission Challenges for Information Technology, pages 59–66, 2006.

41. R. Sterritt and M.G. Hinchey. Biologically-inspired concepts for self-management of com-
plexity. In Proc. 11th IEEE Intl. Conf. Engineering of Complex Computer Systems, pages
163–168, 2006.

42. J. Strassner et al. Providing seamless mobility using the FOCALE autonomic architecture.
In Proc. 7th Intl. Conf. Next Generation Teletraffic and Wired/Wireless Advanced Networking,
volume 4712 of LNCS, pages 330–341, 2007.

43. J. Strassner et al. Ontologies in the engineering of management and autonomic systems: A
reality check. Journal of Network and Systems Management, 15(1):5–11, 2007.

44. W.E. Walsh et al. Utility functions in autonomic systems. In Proc. 1st Intl. Conf. Autonomic
Computing, pages 70–77, 2004.

45. S.R. White et al. An architectural approach to autonomic computing. In Proc. 1st IEEE Intl.
Conf. Autonomic Computing, IEEE Computer Society, pages 2–9, 2004.

46. O. Zimmermann et al. Perspectives on Web Services: Applying SOAP, WSDL and UDDI to
Real-World Projects. Springer, 2005.

Software Architecture-Based Self-Adaptation

David Garlan, Bradley Schmerl, and Shang-Wen Cheng

Abstract Increasingly, systems must have the ability to self-adapt to meet changes
in their execution environment. Unfortunately, existing solutions require human
oversight, or are limited in the kinds of systems and the set of quality-of-service
concerns they address. Our approach, embodied in a system called Rainbow, uses
software architecture models and architectural styles to overcome existing limi-
tations. It provides an engineering approach and a framework of mechanisms to
monitor a target system and its environment, reflect observations into a system’s
architecture model, detect opportunities for improvement, select a course of action,
and effect changes in a closed loop. The framework provides general and reusable
infrastructures with well-defined customization points, allowing engineers to sys-
tematically customize Rainbow to particular systems and concerns.

1 Introduction

Imagine a world where a software engineer could take an existing software sys-
tem and specify an objective, conditions for change, and strategies for adaptation
to make that system self-adaptive where it was not before. Furthermore, imagine
that this could be done in a few weeks of effort and be sensitive to maintaining
business goals and other properties of interest. For example, an engineer might take
an existing client–server system and make it self-adaptive with respect to a specific
performance concern such as high latency. He might specify an objective to maintain
request-response latency below some threshold, a condition to change the system if
the latency rises above the threshold, and a few strategies to adapt the system to
fix the high-latency situation. Another engineer might make a coalition-of-services
system self-adaptive to network performance fluctuations, while limiting cost of
operating the infrastructure. Still another engineer might make a cluster of servers
self-adaptive to certain security attacks.

D. Garlan (B)
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
e-mail: garlan@cs.cmu.edu

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 2, C© Springer Science+Business Media, LLC 2009

31

32 D. Garlan et al.

Today, when increasingly systems have the requirement to self-adapt with mini-
mal human oversight, it is becoming necessary to meet this vision. Systems must
cope with variable resources, system errors, and changing user priorities, while
maintaining, as best they can, the goals and properties envisioned by the engineers
and expected from the users. Software engineers lack the tools and techniques to
engineer a system with self-adaptation.

Engineers and researchers alike have responded to and met this self-adaptation
need in somewhat limited forms through programming language features such as
exceptions and in algorithms such as fault-tolerant protocols. But these mechanisms
are often specific to the application, tightly bound to the code, and usually provide
only localized treatment of system errors. As a result, self-adaptation for today’s
systems are costly to build, often taking many man-months to retrofit systems.

In contrast, the vision outlined above requires an approach that makes it pos-
sible for engineers to easily define adaptation policies that are global in nature,
and that take into consideration business goals and quality attributes. In particular,
we require that engineers be able to augment existing systems to be self-adaptive
without rewriting them from scratch, that self-adaptation policies and strategies can
be reused across similar systems, that multiple sources of adaptation expertise can
be synergistically combined, and that all of this can be done in ways that support
maintainability, evolution, and analysis.

In this chapter, we describe an approach to achieving these goals using
architecture-based self-adaptation techniques. In particular, our approach abstracts
observed behavior of an executing system into properties of an architectural model,
where they can be reasoned about using a variety of existing architectural analysis
techniques. The results of these analyses can then be used to reason about changes
that should be made to a system to improve or correct the system’s achievement of
the quality attributes.

Our approach is embodied in a system called Rainbow, which focuses on two
challenges to achieve cost-effective self-adaptation: (1) an approach and mecha-
nism that reduces engineering effort and (2) representation of adaptation knowl-
edge. Rainbow provides an engineering approach and a framework of mechanisms
to monitor a system and its executing environment, reflect observations into an
architectural model of the system, determine any problem states, select a course
of action, and effect changes. By leveraging the notion of architectural style to
exploit commonality of systems, the framework provides a general and reusable
infrastructure with well-defined customization points to cater to a wide range of
systems. The framework also provides a set of abstractions that allow engineers
to focus on adaptation concerns, facilitating an adaptation engineering workflow
for the systematic customization of Rainbow. To emulate the mundane and rou-
tine adaptation tasks performed by system administrators, Rainbow provides a lan-
guage, called Stitch, to represent the adaptation techniques using first-class adapta-
tion concepts. It offers modularity with respect to quality dimension and domain
expertise, strategies with condition and effect, a mechanism to tailor to particu-
lar styles, and the use of utility theory to compute the best adaptation path under
uncertainty.

Software Architecture-Based Self-Adaptation 33

In this chapter, we introduce the ideas behind architecture-based self-adapting
systems; briefly survey the research landscape; discuss the research and engineer-
ing challenges, particularly with respect to autonomic behavior for distributed, net-
worked systems; and describe the Rainbow approach and how it addresses these
challenges. We also give examples of its use in the context of autonomic networks,
focusing on adaptations to improve qualities such as fidelity, performance, security,
and cost of operation.

2 Overview of Autonomic and Self-Adaptive Systems

Overcoming the challenges of self-adaptation and allowing managed systems to
self-adapt with minimal human oversight requires closing the “loop of control.”
Software systems have traditionally been designed as open-loop systems: once a
system is designed for a certain function and deployed, its extra-functional quality
attributes typically remain relatively unchanged. In most cases, if something goes
wrong, humans must intervene, often by restarting the failed subsystem or taking
the entire system offline for repair. This results in high costs in system downtime,
personnel costs, and decreased revenue through system unavailability.

To address this problem, a number of researchers have proposed an alternative
approach that uses external software mechanisms to maintain a form of closed-loop
control over the target system (e.g., [26, 30, 39]). Such mechanisms allow a system
to self-adapt dynamically, with reduced human oversight. Minimally, closed-loop
control consists of mechanisms that monitor the system, reflect on observations for
problems, and control the system to maintain it within acceptable bounds of behav-
ior. This kind of system is known as a feedback control system in control theory [42].

Feedback control systems have typically been applied to control physical sys-
tems. For simple systems, the control model may be built-in to the design. For
example, a home thermostat that measures room temperature and checks it against
the set point, controlling a home heating and cooling system, will typically have a
simple built-in thermodynamic model. In more complex systems an explicit process
model is necessary for effective control [42]. For example, an air conditioning sys-
tem for a large building that monitors and controls multiple locations would require
an explicit model of the building partitions and temperatures to efficiently control
which cooling units to turn on and when.

For software systems, the external controller requires an explicit model of the
target system in order to reflect on observations and to configure and repair the
system [39]. Monitoring mechanisms extract and aggregate target system informa-
tion to update the model. An evaluation mechanism detects problems in the target
system as reflected in the model. The appearance of a problem triggers an adaptation
mechanism to use the model to determine a course of action. The mechanism then
propagates the necessary changes to the target system to fix the problem.

In principle, external mechanisms have a number of benefits over internal mecha-
nisms. External control separates the concerns of system functionality from those of

34 D. Garlan et al.

adaptation (or “exceptional”) behaviors. With the adaptation mechanism as a sep-
arate entity, engineers can more easily modify and extend it, and reason about its
adaptation logic. Furthermore, the separation of mechanisms allows the application
of this technique even to legacy systems with inaccessible source code, as long
as the target system provides, or can be instrumented to provide, hooks to extract
system information and to make changes. Finally, providing external control with
generic but customizable mechanisms (e.g., model management, problem detection,
strategy selection) facilitates reuse across systems, reducing the cost of developing
new self-adaptive systems.

2.1 The IBM Autonomic Framework

The IBM Autonomic Computing Initiative codified an external, feedback control
approach in its Autonomic Monitor-Analyze-Plan-Execute (MAPE) Model [28].
Figure 1 illustrates the MAPE loop, which distinguishes between the autonomic
manager (embodied in the large rounded rectangle) and the managed element,
which is either an entire system or a component within a larger system. The MAPE
loop highlights four essential aspects of self-adaptation:

1. Monitor: The monitoring phase is concerned with extracting information—
properties or states—out of the managed element. Mechanisms range from
source-code instrumentation to non-intrusive communication interception.

2. Analyze: is concerned with determining if something has gone awry in the sys-
tem, usually because a system property exhibits a value outside of expected
bounds, or has a degrading trend.

3. Plan: is concerned with determining a course of action to adapt the managed
element once a problem is detected.

4. Execute: is concerned with carrying out a chosen course of action and effecting
the changes in the system.

Fig. 1 The IBM Autonomic MAPE Reference Model

Software Architecture-Based Self-Adaptation 35

Shared between these four phases is the Knowledge component, which contains
models, data, and plans or scripts to enable separation of adaptation responsibilities
and coordination of adaptations. The Rainbow framework provides components that
fulfill each of these four phases and the knowledge to support self-adaptation.

3 Software Architecture and Architecture-Based Self-Adaptation

A key issue in using an external model is to determine the appropriate kind of mod-
els to use for software-based systems. Each type of model has certain advantages
in terms of the analyses and kinds of adaptation it supports. In principle, a model
should be abstract enough to allow straightforward detection of problems in the
target system, but should provide enough fidelity to determine remedial actions to
take to fix the problem. State machines, queuing theory, graph theory, differential
equations, and other mathematical models [40, 42] have all been used for model-
based, external adaptation of software systems.

We, among others, use a system’s software architecture as the external model for
dynamic adaptation [19, 39]. The architecture of a software system is an abstract
representation of the system as a composition of computational elements and their
interconnections [44]. Specifically, an architecture model represents the system as
a graph of interacting components.1 Nodes in the graph, termed components, rep-
resent the principal computational elements and data stores of the system: clients,
servers, databases, user interfaces, etc. Arcs, termed connectors, represent the path-
ways of interaction between the components. This is the core architectural represen-
tation scheme adopted by a number of architecture description languages (ADLs),
such as Acme [20] and xADL [13].

The use of software architecture as the basis for self-adaptation, termed
architecture-based self-adaptation, holds a number of potential promises. A rich
body of work on architecture trade-off analysis techniques used at system design
time facilitates runtime self-adaptation. As an abstract model, an architecture model
provides a global perspective on the system and exposes the important system-level
behaviors and properties. As a locus of high-level system design decisions, the
model makes system integrity constraints explicit, thereby helping to ensure the
validity of a change. For example, the architecture model can expose important
properties such as throughput and bandwidth, allowing the overall throughput
or performance of the system to be analyzed. Furthermore, the model might be
associated with explicit constraints on the architecture that, for example, forbid
cycles. This knowledge can be used at runtime to reason about the effect of a
change on the system’s throughput or structure. See [18] for a discussion of this
concept for performance evaluation.

1 We are primarily interested in the component–connector view [11] because it characterizes the
abstract state and behavior of the system at runtime to enable reasoning about problems and courses
of adaptation.

36 D. Garlan et al.

Crucial for architecture-based self-adaptation is the choice of the architectural
style used to represent the target system. A style (e.g., pipe-filter) provides the
vocabulary to describe the architecture of a system in terms of a set of component
types (e.g., filter) and connector types (e.g., pipe), along with the rules for composi-
tion (e.g., no cycles) [1]. A style might also prescribe the properties associated with
particular element types (e.g., throughput on a pipe). Usually associated with a style
is a set of analytical methods to reason about properties of systems in that style. For
example, systems in the MetaH style supports real-time schedulability analysis [16].

For self-adaptation, given some quality objectives, each style may guide the
choice of system properties to monitor, help identify strategic points for system
observation, and suggest possible adaptations. To illustrate this, consider a signal-
processing system with an architecture in the pipe-filter style. This style constrains
the system to a data-flow computation pattern, points to throughput as a system
property, identifies the filter as a strategic point for measuring throughput, and sug-
gests throughput analysis for reasoning about overall system throughput. The pipe-
filter style may suggest adaptations that swap in variants of filters to adjust through-
put, create redundant paths to improve reliability, or add encryption to enhance
security. In contrast, consider a different system in the client–server style. This
style highlights request-response latency as a key property, identifies the client as a
strategic point for measuring latency and the server for load, and suggests the use of
queuing theory to reason about service time and latency. The style may suggest an
adaptation that switches clients to less loaded servers to reduce latency.

4 Related Work

To date, several dynamic software architectures and architecture-based adaptation
frameworks have been proposed and developed [7, 24, 39], including an effort to
characterize the style requirements of self-healing systems [35]. Below, we examine
a representative set of approaches, categorizing each by its primary focus, then high-
lighting its main features. Broadly speaking, related approaches focus on formalism
and modeling, or mechanisms of adaptation. A third category addresses distribution
and decentralization of control.

4.1 Distributed, Decentralized Adaptation

Work on self-organizing systems in [23] proposes an approach where self-managing
units coordinate toward a common model, an architectural structure defined using
the architectural formalism of Darwin [33]. Each self-organizing component is
responsible for managing its own adaptation with respect to the overall system. To
do this, each component maintains a copy of the architecture model of the entire
system. While this approach provides the advantage of distributed control and elim-
inates a single point of failure, requiring each component to maintain a global model

Software Architecture-Based Self-Adaptation 37

and keep the model consistent, which imposes significant performance overhead.
Furthermore, the approach prescribes a fixed distributed algorithm for global config-
uration. We overcome the performance overhead and coordination issue by allowing
tailorable global reorganization without imposing a high-performance overhead, but
we trade off distributed, localized control of adaptation decision.

4.2 Formal, Dynamic Architectures

A number of approaches focus on modeling and formalizing dynamic systems,
rather than mechanisms to enable self-adaption. Our approach builds on formal
architectural modeling, using the model within a framework of reusable infras-
tructures to enable self-adaptation in a target system. Wermelinger and colleagues
developed a high-level language, based on CommUnity, to describe architectures,
as well as changes over an architectural configuration, such as adding, removing, or
substituting components or interconnections [49].

The K-Component model addresses the integrity and safety of dynamic software
evolution, modeled as graph transformations of meta-models on architecture [15]. It
uses reflective programs called adaptation contracts to build adaptive applications,
coordinated via a configuration manager (similar to Le Métayer’s approach [31]).

Darwin is an ADL for specifying the architecture of a distributed system, with an
operational semantics that captures dynamic structures as the elaboration of com-
ponents and their bindings in a configuration [33]. Organization of components and
connectors may change during execution. The evolving structures of Darwin are
modeled using Milner’s �-calculus, allowing the correctness of its program elab-
oration to be analyzed. Together with its �-calculus semantics, Darwin serves as
a general-purpose configuration language for specifying distributed systems. Arch-
Ware [37] and PiLar [12] are examples of ADLs that use architectural reflection to
model layers of active architectures, allowing separate concerns to be addressed at
different layers. These approaches rely on sophisticated reflective technologies to
support the active architectures and enable dynamic co-evolution.

These approaches assume that system implementations are generated from the
architecture descriptions. In contrast, our approach relies on external mechanisms
decoupled from the target system and can therefore be used to add adaptation to
existing systems.

4.3 Style-Specific Approaches with Fixed Quality Attributes

A number of architecture-based approaches provide mechanisms to enable self-
adaptation (or system reconfiguration) that focus on particular quality attributes
of systems, such as performance [6, 27, 32], survivability [50], or that focus on
particular architectural styles, for example, [26, 38].

38 D. Garlan et al.

Most closely related to our own work is that of the UCI Research group headed by
Taylor [14], and the research of Sztajnberg [47]. As a natural extension of [38], Tay-
lor’s group developed an architecture-based runtime architecture evolution frame-
work, which dynamically evolves systems using a monitoring and execution loop
controlled by a planning loop. This framework supports self-adaptation for C2-style
systems, and evolution of the architecture model uses architectural differencing and
merging techniques similar to those used for source code version control. Sztajnberg
and Loques developed the CR-RIO framework, which uses a style-neutral ADL
(CBabel), architectural contracts to specify execution context, application profiles
to describe resource requirements, and middleware to perform architectural recon-
figurations based on the specified contracts. CR-RIO demonstrates a formal ver-
ification capability but does not appear to support automation of multi-objective
adaptations, for example by composing multiple contracts, nor does it address engi-
neering aspects. Our approach can be applied to different classes of systems and can
address multiple quality objectives.

Current approaches present a number of limitations and unresolved issues, which
are addressed by Rainbow. In particular, where traditional adaptive techniques—for
example, the ones based on exception-handling mechanisms and network time-
outs—rely only on localized knowledge of system states, we use an architecture-
based approach to leverage a more global perspective. While existing approaches
do not address the quantity of adaptation and system-level details that engineers
grapple with in order to build self-adaptation for their systems, we design a language
that encapsulates core self-adaptation concepts and hoists them as first-class build-
ing blocks for system engineers to build self-adaptation capabilities. Finally, almost
no existing approach provides a systematic, integrated approach to self-adaptation
that combines an end-to-end system perspective, style-based adaptation, automation
of routine human expertise, and incremental support to developing self-adaptation
capabilities; we address this by providing a framework with reusable infrastructures
and customizable elements.

5 The Rainbow Approach

Related work provides some of the building blocks for our own research. Software
architecture research provides the language, models, and analysis mechanisms to
represent and reason about a system’s runtime properties; related work in self-
healing systems and architecture-based approaches demonstrate the effectiveness
of using software architecture for particular classes of systems and fixed quality
attributes. What is missing is an approach to self-adaptation that (a) is generally
applicable to different classes of systems and quality objectives, (b) allows adapta-
tion to be represented as explicit operational entities and chooses the best one in a
principled and analyzable way, and (c) provides an integrated approach that saves
engineers time and effort in writing and changing adaptation.

Our approach satisfies the above requirements by (1) providing a framework,
called Rainbow, that provides general, supporting mechanisms for self-adaptation,

Software Architecture-Based Self-Adaptation 39

and which can be tailored to different classes of systems and (2) defining a language,
called “Stitch,” that plugs into this framework and allows adaptation expertise to be
specified and reasoned about, and which can be used to automate and coordinate
adaptations to satisfy multiple objectives.

The Rainbow framework is illustrated in Fig. 2. It functions as follows. Monitor-
ing mechanisms—probes and gauges—observe the running target system. Obser-
vations are reported to update properties of the architecture model managed by the
Model Manager. The Architecture Evaluator evaluates the model upon update to
ensure that the system is operating within an acceptable range, as determined by
architectural constraints. If the evaluation determines that the system has a problem,
the Evaluator triggers the Adaptation Manager to initiate the adaptation process and
choose an appropriate repair strategy. The Strategy Executor executes the strategy
on the running system via system-level effectors.

There are three important components to making our solution work: (1) software
architecture gives us leverage to make self adaptation general and cost-effective;
(2) control theory provides a well understood mechanism for closed-loop system
adaptation; and (3) utility theory allows us to pick the most appropriate strategy for
repair. Details of each of these are enumerated below.

5.1 The Elements of Rainbow

5.1.1 Software Architecture Model and Style

The first major element of Rainbow is the use of a stylized software architecture
model to monitor and adapt a target system. Like the blueprint of a building, the

Fig. 2 The Rainbow framework with notional customization points

40 D. Garlan et al.

software architecture model of a system provides an abstract view of the modeled
software system. The architecture model elides low-level details and allows the
architect to focus on the important, high-level properties of the system. The model
is described using a particular vocabulary that conveys the structural characteristics
of the system, for example, client–server, dataflow, N-tier, and repository. Current
approaches to architecture modeling also allow the architect to specify explicit rules,
or constraints, about element composition in the system. An architecture model
so specified enables the architect to analyze the system for quality attributes such
as performance, availability, reliability, and security. Together, vocabulary, rules,
properties, and analyses, summarized below, comprise the building blocks of archi-
tectural style [1, 44].

1. Vocabulary (V) of element types, including component types (e.g., database,
client, server, filter), connector types (e.g., sql, http, rpc, pipe,), and component
and connector interface types.

2. Design rules (R), or constraints, that determine the permitted composition of
those elements. For example, the rules might require every client in a client–
server organization to connect to at most one server, prohibit cycles in a particu-
lar pipe-filter style, or define a compositional pattern such as a starfish arrange-
ment of a blackboard system or a pipelined decomposition of a compiler.

3. Properties (P) that are characteristic of elements in a style, in particular to pro-
vide analytic and sometimes behavioral or semantic information. For instance,
“load” and “service time” properties might be characteristic of server elements
in a performance-specific client–server style, while “transfer-rate” might be a
common property in a pipe element of a pipe-filter style.

4. Analyses (A) that can be performed on systems built in that style. Examples
include performance analysis using queuing theory for a client–server sys-
tem [46] and schedulability analysis for a style oriented toward real-time pro-
cessing [3].

While this traditional notion of style suffices to model snapshots of a system’s
architecture, including dynamic behavior of, and interactions between, system ele-
ments (e.g., Darwin [33] and Wright [4]), this characterization of style lacks mech-
anisms to explicitly represent what dynamic architectural changes are allowed by
systems of the style. Capturing allowable operations to the system is important for
modeling, analyzing, and reasoning about dynamic system adaptation. For example,
knowing whether a system’s style allows the activation of a server or the swap of a
communication channel helps determine possible adaptations for that system.

To handle the notion of dynamism with respect to architectural structure, we
augment the notion of style with operators.

5. Operators (O). A set of style-specific operations that may be performed on ele-
ments of a system to alter its configuration. For example, a service-coalition style
might define operators addService or removeService to add or remove a service
from a system configuration in this style.

Software Architecture-Based Self-Adaptation 41

The notion of architectural style (augmented with operators) gives the architect a
powerful abstraction to describe, classify, and analyze many different kinds of sys-
tems. Style provides the unifying concepts to factor commonalities out of classes
of system and to characterize differences between those classes. Specifically, we
leverage style in our design of the Rainbow approach and framework, in combi-
nation with the runtime use of architecture and environment models, to achieve
generality and cost-effectiveness. We present its design and customization points
in Sect. 5.3. Next, we discuss control systems theory, which is integral to the design
of our self-adaptation framework.

5.1.2 Control Systems and the Self-Adaptation Cycle

The second major element of Rainbow is the application of control systems con-
cepts to the adaptation problem. Self-adaptation requires a closed loop of control.
We choose a specific type of control system model to make our approach generaliz-
able and reusable across diffeent classes of system. In a typical control system, the
Controller must have access to relevant Measured Output from the target system as
well as maintain control over some Control Input. In our context, the target system
is the software system that requires self-adaptation. Controlling a software system
requires mechanisms to obtain information about the system and its execution envi-
ronment. Therefore, in addition to maintaining a model of the system’s architecture,
some model of the system’s execution environment must also be maintained. Also,
the Controller must be able to select a course of action and effect changes on the
system.

These required capabilities of control correspond to the 4 + 1 phases of the
adaptation cycle defined by the IBM Autonomic MAPE Architecture mentioned
in Sect. 2.1 [17]: knowledge is embodied in the architecture model, managed by
the Model Manager, monitoring is achieved by Probes and Gauges updating the
model, detection is performed by the Architecture Evaluator assessing problems
on the model, decision occurs through the Adaptation Manager choosing a rem-
edy based on model states, and action is accomplished by the Strategy Executor
effecting changes on the system via Effectors. For the decision phase, in order to
represent and reason about the courses of remedy, we introduce strategy as a concept
of self-adaptation. Each adaptation decision requires the consideration of multiple
factors, which leads to the third element used by Rainbow: utility theory.

5.1.3 Utility Theory

Once a problem is detected by Rainbow, an appropriate adaptation must be chosen.
To be effective, such a choice must consider overall business objectives and priori-
ties, and decide between multiple potential adaptations that have possible interacting
effects on the system (e.g., an adaptation that fixes performance might affect security
concerns, and vice versa). To deal with this, our approach uses utility theory.

To determine the most appropriate strategy in a given circumstance, we need to
define values for the objectives, relate the objectives to specific system conditions,

42 D. Garlan et al.

and assess the impact of the strategies on the objectives. One important concern is
the uncertainty in the outcome of a particular strategy: enacting a strategy does not
necessarily mean that the strategy will be successful on the system. This uncertainty
is due to a number of factors, including intervening operation of the system between
problem detection and adaptation, inadequate knowledge of the environment, or
unanticipated errors in strategy execution. We address this by combining utility
theory with a stochastic model of the strategy outcomes. This provides a method
to quantify strategies relative to the objectives, under uncertainty.

5.2 Znn.com Example

To illustrate the framework, consider an example news service, Znn.com, that serves
multimedia news content to its customers, inspired by real sites like cnn.com and
rockymountainnews.com. Architecturally, Znn.com is a web-based client–server
system that conforms to an N-tier style. As illustrated in Fig. 3, Znn.com uses a
load balancer to balance requests across a pool of replicated servers, the size of
which is dynamically adjusted to balance server utilization against service response
time. A set of client processes (represented by the C component) makes stateless
content requests to one of the servers. Let us assume we can monitor the system
for information such as server load and the bandwidth of server–client connections.
Assume further that we can modify the system, for instance, to add more servers
to the pool or to change the quality of the content. We want to add self-adaptation
capabilities that will consider monitored information and adapt the system to fulfill
Znn.com objectives.

Fig. 3 Architecture model of the Znn.com system

Software Architecture-Based Self-Adaptation 43

The business objectives at Znn.com require that the system serve news content
to its customers within a reasonable response time range while keeping the cost of
the server pool within its operating budget. From time to time, due to highly popular
events, Znn.com experiences spikes in news requests that it cannot serve adequately,
even at maximum pool size. To prevent unacceptable latencies, Znn.com opts to
serve only textual content during such peak times in lieu of providing its customers
zero service. The Znn.com system administrators (sys-admins) adapt the system
using two actions: adjust the server pool size or switch content mode. When the
system comes under high load, the sys-admins may increase the server pool size
until a cost-determined maximum is reached, at which point the sys-admin switches
the servers to serve textual content. If the system load drops, the sys-admin may
switch the servers back to multimedia mode to make customers happy, in combina-
tion with reducing the pool size to reduce operating cost.

The adaptation decision is determined by observations of overall average
response time versus server load. Specifically, four adaptations are possible, and the
choice depends both on the conditions of the system and on business objectives:

1. Switch the server content mode from multimedia to textual
2. Switch the server content mode from textual to multimedia
3. Increment the server pool size, and
4. Decrement the server pool size

We want to help Znn.com automate system management to adjust the server pool
size or to switch content between multimedia and textual modes. In reality, a news
site like cnn.com already supports some level of automated adaptation. However,
automating decisions that trade off multiple objectives to adapt a system is still
unsupported in most systems today. For instance, while automating adaptations on
performance concerns is possible (e.g., load balancing), it is much harder to do so
in the presence of conflicting qualities such as security.

In terms of Znn.com, the average response time and server load for Znn.com are
monitored and those measurements update corresponding properties in the Znn.com
architecture model managed by the Znn.com-customized Model Manager. The cus-
tomized Architecture Evaluator evaluates the model to make sure that no client
experiences a request-response latency above a certain threshold. If a client is expe-
riencing above-threshold latencies, the Evaluator triggers the Adaptation Manager
to initiate the adaptation process and determine whether to activate more servers or
decrease content quality. The customized Strategy Executor carries out the strategy
on the Znn.com system using the provided system hooks.

Building a self-adaptive system such as that outlined above is a costly proposition
if the important components such as the monitoring, model management, adapta-
tion, and translation mechanisms have to be built from scratch. For this reason, we
have engineered an integrated framework with shared infrastructures and developed
an iterative process to facilitate reuse of self-adaptive functionalities and reduce the
cost and effort of achieving self-adaptation.

44 D. Garlan et al.

5.3 Tailorable Rainbow Framework

Rainbow is a framework with general and reusable infrastructure services that can
be tailored to particular system styles and quality objectives, and further customized
to specific systems. The customization is notionally illustrated as plug-in pieces in
Fig. 2. The Rainbow framework consists of a number of components that provide
the monitoring, detection, decision, and action capabilities of self-adaptation.

This customizable self-adaptation framework has a number of advantages. Pro-
viding a substantial base of reusable infrastructure greatly reduces the cost of devel-
opment. Providing separate customization mechanisms allows engineers to tailor
the framework to different systems with relatively small increments of effort. In
particular, the tailorable model management and adaptation mechanisms give engi-
neers the ability to customize adaptation to address different properties and quality
concerns, and to add and evolve adaptation capabilities with ease. Furthermore, a
modular adaptation language to specify the adaptation policy allows engineers to
consider adaptation concerns separately and then compose them.

5.3.1 Rainbow Models

The Rainbow framework leverages two kinds of models to make adaptation deci-
sions: the architecture model and the environment model. An architecture model
reflects abstract, runtime states of the target system itself. Many current approaches
do not consider the system context, or environment, to make adaptation deci-
sions. Rainbow addresses this shortcoming through an explicit treatment of envi-
ronment states in the self-adaptation process. An environment model provides con-
textual information about the system, including the executing environment and its
resources. For example, if additional servers are needed, the environment model
indicates what spare servers are available. When a better connection is required, the
environment model has information about available bandwidth on other communi-
cation paths.

Managing an executing system dynamically requires knowing the entities that
are present, the runtime states they are in, and how they communicate. As noted,
the architecture model captures the state of the system as a graph of interacting,
communicating entities representing the Component and Connector (C&C) view of
architecture [11]. It consists of an instance of the target system defined in a particular
style, associated properties and their dynamically updated values, and constraints on
the structure of the target system.

The architecture of the system for the Znn.com example is described in the
ClientServerFam style with component, connector, and property types for clients,
servers, and HTTP connections. Clients in this system define an average latency
property value and an architectural constraint specifying that this property should
always be below a threshold.

The environment model captures states of the target system’s execution environ-
ment to provide additional information for the self-adaptation process. Information
about the various resources must be sufficient to facilitate reasoning about adapta-

Software Architecture-Based Self-Adaptation 45

tion. As with architecture, we represent environment information as a graph where
nodes represent resources and typed edges represent relations between resources,
such as physical connection, containment, and dependencies. We capture com-
mon relation and resource types in an environment style. Environment resources
typically relate closely with system elements, so we maintain a mapping between
architecture-model elements and environment-model elements.

5.3.2 Translation Infrastructure—Monitoring and Action

In order to get information out of the target system into an abstract model for man-
agement, and then to push changes back into the system, the layer marked Transla-
tion Infrastructure in Fig. 2 provides monitoring and action (cf., Sect. 5.1.2) hooks,
and bridges the abstraction gap between the system and the architecture model. This
infrastructure builds on prior work and encompasses monitoring mechanisms, action
mechanisms, and various sets of correspondence mappings [5, 10, 22].

Monitoring Mechanisms: Probes and gauges extract system states, then aggre-
gate and abstract them to update the model. Intuitively, a probe measures some
part of the system, while a gauge interprets that measurement to provide a reading.
In Rainbow, as illustrated in Fig. 4, probes are deployed onto the target system to
measure and publish system information, such as CPU load or process run state.
Gauges are associated with specific properties in the architecture model; they col-
lect, aggregate, and abstract probe measurements to populate corresponding archi-
tectural properties. Different kinds of probes are deployed onto the target system
to detect system states (e.g., whether compression across a communication link is
enabled), measure quality attributes (e.g., link latency or intrusion detector state),
and discover resources (e.g., to find an available Apache server). Likewise, different
types of gauges are needed to aggregate and interpret system properties (e.g., to
average latency).

Fig. 4 Monitoring mechanisms: probes and gauges

46 D. Garlan et al.

To tailor the monitoring mechanisms, an adaptation engineer identifies the prop-
erties of specific element types to monitor and finds matching gauges and probes
from gauge and probe libraries to monitor those properties (or develops them if none
are available). The engineer maps the gauge-updated property to the architectural
property via the mapping attribute, and also defines the target probe, by type name,
to which the gauge maps. While we require probes and gauges to enable overall
Rainbow functionality, they are not the focus of this chapter.

Action Mechanisms: Effectors carry out change operations on the target sys-
tem; they are associated with architectural operators in the Rainbow Architecture
Layer (Fig. 2). Under the hood, the mechanism to realize an effector could range in
complexity from a system-call, to a script, to a complex, workflow-based subsystem
(e.g., KX Worklets [48]). As with probes and gauges, we require effectors to enable
overall Rainbow functionality, but they are not the focus of this chapter.

Rainbow’s dependency on monitoring and action capabilities for the target sys-
tem is not a serious limitation. We build on other researchers’ work on probing
and effecting capabilities, including adaptive middleware technology [2, 8]. Fur-
thermore, modern systems increasingly support probing and effecting functionali-
ties, as evidenced by products from industry initiatives such as IBM’s Autonomic
Computing [17] and Microsoft’s Dynamic Systems Initiatives [34].

Translation Mappings: Our use of an abstract model to monitor and control the
target system requires us to bridge the abstraction gap with correspondence map-
pings. In a prior publication [10], we identified four distinct kinds of correspondence
mappings, maintained by the Translation Infrastructure, to facilitate translation of
control information between the architecture model and the target system. For exam-
ple, when the Strategy Executor invokes an effector, arguments to be passed to the
effector must be translated from architectural elements to target-system entities. We
briefly summarize the mappings below:

• A Type map relates a type of element in the architecture model with a type
of entity in the target system, including any properties defined for the type of
element/entity.

• An Element map relates an element instance in the architecture model with an
entity in the target system, including the property values.

• An Operation map relates an architectural operator, along with its formal param-
eters (type and name), to an effector with its corresponding parameters.

• An Error map relates the identifier and error sources of an exception in the target
system to a corresponding error at the architecture level.

5.3.3 Model Manager

The Model Manager manages both the architecture and environment models of the
target system. It maintains references between elements of the environment and the
architecture models. It tracks the model states, maintains correspondence between
the model and the system and environment states via gauges, provides the Rain-
bow components with shared access to the models via query and modify APIs, and

Software Architecture-Based Self-Adaptation 47

deploys gauges (and corresponding probes) as dictated by model property queries.
Elements in both the architecture and the environment models are accessed via direct
model reference in the adaptation scripts (e.g., EnvModel.elementX.prop).

To tailor the Model Manager, it is sufficient to tailor the managed models. A style
writer specifies a vocabulary (a family of element types) to describe the architecture
of the target system, defines the architecture and environment model instances, and
identifies the relevant properties to collect via the monitoring infrastructure.

5.3.4 Architecture Evaluator

Armed with a model that captures runtime system and environment states, we need
a mechanism to detect when an adaptation is needed (cf., Sect. 5.1.2). When any
model property changes, the Architecture Evaluator evaluates the conformance of
the architecture model to a predefined set of constraints. Upon detecting a constraint
violation, it notifies the Adaptation Manager (Fig. 2) to trigger adaptation. This
mechanism leverages prior work on the use of architectural constraints, specified in
first-order predicate logic, to identify flaws in system design [36]. We extend this
work by checking architectural constraints over runtime system properties to detect
target system problems at runtime.

To tailor the Evaluator, a style writer specifies as rules the topological and behav-
ioral constraints that (a) characterize the bounds of the target system and/or (b)
signify opportunities for adaptation. These architectural rules are specified in the
architecture model as first-order predicate logic expressions over architectural struc-
ture and properties.

5.3.5 Adaptation Manager

Once a problem is detected, we need a mechanism to decide on the appropriate
adaptation remedy (cf., Sect. 5.1.2). When triggered by the Architecture Evaluator,
the Adaptation Manager uses the architecture model to select a remediation strategy
that best suits the present problem state of the system, then coordinates the execution
of that strategy. Automating system adaptation requires formalizing three kinds of
information to instruct the machine to act automatically: for what to adapt, when to
adapt, and how to adapt the system.

A quality dimension determines what to adapt for and corresponds to a business
quality of concern, which is characterized as a utility function and mapped to a mon-
itored architectural property. For example, Average response time (uR) is mapped
to ClientT.experRespTime in the architecture and has the utility function defined
by the points 〈(0, 1) , (500, 0.9) , (1500, 0.5) , (4000, 0)〉 to represent the utility of
average response time at 0, 500, 1500, and 4000 ms. The utility of values of points
in between are interpolated. To manage multiple objectives, each quality of con-
cern is given a relative weight that captures business preferences across the quality
dimensions. To help decide when adaptations are applicable we specify conditions
of applicability, e.g., invariant self.avg latency < MAX RESPTIME.

48 D. Garlan et al.

1 module newssite.strategies.example;
2 import model "ZnnSys.acme" { ZnnSys as M, ZnnFam as T };
3 import lib "newssite.tactics.example";
4 import op "org.sa.rainbow.stitch.lib.*"; // Model, Set, & Util
5
6 define boolean styleApplies = ...
7 define boolean cViolation = exists c : T.ClientT in M.components |
8 c.experRespTime > M.MAX_RESPTIME;
9

10 strategy SimpleReduceResponseTime [styleApplies && cViolation] {
11 define boolean hiLatency = ...
12 define boolean hiLoad = ...
13
14 t1: (hiLatency) -> switchToTextualMode() {
15 t1a: (success) -> done ; }
16 t2: (hiLoad) -> enlistServer(1) {
17 t2a: (!hiLoad) -> done ;
18 t2b: (!success) -> do [1] t1 ; }
19 t3: (default) -> fail;
20 }

Fig. 5 An example strategy SimpleReduceResponseTime

The Stitch self-adaptation language allows strategies to be specified that capture
a pattern of adaptations in which each step evaluates a set of condition-action pairs
and executes an action, possibly waiting for the action to take effect. Actions use
operators on the architectural style to make changes to the system. A strategy also
specifies conditions of applicability that determine in what contexts it should be
involved. Furthermore, we need to specify cost–benefit attributes to relate its impact
on the quality dimensions. Detailed language features appear in [9].

The adaptation process works as follows: When the Architecture Evaluator
detects an adaptation condition, it triggers the Adaptation Manager to initiate a
round of adaptation. The Adaptation Manager first checks the strategy conditions
of applicability to filter a subset of applicable strategies based on current system
conditions (reflected in the model). In Fig. 5, SimpleReduceResponseTime applies
when the conditions styleApplies (definition elided in line 6) and cViolation (defined
in lines 7 and 8) are true. The Adaptation Manager then selects the best strat-
egy from the subset by computing the expected utility of each strategy. Briefly,
the expected utility of each strategy is computed by first computing the expected
aggregate impact of each strategy on each quality dimension using the specified
cost–benefit attributes. Next, the strategies are scored using the utility preferences
over the quality dimensions. Finally, the highest scoring strategy is selected.

The Adaptation Manager combines utility, decision, and control theories to solve
the decision-making problem in self-adaptive systems. To tailor the Adaptation
Manager, the engineer specifies a set of adaptation strategies, the quality dimensions
and utility preferences, and the cost–benefit attributes to enable automated selection
of strategies.

Software Architecture-Based Self-Adaptation 49

5.3.6 Strategy Executor

Once a strategy is chosen, we need a mechanism that can carry out the adaptation on
the target system. The Strategy Executor is dispatched by the Adaptation Manager to
do this. It resolves model references within the strategy against the Rainbow model,
observes model states and evaluates branch conditions to determine operators to
execute and corresponding system-level effectors to carry out changes.

The Strategy Executor is tailored by the set of operators of the style. For example,
for Znn.com, operators would include addServer, removeServer, and setFidelity.

5.4 Rainbow Application to Znn.com

To illustrate how to customize the Rainbow framework, let us walk through the
Znn.com example. Table 1 gives an overview of how each of the Rainbow compo-
nents is customized for Znn.com. This example is simplified to illustrate only the
major features of Rainbow.

The stakeholders in the Znn.com example are the customers and the news service
provider. The customers care about quick response time of their news requests and
high content quality (i.e., multimedia over textual). While aware of the customer
content quality preferences, the provider is constrained by infrastructure provision-
ing costs to provide the service. We use these three quality concerns to define the
quality dimensions, which correspond to measurable properties in the target system.
We capture each dimension as a discrete set of values:

1. Response time: low, medium, high
2. Quality: graphical or multimedia
3. Budget: within or over

We elicit from the service providers the utility values and preferences for these
dimensions. In addition, since response time is affected by the amount of time
required to complete an adaptation, we also need to consider a fourth dimension,
disruption, which should be minimized. We use an ordinal scale of 1–5 to express
the degree of disruption. Cost–benefit attributes necessary for strategy selection are

Table 1 Znn.com: example application of the Rainbow framework

Set Rainbow component Customization content highlight

Objective Adaptation Manager timely response (uR), high-quality content (uF),
low-provisioning cost (uC)

Vocabulary Model Mgr, Translators ClientT, ServerT, DatabaseT, HttpConnT
Property Architecture Evaluator,

Monitoring Mechanisms
ClientT.reqRespLatency, HttpConnT.bandwidth,

ServerT.load, ServerT.fidelity, ServerT.cost
Rule Architecture Evaluator ClientT.reqRespLatency <= MAX LATENCY
Operator Strategy Executor addServer, removeServer, setFidelity
Strategy Adaptation Manager SwitchToTextualMode, SwitchToMultimediaMode,

EnlargeServerPool, ShrinkServerPool

50 D. Garlan et al.

Table 2 Znn.com quality dimensions and utility preferences

Label Description Architectural property Utility function Weight

uR Avg Response
Time

ClientT.experRespTime 〈(low, 1) , (med, 0.5) , (high, 0)〉 0.4

uF Avg Content
Quality

ServerT.fidelity 〈(textual, 0) , (multimedia, 1)〉 0.2

uC Avg Budget ServerT.cost 〈(within, 1) , (over, 0)〉 0.3
uD Disruption ServerT.rejectedRequests 〈(1, 1) , (2, 0.75) , (3, 0.5) ,

(4, 0.25) , (5, 0)〉
0.1

specified with respect to these four quality dimensions. Given our understanding
of the quality dimensions, we can specify discrete utility functions for these four
dimensions and complete the utility profiles. To determine the utility preferences,
assume that Znn.com considers response time the most important, followed by bud-
get, then content quality, and finally disruption. The quality dimensions and utility
preferences are summarized in Table 2.

As part of the N-tier style of Znn.com, a set of element types are defined to model
elements of the system architecture: ClientT to model client instances, ServerT for
server instances, DatabaseT for databases in the data layer, and HttpConnT as
one of the prominent protocols of communication. Properties corresponding to the
objectives are defined on the style elements to help measure and assess satisfaction
of the objectives; respectively, they are ClientT.reqRespLatency, ServerT.fidelity,
ServerT.cost, shown in Table 2. These and other properties are measured by probes
and gauges in the translation infrastructure.

A rule specifies the acceptable bound of request-response latencies experienced
by a client: exceeding MAX LATENCY indicates a problem. A set of operators
correspond to available effectors in Znn.com: the system can be controlled to add or
remove servers, or to change the fidelity of the served content.

When Rainbow is customized as above, during operation the Model Manager
deploys gauges and corresponding probes on Znn.com to monitor server status,
connection bandwidths, and request-response latencies experienced by the clients
(can be approximated via server-side proxy). Probes usually report instantaneous
and low-level values, while gauges aggregate and average these measurements and
report them as values of corresponding architectural properties to the Model Man-
ager. When the Model Manager updates the architecture model, the Architecture
Evaluator checks the model to make sure that the constraint is satisfied, i.e., no
client experiences a request-response latency above the maximum threshold.

If a client experiences above-threshold latencies, a constraint violation occurs,
and the Evaluator triggers the Adaptation Manager to initiate adaptation. The Adap-
tation Manager scans through a repertoire of strategies, filtering out the inapplicable
ones, then scores them to determine expected utility.

The Znn.com example has four possible strategies, corresponding to each of
the adaptations outlined in Sect. 5.2: SwitchToTextualMode, SwitchToMultime-
diaMode, EnlargeSeverPool, and ShrinkServerPool. We also specify cost–benefit
attribute vectors for these strategies, not shown here, that relate the impact of each

Software Architecture-Based Self-Adaptation 51

Table 3 Znn.com strategies and cost–benefit impact

Strategy uR uF uC uD Utility

SwitchToTextualMode −2⇒low −1 ⇒textual +0⇒within 3 0.75
EnlargeServerPool −2⇒low +0⇒multimedia +1⇒over 1 0.70

strategy to the four quality dimensions. For example, SwitchToTextualMode lowers
the response time and the fidelity level, does not affect the cost, and incurs some
level of disruption.

Let us assume that Znn.com hits a peak load period, and the system state falls
into a problem state in which the response time is high, the infrastructure cost is
within budget, and the content mode is multimedia. In this case, only the strate-
gies SwitchToTextualMode and EnlargeSeverPool are applicable. So we need to
score the strategies to determine which one to choose given the utility preferences.
The cost–benefit attribute vectors would yield aggregate attribute vectors and utility
scores for the two strategies as shown in Table 3.

The utility scores indicate DropFidelityStrategy as the better adaptation strat-
egy, given the current system conditions. The Adaptation Manager delegates the
execution of this chosen strategy to the Strategy Executor, which evaluates the strat-
egy and invokes the setFidelity operator. This operator is mapped to a corresponding
effector to change the Znn.com system. Once changes are effected, Rainbow’s adap-
tation cycle continues to monitor system states.

Note that if Znn.com attributed a lower weight to budget, or a higher weight to
disruption, or swapped the importance of disruption versus budget, then the other
strategy would have scored higher. Using such utility-based analysis, we can choose
a strategy by considering four dimensions and accounting for trade-offs across those
using the additional input of business utility preferences.

6 Conclusions and Ongoing Work

In this chapter, we described our approach to architecture-based self-adaptation,
which allows engineers to add self-adaptation facilities to existing systems. This
approach, called Rainbow, involves adding an external mechanism to monitor and
enact changes in systems. We summarized the elements of Rainbow, and how they
can be customized to different styles of systems and quality dimensions of interest.
Our approach is two-pronged: we provide a framework of reusable infrastructure
that can be tailored to particular domains and we provide a language called Stitch
that can allow adaptation techniques to be codified. We have given an intuition
behind the approach as applied to a simple networked system. Interested readers
are referred to [9] for details of the customization and the Stitch language.

As summarized in Table 4, we applied Rainbow to a number of systems, includ-
ing two small client-server systems (CSSys and UnivSys), a service-coalition sys-
tem (Libra), and two N-tier systems (Znn.com and the infrastructure of Talk-
Shoe.com). In all cases we applied Rainbow to adapt the target system within some

52 D. Garlan et al.

Table 4 Summary of applying the Rainbow approach

Claim CSSys Libra UnivSys TalkShoe Znn.com SysAdm Netbwe

General—Rainbow applies to many styles and multiple objectives?
− 3+ styles (CS) (SvcC) (CS) (N-tier) (N-tier) (SvcC) (SvcC)
− 3+ objectives (perf) (perf +cost) (security) (avail.) (4) (bw+avail.) (3)

Cost-effective—Rainbow demonstrates reuse (between instances) and ease of use?
− Reusable

√ × √ × ×
− Easy to use × × × √

93h
√

34h × ×
×: not applicable, not demonstrated.

user-specified quality goal (e.g., availability), and in the case of Znn.com, we also
demonstrated that Rainbow self-adaptation achieved multiple objectives [9]. Finally,
we demonstrated that Rainbow could codify system administration tasks.

Our experience with using this approach on a number of systems has pointed to
several open areas of future research:

6.1 Improving Detection and Resolution Capabilities

Our approach favors simple but straightforward detection for rapid recognition of
problems using a few key variables, for arguably, greater efficiency and effective-
ness [25]. Our approach pushes observations into the model and adaptation is trig-
gered when architectural constraints fail. Alternatively, we would like to explore
using more sophisticated quality-of-service (QoS) analyzers to continuously evalu-
ate the system for opportunities of improvement based on QoSs.

Our current utility-based approach considers only information about the cur-
rent state of the system to choose strategies for adaptation. We have implemented
mechanisms that consider some simple historical information to avoid repeating bad
actions. We would like to take advantage of more historical information and effects,
for example, using machine learning as part of the selection process to avoid oscil-
lation and to improve selection quality. We could also integrate learned predictions
to anticipate certain QoS problems, such as an anticipated rise in CPU load, drop in
available bandwidth, or even a change in the state of user tasks [41].

6.2 Analyzing Adaptation

One natural question that follows from our approach is how to systematically ana-
lyze the behavior of the adaptive system and assure certain system properties?
Specifically, we would like to develop analyses that answer the following questions:

• Is an adaptation operation consistent with the architectural style? The challenge
is to determine the interaction between structure and behavior in an architectural
change. This may be addressed, for example, by Kim’s work [29].

Software Architecture-Based Self-Adaptation 53

• We have not addressed the issue of asynchrony in automated system self-
adaptation, i.e., the effects of an adaptation takes time to propagate into the
system, and the Adaptation Manager must take that delay into account when
deciding the next step of adaptation. Can we automatically determine the timing
delay of an adaptation operation? The challenge is to formalize effectors to
enable timing analysis.

6.3 Adapting Adaptation

Currently, the utility preference profile and cost-benefit attributes are statically
determined. While they can be changed manually, we would like to be able to change
these dynamically as user needs change. To do this, we anticipate integrating formal
notions of a user’s task [21, 45].

Acknowledgments This material is based up work supported by the US Army Research Office
(ARO) under grant number DAAD19-02-1-0389 (“Perpetually Available and Secure Information
Systems”) to Carnegie Mellon University’s Cylab, and NSF grants IIS0534656 (“Role of Architec-
ture in Facilitating Design Collaboration”) and CNS-0615305 (“Activity-Oriented Computing”).
Views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of any of these funding
agencies.

References

1. Gregory D. Abowd, Robert Allen, and David Garlan. Formalizing style to understand descrip-
tions of software architecture. ACM Trans. Softw. Eng. Methodol., 4(4):319–364, 1995.

2. ACM. Adaptive middleware. Communications of the ACM, 45(6), June 2002.
3. Robert Allen, Steve Vestal, Dennis Cornhill, and Bruce Lewis. Using an architecture descrip-

tion language for quantitative analysis of real-time systems. In Proc. of the 3rd International
Workshop on Software and Performance, ACM Press, pages 203–210. 2002.

4. Robert J. Allen. A Formal Approach to Software Architectures. PhD thesis, Carnegie Mellon
University School of Computer Science, May 1997.

5. Robert Balzer. Probe run-time infrastructure. http://schafercorp-ballston.com/dasada/
2001WinterPI/ProbeRun-TimeInfrastructureDesign.ppt, 2001.

6. Thaı́s Vasconcelos Batista, Ackbar Joolia, and Geoff Coulson. Managing dynamic reconfigu-
ration in component-based systems. In EWSA, volume 3527 of LNCS, Springer, pages 1–17,
June 13–14, 2005.

7. Jeremy S. Bradbury, James R. Cordy, Juergen Dingel, and Michel Wermelinger. A survey of
self-management in dynamic software architecture specifications. In WOSS ’04: Proc. of the
1st ACM SIGSOFT Workshop on Self-managed Systems, ACM, New York, pages 28–33, 2004.

8. Proc. of the Working Conf. on Complex and Dynamic Systems Architecture, December 12–14,
2001.

9. Shang-Wen Cheng. Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation.
Technical Report CMU-ISR-08-113, Carnegie Mellon University School of Computer Sci-
ence, 5000 Forbes Avenue, Pittsburgh, PA 15213, May 2008.

10. Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley Schmerl, and Peter Steenkiste.
An architecture for coordinating multiple self-management systems. In Proc. of the 4th Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA-4), June 2004.

54 D. Garlan et al.

11. Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Robert
Nord, and Judith Stafford. Documenting Software Architecture: Views and Beyond. Pearson
Education, Inc., 2003.

12. Carlos E. Cuesta, Pablo de la Fuente, and Manuel Barrio-Solárzano. Dynamic coordination
architecture through the use of reflection. In SAC ’01: Proc. of the 2001 ACM Symposium on
Applied Computing, ACM, New York, pages 134–140, 2001.

13. Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A highly-extensible, XML-
based architecture description language. In Proceedings of WICSA2, Massachusetts, USA,
August 28–31, 2001. Kluwer Academic Publishers, New York.

14. Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. Towards architecture-based
self-healing systems. In Garlan et al. [19], pages 21–26.

15. Jim Dowling and Vinny Cahill. The k-component architecture meta-model for self-adaptive
software. In REFLECTION ’01: Proc. of the 3rd International Conf. on Metalevel Architec-
tures and Separation of Crosscutting Concerns, Springer-Verlag, London, UK, pages 81–88,
2001.

16. Peter H. Feiler, Bruce Lewis, and Steve Vestal. Improving predictability in embedded real-time
systems. Technical Report CMU/SEI-2000-SR-011, Carnegie Mellon University Software
Engineering Institute, Pittsburgh, PA 15213, December 2000.

17. A. G. Ganak and T. A. Corbi. The dawning of the autonomic computing era. IBM Systems
Journal, 42(1):5–18, 2003.

18. David Garlan, Shang-Wen Cheng, and Bradley Schmerl. Increasing system dependability
through architecture-based self-repair. In Rogério de Lemos, Cristina Gacek, and Alexander
Romanovsky, editors, Architecting Dependable Systems, Lecture Notes in Computer Science,
Springer-Verlag, Inc. New York, pages 61–89, 2003.

19. David Garlan, Jeff Kramer, and Alexander Wolf, editors. Proc. of the 1st ACM SIGSOFT
Workshop on Self-Healing Systems (WOSS ’02), ACM Press, New York, November 18–19,
2002.

20. David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural descriptions of
component-based systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, pages 47–68. Cambridge University Press, Cambridge 2000.

21. David Garlan and Bradley Schmerl. The radar architecture for personal cognitive assis-
tance. International Journal of Software Engineering and Knowledge Engineering, 17(2),
April 2007. A shorter version of this paper appeared in the 2006 Conference on Software
Engineering and Knowledge Engineering (SEKE 2006).

22. David Garlan, Bradley Schmerl, and Jichuan Chang. Using gauges for architecture-based
monitoring and adaptation. In CDSA [8].

23. Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-organizing software architectures for
distributed systems. In Garlan et al. [19], pages 33–38.

24. Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya. Self-healing sys-
tems - survey and synthesis. Decis. Support Syst., 42(4):2164–2185, 2007.

25. Malcolm Gladwell. Blink: The Power of Thinking Without Thinking. Penguin, January 2006.
26. Michael M. Gorlick and Rami R. Razouk. Using Weaves for software construction and analy-

sis. In Proc. of the 13th International Conf. of Software Engineering, IEEE Computer Society
Press, Los Alamitos, CA, USA, pages 23–34, May 1991.

27. Michael Hinz, Stefan Pietschmann, Matthias Umbach, and Klaus Meissner. Adaptation and
distribution of pipeline-based context-aware web architectures. In WICSA ’07: Proc. of the
6th Working IEEE/IFIP Conf. on Software Architecture, IEEE Computer Society, Washington,
DC, page 15, 2007.

28. IBM. An architectural blueprint for autonomic computing, 2004.
29. Jung Soo Kim and David Garlan. Analyzing architectural styles with Alloy. In Workshop on

the Role of Software Architecture for Testing and Analysis 2006 (ROSATEA 2006), Portland,
ME, July 17, 2006.

Software Architecture-Based Self-Adaptation 55

30. John C. Knight, Dennis Heimbigner, Alexander L. Wolf, Antonio Carzaniga, Jonathan C. Hill,
Premkumar Devanbu, and Michael Gertz. The Willow survivability architecture. In Proc. of
the 4th Information Survivability Workshop, October 2001.

31. Daniel Le Métayer. Describing software architecture styles using graph grammars. IEEE
Transactions on Software Engineering, 24(7):521–533, 1998.

32. Yan Liu and Ian Gorton. Implementing adaptive performance management in server appli-
cations. In Proc. of the 2007 International Workshop on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS ’07), IEEE Computer Society, Washington, DC, page 12,
2007.

33. Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. In SIGSOFT ’96:
Proc. of the 4th ACM SIGSOFT Symposium on Foundations of Software Engineering, ACM,
New York, pages 3–14, 1996.

34. Microsoft Corporation. Dynamic systems initiative. http://www.microsoft.com/
\breakwindowsserversystem/dsi/, 2003.

35. Marija Mikik-Rakic, Nikunj Mehta, and Nenad Medvidovic. Architectural style requirements
for self-healing systems. In Garlan et al. [19], pages 49–54.

36. Robert T. Monroe. Capturing software architecture design expertise with Armani. Technical
Report CMU-CS-98-163, Carnegie Mellon University School of Computer Science, 1998.

37. Ronald Morrison, Dharini Balasubramaniam, Flávio Oquendo, Brian Warboys, and R. Mark
Greenwood. An active architecture approach to dynamic systems co-evolution. In ECSA,
volume 4758 of LNCS, Springer, New York, pages 2–10. September 24–26, 2007.

38. Peyman Oreizy. Open Architecture Software: A Flexible Approach to Decentralized Software
Evolution. PhD thesis, University of California, Irvine, 2000.

39. Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor, Dennis Heimbigner, Gregory John-
son, Nenad Medvidovic, Alex Quilici, David S. Rosenblum, and Alexander L. Wolf. An
architecture-based approach to self-adaptative software. IEEE Intelligent Systems, 14(3):54–
62, May–June 1999.

40. Robert H. Perry, Don W. Green, and James O. Maloney. Perry’s Chemical Engineers’ Hand-
book. McGraw-Hill, New York, seventh edition, 1997.

41. Vahe Poladian. Tailoring Configuration to User’s Tasks under Uncertainty. PhD thesis,
Carnegie Mellon University School of Computer Science, 5000 Forbes Avenue, Pittsburgh,
PA 15213, May 2008.

42. Dale E. Seborg, Thomas F. Edgar, and Duncan A. Mellichamp. Process Dynamics and Con-
trol. Wiley Series in Chemical Engineering. John Wiley & Sons, New York, 1989.

43. Mary Shaw. Beyond objects: A software design paradigm based on process control. Software
Engineering Notes, 20(1):27–38, January 1995.

44. Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, 1996.

45. Joao Pedro Sousa. Scaling Task Management in Space and Time: Reducing User Overhead in
Ubiquitous-Computing Environments. Technical report cmu-cs-05-123, Carnegie Mellon Uni-
versity School of Computer Science, 5000 Forbes Avenue, Pittsburgh, PA 15213, March 28,
2005.

46. Bridget Spitznagel and David Garlan. Architecture-based performance analysis. In Proc.
of the 10th International Conf. on Software Engineering and Knowledge Engineering, pages
146–151. Knowledge Systems Institute, 1998.

47. Alexandre Sztajnberg and Orlando Loques. Describing and deploying self-adaptive applica-
tions. In Proc. 1st Latin American Autonomic Computing Symposium, July 14–20, 2006.

48. Giuseppe Valetto, Gail Kaiser, and Gaurav S. Kc. A mobile agent approach to process-based
dynamic adaptation of complex software systems. In 8th European Workshop on Software
Process Technology, pages 102–116, June 2001.

49. Michel Wermelinger, Antónia Lopes, and José Luiz Fiadeiro. A graph based architectural
(re)configuration language. SIGSOFT Software Engineering Notes, 26(5):21–32, 2001.

50. Alexander L. Wolf, Dennis Heimbigner, Antonio Carzaniga, Kenneth M. Anderson, and
Nathan Ryan. Achieving survivability of complex and dynamic systems with the Willow
framework. In CDSA [8].

Mobile Agent Middleware for Autonomic Data
Fusion in Wireless Sensor Networks

Aristides Mpitziopoulos, Damianos Gavalas, Charalampos Konstantopoulos,
and Grammati Pantziou

Abstract Mobile agents (MAs) are referred to as autonomous application programs
with the inherent ability to move from node to node towards a goal completion.
In the context of wireless sensor networks (WSNs), MAs may be used by net-
work administrators in the process of combining data and knowledge from different
sources aiming at maximizing the useful information content. MAs have been ini-
tially developed to replace the client/server model which exhibits many disadvan-
tages, particularly in WSN environments (e.g. heavy bandwidth usage and excessive
energy expenditure). The most promising advantages of MAs in WSN environments
include decreased usage of the wireless spectrum (large volumes of raw sensory data
are filtered at the source) and energy consumption, increased reliability due to their
inherent support for disconnected operations, their ability of cloning themselves to
enable parallel execution of similar tasks, etc. The main objective of this chapter
is to review and evaluate the most representative MA-based middleware proposals
for autonomic data fusion tasks in WSNs and evaluate their relevant strengths and
shortcomings. Although the chapter’s focus is on autonomic data fusion tasks, other
applications fields that may benefit from the MAs distributed computing paradigm
are identified. Open research issues in this field are also discussed.

1 Introduction

Wireless sensor networks (WSNs) typically comprise hundreds or even thousands
of sensor nodes (SNs). These nodes are often randomly deployed in a sensor field
and form an infrastructure-less network. Each node has the capability to collect data
and route it back to a processing element (PE) or sink via ad hoc connections, using
neighbour nodes as relays. A sensor node consists of five basic parts: sensing unit,
central processing unit (CPU), storage unit, transceiver unit and power unit [1].

A. Mpitziopoulos (B)
Department of Cultural Technology and Communication, University of the Aegean Address of
Institute, Lesvos, Greece
e-mail: crmaris@aegean.gr

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 3, C© Springer Science+Business Media, LLC 2009

57

58 A. Mpitziopoulos et al.

Unlike other type of networks, WSNs are subject to a set of resource con-
straints such as limited energy availability of SNs [12, 48], since in most cases
there are only dependent to battery supply, limited network communication band-
width and hardware-network heterogeneity. In a typical WSN, SNs are equipped
with restricted computational power and limited amount of memory for data-signal
processing and task scheduling. Furthermore, as SNs are usually deployed to hos-
tile environments they are prone to failures and the replacement of failed SNs is
practically impossible in case of large-scale WSNs or embedded sensors. Given
the fact that WSNs can be used in security sensitive applications (e.g. battlefield
surveillance, secure area monitoring and target detection [1]) the above-mentioned
limitations represent critical challenges.

WSNs can be used in a variety of applications, including environment monitor-
ing, automatic target detection and tracking, battlefield surveillance, remote sensing
and global awareness [1]. A significant percentage of the above applications require
remote retrieval of sensor readings and are known to be data intensive. An efficient
method to reduce the volume of data communicated within a WSN is data fusion.
In data fusion, readings from multiple SNs are combined and processed leading
to more accurate data with significant smaller size, since redundant readings for
neighbour SNs are filtered [61]. However suitable middleware solutions are required
to utilize data fusion in WSNs. In this context, middleware is defined as a software
layer, which functions as an interface between sensor nodes and the data fusion
process [17]. Mobile agent (MA) technology has been proposed as an efficient
middleware approach to IP networks, but is also suitable for WSN environments
enabling the development and deployment of autonomic data fusion applications to
resource constrained SNs. MAs are referred to as lightweight autonomic software
entities that execute distributed tasks assigned by the users of a WSN, such as data
fusion tasks.

The remainder of this chapter is organized as follows: First, we define the concept
of data fusion, the related concepts of collaborative processing and data aggregation
and the most representative approaches to WSN data fusion. We then present repre-
sentative WSN middleware approaches and provide a comprehensive introduction
to MA technology. Then we discuss the suitability, constraints and application fields
of MAs in the context of WSNs. The next sections comprise the core of this chapter:
we classify and review the most representative MA-based middleware proposals for
autonomic data fusion in WSNs and evaluate their relevant strengths and shortcom-
ings. Finally, we refer to open research issues in this field.

2 Data Fusion in WSN Environments

Data fusion is referred to as the process of combining data and knowledge from
different sources with the aim of maximizing the useful information content
[61]. It improves reliability while offering the opportunity to minimize the data
retained.

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 59

Multi-sensor data fusion represents an evolving technology dealing with the
problem of how to fuse data from multiple SNs to enable a more accurate estima-
tion of the environment [45]. Such an approach achieves significant energy savings
when intermediate SNs take part in the data fusion process (aggregate responses
to queries). Applications of data fusion cross a wide spectrum, including environ-
ment monitoring, automatic target detection and tracking, battlefield surveillance,
remote sensing and global awareness [1]. They are usually time-critical, cover a
large geographical area and require reliable delivery of accurate information for
their completion. Madden et al. in [37] discuss the implementation of five basic
database aggregates, i.e. count, min, max, sum and average, based on the Tiny
OS platform [57] and demonstrate that such a generic approach for data aggrega-
tion1leads to significant power (energy) savings. Other related works [21, 23, 33, 34]
aim at reducing the energy expended by SNs during the process of data fusion.
Most energy-efficient proposals are based on the traditional client/server comput-
ing model to handle multi-sensor data fusion in WSNs [19, 24, 28]; in that model,
each SN sends its sensory data to a back-end PE or sink. However, as advances in
sensor technology and computer networking allow the deployment of large amount
of smaller and cheaper sensors, huge volumes of data need to be processed in real
time.

To address the above problem a new concept, collaborative processing [67] has
been introduced referring to cooperative data processing, where data are combined
from multiple sources. This feature also differentiates a sensor network from tra-
ditional centralized sensing and signal processing systems where raw data are col-
lected by SNs and then is routed, without prior processing, though the network to
a central PE which carries out the whole processing. This client/server approach
presents many problems such as large energy consumption due to the transmission
of large amount of raw data. This is especially true for SNs around the central node
which constantly should relay data from other SNs. Also, this approach consumes
scarce bandwidth resources leading so to severe scalability problems specially when
there is large number of SNs that should send data to the PE.

Collaborative processing takes advantage of the correlation inherent within the
information of neighbor SNs. Since sensing regions are largely overlapping, data
from neighbouring SNs refer to the same source of information (e.g. an evolving
phenomenon, a moving target). Hence, an aggregation and/or fusion of the original
sensory data is possible. This processing takes place as data pass through SNs and
not at the edge of network in a powerful PE. This approach drastically reduces the
communicated data and hence relieves the network from the huge amount of data
that would otherwise should have been communicated and then collected to the PE.
Some approaches utilizing collaborative processing according to Qi et al. [47] are
as follows:

1 Data aggregation is the process of refining data from multiple sensors into a summarization based
on some rules or criteria. Examples of aggregation methods are statistical operations like the mean
or the median.

60 A. Mpitziopoulos et al.

1. The information-driven approach, which has initially developed for target track-
ing applications [7, 66]. This approach enables energy-efficient computing
through selecting the next SN which most likely improves the tracking accuracy
(based on information, cost and resource constraints). This application is built
on directed diffusion2 as the communication medium.

2. The relation-based approach [20] wherein the environment is sensed based on
high-level description of the task and then instructs selected SNs to sense and
communicate their sensory data.

3. The MA approach which provides more stable performance and improved fault
tolerance than the information-driven approach, however, at the expense of extra
bandwidth, needed for the transmission of the MA(s) code. This approach repre-
sents the main focus of this chapter.

3 Middleware Approaches in WSNs

The term middleware refers to the software layer positioned between the operat-
ing system and sensor applications on the one hand and distributed applications
that interact with legacy systems on the other hand. The primary objective of the
middleware layer is to hide the underlying complexity of the network environment
by isolating the application from protocol handling, memory management, network
functionality and parallelism [17].

The resource constraints (i.e. energy, limited memory and processing power) of
contemporary nodes’ hardware represent a challenge for the design of middleware
solutions that meet the specific requirements of WSNs. Elen et al. in [8] categorized
sensor middleware schemes into three main categories: application management
where the middleware among other tasks has to deploy the application over the
air on the WSN (i.e. Agilla [3, 13] and Mate

′
[31]), data management where the

middleware has to handle the data packets that flows though the network (i.e. Milan
[22], TinyDb [38] and Dsware [32]) and network service management where the
middleware should offer a set of network services to the ‘running’ applications
(i.e. Impala [35]).

MAs represent a promising middleware approach and in fact have been already
used in some middleware schemes [3, 13]. A WSN mobile-agent middleware system
(WMMS) must provide a platform to support MAs to perform user-assigned tasks
(in our case autonomic data fusion tasks) while enabling the application deployment
in WSNs.

2 Directed diffusion [2, 7, 54] is a novel network protocol built for information retrieval and data
dissemination. Its main characteristic is that it is ‘data-centric’, namely routing is based on data
aggregated in the SNs rather than traditional IP theme where end-to-end delivery method is used
based on unique identifications. Data generated by SNs are named by attribute–value pairs. A node
requests data by sending interests for named data. Data matching the interest is then ‘drawn’ down
towards that SN (set up of gradients). Intermediate SNs can cache or transform data and may direct
interests based on previously cached data.

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 61

4 Brief Introduction to Mobile Agent Technology

MA technology represents a relatively recent trend in distributed computing, which
answers the flexibility and scalability problems of centralized models. The term MA
[42] refers to an autonomous program with the ability to move from host to host and
act on behalf of users towards the completion of an assigned task. In addition, they
are able to interact with legacy systems. Recently, MAs have been proposed for
efficient data dissemination in sensor networks [4, 45, 46, 56, 64, 65]. In a tradi-
tional client/server-based computing scheme (see Fig. 1), data from multiple nodes
is transferred to one destination. Because the bandwidth of a WSN is typically much
lower from other types of networks (e.g. wired networks), the data traffic derived
from remote interactions may soon exceed the network capacity of a WSN. This
serious scalability problem may be sufficiently addressed through MAs. The key
idea is to delegate multiple MAs to the SNs of a WSN (see Fig. 1); these MAs
can perform local rather than remote interactions with legacy systems, apply intel-
ligent filtering operations thereby eliminating redundancy in the transferred data
and decreasing the network overhead associated with data transfer. This approach
also implies more reasonable usage of the nodes’ radio unit (i.e. their most energy
consuming part), hence prolonged nodes and network lifetime.

A MA may be defined as an entity of four attributes (see Fig. 2) [46]:

• Identification: a number used to uniquely identify the MA in the format of two-
tuple (i : j), where i indicates the IP address of the dispatcher and j the serial
number assigned to agents by the dispatcher.

• Data space: the agent’s data buffer which carries the partially integrated results
(this result should provide progressive accuracy as the agent migrates from node
to node).

• Itinerary: the route of migration. Itinerary planning includes two main issues that
must be addressed: (a) the selection of SNs that must be visited and (b) the route

Fig. 1 Client/Server and MA-based computing schemes

62 A. Mpitziopoulos et al.

that the MA will follow to visit the selected SNs. Itinerary scheduling can be
classified as dynamic, static or hybrid.3

• Methods: the application logic (or execution code) carried with the agent.

5 Advantages/Disadvantages and Application Fields of MAs in
the Context of WSNs

Lange and Oshima listed seven good reasons to use MAs [30]: reducing network
load, overcoming network latency, robust and fault-tolerant performance, etc. The
MA-based computing model enables moving the code (processing) to the data rather
than transferring raw data to the processing module. By transmitting the computa-
tion engine instead of data, this model offers several important benefits:

• Decreased network overhead. Instead of passing large amounts of raw data over
the network through several round trips, only an MA of small size is deployed.
This is especially important for real-time applications and whenever the com-
munication is enabled through low-bandwidth wireless connections. This also
substantially implies improved network scalability.

• Distribution of network load. In the client/server model, the network area around
the centralized element represents a bottleneck point (all remote calls are initiated
and returned to this element). MAs favour network load balancing since agents
are dispatched from the PE in the beginning of their journey and return back in
the end of their itinerary. In the meanwhile, agent migrations typically occur in
network regions away from the PE.

• Adaptability. MAs can be programmed to carry task-adaptive processes which
may extend the built-in capability of the system on the fly.

• Stability and fault tolerance. MAs can be dispatched when the network connec-
tion is alive and return results when the connection is re-established. Therefore,
the performance of the system is not much affected by the reliability of network
links.

• Autonomy. An agent is a self-contained software element responsible for per-
forming part of a programmatic process. Therefore, it contains some level of
intelligence, ranging from simple predefined rules to self-learning artificial intel-
ligence (AI) inference machines. It acts typically on behalf of a user or a pro-
cess enabling task automation. MAs operate rather autonomously (they are often
event or time triggered) and may communicate with the user, system resources
and other MAs as required to perform their task. The autonomy feature of MAs

3 A dynamic itinerary is determined on the fly at each hop of the MA, while a static itinerary is
computed at the PE prior to the MA migration. In a hybrid approach, the SNs to be visited are
selected by the PE but the visiting order is decided on the fly by the MA. Although improving the
optimality of the MA’s itinerary compared to hybrid and static approaches, the dynamic approach
is more time expensive (the ‘find-next-node’ function is executed on each migration step), con-
sumes valuable sensor nodes energy resources and implies larger MA sizes (the more intelligence
integrated within the agent, the larger its size).

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 63

mainly refers to their ability to exercise control over their own actions. That is,
to respond in a timely fashion to changes in the environment, to exhibit goal-
oriented behaviour by taking the initiative and possibly change their itinerary
on-the-fly depending on how they perceive their environment. In fact, autonomy
has been agreed to comprise – among others – an essential feature of mobile
agents [26, 29]. This feature along with platform and system independence makes
them ideal for building robust and reliable WSNs. Furthermore MAs can support
WSNs deployed in hostile environments, since they react dynamically to changes
(for example interference or jamming).

Although the role of MAs in distributed computing is still being debated mainly
because security concerns [15], several applications have shown clear evidence of
benefiting from the use of MAs [40], including e-commerce and m-commerce trad-
ing [53], distributed information retrieval [25], network awareness [18] and network
and systems management [15, 49, 50]. Network-robust applications are also of great
interest in military situations today. MAs are used to monitor and react instantly
to the continuously changing network conditions and guarantee successful perfor-
mance of the application tasks.

MAs have also found a natural fit in the field of distributed sensor networks
(DSNs); hence, a significant amount of research has been dedicated in proposing
ways for the efficient usage of MAs in the context of WSNs. In particular, MAs
have been proposed for enabling dynamically reconfigurable WSNs through easy
development of adaptive and application-specific software for SNs [58], for sepa-
rating SNs in clusters [36], in multi-resolution data integration [56] and fusion [46],
data dissemination [5] and location tracking of moving objects [2, 56, 63]. These
applications involve the usage of multi-hop MAs visiting large numbers of SNs.

In MA-based autonomic data fusion tasks the choice of agents’ itineraries is of
critical importance affecting the overall energy consumption and data fusion cost.

Fig. 2 Mobile agents as entities of four attributes

64 A. Mpitziopoulos et al.

Notably, only few research articles have dealt with the problem of approximating
optimal MA routes either through heuristics [45] or genetic algorithms [64]. The
most notable weakness of these algorithms as argued in Sect. 7.1 is that they rely
on a single MA to visit and fuse data from distributed sensors. However, such solu-
tions do not scale acceptably for networks comprising hundreds or thousands of
sensor nodes.

Security has been identified as the main reason that hinders the adoption of MAs
as the next generation distributed computing paradigm.4 In the context of WSNs, the
most crucial security risk in using MAs is the possibility of tampering an agent. In
a WSN that utilizes MAs the agent’s code and internal data autonomously migrate
between SNs and could be easy changed during the transmission or at a malicious
(hostile) node. To address this security risk several countermeasures can be utilized
to detect any manipulation made by an adversary, for instance, Encrypted Functions
(EF) [51], Cryptographic Traces [59, 60], Chained MAC protocol [11], Watermark-
ing [10], Fingerprinting [10], Zero-knowledge proofs [43] and the Secure secret
sharing scheme [43].

6 Classification of MA-Based Approaches for Autonomic Data
Fusion in WSNs

MA-based approaches for autonomic data fusion in WSNs can be classified as
follows (see Fig. 3):

• Single MA-based autonomic data fusion [5, 6, 45, 64], where only one MA
is used for autonomic data fusion in the sensor network. This approach may
work well with small scale WSNs but as discussed in Sect. 5 such solutions do
not scale acceptably for networks comprising hundreds or thousands of sensor
nodes.

• Multiple MA-based autonomic data fusion [16, 41, 46, 56], wherein a number
of MAs is working in parallel to fuse data from WSN sensors. This approach is
highly efficient even in large scale WSNs. However, it requires relatively complex
algorithms to derive the itineraries of individual MAs.

• Autonomic data fusion in clustered WSN architectures [61]. This category refers
to sensor networks with clustered structures. In such structures, SNs located in
nearby locations are grouped in virtual clusters; one of these SNs acts as ‘cluster
head’ (CH) and sensory data retrieved by its ‘cluster members’ are rooted to the
PE through the CH. Autonomic data fusion tasks within these clustered structures
are assigned to MAs.

4 The most critical security concerns related to MAs comprise (a) protecting mobile hosts from
malicious agents, (b) protecting agents from malicious hosts and (c) protecting sensitive informa-
tion carried by agents from eavesdropping. The first is addressed through implementing authen-
tication and authorization features which ensure that only trusted agents may be executed, in a
restricted authority domain. The second may be achieved through protecting agents against tam-
pering, while the third is sufficiently addressed through encrypting sensitive data.

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 65

Fig. 3 A taxonomy of MA-based approaches for autonomic data fusion in WSNs

• Hardware-based autonomic data fusion [55]. In Sect. 4 we described MAs as
autonomous software entities. Several research papers though used the term MA
to refer to mobile hardware instances programmed with suitable software and
acting as MAs (e.g. highly mobile SNs traversing the WSN to collect and process
data from SNs and deliver it back to the PE).

• Combined multiple MA / stationary agents-based autonomic data fusion
[39, 63]. This approach involves SNs with embedded stationary agents (SAs)
that cooperate with their peers of neighbour nodes or MAs that traverse the
network.

7 MA-Based Approaches for Autonomic Data Fusion in WSNs

In this section we present the key concepts of the most representative MA-based
autonomic data fusion schemes found in the literature, emphasizing on their relevant
merits and shortcomings. The presentation is structured according to the classifica-
tion provided in the preceding section (Sect. 6).

7.1 Single MA-Based Autonomic Data Fusion

7.1.1 Local Closest First and Global Closest First algorithms

Qi and Wang in [45] proposed two heuristics to optimize the itinerary of MAs
involved in data fusion tasks. In local closest first (LCF) algorithm, each MA starts
its route from the PE and searches for the next destination with the shortest distance
to its current location. In global closest first (GCF) algorithm, MAs also start their
itinerary from the PE node and select the node closest to the centre of the surveil-
lance region as the next-hop destination.

66 A. Mpitziopoulos et al.

Fig. 4 (a) Output of LCF, (b) output of GCF (‘C’ denotes the network’s centre)

The main asset of these two algorithms is that they are associated with low com-
putational complexity. However, the output of LCF-like algorithms highly depends
on the MAs original location, while the nodes left to be visited last are typically
associated with high migration cost [27] (see, for instance, the last two hops, 6 and 7,
in Fig. 4a); the reason for this is that they search for the next destination among the
SNs adjacent to the MA’s current location, instead of looking at the ‘global’ network
distance matrix. On the other hand, GCF produces in most cases messier routes than
LCF and repetitive MA oscillations around the region centre, resulting in long route
paths and unacceptably poor performance [45, 64].

The most serious drawback in both LCF and GCF is that they involve the use
of a single MA object launched from the PE station that sequentially visits all SNs,
regardless of their physical location on the plane. Their performance is satisfactory
for small WSNs; however, it deteriorates as the network size grows and the sensor
distributions become more complicated. This is because both the MA’s round-trip
delay and the overall migration cost increases squarely with network size, as the
travelling MA accumulates into its state data from visited SNs [14]. The growing
MA’s state size not only results in increased consumption of the limited wireless
bandwidth, but also consumes the limited energy supplies of SNs. This drawback
is addressed by more recent works [16, 40] that propose methods for intelligent
itinerary scheduling enabling the parallel employment of multiple MAs, each visit-
ing a limited number of nodes.

7.1.2 Wu et al. Genetic Algorithm

Wu et al. proposed a genetic algorithm5 for computing routes for a MA that incre-
mentally fuses the data as it visits the nodes in a WSN [64]. The main application

5 A genetic algorithm is a computational mechanism that ‘simulates’ the process of genetic selec-
tion and natural elimination in biological evolution.

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 67

fields of this approach are object tracking and detection, where the MA must visit
the sensors that sense the strongest signals, while the suggested itinerary must keep
path loss and energy consumption low. The authors proved the above route compu-
tational problem to be NP-hard. Hence they relied on a genetic algorithm to solve
the problem.

A two-level encoding is employed to adapt the genetic algorithm for the MA
routing problem in WSNs. The first level is a numerical encoding of the sensor (ID)
label in the order of SNs being visited by the MA. The second level is a binary
encoding of the visit status of the SNs that are used in the first level (e.g. if a sensor
has been visited, it is assigned ‘1’ attribute value, else ‘0’).

The proposed genetic algorithm is based on an event-driven adaptive method to
implement a semi-dynamic routing strategy where the routing code is implemented
exclusively in the PE. The MA carries only the pre-computed route that determines
the order of SNs to be visited. In case of topology changes in the network (e.g. loss
of nodes communication or energy depletion) that render the previous computed
route invalid, the routing code is re-executed at the PE and the new route is sent
to the MA.

Although providing superior performance (lower itinerary cost) than LCF and
GCF algorithms, this approach implies a time-expensive optimal itinerary calcu-
lation (genetic algorithms typically start their execution with a random solution
‘vector’ which is improved as the execution progresses), which is unacceptable for
time-critical applications, e.g. in target location and tracking. Also, in such appli-
cations, the group of visited SNs (i.e. those with maximum detected signal level)
is frequently changed over time depending on target’s movement; hence, a method
that guarantees fast adaptation of MAs itineraries is needed.

7.1.3 Mobile Agent-Based Wireless Sensor Network Architecture

Chen et al. in [5] proposed the mobile agent-based wireless sensor network
(MAWSN) architecture for filtering and aggregating data in planar sensor network
architectures. In MAWSN, MAs are used to (a) eliminate data redundancy among
SNs through applying context-aware local processing at the node level; (b) eliminate
spatial redundancy among neighbour SNs by MA assisted data aggregation, since
in WSNs comprising large numbers of SNs closely located sensors generating
redundant data are likely to exist and (c) reduce communication overhead by using
a packet unification technique that concatenates the data from several short packets
into one longer packet in order to reduce the communication overhead at the
combined task level.

In MAWSN it is assumed that the PE is aware of the nodes that will be visited
by the MA and the itinerary of the MA is predetermined. The payload of an MA is
consisted of two parts, the processing code which is used to process sensed data and
the aggregated data. Also the MA keeps a list (SourceList) with the source nodes
that has to visit. In SourceList, there are two sources whose positions are important,
namely, the first source which the MA will visit (FirstSource) and the last source
(LastSource). The pair of FirstSource and LastSource represents the starting and

68 A. Mpitziopoulos et al.

ending points of the MA, respectively, while Nextsource represents intermediate
nodes.

When an MA is dispatched from the PE, it visits FirstSource where it is stored.
FirstSource dispatches a copy of the stored MA (clone) after specific periods which
are predefined according to the desired data rate. The clone after leaving FirstSource
visits Nextsource nodes according to their gradient [54] (each time selects the one
with maximum gradient), collects sensed data and deletes the current NextSource
node from its SourceList. After visiting all NextSource nodes the clone finally
reaches LastSource, where it also collects sensed data and then returns to the PE.

The authors proved via simulations that MAWSN presents performance gain over
the client/server model in terms of energy consumption and packet deliver ratio.
However, as the authors admit, MAWSN involves longer end-to-end latency under
certain conditions due to the fact that only a single MA is employed in MAWSN. In
scenarios wherein the MA visits large sets of sensors the latency (round trip delay
of the MA) and the energy expenditure is drastically increased.

7.1.4 Mobile-Agent-Directed Diffusion Architecture

Chen et al. proposed the mobile-agent-directed diffusion (MADD) in [6] as an
improvement to MA-based distributed sensor network (MADSN) and multi-
resolution integration (MRI) algorithm (see Sect. 7.2.4). The limitation of clustering
in MASDN is addressed by using a flat network architecture (the authors argue that
is more suitable for a wide range of WSNs applications compared to cluster-based
architectures).

In MADD, MAs itineraries are scheduled by the PE utilizing directed diffusion
[54]. The itinerary scheduling is the same with MAWSN with the only difference
that when the clone MA reaches LastSource it discards the processing code and
carries only the aggregated result to the PE saving valuable energy. The main differ-
ences between MADD and client/server model are as follows:

• MADD uses a single MA that visits all the relevant SNs to collect data and the
interval between the reports to the PE is decided by the dispatching rate of the
MA. On the contrary, in client/server-based WSNs the sensory data is sent indi-
vidually by each sensor with a specified interval.

• In MADD, data is collected by the MA visiting all the SNs along a single path
(itinerary), while in client/server-based WSNs, data is sent back to the PE in
parallel from all nodes.

Although MADD addressed many constraints of MASDN, it failed to address the
poor scalability of the approach wherein a single MA object visits sequentially the
SNs for data collection. This renders both algorithms inappropriate for large-scale
WSNs wherein the end-to-end delay and the size of the MA would increase squarely
with the number of visited SNs.

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 69

7.2 Multi-MA-Based Autonomic Data Fusion

7.2.1 The Near-Optimal Itinerary Design Algorithm

Mpitziopoulos et al. in [41] proposed the near-optimal itinerary design (NOID)
algorithm to address the problem of calculating a near-optimal route for a MA that
incrementally fuses the data as it visits the nodes in a DSN.

NOID algorithm adapts some basic ideas of Esau–Williams (E–W) algorithm [9]
and has been designed on the basis of three objectives: (a) MA itineraries should be
derived as fast as possible and adapt quickly to changing networking conditions
(hence, an efficient heuristic is needed), (b) MA itineraries should include only
SNs with sufficient energy availability and exclude those with low energy level and
(c) the number of MAs involved in the data fusion process should depend on the
number and the physical location of the SNs to be visited; the order an MA visits
its assigned nodes should be computed in such a way as to minimize the overall
migration cost.

As opposed to single MA-based approaches, NOID enables the construction of
multiple near-optimal itineraries, each assigned to individual MAs (see Fig. 5).
NOID is executed on the PE platform; hence, MA routes are predefined and not
computed on-the-fly (awareness of the nodes’ geographical locations is assumed).
The authors claim this is a reasonable choice since MAs starts their journey from the
PE node, which is typically equipped with powerful computing resources compared
to SNs. However, a dynamic itinerary calculated at each hop by the MA would
enable more prompt response to potential topology changes. On the other hand,
it would rise energy demands since the next-hop computation would execute on
resource-constrained SNs; in addition, the MAs size would considerably increase

Fig. 5 (a) Output of NOID (the sequence numbers indicate the order in which the correspond-
ing MA migrations are accepted, i.e., the algorithm’s iteration sequence numbers), (b) the MA
itineraries derived from the NOID algorithm’s output

70 A. Mpitziopoulos et al.

(the itinerary scheduling logic would be embedded into MA code and transferred on
every MA migration).

The authors also reported simulation results that demonstrated the improved
NOID’s performance over LCF and GCF algorithms in terms of the overall energy
consumption and response time. This is mainly because NOID takes into account
the amount of data accumulated by MAs at each visited SN. Namely, NOID rec-
ognizes that travelling MAs become ‘heavier’ while visiting SNs without returning
back to the PE to ‘unload’ their collected data [14]. Therefore, NOID promotes
small itineraries enabling the parallel employment of multiple cooperating MAs,
each visiting a subset of SNs.

7.2.2 The Second Near-Optimal Itinerary Design Algorithm

Gavalas et al. in [16] presented the second near-optimal itinerary design (SNOID)
algorithm for determining the number of MAs that should be used and the itineraries
these MAs should follow.

The main idea behind SNOID is to partition the area around the PE into concen-
tric zones and start building the MA paths with direction from the inner (close to
PE) zones to outer ones. The radius of the first zone which includes the PE is equal
to a×rmax where a is an input parameter in the range (0, 1] and rmax is the maximum
transmission range of any SN. All SNs inside the first zone are connected directly
to the PE and these nodes are the starting points of the itineraries of the MAs.
By adjusting the value of parameter a, the number of MA itineraries is adjusted
accordingly.

Summarizing, SNOID algorithm determines the number of MAs by taking only
into account the cost of communication between the PE and the first nodes of the
itineraries. The remaining zones have a constant width equal to rmax/2 . Thus, each
SN can only directly communicate with nodes residing within the same zone or
within the two adjacent zones.

The construction of the itineraries of the MAs starts from the inner (close to PE)
zones and proceeds to the outer zones, as illustrated in Fig. 6. When examining a
zone, SNOID’s objective is to connect each node with a node of the previous or
the current zone which already has a connecting path back to the PE. Throughout
this process attention is paid to the latency (denoted as PL in Fig. 6) of the trees
formed up to that point, where latency is calculated through a simple formula. The
nodes selected to join the trees are the ones that provide the minimum cost to the
tree compared to other candidate nodes.

7.2.3 Location Tracking in a WSN by MAs and its Data Fusion Strategies

In [56] Tseng et al. proposed the use of MAs for location tracking applications in
WSNs to reduce sensing, computing and communication overheads. When a new
object is detected by a SN, an MA is initiated to track the roaming path of the
object. The MA visits the SN closest to the object and hops to other SNs following
the object’s movement. This MA (called master MA) may invite two nearby SNs

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 71

Fig. 6 Partitioning the area around PE into a number of zones (SNOID)

to cooperatively position the object by dispatching a slave MA to each of them.
Following that, the three MAs (the master MA and the two slave MAs) cooperate
to perform the trilateration6 algorithm [52] to calculate the object’s precise location.
As the object moves, the slave MAs may be revoked or reassigned depending on
how ‘strongly’ they sense the moving object. Regarding the number of slave MAs
the authors point out that although their development is based in the cooperation
of only two, it will be straightforward to extend their work to more slave MAs to
improve the positioning accuracy.

Besides location tracking the authors try to address the problem of fusion of
data containing the tracking results. They propose two schemes to transfer the fused
results to the PE, the threshold-based (TB) scheme and the distance-based (DB)
scheme. In TB scheme the results are forwarded to the PE when the data size carried
by the MA(s) reaches an upper bound while in DB scheme both data size and the
distance of the MA from the PE are considered. Simulation results proved that DB
performs well in all cases while in TB the threshold should be carefully chosen.

6 Trilateration is a method of determining the relative positions of objects using the geometry of
triangles in a similar fashion as triangulation. It uses the known locations of two or more reference
points, and the measured distance between the subject and each reference point.

72 A. Mpitziopoulos et al.

7.2.4 MA-Based Distributed Sensor Network and MRI Algorithm

To solve the problem of the overwhelming data traffic, Qi et al. [46] proposed the
MADSN by developing an enhanced version of the original MRI algorithm [44]
for scalable and energy-efficient data aggregation. The idea of the original MRI
algorithm [44] involves the construction of a simple function (overlap function)
from the outputs of the sensors in a cluster and resolving this function at various
successively finer scales of resolution to isolate the region over which the correct
sensors lie. Each sensor in a cluster measures the same parameters. It is possible
that some of them are faulty. Hence it is desirable to make use of this redundancy of
the readings in the cluster to obtain a correct estimate of the monitored parameters.

The key concept in the enhanced version of MRI algorithm [46] for MADSNs is
that multi-resolution analysis is applied at each sensor node instead of the PE, allow-
ing MADSN to save up to 90% of data transfer time, according to the simulations
the authors have conducted, compared to the original MRI [44] implementation
for DSNs.

Concluding, in this approach by transmitting the software code (MA) to SNs that
are nearby the area(s) of interest, a large amount of sensory data may be filtered
at the source by eliminating the redundancy utilizing the enhanced MRI algorithm
[46]. MAs may visit a number of SNs and progressively fuse retrieved sensory data,
prior to returning back to the PE to deliver the data. This scheme may be more
efficient than traditional client/server model; within the latter model, raw sensory
data are transmitted to the PE where data fusion takes place.

The main drawback of MADSN is that it operates based on the following
assumptions [6]: (1) the sensor network architecture is clustered; (2) source nodes
are within one hop from a CH and (3) much redundancy exists among the sensory
data which can be fused into a single data packet with a fixed size. These assump-
tions pose many limitations on the range of applications that may be supported by
MADSN. Also in [46] the authors assume a constant size for the MA, which is a
non-valid assumption since MAs may get ‘heavier’ from the data they collect as
they migrate through SNs.

7.3 Autonomic Data Fusion in Clustered WSN Architectures

7.3.1 Cluster-Based Hybrid Computing Schemes

Clustered architectures involve specific SNs operating as CHs; such nodes are typ-
ically positioned in their cluster’s centre, while they act as relays for forwarding
the sensory data retrieved by their assigned cluster members to the Sink. Xu and
Qi in [61] argued that MA-based WSNs does not necessarily perform better than
client/server schemes since MAs also introduce overhead due to their migrations
and access to legacy systems resources.

Along this line, they proposed two cluster-based hybrid computing schemes that
combine the advantages of MA and client/server models and offer better perfor-
mance, should the proper scheme is chosen according to network clustering condi-

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 73

tions. Within the first scheme (scheme A) each CH dispatches an MA that visits all
the cluster members (SNs) in sequence to collect and aggregate data. When an MA
returns to the CH, it sends the aggregated data back to the PE. In the second scheme
(scheme B) an MA is dispatched by the PE and visits the CHs to collect the sensory
data retrieved by the associated cluster members though client/server interactions.

The main drawback of the proposed hybrid model, as admitted by the authors, is
that while for some network configurations it can make full use of the advantages of
both the client/server and MA models, for some other configurations it could inherit
the disadvantages of both models, leading to decreased performance. An example
of such a situation is when the number of clusters is large for scheme A and small
for scheme B. Also the authors in [61] assume a constant size for the MA, which is
not realistic as the MA grows ‘bigger’ while collecting data from the SNs.

7.4 Hardware MA-Based Autonomic Data Fusion

7.4.1 SENMA

Tong et al. in [55] proposed an architecture for large scale low-power sensor net-
work, called sensor networks with mobile agents (SENMA) architecture. SENMA
exploits node redundancies by introducing MAs that visit the SNs periodically or
when the application requires for data gathering or network maintenance. The addi-
tion of MAs shifts computationally intensive tasks away from primitive SNs to more
powerful MAs enabling energy efficient operations under severely limited power
constraints.

MAs in SENMA are powerful hardware units equipped with sophisticated trans-
ceivers. Compared to regular SNs these special MAs are not strictly constrained on
their communication and processing capability and their ability to traverse the sen-
sor network. Examples of MAs could be manned/unmanned aerial vehicles, ground
vehicles equipped with sophisticated terminals and power generators, or specially
designed light nodes that can hop around in the network [55].

The authors showed that the simple topology of SENMA reduces energy con-
sumption and improves the scalability of WSNs [55]. The main drawback of
SENMA is the requirement of special hardware, playing the role of MAs that would
significant increase the cost and the deployment complexity of the WSN. However,
SENMA could be efficiently used in special applications where the cost of the WSN
is not a first-priority issue (e.g. military applications).

7.5 Combined MA/Stationary Agents-Based Autonomic
Data Fusion

7.5.1 Agent-Based Directed Diffusion

In [39] agent-based directed diffusion (AbDD) is proposed by Malik et al. to address
one of the most significant drawbacks in current routing schemes for WSNs: they all

74 A. Mpitziopoulos et al.

tend to propose optimal route that consume lowest energy (e.g. minimum number of
hops path), leading all the nodes along the optimal path to faster energy depletion.
On the contrary, AbDD ensures that data routing traffic is fairly balanced across the
network as it takes into account both the routing cost and remaining energy of the
nodes and utilizes the cloning capability of MAs. AbDD uses directed diffusion to
address the redundancy of sensory data especially in large-scale dense WSNs with
arbitrary nodes placement. Apart from MAs, SAs permanently residing to SNs are
also used (SAs directly interact with legacy systems, retrieve sensory data and report
them to the MAs).

MAs and SAs in conjunction with directed diffusion achieve energy saving by
moving the processing function to the data rather than transferring the data to the
PE. AbDD’s execution encompasses the following phases:

• Phase 1: The PE dispatches a single MA equipped with specified interest for data
to identify – cooperating with the local SAs – the SNs that satisfy these interests
(termed source SNs). In effect, an interest message is a query or an interrogation
which specifies what the PE looks for. Each interest contains a description of
sensing task that is supported by the WSN for acquiring data. When the MA
locates a SN that meets the specified interests, it returns back to the PE building
on the way the cost tables.

• Phase 2: The PE dispatches the MA to distribute the application-specific code to
the source SNs. The sequence of source SNs to be visited is predetermined by
the PE. However, MAs may alter their itinerary on-the-fly taking into account the
battery level for each neighbour SN at each hop. When the MA reaches the first
source SN, it distributes the copy of application code to the SA and clones itself
to continue its itinerary. Next, it continues its itinerary and distributes copies of
the application code at each source SN. When it reaches the last source SN is
self-destroyed.

• Phase 3: The MA’s clone residing in the first source SN makes a new clone that
remains to the node (when a time interval set by the PE elapses). It then collects
the data from the sensor and migrates to the other source SN performing data
aggregation functions. Finally, it routes data back to the PE and destroys itself.

The authors proved through simulations that agent-based directed diffusion
achieves lower energy consumption than distributed directed diffusion. However,
although AbDD utilizes the cloning capability of MAs only a single MA initially
is dispatched by the PE and a single MA visits the source SN and reports back to
the PE. Thus, similarly to alternative single MA-based data fusion schemes AbDD
is associated with increased energy consumption and latency when considering data
retrieval from large sets of SNs.

7.5.2 Agent Collaborative Target Localization and Classification in Wireless
Sensor Networks

Wang et al. in [63] proposed a heterogeneous architecture for WSNs, for target
localization and classification tasks where both multi-agent systems (each node

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 75

represents a multi-agent) and MAs are incorporated. The multi-agent system com-
prises a four-level hierarchy [63], where the top level is the interface agent. This
agent is responsible for three procedures, namely receiving user queries about the
environment, forwarding these queries to the lower level agents accordingly and
reporting the query results to the users. In the immediately lower level resides the
regional agent. According to the size of the WSN more than one regional agents
may coexist, with each one being in charge of a region within the WSN. The
task of the regional agents is to receive query requests from the interface agent
and to coordinate sensor nodes within their region to collaboratively respond to
the requests. A region is further split to clusters that are managed by manager
agents. The role of manager agents is to directly control the behaviour of sen-
sor nodes (observing agents) that are given the task of sensing the current target
event.

In the above hierarchical multi-agent system, MAs are employed only when nec-
essary and beneficial (e.g. in cases where data transmission comes in bulk or uti-
lization of MAs gives superior performance). Sensor fusion is primarily performed
based on multi-agent cooperation, however MAs are also used in cases of bulk
data exchanges. This architecture greatly facilitates designs and implementations
of WSN. In addition the architecture also readily adapts to diversified deployments
at various scales.

Summarizing, the main purpose of this work is to develop the appropriate
data fusion mechanisms, which should provide desirable accuracy and at the
same time adapt to various WSN constraints (e.g. limited bandwidth and energy).
They take advantage of both multi-agent and multi-MA schemes to achieve their
goals.

8 Comparison of MA Approaches for Autonomic Data Fusion
in WSNs

The performance of algorithms that fall into single MA-based category is relatively
low especially in large-scale WSNs. This is because a single MA is used for data
fusion tasks and, hence, it must carry a heavy load of data retrieved from SNs.
This category is only suitable for small-scale WSNs. On the other hand, multi-MA
based category can be efficiently used in large-scale WSNs, since multiple MAs
are working in parallel for data fusion tasks leading to considerable energy gains.
However, the complexity of the proposed algorithms is increased compared to single
MA-based algorithms since they cater for scheduling non-overlapping itineraries for
multiple MAs.

In clustered architectures the use of MAs for data fusion tasks may result in
fast energy depletion of CH nodes. To overcome this limitation, clustering algo-
rithms typically cater for the election of new CHs in periodic basis. However, that
increases the complexity of MAs routing since the itinerary scheduling algorithm
should be aware of the current CHs identity on every execution. Furthermore,

76 A. Mpitziopoulos et al.

this category has limited applicability to WSNs consisted of mobile SNs since
their topology is frequently modified. Finally, CHs represent bottleneck points
within the WSN, especially when transfer of large chunks of sensory data is
involved.

The proposals in hardware-based category can offer comparable or improved
performance than multi-MA-based data fusion methods. Thus, they can efficiently
be used in large-scale WSNs where cost is not a prohibitive factor. Proposals that
belong to combined MA/stationary agents-based category can also be used in large-
scale WSNs because multiple MAs and SAs are utilized in data fusion process.
These approaches offer comparable performance to that of multi-agent-based mod-
els, however they imply complex manageability since they involve MA and SA
entities. In addition, the permanent execution of SAs upon SNs implies increased
demand upon device resources.

In Fig. 7 we summarize the advantages and disadvantages of all the research
works reviewed in this chapter while Fig. 8 lists various parameters such as appli-
cation field, number of utilized MAs and relevant category. We also refer to the
parameters that affect the overall performance of each work (sensory data redun-
dancy ratio and MA initial size applies to all approaches) and where the itinerary
planning of MA(s) takes place.

Fig. 7 Advantages–disadvantages of each proposed scheme

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 77

Fig. 8 Individual parameters of of each proposed scheme

9 Open Research Issues

The rapid advances in sensor technology depress the manufacturing cost of SNs and
make feasible the deployment of large-scale WSNs. However the increased number
of SNs implies increased data volumes that must be transferred through the limited
bandwidth of wireless channels. This problem along with the resource constraints of
contemporary SNs (e.g. limited energy, computation and communication capabili-
ties) raises new challenges to the design of scalable and functional WSNs. To this
end, the use of MAs for autonomic data fusion tasks has been a subject of intense
research during the past few years. However, several research issues remain open,
as outlined below:

• SNs in a WSN typically operate unattended, and are therefore vulnerable to tam-
pering. Hence, the capture of an MA by an adversary is relatively easy and its
collected data can then easily be retrieved. Also the MA may acquire deceitful
data by a compromised node. Research should therefore be directed to MA-based
schemes that provide effective, low-complexity security mechanisms for the MAs
and privacy for their carried data. Techniques that allow MAs to identify tam-
pered and unreliable SNs should also be investigated.

• WSNs can be threatened by denial-of-service (DoS) attacks (e.g. jamming, inter-
ference or resource exhaustion) which can cause the collapse of an entire net-
work. DoS attacks represent a serious concern, especially in the eye of sensitive
WSN application scenarios (e.g. battlefield surveillance). Thus, MA-based data
fusion schemes able of responding to DoS attacks without disrupting their data
fusion tasks should be derived.

78 A. Mpitziopoulos et al.

• WSNs often face topology changes (due to temporal communication problems
or nodes energy exhaustion), especially when deployed in hostile environments.
Hence, research on MA-based data fusion should propose methods that guarantee
the best attainable results in these environments. These methods should allow the
fast and ‘inexpensive’ (of low complexity) adaptation of agent itineraries to topol-
ogy modifications so that the overall fusion cost does not increase considerably.
The key issues to be investigated is ‘when’ and ‘how’ to perform the itinerary
adaptation; also ‘who’ (the PE or the MAs) will execute the itinerary adaptation
procedure.

• Proposal of innovative WSN agent-oriented applications (apart from data fusion)
that will benefit from the distributed nature of mobile agent objects and their
ability to perform local data processing and filtering.

• Extensive evaluation of mobile agent paradigm in a variety of DSNs applications,
such as object monitoring and tracking.

• Development of formal theoretical models that will systematically analyse the
qualitative and quantitative trade-offs of the mobile agent approach vs. the client–
server model in WSN environments, in a way similar to the one followed for IP
networks [14].

10 Conclusion

This chapter reviewed the main aspects of data fusion, MA technology and the ben-
efits gained by utilizing MAs for autonomic data fusion tasks in WSNs.

It also classifies the research works that deal with MA-based autonomic data
fusion in WSNs in five main categories: single MA-based, multiple MA-based, auto-
nomic data fusion in clustered WSN architectures, hardware-based and combined
multiple MA/stationary agents-based autonomic data fusion, highlighting their rel-
evant merits and shortcomings. Furthermore, it highlights open research issues in
the field of MA-based autonomic data fusion in WSNs. In the near future, the wider
adoption and usage of WSN technologies is expected to bring out the significant
role that MAs can play in this type of networks.

References

1. Akyildiz, F., Su, W., Sankarasubramaniam, Y., Cayirci, E.:A Survey on Sensor Networks.
IEEE Communications Magazine, pp. 102–114, August 2002.

2. Boulis, A.: Programming Sensor Networks with Mobile Agents. Proceedings of the 6th Inter-
national Conference on Mobile Data Management (MDM’2005), pp. 252–256, May 2005.

3. Boulis, A., Han, C., Srivastava, M.:Design and Implementation of a Framework for Efficient
and Programmable Sensor Networks. Proc. ACM MobiSys ’03, pp. 187–200, May 2003.

4. Chong, C.Y., Kumar, S.P.:Sensor networks: evolution, opportunities, and challenges. Pro-
ceeding of the IEEE, Vol. 91, NO. (8), 1247–1256, Aug. 2003.

5. Chen, M., Kwon, T., Choi, Y.: Data Dissemination based on Mobile Agent in Wireless
Sensor Networks. Proceedings of the 30th IEEE Conference on Local Computer Networks
(LCN’05), pp. 527–529, Nov. 2005.

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 79

6. Chen, M., Kwon, T., Yuan, Y., Choi, Y., Leug, V.C.M.: Mobile Agent-Based Directed Dif-
fusion in Wireless Sensor Networks. EURASIP Journal on Advances in Signal Processing
Volume 2007, Hindawi Publishing Corporation, 2007.

7. Chu, M., Haussecker, H., Zhao, F.: Scalable information-driven sensor querying and routing
for ad hoc heterogeneous sensor networks. International Journal of High-Performance Com-
puting Applications, Vol. 16, No. 3, pp. 293–313 (2002).

8. Elen, B., Michiels, S., Joosen, W., Verbaeten, P.: A middleware pattern to support complex
sensor network applications. OOPSLA ’06, Workshop on building software for sensor net-
works, Portland, Oregon, USA, (2006).

9. Esau, L.R., Williams K.C.: On teleprocessing system design. Part II- A method for approxi-
mating the optimal network. IBM Systems Journal, 5, 142–147, 1966.

10. Esparza, O., Fernandez, M., Soriano, M., Munoz, J.L., Forne, J.: Mobile Agents Water-
marking and Fingerprinting: Tracing Malicious Hosts. DEXA 2003, LNCS 2736, Springer-
Verlag, (2003).

11. Fisher, L.: Protecting Integrity and Secrecy of Mobile Agents on Trusted and Non-Trusted
Agent Places, diploma thesis, Department of computer science, University of Bremen, 2003.

12. Flinn, J., Satyanarayanan, M.: Energy-aware adaptation for mobile applications. Symposium
on Operating Systems Principles, pp. 48–63, 1999.

13. Fok, C., Roman, G., Lu, C.: Mobile Agent Middleware for Sensor Networks: An Application
Case Study. Proc. IEEE IPSN ’05, pp. 382–387, Apr. 2005.

14. Fuggeta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. IEEE Transactions on
Software Engineering 24(5), 346–361, 1998.

15. Gavalas, D.: Mobile Software Agents for Network Monitoring and Performance Man-
agement, PhD Thesis, University of Essex, UK, July 2001.

16. Gavalas, D., Pantziou, G., Konstantopoulos, C., Mamalis, B.: New Techniques for Incre-
mental Data Fusion in Distributed Sensor Networks. In Proceedings of the 11th Panhellenic
Conference on Informatics (PCI’2007), pp. 599–608, (2007).

17. Geihs, K.: Middleware Challenges Ahead. IEEE Computer, pp. 24–31, (2001).
18. Al-Hammouri, A., Zhang, W., Buchheit, R., Liberatore, V., Chrysanthis, P., Pruhs, K.: Net-

work Awareness and Application Adaptability. Information Systems and E-Business Man-
agement, 4(4), 399–419, Oct. 2006.

19. Iyengar, S. S., Jayasimha, D. N., Nadig, D.: A versatile architecture for the distributed sensor
integration problem. IEEE Trans. Comput., 43(2), pp. 175–185, Feb. 1994.

20. Guibas, L.J. Sensing, tracking, and reasoning with relations. IEEE Signal Processing Maga-
zine 2002, pp. 73–85, 2002.

21. Heinzelman, W., Kulik, J., Balakrishnan, H.: Adaptive Protocols for Information Dissemina-
tion in Wireless Sensor Networks. In Proceedings of 5th ACM/IEEE Mobicom Conference,
pp. 174–185, (1999).

22. Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo M.A.: Middleware to Support
Sensor Network Applications. IEEE Network, pp. 6–14, Jan./Feb. 2004.

23. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust com-
munication paradigm for sensor networks. Proceedings of the 6th Annual International con-
ference on Mobile Computing and Networking, 56–67, 2000.

24. Jayasimha, D.N., Iyengar, S.S., Kashyap, R.L.: Information integration and synchroniza-
tion in distributed sensor networks. IEEE Trans. Syst., Man, Cybern., 21(21), 1032–1043,
Sept./Oct. 1991.

25. Jiao,Y., Hurson, A.R.: Adaptive Power Management for Mobile Agent-Based Information
Retrieval. Proceedings of the 19th International Conference on Advanced Information Net-
working and Applications (AINA’05), pp. 675–680, Mar. 2005.

26. Kendall, E.A., Krishna, P.V.M., Pathak, C.V., Suresh, C.B.:Patterns of Intelligent and Mobile
Agents. Proceedings of the 2nd International Conference on Autonomous Agents (Agents98),
pp. 92–99, May 1998.

27. Kershenbaum, A.: Telecommunications Network Design Algorithms, McGraw-Hill, 1993.

80 A. Mpitziopoulos et al.

28. Knoll, A., Meinkoehn, J.: Data fusion using large multi-agent networks: an analysis of
network structure and performance. In Proceedings of the International Conference on
Multisensor Fusion and Integration for Intelligent Systems (MFI), Las Vegas, NV, IEEE, pp.
113–120, Oct. 2–5 1994.

29. Krause, S., Magedanz, T.: Mobile Service Agents enabling Intelligence on Demand in
Telecommunications. Proceedings of IEEE GLOBCOM 96, pp. 78–84 , Nov. 1996.

30. Lange, D.B., Oshima, M.: Seven Good Reasons for Mobile Agents. Communications of the
ACM, 42(3), 88–89, Mar. 1999.

31. Levis, P., Culler, D.: Mat?: a tiny virtual machine for sensor networks. In ASPLOS- X:
Proceedings of the 10th international conference on Architectural support for programming
languages and operating systems, pp. 85–95, 2002.

32. Li, S., Son, S.H., Stankovic, J.A.: Event detection services using data service middleware in
distributed sensor networks. In IPSN’03:Proceedings of the 2nd international symposium on
Information processing in sensor networks, pp. 502–517, 2003.

33. Lindsey, S., Raghavendra, C. S.: PEGASIS: Power Efficient GAthering in Sensor Information
Systems. In Proceedings of IEEE Aerospace Conference, vol.3, pp. 1125–1130, 2002.

34. Lindsey, S., Raghavendra, C.S., Sivalingam, K.:Data Gathering in Sensor Networks using the
Energy*Delay Metric. In Proceedings of the IPDPS Workshop on Issues in Wireless Networks
and Mobile Computing, pp. 2001–2008, 2001.

35. Liu, T., Martonosi, M.: Impala: a middleware system for managing autonomic, parallel sensor
systems, In PPoPP’03: Proceedings of the ninth ACM SIGPLAN symposium on Principles
and practice of parallel programming, pp.107–118, 2003.

36. Lotfinezhad, M., Liang, B.: Energy Efficient Clustering in Sensor Networks with Mobile
Agents. In Proceedings of the IEEE Wireless Communications and Networking Conference
(WCNC’05), vol. 3, pp. 1872–1877, Mar. 2005.

37. Madden, S., Franklin, M.J., Hellerstein, J.M.: TAG: A Tiny Aggregation Service for Ad-Hoc
Sensor Networks. In Proceedings of the 5th Annual Symposium on Operating Systems Design
and Implementation (OSDI’02), vol. 36, pp. 131–146, USENIX, Dec. 2002.

38. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: The design of an acquisitional query
processor for sensor networks. In SIGMOD’03: proceedings of the ACM SIGMOD interna-
tional conference on management of data, pp. 491–502, 2003.

39. Malik, H., Shakshuki, E., Dewolf, T.: Multi-agent System for Directed Diffusion in Wireless
Sensor Networks. 21st International Conference on Advanced Information Networking and
Applications Workshops, Niagara Falls, ON, Canada, vol. 2, pp. 635–640, May 2007.

40. Milojicic D.: Mobile Agent Applications. IEEE Concurrency, 7(3), July–Sep. 1999.
41. Mpitziopoulos, A., Gavalas, D., Konstantopoulos, C., Pantziou, G.:Deriving efficient mobile

agent routes in wireless sensor networks with NOID algorithm. In Proceedings of the 18th
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC’2007), Athens, Greece, pp. 1–5, Sep. 2007.

42. Pham, V., Karmouch, A.: Mobile Software Agents: An Overview. IEEE Communica-tions
Magazine, 36(7), pp. 26–37, (1998).

43. Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Security. Springer-Verlag,
Berlin, 2003.

44. Prasad, L., Iyengar, S.S., Rao, R.L.: Fault-tolerant sensor integration using multiresolution
decomposition. Physical Review E, 49(4), 3452–3461, Apr. 1994.

45. Qi, H., Wang, F.: Optimal Itinerary Analysis for Mobile Agents in Ad Hoc Wireless Sensor
Networks. Proceedings of the13th International Conference on Wireless Communica-tions
(Wireless’2001), pp. 147–153, 2001.

46. Qi, H., Iyengar, S.S., Chakrabarty, K.: Multi-resolution data integration using mobile agents
in distributed sensor networks, IEEE Trans. on Syst., Man, and Cybern. Part C: Applications
and Reviews 31(3), 383–391, 2001.

47. Qi, H., Kurganti, P. T., Xu, Y.: The Development of Localized Algorithms in Wireless Sensor
Networks. Sensors, 2, 286–293, 2002.

Mobile Agent Middleware for Autonomic Data Fusion in Wireless Sensor Networks 81

48. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.B.: Energy-aware wireless microsen-
sor networks, IEEE Signal Processing Magazine 19(2), 40–50, 2002.

49. Reuter, E., Baude, F.: System and Network Management Itineraries for Mobile Agents. Pro-
ceedings of the 4th International Workshop on Mobile Agents for Telecommunication Appli-
cations (MATA’02), LNCS vol. 2521, pp. 227–238, Oct. 2002.

50. Rubinstein, M.G., Duarte, O.C., Pujolle, G.: Scalability of a Mobile Agents Based Net-work
Management Application. Journal of Communications and Networks, 5(3), Sept. 2003.

51. Sander, T., Tschudin, Ch. F.: Protecting mobile agents against malicious hosts. In Mobile
Agents and Security, vol. 1419 of LNCS. Springer-Verlag, 1998.

52. Savvides, A., Han, C.C., Srivastava, M.B.: Dynamic fine-grained localization in ad-hoc net-
works of sensors. In Proc. Seventh Ann. ACM/IEEE Int. Conf. on Mobile Computing and
Networking (Mobicom 2001), ACM press, Rome, Italy, pp. 166–179, 2001.

53. Shih, D.H., Huang, S.Y., Yen, D.C.: A New Reverse Auction Agent System for m-Commerce
Using Mobile Agents, Computer Standards & Interfaces, 27(4), 383–395, Apr. 2005.

54. Silva, F., Heidemann, J.,Govindan, R., Estrin, D.: Directed Diffusion, Technical Report ISI-
TR-2004-586, USC/Information Sciences Institute, Jan. 2004.

55. Tong, L., Zhao, Q., Adireddy, S.: Sensor Networks with Mobile Agents. In Proc. IEEE MIL-
COM’03, Boston, MA, pp. 1–6, Oct. 2003.

56. Tseng, Y.C., Kuo, S.P., Lee, H.W., Huang, C.F.: Location Tracking in a Wireless Sensor Net-
work by Mobile Agents and Its Data Fusion Strategies. Computer Journal, 47(4), 448–460,
2004.

57. Tiny Os: http://www.tinyos.net/. Cited 20 Feb. 2008.
58. Umezawa, U., Satoh, I., Anzai, Y.: A Mobile Agent-Based Framework for Configurable

Sensor Networks, Proceedings of the 4th International Workshop on Mobile Agents for
Telecommunications Applications (MATA’02), pp. 128–140, Oct. 2002.

59. Vigna, G.: Protecting Mobile Agents through Tracing. Proceedings of the 3rd ECOOP Work-
shop on Mobile Object Systems, Finland, June 1997.

60. Vigna, G.: Cryptographic traces for mobile agents. In Mobile Agents and Security, vol. 1419
of LNCS. Springer-Verlag, 1998.

61. Xu, Y., Qi, H.: Distributed Computing Paradigms for Collaborative Signal and Information
Processing in Sensor Networks. Int’l. J. Parallel and Distrib. Comp., 64(8), 945–959, Aug.
2004.

62. Wald L.: Some terms of reference in data fusion. IEEE Transactions on Geosciences and
Remote Sensing, 37(3), 1190–1193, 1999.

63. Wang, X., Bi, D.W., Ding, L., Wang, S.: Agent Collaborative Target Localization and Classi-
fication in Wireless Sensor Networks. Sensors 7, 1359–1387, 2007.

64. Wu, Q., Rao, N., Barhen, J., Iyengar, S., Vaishnavi, V., Qi, H., Chakrabarty, K.: On Computing
Mobile Agent Routes for Data Fusion in Distributed Sensor Networks. IEEE Transactions on
Knowledge and Data Engineering, 16(6), 740–753, June 2004.

65. Zaslavsky, A.: Mobile Agents: Can They Assist with Context Awareness? 2004 IEEE
MDM’04, Berkeley, California, pp. 304–305, Jan. 2004.

66. Zhao, F., Shin, J., Reich, J.: Information-driven dynamic sensor collaboration for tracking
applications. IEEE Signal Processing Magazine, 19(2), 61–72, Mar. 2002.

67. Zhao, F., Guibas, L.: Wireless Sensor Networks. Morgan Kaufmann Publishers, San
Francisco, 2004.

Component-Based Autonomic Management
for Legacy Software

Daniel Hagimont, Patricia Stolf, Laurent Broto, and Noel De Palma

Abstract Distributed software environments are increasingly complex and difficult
to manage, as they integrate various legacy software with specific management
interfaces. Moreover, the fact that management tasks are performed by humans
leads to many configuration errors and low reactivity. This is particularly true in
medium or large-scale distributed infrastructures. To address this issue, we explore
the design and implementation of an autonomic management system. The main
principle is to wrap legacy software pieces in components in order to administrate a
software infrastructure as a component architecture. In order to help the administra-
tors defining autonomic management policies, we introduce high-level formalisms
for the specification of deployment and management policies. This chapter describes
the design and implementation of such a system and its evaluation with different use
cases.

1 Introduction

Todays computing environments are becoming increasingly sophisticated. They
involve numerous complex software that cooperate in potentially large-scale
distributed environments. These software are developed with very heterogeneous
programming models and their configuration facilities are generally proprietary.
Therefore, the management of these software (installation, configuration, tuning,
repair, etc.) is a much complex task which consumes a lot of resources:

• human resources as administrators have to react to events (such as failures) and
have to reconfigure (repair) complex applications,

• hardware resources which are often reserved (and overbooked) to anticipate load
peaks or failures.

D. Hagimont (B)
INPT, Toulouse, France
e-mail: hagimont@enseeiht.fr

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 4, C© Springer Science+Business Media, LLC 2009

83

84 D. Hagimont et al.

A very promising approach to the above issue is to implement administration as an
autonomic software. Such a software can be used to deploy and configure applica-
tions in a distributed environment. It can also monitor the environment and react to
events such as failures or overloads and reconfigure applications accordingly and
autonomously. The main advantages of this approach are as follows:

• Providing a high-level support for deploying and configuring applications
reduces errors and administrators efforts.

• Autonomic management allows the required reconfigurations to be performed
without human intervention, thus saving administrators time.

In order to provide such an autonomic administration software, we rely on the
concepts of components and software architectures. The main principle is to wrap
legacy software pieces in components in order to administrate a software infrastruc-
ture as a component architecture. As soon as a legacy software has been wrapped
in a component, the administrator can describe a software environment to deploy
using the component model’s ADL (Architecture Description Language) and imple-
ment reconfiguration programs (autonomic managers) using the component model’s
APIs. A prototype (called Jade [14]) of such a component-based management sys-
tem has been implemented and used for the administration of different applications.

However, we observed that the interfaces of a component model are too low
level and difficult to use. In order to implement wrappers (to encapsulate existing
software), to describe deployed architectures and to implement reconfiguration pro-
grams, the administrator of the environment has to learn (yet) another framework,
the Fractal [7] component model in the case of Jade. Tune is an evolution of Jade
which aims at providing a higher level formalism for all these tasks (wrapping,
deployment, reconfiguration). The main motivation is to hide the details of the
component model we rely on and to provide a more intuitive policy specification
interface for wrapping, deployment and reconfiguration.

This chapter presents our experience in designing, implementing and using these
two prototypes. In the following section (Section 2), we present the two use cases
that we used to illustrate and evaluate our prototypes. Section 3 presents the design
of the Jade system which implements the component-based autonomic management
approach. Section 4 presents the design of Tune, which relies on Jade and provides
high-level language support for the definition of administration policies. Section 5
presents scenarios and evaluations we conducted with the previous platform and use
cases. After a presentation of related works in Section 6, we conclude in Section 7.

2 Use Cases

Our main application target is the administration of servers distributed over a cluster
of machines or a grid infrastructure. We give two examples of such organizations.

Component-Based Autonomic Management for Legacy Software 85

2.1 Multi-Tier Internet Services

The first experimental environment we consider is the Java 2 Platform, Enterprise
Edition (J2EE), which defines a model for developing web applications [27] in
a multi-tiered architecture. Such applications usually receive requests from web
clients, that flow through a web server (provider of static content), then to an appli-
cation server to execute the business logic of the application and generate web pages
on-the-fly, and finally to a database that persistently stores data (see Fig. 1).

Upon an HTTP client request, either the request targets a static web document,
in which case the web server directly returns that document to the client; or the
request refers to a dynamic document, in which case the web server forwards that
request to the application server. When the application server receives a request, it
runs one or more software components (e.g. Servlets, EJBs) that query a database
through a JDBC (Java DataBase Connection) driver [28]. Finally, the resulting infor-
mation is used to generate a web document on-the-fly that is returned to the web
client.

In this context, the increasing number of Internet users has led to the need of
highly scalable and highly available services. Moreover, several studies show that
the complexity of multi-tier architectures with their dynamically generated docu-
ments represent a large portion of web requests, and that the rate at which dynamic
documents are delivered is often one or two orders of magnitudes slower than static
documents [15, 16]. This places a significant burden on servers [10]. To face high
loads and provide higher scalability of Internet services, a commonly used approach
is the replication of servers in clusters. Such an approach usually defines a particular
(hardware or software) component in front of the cluster of replicated servers, which
dynamically balances the load among the replicas. Here, different load balancing
algorithms may be used, e.g. Random, Round-Robin. Among the existing J2EE
clustering solutions we can cite C-JDBC for a cluster of database servers [11],
JBoss clustering for a cluster of JBoss EJB servers [8], mod jk for a cluster of
Tomcat Servlet servers [24], and the L4 switch for a cluster of replicated Apache
web servers [26] (see Fig. 2).

Clustered multi-tier J2EE systems represent an interesting experimental environ-
ment for our autonomic management environment, since they bring together all the
addressed challenges:

Client

Internet

HTTP request

HTTP response

SQL req.

SQL res.

Web
server

Application
server

Database
server

Web
tier

Business
tier

Database
tier

Fig. 1 Architecture of dynamic web applications

86 D. Hagimont et al.

Client

Internet

Client

Client

L4 mod_jk C-JDBCJBoss
clustering

Fig. 2 J2EE clustering

• the management of a variety of legacy systems, since each tier in the J2EE archi-
tecture embeds a different piece of software (e.g. a web server, an application
server or a database server),

• very complex administration interfaces and procedures associated with very het-
erogeneous software,

• the requirement for high reactivity in taking into account events which may com-
promise the normal behaviour of the managed system, e.g. load peaks or failures.

2.2 DIET : Distributed Load Balancer Over a Grid

Grid computing aims at enabling the sharing, selection and aggregation of geograph-
ically distributed resources, dynamically at runtime depending on their availability,
capability, cost and user’s quality of service (QoS) requirements [9]. Diet [12] is
an example of middleware environment which aims at balancing computation load
over a grid. It is built on top of different tools which are able to locate an appropriate
server depending on the client requested function, the data location (which can be
anywhere on the system, because of previous computations) and the dynamic per-
formance characteristics of the system. The aim of Diet is to provide transparent
access to a pool of computational servers at a very large scale.

As illustrated in Fig. 3, Diet mainly has the following components. A client is
an application which uses DIET to solve problems. A Master Agents (MA) receive
computation requests from clients. Then a MA chooses the best server and returns its
reference to the client. The client then sends the computation request to that server.
Local agents (LA) aim at transmitting monitoring information between servers and
MAs. LAs do not take scheduling decision, but allow preventing MAs overloads
when dealing with large-scale infrastructures. Server Daemons (SeDs) encapsu-
late computational servers (processors or clusters). A SeD declares the problems
it can solve to its parent LA and provides an interface to clients for submitting
their requests.

The DIET middleware also represents an interesting example for autonomic man-
agement:

• the management of a distributed organization of legacy software (MAs, LAs and
SeDs),

• distributed configuration, since DIET requires the configuration of these soft-
ware (through a set of configuration files) to implement a consistent hierarchical
structure,

Component-Based Autonomic Management for Legacy Software 87

Fig. 3 The Diet distributed
load balancer. Diet is
organized as a tree structure,
where each MA is linked with
a set of LA. Each LA can be
linked with a set of LA, or a
set of SeD which are the
leaves of the tree and include
the computing programs

• self-repair: due to hardware or software failures, a server may stop functioning.
The goal is to detect the failure and repair it automatically.

In both examples (J2EE and Diet), the deployment of the servers in a cluster or
grid is very complex and requires a lot of expertise. Many files have to be edited
and configured consistently. Also, failures or load peaks (when the chosen degree
of replication is too low) must be treated manually.

3 Component-Based Autonomic Management

Component-based management aims at providing a uniform view of a software
environment composed of different types of servers. Each managed server is encap-
sulated in a component and the software environment is abstracted as a component
architecture. Therefore, deploying, configuring and reconfiguring the software envi-
ronment is achieved by using the tools associated with the used component-based
middleware. This solution is followed by several research projects [13, 14, 21]
including Jade.

The component model we used in Jade is the Fractal component model [7] which
is described in the next section.

3.1 The Fractal Component Model

The Fractal component model is a general component model which is intended to
implement, deploy, monitor and dynamically configure, complex software systems,
including in particular operating systems and middleware. This motivates the main
features of the model: composite components (to have a uniform view of applica-
tions at various levels of abstraction), introspection capabilities (to monitor, and con-
trol the execution of a running system) and re-configuration capabilities (to deploy,
and dynamically configure a system).

88 D. Hagimont et al.

A Fractal component is a runtime entity that is encapsulated, and that has a dis-
tinct identity. A component has one or more interfaces. An interface is an access
point to a component, that supports a finite set of methods. Interfaces can be of
two kinds: server interfaces, which correspond to access points accepting incoming
method calls, and client interfaces, which correspond to access points supporting
outgoing method calls. The signatures of both kinds of interface can be described
by a standard Java interface declaration, with an additional role indication (server
or client). A Fractal component can be composite, i.e. defined as an assembly of
several sub-components, or primitive, i.e. encapsulating an executable program.

Communication between Fractal components is only possible if their interfaces
are bound. Fractal supports both primitive bindings and composite bindings. A prim-
itive binding is a binding between one client interface and one server interface in the
same address space. A composite binding is a Fractal component that embodies a
communication path between an arbitrary number of component interfaces. These
bindings are built out of a set of primitive bindings and binding components (stubs,
skeletons, adapters, etc).

The above features (hierarchical components, explicit bindings between compo-
nents, strict separation between component interfaces and component implementa-
tion) are relatively classical. The originality of the Fractal model lies in its open
reflective features. In order to allow for well-scoped dynamic reconfiguration, com-
ponents in Fractal can be endowed with controllers, which provide access to a
component internals, allowing for component introspection and the control of com-
ponent behaviour.

A controller provides a control interface and implements a control behaviour
for the component, such as controlling the activities in the components (suspend,
resume) or modifying some of its attributes. The Fractal model allows for arbitrary
(including user defined) classes of controller. It specifies, however, several useful
forms of controllers, which can be combined and extended to yield components
with different control features, including the following:

• Attribute controller: an attribute is a configurable property of a component.
This controller supports an interface to expose getter and setter methods for its
attributes.

• Binding controller: supports an interface to allow binding and unbinding its client
interfaces to server interfaces.

• Content controller: for composite components, supports an interface to list, add
and remove subcomponents in its contents.

• Life-cycle controller: this controller allows an explicit control over a component
execution. Its associated interface includes methods to start and stop the execu-
tion of the component.

An ADL (XML-based language) allows describing an architecture and an ADL
launcher can be used to deploy such an architecture.

Several implementations of the Fractal model have been issued in different
contexts, e.g. an implementation devoted to the configuration of operating sys-
tems on a bare hardware (Think) or an implementation on top of the Java virtual

Component-Based Autonomic Management for Legacy Software 89

machine (Julia) targeted to the configuration of middleware or applications. The
work reported in this chapter relies on this later implementation of Fractal on top of
Java.

3.2 Component-Based Management

Any software managed with Jade is wrapped in a Fractal component which inter-
faces its administration procedures. Therefore, the Fractal component model is used
to implement a management layer (Fig. 4) on top of the legacy layer (composed of
the actual managed software). In the management layer, all components provide a
management interface for the encapsulated software, and the corresponding imple-
mentation (the wrapper) is specific to each software (e.g. the Apache web server in
the case of J2EE or the Master Agent in the case of Diet). Fractal’s control interfaces
allow managing the element’s attributes and bindings with other elements, and the
management interface of each component allows controlling its internal configura-
tion state. Relying on this management layer, sophisticated administration programs
can be implemented, without having to deal with complex, proprietary configuration
interfaces, which are hidden in the wrappers.

The above approach is illustrated in Fig. 4 in the case of a J2EE architecture. In
this setting, an L5-switch balances the requests between two Apache server repli-
cas. The Apache servers are connected to two Tomcat server replicas. The Tomcat
servers are both connected to the same MySQL server. The vertical arrows (between
the management and legacy layers) represent management relationships between
components and the wrapped software entities. In the legacy layer, the dashed lines
represent relationships (or bindings) between legacy entities, whose implementa-
tions are proprietary. These bindings are represented in the management layer by
(Fractal) component bindings (full lines in the figure).

L5
switch

Apache

Apache

Tomcat

MySQ
L

Management
interface

Management layer

L5
switch

Apache

Apache

Tomcat

Tomcat

MySQL

Tomcat

Legacy layer

T

T T

T
TT

Fig. 4 Implementation of a management layer on top of the legacy software layer

90 D. Hagimont et al.

We now give an example of a Fractal wrapper for the Apache server that is part
of the J2EE architecture. The wrapper provides an attribute controller, a binding
controller and a lifecycle controller:

• The attribute controller interface is used to set attributes related to the local execu-
tion of the Apache server. For instance, a modification of the port attribute of the
Apache component is reflected in the httpd.conf file in which the port attribute is
defined.

• The binding controller interface is used to connect Apache with other middle-
ware tiers. For instance, invoking the bind operation on the Apache component
sets up a binding between one instance of Apache and one instance of Tomcat.
The implementation of this bind method is reflected at the legacy layer in the
worker.properties file used to configure the connections between Apache and
Tomcat servers.

• The life cycle controller interface is used to start or to stop the server as well as
to read its state (i.e. running or stopped). It is implemented by calling the Apache
commands for starting/stopping a server.

Other servers (Tomcat and MySQL) are wrapped in a similar way into Fractal
components, and provide the same management interface.

Here, we distinguish two important roles:

• the role of the management and control interfaces is to provide a means for con-
figuring components and bindings between components. It includes methods for
navigating in the component-based management layer or modifying it to imple-
ment reconfigurations.

• the role of the wrappers is to reflect changes in the management layer onto the
legacy layer. The implementation of a wrapper for a specific software may also
have to navigate in the component management layer, to access key attributes of
the components and generate legacy software configuration files. For instance,
the configuration of an Apache server requires to know the name and location
of the Tomcat servers it is bound to.

3.3 Deployment

The architecture of an application is described using an ADL, which is one of the
basic features of the Fractal component model. This description is an XML docu-
ment which details the architectural structure of the application to deploy, e.g. which
software resources compose the multi-tier J2EE application, how many replicas are
created for each tier and how are the tiers bound together.

A Software Installation Service component (a component of Jade) allows retriev-
ing the encapsulated software resources involved in the application (e.g., Apache
Web server software, MySQL database server software) and installing them on
nodes. A Cluster Manager component is responsible for the allocation of nodes
(from a pool of available nodes) which will host the deployed software elements.

Component-Based Autonomic Management for Legacy Software 91

The deployment of an application is the interpretation of an ADL description,
using the Software Installation Service and the Cluster Manager to deploy applica-
tion’s components on nodes.

3.4 Implementing Autonomic Managers

Autonomic computing is achieved through autonomic managers, which implement
feedback control loops. These loops regulate and optimize the behaviour of the man-
aged system. Figure 5 illustrates control loops in the Jade autonomic management
system. It shows two managers that regulate two specific aspects of the platform
(self-recovery and self-optimization). Each autonomic manager in Jade is based on
a control loop that includes sensor, actuator and analysis/decision components.

Sensors are responsible for the detection of the occurrence of a particular event,
e.g. a QoS requirement violation in case of a self-optimization manager, or an ele-
ment failure (node, middleware or component) for a self-recovery manager.

Analysis/decision components (or reactors) represent the actual reconfiguration
algorithm, e.g. repairing a failed element in case of a self-recovery manager, or resiz-
ing the cluster of replicated servers upon load changes in case of a self-optimization
manager. Reactors receive notifications from sensors and make use of actuators
when a reconfiguration operation is necessary.

Actuators represent the individual mechanisms necessary to implement recon-
figuration operations, e.g. allocating a new node to a cluster of replicas, adding/
removing a replica to the cluster of replicated servers, updating connections between
the tiers.

Sensors, Actuators and Reactors are implemented as Fractal components, which
allows reusing and combining them to assemble specific autonomic managers.

Self-recovery
manager

Repair

actuator

Self-optimization
manager

Resize

Jade

Software
Installation

Service

Cluster
manager

Managed
system

sensor actuator

Fig. 5 Control loops

92 D. Hagimont et al.

Component-based autonomic computing has proved to be a very convenient
approach. The experiments we conducted with Jade for managing J2EE or Diet
infrastructures validated this design choice (see Section 5). In the Jade system, an
administrator can wrap legacy software in components, describe a software envi-
ronment to deploy using the component model ADL and implement reconfigura-
tion programs (autonomic managers) using the component model’s interfaces (Java
interfaces in Fractal).

4 Autonomic Management Policies Specification

As Jade was used by external users (external to our group), we observed that:

• wrapping components are difficult to implement. The developer needs to have a
good understanding of the component model we use (Fractal),

• deployment is not very easy. ADLs are generally very verbose and still require
a good understanding of the underlying component model. Moreover, if we con-
sider large-scale software infrastructure such as those deployed over a grid (as in
the Diet example), deploying a thousand of servers requires an ADL deployment
description file of several thousands of lines,

• autonomic managers (reconfiguration policies) are difficult to implement as they
have to be programmed using the management and control interfaces of the man-
agement layer. This also required a strong expertise regarding the used compo-
nent model.

All these observations led us to the conclusion that a higher level interface was
required for describing the encapsulation of software in components, the deploy-
ment of a software environment potentially in large scale and the reconfiguration
policies to be applied autonomically. Tune is an evolution of Jade which aims at
providing a higher level formalism for all these tasks (wrapping, deployment, recon-
figuration). The main motivation is to hide the details of the component model we
rely on and to provide a more intuitive policy specification interface for wrapping,
deployment and reconfiguration.

4.1 Tune’s Management Interface

As previously motivated, our goal is to provide a high-level interface for the descrip-
tion of the application to wrap, deploy and reconfigure. This led us to the following
design choices:

• Regarding wrapping, our approach is to introduce a Wrapping Description Lan-
guage (WDL) which is used to specify the behaviour of wrappers. A WDL spec-
ification is interpreted by a generic wrapper Fractal component, the specification
and the interpreter implementing an equivalent wrapper. Therefore, an adminis-
trator does not have to program any implementation of Fractal component.

Component-Based Autonomic Management for Legacy Software 93

• Regarding deployment, our approach is to introduce a Unified Modelling
Language (UML) profile for graphically describing deployment schemas. First,
a UML-based graphical description of such a schema is much more intuitive
than an ADL specification, as it does not require expertise of the underlying
component model. Second, the introduced deployment schema is more abstract
than the previous ADL specification, as it describes the general organization
of the deployment (types of software to deploy, interconnection pattern) in
intension, instead of describing in extension all the software instances that have
to be deployed. This is particularly interesting for applications like Diet where
thousands of servers have to be deployed.

• Regarding reconfiguration, our approach is to introduce a UML profile for the
description of state diagrams. These state diagrams are used to define workflows
of operations that have to be performed for reconfiguring the managed environ-
ment. One of the main advantage of this approach, besides simplicity, is that
state diagrams manipulate the entities described in the deployment schema and
reconfigurations can only produce an (concrete) architecture which comforms
with the abstract schema, thus enforcing reconfiguration correctness.

All these policy specifications (wrapping, deployment and reconfiguration) are
interpreted by a runtime middleware which deploys and autonomously manages
the application according to the policies. We detail these three aspects in the next
sections.

4.2 A UML Profile for Deployment Schemas

The UML profile we introduce for specifying deployment schemas is illustrated in
Fig. 6 where a deployment schema is defined for a Diet organization. A deploy-
ment schema describes the overall organization of a software infrastructure to be
deployed. At deployment time, the schema is interpreted to deploy a component
architecture. Each element (the boxes) corresponds to a software which can be
instantiated in several component replicas. A link between two elements generates
bindings between the components instantiated from these elements. Each binding
between two components is bi-directional (actually implemented by two bindings
in opposite directions), which allows navigation in the component architecture.1

An element includes a set of configuration attributes for the software (all of type
String). Most of these attributes are specific to the software, but few attributes are
predefined by Tune and used for deployment:

• wrapper is an attribute which gives the file name of the WDL description of the
software’s wrapper,

1 We chose to implement bi-directional bindings in order to allow arbitrary navigation in the com-
ponent architecture, although this is not actually mandatory.

94 D. Hagimont et al.

Fig. 6 Deployment schema
for Diet. The schema
describes a Diet organization
where one MA, two LAs and
10 SeDs (5 for each LA)
should be deployed. A probe
is linked with each software,
which monitors the liveness
of the server in order to
trigger a repair procedure.
This schema deploys a
component architecture as
illustrated in Fig. 3

• legacyFile is an attribute which gives the file name of the archive which contains
the legacy software binaries and configuration files,

• hostFamily is an attribute which gives a hint regarding the dynamic allocation of
the nodes where the software should be deployed,

• initial is an attribute which gives the number of instances which should be
deployed. The default value is 1.

A cardinality is associated with each link. If A(n) and B(m) are two linked ele-
ments in a schema, with an initial attribute (initial number of instances) n for A and
m for B, the semantic of the cardinality is the following. A link A(n) t − u B(m)
means that each A component should be bound with u B components and each B
component should be bound with t A components. The cardinality is constrained by
m = nu/t with m ≥ u and n ≥ t.

One of the main benefit of the introduced formalism is that it allows describing in
a synthetic schema the deployment of several hundreds of servers. Clustered J2EE
architectures can also easily be described thanks to this graphical language.

4.3 A Wrapping Description Language

Upon deployment, the above schema is parsed and for each element, a number of
Fractal components are created. These Fractal components implement the wrappers
for the deployed software, which provide control over the software. Each wrapper

Component-Based Autonomic Management for Legacy Software 95

Fractal component is an instance of a generic wrapper which is actually an inter-
preter of a WDL specification.

A WDL description defines a set of methods that can be invoked to configure or
reconfigure the wrapped software. The workflow of methods that have to be invoked
in order to configure and reconfigure the overall software environment is defined
thanks to an interface introduced in Section 4.4.

Generally, a WDL specification provides start and stop operations for controlling
the activity of the software, and a configure operation for reflecting the values of the
attributes (defined in the UML deployment schema) in the configuration files of the
software. Note that the values of these attributes can be modified dynamically. Other
operations can be defined according to the specific management requirements of the
wrapped software, these methods are implemented in Java.

The main motivation for the introduction of WDL are as follows:

• to hide the complexity of the underlying component model (Fractal),
• that most of the needs should be met with a finite set of generic methods (that

can be therefore reused).

Figure 7 shows an example of WDL specification which wraps a SeD computing
server in a Diet architecture. It defines start and stop methods which can be invoked
to launch/stop the deployed SeD software, and a configure method which reflects
configuration attributes in the configuration file of the SeD software. The Java imple-
mentations of these methods are generic and have been used in the wrappers of
most of the software we wrapped (LA, MA for Diet, but also Apache, Tomcat and
MySQL for J2EE. We only had to add an implementation of a configure method
for XML configuration files). A method definition includes the description of the
parameters that should be passed when the method is invoked. These parameters
may be String constants, attribute values or combination of both (String expres-
sions). All the attributes defined in the deployment schema can be used to pass
the configured attributes as parameters of the method invocations. However, several
additional attributes are automatically added and managed by Tune:

• dirLocal is the directory where the software is actually deployed on the target
machine,

• compName is a unique name associated with the deployed component instance,
• PID is the process identifier of the process that runs the software.

In Fig. 7, the start method takes as parameters the shell command that launch the
server, and the environment variables that should be set:

• $dirLocal/$progName is the name of the binary to be launched (progName is an
attribute of the wrapped software),

• $dirLocal/$compName-cfg is the name of the configuration file which is passed
to the binary and which is generated by the configure method of the wrapper
$arguments is a parameter for the binary (also a software attribute),

• LD LIBRARY PATH=$dirLocal is an envionment variable to pass to the binary.

96 D. Hagimont et al.

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<wrapper name=’sed’>
<method name="start"

key="appli.wrapper.util.GenericStart"
method="start_with_pid_linux" >

<param value="$dirLocal/$progName
$dirLocal/$compName-cfg $arguments"/>

<param value="LD_LIBRARY_PATH=$dirLocal"/>
</method>

<method name="configure"
key="appli.wrapper.util.ConfigurePlainText"
method="configure">

<param value="$dirLocal/$compName-cfg"/>
<param value=" = "/>
<param value="traceLevel:$traceLevel" />
<param value="parentName:$LA.compName"/>
<param value="name:$compName"/>
<param value="lsOutbuffersize:$lsOutbuffersize"/>
<param value="lsFlushinterval:$lsFlushinterval"/>

</method>

<method name="stop"
key="appli.wrapper.util.GenericStop"
method="stop_with_pid_linux" >

<param value="$PID"/>
</method>

</wrapper>

Fig. 7 A WDL specification

The configure method is implemented by the ConfigurePlainText Java class. This
configuration method generates a configuration file composed of <attribute,value>
pairs:

• $dirLocal/$compName-cfg is the name of the configuration file to generate,
• = is the separator between each attribute and value,
• and the attributes and value are separated by a “:” character.

As evocated in Section 3.2, it is sometimes necessary to navigate in the deployed
component architecture in order to configure the software. In the Diet example, a LA
has a configuration variable (in its configuration file) called Name which is a unique
name associated with the launched server. This configuration variable is assigned
with the $compName in its wrapper. A SeD which is a child of the LA must have a
parentName configuration variable set to the name of the parent LA in its configu-
ration file. Therefore, in the SeD wrapper (Fig. 7), we need to access the compName
of its parent LA in order to set this parentName configuration variable. Since in
the deployment schema there is a link between the LA and SeD elements, there
are bindings between the LA and the SeDs at the component level. These bindings
allow navigating in the management layer. In Fig. 7, the parentName configuration

Component-Based Autonomic Management for Legacy Software 97

variable is assigned with the name of the LA component which the SeD is bound
with.

All the constructions (attributes, methods and navigation clauses) introduced in
a WDL specification would be present in the equivalent Fractal component, but
programmed with Fractal’s API. In average, a Fractal wrapper in Jade represents
500 lines of Java code while the equivalent WDL specification represents 70 lines
of XML (invoking reused Java libraries for configuring files or launching processes).

4.4 A UML Profile for (Re)configuration Procedures

Reconfigurations are triggered by events. An event can be generated by a specific
monitoring component (e.g. probes in the deployment schema) or by a wrapped
legacy software which already includes its own monitoring functions.

Whenever a wrapper component is instantiated, a communication pipe is created
(typically a Unix pipe) that can be used by the wrapped legacy software to generate
an event, following a specified syntax which allows for parameter passing. Note that
the use of pipes allows any software (implemented in any language environment
such as Java or C++) to generate events. An event generated in the pipe associated
with the wrapper is transmitted to the administration node where it can trigger the
execution of reconfiguration programs (in our current prototype, the administration
code, which initiates deployment and reconfiguration, is executed on one adminis-
tration node, while the administrated software is managed on distributed hosts). An
event is defined as an event type, the name of the component which generated the
event and possibly an argument (all of type String).

For the definition of reactions to events, we introduced a UML profile which
allows specifying reconfiguration as state diagrams. Such a state diagram defines the
workflow of operations that must be applied in reaction to an event. An operation
in a state diagram can assign an attribute or a set of attributes of components, or
invokes a method or a set of methods of components. To designate the components
on which the operations should be performed, the syntax of the operations in the
state diagrams allows navigation in the component architecture, similarly to the
wrapping language.

For example, let us consider the diagram in Fig. 8 (on the left) which is the
reaction to a LA (software) failure in Diet. The event (fixLA) is generated by a
probeLA component instance, therefore the variable is the name of this probeLA
component instance. Then:

• this.stop will invoke the stop method on the probing component (to prevent the
generation of multiple events),

• this.LA.start will invoke the start method on the LA component instance which
is linked with the probe. This is the actual repair of the faulting LA server,

• this.LA.SeD.stop will invoke the stop method on all the SeD component instances
which are linked with this LA. This is necessary as in Diet, a restart of a LA

98 D. Hagimont et al.

Fig. 8 State diagrams for repair and start

requires to restart all its SeD children in order to reconnect to the LA. Here, the
probes associated with the SeDs will trigger the restart of the SeDs,

• this.start will restart the probe associated with the LA.

Note that state diagram’s operations are expressed using the elements defined
in the deployment schema, and are applied on the actually deployed component
architecture. In it latest version, Tune also provides operations which re-deploy com-
ponents (change location or add component instances) while enforcing the defined
abstract deployment schema.

A similar diagram is used to start the deployed Diet environment, as illustrated
in Fig. 8 (on the right). In this diagram, when an expression starts with the name of
an element in the deployment schema (LA or SeD, etc.), the semantic is to consider
all the instances of the element, which may result in multiple method invocations.
The starting diagram ensures that (1) configuration files must be generated, then (2)
the servers must be started following the order MA, LA and SeDs. For each type of
server, the server is started before its probe.

5 Evaluation

The application cases described in Section 2 have been implemented and Jade/Tune
were used to deploy and administrate them.2 The evaluations reported in this chapter
focus on self-optimization for the database tier of a J2EE application and self-repair

2 Both Jade and Tune are not intrusive (i.e. they do not intercept any message), and they only differ
regarding the language support provided for management policy definition. So the evaluations
below are valid for both systems.

Component-Based Autonomic Management for Legacy Software 99

for Diet. More detailled descriptions and evaluations of self-optimization and self-
repair for J2EE applications can be found in [14], and [5], respectively.

5.1 Self-Optimization

The experiment was conducted on a cluster X86-compatible machines connected
through a 100 Mbps Ethernet LAN running various versions of the Linux Kernel.
The RUBiS application benchmark [2] is used as J2EE application. RUBiS imple-
ments an eBay-like auction system and includes a workload generator. Our J2EE
software environment relies on Jakarta Tomcat 3.3.2 (Web and servlet servers) [29],
MySQL 4.0.17 (database server) [18], C-JDBC 2.0.2 (database load-balancer) [11],
PLB 0.3 (application server load-balancer) [22], Sun’s JVM JDK 1.5.0.04 and
MySQL Connector/J 3.1.10 JDBC driver (to connect the database load-balancer
to the database servers). The machines are distributed as follows: one node for
the autonomic management platform, one node for the PLB load-balancer, up to
two nodes for replicated Tomcat servers, one node for the C-JDBC load-balancer,
up to three nodes for the replicated MySQL servers (backends), one node for the
RUBiS workload generator. During execution the number of involved machines
varies according to the workload.

To evaluate the effectiveness of the management platform, we designed a sce-
nario which illustrates the dynamic allocation and deallocation of nodes to tackle
performance issues related to a changing workload: (a) at the beginning of the
experiment, the managed system is submitted to a medium workload (80 clients),
then (b) the load increases progressively up to 500 clients (21 new emulated clients
every minute) and finally (c) the load decreases symmetrically down to the initial
load (80 clients).

Fig. 9 Self-optimization for the database tier

100 D. Hagimont et al.

To quantify the effect of the reconfiguration, the scenario has been experimented
without autonomic management, so that the managed system is not resized. Figure 9
presents the result of this experiment on the database tier (although it was experi-
mented at the level of each tier).

All the database backends are monitored by a probe which computes a moving
average of the CPU load across all nodes, so as to observe a general load indication
of the whole replicated server. The two horizontal lines represent the CPU thresh-
olds used to trigger dynamic reconfiguration (insertion or removal of a database
backend). The stair-like curve indicates the number of database backends.

Without autonomic management, the CPU usage rapidly saturates, which results
in a trashing of the database. With autonomic management enabled, when the aver-
age CPU usage reaches the maximum threshold, the manager triggers the deploy-
ment of a new database backend which implies a decrease of the average CPU usage.
Symmetrically, when the average CPU usage gets under the minimum threshold, the
manager triggers the removal of one backend.

5.2 Self-Repair

The experiment was conducted in a cluster environment similar to that of the previ-
ous section. In this experiment we used our platform to deploy a Diet architecture
composed of one MA, one LA and two SeDs. The main objective of this experiment
is to demonstrate the effectiveness of automatic repair in the case of server failure.
Consequently, we artificially induced the crash of a server in the managed system
and we observed the load distribution (the CPU usage) on the different servers.

The different machines were distributed as follows: one machine for the MA, one
machine for the LA, two machines for the SeDs (computing servers), one machine
for the management platform and three machines for submitting client requests
(each machine sends 5000 requests). Our experiment uses a DGEMM3 computation
of 100 × 100 matrix.

Figure 10 shows the observed behaviour without using repair management. Both
servers (SeD1 and SeD2) have a CPU usage4 which stabilizes at approximatively
50%, until the crash of SeD2. After the crash, the workload is totally sent to the
single remaining server (SeD1), which CPU usage increases rapidly up to 80%.

Figure 11 shows the observed behaviour with repair management enabled. Dur-
ing the interval between the crash and the repair, the CPU usage of server SeD1
increases rapidly since the workload is sent to the single remaining server (SeD1),
but only for a short time interval (about 10 s), as the system detects the failure and
replaces the failed server by a new server (SeD3). Rapidly, the two servers (SeD1
and SeD3) stabilize at the same CPU usage level as before the crash.

3 DGEMM: a matrix computation which is part of linear algebra problems. It is often used as a
point of reference for performance evaluation.
4 The reported CPU usage is an average over 5 s.

Component-Based Autonomic Management for Legacy Software 101

Fig. 10 Failure scenario without autonomic repair

Fig. 11 Failure scenario with autonomic repair

6 Related Work

Autonomic computing is an appealing approach that aims at simplifying the
hard task of system management, thus building self-healing, self-tuning and
self-configuring systems [17].

Management solutions for legacy systems are usually proposed as ad hoc solu-
tions that are tied to particular legacy system implementations [25, 32]. This unfor-
tunately reduces reusability of management policies and requires these policies to
be reimplemented each time a legacy system is taken into account in a particu-
lar context. Moreover, the architecture of managed systems is often very complex
(e.g. multi-tier architectures), which requires advanced support for its management.
Projects such as Jade/Tune or Rainbow [13], with a component-based approach,
propose a generic way to manage complex system architectures.

Several projects have addressed the issue of self-optimization and resource man-
agement in a cluster of machines. Instead of statically allocating resources to appli-
cations managed in the cluster (which would lead to a waste of resources), they aim
at providing dynamic resource allocation.

102 D. Hagimont et al.

In a first category of projects, the software components required by any appli-
cation are all installed and accessible on any machine in the cluster. Therefore,
allocating additional resources to an application can be implemented at the level
of the protocol that routes requests to the machines (Neptune [25] and DDSD [33]).
Some of them (e.g. Cluster Reserves [4] or Sharc [31]) assume control over the
CPU allocation on each machine, in order to provide strong guarantees on resource
allocation.

In a second category of projects, the unit of resource allocation is an individ-
ual machine (therefore applications are isolated, from a security point of view). A
machine may be dynamically allocated to an application by a hosting centre, and
the software components of that application must be dynamically deployed on the
allocated machine. Projects such as Jade/Tune, Oceano [3], QuID [23], OnCall [19],
Cataclysm [30] or [32] fall into this category.

In most of the cases, the autonomic policies have to be programmed using the
programming interface of the underlying component model (a framework for imple-
menting wrappers, configuration APIs or deployment ADLs) which is too low level
and still error prone. This was initially the case with Jade; we solved this problem
with Tune. We proposed a high-level interface which is composed of the following:

• a language for the description of wrappers,
• a UML profile for specifying deployment schemas,
• a UML profile for specifying reconfigurations as state transition charts.

The main benefit of this approach is to provide a higher level interface to the soft-
ware environment administrator, while considering the management of any legacy
software environment. Several projects followed a similar approach, but either as
component models’ extensions which are still difficult to handle (e.g. Fscript [20])
or for a specific application domain (e.g. parallel computing [1]).

7 Conclusion

Distributed software environments are increasingly complex and difficult to man-
age, and their administration consumes a lot of human resources. To address this
issue, many research projects proposed to implement administration as an auto-
nomic software, and to rely on a component model to benefit from introspection and
reconfiguration facilities that are inherent to component models. In this context, we
designed and implemented the Jade autonomic administration system and applied it
to the autonomic administration of cluster and grid software infrastructures.

Although component-based autonomic systems like Jade have proved to be
appropriate, we observed that the interfaces of a component model are too low-level
and difficult to use. In order to implement wrappers for legacy software, to describe
deployed architectures and to implement reconfiguration programs, the administra-
tor of the environment has to learn (yet) another framework with complex APIs or
specific languages.

Component-Based Autonomic Management for Legacy Software 103

With Tune, we proposed a higher level interface for describing the encapsula-
tion of software in components, the deployment of a software environment and
the reconfiguration policies to be applied autonomically. This management inter-
face is mainly based on UML profiles for the description of deployment schemas
and the description of reconfiguration state diagrams. A language for the descrip-
tion of wrapper is also introduced to hide the details of the underlying component
model.

This work is still in progress. We are currently extending our prototype Tune to
enable various form of reconfigurations (not just invocations on wrapper’s methods).
Notably, we provide support in state diagrams to allow component re-deployment,
i.e. changing a component’s location and adding a component instance, while still
conforming to the specified abstract deployment schema. We are also metamod-
elling Tune’s policy specification languages in order to formalize their semantics
and to generate specialized editors.

Acknowledgments Many of the contributions in this chapter were separately presented in sev-
eral conference papers [5, 6, 14]. We would like to thank all the contributing authors, especially
Fabienne Boyer, Sara Bouchenak, Christophe Taton and Sylvain Sicard. The work reported in
this chapter benefited from the support of the French National Research Agency through projects
Selfware (ANR-05-RNTL-01803), Scorware (ANR-06-TLOG-017) and Lego (ANR-CICG05-11).

References

1. Aldinucci, M., Danelutto, M., Vanneschi, M.: Autonomic qos in assist grid-aware components.
In: 14th Euromicro International Conference on Parallel, Distributed and network-based Pro-
cessing, Montbéliard-Sochaux, France (2006)

2. Amza, C., Cecchet, E., Chanda, A., Cox, A., Elnikety, S., Gil, R., Marguerite, J., Rajamani,
K., Zwaenepoel, W.: Specification and Implementation of Dynamic Web Site Benchmarks. In:
IEEE 5th Annual Workshop on Workload Characterization. Austin, TX (2002)

3. Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M.: Oceano - SLA based man-
agement of a computing utility. In: 7th IFIP/IEEE International Symposium on Integrated
Network Management. Seattle, WA (2001)

4. Aron, M., Druschel, P., Zwaenepoel, W.: Cluster Reserves: a mechanism for resource man-
agement in cluster-based network servers. In: International Conference on Measurement and
Modeling of Computer Systems. Sant Clara, CA (2000)

5. Bouchenak, S., Boyer, F., Hagimont, D., Krakowiak, S.: Architecture-Based Autonomous
Repair Management: An Application to J2EE Clusters. In: 24th IEEE Symposium on Reliable
Distributed Systems. Orlando, FL (2005)

6. Broto, L., Hagimont, D., Stolf, P., Depalma, N., Temate, S.: Autonomic management policy
specification in tune. In: 23rd Annual ACM Symposium on Applied Computing, Fortaleza,
Brazil (2008)

7. Bruneton, E., Coupaye, T., Leclercq, M., Quma, V., Stefani, J.B.: The fractal component model
and its support in java. In: Software - Practice and Experience, special issue on “Experiences
with Auto-adaptive and Reconfigurable Systems”, 36(11–12):1257–1284 (2006)

8. Burke, B., Labourey, S.: Clustering With JBoss 3.0 (2002)
http://www.onjava.com/pub/a/onjava/2002/07/10/jboss.html

9. Buyya, R., Venugopal, S.: A Gentle Introduction to Grid Computing and Technologies. CSI
Communications 29 (2005)

104 D. Hagimont et al.

10. Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: Performance Com-
parison of Middleware Architectures for Generating Dynamic Web Content. In: 4th ACM/I-
FIP/USENIX International Middleware Conference. Rio de Janeiro, Brazil (2003)

11. Cecchet, E., Marguerite, J., Zwaenepoel, W.: C-JDBC: Flexible Database Clustering Middle-
ware. In: USENIX Annual Technical Conference, Freenix track. Boston, MA (2004)
http://c-jdbc.objectweb.org/

12. Combes, P., Lombard, F., Quinson, M., Suter, F.: A scalable approach to network enabled
servers. In: In 7th Asian Computing Science Conference (2002)

13. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-based
self adaptation with reusable infrastructure. In: IEEE Computer, 37(10) (2004)

14. Hagimont, D., Bouchenak, S., Palma, N.D., Taton, C.: Autonomic management of clustered
applications. In: IEEE International Conference on Cluster Computing (2006)

15. He, X., Yang, O.: Performance Evaluation of Distributed Web Servers under Commercial
Workload. In: Embedded Internet Conference 2000. San Jose, CA (2000)

16. Iyengar, A., MarcNair, E., Nguyen, T.: An Analysis of Web Server Performance. In: IEEE
Global Telecommunications Conference. Phoenix, AR (1997)

17. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. In: IEEE Computer Maga-
zine, 36(1) (2003)

18. MySQL: MySQL Web Site.
http://www.mysql.com/

19. Norris, J., Coleman, K., Fox, A., Candea, G.: OnCall: Defeating Spikes with a Free-Market
Application Cluster. In: 1st International Conference on Autonomic Computing (2004)

20. ObjectWeb: FScript
http://fractal.objectweb.org/fscript/

21. Oriezy, P., Gorlick, M., Taylor, R., Johnson, G., Medvidovic, N., Quilici, A., Rosenblum,
D., A.Wolf: An architecture-based approach to self-adaptive software. In: IEEE Intelligent
Systems 14(3) (1999)

22. PLB: PLB - A free high-performance load balancer for Unix.
http://plb.sunsite.dk/

23. Ranjan, S., Rolia, J., Fu, H., Knightly, E.: QoS-Driven Server Migration for Internet Data
Centers. In: 10th International Workshop on Quality of Service. Miami Beach, FL (2002)

24. Shachor, G.: Tomcat Documentation. The Apache Jakarta Project
http://jakarta.apache.org/tomcat/tomcat-3.3-doc/

25. Shen, K., Tang, H., Yang, T., Chu, L.: Integrated resource management for cluster-based inter-
net services. In: 5th USENIX Symposium on Operating System Design and Implementation
(2002)

26. Sudarshan, S., Piyush, R.: Link Level Load Balancing and Fault Tolerance in NetWare 6.
NetWare Cool Solutions Article (2002).
http://developer.novell.com/research/appnotes/2002/march/03/a020303.pdf

27. Sun Microsystems: Java 2 Platform Enterprise Edition (J2EE)
http://java.sun.com/j2ee/

28. Sun Microsystems: Java DataBase Connection (JDBC)
http://java.sun.com/jdbc/

29. The Apache Software Foundation: Apache Tomcat.
http://tomcat.apache.org/

30. Urgaonkar, B., Shenoy, P.: Cataclysm: Handling Extreme Overloads in Internet Services.
Technical report, Department of Computer Science, University of Massachusetts (2004)

31. Urgaonkar, B., Shenoy, P.: Sharc: Managing CPU and network bandwidth in shared clusters.
IEEE Transactions on Parallel and Distributed Systems 15(1) (2004)

32. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic Provisiong of Multi-Tier Internet
Applications. In: 2nd International Conference on Autonomic Computing. Seattle, WA (2005)

33. Zhu, H., Ti, H., Yang, Y.: Demand-driven service differentiation in cluster-based network
servers. In: 20th Annual Joint Conference of the IEEE Computer and Communication Soci-
eties. Anchorage, AL (2001)

Dynamic WSDL for Supporting
Autonomic Computing

Michael Brock and Andrzej Goscinski

Abstract An autonomic computing system is organized into building blocks that
can be composed together to form a self-managing system. Architecturally, this
matches service-based computing systems, which are the outcomes of the most
recent effort to provide interoperability and usability through the use of services.
Autonomic computing is an attractive information technology for managers and
clients. Rather than overwhelm administrators and programmers with hundreds or

nomic computing systems manage themselves thus freeing some of the underlying
tasks from administrators and programmers. When a new component is added, the
system learns of it and makes use of the component by itself. When a component
fails, attempts are made to automatically recover the component before human assis-
tance is requested. But to support such complexity, an environment rich in current
contextual information is needed. Currently, this information has to be extracted via
notifications, which themselves require the discovery of a notification management
services. For service-based distributed systems, the knowledge of service state and
its attributes is of the most crucial importance for the service provision. We propose
the application of the innovative Resources Via Web Instances framework, which
allows the dynamic state of services to be exposed via their interfaces. The inclusion
of state in the interface directly creates an information rich context for autonomic
distributed systems without additional complexity of notification mechanics. Fur-
thermore, our innovative framework allows the attributes of a web service to be
shown, thus allowing the autonomic system to better cater for the installation and
use of new components. With the features of a new component shown as attributes,
the autonomic distributed system can take into consideration the nature of the new
component.

M. Brock (B)
Deakin University, Waurn Ponds, Geelong Victoria 3217, Australia
e-mail: mrab@deakin.edu.au

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 5, C© Springer Science+Business Media, LLC 2009

105

even thousands of machines within a distributed computing system, a cloud, auto-

106 M. Brock and A. Goscinski

1 Introduction

With the rising size and complexity of today’s distributed systems and infrastruc-
tures, a faster rising stress is placed on managers, IT administrators and program-
mers. Thus, the size of a distributed system can be limited by the amount of man
power than can be found to support it. As it stands, each node in a distributed system
has so much sophisticated software that often each node needs its own administrator
to maintain it. Given that the world of IT (at the time of writing) has a severe skill
shortage it is hard to find administrators to maintain the systems and programmers
who can write good software. This implies that administrators are often given more
systems they can handle, thus resulting in high latencies in getting problems fixed
and a high error percentage. Furthermore, programmers are forced to get involved
and write code that addresses management aspects of computing systems rather than
to concentrate on the development of a discipline application. The answer to these
complexities lies in autonomic computing [24, 26].

With the rising size of distributed systems, the problems of interoperability and
the lack of usability are becoming pronounced. In response to them, the current
trend in the development of distributed systems is to use services to govern the
access to resources. By encapsulating the resource in a service and accepting all
interactions to the resource via the service’s interface, clients to the service are freed
from needing to know the complexities of the resource. Services are characterized
by well-defined interfaces that make a standardized invocation of them possible.
This shows that service-oriented architectures (SOAs) of distributed systems match
the architecture of IBM’s autonomic systems in natural manner.

Autonomic computing is an attractive solution where large distributed systems
are able to manage themselves before requiring the attention of administrators,
computer technicians or programmers. While this sounds ideal, autonomic com-
puting has requirements of its own; (i) it needs to be aware of itself and be able to
learn of new possibilities to improve itself and (ii) it needs to make use of newly
found resources and react to resource failures. This means that the autonomic sys-
tem needs easy access to information about itself, its composing components and
other surrounding components. If there is a lack of information or the information is
outdated, the autonomic system may spend more time introspecting itself, its com-
posing components and any new components it discovers instead of automatically
managing itself. This briefly demonstrates the importance of the Self-Awareness and
Self-Discovery characteristics for Self-Management.

The aim of our research is to carry out our study into the enhancements of auto-
nomic distributed systems by allowing components in such systems to expose more
information about themselves. A component is any newly provided and/or discov-
ered unit found by the autonomic system. This can vary from a cluster node to a
piece of software. In this chapter, the term component is mainly used to describe
any unit (software or hardware) that the autonomic system is comprised of or has
been recently published and/or discovered, in particular a new service.

The main interest of our research is the exposure of component state and compo-
nent attributes. State is important to an autonomic system if (for example) it needs

Dynamic WSDL for Supporting Autonomic Computing 107

to learn of a failed or failing component. State is also important so an autonomic
system can better optimize itself. Attributes are like state, but are better suited to
describe the nature of a component and not its activity. For example, state will indi-
cate if a component is working or has failed and attributes will show the nature of
the component and possible operation limits.

In our work, attributes describe the nature of a component, such as how it is built
and what its limitations are. Attributes are important in autonomic computing as
they ease the autonomic systems’ ability to discover and install new components.
Through attributes, the autonomic component can publish information about itself
and the autonomic system can also get a clear view on what the functionality of
a newly discovered component is and can even elect to reject it if the component
cannot be effectively accommadated. By showing attributes, the autonomic system
can quickly see what the component needs and accommodate for them. This is bet-
ter than current technologies requiring the use of inspection to see the state and
attributes of a component.

Our study is in line with the growing trend in other fields of distributed com-
puting, mainly the use of SOA and web services to build large, sparsely distributed
and interoperable systems, called clouds. Examples of these are recent computation
efforts of Amazon’s EC2 [1] and S3 [2] solutions. Virtualization and web services
make it possible to access resources such as a database or cluster node through the
Internet regardless of the architecture or inner workings of the resource. When we
access data on the Internet, we never concern ourselves with how the data are stored
or how it is encoded. The same goes with resources where the specifics on how
the resource is accessed and managed are hidden by the service thus making the
resource easier to use by clients.

The challenge with using web services to build distributed systems is that web
services are stateless whereas distributed systems require the knowledge of state to
manage resources to provide services to users. The Web Service Resource Frame-
work (WSRF) [16, 35] is an attempt to address the challenge of statelessness of
web services. While innovative WSRF did not cover how web services were dis-
covered and relied on the ineffective UDDI (Universal Discovery, Description and
Integration) standard [12] for discovery. While interoperable with UDDI, WSRF
still left clients with the frustration of discovering services that were no longer
available.

We present in this chapter the innovative Resources Via Web Instances (RVWI)
[8–11] framework, a web services-based solution that allows services to show their
state and attributes through their interface (WSDL, Web Service Description Lan-
guage) without the need for extensive examination using additional services. We
examine and assess how the behaviours of autonomic service-based distributed sys-
tems can be improved by creating an information rich context where new com-
ponents can be added without extensive examination. Furthermore, our solution
demonstrates how existing components can easily and rapidly show changes in their
own contexts.

This chapter is organized as follows. Section 2 presents related work, in particu-
lar autonomic computing characteristics and some projects that tackled autonomic

108 M. Brock and A. Goscinski

computing characteristics. Section 3 addresses services and their relationship to
autonomic computing components, in general autonomic computing. Section 4 dis-
cusses our innovative framework, RVWI, which directly offers through a dynamic
WSDL of the service the Self-Awareness and Self-Discovery characteristics in
service-based distributed systems. Section 5 presents a summary of the chapter.

2 Related Work

Autonomic computing is seen by IBM [26] as ‘the development of intelligent, open
systems capable of running themselves, adapting to varying circumstances in accor-
dance with business policies and objectives, and preparing their resources to most
efficiently handle the workloads we put upon them’.

2.1 Autonomic Computing Characteristics and Architecture

Autonomic computing systems can be described as having eight principles [26]:
Self-Awareness – The autonomic system, like humans, is aware that it exists,

is aware of the components that enables its existence and each component of the
system has its own autonomy.

Self-Configuration and Self-Reconfiguration – The autonomic system must be
able to automatically assemble and configure itself from startup and must also be
able to reconfigure itself when there are changes to its existence.

Self-Optimization – Over time, the autonomic system must be able to evaluate
itself and then make decisions as to how it can better optimize itself.

Self-Healing – Should a component fail in an autonomic system, attempts should
be made to recover the failed component.

Self-Protection – An autonomic system must be able to perceive a threat and take
actions to prevent itself from coming to harm.

Self-Evaluation – An autonomic system is always aware of its environment and
is able to make real-time actions in response to changes in its environment.

Self-Discovery – An autonomic system does not keep to itself. It constantly
checks for new components and seeks to learn how to integrate them should it
find any.

Self-Prediction – When a user makes use of an autonomic system, the autonomic
system may be able to predict the needs of the user and transparently allocate
resources without the user ever aware of the allocation taking place.

The Autonomic Computing White Paper [24] extends its vision of autonomic
computing by moving to large computing systems and states that the difficulty of
their system management will become a barrier to their deployment and manage-
ment. Furthermore, the document addresses directly the architecture of these large
computing systems by stating that the right architecture can provide the key to
achieving autonomic behavior at the system level and claims that IBM’s approach

Dynamic WSDL for Supporting Autonomic Computing 109

builds upon well-established principles of distributed computing and systems man-
agement. This allows us to state that our previous research [19, 20] and currently
carried out projects [9, 21] are solidly placed on this challenging track.

The White Paper [24] proposes to organize an autonomic computing system into
building blocks that can be composed together to form self-management systems.
The major aspects of the proposed architecture are interface and behaviour defini-
tion, composition and systemwide self-management. To address these aspects and
achieve an autonomic computing system, some basic requirements and tasks have
been set up.

Firstly, the architecture should not impose requirements on the internal struc-
ture of individual components. This implies that the architecture should focus on
interfaces and components behaviour. Thus, for example an autonomic system for
a business process can directly reflect changing business requirements rather than
have the system impose restrictions on the business process. We too, see this is a
vital requirement and believe that the interface to autonomic components should
also indicate the state and attributes of a component, not just how to communicate
with it.

Secondly, self-managing components should aid in simplifying composition.
Thus, for example, replaceable components of a business autonomic system should
allow supporting of a variety of different business work flows through well defined
interfaces. We too seek to simplify composition by removing some of the complex-
ities from service selection. In particular, we seek to hide away services that are too
busy or are no longer active. Having those services among other working services
adds to confusion (itself a form of complexity) thus making it harder to chose a
service.

Thirdly, the management of the whole autonomic system should be made simple.
This implies that self-managing components should make composing them into self-
management systems easy.

2.2 Autonomic Computing Projects

IBM’s Grand Challenge of identifying autonomic computing as a priority research
area has brought research carried out for many years on self-regulating computers
into focus. We have long identified the lack of user-friendliness as a major obstacle
to the widespread use of parallel processing in distributed systems [20]. In 1993
Joseph Barrera discussed a framework for the design of self-tuning systems [5].
While IBM is advocating a ‘holistic’ approach to the design of computer systems,
much of the focus of researchers is upon failure recovery rather than uninterrupted,
continuous and adaptable execution. The latter includes execution under varying
loads as well as recovery from hardware and software failure.

The projects related to autonomous computing are oriented towards autonomic
applications and on systems, in particular distributed systems. An initial survey on
some of these projects was conducted and presented in [22].

110 M. Brock and A. Goscinski

Anthill (University of Bologna, Italy) [3] is a framework to support the design,
implementation and evaluation of peer-to-peer (P2P) applications. Anthill exploits
the analogy between Complex Adaptive Systems (CAS) such as biological systems
and the decentralized control and large-scale dynamism of P2P systems. An Anthill
system consists of a dynamic network of peer nodes; societies of adaptive agents
(ants) travel through this network, interacting with nodes and cooperating with other
agents in order to solve complex problems. The types of P2P services constructed
using Anthill show the properties of resilience, adaptation and self-organization.

Neuromation [33], Edinburgh University’s information structuring project,
involves the structuring of information based on human memory. The structure
used would be suited for organizing information in an autonomic architecture. The
structure used is simple, homogeneous and self-referential.

University of Freiburg’s Multiagent Systems Project [32] revolves around the
self-organized coordination of multiagent systems. This topic has some connections
with Grid computing, especially economic coordination issues like in Darwin, Radar
or Globus.

The Immunocomputing project [25] (International Solvay Institutes for Physics
and Chemistry, Belgium) aims to use the principles of information processing by
proteins and immune networks in order to solve complex problems while at the
same time being protected from viruses, noise, errors and intrusions.

OceanStore (Berkeley University of California) [36] is a persistent data store
which has been designed to provide continuous access to persistent information to
an enormous number of users. The infrastructure is made up of untrusted servers;
hence, the data are protected using redundancy and cryptography. Any computer can
join the infrastructure by subscribing to a OceanStore service provider. Data can be
cached anywhere, anytime, thus improving the performance of the system. Informa-
tion gained and analysed by internal event monitors allow OceanStore to adapt to
changes in its environments such as regional outages and denial of service attacks.

The Recovery-Oriented Computing (ROC) [37] project is a joint Berkeley/S-
tanford research project that is investigating novel techniques for building highly
dependable Internet services. ROC focuses on the recovery of the system from fail-
ures rather than their avoidance.

A Grid scheduling system, developed at Monash University, called Nimrod-G
[34], has been built to provide tools and services for solving coarse-grain task farm-
ing. The resource broker/Grid scheduler has the ability to lease resources at runtime
depending on their capability, cost and availability.

The Bio-inspired Approaches to Autonomous Configuration of Distributed
Systems [6] at University College London have used bio-inspired approaches to
autonomous configuration of distributed systems (including a bacteria inspired
approach).

Although their study show that some form of data collection is in place (hence
leading towards Self-Awareness and Self-Discovery) these two characteristics are
not addressed explicitly, and another work [38] has even gone as far to say that Self-
Awareness is a minor characteristic. In human anatomy, suddenly finding a foreign
object (both material and biological) is not minor. If it is not minor in biology, why

Dynamic WSDL for Supporting Autonomic Computing 111

should it be minor in autonomic computing which seeks to bring the self manage-
ment features of biology to computing?

One work of interest is how event management is addressed in [40]. To effec-
tively carryout Self-Awareness, the autonomic system needs to carefully consider
what events have happened and what appropriate action to take. While a need is
stated to effectively match an event to an optimal action, it is not stated how the
event is captured and examined in an autonomic system. The work presented a case
study where autonomy was placed in telephony network.

Unity [13], while not a fully Self-Aware, autonomic system, is a step in the right
direction to making autonomic systems aware of themselves and their various com-
ponents. In Unity, each individual component has its own autonomy: thus it is able
to be placed in an environment, learn the context, find resources, configure itself and
finally begin execution and start offering its services.

The term used in Unity is Self-Assembly; as the name states, when an auto-
nomic component starts, it works with the existing autonomic system to assem-
ble its needed environment together and is even able to see if it is running out of
resources and request more resources from the autonomic system. Unfortunately,
while each component is autonomic the autonomy does not carry on to a higher
level. An autonomic component is needed to store polices which are placed there by
an administrator. Furthermore, while each component has an interface, the state is
only visible via communication with the autonomic component and communication
is only allowed with the component if it has authorized a relationship with another
component.

While many of these systems engage in some aspects of Autonomic Computing,
none engage in research to develop a system which has all eight of the character-
istics required. In response to this problem, a technology on building autonomic
cluster operating systems was developed and an autonomic cluster operating system
as a proof of concept of this technology was built [22]. This system has been built
from scratch to offer an autonomic non-dedicated cluster by providing availability,
parallelism management, transparent fault tolerance and easy programming. This
system relieves developers from programming operating system-oriented activities,
and provides to developers of next generation application software both message
passing and distributed shared memory.

3 Services vs. Autonomic Computing

The lack of research attention to Self-Awareness and Self-Discovery is a concern as
without them there can be no awareness hence no information to detect fault, sudden
changes in system state or even the addition of a new component. Also, due to the

While conducting a study in literature we found
in autonomic computing and that most of the activity
Self-Optimization and Self-(Re)Configuration. We are
enough attention is paid to the Self-Awareness and Self-
they provide information to make decisions.

that there is much activity
is centred on Self-Healing,
strongly convinced that not
Discovery characteristics as

112 M. Brock and A. Goscinski

lack of contextual information, Self-Configuration and Self-Optimization is made
difficult as neither characteristic can find the information needed to effectively carry
out their roles in managing the autonomic system. This means that Self-Healing,
Self-Optimization and other principles have to have their own detection mechanics
built in. While the principles are supported there is no global view on the state of
the autonomic system nor is there a global view of the environment of which the
autonomic system exists. The question is how the lack of attention to these two
characteristics of autonomic computing could be addressed in distributed systems
of today.

For a distributed system to function correctly, application components (often
encapsulated as a programming object) executing on different computers through-
out a network must be able to communicate. The current trend in the development
of distributed systems is to use services, which expose resources behind them, as
building blocks for the distributed system. An early example of this trend can be
seen in the Grids [17, 42] while a very recent example can be seen in EC2 [1].
Services are characterized by well-defined interfaces and the invocation of them
made possible by the defined interfaces. This shows to us that SOAs of distributed
systems match the architecture of IBM’s autonomic systems in natural manner: an
autonomic component in an autonomic system can be considered and interpreted as
a service in a service-based distributed system.

An analysis of the current development and trends in the area of IT and comput-
ing demonstrates that a stronger emphasis should be put on autonomic computing
based on distributed systems and linked to service computing.

3.1 Self-Discovery and Self-Awareness Issues

Of interest to this chapter are the principles of Self-Discovery and Self-Awareness.
Self-Awareness allows a system, object or a service to learn about its state and
attributes. This information is necessary to provide a correct decision on time.
For example, current and easily accessible state information is needed to promptly
detect a failing component in the autonomic system. The knowledge of state in a
distributed system, or any computing system, is necessary for its management. A
distributed system, as stated earlier, is composed of a set of components, which
cooperate closely using messages to achieve the goal of the whole systems. Thus,
the knowledge of cooperating components is of the most crucial importance.

Self-Discovery is where the autonomic system is able to learn about the environ-
ment it is working in, of new components that have been added and components that
may have failed or have been removed. Even with the use of open technologies, such
as web services, all that can be learned is the interface, thus it can only be learned
how to use a web service. The same issue exists with autonomic systems when they
find a newly discovered component and try to make use of it.

The frustration with autonomic systems is that only the knowledge of the compo-
nent operations is readily available (as well as what data each operation require and

Dynamic WSDL for Supporting Autonomic Computing 113

what data are returned). What cannot be learned is the required execution platform
of the component or the intention of the component. Without this information the
autonomic system cannot safely make use of the component. The autonomic system
has to lose valuable time communicating with the component to learn what it needs
in terms of execution environment, maintenance facilities, etc.

Self-Awareness, where the autonomic system is aware of its own state and the
state of its comprising components, is a basic requirement. When an autonomic
system discovers a new component, the component needs to be able to send routine
notifications about any changes to its state. An autonomic system cannot routinely
request the state of any of its components. The reason for this is the rise in the
number of components that will lead the autonomic system to spending more time
examing components than managing itself.

Autonomic computing is the vision of making complex computer systems easier
to manage. Unfortunately, autonomic computing itself is complex and care must be
taken otherwise more complexity gets layered on an already challenging complexity.
As stated in at the start of Sect. 3, the current trend in the development of distributed
systems is to use services and compose the whole distributed systems using services.
We look to SOA and web services to take some of the complexity out of autonomic
computing for us.

3.2 The Service-Oriented Architecture

For a distributed system to function correctly, application components (often encap-
sulated as a programming object) executing on different computers throughout a
network must be able to communicate. However, heterogeneity makes this com-
munication difficult. In the early 1990s, many companies and organizations real-
ized the need for such functionality and began developing their own technologies
to enable communication among distributed components, e.g., OMG’s Common
Object Request Broker Architecture (CORBA), Microsoft’s Distributed Component
Object Model (DCOM) and Sun Microsystems’s Remote Method Invocation (RMI)
[41]. Unfortunately, interoperability (the ability to communicate and share data with
software from different vendors and platforms) is limited among these technologies.
A solution to the problem of interoperability is SOA [27].

SOA is an approach to designing and implementing a large distributed system.
Instead of building a system as a large monolith, the system is built as a collection
of inter communicating services. SOA is an architectural style that supports ser-
vice orientation, which is a way of integrating a business or a set of businesses as
linked services and the outcomes they bring. Services are created, made available
and consumed by users (clients). Services are independent, stand-alone, generalized
and re-usable and exist somewhere accessible, for example, to check a customer’s
credit, or open a new account. In general, a service can be anything from a high-level
‘business process’ to one of very many low-level functionalities, shared among other
processes.

114 M. Brock and A. Goscinski

The idea of SOA is to encapsulate each resource (database, human knowledge,
computer node, business task, etc.) in the system with its own service and to have
all interactions with that resource via the service. It is also possible to chain services
together to form a work flow where data go from one service to another, undergoing
a small amount of processing on each service.

The advantage of SOA is that services can be added and removed depending on
the overall needs of the distributed system or the needs of the organization main-
taining it. Services also improve usability where the management and operational
aspects of a resource are hidden by the service. This means the client can make
use of a resource immediately and without having to go through other management
processes.

The main problem of SOA-based (and even distributed) systems is: how does the
client (be it another service or remote user) find a needed service? SOA-based sys-
tems (as well as distributed systems) need discovery services to help locate needed
services. Figure 1 shows the typical structure of discovery in SOA-based systems.

The first step is the publication of a service to a discovery service. This can be
done either by the service itself or by the Service Provider (the owner and maintainer
of the service). Next, the client contacts the discovery service for information on a
service its needs to perform a task. In this step, the client will ask, ‘I need a service
that can multiply two matrices, each two thousand elements in size’. The Discovery
Service returns the location and interface of any services it finds to the client. The
client then uses operations listed in the interface to learn the state and attributes of
the service by approaching the web service before using it.

This implies that if the state of the first service approached indicated that the
service is busy, the client tries accessing the second, third and so forth, learning the
state and attributes of each service along the way. Checking the state and attributes
of services takes a lot of time and wastes communication bandwidth.

Another major frustration with SOA in the past was defining and implementing
how the services in SOA systems communicated with each other and with clients
outside the SOA-based system itself. As SOA left communication semantics to SOA
developers, it meant that each SOA-based system had its own means of communi-
cation thus making it harder for clients to communicate with multiple SOA-based

Fig. 1 Typical model for SOA discovery

Dynamic WSDL for Supporting Autonomic Computing 115

systems. The client needed to contact the developers of the SOA-based systems to
learn how to communicate with the system. This means that the problem of interop-
erability has not been completely solved.

3.3 Web Services

Recently, web services have been used to implement SOA-based systems thanks to
their interoperability features. An early example can be seen with OGSI [42] and
more recently in version 4 of the Globus Toolkit [17]. Unlike DCOM and CORBA,
web services operate using open (i.e., non-proprietary) standards. It is possible to
say that Web services technology represents the next stage in distributed comput-
ing. Thanks to using a service to hide away the architecture and management of a
resource from clients, clients can spend more time using a resource instead of having
to learn how to use it and how to comply with management policies.

Web services encompass a set of related standards that can enable two computer
applications to communicate and exchange data via a network, such as the Internet.
Web services are also effective as they make use of open standards and protocols:
XML [7], WSDL [14], SOAP [31] and UDDI [12].

XML (eXtensible Markup Language) is a specification on how to describe data
using text and in a platform-independent manner. If there is a data structure to share
with other software solutions, instead of handing developers a language-specific
library to use the structure, one can describe the structure in XML and from it
developers can reconstruct the data structure in their choice of language. In web
services, XML is used to describe the data and the structure of the messages to go
to and come from the web service.

The WSDL is a XML-based language for creating WSDL documents that
describe the web service. The WSDL describes the messages needed to communi-
cate with the web service, the data that goes into the web service and the data that
comes out of the web service. In short, the WSDL describes the functionality of
the web service but as we explain when we introduce RVWI, it does not describe
the state and attributes of the web service. Being XML-based, developers can build
clients to a web service simply by reading the WSDL. This means that a web service
written in C++ can have a client to it build in Java simply by using the WSDL and
nothing else.

SOAP is a standard for defining XML-based messages on how a software com-
ponent on one machine can communicate with a software component on another
machine without having to know how each software component is executed on either
machine.

Finally, UDDI, a standard on how to make a web service that finds other web
services for clients. A UDDI service keeps the location, WSDL and one or more
bindings for which clients are built to make use of the web service. The approach of
UDDI is like a phonebook where service providers publish information about their
services and clients can then easily access it.

116 M. Brock and A. Goscinski

Web services take advantage of object-oriented programming techniques in that
web services enable developers to build applications from existing software com-
ponents. The technology encourages a modular approach to programming. Thus
the Internet is transformed into an enormous library of programmatic components
available to developers; some developers can use available components, whereas
other developers may make their services available. As a follow-up, web services
can enable any two software components to communicate regardless of the tech-
nologies used to create each component or the platform on which the component
resides.

3.4 SOA and Autonomic Computing

SOA is a powerful architecture in large distributed system design. The problem
is how to implement the SOA-based architecture. The response is web services: a
collection of open standards and powerful technologies to make large distributed
systems from various components created from various methodologies. The two
together create flexible, reusable, scalable and reliable distributed systems. Unfor-
tunately, neither SOA nor web services offer a means of managing the systems made
using them. It falls on the developer of the distributed system to implement infras-
tructure to manage the distributed systems themselves.

One solution that combines SOA, web services and Autonomic Computing prin-
ciples is the Service Management Broker (SMB) [29, 30]. Of interest to auto-
nomic computing are SMB’s capabilities for Self-Healing and Self-Awareness. Self-
Awareness is vital to Self-Healing: if the autonomic system is not aware of itself, it
cannot be aware of any faults within itself either.

Of interest to this chapter is how SMB addresses Self-Healing. SMB uses error
and fault detection akin to a heart rate monitor. In medicine, a heart rate monitor rou-
tinely detects the pulse of a patients heart and signals an alarm if the heart stops. In
SMB, all services are required to routinely send a signal to a designated monitoring
service. If a service fails to send a signal, the fault detection services activate to learn
what has become to the service. If the service has failed the Self-Recovery systems
restore the service. All this happens without the user of the server ever knowing that
the service has failed.

SMB is a pure web services solution. Often, web services are not used in large
distributed systems because the technology itself is still very young and standards
only recently started to become finalized in the past couple of years. SMB is proof
that web services are a very mature platform for building large distributed systems
as well as autonomic systems.

This shows that there is architecture, technology and its proof of concept that
allows the provision of autonomic features to service-based distributed systems.
However, a weakness of this unique approach is that state and attributes of a web
service are not easily and quickly accessible to clients (users and/or other web

Dynamic WSDL for Supporting Autonomic Computing 117

services). This means that Self-Awarness and Self-Discovery in service-based dis-
tributed systems require additional work.

3.5 Towards Stateful Web Services

While very interoperable, web services have two main issues: they are stateless
and UDDI discovery is inaccurate. SOA-based systems (or any form of distributed
system) need services to have state so that requests that depend on the outcomes of
previous requests are possible.

The state of services is just as important as the interface itself. When learning
of services, clients should know about the state of services at the same time as they
do about the interface. Clients should not have to learn that the service is too busy
or unavailable after spending time learning about the interface and what methods
could be used to best represent the state. UDDI is also inaccurate as it assumes that
the information given to it never changes over time and UDDI does not consider the
state of a web service when clients consult it.

A first attempt at making web services stateful was the Open Grid Service Infras-
tructure (OGSI) [42]. OGSI acted as a layer on top of web services [28] and indi-
cated how the state of a web service was created, used, maintained and destroyed.
OGSI specified that (i) Web services and their state were kept separate from each
other; (ii) State was kept in a uniquely identifiable unit called an instance; (iii)
Instances are identified by an Endpoint Reference (EPR) and (iv) The EPR is used
to load the instance from persistent storage before the web service performed oper-
ations for the client.

When clients first use an OGSI service an Instance is created for them and the
EPR returned. When the clients make later request, the EPR is supplied so the cor-
rect instance can be loaded into the web service.

While OGSI preserved state, the state itself was not directly accessible from the
service. OGSI required a designated service, such as the Monitoring and Discovery
Service (MDS) [18]. MDS kept track of all services through notifications. Whenever
the state of a service changed, MDS was notified thus keeping itself current. While
the state was accessible in the MDS, if MDS failed, the state could not be learned
without using methods in the service. Furthermore, MDS is too complex to be used
by non-computing professional.

An attempt was made in [39] to make state more easily accessible using the
UDDI Service [12]. UDDI was itself a web service thus any form of client could
make use of it. UDDI was expanded to track state in the same manner as MDS
thus information on state was kept current. The enhanced UDDI service was able
to receive notifications from service providers and their web services thus keeping
UDDI current. Unfortunately, it required additional effort from the service providers
and clients and did not provide the notification mechanics to the services.

Also, the single point of failure in systems based on OGSI still existed in this
solution and again, it was difficult for non-computing experts to make use of it.

118 M. Brock and A. Goscinski

The Web Service Resource Framework (WSRF) [16] was a step forward for web
services. It is a standard on describing how to make web services stateful via an
open protocol. The standards brought together by WSRF are WS-Resource [35],
WS-BaseNotifications [23], WS-Topics [43] and WS-Addressing [4]. The invention
of these notification standards and WSRF made it possible to build web services
that was stateful and was easily accessible by clients.

Functionality wise, WSRF was the same as OGSI. The difference was WSRF
used web service standards while OGSI added specific functions on top of web
services. Also, WSRF partitioned stateful functionality over multiple web service
standards [15], while OGSI was a monolithic standard. Like OGSI, WSRF uses a
unit called an instance which holds the state of a web service and is kept in persis-
tent storage when not in use. When clients use WSRF services for the first time, a
instance is created. The instance also has a unique identifier which is given to the
client. That way, the client can inform a service of the state needed and the service
can then easily retrieve it.

Again, instances also had unique identifiers called EPRs which are assigned
when the instances are created. When the client makes later requests the client
supplies the EPR so the web service can load up the correct instance. EPRs are
used as clients cannot be easily identified due to their diversity and the nature of
some computer networks. Thus the EPR is used both to load an instance and to
relate a client to that Instance. The only disadvantage of WSRF was that state still
required an additional service to be accessed.

While innovative WSRF did not cover how web services were discovered and
relied on the ineffective UDDI standard for discovery. WSRF still left clients with
the frustration of discovering services that were no longer available. Also, while the
state was preserved, it was kept private to the client the state related to. Furthermore,
to state-enable discovery services, such as UDDI, the services had to be heavily
modified and the web services retrofitted to send updates on state to the discovery
service. Furthermore, if the discovery service failed access to the state of a web
service was also lost as the state was only accessible through UDDI and not the
service itself.

An innovative framework, furthering the capabilities of WSRF was recently cre-
ated. The Resources Via Web Instances (RVWI) framework [8–11] is a pure web
services framework that adds capabilities on top of WSRF. The main feature is
RVWI granting to web services the ability to show their state via their WSDL docu-

and attributes of a web service, in particular a resource behind it that can change
state between requests, with WSDL that is the most frequently used object of web
services. The significance of this framework is that it improves resource discovery;
(i) clients can learn about resource state and attributes when they receive informa-
tion about the location and the interface of a web service; (ii) the state is always
accessible even when discovery services failed and (iii) time and communication
bandwidth is saved because there is no need for accessing web services to learn
about their states and attributes.

ments. The innovation of the RVWI framework is that it directly links state

Dynamic WSDL for Supporting Autonomic Computing 119

4 The Resources Via Web Instances Framework for Autonomic
Computing

We demonstrate in this section the RVWI framework as it allows web services to
publish and make directly accessible their state and attributes. More precisely, the
state and attributes shown are the state and attributes of the resources behind the
web service. Information about changes is conveyed when they occur: thus, they are
current and support making informed decisions. The RVWI framework supports the
provision of the Self-Awarness and Self-Discovery characteristics in service-based
distributed systems.

4.1 SOA Enhancement

When it came to making use of a web service, a lot of time is wasted learning the
state and attributes of the web service only to find that it is either too busy or it is
too slow in getting requests processed. What is needed is a way to keep the state
and attributes of a web service easily accessible and that the current state is always
published.

We decided to provide the state and attribute information in the WSDL and keep
it current so clients were never left short handed. We made use of the WSDL doc-
ument because it is the most commonly accessible object of a web service. The
WSDL itself is often used by other services such as UDDI so they can inform clients
how to use the service. By enhancing the WSDL of the service, any state information
quickly propagates to other services and subsequent clients. The bundling of both
the state and the WSDL in the one document means clients can quickly see how to
use the given service and if it is ready for their request or not. Figure 2 illustrates
what we proposed when we created RVWI.

Like with the traditional model for SOA (shown earlier in Fig. 1), services are
first published with a discovery service (DS) with its current state (1). Additionally,
the Service is able to send updates about its state and attributes to the DS (1a). The

Fig. 2 Updated model for SOA discovery

120 M. Brock and A. Goscinski

service represents the resource thus the state of the resource also has to be repre-
sented via the service. When the Client contacts the DS (2) the Client learns every-
thing about the Service: service location, message pattern, interface, state, attributes,
last down time, etc. Finally, the Client makes use of the Service immediately (3).

The changes RVWI makes to the WSDL are significant. Like the typical SOA
model, services are published to a discovery service; but RVWI allows for web ser-
vices to send updates about themselves to discovery services long after the service
has been published. Thus both the web service’s WSDL and the discovery service
itself remain current to the state of the resource exposed via the web service.

When the client contacts the discovery service, the client is able to get the active
state and current attributes of the web service as well as its interface and location.
Furthermore, the discovery service can employ one additional step and ensure that
web services under a heavy load are not returned to the client.

With the information on current service state and current service attributes, the
client can accurately pick a service (if more than one is listed) and then use the
service immediately and does not have to waste time learning the state and attributes
of the service. Aside from saving time, communication overhead (the time lost from
the creation, transmission and processing of messages to and from web services) is
also greatly reduced.

The introduction to the RVWI framework shows that it is possible to efficiently
provide Self-Awareness and Self-Discovery of services that form a distributed
systems.

4.2 WSDL Modification

The modification of the WSDL is not done via an additional service; the WSDL is
modified to show the state and attributes from its own service. Figure 3 shows the
steps taken to modify the WSDL. As per WSRF, the state of a web service is kept in
persistent storage. According to the RVWI framework, the client requests the WSDL
(1) the web service generates the WSDL naturally (2). The next step for the service
is to find any instances of itself from persistent storage (usually this is a database but
can be a file system or any form of storage depending on the implementation) (3). If
any instances of the web service are found, the WSDL is modified to include them
(4). Finally, the WSDL is returned to the client like any other WSDL document.

Fig. 3 WSDL modification

Dynamic WSDL for Supporting Autonomic Computing 121

Fig. 4 New WSDL with state information

To include the state and attribute information, the WSDL itself has to be
expanded. As the WSDL of a web service is written in XML and is a modular
document, it is possible to include additional information about a web service by
simply adding a new XML section. Figure 4 shows an example WSDL with the new
instances information element.1 Additionally, RVWI shows the attributes of a web
service. Attributes describe the nature of a web service. For example, a web service
whose resource is a file will have an attribute on the maximum possible size the file
can be.

The WSDL document of a web service has multiple sections, each section
describing a small aspect of the web service. For example, all information on the
structure of the messages used to communicate with the web service is in its own
section. The same goes for the required data structures and the operations web ser-
vice offers to allow access to the web service. Thanks to the use of sections, it is
possible to add additional information to the WSDL by encapsulating it in its own
section.

To show the state of the web service in the WSDL, RVWI created a new section
in the WSDL called the Instances section. Like how there is a section for each
message and operation of a web service, there is now a section for all instances of
the web service. The Instances section itself has one to many InstanceInfo sections.
This is because stateful web services can have multiple instances. In WSRF, an
instance of a web service can have one or many resources; for RVWI we keep them
specific where each instance exposes a given resource. Figure 5 shows an example

1 Note: The RVWI specifications mention state and characteristics instead of state an attributes. To
prevent conflict with autonomic characteristics, RVWI characteristics are referred to as attributes.

122 M. Brock and A. Goscinski

Fig. 5 File resources shown through instances

of multiple resources made accessible through the single web service thanks to the
Instances.

In Fig. 5, we have three types of files, Text, Hex and Binary. Each file will have
a maximum size, current file size and even state information on what data are being
read or written to them. The instances hold this information on behalf of the web
service. As stated before web services are stateless and are made stateful through
decoupled instances.

All three files are made accessible through the single file web service. If the client
wishes to use the Hex File, the instance to the Hex File is loaded thus making the
web service (to the client) aware of the current state of the Hex File. In RVWI,
instances are used like snapshots of resources, which the web service shows via the
WSDL.

The Instances section that RVWI introduces to the WSDL consists of one to
many InstanceInfo section. An InstanceInfo section has an ERP attribute and two
child sections, the State section and the Attributes section.2 As each InstanceInfo
relates to an Instance, the EPR is given so the instance can be selected. As the
name implies, the State section shows the state of the web service (based on a given
instance). Elements such as the current activity of a node on a cluster are shown in
this section. The Attributes section describes the nature of the resource. Elements
such as the CPU of a node in a cluster are described in this section.

To publish the state and attributes, the State and Attributes sections both have one
to many Description elements. In RVWI, it was seen that state was very complex
and could not be described in just one element. The state of a cluster could not
be simply described as being heavy or light, nor could it be described as being X
per cent used. The variations in each node in the cluster and the number of nodes
working and have failed all contribute significantly to the state of the cluster. Thus
the state in RVWI is described via a collection of elements, all making up the whole
state.

2 This diagram was taken from the original RVWI literature and updated to have Attributes instead
of Characteristics.

Dynamic WSDL for Supporting Autonomic Computing 123

While the Attributes sections has one to many Description element, they contrast
the State section as each Description element in the Attributes section is its own unit
and is not part of a whole. For example, the type of CPU of a node in a cluster is not
dependant on any other node.

The use of Description elements in RVWI makes it very fine grained and flexible
in describing the resources behind web services. Before, when one wanted to use
a cluster, one could only ask, ‘I need a cluster of 200 Windows Nodes’. While the
client would get a cluster, half the nodes may have been too busy to be used. Thanks
to RVWI, the user can see immediately what nodes are free and what nodes are busy.
Based on this informtion, a node selection of activity could be made autonomatic
easily.

4.3 Supporting Dynamic State

As well as showing the state and attributes, the exposed state and attributes also
have to be kept current to the resource behind the web service. In WSRF, when the
stateful web service completes an operation any changes in state and attributes are
placed in the instance and the instance is then placed in persistent storage for later
use.

The question raised then is: if RVWI is using an instance to show a resource,
how does RVWI ensure that the instance remains current to the resource? This is
an important question as the resource is separate from the instance, thus can be
subjected to change which will go unnoticed by the instance. The inconsistency
between the resource and the instance can cascade to the web service where it will
expose inconsistent state and attributes of the resource.

The relationship of clients to web services and resources is shown in Fig. 6. Like
with any web service, the Client makes requests to the Web Service (1). This request
will likely have an EPR to an Instance which the Service will load at the start of the
request and save back when finished (2). Behind the Service is a Resource which
the Service exposes. After accepting a request from the Client, the Service performs
operations on the Resource (3).

The steps taken in Fig. 6 only supports resources that do not change their state and
attributes between client requests. As the Instance keeps some ‘cached’ informa-

Fig. 6 The Client in relation to Web Service and Resource

124 M. Brock and A. Goscinski

tion about the resource, the Instance becomes unusable if the state of the Resource
changes.

To keep the web service informed of any changes, a Connector is proposed
to track any changes in state and attributes with the Resource. The Connector is
simply a piece of software that detects changes in a resource and then commu-
nicates that change to the web service exposing the resource (as well as its state
and attributes). Changes in state happen more often than attributes. This is because
attributes describe the nature of resources, which seldom if ever change. Figure 7
shows the Connector in relation to the Resource and the Service.

When the Resource undergoes a change in state or attributes, it is detected by the
Connector (1). The Connector informs the web service about the change (2). The
change is reflected in the Instance by the Service (3). Later, when a client asks for
the WSDL of the Service, the Service returns a stateful WSDL with all state and
attribute information contained in it. The client can then decide weither or not to
make use of the web service based on the value of the state and attribute informaton.
The client does not incur the communication overhead introspecting the service for
state and attribute information.

The Connector detects changes in a resource via two ways: by letting the resource
send signals to it directly or by routinely examining the state of the resource for
changes. The reason for communicating the change of the resource to the web
service and not the instance is the instance maybe in use when a change in the
resource occurs. If we changed the instance while it is in use, and the web service
then completes, it will write over and changes we make thus resulting in a lost
update. Also, using the web service means that we have a central point where all
changes go through, thus serializing updates.

By keeping the state information current, the WSDL itself also remains current
to the state of the service. The Connectors track the state of resources and keep web
services current with the resource (thus showing correct state in the WSDL) and
notifications (provided by WS-N) are used to keep other services up to date with
changes in the web service.

Fig. 7 Using the Resource Connector

Dynamic WSDL for Supporting Autonomic Computing 125

4.4 RVWI and WSRF

The RVWI framework was created to allow the state (and attributes) of a web service
to be shown in its WSDL and to allow for any service or client holding a copy of
the WSDL to receive updates on state to keep their copies current. This addressed
the problem often encountered when clients sought web services through discovery
services only to find that the service was unavailable and that they had now lost
valuable time.

The WSRF standard was used as a foundation for RVWI. In using WSRF we did
not have to re-invent a stateful web service framework and by building on top of
it, we make our own solutions compatable with other WSRF compliant solutions.
Figure 8 shows where RVWI sits with the stateful web service and other web service
layers.

WSRF provided all the essentials: state management, addressing and notifica-
tions just to name a few. As the functionality was already built and tested, it made
sense to further the use of WSRF to show the state of a web service. The challenge
at the time was how to make use of the instance. While the state was held, we also
wanted to keep attributes. WSRF only considered state thus any additional informa-
tion could not be told from the state.

To resolve this, RVWI makes use of the facilities in WSRF to help keep state and
attributes separate. RVWI simply adds ‘tags’ to the attributes so that when stored in
the instance, the attributes are grouped as either state or attributes. Thus it is possible
to look at the instance itself and see what makes up the state of the service and what
makes up its attributes.

It should be noted that while we are working with stateful web service technolo-
gies, we still consider the stateless web service technologies (the bottommost layer).
The reason for keeping access to the lower layers, as can be seen again with WSRF

Fig. 8 Stateful web services layers

126 M. Brock and A. Goscinski

and RVWI, is to keep interoperability with previous web services. Had we gone the
fully layered approach (where each layer was completely covered by the next layer
up) we deny ourselves interoperability with stateless web services.

4.5 Supporting Self-Awareness and Self-Discovery
via Dyanmic WSDL

With the exposure of state and attributes through the WSDL, RVWI is a strong can-
didate for implementing service-based autonomic distributed computing systems;
where resources are made easily accessible via services, particulary web services.
The principle of Self-Discovery requires the autonomic system being able to find
components (or services) on its own, learning how they are to be used, interoperating
them with other components and then effectively making use of them. If an auto-
nomic system discovers a new component, the lack of state and attribute information
means the autonomic system spends more time learning about the component before
making use of it. If the autonomic system cannot learn the nature of the component
or service, how can it make use of it? It would be like trying to incorporate a cluster
node without being able to configure it.

State is a vital factor in this principle as the autonomic distributed system should
not make attempts to interoperate a component that is in a failed state. As there is
a high overhead in facilitating, installing, configuring and activating a component,
that overhead becomes wasted if the component is later discovered to be inoperative.
Once found to be inoperative, the principle of Self-Healing (where the component
is removed and the system reconfigured again) and Self-Optimization triggers thus
resulting in even more lost overhead.

Self-Healing and Self-Optimization prove that the principle of Self-Awareness
is the most important principle of all. Just like how we humans come to know
ourselves to better improve ourselves, autonomic systems need to do the same to
keep themselves optimised and working efficiently. This requires an information-
rich context where data about the autonomic system and its composing components
are kept current and in depth. RVWI (in particular the dynamic WSDL) supports
this through the exposure of state and attributes. As the exposure is on the service
itself, the exposure is ‘always on’ and does not require a specialized mechanic to
extract.

In autonomic computing, RVWI can support Self-Awareness where the state and
attributes of the component are visible. While it is preferred to have a centralized
approach (where state and attributes are placed in a indexible service), the current
state and attributes should be visible all the time. Thus if an autonomic component
is having trouble showing its state, another component can see this and possibily
help by pointing the former component to another service.

When it comes to adding a new component to a distributed system, humans ask
these questions: What does this component do? What does it need? How is it used?

Dynamic WSDL for Supporting Autonomic Computing 127

Currently, only the last question is addressed, if at all. The question of how a
component is used covers the operations a component offers and the input and out-
put data for each operation. When making use of a new component, the autonomic
system needs to know:

• What the component does, otherwise, it will continue to add one component after
another and only use a select few.

• What it needs. If the component is a piece of software, the autonomic system
needs to know its execution enviroment and required software (such as drivers)
so it can be used. If the component is a cluster node, the autonomic system needs
to know the hardware architecture so it can prepare the node with additional
software so the node can quickly accept incoming cluster jobs.

• How the autonomic system is used so only proper data go in and come out of the
component.

It is RVWI’s ability to show attributes that best address the first two questions.
When describing attributes through the dynamic and stateful WSDL, attributes such
as the architecture of a cluster node, the maximum size of a data file and even the
number of available nodes in a cluster are shown in a form that is easily available to
other clients and services.

The attribute exposure in RVWI was originally implemented as a means to fur-
ther describe the state of a resource exposed via a web service. For example, the
dynamic WSDL could show the state of a cluster as having halve of its nodes busy.
The attributes can further enrich the state exposure by indicating from each free
node its architecture, the number of cores in the CPU, it maximum memory and
maximum storage, etc.

RVWI (thanks to its creation of dynamic WSDL) lends itself to autonomic com-
puting as attributes of a newly discovered component, such as what it does and what
it needs, are now easily exposed. With this additional information, the autonomic
system can easily and effective accommodate the deployment of the newly discov-
ered components. Furthermore, the exposure of state with no need for a centralized
manager mean the state of all comprising components is easily accessible.

It is natural to state in summary that the RVWI Framework, in particular the
dynamic WSDLs, supports the Self-Awareness and Self-Discovery characteristics
in service-based distributed computer systems, particular clouds.

5 Summary

As the size of distributed systems rise, so does the sophistication and complexity of
the processes that manage the distributed computing system. With the introduction
and use of service based distributed computing systems the management problems
of these systems have become even more important. Finding a solution to these
problems is even more urgent these days. Autonomic computing is an attractive

128 M. Brock and A. Goscinski

technology for managers, system administrators and programmers as it allows large
distributed systems to manage themselves with little or minimal human intervention.

But such automation towards self-management has requirements of its own:
mainly the need for keeping information about itself, its comprising components
and any newly discovered components current and easily accessible. Without easy
access to information about the attributes of autonomic components, autonomic sys-
tems and clients could lose valuable time incorporating newly discovered compo-
nents which cannot be effectively used and can even lose more time attempting to
remove them. These problems apply directly to service-based distributed computing
systems, in particular clouds.

The RVWI framework addresses the lack of information in autonomic service-
based distributed systems by allowing state and attributes of foreign compo-
nents/services to be shown, thus making it easier for a autonomic distributed
system to learn the context of itself, its composing components and any components
outside its context. Just like how information about us is important to better improve
ourselves, RVWI (through its dynamic WSDL) helps enrich the information that
autonomic distributed computing systems have about themselves so that they can
further improve their operations and efficiency.

We provided a basic proof of concept of the RVWI Framework by exposing a
counter as a web service and demonstrating its changing state via a dyanmic WSDL
[10, 11]. It was an explicit demonstration of the feasibility of RVWI.

We are currently implementing a large scale proof of concept of RVWI whereby
a cluster is to be exposed via a web service which shows the state and attributes of
the cluster via the web service’s WSDL. We have all our workings in place, all that
remains is to pull the cluster and RVWI together and then run management tools,
such as schedulars, with the exposed state and attributes. This solution will enrich
cloud computing, in particular the Platform as a Service (PaaS) category of clouds.

The main contribution of this work is our RVWI solution, which is an active
technology and not only a theoretical model which autonomic computing is mostly
driven by. RVWI has previously made major contributions to web services in allow-
ing their state and attributes to be shown via their interfaces without the need for
specialised knowledge or tools.

The same contributions are beneficial to autonomic computing as information
about itself and any newly discovered components is now easily accessible. Also the
exposure of attributes makes it easier to make use of newly discovered components
as their operation requirements are now easy to access.

The significance of the project outcome is our framework presents an new foun-
dation for which service-based autonomic distributed computing systems can be
built, tested and evaluated. Autonomic computing suffers from the lack of frame-
works to help build autonomic systems; the autonomic systems have to be build
from scratch. Presenting a new foundation is significant as specialists in the field no
longer have to reinvent the wheel.

Our contribution presents a foundation for enriched Self-Awareness and enriched
Self-Discovery in service-based autonomic distributed computing systems. While
the expose of state and attributes without the need for a specialised service or

Dynamic WSDL for Supporting Autonomic Computing 129

component means that information about the autonomic system is freely avail-
able and does not have to be extracted. The exposure of attributes improves Self-
Discovery as the autonomic system can decide if a newly discovered component
or service is usable and demonstrate the required attributes and will not lose time
adopting it.

At the next stage of the project we will concentrate our attention on research of a
broker and cooperating brokers that will be able to take advantage of the availability
of of state and attributes published and actuated by services of a autonomic service-
based distributed computing system, in particular clouds.

References

1. Amazon. 2007, Amazon Elastic Compute Cloud. http://www.amazon.com/gp/browse.html?
node=201590011.

2. Amazon. 2007, Simple Storage Service. http://www.amazon.com/gp/browse.html?node=
16427261.

3. Anthill (University of Bologna, Italy), http://www.cs.unibo.it/projects/anthill, (accessed 6 May
2003).

4. D. Box, et al. 2004, Web Services Addressing (WS-Addressing). Updated 10 August 2004.
Retrieved 12 September 2007, http://www.w3.org/Submission/ws-addressing/.

5. J. Barrera, 1993, http://www.barrera.org/selftune/selftune.htm, (accessed 6 May 2003).
6. Bio-inspired Approaches to Autonomous Configuration of Distributed Systems (University

College London), http://www.btexact.com, (accessed 6 May 2003).
7. T. Bray, et al., 2006, Extensible Markup Language (XML) 1.0, 29 September 2006.

http://www.w3.org/TR/2006/REC-xml-20060816/.
8. M. Brock and A.M. Goscinski, 2007, ‘State Aware WSDL: The Resources Via Web Instances

Framework’, Technical Report, C07/10, Deakin University, 23 August 2007. http://www.
deakin.edu.au/scitech/sit/dsapp/index.php.

9. M. Brock and A. Goscinski. 2008. State Aware WSDL. p. 35-44. Sixth Australasian Sym-
posium on Grid Computing and e-Research (AusGrid 2008). Wollongong, Australia ACM.
Research and Practice in Information Technology (CRPIT), vol. 82.

10. M. Brock and A. Goscinski, 2007, ‘Adding Support for Dynamic State Changes in State Aware
WSDL’, Technical Report, C07/13, Deakin University, 2 October 2007. http://www.deakin.
edu.au/scitech/sit/dsapp/index.php.

11. M. Brock and A. Goscinski. 2008. Publishing Dynamic State Changes of Resources Through
State Aware WSDL. International Conference on Web Services 2008 (ICWS2008). Beijing,
September 2008.

12. D. Bryan, et al. 2002, Universal Discovery, Description, Integration. Updated 19 July 2002.
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm.

13. D. M. Chess, et al. 2004. Unity: experiences with a prototype autonomic computing system.
p. 140-147. International Conference on. Autonomic Computing, 2004.

14. E. Christensen, et al. 2001, Web Services Description Language (WSDL) Version 1.1. Updated
15 March 2001. http://www.w3.org/TR/wsdl.

15. K. Czajkowski, et al. 2004, From Open Grid Services Infrastructure to WS-Resource Frame-
work: Refactoring & Evolution. http://www.globus.org/wsrf

16. K. Czajkowski, et al., 2004, The WS-Resource Framework, 5 March 2004. http://www.globus.
org/wsrf/specs/ws-wsrf.pdf.

17. I. Foster. 2005. Globus Toolkit Version 4: Software for Service-Oriented Systems. p. 2-13. FIP
International Conference on Network and Parallel Computing. Springer-Verlag LNCS 3779.

130 M. Brock and A. Goscinski

18. Globus. 2006, Information Services (MDS): Key Concepts. Retrieved 1 October, 2007, http:
//www.globus.org/toolkit/docs/4.0/info/key-index.html.

19. A. Goscinski, 1991, Distributed Operating Systems. The Logical Design, Addison Wesley.
20. A. Goscinski, 2000. ‘Towards an Operating System Managing Parallelism of Computing on

Clusters of Workstations’, Future Generation Computer Systems, 293-314.
21. A. Goscinski, et al. 2002. GENESIS: An Efficient, Transparent and Easy to Use Cluster Oper-

ating System. Parallel Computing, Vol. 28 (2002), No. 4, April, 557-606.
22. A. Goscinski, M. Hobbs and J. Silcock, 2004. Cluster Operating System Support for Parallel

Autonomic Computing, Proceedings of the First International Workshop on Operating Sys-
tems, Programming Environments and Management Tools for High-Performance Computing
on Clusters (COSET-1), Held in conjunction with 2004 ACM International Conference on
Supercomputing (ICS’04), Saint-Malo, France, June 26

23. S. Graham, et al., 2006, WS-BaseNotification, OASIS Specification, 1 October 2006. http:
//www.oasis-open.org/committees/tc home.php?wg abbrev=wsn.

24. IBM. 2006, An Archtiectural Blueprint for Autonomic Computing. http://www-306.ibm.com/
autonomic/pdfs/ACwpFinal.pdf.

25. Immunocomputing (International Solvay Institutes for Physics and Chemistry, Belgium), http:
//solvayins.ulb.ac.be/fixed/ProjImmune.html, (accessed 6 May 2003)

26. P. Horn, 2001, Autonomic computing: IBM’s Perspective on the State of Information Technol-
ogy, Technical Paper, IBM, October 2001. http://www.ibm.com/developerworks/autonomic/
library/ac-summary/ac-manifest.html.

27. C. M. MacKenzie, et al. 2006, Reference Model for Service Oriented Architecture 1.0.
Retrieved November 2006, http://www.oasis-open.org/committees/tc home.php?wg abbrev=
soa-rm.

28. R. March, 2004, Autonomic Computing. On Demand Series, IBM Press. 013144025X.
29. M. Messig and A. Goscinski. 2008. Service Migration in Autonomic Service Oriented Grids.

AusGrid 2008. Wollongong, Australia. Proceedings of the 6th Australian Symposium on Grid
Computing and e-Research (AusGrid 2008).

30. M. Messig and A. Goscinski, 2007, Autonomic system management in mobile grid environ-
ments, in Proceedings of the fifth Australasian symposium on ACSW frontiers - Volume 68.
Australian Computer Society, Inc.: Ballarat, Australia.

31. N. Mitra and Y. Lafon, 2007, SOAP Version 1.2 Primer, 27 April 2007. http://www.w3.org/
TR/2007/REC-soap12-part0-20070427/.

32. Multiagent Systems (Freiburg University), http://www.iig.uni-freiburg.de/∼eymann/
publications/index.html, (accessed 6 May 2003).

33. Neuromation (Edinburgh University), http://www.neuromation.com/, (accessed 6 May 2003).
34. Nimrod-G (Monash University), http://www.gridbus.org, (accessed 28 July 2008).
35. OASIS. 2006, Web Services Resource 1.2 (WS-Resource). Updated 1 April 2006. Retrieved

12 September 2007, http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf.
36. OceanStore (Berkeley University of California), http://oceanstore.cs.berkeley.edu, (accessed

28 July 2008)
37. Recovery-Oriented Computing (Berkeley/Stanford), http://roc.cs.berkeley.edu, (accessed 28

July 2008).
38. M. Salehie and L. Tahvildari, 2005, ’Autonomic computing: emerging trends and open prob-

lems’. SIGSOFT Softw. Eng. Notes, Volume 30, Issue 4, pp. 40–47.
39. B. Sinclair, et al., 2005, Enhancing UDDI for Grid Service Discovery by Using Dynamic

Parameters, ICCSA 2005. Springer Berlin: Heidelberg. pp. 49–59. http://www.springerlink.
com/content/mqxvph021tcuxv3m.

40. R. Sterritt. 2002. Towards autonomic computing: effective event management. p. 40-47. Soft-
ware Engineering Workshop, 2002. Proceedings. 27th Annual NASA Goddard/IEEE.

41. A. S. Tanenbaum and M. v. Steen, 2002, Distributed Systems: Prentice Hall. 0-13-088893-1.
42. S. Tuecke, et al., 2003, ‘Open Grid Services Infrastructure (OGSI) Version 1.0’, Draft Recom-

mendation, June 27, 2003.
43. W. Vambenepe, et al., 2006, WS-Topics, 1 October 2006. http://www.oasis-open.org/

committees/tc home.php?wg abbrev=wsn.

Bio-inspired Cognitive Radio for Dynamic
Spectrum Access

Giacomo Oliveri, Marina Ottonello, and Carlo S. Regazzoni

Abstract Dynamic spectrum access (DSA) has raised the attention of industrial
and academic researchers due to the fact that it is seen as a technology able to
overcome the lack of available spectrum for new communication services. In par-
ticular, autonomic DSA (ADSA) systems are indicated as a solution to spectrum
scarcity caused by the current “command and control” allocation paradigm. How-
ever, ADSA requires a higher level of reconfigurability with respect to traditional
wireless systems. In this context, one of the technologies that can provide such
flexibility is the promising cognitive radio (CR). In an ADSA scenario, CR should
sense the spectrum to find the resources unused by primary (licensed) users, which
could then be exploited by secondary (unlicensed) CR users to increase the overall
system efficiency. In this chapter, a comprehensive overview of CR applications to
ADSA is carried out; in particular, attention is paid to the potentialities of autonomic
bio-inspired approaches, and on their advantages in the solution of the challenges of
ADSA systems.

1 Introduction

In the past few years computing systems have evolved to be fully developed and
efficient. Of course, there is always a trade-off between efficiency and complexity:
in many cases, modern systems have become complex to install, configure, and
manage even for skilled users.

Autonomic computing has been proposed to overcome such problems, and
at present, it represents one of the most promising topics in computer science.
Autonomic computing technologies are designed with the objective of carrying out
self-configuration and self-management. Such features appear absolutely necessary
for many kind of different and heterogeneous systems, as an example for an auto-
nomic management of communication networks or for software engineering.

G. Oliveri (B)
Department of Biophysical and Electronic Engineering, University of Genova, Via Opera Pia 11a,
16145 Genova, Italy
e-mail: giacomo.oliveri@dibe.unige.it

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 6, C© Springer Science+Business Media, LLC 2009

131

132 G. Oliveri et al.

Among the possible various applications, autonomic computing can be useful
for dynamic spectrum access (DSA). DSA is a promising technology which tries to
obtain a more flexible and efficient access to the (shared) spectrum. In this chapter,
an autonomic approach to DSA (ADSA) is introduced and the main advantages
of such a technique are presented. In particular, the capabilities of self-awareness
and self-adaptation, which are highly recommended in a changeable environment as
DSA scenario, are considered.

Many problems arise in order to guarantee such a flexibility in ADSA terminal
and to solve the challenges introduced by autonomic computing: cognitive radio
(CR) technology can be a reasonable answer to realize an adaptive and unsuper-
vised access to the shared spectrum. According to autonomic systems, which can
be considered inspired by their biological equivalent, in the chapter bio-inspired CR
solutions to DSA will be proposed.

The goal of this chapter is to present an overview of complex and wide topics
such as DSA and CR from an autonomic computing point of view. In particular, an
autonomic approach to DSA will be considered while CR approaches are presented
in order to provide a flexible and adaptive solution to the main issues which arise in
ADSA. The focus lays on bio-inspired solutions, which are among the most inter-
esting approaches to CR and represent principles of inspiration for autononomic
computing systems.

In order to show the effectiveness of the proposed solution to an autonomic DSA
scenario, a bio-inspired cognitive radio approach based on reinforcement learn-
ing (RL) algorithms is chosen. RL, a broadly applicable technique in autonomic
computing, guarantee to ADSA terminals the capability to learn online also in an
unknown scenario without the help of models created by human users. This kind of
solution gathers many features demanded by autonomic computing: the proposed
system carries out a self-configuration and a self-optimization of its parameters,
depending on the conditions of the environment.

In order to verify the performances of the proposed approach in a practical sce-
nario, a bio-inspired cognitive engine is designed and simulated for a vehicular
application. In particular, a cognitive base station is implemented by following a
RL approach. Simulation result are provided in order to verify the effectiveness of
the proposed method, and the capability of the designed system to provide reliable
performances in the management of the degrees of freedom of the multiple antenna
is shown.

2 Dynamic Spectrum Access

DSA is an emerging technology in the world of wireless communications, and a
lot of attention is at present focused on the possibility of exploiting such approach
in order to increase the utilization of the radio resource [59]. Such an interest has
been driven by the recently published measurements and reports by the Federal
Communication Commission (FCC) which show that a great part of the wireless
resources, although licensed, are often underutilized [53, 54].

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 133

DSA technology is based on the concept that a more flexible wireless access
policy can allow a more efficient management of the radio resources: in practice,
the objective of DSA is the improvement of the utilization of the spectrum.

In the present section, a description of the basic principles of DSA approach is
carried out, along with an overview of the most important problems and challenges
in this emerging technology. Then, a distinction among autonomic and nonauto-
nomic approaches in DSA is highlighted.

2.1 Description, Problems, and Challenges in DSA

From a general point of view, DSA can be defined as “a new paradigm of spectrum
management, a shift from static allocation to dynamic access” [60]. In practice,
the aim of DSA techniques is to overcome the traditional “command and control”
approach to the allocation of the radio resources, by allowing a more flexible access
to the wireless spectrum [60].

Different strategies can be applied in order to make the traditional spectrum allo-
cation more agile. Such strategies can be grouped in three main categories depend-
ing on the considered DSA model: Spectrum Property Rights Model, Open Sharing
Model, and Hierarchical Model [59].

In the Spectrum Property Rights Model [36, 59], the free or underutilized
resources can be dynamically bought and sold by the license holder, depending on
their users’ requests. Even though the Spectrum Property Rights Model introduces
flexibility in spectrum management, white spaces resulting from the bursty nature
of wireless traffic are difficult to be eliminated through this technique [59].

An alternative is represented by the Open Sharing Model (also named Spec-
trum Commons Model [36, 59]). In practice, in Open Sharing Models a “lightly
controlled” shared access is performed [36]. This model includes, for example,
the approach used in the industrial, scientific, and medical (ISM) band [59]. The
risk of using this strategy is mainly related to the possible overuse of common
resources [36].

Hierarchical Access Model represents the most advanced approach to DSA
among those considered here [59]. In this approach, the concept of primary and
secondary terminals is introduced [9]. Primary terminals are the licensed users of
the considered radio resource (e.g. frequency channel, time slot, code); secondary
terminals, on the contrary, are represented by users that are only allowed to access
the considered resource if no primary terminal is going to exploit it [9, 59]. Among
the models considered here, the Hierarchical Access Model is perhaps the one with
the highest compatibility with the current spectrum management policies and legacy
wireless systems [59].

In practice, DSA approaches based on the Hierarchical Model can be considered
as wireless systems which have to perform the following operations:

• define when a resource can be considered free or underutilized;
• find the underutilized resources;
• exploit, as “better” as possible, the identified resources.

134 G. Oliveri et al.

In general, such tasks are not trivial: a more detailed description of the possible
approaches to design a Hierarchical DSA is provided in the following sections.

2.2 Nonautonomic and Autonomic DSA

Many techniques have been proposed in the literature to perform the tasks of a
Hierarchical DSA. Among the available subdivisions, it is possible to distinguish
between the autonomic and the nonautonomic approaches.

Autonomic Computing is defined as the set of “information processing and net-
working technologies that are capable of self-awareness for the purposes of self-
optimization, self-healing and self-protection” [16]. This capability of increasing
“autonomy and performance by enabling systems to adapt to changing circum-
stances” [56], which is a basic concept of Autonomic Computing, can assure to
DSA self-management and self-adaptation features which cannot be warranted by
nonautonomic strategies [16]. In an autonomic context, a DSA radio system will be
able to adjust itself to allow high flexibility to dynamic and unexpected situations;
that is not feasible in a nonautonomic context, where the user has to manually con-
figure the parameters of the DSA terminal to guarantee the best configuration [31].
As the focus of this chapter is on Hierarchical DSA strategies, the advantages of
autonomic and nonautonomic approaches in these models can be considered: in
particular, Spectrum Underlay [59], Spectrum Overlay [59], and Spectrum Inter-
weave [55] strategies will be discussed.

Basically, the Spectrum Underlay technique [58, 59] consists in limiting the inter-
ferences perceived by the primary users by employing a “mask” which bounds the
power transmitted by secondary users and consequently the “interference tempera-
ture” [27] present on the channel. The Spectrum Overlay method instead increases
the efficiency of utilization of the primary channel by exploiting “interference reduc-
tion and cancellation” strategies [13, 25]. Finally, the Spectrum Interweave approach
introduces the concept of “opportunity” [55]: a transmission between two secondary
users can be performed if a free resource is discovered (e.g spectrum holes [27] or
white spaces [24]).

In the Spectrum Interweave model, the concept of opportunity is actually related
to the access technology of the primary users. As a consequence, different types of
opportunity can be defined: a list of the simplest types of opportunity is reported
in Table 1. Generally speaking, the detection and the exploitation of opportunity
in the Interweave approach is not a trivial task. Three main subtasks can be iden-
tified in this context. Firstly, an opportunistic secondary terminal has to perform

Table 1 Examples of simple types of opportunity as a function of the primary access technology

Primary access technology Type of opportunity Examples

FDMA Frequency opportunity (spectrum hole) [9, 27]
TDMA Time opportunity (white space) [24]
CDMA Code opportunity –
SDMA Space opportunity –
FDMA/TDMA, CDMA/FDMA Mixed opportunity –

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 135

an opportunity prediction in order to identify the appearance and the length of
the opportunity; such prediction has to be confirmed in the subsequent opportu-
nity detection phase. Successively, in the opportunity exploitation, the secondary
terminal has to exploit the (possibly) discovered opportunities, trying to maximize
the throughput of the transmission that takes place in the free radio resource. It is
important to remark that, in real scenarios, more than two secondary users can try
to access the shared spectral resource, in a cooperative or in competitive way [2]: in
this case a fourth phase, that is opportunity sharing, could be necessary.

While the application of the autonomic approach to Overlay and Underlay com-
munication models does not provide significant advantages, since such applica-
tions do not necessarily require adaptive reconfiguration phases [55, 59], autonomic
approach is well suited to the Interweave techniques. In fact, all the operations per-
formed by an Interweave radio can be efficiently executed in an autonomic scenario:
the main advantage of such choice is, of course, that no direct human operation is
required in order to reconfigure secondary terminals for exploiting the opportunity.
Thus, only such kind of ADSA systems will be considered in the following.

2.3 Overcoming Flexibility Problems in ADSA: Cognitive Radio

Although Interweave ADSA represents a promising technology, several problems
should be overcome in order to allow the design of reliable applications based
on this concept. As an example, the level of flexibility demanded for an efficient
interweave ADSA could require processing techniques usually not considered in
wireless applications.

In order to clarify this point, the simple case of a primary transmission based
on a single TDMA channel can be considered. Let us assume that the duration
of the “transmission slot” for each primary terminal depends on the kind of data
which are transmitted, e.g., short slots for voice traffic, long slots for data traffic
(see Fig. 1). Moreover, let us assume that the prevailing traffic type changes period-
ically (e.g. voice traffic prevails in the evenings and in the weekends).

0

 0.2

 0.4

 0.6

 0.8

1

re
ce

iv
ed

 p
ow

er
 (

ar
bi

tr
ar

y
un

it)

time (arbitrary unit)
0

 0.2

 0.4

 0.6

 0.8

1

re
ce

iv
ed

 p
ow

er
 (

ar
bi

tr
ar

y
un

it)

time (arbitrary unit)

Fig. 1 Power received by the ADSA system in the TDMA example considered in the text. The
same arbitrary units are considered in both figures. As it can be seen, different traffic types can
lead to different expected duration of the opportunities. Left: data traffic. Right: voice traffic

136 G. Oliveri et al.

In this scenario, an efficient interweave ADSA should consider a lot of different
parameters before performing an opportunity prediction (i.e. establish the duration
of the white spaces), and its behavior should change in a flexible way in response to
environmental changes. In more realistic scenarios, moreover, it could be difficult
to a priori establish the parameters to be considered for an efficient reconfiguration
algorithm.

The above example shows that the exploitation of technologies able to overcome
such kind of flexibility issues could provide a great advantage in interweave ADSA
systems. Due to its properties, the CR technology and its application to interweave
ADSA will be considered in the following.

3 Cognitive Radio for Autonomic Dynamic Spectrum Access

In the past few years, cognitive systems [28] have attracted the attention of a large
number of researchers in the field of communication engineering due to their innova-
tive and appealing properties. Such an interest is confirmed by the number of confer-
ences [14, 15], special issues of international journals [12, 30, 38], books [6, 23, 45],
and international projects [2, 35] on this topic.

One of the most promising applications of the cognitive paradigm in communi-
cation engineering is represented by the so-called CR [43–46]. At present, CR is
already one of the most important emerging technologies in the field of wireless
communications [46], and it is seen as fundamental for next generation wireless
communications [27]. The great interest in CR paradigm has also recently led to
standardization projects [32–35], and such paradigm is already exploited even from
a commercial point of view [1, 52].

In this section, an introduction to the concept and to the historical background of
CR is provided. Afterward, the application of the CR paradigm to the case of ADSA
is discussed, and the advantages of such approach in this context are analyzed.

3.1 Introduction and Motivation

Cognitive systems in communication engineering are defined as flexible and dynam-
ical communication systems that are able to learn from the environment and to
provide adaptive and customized services to mobile users [27, 28].

In the previous years several researchers have shown the advantages of cog-
nitive approaches to communications, as an example in the context of flexible
communications [45], intelligent routing [6], adaptive radar [29], and smart video-
surveillance systems [21]. Such advantages are generally related to the adaptivity
and flexibility guaranteed by cognitive approaches with respect to more classical
approaches [27, 28]: as a consequence, cognitive approaches are particularly suc-
cessful when applied to systems which are required to provide reliable performances
even in unknown scenarios [27]. This is often the case when emergency-ready com-
munication systems are of interest, both in military and in civilian applications [27].

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 137

One of the most promising applications of the cognitive paradigm in communi-
cation engineering is represented by the so-called CR [43–46]. From an historical
point of view, CR was introduced in 1999 by Mitola and Maguire [46] as an exten-
sion of the previously defined software radio [44]. Software radio can be defined
as [48]

a radio that is substantially defined in software and whose physical layer behavior can be
significantly altered through changes to its software.

One of the fundamental issues which suggested the introduction of CR was
the automatic, adaptive, and optimized management of the degrees of freedom of
software radio platforms, which were starting to be available at low costs [41–44].

Although the flexibility guaranteed by software radio is obviously a benefit from
several viewpoints, it can result in an increased complexity of management for
the user. CR, therefore, was considered as a way to transform “radio nodes from
blind executors of predefined protocols to radio-domain-aware intelligent agents
that search out ways to deliver the services the user wants even if that user does not
know how to obtain them” [46].

More recently, the CR concept has been widely extended in order to include the
capability of the wireless terminals to learn from the environment the most suc-
cessful reconfiguration strategies on the basis of the perceived context. At present,
one of the most widely accepted definitions of CR is that given by Haykin in [27],
that is

Cognitive radio is an intelligent wireless communication system that is aware of its sur-
rounding environment (i.e., outside world), and uses the methodology of understanding-by-
building to learn from the environment and adapt its internal states to statistical variations in
the incoming RF stimuli by making corresponding changes in certain operating parameters
(e.g., transmit-power, carrier-frequency, and modulation strategy) in real-time, with two
primary objectives in mind:

• highly reliable communications whenever and wherever needed;
• efficient utilization of the radio spectrum.

As it is clear from the above definition, the most fundamental characteristics
of CR are flexibility and awareness. Such capabilities can be obtained in several
different ways, depending on the specific application or context: in this sense, CR
represents a converging theme for many different research topics such as signal
processing, game theory, and machine learning [27].

From a general viewpoint, the CR approach can be often described by the Cog-
nitive Cycle [27, 45]. Different cognitive cycles can be defined depending on the
considered application: the cognitive cycle which will be considered here is reported
in Fig. 2 [7].

The cognitive cycle represents the internal model of the CR behavior [7, 27]. In
practice, a CR can be thought as a system which continuously performs such cycle,
if necessary at different levels of the processing stack. The following four tasks
define the considered cognitive cycle:

138 G. Oliveri et al.

Fig. 2 The considered
cognitive cycle, which
includes the most
fundamental phases of a
cognitive radio: sensing,
analysis, decision, and action.
Such cycle is continuously
performed in the different
levels of the system

• sensing, which represents the phase in which the CR collects information from
the surrounding environment in the form of low-level data (i.e., the RF signals)
through the use of its “body” (i.e. the antenna);

• analysis, in which the CR processes the incoming information in order to extract
a higher level representation of the context state (i.e., the channel state informa-
tion);

• decision, in which the perceived information is used, together with the available
experience (collected during operation and/or provided by the system designer or
by the user) in order to establish a new configuration for the system (i.e., the new
transmitted power and/or carrier frequency);

• action, in which the system applies the decided configuration, interacting with its
body and with the surrounding environment.

As it is clear from the above description, the interaction of the “body” of the
CR with the surrounding environment plays a central role in the development of the
cognitive capabilities: this aspect is detailed in Sect. 4.

As a final observation, it is worth noting that the CR approach does not only apply
to the solution of known problems, but also it can provide a strategy to adaptively
identify the problem itself [49].

3.2 Examples of Cognitive Radio Approaches to ADSA

In order to describe in more detail the application of a possible CR approach in
ADSA, let us consider the practical scenario reported in Fig. 3.

In the proposed scenario, an ADSA application is considered in which a primary
wireless service coexists with several secondary terminals in a given band. Such
band is assumed to be accessed (by the primary terminals) through FDMA/TDMA:
an opportunity is therefore represented by a time–frequency slot. The objective of
the ADSA terminal is to detect, predict and, when possible, use the available oppor-
tunities without interfering with primary transmissions.

From the description in Sect. 3.1 it can be deduced that the cognitive cycle can
allow a straightforward implementation of an ADSA applications: in fact, each of
the four phases of the cognitive cycle can be mapped to the ADSA problem in Fig. 3
as follows.

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 139

Fig. 3 Practical scenario considered for the application of Cognitive Radio in an ADSA problem.
In the considered example, a primary wireless service and several ADSA terminals coexist in the
same band

In ADSA, the sensing is represented by the phase in which radio signals are per-
ceived by the RF front end. In practice, the result of a sensing phase is the sampled
RF signal in the frequencies of interest.

Analysis in ADSA systems can be considered as the phase in which raw RF data
are processed and a high-level description of the surrounding wireless context is
obtained. In particular, analysis is responsible for extracting information regarding
the instantaneous channel occupation on the basis of the perceived signals.

Decision, which is the most complex and important phase in ADSA, is responsi-
ble for exploiting the previously extracted information in order to deduce the pres-
ence/absence of a time–frequency opportunity. Once detection is performed, such
phase has also to decide whether and how (e.g., what power and modulation type
shall be used) to exploit the opportunity, and to predict its length. As the dura-
tion of an opportunity depends on the considered primary transmissions, experience
(e.g. statistics provided by the system designer, or by autonomously learned reason-
ing) is essential for obtaining reliable predictions.

Finally, action in ADSA is responsible for translating the outcome of the decision
phase into an actual operation. In the considered example, action will modify the
carrier frequency, the output power and the modulation type in order to exploit the
opportunity (when detected).

From a practical viewpoint, no limitation is enforced by the CR approach on
the various algorithms that could be exploited in the different phases. However,
the level of flexibility and adaptivity guaranteed by each part of the system will
affect the overall performances. For example, as far as analysis is of interest, several
algorithms have been proposed for the detection and classification of narrowband or
wideband signals (see, e.g., [20]). As regards decision, in Sect. 4 some bio-inspired
algorithms that can be exploited in such phase will be described.

140 G. Oliveri et al.

3.3 Benefits and Drawbacks of Cognitive Radio Approach to ADSA

The CR approach allows the realization of effective applications in an ADSA sce-
nario since it is based on the concepts of collection, analysis, memorization and
exploitation of the experience in an autonomic way.

The adaptation capability in a distributed and autonomic way is of fundamental
importance in ADSA. As an example, since the detection of the opportunities has
to be based only on the perceived activity of the primary transmitters and not on
a “command-and-control” strategy, the capability of CR to develop autonomic and
distributed knowledge is a key advantage over alternative approaches. In fact, such
knowledge can be used to overcome the limits of the sensing and analysis phases
(i.e. false or missed detections), and to predict some complex characteristics of the
primary transmission, such as the expected duration of the opportunity.

Among the advantages that CR approach could provide to ADSA applications, it
is possible to cite the following:

• CR approach can allow the development of more robust opportunity detection
algorithms, since it can overcome detection errors by using the acquired experi-
ence;

• the utilization of the cognitive cycle can help in the definition of macro-
functionalities which can be realized without requiring a detailed knowledge of
the other parts of the artificial system; in such cases, moreover, the exploitation
of the “cognitive cycle” approach can be applied to each subpart (or agent)
composing the cognitive system; such choice can improve the robustness of the
system to isolated failures of its subparts;

• in an emergency-ready ADSA scenario, the tools provided by CR can signifi-
cantly improve the capabilities of the terminals to efficiently use the available
spectrum during or after a network disaster; in such cases, in fact, the cognitive
system can perceive a significant change in the behavior of the environment by
observing the differences of the perceived situations with respect to the acquired
experience, and can therefore exploit innovative solutions (such as employing a
larger portion of the spectrum).

Although the above advantages are fundamental, it is important to remark that
a flexible and autonomic system can result in potentially dangerous behaviors in
wireless applications if a not fully coherent control is enforced on the terminal itself.
In fact, suppose that an ADSA CR system is allowed to access the wireless spec-
trum without any explicit policy or rule (e.g. authentication procedures). Moreover,
suppose that the cognitive terminals collect and use experience in an environment
which is heavily corrupted by noise. In this case, primary transmissions could be
easily (and unintentionally) affected by secondary ones, due to the presence of errors
in their acquired experience. This could be particularly dangerous in “protected”
bands such as military and satellite communication bands. In this sense, a trade-off
between flexibility of the application and control over the guaranteed quality of
service for primary users is required in ADSA CR [8].

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 141

Among the difficulties that might be overcome when applying a CR approach to
ADSA, it is possible to cite that

• flexibility can result in a low level of control over the cognitive system: in prac-
tical applications, ad hoc policies and protocols should be adopted to limit the
degrees of freedom of ADSA systems;

• Cognitive systems require, in general, a training phase, which may have to be
performed (off-line or online, depending on the considered application) before
the system is able to perform reliably;

• the exploitation of collected experience could render any terminal virtually
unique; as a consequence, identical ADSA terminals could provide different per-
formances: this could be perceived as a low level of reliability, in particular from
the point of view of secondary users.

Such disavantages can be mitigated or overcome by using suitable techniques
such as exploiting “distributed decision” algorithms (i.e., algorithms that overcome
the limitations of each terminal experience by using cooperation, for example) or
enforcing a certain level of control (e.g., based on external policies or on the utiliza-
tion of reliable experience) on ADSA terminals.

4 Bio-inspired Cognitive Radio Approaches to ADSA

As stated above, CR represents a general framework in which different approaches
have been proposed. In this context, “bio-inspired” techniques are among the most
interesting and flexible approaches to CR [7, 50], and they have already led to
successful applications based, for example, on reinforcement learning techniques,
genetic algorithms, or neural networks [4, 7, 37].

In this section the motivations behind the introduction of such strategies are clar-
ified, and a brief description of the most interesting approaches is provided. The
advantages of the application of such strategies to an ADSA context are shown.
Finally, an overview of bio inspired approaches for the solution of problems related
to interwave communications is reported.

4.1 Main Features of Bio-inspired Approaches

Generally speaking, the aim of bio-inspired approaches is “to draw inspiration from
biology to introduce novel design guidelines for systems able to show an autonomic
behavior” [39]. For these reasons, biologically inspired approaches have recently
attracted considerable attention, in particular for applications where the capabili-
ties to adapt and evolve are required, such as robotics [47], cognitive wireless net-
works [50], and autonomic computing [16].

142 G. Oliveri et al.

Many heterogeneous approaches to the engineering of artificial cognitive sys-
tems inspired by biology have developed in the previous years [11]. Among the
most successful ones, it is possible to cite artificial neural networks (ANNs), which
can be considered as computational models inspired by the nervous system [11],
evolutionary algorithms that are motivated by evolutionary biology [18], and swarm
intelligence, which is based on the collective behavior of the social organism [18].
In the following, some particular bio-inspired techniques, i.e., genetic algorithms
and reinforcement learning, are considered due to their importance in the field of
ADSA systems.

Genetic algorithms, included in evolutionary algorithms [11], are a family of
computational models based on the process of natural selection [26, 39]. In such
algorithms, the basic concept is the utilization of a population of individual entities,
which generate new populations through genetic operators such as random muta-
tion, crossover, and selection of the best individuals [26, 40]. The “quality” of each
individual is evaluated by using a functional depending on the considered prob-
lem [26, 40]. By using this concept, genetic algorithms can easily find the optimal
solution to complex nonlinear problems, avoiding local minima through suitable
genetic operators [26, 40]: for example, recent applications of genetic algorithms in
wireless systems include optimized organization of wireless sensor networks [19]
and ADSA applications [7, 37, 51]. Although such algorithms are often used as
function optimizers, they are well suited also to learning tasks [26, 40].

Reinforcement learning (RL) is a machine learning technique which is focused
on “learning by interacting” with the environment [40, 57] (see Fig. 4). Such
approach tries to imitate the nature of human learning by exploiting the concept
of reward [57]. In practice, the basic idea is to perform a “trial-and-error” strategy
in order to build a sufficient knowledge of the surrounding environment [57]. The
target of the “agent” is to build a policy which, given the present state, chooses the
action which will probably yield the highest reward (usually in the long run) [57].
Unlike most of analogous machine learning approaches, which are supervised
(i.e. learn by examples provided by an external supervisor), “reinforcement learn-
ing is learning what to do—how to map situation to actions—so as to maximize a
numerical reward signal” [57]. Moreover, under appropriate hypothesis, RL algo-
rithms can guarantee the convergence to the best policy [57].

Three main techniques have been proposed in the literature for the design of
effective RL agents: dynamic programming, Monte Carlo methods, and temporal-
difference (TD) learning [57]. The TD method includes several different strategies;
due to its importance in the following sections, Q-learning method [57] is considered
in particular here.

Fig. 4 The
agent–environment
interaction in reinforcement
learning. Such interaction is
the basis of the development
of intelligence

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 143

In order to briefly describe Q-learning, let us provide some notation [57]. Let
si ∈ X be the environment state in the instant ti. Let ai ∈ A be the action taken by
the agent in ti, and let ri ∈ R and si+1 be the resulting reward and next environment
state. Let R be the “return” that have to be maximized by the agent (e.g. Ri =∑∞

k=0 γkrk+i+1). The agent’s policy is denoted as πi, where πi(s, a) is the probability
that ai = a if si = s. The “action-value function” of the policy π , denoted as
Qπ (s, a), is the expected return starting from s, taking the action a and thereafter
following π:

Qπ (s, a) = Eπ {Ri|si = s, ai = a}

Generally speaking, Qπ is not known, and therefore it has to be estimated in order
to perform a suitable decision. Among the different techniques that can be used to
estimate the Q function, the one-step Q-learning algorithm exploits the following
estimation rule [57]:

Qn+1(si, ai) = Qn(si, ai) + α
[
ri+1 + γ max

a
Qn(si+1, a) − Qn(si, ai)

]
(1)

During operation, the estimation of Q is updated on the basis of the explored state
space, which depends on the exploited policy: a good choice [57] can be the so-
called ε-greedy policy πε, that can be expressed as follows:

πε (si, ai) =
{

1 − ε if ai = arg maxa

[
Qπ (si, a)

]
ε else

(2)

A practical implementation of a Q-learning algorithm can be therefore based
on (1) and (2): in practice, the ε-greedy policy πε in (2), which improves as the
estimation of Q improves, is used to perform the decision by the RL agent. As it
can be seen, Q-learning does not require a model of the surrounding environment
(Q function is estimated autonomously by the agent), and it can be implemented
online, through incremental computation techniques [57]; such characteristics are
of particular interest in ADSA applications, as it will be cleared later.

The recent introduction of the concept of embodied cognition [3, 17] has allowed
the development of new bio-inspired approaches which are of particular interest for
ADSA systems. Embodied cognition is based on the concept, drawn by biological
learning entities, that “perception and representation always occur in the context
of, and are therefore structured by, the embodied agent in the course of its ongoing
purposeful engagement with the world” [3]. On the basis of this approach, some
extensions to classical Q-learning algorithms have been proposed in the context of
ADSA CR systems [7]. In particular, such extensions are based on the subdivision
of the overall state s in two subparts, which can be considered as “internal” and

144 G. Oliveri et al.

“external” states [7]. Such subdivision allows the definition of multiple Q functions
that can be exploited in different situations, therefore improving the speed of con-
vergence of the learning method [7].

The application of the above described techniques to complete ADSA CR prob-
lems is discussed in Sect. 5, while the utilization of bio-inspired techniques in oppor-
tunity detection, exploitation, and sharing is considered in the following.

4.2 Opportunity Detection, Exploitation, and Sharing

It has been shown above that the main subproblems in the interweave approach are
the opportunity detection/prediction, exploitation, and sharing among users. Differ-
ent algorithms have been proposed in order to solve such problems: due to their
flexibility, it is of interest to consider here few examples of bio-inspired strategies
applied to each of these problems.

Let us consider a frequency opportunity detection problem. In this context, one
of the most critical tasks is to classify the modulation technique of the incoming sig-
nal(s) [27]. To this end, bio-inspired classification algorithms have been proposed
for example in [22] to obtain a more efficient and reliable strategy. In particular,
ANNs together with cyclic spectral analysis are considered [22]. The ANNs con-
stitute a highly flexible bio-inspired method that allows to “circumvent issues with
classification where the signal’s carrier and bandwidths are unknown” [22]. An effi-
cient bio-inspired approach to detection is also shown in [49]: in this case the system
is modeled on the “cognitive cycle” already discussed.

Regarding opportunity exploitation, it is known that such problem is somehow
similar to that usually solved by Adaptive Modulation and Coding techniques [10].
However, it is worth remarking that “estimation of the communication performance
achievable with respect to environmental factors and configuration parameters plays
a key role in the optimization process performed by a Cognitive Radio” [4]. For
this reason, a higher level of flexibility may be required with respect to the tech-
niques usually considered in Adaptive Modulation and Coding [4]: as an example,
a Multilayered Feedforward Neural Networks (MFNN) has been proposed in [4] to
synthesize performance evaluation functions in CRs; furthermore, in [10] a reason-
ing and a learning engines are employed to maximize the capacity of additive white
Gaussian noise (AWGN) and non-AWGN channels.

Finally, as far as opportunity sharing is of interest, a fair spectrum access can
be achieved by exploiting cooperative or uncooperative strategies. In particular,
“cooperative solutions consider the effect of the node’s communication on other
nodes” [2]: this can be obtained by using distributed or centralized bio-inspired
approaches [5, 49]. As an example, in [5] a self-synchronization mechanism based
on biological systems is used for implementing a global optimal distributed decision
system, while in [50] a distributed approach based on swarm intelligence is proposed
for the harmonious exploitation of finite spectral resources.

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 145

5 Present Applications and Possible Future Scenarios

In the previous sections, the possibilities offered by CR in ADSA have been clarified
from several point of views. In particular, the capability to acquire experience from
the interaction with the environment has been remarked as fundamental in ADSA
applications in order to overcome, for example, the failures of the primary network,
of other ADSA terminals, or of subparts of the cognitive cycle.

However, as partially anticipated, some open issues have to be faced in order to
allow the definition of feasible and reliable CR systems in ADSA scenarios. In this
section, some of these issues (both from a technical and a commercial point of view)
are addressed, and a proposed original solution is discussed in detail.

5.1 Research in Bio-inspired Cognitive Radio for ADSA

As far as CR ADSA systems are considered, bio-inspiration represents one of the
most interesting approaches, and its advantages have already been remarked above.
However, as already stated, different levels of cognition and intelligence may be
chosen depending on the considered application. Due to the high number of contri-
butions on this topic in the literature, only some of the most advanced approaches to
bio-inspired management of ADSA terminals will be considered here. For a more
complete overview of the research in the field, see [12, 38].

As a first example of the current trends in the research community, the capabil-
ities of bio-inspired approaches to manage emergency situations in real time have
recently received much attention due to the fact that this represent one of the most
interesting application of the cognitive paradigm [37, 51]. Such researches, which
partially exploit some of the approaches presented in [27], have been carried out
by applying advanced machine learning techniques to the CR problem [37, 51]. In
particular, the target of these works is to design and test an overall cognitive system
able to [37, 51]

• learn from the interaction with the environment;
• develop and organize experience;
• try “new” solutions when facing unexpected problems.

In order to meet these goals, complex architectures based on extended cognitive
cycles and particular bio-inspired techniques have been developed.

As an example, in [37] a system is developed in order to “provide the universal
interoperability for public safety communications”: to this end, case-based reason-
ing based on reinforcement learning is used in order to acquire and exploit experi-
ence, while genetic optimizers are chosen for the implementation of creativity in the
decision phase [37].

Other approaches that exploit the concept of bio-inspired CR have been recently
developed in the field of multiple-antenna ADSA systems. In particular, the focus

146 G. Oliveri et al.

of these researches is on the capability of CR-based ADSA to exploit the additional
degrees of freedom of multi-antenna systems (with respect to single-antenna sys-
tems) through machine learning approaches [7]. In this case, the target is to exploit
experience to build a self-trained spatially aware ADSA system, which is capable to
steer the available antenna array toward the directions of interest on the basis of the
perceived signals [7]. In this way, opportunistic communications can be established
between the ADSA system and the surrounding wireless terminals without causing
interference to other systems in the domain of interest by exploiting spatial diversity.

The technique chosen in [7] to allow the system to learn from experience is
Q-learning, in particular based on the concept of embodied cognition. Moreover,
genetic optimizers are used for generating creative solutions if “unexpected” (i.e. not
available in the experience database) situations are encountered. A detailed exam-
ple of a system exploiting the concept of self-trained multi-antenna ADSA will be
provided in Sect. 5.2.

A resume of the main bio-inspired techniques exploited in some recent contri-
butions regarding ADSA systems based on CRs is reported in Table 2. As it can
be seen, the exploitation of bio-inspired techniques is of fundamental importance in
these cases to allow the definition of effective autonomic DSA systems.

5.2 Application: Bio-inspired Cognitive Radio Approach for an
Autonomic DSA Exploiting Spatial Opportunities

In this section, a bio-inspired ADSA system is proposed and the design and training
phases of an ADSA system exploiting multiple antennas is described.

To this end, some assumptions regarding the considered application are required.
In particular, an interweave ADSA scenario is considered in which several mobile
primary terminals exploit narrowband transmissions (see Fig. 5).

The ADSA terminal is expected to track the position of the mobile primary users
in its vicinity and to try to establish a communication with them without causing
interferences. In order to allow the ADSA terminal to exploit spatial diversity, the
system is provided with an electronic steerable antenna array. In the considered
example, therefore, an opportunity is defined as an established connection with a
terminal (i.e. it is represented by a carrier frequency and a direction of communica-
tion, for a certain period).

Table 2 Examples of bio-inspired techniques exploited in recent contributions regarding ADSA
systems based on cognitive radios

Reference Applied bio-inspired techniques

[7] Simple cognitive cycle, embodied-cognition-based reinforcement learning,
genetic optimization

[37] Extended cognitive cycle, reinforcement learning, genetic optimization
[51] Extended cognitive cycle, genetic optimization

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 147

Fig. 5 Considered scenario for the designed ADSA system provided with multiple antennas. Sev-
eral mobile primary terminals are considered. The main lobe of the hypothetical communications
established with the primary terminals are reported (gray tones denote carrier frequencies)

In order to solve the above ADSA problem, a design is proposed on the basis
of bio-inspired CR approach. In particular, the following (discrete time) cognitive
cycle is proposed for the considered system.

– Sensing: the data are collected by the antenna array whose steering direction span
a certain number of directions of interest in a given time; in particular, for each
“direction of interest” a portion of the signal is captured and transformed through
FFT; then, the resulting spectral information is fused to create a “raster scan”
of the spectrum in the directions around the ADSA system. In Fig. 6 (left) an
example of the “sensing map” obtained by the ADSA terminal is shown. It is
easy to note the presence of four energy peak values (in this particular case),
corresponding to four mobile terminals in the domain of interest.

–60
–40

–20
0

 20
 40

 60
 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8angle [deg]

frequency [GHz]
–70

–60

–50

–40

–30

–20

–10

0

 10

 20

–80 –60 –40 –20 0 20 40 60 80

A
rr

ay
 fa

ct
or

 [d
B

]

angle [deg]

actual users

Fig. 6 Example of sensing maps (left) and outcome of the associated action (right). In this partic-
ular sensing map, four users at different frequencies and at different directions can be detected (by
the analysis phase). This information is used in the action phase, in order to correctly reconfigure
the beamformer to minimize the mutual interference

148 G. Oliveri et al.

– Analysis: the data collected by sensing are processed in order to extract, for each
direction of interest, the number of detected terminals and the related carrier
frequencies. Since narrowband signals are considered, post-FFT energy detector
are used on the sensing maps in order to detect the presence/absence of a terminal.
The set of detected terminals and associated frequencies is passed to the decision.

– Decision: by exploiting the concept of embodied cognition, the system state
is divided into internal (configuration for the attempted communications,
i.e. antenna array configuration, used power, carrier frequency for each com-
munication) and external state (detected position/frequency of the terminals,
data for the established connections). Effective configuration strategies are
learned through operation by exploiting a Q-learning approach [57], in which
the reward is a function of the number of established connections and of the
transmission power used to establish such connections. In particular, an ε-greedy
reinforcement learning [57] is chosen, where ε decreases as the amount of
acquired knowledge increases. A more detailed description of the parameters
used in the Q-learning approach for the considered application are shown in
Table 3. The outcome of the decision is represented by the set of attempted
communications for the following phase.

– Action: the configuration for the communications is applied to the subparts of the
ADSA system (antenna array, RF stages, etc.) and the outcome of such operation
is collected and then passed to the next sensing phase. In Fig. 6 (right) the con-
figuration of the beamformer is shown. In particular, it is worth remarking the
presence of the peaks of the radiation pattern corresponding to the four mobile
terminals detected in the analysis phase.

The above described phases represent the logical basis for the development of
the proposed ADSA management software.

Numerical simulations of the proposed system have been carried out in order to
verify the effectiveness of such approach. To this end, a complete C++ simulator has
been developed, which includes the management software for the ADSA system
and the emulation of the surrounding environment and primary terminals. In the
numerical simulations, pedestrian mobility for the primary terminals is supposed,
and they are assumed to transmit in the band 1.8–2.8 GHz. The antenna of the ADSA
system is a linear equispaced array of 21 dipoles, and the simulated channels include
free space losses and additive white Gaussian noise.

In the following, simulation results are reported for the case that at most two pri-
mary terminals lie in the domain of interest of the ADSA system in each moment. In
the considered example, the system is designed with the objective to try to establish

Table 3 Example of the Q-learning approach for the considered system

Q-learning element Corresponding in simulator

si Number of detected users, directions associated to the users, SNR of each
established link, transmission modality

ai Beamformer configuration. power for each link
ri SNR (to maximize), trasmitted power (to minimize)

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 149

the maximum number of connections without considering the amount of power
required to perform this task: no additional knowledge is provided to the system.
As a consequence, the system is expected to minimize the steering error towards the
mobile primary terminals. The results of a training phase of about 450 s are reported
in Figs. 7 and 8.

In particular, the absolute steering error e (t) is calculated by using the following
equation:

e (t) = |θe (t) − θc (t) | (3)

in which θe denotes the steering direction estimated by the ADSA system while
θc denotes the correct steering direction (the actual position of the mobile primary

Fig. 7 Example of the tracking performances of the proposed multi-antenna ADSA. In these sim-
ulations, at most two terminals lie in the domain of interest in each moment, and each terminal
follows a straight trajectory at constant speed. The angular position of each terminal is represented
by the lines, while the directions of the attempted communications are represented by the dots

Fig. 8 Evolution of the absolute steering error of the designed multi-antenna ADSA during the
training phase. In the considered example, at most two terminals lie in the domain of interest in
each moment. The absolute steering error is averaged over T = 30 s

150 G. Oliveri et al.

terminal) both calculated at the time istant t. The absolute steering error average
shown in Fig. 8 is then obtained by averaging the absolute steering error (3) over a
sliding window of T seconds, i.e. emean = (1/T)

∫
T e (τ) dτ .

As it can be seen from the reported results, the proposed cognitive cycle allows
the solution of the considered problem in a flexible way, since the designed ADSA
system is able to learn the correct steering strategy in an autonomic way and without
requiring the definition of an a priori optimal strategy.

Moreover, from the reported results it is possible to deduce that bio-inspired tech-
niques are able to manage the available degrees of freedom and therefore to exploit
“spatial opportunities,” at least in the simple considered scenario. Of course, more
complex tests should be carried out in order to establish if such an approach can
lead to reliable performances in more realistic scenarios (e.g., considering wideband
modulations and multipath channels). However, the obtained results, together with
the previous considerations, already suggest that the considered approach can solve
such problems in an effective way.

5.3 Practical and Commercial Issues in Bio-Inspired Cognitive
Radio Approaches for ADSA

Despite the interesting properties of bio-inspired CRs for ADSA, open issues exist
from a technical and a licensing point of view that have to be addressed in order to
make such systems more easily usable in a commercial context.

Let us firstly consider a technical issue not discussed in Sect. 3.3. As far as auto-
nomic interweave communications are of interest, spectrum sensing can represent
a very difficult task. In fact, let us consider the case represented in Fig. 9. In this
example, any attempt to evaluate the occupation of the spectrum would fail, even in
the case of cooperating ADSA terminals. The considered problem could even appear

Fig. 9 Example of erroneous opportunity detection. Empty circles represent the transmission
ranges of ADSA terminals, while the gray circle represents the transmission range of the primary
transmitter. As it can be seen, primary (silent) receiver will be affected by unwanted secondary
interference, since both ADSA terminals will always detect an opportunity

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 151

in simpler situations, especially if strong multipath is present. Although the consid-
ered problem has no simple solution, its importance can be significantly reduced if
multi-antenna or distributed detection algorithms [49] are employed, since in this
case the probability that a primary transmitter is “invisible” to all ADSA receivers
decreases with the number of coordinated or cooperating receivers.

Another important issue in CR for ADSA is related to the intrinsically unpre-
dictable behavior of such systems [8]. Since, in general, “predictable behavior is
highly prized in radio systems” [8], ADSA systems based on CR may be required
to mitigate their unpredictability in order to be appreciated by users, designers, and
regulators [8]. A possible solution to this problem is related to the capability of
the ADSA system to guarantee a minimal quality of service and to perform better
whenever possible [8].

Furthermore, one of the most complex issues in ADSA based on Cognitive Radio
regards the spectrum licensing policy [9]. In fact, since ADSA falls in the category
of “noncooperative DSA” [9], several obstacles can limit the deployment of such
applications: in particular, such kind of DSA does not only require a change in
the regulatory policy, but could even introduce new business models in the wire-
less industry, making “incumbent business models based on spectrum scarcity less
viable” [9]. Although a sudden change in the regulatory and industrial processes is
not possible, the gradual introduction of ADSA systems in commercial application
is seen as a possible way to overcome such obstacles [9]. The recent and successful
efforts in the definition and standardization of DSA applications in the TV band [35]
represents a remarkable success in this context.

In conclusion, it is possible to note that challenges in the development of ADSA
systems based on bio-inspired CR approaches exist. However, the capability of
such approaches to overcome most of the problems related to lack of flexibility
in dynamic spectrum access, demonstrated in the present chapter, along with the
available promising works in this research field, will certainly represent the most
important advantages of such approaches in the definition of tomorrow’s wireless
applications.

6 Conclusions

In this chapter a comprehensive overview of CR applications to ADSA has been
carried out. After an introduction on DSA principles and challenges, the possible
application of Autonomic Computing techniques to DSA has been discussed. Given
the objective and constraints of ADSA, the role of the CR approach in the defini-
tion of flexible ADSA applications has been remarked. In particular, bio-inspired
CRs have been discussed in detail, and reinforcement learning has been intro-
duced as a possible technique to provide autonomic and flexible capabilities to DSA
applications.

The overview of ADSA technology has been exploited for the subsequent design
of an innovative ADSA application exploiting spatial opportunities. The scenario
for the considered application has been discussed, and the control algorithm for the

152 G. Oliveri et al.

CR engine which performs the wireless spectrum management has been described
in detail. The effectiveness of bio-inspired CR approaches in ADSA has been there-
fore shown in a practical example. The resulting ADSA system has been validated
through software simulations, and the adaptivity guaranteed by the reinforcement
learning technique has been tested in the problem of keeping a connection with
mobile traveling terminals in a wireless context.

Finally, some practical and commercial issues in bio-inspired CR approaches for
ADSA have been reported, and some possible techniques and ideas that could be
applied to overcome such problems have been discussed.

References

1. Adapt4 Inc (2008) XG1TM Cognitive Radio. http://www.adapt4.com/adapt4-products.php
2. Akyildiz IF, Lee WY, Vuran MC, Mohanty S (2006) NeXt generation/dynamic spectrum

access/cognitive radio wireless networks: a survey. Computer Networks 50:2127–2159
3. Anderson ML (2003) Embodied cognition: a field guide. Artificial Intelligence 149:91–130
4. Baldo N, Zorzi M (2008) Learning and adaptation in cognitive radios using neural networks.

In: 5th IEEE Consumer Communications and Networking Conference, pp 998–1003
5. Barbarossa S, Scutari G (2007) Bio-inspired sensor network design. IEEE Signal Processing

Magazine 44(3):26–35
6. Bhargava KV, Hossain E (2007) Cognitive Wireless Communication Networks. Springer,

Berlin
7. Bixio L, Oliveri G, Ottonello M, Raffetto M, Regazzoni CS (2007) A reinforcement learning

approach to cognitive radio. In: Software Defined Radio Technical Conference Proceedings,
Denver, USA

8. Chapin JM, Doyle L (2007) A path forwards for cognitive radio research. In: Second Inter-
national Conference on Cognitive Radio Oriented Wireless Networks and Communications,
Orlando, USA, pp 127–132

9. Chapin JM, Lehr WH (2007) The path to market success for dynamic spectrum access tech-
nology. IEEE Comm Mag 45(5):96–103

10. Clancy C, Hecker J, Stuntebeck E, O’Shea T (2007) Applications of machine learning to
cognitive radio networks. IEEE Wireless Communications 14(4):47–52

11. Cliff D (2003) Biologically-inspired computing approaches to cognitive systems: a partial tour
of the literature. Tech. Rep. HPL-2003-11, Digital Media Systems Laboratory, HP Laborato-
ries, Bristol

12. Cordeiro C, Daneshrad B, Evans J, Mandayam N, Marshall P, Shankar S (eds) (2007)
Special issue on adaptive, spectrum agile, and cognitive wireless networks. IEEE J Sel
Area Comm 25(3):513–516

13. Costa MHM (1983) Writing on dirty paper. IEEE Trans Inform Theory 29(3):439–441
14. CRN Workshop (2008) 2nd IEEE International Workshop on Cognitive Radio Networks. http:

//cms.comsoc.org/CCNC 2008/Content/Home/Call for Papers /CRN Workshop.html
15. CROWNCom (2008) International conference on cognitive radio oriented wireless networks

and communications. http://www.crowncom.org/
16. Cybenko G, Berk VH, Gregorio-De Souza ID, Behre C (2006) Practical autonomic comput-

ing. In: Proceedings of the 30th Annual International Computer Software and Applications
Conference, Washington, DC, USA, pp 3–14

17. Damasio A (1999) The Feeling of What Happens: Body and Emotion in the Making of Con-
sciousness. Harcourt Brace, San Diego

18. De Castro LN, Von Zuben FJ (2005) Recent Developments in Biologically Inspired Comput-
ing. Idea Group Publishing, New York

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 153

19. De Mello RF, Cuenca RG, Yang LT (2006) Genetic algorithms applied to organize wireless
sensor networks aiming good coverage and redundancy. In: First International Conference on
Communications and Networking in China, pp 1–5

20. Dobre O, Abdi A, Bar-Ness Y, Su W (2007) Survey of automatic modulation classification
techniques: classical approaches and new trends. IET Communications 1(2):137–156

21. Dore A, Pinasco M, Regazzoni CS (2007) A bio-inspired learning approach for the classifi-
cation of risk zones in a smart space. In: Online Learning for Classification Workshop, Min-
neapolis, USA, pp 1–8, URL http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4270438

22. Fehske A, Gaeddert J, Reed JH (2005) A new approach to signal classification using spectral
correlation and neural networks. In: First IEEE International Symposium on New Frontiers in
Dynamic Spectrum Access Networks, pp 144–150

23. Fette BA (2006) Cognitive Radio Technology. Newnes, Oxford
24. Geirhofer S, Tong L, Sadler BM (2007) Dynamic spectrum access in the time domain: mod-

eling and exploiting white space. IEEE Comm Mag 45(5):66–72
25. Han T, Kobayashi K (1981) A new achievable rate region for the interference channel. IEEE

Trans Inform Theory 27(1):49–60
26. Haupt RL, Haupt SE (2004) Practical Genetic Algorithms, 2nd edn. Wiley, New York
27. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel

Area Comm 23(2):201–220
28. Haykin S (2006) Cognitive dynamic systems. Proceedings of the IEEE 94(11):1910–1911
29. Haykin S (2006) Cognitive radar: a way of the future. IEEE Sig Proc Mag 23(1):30–40
30. Haykin S, Li G, Shafi M (eds) (2008) Special issue on Cognitive Radio, Proceedings of the

IEEE
31. Ibrahim MT, Anthony RJ, Eymann T (2006) Exploring adaptation & self-adaptation in auto-

nomic computing systems. In: Proceedings of the 17th International Workshop on Database
and Expert Systems Applications, Los Alamitos, USA, pp 129–138

32. IEEE 80216 License-Exempt (LE) Task Group (2008) Web site. http://ieee802.org/16/le/
33. IEEE 80222 Working Group (2008) Web site. http://www.ieee802.org/22/
34. IEEE Communications Society TCCN (2008) Web site. http://www.eecs.ucf.edu/tccn/index.

html
35. IEEE Standards Coordinating Committee 41 (2008) Web site. http://www.scc41.org/
36. Ileri O, Mandayam N (2008) Dynamic spectrum access models: Toward an engineering per-

spective in the spectrum debate. IEEE Communication Magazine 46(1):153–160
37. Le B, Garcia P, Chen Q, Li B, Ge F, El Nainay M, Rondeau T, Bostian C (2007) A public safety

cognitive radio node system. In: Software Defined Radio Technical Conference Proceedings,
Denver, USA, URL http://www.sdrforum.org/SDR08/3.3-2.pdf

38. Liang YC, Chen HH, Mitola J, Mahonen P, Kohno R, Reed JH (eds) (2008) Special issue on
cognitive radio theory and application, vol 26, IEEE J. Sel. Area Comm.

39. Miorandi D, Yamamoto L, Dini P (2006) Service evolution in bio-inspired communica-
tion systems. International Transactions on Systems Science and Applications Journal 2(1):
51–60

40. Mitchell TM (1997) Machine Learning. McGraw-Hill, New York
41. Mitola J (1992) Software radios-survey, critical evaluation and future directions. In: National

Telesystems Conference, pp 13/15–13/23
42. Mitola J (1995) The software radio architecture. IEEE Comm Mag 33(5):26–38
43. Mitola J (2000) Cognitive radio: An integrated agent architecture for software defined radio.

PhD thesis, Royal Institute of Technology (KTH), Sweden
44. Mitola J (2000) Software Radio Architecture: Object-Oriented Approaches to Wireless Sys-

tems Engineering. Wiley, New York
45. Mitola J (2006) Cognitive Radio Architecture: The Engineering Foundations of Radio XML.

Wiley, New York
46. Mitola J, Maguire GQ (1999) Cognitive radio: Making software radios more personal. IEEE

Pers Commun 6(4):13–18

154 G. Oliveri et al.

47. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically
inspired robotics. Science 318(5853):1088–1093

48. Reed JH (2002) Software Radio: A Modern Approach to Radio Engineering. Prentice Hall,
New York

49. Regazzoni CS, Gandetto M (2007) Spectrum sensing: a distributed approach for cognitive
terminals. IEEE J Sel Area Comm 25(3):546–557

50. Renk T, Kloeck C, Burgkhardt D, Jondral FK, Grandblaise D, Gault S, Dunat JC (2007)
Bio-inspired algorithms for dynamic resource allocation in cognitive wireless networks. In:
International Conference on Cognitive Radio Oriented Wireless Networks and Communica-
tions, Orlando, FL, USA, pp 351–356

51. Rieser CJ (2004) Biologically inspired cognitive radio engine model utilizing distributed
genetic algorithms for secure and robust wireless communications and networking. Phd thesis,
Virginia State University

52. Shared Spectrum Company (2008) Web site. http://www.sharedspectrum.com/
53. Spectrum Policy Task Force (2002) Report of the spectrum efficiency working group. Tech.

rep., Federal Communications Commission
54. Spectrum Policy Task Force (2002) Report of the spectrum rights and responsibilities working

group. Tech. rep., Federal Communications Commission
55. Srinivasa S, Jafar SA (2007) The throughput potential of cognitive radio: a theoretical per-

spective. IEEE Comm Mag 45(5):73–79
56. Sterrit R, Bustard D (2003) Towards an autonomic computing environment. In: Proceedings

of the 14th International Workshop on Database and Expert Systems Applications, Prague,
Czech Republic, pp 694–698

57. Sutton RS, Barto AG (1998) Reinforcement learning. The MIT Press, Cambridge, Mas-
sachusetts

58. Zhang H, Zhou X, Yazdandoost KY, Chlamtac I (2006) Multiple signal waveforms adaptation
in cognitive ultra-wideband radio evolution. IEEE J Sel Area Comm 24(4):878–884

59. Zhao Q, Sadler BM (2007) A survey of dynamic spectrum access. IEEE Sig Proc Mag
24(11):79–89

60. Zhao Q, Tong L, Swami A (2005) Decentralized cognitive mac for dynamic spectrum access.
In: Proceedings of the First IEEE International Symposium on New Frontiers in Dynamic
Spectrum Access Networks, Baltimore, USA, pp 224–232

Introducing Autonomous Behaviors
into IMS-Based Architectures

Mohamed Boucadair

Abstract The main objective of this chapter is to describe a set of viable solutions
aiming to enhance the robustness and the availability of current IMS-based archi-
tectures owing to the activation of autonomic-like techniques. This chapter adopts
a Service Provider standpoint and clarifies the scope of autonomic behaviors within
an administrative service domain owned and managed by a Service Provider. The
rationale elaborated within this chapter argues in favor of introducing autonomic
and distributed means into current operational service platforms in order to build
survival and deterministic networks. Autonomic networking means are not used as
alternative solutions but as an enhancement to the already deployed ones. For back-
ward compatibility and for migration issues, this chapter recommends to enforce
the proposed solutions as backup ones in the earlier stages of deployment. Once
field proven, the proposed mechanisms could be enforced as primary procedures to
deliver more sophisticated services. This chapter investigates how autonomic net-
working and more precisely distributed techniques may be implemented and engi-
neered in the context of IP Multimedia Subsystem (IMS)-based architectures. This
effort is required so as to disseminate autonomic networking inside Telcos com-
munity mainly by proposing concrete and viable solutions which meet operational
requirements. This chapter does not require specific background on autonomic net-
working and computing.

1 Introduction

1.1 General Overview

Telephony over IP has gathered the interest of a large number of researchers and
engineers in both standardization organizations and industrial fora focusing on
Service Providers issues. Thus, numerous protocols and architectures have been
proposed in order to deploy IP-based telephony service offerings. A large part of

M. Boucadair (B)
France Télécom R&D, 42 Rue des coutures, 14066 Caen Cedex, France
e-mail: mohamed.boucadair@orange-ftgroup.com

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 7, C© Springer Science+Business Media, LLC 2009

155

156 M. Boucadair

these protocols are introduced into operational platforms. Nevertheless, several chal-
lenges, such as the migration to IPv6 [6] and inter-working with IPv4 [2, 3, 21],
interconnection between Service Providers IP telephony domains [18], service
robustness, and availability, security, and QoS (quality of service), are still open
issues and should be solved. Moreover, a sensitive challenge regarding VoIP (Voice
over IP) architectures is to build lightweight architectures which meet Service
Providers requirements. The complexity of the current proposed solutions should be
questioned against the added values of invoked functional elements. We believe that
a balanced approach between the “flat” approach a la Internet and the one advocated
by 3GPP (3rd Generation Partnership Project, [http://www.3gpp.org]) is possible
and even realistic.

The area of investigation of this chapter is aligned with the big trend of enhanc-
ing IP network design and its ability to offer sophisticated conversational services,
but not limited to, in a native way, i.e., with no major operational and architectural
pains/complexity. Flexibility to leverage innovative services is one of the preoccupa-
tions that motivate the proposed architectures described within this chapter. The tar-
get of this chapter is not to describe how to duplicate the technical choices practices
inside Telcos’ organizations but to exploit innovative facets of autonomic emerging
techniques [15], and particularly peer-to-peer (P2P) and distributed-oriented solu-
tions, to enhance the QoS as experienced by end-users.

This chapter adopts a pragmatic and realistic approach. Our position regarding
P2P techniques is not evangelistic. Therefore, we assume that some autonomic-
like solutions, such as P2P-based solutions, are not the “perfect” answer for all
technical issues. We are aware that these solutions suffer from several technical
hurdles and do not provide optimal solutions for all encountered problems. To
illustrate this weakness, we recall readers about the recent crash of Skype service
due to an OS (operating system) update [http://www.p2pnet.net/story/13137 and
http://www.p2pnet.net/story/13105]. Indeed, the service was unavailable and the
overall system was not able to immediately converge to a stable state allowing
end-users to access to Skype services. Another example is the current problems
encountered by Joost, an emerging distributed IP TV service offering, to ensure an
AS-level (autonomous System) for traffic optimization and the control of the last
mile to optimize the delivery of media streams. Recent measurements show that the
majority of the traffic is sent by servers owned by Joost and that more than 100
Joost-enabled clients contribute to send media streams but the amount of generated
traffic is minor compared to the one sent by Joost servers (for more details about
these measurements and additional details refer to [12, 13, 22]).

In order to meet the lightweight and flexibility requirements to deploy conver-
sational services and to benefit from the autonomy characteristics of new emerging
autonomic-like applications, Service Providers shall investigate new solutions either
starting from the architectures already deployed in their operational networks or
radically exploring new tracks. Of course, backward compatibility with the already
running service offerings and migration strategies of individual Service Providers
should be taken into account when designing these new solutions. Note that the
challenge is not only to allow exchange of media streams between users but to

Introducing Autonomous Behaviors into IMS-Based Architectures 157

offer telephony services compliant with both regulatory constraints (such as Legal
Interception and Emergency Calls) and also with operational directives (e.g., con-
trol the experienced quality of the service, ease troubleshooting operations, ease
introduction of new services, manage interconnection with adjacent VoIP Service
Providers, implement basic billing features). Among all the conceivable options,
this chapter focuses only on the one that consists in investigating how current cen-
tralized architectures such as IMS (IP Multimedia Subsystem) [4] could evolve,
be adapted, and/or enhanced to meet some critical requirements, mainly, flexibil-
ity, dynamic failure detection and recovery, autonomous “tuning” to solve overload
problems, etc.

The approach adopted within this chapter happens to be realistic and viable
since it is suitable for traditional telephony Service Providers. The chapter describes
incremental solutions to be adopted so as to ensure backward compatibility and to
optimize the required investment both in term of CAPEX (Capital Expenditure) and
OPEX (Operational Expenditures). Elaborated migration strategies should be elabo-
rated so as to drive the introduction of such autonomic architectures into operational
networks (based on IMS or TISPAN [20]). An example of migration strategy could
consist in enhancing the current IMS architectures with the introduction of ad hoc
distributed functions at the access segments in order to improve the resilience of the
service offerings. Once these capabilities would be supported by the access segment
elements, some core service functions could be delegated to these elements and
then deploy a fully dynamic and distributed system providing similar services. Con-
cretely, and because the author of this chapter is aware about operational constraints
such as backward compatibility, we adopt an incremental approach.

The solutions introduced in this chapter are inspired from the capabilities of the
newly promoted autonomic paradigms and context-awareness models. Once field
proven, these mechanisms can be elected to be used as primary modes to deliver
service offerings. The deployment of the proposed solutions as primary solutions is
not described in this chapter. In addition, introducing autonomic networking tech-
niques inside operational networks should be incremental. Techniques for dynamic
provisioning and service automation should be promoted within Service Providers
community. Besides this concern, self-care techniques and service sanity checking
means should be proposed so as to meet the requirements of Service Providers. The
aim of this chapter is to contribute to the dissemination of autonomic networking
from the standpoint of a Service Provider.

Autonomic or autonomous networking are generally presented as self-* solu-
tions. Within this chapter, only availability and robustness characteristics are taken
into account. In the remaining part of this chapter, P2P, distributed solutions, and
autonomic networking terms are used interchangeably.

1.2 This Chapter at a Glance

The main focus of this chapter is to describe solutions aiming to enhance the
robustness and the availability of current IMS-based service offerings owing to the

158 M. Boucadair

activation of techniques inspired from autonomic networking. These solutions are
not software-based but are network-centric and are inspired from native IP tech-
niques. These solutions are said to belong to “autonomic networking” because, at
an abstraction level, autonomic concepts are followed.

Several failure vulnerabilities may be identified and then investigated in depth.
This chapter encloses a description of autonomic and fully distributed modes to
solve some of these failure scenarios. Hereafter we provide the three failure types
which are within the scope of this chapter:

• Failure of access nodes: This chapter describes a lightweight approach based on
appropriate engineering practices so as to prevent against failures and to pro-
vide the service even in case of failure of access nodes. The proposed mecha-
nism is transparent to end-users. This mode does not require any involvement of
humans.

• Failure of core nodes: We propose an autonomic mode where access nodes
collaborate in order to offer the service even in case of failure of core
service elements. This mode is transparent for end-users. Failure detection
and restoration are dynamic and do not require any decision by human
administrators.

• Overload phenomenon: Within this chapter, we describe a dynamic solution
to prevent against flash crowds phenomena and prevent against the crash
of service elements. Automatic setting of call acceptance ratio is enforced
owing to a distributed decision-making process implemented by access
nodes.

More details about the aforementioned solutions are provided in the remaining
part of the chapter. Potentials and exploitation scenarios of autonomic networking
paradigms into IMS-based architectures are also explained.

1.3 How this Chapter is Organized?

This chapter is composed of two main parts. The first part (Sect. 2) focuses on
potentials of autonomic networking and distributed techniques into operational net-
works. This section discusses the motivations of the approach and especially the
perception of end users (Sect. 2.1), the limits of business model of current deployed
P2P service offerings (Sect. 2.2) and finally it identifies a set of viable exploita-
tion scenarios (Sect. 2.4). The second part of this chapter (i.e. Sect. 3) focuses on
solution space. Therefore three variants are described. Sect. 3.2 describes a solu-
tion for dynamic failure detection and restore targeting access nodes. Sect. 3.3
describes a dynamic failure detect and restore solution which is put into effect
once core services nodes are unreachable or are out of service. Finally, Sect. 3.4
illustrates the usage of dynamic techniques to prevent and avoid flash crowds
crisis.

Introducing Autonomous Behaviors into IMS-Based Architectures 159

2 Potentials of Autonomic Networking

This section aims to highlight the potentials of autonomic networking in Service
Providers’ service infrastructure. This section shows that, from the perspective of
end-users (i.e., Sect. 2.1), architectural considerations are pointless. End-users are
more careful about the availability of the services they subscribed to and to the
level of perceived QoS and not how the service is (technically) built. Moreover,
this section sketches the limits of the business model of some active actors in the
field of P2P (see Sect. 2.2). These limits are provided as a warning to drive the
decision-making of Service Providers. The interpretation of these limits within this
chapter is to prevent other Service Providers to duplicate the technological choices
of these active actors and to encourage adapting these techniques to their running
environment.

This chapter focuses only on schemes targeting to adapt autonomic techniques
within a centralized service platforms. The value creation considerations in pure
autonomic realms are not detailed in this chapter and are out of scope of this chapter.

2.1 The Perception of End-Users

For end-users, or at least for the majority of them, the underlying technology used
to deploy a given service offering is pointless. These users do not make any dis-
tinction between autonomic, P2P services (such as Skype), hybrid ones (e.g., Jajah)
or centralized solutions (e.g., GoogleTalk, MSN, or Yahoo!). They only require a
survivable service accessible at anytime and from anywhere, easy to use and to man-
age and (hopefully) free of charges. End-users subscribe to a given service platform
where they can communicate with their contacts/friends leading to the emergence of
isolated communities. Subscribing to a new service platform and leaving the former
one is therefore not an easy task since all the community members have to migrate
to the new service platform. This observation should not be anymore valid if service
platforms are interconnected together and Service Providers go forward to abolish
this new era of technology segregation. This leads us to conclude that sociological
behaviors are more relevant and pertinent to consider rather than purely technologi-
cal ones.

Another interesting aspect to consider is that end-users do not care about archi-
tectural considerations (e.g., the notion of hash tables, super-node, index) and are not
familiar with the behaviors of the running P2P applications (e.g., lookup, routing,
bandwidth consumption, memory load). For some P2P applications such as Skype,
PPlive or Joost, end-users are not aware about the exploitation made by P2P services
of their IP connectivity. Most of them are not aware that their resources are used
by the P2P service even if they do not effectively use the service! For other P2P
applications such as eMule, generally for file-sharing applications, end users are
aware about the use of their Internet resources, because end-users understand that
they need to share with external users so as the system lives.

160 M. Boucadair

2.2 The Business Limits of Some P2P Service Offerings

Skype was a success story. This success has been awarded by its affiliation to eBay in
2005 (eBay spent $2.6 billion to buy Skype). This acquisition has been commented
by the analysts and questions have been raised to evaluate how eBay will make
benefit owing to this operation. These questions were left without credible answers
until the first signals have been perceived (eBay wrote down its investment by $900
million in October 2007). Recently, and as stated in [10], and despite its claimed
276 millions of registered users, 11.9 billions of Skype-to-Skype minutes and 1.6
billions of SkypeOut minutes during Q7 2007, and a cumulative 282 million dollars
in 2007, eBay has overpaid Skype.

Former Skype CEO (and co-founder of Joost) has recently confessed this shared
fact. These problems acknowledge the limits of the business model adopted by
Skype. Indeed, Revenue sources of Skype are mainly the fees accounted by end
users to use SkypeOut and SkypeIn services. According to the figures provided by
eBay regarding its Q4 2007 financial exercise, SkypeOut revenue are stable (1.4
billions (min) during Q3 2007 compared to 1.6 billions during Q4 2007). Further-
more, the ratio of progress of new subscribers is 61% but the ratio of progress of
SkypeOut minutes is only 10%. Note that eBay/Skype do not communicate about
the interconnection costs and other charges, especially the software development
ones.

The discussion above shows that the value creation is a problem for some P2P
actors. Their business models should be rethought so as to reach a critical size to
compete with Telcos.

2.3 A Service Provider Requirement: Toward Autonomic
and Deterministic Networks

Evidently, Service Providers need to be convinced by the viability of the proposed
autonomic schemes through concrete and realistic proposals which integrate Service
Providers specificity and requirements. Particularly, incremental approaches should
be investigated and proposed to Service Providers mainly because of the weight of
backward compatibility.

Concretely, in order to promote autonomic networking and computing techniques
within Service Providers community and to introduce these promising and emerg-
ing techniques within operational networks, Service Providers requirements should
be taken into account. Indeed, autonomic networking designers should integrate in
the proposed architectures the need of Service Providers to control the behavior
of their deployed networks and built-on services. Service Providers should be able
to assess the compliance of their offered/delivered services over the networks they
are operating. They also need to check the level of quality of the services result-
ing from engineering operations, through measurements or other alternative means.
Autonomic networking techniques should be designed in the context of end-to-end
and cross-layer services.

Introducing Autonomous Behaviors into IMS-Based Architectures 161

The engineered networks must be compliant with the targets fixed by the service
planning and design processes enforced by a given Service Provider. The behavior
of deployed networks and offered services should be known in advance by Ser-
vice Providers and no fuzzy behaviors should be experienced. In order to introduce
autonomic techniques into real networks operated by Service Providers, operational
constraints should be assessed. This requirement can be for instance implemented
owing to elaborating torture tests and validation methodologies dedicated to a given
autonomic techniques.

It is obvious that Service Providers need to go a step forward for enforcing ser-
vice automation, dynamic provisioning and deterministic behaviors. This “ambi-
tion” is not motivated only by their need to reduce the OPEX but also for easing
the service creation, service provisioning and maintenance, service troubleshooting,
and also to reduce the TTM (time to market).

2.4 Autonomic Networking, a Promising Means to Enhance
Service Availability and Robustness

Conversational services are one of the drivers for the emergence of enhanced IP
architectures which should be QoS-aware, robust, and highly available. These fea-
tures should not be implemented only at the IP layer but also at the service layer
since the perceived service is cross-layer and cannot be exclusively considered as
being the business of the transport layer. Moreover and as far as IP networks become
the federative transport network, O&M-related functions become (more) critical.
A single service can rely on the activation of several protocols and therefore con-
straints Service Providers to implement tools to ease the management of the services
and the underlying protocol operations.

A long-term vision regarding the IP networking and associated services is that it
should evolve toward a “Plug and Play” model which is characterized (partially) as
follows:

• The introduction of new services is transparent for the service requestor and the
network administrator. This is achieved through dynamic/automatic provisioning
and auto-managed networks;

• Easiness is enabled everywhere:

– Manageability of the proposed solutions
– FCAPS (Fault, Configuration, Accounting, Performance, Security) functions
– Service offer/negotiation/creation/execution/assurance/deletion
– Service evolution/updating/maintenance
– To estimate the interdependency of activated services

The above listed items are long-term objectives and cannot be implemented in one
shot into operational networks in the near future. Indeed, an incremental approach
should be adopted and migration scenarios investigated.

162 M. Boucadair

Since several proposals have been made in the field of service automation and
dynamic provisioning [1, 5, 11, 19], we are in favor of investigating how autonomic
means can be adapted so as to solve current lacks as encountered by service plat-
forms such as IMS-based one. We are advocating for introducing distributed tech-
niques and autonomic-like techniques to prevent against failures met by operational
networks. We describe in Sect. 3, several scenarios and concrete solutions inspired
from distributed techniques in order to enhance service robustness and availability
of the offered services.

3 Solutions Space: Exploitation Scenarios of Autonomic
Paradigm into IMS-Based Architectures

This section presents three proposals aiming to enhance the robustness of IMS-based
architectures. These solutions are inspired from distributed and autonomic network-
ing proposals. Each of the aforementioned solutions solves a failure case encoun-
tered by current IMS-based architectures. Indeed, Sect. 3.2 describes a lightweight
solution avoiding physical redundancy of Session Border Controllers. (This redun-
dancy is usually referred to as 2 ∗ N in case of each SBC is backuped with a sec-
ondary SBC, and N + 1 when only an SBC is the backup of all primary SBCs.)
Section 3.3 introduces a solution to ensure the service availability during the outage
of core service elements or when a failure occurs between access nodes and core
ones. The proposed solution is based on collaboration between access nodes so
as to implement some of the functions usually enforced by core elements. Finally,
Sect. 3.4 describes a way to prevent against overload phenomena mainly to prevent
against flash crowds crisis. Note that the following section (i.e., Sect. 3.1) presents
a tentative taxonomy and used terminology.

3.1 Taxonomy

IMS [4] and TISPAN (Telecoms & Internet converged Services & Protocols for
Advanced Networks [20]) architectures have been specified by the 3GPP forum to
meet the requirements of traditional Telcos, especially to allow the implementation
of a convergent solution for both mobile and fixed service offerings. Some of big
Service Providers have already started to deploy IMS-based solution mainly for
their PSTN (public switched telephone network) renewal. It is not our intent to
describe in depth the functional decomposition of those architectures. Only a high-
level description of these architectures is presented hereafter. Indeed, an IMS-based
service platform can be divided in several segments as illustrated in Fig. 1:

• Access segment: This segment groups functions which are required for connect-
ing customers’ equipment to the service. This segment may include, for instance,
BGF (Border Gateway Function) or P-CSCF (Proxy Call Session Control Func-
tion). This segment is often represented as POP (point of presence). These POPs

Introducing Autonomous Behaviors into IMS-Based Architectures 163

Fig. 1 VoIP Segments

are then connected to the core segment. For illustrating purposes, we assume that
BGF function is embedded in a SBC (Session Border Controller [8]). One or
several SBCs may be deployed per access POP. Each customer is provided/pro-
visioned with its attached SBC which is the contact service element. SBC nodes
implement several functions as listed in [8] such as topology hiding, fixing capa-
bility mismatch, and hosted NAT (Network Address Translator) traversal.

• Core segment: This segment is the “hearth” of the service. It is the place where
the service logic and required functions such as routing and billing are hosted.
Within IMS architecture, this segment is also responsible for interconnecting to
internal or external AS (Application Servers). Examples of IMS functional ele-
ments which are located in the core segment are I-CSCF (Interrogating Call Ses-
sion Control Function), S-CSCF (Service Call Session Control Function), HSS
(Home Subscriber Server), etc.

• Border segment or Interconnection segment: This segment encloses all required
functions to interconnect with adjacent service realms (including VoIP ones,
PSTN, PLMN (public land mobile network), or any other voice service domain).
This segment is critical since financial data depends on the records collected by
this segment. In order to preserve confidentiality and to hide the internal service
topology, embedded functions should support topology hiding and some signal-
ing information such as SIP (Session Initiation Protocol [17]) headers must be
modified or dropped. Examples of functional elements part of the border segment
are SGF (Signaling Gateway), IBCF (Interconnection Border Control Function),
and I-BGF (Interconnection Border Gateway Function).

Within this chapter, we will not describe in depth all functional elements defined
in IMS/TISPAN functional architectures. We focus only on a technical implemen-
tation of those architectures based on the deployment of SBC nodes at both access
and border segments. We assume that for accessing to the service, customers are
provisioned with appropriate information to reach their attached SBC. This former
is the service contact point. The role of the SBC in this architecture is to relay
received messages (both media and signaling) from user equipments (UEs) (also
denoted as user agents (UAs)) to core service elements and vice versa. In the context
of this chapter, we assume that both signaling and media messages are handled by
the same SBC.

164 M. Boucadair

Fig. 2 Deployment Example of SBCs

Figure 2 provides an example of SBC deployment within the domain of a single
Service Provider. This architecture is used as a reference architecture in the follow-
ing sections.

Our reference architecture is composed of four service access POPs. Each cus-
tomer (more specifically their terminals and service devices) is provisioned with
appropriate information to reach one service access POP. In our example, each ser-
vice access POP hosts an SBC pair (SBCi, SBCib) with SBCi is the primary SBC and
SBCib is its backup that relays SBCi when this latter is out of service. In addition
to these POPs, the service administrative domain encloses also a cloud denoted by
“Core PF” grouping all core service nodes. Only a macroscopic view of the core
service segment is shown. In such architecture, the service is implemented through
a coordinated cooperation between access service nodes and core ones. Access ser-
vice nodes relay the message they receive from the UE toward the core service
platform.

3.2 Failure of IMS Access Nodes

3.2.1 Scenario Description

This section treats the scenario of a failure encountered by access nodes. This outage
may be due to a problem of an SBC or the unreachability of corresponding SBC for
a set of end-users. Those end-users will not be able to access to the services they
subscribed to. This scenario is illustrated in Fig. 3.

Introducing Autonomous Behaviors into IMS-Based Architectures 165

Fig. 3 Example of an Access Failure

3.2.2 How this is Solved in Nowadays Implementations?

In order to solve the problem described above, the current practices, as suggested by
SBC vendors and implemented by some Service Providers, are mainly to dedicate
another SBC as a backup to a primary SBC (see Fig. 2). At least two variants of this
redundancy can be envisaged: (1) either to have a full redundancy of all primary
SBCs or (2) to dedicate a set of SBCs to relay the ones out of service. The first
variant, which is denoted as 2 ∗ N model, requires an important number of nodes to
be deployed by Service Providers. The second variant is an enhancement of the first
one. Nevertheless, both variants are not optimal in terms of CAPEX and OPEX.
Moreover, the current deployments suffer from a lack of “graceful” solutions for
planned maintenance. Consequently, the service is still unavailable during the tran-
sition phase which is required for the backup SBC to be operational. Note that even
the 2 ∗ N model does not solve all failure scenarios such as an IP routing failure.

3.2.3 An Anycast-Based Solution

The main target of the solution introduced in this section is to ensure the service
continuity and to avoid disruption when a given SBC encounters failures or when it
is unreachable from customers’ sites. Concretely, this section introduces new means
to maintain the same level of service as perceived by end-users. Unlike current state
of the art solutions, our solution does not require any communication between a
given SBC and its backup SBC. When failures are observed or detected, backup
SBC replaces the primary one in a transparent manner to end-users and is dynam-
ically enforced. Moreover, we rely on native IP techniques to solve this sensitive
failure problem.

166 M. Boucadair

Within this solution, several IP addresses are assigned to the inner interface of
SBCs (i.e., customer–SBC interface). These addresses are also assigned to other
SBCs. Several modes of IP address assignment may be envisaged:

1. Unilateral mode: this mode assumes that a given SBCi is the backup SBC of
SBC j. This latter is also the backup SBC of a third SBCk with SBCi �= SBCk. The
inner interface is identified by two IP addresses, a primary and a secondary IP
addresses. This secondary address is the primary address of another SBC. Note
that distinct IP addresses are assigned to the outer interface (the one used to reach
the core platform). Hereafter is provided an example of IP address assignment.
The meaning of used notation is: the first element is the primary IP address. The
second element is the secondary IP address. This address identifies the backuped
SBC. The third address identifies the inner interface IP address which is used to
convey media traffic (RTP traffic). Finally, the fourth element identifies the IP
address of the outer interface.

a. SBCi(@Ain, @Yin, @IPRT PA, @Aout)
b. SBC j(@Bin, @Ain, @IPRT PB, @Bout)
c. SBCk(@Cin, @Bin, @IPRT PC, @Cout)

2. Bilateral mode: unlike the previous mode, SBCs are organized as pairs
(SBCi, SBC j) with SBCi is the backup SBC of SBC j and vice versa. To
implement this mode, the same IP address is assigned to the inner interfaces
of SBCi and SBC j. The outer interface of each SBC is identified by distinct IP
addresses. Below, we provide an example of IP address assignment. The first
element identifies the primary IP address (which is assigned to two SBCs), the
second element is the IP address used to convey RTP traffic in the inner interface
(distinct IP addresses are used for this purpose), and finally, the third element
which value is the IP address of the outer interface:

a. SBCi(@IPABin, @IPRT PA, @Aout)
b. SBC j(@IPABin, @IPRT PB, @Bout)
c. SBCk(@IPCDin, @IPRT PC, @Cout)

3. Distributed mode: In this mode, SBCs are organized as groups. Each POP is com-
posed by N customers attached to a given SBC. The Service Provider distributes
its N customers to M groups. For each group a distinct IP address is provisioned.
This address is the one to use to reach the primary SBC. For each SBC, sev-
eral primary addresses are assigned to the inner interface. We provide hereafter
an example of IP address distribution. In this example, @IP1in, @IP2in, and
@IP3in are the IP addresses assigned to the inner interfaces of SBCi, SBC j and
SBCk. This configuration allows to distribute the POP to three sub-groups. To
each group, only one IP address is provisioned. @IPRT Px is the IP address used
to convey RTP traffic per SBC.

a. SBCi(@IP1in, @IP2in, @IP3in, @IPRT PA, @Aout)
b. SBC j(@IP1in, @IP2in, @IP3in, @IPRT PB, @Bout)
c. SBCk(@IP1in, @IP2in, @IP3in, @IPRT PC, @Cout)
d. SBCp(@IP1in, @IP2in, @IP3in, @IPRT PD, @Dout)

Introducing Autonomous Behaviors into IMS-Based Architectures 167

Fig. 4 Illustration Example of the Distributed Solution to solve Access Failures

Figure 4 shows an example illustrating the behavior of the IMS-based system when
the configuration recommendations listed above are followed. In this example, we
focus on the distributed mode. In this example, we suppose that the inner inter-
face of SBC3 is configured with two IP addresses @IP1in and @IP2in. These two
IP addresses are announced in IGP (Interior Gateway Protocol) by SBC3. UA4
and UA5, are provisioned to use @IP1in as the primary address to reach their
contact SBC, and UA6 is provisioned with @IP2in. In the meantime, @IP1in
and @IP2in are also assigned as the IP addresses if the inner interfaces of SBC1
and SBC2. Since these addresses are announced in the IGP, the SBC that han-
dles the requests of UA4, UA5, and UA6 is SBC3 (because this is the shortest
IGP path. In this section, we don’t describe the configuration of IGP to enforce
the proposed procedure). When SBC3 is out of service, the closest IGP path to
reach @IP1in from UA4 and UA5 is the one toward SBC1. The one selected
by IGP to reach @IP2in is the route toward SBC2. In this configuration, cus-
tomers attached to SBC3 are dispatched between several SBCs in a transparent
way.

Since the purpose of this section is to sketch a distributed method to handle the
failure of access nodes, we will not provide elaborated specifications related to this
solution. Based on the big lines provided above, we conclude that IP native solutions
are feasible and viable to implement robust services without major investment and
consumption of CAPEX/OPEX.

3.2.4 Migration Considerations

The aforementioned solution (see Sect. 3.2.3) is transparent to end-users and easy to
implement into operational networks. Appropriate engineering guidelines and rules
should be followed. New configuration data should be implemented and conveyed to
corresponding nodes. Besides this provisioning operation, SBCs should be dimen-
sioned accordingly. In order to avoid over-provisioning of all SBCs, we recommend
the distributed mode described above. In such a model, all customers attached to a

168 M. Boucadair

given out-of-service POP will be dispatched between several SBCs. The proposed
solution optimizes both CAPEX and OPEX and it allows intelligent distribution of
customers.

3.3 Failure of IMS Core Nodes

3.3.1 Scenario Description

This section focuses on failures inducing a global service outage or partial one. In
current deployments of conversational services and especially the ones based on
IMS, an outage of the core service elements induces the unavailability of the service
for all subscribed users. This outage may also be induced by an IP routing problem
that occurs between access nodes and core ones. Consequently, the service can not
be delivered to customers and therefore the offered SLA is not fulfilled.

Figure 5 shows a first scenario where only a subset of service access POPs are
unable to relay service-specific messages to core nodes. Attached customers to those
POPs will not access to the service. Figure 6 illustrates a second scenario with all
POPs are unable to reach core service nodes. In such a case, all customers won’t be
able to use the service they subscribed to. This scenario could be due for instance
to an electric outage of core service nodes. This scenario is even sensitive and the
service “reboot” may take a long time before the service would be stable and all
service elements behaviors would be “nominal.” Furthermore, an avalanche restart
will be experienced once all UEs detect that the service is available. An overload
problem will be encountered by the service platform. This overload may be induced
by the huge amount of registration messages that will be issued by UEs.

Fig. 5 Example of failures to join core service nodes

Introducing Autonomous Behaviors into IMS-Based Architectures 169

Fig. 6 Example of core nodes unavailability

3.3.2 How this is Solved in Nowadays Implementations?

In order to avoid the failure of core service nodes, current IMS-based Service
Providers adopt a vertical integration of their service offerings. In such a con-
figuration, the Service Provider owns also the IP infrastructure used to convey
service-specific traffic. Appropriate planning dimensioning and engineering rules
are enforced by the Service Provider. This facility is not suitable for “Pure” Service
Providers which assumes a clear separation between the two business roles: IP Net-
work Provider and Service Provider. For this category of Service Providers, layer-3-
and layer-2-related failures may induce failure and therefore the un-reachability of
IMS core nodes. In the next section, we propose an autonomous mode involving
access SBC nodes which intervene in the service delivery chain. Failures of core
nodes and problems to reach them will not be visible for end-users. Consequently,
both perceived QoS and availability will be enhanced.

3.3.3 Distributed Mode

The delivery of a highly available service offering is a sensitive objective of Service
Providers. Reaching this objective depends on the level of control Service Providers
have on underlying transport (i.e., IP) infrastructure. Despite current deployment of
IMS architectures assumes a vertical integration, IMS-based services can be offered
without having a control on the underlying IP network. In this section, we introduce
a solution to enhance the robustness of IMS-based architectures without assuming a
vertically integrated system. Only high level description is provided. Detailed spec-
ifications are out of scope of this chapter.

The proposed solution advocates for involving SBC in the delivery of the services
instead of “just” relaying messages from User Equipment to core service elements
and vice versa. Concretely, SBCs assess the reachability of the core service platform

170 M. Boucadair

owing to a dedicated monitoring channel such as “keep-alive” messages which
are sent to the core nodes. These “keep-alive” messages must be acknowledged.
“Keep-alive” messages are exchanged periodically. Alternative “push” models may
be implemented to assess the reachability of core service nodes. In the remaining
part of this section, we do not detail the logic implemented to assess the reachability
and the availability of the core service. We assume that appropriate procedures and
algorithms are implemented in the core platform.

Once a given SBC detects that core nodes are out of service or no acknowl-
edgments have been received, a specific message is sent to a multicast group
[7] which members are all deployed SBCs. This message is denoted as SBC
PROXY REQUEST(). The main function of this message is to check if at least one
of the peer SBCs receives acknowledgments of its “keep-alive” messages. In such a
case, the core service elements are still reachable from that SBC. Indeed, all SBCs
which continue to receive acknowledgments to their “keep-alive” messages send an
offer to the requesting SBC to become its SBC PROXY owing to the invocation of
a dedicated message referred to as SBC PROXY OFFER().

• If several offers have been received by the requesting SBC, only one
SBC PROXY is selected. The role of an SBC PROXY is to relay the messages
received from a peer SBC to the core platform and vice-versa. The selection of
an SBC PRXOY may be based on a set of criteria such as current load, CPU,
and closest IGP path. As a result of this process, customers associated with a
given SBC which encounters problems to reach core service elements (due to
routing, link failures, etc), will be able to continue to access to their subscribed
services owing to the presence of an SBC PROXY. An example of a call flow is
illustrated in Fig. 7.

– This scenario concerns only a partial failure (i.e., the example illustrated in
Fig. 5). The next bullet point handle the scenario of global failure (all peer
SBCs are unable to reach core service nodes, see Fig. 6).

Fig. 7 Call flow with an SBC PROXY in the path

Introducing Autonomous Behaviors into IMS-Based Architectures 171

– In order to place a call, three SBCs will intervene. To illustrate this, let con-
sider the example illustrated in Fig. 7. In this example, UE1 is managed by
SBC1 and UE4 is attached to SBC4. Suppose that a failure occurs and SBC1
is not able anymore to reach the core service nodes (step 1).

• Since no acknowledgment messages have been received, a dedicated mes-
sage, denoted as SBC PROXY REQUEST() message, is sent to the SBCs
multicast group. This message is received by all peer SBCs (step 2).

• In this example, SBC2 and SBC4 send an offer to SBC1 (steps 3a and 3b)
by invoking SBC PROXY OFFER().

• In this example, SBC1 selects SBC2 as its SBC PROXY.
• When UE1 want to place a call toward UE4, it sends its INVITE mes-

sage to its associated SBC (step 4a). This latter relays the request to SBC2
(step 4b) which in its turn relays the request to core service platform. Core
nodes achieve routing operations and forward the request to SBC4. Finally
the request is relayed to UE4. Once UE4 accepts this request, a dedicated
message is routed via SBC2 (SBC PROXY of SBC1) to reach UE1 (steps
5a, 5b, 5c, and 5d). The call between UE1 and UE4 can take place only
after the delivery of ACK messages (steps 6a, 6b, 6c, and 6d). Then,
media streams are exchanged between UE1 and UE4. These streams are not
exchanged directly between endpoints (i.e., UE1 and UE4) but are relayed
respectively by SBC1, SBC2, and SBC4. In current IMS deployments, this
call would never take place since SBC1 is unable to reach core service
nodes.

• If no SBC PROXY OFFER() message has been received after a dedicated timer
expires, all SBCs adopt their autonomous mode and the messages are not relayed
anymore to the core service nodes until these nodes became reachable again. The
autonomous mode is described below.

– All SBCs will actively contribute to the routing of the signaling messages.
– To implement this mode, SBCs use their registration caching tables to resolve

remote destinations as requested by end-users. The multicast channel quoted
above is used by SBCs to resolve a given destination URI (Unified Resource
Identifier).

– Also are members of this multicast group, all interconnection nodes with adja-
cent telephony domains (such as PSTN and IMS). These nodes maintain a
table grouping the list of (telephony) destinations reachable through them.

– When the autonomous mode is adopted by all SBCs, the procedure to place a
call is represented in the call flow shown in Fig. 8. Thus, when UE1 wants
to reach UE4, it sends its session initiation request, via an INVITE mes-
sage, to SBC1 (step 3a), after checking its registration cache table, a mes-
sage to retrieve the contact address of UE4 is sent to the multicast group
(step 3b). Since UE4 is managed by SBC4, this latter sends a response to
SBC1 enclosing appropriate information to reach UE4 (step 3c). Then, SBC1
forward the INVITE message to SBC4, which in its turn forward it to UE4
(steps 3d and 3e). An acceptation message is then issued by UE4 and routed

172 M. Boucadair

Fig. 8 Call flow: autonomous mode

back to UE1. Finally, media streams are exchanged between UE1 and UE4 via
SBC1 and SBC4.

Owing to the activation of the solution above, failures are dynamically detected.
The service is still being delivered to end-users thanks to the activation of the
autonomous behavior of SBCs. Further investigations should be undertaken to check
the feasibility to offer sophisticated services using this autonomous option.

3.3.4 Migration Considerations

The essence of the solution presented in Sect. 3.4.3 is to ensure the service availabil-
ity in case of failures encountered by IMS core nodes or in case service access nodes
fail to reach IMS core nodes. As stated above, these failure scenarios may impact the
delivered services to all customers or to a subset of them. For the second scenario,
a procedure to access to the service is put in place and a SBC PROXY is selected.
In such a case, no service degradation is to be observed by end-users. Moreover, the
delivery of all subscribed functions would be possible. As for the first scenario, a
basic service would be offered to end-users. The solution can be introduced in earlier
stages of deployment to enhance the robustness of current and ongoing IMS-based
service offerings and to avoid service unavailability as met in the current state of the
art. In further steps, the challenge is to implement a full distributed service offering
based on the solution proposed above. Concretely, the distributed mode should
replace with no service degradation the centralized platform during failure events.

In the context of this chapter, we advocate for an incremental migration scenario.
Indeed, we introduced this distributed mode as backup solution to avoid service
unavailability and to ensure the service if still be delivered to subscribed customers.
This positioning can be abolished once the solution is field proven. The solution
presented in Sect. 3.4.3 can be promoted as primary mode to deliver the service.
This target is a long-term objective and several technical hurdles should be solved
before implementing this variant.

Introducing Autonomous Behaviors into IMS-Based Architectures 173

3.4 Flash Crowds Phenomena

3.4.1 Scenario Description

Several overload phenomena may be experienced by IMS-based architectures. As
an example of overload crisis, this section focuses on the “flash crowds” problem.
“Flash crowds” is an overload problem that occurs when a huge amount of traffic
is issued by end-users to access to the service. This may occur during crisis events
such as earthquakes or special events such as Christmas or during some TV shows.
Due to this overload, the service offering may encounter some problems to handle
all received requests and to deliver the service. This may even induce a crash of the
service and its outage.

3.4.2 How this is Solved in Nowadays Implementations?

In order to solve the overload problem, SIP specifications [17] introduced a dedi-
cated tag to notify users about the load status of the service. To do so, a SIP Proxy
Server must issue a message with a code error equal to “503.” This message informs
the users about the reason of rejection of their requests and asks them to send their
request latter. A timer to re-issue the request is also enclosed in the error message:
tag “retry-after.” The drawback of this approach is that the server must process an
overhead load to notify all requesting end-users about its status. For more infor-
mation about the drawbacks of this solution, refer to [16]. Another alternative to
solve the overload problem is currently discussed within IETF. This solution is
described in [14]. This latter document introduces a dedicated header denoted as
“CONGESTION” to inform UEs about the load status of the server. Nevertheless,
this solution suffers from the same drawbacks as the ones of “retry-after” tag. [9]
proposes en elaborated method to indicate to the requesting elements to reduce the
rhythm of sending their requests. A new SIP header is introduced for this purpose:
“Load Header.”

3.4.3 Distributed Mode

The principle of this solution is to assume that the load of the core service platform
may be deduced from the one injected by each SBC toward the core service plat-
form. Let suppose that N is the overall load of the core service platform and Mi is
the load of a given SBCi. N can be computed from Mi of each individual SBCi as
follows: N = f (Mi) with 1 ≤ i ≤ p and

• f (Mi) = �Mi, 1 ≤ i ≤ p, if only one and only one SBC intervenes in the
placement of a call.

• f (Mi) = 1
2

∗ �Mi, 1 ≤ i ≤ p, if two SBCs intervene in the placement of a call.
• f (Mi) = 1

k ∗ �Mi, 1 ≤ i ≤ p, if k SBCs intervene in the placement of a call.

This formula shows that the overall traffic may be tuned and controlled by setting
appropriately the acceptance ratio of each SBCi, i.e., to set a threshold mi per SBCi

174 M. Boucadair

so as f (Mi) ≺ n ∗ N , 1 ≤ i ≤ p, with n is the authorized overload ratio. We propose
to introduce a new function responsible for setting individual mi per SBC. This
function may be supported by a centralized element, which is not necessarily part
of the core service platform. It may also be enforced by SBCs themselves. In this
chapter, we describe only this latter scheme, which is denoted as distributed mode.
Two variants of the distributed mode may be envisaged:

• Fully autonomous mode: In order to implement this mode, a point-to-multipoint
(P2MP) channel must be configured. This channel groups all SBCs deployed in
the platform. Each SBC sends periodically or based on some internal/external
events its current load (Mi) and its acceptance ratio (mi) owing to the invocation
of an RPT message. This notification is received by all peer SBCs member of the
P2MP channel (see Fig. 9). Once received, remote SBCs update their service load
table and compute the overall load as should be experienced by core service node
owing to invocation of the formula defined above. If the overall load is close to
n∗N, then a decision-making process is enforced by each SBC to determine a new
threshold mi. Several logic may be adopted for the decision-making process such
as the SBC which injects big amount of traffic should decrease its acceptance
ratio or all SBCs acceptance ratios should be reduced by x%. This mode is com-
plex to implement and the consistency of the overall system behavior is difficult
to assess. For these reasons, we introduce a second variant called MASTER SBC
mode.

• Mode with MASTER SBC: This mode introduces a novel role, denoted as MAS-
TER SBC, assigned to an SBC. Instead of having a distributed decision-making
algorithm, only one SBC implements it and sends appropriate decisions to remote
SBCs. The assignment of the SBC responsible of implementing MASTER SBC-
related functions may be static (i.e., configured by the Service Provider) or

Fig. 9 Distributed mode to solve overload problem

Introducing Autonomous Behaviors into IMS-Based Architectures 175

dynamically elected through appropriate means which are out of scope of this
chapter. In the remaining part, we assume that an SBC acts as a MASTER SBC.
Like the distributed mode, all SBCs send their load status and their current
acceptance ratio to a P2MP group. this notification is received particularly by
the MASTER SBC, this latter computes the overall load as should be observed
by the core service platform. If the overall load is close to n ∗ N, a decision
is then issued and sent to a subset of SBC so as to have the overall load less
than n ∗ N. Note also that the ratio mi may be increased for a given SBC
when no risk to induce an overload is foreseen. This mode is dynamic and does
not require any intervention of core service nodes. Moreover, the system can
be adapted so as to automatically tune individual acceptance ratios to prevent
against overload. Doing so, the Service Provider ensure the stability of its offered
services.

3.4.4 Migration Considerations

Since the proposed solution focuses on the border elements, notably SBCs, the
activation of the proposed procedure (Sect. 3.4.3) can be envisaged in operational
service platforms. In a first step, current backup SBCs can be updated to support
required behaviors as described in Sect. 3.4.3. Once this is achieved, a planned
maintenance operation should be scheduled. Backup SBCs will then replace pri-
mary nodes in the service delivery chain. The next step is then to update the primary
SBCs and reschedule another planned maintenance operation so as to allow primary
nodes to intervene in the service delivery chain. It is recommended to implement
“graceful” means for planned maintenance operations. Concretely, no service dis-
ruption should be observed by end-users when backup SBCs replace the primary
ones. Replacement of primary SBCs should not be in one shot. A procedure to avoid
service instability should be privileged. When all nodes are updated with required
functions to implement the solution described in Sect. 3.4.3, SBCs will intervene to
dynamically adjust their acceptance ratios in such a way IMS core nodes would not
be overloaded.

4 Conclusions and Future Trends

This chapter described viable tracks for enhancing current centralized IMS-based
solutions owing to the implementation of techniques inspired from autonomic net-
working and more especially from distributed systems. Several robustness vulnera-
bilities encountered by nowadays IMS-based architectures have been identified and
solutions provided. Moreover, migration issues are also taken into account. This
chapter has introduced concrete exploitation and implementation scenarios of auto-
nomic networking into operational networks.

This chapter has highlighted the need of more elaborated research activities so as
to meet the requirements of Service Providers mainly to ease deployment of deter-
ministic systems. Indeed, Service Providers must be able to “know” in advance the

176 M. Boucadair

behavior of the systems and solutions they deploy. It is not acceptable from a Ser-
vice Provider perspective, and more especially for Telcos, to enable solutions which
outputs are “fuzzy.” This requirement is critical since service offerings are usually
associated with service level agreements (SLAs) which must be fulfilled by Service
Providers. To enforce this constraint, Service Providers should implement service
assurance functions so as to check the level of the offered service as perceived by
end-users. Service offerings of the future should be designed with hard requirements
on service assurance functions. Appropriate interfaces, put at disposal of end users
in order to check the conformance of provided services with regards the SLA they
subscribed to, should be activated.

Introducing autonomic networking techniques inside operational networks
should be incremental. Techniques for dynamic provisioning and service automation
should be promoted within Service Providers community. Besides this concern,
self-care techniques and service sanity checking means should be proposed so as
to meet the requirements of Service Providers. The aim of this chapter was to
contribute to the dissemination of autonomic networking form the standpoint of
Service Providers.

References

1. J. Boyle et al., “The COPS Protocol”, RFC 2748, IETF, January 2000
2. M. Boucadair et al., “Challenges of Next Generation Conversational Services: Quality of Ser-

vice and Migration to IPv6”, Proc. of the 8th GRES’07 Colloquium, Tunisia, November 2007.
3. M. Boucadair, Y. Noisette, “Migrating SIP-Based Conversational Services to IPv6: Complica-

tions and Interworking with IPv4”, 2nd ICDT, USA, July, 2007.
4. G. Camarillo and M. A. Garcia-Martin, “The 3G IP Multimedia Subsystem- merging the Inter-

net and the cellular worlds”, John Wiley, 2005
5. Chan, K. H. et al., “COPS Usage for Policy Provisioning”, RFC 3084, March 2001.
6. Deering S., Hinden R., “Internet Protocol, Version 6 Specification”, RFC 2460, December

1998
7. Deering, S., “Host Extensions for IP Multicasting”, RFC 1112, August 1989
8. J. Hautakorpi et al., “Requirements from SIP Session Border Control Deployments”, draft-

ietf-sipping-sbc-funcs, March 2008
9. Hilt, V. et al.,“Sessions Initiation Protocol (SIP) Overload Control”, work in progress, March

2007
10. “Voice-Over-Internet phoning doesn’t ’make sense’ in market”, International Herald Tribune,

11 February 2008
11. Jacquenet, C., Boucadair, M., Bourdon, G., “Service Automation and Dynamic Provisioning

Techniques in IP/MPLS Environments”, John Wiley & Sons Inc, March 2008
12. Yensy, J.H. et al., “Joost: A Measurement Study”, May 2007, available at http://www.

patrickpiemonte.com/15744-Joost.pdf
13. Maccarthaigh, C., “Joost Network Architecture”, RIPE, April 2007
14. Malas, D., Terpstra, R., “The Session Initiation Protocol CONGESTION Header Field”, work

in progress, May 2006
15. Melcher, B, Mitchell, B. “Towards an Autonomic Framework: Self-Configuring Network Ser-

vices and Developing Autonomic Applications”, Intel Technology Journal, 2004
16. Rosenberg, J., “Requirements for Management of Overload in the Session Initiation Protocol”,

work in progress, November 2006

Introducing Autonomous Behaviors into IMS-Based Architectures 177

17. Rosenberg, J. et al., “SIP: Session Initiation Protocol”, RFC 3261, June 2002
18. Rosenberg, J., Squire, M., and H. Salama, “Telephony Routing over IP”, RFC 3219, August

2001.
19. S. Sengupta and R. Ramamurthy, “From Network Design to Dynamic Provisioning and

Restoration in Optical Cross-Connect Mesh Networks: An Architectural and Algorithmic
Overview”. IEEE Network Magazine, Vol. 15, No. 4, July/August 2001.

20. TISPAN, “Telecommunications and Internet converged Services and Protocols for Advanced
Networking, NGN Release 1”, TR180001, 2006

21. Postel, J., “Internet Protocol”, RFC 791, September 1981
22. Jun, L. et al., “An Experimental Analysis of Joost Peer-to-Peer VoD Service”, October 2007,

available at http://www.net.informatik.uni-goettingen.de/publications/1484/Joost experiment.
pdf

Embodied Cognition-Based Distributed
Spectrum Sensing for Autonomic
Wireless Systems

Luca Bixio, Andrea F. Cattoni, Carlo S. Regazzoni, and Pramod K. Varshney

Abstract In the past decade, the usage of portable communication devices has
continued to increase. Autonomic communications (AC) represents a new frontier
for mobile communications because they will allow autonomous and self-regulated
network and communication protocols procedures. Dynamic observation of the
spectrum and adaptive reactions of the autonomic terminal to wireless channel con-
ditions are hence important problems in improving the spectrum efficiency as well
as in allowing a complete access to the network wherever and whenever the user
needs them. Cognitive radio probably represents the most suitable paradigm for
building communication terminals/devices for AC. In this chapter, after a tutorial
overview of the current state of the art on cognitive radio visions and on stand-alone
and cooperative/distributed approaches to spectrum sensing, the general problem of
spectrum sensing will be addressed. Then a new vision, based on embodied cogni-
tion will be presented together with a distributed spectrum sensing algorithm that is
formalized within the embodied framework. Results will illustrate the effectiveness
of the proposed method.

1 Cognitive Radio for Autonomic Wireless Communications

In the past few years, the usage of portable communication devices has continued
to increase at a rapid pace [3]. Together with mobile devices, new communication
services have been proposed thanks also to new communications standards. On the
one hand, such new standards provide flexibility in communications to end users.
But on the other hand, this places a huge demand for radio spectrum that is expected
to grow in the future [37]. To allow for such rapid growth, different frequency
bands in the radio spectrum are selected and assigned to different standards by

L. Bixio (B)
Department of Biophysical and Electronic Engineering, University of Genova, Via Opera Pia 11a,
16145 Genova, Italy
e-mail: luca.bixio@dibe.unige.it

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 8, C© Springer Science+Business Media, LLC 2009

179

180 L. Bixio et al.

governmental regulatory agencies [23] in order to guarantee coexistence between
different services [37].

After many years of fixed radio spectrum assignment in order to meet the increas-
ing demands due to emerging services, the unlicensed frequencies are going to dis-
appear [17]. In fact, a study conducted by the US Federal Communication Com-
mission (FCC) [15] has pointed out that the radio spectrum is heavily crowded with
most frequency bands already assigned to licensed users for a given service [37].
Moreover, the variation in estimated use of licensed spectrum ranges from 15%
to 85% [1], while the Defense Advance Research Projects Agency (DARPA) [26]
estimated that only 2% of the allocated spectrum is in use in the USA at any given
moment. For these reasons, it is clear that a flexible utilization of the radio spectrum
is necessary. In fact, according to Haykin [23], “in many bands, spectrum access is
a more significant problem than physical scarcity of spectrum, in large part due to
legacy command-and-control regulation that limits the ability of potential spectrum
users to obtain such access.”

This means that radio spectrum utilization can be significantly improved if unli-
censed (secondary) users are allowed to access licensed bands if and only if at
a given time and in a given location licensed (primary) users are not using it. It
has now become abundantly clear that a dynamic management of radio spectrum
allocation is required to meet the growing demand and to have efficient utiliza-
tion of the spectrum. To facilitate this, continuous and dynamic observation of
the radio spectrum in order to adaptively react to wireless channel conditions are
important issues in improving radio spectrum utilization [23]. In a broad sense,
the cognitive radio provides different solutions in order to solve some of these
problems [16]. A broad survey of cognitive radio approaches will be provided
in Sect. 2.

Haykin [23] provides the following definition for cognitive radio:

Cognitive Radio is an intelligent wireless communication system that is aware
of its surrounding environment (i.e., outside world), and uses the methodol-
ogy of understanding-by-building to learn from the environment and adapt its
internal states to statistical variations in the incoming RF stimuli by making
corresponding changes in certain operating parameters (e.g., transmit-power,
carrier-frequency, and modulation strategy) in real-time, with two primary
objectives in mind:

• highly reliable communications whenever and wherever needed;
• efficient utilization of the radio spectrum.

As it is clear from this definition, the common keywords for an efficient cogni-
tive radio are awareness and reconfigurability. In a radio environment, awareness
means the capability of the cognitive radio to understand, learn, and predict what
is happening in the radio spectrum [16], that is, cognitive radio is able to identify

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 181

the transmitted waveform, to localize the radio sources, etc. Spectrum awareness
is also known as spectrum sensing and it will be addressed in detail in Sect. 3.
Reconfigurability is necessary to provide self-configuration of some internal param-
eters according to the observed radio spectrum [23]. Reconfigurability provides
self-optimization [25] of the cognitive radio in order to accommodate new standards
and new services as they emerge [16]. Furthermore, reconfigurability is enormously
important for both civilian and military applications especially when unforeseen
situations happen and some network infrastructures are not available providing self-
healing and self-protection capabilities.

The capabilities listed above perfectly match with the autonomic computing
vision proposed in [25]. In Table 1 a self-management capabilities comparison
among classical autonomic computing system [25] and cognitive radio system is
provided.

The first example of a cognitive radio system equipped with the capabilities
listed in Table 1 has been considered in the DARPA NeXt Generation (XG) radio
development program [13, 26]. This cognitive radio senses the radio environment,
identifies an opportunity in which secondary users can transmit in a given licensed
frequency band, adapts the transmission parameters in order to exploit the detected
opportunity, transmits, and releases the occupied band if a licensed user accesses
it [16]. These tasks are cyclically executed according to stored experience provided
by a learning process.

Table 1 Self-management capabilities comparison among autonomic computing system and cog-
nitive radio system

Ability Autonomic computing Cognitive radio

Self-configuration Automated configuration of
components and systems
follows high-level policies. Rest
of system adjusts automatically
and seamlessly [25].

Automated optimal configuration
of transmission parameters
according to spectrum sensing
in order to avoid harmful
interference to licensed users.

Self-optimization Components and systems
continually seek opportunities to
improve their own performance
and efficiency [25].

Systems continuously perform
spectrum sensing to detect
opportunities to improve their
own performance and spectrum
utilization.

Self-healing System automatically detects,
diagnoses, and repairs localized
software and hardware
problems [25].

System automatically vacates the
occupied band if a licensed user
attempts to access it.

Self-protection System automatically defends
against malicious attacks or
cascading failures. It uses early
warning to anticipate and
prevent systemwide
failures [25].

System automatically defends
against malicious attacks and
avoids cascading failures while
detecting opportunities.

182 L. Bixio et al.

2 Cognitive Radio Approaches

2.1 Mitola’s Definition

One of the main contributors to the definition of the cognitive radio paradigm was
Joseph Mitola III. In [29], he defined the cognitive radio as a system that “can
track the user’s environment over time and space. Cognitive radio, then, matches
its internal models to external observations to understand what it means to commute
to and from work, take a business trip to Europe, go on vacation, and so on.” From
this definition, the intrinsic capabilities of autonomy, transparency, and learning are
evident. In his vision, such capabilities have to be implemented using a common
META-Language (MTL) that he defines as Radio Knowledge Representation Lan-
guage (RKRL). It is useful to describe, at a semantic level, according to classical
artificial intelligence (AI) vision, “space-time models of the user, network, radio
resources, and services” that can “personalize and enhance the consumer’s experi-
ence.” He models the behavior of the proposed cognitive radio using a state/transi-
tion representation known as a cognitive cycle (CC) [29]. It represents the possible
time-varying states the cognitive radio can assume and which are the transitions that
link the states with each other. In Mitola’s CC, the transitions are triggering events
or situations that can happen in the surrounding environment (e.g., external world).

Mitola focused his work on the mass market civilian applications. As a matter
of fact, he was interested in the impacts of a dynamic and multipurpose cognitive
device on the possible service provisioning from a network provider side. Starting
from this civilian- and market-oriented framework, this original work (and the fol-
lowing ones) gave a great impetus to the scientific community for facing the various
open issues/challenges in order to implement a practical, cognitive radio device,
with self-management capabilities.

2.2 Haykin’s Definition

Six years after Mitola, another important researcher, Simon Haykin, provided a
more precise and detailed definition of cognitive radio in his paper Cognitive Radio:
Brain-Empowered Wireless Communications [23]. As stated in Sect. 1, in autonomic
wireless communications, a cognitive radio can be defined as a system provided
with some sort of intelligence. Such a system is able to sense the surrounding envi-
ronment and using a “methodology of understanding-by-building to learn from the
environment” adapts its internal parameters in order to achieve two global goals:
(1) “highly reliable communications” and (2) “efficient utilization of the radio spec-
trum” [23].

While Mitola was mainly interested in the impact of the cognitive and self-
management capabilities onto the communications market. Haykin addressed the
problem from a more general point of view providing a more detailed and explicit
definition. Both agreed on the fact that the Software-Defined Radio (SDR) sys-
tems [29] can be used for developing a practical and efficient cognitive radio. Fur-
thermore, according to Haykin [23], “Software-Defined Radio (SDR) is a practical

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 183

reality today, thanks to the convergence of two key technologies: digital radio, and
computer software.” It is now clear that in order to implement a cognitive radio,
it is necessary to provide some cognition capabilities (sometimes also known as
intelligence or smartness) to a flexible and highly reconfigurable system, provided
by the SDR architecture [23].

The behavior of the cognitive dynamic system proposed by Haykin can be rep-
resented by a CC [23], similar to Mitola’s one [29] (as explained in Sect. 2.1), but
much more clustered in macroprocesses. This behavioral approach is based on three
macrostates which establish, the cognitive foundations of the cognitive radio [23]:

• “Radio-scene analysis”: Cognitive radio has to detect opportunities and adapt its
transmission parameters in order to avoid harmful interference to primary users.

• “Channel identification”: Cognitive radio has to estimate the channel state infor-
mation (CSI) in order to predict the channel capacity that it can exploit.

• “Transmit-power control and dynamic spectrum management”: Cognitive radio
has to perform power control and dynamic spectrum utilization in order to
achieve the above listed tasks.

Such active states and their characteristics define the main characteristics of a cog-
nitive radio from a signal processing/communications point of view and they are
widely accepted by the cognitive radio scientific community.

2.3 Other Visions

In [22], Palicot discusses his idea for the evolution of a cognitive radio device from
a common SDR platform. In fact, he proposes to add self-management capabili-
ties in order to provide awareness to a reconfigurable radio and he supplies some
assumptions for adding such capabilities to the considered system [22]:

Sensing means refer to all the possible methods the cognitive radio system has
at its disposal for observing its environment, which can be categorized in four
main families described below:

• electromagnetic environment: spectrum occupancy, signal-to-noise ratio
(SNR), multipath propagation, etc.

• hardware environment: battery level, power consumption, computational
resources load, etc.

• network environment: telecommunication standards (GSM, UMTS, WiFi,
etc.), operators and services available in the vicinity, traffic load on a link,
etc.

• user-related environment: position, speed, time of day, user preferences,
user profile (access rights, contract, . . .), video and audio sensor (presence
detection, voice recognition), etc.

184 L. Bixio et al.

Such collected observations are stored and processed to provide self-awareness
to the cognitive radio system. Palicot’s work is focused on the design of a cognitive
“engine” for implementing the reconfiguration operations on the SDR platform.

Other researchers are much more interested in the self-management and learning
capabilities of the cognitive radio, such as Doyle and Sutton. In [31] and [39], they
design the high-level cognitive capabilities of their platform through classical AI
approaches and the usage of a META-Language. In their system, both the CC and
the reconfiguration manager, a type of middleware able to control hardware and soft-
ware reconfiguration abilities, has been implemented by programming languages
such as the eXtensible Markup Language or the Web Ontology Language.

Another semantic rule-based approach is the one proposed by Clancy et al.
in [10]: “a cognitive radio extends a software radio by adding an independent
cognitive engine, composed of a knowledge base, reasoning engine, and learning
engine, to drive software modifications.” All these characteristics are implemented
in semantic or subsemantic states which interact with each other through binary
logic operators. Clancy’s cognitive radio is implemented on an open source Software
Communications Architecture and it is able to learn from the acquired knowledge.

In [16], Bostian et al. propose a system that jointly exploit a feature based opti-
mization algorithm and a classical case-based reasoning engine. The strength of the
system relies on the multiobjective decision making (MODM) approach for opti-
mal reconfiguration. It takes into account all the different quantitative parameters
about the goodness of the wireless link, such as packet delay, data rate, SNR, the
fading statistics, and it jointly optimizes all the parameters of the Physical (PHY)
and Link (LLC) levels of the ISO-OSI stack. The optimization is performed using
a genetic algorithm which allows us to find optimal solutions in multidimensional
and heterogeneous optimization spaces.

3 Spectrum Sensing

As has been pointed out in the previous sections, a cognitive radio has to be able to
sense the environment over a wide portion of the spectrum and autonomously adapt
to it since the cognitive radio does not have rights to any frequency bands.

This task performed by cognitive radio is known as spectrum sensing [1, 16, 23]
(or Spectrum Monitoring [17–19]). Generally speaking, spectrum sensing in wire-
less communications is one of the most challenging tasks that a cognitive radio has
to perform. Depending on the required level of automation and self-management
capabilities, spectrum sensing has to provide to the cognitive radio different info-
mation in order to predict the radio spectrum utilization. For these reasons, in
some applications, providing information only about the frequency usage would
not be sufficient, and other characteristics about the portion of the spectrum under
investigation have to be provided in order to predict the radio spectrum utiliza-
tion (e.g., number of transmitted signals, carrier frequency, power, transmission
technique, modulation). In fact, prior knowledge about the transmitted signal and

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 185

Fig. 1 Classification of
spectrum sensing techniques:
stand alone, and cooperative
and distributed

its parameters (e.g., carrier frequency, power, modulation) is usually not available.
Moreover, received signals are corrupted by channel distortions (e.g., severe multi-
path fading), and spread spectrum transmission techniques are often used in order
to obtain a low probability of interception.

Generally, spectrum sensing techniques can be classified as stand alone, and
cooperative and distributed, as shown in Fig. 1.

In the following sections a survey on these spectrum sensing techniques will
be provided and advantages/disadvantage for the different approaches will be
discussed.

3.1 Stand-Alone Spectrum Sensing

Stand-alone spectrum sensing techniques have been treated extensively in the liter-
ature [1, 2, 8, 14, 16, 17, 20, 21, 34, 41]. This kind of techniques have been studied
for military and civilian applications for signal detection [21], automatic modulation
classification [14], radio source localization [8], and communication jamming [21]
purposes.

In the past, the most commonly used approach to spectrum sensing was based on
energy detector [21, 41] (or radiometer), that is measurement of received energy in
selected time and frequency intervals. Radiometer is one of the most used techniques
thanks to its low computational load. However, it is well known that this strategy is
highly sensitive to unknown and varying noise level [21]. In order to overcome this
limitation, some modified radiometers, with adaptive thresholds and filtering, have
been proposed [20]. In spite of these modified approaches, unknown and varying
noise level is the most serious impediment to reliable spectrum sensing [21]. More-
over, in the past decade, different spread spectrum transmission techniques have
been proposed in order to obtain a low probability of interception. If such techniques
are used, received signal power is close to the noise threshold (or sometimes under,
i.e., negative SNR) and it is undetectable by a radiometer without increasing the
false alarm probability [21].

When some information about the transmitted signal is known to the cognitive
radio, the optimal detector, under assumption of stationary Gaussian noise, is the
matched filter since it maximizes the received SNR [34]. The matched filter requires
perfect knowledge of the transmitted signal parameters, such as modulation type,
order, and pulse shape in order to provide optimal detection. But if perfect knowl-
edge of the transmitted signal is not available or it is not accurate, the performance

186 L. Bixio et al.

of the matched filter degrade quickly [1]. In a cognitive radio environment a priori
knowledge about the transmitted signal is usually not available. In spite of this,
it is possible to use a matched filter in a cognitive radio that relies on SDR [23]
as it is able to autonomously select the correct filter according to the radio envi-
ronment under investigation. This means that a wide range of matched filters (one
for each signal that is expected to be present in the considered radio environment)
have to be implemented on a software platform with self-management capabilities.
Thanks to self-management and reconfigurability capabilities, it is still possible to
obtain optimal detection at the price of high computational load. For this reason,
the matched filter approach is not suitable for practical cognitive radios, especially
when a crowded frequency band is considered (e.g. Industrial, Scientific, and Med-
ical band).

An alternative spectrum sensing technique is based on feature detection. In this
context, a feature is defined as an inherent characteristic which is unique for each
class of signals. In the literature [1, 2, 14, 16, 17, 21, 32, 40], different features
have been considered in order to detect and classify signals in a given radio environ-
ment. Some of the most intuitive features considered are instantaneous amplitude,
phase, and frequency [2]. Such features are usually used to detect and classify linear
modulation [14].

More recently, analog-to-digital conversion has made the use of transforms prac-
tical [16] in order to localize the changes in instantaneous amplitude, phase, and
frequency. Typical transforms used are discrete fourier transform [16], wavelet
transform [14], and Wigner–Ville transform [17]. The above-mentioned feature
detection approaches have advantages depending on the considered application,
computational complexity, and radio environment.

One of the most used and interesting feature detection technique is based on
the cyclic feature. This technique was first introduced by Gardener in [21] for
signal interception purposes but, in the previous years, Jondral et al. [32] and
Doyle et al. [40] have proposed the use of the cyclic feature as a spectrum sensing
technique for cognitive radio applications. Cyclic-feature detection approaches are
based on the fact that modulated signal are usually coupled with sine wave carriers,
hopping sequences, cyclic prefixes, spreading codes, or pulse trains, which result
in a built-in periodicity [1]. These modulated signals are said to be cyclostationary
since their mean and autocorrelation functions exhibit periodicity [21]. Such period-
icity can be used as a feature and can be detected by analyzing a spectral correlation
function (SCF) [1, 21], also known as cyclic spectrum [21]. The main advantage
obtained by using SCF analysis is that it is possible to distinguish between noise and
signal (even at negative SNR) thanks to the fact that noise is a wide-sense stationary
random process [33], with no spectral correlation, while the modulated signals are
cyclostationary, with spectral correlation due to embedded periodicity. Therefore, a
cyclic-feature detector can overcome the energy detector limits in detecting signals
in low SNR environments [1]. In fact, signals with overlapping features in the power
spectrum, can have nonoverlapping features in the cyclic spectrum [21]. Moreover,
the cyclic spectrum is a much richer domain for signal detection than classical power
spectrum. This property allows us to use this technique as a more complete tool [21]

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 187

for spectrum sensing. In spite of these advantages, cyclic-feature detection is com-
putationally complex and requires significantly long observation time [1].

3.2 Cooperative/Distributed Spectrum Sensing

In spite of the advances made on stand-alone techniques, spectrum sensing can
remains a complex task when “difficult” scenarios are considered [16]. In real radio
environments, the received signal is corrupted by multipath fading, frequency selec-
tivity, time varying channels, and noise [23]. In fact, it is well known that radio
propagation across a wireless channel is affected by path loss (that is, received signal
power decreases with the distance between transmitter and receiver) and shadowing
(that is, received signal power fluctuates around the path loss) [23]. These phenom-
ena can cause significant fluctuations of the signal level at the cognitive radio, which
is then unable to perform reliable spectrum sensing [23] if a stand alone technique is
used. This is of particular importance in cognitive radio, since a “false opportunity”
could be detected due to a sudden fading of the received signal caused by multipath
resulting in incorrect spectrum allocation.

In order to overcome such limits and to improve the performance of spectrum
sensing, cooperative and distributed techniques have been proposed [12] in order to
exploit spatial diversity [36] inherent in cognitive radios that are geographically sep-
arated in the considered environment. Such techniques may significantly improve
the reliability of spectrum sensing at the cost of increased computational complex-
ity and bandwidth usage for exchanging information among cognitive radios [12].
It is necessary to remark that additional algorithms are needed in order to combine
shared information about “local” spectrum sensing. Moreover, a dedicated feedback
channel has to be allocated in order to share collected information. When cognitive
radio applications are considered where a dedicated channel is not available [23],
other methods which require low or no overhead should be considered [23].

To this end, different methods are available in the literature [42] and they can be
categorized on the basis of the exchanged information between cognitive radios [42]
(or on the basis of the computational capabilities of the cognitive radio). According
to Varshney’s distributed detection theory book [42], it is possible to identify two
classes of distributed spectrum sensing techniques: distributed detection with fusion
and distributed detection without fusion.

In the former [12], a set of N cooperative cognitive radios share the same radio
environment. Each cognitive radio performs spectrum sensing by one of the tech-
niques proposed in Sect. 3.1 according to its computational capability. Then, it sends
the output of the spectrum sensing task to a data fusion center, which provides a
“global” spectrum sensing decision based on gathered data [12]. It is necessary
to remark that in this context, different solutions can be proposed depending on
the level of cooperation among cognitive radios [42]. An example of distributed
detection with fusion is shown in Fig. 2. Although distributed detection with fusion
spectrum sensing techniques achieve better performance than stand-alone spectrum

188 L. Bixio et al.

Fig. 2 Example of distributed detection with fusion scenario: N cognitive radios share the same
radio environment and observe it. Each cognitive radio performs spectrum sensing using one of
the proposed techniques in Sect. 3.1. It sends the output of its processing (ui, i = 1, . . . , N) to a
data fusion center. This center computes a global spectrum sensing decision u0 based on received
messages ui

sensing, there are some open issues for implementing them in practical cognitive
radio applications [42]:

• a dedicated channel to share observations may not be available;
• on the one hand, a dedicated channel can improve the performance of spectrum

sensing; but on the other hand, it can alter the observed radio environment;
• high computational capabilities at the cognitive radios are required;
• the shared observations/decisions are “local” and could be corrupted by shad-

owing as discussed in Sect. 3.1 and can affect the performance of distributed
spectrum sensing. In order to overcome such limitation, each terminal can asso-
ciate a measure of accuracy (or confidence) to its shared information at the cost
of an increase in dedicated channel bandwidth.

In order to overcome the above listed issues, distributed detection without fusion
spectrum sensing techniques have been developed. In these approaches a set of N
cooperative cognitive radios share the same radio environment. Each cognitive radio
performs spectrum sensing based on its local observation. These local decisions are
not fused to obtain a global decision and no sharing of information is required. Cog-
nitive radios operation is coupled (dashed line in Fig. 3) to obtain a single decision
based on a global goal [42]. An example of distributed detection without fusion is
shown in Fig. 3.

In Sect. 5.3 a detailed description of a distributed detection without fusion spec-
trum sensing technique based on distributed detection theory [42] will be provided.
As will be shown, such a technique is based on “implicit” cooperation among ter-
minals and it does not require any dedicated channel.

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 189

Fig. 3 Example of distributed
detection without fusion
scenario: N cognitive radios
share the same radio
environment and observe it.
Each cognitive radio
performs local decision (ui,
i = 1, . . . , N). The cognitive
radio do not communicate
with each other, but their
operation is coupled (dashed
line) to obtain a global goal

4 Embodied Cognition-Based Systems: Their Role in Cognitive
Radio

The algorithmic solutions for spectrum sensing (or often called mode identification
and spectrum monitoring—MISM) developed until now, are only a part of the whole
cognitive radio system. As a matter of fact, there are operative methodologies which
describe the entire behavioral model, the so-called CC. These methodologies could
be adapted for the cognitive radio system.

In order to introduce the proposed embodied cognition-based framework, let us
recall the basic characteristics of a CC. The first stage of the cycle (Sensing or
Observation) represents a passive interaction of the terminal with the environment:
the cognitive terminal (CT) gathers information about both its internal state and
the surrounding environment. In the second step (Analysis), the acquired data are
processed and analyzed in order to provide the system with a representation of
the perceived context. In the Decision stage, the cognitive system has to decide
which is the most proper (re)action to the received coupled external/internal stimuli
(i.e., a contextual response). The action represents an active interaction with the
external environment because the CT tries to influence the physical context through
its actions, in order to gain an “advantage.” In engineering terms, the CT evaluates
a functional that represents a cost/merit related to a certain potential action.

While the CC is a shared concept among almost the entire cognitive radio com-
munity, different research lines can be seen in how the knowledge is managed and
processed within each stage of the cycle. In fact, each stage of the CC requires
management of information, which can be naturally embedded in the entity itself or
acquired during its normal life. This knowledge can be organized according to two
principal models:

• Symbolic Representation—Semantic Inference.
• Physically (body) grounded signal-based representation.

The former model tries to describe the knowledge in the classical rule-based
approach for the construction of AIs [30]. The latter, and perhaps more interesting,

190 L. Bixio et al.

vision takes inspiration from the work on Robotics of Brooks [5] and looks at intelli-
gence as emerging from the active (interactional) body capabilities, the basic one of
which is surely the possibility of motion. It is referred in the literature as Embodied
Cognition [38]. A confirmation, at a biological level, of the validity of this approach
to intelligence comes from recent neurophysiological studies: the neuroscientist
Llinas [27] hypothesized that, from an evolutionary point of view, one of the primary
goal of intelligent multicellular organisms evolving toward higher level organisms is
to use contextual information obtained through sensing to move in the surrounding
environment. Motion can provide to the living entity an advantage in life conditions,
due, for example, to the ability to reach a safer or a food-rich point. In the human
brain, these kinds of motion, which are genetically codified into the human being,
are generated by specific groups of neurons called fixed action patterns (FAPs),
whose output is able to modulate motor muscles actions.

These preliminary assumptions can lead to the definition of cognitive models
(and hence of specific CCs) characterized by specific embodied features that are
particularly useful in the design process of cooperation mechanisms, such as dis-
tributed spectrum sensing.

The representation of the internal knowledge in embodied systems, and hence the
description of context, is hence strictly linked with the perceptive/motory possibil-
ities of the entity itself. Physical limitations of motion possibilities drive, tackling
back the CC, the possibilities at the decision stage too and its internal knowledge
representation. The same concept can hence be extended going backward into the
cycle until to the sensing stage.

This fact is evident when the cognitive radio is considered as a subcomponent of
a more general cognitive system, like a mini-robot which can move independently
in a known or unknown environment. In this situation, the Decision stage can be
tuned in order to move the robot (or to suggest a motion to a human) to a location
which allows the best “point of view” for spectrum monitoring and analysis. If at
least two cognitive cooperative entities are present in the environment, a distributed
algorithm for transmission mode classification can be developed starting from the
embodied formalization and management of knowledge.

However, a coherent problem definition together with a knowledge representa-
tion is needed to allow a quantitative engineering approach. In the following, these
concepts, ranging from general knowledge representation to specific analysis and
decision tools needed to provide a suitable framework, are presented.

5 Spectrum Sensing in Embodied Cognition-Based System

5.1 Spectrum Sensing Problem Definition

Let us consider a set of CTs CT = {CTn : n = 1, . . . , N} moving in an environment
characterized by the presence of a set of radio sources RS = {RSk : k = 1, . . . , K}
Each source is defined by the pair RSk = {xRSk , Mdm} where xRSk is the position of

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 191

the single source in the sources’ common reference system XRS and Md = {Mdm :
m = 1, . . . , M} defines one of the possible air interfaces considered in the problem.
The single air interface is hence defined by Mdm = {Modm, Bm,Cm, Pm

t } where
Modm is the transmission modality (e.g., Orthogonal Frequency Division Multiplex-
ing (OFDM), Complementary Code Keying (CCK)), Bm is the occupied bandwidth,
Cm is the central carrier frequency and finally Pm

t is the transmitted power level.
According to the above notation, the general problem addressed in this paper can

be defined as finding the active air interfaces Mdm, m = 1, · · · , M′ ≤ M associated
with a set of active radio sources RSk, : k = 1, . . . , K′ ≤ K starting from spec-
trum sensing performed by the pool of N cooperating CTs which embed embodied
cognition capabilities.

5.2 Embodied Cognitive Sensor Definition

The Embodied knowledge representation is derived from the physical body capabil-
ities. For this reason, it is necessary to define the body of the CT first. Ideally, the
definition should be in terms of mass/volume/inertia, but here it will be related to
the CT’s interactive capabilities which influence the behavior of the CT itself.

Let us define the body through its environmental interactive aspects, i.e., it is
equipped with a set of sensors Se = {Seh : h = 1, . . . , H} and it can perform a set
of possible actions A = {Ap : p = 1, . . . , P} in the space.

As a starting point, let us define a basic cooperative body where Sec = {Seh :
h = R,V } with R and V representing the radio (omnidirectional antenna) and video
sensing modalities, respectively, and the index c refers to the cooperative terminal.

The possible actions, at time t, are A = {�x = (
ρ cos(θ), ρ sin(θ)

)
: 0 ≤ θ ≤

2�, ρ = constant}, i.e., they are limited to an omnidirectional movement, of the
body itself, of constant length ρ . A basic FAP (Sect. 4) can hence be defined as
FAP = {�x(t) : t = t0, . . . , t0 + �T }, where � is the maximum number of successive
actions to pursue, while T is the discrete time interval.

Besides the body, each CT can also be defined through the knowledge, embodied
in itself, that allows it to function. Let us consider a homomorphic set of terminals
where each terminal is supposed to have the same behavioral model (e.g., a set of
“cloned” robots).

Starting from the basic body, the required knowledge can be defined as the set
Kn = {KPn , KE, KEnv}, where KPn is the knowledge about the space surrounding the
terminal, KE is composed of all the embodied functions that constitute the CC, and
KEnv is the knowledge that the CT has available about the physical/statistical inter-
action characteristics of the objects present in the environment.

The space surrounding each cooperating terminal is referred to via its own
reference coordinate system (RCS) and hence KPn = {xCT n (t) ∈ XCT n

: t =
t0, . . . , t0 + ωT }, where ω is the running time index.

The Embodied knowledge KE can be structured into two levels for each compo-
nent r of the CC: KE = {Er(XCT n

), Fr(.) : r = {Sense, Analyze, Decide, Act}}. The

192 L. Bixio et al.

Table 2 Instinctual knowledge codification

Er(XCTn
) Description

ESense(XCTn
) Antenna radiation pattern,

video-camera field-of-view
EAnalyze(XCTn

) Available algorithms/methodologies
(time/space/condition choice)

EDecide(XCTn
) FAPs library—all the possible motion strategies

EAct(XCTn
) Physical driver signals (voltage, current, time)

first level Er(XCTn
) is composed of all the naturally embedded knowledge codified

into embodied maps. The attribute embodied related to the representation of the
knowledge means that it is all referenced to the CT’s body or the CT’s point of
view. In Table 2 a more detailed explanation the maps for each stage of the CC is
shown.

The second level is the procedural knowledge represented by the operational
basic functions that constitute the interstage information transformation processes
within the CC. Given a certain environmental context Ec(t), how this condition of
the external world is processed within the CT in Table 3 is shown.

Let us remark that in the present work only the design process of the Analysis and
Decision functions will be considered. Furthermore, the semantic or subsemantic
label L(t, xCT n) is one out of all the possible C′ labels considered for the spectrum
sensing problem, i.e. detecting the active air interfaces Mdm of the active radio
sources RSk.

The environmental knowledge can be generally defined as KEnv = {Ki
PE

, Ki
BE

:
i = 1, . . . , I}, i.e., it contains the information about the relative position (Ki

PE
), with

respect to the CT, and the behavioral model (Ki
BE

) of all the I entities interacting
with the CT itself. Let us suppose that the CT always perceives the other interacting
entities as cognitive (see Fig. 4). This concept will be used in the following as the
basis for designing the simulation tool, since each one of the interacting entities is
described through the sets contained in KEnv while the environment is substantially

Table 3 Procedural embodied knowledge

Functions Description

O(t, xCT n) = FSense(xCT n , Ec(t), Kn) Extraction of the observation set
O(t, xCT n) = {Oh

n(t, xCT n) : h = 1, . . . , H}
v(t, xCT n) = v(xCT n , Kn, O(t, xCT n)) Features extraction

(encapsulated in the Analysis Stage)
L(t, xCT n) = FAnalyze(xCT n , O(t, xCT n), Kn) Label extraction – Context Representation

= C(xCT n , Kn, v(xCT n , Kn, O(t, xCT n))) Classification + Feature Extraction
D(t, xCT n) = FDecide(xCT n , L(t, xCT n), Kn) Taken Decision

Choice of the motion direction
a(t, xCT n) = FAct(xCT n , Kn, D(t, xCT n), O(t, xCT n)) Pilot signals generation

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 193

Fig. 4 Cognitive entity E1 can represent the cognitive entity E2 through a set of active mirror
knowledge simulating a cognitive cycle [28]

translated into a virtual shared medium, where all the players read/write performing
their sensing/actions.

The specific environmental knowledge can finally be represented as

KEnv = {KPRoom , KBRoom , Kk
PRS

, Kk
BRS

, KPj , KBj :
k = 1, . . . , K, j = 1, . . . , N, j �= n}

(1)

where each component is analyzed in Table 4.
In the following, a specific formalization for a spectrum sensing embodied algo-

rithm will be presented.

5.3 Distributed Embodied Cognition Approach

In this section, a general architecture for the Analysis and Decision stages of an
embodied cognitive radio terminal is presented. We leave out the interactional parts
(i.e., the sensing and action stages), under the assumption of a physically ideal body.

Table 4 Components of the environmental knowledge

Knowledge Definition Description

KPRoom {XRoom, T n
Room(XCT n

, t) :
xRoom

CT n
(t) = T n

Room(xCT n (t), t)}
Information (reference coordinate system—RCS,

Transformation Function) required for
computing the absolute position of the CT in
the environment (or Room).

KBRoom – Behavior of the Room (e.g. walls, doors)

Kk
PRS

Kk
PRS

= {xn
RSk

(t) ∈
XCT n

, XRSk
, TRSk (XRSk

, t)}
Relative position/orientation of the j-th radio

source; transformation function for linking
with Room RCS.

Kk
BRS

– Statistical description of the feature distributions
for all the possible transmission situations
allover the Room.

KPj {xn
CT j

(t) ∈
XCT n

, XCT j
, TCT j (XCT j

, t)}
Relative position/orientation of the jth CT respect

to the nth one (whose point of view is under
analysis) and transformation functions respect
to n-th RCS.

KB j – Under homomorphicity assumption is a mirroring
(as previously seen for interactions) of the
Embodied knowledge of n.

194 L. Bixio et al.

Let us start by assuming that the Room and the radio sources can be managed as
only one single, more complex, entity. In fact, the features the CT can observe are
the results of the interaction between the electromagnetic field (e.m.) field emitted
by the radio sources and the physical component of the Room (e.g., the multipath
effect).

As a starting point, let us consider a simple framework where only two CTs and
only one radio source (able to communicate with the Md1 air interface) that can
be switched on (hypothesis H1) or switched off (hypothesis H0) are present in the
environment.

After re-writing xRoom
CTi

(t) = xi(t), let us now define the quantities involved in the
information processing within the CC for CT1 (simply extensible to CT2), starting
from yi, that are the features extracted by the ith CT from the radio signal perceived
by the RS. The probability density functions (pdfs) p(yi|H0, xi) and p(yi|H1, xi)
statistically describe how the RS influence the perceptions of the CTi in both the
possible cases. Generalizing the previously defined pdfs, it is possible to obtain a
general behavior of the perceptual interactions between the CT and the RS in all the
Room: K1

BRS
comprises p(y|H0, x) and p(y|H1, x). The vector of features, that each

CT extracts from its observations, is hence composed of v(t, x1) = {yi, x̂1, x̂2, �x2},
where the hat represented an estimation of the considered variable.

Compared to the framework presented in [7, 17], in the current work the hypoth-
esis of perfect location knowledge is relaxed. The two variables are considered
as estimated by proper feature extraction functions, each one related to a pdf that
describes the statistical behavior of the function itself. The random variable (rv) x̂1

is hence described by the pdf p(xCT1|x̂CT1), while the rv x̂2 requires further analysis,
x̂2 being a function of x̂1. Let us consider, as an example, a transformation function
T̂CT1 composed of the only translational component. Calling d̂2 the estimated dis-
tance vector between CT1 and CT2, the absolute positions of the two CTs are linked
through the relationship x̂2 = x̂1 + d̂2. In this simple case, p(x1|x̂1) being the pdf of
x̂1 and p(d2|d̂2) the pdf of d̂2, the pdf of x̂2 will be p(x2|x̂2) = p(x1|x̂1) ∗ p(d2|d̂2),
where * denotes the convolutional operator.

Let ui = j : j = {0, 1} be the classification performed by CTi about the presence
of the hypothesis H0 or H1. This classification is associated with the presence of
the air interface Md1. It is hence possible to infer that the ui represents the MISM
classification. The pdfs p(ui = j|yi) : j = {0, 1} describe the statistical behavior
of the MISM classification algorithm in relationship with the perceived features yi.
This knowledge is part of the behavioral model of the interacting entity KB2 , but,
under the homomorphic assumption, it is also a part of the embodied knowledge,
i.e. it is in EAnalyze.

Each CT estimates the behavior of the companion CT through a mirror (or
inverse) decision process. Let us call this estimate ûi. The context label can hence
be defined as L(t, x1) = {u1, û2, x1, x2}.

Once the most important variables are defined, it is possible to analyze in more
detail how the single stages of the cycle can be structured.

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 195

5.3.1 Analysis Stage

The analysis stage is shown in Fig. 5. The feature extractor corresponds to the
function v(xCT n , Kn, O(t, xCT n)) defined in Sect. 5.2 and extracts from the perceived
observations the vector of features described in Sect. 5.3.

In particular, distributed detection is the fundamental component of the analysis
stage of the CC for the embodied cooperative CTs. This fact will be more clear after
the introduction of the distributed detection theory applied to the considered MISM
problem.

Starting from basic Distributed Detection Theory [42] and its application to an
ideal (in terms of location knowledge) MISM problem [7, 17], it is possible to re-
formalize the theory, in order to keep into account the uncertainty introduced by the
estimated locations.

Let us now define the distributed classification function [42]

�(y1, x1) =
u1=1

≷
u1=0

t1(x2) (2)

where � is the classical Bayesian likelihood function [24], un represents the
classification performed by the nth CT, and tn is the distributed detection
threshold [42].

The likelihood function has to be arranged in order to manage the uncertainty of
x̂1:

�(yn, x̂n) =
∫

XRoom
p(yn|H1, xn)p(xn|x̂n)∫

XRoom
p(yn|H0, xn)p(xn|x̂n)

(3)

while the distributed classification threshold is now computed as

Fig. 5 Analysis module of an embodied CT. The analysis stage is composed of three main sub-
blocks: the feature extractor, the mirror decision block, and the distributed classifier

196 L. Bixio et al.

tn(x̂ j) = P0

P1
·

(Kd − 1) + (2 − Kd)
∫

XRoom

p(u j = 0|H0, x j)p(x j|x̂ j)

1 + (Kd − 2)
∫

XRoom

p(u j = 0|H1, x j)p(x j|x̂ j)
(4)

If the pdfs p(x1|x̂1) and p(d2|d̂2) are unknown, a possible approach for practical
implementation can be their substitution with weighting functions w(d̂2) : � → R

and w′(x̂1) : � → R where the domains � and � are limited portions of XRoom.
It should be noted that the Bayesian threshold computed, based on distributed

detection theory, incorporates both the statistical behavior of the RS and the classifi-
cation behavior of CT2 computed at the point x̂2. This fact corresponds to the internal
simulation of the CC of the interacting entities that each embodied CT should per-
form. In fact, the pdf p(y2|Hj, x2) describes the perceptual interaction of CT2 with
the radio sources, while the pdf p(u2 = j|y2, x2) represents the Analysis stage of
the companion CT. This is one of the main reasons why the distributed detection
theory perfectly fits within the embodied cognition framework described here. This
theory paradigm allows us to simulate the behavior of the interacting entities and
to compare it with the observations/classification each CT performs (represented by
the likelihood function) in a one-shot computation, with a low computational load
compared to other solutions (e.g., agent-based internal emulation).

This simple binary case can be extended to multiple radio sources/air interfaces
as shown in [7, 17] by using binary tree-based parameters selection for a single
binary classifier or a multiple classifier approach where each classifier tests the
presence or absence of a specific hypothesis. The Mirror Decision stage is used in
the analysis stage to estimate which class CT2 could have classified having the action
(motion) the CT has actuated as input. This block will not be here considered, but
let us postpone some general considerations about it until after the introduction of
the Decision stage of the Embodied CTs.

The Distributed Classifier and the Mirror Decision, that work in parallel, com-
prise the classification function C(xCT n , Kn, v(xCT n , Kn, O(t, xCT n))), defined in Sect.
5.2, and together with the feature extractor above described they form the Analysis
survival function FSense.

5.3.2 Decision Stage

Before describing the Decision stage, it is necessary to define the final goal for the
CT. From a physiological point of view, the final goal of a living entity is homeosta-
sis [6], i.e., reaching of a dynamic equilibrium that allows the life of the entity itself.
This concept can be extended to higher cognitive layers: it is possible to infer that
homeostasis is the status of the CT in which it has gained the maximum advantage
(as previously cited in Sect. 4) with respect to its physical possibilities and to the
environmental context. In engineering terms, this situation corresponds to having
reached a maximum/minimum of a merit/cost functional. In the case of the MISM

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 197

system presented here, the functional should evaluate how much value the position
of the CT provides in the e.m. context.

The decision stage is devoted to choosing the best way to reach an homeostatic
situation. An engineering translation for this concept can be the minimization of a
global cost functional

xT = argxi
min
x1,x2

J(x1, x2, u1, u2) (5)

where xT is called the target point and represents the point where the CT can reach
its dynamic equilibrium. Since u2 is unavailable to CT1 it is possible to use a subop-
timal version

xT = argx1
min J(x1, x2, u1, û2) (6)

by replacing the u2 with its estimated version.
The decision stage choses the FAP that leads to the current dynamic target point

xT in a more direct (or with minimal effort) way. This is possible through the recur-
sive usage of a deterministic look-up table LT (ui) → �x that associates a motion
�x(xi), parametrized by the position of the CT, for each classification performed
by the CT. This table should be invertible, hence it should be possible to define
LT −1(�x(xi)) → ûi. This inverse function can be used in the Mirror Decision block
of the analysis stage as estimator for the class decided by the companion CT.

In the following, how the proposed architecture can perform in a particular sim-
ulated case will be presented.

6 Simulation and Results

6.1 Simulation Framework

Let us define the characteristics of the MISM problem, starting from the basic one,
addressed here. The simulated framework is presented in Fig. 6. The chosen Mds
have the particular characteristic that they share the same bandwidth and they can
operate simultaneously with their signals superimposed on each other. Furthermore,
Bluetooth (BT) transmits with a very low power (1 mW) within a range which is
much more limited than the WiFi (or WLAN—wireless local area network) one.

Each source can be associated with only one Md and the transmitted signal is
affected by the typical propagative phenomena that can be found in a common office,
according to the model presented in [35]. The possible situations the CT could find
in the environment are represented by four classes: WLAN, when only the WLAN
RS is switched on; BLUE, when only the BT RS is switched on; WLBL, when both
the RSs are switched on; NOISE, when only environmental noise is present. The
two CTs involved in the MISM classification can enter the room at any point of the
perimeter, without the consideration of the presence of fixed doors/walls, and they

198 L. Bixio et al.

Fig. 6 Simulated MISM Problem. Two RSs are present in a Room of 12×12 m. The absolute RCS
XRoom has its origin in one of the corners of the room. Two communication modes are possible:
Md1 →IEEE 802.11b WiFi; Md2 →Bluetooth

are able to move within the room itself. Each CT is considered provided with the
basic cooperative body defined in Sect. 5.2 with ρ = 1m and � = 1. Each FAP is
composed of a single motion �x.

In order to solve the specific MISM problem, two time–frequency (TF) features,
derived from the Wigner–Ville TF transform [11], have been used. In particular, the
standard deviation of the instantaneous frequency (σω) and maximum time dura-
tion of the signal (Tmax) have been proved [17] to be useful in the case of signals
superimposed in the same bandwidth.

The vector yi is hence composed of yi = [σω Tmax] and it is used as input
for the distributed classifier, together with the instantaneous positions of the two
CTs. In order to address the multiclass MISM problem, the multiple classifier
One-Against-All architecture [7] has been chosen. In the proposed implementation,
this architecture requires the computation of the upper bound of the theoretical
error probability. This information is obtained through simulated sample means
and covariances of the classes. Under the assumption of Gaussian p(yi|Hj, xi) :
j = {WLAN, BLUE,W LBL, NOISE}, it is possible to compute the Bhattacharyya
distance [4] and the Chernoff bound [9] Cj,k(xi) for each pair of classes. The upper
bound for a selected class j, Pj

err(xi), is hence given by Pj
err(xi) = max

k,k �= j
Cj,k(xi). The

values obtained at different training points of the environment have been interpo-
lated in order to obtain a continuous surface all over the room Pj

err(x). In order
to design the decision stage, the global minimum of Pj

err(x), for each class j, has
been chosen as the target point where the CT can reach the homeostatic condition
x j

T = arg min Pj
err(x). It is hence easy to obtain the look-up table LT (ui) (see Table 5).

The chosen motion is hence parametrized by xi before passing to the action stage
that will translate it into control signals (not considered in the present paper):

θ = ∠(x j
T − xi)

�x(xi) = [cos(θ) sin(θ)]
(7)

The inverse decision stage is hence defined as

ûi(t
∗ − T) = arg max

j
�xi(t

∗) · xT
j(xi, t∗ − T) (8)

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 199

Table 5 Lookup table of the decision stage

ui �x

WLAN move to xWLAN
T

BLUE move to xBLUE
T

WLBL move to xWLBL
T

NOISE move to xNOISE
T

where �xi(t∗) is the unit vector of the motion vector of CTi, perceived by the other
CT at the time instant t∗ while xT

j(xi, t∗ − T) is the unit vector of the direction that
links the previous position of CTi with the target point of the jth class.

As weighting functions w and w′, two equal 2D rectangular functions have been
used. The width of each function is 1 × 1 m2.
The developed simulation architecture is presented in Fig. 7 . Each CT has been
developed as a dynamic system through a closed-loop finite state machine whose
data structures are organized in the same sets as described in Sect. 5.2. Apart
from the specific implementation language, the CT has been implemented in order
to obtain an “emulation” of the cognitive core of the system. In fact, with the
proper language-dependent adjustments, it is possible to export the same architec-
tural structure on a hardware platform, without any particular ad hoc modifications.
Furthermore, the embodied framework is so general that it is possible to add new
functionalities (or to improve/modify the existing ones) without any impact on the
simulation structure itself.

In the following, the results obtained with the simulative/emulative system will
be presented.

6.2 Results

In order to simulate the uncertainty introduced by the sensing-based localization, a
2D Gaussian noise has been added to the absolute positions of the CTs, according
to the definition of the simulated problem. Furthermore, the following simulation
parameters have been used:

• Maximum number of iterations per simulation: 1000
• Number of simulations per class per problem: 1000

Fig. 7 Simulation
architecture. The simulation
system has been developed in
Matlab/Simulink c© and it has
been built up according to the
organization of knowledge
and the interaction models
presented in Sect. 5.2

200 L. Bixio et al.

• Standard deviation of positioning uncertainty: ρx, ρd = {0m, 1m, 2m}
• Kd = {2, 5}
• uniformly random choice for the entrance points of the CTs in the room

In the conditions considered, the simulator is able to perform a complete CC in about
0.019 s on a 1.86 GHz Intel Core 2 c© equipped general purpose PC with 1 GByte
DDR2 RAM.

Results for Kd = 2, that represent substantially a stand-alone classification, will
be omitted because they further confirm what was shown in [7] and [17]. As a matter
of fact, results obtained prove the effectiveness of the distributed method compared
with the stand-alone one.

Let us now consider the distributed algorithm with Kd = 5 (focus of the present
chapter) and let us analyze its behavior with the generalized computation of the
likelihood function and of the threshold. Results will be displayed in the form of
confusion matrices, where the first column indicates the ground truth (GT), i.e., the
real contextual situation, while the other columns represent the distribution of the
classifications performed by the CT. In the following, for simplicity of reading, the
class labels will be further abbreviated as W (WLAN), B (BLUE), WB (WLBL),
and N (NOISE).

An error on the localization of the companion terminal has been introduced. As
previously mentioned two cases has been evaluated: Gaussian errors with 1m or 2m
of standard deviation. The introduction of these uncertainties, partially compensated
by the weighting function, has little impact on the performances of the classifier as
shown in Table 6 and in Table 7. A better design of w could lead to a substantial
reduction of these errors. The introduction of the weighting function w′, in the
computation of both � and ti, has an unexpected results on the robustness of the
system. In fact, despite the error introduced in the self localization of the terminal,
the obtained results are similar to the ones obtained with perfect knowledge.

Since we are interested to evaluate the system performances in the worst condi-
tions, only variances of 2m will be considered.

Probably more interesting results are provided by the simultaneous usage of the
distributed classifier and of the embodied cognition framework. The previous results
are referred to one-shot classifications, while the embodied cognition framework
employs an iterative approach which has as its goal reaching the homeostatic con-
dition. For this reason, let us analyze the performances of mode classification in the
homeostatic condition. The confusion matrices of the final mode classification at

Table 6 Confusion matrices for ρx = 0m

ρx = 0m ρd = 1m ρd = 2m

GT/CLASS W (%) B (%) WB (%) N (%) W (%) B (%) WB (%) N (%)

WLAN 79.1 7.4 13.3 0.2 79.9 7.6 12.3 0.2
BLUE 30.5 68.5 0.0 1.0 30.6 68.6 0.0 0.8
WLBL 79.1 20.1 0.7 0.1 79.1 20.1 0.7 0.1
NOISE 0.0 41.2 0.0 58.8 0.0 40.6 0.0 59.4

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 201

Table 7 Confusion matrix for ρx = 2m

ρx = 2m ρx = 2m

GT/CLASS W (%) B (%) WB (%) N (%)

WLAN 85.8 11.2 2.8 0.2
BLUE 0.7 76.7 1.2 21.4
WLBL 63.2 30.4 6.3 0.1
NOISE 0.0 10.7 0.0 89.3

Table 8 Confusion matrices in homeostatic situation
ρx = 2m ρd = 0, ρx = 2—homeostasis ρd = 2, ρx = 2—homeostasis

GT/CLASS W (%) B (%) WB (%) N (%) W (%) B (%) WB (%) N (%)

WLAN 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
BLUE 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0
WLBL 100.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
NOISE 0.0 0.7 0.0 99.3 0.0 0.2 0.0 99.8

homeostasis, for the most complex simulated problems, in Table 8 are shown. We
observe that, even with memoryless terminals, the iterative exploration of the room
and the reciprocal observation of the two involved CTs, lead to an almost complete
reduction of the MISM misclassification, with the only exception of the WLBL
class. As a matter of fact, in an office indoor environment, BT has a maximum
range of less than 10 m, and the combined effects of multipath and the spurious
cross-terms introduced by the Wigner distribution can create misclassifications. This
exception is relatively problematic for a MISM application. In fact, the CTs always
decide the presence of an available communication signal and never confuse it with
the NOISE class. These errors hence do not limit the always on communication
capabilities of the CT.

7 Conclusions

This chapter introduced the methodology to solve the autonomic computing prob-
lems with CR terminals. A discussion on the state of the art on the different visions
on how to build up a CR and how different spectrum sensing capabilities can
be implemented, has been provided. Then an embodied cognition-based approach
to distributed spectrum sensing was presented. The new framework was designed
by combining knowledge coming from different fields of cognitive neurosciences,
robotics, and AI. Starting from the awareness of the physical capabilities of the
body, the mind of the embodied cognitive radio system can be developed through
an organization of the internal knowledge that directly represent the active/passive
interactions of the entity with the players involved in the problem. This framework
has been particularly designed addressing the MISM problem and some mathemat-
ical tools, fitting with the framework, for the implementation of such a system have

202 L. Bixio et al.

been provided. In particular, Distributed Detection Theory has been shown to realize
embodied cognition capabilities in a simple and fruitful way.

A simulation/emulation tool has been implemented in order to prove the effec-
tiveness of the embodied cognition framework. The simulated problems were
intended as the first steps in the direction of the applicability of distributed spec-
trum sensing to more realistic and more complex autonomic computing problems
compared to the ones that could be found in the state of the art.

References

1. Akyildiz I, Lee W, Vuran M, Mohanty S (2006) NeXt generation/dynamic spectrum
access/cognitive radio wireless networks: A survey. Computer Networks 50(13):2127–2159

2. Azzouz E, Nandi A (1996) Automatic Modulation Recognition of Communication Signals.
Kluwer Academic Publishers Norwell, MA, USA

3. Bai L, Chou D, Yen D, Lin B (2005) Mobile commerce: its market analyses. International
Journal of Mobile Communications 3(1):66–81

4. Bhattacharyya A (1943) On a measure of divergence between two statistical populations
defined by their probability distributions. Bulletin of the Calcutta Mathematical Society
35:99–109

5. Brooks RA (1991) Elephants do not play chess, MIT press, chap in “Designing Autonomous
Agents”, pp 3–15

6. Canon WB (1932) The wisdom of the body. W. W. Norton & Co., New York, USA
7. Cattoni A, Minetti I, Gandetto M, Niu R, Varshney P, Ragazzoni C (2006) A spectrum sens-

ing algorithm based on distributed cognitive models. In: SDR Forum Technical Conference,
Orlando, FL, USA

8. Chen CK, Gardner WA (1992) Signal-selective time-difference-of-arrival estimation for pas-
sive location of man-made signal sources in highly corruptive environments, Part II: algo-
rithms and performance. IEEE Transactions on Signal Processing 40(5):1185–1197

9. Chernoff H (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. The Annals of Mathematical Statistics 23(4):493–507

10. Clancy C, Hecker J, Stuntebeck E, O’Shea T (2007) Applications of machine learning to
cognitive radio networks. IEEE Wireless Communications 14(4):47–52

11. Cohen L (1994) Time Frequency Analysis : Theory and Applications, 1st edn. Prentice-Hall
Signal Processing, Prentice Hall PTR

12. da Silva CRCM, Choi B, Kim K (2007) Distributed Spectrum Sensing for Cognitive Radio
Systems. In: 2007 Workshop on Information Theory and Applications, La Jolla, CA, USA

13. DARPA XG WG (2003) The XG Architectural Framework v1.0. Tech. rep., DARPA
14. Dobre O, Abdi A, Bar-Ness Y, Su W (2007) Survey of automatic modulation classification

techniques: classical approaches and new trends. IET Communications 1:137–156
15. FCC (2002) Spectrum policy task force report. Tech. rep., Federal Communication Commis-

sion
16. Fette B (2006) Cognitive Radio Technology. Elsevier-Newnes, Burlington, MA, USA
17. Gandetto M, Regazzoni C (2007) Spectrum sensing: a distributed appraoch for cognitive ter-

minals. IEEE Journal on Selected Areas in Communications 25(3):546–557
18. Gandetto M, Guainazzo M, Regazzoni CS (2004) Use of time-frequency analysis and neu-

ral networks for mode identification in a wireless software-defined radio approach. Eurasip
Journal of Applied Signal Processing 13:1778–1790

19. Gandetto M, Cattoni A, Regazzoni CS (2006) A distributed wireless sensor network for radio
scene analysis. Taylor and Francis Publishing – International Journal of Distributed Sensor
Networks 2(3)

Embodied Cognition Based Distributed Spectrum Sensing for Autonomic Wireless 203

20. Gardner W (1980) A unifying view of second-order measures of quality for signal classifica-
tion. IEEE Transactions on Communications 28(6):807–816

21. Gardner WA (1988) Signal interception: a unifying theoretical framework for feature detec-
tion. IEEE Transactions on Communications 36(8):897–906

22. Godard L, Moy C, Palicot J (2006) From a configuration management to a cognitive radio
management of SDR systems. In: Cognitive Radio Oriented Wireless Networks and Commu-
nications, pp 1–5

23. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE Journal
on Selected Areas in Communications 23(2):201–220

24. Fukunaga K (1990) Introduction to Statistical Pattern Recognition, second edition edn. Aca-
demic Press Inc., New York

25. Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50
26. Kolodzy P (2001) Next Generation communications: Kickoff meeting. In: Proc. DARPA
27. Llinas R (2001) I of the Vortex. Bradford Book, MIT Press, Cambridge, MA
28. Marchesotti L, Piva S, Regazzoni CS (2005) Structured context-analysis techniques in biolog-

ically inspired ambient-intelligence systems. IEEE Trans on Systems, Man, and Cybernetics -
Part A : Systems and Humans 35(1):106–120

29. Mitola J (1999) Cognitive radio: making software radio more personal. IEEE Pers Comm
6(4):48–52

30. Newell A (1982) The knowledge level. Artificial Intelligence 18(1):87–127
31. Nolan K, Sutton P, Doyle L (2006) An encapsulation for reasoning, learning, knowledge repre-

sentation, and reconfiguration cognitive radio elements. In: Cognitive Radio Oriented Wireless
Networks and Communications

32. Oner M, Jondral F (2007) On the extraction of the channel allocation information in spectrum
pooling systems. IEEE Journal on Selected Areas in Communications 25(3):558–565

33. Proakis JG (2001) Digital Communications, 4th edn. McGraw Hill, New York
34. Sahai A, Hoven N, Tandra R (2004) Some fundamental limits on cognitive radio. In: Allerton

Conference on Communications, Control and Computing
35. Saleh A, Valenzuela R (1987) A statistical model for indoor radio propagation. IEEE J Select

Areas Commun SAC-5:128–141
36. Schulze H, Luders C (2005) Theory and Applications of OFDM and CDMA Wideband Wire-

less Communications. John Wiley and Sons, Ltd. New York
37. Srinivasa S, Jafar SA (2007) The throughput potential of cognitive radio: a theoretical per-

spective. IEEE Communications Magazine 45(5):73–79
38. Steels L, Brooks R (1995) The Artificial Life Route to Artificial Intelligence: Building Embod-

ied Situated Agents. Lawrence Erlbaum Associates, Inc., Hillsdale, NJ
39. Sutton P, Doyle L, Nolan K (2006) A Reconfigurable Platform for Cognitive Networks. In:

Cognitive Radio Oriented Wireless Networks and Communications
40. Sutton P, Nolan K, Doyle L (2008) Cyclostationary signatures in practical cognitive radio

applications. IEEE Journal on Selected Areas in Communications 26(1):13–24
41. Urkowitz H (1967) Energy Detection of unknown deterministic signals. Proceedings of IEEE

55(4):523–531
42. Varshney P (1996) Distributed Detection and Data Fusion, 1st edn. Springer-Verlag,

Heidelberg

Autonomic Peer-to-Peer Systems:
Incentive and Security Issues

Yu-Kwong Kwok

Abstract With voluntary users participating in an autonomic manner, peer-to-peer
(P2P) systems have been proliferating in an unprecedented pace. Indeed, it is widely
known that P2P traffic now constitutes over 60% of total Internet traffic. P2P sys-
tems are now used for file sharing, media streaming, and various other social net-
working applications. Furthermore, P2P systems are also extending their reach to
the wireless realm. However, there are still two major system aspects that pose chal-
lenges to P2P systems’ designers and users: incentives and security. First and fore-
most, a P2P system, by its nature, is viable only if users contribute their resources
to the community. Obviously, uniform and global altruistic behaviors cannot be
expected for all users.

Some users will definitely try to take advantage of the altruism of other partici-
pants. If such “free-riding” phenomenon is too wide spread, then a system collapse
will result because the input to the P2P community is smaller than the output. Thus,
it is important to incorporate effective incentive mechanisms to deter selfish behav-
iors and encourage active contributions. On the other hand, security related issues
such as privacy, anonymity, and authentication are also beyond doubt critical con-
cerns of the participating users. Essentially, users do not want to sacrifice security
to trade for service. Clearly security issues and incentives are closely related in that
a low security or “untrustworthy” P2P community will not attract a large population
of contributing users, and instead, might even tempt malicious users to consider the
system as a potential point of attacks.

In this chapter, we survey and analyze the current state-of-the-art in tackling the
incentive and security issues in P2P systems. We first give a brief account of P2P
applications and their wired and wireless operating environments. We then survey
and critique existing incentive techniques. This is followed by the analysis of con-
temporary P2P security algorithms.

Y.-K. Kwok (B)
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO
80526-1373, USA
e-mail: Ricky.Kwok@colostate.edu

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 9, C© Springer Science+Business Media, LLC 2009

205

206 Y.-K. Kwok

The techniques that we survey will range from traditional optimization algo-
rithms to game theoretic schemes. We provide some of our thoughts on open
research issues, followed by a conclusion.

1 Introduction

Advancements in computing and communication, coupled together, enable a recent
trend in a new form of autonomic distributed processing—peer-to-peer (P2P) com-
puting [59]. As its name implies, P2P computing involves users (or their machines)
on equal footing—there is no designated server or client, at least in a persistent
sense. Every participating user can be a server and be a client depending on con-
text. Some people have referred this to as a “democratic computing environment”
[23] because users are free from centralized authorities’ control. This new paradigm
of distributed computing has spurred many high-profile applications, most notably
in file sharing, with household names such as BitTorrent [30], Freenet [5, 29],
Gnutella [7], and Napster [14].

According to a recent survey [19], P2P applications generate at least one-fifth of
the total Internet traffic on a daily basis. It is believed that this trend will continue.
Furthermore, an ISP (Internet Services Provider) solution company [17] reported
that the hottest P2P applications are file-sharing applications, such as BitTorrent [2]
(occupies 53% of all P2P traffic) and eDonkey2000 [3] (occupies 24%). Apart from
these wired P2P file sharing, some other wireless P2P applications have become
part of our daily life. For example, people can now play numerous P2P JAVA online
games which are compatible with mobile phones so that players are allowed to inter-
connect in local area through Bluetooth or wide area through GSM/GPRS network
(e.g., Nokia 6230, 7280, 6680, 3230, Sony Ericsson Z800i, Motorola E1000) [9].
Indeed, in many metropolitan cities such as Hong Kong and Tokyo, we can see
that train commuters routinely play wireless games among each other using popu-
lar devices such as PSPs (Play Station Portables). Now, many mobile phones also
already have 128 MB or higher RS-MMC (Reduced-Size MultiMedia Card) card
storage capability. Indeed, it is now a common practice to have P2P file transfer
through “BlackBerry e-mail service” on mobile phones. As such, wireless P2P file
sharing is not only feasible but also becoming pervasive. We provide a brief survey
of popular P2P applications in Sect. 2.

The highly flexible features of P2P computing such as a dynamic population
(users come and go asynchronously at will), dynamic topologies (it is impracti-
cal, if not impossible, to enforce a fixed communication structure), and anonymity,
come at a significant cost—autonomy, by its very nature, is not always in harmony
with tight cooperation. Consequently, inefficient or lack of cooperation could lead
to undesirable effects in P2P computing. Among them the most critical one is “free-
riding” [36] behavior. Loosely speaking, free riding occurs when some users do not
follow the presumed altruistic cooperation rules such as sharing files voluntarily,
sharing bandwidth voluntarily, or sharing energy voluntarily, so as to benefit the

Autonomic Peer-to-Peer Systems 207

whole community. Incentives are needed to entice cooperation among peers to make
the system work. We survey incentive techniques in Sect. 3.

Apart from incentives, system security is another important issue induced by
the open and autonomic nature of a P2P network. Indeed, it is very difficult, if not
impossible, to completely avoid having malicious peers participating in the network.
Consequently, unlike many traditional systems, a P2P system has to tolerate many
different attacks while still provides useful services. The bottomline is that the P2P
system can still operate with a sufficiently large population of peers that are inter-
ested in participating, while taking up the risk of being attacked. We survey many
security techniques in Sect. 4. We then also offer our suggested future research
directions for the incentive and security issues in a P2P system in Sect. 5.

2 P2P Applications

In this section, we first present an overview of P2P applications, followed by a brief
introduction of the most popular P2P application nowadays—BitTorrent [2]. We
then describe the different architectures used in different contemporary P2P appli-
cations. We also briefly discuss the recent trend of running P2P applications on a
wireless network.

Generally speaking, there are two mainstream applications in P2P environments:
sharing of discrete data, and sharing of continuous data. Examples of the former
include file-sharing systems (e.g., Napster [14]), data-sharing systems (e.g., sharing
of financial or weather reports), etc. A notable example of the latter is P2P video
streaming (e.g., PPLive [15]).

There is an important difference between file sharing and media streaming sys-
tems. In the former, a user needs to wait until a file (or a discrete unit of shared
information) is completely received before it can be consumed or used. Thus, there
could be a significant delay between service request and judgement of service qual-
ity. In an extreme case, a user may not discover that a shared file is indeed the one
requested or just a piece of junk. By contrast, in a media streaming application, a
user would quickly discover if the received information is good enough. The quality
of service (QoS) metric used is also different in these two different applications.
In a file-sharing application, the most important metrics are downloading time and
the integrity of the received files. In a media streaming application, the more cru-
cial performance parameters are the various playback quality metrics such as jitter,
frame-rate, and resolution. Furthermore, the incentive techniques surveyed in this
chapter subsume the underlying P2P network topology. Specifically, in most pro-
posed systems, the communication message exchange mechanism is not explicitly
modeled.

In a file-sharing system, users would like to retrieve files from other users, and
would expect other users to do the same. Thus, each user would need to expend two
different forms of resource:

208 Y.-K. Kwok

• Storage: Each user has to set aside some storage space to keep files that may be
needed by other users, even though such files may not be useful to the user itself;

• Bandwidth: Each user has to devote some of its outbound bandwidth for upload-
ing requested files to other users;

Users usually perform file selection (and hence, peer selection) with the help of
some directory system which may or may not be fully distributed. For example, in
Napster [14], the directory is centralized.

There has been an increasing interest on P2P media streaming [64, 72, 77–
79]. Indeed, in some practical systems, a single media server can support tens of
thousands of concurrent P2P users [64, 77, 79], making it feasible to broadcast
high-quality media content on the global scale without incurring prohibitively high
infrastructure cost.

P2P media streaming is attractive due to its potentially high scalability. Indeed,
it was observed that the performance of media streaming could increase with the
peer population size [56]. Most P2P media streaming protocols organize peers in
an unstructured overlay. Coolstreaming [77] is one of the pioneering protocols.
Unlike traditional tree-based approaches [64, 72], it allows neighboring peers to
exchange media packets in both directions, which provides better resilience to peer
dynamics. Chainsaw [56] is a similar protocol where neighboring peers exchange
media packet with one another by maintaining two sliding windows: window of
interest and window of availability. GridMedia [79] improves the performance of
Coolstreaming by actively pushing packets from one peer to another to reduce delay.
Chunkyspread [68] addresses the issue of peers with heterogeneous bandwidth.
Specifically, the stream of media packets is divided into a number of slices, which
are distributed separately over different logical P2P overlays. Peers can then join
different slices depending on their capabilities. mTreebone [70] is a combination of
tree and unstructured approaches. It allows some static peers to form a tree backbone
for shorter delay while other peers form an unstructured overlay for better resilience.

BitTorrent [30] is by far one of the most successful P2P file-sharing system.
A key feature in BitTorrent is that each shared file is divided into pieces (of size
256 KB each), which are usually stored in multiple different peers. Thus, for any
peer in need of a shared file, parallel downloading can take place in that the request-
ing peer can use multiple TCP connections to obtain different pieces of the file from
several distinct peers. This feature is highly effective because the uploading burden
is shared among multiple peers and the network can scale to a large size. Closely
related to this parallel downloading mechanism is the incentive component used in
BitTorrent. Specifically, each uploading peer selects up to four requesting peers in
making uploading connections. The selection priority is based on descending order
of downloading rates from the requesting peers. That is, the uploading peer selects
four requesting peers that have the highest downloading rates. Here, downloading
rate refers to the data rate that is used by a requesting peer in sending out pieces
of some other file. Thus, the rationale of this scheme is to provide incentive for
each participating peer to increase the data rate used in sending out file data (i.e.,

Ta
bl

e
1

A
qu

al
ita

tiv
e

co
m

pa
ri

so
n

of
di

ff
er

en
tP

2P
ap

pl
ic

at
io

ns

N
am

e
Ty

pe
Pr

ot
oc

ol
A

rc
hi

te
ct

ur
e

A
dd

iti
on

al
in

fo
rm

at
io

n

B
itC

om
et

[1
]

Fi
le

sh
ar

in
g

B
itT

or
re

nt
St

ru
ct

ur
ed

C
lo

se
d

so
ur

ce
;a

dw
ar

e

eM
ul

e
[4

]
Fi

le
sh

ar
in

g
eD

on
ke

y2
00

0,
K

ad
D

ec
en

tr
al

iz
ed

G
PL

op
en

so
ur

ce
;h

as
a

la
rg

e
us

er
sp

ac
e

G
re

en
Te

a
[8

]
N

et
w

or
ke

d
co

m
pu

tin
g

Pr
op

ri
et

ar
y

H
yb

ri
d

C
lo

se
d

so
ur

ce
;c

om
m

er
ci

al
pr

od
uc

t

K
aZ

aA
[1

2]
Fi

le
sh

ar
in

g
(m

us
ic

)
Fa

st
T

ra
ck

H
yb

ri
d

C
lo

se
d

so
ur

ce
;a

dw
ar

e/
sp

yw
ar

e

iM
es

h
[1

0]
Fi

le
sh

ar
in

g
(m

us
ic

an
d

vi
de

o)
eD

on
ke

y2
00

0,
Fa

st
T

ra
ck

,G
nu

te
lla

H
yb

ri
d

C
lo

se
d

so
ur

ce
;f

re
ew

ar
e;

su
pp

or
ts

so
ci

al
ne

tw
or

ks
,p

ur
ch

as
e

of
co

py
ri

gh
te

d
m

at
er

ia
ls

Jo
os

t[
11

]
M

ul
tim

ed
ia

st
re

am
in

g
P2

PT
V

H
yb

ri
d

C
lo

se
d

so
ur

ce
;f

re
ew

ar
e;

de
liv

er
s

ne
ar

-T
V

re
so

lu
tio

n
im

ag
es

;a
d-

su
pp

or
te

d
se

rv
ic

e

N
ap

st
er

[1
4]

Fi
le

sh
ar

in
g

(m
us

ic
)

N
ap

st
er

C
en

tr
al

iz
ed

C
lo

se
d

so
ur

ce
;f

re
ew

ar
e;

ac
qu

ir
ed

by
R

ox
io

in
20

03
,p

ro
vi

di
ng

pa
id

m
us

ic
se

rv
ic

e
w

ith
ou

tP
2P

te
ch

no
lo

gy

PP
L

iv
e

[1
5]

M
ul

tim
ed

ia
st

re
am

in
g

P2
PT

V
H

yb
ri

d
C

lo
se

d
so

ur
ce

;f
re

ew
ar

e;
ad

-s
up

po
rt

ed
se

rv
ic

e

Sk
yp

e
[1

6]
V

oi
ce

-o
ve

r-
IP

(V
oI

P)
K

aZ
aA

-a
lik

e
H

yb
ri

d
C

lo
se

d
so

ur
ce

;f
re

ew
ar

e;
of

fe
rs

pa
id

se
rv

ic
e

to
in

iti
at

e
an

d
re

ce
iv

e
ca

lls
vi

a
re

gu
la

r
te

le
ph

on
e

nu
m

be
rs

T
ri

bl
er

[1
8]

Fi
le

sh
ar

in
g

(v
id

eo
)

B
itT

or
re

nt
St

ru
ct

ur
ed

G
PL

op
en

so
ur

ce
;i

nc
or

po
ra

te
s

a
ke

yw
or

d
se

ar
ch

pr
ot

oc
ol

;s
up

po
rt

s
so

ci
al

ne
tw

or
ks

fo
r

co
nt

en
tr

ec
om

m
en

da
tio

n

W
in

M
X

[2
1]

Fi
le

sh
ar

in
g

(m
us

ic
)

O
pe

nN
ap

,p
ro

pr
ie

ta
ry

W
PN

P
C

en
tr

al
iz

ed
C

lo
se

d
so

ur
ce

;f
re

ew
ar

e;
of

fic
ia

lW
in

M
X

ce
nt

ra
ls

er
ve

rs
w

er
e

sh
ut

do
w

n
in

20
05

210 Y.-K. Kwok

uploading, or, in BitTorrent’s term, unchoking). There are other related mechanisms
(e.g., optimistic unchoking), which are described in detail in [30, 57].

Table 1 summarizes the features of several popular P2P applications.

3 Incentive Issues

To deter or avoid free-riding behaviors, the P2P community has to provide some
incentives—returns for resource expenditure that are, more often than not, tangible
and immediate. Such incentives would then motivate an otherwise selfish user to
rationally choose to cooperate because such cooperation would bring tangible and
immediate benefits. To mention an analogy, in human society, getting pay for our
work is a tangible and immediate incentive to motivate us to devote our energy,
which could otherwise be spent on other activities. Indeed, it is important for the
incentive to be tangible so that a user can perform a cost–benefit analysis—if benefit
outweighs cost, the user would then take a cooperative action [48]. It is also impor-
tant for the incentive to be immediate (though this is a relative concept) because any
resource is associated with an opportunity cost in that if immediate return cannot be
obtained from a cooperative action, then the user might want to save the effort for
some other private tasks.

3.1 Overview

To provide incentives in a P2P computing system, there are basically five different
classes of techniques.

1. Payment-Based Mechanisms: Users taking cooperative actions (e.g., sharing
their files voluntarily) would obtain payments in return. The payment may be
real monetary units (in cash) or virtual (i.e., some tokens that can be redeemed
for other services). Thus, two important components are needed: (1) currency
and (2) accounting and clearing mechanism. Obviously, if the currency is in
the form of real cash, there is a need for a centralized authority, in the form
of an electronic bank, that is external to the P2P system. If the currency is in
the form of virtual tokens, then it might be possible to have a P2P clearing
mechanism. In both cases, the major objective of is to avoid fraud at the expense
of significant overhead. Proper pricing of cooperative actions is also important—
overpriced actions would make the system economically inefficient while under-
priced actions would not be able to entice cooperation.

2. Auction-Based Mechanisms: In some situations, in order to come up with an
optimal pricing, auctioning is an effective mechanism. In simple terms, auction
involves bidding from the participating users so that the user with the highest
bid get the opportunity to serve (or to be served, depending on context). An
important issue in auction based systems is the valuation problem—how much
a user should set in the bid? If every user sets a bid higher than its true cost in

Autonomic Peer-to-Peer Systems 211

providing a service, then the recipient of the service would pay too much than
is deserved. On the other hand, if the bids are too low, the service providers
may suffer. Fortunately, in some form of auctions, proper mechanisms can be
constructed to induce bidders to bid at their true costs.

3. Exchange-Based Mechanisms: Compared to payment- and auction-based sys-
tems, exchange (or barter)-based techniques manifest as a purer P2P interaction.
Specifically, in an exchange-based environment, a pair of users (or, sometimes,
a circular list of users) serve each other in a rendezvous manner. That is, service
is exchanged in a synchronous and stateless transaction. For example, a pair of
users meet each other and exchange files. After the transaction, the two users
can forget about each other in the sense that any future transaction between them
is unaffected by the current transaction. This has an important advantage—very
little overhead is involved. Most importantly, peers can interact with each other
without the need of intervention or mediation by a centralized external entity
(e.g., a bank). Furthermore, free riding is impractical. Of course, the downside
is that service discovery and peer selection (according to price and/or quality of
service) could be difficult.

4. Reciprocity-Based Mechanisms: While pure barter-based interactions are
stateless, reciprocity generally refers to stateful- and history-based interactions.
Specifically, a peer A may serve another peer B at time t1 and does not get an
immediate return. However, the transaction is recorded in some history database
(centralized in some external entity or distributed in both A and B). At a later
time t2 > t1, peer B serves peer A, possibly because peer B selects peer A as the
client due to the earlier favor from A. That is, as peer A has served peer B before,
peer B would give a higher preference to serve peer A. A critical problem is:
how to tackle a special form of free-riding behavior, namely the “whitewashing”
action (i.e., a user leaves the system and rejoins with a different identity), which
enables the free rider to forget about his/her obligations.

5. Reputation-Based Mechanisms: A reputation-based mechanism is a general-
ized form of reciprocity. Specifically, while a reciprocity record is induced by
a pair of peers (or a circular list of more than two peers), a reputation sys-
tem records a score for each peer based on the assessments made by many
peers. Each service provider (or consumer, depending on the application) can
then consult the reputation system in order to judge whether it is worthwhile
or safe to provide service to a particular client. Reputation-based mechanism
is by nature globally accessible and thus, peer selection can be done easily.
However, the reputation scores must be securely stored and computed, or oth-
erwise, the scores cannot truly reflect the quality of peers. In some electronic
market place such as eBay, the reputation scores are centrally administered.
But such an arrangement would again need an external entity and some signif-
icant overhead. On the other hand, storing the scores in a distributed manner at
the peers would induce problems of fraud. Finally, similar to reciprocity-based
mechanisms, whitewashing is a low cost technique employed by selfish users to
avoid being identified as a low-quality users which would be excluded from the
system.

212 Y.-K. Kwok

3.2 Payment Based Systems

Hauscheer et al. [42] suggested a token-based accounting system that is generic
and can support different pricing schemes for charging peers in file sharing. The
proposed system is depicted in Fig. 1. The system mandates that each user has
a permanent ID authenticated by a certification authority. Each peer has a token
account keeping track of the current amount of tokens, which are classified as local
and foreign. A peer can spend its local tokens for accessing remote files. The file
owner treats such tokens as foreign tokens, which cannot be spent but need to be
exchanged with super-peers for new local tokens. Each token has a unique ID so
that it cannot be spent multiple times.

At the beginning of each file-sharing transaction, the file consumer tells the file
owner about which tokens it intends to spend. The file owner then checks against file
consumer’s account kept at the file owner’s machine. If the tokens specified are valid
(i.e., they have not been spent before), then the file consumer can send the tokens
in an unsigned manner to the file owner. Upon receipt of these unsigned tokens,
the file owner provides the requested files to the file consumer. When the files are
successfully received, the file consumer sends the signed version of the tokens to
the file owner. In this manner, Hauscheer et al. argued that there is no incentive for
the peers to cheat.

Super-Peer

Super-Peer

Super-Peer

Super-Peer

Peer

Collected (foreign) tokens

New
(unsigned)

tokens

Partially
signed
tokens

New
tokens

Account Holder

IDs

Avoid double
spending

1

2

3

4

5

67

Fig. 1 A super-peer-based token accounting system for P2P file sharing [42]

Autonomic Peer-to-Peer Systems 213

Yang and Garcia-Molina [74] proposed the PPay micropayment system in which
each peer can buy a coin from a broker. The peer then becomes the “owner” of
the coin and can spend it to some other peer. An important feature is that even
after the coin is spent, the original owner still has the responsibility to check the
subsequent usage of the coin. For example, suppose A is the owner of a coin which
is spent to B. If B wants to spend the coin in turn to C, the original owner A needs to
check whether such a transaction is valid (e.g., to avoid double spending of the same
coin). If A is off-line (e.g., temporarily departed the P2P system), then the broker is
responsible to perform such checking.

Although the PPay system described above is a useful tool for supporting P2P
sharing, Jia et al. [44] observed that PPay can be further improved. Specifically, Jia
et al. proposed a new micropayment system, called CPay (an improved version of
PPay), which has one significant new feature. The new feature is that the broker judi-
ciously selects the most appropriate peer to be the owner of a coin. Specifically, the
owner of a coin should be one that is expected to stay in the system for a long period
of time. Thus, the broker’s potential burden of checking coin owners’ transactions
can be considerably reduced.

3.3 Auction-Based Approaches

Gupta and Somani [41] proposed an auction-based pricing mechanism for P2P file
object lookup services. In their model, each resource (e.g., a file object) is stored
in a single node. However, the indices for such a file object are replicated at mul-
tiple nodes in the network and these nodes are called terminal nodes. When a peer
initiates a lookup request for a certain file object, the request is sent through mul-
tiple paths toward the terminal nodes, as shown in Fig. 2. The problem here is that
the intermediate nodes need some incentives in order to participate in the request
forwarding process.

Gupta and Somani [41] suggested a novel solution to the incentive problem.
Specifically, the initiating peer attaches a price in the request message it sends to
the first layer of nodes in the request chains. Each intermediate node on the request
chains then updates the price by adding its own “forwarding cost.” The terminal
nodes also do the same updating before sending the request messages to the data
source. Upon receiving all the request messages, the data source then performs a
second price sealed bid auction (also referred to as Vickrey auction) [55] to select
the highest bid among the terminal nodes. The selected terminal node then needs to
pay the price equal to the value of the second highest bid. With this auction-based
approach, all the intermediate nodes on the request chains have the incentive to
participate in the forwarding process because they might eventually get paid by the
requester should their respective request chains win the auction.

For example, consider the lookup process shown in Fig. 3. We can see that the
request chain terminated by node T1 wins the auction process and the payoff to
the data source node B is 60. The only intermediate node (node 1) then also gets a

214 Y.-K. Kwok

Client Server

......

......

......

Intermediate nodes along a request path

Terminal nodes that participate in the auction

Fig. 2 The request forwarding process [41]

payoff. Gupta and Somani [41] also showed that a truthful valuation in is the optimal
strategy for each intermediate node. Furthermore, based on the requirement that
every message cannot be repudiated, it is also shown that the proposed mechanism
can handle various potential threats such as malicious auctioneer, collusion between
data source and a terminal node, and forwarding of bogus request message.

Wongrujira and Seneviratne [73] also proposed a similar auction-based charging
scheme for forwarding nodes on a path from a requesting peer to a data source.
However, they pointed out an important observation that some potential malicious
peers could try to reduce the profits of other truthful peers by dropping the price
messages. To mitigate this problem, a reputation system is introduced in that every
peer maintains a history of interactions with other peers. The reputation value of a
peer is increased every time a message is forwarded by such a peer. On the other

10

A

10

15

20

10

10

15

20

B

90

90

90

1

2

3

T1

T2

T3

60

70

50

80

75

70

RC1

RC2

RC3

Initial offered price

Two-phase Vickrey auction
where T1 is the winner

PayB = 60
ProfitA = 3.33
ProfitA = 100

Pay1 = 13.33 PayT1 = 13.33

Fig. 3 An example of the auction process in request forwarding [41]

Autonomic Peer-to-Peer Systems 215

hand, if an expected message exhibits a timeout, the responsible peer’s reputation
value is decreased.

Wang and Li [69] also considered a similar problem in which a peer needs to
decide how much to charge for forwarding data. Instead of using auction, a compre-
hensive utility function is used. The utility function captures many realistic factors:
the quantitative benefits of forwarding data, the loss in delivering such data, the
cost and the benefit to the whole community. With this utility function, an upstream
peer has the incentive to contribute its forwarding bandwidth while a downstream
peer is guided toward spending the upstream bandwidth economically. Furthermore,
a reinforcement learning component is incorporated so that each peer can dynam-
ically adjust the parameters in its utility function so as to optimally respond to the
current market situations.

Sanghavi and Hajek [61] observed that in a typical auction based pricing mech-
anism as described above, there is a heavy communication burden on the peers.
Indeed, the entire set of user preferences has to be communicated from a peer to
the auctioneer. Sanghavi and Hajek then analytically derived a class of alternative
information mechanisms that can significantly reduce the communication overhead.
Specifically, each peer’s bid is only a single real number in each case, instead of an
entire real-valued function.

Hausheer and Stiller [43] studied a completely decentralized auction approach
for electronic P2P pricing of goods in a system called PeerMart (which is built
on top of Pastry [60]). The key idea is the usage of a broker set which comprises
other peers in the electronic marketplace. Specifically, a broker set consists of peers
whose IDs are closest to the ID of the good in the auction. Each of these peers
then potentially acts as the auctioneer in the selling process. The advantage of the
broker set based method is that in case a particular peer in the set is faulty (or even
malicious in the sense that it does not respond to auction requests), another member
in the set can take up the role of auctioneer. An example is shown in Fig. 4.

3.4 Exchange-Based Systems

Motivated by the fact that any payment/credit-based system entails a significant
transaction and accounting overhead, Anagnostakis and Greenwald [22] proposed
an exchange-based P2P file-sharing system. The fundamental premise is that any
peer gives priority to exchange transfers. That is, in simple terms, any peer is willing
to send a file to a peer that is able to return a desired file. However, based on this
idea, it is incorrect to consider 2-way exchanges only. Indeed, a “ring” of exchange
involving two or more peers, as shown in Fig. 5, is also a proper P2P file transfer.

In the exchange-based P2P file-sharing system, each peer maintains a data struc-
ture called incoming request queue (IRQ). Now, a crucial problem is how each peer
can determine whether an incoming request should be entertained, i.e., whether such
a request comes from some peer on a ring of exchange requests. It is obviously com-
putationally formidable to determine all the potential multi-peer cycles. Fortunately,

216 Y.-K. Kwok

Consumer 1 bids $3 for x

Provider 1 asks $1 for x

Provider 2 asks $2 for x

Broker set

serviceId x

Broker set lookup

Recursive
lookup for
broker set

Fig. 4 An example of fully decentralized auction [43]

o1 P1 P2
o2 o1 P1 P3

o3

P2

o2

o1 P1 Pn–1 on–1

Pn

on

P2...Pn–2

2-way 3-way n-way

oi

Pi

File object

Peer

Fig. 5 Different feasible forms of exchanges [22]

Anagnostakis and Greenwald [22] argues that based on simulation results, in prac-
tice a peer only needs to check for cycles with up to five peers.

Each peer uses a data structure called request tree to check for potential request-
cycles. For example, as we can see in Fig. 6, a peer A decides to entertain a request
for file object o2 because A finds that peer P9 possesses an object that is needed by

Autonomic Peer-to-Peer Systems 217

A

P1 P2

o1 o2

A

P1

o4

o1

Request cycle
detection

o3 o3

o4 o5 o5

o9 o9o11 o11o10 o10

o8o8 o7o7o6 o6

P4 P4

P11 P11

P10 P10P8 P8P7 P7

P6 P6P5 P5P3 P3P9
P9

P2

o2

Fig. 6 Request cycle detection using the request tree data structure maintained at each peer [22]

A. Based on this checking mechanism, the incoming requests are prioritized. Sim-
ulation results indicate that the proposed exchange based mechanisms are effective
in terms of file object download time.

3.5 Reciprocity and Reputation-Based Systems

Feldman et al. [37] suggested an integrated incentive mechanism for effectively
deterring (or penalizing) free riders using a reciprocity-based approach. Specifi-
cally, the proposed integrated mechanism has three core components: discriminat-
ing server selection, maxflow-based subjective reputation computation, and adaptive
stranger policies.

In the discriminating server selection component, each peer is assumed to have
a private history of transactions with other peers. Thus, when a file-sharing request
is initiated, the peer can select a server (i.e., a file owner) from the private history.
However, in any practical P2P-sharing network, we can expect a high turnover rate
of participation. That is, a peer may only be present in the system for a short time.
Thus, when a request needs to be served, such a departed peer would not be able to
help if it is selected. To mitigate this problem, a shared history is to be implemented.
That is, each peer is able to select a server from a list of global transactions (i.e., not
just restricted to those involved the current requesting peer). A practical method of
implementing shared history is to use a distributed hash table (DHT)-based overlay
networking storage system [65]. Specifically, a DHT is an effective data structure to
support fast lookup of data locations.

A problem in turn induced by the shared history facility is that collusion among
non-cooperative users may take place. Specifically, the non-cooperative users may
give each other a high reputation value (e.g., possibly by reporting bogus prior trans-
action records). To tackle this problem, Feldman et al. suggested a graph theoretic
technique. To illustrate, consider the reputation graph shown in Fig. 7. Here, each
node in the graph represents a peer (C denotes a colluder) and each directed edge

218 Y.-K. Kwok

C CC CC

C

B

A

100 100 100 100 100
0

20
000 0 0

20

Fig. 7 A graph depicting the perceived reputation values among peers (C denote a colluder) [37]

represents the perceived reputation value (i.e., the reputation value of the node inci-
dent by the edge as perceived by the node originating the edge). We can see that the
colluders give each other a high reputation values. On the other hand, a contributing
peer (e.g., the top node) gives a reputation value of 0 to each colluder because the
contributing peer does not have any prior successful transaction carried out with
a colluder. With this graph, we can apply the maxflow algorithm to compute the
reputation value of a destination peer as perceived by a source peer. For instance,
peer B’s (the destination) perceived reputation value with respect to peer A (the
source) is 0 despite that many colluders give a high reputation value to B.

Finally, an adaptive stranger policy is proposed to deal with whitewashing.
Instead of always penalizing a new user (which would discourage expansion of the
P2P network), the proposed policy requires that each existing peer, before deciding
whether to do a sharing transaction with a new user, computes a ratio of amount
of services provided to amount of services consumed by a new user. If this ratio is
great than or equal to 1, then the existing peer will work with the new user. On the
other hand, if the ratio is smaller than 1, then the ratio is treated as a probability of
working with this new user.

Sun and Garcia-Molina [66] suggested an incentive system called Selfish Link-
based InCentive (SLIC), which is based on pairwise reputation values. Specifically,
any peer u maintains a reputation value W (u, v) for each of its neighbor peer v, where
the reputation value is normalized such that 0 ≤ W (u, v) ≤ 1. Here, “neighbor”
means a peer v currently having a logical connection with u and thus, such a peer
v can potentially request for service from u. With these reputation values, the peer
u can then allocate the uploading bandwidth to any requesting neighbor peer v with
a value of W (u, v)/

∑
i W (u, i). The reputation value W (u, v) is updated periodically

based on an exponential averaging method.

Autonomic Peer-to-Peer Systems 219

Under this model, Sun and Garcia-Molina [66] observed that each peer has the
incentive to do some or all of the following, in order to increase its reputation values
as perceived by other peers (and hence, enjoy a better quality of service):

• Sharing out more file data;
• Connecting to more peers (to increase the opportunities for serving others);
• Increasing its total uploading capacity.

3.6 Penalty-Based Approaches

Feldman et al. [35] also investigated disincentive mechanisms that can discourage
free riding. Specifically, they considered various possible penalty schemes in deter-
ring free riders. A simple model is used. At the core of the model, each user i in
the P2P-sharing network is characterized by a positive real-valued type variable,
denoted as ti. Another key feature of the model is that the cost of contributing is
equal to the reciprocal of the current percentage of contributors, which is denoted
as x. Thus, for any rational user with type ti, the user will choose to contribute if
1/x < ti and free ride if 1/x ≥ ti.

Furthermore, the benefit each user derived from the P2P network is assumed to
be of the form αxβ , where β ≤ 1 and α > 0. With this benefit function, the system
performance is defined as the difference between the average benefit and the average
contribution cost. Specifically, system performance is equal to αxβ − 1.

Even with the simplistic model described above, Feldman et al. provided several
interesting conclusions. Firstly, it is found that excluding low type users can improve
system performance only if the average type is low and α is large enough. Unfortu-
nately, exclusion is impractical because a user’s type is private and thus, cannot be
determined accurately by other peers. It is then assumed that free-riding behaviors
are observable (i.e., free riders can be identified). Such free-riders are then subject to
a reduction in quality of service. Quantitatively, the benefit received by a free rider
is reduced by a factor of (1 − p), where 0 < p ≤ 1. A simple implementation of
this penalty is to exclude a free rider with a probability of p. The second interesting
conclusion is that the penalty mechanism is effective in deterring free riders when
the penalty is higher than the contribution cost. In quantitative terms, the condition is
that p > 1/α . Finally, another interesting conclusion is that for a sufficiently heavy
penalty, no social cost is incurred because every user will contribute (i.e., choose
not to be a free rider) so that optimal system performance is achieved. In particular,
to deal with the whitewashing problem, the analysis suggests that every new user is
imposed a fixed penalty. Essentially, this is similar to the case in the eBay system
where every new user has a zero reputation and thus, will less likely be selected
by other users in commercial transactions. However, this is in sharp contrast to the
adaptive stranger policies suggested also by Feldman et al. in another study [37] that
we have described earlier.

220 Y.-K. Kwok

3.7 Game Theoretic Modeling

Ranganathan et al. [58] proposed and evaluated three schemes induced by the Multi-
Person Prisoner’s Dilemma (MPD) [55, 62]. The basic Prisoner’s Dilemma game
models the situation where two competitors are both better off if they cooperate than
when they do not. However, without communication, the unfortunate stable state is
that both competitors would choose not to cooperate. An MPD is a generalization
of the basic PD. Specifically, the key features of the MPD framework can be briefly
summarized as follows:

• The MPD game is symmetric in that each of n players has the same actions,
payoffs, and preferences.

• Any player’s payoff is higher if other players choose some particular actions (e.g.,
“quiet” instead of “fink”).

The MPD framework is used for modeling P2P file sharing as follows. There are n
users in the system, each of which has a distinct file that can be either shared or kept
only to the owner. The system is homogeneous in that all files have the same size
and same degree of popularity. Now, the potential benefit gained by each user is the
access of other users’ files. The cost involved is the bandwidth used for serving other
users’ requests. With this simple model, it can be shown that the system has a unique
Nash equilibrium in which no user wants to share. Obviously, this equilibrium is
sub-optimal (both at the individual level and at a systemwide level) in that each user
could obtain a higher payoff (i.e., a higher value of net benefit) if all users choose to
share their files.

Motivated by the MPD modeling, Ranganathan et al. proposed three incentive
schemes:

• Token Exchange: This is a payment-based scheme because each file consumer
has to give a token to the file owner in the sharing process. Each user is given the
same number of tokens initially and each file has the same fixed price.

• Peer-Approved: This is a reputation-based scheme in that each user is associated
with a rating which is computed using metrics such as the number of requests
successfully served by the user. A user can download files from any owner who
has a lower or the same rating. Thus, to gain access to more files in the system, a
user has to actively provide service to other users so as to increase the rating.

• Service Quality: This is also a reputation-based scheme similar to Peer-
Approved. The major difference is that a file owner provides differentiated
service qualities to users with different ratings.

Theoretical analysis [58] indicates that the Peer-Approved policy with a logarith-
mic benefit function (in terms of number of accessible files) can lead to the optimal
equilibrium where every user contributes fully to the system. Simulation results also
suggest that Peer-Approved generates performance (in terms of total number of files
shared) comparable to that of Token Exchange, which entails a higher difficulty in
practical implementation as it requires a payment system.

Autonomic Peer-to-Peer Systems 221

Becker and Clement [24] also suggested an interesting analysis of the sharing
behaviors using variants of the classical 2-player Prisoner’s Dilemma. Specifically,
the P2P file-sharing process is divided into three different stages: introduction,
growth, and settlement. In the introduction stage, the P2P network usually consists
of just a few altruistic users who are eager to make the network viable. Thus, sharing
of files is a trusted social norm. The payoffs of the two possible actions (supply files
or not supply files) are depicted in Fig. 8. Here, we have the payoffs ranking as:
R > T > S > P (note: T: Temptation, R: Reward, S: Sucker, P: Punishment). Con-
sequently, the Nash equilibrium profile is: (Supply, Supply). Note that the payoffs
ranking in the original Prisoner’s Dilemma is T > R > P > S, and as such, the
Nash equilibrium is the action profile in the lower right corner of the table.

In the growth stage, we can expect that more and more non-cooperative users join
the network. For these users, the payoffs ranking becomes: T > R > P > S, which
is the same as the original Prisoner’s Dilemma. Thus, the Nash equilibrium for such
users occurs at the profile: (No Supply, No Supply). As the P2P network progresses
to the mature stage (i.e., the size of the network becomes stabilized), we can expect
that a majority of users are neither fully altruistic nor fully non-cooperative. For
these users, the payoffs ranking is: R > T > P > S. As a result, the payoff matrix
is depicted in Fig. 9. As can be seen, there are two equally probable Nash equilib-
ria: (Supply, Supply) and (No Supply, No Supply). Consequently, whether or not
the P2P network is viable or efficient depends on the relative proportions of users
in these two equilibria. Results obtained in empirical studies [24] using real P2P
networks conform quite well to the simple analysis described above.

Ma et al. [52, 53] suggested an analytically sound incentive mechanism based on
a fair bandwidth allocation algorithm. Indeed, the key idea is to model the P2P
sharing as a bandwidth allocation problem. Specifically, the model is shown in
Fig. 10. Here, multiple file requesting peers compete for uploading bandwidth of
a source peer. Each requesting peer i sends a bidding message bi to the source peer
NS. The source peer then divides its total uploading bandwidth WS into portions of

Fig. 8 Payoff table in the
introduction stage [24]

Player 1

Player 2

Supply

No Supply

Supply No Supply

R
R

S
T

T
S

P
P

g1
1

g1
2

g2
1 g2

2

Fig. 9 Payoff table in the
settlement stage [24]

Player 1

Player 2

Supply

No Supply

Supply No Supply

R
R

S
T

T

S

P

P

g1
1

g1
2

g2
1 g2

2

222 Y.-K. Kwok

Fig. 10 Two file requesting
peers (N1 and N2) compete
for uploading bandwidth of a
source peer (NS) [52] N1

N2

NSBidding

b1(t)

b2(t)

WS

Bandwidth Allocation
Mechanism

x1(t)

x 2(t)

x 1(t)

x2(t)

xi for the peers. However, due to network problems such as congestion, each peer i
may receive an actual uploading bandwidth of x′

i which is smaller than xi.
Each bidding message bi is the requested amount of bandwidth. Thus, we have

xi ≤ bi. To achieve a fair allocation, the source peer uses the contribution level
Ci of each competing peer i to determine an appropriate value of xi. Ma et al.
[52, 53] described several allocation algorithms with different complexities and
considerations: simplistic equal sharing, max–min fair allocation, incentive-based
max–min fair allocation, utility-based max–min fair allocation, and incentive with
utility-based max-min fair allocation. The last algorithm is the most comprehensive
and effective. It works by solving the following optimization problem:

max
N∑

i=1

Ci log(
xi

bi
+ 1) (1)

where

N∑
i=1

xi ≤ WS (2)

Here, the logarithmic function represents the utility as perceived by each peer i.
The above optimization problem can be solved by a progressive filling algo-

rithm that prioritizes competing peers in descending order of the marginal utility
Ci/(bi + xi).

Given values of bi and Ci, the source peer can compute the allocations in a deter-
ministic manner. However, from the perspective of a requesting peer, a problem
remains as to how it should set its bidding value bi. Using a game theoretic analysis,
it is shown that the action profile in which:

bi = WSCi∑N
j=1 Cj

∀i

is a Nash equilibrium. Furthermore, provided that all cooperative peers use their
respective strategies as specified in the Nash equilibrium action profile, collusion
among non-cooperative peers can be eliminated. Note that each requesting peer i
needs to know the values of WS and

∑N
j=1 Cj in order to determine its own bid bi.

Autonomic Peer-to-Peer Systems 223

In a practical situation, these two values can be supplied by the source peer to every
requesting peer.

4 Security Issues

Given the open and autonomic nature of a P2P system, it is very difficult, if not
impossible, to completely avoid having malicious peers participating in the net-
work. Consequently, unlike many traditional systems, a P2P system has to tolerate
many different attacks while still provides useful services. The bottomline is that
the P2P system can still operate with a sufficiently large population of peers that
are interested in participating, taking up the risk of being attacked. In this section,
we describe the basic mechanisms of various common attacks and the essence of
recently proposed counter-measures.

4.1 Overview

There are many security problems in an open distributed system. Yet a P2P network
has its unique challenges due to its fully distributed and dynamic operating charac-
teristics [47, 50]. Indeed, there are several potentially detrimental attacks that can
damage a P2P system:

• Churn Attacks. This is a P2P version of denial-of-service attacks in that mali-
cious peers deliberately join and leave the system frequently, inducing a large
amount of processing and communication overheads for population maintenance.

• Poisoning and Pollution. Some malicious peers intentionally injects falsified
data (e.g., unusable files) into the shared pool of contents.

• Sybil Attacks. Because many P2P systems rely on voting to make collective
decisions, it is important that peer IDs cannot be easily forged; otherwise, a peer
can control a large portion of peer IDs and out-vote other honest peers.

• Worms. In many P2P file-sharing systems, peers download files without much
checking and thus, such a platform is an idea environment for spreading worms.

• Malwares. Related to poisoning and worms, honest peers could inadvertently
downloaded files encapsulating malwares such as virus codes.

• Cheating in a P2P MMOG. Many massively multi-player online games
(MMOGs) are moving toward a P2P architecture from a traditional centralized
client–server structure. However, such a move also gives away the centralized
control over peers’ actions and the associated effective security measures. In
effect, as the game state updating and communication tasks are handled by the
peers themselves, some malicious peers can cheat by launching many of the
above attacks.

224 Y.-K. Kwok

4.2 Churn Attacks

“Churning” refers to the situation where peers join and leave frequently so that
the system population becomes highly varying over a short period of time. This
high turnover of peers can easily increase the overheads in the P2P system in the
sense that much computation and communication loads are devoted to handling the
joining and leaving events, but not in the actual sharing operations. Effectively, a
denial-of-service attack results in an unintentional manner.

Linga et al. [51] examined the efficacy of a probabilistic churn-resistant scheme
called Kelips [40], which is based on a self-regenerating data structure. The basic
design rationale of Kelips is a precursor to that of BitTorrent. Specifically, a Kelips
system with n peers is partitioned into

√
n sets called affinity groups. Each peer then

belongs to one affinity group chosen according to a consistent hashing function to
map the peer’s ID (i.e., IP address and port number) into the set of group IDs i, where
i = 0, . . . ,

√
n − 1. Thus, unlike structured P2P topology such as Pastry, Tapestry,

and Chord, Kelips allows a peer to pick any peer within its affinity group according
to system features such as topology, trust, security concerns, etc. The latency of
communications among peers within an affinity group ranges from O(log2(n)) to
O(log(n)). The soft state kept in each peer occupies only a small amount of memory.
For instance, according to [51], in a system with 10 million files and 100,000 peers,
the soft state kept in each peer requires only 1.93 MB of storage space. Experimental
results using a real PC cluster indicated that the Kelips is effective in handling churn
attacks.

4.3 Poisoning and Pollution

“Poisoning” is a type of attacks that undermines the integrity of the P2P system
by inserting false information and/or identities of malicious peers into the sharing
process.

Daswani and Garcia-Molina [34] studied a poisoning problem in a P2P pro-
tocol designed for Gnutella called GUESS (Gnutella UDP Extension for Scal-
able Searches) [33]. Based on random walks in unstructured P2P networks, the
GUESS protocol was designed to tackle the problem of high overhead in the origi-
nal Gnutella’s flooding approach in propagating queries. Specifically, according to
the GUESS protocol, each peer keeps a cache of other peers that are available to
accept queries, and sends its queries to one of the peers in its cache in a random
fashion. To maintain the correctness in the query process, peers must delete from
their respective caches the peers that are no longer available. To achieve this, peers
need to exchange “ping” and “pong” messages (elaborated below), and thus, the
caches are called “pong caches.”

Although the usage of pong caches can successfully mitigate the communication
overhead problem, a new security problem arises because the pong caches can get
poisoned by malicious peers. Specifically, if a malicious peer’s ID is stored in a pong

Autonomic Peer-to-Peer Systems 225

cache of a good peer, the latter’s pong cache is considered as poisoned because it
becomes very difficult for the latter to find other good peers for getting useful shared
files.

Before describing Daswani and Garcia-Molina’s proposed techniques for coun-
tering poison attacks, let us have a brief overview of the ping–pong mechanism
in using the caches. In simple terms, each peer’s cache contains a set of peer IDs
that it believes they are still available in the system for obtaining files. In a totally
asynchronous manner, each peer may ping another peer in its cache. A ping message
is piggybacked on a file request. If the peer receiving the ping message is active, it
responses with a pong message. While a ping message is a simple dummy packet,
a pong message encapsulates a set of peer IDs that the responding peer possesses.
Usually, the responding peer only includes a subset of its peer IDs in the pong mes-
sage. Upon receiving the pong message, the requesting peer may replace a subset
of its peer IDs from the cache, in a random manner, with some of the peer IDs
contained in the pong message. Such randomized replacement is designed for a
robust maintenance of valid cache entries.

However, if the pong cache of a peer Ni is poisoned, another requesting peer Nj

might get the ID of a malicious peer Nk. Subsequently, Nj might send a ping to
Nk, which will return a set full of malicious peer IDs in the pong message. Con-
sequently, such poisons will propagate quickly in the network. Malicious peers,
by nature, will not supply authentic file data. Thus, good peers will be unable
to get useful information from the network and drop out. The system will then
collapse.

To mitigate or more specifically “contain” the malicious effects of poisoning,
Daswani and Garcia-Molina [34] suggested two simple algorithms. The first algo-
rithm is called ID smearing algorithms (IDSA), which works by dropping IDs that
are repeatedly received from pong messages. For example, if the ID N2 already
appears in N1’s pong cache, then N1 will delete N2 from its pong cache upon getting
N2 again in some pong messages. The rationale is that such IDs are more likely
from malicious peers. The second algorithm is called dynamic network partitioning
(DNP). Each peer divides the peer ID space into a number of partitions and select
only one of those partitions as an active partition. A peer only accepts peer IDs from
its active partition for replacement purposes. By dynamically changing its active
partition, a good peer can potentially avoid getting malicious peer IDs that could be
clustered in a certain region in the ID space.

Simulation results indicated that the IDSA scheme can effectively limit poisoning
when the number of malicious peers in the system is smaller than or approximately
equal to the pong cache size. The DNP algorithm can effectively reduce the number
of malicious peer IDs that can poison a pong cache.

Christin et al. [28] performed a detailed experimental study, based on a large-
scale PlanetLab-based platform, on the problem of poisoning shared contents
(instead of meta-data such as peer IDs) in the system. Specifically, they considered
a popular content poisoning technique which works by randomly injecting a large
number of decoys into the network. A related technique, which is called pollution, is
to randomly inject a large number of unusable files into the network. Experimental

226 Y.-K. Kwok

results indicate that the random poisoning techniques can have great impact on the
perceived availability of desired files.

Recently, Kumar et al. [49] presented analytical fluid models of content poison-
ing propagation dynamics. Their fluid models generate a set of non-linear differ-
ential equations, from which closed-form solutions are derived. Their models are
useful in that they capture a wide range of user behaviors including propensity for
popular versions of files, abandonment after repeated failures, free riding, and local
version blacklisting.

4.4 Sybil Attacks

Sybil attacks refer to the situations where a single malicious peer uses multiple,
possibly authentic, identities to instantiate multiple virtual peers in the system. The
major motivation is to control a relatively large share of population in the system,
thereby winning any voting actions within the P2P network. Yu et al. [76] proposed
a novel protocol called SybilGuard for limiting the adverse effects of sybil attacks.
Specifically, SybilGuard works by establishing a “social network” among honest
peers. That is, between each pair of honest peers, an edge is established if the human
users represented by the two peers trust each other. Thus, such a social network
relies on some off-line or out-of-band information to establish.

Once the social network among honest peers has been set up, conceptually the
P2P system can be visualized as shown in Fig. 11. As can be seen, by nature of
the social network, there will be very few, if any, edges between the set of honest
users and the malicious sybil attackers. This is because although the sybil attackers
can possibly obtain a large number of legitimate IDs, they cannot easily gain “trust”
from the users of the honest peers. Effectively, the social network among honest
peers effectively segregate themselves from the malicious peers.

Simulation results indicated that SybilGuard effectively guarantees that (1) the
number and size of sybil groups are properly bounded for 99.8% of the honest users,
and (2) an honest peer can accept, and be accepted by, 99.8% of all other honest
peers.

Friedman [38] also designed a similar social-network-based system called “Good
Neighbors” for propagating good worms (a topic of the next subsection) to patch
software vulnerabilities.

Cerri et al. [26] examined a Sybil attack scenario in a structured P2P system.
Specifically, they considered the DHT-based P2P system called Kademlia [54], in
which each peer is identified by a unique 160-bit string. Most importantly, each peer
can choose its bit string freely using a random function. The premise is that colli-
sions in the ID space are statistically improbable, given that the ID space has 2160

distinct elements. A key feature of Kademlia is that a peer is responsible for shared
resources with indices near to the peer’s ID. Distance between identifiers (also,
between peers and resources) is measured using an XOR operation—performing
a bit-wise XOR between the peer’s ID and the index. Given this property and

Autonomic Peer-to-Peer Systems 227

Honest Peer Malicious Peers

Relatively fewer edges
(attack edges) between

honest and malicious peers

Fig. 11 The social network among honest peers effectively segregate themselves from the mali-
cious peers [76]

the sparsely populated ID space, conceptually an attacker can impersonate a peer
(hence, provide bogus resources subsequently) by getting an ID close to that of a
legitimate peer. In practice, each resource is replicated at k peers which are those k
peers with IDs closest to the resource ID. Thus, an attacker has to obtain k IDs in
order to completely shield the resource.

Cerri et al. examined three different types of attacks: complete attacks, dictionary
attacks, and partial attacks. In a complete attack, the attacker must obtain k valid IDs
which are closer than any other ID to the target resource ID. It is found [26] that the
complexity of this attack depends only on the population size of the system, and
grows linearly with the factor k. A dictionary attack refers to the situation where the
attacker stores all the randomly obtained IDs associated with each targeted resource
ID to build a table. After such a dictionary is built, the attacker can then sample
the whole ID space by picking values from the dictionary. It is envisioned that the
computation time and storage space required for doing so are within the capabilities
of even a desktop computer system. In a partial attack, the attacker wants to control
only a fraction c of the k IDs that associate with the targeted resource. Cerri et
al. then suggested two simple solutions to tackle these attacks. The first solution
is to constrain the computation of an ID by enforcing the use of connection state
information such as IP address and port number of the peer. Obviously, this solution
can allow easier verification of the peer’s identity. However, a drawback is that the

228 Y.-K. Kwok

ID could be changed from time to time due to departure and re-joining the system.
The second solution is based on a more stable state information by using a hash of
the public key possessed by the peer. How these two IDs can be combined remains
a challenging research problem.

4.5 Worms

Chen and Gray [27] studied the characteristics of three different types of non-
scanning worms which are highly detrimental to a P2P system. Indeed, as observed
by Chen and Gray, in a highly popular P2P file-sharing system (e.g., Gnutella and
BitTorrent), users may inadvertently download decoy files embedded with malicious
code or malware (the topic in the next subsection). More importantly, the P2P client
software may contain vulnerabilities that could be exploited by attackers. This is
aggravated by the fact that usually a large fraction of P2P users run the exact same
software. Consequently, exploiting one single vulnerability can already potentially
damage a large fraction of the P2P system. An important implication is that attackers
do not really need to use scanning worms which can be detected by intrusion detec-
tion systems (IDSs) through monitoring scanning activities. Rather, attackers now
increasingly employ non-scanning worms, which make use of legitimate networking
actions (e.g., ping and pong messages in Gnutella) to propagate.

Chen and Gray considered three types of non-scanning worms:

• Passive worms that are embedded in malwares, awaiting users to execute them;
• Reactive worms that propagate and replicate through legitimate network actions;
• Proactive worms that judiciously infect other peers by using topological informa-

tion.

Chen and Gray then presented a unified simulation framework modeling an
unstructured file-sharing P2P network. Based on a detailed simulation study, Chen
and Gray found that passive worms usually do not cause major outbreaks because
they spread rather slowly. Once immunization is applied, the spreading of the worms
quickly die out. In contrast, reactive worms are stealthy and can infect a much large
fraction of peers in a relative short period of time compared to the case of passive
worms. The proactive worms are the most detrimental in that they intelligently make
use of valid peer addresses (e.g., in a pong cache) for spreading. Fortunately, sim-
ilar to a scanning worm, a proactive worm usually generates noticeable amount of
network traffic anomalies (e.g., connection failures due to peers’ departures) and, as
such, could be detected by an anomaly-based IDS.

Yu et al. [75] proposed a region-based active immunization defense strategy to
combat proactive worms. In their proposed approach, some peers are designated
to perform the task of defending against proactive worms. Such peers are further
classified into two categories: ordinary defense peer and defense region leader. The
responsibilities of the former include local worm detection, reporting anomalies
to the region leader, and carrying out defense commands from the region leader.

Autonomic Peer-to-Peer Systems 229

Accordingly the defense region leader is a centralized agent for determining whether
a worm propagation is identified based on the information gathered from the ordi-
nary defense peers in the region. The rationale behind the proposed region-based
defense system is inspired by the adaptive immune systems where white blood
cells (called lymphocytes) cooperating with each other to track down intruding
pathogens. Such pathogens are then eliminated by the active immunization process.

Specifically, the worm detection component in each ordinary defense peer judi-
ciously analyzes the incoming and outgoing traffic. Detected traffic anomalies are
then reported to the region leader, which carries out data fusion and correlation
analysis. Some decision rules, such as “at least K defense hosts report anomalies,”
can then be applied. Once a worm propagation is confirmed by the region leader,
counter-worm immunization is then carried out by the defense peers. Their math-
ematical analysis and simulation results indicated that system parameters such as
defense list size, worm detection success ratio, and immunization rate have the most
crucial impacts on the overall defense performance.

4.6 Malwares

Kalafut et al. [46] conducted a detailed experimental study on the prevalence of
malware in P2P networks. They considered two different open source P2P networks,
Limewire [13] and OpenFT [6]. Their experimental data based on over 1 month
of data indicate that 68% of all downloadable responses in Limewire containing
archives and executables encapsulating malware. For OpenFT, the corresponding
value is 3%. Furthermore, most infections are from a very small number of distinct
malware. Specifically, in Limewire, the top three most prevalent malware account
for 99% of all the malicious responses. For OpenFT, the corresponding value is
75%. Kalafut et al. also investigated the sources of malicious responses. It is found
that 28% of all malicious responses in Limewire come from private address ranges.
For OpenFT, one single host contributes 67% of all malicious responses. Based on
these useful findings, Kalafut et al. suggested a simple method for filtering malware.
Specifically, the method is to filter downloads based on the most commonly seen
sizes of the most popular malware. Doing such filtering is found to be able to block
a large portion of malicious files with a very low rate of false positives. Indeed,
compared to the Limewire’s mechanism of malware detection which can only track
6& of malicious responses, their proposed size-based filtering method can detect
over 99% of them.

Shin et al. [63] also conducted a detailed study on the prevalence of malware
downloading in the KaZaA file-sharing system. With a lightweight crawler built for
the KaZaA file-sharing network, they gathered data about more than 500,000 files
returned by the KaZaA network in response to 24 common query strings. Shin et al.
used 71 different malicious programs (e.g., viruses, Trojan horses) to construct 364
different signatures. Their major finding is that over 12% of KaZaA client hosts are
infected by more than 40 different virus programs. Furthermore, over 20% of the
total crawled data are virus-containing files.

230 Y.-K. Kwok

4.7 Cheating in P2P MMOG

Massively, MMOGs are becoming one of the major Internet activities in a global
scale. For a typical MMOG, it is not uncommon to have tens of thousands to hun-
dreds of thousands of players, that are possibly widely dispersed geographically,
actively involved in the game at the same time. In such a large scale, given the inten-
sive computations (e.g., game state updating, high-resolution graphics rendering
based on the updates) and communications (e.g., game state updates, commands and
control) required, the original centralized approach becomes prohibitively expen-
sive. Furthermore, the centralized server (or server farm) is an obvious single
point of failure. Thus, to improve scalability, availability, and performance, recently
MMOGs have been migrated to a P2P architecture in the sense that the players
(i.e., the peers) take up the responsibilities of updating the game state and the com-
munications involved. As a case in point, the current leader of MMOG, World of
Warcraft [20], has already moved the distribution of client software updates to a
P2P architecture. It is believed that the game itself will also be executed in a large
part on a P2P network.

However, using a P2P architecture which is usually unstructured, poses a new
security problem. Specifically, while a centralized server manifests itself as an
authority trusted by all players, P2P communications inevitably untrustworthy.
Indeed, a participating peer might be malicious and send false updates to other peers.
An even worse situation is that a set of malicious peers form a collusion so as to gain
a collective advantage (e.g., by delaying useful information to other honest players).
In general, there are five practicable cheating actions [39, 45, 71]:

1. Fixed-Delay Cheat. The reception of state updates to a malicious peer is faster
than the transmission from it. Thus, such a malicious peer can gain a timing
advantage over the opponents.

2. Time-Stamp Cheat. A malicious peer puts bogus time stamps—earlier rather
than later—on state update messages to gain timing advantage over the oppo-
nents.

3. Suppressed Update Cheat. A malicious peer withholds some important state
updates from reaching the opponents so that the latter could make erroneous
decisions.

4. Inconsistency Cheat. A malicious peer sends different bogus update messages
to different opponents to confuse them.

5. Collusion Cheat. A set of malicious peers form a collusion to launch larger scale
cheating, and more importantly, to protect against detection (elaborated below).

To tackle these threats in a P2P MMOG, GauthierDickey et al. [39] proposed a
protocol called New Event Ordering (NEO), which is a commit and reveal algorithm
with majority agreement on valid commitments. Specifically, in a P2P MMOG with
NEO, computations and communications are synchronized in fixed length rounds.
At the end of each round, each participating peer executes a voting function so as to
reach a consensus over the updated game state. While the NEO protocol is simple

Autonomic Peer-to-Peer Systems 231

to implement and hence highly efficient, Corman et al. [31] later discovered that it
cannot defend against the following cheating actions:

• A malicious peer can replay obsolete updates to some opponents.
• A malicious peer can construct update messages that are valid in the sense that

they are associated with signed votes.
• A malicious peer can still send different update messages to different opponents.

The first two problems are due to the fact that in NEO, update components in a
message are simply concatenated but not integrated in a cryptographically secure
manner. The third problem is actually a result of the first—a malicious peer can
replay old updates from previous rounds to some opponents. Corman et al. [31]
proposed a new protocol called Secure Event Agreement (SEA) which is designed
to handle the above problems. The SEA protocol signs the whole game state update
message and integrates all components in a cryptographically secure method. The
SEA protocol also makes use of additional system information items such as session
ID, a nounce that is unique for each round, and the round number.

4.8 Other Security Techniques

There are many novel P2P security techniques proposed recently [67]. Due to space
limitations, we briefly mention two particularly interesting ones.

Danezis and Anderson [32] presented an interesting theoretical study on the eco-
nomics of resisting censorship of P2P shared contents. Using a simple unimodal
utility function to capture each peer’s preference over shared contents, they analyzed
the costs of imposing and resisting censorship in the system, by some malicious
external entity and the participating peers, respectively. Their major insight is that
a highly heterogeneous population of peers in terms of preferences can better with-
stand censorship attacks.

Capkun et al. [25] reported an insightful study on the effect of mobility on the
security of a wireless P2P system. Assuming that each mobile device has a secure
side channel for communicating with other devices, they showed that the temporary
vicinity of peers can actually benefit the set up of security associations between
users who were previously separated wide apart from each other.

5 Discussion and Future Work

There are several promising avenues of further research in incentive mechanisms.
Firstly, much work should be done in improving the accountability and resilience
of tangible incentive systems (such as payment based or exchange based). Specifi-
cally, robust schemes should be designed to guard against forging of benefits (e.g.,
payment tokens) and avoiding “inflation” caused by resource-rich peers overwhelm-
ing resource-poor peers (e.g., peers that just join the network). Secondly, while

232 Y.-K. Kwok

many game theoretic schemes have been suggested, most of them are based on
complete information. Obviously, in a practical P2P system, each peer can pos-
sibly know the information about its immediate neighbors only. Even then, such
knowledge can be very inaccurate. Thus, there is a need to extend existing game
theoretic schemes to handle the incomplete information situations, possibly by using
Bayesian game approaches. Thirdly, incentive mechanisms for wireless P2P sys-
tems are largely unexplored. An obvious approach is to extend wired Internet-based
incentive schemes to a wireless environment. However, a wireless network exhibits
many unique features such as time-varying channel quality, energy efficiency con-
cerns, and mobility that are not found in a wired Internet environment. Thus, it is a
challenge to design new incentive schemes that are suitable for a wireless network.
Finally, reputation based incentive schemes are currently designed without much
regard to trust management. It is desirable to integrate efficient trust management
schemes with a reputation system to form a comprehensive unit that allows peers to
perform judicious peer selection as well as identify malicious colluders.

On the security front, there are even more important problems to be tackled.
Indeed, all of the security attacks that we described still need much research. Churn
attacks are still relatively easy to launch but still can disrupt the normal operations
of a P2P system. A promising avenue of research along this line is to devise effective
technique to raise the barrier of joining the system on the part of the peer but not
to the extent that some honest peers are deterred. Similarly, again due to the open
nature of a P2P network, poisoning seems to be inevitable. The issue really is how
soon such a poison-injecting peer can be identified and expelled from the system.
Sybil attacks have received intensive research attention recently and many novel
solutions based on various cryptographic techniques have been proposed. Never-
theless, as the hardware and software capabilities of a malicious peer become more
advance, existing techniques may not be effective. Worms and malwares distribution
continue to be major headaches in the Internet as a whole and P2P systems are no
exception. However, an interesting research problem is to leverage the cooperative-
ness of participating peers to collaborative combat worms and malwares spreading.
Cheating in a P2P MMOG is of interest to many commercial attackers. Thus, it is
of great financial impact to successfully track down cheating peers. Perhaps a use-
ful approach is to provide game-related incentive (or even in real monetary terms)
for honest peers to proactively report anomalies exhibited by topologically close
malicious peers.

6 Summary

P2P systems are autonomic in nature because participating peers can join and leave
at will. To ensure sustained operations in a P2P network, cooperation among peers
and a secure environment are inevitable. In this chapter, we first provide a brief sur-
vey of state-of-the-art techniques to provide incentives for cooperation. In general,
systems that involve payment would be more difficult to implement because it is not

Autonomic Peer-to-Peer Systems 233

trivial to design a global “currency” for use in such systems. Furthermore, security
requirement would be high because the payment could be forged by malicious peers.
On the other hand, exchange based or reciprocity based are easier to implement and
hence, are more scalable. The major crux is that there is much less state information
to be kept by each peer. More importantly, the accuracy of such state information
(e.g., reputation) does not need to be absolutely very high. Thus, we expect that
future P2P file sharing would still be based on similar approaches.

For the security issue, a P2P system faces many unique challenges. Churn attacks
are a P2P version of denial-of-service attacks in that malicious peers deliberately
join and leave the system frequently, inducing a large amount of processing and
communication overheads for population maintenance. Poisoning and Pollution
occur when some malicious peers intentionally injects falsified data (e.g., unusable
files) into the shared pool of contents. The most commonly seen attacks are the
various forms of sybil attacks. Because many P2P systems rely on voting to make
collective decisions, it is important that peer IDs cannot be easily forged; otherwise,
a peer can control a large portion of peer IDs and out-vote other honest peers. In
many P2P file sharing systems, peers download files without much checking and
thus, such a platform is an idea environment for spreading worms. Related to poi-
soning and worms, honest peers could inadvertently downloaded files encapsulating
malwares such as virus codes. Many massively MMOGs are moving toward a P2P
architecture from a traditional centralized client–server structure. However, such a
move also gives away the centralized control over peers’ actions and the associated
effective security measures. In effect, as the game state updating and communica-
tion tasks are handled by the peers themselves, some malicious peers can cheat by
launching many of the above attacks. As in a traditional Internet computing envi-
ronment, security is an ongoing battle and all of the problems we described in this
chapter still need much research.

References

1. BitComet, http://www.bitcomet.com/, 2008.
2. BitTorrent, http://www.bittorrent.com/, 2008.
3. eDonkey2000, http://www.edonkey2000.com/, 2005 (defunct).
4. eMule, http://www.emule-project.net/, 2008.
5. FreeNet, http://freenetproject.org/, 2008.
6. giFT Project, http://gift.sourceforge.net/, 2008.
7. Gnutella, http://gnutella.wego.com/, 2008.
8. GreenTea, http://www.greenteatech.com/, 2008.
9. HKCSL, http://one2free.hkcsl.com/eng/main/index.jsp, 2005.

10. iMesh, http://www.imesh.com/, 2008.
11. Joost, http://www.joost.com/, 2008.
12. KaZaA, http://www.kazaa.com/, 2008.
13. Limewire, http://www.limewire.org/, 2008.
14. Napster, http://www.napster.com/, 2002 (bankruptcy).
15. PPLive, http://www.pplive.com/, 2008.
16. Skype, http://www.skype.com/, 2008.

234 Y.-K. Kwok

17. Slyck.com, http://www.slyck.com/news.php?story=574, 2005.
18. Tribler, http://www.tribler.org/, 2008.
19. Washington Times Online, http://www.washtimes.com/ technology/20040303-094741-

3574r.htm, 2005.
20. World of Warcraft, http://www.worldofwarcraft.com/, 2008.
21. WinMX, http://winmx.com/, 2005
22. K. G. Anagnostakis and M. B. Greenwald, “Exchange-Based Incentive Mechanisms for Peer-

to-Peer File Sharing,” Proc. 24th Int’l Conference on Distributed Computing Systems, 2004.
23. S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-to-Peer Content Distribution

Technologies,” ACM Computing Surveys, vol. 36, no. 4, Dec. 2004, pp. 335–371.
24. J. U. Becker and M. Clement, “The Economic Rationale of Offering Media Files in Peer-to-

Peer Networks,” Proc. 37th Hawaii Int’l Conference on System Sciences, 2004.
25. S. Capkun, J.-P. Hubaux, and L. Buttyan, “Mobility Helps Peer-to-Peer Security,” IEEE Trans-

actions on Mobile Computing, vol. 5, no. 1, Jan. 2006, pp. 43–51.
26. D. Cerri, A. Ghioni, S. Paraboschi, and S. Tiraboschi, “ID Mapping Attacks in P2P Networks,”

Proc. IEEE GLOBECOM 2005, pp. 1785–1790.
27. G. Chen and R. S. Gray, “Simulating Non-Scanning Worms on Peer-to-Peer Networks,” Proc.

1st ACM Int’l Conf. Scalable Information Systems, May 2006.
28. N. Christin, A. S. Weigend, and J. Chuang, “Content Availability, Pollution and Poisoning in

File Sharing Peer-to-Peer Networks,” Proc. ACM EC 2005, June 2005, pp. 68–77.
29. I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A Distributed Anonymous Infor-

mation Storage and Retrieval System,” Proc. Workshop on Design Issues in Anonymous and
Unobservability, July 2000.

30. B. Cohen, “Incentives Build Robustness in BitTorrent,” Proc. Workshop on Economics of Peer-
to-Peer Systems, June 2003.

31. A. B. Corman, S. Douglas, P. Schachte, and V. Teague, “A Secure Event Agreement (SEA)
Protocol for Peer-to-Peer Games,” Proc. 1st IEEE Int’l Conf. Availability, Reliability and Secu-
rity (ARES 2006).

32. G. Danezis and R. Anderson, “The Economics of Resisting Censorship,” IEEE Security and
Privacy, Jan./Feb. 2005, pp. 45–50.

33. S. Daswani and A. Fisk, GUESS Protocol Specification, http://groups.yahoo.com/
group/the gdf/files/Proposals/GUESS/guess 01.txt.

34. N. Daswani and H. Garcia-Molina, “Pong-Cache Poisoning in GUESS,” Proc. ACM CCS
2004, Oct. 2004, pp. 98–109.

35. M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-Riding and Whitewashing in
Peer-to-Peer Systems,” Proc. 2004 SIGCOMM Workshop on Practice and Theory of Incentives
in Networked Systems, Aug. 2004, pp. 228–235.

36. M. Feldman and J. Chuang, “Overcoming Free-Riding Behavior in Peer-to-Peer Systems,”
ACM SIGccom Exchanges, vol. 5, no. 4, July 2005, pp. 41–50.

37. M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust Incentive Techniques for Peer-to-Peer
Networks,” Proc. 5th ACM conference on Electronic Commerce, pp. 102–111, May 2004.

38. A. Friedman, “Good Neighbors Can Make Good Fences: A Peer-to-Peer User Security Sys-
tem,” IEEE Technology and Society Magazine, Spring 2007, pp. 17–24.

39. C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low-Latency Cheat-Proof Event Ordering
for Peer-to-Peer Games,” Proc. Int’l Workshop Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), June 2004.

40. I. Gupta, K. Birman, P. Linga, A. Demers, and R. Van Renesse, “Kelips: Building an Efficient
and Stable P2P DHT Through Increased Memory and Background Overhead,” Proc. 2nd Int’l
Workshop on Peer-to-Peer Systems (IPTPS), 2003, pp. 81–86.

41. R. Gupta and A. K. Somani, “A Pricing Strategy For Incentivizing Selfish Nodes To Share
Resources In Peer-to-Peer (P2P) Networks,” Proc. IEEE International Conference on Net-
works, Nov. 2004.

Autonomic Peer-to-Peer Systems 235

42. D. Hausheer, N. C. Liebau, A. Mauthe, R. Steinmetz, and B. Stiller, “ Token Based Account-
ing and Distributed Pricing to Introduce Market Mechanisms in a Peer-to-Peer File Sharing
Scenario,” Proc. Third International Conference on Peer-to-Peer Computing, 2003.

43. D. Hausheer and B. Stiller, “Decentralized Auction-based Pricing with PeerMart,” Proc. 9th
IFIP/IEEE International Symposium on Integrated Network Management, May 2005.

44. Z. Jia, S. Tiange, H. Liansheng, and D. Yiqi, “A New Micropayment Protocol Based on P2P
Networks,” Proc. 2005 IEEE Int’l Conference on e-Business Engineering, 2005.

45. P. Kabus and A. P. Buchmann, “Design of a Cheat-Resistant P2P Online Gaming System,”
Proc. ACM DIMEA 2007, pp. 113–120.

46. A. Kalafut, A. Acharya, and M. Gupta, “A Study of Malware in Peer-to-Peer Networks,” Proc.
ACM IMC 2006, Oct. 2006, pp. 327–332.

47. M. A. Konrath, M. P. Barcellos, and R. B. Mansilha, “Attacking a Swarm with a Band of
Liars: Evaluating the Impact of Attacks on BitTorrent,” Proc. 7th IEEE Int’l Conf. Peer-to-Peer
Computing, 2007, pp. 37–44.

48. R. Krishnana, M. D. Smith, and R. Telang, “The Economics of Peer-to-Peer Networks,” Jour-
nal of Information Technology Theory and Application, vol. 5, no. 3, pp. 31–44, 2003.

49. R. Kumar, D. D. Yao, A. Bagchi, K. W. Ross, and D. Rubenstein, “Fluid Modeling of Pollution
Proliferation in P2P Networks,” Proc. ACM SIGMetrics 2006, June 2006, pp. 335–346.

50. G. Lawton, “Is Peer-to-Peer Secure Enough for Corporate Use?” IEEE Computer, Jan. 2004,
pp. 22–25.

51. P. Linga, I. Gupta, and K. Birman, “A Churn-Resistant Peer-to-Peer Web Caching System,”
Proc. ACM SSRS 2003, Oct. 2003.

52. R. T. B. Ma, S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau, “A Game Theoretic Approach to
Provide Incentive and Service Differentiation in P2P Networks,” Proc. SIGMETRICS, June
2004, pp. 189–198.

53. R. T. B. Ma, S. C. M. Lee, J. C. S. Lui, and D. K. Y. Yau, “An Incentive Mechanism for P2P
Networks,” Proc. 24th Int’l Conference on Distributed Computing Systems, 2004.

54. P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Information System Based on
the XOR Metric,” Proc. 1st Int’l Workshop on Peer-to-Peer Systems (IPTPS 2002), pp. 53–65.

55. M. J. Osborne, An Introduction to Game Theory, Oxford University Press, 2004.
56. V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr, “Chainsaw: Eliminating

Trees from Overlay Multicast,” Proc. 4th Int’l Workshop on Peer-to-Peer Systems, pp. 127–
140, Feb. 2005.

57. D. Qiu and R. Srikant, “Modeling and Performance Analysis of BitTorrent-Like Peer-to-Peer
Networks,” Proc. SIGCOMM, pp. 367–377, Sept. 2004.

58. K. Ranganathan, M. Ripeanu, A. Sarin and I. Foster, “To Share or not to Share: An Analysis
of Incentives to Contribute in Collaborative File-Sharing Environments,” Proc. Workshop on
Economics of Peer-to-Peer systems, June 2003.

59. M. Roussopoulos, M. Baker, D. Rosenthal, T. J. Giuli, P. Maniatis, and J. Mogul, “2 P2P
or Not 2 P2P?,” Proceedings of the Third International Workshop on Peer-to-Peer Systems
(IPTPS ’04), Feb. 2004. La Jolla, CA.

60. A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object address and routing for
large-scale peer-to-peer systems,” Proc. IFIP/ACM Int’l Conf. on Distributed Systems Plat-
forms, Nov. 2001.

61. S. Sanghavi and B. Hajek, “A New Mechanism for the Free-Rider Problem,” Proc. SIGCOMM
2005 Workshop, Aug. 2005.

62. T. C. Schelling, Micromotives and Macrobehavior, W. W. Norton & Company, 1978.
63. S. Shin, J. Jung, and H. Balakrishnan, “Malware Prevalence in the KaZaA File-Sharing Net-

work,” Proc. ACM IMC 2006, Oct. 2006, pp. 333–338.
64. K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Feasibility of Supporting

Large-Scale Live Streaming Applications with Dynamic Application End-Points,” Proc. SIG-
COMM, vol. 34, no. 4, pp. 107–120, Aug. 2004.

236 Y.-K. Kwok

65. I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and H. Balakrishnan, “Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications,” Proc. ACM SIGCOMM 2001, Aug.
2001, pp. 149–160.

66. Q. Sun and H. Garcia-Molina, “SLIC: A Selfish Link-based Incentive Mechanism for Unstruc-
tured Peer-to-Peer Networks,” Proc. 24th Int’l Conference on Distributed Computing Systems,
2004.

67. J. Van Der Werwe, D. Dawoud, and S. McDonald, “A Survey on Peer-to-Peer Key Manage-
ment for Mobile Ad Hoc Networks,” ACM Computing Surveys, vol. 39, no. 1, Apr. 2007.

68. V. Venkataraman, P. Francisy, and J. Calandrino, “Chunkyspread: Multi-Tree Unstructured
Peer-to-Peer Multicast,” Proc. 5th Int’l Workshop on Peer-to-Peer Systems, Feb. 2006.

69. W. Wang and B. Li, “Market-driven Bandwidth Allocation in Selfish Overlay Networks,” Proc.
IEEE INFOCOM 2005, Mar. 2005.

70. F. Wang, Y. Xiong, and J. Liu, “mTreebone: A Hybrid Tree/Mesh Overlay for Application-
Layer Live Video Multicast,” Proc. ICDCS, June 2007.

71. S. D. Webb and S. Soh, “Cheating in Networked Computer Games—A Review,” Proc. ACM
DIMEA 2007, pp. 105–112.

72. J. D. Weisz, S. Kiesler, H. Zhang, Y. Ren, R. E. Kraut, and J. A. Konstan, “Watching Together:
Integrating Text Chat with Video,” Proc. SIGCHI, pp. 877–886, Apr.–May 2007.

73. K. Wongrujira and A. Seneviratne, “Monetary Incentive with Reputation for Virtual Market-
Place Based P2P,” Proc. CoNEXT’05, Oct. 2005.

74. B. Yang and H. Garcia-Molina, “PPay: Micropayments for Peer-to-Peer Systems,” Proc. 10th
ACM Conference on Computer and Communication Security, pp. 300–310, 2003.

75. W. Yu, S. Chellappan, X. Wang, and D. Xuan, “On Defending Peer-to-Peer System-Based
Active Worm Attacks,” Proc. IEEE GLOBECOM 2005, pp. 1757–1761.

76. H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “SybilGuard: Defending Against Sybil
Attacks via Social Networks,” Proc. ACM SIGCOMM 2006, Sept. 2006, pp. 267–278.

77. X. Zhang, J. Liu, B. Lim, and T.-S. P. Yum, “CoolStreaming/DONet: A Data-Driven Overlay
Network for Peer-to-Peer Live Media Streaming,” Proc. INFOCOM, vol. 3, pp. 2102–2111,
Mar. 2005.

78. M. Zhang, Y. Xiong, Q. Zhang, and S. Yang, “Optimizing the Throughput of Data-Driven
based Streaming in Heterogeneous Overlay Network,” Proc. 13th Int’l Multimedia Modeling
Conf., Jan. 2007.

79. M. Zhang, L. Zhao, Y. Tang, J.-G. Luo, and S.-Q. Yang, “Large-Scale Live Media Streaming
over Peer-to-Peer Networks through Global Internet,” Proc. Workshop on Advances in Peer-
to-Peer Multimedia Streaming, pp. 21–28, Nov. 2005.

Part II
Autonomic Networking

Toward Autonomic Networks: Knowledge
Management and Self-Stabilization

Raouf Boutaba, Jin Xiao, and Qi Zhang

Abstract Autonomic networks present a fundamental shift in the design philosophy
of networks and systems. Thus far, research has focused on addressing the self-
management properties. In this book chapter, we illuminate two important issues
in autonomic networks that are seldom addressed: knowledge management and
self-stabilization. Through in-depth discussion on their concepts, challenges, and
relevant works, we show that exploration in these issues is not only necessary but
also critical to the success of autonomic networks.

1 Autonomic Networking

1.1 Introduction

Information and networking technology has become an intrinsic part of our daily
lives and business activities. We are accustomed to diverse means of digital infor-
mation access and communication regardless of geographical locations and physical
distances. The information and networking technology is so vital to human society
today, any malfunctions, whether in performance or due to fault, directly impacts
our personal lives, enterprise operations, and global economy. This way of life is
supported through vast deployments of communication and network infrastructures
and its growth is sustained by the ever increase in size and complexity of these
infrastructures. Since the inception of networks and communication systems, net-
work management has been pivotal in ensuring their correct and efficient operation
in aspects of configuration, fault, accounting, performance, and security. Tradition-
ally, network management is conducted in centralized fashion with heavy reliance
on manual administration. However, with the rising complexity and scale of these
infrastructures, this approach becomes wholly ineffective in practice. The networks
and software systems have grown beyond the limit of manual administration due
to their complexity in design, pervasiveness in distribution and the dynamicity of

R. Boutaba (B)
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
e-mail: rboutaba@cs.uwaterloo.ca

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 10, C© Springer Science+Business Media, LLC 2009

239

240 R. Boutaba et al.

runtime environment. Today, the rising cost of networking management and opera-
tions far out strides that of network expansion [41]. And at the same time, there is
rising pressure in making network management cheaper and more effective.

Over the years, much research efforts have been spent on distributing manage-
ment intelligence into the networks and communication systems (e.g. management
by delegation, policy-based management, mobile agents), with the eventual goal of
making network management autonomous and generally free of human reliance.
These efforts have recently culminated in the concepts of autonomic computing
[18] and networking [31]. This marks a fundamental shift in the design philosophy
of networks and systems. No longer are the networks primitive and the management
systems omnipotent and all encompassing, a large degree of self-awareness and
self-governance must be realized.

Autonomic networking aims to engender networks that exhibit the following
self-management properties:

• Self-configuration: the entities can automate system configuration follow-
ing high-level specifications, and can self-organize into desirable structures
and/or patterns.

• Self-optimization: the entities constantly seek improvement to their perfor-
mance and efficiency, and able to adapt to changing environment without
direct human input.

• Self-healing: the entities can automatically detect, diagnose, and recover
from faults as the result of internal errors or external inconsistencies.

• Self-protection: the entities can automatically defend against malicious
attacks or isolate the attacks to prevent systemwide failures.

Figure 1 shows the anatomy of an autonomic component whereby the autonomic
manager interacts with the managed elements and its surroundings by taking inputs
from the external environment, applying analysis and reasoning logic, generating

Fig. 1 The anatomy of autonomic manager

Toward Autonomic Networks 241

corresponding actions, and executing these actions as output. This workflow fits
well with the classic monitoring and control loop of network management, where
monitored data from the networks are used to determine the appropriate manage-
ment decisions and then translated into corresponding control actions.

To date, there has been a flurry of research activities on addressing the self-
management properties in various networking contexts, often relating to one of
the five management functional areas. However, not much attention has been
paid to the fundamental issues of knowledge management and self-stabilization
in autonomic networking. In fact, they are the missing facets that enables ”auto-
nomicity” in autonomic computing and networking. More precisely, knowledge
management is the fundamental underpin of self-* behaviors (i.e. the baseline
inputs), while self-stabilization is very much an essential management and control
objective that should encompass the self-managing behaviors of the networks
and systems. Hence, the goal of this book chapter is to explore these two top-
ics in considerable depth, and discuss the key concepts, challenges, and related
works.

1.2 Knowledge and Stability

Knowledge is central to the operation of autonomic networking, as depicted in
Fig. 1. The knowledge an autonomic system is required to gather and formulate far
exceeds the level of data representation and interpretation capability of today’s net-
work management applications and distributed systems. There is a need for knowl-
edge representation of the environment, various processes, services and objects, the
autonomic component, the states the system could take on, the interactions a com-
ponent could have, the properties the system and components are associated with,
and the features/services the system or component provides. There is also a need
for the representation of high-level objectives, system behaviors, and rules. The
problem is further complicated by the wide range of contexts such knowledge could
be taken from, the need for common information representation, and the possibility
of varied semantics and interpretations. Nevertheless, an efficient and comprehen-
sive knowledge management system is the critical foundation for self-management,
self-awareness, and self-stabilization.

In this context, knowledge management refers to the activities of collecting, stor-
ing, delivering, and reasoning about the knowledge of the networks, in order to
benefit network operations and management. Knowledge management is envisioned
to have a broad impact on the future of autonomic networks. In particular, Clark et
al. in his position paper [8] describes a global knowledge management infrastructure
called knowledge plane, capable of automating network management tasks and driv-
ing autonomic behavior of individual network entities, at the local and global scale.
Although various aspects of knowledge management have received much attention
(e.g., monitoring), there lacks formal structure to knowledge management research
as a whole.

242 R. Boutaba et al.

Today’s networking infrastructure is carefully planned and engineered to ensure
its runtime efficiency and stability. The autonomic networking philosophy presents
an environment of large distributed control, often lacking the effectiveness and
thus the feasibility of centralized planning. Hence the issue of distributed self-
stabilization is critical in this context. Can networks operating on self-motivated
behaviors and limited information be stable? Under what conditions could stabi-
lization be obtainable? How can we design networks that can recover from insta-
ble configurations? these are but some of the important questions that sorely lack
solution at present. The concept of self-stabilization, as first proposed by Dijkstra
[10] for distributed systems still bears much relevance in the autonomic networking
context. Although there are much research on self-stabilization in the past [12], they
are focused on algorithm designs and system/protocol engineering. In this chapter,
we examine self-stabilization from the unique perspective of autonomic networks,
and as we will discuss, the accuracy and timeliness by which knowledge could be
obtained about the environment is critical to the feasibility of self-stabilizing behav-
iors of the components and the global system.

The rest of the chapter is organized as follows. Section 2 covers the topic of
knowledge management, presenting its various aspects and related works. Section
3 addresses the stability issue, relating the concept to research on game theory and
discuss the properties of self-stabilization in autonomic networking. Section 8 con-
cludes the book chapter.

2 Knowledge Management

In this section, we first present an overview of knowledge management concept, in
comparison with knowledge management in organizational management research.
Then, we discuss individual aspects of knowledge management and the related
works.

2.1 Knowledge Management Concepts

Knowledge management is well-studied in organizational management. In this con-
text, a distinction is often made among the following terms: data as raw numbers
and facts obtained from observations; information as the outcome of analyzing rela-
tionships between data; and knowledge as organized information in an individual’s
mind that can be used for reasoning and explanation [1]. The difference between
these three terms could be subtle. For instance, it is arguable that even elemen-
tary data is a result of data identification and collection process. Furthermore, there
could be some intangible mapping between information and knowledge when it
is stored in an individual’s mind (information-to-knowledge) and presented by the
individual in text, graphics or other semantic forms (knowledge-to-information and

Toward Autonomic Networks 243

knowledge-to-data). Nevertheless, it is necessary for a knowledge management sys-
tem to consider a combination of knowledge, information, and data [4].

Knowledge management in organizational settings typically refers to a process
[1] involving various activities: creating, storing/retrieving, transferring, and apply-
ing knowledge to applications. In this regard, a knowledge management system is
an information system responsible for managing organizational knowledge. Thus,
knowledge management is sometimes equated to information management. We
argue based on the definitions of data, information and knowledge that knowledge
management encompasses all the activities in information management, plus the
activity of cognitive processing. Cognitive processing is the ability to correlate, rea-
son, and infer about knowledge.

In the context of networks, knowledge often refers to models and information
regarding the network capabilities, environmental constraints, business goals, and
polices [19]. It is possible to classify network knowledge according to the following
three criteria:

• Meta-knowledge vs. instance-knowledge: analogous to meta-data (i.e., schema)
and data items in databases, there is a difference between meta-knowledge and
instance-knowledge in knowledge management. Meta-knowledge describes the
structure and relationship between knowledge objects, while instance-knowledge
is the realization of meta-knowledge. Ontology is often used in meta-knowledge
representation [15]. For example, various semantics and domain-specific con-
cepts can be represented through ontologies [20, 28].

• Functional areas and management levels: management information is tradition-
ally organized into layers: business, service, network, and device. This presents
a natural grouping for knowledge management. Furthermore, the five classic
network management functional areas—fault, configuration, accounting, perfor-
mance, and security—provide a functional grouping of knowledge. These two
groupings of knowledge are complimentary, as shown in current network man-
agement designs.

• Temporal and spatial knowledge: temporal wise, knowledge can be scoped by its
associated time length. Spatial wise, knowledge can be scoped by its geograph-
ical dimensions. For example, IP address and routing table values are scoped
to individual routers and hosts, while Border Gateway Protocol (BGP) policies
are scoped with entire network domains. Such scoping is required for particular
management activities (e.g., fault diagnosis and security analysis).

Context also plays an important role in knowledge management. Context refers to
a collection of information that describes the operating environment of the system.
Context can be raw data or information interpreted at multiple levels. It is gener-
ally agreed that achieving context-awareness is essential to achieving autonomic
network management [11, 21]. From a conceptual point of view, context manage-
ment is identical to knowledge management, since managing context also involves
the tasks of collecting, representing, and interpreting contextual information, and
applying the contextual knowledge to drive adaptive and autonomic behavior of
network entities.

244 R. Boutaba et al.

Fig. 2 Knowledge management for autonomic networks

Figure 2 depicts the set of activities in knowledge management. The reader
should bear in mind that a knowledge management system is an integral part of
the autonomic networking infrastructure. Collection, organization, cognition, stor-
age and dissemination, and context generation are the main aspects of knowledge
management. In collection, input data is acquired from the networks. The data come
from sources at multiple levels, such as measurement data from network sensors,
business level policies, and objectives from network operators. The goal of organi-
zation is to structure and integrate the input data from diverse sources and store them
as information, preparing them for reasoning and cognition. The cognition process
correlates, reasons, and infers information to generate knowledge about the system.
The resulting knowledge could then be represented to the outside as information
in a specific context. The Storage and Dissemination process underpins the other
activities. It is tasked with data, information and knowledge storage and retrieval in
distributed and efficient ways. In the autonomic networking infrastructure, knowl-
edge management is a continuous process in which network data are processed by
the knowledge management system in order to guide the autonomic behaviors of the
network.

2.2 Knowledge Management in Autonomic Networks

In this section, we expound the knowledge management activities. We first discuss
knowledge modeling and representation, then describe each of the aforementioned
knowledge management aspects.

2.2.1 Knowledge Modeling and Representation

Traditionally, knowledge representation has been studied in the area of artificial
intelligence. The goal is to represent knowledge in a machine-understandable way

Toward Autonomic Networks 245

in which knowledge can be processed and reasoned about. Conceptually, knowl-
edge can be represented as a set of concepts; each concept may be related to other
concepts through particular relationships. Ontology is then a formal and structured
representation of knowledge and specifies how concepts are related. Ontology is
specified using ontology languages. The most predominate ontology language is the
Web Ontology Language (OWL) [40]. Standardized by W3C, OWL is a XML-based
ontology langue supporting knowledge correlation and reasoning. More specifically,
OWL categorizes individual concepts using classes. Each class can have associated
properties such as domain and constraints, and can be associated and correlated to
other concepts based on these properties. Currently, the OWL language provides
three subset languages corresponding to three levels of semantic expressiveness:
OWL Lite is for specifying simple constraints, OWL DL allows for description logic
and guarantees completeness and decidability, and OWL full is the most expressive
but may not be computational feasible.

In fact, the concept of objects, properties and relations are not foreign to network
management. Many existing information models such as Structured Management
Information (SMI) and Guidelines for Definition of Management Objects (GDMO)
already have these notions. However, SMI and GDMOs are not well-suited for
knowledge representation due to two reasons. First, they lack semantic capability.
Autonomic networks operate across heterogeneous environments, each with its own
information representation, structure, and terminology. To achieve interoperability,
the knowledge representation must operate on the semantic level rather than syntac-
tical level. Secondly. they lack reasoning capability. Due to lack of formal semantic
models and reasoning constructs, one could not reason or infer about the information
provided by SMI and GDMO. To address these problem, several research effort have
been devoted to represent network management knowledge using OWL, since OWL
is formally defined and enables reasoning, and it also eases the integration between
different information models.

In particular, Lopez de Vergara et al. [24] compare the expressiveness of different
management languages and propose new methodologies for mapping ontological
definitions. They also describe equivalent construct of common objects, attribute
properties and constraints in three management information models (SMIv2
GDMO, and CIM) in OWL [25]. Several ontology mapping techniques such as
lexical-b, taxonomy-b, and logical-based matching techniques have been studied.
Kenny et al. [21] computes similarity scores for matching ontological concepts
using model-based matching on semantic aspects. All of the above techniques are
either performed manually or require software assistance.

Using ontology to capture semantic information has also been applied to other
information models. In particular, Strassner et al. propose to augment Directory
Enabled Networking-next generation (DEN-ng) information model with ontology
extensions [42]. Specifically, DEN-ng information model is based on the Unified
Modeling Language. It defines a set of models capturing various aspects of the
managed entities, called views. The ontology extension of DEN-ng supports inter-
operability among information models, as well as reasoning using first-order logic
or other machine learning techniques.

246 R. Boutaba et al.

Overall, representing knowledge using ontology is a promising direction of
research. Ontology offers the salient advantages of formal methodologies, decid-
ability, and interoperability.

2.2.2 knowledge Collection

Knowledge management systems acquire data from diverse sources: network infor-
mation bases, online monitors, system and application logs, and other knowledge
management systems. Excluding human-specified data, most of the knowledge col-
lection tasks are typically carried out by network monitoring systems such as net-
work sensors and agents. Some existing network management protocols/tools such
as SNMP and NetFlow, already provide built-in monitoring functionality. How-
ever, traditional network monitoring is not adequate for knowledge management
systems, for several reasons [27]. First, the information that can be monitored is
usually hard-coded according to a standard information model. This is problem-
atic because in the context of knowledge management, the knowledge that needs
to be captured is diverse and constantly changing according to its operating envi-
ronment. Second, most of the existing network monitoring systems are central-
ized, suffering from scalability and single-point-of-failure issues. Third, existing
monitoring systems often conduct monitoring at some fixed rate, regardless of
the actual network conditions. Hence when network condition is stable, the mon-
itoring system generates excessive data; when a significant event such a failure
occurs, the system often fails to capture the important characteristics of the event
due to coarse monitoring granularity. Thus, a suitable monitoring infrastructure for
network knowledge management must be distributed, coordinated, adaptive, and
flexible.

Recent work on monitoring address some of the issues aforementioned. In
particular, there has been a significant interest in building distributed monitoring
systems for large-scale networks [26, 44]. For instance, iPlane [26] is a distributed
monitoring service that provide end-to-end path performance estimation to end
hosts over the Internet. To reduce the measurement overhead, iPlane selectively
probes a path to a representative node with each prefix (BGP atoms). The iPlane
measurement is coordinated, in that each probe is responsible for a set of pre-
fixes according to a clustering algorithm. The primary measurement tool used
by iPlane is TraceRoute. Using a set of heuristics, iPlane is able to determine
router level link attributes such as loss rate, capacity, and bandwidth availabil-
ity. This information can then be used to predict end-to-end path performance.
Although it operates primarily at interdomain level, iPlane is an example of
how distributed and coordinated monitoring could be achieved. Sophia [44] is
a distributed monitoring application that provides a declarative query language
based on Prolog. Furthermore, the notion of time and location are first class
elements in query expressions, which guarantee precise interpretation of queries.
Sophia handles churns and failures by allowing logic “holes” in query evaluation,
thus allowing better performance at the cost of completeness. it also employs
other means of performance optimization such as caching, query planning, and
scheduling.

Toward Autonomic Networks 247

2.2.3 Knowledge Storage and Dissemination

One of the key issues in designing a network knowledge management system is
determine where knowledge should be stored and how knowledge can be deliv-
ered. Traditional network management systems often store information in central-
ized information stores, which raises serious scalability and performance issues in
large distributed setting. Recent works have begun to investigate distributed network
management. This issue is even more important to autonomic networks, where auto-
nomic elements heavily rely on knowledge management infrastructure to acquire
their operating context, and achieve self-management. Therefore, scalable knowl-
edge storage and efficient knowledge delivery is central to a knowledge management
system. In this section, we briefly summarize several recent research efforts.

Mulvenna et al. [32] introduces the concept of knowledge networks, which is an
overlay network responsible for distributing knowledge across the network. They
draw analogy to the human nervous system which coordinates and organizes the
delivery of stimuli in a timely manner. The proposal is based on the observation that
local knowledge may not be sufficient for driving autonomic behavior of compo-
nents; thus, a global infrastructure is required. Such an infrastructure must be scal-
able, robust to failure, and self-organizing when network structures change. They
envisioned knowledge networks as an intermediate layer between the applications
and the networks to both enable access to contextual information and allow bet-
ter coordination between components. Furthermore, to achieve efficiency and load
balancing, they argue that knowledge should be distributed according to the source
and demand of the knowledge. The “load field” is a virtual landscape that summa-
rizes the distribution of knowledge across the network. The knowledge network can
hence re-distribute load based on the global load situation. To date, there is little
implementation to their conceptual knowledge framework. The authors suggest that
many practical issues remain.

Lewis et al. [21, 23] present a network Knowledge Delivery Service which pro-
vides efficient delivery of network knowledge to components for the purpose of
self-adaptation. Implemented as a Knowledge Delivery Network (KDN), KDN is
based on Content-Based Networks (CBNs), which offer a publish–subscribe inter-
face for information delivery. The knowledge in KDN is stored and represented
using OWL, and subscription queries can be specified using predicate logic. To
achieve scalability, robustness, and self-organization in KDN, the knowledge nodes
in a KDN are organized as a peer-to-peer (P2P) overlay network. Furthermore,
knowledge nodes are dynamically clustered, based on knowledge provider, knowl-
edge subscription, knowledge semantics, and administrative restrictions. Dynamic
clustering of knowledge nodes allows a KDN to achieve substantial improvement
in performance and efficiency. For evaluation, the authors build a prototype CBN
and compared the performance of several ontology reasoners. The experimental
results show that initial loading and reasoning of ontology is both memory and
computationally expensive, but subsequent querying operations can be done very
efficiently. The authors postulate that ontological relationships and axioms could be
used to determine semantic clustering of knowledge nodes. However, details of the
clustering algorithms were not described.

248 R. Boutaba et al.

Astrolabe [43] is a hierarchically organized P2P query processing system. Nodes
in Astrolabe are hierarchically organized into zones. Each node maintains its indi-
vidual management information bases (MIBs), as well as the MIBs of the zones
to which it belongs. A gossiping protocol is used to dynamically synchronize
MIBs. Astrolabe allows specification of aggregation functions for each query.
These aggregation functions determine how information at each hierarchical level
is aggregated. This powerful feature of Astrolabe not only allows it to support
more expressive queries, but also enables a variety of communication paradigms
such as caching, multicasting, and publish–subscribe. The main drawback of Astro-
labe is that topology must be manually maintained by administrators. Inspired by
Astrolabe, Yalagandula et al. implement a Scalable Distributed Information Man-
agement System (SDIMS) [46]. Similar to Astrolabe, information in SDIMS is
organized in a tree and aggregated using aggregation functions. However, instead
of maintaining topology manually, aggregation trees are embedded in a locality-
aware DHT structure. Furthermore, administrative isolation can be achieved through
flexible embedding of trees into DHT. SDIMS also achieves robustness by pro-
viding replication along the aggregation tree and enabling lazy and on-demand
re-aggregation.

2.2.4 Reasoning and Cognition

In biological systems, the cognition process consists of mental activities such as
awareness, perception, reasoning, and judgment [35]. In the context of networks,
cognition refers to the ability of the system to interpret its objectives, reasoning
about its current state, and planning for future actions based on its current knowl-
edge. These issues have been studied extensively in the field of artificial intelli-
gence. In particular, knowledge reasoning and machine learning are useful concepts
in knowledge management.

Knowledge reasoning refers to the derivation of conclusions through logic. It is
a direct feature offered by logical representation of knowledge. Two types of logi-
cal reasonings are typically discussed: (1) Deductive reasoning, in which derived
conclusions must be true when the reasons supporting the conclusion are true;
and (2) Inductive reasoning, in which conclusions is true with certain probability
when the supporting reason is true. One particular issue with reasoning is the trade-
off between expressiveness and decidability of knowledge description languages:
Expressive languages usually lead to undecidable reasoning problems. For instance,
first-order logic (FOL) used in OWL-full is known for its expressiveness for repre-
senting real-world ontology, but reasoning problems for FOL is usually undecidable.
On the contrary, description logic (DL) used in OWL-DL is more restrictive than
FOL, but reasoning problems in DL is tractable.

Research on machine learning aims at designing algorithms to induce rules and
patterns from known information. Such rules and patterns can be used to understand
current system behaviors or predict future state of the system. Machine learning
techniques can be generally divided into four categories: (1) Supervised learning, in

Toward Autonomic Networks 249

which the system learns a function that maps input data to desired outputs. Super-
vised learning typically requires a training process, in which the system observes
both inputs and outputs from a training set and deduces the relationship between
them; (2) Unsupervised learning, in which only a set of inputs is provided to the
system without corresponding outputs. Clustering problems are a type of unsuper-
vised learning problems, since the algorithm must determine the solutions based
solely on the inputs; (3) Semi-supervised learning, which is similar to supervised
learning except not every output is known for every input; and (4) Reinforcement
learning—in which the algorithm learns to takes proper actions based on observa-
tions, in order to maximize a long-term reward function. Besides these general cat-
egories, there is also a distinction between off-line and online learning algorithms.
Generally speaking, online learning algorithms are more suitable for the purpose
of knowledge learning in networks, as network operating environments are highly
dynamic.

2.2.5 Context Generation

It is important to inform network components about their context (i.e., context-
awareness), such that self-management activities could be conducted. The key
issues here are to determine what communication interface and paradigm should
be provided, what information should be delivered. Clearly, different components
require different information, according to their operating context and environment.
Secondly, every component demands information at different rate, and some may
require on-demand notifications, when certain events occur. Although many current
standard network management architectures offers some of these features, there
still lacks flexibility in the information interface and the delivery rate to meet the
requirement of each individual components.

Many research in this area adopt a distributed database-like approach. The aim is
to provide a flexible query and update interface such that each individual component
could obtain its information in context. For example, PIER [17] is a P2P database
system of DHTs. In PIER, each node maintains a local query processor and a local
storage of database records which consists of key value pairs. Each object in PIER
is uniquely identified by the combination of namespace, resourceID and instanceID.
The namespace and resourceID can be used to compute the DHT key using a hash
function. Queries are answered by executing query plans as in traditional database
systems. Clearly, database-like query-update interface is not the only possible strat-
egy. Publish–subscribe and trigger-based interfaces are also used for disseminating
knowledge. Hellerstein et al. [16] studied the design of aggregated triggers to reduce
packet exchange overhead.

Proving context to network components also implies guiding network monitoring
devices on monitoring behavior. As mentioned in Sect. 3.1, self-adaptive monitor-
ing is essential to achieve scalability and efficiency in collecting large volume of
network information. Given the current state of the network, the monitoring devices
can determine how data collection rate should be adjusted.

250 R. Boutaba et al.

2.2.6 Knowledge Management as the Foundation for Autonomy

Knowledge management is an essential component of autonomic networks. It is
strongly related to self-awareness. Through the knowledge collection, organiza-
tion, reasoning, and context generation activities, the components are made aware
of their surrounding environment and their context, which is key to drive their
self-management behaviors. For example, fault diagnosis and troubleshooting are
concerned with identifying root causes for faults. This process involves detecting,
correlating, and learning about fault symptoms, and reasoning about potential prob-
lems. All of these processes are inherently supported by the knowledge management
system.

As we will see in Sect. 3, knowledge management is also an essential enabler of
the self-stabilization behavior of the global system.

3 Self-Stabilization in Autonomic Networks

3.1 Self-Stabilization and Autonomic Networks

In his seminal work [10], Dijkstra describes a self-stabilizing system as a distributed
system where individual component behaviors are determined by a subset of global
system state that is known to the component. The global system must exhibit the
property of “regardless of its initial state, it is guaranteed to arrive at a legitimate
state in a finite number of steps.” Two key properties are outlined: (1) the system can
initialize in any state and (2) the system can always recover from transient faults.
The concept of “legitimate” states is important to self-stabilization. A legitimate
state denotes an operational state of a system that is within the design consideration
of the system. Thus, as long as the system is in a legitimate state, its operation is
expected or bounded. The self-stabilization concept recognizes that the set of all
possible states of a system is rather large in the face of arbitrary faults and attacks,
most of which are outside the specification of the system design. When discussing
self-stabilization, the concept of closure and convergence [38] are often mentioned.
The closure property describes that if the system is stable (i.e., in a legitimate state),
after a number of executions it will remain stable unless perturbed by external force.
The convergence property states that if the system is unstable (i.e. not in a legitimate
state), it has a tendency to be stable over time. The length of time that must elapse
for the system to move from an illegitimate state to a legitimate state is sometimes
referred to as the convergence span. In essence, the properties of self-stabilization
help in addressing many of the properties in self-management. A comparison of the
two concepts is presented here.

• Self-configuration: consider the set of working configurations as legitimate states
of the system. Self-stabilizing networks could self-configure themselves toward
such a working configuration starting with an arbitrary configuration setup.

Toward Autonomic Networks 251

• Self-optimization: consider the set of optimal states of the system as the legiti-
mate state set. As the environment changes, the system can find itself in a sub-
optimal state, however, by the properties of self-stabilization, the system has a
tendency to converge back to an optimal/legitimate state.

• Self-healing: if the system is to find itself in a illegitimate state due to faults, it
can recover from such failures as long as they are transient.

• Self-protection: in the presence of attacks, self-stabilizing networks can return to
legitimacy as long as none of their essential system components has been com-
promised or lost. The concept of self-stabilization does not deal with malicious
changes to system behavior.

Moreover, self-stabilization addresses a fundamental property of a network.
Because of the distributed and dynamic nature of autonomic networks, there lacks
an assurance on stability of the global system state as the result of individual compo-
nent behaviors. In fact, the frequency of state changes brought about by the compo-
nents’ self-managing behaviors could be detrimental to the stability of the system.
The closure property of self-stabilization is highly useful in this aspect as it guaran-
tees that a self-stabilizing network could remain in operational states regardless of
individual component changes.

In the context of autonomic networks, we require a refinement to the classical
self-stabilization concept. To understand the necessity of this refinement, we first
make distinctions between component- and system-wise stability, and dynamic and
fixed-state stability. In addressing stability issues in a large-scale networking con-
text, a component refers to an individual entity in the network, such as a route, an
overlay, and a P2P network. While, the system refers to the global environment
(e.g., the Internet). Component-wise stability deals with the stability of the individ-
ual component under the closure and convergence properties, while system-wise
stability is concerned with the closure and convergence properties of the global
system. For example, P2P networks is a popular application on the Internet today.
It makes sense to study the self-stabilizing properties of each P2P network (i.e.,
component-wise stability), and it is also important to analyze the stability of the
Internet with respect to the interactions of the P2P networks. Similar comparisons
could be drawn between an autonomic network and its self-managing components.
Thus far, research on self-stabilization has been focused on component-wise sta-
bility, such as designing self-stabilizing protocols and systems. One could argue
this problem treatment is sufficient because today’s Internet is carefully planned
and engineered to ensure system-wise stability. Nevertheless, given the autonomic
networking vision as presented in Sect. 1, there is a definitive need for studying
system-wise stability in the autonomic networking context.

The closure property of Dijkstra’s self-stabilization concept is concerned with
bounding an entity (system or component) within its nominal operations. It gives
rise to what is essentially dynamic stability in that the entity is not required to
stay in a particular state. In fact, the self-stabilizing token ring example Dijkstra
has presented in his work exhibit dynamic stability. In contrast, fixed-state stability
requires the entity to remain in a single stable state unless disturbed. For autonomic

252 R. Boutaba et al.

networking, depending on the scenarios, a particular refinement of self-stabilization
is desired:

• component-wise and dynamic stability: this would apply to most autonomic com-
ponents. They have a finite number of legitimate states of operations (e.g., moni-
tor, analyze, plan, and execute) and the component is not required to be “locked”
in any particular state.

• component-wise and fixed-state stability: this would apply to a component that
requires a persistent state of operation. For example, an end-to-end service path
in a session is averse to changes (i.e., service disruptions).

• system-wise and dynamic stability: this would apply to many decentralized con-
trol mechanisms such as leader election and contention for wireless channel. As
long as a deterministic number of active components in the system are generated
at any given time, the system is considered stable.

• system-wise and fixed-state stability: this have strong relevance to resource pro-
visioning scenarios. For example, when resources are provisioned to services in
the global environment (e.g., for end-to-end QoS [quality of service] assurance
or fault protection), it is important that there exists stable global system states
where the services would not change their resource demands constantly.

Furthermore, our discussion of dynamic and fixed-state stability also clarifies a
literary misconception between Dijkstra’s stability and general stability. Dijkstra’s
stability is concerned with dynamic stability under legitimate states. Hence a “sta-
ble” state is equivalent to a legitimate state according to Dijkstra. General stability
is concerned with “locked” in a particular state. In fact, such a “stable” state may
not even be legitimate. For example, a deadlock scenario in distributed systems
would be considered stable under general stability concept but not under Dijkstra’s
self-stabilization. Our definition of fixed-state stability considers a “locked” state in
the set of legitimate states and thus it is a stronger form of self-stabilization rather
than a re-definition of general stability.

3.2 Self-Stabilization and Game Theory

Analyzing system behavior of autonomic networks is quite difficult, due to the
dynamics of the problem and the scale of the operations. At the abstract, one could
perceive an autonomic network to be composed of a large set of individual entities,
interacting with the environment to achieve their own objectives. This description
rather fits the profile of a game model under game theory, where the entities of the
system are the players. Furthermore, the Nash equilibrium definition exhibits the
closure and convergence properties of self-stabilization: (1) if the system is in a
Nash equilibrium, it will stay in equilibrium unless perturbed by force (closure) and
(2) if the system is not in a Nash equilibrium, it has a tendency to move toward
a Nash equilibrium (convergence). Because game theory is rather extensive and
broad in scope, in the following paragraphs, we first attempt to relate important

Toward Autonomic Networks 253

concepts in game theory to autonomic networking and discuss their relevance and
applications. Then we focus on a particular type of games, called congestion games,
that have been studied in the field of networking research. Finally, we summarize
the application of game theory in networking research thus far. Since the purpose
of this section is not to introduce game theory, interested readers are encouraged to
seek introductory literature on game theory, such as [34].

3.2.1 Games in Autonomic Networks

In general, not all games have Nash equilibrium; hence, one major branch of game
theory is to model a problem in a game form and to determine whether Nash equilib-
rium exist. A game in its normal form consists of three factors. The players are the
individuals interacting among themselves and the environment. Each player has a set
of actions it may choose to perform, called strategies. A utility function (also called
payoff function) is a mapping of a player’s strategy set to �. Thus, a system state
is described as the combination of each player’s strategy choice. This is referred
to as a strategy profile. For purpose of evaluation, a system utility function could
be used to map the strategy profile to �. Informally, Nash equilibrium is a strategy
profile in which no player can improve its payoff by changing its strategy unilat-
erally. A pure Nash equilibrium is a strategy profile in which each player chooses
its strategy deterministically (i.e., only one strategy is chosen always). A pure Nash
equilibrium corresponds to fixed-state stability if the equilibrium is unique. A mixed
Nash equilibrium is reached when each player assigns a probability to choose each
of its possible strategies. Thus, the particular choice of strategy at any given time is
stochastic. Therefore, a mixed Nash equilibrium is always a dynamic equilibrium.
This statement is further ascertained when considering the uniqueness of equilib-
riums. When a game has a unique Nash equilibrium, not only it is guaranteed to
arrive at that equilibrium (convergence), but also it has the tendency to stay in that
equilibrium (closure). This is the reason why a pure Nash equilibrium with unique
equilibrium corresponds to fixed-state stability. The stochastic nature of mixed strat-
egy equilibrium precludes such a guarantee. When analyzing system behavior and
stability of networks, pure Nash equilibrium is often sought after. For example, we
would like the global routing behavior or resource provisioning mechanism to be
fixed-state stable.

Although the strategies of a player are depicted as a set. Sometimes it is possible
to describe this set with a continuous function, implying the set size is actually
infinite. For example, if an application is to determine how to distribute its work-
load across a number of servers, there are infinite combinations of distributions
among the servers (assuming the workload is �-splittable). While other games could
only be described as a set of discrete strategies. For example, choosing a path to
route packets. In general, continuous strategy games are easier to analyze since
the utility of the player is also continuous. Thus, by analyzing the characteristic
of the utility function it is possible to deduce the existence of Nash equilibriums.
Unfortunately, in autonomic networking, much of the game models have discrete
strategy sets.

254 R. Boutaba et al.

The basic definition of Nash equilibrium assumes players are rational and nonco-
operative. Games that do not have pure Nash equilibrium may in fact have one when
considering cooperative players. In fact, the system utility of a cooperative game
is generally greater than its noncooperative counterpart. In autonomic networks,
there are always certain degree of cooperation among players (e.g., an autonomic
component may use the service of other components, two autonomic entities may
agree to share their knowledge). However, what makes the modeling difficult is that
in cooperative games, classical game theory is mostly concerned with full cooper-
ation among all the players. When considering limited cooperation among subsets
of players, the game analysis becomes complex and quickly intractable. Similar
circumstance arises when considering the role of information in a game. A game
where players have access to global knowledge (i.e. strategy set of other players and
their payoffs) is called complete information game and is simple to solve. Games
of limited information are much more difficult and are addressed in the area of
Bayesian games. Thus far, very simple Bayesian games have been shown to be
analyzable and it is a far cry from the complex and large scenarios presented in
autonomic networks.

In essence, the ability to obtain timely and accurate information about the envi-
ronment and the other players is critical to the traceability of a game. This funda-
mental requirement could only be supported by a knowledge management system.
Thus, a system’s ability to self-stabilize and its convergence span is heavily influ-
enced by the effectiveness of the knowledge management system. In Sect. 2, we
have discussed some of the challenges and issues in providing knowledge. And in
this section, we see that a component requires the strategies and payoff function
of other related components, some of which (e.g. the payoff function of another
component) may only be reasoned about over time.

3.2.2 Congestion Games

It is nontrivial to find simple and applicable game models in the networking field,
and fortunately one such game type exists, in the form of congestion games. Con-
gestion games were first introduced by Rosenthal [37] and later formalized by Mon-
derer and Shapley [30]. It is a class of games in which all players share a common
pool of resources and each of the players utility is a decreasing function of the
number of players using the same resource (thus the term congestion games). The
general game model offered by congestion game fits a wide selection of network
and system problem scenarios. Consider the following:

Scenario 1: a network supports a finite number of self-configuring overlays (play-
ers). Each overlay contain a set of overlay nodes each of which is supported by a
underlying network resource (resource). The processing speed and response time of
that overlay node is an increasing function depending on the number of other overlay
nodes supported by the same network resource. The total response time across an
overlay could be viewed as the sum of processing and response time obtained at each
overlay node. Hence in choosing an overlay configuration (strategy), each overlay
wants to minimize the total response time.

Toward Autonomic Networks 255

Scenario 2: Consider a set of self-optimizing service routes in the network (play-
ers). Each route aims at choosing an optimal network path (strategy) that could min-
imize its end-to-end delay, which is represented as the sum of the delays over each
network link along the path. The delay at a network link (resource) is an increasing
function depending on the number of service routes it serves.

With global knowledge and the presence of a central planner, the solutions to
the above scenarios could be obtained readily. However, in a self-managing net-
work context, the players make their own decisions under the condition of non-
cooperation and with limited information. There is no guarantee that the overall
system has any stable states, and if so, whether convergence to a stable state is
bounded. Both of the above scenarios could be described by a congestion game
model:

Let �D = 〈N, {Yi}i∈N , {ui}i∈N〉 be a game in strategic form. N is the finite set of
players {1, . . . , n}, Yi is the finite set of strategies available to player i and ui : Y →
�+ where Y = Y1 × Y2 . . . × Yn is the payoff function of player i. Given a finite set
of resources T = {t1, . . . , tm}, define Yi ⊂ 2T . Let Ai ∈ Yi be a strategy of player
i, A ∈ Y be a strategy profile, c j be the cost function of resource t j, and l j be the
normalized serving capacity of t j, then

ui(A) =
∑
j∈Ai

c j(A)

c j(A) = x j(A)

l j

x j(A) = #{i ∈ N : t j ∈ Ai}

�D is a multicommodity game. Unlike single-commodity models, a multicom-
modity game does not limit the players from choosing more than one resource in
a single strategy. We observe that the cost function c j of resource t j is a strictly
increasing function solely depending on the number of players using t j. Finally, the
game is asymmetrical since each player may have very different strategy set (e.g.,
different overlays may be configured over different segments of the network, and
different service routes may have different source and destination pairs).

A congestion game is called a potential game when there exists a system potential
function such that the increase in utility of a player incidentally causes a drop in
potential. Hence, all potential games have at least one Nash equilibrium (i.e., the
global minimal of the system potential). Thus, congestion games that have potentials
are highly valuable to obtain self-stabilization in autonomic networks. Fortunately,
the congestion game model we have presented here in fact has a potential. Secondly,
the establishment of potential serves as the basis for distributed decision making
without need for global knowledge. The fact that a player’s self-utility improvement
naturally leads to the minimization of system potential alleviates the lack of global
information in games. Lastly, the definition of congestion at each resource greatly
simplifies information gathering for each player. For each player, rather than the

256 R. Boutaba et al.

need for knowing other player’s individual actions in order to compute the utility,
the aggregate measure of congestion level at the resources is sufficient. Furthermore,
such information is readily obtainable from the network today.

3.2.3 Related Works

Significant amount of works have been conducted on network problems based on
congestion game models. Some are able to establish the existence of pure Nash
equilibria in congestion games and to determine their complexity (e.g., [9, 13, 29]).
In general, there is no guarantee that a pure Nash equilibrium exists in all congestion
games [29], and when it does, the number of steps it takes for the system to con-
verge is exponential in worst case [13]. Furthermore, the models used in studying
convergence are often over simplified and hence difficult to apply in practice. For
instance, the popular K-P model [22] is a single-commodity model that assumes
all players have a common source and destination, choose a single resource from a
shared resource collection, and the resources are independent (e.g., parallel links).

In multicommodity congestion games with simultaneous moves, whether con-
vergence to a pure Nash equilibrium could be bounded is still an open question
and examples could be found in which convergence does not occur. Because of its
complexity, the study of convergence in general congestion games has been mainly
focused on finding convergence bound to approximate solutions. Christodoulou,
Mirrokni, and Sidiropoulos [7] bounded the solution after one round of best-
response walk by all players to 	(n)-approximate in general case. Chien and Sin-
clair [6] showed that when the increase in cost of adding a player is bounded
(“bounded jump” condition), convergence to Nash equilibrium occurs in polynomial
time. Goemans, Mirrokni, and Vetta [14] studied convergence of Nash dynamics to
“sink equilibrium,” which is not an approximate of a pure Nash equilibrium. In fact,
a sink equilibrium could be formed by a group of cyclic states in some cases. This
in fact corresponds to dynamic stability.

Game theoretical analysis has been conducted in many fields of network research
in the past (e.g., pricing, flow control, route stability, efficiency of wireless net-
works). Some works have examined the existence of unique Nash equilibrium in
non-cooperative user-based routing environments [2, 33]. Orda, Rom, and Shimkin
[33] have shown that in two-node multilink network topology, there exists an unique
Nash equilibrium. For general networks, the uniqueness of Nash equilibrium is
guaranteed if the cost functions of links have diagonal strict convexity, the users
share the same source and destination and are symmetric in cost functions, or each
user assigns positive flows to all the links in the network. Altman et al. [2] studied
noncooperative routing games under general topology network with polynomial cost
function. They have shown the uniqueness of Nash equilibrium under bounded cost.
Computation of the Nash equilibrium is carried out as user-based global optimiza-
tion problem where users have the same source and destination, across parallel links
and each user assigns positive amount of load on each link in the network. A special
form of routing game termed bottleneck routing game is investigated by Banner and
Orda [5]. In such a game, the user attempts to minimize the load of its bottleneck

Toward Autonomic Networks 257

link, rather than to minimize the end-to-end cost. The existence of Nash equilibrium
is shown and for unsplittable flows, polynomial time convergence bound is obtained.

3.3 Other Theories Supporting Self-Stabilization

Price of anarchy [36] is often studied in bounding the optimality of a Nash equi-
librium. It arises because game theory studies focus on stability while the tradi-
tional network and system planning focus on performance. Thus it follows that there
should be some evaluation on the performance of Nash equilibrium. Price of anarchy
is often denoted as the ratio between the system utility of a Nash equilibrium and
the system optimal (e.g., obtained via centralized planning).

Emergence from biology describes how simple local behaviors by entities with-
out global knowledge result in coordinated global behavior. In [3], the emergence
concept is used to design an “emergent” election algorithm. A key feature of emer-
gence is that interactions are generally between the components and the environment
(e.g., emitting pheromone trails), and the communications are one way and indepen-
dent. Individual messages in emergent systems have low values on their own and
the system behavior is nondeterministic. These features of emergence make their
designs extremely simple on the component level and render component validation
tractable. Thus far, it is uncertain whether emergent designs could lead to complex
and yet stable system behaviors in self-managing networks. Another related concept
is stigmergy: insects coordinate their behaviors by using environmental modifica-
tions as cue. Work in collaborative construction [45] gives promising lessons in this
direction, where swarms of robots are able to construct complex building structures
from blocks by following simple rules and observe local environmental stimuli. The
similarities between the collaborative construction and the self-organizing proper-
ties of autonomic networks suggest that indeed it is possible to find design problems,
such as distributed clustering and election, in networks using stigmergy concepts.

4 Conclusion

In this chapter, we have examined two essential and not well-addressed issues in
autonomic networks: knowledge management and self-stabilization. Through an
in-depth discussion of their concepts and applications in autonomic networks, we
hope the readers have gained a feel for the importance of these problems and an
understanding of existing approaches to address them.

Knowledge management is an emerging research area that aims to provide a
unified infrastructure for managing network knowledge. Compared to traditional
network management, not only knowledge management is responsible for storing
and retrieving network information, it is also responsible for correlating and reason-
ing about the information to construct a consistent view of the system. As future
communication networks will get even more complex in scale and technology,

258 R. Boutaba et al.

knowledge management will become a crucial support for autonomic networking.
Although many key issues of network knowledge management have been partially
or starting to be addressed, much work is still required to bring network knowledge
management to maturity.

Stabilization in autonomic networking is a difficult problem due to the lack of
centralized control and the scale of the networks. In drawing connection with Dijk-
stra’s self-stabilization theory and research on game theory, we have shown that
indeed it is feasible to address the problem in formal and analytical ways, especially
through the study of congestion games. Furthermore, it is critical to map the auto-
nomic networking scenarios into simple yet effective game models for the resulting
analysis to be meaningful and trackable. As discussed, currently there is still a rather
large gap between what the research could tell us and what is needed for practical
self-stabilizing network/system designs.

Together, knowledge management and self-stabilization fills in two much needed
gaps in autonomic networking. While knowledge management is the foundation for
all autonomic behaviors (including self-stabilization), self-stabilization provides the
necessary management and control at the global system level, despite underlying
distributed and often self-motivated behaviors of the individual components.

References

1. M. Alavi and D. Leidner, in Review: Knowledge Management and Knowledge Management
Systems: Conceptual Foundations and Research Issues, MIS Quaterly, vol. 25, no. 1, pp. 107–
136, JSTOR, 2001.

2. E. Altman, T. Basar, T. Jimenez and N. Shimkin, in Competitive Routing in Networks With
Polynomial Cost, IEEE INFOCOM, 2000.

3. R. Anthony, in Emergence: a Paradigm for Robust and Scalable Distributed Applications,
IEEE 1st International Conference on Autonomic Computing, May 2004.

4. H. Arora, B. Mishra and T. Raghu, in Autonomic-Computing Approach to Secure Knowledge
Management: A Game-Theoretic Analysis, IEEE Transactions on Systems, Man and Cyber-
netics, Part A, vol. 36, no. 3, pp. 107–136, JSTOR, 2001.

5. R. Banner and A. Orda, in Bottleneck Routing Games in Communication Networks, IEEE
INFOCOM, April 2006.

6. S. Chien and A. Sinclair, in Convergence to Approximate Nash Equilibria in Congestion
Games, ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

7. G. Christodoulou, V. Mirrokni and A. Sidiropoulos, in Convergence and approximation in
potential games, Symposium on Theoretical Aspects in Computer Science (STACS), 2006.

8. D. Clark, C. Partridge, C. Ramming and J. Wroclawski, in A Knowledge Plane for the Internet,
ACM SIGCOMM, 2003.

9. C. Daskalakis, P. Goldberg and C. Papadimitriou, in The Complexity of Computing a Nash
Equilibrium, 38th ACM Symposium on Theory of Computing (STOC), 2006.

10. E.W. Dijkstra, in Self-Stabilization In Spite of Distributed Control, Communications of the
ACM, vol. 17, no. 11, pp. 643–644, 1974.

11. S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F. Massacci, N. Paddy, F. Saffre,
N. Schmidt and F. Zambonelli, in A Survey of Autonomic Communications, ACM Transactions
on Autonomous and Adaptive Systems (TAAS), vol. 1, no. 2, pp. 223–259, 2006.

12. S. Dolev, in Self-Stabilization, The MIT Press, March 2000.

Toward Autonomic Networks 259

13. A. Fabbrikant, C. Papadimitriou and K. Talwar, in The Complexity of Pure Nash Equilibria,
36th ACM Symposium on Theory of Computing (STOC), 2004.

14. M. Goemans, V. Mirrokni and A. Vetta, in Sink Equilibria and Convergence, 46th IEEE Sym-
posium on Foundations of Computer Science (FOCS), 2005.

15. Y. Gong, M. Lu, G. Wang and K. Zhou, in Research on Process Knowledge Management
Based on Ontology, Proceedings of International Conference on Wireless Communications,
Networking and Mobile Computing (WiCOM), 2007.

16. M. Hellerstein, A. Jain, S. Ratnasamy and D. Wetherall, in A Wakeup Call for Internet Moni-
toring System: The Case for Distributed Triggers, Proceedings of the Third Workshop on Hot
Topics in Networks (HotNets-III), 2004.

17. R. Huebsche, J. Hellerstein, N. Lanham, B. Loo, S. Shenker and I. Stoica, in Querying the
Internet With PIER, Proceedings of the International Conference on Very Large Data Bases
(VLDB), 2003.

18. IBM, in Autonomic Computing Architecture: A Blueprint for Managing Complex Computing
Environments, IBM and Autonomic Computing, October 2002.

19. B. Jennings, S. van der Meer, S. Balasubramaniam, D. Botvich, M. Foghlu, W. Donnelly and
J. Strassner, in Towards Autonomic Management of Communication Networks, IEEE Commu-
nications Magazine, vol. 45, no. 10, pp. 112–121, 2007.

20. Y. Kalfoglou, T. Menzies, K. Althoff and E. Motta, in Meta-Knowledge in Systems Design:
Pannacea or Undelivered Promise?, The Knowledge Engineering Review, vol. 15, no. 4,
pp. 381–404, 2000.

21. J. Kenney, D. Lewis, D. O’Sullivan, A. Roelens, V. Wade, A. Boran and R. Richardson, in Run-
time Semantic Interoperability for Gathering Ontology-based Network Context, Proceedings
of the 10th IEEE/IFIP Network Operations and Management Symposium (NOMS), 2006.

22. E. Koutsoupias and C. Papadimitriou, in Worst-Case Equilibria, Symposium on Theoretical
Aspects in Computer Science (STACS), 1999.

23. D. Lewis, J. Kenney, D. O’Sullivan and S. Guo, in Towards a Managed Extensible Control
Plane for Knowledge-Based Networking, Lecture Notes in Computer Science, vol. 4269/2006,
2006.

24. J. Lopez de Vergara, V. Villagra, J. Asensio and J. Berrocal, in Ontologies: Giving Semantics
to Network Management Models, IEEE Network, vol. 17, no. 3, pp. 15–21, 2003.

25. J. Lopez de Vergara, V. Villagra and J. Berrocal, in Applying the Web Ontology Language
to Management Information, IEEE Communications Magazine, vol. 42, no. 7, pp. 68–74,
2004.

26. H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson and A. Krishnamurthy, in iPlane:
An Information Plane for Distributed Services, Proceedings of the Symposium on Operating
Systems Design and Implementation (OSDI), 2006.

27. M. May, M. Siekkinen, V. Goebel, T. Plagemann and R. Chaparadza, in Monitoring as First
Class Citizen in an Autonomic Network Universe, Proceedings of the Workshop on Technolo-
gies for Situated and Autonomic Communications (SAC), 2007.

28. T. Menzies, K. Althoff, Y. Kalfoglou and E. Motta, in Issues with Meta-Knowledge, Interna-
tional Journal on Software Engineering and Knowledge Engineering (SEKE), vol. 10, no. 4,
pp. 549–555, 2000.

29. I. Milchtaich, in Congestion Games With Player-Specific Payoff Functions, Games and Eco-
nomic Behavior, vol. 13, pp. 111–124, 1996.

30. D. Monderer and L. Shapley, in Potential Games, Games and Economics Behavior, vol. 14,
pp. 124–143, 1996.

31. R. Mortier and E. Kiciman, in Autonomic Network Management: Some Pragmatic Considera-
tions, Proceedings of the SIGCOMM Workshop on Internet Network Management (INM’06),
September 2006.

32. M. Mulvenna, F. Zambonelli, K. Curran and C. Nugent, in Knowledge Networks, Lecture
Notes in Computer Science, vol. 3854/2006, 2006.

260 R. Boutaba et al.

33. A. Orda, R. Rom and N. Shimkin, in Competitive Routing in Multiuser Communication Net-
works, IEEE/ACM Transactions on Networking, vol. 1, no. 5, pp. 510–522, October 1993.

34. M. Osborne and A. Rubinstein, in A Course in Game Theory, The MIT Press, July 1994.
35. A. Peddemors, I. Niemegeers, H. Eertink and J. de Heer, in A System Persepctive on Cognition

for Autonomic Computing and Communication, Proceedings of the International Workshop on
Database and Expert Systems Applications (DEXA), 2005.

36. C. Papadimitriou, in Algorithms, Games and the Internet, 33rd ACM Symposium on Theory
of Computing (STOC), 2001.

37. R. Rosenthal, in A Class of Games Possessing Pure-Strategy Nash Equilibria, International
Journal of Game Theory, vol. 2, pp. 65–67, 1973.

38. M. Schneider, in Self-Stabilization, ACM Computing Surveys, vol. 25, no. 1, p.45-67, 1993.
39. Smaha, in Haystack: an Intrusion Detection System, Aerospace Computer Security Applica-

tions Conference, 1988.
40. M. Smith, C. Welty and D. McGuinness, Eds., in OWL Web Ontology Language Overview,

Available online at http://www.w3.org/TR/owl-features/, 1990.
41. R. Sterritt and M. Hinchey, in Why Computer-Based Systems Should be Autonomic, IEEE 12th

International Conference and Workshops on the Engineering of Computer-Based Systems,
April 2005.

42. J. Strassner, in Knowledge Management Issues for Autonomic Systems, Proceedings of the
International Workshop on Database and Expert Systems Applications (DEXA), 2005.

43. R. Van Renesse, K. Birman and W. Vogels, in Astrolabe: A Robust and Scalable Technology
for Distributed System Monotoring, Managmenet and Data Mining, ACM Transactions on
Computer Systems, vol. 21, no. 2, pp. 164–206, 2003.

44. M. Wawrzoniak, L. Peterson and T. Roscoe, in Sophia: An Information Plane for Networked
Systems, ACM SIGCOMM Computer Communication Review, vol. 34, no. 1, pp. 15–20, 2004.

45. J. Werfel and R. Nagpal, in Extended Stigmergy in Collective Construction, IEEE Intelligent
Systems, vol. 21, no. 2, pp. 20–28, 2006.

46. P. Yalagandula and M. Dahlin, in A Scalable Distributed Information Management System,
ACM SIGCOMM, 2004.

Autonomic Networking in Wireless Sensor
Networks

Mengjie Yu, Hala Mokhtar, and Madjid Merabti

Abstract In this chapter, we address autonomic networking in terms of wireless
sensor networks (WSNs), a typical example of wireless networks in pervasive com-
puting. In order to investigate the state of the art of autonomic networking in sen-
sor networks and its future prospects, we start with a short summary of autonomic
networking and Sensor networks. It follows the discussion of the appliance of auto-
nomic networking in WSNs and existing research approaches. After that, we adopt
fault management as an example to demonstrate how autonomic networking and
architecture-based approaches fits into the design of autonomic sensor networks.

1 Introduction

Autonomic networking, derived from the self concepts of autonomic computing by
IBM [14] in 2003, has been gradually recognized as an efficient paradigm to design
robust self-managing computing systems in large-scale distributed networks. The
ultimate goal of such networking is to relieve the management burdens of com-
puting systems from human administrators, and have systems manage themselves
spontaneously according to unpredicted events or changes in harsh operational envi-
ronments. Such system self-governs its behaviours and maintains its performance.
It usually interacts with human administrators at the policy level, for example tak-
ing the high-level system objectives. Significant features of autonomic network-
ing include self-optimization, self-diagnosis, self-configuration, self-healing and
self-adaptation; nevertheless, self-awareness of the system operational status and
surrounding environment is an essential requirement to design system autonomic
behaviours. In general, the autonomy of networking systems is achieved through the
collaboration of a set of self-managed entities instead of the traditional centralized
control. Self-managed entities collaborate together to adapt systems’ performance
promptly and accurately to unpredicted changes in the operational environment. For

M. Yu (B)
School of Computing and Mathematical Science, Liverpool John Moores University, Byrom Street,
Liverpool, UK
e-mail: M.Yu@2001.ljmu.ac,uk

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 11, C© Springer Science+Business Media, LLC 2009

261

262 M. Yu et al.

example, self-managed entities plan the actions, and integrate required resources to
monitor the task through to completion with less or without the manual configura-
tion and intervene from human administrators. As a result, human is eligible to focus
more on the business logic design rather than addressing the details of low-level
system integration and configuration.

The success of autonomic networking fundamentally relies on the appropriate
localisation of the management processes within the network systems. Recent auto-
nomic technologies vary in forms of agent-based approaches, swarming algorithms
or emergent biologically inspired scenarios. In this section, we examine the state of
the art of autonomic networking management and its techniques in wireless sensor
networks, a typical example of wireless network in pervasive computing.

Before we describe the operation of autonomic networking and its technologies
in WSNs, it will be helpful if we summarize several unique features in relation to
the design of robust wireless sensor networking systems as in Sect. 1.1. Also, we
discuss the appliance of autonomic networking in sensor networks in Sect. 1.2. Sect.
1.3 examines the existing autonomic networking approaches in sensor networks.
Finally, we conclude the importance and necessity of applying architecture-based
approach to facilitate the autonomy of sensor networks in Sect. 1.4.

1.1 Wireless Sensor Networks

Wireless sensor network (WSN) [1] was initially inspired by the request of mil-
itary usage to monitor and collect information in the battlefield, such as enemy
movements, explosions and other phenomenon of interests in the battlefield. Sensor
networks are hence adopted to facilitate the development of new wireless monitor-
ing and controlling environmental applications [20], such as health applications in
hospitals, home automation and smart environments, or traffic control systems. For
example, extracting useful information such as temperature, sound or pollution.

Recent advances in micro-electro-mechanical system technologies, wireless
communications, and digital electronics have boosted the vision of deploying large
numbers of miniaturized electronic devices to monitor harsh operational and nature
environments. Based on the node collaborative efforts, sensor networks provide
enterprise applications access to real-word information by collecting, processing
and disseminating sensor data from operational environments. They are expected to
operate for periods of time ranging from days to years.

As in Fig. 1, a sensor node usually consists of a small processing unit with limited
computational power (CPU) and memory, a communication device including radio
transceivers, multifunctional sensor units and power source in form of a button cell
battery. The small dimension design of sensor nodes also place strong restrictions on
their hardware and software capabilities in terms of processing capabilities, mem-
ory storage, energy supply and so on. This eventually influences the networking
and system design in sensor networks. In this section, we address couple of unique
characteristics in relation to the design of efficient wireless sensor networks.

Autonomic Networking in Wireless Sensor Networks 263

Fig. 1 Wireless sensor networks structure

1.1.1 Critical Operational and Deployment Environments

Sensor nodes are usually deployed very close or directly inside the monitored
phenomenon. They might operate in the dense forest, in military battlefield [17],
on the ocean bed or attached to moving objects (such as animals, vehicles), etc.
Unpredicted events (e.g. node failure caused by nature conditions such as fire in
forest) and harsh operational environments (e.g. heat as in vehicle engine, pressure
at the bottom of ocean) bring extremely critical challenges on both software and
hardware performance of sensor nodes. Therefore, applications of sensor networks
are expected to be robust and adaptive to these unforeseen events occurred in the
network.

1.1.2 Network Scalability

The number of sensor nodes in WSNs is various according to the sensing applica-
tion requirements on the targeted phenomenon, such as the accuracy and quantity
of sensor data and the reliability of fault tolerance on node failure. The density of
sensor nodes in a region or the network might range from hundreds to thousands
[41], or even reaching an extreme value of millions. It is thus unfeasible for human
administrators to manually fix the malfunction or faulty sensor nodes, especially in
area where the presence of human is impracticable. Networking management sys-
tems of WSNs are likely expected to ‘self’-respond to various events and reassume
the network performance from node failure.

1.1.3 Hardware Constraints

Miniaturization technology allows sensor nodes to be designed in low cost and
small dimension, and deployed in large numbers. It also restrains the performance
and capabilities of both software and hardware of sensor nodes. For example, the
processing unit, associated with a small storage unit, is only feasible to support

264 M. Yu et al.

sensor nodes handling small amount of data and simple tasks (i.e. data integration).
It is unfeasible to implement complex networking management functions in sensor
nodes as the traditional distributed approach does. Another significant feature is
that sensor nodes are usually powered by battery unit such as button cell. The life-
time of a sensor network largely replies on the battery expenditure of sensor nodes.
As a result, the shortage and depletion of node battery become one important fact
that affects the consistence and efficiency of sensor networking performance. Note
that the battery consumption of the local computational cost of a node incurs more
energy efficient than the message radio transmission (including both sending and
receiving) in sensor networks [21]. Thus, sensor nodes are encouraged to lessen the
radio transmission for energy conservation.

1.1.4 Network Topology

For all these reasons discussed previously, sensor network topology is expected to
change frequently according to the operational environment conditions and node
resource expenditure status. To reassume the network connectivity and sensing cov-
erage in a region, it demands the collaboration of sensor nodes to self-reorganize
and configure the sensor networks spontaneously to the changes.

1.2 Autonomic Networking in Wireless Sensor Networks

Given the large scale of network and unfeasible physical accessibility, it is extremely
difficult for human administrators to manually manage and configure sensor net-
works. For example, identifying the faulty nodes in the phenomenon area; replacing
the button cell battery of sensor nodes and reconfiguring network topology in a
region where the node density might range from hundreds to thousands. To achieve
these, sensor networks are expected to be self-managed and self-adaptable dynami-
cally to various changes in the operational environment.

It is unfeasible to rely on few ‘smart’ networking components to achieve the self-
managed feature in sensor networks as it does in the traditional wired networks. The
inherent resource constrains present obstacles for sensor nodes to execute the com-
plex functionality and sophistically consult with the central controller for handling
the dynamic networking events. ‘Selfness’ of sensor networks has to fundamentally
rely on the collaboration of sensor nodes and their individual ‘self’-behaviours.
Thus, the autonomy aspects of autonomic networking can be well fitted into the
design requirements of autonomic sensor networks in a holistic manner.

The perspective of autonomic networking motivates the proposition that sensor
networks are self-managed by interacting human administrators only at the policy
level. The autonomy of sensor networks is achieved through the self-configuration
of a node as individual component behaviour and self-organization of a set of nodes
as the collaboration manner.

Self-configuration: Sensor nodes reconfigure and adapt their behaviours of net-
working and sensing by altering parameter values dynamically to the changing

Autonomic Networking in Wireless Sensor Networks 265

conditions and states of the network. For example, decreasing the node’s sensing
duty cycle if the monitored phenomenon has no significant changes in a period of
time; and reducing radio transmission power to shorten the communication range if
the residual node energy has dropped to a critical level. These autonomic behaviours
support nodes to energy-efficiently manage and conserve their valuable battery,
which eventually prolong the lifetime of the entire network.

Self-organization: Sensor nodes collaborate to reconfigure the network perfor-
mance within a region or the entire network. For example, to lessen the impact
of faulty nodes, sensor nodes surrounding the phenomenon area generally regroup
among themselves in order to maintain the reliability and consistence of network
connectivity and sensing coverage.

1.3 Existing Autonomic Networking Issues in Sensor Networks

In this section, we examine the existing approaches of autonomic networking in
wireless sensor networks. These approaches vary in forms of node power manage-
ment, routing protocol, network topology management and fault management. Note
that the entire sensor network lifetime usually relies on the existence of individual
sensor nodes. The more energy-efficient node performance is, the longer lifetime of
sensor networks can be prolonged. As a result, energy efficiency has been widely
considered as an important and essential fact by these autonomic approaches.

1.3.1 Power Management

The lifetime of WSN relies on the battery lifespan of sensor nodes. To conserve
the network energy, adjusting node activities [38] according to system requirements
and node hardware status has been widely considered as one effective solution. For
example, decreasing hardware operating frequency when node is not in the peak
performance state; lessening the sampling frequency of sensor node if the risk of
missing a crucial event of monitored phenomenon is tolerant and switching some
nodes into ‘sleeping’ model if there are enough nodes to monitor phenomenon.

To distinguish node activities, Sinha [30] defined three operational models for
the processing unit of a sensor node as active, idle and sleep mode. Based on
instantaneous data processing requirements and identifying the peak performance, a
node adopts different operational models for its processing unit. This is achieved
by adjusting the power supply and operating frequency. Thus, node power con-
sumption can be reduced when the processing unit is in either idle or sleep mode.
Another efficient technique is to switch off redundant nodes and temporarily put
them into ‘sleep’ or ‘idle’ model. Cerpa [2] proposed an approach to keep a small
number of sensor nodes in active while idling redundant nodes for energy conserva-
tion. To properly identify redundant nodes in the network, Richard [35] adopted a
mathematic-based interpolation technique. If the interpolation error of a sensor node
is less than a pre-defined application threshold, this node is thus hibernated for con-
serving further amounts of battery energy. By periodically assessing the redundant

266 M. Yu et al.

nodes and putting them in idle, all nodes in the network are guaranteed to spend
some portion of their operational time in a low power mode. This consequently
reduces the overall power consumption of sensor networks.

The radio transceiver is the most power-hungry hardware unit of a sensor node.
Therefore, it is desirable to lessen node radio transmission and reception activities if
necessary. At an autonomic level, Marsh [19] enabled nodes to adjust their sampling
rates adapting to the changes of monitored phenomenon. For example, if sensor
reading becomes more reliable in a period of time, node reduces its sampling rate
(e.g. from every 0.5 s to every 8 s) and becomes less frequent to transmit data back
to the base station for energy conservation. Moreover, sensor nodes are demanded to
adjust their radio transmission ranges dynamically to changing conditions or state of
the network. It is achieved by altering the node transmission power. For example, in
MAANA [29], autonomic sensor nodes execute self-configuration service to change
their communication range according to their distance from the application Access
Point (AP).

1.3.2 Routing Management

To lessen unnecessary radio transmission and conserve network energy, there is a
need to design energy-efficient routing protocols for sensor nodes to transmit data
packet. Instead of flooding messages over the network and demand nodes to trans-
fer redundant data, certain autonomic wisdom supports sensor nodes to selectively
execute data transmission. One technique is the data-centric and content-based rout-
ing schema. Sensor nodes identify and respond to application query announcement
that they are only interested. As a result, parts of network conserve energy without
involving data transmission. Typical examples of such are SPIN [26], direct diffu-
sion [13], etc.

Nodes along the routing path that is used frequently for data transmission might
have the rapid energy depletion rate than other nodes. To balance the network energy
and prevent sudden network partition, advanced self-managed capability is intro-
duced to enable nodes optimally choose the best path due to the residual energy
and the state of the network. For example, Gan [8] proposed a routing protocol
that supports nodes to choose the next transmission hop based on the assessment
of energy cost among potential routing paths. It also takes in consideration of the
remaining energy of neighbouring nodes. This ensures data traffic is evenly spread
over the network. Therefore, nodes conserve energy, and the network survivability
consequently increases. In addition, monitoring data transmission misbehaving of
neighbouring nodes is another technique to select the next hop-node in the routing
path. Marti [22] required sensor nodes to constantly monitor whether data packets
have been transmitted properly by their neighbours. Node is thus capable of choos-
ing a shortest and optimal path that contains most reliable intermediate nodes.

To balance nodes’ energy depletion in the network, Heinzelman [11] scheduled
sensor nodes to send data back to sensing applications in turns. The elected node
aggregates sensor data from others, and adopts a long-range transmission power to

Autonomic Networking in Wireless Sensor Networks 267

route data directly to the base station. This requires no intermediate nodes, and the
amount of data transmitted in the network is also reduced.

1.3.3 Network Topology Management

Network topology management is one important property and feature of wireless
sensor networking. The topology usually affects many networking characteristics
such as system latency, robustness and capacity.

Given the facts of large-scale deployment and potential placement in harsh
environment, it is essential for sensor network to be self-organized and self-
reconfigurable. Moreover, sensor nodes are highly vulnerable to the harsh opera-
tional environment, and prone to fail. Nodes might also fail because of their resource
depletion such as limited battery energy. These unforeseen facts unexpectedly cause
the network partition, and threaten the consistence of networking performance in
WSNs. Therefore, the network must be able to reconfigure itself periodically based
on the collaboration of sensor nodes. In particular, Heinzelman [11] proposed an
energy-efficient adaptive clustering technique to dynamically manage the network
topology. It enables sensor nodes to periodically self-organize and coordinate to
form groups (in terms of cluster) in the network. Sensor nodes are elected as the
cluster heads in turns to evenly share the energy load such as the energy cost of
managing clusters and communicating with the base station. This design balances
the energy consumption in the network, and avoids the rapid energy depletion
of certain nodes as in the static topology model. In addition, Smaragdakis [31]
proposed their topology algorithm to elect cluster-heads based on weighting the
residual energy of sensor nodes in the network. Moreover, Younis [42] furthered
this scenario by taking into consideration of a secondary parameter as the node’s
proximity to its neighbours or node degree.

1.3.4 Fault Management

We particularly adopt fault management as an example in Sect. 3 to demonstrate
how autonomic networking fits into the design of efficient wireless sensor networks.

1.4 Autonomoic Management Architecture for Sensor Networks

The success of node autonomy in sensor networks fundamentally relies on the
appropriate localization of the management processes within the network sys-
tems. One technique is architecture-based approach. Architecture-based approach
are expected to improve sensor network performance with low-overhead of sensor
nodes. It lessens the radio communication in the network, and coordinates nodes’
self-behaviours dynamically to various changes in the environments. The details of
autonomic architectures in sensor networks are reviewed in Sect. 2.

268 M. Yu et al.

2 Architectures for Autonomic Networking in Sensor Networks

In this section, we investigate the state of the art of management architectures
that facilitates autonomic networking in sensor networks. The use of architecture
is a good strategy to deal with complex networking management in resource-
constrained wireless sensor networks. Efficient architecture is eligible to energy-
efficiently distribute management processes among sensor nodes. Sensor nodes
are thus self-manageable, and require few consultancies with the central manager
in the network. This lessens the in-network radio communication, and conserves
node battery energy to prolong the lifetime of network. Sensor networks are usu-
ally deployed in the highly dynamically changing environment. Robust architecture
allows autonomic nodes to be aware of the surrounding environment, and respond
spontaneously to events occurred in the network. Thus, sensor networks can be
self-managed based on the node collaboration efforts, with little or no human inter-
vene.We first explore what autonomic components are in sensor networks. We then
discuss the existing architecture approaches, and classify them into different cata-
logues.

2.1 Autonomic Components in Sensor Networks

The vision of autonomic sensor networks relies on the autonomy of sensor nodes
and their collaboration. Sensor nodes are expected to equip with sufficient functions
and knowledge to handle situations occurred in the network, even those that were
unforeseen in future. Given a task and objective, autonomic nodes create a plan for
actions, integrate required hardware and software resources and complete manage-
ment tasks.

One technique is to apply intelligent software agent. Agent-based approach ful-
fils the basic requirements of autonomic networking, such as function distribution,
artificial intelligence and self-management. Its appliance to sensor networks results
into various reasons.

First, agent brings sensor nodes the autonomy to self-manage and self-optimize
in the remote area on behalf of human administrator or sensing applications. Unlike
the traditional client–server management model, agent-based systems do not always
maintain a link with the central controller. This design is extremely useful in sensor
networks, as it lessens in-network communication and thus conserves nodes’ energy.

Second, agent allows nodes to be aware of its environment, and react accordingly
without sophistic consultancies from central management system. This reduces the
response delay towards unpredicted events occurred in the network.

Third, flexibility is one major benefit of agent appliance in sensor networks. The
concept of swappable and reconfigurable software components of agents has drawn
much attention to design robust networking functions in autonomic sensor networks.
It decomposes complex management functionality into smaller sub-processes. It
allows resource-constrained sensor nodes to selectively choose essential software

Autonomic Networking in Wireless Sensor Networks 269

components to maintain their networking tasks; while, the agent-based functions
of sensor nodes are also able to alter and easily update according to the new
requirements.

Based on the deployment location and functionality of agent, autonomic nodes
are various in forms of their management structure as manager-agent (MA), mobile-
agent and multi-agent approaches.

2.1.1 Manager-Agent

MA model is one of the most common structures in sensor networks. It distributes
networking functions among sensor nodes based on their management roles. Man-
ager resides on the node that holds and maintains a globe view of a large set of sensor
nodes. It executes a range of autonomic management services, including coverage
area maintenance, topology management and failure detection service. To handle
complex management services, it usually selects the base station node (powered by
wired supply) or nodes (with sufficient resources such as power energy) as manager.
Meanwhile, agents act as the representation of manager to monitor and manage
nodes in the remote region. For example, in MANNA [27], manager resides on
the base station node. It is responsible for manage and monitor the entire network
by processing complex functions. It also generates information models including
network topology and energy model based on the information collected from the
sensor nodes. Agents are assigned to nodes that are normally more powerful than
the common nodes in both hardware and software capabilities. These nodes are
elected to monitor a set of common nodes in the remote region on behalf of the
manager. They are responsible to collect nodes status and execute local networking
management functions, and perform aggregation of management data retrieved from
common nodes. These nodes adjust their radio communication range and directly
forward management data to the base station. This avoids using intermediate nodes
for energy conservation. Based on the collected network information, manager is
also eligible to command agents to execute management services on common nodes
such as failure detection and idling redundant nodes. As a result, networks can
manage themselves without direct and manual human configuration for a period
of time.

2.1.2 Multi-Agents

Multi-agent system (MAS) provides a robust platform to support the collaboration
and negotiation of autonomic nodes in the network. Unlike the ‘Manager and Agent’
model, there is no manager role in MAS. Agents spread all over the sensor nodes,
and cooperate together to complete management tasks such as identifying and idling
redundant nodes for energy conservation in the monitored phenomenon area. These
agents are much stronger than the one in MA model. The notion of strong derives
from the fact that such agent has explicit beliefs, desires and intentions about its
behaviours and the environment surrounding its activities. They usually do not
consult with any central managing controller. They hold the beliefs (pre-defined

270 M. Yu et al.

criteria) to assess their present activities and surrounding environment conditions.
They have plans to response to events occurred in the network, and adopt steps to
complete their management goal. They might re-evaluate their belief and knowledge
as new information and requirement becomes available. For example, consultation
with high-level autonomic management systems to update their networking man-
agement goals.

O’Hare [25] presented a good example of how multi-agents coordinate auto-
nomic nodes on their power management. They consider a node might irregularly
and unexpectedly fail and disconnect from the network because of its battery deple-
tion. This results into the sudden network partition, which might affect the network
connectivity and sensing coverage of monitored phenomenon area. To prevent it
and last the network performance as long as possible, it is necessary to lessen the
activities of that node and, meanwhile, keep it remain active to ensure the network
connection. Power management agents of nodes collaborate to handle the conflicting
task by balancing the needs of network connection and coverage with the residual
nodes’ status. Negotiation between nodes take place to identify which node is eligi-
ble to shift extra workload and willing to take on the extra energy drain to routing
the data towards the base station. The elected node is thus demanded to adjust its
activities, such as increasing its sampling rate and transmission frequency towards
the base station.

Agents of sensor nodes might not always need to negotiate among themselves
to handle the networking management tasks. Marsh [19] demonstrated a intruder
detection model that relies on the individual autonomy of a node to alter its
behaviour based on the results gained from the data processing and a set of pre-
defined logical rules. Such node automatically reduces its data transmission fre-
quency for energy conservation when the monitored intruder events become less
regularly. This autonomic behaviour bases on the knowledge that node must keep
it active as long as possible but also must report any unforeseen unusual events.
Compared to the non-agent design, it offers a great reduction in energy depletion
for data transmission, and consequently prolongs the network lifetime. To update
autonomic behaviours, agent’s knowledge of nodes is easily altered via mobile agent
if additional functionality and requirement arises. The details of mobile agent and
its usage are discussed in Sect. 2.1.3.

Furthermore, multiple agents are also allowed to reside on a single sensor node to
enhance its autonomic behaviours. Multiple agents collaborate among themselves to
handle the complex networking management, or address a small problem individ-
ually. This design decomposes the complex management tasks into various small
sub-processes, tailored to the computational constraints typically for nodes in sensor
networks. In particular, Agilla [7] proposed a system architecture to coordinate the
autonomy of multi-agents on a node used in a fire tracking application. In this appli-
cation, Agilla provides a tuplespace for the reliable coordination of agents within
a node, or even remote access between two nodes. The tuplespace servers as the
communication platform between agents on a node, or among nodes. Agilla also
adopts mobile agent technique to deploy new requirements and additional function-
ality throughout a sensor network.

Autonomic Networking in Wireless Sensor Networks 271

2.1.3 Mobile Agent

Mobile agents have been widely adopted by existing research approaches to design
energy-efficient systems in sensor networks. It is considered to greatly reduce the
communication cost of sensor nodes, especially over networks designed with low
bandwidth radio links. In general, there are two major usages of mobile agent
applying in sensor networks: (1) disseminating sensor data efficiently from nodes
to the base station and (2) updating autonomic nodes with additional knowledge or
functionality when new requirements occur.

Data Dissemination

In the traditional client/server-based sensor networks, sensor data is directly trans-
ferred to the base station via multi-hop communication after nodes collect from the
monitored phenomenon area. The base station thus processes and integrates those
data. Whereas, in the mobile-agent-based paradigm, it transfers the processing func-
tion to the destination area, integrates sensor data and only sends the result back to
the base station instead of forwarding all the unprocessed data. This greatly reduces
the number of data packets transferred in the network, and consequently improves
the network performance in terms of node energy consumption and the packet
delivery ratio. In particular, Chen [4] proposed a mobile-agent-based architecture
to design energy-efficient sensor nodes by reducing and aggregating data within the
network. The base station dynamically deploys the executable processing codes (in
terms of mobile agent) into the target area based on the requirement of a specific
application. Mobile agent migrates to the nodes in the remote area, and locally pro-
cesses the raw data at the source nodes. Only the aggregated results are sent back to
the base station. This capability enables the reduction in the amount of data trans-
mission by allowing only relevant information to be extracted and transmitted in
the network. Consequently, it conserves the node energy, and prolongs the lifetime
of sensor networks. Moreover, Wang [37] also adopted mobile agents to aggregate
and process raw sensor data in the remote area. However, in this design, mobile
agents also migrated back to the base station with the aggregated data results. The
localized data aggregation process helps mobile agent reduce the data transmitted
in the network, and thus it saves network bandwidth and node energy.

Functionality and Knowledge Update

Mobile agents are transferred to the destination area to complete specific manage-
ment tasks on behalf of the base station. When the new challenge and requirement
occurs, agents of nodes within that area might have not equipped with relevant
functionality and knowledge. The base station injects a mobile agent containing
the feasible functions into the network, routing towards the region of interest. The
mobile agent is thus executed in the destination nodes on behalf of the base station.
For example, in O’Hare [25] power management approach, mobile agent is adopted
to support the base station on assessing whether there is a feasibility to reduce the

272 M. Yu et al.

sampling rate of destination nodes for energy conservation. The mobile agent is
dispatched to the destination node. It acts the representative of the base station to
assess the redundancy situation including node’s status, and the changes of moni-
tored events. The decision is thus made at local computational process rather than
having all relevant data streamed back to the base station for analysis. In addition,
Gan [8] proposed mobile agents to assist aggregated sensor data from source nodes
routing back to the base station by selecting the optimal path. As we have discussed
previously in Sect. 1.3.2, Gan considered the data routing traffic should be spread
over the network rather than using the same optimal path frequently. Using the same
path depletes the battery energy of nodes along that path rapidly than other nodes,
and in the worst case may lead to the network sudden partition. To do that, mobile
agent travels with the aggregated data together towards the base station. Specifi-
cally, when it reaches an intermediate node, it obtains the local information of the
current node and its neighbouring nodes. Based on the information, it assists a node
to choose the next routing hop by taking into consideration of the energy cost of
potential routing paths and resident energy of nodes in the network. After arriving
at the base station, it passes the data and then dies.

The context of mobile agent is usually various depending on the new require-
ments from sensing applications or human administrator. As a result, sensor net-
work has the capability to alter its performance (e.g. node autonomic networking
behaviours) on demand.

2.2 Existing Architecture for Autonomic Sensor Networks

Efficient architecture usually presents a sufficient communication paradigm for
autonomic nodes to dynamically collaborate to handle the complex networking
management tasks. It also describes the distribution of networking management
functionality among sensor nodes (such as manager, agents). Architecture aims to
improve the node collaboration with low-overhead through lessening the in-network
radio communication. So far, couples of networking management architectures have
already been developed for autonomic sensor networks. In general, these architec-
tures can be classified according to their management structure as flat, distributed
and hierarchical model.

2.2.1 Flat Management Architecture

Flat management architecture is characterized by sensor nodes that have the same
hardware and software capabilities in the network. Agents usually reside within
sensor nodes, and bring their autonomy to locally handle the network management
tasks. In order to avoid the large amount of traffic generated in the network, nodes do
not have to maintain a sophistic consultancy with the central manager. They make
their own decision adapting to events occurred in the network. The manager, resid-
ing on the base station, is responsible to monitor the globe view of the entire network
based on the information collected from sensor nodes. When new requirements

Autonomic Networking in Wireless Sensor Networks 273

occur, the manager dispatches mobile agents to carry the on-demand functionality
and knowledge towards nodes in the destination area. The typical examples of flat
management architecture are found in [4, 8, 19, 25, 37], etc.

2.2.2 Distributed Management Archtiecture

It splits the networking management of the entire network into several sub-regions.
Each region elects a node to server as the manager (usually in forms of cluster-
head). The cluster-head is responsible for the networking management in its own
sub-region on behalf of the base station One typical example is the ‘Manager-Agent’
based model as in MANNA [27] discussed previously. To support cluster-heads
in a cooperative fashion, it also proposed a simple network management protocol
called MannNMP [29] to exchange management information. Moreover, Tai [34]
adopted cluster-based approach to distribute fault detection services among different
regions. Cluster-head detects the suspicious nodes among its member nodes in one-
hop communication range. This reduces a large number of management messages
routing back to the base station, and consequently conserves the network energy. To
provide the communication between neighbouring clusters, a gateway node, which
is in one-hop range of both two cluster-heads, propagate fault management reports
across the network. In these approaches, cluster-heads are usually elected among
nodes with powerful extra capabilities (in terms of communication, energy and com-
putation, etc.) to execute complex management tasks. In addition, Heinzelman [11]
adopted an approach that rotates cluster-head role over time among different nodes
to balance the resource consumption within a cluster. They believed each node has
the same capabilities in both hardware and software. All nodes can transmit data
with enough power to reach the base station if needed. Cluster-head manages its
member nodes and periodically collect management information from them. It is
also responsible to route the aggregated data of its cluster directly to the base station.
This avoids the intermediate nodes to forward the data packets, and consequently
reduces the in-network communication.

2.2.3 Hierarchical Management Architecture

In the hierarchical model, management tasks are mainly taken by the cluster-heads
nodes. Cluster-heads are responsible to manage the member nodes in their own
region, and usually do not communicate and coordinate with each other. They only
maintain the link with the base station to disseminate management information and
take management objectives. This approach normally applies in the heterogeneous
networks, in which the cluster-heads are elected from nodes with extra resource
capabilities. Therefore, such nodes are carefully placed in the network to contribute
to the management performance of the sensing and networking. In particular, Niu
[24] proposed a three-tie hierarchical management structure to detect suspicious
nodes in the networking. Clustering is adopted to lessen the in-network commu-
nication, and group sensor nodes around the phenomenon area to detect the sus-
picious events. They believed transferring sensor measurement back to the base

274 M. Yu et al.

station via multi-hop communication has very high signal-to-noise ratio. While,
clustering surrounding the phenomenon area can accurately detect the target events
in the short communication distance. Cluster-heads make decisions about the fault
events occurred in their sub-regions, and further transferred the reports to inform
the base station. Moreover, to accomplish networking management in a reliable and
energy-efficient manner, Ying [40] proposed a mobile-agent-based hierarchical pol-
icy management architecture for WSNs. Policy Manager (PM) resides in the base
station at the highest level; Cluster Policy Agent (CPA) sits in the node with best
resources in a cluster; Local Policy Agent (LPA) manages a sensor node and also
enforce local networking management tasks such as analysing network dynamics
(e.g. topology change), performing configuration, monitoring and reporting. They
adopted the mobile agents the transfer and update the management policy when
users want to execute a specific task in the network. Policies are thus propagated
from the PM to CPAs to LPAs, or from CPAs to LPAs. As a result, it keeps the man-
agement consistence without halting the networking processes for manual reconfig-
uration. It also increases the adaptability and re-configurability of the networking
management systems.

3 Fault Management in Autonomic Sensor Networks

In this section, we adopt fault management as an example to demonstrate the auto-
nomic behaviours of sensor networks on handling various unforeseen events such
as node failure or malfunction.

The intention of fault management for WSNs is different from traditional wired
networks. For example, we might be interested in the results of fault management
within a given region (or overall network) rather than simply fixing an individual
node failure or an individual wireless connection between two nodes. Existing fault
management approaches for WSNs vary in forms, such as architectures [16, 28, 34],
protocols [22, 26], detection algorithms [3, 6, 12] and detection decision fusion algo-
rithms [5, 36]. This section starts from fault detection, and follows the discussion
through fault diagnosis and failure recovery.

3.1 Fault Detection

Fault detection is the first phase of fault management, where an unexpected failure
should be properly identified by the network system. The traditional centralized
approach has represented its inefficiency in handling large-scale sensor networks.
The distinctive problem is that the central node easily becomes a single point of
data traffic concentration for fault detection and fault management in the network.
This subsequently causes a high volume of message traffic and rapid energy deple-
tion in certain regions of the network, especially the nodes closer to the central
node. Extra burden is incurred forwarding the communication messages from other

Autonomic Networking in Wireless Sensor Networks 275

nodes. In addition, the multi-hop communication of this approach will also increase
the response delay from the base station towards faults in the network. Therefore,
efforts have been made to seek a distributed and more computationally efficient
fault detection model. So far, the autonomy of sensor nodes has been widely con-
sidered as an efficient solution. The basic idea behind it is to enable a sensor node
to make decisions at certain levels. The more decisions a node can make, the less
information (i.e. the number of messages) needs to be delivered to the central node.
As a result, this approach conserves the node energy and consequently prolongs
the network lifetime. Examples of such development are node fault self-detection
and self-correction on its hardware physical malfunction (i.e. sensor, battery, RF
transceiver) [10], failure detection via neighbour coordination [3, 6, 12], utilization
of WATCHDOG to detect misbehaving neighbours [22] and distributed fault detec-
tion by use of cluster technology [34]. Others address the use of decision fusion
centres to make the final decisions about suspicious nodes [5, 36].

3.1.1 Neighbour Coordination

Neighbour coordination is one example of fault management distribution. Nodes
coordinate together to detect suspicious nodes before consulting with the central
controller (e.g. the base station). Usually, the central controller is not aware of any
failure unless it is believed to be wrong with high confidence by the neighbouring
nodes. This design reduces the in-network communication traffic, and subsequently
conserves node energy. For example, suspicious (or failed) nodes are identified
via comparing their sensor readings with neighbours’ median readings. With this
motivation, Ding [6] developed a localized algorithm to identify suspicious nodes
whose sensor readings have large differences against their neighbours. Although this
algorithm works for large-scale sensor networks, the probability of sensor faults
needs to be small. If half or more of the sensor neighbours are faulty, the algo-
rithm cannot detect the faults as efficiently as expected. However, Chen [3] have
improved this approach to identify suspicious nodes even when half of a node’s
neighbours are faulty. It chooses the good node in the network, and uses its best
sensor readings to diagnose others’ status. This information can be further propa-
gated through the entire network to diagnose all other sensors as being either good
or faulty. Neighbour coordination is also applied to enhance the accuracy of failure
detection. Instead of sending out an alarm right after a fault is detected, a node is
expected to consult with its neighbour for concluding a more accuracy decision.
One approach is the two-phase neighbour coordination scheme, as in Hsin [12]. A
node waits for its neighbours to update information concerning the suspicious node
in the first phase. In the second phrase, it consults with its neighbours to reach a
more accurate decision. As a result, the monitoring effect is propagated across the
network. The central node only needs to monitor a potentially very small subset
of sensor nodes. However, this approach requires the network to be pre-configured.
Each sensor node should have a unique ID, and the central node knows the existence
and ID of each node. In addition, special software components are also applied to
support neighbour coordination. WATCHDOG [22] – as provided by the routing

276 M. Yu et al.

layer of a node – is used to detect failed or misbehaving neighbours if data pack-
ets have not been transmitted properly. However, this process may be slow, and is
error-prone because the resource-constrained sensor nodes cannot be expected to
constantly police all of their neighbours. Consequently, it may end up routing into a
new neighbour that has also failed.

3.1.2 Clustering Approach

Clustering is an emerging technology to distribute fault management tasks in wire-
less sensor networks. It sets up a virtual communication skeleton to group nodes and
splits the overall network into different groups (e.g. clusters). Fault management is
distributed and executed in each individual group. Usually, the leader node of a
cluster (e.g. the cluster-head) executes fault detection in its group via a centralized
approach. It detects the suspicious nodes by exchanging the heartbeat messages with
its group members. A pre-defined failure detection rule is applied in the cluster head
to identify the failed nodes. Moreover, in Ann Tai [34], the gateway node (GW as
shown in Fig. 2) is also adopted to propagate the local detected failure information
to all other clusters in the network. A Gateway node is considered as the neighbour
of the cluster heads of two different clusters. This approach makes local clusters
aware of the changes and management objectives of the overall network.

3.1.3 Distributed Detection

The fundamental idea of distributed detection is to have nodes make decision on
faults such as physical malfunction of sensing devices. A node is expected to self-
monitor or self-detect faults with the less consultation from the central controller.
As one approach, special hardware and software components are applied to detect
physical impact on the sensor node. For example, Harte [10] adopt a flexible circuit
using accelerometers that act as a sensing layer around a node to detect malfunctions
of the node. They also use software components (e.g. ADCC, TimerC) from the
TinyOS operating system of a node to sample and detect the misbehaviour of sensor
devices.

Fig. 2 Intra-cluster heartbeat diffusion and inter-cluster information propagation [34]

Autonomic Networking in Wireless Sensor Networks 277

Alternatively, the decision of fault detection may also be generated by a node (or
several) after aggregating decision from nodes in the network. A typical example is
shown in Fig. 3, where a fusion node detects abnormal sensor readings of a node
after comparing and aggregating data from a set of nodes. The number of fusion
sensors needed in the network usually depends on the area of the region of interest
and the communication range of individual sensor nodes. Note that this approach
is especially energy-efficient and ideal for data-centric sensor applications. How-
ever, there remain various research challenges in order to achieve a better balance
between fault detection accuracy and the energy usage of the network. Usually, the
efficiency of such failure detection schemes is counted in terms of node communi-
cation costs, precision, detection accuracy and the number of faulty sensor nodes
tolerable in the network. One of the techniques suggested is fusion sensor coordina-
tion. In Clouqueur’s work [5], fusion sensors (in terms of manager nodes) coordinate
with each other to guarantee that they obtain the same global information about
the network before making a decision, as faulty nodes may send them inconsistent
information. In addition, Wang [36] also consider a fault-tolerant solution to reduce
the overall computation time and memory requirements at the fusion sensors. This
approach adopts cluster technology for data aggregation and lessening of redun-
dant data.

The distributed approach has represented a major design trends for fault man-
agement in WSNs. Sensor nodes are gradually taking more management respon-
sibility and decision-making in order to fulfil the vision of self-managed WSNs.
Node self-detection schemes [10] and neighbour coordination [12] have provided
us with good examples of fault management distribution. However, they only focus

Fig. 3 Distributed event detection with fusion centre [5]

278 M. Yu et al.

on small regions (a group of nodes) or individual nodes. Research work such as
MANNA [28] and WinMS [16] has proposed management architectures able to
look after the overall network using a central manager scheme. As an example of
a scheme that draws on the benefit of both techniques, we introduce our own hier-
archical management structure [39], which assigns levels of management activities
(or responsibilities) to nodes in the network. This approach does not fully rely on
the centralized manager for analysis and decision-making. We consider the essence
of fault management functions to be the same for all nodes, but differing in terms of
the execution ranges (e.g. number of nodes) and degrees (e.g. execution frequency
and sequence of functions). As a result, the centralized manager concentrates on the
performance of the overall network, without needing to be particularly interested
in the state of any individual node, while the individual group manager looks after
nodes within its sub-region.

3.2 Fault Diagnosis

As the second stage of fault management, detected faults are properly identified
by the network system and also distinguished from the other irrelevant or spurious
alarms.

The accuracy and correctness of fault detection has already been partly addressed
and achieved using a number of fault detection methods [5, 12, 34]. However, there
is still no comprehensive description model to distinguish various faults in WSNs.
To support the autonomy of sensor networks in achieving accurate fault diagnosis
or fault recovery action, the efficient knowledge model including fault description
models will become a necessity in the future perspectives of research challenges.
Existing approaches address fault models from the individual node point of view
(including node hardware component malfunctions). In particular, both Chen [3] and
Koushanfar [15] assume that the system software has already been fault-tolerant.
They focus on the sensor node hardware faults, especially sensor and actuator faults
which are most prone to malfunctioning. Koushanfar adopted two fault models. The
first one relates to sensors that produce binary outputs. The second fault model
is related to the sensors with continuous (analog) or multilevel digital outputs.
Clouqueur [5] only consider faulty nodes due to the harsh environmental conditions.
In their work, faulty nodes are assumed to send inconsistent and arbitrary values to
other nodes during the information sharing phase. Ding [6] models the ‘event’ (i.e.
abnormal behaviour of a sensor node) using the real numbers (such as sensor read-
ings) instead of using the 0/1 (binary) decision model. As a result, their algorithm is
generic enough as long as the thresholds and real number of events can be specified
by fault tolerance requirements from various sensor applications.

To enhance to the accuracy and correctness of fault diagnosis, techniques such
as using knowledge sharing and ‘histrionic’ data have been applied to identify sus-
picious nodes from failure alarms. For example, Gaurav [9] encourages the gate-
way nodes (i.e. the head of a group of nodes) to construct an overall network

Autonomic Networking in Wireless Sensor Networks 279

communication map by sharing their own connectivity experience with other gate-
way nodes. If none of the gateways has received the status update from a certain
gateway node, it clearly indicates that the node is not able to transmit any data to
others due to its transmitter failure. Using ‘histrionic’ data is another typical exam-
ple to accurately identify the faults in sensor networks. Shoubhik [23] demonstrated
an approach of using a priori knowledge model of sensor data to predict and identify
errors in the received data packet. This knowledge model is used to predict future
samples of sensed data based on the limited amount of past records. The success of
this approach thus depends largely on the accuracy of the modelling of the sensor
data. As a result, the sink node is able to choose the most faultless routing path
to deliver data packets by computing the average prediction error over the routing
paths towards the destination. Moreover, in order to provide sufficient runtime data
for fault diagnosis, multiple copies of sensed data from a source node are transmitted
to the sink via the separate paths. For example, Kuo-Feng et al. [33] proposed an
approach that a source node forwards two copies of the data through different rout-
ing paths towards the sink node. If these two received copies are not identical, the
sink node assumes a data inconsistency failure may have occurred in the network.
It thus requires the source node to retransmit the data via a third separate path. The
sink node examines the contents of these data packets, and identifies the faulty paths
(and nodes) in the network. To identify the suspicious node in the faulty path, a sink
node sends diffusion data packet back to the source node through both correct and
faulty paths. Every time when data packet passes through the suspicious node, a
counter embedded in the data packets will increased. When the counter reaches a
pre-defined threshold setting, the node is regarded as faulty.

As we have mentioned previously, existing fault models either address at the
component level (e.g. the hardware and software) of sensor nodes, or the communi-
cation connectivity between nodes. Note that there is a need to address fault models
from the network and system management level (e.g. network connectivity, the rate
of failed nodes).

3.3 Fault Recovery

Ideally, failure recovery phase is the stage at which the sensor network is restruc-
tured or reconfigured. In such a way, failures or faulty nodes do not impact further on
the network performance. Most existing approaches in sensor networks isolate failed
(or malfunction) nodes directly from the network communication layer (e.g. the
routing layer). For example, in the approach of Marti [22], after the faulty neighbour
is detected, a node will choose a new neighbour to route to. Staddon [32] proposed
two approaches of resuming the network routing paths from the silent nodes (i.e.
failed nodes), which are detected in each network routing update epoch. Both Kuo-
Feng [33] and Shoubhik [23] suggested the sink node to select a new routing path
when the faulty path occured in the network. Additionally, to recover the network
connectivity from the node leader’s failure (e.g. cluster header, gateway node), the

280 M. Yu et al.

group members usually rejoin into the adjacent groups. Gaurav [9] proposed an
runtime recovery mechanism to enable the members of the failed gateway node to
reconnect to the network. If a node is in the same communication range of multiple
candidate groups, it is recommended to join the group with the minimum commu-
nication energy cost. Instead of only responding to the fault occured in the network,
the proactive action is considered as a novel approach to prevent the potential faults
in the future. In WinMS [16], the central manager detects the network region with
the weak health (e.g. low battery power) by comparing the current network status
(including individual nodes) with a historical network information model (e.g. an
energy map or topology map). It takes the proactive action by enabling nodes in
that area to send data less frequently for the energy conservation. Koushanfar [15]
suggested a back-up scheme for tolerating and healing the hardware malfunctions of
a sensor node. They believe a single type of hardware resource can back up different
types of resources. The key idea is to adapt application algorithms and/or operating
system to match the available hardware and applications needs. They currently focus
on five primary types of resource: computing, storage, communication, sensing and
actuating, which can replace each other via suitable changes in system and appli-
cation software. Although this solution is not directly related to fault recovery in
respect of the network system management, it still provides us with a useful vision
of a future design to reconfigure the node management functionality when its man-
agement responsibility has changed due to fault occurred in the network. Currently,
one of the obvious ways to update the management functionality of a node is the use
of mobile code technology [18]. However, we believe using different combinations
of the existing software components of a sensor node as a means to reconfigure
its management capability is an alternative solution against the use of mobile code
technology. This may provide a more efficient solution when node management
responsibility changes.

4 Future Challenges

The unique characteristics of wireless sensor networks have made the networking
management approach different from the traditional ones in wired networks. It poses
additional technical challenges such as network discovery, network routing, data
processing and management task coordination among resource-constrained sensor
nodes. Moreover, the unforeseen events (e.g. node fault because of resource deple-
tion or nature condition in environment) make sensor networks even vulnerable to
failure. This consequently results into the sudden network partition, and threatens
the consistence of sensor network in both networking and sensing performance.
To avoid that, the system autonomy becomes a necessary and desirable feature for
sensor networks to dynamically handle the complex networking management tasks,
especially in area where the presence of human administrator is impracticable.

The novel feature of autonomic sensor networking fundamentally relies on
the individual autonomy of sensor nodes and their efficient collaboration. So far,

Autonomic Networking in Wireless Sensor Networks 281

agent-based approach has been widely adopted to equip nodes with relevant knowl-
edge and functionality, and even update with the additional capabilities if neces-
sary. However, an agent is normally designed and assigned with application-specific
tasks, and processes in destination nodes on behalf of the high-level manager. It pre-
vents the obstacle for agents to handle the complex networking-related management
tasks. For example, the network topology issue which usually considers many net-
working characteristics such as system latency, data routing and sensor coverage.
This demands autonomic nodes have sufficient knowledge to determine common
causes of problems through real-time analysis of residual network measurements.
Moreover, there is also a need for autonomic nodes to be self-aware of its own status
and the environment surrounding its activities. Thus, nodes are eligible to define and
schedule the contexts for the autonomic control adapting to various events occurred
in the network. To achieve this, the robust and efficient system architecture of sen-
sor nodes becomes a new technical research challenge in sensor networks. System
architecture, sitting between the sensing applications and node operational system
(such as TinyOS), is expected to provide a set of integrated functions for nodes to
be self-manageable and self-configurable. Nevertheless, there is still no comprehen-
sive system architecture design than supports the autonomy of sensor networking.
Design challenges for system architecture are various in different perspectives. In
this section, we adopt fault management as an example to highlight couple of design
aspects of system architecture in sensor networks.

First, system architecture is demanded to have sufficient knowledge model. As
we have discussed previously, it is unfeasible to predict any node failure, in partic-
ular the future, under the harsh operational environment of sensing applications and
WSNs. To support the management system to take efficient recovery actions and
successfully resume from a failure, certain knowledge (or wisdom) is required to
clearly identify and distinguish various faults. Therefore, the development of the-
oretical and realistic knowledge models of various faults becomes a key technique
and requirement. As reviewed in Sect. 3, several existing approaches have already
addressed this on the individual node level in terms of sense data inconsistence,
network connectivity failure, and node hardware malfunction. Note that there is
a need to address fault models not just at the level of components and individual
nodes, but also at the network and system mmanagement level.

Second, there is always a trade-off between the complexity of fault management
functions of system architecture and the resource constrains of sensor nodes. Mod-
ularization of fault management functions have gradually been considered as an
efficient design for resource-constrained sensor networks. In addition, this approach
eases the function maintenance as small changes (e.g. code updates and reconfig-
uration) within a selected section of system architecture will not affect the whole
architecture.

Third, reconfiguration of fault management functionality of sensor node is one
major challenges of system architecture. As mentioned above, mobile code update
technology [18] has been proposed as an efficient scheme. It selectively chooses
and updates the parts of code that are needed to support adaptation and reconfigu-
ration of node functionality. In order to achieve this, sensor nodes in the network

282 M. Yu et al.

are required to distribute and forward the on-demand mobile code to the destination
nodes. However, we are seeking an alternative technique [39] based on the reconfig-
uration of existing management functions by altering action ranges and degrees of a
sensor node. In association with our hierarchical structure, execution frequency and
the sequence of functions generates management functionality for a node when its
management responsibility changes. The techniques we are proposing are still under
development, so it would be grossly premature to suggest we provide a solution to
all the difficulties involved. At the very least, we hope to show that we can apply
new perspectives to these research problems.

5 Conclusion

In this chapter, we address autonomic networking in terms of WSNs, a typical exam-
ple of wireless networks in pervasive computing. We investigate the state of the
art of autonomic networking in sensor networks and its future prospects. We also
emphasize the importance and efficiency of the appliance of architecture to design
autonomic sensor networks. After that, we adopt fault management as an example
to demonstrate how autonomic networking and autonomic architectures fits into the
design for robust sensor networks.

Acknowledgments Our research group would like to express gratitude to Engineering and Phys-
ical Science Research Council (EPSRC). This research project is sponsored by EPSRC under its
grant reference EP/D000092/1. We would also like to thank the special issue editors for their
patience and comments during the reviewing of this paper.

References

1. Akyildiz, I.F.: Wireless Sensor Networks: A Survey In: IEEE Computer Networks, 38,
pp. 392–422. IEEE (2001)

2. Cerpa, A.: ASCENT: Adaptive Self-Configuring Sensor Networks Topologies. In: INFO-
COM’02, pp. 1278–1287, New York, USA. IEEE (2002)

3. Chen, J.: Distributed Fault Detection of Wireless Sensor Networks. In: DIWANS’06, pp. 65–
72, Los Angeles, CA, USA, ACM Press (2006)

4. Chen, M.: Mobile Agent Based Wireless Sensor Networks. In: Journal of Computers, pp. 14–
21, 1(1), (2006)

5. Clouqueur, T.: Fault Tolerance in Collaborative Sensor Networks for Target Detection. In:
IEEE Transactions on Computers, 53(3), pp. 320–333. IEEE (2004)

6. Ding, M.: Localized Fault-Tolerant Event Boundary Detection in Sensor Networks. In: INFO-
COM’05, pp. 902–913, Miami, USA. IEEE (2005)

7. Fok, C.L.: Mobile Agent Middleware for Sensor Networks: An Application Case Study. In:
IPSN’05, pp. 382–387, Los Angeles,USA. IEEE (2005)

8. Gan, L.: Agent-Based, Energy Efficient Routing in Sensor Networks. In: AAMAS’04, New
York, USA, ACM Press (2004)

9. Gupta, G.: Fault-Tolerant Clustering of Wireless Sensor Networks.. In: WCNC’03, pp. 1579–
1584, New Orleans, USA. IEEE (2003)

Autonomic Networking in Wireless Sensor Networks 283

10. Harte, S.: Fault Tolerance In Sensor Networks using Self-Diagnosing Sensor Nodes. In: intel-
ligent environments conference, IEE (2005)

11. Heinzelman, B.W.: An Application-Specific Protocol Architecture for Wireless Microsen-
sor Networks. In: IEEE Transactions on Wireless Communications, 1(4), pp. 660–669. IEEE
(2002)

12. Hsin, C.: Self-monitoring of Wireless Sensor Networks. In: Computer Communications,
29(2006), pp. 462–478, IEEE (2005)

13. Intanagonwiwat, C.: Directed Diffusion: A Scalable and Robust Communication Paradigm
for Sensor Networks. In: MOBICOM ’00, Boston, USA, ACM Press (2000)

14. O.Kephart, J: The Vision of Autonomic Computing. In: Journal of IEEE Computer, 36(1),
pp. 41–50, IEEE (2003)

15. Koushanfar, F.: Fault Tolerance Techniques for Wireless Ad Hoc Sensor Networks. In: IEEE
Sensors conference, pp. 1491–1496, Orlando, USA, IEEE (2002)

16. Lee, W.L.: WinMS: Wireless Sensor Network-Management System, An Adaptive Policy-
Based Management for Wireless Sensor Networks. In: The University of Western Australia,
Technical Report Number: UWA-CSSE-06-001 (2006)

17. Maroti, M.: Shooter Localization in Urban Terrian. In: IEEE Computer, 37, pp. 60–61, IEEE
(2004)

18. Marron, P.J.: Management and Configuration Issues for Sensor Networks. In: Journal of Net-
work Management, 15(4), pp. 235–253, IEEE (2005)

19. Marsh, D.: Autonomic Wireless Sensor Networks. In: Engineering Applications of Artificial
Intelligence, pp. 741–748 (2004)

20. Martinez, K.: Environmental Sensor Networks. In: IEEE Computer, 37, pp. 50–56,
IEEE (2004)

21. Mathur, G.: Ultra-Low Power Data Storage for Sensor Networks. In: IPSN’06, pp. 374–381,
Nashville, USA, IEEE (2006)

22. Marti, S.: Mitigating Routing Misbehavior in Mobile Ad Hoc Networks. In: MOBICOM’00,
Boston, USA, ACM Press (2000)

23. Mukhopadhyay, S.: Model Based Error Correction for Wireless Sensor Networks. In: SECON
2004, pp. 575–584, Santa Clara, CA, IEEE (2004)

24. Niu, R.: Distributed Detection and Fusion in a Large Wireless Sensor Network of Random
Size. In: Journal on Wireless Communications and Networking, pp. 462–472, IEEE (2005)

25. O’Hare, G.M.P.: Agents for wireless sensor network power management. In: ICPP’05,
pp. 413–418, IEEE (2005)

26. Perrig, A.: SPINS: Security Protocols for Sensor Networks. In: MobiCom’01, Rome, Italy,
ACM Press (2001)

27. Ruiz, L.B.: MANNA: A Management Architecture for Wireless Sensor Networks. In: IEEE
Communications Magazine, 41(2), pp. 116–125. IEEE (2002)

28. Ruiz, L.B.: Fault Management in Event-Driven Wireless Sensor Networks. In: MSWiM’04 ,
pp. 149–156, Venice, Italy. ACM Press (2004)

29. Ruiz, L.B.: On the Design of a Self-Managed Wireless Sensor Network. In: IEEE Communi-
cation Magazine , 43(8), pp. 96–102. IEEE (2005)

30. Sinha, A.: Dynamic Power Management in Wireless Sensor Networks. In: IEEE Design and
Test of Computers, 18(2), pp. 62–74, IEEE (2001)

31. Smaragdakis, G.: SEP: A Stable Election Protocol for Clustered Heterogeneous Wireless Sen-
sor Networks. In: SANPA’04, Boston, USA (2004)

32. Staddon, J.: Efficient Tracing of Failed Nodes in Sensor Networks. In: WSNA’02, Atlanta,
USA, ACM Press (2002)

33. Su, K.F.: Detection and Diagnosis of data inconsistency failures in wireless sensor networks.
In: Journal of Computer Networks, 50(9), pp. 1247–1260. IEEE (2006)

34. Tai, A.T.: Cluster-Based Failure Detection Service for Large-Scale Ad Hoc Wireless Network
Applications in Dependable Systems and Networks. In: Dependable Systems and Networks,
IEEE (2004)

284 M. Yu et al.

35. Tynan, R.: Intelligent Agents for Wireless Sensor Networks. In: IA-WSN’06, Hong Kong,
P.R.China, IEEE (2006)

36. Wang, T.Y.: Distributed Fault-Tolerant Classification in Wireless Sensor Networks. In: Jour-
nal on Selected Areas in Communications, 23(4), pp. 724–734. IEEE (2005)

37. Wang, X.L.: Collaborative Multi-Modality Target Classification in distributed Sensor Net-
works. In: Information Fusion’02, 1, pp. 285–290. IEEE (2002)

38. Ye, F.: PEAS: A Robust Energy Conserving Protocol for Long-lived Sensor Networks. In:
ICNP’02, pp. 200–201, Paris, France, IEEE (2002)

39. Yu, M.: A Self-Organized Middleware Architecture for Wireless Sensor Network Manage-
ment. In: Journal of Ad Hoc and Ubiquitous Computing, pp. 135–145, Inderscience (2008)

40. Ying, Z.: Mobile Agent-based Policy Management for Wireless Sensor Networks. In:
WCNM’05, 2, pp. 1207–1210, Wuhan, China, IEEE (2005)

41. Yoneki, E.: A Survey of Wireless Sensor Network Technologies: Research Trends and Mid-
dleware’s Role. In: Technical Report, 646, University of Cambride, p. 45, Cambridge (2005)

42. Younis, M.: Architecture for Efficient Monitoring and Management of Sensor Networks. In:
Lecture Notes in Computer Science,vol: 2839/2003 pp. 488–502, Spring (2003)

iNetLab: A Model-Driven Development and
Performance Engineering Environment for
Autonomic Network Applications

Hiroshi Wada, Chonho Lee, Junichi Suzuki, and Tetsuo Otani

Abstract A key software engineering challenge in autonomic computing is the
complexity of administrating operational policies of applications. In order to address
this challenge, this chapter proposes and evaluates a new development environment,
called iNetLab, which is designed to improve the productivity of designing, main-
taining, and tuning operational policies in autonomic network applications. iNetLab
consists of (1) a set of visual modeling languages specialized to define operational
policies in network applications, (2) a set of supporting facilities for those modeling
languages, and (3) tools estimates the performance of a network application with
its operational policy under development. The proposed visual modeling languages
and their supporting facilities can simplify and semi-automate the process to design
and maintain operational policies by allowing application administrators (i.e., non-
programmers) to graphically deal with operational policies in an intuitive manner.
The proposed performance estimation tools leverage the performance history of
each network application (i.e., pairs of an operational policy and a performance
result obtained in the past) and approximate the application’s performance without
deploying and running it actually. This simplifies the process to tune operational
policies against desirable performance requirements and contributes to shorten the
time to develop autonomic applications.

1 Research Issues in Autonomic Computing

A key software engineering challenge in autonomic computing is the complexity
of managing operational policies, each of which defines an administrative decision
(i.e., a pair of an operational condition and an administrative action) to operate appli-
cations. This complexity derives from two major issues: (1) information overloading
in designing and maintaining operational policies and (2) a lack of guidance meth-
ods to tune operational policies against desirable performance requirements such as
response time, throughput and load balancing.

H. Wada (B)
University of Massachusetts, Boston, MA, USA
e-mail: shu@cs.umb.edu

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 12, C© Springer Science+Business Media, LLC 2009

285

286 H. Wada et al.

The first issue is information overloading in designing and maintaining oper-
ational policies. It is often tedious, expensive, and error-prone for application
administrators to design proper operational policies for their applications because
policy design involves a large volume and variety of information [14]. Adminis-
trators need to consider a variety of operational conditions (e.g., each application
component’s internal conditions such as resource utilization and external conditions
such as workload) and administrative actions (e.g., migration of an application com-
ponent from one host to another). Due to this information overloading, administra-
tors can be easily overwhelmed to pair operational conditions and administrative
actions as operational policies. This problem becomes even more serious when
an application’s functional and/or non-functional aspects often change. Functional
changes include introducing new application functionalities and updating existing
ones. Non-functional changes include adding new hardware resources and revising
service level agreements. Upon these changes, administrators need to consider addi-
tional operational conditions and administrative actions and re-design operational
policies by re-pairing them again.

The second issue is a lack of guidance methods to tune operational policies
against desirable performance requirements [15, 18]. Although each operational
policy defines a set of administration actions for application components to take
under certain operational conditions, it is nothing to do with the performance that
they can collectively yield with its operational policy. It is always hard to estimate
whether a given operational policy allows an application to satisfy particular per-
formance requirements. As a result, a number of operational policies need to be
evaluated extensively with a simulator or testbed in order to determine which one to
be used in an application. This trial-and-error evaluation process can take a signif-
icant amount of time and costs. Also, it is often too ad hoc and unreliable to guide
application administrators to obtain a reasonable operational policy that can satisfy
desirable performance requirements.

2 Key Components and Contributions of iNetLab

In order to address the two issues described in the previous section, this chapter
proposes and evaluates a new development environment, called iNetLab, which is
intended to improve the productivity of designing, maintaining, and tuning oper-
ational policies in autonomic network applications. iNetLab consists of three key
components described below.

The first component in iNetLab is a set of visual modeling languages that are
specialized to design and maintain operational policies (i.e., operational conditions
and administrative actions) in network applications. They are intended to be visual
domain-specific languages (DSLs) that directly capture, represent, and implement
domain-specific concepts; the concepts specific to operational policies in autonomic
network applications, rather than general-purpose languages that aim at general
software problems. The proposed DSLs define those domain-specific concepts in
their metamodels and represent them as visual or textual language primitives. This

Model-Driven Development and Performance Engineering Environment 287

simplifies the process to build visual models that allow application administrators
(nonprogrammers) to intuitively understand, design and maintain operational poli-
cies. Moreover, the proposed DSLs intentionally limit their expressiveness to spec-
ify operational policies only; therefore, they can reduce the chances for application
administrators to make errors by building models in invalid or unexpected ways. By
simplifying the design of operational policies and automating their validation, the
proposed DSLs reduce the cost to design and maintain operational policies, thereby
alleviating the issue of information overloading.

The second component in iNetLab is a set of supporting facilities for the pro-
posed DSLs, such as visual GUI editors and a code generator. Visual editors sup-
port the proposed DSLs and allow application administrators to design operational
policies. The code generator of iNetLab transforms operational policies defined in
the proposed DSLs into to program code. Currently, it generates Java code that runs
on a simulator to test autonomic network applications. This code generation enables
rapid configuration and implementation of operational policies of autonomic net-
work applications, thereby alleviating the issue of information overloading. In addi-
tion, by customizing the default model-to-code transformation rule, operational
policies can be transformed to other platforms (other simulators, testbeds, and real
networks) without making any changes on those policies.

The third component in iNetLab is a set of performance estimators. The proposed
performance estimators leverage the performance history of each network applica-
tion (i.e., pairs of an operational policy and a performance result obtained in the
past) and approximate the application’s performance without actually deploying and
running it on simulators, testbeds, or real networks. The proposed performance esti-
mators address the issue of a lack of guidance methods to tune operational policies;
they are designed to simplify the trial-and-error process for evaluating and tuning
operational policies and aid application administrators to obtain reasonable opera-
tional policies that allow applications to satisfy desirable performance requirements.

This chapter is structured as follows. Section 3 presents an application archi-
tecture for autonomic networking, called BEYOND, which iNetLab is currently
designed for. Section 4 overviews the architecture of iNetLab. Section 5 describes
DSLs and their supporting facilities. Section 6 describes and evaluates the iNet-
Lab performance estimators. Sections 7 and 8 conclude with some discussion on
related work.

3 BEYOND: An Application Architecture for Biologically
Inspired Autonomic Networking

iNetLab is currently intended to support an architecture for autonomic network
applications, called BEYOND1 [17]. This section briefly overviews BEYOND to
better explain iNetLab in Sect. 5. See [17] for full discussion on BEYOND.

1 Biologically Enhanced sYstem architecture beyond Ordinary Network Designs.

288 H. Wada et al.

BEYOND is designed to address two challenges in autonomic network applica-
tions: autonomy and adaptability. Inspired by an observation that various biological
systems have developed the mechanisms to overcome these challenges, BEYOND
applies key biological principles and mechanisms to design network applications.

3.1 Agents

In BEYOND, each network application is designed as a decentralized group of soft-
ware agents. This is analogous to a bee colony (application) consisting of multiple
bees (agents). Each agent provides a certain functional service in an application,
and implements biologically inspired behaviors. Each agent also possesses its own
behavior policy, which determines which behavior to be invoked under a given set
of environment conditions. A behavior policy in BEYOND is equivalent to an oper-
ational policy in an autonomic application. Using its behavior policy, each agent
invokes its behaviors autonomously; without any intervention from/to other agents
and human users. Example agent behaviors are listed below.

• Energy exchange and storage: Biological entities strive to seek and consume
food for living. Similarly, in BEYOND, agents store and expend energy for living.
Each agent gains energy in exchange for performing its functional service to other
agents or human users, and expends energy to use the resources available at the
local host (e.g., memory space and CPU cycles).

• Replication: Agents may make their copies in response to high energy level,
which indicates high demand for the agents. A replicated agent is placed on the
host that its parent agent resides on, and it inherits the parent’s behavior policy.
Mutation may occur on the inherited behavior policy.

• Reproduction: Agents may reproduce child agents with other agents (mating
partners). A child agent is placed on the host that its parents reside on, and it
inherits behavior policies from both parents through crossover. Mutation may
occur on the behavior policy of a child agent.

• Migration: Agents may move from one network host to another.
• Death: Agents die due to energy starvation. If an agent cannot balance its energy

expenditure with its energy gain, the agent cannot pay for the resources it needs;
thus, it dies from lack of energy.

3.2 iNet: Agent Adaptation Mechanism in BEYOND

iNet is a key component in BEYOND, which allows each agent to adaptively per-
form its behaviors against dynamic environment conditions in the network, such
as network traffic and resource availability. iNet is designed after the mechanisms
behind how the immune system detects antigens (e.g., viruses), how it specifically
produces antibodies to eliminate them, and how it evolves antibodies to react to
a massive number of antigens. iNet models a set of environment conditions as an

Model-Driven Development and Performance Engineering Environment 289

antigen and an agent behavior as an antibody. Each agent contains its own immune
system, and a configuration of the agent’s antibodies defines its behavior policy. iNet
allows each agent to autonomously sense its surrounding environment conditions
(i.e., antigen) for evaluating whether it adapts well to the sensed conditions, and if
it does not, adaptively invoke a behavior (i.e., antibody) suitable for the conditions.
For example, agents may invoke the replication behavior at the network hosts that
accept a large number of user requests for their services. This leads to the adaptation
of agent availability; agents can improve their throughput. Also, agents may invoke
the migration behavior to move toward the network hosts that receive a large number
of user requests for their services. This results in the adaptation of agent locations;
agents can improve their response time to user requests.

3.2.1 Natural Immune System

The natural immune system adaptively regulates the body against dynamic environ-
mental changes such as antigen invasions. Through a number of interactions among
various white blood cells (e.g., macrophages and lymphocytes such as T-cells and
B-cells) and molecules (e.g., antibodies), the immune system evokes two responses
to antigens: T-cell activation and B-cell activation responses.

In the T-cell activation response, the immune system performs self/non-self dis-
crimination. This response is initiated by macrophages. Macrophages move around
the body to ingest antigens and present them to T-cells. T-cells are produced in
thymus though the negative selection. In this selection process, thymus removes
T-cells that strongly react to the body’s own (self) cells. The remaining T-cells are
used as detectors to identify foreign (non-self) cells. When a T-cell detects a non-self
cell presented by a macrophage, the T-cell secretes chemical signals to induce the
B-cell activation response.

In the B-cell activation response, B-cells are activated by T-cells. Some of the
activated B-cells strongly react to an antigen, and they produce antibodies that
specifically kill the antigen. Antibodies form a network and communicate with
each other [11]. This antibody network is formed with stimulation and suppression
relationships among antibodies. With these relationships, antibodies dynamically
change their populations and network structure. For example, the population of a
specific type of antibodies rapidly increases when they detect an antigen, and after
eliminating the antigen, the population decreases again.

The immune system maintains approximately 109 antibodies. B-cells can
increase this repertoire further by mutating and recombining immune gene segments
so that antibodies can detect and bind a massive number of antigens [3].

3.2.2 iNet Artificial Immune System

The iNet artificial immune system consists of the environment evaluation (EE)
facility and behavior selection (BS) facility, which implement the T-cell and B-cell
activation responses, respectively (Fig. 1). The EE facility allows an agent to con-
tinuously sense a set of current environment conditions as an antigen and classify

290 H. Wada et al.

Fig. 1 The architecture of iNet

the antigen to self or non-self. A self antigen indicates that the agent adapts to the
current environment conditions well, and a non-self antigen indicates it does not.
When the EE facility detects a non-self antigen, it activates the BS facility. The BS
facility allows an agent to choose a behavior as an antibody that specifically matches
the detected non-self antigen.

The EE facility performs two steps: initialization and self/non-self classification.
The initialization step produces detectors, as T-cells, which identify self and non-self
antigens. Each antigen is represented as a feature vector (X), which consists of a set
of environment conditions, or features, (Fi) and a class value (C):

X = (F1, F2, . . . , Fn,C) (1)

C indicates whether a given antigen (i.e., a set of environment conditions) is self
(0) or nonself (1). If an agent senses resource utilization and workload (the number
of user requests) on the local host, an antigen is represented as

Xcurrent = ((Low : ResourceUtilization, Light : Workload), 0) (2)

The initialization of the EE facility is designed after the negative selection in
the immune system (Fig. 2). As the immune system randomly generates T-cells,
the EE facility generates detectors (feature vectors) randomly. Then, the EE facil-
ity separates the generated detectors into self detectors, which closely match self
antigens, and non-self detectors, which do not. This separation is performed by
measuring vector similarity between randomly generated feature vectors (R) and
self antigens (S) that human administrators supply. After the vector matching, both
self and non-self detectors are stored in the detector table (Fig. 2).2

In self/non-self classification, the EE facility classifies a given antigen to self or
non-self. This is performed with a decision tree built from the detectors in the detec-
tor table. Figure 3 shows an example decision tree. Each node in the tree specifies
which feature (environment condition) is considered. Based on the feature values

2 The immune system removes non-self detectors through negative selection. However, in iNet,
both self and non-self detectors are used to perform self/non-self classification.

Model-Driven Development and Performance Engineering Environment 291

Fig. 2 Initialization of the EE facility

Fig. 3 An example decision tree

in a given antigen, the EE facility travels through tree branches. If the EE facility
classifies the antigen to non-self, it activates the BS facility.

The BS facility selects an antibody (i.e., agent’s behavior) suitable for a detected
non-self antigen (i.e., a set of environment conditions). Each antibody consists of
three parts: a precondition under which it is selected, behavior ID and relationships
to other antibodies. Antibodies are linked with each other using stimulation and
suppression relationships. Each antibody has its own concentration value, which
represents its population. The BS facility identifies a set of antibodies suitable for
a given non-self antigen, prioritizes them based on their concentration values, and
selects the most suitable one. When prioritizing antibodies, stimulation relationships
among them contribute to increase their concentration values, and suppression rela-
tionships contribute to decrease them. Each relationship has an affinity value, which
indicates the degree of stimulation or suppression.

Figure 4 shows an example network of antibodies. It contains four antibodies,
which represent the migration, replication and death behaviors. Antibody 1 repre-
sents the migration behavior invoked when the distance to users is far from an agent.
Antibody 1 suppresses Antibody 3 and stimulates Antibody 4. Now, suppose that a

292 H. Wada et al.

Fig. 4 An example antibody network

(non-self) antigen indicates (1) the distance to users is far, (2) workload is heavy
on the local host, and (3) resource utilization is low on a neighboring platform.
This antigen stimulates Antibodies 1, 2, and 4 simultaneously. Their populations
increase, and Antibody 2’s concentration value becomes highest because Antibody
2 suppresses Antibody 4, which in turn suppresses Antibody 1. As a result, it is
likely that the BS facility selects Antibody 2.

4 The Architecture of iNetLab

This section overviews the architecture of iNetLab. It provides a development, con-
figuration, and performance engineering environment for autonomic network appli-
cations built with iNet. Figure 5 shows an architectural overview of iNetLab. It
consists of six components: four application configuration facilities (Sect. 5), appli-
cation code generator (Sect. 5), and performance estimators (Sect. 6). The iNetLab
configuration facilities aid defining and configuring iNet-based applications with
visual/textual DSLs. They include the environment configuration facility (Sect. 5.1),

Fig. 5 The architecture of iNetLab

Model-Driven Development and Performance Engineering Environment 293

the agent behavior configuration facility (Sect. 5.2), the EE configuration facility
(Sect. 5.3), and the BS configuration facility (Sect. 5.4).

The environment configuration facility allows agent designers (i.e. application
designers) to visually configure the environment conditions used in their agents. The
behavior configuration facility allows them to visually configure agent behaviors.
The EE configuration facility allows for configuring a set of self detectors (S in
Fig. 2) used in the EE facility. The BS configuration facility allows agent designers
to visually or textually configure the behavior policies of their agents.

Once environment conditions, agent behaviors, detectors, and behavior policies
are configured with the iNetLab configuration facilities, the iNetLab code genera-
tor transforms them to compilable source code with a DSL-to-code transformation
rule. Transformation rules are implemented by platform developers, who know the
details of platform technologies to run applications (e.g., programming languages,
operating systems, middleware, and simulators). Through changing one transforma-
tion rule to another, the iNetLab code generator can generate different source code
that are compatible with different deployment environments such as simulators and
real networks. This way, an agent designer can define a single set of application
configurations and reuse it for different platform technologies. Currently, iNetLab
supports Java code generation for a simulator of BEYOND.

After generating an application code and running it on a simulator, iNetLab col-
lects the application’s performance result. Then, it stores a pair of the application’s
behavior policy and performance result in a repository as history data. The iNetLab
performance estimators use the history data to approximate application performance
with new behavior policies in the future.

5 DSLs, Configuration Facilities and Code Generator in iNetLab

This section describes four configuration facilities and code generator in iNetLab.

5.1 iNetLab Environment Configuration Facility

The iNetLab environment configuration facility allows agent designers to visually
model environment conditions with its DSL. Figure 6 shows an example environ-
ment condition model. As this figure illustrates, each rectangle represents an envi-
ronment condition and contains multiple rounded rectangles that represent its value
categories. For example, in Fig. 6, the LocalWorkload environment condition
defines two value categories: HEAVY (higher than 200) and LIGHT (lower than or
equal to 200).

It is hidden from agent designers how and when to obtain values of environment
conditions. Platform developers are expected to implement this concern in a skele-
ton source code generated by the iNetLab code generator (Fig. 5). For example,
Listing 1 shows a fragment of Java code generated from the LocalWorkload
environment condition in Fig. 6. The class EnvironmentCondition is the base

294 H. Wada et al.

Fig. 6 An example model defined with the iNetLab environment configuration facility

class to define environment conditions used in a BEYOND simulator; it provides
a means to obtain values of environment conditions by accessing the states of the
simulator. Platform developers implement the getRepValue() method with the
APIs in EnvironmentCondition. For example, the APIs are used to return the
current CPU utilization and request rate from users.

Figure 7 shows the metamodel of environment condition models. Any environ-
ment condition model (e.g., Fig. 6) is defined as an instance of this metamodel.
Other configuration facilities and code generator access environment condition
models via this metamodel.

The metamodel has three metaclasses, EnvironmentConditionDefs,
EnvironmentConditionDef, and CategoryDef. EnvironmentCondi-
tionDefs represents a set of environment condition definitions. This metaclass
does not have its graphical notation because its instance corresponds to an environ-
mental configuration model itself. An instance of the EnvironmentCondition-
Def metaclass represents the definition of an environment condition (e.g.,
LocalWorkload in Fig. 6), and its name attribute indicates the name of an
environment condition (e.g., "LocalWorkload" in Fig. 6). An instance of

EnvironmentConditionDef

-name : EString

EnvironmentConditionDefs

CategoryDef

-name : EString
-condition : EString

-categories

1..*

-environmentConditions1..*

Fig. 7 Metamodel for environment condition models

Model-Driven Development and Performance Engineering Environment 295

EnvironmentConditionDef metaclass can contains an arbitrary number of
instances of the CategoryDef metaclass, which defines a value category of an
environment condition. The name attribute indicates a category’s name, and the
expression attribute indicates a value range of an environment condition. For
example, in Fig. 6, LocalWorkload has a value category, called Heavy, whose
range is ">200."

Listing 1 An Example Generated Code for the LocalWorkload Environment Condition

1 public class LocalWorkload
2 extends edu.umb.inet.sim.EnvironmentCondition
3 implements EnvironmentCondition {
4

5 enum Category{ HEAVY, LIGHT };
6

7 public Category evaluate(){
8 double repValue = getRepValue();
9 if(repValue > 200){ return Category.HEAVY;}

10 return Category.LIGHT;
11 }
12

13 private double getRepValue(){
14 // TODO: platform developers add code here
15 }
16 }

The metamodel for environment condition models is defined in Eclipse Modeling
Framework (EMF) [9], and the environment configuration facility is implemented
on Eclipse Graphical Modeling Framework (GMF) [8].

The iNetLab code generator transforms an environment condition model to Java
source code with a DSL-to-code transformation rule (Fig. 5). The transformation
rule is defined as a template that maps the metamodel elements of environment con-
dition models and the program elements of Java source code. Each rule is executed
with openArchitectureware (oAW) [19], a model-to-code transformation engine.
Listing 2 shows a fragment of the default transformation rule used for environment
condition models. This rule generates Java source code used in a BEYOND sim-
ulator. Platform developers can define their own transformation rules that generate
source code for other deployment environments (Fig. 5).

Listing 2 A Fragment of the Default Transformation Rule for Environment Condition Models

1 <<DEFINE ExpandEnvCondition FOR EnvironmentConditionDef>>
2 <<FILE name + ".java">>
3 public class <<name>>
4 extends edu.umb.inet.sim.EnvironmentCondition
5 implements EnvironmentCondition {
6

7 enum Category{
8 // Apply RetrieveCategoryName to each element
9 // in EnvironmentConditionDef.categories

10 <<EXPAND RetrieveCategoryName FOREACH categories>> };
11

12 public Category evaluate(){
13 double repValue = getRepValue();
14 <<EXPAND ExpandCondition FOREACH categories>>
15 }
16 ...
17 }
18 <<ENDFILE>>
19 <<ENDDEFINE>>

296 H. Wada et al.

1 // Retrieve the ’name’ attribute of CategoryDef
2 <<DEFINE RetrieveCategoryName FOR CategoryDef>>
3 <<name>>,
4 <<ENDDEFINE>>
5

6 // Transform a category to an if statement according to its condition
7 <<DEFINE ExpandCondition FOR CategoryDef>>
8 <<IF condition == "else">>
9 return <<name>>;

10 <<ELSE>>
11 if(<<condition>>) return <<name>>;
12 <<ENDIF>>
13 <<ENDDEFINE>>

The keyword DEFINE defines a transformation rule for a certain metaclass. In
Line 1 of Listing 2, a transformation rule, named ExpandEnvCondition, is
defined for the metaclass EnvironmentConditionDef. Each instance of the
metaclass is transformed to a Java class whose name is same as the instance’s
attribute name (<<name>> is replaced with the instance’s attribute name.) In Line
7, a Java enumeration type (Category) is defined. Its elements are defined by
calling the RetrieveCategoryName rule (Lines 22–24), which retrieves name
of each instance of CategoryDef. In Line 12, the evaluate() method is
defined, and completed by calling the ExpandCondition rule on each instance
of CategoryDef.

This transformation rule generates Java source code shown in Listing 1 when it
is applied to an environment condition model shown in Fig. 6.

5.2 iNetLab Behavior Configuration Facility

The iNetLab behavior configuration facility allows agent designers to visually
model agent behaviors with its DSL. Figure 8 shows an example behavior con-
figuration model. As this figure illustrates, each rectangle represents an agent
behavior and contains multiple rounded rectangles that represent its parameters.
The name of a parameter is shown at the top of a rounded rectangle, and the param-
eter’s type is shown below. For example, in Fig. 8, the Reproduction behav-
ior has three parameters: mutationRate, partnerSelectionPolicy,
and crossoverPolicy. A parameter can be typed with an enumeration. In

Fig. 8 An example model defined with the iNetLab behavior configuration facility

Model-Driven Development and Performance Engineering Environment 297

EnumerationDef

-name:EString
-elements:EString[1..*]

ParameterDef

-name:EString
-type:EString

BehaviorDefs

-name:EString

BehaviorDef

-enumerations
0..*

-parameters

0..*

-behaviors
1..*

Fig. 9 Metamodel for behavior configuration models

Fig. 8, two enumeration types are defined: PartnerSelectionPolicy and
CrossoverPolicy.

Figure 9 shows the metamodel for behavior configuration models. Any behavior
configuration model (e.g., Fig. 8) is defined as an instance of this metamodel. Other
configuration facilities and code generator access behavior configuration models via
this metamodel.

The metamodel consists of four metaclasses: BehaviorDefs, BehaviorDef,
ParameterDef, and EnumerationDef. BehaviorDefs represents a set of
agent behavior definitions. This metaclass does not have its graphical notation
because its instance corresponds to a behavior configuration model itself. An
instance of the BehaviorDef metaclass represents the definition of an agent
behavior (e.g., Reproduction in Fig. 8), and its name attribute indicates
the name of an agent behavior (e.g., ”Reproduction” in Fig. 8). An instance
of the BehaviorDef can contain an arbitrary number of instances of the
ParameterDef metaclasses, which defines the parameters of an agent behavior.
The name and type of ParameterDef represent a parameter’s name and type.

Similar to the environment configuration facility, the behavior configuration
facility is implemented on Eclipse GMF. The metamodel for behavior configuration
models is defined in EMF.

5.3 iNetLab EE Configuration Facility

The iNetLab EE configuration facility allows agent designers to define a set of self
detectors (S in Fig. 2) used in the EE facility. Figure 10 shows a screenshot of
this facility, and depicts six detectors in a table. Each row in the table represents
a detector, and each column represents an environment condition defined in the
environment configuration facility (Sect. 5.1).

In the EE configuration facility, agent designers configure detectors by select-
ing one of the categories for each environment condition. For example, in Fig. 10,
the NumOfAgents environment condition has three categories, MANY, MID, and
FEW, which are defined in the environment configuration facility (Fig. 6). An agent
designer chooses one of the three categories to generate detectors. As described
in Sect. 3.2.2, the generated detectors are used to perform the negative selection
process in iNet.

298 H. Wada et al.

Fig. 10 Example detectors defined with the iNetLab EE configuration facility

5.4 iNetLab BS Configuration Facility

The BS configuration facility allows agent designers to visually or textually config-
ure the behavior policies of their agents. Figure 11 shows a visual behavior policy
(antibody network) model. As this figure illustrates, each rectangle represents an
antibody and consists of three compartments: (1) the name and the initial concen-
tration of an antibody, (2) an environment condition under that an antibody reacts to,
and (3) an agent behavior and its parameters. For example, in Fig. 11, AntibodyA
represents the reproduction behavior, and its initial concentration value is 5. The
behavior is invoked when LocalWorkload is light. A stimulation/suppression
relationship between antibodies is visualized as a solid arrow between rectangles.
Each arrow shows a value that represents the affinity value of a corresponding stim-

Fig. 11 A visual behavior policy model defined with the iNetLab BS configuration facility

Model-Driven Development and Performance Engineering Environment 299

Fig. 12 A textual behavior policy model defined with the iNetLab BS configuration facility

ulation/suppression relationship. In Fig. 11, AntibodyA stimulates AntibodyB
with the affinity value of 1.5.

Figure 12 shows a textual behavior policy configuration. Each antibody is defined
with the built-in keyword antibody. Figures 11 and 12 show the semantically
same behavior policy. As in Fig. 12, the BS configuration facility shows built-in
keywords in a boldface, automatically examine the syntax of a behavior policy con-
figuration, and reports syntax errors while agent designers configure antibodies. In
Fig. 12, a syntax error is reported with a cross mark. (The keyword energyLevel
is wrong; EnergyLevel should be used because of the environment condition
model defined in Fig. 6.)

Listing 3 is a fragment of Java source code to which the iNet code generator
transforms from the behavior policy configuration in Fig. 11 or 12. Different forms
(visual and textual) of a behavior policy configuration are transformed to the same
source code.

Listing 3 An Example Generated Code for Configuring an Antibody Network

1 void setupAntibodiesOfINet(){
2 Antibody antibodyA =
3 new Antibody("AntibodyA", 5, LocalWorkload.LIGHT,
4 new Reproduction(
5 2.3, CROSSOVER.FITNESSBASED, PARTNER.FITNESSBASED));
6

7 Antibody antibodyD =
8 new Antibody("AntibodyD", 1, EnergyLevel.HIGH,
9 new Migration(DirectionPolicy.USER));

10

11 AntibodyNetwork inet = getAntibodyNetwork();
12 inet.add(antibodyA);
13 inet.add(antibobyD);
14 antibodyA.addAffinity(antibodyD, 5.3);
15 }

The BS configuration facility allows agent designers to configure behavior poli-
cies (antibody networks) in a declarative and intuitive manner. They do not need

300 H. Wada et al.

to know the programming details on how to implement agents in Java (e.g., how
to define agents, where to implement a behavior policy in agent code, and which
iNet APIs to use for implementing antibodies.) These details are hidden from agent
designers by the BS configuration facility and code generator; they can focus on the
design of behavior policies.

Figure 13 shows the metamodel for behavior policy models. It consists of five
generic metaclasses, AntibodyNetwork, Antibody, Affinity, Behavior,
and EnvironmentCondition, and four metaclasses for agent behaviors,
Reproduction, Replication, Migration, and Death.
AntibodyNetwork represents an antibody network. For example, a behavior

policy model in Fig. 11 is an instance of AntibodyNetwork. Antibody repre-
sents an antibody, and its name and initialConcentration attributes indi-
cate an antibody’s name and initial concentration value, respectively. Affinity
represents an affinity between Antibodys; the direction and degree of a stimu-
lation/supression relationship. Behavior is the base metaclass for all agent behav-
iors. By referencing Environment and Category, EnvironmentCondition
represents an environment condition under which an antibody is invoked.

The visual and textual BS configuration environments are implemented with
Eclipse GMF and oAW, respectively. The metamodel for behavior policy config-
urations is defined in EMF.

Antibody

-name : EString
-initialConcentration : EDouble

PartnerSelectionPolicy

EnergyBased
FitnessBased

Neighbor
Local

EnvironmentCondition

Category

HEAVY
LIGHT
MANY

HIGH
LOW

FEW
MID

Replication

-mutationRate : EDouble

Reproduction

-mutationRate : EDouble

Affinity

-affinityValue : EDouble

AntibodyNetwork

CrossoverPolicy

EnergyBased
FitnessBased
HalfAndHalf

Environment

NeighborWorkload
LocalWorkload

NumOfAgents
EnergyLevel

DirectionPolicy

Resource
Random

User

Migration

Behavior

Death

1
-incoming

0..*

-outgoing

0..*

11

-antibodies0..*

1

-behavior1

11

Fig. 13 The metamodel for behavior policy models

Model-Driven Development and Performance Engineering Environment 301

5.5 Metamodel Customization

As described in earlier sections, the environment configuration metamodel (Fig. 7),
agent behavior configuration metamodel (Fig. 9), and behavior policy configura-
tion metamodel (Fig. 13) are built upon EMF, which serves as the meta-metamodel
(Fig. 14). Similarly, environment configuration models (e.g., Fig. 6), agent behavior
configuration models (e.g., Fig. 8) and behavior policy models (e.g., Figs. 11 and 12)
are built upon their corresponding metamodels (Fig. 14).

In iNetLab, the behavior policy configuration metamodel (Fig. 13) is intended to
be extensible for various types of applications that consider different environment
conditions and use different agent behaviors. In other words, the metamodel varies
depending on what are defined in environmental configuration models and agent
behavior configuration models. In order to address this issue and make the meta-
model extensible, iNetLab customizes the metamodel based on given environmental
configuration models and agent behavior configuration models (Fig. 14).

The first step of metamodel customization is to import an environment con-
figuration model from the environment configuration facility, extract environment
conditions defined in the model, and introduce the environment conditions to the
behavior policy configuration metamodel. For example, when an environment
configuration model in Fig. 6 is imported, four environment conditions (e.g.,
LocalWorkload) and seven category values (HEAVY and LIGHT) are extracted.
Then, the behavior policy configuration metamodel is customized by generating
two enumeration types (Environment and Category) and defining four envi-
ronment conditions and seven category values in the enumeration types. See Fig. 13
for the generated enumeration types.

The second step of metamodel customization is to import an agent behavior
model from the behavior configuration facility, extract behaviors defined in the
model, and introduce the behaviors to the behavior policy configuration meta-
model. For example, when an agent behavior model in Fig. 8 is imported, the
Reproduction behavior and its associated parameters (i.e., mutationRate,

Fig. 14 Metamodel customization in iNetLab

302 H. Wada et al.

partnerSelectionPolicy, and crossoverPolicy) are extracted. Then,
the behavior policy configuration metamodel is customized by generating a sub
metaclass of the Behavior metaclass and defining three parameters in the gen-
erated metaclass. In Fig. 13, four behaviors are generated and defined, including
Reproduction.

Agent designers can anytime change the environment conditions and behaviors
that their agents (applications) use by re-defining environment configuration models
and behavior configuration models and re-performs metamodel customization. This
way, they can customize the behavior policy metamodel without knowing meta-
modeling details and maintain the metamodel extensible yet consistent with other
models.

6 Performance Estimators in iNetLab

The iNetLab performance estimators implement two different estimation methods
using graph similarity (Sect. 6.1) and eigenvector centrality (Sect. 6.2). As illus-
trated in Fig. 5, iNetLab records, as history data, pairs of behavior policies used in
an application (i.e., agents) and the application’s performance results. Once an agent
designer configures a new behavior policy for an application (agents), an iNetLab
performance estimator retrieves the behavior policies, from the history data, which
are similar to the one under development. Then, it approximates the application’s
performance under an assumption that similar behavior policies yield similar per-
formance results. With the iNetLab performance estimators, agent designers can
re-define and tune their behavior policies without running applications (agents)
repeatedly for a long time. This can alleviate trial-and-error burdens from agent
designers and improve their productivity in tuning behavior policies.

6.1 Performance Estimation with Graph Similarity

The first performance estimation method in iNetLab is inspired by a bioinformat-
ics technique to understand and infer the function of a network of interacting pro-
teins. In biology, protein interaction networks have been extensively investigated

B
A

X
C

E

F
H

G

Y
Z

B
A

X
C

E

F
H

G

Y
Z

B
A

D
C

E

F
H

G

I B
A

D
C

E

F
H

G

I

Fig. 15 Common subnetworks in two behavior policies (antibody networks)

Model-Driven Development and Performance Engineering Environment 303

to explore how interacting proteins reveal an emergent function such as creating
a membrane and signaling impulses between cells. It is now known that similar
protein interaction networks have similar functions even if several proteins and inter-
action patterns are altered. Therefore, by measuring structural similarity with other
networks, it is possible to infer the function of a given protein interaction network.
In bioinformatics, several functional approximation methods have been proposed.

Since antibodies are proteins and an antibody network has an emergent function
(i.e., immune response) through stimulation/suppression interactions, a performance
estimator in iNetLab is designed based on an approximation method for protein
interaction networks [22]. In this performance estimator, called the iNet graph-based
performance estimator, the function of an antibody network corresponds to the per-
formance of an application that uses the antibody network as its behavior policy.

The proposed graph-based estimator approximates an application’s performance
by measuring the structural similarity (or graph similarity) between the applica-
tion’s behavior policy and other behavior policies. It measures the similarity, S, and
dissimilarity, D, between two different behavior policies, and obtains (S − D) as
the overall similarity Soverall. S is measured by finding the common subnetworks
contained (or shared) in given two behavior policies. D is measured by finding the
subnetworks that are not shared in two behavior policies. A common subnetwork is
a network that consists of the same types of antibodies (i.e., antibodies that repre-
sent the same behavior, have the same environment conditions and have the same
directed structure/graph of stimulation/suppression relationships). For example, in
Fig. 15, two behavior policies have two common subnetworks: a subnetwork con-
sisting of B, C, E, and F, and another subnetwork consisting of G and H. In the
Antibody Network A, a subnetwork consisting of A, D, and I is not shared with the
Antibody Network B. In the Antibody Network B, a subnetwork consisting of A, X,
Y, and Z is not shared with the Antibody Network B.

The similarity, S, between two behavior policies is calculated with Eq. (3) where
anetA and anetB represent behavior policies. When two behavior policies are iden-
tical, the similarity between them is equal to the number of antibodies and stimula-
tion/supression relationships.

S(anetA, anetB) =
∑

ab∈AB

max(0, 1 − |IanetA(ab) − IanetB(ab)|)

+
∑
r∈R

max(0, 1 − |AanetA(r) − AanetA(r)|) (3)

where

AB = A set of antibodies in anetA ∩ anetB
R = A set of stimulation/suppression relationships in anetA ∩ anetB
Ianet(ab) = The initial concentration of an antibody ab in anet.
Aanet(r) = Affinity value associated with a relationship r in anet.

304 H. Wada et al.

The dissimilarity, D, between two behavior policies is calculated with Eq. (4).
When two behavior policies are identical, the dissimilarity between them becomes
0. When the antibodies and relationships that are not shared in two behavior policies
have larger initial concentration values and affinity values, the dissimilarity between
them becomes larger.

D(anetA, anetB) =
∑

ab′∈AB′
I(ab′) +

∑
r′∈R′

A(r
′) (4)

where

AB′ = A set of antibodies in anetA�anetB
R′ = A set of stimulation/suppression relationships in anetA�anetB.

6.2 Performance Estimation with Eigenvector Centrality

The second performance estimation method in iNetLab is designed to predict the
concentrations of antibodies in each antibody network and obtain the similarity
of behavior policies (i.e., antibody networks) by comparing the predicted antibody
concentrations in given two antibody networks. This estimation method leverages
eigenvector centrality [4, 5] to predict the concentrations of antibodies.

The proposed eigenvector-based method forms an N×N adjacent matrix that rep-
resents individual stimulation/suppression relationships between antibodies, when
N antibodies exist in an antibody network. Each value in the matrix represents an
affinity value associated with a stimulation/suppression relationship. For example,
in Fig. 16, the antibody C stimulates the antibody D with the affinity value of 1.2.
The antibody A’s initial concentration is 0.0, and the antibody B’s is 1.0.

The proposed method obtains multiple N-dimensional eigenvectors from a given
adjacent matrix and choose the eigenvector, called centrality vector, which gener-
ates the maximum eigenvalue. In general, a centrality vector provides N centrality

Fig. 16 Adjacent matrix and eigenvector of a behavior policy (antibody network)

Model-Driven Development and Performance Engineering Environment 305

scores, each of which represents a certain importance level [5]. In the context of
iNetLab, these centrality scores indicate the emergent concentrations of antibodies
through stimulation and suppression interactions among antibodies. For example, in
Fig. 16, the antibody B’s concentration is predicted as 1.1.

Since an antibody’s concentration impacts the probability that it is selected
(Sect. 3.2.2), a centrality vector indicates how an application (agents) invokes behav-
iors with a given behavior policy and, in turn, estimates the application’s perfor-
mance.

The proposed eigenvector-based performance estimation method examines the
similarity of behavior policies by comparing their centrality vectors based on the
cosine similarity.

6.3 Evaluation of Performance Estimators

This section presents a series of simulation results to evaluate the accuracy of iNet-
Lab performance estimators.

6.3.1 Simulation Configurations

The simulations were carried out on a BEYOND simulator. Figure 17 shows a sim-
ulated server farm consisting of network hosts connected in a 3 × 3 grid topology.
Each agent is simulated to provide a web service that receives a service request
message and returns an HTML file. Service requests travel from users to agents via
user access point. This simulation study assumes that a single (virtual) user runs on
the access point and sends request messages to agents.

Figure 18 shows how the user changes service request rate over time. This is
designed based on a workload trace of the www.ibm.com site in February 2001 [6].
The workload falls down to 3,000 requests per minute in early morning, and peaks
7,500 requests per minute in the afternoon. At the beginning of simulations, one
agent is deployed on a randomly selected host. This simulation generates a workload
trace that is designed based on a daily request rate for the www.ibm.com site in
February, 2001 [6].

When a simulation is completed, iNetLab records performance results with the
following five metrics:

Fig. 17 Simulated server farm

306 H. Wada et al.

Fig. 18 Simulated workload

• Throughput:
The total number of messages that agents process

The total number of messages that the user transmitted

• Resource efficiency:
The number of messages that agents process

The amount of resources that agents consume
• Distance: The average hop count from agents to the user
• Latency: The average of latency
• Latency Jitter: Variance of latency

This simulation study considers 15 environment conditions and 5 agent behav-
iors. Since a behavior policy contains an arbitrary combination of 75 antibodies,
the total number of possible combinations is

∑75
m=1 75Cm = 275 ∼= 3.7 × 1022. The

number of combination becomes far larger than 3.7×1022 if different affinity values
are considered for relationships between antibodies.

As this example illustrates, the number of possible behavior policies is
astronomical numbers even if a few environment conditions and agent behaviors are
considered. It is unpractical and nearly impossible to tune application performance
by testing all of them one by one in simulations. Therefore, the next section
evaluates how accurately iNetLab performance estimators approximate application
performance with a relatively small amount of history data (i.e., a relatively small
number of actual simulation runs).

6.3.2 Simulation Results

In this simulation study, iNetLab randomly generates 1,000 behavior policies, run
an application with them on a BEYOND simulator and records performance results
as history data. Given a behavior policy BPg, each iNetLab performance estimator
finds the most similar behavior policy BPs from history data. The accuracy of each
performance estimator is measured with the performance resulting from BPg, called
PFg, is very close to the performance resulting from BPs, called PFs. The closeness
of PFs and PFg is calculated with Eq. (5).

Model-Driven Development and Performance Engineering Environment 307

C(PFs, PFg) = N −
N∑

i=1

∣∣(metrici in PFs) − (metrici in PFg)
∣∣

the max value in metrici

where

N = The total number of metrics (5)

In order to measure the estimation accuracy of two different performance esti-
mators, each performance estimator (1) takes a randomly generated behavior policy
BPg, (2) runs an application with BPg in a simulator and obtains a set of perfor-
mance results PFg, (3) sorts the 1,000 behavior policies in history data in order of
the closeness of their performance results to PFg, (4) finds BPs, which is most similar
to BPg, with a certain estimation method and obtains FPs as estimated performance,
and (5) determines the rank of PFs in the list obtained at (3). When the rank of PFs

(estimated performance) is 1, the accuracy of a performance estimator is highest.
Figures 19 and 20 show the accuracy of graph-based and eigenvector-based esti-

mators, respectively. For each figure, each estimator runs performance approxima-
tion 1,000 times and counts the rank of PFs as frequency. Each figure shows this

Fig. 19 Estimation accuracy of graph-based performance estimation

Fig. 20 Estimation accuracy of eigenvector-based performance estimation

308 H. Wada et al.

Fig. 21 Estimation accuracy of of graph-based and eigenvector-based performance estimation

frequency in its Y -axis.3 As these two figures show, both performance estimators
can accurately identify the BPs that yields the closest performance to the actual
performance (i.e., the first rank PFs).

Figure 21 shows the estimation accuracy of graph-based estimation. It shows the
probabilities that the five most similar behavior policies in history data yield the
closest performance of a given behavior policy. For example, the probability that
the most similar behavior policy gives the closest performance result is 10.1%. The
probability that the second similar behavior policy gives the closest performance
result is 9.8%. By examining the five most similar behavior policies, application
developers (agent designers) can predict the application’s performance with a behav-
ior policy under development at the probability of 54.3%.

Figure 21 also shows the estimation accuracy of eigenvector-based estimation. It
shows the probabilities that the five most similar behavior policies in history data
yield the closest performance of a given behavior policy. For example, the proba-
bility that the most similar behavior policy gives the closest performance result is
9.1%. By examining the five most similar behavior policies, application developers
(agent designers) can predict the application’s performance with a behavior policy
under development at the probability of 52.2%.

Figure 22 shows the number of simulation runs required to find a behavior pol-
icy that can yield 99% throughput. Without the iNetLab performance estimators,
each application developer (agent designer) runs an application (agents) with a
given behavior policy on a BEYOND simulator and obtains its throughput perfor-
mance. If the performance does not reach 99%, the developer slightly change the
behavior policy to obtain throughput performance. He/she continue this trial-and-
error process until throughput performance reaches 99%. As Fig. 22 illustrates, 22

3 Although each of Figs. 19 and 20 has 1,000 different ranks in the X-axis, it shows the 1st to the
100th ranks only because frequency (Y -axis) is always less than 3 between the 101th to the 1,000th
ranks.

Model-Driven Development and Performance Engineering Environment 309

Fig. 22 The number of simulations

simulation runs are necessary to determine a behavior policy that can yield 99%
throughput.

In contrast, the iNetLab performance estimators can approximate whether an
application (agents) can likely yield desirable performance (i.e., 99% throughput)
without running simulations. In this simulation study, an application developer do
not run a simulation when an iNetLab performance estimator predicts that an appli-
cation yields 10% or less throughput with a given behavior policy. As Fig. 22 shows,
graph-based estimation dramatically reduces the number of necessary simulation
runs from 22 to 5 in order to achieve 99% throughput. Similarly, eigenvector-
based estimation reduces the number of simulations from 22 to 6. Moreover, if
a developer runs a simulation only when both graph-based and eigenvector-based
estimation methods predict that an application yields higher than 10% throughput,
the number of necessary simulations is reduced to 3. Since these two estimation
methods conduct performance estimation in different ways, estimation accuracy
improves by using both at a time.

7 Related Work

This chapter describes a set of extensions to prior work [17, 24]. One extension is to
investigate the iNet performance estimators, which [17, 24] do not consider. Another
extension is to study metamodel customization, which [24] does not consider.

Several research efforts have investigated model-driven development techniques
for autonomic computing based on general-purpose modeling languages such as
UML [13, 20, 21, 23]. Their model tends to be complicated and not easy for appli-
cation administrators to use. Agrawal et al. [1] propose an XML-based language,
called Autonomic Computing Policy Language (ACPL), to describe policies for
autonomic computing. ACPL is designed as a general-purpose policy language. For
example, it provides Condition and Action elements to describe a condition
and an action to take. It can describe any types of policies, but not specialized
to certain mechanisms. As well, [7] allows describing pairs of an environment

310 H. Wada et al.

condition and an action through the use of general-purpose textual policy language.
The proposed visual DSLs make it easy to understand, define, and maintain policies
(i.e., agent behavior policies) in autonomic applications rather than general-purpose
policy languages.

There are several DSLs to model biological systems such as biochemical net-
works for simulating and understanding biological systems (e.g., [10, 16]). How-
ever, the objective of the DSLs in iNetLab is different from theirs; DSLs in iNetLab
aim to model biological (immunological) mechanisms for building autonomous and
adaptive network applications. This work is the first attempt to investigate a DSL
for biologically inspired autonomic networking.

J2EEML is a DSL to visually configure quality of service requirements and prop-
erties in Enterprise Java Beans (EJB) applications such as response time and mes-
sage scheduling algorithms [25]. It assumes a stable domain-specific metamodel,
and do not address the issue of customization of DSLs, i.e., do not provide means to
customize metamodels. In iNetLab, application administrators not only use DSLs
to model policies, but also customize DSLs through using DSLs. This mechanism
allows even application administrators to customize DSLs to reflect the changes in
the semantics of domain concepts.

A model transformation from a lower level (e.g., model) to a higher level (e.g.,
metamodel) is called promotion in the area of model-driven development. Similar
to this work, [12] leverages this technique to create a new domain-specific meta-
model from a model. However, [12] uses a general-purpose modeling language to
describe a model to be promoted to a metamodel. In contrast, iNetLab uses DSLs
to customize other DSLs. It simplifies the customization of DSLs and allows even
application administrators to customize DSLs.

Several research efforts have investigated automatic generation of operational
policies to satisfy desirable performance requirements [2, 15]. These techniques
assume that each application’s performance model is known. For example, several
queuing models have been studied as the performance models for web servers. In
those performance models, it is well-known how parameters (e.g., queue length)
impact a web server’s performance such as the average processing time for each
incoming message. It is straightforward to estimate an application’s performance
when its performance model is known. In contrast, iNetLab does not assume any
performance models, and its performance estimators are designed to approximate
an application’s performance without any prior knowledge on the applications. The
estimation methods in iNetLab can be applied to autonomic applications whose per-
formance models are not known.

8 Conclusion

iNetLab is a model-driven development and performance engineering environment
to aid designing, maintaining and tuning operational policies in autonomic net-
work applications. It provides (1) a set of DSLs to define operational policies in

Model-Driven Development and Performance Engineering Environment 311

autonomic network applications, (2) a set of supporting facilities for the DSLs,
and (3) performance estimators to approximate the performance of an applica-
tion using a certain behavior policy. With their supporting facilities, the proposed
DSLs allow application administrators (i.e., non-programmers) to visually design
and maintain operational policies in an intuitive manner. The proposed perfor-
mance estimators can predict whether an application satisfies desirable performance
requirements without running the application. This contributes to alleviate trial-and-
error burdens in tuning behavior policies and shorten the time to develop autonomic
applications.

References

1. Agrawal, D., Lee, K.W., Lobo, J.: Policy-based management of networked computing systems.
IEEE Communications Magazine 43(10), 69–75 (2005)

2. Bahati, R.M., Bauer, M.A., Vieira, E.M.: Policy-driven autonomic management of multi-
component systems. In: IBM International Conference on Computer Science and Software
Engineering, pp. 137–151. Ontario, Canada (2007)

3. Berek, C.: Somatic hypermutation and b-cell receptor selection as regulators of the immune
response. Transfusion Medicine and Hemotherapy 32(6), 333–338 (2005)

4. Bonacich, P.: Factoring and weighting approaches to status scores and clique identification.
Journal of Mathematical Sociology 2, 113–120 (1972)

5. Borgatti, S.P.: Centrality and network flow. Social Networks 27(1), 55–71 (2005)
6. Chase, J., Anderson, D., Thakar, P., Vahdat, A., Doyle, R.: Managing energy and server

resources in hosting centers. In: ACM Symposium on Operating Systems Principles, pp. 103–
116. Banff, Canada (2001)

7. Dubus, J., Merle, P.: Applying OMG D&C specification and ECA rules for autonomous dis-
tributed component-based systems. In: ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, Workshop on Models@Runtime, pp. 242–251. Genova,
Italy (2006)

8. Eclipse Foundation: Eclipse graphical modeling framework project.
http://www.eclipse.org/gmf/

9. Eclipse Foundation: Eclipse modeling framework project.
http://www.eclipse.org/emf/

10. Hucka, M., Finney, A., Bornstein, B., Keating, S., Shapiro, B., Matthews, J., Kovitz, B.,
Schilstra, M., Funahashi, A., Doyle, J., Kitano, H.: Evolving a lingua franca and associated
software infrastructure for computational systems biology: The systems biology markup lan-
guage (sbml) project. IEE Systems Biology 406, 41–53 (2004)

11. Jerne, N.K.: Idiotypic networks and other preconceived ideas. Immunological Review 79,
5–24 (1984)

12. Jouault, F., Bézivin, J.: KM3: A DSL for metamodel specification. In: IFIP International
Conference on Formal Methods for Open Object-Based Distributed Systems, pp. 171–185.
Bologna, Italy (2006)

13. Kasinger, H., Bauer, B.: Towards a model-driven software engineering methodology for
organic computing systems. In: IASTED International Conference on Computational Intelli-
gence, pp. 141–146. Alberta, Canada (2005)

14. Kephart, J.O.: Research challenges of autonomic computings. In: ACM/IEEE International
Conference on Software Engineering, pp. 15–22. St. Louis, MO, USA (2005)

15. Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic computing
policies. In: IEEE International Workshop on Policies for Distributed Systems and Networks,
pp. 3–12. Yorktown Heights, NY, USA (2004)

312 H. Wada et al.

16. Kolpakov, F.: Biouml – framework for visual modeling and simulation biological systems. In:
International Conference Bioinformatics of Genome Regulation and Structure. Novosibirsk,
Russia (2002)

17. Lee, C., Wada, H., Suzuki, J.: Towards a biologically-inspired architecture for self-regulatory
and evolvable network applications. In: Advances in Biologically Inspired Information Sys-
tems, pp. 21–45. Springer (2007)

18. Lupu, E.C., Sloman, M.: Conflicts in policy-based distributed systems management. IEEE
Transactions on Software Engineering 25(6), 852–869 (1999)

19. openArchitectureWare.org: openarchitectureware.
http://www.openarchitectureware.org/

20. Peña, J., Hinchey, M., Sterritt, R., Cortés, A., Resinas, M.: A model-driven architecture
approach for modeling, specifying and deploying policies in autonomous and autonomic sys-
tems. In: IEEE International Symposium on Dependable Autonomic and Secure Computing,
pp. 19–30. Indianapolis, IN, USA (2006)

21. Rohr, M., Boskovic, M., Giesecke, S., Hasselbring, W.: Model-driven development of self-
managing software systems. In: ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems, Workshop on Models@Runtime, pp. 115–116. Genova, Italy
(2006)

22. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling
pathways in protein interaction networks. Journal of Computational Biology 13(2), 133–
144 (2006)

23. Trencansky, I., Cervenka, R., Greenwood, D.: Applying a UML-based agent modeling lan-
guage to the autonomic computing domain. In: ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, onward! track, pp. 521–529.
Portland, OR, USA (2006)

24. Wada, H., Lee, C., Suzuki, J., Otani, T.: A model-driven development environment for
biologically-inspired autonomic network applications. In: IEEE International Workshop on
Modelling Autonomic Communications Environments, pp. 25–41 (2007)

25. White, J., Schmidt, D., Gokhale, A.: Simplifying autonomic enterprise java bean applications
via model-driven engineering and simulation. Journal of Software and System Modeling,
Springer 7(1), 3–23 (2008)

Network Reconfiguration in High-Performance
Interconnection Networks

R. Casado, A. Bermúdez, A. Robles-Gómez, O. Lysne, T. Skeie, Å.G. Solheim,
and T. Sødring

Abstract High-performance interconnection networks such as InfiniBand, ASI,
Autonet, and Myrinet have the property of link level flow control. As such, alterating
the routing function while the network is operational is a complex process, because
the danger of packet deadlocks must be addressed. Over the past 5–6 years this
problem has been addressed and solved by the research community.

This chapter collects several proposals for updating a routing function in inter-
connection networks after the occurrence of a topological change. Both traditional
and recent reconfiguration schemes are covered, and the selection includes both
technology-dependent and generic techniques.

1 Why Reconfiguring High-Performance Networks?

Modern high-performance networks that run real-time and bandwidth-intensive
applications necessitate a communication subsystem architecture that not only
ensures high levels of performance but must also sustain high robustness and avail-
ability. To support this, the network subsystem must be able to deal with both vol-
untary and involuntary changes in network state without experiencing significant
performance degradation, and in application space this implies that user applications
continue to run unimpeded and without termination.

The network must be able to adapt its state to ensure user requirements are met,
that is it must remain functional in the presence of an altering topological state.
The system may, for example, be required to sustain a hot-swap of components,
partition the network based on aggregation, disaggregation, or for isolation, support
the real-time activation and deactivation of nodes and switches as well as handling
the introduction, removal, and failure of links and switches.

Reconfiguration of the network can be done either statically or dynamically. If the
networking subsystem is implemented on a static basis, the detection of an anomaly
or change requires a network shut-down and restart to establish and calculate

R. Casado (B)
Universidad de Castilla-La Mancha, I3A Campus Universitario s/n, 02071 Albacete, Spain
e-mail: rcasado@dsi.uclm.es

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 13, C© Springer Science+Business Media, LLC 2009

313

314 R. Casado et al.

connectivity and routing. A check-pointing algorithm is typically employed in user-
space and an application rolls back to the last known correct state before operation
continues. As the size of networks increases, the use of static models becomes unde-
sirable due to the time required to re-initialize.

If a networking subsystem employs a dynamic model, the presence of an anomaly
or change is met without termination of the application. The network continues oper-
ation as before but with perhaps a slight decrease in performance. This is achieved
by either building intelligent logic into the switching components or by using a
dynamic network reconfiguration strategy.

Any reconfiguration in the network must ensure that the network does not enter a
state of deadlock—before, during, and after reconfiguration has taken place. Dead-
lock is an anomalous (permanent) state for a network to be in as either the whole
network or parts of it have packets that can not make further progression because
there are packets in front blocking them. Deadlocks are a by-product of the fact
that modern day interconnection networks are loss-less, that is packets are not dis-
carded during operation, even if the network is in saturation. Link-level flow control
schemes (e.g., credit-based or Xon/Xoff) are normally used to ensure that a packet is
not transmitted onto a (physical or virtual) channel unless there is sufficient buffer-
space available for it to be stored on the receiving side of the channel.1 The same
holds for when a packet traverses from one channel to another (e.g., over a switch),
there must be space available for the packet storage. This relation is commonly
referred to as a channel dependency: If a packet may use a channel c j immediately
after a channel ci there is a channel dependency from ci to c j.

Since no packet can advance until space is available in a receiving buffer, the
risk of deadlock is inherent. A deadlock is a situation where, for a set of packets
S, all the packets in S are waiting for another packet in S to progress before being
allowed to advance itself. This progression denial is indefinite and based on a cir-
cular hold-and-wait dependency relation between network resources. To alleviate
this situation, the networking subsystem would have to detect and resolve these
deadlocked dependencies.

If a high-performance network employed a routing strategy that required dead-
lock detection and deadlock eradication, then the networks availability, reliability
and performance would become unpredictable. Normally, the routing function of a
loss-less interconnection network is carefully designed in order to ensure deadlock-
freedom. Traditional graph theory is commonly used when analyzing the deadlock
issue. All channel dependencies of a network are mapped to a channel dependency
graph—a directed graph where each vertex represents a channel and each edge
represents a dependency from one channel to another channel. According to [5] a
deterministic routing function ensures deadlock-freedom if the channel dependency
graph is free from cycles.

After a topology change within a network, there is a high likelihood that the
routing function needs to be recalculated. Some topology changes can lead to major

1 We assume that switches use input and output buffering.

Network Reconfiguration in High-Performance Interconnection Networks 315

routing recalculation while others may cause minimal or no recalculation, for exam-
ple the loss of a leaf-node in an up*/down* [17] routed network.

A reconfiguration process exhibits four distinct phases; detection, routing cal-
culation, routing distribution, and new-routing activation. The detection phase is
handled by the hardware components within the network and can be in the form
of, e.g., interrupts or polling. Once a state change is detected, the networking sub-
system enters a routing calculation phase and determines the connectivity within
the network as well as the routing function. Next, during the distribution phase, the
networking subsystem distributes the routing information to the appropriate nodes
within the network (switches for distributed routing networks and endnodes2 for
source routing networks). Later we will see there are also proposals where endnodes
themselves calculate the routing function. In the final phase, known as activation, the
new routing function replaces the old one and is activated. Dynamic reconfiguration
strategies support activation of a new routing function while there are still packets
belonging to the old routing function in the network. It is well known that, even if
both the new and the old routing functions are deadlock-free, there is no guaran-
tee that the combination of two deadlock-free routing functions results in a global
deadlock-free routing function during the reconfiguration period. The concurrent
mixture of packets belonging to the old and new routing functions allows for contin-
ued operation with minimal disruption to applications but introduces the potential
of deadlock, which must be avoided. The potential for deadlock is a result of the
introduction of transient (temporary) dependencies between network resources and
falls away once there are no further packets belonging to the old routing strategy
within the network.

One of the most crucial properties of an interconnection network is its topology;
that is the structure of how the switches, links, and processing nodes are intercon-
nected. The topology may be either regular or irregular. Typically, massively parallel
and cluster computers are structured in a regular manner as the routing can then
be optimized (by dedicated routing algorithms), to obtain the highest performance
(when compared to topology agnostic routing algorithms). Examples of prominent
topologies are meshes, tori, and multistage interconnection networks. The well
known routing algorithm, dimension-order routing (DOR), has been around since
the 1970s and is comonly used for routing within meshes and tori. The algorithm is
easily implemented and its properties have been extensively studied. In a 2D mesh
network, DOR is implemented either by traversing the horizontal dimension first
followed by the vertical dimension (DOR-XY) or the vertical dimension first fol-
lowed by the horizontal (DOR-YX).

Another prominent routing strategy is the up*/down* routing methodology,
which is a deadlock-free routing algorithm that can be implemented on any topol-
ogy (both regular and irregular). It is based on the assignment of a direction to
each link within the network, configuring the topology as an acyclic directed graph
with a single root node. To avoid deadlock, legal routes never use a link in the up

2 An endnode is a compute node that generates, injects, receives, and processes data packets.

316 R. Casado et al.

direction after having used one in the down direction. System area networks (inside
a computer) may typically be structured irregularly and therefore require a generic
routing algorithm. Note also that regularly structured networks may become irregu-
lar as soon as network components (switches and links) fail. Since topology specific
routing algorithms have limited fault-tolerance capabilities, topology agnostic meth-
ods may also be deployed on regular topologies together with a dynamic network
reconfiguration strategy to provide resilience.

In recent years we have seen the development of a class of topology agnostic
routing strategies that use virtual channels to avoid deadlock and that exhibit perfor-
mance that is almost as good as the topology specific algorithms. LASH (LAyered
SHortest path routing) [13] is an example of such a methodology where the shortest
path between nodes are divided into virtual layers such that each layer is deadlock
free, resulting in a global deadlock-free routing function. LASH guarantees shortest
path routing requiring only a modest number of virtual channels.

The rest of the chapter is structured as follows. Section 2 revises the static recon-
figuration approaches implemented by several high-performance interconnection
technologies. Section 3 provides a theoretical framework for dynamic reconfigura-
tion. In Sects. 4–6, several generic dynamic reconfiguration techniques are detailed.
Finally, in Sect. 7 we summarize the properties of the different reconfiguration
techniques.

2 Static Reconfiguration Approaches

In this section, we present some high-performance interconnection networks that
can handle topological changes. In recent years, some mechanisms based on static
reconfiguration have been proposed for these kind of technologies.

2.1 Autonet

Autonet [17] used a distributed up*/down* routing scheme, and its reconfiguration
mechanism statically updated the forwarding tables in each switch. When one or
more nodes detected a change, a process consisting of three phases was initiated.

1. The first phase consists of the construction of a minimum depth spanning tree
(MDST) for the network. Each node detecting the topology change generates a
new tree and notifies its neighbors, who decide either to join that tree or begin the
construction of a new one (if they have a lower identifier). The node executes the
algorithm shown in the Fig. 1. At the end, the minimum spanning tree spreading
from the node with the lowest identifier remains in the network. Figure 2 shows
an example of the computation of a spanning tree. When a node determines that
it is a leaf (i.e., none of its neighbors is connected to the tree through this node), it
concludes that the process has terminated, and notifies its parent of its topology
information. Each node in the tree waits for topology information from all its

Network Reconfiguration in High-Performance Interconnection Networks 317

Fig. 1 Algorithm executed
for the construction of a
network spanning tree.
During the process, nodes
may migrate between several
trees, as well as change their
position in the tree

22 29

24 25

23

27

Fig. 2 (left) Network topology including six switches and four hosts. Switch ports are numbered
from 1 to 9 in clockwise direction, starting from the left bottom port. Each switch contains a unique
identifier (UID), the spanning tree root UID (UIDR) and level (prof), the tree parent UID (UIDF),
and the port connecting to it (port). (right) Graphical representation of the resulting spanning tree

318 R. Casado et al.

Fig. 3 Algorithm executed
for the construction of a
propagation-order spanning
tree (POST)

children before recursively communicating it to its parent. The first time a switch
receives a control packet indicating reconfiguration, it resets its forwarding tables
and starts discarding application traffic.

2. The second phase of the process consists of the distribution of the entire network
topology from the root node to all the switches throughout the spanning tree.

3. Finally, in the third and final phase, each switch computes and loads its own
forwarding table, based on the information received, and starts accepting appli-
cation traffic.

It is possible that a new reconfiguration process starts before the previous one has
finished. To manage simultaneous reconfigurations, Autonet incorporates an epoch
mechanism based on assigning a unique value to each reconfiguration. In this way,
switches abandon obsolete reconfiguration processes and only join a new process.

Rodeheffer and Schroeder [16] replaced the MDST by a propagation-order span-
ning tree (POST). As a consequence, nodes do not change between parents in the
same tree in order to reduce the depth of the tree, as shown in Fig. 1. Moreover,
the final root is the node with the lowest identifier that detects the change. This
algorithm, shown in Fig. 3, converges faster than the previous one, reducing the
time the network is not operational.

2.2 Myrinet

Myrinet [3] is a high-performance interconnection network based on source rout-
ing. The initial reconfiguration approach applied to this technology was a deadlock
recovery scheme. When a packet is not completely received before a certain timeout
expires, the packet is discarded.

In a second version, Myricom decided to incorporate a static reconfiguration
approach similar to the one implemented by the Autonet network. The process is
centralized in an entity—the mapper—executed in the interface of a host. The map-
per is in charge of detecting the occurrence of a topological change. In particular, it
periodically starts an exploration process in order to obtain a map of the topology.
This process sends exploration packets that start at the mapper, reach a certain net-
work node, and return to the mapper using the same path in the opposite direction.

Network Reconfiguration in High-Performance Interconnection Networks 319

Each time the mapper discovers a new switch, it sends an exploration packet through
each port of that switch, assuming that there is a device at the other side of the port.
If a packet returns to the mapper, this means that this assumption was right. Once the
mapper has collected the complete map, it is distributed to each host in the network.
From this information, each host computes its own set of routes.

2.3 InfiniBand

The first proposals to statically reconfigure InfiniBand networks were similar to
those described in the previous sections for Autonet and Myrinet networks [2]. In
short, all network ports are (logically) deactivated, that is, they do not accept appli-
cation packets. Then, forwarding tables can be sent to network switches. Finally, the
network ports are reactivated and application traffic is again accepted.

In [1] two alternative pseudo-static proposals based on up*/down* routing are
described. The key idea is to relax the traditional static reconfiguration restrictions,
either by reducing the amount of network ports that are deactivated, or by only
preventing certain port transitions while the routing function is being updated.

The first proposal modifies the first step of the traditional static reconfiguration
process such that only the ports of the switches that act as break nodes3 in the new
up*/down* directed graph are deactivated. Moreover, it is not necessary to deac-
tivate all ports in those nodes. Instead, it is enough to select those ports that are
sources of up links, and deactivate all except one of them. This ensures that the
forbidden transitions in the new configuration will not be used by any packet using
the old routing function. Figure 4 shows an example.

This simple mechanism reduces the negative effects of a “pure” static reconfig-
uration process. However, there are still many paths that could be used during the
distribution of tables, without introducing potential deadlock situations. The process
can be improved upon by preventing the use of a few input port–output port com-
binations, in particular those corresponding to the forbidden transitions at the new
break nodes. This proposal does not require deactivation of network ports. For the
example, in Fig. 4, it is only necessary to prevent the forbidden transitions at nodes
6 and 10 while the new forwarding tables are being distributed.

Figure 5 shows the effects of the static and pseudo-static reconfiguration tech-
niques on application traffic, for an irregular subnet comprised of 24 switches and
22 hosts and a change consisting of the addition of a switch. The plots show how
the optimized techniques improve network throughput during the reconfiguration
process. Static reconfiguration has a detrimental effect on instantaneous throughput.
It is clear that the pseudo-static techniques improve considerably on this behavior.
In fact, when the technique based on the deactivation of break node dependencies is
used, the gap representing reduced performance that was visible in the bottom plot
completely disappears.

3 A break node is a switch that has several outgoing upward links.

320 R. Casado et al.

Fig. 4 Pseudo-static reconfiguration based on port deactivation. Assume the previous break node
in the cycle on the left was the node labeled as 2. That means that the direction assigned to the
link connecting nodes 6 and 2 in the previous configuration was the opposite of the currently
assigned direction. In this situation, the reconfiguration process needs only deactivate one of the
ports in node 6 that are the sources of up links (connecting either node 2 or 3). Similarly, it is only
necessary to deactivate one of the ports of node 10 that are sources of up links (connecting either
node 5 or 6)

Fig. 5 Instantaneous
aggregated received
management packets (SMPs),
discarded packets, and traffic
received versus simulation
time for an irregular network
comprising 24 switches and
22 hosts. A reconfiguration
starts at time 60.85

8000

8500

9000

9500
Received SMPs

Static distribution
Break node ports
Break node deps

0

5

10
× 104 Discarded Packets

60.75 60.8 60.85 60.9 60.95 61
0

5

10

15
× 105 Traffic Received (packets/sec)

Simulation Time (sec)

3 Dynamic Reconfiguration Principles

In Sect. 1, we stated that in interconnection networks with link level flow control,
care must be taken so that the network does not enter a deadlocked state. We also
discussed some theoretical aspects that form the basis of how a routing function
can guarantee freedom from deadlock for a network. As such it is tempting to
assume that deadlock-free dynamic network reconfiguration can be achieved by
simply guaranteeing that the new routing function has a cycle-free (escape) channel
dependency graph at all points in time. Unfortunately this is insufficient.

A previously active routing function continues to exercise its presence if there
exist some packets within the network that occupy channels (routed according to

Network Reconfiguration in High-Performance Interconnection Networks 321

the old routing function) that they would not occupy if they were routed according
to the current (new) routing function. This leads to two problems, the first of which is
called ghost dependencies. These are dependencies that do not stem from the current
routing function, but are there as the effect of a previous routing function having
placed packets in places that they would otherwise not be. The second problem is
that of unroutable packets, i.e., packets that cannot be routed because they are placed
in positions (buffers and channels) where the new routing function does not expect
them to be.

Any mechanism for dynamic reconfiguration has to tackle both ghost dependen-
cies and unroutable packets. This is usually done through synchronization points,
that allow some packets to drain from certain channel queues before routing options
that may cause these effects are removed/introduced.

A theory for reasoning about deadlock freedom for dynamic reconfiguration was
developed in [8]. Unlike previous theories (e.g., [5–7, 9]), this theory encompasses
deadlock freedom for networks which undergo reconfiguration. The theory is based
on describing network states, i.e., the placement of packets within the network,
as sets of CND-tuples.4 Each tuple describes the occupancy of a network channel
and possible dependencies to other channels for a packet destined to a particular
endnode. For a routing function R, R(c, d) is the set of channels that a packet header
residing in channel c can take for a destination given by d. With this, CND-tuple
〈c, c′, d〉 signifies that channel c is occupied by part of a packet destined to endnode
d whose header was routed to channel c′. A CND-tuple 〈c, c′, d〉 is legal for R only
if c′ ∈ R(c, d). Alternatively, CND-tuple 〈c, c, d〉 signifies that channel c is occupied
by part of a packet destined to endnode d whose header has not yet been forwarded
further to another channel.

According to [8], the runtime state during reconfiguration is represented as a
CND-relation, which is a set of CND-tuples. The set of all possible runtime states
at a given stage of a reconfiguration process is represented by a superset of CND-
tuples. That set is legal if it is the union of all the CND-relations that represent all
legal runtime states at a given point in the reconfiguration process. If 	 is a set of
legal CND-tuples that represents a set of legal runtime states, any given one of these
runtime states is represented by a CND-relation formed from a consistent subset
of 	.

Let us now redefine some of the concepts that were used to study deadlocks
for static routing functions. The first concept that we study is that of a channel
dependency. When the routing function is undergoing changes, we can no longer
deduce deadlock from the routing function alone, because another routing function
that was previously active may have placed packets into various positions within
the network that cannot be deduced from the current routing function. The channel
dependency concept must therefore also take into account a configuration of existing

4 As described in [8], CND is short for Current channel, Next channel, and Destination. Several
CND-tuples are needed to represent a blocked wormhole packet that spans multiple channels,
whereas a single tuple is needed to represent a blocked virtual cut-through packet given that chan-
nels are able to store entire packets.

322 R. Casado et al.

packets within the network, as specified by a CND-relation, as well as the current
routing function R.

Intuitively, we need to define that there is a dependency from channel c to channel
c′′ if the previous routing functions may have left the network in a state where the
header of the packet that currently occupies c may use c′′ as its next buffer according
to the current routing function. This will maintain the connection between deadlocks
and cycles in the graph of channel dependencies, because we have only generalized
the concept of dependencies according to a more complex picture of where packets
may reside. In the following we let Header(c) denote the channel that holds the
header of the packet that occupies channel c, and we let P denote the set of possible
destinations for packets.

Definition 1 For any current routing function R and set of CND-tuples 	, there
is a channel dependency from channel c to channel c′′ if there exists a channel
c′ and a node d ∈ P such that c′ = Header(c) in some consistent subset θ of
	 and c′′ ∈ R(c′, d). By DEP(R,) we denote the set of channel dependencies
corresponding to routing function R and a set of CND tuples 	.

We now turn our focus to the concept of completeness of subsets of channel
dependencies. This concept will later be used to define properties of escape chan-
nel sets. For static routing functions this concept captures the ability of the escape
channels to move all packets toward their destinations. Again we will have to adjust
this notion to cater for a situation where packets may reside in places where the
prevailing routing function would not have put them. We now need to define that a
subset of channel dependencies is complete if all packets in any possible configura-
tion of packets in the network has at least one routing choice that is reflected into
one dependency in the set. This maintains the property that all packets can reach its
destination by using channels in the order defined by dependencies in a complete
subset.

Definition 2 For any routing function R and set of CND-tuples 	, a subset of chan-
nel dependencies � ⊆ DEP(R,) is complete if ∀c, c′ ∈ C and ∀d ∈ P for which
c′ = Header(c) for some consistent subset θ of 	 and < c′, c′, d >∈ 	, there exists
c′′ ∈ R(c′, d) such that < c, c′′ >∈ �.

At this point, the notion of escape channel dependency sets is easy to define:

Definition 3 For any routing function R and set of CND-tuples 	, a subset of chan-
nel dependencies � ⊆ DEP(R,) is an escape channel dependency set if � is
complete and is an acyclic relation on C.

Now we are ready to state the main theorem of this section. For the complete
proof, we refer to [8].

Theorem 1 For any reconfiguration process RP consisting of k steps, let Rk be the
target routing function of RP and let a set of legal CND-tuples 	 f inal represent
the class of legal configurations when RP finishes. The network is deadlock-free
after reconfiguration finishes if there is an escape channel dependency set � ⊆
DEP(Rk, 	 f inal).

Network Reconfiguration in High-Performance Interconnection Networks 323

Note that this theorem takes only the final state of the reconfiguration process
into consideration. Its main statement is that if the network is deadlock free at the
end of the reconfiguration process, then the entire reconfiguration process can be
considered deadlock free. Any transient deadlocks during reconfiguration will have
been resolved, and any unroutable packet will again be routable. It is, however,
important to note that this formulation of the theorem assumes that the final stage of
reconfiguration is actually reachable. This assumption is not trivial, since it requires,
e.g., that control messages are not trapped in transient deadlocks. If the control
messages are transmitted out of band, this will be easy to guarantee. If they are
transmitted in-band, we will need to guarantee that the reconfiguration process is
also free from transient deadlocks. For a further study of this topic, we refer to [8].

The way this complexity is handled in the reconfiguration processes we describe
below is basically that the class of legal packet configurations is controlled by syn-
chronization steps, limiting the set of ghost dependencies and unroutable packets in
the network to a controlled and tractable set. This is most obvious in static reconfig-
uration, where all packets are drained from the network before the routing algorithm
is changed. Clearly this will remove all ghost dependencies, thus static reconfigura-
tion will be deadlock free when reconfiguration is finished and packet injection is
resumed. The careful reader will in all reconfiguration methods we describe below
find similar synchronization steps where the process is halted awaiting special ghost
dependencies to disappear.

4 Reconfiguration Based on Evolving Graphs

For a given network topology, up*/down* routing is based on a link direction assign-
ment that represents a correct graph, that is an acyclic directed graph with only
one root node. When some switches are added to or removed from the network,
the topology changes, and the up*/down* graph may become incorrect (due to the
existence of either several root nodes or routing cycles). Some reconfiguration pro-
posals are based on evolving such an incorrect graph into a correct one. A seminal
technique based on this idea was Partial Progressive Reconfiguration (PPR) [4].
Recently, a more computationally efficient approach was presented [15]. We discuss
both approaches in the following.

4.1 Partial Progressive Reconfiguration

PPR was proposed for distributed routing networks that are able to asynchronously
update the routing tables without stopping application traffic. When a new switch
is added, a direction must be assigned to the links connecting to it. This assign-
ment should not produce cycles in the directed graph. A simple approach consists
of assigning a direction to those links in such a way that the down direction goes
toward the new switch. By doing so, messages will be able to use the new links

324 R. Casado et al.

a

b

h

f

e

d

c

g

i

j

n o

l

k

m

p

q

r

s t

u

Fig. 6 Incorrect graph decomposed into correct regions

to route to/from the new switch, but not to cross it. If the new switch is connected
to the network through two or more links, it will become a break node (or a false
break node). On the other hand, switch deactivations cannot produce cycles in the
directed graph, but they may produce the appearance of several root nodes, as shown
in Fig. 6.

When a directed graph contains several root nodes, it is not possible to route
messages between them. In this case, it is possible to split the directed graph into
several correct subgraphs, called correct regions. In fact, the network has as many
correct regions as root nodes (one root node in each correct region). Figure 6 shows
the correct regions inside the incorrect graph.

Certain switches, called frontier nodes, have all their upward links crossing the
limits of any region containing them. Between every pair of overlapping regions,
the reconfiguration algorithm selects one frontier node as router node. In the graph
in Fig. 6 nodes q and s are router nodes.

All root and router nodes execute a distributed protocol to generate a spanning
tree. As a result, only one root node remains in the tree. The others should change
their link directions to the respective router nodes connecting the primary root
node. Only the orientation of the links connected to the root or break nodes can be
changed, otherwise, some nodes may be unreachable. Taking this into account, each
secondary root node begins its movement, exchanging its position with a neighbor-
ing node; the current node exchanges its position with the following one, and so on.

A moving root node cannot move over a break node because a cycle arises. With
this restriction, it may happen that there is no valid path between the secondary root
node and the router node that must be reached. In Fig. 6, node a must reach node q
but break nodes c, g, and h prevent it. The solution consists of previously moving
the node h, keeping it away from the path followed by the secondary root node.
Figure 7 shows the situation of Fig. 6 after all the movements have been performed.

The movement of a break node toward its neighbor may cause deadlocks if it is
done in an uncontrolled way. To solve this, PPR assures the complete deactivation of
old channel dependencies by redirecting traffic over the other part of the cycle (being

Network Reconfiguration in High-Performance Interconnection Networks 325

a

h

i

q

r

s

Fig. 7 Correcting the real graph

split into multiple paths in case of multiples cycles). After that, new dependencies
are activated redirecting part of the traffic through them again.

Next, we compare the performance of PPR with POST. In Fig. 8 we can see that
the average packet latency is approximately 3,000 cycles in the absence of reconfig-
uration. For a simulation time equal to 510 × 106 cycles, a reconfiguration process is
triggered. A POST reconfiguration produces a time interval of half a million cycles
in which packets are not transmitted through the network. The absence of packets
is a result of prohibiting application traffic during the reconfiguration. Moreover,
more than 3,000 application packets are discarded. On the other hand, a PPR tech-
nique does not affect application traffic. The network does not stop its activity, and
packet latency does not increase during the reconfiguration. Only a few packets are
discarded by the PPR process.

0

500

1000

1500

2000

2500

3000

D
is

ca
rd

ed
 p

ac
ke

ts

0
509 510 511 512 513 514

1000

2000

3000

4000

5000

6000

7000

In
st

an
ta

ne
ou

s
la

te
nc

y
(c

yc
le

s)

Simulation time (cycles × 106)

0

1000

2000

3000

4000

5000

6000

7000

In
st

an
ta

ne
ou

s
la

te
nc

y
(c

yc
le

s)

1000

1500

2000

2500

3000

D
is

ca
rd

ed
 p

ac
ke

ts

0

500

509 510 511 512 513 514
Simulation time (cycles × 106)

Fig. 8 Instantaneous latency and aggregated discarded packets versus simulation time for an
irregular network composed of 48 switches, using (left) POST and (right) PPR

326 R. Casado et al.

4.2 Close Graph-Based Reconfiguration

In [15] a recent approach, Close Graph-based Reconfiguration (CGR), was pre-
sented. It is applicable to distributed as well as source routing networks. As opposed
to PPR, the graph-evolving process is performed in a centralized fashion. Addi-
tionally, certain restrictions are imposed on the construction of the new up*/down*
graph. In particular, a break node in the old graph remains a break node in the new
graph or the role of break node is transferred to a node at most one hop away. We
say that the new graph is close to the old one.

The restrictions above ensure that new packets cannot perform transitions that
are prohibited by the old routing function, and that old packets cannot perform
transitions that are prohibited by the new routing function. The new routing func-
tion is deadlock free and ensures network connectivity. Moreover, packets routed
according to the old and the new routing functions can unrestrictedly coexist in the
network, without the risk of forming deadlocks [15]. This allows for an updating of
the routing function in a completely dynamic way.

Figure 9 illustrates the instantaneous behavior of the CGR scheme (comparing
it with POST). For both schemes, we have scheduled a removal of a switch in a
6 × 6 mesh at time 2.0 s. For all plots, the x-axis represents the simulation time.
Simulation results show that the CGR technique significantly reduces the amount of
packets that are discarded during the topology-change assimilation. From the point
of view of upper-level applications, the new reconfiguration strategy virtually elimi-
nates the problem of reduced network service availability. In addition, the proposed
strategy does not require additional fabric resources such as virtual channels, and it
could easily be implemented in current commercial systems.

0

1000

2000

3000
Discarded packets

POST
CGR

0

5

10

15
× 104 Traffic Sent (packets/sec)

2 2.01 2.02 2.03 2.04 2.05 2.06
0

5

10

15
× 104 Traffic Received (packets/sec)

Simulation Time (sec)

Fig. 9 Instantaneous aggregated discarded packets and throughput versus simulation time for a
6 × 6 mesh. A reconfiguration starts at time 2.32

Network Reconfiguration in High-Performance Interconnection Networks 327

5 Double Scheme

Double Scheme [14] is a dynamic reconfiguration scheme that enables a transition
between any pair of deadlock-free routing functions. It was designed for networks
supporting virtual channels and adaptive routing with escape channels [10]. In [18]
a method for applying Double Scheme over InfiniBand networks is proposed and
evaluated.

In adaptive routing scenarios, packets normally use adaptive routing over one or
more virtual channels. However, adaptive routing is not deadlock free. So, in order to
avoid potential deadlocks, the network must support an additional escape channel,
which must be used by a packet when there are no adaptive channels available at
an intermediate switch. Packets in the escape channel are routed to a destination
according to any deadlock-free routing function, as for example up*/down*.

The key idea behind Double Scheme is to spatially separate packets routed
according to the routing function in use before reconfiguration (Rold) from packets
routed according to new routing function (Rnew) by doubling the escape channel
resources during reconfiguration. One set of resources is used exclusively by Rold

and the other by Rnew. In this way, packets in each set are routed under the influence
of one and only one routing function—either Rold or Rnew, but never both. By allow-
ing dependencies to exist from one set of resources to the other, but not both ways,
at any given time, a guarantee of deadlock freedom during and after reconfiguration
can be proved [14].

There are two main steps in the Double Scheme. First, one of the adaptive chan-
nels is drained and configured as the new escape resource. Afterward, the old escape
resource is used as a new adaptive resource. In greater detail, let us assume that Rold

allows packets to be injected into a connected set of routing resources (designated
as Cold). Once Rnew is computed, a connected set of routing resources (designated
as Cnew) is required for use by newly injected packets routed under the influence of
Rnew. Such resources could be made available by allowing packets in a subset of the
Cold set of resources to be delivered to their destinations while stopping the injection
of new packets into that subset, which essentially drains those resources. As packets
are no longer injected into any of the Cold resources after the Cnew resources are
taken into use, the Cold resources eventually become free and can be incorporated
into the set of Cnew resources once completely empty.

6 Overlapping Reconfiguration

Overlapping Reconfiguration [11, 12] accepts application traffic into the network
during the transition from one deadlock-free routing function (Rold) to another
(Rnew), and uses a special packet called a token to ensure that the transition does
not cause deadlock.

The packets routed according to Rold and Rnew are denoted old packets and new
packets, respectively. The main idea behind Overlapping Reconfiguration is to avoid

328 R. Casado et al.

deadlocks during the transition from Rold to Rnew by using the token to separate old
packets from new packets on each (physical or virtual) channel, such that each chan-
nel first transmits old packets, then the token, and finally new packets. If this invari-
ant is maintained, no new packets can block old packets and vice versa, and, as Rold

and Rnew are both deadlock free, deadlocks cannot form. Thus, unlike, e.g., Double
Scheme, Overlapping Reconfiguration does not need virtual channels for deadlock
avoidance.

In order to govern token and data packet forwarding, additional logic and state
information are required in the switches, and each switch must know the dependen-
cies from its input channels to its output channels. Overlapping Reconfiguration
originally targeted only distributed routing systems, but an adaptation to source
routing systems was recently proposed. Each packet must be routed from source to
destination according to only one of the routing functions, and a distributed routing
switch or a source routing endnode must hold routing tables for both Rold and Rnew

while the transition is accomplished. Thus, during the reconfiguration, a system’s
required amount of routing information doubles. Any routing algorithm (or pair of
routing algorithms) can be used with Overlapping Reconfiguration.

The core of the Overlapping Reconfiguration algorithm is the requirement that
each channel first transmits old packets, then the token, and finally new packets. In
the following it is assumed that only one reconfiguration process is ongoing at a
time, and that packets heading for a faulty channel are removed from the network.
The algorithm consists of three main parts that state the responsibilities of the injec-
tion channel of an endnode, the input channel of a switch, and the output channel of
a switch.

Endnode Injection Channel: Each injection channel of each endnode transmits a
token to indicate that subsequent packets must be routed according to Rnew.

Switch Input Channel: An input channel routes packets according to Rold until the
token is processed (having reached the head of the input queue), and thereafter
routes packets according to Rnew. An input channel that has processed the token
forwards packets solely to output channels that have already transmitted the
token. Packets bound for output channels that have not yet transmitted the token
are temporarily held back.

Switch Output Channel: An output channel, co, does not transmit the token until all
input channels, ci, for which channel dependencies exist according to Rold from
ci to co, have processed the token. If no such dependency exists for an output
channel, it should transmit the token when the first token has been processed by
any of the input channels.

During the transition from one routing function to another packets may expe-
rience increased delay due to the token forwarding regime. Tokens flow through
the network in accordance with the channel dependency graph of Rold. Assume that
a switch has channel dependencies from input channels ci0, ci1, and ci2 to output
channel co2, that ci0 and ci2 have not yet processed the token, and that a new packet
bound for co2 arrives on ci1 (which has processed the token). The new packet cannot

Network Reconfiguration in High-Performance Interconnection Networks 329

be forwarded to co2 until co2 has transmitted the token, which depends on prior token
processing by both ci0 and ci2. Thus, the packet must temporarily be held back and
experiences additional delay.

For an 8 × 8 mesh, 16 × 16 mesh, and 16 × 16 torus, Fig. 10 shows simulation
results for a scenario where the reconfiguration is merely due to a change of routing
function, there are no changes in topology. The reconfiguration is initiated after
8,500 cycles. The up*/down* routing algorithm is used to calculate both Rold and
Rnew. The root node is in the upper left corner of the topology for Rold and in the
upper right corner for Rnew (when ignoring the wraparound links of the torus). Two
traffic load levels are in focus, corresponding to 60% (low load) and 90% (high load)
of network saturation.

The reconfiguration period starts when the first token is injected by an endnode
(in this case all endnodes inject their tokens simultaneously) and ends when the
last token is received by an endnode. In Fig. 10(a) and (f), the start and end of the
reconfiguration period are indicated by vertical lines. When the traffic load increases
from low to high, the reconfiguration period is prolonged by almost 15% for the
16 × 16 mesh and 16 × 16 torus and by almost 5% for the 8 × 8 mesh.

The Latencytime metric results from the division of the data collection period into
200 time intervals, each with a duration of 100 cycles (a cutout covering the recon-
figuration period is presented). For a time interval int, Latencytime is the average
latency of all packets that are generated by any endnode in int and that subsequently
reach their destination endnode. The latency for a single packet is the time that
elapses from when the packet is generated and injected into the transmission queue
of the source endnode until the packet is received by the destination endnode.

Figure 10(a) and (d) shows Latencytime for an 8 × 8 mesh under a hotspot traffic
pattern for low and high traffic load, respectively. For the hotspot traffic pattern

0

10

20

30

40

50

60

8200 8400 8600 8800 9000 9200

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

(a) Low load (b) Low load (c) Low load

(d) High load (e) High load (f) High load

Rec. start
Rec. end

OR

0

10

20

30

40

50

60

8200 8400 8600 8800 9000 9200

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

Rec. start
Rec. end

OR

0

10

20

30

40

50

60

8200 8400 8600 8800 9000 9200

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

Rec. start
Rec. end

OR

0

10

20

30

40

50

60

8200 8400 8600 8800 9000 9200

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

Rec. start
Rec. end

OR

0

10

20

30

40

50

60

8200 8400 8600 8800 9000 9200

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

Rec. start
Rec. end

OR

0

10

20

30

40

50

60

8200 8400 8600 8800 9000 9200

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

Rec. start
Rec. end

OR

Fig. 10 Latencytime for Overlapping Reconfiguration (OR) for an 8 × 8 mesh under hotspot traffic
(a, d), 16 × 16 mesh under uniform traffic (b, e), and 16 × 16 torus under uniform traffic (c, f)

330 R. Casado et al.

80% of the traffic is destined for a node in the middle of the mesh whereas the
remaining 20% has a uniform destination address distribution. For a purely uniform
destination address distribution, corresponding results are shown for a 16×16 mesh
in Fig. 10(b) and (e) and for a 16 × 16 torus in Fig. 10(c) and (f). All the plots show
crests in the Latencytime curve due to the reconfiguration during which a number of
packets are temporarily held back in the switches while awaiting token forwarding.
As the traffic load increases, both the height and width of these crests increase for
the 8 × 8 and 16 × 16 meshes. For the 16 × 16 torus this is not the case, however.

The ratios of the peaks of the Latencytime curves to the latency values before
reconfiguration starts are 1.5 and 1.8 (8 × 8 mesh), 2.1 and 2.5 (16 × 16 mesh),
and 1.2 and 1.2 (16 × 16 torus) for low and high traffic load, respectively. The
up*/down* graphs for the 16 × 16 torus and the 16 × 16 mesh are different.
When based on a spanning tree identified by a breadth-first search as in [17], the
up*/down* graph becomes shallower and wider for the torus than for the mesh. The
simulation results indicate that, for the routing functions under study, the packet
latency is more affected by the reconfiguration for the mesh than for the torus.

Overlapping Reconfiguration has been categorized both as a dynamic recon-
figuration scheme [12] and as a static reconfiguration scheme with overlapping
phases [11]. Application traffic is accepted into the network while the routing
function is being updated, in this respect Overlapping Reconfiguration resembles
a dynamic reconfiguration strategy. On the other hand, the use of tokens to separate
the packets belonging to Rold and Rnew on each channel suggests that Overlapping
Reconfiguration could be categorized as a static reconfiguration scheme with over-
lapping phases. Overlapping Reconfiguration does not exhibit the detrimental effect
on the network service that is typical of traditional static reconfiguration schemes.
However, as with any generic reconfiguration scheme, some increase in packet
latency must be expected.

7 Summary

This chapter has discussed the problem of updating a routing function after a topo-
logical change in high-performance interconnection networks. Traditional mecha-
nisms use static reconfiguration in order to solve this problem; although, when this
kind of reconfiguration is considered, large amounts of data packets are discarded
due to the utilization of the obsolete routing function, but is primarily due to the
deactivation of network ports. For this reason, these solutions have potentialy several
negative effects on network service availability.

With the aim of reducing or eliminating these potential negative effects, some
proposals were developed in order to update the routing function dynamically.
The most relevant dynamic reconfiguration mechanisms available in the literature
have been described. When compared to the traditional solutions, these techniques
significantly reduce the change assimilation time and the negative impact on the
application performance.

Network Reconfiguration in High-Performance Interconnection Networks 331

Some of the dynamic reconfiguration techniques are tailored for use with the
up*/down* routing algorithm. PPR is an efficient reconfiguration mechanism
designed for distributed environments. Additionally, CGR is a recent technique
based on the same principles as PPR. It obtains a new routing function which
ensures that the packets routed according to the old and the new routing functions
can unrestrictedly coexist in the network, without the risk of deadlocks forming.
CGR could easily be implemented in current commercial systems using either
source or distributed routing schemes.

Two dynamic reconfiguration schemes that can be used with any routing algo-
rithm (or pair of routing algorithms) are Overlapping Reconfiguration and Double
Scheme. Overlapping Reconfiguration uses a special packet to separate the data
packets routed according to the old and the new routing fuctions on each physical or
virtual channel. It was originally proposed for networks based on distributed routing
and, recently, adapted for source routing environments. Also, for source routing
systems, an optimization to the original algorithm was proposed that enables imme-
diate forwarding of new packets that have valid routes according to the old routing
function, regardless of the token forwarding status of a switch.

The previous mechanisms do not require additional network resources such as
virtual channels. In contrast, Double Scheme uses virtual channels when reconfig-
uring the network in a deadlock-free manner. This scheme uses one set of virtual
channel resources for the remaining packets that are routed according to the old
routing function, and another set of virtual channel resources for the packets routed
according to the new routing function. Double Scheme is not applicable in networks
that have limited virtual channel resources.

To sum up, dynamic reconfiguration techniques significantly reduce, and in some
cases avoid, the negative impacts that are observed when static reconfiguration is
applied. When selecting a reconfiguration scheme, issues that should be considered
include network topology, available resources within the network, the particular
routing algorithm used, and the requirements of the application traffic in terms of
latency and throughput.

Acknowledgments This work has been jointly supported by the Spanish MEC and Euro-
pean Comission FEDER funds under grants “Consolider Ingenio-2010 CSD2006-00046” and
“TIN2006-15516-C04-02”; by JCCM under grant “PBC05-007-1.” It has also been supported by
a FPI grant under the Spanish MEC “TIC2003-08154-C06-02.”

References

1. Bermúdez, A., Casado, R., Quiles, F.J.: Distributing InfiniBand forwarding tables. In: Euro-
Par 2004 Conference, pp. 864–872. Pisa, Italy (2004)

2. Bermúdez, A., Casado, R., Quiles, F.J., Pinkston, T.M.: Evaluation of a subnet management
mechanism for InfiniBand networks. In: 2003 International Conference on Parallel Processing
(ICPP’03), pp. 117–124. IEEE Society Press (2003)

3. Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.N., Su, W.:
Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro 15(1) (1995)

332 R. Casado et al.

4. Casado, R., Bermúdez, A., Duato, J., Quiles, F.J., Sánchez, J.L.: A protocol for deadlock-free
dynamic reconfiguration in high-speed local area networks. IEEE Transactions on Parallel and
Distributed Systems (TPDS) 12(2), 115–132 (2001)

5. Dally, W.J., Seitz, C.L.: Deadlock-free message routing in multiprocessor interconnection net-
works. IEEE Transactions on Computers C-36(5), 547–553 (1987)

6. Duato, J.: A necessary and sufficient condition for deadlock-free adaptive routing in wormhole
networks. IEEE Transactions on Parallel and Distributed Systems (TPDS) 6(10), 1055–1067
(1995)

7. Duato, J.: A necessary and sufficient condition for deadlock-free routing in cut-through and
store-and-forward networks. IEEE Transactions on Parallel and Distributed Systems (TPDS)
7(8), 841–854 (1996)

8. Duato, J., Lysne, O., Pang, R., Pinkston, T.M.: Part I: A theory for deadlock-free dynamic
network reconfiguration. IEEE Transactions on Parallel Distributed Systems (TPDS) 16(5),
412–427 (2005)

9. Duato, J., Pinkston, T.M.: A general theory for deadlock-free adaptive routing using a mixed
set of resources. IEEE Transactions on Parallel and Distributed Systems (TPDS) 12(12),
1219–1235 (2001)

10. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks: An Engineering Approach.
Morgan Kaufmann Publishers (2002)

11. Lysne, O., Montañana, J.M., Flich, J., Duato, J., Pinkston, T.M., Skeie, T.: An efficient and
deadlock-free network reconfiguration protocol. IEEE Transactions on Computers 57(6), 762–
779 (2008)

12. Lysne, O., Montañana, J.M., Pinkston, T.M., Duato, J., Skeie, T., Flich, J.: Simple deadlock-
free dynamic network reconfiguration. In: 11th International Conference on High Performance
Computing (HiPC 2004), pp. 504–515 (2004)

13. Lysne, O., Skeie, T., Reinemo, S.A., Theiss, I.: Layered routing in irregular networks. IEEE
Transactions on Parallel and Distributed Systems 17(1), 51–65 (2006)

14. Pang, R., Pinkston, T.M., Duato, J.: The double scheme: Deadlock-free dynamic reconfigura-
tion of cut-through networks. In: Proceedings of the 2000 International Conference on Parallel
Processing (ICPP’00), pp. 439–448 (2000)

15. Robles-Gómez, A., Bermúdez, A., Casado, R., Solheim, Å.G.: Deadlock-free dynamic net-
work reconfiguration based on close up*/down* graphs. In: Euro-Par 2008 Conference
pp. 940–949 (2008)

16. Rodeheffer, T.L., Schroeder, M.D.: Automatic reconfiguration in autonet. In: SRC Research
Report 77 of the ACM Symposium on Operating Systems Principles (1991)

17. Schroeder, M.D., Birrell, A.D., Burrows, M., Murray, H., Needham, R.M., Rodeheffer, T.L.,
Satterthwate, E.H., Thacker., C.P.: Autonet: A high-speed, self-configuring local area network
using point-to-point links. IEEE Journal on Selected Areas in Communications 9(8), (1991)

18. Zafar, B., Pinkston, T.M., Bermúdez, A., Duato, J.: Deadlock-free dynamic reconfiguration
over InfiniBand. Special Issue on Parallel and Distributed Algorithms, International Journal
of Parallel Algorithms and Applications (IJPAA) 19(2–3), 127–143 (2004)

Autonomic Management of Networked Web
Services-Based Processes

Farhana H. Zulkernine, Wendy Powley, and Patrick Martin

Abstract Web services, which have evolved along with the World Wide Web, hold
great potential for building multi-organizational dynamic workflows. The manage-
ment of these networked Web service-based processes presents significant chal-
lenges. The varying workload of the Internet, the heterogeneous multi-component
structure of the Web services environment, and the complexity in building and man-
aging Web services-based workflows place huge management problems upon the
system administrators of the Web services environment and the Web services con-
sumers. Autonomic computing has received considerable attention in the research
community as a potential approach to making these systems self-managing. We dis-
cuss Web services management from two different perspectives, namely from those
of the service provider and the service consumers. We present our approaches to
autonomic management for both perspectives and discuss their integration into a
complete management framework.

1 Introduction

The World Wide Web has evolved as the largest network connecting users all around
the globe and a most efficient resource of information and services. A Web service
is a software component that is offered as a service on the Web through standard
interfaces and communication protocols, and is a popular example of the current
trend toward Service-Oriented Architecture (SOA) [11]. The potential that lies in
dynamically composing multiple Web services offered by different organizations
over the Internet into e-business processes can help achieve the goal of flexible
online Business-to-Business (B2B) and Business-to-Consumer (B2C) relationships.

F. H. Zulkernine (B)
School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
e-mail: farhana@cs.queensu.ca

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 14, C© Springer Science+Business Media, LLC 2009

333

334 F.H. Zulkernine et al.

However, for the success of e-services, efficient management of Web services [6, 49]
and Web services-based processes [15] is mandatory.

Systems management is traditionally defined as the administration of distributed
systems [38] and involves functions such as fault management, configuration man-
agement, performance management, security, and accounting. The move to service-
oriented architectures, and specifically to Web service-based applications in our
case, is forcing a re-evaluation of this definition of management. Applications can
now be defined at runtime through the composition of services, and this dynamic
property of the workload means that services must be adaptable [15].

We can consider a simple example of a process to create a monthly sales report,
which is illustrated in Fig. 1. The process retrieves summary data from two depart-
mental databases and then builds a report. Each database is accessible through a
Web service that allows data retrieval. In order to implement the monthly sales
report process the client must identify the Web services providing the data, negotiate
Service Level Agreements (SLAs) with each service, and compose and execute a
workflow to produce the report. At the same time, each Web service must verify the
ability of the client to retrieve the desired data, negotiate its SLA with the client,
and then execute its part of the process while monitoring performance to ensure its
SLA is satisfied. SLAs are contractual agreements between the service provider and
the service consumer, which outline the expected Quality of Service (QoS), and are
important to guarantee consumer satisfaction in business transactions.

The Web service management system in the above scenario needs to be able to
support both the client and the Web services. In doing so, the system faces different
challenges and is required to provide different kinds of support. We can, therefore,
consider management from two perspectives. Server-side management, on the one
hand, focuses on ensuring proper execution and QoS [1] by the service provider
based on a set of prenegotiated SLAs [5]. Client-side management, on the other

Fig. 1 Monthly sales report process

Autonomic Management of Networked Web Services-Based Processes 335

hand, focuses on ensuring QoS of the Web services-based process by supporting
proper selection of services for the process [20], negotiation of SLAs [8] with each
of the component services to meet the overall process QoS, definition, and execution
of a workflow composed of the selected services [45], and finally monitoring the
workflow to verify that the SLAs are satisfied [39].

The complexity of the above management tasks, as well as the complexity of the
Web environment, make management of Web services and Web services-based pro-
cesses a difficult problem and an interesting area of research. Autonomic Computing
[18], which was introduced by IBM, can facilitate the management of large and
complex systems by making them self-managing. This chapter considers the appli-
cation of autonomic computing principles and techniques to both the server-side
and client-side perspectives of Web service management. We present an example
approach for each kind of management and examine how these approaches can be
integrated to provide a complete management solution.

The remainder of the chapter is organized as follows. General background
information on Web services and autonomic computing is provided in Section 2.
Section 3 examines the related work. Section 4 describes the client-side and server-
side perspectives of autonomic Web services management. It presents an example
framework for each perspective from our own research and then discusses issues
in integrating the two management perspectives. Our server-side Autonomic Web
Service Environment (AWSE) framework [53] proposes an approach to developing
autonomic Web services, whereas our client-side Comprehensive Service Manage-
ment Middleware (CSMM) [50] proposes complete automation of client-side pro-
cess management. Section 5 provides a summary and concludes the chapter.

2 Background

We first provide general discussions of Web services and autonomic computing and
then outline the related work in autonomic systems and services management.

2.1 Web Services

Web services are software applications that are accessible on the Internet through
standard communication protocols and interfaces. Features such as platform inde-
pendence, Web accessibility, interoperability, ease of using Web services as wrap-
pers for provisioning legacy applications, searching for, and composing services
dynamically into business applications have greatly promoted the use of Web ser-
vices. The Internet popularity has further leveraged the application of Web services
in various aspects including remote resource management and as an efficient tool
for outsourcing specific tasks.

Web service providers publish the information (Web access point or endpoint,
functionality, parameters for the function calls, return values, protocols for binding,

336 F.H. Zulkernine et al.

Fig. 2 Life cycle of a Web service

and communicating with the Web service) necessary to invoke a Web service as
a WSDL (Web Service Description Language) [43] document. Service consumers
look for required services in a registry called the UDDI (Universal Description,
Discovery, and Integration) [28], which serves as the yellow pages for Web services.
WSDL documents are linked to the UDDI. Once a desired service is found, a service
consumer retrieves the WSDL document and invokes the Web service. Fig. 2 shows
the lifecycle of Web services.

It is crucial to maintain interoperability among Web services published by differ-
ent organizations to achieve the long cherished goal of B2B or B2C communication.
The interoperability is achieved through strict implementation of numerous standard
specifications in the implementation, publication and invocation of Web services.
Extensible Markup Language (XML) [42] is used to write messages that are com-
municated with Web services using standard communication protocols. The most
commonly used protocol for communication is SOAP (Simple Object Access Pro-
tocol) [41] messages over HTTP (Hyper Text Transport Protocol). SOAP messages
are basically XML data bounded by headers and footers containing the messaging
protocol, which is interpreted using a SOAP engine application. The SOAP engine
translates the envelope of the message and after necessary preprocessing, passes the
message to the appropriate Web service.

The use of standards allows multiple Web services from different organizations
to be linked to each other to create business processes, which are called Compos-
ite Web Services. A Service composition created at design time is called a Static
Composition, where appropriate services are only selected at design time but bound
later at invocation time. In the case of Dynamic Composition, the services are
selected, bound and invoked at the same time. Service composition provides an
efficient way to create multi-organizational complex business processes. It greatly
reduces the development and maintenance cost of traditional Enterprise Applica-
tion Integration (EAI) [37] software while allowing task outsourcing, and using
the most up-to-date service available at the time of service invocation. The exam-
ple shown in Fig. 1 represents a composite Web service-based process, where the
process of generating a sales report comprises two Web services that are invoked
sequentially to provide a convenient and coherent on-demand Web-accessible soft-
ware solution. This agility however, comes at the added cost and complexity of
systems management both on the service consumer and the service provider’s
sides.

Autonomic Management of Networked Web Services-Based Processes 337

2.2 Autonomic Computing

Autonomic Computing [18] has emerged as a solution for dealing with the increas-
ing complexity of managing and tuning computing environments. It is expected that
Autonomic Computing will result in significant improvements in terms of system
management and many initiatives have begun to incorporate autonomic capabili-
ties into software components. Computing systems that feature the following four
characteristics are referred to as Autonomic Systems:

• Self-configuring: Define themselves on the fly to adapt to a dynamically changing
environment.

• Self-healing: Identify and fix the failed components without introducing apparent
disruption.

• Self-optimizing: Achieve optimal performance by self-monitoring and self-
tuning resources.

• Self-protecting: Protect themselves from attacks by managing user access, detect-
ing intrusions and providing recovery capabilities.

Autonomic Computing will shift the responsibility for software management
from the human administrator to the software system itself. The system should mon-
itor its status and adapt itself accordingly to maintain a normal level of functionality
at all times. The self-management is usually achieved by implementing a feedback
control loop in the system which is called the MAPE [18] (Monitor, Analyze, Plan,
and Execute) loop as shown in Fig. 3. The Monitor module collects the system’s
performance data; the Analyzer uses this data in light of the system policies and
goals to determine whether or not the system is performing properly; the Planner
determines if, and what action should be taken, and finally the Executor executes
the suggested action to manage the system.

Fig. 3 The MAPE loop

3 Related Work

Autonomic systems address four self-management aspects. Most research on
autonomic systems focuses on one or more of these aspects. The core part of
an autonomic management system is a Controller, which is designed using either
a performance feedback loop in a reactive manner, or a feed-forward loop in

338 F.H. Zulkernine et al.

predictive manner. Researchers propose different methodologies and frameworks to
implement the controllers. Different search algorithms are proposed to search for
the optimal values of the tunable configuration parameters. Various prediction logics
are applied in different approaches in the case of predictive controllers. Typically,
a controller can dynamically manipulate the control switches, modify configuration
parameters, or implement additional queues based on the performance data to
provide optimal throughput.

Cheng et al. [7] describes Autonomic Service Architecture (ASA) for automated
management of both Internet services and their underlying network resources. They
validate their framework by illustrating an autonomic bandwidth sharing scheme on
a DiffServ/MPLS network that dynamically allocates necessary bandwidth to meet
differentiated SLAs according to the monitored traffic load and policies specified for
efficient resource utilization. ASA implements the Web Services Resource Frame-
work (WSRF) [30] and uses a hierarchy of Autonomic Resource Brokers (analogous
to IBM’s autonomic element) to manage lower level services.

Liao et al. [22],[48] present a hierarchical agent infrastructure containing two
types of agents for federated coordination of the agents to execute and manage
Web service transactions. Task Agents encapsulate and control one or more Web
services; multiple task agents form an Agent Federation; multiple agent federations
can be grouped to form an Upper Agent Federation, and in each federation, multi-
ple Management Agents perform service registration, negotiation, and transactions.
A container of task agents implements the control logic to select and compose ser-
vices from within a federation to provide a service required by the management
agent.

Researchers at IBM [21] propose an architecture of a performance management
system for cluster-based Web services. The system supports differentiated SLA pro-
visioning, and performs dynamic resource allocation, load balancing, and server
overload protection for multiple classes of Web services traffic. It applies a bi-level
approach to management that implements a queuing algorithm at the inner level
and a feedback control loop at the outer level to periodically adjust the schedul-
ing weights and server allocations of the inner level. However, it requires users to
subscribe to services before using them.

Chung and Hollingsworth [9] use a technique for resource sharing and distri-
bution with Active Harmony servers, which dynamically reconfigure the roles of
specific nodes in a cluster-based Web service environment to boost performance.
They also implement an automated performance tuning infrastructure based on the
workload, to enable adaptive tuning of a set of tunable parameters. The parameters
are revealed by the applications and services through an Application Programming
Interface. The core part of the server is a controller that implements optimization
algorithms to determine the proper values of the tuning parameters.

Control theoretic approaches have been proposed by some researchers to
implement the controllers. ControlWare is a middleware that embodies a control-
theoretical methodology for QoS provisioning for software services [1]. The feed-
back control mechanism guarantees QoS through optimized allocation of system
resources such as various queues and cache sizes to different processes.

Autonomic Management of Networked Web Services-Based Processes 339

Bennani and Menascé [2] create self-managing computer systems by incorpo-
rating mechanisms for self-adjusting the configuration parameters so that the QoS
requirements of the system are constantly met. Their approach combines analytical
performance models with combinatorial search techniques to develop controllers
that run periodically to determine the best possible configuration for the system
given its workload.

Birman et al. [3] extend the general architecture of Web service systems to
add high availability, fault tolerance, and autonomous behavior. The architecture
includes server and client side monitoring, a consistent and reliable messaging sys-
tem using information replication, data dissemination mechanism using multicast-
ing, and an event notification system.

A framework for deployment and subsequent self-configuration and self-healing
of component-based distributed applications is proposed by Dearle et al. [14]. An
Autonomic Deployment and Management Engine is used to find a configuration that
satisfies the deployment goal, and the configuration is deployed automatically. If a
deviation or change in the goal is detected, the configuration finder and deployment
cycle is repeated automatically to generate a revised deployment.

Gurguis and Zeid [19] illustrate the self-healing aspect of autonomic Web ser-
vices. To augment with autonomic features, they propose adding four different auto-
nomic Web services, one for each of the four autonomic properties to be combined
with the functional Web services to enable autonomic behavior. The MAPE loop
is implemented by collaboration of four separate Web services where each service
executes one of the four phases in the MAPE loop. Log files and Common Base
Events are used for monitoring; a symptom database is used for diagnosing the
problem, and a policy database is used to determine the proper recovery actions.

The self-configuration aspect is addressed by Reich et al. [36] through the imple-
mentation of an autonomic container based on the WSRF. They propose service
migration as a remedy for solving overload or bottleneck problems based on a health
status metric (H-metric) measurement. In a two level hierarchy, a service dispatcher
at the upper level virtual container decides where a service should migrate to.

Pautasso et al. [33] describe a framework for the autonomic execution of Web
service compositions using dynamic system configuration. A process control man-
ager queues the requests for process execution, a navigator schedules the execution
of processes from the queue, and a dispatcher makes the service calls for each pro-
cess in the system. Based on the resource utilization and thresholds, the optimiza-
tion policy determines the allocation of additional navigator and dispatcher threads
dynamically during process execution.

Zeid and Gurguis [47] propose a high-level view of an autonomic Web services
framework where each service is encapsulated within an autonomic resource shell
that is managed by an autonomic manager. A collaboration manager manages access
to multiple services and invokes them through a reputation manager. The framework
does not provide a clear view of how autonomous properties are implemented.

The self-optimization aspect of autonomic management for Internet services is
addressed by Bouchenak et al. [4] through dynamic resource provisioning strategy
for varying workloads. The authors design and implement Jade, an environment to

340 F.H. Zulkernine et al.

provide autonomic management capabilities for distributed applications in general,
which includes clustered multi-tier Internet services.

An Autonomic Web Services Net Traveler system is proposed by Monge and
Martinez [25] where peer-to-peer (P2P) intelligent agents are used as brokers to
coordinate, plan and perform Web service choreographies to render autonomic busi-
ness processes. The authors lay out a preliminary layered architecture that focuses
on scalability, fault tolerance, and availability aspects of autonomic process man-
agement.

Autonomic security mechanisms are usually addressed discretely from the other
autonomic aspects. Some of the security systems can be added as a layer on top
of an autonomic Web services system enabling its self-protection aspect. Dai et al.
[13] propose an approach to detecting security problems using the feature recog-
nition technique by virtual neurons, which are distributed in a compound P2P and
hierarchical structure in the network. Park et al. [32] propose a policy-based Auto-
nomic Protection System that applies Role-Based Access Control with an Intrusion
Detection System, and allows self-adaptation of the security policies to suit vari-
ous computing environments. Coetzee and Eloff [10] and Mecella et al. [24] both
propose access control frameworks for Web services conversations pointing out the
necessity to address the nature of repeated communication with Web services where
one time access control may not be enough. The model demonstrated in [10] takes
in account both trust and context awareness while [24] focuses on the importance
of a tradeoff between the protection of the access control policies and the neces-
sity to disclose partial policy information to the clients. Olson et al. [31] propose a
third-party negotiation system for trust negotiation to gain access to a Web service.

3.1 Discussion

The system administrators typically have a specific set of goals for QoS, Recovery,
Security, and Resource Utilization that they try to satisfy. Table 1 summarizes the
various techniques typically used to address the different management goals.

Most of the research work on autonomic systems addresses one or more of the
self-managing aspects, but not all. The most common techniques used to provide
QoS are workload distribution using queues and priority features, resource sharing
by scheduling algorithms, and dynamic parameter tuning using the MAPE loop
[1, 4, 7, 9, 21]. Other approaches [3, 14, 19, 22, 25, 36] apply dynamic resource
allocation that allows the reuse of the same resource for multiple purposes, ser-
vice migration, automatic service deployment, replication, and configuration. These
approaches are very specific to the system architecture and enable better recovery.
However, these systems focus on only the availability property of the QoS, and not
on the performance metrics.

Adaptive systems [14, 19, 22, 32, 36] that can adjust policies and decision mak-
ing analogy dynamically with the systems’ changing status are becoming increas-
ingly popular. Agent-based systems are more autonomic due to the autonomous

Autonomic Management of Networked Web Services-Based Processes 341

Table 1 Management criteria and techniques

Goals

QoS Security Recovery Resource optimization

• Workload identification
and distribution

• Encryption • Replication • Resource sharing

• Workload adaptation • Authorization • Fault tolerance • Resource distribution

Te
ch

ni
qu

es

• Dynamic resource
allocation

• Access Control • Adaptive tuning • Queuing models

• Priority queue • Intrusion
detection

• Autonomic
deployment

• Data multicast
• Notification

nature of the agents, which is why they are used with Web services in many process
management approaches [22, 25].

The WSRF framework uses Web services endpoints [19, 36] to tune parameters
and manage resources which includes Web services. Many autonomic frameworks
are utilizing the general accessibility of Web services to design frameworks com-
posed of multiple levels of autonomic managers to manage Web service-based pro-
cesses [22, 25, 33, 48]. However, the lower level management procedures are often
not very well defined for those frameworks[33, 48].

The self-protection aspect of autonomic computing is often investigated under
the paradigm of security, privacy and trust [10, 13, 24, 31, 32], and therefore, is not
commonly addressed with the other management aspects. An integrated approach
is deemed necessary to enable autonomic management of Web services and Web
services-based processes. The basic management framework should be flexible
enough to incorporate or function coherently with additional modules that provide
autonomic protection or other useful features.

3.2 Research Trend

As systems are becoming more complex, different techniques are applied to design
more effective autonomic systems keeping an eye on the four aspects of self-
managing systems. Due to the versatility and the nature of accessibility of Web
services-based systems, the primary management goals are QoS [47, 52] and secu-
rity [10, 13, 31]. The most important QoS attributes are availability, reliability,
guaranteed throughput, and response time [12]. While researchers are trying new
algorithms, agent-based techniques, and methodologies to improve the performance
of existing techniques to make systems more adaptive and reconfigurable, new tech-
niques that use machine learning and other artificial intelligence methodologies are
also being applied with the various standards of Web services such as the WSRF
and the Web Services Distributed Management (WSDM) [20, 26, 49]. Management

342 F.H. Zulkernine et al.

of more complex systems is enabled using hierarchical management frameworks
of collaborative management Web services [7, 53] and distributed management
methodologies with a combination of the above techniques are used to manage Web
services-based composite processes [15, 50].

4 Management Perspectives

We examine the issues involved in client-side and server-side management of Web
services. We present our research on autonomic Web services management that
addresses both client-side and server-side management. We highlight the principles
and goals of our approaches, and present our ideology to integrate the two indepen-
dent client-side and server-side management frameworks into a global solution to
managing Web services and Web services-based processes.

4.1 Server-Side Management (AWSE)

On the service provider side, management of Web services places a difficult task
on the system administrators due to the factors such as workload diversity and
variability, increased emphasis on QoS, multi-tier architecture, service and network
dependency, and advances in functionality, connectivity, and heterogeneity. Fig. 4
shows a number of components that are typically required to host a Web service. A
client request for a Web service must pass through a number of layers of process-
ing to reach the destination Web service. HTTP and Application servers are usual
components of a Web server. The message processing software interprets the SOAP
messages from the client and sends it to the proper service endpoint. The back end
applications may include other third-party products, tools, hardware, software, and
may involve the invocation of other Web services, which do the main processing
and send the results back to the Web service interface application at the front end.

The AWSE illustrated in Fig. 5 is a framework for autonomic management of
a Web services environment [40, 53]. In AWSE, system management and SLA

Fig. 4 Components of a Web service system

Autonomic Management of Networked Web Services-Based Processes 343

Fig. 5 AWSE architecture

compliance is facilitated by a hierarchy of autonomic managers. The higher level
managers query lower level managers to acquire current and past performance
statistics, consolidate the data from various sources, and use predefined policies
and SLAs to assist in systemwide management. AWSE is based on the Autonomic
Computing paradigm and employs widely accepted standards such as Web services
and the WSDM [29] standard, thus allowing seamless integration of heterogeneous
systems and standardized communication.

In AWSE, each of the individual components of a web hosting site, including the
HTTP servers, application servers, database servers, and Web service applications,
employ one or more associated autonomic managers. Each component is assumed
to be autonomic, thus able to self-manage given component-specific performance
goals. At the highest level of the hierarchy, a site manager, also an autonomic
manager, monitors the overall performance of the site and provides service provi-
sioning and management of the components, if necessary, to ensure overall system
performance. The site manager also handles SLA negotiation between the site and
potential clients.

The autonomic managers used in AWSE implement the standard MAPE loop
using a reflective database-oriented framework [34]. A reflective system maintains a
model of self-representation and changes to the self-representation are automatically
reflected in the underlying system. In AWSE, the self-representation embodies the
current configuration settings for the managed element, which control the perfor-
mance of the element.

344 F.H. Zulkernine et al.

The rich capabilities of a Database Management System (DBMS) are used for
data storage, creation of a knowledge base, and for controlled execution of the
logic flow in the autonomic managers. The system knowledge base includes sys-
tem topology, performance metrics, component-based and systemwide policies, and
the expectations, or system goals. DBMS techniques such as triggers and stored
procedures are used to implement the logic flow of the autonomic manager.

Although each individual component is self-managing, thus ensuring adequate
performance of a component in isolation, this alone does not guarantee that the
system as a whole is performing satisfactorily. In a distributed system such as a Web
services environment, it is necessary for components to cooperate to attain system
wide goals. In AWSE, the site manager is responsible for overall system manage-
ment to ensure SLA compliance. It manages individual components by examining
a component’s current performance in light of the overall system performance. The
site manager effects change on a component by adjusting its goal. The component
will then self-configure to meet the new goal.

The site manager, therefore, must be able to communicate with individual com-
ponents to retrieve performance metrics and to communicate revised goals. It also
needs to be informed of any relevant events such as component configuration
changes, or changes in performance that cannot be managed by the component
itself. Thus communication between the site manager and the components of the
Web services environment is critical.

In AWSE, management of components and communication of events is done
through standard WSDM interfaces [29]. The main focus of WSDM is the manage-
able resource, which is a resource that exposes its manageability in a standard con-
formant way. In AWSE, a manageable resource is a component such as the DBMS,
the HTTP server, or a Web service.

Management information for each manageable resource is accessible through a
Web service endpoint called the Endpoint Reference (EPR). The EPR provides a
location for the site manager, or other components to communicate with the man-
ageable resource by means of SOAP messages. Manageable resources in WSDM are
described using XML to specify the resource properties that support the manageabil-
ity capabilities exposed by the managed resource. In AWSE, the self-representation
of the system, that is, the current configuration settings for the managed resource,
maps directly to the resource properties in WSDM. The component performance
goal is also specified as a resource property. Resource properties can be retrieved
and set by external components (namely the site manager in AWSE).

AWSE assumes that individual component performance data is exposed to other
components, including the site manager. WSDM provides support for defining per-
formance data using the concept of a Metrics capability. The Metrics capability sup-
ports metric information relevant to the performance and operation of the resource
and allows the specification of metrics associated with each resource. These metrics
can be retrieved by the site manager through the WSDM interface.

Using WSDM, the site manager can subscribe to receive event notifications when
certain changes occur to a resource. Once subscribed, if the value of a property
exposed by this capability changes, a notification is sent to the subscriber. This

Autonomic Management of Networked Web Services-Based Processes 345

mechanism allows the site manager to be kept informed of modifications in the
system environment and, if necessary, to react accordingly.

4.2 Client-Side Management (CSMM)

On the consumer side, the process of composing multiple services to accomplish a
certain task involves several steps as shown in Fig. 6. Based on the type of task, each
of these steps can be quite complex. The dependency on the network and service
providers support the fact that a good management system is mandatory to create
and manage Web services-based workflows, particularly to realize the potential of
creating and executing critical business processes.

The main steps that are involved in creating and executing a Web services-based
workflow are listed below:

• Service Selection: Select a service based on some predefined criteria to complete
a business process or replace a service to recover from failure.

• SLA Negotiation: Negotiate the SLAs based on service offerings and customer
requirements of QoS.

• Workflow Orchestration and Execution: Design a workflow by organizing
selected Web services with properly matched input and output parameters.
Execute the workflow with proper checkpoints and exception handling proce-
dures.

• Monitor and Error Report: Monitor the performances of each service in the work-
flow to verify compliance with the SLA, detect failure, and initiate quick recov-
ery.

Client-side service management should facilitate all of the above and guarantee
seamless execution of the workflow on the network.

We propose the CSMM framework as a flexible and versatile solution to client-
side distributed management of autonomic Web services-based processes. It con-
tains four main modules, and other accessory modules and repositories as shown in
Fig. 7. Each of the four main modules is designed as an independent Web service
and can be invoked separately to carry out one of the four major steps shown in
Fig. 6. The workflow is deemed as autonomic because the framework implements a
MAPE loop within itself which allows the workflow to be defined using an optimum
set of available services and modified in case of failure. Furthermore, since all of the

Fig. 6 Steps to execute a Web service process

346 F.H. Zulkernine et al.

Fig. 7 Conceptual framework of the Comprehensive Service Management Middleware

four main modules provide Web service interfaces, they can be implemented based
on the AWSE [40] framework, thus making each of the modules autonomic.

CSMM allows partial or complete automation of the job of defining and exe-
cuting a Web services-based process. Consumers can use the four main modules
independent of each other for the separate tasks of service selection, SLA negotia-
tion, workflow orchestration and execution, and monitoring the workflow to ensure
satisfaction of the SLAs. Using the comprehensive service of the CSMM requires
clear specification of the process requirement, which is then interpreted and carried
out sequentially by the different modules. If a failure is detected during the execution
of the workflow, possible causes are investigated and plans are made accordingly to
execute the proper recovery procedure. For Web services-based processes, a typical
recovery mechanism would be to replace a failed service (unavailable or failed to
meet the SLAs) with a similar service. To execute service replacement, notifications
are sent to the appropriate modules first to find a service similar to the failed ser-
vice and then to negotiate SLAs for the new service. Next, the original workflow is
redefined with the replacement service and the workflow continues with no apparent
anomaly from the consumer’s perspective.

Although automation of the above tasks of service selection, negotiation, orches-
tration, and monitoring are still popular topics of ongoing research, CSMM lays out
a flexible general framework to combine different approaches to render a coherent

Autonomic Management of Networked Web Services-Based Processes 347

solution to autonomic Web services-based processes. The functionality of each mod-
ule is described below in further detail.

4.2.1 Service Requirements Handler

Service Requirements Handler (SRH) is the first module in the CSMM. It finds
required services for the consumer based on some specified selection criteria. It
accepts specifications describing service requirements and returns a set of selected
services in the order of execution. The extended UDDI and certified reputation
knowledgebase are used to enable service discovery based on statistical data on
service quality and reputation. The SRH draws from principles in the areas of auto-
mated service discovery [20, 44, 47] and ontology-based service description and
selection [23].

4.2.2 Negotiation Broker

Once services are selected, an SLA is negotiated between the service provider and
the service consumer based on consumer requirements and service offerings of the
seller. The Negotiation Broker (NB) module takes an ordered list of selected ser-
vices and the negotiation policies from all the service providers and the service
consumers. The policies, which can be stored in a local repository for subsequent
reuse, describe the context of the negotiators, their goals, the range of acceptable
values for the issues, constraints, and preferences. This module performs automated
negotiation locally as a trusted broker service and returns SLAs to both parties after
a successful negotiation. The NB functionality is based on work from negotiation
theory [35], machine learning [26], and automated negotiation [8, 16].

4.2.3 Workflow Manager

The Workflow Manager (WM) performs workflow orchestration, which is the design
of a workflow for a business process by properly organizing selected Web services.
It then executes the workflow, and ensures the application of proper corrective mea-
sures. The WM module takes an ordered list of selected services with necessary
input parameters for each of them, and generates a formal specification such as the
Web Service Business Process Execution Language [27] specification of a service
orchestration. The WM builds on the large body of research on workflows and their
formal representation as Petri Nets [46].

4.2.4 Performance Monitor

The Performance Manager (PM) monitors the performances of the component Web
services in the workflow to verify compliance with the SLAs. The PM module takes
the SLAs and workflow specification as input. If a service becomes unavailable or
fails to meet the specified SLAs, it initiates necessary corrective actions through
the Error Tracking and Recovery (ETR) submodule. The PM can also be used

348 F.H. Zulkernine et al.

to build a certified statistical QoS knowledge base from the performance reports
collected for the different Web services in the workflow to enable reputation-based
service selection. The PM builds on the research on message interception, formal
representation of event-based systems as Petri Nets [45], and reputation-based
service discovery [44].

4.3 Integration Issues

The AWSE and CSMM management frameworks discussed above address the two
management perspectives and provide complementary management functionality.
CSMM provides a very general and versatile solution that can accommodate a wide
variety of approaches to automate the process management on the client-side. It
ensures that overall process QoS goals are met by applying proper service selection
approaches in the SRH module and accordingly conducting the SLA negotiation in
the NB to satisfy the QoS goal of the total process. Failure in negotiation is reported
back to the SRH, which then selects an alternative service, or modifies negotiation
policies to reach an acceptable agreement. Since the resources for executing a Web
service workflow are the services, the SRH also needs to select services carefully
to make optimal use of resources. The execution of the workflow is monitored by
both the WM and the PM. The WM implements proper checkpoints to monitor the
progress of the process execution and reports any failure to the ETR. The PM moni-
tors the SLAs of each component service within the workflow, analyzes the monitor-
ing data against corresponding SLAs, and reports exceptions to the ETR. The ETR
initiates proper recovery measures to provide a seamless workflow. CSMM provides
comprehensive support for partial or complete automation of the tasks necessary for
the execution of Web services-based processes over the Internet.

AWSE provides autonomic server-side management for the whole site that hosts
Web services. The hierarchical autonomic elements in the AWSE framework allow
collection and compilation of the status reports from each element through the
WSDM interfaces, and provides a complete picture of the system status. Each auto-
nomic element implements its own MAPE loop to adapt itself to the designated
QoS model, which can be adapted by the upper level autonomic managers when
necessary.

Integration of the AWSE and CSMM frameworks would provide a complete uni-
fied approach to all aspects of Web service management. The key advantage of
the integration is that information from the two management perspectives can be
fed into each other to provide more effective execution of the Web service-based
processes. Monitoring data collected by AWSE for each service can be fed to the
CSMM PM. The data can be used in the construction of the reputation knowledge
base and by the NB in formulating more realistic service level objectives. The SLAs
negotiated by the CSMM NB are used by AWSE to govern resource allocation and
in turn control the performance of the Web service components. The CSMM could
also interact with AWSE to obtain more detailed information in the case of execution
errors or failures to meet SLAs.

Autonomic Management of Networked Web Services-Based Processes 349

We return to the monthly sales reporting scenario introduced earlier (see Fig. 1)
to illustrate how AWSE and CSMM could interact with each other. A client initiates
a request to CSMM that contains the process description, possible services to be
selected, and the policies specifying preferences for SLA negotiation. The CSMM
first invokes the SRH to select proper services. The SRH uses the UDDI and the
reputation knowledge base to find services that best suit the requirements. The NB
then negotiates the SLAs with the corresponding service providers. The AWSE Site
Manager will, in this case, provide the NB with the server-side policies for SLA
negotiation. Based on the policies, the NB tries to negotiate and come up with a set
of SLAs that satisfies the policies specified by both parties. If the NB fails to reach
a consensus, it replies back to the SRH to select an alternative service or if possible,
modify the negotiation policies.

Once the department services are specified, the NB sends the SLAs to the cor-
responding service providers and invokes the WM. The WM links these services to
create a workflow and contacts the PM to monitor the SLAs for the workflow before
executing it. The PM communicates with the Site Managers of the two services
and subscribes to be notified about the performance when the respective services
are invoked. The WM executes the workflow and as the component services are
invoked, the Site Manager sends performance reports to the PM. In the case of
exception or violation of the SLAs, the ETR is notified and corrective actions can be
initiated. Once the process is completed, the WM notifies the CSMM, which returns
the monthly sales report to the client. Implementation details of the PM [52], the
NB [51], and the server-side AWSE [53] are given in separate publications.

On the server-side, the Site Manager sets the performance goals for the dif-
ferent system components once the SLAs are received. The system then manages
itself to meet the specified performance goals. When the PM subscribes to the Site
Manager for performance reports, the Site Manager monitors the service request
and sends a report of the performance data to the PM. The meta-data for relating
the reports to specific processes are conveyed through the header section of the
SOAP messages that are communicated for service invocations. The integration of
AWSE and CSMM is facilitated by the use of standards and open source software
in their development. As mentioned above, our prototype implementation of AWSE
conforms to the WSDM standard which provides a common interface for the Web
service components and managers. This interface can also be adopted for the various
components of CSMM.

5 Summary

The two different perspectives of managing networked Web services-based
processes, namely, the client-side and the server-side management, both put
forth complex research challenges. Some of the primary concerns of the server-
side management of Web services are the varying workload, vulnerability, and
security threats of the Web media, and the complex multi-tier architecture and

350 F.H. Zulkernine et al.

heterogeneity of Web services environment. The client-side management includes
service selection, SLA negotiation, orchestration and seamless execution of the
Web service-based workflow with proper monitoring and recovery mechanisms in
place to guarantee process QoS.

Autonomic management [18] is deemed to be an effective approach to manag-
ing complex and heterogeneous systems with fluctuating workload and can provide
effective solutions to the problems of Web services management on both client and
server-side. Researchers have proposed different approaches [17] and frameworks
for both server-side and consumer-side autonomic management of Web services
and services-based processes. We present the state-of-the-art research in the area of
autonomic Web services management, most of which address only one side of the
management and specific management aspects. Our research addresses both sides
of Web services management using autonomic computing methodology. For client-
side management, we present the CSMM framework that can facilitate automation
of building and managing Web services-based processes. On the server-side, our
AWSE framework provides a hierarchical layout of autonomic managers for man-
aging the various components of a Web service environment. Finally, we illustrate
an integrated approach to complete automation of Web services management using
both the AWSE and the CSMM frameworks.

References

1. Abdelzaher, T., Stankovic, J., Lu, C., Zhang, R., and Lu, Y.: Feedback performance control in
software services. In: IEEE Control Systems Magazine, Vol. 23(3), (2003)

2. Bennani, M., and Menascé, D.: Assessing the robustness of self-managing computer systems
under highly variable workloads. In: Proc. Intl. Conf. Autonomic Computing (ICAC’04), pp.
62–69, NY, USA (2004)

3. Birman, K., Renesse, R., and Vogels, W.: Adding high availability and autonomic behavior to
web services. In: Proc. Intl. Conf. Software Engineering (ICSE’04), pp. 17–26, Scotland, UK
(2004)

4. Bouchenak, S, De Palma, N. Hagimont, D. Krakowiak, S., and Taton, C.: Autonomic man-
agement of internet services: Experience with self-optimization. In: Proc. IEEE Intl. Conf.
Autonomic Computing (ICAC’06), pp. 309–310, Dublin, Ireland (2006)

5. Cappiello, C., Comuzzi, M., and Plebani, P.: On automated generation of web service
level agreements. In: Proc. IEEE Intl. Conf. Advanced Information Systems Engineering
(CAiSE’07), pp. 264–278, Trondheim, Norway (2007)

6. Casati, F., Shan, E., Dayal, U., and Shan, M. C.: Service-oriented computing: Business-
oriented management of web services, Communications of the ACM, Vol. 46(10), (2003)

7. Cheng, Y., Farha, R., Kim, M.S., Leon-Garcia, A., and Won-Ki Hong, J.: A generic
architecture for autonomic service and network management. Computer Communications,
Vol. 29(18), 3691–3709 (2006)

8. Chhetri, M.B., Lin, J., Goh, S., Zhang, J.Y., Kowalczyk, R., and Yan, J.: A coordinated archi-
tecture for the agent-based service level agreement negotiation of web service composition. In:
Proc. Australian Software Engineering Conference (ASWEC’06), pp. 90–99, IEEE Computer
Society, Washington, DC, USA (2006)

9. Chung I., and Hollingsworth, J. K.: Automated cluster-based web service performance tuning.
In: Proc. IEEE Conf. High Performance Distributed Computing (HPDC’04), pp. 36–44, IEEE,
Honolulu, Hawaii (2004)

Autonomic Management of Networked Web Services-Based Processes 351

10. Coetzee, M., and Eloff, J.: A trust and context aware access control model for web services
conversations. In: Proc. International Conference on Trust, Privacy and Security in Digital
Business, (TrustBus’07), pp. 115–124, Regensburg, Germany, LNCS, Springer (2007)

11. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and Weerawarana, S.: Service-oriented computing:
The next step in web services. Communications of the ACM, Vol. 46(10), 29–34, ACM, NY,
USA (2003)

12. Dahlem, D. Nickel, L., Sacha, J., Biskupski, B., Dowling, J., and Meier, R.: Towards improv-
ing the Availability of service compositions. In: Proc. IEEE Intl. Conf. Digital Ecosystems and
Technologies (DEST’07), pp. 67–70, IEEE, Cairns, Australia (2007)

13. Dai, Y., Hinchey, M., Qi, M., and Zou, X.: Autonomic security and self-protection based on
feature-recognition with virtual neurons. In: Proc. IEEE Int. Symposium of Dependable, Auto-
nomic and Secure Computing (DASC’06), pp. 227–234, Washington, DC, USA (2006)

14. Dearle, A., Kirby, G., and McCarthy, A.: A framework for constraint-based deployment and
autonomic management of distributed applications. In: Proc. Intl. Conf. Autonomic Comput-
ing (ICAC’04), pp. 300–301, NY, USA (2004)

15. Dustdar, S.: Towards autonomic processes and services. In: Proc. Intl. Working Conf. Business
Process and Services Computing (BPSC), pp. 13–19, Leipzig, Germany (2007)

16. Faratin P., Sierra, C., and Jennings, N.: Negotiation decision functions for autonomous agents.
Intl. Journal of Robotics and Autonomous Systems, Vol. 24(3–4), 159–182 (1998)

17. Farrell, J.A., and Kreger, H.: Web services management approaches. IBM Systems Journal,
Vol. 41(2), 212–227 (2002)

18. Ganek, A., and Corbi, T.: The dawning of the autonomic computing era. IBM System Journal,
Vol. 42 (1), 5–18 (2003)

19. Gurguis, S., and Zeid, A.: Towards autonomic web services: achieving self-healing using web
services. In: SIGSOFT Software Eng. Notes, Vol. 30(4), 1–5 (2005)

20. Jakob, M., Healing, A., and Saffre F.: Mercury: Multi-agent adaptive service selection based
on non-functional attributes. In: Proc. Intl. Workshop Engineering Emergence in Decentralised
Autonomic Systems (EEDAS’07), Jacksonville, FL, USA (2007)

21. Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., Tantawi, A., and Youssef, A.: Perfor-
mance management for cluster based web services. In: IBM Technical Report (2003)

22. Liao, B., Gao, J., Hu, J., and Chen, J.: A federated multi-agent system: Autonomic control of
web services. In: Proc. Int. Conf. Machine Learning Cybernetics (ICMLC’04), Vol. 1, pp. 1–6,
IEEE, Shanghai, China (2004)

23. Maximilien, E., and Singh, M.: A framework and ontology for dynamic web services selection.
IEEE Internet Computing, Vol. 8(5), pp. 84–93 (2004)

24. Mecella, M., Ouzzani, M., Paci, F., and Bertino, E.: Access control enforcement for
conversation-based web services. In: Proc. Int. Conf. World Wide Web (WWW ’06),
pp. 257–266, Edinburgh, Scotland, ACM, New York (2006)

25. Monge, H., and Martinez, T.: AWS-Net Traveler: Autonomic web services framework for
autonomic business processes. In: Proc. IEEE Int. Conf. Services Computing (SCC’05), Vol. 2,
pp. 270–272, Orlando, FL, USA (2005)

26. Narayanan, V., and Jennings, N.: Learning to negotiate optimally in non-stationary envi-
ronments. In: Proc. Intl. Workshop Cooperative Information Agents (CIA’06), pp. 288–300,
Edinburgh, UK, ACM (2006)

27. OASIS: WS-BPEL (Web Services Business Process Execution Language) 2.0 Draft.
At: http://www.oasis-open.org/committees/download.php/14616/wsbpel-specification-draft.
htm (2006)

28. OASIS: UDDI Technical Committee Specification, v 3.0.2. At: http://www.oasis-open.org/
committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm (2005)

29. OASIS: WSDM (Web Services Distributed Management): Management Using Web Services
(MUWS 1.0), Part 1 (2005)

30. OASIS: WSRF (Web Services Resource Framework), v 1.2 (2006)

352 F.H. Zulkernine et al.

31. Olson, L., Winslett, M., Tonti, G., Seeley, N., Uszok, A., and Bradshaw, J.: Trust negotiation
as an authorization service for web services. In: ICDE’06 Workshops, Vol. 21, IEEE, Atlanta,
GA, USA (2006)

32. Park, S., Kim, W., and Kim, D.: Autonomic protection system using adaptive security policy,
In: Proc. Int. Conf. Computational Science and Its Applications – ICCSA’04, LNCS 3045,
pp. 896–905, A. Laganà et al. (Eds.), Assisi, Italy (2004)

33. Pautasso, C., Heinis, T., and Alonso, G.: Autonomic execution of web service compositions.
In: Proc. Int. Conf. Web Services (ICWS’05), Orlando, FL, USA (2005)

34. Powley, W., and Martin, P.: A reflective database-oriented framework for autonomic managers.
In: Proc. Int. Conf. Autonomic Systems (ICAS’06), pp. 57–62, San Jose, CA, USA (2006)

35. Raiffa H.: The Art and Science of Negotiation. Harvard University Press, Cambridge, USA
(1982)

36. Reich, C., Banholzer, M., Buyya, R., and Bubendorfer K.: Engineering an autonomic con-
tainer for WSRF-based web services. In: Proc. Int. Conf. Advanced Computing Commun.
(ADCOM’07), pp. 277–282, Guwahati, India (2007)

37. Seth, M.: Web Services – A Fit for EAI. White Paper, At: http://www.developer.com/tech/
article.php/1489501 (2002)

38. Sloman, M.: Policy-driven management for distributed systems. Journal of Network and Sys-
tems Management, Vol. 2(4), pp. 333–360 (1994)

39. Ta, X., and Mao G.: Online end-to-end quality of service monitoring for service level agree-
ment verification. In: Proc. IEEE Int. Conf. Networks (ICON’06), Vol. 2, pp. 1–6, Singapore
(2006)

40. Tian, W., Zulkernine, F., Zebedee, J., Powley, W., and Martin, P.: An architecture for an
autonomic web services environment. In: Proc. Joint Workshop Web Services Model-Driven
Enterprise Information Syst. WSMDEIS (ICEIS’05), Miami, FL, USA (2005)

41. W3C: SOAP (Simple Object Access Protocol) Part 1: Messaging Framework, v 1.2. At: http:
//www.w3.org/TR/soap12-part1/ (2003)

42. W3C: XML (eXtensible Markup Language). At: http://www.w3.org/XML/ (2004)
43. W3C: WSDL (Web Services Description Language), v 2.0 (Working Draft). At: http://www.

w3.org/2002/ws/desc/ (2005)
44. Xu, Z., Martin, P., Powley, W., and Zulkernine, F.: Reputation-enhanced QoS-based web ser-

vices discovery. In: Proc. IEEE Intl. Conf. Web Services (ICWS’07), pp. 249–256, Salt Lake
City, Utah, USA (2007)

45. Yang, Y., Tan, Q., Xiao, Y., Yu, J., and Liu, F.: Exploiting hierarchical CP-nets to increase
the reliability of web services workflow. In: Proc. International Symposium Appl. Internet
(SAINT’06), pp. 116–122, IEEE Computer Society, Washington, DC, USA (2006)

46. Yu, T., Zhang, Y., and Lin, K.: Efficient algorithms for web services selection with end-to-end
QoS constraints. ACM Transactions on the Web, Vol. 1(1), Art. 6, pp. 1–26 (2007)

47. Zeid, A., and Gurguis, S.: Towards autonomic web services. In: Proc. ACS/IEEE Int. Conf.
Computer Syst. Appl. (ICCSA’05), pp. 69–73, IEEE, Cairo, Egypt (2005)

48. Zhang, F., Ji, G., Guo, H., Zhu, P., and Liao, B.: Autonomic management of web services based
on federated multi-agent system. In: Proc. World Congress Intelligent Control and Automa-
tion, Vol. 2, pp. 6949–6953, Dalian, China (2006)

49. Zulkernine, F., and Martin, P.: Web services management: Towards efficient web data access.
In: Web Data Management Practices: Emerging Techniques and Technologies, pp. 266–288,
A. Vakali, and G. Pallis (Eds.), Idea Group of Publishing, PA, USA (2006)

50. Zulkernine, F., and Martin, P.: Conceptual framework for a comprehensive service manage-
ment middleware (best paper award). In: Proc. Int. IEEE Workshop Service Oriented Archi-
tectures in Converging Networked Environments (SOCNE’07) with AINA’07, Niagara Falls,
Canada (2007)

51. Zulkernine, F., Martin, P., Craddock, C., and Wilson, K.: A policy-based middleware for web
services SLA negotiation. Accepted in: Proc. IEEE International Conference Web Services
(ICWS’08), IEEE, Beijing, China (2008)

Autonomic Management of Networked Web Services-Based Processes 353

52. Zulkernine, F., Martin, P., and Wilson, K.: A middleware solution to monitoring composite
web services-based processes. Accepted in: Proc. of the IEEE Congress on Services (SER-
VICES’08) Part II, Workshop on Service Intelligence and Computing (SIC) at IEEE Interna-
tional Conference on Web Services (ICWS’08), IEEE, Beijing, China (2008)

53. Zulkernine, F., Tian, W., Powley, W., Martin, P., Xu, T., and Zebedee, J.: Autonomic web
services environment using a reflective database-oriented approach. Journal of Ubiquitous
Computing and Communication Special Issue on Autonomic Computing and Communica-
tions (2008)

Concepts for Self-Protection

Tanja Zseby, Heiko Pfeffer, and Stephan Steglich

Abstract Network protection should be a number one priority on every network
operator’s list. Even the best network is useless, if an intruder can gain control.
Although the research community has been working in this field for decades, we
are still at a far remove from networks where successful attacks are the exception.
Scant deployment of security solutions is not the only reason. The fast evolution
of protocols and applications and the permanent emergence of new attacks build
an extremely dynamic environment in which protection becomes a tough challenge.
Classical attack prevention techniques are not sufficient to deal with new and unex-
pected incidents. The immense administrative burden on users and providers calls
for automation of security tasks and protection features as an integral part of future
networks. However, network self-protection requires permanent awareness and the
flexibility to re-act. Sophisticated observation and analysis techniques, cooperation,
and information sharing together with learning concepts are crucial to achieve this
goal. Autonomic communication provides a framework in which self-protection
concepts can be developed.

1 Introduction

An increasing number of critical businesses and communities rely on the Internet.
Many require and assume an uninterrupted and secure operation of networks. Even
so, ever since the advent of the communication networks, attackers have tried to
disturb, interrupt and destroy network operation. The quantity and quality of attacks
is increasing. They have rapidly evolved from playful but not harmless competitions
in hacker communities to instruments of warfare and organized crime. The upshot
is immense financial loss, compromised data, and unacceptable constraints on users
who try to set up more or less secure environments.

Internet research in all areas should be strongly coupled with concerns about
security threats. The best, fastest, and most efficient network is useless, if an attacker

T. Zseby (B)
Fraunhofer Institute Fokus, Berlin, Germany
e-mail: tanja.zseby@fokus.fraunhofer.de

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 15, C© Springer Science+Business Media, LLC 2009

355

356 T. Zseby et al.

can gain control. The rule stipulating that security considerations must be added to
each new Internet standard given in the Internet Engineering Task Force (IETF), is
only one step in the right direction.

With the increasing heterogeneity of the current Internet at all layers, its enduring
growth and the dynamic nature of Internet topologies and traffic patterns, classical
methods of attack prevention (authentication, secure protocols, firewalls, etc.) are
no longer sufficient to cope with upcoming threats. Attackers are far away from
using the full potential of current Internet vulnerabilities. And each new technology
usually brings its own new vulnerabilities. We have to find answers soon before
the wake-up call of a devastating super attack that wipes out the basis of Internet
operation.

Autonomic communication provides a framework for incorporating more func-
tionality into network nodes to introduce self-management and self-protection capa-
bilities. As a supplement to classical methods of attack prevention, autonomic com-
munication includes concepts of attack detection and defense based on node coop-
eration, adaptation, and learning. With the concept of learning from errors, Internet
security is strengthened by each new assault.

2 Network Security

Awareness about the importance of network security has increased. Nevertheless,
incident prevention activities still remain fragmentary. The Internet is a patchwork
of differently administered networks. Security policies and their enforcement, if
applied at all, vary immensely.

Pure network operation is the predominant goal. With the increasing complexity
of the Internet, this would pose a challenge even in a world without adversaries.
Securing the network requires additional effort and costs. And, crucially, it also
requires permanent awareness. New protocols and applications continuously intro-
duce new vulnerabilities. Lack of experience with new features, misconfiguration,
and undetected vulnerabilities in new software lead to the constant emergence of
new attack targets. Attempts to secure the Internet are forever competing with new
challenges by highly motivated and increasingly organized and skilled attackers.

In computer networks we can distinguish the following security objectives:

– Access control: Protection of network resources against unauthorized access.
– Confidentiality: Protection of data against unauthorized disclosure.
– Integrity: Protection of data against unauthorized modification or discarding.
– Availability: Protection of access to and usability of network resources for autho-

rized entities.
– Non-Repudiation: Protection against false denial of actions that a user or entity

has performed.

In many networks servers for Authentication, Authorization, and Accounting
(AAA) are used to control access. Firewalls, intrusion, and virus detection have

Concepts for Self-Protection 357

become standard in networks and end systems. New protocols and methods have
been standardized that could increase security in the Internet. Even so, they are
only sparsely deployed. Even if the awareness is there, many providers are bothered
about the additional administrative effort and the learning curve that the deployment
of new solutions involves. It takes too long for early adopters to pave the path for
the majority.

Furthermore, high dynamics and complexity mean that user education will
remain incomplete. The willingness of users to give up any convenience in network
usage (e.g., opening arbitrary ports to enable gaming) for a diffuse security goal is
limited. The need for user participation in security related activities (e.g., confirm-
ing security updates) should be minimized to prevent protection activities leading
to comfort reduction. For defending a network against attacks we distinguish four
phases: Prevention, Detection, Defense, and Forensics as illustrated in Fig. 1.

The ideal case is prevention of attacks. Prevention comprises all methods applied
in order to avoid attacks beforehand. This means that methods are used to con-
trol access to devices and network resources and to ensure data confidentiality and
integrity. This includes authorization and authentication techniques, trust establish-
ment as well as encryption and filtering of traffic (firewalls). Prevention is only
possible for attacks that are known or can be predicted.

If prevention fails, detection is the next best possibility for dealing with an inci-
dent. Detection is the process of discovering attacks, attack preparation, or any other
malicious activities. This is usually done by data analysis. If attack or preparation
activities are detected, actions should be invoked for defense. After the attack it
is often useful to analyze what happened before and during the attack. Post-attack
analysis of traffic is called forensics. This is done in order to learn how detection
and defense methods can be improved for future incidents.

All this increases administrative costs for providers and enlarges the complex
restrictive rule sets that users have to comply to. In all this the desire to reduce
human intervention is evident. Security has to become an integral part in future net-
works. Technology can help to automate processes. The high dynamics in network
evolution and in attack attempts call for the incorporation of learning techniques.
Besides the observation and analysis of current and past events that forms the node’s
own experience, it can also profit from the experience of others. Cooperation and
information sharing is the key. As we shall describe later, this is challenging at
many levels.

Detection

Defense

Prevention
Time

Pre-Attack Attack Post-Attack

Attack
Preparation
Activities

Forensics

Fig. 1 Four phases of defense

358 T. Zseby et al.

3 Autonomic Communication

Autonomic communication describes an approach to automate decision processes
in communication networks. The goal is to move decision-making processes toward
network elements in order to minimize human intervention for network management
and protection. Thus networks should be able to manage and protect themselves,
based only on high-level goals set by users and operators.

Decision cycles have been used and explored in many disciplines. IBM started
to apply decision cycles to computer systems under a paradigm called “autonomic
computing.” The goal was to make systems self-managed in the sense that human
intervention is minimized. Users only define high-level business rules and systems
configure and optimize themselves to fulfill these goals. IBM distinguishes five lev-
els that a system can reach: basic, managed, predictive, adaptive, and autonomic.
The basic level is the lowest level and stands for systems in which all elements
are managed by a human operator. Autonomic describes the most advanced level.
Autonomic Systems are dynamically managed only by high-level business rules and
policies.

In order to achieve this, IBM introduced the concept of autonomic managers.
Autonomic managers implement an intelligent control loop that consists of four
function blocks: Monitor, Analyze, Plan, and Execute (MAPE). Monitoring func-
tions collect and aggregate information. Analysis functions correlate data and model
situations to provide the basis for prediction. Planning provides functions to plan
actions in accordance to defined policies in order to achieve specific goals. Execu-
tion functions initiate and control the execution of the plan [38]. In [48] Brent Miller
defines several self-management attributes that an autonomic computing architec-
ture should provide in order to automate the work of administrators: self-configure,
self-heal, self-optimize, and self-protect, also known as the self-CHOP concept.
Self-protecting is defined as the ability of a system to “anticipate, detect, identify,
and protect against threats” [38]. This includes detection of hostile behavior and the
performance of counteractions.

Autonomic communication can be seen as autonomic computing applied and
adjusted to communication systems. In [18] the authors present an autonomic con-
trol loop that consists of function blocks to Collect, Analyze, Decide, and Act, along
the lines of the MAPE concept in autonomic computing. If applied to computer
networks the decision cycle has to be performed in and among network nodes. The
main goal is to enable network nodes themselves to reach decisions about traffic
handling or node configuration by collecting and interpreting the required infor-
mation. Routing can be seen as an early example of autonomic communications.
Routers share information and themselves make the forwarding decisions based on
the analysis of the collected information.

A central point is the establishment of situation awareness. Situation awareness is
the result of the observation and orientation steps and provides the basis for making
sound decisions. It describes the state that evolves from constant observation and
analysis of the environment. In the observation phase critical factors in the environ-
ment are perceived. With limited resources, it is important to concentrate on the most

Concepts for Self-Protection 359

relevant factors. This is not a trivial matter. The factors essential for making a good
decision are not necessarily known a priori. Especially, in terms of new unknown
situations, it is often unclear which factors have an impact. Storage of unprocessed
observations is often required for learning. In some cases it is possible to analyze a
posteriori which factors should have been observed and analyzed in order to make a
better decision.

The orientation phase includes inference for understanding what the factors mean
with regard to the decision maker’s goals. It should also include prediction methods
in order to prognosticate what might happen in the near future. This is required
to see how the situation evolves and to detect critical developments in advance.
Furthermore, prediction techniques help to assess how different alternative decisions
would influence the situation.

A prerequisite for autonomic communication is improved situation awareness
inside network nodes. Nodes need to collect relevant information in order to form
a basis for local decisions. They need to share local data and decisions with other
nodes for cooperative decision making. The observation of the behavior of neigh-
bor nodes can also assists in assessing their integrity (e.g., whether they behave in
accordance to their assigned roles, whether they origin or transfer malicious traffic,
whether they are overloaded). This information helps to weight information from
neighbors and prevent them from following wrong suggestions (e.g. originated by
malfunctioning or infected nodes).

4 Generic Principles for Network Self-Protection

Following Sect. 3 we may define the following building blocks for enabling self-
protection capabilities in network nodes:

– Prevention
– Establishment of Situation Awareness (Monitor and Analyze)
– Decisions Making (Plan)
– Re-configuration (Execute)

In the following we further elaborate existing techniques and challenges for these
building blocks.

4.1 Prevention Strategies

Prevention mechanisms can be considered as a network’s or system’s first line of
defense. The first step is prevention by design, i.e., designing systems, software,
and protocols in a way that makes them difficult to attack. The second step is to
prevent attacks during operation. This is typically achieved by controlling access to
resources and information. However, the main drawback of prevention techniques is

360 T. Zseby et al.

their inability to cope with unknown and unpredictable attacks; they fail with new,
so-called “zero-day attacks.”

The general idea of prevention by design is similar to that of model check-
ing approaches for system verification [14]. Model checking procedures provide
a mathematical proof for whether a system, given as a model M , meets a certain
specification spec. Prevention techniques borrow from the same idea. Assume that
spec holds a description of an action that involves both the local node and a remote
one. This action may be the exchange of a message, the transfer of a document or
a part of application logic, a packet forwarding or an access grant for a specific
part of local memory. Here, prevention techniques have to evaluate whether the
specification spec can be applied to the system M without violating its specific
security requirements.

During operation, useful techniques to prevent attacks on the network are estab-
lishment of trust among communication partners, discarding of unwanted or suspi-
cious traffic (firewalls), or techniques for data encryption, authentication, and autho-
rization of users and network nodes. Sometimes the hiding of information about the
network structure (e.g., by using network address translation) is useful to limit attack
potential.

Within the networking area a variety of prevention techniques is known
(e.g., secure protocols, access control) and partly deployed. Thus we shall here
concentrate on additional techniques that can be applied at service level to improve
the overall prevention. Such techniques are especially required in ad hoc environ-
ments, where nodes can leave and join at any time. Below we present prevention
mechanisms based on service composition models that are suitable to improve
self-protection in ad hoc and hybrid environments. We also discuss their possible
integration in lightweight mobile middleware.

4.1.1 Hybrid Networks

In the terms of service level, prevention mechanism are of prime importance within
ad hoc and mobile environments where nodes are typically not connected by a fixed
infrastructure. They enter or leave each others connection range dynamically and
spontaneously establish ephemeral connections.

Often such spontaneous connections between devices often cannot be established
in a direct and secure way, e.g., through authentication procedures. This means they
have to prevent undesirable behavior by estimating the other nodes’ trustworthiness
and reputation. Networks featuring both fixed (infrastructure-based) and mobile
nodes are referred to as “hybrid networks.” Mobile nodes imply a change in the
network’s topology through their movement. They establish new connections based
on their current geographical location and their connection range. Mobile nodes
are often restricted in their computing capability due to size and power constraints.
Nodes with severe restrictions, like sensor nodes or small user devices such as cell
phones or smartphones, are called “tiny nodes.”

A group of nodes where each node is connected by single-hop or multi-hop
with every other node is referred to as an island of nodes. Within these islands

Concepts for Self-Protection 361

services can collaborate with one another to fulfill a request from a user or another
service. Such joint processing and execution of service compositions has been sur-
veyed various times [10, 24, 56]. Within the following, we will investigate the
possible integration of prevention mechanism into such collaborative schemes of
services.

4.1.2 Prevention Mechanisms

We distinguish the self-protection mechanisms of nodes within hybrid networks by
two dimensions. First, we consider at which point in time the mechanisms is inte-
grated within a service; second, we focus on the class of undesired behavior to be
prevented. For the first dimension, we estimate the prevention mechanism’s point of
integration in the service life cycle. The various phases of a traditional service life
cycle are depicted in Fig. 2.

The first part of the life cycle, referred to as the designtime of a service, deals
with a service’s model, implementation, and verification. Designtime is generally
the part of a service life cycle covered by software engineering. Here, prevention
procedures are integrated during the designtime of a service, and are accordingly
expressed as fixed design patterns for detecting attacks and malicious system behav-
ior. On the other hand, the runtime phase of a service covers the service’s behavior
during its execution. Some prevention mechanisms do not only rely on predefined
prevention mechanisms, but enable improvement of corresponding decision-making
procedure through adaptation during service runtime. A prime example of this class
of approaches are learning based prevention mechanisms that base their estimation

Requirements
Analysis

Design and
Modelling

Implementation

Testing and
Verification

Maintenance,
Observation,
Management

Provisioning and
Publishing

Service
Integration

Evaluation,
Selection,

Deprecation

Runtime

Designtime

Fig. 2 A traditional service life cycle divided into designtime and runtime [52]

362 T. Zseby et al.

of a remote node’s trustworthiness on a trust value that is updated after special events
or transactions between nodes.

The latter dimension, i.e., the class of prevented behavior, separates malicious
from selfish behavior. Here, a behavior that aims at attacking other nodes is consid-
ered as malicious, while selfish behavior of a node entails security or performance
problems for other nodes. Note that selfish behavior is not necessarily malicious,
neither is every malicious behavior provoked by a selfishly acting node.

We consider four general classes of prevention mechanisms for hybrid networks:

– Decision Rules
– Virtual Currencies
– Reputation Evaluation
– Novel Service Life Cycles

Based on the two dimensions introduced above, approaches can be classified as in
Fig. 3.

Decision Rules—Decision Rules are defined by the system developer in order to
restrict service behavior and interaction based on a fix set of rules.
Buford et al. [8] coined the term composition trust bindings by specifying a set
of rules that define the composability of various services from different sources.
Here, the mechanism can be used to secure both the path for service invocation
and content handling. The rules are hard-coded during designtime and thus static.
Since the allowed bindings are established by users based on their confidence in

Faulty/Malicious Selfish Node

Degree of Integration

D
es

ig
nt

im
e

R
un

tim
e

Reputation Evalzuation
Virtual

Currencies

Decision Rules

Service Life-Cycle Models

Fig. 3 Two-dimensional categorization of prevention mechanisms

Concepts for Self-Protection 363

specific services, the approach is suitable for the prevention of malicious as well as
selfish nodes.

Virtual Currencies—The principle of virtual currencies is based on the obser-
vation that a service execution for a remote node is associated with specific costs
such as resource and energy consumption or “real” money. Thus actions performed
on remote nodes have to be paid for with virtual money, i.e., a specific amount of
virtual money is retracted from the service requester and credited to the service
provider. In order to pre-empt the selfish behavior of nodes, each node is assigned
a limited amount of a virtual currency, forestalling that nodes act mainly as service
requesters without providing any value to the community. Key examples of virtual
currency schemes are Sprite [67] and Nuglets [9].

Reputation Evaluation—Reputation schemes allocate a degree of reputation to
each participant in a given community. In commerce, this principle has been suc-
cessfully implemented in online stores such as Amazon or eBay where each user
owns a reputation based on ratings from other users after a completed transaction.
Within ad hoc environments, nodes can be equipped with reputation values in order
to identify especially uncooperative or selfish nodes. Examples of reputation evalu-
ation approaches are Confidant [7] and Ocean [4].

Novel Service Life Cycles—While many prevention techniques rely on the exe-
cution of fixed rules in order to process incoming requests for service provisioning,
approaches inspired by artificial intelligence or social science such as reputation
evaluation or virtual currencies advance those principles from designtime to run-
time. This development mainly relies on learning algorithms enabling adaptation
of node behavior during service execution. To push prevention mechanisms further
toward the runtime of a service, novel service life cycles are proposed that aim
at integrating the least possible amount of complexity during the designtime of a
service and that rely on advanced adaptation techniques during services’ runtime.
One example of such life-cycles is the bio-inspired service life-cycle proposed by
Pfeffer et al. [44, 52], where the biological concept of evolution has been used to
model emerging behavior. This advanced short-term service adaption to long-term
service evolution. The abstract of the bio-inspired service life cycle is given in Fig. 4.

IntegrationEvolution

Creation Verification

ProvisionTransformation

Deprecation Evaluation

Initiation

Retirement

Fig. 4 A bio-inspired service life cycle [44]

364 T. Zseby et al.

The key feature of this novel service life cycle is the evolution phase that follows
service creation and integration. Service evolution is realized in two parts. First,
service compositions are evolved by the application of genetic operators, i.e., their
structure is reorganized by either mutating a single service composition or com-
bining two existing service compositions through a so-called crossover. The results
on this transformation of service compositions through genetic operators were pub-
lished by Linner et al. [45]. Transformation of a finite set of service compositions
leads to a great amount of new service compositions. Therefore, the second part of
the evolution phase comprises a selection mechanism that selects the fittest service
compositions for further reproduction while discarding the others. This selection
is based on a fitness function, that can be designed in accordance with the system
to be evolved. In the context of self-protecting services, a fitness function can be
defined that favors services with a good reputation, and eliminates malicious or
selfish services over the long term. Thus, the whole system evolves toward a system
of trustworthy nodes.

4.1.3 Realizing Trustworthy Service Compositions

In order to realize self-protecting systems, various approaches have been proposed,
ranging from classic Autonomic Computing (AC) approaches driven by industries
such as IBM [40, 60, 61] to bio-inspired organic middlewares introduced by Piet-
zowski et al. [53–55]. In the following section, we will outline a middleware for
collaborating nodes within ad hoc environments as proposed by Jacob et al. [39].
The Middleware is based on SmartWare [43], a lightweight middleware enabling
autonomic communication via REST [32].

SmartWare decouples autonomic behavior from actual services by featuring three
different kinds of containers. First, a Service container holds the services available
on the according device. Secondly, the Mediator container holds a set of mediators
encapsulating lower level autonomic behavior such as service discovery. Thirdly,
the Interaction container encompasses a set of possible interaction mediums such as
the semantic data space [46], enabling a loosely coupled interaction of services and
mediators. By outsourcing the autonomic capabilities of services into mediators,
services become more lightweight and thus more likely to be executable on tiny
nodes as introduced in Sect. 4.1.1. Moreover, not all mediators have to be executed
on every node. In case a device is not capable or willing to host a specific mediator,
the according functionality can be proxied by remote mediators on other devices.

The middleware for mobile collaborating devices proposed by Jacob et al. [39]
builds on top of SmartWare and provides higher-level functionality, enabling col-
laborative behavior of multiple services. Thus the middleware provides a joint state
management and eventing system and bases on principles of autonomic communi-
cation such as interaction patterns enabling loose coupling and dynamic service
discovery. Prevention mechanisms are implemented by a Trust Mediator with a
learning algorithm to update the trust values held for each device/service pair on
special occasions, e.g., after a transaction with a service, a change in the environ-
mental context, or a variation of network topology.

Concepts for Self-Protection 365

4.2 Establishment of Situation Awareness

If prevention fails, the next step is detection of attack preparation or already ongoing
attack activities in the network. A pre-requisite for this is establishment of situation
awareness. This is typically done by observing and analyzing network node behav-
ior and traffic flows. The situational view provides the basis on which to make a
decision about the current threat level. From this adequate countermeasures can be
activated.

Establishing situation awareness is not a simple task. It can be subdivided into
three levels:

– Perception: Observe the relevant factors in the environment.
– Inference: Understand what those factors mean for the decision maker’s goal.
– Prediction: Make a prognosis of what could happen next.

Network traffic is usually extremely dynamic and difficult to predict. This means
that the view of the situation needs to be constantly updated. The ideal would be to
gain a complete picture of the network. That would involve observing every packet
at each network node with deep packet inspection to read each packet’s content.
With this we could detect even sophisticated application-level attacks at least a pos-
teriori. But observing all packets at all nodes is impossible. We cannot measure
everything everywhere.

First of all we have to deal with resource limitations. Processing power, stor-
age, and transmission capacity are limited. Network measurements are only support
functions for network operation and should not influence network performance. Fur-
thermore, their costs should not exceed costs for network operation itself. Another
problem is the overwhelming amount of result data we would get if we could afford
to install specialized measurement hardware at each network node. Resource limi-
tations are even worse in wireless networks where devices are smaller and therefore
provide less resources. In addition to this, wireless transmission capacities are usu-
ally smaller than those for wired transmissions.

A second reason why we cannot measure everything have to do with privacy
concerns. Users do not want to reveal too much information about their traffic.
Providers are reluctant to share captured data with competitors. Plus the legal situ-
ation varies enormously from country to country making it even more more prob-
lematic if detailed data is shared among providers in different countries.

A third challenge is the analysis of encrypted traffic. We hope that the use
of encryption techniques and secure protocols (e.g., IPsec) further increases in
future. Encryption techniques limit attackers in gathering information or altering
data exchanged on the network. Even so, the use of encryption also limits the abil-
ity of detection systems to analyze what is going on in the network and to model
what can be considered as normal behavior. For some applications, it is possible to
guess the application from packet patterns without deep packet inspection. However,
this is quite challenging and does not work for arbitrary applications. To date, it is

366 T. Zseby et al.

unclear what bearing the inability to inspect encrypted traffic has on attack detection
techniques.

We postulate the following requirements that a system should fulfill in order to
establish situation awareness:

– Cope with resource constraints
– Change viewpoints
– Share information
– Respect privacy concerns

In the following we describe the requirements and the challenges derived from
them more in depth.

4.2.1 Cope with Resource Constraints

The amount of data traffic carried by the Internet each day has increased dramati-
cally over the last decades. A deceleration of this trend is not in sight. Technologies
that allow higher data rates increase not just the amount of data that can be measured
but also the quantity of measurement results needing to be processed, stored, or
transferred per time unit.

Furthermore, the required measurement granularity can vary. Detection of
some attacks requires fine-grained flow analysis, other attacks need deep packet
inspection. So the main challenge is to keep up with high packet rates and
increasing demands for fine grained information. Resources required for storage,
post-processing, and transport of results increase with the amount of data captured
per packet. In some cases additional information (e.g., arrival times, flow ID) also
needs to be stored.

This can lead to an overwhelming amount of results data that can grow even
larger than the actual data transmitted on the network itself, e.g., if the whole packet
content is transmitted with additional information like timestamps. There are sev-
eral different approaches to how measurement functions can cope with resource
constraints.

One approach to dealing with increasing packet rates is the development and
use of specialized hardware for measurement tasks. In [33] it is pointed out that
design goals for standard PCs and network interface cards contradict measurement
needs. One instance of this is that interface cards can arbitrarily discard packets
if rates are too high, whereas for precise measurements it is important to capture
all incoming packets. Furthermore, early and accurate time stamping of received
packets is important for measurements but not available in standard PCs. The paper
concludes that only specialized hardware can fulfill measurement demands.

In [17] Luca Deri describes the lessons learned from trying to use standard hard-
ware for measurements in Gigabit networks. He recommends assessing measure-
ment system performance in packets/second and not in Mbit, because it is more
difficult to measure many small packets than a few large ones. He sees one main
bottleneck in the file system performance that impedes storage of data at Gbit speed.

Concepts for Self-Protection 367

He also criticizes the “divide et impera” concept whereby traffic to be measured is
distributed among several probes. This approach requires multiple probes and does
not reduce the amount of results data. He rather suggests the use of traffic prepro-
cessors such as the nProbe [17] which optimize packet capturing and flow cache
operations. As a further possibility he mentions the use of sampling methods.

Endace Systems [25] provides hardware cards, the DAG boards [16], specialized
in packet capturing and widely used within the research community. DAG boards
are based on a configurable and programmable structure and include on-board fil-
tering of data before it is passed to further processing. They allow highly accurate
timestamping of packet arrivals with special support functions for the use of GPS-
based clock synchronization. The fact that many scientists are using the same mea-
surement hardware also increases consistency and comparability of measurement
results.

The problem with solutions based on hardware is high costs. Especially if net-
work wide measurements are required, dedicated hardware has to be placed at mul-
tiple observation points. This can increase the costs immensely.

Another approach for coping with increasing packet rates is the improvement
of algorithms for packet processing (e.g., storage and classification). As packet
processing is needed for a variety of network functions (e.g., routing, QoS provi-
sioning), optimization of packet classification and filtering techniques has become
a broad field of research. A well-known packet filter implemented in Unix systems
is the Berkley Packet Filter (BPF). BPF is used by the broadly deployed tool tcp-
dump [47].

New packet filtering and classification techniques are described in [[59], [27],
[64], [66], and [6]. These new techniques mainly focus on the improvement of
search algorithms for finding the appropriate entry within classification rules and
for the intelligent organization of data storage after classification. Feldmann and
Muthukrishnan [31] describe the trade-offs between time and space requirements
for packet classification. A method presented in [15] tries to reduces the required
number of evaluated filter expressions operating at higher speeds. An overview of
classification and filtering algorithms is given in [57].

Due to higher packet rates and fine grained flow definition, a higher number of
flows can also be observed (e.g., [30]). More efficient methods are needed to store
per flow information and to reduce the number of flow cache operations needed
(e.g., lookup). Reference [37] describes a technique to reduce storage requirements
by efficiently organizing per packet and per flow information to capture and store
flow information on 10GB-Ethernet and OC-192 links. Space-Code Bloom Filter
(SCBF) is another approach for efficient storage [41].

The optimization of algorithms is useful for coping with higher data rates, but
it has limitations. This research field has been active for quite some time yet it is
difficult to find further significant improvements. What’s more, if algorithms are
implemented in hardware they usually lack the flexibility and re-configurability that
software-based solutions can offer.

The third approach for coping with ever higher data rates is to apply data selec-
tion techniques. As early as 1989 Paul Amer and Lillian Cassel proposed the use

368 T. Zseby et al.

of packet sampling techniques for real-time status reporting in IP networks [2].
Their paper describes sampling-based measurements of peak load, packet rates and
changes in those metrics. Two different sampling techniques are introduced, a sys-
tematic and a random method with a time-based start trigger and a count-based
stop trigger, realized by the enabling and disabling of the receive function of the
measurement device.

A much cited early work on sampling was published in 1993 by Claffy [12].
She and her co-authors describe the empirical investigation of different sampling
schemes for the estimation of distributions of packet sizes and interarrival times. In
their work five different sampling schemes are compared: Count- and time-based
systematic sampling, count- and time-based stratified sampling and a count-based
n-out-of-N sampling. In [22] Duffield addresses the influences on flow reporting,
resource consumption, and the accuracy for volume estimations based on sampling
techniques.

In recent years, researchers have also used sampling for the estimation of more
unusual metrics such as the temporal characteristics or spectral density of the packet
arrival process or the tracking of the path a packet takes through the Internet. The
authors of [50] focus on the detection of temporal correlations in a trace. They
introduce a sampling method called Fast Correlation-Aware Sampling (FastCARS).
This method consists of a superposition of multiple systematic count-based sam-
pling processes (in their paper this is called deterministic event-driven sampling).
The authors in [36] aim at the recovery of the spectral density of the packet arrival
process and the distribution of the number of packets per flow from sampled values.

An overview of selection techniques is given in [20]. Basic packet selection
methods such as probabilistic sampling, systematic time- and count-based sampling,
and random n-out-of-N sampling are currently standardized in the IETF PSAMP
group [70]. Besides various packet selection techniques, flow selection techniques
(e.g., [21]) and combined methods (e.g., sample-and-hold [29]) have also been pro-
posed in the literature.

One problem with data selection techniques is that they substitute the exact mea-
surement of the metric of interest by an estimate of the said metric. An estimate
is useless if we cannot assess estimation accuracy. This means that an accuracy
statement has to be provided with the measurement result in order to assess the
estimation error. This is no easy task as the accuracy often depends on the parent
population. In our case this is the traffic in the network, which is highly dynamic so
that the accuracy statement has to be continuously updated. Furthermore, the accu-
racy statement has to be calculated based on the selected data only. Due to storage
limitations it is sometimes even based on an aggregated version of this data [69].

Besides the high resource consumption in general, control of the resource con-
sumption poses yet another problem. Passive measurements rely on the traffic exis-
tent in the network so that the amount of resources required for measurements also
vary. As such traffic is highly dynamic, we can observe changes in packet rates and
the number of flows, giving us extremely variable resource demands. To cope with
this some approaches have been proposed for controlling resource consumption by
using adaptive data selection or aggregation techniques. Another contrary goal is to

Concepts for Self-Protection 369

aim at a constant estimation accuracy and to adapt selection techniques to this end.
Adaptive data selection techniques are described in the section below.

4.2.2 Change Viewpoints

The ability to change viewpoints is extremely valuable for establishing situation
awareness. In order to generate a good picture of the current situation, it is useful
to have the option of zooming in or out. Sometimes it is sufficient to look at link
counters, or coarse grained flow information. At other times, e.g., if one suspects an
attack, enabling deep packet inspection might be required to further analyze what is
happening. Some commercial intrusion detection systems use a multistage approach
where suspicious traffic is re-directed to a device that performs an in-depth analysis.

The capability to re-configure the measurement system provides the basis for
adaptive measurement techniques and is a prerequisite for resource and accuracy
control. Adaptive measurements can be used to tune toward events of interest by
changing observation points, classification rules, or aggregation and selection tech-
niques on demand. IBM has recently proposed “zoom monitors” that adapt infor-
mation granularity based on the relevance of the traffic by re-configuring the mea-
surement system [62].

Initial approaches for adaptive data selection aimed at maintaining a constant
resource consumption. In [19] an adaptive sampling scheme is presented that aims
at a constant resource consumption to improve utilization of available CPU power.

Further approaches aim at a stable estimation accuracy. Choi introduces an inter-
esting concept of adaptive sampling for the detection of changes in traffic load [11].
She uses time-based measurement intervals and a random probabilistic sampling for
packet selection. The goal here is to keep the estimation accuracy (error and con-
fidence level) within given boundaries. This is achieved by adapting the sampling
probability within an observation period to the expected traffic characteristics of that
interval.

The authors of [28] propose extending Cisco NetFlow to allow an adaptation of
the sampling rate. This is motivated by the fact that resource consumption, memory,
and bandwidth required to store and transport flow records, depends largely on the
number and type of arriving packets at the observation point. They especially point
out that flow cache requirements and the number of flow records can mushroom
when a flooding attack hits the router, introducing additional load problems for the
router under attack. This can be prevented by using the proposed adaptive NetFlow
which reduces the sampling rate if the packet rate increases.

4.2.3 Share Information

Information sharing is the key for successful defense. The advance to be made by
combining information from multiple (trusted) parties is immense. Sharing infor-
mation is the prerequisite for learning from others. If one node observes suspicious
traffic it is useful to see whether other nodes have observed similar phenomena. If a
node is infected by a virus or a worm that spreads within a network, it is worthwhile

370 T. Zseby et al.

checking whether neighbor nodes or neighbor networks have experienced similar
events in the past. If this is the case, information from neighbors can help to analyze
the attack, select appropriate countermeasures, or nip it in the bud.

There are different levels of information sharing. The first level is the sharing of
raw measurement data. One method for sharing observations from different network
nodes is the realization of multi-point measurements, i.e., the collection of data from
multiple observation points. Multi-point measurements are essential for gaining a
network-wide view. They are also a prerequisite for calculating certain metrics. By
observing the same packet from multiple observation points we can calculate packet
delays or the path the packet took through the network. Sharing post-processed,
derived data or local decisions from different network nodes is also useful. Differ-
ent nodes may come to a different conclusion about the current threat level in the
network. Generating a joint decision from this requires some coordination, but can
improve detection quality.

Today there are various tools available that support multi-point measurement.
But correlation of data from multiple observation points still holds some challenges.
Correlating time information from different observation points requires clock syn-
chronization. Different approaches exist, such as the network time protocol (NTP)
or GPS-based systems. But nowadays most routers still do not support accurate
clock synchronization systems that would for instance allow network-wide passive
one-way-delay measurements.

Furthermore, packet events that occur at different observation points need to be
correlated. This can be done by using parts of the packet content to recognize the
packet at different points in the network. But this requires storage and transmission
of the packet content of all measured packets. To save resources, it has been pro-
posed to transfer a packet ID instead of the whole packet to identify packet arrivals
at different points in the network (e.g., [35], [23], [71]).

One quite difficult case is the combination of data selection techniques with
multi-point measurements. It needs to be ensured that the same packet is selected
at different points. But packet sequence and arrival times differ at the observation
points so that the selection of the same packet can be only guaranteed with filter-
ing techniques which operate on parts of the packet content. Sampling techniques
that operate on arrival time or packet sequence are not applicable. In [23] and
[70] hash-based selection techniques are discussed that aim at emulation of random
sampling.

Analysis of data from multiple observation points can be done in a centralized
or decentralized way. In a decentralized case this would require each network node
to request information from other network nodes in order to establish their own
situational view. With this, each node can request the required input for decision-
making processes on the node.

In some cases it is also useful to incorporate information from different network
layers (cross-layer approaches). Further information about the network environ-
ment (e.g., geo-location of network nodes), about user behavior or external events
(e.g., content has been placed on the web that will attract many users) can be useful

Concepts for Self-Protection 371

to build a situational view while incorporating information from other instances in
the network (e.g., information from a AAA server) can help to further analyze the
situation and improve defense strategies [68].

A more difficult challenge than sharing information from different observa-
tion points in one network is sharing information among network operators. Data
exchange between providers can help to better identify an attack, track an attacker
faster, and isolate the source of the attack. But operators are extremely reluctant to
share data about the traffic in their network because such data may reveal infor-
mation about the network structure, the users or network vulnerabilities. One main
fear is that competitors might get information they can use for their own advantage.
Another should be that potential attackers could learn about the network and its
traffic and so are able to craft better attacks. Privacy concerns also limit the ability
to share information.

Besides the disclosure of information problem, there is also an architectural chal-
lenge when sharing information. There are other areas where information sharing
among providers is necessary for network operation. One example is the border
gateway protocol (BGP) used to share routing information among border routers.
BGP demonstrates that providers have found solutions to share data. But it also
shows the immense problems that can arise from this. To give but one example,
configuration errors introduced by unexperienced providers can have an impact on
a global scale.

In addition, communication to improve attack detection by cooperation can
induce major vulnerability of the whole detection system. If an attacker manages
to break into the communication path he or she can simply pretend that an attack is
going on by simply reporting incidents. Thus the resources of the whole detection
system may be bound up, without even the need for a real attack. Communication
methods that help in protecting the network have themselves to be well protected
against attacks.

Another aspect is that the research community is starved for data. Scientists who
have data (e.g., from projects with operators) are not allowed to publish or share
it. This is especially true if data contains attacks. Consequently, there is no useful
reference data for investigating and comparing attack detection algorithms. This is
an immense constraint and impediment to research on detection methods. Hopefully
it will not require a super attack to recognize the advantage of sharing information
and to speed up research for joint network protection.

Sharing information requires standardized interfaces. In January 2008 the IETF
standardized the IP Flow Information Export (IPFIX) protocol [13] for exporting
flow information from routers and network probes. This protocol can be also used
for exporting packet information or derived data. For storing and sharing packet
information the tcpdump packet file format is often used as a de facto standard. For
storing flow information the IPFIX group discusses a proposal for an IPFIX file
format [63]. Standardized formats for the storage of measurement data also help
researchers to share and compare data and give an incentive to provide tools with
standardized interfaces.

372 T. Zseby et al.

4.2.4 Respect Privacy

The need to respect privacy concerns is often in contradiction with the desire to get
as much information as possible. Privacy concerns need to be respected but they do
constrain data collection and information sharing.

The legal situation and public perceptions on the need to protect data both vary
from country to country. There is a need to investigate methods that are able to
detect attacks without compromising user privacy. Methods that do not require deep
packet inspection are of advantage. Furthermore, techniques such as aggregation or
sampling can conceal user information details so methods that can work with highly
aggregated or sampled data may be less problematic. However, given the increase
of higher-layer and ever more sophisticated attacks, it is often impossible to rely for
detection solely on coarse grained or aggregated data.

The situation is less critical as long as the data does not leave the provider net-
work. It becomes much more severe when raw data is shared among providers
or researchers. Use of anonymization techniques can be of assistance. Even so,
anonymization has to keep the analysis goal in mind. This means it has to be ensured
that the aspects of interest can still be analyzed so not every technique is applicable
to each case.

An alternative discussed in the research community, is to bring the analysis soft-
ware to the data instead of sending data to interested researchers. This involves
researchers sending their analysis scripts to the data owner. The data owner then
runs the scripts on the data and only sends back the analysis results.

4.3 Decision Making

Decision making is the next step in the decision cycle. For self-protection, decision
making mainly concerns decisions about threat level and counter actions. It needs to
be decided whether the system suspects an attack or a failure that requires immediate
action.

One challenge for the decision-making process is to select the right information
of relevance to the decision. A further challenge from the measurement side is to
provide the relevant information in time. If the information arrives too late it might
be useless for the decision-making process.

The decision-making process should be able to control situation awareness. This
means it should be able to re-configure measurement and analysis functions in order
to change classification rules, increase or decrease sampling and control the calcu-
lation of statistics and derived metrics. The ideal case when all required information
is available in time is quite rare. Decision-making processes therefore need to deal
with situations where they have incomplete data and need to decide in uncertainty.

The decision-making process should incorporate learning strategies to improve
the decision quality. Furthermore, prediction techniques can be used to understand
an detect a potentially negative evolving situation and to analyze alternative deci-
sions and their potential impact.

Concepts for Self-Protection 373

Decision making for self-protection requires attack detection methods. We dis-
tinguish two attack detection methods based on traffic observation. Signature-based
detection is the recognition of previously captured attack patterns. Such methods
require knowledge about the expected attack traffic and therefore only work for
known attacks. A second method is anomaly detection. Anomaly detection tries to
detect deviations from the expected normal behavior. Anomaly detection can also
detect unknown attacks (zero-day events). However, it relies on a good knowledge
and prediction of what is considered as normal behavior. The decision whether traf-
fic patterns indicate an attack or not can turn into a tough challenge as a attackers
increasingly adapt their strategies to detection systems and try to conceal attack
traffic by using so-called stealth attacks.

4.3.1 Signature-Based Detection

Signature-based detection techniques are based on the recognition of a known sig-
nature. Observed traffic characteristics are compared to a previously stored pattern.
The pattern represents a traffic characteristic that is typically produced by attack
or attack preparation activities. If the observed traffic and the stored pattern are
equal, the system sends an alarm. Since it is known what the system is looking for,
parameters for traffic observation and analysis can be set statically. Signature-based
detection techniques are used in virus scanners, or intrusion detection systems such
as SNORT [58].

As attacks become more sophisticated, signatures to detect attacks become more
complex. It often requires deep packet inspection or the re-assembly of bidirectional
communication patterns. Thus one challenge for signature-based detection is the fast
analysis of traffic patterns and the high amount of data that needs to be analyzed.
Another problem is that attack patterns change and signatures must be updated as
new attack patterns become known. The biggest drawback of signature-based detec-
tion techniques is that they only work on known or predictable attacks.

4.3.2 Anomaly Detection

Anomaly detection is based on the detections of deviations from the normal situ-
ation. Usually a model is built representing the normal state. Traffic observations
are then compared to the normal network operation. If deviations to normal behav-
ior exceed a given threshold, the system sends an alarm. Thus anomaly detection
systems can also detect new attacks. Anomaly detection can be based on statistical
data analysis, machine learning, or data mining techniques. An overview of anomaly
detection systems and the various approaches is given in [51].

4.3.3 Collaborative Attack Detection

Collaborative Attack Detection is based on information sharing among detection
algorithms. In the same way as information sharing at the measurement layer
increases situation awareness, one can improve the situational view by sharing

374 T. Zseby et al.

analysis results among detection systems. Here we should distinguish two different
aspects.

In the Intra-domain case detection methods or partial decision-making processes
run on different nodes in one network. Nodes then share their local view of the
situation and their analysis results. Based on the shared information a joint detection
decision has to be formed. Distributing the detection task among multiple nodes also
provides a method of sharing the processing load. Since the same packets can be
observed at multiple nodes in one network, each node can look at different aspects,
e.g., observe different flows or selected traffic at a finer granularity.

Some detection systems already distribute the detection task. In such systems
the whole traffic is analyzed in a coarse grained analysis. Only suspicious traffic is
re-directed to a more fine grained analysis. Nowadays, detection tasks are often per-
formed by dedicated hardware. Sharing detection resources among standard routers
is a potential alternative if the subtasks become less resource intensive.

The decision making can be done in a centralized or decentralized way. In
a centralized approach the analysis results and local decisions are collected and
evaluated on a central server. This has the advantage that only one instance
needs to collect the information from all participating nodes. Furthermore, only
the central instance makes the final decision and invokes the counteractions if
required so there is no need for further coordination this with all the nodes. All
this decreases the complexity of the system while also reducing the communication
demands and making the detection system less vulnerable to attacks on its internal
communication.

On the other hand, a central server entails the risk that a failure or a targeted
attack on the server endangers the operation of the whole system. In a decentralized
detection scenario, network nodes themselves should build to a joint decision. This
can be done in a hierarchical manner with dedicated roles per node, by selecting
a leader on demand or by using voting or other methods to make a joint decision
among equal members of a group.

Organizing such a distributed decision process is no easy matter. First of all
we have to deal with the inter-operation of multiple control loops. Policies for
the cooperation of these loops have to be carefully selected to prevent undesired
states, deadlocks, or oscillations and communication demands are also higher. This
means not only more traffic in the network but also more vulnerabilities to failures or
attacks against the internal node communication. Establishing trust among the nodes
or encrypting the exchanged information are approaches for improving resistance
against attacks on node communication.

Another aspect is timely access to the required information. The time that is
required for traffic observation and analysis, decision making, and reconfiguration
has to be considered when the control loops are designed. Decision-making algo-
rithms need fallback solutions for cases where the required information is not avail-
able at the time where the decision is needed. Participation of multiple nodes in the
decision-making process increases interdependencies and makes the overall process
much more complex.

Concepts for Self-Protection 375

The challenges for distributed collaborative decision making can be summarized
as follows:

– Setting collaboration policies
– Delivering the required information in time
– Protecting internal communication

A second level for a collaborative attack detection is the Inter-domain case, in
which detection systems of different networks share their views about the situa-
tion and cooperate in detection. Networks can share signatures from attacks they
have experienced in the past. If available, successful defense strategies can also be
exchanged. Warning neighbors about suspicious activities in the own network can
provide them with a valuable time advantage to prepare defense strategies before
the attack spreads into their network. In addition, anomaly detection systems can
profit enormously from getting data from neighbors as input to learning processes
for modeling normal network behavior.

Even so, as mentioned above information sharing among providers is very dif-
ficult. This is not only the case for sharing measurement information. Even infor-
mation exchange about incidents is not very common. Quite often incidents are
not reported, because providers fear negative publicity. This is one of the negative
effects of competition as it prevents learning. As incidents with destruction on a
global scale regularly show, attackers are ahead of the game.

The IETF working group on Extended Incident Handling (INCH) made an
attempt to standardize a format to exchange information about computer security
incidents. This was intended to improve the work of the Computer Security Incident
Response Teams (CSIRTs). The group developed an Incident Object Description
Exchange Format (IODEF). An attempt was also made to standardize a Real-time
Inter-Network Defense (RID) protocol for enabling inter-network defense strategies
by joint incident handling. However, due to a lack of supporters, the INCH working
group was closed in October 2006. Some implementations for sharing information
do exist (e.g., Automated Incident Reporting AirCERT [1]) and Sprint has made
an attempt to standardize an architecture for data sharing among operators, but
they failed when proposing to build an IETF working group around this topic. It
seems that the majority of operators is not yet sensitized enough to recognize the
importance of sharing information.

4.4 Re-Configuration

Self-protection requires the ability to change network configuration in order to react
to attacks. This includes the ability to enable filtering techniques to block unwanted
traffic. The ability to influence routing is also useful to re-direct traffic or elimi-
nate infected nodes. As explained above, it is also needed to allow measurement
re-configuration, e.g., to support a more in depth analysis of suspicious traffic.

376 T. Zseby et al.

The most common techniques for reacting to an attack are the following:

– Traffic blocking
– Traffic redirection
– Elimination of infected systems or services

Nowadays network devices are often configured manually using proprietary
vendor-specific languages and protocols. In December 2006 the IETF working
group on network configuration (NETCONF) standardized a protocol for the con-
figuration of network devices [26]. The protocol can use Secure Shell (SSH),
Blocks Extensible Exchange Protocol (BEEP), or the Simple Object Access Pro-
tocol (SOAP) as the underlying transport. The different uses of the various transport
protocols are described in [65], [34], and [42]. An approach to secure NETCONF
data exchange by Transport Layer Security (TLS) is described in [3].

The IPFIX group has already adopted the concept to allow re-configuration of
measurement devices and data export. A data model for configuring IPFIX and
PSAMP processes is proposed in [49]. It uses the data modeling language YANG.
YANG has been proposed as the data modeling language for NETCONF in [5].

4.5 Protection of the Detection System

Protecting the detection system itself is extremely important. If adversaries can trick
the detection system it is not even necessary to launch a real attack to disturb net-
work operation. Loading the system with wrong alarms or triggering the activation
of unnecessary counteractions can decisively influence network operation.

A protection system based on information sharing and learning introduces new
vulnerabilities. New vulnerabilities can arise from the following features:

– Communication among nodes: Sharing information and trust establishment
requires additional communication paths. If an attacker manages to interrupt
communication or to alter the sent information it is possible to trick the detection
system.

– Adaptation techniques: Control loops used for automatic adaptation can be
destroyed or overloaded by attackers.

– Learning techniques: If learning techniques are used and information about the
learning process can be discovered, an attacker can train the system to consider
attack behavior as normal.

– New software: The introduction of new methods for self-protection always entails
the risk of new vulnerabilities. Extensive testing is required before new methods
can be relied on.

Much more research is required in this area and in the area of autonomic commu-
nication in general to prevent attacks on newly deployed methods in future networks.

Concepts for Self-Protection 377

5 Conclusion

Self-protection concepts incorporate decision-making cycles for network security
directly into the network. Based on the principles of autonomic communication,
they aim to reduce human intervention for attack prevention, detection, and defense.
Prevention mechanisms at network level can be supported by the incorporation of
prevention techniques in service composition. Detection and defense should incor-
porate further functions in the network for making decisions on threat level and
counteractions.

All this is predicated on the establishment of situation awareness which can
be achieved by the monitoring and analysis of traffic and environment. Given the
dynamic nature of network traffic this is a challenging and costly task. Cooperation
of network nodes during observation and analysis is useful for improving situation
awareness.

The decision-making process within the network can be even more challenging.
Limited by the achievable situation awareness and timing requirements, decisions
have to be made in uncertainty based on incomplete and untimely delivered infor-
mation. Decisions have to be made fast and with consideration of the costs and
benefits arising from the decision. Learning techniques provide a basis to improve
decision-making. Cooperation of nodes during decision making helps to improve
decision quality, but also introduces further challenges such as establishing suitable
communication among nodes and the handling of multiple concatenated control
loops.

In order to (re-)configure network nodes with regard to the decision outcome, it
is necessary to provide flexible network functions and standardized configuration
interfaces.

Many building blocks for self-protection already exist, such as measurement soft-
ware, protocols for node cooperation, adaptation techniques, learning algorithms,
and configuration interfaces. Nevertheless, the integration and adjustment of such
techniques to enable collaborative detection and joint decision making in future
networks still remains a daunting challenge.

References

1. AirCERT. http://aircert.sourceforge.net/.
2. P. D. Amer and L. N. Cassel. Management of sampled real-time network measurements. In

14th Conference on Local Computer Networks, October 1989.
3. M. Badra. NETCONF over Transport Layer Security (TLS), February 2008. Internet Draft,

work in progress.
4. S. Bansal and M. Baker. Observation-Based Cooperation Enforcement in ad hoc Networks,

2003.
5. M. Bjorklund (ed.). YANG – A data modeling language for NETCONF, January 2009. Internet

Draft, work in progress.
6. H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis. FFPF: Fairly Fast Packet

Filters. In Proceedings of OSDI’04, 2004.

378 T. Zseby et al.

7. S. Buchegger and J.-Y. L. Boudec. Performance analysis of the CONFIDANT protocol: Coop-
eration of nodes—fairness in dynamic ad-hoc networks. In Proceedings of IEEE/ACM Sym-
posium on Mobile Ad Hoc Networking and Computing (MobiHOC), Lausanne, Switzerland,
June 2002. IEEE.

8. J. Buford, R. Kumar, and G. Perkins. Composition trust bindings in pervasive computing
service composition. In PERCOMW ’06: Proceedings of the 4th annual IEEE international
conference on Pervasive Computing and Communications Workshops, p. 261, Washington,
DC, USA, 2006. IEEE Computer Society.

9. L. Buttyán and J. Hubaux. Nuglets: A Virtual Currency to Stimulate Cooperation in Self-
Organized ad hoc Networks. Technical Report DSC/2001, 2001.

10. D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha. Service composition for mobile environ-
ments. J. Mobile Netw. Appl., Special Issue on Mobile Services, 10(4): 435–451, January
2005.

11. B.-Y. Choi, J. Park, and Z.-L. Zhang. Adaptive random sampling for load change detection.
SIGMETRICS Perform. Eval. Rev., 30(1): 272–273, 2002.

12. K. C. Claffy, G. C. Polyzos, and H. W. Braun. Application of sampling methodologies to
network traffic characterization. In ACM SIGCOMM, pp. 194–203, 1993.

13. B. Claise. Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange
of IP Traffic Flow Information. RFC 5101 (Proposed Standard), January 2008.

14. E. M. J. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts and London, England, 1999.

15. J. Coppens, S. D. Smet, S. V. den Berghe, F. D. Turck, and P. Demeester. Performance evalua-
tion of a probabilistic packet filter optimization algorithm for high-speed network monitoring.
In HSNMC, pp. 120–131, 2004.

16. The DAG project. http://dag.cs.waikato.ac.nz.
17. L. Deri. nprobe: an open source netflow probe for gigabit networks. In Proc. of Terena

TNC2003, 2003.
18. S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe, F. Massacci, P. Nixon, F. Saffre,

N. Schmidt, and F. Zambonelli. A survey of autonomic communications. ACM Trans. Auton.
Adapt. Syst., 1(2): 223–259, 2006.

19. J. Drobisz and K. J. Christensen. Adaptive sampling methods to determine network traffic
statistics including the hurst parameter. In LCN, pp. 238–248, 1998.

20. N. Duffield. Sampling for passive internet measurement: A review. In Statistical Science,
Vol. 19, pp. 472–498, 2004.

21. N. Duffield, C. Lund, and M. Thorup. Charging from sampled network usage. In Proc. Internet
Measurement Workshop, November 2001.

22. N. Duffield, C. Lund, and M. Thorup. Properties and prediction of flow statistics from sampled
packet streams. In ACM SIGCOMM Internet Measurement Workshop, 2002.

23. N. G. Duffield and M. Grossglauser. Trajectory sampling for direct traffic observation. In
SIGCOMM, pp. 271–282, 2000.

24. S. Dustdar and W. Schreiner. A survey on web services composition. IJWGS, 1(1): 1–30,
2005.

25. Endace measurement systems. http://www.endace.com.
26. R. Enns. NETCONF Configuration Protocol. RFC 4741 (Proposed Standard), December

2006.
27. F. Ergun, S. Mittra, S. C. Sahinalp, J. Sharp, and R. K. Sinha. A dynamic lookup scheme for

bursty access patterns. In INFOCOM, pp. 1444–1453, 2001.
28. C. Estan, K. Keys, D. Moore, and G. Varghese. Building a better NetFlow. In SIGCOMM,

2004.
29. C. Estan and G. Varghese. New directions in traffic measurement and accounting: focusing on

the elephants, ignoring the mice. ACM Trans. Comput. Syst., 21(3): 270–313, 2003.
30. W. Fang and L. Peterson. Inter-as traffic patterns and their implications. In Global Telecom-

munications Conference, December 1999.

Concepts for Self-Protection 379

31. A. Feldmann and S. Muthukrishnan. Tradeoffs for packet classification. In INFOCOM, pp.
1193–1202, 2000.

32. R. T. Fielding. Architectural Styles and the Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine, 2000.

33. C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski, D. Papagiannaki, and F. Tobagi. Design
and deployment of a passive monitoring infrastructure. Lecture Notes in Computer Science,
2170: 556+, 2001.

34. T. Goddard. Using NETCONF over the Simple Object Access Protocol (SOAP). RFC 4743
(Proposed Standard), December 2006.

35. I. D. Graham, S. F. Donnelly, S. Martin, J. Martens, and J. G. Cleary. Nonintrusive and accurate
measurement of unidirectional delay and delay variation on the internet. In INET, 1998.

36. N. Hohn and D. Veitch. Inverting sampled traffic. ACM SIGCOMM internet measurement
conference (IMC 2003), Miami Beach, Florida, USA, October 2003.

37. G. Iannaccone, C. Diot, I. Graham, and N. McKeown. Monitoring very high speed links. In
ACM Internet Measurement Workshop, 2001.

38. IBM. An architectural blueprint for autonomic computing. white paper, IBM, 2006.
39. C. Jacob, H. Pfeffer, L. Zhang, and S. Steglich. Establishing service communities in peer-to-

peer networks. In 1st IEEE International Peer-to-Peer for Handheld Devices Workshop CCNC
2008, Las Vegas, NV, USA, January 10–12 2008.

40. J. Koehler, C. Giblin, D. Gantenbein, and R. Hauser. On Autonomic Computing Architectures,
2003.

41. A. Kumar, J. Xu, J. Wang, O. Spatscheck, and L. Li. Space-code bloom filter for efficient
per-flow traffic measurement. In Infocom, 2004.

42. E. Lear and K. Crozier. Using the NETCONF Protocol over the Blocks Extensible Exchange
Protocol (BEEP). RFC 4744 (Proposed Standard), December 2006.

43. D. Linner, H. Pfeffer, A. Kress, S. Kruessel, and S. Steglich. SmartWare, 2008.
44. D. Linner, H. Pfeffer, I. Radusch, and S. Steglich. Biology as Inspiration towards a new

Service Life-Cycle. In Proceedings of the 4th IEEE International Conference on Autonomic
and Trusted Computing (ATC’07), ISBN: 978-3-540-73546-5, pp. 94–102, Hong Kong, China,
July 11–13 2007.

45. D. Linner, H. Pfeffer, and S. Steglich. A genetic algorithm for the adaptation of service
compositions. In Proceedings of the 2nd International Conference on Bio-Inspired Models
of Network, Information, and Computing Systems, 2007.

46. D. Linner, I. Radusch, S. Steglich, and C. Jacob. The semantic data space for loosely coupled
service provisioning. In ISADS ’07: Proceedings of the Eighth International Symposium on
Autonomous Decentralized Systems, pp. 97–104, Washington, DC, USA, 2007. IEEE Com-
puter Society.

47. S. McCanne, V. Jacobson, C. Leres. tcpdump manual page, 2001. Lawrence Berkeley National
Laboratory, University of California, Berkeley, CA, USA.

48. B. Miller. The Autonomic Computing Edge: Can you Chop Up Autonomic Comput-
ing? Technical report, IBM, 2008. available at http://www.ibm.com/developerworks/
autonomic/library/ac-edge4/.

49. G. Muenz and B. Claise. Configuration Data Model for IPFIX and PSAMP, November 2008.
Internet Draft, work in progress.

50. J.-Y. Pan, S. Seshan, and C. Faloutsos. FastCARS: Fast, Correlation-Aware Sampling for Net-
work Data Mining. In Proceedings of IEEE GlobeCOM 2002 – Global Internet Symposium,
2002.

51. A. Patcha and J.-M. Park. An overview of anomaly detection techniques: existing solutions
and latest technological trends. Comput. Netw., 51(12): 3448–3470, 2007.

52. H. Pfeffer, D. Linner, I. Radusch, and S. Steglich. The bio-inspired Service Life-Cycle:
an overview. In Proceedings of the 3rd IEEE International Conference on Autonomic and
Autonomous Systems (ICAS’07), Athens, Greece, June 19–15 2007.

380 T. Zseby et al.

53. A. Pietzowski, B. Satzger, W. Trumler, and T. Ungerer. A bio-inspired approach for self-
protecting an organic middleware with artificial antibodies. In IWSOS/EuroNGI, pp. 202–215,
2006.

54. A. Pietzowski, B. Satzger, W. Trumler, and T. Ungerer. Using positive and negative selection
from immunology for detection of anomalies in a self-protecting middleware. In 36th annual
conference of the Gesellschaft für Informatik e.V. (GI), Informatik für Menschen, INFOR-
MATIK 2006, Vol. P-93 of LNI, Dresden, Germany, October 2006.

55. A. Pietzowski, W. Trumler, and T. Ungerer. An artificial immune system and its integration
into an organic middleware for self-protection. In M. Cattolico (ed.), GECCO, pp. 129–130.
ACM, 2006.

56. J. Rao and X. Su. A survey of automated web service composition methods. In SWSWPC,
pp. 43–54, 2004.

57. C. Schmoll. Dynamically configurable network meter for accounting in ip-based networks.
Diploma thesis, Technical University Berlin, December 2001.

58. SNORT. http://www.snort.org/.
59. V. Srinivasan. A packet classification and filter management system. In INFOCOM, pp. 1464–

1473, 2001.
60. R. Sterritt and D. Bustard. Towards an autonomic computing environment. In DEXA ’03: Pro-

ceedings of the 14th International Workshop on Database and Expert Systems Applications,
p. 699, Washington, DC, USA, 2003. IEEE Computer Society.

61. R. Sterritt, M. Parashar, H. Tianfield, and R. Unland. A concise introduction to autonomic
computing. Advanced Engineering Informatics, 19(3): 181–187, 2005.

62. M. P. Stoecklin, A. Kind, and J.-Y. L. Boudec. Dynamic adaptation of flow information gran-
ularity for incident analysis. In CERT FloCon Workshop, 2008.

63. B. Trammell, E. Boschi, L. Mark, T. Zseby, and A. Wagner. An ipfix-based file format, October
2008. Internet Draft, work in progress.

64. P. R. Warkhede, S. Suri, and G. Varghese. Fast packet classification for two-dimensional
conflict-free filters. In INFOCOM, pp. 1434–1443, 2001.

65. M. Wasserman and T. Goddard. Using the NETCONF Configuration Protocol over Secure
SHell (SSH). RFC 4742 (Proposed Standard), December 2006.

66. T. Y. C. Woo. A modular approach to packet classification: Algorithms and results. In INFO-
COM, pp. 1213–1222, 2000.

67. S. Zhong, Y. Yang, and J. Chen. Sprite: A Simple, Cheat-Proof, Credit-Based System for
Mobile ad hoc Networks, 2002.

68. T. Zseby, E. Boschi, N. Brownlee, and B. Claise. IPFIX Applicability, June 2007. Internet
Draft, work in progress.

69. T. Zseby, T. Hirsch, and B. Claise. Packet sampling for flow accounting: challenges and
limitations. In Ninth Passive and Active Measurement conference (PAM), April 2008.

70. T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall. Sampling and Filtering Tech-
niques for IP Packet Selection, July 2008. Internet Draft, work in progress.

71. T. Zseby, S. Zander, and G. Carle. Evaluation of building blocks for passive one-way-delay
measurements. In Proceedings of Passive and Active Measurement Workshop (PAM 2001),
April 2001.

Formal Aspects of Self-∗ in Autonomic
Networked Computing Systems

Phan Cong-Vinh

Abstract A new computing paradigm is currently on spot: autonomic computing
(AC), which is inspired by the human autonomic nervous system. AC is character-
ized by its self-∗ facets such as self-configuration, self-healing, self-optimization,
and self-protection. The overarching goal of AC is to realize computer systems,
and thus networked computing systems, that can manage themselves without
direct human interventions. Meeting this grand challenge of autonomic comput-
ing requires a fundamental approach to the notion of self-∗. To this end, taking
advantage of the categorical approach we establish, in this chapter, a firm formal
basis for modeling self-∗ in autonomic networked computing systems, developing
self-∗ monoid, category of self-∗ monoids, and series of self-∗ facets. All of these
are to achieve formal aspects of the self-∗.

1 Introduction

Networked computing is a characteristic of many modern computing systems and
implies an increased complexity in managing the system behavior. Autonomic com-
puting (AC) is essential to keep such systems manageable. In fact, the problem is
that many networked computing systems make central or global control impossible.
For example, the information needed to make decisions cannot be gathered cen-
trally (e.g., the type of mobile ad hoc networks (MANETs)). In such the networked
computing systems, AC is only possible when networked computational entities
autonomously interact and coordinate with each other to maintain properly the
required computations. Therefore, in the networking environments, we denote AC
as autonomic networked computing (ANC). In other words, when AC mechanism is

P. Cong-Vinh (B)
Centre for Applied Formal Methods, London South Bank University, Borough Road, London SE1
0AA, United Kingdom
e-mail: phanvc@ieee.org

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 16, C© Springer Science+Business Media, LLC 2009

381

382 P. Cong-Vinh

implemented in the networked computing systems then it defines ANC paradigm.
The essence of ANC is to enable the autonomic networked computational entities to
govern themselves the set of services and resources delivered at any given time while
interacting and coordinating with each other. Hence, for ANC systems (ANCSs),
one of major challenges is how to support self-governance in the face of changing
user needs, environmental conditions, and computation objectives. In other words,
how does an ANCS understand relevant contextual data, change to those data and
adapt the services and resources, which it provides, in accordance with goal-driven
computational mechanisms?

Dealing with this grand challenge of ANCSs requires a well-founded modeling
and in-depth analysis on the notion of ANC. With this aim, we develop a firm formal
approach in which autonomic networked computational entities are able to detect,
diagnose and repair faults, as well as adapt their configuration and optimize their
performance in the face of changing user needs and environmental conditions. All
of these must be done while protecting and healing themselves in the face of natural
problems and malicious attacks.

AC is often described as self-∗ , but ANC focuses on self-knowledge in prefer-
ence to build self-governance. However, self-∗ functionality is still supported, but
the emphasis of ANC is on the foundation to realize self-∗, not in the different self-∗

technologies.
In this view, we see that rigorously approaching to ANC requests fundamental

research in all aspects of the self-∗. As a novel development for the self-∗, we con-
sider to formalize aspects of the self-∗ taking advantage of categorical language,
whose content is presented in this chapter.

2 Outline

The chapter is a reference material for readers who already have a basic understand-
ing of ANCS and are now ready to know the novel approach for formalizing self-∗

in ANCS using categorical language.
Formalization is presented in a straightforward fashion by discussing in detail

the necessary components and briefly touching on the more advanced components.
Several exercises and notes explaining how to use the formal aspects, including
justifications needed in order to achieve the particular results, are presented.

We attempt to make the presentation as self-contained as possible, although
familiarity with the notion of self-∗ in ANCS is assumed. Acquaintance with the
algebra and the associated notion of categorical language is useful for recognizing
the results, but is almost everywhere not strictly necessary.

The rest of this chapter is organized as follows: Sections 3, 4 and 5 present the
notions of AC, ANC, and some categorical terms, respectively. Section 6 presents
models of self-∗ in ANCSs. In Section 7, structures of self-∗ including self-∗ monoid,
a category of self-∗ monoids and some algebraic properties are developed. Section 8
is a place to develop series of self-∗ facets in detail. In Section 9, we briefly dis-
cuss an alternative approach and compare it with our development. Finally, a short
summary is given in Section 10.

Formal Aspects of Self-∗ in ANCSs 383

3 Autonomic Computing as Self-∗

AC imitates and simulates the natural intelligence possessed by the human auto-
nomic nervous system using generic computers. This indicates that the nature of
software in AC is the simulation and embodiment of human behaviors, and the
extension of human capability, reachability, persistency, memory, and information
processing speed [52]. AC was first proposed by IBM in 2001 where it is defined as

“Autonomic computing is an approach to self-managed computing systems with a minimum
of human interference. The term derives from the body’s autonomic nervous system, which
controls key functions without conscious awareness or involvement” [22].

AC is generally described as self-∗. Formally, let self-∗ be the set of self- ’s. Each
self- to be an element in self-∗ is called a self-∗ facet. That is,

self-∗ = {self- | self- is a self-∗ facet} (1)

We see that self-CHOP is composed of four self-∗ facets of self-configuration,
self-healing, self-optimization, and self-protection. Hence, self-CHOP is a subset
of self-∗. That is, self-CHOP = {self-configuration, self-healing, self-optimization,
self-protection} ⊂ self-∗. Every self-∗ facet must satisfy some certain criteria, so-
called self-∗ properties. In [55], Wolf and Holvoet classified the self-∗ properties in
autonomic networks.

In its AC manifesto, IBM proposed eight facets setting forth an AC system (ACS)
known as self-awareness, self-configuration, self-optimization, self-maintenance,
self-protection (security and integrity), self-adaptation, self-resource-allocation,
and open-standard-based [22]. Kinsner pointed out that these facets indicate that
IBM perceives AC is a mimicry of human nervous systems [27]. In other words,
self-awareness (consciousness) and non-imperative (goal-driven) behaviors are the
main features of ACSs [52].

4 Autonomic Networked Computing

From the notion of AC, an ACS is defined by Wang as

“An autonomic computing system is an intelligent system that implements nondeterminis-
tic, context-dependent, and adaptive behaviors based on goal- and inference-driven mecha-
nisms” [53].

This definition is concerned with three major factors of ACS:

• Variable events: AC systems do not rely on instructive and procedural informa-
tion, but are dependent on variable events of ever-changing external environment
and internal status formed by the long-term historical events.

• Variable behaviors: AC systems behave in a nondeterministic, context-
dependent, and adaptive manner.

384 P. Cong-Vinh

• Goal-driven mechanisms: AC systems do not rely on imperative and procedural
instructions, but are dependent on goal-, perception-, and inference-driven mech-
anisms.

Consequently, ANC, and thus self-∗, is achieved when an ACS is constructed as
a group of locally interacting autonomous computational entities that cooperate in
order to adaptively maintain the desired system-wide behavior without any external
or central control. Such an ACS is viewed as an ANCS.

The topic of AC has seen a number of developments through various research
investigations following the IBM initiative such as AC paradigm in [9, 18, 37, 41,
47]; different approaches and infrastructures in [1, 5, 44, 46, 55] for enabling auto-
nomic behaviors [48–51]; core enabling systems, technologies, and services in [15,
16, 45, 3, 21, 31] to support the realization of self-∗ properties in autonomic systems
and applications; specific realizations of self-∗ properties in autonomic systems and
applications in [8, 13, 24, 20, 26, 34, 39]; architectures and modeling strategies
of autonomic networks in [17, 33, 32]; middleware and service infrastructure as
facilitators of autonomic communications in [11, 35, 19]; approaches in [12, 4, 40]
to equipping current networks with autonomic functionality for migrating this type
of networks to autonomic networks.

Moreover, AC has also been intensely studied by various areas of engineer-
ing including artificial intelligence, control systems, and human-orientated systems
[25, 36, 53, 54]. Autonomic computing has been set as an important requirement
for systems devised to work in new generation global networked and distributed
environments such as wireless networks, P2P networks, Web systems, multi-agent
systems, and grids [10, 12, 28, 38, 56]. Such systems pose new challenges for
the development and application of autonomic computing techniques, due to their
special characteristics including nondeterminism, context-awareness, and goal- and
inference-driven adaptability [53].

5 Some Categorical Terms

In this section, we recall some concepts from the category theory [2, 6, 7, 29, 30]
used in this chapter.

5.1 What is a category?

� A category C can be viewed as a graph (Ob j(C), Arc(C), s, t), where

• Ob j(C) is the set of nodes we call objects,
• Arc(C) is the set of edges we call morphisms and
• s, t : Arc(C) −→ Ob j(C) are two maps called source (or domain) and target (or

codomain), respectively.

We write f : X −→ Y when f is in Arc(C) and s(f) = X and t(f) = Y .

Formal Aspects of Self-∗ in ANCSs 385

Explanation on terminology: An object in the category is an algebraic structure
such as a set. We are probably familiar with some notations for finite sets: {Student
A, Student B, Student C} is a name for the set whose three elements are Student
A, Student B, Student C. Note that the order in which the elements are listed is
irrelevant.

A morphism f in the category consists of three things: a set X , called the source
of the morphism; a set Y , called the target of the morphism; and a rule assigning to
each element x in the source an element y in the target. This y is denoted by f (x), read
“ f of x.” Note that the morphism is also called the map, function, transformation,
operator, or arrow. For example, let X = {Student A, Student B, Student C}, Y =
{Math, Physics, Chemistry, History} and let f assign each student his or her favorite
subject. The following internal diagram is an illustration.

{Student A

������������� Student B

f=favorite subject
��

Student C}

��{Math Chemistry History Physics}

(2)

This states that the favorite subject of the Student C is History, written by f (Student
C) = History, while Student A and Student B prefer Chemistry. There are some
important properties of any morphism

• From each element in the source {Student A, Student B, Student C}, there is
exactly one arrow leaving.

• To an element in the target {Math, Physics, Chemistry, History}, there may be
zero, one or more arrows arriving.

It is possible that the source and target of the morphism could be the same set. The
following internal diagram is an example.

{Student A

������������� Student B

e=favorite classmate������������� Student C}

�������������

{Student A Student B Student C}

(3)

and, in the case, the morphism is called an endomorphism whose representation is
available as in

{Student A ��Student B�� ����Student C}�� (4)

� Associated with each object X in Ob j(C), there is a morphism 1X = X −→
X , called the identity morphism on X , and to each pair of morphisms f : X −→
Y and g : Y −→ Z , there is an associated morphism f ; g : X −→ Z , called the
composition of f with g. The representations in (5) include the external diagrams of
identity morphism and composition of morphisms.

386 P. Cong-Vinh

X

1X

��
X

f ���� ��
f ;g

��Y
g ��Z (5)

Explanation on terminology: Here are the corresponding internal diagrams of the
identity morphism.

{Student A

��

Student B

1X

��

Student C}

��{Student A Student B Student C}

(6)

Or

{Student A
��

Student B		 Student C}��
(7)

And here, the composition of morphisms is described in the internal diagram

{Student A

������������� Student B

e=favorite classmate������������� Student C}

�������������

{Student A

������������� Student B

f=favorite subject
��

Student C}

��{Math Chemistry History Physics}

(8)

Or, in the external diagram X
e ��X

f ��Y . By diagram (8), we can obtain
answers for the question “What should each student support to his or her favorite
classmate for subject?” In fact, the answers are such as “ Student A likes Student
B, Student B likes Chemistry, so Student A should support Chemistry,” “Student B
likes Student C, Student C likes History, so Student B should support History” and
“Student C likes Student B, Student B likes Chemistry, so Student C should support
Chemistry.”

The composition of two morphisms e and f means that e and f are combined to

obtain a third morphism X
e; f ��Y . This is represented in the following internal

diagram.

{Student A

������������� Student B
e; f

������������� Student C}

�������������

{Math Chemistry History Physics}

(9)

Formal Aspects of Self-∗ in ANCSs 387

where, for example, e; f (Student B) = History is read as “the favorite subject of the
favorite classmate of Student B is History.”
� The following equation must hold for all objects X , Y in Ob j(C) and morphism
f : X −→ Y in Arc(C):

Identity: 1X ; f = f = f ; 1Y (10)

X1X

f ��Y = X

f ��Y = X
f ��Y 1Y��

The following equation must hold for all objects X , Y and Z in Ob j(C) and
morphisms f : X −→ Y , g : Y −→ Z and h : Z −→ T in Arc(C):

Associativity: (f ; g); h = f ; (g; h) (11)

X
f ���� ��

f ;g
��Y

g ��Z
h ��T = X

f ��Y
g ���� ��

g;h
��Z

h ��T

5.2 Isomorphism

A morphism f : X −→ Y in the category C is an isomorphism if there exists a
morphism g : Y −→ X in that category such that f ; g = 1X and g; f = 1Y .

X
f ���� ��

f ;g=1X

��Y
g ��X and Y

g ���� ��
g; f=1Y

��X
f ��Y (12)

That is, if the following diagram commutes.

X1X

f

��Y

g

1Y�� (13)

5.3 Element of a set

For any set A, x ∈ A iff 1
x ��A (or x : 1 �� A) where 1 denotes a singleton set.

Focus on one element of {Math, Physics, Chemistry, History}, say {subject}, and call
this set “1.” Let us see what the morphisms from 1 to {Math, Physics, Chemistry,
History} are. There are exactly four of them.

388 P. Cong-Vinh

{subject}�� ��
Math

��{Math Chemistry History Physics} (14)

{subject}�� ��
Chemistry

��{Math Chemistry History Physics} (15)

{subject}�� ��
History

��{Math Chemistry History Physics} (16)

{subject}�� ��
Physics

��{Math Chemistry History Physics} (17)

By this way, we can write 1 2 ��N (or 2 : 1 �� N) for 2 ∈ N, 1
i ��N (or

i : 1 �� N) for i ∈ N and so on.

5.4 Functor

Functor is a special type of mapping between categories. Functor from a category to
itself is called an endofunctor. Note that the functors are also viewed as morphisms
in a category, whose objects are smaller categories.

5.5 T-algebra

Let C be a category, A an object in Ob j(C), T : C −→ C an endofunctor and

f a morphism T(A)
f−→ A ; then T-algebra is a pair 〈A , f 〉. Ob j(C) is called a

carrier of the algebra and T a signature of the algebra.

6 Self-∗ in ANCSs

As known that ANC, and thus self-∗, is achieved when ANCSs are constructed. In
this way, for forming ANCSs, we start with considering deterministic autonomic
networked computing systems (DANCSs) and then extend to nondeterministic auto-
nomic networked computing systems (NANCSs) by categorical approach in this
section.

Formal Aspects of Self-∗ in ANCSs 389

6.1 Self-∗ in DANCSs

DANC we want to abstract is intuitionally multiple partial morphism applications,
such as

s0
σ0 �� s1

σ1 �� s2
σ2 �� s3 · · · (18)

where

• All indexes i ∈ T (= N ∪ {0}) refer to times,
• s is a state of DANCS in the set, denoted by Sys, of states. si is the state s at the

time i,
• σ is a contextual data in the set, denoted by Context, of contextual data. σi is the

contextual data σ at the time i, which makes change of the state si to become
si+1.

The meaning of (18) is understood as

. . . s2(s1(s0())) = . . . s2(s1(σ0)) = . . . s2(σ1) = . . . σ2 (19)

The adaptation process in (18) can also be descriptively drawn as

s0() σ0 σ1 σ2 · · · � �� s1(σ0) σ1 σ2 · · · � �� σ0 s2(σ1) σ2 · · · (20)

or, in another representation

s0 ��σ0 σ1 σ2 · · · � �� σ0
s1 ��σ1 σ2 · · · � �� σ0 σ1

s2 ��σ2 · · · (21)

Note that in (20) and (21), we want to represent the above-mentioned adaptation
process of DANCS based on context where each step of the process is an application

of unary partial morphism 1
si ��Sys on 1

σi−1 ��Context , for all i in T .

The adaptation process, in (20) and (21), describes the notion of DANC in DANCSs
including the adaptation steps to change configurations of the system.

Definition 1 (Configuration of DANCS) We define a configuration of DANCS at
an adaptation step to be a member of the set Sys × Contexti∈T , where Contexti∈T

stands for

Contexti∈T = Context × Context × . . . × Context︸ ︷︷ ︸
i times

(22)

Explanation on terminology: As we know, when we combine sets by multiplication,
each set is a factor and the resulting set is the product. Hence, each set Context is
a factor of the resulting set Contexti∈T , Sys and Contexti∈T are two factors of the

390 P. Cong-Vinh

set Sys × Contexti∈T . The definition of multiplication of sets is very natural. Just
remember that a product is not just a set, but a set with two morphisms as in

• When i = 2 then Context2 = {< σ1, σ2 > |σ1, σ2 ∈ Context} is obtained by

σ1 ∈ Context

< σ1, σ2 >∈ Context2

f1

�����������������

f2 �����������������

σ2 ∈ Context

• When i = 3 then Context3 = {<< σ1, σ2 >, σ3 > |σ1, σ2, σ3 ∈ Context} is
obtained by

< σ1, σ2 >∈ Context2

<< σ1, σ2 >, σ3 >∈ Context3

g1

��																			

g2 ��

σ3 ∈ Context

Specially, we have

• If i = 0 then Context0 = {}
• If i = 1 then Context1 = Context = {σ1|σ1 ∈ Context}
We hope that these diagrams seem suggestive to readers. Our aim is to learn to use
them as precise tools of understanding and reasoning, not merely as intuitive guides.

The DANC paradigm, which we want to approach to, is based on mapping a con-
figuration to another. Let us see the following examples

Example 1 A specific DANC can be specified by the following morphism:

Sel f -X : (Sys × Context) ��Sys (23)

(i.e., Sel f -X : (Sys × Context1) �� (Sys × Context0) or denoted by Sel f -X
(Sys × Context, Sys))

Example 2 Another specific DANC can be specified by

Sel f -X : (Sys × Context) �� (Sys × Context) (24)

(i.e., Sel f -X : (Sys × Context1) �� (Sys × Context1) or denoted by Sel f -X
(Sys × Context, Sys × Context))

Formal Aspects of Self-∗ in ANCSs 391

Example 3 Again, we can also specify another specific DANC as

Sel f -X : (Sys × Contextn) �� (Sys × Context) (25)

(i.e., Sel f -X : (Sys × Contextn) �� (Sys × Context1) or denoted by Sel f -X
(Sys × Contextn, Sys × Context))
and we can, in the completely same way, do for any other specific DANC.

Definition 2 Generally, an arbitrary DANC is specified by

Sel f -X : (Sys × Contexti∈T) �� (Sys × Context j∈T) (26)

Now, let us try to do the following exercise.

Exercise 1 (Self-∗ in DANCSs) Show that the morphism Self-X in (26) defines self-∗

in DANCSs

Solution This stems from (26) and the fact that ANC, and thus DANC, is described
through self-∗. �

Morphism Self-X is called a self-∗. Morphism Self-X in (26) defines a set
{Sel f -Xk∈N} of mappings such that

{Sel f -Xk∈N} : (Sys × Contexti∈T) ��(Sys × Context j∈T) (27)

Hence, let us do the exercise as in

Exercise 2 (Self-∗ facets in DANCSs) Show that the set {Sel f -Xk∈N} in (27) defines
self-∗ facets in DANCSs. Each mapping Self-Xk∈N is called a self-∗ facet.

Solution This originates as the result of the truth that self-∗ is the set of self-∗

facets. �

For further well-founded investigation, we can construct a category of the sets of
DANCS configurations and establish Self-X-algebras as described in the following
exercises.

Exercise 3 (Category of the sets of DANCS configurations) Show that the sets of
DANCS configurations as in Definition 1 define a category.

Solution In fact, let Cat(DANCS) be such a category of the sets of DANCS con-
figurations, whose structure is constructed as follows:

• Each set of configurations Sys × Contexti∈T defines an object.
That is, Obj(Cat(DANCS)) = {Sys × Contexti∈T }.

• Each Sel f -X defines a morphism.
That is, Arc(Cat(DANCS)) = {Sel f -X : (Sys × Contexti∈T) �� (Sys ×
Context j∈T)}.

392 P. Cong-Vinh

It is easy to check that identity in (10) and associativity in (11) on all Sel f -Xs are
satisfied. �

Exercise 4 (Self-X-algebra(DANCS)) Show that each morphism Self-X in the cat-
egory Cat(DANCS) defines an algebra, so-called Self-X-algebra (DANCS).

Solution This stems from definition of T-algebra in Section 5, where functor T
is defined such that T = ⊎{Sel f -X}. Note that the notation

⊎
stands for disjoint

union or coproduct. �

With the result of Exercise 4, we obtain a compact formal definition of DANCS
as in

Definition 3 (DANCS) Each Self-X-algebra(DANCS) defines a DANCS

Both Sys and Context may be infinite. If both Sys and Context are finite, then we
have a finite DANCS, otherwise we have an infinite DANCS.

6.2 Self-∗ in NANCSs

In NANC we want to model is intuitionally multiple partial morphism applications,
such as

s0
σ0|x0 �� s1

σ1|x1 �� s2
σ2|x2 �� s3 · · · (28)

where

• All indexes i in T , si, and σi are similar in meaning to the ones mentioned in (18)
• xi is a real number that can be thought of as the multiplicity (or weight) with

which the adaptation from si to si+1 occurs.

Adaptation process of NANC in diagram (28) can be separated into two comple-
mentary parts as follows:

s0
σ0 �� s1

σ1 �� s2
σ2 �� s3 . . . (29)

and

s0
x0 �� s1

x1 �� s2
x2 �� s3 . . . (30)

On the one hand, diagram (29) emphasizes 1
σi �� Context, for all i in T , in the

adaptation process. This allows us to discover conveniently sequence of σi as series

of contextual data. On the other hand, diagram (30) gives rise to 1
xi �� R, for all i

in T , as weights of the series of contextual data in the adaptation process to support
an evaluation of weight-based quantitative behaviors of the series of contextual data.
Some first steps of the adaptation process in (28) can also be descriptively drawn as

Formal Aspects of Self-∗ in ANCSs 393

s0
σ0|x0,1

������������
σ0|x0,n

��������������

s1,1
σ1|x1,1,1

��

 σ1|x1,1,k

������������ s1,n

σ1|x1,n,1

����������
σ1|x1,n,m

����
��

��
��

�

s2,1,1 s2,1,k s2,n,1 s2,n,m

(31)

Diagram (31) is thought of as

• For the first step,

s1 ∈ {s1,1, . . . , s1,n} ⊂ Sys
and
x0 ∈ {x0,1, . . . , x0,n} ⊂ R

• For the second step,
s2 ∈ {s2,1,1, . . . , s2,1,k} ∪ . . . ∪ {s2,n,1, . . . , s2,n,m} ⊂ Sys
and
x1 ∈ {x1,1,1, . . . , x1,1,k} ∪ . . . ∪ {x1,n,1, . . . , x1,n,m} ⊂ R

and the meaning of (28) is viewed as the following morphism.

Sel f -X : (Sys × Context) �� (Sys ��R) (32)

Explanation on terminology: The adaptation morphism Self-X in (32) is nondeter-
ministic and this can be explained as follows: Self-X assigns to each configuration in
Sys × Context a morphism Sys �� R that can be seen as a kind of nondetermin-
istic configuration (or so-called distributed configuration) and specifies for every
state s′ in Sys a multiplicity (or weight) Self-X(< s, σ >)(s′) in R.

This nondeterminism of NANC makes extension in representation of the categorical
models mentioned in Section 6.1. Let us see the following examples

Example 4 A specific NANC, which is specified by the following morphism, is an
extension of (23):

Sel f -X : (Sys × Context) �� (Sys �� R) (33)

(i.e., Sel f -X : (Sys × Context1) �� ((Sys × Context0) �� R) or denoted by
Sel f -X ((Sys × Context), (Sys �� R)))

Example 5 The model in (24) extended for NANC is specified by

Sel f -X : (Sys × Context) �� ((Sys × Context) �� R) (34)

(i.e., Sel f -X : (Sys × Context1) �� ((Sys × Context1) �� R) or denoted by
Sel f -X ((Sys × Context), ((Sys × Context) �� R)))

394 P. Cong-Vinh

Example 6 Again, we specify another specific NANC as an extension of (25) in

Sel f -X : (Sys × Contextn) �� ((Sys × Context) �� R) (35)

(i.e., Sel f -X : (Sys × Contextn) �� ((Sys × Context1) �� R) or denoted by
Sel f -X ((Sys × Contextn), ((Sys × Context) �� R)))

and, in the completely same way, we do for an arbitrary NANC as in

Definition 4 Generally, an arbitrary NANC is specified by

Sel f -X : (Sys × Contexti∈T) �� ((Sys × Context j∈T) �� R) (36)

Let us do the exercise as described in

Exercise 5 (Self-∗ in NANCSs) Show that the morphism Self-X in (36) defines self-
∗ in NANCSs

Solution This stems from (36) and the fact that ANC, and thus NANC, is described
through self-∗. �

Morphism Self-X in (36) defines a set {Sel f -Xk∈N} of mappings such that

{Sel f -Xk∈N} : (Sys × Contexti∈T) �� ((Sys × Context j∈T) �� R) (37)

Thus, let us do the following exercises

Exercise 6 (Self-∗ facets in NANCSs) Show that the set {Sel f -Xk∈N} in (37) defines
self-∗ facets in NANCSs. Each mapping Self-Xk∈N is called a self-∗ facet.

Solution This originates as the result of the truth that self-∗ is the set of self-∗

facets. �

Exercise 7 (Category of the sets of NANCS configurations) Show that the cat-
egory Cat(DANCS) equipped with structure (Sys × Contexti∈T) �� ((Sys ×
Context j∈T) �� R) defines a category Cat(NANCS) of the sets of NANCS con-
figurations.

Solution This result comes immediately from Exercise 3. �

Exercise 8 (Self-X-algebra(NANCS)) Show that the structure (Sys × Contexti∈T)
�� ((Sys × Context j∈T) �� R) in the category Cat(NANCS) defines an

algebra, so-called Self-X-algebra (NANCS).

Solution This originates from definition on T-algebra in Section 5, where functor
T is defined such that T = ⊎{Sel f -X} (similar to Exercise 4) with Self-X defined
in (36). �

With this result of Exercise 8, we obtain a compact formal definition of NANCS
as in

Formal Aspects of Self-∗ in ANCSs 395

Definition 5 (NANCS) Each Self-X-algebra (NANCS) defines a NANCS

Moreover, let us do the following exercise to obtain a significant relationship
between DANCSs and NANCSs.

Exercise 9 (Relationship between DANCSs and NANCSs) Show that DANCSs
are just of specific NANCSs. In other words, using categorical language, DANCSs

⊂ �� NANCSs

Solution In fact, by the adaptation morphism in (36) of NANCSs, let f be the
morphism f : (Sys × Context j∈T) �� R, Conf be Sys × Context j∈T and the finite

set R(Con f) = {1 c �� Con f | f (c) �= 0} ⊆ �� Con f . Hence it follows that when

∃! 1
c �� Con f : f (c) = 1 but ∀c′ �= c : f (c′) = 0 (i.e., the set R(Con f) is a

singleton set of configuration with weight of 1. Note that the notation ∃! is read as
“exist only”) then (36) becomes the adaptation morphism of DANCSs as in (26). In
other words, in the case, NANCSs will become DANCSs. �

7 Structures of Self-∗

In this section, we construct self-∗ monoid and then a category of self-∗ monoids in
order to consider the significant properties of the self-∗.

7.1 Self-∗ Monoid

We know that self-∗ is specified by the morphism Sel f -X : (Sys × Contextn∈T)
�� (Sys × Contextn∈T), which defines the set {Sel f -Xi∈N(Sys × Contextn∈T ,

Sys× Contextn∈T)} of self-∗ facets. Let Self-Xn∈T be the set of such self-∗ facets,
then

Self-Xn∈T = {Sel f -Xi∈N(Sys × Contextn∈T , Sys × Contextn∈T)} (38)

Note that, in the case, we write Sel f -Xn∈T
i∈N

to stand for Sel f -Xi∈N(Sys × Contextn∈T ,
Sys× Contextn∈T). Thus, we have

Self-Xn∈T = {Sel f -Xn∈T
i∈N

} (39)

This set with the composition operation “; ” satisfies two following properties.

7.1.1 Composition of Self-∗ Facets

Let f and g be members of Self-Xn∈T , then the composition of self-∗ facets f ; g :
(Sys × Contextn∈T) �� (Sys × Contextn∈T) is as g : (f : (Sys × Contextn∈T)

396 P. Cong-Vinh

�� (Sys × Contextn∈T)) �� (Sys × Contextn∈T). In other words, let f =
Sel f -Xn∈T

i∈N
and g = Sel f -Xn∈T

j∈N
then

(Sel f -Xn∈T
i∈N

; Sel f -Xn∈T
j∈N

) = Sel f -Xj∈N(Sel f -Xn∈T
i∈N

, Sys × Contextn∈T) (40)

7.1.2 Identity of Self-∗ Facets

There exist identities 1n∈T : (Sys × Contextn∈T) �� (Sys × Contextn∈T) of self-∗

facets in Self-Xn∈T such that, for every f in Self-Xn∈T , 1n∈T ; f = f ; 1n∈T = f to be
held. In other words, this can be specified by

Sel f -Xn∈T
i∈N

= Sel f -Xi∈N(1n∈T , Sys × Contextn∈T) (41)

= Sel f -Xi∈N(Sys × Contextn∈T , 1n∈T)

= Sel f -Xi∈N(Sys × Contextn∈T , Sys × Contextn∈T)

Thus, Self-Xn∈T with the composition operation “; ” is called self-∗ monoid. More-
over, the monoid Self-Xn∈T is also a monoid category including only one object to be
the set {Sel f -Xn∈T

i∈N
}, each of whose members is a self-∗ facet, and by the composition

operation as a morphism, then the associativity and identity on the morphisms are
completely satisfied.

7.2 A Category of Self-∗ Monoids

By the self-∗ monoids Self-Xi∈T , we can construct Cat(Self-X) to be a category of
self-∗ monoids. In fact, Cat(Self-X) is constructed as follows:

• Objects: Ob j(Cat(Self-X)) is the set of self-∗ monoids Self-Xi∈T . That is,

Ob j(Cat(Self-X)) = {Self-Xi∈T } (42)

• Morphisms: Associated with each object Self-Xi∈T in Ob j(Cat(Self-X)), we

define a morphism Self-Xi∈T
1Self-Xi∈T ��Self-Xi∈T , the identity mor-

phism on Self-Xi∈T such that

Self-Xi∈T
1Self-Xi∈T

de f= 1i∈T ��Self-Xi∈T (43)

or

{Sel f -Xi∈T
k∈N

} 1Self-Xi∈T
de f= 1i∈T ��{Sel f -Xi∈T

k∈N
} (44)

Formal Aspects of Self-∗ in ANCSs 397

and to each pair of morphisms Self-Xi∈T f �� Self-X j∈T and Self-X j∈T g ��

Self-X j∈T such that

Self-Xi∈T f
de f= 1i∈T ×Context j−i

��Self-X j∈T (45)

and

Self-X j∈T
g

de f= 1 j∈T ×Contextk− j

��Self-Xk∈T (46)

there is an associated morphism Self-Xi∈T f ;g ��Self-Xk∈T , the composition of f
with g, such that

Self-Xi∈T f ;g=1i∈T ×Contextk−i

��Self-Xk∈T (47)

For every object in Ob j(Cat(Self-X)) and the morphisms

Self-Xi∈T f
de f= 1i∈T ×Context j−i

��Self-X j∈T (48)

Self-X j∈T
g

de f= 1 j∈T ×Contextk− j

��Self-Xk∈T (49)

and

Self-Xk∈T h
de f= 1k∈T ×Contextm−k

��Self-Xm∈T (50)

in Arc(Cat(Self-X)), the following equations hold:

Associativity: (f ; g); h = f ; (g; h) = 1i∈T × Contextm−i

Identity: 1Self-Xi∈T ; f = f = f ; 1Self-X j∈T

(i.e., 1i∈T ; 1i∈T × Context j−i = 1i∈T × Context j−i = 1i∈T × Context j−i; 1 j∈T)

As a result, the above-mentioned monoid morphisms can be diagrammatically
drawn such as

Self-Xi∈T 1i∈T ×Context±k
��Self-Xi±k∈T (51)

or

{Sel f -Xi∈T
l∈N

} 1i∈T ×Context±k
��{Sel f -Xi±k∈T

l∈N
} (52)

These are all the basic ingredients we need to have the category Cat(Self-X). Let us
see a general definition of category presented in Section 5 for reference.

398 P. Cong-Vinh

7.3 Some Properties of Category Cat(Self-X)

By the construction of category Cat(Self-X), some emerging significant properties
are presented in this subsection.

Property 1 All monoid morphisms of Cat(Self-X) are monoid isomorphisms.

Proof This result immediately stems from diagram (51). In fact, for every pair
of monoid morphisms in Arc(Cat(Self-X)) between Self-Xi∈T and Self-X j∈T , we
always have the following diagram:

Self-Xi∈T

1i∈T

��

1i∈T ×Context j−i

��
Self-X j∈T

1 j∈T

��

1 j∈T ×Contexti− j

�� (53)

These monoid morphisms satisfy an isomorphic relationship. Q.E.D.

Property 2 Isomorphisms between any pair of monoids in Cat(Self-X) are ever iso-
morphisms between the pair of ANCSs.

Proof This comes from the fact that each object of category Cat(Self-X) is just an
ANCS. Q.E.D.

From the above-mentioned justification of Cat(Self-X), we are able to derive
Self-Xi∈T . Derivation of every Self-Xi∈T is simplified by the following facts:

Property 3 There exists always a self-∗ monoid Self-X, as simply as it can, in
Cat(Self-X) constructed. Hence, it is available to start with.

Proof It emerges that

Self-X = {Sel f -Xi∈N(Sys × Context0, Sys × Context0)} (54)

= {Sel f -Xi∈N(Sys, Sys)}

thus

1
Self-X ��Ob j(Cat(Self-X)) (55)

Q.E.D.

Property 4 Given Self-X, we can compute Self-Xi∈T .

Proof We evaluate self-∗ monoid Self-Xi∈T such that

1
Self-Xi∈T

��Ob j(Cat(Self-X)) (56)

Formal Aspects of Self-∗ in ANCSs 399

based on the facts that⎛
⎜⎜⎝

1
Self-X ��Ob j(Cat(Self-X))

and

Self-X
10×Contexti

��Self-Xi∈T

⎞
⎟⎟⎠ (57)

Note that Self-X
10 ��Self-X . Q.E.D.

Property 5 Given Self-Xi∈T , we can compute Self-X j∈T for every j �= i.

Proof Self-∗ monoid Self-X j∈T is evaluated such that

1
Self-X j∈T

��Ob j(Cat(Self-X)) (58)

based on the facts that
⎛
⎜⎜⎝

1
Self-Xi∈T

��Ob j(Cat(Self-X))
and

Self-Xi∈T 1i∈T ×Context j−i
��Self-X j∈T

⎞
⎟⎟⎠ (59)

Q.E.D.

From the construction of Cat(Self-X), we see that every Self-Xi∈T can be formed
in the unifying way based on Properties 3–5. As a result, we gain a substantial
procedure of construction at a high abstract level without any excessive inclination
toward a specific implementation detail. This is quite helpful when we want to jus-
tify whether or not some certain properties of the construction are true. In fact, we
can prove

Property 6 Every monoid Self-Xi∈T can be constructed by any other monoid in
Cat(Self-X)

Proof Applying Properties 3–5 to construct every monoid Self-Xi∈T from another
monoid in Cat(Self-X). Q.E.D.

This is certainly a property we expect of any construction procedure.

Property 7 Cat(Self-X) is a complete graph

Proof In fact, this is a consequence stemming from Property 6. Q.E.D.

This is indeed a property of our abstract construction mechanism.

8 Series of Self-∗ Facets

A number of different notations are in use for denoting series of self-∗ facets.

s f = (f0, f1, f2, . . .) (60)

400 P. Cong-Vinh

is a common notation which specifies a series of self-∗ facets sf which is indexed by
the natural numbers in T (= N ∪ {0}). We are also accustomed to

s f = (ft∈T) (61)

Informally, series of self-∗ facets can be understood as a rope on which we hang up
a sequence of self-∗ facets for display. Hence it follows that

Definition 6 (Series of self-∗ facets) For morphisms 1
t �� T and 1

ft ��

Self-Xn∈T , there exists a unique morphism T
s f �� Self-Xn∈T such that the equa-

tion t; s f = ft holds. This is described by the following commutative diagram

1
t ��

ft

���
��

��
��

��
��

��
��

��
� T

s f

��
Self-Xn∈T

(62)

Morphism T
s f ��Self-Xn∈T defines a series of self-∗ facets.

Explanation on semantics: Note that morphism T
s f ��Self-Xn∈T is read as

∀t[t ∈ T =⇒ ∃! ft[ft ∈ Self-Xn∈T & s f (t) = ft]]

In other words, T
s f ��Self-Xn∈T generates series of self-∗ facets as an infinite

sequence of s f (0) = f0, s f (1) = f1, . . ., s f (t) = ft , . . . which is written as
(s f (0), s f (1), . . . , s f (t), . . .) or (f0, f1, . . . , ft , . . .)

Definition 7 (Set of series of self-∗ facets) Given T
s f ��Self-Xn∈T then the set of

series of self-∗ facets, denoted by Self-Xn∈T
ω , is defined by

Self-Xn∈T
ω = {s f | T

s f ��Self-Xn∈T } (63)

We obtain

Corollary 1 If T
s f ��Self-Xn∈T then 1

s f ��Self-Xn∈T
ω

Proof This result stems immediately from Definitions 6 and 7. Q.E.D.

Explanation on semantics: This corollary means that for each morphism T
s f ��

Self-Xn∈T , there is a morphism 1
s f �� Self-Xn∈T

ω generating member in Self-Xn∈T
ω .

Formal Aspects of Self-∗ in ANCSs 401

That is, morphism T
s f �� Self-Xn∈T generates series of self-∗ facets and 1

s f ��

Self-Xn∈T
ω constructs the set of series of self-∗ facets.

For series of self-∗ facets, we can define a mechanism to generate them. This mecha-

nism consists of an object T equipping with structural morphisms 1
0 ��T

succ ��T

with the property that for Self-Xn∈T , any 1
f0 �� Self-Xn∈T and Self-Xn∈T next ��

Self-Xn∈T then there exists a unique morphism T
s f �� Self-Xn∈T such that the

following diagram commutes

1 0 ��

f0

���
��

��
��

��
��

��
��

T
succ ��

s f

��

T

s f

��
Self-Xn∈T

next
��Self-Xn∈T

(64)

Definition 8 (Construction of series of self-∗ facets) We define a construction mor-
phism of series of self-∗ facets, denoted by ‡, such that

Self-Xn∈T × [T
s f ��Self-Xn∈T]

‡ ��[T
s f ��Self-Xn∈T] (65)

Explanation on semantics: This definition means that ‡(A × B
f×g ��C × D) =

A‡B
f ‡g ��C‡D . It follows that any series of self-∗ facets T

s f �� Self-Xn∈T

can be represented in a format including two parts of head and tail to be connected
by “‡” such that

T
s f ��Self-Xn∈T equiv≡ 1

0 ���� �	
f0

��T
s f ��Self-Xn∈T ‡1

t>0 ���� �	
ft>0

��T
s f ��Self-Xn∈T

(66)

where 1
0 ���� �	

f0

��T
s f ��Self-Xn∈T = s f (0) and 1

t>0 ���� �	
ft>0

��T
s f ��Self-Xn∈T = (s f (1),

s f (2), . . .) to be called head and tail, respectively.

Definition 9 (Head of series of self-∗ facets) We define a head construction mor-

phism, denoted by 1
0 �� () , such that

1
0 �� () : [T

s f �� Self-Xn∈T] �� Self-Xn∈T (67)

402 P. Cong-Vinh

Explanation on semantics: This definition states that ∀(a‡s)[(a‡s) ∈ [T
s f ��

Self-Xn∈T] =⇒ ∃! f0[f0 ∈ Self-Xn∈T & 1
0 �� (a‡s) = a = f0]]

It follows that 1
0 ��(T

s f ��Self-Xn∈T)
equiv≡ 1

0 ��T
s f ��Self-Xn∈T .

Definition 10 (Tail of series of self-∗ facets) We define a tail construction mor-
phism, denoted by ()′, such that

()′ : [T
s f ��Self-Xn∈T] ��[T

s f ��Self-Xn∈T] (68)

Explanation on semantics: This definition means that ∀(a‡s)[(a‡s) ∈ [T
s f ��

Self-Xn∈T] =⇒ ∃!(f1, f2, . . .)[(f1, f2, . . .) ∈ [T
s f ��Self-Xn∈T] & (a‡s)′ = s =

(f1, f2, . . .)]]

As a convention, ()〈n〉 denotes applying recursively the ()′ n times. Thus, specif-
ically, ()〈2〉, ()〈1〉, and ()〈0〉 stand for (()′)′, ()′, and (), respectively.

It follows that the first member of series of self-∗ facets T
s f ��Self-Xn∈T is given

by

1
0 �� ((T

s f ��Self-Xn∈T)′)
equiv≡ 1 1 ��T

s f ��Self-Xn∈T (69)

and, in general, for every k ∈ T the k-th member of series of self-∗ facets T
s f ��

Self-Xn∈T is provided by

1
0 �� ((T

s f ��Self-Xn∈T)〈k〉)
equiv≡ 1

k ��T
s f ��Self-Xn∈T (70)

Series of self-∗ facets to be an infinite sequence of all ft∈T is viewed and treated

as single mathematical entity, so the derivative of series of self-∗ facets T
s f ��

Self-Xn∈T is given by (T
s f ��Self-Xn∈T)′

Now using this notation for derivative of series of self-∗ facets, we can specify series

of self-∗ facets T
s f �� Self-Xn∈T as in

Definition 11 A series of self-∗ facets T
s f ��Self-Xn∈T can be specified by

– Initial value: 1
0 ��T

s f ��Self-Xn∈T and

– Differential equation: ((T
s f ��Self-Xn∈T)〈n〉)′ = (T

s f ��Self-Xn∈T)〈n+1〉

Formal Aspects of Self-∗ in ANCSs 403

Explanation on semantics: The initial value of T
s f ��Self-Xn∈T is defined as

its first element 1
0 �� T

s f �� Self-Xn∈T , and the derivative of series of self-∗

facets, denoted by (T
s f �� Self-Xn∈T)′, is defined by ((T

s f ��Self-Xn∈T)〈n〉)′ =
(T

s f �� Self-Xn∈T)〈n+1〉, for any integer n in T . In other words, the initial value and

derivative equal the head and tail of T
s f ��Self-Xn∈T , respectively. The behav-

ior of a series of self-∗ facets T
s f ��Self-Xn∈T consists of two aspects: it allows

for the observation of its initial value 1
0 ��T

s f �� Self-Xn∈T ; and it can make

an evolution to the new series of self-∗ facets (T
s f ��Self-Xn∈T)′, consisting of

the original series of self-∗ facets from which the first element has been removed.

The initial value of (T
s f ��Self-Xn∈T)′, which is 1

0 �� ((T
s f ��Self-Xn∈T)′) =

1 1 ��T
s f �� Self-Xn∈T can in its turn be observed, but note that we have to

move from T
s f �� Self-Xn∈T to (T

s f ��Self-Xn∈T)′ first in order to do so. Now
a behavioral differential equation defines a series of self-∗ facets by specifying its
initial value together with a description of its derivative, which tells us how to con-
tinue.

Note: Every member ft∈T in Self-Xn∈T can be considered as a series of self-∗ facets
in the following manner. For every ft∈T in Self-Xn∈T , a unique series of self-∗ facets
is defined by morphism f :

1
ft ���� �	

(ft ,◦,◦,...)

��Self-Xn∈T f ��Self-Xn∈T
ω (71)

such that the equation ft ; f = (fi, ◦, ◦, . . .) holds, where ◦ denotes empty member
(or null member) in Self-Xn∈T . Thus (ft , ◦, ◦, . . .) is in Self-Xn∈T

ω .

Definition 12 (Equivalence) For any T
s f 1 ��Self-Xn∈T and T

s f 2 ��Self-Xn∈T ,

sf1 = sf2 iff 1
t ��T

s f 1 ��Self-Xn∈T = 1
t ��T

s f 2 ��Self-Xn∈T with every t
in T .

Definition 13 (Bisimulation) Bisimulation on Self-Xn∈T
ω is a relation, denoted by

∼, between series of self-∗ facets T
s f 1 ��Self-Xn∈T and T

s f 2 ��Self-Xn∈T such

that if s f 1 ∼ s f 2 then 1
0 ��(s f 1) = 1

0 ��(s f 2) and (s f 1)′ ∼ (s f 2)′.

Two series of self-∗ facets are bisimular if, regarding their behaviors, each of the
series “simulates” the other and vice versa. In other words, each of the series cannot
be distinguished from the other by the observation. Let us do the following exercises
related to the bisimulation between series of self-∗ facets.

404 P. Cong-Vinh

Exercise 10 Let s f , s f 1 and s f 2 be in Self-Xn∈T
ω . Show that if s f ∼ s f 1 and s f 1 ∼

s f 2 then (s f ∼ s f 1) ◦ (s f 1 ∼ s f 2) = s f ∼ s f 2, where the symbol ◦ denotes a
relational composition. For more descriptive notation, we can write this in the form

s f ∼ s f 1, s f 1 ∼ s f 2

(s f ∼ s f 1) ◦ (s f 1 ∼ s f 2) = s f ∼ s f 2
(72)

and conversely, if s f ∼ s f 2 then there exists s f 1 such that s f ∼ s f 1 and s f 1 ∼ s f 2.
This can be written as

s f ∼ s f 2

∃s f 1 : s f ∼ s f 1 and s f 1 ∼ s f 2
(73)

Solution Proving (72) originates as the result of the truth that the relational com-
position between two bisimulations L1 ⊆ s f × s f 1 and L2 ⊆ s f 1 × s f 2 is a
bisimulation obtained by L1 ◦ L2 = {〈x, y〉 | x L1 z and z L2 y for some z ∈ s f 1},
where x ∈ s f , z ∈ s f 1 and y ∈ s f 2.

Proving (73) comes from the fact that there are always s f 1 = s f or s f 1 = s f 2
as simply as they can. Hence, (73) is always true in general. �

Exercise 11 Let s fi,∀i ∈ N, be in Self-Xn∈T
ω and

⋃
i∈N

be union of a family of sets.

Show that

s f ∼ s fi with i ∈ N⋃
i∈N

(s f ∼ s fi) = s f ∼ ⋃
i∈N

s fi
(74)

and conversely,

s f ∼ ⋃
i∈N

s fi

∃i ∈ N : s f ∼ s fi
(75)

Solution Proving (74) stems straightforwardly from the fact that s f bisimulates s fi

(i.e., s f ∼ s fi) then, s f bisimulates each series in
⋃
i∈N

s fi.

Conversely, proving (75) develops as the result of the fact that for each 〈x, y〉 ∈⋃
i∈N

(s f × s fi), there exists i ∈ N such that 〈x, y〉 ∈ s f × s fi. In other words, it is

formally denoted by
⋃
i∈N

(s f ×s fi) = {〈x, y〉 | ∃i ∈ N : x ∈ s f and y ∈ s fi}, where

x ∈ s f and y ∈ s fi. �

The union of all bisimulations between s f and s fi (i.e.,
⋃
i∈N

(s f ∼ s fi)) is the greatest

bisimulation. The greatest bisimulation is called the bisimulation equivalence or
bisimilarity [23, 42] (again denoted by the notation ∼).

Formal Aspects of Self-∗ in ANCSs 405

Exercise 12 Check that the bisimilarity ∼ on
⋃
i∈N

(s f ∼ s fi) is an equivalence

relation.

Solution In fact, a bisimilarity ∼ on
⋃
i∈N

(s f ∼ s fi) is a binary relation ∼ on⋃
i∈N

(s f ∼ s fi), which is reflexive, symmetric and transitive. In other words, the

following properties hold for ∼
• Reflexivity:

∀(a ∼ b) ∈ ⋃
i∈N

(s f ∼ s fi)

(a ∼ b) ∼ (a ∼ b)
(76)

• Symmetry: ∀(a ∼ b), (c ∼ d) ∈ ⋃
i∈N

(s f ∼ s fi),

(a ∼ b) ∼ (c ∼ d)

(c ∼ d) ∼ (a ∼ b)
(77)

• Transitivity: ∀(a ∼ b), (c ∼ d), (e ∼ f) ∈ ⋃
i∈N

(s f ∼ s fi),

((a ∼ b) ∼ (c ∼ d))
∧

((c ∼ d) ∼ (e ∼ f))

(a ∼ b) ∼ (e ∼ f)
(78)

to be an equivalence relation on
⋃
i∈N

(s f ∼ s fi). �

For some constraint α , if s f 1 ∼ s f 2 then two series s f 1 and s f 2 have the following
relation.

s f 1 |= α
s f 2 |= α

(79)

That is, if series s f 1 satisfies constraint α then this constraint is still preserved on
series s f 2. Thus it is read as s f 1 ∼ s f 2 in the constraint of α (and denoted by
s f 1 ∼α s f 2).

For validating whether s f 1 = s f 2, a powerful method is so-called proof principle
of coinduction [43] that states as follows:

Theorem 1 (Coinduction) For any T
s f 1 ��Self-Xn∈T and T

s f 2 ��Self-Xn∈T , if
s f 1 ∼ s f 2 then s f 1 = s f 2.

Proof In fact, for two series of self-∗ facets s f 1 and s f 2 and a bisimulation
s f 1 ∼ s f 2. We see that by inductive bisimulation for k ∈ T , then s f 1〈k〉 ∼ s f 2〈k〉.

Therefore, by Definition 13, 1
0 �� (s f 1〈k〉) = 1

0 �� (s f 2〈k〉) . By the equivalence

406 P. Cong-Vinh

in (70), then 1
k ��s f 1 = 1

k ��s f 2 with every k ∈ T . It follows that, by Defi-
nition 12, we obtain s f 1 = s f 2. Q.E.D.

Hence in order to prove the equivalence between two series of self-∗ facets s f 1 and
s f 2, it is sufficient to establish the existence of a bisimulation relation s f 1 ∼ s f 2.
In other words, using coinduction we can justify the equivalence between two series
of self-∗ facets s f 1 and s f 2 in Self-Xn∈T

ω .

Exercise 13 (Generating series of self-∗ facets) For every sf in Self-Xn∈T
ω , show

that

s f = 1
0 �� (s f)‡(s f)′ (80)

Solution This stems from the coinductive proof principle in Theorem 1. In fact, it

is easy to check the following bisimulation s f ∼ 1
0 �� (s f)‡(s f)′ . It follows that

s f = 1
0 ��(s f)‡(s f)′ �

In (80), operation ‡ as a kind of series integration, the exercise states that series
derivation and series integration are inverse operations. It gives a way to obtain s f

from (s f)′ and the initial value 1
0 �� (s f). As a result, the exercise allows us to

reach solution of differential equations in an algebraic manner.

9 Discussions and Comparisons

The aim of this chapter has been both to give an in-depth analysis as well as to
present the new material on the notion of self-∗ computing. Below we briefly discuss
the Wang’s approach in [53] and compare it with our development.

• In the paper entitled “Toward Theoretical Foundations of Autonomic Comput-
ing” [53], a particular way of considering AC has been approached as a novel
computing system at the highest level of machine intelligence, whose goal- and
inference-driven computational behaviors have been expressed on top of imper-
ative computing (IC) techniques with event-,time-, and interrupt-driven com-
putational behaviors. By that approach, Wang has developed the overarching
foundations and engineering paradigms of AC including the notions of behav-
iorism, cognitive informatics, denotational mathematics, and intelligent science.
In particular, the paper has presented the theorems of the necessary and suffi-
cient conditions of IC and AC, and the generic intelligence model of natural and
machine intelligence for further dealing with advanced AC techniques and their
engineering applications.

However, by our approach, each computational behavior defined by Y. Wang
in [53] becomes really an algebraic object of category. In addition, imperative
computing systems, adaptive computing systems, and autonomic computing sys-
tems are just instances of a functor on such the category.

Formal Aspects of Self-∗ in ANCSs 407

• In the considered context, we apply the category theory, which deals in an abstract
way with algebraic objects and relationships between them for specifying interac-
tion behaviors in ANCSs. For modeling, analyzing, and verifying the interaction
behaviors, category theory is much better-approaching than other ones such as
process algebras (or process calculi), FSM (Finite State Machine), or UML
(Unified Modeling Language). In fact, the categorical approach becomes more
powerful since process algebras and FSM are just of algebraic objects of cate-
gory and UML is really a semi-formal approach. Categories were first described
by Samuel Eilenberg and Saunders Mac Lane in 1945 [29], but have since
grown substantially to become a branch of modern mathematics. Category theory
spreads its influence over the development of both mathematics and theoretical
computer science. The categorical structures themselves are still the subject of
active research, including work to increase their range of practical applicability.

10 Conclusions

In this chapter, we have rigorously approached to the notion of self-∗ in ANCSs
from which formal aspects of the self-∗ emerge.

We have started with investigating self-∗ in DANCSs and NANCSs, where we
have modeled configuration of the system at every adaptation step as a member in
the set Sys × Contexti∈T , then self-∗ as a morphism from a configuration to another
and self-∗ facet as a member of self-∗. Moreover, Self-Xi∈T has been constructed

as a self-∗ monoid to shape series T
s f �� Self-Xi∈T of self-∗ facets. By the self-∗

monoids, we have formed Cat(Self-X) to be a category of the self-∗ monoids for
discovering the significant properties of the self-∗.

Acknowledgments Thank you to the anonymous reviewers for their helpful comments and valu-
able suggestions which have contributed to the final preparation of the chapter. As always, I am
deeply indebted to Professor Jonathan P. Bowen, Head of the Centre for Applied Formal Methods
(CAFM) at London South Bank University (LSBU) in United Kingdom, for a constant source of
inspiration and encouragement for the work which culminated in the publication of this chapter.

References

1. S. Abdelwahed and N. Kandasamy. Autonomic Computing: Concepts, Infrastructure and
Applications, chapter A Control-Based Approach to Autonomic Performance Management
in Computing Systems, pages 149–168. CRC Press, 1st edition, 2006.

2. J. Adamek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories. John Wiley and
Sons, 1990.

3. R. Adams et al. Autonomic Computing: Concepts, Infrastructure and Applications, chapter
Scalable Management – Technologies for Management of Large-Scale, Distributed Systems,
pages 305–328. CRC Press, 1st edition, 2006.

4. R.R. Amoud et al. Advanced Autonomic Networking and Communication, chapter An Auto-
nomic MPLS DiffServ-TE Domain, pages 149–168. Whitestein Series in Software Agent
Technologies and Autonomic Computing. Springer-Verlag, 1st edition, 2008.

408 P. Cong-Vinh

5. R. Anthony, A. Butler, and M. Ibrahim. Autonomic Computing: Concepts, Infrastructure and
Applications, chapter Exploiting Emergence in Autonomic Systems, pages 121–148. CRC
Press, 1st edition, 2006.

6. A. Asperti and G. Longo. Categories, Types and Structures. M.I.T. Press, 1991.
7. G. M. Bergman. An Invitation to General Algebra and Universal Constructions. Henry

Helson, 15 The Crescent, Berkeley CA 94708, USA, 1998.
8. V. Bhat, M. Parashar, and N. Kandasamy. Autonomic Computing: Concepts, Infrastructure

and Applications, chapter Autonomic Data Streaming for High-Performance Scientific Appli-
cations, pages 413–434. CRC Press, 1st edition, 2006.

9. D.W. Bustard and R. Sterritt. Autonomic Computing: Concepts, Infrastructure and Applica-
tions, chapter A Requirements Engineering Perspective on Autonomic Systems Development,
pages 19–34. CRC Press, 1st edition, 2006.

10. W. Butera. Text Display and Graphics Control on a Paintable Computer. In G.D.M. Seru-
gendo, J.P.M. Flatin, and M. Jelasity, editors, Proceedings of 1st International Conference on
Self-Adaptive and Self-Organizing Systems (SASO’07), pages 45–54. IEEE Computer Society
Press. Boston, MA, USA, 9–11 July 2007.

11. M. Calisti, R. Ghizzioli, and D. Greenwood. Advanced Autonomic Networking and Com-
munication, chapter Autonomic Service Access Management for Next Generation Converged
Networks, pages 101–126. Whitestein Series in Software Agent Technologies and Autonomic
Computing. Springer-Verlag, 1st edition, 2008.

12. M. Calisti, S.V.D. Meer, and J. Strassner, editors. Advanced Autonomic Networking and Com-
munication. Whitestein Series in Software Agent Technologies and Autonomic Computing.
Springer-Verlag, 2008. 190 pages.

13. A. Chakravarti, G. Baumgartner, and M. Lauria. Autonomic Computing: Concepts, Infras-
tructure and Applications, chapter Self-Organizing Scheduling on the Organic Grid, pages
389–412. CRC Press, 1st edition, 2006.

14. J. Chen et al. Advanced Autonomic Networking and Communication, chapter Game Theo-
retic Framework for Autonomic Spectrum Management in Heterogeneous Wireless Networks,
pages 169–190. Whitestein Series in Software Agent Technologies and Autonomic Comput-
ing. Springer-Verlag, 1st edition, 2008.

15. D.M. Chess, J.E. Hanson, J.O. Kephart, I. Whalley, and S.R. White. Autonomic Comput-
ing: Concepts, Infrastructure and Applications, chapter Dynamic Collaboration in Autonomic
Computing, pages 253–274. CRC Press, 1st edition, 2006.

16. L. Durham, M. Milenkovic, P. Cayton, and M. Yousif. Autonomic Computing: Concepts,
Infrastructure and Applications, chapter Platform Support for Autonomic Computing: A
Research Vehicle, pages 329–350. CRC Press, 1st edition, 2006.

17. C. Fahy et al. Advanced Autonomic Networking and Communication, chapter Modelling
Behaviour and Distribution for the Management of Next Generation Networks, pages 43–
62. Whitestein Series in Software Agent Technologies and Autonomic Computing. Springer-
Verlag, 1st edition, 2008.

18. A. Ganek. Autonomic Computing: Concepts, Infrastructure and Applications, chapter
Overview of Autonomic Computing: Origins, Evolution, Direction, pages 3–18. CRC Press,
1st edition, 2006.

19. D. Greenwood and R. Ghizzioli. Advanced Autonomic Networking and Communication, chap-
ter Autonomic Communication with RASCAL Hybrid Connectivity Management, pages 63–
80. Whitestein Series in Software Agent Technologies and Autonomic Computing. Springer-
Verlag, 1st edition, 2008.

20. R. Griffith, G. Valetto, and G. Kaiser. Autonomic Computing: Concepts, Infrastructure and
Applications, chapter Effecting Runtime Reconfiguration in Managed Execution Environ-
ments, pages 369–388. CRC Press, 1st edition, 2006.

21. T. Heinis, C. Pautasso, and G. Alonso. Autonomic Computing: Concepts, Infrastructure and
Applications, chapter A Self-Configuring Service Composition Engine, pages 237–252. CRC
Press, 1st edition, 2006.

Formal Aspects of Self-∗ in ANCSs 409

22. IBM. Autonomic Computing Manifesto. Retrieved from http://www.research. ibm.com/ auto-
nomic/, 2001.

23. B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras and (Co)Induction. Bulletin of EATCS,
62:222–259, 1997.

24. G. Jiang et al. Autonomic Computing: Concepts, Infrastructure and Applications, chapter
Trace Analysis for Fault Detection in Application Servers, pages 471–492. CRC Press, 1st
edition, 2006.

25. X. Jin and J. Liu. From Individual Based Modeling to Autonomy Oriented Computation.
In M. Nickles, M. Rovatsos, and G. Weiss, editors, Agents and Computational Autonomy:
Potential, Risks, and Solutions, volume 2969 of Lecture Notes in Computer Science, pages
151 – 169. Springer Berlin, April 2004.

26. B. Khargharia and S. Hariri. Autonomic Computing: Concepts, Infrastructure and Applica-
tions, chapter Autonomic Power and Performance Management of Internet Data, pages 435–
470. CRC Press, 1st edition, 2006.

27. W. Kinsner. Towards Cognitive Machines: Multiscale Measures and Analysis. The Interna-
tional Journal on Cognitive Informatics and Natural Intelligence (IJCINI), 1(1):28–38, 2007.

28. S. Ko, I. Gupta, and Y. Jo. Novel Mathematics-Inspired Algorithms for Self-Adaptive Peer-to-
Peer Computing. In G.D.M. Serugendo, J.P.M. Flatin, and M. Jelasity, editors, Proceedings of
1st International Conference on Self-Adaptive and Self-Organizing Systems (SASO’07), pages
3–12. IEEE Computer Society Press. Boston, Massachusetts, USA, 9–11 July 2007.

29. F.W. Lawvere and S.H. Schanuel. Conceptual Mathematics: A First Introduction to Cate-
gories. Cambridge University Press, 1 st edition, 1997.

30. M. Levine. Categorical Algebra. In G. Benkart, T.S. Ratiu, H.A. Masur, and M. Renardy,
editors, Mixed Motives, volume 57 of Mathematical Surveys and Monographs, chapter I, II, II
of Part II, pages 373–499. American Mathematical Society, USA, 1998.

31. H. Liu and M. Parashar. Autonomic Computing: Concepts, Infrastructure and Applications,
chapter A Programming System for Autonomic Self-Managing Applications, pages 211–236.
CRC Press, 1st edition, 2006.

32. J.A.L López, J.M.G. Munoz, and J.M. Padial. Advanced Autonomic Networking and Com-
munication, chapter A Telco Approach to Autonomic Infrastructure Management, pages 27–
42. Whitestein Series in Software Agent Technologies and Autonomic Computing. Springer-
Verlag, 1st edition, 2008.

33. S.V.D. Meer et al. Advanced Autonomic Networking and Communication, chapter Technology
Neutral Principles and Concepts for Autonomic Networking, pages 1–25. Whitestein Series in
Software Agent Technologies and Autonomic Computing. Springer-Verlag, 1st edition, 2008.

34. D.A. Menascé and M.N. Bennani. Autonomic Computing: Concepts, Infrastructure and Appli-
cations, chapter Dynamic Server Allocation for Autonomic Service Centers in the Presence of
Failures, pages 353–368. CRC Press, 1st edition, 2006.

35. G. Nguengang et al. Advanced Autonomic Networking and Communication, chapter Auto-
nomic Resource Regulation in IP Military Networks: A Situatedness Based Knowledge Plane,
pages 81–100. Whitestein Series in Software Agent Technologies and Autonomic Computing.
Springer-Verlag, 1st edition, 2008.

36. O. Pacheco. Autonomy in an Organizational Context. In M. Nickles, M. Rovatsos, and
G. Weiss, editors, Agents and Computational Autonomy: Potential, Risks, and Solutions, vol-
ume 2969 of Lecture Notes in Computer Science, pages 195–208. Springer Berlin, April 2004.

37. M. Parashar. Autonomic Computing: Concepts, Infrastructure and Applications, chapter Auto-
nomic Grid Computing: Concepts, Requirements, and Infrastructure, pages 49–70. CRC Press,
1st edition, 2006.

38. M. Parashar and S. Hariri, editors. Autonomic Computing: Concepts, Infrastructure and Appli-
cations, 568 pages. CRC Press, 1st edition, December 2006.

39. G. Qu and S. Hariri. Autonomic Computing: Concepts, Infrastructure and Applications, chap-
ter Anomaly-Based Self Protection against Network Attacks, pages 493–522. CRC Press, 1st
edition, 2006.

410 P. Cong-Vinh

40. M.A. Razzaque, S. Dobson, and P. Nixon. Advanced Autonomic Networking and Communica-
tion, chapter Cross-layer Optimisations for Autonomic Networks, pages 127–148. Whitestein
Series in Software Agent Technologies and Autonomic Computing. Springer-Verlag,
1st edition, 2008.

41. R.V. Renesse and K.P. Birman. Autonomic Computing: Concepts, Infrastructure and Applica-
tions, chapter Autonomic Computing: A System-Wide Perspective, pages 35–48. CRC Press,
1st edition, 2006.

42. J.J.M.M. Rutten. Universal Coalgebra: A Theory of Systems. Theoretical Computer Science,
249(1):3–80, 17 October 2000.

43. J.J.M.M. Rutten. Elements of Stream Calculus (An Extensive Exercise in Coinduction). Elec-
tronic Notes in Theoretical Computer Science, 45, 2001. Elsevier Science Publishers Ltd.

44. S.M. Sadjadi and P.K. McKinley. Autonomic Computing: Concepts, Infrastructure and Appli-
cations, chapter Transparent Autonomization in Composite Systems, pages 169–188. CRC
Press, 1st edition, 2006.

45. K. Schwan et al. Autonomic Computing: Concepts, Infrastructure and Applications, chapter
AutoFlow: Autonomic Information Flows for Critical Information Systems, pages 275–304.
CRC Press, 1st edition, 2006.

46. P. Steenkiste and A.C. Huang. Autonomic Computing: Concepts, Infrastructure and Appli-
cations, chapter Recipe-Based Service Configuration and Adaptation, pages 189–208. CRC
Press, 1st edition, 2006.

47. J.W. Sweitzer and C. Draper. Autonomic Computing: Concepts, Infrastructure and Applica-
tions, chapter Architecture Overview for Autonomic Computing, pages 71–98. CRC Press,
1st edition, 2006.

48. P.C. Vinh. Formal Aspects of Dynamic Reconfigurability in Reconfigurable Computing Sys-
tems. PhD thesis, London South Bank University, 103 Borough Road, London SE1 0AA, UK,
4 May 2006.

49. P.C. Vinh. Homomorphism between AOMRC and Hoare Model of Deterministic Reconfigura-
tion Processes in Reconfigurable Computing Systems. Scientific Annals of Computer Science,
(XVII):113–145, 2007.

50. P.C. Vinh and J.P. Bowen. A Formal Approach to Aspect-Oriented Modular Reconfigurable
Computing. In Proceedings of 1st IEEE & IFIP International Symposium on Theoretical
Aspects of Software Engineering (TASE), pages 369–378. IEEE Computer Society Press.
Shanghai, China, 6–8 June 2007.

51. P.C. Vinh and J.P. Bowen. Formalization of Data Flow Computing and a Coinductive
Approach to Verifying Flowware Synthesis. LNCS Transactions on Computational Science,
1(4750):1–36, June 2008.

52. Y. Wang. Exploring machine cognition mechanisms for autonomic computing. The Interna-
tional Journal on Cognitive Informatics and Natural Intelligence (IJCINI), 1(2):i–v, 2007.

53. Y. Wang. Toward Theoretical Foundations of Autonomic Computing. The International Jour-
nal of Cognitive Informatics and Natural Intelligence (IJCiNi), 1(3):1–16, July–September
2007.

54. M. Witkowski and K. Stathis. A Dialectic Architecture for Computational Autonomy. In
M. Nickles, M. Rovatsos, and G. Weiss, editors, Agents and Computational Autonomy: Poten-
tial, Risks, and Solutions, volume 2969 of Lecture Notes in Computer Science, pages 261–273.
Springer Berlin, April 2004.

55. T.D. Wolf and T. Holvoet. Autonomic Computing: Concepts, Infrastructure and Applications,
chapter A Taxonomy for Self-∗ Properties in Decentralized Autonomic Computing, pages
101–120. CRC Press, 1st edition, 2006.

56. B. Yang and J. Liu. An Autonomy Oriented Computing (AOC) Approach to Distributed
Network Community Mining. In G.D.M. Serugendo, J.P.M. Flatin, and M. Jelasity, editors,
Proceedings of 1st International Conference on Self-Adaptive and Self-Organizing Systems
(SASO’07), pages 151–160. IEEE Computer Society Press, Boston, MA, USA, 9–11 July
2007.

Autonomic Information Diffusion
in Intermittently Connected Networks

Sara Alouf, Iacopo Carreras, Álvaro Fialho, Daniele Miorandi,
and Giovanni Neglia

Abstract In this work, we introduce a framework for designing autonomic
information diffusion mechanisms in intermittently connected wireless networks.
Our approach is based on the use of techniques and tools drawn from evolutionary
computing research, which enable to embed evolutionary features in epidemic-style
forwarding mechanisms. In this way, it is possible to build a system in which
information dissemination strategies change at runtime to adapt to the current
network conditions in a distributed autonomic fashion. A case study is then intro-
duced, for which design and implementation choices are presented and discussed.
Simulation results are reported to validate the ability of the proposed protocol to
converge to the optimal operating point (or close to it) in unknown and changing
environments.

1 Introduction

Epidemic-style forwarding [13] has been proposed as an approach for achieving
systemwide dissemination of messages in intermittently connected networks [10]
(sometimes named also Delay-Tolerant Networks (DTNs) [3]). These networks
are sparse and/or highly mobile wireless ad hoc networks where no continuous
connectivity guarantees can be assumed. Epidemic-style forwarding is based on a
“store-carry-forward” paradigm: a node receiving a message buffers and carries that
message as it moves, passing it on to new nodes upon encounter. Alike the spread
of infectious diseases, each time a message-carrying node encounters a new node
not having a copy thereof, the carrier may decide to infect this new node by passing
on a message copy; newly infected nodes, in turn, behave similarly. The destination
receives the message when it first meets an infected node.

S. Alouf (B)
INRIA, Sophia Antipolis, France
e-mail: sara.alouf@sophia.inria.fr

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 17, C© Springer Science+Business Media, LLC 2009

411

412 S. Alouf et al.

An unconstrained epidemic forwarding scheme (in which an infected node
spreads the messages to all nodes it encounters) is able to achieve minimum deliv-
ery delay at the expense of an increased use of resources such as buffer space,
bandwidth, and transmission power. Variations of epidemic forwarding have been
recently proposed in order to exploit the trade-off between delivery delay and
resource consumption. This family includes probabilistic forwarding [7], K-hop
schemes [4], and spray routing [12].

Depending on the specific application scenario, different performance metrics
could be envisaged, such as the probability of successfully delivering a message
to the destination, the delivery time, the total energy consumption in the system or
a combination of the previous ones. For a given optimization goal, the choice of
a specific forwarding scheme and its parameters configuration depend in general
on the number of nodes in the system, on their mobility patterns and on the traffic
generated in the networks [8]. In many scenarios, these characteristics cannot be
known at system design and deployment time and may drastically change across
time and space.

In order to deal with these issues, various adaptive techniques for message for-
warding can be envisaged. Conventional approaches are limited in that they require
an a priori definition of the actions to be taken to optimize the mechanism for some
specific situation. In this chapter, we propose a novel approach, based on the inclu-
sion of autonomic features (in the form of self-optimization capabilities) in the for-
warding service itself. This is achieved by using concepts and tools borrowed from
the Evolutionary Computation (EC) field. Self-optimization is obtained through a
cooperative process, in which nodes exchange their knowledge on the performance
of the various schemes employed.

A fundamental observation is that forwarding schemes simply perform a deci-
sion whether to relay a copy of a given message to an encountered node or not.
Thus, multiple forwarding schemes can coexist and interact within the same net-
work. Each node can then employ a potentially different forwarding policy, which
prescribes the operations to be undertaken when receiving a message destined to
another node. We assume that a way to formally describe forwarding policies is
available (it could be as simple as a list of parameters). We call such description the
genotype of the forwarding policy. Genotypes are associated with a fitness measure
which, roughly speaking, indicates the ability of the current set of parameters to
achieve good performance in the local environment with respect to the predefined
optimization goal. Fitness estimation is probably the most challenging task in this
autonomic service. In fact a node cannot evaluate by itself whether its current policy
fits the current scenario, because (1) it is in general not aware of the consequences of
its actions (for example a given node may be relaying a message which has already
been delivered to its destination) and (2) the fitness of a node’s policy depends on
the policies implemented by the other nodes as well. Fitness is estimated at each
node using not only local information but also feedback from the destination. The
fitness estimation process takes into account both feedback delay and feedback noise
(due to randomness of the mobility and arrival processes). When two nodes meet,
they may exchange genotypes (and associated fitness levels), updating the pool they

Autonomic Information Diffusion in Intermittently Connected Networks 413

maintain. Each node periodically generates a new genotype, judiciously using those
in its pool. By changing its genotype, a node has made its policy evolve. The use
of genotypes from other nodes in order to generate a new genotype implements a
form of distributed learning, being that each node takes advantage of other nodes’
experience. Standard EC operators such as selection, crossover, and mutation are
used to generate a new genotype from the pool, but also other approaches are con-
sidered. The whole system is engineered in such a way to present a drift toward
higher fitness levels. The performance of the proposed scheme is evaluated through
extensive simulations, showing its ability to adapt, in a seamless and autonomic
way, to varying system conditions.

The remainder of the chapter is organized as follows. Section 2 reviews the
related works and motivates our approach. Section 3 describes the autonomic
information diffusion service. Section 4 illustrates a case study implementation of
the proposed approach to autonomic epidemic-style forwarding in intermittently
connected networks. A detailed simulative study, performed using a freely avail-
able software tool, provides important insights in the applicability of the proposed
approach. Section 5 concludes the chapter.

2 Related Works and Motivation

Intermittently connected wireless systems represent a challenging environment for
networking research, due to the problems of ensuring messages delivery in spite
of frequent disconnections and random meeting patterns. Due to the mobility of
the nodes, protocols such as Ad hoc On-demand Distance Vector (AODV) routing,
Dynamic Source Routing (DSR), or Optimized Link State Routing (OLSR), contin-
uously update routes when users require them (AODV and DSR) or in a proactive
way (OLSR). These routes commonly time out after a few seconds. When a path
between two nodes does not exist through the network, no route can be created.
Needless to say that these protocols can hardly run over DTNs and will fail to deliver
data most of the time, because the assumption on the existence at a given time of a
complete path between a source and a destination is simply not met.

Many solutions have been proposed for use in such environments over the past
few years. The common basis of these solutions is the observation that end-to-end
routes may exist over time due to nodes mobility: leveraging their mobility, nodes
can exchange and carry other node messages upon meetings, and deliver them after-
ward to their destinations. This novel routing paradigm is referred to as store-carry-
forward. Each node in a network serves then as a relay for all other nodes. Different
approaches have been proposed depending if contacts among nodes can be planned,
predicted, or are unknown in advance. We want to provide a solution for the third
case, without relying on any infrastructure or special mobile nodes. We will then
briefly review other solutions present in literature for such a scenario.

All of these solutions pertain to the family of epidemic-like forwarding, as they
all imitate the spread of viruses in nature. A node having a copy of the message

414 S. Alouf et al.

is said to be infected, and as such, it can infect any other non-infected nodes
that it encounters by passing a message copy to it. If the message is copied at
every meeting, the delivery delay is the shortest possible. However, this scheme
is extremely wasteful of resources like the channel capacity, the buffer space and
the energy. We refer to this protocol as the unconstrained epidemic forwarding
scheme.

Vahdat and Becker [13] are the first to propose such a scheme, and call it “epi-
demic routing.” Messages are simply flooded in the network, the only limitation
being the maximal number of hops done by a message. The authors show that (i)
epidemic routing delivers all packets given unbounded buffer size at each node and
(ii) by appropriately choosing the maximum hop count, delivery rates can still be
kept high while reducing resource utilization.

To improve over the simple flooding achieved by epidemic routing, Lindgren,
Doria, and Schelén propose PROPHET [7], a probabilistic forwarding scheme that
is more sophisticated than [13]. Using history of node encounters and transitivity,
PROPHET achieves a performance comparable to that of epidemic routing but with
a lower communication overhead.

Groenevelt, Nain and Koole introduce in [4] the multi-copy two-hop relay proto-
col, a variant of the single-copy two-hop relay protocol proposed and studied in [5].
The infection process is largely constrained as any node can be infected only by the
source and can itself infect only the destination.

A new family of routing protocols is proposed in [12] by Spyropoulos, Psounis,
and Raghavendra. This family, called Spray routing, can be viewed as a trade-
off between single and multiple copies techniques. Spray routing consists of two
phases: the first is called spray, and the second is either wait (spray-and-wait pro-
tocol) or focus (spray-and-focus protocol). In the spray phase, a carefully chosen
number of copies of the message are generated and disseminated in the network
to the same number of relay nodes. In the wait phase, relays simply wait to meet
the destination in order to deliver the message. In the focus phase, each copy of
the message is routed according to a utility-based single-copy routing algorithm.
The authors show that, if carefully designed, spray routing incurs significantly fewer
transmissions per message than epidemic routing, and achieves a trade-off between
efficient message delivery and low overhead.

Epidemic schemes may be combined with a so-called recovery process that
deletes copies of a message at infected nodes, following the successful delivery
of the message to the destination. Different recovery schemes have been proposed:
some are simply based on timers, others actively spread in the network the informa-
tion that a copy has been delivered to the destination [6].

In this work, we focus on data dissemination techniques which do not require
nodes to exchange any a priori knowledge/estimation of their meeting patterns
and/or location. We are interested in epidemic-style forwarding policies due to their
simplicity, inherent robustness with respect to node failures and unpredictable sys-
tem conditions, as well as totally distributed nature. The major drawback of these
schemes is that they can potentially harvest the network resources. Also, epidemic-
style forwarding is highly sensitive to the setting of some protocol parameters

Autonomic Information Diffusion in Intermittently Connected Networks 415

(e.g., the forwarding probability), which in turn should be set according to the cur-
rent operating conditions. This motivates us to develop an evolutionary forwarding
service that will adapt to changes in the network conditions.

3 The Framework

In this work we aim to develop a framework that will allow the forwarding ser-
vice to evolve online in order to optimize a given performance metric and to adapt
autonomously to the actual system operating conditions.

We first observe that multiple forwarding schemes can coexist at the same time
in the network. In fact this form of information delivery, based on the presence of
multiple copies in the network, does not need nodes to be compliant with a specific
behavior, enhancing system robustness with respect to conventional schemes. This
flexibility comes from the completely distributed nature of the forwarding process
in epidemic-style relaying, which allows nodes to use different policies in an unco-
ordinated fashion.

In our framework, we want nodes to “learn” online what is the best forwarding
policy (or what are good policies) in the current scenario and change consequently
the one they employ. The problem is challenging as a node cannot evaluate by itself
whether its current policy fits the current scenario, because it is in general not aware
of the consequences of its actions. For example a given node can never know by
itself whether its decisions—according to its forwarding policy—to relay or not
to relay a message were the right ones or not. Thus, a node may be relaying a
message when the latter has already been delivered to its destination, hence wasting
resources. On the other hand, a node may refrain from relaying a message when it
happens to be the key node in the message delivery process, e.g., if it is the only
node traveling between two disconnected clusters of nodes in the network. It should
be clear therefore that a cooperative fitness estimation process has to be put in place
in order to allow the network to show self-optimizing features. We also observe that
the goodness (or fitness) of a node’s policy depends on the policies implemented by
the other nodes as well. Message delivery is in fact a collaborative process, whose
performance depends on the behaviors of all nodes, so that a specific policy can be
beneficial or detrimental depending on other nodes actions.

The previous considerations imply the need of an online distributed fitness evalu-
ation process and raise an issue about the use of the fitness in the evolution process.
Once a node get marks for its own policy, how should these marks be used in order
to change the policy? We opt for a blind evolutionary approach, which relies on
a homogeneity assumption, according to which the nodes in the network can be
partitioned in “large” groups of homogeneous ones, having similar mobility models
and traffic patterns. If this assumption holds, then each node can learn from nodes
in the same group: it can make its policy more similar to those policies presenting a
higher level of fitness. This suggests that two other components are required in our
framework: a unified description of the policies, so that each node can communicate

416 S. Alouf et al.

to other nodes the one in use, and mechanisms for the generation of new (hopefully
better) policies from existing ones.

Here we summarize the three fundamental components in our evolutionary
framework using EC terminology. These components are as follows:

1. the possibility to share with other nodes a description of the specific forwarding
mechanism deployed at each node (the genotype associated to the forwarding
policy employed at the node);

2. a consistent process for evaluating the fitness of the schemes employed, in order
to identify “good” solutions;

3. the possibility for each node to modify its forwarding scheme taking into account
the schemes of other nodes (what we call, with a slight abuse of terminology, the
genotype evolution).

In order to enhance the readability, the notation used in this chapter is summa-
rized in Table 1.

Table 1 Notation
xi genotype of node i
F function to optimize
f performance metric of interest
CF cost function
Pi forwarding probability in genotype of node i
Hi maximum allowed hop-count in genotype of node i
T (n)

D delivery time of message n
W (n) set of nodes in the path of the first copy of message n reaching destination
hn hop count of the first copy of message n reaching destination
C(n)

i number of copies of message n done by node i
C(n) total number of copies of a message n in the system
Ĉ(n)

i estimation at node i of the total number of copies of message n in the system
γ time-equivalent cost of a copy in the cost function
R(n)

i reward received by node i for spreading message n
φi fitness of node i genotype
φ̂i estimation of node i genotype fitness
φ̂i, j estimation of node i genotype fitness known by node j
Gi set of genotypes in the pool of node i
pi, j probability of selecting genotype xi at node j during the reproduction phase
Tg time between two consecutive reproductions
pc crossing-over probability
pm mutation probability
N number of mobile nodes
Ts maximum inter-message arrival time at each node
L side size of squared playground
r transmission range
v node speed
Tstep mobility time step in simulations

Autonomic Information Diffusion in Intermittently Connected Networks 417

3.1 The Forwarding Policy

A first step toward an evolutionary delay-tolerant forwarding service consists in a
formal representation of a generic forwarding scheme. Such descriptions represent
the genotypes of the implemented forwarding schemes.

In order to define this formal description, it is essential to identify the key actions
potentially involved in a message diffusion process. Whenever two nodes become
within each other’s transmission range, they have the possibility to exchange some
or all of their messages. Regarding the transmission of messages, each of the nodes
can perform one of the following actions upon each of its messages: (i) transmit-
ting a copy of the message; (ii) transferring the message itself without keeping a
local copy; or (iii) retaining the message. These actions can be further specified and
limited by counters and timers or can be performed according to some probability
distribution. The messages can be processed on a first come first served basis or
according to any other scheduling policy. It is also possible that nodes base their
actions on some information contained in message headers (like message generation
time or number of hops the message has traversed) and also update it. Regarding
the reception of messages, a node receiving a message may face an overflow in its
buffer. When this occurs, the node needs to drop some messages from its buffer in
order to free space for the new message. Messages to be dropped can be selected at
random or according to a specific criterion (the oldest, the most spread, etc.).

All these possible schemes could be specified in different ways, through array of
parameters, variable length strings, trees, etc. In what follows we briefly describe
two possibilities.

3.1.1 Parameters Arrays

We can consider a complex forwarding scheme, which can implement different
known schemes, by tuning its parameters. For example, the scheme could select
the message to forward from the queue according to a probability distribution and
copy it only if a local copies counter is below a given threshold and the messages
has not traversed more nodes than the value specified by another threshold. This
scheme is univocally characterized by its array of parameters including the proba-
bility distribution, the copies threshold and the hops threshold. Clearly the scheme
could be made more complex and a longer array would be needed.

While this kind of description can become heavy, working with fixed length
genotypes simplifies genotype interpretation and genotype processing at each
node.

3.1.2 Strings

Another possibility is to rely on strings. The purpose of this section is not to define a
formal language but to introduce some considerations and provide some examples.

418 S. Alouf et al.

The genotype string can be divided into two parts: a first part meaningful in
transmission mode and specifying the actions to undertake and their parameters
when transmitting a message; and a second part meaningful in reception mode
and specifying the actions to undertake and their parameters when the buffer is
full.

According to the description of nodes operation, we can define many basic genes,
which specify actions and their characteristics or parameters. For illustrative pur-
poses we define the following:

action genes: • Select the message (S),
• Transmit a copy of the message (T),
• transFer the message (F),
• Drop the message (D);

parameter genes: • relaying Nodes counter (N),
• Copies counter (C),
• with Probability (P);

and location genes: • uniformly Random (R),
• at the Head (H),
• at the Bottom (B).

Genes (N), (C), and (P) limit the actions of genes (T) and (F) whereas genes
(R), (H), and (B) accompany gene (S). If we assume that messages in the queue
are chronologically ordered having the most recent one at the bottom of the queue,
then genes (H) and (B), respectively, represent FIFO and LIFO service disciplines.
Note that we could have added a third part to the string representation to define how
messages are ordered inside the buffer. However, we refrained from doing this so as
to lighten the string representation.

As we said we are not going to specify the strings grammar, but we present some
possible examples of strings. The purpose is to show how these few genes can yet
be sufficient to specify many different behaviors. The two parts of the string will be
separated by a dash and genes representing a value will be put between parentheses.
Examples are

SBT-SHD: This string describes the standard epidemic routing with priority for
recent messages (the node forwards most recent messages and discards least
recent ones);

SBTP(0.1)-SRD: This string describes probabilistic forwarding of most recent
messages with a forwarding probability equal to 0.1, and where discarded mes-
sages are picked uniformly at random;

SRTN(10)-: This string describes a K-hop scheme which limits the diffusion of
messages up to the tenth relaying node and where forwarded messages are picked
uniformly at random. The absence of the second part could correspond to the
case where incoming messages are discarded when the buffer is full (no message
already in the buffer would be dropped).

While it does not seem difficult to create a formal language to include such simple
examples, the trade-off between the complexity of the description and the variety

Autonomic Information Diffusion in Intermittently Connected Networks 419

of possible schemes which can be described (the possible phenotypes) has to be
investigated.

3.2 The Selection Process

The natural selection process promotes the diffusion of organisms presenting a high
fitness level. In much the same way, we want to engineer mechanisms for promoting
the diffusion of the genotypes yielding good performance for the optimization goal.
At the same time, new genotypes can be generated in order to explore new possible
solutions. In this section, we focus on the first issue letting the next section discuss
how new genotypes can be generated from existing ones.

In traditional EC, and in particular in Genetic Algorithms (GAs), reproduction
is a process which selects existing genotypes to create new offsprings. At discrete
time intervals, genotypes are randomly selected from the population to generate off-
springs: genotype xi is selected with probability proportional to its fitness, namely,
pi := φi/

∑
j φ j. This procedure tends by itself to increase the average fitness of the

population. However, in the considered mobile network scenario the different geno-
types are distributed over all the nodes of the network. This means that standard
GAs reproduction phase can not occur without resorting to a centralized solution
where a central node (i) stores the genotypes, (ii) applies GA operators, and (iii)
distributes back the produced offsprings to the mobile nodes. In order to overcome
this limitation and devise a distributed solution, we assume that upon meeting nodes
exchange information about their respective genotypes and the corresponding fit-
ness indexes. As depicted in Fig. 1, in our system each node maintains a pool
of available genotypes (including the one currently in use) and their correspond-
ing fitness values. At regular time intervals, each node goes into a reproduction
phase, running the selection process on the genotypes currently stored in its own
pool.

Fig. 1 Considered system architecture: each node employs a policy, characterized by a genotype
with associated fitness value. Each node maintains a pool of candidate solutions used in the repro-
duction phase to generate new genotypes

420 S. Alouf et al.

3.3 Fitness Evaluation

We now need to define formally the fitness of a forwarding policy. For the sake
of simplicity, we consider that the function to optimize, F , is the expected value of
some performance metric, say f , which can be evaluated for a specific infection pro-
cess. More formally let I refer to the complete history of a generic infection process
in the network. An infection In reports all of the infection steps since the genera-
tion of message n until the cancellation of the message and all of its copies. For
example it specifies which nodes are infected at a given time instant. The infection
In depends on the genotypes and the mobility patterns of all nodes involved in the
infection process but also on the concurrent data traffic at these nodes. The function
that we want to optimize can be rewritten as F = E[f (I)] where the expectation
is taken with respect to the probability measure defined by the mobility process,
the message generation process. Examples of performance metric f (I) are the time
needed to deliver a message to the intended destination, the time before an infection
dies (i.e., when all copies are erased from the network), the number of copies done
for a given message and the power required to propagate the message.

Observe that a given infection I will most likely involve only a subset of the
nodes in the system. Conversely, a given node j will take part in only a subset of all
infections. The fitness of a genotype x j can be defined then as

φ j = E[f (I) | node j contributed to infection I]. (1)

This ensures that the genotypes of nodes taking part in “good” delivery processes
get on average a higher fitness than those involved in “bad” diffusion processes.

According to Eq. (1), for a node to estimate the fitness of the genotype it is using,
it should average the performance metric f (I) over all infections it had taken part
in. A difficulty arises from the fact that the forwarding service is intrinsically a
cooperative distributed service and a node is in general not able to evaluate by itself
f (I). For example, the node does not know when or how many times a message is
copied in the system, whether or not a message has been delivered, and so on. Some
signaling among nodes is thus required in order to let each node be able to evaluate
f (I).

In many cases, the process of evaluating f (I) can be triggered by the desti-
nation node of a message as it is the best entitled to evaluate the outcome of
the infection process. The destination node propagates then the evaluation of f (I)
or at least information needed for this evaluation to all nodes involved in the
infection process. This feedback can be seen as a “reward” to those nodes. The
communication cost can become significant so that a communication-cost versus
information-accuracy trade-off arises. Beside the communication overhead, another
aspect to consider is the time needed to evaluate the performance metric f (I). If
information is delivered to a node long after message delivery, the node could
have changed its genotype, so that the evaluation would not refer to the current
genotype.

Autonomic Information Diffusion in Intermittently Connected Networks 421

3.4 Generation of New Forwarding Policies

New forwarding policies are generated applying EC-like operators to the genotypes
maintained by a node in its pool. The two following operators can be used to create
new genotypes from existing ones. Crossing-over consists in breaking two geno-
types at a randomly chosen position and exchanging the tails of the genotypes. Two
offsprings, called crossovers, are produced, and one is selected at random. Mutation
consists in a random change occurring in the genotypes. As an example, mutation
can be implemented by randomly swapping, with some probability, the bits of a
binary representation of the genotype, or by adding some white noise to the protocol
genotype. To ensure stability, mutation should occur with small probability.

4 The Case Study

In this section, we report on a case study implementation of the proposed approach
to epidemic-style forwarding in DTNs. Our main objective with this implementa-
tion is to gain insight into the applicability of the approach proposed in Sect. 3. In
particular, our purpose is to answer the following questions:

(i) Does the distributed genetic algorithm “converge”?
(ii) If so, what does the convergence point look like and how much time is required

for the convergence?
(iii) What is the impact of the mutation process on the speed of convergence?
(iv) How robust is our scheme and how capable is it of adapting to changing net-

work conditions?

These questions will be tackled by implementing a (reduced) version of the pro-
posed framework, and running numerical simulations to evaluate, in a realistic sce-
nario, the behavior of the system.

4.1 Description

We consider a simple fixed-length genotype comprising one parameter, which is
the probability P to copy a message upon encountering a new node. In our prior
work [1], a simple binary string was used to represent the value of P. In this work, P
is maintained as a double-precision number. As optimization goal we consider the
minimization of the expectation of the weighted sum of the delivery time, TD, and
the number of copies of the message done in the system, C. The cost function is then
defined as follows:

CF = E
[
TD + γC

]
, (2)

where γ is a parameter which can be understood as the time-equivalent cost of a
copy.

422 S. Alouf et al.

Should the optimization goal be to minimize solely the expected delivery time,
then the evolutionary forwarding scheme will trivially converge, in an underloaded
network—i.e., when traffic is small in comparison to the available capacity—to
standard epidemic routing, where messages are flooded in the entire network. Con-
versely, the presence of the number of copies in the cost function makes also an
underloaded network (a realistic case and faster to simulate) an interesting scenario
to study. Such a metric is also meaningful as it is strongly related to bandwidth usage
and power consumption. The evolutionary forwarding scheme will limit the number
of copies to an extent that depends on the value of the parameter γ .

4.1.1 Fitness

According to the discussion in Sect. 3.2, we can think to define the fitness of the
genotype at node j as

φ j = E

[(
1 − CF

Rmax

)
| node j contributed to infection

]
.

In this way the fitness is a decreasing function of the cost and if we let Rmax be a
high enough value, we can guarantee that fitness values are positive, as it is required
for the biased selection process we described above. We have decided to consider as
nodes contributors to the infection of a given message, say message n, only those in
the forwarding path of the first copy that reaches the destination. This set of nodes
is denoted as W (n). This choice reduces the communication burden in comparison to
considering all infected nodes.

Let us discuss now how a node can estimate its fitness. This estimation clearly
requires some information about the delivery time and the number of copies done
for each message n for which the node is in the set W (n). Regarding the delivery time,
we assume that all nodes are synchronized and that the message header contains a
field specifying the time at which the payload was generated at the source.1 In such
a way the destination can evaluate the delivery time as soon as it receives the first
copy of a message. On the other hand, each node knows the number of times it
has copied a message, but not the delivery time. We assume that each node, before
forwarding a copy of a message, say message n, adds its own identifier (ID) to the
message header (this is analogous to what is done in source routing in mobile ad
hoc networks). It follows then that the IDs in the header of the first copy of message
n reaching the destination identify exactly the nodes in the set W (n). The destination
node sends to these nodes a new acknowledgment (ACK) message. This message

1 If local clocks are enough accurate at the message delivery timescale, then there is another solu-
tion which does not require synchronization. Message header should have a field which indicates
the time since the payload was generated. This field can be updated by each node before forwarding
the message. In this case the node should keep track of the time running since it has received the
message.

Autonomic Information Diffusion in Intermittently Connected Networks 423

specifies the delivery delay and the number of hops (hn = |W (n)|) traveled by the
message before reaching the intended destination.

Estimating the total number of copies is a more complex issue. In the simulation
results shown later we assume that nodes know the number of copies done in the
system when they receive the ACK and use this number as an estimate of the total
number of copies, which will in general be larger being that the infection can still
be propagating. We discuss briefly realistic estimation approaches, that we are eval-
uating. Each node can keep track of the number of copies it did for message n, let
us denote as C(n)

j the number of copies done by node j. An approach is then to let
each node broadcast its local number of copies and then evaluate the total number
of copies aggregating the information received by other nodes (C(n) = ∑N

j=1 C(n)
j),

but this would imply a significant communication overhead. We think it is better to
rely on an estimation by adopting the “Plain Diffusion” solution proposed by [2]. In
this algorithm, two meeting nodes exchange their current estimates and evaluate a
new (better) estimate. The estimations at all nodes converge with probability one to
the real value, but this requires some time after the end of the infection, hence nodes
need to wait after the reception of the ACK to rely on an accurate estimate.

Once a node, say node j, knows the delivery time and has a reliable estimation
(say Ĉ(n)

j) of the total number of copies for message n, it can estimate the cost of

spreading the message as T (n)
D + γĈ(n)

j , a quantity that we refer to as the reward R(n)
j ,

and then update its fitness. Let us denote as Mj the set of all infections node j has
been contributing to, formally Mj = {n| j ∈ W (n)}. A naive approach to estimate
the fitness would be to simply average the rewards over all messages in Mj. Hence
we could think to estimate the fitness of node j as 1 − 1/|Mj|

∑
n∈Mj

R(n)
j /Rmax.

In reality, this approach would introduce a bias, because infections with longer
forwarding paths, would generate a higher number of rewards in the system. The
way to eliminate this bias is to consider the following weighted average:

φ̂ j = 1 − 1

Rmax

∑
n∈Mj

R(n)
j

hn

∑
n∈Mj

1

hn

.

4.1.2 Evolution

When two nodes meet, they transmit to each other their own genotype and its cur-
rent fitness level estimation. Each node maintains a pool of available genotypes
(including the one currently in use) and their fitness. We use Gj to denote the pool
at node j and φ̂i, j to denote the value of node i fitness known by node j (φ̂i, j is
the value of φ̂i at the time of the last meeting between node i and node j, so at a
given time instant these two values can be different). We consider a synchronized
reproduction phase. Every Tg seconds, the generation lifetime, nodes synchronously
create a new offspring each, i.e., they update their own genotype. This synchronism

424 S. Alouf et al.

allows to clearly identify different generations during the evolution. No crossover
is performed, but only mutation, in the form of addition of a properly defined white
noise (described below).

At each node, e.g., at node j, the genotype to be used as a basis for the new
generation is selected with a probability proportional to its own fitness,2 namely,
pi, j = φ̂i, j/(

∑
l φ̂l, j) where the sum is over all genotypes contained in the pool Gj.

Finally, one genotype selected from the pool can be mutated with probability pm,
before becoming the active genotype/forwarding policy of the node during the next
generation. The genotype pool is emptied after every generation. If the network is
large, the node’s pool may not be large enough to keep all genotypes discovered in
a generation. Should this be the case, a node may keep only the fittest genotypes, or
alternatively select the genotypes according to a fitness-biased distribution.

As mentioned in Sect. 3, for stability reasons, a mutation should occur only with
some small probability pm. In [1], we have used a binary representation of the geno-
type and have implemented mutation by randomly swapping, with some probability,
the bits of the binary representation. In this case study, we are considering a contin-
uous representation of the genotype (the forwarding probability P). A mutation is
performed by summing to the value P a randomly generated “noise.” We want the
noise to satisfy the following requirements:

1. finer grain for smaller values; this implies (i) a finer grain for negative noise than
for positive noise and (ii) a smaller noise for smaller values;

2. zero mean noise;
3. negative and positive noise that are equally probable.

Requirements 2 and 3 are consistent with the well-known additive Gaussian noise,
however this type of noise does not satisfy the first requirement. The latter is needed
because of the increased sensitiveness of the cost function to lower values of P.

It turns out not to be possible to satisfy all three requirements simultaneously.
Therefore we have decided for a distribution that satisfies the first two ones.

One simple way of achieving the first requirement is to consider the additive
noise to (i) be proportional to the value P and (ii) have a distribution with smaller
support at negative values. Let Y be a random variable having its probability den-
sity function as depicted in Fig. 2. Given that P is the value of the genotype that
is selected from the pool, the value of the new genotype is defined as (1 + Y)P.
Clearly, if E[Y] = 0 then E[(1 + Y)P] = E[P]. The density of Y has been

2 In practice, scaled fitness values are used instead of the raw fitness values φ̂i, j . The purpose is
twofold. First, we want to avoid having in the first generations few extraordinary genotypes taking
over a significant proportion of the finite population in a single generation. Second, should the best
fitness values be close to the average ones, we would like to have substantially more best genotypes
than average ones in future generations. We can linearly scale the fitness values such that the best
fitness value is double the average fitness value which remains unchanged. In generations where
the scaling produces negative normalized fitness values, an alternative scaling is used. The latter
maintains equality of the raw and scaled average fitness values, but maps the minimum raw fitness
to a null value.

Autonomic Information Diffusion in Intermittently Connected Networks 425

Fig. 2 Probability density function of the noise and values of the parameters a, b, and c for the
satisfaction of requirements 1 and either 2 or 3

defined over the interval [−b, a], where 0 < b < a < 1. Its particular shape
ensures that it is continuous at 0 and that the distribution is as balanced as possible
(i.e., S1 := P(Y < 0) and S2 := P(Y > 0) as close as possible). To satisfy the second
requirement, we let a = b

√
2; see details in Fig. 2, which also shows which values

would satisfy the third requirement. In this case, S1/S2 ≈ 1.06066, thus the third
requirement is only slightly violated. To satisfy the third requirement, one would
let a = 3b/2. However, the expected noise will be positive as expressed in Fig. 2.
There will then be a bias toward higher values.

From now on, we consider a = b
√

2 and c = 3/(b3(3 + 2
√

2)).
One problem is related to the setting of boundaries, as the forwarding probability

P should be in the range [0, 1]. In our case, we have to deal only with the boundary 1,
as the genotype can get only infinitely close to 0 but never below 0. Three methods
to deal with boundaries are seen in the literature:

1. iterate until the value falls within the boundaries;
2. try once and bounce the value between the boundaries until it falls between them;
3. try once and truncate the value to the boundary.

All three methods introduce a bias toward smaller values in the distribution of P.
The third method is expected to have the smallest bias. In particular, a mutation
with a positive noise moving the probability beyond the boundary 1 results, with the
third method, in a new value (equal to 1) that is larger than the original probability.
Should any of the first two methods be used, there is no guarantee that a positive
noise raising a boundary violation does result in a new value that is larger than the
original one.

However, given the structure of the noise, the exploration of the state-space of
the probability is much slower toward the left than toward the right. Having then
a bias toward smaller values is not as an important issue as one may think at first.
Because of the bouncing, the second method is most likely suited only when the
noise distribution is symmetric, which is not the case here. Henceforth, we will use
the first method to deal with the boundary problem, with a predefined (high) limit of
trials in order to avoid the system to get trapped on a long sequence of unsuccessful
iterations. In case the limit of trials is exceeded, the third method will be applied.

426 S. Alouf et al.

4.1.3 Message Structures and Communications

Two nodes are able to exchange messages when they get within mutual communi-
cation range. Once it happens, they perform the following steps:

1. exchange node IDs;
2. exchange header information of data messages;
3. each node decides which messages should be forwarded to the other node;
4. messages are exchanged;
5. each node can drop some messages from its buffer (if full) in order to free space

for new messages.

The evolving protocol makes use of two types of messages to be exchanged over the
network: DATA messages and ACK messages. DATA messages are those carrying
the payload transmitted by any mobile node to a specific destination, whereas ACK
messages are used for the following purposes:

• to acknowledge the successful delivery of the message at its intended destination;
• to feed back the reward to the nodes along the successful path from source to

destination (rewarding);
• to serve as anti-DATA, by blocking the diffusion of already delivered messages

and removing them from nodes buffer.

The fields common to all message headers are (i) [message ID], which is the
(unique) identifier (ID) of each message and also specifies whether it is a DATA
or an ACK message (ii) [GenTime], which describes the time at which the message
has been generated. Further, data messages include a hop-count field [hops] and the
labels of all nodes which forwarded the message along the path from the source
to the actual node. ACK messages, on the other hand, include the complete set of
nodes involved in the forwarding path and the DATA message delivery time TD.
Each mobile node maintains two internal data structures dedicated to the storage
of DATA and ACK messages respectively. In the structure storing DATA messages,
each item additionally stores a counter of the number of copies of that message
already disseminated in the network. For any DATA message to be relayed, a node
first adds its own node ID to the header and then increments by one the [hops]
field of the message. The message is kept in the node internal memory until the
corresponding ACK message is received or its lifetime expires.

In addition to DATA messages, mobile nodes diffuse also ACK messages. Unlike
the case of DATA messages, no limiting policy is applied to the forwarding of these
messages (ACK messages are simply flooded into the network according to the
VACCINE recovery scheme [14]). Whenever it receives an ACK message, a node
first adds the received ACK message to the internal message list. It then checks
whether the corresponding DATA message is present in its internal memory and, in
case, removes it. If the node has contributed to the successful path to the destination,
it updates its own fitness, as described in the previous section.

The overall procedure is summarized in Algorithm 1.

Autonomic Information Diffusion in Intermittently Connected Networks 427

Algorithm 1 Algorithm performed by a node upon reception of an ACK message.
1: Add the received ACK message to the internal ACK messages list
2: if msgID ∈ {msgID 1, . . . , msgID L} then
3: Remove the corresponding DATA message from the internal structure.
4: if Node ID ∈ W then
5: Update node’s fitness value (REWARDING).
6: end if
7: end if

4.2 Performance Evaluation

In order to evaluate the performance of the presented algorithms, we have run exten-
sive simulations using the freely available simulation tool OMNeT++ [9].

We consider N mobile nodes, moving at constant speed v over a L × L square
playground according to the random direction mobility model [11]. Each node
selects the angular direction of its next movement uniformly in [0, π], moves along
this direction with a uniform speed; upon reaching the border, it generates a new
angular direction and moves accordingly. Nodes initial locations are sampled from
a uniform distribution which is the nodes stationary distribution under this mobility
model (perfect simulation).

Distinct nodes are considered to be in communication range if the mutual dis-
tance falls below the communication range r. Each mobile node generates a DATA
message in a time interval which is uniformly distributed between 0 and Ts sec-
onds, with a destination chosen uniformly among the nodes in the simulation. Each
message generated is stored in the out queue of the generating node. The posi-
tion of every mobile node in the simulation is updated every Tstep seconds. Each
generation lasts for Tg units of time. The specific values used are in Table 2. The
default values of the mutation process are pm = 0.01 and b = 0.25 (a = b

√
2,

c = 3/(b3(3 + 2
√

2)); see Fig. 2).

4.2.1 System Convergence

Our first objective is to assess the ability of the evolutionary forwarding mechanism
to reach the optimal operating point, which is represented by the minimum of the
cost function across all the possible values of the forwarding probability.

Table 2 Simulation parameters

L = 2500 m Tg = 1500000 s γ = 200, 1000, 1800 s
r = 25 m Ts = 10000 s pm = 0.1, 0.2
v = 1 m/s Tstep = 2 s b = 0.25, 0.5

Static scenario N = 20, 100, 500
Dynamic scenario N varies in {20, 60, 80}

428 S. Alouf et al.

We have thus conducted a series of simulation runs with N = 100 nodes in which
message delivery was achieved through pure probabilistic forwarding, with all nodes
applying the same fixed forwarding probability. We ran simulations varying the for-
warding probability P from 0 to 1 and computed the cost for γ ∈ {200, 1000, 1800}.
For each γ we conducted simulations using our evolutionary forwarding scheme.
Nodes genotypes are initialized by selecting forwarding probabilities uniformly at
random in the interval [0, 1].

In Fig. 3 each curve shows the cost, as expressed in (2), achieved by the prob-
abilistic forwarding scheme as the forwarding probability changes, for a specific
value of the parameter γ . As one could expect, for low values of γ , like γ = 200
(corresponding, roughly speaking, to a scenario where resources are not an issue
but low delays are required), the cost function is monotonically decreasing in P
and flooding (P = 1) is the best forwarding policy. As γ increases, the number of
message copies done in the system becomes increasingly important, and naturally,
smaller forwarding probabilities start achieving lower cost values. For γ =1000 and
1800, a minimum exists and a trade-off between low delay and low resource con-
sumption can be found. Three dots represent the performance of our scheme after the
initial transient: the abscissas are obtained averaging forwarding probability values
across all the nodes. As it can be easily seen, the system running our scheme is able
to reach, after convergence, an operating point that is very close to the optimal one,
for the three values of γ that were considered.

In the proposed system, evolution occurs at regular intervals, the generation
period. Hence, at each generation instant an evolution occurs, and the system
changes its behavior updating the forwarding probability toward those values mini-
mizing the cost function. This effect is evident in Fig. 4, which depicts the distribu-
tion of the forwarding probability and the cost function CF over the generation num-
ber. As it might be seen, after approximately 20 generations, the forwarding proba-
bilities used in the system converge. The average forwarding probability values after

0 0.2 0.4 0.6 0.8

forwarding probability

0

50000

1e+05

co
st

 F

PF γ = 200
PF γ = 1000
PF γ = 1800Evolutionary Forwarding

Fig. 3 Cost with Probabilistic Forwarding (PF) and evolutionary forwarding

Autonomic Information Diffusion in Intermittently Connected Networks 429

0

0.2

0.4

0.6

0.8

1

fo
rw

ar
di

ng
 p

ro
ba

bi
lit

y
0 10 20 30

generation

(a) γ = 200 (b) γ = 1000 (c) γ = 1800

23000

23500

24000

24500

25000
co

st

0

0.2

0.4

0.6

0.8

1

fo
rw

ar
di

ng
 p

ro
ba

bi
lit

y

0 10 20 30

generation

60000

65000

70000

75000

80000

85000

90000

co
st

0

0.2

0.4

0.6

0.8

1

fo
rw

ar
di

ng
 p

ro
ba

bi
lit

y

0 10 20 30

generation

60000

80000

1e+05

1.2e+05

1.4e+05

co
st

Fig. 4 Cost function and genotypes evolution over time when N = 100 nodes

convergence are the ones that are reported on each curve of Fig. 3. The system does
converge around the optimal operating point.

Impact of the Mutation Process

We have then analyzed the impact of different evolution parameters, i.e., mutation
probability, noise settings. In Fig. 5, we report the distribution of the forwarding
probability, together with the cost function, over generations. Figure 5(a) reports the
performance under our default mutation settings. In Fig. 5(b), we have kept the same
distribution of noise (process Y in Sect. 4) but have considered a larger mutation
probability pm = 0.2. The convergence of the cost function appears to be a couple of
generations faster. In Fig. 5(c), we have kept pm = 0.1 but have considered a process
Y with a larger variance (fourfold the one of the default settings). Interestingly, the
system converges much faster than with the default settings for either pm = 0.1 or
0.2. The convergence seems to occur around the 10th generation. Also, the variance
of the noise has a larger impact on the convergence than the probability of mutation.

0

0.2

0.4

0.6

0.8

1

fo
rw

ar
di

ng
 p

ro
ba

bi
lit

y

0 10 20 30

generation
(a) pm

= 0.1, b = 1/4 (b) pm
= 0.2, b = 1/4 (c) pm

= 0.1, b = 1/2

60000

80000

1e+05

1.2e+05

1.4e+05

co
st

0

0.2

0.4

0.6

0.8

1

fo
rw

ar
di

ng
 p

ro
ba

bi
lit

y

0 10 20 30

generation

60000

80000

1e+05

1.2e+05

1.4e+05

co
st

0

0.2

0.4

0.6

0.8

1

fo
rw

ar
di

ng
 p

ro
ba

bi
lit

y

0 10 20 30
generation

60000

80000

1e+05

1.2e+05

1.4e+05

co
st

Fig. 5 Impact of the mutation process (N = 100 nodes, γ = 1800)

430 S. Alouf et al.

4.2.2 System Scalability

We have next considered the scaling properties of the proposed evolutionary mech-
anism. We repeated the same steps described in Sect. 4.2.1 and whose results are
reported in Fig. 3, but this time with N = 20 and 500. The results are reported
in Fig. 6. Figure 6(a) (resp. 6(b)) depicts the cost function versus the forwarding
probability when a fixed probabilistic forwarding is used, with N = 20 nodes (resp.
N = 500 nodes). The operating point to which our evolutionary scheme converges
is also reported. We can say that the system, when running our scheme, reaches an
operating point that is close to the optimal one for a large range of network sizes
(N ranging from 20 to 500). We believe that our scheme should scale to even larger
network sizes. Unfortunately, fine-grained simulations do not scale as easily to large
networks.

4.2.3 System Robustness

The last point that we wanted to address through simulations concerns the robust-
ness of our scheme and its ability to adapt to a changing environment. Therefore,
we considered a scenario in which the number of nodes changes abruptly after 20
generations from 10 nodes, up to 100 nodes, then up to 300 nodes after other 20
generations. It then reduces to 100 at the 80th generation and finally reduces back
to 10 nodes at the 100th generation. The time-equivalent cost of a copy is set to
γ = 1800 and the noise parameter b is set to 0.5.

Figure 7 depicts, over the generations, the cost achieved by our scheme and
the average forwarding probability among all nodes. The cost plot presents spikes
whenever N increases. The abrupt change is mainly due to the arrival of new nodes,
whose initial forwarding probability is set uniformly at random. During the transient
following the spike, genotypes better fitted to the new scenario are identified and
the cost reduces. As an example, the system is able to let the forwarding probability
decrease when the number of nodes increases. However, a similar behavior is not
observed in the opposite case—when the number of nodes decreases. This is rooted
in the limited diversity of the nodes’ genotypes. When adding nodes, the newcomers

0 0.2 0.4 0.6

forwarding probability

20000

40000

60000

co
st

PF γ = 100
PF γ = 150

Evolutionary forwarding

0 0.2 0.4 0.6

forwarding probability

(a) 20 nodes (b) 500 nodes

50000

60000

70000

80000

90000

co
st

PF γ = 5000
PF γ = 6000

Evolutionary forwarding

Fig. 6 Convergence of the evolutionary forwarding scheme in the case of 20 and 500 nodes

Autonomic Information Diffusion in Intermittently Connected Networks 431

0

50000

1e+05

1.5e+05

2e+05

2.5e+05

3e+05

C
os

t

Cost

0 20 40 60 80 100

Generation

0

0.2

0.4

0.6

0.8

1

Fo
rw

ar
di

ng
 P

ro
ba

bi
lit

y Forwarding Probability

10 nodes 100 nodes 300 nodes 100 nodes 10 nodes

Fig. 7 Dynamic scenario: cost function and forwarding probabilities over the generations

take a forwarding probability chosen at random. This randomness injects a sufficient
level of genotype diversity that allows our scheme to explore, in parallel, a wide
range of forwarding probabilities. Conversely, once the system has converged to the
optimal value for a specific setting and the scenario changes, the system is extremely
slow in its reaction due to a limited genetic diversity. This is evidently clear in Fig. 7,
where our scheme is not able to track the changes deriving from the removal of
nodes.

4.3 Alternative Approaches

In our scheme we rely on standard EC techniques to select genotypes from the
pool at each node and to generate new ones. In reality, as Fig. 3 shows, the fitness
landscape in our networking problem is quite regular, hence we can think to take
advantage of this.

A possibility is to use gradient descent-like techniques. The genotype–fitness
pairs in the pool of a node can be considered as samples of the whole fitness land-
scape. These samples can be used to estimate the gradient of the fitness curve in
correspondence of the genotype used by the node and then change it moving nearer
to the minimum. Fitness samples are noisy, hence the gradient has to be carefully
evaluated. At the same time taking into account the intrinsic correlation of the fitness
values for similar genotypes should reduce the effect of noise: e.g., an anomalous fit-
ness estimate could lead many nodes to erroneously select that genotype if standard
biased selection is applied, but it should not alter significantly gradient calculations.

This idea can be further developed. In fact in our scenario, a node is not con-
strained to a local gradient evaluation which relies only on fitness estimates for
near genotypes, but it can exploit all the genotypes in its pool, which are in general

432 S. Alouf et al.

spread across all the genotype space. The minimum of the function can be directly
estimated using all the fitness values, hence further reducing the effect of noise. For
example, a least-squares fitting can be applied, the minimum can then be evaluated
on the basis of the estimated curve, and the node genotype can be made closer to
this minimum. This approach should also be integrated with a random mutation,
otherwise after some time all genotypes would converge to the same value.

Another possible approach is to renounce to genotype exchange and let each
node learn autonomously relying only on its past experience. The same mechanisms
described up to now can be applied if we think about the pool as a collection of
genotypes and related fitnesses as evaluated in the past by the node itself (and not by
different nodes). This solution would definitely make the system more robust to mal-
functioning or malicious nodes, which can currently influence genotype selection
by other nodes, just by spreading false fitness values, but at the same time longer
convergence time would be expected.

5 Conclusion

In this chapter, we have presented a framework to learn in a distributed and online
way, a good forwarding policy in DTNs. The most challenging aspect of this frame-
work concerns the estimation of the fitness of the genotype used at a node. Each
node contributes to maximizing a global objective function using local knowledge.
We have proposed a case study to illustrate the framework. Extensive simulations
have illustrated (i) the convergence of the system even when the network counts as
much as 500 nodes, (ii) the impact of the mutation process onto the convergence
of the system, and (iii) the capability of the system to adapt to changing network
conditions.

References

1. Alouf S, Carreras I, Miorandi D, Neglia G (2007) Embedding evolution in epidemic-style
forwarding. In: Proc. of IEEE International Conference on Mobile Adhoc and Sensor Systems
(MASS 2007), Pisa, Italy

2. Babaoglu O, Canright G, Deutsch A, Caro GAD, Ducatelle F, Gambardella LM, Ganguly N,
Jelasity M, Montemanni R, Montresor A, Urnes T (2006) Design patterns from biology for
distributed computing. ACM Trans Auton Adapt Syst 1(1):26–66

3. Fall K (2003) A delay-tolerant network architecture for challenged Internets. In: Proc. of ACM
SIGCOMM 2003, ACM, New York, USA, pp 27–34

4. Groenevelt R, Nain P, Koole G (2005) The message delay in mobile ad hoc networks. Perfor-
mance Evaluation 62(1–4):210–228

5. Grossglauser M, Tse D (2002) Mobility increases the capacity of ad hoc wireless networks.
IEEE/ACM Trans on Networking 10(4):477–486

6. Haas ZJ, Small T (2006) A new networking model for biological applications of ad hoc sensor
networks. IEEE/ACM Trans on Networking 14(1):27–40

7. Lindgren A, Doria A, Schelen O (2004) Probabilistic routing in intermittently connected net-
works. In: Proc of SAPIR Workshop 2004, LNCS, vol 3126, pp 239–254

Autonomic Information Diffusion in Intermittently Connected Networks 433

8. Neglia G, Zhang X (2006) Optimal delay-power tradeoff in sparse delay tolerant networks:
a preliminary study. In: Proc of ACM SIGCOMM CHANTS 2006, pp 237–244

9. OMNeT (2007) OMNeT++ Discrete Event Simulation System.http://www.omnetpp.org
10. Pelusi L, Passarella A, Conti M (2006) Opportunistic networking: data forwarding in discon-

nected mobile ad hoc networks. IEEE Comm Mag 44(11):134–141
11. Royer EM, Melliar-Smith PM, Moser LE (2001) An analysis of the optimum node density for

ad hoc mobile networks. In: Proc. of IEEE ICC 2001, vol 3, pp 857–861
12. Spyropoulos T, Psounis K, Raghavendra CS (2008) Efficient routing in intermittently con-

nected mobile networks: The multiple-copy case. IEEE/ACM Trans on Networking 16(1):
77–90

13. Vahdat A, Becker D (2000) Epidemic routing for partially connected ad hoc networks. Tech
Rep CS-200006, Duke University

14. Zhang X, Neglia G, Kurose J, Towsley D (2007) Performance modeling of epidemic routing.
Computer Networks 51(10):2867–2891

Dynamic and Fair Spectrum Access
for Autonomous Communications

Jianhua He, Jie Xiang, Yan Zhang, and Zuoyin Tang

Abstract Most of existing wireless systems are regulated by a fixed spectrum
assignment strategy. This policy leads to an undesirable situation that some systems
may only use the allocated spectrum to a limited extent while others have very seri-
ous spectrum insufficiency situation. Dynamic spectrum access (DSA) is emerging
as a promising technology to address the above issue such that the unused licensed
spectrum can be opportunistically accessed by the unlicensed users. To enable DSA,
the unlicensed user shall have the capability of detecting the unoccupied spectrum,
controlling its spectrum access in an adaptive manner, and coexisting with other
unlicensed users automatically. In this chapter, we will give an overview on the DSA
for sharing open spectrum. And we investigate a radio system transmission oppor-
tunity (TXOP)-based spectrum access control protocol, with the aim of improving
spectrum access fairness and ensure safe coexistence of multiple unlicensed radio
systems. Simulation is carried out to evaluate the TXOP-based scheme with respect
to spectrum utilization, fairness, and scalability.

1 Introduction

Recent advances in information technologies have boosted broadband multimedia
services. It is envisioned that broadband multimedia services will be increasingly
popular over a variety of wireless mobile networks. With the increasing traffic load,
wireless radio spectrum is becoming more congested and expensive. Traditionally,
spectrum management agency licenses a fixed frequency band to the wireless ser-
vice operators. This strategy leads to an undesirable situation that some systems
may only use the allocated spectrum to a limited extent while others have very
serious spectrum insufficiency situation. Recent studies have found that more than
70% of spectrum is unutilized in most areas [1]. The efficient use of the unoccupied
spectrum (also referred to as open spectrum) will promote spectrum sharing and
ease the spectrum shortage challenge [2, 3]. As a highly promising technology to

J. He (B)
Institute of Advanced Telecommunications, Swansea University, Swansea SA2 8PP, UK
e-mail: j.he@swansea.ac.uk

M.K. Denko et al. (eds.), Autonomic Computing and Networking,
DOI 10.1007/978-0-387-89828-5 18, C© Springer Science+Business Media, LLC 2009

435

436 J. He et al.

address spectrum insufficiency problem, dynamic spectrum access (DSA) is attract-
ing an increasing interest in both research community and industry. DSA is under
investigation as part of cognitive radio system to achieve operation in a wide range
of frequency bands with high accessibility and utilization [4–6]. In DSA, unlicensed
users (or secondary users) dynamically use available spectrum without interfering
with licensed users, aiming to increase spectrum utilization and simplify spectrum
management.

Although DSA is highly promising, it is still in the very early stage of research
and development. There are a number of technical, economical, and regulatory chal-
lenges. For instance, it is a fundamental problem for the secondary users to effi-
ciently detect the unoccupied spectrum opportunity by the primary wireless system
and not interfere with the normal communications in the primary wireless system.
Due to limitation or unavailability of central control entity, it is also a big challenge
faced by DSA to adaptively control its spectrum access and automatically coex-
ist with other secondary users. With multiple different types of radio systems in
sharing the opportunistic spectrum in a distributed manner, it becomes complicated
to provide fairness in sharing the opportunistic spectrum across users and mini-
mize communications overhead while simultaneously achieving efficient spectrum
usage.

This chapter is structured as follows. In Sect. 2, we overview the classification
of current DSA schemes, and explore the DSA technologies in three scenarios,
i.e., secondary users (SUs) coexistent with primary users (PUs), SUs in the same
radio system, and SUs in different radio systems. Section 3 introduces a channel
access model in open spectrum wireless networks. Section 4 describes the details of
three DSA protocols. Section 5 presents simulation results and numerical examples.
Finally, conclusions are given in Sect. 5.

2 Overview of Dynamic Spectrum Access Schemes

There are two classification results in the literature. The first one is presented in [7],
where the authors classify DSA from three different aspects, i.e., architecture, spec-
trum allocation behavior, and spectrum access technique. From the architecture’s
point of view, DSA can be classified into centralized and distributed manners. In
spectrum allocation behavior, both cooperative and non-cooperative behaviors are
analyzed. In spectrum access technique, SUs can work with PUs in two ways. One is
called underlay mode, where SUs can work on all of the channels if the interference
to the PUs is under a predefined threshold. The other one is called overlay mode,
where SUs can only work on the channels which are not occupied by the PUs.

Another classification is presented in [8], where the authors classify the DSA into
three models, i.e., Dynamic Exclusive Use Model, Open Sharing Model, and Hierar-
chical Access Model. In Dynamic Exclusive Use Model, SUs and PUs work in dif-
ferent spectrum bands by the following strategies: regulation, dynamical allocation,
etc. According to this model, several research works suppose that licensed spectrum

Dynamic and Fair Spectrum Access for Autonomous Communications 437

regulator can sell the spectrum bands to unlicensed users. So that SUs can access
the spectrum different with PUs, after they buy the spectrum bands. Recent research
works extend this scenario to multisellers of different spectrum bands, where they
will compete with each other to attract more SUs as their customers [9]. The Open
Sharing Model treat the spectrum resource as the common property which can be
used equally to the different users in the network. This model is currently used for
the unlicensed spectrum bands such as the industry, science, and medical (ISM)
bands. In Hierarchical Access Model, the authors also classify it into underlay and
overlay mode which is the same with the hierarchical access model in [7].

2.1 Dynamic Spectrum Access for SUs Coexistent With PUs

How do SUs access the spectrum bands coexistent with PUs is a fundamental prob-
lem in Cognitive Radio Networks. Figure 1 shows the concept of DSA for SUs
coexistent with PUs. In the literature, several schemes have been studied with the
underlay and overlay approach, as summarized in [7] and [8].

In the underlay approach, every SU will control its transmission power in order
to guarantee that the interference to PU is limited to the threshold. The key issue
for the underlay approach is how to measure the interference temperature on PUs in
an efficient way [10]. Several works have been done by considering the interference
temperature constraints for SUs access the spectrum bands, such as [11] and [12].

In the overlay approach (also called opportunistic spectrum access), SUs detect
the appearance of PUs in real time, and use the spectrum bands which are not
occupied by any PU. In this case, PU detection (also known as spectrum detec-
tion or spectrum sensing) is the significant issue. In the literature, there are four

Fig. 1 Concept of dynamic spectrum access for SUs coexistent with PUs

438 J. He et al.

major methods for spectrum sensing, i.e., Matched filter, Energy detection [13],
Cyclostationary detection [14], and Wavelet detection [15]. Each method has its
own advantages and disadvantages to different scenarios. Detecting the event of PU
transmission by a single node is not effective when the SU is shadowed from the PU,
or when the SU is out of the PU’s transmission range but it can still interfere with
the primary receiver inside the PU’s transmission range [7]. Therefore, cooperative
sensing [16, 17], which allows several nodes sense the spectrum environment and
make the decision in a cooperative manner, is thought to be an efficient way to solve
such problems.

Several DSA schemes [18–22] are proposed using the sensing-based opportunis-
tic spectrum access approach. For instance, in [18], SUs utilize the past observations
to build predictive models for spectrum availability, and choose the channels with
the most availability metric. In [19], the authors suppose that SUs can only sense
some of the available channels because of hardware and energy constraints, and
derive the spectrum access strategies under the formulation of finite-horizon par-
tially observable Markov decision processes. In [22], the authors extend the work
in [19]. They model the channel occupancy by PUs with a continuous-time Markov
chain, and propose an opportunistic spectrum access scheme via periodic channel
sensing, while reducing the complexity of the optimal solution in [19].

2.2 Dynamic Spectrum Access for SUs in the Same Radio System

After obtaining the spectrum opportunity from primary systems, how to share the
spectrum between SUs working in the same radio system in a fair and efficient way
is another challenging problem. Figure 2 shows the concept of DSA for SUs in the
same radio system. Every link between two SUs will work on one spectrum band
from the available channels.

In [23], a protocol for coordinated spectrum access called Dynamic Spec-
trum Access Protocol (DSAP) is proposed. The authors suppose that there is

Fig. 2 Concept of dynamic spectrum access for SUs in the same radio system

Dynamic and Fair Spectrum Access for Autonomous Communications 439

a coordinating central entity called DSAP server who allot the spectrum resource
in the similar manner as the Dynamic Host Configuration Protocol (DHCP) server
allots IP address to hosts in a network.

Distributed methods are also introduced by several researchers. For instance,
in [24], the authors propose a distributed rule-regulated spectrum sharing scheme,
where nodes share the spectrum resource fairly by making independent actions fol-
lowing spectrum rules. The rule-based approach significantly reduces the communi-
cation cost comparing to the explicit coordination approach, while achieving similar
performance.

2.3 Dynamic Spectrum Access for SUs in Different Radio Systems

Since different radio systems cannot communicate with each other, it becomes more
complicated to provide fairness for SUs from different radio systems in sharing the
opportunistic spectrum across users and minimize communications overhead while
simultaneously achieving efficient spectrum usage. Figure 3 shows the concept of
DSA for SUs in different radio systems. Several works have been done on this prob-
lem, such as [2, 25, 26].

In [25], the authors solve the problem of the DSA between two different radio
systems, i.e., IEEE 802.11b and IEEE 802.16a. Two methods are used in their
work. The first one uses reactive interference avoidance algorithms, where radio
nodes coordinate spectrum usage without exchange of explicit control information.
However, the hidden-receiver problem emerges in this method. The second one
employs a common spectrum coordination channel to exchange of the transmitter

Fig. 3 Concept of dynamic spectrum access for SUs in different radio systems

440 J. He et al.

and receiver parameters following the spectrum etiquette policies, and can solve the
hidden-receiver problem.

In [26], the authors employ the game theory, especially using a repeated game, to
model the interaction between different radio systems. They can obtain the fairness
and efficiency of access the spectrum bands when the game achieve the equilibrium.
However, how to reduce the computation complexity and the time required on the
game convergency is still a key issue for employing game theory to solve DSA
problems.

Specially, two dynamic DSA protocols have been proposed by [2]. The first
one aims to optimize spectrum access fairness, which is relying on the centrally
optimized channel access probabilities for each radio systems. The channel access
probabilities are obtained via an analytical model. The centralized optimization
requires the system detailed information (e.g., protocols specification, number of
terminals, and traffic statistics in each radio system) in order to model the spectrum
access protocols and calculate optimal transmission probabilities. Therefore, it may
achieve the optimal fairness in theory for the specific protocols. This may become
impractical and inefficient for the heterogeneous wireless systems, which operate
dynamically and adaptively in a distributed approach. The second protocol is pro-
posed to overcome the drawbacks of the first protocol by dynamically adjusting
channel access probability with local measurements.

The second protocol is implemented in a distributed way. High fairness on shar-
ing opportunistic spectrum is the main target. However, the second protocol requires
that each radio system should accurately measure the channel access durations of
each competing radio system and has the traffic statistics of each radio system. In
practice, it will be difficult for a radio system to real-time monitor the channel access
time of other radio systems. It is also very likely that the algorithm may take a long
time to converge, which is undesirable in an opportunistic open spectrum wireless
network since the available spectrum may change dynamically and quickly depend-
ing on time and location.

In this chapter, we evaluate the above two DSA protocols for open spectrum wire-
less networks. We analyze the spectrum access problems and propose a new radio
system transmission opportunity (TXOP)-based spectrum access control protocol.
In our proposed scheme, each radio system will obtain a TXOP by competition
or by assignment from a network coordinator. During a beacon period, each radio
system monitors its channel usage. If a radio system uses the channel longer than the
TXOP in a beacon, it will stop transmitting packets in the rest of the beacon period.
As each radio system needs only monitor the channel activity of the users from its
own system and this can be done by a member of this radio system, it eliminates the
strong requirement of inter-radio system communications. It also does not require
the information of the protocols used for channel access and traffic characteristics.
Thereafter, better scalability and higher flexibility can be achieved. In the next sec-
tions, we will present the TXOP-based scheme and compare the spectrum access
protocols in terms of spectrum utilization, fairness in sharing open spectrum, and
scalability.

Dynamic and Fair Spectrum Access for Autonomous Communications 441

3 Channel Access Model

As we are interested in general DSA, an abstract channel access model is used as
shown in Fig. 4. For the sake of illustration, we assume two different types of radio
systems (A and B) operating in the band. Each radio system has Ni (i ∈ {A, B})
active user terminals. It is noteworthy that the model can be easily extended to the
multiple radio systems. The type A radio system represents a wideband system oper-
ating on the frequency channel centered on f2. The type B radio system represents
a narrowband system operating on the three frequency channels (center frequencies
f1, f2, f3). The type A frequency channel overlaps with all the three type B frequency
channels. This model is a simplified version of that used by Xing et al. [2], in which
three sets of three narrowband frequency channels are considered while here only
one set of three narrowband frequency channels is studied. The listen-before-talk
(LBT) strategy is applied for all radio systems to avoid modeling the detailed proto-
cols by Xing et al. [2]. In this paper, we used Carrier Sense Multiple Access (CSMA)
protocol for channel access, which will be introduced in the next subsection. CSMA
will be adjusted for DSA. We assume that the traffic arrival process follows Poisson
process with the arrival rate λi in radio system i. Hence, the packet inter-arrival time
is exponentially distributed with mean time 1/λi second. The radio system access
duration is constant with Ti for radio system i with Ti = Ratei/PLeni, where Ratei

and PLeni represent transmission rate and packet length in radio system i.

3.1 Basic Carrier Sense Multiple Access Protocol

Before proceeding on, we have an introduction of the basic CSMA protocol, which
is the baseline of the DSA protocols used by Harada and Prasad [27]. Multiple
access protocol is defined as the agreement and set of rules among users for the suc-
cessful transmission of information over a common medium. The multiple access
protocols can be classified into three major categories: contention-free protocols,
contention-based protocols, and CSMA protocols. In contention-based protocols,
there is no common scheduling of transmissions and hence devices will randomly
access the channel. CSMA is a contention-based multiple access protocol. In the
CSMA protocol, each access terminal needs to judge if the communication channel
is used by other terminals before packet transmission by the means of sensing the
existence of the carrier wave on the communication channel. If a carrier wave is
sensed on the communication channel, the channel is thought to be busy and the
terminal will not transmit packet in order to avoid collision. In this paper, we focus

Fig. 4 A example of
frequency channels used by
two types of radio systems
(A, B). Each radio system
represent a group of
communication radio devices f1 f2 f3 frequency

frequency band used
by radio system A

frequency band used
by radio system B

442 J. He et al.

on the nonpersistent CSMA protocol. In the nonpersistent CSMA protocol, when
packets are generated in a terminal, the terminal starts the carrier sensing. If the
channel is sensed idle, the terminal sends the packet to the destination immediately.
Otherwise, the terminal will hold the packet transmission and wait for a random
period to start sensing the channel again. Under an ideal communication environ-
ment with infinite call source and no hidden terminals, the theoretic throughput S of
nonpersistent CSMA protocol can be express as [27]

S = Ge−αG

G(1 + 2α) + e−αG
(1)

where G denotes the offered traffic load and α represents the normalized propaga-
tion delay to packet transmission duration. In the remainder of the chapter, if not
specified, CSMA protocol refers to nonpersistent CSMA protocol.

4 Open Spectrum-Sharing Protocols

In this section, we will present three DSA protocols. The main purpose is the
efficient coexistence of multiple radio systems, which may operate on different
frequency bands. In particular, we will concentrate on the fairness guarantee in
spectrum sharing while maintaining high overall spectrum utilization. With respect
to fairness, it can be either system-oriented radio or single user-oriented radio. For
instance, there are n users contending system resources and the ith user receives an
allocation xi. Let f (x) denote the fairness index [28]. f (x) is given by

f (x) =
∣∣∑n

i=1 xi

∣∣2

∑n
i=1 x2

i

, xi ≥ 0. (2)

Several other fairness measures are also discussed by Jain et al. [28].
Without any transmission control, some radio systems may dominate the spec-

trum usage due to large amount of traffic and high density of terminals in the radio
systems. Based on the CSMA protocol, we can observe that the channel access
behavior can be controlled from three possible ways to differentiate throughput and
fairness during the spectrum sharing.

• Control of transmission probability, which means a transmission probability
(denoted by ρi) is used to randomly control the transmission of a packet after
a terminal obtains the right to transmit the packet over the channel.

• Control of waiting time, which randomly controls the duration of waiting time
after a terminal detects a busy channel. This is similar to the control of transmis-
sion probability method above, and will not discuss in details in this paper.

• Control of transmission opportunity, which is used either in deterministic or ran-
dom way to control the packet transmission of a terminal/radio system over a
period based on a transmission opportunity. This is in contrast to the random

Dynamic and Fair Spectrum Access for Autonomous Communications 443

control of each packet transmission by the means of transmission probability
control. This control method will be investigated in this paper.

4.1 CSMA With Transmission Probability Control

The two protocols proposed by Xing et al. [2] are based on the control of transmis-
sion probability in the simple LBT protocol to achieve fairness in either centralized
or distributed manner. Although the idea of controlling transmission probability is
not new, the authors proposed a general Markov chain model, which can be helpful
on performance evaluation/optimization and long-term network planning. However,
this centralized optimization model highly depends on on the analytical model and
requires accurate whole network information, e.g., the number of stations and traffic
loads. This requirement may not match with the practice. The original analytical
model is developed for the simple LBT protocol and can be extended to the CSMA
protocol.

4.2 CSMA With Dynamic Transmission Probability

As the above centralized transmission probability based control protocol is heavily
affected by the network assumption, it is not efficient with respect to scalability
and flexibility to the dynamic opportunistic spectrum. It is also difficult to extend
the analytical model to multihop networks. This indicates that the proposed model
can be only applied in single hop infrastructure-based wireless networks. Motivated
by this, a distributed channel access protocol based on anthropological model is
proposed in [2] with the support of local information and limited global knowledge.
A homo egualis (HE) society model is used. We call this scheme as CSMA-HE
protocol,

In an HE society, no centralized governance exists and the enforcement of norms
depends on the voluntary participation of peers. An HE society can be modeled with
the utility function ui of player i in an n-player game. The utility function ui is given
by [2]

ui = xi + αi

n − 1

∑
x j>xi

x j − xi + βi

n − 1

∑
x j<xi

x j − xi (3)

where x = (x1, ..., xn) are the payoffs for each player and 0 ≤ β < αi ≤ 1.
In the CSMA-HE protocol, each radio system learns the transmission probability

pi by itself. Denote xi as the average cumulative channel access duration for radio
system type of i. With the initial probability pi = 1, the probability pi is updated
following the equation below [2]:

444 J. He et al.

pi = max(0, min(1, pi + αi

n − 1

∑
x j>xi

x j − xi + βi

n − 1

∑
x j<xi

x j − xi)) (4)

where n denotes the number of different radio systems, and 0 ≤ β < αi ≤ 1. The
only local information needed is its own and the other radio systems’ histories of
cumulative spectrum access duration.

4.3 CSMA With Transmission Opportunity Control

A similar idea of controlling channel access by TXOP has been used in [29]. TXOP
is an important concept introduced for quality-of-service (QoS) support for real-time
applications in the IEEE 802.11e standard. It is used to control an individual user
terminal. In the proposed TXOP-based multiple channel access protocol, TXOP can
be used to control the individual user terminals, but our emphasis is to use TXOP
to control the channel access of a whole radio system. We denote the TXOP-based
CSMA protocol as CSMA-TXOP protocol.

CSMA-TXOP protocol can be described as follows. We assume each radio sys-
tem operates with beacon signals. Beacon signals need not to be synchronized for
different radio systems. The periods of beacon signals can also be different in each
radio system. A radio system obtains a TXOP by negotiation/competition with other
radio systems in a distributed way or from assignment by a central control entity.
The TXOP can be fixed over a long time or change dynamically according to the
network conditions. It is to be used in a predefined beacon period. In the beginning
of each new beacon period, a radio system resets the measured cumulative channel
access duration. Then, it continuously measures its own cumulative channel access
duration. If the access duration of a radio system exceeds its TXOP before the arrival
of the next beacon signal, the radio system must partially or fully limit its channel
access until the next beacon period.

5 Simulation Results

In this section, we will show the illustrative numerical examples and simulation
results in the CSMA-P, CSMA-HE, and CSMA-TXOP protocols. CSMA-P proto-
col represents the CSMA protocol with neither transmission probability control nor
TXOP conrol for packet transmissions. The emphasis of the simulations is to verify
the feasibility, effectiveness, and scalability of the CSMA-HE and CSMA-TXOP
protocols in single-hop wireless networks. A randomly generated network is shown
in Fig. 5, in which there are totally 30 wireless terminals located around an wireless
access point, with NA = 10 and NB = 20 for the radio systems A and B, respectively.
Wireless access point acts as the control center for the CSMA-TXOP protocol.
Simulation results are observed with different configurations. We assume that all
the wireless terminals can hear each other and the access point in the single-hop

Dynamic and Fair Spectrum Access for Autonomous Communications 445

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−80

−60

−40

−20

0

20

40

60

80

100

X axis (m)

Y
 a

xi
s

(m
)

Access Point
User Terminal

Fig. 5 Network topology. 30 user terminals (NA = 10, NB = 20) randomly located in 200×200 m2

area with the access point at the center

networks. Each terminal will access the channel and send traffic to the access point
using a channel access protocol. For the sake of simplicity, we assume no packet loss
due to low signal-to-noise (SNR). Hidden terminal issues is eliminated by setting
propagation delay d = 0. Packets are transmitted at 256 kbps. Packet length is fixed
as 528 bits.

5.1 Pure CSMA Protocol

Figures 6 and 7 present the throughput of radio system A and B with CSMA-P
protocol. Without an external control mechanism for packet transmissions, the two
competing radio systems can not fairly share the spectrum. In addition, the spectrum
sharing fairness is heavily affected by the traffic load and the number of terminals
in each radio system. For example, with λA = λB, the normalized throughput SA

(SB) of radio system A (B) is 0.42 (1.28) with the normalized traffic load G = 4.1 as
shown in Fig. 6. Throughput SB of radio system B is 3 times of SA. When the traffic
loads satisfy λB = 4λA, the normalized throughput SA (SB) of radio system A (B) is
0.12 (1.38) with G = 4.1, as shown in Fig. 7. Throughput SB is more than 10 times
of SA.

446 J. He et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Normalized offered traffic load

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
overall throughput
radio system A
radio system B

Fig. 6 Normalized throughput versus normalized traffic load with CSMA-P protocol, λA = λB

5.2 Homo Egulias-Based Channel Access Control

Figures 8, 9, and 10 show the normalized throught in case of CSMA-HE protocol
with λA = λB (solid lines) and λB = 4λA (dashed lines). It can be observed that,
in both situations, CSMA-HE protocol can achieve better fair spectrum sharing.
However, in the condition of λB = 4λA, the overall spectrum utilization decreases
by 40% from 1.6 to 1.0 when the traffic load G = 4.1. This indicates that CSMA-HE
protocol suffers low spectrum utilization when the traffic loads information of other
radio systems is unavailable. Since CSMA-HE protocol is specifically designed to
optimize fairness in spectrum sharing, the scheme is difficult to leave the low uti-
lization operating point if the estimated information is inaccurate.

Figures 9 and 10 illustrate the instant transmission probability and instant nor-
malized throughput for λA = λB (solid lines) and λB = 4λA (dashed line),
respectively. The results are able to show the CSMA-HE protocol dynamics over
time. Namely, CSMA-HE protocol takes several hundred rounds of adjustment to
converge to a relatively stable operation point. As a consequence, the algorithm
convergence is slow and infeasible for DSA in heterogeneous wireless networks. It
is also noteworthy that the frequent information gathering or exchange will consume
extra energy and resources; and hence generates high overhead.

Dynamic and Fair Spectrum Access for Autonomous Communications 447

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

Normalized offered traffic load

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
overall throughput
radio system A
radio system B

Fig. 7 Normalized throughput versus normalized traffic load with CSMA-P protocol, 4λA = λB

5.3 TXOP-Based Channel Access Control

Figures 11 and 12 show the throughput of the radio system A and B with CSMA-
TXOP protocol, respectively. Figure 11 demonstrates the situation when λA = λB. It
is clear that a fair spectrum sharing is achieved between the two radio systems with-
out degrading spectrum utilization. Figure 12 reports the situation when 4λA = λB.
Configuration of TXOPs for each radio system can be adjusted to achieve fair spec-
trum access. On the other hand, the overall spectrum utilization may be degraded a
bit. Based on the results, we can improve the spectrum utilization by setting the
parameter TXOP to make the system operating away from the optimal fairness
point. Though it is difficult to maximize both spectrum utilization and fairness at the
same time, CSMA-TXOP protocol is an effective strategy to control and improve
system performance based on the instantaneous traffic load, QoS priority, and trade-
off between utilization and fairness.

6 Conclusion

Opportunistic spectrum access is a promising technique to address the spectrum
shortage problem. In this paper we investigated several DSA protocols for open
spectrum shared by heterogeneous wireless networks. The DSA protocols are

448 J. He et al.

designed to enable multiple heterogeneous unlicensed radio systems coexistence
and use available spectrum without interfering with licensed users. This will
increase spectrum utilization and simplify spectrum management. We propose a
new TXOP-based spectrum access protocol. The chief motivation is to ensure
coexistence of multiple radio systems and achieve acceptable spectrum utilization
and fair spectrum sharing. We evaluate the performances of the proposed scheme
and compare with the two existing spectrum access protocols. The simulation
result shows that the proposed scheme is able to achieve high scalability and
controllability while maintaining spectrum utilization and fairness performance. In
the future, we will extend and evaluate the dynamic spectrum sharing protocols
in multi-hop wireless networks. It is also an interesting topic to integrate HE and
TXOP-based control methods together with multiple access protocols other than
CSMA protocol.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Normalized offered traffic load

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

overall throughput
radio system A
radio system B

Fig. 8 Normalized throughput versus normalized traffic load with CSMA-HE protocol, λA = λB

(solid lines) and 4λA = λB (dashed lines)

Dynamic and Fair Spectrum Access for Autonomous Communications 449

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Update sequence

T
ra

ck
 o

f n
or

m
ai

liz
ed

 th
ro

ug
hp

ut
radio system A
radio system B

Fig. 9 Instant transmission probability over time with CSMA-HE protocol, λA = λB (solid lines)
and 4λA = λB (dashed lines)

450 J. He et al.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Update sequence

T
ra

ck
 o

f t
ra

ns
m

is
si

on
 p

ro
ba

bi
lit

y
radio system A
radio system B

Fig. 10 Instant normalized throughput over time with CSMA-HE protocol, λA = λB (solid lines)
and 4λA = λB (dashed lines)

Dynamic and Fair Spectrum Access for Autonomous Communications 451

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Normalized offered traffic load

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
overall throughput
radio system A
radio system B

Fig. 11 Normalized throughput versus normalized traffic load with CSMA-TXOP protocol, λA =
λB

452 J. He et al.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized offered traffic load

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
overall throughput
radio system A
radio system B

Fig. 12 Normalized throughput versus normalized traffic load with CSMA-TXOP protocol, 4λA =
λB

Acknowledgments The work reported in this chapter has been partially funded by the OSIRIS
project within the 3C Research programme on convergent technology for digital media processing
and communications, and by the European Union through the Welsh Assembly Government.

References

1. XG Working Group. (Jul. 2003) The XG Vision. Request for Comments, BBN Technologies,
Cambridge, MA. [Online]. Available: http://www.darpa.mil/ato/programs/XG/rfcs.htm

2. Y. Xing, R. Chandramouli, S. Mangold, S. Shankar, “Dynamic spectrum access in open spec-
trum wireless networks,” IEEE J. Selected Areas Commun., Vol. 24, No. 3, March 2006.

3. S. Sankaranarayanan, P. Papadimitratos, A. Mishra, “Bandwidth sharing approach to improve
licensed spectrum utilization,” Proc. of IEEE DYSPAN2005, 2005.

4. J. Mitola, “The software radio architecture,” IEEE Commun. Mag., Vol. 33, No. 5, pp. 26–38,
1995.

5. S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Selected
Areas Commun., Vol. 23, No. 2, pp. 201–220, 2005.

6. D. P. Satapathy, J. M. Peha, “Spectrum sharing without licenses: Opportunities and dangers,”
Proc. Telecommun. Policy Res. Conf., pp. 15–29, 1996.

7. I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, S. Mohanty, “Next generation/dynamic spec-
trum access/cognitive radio wireless networks: A survey,” Comput. Netw., Vol. 50, No. 13,
pp. 2127–2159, 2006.

8. Q. Zhao, A. Swami, “A survey of dynamic spectrum access: Signal processing and network-
ing perspectives,” ICASSP 2007, Vol. 4, 15–20 April 2007.

Dynamic and Fair Spectrum Access for Autonomous Communications 453

9. Y. Xing, R. Chandramouli, C. Cordeiro, “Price dynamics in competitive agile spectrum
access markets,” IEEE J. Selected Areas Commun., Vol. 25, No. 3, pp. 613–621, April
2007.

10. A. E. Leu, M. McHenry, B. L. Mark, “Modeling and analysis of interference in listen-before-
talk spectrum access schemes,” Int. J. Netw. Manag., Vol. 16, No. 2, pp. 131–147, 2006.

11. M. Sharma, A. Sahoo, K. D. Nayak, “Channel selection under interference temperature
model in multi-hop cognitive mesh networks,” DySPAN 2007, pp. 133–136, 17–20 April
2007.

12. J. Bater, H.-P. Tan, K. N. Brown, L. Doyle, “Modelling interference temperature constraints
for spectrum access in cognitive radio networks,” ICC ’07, pp. 6493–6498, 24–28 June
2007.

13. F. F. Digham, M.-S. Alouini, M. K. Simon, “On the energy detection of unknown signals
over fading channels,” IEEE Trans. Commun., Vol. 55, No. 1, pp. 21–24, Jan. 2007.

14. P. Sutton, K. Nolan, L. Doyle, “Cyclostationary signatures in practical cognitive radio appli-
cations,” IEEE J. Selected Areas Commun., Vol. 26, No. 1, pp. 13–24, Jan. 2008.

15. Y. Youn, H. Jeon, H. Jung, H. Lee, “Discrete wavelet packet transform based energy detector
for cognitive radios,” VTC2007-Spring, pp. 2641–2645, 22–25 April 2007.

16. A. Ghasemi, E. Sousa, “Collaborative spectrum sensing for opportunistic access in fading
environments,” DySPAN 2005, pp. 131–136, 8–11 Nov. 2005.

17. M. Gandetto, C. Regazzoni, “Spectrum sensing: A distributed approach for cognitive termi-
nals,” IEEE J. Selected Areas Commun., Vol. 25, No. 3, pp. 546–557, April 2007.

18. P. A. K. Acharya, S. Singh, H. Zheng, “Reliable open spectrum communications through
proactive spectrum access,” in TAPAS ’06: Proceedings of the First International Workshop
on Technology and Policy for Accessing Spectrum. New York, USA, ACM, 2006, p. 5.

19. Q. Zhao, L. Tong, A. Swami, Y. Chen, “Decentralized cognitive mac for opportunistic spec-
trum access in ad hoc networks: A pomdp framework,” IEEE J. Selected Areas Commun.,
Vol. 25, No. 3, pp. 589–600, April 2007.

20. S. Geirhofer, L. Tong, B. Sadler, “Cognitive radios for dynamic spectrum access – dynamic
spectrum access in the time domain: Modeling and exploiting white space,” IEEE Commun.
Mag., Vol. 45, No. 5, pp. 66–72, May 2007.

21. K. Chowdhury, I. Akyildiz, “Cognitive wireless mesh networks with dynamic spectrum
access,” IEEE J. Selected Areas Commun., Vol. 26, No. 1, pp. 168–181, Jan. 2008.

22. Q. Zhao, S. Geirhofer, L. Tong, B. Sadler, “Opportunistic spectrum access via periodic chan-
nel sensing,” IEEE Trans. Signal Process., Vol. 56, No. 2, pp. 785–796, Feb. 2008.

23. V. Brik, E. Rozner, S. Banerjee, P. Bahl, “Dsap: A protocol for coordinated spectrum access,”
DySPAN 2005, pp. 611–614, 8–11 Nov. 2005.

24. L. Cao, H. Zheng, “Distributed rule-regulated spectrum sharing,” IEEE J. Selected Areas
Commun., Vol. 26, No. 1, pp. 130–145, Jan. 2008.

25. X. Jing, D. Raychaudhuri, “Spectrum co-existence of ieee 802.11b and 802.16a networks
using reactive and proactive etiquette policies,” Mob. Netw. Appl., Vol. 11, No. 4, pp. 539–
554, 2006.

26. R. Etkin, A. Parekh, D. Tse, “Spectrum sharing for unlicensed bands,” IEEE J. Selected Areas
Commun., Vol. 25, No. 3, pp. 517–528, April 2007.

27. H. Harada, R. Prasad, “Simulation and software radio for mobile communications,” Artech
House Universal Personal Communications Series, 2002

28. R. Jain, D. Chiu, W. Hawe, “A quantitative measure of fairness and discrimination for
resource allocation in shared computer systems,” http://arxiv.org/abs/cs.NI/9809099, 1998.

29. IEEE Std 802.11e-2005, Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) specifications Amendment 8: Medium Access Control (MAC) Quality of Service
Enhancements, 2005.

Index

A
Access segment, 157, 162
Action policy, 25
Architectural style, 32, 36, 37, 40, 41, 48,

52, 113
Architecture-based, 31–53, 262, 267
Artificial immune systems, 289–292
Attack prevention, 356, 377
Auctions, 99, 210, 211, 213–215, 216
Autonomic architecture, 5, 6–7, 9, 27, 110,

157, 267, 282
Autonomic computing (AC), 3–28, 34, 46, 91,

92, 101, 105–129, 131, 132, 134, 141,
151, 179, 181, 201, 202, 240, 241, 261,
285–286, 309, 335, 337, 341, 343, 350,
358, 364, 381, 382, 383, 384, 406

Autonomic-enabled ICT resource, 4
Autonomic-enabled web page, 25, 26
Autonomic management, 83–103, 131, 269,

270, 333–350
Autonomic networked computing (ANC),

381–407
Autonomic networking, 28, 157, 158, 159–162,

175, 176, 239–242, 244, 251, 253, 258,
261–282, 287–292, 310

Autonomic networks and systems, knowledge
management, 239–258, 383, 384

Autonomic policy repository, 5
Autonomic system of systems, 24, 25
Autonomic Web Service Environment

(AWSE), 335, 342–345, 346, 348,
349, 350

Autonomic wireless systems, 179–202
Autonomous mode, 169, 171, 172, 174
Availability, 9, 21–24, 25, 26, 33, 40, 52, 58,

69, 86, 110, 111, 129, 156, 157, 159,
161–162, 168, 169, 170, 172, 208, 226,
230, 246, 288, 289, 313, 314, 326, 328,
330, 339, 340, 341, 356, 436, 438

B
Behavioural model, 6, 9, 10, 12, 16, 17, 18, 20,

22, 23
Bio-Inspired machine learning, 131–152
Biologically-inspired networking, 140, 262,

287–292
Business dashboard, 25

C
Categorical approach, 388, 407
Churn attacks, 223, 224, 232, 233
Client-side management, 334, 345–348, 350
Closed-loop control, 33
Cognition and knowledge generation, 145, 148
Cognitive radio, 131–152, 179–184, 185, 186,

187, 188, 189–190, 193, 201, 436, 437
Component reuse, 4, 25
Components, 4, 6, 7, 8, 9, 10, 11, 16, 22, 25,

28, 34, 35 n.1, 36, 37, 39, 40, 42, 43,
44, 46, 48, 49, 83–103, 106, 107, 108,
109, 111, 112, 113, 115, 116, 126, 127,
128, 129, 181, 190, 191, 193, 194, 195,
208, 210, 215, 217, 229, 231, 240, 241,
242, 247, 249, 250, 251, 252, 254, 257,
258, 268–272, 275, 276, 278, 279, 280,
281, 286–287, 288, 292, 313, 314, 315,
316, 333, 335, 337, 339, 342, 343, 344,
347, 348, 349, 350, 382, 415, 416

Composite web services, 336
Comprehensive Service Management

Middleware (CSMM), 335, 345–348,
349, 350

Connectors, 35 n.1, 36, 37, 40, 44,
99, 124

Continuous-time Markov chain, 12, 438
Convergence, 142, 144, 183, 250, 251, 252,

253, 254, 255, 256, 257, 421, 427–429,
432, 446

Core segment, 163

455

456 Index

Cost–benefit attributes, 48–51, 53
CPU allocation, 12, 18, 19, 20, 102

D
Data centre, 21, 22, 23, 24, 25, 26
Data fusion, 57–78, 187, 188, 229
Delay Tolerant Networks (DTN), 411
Development methodology, 25, 27
Discovery service, 16 n.3, 114, 117, 118, 119,

120, 125
Distributed detection theory, 187, 188, 195,

196, 202
Distributed mode, 158, 166, 167, 169–172,

173–175
Distributed optimization, 156, 157, 165, 168,

421–422, 440, 443
Distributed Spectrum Sensing, 179–202
Distributed systems, 37, 105–108, 109–110,

112–113, 114, 116, 117, 119, 120,
126–129, 157, 175, 223, 241, 242, 250,
252, 334

Dynamic power management, 20, 23, 26
Dynamic spectrum access (DSA), 131–152,

436–440

E
Embodied cognition, 143, 146, 148, 179–202
Enterprise Application Integration (EAI), 336
Epidemic routing, 414, 418, 422
Euclidean metric, 16
Evolution, 32, 37, 38, 66 n.5, 84, 92, 142, 149,

161, 183, 190, 357, 363, 364, 403, 412,
415, 416, 417, 422, 423–425, 427, 428,
429, 430

Evolutionary computation, 412
Evolving protocols, 426
Exchange, 75, 115, 156, 170, 171, 172, 187,

207, 208, 211, 212, 215–217, 220, 224,
231, 233, 249, 273, 288, 324, 360, 365,
371, 374, 375, 376, 412, 413, 414, 417,
419, 423, 426, 432, 439, 446

F
Failure, 22, 36, 58, 83, 84, 86, 87, 91, 97, 100,

101, 106, 109, 110, 117, 140, 145, 157,
158, 162, 164–172, 181, 226, 228, 230,
240, 246, 247, 251, 263, 269, 274–281,
313, 345, 346, 348, 372, 374, 414

Fault Management, 265, 267, 273,
274–280, 334

Fault-tolerance, 316
Fitness, 299, 300, 364, 412, 413, 415, 416,

419, 420, 422–423, 424 n.2, 427,
431, 432

estimation, 412, 415
landscape, 431

Formal aspects, 381–407
Forwarding policy, 412, 415, 416, 417–419,

420, 424, 428, 432
Fujitsu disk drive, 20, 21

G
Game theory, 137, 242, 252–257, 258, 440
General-purpose autonomic computing, 3–28
Genetic algorithms, 64, 66–67, 141, 142, 184,

419, 421
Genotype, 412, 413, 416, 417, 418, 419, 420,

421, 422, 423, 424 n.2, 425, 428–432
GOAL operator, 22, 24
Goal policy, 18, 20

H
High-level effectors/sensors, 7
High-speed interconnection networks, network

reconfiguration, 313–331

I

ICT(Information and Communication
Technologies)

ontology, 27
resource, 4, 5, 6, 7, 8, 18, 20, 22, 25, 26, 27

IMS, 155–176
Incentives, 205–233, 371
Information diffusion, 411–432
Itinerary design, 69–70

J

J2EE, 10, 85, 86, 87, 89, 90, 92, 94, 95, 98,
99, 310

L
Legacy

ICT resource, 4, 6, 7, 18, 20
software, 83–103

M
Machine learning, 8, 9, 12, 52, 137, 142, 145,

146, 245, 248, 341, 347, 373
Manageability, 6, 7, 8, 10, 11, 12, 13–15, 23,

28, 76, 161, 344
Management Perspectives, 335, 342–349
MAPE, 34, 41, 337, 339, 340, 343, 345,

348, 358
Matlab, 26, 199
Medium access control (MAC), 64
Mobile agents, 57–78, 240, 270, 271–272,

273, 274
Mode identification, 189

Index 457

Model-driven architecture, 6
Model-driven autonomic computing, 6
Model-driven development, 285–311
Model driven engineering, 285–311
Model-driven performance engineering,

285–311
Modifiability, 10, 13
Multiple objectives, 39, 43, 47, 52
Mutability, 10, 13
Mutation, 142, 288, 296, 300, 301, 413, 416,

421, 424, 425, 427, 429, 432

N
Nash equilibrium, 220, 221, 222, 252–257
.NET, 10
Network

management, 239, 240, 241, 243, 245, 246,
247, 249, 257, 272, 273, 358

protection, 371
security, 356–357, 377

O
OMNeT++, 427
Online optimization, 132, 141, 142, 206, 223,

246, 249, 333, 363, 415, 432
Overload, 84, 86, 157, 158, 162, 168, 173, 174,

175, 285, 286, 287, 338, 339, 359, 376

P

Payments, 210, 211, 212–213, 215, 220, 231,
232, 233

Peer-to-Peer (P2P), 110, 156, 157, 158, 159,
160, 205–233, 247, 248, 249, 251, 340,
384

Poisoning, 223, 224–226, 232, 233
Policy-based autonomic computing, 4, 5
Policy

engine, 5, 6, 7, 8–9, 10, 11, 12, 15, 16, 18,
20, 21–27

sharing, 159, 205, 206, 207, 208, 217
Pollution, 224–226, 233, 262
PRISM, 10, 20, 21, 22
Probabilistic model checker, 9, 10, 25

Q

Quality dimensions, 32, 47, 48, 49, 50, 51
Quality of service (QoS), 5, 52, 86, 91, 140,

151, 156, 159, 161, 169, 207, 211, 219,
252, 310, 334, 335, 338, 339, 340, 341,
342, 345, 348, 350, 367, 444, 447

Quantitative analysis, 10
Quantitative model checking, 5

R
Reciprocity, 211, 217–219, 233
Reconfigurable policy engine, 5, 8–9
Reputation systems, 211, 214, 232
Resource-definition

policy, 5, 11, 24, 25
repository, 26, 28

Reusability, 4, 28, 101
Robustness, 140, 156, 157, 161–162, 169, 172,

175, 200, 247, 248, 267, 313, 414, 415,
430–431

Routing, 60 n.2, 67, 73, 74, 75, 136, 159, 163,
165, 168, 170, 171, 243, 253, 256, 265,
266–267, 270, 271, 272, 273, 275, 276,
279, 280, 281, 314, 315, 316, 318, 319,
320, 321, 322, 323, 326, 327, 328, 329,
330, 331, 358, 367, 371, 375, 412, 413,
414, 418, 422

protocols, 265, 266, 414
Runtime code generator, 8

S
SBC PROXY, 170, 171, 172
Scalability, 59, 61, 62, 68, 73, 85, 208, 230,

246, 247, 249, 263, 340, 430, 440, 443,
444, 448

Selection process, 52, 289, 297, 419, 422
Self-∗, 4, 26, 27, 157, 241, 381–407
Self-adaption, 37
Self awareness, 106, 108, 110, 111, 112–113,

116, 120, 126–127, 128, 132, 134, 184,
240, 241, 250, 261, 383

Self discovery, 106, 108, 110, 111, 112–113,
117, 119, 120, 126–127, 128, 129

Self-managing system, 4, 5, 6, 7, 9, 11, 18, 25
Self-optimisation, 4, 20, 26
Self-stabilization, 239–258
Server allocation, 23, 338
Server-side management, 334, 342–345,

348, 349
Service level agreements (SLA), 168, 176,

286, 334, 338, 342, 343, 344, 345, 346,
347, 348, 349, 350

Service oriented architecture (SOA), 106, 107,
113–115, 116–117, 119–120, 333

Session Border Controller (SBC), 162, 163,
164, 165, 166, 167, 169–175

SIP (Session Initiation Protocol), 163, 173
Stateful web services, 117–118, 121, 123, 125
Stateless web services, 125–126
Strategy, 34, 39, 41, 42, 43, 46, 47, 48, 49, 51,

67, 133, 137, 138, 140, 142, 144, 150,
157, 180, 185, 214, 228, 249, 253, 254,

458 Index

255, 268, 314, 315, 316, 326, 330, 339,
435, 441, 447

Subscribeability, 10, 11, 13
Sybil attacks, 223, 226–228, 232, 233
System

configuration, 11, 40, 240, 339
meta-model, 11, 13, 27
model, 7, 8, 9, 11, 12 n.2, 13, 15, 16, 18,

20, 21, 22, 28, 41
state, 8, 38, 45, 51, 111, 148, 250, 251,

252, 253
of systems, 24, 25, 27

T
Trade-off, 22, 23, 35, 51, 78, 131, 140, 281,

367, 412, 414, 418, 420, 428

U
UDDI (Universal Description Discovery and

Integration), 107, 115, 117, 118, 119,
336, 347, 349

Universal policy engine, 6
Utility

function, 4, 5, 9, 10, 11, 12, 16, 17, 18, 19,
20, 21, 22 n.5, 23, 26, 47, 50, 215, 231,
253, 443

policy, 4, 5, 9, 10, 11–12, 16, 18, 19, 20
preferences, 48, 50, 51, 53

V
VoIP, 156, 157, 163, 209

W
Web Service Resource Framework (WSRF),

107, 118, 120, 121, 123, 125–126, 338,
339, 341

Web service/services, 6, 10, 11, 15, 107, 112,
113, 114, 115–118, 119, 120–128, 305,
333–350

management, 334, 335, 344, 348
Whitewashing, 211, 218, 219
Wireless network coexistence, 141, 207, 232,

256, 261–262, 282, 365, 384, 411, 436,
440, 443, 444, 446, 447, 448

Wireless networks, 141, 207, 232, 256, 262,
282, 365, 384, 436, 440, 443, 444, 446,
447, 448

Wireless sensor networks, 57–78, 142,
261–282

WSDL document, 115, 118, 119, 120, 121, 336

X
XML Schema, 9, 13, 14
XML Schema Definition tool, 14
XSLT transformation, 13

