Mieso K. Denko
Laurence Tianruo Yang
Yan Zhang

Editors

Autonomic
Computing and
Networking

@ Springer

Autonomic Computing and Networking

Mieso K. Denko - Laurence Tianruo Yang -
Yan Zhang
Editors

Autonomic Computing
and Networking

@ Springer

Editors

Mieso K. Denko

Department of Computing and
Information Science

University of Guelph

Reynolds Building

Guelph, ON N1G 2W1

Canada

denko@cis.uoguelph.ca

Yan Zhang

Simula Research Laboratory
Norway

yanzhang @ieee.org

ISBN 978-0-387-89827-8

DOI 10.1007/978-0-387-89828-5
Library of Congress Control Number: 2008940265

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

springer.com

Laurence Tianruo Yang
Department of Computer Science
Francis Xavier University
Antigonish, NS B2G 2W5
Canada

Ityang @ gmail.com

e-ISBN 978-0-387-89828-5

Preface

Autonomic computing and networking are emerging paradigms that allow for
the creation of self-managing and self-controlling environments by employing
distributed algorithms and context-awareness to dynamically control networking
functions without human interventions. Autonomic networking is characterized by
recovery from failures and malfunctions and agility to changing networking envi-
ronments and self-optimization. The self-control and management features can help
overcome the growing complexity and heterogeneity of existing communication net-
works and systems. The realization of fully autonomic heterogeneous networking
requires fundamental research challenges in all aspects of computing, networking,
communications, and other related fields.

This book, with chapters contributed by prominent researchers from academia
and industry, will serve as a technical guide and reference material for engineers,
scientists, practitioners, and researchers by providing them with state-of-the-art
research findings and future opportunities and trends. These contributions include
state-of-the-art architectures, protocols, technologies, and applications in pervasive
computing and wireless networking. In particular, the book covers existing and
emerging communications and computing models, design architectures, mobile and
wireless applications, technologies, and research issues in autonomic computing
systems and communications.

The book has 18 chapters organized into two sections: autonomic computing and
autonomic networking. Each section contains nine chapters addressing existing and
emerging architectures, protocols, and applications.

Part I Autonomic Computing

This section consists of Chapters 1-9 and covers various topics on autonomic com-
puting systems and applications. Chapter 1 by Radu discusses a generic autonomic
computing framework for the development of self-managing systems. A prototype
implementation of the reconfigurable policy engine is used to develop autonomic
solutions in case studies from several application domains.

Chapter 2 by Garlan et al. presents a system called Rainbow that uses software
architecture models and styles to support self-adaptation. The framework provides

vi Preface

general and reusable infrastructures with well-defined customization points, allow-
ing engineers to systematically customize Rainbow for particular systems. Chap-
ter 3 by Mpitziopoulos et al. discusses mobile agent-based middleware solutions for
autonomic data fusion tasks. Chapter 4 by Hagimont et al. presents a component-
based autonomic management system for legacy software. It describes the design
and implementation of such a system and evaluates different uses. Chapter 5 by
Brock and Goscinski proposes a dynamic web services description language for sup-
porting autonomic computing. The framework allows the attributes of web services
to be visible, thus allowing the autonomic system to better cater to the installation
and use of new components. Chapter 6 by Oliveri et al. discusses a bio-inspired
cognitive radio for dynamic spectrum access. Autonomic bio-inspired approaches
and spectral access are also discussed. Chapter 7 by Boucadair discusses the intro-
duction of autonomous behaviors to IP multimedia subsystem (IMS)-based architec-
tures. Solutions covered aim at enhancing the robustness and the availability of cur-
rent IMS-based architectures owing to the activation of autonomic-like techniques.
Chapter 8 by Bixio et al. discusses the cognition-based distributed spectrum sensing
for autonomic wireless systems. Finally, in Chapter 9, Kwok presents an autonomic
peer-to-peer systems with a focus on incentive and security issues.

Part II: Autonomic Networking

This section consists of Chapters 10—-18 with a focus on autonomic networking and
communications.

Chapter 10 by Boutaba et al. discusses autonomic networks with focus on knowl-
edge management and self-stabilization. In-depth discussions of basic concepts,
research challenges, and their importance for the success of autonomic networks
are presented. Chapter 11 by Yu et al. discusses autonomic wireless sensor net-
works. The chapter has an in-depth discussion of existing research activities in this
area. Chapter 12 by Wada et al. discusses a model-driven development environment
for biologically inspired autonomic network applications. The chapter proposes and
evaluates a new development environment, called iNetLab, which can improve the
productivity of designing, maintaining, and tuning operational policies in autonomic
network applications. Chapter 13 by Cascado et al. discusses network reconfigura-
tion in high-performance interconnection networks. Chapter 14 by Zulkernine et al.
discusses autonomic management of networked web service-based processes. The
authors discuss web services management from service providers’ and service con-
sumers’ perspectives.

Chapter 15 by Zseby et al. discusses self-protection in autonomic and related net-
works. Chapter 16 by Cong-Vinh discusses the formal aspects of self-* in autonomic
networked computing systems. Chapter 17 by Alouf et al. discusses autonomic
information diffusion in intermittently connected networks. The chapter proposes a
framework for designing autonomic information diffusion mechanisms using tech-
niques and tools drawn from evolutionary computing research. Finally, Chapter 18

Preface vii

by He et al. presents dynamic and fair spectrum access mechanism for autonomous
communications.
This book has the following salient features:

Provides a comprehensive reference on autonomic computing and networking.
Presents state-of-the-art techniques in autonomic computing and networking.
Contains illustrative figures enabling easy reading.

Discusses emerging trends and open research problems in autonomic computing
and networking.

We owe our deepest gratitude to all the authors for their valuable contribution to
this book and their great efforts. All of them are extremely professional and cooper-
ative. We wish to express our thanks to Springer especially Katelyn Stanne, Caitlin
Womersley, and Jason Ward for their support and guidance during the preparation
of this book. A special thank also goes to our families and friends for their constant
encouragement, patience, and understanding throughout this project.

The book serves as a comprehensive and essential reference on autonomic com-
puting and networking and is intended as a textbook for senior undergraduate and
graduate-level courses. It can also be used as a supplementary textbook for under-
graduate courses. The book is a useful resource for the students and researchers to
learn autonomic computing and networking. In addition, it will be valuable to pro-
fessionals from both the academia and industry and generally serves instant appeal
to the people who would like to contribute to autonomic computing and networking
technologies.

We welcome and appreciate your feedback and hope you enjoy reading the book.

Mieso K. Denko
Ontario, Canada

Laurence T. Yang
Nova Scotia, Canada

Yan Zhang
Oslo, Norway

Contents

PartI Autonomic Computing

General-Purpose Autonomic Computing
Radu Calinescu

Software Architecture-Based Self-Adaptation
David Garlan, Bradley Schmerl, and Shang-Wen Cheng

Mobile Agent Middleware for Autonomic Data Fusion in Wireless
Sensor Networks
Aristides Mpitziopoulos, Damianos Gavalas, Charalampos Konstantopoulos,
and Grammati Pantziou

Component-Based Autonomic Management for Legacy Software
Daniel Hagimont, Patricia Stolf, Laurent Broto, and Noel De Palma

Dynamic WSDL for Supporting Autonomic Computing
Michael Brock and Andrzej Goscinski

Bio-inspired Cognitive Radio for Dynamic Spectrum Access.............
Giacomo Oliveri, Marina Ottonello, and Carlo S. Regazzoni

Introducing Autonomous Behaviors into IMS-Based Architectures.
Mohamed Boucadair

Embodied Cognition-Based Distributed Spectrum Sensing for
Autonomic Wireless Systems.
Luca Bixio, Andrea F. Cattoni, Carlo S. Regazzoni, and Pramod K. Varshney

Autonomic Peer-to-Peer Systems: Incentive and Security Issues..........
Yu-Kwong Kwok

X

Part I Autonomic Networking

Toward Autonomic Networks: Knowledge Management and

Self-Stabilization

Raouf Boutaba, Jin Xiao, and Qi Zhang

Autonomic Networking in Wireless Sensor Networks

Mengjie Yu, Hala Mokhtar, and Madjid Merabti

iNetLab: A Model-Driven Development and Performance Engineering

Environment for Autonomic Network Applications

Hiroshi Wada, Chonho Lee, Junichi Suzuki, and Tetsuo Otani

Network Reconfiguration in High-Performance Interconnection

NetWoOrKS

R. Casado, A. Bermudez, A. Robles-Gomez, O. Lysne, T. Skeie,
A.G. Solheim, and T. S@dring

Autonomic Management of Networked Web Services-Based Processes

Farhana H. Zulkernine, Wendy Powley, and Patrick Martin

Concepts for Self-Protection

Tanja Zseby, Heiko Pfeffer, and Stephan Steglich

Formal Aspects of Self-* in Autonomic Networked Computing Systems . . .

Phan Cong-Vinh

Autonomic Information Diffusion in Intermittently Connected

NetworKso e

Sara Alouf, Tacopo Carreras, Alvaro Fialho, Daniele Miorandi,
and Giovanni Neglia

Dynamic and Fair Spectrum Access for Autonomous

Communications

Jianhua He, Jie Xiang, Yan Zhang, and Zuoyin Tang

Contents

333

381

Contributors

Sara Alouf INRIA, Sophia Antipolis, France, sara.alouf @sophia.inria.fr

A. Bermidez Universidad de Castilla-La Mancha, I3A Campus Universitario s/n,
02071 Albacete, Spain, abermu@dsi.uclm.es

Luca Bixio Department of Biophysical and Electronic Engineering, University
of Genova, Via Opera Pia 11a, 16145 Genova, Italy, luca.bixio@dibe.unige.it

Mohamed Boucadair France Télécom R&D, 42 Rue des coutures, 14066 Caen
Cedex, France, mohamed.boucadair @orange-ftgroup.com

Raouf Boutaba David R. Cheriton School of Computer Science, University
of Waterloo, Waterloo, ON, Canada, rboutaba@cs.uwaterloo.ca

Michael Brock Deakin University, Pigdons Road, Waurn Ponds, Geelong, Victoria
3217, Australia, mrab@deakin.edu.au

Laurent Broto UPS, Toulouse, France, broto @irit.fr

Radu Calinescu Computing Laboratory, University of Oxford, Oxford, England
UK, Radu.Calinescu@comlab.ox.ac.uk

Iacopo Carreras CREATE-NET, Trento, Italy, iacopo.carreras @create-net.org

R. Casado Universidad de Castilla-La Mancha, I3A Campus Universitario s/n,
02071 Albacete, Spain, rcasado@dsi.uclm.es

Andrea F. Cattoni Department of Biophysical and Electronic Engineering,
University of Genova, Via Opera Pia 11a, 16145 Genova, Italy,
cattoni @dibe.unige.it

Shang-Wen Cheng Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA
15213, USA, zensoul @cs.cmu.edu

Phan Cong-Vinh London South Bank University, Borough Road, London SE1
0AA, United Kingdom, phanvc@ieee.org

Noel De Palma INPG, Grenoble, France, depalma@inrialpes.fr

xi

xii Contributors
Alvaro Roberto Silvestre Fialho INRIA, Sophia Antipolis, France, Now at
Microsoft Research-INRIA Joint Centre, Orsay, France, alvaro.fialho @inria.fr

David Garlan Carnegie Mellon University, S000 Forbes Ave, Pittsburgh, PA
15213, USA, garlan@cs.cmu.edu

Damianos Gavalas Dept of Cultural Technology and Communication, University
of the Aegean Address of Institute, Lesvos, Greece, dgavalas @aegean.gr

Andrzej Goscinski Deakin University, Pigdons Road, Waurn Ponds, Geelong
Victoria 3217, Australia, ang@deakin.edu.au

Daniel Hagimont INPT, Toulouse, France, hagimont@enseeiht.fr

Jianhua He Institute of Advanced Telecommunications, Swansea University,
Swansea SA2 8PP, UK, j.he @swansea.ac.uk

Charalampos Konstantopoulos Research Academic Computer Technology
Institute, Patras, Greece, konstant@cti.gr

Yu-Kwong Kwok Department of Electrical and Computer Engineering, Colorado
State University, Fort Collins, CO 80526-1373, USA, Ricky.Kwok@colostate.edu

Chonho Lee University of Massachusetts, Boston, MA, USA
chonho @cs.umb.edu

0. Lysne University of Oslo, Simula Research Laboratory, P.O. Box 134, N-1325
Lysaker, Norway, olavly @simula.no

Patrick Martin School of Computing, Queen’s University, Kingston, ON K7L
3N6, Canada, martin@cs.queensu.ca

Madjid Merabti School of Computing and Mathematical Science, Liverpool John
Moores University, Byrom Street, Liverpool, UK, M.Merabti @ljmu.ac.uk

Daniele Miorandi CREATE-NET, Trento, Italy, daniele.miorandi @create-net.org

Hala Mokhtar School of Computing and Mathematical Science, Liverpool John
Moores University, Byrom Street, Liverpool, UK, H.M.Mokhtar @ljmu.ac.uk

Aristides Mpitziopoulos Dept of Cultural Technology and Communication,
University of the Aegean Address of Institute, Lesvos, Greece, crmaris @aegean.gr

Giovanni Neglia INRIA, Sophia Antipolis, France University of Palermo,
P alermo, Italy, giovanni.neglia@ieee.org

Giacomo Oliveri Department of Biophysical and Electronic Engineering,
University of Genova, Via Opera Pia 11a, 16145 Genova, Italy,
giacomo.oliveri @dibe.unige.it

Tetsuo Otani Central Research Institute of Electric Power Industry
ohtani @criepi.denken.or.jp

Contributors xiii

Marina Ottonello Department of Biophysical and Electronic Engineering,
University of Genova, Via Opera Pia 11a, 16145 Genova, Italy,
marina@dibe.unige.it

Grammati Pantziou Department of Informatics, Technological Educational
Institution of Athens, Athens, Greece, pantziou@teiath.gr

Heiko Pfeffer Fraunhofer Institute Fokus, Berlin, Germany
heiko.pfeffer @fokus.fraunhofer.de

Wendy Powley School of Computing, Queen’s University, Kingston, ON K7L
3N6, Canada, wendy @cs.queensu.ca

Carlo S. Regazzoni Department of Biophysical and Electronic Engineering,
University of Genova, Via Opera Pia 11a, 16145 Genova, Italy, carlo@dibe.unige.it

A. Robles-Gomez Universidad de Castilla-La Mancha, I3A Campus Universitario
s/n, 02071 Albacete, Spain, arobles @dsi.uclm.es

Bradley Schmerl Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA
15213, USA, schmerl @cs.cmu.edu

T. Skeie University of Oslo, Simula Research Laboratory, P.O. Box 134, N-1325
Lysaker, Norway, tskeie @simula.no

T. Sgdring University of Oslo, Simula Research Laboratory, P.O. Box 134,
N-1325 Lysaker, Norway, tsodring @simula.no

A.G. Solheim University of Oslo, Simula Research Laboratory, P.O. Box 134,
N-1325 Lysaker, Norway, aashig@simula.no

Stephan Steglich Fraunhofer Institute Fokus, Berlin, Germany
stephan.steglich @fokus.fraunhofer.de

Patricia Stolf IUFM, Toulouse, France, stolf @irit.fr

Junichi Suzuki University of Massachusetts, Boston, MA jxsg@cs.umb.edu
Zuoyin Tang

Pramod K. Varshney Department of Electrical Engineering and Computer
Science, Syracuse University, NY, USA, varshney @syr.edu

Hiroshi Wada University of Massachusetts, Boston, MA, USA, fshu@cs.umb.edu

Jie Xiang Simula Research Laboratory, Martin Linges vei 17, IT Fornebu,
P.O.Box 134, No-1325 Lysaker, Norway, jxiang @simula.no

Jin Xiao David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada, j2xiao @cs.uwaterloo.ca

Mengjie Yu School of Computing and Mathematical Science, Liverpool John
Moores University, Byrom Street, Liverpool UK, M.Yu@2001.ljmu.ac.uk

Xiv Contributors
Qi Zhang David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON, Canada, q8zhangg @cs.uwaterloo.ca

Tanja Zseby Fraunhofer Institute Fokus, Berlin, Germany
tanja.zseby @fokus.fraunhofer.de

Farhana H. Zulkernine School of Computing, Queen’s University, Kingston, ON
K7L 3N6, Canada, farhana@cs.queensu.ca

Yan Zhang Simula Research Laboratory, Norway, yanzhang @iee.org

Zuoyin Tang Department of Electronic and Electrical Engineering, University
of Strathclyde, Glasgow G1 1XW, UK, Zuoyin.Tang @strath.ac.uk

Part I
Autonomic Computing

General-Purpose Autonomic Computing

Radu Calinescu

Abstract The success of mainstream computing is largely due to the widespread
availability of general-purpose architectures and of generic approaches that can
be used to solve real-world problems cost-effectively and across a broad range
of application domains. In this chapter, we propose that a similar generic frame-
work is used to make the development of autonomic solutions cost effective, and to
establish autonomic computing as a major approach to managing the complexity of
today’s large-scale systems and systems of systems. To demonstrate the feasibility
of general-purpose autonomic computing, we introduce a generic autonomic com-
puting framework comprising a policy-based autonomic architecture and a novel
four-step method for the effective development of self-managing systems. A pro-
totype implementation of the reconfigurable policy engine at the core of our archi-
tecture is then used to develop autonomic solutions for case studies from several
application domains. Looking into the future, we describe a methodology for the
engineering of self-managing systems that extends and generalises our autonomic
computing framework further.

1 Introduction

The last decade has brought revolutionary transformations to the way in which
information and communication technologies (ICT) are used to conduct business
and research and to provide services in all sectors of the society [26]. The ability
to accomplish more, faster and on a broader scale through expert use of ever more
complex ICT systems is at the core of today’s scientific discoveries, newly emerged
services and everyday life. Autonomic computing represents an effective approach
to managing the spiralling complexity of these systems by delegating their configu-
ration, optimisation, repair and protection to the systems themselves [15, 21].

R. Calinescu (=)
Computing Laboratory, University of Oxford, Oxford, England, UK
e-mail: Radu.Calinescu@comlab.ox.ac.uk

M.K. Denko et al. (eds.), Autonomic Computing and Networking, 3
DOI 10.1007/978-0-387-89828-5_1, © Springer Science+Business Media, LLC 2009

4 R. Calinescu

The research efforts of the past few years have generated a wealth of knowl-
edge on what autonomic systems should look like [9, 13, 21, 31, 34] and what
best practices to follow in building them [4, 16, 41, 43]. This progress is to a great
extent a by-product of the effort that went into the development of successful auto-
nomic solutions addressing specific management tasks in real-world applications
[8, 25, 27, 40, 42]. While these developments demonstrate the feasibility of the auto-
nomic computing approach to complexity management, the current use of bespoke
and domain-specific architectures, and of dedicated models and policies limits sig-
nificantly the cost-effectiveness and reusability of today’s autonomic solutions.

These limitations resemble the problems encountered in the early days of main-
stream computing, and overcome successfully through the use of general-purpose
architectures and generic approaches for the development of real-world applica-
tions across multiple application domains. We therefore propose that an equally
generic framework is used to make the development of self-managing systems cost-
effective, and to drive standardisation, component reuse and user adoption in the
realm of autonomic computing. Given that policy-based autonomic computing rep-
resents the most advanced approach to developing self-managing systems of practi-
cal utility, we describe below the criteria that a policy-based autonomic computing
framework needs to satisfy in order to qualify as “general purpose”:

C1 Support for the whole range of software, hardware and data compo-
nents encountered in real-world ICT systems. To enable the development of
effective autonomic systems for real-world applications, the framework should
support the organisation of heterogeneous collections of existing and future
ICT components into self-managing systems. Both components specifically
designed for inclusion into a self-managing system (i.e., autonomic-enabled
ICT resources) and components not originally intended for this purpose (i.e.,
legacy ICT resources) should be catered for.!

C2 Support for a broad spectrum of self-* functional areas and autonomic
computing policies. The framework should aid the development of self-
management capabilities spawning a rich spectrum of self-* functional areas,
e.g., self-configuration, self-healing, self-optimisation and self-protection
[21, 31, 34]. This must be achieved through supporting all types of autonomic
computing policies, including action, goal and utility-function policies [44, 45].

C3 Support for the cost-effective development of self-managing systems for
a large variety of application domains and use cases. The framework must
reduce the effort and costs incurred in the development of today’s autonomic
systems significantly through enabling the extensive reuse of components and
the sharing of autonomic computing models and policies. It should drive the
standardisation of interfaces, policies, models and components for autonomic
computing, and should allow and encourage the modular development of com-
plex self-managing systems and systems of systems. Last but not least, the
framework must provide a generic method for developing autonomic systems
from any combination of legacy and/or autonomic-enabled ICT resources.

' The ICT components to be integrated into an autonomic system will be termed (ICT) resources.

General-Purpose Autonomic Computing 5

To demonstrate the feasibility of general-purpose autonomic computing, we
introduce a novel policy-based autonomic computing framework comprising an
autonomic architecture designed around a reconfigurable policy engine, and a four-
step method for the effective development of self-managing systems. This frame-
work builds on recent advances in autonomic computing [9, 13, 17, 34], and extends
the author’s previous work in this area [4—7] in several new directions. Thus, we
describe for the first time how multiple instances of the same general-purpose
autonomic architecture can be organised into self-managing systems of systems
by means of a new type of autonomic policy termed a resource-definition policy.
Also, we present the first-ever integration of quantitative model checking techniques
[23, 24] into autonomic policy engines, and show how the use of this new capability
enables the specification of powerful utility-function policies. Finally, we present a
new four-step method for the development of self-managing systems starting from a
model of their ICT resources, and we illustrate its application to several case studies
that spawn different application domains and employ a wide range of policy types.

The remainder of the chapter is organised as follows. In Sect. 2, we contrast
our framework with other approaches to autonomic solution development. We then
describe the general-purpose autonomic architecture and the reconfigurable policy
engine at its core in Sects. 3 and 4, respectively. A prototype implementation of
the policy engine is presented in Sect. 5, followed by the description of our generic
method for the development of self-managing systems in Sect. 6, and by several
case studies that illustrate its use in a number of different real-world applications
in Sect. 7. Section 8 analysis the extent to which our candidate general-purpose
autonomic framework satisfies the criteria stated at the beginning of the chapter,
and suggests ways for extending our current results.

2 Related Work

The autonomic infrastructure proposed in [35] is retrofitting autonomic functional-
ity onto legacy systems by using sensors to collect resource data, gauges to inter-
pret these data and controllers to decide the “adaptations” to be enforced on the
managed systems through effectors. This infrastructure was successfully used to
monitor, analyse and control legacy systems in applications such as spam detection,
instant messaging quality-of-service management and load balancing for geograph-
ical information systems [19]. Our framework is building on the powerful approach
in [19, 35], and has the added capability to handle heterogeneous types of resources
unknown until runtime, and to support the development of autonomic systems of
systems through the use of resource-definition policies.

In [20], the authors define an autonomic architecture meta-model that extends
IBM’s autonomic computing blueprint [16], and use a model-driven process to
partly automate the generation of instances of this meta-model. Each instance is
a special-purpose organic computing system that can handle the use cases defined
by the model used for its generation. Our general-purpose autonomic architecture
eliminates the need for the 19-activity generation process described in [20] by using

6 R. Calinescu

a universal policy engine that can be dynamically redeployed to handle any use cases
encoded within its resource model and policy set.

Several research projects propose the use of model-driven architecture (MDA)
techniques to develop autonomic computing policies and self-managing systems
starting from high-level behavioural models of the system or of its components
[10, 36, 39]. Two of these approaches [10, 36] are targeted at bespoke systems whose
components already exhibit sophisticated autonomic behaviour, and thus cannot be
readily extended to handle generic legacy resources. In contrast, our framework
can accommodate any type of ICT resource whose characteristics can be mod-
elled as described in Sect. 6. The preliminary work described in [39] is closer to
our approach in that it advocates the importance of using MDA techniques in the
development of generic self-managing systems; however, the authors do not sub-
stantiate their proposal with any concrete solution, but rather qualify it as an open
challenge.

A number of other projects have investigated isolated aspects related to the devel-
opment of autonomic systems out of non-autonomic components. Some of these
projects addressed the standardisation of the policy information model, with the
Policy Core Information Model [30] representing the most prominent outcome of
this work. Recent efforts such as Oasis’ Web Services Distributed Management
(WSDM) project were directed at the standardisation of the interfaces through
which the manageability of a resource is made available to other applications
[32]. An integrated development environment for the implementation of WSDM-
compliant interfaces is currently available from IBM [17].

In [12], the authors take a view similar to ours by introducing a paradigm termed
model-driven autonomic computing, and explaining that the model-based validation
of self-management decisions represents a more reliable and flexible approach than
the use of pre-set policies. A powerful hierarchical model of NASA’s Autonomous
Nano-Technology Swarm missions is successfully used in [12] to achieve the self-
managing functionality that these missions depend on, and thus to illustrate the ben-
efits of the approach. Our work complements the results in [12] with a new model-
based approach to developing self-management functionality and a generic method
that uses existing tools and standards for the implementation of autonomic systems.

Finally, we build on recent advances in component-based programming, by using
an approach to ICT resource composition and dynamic configuration that resembles
the one supported by reflective component models such as FRACTAL [3]. In addi-
tional to the FRACTAL functionality, our framework automates the generation of
most component interfaces and the management of the targeted system.

3 General-Purpose Autonomic Architecture

Figure 1 depicts our general-purpose autonomic architecture, a preliminary version
of which was introduced in [5, 6]. The core component of the architecture is a
universal policy engine that organises a heterogeneous collection of legacy ICT
resources and autonomic-enabled resources into a self-managing system. To reduce

General-Purpose Autonomic Computing 7

System model Policy set II

[high-level) senscrs Q Q (high-level) effectors
| |

Autonomic-enabled Reconfigurable
resource

external
policy engine database

menitor /J\ /L\ control

= e — (J
Y ¥ vl Y
sensors aenaoreé — -
flectors ectors| | -\\“‘
Manageability Mansageability Autonomic-enabled \‘I Aut ic-enabled
adaptor 1 i adaptor n resource 1 resource m
(managed resource 1) (manzaged rasourca n) (managed resource n+1) T‘ (managed resource n+mj

\
O 0 © o | NANSS

Legacy IT| _ |Legacy IT| [Legacy IT| _ |Legacy IT| N
resource resource | | resource resource

i
munﬂurfl\ fj\ control

Fig. 1 UML component diagram of the autonomic architecture. The architecture supports the
development of two types of autonomic systems-of-systems: a hierarchical topology that allows
an instance of the policy engine to manage other instances of the architecture (i.e., the managed
resources n+1 to n+m in the diagram); and a federation of collaborating instances of the archi-
tecture that use each others’ high-level sensors and effectors, as shown by the dashed lines in the
diagram

the effort required to develop autonomic solutions, the policy engine can handle
resources whose types are unknown during its implementation and deployment.
This unique capability is achieved through runtime configuration: a model of the
system to be managed is supplied to the policy engine for this purpose. As a result,
the engine can implement the high-level goals described by a set of user-specified
policies that make reference to the resources defined in the system model.

As recommended by IBM’s architectural blueprint for autonomic computing
[16], standardised adaptors are used to expose the manageability of all types of
legacy ICT resources in a uniform way, through sensor and effector interfaces. The
autonomic-enabled resources in the self-managing system are either typical ICT
resources designed to expose sensor and effector interfaces allowing their direct
inter-operation with the policy engine, or other instances of the architecture. The
latter option is possible because the policy engine exposes the entire system as an
atomic ICT resource through high-level sensors and high-level effectors. A detailed
description of the architecture and an overview of existing standards and technolo-
gies that can be used to implement it in practice are available in [5, 6].

4 Reconfigurable Policy Engine

R. Calinescu

The internal architecture of our policy engine (Fig. 2) is influenced by the types of
policies it implements and by its ability to handle resources whose characteristics
are supplied to the engine at runtime. A “coordinator” module is employing the
following components to implement the closed control loop of an autonomic system:

e The runtime code generator produces the necessary interfaces when the policy

engine is configured to manage new types of resources or supplied with new
resource-definition policies. When a new system model is used to configure the
policy engine, manageability adaptor proxies are generated that allow the engine
to interoperate with the manageability adaptors for the resource types specified
in the system model. Likewise, when resource-definition policies are set up that
specify new ways in which the policy engine should expose the ICT resources it
manages, high-level manageability adaptors are generated.

The manageability adaptor proxies are thin interfaces allowing the policy engine
to communicate with the autonomic-enabled resources and the manageability
adaptors for the legacy resources in the system.

The high-level manageability adaptors expose the system state and configura-
tion in a format that allows its integration within other instances of the architec-
ture. The way in which these interfaces are dynamically specified by means of

resource-definition policies is described later in the chapter.

{high-level) sensors Cl) C|> {high-level) effectors

Reconfigurable policy

engine
High-level
| manageability Resolrcs
adaptor discovery

Fig. 2 Architecture of the é, L
reconfigurable policy engine. 1 DB driver H—
The shaded components are Rintime Coviiar ::‘1::;::9
implemented by the prototype code _©_| alii:
described in Sect. 5. A fSHaTnIor
standards-based database Probabilistic
driver will be added in a model
future version of the shgcker
prototype. The machine Machine 5 —
learning modules represent 'I:';:::::L“ Scheduler
the focus of ongoing research

efforts by the autonomic
computing community, and
will be included in a
reference implementation of

g]
Manageability

. dapt

the engine when the results of ap'::,;'

this research start to] I
crystallise monitor /I\ /L\ control

General-Purpose Autonomic Computing 9

e The scheduler is used to support the scheduling operators appearing in policy
actions for the goal and utility-function policies handled by the policy engine.

e The resource discovery component is used to locate the resources to be managed
by the policy engine.

e The database driver is used to maintain policy engine data such as historical
resource property values in an external persistent storage.

o The machine learning modules use machine learning techniques [2] to derive
and/or refine a behavioural model of the managed resources based on sensor data
and inside policy engine information. This enables the engine to support goal
and utility-function policies for systems for which in-depth knowledge about
the behavioural characteristics of the managed resources cannot be supplied by
system administrator. The usefulness of a Modeler component for the implemen-
tation of utility-function policies is mentioned in [44], although the authors are
not specific about the learning algorithms that such a component might use.

o The probabilistic model checker enables the policy engine to take full advantage
of the behavioural model supplied by the system administrator or built by its
machine learning modules. This is done by using probabilistic model checking
to establish quantitative properties of the system [24] and thus to implement the
user-specified policies. As will be illustrated by a couple of the case studies
in Sect. 7, the integration of these quantitative verification techniques into the
policy engine enables system administrators to specify powerful goal and utility-
function policies that would have been extremely complicated or even impossible
to express otherwise. Another use envisaged for the model checker is to help
verify the policies implemented by the engine as suggested in [22].

5 Prototype Implementation

In this section we overview a prototype implementation of our autonomic architec-
ture that was originally introduced in [7], and we describe for the first time two of its
new features: the integration of a probabilistic model checker with the policy engine
and the implementation of resource-definition policies.

Two major choices influence the realisation of an instance of the architecture:
the technology used to represent the system model and the technology chosen for
the implementation of the policy engine components. We chose to represent system
models as plain XML documents that are instances of a pre-defined meta-model
encoded as an XML schema. This choice was motivated by the availability of
numerous off-the-shelf tools for the manipulation of XML documents and XML
schemas that are largely lacking for the other technologies we considered (e.g.,
[1, 29, 32]). In particular, by using existing XSLT engines and XML-based code
generators, we shortened the prototype development time and avoided the need to
implement bespoke components for this functionality.

As shown in Fig. 3, an ICT system is a named set of resources (resource in
the UML diagram), each comprising a unique identifier /D and a set of resource

10 R. Calinescu

aXSDcomplexTypes

property
aXSDcomplexTypes aXSDcomplexTypes XSDelement
system 1.7 resource 1. + ID: string
|+ propetyDataType: anyType
XSDelement """.XSDeIernen‘t |+ mutability: MutabilityType
+ name: sting + ID: stiing + modifiability: ModifiabilityType]
+ subscribeability: boolean
+ primaryKey: boolean

Fig. 3 Meta-model of an ICT system

properties with their characteristics. A resource property is associated a unique /D,
and has a data type (i.e., propertyDataType). Several other property characteristics
are defined in the meta-model:

o mutability — the WS-RMD Mutability Type [33] specifies if the property is “con-
stant”, “mutable” or “appendable”;

o modifiability — tells if the property is “read-only”, “read—write”, “write-only” or
“derived” from other properties and the behavioural model of the system;

e subscribeability — specifies whether a client such as the policy engine can sub-
scribe to receive notifications when the value of this property changes;

e primaryKey — indicates whether the property is part of the property set used to

identify a resource instance among all resource instances of the same type.

Our prototype policy engine and the manageability adaptors enabling its interopera-
tion with legacy resources were implemented as web services in order to leverage the
platform independence, loose coupling and security features of this technology [46].
The runtime configuration of the engine required the extensive use of techniques
available only in an object-oriented environment, e.g., runtime generation of data
types and manageability adaptor proxies, reflection and generics. Based on these
requirements, J2EE and .NET were selected as candidate development platforms
for the prototype engine, with .NET being eventually preferred due to its better
handling of dynamic proxy generation and slightly easier-to-use implementation of
reflection. The components included in the prototype are shown in Fig. 2.

The free, open-source probabilistic model checker PRISM [14] developed by
the Quantitative Analysis and Verification Group at the University of Oxford was
chosen for integration with the original version of the policy engine described in
[7]. This choice was based on an extensive performance analysis of a range of model
checkers [18] that ranked PRISM as the best option for analysing large behavioural
models such as the ones encountered in autonomic computing systems. Further-
more, PRISM comes with a command-line interface that made possible its direct
integration into the existing version of the policy engine, and the runtime execution
of quantitative analysis experiments [23, 24] that self-managing systems can use to
realise powerful goal and utility-function policies as illustrated in Sects. 7.3 and 7.4.

General-Purpose Autonomic Computing 11

Another novel feature of the policy engine that we describe for the first time is
its ability to handle resource-definition policies, i.e., policies of the form

RESDEF(newResourceld, propertyDefi, ..., propertyDef,), @))

where newResourceld is a string corresponding to the ID element of a resource
definition from the meta-model in Fig. 3 and

propertyDef; = (propertyld;, expr;, subscribeability;, primaryKey;), 1 < i< m

@)
define the properties of the new resource type. The expr; component in (2) tells the
policy engine how to calculate the value of the ith resource property as a function
of the resources in the policy scope, or is one of INTEGER, DOUBLE or STRING
to indicate that property i is a “read—write” property with one of these primitive
types. The other components of propertyDef; correspond to the property charac-
teristics from the system meta-model in Fig. 3 that cannot be inferred from expr;.
To implement a resource-definition policy, the policy engine generates dynamically
the data type for the new resource and its manageability adaptor (i.e., a new web
service whose URL is built by replacing the suffix PolicyEngine.asmx from
the policy engine URL with newResourceldManageabilityAdaptor .asmx).
This manageability adaptor exposes objects of the new data type that are created and
whose fields are set in accordance with the property definitions (2). The case study
presented in Sect. 7.5 illustrates the use of resource-definition policies.

6 A Generic Method for the Development of Autonomic Systems

Our method for the development of autonomic systems comprises four steps:

1. development of a model of the system to which autonomic capabilities are added;
2. generation of manageability adaptors for the legacy resources in the system;

3. reconfiguration of the policy engine by means of the system model from step 1;
4. development of autonomic computing policies that handle the required use cases.

To illustrate these steps, we will apply them to a system comprising a set of services
of different priorities, subjected to different workloads, and sharing the CPU capac-
ity of the same server. The aim of the case study is to develop an autonomic solution
for managing the allocation of CPU to services such that high-priority services are
treated preferentially, subject to each service getting a minimum amount of CPU.

Several policy types are typically used in autonomic systems [44, 45]: action
policies provide a low-level specification of how the system configuration should
be changed to match its state; goal policies specify precise constraints that should
be met by varying the system configuration and utility-function policies supply a
“measure of success” that the self-managing system should optimise by appropri-
ately varying its configuration. In our running example we will use a utility-function
policy, which is the most flexible of these policy types.

12 R. Calinescu

To implement utility-function policies, the policy engine needs an understanding
of the behaviour of the system and its resources. Given a resource, we define its state
s as the vector whose elements are the read-only properties of the resource, and its
configuration ¢ as the vector comprising its modifiable (i.e., read—write) properties.
Let S and C be the value domains for s and ¢, respectively.? A behavioural model of
the resource is a function

behaviouralModel : S x C — S, 3)

such that for any current resource state s € S and for any resource configuration
¢ € C, behaviouralModel(s, ¢) represents the future state of the resource if its con-
figuration is set to c.

Our policy engine works both with an approximation of the behavioural model
that consists of a set of discrete values of the behaviouralModel in (3) and with
a continuous-time Markov chain (CTMC) [23] representation of (3). For our run-
ning example, we will use the former type of behavioural model; the use of CTMC
behavioural models is described in Sect. 7. As the current version of the policy
engine does not include the machine learning modules described in Sect. 4, it
acquires these behavioural models from the manageability adaptors for the managed
resources. With the future addition of machine learning modules (Fig. 2), the pol-
icy engine will gain the ability to use learning techniques to refine and, eventually,
to derive these behavioural models automatically based on its observation of the
managed resources.

Step 1: Model Development Let Systzem be the set of all instances of the meta-
model in Fig. 3; the purpose of this step is to find a system model

M € System 4)

that can be used to implement the desired autonomic solution. To achieve this goal,
we identify the system resources involved in the autonomic solution and their rel-
evant properties. Given the ability to reconfigure the policy engine at any time, it
makes sense to keep this model as simple as possible: additional resources and/or
resource properties can be specified in new versions of the model, and conveyed to
the policy engine as and when necessary. For instance, the single resource type for
our example system is service, and its properties are as follows: name, a unique
identifier used to distinguish between different services; priority, an integer
value; cpuAllocation, the percentage of the server CPU allocated to the service;
responseTime, the service response time, averaged over the past one-second
time interval; interArrivalTime, the request inter-arrival time, averaged over
the past one-second time interval and behaviouralModel, an approximation of
the service behaviour that provides information on how the service response time
varies with its CPU allocation and the request inter-arrival time.

2 Note that S and C are fully specified in the system model.

General-Purpose Autonomic Computing 13

Each resource property is then analysed in order to identify its value domain,
mutability, modifiability and all of the other characteristics specified by the meta-
model in Fig. 3. This information is encoded as an instance of the system meta-
model, ready to be used in the subsequent steps of the method. By analysing these
resource properties for our running example and representing the analysis results as
an instance of the system meta-model, we produced with the system model in Fig. 4.

Step 2: Manageability Adaptor Generation Given a system model M, this step
generates manageability adaptors for each type of legacy resource. Off-the-shelf
tools can be used to automate most of this generation. First, an XSLT transformation

schemaGen : System — XmlSchema 5)
is applied to the system model in order to obtain an XML schema for the resource

types in the system. The XML schema generated when this transformation is applied
to our sample system model is depicted as UML in Fig. 5a. A standard data type

<system xmlns="..." > <property>

<name>server< /name> <ID>responseTime< /ID>

<!-- Services running within a server --> <./.p'roperty>
<resource>
<ID>service</ID> <property>
<ID>interArrivalTime< /ID>
<property> o
<ID>name</ID> < /property>
<propertyDataType>
<xs:simpleType name= "serviceName" > <property> X
<xs:restriction base="xs:string" /> <ID>behaviouralModel</ID>
< /xs:simpleType> <propertyDataType>
< /propertyDataType> <xs:complexType o) .
<mutability>constant< /mutability > name= "“serviceBehaviouralModel” >

<xs:sequence>
<xs:element name= “modelElement”
type="serviceModelElement”
maxOccurs= “unbounded” />
< /xs:sequence>
< /xs:complexType>
<xs:complexType name= "serviceModelElement” >
<xs:sequence>

<modifiability>read-only< /modifiability >
<subscribeability>false< /subscribeability>
<primaryKey>true< /primaryKey>

< /property>

<property>
<ID>priority</ID>

</property> <xs:element name= "responseTime"
<property> type= “serviceResponseTime” />
<ID>cpuAllocation< /ID> <xs:element name= "interArrivalTime"
<propertyDataType> type= “servicelnterArrival Time” />
<xs:simpleType name= "serviceCpuAllocation” > <xs:element name= "“cpuAllocation”
<xs:restriction base="xs:int" > type=“serviceCpuAllocation” />
<xs:minlnclusive value="0"/> < /xs:sequence>
<xs:maxlInclusive value="100" /> < /xs:complexType>
< /xs:restriction> < /propertyDataType>
< /xs:simpleType> <mutability>constant< /mutability >
< /propertyDataType> <modifiability>read-only< /modifiability >
<mutability>mutable< /mutability> <subscribeability>false< /subscribeability >
<modifiability >read-write< /modifiability> <primaryKey>false</primaryKey>
<subscribeability>false< /subscribeability> </property>
<primaryKey>false< /primaryKey> < /resource>
</property> < /system>

Fig. 4 System model for the running example

14 R. Calinescu

int int int
«XSDsimplaTypes «XSDsimpleTypax «XSDhsimpleTypex
servicelnterfrrivalTime | | serviceResponsaTime | | service Cpusllocation

\ 7\ \ 7,
ity Pliid

«XSDsimple Types eXSDoomplexTypes «XSDsimple Typen
serviceName serviceModel Element servicePriority

s PR

aXSDecomplexTypes
serviceBehavioural Model

+name +behaviouralbedel +cpudllocation
+interAnival Time +responseTime +priority
aXSDcomplexTypes
service
a
| ManagedResource <T>
| Generic Abstract Class
+ wiebService
= Methads
d -'.\"O‘ GetRanResources
(service V| 2% GetResourceProperty
Class i & GetResources
| % setResourceProperties
Fields ! & SetResources
3 Pinpeibas | ¥ SupportedResource
2 behaviouralModel I

7' cpuAliocation [serviceManageabilityAdaptor |
S interarrivalTime las

5:' name - ManagedR esource <service s
; orit

3 priority = Methods

“ responseTime

4 ‘v GetCpuallocation
T —— :¥ GetRawResources
2 GetResourceProperty
-'_-.\'i' SetResourceProperties
& UpdateState

b

Fig. 5 Generated XML schema (a) and manageability adaptor (b) for the sample system

generator such as Microsoft’s XML Schema Definition tool [28] is then used to
automatically generate the data type set associated with this schema:

dataTypeGen : XmlSchema — P DataType. 6)

General-Purpose Autonomic Computing 15

Finally, a simple transformation was implemented to automate the generation of
manageability adaptor stubs for the legacy resources in the system:

adaptorGen : XmlSchema — P ManageabilityAdaptor. @)

As shown in Fig. 5b, which depicts the data type (i.e., service) and the manage-
ability adaptor (i.e., ServiceManageabilityAdaptor) for the system in our run-
ning example, all manageability adaptors are subclassing the generic abstract web
service ManagedResource<T>. The bulk of the sensor and effector functionality
associated with a manageability adaptor is implemented in this base abstract class,
and only a small number of simple, resource-specific methods that are declared
abstract in ManagedResource<T> need to be implemented manually in each man-
ageability adaptor. Note that the policy engine is itself implemented as a subclass
of ManagedResource<T>, so that an instance of the architecture can be readily
included as a managed resource into a larger autonomic system as described in
Sect. 3.

To complete this step, the manageability adaptor produced by the generator
in (7) and depicted in Fig. 5b was manually extended, and then connected to a
server discrete-event simulator running a high-priority “premium” service and a
low-priority “standard” service. These services handled simulated requests with
normally distributed CPU utilisation and exponentially distributed inter-arrival time.

Step 3: Engine Configuration This step consists in supplying the system model to
the instance of the policy engine used in the autonomic solution. As stated before,
the policy engine was realised as a web service, so we implemented a web interface
for its simple configuration. Figure 6 shows a snapshot of this interface after the

2 Policy engine web client - Mozilla Firefox
File Edit Wiew History Bookmarks Tools Help
Policy engine parameters

System model

server

« « SELIVICE
. «name
..priority
. .cpukllocation
. responseTime
+oedinterArrivalTime
. +behaviouralModel

Resource URLs [service] hitp://localhast: 2364/5 erverM anage abiitptdaptor/M anageabiityddaptar, asmyx

Policy set | Set policias

scope condition [action

MAXIMIZE(service,

SUMNK service, priority *IMIN 1000, MAS(D, 2000-service. responseTime))),
SErvice true service.cpuAllocation, 100,135,100,

service responseTime(service interArrival Time, service. cpusllocation)=
|service behaviouralModel responseTime(interArmival Time, cpuAllocation))

Fig. 6 Policy engine configuration

16 R. Calinescu

system model from our running example, and the utility-function policy that will be
presented in step 4 were supplied to the engine.

Step 4: Policy Development In this step, autonomic computing policies are
designed that support the use cases of the envisaged autonomic solution. The scope,
priority, condition and action components of these policies make reference to the
resources and resource properties defined in the system model used to configure the
policy engine. Each of these policy components can be specified using a rich set of
operators and functions [6] that allow the definition of action, goal, utility-function
and, in the latest version of the engine, of resource-definition policies.

The policy set is applied to all resources whose locations are known to the policy
engine,® and which are in the scope of the policies. Policy development is generally
a complex, error-prone and iterative process [4], and our framework improves the
effectiveness of this process significantly by (a) enabling and encouraging the reuse
of system models and policies and (b) simplifying the iterative development and
testing of policies for new types of resources and of policies that explore the use of
new properties of existing resources in novel ways.

For our autonomic solution, we defined a utility function that models the business
gain associated with running a set of service resources R with different levels of
service:

utility(R) = Z r.priority * min(1000, max(0, 2000 — r.responseTime)).

reR

Figure 7a depicts the utility function for a server running a “premium” service
with priority 100 and a “standard” service with priority 10. The policy action
implemented by the autonomic system (Fig. 6 and Table 1) was defined by means of
the MAXIMISE(R, utility, property, capacity, min, max, model) operator that uses
the information about the system behaviour encoded in model to set the value of the
specified resource property for all resources in R such as to: (a) maximise the value
of the utility function and (b) ensure that the value of property stays between min
and max, and that the sum of the property values across all resources in R does not
exceed the available capacity.

This policy provides the definition of the utility function, and the link between
the responseTime, interArrivalTime and cpuAllocation properties
of a service resource and the components of its behaviouralModel property.
Each time it evaluates the utility-function policy, the policy engine uses this infor-
mation to select the elements from the behavioural model that are in the proximity
of the current state of the system; the Euclidean metric is used for this calculation.
The new configuration for the system is then chosen as the one associated with the
selected element that maximises the value of the utility function. The experimental
results of applying this policy to our example system are presented in Sect. 7.1.

3 The policy engine employs a resource discovery service (Fig. 2) to obtain the URLs of the
resources to be managed.

General-Purpose Autonomic Computing

il
L

B ity
\\\\\\\‘\““ A

utility

L
T
0

T
1000

5000

responseTime - premium 4000 2000

service [ms] 1000

responseTime - standard service[ms]

responseTime[ms]

) - 000
interArrivalTime [msi 0

cpuAllocation [%]

Fig. 7 Utility function (a) and service behavioural model (b) for the running example

Table 1 The arguments of the MAXIMISE(R, utility, property, capacity, min, max, model) policy
action for the running example of an autonomic system

R service

utility SUM(service.priority * MIN(1000, MAX(0, 2000 — service.responseTime)))
property service.cpuAllocation

capacity 100

min 15

max 100

model

service.responseTime(service.interArrivalTime, service.cpuAllocation) =
service.behaviouralModel .responseTime(service.behaviouralModel.
interArrivalTime, service.behaviouralModel .c puAllocation)

18 R. Calinescu

7 Case Studies

7.1 Utility-Driven Allocation of CPU Capacity

We start our presentation of case studies with the experimental results for the run-
ning example of an autonomic system from the previous section. Variants of this
system were used to validate autonomic computing frameworks in the past (e.g.,
[44]), hence this well-understood use case provides a good basis for a first assess-
ment of the framework. To evaluate our autonomic solution, the behavioural model
for a service was obtained from 100 runs of the server simulator in which the
average service response time was recorded for 920 equidistant points covering
the entire (interArrivalTime, cpuAllocation) value domain (Fig. 7b).
Figure 8 shows a typical experiment in which the utility-function policy in Table 1
was used to manage the allocation of CPU to our “premium” and ‘“‘standard” ser-
vices, when their request inter-arrival times were varied to simulate different work-
loads. The policy evaluation period was set to 3 s for this experiment, so that the
system could self-adapt to the rapid variation in the workload of the two services.
This allowed us to measure the CPU overhead of the policy engine, which was under
1% with the engine service running on a 1.8 GHz Windows XP machine. In a real
scenario, such variations in the request inter-arrival time are likely to happen over
longer intervals of time, and the system would successfully self-optimise with far
less frequent policy evaluations.

7.2 Goal-Based Scheduling of CPU Capacity

In the absence of knowledge about the behaviour of the legacy ICT resources that
need to be organised into a self-managing system, goal policies can often be used in
conjunction with scheduling heuristics. In this section, we consider the same system
as in Sect. 7.1, but assume that a behavioural model describing the variation of the
service response time with its allocated CPU and request inter-arrival rate is not
available. Figure 9 depicts a concise representation of the system model and a goal
policy that can be used in this scenario. The action of this goal policy is specified by
means of an expression that uses the SCHEDULE(R, ordering, property, capacity,
min, max, optimal) operator that (a) sorts the resources in R in non-increasing order
of the comparable expressions in ordering; (b) in the sorted order, sets the specified
resource property to a value never smaller than min or larger than max, and as close
to optimal as possible; and (c) ensures that the overall sum of all property values
does not exceed the available capacity. Accordingly, the policy action in Fig. 9 will
set the cpuAllocation property of all services to a value between 15 and 100%, sub-
ject to the overall CPU allocation staying within the 100% available capacity. Opti-
mally, the cpuAllocation should be left unchanged if the 55 < cpuUtilisation < 85,

General-Purpose Autonomic Computing 19

[Server Simulator

Request mean inte-anrval time - premeum service [us

5000
‘%_.__‘__‘___‘_‘_
|~ /_- 600
o + tme [2]
CPL aflocation - pramium senice [i]
100 1
— J_,_r]_LL\-_. (711]
4 : Tine [
Aferage response lme - premeum fenige [ms]
5000
A 600
g : Y]
Tined-out requests | premium service
10004
B0
0 y
— . time {]
Fikquest mean intetfanival time - sfandard service [us tel
5000
— 600
1] time [s]

CPLU allacabion - standard zervica [f2]

e TV w

Aberage responze me - standad tanite fme] e s]
50001 =
|'I L
[600
0 e
Tfmed-out requests | standard sendce
10007
I "
1] 3
a_b c _d e f g el

Fig. 8 Experimental results for Sect. 7.1. The CPU allocations for the services are initially
decreased to match their light workload (5 ms request inter-arrival time during time interval a).
As the service workloads increase, so do the CPU allocations, until the CPU required to satisty
the demand from the premium service leaves insufficient CPU capacity for the standard service to
make any contribution to the utility function (time interval d), hence it is allocated the minimum
amount of CPU specified in the policy (i.e., 15%). As soon as less CPU capacity is required to
satisfy the needs of the premium service (time interval e), the standard service is swiftly allocated
sufficient CPU to bring it back into a region of operation in which it contributes to the utility
function. Subsequently, the CPU allocations are varied to accommodate more gradual changes in
the workloads (time intervals f—g)

decrease by 5% if cpuUtilisation < 55 and increase by 5% if cpuUtilisation > 85.*
The experimental results for the resulting autonomic solution (available in [7])
resemble those corresponding to the use of a utility-function policy in Sect. 7.1,
but are less effective in two important circumstances:

4 The HYSTERESIS(val ,lower, upper) operator used to achieve this behaviour (Fig. 9) returns
—1,00r 1 if val < lower, lower < val < upper or upper < val, respectively.

20 R. Calinescu

) Policy engine web client - Mozilla Firefox

Fle [t Vew Hgtory Bockmads Took Hep
Policy engine parameters
System model Browse.. Satmodel
server
..s5ervice
- « Name
..priority
..cpuAllocation
... CpUllt ilisation
Resource URLs [53/Senver optorf g Adoptor asm|
Policy set | || setpaticies
scope dition |action
ervice TRUE SCHEDULE(sernice,(service. pnonty), seraice.cpuAllocation, 100,135,100,
it service cpulllocation+5*HY STERESIS(service. cpulltl 55,800)

Fig. 9 Policy engine parameters for the case study in Sect. 7.2. The policy engine is configured
to monitor the service cpuUtilisation (i.e., the amount of CPU utilised by the service,
expressed as a percentage of its CPU allocation) and to realise a goal policy requiring that the
cpuUtilisation is maintained between 55 and 80% of the allocated CPU

e several successive policy evaluations are required to handle significant changes
in the service workloads because the CPU capacity allocated to services can be
modified by only +5% at a time;

e when insufficient CPU is available to ensure that a low-priority service runs in
an operation area that is useful for the business and the utility-function policy in
Sect. 7.1 would restrict the CPU allocated to the service to a minimum, the goal
policy gives it all available CPU, thus wasting CPU capacity unnecessarily.

7.3 Dynamic Power Management of Disk Drives

When formal methods are used in the development and/or verification of legacy
ICT resources, the behavioural models employed by these methods can often be
exploited by our framework to augment the legacy ICT resources with autonomic
capabilities. Starting from the CTMC model of a Fujitsu disk drive in [38] and its
encoding as a PRISM CTMC model [37], we built (Fig. 10) a system model of
the disk drive that can be used for the configuration of our policy engine. We then
used this system model to add self-optimisation capabilities to the disk drive so
that it dynamically adapted its probability of transitioning from the idle state to the
low-power sleep state to changes in (a) the request inter-arrival time and (b) the
user-specified utility function:

11 — queueLength)
2

utility = wy min <1, max <O,)) + wy max(0, 1.2 — power),

®)

General-Purpose Autonomic Computing 21

_Ele Edit Model Properties Simulator Options

[PRISM Modie! File: D:\Radu\Papers|\ASE-2008\diskDrive sm |

Model: diskDrive.sm :: ctmne
@ Type: Stochastic (CTMC) |%

@ 23 Modules | |module s2 s/ SERVICE PROVIDER
o £ 5P |

I S I
o 230 | |endmodule read-only property
o | - ‘
O Constants | |const double |interArrivalTime:

mdule SRQ // SERVICE REQUESTER AND REQUEST (MEUE

endmodile read-write property

| |const aoubie [switentosieepprobabirity: |

[|mosure me 7/ poseER iMAGER

endmodule

derived properties

+ Built Model
No of states: 43
No of transitions: 66

Fig. 10 PRISM CTMC model of a three-state Fujitsu disk drive taken from [37], and used to
devise the system model for the configuration of the policy engine. The uninitialised PRISM
constants correspond to “read-only” and “read—write” properties of a disk drive resource (i.e.,
interArrivalTime and switchToSleepProbability, respectively). PRISM reward
structures (i.e., power and queueLength) correspond to “derived” disk drive properties

where the weights w; and w, are chosen depending on the circumstances in which
the disk drive is used (Fig. 11). Given this policy, the policy engine ran PRISM
experiments [24] to establish the optimal switchToSleepProbability for
the disk drive at regular, 10-s time intervals. For our simple CTMC model, each of
these experiments took subsecond time, yielding the results in Fig. 12.

7.4 Adaptive Control of Cluster Availability

The case study presented in this section involves the adaptive control of cluster
availability within a data centre. The aim of the autonomic solution is to control
the number of servers allocated to the N > 1 clusters of a data centre in order to
maximise the utility function

22 R. Calinescu

request queue 15
length 207, power [mW]

Fig. 11 The utility function (8) (depicted here for w; = w, = 100) was used to achieve a user-
customisable trade-off between the disk drive responsiveness (which is provably proportional to its
average queueLength [38]) and its power consumption (i.e., power)

N N
utility = Z priority; - GOAL(availability; > target _availability;) — € Z servers;
i=1 i=1
)
subject to
N
Z servers; < Total_servers and required; < servers;, (10)

i=1

where priority; > 0, availability; € [0, 1], target _availability; € [0, 1], required; >
1 and servers; > 1 represent the priority, (actual) availability, target availability,
number of required servers and number of (allocated) servers for cluster i, 1 <i <
N, respectively. The GOAL operator yields 1 when its argument is true and 0
otherwise, Total _servers > 1 is the total number of servers in the data centre, and
0 < &€ < 1is a constant.’ The availability of cluster i, availability,, is the fraction
of a 1-year time period during which at least required; servers are usable (i.e., they
are operational and connected to an operational switch and backbone).

Like in the previous case study, we extracted the system model for the configu-
ration of our policy engine from an existing behavioural model of the targeted ICT
resource, namely from the CTMC model of a dependable cluster of workstations
introduced in [11]. This model takes into account the failure and repair rates of
all components from our targeted cluster architecture (Fig. 13a). Consequently, the
policy engine can use PRISM to calculate the cluster availabilities for the data-centre
configurations satisfying (10), and to decide the number of servers that each cluster

5 The second term of the utility function (9) ensures that when multiple configurations maximise
the first term, the configuration that uses the fewest servers is preferred.

General-Purpose Autonomic Computing 23

Request average inter-arival time [ms]

2000 DPM method:
- autonomic
4—4&— timeout (t=1500ms)
a—m-N(N=8)
\—I 3600
i} f
0V .Averege request quaus length time [¢]
Jl—r.'\I—IW—L-_rpl—' | Bvie Sl o
3600
1] e w),
EOOL verage power [miw] time [£]
3600
1] = f
200 - Litility time [¢]
L h .
3600
: - T—i7 t
0.754 switcheto-sleep-probability time [2]
3600
0 e }
time [s]

Fig. 12 Discrete-event simulation results contrasting our autonomic approach to disk drive
dynamic power management (DPM) with two standard DPM methods [38]: the timeout method
that moves the disk drive into the sleep state after a period of idleness # and “awakens” it immedi-
ately after a request has arrived; and the N method that moves the disk drive into the sleep state as
soon as it becomes idle, and “awakens” it after N requests accumulate in its queue. The autonomic
DPM approach achieved a better utility than the two standard DPM methods for most of the time,
and similar utility to the better of the two for the rest of the time. This is due to the good trade-off
that the autonomic approach realised between power consumption and request queue length across
a wide workload range, while the other approaches are effective for specific workloads

should get so that the value of the utility function (9) is maximised. Given the com-
plexity of the CTMC behavioural model, we implemented a cluster manageability
adaptor that uses notifications to inform the policy engine about changes in the
number of required servers for the clusters. Hence, the policy engine recalculates
the server allocations only when there is a change in the state of the autonomic
system. In our simulations, this calculation took up to 30s. This response time is
acceptable for the considered use case because, based on our previous experience
with policy-based data-centre management [4], half a minute represents a small

24 R. Calinescu

Seivers - GOLD cluster (priority=100,
I 1T tacget_availability=0.9999)

Key:

== required servers
+—+ allocated servers - I =
—~— total data-centre servers }
e Servers - SILVER cluster (priority=40, time [hours]

20 T target_availability=0.5995)

1 = - — b
0 - ;
Servers - BAONZE cluster (priority=25, time [hours]

20 1 target availability=0,5599)

D _ ¥
/D Told servers timve: [howrs]
wn +
a o . -— 1
Pt —
LFJ 672
’ (b) time [hours]

Fig. 13 Architecture of an n-server dependable cluster, taken from [11] (a), and simulation results
for a three-cluster data centre over a 4-week time period (b)

delay compared to the time required to provision a server when it is allocated to
a new cluster.® The experimental results are shown in Fig. 13b.

7.5 Dynamic Web Content Generation

The last case study is extending the autonomic solution from the previous section
by incorporating the autonomic system for controlling cluster availability into an
autonomic system of systems (Fig. 14). The resource-definition policy action below
was supplied to policy engine instances within the autonomic data-centre systems:

RESDEF(businessValue, (id, CONCAT (cluster.id), false, true),
(max, SUM(cluster.priority), true, false), (actual, SUM(cluster.priorityx (11)
GOAL(cluster.availability >= cluster.targetAvailability)), true, false)).

6 Section 8 suggests techniques for working around the time taken by runtime model checking
when such delays are not acceptable.

General-Purpose Autonomic Computing 25

Reconfigurable
policy engine

monrloi\ J{:ormol

b7 i

.. (high-level) S€Nsors effectors
¢ effectors

Autonomic- =nab|=d
g] web page (dashboard)

Autonomic
data-centre system
from Sect. 7.4

Fig. 14 Autonomic system of systems comprising several instances of the data-centre system from
Sect. 7.4, and an autonomic-enabled web page implementing a business dashboard. The data-centre
systems were each configured to expose their actual and ideal utility by means of a resource-
definition policy, and the top-level policy engine implements an action policy that updates the
properties of the autonomic-enabled web page with a summary of these utilities

As described in Sect. 5, this resulted in each of these policy engines dynamically
creating a new ICT resource named businessValue and comprising three “read-
only” properties: 1d — the concatenated identifiers of its clusters; max — its ideal
utility, i.e., the maximum possible value of the first term in (9); and actual —
the actual value of this term. A model of this synthesised ICT resource and of an
autonomic-enabled web page was then used to configure the top-level policy engine
in Fig. 14, and an action policy was used to ensure that this policy engine updates
the web page periodically with a summary based on the businessValue of each
autonomic data-centre system it knows about (Fig. 15).

8 Summary and Future Work

The success of mainstream computing is largely due to the availability of a system
development methodology that enables and encourages standardisation, component
reuse and user adoption. Building on recent advances in autonomic computing and
on our previous work on policy-based autonomic systems, we proposed a general-
purpose framework that brings similar benefits to the realm of autonomic com-
puting. We introduced a set of criteria for assessing the generality of autonomic
computing frameworks, and a new method for the development of self-managing
systems starting from a model of their ICT resources. Also, we presented the inte-
gration of a probabilistic model checker into an autonomic computing policy engine,
and we described how a new policy type termed a resource-definition policy can be
used to build autonomic systems of systems.

26

W G| 48 Business utility dashboard

| £~ B~ @

& Tools >

ulility

Data-center business utility
Max utility(-—) versus actual utility (—=-)

T

120¢

100+

I I I

-

1 1

100 200 300

400

time [hours]

500 600 700

R. Calinescu

Fig. 15 An autonomic-enabled web page exposes effectors that the top-level policy engine uses to
supply it with summary information about the maximum utility and actual utility of a set of auto-
nomic data-centre systems (a single data-centre system was used in the experiment shown here).
The web page presents the dynamically acquired information using a graphical representation that
is generated at runtime using Matlab. Thus, the information about potential loss of business value

is conveyed in a concise format that can be used directly by a data-centre manager

To validate our framework, we employed it to build autonomic solutions spawn-
ing a range of application domains and using a variety of autonomic computing
policies. Table 2 uses these case studies to analyse the extent to which the proposed

framework satisfies the generality criteria C1-C3 introduced in Sect. 1:

Table 2 Summary of the case studies presented in the paper

|C1 ICT resources

C2 self-* areas & policies

C3 application domain

Self-monitoring CPU capacity
oS LaL '\I '\f Self-optimisation \f allocation
Self-monitoring CPU capacity
ol '\f '\! Self-optimisation ‘j allocation
Self-monitoring Dynamic power
e \! Self-adaptation vr management
Self-configuration Cluster availability
e J Self-protection control
Self-monitoring Dynamic gen. of
e "'! ""‘ Vr \’ Self-generation 'J web content

General-Purpose Autonomic Computing 27

C1 In terms of supported ICT resources, our case studies demonstrate that the
framework can handle the whole range of envisaged ICT resources.

C2 The framework has been used to develop autonomic solutions in several areas of
self-* functionality, and to support all types of autonomic computing policies.
To further confirm its generality, new applications are being currently investi-
gated that address additional areas of self-* functionality.

C3 The autonomic systems developed for the presented case studies cover a range
of application domains, including the development of a hierarchical system of
systems. This is a good first step towards establishing that the framework sat-
isfies this criterion. More work is required to assess the feasibility of using the
framework in other use cases, and in particular in the development of federations
of collaborating autonomic systems with no centralised management.

Based on past experience in using a domain-specific autonomic framework [4]
to develop systems similar to those in Sects. 7.1 and 7.2, we estimate that the use
of the generic framework to build these systems reduced the development effort
by roughly an order of magnitude, and we expect the same to hold true for other

applications.
(Canatakpuipnsa Reconfigurable
autonomic alic g A
architecture PONcy.8nd

adl
Meta-model of System model
[an IcT system)m[designer tool }[IET; ontology j
4
-9
~

Domain independent

&
-~ v
=
ﬁ)on‘mnn-sp&cifi-c\l_ (lCT foackroa J | Autonomic policy
1S
b

LY

definition J
I
ICT ontology / \ repository repository

A
Domain :pec]ﬁc Y,

[Model of the system
to be managed

v
| Manageability adaptors |
Reconfigured
policy engine

-+

Autonomic policies

A Application specific J

Fig. 16 Proposed autonomic system development methodology. The autonomic architecture, pol-
icy engine and system meta-model described in this paper are used at the domain-independent
level, alongside a proposed ICT ontology and a proposed tool for designing the meta-model
instances used to configure the policy engine. Repositories of ICT resource definitions and auto-
nomic policies, and domain-specific ICT ontologies should be available at the level of an appli-
cation domain, while our generic method for autonomic system development is employed for the
cost-effective development of autonomic systems at the application-specific level

28 R. Calinescu

A key feature of our autonomic computing framework is its use of runtime prob-
abilistic model checking. As shown in Sect. 7.4, model checking large systems can
incur significant overheads, and the use of the subscription-notification mechanism
supported by the framework (instead of periodical policy evaluation) is one way
to accommodate this constraint. Other approaches to be investigated include the
use of caching and pre-evaluation techniques to bypass the model checking step
during policy evaluation, and the use of a hybrid approach in which a smaller model
checking experiment is carried out to produce a close-to-optimal configuration for
the autonomic system and a faster technique is then used to refine this configuration.

In addition to reusing components and techniques across a broad range of appli-
cations, our approach to autonomic system development allows and encourages the
reuse of system models and autonomic computing policies. To take reusability fur-
ther, these models and policies should draw their elements from domain-specific
repositories of resource definitions and autonomic computing policies, respectively.
Furthermore, to maximise the sharing of models, policies, manageability adaptors
and autonomic-enabled resources, these repositories need to be built around con-
trolled ICT ontologies, as required by the methodology for the cost-effective devel-
opment of autonomic systems that we are proposing in Fig. 16. This methodology
that we are working towards is in line with the excellent principles stated in [43]
and successfully applied in the context of autonomic networking by Strassner
et al. [42].

Acknowledgments The work presented in this chapter was partly supported by the UK Engineer-
ing and Physical Sciences Research Council grant EP/F001096/1. The author is grateful to Marta
Kwiatkowska, David Parker, Gethin Norman and Mark Kattenbelt for insightful discussions during
the integration of the PRISM probabilistic model checker with the autonomic policy engine.

References

1. J. Arwe et al. Service Modeling Language, version 1.0, March 2007. http://www.w3.org/
Submission/2007/SUBM-sml-20070321.

2. C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2007.

3. E. Bruneton et al. The FRACTAL component model and its support in Java. Softw. Pract.
Exper., 36:1257-1284, 2006.

4. R. Calinescu. Challenges and best practices in policy-based autonomic architectures. In Proc.
3rd IEEE Intl. Symp. Dependable, Autonomic and Secure Computing, pages 65-74, 2007.

5. R. Calinescu. Model-driven autonomic architecture. In Proc. 4th IEEE Intl. Conf. Autonomic
Computing, June 2007.

6. R. Calinescu. Towards a generic autonomic architecture for legacy resource management. In
K. Elleithy, editor, Innovations and Advanced Techniques in Systems, Computing Sciences and
Software Engineering, pages 410-415, Springer, 2008.

7. R. Calinescu. Implementation of a generic autonomic framework. In D. Greenwood et al.,
editor, Proc. 4th Intl. Conf. Autonomic and Autonomous Systems, pages 124—129, March 2008.

8. M. Devarakonda et al. Policy-based autonomic storage allocation. In Self-Managing Dis-
tributed Systems, volume 2867 of LNCS, pages 143—154. Springer, 2004.

9. S. Dobson et al. A survey of autonomic communications. ACM Transactions on Autonomous
and Adaptive Systems, 1(2):223-259, December 2006.

General-Purpose Autonomic Computing 29

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

D. Gracanin et al. Towards a model-driven architecture for autonomic systems. In Proc. 11th
1IEEE Intl. Conf. Engineering of Computer-Based Systems, pages 500-505, 2004.

B. Haverkort et al. On the use of model checking techniques for dependability evaluation. In
Proc. 19th IEEE Symp. Reliable Distributed Systems, pages 228-237, October 2000.

M. Hinchey et al. Modeling for NASA autonomous nano-technology swarm missions and
model-driven autonomic computing. In Proc. 21st Intl. Conf. Advanced Networking and
Applications, pages 250-257, 2007.

M.G. Hinchey and R. Sterritt. Self-managing software. Computer, 39(2):107-109, Feb. 2006.
A. Hinton et al. PRISM: A tool for automatic verification of probabilistic systems. In
H. Hermanns and J. Palsberg, editors, Proc. 12th Intl. Conf. Tools and Algorithms for the
Construction and Analysis of Systems, volume 3920 of LNCS, pages 441-444. Springer, 2006.
IBM Corporation. Autonomic computing: IBM’s perspective on the state of information tech-
nology, October 2001.

IBM Corporation. An architectural blueprint for autonomic computing, 2004. http://www-
03.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf.

IBM Corporation. Autonomic integrated development environment, April 2006.
http://www.alphaworks.ibm.com/ tech/aide.

D.N. Jansen et al. How fast and fat is your probabilistic model checker? An experimental
comparison. In K. Yorav, editor, Hardware and Software: Verification and Testing, volume
4489 of LNCS, pages 69-85. Springer, 2008.

G. Kaiser et al. Kinesthetics extreme: An external infrastructure for monitoring distributed
legacy systems. In Proc. of the 5th Annual Intl. Active Middleware Workshop, June 2003.

H. Kasinger and B. Bauer. Towards a model-driven software engineering methodology for
organic computing systems. In Proc. 4th Intl. Conf. Comput. Intel., pages 141-146, 2005.
J.0O. Kephart and D.M. Chess. The vision of autonomic computing. /[EEE Computer Journal,
36(1):41-50, January 2003.

S. Kikuchi et al. Policy verification and validation framework based on model checking
approach. In Proc. 4th IEEE Intl. Conf. Autonomic Computing, June 2007.

M. Kwiatkowska. Quantitative verification: Models, techniques and tools. In Proc. 6th Joint
Meeting of the European Software Engineering Conf. and the ACM SIGSOFT Symp. Founda-
tions of Software Engineering, pages 449—458. ACM Press, September 2007.

M. Kwiatkowska et al. Stochastic model checking. In M. Bernardo and J. Hillston, editors,
Formal Methods for the Design of Computer, Communication and Software Systems: Perfor-
mance Evaluation (SFM’07), volume 4486 of LNCS, pages 220-270. Springer, 2007.

C. Lefurgy et al. Server-level power control. In Proc. 4th IEEE Intl. Conf. Autonomic Com-
puting, June 2007.

T. Lenard and D. Britton. The Digital Economy Factbook. The Progress and Freedom Foun-
dation, 2006.

Wen-Syan Li et al. Load balancing for multi-tiered database systems through autonomic
placement of materialized views. In Proc. 22nd IEEE Intl. Conf. Data Engineering, April
2006.

Microsoft Corporation. Xml schema definition tool (xsd.exe), 2007. http://
msdn2.microsoft.com/en-us/library/x6¢1kb0s(VS.80).aspx.
Microsoft ~ Corporation. System Definition Model overview, April 2004.

http://download.microsoft.com/download/b/3/8/b38239¢7-2766-4632-9b13-
33cf08fad522/sdmwp.doc.

B. Moore. Policy Core Information Model (PCIM) extensions, January 2003. IETF RFC
3460, http://www.ietf.org/rfc/rfc3460.txt.

R. Murch. Autonomic Computing. IBM Press, 2004.

B. Murray et al. Web Services Distributed Management: MUWS primer, February 2006.
OASIS WSDM Committee Draft, http://www.oasis-open.org/committees/download.php/
17000/wsdm-1.0-muws-primer-cd-01.doc.

OASIS. Web Services Resource Metadata 1.0, November 2006.

30

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

R. Calinescu

. M. Parashar and S. Hariri. Autonomic Computing: Concepts, Infrastructure & Applications.
CRC Press, 2006.

J. Parekh et al. Retrofitting autonomic capabilities onto legacy systems. Cluster Computing,
9(2):141-159, April 2006.

J. Pena et al. A model-driven architecture approach for modeling, specifying and deploying
policies in autonomous and autonomic systems. In Proc. 2nd IEEE Intl. Symp. Dependable,
Autonomic and Secure Computing, pages 19-30, 2006.

PRISM Case Studies: Dynamic Power Management. http://www.prismmodelchecker.org/
casestudies/power.php.

Q. Qiu et al. Stochastic modeling of a power-managed system: construction and optimization.
In Proc. Intl. Symp. Low Power Electronics and Design, pages 194-199. ACM Press, 1999.
M. Rohr et al. Model-driven development of self-managing software systems. In Proc. 9th
Intl. Conf. Model-Driven Engineering Languages and Systems. Springer, 2006.

R. Sterritt et al. Sustainable and autonomic space exploration missions. In Proc. 2nd IEEE
Intl. Conf. Space Mission Challenges for Information Technology, pages 59-66, 2006.

R. Sterritt and M.G. Hinchey. Biologically-inspired concepts for self-management of com-
plexity. In Proc. 11th IEEE Intl. Conf. Engineering of Complex Computer Systems, pages
163-168, 2006.

J. Strassner et al. Providing seamless mobility using the FOCALE autonomic architecture.
In Proc. 7th Intl. Conf. Next Generation Teletraffic and Wired/Wireless Advanced Networking,
volume 4712 of LNCS, pages 330-341, 2007.

J. Strassner et al. Ontologies in the engineering of management and autonomic systems: A
reality check. Journal of Network and Systems Management, 15(1):5-11, 2007.

W.E. Walsh et al. Utility functions in autonomic systems. In Proc. Ist Intl. Conf. Autonomic
Computing, pages 70-77, 2004.

S.R. White et al. An architectural approach to autonomic computing. In Proc. Ist IEEE Intl.
Conf. Autonomic Computing, IEEE Computer Society, pages 2-9, 2004.

O. Zimmermann et al. Perspectives on Web Services: Applying SOAP, WSDL and UDDI to
Real-World Projects. Springer, 2005.

Software Architecture-Based Self-Adaptation

David Garlan, Bradley Schmerl, and Shang-Wen Cheng

Abstract Increasingly, systems must have the ability to self-adapt to meet changes
in their execution environment. Unfortunately, existing solutions require human
oversight, or are limited in the kinds of systems and the set of quality-of-service
concerns they address. Our approach, embodied in a system called Rainbow, uses
software architecture models and architectural styles to overcome existing limi-
tations. It provides an engineering approach and a framework of mechanisms to
monitor a target system and its environment, reflect observations into a system’s
architecture model, detect opportunities for improvement, select a course of action,
and effect changes in a closed loop. The framework provides general and reusable
infrastructures with well-defined customization points, allowing engineers to sys-
tematically customize Rainbow to particular systems and concerns.

1 Introduction

Imagine a world where a software engineer could take an existing software sys-
tem and specify an objective, conditions for change, and strategies for adaptation
to make that system self-adaptive where it was not before. Furthermore, imagine
that this could be done in a few weeks of effort and be sensitive to maintaining
business goals and other properties of interest. For example, an engineer might take
an existing client—server system and make it self-adaptive with respect to a specific
performance concern such as high latency. He might specify an objective to maintain
request-response latency below some threshold, a condition to change the system if
the latency rises above the threshold, and a few strategies to adapt the system to
fix the high-latency situation. Another engineer might make a coalition-of-services
system self-adaptive to network performance fluctuations, while limiting cost of
operating the infrastructure. Still another engineer might make a cluster of servers
self-adaptive to certain security attacks.

D. Garlan (=)
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
e-mail: garlan@cs.cmu.edu

M.K. Denko et al. (eds.), Autonomic Computing and Networking, 31
DOI 10.1007/978-0-387-89828-5_2, © Springer Science+Business Media, LLC 2009

32 D. Garlan et al.

Today, when increasingly systems have the requirement to self-adapt with mini-
mal human oversight, it is becoming necessary to meet this vision. Systems must
cope with variable resources, system errors, and changing user priorities, while
maintaining, as best they can, the goals and properties envisioned by the engineers
and expected from the users. Software engineers lack the tools and techniques to
engineer a system with self-adaptation.

Engineers and researchers alike have responded to and met this self-adaptation
need in somewhat limited forms through programming language features such as
exceptions and in algorithms such as fault-tolerant protocols. But these mechanisms
are often specific to the application, tightly bound to the code, and usually provide
only localized treatment of system errors. As a result, self-adaptation for today’s
systems are costly to build, often taking many man-months to retrofit systems.

In contrast, the vision outlined above requires an approach that makes it pos-
sible for engineers to easily define adaptation policies that are global in nature,
and that take into consideration business goals and quality attributes. In particular,
we require that engineers be able to augment existing systems to be self-adaptive
without rewriting them from scratch, that self-adaptation policies and strategies can
be reused across similar systems, that multiple sources of adaptation expertise can
be synergistically combined, and that all of this can be done in ways that support
maintainability, evolution, and analysis.

In this chapter, we describe an approach to achieving these goals using
architecture-based self-adaptation techniques. In particular, our approach abstracts
observed behavior of an executing system into properties of an architectural model,
where they can be reasoned about using a variety of existing architectural analysis
techniques. The results of these analyses can then be used to reason about changes
that should be made to a system to improve or correct the system’s achievement of
the quality attributes.

Our approach is embodied in a system called Rainbow, which focuses on two
challenges to achieve cost-effective self-adaptation: (1) an approach and mecha-
nism that reduces engineering effort and (2) representation of adaptation knowl-
edge. Rainbow provides an engineering approach and a framework of mechanisms
to monitor a system and its executing environment, reflect observations into an
architectural model of the system, determine any problem states, select a course
of action, and effect changes. By leveraging the notion of architectural style to
exploit commonality of systems, the framework provides a general and reusable
infrastructure with well-defined customization points to cater to a wide range of
systems. The framework also provides a set of abstractions that allow engineers
to focus on adaptation concerns, facilitating an adaptation engineering workflow
for the systematic customization of Rainbow. To emulate the mundane and rou-
tine adaptation tasks performed by system administrators, Rainbow provides a lan-
guage, called Stitch, to represent the adaptation techniques using first-class adapta-
tion concepts. It offers modularity with respect to quality dimension and domain
expertise, strategies with condition and effect, a mechanism to tailor to particu-
lar styles, and the use of utility theory to compute the best adaptation path under
uncertainty.

Software Architecture-Based Self-Adaptation 33

In this chapter, we introduce the ideas behind architecture-based self-adapting
systems; briefly survey the research landscape; discuss the research and engineer-
ing challenges, particularly with respect to autonomic behavior for distributed, net-
worked systems; and describe the Rainbow approach and how it addresses these
challenges. We also give examples of its use in the context of autonomic networks,
focusing on adaptations to improve qualities such as fidelity, performance, security,
and cost of operation.

2 Overview of Autonomic and Self-Adaptive Systems

Overcoming the challenges of self-adaptation and allowing managed systems to
self-adapt with minimal human oversight requires closing the “loop of control.”
Software systems have traditionally been designed as open-loop systems: once a
system is designed for a certain function and deployed, its extra-functional quality
attributes typically remain relatively unchanged. In most cases, if something goes
wrong, humans must intervene, often by restarting the failed subsystem or taking
the entire system offline for repair. This results in high costs in system downtime,
personnel costs, and decreased revenue through system unavailability.

To address this problem, a number of researchers have proposed an alternative
approach that uses external software mechanisms to maintain a form of closed-loop
control over the target system (e.g., [26, 30, 39]). Such mechanisms allow a system
to self-adapt dynamically, with reduced human oversight. Minimally, closed-loop
control consists of mechanisms that monitor the system, reflect on observations for
problems, and control the system to maintain it within acceptable bounds of behav-
ior. This kind of system is known as a feedback control system in control theory [42].

Feedback control systems have typically been applied to control physical sys-
tems. For simple systems, the control model may be built-in to the design. For
example, a home thermostat that measures room temperature and checks it against
the set point, controlling a home heating and cooling system, will typically have a
simple built-in thermodynamic model. In more complex systems an explicit process
model is necessary for effective control [42]. For example, an air conditioning sys-
tem for a large building that monitors and controls multiple locations would require
an explicit model of the building partitions and temperatures to efficiently control
which cooling units to turn on and when.

For software systems, the external controller requires an explicit model of the
target system in order to reflect on observations and to configure and repair the
system [39]. Monitoring mechanisms extract and aggregate target system informa-
tion to update the model. An evaluation mechanism detects problems in the target
system as reflected in the model. The appearance of a problem triggers an adaptation
mechanism to use the model to determine a course of action. The mechanism then
propagates the necessary changes to the target system to fix the problem.

In principle, external mechanisms have a number of benefits over internal mecha-
nisms. External control separates the concerns of system functionality from those of

34 D. Garlan et al.

adaptation (or “exceptional”) behaviors. With the adaptation mechanism as a sep-
arate entity, engineers can more easily modify and extend it, and reason about its
adaptation logic. Furthermore, the separation of mechanisms allows the application
of this technique even to legacy systems with inaccessible source code, as long
as the target system provides, or can be instrumented to provide, hooks to extract
system information and to make changes. Finally, providing external control with
generic but customizable mechanisms (e.g., model management, problem detection,
strategy selection) facilitates reuse across systems, reducing the cost of developing
new self-adaptive systems.

2.1 The IBM Autonomic Framework

The IBM Autonomic Computing Initiative codified an external, feedback control
approach in its Autonomic Monitor-Analyze-Plan-Execute (MAPE) Model [28].
Figure 1 illustrates the MAPE loop, which distinguishes between the autonomic
manager (embodied in the large rounded rectangle) and the managed element,
which is either an entire system or a component within a larger system. The MAPE
loop highlights four essential aspects of self-adaptation:

1. Monitor: The monitoring phase is concerned with extracting information—
properties or states—out of the managed element. Mechanisms range from
source-code instrumentation to non-intrusive communication interception.

2. Analyze: is concerned with determining if something has gone awry in the sys-
tem, usually because a system property exhibits a value outside of expected
bounds, or has a degrading trend.

3. Plan: is concerned with determining a course of action to adapt the managed
element once a problem is detected.

4. Execute: is concerned with carrying out a chosen course of action and effecting
the changes in the system.

(ﬁllonomic Manager \

Knowledge
Execute Monitor

" 7
Managed Element >

Fig. 1 The IBM Autonomic MAPE Reference Model

Software Architecture-Based Self-Adaptation 35

Shared between these four phases is the Knowledge component, which contains
models, data, and plans or scripts to enable separation of adaptation responsibilities
and coordination of adaptations. The Rainbow framework provides components that
fulfill each of these four phases and the knowledge to support self-adaptation.

3 Software Architecture and Architecture-Based Self-Adaptation

A key issue in using an external model is to determine the appropriate kind of mod-
els to use for software-based systems. Each type of model has certain advantages
in terms of the analyses and kinds of adaptation it supports. In principle, a model
should be abstract enough to allow straightforward detection of problems in the
target system, but should provide enough fidelity to determine remedial actions to
take to fix the problem. State machines, queuing theory, graph theory, differential
equations, and other mathematical models [40, 42] have all been used for model-
based, external adaptation of software systems.

We, among others, use a system’s software architecture as the external model for
dynamic adaptation [19, 39]. The architecture of a software system is an abstract
representation of the system as a composition of computational elements and their
interconnections [44]. Specifically, an architecture model represents the system as
a graph of interacting components.! Nodes in the graph, termed components, rep-
resent the principal computational elements and data stores of the system: clients,
servers, databases, user interfaces, etc. Arcs, termed connectors, represent the path-
ways of interaction between the components. This is the core architectural represen-
tation scheme adopted by a number of architecture description languages (ADLs),
such as Acme [20] and xADL [13].

The use of software architecture as the basis for self-adaptation, termed
architecture-based self-adaptation, holds a number of potential promises. A rich
body of work on architecture trade-off analysis techniques used at system design
time facilitates runtime self-adaptation. As an abstract model, an architecture model
provides a global perspective on the system and exposes the important system-level
behaviors and properties. As a locus of high-level system design decisions, the
model makes system integrity constraints explicit, thereby helping to ensure the
validity of a change. For example, the architecture model can expose important
properties such as throughput and bandwidth, allowing the overall throughput
or performance of the system to be analyzed. Furthermore, the model might be
associated with explicit constraints on the architecture that, for example, forbid
cycles. This knowledge can be used at runtime to reason about the effect of a
change on the system’s throughput or structure. See [18] for a discussion of this
concept for performance evaluation.

' We are primarily interested in the component—connector view [11] because it characterizes the
abstract state and behavior of the system at runtime to enable reasoning about problems and courses
of adaptation.

36 D. Garlan et al.

Crucial for architecture-based self-adaptation is the choice of the architectural
style used to represent the target system. A style (e.g., pipe-filter) provides the
vocabulary to describe the architecture of a system in terms of a set of component
types (e.g., filter) and connector types (e.g., pipe), along with the rules for composi-
tion (e.g., no cycles) [1]. A style might also prescribe the properties associated with
particular element types (e.g., throughput on a pipe). Usually associated with a style
is a set of analytical methods to reason about properties of systems in that style. For
example, systems in the MetaH style supports real-time schedulability analysis [16].

For self-adaptation, given some quality objectives, each style may guide the
choice of system properties to monitor, help identify strategic points for system
observation, and suggest possible adaptations. To illustrate this, consider a signal-
processing system with an architecture in the pipe-filter style. This style constrains
the system to a data-flow computation pattern, points to throughput as a system
property, identifies the filter as a strategic point for measuring throughput, and sug-
gests throughput analysis for reasoning about overall system throughput. The pipe-
filter style may suggest adaptations that swap in variants of filters to adjust through-
put, create redundant paths to improve reliability, or add encryption to enhance
security. In contrast, consider a different system in the client—server style. This
style highlights request-response latency as a key property, identifies the client as a
strategic point for measuring latency and the server for load, and suggests the use of
queuing theory to reason about service time and latency. The style may suggest an
adaptation that switches clients to less loaded servers to reduce latency.

4 Related Work

To date, several dynamic software architectures and architecture-based adaptation
frameworks have been proposed and developed [7, 24, 39], including an effort to
characterize the style requirements of self-healing systems [35]. Below, we examine
arepresentative set of approaches, categorizing each by its primary focus, then high-
lighting its main features. Broadly speaking, related approaches focus on formalism
and modeling, or mechanisms of adaptation. A third category addresses distribution
and decentralization of control.

4.1 Distributed, Decentralized Adaptation

Work on self-organizing systems in [23] proposes an approach where self-managing
units coordinate toward a common model, an architectural structure defined using
the architectural formalism of Darwin [33]. Each self-organizing component is
responsible for managing its own adaptation with respect to the overall system. To
do this, each component maintains a copy of the architecture model of the entire
system. While this approach provides the advantage of distributed control and elim-
inates a single point of failure, requiring each component to maintain a global model

Software Architecture-Based Self-Adaptation 37

and keep the model consistent, which imposes significant performance overhead.
Furthermore, the approach prescribes a fixed distributed algorithm for global config-
uration. We overcome the performance overhead and coordination issue by allowing
tailorable global reorganization without imposing a high-performance overhead, but
we trade off distributed, localized control of adaptation decision.

4.2 Formal, Dynamic Architectures

A number of approaches focus on modeling and formalizing dynamic systems,
rather than mechanisms to enable self-adaption. Our approach builds on formal
architectural modeling, using the model within a framework of reusable infras-
tructures to enable self-adaptation in a target system. Wermelinger and colleagues
developed a high-level language, based on CommUnity, to describe architectures,
as well as changes over an architectural configuration, such as adding, removing, or
substituting components or interconnections [49].

The K-Component model addresses the integrity and safety of dynamic software
evolution, modeled as graph transformations of meta-models on architecture [15]. It
uses reflective programs called adaptation contracts to build adaptive applications,
coordinated via a configuration manager (similar to Le Métayer’s approach [31]).

Darwin is an ADL for specifying the architecture of a distributed system, with an
operational semantics that captures dynamic structures as the elaboration of com-
ponents and their bindings in a configuration [33]. Organization of components and
connectors may change during execution. The evolving structures of Darwin are
modeled using Milner’s m-calculus, allowing the correctness of its program elab-
oration to be analyzed. Together with its m-calculus semantics, Darwin serves as
a general-purpose configuration language for specifying distributed systems. Arch-
Ware [37] and PiLar [12] are examples of ADLs that use architectural reflection to
model layers of active architectures, allowing separate concerns to be addressed at
different layers. These approaches rely on sophisticated reflective technologies to
support the active architectures and enable dynamic co-evolution.

These approaches assume that system implementations are generated from the
architecture descriptions. In contrast, our approach relies on external mechanisms
decoupled from the target system and can therefore be used to add adaptation to
existing systems.

4.3 Style-Specific Approaches with Fixed Quality Attributes

A number of architecture-based approaches provide mechanisms to enable self-
adaptation (or system reconfiguration) that focus on particular quality attributes
of systems, such as performance [6, 27, 32], survivability [50], or that focus on
particular architectural styles, for example, [26, 38].

38 D. Garlan et al.

Most closely related to our own work is that of the UCI Research group headed by
Taylor [14], and the research of Sztajnberg [47]. As a natural extension of [38], Tay-
lor’s group developed an architecture-based runtime architecture evolution frame-
work, which dynamically evolves systems using a monitoring and execution loop
controlled by a planning loop. This framework supports self-adaptation for C2-style
systems, and evolution of the architecture model uses architectural differencing and
merging techniques similar to those used for source code version control. Sztajnberg
and Loques developed the CR-RIO framework, which uses a style-neutral ADL
(CBabel), architectural contracts to specify execution context, application profiles
to describe resource requirements, and middleware to perform architectural recon-
figurations based on the specified contracts. CR-RIO demonstrates a formal ver-
ification capability but does not appear to support automation of multi-objective
adaptations, for example by composing multiple contracts, nor does it address engi-
neering aspects. Our approach can be applied to different classes of systems and can
address multiple quality objectives.

Current approaches present a number of limitations and unresolved issues, which
are addressed by Rainbow. In particular, where traditional adaptive techniques—for
example, the ones based on exception-handling mechanisms and network time-
outs—rely only on localized knowledge of system states, we use an architecture-
based approach to leverage a more global perspective. While existing approaches
do not address the quantity of adaptation and system-level details that engineers
grapple with in order to build self-adaptation for their systems, we design a language
that encapsulates core self-adaptation concepts and hoists them as first-class build-
ing blocks for system engineers to build self-adaptation capabilities. Finally, almost
no existing approach provides a systematic, integrated approach to self-adaptation
that combines an end-to-end system perspective, style-based adaptation, automation
of routine human expertise, and incremental support to developing self-adaptation
capabilities; we address this by providing a framework with reusable infrastructures
and customizable elements.

5 The Rainbow Approach

Related work provides some of the building blocks for our own research. Software
architecture research provides the language, models, and analysis mechanisms to
represent and reason about a system’s runtime properties; related work in self-
healing systems and architecture-based approaches demonstrate the effectiveness
of using software architecture for particular classes of systems and fixed quality
attributes. What is missing is an approach to self-adaptation that (a) is generally
applicable to different classes of systems and quality objectives, (b) allows adapta-
tion to be represented as explicit operational entities and chooses the best one in a
principled and analyzable way, and (c) provides an integrated approach that saves
engineers time and effort in writing and changing adaptation.

Our approach satisfies the above requirements by (1) providing a framework,
called Rainbow, that provides general, supporting mechanisms for self-adaptation,

Software Architecture-Based Self-Adaptation 39

and which can be tailored to different classes of systems and (2) defining a language,
called “Stitch,” that plugs into this framework and allows adaptation expertise to be
specified and reasoned about, and which can be used to automate and coordinate
adaptations to satisfy multiple objectives.

The Rainbow framework is illustrated in Fig. 2. It functions as follows. Monitor-
ing mechanisms—probes and gauges—observe the running target system. Obser-
vations are reported to update properties of the architecture model managed by the
Model Manager. The Architecture Evaluator evaluates the model upon update to
ensure that the system is operating within an acceptable range, as determined by
architectural constraints. If the evaluation determines that the system has a problem,
the Evaluator triggers the Adaptation Manager to initiate the adaptation process and
choose an appropriate repair strategy. The Strategy Executor executes the strategy
on the running system via system-level effectors.

There are three important components to making our solution work: (1) software
architecture gives us leverage to make self adaptation general and cost-effective;
(2) control theory provides a well understood mechanism for closed-loop system
adaptation; and (3) utility theory allows us to pick the most appropriate strategy for
repair. Details of each of these are enumerated below.

5.1 The Elements of Rainbow

5.1.1 Software Architecture Model and Style

The first major element of Rainbow is the use of a stylized software architecture
model to monitor and adapt a target system. Like the blueprint of a building, the

—

b

Architecture Layer‘.""‘-._:

:)Adaptation
L Strategy [« Manager ~—pArchitecture
[Y Executor .:,¢ Evaluator

Model Manager

e

-

Gauges

¥

' ™)) Translation < —~ [s
L/ Infrastructure
! Eff

Fig. 2 The Rainbow framework with notional customization points

40 D. Garlan et al.

software architecture model of a system provides an abstract view of the modeled
software system. The architecture model elides low-level details and allows the
architect to focus on the important, high-level properties of the system. The model
is described using a particular vocabulary that conveys the structural characteristics
of the system, for example, client—server, dataflow, N-tier, and repository. Current
approaches to architecture modeling also allow the architect to specify explicit rules,
or constraints, about element composition in the system. An architecture model
so specified enables the architect to analyze the system for quality attributes such
as performance, availability, reliability, and security. Together, vocabulary, rules,
properties, and analyses, summarized below, comprise the building blocks of archi-
tectural style [1, 44].

1. Vocabulary (V) of element types, including component types (e.g., database,
client, server, filter), connector types (e.g., sql, http, rpc, pipe,), and component
and connector interface types.

2. Design rules (R), or constraints, that determine the permitted composition of
those elements. For example, the rules might require every client in a client—
server organization to connect to at most one server, prohibit cycles in a particu-
lar pipe-filter style, or define a compositional pattern such as a starfish arrange-
ment of a blackboard system or a pipelined decomposition of a compiler.

3. Properties (P) that are characteristic of elements in a style, in particular to pro-
vide analytic and sometimes behavioral or semantic information. For instance,
“load” and “service time” properties might be characteristic of server elements
in a performance-specific client—server style, while “transfer-rate” might be a
common property in a pipe element of a pipe-filter style.

4. Analyses (A) that can be performed on systems built in that style. Examples
include performance analysis using queuing theory for a client—server sys-
tem [46] and schedulability analysis for a style oriented toward real-time pro-
cessing [3].

While this traditional notion of style suffices to model snapshots of a system’s
architecture, including dynamic behavior of, and interactions between, system ele-
ments (e.g., Darwin [33] and Wright [4]), this characterization of style lacks mech-
anisms to explicitly represent what dynamic architectural changes are allowed by
systems of the style. Capturing allowable operations to the system is important for
modeling, analyzing, and reasoning about dynamic system adaptation. For example,
knowing whether a system’s style allows the activation of a server or the swap of a
communication channel helps determine possible adaptations for that system.

To handle the notion of dynamism with respect to architectural structure, we
augment the notion of style with operators.

5. Operators (O). A set of style-specific operations that may be performed on ele-
ments of a system to alter its configuration. For example, a service-coalition style
might define operators addService or removeService to add or remove a service
from a system configuration in this style.

Software Architecture-Based Self-Adaptation 41

The notion of architectural style (augmented with operators) gives the architect a
powerful abstraction to describe, classify, and analyze many different kinds of sys-
tems. Style provides the unifying concepts to factor commonalities out of classes
of system and to characterize differences between those classes. Specifically, we
leverage style in our design of the Rainbow approach and framework, in combi-
nation with the runtime use of architecture and environment models, to achieve
generality and cost-effectiveness. We present its design and customization points
in Sect. 5.3. Next, we discuss control systems theory, which is integral to the design
of our self-adaptation framework.

5.1.2 Control Systems and the Self-Adaptation Cycle

The second major element of Rainbow is the application of control systems con-
cepts to the adaptation problem. Self-adaptation requires a closed loop of control.
We choose a specific type of control system model to make our approach generaliz-
able and reusable across diffeent classes of system. In a typical control system, the
Controller must have access to relevant Measured Output from the target system as
well as maintain control over some Control Input. In our context, the target system
is the software system that requires self-adaptation. Controlling a software system
requires mechanisms to obtain information about the system and its execution envi-
ronment. Therefore, in addition to maintaining a model of the system’s architecture,
some model of the system’s execution environment must also be maintained. Also,
the Controller must be able to select a course of action and effect changes on the
system.

These required capabilities of control correspond to the 4 + 1 phases of the
adaptation cycle defined by the IBM Autonomic MAPE Architecture mentioned
in Sect. 2.1 [17]: knowledge is embodied in the architecture model, managed by
the Model Manager, monitoring is achieved by Probes and Gauges updating the
model, detection is performed by the Architecture Evaluator assessing problems
on the model, decision occurs through the Adaptation Manager choosing a rem-
edy based on model states, and action is accomplished by the Strategy Executor
effecting changes on the system via Effectors. For the decision phase, in order to
represent and reason about the courses of remedy, we introduce strategy as a concept
of self-adaptation. Each adaptation decision requires the consideration of multiple
factors, which leads to the third element used by Rainbow: utility theory.

5.1.3 Utility Theory

Once a problem is detected by Rainbow, an appropriate adaptation must be chosen.
To be effective, such a choice must consider overall business objectives and priori-
ties, and decide between multiple potential adaptations that have possible interacting
effects on the system (e.g., an adaptation that fixes performance might affect security
concerns, and vice versa). To deal with this, our approach uses utility theory.

To determine the most appropriate strategy in a given circumstance, we need to
define values for the objectives, relate the objectives to specific system conditions,

42 D. Garlan et al.

and assess the impact of the strategies on the objectives. One important concern is
the uncertainty in the outcome of a particular strategy: enacting a strategy does not
necessarily mean that the strategy will be successful on the system. This uncertainty
is due to a number of factors, including intervening operation of the system between
problem detection and adaptation, inadequate knowledge of the environment, or
unanticipated errors in strategy execution. We address this by combining utility
theory with a stochastic model of the strategy outcomes. This provides a method
to quantify strategies relative to the objectives, under uncertainty.

5.2 Znn.com Example

To illustrate the framework, consider an example news service, Znn.com, that serves
multimedia news content to its customers, inspired by real sites like cnn.com and
rockymountainnews.com. Architecturally, Znn.com is a web-based client—server
system that conforms to an N-tier style. As illustrated in Fig. 3, Znn.com uses a
load balancer to balance requests across a pool of replicated servers, the size of
which is dynamically adjusted to balance server utilization against service response
time. A set of client processes (represented by the C component) makes stateless
content requests to one of the servers. Let us assume we can monitor the system
for information such as server load and the bandwidth of server—client connections.
Assume further that we can modify the system, for instance, to add more servers
to the pool or to change the quality of the content. We want to add self-adaptation
capabilities that will consider monitored information and adapt the system to fulfill
Znn.com objectives.

|‘:—J
=]

/
ZUNRY

1 8

s1

R

g
\ | /
>ﬁ§ D
.--'_-?: \
ol
Fhan,aead b

s2
2 + —~ oA, LI
A
-.llllllllllld:
riegend:
Components Connectors Ports Roles
O Chent @ Hittp Connector u Htip Req Port -+ Requestor Role
<& Proxy = Proxy Connector L] Hittp Service Port +> Receiver Role
(=] Active Server e Inactive Connactor a Proxy Forward Port P Inactive Role
foed Inactive Server iz Inactive Port

Fig. 3 Architecture model of the Znn.com system

Software Architecture-Based Self-Adaptation 43

The business objectives at Znn.com require that the system serve news content
to its customers within a reasonable response time range while keeping the cost of
the server pool within its operating budget. From time to time, due to highly popular
events, Znn.com experiences spikes in news requests that it cannot serve adequately,
even at maximum pool size. To prevent unacceptable latencies, Znn.com opts to
serve only textual content during such peak times in lieu of providing its customers
zero service. The Znn.com system administrators (sys-admins) adapt the system
using two actions: adjust the server pool size or switch content mode. When the
system comes under high load, the sys-admins may increase the server pool size
until a cost-determined maximum is reached, at which point the sys-admin switches
the servers to serve textual content. If the system load drops, the sys-admin may
switch the servers back to multimedia mode to make customers happy, in combina-
tion with reducing the pool size to reduce operating cost.

The adaptation decision is determined by observations of overall average
response time versus server load. Specifically, four adaptations are possible, and the
choice depends both on the conditions of the system and on business objectives:

1. Switch the server content mode from multimedia to textual
2. Switch the server content mode from textual to multimedia
3. Increment the server pool size, and

4. Decrement the server pool size

We want to help Znn.com automate system management to adjust the server pool
size or to switch content between multimedia and textual modes. In reality, a news
site like cnn.com already supports some level of automated adaptation. However,
automating decisions that trade off multiple objectives to adapt a system is still
unsupported in most systems today. For instance, while automating adaptations on
performance concerns is possible (e.g., load balancing), it is much harder to do so
in the presence of conflicting qualities such as security.

In terms of Znn.com, the average response time and server load for Znn.com are
monitored and those measurements update corresponding properties in the Znn.com
architecture model managed by the Znn.com-customized Model Manager. The cus-
tomized Architecture Evaluator evaluates the model to make sure that no client
experiences a request-response latency above a certain threshold. If a client is expe-
riencing above-threshold latencies, the Evaluator triggers the Adaptation Manager
to initiate the adaptation process and determine whether to activate more servers or
decrease content quality. The customized Strategy Executor carries out the strategy
on the Znn.com system using the provided system hooks.

Building a self-adaptive system such as that outlined above is a costly proposition
if the important components such as the monitoring, model management, adapta-
tion, and translation mechanisms have to be built from scratch. For this reason, we
have engineered an integrated framework with shared infrastructures and developed
an iterative process to facilitate reuse of self-adaptive functionalities and reduce the
cost and effort of achieving self-adaptation.

44 D. Garlan et al.
5.3 Tailorable Rainbow Framework

Rainbow is a framework with general and reusable infrastructure services that can
be tailored to particular system styles and quality objectives, and further customized
to specific systems. The customization is notionally illustrated as plug-in pieces in
Fig. 2. The Rainbow framework consists of a number of components that provide
the monitoring, detection, decision, and action capabilities of self-adaptation.

This customizable self-adaptation framework has a number of advantages. Pro-
viding a substantial base of reusable infrastructure greatly reduces the cost of devel-
opment. Providing separate customization mechanisms allows engineers to tailor
the framework to different systems with relatively small increments of effort. In
particular, the tailorable model management and adaptation mechanisms give engi-
neers the ability to customize adaptation to address different properties and quality
concerns, and to add and evolve adaptation capabilities with ease. Furthermore, a
modular adaptation language to specify the adaptation policy allows engineers to
consider adaptation concerns separately and then compose them.

5.3.1 Rainbow Models

The Rainbow framework leverages two kinds of models to make adaptation deci-
sions: the architecture model and the environment model. An architecture model
reflects abstract, runtime states of the target system itself. Many current approaches
do not consider the system context, or environment, to make adaptation deci-
sions. Rainbow addresses this shortcoming through an explicit treatment of envi-
ronment states in the self-adaptation process. An environment model provides con-
textual information about the system, including the executing environment and its
resources. For example, if additional servers are needed, the environment model
indicates what spare servers are available. When a better connection is required, the
environment model has information about available bandwidth on other communi-
cation paths.

Managing an executing system dynamically requires knowing the entities that
are present, the runtime states they are in, and how they communicate. As noted,
the architecture model captures the state of the system as a graph of interacting,
communicating entities representing the Component and Connector (C&C) view of
architecture [11]. It consists of an instance of the target system defined in a particular
style, associated properties and their dynamically updated values, and constraints on
the structure of the target system.

The architecture of the system for the Znn.com example is described in the
ClientServerFam style with component, connector, and property types for clients,
servers, and HTTP connections. Clients in this system define an average_latency
property value and an architectural constraint specifying that this property should
always be below a threshold.

The environment model captures states of the target system’s execution environ-
ment to provide additional information for the self-adaptation process. Information
about the various resources must be sufficient to facilitate reasoning about adapta-

Software Architecture-Based Self-Adaptation 45

tion. As with architecture, we represent environment information as a graph where
nodes represent resources and typed edges represent relations between resources,
such as physical connection, containment, and dependencies. We capture com-
mon relation and resource types in an environment style. Environment resources
typically relate closely with system elements, so we maintain a mapping between
architecture-model elements and environment-model elements.

5.3.2 Translation Infrastructure—Monitoring and Action

In order to get information out of the target system into an abstract model for man-
agement, and then to push changes back into the system, the layer marked Transla-
tion Infrastructure in Fig. 2 provides monitoring and action (cf., Sect. 5.1.2) hooks,
and bridges the abstraction gap between the system and the architecture model. This
infrastructure builds on prior work and encompasses monitoring mechanisms, action
mechanisms, and various sets of correspondence mappings [5, 10, 22].

Monitoring Mechanisms: Probes and gauges extract system states, then aggre-
gate and abstract them to update the model. Intuitively, a probe measures some
part of the system, while a gauge interprets that measurement to provide a reading.
In Rainbow, as illustrated in Fig. 4, probes are deployed onto the target system to
measure and publish system information, such as CPU load or process run state.
Gauges are associated with specific properties in the architecture model; they col-
lect, aggregate, and abstract probe measurements to populate corresponding archi-
tectural properties. Different kinds of probes are deployed onto the target system
to detect system states (e.g., whether compression across a communication link is
enabled), measure quality attributes (e.g., link latency or intrusion detector state),
and discover resources (e.g., to find an available Apache server). Likewise, different
types of gauges are needed to aggregate and interpret system properties (e.g., to
average latency).

]
- LK Sl Gauge
l ¥« consumers
Abstraction l Gauge
/ model]repo o+ 'repo o reporting bus
Gauges
Target system Probe
/ environmen ; Iobse o reporting bus
Probes

Fig. 4 Monitoring mechanisms: probes and gauges

46 D. Garlan et al.

To tailor the monitoring mechanisms, an adaptation engineer identifies the prop-
erties of specific element types to monitor and finds matching gauges and probes
from gauge and probe libraries to monitor those properties (or develops them if none
are available). The engineer maps the gauge-updated property to the architectural
property via the mapping attribute, and also defines the target probe, by type name,
to which the gauge maps. While we require probes and gauges to enable overall
Rainbow functionality, they are not the focus of this chapter.

Action Mechanisms: Effectors carry out change operations on the target sys-
tem; they are associated with architectural operators in the Rainbow Architecture
Layer (Fig. 2). Under the hood, the mechanism to realize an effector could range in
complexity from a system-call, to a script, to a complex, workflow-based subsystem
(e.g., KX Worklets [48]). As with probes and gauges, we require effectors to enable
overall Rainbow functionality, but they are not the focus of this chapter.

Rainbow’s dependency on monitoring and action capabilities for the target sys-
tem is not a serious limitation. We build on other researchers’ work on probing
and effecting capabilities, including adaptive middleware technology [2, 8]. Fur-
thermore, modern systems increasingly support probing and effecting functionali-
ties, as evidenced by products from industry initiatives such as IBM’s Autonomic
Computing [17] and Microsoft’s Dynamic Systems Initiatives [34].

Translation Mappings: Our use of an abstract model to monitor and control the
target system requires us to bridge the abstraction gap with correspondence map-
pings. In a prior publication [10], we identified four distinct kinds of correspondence
mappings, maintained by the Translation Infrastructure, to facilitate translation of
control information between the architecture model and the target system. For exam-
ple, when the Strategy Executor invokes an effector, arguments to be passed to the
effector must be translated from architectural elements to target-system entities. We
briefly summarize the mappings below:

o A Type map relates a type of element in the architecture model with a type
of entity in the target system, including any properties defined for the type of
element/entity.

e An Element map relates an element instance in the architecture model with an
entity in the target system, including the property values.

e An Operation map relates an architectural operator, along with its formal param-
eters (type and name), to an effector with its corresponding parameters.

e An Error map relates the identifier and error sources of an exception in the target
system to a corresponding error at the architecture level.

5.3.3 Model Manager

The Model Manager manages both the architecture and environment models of the
target system. It maintains references between elements of the environment and the
architecture models. It tracks the model states, maintains correspondence between
the model and the system and environment states via gauges, provides the Rain-
bow components with shared access to the models via query and modify APIs, and

Software Architecture-Based Self-Adaptation 47

deploys gauges (and corresponding probes) as dictated by model property queries.
Elements in both the architecture and the environment models are accessed via direct
model reference in the adaptation scripts (e.g., EnvModel.elementX.prop).

To tailor the Model Manager, it is sufficient to tailor the managed models. A style
writer specifies a vocabulary (a family of element types) to describe the architecture
of the target system, defines the architecture and environment model instances, and
identifies the relevant properties to collect via the monitoring infrastructure.

5.3.4 Architecture Evaluator

Armed with a model that captures runtime system and environment states, we need
a mechanism to detect when an adaptation is needed (cf., Sect. 5.1.2). When any
model property changes, the Architecture Evaluator evaluates the conformance of
the architecture model to a predefined set of constraints. Upon detecting a constraint
violation, it notifies the Adaptation Manager (Fig. 2) to trigger adaptation. This
mechanism leverages prior work on the use of architectural constraints, specified in
first-order predicate logic, to identify flaws in system design [36]. We extend this
work by checking architectural constraints over runtime system properties to detect
target system problems at runtime.

To tailor the Evaluator, a style writer specifies as rules the topological and behav-
ioral constraints that (a) characterize the bounds of the target system and/or (b)
signify opportunities for adaptation. These architectural rules are specified in the
architecture model as first-order predicate logic expressions over architectural struc-
ture and properties.

5.3.5 Adaptation Manager

Once a problem is detected, we need a mechanism to decide on the appropriate
adaptation remedy (cf., Sect. 5.1.2). When triggered by the Architecture Evaluator,
the Adaptation Manager uses the architecture model to select a remediation strategy
that best suits the present problem state of the system, then coordinates the execution
of that strategy. Automating system adaptation requires formalizing three kinds of
information to instruct the machine to act automatically: for what to adapt, when to
adapt, and how to adapt the system.

A quality dimension determines what to adapt for and corresponds to a business
quality of concern, which is characterized as a utility function and mapped to a mon-
itored architectural property. For example, Average response time (uR) is mapped
to ClientT.experRespTime in the architecture and has the utility function defined
by the points ((0, 1),(500,0.9),(1500,0.5), (4000, 0)) to represent the utility of
average response time at 0, 500, 1500, and 4000 ms. The utility of values of points
in between are interpolated. To manage multiple objectives, each quality of con-
cern is given a relative weight that captures business preferences across the quality
dimensions. To help decide when adaptations are applicable we specify conditions
of applicability, e.g., invariant self.avg_latency < MAX_RESPTIME.

48 D. Garlan et al.
1 module newssite.strategies.example;
2 import model "ZnnSys.acme" { ZnnSys as M, ZnnFam as T };
3 import lib "newssite.tactics.example";
4 import op "org.sa.rainbow.stitch.lib.*"; // Model, Set, & Util
5
6 define boolean styleApplies = ...
7 define boolean cViolation = exists c¢ : T.ClientT in M.components
8 c.experRespTime > M.MAX_RESPTIME;

10 strategy SimpleReduceResponseTime [styleApplies && cViolation] {

11 define boolean hilLatency = ...

12 define boolean hiLoad = ...

13

14 tl: (hiLatency) -> switchToTextualMode () {
15 tla: (success) -> done ; }

16 t2: (hiLoad) -> enlistServer(1l) {

17 t2a: (!hiLoad) -> done ;

18 t2b: (!success) -> do [1] tl1 ; }

19 t3: (default) -> fail;

20 }

Fig. 5 An example strategy SimpleReduceResponseTime

The Stitch self-adaptation language allows strategies to be specified that capture
a pattern of adaptations in which each step evaluates a set of condition-action pairs
and executes an action, possibly waiting for the action to take effect. Actions use
operators on the architectural style to make changes to the system. A strategy also
specifies conditions of applicability that determine in what contexts it should be
involved. Furthermore, we need to specify cost—benefit attributes to relate its impact
on the quality dimensions. Detailed language features appear in [9].

The adaptation process works as follows: When the Architecture Evaluator
detects an adaptation condition, it triggers the Adaptation Manager to initiate a
round of adaptation. The Adaptation Manager first checks the strategy conditions
of applicability to filter a subset of applicable strategies based on current system
conditions (reflected in the model). In Fig. 5, SimpleReduceResponseTime applies
when the conditions styleApplies (definition elided in line 6) and cViolation (defined
in lines 7 and 8) are true. The Adaptation Manager then selects the best strat-
egy from the subset by computing the expected utility of each strategy. Briefly,
the expected utility of each strategy is computed by first computing the expected
aggregate impact of each strategy on each quality dimension using the specified
cost-benefit attributes. Next, the strategies are scored using the utility preferences
over the quality dimensions. Finally, the highest scoring strategy is selected.

The Adaptation Manager combines utility, decision, and control theories to solve
the decision-making problem in self-adaptive systems. To tailor the Adaptation
Manager, the engineer specifies a set of adaptation strategies, the quality dimensions
and utility preferences, and the cost—benefit attributes to enable automated selection
of strategies.

Software Architecture-Based Self-Adaptation 49

5.3.6 Strategy Executor

Once a strategy is chosen, we need a mechanism that can carry out the adaptation on
the target system. The Strategy Executor is dispatched by the Adaptation Manager to
do this. It resolves model references within the strategy against the Rainbow model,
observes model states and evaluates branch conditions to determine operators to
execute and corresponding system-level effectors to carry out changes.

The Strategy Executor is tailored by the set of operators of the style. For example,
for Znn.com, operators would include addServer, removeServer, and setFidelity.

5.4 Rainbow Application to Znn.com

To illustrate how to customize the Rainbow framework, let us walk through the
Znn.com example. Table 1 gives an overview of how each of the Rainbow compo-
nents is customized for Znn.com. This example is simplified to illustrate only the
major features of Rainbow.

The stakeholders in the Znn.com example are the customers and the news service
provider. The customers care about quick response time of their news requests and
high content quality (i.e., multimedia over textual). While aware of the customer
content quality preferences, the provider is constrained by infrastructure provision-
ing costs to provide the service. We use these three quality concerns to define the
quality dimensions, which correspond to measurable properties in the target system.
We capture each dimension as a discrete set of values:

1. Response time: low, medium, high
2. Quality: graphical or multimedia
3. Budget: within or over

We elicit from the service providers the utility values and preferences for these
dimensions. In addition, since response time is affected by the amount of time
required to complete an adaptation, we also need to consider a fourth dimension,
disruption, which should be minimized. We use an ordinal scale of 1-5 to express
the degree of disruption. Cost—benefit attributes necessary for strategy selection are

Table 1 Znn.com: example application of the Rainbow framework

Set Rainbow component Customization content highlight

Objective Adaptation Manager timely response (#R), high-quality content (uF),
low-provisioning cost (uC)
Vocabulary Model Mgr, Translators ClientT, ServerT, DatabaseT, HttpConnT

Property Architecture Evaluator, ClientT.reqRespLatency, HttpConnT .bandwidth,
Monitoring Mechanisms ServerT .load, ServerT .fidelity, ServerT.cost

Rule Architecture Evaluator ClientT.reqRespLatency <= MAX_LATENCY

Operator ~ Strategy Executor addServer, removeServer, setFidelity

Strategy ~ Adaptation Manager SwitchToTextualMode, SwitchToMultimediaMode,

EnlargeServerPool, ShrinkServerPool

50 D. Garlan et al.

Table 2 Znn.com quality dimensions and utility preferences

Label Description Architectural property Utility function Weight

Ug Avg Response ClientT.experRespTime ((low, 1), (med, 0.5), (high,0)) 0.4
Time

ur Avg Content ServerT.fidelity ((textual, 0) , (multimedia, 1)) 0.2
Quality

Uc Avg Budget ServerT.cost ((within, 1), (over, 0)) 0.3

up Disruption ServerT.rejectedRequests ~ ((1,1),(2,0.75),(3,0.5), 0.1

(4,0.25),(5,0))

specified with respect to these four quality dimensions. Given our understanding
of the quality dimensions, we can specify discrete utility functions for these four
dimensions and complete the utility profiles. To determine the utility preferences,
assume that Znn.com considers response time the most important, followed by bud-
get, then content quality, and finally disruption. The quality dimensions and utility
preferences are summarized in Table 2.

As part of the N-tier style of Znn.com, a set of element types are defined to model
elements of the system architecture: ClientT to model client instances, ServerT for
server instances, DatabaseT for databases in the data layer, and HttpConnT as
one of the prominent protocols of communication. Properties corresponding to the
objectives are defined on the style elements to help measure and assess satisfaction
of the objectives; respectively, they are ClientT.reqRespLatency, ServerT fidelity,
ServerT.cost, shown in Table 2. These and other properties are measured by probes
and gauges in the translation infrastructure.

A rule specifies the acceptable bound of request-response latencies experienced
by a client: exceeding MAX_LATENCY indicates a problem. A set of operators
correspond to available effectors in Znn.com: the system can be controlled to add or
remove servers, or to change the fidelity of the served content.

When Rainbow is customized as above, during operation the Model Manager
deploys gauges and corresponding probes on Znn.com to monitor server status,
connection bandwidths, and request-response latencies experienced by the clients
(can be approximated via server-side proxy). Probes usually report instantaneous
and low-level values, while gauges aggregate and average these measurements and
report them as values of corresponding architectural properties to the Model Man-
ager. When the Model Manager updates the architecture model, the Architecture
Evaluator checks the model to make sure that the constraint is satisfied, i.e., no
client experiences a request-response latency above the maximum threshold.

If a client experiences above-threshold latencies, a constraint violation occurs,
and the Evaluator triggers the Adaptation Manager to initiate adaptation. The Adap-
tation Manager scans through a repertoire of strategies, filtering out the inapplicable
ones, then scores them to determine expected utility.

The Znn.com example has four possible strategies, corresponding to each of
the adaptations outlined in Sect. 5.2: SwitchToTextualMode, SwitchToMultime-
diaMode, EnlargeSeverPool, and ShrinkServerPool. We also specify cost—benefit
attribute vectors for these strategies, not shown here, that relate the impact of each

Software Architecture-Based Self-Adaptation 51

Table 3 Znn.com strategies and cost—benefit impact

Strategy UR ur Uuc up Utility
SwitchToTextualMode —2=low —1 =textual +0=within 3 0.75
EnlargeServerPool —2=low +0=multimedia +1=over 1 0.70

strategy to the four quality dimensions. For example, SwitchToTextualMode lowers
the response time and the fidelity level, does not affect the cost, and incurs some
level of disruption.

Let us assume that Znn.com hits a peak load period, and the system state falls
into a problem state in which the response time is high, the infrastructure cost is
within budget, and the content mode is multimedia. In this case, only the strate-
gies SwitchToTextualMode and EnlargeSeverPool are applicable. So we need to
score the strategies to determine which one to choose given the utility preferences.
The cost—benefit attribute vectors would yield aggregate attribute vectors and utility
scores for the two strategies as shown in Table 3.

The utility scores indicate DropFidelityStrategy as the better adaptation strat-
egy, given the current system conditions. The Adaptation Manager delegates the
execution of this chosen strategy to the Strategy Executor, which evaluates the strat-
egy and invokes the setFidelity operator. This operator is mapped to a corresponding
effector to change the Znn.com system. Once changes are effected, Rainbow’s adap-
tation cycle continues to monitor system states.

Note that if Znn.com attributed a lower weight to budget, or a higher weight to
disruption, or swapped the importance of disruption versus budget, then the other
strategy would have scored higher. Using such utility-based analysis, we can choose
a strategy by considering four dimensions and accounting for trade-offs across those
using the additional input of business utility preferences.

6 Conclusions and Ongoing Work

In this chapter, we described our approach to architecture-based self-adaptation,
which allows engineers to add self-adaptation facilities to existing systems. This
approach, called Rainbow, involves adding an external mechanism to monitor and
enact changes in systems. We summarized the elements of Rainbow, and how they
can be customized to different styles of systems and quality dimensions of interest.
Our approach is two-pronged: we provide a framework of reusable infrastructure
that can be tailored to particular domains and we provide a language called Stitch
that can allow adaptation techniques to be codified. We have given an intuition
behind the approach as applied to a simple networked system. Interested readers
are referred to [9] for details of the customization and the Stitch language.

As summarized in Table 4, we applied Rainbow to a number of systems, includ-
ing two small client-server systems (CSSys and UnivSys), a service-coalitio